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Introduction

This course document is a work mainly intended for students of the 2"? year of the "Li-
cence in Mathematics" as well as the 1% year of the "State Engineer in Computer Science"
includes the Mathematical Logic module, it contains the essentials of the course with exam-
ples according to the program proposed by the Ministry of Higher Education and Scientific
Research.

The particularity of this work is that it was designed to allow a student to acquire,
understand, and dominate by himself all the concepts covered.

In this work, we will find three chapters of course, written in an easy-to-read style very
detailed:

Chapter 1 is devoted to propositional calculus and predicate calculus, and in particular
covers the rules of inference, the basic elements of mathematical reasoning.

Chapter 2 is devoted to set theory, after a reminder of naive set theory we approach
Russell’s paradox. This paradox allows a natural transition to Zermelo-Fraenkel’s theory
denoted ZF theory. If the handout addresses ZF theory it is nevertheless possible to move
on to the following sections without prejudice.

Two important concepts in set theory are addressed at the end of the chapter, the
continuum hypothesis and the axiom of choice.

Chapter 3 is devoted to well-ordered sets and the proof by the principle of good order.
We approach the simplest version of the proof by the principle of good order which is the
proof by recurrence. We generalize this principle at the beginning to sets where the relation

of good order is easy to find.

v



Introduction

The proof by the principle of good order is often used in theoretical computer science to
demonstrate the finiteness of certain algorithms for example.

The last section concerns the proof of Zermelo’s theorem on the existence of a good order
relation for any set.

Exercises with solutions are provided at the end of each chapter to allow students to test
their knowledge and prepare for tests and final exams.

Finally, I hope that this work can help students who want to master the various concepts

that have been well developed.



Chapter 1

Basic notions of mathematical logic

In propositional logic, we study the relations between statements, which we call propo-
sitions or formulas. These relations can be expressed through logical connectives that,
through composition, allow the construction of syntactically correct formulas. These in-
clude conjunction, disjunction, implication, equivalence, and negation. This chapter aims
to introduce propositional calculus, predicate calculus, and the rules of deduction that form

the basis of mathematical proofs.

1.1 Propositional calculus

1.1.1 Proposition (Assertion)

A proposition is a mathematical statement to which one assigns one of two logical values:

true (1) or false (0).

Example 1.1.1 - Proposition « 1 —1 =0 » 1s true.

- Proposition « 3+ 2 =1 » 1s false.

Propositions are generally denoted by the letters P, Q. R, ...

1.2 Logical connectors

There are five (5) logical connectors, the basis of all mathematical reasoning. Let P and Q

be two propositions.



1.2. Logical connectors

1.2.1 Negation « no » or « — »

We call the negation of P, the proposition (no P) (not P) and we denote it : =P or P.
Truth table of negation
Consider proposition P (see Table 1.1). The negation of a proposition P (true) is a false
proposition. If P (false) then =P is true.

P -P
1 0
0 1

Table 1.1: Truth table of negation

Negation of the negation
In general, a double negation often reinforces the negation such as : do you want to go
out? no no.

In mathematics, a double negation is considered a proposition.

Example 1.2.1 1- If P is proposition x = 0, =P s proposition x # 0.
2- The 03 is not even so 03 s odd.

Remark 1.2.1 The meaning of the symbol <, which reads equivalent, and which means

here that the two propositions always have the same value.

1.2.2 Conjunction « and » or « A »
We call conjunction of P and @, the proposition (P and () which is denoted P A Q.

Example 1.2.2 P : « The earth is round » (true) and Q : « The sky is blue » (true).
P and Q or P A Q therefore reads « The earth is round AND the sky is blue». P AQ is
true. We will say that the proposition P A\(Q) is false when at least one of the two propositions

1s false. So « The earth is round AND the sky is green » is a false proposition.

Commutativity
(PAQ) = (QAP).
Truth table of conjunction

The result of the conjunction is proved by the truth table 1.2.



1.2. Logical connectors

P Q PAQ
1 1 1
1 0 0
0 1 0
0 0 0

Table 1.2: Truth table of conjunction

1.2.3 Disjunction « or » or « V »

We call disjunction of P and @, the proposition (P or )) which is denoted P V Q.

Remark 1.2.2 In mathematics, the «or» is non-exclusive, i.e, it includes the possibility
that both propositions are true. Thus the proposition « xy = 0 » is equivalent to the
proposition « x = 0 ory = 0 », it is true when one of the two numbers is zero, it is also

true when both are zero.

Commutativity

(PVQ)e(@QVP)

Truth table of disjunction

The result of the disjunction is proved by the truth table 1.3.

P Q PVQ
1 1 1
1 0 1
0 1 1
0 0 0

Table 1.3: Truth table of disjunction

Remark 1.2.3 Conjunction and disjunction are associative connectors. that is, we can
write PA(QAR) or (PAQ)AR or simply PANQAR. Similarly PV (QV R) or (PVQ)VR
or simply PV Q V R.



1.2. Logical connectors

1.2.4 Exclusive disjunction (xor)

Let P and @ be two propositions, the compound proposition (P V Q) V =(P A Q) is written
as P ® . The binary connector & is called exclusive disjunction, the proposition P @ () is

true if one and only one of the propositions is true and the truth table is given by

P Q PoQ
1 1 0
1 0 1
0 1 1
0 0 0

Table 1.4: Truth table of exclusive disjunction

Remark 1.2.4 xor is an abbreviation for exclusive or.

1.2.5 Implication « — »

The proposition denoted by « P = () » corresponds to the proposition =P V(. P is
then called the hypothesis and @) the conclusion. P = () is a proposition which is called
implication and which we can read in different ways :

- If P then Q.

- For P we need Q.

- For @) it suffices P.

- P is a sufficient condition for ()

- () is a necessary condition of P.

Truth table of implication

The result of the implication is proved by the truth table 1.4.

P Q ~P P—=@Q | -PVvQ
1 1 0 1 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1




1.2. Logical connectors

Table 1.5: Truth table of implication

The proposition is true whenever P is false (regardless of the truth of Q). If P is true
and P = () true then @ is true. Moreover the implication () = P is called the reciprocal

of the implication P = Q).

Example 1.2.3 - P:2=2 and Q) : 4 = 4 are two true assertions, so P = ) or =P VQ
18 true,

-Ifx €{1,3,5,6} then x <6 is a true assertion.

1.2.6 Equivalence « <— »

We say that two propositions are logically equivalent if they have the same truth value and
denoted by P <= (). In other words P <= () is true if P and @) are both true or both are
false. The proposition P <= ) corresponds to the proposition (P = @) and (@ = P).
it can be expressed as follows:

- P is equivalent to Q).

- For P, it is necessary and sufficient Q).

- P is a necessary and sufficient condition for Q.

- P if and only if Q.

Truth table of equivalence

The result of the equivalence is proved by the truth table 1.5.

P Q P Q
1 1 1
1 0 0
0 1 0
0 0 1

Table 1.6: Truth table of equivalence

Example 1.2.4 Take (P A Q) and (—(=P V —Q)). See the result in Table 1.6.



1.3. Tautology and antilogy

P Q —P —Q) PV -0Q | =(=PV-Q) PAQ
T T F F F T T
T F F T T F F
F T T F T F F
F F T T T F F

Table 1.7: Example of equivalence

1.2.7 Distributivity and Morgan’s Laws

Distribution of conjunction over disjunction

The propositions PA (QV R) and (PAQ)V (P A R) are equivalent (have the same truth
table).

Distribution of disjunction over conjunction

The propositions PV (Q A R) and (PV Q) A (PV R) are equivalent (have the same truth
table).4

Morgan’s Laws

- The negation of the proposition (P A Q) is the proposition =P V =Q.

- The negation of the proposition (P V @) is the proposition =P A =Q).

1.3 Tautology and antilogy

Assertions (dependent on P and Q) that are true regardless of the truth value of P and Q
are said to be tautology. A tautology is actually a theorem of logic. Assertions (dependent

on P and Q) that are false regardless of the truth value of P and @ are said to be antilogy.

Example 1.3.1 Let P be a proposition, the formula PV =P 1is a tautology.

P - P PV-P
1 0 1
0 1 1

Table 1.8: Example of tautology



1.4. Predicate Calculus

Example 1.3.2 Let P be a proposition, the formula P N\ —P is a antilogy.

P - P PA-P
1 0 0
0 1 0

Table 1.9: Example of antilogy

1.4 Predicate Calculus

1.4.1 Universal and existential quantifier

Definition 1.4.1 A predicate is a statement that depends on one or more variables. The

truth value of the predicate thus depends on the variable(s) that compose it.

Example 1.4.1 P(z) : 2> + 1 = 2z is a predicate. We can only know its truth value by
replacing the value of x.

Thus the predicate is true for x = 1 and false for x # 1.

Definition 1.4.2 Let P(x) be a predicate dependent on the variable x. We introduce the
Propositions:

1-VYx(P(z)): By definition this proposition is true if any value of x makes the predicate
P(z) true.

2- dx(P(x)): By definition this proposition is true if there exists at least one value of x
for which the predicate P(z) is true.

The symbol ¥ which means (Whatever) or (For all) represents the universal quantifier.
This symbol represents the reversed letter (A) which is the initial of the English word (All).
The symbol 3 which means (There exists at least one ... such that) represents the existential
quantifier. This symbol represents the reversed letter (E) which is the initial from the English

word (Exist).

Example 1.4.2 1) "All students have a mobile phone” can be formalized in the following
way:

Vr (x is a student => x has a mobile phone).



1.4. Predicate Calculus

/

2) " There is at least one African country at war " can be formalized as follows:

dz (z is a country in Africa A\ x is at war).

In most cases the variables on which the quantifiers apply are taken from sets. We thus
adopt the following notations:

-Vz € A: P(z) is used to denote the formula Vz(z € A = P(z)).

-dz € A: P(z) is used to denote the formula Jz(z € A A P(x)).

1.4.2 Multiple quantifiers

When a multivariate predicate is quantified universally and existentially, the order in which
the quantifiers appear is important. Thus for a predicate p(z,y) the formulas Vz, 3y, p(z, y)

and 3z, Yy, p(x,y) do not have the same meaning,.

Example 1.4.3 Vo € R,dy € R,y > x, which means « Whatever the real x, it exists at
least one real y such that y is greater than x ». We can always find a number greater than
a given real number because the set R is not bounded. The proposition is true.

Let us now invert the quantifiers 3x € R,Vy € R,y > x « There exists at least one real
x such that for any real y, y is greater than x ». This proposition this time is false because

we cannot find a real number lower than all the others. Indeed the set R has no lower bound.

Remark 1.4.1 It is possible to exchange quantifiers when they are of the same nature and

consecutive.
Example 1.4.4 The two formulas below are equivalent:

Vo € RVyeR:2>+4>>0,

Vy € RVzeR:2?+15%>0.

1.4.3 Negation of a quantifier
The fundamental rules of negation of formulas are given by
= (Vx: P(z)) < Jz: = P(x) and = (Jz: P(z)) & Vo : - P(x)

These rules are applied successively to several quantifiers.



1.4. Predicate Calculus

1.4.4 Quantifiers and connectors

In formulas that use simultaneously quantifiers and conjunctions and disjunction connectors,

attention must be paid to the meaning of the formulas.

Thus the formulas: Vz : (P(z) A Q(z)) and (Vz : P(z)) A (Vz : Q(z)) are equivalent.

On the other hand the formulas YV : (P(z) V ¢(z)) and (Vz : P(x)) V (Vx : Q(z)) are not
equivalent, the second implies the first.

Similarly 3z : (P(z) V Q(z)) and (3x : P(x)) V (3= : Q(x)) are equivalent, while Jx :
(P(x) A Q(x)) implies (z : P(x)) A (Fz : Q(x)).

1.4.5 The quantifier of unique existence

The quantifier 3! means "there exists one and only one", the formula 3!z : p(z) asserts
that there is a unique value of the variable x that makes the predicate p(z) true, and this

assertion can be expressed by the quantifiers V and 3:

(Jz: P(x)) A (Vy,Vz: P(y) AN P(z)) =y = z.

