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Abstract
Nowadays, the integration of renewable energy source-based distributed generation
(RES-based DG) into radial distribution grids has increased significantly, caused by
technological advancements, technical requirements, financial incentives, and ecological
concerns. RES deployment remains one of the most effective and viable strategies for
meeting the growing demand for electricity and reinforcing the distribution systems’
performance. This integration hinges on identifying optimal locations and determining
the appropriate power outputs of RES units when injected into radial distribution
grids. However, this task is complicated due to the inherent stochastic nature of
RES power generation, particularly from wind turbines (WTs) and solar photovoltaic
(SPV) arrays, along with the fluctuations in load demand, necessitating the adoption of
robust and advanced planning strategies. To this end, this thesis proposes to develop
an appropriate time-varying probability load-generation model based on Weibull and
Beta probability density functions (PDFs) to estimate the stochastic power output
from WTs and SPV arrays, respectively. This model is based on hourly seasonal data,
including wind speed, solar irradiance, and ambient temperature, collected over a
specified time frame and location. An improved Frilled Lizard Optimization (IFLO)
algorithm is developed and proposed for strategic RES planning, aiming to minimize
total power losses, improve voltage profiles, and enhance voltage stability while adhering
to operational constraints. The IFLO algorithm incorporates three advanced strategies:
fitness distance balance, quasi-opposite-based learning, and Cauchy mutation, to
strengthen its search capabilities and prevent convergence to local optima traps. The
proposed method effectively determines the optimal locations, rated capacities of SPV
strings and WTs, and the power factor of WTs. Its performance is validated through
simulations on the IEEE 69-bus medium-scale and 85-bus large-scale distribution grids.
Simulation results decisively demonstrate that optimal RES allocation significantly
improves system performance. Furthermore, the suggested technique outperforms other
recent and effective optimization algorithms, including the grey wolf optimizer (GWO),
jellyfish search optimizer (JSO), black-winged kite algorithm (BKA), and the original
frilled lizard optimization (FLO), in solving the optimal planning problem of RES
integration under both deterministic and probabilistic scenarios.
Keywords: Renewable energy sources planning, Radial distribution grid, Probability
density function, Wind turbine, Solar photovoltaic, Optimization algorithms.



Resumé
De nos jours, l’intégration des énergies renouvelables basée sur la génération distribuée
(RES-based DG) dans les réseaux de distribution a considérablement augmenté, en
raison des avancées technologiques, des exigences techniques, des incitations financières
et des préoccupations écologiques. Le déploiement des RES constitue l’une des stratégies
de planification les plus efficaces et viables pour répondre à la demande croissante
d’électricité et renforcer la performance du réseau de distribution. Cette intégration
repose sur la détermination des emplacements appropriés pour les RES et de leur
production optimale lorsqu’ils sont injectés dans un réseau de distribution radial.
Cependant, ce processus est compliqué en raison de la nature stochastique de la
production d’énergie renouvelable, notamment des éoliennes et des panneaux solaires
photovoltaïques, ainsi que par les fluctuations de la demande de charge, ce qui nécessite
des stratégies de planification robustes et avancées. À cet effet, cette thèse propose
de développer un modèle probabiliste de charge-production basé sur les fonctions de
densité de probabilité de Weibull et de Beta pour estimer la production stochastique
des éoliennes et des panneaux photovoltaïques, respectivement. Ce modèle repose sur
des données horaires saisonnières, comprenant la vitesse du vent, l’irradiance solaire et
la température ambiante, collectées sur une période et un site spécifiés. Une version
améliorée de l’algorithme d’optimisation du lézard à collerette (IFLO) est développée et
proposée pour la planification stratégique de l’intégration des ressources renouvelables.
L’objectif est de minimiser les pertes totales d’énergie, d’améliorer les profils de tension
et de renforcer la stabilité de tension tout en respectant les contraintes opérationnelles.
L’algorithme IFLO intègre trois stratégies avancées : FDB, QOBL et CM pour renforcer
ses capacités de recherche et empêcher la convergence vers des optima locaux. La
technique proposée permet d’identifier efficacement les emplacements optimaux, les
puissances nominales des chaînes de panneaux photovoltaïques et des éoliennes, ainsi que
le facteur de puissance des éoliennes. La validation de l’approche est réalisée à travers
des simulations sur les réseaux de distribution à moyenne et grande échelle IEEE à 69 et
85 bus respectivement. Les résultats de simulation démontrent de manière concluante
que l’allocation optimale des ressources renouvelables améliore les performances du
système. De plus, la technique proposée surpasse d’autres algorithmes d’optimisation
récents et efficaces, tels que l’optimiseur du loup gris (GWO), l’optimiseur de recherche
des méduses (JSO), l’algorithme du milan à ailes noires (BKA) et l’algorithme original
du lézard à collerette (FLO), dans la résolution du problème de planification optimale
de l’intégration des RES dans des scénarios déterministes et probabilistes.

Mots clés : Planification des sources renouvelable, Réseau de distribution radial,
Densité de probabilité, Éolienne, Solaire photovoltaïque, Algorithmes d’optimisation.



 الملخص 

في الوقت الحاضر، شهد دمج التوليد الموزع المعتمد على مصادر الطاقة المتجددة في شبكات التوزيع ازدياداً  

ملحوظًا، نتيجةً للتطورات التكنولوجية، والمتطلبات الفنية، والحوافز المالية، والاعتبارات البيئية. ويعُد نشر  

أكثر   المتجددة أحد  الطاقة  المتزايد على  مصادر  لتلبية الطلب  للتطبيق  وقابلية  فاعلية  التخطيطية  الخيارات 

تعتمد هذه العملية التكاملية على تحديد المواقع المناسبة لمصادر الطاقة رباء وتعزيز أداء نظام التوزيع. الكه

ومع ذلك، فإن هذه المهمة معقدة بسبب    المتجددة وقيم الطاقة المثلى التي يتم حقنها في شبكة التوزيع الشعاعية.

ولا سيما من توربينات الرياح  ومصفوفات الخلايا  ،  الطبيعة العشوائية المتأصلة في توليد الطاقة المتجددة

استراتيجيات   تطوير  يستلزم  مما  الأحمال،  على  الطلب  في  التقلبات  جانب  إلى  الكهروضوئية،  الشمسية 

هذه   تهدف  الإطار،  هذا  وفي  وقوية.  متقدمة  نموذج حملتخطيطية  تطوير  إلى  احتمالي  -الأطروحة  توليد 

لتقدير التوليد العشوائي للطاقة      Beta  و  Weibull   يعتمد على دالتي الكثافة الاحتمالية  المتغير مع الزمن

من توربينات الرياح ومصفوفات الخلايا الكهروضوئية على التوالي. ويستند هذا النموذج إلى بيانات موسمية  

بالساعة، تشمل سرعة الرياح، وشدة الإشعاع الشمسي، ودرجة الحرارة، تم جمعها خلال فترة زمنية  زمنية 

(  IFLOوموقع محددين. كما تم تطوير خوارزمية محسّنة تدُعى "خوارزمية السحلية المزركشة المحسنة" )

وتقُترح لتخطيط دمج مصادر الطاقة المتجددة بشكل استراتيجي، بهدف تقليل فقدان الطاقة، وتحسين ملفات  

خوارزمية   وتتضمن  التشغيلية.  بالقيود  الالتزام  مع  النظام،  جهد  استقرار  وتعزيز  ثلاث    IFLOالجهد، 

استراتيجيات متقدمة لتعزيز قدراتها البحثية ومنع انحصارها في الحلول المحلية المثلى، وهي: توازن المسافة  

( الملائمة  والتعFitness Distance Balanceمع   ،)( المعاكسة  شبه  القيم  على  القائم  -Quasiلم 

Opposite-Based Learning ( والطفرات المستندة إلى توزيع كوشي ،)Cauchy Mutation  تحدد .)

التقنية المقترحة بفعالية المواقع والسعات المثلى لسلاسل الخلايا الكهروضوئية وتوربينات الرياح، وعامل 

التحقق من دقة المنهجية من خلال إجراء محاكاة على شبكتي توزيع    القدرة الخاص بتوربينات الرياح. تم 

شبكة   هما  وكبيرتين،  متوسطتين  ذات    69ذات    IEEEبقدرتين  وشبكة  نتائج    85نقطة  وأظهرت  نقطة. 

. علاوة  يؤدي إلى تحسين أداء النظام المحاكاة بشكل قاطع أن التخطيط الأمثل لمواقع مصادر الطاقة المتجددة  

وقت التقنية المقترحة على عدد من خوارزميات الحديثة والفعالة الأخرى، بما في ذلك خوارزمية على ذلك، تف

( الرمادي  البحث  GWOالذئب  وخوارزمية  )ل (،  البحر  طائرJSOقناديل  وخوارزمية  سوداء   الحدأة (، 

مشكلة (، وذلك في حل  FLO(، بالإضافة إلى خوارزمية السحلية المزركشة الأصلية  )BKAالجناحين ) 

 التخطيط الأمثل لدمج مصادر الطاقة المتجددة عبر كل من السيناريوهات الحتمية والاحتمالية.

المفتاحية: الاحتمال،    الكلمات  كثافة  دالة  الشعاعية،  التوزيع  شبكة  المتجددة،  الطاقة  مصادر  تخطيط 

 التوربينات الرياح، الخلايا الكهروضوئية الشمسية، خوارزميات التحسين. 
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General introduction

T he global surge in electricity consumption has become increasingly evident due
to economic development, modernization, increased household usage, improved

quality of life, and the construction of new facilities to support growing populations.
This trend places increasing pressure on existing power distribution systems [1]. The
distribution stage is particularly significant as it bridges the transmission network and
electricity consumers. These systems are primarily structured in a radial configuration
with a unidirectional flow of electricity from centralized power plants to end users,
making them prone to several operational challenges, including voltage drops, high
power losses, difficulties in maintaining power quality, and deterioration in system
stability. Such issues negatively affect the overall performance and reliability of the
distribution grid [2, 3].

Traditionally, meeting the escalating electricity demand has predominantly focused
on augmenting the power plant capacities through further combustion. However, this
approach is neither economically efficient nor environmentally sustainable, as it relies
heavily on fossil fuels [4].

The integration of renewable energy sources (RESs)-based distributed generation
(DG) into radial distribution systems has become a central focus in modern power
system planning and operation. RES technologies, such as wind turbines (WT) and
solar photovoltaic (SPV) systems, present a sustainable alternative for meeting the
increasing electricity demand and reducing fossil fuel dependency. Unlike traditional
centralized power plants, RESs are cost-effective and environmentally friendly, referring
to small-scale power sources placed closer to consumption points [5, 6], offering a
range of benefits to the distribution grid, including the reduction of system losses,
improvement of the voltage profile, enhancement of system stability, and alleviation of
heavy loads. It is therefore important to improve the reliability and efficiency of the
distribution grid. Besides, by curbing carbon dioxide emissions, RES-based DG units
play a crucial role in addressing environmental concerns, placing them as essential
components of sustainable power systems.
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General introduction

However, these benefits can only be achieved through a judicious and strategic
integration of DG units, which entails determining appropriate locations, sizes, and
power factor settings within the distribution grid [7]. Improperly located or sized DGs
can negatively impact system performance, resulting in increased power losses, poor
voltage profiles, system instability, reverse power flow, malfunctioning of protection
devices, voltage violations at injection buses, and thermal limits in distribution lines
[8, 9]. Consequently, the effective integration of RES-based DGs remains a crucial
challenge for researchers and engineers, necessitating advanced optimization techniques
and accurate planning.

Nonetheless, the inherent intermittent nature and unpredictability of RESs pose
further challenges and complications in optimal distribution grid planning with RESs.
Unlike conventional power generation, which can be reliably scheduled and dispatched,
wind and solar power generation are particularly dependent on weather conditions.
WTs rely on wind speed, while SPV systems are influenced by solar irradiance and
ambient temperature at a specific time and geographic location. This uncertainty
introduces variability and intermittency into the grid, making it difficult to ensure a
stable and reliable power supply. These dependencies, coupled with fluctuations in
load demand, make the proper integration of RESs into the distribution network even
more complex. Effectively addressing these uncertainties requires advanced forecasting
techniques, adaptive grid management strategies, and investments in grid modernization
to accommodate the unique characteristics of renewable energy generation. Such
measures are essential for maximizing the effectiveness of RES integration and ensuring
a stable, reliable, and sustainable power system [10].

1. Research objectives and contributions

The primary objective of this thesis is to develop a methodology for the optimal planning
problem of RES integration into the distribution grid, accounting for hourly fluctuations
in WT and SPV power output influenced by environmental factors, including wind
speed, solar irradiance, and ambient temperature, as well as time-varying load demand
based on real historical collected data from the study area over a seasonal planning
horizon. This modeling provides insights into the combined impact of RES generation
and demand variability on grid dynamics throughout the designated time frame. A
key aspect of this research is the development of a novel optimization technique to
solve the optimal planning problem of RESs, specifically WTs and SPV array systems,
within radial distribution grids. The proposed algorithm, termed the Improved Frilled
Lizard Optimization (IFLO), integrates fitness distance balance, quasi-opposite-based
learning and Cauchy mutation strategies to enhance its searching capabilities between

2



General introduction

exploration and exploitation phases and avoid falling into local optimal traps. The
suggested technique is thoroughly assessed through extensive statistical comparison
against other recent and efficient meta-heuristic optimization techniques. The study
aims to minimize power losses, improve the voltage profile, and enhance voltage
stability through both single- and multi-objective optimization problem formulation.
Accordingly, it determines the optimal location and rating capacities of SPV strings and
WTs, as well as the power factor of WTs, while ensuring compliance with operational
constraints across distribution grids of varying scales and complexities. To address
the inherent uncertainty of the problem, we have implemented advanced forecasting
techniques using Weibull and Beta probability distribution functions. Through this
exhaustive approach, the research aims to enhance operational efficiency and reinforce
the resilience of distribution grids with the increasing RES integration.

2. Thesis structure

The research work presented in this thesis is divided into five chapters.
Chapter 1 provides a comprehensive overview of power systems and distribution

generation, emphasizing DG technologies, particularly those based on RES such as
photovoltaics and wind turbines, reflecting a shift towards sustainable energy solutions
driven by environmental concerns and economic incentives. Additionally, the chapter
includes a thorough literature review of existing techniques and their applications in
solving optimization problems for efficient DG integration, highlighting their significant
implications for modern energy systems.

Chapter 2 is dedicated to studying the load flow problem in radial distribution
grids, emphasizing the critical importance of determining the steady-state operating
condition of the electrical power systems. The chapter introduces the backward/forward
sweep method as a solution technique, recognized for its computational efficiency
and robustness in addressing the distinctive topological characteristics of radial grid
structures. Its performance is evaluated on the IEEE 69-bus, 85-bus, and the actual
Portuguese 94-bus distribution grids, demonstrating its effectiveness in solving load
flow problems for various radial configurations.

Chapter 3 presents the theoretical foundations and mathematical concepts essential
for modeling uncertainty parameters in modern power systems. It focuses on the
inherent uncertainty of RES with a time-varying load model. The chapter explores a
range of methodologies for uncertainty modeling, including probabilistic, possibilistic,
and hybrid approaches, as well as robust optimization and interval analysis. By
introducing tools such as probability distribution functions based on hourly patterns,

3
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we emphasized their role in representing uncertainty and determining optimal operating
conditions.

Chapter 4 provides an overview of optimization principles and definitions, followed
by an exploration of widely used nature-inspired metaheuristic algorithms for solving
optimization problems, such as Grey Wolf Optimization (GWO) and Jellyfish Search
Optimization (JSO), alongside two recently developed algorithms, namely, the Black-
Winged Kite Algorithm (BKA) and the Frilled Lizard Optimization (FLO), all of which
are proposed and implemented in this study. Furthermore, the chapter introduces the
Improved Frilled Lizard Optimization (IFLO) algorithm, which integrates advanced
strategies to enhance exploration and exploitation capabilities, achieving more effective
solutions. The performance of IFLO is then evaluated across 23 benchmark test
functions and compared against several state-of-the-art optimization algorithms to
assess its competitiveness and robustness.

