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INTRODUCTION

This course aims to provide a comprehensive and accessible introduction to the fundamental
concepts of metric spaces, topological spaces, complete spaces, compact spaces, and connected
spaces. These mathematical structures form the backbone of modern analysis and topology, and
they have wide-ranging applications in fields such as geometry, functional analysis, and theo-
retical physics. Understanding these spaces is essential for anyone wishing to pursue advanced

studies in mathematics or related disciplines.

We begin with metric spaces, one of the most intuitive and well-studied types of spaces. A
metric space is a set equipped with a distance function, or metric, that assigns a non-negative
real number to each pair of points, representing the "distance” between them. This simple yet
powerful structure allows us to define and analyze concepts such as convergence, continuity,
and compactness. Metric spaces also serve as a foundation for more advanced spaces, making

them an ideal starting point for our study.

Building on the notion of metric spaces, we will then introduce topological spaces, a more
abstract and general framework. Unlike metric spaces, topological spaces are defined by a collec-
tion of open sets that satisfy certain axioms. This abstraction allows mathematicians to study
a wide range of spaces that may not have a natural notion of distance but still exhibit similar
topological properties. Topological spaces provide a unifying language for various branches of

mathematics, from analysis to algebraic geometry.

The concept of completeness is a natural extension in both metric and topological settings.
A space is said to be complete if every Cauchy sequence converges to a limit within the space.
Completeness is crucial in the study of functional spaces, as it guarantees the existence of
solutions to various mathematical problems, such as differential equations. We will explore the
importance of complete spaces and their role in the theory of Banach and Hilbert spaces, which

are central to functional analysis.

Next, we will delve into the notion of compactness, a property that captures the idea of
'smallness” or "boundedness" in a topological sense. Compact spaces are those in which every

open cover has a finite subcover, and they exhibit many desirable properties that make them

v



indispensable in both pure and applied mathematics. For example, compactness ensures the
existence of convergent subsequences and plays a critical role in optimization, integration, and
the study of continuous functions.

Finally, we will examine connectedness, a fundamental property that describes whether a
space can be divided into disjoint open subsets. A connected space is one that cannot be split into
two non-empty, disconnected parts. Connectedness is essential in understanding the behavior
of continuous functions and the topological structure of spaces. It also provides a framework
for analyzing geometric shapes and understanding how different parts of a space relate to each
other.

Throughout this course, we will emphasize both the theoretical foundations and practical
applications of these concepts. Fach chapter will build on the previous ones, providing a logical
progression from basic definitions to more advanced topics. By the end of this course, students
will have a solid understanding of the core ideas in topology and analysis, enabling them to
tackle more complex problems in mathematics and its applications.

In addition to theoretical discussions, we will include numerous examples and exercises
to help students develop intuition and problem-solving skills. Historical notes will highlight
the contributions of mathematicians such as Henri Poincaré, Karl Weierstrass, and Maurice
Fréchet, whose work has shaped the development of these concepts.

By the end of this course, students will have a comprehensive understanding of these funda-
mental mathematical structures and their importance in various branches of mathematics. This
knowledge will prepare them for more advanced topics and applications in areas such as func-
tional analysis, differential equations, and mathematical physics. It consists of five chapters,

outlined as follows:

o Chapter 1: FExplores metric spaces and their properties, introducing concepts like dis-

tance, open and closed balls, isometric spaces, and Lipschitz functions.

o Chapter 2: Develops the concept of complete spaces, focusing on Cauchy sequences and

fixed points.

o Chapter 3: Introduces the structure and properties of topological spaces, convergent

sequences, continuous functions, open and closed maps, and homeomorphisms.
o Chapter 4: Examines compactness in both topological and metric spaces.

o Chapter 5: Dedicates attention to connectedness in topological and metric spaces.

This copy does not exempt you from attending the meetings or taking additional notes.
It is there to avoid a copy work that sometimes prevents you from focusing on the expla-
nations given orally.







CHAPTER 1

METRIC SPACES

1.1 Metric spaces

Metric spaces are a fertile field for examples that we will use to study topological spaces and
their properties.

The notion of metric space is was introduced in 1906 by Maurice Fréchet and developed
and named by Felix Hausdorff in 1914.

.4

Definition 1.1. Let X be a non-empty set and d: X x X — R a real valued function
such that for all x,y,z € X the following holds:

Ch) d(z,y) =0z =y,
Co) d(z,y)=d(y,x); ( symmetry).
C3) d(z,y) < d(x,z)+d(z,y); (triangle inequality).

Then d is said to be a metric(or distance) on X, the pair (X,d) is called a metric space

and d(z,y) is referred to as the distance between x and y.

1.1. A metric space (X,d) is a set X endowed with a metric d. When there is no

possibility of confusion, we abbreviate by saying that X is a metric space.

1.1. On R™ we have the following metrics :

1
n 2

D@y =Syl 2) by = (5 E-w?)

. s
9) ducla,y) = maz (jzi—ul), 4) doe.y) = (Elei—uP)", p>1

=1,...

The metric dy is called ! metric, do is called the the euclidean metric (or £? metric), dy is

called the maximum metric(or £°° metric) and d, is called 7 metric.

1



CHAPTER 1. METRIC SPACES

1.2. On C([a,b],R)(the set of continuous functions from [a,b] to R) we have the

following metrics :

1) d(f0)= {170~ g0l 2) dlf)=]
3) dell.9) = sup (17(0) =9, 4) d(f0) =

t€(a,b]

1.3. The function d,, : R — R4 given by d(x,y) = |x —y| is a metric on R and is

called usual metric(or euclidean metric) on R.

1.4. Let X be a non-empty set and § : X X X — R the function defined by

) Lifz#y,
(1.1) 5(93&)—{ 0 iy

(f(1)—g(t))%dt]?,

£(t) = g(t)Pdt], p>1.

SN

Then, d is a metric on X and is called the discrete metric.

a N
Proposition 1.1. Let (X,d) be a metric space. Then,
(1.2) |d(z,2) —d(y, )| < d(z,y),

U forall x,y,z € X )

. Using the triangle inequality for metrics we obtain

(%) d(z,z) —d(y,2) < d(,y).
Again, by using the triangle inequality for metrics we can see that
(2) —d(z,y) < d(z,z)—d(y,z).

Then, the inequality (1.2) follows from (i) and (ii).

.4

Definition 1.2. Let (X,dx) be a metric space and let A be a subset of X. We define a
metric dg: Ax A— Ry on A by da(z,y) = dx(x,y) for all x,y € A. Then, (A,d4) is a

metric space, which is said to be a subspace of (X, dx).

Section 1.2 Dr. CHOUGUI Nadhir 2



CHAPTER 1. METRIC SPACES

1.2. The metric d 4 is just the function dx restricted to the subset Ax A of X x X.

1.2 Open balls, closed balls and spheres
@ )

Definition 1.3. Let (X,d) be a metric space. Let a € X and r any positive real number.
Then,

1) the open ball around a of radius r is defined as follows:

B(a,r)={z € X / d(a,z) <r}.

2) the closed ball around a of radius r is defined as follows:

By(a,r) ={reX / d(a,z) <r}.

3) the sphere centered at a of radius r is defined as follows:

\ S(a,r)={xeX / d(a,z) =r}. )

13. By(a,r) = Blar)US(ar) for all a € X and v >0,

1.5. In R with the euclidean metric d,, we have:

e Bla,r)={x€R / |[x—a| <r}=(a—r,a+T).
o By(a,r)={reR / |[r—a|<r}=[a—r,a+T7].
e S(a,r)={z€R / |z—a|=r}={a—r,a+r}.

1.6. In R2 with the euclidean metric dy we have:

e B(a,r) is the open disc centered at a = (a1,az) € R? of radius r.

s(a,r) is the closed disc centered at a = (a1,az) € R? of radius .

e S(a,r) is the circle centered at a = (a1,az) € R? of radius r.

Example

1.7. In R?, if we take a = (0,0) € R? and r = 1 we obtain:

® By, ((0,0),1) = {(w1,22) € R? / di ((w1,72),(0,0)) = |z1|+ |wa| < 1},

o By, ((0,0),1) = {(w1,22) € R? / da((x1,22),(0,0)) = \/(21)? + (22)? < 1},
o By, ((0,0),1) = {(21,72) € R? / dus ((1,22),(0,0)) = maz(|z1], |z2]) < 1}.
Hence, the unit ball (open ball) B((0,0),1) takes the following forms:

0,0),1 0,
0,0),1 0

Section 1.2 Dr. CHOUGUI Nadhir 3



CHAPTER 1. METRIC SPACES

Bdl ((0,0),l) ,‘\H' Bd? ((Oro)ll) +1 Bdw ((0,0),l)
L Y
’, LY -
// S z"w “"s — b i
h)
’ by ’ S, 1
s N ’ N\
7’ £ ¥ A 1
s ~ A I
’ N - \ 1
1,7 N, tl 1 _l 1+l 1 R
o~ /s~ 1 i ]
~ 7 1 1
\\ s’ 1 ! 1
’ ! 1
h s \ 1
~ ’ . 7 1
~ ra LY H
h ’ ~ ’
N s S -~ 1
. ,/ LT L
N
¥
-1 1

Figure 1.1: Open ball B((0,0),1) in R? with dy,ds and dy

3
1.8. In R? equipped with the euclidean metric do we have:

e S(a,r) is the sphere centered at a of radius r.

e B(a,r) is the open ball (excluding the boundary points that constitute the sphere) centered at
a of radius r.

e By(a,r) is the closed ball (including the boundary points that constitute the sphere) centered

at a of radius r.

1.9. In the discrete metric (X,0) (see Example (1.4)), we have:

Bla,r) = {a} ifr<i,
’ X ifr>1,

forallaeX and r > 0.

1.3 Open sets, closed sets and neighbourhood
@ )

Definition 1.4. Let (X,d) be a metric space. A set O C X is called open if every point

x € O is the center of an open ball contained in O. That is,

\ Yz € O, Ir >0 such that B(x,r) C O. )

.4

Definition 1.5. Let (X,d) be a metric space. A subset F' of X is said to be closed in
(X,d) if its complement, CxF (orF%), is open in (X,d).

Section 1.3 Dr. CHOUGUI Nadhir 4
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O " ==~ -
-~ s \
TN 4 \
' ~~ - —’ ~
I et . AN
\ B(az, ’T'):' / ,“‘ |
[ | | 3 |
) [}
\ £ 3 /
S ¥
\\ V4
~~ ' ”
>
~
ﬁ~ s’

Figure 1.2: Open set O

[ Proposition 1.2. Let (X,d) be a metric space. Let a € X and r > 0. Then the open ball
B(a,r)

1S an open set.

Eroof) 1,

a,m1) be an open ball in (X,d). Then, for all x € B(a,r1) we have d(a,z) <r1.
1
By taking ro = 5(7“1 —d(a,z)) we obtain B(x,r2) C B(a,r1).

1.4. Using the previous preposition we conclude that the closed ball By(a,r) is a

closed set.

4

Proposition 1.3. Let (X,d) be a metric space. Any open set in X is an union of open
balls.

Section 1.3 Dr. CHOUGUI Nadhir 5



CHAPTER 1. METRIC SPACES

. Let O be an open subset of X. Then, for all x € O there exists r > 0 such that

B(z,r) C O which implies that O = U {z} C U B(z,r) CO. Hence, O= | B(x,r).
x€0

g )

Proposition 1.4. Let (X,d) be a metric space. Then, the open sets in X satisfy the
following properties.

1) X is open and () is open.

2) Any union of open sets in X is an open set in X.

\ 3) Any finite intersection of open sets in X is an open set in X. )

1) Note that it is vacuously true that the empty set contains an open ball about each of its
points, since it contains no points. And the set X contains an open ball about each of its

points because every open ball is a subset of X.

2) Assume that {O;:i€ 1} is a collection (finite or infinite) of open sets in (X,d) and let
x € UO;. So, there exists ig € I such that x € O;,. Since, Oy, is open, there is an r >0

i€l
such that B(z,r) C Oy,. Hence, B(z,r) C O;, C U O; which implies that U O; is an open
el el
set in (X,d).

3) Assume that {O1,02,...,0n} is a finite collection of open sets in (X,d) and let x € ﬂ O;.
=1
Then x € O; for each i =1,2,....,n. So, for each 1 =1,2,....n, there is an r; >0 such that

B(z,r;) C O;. Let r =min(ry,re,....,rn). Then B(x,r) C O; for all i =1,2,...,n, which
n n
implies that B(xz,r) C N O;. Hence, N O; is an open set in (X,d).

i=1 i=1

1.10. In R with the Euclidean metric (usual metric), the set
0. 9]
=N (-pn) =0

is an intersection of open sets but is in fact not open.

By applying De Morgan’s laws to the previous proposition, we can easily prove the following
similar proposition for closed sets.

Section 1.3 Dr. CHOUGUI Nadhir 6
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z b

Proposition 1.5. Let (X,d) be a metric space. Then, the closed sets in X satisfy the
following properties.

1. X is closed and 0 is closed.

2. Any intersection of closed sets in X is a closed set in X.

U 3. Any finite union of closed sets in X is a closed set in X. )

.4

Proposition 1.6. Let (X,d) be a metric space. Then, the sphere S(x,r) is a closed set in
(X,d).

open set in X because it is the union of two open sets in X. So the sphere S(x,r) is a closed

set in (X,d).

. The complement of the sphere S(z,r) is the union EXBf(x,r)UB(:v,T) which is an

& )

Definition 1.6. Let (X,d) be a metric space and let x € X. A subset N of X is said
to be neighbourhood of x in (X,d) if there is an r > 0 such that B(z,r) C N, that is,
if N contains an open ball centered at x with radius r. We denote by N(x) the set of

U netghbourhoods of x. )

Example
111,

1) In R with the Euclidean metric, the set Ry (the positive real numbers) is a neighbourhood

of © =2 because the open ball B(2,0.5) is completely contained in R .

2) In R with the Euclidean metric, the set Z is not a neighbourhood of x =2 because any

open ball centered at x =2 will contain some non-integers.

R k
1.5. Using proposition (1.3) we can easily prove that a set is open if and only if it
is a neighbourhood of each of its points (Do yourself!).

Section 1.3 Dr. CHOUGUI Nadhir 7
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z )

Proposition 1.7. Let (X,d) be a metric space and let x € X.

1. Any union of neighborhoods of x is also its neighborhood.

U 2. Any finite intersection of neighborhoods of x is also its neighborhood. )

1) Suppose that {N; :i € I} is a collection (finite or infinite) of neighborhoods of x in (X,d).
Then for each i € I, there is an r; >0 such that B(x,r;) CN;. Hence U B(z,r;) C

U N; which implies that there exists ig € I such that B(z,ri,) € UN;. 5'0 U./\/" is a
el el el

neighborhood of = in (X,d).

2) Assume that {N1,Na,...,. Ny} is a finite collection of neighborhoods of x in (X,d). Then,
for eachi=1,2,...,n, there is an r; >0 such that B(xz,r;) CN;. Let r =min(r1,72,...,7).
Then B(x,r) CN; for all i =1,2,...,n, which implies that B(x,r) C ﬁ N;. Hence, ﬁ N;
is a neighborhood of x in (X,d). = =

.4

Definition 1.7. Let (X,d) be a metric space. Let x,y € X. We say that x and y can be
separated by neighborhoods if there exists a neighborhood U € N (x) and a neighborhood
V e N(y) such that U and V are disjoint, i.e., UNV = 0.

4

Definition 1.8. A metric space (X,d) is said to be a Hausdorff space if every two distinct
points of X have disjoint neighborhoods.

4

| Proposition 1.8. Any metric space is a Hausdorff space.

. Let (X,d) be a metric space and let x,y € X such that x #y. So there exists r >0
such that d(z,y) =r. Hence, if we take U = B(x,g) and V = B(y,g) we obtain UNV =),
which shows that (X,d) is a Hausdorff space.

Section 1.3 Dr. CHOUGUI Nadhir 8
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w3
Wl

1.4 Interior, exterior, boundary and closure
@ )

Definition 1.9. Let (X,d) be a metric space and let A CX. A point © € A is called
an interior point (or an inner point,) of A, if and only if there exists r > 0 such that
B(x,r) C A. The set of all interior points of A is called the interior of A and is denoted

\ by Int(A)(or A). )

A e
"' h..

oo

.

A Y

]
(Y
1

0
-
-

4
o’

Figure 1.3: Interior point

1.12. In R with the Euclidean metric, we have Int([0,1]) = (0,1) ( because for any
point other than 0 or 1, we can fit a ball inside [0,1]).

1.13. In R with the Fuclidean metric, we have Int(Q) =0 (because for any x € Q,
there is no ball (x —r,x+1) that lies entirely within Q).

1.14. In R with the Fuclidean metric, we have Int((0,1)) = (0,1) ( because for all
€ (0,1), there is r > 0 such that (x —r,x+1r) C (0,1)).

8

7 >
Proposition 1.9. Let A C X where (X,d) is a metric space. Then

1. Int(A) is open.

Section 1.4 Dr. CHOUGUI Nadhir 9
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k 2. Int(A) is the largest open subset contained in A. J

1) If x € Int(A) then there exists r > 0 such that B(x,r) C A. Since B(x,r) is open, it
only contains interior points of A, thus B(wx,r) C Int(A). Hence Int(A) is open per
Definition(1.4).

2) Fiz a set A and let G C A be an open set. Let x € G arbitrary. Since G is open, = is an
interior point of G and there ezists some r > 0 such that B(x,r) C G. But since G C A,
then B(z,r) C A and thus x € Int(A), showing that G C Int(A). Since Int(A) is always

open, Int(A) is the largest open subset contained in A.

1.6. From the previous proposition we conclude that if A is open, then Int(A)=A
and if Int(A) = A then A is open.

.4

Definition 1.10. Let (X,d) be a metric space and let ACX. A point x € A is called an
exterior point of A, if and only if there exists v > 0 such that B(z,r) C CxA. The set of
all exterior points of A is called the exterior of A and is denoted by Ext(A).

1.15. In R with the Euclidean metric (usual metric), we have

Ext((0,1)) = (—00,0) U (1, +00).

.4

Definition 1.11. Let (X,d) be a metric space and let ACX. A point x € A is called an
adherent point of A, if and only if for every real r >0, we have B(x,r)NA#(. The set
of all adherent points of A is called the closure of A and is denoted by CI(A) (or A).

1.16. In R with the Euclidean metric (usual metric), we have

Cl((0,1)) = [0,1].

a >
Proposition 1.10. Let A C X where (X,d) is a metric space. Then

Cl(CxA) = CxInt(A).

Section 1.4 Dr. CHOUGUI Nadhir 10



CHAPTER 1. METRIC SPACES

J P

. Let x € X. Then we have

x € CxInt(A) x ¢ Int(A)
Vr>0,B(z,r) ¢ A

Vr > 0,B(z,r) C CxA

Vr > 0,B(z,r)NCx A # 0

z € Cl(CxA).

[ A

z >
Proposition 1.11. Let A C X where (X,d) is a metric space. Then,

1. CIl(A) is closed.

\ 2. Cl(A) is the smallest closed set containing A. Y

. Do yourself!