1.4.6 Closure of a predicate

Definition 1.4.3 A wvariable that appears after a quantifier is said to be bound. A variable

that is not bound is said to be free.
Example 1.4.5 3z € R : 22 = . Here the variable x is bound and the variable « is free.

Definition 1.4.4 A formula that does not contain any free variables is said to be closed. A

closed formula is a proposition.

Example 1.4.6 The formula Yo € RT3z € R : 2? = « is a closed formula (all variables

are bound). It is a true proposition.

Definition 1.4.5 The universal closure (resp. existential closure) of a formula is the for-
mula obtained by adding at the beginning of this formula the quantifiers ¥ (resp. 3) to all

the free variables of the formula.



1.5. Rules of deduction (inferences)

Example 1.4.7 Let the predicate P(x,y) : 2* = —y? — 1.
The universal closure of this predicate is given by Vo € R,Vy € R: 22 = —y% — 1.
The existential closure of this predicate is given by Jx € R,y € R : 2? = —y% — 1.

1.5 Rules of deduction (inferences)

Rules of inference are rules based on tautology, and they form the basis of mathematical

proofs.

1.5.1 Modus Ponens (Direct Proof)

We say that a proposition @) logically follows from a true proposition P if the implication
P = (@ is true we write in this case

P

P=Q

Q

where the sign .". reads "Therefore or Consequently".
The proposition P is called hypothesis and () is called conclusion.
The Modus Ponens rule is based on the tautology (P A (P = @)) = Q. Indeed we have

P Q P=0@Q |PANP=Q|(PAN(P=Q)=Q

1 1 1 1 1

1 0 0 0 1

0 1 1 0 1

0 0 1 0 1
Redaction

The redaction of a direct proof often takes the following form:
Proposition: If P then Q).
Proof: Suppose P

Therefore (Consequently, Hence...) Q.

10



1.5. Rules of deduction (inferences)

Example 1.5.1 Show that for any odd natural number n, the integer 3n + 7 is even.

Suppose that n is an odd integer so we have

Vn odd integer == Jdke€N:n=2k+1
—_— ~~
P P

JkeN:n=2k+1 = IeN:3n+7=302k+1)+7

J/

-

Pl P2
JkeN:3n+7=6k+10=23k+5) = 3n+7 is even
N /) ————

-

P Q

By transitivity of the logical tmplication we obtain: P = Pl = P2 = P3 = (@) therefore
the proposition P = () is also true.
So we have

Vn odd integer
—_———

P
Vn odd integer =—> 3n + 7 is even

P=Q
Q

Remark 1.5.1 In a direct proof we never start with a false proposition otherwise we cannot
conclude anything. Indeed if the proposition P is false the proposition P = @ 1is true. We

cannot obtain any conclusion on the nature of () which can be true or false.

1.5.2 Proof by contrapositive

The proof by contrapositive is based on the following tautological equivalence
(P=Q)<—= (-Q=-P).
In some cases, it allows a demonstration to be simplified.

Remark 1.5.2 The classical example of the use of proof by contrapositive concerns the

mjectivity of an application.
So to show that a function f : E — F' is injective we can show the logical implication
Vo, € B xy # 29 = f(x1) # f(29).
But often it is simpler to show the contrapositive

Vay, v € B f(x1) = f(22) = 71 = 2.

11



1.5. Rules of deduction (inferences)

1.5.3 Proof by the absurd

The proof by the absurd is based on the following tautology

(n P= F) <= P (F:false proposition (contradiction)

P -~ P F |-P=>F|(-P=F)< P
1 0 0 1 1
0 1 0 0 1

It consists in demonstrating that a logical implication having as antecedent - P and as
consequent a contradiction is true.

Thus the only possibility is that the proposition = P is false which implies that the
proposition P is true.

This demonstration generally begins with: "let us suppose = P and look for a contra-
diction". The contradiction appears in the form of a proposition and its opposite true at

the same time.

Example 1.5.2 Ifa,b € Z then a®> — 4b # 2
Suppose that the proposition is false.
Therefore, there exist two integers a and b such that a® — 4b = 2 (x).
From this equation we obtain a* = 4b+ 2 = 2(2b+ 1), so a® is even.

2

Since a® is even we deduce that a is also even, there exists an integer ¢ such that a = 2c.

By replacing in the terms of the equation () we obtain (2¢)* — 4b = 2.
By dividing by 2 we obtain 2¢* — 2b =1 from which 2(c* —b) = 1.
We deduce that the integer 1 is even which constitutes a contradiction.

1.5.4 Proof by counterexample

The proof by counterexample is based on the following tautology
- (Vo : P(z)) < dz: - P(z).

To demonstrate that the proposition Vz : P(z) is false we find z( such that = P(zg) is

true.

12



1.6. Constructive and non-constructive proofs

1.5.5 Proof by separation of cases

Let P, P,, ... P, be propositions. We want to prove proposition () given that proposition P
vV P, V...V P, is true.

It is then sufficient to prove separately that V1 < i < n if P; is true then () is true.

Example 1.5.3 Show that if n € N then 1 + (—1)"(2n — 1) is a multiple of 4.
Suppose n € N, then n is either even or odd.
Considering each case separately.
Case No 1: Suppose n is even then there exists an integer k such that n = 2k. Then

we obtain

14+ (=1)"(2n —1) = 14 1.(2.2k — 1) = 4k.

Case No 2: Suppose n is odd then there exists an integer k such that n = 2k+ 1. Then

we obtain

I+ (-D)"2n—1)=1—-1.(2. 2k +1) — 1) = —4k.

1.5.6 Other rules of inference

The following rules of inference are less used in mathematical proofs in their direct forms

but often allow conclusions to be drawn

P=@Q PVQ
—-Q , 2P
-P SQ

1.6 Constructive and non-constructive proofs

1.6.1 Non-constructive proofs (Existential proofs)
Proposition 1.6.1 There exist two irrational numbers x and y such that x¥ is rational.
Proof. We know that /2 is irrational. We then consider the number \/5\/5 which is

either rational or irrational.

13



1.7. Corrected exercises

If \/5\/5 is rational, the proposition is proved by considering =z = y = /2.
If \/5\/5 is irrational then by setting x = \/5\/5 and y = v/2 we obtain zy = 2 and the

proposition is proven.
The proof of the existence of two irrational numbers x and y such that xy is rational is
made without being able to give an example of two irrational numbers that verify xy € Q.

This type of proof is called "non-constructive proof" in mathematical language. m

1.6.2 Constructive Proofs

Proposition 1.6.2 There exist two irrational numbers x and y such that x¥ is rational.

Proof. Let z = v/3 and y = log,(4).

x and y are irrational and we have

o \/§10g3(4) _ ablogs(4) _ 310g3(4)% _ glogs(2) _ o

1.7 Corrected exercises

Exercise 1.7.1 1) Let P denote the preposition « The child knows how to read » and Q

denote the preposition « The child knows how to write ».
Give the translation into everyday language of the following propositions :
(1) PANQ, (2) PA-Q, (3) Q= P, (4) =PV —Q, (5) ~P N Q.
2) Same question with P is the proposition « Man is mortal » and Q is the proposition

« Man is eternal » and the propositions:

(1) PV@Q, (2) PV -Q, (3) =(PAQ), (4) PA-Q, (5) P —= —Q.

Solution:

1) We have

P : The child knows how to read.

Q : The child knows how to write.

14



1.7. Corrected exercises

1) P A Q@ : The child knows how to read and write.
2) P A =(Q : The child knows how to read but he doesn’t know how to write.

(1)

(2)

(3) @ = P : If the child knows how to write, then he knows how to read.

(4) =P Vv =@ : The child does not know how to read or he does not know how to write.
()

5) =P A —=Q : The child does not know how to read and he does not know how to write.

2) We have

P : Man is mortal.

@ : Man is eternal.

1) PV (@ : Man is mortal or eternal.

2) =PV =@ : Man is not mortal or he is not eternal.

(1)
(2)
(3) = (P AQ) : Tt is false that man is mortal and eternal.
(4) P A =@ : Man is mortal buit not eternal.

(5)

5) P = —Q : If man is mortal then he is not eternal.

Exercise 1.7.2 (This exercise contributed by the author)
Let P, and R be three propositions. For each of the following propositions:
(1) PA(=QV R), (2) (PAQ) = R,(3) PA-Q,(4) PV-Q,(5) PV(QAR),
(6) PA(QAR),(7) P = —-Q,(8) "P = Q,(9) ~(PVQ) = R, (10) (PN Q) = —R.

Write its negation.

Solution:

We write the negation of the following propositions:

(1) PA(=QV R)

- (PA(—-QVR)) PV -=(—-QVR)
=PV (—-=Q A -R)

~PV(QA-R)

rree

(=PVQ)A(—=PV-R).
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(2) (PNQ)=— R

-((PNQ) = R) «—

[

~(=(PAQ)VR)
——(PAQ)AN-R

<— PAQAN-R.

-PVQ.

—\P/\Q.

< - PA(-QV -R)

e (~PA-Q)V(=PA-R).

~(PA(QAR)) < -PV-(QAR)

< PV (-QV—-R)

-PV-QV-R.

(3) PA=Q
—~(PA-Q)
—
1) PV -Q
~(PV-Q) <
—
(5) PV(QAR)
~(PV(QAR) < -PA-=(QAR)
(6) PA(QAR)
—
(7) P= —Q

(P = Q) <=

— PAQ.

16
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8) P =Q

—|(—|P - Q)

9) ~(PVQ)=R

—|(—|(P\/Q) — R)

(10) (P A Q) = —R

- ((PANQ) = —R)

— = (—PVQ)

= ~(PVQ)

<— -PA-Q.

11

~(-=(PVQ)VR)
- (PVQVR)

~PA-QA-R.

= —(=(PAQ)V-R)

— -~ (PAQ)N—"R

~— PAQANR.

Exercise 1.7.3 For each of the following formulas:

(1) =(PVQ)V =(PAQ).
2)(P=Q) = (~Q@=~1P)
3) (=P VA (PA=Q).
1) Create their own truth tables.

2) Indicate whether it is a tautology, an antilogy, or neither.

Solution:

1) Wer create the truth tables of

(1) ~(PVQ)V ~(PAQ)

P Q PVQ|PAQ|~(PVQ)| ~(PAQ) | ~(PVQ)V ~(PAQ)
1 1 1 1 0 0 0
1 0 1 0 0 1 1
0 1 1 0 0 1 1
0 0 0 0 1 1 1

17
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Proposition (1) is neither a tautology nor an antilogy.

2)(P=Q) = (-Q=~P)

P Q “P|-Q|P=Q|-Q=-P|(P=Q) = —-Q=-P)
1 1 0 0 1 1 1
1 0 0 1 0 0 1
0 1 1 0 1 1 1
0 0 1 1 1 1 1
Proposition (2) is neither a tautology.
(3) (=P VA (PA=Q).
P Q - P|-Q|-PVQ|PA-Q | (-PVQA(PAN-Q)
1 1 0 0 1 0 0
1 0 0 1 0 1 0
0 1 1 0 1 0 0
0 0 1 1 1 0 0

Proposition (3) is an antilogy.

Exercise 1.7.4 Formalize the following propositions using only the indicated predicates,
logical connectors and quantifiers.

1) Nobody is perfect. P(x) : x is perfect.

2) 0 is a multiple of any integer. M(z,y) : x divides y, E(x) : x is an integer.

3) Not all absentees are wrong. A(x) : x is absent, W(x) : x is wrong.

Solution:
1) Nobody is perfect.
P(z) : = is perfect.

We denote by E the set of persons.

If x € E, the proposition "P(x) : z is perfect" is formally written as

Ve e E:=P(z).

18
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2) 0 is a multiple of any integer.

