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General Introduction

What is Optimization?

Optimization involves searching for the "best" element from a given set. The study
of the properties of optimal solutions precisely forms the objectives of optimization. It is
a branch of applied mathematics and numerical analysis, which has been developing for
several years and shows relationships with many other fields of mathematics. This topic
examines whether local and global extrema exist for a function of one or more variables,
with or without constraints.

This document is particularly intended for undergraduate students (L3) in mathemat-
ics, in accordance with the curriculum of this program. It serves as a course support rich
in exercises and numerical examples on unconstrained optimization. It consists of three
chapters.

In the first chapter, we recall some concepts of differential calculus and notions of
convexity that are useful for the rest of the document. At the end of this chapter, a series
of exercises is provided, along with a sample exam question with detailed solutions.

The second chapter presents the conditions for existence and uniqueness for a non-
linear optimization problem without constraints. We will then present the necessary and
sufficient conditions for optimality in the case of a general unconstrained optimization
problem and in the convex case.

The third chapter is dedicated to algorithms for solving a nonlinear optimization
problem without constraints. This chapter concludes with a series of exercises and an
exam question without solutions.
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1.1 Introduction

In this chapter, we review some basic concepts of differential calculus and the notion
of convexity for sets and functions, which will be essential for the following chapters,
particularly the second and third chapters.

1.2 Differentiability

Let n be a natural integer and R” = R x R... X R be the usual Euclidean space equipped
with the inner product denoted by (.;.). We denote by ||.|| the associated norm.
For any = € R", we denote by z = (x1, xs, ..., )T as the column vector.
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Vo € R, VyeR" (zy) =z
=1

. 1/2
and [|z]l; = /(z;x) = (me) :

The canonical basis of R" is denoted by ey, e, ..., e,, where e is the vector whose k-th
component is 1 and 0 elsewhere.

€ € R",z’zl,...,n

Definition 1.2.1 Let € be an open subset of R™ and a € Q. Let f : Q) — R. We say
that f is continuous at a if lim f(x) = f(a). In other words, f is continuous at a € Q
Tr—ra

iof and only iof
Ve>0 37>0 suchthat ||z —a| <7=|f(z) — fla)| <e.

Remark 1.2.1

1. A function f is said to be continuous on ) if f is continuous at every point a € ).

2. If

f:QCR" — R™
T = f($> = (f1($>7 f2(x)’ SRS) fm(x))-r

then f is continuous at a € S if and only if each component function f; is continuous
at a for every j =1,....m .

3. f is continuous at a € Q0 if and only if for every sequence (x™); in Q such that
z®) — a it follows that f(z®) — f(a).

Definition 1.2.2 Let f : Q CR" — R and v € R"\{Ogrn}. The directional derivative
of f at a € ) in the direction of the vector v, if it exists, is given by:

0F ) _ iy S0+ 10) = 1)
ov 50 t '
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Remark 1.2.2
1. Let
f:QCR"—R"
z — f(z) = (f;(z))i<j<m

then %(a}z(%(a}, ...... ,aai:(a)).

2. Vr = (xi>1§i§n e R"

of . _of _ . fla+te) — f(a)

ox; (a) = de; (a) = tllno t
— i f(ah ey Qg + t7ai+1,---7an) - f(ala oy Gy Ay 1, "'7an)
5 t '

Definition 1.2.3 Let f : Q C R" — R™. We say that f is differentiable at a € Q if
there exists a linear map L from R™ to R™ such that, for all h € R™, with a4+ h € 0, we
have:

fla+h) = f(a) + L(h) + ||h|le(h), where e(h) — 0 as h — 0.
The linear map L is denoted by L(a), df (a) or Df(a)
Lemma 1.2.1

1. If f is differentiable at a € Q2 = [ s continuous at a.

2. If f 1s est differentiable at a then the first-order partial derivatives of f exist at a.

Special cases

1. When f: QCR — R (m=1,n=1) then the linear map L(a) = f/(a), (L(a) is
simply the derivative of f at a).

2. When f: QCR" — R (m =1) then
L(a) = <8f (a) of (a), ..., 8—f(a)) :

dxy " Oy o,

In this case (wherelL(a) represents a linear transformation), the vector L(a) is the
transpose of a vector called the gradient of f at point a, denoted as V f(a).

3. When f : Q@ C R* — R™ | the linear map L(a) is a matrix of order m x n
(L = L(a) € Mpxn(R)). This matrix is called the Jacobian matrix of f at a, and
it’s denoted as J¢(a).

df 24 Oh
%(@ 8?((1) agj: (a)

af; 1 j :

Ji(a) = (35'((1)) 1<i<m 5 ' E ; |
S ) ) YR AP

o0xy axj Oz

[6]
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Examples.

1.
f R — R
t — f(t) = e —cos(t) + 3>

Let a € R. Then df(a) = e* + sin(a) + 6a

2.
f : RS — R
Zy
r= x| +— flx)=e"""2 — 3xqus.
Z3

Let a = (ay,as,a3)" € R3. Then, L(a) = df (a) = V f(a)! = (™12, e %2 — 3a3, —3ay).

3.
R — R®
z 2[E11’2
xr = ( 1) — f(z) = [ 4xy + €™
T2
I
2@2 2@1
Let a = (ay,az)" € R% Then, L(a) = df (ay,a2) = Ji(a) = | 4 e®

1 0

Definition 1.2.4 Let f: Q CR" — R and a € Q2. We say that f is twice differentiable
at a if there exists a symmetric matriz A (a linear map from R™ to R™) of order n such
that: YVh € R,a + h € 2, we have:

fla+h) = f(a) + (Vf(a)Th+ hTAR + |[h]*e(h),

where lim e(h) = 0.

h—0
Lemma 1.2.2
1. f is twice differentiable = f is differentiable.

2. If f is twice differentiable, then the partial derivatives up to order 2 exist.

3. Let k € N*. We say that f is of class C* on Q and write f € C*(Q) if the partial
derivatives up to order k exist and are continuous.

Definition 1.2.5 Let f be a twice differentiable function at the point a € Q). The Hessian
matriz of f at a is the matriz denoted Hy (a) or V2f (a), defined by:

Hy(a) = v*f(a) = (afjaij (a)) 1<i<n

1553
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1. If the function f is twice differentiable at the point a, then by Schwarz’s theorem,

2 f 2 f

= Vi=1,.. d j=1,..
azzax](a axjaxl<a)’ ? ) y v an j ) y 1

2. The Hessian matriz of f at the point a € Q) is always symmetric.

3. If f: QCR* — R is of class C? on Q, then

. %(a) — (Vf(a),v), Vo eR"\ {Opn).

o Hy(a) = Jysla) = v, (a).

o Hi(a) - v=V(Vf(a),v), VaeQ,VveR"

Examples.

1. Let
f: R — R™
r — Ax

where A € Myxn(R), then Ji(x) = A, Vf(z) = (Jp(x))" = AT.

f: R — R
r — (a,z)+Db

Vf(z)=a and H;(z)=V?3f(z)=0.

f: R — R

n n
r — (Az,x) =2TAx =) > a;xjz;
i=1j=1

where A € M, (R), the function f in this case is called a quadratic function.
Show that:

o Vf(z)=(A+ ANz, VzeR™

o Hi(zx) =V3f(z) = A+ AT.

Vf(x) =2Ax

e When A is symmetric, then: .
Vif(z) =24

Theorem 1.2.1 (Taylor Expansion).
Let U be an open subset of R, a € U, and f : U — R. Let h € R" such that the line
segment [a,a + h] is contained in U.
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1. If f € CH(U), then
(a) The first-order Taylor formula with Maclaurin remainder is given by:
fla+h)= f(a)+(Vfla+6h),h), 0<6<I1.
(b) The first-order Taylor formula with Young remainder is given by:
fla+h) = f(a) +{Vf(a), h) + o([|h])-
2. If f € C*(U), then

(a) The second-order Maclaurin Taylor formula is given by:
1
fla+h)= f(a)+Vf(a)Th+ §hTV2f(a +60h)h, 0<6<1.
(b) The second-order Young Taylor formula is given by:

fla+h) = fla)+(Vf(a),h)+ %hTVQf(a)h +o([[7]%).