1.7. From the previous proposition we conclude that if A is closed, then Cl(A) = A
and if C1(A) = A then A is closed.

& )

Definition 1.12. Let (X,d) be a metric space and let A CX. A point x € A is called a
boundary point of A, if and only if x is neither an interior point nor an exterior point
of A. The set of all boundary points of A is called the boundary of A and is denoted by

\ J(A). )

1.17. In R with the Fuclidean metric (usual metric), we have
9((0,1)) = {0,1}.
1.8. We can define the boundary of A as follows:

(A) = Cl(A)NCICxA)(orANCxA).
— CUA) N Int(A)(orA~ A).

Section 1.4 Dr. CHOUGUI Nadhir 11
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z y

Definition 1.13. Let (X,d) be a metric space and let A CX. A point x € A is called
an accumulation point(or a limit point) of A, if and only if for every real r > 0, we have
(B(x,r)~{x})NA#£D. The set of all accumulation points of A is called the derived set
U of A and is denoted by A’. )

1.18. In R with the FEuclidean metric (usual metric), we have

7 =0, Q =R.

1.9. We have Cl(A) = AUA’ and a set A is closed if A’ C A.

.4

Definition 1.14. Let (X,d) be a metric space and let ACX. A point x € A is called an
isolate point in A, if and only if there exists a real r >0 such that (B(z,r)~{z})NA=10
(or B(z,r)NA={x}). The set of all isolate points in A is denoted by Is(A).

1.10. If x € A is not an accumulation point, it is called isolated in A.
1.19. In R with the Euclidean metric (usual metric), we have

1s(Z) =17, 15(Q) = 0.

1.5 Distance between two sets, Diameter
@ )

Definition 1.15. Let (X,d) be a metric space with A,B C X and a € X. We define the

distance between a point and a set, and the distance between two sets as follows:

(1.3) d(a,A) =infd(a,x), d(A,B)= inf d(x,y),
k x€A zeAyeB )

1. From the previous definition we conclude that d(A,B) =d(B,A).

2. d(A,B) is not a distance on P(X) (the power set of X). For example, in (R,|.|), if we
take A =[—2,4] and B = [4,6] we obtain d(A,B) =0 but A # B.
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3. VA,BCX, ANB+#0 = d(A,B)=0. The reciprocal of the previous implication is not

1
true. For example, in (R,|.|), if we take A = {i,n EN*} and B = {1} we obtain
n
1
d(A,B) = inf [1="2 =0 but ANB=1.
neN* n
e >

Proposition 1.12. Let (X,d) be a metric space, let A be a subset of X and let x € X.

Then, we have

1) z € Cl(A)
\ 2) z € Ext(A)

=0.
> 0. J

< d(z,A)
< d(x,

(z,A)

1. =) 2€Cl(A)=Ve>0, Blz,e) NA#£D=Ve >0, d(z,A) <e = d(z,A) =0.
< ) Suppose that x ¢ CI(A), then there exists r > 0 such that B(zx,r)NA =0 (By
negation). Hence
Vye A, d(x,y) >,

which shows that

d(z,A)=inf(z,y) =7 >0.
yeA

2. By negation of (1)(Do yourself! ).

4

Definition 1.16. Let (X,d) be a metric space and A a subset of X. Then the set A is
said to be bounded if there exists some xg € X and r > 0 such that A C B(xq,r).

1.12. From the previous definition we conclude that the finite subsets of X are
bounded.

& )

Definition 1.17. Let A be a non-empty subset of a metric space (X,d). The diameter of
A is defined by

(1.4) diam(A) = sup d(z,y).

k r,yeA )
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.4

Proposition 1.13. A non-empty subset A of a metric space (X,d) is bounded if and only
if diam(A) < +00.

=) Suppose A is bounded, then there exists r >0 such that A C B(x,r). Hence diam(A) <
2r < +oo0.

<) Suppose diam(A) < +oo, then for every x € A we have A C B(x,diam(A)) which implies
that A is bounded.

1.6 Equivalent metrics

such that for each x € U there exists r > 0 with B(x,r) CU. Then (X,Ty) is called the

Definition 1.18. Let (X,d) be a metric space. Let Tyq be the collection of subsets U of X
topological space defined by the metric d and call Ty the topology on X defined by d.

Sometimes different metrics on a set give rise to the same topology.

W

Definition 1.19. Let di and dy be metrics on a set X. We say that di and dy are
equivalent if they define the same topology , i.e. if Tq, = Ta,.

& )

Proposition 1.14. Suppose that metrics di and ds on X are such that for some k >0
we have .
Edl(z7y) < d2(l‘,y) < Kdl(xvy%
| for all x,y € X. Then dy and dy are equivalent (or Lipschitz-equivalent). )

. Let Ty be the topology defined by dy (i.e. Ti =Tq,) and let T be the topology defined
by dy (i.e. To="Tg,). We must show that a subset U of X belongs to Ty if and only if it belongs
to Ts.

Suppose U belongs to Ti. Let x € U. Then there exists some r >0 such that Bg, (z,r) CU, i.e.

{y e X\ dy(z,y) <r}CU.
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Consider Bg,(x,r/k). If y € Bg,(z,r/k) then dao(z,y) <r/k. But idl(x,y) < do(z,y) and
so, for y € Bg,(z,r/Kk) we have di(x,y) < rda(z,y) < Ii.% =r. Hence y € By, (x,r) whenever
y € By, (x,7/K). But By, (x,7) CU and so Bg,(x,r/k) C By, (x,r) CU. Thus, for v € U, there
exists some r' >0 (namely ' =r/k) such Bg,(x,r") CU. Thus U is open in the topology
determined by do, i.e. U € Ty implies that U € Ty

Now suppose that U € To. For x € U there exists some v > 0 with Bg,(x,r) CU. Now if
di(y,x) <r/Kk we have

da(z,y) < kdp(z,y) < H.% =,

s0 By, (z,7/Kk) C Bg,(z,r) CU, and so U € Ty. Thus U € Ty if and only if U € Ta and hence
Ti="Ts.

.4

Proposition 1.15. The three metrics, dy,dy and ds, on R™ (see Example(1.1)) are

equivalent.

Broof] 1. .-

1,22, .., Tn), Y= (Y1,Y2,....,Yn) € R™. Note that

dawy) = | @i-u)?
< Zg]l(doo(yc,y)ﬁ (since |x;—yi| <doo(x,y), V1<i<n)
= Vndwo(z,y)
and so
(1.5) da(z,y) < ndoo(z,y).

Also we have

deo(r,y) =  maz (|z; —yi)

i=1,....,n

= |x;—y;| for some j
= (@ —y)?
n
< El(%‘z’ — ;)% = da(z,y),

and so deo(x,y) < do(x,y) and certainly

(1.6) doo(z,y) < nda(z,y).
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Combining (1.5) and (1.6) we get

1
ﬁd2<x7y) < doo<x7y) < nd?(xvy)a

and so do and ds are equivalent.

Clearly doo(z,y) < d1(z,y) and so
1

Also, di(z,y)

s

= ¥ |z;—yi| and each |x; —y;| < doo(x,y) so that
(2

(1.8) di(z,y) < ndoo(x,y).

Combining (1.7) and (1.8) we get

1
Edoo(xuy) < dl(‘r7y> < ndoo(fb,y),

and so dy and ds are equivalent.
We have now shown that da and do, define the same topology and that di and do define
the same topology and hence di,ds and ds all define the same topology, i.e. di,ds and d are

equivalent.

1.7 Finite metric products

Let {(X;,d;): i =1,...,n} be a collection of metric spaces and let x = (x1,x2,...,2,) and y =

n
(y1,Y2,---,yn) be arbitrary points in the product X = ,H1XZ~. Define
1=

d(x,y) = maz{d;(x;,y;): 1<i<n}.

.4

| Proposition 1.16. (X,d) is a metric space.

. Clearly d(z,y) 2 0 and d(x,y) =0 if and only if d;(x;,y;) =0 for 1 <i < n, which
the case if and only if x; =vy; for 1 <i< n, i.e., if and only if x =y. It is equally clear that
d(z,y) =d(y,z). It remains to verify the triangle inequality. Observe that

di(zi, z) < di(zi,yi) +di(yi, 2i),
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for all x = (x1,22,....x0), Yy = (Y1,Y2, -, Yn), 2 = (21,22, ...,2n) € X. This implies
dip(zg, zx) < max{d;(z;,y;) : 1 <i<n}+max{d;(y;,z): 1<i<n},
fork=1,2,...n. So
d(x,z) = max{dg(xg,2zr) : 1<Ek<n}<d(z,y)+dy,=2).

Hence, (X,d) is a metric space.

@ h
Definition 1.20. The metric space obtained by taking
(1.9) d(z,y) = maz {d;(v;,y;): 1<i<n},

as the distance on X, is called the product of the metric spaces (X1,d1), (Xo,d2),...,

\ (Xn,dp)- Y

i) The functions

n
1) di(z,y) = Eldi(ﬂcz‘,yz'),
1
2

(di(zs,y3))?| ",

M3

2) d?(x>y) = i

where © = (x1,22,....Tn), Y= (Y1,Y2,-,Yn), 2= (21,22,...,2n) €X, are also metrics on X. The
proof of the statement that di and ds are metrics on X is almost trivial.

i) The metrics d, di and d2 on X are equivalent. Indeed

& )

Proposition 1.17. The open ball B(z,r), x = (x1,x2,...,2y) andr >0, in X is the product
of the open balls By(x1,r), Ba(xo,7),...By(xy,r). That is

n
B(z,r) = il;lei(fBz’,T),

| where Bj(z,r) is the open ball centered in x; € X; with radius r > 0. )
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. We have y € B(x,r) if and only if d(z,y) = max{d;(x;,y;): 1 <i<n}<r, ie if
and only if d;(x;,y;) <r, 1 <i<n. So, y € B(x,r) if and only if y; € B(x;,r), 1 <i<n, that
n
is, if and only if y € ,HlBi(xi,r).
1=

7 N
Proposition 1.18.

n
1. If O; C X, 1<i<n are open subsets in X;, then 'HlOi is open in X.
1=

2. If F; C X, 1 <1< n are closed subsets in X;, then 'ﬁ1Fi 1s closed in X.
1=

\U

n
1. Ifv=(x1,22,....,00) € ‘HlOi’ then there exist positive 11,12, ...,y such that B(x;,r;) C Oy,
1=

n n n
1<i<n. Let r=min{ry,re,...,rn}. Then, B(x,r)= ‘HlBi(xi,r) C 'H1Oi' Hence, 'H1Oi
1= 1= 1=

1S open.

2. Proof left to the reader.

1.20. Since R, (x,y) and (—00,z) are open in R, then (x,y) xR and (z,y) x

(—00,2) are open in R?.

1.8 Continuity

1.8.1 Continuous Mappings
@ )

Definition 1.21. Let (X,dx) and (Y,dy) be metric spaces and A C X.Then, a function
f:A—Y is said to be continuous at xg € A, if for every € >0, there exists § > 0 such
that

\ (1.10) Vo € A, dx(z,x0) <d = dy(f(z), f(xg)) <e. )

k
1.14. If f is continuous at every point of A, then it is said to be continuous on A.
1.21. Let (X,d) be a metric space. Every function fq: X — R defined by fu(x) =

d(a,x), such that a € X, is continuous on X because | fo(x) — fa(y)| = |d(a,z) — d(a,y)| < d(z,y)
(it is enough to take 6 =¢).
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1.22. Let d,, and d be the usual metric and the discrete metric on R, respectively.

Then, the function f: (R,d,) — (R,§) defined by f(x) = x is not continuous on R because if
x # x9 and € < 1 we obtain §(f(x), f(xg)) = 0(x,z0) = 1.

@ )

Proposition 1.19. Let (X,dx) and (Y,dy) be two metric spaces. A function f :
(X,dx) — (Y,dy) is continuous at a point xg € X if and only if for every € >0, there
exists 6 > 0 such that

o B(xo,0) C f~H(B(f(x0),¢)), )

Proof
. The function f:X — Y is continuous at xg € X only and only if for every >0,
there exists o > 0 such that

Ve e X, dx(z,x0) <= dy(f(z),f(x0)) <&,

i.e.,

x € B(xg,0) = f(x) € B(f(x0),¢).

or

f(B(z0,0)) € B(f(x0),¢).

This is equivalent to the condition (1.11).

1.8.2 Uniform Continuity

Let (X,dx) and (Y,dy) be two metric spaces and let f be a function continuous at each point
o € X. In the definition of continuity, when xy and e are specified, we make a definite choice
of § so that

Vo € X, dx(x,x()) <0= dy(f(l‘),f(l’())) <eg,

This describes ¢ as dependent upon zg and ¢, say 6 = d(xg,e). If §(zp,e) can be chosen in such
a way that its values have a lower positive bound when ¢ is kept fixed and zg is allowed to vary
over X, and if this happens for each positive ¢, then we have the notion of uniform continuity.

More precisely, we have the following definition:

.4

Definition 1.22. Let (X,dx), (Y,dy) be tow metric spaces. A functionf : X — Y is said

to be uniformly continuous on X if, for every €, there exists a 0 (depending on € alone )
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such that:

(1.12) Vr,y € X, dx(v,y) <d(e) = dy(f(x), f(y)) <e.

1.23. The function f: (R,|.|) — (R,]|.]) defined by f(x) =z is uniformly contin-

uous (it is enough to take 6 = ¢).

Using the previous definition we obtain the following result.

.4

Proposition 1.20. Fvery uniformly continuous function on X is necessarily continuous

on X. However, the converse may not be true.

1.24. The function f: (R,|.|) — (R,|.|) defined by f(x) = 22 is continuous but

1
not uniformly continuous. Take ¢ =1 and let 6 > 0 be arbitrary. If we choose v = — + 5 and
1 .
Y= 5 we obtain
S R R
but )
§ 1 12 52
1)~ )] = ‘<5+5>) -(3) =1+ >0

1.9 Homeomorphism
@ )

Definition 1.23. Let (X,dx) and (Y,dy) be two metric spaces and f: X — Y. We say
that f is an homeomorphism from X to Y if:

1. f is a bijection (one-to-one and onto),
2. f is continuous,

3. the inverse function f~1 is continuous.

U If there exists an homeomorphism from X to Y, we say that X and Y are homeomorphiy

Example
25,

1. Let X=R and Y = (—1,1) endowed with the usual distance. The function f :R — (—1,1)
defined by f(z) = <
1+ ||
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2. Let X = (a,b) and Y =R with the usual distance. The function f: (a,b) — R defined by
1
flz) = +

r—a x—b
3. Let X=(0,1) and Y = (a,b) endowed with the usual distance. The function f:(0,1) —
(a,b) defined by f(x) = (b—a)r+a is a homeomorphism. Consequently, X and Y are

is a homeomorphism. Therefore, X and Y are homeomorphic.

homeomorphic.

1.15. In general, the bijectivity and continuity of f do not imply that f is a home-
omorphism. For example, the map f: (R,0) — (R,dy) defined by f(x) =x is a bijection and

continuous, while f~1 is not continuous.

1.9.1 Lipschitz and Contraction Mappings and Applications
z y

Definition 1.24. Let (X,dx) and (Y,dy) two metric spaces. A mapping f: X — Y is
said to be k-Lipschitz if there exists a real number k > 0 such that

o (113) vr,y €X, dy (f(2), f(y)) < kdx(z,y), )

& )

Definition 1.25. Let (X,dx) and (Y,dy) two metric spaces. A mapping f:X — Y is
said to be a contraction (or contraction mapping) if there exists a real number 0 < k <1
such that

| (19) Va,y €X, dy (f(z), f(y)) < kdx(x,). )

.4

Proposition 1.21. Let f:R DT — R be a differentiable mapping such that |f'(x)| < k,
for all x € I. Then, f is k-Lipschitz. Moreover, if |f'(z)| < k <1 for all x € I, then f is

a contraction.

Proof Y . Lo . .
. Forall z,y € I, we have |f(x)— f(y)| = | [ f(t)dt| < k|x —y|, which implies that f is
x
k-Lipschitz. Moreover, if |f'(x)| <k <1, then f is a contraction.

Using the previous definition we obtain the following result.
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.4

| Proposition 1.22. Fvery k-Lipschitz or contraction mapping is uniformly continuous.

1.10 Isometry
@ )

Definition 1.26. Let (X,dx) and (Y,dy) be two metric spaces. A bijection f:X — Y

is called an isometry if

(115> dY(f(Jf),f(y)):dX(l’,y>, Vz,y e X.

\ In this case, one says that X and Y are isometric (or X is isometric to Y ). )

Remark

1.16. In other words, an isometry between metric spaces is a bijection which pre-
serves the distance between elements. Clearly, Y is isometric to X if and only if X is isometric
to Y.

Example

1.26. The mapping [ : (R,].|) — (R,|.|) defined by f(x) =x+b, b€ R is an

isometry.

Example

1.27. Let (X,dx) and (Y,dy) be two metric spaces such that card(X) = card(Y),

2six#y

. . Then, (X,dx)
0six=y

dx =0 ( the discrete distance, see example (1.4)) and dy(z,y) = {

and (Y,dy) are not isometric because the distance between two different points of the first space

is different to the distance between two different points of the second space.

Remark

1.17.
1. Every isometry is uniformly continuous (because it is 1-Lipschitz).

2. Every isometry is an homeomorphism (Exercise).

1.11 Normed spaces

In functional analysis, a normed space is a vector space equipped with a norm, which is a

function that assigns a non-negative length or size to each vector in the space.
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z )

Definition 1.27. Let X be a vector space over the field K of real or complex numbers. A

semi-norm on X is a function ||| : X = R satisfying the following properties:
1. Non-negativity: ||z|| =0 for all z € X.
2. Homogeneity: ||az| = |af||z|| for all « € R (or C) and z € X.

8. Triangle inequality: ||z +y| < |lzl|+ ||yl for all z,y € X.

\ A semi-normed space (X, -|]) is a vector space X equipped with a semi-norm. Y
Example
128,

1. Both R and C are semi-normed space with ||z| = |z|.

2. The function ||| : R? = R defined by

(1.16) [z )l = |z =yl
1S @ Semi-norm.

& )

Proposition 1.23. Let (X,||-||) be a semi-normed space, then
1. ||o]|=0.

2. Vr,yeX, |z—vyll=|y—=x|.

_ < lr—
3 VryeX, |zl -yl < llz -yl )

1. Let A € K such that A # 1, then
10]] = [[A-0[F = [A[f0]]

which implies that
0] (1 = [A[) =0.

Hence, ||0]| = 0.

2. For all x,y € X, we have

[z =yl = lI=(y =)l = |- ly = ]| = lly = =[]
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3. Let us write,

y=y—rtr= |yl =lly—z+zl <y -zl +]=l,

from which it follows that
(i) [yl =[]l < flz =yl
Similarly, we have
r=r—y+y= |zl =lz—y+yll <[z -yl +yl,
from which it follows that
(i) [zl =Nyl < [l =yl

Finally, from inequalities ((i)) and ((ii)) we obtain

[zl =1lylll < [l =yl

@ )

Definition 1.28. Let X be a vector space over the field of real or complex numbers. A

norm on X is a semi-norm ||-|| : X — R satisfying, furthermore, the following property:

|z = 0=z =0.