M(z,y)
E(x)

This proposition is formally as

2 1s an integer.

x divides y (or y is a multiple of x),

Vo (E(x) = M(x,0)).

3) Not all absentees are wrong.

This proposition is formally as

x is absent,

x 1s wrong.

S (- (Alx) = W(2)).

Exercise 1.7.5 (This exercise contributed by the author)

Write the negation of the following predicates:

(1) 3z € E, P(z) A Q(x),
(2) Vx € E, P(z) = Q(x),
(3) Vz € E, P(x) <= Q(x).

Solution:

(4) Vx € E\Vy € F, (P(z,y) A Q(z,y)) = R(z,y).
(5) dx € E\Vy € F, Q(x,y) = (P(z,y) V R(z,y)) .

We write the negation of the following predicate:

(1) 3z € E, P(z) AN Q(x)

- (dzx € E,P(z) NQ(z)) <—

<
(2) Vz € B, P(z) = Q(a)

- (Vx € E, P(z) = Q(x))

|
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Ve € E,—(P(z) A Q(x))
Ve € E,—~P(z) V-Q(x).

dr € E,-(P(x) = Q(x))
dx € E,~(=P(z) V Q(z))
dx € E, P(x) A =Q(x).
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(3) Vx € E, P(z) < Q(x)

- (Vx € E,P(z) <= Q(z)) <= 3dx € E,~(P(r) <= Q(x))
_—

— Jze B~ ((Plr) = Q) ANQ(z) = P(x)))
— dre B, (P(r) = Qz)) vV ~(Qr) = P(x))

< dreFE,,Plx) AN=Q(x)V Q(x) N —P(x).
(4) Vx € E\Vy € F, (P(z,y) AN Q(z,y)) = R(z,y)

~ (Vo € E,Vy € F,(P(z,y) ANQ(z,y)) = R(z,y))
<— dre b JyeF-((Plr,y) \NQ(x,y)) = R(x,y))
<— dreE JyecF (- (Plx,y) NQ(z,y)) V R(x,y))
<~

dr € E,Jy € F,P(x,y) AN Q(z,y) N ~R(z,y).
(5) dx € E,\Vy € F, Q(z,y) = (P(x,y) V R(z,y))

~(Jdz € E,Vy € F,Q(z,y) = (P(z,y) V R(z,y)))
Vo € E,3y € F,~(Q(z,y) = (P(z,y) V R(z,y)))
Vo € E,3y € F,~(=Q(z,y) V (P(z,y) V R(z,y)))
Vo € E,3y € F,Q(x,y) A~(P(x,y) V R(z,y))

Vo e E, 3y € F,Q(x,y) A —P(x,y) A —R(x,y).

rree

Exercise 1.7.6 1) Let P(x) and Q(x) be two predicates. Show that the following assertion
18 a tautology:

(Ve e E, P(z) = Q(z)) <= (3x € E, P(z) A —~Q(x)).

2) Let P(x,y) be a two-variable predicate. Show that the following assertion is a tau-

tology:
- (Jx e E,(Vy € F,P(z,y))) < (Vx € E, (Jy € F,~P(z,y))).

Solution:
1) Let P(z) and Q(x) be two predicates, we have
-(Vz € B, P(r) = Q(x)) <= dx € E, = (P(x) = Q(1)).
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On the other hand we have

dr e FE, - (P(x) = Q(x)) <= Jx € E, P(x) A —Q(x)

So consequently we have

—(Vz € E, P(z) = Q(z)) <= (Jz € E, P(x) A =Q(x)) is a tautology.
2) Let P(xz,y) be two variables predicate, then

- (dz € E,(Vy € F,P(z,y))) <= VYx € E,~(Yy € F, P(x,y)).

On the other hand we have

Ve e E,-(Yy € F,P(z,y)) <= Vx € E, (Jy € F,—P(x,y))

So therefore we have

- (Fr e E,(Vy € F,P(z,y))) <= (Vx € E, (3y € F,~P(z,y))) is a tautology
Exercise 1.7.7 Translate the following sentences into the language of predicates.

P(z) : x is a plumber
M(z) : xis a man

R(x) : x is rich

1) All plumbers are men.

2) All men are plumbers or rich.
3) Some plumbers are rich.

5) There is no rich plumber.
6) All men are plumbers.

7) Not all men are plumbers.

)
)
)
4) Some plumbers are not rich.
)
)
)
8)

There are men who are not plumbers.

Solution:
We translate the following sentences into the language of predicates.

1) All plumbers are men.

2) All men are plumbers or rich

Vo (M(x) = (P(z) V R(x))) .
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3) Some plumbers are rich

Jz (P(z) A R(x)) .

4) Some plumbers are not rich
dz (P(x) A —R(x)) .
5) There is no rich plumber
= (Fz (P(x) A R(2)))

6) All men are plumbers

7) Not all men are plumbers
~ (Vz (M(z) = P(2))).
8) There are men who are not plumbers
dx (M(z) A —P(x)) .

Exercise 1.7.8 (This exercise contributed by the author)

Let n be a variable taking its values from the set of natural numbers and let the predicates

ev(n) : n is even,

od(n) : n is odd.

Ezxplain in each case the statement given by the following propositions

1L.Vn (ev(n) V od(n)). 2.(¥Yn ev(n)) V (Vn od(n)).
3.(3n ev(n)) A (In od(n)). 4.3n (ev(n) A od(n)).
Solution:

et n be a variable taking its values from the set of natural numbers and let the predicates

ev(n) : nis even,

od(n) : nis odd.
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We explain in each case the statement given by the following propositions

1- The formula Vn (ev(n) V od(n)) states that every natural number is even or odd

2- The formula (Vn ev(n)) V (Vn od(n)) states that all natural numbers are either all
even or all odd.

3. The formula (3n ev(n)) A (In od(n)) states that there exists in the natural numbers
at least one even and at least one odd.

4. The formula 3n (ev(n) A od(n)) states that there exists a natural number which is

both even and odd.

Exercise 1.7.9 1) Give the negation and the contrapositive of the following mathematical

sentence.
Ve >0,IN e NNVne NNVpe N;n > N andp > 0 = |upsp — un| <e.
2) Let xo and f be an application of R into R.
Ve >0,3a > 0,Vr e R, |z — x| < a = |f(x) — f(z0)| <e.
Give the negation and the contrapositive of this logical sentence.

Solution:

1) We give the negation and the contrapositive of the following mathematical sentence.
Ve >0,AN e NVn e NNVp e Non > N and p > 0 = [upqp — un| <e.

The negation:
de>0,YN eN,I3ne N, I3pe N;n > N and p > 0 and |upip — un| > €.

The contrapositive:
Ve >0,dN e N,Vn e NNVp e N, |upyp —un| >e=n <N orp<O0.

2) We give the negation and the contrapositive of the following logical sentence.

Ve >0,3a > 0,Vr € R, |z — x| < o = |f(x) — f(z0)] <e.
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The negation:
de > 0,Va > 0,3 € R, |z — x| < a A |f(x) — f(xg)] >e.
The contrapositive:
Ve > 0,3a > 0,Vz € R, |f(x) — f(xo)| > e = |z — x| > .

Exercise 1.7.10 (This exercise contributed by the author)
Determine whether the formulas below are open or closed.
1) P(x) 6) Q(y) = 3y, P(y)
) (z) 7) Va, (P(z) A Q(x))
3) Iy, Q(x) 8) P(z) = 3z, Q(x)
) () vV Q(z) 9) vz, (P(z) A Q(y))
5) Jy, (Q(y) = P(y)) 10) Va, (P(z) = Jy, (Q(y) A R(x)))

Solution:

We determine whether the formulas below are open or closed.
P(x) is open, because the variable x is free.

2) dz, Q(x) is closed, because the variable x is bound.

3) Jy, Q(z) is open, because the variable z is free.

4) Vz, P(z) V Q(x) is open, because the variable z is free.

1)
)
)
)
5) dy, (Q(y) = P(y)) is closed, because the two variables y are bound.
6) Q(y) = Jy, P(y) is open, because the first variable y is free.
7) Va, (P(z) A Q(z)) is closed, because the two variables x are bound.
8) P(z) = Jz, Q(x) is open, because the second variable z is free.

9) Va, (P(x) A Q(y)) is open, because the variable y is free.

10) Vz, (P(x) = Jy, (Q(y) A R(x))) is closed, because all variables x and y are bound.

Exercise 1.7.11 "Modus Ponens"
1) Let f : R — R. Prove that f can be uniquely written as the sum of an even function

and an odd function.

2) Show that

2 1
Ve > 0,dN € N such as (n2N=>2—5< n_:_2<2+5).
n
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Solution:

1) Let f : R — R. We prove that f can be uniquely written as the sum of an even
function and an odd function.

Suppose that f is written as f = g + h, with g an even function and h an odd function.

Then, Vx € R we have

So we have necessarily

4@ o o= 1D
1)- @) < )= —Qf(—x)

Thus, we have shown that if f = g + h, with g an even function and h an odd function
are necessarily given by the above formulas and are therfore unique.
2) we show that

2 1
Ve > 0,dN € N such as (n2N=>2—5< n:—2
n

<2+5).

Let us first note that for n € N, we have Qn”—ﬁ < 2, because 2n+ 1 < 2n+4 < 2(n + 2).

Given € > 0, therfore we have

2n +1
Vn e N: + <2+e.
n+ 2
Now, we look for a condition on n so that the inquality 2 — ¢ < % is true.
2n +1

2—¢

o &S 2-¢)(n+2)<2n+1

3
= 3<e(n+2)<=n>--2
£

So we just take N = [5—2}4—1 € Nas N > %—2, then for all n > N, we have

2n+1
n+2 °

n>N > % — 2 and consequently we have 2 — ¢ <
Conclusion, given € > 0, we found a N = [g — 2] + 1 € N such taht for all n > N, we

have
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Exercise 1.7.12 "Proof by contrapositive”

1) Show that for n € N* :
If the integer (n® — 1) is not divisible by 8, then the integer n is even.
2) Let a and b be two real numbers. Consider the following proposition:
If a + b is irrational, then a or b are irrational.

i) Prove this proposition.

it) Is the converse of this proposition always true?

Solution:

By the contrapositive, we show that Vn € N*, If the integer (n? — 1) is not divisible by
8,then the integer n is even.

So it suffices to show that if n is odd, then the integer (n* — 1) divisible by 8.

Let’s take n an odd integer, so n is written as n = 2k 4+ 1 where k is an integer.

- If k is even then we have k = 2/ and n = 4] + 1.

- If k is odd then we have k = 2] + 1 and n = 4] + 3.

In all cases, we have n = 2k 4+ r with r € {1,3}.

So we have
n -1 = (@l+r)?*-1
= 161> +8Ir+71° -1
= 8(2PP+1Ir) +r*—1.
Then

-If r =1, we get n? — 1 = 8(21? + Ir) divisible by 8.
-If r =3, we get n? — 1 = 8(21% + Ir + 1) divisible by 8.
Therfore, by the principle of contrapositive, we have our proposition is true.

2) Let a and b two real numbers. We consider the proposition:
If a + b is irrational, then a or b are irrational.

We demonstrate this proposition using the contrapositive.
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The contrapositive of this proposition is:

If a and b are rational, then a + b is rational.

Suppose that a and b are rational, then they are written as follows: a = ’E’ and b f]i,

with p,p/, q, ¢ are integers and ¢, ¢’ non-zero.

We calculate a + b

/ /+ /
a+b:g+g/_pq /qp'
q q qq

The number a + b is the quontient of two integers, so it is rational.

c¢) The converse of the proposition is

If a or b are irrational, the a + b is irrational.

This proposition is not allways true.
For example: if @ = v/2 and b = —v/2, then « or b are irrational, but a + b = 0 is not

irrational.

Exercise 1.7.13 "Proof by the absurd”

1) Show that V2 is an irrational number.

2) Let (fn)nen be a sequence of applications of the set N into itself. We define an
application [ from N to N by setting f(n) = fn(n) + 1.

