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INTRODUCTION

This course aims to provide a comprehensive and accessible introduction to the fundamental
concepts of metric spaces, topological spaces, complete spaces, compact spaces, and connected
spaces. These mathematical structures form the backbone of modern analysis and topology, and
they have wide-ranging applications in fields such as geometry, functional analysis, and theo-
retical physics. Understanding these spaces is essential for anyone wishing to pursue advanced
studies in mathematics or related disciplines.

We begin with metric spaces, one of the most intuitive and well-studied types of spaces. A
metric space is a set equipped with a distance function, or metric, that assigns a non-negative
real number to each pair of points, representing the "distance" between them. This simple yet
powerful structure allows us to define and analyze concepts such as convergence, continuity,
and compactness. Metric spaces also serve as a foundation for more advanced spaces, making
them an ideal starting point for our study.

Building on the notion of metric spaces, we will then introduce topological spaces, a more
abstract and general framework. Unlike metric spaces, topological spaces are defined by a collec-
tion of open sets that satisfy certain axioms. This abstraction allows mathematicians to study
a wide range of spaces that may not have a natural notion of distance but still exhibit similar
topological properties. Topological spaces provide a unifying language for various branches of
mathematics, from analysis to algebraic geometry.

The concept of completeness is a natural extension in both metric and topological settings.
A space is said to be complete if every Cauchy sequence converges to a limit within the space.
Completeness is crucial in the study of functional spaces, as it guarantees the existence of
solutions to various mathematical problems, such as differential equations. We will explore the
importance of complete spaces and their role in the theory of Banach and Hilbert spaces, which
are central to functional analysis.

Next, we will delve into the notion of compactness, a property that captures the idea of
"smallness" or "boundedness" in a topological sense. Compact spaces are those in which every
open cover has a finite subcover, and they exhibit many desirable properties that make them

iv
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indispensable in both pure and applied mathematics. For example, compactness ensures the
existence of convergent subsequences and plays a critical role in optimization, integration, and
the study of continuous functions.

Finally, we will examine connectedness, a fundamental property that describes whether a
space can be divided into disjoint open subsets. A connected space is one that cannot be split into
two non-empty, disconnected parts. Connectedness is essential in understanding the behavior
of continuous functions and the topological structure of spaces. It also provides a framework
for analyzing geometric shapes and understanding how different parts of a space relate to each
other.

Throughout this course, we will emphasize both the theoretical foundations and practical
applications of these concepts. Each chapter will build on the previous ones, providing a logical
progression from basic definitions to more advanced topics. By the end of this course, students
will have a solid understanding of the core ideas in topology and analysis, enabling them to
tackle more complex problems in mathematics and its applications.

In addition to theoretical discussions, we will include numerous examples and exercises
to help students develop intuition and problem-solving skills. Historical notes will highlight
the contributions of mathematicians such as Henri Poincaré, Karl Weierstrass, and Maurice
Fréchet, whose work has shaped the development of these concepts.

By the end of this course, students will have a comprehensive understanding of these funda-
mental mathematical structures and their importance in various branches of mathematics. This
knowledge will prepare them for more advanced topics and applications in areas such as func-
tional analysis, differential equations, and mathematical physics. It consists of five chapters,
outlined as follows:

• Chapter 1: Explores metric spaces and their properties, introducing concepts like dis-
tance, open and closed balls, isometric spaces, and Lipschitz functions.

• Chapter 2: Develops the concept of complete spaces, focusing on Cauchy sequences and
fixed points.

• Chapter 3: Introduces the structure and properties of topological spaces, convergent
sequences, continuous functions, open and closed maps, and homeomorphisms.

• Chapter 4: Examines compactness in both topological and metric spaces.

• Chapter 5: Dedicates attention to connectedness in topological and metric spaces.

This copy does not exempt you from attending the meetings or taking additional notes.
It is there to avoid a copy work that sometimes prevents you from focusing on the expla-
nations given orally.
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CHAPTER 1

METRIC SPACES

1.1 Metric spaces

Metric spaces are a fertile field for examples that we will use to study topological spaces and
their properties.

The notion of metric space is was introduced in 1906 by Maurice Fréchet and developed
and named by Felix Hausdorff in 1914.

Definition 1.1. Let X be a non-empty set and d : X×X −→ R+ a real valued function
such that for all x,y,z ∈ X the following holds:

C1) d(x,y) = 0 ⇐⇒ x = y,

C2) d(x,y)=d(y,x); ( symmetry).

C3) d(x,y) ≤ d(x,z)+d(z,y); (triangle inequality).

Then d is said to be a metric(or distance) on X, the pair (X,d) is called a metric space
and d(x,y) is referred to as the distance between x and y.

Remark 1.1. A metric space (X,d) is a set X endowed with a metric d. When there is no
possibility of confusion, we abbreviate by saying that X is a metric space.

Example
1.1. On Rn we have the following metrics :

1) d1(x,y) =
n
Σ

i=1
|xi −yi|, 2) d2(x,y) =

( n
Σ

i=1
(xi −yi)2

) 1
2
,

3) d∞(x,y) = max
i=1,...,n

(|xi −yi|), 4) dp(x,y) =
( n

Σ
i=1

|xi −yi|p
) 1

p

, p ⩾ 1

The metric d1 is called ℓ1 metric, d2 is called the the euclidean metric (or ℓ2 metric), d∞ is
called the maximum metric(or ℓ∞ metric) and dp is called ℓp metric.

1
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CHAPTER 1. METRIC SPACES

Example
1.2. On C([a,b],R)(the set of continuous functions from [a,b] to R) we have the

following metrics :

1) d1(f,g) =
b∫
a

|f(t)−g(t)|dt, 2) d2(f,g) = [
b∫
a

(f(t)−g(t))2dt] 1
2 ,

3) d∞(f,g) = sup
t∈[a,b]

(|f(t)−g(t)|), 4) dp(f,g) = [
b∫
a

|f(t)−g(t)|pdt]
1
p , p ≥ 1.

Example
1.3. The function du : R −→ R+ given by d(x,y) = |x−y| is a metric on R and is

called usual metric(or euclidean metric) on R.

Example
1.4. Let X be a non-empty set and δ : X×X −→ R the function defined by

δ(x,y) =

 1 if x ̸= y,

0 if x = y.
(1.1)

Then, δ is a metric on X and is called the discrete metric.

Proposition 1.1. Let (X,d) be a metric space. Then,

(1.2) |d(x,z)−d(y,z)| ⩽ d(x,y),

for all x,y,z ∈ X

Proof . Using the triangle inequality for metrics we obtain

(i) d(x,z)−d(y,z) ⩽ d(x,y).

Again, by using the triangle inequality for metrics we can see that

(ii) −d(x,y) ⩽ d(x,z)−d(y,z).

Then, the inequality (1.2) follows from (i) and (ii).

Definition 1.2. Let (X,dX) be a metric space and let A be a subset of X. We define a
metric dA : A×A −→ R+ on A by dA(x,y) = dX(x,y) for all x,y ∈ A. Then, (A,dA) is a
metric space, which is said to be a subspace of (X,dX).

Section 1.2 Dr. CHOUGUI Nadhir 2
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CHAPTER 1. METRIC SPACES

Remark 1.2. The metric dA is just the function dX restricted to the subset A×A of X×X.

1.2 Open balls, closed balls and spheres

Definition 1.3. Let (X,d) be a metric space. Let a ∈ X and r any positive real number.
Then,

1) the open ball around a of radius r is defined as follows:

B(a,r) = {x ∈ X / d(a,x) < r} .

2) the closed ball around a of radius r is defined as follows:

Bf (a,r) = {x ∈ X / d(a,x) ≤ r} .

3) the sphere centered at a of radius r is defined as follows:

S(a,r) = {x ∈ X / d(a,x) = r} .

Remark 1.3. Bf (a,r) = B(a,r)∪S(a,r) for all a ∈ X and r > 0.

Example
1.5. In R with the euclidean metric du we have:

• B(a,r) = {x ∈ R / |x−a| < r} = (a− r,a+ r).
• Bf (a,r) = {x ∈ R / |x−a| ≤ r} = [a− r,a+ r].
• S(a,r) = {x ∈ R / |x−a| = r} = {a− r,a+ r}.

Example
1.6. In R2 with the euclidean metric d2 we have:

• B(a,r) is the open disc centered at a = (a1,a2) ∈ R2 of radius r.
• Bf (a,r) is the closed disc centered at a = (a1,a2) ∈ R2 of radius r.
• S(a,r) is the circle centered at a = (a1,a2) ∈ R2 of radius r.

Example
1.7. In R2, if we take a = (0,0) ∈ R2 and r = 1 we obtain:

• Bd1((0,0),1) =
{
(x1,x2) ∈ R2 / d1 ((x1,x2) ,(0,0)) = |x1|+ |x2| < 1

}
,

• Bd2((0,0),1) =
{
(x1,x2) ∈ R2 / d2 ((x1,x2) ,(0,0)) =

√
(x1)2 +(x2)2 < 1

}
,

• Bd∞((0,0),1) =
{
(x1,x2) ∈ R2 / d∞ ((x1,x2) ,(0,0)) = max(|x1|, |x2|) < 1

}
.

Hence, the unit ball (open ball) B((0,0),1) takes the following forms:

Section 1.2 Dr. CHOUGUI Nadhir 3
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CHAPTER 1. METRIC SPACES

Figure 1.1: Open ball B ((0,0),1) in R2 with d1,d2 and d∞

Example
1.8. In R3 equipped with the euclidean metric d2 we have:

• S(a,r) is the sphere centered at a of radius r.
• B(a,r) is the open ball (excluding the boundary points that constitute the sphere) centered at
a of radius r.
• Bf (a,r) is the closed ball (including the boundary points that constitute the sphere) centered
at a of radius r.

Example
1.9. In the discrete metric (X, δ) (see Example (1.4)), we have:

B(a,r) =

 {a} if r ≤ 1,

X if r > 1,

for all a ∈ X and r > 0.

1.3 Open sets, closed sets and neighbourhood

Definition 1.4. Let (X,d) be a metric space. A set O ⊂ X is called open if every point
x ∈ O is the center of an open ball contained in O. That is,

∀x ∈ O, ∃r > 0 such that B(x,r) ⊆ O.

Definition 1.5. Let (X,d) be a metric space. A subset F of X is said to be closed in
(X,d) if its complement, CXF (orF C), is open in (X,d).

Section 1.3 Dr. CHOUGUI Nadhir 4
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CHAPTER 1. METRIC SPACES

Figure 1.2: Open set O

Proposition 1.2. Let (X,d) be a metric space. Let a ∈ X and r > 0. Then the open ball
B(a,r) is an open set.

Proof . Let B(a,r1) be an open ball in (X,d). Then, for all x ∈ B(a,r1) we have d(a,x) < r1.
By taking r2 = 1

2(r1 −d(a,x)) we obtain B(x,r2) ⊂ B(a,r1).

Remark 1.4. Using the previous preposition we conclude that the closed ball Bf (a,r) is a
closed set.

Proposition 1.3. Let (X,d) be a metric space. Any open set in X is an union of open
balls.

Section 1.3 Dr. CHOUGUI Nadhir 5
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CHAPTER 1. METRIC SPACES

Proof . Let O be an open subset of X. Then, for all x ∈ O there exists r > 0 such that
B(x,r) ⊆ O which implies that O = ⋃

x∈O
{x} ⊆ ⋃

x∈O
B(x,r) ⊆ O. Hence, O = ⋃

x∈O
B(x,r).

Proposition 1.4. Let (X,d) be a metric space. Then, the open sets in X satisfy the
following properties.

1) X is open and ∅ is open.

2) Any union of open sets in X is an open set in X.

3) Any finite intersection of open sets in X is an open set in X.

Proof .

1) Note that it is vacuously true that the empty set contains an open ball about each of its
points, since it contains no points. And the set X contains an open ball about each of its
points because every open ball is a subset of X.

2) Assume that {Oi : i ∈ I} is a collection (finite or infinite) of open sets in (X,d) and let
x ∈ ⋃

i∈I
Oi. So, there exists i0 ∈ I such that x ∈ Oi0. Since, Oi0 is open, there is an r > 0

such that B(x,r) ⊆ Oi0. Hence, B(x,r) ⊆ Oi0 ⊆ ⋃
i∈I

Oi which implies that ⋃
i∈I

Oi is an open

set in (X,d).

3) Assume that {O1,O2, ...,On} is a finite collection of open sets in (X,d) and let x ∈
n⋂

i=1
Oi.

Then x ∈ Oi for each i = 1,2, ...,n. So, for each i = 1,2, ...,n, there is an ri > 0 such that
B(x,ri) ⊆ Oi. Let r = min(r1, r2, ..., rn). Then B(x,r) ⊆ Oi for all i = 1,2, ...,n, which
implies that B(x,r) ⊆

n⋂
i=1

Oi. Hence,
n⋂

i=1
Oi is an open set in (X,d).

Example
1.10. In R with the Euclidean metric (usual metric), the set

A =
∞⋂

i=1

(
− 1

n
,
1
n

)
= {0},

is an intersection of open sets but is in fact not open.

By applying De Morgan’s laws to the previous proposition, we can easily prove the following
similar proposition for closed sets.

Section 1.3 Dr. CHOUGUI Nadhir 6
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CHAPTER 1. METRIC SPACES

Proposition 1.5. Let (X,d) be a metric space. Then, the closed sets in X satisfy the
following properties.

1. X is closed and ∅ is closed.

2. Any intersection of closed sets in X is a closed set in X.

3. Any finite union of closed sets in X is a closed set in X.

Proposition 1.6. Let (X,d) be a metric space.Then, the sphere S(x,r) is a closed set in
(X,d).

Proof . The complement of the sphere S(x,r) is the union ∁XBf (x,r)⋃B(x,r) which is an
open set in X because it is the union of two open sets in X. So the sphere S(x,r) is a closed
set in (X,d).

Definition 1.6. Let (X,d) be a metric space and let x ∈ X. A subset N of X is said
to be neighbourhood of x in (X,d) if there is an r > 0 such that B(x,r) ⊆ N , that is,
if N contains an open ball centered at x with radius r. We denote by N (x) the set of
neighbourhoods of x.

Example
1.11.

1) In R with the Euclidean metric, the set R+ (the positive real numbers) is a neighbourhood
of x = 2 because the open ball B(2,0.5) is completely contained in R+.

2) In R with the Euclidean metric, the set Z is not a neighbourhood of x = 2 because any
open ball centered at x = 2 will contain some non-integers.

Remark 1.5. Using proposition (1.3) we can easily prove that a set is open if and only if it
is a neighbourhood of each of its points (Do yourself!).

Section 1.3 Dr. CHOUGUI Nadhir 7
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CHAPTER 1. METRIC SPACES

Proposition 1.7. Let (X,d) be a metric space and let x ∈ X.

1. Any union of neighborhoods of x is also its neighborhood.

2. Any finite intersection of neighborhoods of x is also its neighborhood.

Proof .

1) Suppose that {Ni : i ∈ I} is a collection (finite or infinite) of neighborhoods of x in (X,d).
Then for each i ∈ I, there is an ri > 0 such that B(x,ri) ⊆ Ni. Hence ⋃

i∈I
B(x,ri) ⊆⋃

i∈I
Ni which implies that there exists i0 ∈ I such that B(x,ri0) ⊆ ⋃

i∈I
Ni. So, ⋃

i∈I
Ni is a

neighborhood of x in (X,d).

2) Assume that {N1,N2, ...,Nn} is a finite collection of neighborhoods of x in (X,d). Then,
for each i = 1,2, ...,n, there is an ri > 0 such that B(x,ri) ⊆ Ni. Let r = min(r1, r2, ..., rn).
Then B(x,r) ⊆ Ni for all i = 1,2, ...,n, which implies that B(x,r) ⊆

n⋂
i=1

Ni. Hence,
n⋂

i=1
Ni

is a neighborhood of x in (X,d).

Definition 1.7. Let (X,d) be a metric space. Let x,y ∈ X. We say that x and y can be
separated by neighborhoods if there exists a neighborhood U ∈ N (x) and a neighborhood
V ∈ N (y) such that U and V are disjoint, i.e., U

⋂
V = ∅.

Definition 1.8. A metric space (X,d) is said to be a Hausdorff space if every two distinct
points of X have disjoint neighborhoods.

Proposition 1.8. Any metric space is a Hausdorff space.

Proof . Let (X,d) be a metric space and let x,y ∈ X such that x ̸= y. So there exists r > 0
such that d(x,y) = r. Hence, if we take U = B(x,

r

3) and V = B(y,
r

3) we obtain U
⋂

V = ∅,
which shows that (X,d) is a Hausdorff space.

Section 1.3 Dr. CHOUGUI Nadhir 8
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CHAPTER 1. METRIC SPACES

1.4 Interior, exterior, boundary and closure

Definition 1.9. Let (X,d) be a metric space and let A ⊆ X. A point x ∈ A is called
an interior point (or an inner point,) of A, if and only if there exists r > 0 such that
B(x,r) ⊆ A. The set of all interior points of A is called the interior of A and is denoted
by Int(A)(or Å).

Figure 1.3: Interior point

Example
1.12. In R with the Euclidean metric, we have Int([0,1]) = (0,1) ( because for any

point other than 0 or 1, we can fit a ball inside [0,1]).

Example
1.13. In R with the Euclidean metric, we have Int(Q) = ∅ (because for any x ∈ Q,

there is no ball (x− r,x+ r) that lies entirely within Q).

Example
1.14. In R with the Euclidean metric, we have Int((0,1)) = (0,1) ( because for all

x ∈ (0,1), there is r > 0 such that (x− r,x+ r) ⊆ (0,1)).

Proposition 1.9. Let A ⊂ X where (X,d) is a metric space. Then

1. Int(A) is open.

Section 1.4 Dr. CHOUGUI Nadhir 9
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CHAPTER 1. METRIC SPACES

2. Int(A) is the largest open subset contained in A.

Proof .

1) If x ∈ Int(A) then there exists r > 0 such that B(x,r) ⊂ A. Since B(x,r) is open, it
only contains interior points of A, thus B(x,r) ⊂ Int(A). Hence Int(A) is open per
Definition(1.4).

2) Fix a set A and let G ⊂ A be an open set. Let x ∈ G arbitrary. Since G is open, x is an
interior point of G and there exists some r > 0 such that B(x,r) ⊂ G. But since G ⊂ A,
then B(x,r) ⊂ A and thus x ∈ Int(A), showing that G ⊂ Int(A). Since Int(A) is always
open, Int(A) is the largest open subset contained in A.

Remark 1.6. From the previous proposition we conclude that if A is open, then Int(A) = A

and if Int(A) = A then A is open.

Definition 1.10. Let (X,d) be a metric space and let A ⊆ X. A point x ∈ A is called an
exterior point of A, if and only if there exists r > 0 such that B(x,r) ⊆ ∁XA. The set of
all exterior points of A is called the exterior of A and is denoted by Ext(A).

Example
1.15. In R with the Euclidean metric (usual metric), we have

Ext((0,1)) = (−∞,0)∪ (1,+∞).

Definition 1.11. Let (X,d) be a metric space and let A ⊆ X. A point x ∈ A is called an
adherent point of A, if and only if for every real r > 0, we have B(x,r) ∩ A ̸= ∅. The set
of all adherent points of A is called the closure of A and is denoted by Cl(A) ( or Ā).

Example
1.16. In R with the Euclidean metric (usual metric), we have

Cl((0,1)) = [0,1].

Proposition 1.10. Let A ⊂ X where (X,d) is a metric space. Then

Cl(∁XA) = ∁XInt(A).
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Proof . Let x ∈ X. Then we have

x ∈ ∁XInt(A) ⇐⇒ x /∈ Int(A)

⇐⇒ ∀r > 0,B(x,r) ⊈ A

⇐⇒ ∀r > 0,B(x,r) ⊆ ∁XA

⇐⇒ ∀r > 0,B(x,r)∩∁XA ̸= ∅

⇐⇒ x ∈ Cl(∁XA).

Proposition 1.11. Let A ⊂ X where (X,d) is a metric space. Then,

1. Cl(A) is closed.

2. Cl(A) is the smallest closed set containing A.

Proof . Do yourself!

Remark 1.7. From the previous proposition we conclude that if A is closed, then Cl(A) = A

and if Cl(A) = A then A is closed.

Definition 1.12. Let (X,d) be a metric space and let A ⊆ X. A point x ∈ A is called a
boundary point of A, if and only if x is neither an interior point nor an exterior point
of A. The set of all boundary points of A is called the boundary of A and is denoted by
∂(A).

Example
1.17. In R with the Euclidean metric (usual metric), we have

∂((0,1)) = {0,1}.

Remark 1.8. We can define the boundary of A as follows:

∂(A) = Cl(A)∩Cl(∁XA)(orA∩∁XA).

= Cl(A)∖ Int(A)(orA∖ Å).
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Definition 1.13. Let (X,d) be a metric space and let A ⊆ X. A point x ∈ A is called
an accumulation point(or a limit point) of A, if and only if for every real r > 0, we have
(B(x,r)∖{x}) ∩ A ̸= ∅. The set of all accumulation points of A is called the derived set
of A and is denoted by A′.

Example
1.18. In R with the Euclidean metric (usual metric), we have

Z′ = ∅, Q′ = R.

Remark 1.9. We have Cl(A) = A∪A′ and a set A is closed if A′ ⊂ A.

Definition 1.14. Let (X,d) be a metric space and let A ⊆ X. A point x ∈ A is called an
isolate point in A, if and only if there exists a real r > 0 such that (B(x,r)∖{x})∩A = ∅
(or B(x,r)∩A = {x}). The set of all isolate points in A is denoted by Is(A).

Remark 1.10. If x ∈ A is not an accumulation point, it is called isolated in A.

Example
1.19. In R with the Euclidean metric (usual metric), we have

Is(Z) = Z, Is(Q) = ∅.