Chapter 5 is dedicated to presenting the results and discussion derived from the
application of our proposed IFLO algorithm. The chapter examines the advantages of
employing IFLO over the original FLO and several recently developed metaheuristic
algorithms, including GWO, JSO, and the BKA, in addressing the optimal planning
problem for RES integration. This chapter is divided into two main parts. The first part
addresses a single-objective optimization problem without considering uncertainties
in load or generation, focusing exclusively on minimizing active power losses within
the IEEE 69-bus medium-scale distribution system. The second part involves a more
complex and realistic case study applied to the IEEE 85 bus large-scale distribution
system. Here, a multi-objective optimization framework is adopted, considering seasonal
uncertainties in both load and generation.

Finally, a general conclusion of this research work and exploration of future per-
spectives are presented.
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Chapter 1

Overview of Power System and
Distributed Generations

1.1 Introduction

Electrical energy has become an indispensable resource worldwide, integral for daily
life and the economic stability of nations. Consequently, the demand for reliable,
sustainable, and cost-efficient power networks that operate efficiently, provide uninter-
rupted service, and maintain high energy quality is critical for fostering the growth
and development of modern societies. Besides, production methods and generation
technologies are expected to undergo significant changes in the coming decades.

Distribution systems are the primary interface for delivering electricity to end users,
bridging the gap between high-voltage transmission networks and consumers at medium
and low voltage levels. To meet the demands of a dynamic and sustainable energy
future, distribution networks must evolve into flexible and intelligent infrastructures
capable of seamlessly integrating local and renewable energy sources.

Over time, economic development and growing environmental concerns related
to global climate change have catalyzed significant transformations in distribution
networks. Originally designed to transport power unidirectionally from centralized
generation to consumers. However, the increasing penetration of decentralized energy
production, particularly from renewable sources within the distribution grids, has
fundamentally altered this pattern. Today, distribution systems must accommodate
bidirectional power flows, manage intermittent generation, and address challenges
including grid stability, voltage regulation, and efficient power flow management. These
evolving challenges necessitate innovative solutions to ensure that future networks can
handle the dynamic needs of modern power systems while advancing sustainability
goals.
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This chapter opens with a comprehensive overview of the general structure of power
systems, with a particular emphasis on distribution grids. It then explores various forms
of decentralized generation, specifically focusing on wind turbines and solar photovoltaic
systems, which will be considered in this thesis. These generation units are categorized
according to their energy sources and their ability to deliver active and reactive powers,
offering benefits and drawbacks of each one. The chapter concludes with an in-depth
literature review of optimization techniques and the associated challenges for the
optimal integration of distributed generation into distribution grids.

1.2 Electrical Power system topology
The power system is a critical infrastructure organized across various voltage levels to
ensure the efficient and reliable transmission of electrical energy from generation plants
to end users. A typical power system comprises interconnected components, including
generation, transmission, distribution, and consumption [11]. Figure 1.1 illustrates the
general architecture of a modern power system.

Figure 1.1: Architecture of modern power system
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1.2.1 Production

Energy production relies on controllable primary sources, such as thermal power plants
using fossil fuels, nuclear power plants, hydroelectric plants, and others. These power
plants generally use large synchronous alternators, which convert mechanical energy into
electricity through mechanically coupled turbines, driven by steam, gas, or hydraulic
energy. These systems are connected to the transmission grid via a group transformer.
The active power output of these units generally ranges from 100 MW for low-capacity
thermal power plants to 1650 MW for the largest units of nuclear power plants [12].

1.2.2 Transmission

Transmission networks are designed to transport electrical energy over long distances,
from generation centers to substations that serve distribution systems. Typically
ranging from 63 kV to 400 kV in Algeria [13], the transmission networks operate at
high voltage levels to minimize transmission line real losses. From a topographical
perspective, transmission networks are often meshed or interconnected, as shown in
Figure 1.2, to ensure safe operation. This configuration enables the aggregation of
electricity produced by large power plants and efficiently transporting it to consumption
areas. Additionally, interconnected systems enhance the economical and safe operation
of power generation facilities by compensating for different uncertainties, ensuring
reliability and flexibility across the entire grid [14].

HVB/HVA

Generators GG

Figure 1.2: Meshed structure of an electrical transmission network
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The current standards in effect in Algeria, as defined by SONELGAZ1, classify
voltage levels as follows:

Table 1.1: Voltage classifications table

Voltage Classification
Nominal Voltage (Un in Volts)

AC Voltage DC Voltage
Extra Low Voltage (ELV) Un ≤ 50V Un ≤ 120

Low Voltage (LV)
LVA 50 < Un ≤ 500 120 < Un ≤ 750
LVB 500 < Un ≤ 1000 750 < Un ≤ 1500

High Voltage (HV)
HVA 1000 < Un ≤ 50000 1500 < Un ≤ 75000
HVB Un > 50000 Un > 75000

1.2.3 Distribution grids

Distribution grids represent the most important substructure of an electrical system,
serving as the final interface that connects the transmission network to end users.
These grids operate at voltage levels below 50 kV, corresponding to the medium voltage
or HVA and low voltage (LV) ranges. In Algeria, the nominal voltage level for HVA
distribution grids is 10 kV and 30 kV [15]. These voltage levels provide an effective
balance to limit voltage drops, minimize the number of required substation sources
(HTB/HTA connection nodes), and alleviate challenges associated with high voltages,
including investment costs and the protection of both properties and individuals [16].

In most cases, distribution grids operate in a radial configuration. This structure
simplifies the protection system, as power flows unidirectionally from the HVB/HVA
source substations to the HVA/LV substations and ultimately to end consumers, as
demonstrated in Figure 1.3. This unidirectional flow facilitates rapid fault detection
and isolation. Additionally, the radial structure easily ensures network maintenance
and energy counting at source substations [17].

The feeders comprise single-phase, three-phase, and bi-phase busbar assemblies,
enabling the interconnection of outgoing lines and transformers that step down the
voltage to suitable levels for end use and secondary distribution [18]. Additionally,
backup operating schemes are strategically placed between source substations to
minimize the number of impacted customers during failures [19].

1Société Nationale de l’Électricité et du Gaz (National Company of Electricity and Gas)
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HVB/HVA

HVA/LV

End-consumers End-consumers End-consumers

Figure 1.3: Radial scheme of a distribution system

1.2.4 Consumption

The electricity produced is primarily consumed by the three main sectors: industrial,
commercial, and residential. Electricity demand, referred to as loads, is characterized
by active and reactive power consumption and varies based on time, weather conditions,
and economic activities, reflecting the dynamic nature of energy consumption.

Power values measured over a specific time interval are used to calculate key
metrics, such as maximum (peak) power and average power. By monitoring currents at
transformer stations between transmission and distribution grids, consumption curves,
known as load curves, are plotted to visualize the evolution of loads over time (See
Figure 1.4) [20]. These curves enable network operators to predict future consumption
patterns. Such data is essential in developing production planning strategies and
optimizing network management.

1.3 Distributed Generations (DGs)

Distributed power generation (DG) technology is an emerging complementary in-
frastructure to traditional power systems, regarded as a small-scale, decentralized
production of electricity located near consumption sites. DG units are typically in-
tegrated into medium or LV grids within distribution systems [21]. These units are
categorized into non-renewable and renewable DG technologies based on the type of
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Figure 1.4: Hourly electricity consumption in France (Source: RTE [20])

energy source utilized. The former includes conventional DG technologies, such as
fossil fuel-based generators, which have been widely deployed in distribution systems
as backup generation or cogeneration without significant interaction with distribution
networks. The latter encompasses wind, solar photovoltaic, biomass, geothermal, and
hydropower generators, which are increasingly adopted in distribution grids due to
environmental concerns and associated incentives such as reducing dependence on
fossil fuels, making these renewable sources attractive options for distribution grids
reinforcement [22].

Unlike fossil fuel-based DG technologies, which allow for power output control, the
power generation from renewable DG technologies is non-controllable. Decentralized
generation units differ from centralized generation units in that they are small-scale
generating units, often connected to the distribution grids [11]. They can be classified
based on their rated power output, which is influenced by the availability of primary
energy sources, such as wind and solar irradiance. This factor plays a key role in
determining suitable sites for these generators during the planning stage [23]. The
power output of distributed generators ranges from a few watts to several megawatts.
Table 1.2 presents DG classification according to their power output range [24, 25].

The following section provides a brief overview of renewable energy-based DGs,
focusing on wind and solar photovoltaic technologies to be considered in this research.
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Table 1.2: Classification of DG by power range and technology [24, 25]

Categories Power Range DG Technology
Micro DG ∼ 1W < 5kW Solar PV system

Small DG 5kW < 5MW Wind turbine, Fuel cell,
Biomass. . .

Medium DG 5MW < 50MW Geothermal
Large DG 50MW <∼ 300MW Hydrogen Energy System

1.4 Various forms of renewable energy-based DGs

Renewable energy-based DGs utilize sustainable sources such as solar, wind, and
hydropower to generate electricity. These sources are naturally renewable, making them
an environmentally friendly alternative to conventional energy systems. However, their
intermittent nature can limit consistent power output, as generation depends on resource
availability and weather conditions. Despite this, renewable DGs offer significant
advantages, including minimal environmental impact and a positive contribution to
the overall efficiency of the power system. These systems help reduce reliance on fossil
fuels, lower greenhouse gas emissions, and support more sustainable energy production
[26, 27]. The following subsections offer a concise overview of wind, solar, geothermal,
hydropower, and biomass energy technologies.

1.4.1 Wind energy

Wind turbine (WT) generators capture the kinetic energy of the wind and convert
it into mechanical energy through the rotation of the blades. The rotational speed
of the shaft, driven by the blade motion, is increased by a gearbox. This mechanical
energy is then converted into electrical energy via an alternator. This energy source is
increasingly popular due to its technological development and strong environmental
appeal. Although investment costs are relatively high, the primary energy is free, and
the environmental impact is relatively low [28].

A wind farm comprises multiple wind turbines placed several hundred meters apart,
interconnected via an underground network, and integrated into the distribution grid
through an interconnection substation.

Algeria, a vast territory with diverse geography and contrasting climates, holds
substantial potential for renewable energy development, particularly in solar and wind
power.
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National political authorities recognize this potential and have been addressing the
issue for several years. However, they still rely heavily on fossil fuels, especially oil,
which is integral to the country’s economy.

Algeria has a single wind farm located in Adrar, spanning 30 hectares, with an
installed capacity of 10 megawatts (MW). This clean and renewable energy source
is integrated into the electrical grid, enhancing the energy supply of Adrar Wilaya.
The country plans to expand this capacity to 400 MW by 2030-2035, as part of the
renewable energy program outlined by the Ministry of Energy and Mines [29].

1.4.1.1 Wind turbines components

Figure 1.5 illustrates a typical grid-connected wind turbine installation. The main
components of the wind turbine are a tower, three rotor blades, and a nacelle. The
essential electrical and electronic components necessary for the efficient and safe
conversion of wind energy into electricity are housed within the nacelle and the tower
base. These include power control systems (pitch and yaw), the generator, and power
electronics [30].

Figure 1.5: Grid-connected wind turbine

• Tower: Its primary role is to carry the rotor-nacelle assembly, preventing the
blades from touching the ground. Additionally, it positions the rotor at an optimal
height to minimize the effects of the wind gradient near the ground, thereby
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enhancing energy capture. Some manufacturers offer towers of varying heights
for the same rotor-nacelle assembly to better adapt to different installation sites
[31, 32].

• Rotor: The rotor is an essential component responsible for capturing wind
energy and converting it into mechanical energy. It consists of the blades and the
main shaft, with the hub linking these elements. To maximize energy capture,
the rotor is designed to operate at optimal speeds and angles, adjusting according
to wind conditions. In modern wind turbines, the rotor is often coupled with a
pitch control system that adjusts the blade angles, ensuring maximum efficiency
and preventing damage from high wind speeds [33].

• Nacelle: The nacelle houses the key components of a wind turbine, including
the gearbox, generator, and control systems. Its primary function is to support
and protect these critical elements while ensuring efficient energy conversion.
Additionally, the nacelle is designed to rotate in accordance to the wind direction,
optimizing the rotor’s alignment for maximum energy capture [34]. Figure 1.6
illustrates a cross-sectional view of a Vestas-type nacelle [35], showcasing its main
components.

1.4.1.2 Working principle of a wind turbine

The process begins when the wind flows over the three rotor blades, causing them
to rotate due to their aerodynamic design, with speeds between 10 and 30 rpm [36].
This blades rotation turns the main shaft, which is connected to the rotor through the
hub. The mechanical energy generated by the rotor’s motion is transmitted through
the low-speed shaft to a gearbox, which amplifies the rotational speed, transferring
it to the high-speed shaft to match the generator’s operating speed at 1500 rpm [37].
The generator then converts this mechanical energy into electrical energy through
electromagnetic induction, delivering alternating current. The current intensity varies
with wind speed; as wind speed increases, the lift on the rotor increases, resulting in
increasing power generation by the generator [36]. When the wind reaches the rated
speed, determined by the manufacturer and depending on the wind turbine’s type and
size, the turbine operates at its rated power.

Modern wind turbines often include a pitch control system, which adjusts the
angle of the blades using the hydraulic unit to optimize their efficiency based on wind
speed. Additionally, a yaw control system enables the nacelle to rotate horizontally and
continuously align with the wind direction, guided by the wind measurement system
placed at the rear of the nacelle. In high wind speed conditions, the rotor spins freely,
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Figure 1.6: Inside components of a Nacelle (Source: Vestas [35])

causing the wind turbine to stop producing electricity to ensure equipment safety and
minimize wear. Once the wind speed decreases, the wind turbine automatically resumes
operation. All these processes are fully automated and managed by a computer. In
case of an emergency shutdown, a brake system on the high-speed shaft is operated to
ensure the turbine’s safety [36–38].

From an electrical engineering point of view, wind turbines are nothing more
than electricity-generating power plants, similar to hydroelectric or diesel-powered
systems. They must meet standard conditions for grid-connected systems, ensuring
safety, supervision, and power quality.

1.4.1.3 Wind Turbine Development

Wind power generators have experienced substantial advancements over the years.
Manufacturers have continuously scaled up wind turbines for both onshore and offshore
applications, as larger turbine sizes have led to enhanced performance and reduced
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costs. By capturing more energy from the wind, these advancements aim to make
wind-generated electricity quite economical in more regions.

By 2035, the capacity of a single offshore wind turbine is projected to reach a
maximum of 20 MW, further reinforcing the trend of increasing turbine power and
dimensions. This trend is illustrated in Figure 1.7 [39], which shows the correlation
between the increase in turbine size and power generation.

Future wind turbine development will not only focus on increasing power capacity
but also on critical design improvements. These include advancements in rotor blade
aerodynamics, wind farm operational management, and maintenance and fault diagnosis
systems. Such refinements are intended to optimize wind farm efficiency, reliability,
and availability [40, 41].

Figure 1.7: Evolution in size and height of wind turbines over time (height in feet,
where 1 ft = 0.3048 m) (Source: EERE [39])

1.4.1.4 Benefits of Wind Energy

Wind energy offers numerous benefits:

X Wind energy is a limitless resource that reduces reliance on fossil fuels, providing
a sustainable energy solution.

X It is environmentally friendly, producing no emissions, which significantly helps
reduce pollution.
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X Wind energy systems have low operational and maintenance costs.

X Wind turbines can potentially export reactive power for network support.

X Wind energy projects contribute to stimulating the local economy by creating
job opportunities and driving infrastructure development.

1.4.1.5 Drawbacks of Wind Energy

The main drawbacks of wind energy are:

X Intermittent power generation

X The noise from turbines can be disruptive.

X Although operational costs are low, installation can be expensive.

X Large wind farms require substantial land

X Wind turbines are most effective in regions with sufficient wind

1.4.2 Photovoltaic solar energy

Solar energy is the most widely used renewable resource, recognized for its abundance
and extensive deployment. Photovoltaic (PV) panels directly capture solar radiation
and convert it into electricity through the properties of semiconductor materials. It
consists of cells arranged in an array, which may be fixed or equipped with a tracking
system to optimize solar capture and maximize power generation. These systems
produce direct current (DC), which is converted into alternating current (AC) using
inverters, and can operate with or without energy storage depending on the desired
application [42]. Figure 1.8 illustrates the main components of a grid-connected PV
system.

