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General Introduction

What is Optimization?
Optimization involves searching for the "best" element from a given set. The study

of the properties of optimal solutions precisely forms the objectives of optimization. It is
a branch of applied mathematics and numerical analysis, which has been developing for
several years and shows relationships with many other fields of mathematics. This topic
examines whether local and global extrema exist for a function of one or more variables,
with or without constraints.

This document is particularly intended for undergraduate students (L3) in mathemat-
ics, in accordance with the curriculum of this program. It serves as a course support rich
in exercises and numerical examples on unconstrained optimization. It consists of three
chapters.

In the first chapter, we recall some concepts of differential calculus and notions of
convexity that are useful for the rest of the document. At the end of this chapter, a series
of exercises is provided, along with a sample exam question with detailed solutions.

The second chapter presents the conditions for existence and uniqueness for a non-
linear optimization problem without constraints. We will then present the necessary and
sufficient conditions for optimality in the case of a general unconstrained optimization
problem and in the convex case.

The third chapter is dedicated to algorithms for solving a nonlinear optimization
problem without constraints. This chapter concludes with a series of exercises and an
exam question without solutions.
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Chapter 1
A brief review of differential calculus and
convexity

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Convex Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Convex function . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Convexity and Differentiability . . . . . . . . . . . . . . . . . . 15

1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Exam style with detailed solutions . . . . . . . . . . . . . . . . 21

1.1 Introduction
In this chapter, we review some basic concepts of differential calculus and the notion
of convexity for sets and functions, which will be essential for the following chapters,
particularly the second and third chapters.

1.2 Differentiability
Let n be a natural integer and Rn = R×R...×R be the usual Euclidean space equipped
with the inner product denoted by 〈.; .〉. We denote by ‖.‖ the associated norm.
For any x ∈ Rn, we denote by x = (x1, x2, ..., xn)ᵀ as the column vector.
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∀x ∈ Rn, ∀y ∈ Rn 〈x; y〉 =
n∑
i=1

xiyi

and ‖x‖2 =
√
〈x;x〉 =

(
n∑
i=1

x2i

)1/2

.

The canonical basis of Rn is denoted by e1, e2, ..., en, where ek is the vector whose k-th
component is 1 and 0 elsewhere.

ei ∈ Rn, i = 1, ..., n

and (ei)j = γij =

{
1 si i = j

0 else
, j = 1, ..., n

e1 = (1, 0, ..., 0)ᵀ, e2 = (0, 1, ..., 0)ᵀ, ..., en = (0, 0, ..., 1)ᵀ.

Definition 1.2.1 Let Ω be an open subset of Rn and a ∈ Ω. Let f : Ω −→ R. We say
that f is continuous at a if lim

x−→a
f(x) = f(a). In other words, f is continuous at a ∈ Ω

if and only if

∀ ε > 0 ∃ τ > 0 such that ‖x− a‖ < τ =⇒ |f(x)− f(a)| < ε.

Remark 1.2.1

1. A function f is said to be continuous on Ω if f is continuous at every point a ∈ Ω.

2. If

f : Ω ⊆ Rn −→ Rm

x 7−→ f(x) = (f1(x), f2(x), ..., fm(x))ᵀ

then f is continuous at a ∈ Ω if and only if each component function fj is continuous
at a for every j = 1, ...,m .

3. f is continuous at a ∈ Ω if and only if for every sequence (x(k))k in Ω such that
x(k) −→ a it follows that f(x(k)) −→ f(a).

Definition 1.2.2 Let f : Ω ⊆ Rn −→ R and υ ∈ Rn�{0Rn}. The directional derivative
of f at a ∈ Ω in the direction of the vector υ, if it exists, is given by:

∂f

∂υ
(a) = lim

t−→0

f(a+ tυ)− f(a)

t
.

..

5
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Remark 1.2.2

1. Let

f : Ω ⊆ Rn −→ Rm

x −→ f(x) = (fj(x))1≤j≤m

then
∂f

∂υ
(a) =

(
∂f1
∂υ

(a), ......,
∂fm
∂υ

(a)

)
.

2. ∀x = (xi)1≤i≤n ∈ Rn

∂f

∂xi
(a) =

∂f

∂ei
(a) = lim

t−→0

f(a+ tei)− f(a)

t

= lim
t−→0

f(a1, ..., ai + t, ai+1,..., an)− f(a1, .., ai, ai+1, ..., an)

t
.

Definition 1.2.3 Let f : Ω ⊆ Rn −→ Rm. We say that f is differentiable at a ∈ Ω if
there exists a linear map L from Rn to Rm such that, for all h ∈ Rn, with a+ h ∈ Ω, we
have:

f(a+ h) = f(a) + L(h) + ‖h‖ε(h), where ε(h) −→ 0 as h −→ 0.

The linear map L is denoted by L(a), df(a) or Df(a)

Lemma 1.2.1

1. If f is differentiable at a ∈ Ω =⇒ f is continuous at a.

2. If f is est differentiable at a then the first-order partial derivatives of f exist at a.

Special cases

1. When f : Ω ⊆ R −→ R (m = 1, n = 1) then the linear map L(a) = f ′(a), (L(a) is
simply the derivative of f at a).

2. When f : Ω ⊆ Rn −→ R (m = 1) then

L(a) =

(
∂f

∂x1
(a),

∂f

∂x2
(a), ...,

∂f

∂xn
(a)

)
.

In this case (whereL(a) represents a linear transformation), the vector L(a) is the
transpose of a vector called the gradient of f at point a, denoted as Of(a).

3. When f : Ω ⊆ Rn −→ Rm , the linear map L(a) is a matrix of order m × n
(L = L(a) ∈ Mm×n(R)). This matrix is called the Jacobian matrix of f at a, and
it’s denoted as Jf (a).

Jf (a) =

(
∂fi
∂xj

(a)

)
1≤i≤m
1≤j≤n

=


∂f1
∂x1

(a) · · · ∂f1
∂xj

(a) · · · ∂f1
∂xn

(a)

... . . . ... . . . ...
∂fm
∂x1

(a) · · · ∂fm
∂xj

(a) · · · ∂fm
∂xn

(a)


6
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Examples.

1.
f : R −→ R

t 7−→ f(t) = et − cos(t) + 3t2.

Let a ∈ R. Then df(a) = ea + sin(a) + 6a.

2.
f : R3 −→ R

x =

x1x2
x3

 7−→ f(x) = ex1+x2 − 3x2x3.

Let a = (a1, a2, a3)
t ∈ R3. Then, L(a) = df(a) = Of(a)t = (ea1+a2 , ea1+a2 − 3a3,−3a2) .

3.
f : R2 −→ R3

x =

(
x1
x2

)
7−→ f(x) =

 2x1x2
4x1 + ex2

x1


Let a = (a1, a2)

t ∈ R2. Then, L(a) = df(a1, a2) = Jf (a) =

2a2 2a1
4 ea2

1 0

.

Definition 1.2.4 Let f : Ω ⊆ Rn −→ R and a ∈ Ω. We say that f is twice differentiable
at a if there exists a symmetric matrix A (a linear map from Rn to Rn) of order n such
that: ∀h ∈ R, a+ h ∈ Ω, we have:

f(a+ h) = f(a) + (Of(a))ᵀh+ hᵀAh+ ‖h‖2ε(h),

where lim
h−→0

ε(h) = 0.

Lemma 1.2.2

1. f is twice differentiable =⇒ f is differentiable.

2. If f is twice differentiable, then the partial derivatives up to order 2 exist.

3. Let k ∈ N∗. We say that f is of class Ck on Ω and write f ∈ Ck(Ω) if the partial
derivatives up to order k exist and are continuous.

Definition 1.2.5 Let f be a twice differentiable function at the point a ∈ Ω. The Hessian
matrix of f at a is the matrix denoted Hf (a) or O2f (a), defined by:

Hf (a) = O2f(a) =

(
∂2f

∂xi∂xj
(a)

)
1≤i≤n
1≤j≤n

.

7
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1. If the function f is twice differentiable at the point a, then by Schwarz’s theorem,

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a), ∀i = 1, ..., n and j = 1, ..., n

2. The Hessian matrix of f at the point a ∈ Ω is always symmetric.

3. If f : Ω ⊆ Rn −→ R is of class C2 on Ω, then

• ∂f

∂υ
(a) = 〈Of(a), υ〉, ∀υ ∈ Rn \ {0Rn}.

• Hf (a) = JOf (a) = OJf (a).

• Hf (a) · v = ∇〈∇f(a), υ〉 , ∀a ∈ Ω,∀υ ∈ Rn.

Examples.

1. Let
f : Rn −→ Rm

x 7−→ Ax

where A ∈Mm×n(R), then Jf (x) = A, ∇f(x) = (Jf (x))ᵀ = Aᵀ.

2.
f : Rn −→ R

x 7−→ 〈a, x〉+ b

∇f(x) = a and Hf (x) = ∇2f(x) = 0.

3.
f : Rn −→ R

x 7−→ 〈Ax, x〉 = xᵀAx =
n∑
i=1

n∑
j=1

aijxjxi

where A ∈Mn(R), the function f in this case is called a quadratic function.

Show that:

• ∇f(x) = (A+ Aᵀ)x, ∀x ∈ Rn.
• Hf (x) = ∇2f(x) = A+ Aᵀ.

• When A is symmetric, then:

{
∇f(x) = 2Ax

∇2f(x) = 2A
.

Theorem 1.2.1 (Taylor Expansion).
Let U be an open subset of Rn, a ∈ U , and f : U −→ R. Let h ∈ Rn such that the line
segment [a, a+ h] is contained in U .

8
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1. If f ∈ C1(U), then

(a) The first-order Taylor formula with Maclaurin remainder is given by:

f(a+ h) = f(a) + 〈∇f(a+ θh), h〉, 0 < θ < 1.

(b) The first-order Taylor formula with Young remainder is given by:

f(a+ h) = f(a) + 〈∇f(a), h〉+ o(‖h‖).