Prove that there exists no p € N such that f = f,.

Solution:
1) We show that V/2 is an irrational number.
By the absurd, suppose that v/2 be a rational number.

Therefore, there are two integers m and n prime numbers between them such that

V2 = = with n # 0.
Squaring it, we get 2 = :’;—;, So we get 2n? = m? and conclude that m? is even and hence

m is even.
Since 2 divides m then 4 divides m?.

Since the result of dividing m? by n? is 2, then n is also even.

We conclude that m and n are both even which constitutes a contradiction with the fact

that they are prime numbers between them.
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2) Let (fn)nen be a sequence of applications from N to N.

We show that there exists no p € N such that f = f,.

By the absurd, suppose that there exists p € N such that f = f,.

Two applications are equal if and only if they take the same values Vn € N : f(n) =
fo(n).

In particular for n = p we have f(p) = f,(p).

On the other hand the definition of f gives us f(p) = fu(p) + 1,

We obtain a contradiction because f(p) cannot take two distinct values, In conclusion,

whatever p € N : f # f,.

Exercise 1.7.14 "Proof by counterexample"”
1) Show that the assertion: "Every positive integer is the sum of three squares” is false.
2) Determine whether the following statement is true or false: "Every strictly increasing

sequence tends to +o00".

Solution:

1) We show that the assertion: "Every positive integer is the sum of three squares" is
false.

The number 7 is not the sum of three squares, because there are only two non-zero
squares less than or equal to 7 which are 1 and 4.

This proves that the assertion is false.

2) We determine whether the following statement is true or false: "Every strictly in-
creasing sequence tends to +oo"

Let n be a strictly positive natural integer.

We put

1

U, =1 — —.
n

Let us show that the sequence (uy,)nen is strictly increasing-

For any integer n > 0, we have

1 1 1 !
Upt1 — Uy, = — — - —
1 n+1 n
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So the sequence (uy,)nen is strictly increasing.

Now the limit of this sequence is equal to 1, so the statement is false.

Exercise 1.7.15 "Proof by separation of cases"

1) Let E and F be two sets and let x € E and y € F. Then we define the ordered pair
(z,y) by
(z,y) = Hat, {2,931}
Show that: (z,y) = (2',y') if and only if v = 2’ and y = /.
2) Show that, for allx e R: |z — 1] <a? —x + 1.

Solution:

1) Let E and F be two sets and let € F and y € F, then we define the ordered pair
(z,y) by

(z,y) = {{z} {z,y}}.

Show that: (z,y) = (2/,%/) if and only if z = 2’ and y = ¢/'.
We have

(z,y) = (") = {{z} Az vt} = {2} {03}
We have two situations
1- {z} = {2’} = o =2/, hence {z,y} = {2', ¥/}, so we obtain y = ¥/
2-{z}={2"\y}=ua=2" =y, as {z,y} ={2'} ,weget e =y =2" =y
2) We show that for all z € R: |z — 1| < 2? — 2 + 1.
As the absolute value has two distinct expressions following the sign of the quantity

inside. This leads us to reason by disjunction of cases

z—1 ifx>1

lz — 1| = :
l—z ifx <1

H)Ifx>1thenz—1>0and |z —1|=2—1.
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We must show that if z > 1 we have x — 1 < 22 — 2 + 1. Let us study the sign of

polynomial

pz) = ?*—2+1—(z—1)
= 222242

= (z—-174+1>0.

The proposition is therefore true if = > 1.
i) Ifx<1,thenz—1<0and|z—1]=1—ux.
We must show that if + < 1 we have 1 — 2 < 22 — 2 + 1. Let us study the sign of

polynomial

qiz) = P?*—2+1—(1—2)

= 22>0.

The proposition is therefore true if z < 1.

In conclusion the proposition is true for all x € R.

1.8 Suggested exercises

Exercise 1.8.1 Let P,Q, R be propositions, give the truth table of each of the following

compound propositions
P— (P=Q), QV(-QAP), (PVQ)= R.

Exercise 1.8.2 Rewrite each sentence using the logical implication notation "If... Then...".
1- For a function to be continuous, it is sufficient that it be differentiable.

2- An integer is divisible by 8 only if it is divisible by 4.

Exercise 1.8.3 Show that the proposition (P — (Q — R)) — ((P = Q) = (P = R)))

18 a tautology.
Exercise 1.8.4 Give the values of the integers n,m € N verifying

If n* + m?* = 25 then n < m.
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Exercise 1.8.5 Let the predicates be:

student () : x is a student,
bicycle (y) : vy is a bicycle,

possesses (x,y) : T possesses y.

Translate the following propositions into everyday language:

1. Va(bicycle (x) = z(student (2)\ possesses (z,x))).

2. Vx(student (x) = YyVz(bicycle (z)A\ bicycle (y) A (z = y) = — possesses (v,z) V
—possesses (x,y)))-

3. Jx(student (x) A Vy(bicycle (y) = — possesses (x,y))).
Exercise 1.8.6 Are the following two formulas equivalent?
m
Fl:3mneN:mAn=1AV2=—
n
F2:(Elm,neN:m/\n:1)/\E|m,n€]\7:\/izm

n

Exercise 1.8.7 Let R be the proposition Vz(P(x)VQ(x)) and S be the proposition (YxP(z))V

(VoQ(x))
1. Show that R = S.

2. Do we have S = R? Justify your answer.
Exercise 1.8.8 Show that the strict order relation < on the set R is antisymmetric.

Exercise 1.8.9 Show that \/3 is an irrational number.

Exercise 1.8.10 Show that if 1_2:;12 18 irrational then n is irrational.

Exercise 1.8.11 Show that for any real number a, if a®> > 0 then a = 0.

Exercise 1.8.12 Show that if two integers have different parities then their sum is an odd

nteger.

Exercise 1.8.13 Show that any integer multiple of 4 can be written in the form 14(—1)"(2n—
1).

Exercise 1.8.14 Show that for all real x € [0,%] , we have sin(z) + cos(z) > 1.
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Chapter 2

Introduction to set theory

Set theory is a branch of mathematical logic that studies sets, which can be informally
described as collections of objects. Although any type of object can be grouped into a
set, set theory, as a branch of mathematics, is primarily concerned with objects relevant to
mathematics as a whole. In this chapter, we present naive set theory, paradoxes related to

naive set theory, and Zermelo-Fraenkel theory, which is based on axioms.

2.1 Naive set theory

In naive set theory, the notions of set and belonging considered intuitive are not precisely
defined.

We denote by = € E the fact that x is an element of E. Two sets are equal when they
have the same elements.

The empty set is denoted by {.} or (.

In general, we describe a set or by giving the list of all its elements. For example, the
set of students, 2nd year licence in Mathematics, promotion 2024-2025, or by characterizing
its elements among those of a set already known.

For example, £ = {n € IN|(3m € IN)(n = 2m)}.

We say that F' is a subset of F or F'is contained in F, and we denote F' C F if every
element of F' also belongs to E. We also say that F'is a part of F.

The union of two sets denoted FUF' is the set of all elements of £ and F. The intersection

of two sets denoted F N F' is the set of all elements that belong to both £ and F.

32



2.1. Naive set theory

The difference of two sets denoted E'\ F is the set of all elements of E that do not belong
to F. If FF C E then we denote CgF = FE\F the set complement of F' in E.
Finally the symmetric difference EAF is the set defined by EAF = (E\F) U (F\E).

2.1.1 The Cartesian product

Definition 2.1.1 Let E and F be two sets and let v € E and y € F. Then we define the
ordered pair (x,y) by

(z,y) = {{z} {=.y}}.
Lemma 2.1.1 We have (z,y) = (z',y/) if and only if v = ' and y = y/.
Proof. We have
(z,y) = (a",y) <= {{a} {z.y}} = {{"} {o",y'}}

We have two situations:
1- {33'} = {LL‘,} = z = 2/ from which {x,y} = {l", y’} SO we get Yy = y"
2 {ay={t/yt > o=0 =y as{z,y} = {2/} weget s =2/ =¢/ =y. m

2.1.2 Sets of parts

Definition 2.1.2 Let E be a set. We call the set of parts of E the set denoted P(E)
consisting of all the subsets of E.

Example 2.1.1 Let E = {a,b,c}, then

P(E) = {0.{a},{b},{c} {a,b},{a, ¢}, {b,c},{a,b,c}}.

2.1.3 Binary relation

A binary relation R from a set E to a set F' is defined by a part Gr of F x F, where G
denotes the graph of relation R. The components of a pair belonging to the graph of a
relation R are said to be related by R.

If (x,y) € G, we say that x is related to y and we denote zRy.
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2.1. Naive set theory

When a binary relation is defined from a set F to itself, we call it an internal relation

on F or simply a relation on F.

Example 2.1.2 Let the sets E = {1,2,3} and F' = {a,b,c} and the relation R defined by
{(1,a),(2,0),(3,0)}-

We can represent the relation R by the following graph called sagittal representation

The graph of relation R.

Example 2.1.3 Let the set E = {a,b, c} and the relation R defined by {(a, a), (b,b), (¢, c), (b, c), (¢, b)} .

As the starting and finishing sets are identical, we simply represent the relation by a

<

directed graph

The graph of relation R.

34



2.1. Naive set theory

Definition 2.1.3 1) Let R be a relation of E on F and S a relation of F' in G. We define
the composition relation S o R of E on G by
Gsor = {(z,y) € EXG:3z € F,(x,2) € G and (z,y) € Gs}.
2) Let R be a relation of E on F. We can define a relation R™' of F' on E called an
wwverse or reciprocal relation by
GR*1 = {(:E,y) cFxE: (y,x) S GR }
3) Let R be a relation of E on F. We can define a relation R of F on E called a
complementary relation by
Gr=A(z,y) e FxE:(z,y) ¢ Gr }.
4) The diagonal Ag of a set E and the diagonal ‘ﬁ’ of an internal relation R C E x E
are defined by
Ag={(z,2):2€E} and |R|={z € E:(z,2) €Gr }.
Definition 2.1.4 Let R be a binary relation on E.
- R is reflexive if Ap C Gg .
- R is irreflexive if Ap N Gr = 0.
- R s symmetric if Gr = Gr-1.
- R is anti-symmetric if Gr N Gr-1 = Apg.
- R is transitive if Gror C Gr.
The previous definition can be translated into the following form which is more practical

for demonstrations.

Definition 2.1.5 Let R be a binary relation on E.
We say that R s reflexive when: Vo € E, v Rx.

We say that R is irreflexive or antireflerive if no element of E is in relation with itself.

We say that R is symmetric when: V(z,y) € E?, 2Ry = yRux.
We say that R is anti-symmetric when: ¥(x,y) € E?, (xRy A yRz) = = = y.

We say that R is transitive when: ¥(x,y,2) € E3 2Ry AN yRz = zRz.

Example 2.1.4 - The usual order relation on R is reflexive, antisymmetric and transitive.

- The strict order relation on R is antireflexive, antisymmetric and transitive.
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2.2. Paradoxes related to naive set theory

2.1.4 Applications

Definition 2.1.6 A triple f = (E, F,G) with a binary relation G C E X F' is an application
if it verifies

Vee E,y e F: (z,y) €G.

If E = F =0 then the function f = (0,0,0) is called the empty function.

Definition 2.1.7 Let E and F be two sets. We say that a function f from E to F is
-injective if
Ve,ye B f(z) = fly) =z =y.

- surjective if

Vye F,az € E: f(x) =v.

- A bijection is an application that is injective and surjective.

The definitions of relation and application that we have just seen call on the Cartesian
product and consequently on the notion of set. In this case, we say that the definitions are
set-theoretic.

Sets are of fundamental importance in mathematics. The inner mechanics of mathemat-
ics (numbers, relations, functions, etc.) can be defined in terms of sets.

In mathematics, a paradox (or antinomy) is a statement or reasoning that contains or

appears to contain a logical contradiction.