The global evolution towards sustainable energy has led numerous countries to
increase the prioritization of solar power. Large-scale solar power plants are currently
under development across the world. In Algeria, the national electricity company,
SONELGAZ, offers financial incentives to encourage property owners to invest in solar
energy.

Various studies on Algeria’s solar energy potential reveal its vast capacity for
exploitation and development. Indeed, Algeria, with an area of over two million square
kilometers, receives approximately 300 billion tons of oil equivalent (toe) per year in
solar energy. In terms of solar irradiation, the energy received daily on a horizontal
surface of 1 m2 is around 5 kWh across almost the entire national territory [43, 44].
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Figure 1.8: Main components of grid-connected PV systems

Algeria has made significant strides in solar energy development since the inaugu-
ration of its first solar power plant in 2011. As of 2023, the country operates around
24 large-scale solar power plants connected to the main grid, with a total installed
capacity of 437 MW. Furthermore, plans are in place to expand this capacity to 4 GW
by 2025 through major projects launched in 2023.

1.4.2.1 Solar panels construction

The construction of solar panels is concentrated on optimizing efficiency, durability, and
adaptability to various environmental conditions. While advancements in photovoltaic
technology have improved performance, the fundamental design of solar panels has
remained largely unchanged. Most solar panels consist of a structured assembly
of photovoltaic cells, typically made from crystalline silicon, encapsulated between
protective layers. These layers include a transparent glass cover at the front and a
polymer back sheet at the rear, all enclosed within an aluminum frame (see Figure 1.9)
[45].

Once installed, solar panels must endure diverse and often extreme environmental
conditions throughout their operational lifespan, which typically exceeds 25 years.
They are continuously exposed to fluctuating temperatures, humidity, wind loads,
and Ultraviolet (UV) radiation, all of which can degrade panel materials over time.
Despite being engineered for durability, solar panels may still experience structural
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Figure 1.9: Principal elements of a solar panel

and electrical failures, such as cell micro-cracks, water ingress, and delamination of
protective layers. To ensure long-term performance, manufacturers emphasize the
use of high-quality materials and advanced encapsulation techniques that enhance
resistance to environmental stressors.

1.4.2.2 Photovoltaic effect

The photovoltaic effect is the fundamental physical process that directly converts
sunlight into electricity by generating and transporting positive and negative electric
charges within a semiconductor material, as depicted in Figure 1.10.

 

Figure 1.10: Description of the photovoltaic effect
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A solar cell is typically made from silicon, which is composed of two layers: an
N-type silicon layer, which has an excess of free electrons, and a P-type silicon layer,
which has an abundance of holes (electron deficiencies), that are joined together to
create a P-N junction. When photons from solar radiation strike the semiconductor,
their energy excites electrons, driving the excess electrons from the N-type silicon to
diffuse into the P-type silicon. Consequently, the initially N-doped region acquires a
positive charge, while the initially P-doped region becomes negatively charged. This
charge separation creates a potential difference, allowing electrons to flow through an
external circuit, producing direct current (DC) electricity [46, 47].

1.4.2.3 Different types of photovoltaic cells

There are various types of solar cells, also known as photovoltaic cells, each distinguished
by its efficiency and cost. However, regardless of the type, their energy conversion
efficiency remains relatively low, typically between 8% and 23%. Currently, three main
technologies of photovoltaic cells exist [46]:

• Monocrystalline silicon cell: Monocrystalline cells are the first commercially
available solar cells, fabricated from a block of silicon crystallized into a single
crystal (see Figure 1.11). To fabricate these, a seed crystal is drawn from a mass
of molten silicon, forming a cylindrical ingot with a single, continuous crystal
lattice structure. This ingot is then mechanically sliced into thin wafers (silicon
slices). After applying an anti-reflective coating and adding the front and rear
metal contacts, the cell is wired and packaged with many others into a complete
solar panel [48, 49]. Monocrystalline silicon cells are highly efficient, but their
manufacturing process is slow and energy-intensive, making them more expensive
than their polycrystalline or thin-film counterparts [50].

Figure 1.11: Back and front of a monocrystalline silicon cell [46]

• Polycrystalline silicon cell: Polycrystalline (or multi-crystalline) cells consist
of multiple small crystal grains, rather than a single uniform crystal structure
(see Figure 1.12). They are typically made by casting a cube-shaped ingot from
molten silicon, which is then sawed and packaged similarly to monocrystalline
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cells. A key advantage of polycrystalline cells over monocrystalline silicon is that
they are less expensive to produce and require 2 to 3 times less energy during
manufacturing [49, 50].

Figure 1.12: Polycrystalline silicon cell [50]

• Thin film cells: Thin-film solar cells are made by depositing thin layers of
semiconductor materials onto substrates such as glass or plastic. Amorphous
silicon (a-Si) is a common material used, requiring less than 1% of the silicon
needed for crystalline cells. While cheaper to produce and less energy intensive,
these cells have lower efficiency due to less ordered atomic structures and experi-
ence a 20% drop in efficiency early on. Thin-film cells are lightweight, flexible,
and cost-effective, with ongoing improvements enhancing their performance and
broadening their applications (see Figure 1.13) [50].

Figure 1.13: Thin Film solar cell [50]

1.4.2.4 Benefits of Solar Energy

The use of solar energy offers several benefits. It belongs to the large family of renewable
energies. The electricity it generates has no environmental impact and does not require
raw materials. Other benefits include:

X Panels can be installed on various surfaces, such as walls or roofs.

X Reliable and abundant, as the sun is an unlimited energy source.

X Operates silently, making it ideal for residential and urban use.

20



Chapter 1 Overview of Power System and Distributed Generations

X Practical and cost-free, as it generates electricity even in remote areas.

X No fuel costs, as power is directly derived from sunlight.

X Designed to withstand harsh weather conditions, requiring minimal maintenance.

X Surplus electricity can be sold to offset the initial investment in the long term.

1.4.2.5 Drawbacks of Solar Energy

Although solar energy provides many benefits, there are some drawbacks to consider:

X The upfront investment in solar panels and related equipment can be expensive
due to high initial installation costs.

X Solar energy is weather-dependent, intermittent, and unavailable at night.

X Large installations may require significant space, which could be a limitation in
urban areas.

X Limitation of suitable locations depending on sunlight availability.

X Low efficiency

X Storing solar energy for use at night or during cloudy days requires additional
equipment like batteries, which can be costly

1.4.3 Geothermal energy

Geothermal power plants harness the heat from underground water reservoirs, which
can reach temperatures of up to 350°C in optimal locations, to generate electricity or
provide direct heating. Hot water is pumped to the surface and passed through heat
exchangers. The resulting steam drives a turbine connected to a generator, producing
electrical energy, as illustrated in Figure 1.14. Dry rock extraction technology is also
used, where cold water is injected into deep rock layers, heated by the Earth’s heat,
and then brought back to the surface as hot water [51, 52].

1.4.3.1 Benefits of geothermal energy

Geothermal energy offers several benefits, including being a renewable and sustainable
energy source with no greenhouse gas emissions, making it environmentally friendly. It
provides a reliable and consistent power supply, as geothermal systems are independent
of weather conditions such as rain, sun, or wind, unlike some other renewable sources
such as solar or wind energy. Additionally, it requires a small land area and can be
used for both electricity generation and direct heating applications.
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Figure 1.14: Geothermal energy principle [52]

1.4.3.2 Drawbacks of geothermal energy

The drawbacks include high initial costs for installation and drilling, specific location
feasibility, and the potential for localized environmental impacts, such as land subsidence
or the release of toxic gases from deep reservoirs. Furthermore, geothermal energy may
not be feasible in areas where geothermal resources are not abundant or accessible.

1.4.4 Hydropower

Hydropower, or hydroelectric power, is one of the oldest and most widely used renewable
energy sources. It is based on the potential and kinetic energy of water from rivers, lakes,
or streams to drive a turbine, which then rotates a generator, converting mechanical
energy into electrical energy (see Figure 1.15). The power generation of hydroelectric
plants depends on the turbine flow rate and the available head height [53, 54].

Hydropower is one of the most cost-effective methods of electricity production,
consuming no water or fuel. The water passing through the turbine remains unaffected
and available for other uses, with no emissions produced. The lifespan of a hydroelectric
plant is long, with some operating for over 100 years. Additionally, they contribute to
water management by supporting irrigation and flood control. However, hydropower
has some drawbacks, such as high initial construction costs, environmental impacts on
aquatic ecosystems, and the displacement of communities due to dam construction.
Furthermore, its efficiency depends on water availability, which can be affected by
climate change and seasonal variations [53, 55].
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Figure 1.15: Hydropower energy production principle [55]

1.4.5 Biomass energy

Biomass energy is a form of renewable energy derived from organic materials, including
wood, agricultural residues, animal waste, and industrial and domestic organic waste.
These resources are converted into electrical energy through combustion, anaerobic
fermentation, or chemical synthesis (Figure 1.16) [55]. It plays a significant role in
the global transition to cleaner, more sustainable energy systems. This technology is
increasingly used in rural areas.

Figure 1.16: Biomass power generation

Biomass energy offers numerous benefits. On a global scale, it contributes to solid
waste management while reducing a country’s dependence on fossil fuels by converting
organic materials into various energy forms [56]. For individuals, biomass energy
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is a profitable and economically advantageous energy source due to its widespread
availability and renewable nature when managed sustainably [57]. Additionally, this
energy source generates low greenhouse gas emissions, making it an attractive option
for waste management and energy production simultaneously.

Biomass is part of a shorter carbon cycle, meaning the carbon dioxide emitted
during bio-energy combustion is reabsorbed by growing plants through photosynthesis,
maintaining a balanced atmospheric carbon exchange [58].

The main drawback of biomass energy is its low energy efficiency. Additionally,
excessive reliance on biomass can result in adverse environmental effects, including
deforestation, soil erosion, and pollution [57].

1.5 Renewable energy sources integration into the
distribution grids

In recent years, the integration of renewable energy sources (RESs) based-DG into
distribution grids has been seen as an effective strategy in distribution system plan-
ning to meet the increasing electricity demand while enhancing the operational grid
performance. RESs are cost-effective and environmentally friendly, referring to small-
scale electricity generation placed near the end consumers [5, 6]. Integrating RESs
at strategic locations and optimal sizes within the RDG offers numerous benefits,
including reduced power losses, improved voltage profile, enhanced system stability,
lower carbon emissions, load alleviation, and overall improvements in system reliability
and efficiency. However, improper placement and sizing of DGs can negatively impact
system performance, such as increased power losses, poor voltage profiles, system
instability, reverse power flow, and improper functioning of protection devices [7, 8, 59].
Therefore, effectively integrating RESs into RDGs presents a crucial challenge for many
researchers and engineers.

Generally, these benefits can be categorized into three main domains: technical,
economic, and environmental [60], as summarized in Figure 1.17.

1.5.1 Technical benefits

1.5.1.1 Power losses reduction

Unlike transmission networks, distribution systems are characterized by a high re-
sistance to reactance (R/X) ratio and significant voltage drops that could cause
considerable power losses along the feeders. Studies have reported that approximately
13% of the total power generated is dissipated as line losses at the distribution level [61].
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Figure 1.17: Comprehensive DG Benefits

Consequently, minimizing these losses remains a significant challenge for power dis-
tribution utilities worldwide. The impact of DG integration on system power losses
is considered one of the important aspects of the planning stage. According to the
literature, the optimal location and size of DG units are crucial factors in mitigating
electrical losses. Properly integrated DG can significantly reduce these losses, whereas
sub-optimal planning may lead to excessive power losses. Various researchers have
proposed different methodologies to address the optimal planning problem of DG
within radial distribution grids to minimize power losses, formulating it as the main
objective function. In this regard, it has been assumed that the sum of total losses
at all branches could represent network losses. While most studies have focused on
minimizing total active power losses in distribution grids [62, 63], some have extended
their scope to consider daily, monthly, and annual energy losses as objective functions
[64, 65].

1.5.1.2 Voltage profile and stability improvement

The voltage profile in distribution grids, closely associated with power quality, is usually
a secondary concern compared to energy losses from the utility viewpoint. However,
the increasing penetration of intermittent renewable-based DG has attracted greater
interest in maintaining a stable and reliable voltage profile at the distribution stage
[66]. On the other hand, voltage stability, once mostly studied considerably at the
transmission level [67], has become a recognized challenge in distribution systems,
especially under heavily loaded system conditions with insufficient reactive power
support. To mitigate such risks, recent studies emphasize the optimal placement and
sizing of DG units can significantly enhance the voltage profile and system stability.
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Some researchers focused solely on improving the voltage profile [5, 68, 69] or voltage
stability [5, 69, 70] as a primary objective. However, most have aimed to minimize
losses while improving the voltage profile and stability [3, 71, 72].

1.5.2 Economical benefits

The integration of DGs into distribution grids offers significant economic benefits,
primarily through the reduction of power losses, which decreases energy costs. By
generating electricity closer to consumption points, DG minimizes transmission and
distribution costs while enhancing system efficiency. Additionally, DG integration can
defer or eliminate the need for costly infrastructure upgrades, such as new substations
or line reinforcements to accommodate increasing loads [72]. Moreover, the use of
renewable energy-based DG units reduces fuel costs associated with conventional power
generation. Industries may install their own DG units to partially meet their energy
demands, reducing purchases from the grid [73, 74].

1.5.3 Environmental benefits

Utilizing renewable energy sources such as solar, wind, and biomass significantly reduces
greenhouse gas emissions. According to published literature, approximately 80% of
global pollution is attributed to the combustion of fossil fuels [24]. Numerous studies
have confirmed that RES-based DG can reduce carbon emissions by approximately
40% [73]. The integration of DG reduces dependence on fossil-fuel-based power plants,
thereby decreasing emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and
nitrogen oxides (NOx) that result from the burning of fossil fuels in centralized power
plants [75]. Ultimately, DG systems are environmentally friendly as they involve
renewable energy resources in production. The widespread adoption of DG supports
the transition to cleaner and more sustainable energy systems [72].

1.6 Literature review on DG integration into the
distribution grid and research gaps exploration

Over the years, extensive research efforts have been conducted to address the optimal
planning problem of distributed generations in radial distribution grids. These studies
have explored diverse techniques, including analytical, heuristic, and meta-heuristic
approaches. Early studies employed analytical methods [76–79], which, although their
simplicity and computational efficiency, face significant challenges when applied to
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complex problems involving numerous control variables or large search spaces. In
recent decades, meta-heuristic methods have gained substantial research interest due
to their effectiveness in solving complex real-world engineering problems that are often
intractable using traditional approaches.

This review explores various optimization methodologies proposed in the academic
literature to address the optimal planning problem of DGs in radial distribution
grids, each considering specific objectives, either as a single or multi-objective problem
formulation. These techniques include the equilibrium optimizer algorithm [80], the
genetic algorithm [81], the jellyfish search optimizer [82], the whale optimization
algorithm [83], the manta ray foraging optimization [63], the adaptive particle swarm
optimization [62], and the improved wild horse optimization algorithm [84], to determine
the optimal size and placement of DGs for minimizing power losses. In addition, the
coyote optimization algorithm [85] has been applied to find the best site and size of
DG units to reduce power loss, lower operating costs, and improve voltage stability.
The arithmetic optimization algorithm [86], the artificial bee colony algorithm [3], the
modified gravitational search algorithm [87], and the chimp sine cosine algorithm [88]
were also implemented to identify the best site and location of DG units for reducing
power losses and elevating the voltage profile. Further, methods like the improved
golden jackal optimization [89], the quasi-oppositional chaotic symbiotic organisms
search algorithm [5], the water flow optimization [90], the grey wolf optimization [91],
the spider monkey optimization [92], and the electric eel foraging optimization [93]
were applied to identify the optimal size and site of DG units to balance power loss
reduction and voltage stability enhancement.