1.5 Distance between two sets, Diameter

Definition 1.15. Let (X,d) be a metric space with A,B ⊂ X and a ∈ X. We define the
distance between a point and a set, and the distance between two sets as follows:

(1.3) d(a,A) = inf
x∈A

d(a,x), d(A,B) = inf
x∈A,y∈B

d(x,y),

Remark 1.11.

1. From the previous definition we conclude that d(A,B) = d(B,A).

2. d(A,B) is not a distance on P(X) (the power set of X). For example, in (R, |.|), if we
take A = [−2,4] and B = [4,6] we obtain d(A,B) = 0 but A ̸= B.
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3. ∀A,B ⊂ X, A ∩ B ̸= ∅ =⇒ d(A,B) = 0. The reciprocal of the previous implication is not
true. For example, in (R, |.|), if we take A =

{
n+1

n
,n ∈ N∗

}
and B = {1} we obtain

d(A,B) = inf
n∈N∗

∣∣∣∣1− n+1
n

∣∣∣∣= 0 but A∩B = ∅.

Proposition 1.12. Let (X,d) be a metric space, let A be a subset of X and let x ∈ X.
Then, we have

1) x ∈ Cl(A) ⇐⇒ d(x,A) = 0.

2) x ∈ Ext(A) ⇐⇒ d(x,A) > 0.

Proof .

1. =⇒) x ∈ Cl(A) =⇒ ∀ε > 0, B(x,ε)∩A ̸= ∅ =⇒ ∀ε > 0, d(x,A) < ε =⇒ d(x,A) = 0.
⇐= ) Suppose that x /∈ Cl(A), then there exists r > 0 such that B(x,r) ∩ A = ∅ (By
negation). Hence

∀y ∈ A, d(x,y) ⩾ r,

which shows that
d(x,A) = inf

y∈A
(x,y) ⩾ r > 0.

2. By negation of (1)(Do yourself! ).

Definition 1.16. Let (X,d) be a metric space and A a subset of X. Then the set A is
said to be bounded if there exists some x0 ∈ X and r > 0 such that A ⊆ B(x0, r).

Remark 1.12. From the previous definition we conclude that the finite subsets of X are
bounded.

Definition 1.17. Let A be a non-empty subset of a metric space (X,d). The diameter of
A is defined by

(1.4) diam(A) = sup
x,y∈A

d(x,y).
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Proposition 1.13. A non-empty subset A of a metric space (X,d) is bounded if and only
if diam(A) < +∞.

Proof .

=⇒) Suppose A is bounded, then there exists r > 0 such that A ⊆ B(x,r). Hence diam(A) ⩽
2r < +∞.

⇐=) Suppose diam(A) < +∞, then for every x ∈ A we have A ⊆ B(x,diam(A)) which implies
that A is bounded.

1.6 Equivalent metrics

Definition 1.18. Let (X,d) be a metric space. Let Td be the collection of subsets U of X
such that for each x ∈ U there exists r > 0 with B(x,r) ⊂ U . Then (X,Td) is called the
topological space defined by the metric d and call Td the topology on X defined by d.

Sometimes different metrics on a set give rise to the same topology.

Definition 1.19. Let d1 and d2 be metrics on a set X. We say that d1 and d2 are
equivalent if they define the same topology , i.e. if Td1 = Td2.

Proposition 1.14. Suppose that metrics d1 and d2 on X are such that for some κ > 0
we have

1
κ

d1(x,y) ⩽ d2(x,y) ⩽ κd1(x,y),

for all x,y ∈ X. Then d1 and d2 are equivalent (or Lipschitz-equivalent).

Proof . Let T1 be the topology defined by d1 (i.e. T1 = Td1) and let T2 be the topology defined
by d2 (i.e. T2 = Td2). We must show that a subset U of X belongs to T1 if and only if it belongs
to T2.
Suppose U belongs to T1. Let x ∈ U . Then there exists some r > 0 such that Bd1(x,r) ⊂ U , i.e.

{y ∈ X\d1(x,y) < r} ⊂ U.
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Consider Bd2(x,r/κ). If y ∈ Bd2(x,r/κ) then d2(x,y) < r/κ. But 1
κ

d1(x,y) ⩽ d2(x,y) and

so, for y ∈ Bd2(x,r/κ) we have d1(x,y) < κd2(x,y) < κ.
r

κ
= r. Hence y ∈ Bd1(x,r) whenever

y ∈ Bd2(x,r/κ). But Bd1(x,r) ⊂ U and so Bd2(x,r/κ) ⊂ Bd1(x,r) ⊂ U . Thus, for x ∈ U , there
exists some r′ > 0 (namely r′ = r/κ) such Bd2(x,r′) ⊂ U . Thus U is open in the topology
determined by d2, i.e. U ∈ T1 implies that U ∈ T2

Now suppose that U ∈ T2. For x ∈ U there exists some r > 0 with Bd2(x,r) ⊂ U . Now if
d1(y,x) < r/κ we have

d2(x,y) ⩽ κd1(x,y) ⩽ κ.
r

κ
= r,

so Bd1(x,r/κ) ⊂ Bd2(x,r) ⊂ U , and so U ∈ T1. Thus U ∈ T1 if and only if U ∈ T2 and hence
T1 = T2.

Proposition 1.15. The three metrics, d1,d2 and d∞, on Rn (see Example(1.1)) are
equivalent.

Proof . Let x = (x1,x2, ...,xn), y = (y1,y2, ...,yn) ∈ Rn. Note that

d2(x,y) =
√

n
Σ

i=1
(xi −yi)2

⩽

√
n
Σ

i=1
(d∞(x,y))2 (since |xi −yi| ⩽ d∞(x,y), ∀1 ⩽ i ⩽ n)

=
√

nd∞(x,y)

and so

(1.5) d2(x,y) ⩽ nd∞(x,y).

Also we have

d∞(x,y) = max
i=1,...,n

(|xi −yi|)

= |xj −yj | for some j

=
√

(xj −yj)2

⩽

√
n
Σ

i=1
(xi −yi)2 = d2(x,y),

and so d∞(x,y) ⩽ d2(x,y) and certainly

(1.6) d∞(x,y) ⩽ nd2(x,y).
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Combining (1.5) and (1.6) we get

1
n

d2(x,y) ⩽ d∞(x,y) ⩽ nd2(x,y),

and so d2 and d∞ are equivalent.
Clearly d∞(x,y) ⩽ d1(x,y) and so

(1.7) 1
n

d∞(x,y) ⩽ d1(x,y).

Also, d1(x,y) =
n
Σ

i=1
|xi −yi| and each |xi −yi| ⩽ d∞(x,y) so that

(1.8) d1(x,y) ⩽ nd∞(x,y).

Combining (1.7) and (1.8) we get

1
n

d∞(x,y) ⩽ d1(x,y) ⩽ nd∞(x,y),

and so d1 and d∞ are equivalent.
We have now shown that d2 and d∞ define the same topology and that d1 and d∞ define

the same topology and hence d1,d2 and d∞ all define the same topology, i.e. d1,d2 and d∞ are
equivalent.

1.7 Finite metric products

Let {(Xi,di) : i = 1, ...,n} be a collection of metric spaces and let x = (x1,x2, ...,xn) and y =
(y1,y2, ...,yn) be arbitrary points in the product X =

n
Π

i=1
Xi. Define

d(x,y) = max{di(xi,yi) : 1 ⩽ i ⩽ n} .

Proposition 1.16. (X,d) is a metric space.

Proof . Clearly d(x,y) ⩾ 0 and d(x,y) = 0 if and only if di(xi,yi) = 0 for 1 ⩽ i ⩽ n, which
the case if and only if xi = yi for 1 ⩽ i ⩽ n, i.e., if and only if x = y. It is equally clear that
d(x,y) = d(y,x). It remains to verify the triangle inequality. Observe that

di(xi, zi) ⩽ di(xi,yi)+di(yi, zi),
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for all x = (x1,x2, ...,xn), y = (y1,y2, ...,yn), z = (z1, z2, ..., zn) ∈ X. This implies

dk(xk, zk) ⩽ max{di(xi,yi) : 1 ⩽ i ⩽ n}+max{di(yi, zi) : 1 ⩽ i ⩽ n} ,

for k = 1,2, ...,n. So

d(x,z) = max{dk(xk, zk) : 1 ⩽ k ⩽ n} ⩽ d(x,y)+d(y,z).

Hence, (X,d) is a metric space.

Definition 1.20. The metric space obtained by taking

(1.9) d(x,y) = max{di(xi,yi) : 1 ⩽ i ⩽ n} ,

as the distance on X, is called the product of the metric spaces (X1,d1), (X2,d2),...,
(Xn,dn).

Remark 1.13.

i)The functions

1) d1(x,y) =
n
Σ

i=1
di(xi,yi),

2) d2(x,y) =
[ n

Σ
i=1

(di(xi,yi))2
] 1

2
,

where x = (x1,x2, ...,xn), y = (y1,y2, ...,yn), z = (z1, z2, ..., zn) ∈ X, are also metrics on X. The
proof of the statement that d1 and d2 are metrics on X is almost trivial.
ii) The metrics d, d1 and d2 on X are equivalent. Indeed

d(x,y) ⩽ d2(x,y) ⩽ d1(x,y) ⩽ nd(x,y).

Proposition 1.17. The open ball B(x,r), x = (x1,x2, ...,xn) and r > 0, in X is the product
of the open balls B1(x1, r), B2(x2, r),...Bn(xn, r). That is

B(x,r) =
n
Π

i=1
Bi(xi, r),

where Bi(xi, r) is the open ball centered in xi ∈ Xi with radius r > 0.
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Proof . We have y ∈ B(x,r) if and only if d(x,y) = max{di(xi,yi) : 1 ⩽ i ⩽ n} < r, i.e. if
and only if di(xi,yi) < r, 1 ⩽ i ⩽ n. So, y ∈ B(x,r) if and only if yi ∈ B(xi, r), 1 ⩽ i ⩽ n, that
is, if and only if y ∈

n
Π

i=1
Bi(xi, r).

Proposition 1.18.

1. If Oi ⊆ X, 1 ⩽ i ⩽ n are open subsets in Xi, then
n
Π

i=1
Oi is open in X.

2. If Fi ⊆ X, 1 ⩽ i ⩽ n are closed subsets in Xi, then
n
Π

i=1
Fi is closed in X.

Proof .

1. If x = (x1,x2, ...,xn) ∈
n
Π

i=1
Oi, then there exist positive r1, r2, ..., rn such that B(xi, ri) ⊆ Oi,

1 ⩽ i ⩽ n. Let r = min{r1, r2, ..., rn}. Then, B(x,r) =
n
Π

i=1
Bi(xi, r) ⊆

n
Π

i=1
Oi. Hence,

n
Π

i=1
Oi

is open.

2. Proof left to the reader.

Example
1.20. Since R, (x,y) and (−∞, z) are open in R, then (x,y) ×R and (x,y) ×

(−∞, z) are open in R2.

1.8 Continuity

1.8.1 Continuous Mappings

Definition 1.21. Let (X,dX) and (Y,dY) be metric spaces and A ⊆ X.Then, a function
f : A −→ Y is said to be continuous at x0 ∈ A, if for every ε > 0, there exists δ > 0 such
that

(1.10) ∀x ∈ A, dX(x,x0) < δ =⇒ dY(f(x),f(x0)) < ε.

Remark 1.14. If f is continuous at every point of A, then it is said to be continuous on A.

Example
1.21. Let (X,d) be a metric space. Every function fa :X−→R+ defined by fa(x) =

d(a,x), such that a ∈ X, is continuous on X because |fa(x)−fa(y)| = |d(a,x)−d(a,y)| ⩽ d(x,y)
(it is enough to take δ = ε).
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Example
1.22. Let du and δ be the usual metric and the discrete metric on R, respectively.

Then, the function f : (R,du) −→ (R, δ) defined by f(x) = x is not continuous on R because if
x ̸= x0 and ε < 1 we obtain δ(f(x),f(x0)) = δ(x,x0) = 1.

Proposition 1.19. Let (X,dX) and (Y,dY) be two metric spaces. A function f :
(X,dX) −→ (Y,dY) is continuous at a point x0 ∈ X if and only if for every ε > 0, there
exists δ > 0 such that

(1.11) B(x0, δ) ⊆ f−1(B(f(x0), ε)),

Proof . The function f : X −→ Y is continuous at x0 ∈ X only and only if for every ε > 0,
there exists δ > 0 such that

∀x ∈ X, dX(x,x0) < δ =⇒ dY(f(x),f(x0)) < ε,

i.e.,
x ∈ B(x0, δ) =⇒ f(x) ∈ B(f(x0), ε).

or
f(B(x0, δ)) ⊆ B(f(x0), ε).

This is equivalent to the condition (1.11).

1.8.2 Uniform Continuity

Let (X,dX) and (Y,dY) be two metric spaces and let f be a function continuous at each point
x0 ∈ X. In the definition of continuity, when x0 and ε are specified, we make a definite choice
of δ so that

∀x ∈ X, dX(x,x0) < δ =⇒ dY(f(x),f(x0)) < ε,

This describes δ as dependent upon x0 and ε, say δ = δ(x0, ε). If δ(x0, ε) can be chosen in such
a way that its values have a lower positive bound when ε is kept fixed and x0 is allowed to vary
over X, and if this happens for each positive ε, then we have the notion of uniform continuity.
More precisely, we have the following definition:

Definition 1.22. Let (X,dX), (Y,dY) be tow metric spaces. A functionf : X −→ Y is said
to be uniformly continuous on X if, for every ε, there exists a δ (depending on ε alone )
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such that:

(1.12) ∀x,y ∈ X, dX(x,y) < δ(ε) =⇒ dY(f(x),f(y)) < ε.

Example
1.23. The function f : (R, |.|) −→ (R, |.|) defined by f(x) = x is uniformly contin-

uous (it is enough to take δ = ε).

Using the previous definition we obtain the following result.

Proposition 1.20. Every uniformly continuous function on X is necessarily continuous
on X. However, the converse may not be true.

Example
1.24. The function f : (R, |.|) −→ (R, |.|) defined by f(x) = x2 is continuous but

not uniformly continuous. Take ε = 1 and let δ > 0 be arbitrary. If we choose x = δ

2 + 1
δ

and

y = 1
δ

we obtain

|x−y| =
∣∣∣∣∣δ2 + 1

δ
− 1

δ

∣∣∣∣∣= δ

2 < δ,

but

|f(x)−f(y)| =

∣∣∣∣∣∣
(

δ

2 + 1
δ

)
)2

−
(1

δ

)2
∣∣∣∣∣∣= 1+ δ2

4 > 1.

1.9 Homeomorphism

Definition 1.23. Let (X,dX) and (Y,dY) be two metric spaces and f : X −→ Y. We say
that f is an homeomorphism from X to Y if:

1. f is a bijection (one-to-one and onto),

2. f is continuous,

3. the inverse function f−1 is continuous.

If there exists an homeomorphism from X to Y, we say that X and Y are homeomorphic.

Example
1.25.

1. Let X=R and Y= (−1,1) endowed with the usual distance. The function f :R−→ (−1,1)
defined by f(x) = x

1+ |x|
is a homeomorphism. Consequently, X and Y are homeomorphic.
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2. Let X = (a,b) and Y = R with the usual distance. The function f : (a,b) −→ R defined by
f(x) = 1

x−a
+ 1

x− b
is a homeomorphism. Therefore, X and Y are homeomorphic.

3. Let X = (0,1) and Y = (a,b) endowed with the usual distance. The function f : (0,1) −→
(a,b) defined by f(x) = (b − a)x + a is a homeomorphism. Consequently, X and Y are
homeomorphic.

Remark 1.15. In general, the bijectivity and continuity of f do not imply that f is a home-
omorphism. For example, the map f : (R, δ) −→ (R,du) defined by f(x) = x is a bijection and
continuous, while f−1 is not continuous.

1.9.1 Lipschitz and Contraction Mappings and Applications

Definition 1.24. Let (X,dX) and (Y,dY) two metric spaces. A mapping f : X −→ Y is
said to be k-Lipschitz if there exists a real number k > 0 such that

(1.13) ∀x,y ∈ X, dY (f(x),f(y)) ⩽ kdX(x,y),

Definition 1.25. Let (X,dX) and (Y,dY) two metric spaces. A mapping f : X −→ Y is
said to be a contraction (or contraction mapping) if there exists a real number 0 ⩽ k < 1
such that

(1.14) ∀x,y ∈ X, dY (f(x),f(y)) ⩽ kdX(x,y).

Proposition 1.21. Let f : R ⊇ I −→ R be a differentiable mapping such that |f ′(x)| ⩽ k,
for all x ∈ I. Then, f is k-Lipschitz. Moreover, if |f ′(x)| ⩽ k < 1 for all x ∈ I, then f is
a contraction.

Proof . For all x,y ∈ I, we have |f(x)−f(y)| = |
y∫
x

f ′(t)dt| ⩽ k|x−y|, which implies that f is
k-Lipschitz. Moreover, if |f ′(x)| ⩽ k < 1, then f is a contraction.

Using the previous definition we obtain the following result.
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Proposition 1.22. Every k-Lipschitz or contraction mapping is uniformly continuous.

1.10 Isometry

Definition 1.26. Let (X,dX) and (Y,dY) be two metric spaces. A bijection f : X −→ Y
is called an isometry if

(1.15) dY(f(x),f(y)) = dX(x,y), ∀x,y ∈ X.

In this case, one says that X and Y are isometric (or X is isometric to Y).

Remark 1.16. In other words, an isometry between metric spaces is a bijection which pre-
serves the distance between elements. Clearly, Y is isometric to X if and only if X is isometric
to Y.

Example
1.26. The mapping f : (R, |.|) −→ (R, |.|) defined by f(x) = x ± b, b ∈ R is an

isometry.

Example
1.27. Let (X,dX) and (Y,dY) be two metric spaces such that card(X) = card(Y),

dX = δ ( the discrete distance, see example (1.4)) and dY(x,y) =

 2 si x ̸= y

0 si x = y
. Then, (X,dX)

and (Y,dY) are not isometric because the distance between two different points of the first space
is different to the distance between two different points of the second space.

Remark 1.17.

1. Every isometry is uniformly continuous (because it is 1-Lipschitz).

2. Every isometry is an homeomorphism (Exercise).

1.11 Normed spaces

In functional analysis, a normed space is a vector space equipped with a norm, which is a
function that assigns a non-negative length or size to each vector in the space.
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Definition 1.27. Let X be a vector space over the field K of real or complex numbers. A
semi-norm on X is a function ∥ · ∥ : X → R satisfying the following properties:

1. Non-negativity: ∥x∥ ⩾ 0 for all x ∈ X.

2. Homogeneity: ∥αx∥ = |α|∥x∥ for all α ∈ R (or C) and x ∈ X.

3. Triangle inequality: ∥x+y∥ ⩽ ∥x∥+∥y∥ for all x,y ∈ X.

A semi-normed space (X,∥ · ∥) is a vector space X equipped with a semi-norm.

Example
1.28.

1. Both R and C are semi-normed space with ∥x∥ = |x|.

2. The function ∥ · ∥ : R2 → R defined by

(1.16) ∥(x,y)∥ = |x−y| ,

is a semi-norm.

Proposition 1.23. Let (X,∥·∥) be a semi-normed space, then

1. ∥0∥ = 0.

2. ∀x,y ∈ X, ∥x−y∥ = ∥y −x∥.

3. ∀x,y ∈ X, |∥x∥−∥y∥| ⩽ ∥x−y∥.

Proof .

1. Let λ ∈ K such that λ ̸= 1, then

∥0∥ = ∥λ.0∥ = |λ|∥0∥ ,

which implies that
∥0∥(1−|λ|) = 0.

Hence, ∥0∥ = 0.

2. For all x,y ∈ X, we have

∥x−y∥ = ∥−(y −x)∥ = |−1|∥y −x∥ = ∥y −x∥ .
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3. Let us write,
y = y −x+x =⇒ ∥y∥ = ∥y −x+x∥ ⩽ ∥y −x∥+∥x∥ ,

from which it follows that

(i) ∥y∥−∥x∥ ⩽ ∥x−y∥

Similarly, we have

x = x−y +y =⇒ ∥x∥ = ∥x−y +y∥ ⩽ ∥x−y∥+∥y∥ ,

from which it follows that

(ii) ∥x∥−∥y∥ ⩽ ∥x−y∥

Finally, from inequalities ((i)) and ((ii)) we obtain

|∥x∥−∥y∥| ⩽ ∥x−y∥ .

Definition 1.28. Let X be a vector space over the field of real or complex numbers. A
norm on X is a semi-norm ∥ · ∥ : X → R satisfying, furthermore, the following property:

∥x∥ = 0 =⇒ x = 0.

A normed space (X,∥ · ∥) is a vector space X equipped with a norm.

Example
1.29.

1. Both R and C are normed space with ∥x∥ = |x|.

2. The function defined by (1.16) is not a norm because

∥(1,1)∥ = |1−1| = 0 but (1,1) ̸= (0,0).

3. On Rn, for all x = (x1,x2,x3, ...,xn) ∈ Rn we have the following norms,

1⃝ ∥x∥1 =
n
Σ

i=1
|xi|,

2⃝ ∥x∥2 =
( n

Σ
i=1

x2
i

) 1
2

,

3⃝ ∥x∥∞ = max
1⩽i⩽n

|xi| ,

4⃝ ∥x∥p =
( n

Σ
i=1

|xi|p
) 1

p

, (1 ⩽ p < ∞).
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The corresponding metric space of 3⃝ is denoted by ℓn
∞ and the corresponding metric space

of 4⃝ is denoted by ℓn
p .