2.2 Paradoxes related to naive set theory

A paradox, according to the etymology (from the Greek word paradoxos: "contrary to
common opinion”, from para: "against" and doxa: "opinion” ) is an idea or proposition
which surprises or shocks at first sight, that is to say contrary to common sense.

In mathematics, a paradox (or antinomy) is a statement or reasoning that contains or
appears to contain a logical contradiction.

Several paradoxes appear in naive set theory where precisely the notions of set and

belonging are not clearly defined.
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2.2. Paradoxes related to naive set theory

Russell described the paradox that bears his name in a 1902 letter to Gottlob Frege, in
which he shows the latter that one of the rules introduced in his book "Grundgesetze der
Arithmetik", the unrestricted comprehension, made Frege’s theory contradictory.

Frege claims that any statement that depends on one or more variables allows us to

define a set. This is called the unrestricted comprehension model.

2.2.1 Russell’s paradox (1901)

Russell’s paradox arises from the following question: "The set of all sets that do not belong
to itself belongs to itself 7"

The set can be expressed by the following notation
E={z:x¢x}.

We then have two possibilities:

1. Suppose that the set £ belongs to itself, therefore it verifies the predicate x ¢ = and
consequently F ¢ E.

2. Suppose now that the set £ does not belong to itself, we then have: E ¢ E therefore
it by definition F € F.

2.2.2 Other versions of Russell’s paradox

Russell’s paradox can be stated in more playful forms, we propose here some of these forms.

The Barber Paradox

The village barber decides to shave all the men in the village who do not shave themselves,
and only those.
The question then arises: who shaves the barber? In this case we have two possibilities:
1. If he shaves himself, then he shaves someone who does not shave himself.

2. If he does not shave himself, then he should shave himself, respecting his decision.
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2.2. Paradoxes related to naive set theory

The Cretan Liar Paradox

The Cretan Epimenides (between 600 and 550 BC) wrote a verse at the origin of this
paradox: "The Cretans are always liars, wicked beasts, lazy bellies”.

We then ask ourselves the following question: Is Epimenides telling the truth?

In this case we have two possibilities:

1. The statement: "The Cretans are always liars"” is true in this case Epimenides is
telling the truth or Epimenides is Cretan so he is lying.

2. The statement: "The Cretans are always liars” is false in this case Epimenides is

telling the truth.

The Librarian Paradox

Should the catalog of all catalogs that do not mention themselves mention themselves?

1. If the catalog does not mention itself then it must therefore appear in the list of
catalogs that do not mention themselves.

2. If the catalog mentions itself then it is a catalog that does not mention itself by

definition.

2.2.3 Berry’s Paradox

The initial idea is to describe natural numbers by statements (in French). For example:

1. Two is a one-word expression describing a natural number.

2. One plus two is a three-word expression describing a natural number.

3. One plus two plus three plus...plus nine is a 17-word expression describing a natural
number.

Since the available vocabulary is finite, the most complete French dictionaries reach
90000 words, statements of N words can describe at most 90000" natural integers.

Now let us consider the set of natural numbers that cannot be described by an expression
of fifteen words or less. This set has a smallest element. This smallest element should
therefore be expressed by sixteen words or more, but the statement: "The smallest natural
number that cannot be described by an expression of fifteen words or less” contains precisely

fifteen words, hence the paradox.
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2.3. Zermelo-Fraenkel Theory

2.2.4 Well-defined set

Definition 2.2.1 A set E is well-defined if for any object x the statement "x € E and
x & E7 is false.

2.3 Zermelo-Fraenkel Theory

We present a simplified version of Zermelo-Fraenkel theory. This theory is based on the

following axioms:

2.3.1 Axiom of equality (or Extensionality)

Two sets A and B are equal if and only if they have the same elements.
VA VB [Vz2(z € A< z€ B)— A= B].

2.3.2 Axiom of comprehension (or separation).

Given a set U and a predicate P(x) there exists a set £ whose elements are those, among

the elements of U, which have the property P(z).
E={xeU:Px)}

Remark 2.3.1 This axiom is also called the restricted axiom of comprehension as opposed

to the universal axiom of comprehension which leads to Russell’s paradozx.
Proposition 2.3.1 There is no set having all sets as elements.

Proof. We reason absurdly and assume that there exists a set of all sets denoted E. In

this case the following writing is correct
F={reFE:x¢ux}

However, this writing leads to Russell’s paradox and therefore to a contradiction. Thus

there is no set containing all sets. m

Remark 2.3.2 In this case we speak of a collection of all sets.

39



2.3. Zermelo-Fraenkel Theory

2.3.3 Axiom of pair

Given two elements a and b, there exists a set C' which contains a and b and only them.
Va,Vb,ACVt [t € C <= (t =a Vt =1D)|.

The set C' whose only elements are a and b is denoted {a, b}.
- If @ # b the set {a, b} is called a pair.
- If a = b the set {a, b} is called a singleton, we denote it {a}.

2.3.4 Axiom of union (or sum)

For any set A there exists a set B whose elements are exactly the elements of the elements

of A. The corresponding formula is

VA,3B (Vx,x € B< Jy,y € ANz €y).

This set is unique, we call it the union of the elements of z and we denote it U,c,y.

2.3.5 Axiom of the set of parts.

To any set we can associate a set which contains exactly the parts of the first set.

VA,3B (Vz,x € B=— x C A).
Remark 2.3.3 The notation © C A is an abbreviation for Vy,y € v < y € A.

Remark 2.3.4 The set of subsets of the set a is denoted P(A).

2.3.6 Axiom of infinity

There exists a set M of which () is an element and such that for all # belonging to M the
set {z} also belongs to M.

Remark 2.3.5 This axiom indirectly constructs the natural integers. Thus () corresponds

to 0 and for each integer n the integer n + 1 corresponds to n U {n}.

40



2.4. Continuum Hypothesis

Natural integer Set notation
0 0
1 DU {0} = {0}
2 {0} U {{0}} = {0,{0}}
3 {0U{0}U{{PU{0}}} = {0, {0}, {0,{0}}}

2.3.7 Axiom of foundation

Every non-empty set contains an element with which it has no element in common.

Ve (z= 0= 3y (yex,zNy=10).

Corollary 2.3.1 No set belongs to itself.

2.4 Continuum Hypothesis

2.4.1 Equipotence

Definition 2.4.1 Two sets E and F are equipotent if and only if there exists a bijective

application between E and F.

A set E is said to be subpotent to a set F' if there exists an injection of E into F.

Proposition 2.4.1 FEquipotence is an equivalence relation denoted ~ .

Example 2.4.1 The application f:] —1,1]— R defined by

f(x)

o
1= af

is a bijection and we therefore have | — 1,1[~ R.

2.4.2 Finite/infinite sets

Definition 2.4.2 For any natural integer n, we will denote by

N,={zxeN:z<n}={0,...,n—1},

the set of the first n natural integers.
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2.4. Continuum Hypothesis

Definition 2.4.3 We say that E is a finite set of cardinality n, when E is equipotent to
N,,. A set that is not finite is said to be finite.

Remark 2.4.1 The empty set is the unique finite set of cardinality 0.
Proposition 2.4.2 Any injection of a finite set into itself is a bijection.

Proof. It suffices to show the result for the sets N,,.

We reason by recurrence on n > 1.

For n =1 the set N,, is reduced to the singleton {1} and the only application of {1} into
itself is the identity which is a bijection.

Let n > 2 and f be an injection of N,, into itself. Let m = f(n — 1), we define the

application ¢ of N,,_; into itself by

f@) i f) <m

5(8) = F) —1if fGi) >m

Then g is injective since n — 1 does not belong to N,,_;.
By hypothesis of recurrence g is surjective. By construction we have Im(f) = I'm(g) U

{n — 1} hence Im(f) =40,1,...,n—1}. m

Corollary 2.4.1 Ewvery finite set is in bijection with a unique interval {1,...,n} of N.

2.4.3 Countable set

Definition 2.4.4 A set is said to be countable if and only if it belongs to the equivalence

class of N.

Example 2.4.2 Let S = {2k, k € N} be the set of even integers. Let the application
f N — S which has every integer k associates 2k. The application f is bijective, the set S

18 countable.

Example 2.4.3 The set Z is countable as well as Q.
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2.4. Continuum Hypothesis

2.4.4 Power of the continuum

Definition 2.4.5 A set has the power of the continuum if it belongs to the equivalence class

of R.

Example 2.4.4 The application [ :] —1,1[— R defined by

T
1ol

f(z)
is a bijection and we therefore have | — 1,1[~ R.
Theorem 2.4.1 (Cantor) For any set E we have |E| < |P(E)|.

Proof. Let f be an application of a set E to its set of subsets P(F). Let D denote the
subset of elements of F that do not belong to their image by

f:D={zx€E:zx¢ f(x)}

We will show that the set D has no antecedent by the application f.

Let us suppose that there exists y € E such that D = f(y) we then have two situations:

1- Let y € D, but by construction of D we have y ¢ f(y) = D from which y ¢ D.

2- Let y ¢ D = f(y), from which by definition we have y € D.

Consequently, f is not surjective. m

Continuum Hypothesis: Every subset of the set of real numbers is either finite,
countably infinite, or has the power of the continuum.

The following proposition is admitted without proof.

Proposition 2.4.3 (Paul Cohen 1963) The continuum hypothesis is independent of the

axiomatic set theory.

Paul Cohen’s proposal shows that one can accept or reject the continuum hypothesis

without contradicting the axioms of set theory.
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2.5. Axiom of choice

2.5 Axiom of choice

Axiom: For any set F, there exists a function which associates an element of this part

with each non-empty part of F/, in other words:

fo PEN0} — PE)\{0}

here are other equivalent formulations such as:

— For any equivalence relation R, there exists a system of representatives of the classes
of R.

— The product of a family of non-empty sets is non-empty.

The axiom of choice is not part of the set of axioms of ZF set theory. We call ZFC
theory, tthe ZF theory equipped in addition with the axiom of choice.

The two propositions below demonstrated in 1938 and 1963 affirm that we can accept

or not the axiom of choice without being in contradiction with set theory.
Proposition 2.5.1 (Kurt Godel 1938) ZF + AC is a coherent theory if ZF is.

Proposition 2.5.2 (Paul Cohen 1963) ZF +(not) AC is a coherent theory if ZF is.

2.6 Corrected exercises

Exercise 2.6.1 (This exercise contributed by the author)

Justify the following statements.

a) Let E be a set, A and B two subsets of E. If A is included in B, then the complement
of B in FE is included in the complement of A in E.

b) Let E be a set, A and B two subsets of E. If A and B are disjoint, then every element
of E is either in the complement of A in E or in the complement of B in E.

c) Let E be a set, A a subset of E. Determine the following sets:

Cr(CpA), ANCgA, AUCEA, Cgl, CgFE.
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2.6. Corrected exercises

Solution:

a) Let * € B = OB therefore ¢ B and since A C B therefore x ¢ A in other words
x € A= CgA, which shows that if x € B then z € A.

b) If z € A then v ¢ B (Because AN B =) sox € B = CgB.

-Ifx ¢ Athenz € A= CpA.

c) We have

Exercise 2.6.2 Let FE be a set and F' and G two parts of E. Show that:

)F ¢ G« FUG=G.
2) F ¢ G+ FNCsG=0.

Solution:
Let E be a set and F' and G two parts of E. We show that:
V)FCG<—FUG=G

Suffice it to show
FCG=FUG=QG.... (1)

FUG=G=FCG...(2)

- For (1), suppose F' C G.

Ifxre FUG, thenz € F C G or x € GG so in both cases x € (G. Consequently we have
FUuGcCd.

If x € G, then x € FF'U G, therefore we have G C F UG.

Since FFUG C G and G C F UG, therefore we conclude that FFUG = G.

We have shown that ' C G = FUG = G.

- Suppose FUG =G.

Let z € Fthenx € FUG, sox € G.

We have shown that FUG =G = F C G.

Finally we have FF C G <— FUG = G.