Regarding multi-objective approaches, an efficient multi-objective optimization
technique was proposed in [72] to integrate wind turbines and solar photovoltaic arrays
optimally into the IEEE 69-bus and real Portuguese 94-bus radial distribution grids.
A multi-objective slime mold algorithm [94] was also introduced for solar resource
allocation, aiming to achieve optimal voltage profile, minimize losses, and maximize
renewable energy penetration levels. Moreover, the spider wasp optimization algorithm,
presented in [95], was designed to solve the optimal power flow problem by balancing
exploration and exploitation. Its multi-objective version leverages the Pareto concept
and fuzzy membership functions to optimize fuel costs, emissions, and power losses,
showing superior performance on IEEE 30 57- and 118-bus systems. The authors of
[96] employed the competitive swarm optimizer to optimize DG and shunt capacitor
placement on the IEEE-34 bus radial distribution grid, minimizing power loss, voltage
deviation, and operating costs. In [97], the Osprey optimization algorithm was proposed
to optimally site and size multiple DGs in radial distribution networks, minimizing
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power losses and improving voltage stability. Additionally, the authors of [98] proposed
a Lévy flight genetic algorithm for optimizing the placement and sizing of solar PV
(SPV)-based DG in radial distribution grids. The approach improves voltage profiles,
reduces active power loss, and minimizes energy loss costs, validated on the IEEE
33-bus system and a residential feeder in Nigeria. In [99], the authors developed a
multi-objective energy management system for a multi-microgrid system using the
multi-objective multi-version optimizer, achieving superior cost savings, reduced power
losses, and optimal DG utilization. The authors of [100] developed a master-slave
optimization framework for optimally integrating SPV systems into distribution grids
using Multi-Objective Particle Swarm Optimization (MOPSO), Non-Dominated Sorting
Genetic Algorithm 2 (NSGA-II), and a multi-objective ant lion optimizer. The three
algorithms were implemented on 33- and 27-bus feeders. NSGA-II achieved the best
performance in reducing energy losses and cutting operating costs. Also, a memory-
based artificial gorilla troops optimizer [101] and zebra optimization algorithm [102]
are presented to minimize grid power loss and enhance voltage profiles.

All the above mentioned studies have focused on addressing the DG sizing and
location problem by considering peak load conditions. Additionally, the uncertainties
associated with renewable sources have been overlooked. In contrast, other studies
have addressed the integration of renewable energy sources, accounting for their inter-
mittent nature and the variability of load demands within the distribution grid from
multiple perspectives. For example, Kayal and Chanda [103] focused on optimizing
the locations and capacities of mixed solar and wind energy sources in an Indian rural
28-bus distribution grid using the weighted aggregation particle swarm optimization
algorithm to reduce power losses, enhance voltage stability, and improve network
security while considering solar irradiance and wind speed uncertainties. Hemeida
et al. [63] presented a methodology for optimizing DG placement in power systems
considering load uncertainties. The approach utilizes Monte Carlo simulation to gener-
ate various load scenarios, employing four bio-inspired optimization techniques: grey
wolf optimization, manta ray foraging optimization, satin bowerbird optimization, and
whale optimization algorithm. The objective was to minimize active power loss, voltage
deviation, and maximize the voltage stability index. In [104], the authors suggested a
strategy for allocating SPV and battery energy storage systems using a modified Henry
gas solubility optimization algorithm to minimize total system power loss, considering
SPV generation uncertainties and time-varying loads. In [105], the authors introduced
a genetic algorithm-based approach for optimizing capacitor banks and distributed
SPV generation in unbalanced distribution grids, incorporating sensitivity analysis to
identify optimal zones for SPV and capacitor placement while addressing load and
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SPV generation uncertainties over a 24-hour planning horizon. Khasanov et al. [106]
proposed an artificial ecosystem-based optimization with opposition-based learning
to optimize the placement of SPV and WT-based DGs in IEEE 33-bus and 85-bus
RDGs. The improved algorithm integrates five strategies to enhance search capability,
balancing exploration and exploitation phases, effectively minimizing system power
losses while addressing the stochastic nature of RESs. In [107], the rider optimization
algorithm has been proposed to identify the optimal size and site of RES, specifically
WTs, SPVs, and biomass-based DG units in standard 33 and 69-bus distribution grids.
The study aimed to minimize total energy losses while considering wind speed and solar
irradiation fluctuations. Ramadan et al. [108] employed the artificial hummingbird
algorithm for optimal RES sizing and placement in IEEE 33-bus and real 94-bus
RDGs, effectively minimizing costs, emissions, and voltage deviations while improving
voltage stability under uncertainty. A pseudo-inspired gravitational search algorithm
is introduced in [109] as a novel approach to optimize RESs allocation and sizing in
IEEE 15-bus, 33-bus, and 69-bus distribution grids, considering SPV and wind out-
put uncertainties, electricity prices, and load variations using probability distribution
functions. Also, a two-stage optimization approach combined mixed-integer linear
programming with the Mountain Gazelle Optimizer was proposed in [110] for optimal
battery energy storage placement and sizing in radial distribution grids. A hybrid model
is presented in [111] for integrating RESs into the IEEE 33-bus distribution grid, using
a bi-directional long short-term memory network to manage SPV and wind generation
uncertainties. This model, optimized with binary particle swarm optimization, aimed to
minimize energy losses and voltage deviations while considering long-term and seasonal
impacts. In [112], a two-stage stochastic mixed-integer non-linear programming model
was proposed to optimize renewable energy integration in distribution systems over
a ten-year horizon. Using NSGA-II for long-term planning and MOPSO for hourly
operation, the approach minimized costs, power loss, and voltage deviation while
incorporating uncertainties through Monte Carlo simulation. The authors of [113]
optimized DG power output at fixed locations in Tanzanian distribution grids, using
four metaheuristic algorithms to minimize revenue losses based on hourly load profiles
and tariff categories (D1, T1, and T2). Duan et al. [114] optimized WT allocation in
radial distribution grids using a multi-objective improved horse herd optimizer and an
unscented transformation method to model uncertainties. Their approach minimized
power loss, enhanced reliability, and reduced costs, outperforming conventional opti-
mization algorithms. Hachemi et al. [115] developed an integration strategy for RES
and compressed air energy storage in RDGs using the red-tailed Hawk optimization
technique to enhance reliability indices and line loading. The method was validated on
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IEEE 69-bus and 33-bus systems, considering the output power fluctuations of SPV
and WT generation sources as well as load demand variations. Two modified versions
of the Tasmanian Devil optimization algorithm were proposed in [116] to deal with the
efficient power flow in conventional and renewable power systems. In [117], an improved
moth flame optimization algorithm was proposed for optimal scheduling of dispatchable
and non-dispatchable DGs, addressing energy loss in power grids under dynamic load
conditions using 69-bus and 118-bus systems. The enhanced cheetah optimizer algo-
rithm was developed in [118] for dynamic economic dispatch, integrating demand-side
management and RES to improve grid security and reduce costs. Khasanov et al.
[119] introduced a modified bald eagle search optimization algorithm for RES-based
DG and battery energy storage placement and sizing in 33-bus and 118-bus radial
distribution systems. In [120], an enhanced jellyfish search optimizer was proposed for
the efficient energy management in multi-microgrids, integrating photovoltaic, wind,
and biomass systems. The approach minimizes costs, improves voltage stability, and
enhances system performance, validated on an 85-bus distribution system. Guven et al.
[121] presented the quadratic interpolation-enhanced artificial gorilla troop optimizer
for optimizing grid-connected hybrid RES. The technique improved the renewable
energy fraction, reduced annual costs, and lowered energy costs.

Furthermore, the coronavirus herd immunity optimizer was introduced in [122] to
improve power plant economic, environmental, and technical performance. Tested on
IEEE 30-bus and 57-bus systems. The artificial hummingbird algorithm was employed
in [123] for the optimal planning of multiple RES integration in distribution systems
with uncertainties. A bi-level optimization strategy was proposed in [124] for regional
integrated energy systems, reducing carbon emissions and operational costs. The
study addresses uncertainties in renewable generation and demand response. In [125],
a solution, the success history-based adaptive differential evolution algorithm, was
developed for optimal DG allocation under uncertain conditions. Additionally, a weight-
aggregated particle swarm optimization method was proposed in [126] for DG and
capacitor bank placement in distribution networks, considering SPV and WT generation
uncertainties and fluctuating demand patterns to enhance power efficiency and stability.
Also, in [127], an efficient metaheuristic algorithm for optimizing photovoltaic renewable
energy sources and capacitor bank placement in distribution networks was proposed to
minimize energy losses and enhance voltage stability. Duan et al. [128] presented a fuzzy
multi-objective framework that optimizes photovoltaic and wind energy integration in
radial distribution networks under uncertainty, utilizing an improved gradient-based
optimizer. The proposed method enhances system robustness and outperforms existing
techniques in minimizing losses and costs.
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Ultimately, most of these studies have addressed the optimal planning problem
of RESs, taking into account uncertainties in load, solar irradiation, and wind speed.
However, they have largely overlooked temperature-related uncertainties, which limit
their scope. Further limitations in the existing literature include the assumption of
fixed locations or sizes for RESs, as well as the neglect of some grid constraints, such as
line thermal limits and the minimum allowable voltage limit. Furthermore, the majority
of these approaches assumed that WTs operate at unity power factors, focusing solely
on their location and size while neglecting the optimization of their power factor. This
creates a gap in exploiting the full potential of WTs operating at optimal power factor,
where both active and reactive power are injected to enhance the system performance.

The core objective of this research work is to rigorously address and bridge the
aforementioned research gaps.

1.7 Conclusion
This chapter has presented a comprehensive overview of the fundamental concepts of
power systems and the various types of renewable energy-based DG. We have explored
their integration into modern radial distribution grids, emphasizing the associated
technical, economic, and environmental benefits. Additionally, it provided an in-
depth literature review on renewable DG integration in distribution grids, critically
highlighting the research gaps in previous studies. When optimally sized and placed,
DG units can effectively reduce power losses, enhance voltage profiles, and improve
the stability and reliability of distribution systems. However, improper planning may
result in adverse effects, underscoring the importance of optimization techniques in
determining the optimal locations and capacities for DG allocation.

The subsequent chapter will delve into power flow analysis based on identifying the
network topology using the backward/forward sweep method to assess the performance
of radial distribution grids.
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Chapter 2

Load Flow Analysis in Distribution
Grids

2.1 Introduction

Load flow analysis, also known as power flow analysis, is essential for the effective
operation and strategic planning of distribution systems. This process uses a structured
mathematical approach to calculate bus voltages, phase angles, currents, and power
flows through system branches, generators, and loads in steady-state conditions [129].
Consequently, it provides vital insights into grid performance, including power losses,
voltage deviations, and overall system stability, enabling engineers to enhance the
efficiency of the distribution grid.

Several methods have been proposed in the literature to solve the load flow problem
in power systems. Among the most notable approaches are Newtonian methods, such
as the Newton-Raphson method [130, 131], the decoupled Newton-Raphson method
[132], and the fast decoupled Newton-Raphson method [133, 134]. These methods are
widely used in transmission grids to solve the load flow problem effectively. However,
their application to distribution grids, particularly large-scale systems, often leads
to divergence due to the distinct characteristics of distribution grids as compared
to transmission grids, including higher resistance-to-reactance (R/X) ratio, radial
configuration, and a greater number of nodes and branches [135].

The backward/forward sweep (BFS) methods [136–138] have gained significant
attention as an efficient and accurate alternative for load flow solutions in radial
distribution grids. This iterative method is based mainly on two sweeps: the backward
sweep, where branch currents are computed using Kirchhoff’s current law (KCL), and
the forward sweep, which calculates bus voltages using Kirchhoff’s voltage law (KVL).
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This dual sweep makes the approach particularly effective in addressing load flow
problems in complex and large distribution systems [87, 138].

This chapter focuses on calculating load flow in radial distribution grids using the
BFS method. This technique relies on understanding the grid’s topology by analyzing
the data from its buses and branches. The process begins by classifying each bus as a
terminal, common, or intermediate bus, and each line as a main, lateral, sub-lateral,
or minor line. This classification will subsequently be exploited to perform load flow
calculations. The performance of the proposed BFS method is evaluated on the IEEE
69-bus, 85-bus, and the actual Portuguese 94-bus distribution grids, emphasizing its
effectiveness in solving load flow problems for various radial configurations.

2.2 Importance of radial distribution grids analysis

The analysis of radial distribution grids is crucial, given their distinct characteristics
and the specific operational challenges they pose. As the final stage in electricity
delivery, distribution grids are predominantly deployed in urban and suburban areas,
making them critical to system performance and customer satisfaction. These grids
are distinguished by a single, unidirectional power flow path from the substation
to load points. This straightforward topology offers several advantages, including
reliability, efficient fault management, expedited service restoration, and cost-effective
maintenance. However, these systems are prone to significant voltage drops and
elevated power losses, primarily due to extended distances and higher line resistances.

Moreover, this analysis is vital to ensure voltage stability, maintaining power supply
within acceptable voltage limits, a requirement for customer satisfaction, and the
overall integrity of the electrical supply. Additionally, such analysis helps reduce energy
losses, thereby improving the overall operational efficiency of the distribution grid. It
also facilitates the optimal sizing and strategic placement of network components, such
as transformers and capacitors, which are indispensable for effective load management
in response to fluctuating residential and commercial demand patterns.

With the increasing integration of renewable energy sources, the complexity of
electrical distribution systems has grown considerably. This development has amplified
the importance of accurate analysis for effective load flow management. Such analysis
is essential for understanding the grid behavior under varying load and operational
conditions, particularly in light of the variability and intermittency associated with
renewable energy sources. It supports decision-making in system planning, operational
management, and infrastructure modernization. Hence, robust analysis is indispensable
for system planning and expansion, to accommodate future demand growth and
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enable the integration of emerging technologies, as power grids transition toward more
decentralized and dynamic architectures.

2.3 Structure of a radial distribution grid
Radial distribution grids are typically structured for unidirectional power flow, orig-
inating from a single source at the reference bus (slack bus) to multiple loads. The
buses within the grid are classified as terminal, common, or intermediate types, while
the lines connecting these buses are categorized into main, lateral, sub-lateral, and
minor lines. Figure 2.1 illustrates the general structure of a radial distribution grid.

Minor line

Sub-lateral line
Intermediate bus

Lateral line End bus

1

Slack bus Common bus Main line

Figure 2.1: Structure of a radial distribution grid

2.4 Per unit system
The per unit (p.u.) system is a method for normalizing electrical quantities such
as voltage, current, power, and impedance. Each quantity is expressed as a ratio
of its actual value X to a predefined base value Xbase, delivering a dimensionless
value expressed in p.u. (or as a percentage of its base value) [11, 139]. This approach
facilitates the comparison of parameter magnitudes and simplifies load flow calculations.

For a base voltage (Vbase) in kV, a base power (Sbase) in MVA, and an impedance
Z in ohm (Ω), the resistance in per unit Zp.u is given by:

¯Zp.u = Z̄ ×
(

Sbase

V 2
base

)
(2.1)
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The normalized active power Pp.u as a function of the active power P in MW is
given by:

Pp.u = P

Sbase
(2.2)

The normalized reactive power Qp.u as a function of the reactive power Q in MVAr
is given by:

Qp.u = Q

Sbase
(2.3)

2.5 Power and current flowing in the branches

A radial distribution grid consists of multiple branches, each modeled by a resistance
in series with a pure inductance. Figure 2.2 illustrates the flow of active and reactive
powers between two buses.

The active power transmitted from bus i to bus i+1 is expressed as follows [140]:

Pi = P ′
i+1 +Ri

(
P ′2

i+1 +Q′2
i+1

V 2
i+1

)
(2.4)

where:

P ′
i+1 = Pi+1 +Pdi+1 (2.5)

Pdi and Pdi+1 represent the active power demands at the bus i and i+1, respectively;
Pi is the active power transmitted through the branch i.

The reactive power transmitted from bus i to bus i+1 is given by [140]:

Qi = Q′
i+1 +Xi

(
P ′2

i+1 +Q′2
i+1

V 2
i+1

)
(2.6)

iV

1iBus 

i iP jQ 1 1i iP jQ 

i iR jX

iI
1iV 

iBus

di diP jQ 1 1di diP jQ 

Figure 2.2: Representation of a two-bus in the radial distribution grid
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where:
Q′

i+1 = Qi+1 +Qdi+1 (2.7)

Qdi and Qdi+1 represent the reactive power demands at the bus i and i + 1, respec-
tively; Qi is the reactive power transmitted through the branch i.