Examples.

f:ICR — R
r — f(x)=2at

We have f € C*(I)

FO-+ ) = F(0) + F/O)h+ 31" (0) + ofh?)
f(h) =040+0+o(h?),

f: UCR® — R

x:(;f) —  f(z,y) = In(1 + zy)

The domain is Dy = {(‘;) € R% 1+ay > 0}
We have f € C?(U), so the second-order Young Taylor formula at the point a =
(0,0)7 is:
1
flath) = fla) +(Vf(a),h) + ShTVZf(a)h + of[|]]*)
f(a) = f(0,0) =1In(14+0) = In(1) = 0.

9]
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() . 0
| o= _ | ey — — T
i : 0 1
Vi) = | THRE Ao o 92p0,0) = (1 o) .

Therefore

1 01 hq
f(h) =0+ (0,h) + §(h1,h2) (1 0) (h ) + o(h? + h3)

1 ho
f(ha, he) = §(h17h2) < ) + o(h} + h3)

— hyhy + o(h? + h2).

1.3 Convexity

1.3.1 Convex Set

Definition 1.3.1 Let C be a non-empty subset of R™. We say that C' is convex if for all
a,b € C the line segment [a,b] C C,

where
[a,b] = {ta+ (1 —t)b; 0 <t <1}

In other words:

vV tel0,1]

VoabeC } then ta + (1 —t)b e C.

C convex <+—

A [

—
——

Figure 1.1: Example of convex sets
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Figure 1.2: Example of non-convex sets

Examples.

1. If ||-|| is a norm on R", then the open balls (B(x¢,7)) and closed balls (Bf(xo,7))
are convex in R" (see topology).

2. The convex sets in R are exactly the intervals.

3. In R?, the set C' = {(z,y) € R?* | xy = 0} is not convex because:
(1,0)T € C and (0,1)T € C, but for t = 3 € [0,1] we have

1 1 1 1\" 1 1 1
L0+ (1-=)0,1)T=(2>) ¢C (since=x-=>#0).
4. In R" (n > 2), the set S, = {(a1, s, ..., )T € R? | 3°F oy = 1} is a convex set of

R™ called the simplex of R"™.

Proposition 1.3.1

1. The intersection of convex sets is convex.
2. The union of two convex sets is not generally convex. For example:
Cr={(z,y)T€R*: 2 =0} and Cy = {(x,y)T € R* : y = 0}
are convex sets in R?, but C; U Cy is not convex in R2.
3. The Cartesian product of convex sets is convex.
Proposition 1.3.2 Let C' C R" be a convex set, then
1. C+a={zx+al|zeC} is conver.
2. aC = {ax | z € C} is conver.
3. If f:R™ = R™ is a linear function, then f(C) is conver in R™.

4. If f : R™ — R" is a linear mapping, then f~1(C) is conver in R™.
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1.3.2 Convex function

Definition 1.3.2 Let C' be a convezr subset of R™ and f : C' — R be a function defined
on C.

1. We say that f is convex on C if and only if: Vx,y € C' and V0 € [0, 1]
f0z+ (1 —0)y) <O0f(x)+(1—-0)f(y)

2. We say that f is strictly convez on C if- Yo,y € C (x #y) and V6 € (0,1)
[0z + (1 =0)y) <0f(x)+(1—-0)f(y)

3. We say that f is strongly convexr on C' if there exists a > 0 such that: Vx,y € C
and V0 € [0, 1]

fOz + (1= 0)y) < 0f(x) + (1= 0)f(y) — ab(1 = 0)||lx — yl|*.

4. We say that f is concave (resp. strictly concave, resp. strongly concave) if (—f) is
convex (resp. strictly convex, resp. strongly conver).

X y

Figure 1.3: Convex function
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Figure 1.4: Example of non-convex function of two variables

Examples.
1.
Il - R — R
2.

f: R — R
r — f(x)=(x,a)+b

f is both convex and concave. Let x,y € R™ and t € [0, 1]:

fltx+ (1 —t)y)

(tv + (1 —t)y,a) + b

(tr,a) + (1 —t)y,a) +tb+ (1 — )b
t

t

((95 a) +b) + (1 —1) ((y,a) +b)
f(@) + (1 =1)f(y)

f: R — R
r — 2

f is a convex function (moreover, f is strictly convex). Indeed, Vz,y € R and
vt € [0, 1]:

flte+ (1= t)y) = (tr+ (1 = t)y)’
= 1222 + (1 — )% + 2t(1 — t)zy
< 2%+ (1= 1) +1(1 - t)(2* + )
=tz® + (1 — t)y?
=tf(x)+ (1 =1)f(y).
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Theorem 1.3.1

1. Let {f;}ier be a family of convex functions on U (a convex subset of R"™) mapping
to R. Then sup,c; fi s a convex function,

where (sup;e; fi) (x) = sup;e; (fi(x)).

2. If U C R is convex and f; : U — R (i = 1,...,n) are convex, then for all \; > 0
(i=1,...,n), the function "\ N\ f; is convex.

3. Let f: U — R be convex (U is a convexr subset of R") and ¢ : R — R be a function.
Then:

(a) If f is conver and ¢ is conver and increasing = @ o f is convex.
(b) If f is concave and @ is conver and decreasing = ¢ o f is conver.

(c) If f is concave and ¢ is concave and increasing = ¢ o f is concave.

Proof.

1. For each f; : U — R convex (Vi € I), and for all z,y € U and ¢ € [0, 1]:
filte + (L =t)y) <tfi(x) + (1 —t)fily) Viel
<t (swp i) + 1= ) (sup i)

_y (S;) fi) () +(1—1) (S; fi) ()

Therefore, sup;c; f; is a convex function.

2. For all ¢t € [0, 1]:

fltz+ (1 —t)y) <tf(x)+ (1 —-1)f(y) (since f is convex)
o(f (1 + (1= t)y)) < @(tf(2) + (1 - 1) () (since ¢ is increasing)
<to(f(x))+ (1 —=t)e(f(y)) (since ¢ is convex)
= (po f)tr+ (1 —1t)y) <tlpo f)(x) + (1 —t)(po f)(y) (proving @o fis convex)

f concave < (—f) convex
& —fltz+ (1 —t)y) <t(=f(x)) + 1 - ) (=f(y))
& flte +(1L—=t)y) > tf(z) + (1) f(y).
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Examples of Convex Functions

1. The function (z,y) — 2% + 3? is convex because:

e The norm (z,y) — ||(z,y)]|| is convex

e The function

is convex and increasing

e Therefore p o f is convex
2. If f is convex, then f? is convex (when f > 0).
3. The p-norm x — ||z||” is convex for all p > 1.

4. If f is convex, then exp(f) is convex.

1.4 Convexity and Differentiability

Theorem 1.4.1 Let U C R™ be an open convex subset of R™ and let f : U — R be a
differentiable function on U. Then the following three properties are equivalent:

1. f is conver on U.
2. Forallz,y e U: f(y) > f(x)+ (Vf(x),y —x).
3. Forallz,y e U: (Vf(y)—Vf(z),y—z)>0.

Proof.
1) = 2) For all z,y € U and all t € (0, 1], we have:
flty+ (1 —t)z) <if(y) + (L —1)f(x)
= flz+t(y —2)) < f(z) +t(f(y) — f(2))
f(l‘ + t(y — l‘)) — f(i(]) < f(y) . f(x)

= lim
t—0t t
%(ﬂc) < fly) — f(x) wherev=y—=x

= (Vf(2),y =) < fy) = f(2).
Therefore, 1) = 2)

2) = 3) For all z,y € U:
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3) = 1): Forall z,y € U and t € (0, 1], define:

P 0.1] 2R, plt) = flty+(1— 1))
The function ¢ is differentiable with:
¢'(t) = (Vilx+tly—2)),y—x)
For any t; < to:
¢'(t2) — ¢'(t) = (Vf(z + oy —2)) = Vf(@ + ti(y — 7)),y — x)
L (VI 4 taly - 2) = VI + taly - 2), (2 — 1)y — 2)) 2 0

Ct—t
= ¢’ is monotonically increasing

= ( is convex

Thus:

p(t) < to(l) + (1 —1)e(0)
= fly+ 1 —t)z) <tf(y) + (1 —1)f(x)
= f is convex.

Theorem 1.4.2 Let f: U CR" — R be a C? function where U is an open convex subset
of R™. Then:

1. [ is convex on U <= V?f(x) = H;(x) is a positive semidefinite matriz for all
xel.