2) FCG<+= FNCgG=0.
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2.6. Corrected exercises

Suffice it to show
FcG=FnNCgG=0....... (1)

FNCgG=0= F C G....... (2)

- Suppose F' C G.

Ifxr e FNCgG thenx € F and x ¢ G D F then = ¢ F.

We have x € F' and = ¢ F which is impossible, therefore FF' N CrpG = ().

We have shown that F C G = F'NCgG = 0.

Let’s assume that 'N CrG = 0.

Let z € I

We assume that © ¢ G <= x € CgG, which means that x € F' N CgG is impossible so
hypothesis = ¢ G is false.

Consequently x € G and we have ' C G.

We have shown that FNCrG =0 = F C G.

Finally, wer have F C G <= F N CgG = 0.

Exercise 2.6.3 We recall that for all parts A and B of a set E, we note:
AAB = (A\B)U (B\A).

1) Show that for all parts A, B and C' of a set E
-(AnB)n(ANC)=AnBNC
-(AnC)n(ANB)=AnCnNB

2) Deduce that: (ANB)A(ANC)= AN (BAC).

Solution:

1) We show that (ANB)N (ANC)=AnBNC.

(ANB)N(ANC) = (AnB)n(AuC)
= (AnBNA)U(ANnBNC)
= QU(AnBNC)
= AnBnC.

For the second one, just swap B and C.
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2.6. Corrected exercises

2) We deduce that (AN B)A(ANC)

By definition we have

(ANB)A(ANC)

= AN (BAC).

AN (BAC)
(ANBIN(ANC)U(ANC)\ (AN B))
(AAC)) U ((ANC) N (AR D))
(AnCnNB)
An((BNC)u(CNB))

AN((B\C)U (C\B))

AN (BAC).

(
((AnB)n
(AnBNC)u

Exercise 2.6.4 (This exercise contributed by the author)

Let E be a set. By two different methods, show the following assertion:

VA, B € P(E)

Solution:

1) By "Direct method"

(ANB=AUB)= A= B.

We suppose that A such that B are such that AN B = AU B. We must show that

A=B.

For this given x € A, let us show that it is also in B. As x € A then x € AU B, therefore

r € AN B, because we have AN B = AU B. Consequently = € B.

Now we assume = € B, and the same reasoning implies = € A.

So every element of A is in B and every element of B is in A, that means that A = B.

2) By "Contrapositive method"
We assume A # B and we need to show that AN B # AU B.
If A # B that means there is an element € A\B or then an element © € B\ A.

Without losing generality, we suppose that there is x € A\B, then x € AU B but
x¢ ANB , so we have ANB # AU B.

Exercise 2.6.5 Let f: N?> — N be defined for all (n,m) € N? by f(n,m) =n x m.
Let g : N — N? be defined for alln € N by g(n) = (n, (n+ 1)?).
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2.6. Corrected exercises

1) Is f injective?
2) Is f surjective?
3) Is g injective?
4) Is g surjective?

Solution:
Let
f : N*=N
(n,m) — f(n,m)=nxm
and

g : N-oN?
n — g(n)=(n,(n+1)%
1) Is f injective?
We have f(1,2) =1x2=2x1= f(2,1), but (1,2) # (2,1) so f is not injective.
2) Is f surjective?
We have f(1,p) = 1 x p = p so for all p € N, there exists (n,m) = (1,p) such that
p = f(n,m), so f surjective.
3) Is g injective?

For all ny,ns € N, we have

(n1, (ng +1)%) = (ng, (ng + 1)?)

nl = 9
np =nsg
= N1 = Na2.

(n1+1)? = (ny +1)?
So ¢ is injective.
4) Is g surjective?
We will show that (1,1) does not admit an antecedent.
Suppose (1,1) = (n, (n + 1)?), then we have
1=n 1=n
1= (ny+1)? 1 =92

which is impossible so (1,1) does not admit an antecedent, so g is not surjective.
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2.6. Corrected exercises

Exercise 2.6.6 Let f: N — N be defined for alln € N by f(n) = 2n.
Let g : N — N be defined for allm € N by g(n) = E (g) ,where E(x) denotes the integer
part of v € R.

Are functions injective, surjective? Compare f o g and go f.

Solution:
Let
f: N—=N
n — f(n)=2n
and

g : N—=N

n

v = ()

where FE(x) denotes the integer part of x € R.

1) Is f injective?

For all nq,ny € N, we have f(n1) = f(ng) = 2n; = 2ny = ny = na, then f is injective.

2) Is f surjective?

1 has no antecedent because there is no natural number n such that 1 = 2n, so f is not
surjective.

3) Is g injective?

We have g(0) = E (3) = E(0) = 0 and g(1) = E (3) = E(0) = 0 therefore g(0) = g(1)
but 0 # 1 which means that ¢ is not injective.

4) Is g surjective?

For all y = n € N, there exists z = 2n € N, such that g(z) = E (%) = E (%) = E(n) =
n =1, S0 g is surjective.

5) Comparison fogand go f.

- If n is even, there exists p € N such that n = 2p, so we have

(feog)(n) = flg(n)) = f(9(2p))

- 1(2(2)) = rEm

= fp)=2p=n
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2.7. Suggested exercises

- If n is odd, there exists p € N such that n = 2p + 1, so we have

(fog)(n) = flg(n) = f(9(2p+1))
+1

o2 (o-3)

So

n if n is even

n—1 ifnisodd

(fog)(n)=
- Whether n is even or odd we have

(go f)(n) = g(f(n)) =g(2n))
> (%”) — E(n)

= n.

So (go f)(n) =n = Idy.

2.7 Suggested exercises

Exercise 2.7.1 Check whether the following set definition can be adapted to the notion of

couple:

(a,0) = {{0,a},{0,b}}.
Exercise 2.7.2 Show that equipotence is an equivalence relation.
Exercise 2.7.3 Find an injective application from |0, 1] to ]0,1[x]0, 1].
Exercise 2.7.4 Find an injective application from |0, 1[x]0, 1[[ to |0, 1].
Exercise 2.7.5 Find an injective application from P(N) to R.

Exercise 2.7.6 Let E be a set and R be an equivalence relation on E. Let a,b € E, show

that we have either @ =b or aNb = (), where a designates the equivalence class of a.
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2.7. Suggested exercises

Exercise 2.7.7 What do you think of the following reasoning:
Let X be a set. The empty set is not included in X.

Exercise 2.7.8 Let E, F be two sets and f be a map from E to F.
Demonstrate that:
1)V(A, B) € P(E) : f(AUB) = f(A) U f(B).
9)V(A, B) € P(E) : (AN B) C f(A)N f(B).
3)VB e P(E): f(fY(B)) C B.

Exercise 2.7.9 Let E, F be two sets and f an application of E in F. We put

T i PE)—PE)
X = F(X) = f(X).

1) f injective < f injective.

2) f surjective < f surjective.
Exercise 2.7.10 Let E be a set, A and B two parts of E. Let the application

f :+ P(E)) — P(A) x P(B)
X — (XNAXNB).

1) Prove that: f injective < AU B = E.
2) Prove that: [ surjective < AN B = ().
3) Under what condition is f bijective? Then explain 1.

Exercise 2.7.11 Show that R\Q is not countable.
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Chapter 3

Good order and proof by recurrence

In mathematics, reasoning by recurrence (or by induction, or complete induction) is a form
of reasoning aimed at proving a property relating to all natural numbers. The property of
recurrence is deduced from that of good order. The objective of this chapter is to present

in detail the principle of good order, which is the proof by recurrence.

3.1 Proof by recurrence

3.1.1 Proof by simple recurrence

Theorem 3.1.1 Let P(n) be a predicate depending on an element n of N.
Suppose that P(0) is true. (Initialization)
Suppose also that for all integers n the implication P(n) = P(n+1) is true. (Heredity)

Then the proposition P(n) is true for all integers n.

Proof. We reason by the absurd.

Let E = {n € N, P(n) is false}.

As a non-empty part of N, the set ' has a smallest element ny.

ng is different from 0 because we have assumed P(0) to be true as 0 < ng we know that
no—1¢&N.

P(ng — 1) is true because ng — 1 ¢ E.
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3.1. Proof by recurrence

By hypothesis P(n) = P(n + 1) from which P(ny) is true which contradicts the fact

that ng € F.
This method of demonstration uses the principle called: "principle of good order".

Example 3.1.1 Let the sequence be defined by the recurrence relation

1
Up = 3

1+u? ’
Un+1 = %7vn >0

We will show by recurrence that (uy,)nen s bounded above by 1.

Forn =0 we haveuozégl.

We then assume that the proposition is true for n and we demonstrate it for n + 1.
We will note that the terms of the sequence are positive.

1+ u?

L - =1.
5 =

0<u, <l=ul<l=1+u2<2=

N DO

3.1.2 Scheme of the proof by the principle of good order

1. Define the set F = {n € N, P(n) is false}.

2. Assume that F is non-empty as a basis for a proof by contradiction.
3. Since N is well-ordered, there is a smallest element ng in F.

4. The smallest element cannot be that of the initial proposition. Using heredity to

arrive at contradiction.

Example 3.1.2 Let the sequence be defined by the recurrence relation

1
UO:§

1+u? '
Unp+1 = %7vn >0

We will show by the principle of good order that (u,)nen is bounded above by 1.

We reason by the absurd.
Let E = {n € N u, > 1}.
As a non-empty subset of N, the set E has a smallest element ng.

We have ng different from 0 because we have ug = % <1
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3.1. Proof by recurrence

Since 0 < ng we know thatng —1 € N andng —1 ¢ E.

14+ u2
OSUn0—1§1:u2 <1= 1+ SZ:Tnol

no—1 no—1

2
§§:1:>un0§1$un0¢E.

Which contradicts the fact that ny € E.

3.1.3 Importance of initialization

Example 3.1.3 Is 32" — 2" q multiple of 77
Suppose that 32"+* — 2" is a multiple of 7.
We will show that 32 +D+4 _ 27+ s o multiple of 7.

We have

32%—0—6 - 2n+1 — Ox 32n+4 — 92 2n

= (7T+2)x3¥"t _2x2"

= 7Tx3H L9 x3td _ 9w on

We therefore have the sum of two multiples of 7 which is therefore a multiple of 7.

Here initialization is impossible for n = 0 we have 3* —2° = 80, which is not divisible by

We can demonstrate using congruence calculus that 32"** — 2" is not a multiple of 7.
Indeed we have:

3?2 = 2[7] = 32" = 2"[7], moreover we have 3* = 4[7] hence 3*"** = 4.2"[7].

We also have 2™ = 2"[7] hence 3" — 2" = 3.2"[7].

As T does not divide 3 nor 2, then 7 does not divide 3*"+t* — 27,

Remark 3.1.1 To show that a proposition P(n) is true for any integer n > ng, we replace

the initialization hypothesis by P(ng) is true.

Example 3.1.4 Proof by simple recurrence (with a step greater than 1)

The Fibonacci sequence is given by

Vn € N: Fn+2 = Fn+1 + Fn
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3.1. Proof by recurrence

Let

1++5 . 1-45
and ¢ = 5

where ¢ is called the golden ratio.
We have @ and ¢ are solution of the equation x> —x — 1 = 0.
Question: Show that for alln > 1 we have F,, < "1,

Answer: Forn =1 we have

For n =2 we have

Fo=F+F=1<

We must then demonstrate that:
Vn>1:P(n)APn+1)= P(n+2).
We have by definition
VneN:F,o=F,1+F,=YneN: F, <" +¢" ! (By recurrence hypotheses),

VneN:F, <" Ho+1)=neN: F, <" ' (¢*) (Because p* — ¢ — 1 =0).

So¥n € N: F, o < "

3.1.4 Proof by generalized recurrence

Theorem 3.1.2 Let P(n) be a proposition depending on an element n of N.

Assume that P(0) is true. (Initialization).

Also assume that for any integer n that the implication (P(0) A P(1) A .... A P(n)) =
P(n+1) is true. (Heredity).