The current flowing through a branch i is computed as follows [141]:

Ii = (Vi∠θi −Vi+1∠θi+1)
Ri + jXi

(2.8)

and
Pdi+1 − jQdi+1 = V ∗

i+1Ii (2.9)

2.6 Load flow solution of a radial distribution grid

Load flow calculation require two key inputs defining the distribution grid’s charac-
teristics: line and load data. These inputs are compiled into two tables. The line
data table specifies the characteristics of the network conductors, while the load data
table details the active and reactive power consumption at each bus. This data is
essential for identifying the grid topology, allowing the calculation of branch currents,
power transmitted through each branch, total active and reactive power losses and
voltage levels at each bus. In this thesis, the load flow solution is carried out using
the Backward/Forward Sweep (BFS) method. The following section details the BFS
technique.

2.7 The backward/forward sweep method

The BFS method is an iterative technique used to solve power flow problems in radial
distribution grids by applying Kirchhoff’s current law (KCL) and Kirchhoff’s voltage
law (KVL). The backward sweep calculations begin from the last node (farthest bus
or load point) and progress towards the first node (substation). KCL is applied to
compute currents based on the power demands at each node. In the forward sweep,
KVL is operated to update real and imaginary parts of the calculated node voltages
by accounting for voltage drops across line impedances, starting from the first node
towards the last node. These sweeps are repeated iteratively until the convergence
criteria are met.
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2.7.1 Initialisation

• Input network data: read linedata and busdata tables.

• Initialize the injected current (Ii = 0)

• Initialize voltage of all buses (Vi = 1 p.u.)

• Define the desired tolerance value (ϵ).

2.7.2 Branch currents

Currents in the system branches are determined during the backward sweep phase.
This process begins by calculating the currents flowing through all loads connected at
the buses. Subsequently, the currents flowing through the branches are computed in
order, starting with the minor lines, then moving on to the sub-lateral lines, lateral
lines, and finally the main line [136–138].

2.7.2.1 Load current

The injected current to each bus at iteration k +1 is calculated based on the power
consumed by the connected load and the voltage magnitude at that bus at iteration k.
For a given bus i, the injected current can be expressed as follows:

Ik+1
d,i =

S∗
d,i

V ∗,k
i

(2.10)

where i = 1,2, . . . ,N , N is the total number of buses.

2.7.2.2 Branch currents of a minor line

The current flowing through a minor line branch can be calculated using [136]:

Ib = Ib+1 + Id(b+1) (2.11)

where:


b = (SBm −1), . . . ,(EBm −1) ∀m, m = 1,2, . . . ,Nm,

Ib+1 = 0, if (b+1) = EBm

Ibm,m = Ib, if b = bslm

(2.12)

Nm denotes the total number of minor lines, Ib and Ib+1 are the currents of the
branches b and b+1, respectively. SBm is the starting bus of the mth minor line, while
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EBm represents its ending bus. Ibm,m is the branch current in the mth minor line, and
bslm is the branch number connecting the sub-lateral line with the mth minor line.

2.7.2.3 Branch currents of a sub-lateral line

The current flowing through a branch belonging to a sub-lateral line is written as
follows [136]:

Ib = Ib+1 + Id(b+1) +
Nm∑
m=1

Ibm,m (2.13)

where:


b = (SBsl −1), . . . ,(EBsl −1) ∀sl, sl = 1,2, . . . ,Nsl

Ib+1 = 0 if (b+1) = EBsl

Ibm,m = 0 if (b+1) ̸= nslm ∀m, m = 1,2, . . . ,Nm

Ibsl,sl = Ib if b = blsl

(2.14)

Nsl denotes the total number of sub-lateral lines, SBsl indicates the starting bus of
the slth sub-lateral line, while EBsl represents its ending bus. nslm is the bus number
in the sub-lateral line where the mth minor line begins.

2.7.2.4 Branch currents of a lateral line

The current flowing through a branch belonging to a lateral line is written according
to the following equation [136]:

Ib = Ib+1 + Id(b+1) +
Nsl∑
sl=1

Ibsl,sl (2.15)

where:


b = (SBl −1) up to (EBl −1) ∀l, l = 1,2, . . . ,Nl

Ibsl,sl = 0 if (b+1) ̸= nlsl ∀sl, sl = 1,2, . . . ,Nsl

Ib+1 = 0 if (b+1) = EBl

Ibl,l = Ib if b = bMl

(2.16)

Nl denotes the total number of lateral lines. SBl is the starting bus of the lth

lateral line, while EBl represents its ending bus. Ibl,l is the branch current in the lth

lateral line, bMl is the branch number connecting the main line with the lth sub-lateral
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line, nlsl represents the common bus number in the lateral line from which the slth

sub-lateral line begins.

2.7.2.5 Branch currents of the main line

The current flowing through a branch belonging to a main line is written according to
the following equation [136]:

Ib = Ib+1 + Id(b+1) +
Nl∑
l=1

Ibl,l (2.17)

where:


b = 1,2, . . . ,(EBM −1)
Ibl,l = 0, if (b+1) ̸= nMl, ∀l, l = 1,2, . . . ,Nl

Ib+1 = 0, if (b+1) = EBM

(2.18)

EBM represents the ending bus of the main line, nMl is the number of the common
bus in the main line where the lth lateral line begins.

2.7.3 Voltage magnitude at each bus

The voltage magnitude at each bus is determined during the forward sweep, which is
performed in ascending order, beginning at the source bus and progressing toward the
system’s terminal bus. This process calculates the voltage drop across each branch
connecting buses i and i+1 (refer to Figure 2.2) at iteration k +1, as described by the
following equation.

V k+1
i+1 = V k+1

i − Ik+1
i ×Zi, i = 1,2, . . . ,Nb (2.19)

where, Zi is the series impedance of branch i, Nb is the total number of branches
in the system.

2.7.4 Convergence criterion

The backward and forward sweeps are repeated iteratively until the specified con-
vergence criterion is met. The maximum difference in voltage magnitudes for two
successive iterations is taken as the convergence criterion, as defined by:

max
(∣∣∣V k+1

i −V k
i

∣∣∣)< ϵ, i = 1,2, . . . ,N (2.20)
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where V k+1
i and V k

i are the bus voltages at the (k +1)th and kth iterations, respec-
tively, ϵ is the desired tolerance, and N represents the total number of buses in the
grid.

2.7.5 Active and reactive power losses

According to Figure 2.2, the active power loss in a branch i is calculated as:

PLoss,i = Ri

(
P 2

i +Q2
i

|Vi|2

)
(2.21)

The total active power losses in the system are determined by summing the losses
of all branches, as defined in Equation (2.22):

PT,Loss =
Nb∑
i=1

PLoss,i (2.22)

The reactive power losses at the ith branch are written as follows:

QLoss,i = Xi

(
P 2

i +Q2
i

|Vi|2

)
(2.23)

The total reactive power losses in the system can be determined by summing the
losses of all branches, as given in Equation (2.24):

QT,Loss =
Nb∑
i=1

QLoss,i (2.24)

2.7.6 Voltage deviation

The voltage deviation can be defined as the difference in voltage magnitude at bus i

from the reference bus voltage (Vref ) equal to 1 p.u. The smaller the voltage deviation,
the better the network voltage quality. The voltage deviation (V D) is expressed as
follows [142]:

V D =
N∑

i=1

(
Vi −Vref

)2
(2.25)

where, Vi is the voltage magnitude at bus i, and N is the total number of buses.
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2.7.7 Voltage stability analysis in distribution grids

Voltage stability refers to the ability of an electrical system to maintain acceptable
voltage levels at each bus after a disturbance. Various phenomena, such as line failures
or load fluctuations, can lead to voltage drops across all buses, resulting in widespread
network voltage collapse [143]. Numerous techniques for voltage stability analysis have
been developed in the literature to evaluate the stability of distribution grids under
diverse operating conditions and to provide effective control strategies [144]. Among
these approaches, voltage stability indices are especially useful in assessing the stability
of distribution grids.

In this study, we employ the voltage stability index (VSI) introduced by Chakravorty
and Das [145], which can be derived from the simplified radial distribution grid diagram
in Figure 2.2 and is represented by the following equations:

From Equations (2.8) and (2.9), we get:

|Vi+1|4 −
(
|Vi|2 −2Pdi+1 ·Ri −2Qdi+1 ·Xi

)
|Vi+1|2 +

(
P 2

di+1 +Q2
di+1

)(
R2

i +X2
i

)
= 0

(2.26)
By replacing the terms |Vi|2 −2PLi+1 ·Ri −2QLi+1 ·Xi and

(
P 2

Li+1 +Q2
Li+1

)(
R2

i +X2
i

)
with bi and ci, respectively, the equation can be rewritten as:

|Vi+1|4 − bi |Vi+1|2 + ci = 0 (2.27)

We can see that Equation (2.27) has four solutions, which are:

1√
2

[
bi −

√
b2
i −4ci

] 1
2

− 1√
2

[
bi −

√
b2
i −4ci

] 1
2

− 1√
2

[
bi +

√
b2
i −4ci

] 1
2

1√
2

[
bi +

√
b2
i −4ci

] 1
2

For realistic values where P , Q, R, X, and V are expressed in per unit, bi is always
positive. This is because the term 2(PLi+1 ·Ri +QLi+1 ·Xi) is very small compared
to |Vi|2, and the term 4ci is very small compared to b2

i . As a result,
(
b2
i −4ci

)1/2
is

almost equal to bi, rendering the first two solutions of |Vi+1| nearly zero and therefore
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infeasible. The third solution is negative and hence not feasible. The fourth solution
of |Vi+1|, being positive, is the feasible option.

Consequently, the solution to Equation (2.27) is:

|Vi+1| = 1√
2

[
bi +

√
b2
i −4ci

] 1
2

(2.28)

From Equation (2.28), it can be noted that a valid solution for the load flow in the
radial distribution grid exists if:

(
b2
i −4ci

)
≥ 0 (2.29)

By substituting the equations for bi and ci into Equation (2.29), we get:

V SIi+1 = |Vi+1|4 −4(PLi+1 ·Xi −QLi+1 ·Ri)2 −4(PLi+1 ·Ri +QLi+1 ·Xi) |Vi|2 ≥ 0
(2.30)

where V SIi+1 is the voltage stability index of the (i+1)th bus.
For the stable operation of the radial distribution grid, V SIi+1 must be greater

than or equal to 0. The authors of [145] state that the closer the value of V SI is to 1,
the more stable the system becomes.

2.8 Flowchart of the backward/forward sweep method

Figure 2.3 presents the flowchart for solving the power flow problem using the back-
ward/forward sweep method.

2.9 Numerical applications on a radial distribution
grid

To demonstrate the effectiveness of the BFS method, it was implemented in MATLAB
and applied to the IEEE 69-bus, IEEE 85-bus, and an actual Portuguese 94-bus radial
distribution grids at a peak load condition [146–148]. This section demonstrates the
practical application of the technique, showcasing its accuracy and efficiency in solving
load flow problems. Key performance metrics, including active and reactive power
losses, voltage profile, and stability, are analyzed to evaluate the grid’s performance.
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Figure 2.3: Flowchart of the load flow solution
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2.9.1 Test system 1: the IEEE 69-bus system

The characteristics of the IEEE 69-bus distribution grid depicted in Figure 2.4 are as
follows:

• Number of buses: 69;

• Number of branches: 68;

• Slack bus N° = 1;

• Base power: 100 MVA;

• Base voltage: 12.66 kV.

The detailed data for the IEEE 69-bus test system are provided in Appendices (A.1)
and (A.2) [146].

Figure 2.5 illustrates the active and reactive power losses in each branch of the
IEEE 69-bus distribution grid, derived after load flow calculation using the BFS
method. The highest active power loss, PLoss = 49.6849kW, and reactive power loss,
QLoss = 16.6773kVAr, are observed at branch 6 (between buses 6 and 7). These losses
are justified by the current flowing through the branch and its electrical characteristics,
specifically resistance and reactance. The network’s total active and reactive power

1 2 3 4 5 6 7 8 9 10 161511 12 13 14 17 18 2019 21 22 23 24 25 26 27

5453 55 56 5857 59 60 61 62 63 64 65

36 37 3938 40 41 42 43 44 45 46

28 29 30 31 32 33 34 35

68 695047 48 49

66 6751 52

Figure 2.4: Single line diagram of 69-bus distribution grid
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Figure 2.5: Active and reactive power losses across the branches of the 69-bus
distribution grid

losses are 225.003 kW and 102.165 kVAr, respectively, representing 5.92% and 3.79%
of the total load demand.

Figure 2.6 displays the voltage magnitudes at each bus within the IEEE 69-bus
distribution grid, offering a clear overview of the voltage profile across the system.
The figure highlights buses where the voltage levels may drop below acceptable limits,
potentially leading to system instability or inefficiencies. Notably, the lowest voltage
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Figure 2.6: Voltage profile of the 69-bus distribution grid
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magnitude, 0.9092 p.u., is observed at bus 65. The total voltage deviation across the
network is 0.0993 p.u., which reflects the extent of voltage variations throughout the
system.

Figure 2.7 illustrates the Voltage Stability Index (VSI) for each bus in the IEEE
69-bus distribution grid, providing valuable insights into the system’s stability profile.
At bus 65, the VSI is 0.6833, indicating a lower level of stability compared to other
buses. A lower VSI value signifies that the bus is closer to voltage instability.
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Figure 2.7: Voltage stability index values of the 69-bus distribution grid

2.9.2 Test system 2: the IEEE 85-bus system

The characteristics of the IEEE 85-bus distribution grid shown in Figure 2.8 are as
follows:

• Number of buses: 85;

• Number of branches: 84;

• Slack bus N° = 1;

• Base power: 100 MVA;

• Base voltage: 11 kV.
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Figure 2.8: Single line diagram of 85-bus distribution grid

The detailed data for the test IEEE 85-bus system are provided in Appendices (A.3)
and (A.4) [147].

Figure 2.9 illustrates the active and reactive power losses in each branch of the
IEEE 85-bus distribution grid, obtained through load flow calculations using the BFS
method. The highest active power loss, PLoss = 103.4935kW, and reactive power
loss, QLoss = 70.8978kVAr, appear at the 7th branch. These losses are explained by
the current flow and the electrical characteristics (resistance and reactance) of the
branch. The total active and reactive power losses in the network are 316.1175 kW
and 198.6021kVAr, respectively, accounting for 12.30% and 7.57% of the total load
demand.

Figure 2.10 shows the voltage magnitudes at each bus within the IEEE 85-bus
radial distribution grid, providing an overview of the voltage profile across the system.
The figure identifies buses where voltage levels fall below acceptable limits, which
could result in potential system issues. The lowest voltage magnitude, 0.8713 p.u., is
observed at bus 54, and the total voltage deviation of the network is 0.8214 p.u.
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Figure 2.9: Active and reactive power losses across the branches of the 85-bus
distribution grid
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Figure 2.10: Voltage profile of the 85-bus distribution grid

Figure 2.11 presents the VSI at each bus in the IEEE 85-bus distribution grid,
offering valuable insights into the system’s stability profile. The lower level of stability
is 0.5764, observed at bus 54, which suggests that the bus is closer to voltage instability.
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Figure 2.11: Voltage stability index values of the 85-bus distribution grid

2.9.3 Test system 3: the actual Portuguese 94-bus system

The characteristics of the actual Portuguese 94-bus system shown in Figure 2.12 are as
follows:

• Number of buses: 94;

• Number of branches: 93;

• Slack bus N° = 1;

• Base power: 100 MVA;

• Base voltage: 11 kV.

The detailed data for the actual Portuguese 94-bus system are provided in the
Appendices (A.5) and (A.6) [148].

Figure 2.13 illustrates the active and reactive power losses in each branch of the
actual Portuguese 94-bus distribution grid, obtained through load flow analysis using
the BFS method. The highest active power loss, PLoss = 48.5128kW, and reactive
power loss, QLoss = 81.0831kVAr, appear at the 9th branch. These losses are explained
by the current flowing through the branch and its electrical properties, specifically
resistance and reactance. The total active and reactive power losses in the grid are
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Figure 2.12: Single line diagram of the actual Portuguese 94-bus distribution grid

362.858kW and 504.042kVAr, respectively, accounting for 7.56% and 21.69% of the
total load demand.