\ A normed space (X,||-]|) is a vector space X equipped with a norm. Y
Example
1.2

1. Both R and C are normed space with ||z|| = |z|.

2. The function defined by (1.16) is not a norm because

I(1,1)]|=]1-1]=0 but (1,1)+#(0,0).

3. On R", for all x = (x1,x2,x3,...,25) € R™ we have the following norms,

n
® el = Eel

Y
@ el = (£a?)".
® el = oz fai,

n 1

p

@ lall, = (E?)", (<p<oo)
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The corresponding metric space of @) is denoted by (7, and the corresponding metric space

of @ is denoted by (}.

4. On the vector space C([a,b],R), for all f € C([a,b],R) we have the following norms,

b
Il = [17@)lda,

—

b 2
@l = | [r@?de] .
If@lle = maz | (@),

z€la,b]
1
P

b
@, = | [li@Pd| . (<p<o)

Normed space are an important instance of metric spaces, as the following proposition asserts.

z >
Proposition 1.24. Let (X,||-||) be a normed space. Then,
d(z,y) = ||z —yll

defines a metric on X. That is, every normed space is automatically a metric space with

K a canonical metric. )

. Leave to the reader (Immediate).

k
1.18. Note that metric spaces need not be vector spaces.

.4

| Proposition 1.25. The norm is a uniformly continuous function.

. Using Proposition (1.23)3 we deduce that the norm is 1-Lipschitz.

4

Definition 1.29. Two norms on a K-vector space X are called equivalent if they define

the same open subsets of X.
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g )

Proposition 1.26. Let X be a K-vector space. Two norms ||-||; and ||-||y on X are

equivalent if and only if there exist constants o >0 and > 0 such that

\ allz|i < ||lzll2 < Bzl for all zeX D

. The proof is left to the readers.

Example
130

1. The norms D, @ and @) defined in Example(1.29) are equivalent because for all z € R™

we have

llly < lllly < vnllzlly,

[2llo < llzlly < nllfl

2. Let X the vector space defined by

={rec(o]) / fO)=1},

and equipped with the following norms:

flla= sup |£()

z€[0,1]

Il = sup |f@)|+ sup |f'(x)

z€0,1] z€[0,1]

Let us prove that the two previous norms are equivalent. On the one hand, by definition

we have

(i) 1 llz < A1 -
On the other hand, by application of the finite-increments formula we obtain
f)—f@)=f(c)(1-z), 0<r<c<l.
Keeping in mind that f(1) =0 we find
flx)=f(c)(x=1), 0<z<c<l,

from which it follows that

sup |f(@)| < sup |f'(x)].
z€[0,1] z€[0,1]

(i) 1Al < 21 flls-
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Finally, from the two previous inequality (1) and (ii) we deduce that ||-||; and ||-||5 are

equivalent norms on X.

We have just seen that norms induce metrics. Next we look at a useful way to induce a

norm.

& )

Definition 1.30. Let X be a vector space over either R or C. An inner product (Sesquilin-
ear form) on X is a function (-,-) : X x X — K, where K is either R or C, such that for
all vectors x,y,z,w € X and all scalars o, 5 € K, the following properties hold:

1. Linearity in the first argument: (ax+ Py, z) = a(x,z) + ({y, 2),
2. Conjugate linearity in the second argument: (x,az+ Bw) =a(x,z)+ B{x,w),

3. Conjugate symmetry: (z,y) = (y,x) (for complex vector spaces),

U 4. Positive-definiteness: (x,r) >0 and (x,x) =0 if and only if x = 0. Y

We present two examples of inner products next; the reader is asked to verify that they

satisfy the inner product axioms in definition(1.30).

1.31. On R", the function (-,-) defined by
n

<X7Y> = leyu
=1

is an inner product. When we consider R? or R3, this is often called the dot product.

1.32. On the vector space C([0,1]) , the function (-,-) defined by

1
(f.9) = | F@g(de,
s an inner product.

Our next result is incredibly useful.

& )

Proposition 1.27. (Cauchy-Schwarz inequality) Suppose that (-,-) is an inner prod-

uct on a real vector space X. Then for all x,y € X, we have

| (L17) (z,9)I” < (&, 2)(y, ). )
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. Let v,y € X. For all A € K we have,

(1.18) Az 4y, \x+y) = (@, 2) + (y,y) + Mz, y) + My, x) = 0.

By taking a = (x,z), b= (x,y) and ¢ = (y,y) into (1.18), we obtain

(1.19) a4+ bA+bA+c = 0.

Ifa=c=0, we set \=—b and by substitution into (1.19) we find,
—bb—bb=—2b*> >0,

which implies that b= 0. Hence, the inequality (1.17) is verified.
b

If a #0, we set \=—— and by substitution into (1.19) we find,
a

b b\ b. b
(D)(2)-B-Breso
a a a a

i.e.,
2
a
which implies that
b < ac,
Hence, the inequality (1.17) is verified.
e >

Proposition 1.28. (Minkowski inequality) If (-,-) is an inner product on the vector

space X, then we have

\ (1.20) Va,y € X, \/(x+y,x+y><\/<a:,a:)—|—\/(y,y). )

. We know that

(z+y,x+y) = (2,2) +2Re(z,y) + (¥, 1),

Furthermore, we have
Re(z,y) < [(z,y)| < /{2, 2) /(Y 1),

which implies that

(x+y,z+y) < <\/<fﬂ,x>+\/<y,y>>2-

From which the inequality (1.20) follows by taking square roots.
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With the Cauchy-Schwarz inequality in hand, our final result of the section shows how inner

products induce norms (which then induce metrics).

& )

Proposition 1.29. (Inner Products Induce Norms) If (-,-) is an inner product on
the vector space X, then the function ||-|| : X — R defined by

(1.21) ]l =/ (@, ),

k s a norm on X. )

properties are left to the reader.

. It suffices to use the Minkowski inequality to obtain the triangle inequality. The other

.4

Definition 1.31. A pre-Hilbert space (or an inner product space) is a vector space with

a norm induced by an inner product.

Example
.3

1. X=C" is a pre-Hilbert space (or an inner product space) with the following inner product

n
=1

2. X=C([0,1],C) is a pre-Hilbert space (or an inner product space) with the following inner
product

(f.o= gDt
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You are familiar with the notion of a convergent sequence of real numbers. It is defined as

follows: the sequence (z,)nen of real numbers is said to converge to the real number z if given

any € > 0 there exists ng such that for all n > ng, |z, —z| <e.

It is obvious how this definition can be extended from R with the Euclidean metric to any
metric space.
2.1 Convergence in a metric space

2.1.1 Convergence and limits

.4

Definition 2.1. A sequence (zp)nen @n a metric space (X,d) is called convergent to xg € X

if,
(2.1) Ve >0, INo(e) eN /VneN, n > Ny = d(zp,z0) <e.
The point x is called the limit of the sequence (Ty)nen, and we write

lim (zp)=2x9 or z, — xo.
n—--+00

If the sequence does not converge, then it is said to diverge.

k
2.1. The condition (2.1) means that from a certain rank Ny the elements of the

sequence () are in the open ball B(xg,e). Thus, this ball contains an infinite elements of this
sequence.
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Example

1
2.1. In the metric space (R,|.|), the sequence () converge to 0 and we write
T/ neN*
1 n
2)-o
0o \n

Proo

i

3
5

!

. Let € > 0 be given. By the Archimedean property, there is an integer Ny € N such

1 1 1
that Nog > —, and thus for all n > Ny, we have d, <,0> = H <e.
€ n n

However, this sequence can be made to diverge by changing the metric on R.

Example

1
2.2. In the metric space (R,dy;sc), the sequence () diverges.
n/ neN*

Proo

!

1
. Using the definition of the discrete distance (1.1) we obtain 5(,0) =1 because
n
1 1
— #0. Hence, if we take e <1, we obtain 6(—,0) > €.
n n

.4

Proposition 2.1. Let (X,d) be a metric space. The sequence (zy,)nen converges to xg € X

if and only if the sequence (d(xy,x0)) converges to 0 in (R,dy).

Proof . Suppose first that x,, — x¢ in (X,d). Then for any € >0, there is an Ny € N such

that d(xy,x0) = |d(zn,z0)| < e for all n > Ny, but this precisely the same as d(xy,xo) — 0 in
(R,dy). Conversely, if d(xp,z9) — 0 in (R,dy), then for every e >0 there is an Ny € N such

)
that d(xp,x0) = |d(xn,x0)| <& for allm = Ny, and this precisely what it means to have x,, — xg
in (X,d).

L
2.3. The sequence (xp)nen+ defined by x, = <, ) converges to (0,0) in the three
n’'n

metric spaces (R?,dy), (R? ds) and (R?,dy).

. We have

The result follows immediately from Proposition(2.1).
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.4

| Proposition 2.2. If a sequence converges then its limit is unique.

Proof
. Suppose that the sequence (ry)nen converges to both x and y. Then, for every e >0
there exists a (sufficiently large) No € N such that

VneN, n> Nyg= d(zp,z) < g and d(xn,y) < g
from which we conclude that for every e >0,

VneN, n> No = d(v,y) <d(v,zn)+d(rn,y) < g—l— =g,

<
2

i.e., d(xz,y) =0, namely x =y.

4

Proposition 2.3. Let F' be a subset of a metric space (X,d) and L is the set of all x € X
such that x is the limit of some sequence of elements of F'. Then, F is closed if and only
if F=L.

— ) Suppose that F is closed.

o LCF ?7) Take x € L, meaning that x is a limit of a sequence (xy)nen of elements of F. If
xv ¢ F, then x € Cx F' (which is an open), implying that there exists r >0 such that B(x,r) CCx F.
Since x, — x, there exists Ny € N such that for all, n > Ny we have d(xy,,x) <r. This means
xy, € B(z,r) C Cx F, which contradicts the fact that x,, € F.

e FC L7 Letx € F, then we can consider x as a limit of the constant sequence x, = x which
implies that x € L.

< ) Suppose that the limit of all convergent sequence of F belongs to F'. Let x € CI(F'). Then

1
B(z,r)NE #0 for all r > 0. Thus, for all n € N*, there exists x,, such that x, € B(x,—)NF.
n
1
Then, (xy) is a sequence of elements of F that satisfies d(xy,x) < — for all n € N*, which
n
implies, T, — x. Therefore, x € F' (by hypotheses), which implies that F is closed.

Using the previous proposition we obtain the following result.
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e \

Proposition 2.4. Let (X,d) be a metric space and F be a subset of X, then :

(2.2) OZ(F):{xGX:EI(a:n)CF/ lim xnzx}

n—-+o0o

J

& )

Proposition 2.5 (Sequential continuity). Let (X,dx), (Y,dy) be two metric spaces and
f:(X,dx) — (Y,dy). Then, f is continuous at xq if and only if for every sequence
(Zn)neny C X, we have

X ngniooxn =19 = nirrioof(xn) = f(zo) ( fis sequentially continuous). )

=) Suppose that [ is continuous at xo and let (x,) be a sequence in X that converges to xg.

Since x, — xq,
Ve >0, dng(e) eN / VneN, n>ny = dx(xn,20) <e.
Since f is continuous at xg,
Ve >0, 3d(e,x0) / Ve e X, dx(z,x0) < d = dy(f(z), f(xg)) <e.
Then, it is enough to take ¢ = § to obtain,
V' nzno, dx(zn,z0) <6=¢e= dy(f(zn), f(z0)) <&,

which shows that [ is sequentially continuous.

<) Suppose that f is not continuous at xo. Then, there exists € >0 such that for all § >0,

there exists xg that satisfying,
dx(ws,70) <6 et dy(f(xs), f(z0)) > €.

1
Thus, for 6 = — there exists a sequence () such that:
n

(e 70) < et dy(f (), f(x0)) > <

This shows that (x,) converges to xq, but (f(xy)) does not converge to f(xg). Therefore

f does not sequentially continuous at xg.
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2.2. In the third chapter (Topological Spaces), we will demonstrate that in the more

general context of topological spaces, continuity always implies sequential continuity; however,

the converse is not true.

2.2 Cauchy sequences and completeness

The

definition of Cauchy sequences in general metric spaces is a straightforward generalization

of their definition in the real line.

@

\U

\

Definition 2.2. Let (X,d) be a metric space. A sequence (xn)nen of elements of X is
called a Cauchy sequence if for every e > 0, there exists ng € N such that d(xy,xy) <&

for all n,m > ng. In other words,

(2.3) Ve >0, Ingle) €N / Y(n,m) e N2, n,m > ng = d(xn,xm) < €. )

Example
24

1.

The sequence (zr),>1, where T, =1+ % +- 4 %, does not satisfy Cauchy’s criterion for

convergence. Indeed, we have

’ | LS SRS TR S SO S
Top —Tp|=——+——+ "+ — — =
T R ) 5 = on " on o 2

Thus, it is not the case that |x, —xym| — 0 as n and m become large.

In (C[0,1],R), the sequence (fn), >, given by
nx
= 1
fn<x) n+x7 S [07 ]7

is Cauchy in the uniform metric. For m > n, the difference between the functions is given

by
max nt  (m—n)z?

fm() = fn(r) = m+z ntz  (mtz)(ntaz)

Since this function is continuous on [0,1], it attains its mazimum at some point xg € [0, 1].
Thus, we have

2 2
(m—n)xf < %0 1

d(fm: fn) = sup |fm(2) = ful2)| = <=0,

z€[0,1] (m+zo)(n+z9) ~ ntzo n

for large m and n.

If (zp) is a Cauchy sequence in the discrete metric space (X,0), then §(xp,xm) < e =

Ty = Ty for any e < 1. Thus, the sequence (xy,) is convergent.
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@ )

Proposition 2.6. In a metric space (X,d), we have:
1. Every convergent sequence is a Cauchy sequence.
2. Every Cauchy sequence is bounded.

3. Every subsequence of a Cauchy sequence is also a Cauchy sequence.

U 4. Bvery Cauchy sequence that has a convergent subsequence is convergent. )

1. If xp, — g, then for every € > 0, there exists ng € N such that for all n > ngy, we have

€
d(xn,x0) < 5 Therefore, if n > ng and m = ngy, we obtain

d(xn, xm) < d(zp,20) + d(2m,x0) < %4—% =c.

2. If (zp) is a Cauchy sequence, then for ¢ =1, there exists ng € N such that d(zp,zn,) <1
for alln >ng. Let r = max (d(zpy,21),...,d(Tny, Tng—1),1). Then, for alln € N, we have
d(zp,xn,) <1, which implies that (xy) C B(Zp,,7).

3. Obvious.

4. Suppose xp, — xg. Then, for every e >0, there exists ny € N such that for all ny = nq,

£
we have d(xp,,xo) < 3 Since (xy,) is a Cauchy sequence, there exists ny € N such that

£
for all n,m > na, we have d(xy,,xm,) < 7 Let ng = max(ny,n2) and choose k such that

ng = ng to obtain:
VneN, n>ng= d(z,,z0) < d(n,zn,) +d(Tn,,20) < g+§ =e.

Thus, x, — xq.

4

Definition 2.3. A metric space (X,d) is said to be complete if every Cauchy sequence in

(X,d) converges to a limit that is also in X.

Example
25

1. The space (R,|.|) is complete because every Cauchy sequence is convergent in R.

2. The Cauchy sequence (%) does not converge in (0,1), and therefore (0,1) is not complete.
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3. In a discrete metric space, every Cauchy sequence is convergent (see Example 2.4(3)),

and therefore every discrete metric space is complete.

4

Proposition 2.7. Let (X,dx) and (Y,dy) be two metric spaces. If f: (X,dx) — (Y,dy)
is uniformly continuous and (xy) is a Cauchy sequence in (X,dx), then (f(zn)) is a

Cauchy sequence in (Y,dy).

Proot]

xy) is a Cauchy sequence in (X,dx), then we have:

Ve >0, 3 ng(e) €N such that ¥(n,m) € N2, n,m > ng = dx(tn,zm) < €.
Since f is uniformly continuous, for € =40, we obtain :
Y(n,m) e N2, n,m > ng = dy(f(z,), f(zm)) <e.

Therefore (f(xy)) is a Cauchy sequence in Y.

R k
2.3. The previous proposition is false if f is only continuous. For example, consider

1
the function f:((—1,1),|.|) — (R,].|) defined by f(x) = 1—x|x| Let xy, =1— e The sequence

(f(xn)) is not a Cauchy sequence.

.4

Proposition 2.8. Let (X,dx) and (Y,dy) be two metric spaces, and let f: (X, dx) —
(Y,dy) be a uniformly continuous homeomorphism. If (Y,dy) is complete, then (X, dx)

is also complete.

Broot] 1.,

sequence in'Y. Since Y is a complete space, we conclude that (f(xy,)) is convergent. This implies

xy,) be a Cauchy sequence in X. Then, by Proposition (2.7), (f(xy)) is a Cauchy

the convergence of (xy) in X because =1 s continuous.

k
2.4. The converse of the previous proposition is not true.
2.6. Let (X,dx) and (Y,dy) be two metric spaces defined as follows:

e X =1[0,1] is the closed interval in R, with the standard metric dx(x,y) = |z —y|. This space
is complete because every Cauchy sequence in [0,1] converges to a point in [0,1].
e Y =(0,1) is the open interval in R, with the standard metric dy(z,y) = |x—y|. This space is

not complete. For example, the sequence x, = % is a Cauchy sequence in (0,1), but it converges
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to 0, which is not in (0,1).
Now define a homeomorphism f:[0,1] — (0,1) by:

This function is uniformly continuous and is a homeomorphism because it is continuous, bi-
jective, and its inverse is also continuous. Thus, the converse of the proposition is false: even
though (X,dx) is complete and f is a uniformly continuous homeomorphism, (Y,dy) is not

complete.

Using the previous proposition, we obtain the following result.

4

Proposition 2.9. If (X,dx) and (Y,dy) are two isometric spaces, then (X,dx) is complete

if and only if (Y,dy) is complete.

phisms.

. Fuident, because every isometry and its inverse are uniformly continuous homeomor-

# h
Proposition 2.10. .

1. Every complete subset in a metric space (X,dx) is closed.

\| 2. FEvery closed subset in a complete metric space (X,dx) is complete. )

1. Let A be a complete subset of X, and let x € CI(A). Then there exists a sequence (xy,) of
elements in A such that x,, — x (see Proposition (2.4)). Since (zy,) is a Cauchy sequence
i A, and A is complete, it follows that x € A. This shows that A is closed.

2. Let (X,dx) be a complete metric space, and let (z,,) be a Cauchy sequence in a closed
subset A C X. Then (xy,) is a Cauchy sequence in X, which is complete, so x, — x € X.
Given that A is closed, we deduce that x € A, which shows that A is complete.

Using the previous proposition, we obtain the following result.

Section 2.2 Dr. CHOUGUI Nadhir 37



CHAPTER 2. COMPLETE METRIC SPACES

.4

Proposition 2.11. Let X be a complete metric space, and let A be a subset of X. Then,
the metric subspace (A,d ) is complete if and only if A is closed in X.