2. If the matriz V?f(z) = H(x) is positive definite for all x € U, then f is strictly
convex on U.

3. f is strongly convex on U if and only if there exists o > 0 such that:

(V2f(x)h,h) > a||h||* for allz € U and all h € R™.

Proof (Exercise).

Example. Consider the function:

f R — R
v = flo) = (Az,z) - (bx)
where A € M, (R) is symmetric positive definite and b € R™.
1. Show that there exists a > 0 such that:

(Az,x) > ofjz||?, for all z € R".
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2. Deduce that f is strongly convex (and therefore strictly convex and convex).

Definition 1.4.1 Let
f: UcCR* - R
z = f(x)
We say that f is coercive on U if and only if
lim f(z) = +o0.

llzll =+
zeU

Thus, f s coercive on R™ if and only if:

lim f(z) = +o0.
[|f| =00

Figure 1.5: Example of coercive function of two variables

Figure 1.6: Example of non-coercive function of two variables

Examples.

1. The function x + ||z is coercive on any normed vector space.
2. The function t — e’ is coercive on R, but not coercive on R.

3. The function f(z,y) = sin(x + y) is not coercive.
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Recall. (Matrix Calculus) Let A € M,,(R) be a real square matrix of order n:

1. A is positive semidefinite if and only if (Ax,z) = 2T Az > 0 for all z € R".
A is negative semidefinite if and only if (Az,z) = 2" Az < 0 for all x € R".

2. A is positive definite if and only if (Az,z) = 2" Az > 0 for all z € R™ \ {0}.
A is negative definite if and only if (Az,x) = 2" Az < 0 for all z € R"\ {0}.

3. If Ae M,(R) is symmetric:
Sp(A) = {\; | \; is an eigenvalue of A} C R.

4. If A € M,(R) is symmetric:

(a) A is positive semidefinite < X; > 0 for all 7.
(b) A is positive definite < \; > 0 for all 7.

Theorem 1.4.3 (Sylvester’s Criterion)
A matriz A is positive definite if and only if det(Ay) > 0 for all k =1,...,n, where

ay; Q12 - Alg

Q21 Q22 -+ A2k
A, =

Q1 Qg2 - Agk

denotes the k-th leading principal submatriz of A.

1.5 Exercises

Exercise 1.1. Let f : R? — R be the function defined by:

_[ER i () £ (0,0),
fley) = {o T (z,y) = (0,0).

—_

. Is f continuous on R??

(\)

. Compute the partial derivatives of f. Are they continuous?
3. Calculate the directional derivatives (if they exist) of f at the point (0,0).

4. Is the function f differentiable at (0,0)?
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Exercise 1.2
Expand the following functions around (0, 0) up to second order:

f(z,y) = arctan(z + y?),
g(z,y) = In(1 + zy).

Exercise 1.3
1. Let f:R™ — R™ be defined by:
flx) = Az, VzeR",
where A € M, ,(R).

(a) Show that J(x) = A for all z € R™.
(b) Compute V f(z) and V2 f(z) for the linear function:

f(z) = (h,z), VoeR"™
2. Let A € M,(R) and consider the function:

f:R* — R
xr = (Az,x)

(a) Show that for all x € R™:
Vix)=(A+AN)r and Vif(z)=A+ AT

(b) Show that if A is positive definite, then the diagonal elements of A are strictly
positive.

Exercise 1.4

1. Let f: R — R be the function defined by:

(a) Study the convexity of f.
(b) Is the function f differentiable on R?

2. Are the following functions coercive?

(a) f(z1,22) = —a] — 3.
(b) flz1,22) = —2o.
(c) f(z) =2Tb+ ¢, where b,z € R" and ¢ € R.
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(d) f(z) = 327 Az — b"z, where A is a symmetric positive definite square matrix
of order n and b is a vector in R".

Exercise 1.5

Consider the following subsets:
L. A={(z,y)T e R? : 2y <0} CR%
2. B={(z,y,2)T eR®: 2 +y* + 22 <4 and z —y = 0}.

Provide a graphical representation of each set and determine whether it is convex or not.
Exercise 1.6

Consider the function f defined on R? by:
f(z,y) = 2* +y* — 122y.
Let  be the set defined by:
Q={(z,y)" €eR?:2>0, y >0, xy > 1}.
1. Show that €2 is an open convex subset of R2.

2. Show that f is strictly convex on €.
Exercise 1.7
Analyze the convexity of the function f : R? — R defined by:
fla,y,2) = |z + ly[ + 2.

Exercise 1.8

Consider the two functions f and g defined by:
fla,y)=a*+y" and g(w,y) = (z —y)*
1. Show that both f and g are convex on R
2. Let h = f — g. Show that h is neither convex nor concave on R2.

3. Is the function f + g convex on R??

Exercise 1.9

1. Let U be a convex subset of R® and f : U — R a function. Show that f is convex if
and only if for all x1,z,...,2, € Uand all A\, Ao, ..., Ay, € [0,1] with 07" A\ = 1,
we have:

/ (i )\ixi) < i Aif(z;) (Jensen’s inequality)




SETIF 1 UNIVERSITY FERHAT ABBAS Mohamed RAHAL

2. Deduce that:

"1 "1
In ( g —xi> > g —In(x;), withx; >0forall 1 <i<mn.
n n
i—1 i=1

Exercise 1.10
Let f be the function defined on R™ by:

where a € R™ (a # 0).

1. Compute Vf(z) and H(x) = V2f(z).
2. Deduce that f is a quadratic form on R"™.

3. Show that f is strictly convex and coercive.

1.6 Exam style with detailed solutions

Exercise 1 (2021). Analyze the convexity (convex, strictly convex, concave, and strictly
concave) of the following two functions.

1. f:R — R defined by:
f(m) _ e(x2+2021)3

2. f:R? = R defined by:
fla,y) = —lzl+y

Exercise 2. Consider the following maximization problem:

max [f(z,y) = —(y —2%)*] .

(z,y)€R?
1. Is the function f coercive on R??
2. Find all critical points.
3. Show that all critical points satisfy the second-order necessary optimality condition.
4. Does the function f have a global maximum on R??

5. Can the function f be strictly concave on R??

Exercise 3. Consider the problem:

py Jmin f(w,y,2) = e 4y 4 dy + 2%+ 5
(v,9,2)" € R?
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1. Is the function f coercive on R3?

2. Find all critical points of f.

3. Find all local minima of f on R3.

4. Show that f is bounded below on R3.

5. Determine the global minima of f on R3.

6. Can f be convex on R3? Justify your answer.

7. Can f be concave on R?*? Justify your answer.

Solutions.

Exercise 1.
1. Consider f(z) = e(@*+2021)°
The second derivative is:

f'(x) = [6(:52 + 2021)2 + 36352(:62 + 2021)4 + 24$2(x2 + 2021)} (@ +2021)°

. J/

=0
e f"(x) >0 for all x € R, therefore f is strictly convex on R
e f being strictly convex implies it is convex on R

e f being strictly convex implies it is not concave on R

e f not being concave implies it is not strictly concave on R

2. Consider f(z,y) = —|z|+y

2 V2

Let U = (51> V= (“1) € R? and t € [0, 1], then:

tU+(1—t)V = (iZ; 1 8 B gz;)

We have:

FEU + (1= 0V) = —[tuy + (1 — on| + tus + (1 — £y
> —([tur] + |(1 = t)v1|) + tug + (1 — t)vy
= —tluy| — (1 —t)|v1]| + tug + (1 — t)vg
t(—lur] + u2) + (1 = t)(=[vi] + v2)
=tf(U)+ (1 =1)f(V)

Thus f is concave on R2.

e f being concave implies it is not strictly convex on R?
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e For My =(1,0)", My = (—1,0)" and ¢ = 3:
FOAM +IMy) =04 —1=1f(M) +1f(Ms)
Therefore f is not convex on R?
e For M; =(1,0)", My = (2,0)" and t = 3:
F(GMy+5Mp) = =5 = 5 f(M) + 3 /(M)

Therefore f is not strictly concave on R2.