4. On the vector space C([a,b],R), for all f ∈ C([a,b],R) we have the following norms,

∥f∥1 =
b∫
a

|f(x)|dx,

∥f(x)∥2 =

 b∫
f(x)2

a

dx


1
2

,

∥f(x)∥∞ = max
x∈[a,b]

|f(x)| ,

∥f(x)∥p =

 b∫
a

|f(x)|p dx


1
p

, (1 ⩽ p < ∞)

Normed space are an important instance of metric spaces, as the following proposition asserts.

Proposition 1.24. Let (X,∥ · ∥) be a normed space. Then,

d(x,y) = ∥x−y∥

defines a metric on X. That is, every normed space is automatically a metric space with
a canonical metric.

Proof . Leave to the reader (Immediate).

Remark 1.18. Note that metric spaces need not be vector spaces.

Proposition 1.25. The norm is a uniformly continuous function.

Proof . Using Proposition (1.23)3 we deduce that the norm is 1-Lipschitz.

Definition 1.29. Two norms on a K-vector space X are called equivalent if they define
the same open subsets of X.
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Proposition 1.26. Let X be a K-vector space. Two norms ∥·∥1 and ∥·∥2 on X are
equivalent if and only if there exist constants α > 0 and β > 0 such that

α∥x∥1 ≤ ∥x∥2 ≤ β∥x∥1 for all x ∈ X.

Proof . The proof is left to the readers.

Example
1.30.

1. The norms 1⃝, 2⃝ and 3⃝ defined in Example(1.29) are equivalent because for all x ∈ Rn

we have
∥x∥2 ⩽ ∥x∥1 ⩽

√
n∥x∥2 ,

∥x∥∞ ⩽ ∥x∥1 ⩽ n∥x∥∞ .

2. Let X the vector space defined by

X =
{
f ∈ C1([0,1],) / f(0) = 1

}
,

and equipped with the following norms:

∥f∥1 = sup
x∈[0,1]

|f(x)|+ sup
x∈[0,1]

∣∣∣f ′(x)
∣∣∣ , ∥f∥2 = sup

x∈[0,1]

∣∣∣f ′(x)
∣∣∣ .

Let us prove that the two previous norms are equivalent. On the one hand, by definition
we have

(i) ∥f∥2 ⩽ ∥f∥1 .

On the other hand, by application of the finite-increments formula we obtain

f(1)−f(x) = f ′(c)(1−x), 0 ⩽ x < c < 1.

Keeping in mind that f(1) = 0 we find

f(x) = f ′(c)(x−1), 0 ⩽ x < c < 1,

from which it follows that
sup

x∈[0,1]
|f(x)| ⩽ sup

x∈[0,1]

∣∣∣f ′(x)
∣∣∣ .

Hence,

(ii) ∥f∥1 ⩽ 2∥f∥2 .
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Finally, from the two previous inequality (i) and (ii) we deduce that ∥·∥1 and ∥·∥2 are
equivalent norms on X.

We have just seen that norms induce metrics. Next we look at a useful way to induce a
norm.

Definition 1.30. Let X be a vector space over either R or C. An inner product (Sesquilin-
ear form) on X is a function ⟨·, ·⟩ : X×X → K, where K is either R or C, such that for
all vectors x,y,z,w ∈ X and all scalars α,β ∈ K, the following properties hold:

1. Linearity in the first argument: ⟨αx+βy,z⟩ = α⟨x,z⟩+β⟨y,z⟩,

2. Conjugate linearity in the second argument: ⟨x,αz+βw⟩ = α⟨x,z⟩+β⟨x,w⟩,

3. Conjugate symmetry: ⟨x,y⟩ = ⟨y,x⟩ (for complex vector spaces),

4. Positive-definiteness: ⟨x,x⟩ ≥ 0 and ⟨x,x⟩ = 0 if and only if x = 0.

We present two examples of inner products next; the reader is asked to verify that they
satisfy the inner product axioms in definition(1.30).

Example
1.31. On Rn, the function ⟨·, ·⟩ defined by

⟨x,y⟩ =
n∑

i=1
xiyi,

is an inner product. When we consider R2 or R3, this is often called the dot product.

Example
1.32. On the vector space C([0,1]) , the function ⟨·, ·⟩ defined by

⟨f,g⟩ =
∫ 1

0
f(t)g(t)dt,

is an inner product.

Our next result is incredibly useful.

Proposition 1.27. (Cauchy-Schwarz inequality) Suppose that ⟨·, ·⟩ is an inner prod-
uct on a real vector space X. Then for all x,y ∈ X, we have

(1.17) |⟨x,y⟩|2 ≤ ⟨x,x⟩⟨y,y⟩.
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Proof . Let x,y ∈ X. For all λ ∈ K we have,

(1.18) ⟨λx+y,λx+y⟩ = λλ⟨x,x⟩+ ⟨y,y⟩+λ⟨x,y⟩+λ⟨y,x⟩ ⩾ 0.

By taking a = ⟨x,x⟩, b = ⟨x,y⟩ and c = ⟨y,y⟩ into (1.18), we obtain

(1.19) aλλ+ bλ+ bλ+ c ⩾ 0.

If a = c = 0, we set λ = −b and by substitution into (1.19) we find,

−bb− bb = −2 |b|2 ⩾ 0,

which implies that b = 0. Hence, the inequality (1.17) is verified.

If a ̸= 0, we set λ = − b

a
and by substitution into (1.19) we find,

a

(
− b

a

)(
− b

a

)
− b

a
b− bb

a
+ c ⩾ 0,

i.e.,

−|b|2

a
+ c ⩾ 0,

which implies that
|b|2 ⩽ ac,

Hence, the inequality (1.17) is verified.

Proposition 1.28. (Minkowski inequality) If ⟨·, ·⟩ is an inner product on the vector
space X, then we have

(1.20) ∀x,y ∈ X,
√

⟨x+y,x+y⟩ ⩽
√

⟨x,x⟩+
√

⟨y,y⟩.

Proof . We know that

⟨x+y,x+y⟩ = ⟨x,x⟩+2Re⟨x,y⟩+ ⟨y,y⟩,

Furthermore, we have
Re⟨x,y⟩ ⩽ |⟨x,y⟩| ⩽

√
⟨x,x⟩.

√
⟨y,y⟩,

which implies that

⟨x+y,x+y⟩ ⩽
(√

⟨x,x⟩+
√

⟨y,y⟩
)2

.

From which the inequality (1.20) follows by taking square roots.
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With the Cauchy-Schwarz inequality in hand, our final result of the section shows how inner
products induce norms (which then induce metrics).

Proposition 1.29. (Inner Products Induce Norms) If ⟨·, ·⟩ is an inner product on
the vector space X, then the function ∥·∥ : X → R defined by

(1.21) ∥x∥ =
√

⟨x,x⟩,

is a norm on X.

Proof . It suffices to use the Minkowski inequality to obtain the triangle inequality. The other
properties are left to the reader.

Definition 1.31. A pre-Hilbert space (or an inner product space) is a vector space with
a norm induced by an inner product.

Example
1.33.

1. X = Cn is a pre-Hilbert space (or an inner product space) with the following inner product

⟨x,y⟩ =
n∑

i=1
xiyi.

2. X = C([0,1],C) is a pre-Hilbert space (or an inner product space) with the following inner
product

⟨f,g⟩ =
∫ 1

0
f(t)g(t)dt.
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You are familiar with the notion of a convergent sequence of real numbers. It is defined as
follows: the sequence (xn)n∈N of real numbers is said to converge to the real number x if given
any ε > 0 there exists n0 such that for all n ⩾ n0, |xn −x| < ε.

It is obvious how this definition can be extended from R with the Euclidean metric to any
metric space.

2.1 Convergence in a metric space

2.1.1 Convergence and limits

Definition 2.1. A sequence (xn)n∈N in a metric space (X,d) is called convergent to x0 ∈X
if,

(2.1) ∀ε > 0, ∃N0(ε) ∈ N / ∀n ∈ N, n ⩾ N0 =⇒ d(xn,x0) < ε.

The point x is called the limit of the sequence (xn)n∈N, and we write

lim
n−→+∞

(xn) = x0 or xn −→ x0.

If the sequence does not converge, then it is said to diverge.

Remark 2.1. The condition (2.1) means that from a certain rank N0 the elements of the
sequence (xn) are in the open ball B(x0, ε).Thus, this ball contains an infinite elements of this
sequence.
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Example
2.1. In the metric space (R, |.|), the sequence

( 1
n

)
n∈N∗

converge to 0 and we write

lim
n−→+∞

( 1
n

)
= 0.

Proof . Let ε > 0 be given. By the Archimedean property, there is an integer N0 ∈ N such
that N0 >

1
ε

, and thus for all n ⩾ N0, we have du

( 1
n

,0
)

=
∣∣∣∣ 1n
∣∣∣∣< ε.

However, this sequence can be made to diverge by changing the metric on R.

Example
2.2. In the metric space (R,ddisc), the sequence

( 1
n

)
n∈N∗

diverges.

Proof . Using the definition of the discrete distance (1.1) we obtain δ
( 1

n
,0
)

= 1 because
1
n

̸= 0. Hence, if we take ε < 1, we obtain δ( 1
n

,0) > ε.

Proposition 2.1. Let (X,d) be a metric space. The sequence (xn)n∈N converges to x0 ∈X
if and only if the sequence (d(xn,x0)) converges to 0 in (R,du).

Proof . Suppose first that xn −→ x0 in (X,d). Then for any ε > 0, there is an N0 ∈ N such
that d(xn,x0) = |d(xn,x0)| < ε for all n ⩾ N0, but this precisely the same as d(xn,x0) −→ 0 in
(R,du). Conversely, if d(xn,x0) −→ 0 in (R,du), then for every ε > 0 there is an N0 ∈ N such
that d(xn,x0) = |d(xn,x0)| < ε for all n⩾N0, and this precisely what it means to have xn −→ x0

in (X,d).

Example
2.3. The sequence (xn)n∈N∗ defined by xn =

( 1
n

,
1
n

)
converges to (0,0) in the three

metric spaces (R2,d1), (R2,d2) and (R2,d∞).

Proof . We have

d1

(( 1
n

,
1
n

)
,(0,0)

)
= 2

n
,

d2

(( 1
n

,
1
n

)
,(0,0)

)
=

√
2

n
,

d∞

(( 1
n

,
1
n

)
,(0,0)

)
= 1

n
.

The result follows immediately from Proposition(2.1).
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Proposition 2.2. If a sequence converges then its limit is unique.

Proof . Suppose that the sequence (xn)n∈N converges to both x and y. Then, for every ε > 0
there exists a (sufficiently large) N0 ∈ N such that

∀n ∈ N, n ⩾ N0 =⇒ d(xn,x) <
ε

2 and d(xn,y) <
ε

2 .

from which we conclude that for every ε > 0,

∀n ∈ N, n ⩾ N0 =⇒ d(x,y) < d(x,xn)+d(xn,y) <
ε

2 + ε

2 = ε,

i.e., d(x,y) = 0, namely x = y.

Proposition 2.3. Let F be a subset of a metric space (X,d) and L is the set of all x ∈ X
such that x is the limit of some sequence of elements of F . Then, F is closed if and only
if F = L.

Proof .

=⇒ ) Suppose that F is closed.
• L ⊆ F ?) Take x ∈ L, meaning that x is a limit of a sequence (xn)n∈N of elements of F . If
x /∈ F , then x ∈ ∁XF (which is an open), implying that there exists r > 0 such that B(x,r) ⊆ ∁XF .
Since xn −→ x, there exists N0 ∈ N such that for all, n ⩾ N0 we have d(xn,x) < r. This means
xn ∈ B(x,r) ⊆ ∁XF , which contradicts the fact that xn ∈ F .
• F ⊆ L ?) Let x ∈ F , then we can consider x as a limit of the constant sequence xn = x which
implies that x ∈ L.
⇐= ) Suppose that the limit of all convergent sequence of F belongs to F . Let x ∈ Cl(F ). Then
B(x,r) ∩ F ̸= ∅ for all r > 0. Thus, for all n ∈ N∗, there exists xn such that xn ∈ B(x,

1
n

) ∩ F .

Then, (xn) is a sequence of elements of F that satisfies d(xn,x) <
1
n

for all n ∈ N∗, which
implies, xn −→ x. Therefore, x ∈ F (by hypotheses), which implies that F is closed.

Using the previous proposition we obtain the following result.
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Proposition 2.4. Let (X,d) be a metric space and F be a subset of X, then :

(2.2) Cl(F ) =
{

x ∈ X : ∃ (xn) ⊂ F / lim
n−→+∞

xn = x
}

Proposition 2.5 (Sequential continuity). Let (X,dX), (Y,dY) be two metric spaces and
f : (X,dX) −→ (Y,dY). Then, f is continuous at x0 if and only if for every sequence
(xn)n∈N ⊂ X, we have

lim
n−→+∞

xn = x0 =⇒ lim
n−→+∞

f(xn) = f(x0) ( f is sequentially continuous).

Proof .

=⇒) Suppose that f is continuous at x0 and let (xn) be a sequence in X that converges to x0.
Since xn −→ x0,

∀ε > 0, ∃n0(ε) ∈ N / ∀n ∈ N, n ⩾ n0 =⇒ dX(xn,x0) < ε.

Since f is continuous at x0,

∀ε > 0, ∃δ(ε,x0) / ∀x ∈ X, dX(x,x0) < δ =⇒ dY(f(x),f(x0)) < ε.

Then, it is enough to take ε = δ to obtain,

∀ n ⩾ n0, dX(xn,x0) < δ = ε =⇒ dY(f(xn),f(x0)) < ε,

which shows that f is sequentially continuous.

⇐=) Suppose that f is not continuous at x0. Then, there exists ε > 0 such that for all δ > 0,
there exists xδ that satisfying,

dX(xδ,x0) < δ et dY(f(xδ),f(x0)) ⩾ ε.

Thus, for δ = 1
n

there exists a sequence (xn) such that:

dX(xn,x0) <
1
n

et dY(f(xn),f(x0)) ⩾ ε.

This shows that (xn) converges to x0, but (f(xn)) does not converge to f(x0). Therefore
f does not sequentially continuous at x0.
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Remark 2.2. In the third chapter (Topological Spaces), we will demonstrate that in the more
general context of topological spaces, continuity always implies sequential continuity; however,
the converse is not true.

2.2 Cauchy sequences and completeness

The definition of Cauchy sequences in general metric spaces is a straightforward generalization
of their definition in the real line.

Definition 2.2. Let (X,d) be a metric space. A sequence (xn)n∈N of elements of X is
called a Cauchy sequence if for every ε > 0, there exists n0 ∈ N such that d(xn,xm) < ε

for all n,m ⩾ n0. In other words,

(2.3) ∀ε > 0, ∃ n0(ε) ∈ N / ∀(n,m) ∈ N2, n,m ⩾ n0 =⇒ d(xn,xm) < ε.

Example
2.4.

1. The sequence (xn)n⩾1, where xn = 1+ 1
2 + · · ·+ 1

n , does not satisfy Cauchy’s criterion for
convergence. Indeed, we have

|x2n −xn| = 1
n+1 + 1

n+2 + · · ·+ 1
2n

⩾
1

2n
+ 1

2n
+ · · ·+ 1

2n
= 1

2 .

Thus, it is not the case that |xn −xm| → 0 as n and m become large.

2. In (C[0,1],R), the sequence (fn)n⩾1 given by

fn(x) = nx

n+x
, x ∈ [0,1],

is Cauchy in the uniform metric. For m ⩾ n, the difference between the functions is given
by

fm(x)−fn(x) = mx

m+x
− nx

n+x
= (m−n)x2

(m+x)(n+x) .

Since this function is continuous on [0,1], it attains its maximum at some point x0 ∈ [0,1].
Thus, we have

d(fm,fn) = sup
x∈[0,1]

|fm(x)−fn(x)| = (m−n)x2
0

(m+x0)(n+x0) ≤ x2
0

n+x0
⩽

1
n

→ 0,

for large m and n.

3. If (xn) is a Cauchy sequence in the discrete metric space (X, δ), then δ(xn,xm) < ε =⇒
xn = xm for any ε ⩽ 1. Thus, the sequence (xn) is convergent.
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Proposition 2.6. In a metric space (X,d), we have:

1. Every convergent sequence is a Cauchy sequence.

2. Every Cauchy sequence is bounded.

3. Every subsequence of a Cauchy sequence is also a Cauchy sequence.

4. Every Cauchy sequence that has a convergent subsequence is convergent.

Proof .

1. If xn −→ x0, then for every ε > 0, there exists n0 ∈ N such that for all n ⩾ n0, we have
d(xn,x0) <

ε

2 . Therefore, if n ⩾ n0 and m ⩾ n0, we obtain

d(xn,xm) ⩽ d(xn,x0)+d(xm,x0) <
ε

2 + ε

2 = ε.

2. If (xn) is a Cauchy sequence, then for ε = 1, there exists n0 ∈ N such that d(xn,xn0) < 1
for all n ≥ n0. Let r = max(d(xn0 ,x1), . . . ,d(xn0 ,xn0−1),1). Then, for all n ∈ N, we have
d(xn,xn0) < r, which implies that (xn) ⊂ B(xn0 , r).

3. Obvious.

4. Suppose xnk
−→ x0. Then, for every ε > 0, there exists n1 ∈ N such that for all nk ⩾ n1,

we have d(xnk
,x0) <

ε

2 . Since (xn) is a Cauchy sequence, there exists n2 ∈ N such that

for all n,m ⩾ n2, we have d(xn,xm) <
ε

2 . Let n0 = max(n1,n2) and choose k such that
nk ⩾ n0 to obtain:

∀n ∈ N, n ≥ n0 =⇒ d(xn,x0) ≤ d(xn,xnk
)+d(xnk

,x0) <
ε

2 + ε

2 = ε.

Thus, xn −→ x0.

Definition 2.3. A metric space (X,d) is said to be complete if every Cauchy sequence in
(X,d) converges to a limit that is also in X.

Example
2.5.

1. The space (R, |.|) is complete because every Cauchy sequence is convergent in R.

2. The Cauchy sequence
(

1
n

)
does not converge in (0,1), and therefore (0,1) is not complete.
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3. In a discrete metric space, every Cauchy sequence is convergent (see Example 2.4(3)),
and therefore every discrete metric space is complete.

Proposition 2.7. Let (X,dX) and (Y,dY) be two metric spaces. If f : (X,dX) −→ (Y,dY)
is uniformly continuous and (xn) is a Cauchy sequence in (X,dX), then (f(xn)) is a
Cauchy sequence in (Y,dY).

Proof . If (xn) is a Cauchy sequence in (X,dX), then we have:

∀ε > 0, ∃ n0(ε) ∈ N such that ∀(n,m) ∈ N2, n,m ⩾ n0 =⇒ dX(xn,xm) < ε.

Since f is uniformly continuous, for ε = δ, we obtain :

∀(n,m) ∈ N2, n,m ≥ n0 =⇒ dY(f(xn),f(xm)) < ε.

Therefore (f(xn)) is a Cauchy sequence in Y.

Remark 2.3. The previous proposition is false if f is only continuous. For example, consider
the function f : ((−1,1), |.|) −→ (R, |.|) defined by f(x) = x

1−|x|
. Let xn = 1− 1

n
. The sequence

(f(xn)) is not a Cauchy sequence.

Proposition 2.8. Let (X,dX) and (Y,dY) be two metric spaces, and let f : (X,dX) −→
(Y,dY) be a uniformly continuous homeomorphism. If (Y,dY) is complete, then (X,dX)
is also complete.

Proof . Let (xn) be a Cauchy sequence in X. Then, by Proposition (2.7), (f(xn)) is a Cauchy
sequence in Y. Since Y is a complete space, we conclude that (f(xn)) is convergent. This implies
the convergence of (xn) in X because f−1 is continuous.

Remark 2.4. The converse of the previous proposition is not true.

Example
2.6. Let (X,dX) and (Y,dY) be two metric spaces defined as follows:

• X = [0,1] is the closed interval in R, with the standard metric dX(x,y) = |x − y|. This space
is complete because every Cauchy sequence in [0,1] converges to a point in [0,1].
• Y = (0,1) is the open interval in R, with the standard metric dY(x,y) = |x−y|. This space is
not complete. For example, the sequence xn = 1

n is a Cauchy sequence in (0,1), but it converges

Section 2.2 Dr. CHOUGUI Nadhir 36



Chou
gu

i-N
ad

hir

CHAPTER 2. COMPLETE METRIC SPACES

to 0, which is not in (0,1).
Now define a homeomorphism f : [0,1] → (0,1) by:

f(x) = x

2 + 1
4 .

This function is uniformly continuous and is a homeomorphism because it is continuous, bi-
jective, and its inverse is also continuous. Thus, the converse of the proposition is false: even
though (X,dX) is complete and f is a uniformly continuous homeomorphism, (Y,dY) is not
complete.

Using the previous proposition, we obtain the following result.

Proposition 2.9. If (X,dX) and (Y,dY) are two isometric spaces, then (X,dX) is complete
if and only if (Y,dY) is complete.

Proof . Evident, because every isometry and its inverse are uniformly continuous homeomor-
phisms.

Proposition 2.10. .

1. Every complete subset in a metric space (X,dX) is closed.

2. Every closed subset in a complete metric space (X,dX) is complete.

Proof .

1. Let A be a complete subset of X, and let x ∈ Cl(A). Then there exists a sequence (xn) of
elements in A such that xn −→ x (see Proposition (2.4)). Since (xn) is a Cauchy sequence
in A, and A is complete, it follows that x ∈ A. This shows that A is closed.

2. Let (X,dX) be a complete metric space, and let (xn) be a Cauchy sequence in a closed
subset A ⊂ X. Then (xn) is a Cauchy sequence in X, which is complete, so xn −→ x ∈ X.
Given that A is closed, we deduce that x ∈ A, which shows that A is complete.

Using the previous proposition, we obtain the following result.
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Proposition 2.11. Let X be a complete metric space, and let A be a subset of X. Then,
the metric subspace (A,dA) is complete if and only if A is closed in X.

Example
2.7.