Figure 2.14 shows the voltage magnitudes at each bus within the 94-bus distribution
grid, providing a clear overview of the voltage profile across the system. The figure
identifies buses where voltage levels drop below acceptable limits, which could result in
potential system operational issues. The lowest voltage magnitude, 0.8485 p.u., occurs
at bus 92, and the total voltage deviation of the network is 1.0442 p.u.
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Figure 2.13: Active and reactive power losses across the branches of 94-bus
distribution grid
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Figure 2.14: Voltage profile of 94-bus distribution grid
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Figure 2.15: Voltage stability index values of 94-bus distribution grid
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Figure 2.15 presents the VSI at each bus in the 94-bus distribution grid, offering
valuable insights into the system’s stability profile. The lower level of stability is 0.5183,
observed at bus 92, which signifies that the bus is closer to voltage instability.

2.10 Conclusion
In this chapter, we have thoroughly explored the load flow analysis of a radial distribu-
tion grid. The study employed the backward/forward sweep method, known for its
simplicity, speed, and robustness, to solve load flow problems efficiently. This technique
is based on an understanding of the network’s topology. Initially, we identified the
types of buses (terminal, common, and intermediate buses) using the comparison
method and lines (main, lateral, sub-lateral, and minor lines), ensuring an accurate
representation of the system’s structure. This topology was then used in the load
flow calculation using the suggested method. The technique was tested on various
distribution grids, including IEEE 69-bus, IEEE 85-bus, and the actual Portuguese
94-bus systems. The results demonstrated its effectiveness in providing reliable load
flow solutions, highlighting its suitability for distribution system analysis.
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Methods for Modeling Uncertainty
in Power Systems

3.1 Introduction

In recent years, the rapid evolution of power systems and advancements in energy
generation technologies such as smart grids, microgrids, and renewable energy sources
integrated with energy storage devices have created many new opportunities for
enhancing power system operation and control. However, these innovations also
pose significant challenges by increasing the complexity of planning and operating
modern power system grids [149]. A critical challenge in this context is the inherent
uncertainty in energy system parameters, particularly in modern renewable energy
systems, where accurately describing the deterministic states of power grid parameters
becomes increasingly difficult due to the high penetration level of renewable energy
sources. This heightened uncertainty can expose power systems to operational and
stability risks, necessitating the development of robust uncertainty modeling approaches
to ensure reliable and secure system performance.

Typically, uncertainty is modeled using mathematical frameworks. Probability
theory represents uncertain variables as a probability density function (PDF). The
Monte Carlo simulation method, an iterative probabilistic technique, involves random
sampling based on the probability distribution and evaluates the conventional equations
of the employed algorithm. Although general and widely applicable, this method is
computationally intensive, requiring significant processing time to achieve detailed
results. The fuzzy set theory is another approach for assessing uncertainties within
distribution grids [150, 151].

In this chapter, various uncertainty parameters modeling approaches for modern
power systems are explored and systematically classified. The focus is placed on
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probabilistic methods, with particular emphasis on the PDF to represent the random
variability of renewable energy sources. This approach enables a more accurate repre-
sentation of uncertain variables in modern distribution grid management, facilitating
decision-making under uncertainty in the planning and operation stages.

3.2 Uncertainty modeling methods
Uncertainty modeling methods are commonly generic and not specifically designed for
electric power systems. Modeling the uncertainties in electric power systems is just
one scenario using these uncertainty modeling methods. Thus, the uncertainties in
electric power systems are not the origins of uncertainty modeling methods but rather
constitute a field for their application. The literature presents a range of uncertainty
modeling techniques for modern power systems, classified into six principal categories
[150–153]:

1. Probabilistic methods [154]: These methods are widely used to address power
system uncertainties, where input parameters of a problem are random with
a probability density function (PDF) shaped for them. The commonly known
probabilistic approaches, or uncertainty modeling methods, are classified into
numerical and analytical ones. The former includes various forms of Monte
Carlo simulation (MCS), such as sequential MCS, Markov Chain MCS, pseudo-
sequential MCS, and nonsequential MCS methods. The latter encompass scenario-
based analysis, linearization, and PDF approximation methods.

2. Possibilistic methods [155]: It relies on fuzzy logic to model uncertainty,
particularly useful when historical data is limited or incomplete. The fuzzy set
theory describes uncertain input variables using membership functions. The
most common techniques within this approach include the α-cut method, used to
create crisp intervals from fuzzy sets, and defuzzification methods, which convert
fuzzy outputs into precise values for decision-making.

3. Hybrid possibilistic-probabilistic methods [156]: Combining probabilistic
and possibilistic approaches to handle the uncertain input parameters. The most
commonly used techniques in this category are the fuzzy-scenario and fuzzy-MCS
approaches.

4. Information gap decision theory [157]: This approach measures the deviation
of errors between actual parameters and their estimations. It quantifies the extent
to which an unknown parameter can vary while ensuring that the decision-maker
achieves a guaranteed minimum income.
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5. Robust optimization [158]: This approach employs uncertainty sets to describe
the uncertainty of input parameters. It ensures that the obtained decisions remain
feasible and optimal under the worst-case realization of uncertain parameters
within the defined set.

6. Interval analysis [159]: This method assumes that uncertain parameters lie
within predefined intervals. It focuses on determining the bounds of output
variables by propagating the interval uncertainties through the model. Although
similar to probabilistic modeling with a uniform PDF, interval analysis does not
require probabilistic assumptions, making it suitable for handling bounding but
non-stochastic uncertainties.

Figure 3.1 summarizes the various methodologies employed in the literature for
modeling uncertainty in modern power systems. This visual representation offers a
clear and concise overview of the diverse approaches used to address uncertainties in
electric power systems, laying the foundation for a comprehensive understanding of
the modeling techniques discussed.
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Figure 3.1: Summary of uncertainty modeling approaches used in the literature
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3.3 Probability density functions

The PDF mathematically defines the possible range of values that a random variable
may assume, along with the probability that the variable’s value falls within any
measurable subset of this range. The PDF can be continuous or discrete, depending
on the nature of the phenomena under analysis. For continuous random variables,
the PDF is continuous. Conversely, for discrete random variables, the probability
distribution must be represented by a discrete function.

The Cumulative Distribution Function (CDF) describes the probability that a
random variable is less than or equal to a specific number. It is inherently related to
the PDF and is obtained by integrating the PDF, which accumulates the probabilities
of all possible values. Consequently, the CDF is always an increasing function that
takes values ranging from a minimum of 0 to a maximum of 1.

Mathematically, the CDF, denoted as F (x), is defined by the following equation:

F (x) =
∫ +∞

−∞
f(x)dx (3.1)

where, f(x) is the PDF. Conversely, the PDF is obtained by differentiating the
CDF as follows:

f(x) = d

dx
F (x) (3.2)

3.3.1 Discrete probability distributions

For discrete random variables X with possible values x1,x2, . . . ,xn, the probability
distribution is represented by a function that assigns a probability to each discrete
value of X. The PDF function for discrete variable can be represented as follows [160]:

f(xi) ≥ 0, ∀i (3.3)

n∑
i=1

f(xi) = 1 (3.4)

f(xi) = P (X = xi) (3.5)

The PDF function is non-negative for all x values (Equation (3.3)). The sum of all
probabilities associated with the PDF equals 1 (Equation (3.4)). The likelihood of the
discrete variable xi is given by Equation (3.5).
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3.3.2 Continuous probability distributions

For a continuous random variable X, the PDF function can be represented as follows
[160]:

f(xi) ≥ 0, ∀i (3.6)

∫ +∞

−∞
f(x)dx = 1 (3.7)

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx (3.8)

P (X = xi) = 0 (3.9)

The PDF function (f(x)) is non-negative for all values of x (Equation (3.6)). The
integral of the PDF function over its entire domain is equal to 1 (Equation (3.7)), and
the probability of the variable X falling within a range [a,b] is given by Equation (3.8).

Continuous PDFs are defined over an infinite set of points within a continuous
interval, where the probability of a single exact point is zero (Equation (3.9)). Hence,
probabilities are determined over intervals, with the area under the curve between two
distinct points representing the probability for that range, as illustrated in Figure 3.2.

Figure 3.2: Probability over an interval [a,b]

3.3.3 Common types of continuous PDFs

Several probability distributions are widely employed in probability and statistics
to model different types of continuous random variables. The most commonly used
probability distributions are [161]:
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• Gaussian distribution or Normal distribution

• Exponential distribution

• Gamma distribution

• Lognormal distribution

• Weibull distribution

• Beta distribution

• Uniform distribution

Figure 3.3 displays the typical curves of each probability distribution [153].

Figure 3.3: Curves of typical continuous PDFs [153]

The key characteristics of each distribution are defined as below:

• Mean value (µ): The mean of a set of values, commonly termed the average or
arithmetic mean, represents the central value of the data. For a set of n discrete
samples x1,x2, . . . ,xn, the mean is calculated as [162]:

µ = 1
n

n∑
i=1

xi (3.10)

For a continuous function f(x) over the interval [a,b], the mean value is calculated
as follows [162]:

µ = 1
b−a

∫ b

a
f(x)dx (3.11)

The expected value E(X) of a continuous random variable X is defined by:
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E(X) =
∫ ∞

−∞
xf(x)dx (3.12)

• Standard Deviation (σ): It quantifies the dispersion of a dataset relative to its
mean. A higher standard deviation indicates more significant variability among
data points. The standard deviation is computed as follows [162]:

σ =
√√√√ 1

n

n∑
i=1

(xi −µ)2 (3.13)

• Variance (Var): It measures the spread of data points by calculating the average
of the squared deviations from their mean value. The variance is the square of
the standard deviation, as [162]:

Var = σ2 = 1
n

n∑
i=1

(xi −µ)2 (3.14)

The variance of the random variable X with a finite mean µ is defined by the
following equation [162]:

Var(X) = E
[
(X −µ)2

]
= E

[
X2
]
− (E[X])2 (3.15)

The standard deviation of X is defined as follows:

σ(X) =
√

Var(X) (3.16)

In power system uncertainty modeling, the most frequently used continuous PDFs
are discussed below:

3.3.3.1 Gaussian (Normal) distribution

The Gaussian distribution, also known as the normal distribution, is one of the most
fundamental probability distributions in statistics, widely used in various fields. The
Gaussian distribution is characterized by its bell-shaped curve and is defined by the
following PDF [161]:

f(x) = 1
σ

√
2π

e
− (x−µ)2

2σ2 , −∞ < x < ∞ (3.17)

where x represents any possible value that the measurement can assume. µ is the
mean, determining the center of the distribution. σ is the standard deviation of the
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distribution, and σ2 is the variance, which controls the spread of the distribution. The
expected value and variance of a normal distribution are given by:

E(X) = µ (3.18)
Var(X) = σ2 (3.19)

Random variables with different means and variances can be modeled by the
Gaussian (Normal) PDF with appropriately selected parameters for the center and
spread of the distribution. Figure 3.4 gives an example of several Gaussian distributions
with selected values of µ and σ2.
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Figure 3.4: Gaussian PDFs with chosen values of µ and σ2

3.3.3.2 Weibull distribution

The Weibull distribution is commonly employed to describe various types of observed
component failures and natural phenomena. It is widely used in reliability and
survival analysis, failure modeling, and wind speed characterization. The distribution’s
parameters offer substantial flexibility, enabling the representation of systems with
increasing, decreasing, or constant failure rates over time. The PDF of the Weibull
distribution for a random variable is expressed as follows [163]:

f(x) =
(

k

c

)(
x

c

)k−1
e−( x

c )k

, x > 0 (3.20)
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where k > 0 is the shape parameter, which determines the behavior of the distribu-
tion. c > 0 is the scale parameter, which controls the spread of the distribution. The
mean value and variance of the Weibull function are [162, 163]:

µ = E(X) = cΓ(1+k−1) (3.21)
σ2 = Var(X) = c2Γ(1+2k−1)−µ2 (3.22)

Where the Gamma function Γ is defined as:

Γ(x) =
∫ ∞

0
tx−1e−t dt (3.23)

Figure 3.5 illustrates the flexibility of the Weibull PDF through curves generated
for various selected values of shape parameter k and scale parameter c.
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Figure 3.5: Weibull PDF with chosen values of k and c

• Rayleigh distribution: A special case of the Weibull distribution with a shape
parameter k = 2, where the mean and variance are given by [163]:

µ = c

√
π

2 , σ2 = (4−π)
4 c2 (3.24)

The key advantages of the Weibull distribution are cited as follows [163]:

1. It is defined by two parameters (shape k and scale c), making it more general
and flexible than the single-parameter Rayleigh distribution, while being less
complex than five-parameter models such as the bivariate normal distribution.
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2. Numerous studies have demonstrated that the Weibull distribution provides an
accurate fit to wind speed data collected across diverse geographic regions.

3. When the Weibull parameters at a specific height are known, reliable methodolo-
gies exist for estimating the corresponding parameters at other heights.

The characteristics of wind speed are influenced by several environmental factors,
including geographical location, topography, and local climatic conditions. These
characteristics can be effectively estimated through statistical analysis of observed
wind speed frequency distributions in the target region.

3.3.3.3 Beta distribution

The beta distribution is a continuous probability distribution defined on the interval
[0,1]. It is commonly used in Bayesian statistics, reliability analysis, and modeling
uncertainties in power systems and renewable energy. The beta distribution for a
random variable is expressed as [161]:

f(x;α,β) = Γ(α +β)
Γ(α)Γ(β)xα−1(1−x)β−1, 0 < x < 1 (3.25)

where α,β > 0 are the shape parameters and Γ is the gamma function. The mean
value and variance of the beta distribution are:

µ = E[X] = α

α +β
(3.26)

σ2 = Var(X) = αβ

(α +β)2(α +β +1) (3.27)

The parameters α and β determine the shape of the beta PDF, allowing it to take
various forms. As shown in Figure 3.6, when α = β, the distribution is symmetric about
x = 0.5. However, different choices of α and β result in asymmetric distributions.

The Beta distribution offers several advantages when modeling random variables
bounded within a finite interval, such as solar irradiance or PV power output:

1. It is defined on the interval [0,1], making it well-suited for representing normalized
quantities such as solar power outputs, probabilities, and proportions.

2. With two shape parameters (α and β), the Beta distribution provides a high
degree of flexibility, allowing it to represent a wide variety of distribution shapes
(e.g., uniform, U-shaped, skewed, or bell-shaped).
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Figure 3.6: Beta PDFs with chosen values of α and β

3. Several previous studies have confirmed that the Beta distribution accurately
models the variability of solar irradiance and PV power generation across different
climate zones.

4. Unlike the Gaussian distribution, the Beta distribution inherently avoids assigning
probability to physically impossible outcomes, such as negative values, ensuring
realistic modeling of bounded physical phenomena.

3.4 Modern power systems uncertainties modeling

This section details the modeling approach for various uncertainties. First, different
time-varying voltage-dependent load models are defined. Subsequently, the uncertainties
associated with wind generator power and solar photovoltaic generator power, which
depend on meteorological factors such as wind speed, solar irradiance, and ambient
temperature, are thoroughly analyzed. Thus, an integrated generation-load model is
developed.

3.4.1 Load modeling

The time-varying voltage-dependent load model, also known as the time-varying load
model, represents a load that fluctuates based on both time and voltage. Accordingly,
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the voltage-dependent load model presented in [164], which accounts for time-varying
load at a given period t, is expressed as follows:

Pk(t) = Pok(t)×V α
k (t)

Qk(t) = Qok(t)×V β
k (t)

(3.28)

Where Pk represents the active power and Qk denotes the reactive power injected
at bus k and time t. Pok is the nominal active load, while Qok is the nominal reactive
load at the rated voltage at bus k. Vk(t) is the per-unit voltage magnitude at bus k,
and the parameters α and β are, respectively, the voltage exponents corresponding to
the active and reactive load voltage, as presented in Table 3.1 [165].