2. If f ∈ C2(U), then

(a) The second-order Maclaurin Taylor formula is given by:

f(a+ h) = f(a) +∇f(a)ᵀh+
1

2
hᵀ∇2f(a+ θh)h, 0 < θ < 1.

(b) The second-order Young Taylor formula is given by:

f(a+ h) = f(a) + 〈∇f(a), h〉+
1

2
hᵀ∇2f(a)h+ o(‖h‖2).

Examples.

1.
f : I ⊂ R −→ R

x 7−→ f(x) = x4

We have f ∈ C∞(I)

f(0 + h) = f(0) + f ′(0)h+
1

2
h2f ′′ (0) + o(h2)

f(h) = 0 + 0 + 0 + o(h2),

2.
f : U ⊂ R2 −→ R

x =

(
x
y

)
7−→ f(x, y) = ln(1 + xy)

The domain is Df = {
(
x
y

)
∈ R2; 1 + xy > 0}.

We have f ∈ C2(U), so the second-order Young Taylor formula at the point a =
(0, 0)ᵀ is:

f(a+ h) = f(a) + 〈∇f(a), h〉+
1

2
hᵀ∇2f(a)h+ o(‖h‖2)

f(a) = f(0, 0) = ln(1 + 0) = ln(1) = 0.

9
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∇f(x, y) =

(∂f
∂x

(x, y)

∂f
∂y

(x, y)

)
=

( y
1+xy

x
1+xy

)
⇒ ∇f(0, 0) =

(
0

0

)
= (0, 0)ᵀ.

∇2f(x, y) =


−y2

(1 + xy)2
1

(1 + xy)2

1

(1 + xy)2
−x2

(1 + xy)2

 ⇒ ∇2f(0, 0) =

(
0 1

1 0

)
.

Therefore

f(h) = 0 + 〈0, h〉+
1

2
(h1, h2)

(
0 1

1 0

)(
h1

h2

)
+ o(h21 + h22)

f(h1, h2) =
1

2
(h1, h2)

(
h2

h1

)
+ o(h21 + h22)

= h1h2 + o(h21 + h22).

1.3 Convexity

1.3.1 Convex Set

Definition 1.3.1 Let C be a non-empty subset of Rn. We say that C is convex if for all
a, b ∈ C the line segment [a, b] ⊆ C,
where

[a, b] = {ta+ (1− t)b; 0 ≤ t ≤ 1}.

In other words:

C convex ⇐⇒ ∀ t ∈ [0, 1]
∀ a, b ∈ C

}
then ta+ (1− t)b ∈ C.

Figure 1.1: Example of convex sets

10
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Figure 1.2: Example of non-convex sets

Examples.

1. If ‖·‖ is a norm on Rn, then the open balls (B(x0, r)) and closed balls (Bf (x0, r))
are convex in Rn (see topology).

2. The convex sets in R are exactly the intervals.

3. In R2, the set C = {(x, y) ∈ R2 | xy = 0} is not convex because:
(1, 0)ᵀ ∈ C and (0, 1)ᵀ ∈ C, but for t = 1

2
∈ [0, 1] we have

1

2
(1, 0)ᵀ +

(
1− 1

2

)
(0, 1)ᵀ =

(
1

2
,
1

2

)ᵀ

/∈ C
(
since

1

2
× 1

2
=

1

4
6= 0

)
.

4. In Rn (n ≥ 2), the set Sn = {(α1, α2, ..., αn)ᵀ ∈ Rn+ |
∑n

i=1 αi = 1} is a convex set of
Rn called the simplex of Rn.

Proposition 1.3.1

1. The intersection of convex sets is convex.

2. The union of two convex sets is not generally convex. For example:

C1 = {(x, y)ᵀ ∈ R2 : x = 0} and C2 = {(x, y)ᵀ ∈ R2 : y = 0}

are convex sets in R2, but C1 ∪ C2 is not convex in R2.

3. The Cartesian product of convex sets is convex.

Proposition 1.3.2 Let C ⊆ Rn be a convex set, then

1. C + α = {x+ a | x ∈ C} is convex.

2. αC = {αx | x ∈ C} is convex.

3. If f : Rn → Rm is a linear function, then f(C) is convex in Rm.

4. If f : Rm → Rn is a linear mapping, then f−1(C) is convex in Rn.

11
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1.3.2 Convex function

Definition 1.3.2 Let C be a convex subset of Rn and f : C → R be a function defined
on C.

1. We say that f is convex on C if and only if: ∀x, y ∈ C and ∀θ ∈ [0, 1]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

2. We say that f is strictly convex on C if: ∀x, y ∈ C (x 6= y) and ∀θ ∈ (0, 1)

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y).

3. We say that f is strongly convex on C if there exists α > 0 such that: ∀x, y ∈ C
and ∀θ ∈ [0, 1]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− αθ(1− θ)‖x− y‖2.

4. We say that f is concave (resp. strictly concave, resp. strongly concave) if (−f) is
convex (resp. strictly convex, resp. strongly convex).

Figure 1.3: Convex function

12
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Figure 1.4: Example of non-convex function of two variables

Examples.

1.
‖·‖ : Rn −→ R

x 7−→ ‖x‖

2.
f : Rn −→ R

x 7−→ f(x) = 〈x, a〉+ b

f is both convex and concave. Let x, y ∈ Rn and t ∈ [0, 1]:

f(tx+ (1− t)y) = 〈tx+ (1− t)y, a〉+ b

= 〈tx, a〉+ 〈(1− t)y, a〉+ tb+ (1− t)b
= t (〈x, a〉+ b) + (1− t) (〈y, a〉+ b)

= tf(x) + (1− t)f(y).

3.
f : R −→ R

x 7−→ x2

f is a convex function (moreover, f is strictly convex). Indeed, ∀x, y ∈ R and
∀t ∈ [0, 1]:

f(tx+ (1− t)y) = (tx+ (1− t)y)2

= t2x2 + (1− t)2y2 + 2t(1− t)xy
≤ t2x2 + (1− t)2y2 + t(1− t)(x2 + y2)

= tx2 + (1− t)y2

= tf(x) + (1− t)f(y).

13
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Theorem 1.3.1

1. Let {fi}i∈I be a family of convex functions on U (a convex subset of Rn) mapping
to R. Then supi∈I fi is a convex function,

where (supi∈I fi) (x) = supi∈I (fi(x)).

2. If U ⊂ Rn is convex and fi : U → R (i = 1, ..., n) are convex, then for all λi ≥ 0
(i = 1, ..., n), the function

∑n
i=1 λifi is convex.

3. Let f : U → R be convex (U is a convex subset of Rn) and ϕ : R→ R be a function.
Then:

(a) If f is convex and ϕ is convex and increasing ⇒ ϕ ◦ f is convex.

(b) If f is concave and ϕ is convex and decreasing ⇒ ϕ ◦ f is convex.

(c) If f is concave and ϕ is concave and increasing ⇒ ϕ ◦ f is concave.

Proof.

1. For each fi : U → R convex (∀i ∈ I), and for all x, y ∈ U and t ∈ [0, 1]:

fi(tx+ (1− t)y) ≤ tfi(x) + (1− t)fi(y) ∀i ∈ I

≤ t

(
sup
i∈I

fi(x)

)
+ (1− t)

(
sup
i∈I

fi(y)

)
= t

(
sup
i∈I

fi

)
(x) + (1− t)

(
sup
i∈I

fi

)
(y)

Therefore, supi∈I fi is a convex function.

2. For all t ∈ [0, 1]:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (since f is convex)
ϕ(f(tx+ (1− t)y)) ≤ ϕ(tf(x) + (1− t)f(y)) (since ϕ is increasing)

≤ tϕ(f(x)) + (1− t)ϕ(f(y)) (since ϕ is convex)
⇒ (ϕ ◦ f)(tx+ (1− t)y) ≤ t(ϕ ◦ f)(x) + (1− t)(ϕ ◦ f)(y) (proving ϕ ◦ f is convex)

3.

f concave⇔ (−f) convex
⇔ −f(tx+ (1− t)y) ≤ t(−f(x)) + (1− t)(−f(y))

⇔ f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).

14



SETIF 1 UNIVERSITY FERHAT ABBAS Mohamed RAHAL

Examples of Convex Functions

1. The function (x, y) 7→ x2 + y2 is convex because:

• The norm (x, y) 7→ ‖(x, y)‖ is convex
• The function

ϕ : R+ −→ R
t 7−→ t2

is convex and increasing
• Therefore ϕ ◦ f is convex

2. If f is convex, then f 2 is convex (when f ≥ 0).

3. The p-norm x 7→ ‖x‖p is convex for all p ≥ 1.

4. If f is convex, then exp(f) is convex.

1.4 Convexity and Differentiability
Theorem 1.4.1 Let U ⊆ Rn be an open convex subset of Rn and let f : U → R be a
differentiable function on U . Then the following three properties are equivalent:

1. f is convex on U .

2. For all x, y ∈ U : f(y) ≥ f(x) + 〈∇f(x), y − x〉.

3. For all x, y ∈ U : 〈∇f(y)−∇f(x), y − x〉 ≥ 0.

Proof.
1) ⇒ 2) For all x, y ∈ U and all t ∈ (0, 1], we have:

f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x)

⇒ f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x))

⇒ f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x)

⇒ lim
t→0+

f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x)

∂f

∂v
(x) ≤ f(y)− f(x) where v = y − x

⇒ 〈∇f(x), y − x〉 ≤ f(y)− f(x).

Therefore, 1)⇒ 2)

2) ⇒ 3) For all x, y ∈ U :

f(y)− f(x) ≥ 〈∇f(x), y − x〉
f(x)− f(y) ≥ 〈∇f(y), x− y〉

⇒ 0 ≥ 〈∇f(x), y − x〉+ 〈∇f(y), x− y〉
⇒ 〈∇f(y)−∇f(x), y − x〉 ≥ 0.