1. The intervals (a,b), (a,+∞), and (−∞, b) are not complete because they are not closed.

2. The intervals [a,b], [a,+∞), and (−∞, b] are complete because they are closed in R.

Proposition 2.12. The product of a finite number of metric spaces is complete if and
only if all its factors are complete.

Proof . Exercise.

2.3 Contractive mapping theorem

Definition 2.4. Let X be a set and let f : X → X. A point x ∈ X is called a fixed point
of f if f(x) = x.

Theorem 2.1 (Banach fixed point theorem). Let (X,dX) be a complete metric space.
If f : X −→ X is a contraction (see Definition (1.25)), then it has a unique fixed point
x ∈ X.

Proof . Consider a recursive sequence given by xn+1 = f(xn) with x0 ∈ X. For all n,m ∈ N,
if we assume that n > m, we obtain:

(1) d(xn,xm) ⩽
n−1∑
ℓ=m

d(xℓ+1,xℓ) =
n−1∑
ℓ=m

d
(
f ℓ(x1),f ℓ(x0)

)
.

On the other hand, using the contraction property, we obtain:

(2) d
(
f ℓ(x1),f ℓ(x0)

)
⩽ kd

(
f ℓ−1(x1),f ℓ−1(x0)

)
⩽ kℓd(x1,x0) .
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Now, keeping in mind that 0 ⩽ k < 1 and using (1) and (2), we obtain:

(3) d(xn,xm) ⩽
n−1∑
ℓ=m

kℓd(x1,x0) = km 1−kn−m−1

1−k
d(x1,x0) ⩽ km

1−k
d(x1,x0) .

Since lim
m→∞

km

1−k
= 0, we conclude from inequality (3) that (xn) is a Cauchy sequence and

therefore convergent to x ∈ X because (X,dX) is complete. Since f is continuous, we obtain:

f(x) = lim
n→∞f (xn) = lim

n→∞xn+1 = x.

Thus, x is a fixed point of f .
For uniqueness, suppose that x1 and x2 are two fixed points of f . Then we have:

d(x1,x2) = d(f(x1),f(x2)) ⩽ kd(x1,x2) =⇒ (1−k)d(x1,x2) ⩽ 0.

Since 0 ⩽ k < 1, we conclude from the last inequality that x1 = x2.

Remark 2.5.

1. A function having one or multiple fixed points does not imply that it is a contracting
function.

2. The assumption that " f is contracting " cannot generally be replaced by the weaker as-
sumption d(f(x),f(y)) ⩽ d(x,y) for all x ̸= y, as demonstrated by the following example:

f : (R, |.|) −→ (R, |.|) such that f(x) =
√

1+x2.

3. The assumption that "X is complete" is fundamental. For example, if X =
(

0,
1
4

)
(which

is not complete) and f : X −→ X is defined by f(x) = x2, then f is a contraction on X
that has no fixed point in X.

This theorem can be easily generalized in the following way.

Theorem 2.2. Let (X,dX) be a complete metric space and let f : X −→ X. If there exists
n ∈ N∗ such that f (n) is a contraction, then f has a unique fixed point.

Proof . Since (X,dX) is complete and f (n) is a contraction, f (n) has a unique fixed point
x0 ∈ X. Since f (n) (f(x0)) = f

(
f (n)(x0)

)
= f(x0), it follows, by the uniqueness of the fixed

point of f (n), that f(x0) = x0, and thus x0 is the unique fixed point of f .
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Proposition 2.13. If f : R −→ R with |f ′(x)| ⩽ k < 1, then f has a unique fixed point.

Proof . Using Proposition (1.21), we conclude that f is a contraction on R, and since R is
complete, we conclude by Theorem (2.1) that f has a unique fixed point.

Example
2.8. Let f : [0,1] −→ [0,1] be defined by f(x) = ex

5 . We have |f ′(x)| = ex

5 ⩽
e

5 < 1,
and [0,1] is complete because it is a closed subset of R, which is complete. Therefore, using
Theorem (2.1), we conclude that f has a unique fixed point.
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TOPOLOGICAL SPACES

3.1 Topology, Open sets and Closed sets

Let X be a non-empty set and P(X) be the power set of X.

Definition 3.1. A topology on X is a collection of sets T ⊆ P(X) that satisfies :

A1) ∅ and X are elements of T ,

A2) any union (finite or infinite) of elements of T is an element of T , that is, for any
collection {Oi ∈ T : i ∈ I} we have ⋃

i∈I
Oi ∈ T ,

A3) any finite intersection of elements of T is an element of T , that is, for any collection
{Oi ∈ T : 1 ⩽ i ⩽ n} we have

n⋂
i=1

Oi ∈ T .

The pair (X,T ) is called a topological space, and the elements of T are called open sets
of the topology.

Example
3.1. Let X = {1,2}. The topologies defined on X are:

T1 = {∅,X}.

T2 = {∅,X,{1}}.

T3 = {∅,X,{2}}.

T4 = {∅,X,{1},{2}}.

Example
3.2. Let X= {x,y,z, t,s,w} and T = {X,∅,{x},{z, t},{x,z, t},{y,z, t,s,w}}. Then

T is a topology on X as it satisfies conditions (A1),(A2) and (A3) of Definition(3.1).
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Example
3.3. Let X = {x,y,z, t,s} and T = {X,∅,{x},{z, t},{x,z,s},{y,z, t}}. Then T is

not a topology on X as the union {z, t}⋃{x,z,s} = {x,z, t,s} of two members of T does not
belong to T ; that is, T does not satisfy condition (A2) of Definition(3.1).

Example
3.4. Let N the set of all natural numbers and let T the collection consisting of

N, ∅ and all finite subsets of N. Then T is not a topology on N, since the infinite union
{3}∪{4}∪{5}∪ · · ·∪{n}∪ · · · = {3,4,5, . . . ,n, . . .} of members of T does not belong to T ; that
is, T does not have property (A2) of Definition(3.1).

Definition 3.2. Let X be any non-empty set and T the collection of all sets of X (the
power set of X). Then T is called the discrete topology on the set X and is denoted by
TDisc. The topological space (X,TDisc) is called a discrete space.

Definition 3.3. Let X be any non-empty set and T = {X,∅}. Then T is called the indis-
crete topology or trivial topology and is denoted by TInd. The topological space (X,TInd) is
called an indiscrete space.

Remark 3.1. Every set indeed admits at least two topologies.

Definition 3.4. Let (X,T ) be a topological space. A subset F of X is said to be a closed
set in (X,T ) if its complement, namely ∁XF or X \ F , is open in (X,T ). We denote by
F the set of all closed subsets in (X,T ).

Example
3.5. In Example (3.1), if we consider the topology T2, then the set {2} is closed.

Example
3.6. In Example(3.2), the closed sets are

F = {∅,X,{y,z, t,s,w} ,{x,y,s,w} ,{y,s,w} ,{x}} .

.

Example
3.7. Let X = (R, | · |). Then N and Z are closed.
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Proposition 3.1. Let (X,T ) be a topological space. Then, the collection F of closed sets
in X satisfies the following properties:

P1) X and ∅ are closed sets,

P2) any finite union of closed sets is closed,

P3) any arbitrary intersection of closed sets is closed.

Proof . These properties of closed sets directly follow from the properties verified by open sets
in a topology. Indeed:

• We have seen that X and ∅ are open, and since ∁X∅ = X and ∁XX = ∅, we conclude that
X and ∅ are closed. Thus, (P1) is verified.

• Let {Fi : i = 1,2, . . . ,n} be a finite family of closed sets in X. Then, for all i = 1,2, . . . ,n,

their complements ∁XFi are open sets. But ∁X
(

n⋃
i=1

Fi

)
=

n⋂
i=1

∁XFi is an open set (because

it is a finite intersection of open sets). Hence
n⋃

i=1
Fi is a closed set. Thus, (P2) is verified.

• Let {Fi : i ∈ I} be any family of closed sets of X. Then, for all i ∈ I, their complements

∁XFi are open sets. But ∁X

( ⋂
i∈I

Fi

)
= ⋃

i∈I
∁XFi is an open set (because it is an union of

any open sets). Hence, ⋂
i∈I

Fi is a closed set. Thus, (P3) is verified.

Remark 3.2. A topology can be defined either by the collection of its open sets or by the
collection of its closed sets.

Remark 3.3. A subset of a topological space can be both open and closed. Moreover, a subset
of a topological space can be neither open nor closed.

Example
3.8. If we consider Example(3.2), we see that

1. the set {x} is both open and closed;

2. the set {y,z} is neither open nor closed.

Definition 3.5. A subset A of a topological space (X,T ) is said to be clopen if it is both
open and closed set in (X,T ).
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Example
3.9.

1. In a discrete space all subsets in (X,TDis) are clopen.

2. In a indiscrete space the only clopen subsets in (X,TInd) are X and ∅.

3. In every topological space (X,T ) both X and ∅ are clopen.

Definition 3.6. Let X be a non-empty set, and

TCof = {O ⊆ X : ∁XO is finite}∪{∅}.

Then, (X,TCof ) is a topology, and is called the cofinite topology on X.

Once again is necessary to check that TCof in the previous definition is indeed a topology; that
is, that it satisfies each of the conditions of Definition(3.1).

3.2 Neighborhoods

Definition 3.7. Let (X,T ) be a topological space. A subset Nx of X is called a neighbor-
hood of x in X if there exists an open set Ox of X such that x ∈ Ox ⊆ Nx. The collection
of neighborhoods of x is denoted by N (x) and is called the neighborhood system at x.

Nx

Figure 3.1: Neighborhood Nx
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The previous definition can be written in the following form:

(Nx is a neighborhood of x) ⇔ (∃ Ox ∈ T / x ∈ Ox ⊆ Nx).(3.1)

Definition 3.8. Let (X,T ) be a topological space. We say that a subset N of X is a
neighborhood of a non-empty subset A of X if there exists an open set O in T such that
A ⊆ O ⊆ N . In other words:

(3.2) (N is a neighborhood of A) ⇔ (∃O ∈ T such that A ⊆ O ⊆ N).

Example
3.10.

1. Let (X,TInd). Then, for all x ∈ X we have N (x) = {X}.

2. Let (X,TDisc) and x ∈ X. Then, every subset of X that contains x is an element of N (x).

3. Let (X,T ) = (R, |.|) and x ∈ R. Then, every subset of R that contains an interval centered
at x is a neighborhood of x.

4. Let X = {1,2,3,4} and T = {∅,X,{1},{4},{1,4}}. Then we have:

• N (1) = {{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4},X};

• N (2) = {X};

• N ({1,4}) = {{1,4},{1,2,4},{1,3,4},X}.

Remark 3.4. It follows from the previous definition that if B ⊂ A, then every neighborhood
of A is a neighborhood of B.

Proposition 3.2. Let (X,T ) be a topological space and A a subset of X. Then, we have

(3.3) (N is a neighborhood of A) ⇐⇒ (∀x ∈ A : N ∈ N (x)) .
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Proof .

=⇒) Obvious.

⇐=) Suppose that N is a neighborhood of every point in A. Then, we have

(3.4) ∀x ∈ A,∃Ox ∈ T / x ∈ Ox ⊆ N,

from which we conclude that A ⊆ ⋃
x∈A

Ox ⊆ N , and since ⋃
x∈A

Ox ∈ T , it follows that N is
a neighborhood of A.

Proposition 3.3. Let (X,T ) be a topological space. A non-empty set A is an open set in
X if and only if A is a neighborhood of each of its points.

Proof .

=⇒) Suppose A is an open set in X. Then, using Definition (3.7), we conclude that A is a
neighborhood of each of its points.

⇐=) Suppose A is a neighborhood of each of its points. Then, for every x ∈ A, there exists
Ox ∈ T such that x ∈ Ox ⊆ A, hence A = ⋃

x∈A
Ox. Therefore, A is open as a union of open

sets.

Proposition 3.4. Let (X,T ) be a topological space. The neighborhoods of a point satisfy
the following properties:

1. For every N ∈ N (x), we have x ∈ N .

2. For every N ∈ N (x) and every U ⊂ X, if N ⊂ U then U ∈ N (x).

3. Any finite intersection of neighborhoods of x is a neighborhood of x.

4. For every N ∈ N (x), there exists W ∈ N (x) such that for every a ∈ W , we have
N ∈ N (a).
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Proof .

• The two properties 1 and 2 are evident.

• For the third property, if {Ni : i = 1, ...,n} is a family of neighborhoods of x ∈ X, then for
all i = 1, ...,n, there exists Oi ∈ T such that x ∈ Oi ⊆ Ni, from which we conclude that
x ∈

n⋂
i=1

Oi ⊆
n⋂

i=1
Ni. We deduce that

n⋂
i=1

Ni ∈ N (x) because
n⋂

i=1
Oi ∈ T .

• For the fourth property, if N ∈ N (x), then there exists O ∈ T such that x ∈ O ⊆ N . This
implies that N is a neighborhood of every point a ∈ O. Then, it suffices to take W = O

to verify that property (4) is holds.

3.3 Comparison of topologies

Definition 3.9. Let T1 and T2 be two topologies on a set X. We say that T1 is finer than
T2 (or that T2 is coarser than T1) if T2 ⊆ T1. In other words, T1 is finer than T2 if one of
the following three statements holds:

1. Every open set in (X,T2) is also an open set in (X,T1).

2. Every closed set in (X,T2) is also a closed set in (X,T1).

3. If x ∈ X, then every neighborhood of x in (X,T2) is also a neighborhood of x in
(X,T1).

Remark 3.5. If T1 is finer than T2 and T2 is finer than T1, we say that T1 and T2 are
equivalent.

Example
3.11. For any topological space (X,T ), the indiscrete topology on X is coarser than

T which in turn is coarser than the discrete topology on X.

Example
3.12. The Sierpinski space S consists of two points {0,1} with the topology

{∅,{1},{0,1}}. The topology of Sierpinski space is finer than the indiscrete topology TInd =
{∅,{0,1}} on {0,1} but coarser than the discrete topology TDisc = {∅,{0},{1},{0,1}} on {0,1}.

Example
3.13. If X = {x,y,z}, then T1 = {∅,{x},X}, T2 = {∅,{x,y},X}, and T3 =

{∅,{x},{x,y},X} are three distinct topologies on X. The topologies T1 and T2 are coarser
than T3; however, T1 and T2 are not comparable.
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Proposition 3.5. Let {Ti : i ∈ I} be a collection of topologies on X. Then, ⋂
i∈I

Ti is a
topology on X that is the coarsest of each of the topologies Ti.

Proof . Obvious.

Proposition 3.6. Let β be a family of subsets of X. There exists a smallest topology that
contains β. This topology is called the topology generated by β.

Proof . The set of topologies that contain β is not empty because it contains the discrete
topology. Therefore, it is enough to take the intersection of these topologies.

3.4 Base and Neighborhood base

Definition 3.10. Let (X,T ) be a topological space. A basis for the topology T is a family
B ⊆ T such that every set in T is a union of sets from B.

Example
3.14.

1. Let the topological space (R, |.|) and x ∈ R. The collection:

B = {]x,y[ : x,y ∈ R},

is a basis for the usual topology.

2. In the topological space (X,TDisc), the collection:

B = {{x} : x ∈ X},

is a basis for the discrete topology.

3. Let X = {x,y,z} and T = {∅,{x},{y},{x,y},X}. The collection:

B = {{x},{y},X},

is a basis for this topology.
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4. If (X,T ) is a topological space, then T is a basis for itself.

5. In the topological space (X,TInd), the collection:

B = {X},

is a basis for the indiscrete topology.

Remark 3.6. If B is a basis for a topological space (X,T ) and B′ is a family that contains
B, then by using the previous definition, we conclude that B′ is another basis for T . Therefore,
a topological space can have multiple bases.

Proposition 3.7. Any basis B of a topology T on X has the following two properties:

1. For every x ∈ X, there exists B ∈ B such that x ∈ B.

2. If B1,B2 ∈ B and x ∈ B1 ∩B2, then there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Proof . Suppose that B is a basis of the topology T .

1. Since X is an open set, we have X = ⋃
B

B∈B
(see definition (3.10)), from which it follows

that for every x ∈ X, there exists B ∈ B such that x ∈ B.

2. If B1,B2 ∈ B, then B1,B2 ∈ T (since B ⊆ T ), which implies that B1 ∩ B2 ∈ T . Thus,
B1 ∩ B2 = ⋃

B
B∈B

(see definition (3.10)). Therefore, for every x ∈ B1 ∩ B2, there exists
B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2.

Proposition 3.8. If B is a family of subsets of a set X that satisfies the two properties
of Proposition (3.7), then T = {⋃B : B ∈ B} is a topology on X.

Proof . We leave it as an exercise.

Now, using the two previous propositions, we obtain the following result:

Proposition 3.9. Let (X,T ) be a topological space. Then, a family of subsets B of X is
a basis for T if and only if B satisfies the two properties of Proposition (3.7).
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Proposition 3.10. Let (X,T ) be a topological space and B a subset of T . Then, B is a
basis for T if and only if for every O ∈ T and for every x ∈ O, there exists Ux ∈ B such
that: x ∈ Ux ⊆ O.

Proof .

⇐=) It is clear that O = ⋃
x∈O

Ux, hence B is a basis for T .

=⇒) If B is a basis for T , then every subset O of T is a union of elements of B, which means
that for each element x ∈ O, there exists Ux ∈ B such that x ∈ Ux ⊂ O.

Proposition 3.11. Let B1 be a basis of a topology T and B2 a family of subsets of T .
If every element of B1 is a union of elements of B2, then B2 is a basis for T .

Proof . Let O ∈ T . Then, there exists {Oi : i ∈ I and Oi ∈ B1} such that O = ⋃
i∈I

Oi (because

B1 is a base for T ) and since every element of B1 is a union of elements of B2, there exists
{Ui,j : j ∈ J and Ui,j ∈ B2} such that Oi = ⋃

j∈J
Ui,j for all i ∈ I. Thus, we obtain O = ⋃

Ui,j
(i,j)∈I×J

.

Therefore, B2 is a base for T .

Definition 3.11. A collection S(x) ⊆ N (x) is called a neighborhood base at x if for every
neighborhood Nx, there is a neighborhood Wx ∈ S(x) such that Wx ⊆ Nx. We refer to the
sets in S(x) as basic neighborhoods of x.

Example
3.15.

1. Let (X,T ) be a topological space. Then, we have:

S(x) = {O ∈ T : x ∈ O}

is a neighbourhoods base of x.

2. In the topological space (X,TDisc), we have:

S(x) = {{x}}

is a neighborhoods base of x.
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3. Let the topological space (R, |.|) and x ∈ R. Then, we have:

S(x) = {(x− ε,x+ ε) : ε > 0}

is a neighborhoods base of x. For example:

S(x) =
{(

x− 1
n

,x+ 1
n

)
: n ∈ N∗

}

is a countable neighborhoods base of x.

3.5 Interior points, Adherent points, Accumulation points,
Isolated points, Boundary points, Exterior points
and Dense sets.

3.5.1 Interior points

Definition 3.12. Let A be a subset of a topological space (X,T ). We say that x is an
interior point of A if A is a neighborhood of x, in other words,

(3.5) x is an interior point of A ⇐⇒ A ∈ N (x).

The set of all interior points of A is called the interior or the interior set of A and is
denoted by Int(A).

Example
3.16.

1. Consider the topological space (X,TInd) and let A ⊆ X. Then, we have the following two
cases:

• X = A =⇒ Int(A) = X.

• X ̸= A =⇒ Int(A) = ∅.

2. Consider the topological space (X,TDisc) and let A ⊆ X. Then, Int(A) = A.

3. For the topological space (R, |.|), we have:

• ∀x ∈ R, Int{x} = ∅.

• ∀x,y ∈ R, Int([x,y]) = Int([x,y)) = Int((x,y]) = Int((x,y)) = (x,y).

• Int(N) = Int(Z) = Int(Q) = Int
(
∁RQ

)
= ∅.
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4. If X = {x,y,z, t} and T = {X,∅,{x},{y},{x,y}}, then we have:

• Int{z} = Int{t} = ∅.

• Int{x,z, t} = {x}.

Proposition 3.12. Int(A) is the largest open set contained in A.

Proof . We will show that Int(A) is the union of all open subsets of A.
For every x ∈ Int(A), we have A ∈ N (x) (see definition (3.12)). Using definition (3.1), we
conclude that: for every x ∈ Int(A), there exists Ox ∈ T such that x ∈ Ox ⊂ A, which leads to:

(i) Int(A) ⊂
⋃

x∈Int(A)
Ox ⊂

⋃
x∈A

Ox.

Conversely, if x ∈ ⋃
x∈A

Ox then x ∈ Ox ⊂ A, which implies A ∈ N (x), so x ∈ Int(A). This means
that:

(ii)
⋃

x∈A

Ox ⊂ Int(A).

From (i) and (ii) we conclude that:

Int(A) =
⋃

x∈A

Ox.

Finally, Int(A) is the largest open set contained in A because it is the union of all open subsets
of A.

Remark 3.7. The previous proposition allows us to write the following result:

(3.6) A is open in X ⇐⇒ A = Int(A).

Proposition 3.13. Let (X,T ) be a topological space and A,B two subsets of X. Then,
we have:

1. If A ⊂ B and A is open, then A ⊂ Int(B).

2. If A ⊂ B, then Int(A) ⊂ Int(B).

3. Int(A) = Int(Int(A)).

4. Int(A∩B) = Int(A)∩ Int(B).
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5. Int(A)∪ Int(B) ⊂ Int(A∪B).

6. A ∈ N (B) ⇐⇒ B ⊂ Int(A).

Proof . (Exercise).

Remark 3.8. We have Int

( ⋂
i∈I

Ai

)
⊂ ⋂

i∈I
Int(Ai) if I is infinite.