Example
27

1. The intervals (a,b), (a,+00), and (—o0,b) are not complete because they are not closed.

2. The intervals [a,b], [a,+00), and (—o0,b] are complete because they are closed in R.

.4

Proposition 2.12. The product of a finite number of metric spaces is complete if and

only if all its factors are complete.

. Ezercise.

2.3 Contractive mapping theorem

.4

Definition 2.4. Let X be a set and let f: X — X. A point v € X is called a fixed point
of fif f(z)==.

.4

Theorem 2.1 (Banach fixed point theorem). Let (X,dx) be a complete metric space.
If f: X — X is a contraction (see Definition (1.25)), then it has a unique fixved point
z e X,

if we assume that n > m, we obtain:

. Consider a recursive sequence given by tni1 = f(xy,) with xg € X. For all n,m € N,

n—1 n—1
(1) Alen om) < 3 dlwess,ze) = 3 d(f (1), f*(x0) -

f=m

On the other hand, using the contraction property, we obtain:

(2) d (f'(x1), f(w0)) <k (£ (21), £ (o)) < Kl (1,20).
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Now, keeping in mind that 0 < k <1 and using (1) and (2), we obtain:

n—1 1 — gn—m—1 Em
(3) d(zn,2m) < Y Kd(21,20) = K (@1,20) < T—d (@1,20).
{=m o o
m
Since n%gnooﬁ =0, we conclude from inequality (3) that () is a Cauchy sequence and

therefore convergent to x € X because (X,dx) is complete. Since f is continuous, we obtain:

f(x) = nh_{gof (zn) = nli_>nolo$n+1 =T

Thus, x is a fized point of f.

For uniqueness, suppose that x1 and xo are two fixed points of f. Then we have:
d(z1,22) =d(f(21), f(22)) < kd(z1,22) = (1 — k)d(z1,22) < 0.

Since 0 < k <1, we conclude from the last inequality that x1 = x3.

Bomai] ,

1. A function having one or multiple fized points does not imply that it is a contracting

function.

2. The assumption that " f is contracting " cannot generally be replaced by the weaker as-

sumption d(f(z), f(y)) < d(z,y) for all x #vy, as demonstrated by the following example:
[ (R]]) — (R,].]) such that f(x)=1/1+x2.

1
3. The assumption that "X is complete” is fundamental. For example, if X = <0, 4) (which

is not complete) and f: X — X is defined by f(x) = 2%, then f is a contraction on X
that has no fixed point in X.

This theorem can be easily generalized in the following way.

4

Theorem 2.2. Let (X,dx) be a complete metric space and let f: X — X. If there exists

n € N* such that £ is a contraction, then f has a unique fized point.

. Since (X,dx) is complete and f(”) is a contraction, f(”) has a unique fized point
xo € X. Since f) (f(x)) = f(f(n)(xo)) = f(=xo), it follows, by the uniqueness of the fized
point of ), that f(zo) = x0, and thus xqg is the unique fized point of f.
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.4

| Proposition 2.13. If f: R — R with |f'(x)| < k < 1, then f has a unique fized point.

. Using Proposition (1.21), we conclude that f is a contraction on R, and since R is
complete, we conclude by Theorem (2.1) that f has a unique fixed point.

2.8. Let f:]0,1] — [0,1] be defined by f(x) = - We have |f'(x)| = 5 < 5 < 1,

and [0,1] is complete because it is a closed subset of R, which is complete. Therefore, using
Theorem (2.1), we conclude that f has a unique fized point.
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TOPOLOGICAL SPACES

3.1 Topology, Open sets and Closed sets

Let X be a non-empty set and P(X) be the power set of X.

.4

Definition 3.1. A topology on X is a collection of sets T C P(X) that satisfies :

A1) 0 and X are elements of T,

A2) any union (finite or infinite) of elements of T is an element of T, that is, for any

collection {O; € T : i€ 1} we have JO; €T,
el

As) any finite intersection of elements of T is an element of T, that is, for any collection

{0; € T: 1<i<n} we have ﬁOiET.
=1

The pair (X,T) is called a topological space, and the elements of T are called open sets

of the topology.

3.1. Let X={1,2}. The topologies defined on X are:

i = {0,X}.
To = {0,X,{1}}.
T3 = {0,X,{2}}.

3.2. Let X={w,y,z,t,s,w} and T ={X,0,{z},{z,t},{z,2,t},{y, 2, t,s,w}}. Then

T is a topology on X as it satisfies conditions (A1), (Az2) and (As) of Definition(3.1).
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3.3. Let X ={x,y,2,t,s} and T ={X,0,{x},{2,t},{x,2,s},{y,2,t}}. Then T is

not a topology on X as the union {z,t}U{x,z,s} = {x,2,t,s} of two members of T does not
belong to T ; that is, T does not satisfy condition (Az2) of Definition(3.1).

3.4. Let N the set of all natural numbers and let T the collection consisting of

N, 0 and all finite subsets of N. Then T is not a topology on N, since the infinite union
{3yu{4tu{b}u---U{n}tU---={3,4,5,...,n,...} of members of T does not belong to T ; that
is, T does not have property (Az) of Definition(3.1).

.4

Definition 3.2. Let X be any non-empty set and T the collection of all sets of X (the
power set of X). Then T is called the discrete topology on the set X and is denoted by
Tpise- The topological space (X, Tpisc) is called a discrete space.

.4

Definition 3.3. Let X be any non-empty set and T ={X,0}. Then T is called the indis-
crete topology or trivial topology and is denoted by Trq. The topological space (X, Trq) is

called an indiscrete space.

3.1. FEvery set indeed admits at least two topologies.

Tl

Definition 3.4. Let (X,T) be a topological space. A subset F' of X is said to be a closed
set in (X, T) if its complement, namely CxF or X\ F, is open in (X,T). We denote by
F the set of all closed subsets in (X,T).

Example
3.5. In Example (3.1), if we consider the topology Tz, then the set {2} is closed.

Example

3.6. In Example(3.2), the closed sets are

‘F = {®7X7 {y7z7t787w} ) {x7y787w} ) {y7s7w} Y {x}} °

Example

3.7. Let X=(R,|-|). Then N and Z are closed.

Section 3.1 Dr. CHOUGUI Nadhir 42



CHAPTER 3. TOPOLOGICAL SPACES

\

W)

Proposition 3.1. Let (X,7) be a topological space. Then, the collection F of closed sets

in X satisfies the following properties:
P1) X and 0 are closed sets,

Py) any finite union of closed sets is closed,

\ P3) any arbitrary intersection of closed sets is closed. )

in a topology. Indeed:

. These properties of closed sets directly follow from the properties verified by open sets

o We have seen that X and 0 are open, and since bx0) = X and CxX =0, we conclude that
X and O are closed. Thus, (P1) is verified.

o Let {F;:i=1,2,...,n} be a finite family of closed sets in X. Then, for alli=1,2,... n,

n n
their complements Cx F; are open sets. But Cx ( U FZ> = N CxF; is an open set (because
=1 =1

n
it is a finite intersection of open sets). Hence \J F; is a closed set. Thus, (P) is verified.
i=1

o Let {F;:i €1} be any family of closed sets of X. Then, for all i € I, their complements

CxF; are open sets. But Cx | N FZ> = UCxFE; is an open set (because it is an union of
el el

any open sets). Hence, (N F; is a closed set. Thus, (Ps) is verified.
el

3.2. A topology can be defined either by the collection of its open sets or by the

collection of its closed sets.

k
3.3. A subset of a topological space can be both open and closed. Moreover, a subset

of a topological space can be neither open nor closed.

3.8. If we consider Example(3.2), we see that

1. the set {x} is both open and closed;

2. the set {y,z} is neither open nor closed.

.4

Definition 3.5. A subset A of a topological space (X,7T) is said to be clopen if it is both
open and closed set in (X,T).
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Example
3.9

1. In a discrete space all subsets in (X, Tp;s) are clopen.
2. In a indiscrete space the only clopen subsets in (X, Trnq) are X and ().

3. In every topological space (X,T) both X and () are clopen.

e N
Definition 3.6. Let X be a non-empty set, and

Toor = {0 CX:CxO is finite} U{0}.

| Then, (X,Tcor) is a topology, and is called the cofinite topology on X. )

Once again is necessary to check that 7¢, in the previous definition is indeed a topology; that

is, that it satisfies each of the conditions of Definition(3.1).

3.2 Neighborhoods
4

Definition 3.7. Let (X,T) be a topological space. A subset N, of X is called a neighbor-
hood of x in X if there exists an open set O, of X such that x € O, C N,. The collection
of neighborhoods of x is denoted by N(x) and is called the neighborhood system at x.

Figure 3.1: Neighborhood N,
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The previous definition can be written in the following form:

(3.1) (N is a neighborhood of x) < (3 0, € T / x € Oy C Ny).

@ )

Definition 3.8. Let (X,7T) be a topological space. We say that a subset N of X is a
netghborhood of a non-empty subset A of X if there exists an open set O in T such that
ACOCN. In other words:

\ (3.2) (N is a neighborhood of A) < (30 € T such that AC O C N). y

Example
3.10.

1. Let (X, Timg). Then, for all x € X we have N (z) = {X}.
2. Let (X, Tpise) and x € X. Then, every subset of X that contains x is an element of N'(z).

3. Let (X,7)=(R,|.|) and x € R. Then, every subset of R that contains an interval centered

at x is a neighborhood of x.
4. Let X=1{1,2,3,4} and T ={0,X,{1},{4},{1,4}}. Then we have:

o N(1)={{1}.{1.2},{1,3},{1,4}.{1,2,3},{1,2,4},{1,3,4},X};
o N(2)={X};
o N({1.4}) = {{1.,4},{1,2,4},{1,3,4},X}.

3.4. It follows from the previous definition that if B C A, then every neighborhood
of A is a neighborhood of B.

.4

Proposition 3.2. Let (X,T) be a topological space and A a subset of X. Then, we have

(3.3) (N is a neighborhood of A) <= (Vx € A: N € N(x)).
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=) Obvious.

<) Suppose that N is a neighborhood of every point in A. Then, we have
(3.4) Vee A, 30, €T J x €0, CN,

from which we conclude that AC |J O, C N, and since U Oy € T, it follows that N is

x€A x€A
a neighborhood of A.

.4

Proposition 3.3. Let (X,7) be a topological space. A non-empty set A is an open set in
X if and only if A is a neighborhood of each of its points.

—) Suppose A is an open set in X. Then, using Definition (3.7), we conclude that A is a
neighborhood of each of its points.

<) Suppose A is a neighborhood of each of its points. Then, for every x € A, there exists

Oy €T such that x € Oy C A, hence A= | O. Therefore, A is open as a union of open
r€A
sets.

@ )
Proposition 3.4. Let (X,T) be a topological space. The neighborhoods of a point satisfy
the following properties:

1. For every N € N(x), we have x € N.

2. For every N € N(z) and every U CX, if N C U then U € N(z).

3. Any finite intersection of neighborhoods of x is a neighborhood of x.

4. For every N € N(x), there exists W € N (x) such that for every a € W, we have

U N e N(a). )
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o The two properties 1 and 2 are evident.

o For the third property, if {N;:i=1,...,n} is a family of neighborhoods of x € X, then for
all i =1,...,n, there exists O; € T such that x € O; C N;, from which we conclude that
n n n n
re NO; C NN;. We deduce that N\ N; € N () because N O; € T.
=1 1 i=1 i=1

1= 1=

o For the fourth property, if N € N'(x), then there exists O € T such that z € O C N. This
implies that N is a neighborhood of every point a € O. Then, it suffices to take W = O
to verify that property (4) is holds.

3.3 Comparison of topologies

@ )

Definition 3.9. Let 71 and T3 be two topologies on a set X. We say that 71 is finer than
T (or that Tz is coarser than Ti) if To € T1. In other words, Ty is finer than Ty if one of
the following three statements holds:

1. Every open set in (X,T3) is also an open set in (X, 7T1).
2. FEvery closed set in (X,T2) is also a closed set in (X,T1).

3. If x € X, then every neighborhood of x in (X,T2) is also a neighborhood of = in

\ (X, T1). )

3.5. If T is finer than T2 and Ta is finer than Ty, we say that Ti and Ty are

equivalent.

3.11. For any topological space (X,T), the indiscrete topology on X is coarser than

T which in turn is coarser than the discrete topology on X.

| |
3.12. The Sierpinski space S consists of two points {0,1} with the topology

{0,{1},{0,1}}. The topology of Sierpinski space is finer than the indiscrete topology Trng =
{0,{0,1}} on {0,1} but coarser than the discrete topology Tpise = {0,{0},{1},{0,1}} on {0,1}.

3.13. If X = {z,y,z}, then T1 = {0,{z}, X}, T2 = {0,{z,y}, X}, and T3 =

{0,{z},{x,y},X} are three distinct topologies on X. The topologies Ti and Ts are coarser

than T3; however, Ti and T are not comparable.
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.4

Proposition 3.5. Let {7;:i € I} be a collection of topologies on X. Then, NT; is a
el
topology on X that is the coarsest of each of the topologies T;.

. Obvious.

.4

Proposition 3.6. Let 3 be a family of subsets of X. There exists a smallest topology that
contains . This topology is called the topology generated by .

topology. Therefore, it is enough to take the intersection of these topologies.

. The set of topologies that contain (5 is not empty because it contains the discrete

3.4 Base and Neighborhood base

.4

Definition 3.10. Let (X,T) be a topological space. A basis for the topology T is a family

B C T such that every set in T is a union of sets from ‘B.

Example
514

1. Let the topological space (R,|.|) and x € R. The collection:

B = {|z,y[ z,y e R},

is a basis for the usual topology.

2. In the topological space (X, Tpisc), the collection:
B ={{z} :zeX},

is a basis for the discrete topology.

3. Let X={x,y,z} and T ={0,{z},{y},{z,y},X}. The collection:

B = {{z},{y}, X},

is a basis for this topology.
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4. If (X,T) is a topological space, then T is a basis for itself.
5. In the topological space (X, Tq), the collection:
B = {X},

s a basis for the indiscrete topology.

3.6. If B is a basis for a topological space (X,T) and B’ is a family that contains

B, then by using the previous definition, we conclude that B’ is another basis for T. Therefore,

a topological space can have multiple bases.

7 )
Proposition 3.7. Any basis B of a topology T on X has the following two properties:

1. For every x € X, there exists B € B such that x € B.

U 2. If B1,B2 €5 and x € B1N By, then there exists By € B such that x € B3 C By ﬂBy

1. Since X is an open set, we have X = UB (see definition (3.10)), from which it follows
that for every x € X, there exists B € ’B such that x € B.

. Suppose that B is a basis of the topology T.

2. If B1,By € B, then By,Bs € T (since B C T ), which implies that By N\ Ba € T. Thus,
B1N By = UB (see definition (3.10)). Therefore, for every x € By N Ba, there exists

Bs B such thathBgCBlﬂBg

.4

Proposition 3.8. If B is a family of subsets of a set X that satisfies the two properties
of Proposition (3.7), then T ={UB: B € B} is a topology on X.

Now, using the two previous propositions, we obtain the following result:

4

. We leave it as an exercise.

Proposition 3.9. Let (X,7T) be a topological space. Then, a family of subsets B of X is

a basis for T if and only if B satisfies the two properties of Proposition (3.7).
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.4

Proposition 3.10. Let (X,T) be a topological space and B a subset of T. Then, B is a
basis for T if and only if for every O € T and for every x € O, there exists U, € B such
that: x € U, C O.

<) It is clear that O = U U, hence B is a basis for T.
x€0

=) If B is a basis for T, then every subset O of T is a union of elements of B, which means
that for each element x € O, there exists Uy € B such that x € U, C O.

.4

Proposition 3.11. Let By be a basis of a topology T and Bo a family of subsets of T .
If every element of B is a union of elements of Bo, then Bo is a basis for T.

. Let O € T. Then, there exists {O; :i € I and O; € B1} such that O = | O; (because
el
B is a base for T ) and since every element of By is a union of elements of Ba, there exists

{Uij:j€J and U;; € Ba} such that O; = U U; j for alli € I. Thus, we obtain O = UU;; .
JjeJ (i,5)eIxJ
Therefore, B2 is a base for T .

.4

Definition 3.11. A collection S(x) C N (z) is called a neighborhood base at x if for every
neighborhood Ny, there is a neighborhood W, € S(x) such that Wy C N,. We refer to the

sets in S(x) as basic neighborhoods of x.

Example
3.15.

1. Let (X,T) be a topological space. Then, we have:

S(x)={0eT:ze0}

s a neighbourhoods base of x.

2. In the topological space (X, Tpisc), we have:

S(r) = {{z}}

is a neighborhoods base of x.
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3. Let the topological space (R,|.|) and x € R. Then, we have:

S(z)={(xr—e,x+¢) :e>0}

is a neighborhoods base of x. For example:

S(a:)—{(x—rll,x—i-i) :nGN*}

s a countable neighborhoods base of x.

3.5 Interior points, Adherent points, Accumulation points,

Isolated points, Boundary points, Exterior points

and Dense sets.

3.5.1 Interior points

g )

Definition 3.12. Let A be a subset of a topological space (X,T). We say that x is an
interior point of A if A is a neighborhood of x, in other words,

(3.5) x is an interior point of A<= A € N (x).

The set of all interior points of A is called the interior or the interior set of A and is
\ denoted by Int(A). )

Example
3.16.

1. Consider the topological space (X, Tq) and let A CX. Then, we have the following two
cases:

o X = A= Int(A)=X.
o X# A= Int(A)=10.
2. Consider the topological space (X, Tpisc) and let ACX. Then, Int(A) = A.
3. For the topological space (R,|.|), we have:
e VzeR, Int{z}=0.

o Vz,y €R, Int([z,y]) = Int([z,y)) = Int((z,y]) = Int((z,y)) = (z,y).
o Int(N) = Int(Z) = In(Q) = Int(CrQ) = 0.
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4o X ={2,y,2,t} and T = {X,0,{z}, {y}, {z.y}}, then we have:

o Int{z} = Int{t} =0.
o Int{x,z,t} ={x}.

.4

| Proposition 3.12. Int(A) is the largest open set contained in A.

. We will show that Int(A) is the union of all open subsets of A.
For every x € Int(A), we have A € N(x) (see definition (3.12)). Using definition (3.1), we
conclude that: for every x € Int(A), there exists Oy € T such that x € O, C A, which leads to:

(i) Int(A)c |J O,c | O..
z€Int(A) €A

Conversely, if € |J Oy then x € O, C A, which implies A € N(z), so x € Int(A). This means
z€A
that:

(i) U Oz C Int(A).

T€EA

From (i) and (ii) we conclude that:

Int(A)= | O,.

T€EA

Finally, Int(A) is the largest open set contained in A because it is the union of all open subsets

of A.
k
3.7. The previous proposition allows us to write the following result:

(3.6) A is open in X <= A = Int(A).

@ )

Proposition 3.13. Let (X,7T) be a topological space and A, B two subsets of X. Then,

we have:
1. If AC B and A is open, then A C Int(B).
2. If AC B, then Int(A) C Int(B).

3. Int(A) = Int(Int(A)).

4. Int(ANB) = Int(A)NInt(B).
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5. Int(A)UInt(B) C Int(AUB).

‘ 6. A€ N(B) <= B C Int(A).