Therefore, 2)⇒ 3)

15



SETIF 1 UNIVERSITY FERHAT ABBAS Mohamed RAHAL

3) ⇒ 1): For all x, y ∈ U and t ∈ (0, 1], define:

ϕ : [0, 1]→ R, ϕ(t) = f(ty + (1− t)x)

The function ϕ is differentiable with:

ϕ′(t) = 〈∇f(x+ t(y − x)), y − x〉

For any t1 ≤ t2:

ϕ′(t2)− ϕ′(t1) = 〈∇f(x+ t2(y − x))−∇f(x+ t1(y − x)), y − x〉

=
1

t2 − t1
〈∇f(x+ t2(y − x))−∇f(x+ t1(y − x)), (t2 − t1)(y − x)〉 ≥ 0

⇒ ϕ′ is monotonically increasing
⇒ ϕ is convex

Thus:

ϕ(t) ≤ tϕ(1) + (1− t)ϕ(0)

⇒ f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x)

⇒ f is convex.

Theorem 1.4.2 Let f : U ⊆ Rn → R be a C2 function where U is an open convex subset
of Rn. Then:

1. f is convex on U ⇐⇒ ∇2f(x) = Hf (x) is a positive semidefinite matrix for all
x ∈ U .

2. If the matrix ∇2f(x) = Hf (x) is positive definite for all x ∈ U , then f is strictly
convex on U .

3. f is strongly convex on U if and only if there exists α > 0 such that:

〈∇2f(x)h, h〉 ≥ α‖h‖2 for all x ∈ U and all h ∈ Rn.

Proof (Exercise).

Example. Consider the function:

f : Rn → R
x 7→ f(x) = 〈Ax, x〉 − 〈b, x〉

where A ∈Mn(R) is symmetric positive definite and b ∈ Rn.

1. Show that there exists α > 0 such that:

〈Ax, x〉 ≥ α‖x‖2, for all x ∈ Rn.

16
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2. Deduce that f is strongly convex (and therefore strictly convex and convex).

Definition 1.4.1 Let
f : U ⊂ Rn → R

x 7→ f(x)

We say that f is coercive on U if and only if

lim
‖x‖→+∞
x∈U

f(x) = +∞.

Thus, f is coercive on Rn if and only if:

lim
‖x‖→+∞

f(x) = +∞.

Figure 1.5: Example of coercive function of two variables

Figure 1.6: Example of non-coercive function of two variables

Examples.

1. The function x 7→ ‖x‖ is coercive on any normed vector space.

2. The function t 7→ et is coercive on R+ but not coercive on R.

3. The function f(x, y) = sin(x+ y) is not coercive.

17
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Recall. (Matrix Calculus) Let A ∈Mn(R) be a real square matrix of order n:

1. A is positive semidefinite if and only if 〈Ax, x〉 = x>Ax ≥ 0 for all x ∈ Rn.
A is negative semidefinite if and only if 〈Ax, x〉 = x>Ax ≤ 0 for all x ∈ Rn.

2. A is positive definite if and only if 〈Ax, x〉 = x>Ax > 0 for all x ∈ Rn \ {0}.
A is negative definite if and only if 〈Ax, x〉 = x>Ax < 0 for all x ∈ Rn \ {0}.

3. If A ∈Mn(R) is symmetric:

Sp(A) = {λi | λi is an eigenvalue of A} ⊆ R.

4. If A ∈Mn(R) is symmetric:

(a) A is positive semidefinite ⇔ λi ≥ 0 for all i.

(b) A is positive definite ⇔ λi > 0 for all i.

Theorem 1.4.3 (Sylvester’s Criterion)
A matrix A is positive definite if and only if det(Ak) > 0 for all k = 1, . . . , n, where

Ak =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

... . . . ...
ak1 ak2 · · · akk


denotes the k-th leading principal submatrix of A.

1.5 Exercises
Exercise 1.1. Let f : R2 → R be the function defined by:

f(x, y) =

{
|x|3/2y
x2+y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

1. Is f continuous on R2?

2. Compute the partial derivatives of f . Are they continuous?

3. Calculate the directional derivatives (if they exist) of f at the point (0, 0).

4. Is the function f differentiable at (0, 0)?

18
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Exercise 1.2
Expand the following functions around (0, 0) up to second order:

f(x, y) = arctan(x+ y2),

g(x, y) = ln(1 + xy).

Exercise 1.3

1. Let f : Rn → Rm be defined by:

f(x) = Ax, ∀x ∈ Rn,

where A ∈Mm,n(R).

(a) Show that Jf (x) = A for all x ∈ Rn.
(b) Compute ∇f(x) and ∇2f(x) for the linear function:

f(x) = 〈h, x〉, ∀x ∈ Rn.

2. Let A ∈Mn(R) and consider the function:

f : Rn → R
x 7→ 〈Ax, x〉

(a) Show that for all x ∈ Rn:

∇f(x) = (A+ A>)x and ∇2f(x) = A+ A>.

(b) Show that if A is positive definite, then the diagonal elements of A are strictly
positive.

Exercise 1.4

1. Let f : R→ R be the function defined by:

f(x) =

{
x2 if x ≥ 0

x3 if x < 0

(a) Study the convexity of f .

(b) Is the function f differentiable on R?

2. Are the following functions coercive?

(a) f(x1, x2) = −x21 − x22.
(b) f(x1, x2) = −x2.
(c) f(x) = xT b+ c, where b, x ∈ Rn and c ∈ R.
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(d) f(x) = 1
2
xTAx − bTx, where A is a symmetric positive definite square matrix

of order n and b is a vector in Rn.

Exercise 1.5

Consider the following subsets:

1. A = {(x, y)T ∈ R2 : xy ≤ 0} ⊆ R2.

2. B = {(x, y, z)T ∈ R3 : x2 + y2 + z2 ≤ 4 and z − y = 0}.

Provide a graphical representation of each set and determine whether it is convex or not.

Exercise 1.6

Consider the function f defined on R2 by:

f(x, y) = x4 + y4 − 12xy.

Let Ω be the set defined by:

Ω = {(x, y)T ∈ R2 : x > 0, y > 0, xy > 1}.

1. Show that Ω is an open convex subset of R2.

2. Show that f is strictly convex on Ω.

Exercise 1.7
Analyze the convexity of the function f : R3 → R defined by:

f(x, y, z) = |x|+ |y|+ z.

Exercise 1.8
Consider the two functions f and g defined by:

f(x, y) = x4 + y4 and g(x, y) = (x− y)2.

1. Show that both f and g are convex on R2.

2. Let h = f − g. Show that h is neither convex nor concave on R2.

3. Is the function f + g convex on R2?

Exercise 1.9

1. Let U be a convex subset of Rn and f : U → R a function. Show that f is convex if
and only if for all x1, x2, . . . , xm ∈ U and all λ1, λ2, . . . , λm ∈ [0, 1] with

∑m
i=1 λi = 1,

we have:

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi) (Jensen’s inequality)
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2. Deduce that:

ln

(
n∑
i=1

1

n
xi

)
≥

n∑
i=1

1

n
ln(xi), with xi > 0 for all 1 ≤ i ≤ n.

Exercise 1.10
Let f be the function defined on Rn by:

f(x) = (x>a)2 + x>x

where a ∈ Rn (a 6= 0).

1. Compute ∇f(x) and H(x) = ∇2f(x).

2. Deduce that f is a quadratic form on Rn.

3. Show that f is strictly convex and coercive.

1.6 Exam style with detailed solutions
Exercise 1 (2021). Analyze the convexity (convex, strictly convex, concave, and strictly
concave) of the following two functions.

1. f : R→ R defined by:
f(x) = e(x

2+2021)3

2. f : R2 → R defined by:
f(x, y) = −|x|+ y

Exercise 2. Consider the following maximization problem:

max
(x,y)∈R2

[
f(x, y) = −(y − x2)2

]
.

1. Is the function f coercive on R2?

2. Find all critical points.

3. Show that all critical points satisfy the second-order necessary optimality condition.

4. Does the function f have a global maximum on R2?

5. Can the function f be strictly concave on R2?

Exercise 3. Consider the problem:

(P )

{
min f(x, y, z) = ecos(π−x) + y2 + 4y + z2 + 5

(x, y, z)> ∈ R3
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1. Is the function f coercive on R3?

2. Find all critical points of f .

3. Find all local minima of f on R3.

4. Show that f is bounded below on R3.

5. Determine the global minima of f on R3.

6. Can f be convex on R3? Justify your answer.

7. Can f be concave on R3? Justify your answer.

Solutions.

Exercise 1.

1. Consider f(x) = e(x
2+2021)3

The second derivative is:

f ′′(x) =
[
6(x2 + 2021)2 + 36x2(x2 + 2021)4 + 24x2(x2 + 2021)

]︸ ︷︷ ︸
>0

e(x
2+2021)3

• f ′′(x) > 0 for all x ∈ R, therefore f is strictly convex on R
• f being strictly convex implies it is convex on R
• f being strictly convex implies it is not concave on R
• f not being concave implies it is not strictly concave on R

2. Consider f(x, y) = −|x|+ y

Let U =

(
u1
u2

)
, V =

(
v1
v2

)
∈ R2 and t ∈ [0, 1], then:

tU + (1− t)V =

(
tu1 + (1− t)v1
tu2 + (1− t)v2

)
We have:

f(tU + (1− t)V ) = −|tu1 + (1− t)v1|+ tu2 + (1− t)v2
≥ −(|tu1|+ |(1− t)v1|) + tu2 + (1− t)v2
= −t|u1| − (1− t)|v1|+ tu2 + (1− t)v2
= t(−|u1|+ u2) + (1− t)(−|v1|+ v2)

= tf(U) + (1− t)f(V )

Thus f is concave on R2.

• f being concave implies it is not strictly convex on R2
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• For M1 = (1, 0)>, M2 = (−1, 0)> and t = 1
2
:

f
(
1
2
M1 + 1

2
M2

)
= 0 � −1 = 1

2
f(M1) + 1

2
f(M2)

Therefore f is not convex on R2

• For M1 = (1, 0)>, M2 = (2, 0)> and t = 1
2
:

f
(
1
2
M1 + 1

2
M2

)
= −3

2
= 1

2
f(M1) + 1

2
f(M2)

Therefore f is not strictly concave on R2.