3.5.2 Adherent points

Definition 3.13. Let (X,T ) be a topological space, A ⊂ X, and x ∈ X. We say that x is
an adherent point to A if and only if every N ∈ N (x) contains at least one point of A. In
other words:

(3.7) x is an adherent point of A ⇐⇒ ∀N ∈ N (x), N ∩A ̸= ∅.

The set of all adherent points to A is called the closure of A, and it is denoted by Cl(A).

Remark 3.9. It follows from this definition that A ⊆ Cl(A).

Example
3.17.

1. If A is a subset of X with the indiscrete topology TInd, then Cl(A) = X.

2. If A is a subset of X with the discrete topology TDisc, then Cl(A) = A.

3. Consider the topological space (R, |.|), then:

• ∀x ∈ R, Cl ({x}) = {x}.

• ∀x,y ∈ R, Cl ([x,y]) = Cl([x,y)) = Cl((x,y]) = Cl((x,y)) = [x,y].

• Cl(Q) = Cl(∁RQ) = R, Cl(N) = N, Cl(Z) = Z.

4. If X = {x,y,z, t} and T = {X,∅,{x},{y},{x,y}}, then for example:

• Cl({x}) = {x,z, t}, Cl({y}) = {y,z, t}.

• Cl({z}) = {z, t}, Cl({t}) = {z, t}.

Proposition 3.14. Cl(A) is the smallest closed set that contains A.
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Proof . We will show that Cl(A) is the intersection of all closed sets that contain A. Let
F = ⋂

i∈I
Fi, where Fi is a closed set that contains A for all i ∈ I.

•
(

F
?
⊆ Cl(A)

)
Let x /∈ Cl(A). Then there exists an open set O ∈ N (x) such that O∩A = ∅,

which implies A ⊂ ∁XO. Therefore, ∁XO is a closed set that contains A and x /∈ ∁XO which
leads to x /∈ F . Thus, we have:

(i) F ⊆ Cl(A).

•
(

Cl(A)
?
⊆ F

)
Now, let x /∈ F . Then x ∈ ∁XF (which is open), but ∁XF ∩ A = ∅, leading

to x /∈ Cl(A). Thus, we have:

(ii) Cl(A) ⊆ F.

From (i) and (ii), we conclude that Cl(A) = F . Therefore, Cl(A) is the smallest closed set that
contains A.

Remark 3.10. The previous proposition allows us to write the following result:

(3.8) A is closed in X ⇐⇒ A = Cl(A).

Proposition 3.15. Let A and B be two subsets of the topological space (X,T ). Then, we
have:

1. A ⊆ B =⇒ Cl(A) ⊆ Cl(B).

2. Cl(A∪B) = Cl(A)∪Cl(B).

3. Cl(A∩B) ⊂ Cl(A)∩Cl(B).

4. ∁XCl(A) = Int(∁XA).

5. Cl(∁XA) = ∁XInt(A).

6. Cl(Cl(A)) = Cl(A).

Proof . (Exercise).

Example
3.18. If A = (1,2) and B = (2,3), then Cl(A∩B) = ∅. However, Cl(A)∩Cl(B) =

[1,2]∩ [2,3] = {2}. This example shows that, in general, the inclusion in (3) is not an equality.
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3.5.3 Accumulation points

Definition 3.14. Let (X,T ) be a topological space, A ⊂ X, and x ∈ X. We say that x is
an accumulation point of A if and only if every N ∈ N (x) contains at least one point of
A other than x. In other words:

(3.9) x is an accumulation point of A ⇐⇒ ∀N ∈ N (x), (N ∖{x})∩A ̸= ∅.

The set of all accumulation points of A is called the derived set of A and is denoted byA′.

It follows from this definition that any point adherent to A but not belonging to A is an
accumulation point. Therefore, we have the following result:

(3.10) A′ ∪A = Cl(A).

Example
3.19.

1. Let X = {x,y,z, t,s}, T = {∅,X,{x,y},{z, t,s}}, and A = {x,y,z}. Then, we have A′ =
{x,y, t,s}.

2. If A is a subset of a topological space (X,TDisc), then A′ = ∅.

3. In (R, | · |), we have N′ = Z′ = ∅.

Proposition 3.16. A subset A of a topological space (X,T ) is closed if and only if it
contains all of its accumulation points.

Proof . Evident (from relation (3.10)).

3.5.4 Isolated Points

Definition 3.15. Let (X,T ) be a topological space and A ⊂ X. We say that a point x ∈ A

is an isolated point if and only if there exists N ∈ N (x) such that N contains no other
points of A except x. That is:

x is an isolated point in A ⇐⇒ ∃N ∈ N (x), N ∩A = {x}.

The set of all isolated points of A is denoted by Is(A).
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Example
3.20.

1. In the topological space (R, | · |), we have Is(N) = N and Is(Z) = Z.

2. Every point in a topological space (X,TDisc) is isolated.

3. Let X = {x,y,z, t,s}, T = {∅,X,{x},{y},{x,y}}, and A = {y,z, t}. Then, Is(A) = {y}.

3.5.5 Boundary points

Definition 3.16. Let (X,T ) be a topological space, A ⊂ X, and x ∈ X. We say that x is
a boundary point of A if it adheres to both A and ∁XA. In other words:

x is a boundary point of A ⇐⇒ x ∈ Cl(A)∩Cl(∁XA).

The set of all boundary points of A is called the boundary of A and is denoted by ∂(A).

Remark 3.11. Using property (5) of Proposition (3.15), we obtain:

∂(A) = Cl(A)∩Cl(∁XA)
= Cl(A)∩∁XInt(A)
= Cl(A)− Int(A).

(3.11)

Proposition 3.17. Let A be a subset of a topological space (X,T ). Then,

1. ∂(A) is a closed set.

2. A is both open and closed ⇐⇒ ∂(A) = ∅.

3. A is open ⇐⇒ ∂(A)∩A = ∅.

4. A is closed ⇐⇒ ∂(A) ⊆ A.

Proof . (Exercise).

Example
3.21.

1. If A is a subset of a topological space (X,TDisc), then ∂(A) = ∅.

2. In the space (R, | · |):
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• If A = (a,b), then ∂(A) = Cl(A)− Int(A) = [a,b]− (a,b) = {a,b}.

• If A = Z, then ∂(A) = Cl(A)− Int(A) = Z−∅ = Z.

3.5.6 Exterior points

Definition 3.17. Let (X,T ) be a topological space, A ⊂ X, and x ∈ X. We say that x is
an exterior point of A if it belongs to the interior of ∁XA. In other words:

x is an exterior point of A ⇐⇒ x ∈ Int(∁XA).

The set of all exterior points of A is called the exterior of A, and it is denoted by Ext(A).

Remark 3.12. Using property (4) from Proposition (3.15), we obtain the following result:

Ext(A) = Int(∁XA) = ∁XCl(A).

Proposition 3.18. Let A and B be two subsets of a topological space (X,T ). Then,

1. Ext(A) is an open set.

2. Ext(A) ⊆ ∁XA.

3. Ext(A) = Ext(∁XExt(A)).

4. Ext(A∪B) = Ext(A)∩Ext(B).

5. Cl(A) = X ⇐⇒ Ext(A) = ∅.

Proof . (Exercise).

3.5.7 Dense sets

Definition 3.18. Let (X,T ) be a topological space, and let A and B be two subsets of X.
We say that A is dense in B if and only if every point of B is an adherent point of A, in
other words:

(3.12) A is dense in B ⇐⇒ B ⊆ Cl(A),
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and we say that A is dense in X if and only if Cl(A) = X or Int(∁XA) = ∅.

Example
3.22.

1. If X is equipped with the indiscrete topology, then every non-empty subset of X is dense
in X.

2. If X is equipped with the discrete topology, and A and B are subsets of X such that B ⊂ A,
then A is dense in B. Moreover, no subset A ̸= X is dense in X.

3. In (R, | · |), let A = [a,b) and B = (a,b). It is clear that A is dense in B because B ⊆
Cl(A) = [a,b].

4. We have seen that Q is dense in R since Cl(Q) = R.

5. Let X= {x,y,z, t} and T = {∅,X,{x},{x,y}}. Define A = {t} and B = {x,z}; we find that
B is dense in A because A ⊆ Cl(B) =X, but A is not dense in B since B ⊈Cl(A) = {z, t}.

Proposition 3.19. Let (X,T ) be a topological space, and consider three subsets A, B,
and C of X. If A is dense in B and B is dense in C; then, A is dense in C.

Proof . On the one hand, since A is dense in B, we have B ⊆ Cl(A)), which implies that

(i) Cl(B) ⊆ Cl(A).

On the other hand, since B is dense in C, we have

(ii) C ⊆ Cl(B).

From (i) and (ii), we conclude that C ⊆ Cl(A), so A is dense in C.

Remark 3.13. The previous proposition shows that density is a transitive property.

The following property is a very practical characterization of dense subsets.

Proposition 3.20. Let (X,T ) be a metric space, and let A ⊆ X. Then, A is dense in X
if and only if every non-empty open set in X contains at least one element of A.
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Proof .

=⇒) Suppose that A is a dense subset of X and O is a non-empty open set in X. Since
Cl(A) = X, it follows that O ⊆ Cl(A). Thus, A ∩ O ̸= ∅ because O is a neighborhood of
each of its points.

⇐=) Assume that A∩O ̸= ∅ for every open set O in X. This implies that for any neighborhood
N of any point x ∈ X, we also have N ∩ A ̸= ∅, since N contains a non-empty open set.
Therefore, x ∈ Cl(A), and consequently, Cl(A) = X.

3.6 Separated Spaces (Hausdorff Spaces))

Definition 3.19. A topological space (X,T ) is said to be separated or Hausdorff if and
only if, for any two distinct points x and y in X, there exist neighborhoods N ∈ N (x) and
W ∈ N (y) such that N ∩W = ∅.

Example
3.23.

1. The space (X,TDisc) is separated.

2. If card(X) ≥ 2, the space (X,TInd) is not separated.

3. The metric space (R, |.|) is Hausdorff.

4. The space (X,TCof ) is not separated.

Proposition 3.21. Let (X,T ) be a topological space. Then, X is separated if and only if
for every x ∈ X, we have {x} = ⋂

Nx∈N (x)
Nx, where Nx is a closed neighborhood of x.

Proof .

=⇒) Let X be a separated topological space and x ∈ X. We want to show that

(i) {x} =
⋂

Nx∈N (x)
Nx,

where Nx is a closed neighborhood of x. Suppose there exists y ∈ ⋂
Nx

Nx∈N (x)
such that y ̸= x.

Then, there exist two open neighborhoods U and W of x and y, respectively, such that
U ∩ W = ∅. This means that CXW is a closed neighborhood of x (since it contains U),
which contradicts the fact that y belongs to all closed neighborhoods of x.
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⇐=) Conversely, let x,y ∈ X such that x ̸= y. From the equality (i), it follows that there exists
a closed neighborhood Nx of x that does not contain y. Therefore, there exists an open
set O such that x ∈ O ⊂ Cl(O) ⊂ Nx, which implies that y /∈ Cl(O). Finally, we conclude
that O and CXCl(O) are two disjoint open sets containing x and y, respectively, which
shows that X is a separated space.

Using the previous proposition, we obtain the following result:

Proposition 3.22. Every singleton in a separated space is closed, and in general, every
finite set in a separated space is closed.

Proposition 3.23. Let (X,T ) be a separated topological space and x ∈ X. Then, x is an
accumulation point of a subset A of X if and only if every neighborhood Nx of x contains
infinitely many elements of A.

Proof .

⇐=) Obvious.

=⇒) Suppose there exists a neighborhood Nx ∈ N (x) that contains a finite number of elements
{x1,x2, . . . ,xn} of A. Then, W = Nx \ {x1,x2, . . . ,xn} is a neighborhood of x and (W \
{x})∩A = ∅. Therefore, x is not an accumulation point of A.

Remark 3.14. It follows from the previous proposition that any finite subset of a separated
topological space has no accumulation points.

3.7 Induced topology, Product topology

3.7.1 Induced topology

Definition 3.20. Let (X,T ) a topological space and A a subset of X. Then,

(3.13) TA = {OA = A∩O : O ∈ T } ,

is a topology in A. The open sets in A are the intersections of open sets in X with A.
This topology is called the induced topology or relative topology of A in X, and (A,T ) is
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called a topological subspace of (X,T ).

Exercise. Show that TA is a topology on A.

Example
3.24. Consider the following topology

T = {X,∅,{x} ,{z, t} ,{x,z, t} ,{y,z, t,s}}

on X = {x,y,z, t,e} and the subset A = {x,t,s} of X. Then we have: X∩ A = A, ∅ ∩ A =
∅, {x}∩A = {x} , {z, t}∩A = {t} , {x,z, t}∩A = {x,t} , and {y,z, t,s}∩A = {t,s} . Thus,
the topology induced by T on A is

TA = {A,∅,{x} ,{t} ,{x,t} ,{t,s}} .

Example
3.25. Consider the usual topology on R and the induced topology TA on the closed

interval A = [4,9]. Note that the half-open interval [4,6[ is an open set in the topology TA

because [4,6[=]3,6[∩A, where ]3,6[ is an open set in R. Thus, we see that a set can be open
relative to a subspace but neither open nor closed in the entire space.

Example
3.26. Consider the usual topology on R and the induced topology TA on A = N.

Then, for any n ∈ N, we have N∩ (n − 1,n + 1) = {n} ∈ TA. We conclude that (N,TN = P(N))
is a discrete space.

Proposition 3.24. Let (A,TA) be a subspace of a topological space (X,T ), and let F ′ be
a subset of A. Then, F ′ is closed in A with respect to the induced topology TA if and only
if there exists F ∈ F (where F is the set of closed sets in X) such that F ′ = A∩F .

Proof . We have that F ′ is closed in A if and only if ∁AF ′ is open in A, i.e., if and only if
there exists O ∈ T such that ∁AF ′ = A ∩ O. Therefore, F ′ is closed in A if and only if there
exists O ∈ T such that

F ′ = ∁A(∁AF ′) = ∁A(A∩O) = A∩ (∁XO),

i.e., if and only if there exists F = ∁XO ∈ F such that F ′ = A∩F .

We can easily show the following result.
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Proposition 3.25. Let (A,TA) be a subspace of a topological space (X,T ), and let B be
a subset of A. If B is open (resp. closed) in X, then B is open (resp. closed) in A.

Proof . It suffices to see that B = B ∩A.

Remark 3.15. The two examples (3.25) and (3.26) show that the converse of the previous
result is not necessarily true.

Proposition 3.26. Let (A,TA) be a subspace of a topological space (X,T ). Then every
open (resp. closed) set in A is an open (resp. closed) set in X if and only if A is an open
(resp. closed) set in X.

Proof .

=⇒) Suppose that every open set in A is an open set in X, then A is an open set in X.

⇐=) Suppose that A is an open set in X and let OA be an open set in A. Then there exists
O ∈ T such that OA = A∩O, which is an open set in X since A ∈ T .
By similar arguments, this result can be shown for closed sets.

Proposition 3.27. 1. If x ∈ A, then N ′ is a neighborhood of x in A if and only if
there exists N ∈ N (x) such that N ′ = N ∩A.

2. If S(x) is a neighborhood base of x in X, then {N ∩A : N ∈ S(x)} is neighborhood
base of x in A for the induced topology TA.

3. If B is a subset of A, then we have:

a) Cl(B)A = A ∩ Cl(B) (where Cl(B)A and Cl(B) are the closures of B for TA

and T , respectively).

b) Cl(B)A = Cl(B) ⇐⇒ A is closed in X.

c) A∩ Int(B) ⊂ Int(B)A

4. If B is a base for (X,T ), then BA = {β ∩A : β ∈ B} is a base for (A,TA).
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Proof .

1. If N ′ is a neighborhood of x in A, then there exists an open set A ∩ O ∈ TA (i.e., there
exists O ∈ T ) such that x ∈ A ∩ O ⊂ N ′. Thus, if we define N = O ∪ N ′, we obtain
x ∈ O ⊂ N , so N is a neighborhood of x in X, and we have:

N ∩A = (O ∪N ′)∩A = (O ∩A)∪ (N ′ ∩A) = (O ∩A)∪N ′ = N ′.

Conversely, if N ∈ N (x), then there exists O ∈ T such that x ∈ O ⊂ N . Thus, x ∈ A∩O ⊂
A∩N , and therefore N ′ = A∩N is a neighborhood of x in A because A∩O is open in A.

2. Let N ′ = N ∩ A be a neighborhood of x in A for the induced topology TA, with N being
a neighborhood of x in X. If S(x) is a neighborhood base of x in X, then there exists
W ∈ S(x) such that W ⊂ N , so W ∩ A ⊂ N ′. This leads to the conclusion that {N ∩ A :
N ∈ S(x)} is neighborhood base of x in A.

3. a) If x ∈ Cl(B)A, then for every N ∈ N (x) (for the topology T ), we have (N ∩A)∩B ̸=
∅, and therefore x ∈ A and x ∈ Cl(B), from which we obtain

(i) x ∈ A∩Cl(B).

On the other hand, if x ∈ A ∩ Cl(B), then every neighborhood N ∩ A of x in A

intersects B because N intersects B and B ⊂ A, from which we obtain

(ii) x ∈ Cl(B)A.

Finally, from (i) and (ii), we conclude that Cl(B)A = A∩Cl(B).

b) Suppose that for every subset B of A, we have Cl(B)A = Cl(B), then A = Cl(A)A =
Cl(A) because A is closed in A, hence A is closed in X.
Conversely, if A is closed in X, then Cl(B) ⊂ Cl(A) = A, and thus Cl(B)A = A ∩
Cl(B) = Cl(B).

c) We have A∩ Int(B) is an open set in A contained in B, so A∩ Int(B) ⊂ Int(B)A.

4. Let U be an open set of A, then there exists O ∈ T such that U = A ∩ O, but O = ⋃
i∈I

βi,
where βi ∈ B for all i ∈ I, from which we obtain

U = A∩

⋃
i∈I

βi

=
⋃
i∈I

(A∩βi),

which completes the proof.
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Definition 3.21. A topological property is hereditary if whenever a topological space pos-
sesses this property, it also holds for each of its sub-spaces.

Proposition 3.28. Every subspace of a separated space is separated.

Proof . Let (A,TA) be a topological subspace of a separated topological space (X,T ), and
let x,y ∈ A such that x ̸= y. Since X is separated, there exist neighborhoods N ∈ N (x) and
W ∈ N (y) such that N ∩W = ∅, hence (A∩N)∩ (A∩W ) = ∅. Therefore, (A∩N) and (A∩W )
are disjoint neighborhoods of x and y, respectively, within A, which shows that A is separated.

The following result shows the transitivity of the induced topology.

Proposition 3.29. Let (X,T ) be a topological space and B ⊂ A ⊂ X two subsets of X.
We denote by T ′

B the topology induced on B by TA. Then, we have

TB = T ′
B.

Proof . If U ∈ TB, then there exists O ∈ T such that U = B ∩ O, and since A ∩ O ∈ TA, we
obtain U = B ∩O = B ∩ (A∩O) ∈ T ′

B.
Conversely, if U ∈ T ′

B, then there exists OA ∈ TA such that U = B ∩OA, and since OA ∈ TA,
there exists O ∈ T such that OA = A∩O. Thus, U = B ∩(A∩O) = B ∩O, and therefore U ∈ TB.

3.7.2 Product topology

Definition 3.22. Let {(Xi,Ti) : i = 1, ...,n} be a collection of topological spaces. The box
topology or product topology on the product X =

n
Π

i=1
Xi is the topology with basis

B =
{ n

Π
i=1

Oi : Oi ∈ Ti for each 1 ⩽ i ⩽ n
}

.
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So we can always make the product of topological space into a topological space using the box
topology.

Proof .

1. We have X = X1 ×X2 × ·· · ×Xn ∈ T and ∅×∅×·· ·×∅︸ ︷︷ ︸
n times

∈ T because they are elements of

B.

2. If {Oi : i ∈ I} is a family of open subsets of X, then we have:

⋃
i∈I

Oi =
⋃
i∈I

⋃
j∈J

(
O1

i,j ×O2
i,j ×·· ·×On

i,j

)=
⋃

(i,j)∈I×J

(
O1

i,j ×O2
i,j ×·· ·×On

i,j

)
∈ T ,

because O1
i,j ×O2

i,j ×·· ·×On
i,j ∈ B for all i ∈ I and j ∈ J .

3. It suffices to show that if O1,O2 ∈ T , then O1 ∩ O2 ∈ T . Since O1,O2 ∈ T , we have
O1 = ∪

i∈I
Ni and O2 = ∪

j∈J
Wj where Ni, Wj ∈ B for all i ∈ I and j ∈ J . Therefore, we

obtain:
O1 ∩O2 =

(
∪

i∈I
Ni

)
∩
(

∪
j∈J

Wj

)
= ∪

(i,j)∈I×J
(Ni ∩Wj) .

It remains to show that Ni ∩ Wj ∈ B for all i ∈ I and j ∈ J . By definition, we have
Ni = Ri

1 ×·· ·×Ri
n and Wj = Kj

1 ×·· ·×Kj
n where Ri

α ∈ Tα and Kj
α ∈ Tα for all α = 1, . . . ,n.

This allows us to write:

Ni ∩Wj = (Ri
1 ∩Kj

1)× (Ri
2 ∩Kj

2)×·· ·× (Ri
n ∩Kj

n).

Since Ri
α ∩Kj

α are open sets in Tα for all α = 1, . . . ,n, we deduce that Ni ∩Wj ∈ B for all
i ∈ I and j ∈ J , which implies that O1 ∩O2 ∈ T . Finally, we conclude that T is a topology
on X.

Example
3.27.

1. The box topology or product topology on Rn, such that R is equipped with the usual topology,
is the topology with basis

B =
{ n

Π
i=1

]ai, bi[ : ai, bi ∈ R for each 1 ⩽ i ⩽ n
}

.