Exercise 2. Consider the problem: max [f (z,y) = — (y — 22)°
R2

1. For X,, = (n,n?)", we have || X,|| — +oo if and only if n — 400, but
lim  f(X,) = lim — (n?—n?) =0 # —oo, hence f is not decreasing at
| —-+oo n—r+os

infinity on R2.
2
2. f€C®(R?) and Vf (z,y) = ( 43:(% ) ), thus Vf (z,y) = ( 0 > — 1’ -
2(z* —y) 0
y = 0.
Therefore, the critical points are {(z,y)" € R? such that y = 2?} = {(a:, 2) x e R} .

dy — 1222 4z —82% 4x
' i B 2 2y _
3. We have: Hf(x,y)—vf(%y)—( A _2> §Vf(x,m)—( 4r =2

The eigenvalues of V2f (z,2?) are 0 and — (822 + 2).

Therefore, V2 f (x, 2?) is a negative semi-definite matrix, meaning the critical points
satisfy the necessary second-order condition.

4. We have: f(z,y) <0,V (z,9)" € R? and f (o, a?) = 0,Va € R, hence (o, a?) is a
global maximum of f. Thus, the function f has an infinite number of global maxima
on R?.

5. The function f has more than 2 maxima, so f is not strictly concave on R2.

Exercise 3. Consider the problem:

) min f (x,y, z) = min [ecos(”_z) + 2 +dy + 22+ 5}
P (2,9,2)" € R?
1. The function f is not coercive on R? because for X,, = (n,0,0)" € R?, we have:

lim  f(X,) = lim e 45 <e! +5< +o0.

[| Xn||—>+o00 n—>+400
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2. We have: f(z,9,2) = e @ 4+ 42 + 4y + 22 + 5 and f € O~ (R?), thus

(sinz) e~ s 0 x=km,Vk € Z
Vi(x,yz) = 2y+4 ythen Vf (z,y,2) =1 0 | < y=—2
2z 0 z2=0

Thus, the critical points are {(kﬂ', —2,0)" € R? such that k € Z}.

3. Since f € C* (R®) and V*f (z,y,2) = H; (2,9, 2), we have

e gin? g (cosz)e % 0 0

Hf(x,y,2) = 0 2 0 |, then
0 0 2
( et 00
0 2 0 |, if k=2m = positive definite
V2f (kﬂ', _27 O) = —e 0 8 vz
0 2 0 |, if k=2m+ 1= not positive semi-definite.
0 0 2

\

Thus, the points (2mm, —2, O)t ,m € 7Z are local minima of f on R3.

4. We have f (z,y,z) = e 2) 442 4 4y + 22 45 = (0 4 (y 4 2) 4 22 4 1.
Since —1 < cos (1 — ) < 1, we have f (z,y,2) > e ' +1,Y (z,y,2)" € R3.

Thus, f is bounded below by e=! 4+ 1.

5. From 3) and 4) we have

f(‘r7y7 Z) Z e_l + 17v('r7y7z)t S RS.
f(@2mmr,—2,0) =€t +1
imizers of f on R3,

} — (2mm, —2,0)",m € Z are global min-

6. The function f is not convex on R?, because the points ((2m + 1), —2,0)" ,m € Z
are critical points but not global minimizers.

7. The function f is not concave on R3, because the points (2mm, —2, O)t ,m € 7 are
critical points but not global maximizers.
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2.1 Introduction

In this chapter, we will first define the general formulation of optimization problems. We
then present optimality conditions for unconstrained nonlinear optimization problems,
beginning with first-order conditions followed by second-order necessary and sufficient
conditions.

Definition 2.1.1 An unconstrained optimization problem can be expressed in the follow-
g form:

min f(x); Find z* € R™ such that
(P) {:z: € R = P {f(a:*) < f(z), Yz € R™

where x € R™ s called the optimization varitable, and f : R™ — R s called the cost
function or objective function or criterion.

Example. The problem of solving the equation f(z) = 0 for x € R" is equivalent to the
following optimization problem:

Find z* € R™;
P )
(P) {|f($*)| = mingegn | f(2)].

25
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Definition 2.1.2 Let f : R™ — R be a scalar function defined on R™ and let z* € R™.

1. We say that x* is a local minimum point of f on R™ if there exists r > 0 such that:

flz*) < f(x), Vz e B(z",r).

2. We say that x* is a strict local minimum point of f on R™ if there exists r > 0 such
that:
f@*) < f(z), Ve B("r)\{z"}.

3. We say that x* is a global minimum (resp. strict global minimum) of f on R™ if:
fl@®) < f(x), VzeR™ (resp. f(z*) < f(x),Ve e R"\ {z*}).

4. We can define local mazimum (resp. strict local mazximum), global mazimum (resp.
strict global maximum) points by reversing the inequalities above.

5. If x* € R™ is a local or global minimum (resp. mazimum) point, the value f(x*) is
called the minimal (resp. mazimal) value.

global maximum

= local maximum

f|jx\

local minimum

global minimum.——

Figure 2.1: Local and Global minima and maxima of a function

Remark 2.1.1
1. If x* is a global minimum, then x* is also a local minimum.

2. For a function f : R" — R, the infimum infgn f(z) may not equal the minimum
mingn f(x).
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Example. Consider the function

f R=R, z— w41 e,
) ’ 2021  otherwise.

For this function we have:

;Iel]ﬁf(x) =1 but min f(x) does not exist

(since there is no z* € R such that f(z*) = 1).

Lemma 2.1.1 Let
fR" =R, z+— f(z)

1. The optimization problems mingecgn f(x) and max,cgrn(—f(2)) are equivalent.

2. mingern f(2) = — (maxgern (—f(2))).

2.2 Existence and Uniqueness Results

Theorem 2.2.1 Let f : R® — R be a continuous and coercive function on R™. Then
there exists at least one point x* € R™ such that:

fl@*) < f(x), VzreR™
The proof of this theorem relies on the following Weierstrass theorem:

Theorem 2.2.2 (Weierstrass). Let f be a continuous function on a compact set K C R™.
Then there exist points x,x € K such that:

f(@) < f2) < f(@) Vee K
Proof. Let a € R" and define the subset:
K={seR": f(z) < f(a)}.
1. K is closed since K = f~!((—oo0, f(a)]) and f is continuous from R" to R.

2. K is bounded in R". Indeed, if K were unbounded, there would exist a sequence
(©m)m C K such that:
|Zm|| = +o0  as m — +o0.

The coercivity of f on R™ implies that lim,, o f(x,,) = +00, which contradicts

lim f(zn,) < f(a).

m——+00

From 1. and 2., the set K is compact in R"™.
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By the Weierstrass theorem, there exists z* € K such that
f(z*) < f(x) for all z € K.

Moreover,
f(z*) < fla) < f(z) for all z € R™ \ K.

Therefore,
f(z*) < f(x) for all x € R".

Note that uniqueness is not guaranteed in this theorem.

Example. The function f(z) = |z — 1] is continuous and coercive on R. Since
f(x) =22 =1 > 0= f(1) = f(—1), there exist two global minima of f on R.

Theorem 2.2.3 (Uniqueness). Let f : R" — R be strictly convex on R"™. Then the

optimization problem:
min f(x);
(P) { n
reR

admits at most one solution, i.e., there exists at most one global minimum of f on R".

Proof. Suppose there exist two distinct minimizers T; # T, of f on R™ such that:
f(@) < f(x) VeeR" and f(To) < f(x) VzeR"™

Let

1— 1—
Yy = 51‘1 + 51‘2.

Since f(71) = f(T2) (because f(71) < f(T2) and f(T2) < f(71)), the strict convexity of f
implies:

fy)=fQGT+17) < 3f@) + 5 f(T2) = f(70).

This contradicts the assumption that x; is a global minimizer of f on R".

Theorem 2.2.4 (Existence and Uniqueness). Let f : R" — R be differentiable on R™,
and suppose there exists o > 0 such that

(V@) =Vf(y),z—y) >alz—y|> Vz,yeR™
Then:

1. f is strictly convex on R™.

2. f is coercive on R™.
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3. The optimization problem:

(P) {minf(flf);

r e R

admits a unique solution, i.e., there exists a unique global minimum of f on R™.