Exercise 2. Consider the problem: max
R2

[
f (x, y) = − (y − x2)2

]
.

1. For Xn = (n, n2)
t, we have ‖Xn‖ −→ +∞ if and only if n −→ +∞, but

lim
‖Xn‖−→+∞

f (Xn) = lim
n−→+∞

− (n2 − n2) = 0 6= −∞, hence f is not decreasing at

infinity on R2.

2. f ∈ C∞ (R2) and ∇f (x, y) =

(
4x (y − x2)
2 (x2 − y)

)
, thus ∇f (x, y) =

(
0
0

)
⇐⇒ x2 −

y = 0.

Therefore, the critical points are
{

(x, y)t ∈ R2 such that y = x2
}

=
{

(x, x2)
t
, x ∈ R

}
.

3. We have: Hf (x, y) = ∇2f (x, y) =

(
4y − 12x2 4x

4x −2

)
=⇒ ∇2f (x, x2) =

(
−8x2 4x

4x −2

)
.

The eigenvalues of ∇2f (x, x2) are 0 and − (8x2 + 2).

Therefore, ∇2f (x, x2) is a negative semi-definite matrix, meaning the critical points
satisfy the necessary second-order condition.

4. We have: f (x, y) ≤ 0,∀ (x, y)t ∈ R2 and f (α, α2) = 0,∀α ∈ R, hence (α, α2) is a
global maximum of f . Thus, the function f has an infinite number of global maxima
on R2.

5. The function f has more than 2 maxima, so f is not strictly concave on R2.

Exercise 3. Consider the problem:

(p)

{
min f (x, y, z) = min

[
ecos(π−x) + y2 + 4y + z2 + 5

]
(x, y, z)T ∈ R3

1. The function f is not coercive on R3 because for Xn = (n, 0, 0)t ∈ R3, we have:

lim
‖Xn‖−→+∞

f (Xn) = lim
n−→+∞

ecos(π−n) + 5 ≤ e1 + 5 < +∞.
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2. We have: f (x, y, z) = e− cos(x) + y2 + 4y + z2 + 5 and f ∈ C∞ (R3), thus

∇f (x, y, z) =

 (sinx) e− cosx

2y + 4
2z

, then∇f (x, y, z) =

 0
0
0

⇐⇒


x = kπ, ∀k ∈ Z
y = −2
z = 0

.

Thus, the critical points are
{

(kπ,−2, 0)t ∈ R3 such that k ∈ Z
}
.

3. Since f ∈ C∞ (R3) and ∇2f (x, y, z) = Hf (x, y, z), we have

Hf (x, y, z) =

 e− cosx sin2 x+ (cosx) e− cosx 0 0
0 2 0
0 0 2

, then

∇2f (kπ,−2, 0) =



 e−1 0 0
0 2 0
0 0 2

 , if k = 2m =⇒ positive definite −e 0 0
0 2 0
0 0 2

 , if k = 2m+ 1 =⇒ not positive semi-definite.

Thus, the points (2mπ,−2, 0)t ,m ∈ Z are local minima of f on R3.

4. We have f (x, y, z) = ecos(π−x) + y2 + 4y + z2 + 5 = ecos(π−x) + (y + 2)2 + z2 + 1.

Since −1 ≤ cos (π − x) ≤ 1, we have f (x, y, z) ≥ e−1 + 1,∀ (x, y, z)t ∈ R3.

Thus, f is bounded below by e−1 + 1.

5. From 3) and 4) we have

f (x, y, z) ≥ e−1 + 1,∀ (x, y, z)t ∈ R3.
f (2mπ,−2, 0) = e−1 + 1

}
=⇒ (2mπ,−2, 0)t ,m ∈ Z are global min-

imizers of f on R3.

6. The function f is not convex on R3, because the points ((2m+ 1) π,−2, 0)t ,m ∈ Z
are critical points but not global minimizers.

7. The function f is not concave on R3, because the points (2mπ,−2, 0)t ,m ∈ Z are
critical points but not global maximizers.
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2.1 Introduction
In this chapter, we will first define the general formulation of optimization problems. We
then present optimality conditions for unconstrained nonlinear optimization problems,
beginning with first-order conditions followed by second-order necessary and sufficient
conditions.

Definition 2.1.1 An unconstrained optimization problem can be expressed in the follow-
ing form:

(P )

{
min f(x);

x ∈ Rn.
⇐⇒ (P )

{
Find x∗ ∈ Rn such that
f(x∗) ≤ f(x), ∀x ∈ Rn.

where x ∈ Rn is called the optimization variable, and f : Rn → R is called the cost
function or objective function or criterion.

Example. The problem of solving the equation f(x) = 0 for x ∈ Rn is equivalent to the
following optimization problem:

(P )

{
Find x∗ ∈ Rn;

|f(x∗)| = minx∈Rn |f(x)|.
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Definition 2.1.2 Let f : Rn → R be a scalar function defined on Rn and let x∗ ∈ Rn.

1. We say that x∗ is a local minimum point of f on Rn if there exists r > 0 such that:

f(x∗) ≤ f(x), ∀x ∈ B(x∗, r).

2. We say that x∗ is a strict local minimum point of f on Rn if there exists r > 0 such
that:

f(x∗) < f(x), ∀x ∈ B(x∗, r) \ {x∗}.

3. We say that x∗ is a global minimum (resp. strict global minimum) of f on Rn if:

f(x∗) ≤ f(x), ∀x ∈ Rn (resp. f(x∗) < f(x), ∀x ∈ Rn \ {x∗}).

4. We can define local maximum (resp. strict local maximum), global maximum (resp.
strict global maximum) points by reversing the inequalities above.

5. If x∗ ∈ Rn is a local or global minimum (resp. maximum) point, the value f(x∗) is
called the minimal (resp. maximal) value.

Figure 2.1: Local and Global minima and maxima of a function

Remark 2.1.1

1. If x∗ is a global minimum, then x∗ is also a local minimum.

2. For a function f : Rn → R, the infimum infRn f(x) may not equal the minimum
minRn f(x).
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Example. Consider the function

f : R→ R, x 7→

{
x2 + 1 if x 6= 0,

2021 otherwise.

For this function we have:

inf
x∈R

f(x) = 1 but min
x∈R

f(x) does not exist

(since there is no x∗ ∈ R such that f(x∗) = 1).

Lemma 2.1.1 Let
f : Rn → R, x 7→ f(x)

1. The optimization problems minx∈Rn f(x) and maxx∈Rn(−f(x)) are equivalent.

2. minx∈Rn f(x) = − (maxx∈Rn(−f(x))).

2.2 Existence and Uniqueness Results
Theorem 2.2.1 Let f : Rn → R be a continuous and coercive function on Rn. Then
there exists at least one point x∗ ∈ Rn such that:

f(x∗) ≤ f(x), ∀x ∈ Rn.

The proof of this theorem relies on the following Weierstrass theorem:

Theorem 2.2.2 (Weierstrass). Let f be a continuous function on a compact set K ⊂ Rn.
Then there exist points x, x ∈ K such that:

f(x) ≤ f(x) ≤ f(x) ∀x ∈ K.

Proof. Let a ∈ Rn and define the subset:

K = {x ∈ Rn : f(x) ≤ f(a)}.

1. K is closed since K = f−1
(
(−∞, f(a)]

)
and f is continuous from Rn to R.

2. K is bounded in Rn. Indeed, if K were unbounded, there would exist a sequence
(xm)m ⊂ K such that:

‖xm‖ → +∞ as m→ +∞.

The coercivity of f on Rn implies that limm→+∞ f(xm) = +∞, which contradicts

lim
m→+∞

f(xm) ≤ f(a).

From 1. and 2., the set K is compact in Rn.
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By the Weierstrass theorem, there exists x∗ ∈ K such that

f(x∗) ≤ f(x) for all x ∈ K.

Moreover,
f(x∗) ≤ f(a) < f(x) for all x ∈ Rn \K.

Therefore,
f(x∗) ≤ f(x) for all x ∈ Rn.

.

Note that uniqueness is not guaranteed in this theorem.

Example. The function f(x) = |x2 − 1| is continuous and coercive on R. Since
f(x) = |x2 − 1| ≥ 0 = f(1) = f(−1), there exist two global minima of f on R.

Theorem 2.2.3 (Uniqueness). Let f : Rn → R be strictly convex on Rn. Then the
optimization problem:

(P )

{
min f(x);

x ∈ Rn

admits at most one solution, i.e., there exists at most one global minimum of f on Rn.

Proof. Suppose there exist two distinct minimizers x1 6= x2 of f on Rn such that:

f(x1) ≤ f(x) ∀x ∈ Rn and f(x2) ≤ f(x) ∀x ∈ Rn.

Let
y = 1

2
x1 + 1

2
x2.

Since f(x1) = f(x2) (because f(x1) ≤ f(x2) and f(x2) ≤ f(x1)), the strict convexity of f
implies:

f(y) = f
(
1
2
x1 + 1

2
x2
)
< 1

2
f(x1) + 1

2
f(x2) = f(x1).

This contradicts the assumption that x1 is a global minimizer of f on Rn.

Theorem 2.2.4 (Existence and Uniqueness). Let f : Rn → R be differentiable on Rn,
and suppose there exists α > 0 such that

〈∇f(x)−∇f(y), x− y〉 ≥ α‖x− y‖2 ∀x, y ∈ Rn.

Then:

1. f is strictly convex on Rn.

2. f is coercive on Rn.
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3. The optimization problem:

(P )

{
min f(x);

x ∈ Rn,

admits a unique solution, i.e., there exists a unique global minimum of f on Rn.

Example. Let f : Rn → R be a quadratic form defined by:

f(x) =
1

2
x>Ax− b>x+ c,

where A is a positive definite matrix.

1. Show that f satisfies:

〈∇f(x)−∇f(y), x− y〉 ≥ α‖x− y‖2 ∀x, y ∈ Rn.