2. Let {(Xi,Ti) : i = 1, ...,n} be a family of indiscrete spaces. Then, the product X =
n
Π

i=1
Xi

is an indiscrete space. Indeed, if O =
n
Π

i=1
Oi ̸= X, then there exists an index i0 such that

Oi0 ̸=Xi0. Since Ti0 = {Xi0 ,∅}, we obtain Oi0 = ∅, and hence O = ∅. Therefore, the family
{X,∅} forms a basis for the product topology on X, which shows that X is an indiscrete
space.
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Proposition 3.30. Let X =
n
Π

i=1
Xi be a product of topological spaces, and let x =

(x1, . . . ,xn) ∈ X. Let S denote the family of sets of the form N1 × ·· · × Nn, where
Ni ∈ N (xi) in Xi for i = 1, . . . ,n. Then, S is a basic neighborhoods of x in X.

Proof .

If Ni ∈ N (xi), then there exists Oi ∈ Ti, for all i = 1, . . . ,n, such that xi ∈ Oi ⊂ Vi. Therefore,
we obtain x ∈ O1 × ·· · × On ⊂ N1 × ·· · × Nn, and since O1 × ·· · × On is an open set in X, we
conclude that N1 ×·· ·×Nn is a neighborhood of x in X.

Now, let N ∈ N (x) in X. Then, there exists an open set O ⊂ X such that x ∈ O ⊂ N . Thus,
there exists W = O1 × ·· · × On an open set containing x (since B is a basis for the product
topology on X (see Definition 3.22 )). Hence, W ∈ S because Oi ∈ N (xi) for all i = 1, . . . ,n,
which implies that W ⊂ N .

Example
3.28. Let Rn be equipped with the usual topology, and let x = (x1, . . . ,xn) ∈ Rn.

The family {
n∏

i=1
(xi − εi,xi + εi) : (ε1, . . . , εn) ∈ (R∗

+)n

}
,

is a basic neighborhoods of x. Similarly, the family{
n∏

i=1
(xi − ε,xi + ε) : ε ∈ R∗

+

}
,

is also a basic neighborhoods of x.

Proposition 3.31. Consider A =
n
Π

i=1
Ai, a subset of the product space X =

n
Π

i=1
Xi. The

closure of A, denoted by Cl(A), is given by:

Cl(A) =
n∏

i=1
Cl(Ai).

Proof . Let x = (x1, . . . ,xn) ∈ Cl(A). Then, for every Ni ∈ N (xi), we have:

(N1 ∩A1)×·· ·× (Nn ∩An) = (N1 ×·· ·×Nn)∩A ̸= ∅,

which implies Ni ∩Ai ̸= ∅ for all i = 1, . . . ,n. Thus, xi ∈ Cl(Ai) for all i = 1, . . . ,n, showing that
x ∈

n
Π

i=1
Cl(Ai).
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Conversely, if x ∈
n
Π

i=1
Cl(Ai), then for every Ni ∈ N (xi), i = 1, . . . ,n, we have Ni ∩ Ai ̸= ∅.

Therefore,
(N1 ∩A1)×·· ·× (Nn ∩An) = (V1 ×·· ·×Nn)∩A ̸= ∅,

which shows that x ∈ Cl(A).

Using the previous proposition, we obtain the following result.

Proposition 3.32. Let A =
n
Π

i=1
Ai be a subset of a product space X =

n
Π

i=1
Xi. Then A is

closed in X if and only if Ai is closed in Xi for every i = 1, . . . ,n.

Proposition 3.33. A product space X =
n
Π

i=1
Xi is Hausdorff if and only if each Xi is

Hausdorff for every i = 1, . . . ,n.

Proof .

=⇒) Suppose that X=
n
Π

i=1
Xi is Hausdorff, and let xi0 ,yi0 ∈Xi0 such that xi0 ̸= yi0. For any x′ =

(x1, ...,xi0−1,xi0+1, ...,xn) ∈
n
Π

i=1
i ̸=i0

Xi, there exists a neighborhood O of (x1, . . . ,xi0 , . . . ,xn)

and a neighborhood O′ of (x1, . . . ,yi0 , . . . ,xn) such that O ∩ O′ = ∅. Let O = N1 × N2 and
O′ = N ′

1 ×N ′
2, where N1 ∈ N (xi0), N2 ∈ N (x′), N ′

1 ∈ N (yi0), and N ′
2 ∈ N (x′). Thus, we

obtain:
O ∩O′ = (N1 ∩N ′

1)× (N2 ∩N ′
2) = ∅ =⇒ N1 ∩N ′

1 = ∅,

and therefore Xi0 is Hausdorff.

⇐=) Let x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈X=
n
Π

i=1
Xi such that x ̸= y. Then there exists at least

one i0 ∈ {1, . . . ,n} such that xi0 ̸= yi0. Since Xi0 is Hausdorff, there exist a neighborhood
N of xi0 and a neighborhood W of yi0 such that V ∩ W = ∅. By setting Ox = X1 × ·· · ×
Xi0−1 ×N ×Xi0+1 ×·· ·×Xn and Oy = X1 ×·· ·×Xi0−1 ×W ×Xi0+1 ×·· ·×Xn, we obtain
Ox ∈ N (x), Oy ∈ N (y), and Ox ∩Oy = ∅, which shows that X is Hausdorff.

3.8 Convergent sequences
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Definition 3.23. A "sequence of elements" of a set X is defined as any function from
N (or a subset of N) into X, which associates with each integer n in N an element of X
denoted by xn. The sequence with general term xn is denoted by (xn)n∈N.

Definition 3.24. Let (X,T ) be a topological space. Consider a sequence (xn)n∈N of
elements in X and a point l ∈ X. We say that l is the limit of the sequence (xn)n∈N (or
that (xn)n∈N converges to l) as n tends to infinity, if for every neighborhood N of l in X,
there exists an integer n0 such that xn ∈ N for all n ≥ n0. In other words,

∀N ∈ N (l), ∃n0 ∈ N : ∀n ∈ N, n ⩾ n0 ⇒ xn ∈ N.

In this case, we write:
lim

n→∞xn = l.

A sequence that does not converge is called divergent.

Example
3.29.

1. Every constant sequence is convergent in all topological spaces.

2. A sequence in an indiscrete space is convergent to every point of that space.

3. If (X,T ) is a discrete space, then a sequence (xn)n∈N in X converges to l if and only if
there exists n0 such that xn = l for all n ⩾ n0.

4. The sequence (xn) of the general term xn = 1
n

is convergent to 0 in (R, | · |), and it is
divergent in (R,P(R)).

Proposition 3.34. If (X,T ) is a Hausdorff topological space, then every convergent se-
quence in X has a unique limit.

Proof . Let us reason by contradiction. Let (xn) be a convergent sequence in X. Suppose
it has two distinct limits l1 ̸= l2. Since (X,T ) is a Hausdorff space, there exist neighborhoods
N1 ∈ N (l1) and N2 ∈ N (l2) such that N1 ∩ N2 = ∅. According to the definition (3.24), there
exist integers n1 and n2 such that:

∀n ⩾ n1, xn ∈ N1 and ∀n ⩾ n2, xn ∈ N2.
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Let n0 = max(n1,n2). Then, for all n ⩾ n0, we have

xn ∈ N1 ∩N2,

which contradicts the fact that N1 ∩N2 = ∅. Therefore, l1 = l2.

Example
3.30. The trivial topology (indiscrete topology) on a set X is a non-Hausdorff

topology because every element x ∈ X has only one neighborhood, namely X itself. Therefore, if
(xn)n∈N is a sequence in X, every point x ∈ X is a limit for this sequence. Hence, the limit is
not unique.

Definition 3.25. A cluster point or accumulation point of a sequence (xn)n∈N in a topo-
logical space (X,T ) is a point x such that, for every neighborhood N of x, there are
infinitely many natural numbers n such that xn ∈ N .

Remark 3.16. According to the previous definition, we conclude that the limit of a sequence
is an accumulation (cluster point) point of this sequence.

Example
3.31.

1. In (R, |.|), x = 1 is the unique accumulation point (cluster point) of the sequence (xn)n∈N =
(1 + e−n)n∈N, and this value is the limit of the sequence. Moreover, xn = 1 + e−n is an
adherent point for every n ∈ N, but it is not an accumulation point (cluster point).

2. In (R, |.|), the sequence (xn)n∈N = ((−1)n)n∈N has two accumulation points (cluster
points), −1 and 1, but it is a divergent sequence.

According to the previous example and the definition (3.25), we conclude that every accumu-
lation point is an adherent point, but the converse is not true.

Proposition 3.35. If (X,T ) is a Hausdorff (separated) topological space, then every
convergent sequence in X has a unique accumulation point (cluster points), which is its
limit.
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Proof . By arguments similar to those used in the proof of the previous proposition.

Remark 3.17.

1. A sequence that has at least two accumulation points diverges.

2. The converse of the previous proposition is false. For example, the sequence defined by
xn = (1− (−1)n)×n has only 0 as an accumulation point but diverges.

Definition 3.26. Let (xn) be a sequence in a topological space (X,T ). We call a subse-
quence or extracted sequence of (xn) any sequence of the form (xϕ(n)), where ϕ(n) is a
strictly increasing function from N to N.

Example
3.32. If (xn) is a sequence in a topological space (X,T ) and ϕ(n) = 2n + 1, then

(x2n+1) = {x1,x3,x5,x7, . . . ,x2n+1, . . .} is a subsequence of (xn).

Using the definitions (3.24) and (3.25), we obtain the following two results.

Proposition 3.36.

1. Every subsequence of a convergent sequence is convergent (towards the same limit).

2. The limit of a subsequence extracted from a sequence (xn) is a cluster point of this
sequence.

Proposition 3.37. Let (zn) = {z1
n, z2

n, . . . , zk
n} be a sequence in a space X =

k
Π

i=1
Xi. Then,

(zn) converges to z = (z1, z2, . . . , zk) if and only if for all i = 1, . . . ,k, the sequence (zi
n)

converges in X to zi.

Proof .

=⇒) Suppose that (zn) = {z1
n, z2

n, . . . , zk
n} converges in X to z = (z1, z2, . . . , zk). Let Ni be a

neighborhood of zi in Xi, for i = 1, . . . ,k. Then, W =X1 ×·· ·×Xi−1 ×Ni ×Xi+1 ×·· ·×Xk

is a neighborhood of z, so there exists n0 ∈ N such that

n ⩾ n0 =⇒ zn ∈ W.

Section 3.8 Dr. CHOUGUI Nadhir 70



Chou
gu

i-N
ad

hir

CHAPTER 3. TOPOLOGICAL SPACES

Consequently, we obtain:
n ⩾ n0 =⇒ zi

n ∈ Ni,

which shows that for all i = 1, . . . ,k, the sequence (zi
n) converges to zi in Xi.

⇐=) Suppose that for all i = 1, . . . ,k, the sequence (zi
n) converges to zi in Xi. Let W be a

neighborhood of z = (z1, z2, . . . , zk) in X =
k
Π

i=1
Xi. According to proposition (3.30), W

contains a neighborhood of the form N1 ×·· ·×Nk, where Ni is a neighborhood of zi in Xi

for all i = 1, . . . ,k. Thus, for all i = 1, . . . ,k, and for all Ni ∈ N (zi), there exists ni
0 such

that:
n ⩾ ni

0 =⇒ zi
n ∈ Ni.

If we set n0 = max(n1
0, . . . ,nk

0), we obtain:

n ⩾ n0 =⇒ zn ∈ N1 ×·· ·×Nk,

which leads to:
n ⩾ n0 =⇒ zn ∈ W.

Therefore, zn is a sequence converging to z in X.

Proposition 3.38. If x = (x1, . . . ,xk) is a cluster point of (zn) in X =
k
Π

i=1
Xi, then xi is

a cluster point of (zi
n) for all i = 1, . . . ,k.

Proof . Let Ni ∈ N (xi) for all i = 1, . . . ,k, then W = X1 ×·· ·×Xi−1 ×Ni ×Xi+1 ×·· ·×Xk is
a neighborhood of x in X. Consequently, we obtain:

card{n ∈ N : zn ∈ W} = +∞,

which leads to:
card

{
n ∈ N : zi

n ∈ Ni

}
= +∞,

from which it follows that xi is a cluster point of (zi
n) for all i = 1, . . . ,k.

The previous result is generally false. For example, in R2, if we take the sequence zn =
(xn,yn) defined by the following relations:

 x2n = n

x2n+1 = 1
n

,

 y2n = 1
n

y2n+1 = n

It is clear that 0 is a cluster point of (xn) and (yn), but (0,0) is not a cluster point of (zn).
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3.9 Continuous applications

Definition 3.27 (Pointwise continuity ). Let (X,TX) and (Y,TY) be two topological
spaces. We say that a function f : X −→ Y is continuous at x0 ∈ X if and only if for every
neighborhood N ∈ NY(f(x0)), there exists U ∈ NX(x0) such that f(U) ⊆ N . In other
words,

(3.14) ∀N ∈ NY(f(x0)),∃U ∈ NX(x0), f(U) ⊆ N ⇐⇒ f is continuous at x0.

Using the preimage, we obtain U ⊆ f−1(N), hence f−1(N) is a neighborhood of x0. Therefore,
we can write the previous definition in the following form.

Definition 3.28. Let (X,TX) and (Y,TY) be two topological spaces. We say that a function
f : X −→ Y is continuous at x0 ∈ X if and only if the preimage of any neighborhood of
f(x0) in Y is a neighborhood of x0 in X. In other words,

(3.15) ∀N ∈ NY(f(x0)), f−1(N) ∈ NX(x0)

Remark 3.18. In both previous definitions, we can replace NX(x0) and NY(f(x0)) with the
basic neighborhoods of x0 and f(x0).

Example
3.33.

1. The function f : (R, |.|) −→ (R,P(R)) such that for all x ∈ R, f(x) = x, is not continuous
on R, because N = {x} is a neighborhood of x in (R,P(R)), but f−1(N) = {x} is not a
neighborhood of x in (R, |.|).

2. Let X = {x1,x2,x3,x4} and TX = {∅,X,{x1},{x2},{x1,x2},{x2,x3,x4}}, and let Y =
{y1,y2,y3,y4} and TY = {∅,Y,{y1},{y1,y2},{y1,y2,y3}}. We define the function f :X−→
Y by f(x4) = y4, f(x3) = y2, and f(x1) = f(x2) = y1.
• For example, we have NY(f(x4)) = NY(y4) = {Y}, and f−1(Y) = X ∈ NX(x4), so f is
continuous at x4.
• We also have NY(y2) = {{y1,y2},{y1,y2,y3},{y1,y2,y4},Y}. If we take N = {y1,y2},
we obtain f−1(N) = {x1,x2,x3} /∈ NX(x3), so f is not continuous at x3.
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Proposition 3.39 (Transitivity of continuity). Let X,Y and T be three topological
spaces. Consider the two functions f : X −→ Y and g : Y −→ T. If f is continuous at a
point x0 ∈ X and g is continuous at f(x0), then g ◦f is continuous at x0.

Proof . Let W ∈ NT(g ◦ f(x0)). Since g is continuous at f(x0), there exists N ∈ NY(f(x0))
such that g(N) ⊆ W , and since f is continuous at x0, there exists U ∈ NX(x0) such that f(U) ⊆
N . From this, we deduce that g ◦f(U) ⊆ W , which implies that g ◦f is continuous at x0.

Remark 3.19. The converse in the previous proposition is not always true.
Consider the function f as shown in example (3.33(2)) and let g : (Y,TY) −→ (X,TX) be a func-
tion defined as follows: g(y4) = x4, g(y3) = x1, g(y2) = x3, g(y1) = x2. On one hand, we have
NX(g(f(x4))) = NX(g(y4)) = NX(x4) = {{x2,x3,x4} ,X}. But, g−1({x2,x3,x4}) = {y1,y2,y4} /∈
NY(y4), which means that g is not continuous at f(x4) = y4. On the other hand, we have
(g ◦f)(x4) = g(f(x4)) = g(y4) = x4 and NX(x4) = {{x2,x3,x4} ,X}, and (g ◦f)−1({x2,x3,x4}) =
f−1(g−1({x2,x3,x4})) = f−1({y1,y2,y4}) = X ∈ NX(x4). Since (g ◦ f)−1(X) = X, we conclude
that g ◦f is continuous at x4.

Proposition 3.40. Let (X,TX) and (Y,TY) be two topological spaces and f : X −→ Y.
The following statements are equivalent.

1. f is continuous.

2. f(Cl(A)) ⊆ Cl(f(A)) for every subset A of X.

3. f−1(F ) is closed in X for every closed set F in Y.

4. f−1(O) is open in X for every open set O in Y.

5. f−1(β) is open in X for every element β of a basis B of TY.

6. f−1(IntB) ⊆ Intf−1(B) for every subset B of Y.

7. Cl(f−1(B)) ⊆ f−1(Cl(B)) for every subset B of Y.

Proof .

• (1)=⇒ (2) Let a ∈ Cl(A) and N ∈ NY(f(a)). Then f−1(N) ∈ NX(a) because f is continuous.
Consequently, f−1(N) ∩ A ̸= ∅. Thus, if x ∈ f−1(N) ∩ A, we obtain f(x) ∈ N ∩ f(A), i.e.,
N ∩f(A) ̸= ∅. Therefore, f(a) ∈ Cl(f(A)), which shows that f(Cl(A)) ⊂ Cl(f(A)).
• (2)=⇒ (3) Let F be a closed subset of Y. Define A = f−1(F ), so it is sufficient to show
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that A = Cl(A). By definition, we have A ⊆ Cl(A), and according to (2), we have f(Cl(A)) ⊆
Cl(f(A)) ⊆ Cl(F ) = F (since F is closed), hence Cl(A) ⊆ f−1(F ) = A. Consequently, A =
Cl(A), which shows that f−1(F ) is closed in X.
• (3)=⇒ (4) Let O be an open subset of Y, then ∁YO is a closed set in Y. Therefore, by (3),
the set f−1(∁YO) is closed in X. Since f−1(∁YO) = ∁Xf−1(O), we deduce that f−1(O) is open
in X.
• (4)=⇒ (5) Obvious.
• (5)=⇒ (6) Let B be a subset of Y. Then, Int(B) = ⋃

i∈I
βi such that {βi : i ∈ I} is a family

of elements from a basis B of TY. Using the inverse image, we obtain

f−1(Int(B)) = f−1

⋃
i∈I

βi

=
⋃
i∈I

f−1(βi).

Thus, f−1(Int(B)) is an open set in X (according to (5)), and since f−1(Int(B)) ⊆ f−1(B),
we conclude that f−1(Int(B)) ⊆ Int(f−1(B)) (see Proposition (3.12)).
• (6)=⇒ (7). Let B be a subset of Y. Using Proposition (3.15(4)) and (6), we obtain:

∁Xf−1(Cl(B)) = f−1(∁YCl(B)) = f−1(Int∁YB)

⊆ Intf−1(∁YB) = Int∁Xf−1(B) = ∁XClf−1(B),

which shows that
Clf−1(B) ⊆ f−1(Cl(B)).

• (7)=⇒ (1) Let x0 ∈ X and O be an open neighborhood of f(x0). Then, ∁YO is closed in Y.
Using (7), we obtain

Clf−1(∁YO) ⊆ f−1(Cl(∁YO)) = f−1(∁YO)

(since ∁YO is closed), and thus f−1(∁YO) = ∁Xf−1(O) is closed. Consequently, f−1(O) is open
in X. Finally, since x0 ∈ f−1(O), we conclude that f−1(O) ∈ NX(x0), which shows that f is
continuous.

Proposition 3.41. Let (A,TA) be a subspace of a topological space (X,T ). Then the
canonical injection i : A −→ X defined by i(a) = a, for all a ∈ A is continuous.

Proof . Let O be an open set in X. Then i−1(O) = O ∩ A, which is open in (A,TA), so i is
continuous.
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Proposition 3.42. Let f : (X,TX) −→ (Y,TY) be a continuous mapping and A ⊂X. Then
the restriction f|A : (A,TA) −→ (Y,TY) is continuous.

Proof . Given that f|A = f ◦ i, it follows that f|A is continuous because it is the composition
of two continuous functions.

Proposition 3.43. Let (X,TX) and (Y,TY) be two topological spaces. If f : (X,TX) −→
(Y,TY) is continuous and injective, and Y is separated, then X is separated.

Proof . Let x,y ∈ X such that x ̸= y, then f(x) ̸= f(y) (since f is injective), and since Y
is separated, there exist two disjoint open sets O1 and O2 such that f(x) ∈ O1 and f(y) ∈ O2.
Therefore, f−1(O1) and f−1(O2) are two disjoint open sets such that x ∈ f−1(O1) and y ∈
f−1(O2), which shows that X is separated.

Definition 3.29 (Sequential Continuity). Let (X,TX) and (Y,TY) be two topological
spaces. We say that f is sequentially continuous at x0 if for every sequence (xn) that
converges to x0, the sequence f(xn) converges to f(x0).

Remark 3.20. We say that f is continuous (resp. sequentially continuous) on X if it is
continuous (resp. sequentially continuous) at every point of X.

Proposition 3.44. Every continuous function is sequentially continuous.

Proof . Let f be a function continuous at x0 and let (xn) be a sequence converging to x0.
Then, if N is a neighborhood of f(x0), f−1(N) is a neighborhood of x0, so there exists n0 ∈ N
such that:

n ⩾ n0 ⇒ xn ∈ f−1(N),

or, equivalently,
n ⩾ n0 ⇒ f(xn) ∈ N,

which demonstrates that lim
n→∞f(xn) = f(x0).

Remark 3.21. The converse in the previous proposition is not true in general.
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3.10 Open and closed maps

Let f : X → Y be a continuous function.
• If O is an open set in X, then f(O) is not necessarily open in Y.
• If F is a closed set in X, then f(F ) is not necessarily closed in Y.
In other words, the continuous image of an open set (resp. closed set) is not necessarily an
open set (resp. closed set).