Example. Let f: R" — R be a quadratic form defined by:

1
f(z) = §£L‘TAZ' —b'z+e,

where A is a positive definite matrix.
1. Show that f satisfies:

(Vf(x)=Vf(y),z—y) >alz—y|* Vz,yeR™

2. Deduce that f has a unique global minimum z € R".

3. Compute 7.

2.3 First-Order Necessary Condition for Optimality

Theorem 2.3.1 (First-Order Necessary Condition). Let f: R™ — R be differentiable at
a point x* € R™. Then:

x* is a local or global minimizer of f on R" — V f(x*) = Ogn.
Proof. Let h € R"\ {Og-} and ¢t € R. We have:

lim 1T ZIE) _ (), ).

t—0 t

For sufficiently small [¢|, we obtain:

fla”+th) — f(z7)

0 < lim t — (V). b, 1)
02 1 /T ZIED 0, ). 22)
t<0

From (2.1) and (2.2), we conclude (V f(z*),h) = 0 for all h € R", hence V f(z*) = 0.

Remark 2.3.1

1. The condition V f(x*) = 0 is necessary but not sufficient. For example, consider
f(x) = x* defined on R. We have V f(x) = f'(x) = 32* and f'(0) =0, but x =0 is
not a local minimizer of f on R.
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2. This theorem doesn’t apply when f is not differentiable. For instance:
fiR=>R, z+—|z+1]
Here & = —1 is a global minimizer of f on R, but Vf(—1) = f'(—1) does not exist.

Theorem 2.3.2 (Necessary and Sufficient Condition). Let f : R"™ — R be a convex and
differentiable function in a neighborhood of x*. Then:

x* is a global minimizer of f on R" <= V f(x*) = 0.

Proof.
(=) This follows directly from the previous theorem.
(<) Assume V f(2*) = 0. Since f is convex, we have:

flx) > f(z*) +(Vf(z"),x —2*) Ve eR" = f(z)> f(z*) VzeR"

Therefore, x* is a global minimizer of f on R".

Example.

1. Consider f : R — R defined by f(x) = e*". We can show that f is convex on R
(exercise). The gradient is:

Vf(z)=f(z) =2ae" =0 < z=0.

f(0)=0
f is convex

it follows that x = 0 is a global minimizer of f on R.

Since:

2. Consider the function f : R? — R defined by:
flz,y) = (z —y)*
We have:

vien=(302Y). ren=mwn=(2 7).

x)
This shows f is a quadratic form since Hy(x,y) doesn’t depend on z and y.

For all (z,y)" € R?, we have:

H is positi idefinit
Spec(H(x,y)) = {0,4} C [0, +00) = { #(x,y) is positive semidefinite

f is convex on R?

The gradient condition:
0 20 —y)=20
Vf(x,y):(0><:>{( ;_ = r=y

shows that for all & € R, the point X, = (a, @) is a global minimizer of f on R2.
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Definition 2.3.1 Let f : R® — R be a differentiable function on R™. A point x* € R"
satisfying V f(x*) = 0 is called a stationary point or critical point, and the equation
V f(z) = Orn is called the Euler equation.

Remark 2.3.2 For a differentiable function f : R" — R, if x* € R" is a local or global
minimizer or maximaizer, then x* must be a critical point.

2.4 Second-Order Necessary Conditions for Optimality

Proposition 2.4.1 Proposition (Second-Order Necessary Condition). Let f : R" — R
be a C? function in a neighborhood of x* € R™. If z* is a local minimizer of f on R™,
then:

1. Vf(z*)=0

2. V2f(x*) is positive semidefinite on R™.
Proof.
1. This follows from the first-order necessary condition (Theorem 2.5).

2. We proceed by contradiction. Suppose V2 f(x*) is not positive semidefinite. Then
there exists a nonzero vector P € R" such that

PV f(z*)P < 0.
Using the second-order Taylor expansion:

1
f@*+ P) = f(x*) +(V[f(z¥), P) + §<V2f(x* +tP)P, P), forsome0<t<1,
which implies

flz*+P)— f(z*) = %(VQf(x* +tP)P, P).

Since V2 f(z) is continuous in a neighborhood of z*, we have (V2 f(z*+tP)P, P) < 0
for sufficiently small ¢. Therefore:

fl@®+P) = f(@") <0 = [f(a"+ P) < f(27)

— 2" is not a local minimizer.
Remark 2.4.1
1. The conditions 1 and 2 are necessary but not sufficient. Consider the example:
fR=R, t—t
We have:
flt) =3t f'(t)=6t with f(0)=0 and f"(0)=0

Thus f"(0) is positive semidefinite (f"(0) > 0), but t* = 0 is neither a local mini-
mazer nor a local maximizer on R.
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2. The second-order necessary condition for x* to be a local (or global) maximizer is
as follows. Under the same assumptions on f:

(1) Vf(z*) =0,

x* 1s a local mazimizer — - . . ‘ ‘
(11) V2 f(z*) is negative semidefinite.

2.5 Sufficient second-order condition for Optimality

Proposition 2.5.1 (Second-Order Sufficient Condition). Let f: R™ — R be a C? func-
tion in a neighborhood of z* € R™ satisfying:

1. Vf(z*) =0,

2. V2f(x*) is positive definite on R™.

Then x* is a strict local minimizer of f on R™.
Remark 2.5.1 Let f: R® — R be a C? function in a neighborhood of x* € R™ satisfying:
1. Vf(z*) =0,

2. V2f(z*) is negative definite on R".

Then x* is a strict local mazximizer of f on R".
Example. Consider the function:
R R, X =(z,y2) = f(X)=a"—22%2+2y% + 2yz + 222 — 2y + 15.
1. Compute Vf(z,y,2) and V2f(z,y, 2) for all (z,y,2)" € R>.
2. Determine the critical points of f.
3. Show that f(z,y,z) > 14 for all (z,y,2) € R3.

4. Deduce the minimum of f on R3.

2.6 Exercises

Exercise 2.1. Let f: R* — R be defined by:

f(x) = f(x1, 29, 73, 24) = ZQJIf + (Z :c1> .

1. Compute Vf(z) and H(x) = V2f(z).
2. Deduce that f is a quadratic form on R*.

3. Show that the minimization problem min,cps f(x) admits a unique solution 7 € R*
and compute 7.
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Exercise 2.2. Consider the function g defined by:
g(x,y) = ax’y + bry + 229° + ¢,
where a, b, c € R.
1. Find all critical points of g.

2. Determine the values of a, b, ¢ for which g has a local minimum at the point (%, %)T

with g (%, %) = —%.

Exercise 2.3. Consider the function f: R* — R defined by:
fla,y) =" +y' — day.
1. Show that f is coercive (i.e., f(z,y) = 400 as ||(z,y)| — +o0).

2. Show that f has a global minimizer (Z,%)" on R? and compute it.

3. Can a coercive function have a global maximum?

Exercise 2.4. Let f: R?> — R be defined by:
fla,y) = exp [(z —1)7] + (y* — 4)*
1. Determine all critical points of f.
2. Find all local minima of f.

3. Show that f is coercive.

4. Deduce the global minima of f on R2.
Exercise 2.5. Consider the following sets:

1L A={(z,y)T e R?| (z - 1)(y +1) < 0}.

2. B={(z,y)" € R?*|y <0andy >z}

Sketch each set graphically and determine whether it is convex or not.

Exercise 2.6. Let { f;}7, be a family of convex functions defined on a convex set U C R".
Prove that:

1. The pointwise supremum sup;;,, fi is convex on U, where

( sup fi) (2) = sup (filz).

1<i<m 1<i<m
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2. For all \; > 0, the weighted sum )" \; f; is convex on U.

Exercise 2.7. Analyze the convexity (convex, strictly convex, concave, and strictly
concave) of the following functions:

1. The function f: R — R defined by:

F ) = e’

2. The function f: R? — R defined by:
fl@y) = —lz[+y

Exercise 2.8. Prove that:

In <x;—y> >+/Inzlny, Vryel]l, +ool.

Exercise 2.9. Let f: R" — R be defined by:

Fl) = o)+ (0,2)?
where a € R™ (a # 0).
1. Compute Vf(z) and H(x) = V2f(z).

2. Deduce that f is a quadratic form on R".

3. Show that f is strictly convex and coercive.
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3.1 Introduction

In this chapter, we present several algorithms for numerically approximating the solu-
tion(s) to an unconstrained nonlinear optimization problem:

(P) {min f(z)

reR"

We introduce the most fundamental classical methods for solving such problems.

35
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Definition 3.1.1 An algorithm is defined by a mapping A: R® — R"™ that generates a
sequence of elements in R™ through the following iterative scheme:

7@ € R™  (given initial point)
o) = A(x™)  for k>0 (iteration k)

(Alg.) {

Implementing an algorithm amounts to constructing such a sequence (z'®); in R, and
analyzing the algorithm’s convergence means studying the convergence of this sequence.