Table 3.1: Voltage-dependent load types and their corresponding exponents [165]

Load types α β
Constant 0 0
Residential 0.92 4.04
Commercial 1.51 3.40
Industrial 0.18 6.00

3.4.2 Renewable energy resources (RESs) modeling

3.4.2.1 Wind speed modeling

The stochastic wind speed variation over each period t (1 hour in this study) is modeled
using the Weibull PDF [166, 167]. The Weibull PDF for wind speed wt (in m/s) at
the tth hour can be expressed as the following equation:

f t
w(w) =

(
kt

ct

)(
wt

ct

)(kt−1)
× exp

−
(

wt

ct

)kt for wt > 0, ct > 0 andkt > 0 (3.29)

The shape factor kt and scale factor ct at the tth hour are determined using the
following expressions:

kt =
(

σt
w

µt
w

)−1.086
(3.30)

ct = µt
w

Γ(1+1/kt) (3.31)
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here, µt
v and σt

v represent the mean and standard deviation of wind speed, which is
computed using the historical data for each tth hour

3.4.2.2 Solar irradiance modeling

The stochastic variability of solar irradiance can be described using the beta PDF, as
in [166, 168]. Over each timeframe ‘t’ (considered as 1 hour in this study), the beta
PDF for solar irradiance it in (kW/m2) is expressed as follows:

f t
i (i) =


Γ(αt+βt)

Γ(αt)Γ(βt)(i
t)αt−1(1− it)βt−1, 0 ≤ it ≤ 1; αt,βt ≥ 0

0, otherwise
(3.32)

where βt and αt represent the shape parameters of the beta PDF, and Γ denotes
the gamma function.

The shape parameters of the beta PDF can be determined using the mean (µt
i) and

standard deviation (σt
i) of solar irradiance for the corresponding period.

βt = (1−µt
i)
(

µt
i(1+µt

i)
(σt

i)2 −1
)

(3.33)

αt = µt
i × βt

1−µt
i

(3.34)

3.4.2.3 Power generation model

To accurately estimate the power produced by WT and solar PV arrays, the continuous
PDF for a specified time frame is divided into intervals, or spans, where the wind
speed and solar irradiance fall within defined ranges [103]. Consequently, the power
outputs from both the WT and solar PV systems are calculated based on all potential
probabilities within each hour.

a) Power generation by WT

The average power output of the WT for a specific hour ‘t’, denoted as (P t
W T ), is

computed as follows [169, 170]:

P t
W T =

Nw∑
k=1

PGW T k ×Pw(wt
k) (3.35)

Where k represents the phase variable and Nw denotes the total number of discrete
wind speed phases, wt

k refers to the wind speed in the kth phase at the tth hour.
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The probability of wind speed for each phase k during any given hour is estimated
using:

Pw(wt
k) =

∫ wt
k,max

wt
k,min

f t
w(w)dw for k = 1 . . .Nw (3.36)

The power output of the WT is influenced by the wind speed at its location and
the turbine’s specific characteristics, with the relationship following the non-linear
performance curve defined by the manufacturer. The generated power of the WT at
the average wind speed wak for the kth phase can be calculated using [166]:

PGW T k =


0 wak < wcin or wak > wcout(
α ×w3

ak +β ×Prated

)
wcin ≤ wak ≤ wN

Prated wn ≤ wak ≤ wcout

(3.37)

where Prated refers to the WT’s maximum power output, and wcout represents the
wind speed at which the turbine ceases operation (cut-out speed). The constants α

and β are calculated based on the cut-in wind speed wcin and the nominal wind speed
wn, as expressed in the following equations:

α = Prated(
w3

n −w3
cin

) (3.38)

β = w3
cin(

w3
cin −w3

n

) (3.39)

According to Equation (3.37), wind power generation exhibits a discrete pattern
across different wind speed regions. The non-linear power curve illustrates the theoret-
ical correlation between wind speed and the wind turbine’s output, which is primarily
controlled by three wind speed levels: the cut-in speed wcin, the rated speed wrated,
and the cut-out speed wcout [171, 172]. These levels define four distinct operational
regions of the turbine, with their respective probabilities as plotted in Figure 3.7.

At low wind speeds in the first region, below the cut-in speed wcin, the turbine
does not generate power due to insufficient wind speeds. In the second region, once
the wind speed exceeds wcin, the turbine begins generating power, which increases
nonlinearly with the wind speed until it reaches the rated wind speed wrated, where the
turbine produces its maximum output Prated. Beyond this region, the power output
remains constant in the third region thanks to power control mechanisms until the
wind speed reaches the cut-out speed wcout (see Figure 3.7). Finally, in the fourth
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Figure 3.7: Non-linear power curve of a wind turbine

region, when the wind speed exceeds wcout, the turbine stops working to prevent
damage.

b) Power generation by solar PV

The average power output of solar PV at a given hour ‘t’, denoted as (P t
P V ), can be

calculated as follows:

P t
P V =

Ni∑
k=1

PGP V k ×Pi(it
k) (3.40)

where Ni symbolizes the total number of discrete solar irradiance phases, and it
k

refers to the kth phase of solar irradiance at the tth hour. The probability of solar
irradiance for each phase k at any given hour is estimated as follows:

Pi(it
k) =

∫ it
k,max

it
k,min

f t
i (i)di (3.41)

The power output of solar PV arrays depends on both the solar irradiance and
the ambient temperature at the installation site. The power generated by the solar
PV panels at the average solar irradiance (iak) for the kth phase can be estimated as
demonstrated in Equation (3.42) [76, 169].

PGP V k(iak) = NP V mod ×FF ×Vk × Ik (3.42)
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where NPVmod indicates the total count of PV modules, FF refers to the fill factor,
and Vk and Ik represent the voltage and current of the cell at the kth phase, respectively.
These parameters can be determined using the following equations [76, 169]:

Vk = Voc −Kv ×Tck (3.43)

FF = VMMP × IMMP

Voc × Isc
(3.44)

Tck = T t
a + iak

(
NOT −20

0.8

)
(3.45)

Ik = iak[Isc +Ki(Tck −25)] (3.46)

In the equations above, Tck(◦C) represents the cell temperature at the kth phase,
Kv and Ki are the temperature coefficients for voltage (V/◦C) and current (A/◦C),
respectively. VMMP and IMMP denote the voltage (V ) and current (A) at the maximum
power point, while Voc and Isc represent the open circuit voltage (V ) and short circuit
current (A), respectively. NOT is the nominal operating temperature of the cell (◦C),
and T t

a is the hourly average ambient temperature (◦C).

3.5 Conclusion
This chapter provided a concise yet comprehensive overview of the methods employed to
address parameter uncertainties in modern power systems, exploring various approaches
such as probabilistic and possibilistic methods, hybrid models, information gap decision
theory, robust optimization, and interval analysis. Different voltage-dependent load
models with time-varying characteristics were defined to reflect realistic consumption
patterns. Additionally, the stochastic behavior of renewable energy sources is modeled
using appropriate probability density functions, specifically the Beta and Weibull
distributions for solar photovoltaic and wind turbine power generations, respectively.
This methodological framework offers valuable guidance for planners and operators,
enabling robust and informed decision-making in the face of increasing uncertainty and
variability inherent in modern power systems.
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Chapter 4

Optimization and Metaheuristic
Algorithms

4.1 Introduction

Optimization has emerged as a powerful tool for solving complex engineering and
mathematical problems. It plays a central role in identifying the most effective solutions
by adjusting decision variables within a defined search space and according to a specified
quantitative criterion. The goal may be to either maximize or minimize a specific
objective function, depending on the nature of the problem.

In electrical engineering, optimization presents multiple challenges, stemming from
both the inherent characteristics of the problem and the requirements of the developer.
These challenges may involve linear, nonlinear, integer, or stochastic optimization, each
introducing different complexities and uncertainty. Simultaneously, user needs, such as
achieving global optimality, solution reliability and accuracy, reasonable computational
time, etc., must be satisfied. Addressing these challenges has been the focus of numerous
research employing various optimization techniques. Deterministic methods typically
depend on calculating a search direction based on derivatives concerning system design
parameters. These methods are only effective in the limited case when the desired
solution is assumed to be close to a known starting point for this search. To overcome
this limitation, researchers have increasingly explored the development and application
of metaheuristic algorithms for complex design problems in electrical engineering.

A metaheuristic algorithm is a search strategy designed to find the optimal or
near-optimal solutions to complex optimization problems that are otherwise difficult
or impractical to solve using traditional deterministic methods [173]. In real-world
scenarios characterized by incomplete information and limited resources, obtaining an
exact solution is often unfeasible, making the use of metaheuristics both imperative and
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efficient to find a quasi-optimal solution. Their emergence represents one of the most
significant advancements in optimization over recent decades. Numerous metaheuristic
algorithms have been proposed and successfully applied across multiple applications
to tackle nonlinear, non-convex, and large-dimensional optimization problems. Those
techniques rely on probabilistic and random transition mechanisms. Consequently,
metaheuristics are particularly advantageous as they have proven to be a compromise
tool for identifying the best solutions with less computational effort than deterministic
or greedy approaches, which enables effective decision-making and optimal resource
allocation in complex systems [174].

In this chapter, we present the optimization definition and principle and explore
the widely used nature-inspired metaheuristic optimization algorithms in the electrical
engineering field, such as Grey Wolf Optimization (GWO) and Jellyfish Search Opti-
mization (JSO), as well as two recently developed algorithms, namely the Black-Winged
Kite Algorithm (BKA) and the Frilled Lizard Optimization (FLO), all of which are
proposed and implemented in the present study. By critically analyzing the advantages
and limitations of various metaheuristic approaches, researchers and practitioners can
make more informed and strategic decisions in selecting and tailoring these methods to
address complex optimization challenges in distribution networks. We will also intro-
duce an Improved Frilled Lizard Optimization (IFLO) algorithm, designed to address
complex optimization problems with enhanced efficiency and robustness. Specifically,
we will enhance the standard FLO algorithm by incorporating three advanced strategies
to improve its search capabilities and achieve a more effective balance between the
exploration and exploitation phases. The chapter concludes with a comprehensive
evaluation of the IFLO performance, using a set of 23 benchmark functions. This assess-
ment includes a comprehensive comparison with several state-of-the-art metaheuristic
algorithms, offering insights into the efficacy of the proposed IFLO. The analysis
incorporates statistical evaluations, convergence curves, and boxplots generated from
multiple independent runs.

4.2 Optimization process

Optimization is often reduced to mathematical solution techniques, to which the
encountered failures are subsequently attributed. However, as with most problems to
be solved, optimization must follow a systematic approach consisting of different steps,
as illustrated in Figure 4.1. This process begins with clearly defining the problem
and formulating a mathematical model, followed by selecting an appropriate solution
method to explore potential solutions. While these steps may proceed sequentially,
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Figure 4.1: Steps for solving an optimization problem

iterative processes and feedback loops are often essential to ensuring optimization
objectives are met [175, 176]. The process continues until the convergence criterion is
satisfied.

4.3 Formulation of the optimization problem

The formulation of the optimization problem is a fundamental step in the design
process, as it directly influences the success of subsequent stages. This stage is
not straightforward, since the selection of design variables is seldom unique, and
current computational resources can only handle a limited number of variables. The
design problem, as defined by the specifications, must be translated into an equivalent
mathematical formulation. This transformation is the most delicate phase of the design
process, as multiple formulations are often possible, especially in defining the objective
functions and constraints that represent the system’s performance. Specifically, it
involves the definition of [177]:

4.3.1 Objective function

The objective function represents one of the key outputs of the optimization problem,
defining the goal it aims to achieve. It can typically assume one of two forms: either a
cost function to be minimized, such as production cost, energy consumption, opera-
tional expenditure, or development time, or a performance indicator to be maximized,
including parameters like profit, system efficiency, or transmission factor. The choice
of the desired objective function is essential in formulating the optimization problem,
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as it not only specifies the nature of the optimization problem but also significantly
influences the modeling strategy employed for its resolution.

In single-objective optimization, the determination of the objective function is
generally straightforward. For example, when the task involves identifying the design
parameters of a system that meets predefined performance criteria, the objective
function may be expressed as the deviation between the achieved and the desired
performance metrics. However, in more complex optimizations requiring accommo-
dating multiple objectives, some of which may be conflicting, all objectives must be
considered simultaneously. This introduces additional complexity to the optimization
process, necessitating an appropriate and balanced objective function formulation.
A well-defined objective function is therefore essential for guiding the optimization
algorithm towards achieving a well-balanced and satisfactory solution [178].

4.3.2 Control parameters

Control parameters or decision variables are adjustable factors within a system that
directly influence its performance. These parameters can encompass various forms, such
as geometric dimensions, material properties, or structural configurations. They can be
either quantitative or qualitative and may be continuous or discrete. The identification
and number of control parameters play a crucial role in defining the structure and
complexity of the optimization problem. Raising the number of adjustable variables
can expand the search space, thereby increasing the possibility of discovering better
solutions. However, this also leads to increased computational efforts and optimization
processing times [178, 179].

4.3.3 Constraints

Constraints are commonly imposed by the designer and play a crucial role in ensuring
that the optimization process produces feasible and robust solutions. These constraints
may encompass requirements related to permissible geometric configurations, the
physical validity of the adopted model, production capabilities, safety standards, or
operational limitations necessary for proper system functioning [178]. Additionally,
device-specific constraints might involve adherence to operational temperature ranges,
environmental conditions, or compliance with relevant regulatory standards throughout
the device’s lifecycle. Such constraints are formulated based on the designer’s expertise
and specific objectives, thereby guiding the optimization algorithm toward solutions
that are both technically sound and contextually appropriate. Ethical considerations,
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strategic requirements, and personal design preferences can also be encoded to shape
the solution space [180, 181].

By incorporating these constraints, the optimization process delivers optimal out-
comes that are both feasible and applicable in real-world scenarios.

4.4 Optimization methods
Optimization methods refer to a wide range of techniques employed to find the best
possible solution to a problem within a defined search space and a given set of constraints.
These methods are essential in various fields, including engineering, economics, and
computer science, and they aim to either maximize or minimize an objective function,
depending on the problem. Optimization problems in electrical engineering pose several
challenges, including user requirements, problem characteristics, and computational
time constraints. While many studies rely on exact solution methods that guarantee
optimality, there are some cases where solutions of satisfactory quality are sought
without the guarantee of optimality but with the benefit of reduced computational
time [11, 182].

Optimization methods can broadly be classified into two main categories: conven-
tional methods and metaheuristic methods.

4.4.1 Conventional methods

Conventional methods involve techniques based on well-established mathematical
frameworks for problem-solving, commonly categorized into two groups:

4.4.1.1 Analytical techniques

Analytical techniques model the optimization problem using a set of mathematical
equations and aim to derive a direct or exact solution through conventional analytical
procedures. These methods are valued for their straightforward implementation and
short computation time while ensuring convergence toward optimal solutions [74].
However, their applicability and computational efficiency can be limited when dealing
with large-scale or highly complex systems.

4.4.1.2 Deterministic techniques

Deterministic techniques form a class of mathematical approaches that iteratively
improve an initial solution to converge toward an optimum. These techniques are
conventionally divided into two categories: Linear Programming, which addresses
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problems with linear objective functions and constraints, and Nonlinear Programming,
which accommodates nonlinearity in either the objective function or the constraints.
However, these techniques suffer from limitations including computational complexity
as the number of decision variables grows, requiring substantial computation time,
and may become trapped in local optima when applied to non-convex and large-scale
optimization problems [183, 184]

4.4.2 Metaheuristic methods

The term metaheuristic is derived from two Greek words: "meta," meaning "beyond" or
"at a superior level," and "heuristic," referring to the act of "finding" or "discovering."
[185]. Metaheuristics are a class of optimization algorithms, also called approximation
algorithms, designed to address complex and computationally challenging problems
where traditional mathematical methods may be ineffective or impractical. These
algorithms offer a solution to optimization problems often faced by engineers and
decision-makers. Typically, metaheuristics are stochastic, meaning they incorporate
randomness, and iterative, meaning they refine solutions progressively over multiple
iterations. As search algorithms, they aim to understand the structure of a problem
and approximate its optimal solution effectively [177].

The search process in metaheuristics is guided by two primary phases: exploration
and exploitation, with strategies inspired by natural phenomena, such as biological
evolution, animal behavior, and physical processes. The exploration phase enables the
algorithm to investigate unexplored areas of the solution space in search of potential
local optima. In contrast, the exploitation phase utilizes the insights gained during the
exploration phase to focus on the most promising regions of the solution space and
refine the search toward the nearest local optimum. In this later phase, the goal is to
achieve the best possible solution [11].

These methods are considered global optimization techniques, as their primary
objective is to identify the global optimum of a given function while avoiding entrapment
in local optima. Figure 4.2 illustrates the distinction between local and global optima
in an optimization problem.