. (Ezercise).
3.8. We have Int < N A¢> C N Int(4;) if I is infinite.

il il

3.5.2 Adherent points
@ )

Definition 3.13. Let (X,T) be a topological space, A C X, and x € X. We say that x is
an adherent point to A if and only if every N € N'(z) contains at least one point of A. In

other words:

(3.7) x is an adherent point of A<=V N € N(x), NNA#0.

\| The set of all adherent points to A is called the closure of A, and it is denoted by CZ(A))

3.9. It follows from this definition that A C Cl(A).
Example
517

1. If A is a subset of X with the indiscrete topology Tina, then Cl(A) =X.

2. If A is a subset of X with the discrete topology Tpisc, then Cl(A) = A.
3. Consider the topological space (R,|.|), then:
o VzeR, Cl({x})={z}.
o Vz,y €R, Cl([z,y]) = Cl([z,y)) = Cl((z,y]) = Cl((z,y)) = [z,y].
e CI(Q)=0CIlrQ)=R, CIN)=N, Cl(z)="Z.
4. If X={x,y,2,t} and T ={X,0,{z},{y},{x,y}}, then for example:
o Cl({z}) ={=,2,t}, Cl({y}) ={y. 2 t}.
o Cl({z}) ={zt}, Cl({t})={z1}.

.4

| Proposition 3.14. CI(A) is the smallest closed set that contains A.
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. We will show that CI(A) is the intersection of all closed sets that contain A. Let
F = N F;, where F; is a closed set that contains A for alli € I.
el

?
. (F C Cl(A)) Let ¢ Cl(A). Then there exists an open set O € N () such that ONA=1),

which implies A C CxO. Therefore, CxO is a closed set that contains A and x ¢ CxO which
leads to x ¢ F. Thus, we have:

(i) F CCI(A).
?
. (CZ(A) C F) Now, let v ¢ F. Then x € CxF (which is open), but Cx FNA =0, leading
to x ¢ Cl(A). Thus, we have:

(i4) Cl(A)C F.

From (i) and (ii), we conclude that Cl(A) = F. Therefore, Cl(A) is the smallest closed set that
contains A.

k
3.10. The previous proposition allows us to write the following result:

(3.8) A is closed in X <= A= CI(A).

g )

Proposition 3.15. Let A and B be two subsets of the topological space (X,T). Then, we
have:

1. AC B= CI(A) C CI(B).
2. CI(AUB) = CI(A)UCI(B).
3. Cl(ANB) C CA)NCI(B).
4. CxCl(A) = Int(Cx A).

5. Cl(CxA) = CxInt(A).

6 cucua) =cia). )

. (Ezercise).
3.18. If A=(1,2) and B =(2,3), then CI(ANB) =(. However, CI(A)NCI(B) =

[1,2]N[2,3] ={2}. This example shows that, in general, the inclusion in (3) is not an equality.
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3.5.3 Accumulation points
g; )

Definition 3.14. Let (X,T) be a topological space, A C X, and x € X. We say that z is

an accumulation point of A if and only if every N € N'(z) contains at least one point of

A other than x. In other words:

(3.9) x is an accumulation point of A<=V N € N(z), (N~ {z})NA#0.

U The set of all accumulation points of A is called the derived set of A and is denoted byA/)

It follows from this definition that any point adherent to A but not belonging to A is an

accumulation point. Therefore, we have the following result:

(3.10) A'UA = Cl(A).

Example
3.19.

1. Let X={z,y,z,t,s}, T =10,X,{z,y},{z,t,s}}, and A={x,y,z}. Then, we have A’ =
{z,y,t,s}.

2. If A is a subset of a topological space (X, Tpysc), then A" = ().

3. In (R,|-|), we have N' =7 = ).

4

Proposition 3.16. A subset A of a topological space (X,T) is closed if and only if it

contains all of its accumulation points.

. Evident (from relation (3.10)).
3.5.4 Isolated Points
@; )

Definition 3.15. Let (X,7T) be a topological space and A C X. We say that a point x € A
is an isolated point if and only if there exists N € N'(x) such that N contains no other

points of A except x. That is:

x is an isolated point in A<= IN e N'(z), NNA={z}.

\ The set of all isolated points of A is denoted by Is(A). Y
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Example
3.20.

1. In the topological space (R,|-|), we have [s(N) =N and Is(Z) =Z.
2. Every point in a topological space (X, Tpisc) 1S isolated.

3. Let X={x,y,2,t,s}, T={0,X{z},{y},{z,y}}, and A={y,z,t}. Then, I1s(A)={y}.

3.5.5 Boundary points
@ )

Definition 3.16. Let (X,T) be a topological space, A C X, and x € X. We say that z is
a boundary point of A if it adheres to both A and CxA. In other words:

x s a boundary point of A <=z € C1(A)NCI(CxA).

U The set of all boundary points of A is called the boundary of A and is denoted by 3(14))

8.11. Using property (5) of Proposition (3.15), we obtain:

d(A) =Cl(A)NCI(CxA)
(3.11) = Cl(A)NCxInt(A)
= CI(A) — Int(A).

@ )
Proposition 3.17. Let A be a subset of a topological space (X,T). Then,
1. 0(A) is a closed set.
2. A is both open and closed <= O(A) = .

3. A is open <= 9(A)NA=0.

\ 4. A s closed <= 0(A) C A. )

. (Ezercise).
E 1
321

1. If A is a subset of a topological space (X, Tpisc), then O(A) = 0.

2. In the space (R,]|-|):
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o If A= (a,b), then O(A) = Cl(A) — Int(A) = [a,b] — (a,b) = {a,b}.
o IfA=1Z, then 0(A)=CIl(A)—Int(A)=Z—-0="Z.

3.5.6 Exterior points
g )

Definition 3.17. Let (X,T) be a topological space, A C X, and x € X. We say that x is

an exterior point of A if it belongs to the interior of CxA. In other words:

x is an exterior point of A <= x € Int(CxA).

U The set of all exterior points of A is called the exterior of A, and it is denoted by Ext(A))

3.12. Using property (4) from Proposition (3.15), we obtain the following result:

Ext(A) = Int(CxA) = CxCI(A).

@ )
Proposition 3.18. Let A and B be two subsets of a topological space (X,T). Then,
1. Ext(A) is an open set.
2. Ext(A) C CxA.
3. Ext(A) = Ext(CxExt(4)).

4. Ext(AUB) = Ext(A)NExt(B).

| 5 Cl(4) =X Bat(4) =0, D

. (Ezercise).

3.5.7 Dense sets
Q )

Definition 3.18. Let (X,T) be a topological space, and let A and B be two subsets of X.
We say that A is dense in B if and only if every point of B is an adherent point of A, in
other words:

(3.12) A is dense in B <= B C Cl(A),
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k and we say that A is dense in X if and only if C1(A) =X or Int(CxA) = 0. J

Example
3.2

1. If X is equipped with the indiscrete topology, then every non-empty subset of X is dense
in X.

2. If X is equipped with the discrete topology, and A and B are subsets of X such that B C A,

then A is dense in B. Moreover, no subset A # X is dense in X.

3. In (R,|-|), let A=1la,b) and B = (a,b). It is clear that A is dense in B because B C
Cl(A) = [a,b].

4. We have seen that Q is dense in R since Cl(Q) =R.

5. Let X={z,y,z,t} and T ={0,X,{z},{z,y}}. Define A={t} and B={x,z}; we find that
B is dense in A because A C Cl(B) =X, but A is not dense in B since B¢ Cl(A) ={z,t}.

. 4

Proposition 3.19. Let (X,T) be a topological space, and consider three subsets A, B,
and C of X. If A is dense in B and B is dense in C; then, A is dense in C.

. On the one hand, since A is dense in B, we have B C Cl(A)), which implies that

(i) CI(B) C Cl(A).

On the other hand, since B is dense in C', we have
(ii) C CClB).
From (i) and (i1), we conclude that C' C CI(A), so A is dense in C.

k
3.13. The previous proposition shows that density is a transitive property.

The following property is a very practical characterization of dense subsets.

.4

Proposition 3.20. Let (X,7) be a metric space, and let A CX. Then, A is dense in X

if and only if every non-empty open set in X contains at least one element of A.
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=) Suppose that A is a dense subset of X and O is a non-empty open set in X. Since
Cl(A) =X, it follows that O C CI(A). Thus, ANO # 0 because O is a neighborhood of

each of its points.

<) Assume that ANO %0 for every open set O in X. This implies that for any neighborhood

N of any point x € X, we also have NN A # (), since N contains a non-empty open set.
Therefore, x € Cl(A), and consequently, Cl1(A) =X.

3.6 Separated Spaces (Hausdorff Spaces))
.4

Definition 3.19. A topological space (X,T) is said to be separated or Hausdorff if and

only if, for any two distinct points x and y in X, there exist neighborhoods N € N (z) and
W e N(y) such that NNW = 0.

Example
3.2

1. The space (X, Tpisc) s separated.

2. If card(X) > 2, the space (X, Tnq) is not separated.
3. The metric space (R,|.|) is Hausdorff.

4. The space (X, Tcor) is not separated.

4

Proposition 3.21. Let (X,T) be a topological space. Then, X is separated if and only if

for every x € X, we have {x} = (N N, where N, is a closed neighborhood of x.
NwGN(.T)

=) Let X be a separated topological space and x € X. We want to show that

(i) {IL‘}: ﬂ Ny,

NmGN(ZE)

where Ny is a closed neighborhood of x. Suppose there exists y € (VN such that y # x.
NzeN(z)
Then, there exist two open neighborhoods U and W of x and y, respectively, such that

UNW =0. This means that CxW is a closed neighborhood of x (since it contains U ),
which contradicts the fact that y belongs to all closed neighborhoods of x.
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<) Conwversely, let x,y € X such that x #y. From the equality (i), it follows that there exists
a closed neighborhood N, of x that does not contain y. Therefore, there exists an open
set O such that x € O C Cl(O) C Ny, which implies that y ¢ CI(O). Finally, we conclude
that O and CxCl(O) are two disjoint open sets containing x and y, respectively, which

shows that X is a separated space.

Using the previous proposition, we obtain the following result:

4

Proposition 3.22. FEvery singleton in a separated space is closed, and in general, every

finite set in a separated space is closed.

4

Proposition 3.23. Let (X,T) be a separated topological space and x € X. Then, z is an
accumulation point of a subset A of X if and only if every neighborhood N, of x contains

infinitely many elements of A.

<) Obvious.

=) Suppose there exists a neighborhood N, € N (x) that contains a finite number of elements
{z1,29,...,2n} of A. Then, W = Ny \{z1,x2,...,2,} is a neighborhood of x and (W '\

{z})NA=0. Therefore, x is not an accumulation point of A.

k
3.14. [t follows from the previous proposition that any finite subset of a separated

topological space has no accumulation points.

3.7 Induced topology, Product topology

3.7.1 Induced topology
@ )

Definition 3.20. Let (X,T) a topological space and A a subset of X. Then,

(3.13) Ta={04=AN0:0€T},

is a topology in A. The open sets in A are the intersections of open sets in X with A.

This topology is called the induced topology or relative topology of A in X, and (A,T) is

Section 3.7 Dr. CHOUGUI Nadhir 60



CHAPTER 3. TOPOLOGICAL SPACES

M called a topological subspace of (X,T). J

Exercise. Show that Ty is a topology on A.

3.24. Consider the following topology

T ={X.0,{z} {2t} {z, 2.t} {y, 2, t,s}}

on X = {x,y,z,t,e} and the subset A ={x,t,s} of X. Then we have: XNA=A, (NA=
0, {x}nA={z}, {zt}nA={t}, {z,z,t}NA={xt}, and {y,z,t,s}NA={t,s}. Thus,
the topology induced by T on A is

Ta= {A,@,{x},{t},{x,t},{t,s}}.

3.25. Consider the usual topology on R and the induced topology Ta on the closed

interval A =[4,9]. Note that the half-open interval [4,6] is an open set in the topology Ta
because [4,6[=]3,6[NA, where |3,6] is an open set in R. Thus, we see that a set can be open

relative to a subspace but neither open nor closed in the entire space.

3.26. Consider the usual topology on R and the induced topology T4 on A =N.

Then, for any n € N, we have NN (n—1,n+1) ={n} € Ta. We conclude that (N, Ty = P(N))

s a discrete space.

.4

Proposition 3.24. Let (A, T4) be a subspace of a topological space (X,T), and let F' be
a subset of A. Then, F' is closed in A with respect to the induced topology Ta if and only
if there exists F € F (where F is the set of closed sets in X) such that F' = ANF.

. We have that F' is closed in A if and only if C4F" is open in A, i.e., if and only if
there exists O € T such that CAF' = ANO. Therefore, F' is closed in A if and only if there
exists O € T such that

F'=C4(C4F")=C4(ANn0) = AN (Cx0),

i.e., if and only if there exists F =CxO € F such that F' = ANF.

We can easily show the following result.
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.4

Proposition 3.25. Let (A,T4) be a subspace of a topological space (X,T), and let B be
a subset of A. If B is open (resp. closed) in X, then B is open (resp. closed) in A.

. It suffices to see that B= BN A.

3.15. The two examples (3.25) and (3.26) show that the converse of the previous

result is not necessarily true.

.4

Proposition 3.26. Let (A,T4) be a subspace of a topological space (X,T). Then every
open (resp. closed) set in A is an open (resp. closed) set in X if and only if A is an open

(resp. closed) set in X.

=) Suppose that every open set in A is an open set in X, then A is an open set in X.

<) Suppose that A is an open set in X and let Oy be an open set in A. Then there exists
O €T such that Oy = ANO, which is an open set in X since A €T .

By similar arguments, this result can be shown for closed sets.

7 )
Proposition 3.27. 1. If v € A, then N’ is a neighborhood of x in A if and only if
there exists N € N'(x) such that N'=NnNA.

2. If S(x) is a neighborhood base of x in X, then {NNA: N € S(x)} is neighborhood
base of x in A for the induced topology Ta.

3. If B is a subset of A, then we have:

a) Cl(B)y=ANCI(B) (where Cl(B)4 and Cl(B) are the closures of B for Ty
and T, respectively).

b) Cl(B)y =CIl(B) <= A is closed in X.

c) ANInt(B) C Int(B)4

\ 4. If B is a base for (X, T), then By ={BNA:[5B} is a base for (A, Tx). Y
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1. If N’ is a neighborhood of x in A, then there exists an open set ANO € Ty (i.e., there
exists O € T ) such that x € ANO C N'. Thus, if we define N =0UN’, we obtain
x €O CN, so N is a neighborhood of x in X, and we have:

NNA=(OUN)YNA=(ONA)UN'NA)=(ONA)UN' =N".

Conversely, if N € N(x), then there exists O € T such that z € O C N. Thus, x € ANO C
ANN, and therefore N' = ANN is a neighborhood of x in A because ANO is open in A.

2. Let N' = NNA be a neighborhood of x in A for the induced topology Ta, with N being
a neighborhood of x in X. If S(x) is a neighborhood base of x in X, then there exists
W e S(z) such that W C N, so WNAC N'. This leads to the conclusion that {NNA:
N € S(z)} is neighborhood base of x in A.

3. a) Ifx € Cl(B)a, then for every N € N'(x) (for the topology T ), we have (NNA)NB #
0, and therefore x € A and x € CI(B), from which we obtain

(i) z e ANCI(B).

On the other hand, if v € ANCI(B), then every neighborhood N NA of x in A

intersects B because N intersects B and B C A, from which we obtain
(ii) r € CIl(B)a.

Finally, from (i) and (it), we conclude that Cl(B) s = ANCI(B).

b) Suppose that for every subset B of A, we have Cl(B)g = CIl(B), then A= CIl(A) 4 =
CIl(A) because A is closed in A, hence A is closed in X.
Conversely, if A is closed in X, then Cl(B) C Cl(A) = A, and thus Cl(B)4 = AN
CU(B) = CI(B).

c) We have AN Int(B) is an open set in A contained in B, so ANInt(B) C Int(B) 4.

4. Let U be an open set of A, then there exists O € T such that U= ANO, but O = U B,

el
where B; € B for all i € I, from which we obtain

U=AnN (U ﬁi) =UJAng),

el el

which completes the proof.
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.4

Definition 3.21. A topological property is hereditary if whenever a topological space pos-

sesses this property, it also holds for each of its sub-spaces.

.4

| Proposition 3.28. Fvery subspace of a separated space is separated.

. Let (A, Ta) be a topological subspace of a separated topological space (X,T), and
let x,y € A such that x #y. Since X is separated, there exist neighborhoods N € N (x) and
W e N (y) such that NONW =0, hence (ANN)N(ANW)=0. Therefore, (ANN) and (ANW)

are disjoint neighborhoods of x and y, respectively, within A, which shows that A is separated.

The following result shows the transitivity of the induced topology.

& )

Proposition 3.29. Let (X,T) be a topological space and B C A C X two subsets of X.
We denote by T} the topology induced on B by Ty. Then, we have

\ T =Tg. Y.

. If U € Tg, then there exists O € T such that U = BNO, and since ANO € T4, we
obtain U =BNO=BN(ANO) € Tg.

Conversely, if U € T, then there exists O4 € Ta such that U= BNO04, and since O4 € Tg,
there exists O € T such that O4 = ANO. Thus, U=BN(ANO)=BNO, and therefore U € Tp.

3.7.2 Product topology
@ )

Definition 3.22. Let {(X;,7;):i=1,...,n} be a collection of topological spaces. The box
n

topology or product topology on the product X = 'Hlxi is the topology with basis
1=

—{110; : O;eT; <i<nl.
\ B {ZEIOZ O; €T; for each 1 <1 n}
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So we can always make the product of topological space into a topological space using the box

topology.

Proof

1. We have X=X xXox---xX, €T and D x O x---x (0 €T because they are elements of
—_—

n times

B.

2. If {O; :i € I} is a family of open subsets of X, then we have:

UOFU(U(os,jxozjx---xom)= U (0l x Ok x-x0y) €T,

el el \jeJ (i,J)eIxJ
because Oil,j XOﬁj X xOp;€B foralliel and j € J.

3. It suffices to show that if O1,09 € T, then O1N O € T. Since O1,02 € T, we have
O = 'U[Ni and Oy = 'UJW]- where N;, W; € B for all i € I and j € J. Therefore, we
1€ VIS
obtain:

01n0 :<UNZ-)D UW = U (NnWy).
BT e (jeJ ]> (i,j)eIxJ( i)

It remains to show that N;NW; € B for all i € I and j € J. By definition, we have
Ni=Rix---x Rl ande:K{xmeﬂ; where R!, € T, and K1 € To, for alla=1,...,n.

This allows us to write:
N;NW; = (RINK]) x (RyNKJ) x - x (RENKY).

Since R: N KJ are open sets in Ty, for alla =1,...,n, we deduce that N; NW; € B for all
i€l and j € J, which implies that O1NO2 € T. Finally, we conclude that T is a topology
on X.

Example
327

1. The box topology or product topology on R"™, such that R is equipped with the usual topology,
is the topology with basis

B= {ﬁl]ai,bi[ . a;,b; € R for each 1 gign}.