Definition 3.1.2 An algorithm A is said to converge if and only if the sequence gener-
ated by the algorithm (Alg.) converges to a limit point x* € R".

Definition 3.1.3 Let (a:(k))k be a sequence with limit x* € R™ defined by a convergent
algorithm A. We say the convergence of A is:

e Linear if the error e, = ||z — 2*| decreases linearly:
AC € [0,1), 3ko, Yk > ko : epr1 < Cey.
e Superlinear if the error ey decreases as:
er+1 < ey,

where oy, is a positive sequence converging to 0. If ay is a geometric sequence, the con-
vergence 1s called geometric.

e Of order p if the error e;, decreases as:
C Z 0, El]i]o,Vk 2 ko P Cet1 S CQZ

For p =2, the convergence is called quadratic.

e Finally, the convergence is called local if it only occurs for initial points (0 in some
neighborhood of x*. Otherwise, the convergence is global.

3.2 Descent methods

Descent methods generally take the following form:

X% € R™ given,
XD — x®) 4 dk)

where d® € R™\ {0} is chosen such that f(X**D) < f(X®). Here, d* is called the
descent direction, and py > 0 (pr € RY) is called the step size (or descent step).

Definition 3.2.1 Let f : R — R be a function. A vector d € R"\{0} is called a descent
direction at the point x if there exists € > 0 such that

flz+td) < f(x), Vtel0,e].
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Lemma 3.2.1 Let f: R"” — R be a C*(R") function. Then, for every x € R™, the vector
d= =V f(z) is a descent direction at the point x.

Proof. Since f is of class C'(R™), we use the first-order Taylor expansion of f around
the point x € R™:
flz+td) = f(x) +t{d, V f(x)) + O(td).

For t € [0,¢] and d = =V f(x) # 0, we obtain:

fla+td) = f(2) = tIVf(@)|* + Otd) = f(z +1td) < f(x).

3.3 Gradient method

Methods where the descent direction at each iteration k is d* = —Vf(X®) are called
gradient methods. The general gradient descent algorithm is given by:

1. Initialization (k = 0)
XOeRr py>0ande >0
2. Tteration k
XD — x®) _ 5 T f (X(k))
3. Stopping criterion
[X® — XED| < eor [V (XFHD)|| < e then stop

Otherwise, set k = k 4+ 1 and return to step 2.

Remark 3.3.1 The step size py can be chosen as either fized or variable.

3.3.1 Gradient method with fixed step size

Let f € C(R™,R) and p be a strictly positive real number. The fixed-step gradient method
(p fixed) is a descent method defined by the following algorithm:

e Initialization (k = 0)
X(© ¢ R given, p > 0 fixed and given, € > 0 (the precision is given).
e Iteration £
- Compute V f (X(k))
- Compute X* ) = X® — pv £ (X®)
e Stopping criterion

If | X®+) — X®)|| < ¢, stop. Otherwise, set k = k + 1 and return to step 2.
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Theorem 3.3.1 Theorem. (Convergence) Let f € C1(R",R). Assume there exist two
strictly positive real numbers o and M such that:

i) Ve,y € R": (Vf(x)=Vf(y),z—y)>alz—yl,
ii) Yo,y € R": ||Vf(z) = Vf(y)l < Mz -yl

Then:
1. f is coercive on R™.
2. f 1is strictly conver on R™.

3. The function f has a unique minimum x* such that f(z*) < f(z) V€ R™

2x

4. If0 < p < ek the sequence generated by the fixed-step gradient method with step

size p converges to the unique solution x*, regardless of the starting point x(©).

Example. Consider the problem:

(P {min f(x,y) = 2(2? + y*) — 3zy
(z,y) € R?

1
1. Perform 4 iterations of the fixed-step gradient method (p = %) starting from the
initial point X(© = (1,1).

2. Compute the exact solution X of (P).

3. Determine the error € = eg = || X® — X].

Solution. Recall that the fixed-step gradient algorithm sequence is:

X©  given
X+ — x (k) _ pr(X(k))

1 9 _ €T 9 . . 4$_3y
1. Wehave f € C' (R?). Forall X = ( y ) ERLVI(X)=Vf(z,y) = ( —3z + 4y )

Therefore, the sequence becomes:

X© = (1,1)t given

21 .k 3 ..k

38]
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For:
24
1 25
— (0) — — 1) —
ok0:>X<1),k1:>X 24
25

24\* /1
_ @ _ (=2
et = xo— (2)(1)
4 -3

2. We have f € C?(R?) and the Hessian matrix V2 f(z,y) = ( P ) =A sof

is a quadratic form.

4

Since A; = det(4) =4 > 0 and Ay = det ( _3

-3 . )
) =7 > 0, then f is strictly
convex and coercive on R2.

Therefore, f admits a unique strict global minimum X on R? such that Vf(X) =
Og2.

Vf(Y) = 0R2 = AY = 0R2 = 7 = A_10R2 = ORQ.

_ 24\" /1 0 24\" /1
3. The error ey = || X¥W - X|| = ||<%) (1 ) — (O)H = (%) ||< 1 )H =

24\"
— 2 =~ 1.20.
()
Remark 3.3.2
24\" - 24\"
1. Since X = % 1 , the error ¢, = || X® — X|| = o V2 satisfies

limg_ .o e = 0. Iherefore, the fized-step gradient method sequence converges to the
unique solution X = (0,0), but the convergence is very slow.

. 1 4 =3\ (=x
2. The function can be expressed as f(X) = f(x,y) = 5 (z ) (_3 4) (y) —
1XtAX.
2
The gradient satisfies:
(VAX) = VX)X =X) > 1X = X|]%,
IVAX) = VXD < 7IX =X
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]

D

1
— < =

In this example, the step size satisfies 0 < p = o GE

3.3.2 Gradient method with optimal step size

The general idea of this method is to compute at each iteration k the step size py (the
displacement step) as the minimum over R, of the function ¢(t) = f(z® — ¢tV f(x*))),
that is,

P = argmin or(t).

Thus, the algorithm of the gradient method with optimal step size takes the following
form:

1. Initialization (k = 0)
X© given and £>0

2. Iteration &

while |V f(X®)|| > ¢ do

(a) Compute Vf(X®) = —d,.
(b) Compute ¢y (t) = f (X(k) _ tVf(X(k))) '
(¢) Compute py, such that f (X®) + ppd®) < f(X®) 4 td®)) ,¥p > 0, that is

pr = argmin ¢y (t)
Ry

(d)

XD — x k) 4 g (k)

3. Stopping criterion
If [Vf(XW)| <e  stop.

Example. Consider the problem:

min 4(22% + 23)
(P) ( 1 > c RQ
o)

11\
Starting from X ©) = (E, 1—0) , compute an approximate solution to (P) with precision
e=5x10"1
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Solution. The sequence of gradient method with optimal step size is given by

4
1 (1
X(O):E<1> et e =10"%2 >0,

Q d = =V f(XW)

Pr = Pop = argminf (X®) + pdy)

\X(’““) =X® 4+ pedy

o _ 1

10 ( 1 ) = do =~/ (XP) = v (10 110) oL VF (o, %) = ( o ) |

81’2
—1
Then dy = 0 ( 186 )

Py = argrgnf( '+ pdy) = = argminf (110 (1,1) - /)1—10 186 ))
= arg min f (1 —10p 1- 8/))
>0 10 7 10
= arg rm(r)l (155 (2 (1—16p)* + (1 — 8p)2)}
= argmln

5 [576p% + —80p + 3] .

5
Therefore p, satisfies 2 x 576p, — 80 = 0 = p,

=—>0.
72
X —

1 /1 5 16 -1
X0 d - - 90
+ Pt = 10(1) 720(8) (%)
1

1
~0( 7)) =a=mvr = v (G

—16 AR
= d = 90<32)_ (—16>

1 1
py = argming, (p) = argmin f (X +pdy)  =arg min f (% (=1,4) + pg; (16, —32))
4 _ 2
= arg I;n>1(1)q [W (2(-1+ 16p)° + (4 — 32p) )]
p, is solution of ¢ (p) =0
() =0 —dx1

6(—1+ 16p) — 2 x 32(4 — 32p) =0

— (—1+16p) —(4-32p) =0=p= 2
Thus p, = —

1 [/ -1 51 8 £
(1) I — 135
oy 90(4>+4845(—16) (%)
16
V(L) = -3 (

135\ 8
5y (16)° + (8)° = 3

5.V/5=0.13251 < 0,5

X@ = x
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Theorem 3.3.2 (Convergence) Let f € C*(R™,R) be a coercive function. Then:

1. The sequence {X®}, generated by the gradient method with optimal step size is
well-defined (i.e., py exists but is not necessarily unique).