2. Deduce that f has a unique global minimum x̄ ∈ Rn.

3. Compute x̄.

2.3 First-Order Necessary Condition for Optimality
Theorem 2.3.1 (First-Order Necessary Condition). Let f : Rn → R be differentiable at
a point x∗ ∈ Rn. Then:

x∗ is a local or global minimizer of f on Rn =⇒ ∇f(x∗) = 0Rn .

Proof. Let h ∈ Rn \ {0Rn} and t ∈ R. We have:

lim
t→0

f(x∗ + th)− f(x∗)

t
= 〈∇f(x∗), h〉.

For sufficiently small |t|, we obtain:

0 ≤ lim
t→0
t>0

f(x∗ + th)− f(x∗)

t
= 〈∇f(x∗), h〉, (2.1)

0 ≥ lim
t→0
t<0

f(x∗ + th)− f(x∗)

t
= 〈∇f(x∗), h〉. (2.2)

From (2.1) and (2.2), we conclude 〈∇f(x∗), h〉 = 0 for all h ∈ Rn, hence ∇f(x∗) = 0.

Remark 2.3.1

1. The condition ∇f(x∗) = 0 is necessary but not sufficient. For example, consider
f(x) = x3 defined on R. We have ∇f(x) = f ′(x) = 3x2 and f ′(0) = 0, but x = 0 is
not a local minimizer of f on R.
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2. This theorem doesn’t apply when f is not differentiable. For instance:

f : R→ R, x 7→ |x+ 1|

Here x̄ = −1 is a global minimizer of f on R, but ∇f(−1) = f ′(−1) does not exist.

Theorem 2.3.2 (Necessary and Sufficient Condition). Let f : Rn → R be a convex and
differentiable function in a neighborhood of x∗. Then:

x∗ is a global minimizer of f on Rn ⇐⇒ ∇f(x∗) = 0.

Proof.
(⇒) This follows directly from the previous theorem.
(⇐) Assume ∇f(x∗) = 0. Since f is convex, we have:

f(x) ≥ f(x∗) + 〈∇f(x∗), x− x∗〉 ∀x ∈ Rn =⇒ f(x) ≥ f(x∗) ∀x ∈ Rn.

Therefore, x∗ is a global minimizer of f on Rn.

Example.

1. Consider f : R → R defined by f(x) = ex
2 . We can show that f is convex on R

(exercise). The gradient is:

∇f(x) = f ′(x) = 2xex
2

= 0 ⇐⇒ x = 0.

Since: {
f ′(0) = 0

f is convex

it follows that x̄ = 0 is a global minimizer of f on R.

2. Consider the function f : R2 → R defined by:

f(x, y) = (x− y)2.

We have:

∇f(x, y) =

(
2(x− y)
2(y − x)

)
, ∇2f(x, y) = Hf (x, y) =

(
2 −2
−2 2

)
.

This shows f is a quadratic form since Hf (x, y) doesn’t depend on x and y.

For all (x, y)> ∈ R2, we have:

Spec(Hf (x, y)) = {0, 4} ⊂ [0,+∞) =⇒

{
Hf (x, y) is positive semidefinite
f is convex on R2

The gradient condition:

∇f(x, y) =

(
0
0

)
⇐⇒

{
2(x− y) = 0

2(y − x) = 0
⇐⇒ x = y

shows that for all α ∈ R, the point Xα = (α, α)> is a global minimizer of f on R2.
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Definition 2.3.1 Let f : Rn → R be a differentiable function on Rn. A point x∗ ∈ Rn
satisfying ∇f(x∗) = 0 is called a stationary point or critical point, and the equation
∇f(x) = 0Rn is called the Euler equation.

Remark 2.3.2 For a differentiable function f : Rn → R, if x∗ ∈ Rn is a local or global
minimizer or maximizer, then x∗ must be a critical point.

2.4 Second-Order Necessary Conditions for Optimality
Proposition 2.4.1 Proposition (Second-Order Necessary Condition). Let f : Rn → R
be a C2 function in a neighborhood of x∗ ∈ Rn. If x∗ is a local minimizer of f on Rn,
then:

1. ∇f(x∗) = 0

2. ∇2f(x∗) is positive semidefinite on Rn.

Proof.

1. This follows from the first-order necessary condition (Theorem 2.5).

2. We proceed by contradiction. Suppose ∇2f(x∗) is not positive semidefinite. Then
there exists a nonzero vector P ∈ Rn such that

P>∇2f(x∗)P < 0.

Using the second-order Taylor expansion:

f(x∗ + P ) = f(x∗) + 〈∇f(x∗), P 〉+
1

2
〈∇2f(x∗ + tP )P, P 〉, for some 0 < t < 1,

which implies

f(x∗ + P )− f(x∗) =
1

2
〈∇2f(x∗ + tP )P, P 〉.

Since∇2f(x) is continuous in a neighborhood of x∗, we have 〈∇2f(x∗+tP )P, P 〉 < 0
for sufficiently small t. Therefore:

f(x∗ + P )− f(x∗) < 0 =⇒ f(x∗ + P ) < f(x∗)

=⇒ x∗ is not a local minimizer.

Remark 2.4.1

1. The conditions 1 and 2 are necessary but not sufficient. Consider the example:

f : R→ R, t 7→ t3

We have:

f ′(t) = 3t2, f ′′(t) = 6t with f ′(0) = 0 and f ′′(0) = 0

Thus f ′′(0) is positive semidefinite (f ′′(0) ≥ 0), but t∗ = 0 is neither a local mini-
mizer nor a local maximizer on R.
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2. The second-order necessary condition for x∗ to be a local (or global) maximizer is
as follows. Under the same assumptions on f :

x∗ is a local maximizer =⇒

{
(i) ∇f(x∗) = 0,

(ii) ∇2f(x∗) is negative semidefinite.

2.5 Sufficient second-order condition for Optimality
Proposition 2.5.1 (Second-Order Sufficient Condition). Let f : Rn → R be a C2 func-
tion in a neighborhood of x∗ ∈ Rn satisfying:

1. ∇f(x∗) = 0,

2. ∇2f(x∗) is positive definite on Rn.
Then x∗ is a strict local minimizer of f on Rn.

Remark 2.5.1 Let f : Rn → R be a C2 function in a neighborhood of x∗ ∈ Rn satisfying:

1. ∇f(x∗) = 0,

2. ∇2f(x∗) is negative definite on Rn.
Then x∗ is a strict local maximizer of f on Rn.

Example. Consider the function:

f : R3 → R, X = (x, y, z)> 7→ f(X) = x4 − 2x2z + 2y2 + 2yz + 2z2 − 2y + 15.

1. Compute ∇f(x, y, z) and ∇2f(x, y, z) for all (x, y, z)> ∈ R3.

2. Determine the critical points of f .

3. Show that f(x, y, z) ≥ 14 for all (x, y, z) ∈ R3.

4. Deduce the minimum of f on R3.

2.6 Exercises
Exercise 2.1. Let f : R4 → R be defined by:

f(x) = f(x1, x2, x3, x4) =
4∑
i=1

2x2i +

(
4∑
i=1

xi

)2

.

1. Compute ∇f(x) and H(x) = ∇2f(x).

2. Deduce that f is a quadratic form on R4.

3. Show that the minimization problem minx∈R4 f(x) admits a unique solution x ∈ R4

and compute x.
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Exercise 2.2. Consider the function g defined by:

g(x, y) = ax2y + bxy + 2xy2 + c,

where a, b, c ∈ R.

1. Find all critical points of g.

2. Determine the values of a, b, c for which g has a local minimum at the point
(
2
3
, 1
3

)>
with g

(
2
3
, 1
3

)
= −1

9
.

Exercise 2.3. Consider the function f : R2 → R defined by:

f(x, y) = x4 + y4 − 4xy.

1. Show that f is coercive (i.e., f(x, y)→ +∞ as ‖(x, y)‖ → +∞).

2. Show that f has a global minimizer (x, y)> on R2 and compute it.

3. Can a coercive function have a global maximum?

Exercise 2.4. Let f : R2 → R be defined by:

f(x, y) = exp
[
(x− 1)2

]
+ (y2 − 4)2.

1. Determine all critical points of f .

2. Find all local minima of f .

3. Show that f is coercive.

4. Deduce the global minima of f on R2.

Exercise 2.5. Consider the following sets:

1. A =
{

(x, y)> ∈ R2 | (x− 1)(y + 1) ≤ 0
}
.

2. B =
{

(x, y)> ∈ R2 | y ≤ 0 and y ≥ x3
}
.

Sketch each set graphically and determine whether it is convex or not.

Exercise 2.6. Let {fi}mi=1 be a family of convex functions defined on a convex set U ⊆ Rn.
Prove that:

1. The pointwise supremum sup1≤i≤m fi is convex on U , where(
sup

1≤i≤m
fi

)
(x) = sup

1≤i≤m
(fi(x)) .
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2. For all λi ≥ 0, the weighted sum
∑m

i=1 λifi is convex on U .

Exercise 2.7. Analyze the convexity (convex, strictly convex, concave, and strictly
concave) of the following functions:

1. The function f : R→ R defined by:

f(x) = e(x
2+2021)3

2. The function f : R2 → R defined by:

f(x, y) = −|x|+ y

Exercise 2.8. Prove that:

ln

(
x+ y

2

)
≥
√

lnx ln y, ∀x, y ∈ ]1,+∞[ .

Exercise 2.9. Let f : Rn → R be defined by:

f(x) =
1

2
〈x, x〉+ 〈a, x〉2

where a ∈ Rn (a 6= 0).

1. Compute ∇f(x) and H(x) = ∇2f(x).

2. Deduce that f is a quadratic form on Rn.

3. Show that f is strictly convex and coercive.
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3.1 Introduction
In this chapter, we present several algorithms for numerically approximating the solu-
tion(s) to an unconstrained nonlinear optimization problem:

(P )

{
min f(x)

x ∈ Rn

We introduce the most fundamental classical methods for solving such problems.
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Definition 3.1.1 An algorithm is defined by a mapping A : Rn → Rn that generates a
sequence of elements in Rn through the following iterative scheme:

(Alg.)