Then the proposition P(n) is true for all integers n.

Proof. Let the proposition P(0) A P(1) A.... A P(n) = Q(n).
We will show that Q(n) is true for any value of N if and only if P(n) is true for any

value of N.
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3.1. Proof by recurrence

Here we are showing an equivalence, so we must show two implications.

Implication N°1

We will show that if Q(n) is true for any value of N then P(n) is true for any value of N.
We have P(0) A P(1)A.... A P(n) true, consequently P(0) true and P(1) true...and P(n)

true therefore P(n) is true.

Implication N°2

We will show that if P(n) is true for any value of N then Q(n) is true for any value of N.
Since P(n) is true for any value of N, hence P(0) A P(1) A .... A P(n) is also true and

therefore (Q(n) is true for any value of N. m

Example 3.1.5 Demonstrate that any integer n greater than or equal to 2 can be uniquely
decomposed into a product of prime factors.

Demonstration:

Let us denote by P(n) the property: any integer k of {2,3,4......,n—1,n} can be decom-
posed into a product of prime factors.

i) We have P(2) is true because 2 = 2.

i1) Suppose that P(k) is true for all natural numbers 2 < k < n. We must prove that
P(n+1) is true.

-Ifn+1 is prime we can writen+1=mn+ 1.

- If n 4+ 1 1s not prime it therefore admits a prime divisor p and we have: n+ 1 = q.p.

We necessarily have ¢ < n and therefore according to (ii) q decomposes into a product
of prime factors.

Consequently, P(n+ 1) is true.

3.1.5 Proof by strong recurrence

Theorem 3.1.3 Let P be a proposition depending on an element n of N.
If for all n we have: Yk < n : P(k) = P(n), then the proposition P(n) is true for all

ntegers n.

Proof. We perform the proof by generalized recurrence on n.

We have for n = 0.
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3.1. Proof by recurrence

Vk < 0: P(k) This proposition is true because k belongs to the empty set.

We assume that the proposition P(0) A P(1) A .... A P(n) is true and we demonstrate
that P(n+1).

Since P(0) A P(1) A .... A P(n) is true then Yk <n +1: P(k) is true.

From which we obtain P(n + 1) is true. m

3.1.6 Special case of proof by recurrence (Cauchy recurrence)

Proposition 3.1.1 Let P(n) be a predicate that verifies:
(1): P(1) is true.
(ii): ¥Yn € N: P(n) = P(2n).
(111): Yn € N: P(n+1) = P(n).
Then P (n) is true for any value of n.

3.1.7 Proof of the Cauchy Scwhartz inequality by recurrence

Theorem 3.1.4 Harmonic, geometric and arithmetic mean.

Let aq, as, ..., a, be positive real numbers, then

n a; + as... +a
1 1 1 <y a1.ag...any < n.
_+a—++— n

2 an

ai

Equality holds if and only if all a; are equal

Proof. For n = 2, it must be established that aja, < (%)2 ,i.e. (ap —az)? > 0 which

is true.
We will show P(n) = P(n —1).
We put
n—1
ay
A= Z n—1"
k=—
then
n—1 P(n) n—1 A _ 1 A A n
k=1 _ n
So




3.2. Well-founded order

We now demonstrate that P(n)

k=1 k=1 k=n+1
n n 2n n
P(<n) ( ak) ( ak)
B Z n Z
k=1 k=n+1
2m 2n
Qg
P(in) P} n
- 2
mn 2n
e
n
| =
2n
Left inequality deduces from the previous one considering -, L, ..., 1. m
a1’ as an

3.2 Well-founded order

3.2.1 Order and strict order

Definition 3.2.1 Let R be a binary relation on E.
We say that R s reflexive when: Vo € E, vRx.

We say that R is symmetric when: ¥(x,y) € E? 2Ry = yRu.

We say that R is anti-symmetric when: ¥(x,y) € E*> 2Ry AyRx = x = y.
We say that R is transitive when: V(z,y,2) € B>, 2Ry AyRz = xRz.

Definition 3.2.2 A binary relation is an order relation if it is reflexive, anti-symmetric

and transitive.
Example 3.2.1 The set R provided with the usual order relation < .

Example 3.2.2 Quer all the parts of a set, the relation C is a relation of order.

Definition 3.2.3 A binary relation is a strict order relation if it is transitive and anti-

reflexive.

R anti-reflezive : Vo € E : x/Rx.
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3.2. Well-founded order

Example 3.2.3 The set R equipped with the strict order relation < .
Proposition 3.2.1 A strict order relation is anti-symmetric.

Proof. R is by definition transitive and anti-reflexive.

A relation is anti-symmetric if it satisfies
Y(x,y) € E% (zRy A yRx) = x = .

We will show that in a strict order, relation the proposition xRy A yRx is always false.
We reason by the absurd.
We suppose that it exists (z,y) € E? such that the proposition Ry A yR is true. So by
transitivity we obtain xRz is true which contradicts the fact that R is anti-reflexive.
Consequently, the proposition xRy A yR is always false and therefore the logical involve-

ment (zRy A yRx) = x =y is always true. m

Definition 3.2.4 Let (E,R) be an ordered set. Two elements x and y are said to be

comparable if we have xRy or yRz. Otherwise we say that x and y are incomparable.

Example 3.2.4 Let the set P({a,b,c}) be the set of parts of {a,b, c} equipped with the order
relation C .

The elements {a,b},{b,c} are incomparable.
Definition 3.2.5 An order R on E is said to be total if two elements are always comparable
V(z,y) € E, 2Ry or yRzx.
An order that is not total is said to be partial.

Definition 3.2.6 A strict order is said to be strict total if two distinct elements are always
comparable

V(z,y) € E,z #y = 2Ry or yRuz.

Remark 3.2.1 In what follows we will note an order relation by = a strict order relation

by < .
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3.3. Majorants, Minorants, Minimums and Maximums

3.3 Majorants, Minorants, Minimums and Maximums

Definition 3.3.1 Let (E, <) be an ordered set and F' a non-empty subset of E.

We say that x € E is a minorant of F' if we have
Yy e Fox = y.

If the minorant of F' is an element of F' we say that it is the smallest element or the

mainimum of F.
Definition 3.3.2 We say that x € E is a magorant of F' if we have
Yy e Fiy < x.

If the magorant of F' is an element of F' we say that it is the largest element or the maximum

of F.

Definition 3.3.3 Let (E, <) be an ordered set and F be a non-empty part of E.

- An element x is a minimal element of F' when no element of F is strictly smaller than

Vye Fiy o= x=y.
- An element x is a maximal element in F when no element of F is strictly greater than
Vye Fio 2y = x=y.

Remark 3.3.1 If the relation is of total order then the notions of minimal element and

minimum coincide. (Same remark for the notion of mazximal element and mazximum,).
Example 3.3.1 0 is a minimal element of (N, <) it is also its minimum.

Example 3.3.2 Let the set P({a,b,c})\{0} be equipped with the partial order relation C .

The elements {a},{b},{c} are minimal elements but there is no minimum.
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3.3. Majorants, Minorants, Minimums and Maximums

3.3.1 Order product (lexicographic order)

Let (E,=g) and (F, <) be two ordered sets. Consider the product set E x F' and define

the lexicographic order <., by
T 2pa
V(z,y) € Ex FN(2',y) € EXF,(2,y) Ziee (2',9) < or
x=212"and y <p v
If <g and < are total order relations then the lexicographic order is also.

Example 3.3.3 The lexicographic order on the set N? is defined by
r <y
V(JT, y) S Nvi('iE,v y,) € N27 (JT, y) jlex (l’/,y/) Ang or
r=12"andy <yvy

3.3.2 Well-founded order

Definition 3.3.4 Let (E, <) be a set ordered by a total order relation.
We say that < is well-founded when there is no strictly decreasing infinite sequence of

elements of E.

Remark 3.3.2 We also say that the set E is well ordered.

Example 3.3.4 The usual order on N is well-founded but not on Z nor R*.
Example 3.3.5 The lexicographic order on N? is well-founded.

Theorem 3.3.1 Let (E,=) be an ordered set. The order < is well-founded if and only if

every non-empty part I C E admits a minimum.

Remark 3.3.3 Let (E, <) we can associate with the order relation < a strict order relation

by the following definition
x <y if and only if x <y and x # y.

Remark 3.3.4 Let (E, <) we can associate with the order relation < an order relation by

the following definition

xRy ifand only if x <y orz =y.
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3.4. Proof by induction

3.4 Proof by induction

The proof by induction allows us to generalize the proof by recurrence to any well-ordered

set. The principle of the proof is as follows.

Theorem 3.4.1 Let (E, <) be a well-ordered set. Let e denote the minimal element of E.
Let P(x) be a proposition depending on the elements x € E.
(i) Assume that P(e) is true. (Initialization)
(ii) Assume also that Yy < x : P(y) = P(x) is true. (Heredity)
Then the proposition P(x) is true for all x € E.

Theorem 3.4.2 Let (FE,=) be an ordered set. Order < is well-founded if and only if the

principle of induction is correct.

Proof. We will only demonstrate that if the order is well-founded then the principle of
induction is correct.

We reason by the absurd, we assume that P(z) verifies properties (i) and (ii) and that
there exist elements of E which do not verify P(z).

Let A= {z € E, P(z) is false}.

A is therefore a non-empty subset of F.

As the order is well founded, the set A has a minimal element xg.

Consequently for any element y < xy we have P(y) true by definition.

By applying the principle of heredity we obtain P(z,) true which constitutes a contra-

diction. m

Example 3.4.1 We consider the sequence S, ,, defined on N? by Soo = 0 and the following

relation:

Smm _ Sm—l,n +1 an =0,

Smn—1+ 1 otherwise.
We will show that for any pair (m,n) € N*/S,,,, = m+n.
Initialization: We start by proving the property for the element (0,0)
We have Spp =0 =0+ 0 verified.
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3.5. Zermelo’s general good order theorem

Heredity: We show that if the property is true for any pair (m’,n’) < (m,n) then it is
true for (m,n).

We therefore assume that we have
V(m',n') < (m,n) : Sy =m' +1n'.

We distinguish two cases:

Case 1: Ifn=0

In this case we have by definition Sy, 0 = Sp—10+ 1
Case 2: Ifn #0

In this case we have by definition Sy, ,, = Smn—1+ 1. We also have (m,n — 1) < (m,n)

Hypothesis

m—1+1=m-+0.

so by hypothesis we have Sy, ,—1 = m +n — 1. Hence

Sm,n: m,n—1+1=m+n—1+1=m+n

3.5 Zermelo’s general good order theorem

3.5.1 Preorder

Definition 3.5.1 A preordered set is a set E equipped with a binary relation R whicht is
reflexive and transitive. We say that the relation R is a preorder relation.

- A preordered set is totally proordinate if we have xRy or yRx for all x and y in E.

Example 3.5.1 The set of relative integers 7 equipped with the relation of divisibility be-
tween integers:

TRy < x divides y.

The relation R is a preorder relation but is not an order relation.
Example 3.5.2 Between real functions of a real variable, domination is a preorder.
We will use the notation < for the preorder relation.

Definition 3.5.2 Two elements x and y of a preordered set E which are such that x <y

and y = x are said to be equivalent.
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3.5. Zermelo’s general good order theorem

The notion of equivalence defined previously is in fact an equivalence relation on F.

Thus, each preorder relation is associated with an equivalence relation.

Definition 3.5.3 Let A be a part of a preordered set E.
The closure of A denoted A" is the set defined by

At={reE:yeAr=yny <z}
The set A is said to be closed if A = AT,

Definition 3.5.4 Let © and y be two elements of the preordered set E. We say that x s

strictly smaller than y if x <y and if x is not equivalent to y.
Definition 3.5.5 Let (E, <) be a preordered set and A a non-empty subset of E.

Definition 3.5.6 We say that m € E is a minorant of A if every element of A is greater
than x.

Yy e F,m <.