2. The sequence {X®)}, is bounded and therefore admits a convergent subsequence. If
{X DY, is a convergent subsequence of {X ¥}, with limit X*, then V f(X*) = Ogn.

3. If f is convex, then X* = limy_,oo XU is a global minimum of f on R™.
4. If f is strictly convex, then the entire sequence X*) — X* and:
o f(X*) = mingegrn f()

e X* is the unique global minimum of f on R"

3.3.3 Gradient method with variable step size

In this method, we do not necessarily take the optimal step size or a fixed step size; in
other words, the step size varies from one iteration to another. Thus, the algorithm takes

the following form:

1. Initialization (k = 0)
X ¢ >0 given.

2. Compute d, = -V f (X(k)) , t > 0 such that f (X(k) + tdk) <f (X(k))
3. Set XD = X*) 4 ¢4,

4. If ||v f (X(k)) | < e, stop; otherwise, set k — k + 1 and return to step 2.

3.4 Conjugate gradient method

This method was discovered in 1952 for minimizing a quadratic function:

1
f(z) = §xTAx —b'r+c

where A is a symmetric positive semi-definite matrix, b, x € R", and ¢ € R. The minimum
of f over R™ is z* such that Az* = b.

Definition 3.4.1 Let A € M,(R) be a symmetric positive-definite matriz.

1. Two vectors x,y € R" — {Ogn} are said to be A-conjugate if

<A$,y> = <I7y>14 =0.
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2. A family {wy,ws,...,w,} CR™ —{0rn} is called A-conjugate if

(wi, w;) , = wiAw; = 0 Vi # j.

Remark 3.4.1

1.

2.

2.

If A is symmetric positive definite, then (-,-)a defines an inner product on R".

If a family {wy,ws, ..., w,} is A-conjugate —> {wq,we, ..., w,} is linearly inde-
pendent.

The general idea of the conjugate gradient method is to construct directions dy, dy, ..., d,
that are pairwise A-conjugate. At each iteration k, the direction dj, is obtained as a
linear combination of gr = V f(X®) and the previous direction. We set:

dp = gr + apdy_q
where g, = V(X®) = AX® —b and oy, € R is chosen such that:

(dg,dg—1)a = 0.

Therefore, the conjugate gradient algorithm for minimizing the quadratic function:

Initialization

Choose X©  and ¢>0
Compute gy =V f (X(O)) = AXO _p,

Iteration
If gr = 0 or ||gx|| <€, Stop

Otherwise

(a) Compute

)% if k=0  Agr, Adgy)
d, = ‘ , where ap, = ——————1
g +agde—1  if k=1 (Adg-1, dy—1)
(b) Compute
(Ady, dy)

(c) Xkt — x (k) _ prdy.
(d) Compute g = AXF+HD —p,
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3. If gxi1 = 0, stop; otherwise set k — k + 1 and return to step 2.

Example. Consider the function defined by:

f,y) = 3(2% + ) = 3(z, )y ( ’ ) _ %(x,y)6]2 ( ’ ) _ %XtAX (A = 6I,).

Vf(z,y) = ( 2;” ) — 61, < : > V2 (x,y) = <g g) — 6l

1. Initialization

2. Iteration

<go, d0> 1 1 1 1 6 0
=2 2L~ XMW =XO0 _ g, = — = = .
& (Ady, dy) 6 6 " 1 6\ 6 0

0 0 0 0
_ 1) _p — _ _ _ * __ (1) _ :
g =AX b-6]2(0> (O>_(O)'gl_0:>X =X —(0>1s

the minimum of f on R2.

1
Theorem 3.4.1 Let f(z) = §:rtAx — blx + ¢, where A is a symmetric matriz of order

n. The sequence (x(k))k defined by the conjugate gradient method converges to the unique
solution of mﬁnf(x) in at most n iterations (n = dimR™ ).
TE€R™

3.5 Newton’s method

Newton’s method is not strictly speaking an optimization method.
In fact, it is a method used to solve nonlinear equations of the form F'(x) = 0, where F' is
a function from R™ to R™. We will first describe it and then show how it can be applied
to finding minima. This method directly searches for critical points, that is to say points
x such that

Vf(x)=0.

We know Newton’s method:

3.5.1 Newton’s method in R

Let f: R — R be of class C'(R) with f’(z) # 0,Vx € R. Newton’s algorithm for solving
f(z) =0 is given by:

(z, € R given,e > 0

RN
k+1 k f/(xk>
If |z,,, —x| <e or |[f(z,)] <estop

\Otherwise set k—k+1
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3.5.2 Newton’s method in R"

Let
F:R"” — R™
T
X = : — F(X)
Tn

1. The zeros of F' are the solutions to the equation: F(X) = Ogn. We assume that
F € CYR") and that Jp(X) is invertible VX € R". Then Newton’s algorithm in this
case is as follows:

1.k=0: X© given,e>0 given

2. Xkt — X&) _ [, (X®)] 7' F (X®)
BIFXEHD — XW| <e or ||F(X®)] < estop
4. Otherwise, set k = k£ + 1 and return to step 2.

2. Application for solving an optimization problem.

We have seen that a necessary optimality condition is V f(x*) = 0. This is a nonlinear
equation (or rather a system of nonlinear equations) in R™ and we will use Newton’s
method to solve it. However, we will only obtain critical points of f: we will then need
to verify whether they are indeed minima.

Here, F' = Vf is indeed a function from R" to R™. The derivative of F' is nothing other
than the Hessian matrix of f:

Let f: R" — R be of class C*(R"), we assume that the matrix H;(X) = V2 f(X) exists
and is invertible for all z, and that the equation V f(X) = Og» has at least one solution
x*. Then Newton’s algorithm for finding the minimum of f on R" is as follows:

1. Initialization (k = 0)
X© given in the neighborhood of 2*, ¢ > 0, a given precision
2. Iteration k
-1
xk+1) — x (k) _ [V2f (X(k))} \4i (X(k))

3. Stopping criterion

while [ X+ — XW| < e or [[Vf (XF)]| < e stop, otherwise set k& = k + 1 and

return to 2.

Remark 3.5.1

1. Let F(X)=Vf(X), then Jp(X) = V?f(X) = H{(X) is the Hessian matriz of f.
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2. The first-order Taylor expansion for the function V f gives:
VEXED +d) = VF(XP) + V2 f (XP) gy,

We seek X" such that F (X)) = V f (X®D) = 0, with X*' = X* + ppdy, =
X*4d,. Therefore dj, = — [V2f (X(k))erf (X(k)), where dy, in this case is called

the Newton direction.

Theorem 3.5.1 (Local convergence of Newton’s method ) Let f : R"™ — R be a
function of class C*(R™,R) and let X* be a critical point of f. Assume that H; (X*) =
V2f (X*) is invertible.

1. There exists a ball B(X*,€) such that YX© € B(X*,¢), the Newton sequence is
well-defined (i.e., X¥) € B(X*,€)) and the sequence (X)), converges to the unique
critical point in the ball.

k

2. If the matriz V[ is Lipschitz continuous (i.e., 3k > 0 such that: ||V*f(X) —
V2F(Y)| < KX = Y|,V X,Y € R"), then (X®), converges quadratically to X*,
meaning 3 ¢ > 0 such that:

k

XD — X < el X B — X

Example. Let f be a function defined by:

f:R3 — R
x
X=1y — f(X)=e"+eY—x—ey+ (2+1)?
z
e’ —1
1) Let us compute: Vf(X) = Vf(z,y,z) = eV —e , V3f(z,y,2) = H(z,y,2) =
2(z+1)
e 0 0
0 e 0
0 0 2
e 0 0
Therefore [H(x,y,2)] " = 0 e¥ 0
o o 1

2) Application:
The Newton’s method iteration is given by:




SETIF 1 UNIVERSITY FERHAT ABBAS Mohamed RAHAL

1
0
— (k) (k)
k41 z*) e * 0 0 e —1
gkt [ = ¢y | — o v 0 ev™ ¢
[\ 2D 2 (k) 0 o 1 2(z%) +1)
( 1
X0 =1 o
0
—
xk+1) z® — 1 4 =™
y(k+1) = y(k) — 1 _l_ elfy(k)
\ Z(k+1) -1
kE |0 1 2 3
%) | '110.3678 | 0.060 | 1.7645 x 1073
y® 10| 1.7182 | 1.2058 1.01978
0] —1 —1 -1
0
Therefore X* ~ 1

3.6 Relaxation method

The idea of this method is to reduce a minimization problem in R"™ to the successive solu-
tion of n one-dimensional minimization problems (at each iteration). Thus, the algorithm
takes the following form:

1. Initialization £ =0

Choose X(® € R® and & > 0 as a given precision threshold.