Example
3.34.

1. The function f : (R, |.|) → (R, |.|) defined by f(x) = sin(x) is continuous on R, but f(R) =
[−1,1] is not an open set in R.

2. The function f : (R, |.|) → (R, |.|) defined by f(x) = ex is continuous on R, but f(R) =
(0,+∞) is not a closed set in R.

Definition 3.30. Let (X,TX) and (Y,TY) be two topological spaces, and let f : X → Y.
We say that f is an open map (resp. closed map) if the image of every open set (resp.
closed set) in X is an open set (resp. closed set) in Y.

Example
3.35.

1. Let X be a topological space and A ⊆ X. The canonical map i : (A,TA) → X defined by
i(x) = x is open (resp. closed) if A is an open (resp. closed) subset of X.

2. Let f : (R, |.|) → (R, |.|) be the function defined by f(x) = c ∈ R. If F is closed in R, then
f(F ) = {c} is also closed in R. However, if O is open in R, then f(O) = {c} is not open
in R. Therefore, f(x) = c is a closed map but is not an open map.

Proposition 3.45. Let (X,TX) and (Y,TY) be two topological spaces, and let f : X → Y.
Then, for any A ⊆ X, we have:

1. f is open ⇐⇒ f(IntA) ⊆ Int(f(A)).

2. f is closed ⇐⇒ Cl(f(A)) ⊆ f(ClA).
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Proof .

1. =⇒ ) Suppose that f is open; then f(Int(A)) is open in Y. Consequently, f(IntA) ⊂
Int(f(A)) (since Int(A) ⊂ A).
⇐= ) Suppose that f(IntA) ⊂ Int(f(A)) and let A be an open set in X. Then f(A) =
f(IntA) ⊂ Int(f(A)), so f(A) = Int(f(A)), which shows that f is open.

2. Exercise: using arguments similar to those used in (1).

Proposition 3.46. Let (X,TX) and (Y,TY) be two topological spaces, and let f : X → Y.
Then, for any A ⊆ X and B ⊆ Y, we have:

1. f is continuous and open ⇐⇒ f−1(IntB) = Int(f−1(B)).

2. f is continuous and closed ⇐⇒ Cl(f(A)) = f(ClA).

Proof .

1. =⇒ ) Suppose f is open and continuous. Then we obtain

(i) f−1(IntB) ⊂ Int(f−1(B)),

according to Proposition (3.40(6)). On the other hand, since Int(f−1(B)) is open in X, we
have that f(Int(f−1(B))) is open in Y (since f is open). Consequently, f(Int(f−1(B))) =
Intf(Int(f−1(B))) ⊆ Int(f(f−1(B))) ⊆ IntB, so

(ii) Int(f−1(B)) ⊆ f−1(IntB).

Finally, the two inclusions (i) and (ii) show that f−1(IntB) = Int(f−1(B)).

⇐= ) Suppose f−1(IntB) = Int(f−1(B)). Then f is continuous (see Proposition 3.40(6)).
Moreover, if A is an open set in X, we have

A = Int(A) ⊂ Int(f−1(f(A))) = f−1(Int(f(A)),

and thus f(A) ⊂ Int(f(A)). Hence, f(A) is open, so f is open.

2. Clear (using Proposition (3.40(2)) and Proposition (3.45(2))).

3.11 Homeomorphism
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Definition 3.31. Let (X,TX) and (Y,TY) be two topological spaces and f : X −→ Y. We
say that f is an homeomorphism from X to Y if:

1. f is a bijection (one-to-one and onto),

2. f is continuous,

3. the inverse function f−1 is continuous ( f is an open mapping).

If there exists an homeomorphism from X to Y, we say that X and Y are homeomorphic
or topologically equivalent, and we denote this by X ∼= Y. Any property preserved by an
homeomorphism is called a topological property.

Example
3.36.

1. Let X=R and Y= (−1,1) endowed with the usual topology. The function f :R−→ (−1,1)
defined by f(x) = x

1+ |x|
is a homeomorphism. Consequently, X and Y are homeomorphic.

2. Let X = (a,b) and Y = R with the usual topology. The function f : (a,b) −→ R defined by
f(x) = 1

x−a
+ 1

x− b
is a homeomorphism. Therefore, X and Y are homeomorphic.

3. Let X = (0,1) and Y = (a,b) endowed with the usual topology. The function f : (0,1) −→
(a,b) defined by f(x) = (b − a)x + a is a homeomorphism. Consequently, X and Y are
homeomorphic.

Remark 3.22.

1. In general, the bijectivity and continuity of f do not imply that f is a homeomorphism.
For example, the map f : (R,P(R)) −→ (R, | · |) defined by f(x) = x is a bijection and
continuous, while f−1 is not continuous.

2. Homeomorphisms are, by definition, open and closed maps.
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COMPACT SPACES

4.1 Compactness in Topological Spaces

4.1.1 Compact Spaces and Sets

Let (X,T ) be a topological space and {Oi : i ∈ I} a family of open sets in X.

Definition 4.1. We say that the family {Oi : i ∈ I} is an open cover of X if X = ⋃
i∈I

Oi.

Definition 4.2. We say that the family {Oi : i ∈ I} is an open cover of a subset A of X
if A ⊆ ⋃

i∈I
Oi.

Definition 4.3 (Borel-Lebesgue). The topological space (X,T ) is said to be compact if
it is Hausdorff (separated) and for every open cover {Oi : i ∈ I} of X, one can extract a
finite subcover. In other words:

(4.1)
X =

⋃
i∈I

Oi

=⇒

∃J (finite) ⊂ I such that X =
⋃
i∈J

Oi

 .

The following definition characterize compactness in terms of closed subsets of the space.
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Definition 4.4. The topological space (X,T ) is said to be compact if it is Hausdorff
(separated), and for every family of closed sets {Fi : i ∈ I} in X with an empty intersection,
one can extract a finite subfamily whose intersection is also empty. In other words:

(4.2)
⋂

i∈I

Fi = ∅

=⇒

∃J (finite) ⊂ I such that
⋂
i∈J

Fi = ∅

 .

Example
4.1.

1. The space (R, |.|) is Hausdorff, but it is not compact because the family {(−n,+n) : n ∈ N}
is an open cover of R that does not have any finite subcover of R.

2. The space (R,P(R)) is Hausdorff, but it is not compact because the family {{x} : x ∈ R}
is an open cover of R that does not have any finite subcover of R.

3. Any finite Hausdorff space is compact.

Definition 4.5. A subset A of a Hausdorff topological space (X,TX) is said to be compact
if the subspace topology (A,TA) is compact. In other words:

(4.3)
A ⊂

⋃
i∈I

Oi

=⇒

∃J (finite) ⊂ I such that A ⊂
⋃
i∈J

Oi

 .

Remark 4.1. The Borel-Lebesgue property in (A,TA) is expressed using the open sets of
(X,TX) in the form (4.3).

Proposition 4.1. A subset A of a Hausdorff topological space (X,TX) is compact if and
only if for every family of closed sets {Fi : i ∈ I} in X, we have:

(4.4)
A∩

⋂
i∈I

Fi

= ∅

=⇒

∃J (finite) ⊂ I such that A∩

⋂
i∈J

Fi

= ∅

 .
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Proof .

=⇒ ) On the one hand, if A is compact then we have:
A∩

⋂
i∈I

Fi

= ∅

=⇒

A ⊂ ∁X

⋂
i∈I

Fi

=
⋃
i∈I

∁XFi


Using definition (4.5), since

{
∁XFi : i ∈ I

}
is a family of open sets in X, we deduce that:

∃J (finite) ⊂ I such that A ⊂ ∁X

⋂
i∈J

Fi

=
⋃
i∈J

∁XFi.

This shows that:

∃J (finite) ⊂ I such that A∩

⋂
i∈J

Fi

= ∅.

⇐= ) On the other hand, we have:
A ⊂ ∁X

⋂
i∈J

Fi

=
⋃
i∈J

∁XFi

⇐⇒

A∩

⋂
i∈I

Fi

= ∅

 .

Now, using (4.4) we obtain:
A∩

⋂
i∈I

Fi

= ∅

=⇒

∃J (finite) ⊂ I such that A∩

⋂
i∈J

Fi

= ∅



=⇒

∃J (finite) ⊂ I such that A ⊂ ∁X

⋂
i∈J

Fi

=
⋃
i∈J

∁XFi

 .

Since
{
∁XFi : i ∈ I

}
is a family of open sets in (X,TX), we conclude that A is compact.

Example
4.2.

1. A = (0,1] is not compact because In = ( 1
n ,1] is a sequence of open sets in A covering A,

and no finite subcover can be extracted.

2. Any finite subset of a Hausdorff space is compact.

4.1.2 Properties of Compact Topological Spaces

Proposition 4.2. In a Hausdorff topological space, a compact subset is closed.
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Proof . Let K be a compact subset in a Hausdorff topological space (X,TX). It suffices to show
that ∁XK is open. Let x ∈ ∁XK. Since (X,TX) is Hausdorff, for every y ∈ K, there exist two
open sets Nx,y ∈ N (x) and Wx,y ∈ N (y) such that Nx,y ∩Wx,y = ∅. The family {Wx,y : y ∈ K}
is an open cover of K and is compact, so we can extract a finite subcover {Wx,yi : i = 1, . . . ,n}
such that K ⊂

n⋃
i=1

Wx,yi. If we take N =
n⋂

i=1
Nx,yi, we obtain N ∈ N (x) and N ⊂ ∁XK, which

shows that ∁XK is open (because it is a neighborhood of each of its points).

Proposition 4.3. If (X,TX) is a compact topological space and F ⊂ X, then F is compact
if and only if F is a closed subset of X.

Proof .

=⇒ ) This is evident from the previous proposition.
⇐= ) Suppose that F is a closed subset of X. Then, if {Fi : i ∈ I} is a family of closed subsets

of X such that F ∩
( ⋂

i∈I
Fi

)
= ∅, we obtain ⋂

i∈I
(F ∩Fi) = ∅. Therefore, by definition (4.4), there

exists a finite subset J ⊂ I such that ∅ = ⋂
i∈J

(F ∩ Fi) = F ∩
( ⋂

i∈J
Fi

)
. Thus, F is compact by

proposition (4.1).

Proposition 4.4. In a Hausdorff topological space, a finite union of compact sets is
compact.

Proof . Let {Kk : k = 1, . . . ,n} be a finite family of compact sets in a topological space X and
let K =

n⋃
k=1

Kk. Then, any open cover {Oi : i ∈ I} of K is also an open cover of each Kk, for
each k = 1, . . . ,n. Therefore, there exists a finite subset Jk ⊂ I such that Kk ⊂ ⋃

i∈Jk

Oi, for each

k = 1, . . . ,n. Taking J = J1 ∪ ·· · ∪ Jn, we see that ⋃
i∈J

Oi is a finite subcover of K, which shows
that K is compact.

Proposition 4.5. In a Hausdorff topological space, any intersection of compact sets is
compact.
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Proof . Let {Ki : i ∈ I} be a family of compact sets in a Hausdorff topological space X, and
let K = ⋂

i∈I
Ki. Then K is closed (since it is an intersection of closed sets) within the compact

set Ki0 for some i0 ∈ I. Therefore, by proposition (4.3), K is compact.

Lemma 4.1 (Bolzano-Weierstrass). Let (X,TX) be a compact topological space. Then,
every infinite subset of X has at least one accumulation point.

Proof . If A is an infinite subset of X with no accumulation points, then for each x ∈X, there
exists an open neighborhood Nx ∈ N (x) such that

Nx ∩A =

{x} if x ∈ A,

∅ if x /∈ A.

Thus, the family {Nx : x ∈ X} forms an open cover of X, which is compact. Therefore, we can
extract a finite subcover {Nxi : i = 1, . . . ,n} such that

X =
n⋃

i=1
Nxi .

However, we also have

A = A∩X = A∩
(

n⋃
i=1

Nxi

)
=

n⋃
i=1

(A∩Nxi) ,

which implies that A contains at most n elements, contradicting the assumption that A is
infinite.

Lemma 4.2 (Weierstrass). Let (X,TX) and (Y,TY ) be two topological spaces such that
(Y,TY ) is Hausdorff, and let f : X → Y be a continuous map. If A is a compact subset of
X, then f(A) is a compact subset of Y.

Proof . Let {Oi : i ∈ I} be an open cover of f(A), i.e., f(A) ⊂⋃
i∈I Oi. Since f is continuous,

the family {f−1(Oi) : i ∈ I} is an open cover of A. By the compactness of A, there exists a
finite subset J ⊂ I such that

A ⊂
⋃
i∈J

f−1(Oi) = f−1

⋃
i∈J

Oi

 .
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Since f(A) ⊂ f

(
f−1

( ⋃
i∈J

Oi

))
⊂ ⋃

i∈J
Oi, we conclude that f(A) is a compact subset of Y.

Remark 4.2. According to the previous proposition, we conclude that compactness is a topo-
logical property.

The following corollary is a version of the extreme value theorem.

Corollaire 4.1 (Heine). If (X,T ) is a compact topological space and f : X → (R, |.|) is
a continuous function, then f is bounded on X, and there exist points a,b ∈ X such that

f(a) = max
x∈X

f(x) and f(b) = min
x∈X

f(x).

Proof . Since f is continuous and X is compact, f(X) is a compact subset of (R, |.|) (see
Lemma (4.2)). It follows that f(X) is closed and bounded (see Proposition (4.2)). Let M =
supf(X). Since f(X) is closed, we conclude that M ∈ f(X), and therefore, there exists a ∈ X
such that f(a) = M = max

x∈X
f(x). Similarly, we can show that the minimum is attained.

Remark 4.3. The previous corollary shows that continuous functions on a compact set and
with values in R attain their bounds.

Proposition 4.6. Let (X,TX) be a compact space, (Y,TY) be a Hausdorff space, and
f : (X,TX) −→ (Y,TY) be a continuous function, then f is closed.

Proof . Let F be a closed subset of X, then F is compact (see proposition (4.3)), and thus
f(F ) is compact (see lemma (4.2)), from which it follows that f(F ) is closed (see proposition
(4.2)).

Proposition 4.7. Let (X,TX) be a compact space, (Y,TY) be a Hausdorff space, and
f : (X,TX) −→ (Y,TY) be a continuous bijection, then f is a homeomorphism.

Proof . It is enough to show that f−1 is continuous. Let g = f−1. If F is a closed set in X,
then it is compact, and thus f(F ) is compact. However, a compact subset of a separated space
is closed, so g−1(F ) = f(F ) is closed. Therefore, g = f−1 is continuous.
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Theorem 4.1 (Tychonoff’s Theorem). Let {(Xi,Ti) : i ∈ I} be a family of topological
spaces, then Π

i∈I
Xi is compact if and only if Xi is compact for all i ∈ I.

Proof . We will assume the result in the general case. Here, we simply prove it for the finite
product of compact spaces. Therefore, it is sufficient to prove it for the product of two compact
spaces.
=⇒) If X×Y is compact, then X and Y are compact because they are the images of the con-
tinuous projections PX(X×Y) = X and PY(X×Y) = Y.
⇐=) Suppose that X and Y are compact. Let {Oi : i ∈ I} be an open cover of X×Y. Then, for
every (x,y) ∈ X×Y, there exist U(x,y) ∈ TX and V(x,y) ∈ TY such that (x,y) ∈ U(x,y) × V(x,y) ⊆
O(x,y) with O(x,y) ∈ {Oi : i ∈ I}.
Notice that for each x ∈ X, the family

{
V(x,y) : y ∈ Y

}
is an open cover of the compact space

Y, and so we can extract a finite subcover
{
V(x,yi) : i = 1, . . . ,n

}
for it. On the other hand, if

we take Wx =
n⋂

i=1
U(x,yi), then the family {Wx : x ∈ X} is an open cover of the compact space X,

and so we can extract a finite subcover
{
Wxj : j = 1, . . . ,m

}
.

We deduce that the family
{
Wxj ×V(xj ,yi) : i = 1, . . . ,n,j = 1, . . . ,m

}
is a finite cover of X×Y.

Moreover, we have:

Wxj ×V(xj ,yi) ⊆ U(xj ,yi) ×V(xj ,yi) ⊆ O(xj ,yi), ∀1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m.

Thus, the family
{
O(xj ,yi) : i = 1, . . . ,n and j = 1, . . . ,m

}
is a finite open cover of X×Y, which

shows that X×Y is compact.

Definition 4.6 (Relative compactness). A set A is said to be relatively compact in a
topological space (X,TX) if Cl(A) is compact.

Example
4.3.

1. Every non-empty subset of a compact space is relatively compact.

2. Every compact set is relatively compact.

Section 4.1 Dr. CHOUGUI Nadhir 85



Chou
gu

i-N
ad

hir

CHAPTER 4. COMPACT SPACES

Definition 4.7 (Local compactness). A space (X,TX) is said to be locally compact if
it is Hausdorff and every point of X has at least one compact neighborhood.

Example
4.4.

1. (R, | · |) is locally compact because it is Hausdorff and [x− r,x+ r] is a compact neighbor-
hood of every x ∈ R.

2. Every discrete space is locally compact because it is Hausdorff and {x} is a compact
neighborhood of every point x in this space.

4.2 Compactness in metric spaces

The definitions of compactness in a metric space (X,d) are the same as those we saw in a
topological space (see the previous section (4.1)).

Remark 4.4. In an abstract topological space, there is no notion of distance, and therefore
we do not talk about bounded sets.

4.2.1 Precompact spaces and sequentially compact spaces

Definition 4.8. Let A be a subset of a metric space (X,d). We say that A is bounded if
there exists a ball B(x,r) with center x and radius r > 0 such that A ⊆ B(x,r).

Definition 4.9. Let (X,d) be a metric space and A a subset of X. We say that A is
sequentially compact if every sequence in A has a convergent sub-sequence.

Definition 4.10. Let (X,d) be a metric space and A a subset of X. We say that A is
precompact (or totally bounded) if for every r > 0, there exist points x1, . . . ,xn in A such
that A ⊆

n⋃
i=1

B(xi, r).
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Remark 4.5. According to the two definitions (4.8) and (4.10), every precompact set is
bounded.

Example
4.5.

1. Any finite subset A of a metric space (X,d) is sequentially compact because if (xn)n∈N is
a sequence in A, then at least one of the elements x ∈ A must repeat infinitely many times
in this sequence, and thus the sequence (x0, . . . ,xi,x,x, . . .) is convergent.

2. Every finite subset A of a metric space (X,d) is precompact, because for any r > 0, there
exist points x1, . . . ,xn in A such that:A ⊆ ⋃

i=1
B(xi, r).

3. If (xn)n∈N is a sequence converging to x0 in a metric space (X,d), then the set A = {xn :
n ⩾ 0}∪{x0} is precompact. This is because for any ε > 0, there exists n0 ∈ N such that

∀n ∈ N, n ⩾ n0 =⇒ d(xn,x0) < ε.

Therefore,

A ⊆
n0−1⋃
k=1

B(xk, ε)∪B(x0, ε).

Lemma 4.3. Let (X,d) be sequentially compact metric space. If {Oi : i ∈ I} is an open
cover of X, then there exists r > 0 such that for every x ∈ X, the ball B(x,r) is contained
in one of the open sets Oi.

Proof . Suppose that for every n ∈ N∗, there exists a point xn ∈ X such that the ball B(xn, 1
n)

is not contained in any of the open sets Oi, i.e., B(xn, 1
n)∩∁XOi ̸= ∅ for all i ∈ I. Since (X,d) is

sequentially compact, the sequence (xn) has a convergent subsequence (xnk
). Let xnk

→ x ∈ X.
Then, there exists at least one i0 ∈ I such that x ∈ Oi0, and therefore there exists r > 0 such
that B(x,r) ⊂ Oi0.

On the other hand, since xnk
→ x, the ball B(x, r

2) contains infinitely many points of (xnk
).

Thus, there exists np > 2
r such that xnp ∈ B(x, r

2), which implies that B(xnp , 1
np

) ⊂ B(x,r) ⊂ Oi0,
leading to a contradiction.

4.2.2 Properties of Compact Metric Spaces

Proposition 4.8. Let (X,d) be a metric space and A a closed subset of X. Then, the
following statements are equivalent.

Section 4.2 Dr. CHOUGUI Nadhir 87



Chou
gu

i-N
ad

hir

CHAPTER 4. COMPACT SPACES

1. A is compact.

2. If F = {Fi : i ∈ I} is a family of closed subsets of A such that for every finite family
sets F1, . . . ,Fn ∈ F we have

n⋂
i=1

Fi ̸= ∅, then ⋂
i∈I

Fi ̸= ∅.

3. A is sequentially compact.

4. Every infinite subset of A has an accumulation point.

5. A is complete and precompact.

Proof .

Let us assume that A is compact and let F = {Fi : i ∈ I} be a family of closed subsets of A

such that for every finite collection F1, . . . ,Fn ∈ F , we have
n⋂

i=1
Fi ̸= ∅. Now, if ⋂

i∈I
Fi = ∅, it

follows that the family {∁XFi : i ∈ I} is an open cover of X and, therefore, of A. Since A is
compact, there exist F1, . . . ,Fn ∈ F such that A ⊆

n⋃
i=1

∁XFi = ∁X
n⋂

i=1
Fi. Given that Fi ⊆ A for

every i = 1, . . . ,n, we conclude that
n⋂

i=1
Fi = ∅, which contradicts the assumption that

n⋂
i=1

Fi ̸= ∅.