{
x(0) ∈ Rn (given initial point)
x(k+1) = A(x(k)) for k ≥ 0 (iteration k)

Implementing an algorithm amounts to constructing such a sequence (x(k))k in Rn, and
analyzing the algorithm’s convergence means studying the convergence of this sequence.

Definition 3.1.2 An algorithm A is said to converge if and only if the sequence gener-
ated by the algorithm (Alg.) converges to a limit point x∗ ∈ Rn.

Definition 3.1.3 Let (x(k))k be a sequence with limit x∗ ∈ Rn defined by a convergent
algorithm A. We say the convergence of A is:

• Linear if the error ek = ‖x(k) − x∗‖ decreases linearly:

∃C ∈ [0, 1),∃k0,∀k ≥ k0 : ek+1 ≤ Cek.

• Superlinear if the error ek decreases as:

ek+1 ≤ αkek,

where αk is a positive sequence converging to 0. If αk is a geometric sequence, the con-
vergence is called geometric.

• Of order p if the error ek decreases as:

∃C ≥ 0,∃k0,∀k ≥ k0 : ek+1 ≤ Cepk.

For p = 2, the convergence is called quadratic.

• Finally, the convergence is called local if it only occurs for initial points x(0) in some
neighborhood of x∗. Otherwise, the convergence is global.

3.2 Descent methods
Descent methods generally take the following form:{

X0 ∈ Rn given,
X(k+1) = X(k) + ρk d

(k),

where d(k) ∈ Rn \ {0} is chosen such that f
(
X(k+1)

)
< f

(
X(k)

)
. Here, d(k) is called the

descent direction, and ρk > 0 (ρk ∈ R∗+) is called the step size (or descent step).

Definition 3.2.1 Let f : Rn → R be a function. A vector d ∈ Rn \{0} is called a descent
direction at the point x if there exists ε > 0 such that

f(x+ td) < f(x), ∀t ∈ [0, ε] .
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Lemma 3.2.1 Let f : Rn → R be a C1(Rn) function. Then, for every x ∈ Rn, the vector
d = −∇f(x) is a descent direction at the point x.

Proof. Since f is of class C1(Rn), we use the first-order Taylor expansion of f around
the point x ∈ Rn:

f(x+ td) = f(x) + t〈d,∇f(x)〉+O(td).

For t ∈ [0, ε] and d = −∇f(x) 6= 0, we obtain:

f(x+ td) = f(x)− t‖∇f(x)‖2 +O(td) =⇒ f(x+ td) < f(x).

3.3 Gradient method
Methods where the descent direction at each iteration k is dk = −∇f(X(k)) are called
gradient methods. The general gradient descent algorithm is given by:

1. Initialization (k = 0)

X(0) ∈ Rn, ρ0 > 0 and ε > 0

2. Iteration k

X(k+1) = X(k) − ρk∇f
(
X(k)

)
3. Stopping criterion

‖X(k) −X(k+1)‖ 6 ε or ‖∇f
(
X(k+1)

)
‖ 6 ε then stop

Otherwise, set k = k + 1 and return to step 2.

Remark 3.3.1 The step size ρk can be chosen as either fixed or variable.

3.3.1 Gradient method with fixed step size

Let f ∈ C(Rn,R) and ρ be a strictly positive real number. The fixed-step gradient method
(ρ fixed) is a descent method defined by the following algorithm:

• Initialization (k = 0)

X(0) ∈ Rn given, ρ > 0 fixed and given, ε > 0 (the precision is given).

• Iteration k
- Compute ∇f

(
X(k)

)
- Compute X(k+1) = X(k) − ρ∇f

(
X(k)

)
• Stopping criterion

If ‖X(k+1) −X(k)‖ < ε, stop. Otherwise, set k = k + 1 and return to step 2.
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Theorem 3.3.1 Theorem. (Convergence) Let f ∈ C1(Rn,R). Assume there exist two
strictly positive real numbers α and M such that:

i) ∀x, y ∈ Rn : 〈∇f(x)−∇f(y), x− y〉 ≥ α‖x− y‖2,
ii) ∀x, y ∈ Rn : ‖∇f(x)−∇f(y)‖ ≤M‖x− y‖.

Then:

1. f is coercive on Rn.

2. f is strictly convex on Rn.

3. The function f has a unique minimum x∗ such that f(x∗) ≤ f(x) ∀x ∈ Rn.

4. If 0 < ρ <
2α

M2
, the sequence generated by the fixed-step gradient method with step

size ρ converges to the unique solution x∗, regardless of the starting point x(0).

Example. Consider the problem:

(P )

{
min f(x, y) = 2(x2 + y2)− 3xy

(x, y) ∈ R2

1. Perform 4 iterations of the fixed-step gradient method (ρ =
1

25
) starting from the

initial point X(0) = (1, 1)t.

2. Compute the exact solution X̄ of (P ).

3. Determine the error ε = e4 = ‖X(4) − X̄‖.

Solution. Recall that the fixed-step gradient algorithm sequence is:{
X(0) given
X(k+1) = X(k) − ρ∇f(X(k))

1. We have f ∈ C1 (R2). For allX =

(
x
y

)
∈ R2,∇f(X) = ∇f(x, y) =

(
4x− 3y
−3x+ 4y

)
.

Therefore, the sequence becomes:
X(0) = (1, 1)t given

X(k+1) =

(
x(k+1)

y(k+1)

)
=

(
x(k)

y(k)

)
− 1

25

(
4x(k) − 3y(k)

−3x(k) + 4y(k)

)
=

(
21
25
xk + 3

25
yk

3
25
xk + 21

25
yk

)
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For:

• k = 0 ⇒ X(0) =

(
1
1

)
, k = 1 ⇒ X(1) =


24

25
24

25



• k = 2 ⇒ X(2) =


(

24

25

)2

(
24

25

)2

, k = 3 ⇒ X(3) =


(

24

25

)3

(
24

25

)3

 =

(
24

25

)3(
1
1

)
• k = 4 ⇒ X(4) =

(
24

25

)4(
1
1

)

2. We have f ∈ C2 (R2) and the Hessian matrix ∇2f(x, y) =

(
4 −3
−3 4

)
= A, so f

is a quadratic form.

Since ∆1 = det(4) = 4 > 0 and ∆2 = det

(
4 −3
−3 4

)
= 7 > 0, then f is strictly

convex and coercive on R2.

Therefore, f admits a unique strict global minimum X on R2 such that ∇f(X) =
0R2 .

∇f(X) = 0R2 ⇒ AX = 0R2 ⇒ X = A−10R2 = 0R2 .

3. The error e4 = ‖X(4) − X‖ = ‖
(

24

25

)4(
1
1

)
−
(

0
0

)
‖ =

(
24

25

)4

‖
(

1
1

)
‖ =(

24

25

)4√
2 ≈ 1.20.

Remark 3.3.2

1. Since X(k) =

(
24

25

)k (
1
1

)
, the error ek = ‖X(k) − X‖ =

(
24

25

)k√
2 satisfies

limk→∞ ek = 0. Therefore, the fixed-step gradient method sequence converges to the
unique solution X = (0, 0)t, but the convergence is very slow.

2. The function can be expressed as f(X) = f(x, y) =
1

2

(
x y

)( 4 −3
−3 4

)(
x
y

)
=

1

2
X tAX.

The gradient satisfies:

〈∇f(X)−∇f(X ′);X −X ′〉 ≥ 1‖X −X ′‖2,
‖∇f(X)−∇f(X ′)‖ ≤ 7‖X −X ′‖.
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In this example, the step size satisfies 0 < ρ =
1

25
<

2(1)

(7)2
.

3.3.2 Gradient method with optimal step size

The general idea of this method is to compute at each iteration k the step size ρk (the
displacement step) as the minimum over R+ of the function φk(t) = f(x(k) − t∇f(x(k))),
that is,

ρk = arg min
t≥0

φk(t).

Thus, the algorithm of the gradient method with optimal step size takes the following
form:

1. Initialization (k = 0)
X(0) given and ε > 0

2. Iteration k

while ‖∇f(X(k))‖ > ε do

(a) Compute ∇f(X(k)) = −dk.
(b) Compute φk (t) = f

(
X(k) − t∇f(X(k))

)
.

(c) Compute ρk such that f
(
X(k) + ρkd

(k)
)
≤ f

(
X(k) + td(k)

)
,∀ρ > 0, that is

ρk = arg min
R+

φk(t)

(d)
X(k+1) = X(k) + ρkd

(k)

3. Stopping criterion
If ‖∇f

(
X(k)

)
‖ ≤ ε stop.

Example. Consider the problem:

(P )


min 4(2x21 + x22)(
x1

x2

)
∈ R2

Starting from X(0) =

(
1

10
,

1

10

)t
, compute an approximate solution to (P ) with precision

ε = 5× 10−1.
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Solution. The sequence of gradient method with optimal step size is given by:

X(0) =
1

10

(
1

1

)
et ε = 10−2 > 0,

dk = −Of(X(k))

ρk = ρopt = arg min
ρ>0

f
(
X(k) + ρdk

)
X(k+1) = X(k) + ρkdk

X(0) =
1

10

(
1
1

)
=⇒ d0 = −Of

(
X(0)

)
= −Of

(
1

10
,

1

10

)
, où Of (x1, x2) =

(
16x1
8x2

)
.

Then d0 =
−1

10

(
16
8

)
.

ρ0 = arg min
ρ>0

f
(
X(0) + ρd0

)
= arg min

ρ>0
f

(
1

10
(1, 1)− ρ 1

10

(
16
8

))
= arg min

ρ>0
f

(
1− 16ρ

10
,
1− 8ρ

10

)
= arg min

ρ>0

[
4

100

(
2 (1− 16ρ)2 + (1− 8ρ)2

)]
= arg min

ρ>0

4
100

[576ρ2 +−80ρ+ 3] .