2. Iteration &

(k+1)

%

. (k) (1) _ (k+1) (k+1) (k+1) (k) (k)ﬂ
min [qbz t)y=f (ml Ty e @i by, x|

For each i = 1,2, ...,n compute x as the solution to the problem:

3. If | X*+D — X®)|| < ¢ stop, otherwise set K — k + 1 and return to step 2.
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Example. Consider the problem

min f(z,y) = y* + 2 + 2y — 15
(z,y)! € R?
2 +y 21
20,2 _ — 2 =
1. We have f(z,y) = 2°+y°+zy 15,Vf(:c,y)—($+2y)andv f(l’,y)—(l 2>.

Thus f is a quadratic form such that:
9 2 1
A= H(z,y) =V f(z,y) = ( 1 2 )

2 1

Ay =det(2) =2 >0, AQZdet(l 5

) =4 —1=3 > 0= by Sylvester’s criterion,
A = Hy(z,y) is positive definite.

continuous _
j”t . on R? = (P) has at least one solution X.
coercive

f is strictly convex on R? = the problem (P) has at most one solution X

Therefore the problem (P) has a unique solution denoted X = ( g ) .
1. Computing X = (z,7)".
AX = Og2 => X = Oge, since A is invertible

Thus X = (z,9)" = (0,0)".

2. Relaxation Method

(
X0 = ( (1) ) € R?, given

X (k+1) — (:pgkﬂ)) such that Vi=1,...n
0<i<n
:L’Ek—H) = arg mﬂénf <x5k+1)7 e xz(ﬁ—il_l)7 t, xz(i)h o ng))
\

(1)
a. Compute XV = ( ;(1) ) :

i. Compute zM:

—1
flt,y ) = f(t,1) =t>+ 1+t — 15, f’(t,l):O:QH—l:O:t:7:95(1):
—1

2
ii. Compute y™):

-1 1 1 -1 1
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(2
x
b. COmPUte X(2) = ( y(2) ) .

i. Compute z(?):

1 1 1 1 1
by =flt,-) =P+ —=+t+-t—15 f(t,-) =0=2t+-=0=1
Ft,y™) f<,4) TR 5,f<,4) 0 +3=0

1 1
-1 e 1
8 o 8

ii. Compute y®:

1 1 1 1
—t) ==+t — -t —15,y? = —.
f(8’) 6 TV TR T 6

E o] 1 2 |34
™o —1/2]-1/8]72 |7

y® 1| 1/4 | 1/16 | 7| ?

3.7 Exercises

Exercise 3.1

Apply 4 iterations of the fixed-step gradient method (p = %) to solve the following prob-
lem:

min (222 + 4y? + 4oy — 3y) ;
R

starting from the point (2,2)7.

Exercise 3.2

Let f:R? — R be a function defined by:
fz,y) = 5 (aa® +y?),
where v € |1, 4+00][ .

1. Compute V f(z,y) and the Hessian matrix A = V2f(x,vy).
2. Deduce that the function f has a unique global minimum X* that we will determine.

3. Consider (2®), a sequence of points in R? defined by:

20 = (1,a)
40 — A)
4|

Pl = Tad®:a®)y
S04 250 (e

(a) Show that
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(b) Calculate the number of iterations performed such that e, = Hz(k) - X <

1076,
Exercise 3.3
Let f be the function defined on R3 by:
flry,2)=e"4+e'—x—ey+(z+1)°
1. Compute Vf and V2f at any point (z,y, z) of R3.
2. Apply Newton’s method to solve m13nf (z,y, 2) using the initial point X = (1,0, O)T.
R
Exercise 3.4
Consider the unconstrained optimization problem
minf (z,y) = 32" + 3y’

1. Let’s examine two methods: Newton’s method and the conjugate gradient method.
Perform two iterations of each method using the starting point X(© = (1, 1)T.

2. Analyze and compare the results.

Exercise 3.5

Consider the following unconstrained optimization problem:

min f (z,y) = y* + 2* + vy — 15
(p) T 2
(z,y) €R

1. Show that problem (p) has a unique solution X = (7, @)T.

2. Compute X.

3. Consider the following algorithms:

1
(a) Fixed-step gradient method (p = 5),

(b) Optimal-step gradient method,
(¢) Relaxation method.

Perform two iterations for each method using the initial point X(© = (0, l)T.

1. Compute the error e; = HX(Q) — 7” for each method.

2. Analyze and compare the results.
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3.8 Exam style without solutions

Exercise 1. Let f be a function defined on R? by f(x,y,z) = 2? — 222y + 21> — 2yz +
222 — 4245

1. Determine the critical points of f on R3.
2. Show that the expression f(x,y, z) can be written as a sum of squares.

3. Deduce the solutions of misn f.
R

4. Conclude that f is not strictly convex on R3.

Exercise 2. Consider the function defined on R? by:
o}
Jap (X) = fap(ey) = 5 (2" +y°) = Bry

where a, 5 € R.

1. Compute V fo 5(x,y) and V2f, s(z,y).

2. Determine conditions on the values v and 3 such that the problem r%iQD fap(z,y)

has a unique solution.

3. Let @« =2 and B = 1, show that in this case r%iznfg,l(@ y) has a unique solution X.

4. Compute X.

Exercise 3. Consider the optimization problem

5
min | f (z,y) = 202? — 5zy + 5@/2
(z,y) € R?

(p)

1. Show that problem (p) has a unique solution X = (z,7)".
2. Compute X.

3. Consider the following algorithms:

(a) Optimal-step gradient method;
(b) Relaxation method.

Perform two iterations for each method using the initial point X(© = (1, l)T.
4. Compute the error e; = || X® — X|| for each method.

5. Analyze and compare the results.
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3.9 Conclusion

In this lecture notes, we have reviewed some basic concepts of differential calculus and
a bit of matrix calculus, as well as notions of convexity for sets and multivariable func-
tions, which are necessary for studying unconstrained optimization problems. We have
presented the fundamental algorithms for unconstrained optimization in accordance with
the program of the Licence 3 degree in Mathematics. Various exercises accompany the
document to help assimilate the more theoretical concepts covered in the course. The
study of constrained optimization problems will be the subject of a future lecture notes.




Bibliography

[1] J. Céa, Optimisation: théorie et algorithmes, Dunod 1971.
[2] J.C. Culioli, Introduction a l’optimisation, Ellipses, Paris, 1994.
[3] P.Ciarlet, Introduction a l’analyse matricielle et a ['optimisation, Masson, Paris, 1988.

[4] M. S. Bazarra, H.D. Sherali and C.M. Shetty, Nonlinear programming: Theory and
Algorithms, Wiley Interscience, Third Edition 2006.

[5] Dimitri P. Bertsekas, Nonlinear programming, Second Edition, 1999.

93



	General Introduction
	A brief review of differential calculus and convexity
	Introduction
	Differentiability
	Convexity
	Convex Set
	Convex function

	Convexity and Differentiability
	Exercises
	Exam style with detailed solutions

	Optimization problem and optimality conditions
	Introduction
	Existence and Uniqueness Results
	First-Order Necessary Condition for Optimality
	Second-Order Necessary Conditions for Optimality
	Sufficient second-order condition for Optimality
	Exercises

	Unconstrained optimization algorithms
	Introduction
	Descent methods
	Gradient method
	Gradient method with fixed step size
	Gradient method with optimal step size
	Gradient method with variable step size

	Conjugate gradient method
	Newton's method
	Newton's method in R
	Newton's method in Rn

	Relaxation method
	Exercises
	Exam style without solutions
	Conclusion