1=

n
2. Let {(X;,T;):i=1,...,n} be a family of indiscrete spaces. Then, the product X = ‘Hlxi
1=

n
is an indiscrete space. Indeed, if O = ‘HlOi # X, then there exists an index ig such that
1=
Oy # Xiy. Since Tiy = {X,,0}, we obtain O;y =0, and hence O =. Therefore, the family
{X,0} forms a basis for the product topology on X, which shows that X is an indiscrete

space.
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@ )

Proposition 3.30. Let X = HX be a product of topological spaces, and let x =
(x1,...,xy) € X. Let S denote the family of sets of the form Ny X --- X Np, where
\ N; e N(x;) inX; fori=1,...,n. Then, S is a basic neighborhoods of z in X. )

If N; € N(x;), then there exists O; € T, for all i =1,...,n, such that x; € O; C V;. Therefore,
we obtain v € O1 X --+ X Oy C Ny X -+ X Ny, and since O1 X --- X Oy is an open set in X, we
conclude that N1 X ---x N, is a neighborhood of x in X.

Now, let N € N(x) in X. Then, there exists an open set O C X such that x € O C N. Thus,
there exists W = Oy x --- x Oy, an open set containing x (since B is a basis for the product
topology on X (see Definition 3.22 )). Hence, W € S because O; € N'(x;) for all i =1,...,n,
which implies that W C N.

3.28. Let R™ be equipped with the usual topology, and let x = (x1,...,2,) € R™.

The family
n
{H (xi_€i7zi+€i) : (Ela"'7€n) S (Ri)n}a

i=1

is a basic neighborhoods of x. Similarly, the family

n
{H(wi—a,xi—i—s) :5€]R*+},

=1

is also a basic neighborhoods of x.

@ )

Proposition 3.31. Consider A = H Az, a subset of the product space X = H X;. The
closure of A, denoted by CI(A), is gwen by:

J = y

. Let x = (x1,...,2y) € CI(A). Then, for every N; € N'(x;), we have:
(N1NAp) XX (NyNAp) = (Ny X+ X Ny )N A#0D,

which implies Ny A; 0 for alli=1,...,n. Thus, x; € Cl(A;) for alli=1,...,n, showing that
n
HAS ‘chl(Ai)'
1=
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Conversely, if x € H C’l(A ), then for every N; € N(z;), i=1,...,n, we have N;NA; # 0.
Therefore,
(NyNA) XX (NyNAp) = (Vi X+ X Ny)NA £,

which shows that x € Cl(A).

Using the previous proposition, we obtain the following result.

.4

Proposition 3.32. Let A= H A; be a subset of a product space X = H X;. Then A is
closed in X if and only if A; zs closed in X; for everyi=1,.

4

n

Proposition 3.33. A product space X = _Hlxi is Hausdorff if and only if each X; is
1=

Hausdorff for everyi=1,...,n

n
—) Suppose that X = ‘Hlxi is Hausdorff, and let x,,yi, € Xi, such that xi, # yi,. For any a’ =
1=

n
(X1, oy Tig—1, Tigt1, -, Tn) € _Hlxi, there exists a neighborhood O of (z1,...,%ig,...,%p)
1=

i#ig
and a neighborhood O of (x1,...,Yiy,-..,Tn) such that ONO" =10. Let O = Ny x Na and

O' = N| x N3, where Ny € N'(xi,), N2 € N(2'), Ni € N(yi,), and Ny € N(2'). Thus, we
obtain:
ONO' = (NyNNj) x (NaNNj) =0 = NyNNj =0,

and therefore X;, is Hausdorff.

) Letx=(x1,....,20n), y= (Y1,...,yn) € X = H X; such that x #vy. Then there exists at least
one ig € {1,...,n} such that z;, # yi,. Smce Xi, is Hausdorff, there exist a nezghborhood
N of z, and a neighborhood W of y;, such that VW = 0. By setting Oy =X X -+
Xip—1 X NxXjop1 XXX, and Oy =Xq X -+ x X1 X W x X 11 % -+ XX, we obtain
Oy € N(z), Oy € N(y), and O, N Oy =0, which shows that X is Hausdorff.

3.8 Convergent sequences
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.4

Definition 3.23. A "sequence of elements” of a set X is defined as any function from
N (or a subset of N) into X, which associates with each integer n in N an element of X

denoted by x,,. The sequence with general term x,, is denoted by (Tpn)neN-

~N

W)

Definition 3.24. Let (X,T) be a topological space. Consider a sequence (Tp)pen Of
elements in X and a point | € X. We say that 1 is the limit of the sequence (Tpn)pen (0T
that (zy)nen converges to l) as n tends to infinity, if for every neighborhood N of | in X,

there exists an integer ng such that x, € N for all n > ng. In other words,
VN eN(l),IngeN : VneN, n>nyg= 1z, € N.

In this case, we write:

i Tn = -
U A sequence that does not converge is called divergent. )

Example
3.2

1. Fvery constant sequence is convergent in all topological spaces.
2. A sequence in an indiscrete space is convergent to every point of that space.

3. If (X,7T) is a discrete space, then a sequence (xp)nen in X converges to | if and only if

there exists ng such that x, =1 for all n > ng.

1
4. The sequence (xy,) of the general term x, = — is convergent to 0 in (R,|-|), and it is
n
divergent in (R,P(R)).

4

Proposition 3.34. If (X,T) is a Hausdorff topological space, then every convergent se-

quence in X has a unique limit.

it has two distinct limits 1y # la. Since (X,T) is a Hausdorff space, there exist neighborhoods
N1 € N(ly) and Ny € N(l2) such that Ny NNy = 0. According to the definition (3.24), there

exist integers ny and ny such that:

. Let us reason by contradiction. Let (xy) be a convergent sequence in X. Suppose

VYn>ny,x, € N1 and Vn = no, x, € No.
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Let ng =max(ny,ng). Then, for all n > ng, we have

which contradicts the fact that Ny N\ No = 0. Therefore, l1 = .

3.30. The trivial topology (indiscrete topology) on a set X is a non-Hausdor(f

topology because every element x € X has only one neighborhood, namely X itself. Therefore, if
(Tn)nen 1s a sequence in X, every point x € X is a limit for this sequence. Hence, the limit is

not unique.

.4

Definition 3.25. A cluster point or accumulation point of a sequence (zy)neN in a topo-
logical space (X,T) is a point x such that, for every neighborhood N of x, there are

infinitely many natural numbers n such that x, € N.

k
3.16. According to the previous definition, we conclude that the limit of a sequence

is an accumulation (cluster point) point of this sequence.

Example
3.31.

1. In (R,|.]), x =1 is the unique accumulation point (cluster point) of the sequence (xp)neN =

(14+e ™) pen, and this value is the limit of the sequence. Moreover, x, =1+e~" is an

adherent point for every n € N, but it is not an accumulation point (cluster point).

2. In (R,].]), the sequence (xp)nen = ((—1)")pen has two accumulation points (cluster

points), —1 and 1, but it is a divergent sequence.

According to the previous example and the definition (3.25), we conclude that every accumu-

lation point is an adherent point, but the converse is not true.

4

Proposition 3.35. If (X,7) is a Hausdorff (separated) topological space, then every

convergent sequence in X has a unique accumulation point (cluster points), which is its

limat.
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Proof . . . Y
. By arguments similar to those used in the proof of the previous proposition.

3.17.

1. A sequence that has at least two accumulation points diverges.

2. The converse of the previous proposition s false. For example, the sequence defined by

zp = (1—(=1)") xn has only 0 as an accumulation point but diverges.

4

Definition 3.26. Let (x,) be a sequence in a topological space (X,T). We call a subse-
quence or extracted sequence of (x,) any sequence of the form (z4)), where ¢(n) is a

strictly increasing function from N to N.

3.32. If (zy) is a sequence in a topological space (X,T) and ¢p(n) =2n+1, then

(xont1) ={x1,23,25,27,...,Ton+1,-.. } is a subsequence of (xy,).
Using the definitions (3.24) and (3.25), we obtain the following two results.
7 >

Proposition 3.36.

1. Every subsequence of a convergent sequence is convergent (towards the same limit).

2. The limit of a subsequence extracted from a sequence (xy,) is a cluster point of this

sequence. )

\U

z >
k

Proposition 3.37. Let (z,) = {z},22,...,25} be a sequence in a space X = ,Hlxi. Then,
1=

(zn) converges to z = (21,22,...,2%) if and only if for all i =1,...,k, the sequence (%)

g )
\| converges in X to 2". )

—) Suppose that (z,) = {z},22,...,2F} converges in X to z = (2%,2%,...,2%). Let N; be a
neighborhood of z; in X;, fori=1,....k. Then, W =Xy x -+ xX;_1 X N; x Xj 41 X+ x X},

s a neighborhood of z, so there exists ng € N such that

n>=nyg— z, € W.
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Consequently, we obtain:

n>n0:>zf1€Ni,

which shows that for all i =1,...,k, the sequence (2%) converges to z* in X;.

i

<=) Suppose that for all i =1,...,k, the sequence (z.) converges to z* in X;. Let W be a
neighborhood of z = (2',2%,...,2F) in X = ZliXZ According to proposition (3.50), W
contains a neighborhood of the form Ny X --- X Ny, where N; is a neighborhood of 2* in X;
foralli=1,....k. Thus, for alli=1,...,k, and for all N; € N'(2"), there ewists n}, such
that:

n > né — zfl e N;.

If we set ng = maX(n(l), . ,nlg), we obtain:

n>=nyg=— zp € N; X--- X Ng,

which leads to:
n=ng— z, €W.

Therefore, z, is a sequence converging to z in X.

k ,
Proposition 3.38. If x = (z',...,2%) is a cluster point of (z,) in X = I X;, then 2’ is

=1
a cluster point of (2) for alli=1,... k.

. LetNiE./\/(xi) foralli=1,....k, then W =X X -+ X X;_1 X N; X X411 X -+ x X, is

a neighborhood of x in X. Consequently, we obtain:
card{n € N: z, € W} = +o0,

which leads to:

card{n eN:z ¢ Ni} = 400,
from which it follows that x° is a cluster point of (2%) for alli=1,... k.

The previous result is generally false. For example, in R?, if we take the sequence z, =

(n,yn) defined by the following relations:

1

Ton =n Yon =
1 Y

Ton+1 =4 Yon+1 =N

It is clear that 0 is a cluster point of (x,) and (y,), but (0,0) is not a cluster point of (zy).
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3.9 Continuous applications
@ )

Definition 3.27 (Pointwise continuity ). Let (X,7x) and (Y,Ty) be two topological
spaces. We say that a function f: X —Y is continuous at xg € X if and only if for every
neighborhood N € Ny(f(xg)), there exists U € Nx(xo) such that f(U) C N. In other

words,

U (3.14) VN € Ny (f(x0)),3U € Nx(zo), f(U) C N <= f is continuous at x. )

Using the preimage, we obtain U C f~!(N), hence f~!(N) is a neighborhood of zg. Therefore,

we can write the previous definition in the following form.
z )

Definition 3.28. Let (X, Tx) and (Y, Ty) be two topological spaces. We say that a function
f: X —Y is continuous at o € X if and only if the preimage of any neighborhood of

f(zg) in Y is a neighborhood of xo in X. In other words,

| (3.15) VN € Ny(f (o)), f~(N) € Nx(wo) Yy,

3.18. In both previous definitions, we can replace Nx(xo) and Ny(f(xo)) with the
basic neighborhoods of xo and f(xg).

Example
3.33.

1. The function f: (R,|.|) — (R,P(R)) such that for all x € R, f(z) =z, is not continuous
on R, because N = {x} is a neighborhood of x in (R,P(R)), but f~*(N) = {x} is not a
neighborhood of x in (R,[.]).

2. Let X = {x1,22,23,24} and Tx = {0,X,{z1},{x2},{z1,22},{w2, 23,24} }, and let Y =
{y1,92, 93,94} and Ty ={0,Y, {y1}, {y1,v2}, {v1, 92,93} }. We define the function f:X —
Y by f(za) =ya, f(x3) =y2, and f(x1) = f(22) =y
e For example, we have Ny(f(z4)) = Ny(ya) = {Y}, and f~1(Y) =X € Nx(z4), so f is
continuous at x4.
o We also have Ny(y2) = {{y1,y2}, {v1,y2,y3}. {v1, 92,94}, Y}. If we take N = {y1,y2},
we obtain f~H(N) = {x1,79,73} & Nx(x3), so f is not continuous at x3.
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.4

Proposition 3.39 (Transitivity of continuity). Let XY and T be three topological
spaces. Consider the two functions f: X —Y and g:Y — T. If f is continuous at a

point xg € X and g is continuous at f(xg), then go f is continuous at xg.

. Let W e Np(go f(xg)). Since g is continuous at f(xg), there exists N € Ny(f(xo))

such that g(N) CW, and since [ is continuous at xg, there exists U € Nx (o) such that f(U) C
N. From this, we deduce that go f(U) C W, which implies that go f is continuous at xg.

R k
3.19. The converse in the previous proposition is not always true.

Consider the function f as shown in example (3.33(2)) and let g: (Y, Ty) — (X, Tx) be a func-
tion defined as follows: g(ys4) = x4, g(y3) = x1, g(y2) = x3, g(y1) = x2. On one hand, we have
Nx(g(f(24))) = Nx(9(ya)) = Nx(24) = {{w2, 23,24}, X}. But, g~ ({2, 23,24}) = {y1,y2, 34} ¢
Ny (y4), which means that g is not continuous at f(x4) =ys. On the other hand, we have
(g0 f)(xa) = g(f(wa)) = 9(ya) = x4 and N (w4) = {{x2,25,24} , X}, and (g0 )~ ({x2,23,24}) =
Yo {2, 23,24})) = F {y,y2, 1)) = X € Nx(z4). Since (go f)™1(X) =X, we conclude
that go f is continuous at x4.

@ )

Proposition 3.40. Let (X,Tx) and (Y,Ty) be two topological spaces and f: X — Y.

The following statements are equivalent.
1. f is continuous.
2. f(CI(A)) CCI(f(A)) for every subset A of X.
3. f~Y(F) is closed in X for every closed set F inY.
4. fYO) is open in X for every open set O in Y.
5. f~YB) is open in X for every element 3 of a basis B of Ty.

6. f~Y(IntB) C Intf~Y(B) for every subset B of Y.

\ 7. CI(f~1(B)) C f~Y(CU(B)) for every subset B of Y. )

o (1)= (2) Letac CI(A) and N € Ny(f(a)). Then f~1(N) € Nx(a) because f is continuous.
Consequently, f~Y(NYNA#Q. Thus, if v € f~1(N)NA, we obtain f(x) € NN f(A), ie.,
NN f(A)#0. Therefore, f(a) € Cl(f(A)), which shows that f(CI(A)) C CI(f(A)).

o (2)= (3) Let F be a closed subset of Y. Define A= f~Y(F), so it is sufficient to show
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that A= CI(A). By definition, we have A C Cl(A), and according to (2), we have f(Cl(A)) C
CI(f(A)) CCI(F)=F (since F is closed), hence CI(A) C f~Y(F)= A. Consequently, A =
CI(A), which shows that f~'(F) is closed in X.

e (3)= (4) Let O be an open subset of Y, then CyO is a closed set in Y. Therefore, by (3),
the set f~1(CyO) is closed in X. Since f~1(CyO) =Cxf~1(0), we deduce that f~1(O) is open
in X.

e (4)= (5) Obuvious.

e (5)= (6) Let B be a subset of Y. Then, Int(B) = U B; such that {B;:i € I} is a family
of elements from a basis B of Ty. Using the inverse z'mazgel, we obtain

fHIm(B)) = (U ﬁi) =16
el el
Thus, f~Y(Int(B)) is an open set in X (according to (5)), and since f~(Int(B)) C f~Y(B),
we conclude that f~*(Int(B)) C Int(f~Y(B)) (see Proposition (5.12)).
e (6)—> (7). Let B be a subset of Y. Using Proposition (3.15(4)) and (6), we obtain:

Cxft(ci(B)) = f1(CyCl(B)) = f (IntCyB)

C Intf~1(CyB) = Intlx f1(B) =CxClf~Y(B),

which shows that
ClLf~1(B) C fHCU(B)).

o (7)= (1) Let z9 € X and O be an open neighborhood of f(xo). Then, CyO is closed in Y.
Using (7), we obtain
Clf~(Cy0) € f7H(C1(Cy0)) = F(CvO)

(since CyO is closed), and thus f~1(CyO) =Cx f~1(O) is closed. Consequently, f~1(O) is open
in X. Finally, since o € f~4(O0), we conclude that f~1(0) € Nx(zo), which shows that f is

continuous.

.4

Proposition 3.41. Let (A,Ta) be a subspace of a topological space (X,T). Then the

canonical injection i : A — X defined by i(a) = a, for all a € A is continuous.

. Let O be an open set in X. Then i~1(O) = ON A, which is open in (A, T4), soi is

continuous.
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.4

Proposition 3.42. Let f: (X, Tx) — (Y, Ty) be a continuous mapping and A C X. Then
the restriction f|, : (A,Ta) — (Y, Ty) is continuous.

of two continuous functions.

.4

Proposition 3.43. Let (X,Tx) and (Y, Ty) be two topological spaces. If f: (X, Tx) —

(Y, Ty) is continuous and injective, and Y is separated, then X is separated.

. Given that f|, = foi, it follows that f|, is continuous because it is the composition

. Let x,y € X such that x # vy, then f(x) # f(y) (since [ is injective), and since Y
is separated, there exist two disjoint open sets O1 and Oz such that f(x) € Oy and f(y) € Os.
Therefore, f~1(O1) and f~1(Os) are two disjoint open sets such that x € f~1(O1) and y €
f~HOs), which shows that X is separated.

.4

Definition 3.29 (Sequential Continuity). Let (X,7x) and (Y,Ty) be two topological

spaces. We say that f is sequentially continuous at xqo if for every sequence (xy) that

converges to xg, the sequence f(xy) converges to f(xg).

R k
3.20. We say that f is continuous (resp. sequentially continuous) on X if it is

continuous (resp. sequentially continuous) at every point of X.

.4

| Proposition 3.44. Fvery continuous function is sequentially continuous.

. Let f be a function continuous at xo and let (zy) be a sequence converging to xg.
Then, if N is a neighborhood of f(xg), f~1(N) is a neighborhood of xo, so there exists ng € N
such that:

n>ng=ay € fH(N),

or, equivalently,
n)”oéf(xn)eNv

which demonstrates that lim f(xn) = f(zo).

R k
3.21. The converse in the previous proposition is not true in general.
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3.10 Open and closed maps

Let f:X — Y be a continuous function.

e If O is an open set in X, then f(O) is not necessarily open in Y.

o If F'is a closed set in X, then f(F') is not necessarily closed in Y.

In other words, the continuous image of an open set (resp. closed set) is not necessarily an

open set (resp. closed set).

Example
3.34.

1. The function f: (R,|.|) = (R,|.|) defined by f(z) =sin(x) is continuous on R, but f(R) =

[—1,1] is not an open set in R.

2. The function f:(R,[.]) = (R,|.]) defined by f(x) = e" is continuous on R, but f(R) =

(0,+00) is not a closed set in R.