Therefore ρ0 satisfies 2× 576ρ0 − 80 = 0 =⇒ ρ0 =
5

72
> 0.

X(1) = X(0) + ρ0d0 =
1

10

(
1
1

)
− 5

720

(
16
8

)
=

(
− 1

90
2
45

)
X(1) =

1

10

(
−1

9
4
9

)
=⇒ d1 = −Of

(
X(1)

)
= −Of

(
1

10

(
−1

9
, 4
9

))
=⇒ d1 = −1

90

(
−16
32

)
= 1

45

(
8
−16

)
ρ1 = arg min

ρ>0
φ1 (ρ) = arg min

ρ>0
f
(
X(1) + ρd1

)
= arg min

ρ>0
f

(
1

90
(−1, 4) + ρ

1

90
(16,−32)

)
= arg min

ρ>0

[
4

(90)2

(
2 (−1 + 16ρ)2 + (4− 32ρ)2

)]
ρ1 is solution of φ′1 (ρ) = 0
φ′1 (ρ) = 0 =⇒ 4× 16(−1 + 16ρ)− 2× 32(4− 32ρ) = 0

=⇒ (−1 + 16ρ)− (4− 32ρ) = 0 =⇒ ρ = 5
48
.

Thus ρ1 =
5

48

X(2) = X(1) + ρ1d1 =
1

90

(
−1
4

)
+

5

48

1

45

(
8
−16

)
=

(
1

135
1

135

)
d2 = −Of

(
X(2)

)
= −Of

(
1

135
(1, 1)

)
= − 1

135

(
16
8

)
.∥∥Of (X(2)

)∥∥ = 1
135

√
(16)2 + (8)2 = 8

135

√
5 = 0.132 51 < 0, 5

whence X '
(

1
135
1

135

)
.
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Theorem 3.3.2 (Convergence) Let f ∈ C1(Rn,R) be a coercive function. Then:

1. The sequence {X(k)}k generated by the gradient method with optimal step size is
well-defined (i.e., ρk exists but is not necessarily unique).

2. The sequence {X(k)}k is bounded and therefore admits a convergent subsequence. If
{X(l)}l is a convergent subsequence of {X(k)}k with limit X∗, then ∇f(X∗) = 0Rn.

3. If f is convex, then X∗ = liml→∞X
(l) is a global minimum of f on Rn.

4. If f is strictly convex, then the entire sequence X(k) → X∗ and:

• f(X∗) = minx∈Rn f(x)

• X∗ is the unique global minimum of f on Rn

3.3.3 Gradient method with variable step size

In this method, we do not necessarily take the optimal step size or a fixed step size; in
other words, the step size varies from one iteration to another. Thus, the algorithm takes
the following form:

1. Initialization (k = 0)
X(0), ε > 0 given.

2. Compute dk = −Of
(
X(k)

)
, t > 0 such that f

(
X(k) + tdk

)
< f

(
X(k)

)
3. Set X(k+1) = X(k) + tdk.

4. If ‖Of
(
X(k)

)
‖ 6 ε, stop; otherwise, set k −→ k + 1 and return to step 2.

3.4 Conjugate gradient method
This method was discovered in 1952 for minimizing a quadratic function:

f(x) =
1

2
xTAx− bTx+ c

where A is a symmetric positive semi-definite matrix, b, x ∈ Rn, and c ∈ R. The minimum
of f over Rn is x∗ such that Ax∗ = b.

Definition 3.4.1 Let A ∈Mn(R) be a symmetric positive-definite matrix.

1. Two vectors x, y ∈ Rn − {0Rn} are said to be A-conjugate if

〈Ax, y〉 = 〈x, y〉A = 0.
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2. A family {w1, w2, ..., wn} ⊂ Rn − {0Rn} is called A-conjugate if

〈wi, wj〉A = wtiAwj = 0 ∀i 6= j.

Remark 3.4.1

1. If A is symmetric positive definite, then 〈·, ·〉A defines an inner product on Rn.

2. If a family {w1, w2, . . . , wn} is A-conjugate =⇒ {w1, w2, . . . , wn} is linearly inde-
pendent.

The general idea of the conjugate gradient method is to construct directions d0, d1, . . . , dn
that are pairwise A-conjugate. At each iteration k, the direction dk is obtained as a
linear combination of gk = ∇f(X(k)) and the previous direction. We set:

dk = gk + αkdk−1

where gk = ∇f(X(k)) = AX(k) − b and αk ∈ R is chosen such that:

〈dk, dk−1〉A = 0.

Therefore, the conjugate gradient algorithm for minimizing the quadratic function:

1. Initialization

Choose X(0) and ε > 0
Compute g0 = ∇f

(
X(0)

)
= AX(0) − b.

2. Iteration

If gk = 0 or ‖gk‖ 6 ε, Stop
Otherwise

(a) Compute

dk =

{
g0 if k = 0

gk + αkdk−1 if k > 1
, where αk = − 〈gk, Adk−1〉

〈Adk−1, dk−1〉

(b) Compute

ρk =
〈gk, dk〉
〈Adk, dk〉

(c) X(k+1) = X(k) − ρkdk.
(d) Compute gk+1 = AX(k+1) − b.
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3. If gk+1 = 0, stop; otherwise set k −→ k + 1 and return to step 2.

Example. Consider the function defined by:

f(x, y) = 3(x2 + y2) = 3(x, y)I2

(
x
y

)
=

1

2
(x, y)6I2

(
x
y

)
=

1

2
X tAX (A = 6I2).

∇f(x, y) =

(
6x
6y

)
= 6I2

(
x
y

)
, ∇2f(x, y) =

(
6 0
0 6

)
= 6I2.

1. Initialization
k = 0, X(0) =

(
1
1

)
, g0 = ∇f

(
X(0)

)
= 6I2X

(0) = 6

(
1
1

)
=

(
6
6

)
= d0.

2. Iteration

ρ0 =
〈g0, d0〉
〈Ad0, d0〉

=
1

6
, X(1) = X(0) − 1

6
d0 =

(
1
1

)
− 1

6

(
6
6

)
=

(
0
0

)
.

g1 = AX(1) − b = 6I2

(
0
0

)
−
(

0
0

)
=

(
0
0

)
. g1 = 0 =⇒ X∗ = X(1) =

(
0
0

)
is

the minimum of f on R2.

Theorem 3.4.1 Let f(x) =
1

2
xtAx − btx + c, where A is a symmetric matrix of order

n. The sequence
(
x(k)
)
k
defined by the conjugate gradient method converges to the unique

solution of min
x∈Rn

f(x) in at most n iterations (n = dimRn).

3.5 Newton’s method
Newton’s method is not strictly speaking an optimization method.
In fact, it is a method used to solve nonlinear equations of the form F (x) = 0, where F is
a function from Rn to Rn. We will first describe it and then show how it can be applied
to finding minima. This method directly searches for critical points, that is to say points
x such that

∇f(x) = 0.

We know Newton’s method:

3.5.1 Newton’s method in R
Let f : R −→ R be of class C1(R) with f ′(x) 6= 0,∀x ∈ R. Newton’s algorithm for solving
f(x) = 0 is given by: 

x0 ∈ R given, ε > 0

x
k+1

= x
k
− f (x

k
)

f ′ (x
k
)

If
∣∣x

k+1
− x

k

∣∣ < ε or |f(x
k
)| < ε stop

Otherwise set k −→ k + 1
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3.5.2 Newton’s method in Rn

Let
F : Rn −→ Rn

X =

 x1
...
xn

 7−→ F (X)

1. The zeros of F are the solutions to the equation: F (X) = 0Rn . We assume that
F ∈ C1(Rn) and that JF (X) is invertible ∀X ∈ Rn. Then Newton’s algorithm in this
case is as follows:

1. k = 0 : X(0) given, ε > 0 given
2. X(k+1) = X(k) −

[
JF
(
X(k)

)]−1
F
(
X(k)

)
3. If ‖X(k+1) −X(k)‖ 6 ε or ‖F

(
X(k)

)
‖ 6 ε stop

4. Otherwise, set k = k + 1 and return to step 2.

2. Application for solving an optimization problem.

We have seen that a necessary optimality condition is ∇f(x∗) = 0. This is a nonlinear
equation (or rather a system of nonlinear equations) in Rn and we will use Newton’s
method to solve it. However, we will only obtain critical points of f : we will then need
to verify whether they are indeed minima.
Here, F = ∇f is indeed a function from Rn to Rn. The derivative of F is nothing other
than the Hessian matrix of f :
Let f : Rn −→ R be of class C2(Rn), we assume that the matrix Hf (X) = ∇2f(X) exists
and is invertible for all x, and that the equation ∇f(X) = 0Rn has at least one solution
x∗. Then Newton’s algorithm for finding the minimum of f on Rn is as follows:

1. Initialization (k = 0)

X(0) given in the neighborhood of x∗, ε > 0, a given precision

2. Iteration k

X(k+1) = X(k) −
[
∇2f

(
X(k)

)]−1∇f (X(k)
)

3. Stopping criterion

while ‖X(k+1) − X(k)‖ 6 ε or ‖∇f
(
X(k)

)
‖ 6 ε stop, otherwise set k = k + 1 and

return to 2.

Remark 3.5.1

1. Let F (X) = ∇f (X), then JF (X) = ∇2f(X) = Hf (X) is the Hessian matrix of f .
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2. The first-order Taylor expansion for the function ∇f gives:

∇f
(
X(k+1) + dk

)
≈ ∇f

(
X(k)

)
+∇2f

(
X(k)

)
dk.

We seek X(k+1) such that F
(
X(k+1)

)
= ∇f

(
X(k+1)

)
= 0, with Xk+1 = Xk +ρkdk =

Xk + dk. Therefore dk = −
[
∇2f

(
X(k)

)]−1∇f (X(k)
)
, where dk in this case is called

the Newton direction.

Theorem 3.5.1 (Local convergence of Newton’s method ) Let f : Rn 7−→ R be a
function of class C2(Rn,R) and let X∗ be a critical point of f . Assume that Hf (X∗) =
∇2f (X∗) is invertible.