If the manorant of A is an element of A we say that it is the smallest element or
minimum of F.

We say that M € E is a majorant of A if every element of A is smaller than M.
Vye Fiy < M.

If the magorant of A is an element of A we say that it is the largest element or maximum

of F.

Remark 3.5.1 If the maximum (resp. the minimum) when it exists is unique in the case
of an order relation, this is not the case for a preorder relation. Indeed, there can be several

equivalent minimums.

Example 3.5.3 Let the preorder relation of divisibility between relative integers and the set
A=1{-2,2,4,8, —-8}.

We have two minimums 2 and —2 and two maximums 8 and —8.
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3.5. Zermelo’s general good order theorem

Definition 3.5.7 An "upper bound" (resp. "lower bound") (if it exists) of a part A of E
is a smallest element of the set of upper bounds of A (resp. a largest element of the set of

lower bounds of A).
Remark 3.5.2 Several equivalent upper (resp. lower) bounds may ezist.

Lemma 3.5.1 Let E be a finite preordered set. Then there exists an increasing injective

application f : E — N.

Proof. We proceed by recurrence on the number of elements of E.

For n = 1 the proposition is verified.

Suppose that the proposition is verified for n — 1 and we prove for n.

Since E is finite and non-empty there necessarily exists a minimal element a of E. We
put F = FE —{a}.

By recurrence hypothesis, there exists an increasing injective application ¢ : £ — N.

We define f : E — N. by setting f(a) = 0 and f(y) = ¢(y) + 1 for all y € Y. This

application is injective and increasing. m

Definition 3.5.8 A preordered set E is well-preordered if every non-empty subset of E

admits a smaller element.

Note that a well-preordered set is totally preordered, and that any subset of a well-
preordered set is well-preordered. A fundamental example well-preordered set (in fact well-

ordered) is the set N of natural integers (ordered in the usual way).

Definition 3.5.9 A preordered set is said to be “inductive” if every well-ordered part of E

admits an upper bound.

Remark 3.5.3 An inductive preordered set cannot be empty, since the empty part of this

set, which is well-ordered, must have an upper bound.

Definition 3.5.10 A sieve on a preordered set E is a part A of E such that x € A and
y = x result iny € A (for allx andy in E). The fact that A is a sieve on E will be denoted
by A< E.
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3.6. Zorn’s Lemma and the theorem of general good order

It is immediate that the intersection of any family of sieves on F is still a sieve on F.
Similarly, the union of any family of sieves on FE is a sieve on E. Moreover, it is clear that

every sieve is closed.

Lemma 3.5.2 Let A, B be two sieves on a totally preordered set E, then either A << B or
B < A.

Proof. Indeed, let us suppose for example that there exists x € A such that x ¢ B. Let
y € B, we cannot have x < y otherwise we would have z € B. We therefore have y < z
therefore y € A and B C A. We have therefore shown A C B or B C A but since these are
sieves, then either A< Bor B A. m

Definition 3.5.11 Let A be a subset of a preordered set E and let a € A. We denote a <4

as the smallest sieve on A containing a.

It is clear that a <4 is none other than the set {x € A : x < a} of elements of A strictly

smaller than a.

3.6 Zorn’s Lemma and the theorem of general good
order

Lemma 3.6.1 Let E be a preordered set, A and B two parts of E. If A<\ B < E, then for

all a € A we have a <4= a <p .

Theorem 3.6.1 (Zorn’s lemma) FEvery inductive preordered set has an element maxi-

mum.
Theorem 3.6.2 (Zermelo) On every set there ezists a good order.

Proof. Let E be a set. Let E denote the set of pairs (A, R) where A is a subset of
and R a good order relation on A. Let (A, R) < (B, R') denote the fact that A C B and
R’ extends R. E is then an inductive ordered set (for any good-ordered subset of E, take
the union of its elements). It therefore follows from Zorn’s lemma that E has a maximal
element (A, R). Such an element must necessarily verify A = E (otherwise, add an element

to A and decide that it is greater than all those of A). =
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3.7. Corrected exercises

Remark 3.6.1 This good order is difficult to explain in most sets. For example, the set
of rational numbers can be well-ordered by the lexicographic order. For the reals, no well-

ordering relation has been established.

3.7 Corrected exercises

Exercise 3.7.1 Let X be a set. For f € F(X,X), we define f° = Idx and by recurrence
forn eN, frtl = fo

1. Show that: ¥n € N, f**1 = fo fm.

2. Show that if f is bijective then ¥n € N, (f )" = (f")~".

Solution:

Let X be a set and
fo=1Idx

fn+l :fof”,Vn - N '
1) We show that: Vn € N, (f1)" = (fn)i1

Let the proposition
P(n):V¥n €N, f*t = fo f.

By proof byrecurrence we show that proposition P(n) is true.

This proposition is true for n = 0 and we have
f=Ffofl=foldx=f.
For n € N, suppose P(n) is true, then
fn+2 — fn+1 o f
= (fof")of
= fo(f"of)
= fofm

We used the definition of f"2, then proposition P(n), then the associativity of compo-

sition, then the definition of f™*!.
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3.7. Corrected exercises

So P(n + 1) is true.

By the principle of recurrence we have Vn € N, f**! = fo fm.
2) We show that if f is bijective then Vn € N, (f~1)" = (f")"".
We proceed in the same way by recurrence.

Let P(n) be proposition Vn € N, (f~1)" = (f*)~".

This proposition is true for n = 0.

For n € N, suppose P(n) is true, then

() =

So P(n+ 1) is true.

By the principle of recurrence we have Yn € N, (f~1)" = (f*)".

222 — 3
Ty +2°

Exercise 3.7.2 Let the sequence (x,)nen be defined by xog =4 and x,1 =
1. Show that: ¥Yn € N, x,, > 3.
2. Show that: ¥n € N, x,,,1 — 3 > ;(l‘n —3).

n

3. Show that: Yn € N, x,, > (g) + 3.

4. Is the sequence (x,)nen convergent?

Solution:

Let the sequence (z,)nen be defined by

1'0:4
222 — 3
Tnt1 = T, + 2

1) We show by recurrence that : Vn € N, z,, > 3.
Let the recurrence hypothesis be H(n) : Vn € N, x,, > 3.

- Proposition H(0) is true because zo = 4 > 3.

68



3.7. Corrected exercises

- Let n > 0, suppose H(n) is true and show that H(n + 1) is then true

222 -3 222 — 3w, —9
Tny1 — ) —T-

By the recurrence hypothesis x,, > 3 therefore x,, + 2 > 0 and 2:6721 — 3z, —9 > 0 (This
by studying the function z +— 2z? — 3z — 9 for z > 3). Therefore z,,,; > 3 and H(n + 1) is
true.

We have shown that Vn € N : H(n) = H(n + 1) and as H(0) is true then H(n) is

varied whatever n.

3
2) Let us show that x,.; —3 — §(xn — 3) is positive.

3 202 — 3 3
nt1 —3—=(x, —3) = L -3 —=(x,—3
Tnt1 2($ ) 2 2($ )
1y (2, — 3)
2 T, + 2 ’
3

this last term is positive because x,, > 3 therefore =, — 3 > 5(% —3).

3 n
3) Let us show by recurrence Vn € N, x,, > (5) + 3.

3 n
Let the recurrence hypothesis be G(n) : Vn € N, z,, > <§> + 3.
- Proposition G(0) is true.
- Let n > 0, suppose G(n) is true and show that G(n + 1) is true.

3
According to the previous question x,,; — 3 > §(xn — 3) and by recurrence hypothesis

3 n
Ty > <§> + 3, by combining these two inequalities we have

N _3>§ § n_ § n+1
n+1 9 92 - 9 .

We conclude by summarizing the situation: G(0) is true and G(n) = G(n+1) whatever

n, so G(n) is always true.

4) The sequence (z,)nen tends towards +oo and is therefore not convergent.

Exercise 3.7.3 Show using the principle of good order that

n

1
Vn € N* : g i:@.
i=1
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3.7. Corrected exercises
Solution:

Let the proposition be

1
P(n):Vn e N*: Z 1= n(n +
We reason by the absurd.

We assume that the proposition P(n) is false for all values of n € N*

Let A denote the set of values of n for which the proposition P(n) is false
1)
A:{neN* Zz;ﬁ ”+ }
As A C N* then it has a minimum noted ng

We know that ng # 1 because the proposition P(n) is true for 1 in fact we have

. 1(1+1)
Zz:lzT.

=1

So as ng > 1, we know that ng — 1 € N* and P(ny — 1) is true because no — 1 ¢ A
We then have

”OZ‘IZ, (o= (ng—1+1)  (ng—1)ng
: B 2 B 2
=1
no—1
n —1)n
— Zz+n0 0 2) + g
7o 1
—> Zl:no(n;+ )
=1

Hence P(ny) is true.

Which is a contradiction with the fact that ng € A

Exercise 3.7.4 We consider the sequence S defined on N? par S;1 = 5 and the following
relation:

Sm—l,n + 2 Zf’l?, =1
Sm,n -

Smn—1 + 2 Otherwise
Show that for any pair (m,n) € N* S,,,, =2(m+n)+1
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Solution
We use proof by induction

Let the proposition be defined by
P(m,n) :¥(m,n) € N® S, ., =2(m+n)+1

We start by showing that the proposition is true for the minimum, that is to say (1,1).

We have indeed: S1; =5 =2(1+ 1) + 1, so the proposition P(1,1) is true.

We now assume that the proposition is true for any value (m’,n’) < (m,n) and we show
that it is true for (m,n).

According to the definition of S,,, we have two cases:

Case No 1: if n = 1.

de finition S Hypothesis

Smn - m—1,n +2

)

2(m —14+n)+142=2m+ 2n + 1 (Verified).
Case No 2: if n # 1.

s de finition St +2 Hypothesis_ 2m+n—1)+1+42=2m+2n+ 1 (Verified).

)

3.8 Suggested exercises

Exercise 3.8.1 Consider the sequence defined by:

UOZZ
1
1+ u,

Up4+1 = 1+
Using two different methods, show that for any natural integer we have: 1 < u, < 2.

Exercise 3.8.2 1. Let (E,<) be a set with a strict order relation.
Show that we can define an order relation on E.
2. Let (F, =) be a set with an order relation.

Show that we can define a strict order relation on E.

Exercise 3.8.3 Suppose that R is a partial order on a set E. Show that every finite subset

E C A has a minimal element.
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Exercise 3.8.4 Let (F,<) be a set equipped with a strict order relation. Show that the

lexicographic order relation induced by < on the set E™ is a strict order relation.
Exercise 3.8.5 Using the principle of good order show that

Vn e N:3/(n® —n),(3 is a divisor of (n® —n)).
Exercise 3.8.6 Is there an order relation for which the following sets are well-ordered?

1) N?
2) Q

Exercise 3.8.7 Let the predicates below take their values in Z and which verify:

Py (0) true P5(0) true
Vn€Z:Pi(n)=> P(-n) | YneZ:Pyn) = Py(n—1)
P3(0) true Py(0) true
VneZ: Py(n) = Ps(n+2) , Vn € Z: Py(n) = Py(n+1)
Vn € Z: Ps(n+1) = Ps(n) Vn € Z: Py(n+2) = Py(n)

Say in each case if the predicate is true for all values of Z ¢ Demonstrate your assertion.

Exercise 3.8.8 In each case give an order relation for which the following sets are well-

ordered.

n 1 .
{n+1n€N}’NXZ’{ﬁ’nGZ },{2n,n€N}U{—2n—1,n€N}.

Exercise 3.8.9 Let A be a finite set with an order relation and f be a monotone function
from A to A.

1. Show that the function f admits at least one fized point, i.e. a point r € A that
satisfies f(r) =r.

2. Show that if there are several fived points then there is a smallest fized point that can

be written in the form f*(z) where v € A and k < Card(A).

Exercise 3.8.10 Show that a preorder is an order if and only if the associated equivalence

relation is equivalence.
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