.4

Definition 3.30. Let (X,7x) and (Y,Ty) be two topological spaces, and let f:X — Y.
We say that f is an open map (resp. closed map) if the image of every open set (resp.

closed set) in X is an open set (resp. closed set) in Y.

Example
3.35.

1. Let X be a topological space and A CX. The canonical map i: (A, Ty) — X defined by
i(x) = is open (resp. closed) if A is an open (resp. closed) subset of X.

2. Let f:(R,|.]) = (R,|.|) be the function defined by f(x) =c € R. If F is closed in R, then
f(F) ={c} is also closed in R. However, if O is open in R, then f(O)={c} is not open

in R. Therefore, f(x)=c is a closed map but is not an open map.

@ )

Proposition 3.45. Let (X,Tx) and (Y, Ty) be two topological spaces, and let f:X — Y.
Then, for any A C X, we have:

1. fis open <= f(IntA) C Int(f(A)).

\ 2. f is closed <= CI(f(A)) C f(ClA). Y
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1.

2.

—> ) Suppose that f is open; then f(Int(A)) is open in Y. Consequently, f(IntA) C
Int(f(A)) (since Int(A) C A).

< ) Suppose that f(IntA) C Int(f(A)) and let A be an open set in X. Then f(A) =
f(IntA) C Int(f(A)), so f(A)=Int(f(A)), which shows that f is open.

Ezercise: using arguments similar to those used in (1).

@

\

Proposition 3.46. Let (X,Tx) and (Y, Ty) be two topological spaces, and let f:X — Y.
Then, for any ACX and B CY, we have:

1. f is continuous and open <= f~1(IntB) = Int(f~*(B)).

2 [ is continuous and closed <= CIl(f(A)) = f(ClA). )
1. = ) Suppose [ is open and continuous. Then we obtain

) F Y (IntB) € Int(f(B)),

according to Proposition (3.40(6)). On the other hand, since Int(f~1(B)) is open in X, we
have that f(Int(f~Y(B))) is openinY (since f is open). Consequently, f(Int(f~1(B)))=
Int f(Int(f~1(B))) € Tnt(f(f~(B))) C IntB, o

(ii) Int(f~'(B)) C f~'(IntB).

Finally, the two inclusions (i) and (ii) show that f~'(IntB) = Int(f~1(B)).

<= ) Suppose f~1(IntB) = Int(f~1(B)). Then f is continuous (see Proposition 3.40(6)).

Moreover, if A is an open set in X, we have
A= Int(A) C Int(f71(f(A) = f~ (Int(f(A)),

and thus f(A) C Int(f(A)). Hence, f(A) is open, so [ is open.

2. Clear (using Proposition (3.40(2)) and Proposition (3.45(2))).

3.11 Homeomorphism
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\

W)

Definition 3.31. Let (X,Tx) and (Y, Ty) be two topological spaces and f: X — Y. We
say that f is an homeomorphism from X to Y if:

1. f is a bijection (one-to-one and onto),
2. f is continuous,
3. the inverse function f~1 is continuous ( f is an open mapping).

If there exists an homeomorphism from X to Y, we say that X and Y are homeomorphic

or topologically equivalent, and we denote this by X =Y. Any property preserved by an

| homeomorphism is called a topological property. )

Example
3.36.

1. Let X=R and Y = (—1,1) endowed with the usual topology. The function f:R — (—1,1)
defined by f(z) =

x
TH is a homeomorphism. Consequently, X andY are homeomorphic.
x

2. Let X = (a,b) and Y =R with the usual topology. The function f: (a,b) — R defined by
1 1
flr)= Lt 1

r—a

b is a homeomorphism. Therefore, X and Y are homeomorphic.

3. Let X=(0,1) and Y = (a,b) endowed with the usual topology. The function f:(0,1) —
(a,b) defined by f(x) = (b—a)x+a is a homeomorphism. Consequently, X and Y are

homeomorphic.

3.22.

1. In general, the bijectivity and continuity of f do not imply that [ is a homeomorphism.
For example, the map f: (R, P(R)) — (R,|-|) defined by f(x) =z is a bijection and

continuous, while =1 is not continuous.

2. Homeomorphisms are, by definition, open and closed maps.
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COMPACT SPACES

4.1 Compactness in Topological Spaces

4.1.1 Compact Spaces and Sets

Let (X,7) be a topological space and {O; : i € I} a family of open sets in X.

.4

Definition 4.1. We say that the family {O; :i € I} is an open cover of X if X = O;.
el

.4

Definition 4.2. We say that the family {O; :i € I} is an open cover of a subset A of X
if AC UO;.

el

& )

Definition 4.3 (Borel-Lebesgue). The topological space (X,T) is said to be compact if
it is Hausdorff (separated) and for every open cover {O;:i € I} of X, one can extract a

finite subcover. In other words:

(4.1) (X = OZ) = (EIJ (finite) C I such that X = [ Oi) .
el ieJ

U /

The following definition characterize compactness in terms of closed subsets of the space.
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~N

W)

Definition 4.4. The topological space (X,T) is said to be compact if it is Hausdorff
(separated), and for every family of closed sets {F; : i € 1} in X with an empty intersection,

one can extract a finite subfamily whose intersection is also empty. In other words:

(4.2) (ﬂ I = @) = (EIJ (finite) C I such that (| F;= @) .
icl icJ

\U

Example
.1

1. The space (R,|.|) is Hausdorff, but it is not compact because the family {(—n,+n) : n € N}

is an open cover of R that does not have any finite subcover of R.

2. The space (R,P(R)) is Hausdorff, but it is not compact because the family {{z}:z € R}

is an open cover of R that does not have any finite subcover of R.

3. Any finite Hausdorff space is compact.

& )

Definition 4.5. A subset A of a Hausdorff topological space (X, Tx) is said to be compact
if the subspace topology (A,Ta) is compact. In other words:

(4.3) (A c Oi) —> (ElJ (finite) C I such that AC |J Oi) :
el ieJ

\ W,

4.1. The Borel-Lebesque property in (A,Ta) is expressed using the open sets of
(X, Tx) in the form (4.3).

& )

Proposition 4.1. A subset A of a Hausdorff topological space (X, Tx) is compact if and
only if for every family of closed sets {F;:i € I} in X, we have:

(4.4) (Aﬁ (ﬂ Fz) =(Z)> — (EIJ (finite) C I such that AN (ﬂ E) = (Z)) .
k el ieJ )
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= ) On the one hand, if A is compact then we have:

(10(n7) o) = (s<5e(ye) - )

Using definition (4.5), since {CxFi A I} s a family of open sets in X, we deduce that:
3J (finite) C I such that A C Cx (ﬂ Fl) = |J CxF.
1eJ 1eJ
This shows that:
3J (finite) C I such that AN (ﬂ FZ) = 0.

i€J

<= ) On the other hand, we have:

(A C EX (ﬂ FZ) = U E}Qﬂ) <~ (Aﬁ (ﬂ FZ) = @) .

Now, using (4.4) we obtain:

(Aﬂ (ﬂ FZ) :@) = (EIJ (finite) C I such that AN (ﬂ FZ) :@>

el e

- (EL] (finite) C I such that A C Cx (ﬂ E) = U EXFZ-) )

1eJ ieJ

Since {CXFi e I} is a family of open sets in (X, Tx), we conclude that A is compact.

Example
12

1. A=(0,1] is not compact because I, = (%, 1] is a sequence of open sets in A covering A,

and no finite subcover can be extracted.

2. Any finite subset of a Hausdorff space is compact.

4.1.2 Properties of Compact Topological Spaces

.4

| Proposition 4.2. In a Hausdorff topological space, a compact subset is closed.
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that Cx K is open. Let x € CxK. Since (X,Tx) is Hausdorff, for every y € K, there exist two
open sets Ny € N(x) and Wy, € N(y) such that Ny y Wy =0. The family {Wy,:y € K}
is an open cover of K and is compact, so we can extract a finite subcover {Wy . :i=1,...,n}
such that K C iQWw’yi' If we take N = iﬁle’y“ we obtain N € N'(z) and N C Cx K, which

. Let K be a compact subset in a Hausdorff topological space (X, Tx). It suffices to show

shows that CXK_Z'S open (because it is a ne;ghborhood of each of its points).

.4

Proposition 4.3. If (X, Tx) is a compact topological space and F C X, then F is compact
if and only if F' is a closed subset of X.

— ) This is evident from the previous proposition.

< ) Suppose that F is a closed subset of X. Then, if {F;:i € 1} is a family of closed subsets
of X such that F'N ( N FZ> =0, we obtain N (FNF;)=0. Therefore, by definition (4.4), there
il icl
exists a finite subset J C I such that ) = N (FNF;)=FnN ( N Fz> Thus, F' is compact by
ieJ icJ
proposition (4.1).

4

Proposition 4.4. In a Hausdorff topological space, a finite union of compact sets is

compact.

Lol por (ry k=1,

n
let K= U Ky. Then, any open cover {O;:i € 1} of K is also an open cover of each Ky, for

k=1
each k=1,....n. Therefore, there exists a finite subset Ji C I such that K C U O;, for each
i€Jy
k=1,....,n. Taking J = J1U---UJ,, we see that U O; is a finite subcover of K, which shows
ieJ

.,n} be a finite family of compact sets in a topological space X and

that K is compact.

4

Proposition 4.5. In a Hausdorff topological space, any intersection of compact sets is

compact.
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let K= N K;. Then K is closed (since it is an intersection of closed sets) within the compact
el
set K;, for some ig € I. Therefore, by proposition (4.3), K is compact.

. Let {K;:i €1} be a family of compact sets in a Hausdorff topological space X, and

4

Lemma 4.1 (Bolzano-Weierstrass). Let (X, Tx) be a compact topological space. Then,

every infinite subset of X has at least one accumulation point.

exists an open neighborhood N, € N (x) such that

. If A is an infinite subset of X with no accumulation points, then for each x € X, there

x} ifxe A,
N, A {z} of
0 if v ¢ A
Thus, the family {N, : x € X} forms an open cover of X, which is compact. Therefore, we can
extract a finite subcover { Ny, :i=1,...,n} such that
n
X= U Ny,
=1

However, we also have
n n
A=ANX=AN <U N@-) =JMAnN,,),
=1 =1

which implies that A contains at most n elements, contradicting the assumption that A is

infinite.

4

Lemma 4.2 (Weierstrass). Let (X,7x) and (Y, Ty) be two topological spaces such that
(Y, Ty) is Hausdorff, and let f: X —Y be a continuous map. If A is a compact subset of
X, then f(A) is a compact subset of Y.

. Let {O; :i € I} be an open cover of f(A), i.e., f(A) CUier Oi. Since f is continuous,
the family {f~1(O;) :i € I} is an open cover of A. By the compactness of A, there exists a
finite subset J C I such that

ACUf*KMZf*(UOJ.

ieJ eJ
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Since f(A) C f (f_l ( U OZ>> C U O;, we conclude that f(A) is a compact subset of Y.

ussi i€J
4.2. According to the previous proposition, we conclude that compactness is a topo-
logical property.
The following corollary is a version of the extreme value theorem.

@ )

Corollaire 4.1 (Heine). If (X,T) is a compact topological space and f:X — (R,[.|) is

a continuous function, then f is bounded on X, and there exist points a,b € X such that

N fla) =max f(z) and f(b)=min f(z). )

. Since f is continuous and X is compact, f(X) is a compact subset of (R,|.|) (see
Lemma (4.2)). 1t follows that f(X) is closed and bounded (see Proposition (4.2)). Let M =
sup f(X). Since f(X) is closed, we conclude that M € f(X), and therefore, there exists a € X

such that f(a) =M = maz f(z). Similarly, we can show that the minimum is attained.
re

R k . . .
4.3. The previous corollary shows that continuous functions on a compact set and

with values in R attain their bounds.

.4

Proposition 4.6. Let (X,Tx) be a compact space, (Y, Ty) be a Hausdorff space, and
f: (X, Tx) — (Y, Ty) be a continuous function, then f is closed.

. Let F be a closed subset of X, then F is compact (see proposition (4.3)), and thus
f(F) is compact (see lemma (4.2)), from which it follows that f(F') is closed (see proposition

(4:2).

.4

Proposition 4.7. Let (X,Tx) be a compact space, (Y,Ty) be a Hausdorff space, and

f:(X,Tx) — (Y, Ty) be a continuous bijection, then f is a homeomorphism.

then it is compact, and thus f(F) is compact. However, a compact subset of a separated space

. It is enough to show that =1 is continuous. Let g= f~'. If F is a closed set in X,

is closed, so g~ ' (F) = f(F) is closed. Therefore, g= f~! is continuous.
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.4

Theorem 4.1 (Tychonoff’s Theorem). Let {(X;,7;):i € I} be a family of topological
spaces, then 'HIXi is compact if and only if X; is compact for all i € I.
1€

. We will assume the result in the general case. Here, we simply prove it for the finite
product of compact spaces. Therefore, it is sufficient to prove it for the product of two compact
spaces.

—) If XX Y is compact, then X and Y are compact because they are the images of the con-
tinuous projections Px(XxY) =X and Py(XxY) =Y.

<) Suppose that X and Y are compact. Let {O; :i € I} be an open cover of X x Y. Then, for
every (v,y) € X XY, there exist Uy, ) € Tx and Vi, € Ty such that (z,y) € Ugy ) X Vigy) C
O(z,y) With O,y €{0; 1 € T}

Notice that for each x € X, the family {V(x’y) Ty € Y} is an open cover of the compact space

Y, and so we can extract a finite subcover {V(x’yl,) 1= 1,...,n} for it. On the other hand, if
n

we take Wy = N Uy y,), then the family {Wy : 2 € X} is an open cover of the compact space X,
i=1 7

and so we can extract a finite subcover {ij 1) = 1,...,m}.

We deduce that the family {W$j X Vi

i) :izl,...,n,jzl,...,m} is a finite cover of X x Y.

Moreover, we have:

CU,

ij X V(«’Ej,yi) = Ylaju) X V(wjyyi) < O(:Bj,yi)’ Vi<isn, 1<j<m.

Thus, the family {O(wj,yi)

shows that X x Y is compact.

i=1,....n andjzl,...,m} is a finite open cover of X x Y, which

.4

Definition 4.6 (Relative compactness). A set A is said to be relatively compact in a

topological space (X, Tx) if Cl(A) is compact.

Example
.5

1. Every non-empty subset of a compact space is relatively compact.

2. Every compact set is relatively compact.
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.4

Definition 4.7 (Local compactness). A space (X, Tx) is said to be locally compact if

it is Hausdorff and every point of X has at least one compact neighborhood.

Example
W

1. (R,]-|) is locally compact because it is Hausdorff and [z —r,x+r] is a compact neighbor-
hood of every x € R.

2. Every discrete space is locally compact because it is Hausdorff and {x} is a compact

neighborhood of every point x in this space.

4.2 Compactness in metric spaces

The definitions of compactness in a metric space (X,d) are the same as those we saw in a

topological space (see the previous section (4.1)).

R k
4.4. In an abstract topological space, there is no notion of distance, and therefore

we do not talk about bounded sets.

4.2.1 Precompact spaces and sequentially compact spaces

4

Definition 4.8. Let A be a subset of a metric space (X,d). We say that A is bounded if
there exists a ball B(x,r) with center x and radius r > 0 such that A C B(z,r).

.4

Definition 4.9. Let (X,d) be a metric space and A a subset of X. We say that A is

sequentially compact if every sequence in A has a convergent sub-sequence.

(& )

Definition 4.10. Let (X,d) be a metric space and A a subset of X. We say that A is
precompact (or totally bounded) if for every r > 0, there exist points x1,...,2, in A such
n
that A C U B(x;,7).
i=1 W,

Section 4.2 Dr. CHOUGUI Nadhir 86



CHAPTER 4. COMPACT SPACES

4.5. According to the two definitions (4.8) and (4.10), every precompact set is
bounded.

Example
.5

1. Any finite subset A of a metric space (X,d) is sequentially compact because if (xp)nen S

a sequence in A, then at least one of the elements x € A must repeat infinitely many times

in this sequence, and thus the sequence (xg,...,T;,T,,...) is convergent.

2. Every finite subset A of a metric space (X,d) is precompact, because for any r >0, there

exist points x1,...,xy in A such that:A C U B(x;,7).
=1

3. If (xp)neN s a sequence converging to xg in a metric space (X,d), then the set A= {xy, :

n > 0}yU{xo} is precompact. This is because for any € >0, there exists ng € N such that
VYn e N, n>=ny = d(x,,x0) <.

Therefore,

no—1
AC U B(xy,e) U B(xg,¢).
k=1

.4

Lemma 4.3. Let (X,d) be sequentially compact metric space. If {O; :i € I} is an open
cover of X, then there exists r > 0 such that for every x € X, the ball B(z,r) is contained

in one of the open sets O;.

. Suppose that for every n € N*, there exists a point x,, € X such that the ball B(xy, %)
is not contained in any of the open sets Oy, i.e., B(xy, %) NCxO; # 0 for alli € 1. Since (X,d) is
sequentially compact, the sequence (z,,) has a convergent subsequence (xy, ). Let x,, — x € X.
Then, there exists at least one ig € I such that x € O;,, and therefore there exists r > 0 such
that B(z,r) C Oj,.

On the other hand, since x,, — x, the ball B(x,%) contains infinitely many points of (xy,).
Thus, there exists n, > % such that xy, € B(x,%), which implies that B(zy,, nip) C B(z,1) C Oy,

leading to a contradiction.

4.2.2 Properties of Compact Metric Spaces

4

Proposition 4.8. Let (X,d) be a metric space and A a closed subset of X. Then, the

following statements are equivalent.
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~

. A is compact.

2. If F=A{F;:i €1} is a family of closed subsets of A such that for every finite family

sets F1,...,F, € F we have ﬂF#(Z) then N F; # 0.
el

o

A is sequentially compact.

4. BEvery infinite subset of A has an accumulation point.

=

A is complete and precompact. Yy,

\U

Let us assume that A is compact and let F ={F;:i € 1} be a family of closed subsets of A
such that for every finite collection F1,...,F, € F, we have ﬂ F; #£0. Now, if NF; =1,

el
follows that the family {CxF; :i € I} is an open cover of X and therefore of A. Since A is

compact, there exist Fy,...,F, € F such that A C U CxF; = Cx ﬂ E;. Given that F; C A for

=1 =1

every v =1,...,n, we conclude that ﬂ F; =0, which contradicts the assumption that ﬂ F; #10.
=1 z:

(2) = (1) Let {O; :i € I'} be an open cover of A, i.e., AC U O;, and thus N 040; =0, which
ZEI el

implies ﬂ CAO; =0 (according to (2)), showing that A C U O;, and hence A is a compact set.

(3) = (,i) If K is an infinite subset of A, then K contams a sequence of distinct points (xy,);

by (3), there exists a subsequence (xp, ) converging to x. Therefore, x is an accumulation point
of K.

(4) = (3) Let (xy,) be a sequence of distinct points in A. Using equation (4), we conclude that
(xn) has an accumulation point x € A because A is closed. The ball B(z,1) contains infinitely
many elements of the sequence (xy), so we choose xyn, € B(x,1). The ball B(x,%) contains
infinitely many elements of the sequence (xy), so we choose xy, € B(x,%) with ng >ny. We
repeat this process, choosing xn, € B(z, %) with ng > ny. Therefore, we can select a subsequence
(xn, ), such that ng41 > ny and x,, € B(z, %) forallk=1,2,.... It is clear that this subsequence
converges to x.