1. There exists a ball B(X∗, ε) such that ∀X(0) ∈ B(X∗, ε), the Newton sequence is
well-defined (i.e., X(k) ∈ B(X∗, ε)) and the sequence

(
X(k)

)
k
converges to the unique

critical point in the ball.

2. If the matrix ∇2f is Lipschitz continuous (i.e., ∃k > 0 such that: ‖∇2f(X) −
∇2f(Y )‖ 6 k‖X − Y ‖,∀ X, Y ∈ Rn), then

(
X(k)

)
k
converges quadratically to X∗,

meaning ∃ c > 0 such that:

‖X(k+1) −X∗‖ 6 c‖X(k) −X∗‖2.

Example. Let f be a function defined by:

f : R3 −→ R

X =

 x
y
z

 7−→ f (X) = ex + ey − x− ey + (z + 1)2

1) Let us compute: ∇f(X) = ∇f(x, y, z) =

 ex − 1
ey − e

2(z + 1)

 , ∇2f(x, y, z) = H(x, y, z) = ex 0 0
0 ey 0
0 0 2


Therefore [H(x, y, z)]−1 =

 e−x 0 0
0 e−y 0
0 0 1

2


2) Application:
The Newton’s method iteration is given by:

X(0) =

 1

0

0

 ∈ R3

X(k+1) = X(k) −
[
Hf

(
X(k)

)]−1∇f (X(k)
)
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=⇒



X(0) =

 1

0

0

 ;

 x(k+1)

y(k+1)

z(k+1)

 =

 x(k)

y(k)

z(k)

−
 e−x

(k)
0 0

0 e−y
(k)

0

0 0 1
2


 ex

(k) − 1

ey
(k) − e

2(z(k) + 1)



=⇒



X(0) =

 1

0

0


 x(k+1)

y(k+1)

z(k+1)

 =

 x(k) − 1 + e−x
(k)

y(k) − 1 + e1−y
(k)

−1


k 0 1 2 3 ...

x(k) 1 0.3678 0.060 1.7645× 10−3 ...

y(k) 0 1.7182 1.2058 1.01978 ...

z(k) 0 −1 −1 −1 ...

Therefore X∗ '

 0
1
−1

.

3.6 Relaxation method
The idea of this method is to reduce a minimization problem in Rn to the successive solu-
tion of n one-dimensional minimization problems (at each iteration). Thus, the algorithm
takes the following form:

1. Initialization k = 0

Choose X(0) ∈ Rn and ε > 0 as a given precision threshold.

2. Iteration k

For each i = 1, 2, ..., n compute x(k+1)
i as the solution to the problem:

min
t∈R

[
φ
(k)
i (t) = f

(
x
(k+1)
1 , x

(k+1)
2 , ..., x

(k+1)
i−1 , t, x

(k)
i+1, ..., x

(k)
n

)]
.

3. If ‖X(k+1) −X(k)‖ 6 ε stop, otherwise set k −→ k + 1 and return to step 2.
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Example. Consider the problem

(p)

{
min f(x, y) = y2 + x2 + xy − 15

(x, y)t ∈ R2

1. We have f(x, y) = x2+y2+xy−15, ∇f(x, y) =

(
2x+ y
x+ 2y

)
and∇2f(x, y) =

(
2 1
1 2

)
.

Thus f is a quadratic form such that:

A = Hf (x, y) = ∇2f(x, y) =

(
2 1
1 2

)
.

∆1 = det(2) = 2 > 0, ∆2 = det

(
2 1
1 2

)
= 4 − 1 = 3 > 0 =⇒ by Sylvester’s criterion,

A = Hf (x, y) is positive definite.{
f continuous
f coercive

on R2 =⇒ (P ) has at least one solution X̄.

f is strictly convex on R2 =⇒ the problem (P ) has at most one solution X̄

Therefore the problem (P ) has a unique solution denoted X̄ =

(
x̄
ȳ

)
.

1. Computing X̄ = (x̄, ȳ)t.

AX = 0R2 =⇒ X̄ = 0R2 , since A is invertible

Thus X̄ = (x̄, ȳ)t = (0, 0)t.

2. Relaxation Method

X(0) =

(
0

1

)
∈ R2, given

X(k+1) =
(
x
(k+1)
i

)
06i6n

such that ∀i = 1, ..., n

x
(k+1)
i = arg min

R
f
(
x
(k+1)
1 , ..., x

(k+1)
i−1 , t, x

(k)
i+1, ..., x

(k)
n

)
a. Compute X(1) =

(
x(1)

y(1)

)
:

i. Compute x(1):

f(t, y(0)) = f(t, 1) = t2 + 1 + t− 15, f ′(t, 1) = 0 =⇒ 2t+ 1 = 0 =⇒ t =
−1

2
=⇒ x(1) =

−1

2
.

ii. Compute y(1):

f(x(1), t) = f

(
−1

2
, t

)
=

1

4
+ t2 − 1

2
t − 15, f ′

(
−1

2
, t

)
= 0 =⇒ 2t − 1

2
= 0 =⇒ t =

1

4
=⇒ y(1) =

1

4
.
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b. Compute X(2) =

(
x(2)

y(2)

)
:

i. Compute x(2):

f(t, y(1)) = f

(
t,

1

4

)
= t2 +

1

16
+ t +

1

4
t − 15, f ′

(
t,

1

4

)
= 0 =⇒ 2t +

1

4
= 0 =⇒ t =

−1

8
=⇒ x(2) =

−1

8
.

ii. Compute y(2):

f

(
−1

8
, t

)
=

1

64
+ t2 − 1

8
t− 15, y(2) =

1

16
.

k 0 1 2 3 4

x(k) 0 −1/2 −1/8 ? ?

y(k) 1 1/4 1/16 ? ?

3.7 Exercises
Exercise 3.1

Apply 4 iterations of the fixed-step gradient method (ρ = 1
6
) to solve the following prob-

lem:

min
R2

(2x2 + 4y2 + 4xy − 3y) ;

starting from the point (2, 2)T .

Exercise 3.2

Let f : R2 −→ R be a function defined by:

f(x, y) = 1
2

(αx2 + y2) ,

where α ∈ ]1,+∞[ .

1. Compute ∇f(x, y) and the Hessian matrix A = ∇2f(x, y).

2. Deduce that the function f has a unique global minimum X∗ that we will determine.

3. Consider (z(k))k a sequence of points in R2 defined by:
z(0) = (1, α)t

d(k) = Az(k)

ρk =
‖d(k)‖2
〈Ad(k);d(k)〉

z(k+1) = z(k) − ρkd(k)

(a) Show that

49



SETIF 1 UNIVERSITY FERHAT ABBAS Mohamed RAHAL

z(k) =
(
α−1
α+1

)k ( (−1)k

α

)
(b) Calculate the number of iterations performed such that ek =

∥∥z(k) −X∗∥∥ ≤
10−6.

Exercise 3.3

Let f be the function defined on R3 by:

f (x, y, z) = ex + ey − x− ey + (z + 1)2

1. Compute ∇f and ∇2f at any point (x, y, z) of R3.

2. Apply Newton’s method to solve min
R3
f (x, y, z) using the initial pointX(0) = (1, 0, 0)T .

Exercise 3.4

Consider the unconstrained optimization problem

min
R2
f (x, y) = 3x2 + 3y2

1. Let’s examine two methods: Newton’s method and the conjugate gradient method.
Perform two iterations of each method using the starting point X(0) = (1, 1)T .

2. Analyze and compare the results.

Exercise 3.5

Consider the following unconstrained optimization problem:

(p)

{
min f (x, y) = y2 + x2 + xy − 15

(x, y)T ∈ R2

1. Show that problem (p) has a unique solution X = (x, y)T .

2. Compute X.

3. Consider the following algorithms:

(a) Fixed-step gradient method
(
ρ =

1

9

)
;

(b) Optimal-step gradient method;

(c) Relaxation method.

Perform two iterations for each method using the initial point X(0) = (0, 1)T .

1. Compute the error e2 =
∥∥X(2) −X

∥∥ for each method.

2. Analyze and compare the results.
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3.8 Exam style without solutions
Exercise 1. Let f be a function defined on R3 by f(x, y, z) = x4 − 2x2y + 2y2 − 2yz +
2z2 − 4z + 5

1. Determine the critical points of f on R3.

2. Show that the expression f(x, y, z) can be written as a sum of squares.

3. Deduce the solutions of min
R3
f .

4. Conclude that f is not strictly convex on R3.

Exercise 2. Consider the function defined on R2 by:

fα,β (X) = fα,β(x, y) =
α

2

(
x2 + y2

)
− βxy

where α, β ∈ R.

1. Compute ∇fα,β(x, y) and ∇2fα,β(x, y).

2. Determine conditions on the values α and β such that the problem min
R2
fα,β(x, y)

has a unique solution.

3. Let α = 2 and β = 1, show that in this case min
R2
f2,1(x, y) has a unique solution X.

4. Compute X.

Exercise 3. Consider the optimization problem

(p)

 min

[
f (x, y) = 20x2 − 5xy +

5

2
y2
]

(x, y) ∈ R2

1. Show that problem (p) has a unique solution X = (x, y)T .

2. Compute X.

3. Consider the following algorithms:

(a) Optimal-step gradient method;

(b) Relaxation method.

Perform two iterations for each method using the initial point X(0) = (1, 1)T .

4. Compute the error e2 =
∥∥X(2) −X

∥∥ for each method.

5. Analyze and compare the results.
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3.9 Conclusion
In this lecture notes, we have reviewed some basic concepts of differential calculus and
a bit of matrix calculus, as well as notions of convexity for sets and multivariable func-
tions, which are necessary for studying unconstrained optimization problems. We have
presented the fundamental algorithms for unconstrained optimization in accordance with
the program of the Licence 3 degree in Mathematics. Various exercises accompany the
document to help assimilate the more theoretical concepts covered in the course. The
study of constrained optimization problems will be the subject of a future lecture notes.
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