(2) =⇒ (1) Let {Oi : i ∈ I} be an open cover of A, i.e., A ⊆ ⋃
i∈I

Oi, and thus ⋂
i∈I

∁AOi = ∅, which

implies
n⋂

i=1
∁AOi = ∅ (according to (2)), showing that A ⊆

n⋃
i=1

Oi, and hence A is a compact set.
(3) =⇒ (4) If K is an infinite subset of A, then K contains a sequence of distinct points (xn);
by (3), there exists a subsequence (xnk

) converging to x. Therefore, x is an accumulation point
of K.
(4) =⇒ (3) Let (xn) be a sequence of distinct points in A. Using equation (4), we conclude that
(xn) has an accumulation point x ∈ A because A is closed. The ball B(x,1) contains infinitely
many elements of the sequence (xn), so we choose xn1 ∈ B(x,1). The ball B(x, 1

2) contains
infinitely many elements of the sequence (xn), so we choose xn2 ∈ B(x, 1

2) with n2 > n1. We
repeat this process, choosing xn3 ∈ B(x, 1

3) with n3 > n2. Therefore, we can select a subsequence
(xnk

), such that nk+1 > nk and xnk
∈ B(x, 1

k ) for all k = 1,2, . . . . It is clear that this subsequence
converges to x.
(1) =⇒ (4) (See Lemma (4.1))
(1) =⇒ (5) Assume that A is compact.
• Let (xn) be a Cauchy sequence in A. Since (1) =⇒ (4) ⇐⇒ (3), there exists a subsequence
(xnk

) such that xnk
→ x, so xn → x, and hence A is complete.

• For every r > 0, the family {B(x,r) : x ∈ A} is an open cover of A, so there exists a finite
open subcover {B(xi, r) : i = 1, . . . ,n} of A, that is, there exist points x1, . . . ,xn in A such that
A ⊆

n⋃
i=1

B(xi, r), which shows that A is precompact.
(5) =⇒ (3) Let (xn) be a sequence in A and (rn) a decreasing sequence of positive num-
bers such that (rn) → 0. Using (5), we conclude that there exists a finite cover of A by
the balls {B(xi, r1) : i = 1, . . . ,n}. Therefore, there exists a ball B(y1, r1) that contains in-
finitely many elements of (xn). Let N1 = {n ∈ N : d(y1,xn) < r1}. Now, consider the sequence
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{xn : n ∈ N1} and the balls of radius r2. We repeat the process; there exists y2 ∈ A such that
N2 = {n ∈ N1 : d(y2,xn) < r2} is an infinite set. By induction, we can show that for each i ≥ 1,
we choose a point yk ∈ A and an infinite set Nk such that Nk+1 ⊂ Nk and {xn : n ∈ Nk} ⊂
B(yk, rk). If we define Fk = Cl{xn : n ∈ Nk}, then Fk+1 ⊂ Fk and diam(Fk) ⩽ 2rk. Since A

is complete, Cantor’s theorem implies that ⋂
k
Fk = {x}. If we choose nk ∈ Nk, then (xnk

) is a

subsequence of (xn) converging to x, and hence A is sequentially compact.
(5) =⇒ (1) Let G = {Oi : i ∈ I} be an open cover of A. Since A is precompact, for every r > 0,
there exist points x1, . . . ,xn ∈ A such that A ⊆

n⋃
i=1

B(xk, r). But for each 1 ≤ k ≤ n, there exists
Ok ∈ G such that xk ∈ Ok. Thus, it is sufficient to choose r > 0 such that B(xk, r) ⊂ Ok for all
1 ≤ k ≤ n (see Lemma 4.3). We then deduce that A ⊆

n⋃
i=1

B(xk, r) ⊂
n⋃

i=1
Ok, which shows that

the family {Ok : k = 1, . . . ,n} is a finite open cover of A, and therefore A is compact.
(3) =⇒ (5) Let (xn) be a Cauchy sequence in A, then (3) implies that there exists a subsequence
(xnk

) such that xnk
→ x. Since d(xn,x) ⩽ d(xn,xnk

)+d(xnk
,x), it follows that xn → x.

Proposition 4.9. .

1. For all a,b ∈ R, the closed interval [a,b] is compact in (R, | · |).

2. A subset A of (R, | · |) is compact if and only if it is closed and bounded.

Proof .

1. The interval [a,b] is closed in R, which is complete, and therefore complete. Thus, ac-
cording to the previous proposition, it is enough to show that it is precompact. Indeed,
for every r > 0, we can find points a = x1,x2, . . . ,xn = b such that xi − xi−1 < r, and
[a,b] ⊆

n⋃
i=1

(xi − r,xi + r).

2.

=⇒ ) Let A be a compact subset of (R, | · |), then it is complete and precompact, according
to the previous theorem, and therefore it is closed and bounded (see Proposition 2.10 and
Remark 4.5).
⇐= ) Let A be a closed and bounded subset of (R, | · |), then there exists a closed and
bounded interval [a,b] such that A ⊆ [a,b], and since [a,b] is compact, A is compact (see
Proposition 4.3).

Example
4.6.

1. Every bounded and closed subset of (R2,d2) is compact.

2. Any subset of (R2,d2) that is either unbounded or not closed is not compact.
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3. The closed disk
{
x ∈ R2 : d2(x,y) ⩽ r

}
is compact.

Lemma 4.4 (Heine). If f : (X,dX) → (Y,dY) is continuous and X is compact, then f is
uniformly continuous.

Proof . Suppose that f is continuous but not uniformly continuous. Then, there exist ε > 0
and two sequences (xn) and (yn) in X such that:

dX(xn,yn) <
1
n

and dY(f(xn),f(yn)) ⩾ ε.

Since X is compact, there exists x ∈ X and a subsequence xnk
such that d(xnk

,x) −→ 0. We
deduce that

d(ynk
,x) ⩽ d(ynk

,xnk
)+d(xnk

,x) ⩽ 1
n

+d(xnk
,x),

hence ynk
−→ x. Since f is continuous, there exists δ > 0 such that:

dX(xnk
,x) < δ =⇒ dY(f(xnk

),f(x)) <
ε

2 ,

dX(ynk
,x) < δ =⇒ dY(f(ynk

),f(x)) <
ε

2 .

Consequently, we obtain:

dY(f(xnk
),f(ynk

)) ⩽ dY(f(xnk
),f(x))+dY(f(x),f(ynk

)) < ε,

which contradicts the hypotheses.

Using the previous lemma, we obtain the following result.

Corollaire 4.2. If f : [a,b] → R is a continuous function, then f is uniformly continuous
on [a,b].

Proposition 4.10. Let (X,d) be a metric space. Then, we have:

1. Every relatively compact subset is precompact.

2. If (X,d) is complete, then every precompact subset is relatively compact.
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Proof .

1. Let A be a relatively compact subset of X; then Cl(A) is precompact, and hence A is
precompact.

2. Suppose (X,d) is complete. If A is precompact, then Cl(A) is also precompact. Fur-
thermore, Cl(A) is closed in X, which is complete, and thus Cl(A) is complete as well,
showing that Cl(A) is compact (see Proposition (4.8)).
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CONNECTED SPACES

5.1 Connectivity in Topological Spaces

5.1.1 Connected Spaces and Subsets

Let the two spaces (X, |.|) and (Y, |.|) be such that X =]2,3[∪]4,5[ and Y = [2,3]∪]3,4[. The two
subsets O1 =]2,3[ and O2 =]4,5[ are both open and closed in X because O1 =X∩]2,3[=X∩ [2,3]
and O2 = X∩]4,5[= X∩ [4,5]. Moreover, we have X = O1 ∪ O2, so the family {O1,O2} is a
partition of X into two disjoint open (and closed) sets. In this case, we say that X is not
connected, whereas Y is connected because it can be written in the form Y = [2,4[. The
concept of connectivity, which we will define below, intuitively means that a space is "in one
piece" or that it cannot be split into two "separated" parts.

Definition 5.1. Let (X,T ) a topological space. X is said to be disconnected if it is the
union of two disjoint non-empty open sets. In other words, a space is connected if it does
not have a partition consisting of two non-empty open sets. We write then,

X is connected ⇐⇒



There do not exist O1,O2 ∈ T such that:
• O1 ∪O2 = X,

• O1 ∩O2 = ∅,

• O1 ̸= ∅ and O2 ̸= ∅.

An equivalent definition of the connectivity of X is as follows.

Definition 5.2. X is connected if for any partition of X into two open sets O1 and O2,
we have O1 = ∅ or O2 = ∅.
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Proposition 5.1. Let (X,T ) be a topological space. The following assertions are equiva-
lent.

1. X is connected.

2. There does not exist a partition of X into two non-empty open sets.

3. There does not exist a partition of X into two non-empty closed sets.

4. ∅ and X are the only sets that are both open and closed (clopen sets) in X.

5. Any subset A ⊂ X such that A ̸= ∅ and A ̸= X has a non-empty boundary.

6. There is no continuous and surjective map from X to a discrete space Y containing
two elements.

7. Every continuous map f : X −→ Y = {a,b} is constant.

Proof .

1. =⇒ 2. By definition.

2. =⇒ 3. Suppose there exists a partition of X into two non-empty closed sets F1 and F2,
i.e., F1 ∪ F2 = X and F1 ∩ F2 = ∅. Then F1 and F2 are two non-empty open sets that form a
partition of X because ∁XF1 = F2 and ∁XF2 = F1.

3. =⇒ 4. Suppose there exists a set A that is both open and closed, and different from X
and ∅. We deduce that A and ∁XA form a partition of X into two non-empty closed sets.

4. =⇒ 5. Suppose A is a subset of X such that A ̸= ∅, A ̸= X, and Cl(A) = ∅. We de-
duce that A is both open and closed.

5. =⇒ 6. Suppose there exists a continuous and surjective map f : X −→ Y = {a,b}. Then,
the set {a} is both open and closed. Thus, f−1({a}) is a set that is both open and closed, such
that f−1({a}) ̸= ∅ and f−1({a}) ̸= X. Moreover, Cl(f−1({a})) = ∅.

6. =⇒ 7. Suppose there exists a continuous map f : X −→ Y = {a,b} that is not constant.
Then f is surjective.

7. =⇒ 1. Suppose X is not connected. Then there exist two non-empty open sets O1,O2 ⊂ X
such that O1 ∪O2 = X and O1 ∩O2 = ∅. Then, the map f : X −→ Y = {a,b} defined by f(x) = a

if x ∈ O1 and f(x) = b if x ∈ O2 is continuous but not constant.
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Example
5.1.

1. R is connected.

2. Any discrete space (X, δ) such that card(X) ⩾ 2 is not connected. Indeed, if x ∈ X, then
we have {x}∪∁X{x} = X and {x}∩∁X{x} = ∅, with {x} and ∁X{x} being two open (two
closed) sets.

3. It is evident that any space equipped with the trivial topology is connected.

4. Let X= {a,b,c,d} and T ={∅,X,{a},{b},{a,b},{a,b,c}}. It is clear that (X,T ) is connect.

Definition 5.3. Let (X,T ) be a topological space and A a non-empty subset of X. We
say that A is connected if the subspace (A,TA) is connected. Classically, we consider the
empty set as connected.

Example
5.2.

1. Every interval in R is connected.

2. Every open (closed) ball in Rn is connected.

3. The space (R∗, | · |) is not connected (why ?).

5.1.2 Properties of Connected Spaces

Proposition 5.2. If a subset A of a topological space (X,T ) is connected, then the ex-
istence of two open sets O1,O2 ∈ T such that A ⊂ O1 ∪ O2 and O1 ∩ O2 = ∅ implies that
A ⊂ O1 or A ⊂ O2.

Proof . Suppose A is connected and let O1,O2 ∈ T such that A ⊂ O1 ∪ O2 and O1 ∩ O2 = ∅.
Then, A = (A ∩ O1) ∪ (A ∩ O2) and (A ∩ O1) ∩ (A ∩ O2) = ∅. Since A is connected, we obtain
(A∩O1 = ∅) or (A∩O2 = ∅), from which it follows that A ⊂ O2 or A ⊂ O1.

Proposition 5.3. Let (X,T ) be a topological space and A,B two subsets of X such that
A is connected and A ⊂ B ⊂ Cl(A). Then, we have:

1. If A is connected, then B is connected.
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2. If A is connected, then Cl(A) is connected.

3. If A is a connected and dense subset of X, then X is connected.

Proof .

1. Let f : B −→ {0,1} be a continuous function. Since A is connected and f is continuous
on A, we obtain that f is constant on A. Since f is continuous on B, the set G = {x ∈ B :
f(x) ∈ f(A)} is a closed set of B containing A, so Cl(A)B ⊂ G. Thus, f is constant on
the closure of A in B, which is Cl(A)B = B ∩Cl(A) = B. We conclude that f is constant
on B. Therefore, B is connected.

2. It is sufficient to take B = Cl(A) in (1)).

3. We have Cl(A) = X because A is dense in X, and Cl(A) is connected because A is con-
nected (see question (2)). We conclude that X is connected.

Proposition 5.4. Let (X,TX) and (Y,TY) be two topological spaces, and let f : X −→ Y
be a continuous function. If X is connected, then f(X) is a connected subset of Y.

Proof . Let G be a subset of f(X) that is both open and closed in the induced topology. Since f

is continuous as a function with values in f(X), we deduce that f−1(G) is both open and closed
in X. Since X is connected, we deduce that f−1(G) = ∅ or f−1(G) = X. Since f(f−1(G)) = G,
we obtain that G = ∅ or G = f(X), which shows that f(X) is connected.

Remark 5.1. According to the previous proposition, connectedness is a topological property.

Proposition 5.5. Let (X,T ) be a topological space.

1. If {Ai : i ∈ I} is an arbitrary family of connected subsets of X such that ⋂
i∈I

Ai ̸= ∅,
then ⋃

i∈I
Ai is connected.

2. If {Ai : i ∈ I} is an arbitrary family of connected subsets of X such that Ai ∩Aj ̸= ∅
for all i, j ∈ I, then ⋃

i∈I
Ai is connected.

3. If {Ai : i ∈ I} is an arbitrary totally ordered family of connected subsets of X, then⋃
i∈I

Ai is connected.
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We will provide the proof for the first case only.

Proof . Let a ∈ ⋂
i∈I

Ai ̸= ∅. If f : ⋃
i∈I

Ai −→ {0,1} is a continuous function, then f|Ai
is con-

tinuous, and thus constant by the connectedness of Ai. Since a ∈ Ai for all i ∈ I, we obtain
f(x) = f(a) for all x ∈ Ai. Therefore, f(x) = f(a) for all x ∈ ⋃

i∈I
Ai, i.e., f is constant on ⋃

i∈I
Ai,

which shows that ⋃
i∈I

Ai is connected.

Proposition 5.6. A subset A of R is connected if and only if it is an interval.

Proof .

=⇒) Suppose that the set A ⊂ R is not an interval in R. Then, there exist points x,y ∈ A and
z /∈ A such that x < z < y. Define O1 = ]−∞, z[ ∩ A and O2 = ]z,+∞[ ∩ A, which are
two non-empty open subsets of A. Furthermore, we have O1 ∩ O2 = ∅ and O1 ∪ O2 = A.
Therefore, A is not connected.

⇐=) Let A be a non-empty interval in R. Suppose A = O1 ∪ O2, where O1 and O2 are two
non-empty open subsets of A with O1 ∩ O2 = ∅. Let x ∈ O1 and y ∈ O2 such that x < y,
and let z = sup(O1 ∩ [x,y]).

On the one hand, if z ∈ O1, then z < y, which implies the existence of a real number r > 0
such that [z,z + r[⊂ O1 ∩ [x,y], contradicting the definition of z.

On the other hand, if z ∈ O2, then z > x, which implies the existence of a real number
r > 0 such that ]z − r,z] ⊂ O2 ∩ [x,y], again contradicting the definition of z.

Thus, we conclude that z /∈ O1 and z /∈ O2, which is impossible because [x,y] ⊂ A. There-
fore, A is connected.

Proposition 5.7. Let (X,T ) be a topological space and f :X−→R a continuous function.

1. The image of any connected subset of X is an interval in R.

2. Let a,b ∈ f(X). If X is connected, then the equation f(x) = c has a solution for
every c ∈ [a,b].
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Proof .

1. Let A be a connected subset of X. Then, f(A) is connected in R (see Proposition 5.4),
which implies that f(A) is an interval (see Proposition 5.6).

2. Using the two propositions (5.4) and (5.6), we conclude that f(X) is an interval. Then,
[a,b] ⊂ f(X) which implies that

∀c ∈ [a,b], c ∈ f(X).

Therefore, there exists x ∈ X such that f(x) = c.

Proposition 5.8. Let ((X,TX)) and ((Y,TY) be two topological spaces. Then X×Y is
connected if and only if X and Y are connected.

Proof .

=⇒) Suppose that X×Y is connected. We have pX(X×Y) = X and pY(X×Y) = Y, where pX

and pY are the continuous canonical projections. It follows that X and Y are connected.

⇐=) Suppose that X and Y are connected, and let f :X×Y−→ {0,1} be a continuous function.
Then, it suffices to show that f is constant. Since Y is connected, the function f(x, ·) :
Y −→ {0,1} is constant, meaning f(x,y1) = f(x,y2) for all x ∈ X.

Since X is connected, the function f(·,y) : X −→ {0,1} is constant, meaning f(x1,y) =
f(x2,y) for all y ∈ Y. Therefore, f(x1,y1) = f(x2,y2) for all (x1,y1),(x2,y2) ∈ X×Y,
which shows that f is constant. Thus, X×Y is connected.

In the general case, we have the following result.

Proposition 5.9. Let {(Xi,Ti) : i ∈ I} be a family of topological spaces. Then ∏
i∈I

Xi is
connected if and only if Xi is connected for every i ∈ I.

5.1.3 Connected components, locally connected spaces

Definition 5.4. Let (X,T ) be a topological space. For each x ∈ X, we call the connected
component of x, denoted by C(x), the equivalence class of x under the relation R defined
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by " xRy ⇐⇒ x and y belong to the same connected subset of X."

Remark 5.2. According to the previous definition, we conclude that the connected component
of a point x is the union of all connected subsets containing x. In other words, it is the largest
connected subset containing x. Moreover, the connected components of X form a partition ofX.

Definition 5.5. A connected component of a space X is a maximal connected subset of
X, i.e., a connected subset that is not contained in any other (strictly) larger connected
subset of X.

Example
5.3.

1. The only connected component in (R, | · |) is R itself.

2. (R∗, | · |) has two connected components: R∗
− and R∗

+.

Definition 5.6. Let (X,T ) be a topological space, and let A ⊂ X. The connected compo-
nents of A are defined as the connected components of (A,TA).

Proposition 5.10. Every connected component is closed.

Proof . Let A be a connected component. Then A is connected, and thus Cl(A) is a connected
subset containing A, so Cl(A) = A, which shows that A is closed.

Definition 5.7. Let (X,T ) be a topological space. We say that X is locally connected if
every point x ∈ X admits a neighborhood basis consisting of open connected sets.

Example
5.4.

1. R is locally connected.

2. Q is not locally connected.

3. Every discrete space is locally connected. Indeed, N (x) = {{x}} forms a neighborhood
basis consisting of open connected sets for each point x ∈ X.
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Proposition 5.11. Let (X,T ) be a topological space. X is locally connected if and only
if every connected component of every open set in X is open.

Proof .

=⇒) Suppose that X is locally connected. Let O be an open set in X, and let C(O) be a connected
component of O. Then, for every x ∈ C(O), there exists N ∈ N (x) such that N is connected
and N ⊂ O. Thus, N ⊂ C(O), which shows that C(O) is open (a neighborhood of each of its
points).
⇐=) Let x ∈ X and N be an open neighborhood of x. Then, the connected component of x in
N is open, which shows that X is locally connected.

5.1.4 Path-connectedness

Definition 5.8. Let (X,T ) be a topological space and [x,y] an interval in R. A path in a
subset A of X is any continuous function γ : [x,y] −→ A. The image γ([x,y]) of the path
is called an arc with starting point γ(x) and endpoint γ(y).

Remark 5.3. We can replace [x,y] with [0,1] because they are homeomorphic.

Definition 5.9. Let (X,T ) be a topological space and A a subset of X. We say that A is
arc-connected if for every a,b ∈ A, there exists an arc contained in A with starting point
a and endpoint b.

Example
5.5.

1. R is arc-connected. It is enough to take as a path in R the map γ : [0,1] −→ R defined by
γ(x) = a+x(b−a), for all a,b ∈ R.

2. Q and ∁RQ are not arc-connected.

Proposition 5.12. An arc-connected space is connected.
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Proof . Suppose that X is an arc-connected space and let a ∈ X. Then, for every b ∈ X, there
exists a continuous function γb : [0,1] → X such that γb(0) = a and γb(1) = b. Therefore, the
collection {γb([0,1]) : b ∈ X} forms a family of connected sets whose intersection is non-empty
(since it contains a), and X = ⋃

b∈X
γb([0,1]) which implies that X is connected.

5.2 Connectedness in Metric Spaces

The definitions and properties of connectedness in metric spaces are the same as those we have
seen in topological spaces. Therefore, it is enough to give a brief reminder of these definitions
and properties.

5.2.1 Definitions and properties of connectivity in metric spaces

• X is connected if and only if the only subsets of X that are both open and closed are
the empty set ∅ and X.
• X is connected if and only if there is no partition of X into two non-empty open sets.
• X is connected if and only if there is no partition of X into two non-empty closed sets.
• X is connected if and only if every continuous function f : (X,d) −→ ({0,1}, δ) is constant.
• The continuous image of a connected set is connected.
• Connectivity is a topological property.
• X×Y is connected if and only if both X and Y are connected.
• If A is connected and A ⊂ B ⊂ Cl(A), then B is connected.
• If A is connected, then Cl(A) is also connected.
• X is arc-connected if for all a,b ∈ X, there exists a continuous function f : [0,1] −→ X
such that f(0) = a and f(1) = b.
• Every arc-connected space is connected.
• A connected space is not necessarily arc-connected.
• A subset A ⊂ R is connected if and only if A is an interval.
• If X is connected and f : X −→ R is continuous, then f(X) is an interval.
• If f : [a,b] −→ R is continuous, then f([a,b]) = [c,d].
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