(1) = (4) (See Lemma (4.1))

(1) = (5) Assume that A is compact.

o Let () be a Cauchy sequence in A. Since (1) = (4) <= (3), there exists a subsequence
(@n,) such that x,, — x, so x, = x, and hence A is complete.

e For every r >0, the family {B(z,r):x € A} is an open cover of A, so there exists a finite
open subcover {B(zj,r):i=1,...,n} of A, that is, there exist points x1,...,x, in A such that
AC U B(x;,r), which shows that A is precompact.

(5) :1> (3) Let (x,) be a sequence in A and (ry) a decreasing sequence of positive num-
bers such that (rp) — 0. Using (5), we conclude that there exists a finite cover of A by
the balls {B(zi,r1):i=1,...,n}. Therefore, there exists a ball B(yi,r1) that contains in-
finitely many elements of (xy). Let Ny ={n € N:d(y1,x,) <r1}. Now, consider the sequence
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{xy, :m € N1} and the balls of radius ro. We repeat the process; there exists ya € A such that
No ={n € Ny : d(y2,z,) <12} is an infinite set. By induction, we can show that for each i >1,
we choose a point yr € A and an infinite set Ny such that Ngy1 C Ny and {z, :n €N} C
B(yg,rg). If we define Fy, = Cl{x, :n € Ni}, then Fpiq C Fj, and diam(Fy) < 2r. Since A
is complete, Cantor’s theorem implies that QFk = {z}. If we choose n € Ny, then (xy,) is a

subsequence of () converging to x, and hence A is sequentially compact.

(5)= (1) Let G={0; :i € I} be an open cover of A. Since A is precompact, for every r >0,
there exist points x1,...,xy, € A such that A C G B(xy,r). But for each 1 <k <mn, there exists
O € G such that xy, € Oy,. Thus, it is suﬁ?cz’e;t_;flo choose > 0 such that B(xy,r) C Oy for all
1 <k<n (see Lemma 4.3). We then deduce that A C CJ B(xg,r) C LTj Oy, which shows that
the family {Oy : k=1,...,n} is a finite open cover of A,Z_alnd thereforez_fi s compact.

(3) = (5) Let (xy,) be a Cauchy sequence in A, then (3) implies that there ezists a subsequence
(xn,) such that x,, — x. Since d(zp,x) < d(zp,2n,) +d(zp,,x), it follows that x,, — x.

7 N
Proposition 4.9.

1. For all a,b € R, the closed interval [a,b] is compact in (R,]|-|).

\ 2. A subset A of (R,|-]) is compact if and only if it is closed and bounded. )

1. The interval [a,b] is closed in R, which is complete, and therefore complete. Thus, ac-
cording to the previous proposition, it is enough to show that it is precompact. Indeed,
for every r > 0, we can find points a = x1,x2,...,x, = b such that x; —x;i—1 <r, and
la,b] C Gl(xl —7r,xi+T).

i=

— ) Let A be a compact subset of (R,|-|), then it is complete and precompact, according
to the previous theorem, and therefore it is closed and bounded (see Proposition 2.10 and
Remark 4.5).

<= ) Let A be a closed and bounded subset of (R,|-|), then there exists a closed and
bounded interval [a,b] such that A C |a,b], and since [a,b] is compact, A is compact (see
Proposition 4.3).

Example
16

1. Every bounded and closed subset of (R?,ds) is compact.

2. Any subset of (R?,dy) that is either unbounded or not closed is not compact.
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3. The closed disk {x € R? : dy(z,y) < 7“} is compact.

.4

Lemma 4.4 (Heine). If f: (X,dx) — (Y,dy) is continuous and X is compact, then f is

uniformly continuous.

and two sequences (xy) and (yy) in X such that:

. Suppose that f is continuous but not uniformly continuous. Then, there exist € >0

dX<xnayn) < % and dY(f(%’L)?f(Qn)) ZE.

Since X is compact, there exists x € X and a subsequence xy, such that d(xy,,r) — 0. We
deduce that

1
d(ynmx) < d(ynkaxnk) +d($nk,$) < E +d($nk,$),

hence yn, — x. Since f is continuous, there exists 6 > 0 such that:

Y

dx(xp,,r) <6 = dy(f(xn,), f(x)) <

Do ™

dX(ynk?x) <d= dY(f(ynk)7f($)) <

DO ™

Consequently, we obtain:

dy (f(@ny ), f(Yni)) S dy(f(@ny), f(2)) +dy (f(2), f(yn,)) <&,

which contradicts the hypotheses.

Using the previous lemma, we obtain the following result.

4

Corollaire 4.2. If f :[a,b] = R is a continuous function, then f is uniformly continuous

on [a,b.

z >
Proposition 4.10. Let (X,d) be a metric space. Then, we have:

1. Every relatively compact subset is precompact.

| 2. If (X,d) is complete, then every precompact subset is relatively compact. )
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1. Let A be a relatively compact subset of X; then CI(A) is precompact, and hence A is
precompact.

2. Suppose (X,d) is complete. If A is precompact, then CI(A) is also precompact. Fur-
thermore, Cl(A) is closed in X, which is complete, and thus CI(A) is complete as well,
showing that C1(A) is compact (see Proposition (4.8)).
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CONNECTED SPACES

5.1 Connectivity in Topological Spaces

5.1.1 Connected Spaces and Subsets

Let the two spaces (X, |.|) and (Y, ]|.|) be such that X =]2,3[U]4,5[ and Y = [2,3]U]3,4[. The two
subsets O1 =|2,3[ and O =4, 5[ are both open and closed in X because O; = XNJ2,3[=XN[2,3]
and Oy = XNJ4,5[= XN [4,5]. Moreover, we have X = O1 Uz, so the family {O,02} is a
partition of X into two disjoint open (and closed) sets. In this case, we say that X is not
connected, whereas Y is connected because it can be written in the form Y = [2,4[. The
concept of connectivity, which we will define below, intuitively means that a space is "in one

piece" or that it cannot be split into two "separated" parts.

@ )

Definition 5.1. Let (X,T) a topological space. X is said to be disconnected if it is the
union of two disjoint non-empty open sets. In other words, a space is connected if it does

not have a partition consisting of two non-empty open sets. We write then,

There do not exist O1,09 € T such that:

=X
X is connected <—> * OulJO; ’
. OlﬂOQZQ,
X e O1#0 and Oy # (. Y.

An equivalent definition of the connectivity of X is as follows.

.4

Definition 5.2. X is connected if for any partition of X into two open sets O1 and O2,
we have O1 =0 or Oy = 0.
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g )

Proposition 5.1. Let (X,T) be a topological space. The following assertions are equiva-

lent.
1. X is connected.
2. There does not exist a partition of X into two non-empty open sets.
3. There does not exist a partition of X into two non-empty closed sets.
4. 0 and X are the only sets that are both open and closed (clopen sets) in X.
5. Any subset A C X such that A# 0 and A # X has a non-empty boundary.

6. There is no continuous and surjective map from X to a discrete space Y containing

two elements.

\ 7. Every continuous map f:X — Y = {a,b} is constant. )

1. = 2. By definition.

2. = 8. Suppose there exists a partition of X into two non-empty closed sets Fi and F5,
ie., TUFy =X and FiNFy=0. Then Fy and Fy are two non-empty open sets that form a
partition of X because CxFL = F5 and Cx Py = F.

3. = 4. Suppose there exists a set A that is both open and closed, and different from X
and . We deduce that A and Cx A form a partition of X into two non-empty closed sets.

4. = 5. Suppose A is a subset of X such that A#0, A#X, and CI(A) =0. We de-
duce that A is both open and closed.

5. = 6. Suppose there exists a continuous and surjective map f:X — Y ={a,b}. Then,
the set {a} is both open and closed. Thus, f~'({a}) is a set that is both open and closed, such

that f~1({a}) # 0 and f~*({a}) #X. Moreover, CI(f~*({a})) = 0.

6. —> 7. Suppose there exists a continuous map f:X — Y = {a,b} that is not constant.

Then f is surjective.

7. = 1. Suppose X is not connected. Then there exist two non-empty open sets 01,09 C X
such that O1UOy =X and O1NOy = 0. Then, the map f:X — Y ={a,b} defined by f(x)=a
if x € O1 and f(x) =b if x € Oy is continuous but not constant.
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Example
-

1. R is connected.

2. Any discrete space (X,6) such that card(X) > 2 is not connected. Indeed, if x € X, then
we have {x} UCx{r} =X and {x}NCx{z} =0, with {z} and Cx{z} being two open (two

closed) sets.
3. It is evident that any space equipped with the trivial topology is connected.

4. LetX={a,b,c,d} and T ={0,X,{a},{b},{a,b},{a,b,c}}. Itis clear that (X,T) is connect.

.4

Definition 5.3. Let (X,T) be a topological space and A a non-empty subset of X. We

say that A is connected if the subspace (A, Ta) is connected. Classically, we consider the

empty set as connected.

Example
5.

1. FEwvery interval in R is connected.

2. Every open (closed) ball in R™ is connected.

3. The space (R*,|-|) is not connected (why ?).

5.1.2 Properties of Connected Spaces

.4

Proposition 5.2. If a subset A of a topological space (X,T) is connected, then the ex-
istence of two open sets O1,09 € T such that A C O1UQOs and O1NO2 = implies that
AC Oy or AC Os.

. Suppose A is connected and let O1,09 € T such that A C O1UOy and O1 N0y = 0.
Then, A= (ANO1)U(ANO2) and (ANO1)N(ANO2) =0. Since A is connected, we obtain
(ANO1=0) or (ANO2=0), from which it follows that A C Oy or A C Oy.

@ )

Proposition 5.3. Let (X,T) be a topological space and A, B two subsets of X such that
A is connected and A C B C Cl(A). Then, we have:

1. If A is connected, then B is connected.
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2. If A is connected, then CI(A) is connected.

| 3. If A is a connected and dense subset of X, then X is connected.

1. Let f: B—{0,1} be a continuous function. Since A is connected and f is continuous
on A, we obtain that f is constant on A. Since f is continuous on B, the set G={z € B
f(z) € f(A)} is a closed set of B containing A, so Cl(A)p C G. Thus, [ is constant on
the closure of A in B, which is Cl(A)p = BNCI(A) = B. We conclude that f is constant

on B. Therefore, B is connected.
2. It is sufficient to take B=CI(A) in (1)).

3. We have Cl(A) =X because A is dense in X, and CI(A) is connected because A is con-
nected (see question (2)). We conclude that X is connected.

4

Proposition 5.4. Let (X,Tx) and (Y,Ty) be two topological spaces, and let f: X — Y

be a continuous function. If X is connected, then f(X) is a connected subset of Y.

. Let G be a subset of f(X) that is both open and closed in the induced topology. Since f

is continuous as a function with values in f(X), we deduce that f~Y(G) is both open and closed
in X. Since X is connected, we deduce that f~1(G) =0 or f~1(G) =X. Since f(f1(G)) =G,
we obtain that G =0 or G = f(X), which shows that f(X) is connected.

R k . . iy . .
5.1. According to the previous proposition, connectedness is a topological property.

7 A
Proposition 5.5. Let (X,T) be a topological space.

1. If {A; i € I} is an arbitrary family of connected subsets of X such that () A; # 0,
el
then J A; is connected.
el
2. If {A; ri €I} is an arbitrary family of connected subsets of X such that A;NA; #0

for alli,5 € I, then \J A; is connected.
1€l

3. If {A; i €I} is an arbitrary totally ordered family of connected subsets of X, then

U A; is connected.

k iel )
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We will provide the proof for the first case only.

Proof

.Letae NA;#0. If [ UA —{0,1} is a continuous function, then fi, is con-
i€l

tinuous, and thus constant by the connectedness of A;. Since a € A; for all i € I, we obtain

f(z)= f(a) for all x € A;. Therefore, f(x)= f(a) for allx € UAZ, i.e., f is constant on J Aj;,

el
which shows that |J A; is connected.
el

.4

| Proposition 5.6. A subset A of R is connected if and only if it is an interval.

=) Suppose that the set A C R is not an interval in R. Then, there exist points x,y € A and
z ¢ A such that x < z <y. Define Oy =]—00,2[NA and Oz =]z,+00[N A, which are
two non-empty open subsets of A. Furthermore, we have O1NOs =0 and O1UOy = A.

Therefore, A is not connected.

<) Let A be a non-empty interval in R. Suppose A= 0O1UO2, where O1 and Oy are two
non-empty open subsets of A with O1NOs =(. Let x € O1 and y € Oa such that x <y,
and let z =sup(O1N|[z,y]).

On the one hand, if z € O1, then z <y, which implies the existence of a real number r > 0
such that [z,z+r[C O1N[z,y|, contradicting the definition of z.

On the other hand, if z € Os, then z > x, which implies the existence of a real number

r >0 such that |z —r,z] C O2N[z,y], again contradicting the definition of z.

Thus, we conclude that z ¢ O1 and z ¢ Oz, which is impossible because [x,y] C A. There-

fore, A is connected.

e N
Proposition 5.7. Let (X, T) be a topological space and f: X — R a continuous function.

1. The image of any connected subset of X is an interval in R.

2. Let a,b e f(X). If X is connected, then the equation f(x)=c has a solution for

\ every ¢ € [a,b). Y
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1. Let A be a connected subset of X. Then, f(A) is connected in R (see Proposition 5.4),
which implies that f(A) is an interval (see Proposition 5.06).

2. Using the two propositions (5.4) and (5.6), we conclude that f(X) is an interval. Then,
[a,b] C f(X) which implies that

Ve e [a,b], ce f(X).

Therefore, there exists x € X such that f(z) = c.

.4

Proposition 5.8. Let ((X,7x)) and ((Y,Ty) be two topological spaces. Then X xY is

connected if and only if X and Y are connected.

=) Suppose that X XY is connected. We have px(X xY) =X and py(XxY) =Y, where px

and py are the continuous canonical projections. It follows that X and Y are connected.

<) Suppose that X and Y are connected, and let f: X xY — {0,1} be a continuous function.
Then, it suffices to show that f is constant. Since Y is connected, the function f(x,-):

Y — {0,1} is constant, meaning f(x,y1) = f(x,y2) for all z € X.

Since X is connected, the function f(-,y): X — {0,1} is constant, meaning f(x1,y) =

f(z2,y) for ally €Y. Therefore, f(x1,y1) = f(x2,y2) for all (z1,41),(72,y2) € XX Y,
which shows that f is constant. Thus, X XY is connected.

In the general case, we have the following result.

4

Proposition 5.9. Let {(X;,7;):i €I} be a family of topological spaces. Then [IX; is
el

connected if and only if X; is connected for every i € I.

5.1.3 Connected components, locally connected spaces

.4

Definition 5.4. Let (X,T) be a topological space. For each x € X, we call the connected

component of x, denoted by C(z), the equivalence class of x under the relation R defined
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k by " xRy <= x and y belong to the same connected subset of X." J

k
5.2. According to the previous definition, we conclude that the connected component

of a point x is the union of all connected subsets containing x. In other words, it is the largest

connected subset containing x. Moreover, the connected components of X form a partition ofX.

.4

Definition 5.5. A connected component of a space X is a maximal connected subset of

X, i.e., a connected subset that is not contained in any other (strictly) larger connected
subset of X.

Example
5.3

1. The only connected component in (R,|-|) is R itself.

2. (R*,|-]) has two connected components: R* and R%_.

& )

Definition 5.6. Let (X,T) be a topological space, and let A C X. The connected compo-
U nents of A are defined as the connected components of (A, Ta). )

& )

d Proposition 5.10. Fvery connected component is closed. )

. Let A be a connected component. Then A is connected, and thus Cl(A) is a connected
subset containing A, so Cl(A) = A, which shows that A is closed.

.4

Definition 5.7. Let (X,T) be a topological space. We say that X is locally connected if

every point x € X admits a neighborhood basis consisting of open connected sets.

Example
5.

1. R is locally connected.

2. Q is not locally connected.

3. Bvery discrete space is locally connected. Indeed, N'(x) = {{x}} forms a neighborhood

basis consisting of open connected sets for each point x € X.
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.4

Proposition 5.11. Let (X,7T) be a topological space. X is locally connected if and only

if every connected component of every open set in X is open.

=) Suppose that X is locally connected. Let O be an open set in X, and let C(O) be a connected
component of O. Then, for every x € C(O), there exists N € N(x) such that N is connected
and N C O. Thus, N C C(O), which shows that C(O) is open (a neighborhood of each of its
points).

<) Let x € X and N be an open neighborhood of x. Then, the connected component of x in

N is open, which shows that X is locally connected.

5.1.4 Path-connectedness

4

Definition 5.8. Let (X, T) be a topological space and [x,y] an interval in R. A path in a

subset A of X is any continuous function vy : [x,y] — A. The image y([z,y]) of the path
is called an arc with starting point v(x) and endpoint v(y).

5.3. We can replace [x,y] with [0,1] because they are homeomorphic.

.4

Definition 5.9. Let (X,T) be a topological space and A a subset of X. We say that A is
arc-connected if for every a,b € A, there exists an arc contained in A with starting point

a and endpoint b.

Example
5.5

1. R is arc-connected. It is enough to take as a path in R the map ~:[0,1] — R defined by
v(z)=a+x(b—a), for all a,b € R.

2. Q and CrQ are not arc-connected.

4

| Proposition 5.12. An arc-connected space is connected.
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exists a continuous function 7y, : [0,1] = X such that v,(0) = a and (1) =b. Therefore, the

. Suppose that X is an arc-connected space and let a € X. Then, for every b € X, there

collection {~([0,1]) : b € X} forms a family of connected sets whose intersection is non-empty

(since it contains a), and X = U ,([0,1]) which implies that X is connected.
beX

5.2 Connectedness in Metric Spaces

The definitions and properties of connectedness in metric spaces are the same as those we have
seen in topological spaces. Therefore, it is enough to give a brief reminder of these definitions

and properties.

5.2.1 Definitions and properties of connectivity in metric spaces
@ )

e X is connected if and only if the only subsets of X that are both open and closed are

the empty set () and X.

e X is connected if and only if there is no partition of X into two non-empty open sets.
e X is connected if and only if there is no partition of X into two non-empty closed sets.
e X is connected if and only if every continuous function f : (X,d) — ({0,1},9) is constant.
e The continuous image of a connected set is connected.

e Connectivity is a topological property.

e X XY is connected if and only if both X and Y are connected.

o If A is connected and A C B C CI(A), then B is connected.

o If A is connected, then CI(A) is also connected.

e X is arc-connected if for all a,b € X, there exists a continuous function f:[0,1] — X
such that f(0) =a and f(1) =b.

e Fvery arc-connected space is connected.

e A connected space is not necessarily arc-connected.

e A subset A C R is connected if and only if A is an interval.

e If X is connected and f: X — R is continuous, then f(X) is an interval.

Uk If f:[a,b] — R is continuous, then f([a,b]) = [c,d]. )
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