4.5 Various optimization algorithms

This section presents a detailed overview of the optimization algorithms developed and
implemented in Chapter 5, including the Grey Wolf Optimization (GWO) and the
Jellyfish Search Optimization (JSO), as well as two recently developed methods: the
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Black-Winged Kite Algorithm (BKA) and the Frilled Lizard Optimization (FLO). The
latter will be improved and introduced in the next section.

4.5.1 Grey wolf optimization (GWO) algorithm

The Grey Wolf Optimizer (GWO) is a biologically inspired algorithm introduced by
Mirjalili and Lewis [186]. The GWO simulates the cooperative hunting behavior and
hierarchical leadership structure of grey wolves in the wild. To mathematically model
the social hierarchy of wolves, they are categorized into four groups based on their
fitness levels. The best solution is designated as the alpha (α) wolf. The subsequent
solutions, ranked second and third, are termed beta (β) and delta (δ) wolves. The
remaining solutions are termed as omega (ω), representing the subordinate wolves that
follow the guidance of the top three to achieve the global optimum solution. Figure 4.3
illustrates the social hierarchy of grey wolves in nature.

The optimization process in GWO is structured around three main behavioral
phases observed in wolf hunting: searching for prey, encircling the prey, and attacking
the prey. The algorithm begins by initializing a population of candidate solutions
(wolves) with randomly generated positions. These wolves then interact and evolve
according to the modeled social dynamics, driving the search toward global optimum.
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Figure 4.3: Hierarchical levels of the grey wolves [186]

4.5.1.1 Hunting strategy: Exploration phase

As previously described, grey wolves strategically surrounding their prey during the
hunting process (see Figure 4.4 (a)) To mathematically model this encircling behavior,
the following equations have been developed [186]:

M⃗ = |C⃗ · X⃗p(t)− X⃗w(t)| (4.1)
X⃗(t+1) = X⃗p(t)− A⃗ ·M⃗ (4.2)

In the above equations, t denotes the current iteration number; M⃗ represents the
distance vector between a grey wolf and its prey; X⃗p refers to the position vector of the
prey, while X⃗ indicates the position vector of a grey wolf. The operator “·” denotes
element-wise multiplication. The coefficient vectors A⃗ and C⃗ are computed as follows:

A⃗ = 2a⃗ · r⃗1 − a⃗ (4.3)
C⃗ = 2 · r⃗2 (4.4)

The parameter a⃗ decreases linearly from 2 to 0 over the course of iterations, thereby
balancing exploration and exploitation. The vectors r⃗1 and r⃗2 denote random values
uniformly distributed within the interval [0,1].

Operating a simulated social hierarchy and encircling mechanism, the GWO al-
gorithm efficiently navigates the search space to identify optimal solutions for the
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optimization problem. The algorithm holds the top three candidate solutions at each
iteration, labeled as α, β, and δ, which serve as guiding leaders. The remaining search
agents, including the ω wolves, update their positions based on these select solutions.
This mechanism is mathematically realized through the iterative application of the
following equations, which emulate the hunting dynamics of grey wolves and enable
the algorithm to exploit promising regions of the solution space:

M⃗α = |C⃗1 · X⃗α − X⃗| (4.5)
M⃗β = |C⃗2 · X⃗β − X⃗| (4.6)
M⃗δ = |C⃗3 · X⃗δ − X⃗| (4.7)

X⃗1 = X⃗α − A⃗1 ·M⃗α (4.8)
X⃗2 = X⃗β − A⃗2 ·M⃗β (4.9)
X⃗3 = X⃗δ − A⃗3 ·M⃗δ (4.10)

X⃗(t+1) = X⃗1 + X⃗2 + X⃗3
3 (4.11)

Figure 4.4: (a) Surrounding the prey, (b) Attacking the prey [186]

4.5.1.2 Attacking strategy: exploitation phase

Grey wolves terminate the hunt by attacking the prey once it ceases to move, as
illustrated in Figure 4.4(b). To mathematically represent this behavior of approaching
the prey, the parameters a and A are decreased linearly with the progression of
iterations. This mechanism causes the search agents to diverge when |A⃗| > 1 and
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converge when |A⃗| < 1. During each iteration, the three leading wolves, α, β, and δ,
are identified and stored as the best solutions found thus far. The remaining wolves
update their positions using Equations (4.5) to (4.11), based on the locations of these
leading wolves. Finally, the α wolf, once the stopping criterion is satisfied, is considered
the optimal solution. Figure 4.5 illustrates the pseudo code of the GWO algorithm.

1: Initialize the grey wolf population Xi for i = 1, 2, ..., Npop
2: Initialize a, A, and C
3: Calculate the fitness of each search agent
4: Xα ← the best search agent
5: Xβ ← the second best search agent
6: Xδ ← the third best search agent
7: while t < Max number of iterations do
8: for each search agent do
9: Update the position of the current search agent using equation (4.11)

10: end for
11: Update a, A, and C
12: Calculate the fitness of all search agents
13: Update Xα, Xβ , and Xδ

14: t← t+ 1
15: end while
16: return Xα

jellyfish

1: Initialize the jellyfish population Pi for i = 1, 2, ..., Npop
2: Compute the quantity of food for each jellyfish candidate
3: P ∗ ← the jellyfish at location currently with most food
4: Initialize time: t = 1
5: repeat
6: for each jellyfish do
7: Compute the time control (c) using Equation (4.18)
8: if c ≥ 0.5 then . Jellyfish follows ocean current
9: Determine ocean current using Equation (4.12)

10: Update the position of jellyfish using Equation (4.13)
11: else . Jellyfish moves inside the swarm
12: if rand ≥ (1−c) then . Jellyfish exhibits Type A motion (Passive)
13: Update the position of jellyfish using Equation (4.14)
14: else . Jellyfish exhibits Type B motion (Active)
15: Determine the direction of jellyfish using Equation (4.16)
16: Update the position of jellyfish using Equation (4.17)
17: end if
18: end if
19: Check boundaries and compute quantity of food at new location
20: Update both the individual position (Pi) and the best food location (P ∗)
21: end for
22: t← t+ 1
23: until t ≥ Max number of iterations
24: Display the best results

12

Figure 4.5: Pseudo code of the GWO algorithm

4.5.2 Jellyfish search optimizer (JSO) algorithm

The Artificial Jellyfish Search Optimizer (JSO) is a nature-inspired metaheuristic
algorithm introduced by Chou and Truong in 2021 [187]. It emulates the collective
movement and the adaptive foraging strategy of jellyfish in the ocean. The algorithm
models two primary modes of jellyfish locomotion: passive motion, driven by ocean
currents, which facilitates global exploration, and active motion within a swarm, which
enables local exploitation by allowing individuals to move toward more promising areas
based on the positions of other individuals.

Biologically, jellyfish exhibit features that allow them to control their movements.
They contract their underside like an umbrella mechanism to push out water and propel
themselves forward. They also use their tentacles to catch and release venom that
immobilizes their prey. These natural traits are abstracted into the algorithm’s structure
to balance exploration and exploitation. A key feature of the JSO is integrating a time
control mechanism, which governs the switching between passive and active movement,
which then converges into a jellyfish bloom, as depicted in Figure 4.6 [188].
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Figure 4.6: Jellyfish movements in ocean [188]

The optimization process begins with a randomly initialized population and itera-
tively updates the positions of jellyfish until a defined stopping criterion is satisfied.
Due to its adaptability, simplicity, and robust performance, JSO has shown competitive
performance in addressing a wide range of complex optimization problems.

The following subsections present the mathematical modeling of jellyfish behavior
and movements in the ocean.

4.5.2.1 Ocean current

The direction of the ocean current, denoted as −−−→trend, is determined by calculating the
average of the vectors pointing from each jellyfish’s position to the current jellyfish
with the best position in the population, using [187]:

−−−→trend = P ∗ −β × rand(0,1)×µ (4.12)

where, P ∗ represents the jellyfish currently occupying the best position within the
swarm, β is a distribution coefficient, and µ denotes the mean position of all jellyfish
in the population.

The updated position of each jellyfish is then determined by

Pi(t+1) = Pi(t)+rand(0,1)× (P ∗ −β × rand(0,1)×µ) (4.13)

4.5.2.2 Jellyfish swarm motions

Jellyfish exhibit two distinct types of motions within a swarm: passive motion (Type A)
and active motion (Type B). During the initial stages of swarm formation, the majority
of jellyfish exhibit Type A motion. However, over time, they increasingly exhibit Type
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B motion. The jellyfish’s motion of type A, which involves local exploration around
the jellyfish’s current position and the corresponding updated location of each jellyfish,
is mathematically expressed as follows [187]:

Pi(t+1) = Pi(t)+ δ × rand(0,1)× (Uba −Lba) (4.14)

Here, δ denotes the motion coefficient, while Uba and Lba represent the upper and
lower bounds of the search space, respectively.

The jellyfish’s motion of type B reflects active movement within the swarm, where
each jellyfish adjusts its position based on interactions with other individuals. Specifi-
cally, one jellyfish moves toward another based on food availability at their respective
locations. Equations (4.15 - 4.17) provide the simulation of type B motion, including
the step calculation, direction of motion, and updated location of a jellyfish, as follows
[187]:

−−→Step = rand(0,1)×
−−−−−−→Direction (4.15)

−−−−−−→Direction =

Pj(t)−Pi(t) if h(Pi) ≥ h(Xj)
Pi(t)−Pj(t) if h(Pi) < h(Xj)

(4.16)

Pi(t+1) = Pi(t)+−−→Step (4.17)

where h represents the objective function that evaluates the position Pi.
A time control mechanism is utilized to determine the motion type over time. This

mechanism governs both type A and type B motions within the swarm, as well as the
movements of jellyfish toward ocean currents. The formulation of the time control
mechanism is expressed in the following equation:

c(t) =
∣∣∣∣(1− t

Maxiter

)
× (2× rand(0,1)−1)

∣∣∣∣ (4.18)

where t denotes time, represented as the iteration number, and Maxiter refers to the
maximum number of iterations, which is a predefined parameter. Figure 4.7 illustrates
the pseudo code of the JFO algorithm.

4.5.3 Black-winged kite algorithm (BKA)

The Black-Winged Kite Algorithm (BKA) is a novel nature-inspired optimization
method introduced by Jun Wang et al. in 2024 [189]. This algorithm is based
on the migratory and predatory behaviors of the black-winged kite, a bird known
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1: Initialize the grey wolf population Xi for i = 1, 2, ..., Npop
2: Initialize a, A, and C
3: Calculate the fitness of each search agent
4: Xα ← the best search agent
5: Xβ ← the second best search agent
6: Xδ ← the third best search agent
7: while t < Max number of iterations do
8: for each search agent do
9: Update the position of the current search agent using equation (4.11)

10: end for
11: Update a, A, and C
12: Calculate the fitness of all search agents
13: Update Xα, Xβ , and Xδ

14: t← t+ 1
15: end while
16: return Xα

jellyfish

1: Initialize the jellyfish population Pi for i = 1, 2, ..., Npop
2: Compute the quantity of food for each jellyfish candidate
3: P ∗ ← the jellyfish at location currently with most food
4: Initialize time: t = 1
5: repeat
6: for each jellyfish do
7: Compute the time control (c) using Equation (4.18)
8: if c ≥ 0.5 then . Jellyfish follows ocean current
9: Determine ocean current using Equation (4.12)

10: Update the position of jellyfish using Equation (4.13)
11: else . Jellyfish moves inside the swarm
12: if rand ≥ (1−c) then . Jellyfish exhibits Type A motion (Passive)
13: Update the position of jellyfish using Equation (4.14)
14: else . Jellyfish exhibits Type B motion (Active)
15: Determine the direction of jellyfish using Equation (4.16)
16: Update the position of jellyfish using Equation (4.17)
17: end if
18: end if
19: Check boundaries and compute quantity of food at new location
20: Update both the individual position (Pi) and the best food location (P ∗)
21: end for
22: t← t+ 1
23: until t ≥ Max number of iterations
24: Display the best results

12

Figure 4.7: Pseudo code of the JFO algorithm

for its exceptional migratory patterns and hunting strategies. By emulating these
natural behaviors, the BKA effectively explores the solution space and resolves complex
optimization problems. The following subsections provide a detailed mathematical
modeling of the black-winged kite’s biological behavior and search movements within
the solution space.

4.5.3.1 Initialization phase

The BKA process begins with the random generation of an initial population. Each
candidate solution, representing the position of a black-winged kite (B), is structured
in matrix form as follows [189]:

B =



B1,1 · · · B1,k · · · B1,dim
... . . . ... . . . ...

Bi,1 · · · Bi,k · · · Bi,dim
... . . . ... . . . ...

Bn,1 · · · Bn,k · · · Bn,dim


(4.19)
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where n denotes the total number of candidate solutions, dim represents the size of
the optimization problem, and Bij refers to the jth dimension of the ith black-winged
kite. The initial positions of the black-winged kites are generated using a uniform
distribution within the predefined search boundaries.

Pi = Blb +rand(BUb −BLb), (4.20)

where i ranges from 1 to n, BLb and BUb represent the lower and upper bounds
of the ith black-winged kite in the jth dimension, respectively, and rand denotes a
uniformly distributed random value in the interval [0,1].

4.5.3.2 Attacking behavior

As a predator of small grassland mammals and insects, the black-winged kite demon-
strates adaptive flight behaviors by adjusting its wing and tail angles according to wind
speed. During hunting, it hovers quickly to observe potential prey and then swiftly
dives to capture it. This predatory mechanism reflects a combination of exploratory
and exploitative search strategies. Figure 4.8(a) shows the hovering phase, where the
black-winged kite maintains balance with outstretched wings, while Figure 4.8(b) de-
picts the moment just before the high-speed rush toward its target. The mathematical
model below describes the attack behavior of the black-winged kite [189]:

zij
t+1 =

zij
t +k(1+sin(r))× zij

t , if ρ < r

zij
t +k × (2r −1)× zij

t , else
(4.21)

with

k = 0.05× e−2×( t
T )2

(4.22)

In the equations above, zijt and zijt+1 represent the positions of the ith Black-
winged kite in the jth dimension at the tth and (t+1)th iterations, respectively. The
variable r represents a uniformly distributed random number in the range [0,1], while
ρ is a constant set to 0.9. T symbolizes the maximum number of iterations, and t

indicates the current iteration count.

4.5.3.3 Migration behavior

Bird migration is a complex behavioral process affected by various environmental
factors, including climate variability and food availability. To adapt to seasonal
changes, many bird species migrate from northern to southern regions during winter
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Figure 4.8: (a) Black-winged kites hovering in the air, waiting for attack, and (b)
hovering in the air, searching for prey [189]

in search of more favorable living conditions and abundant resources. Usually, this
migration is guided by leaders whose navigational abilities are critical to the flock’s
success. A hypothesis is proposed to model the migration behavior: if the fitness of a
given individual in the population is lower than that of a randomly selected one, the
leader will give up leadership and integrate into the migrating group, signifying its
unsuitability to guide others. Conversely, if the individual’s fitness value exceeds that
of the random population, it continues to lead the group toward the destination. This
mechanism allows the dynamic identification and selection of the best leaders, thereby
enhancing the efficiency and success of the migration process. The migration behavior
of black-winged kites is modeled mathematically as follows [189]:

zij
t+1 =

zij
t +C(0,1)×

(
zij

t −Lj
i

)
, Fi < Fri

zij
t +C(0,1)×

(
Lj

i −y × zij
t

)
, else

(4.23)

with
y = 2× sin

(
r + π

2

)
(4.24)

In the above model, Lj
i denotes the leading scorer of the Black-winged kite in

the jth dimension at the tth iteration. zij
t and zij

t+1 represent the position of the ith

Black-winged kite in the jth dimension at iteration steps t and t+ 1, respectively. The
term Fi refers to the fitness value associated with the current position of the ith kite in
the jth dimension, while Fri corresponds to the fitness value of a randomly selected
position in the same dimension and iteration. The operator C(0,1) represents the
Cauchy mutation. Figure 4.9 illustrates the pseudo code of the BKA algorithm.
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1: Input: Objective function f(x), population size Npop, max iterations Tmax
2: Output: Best solution Xbest

3: Initialize population Pi for i = 1, 2, ..., Npop within bounds
4: Evaluate fitness F of each individual
5: while t < Tmax do
6: Phase 1: Attacking behavior
7: if ρ < r then
8: zijt+1 = zijt + k(1 + sin(r))× zijt
9: else

10: zijt+1 = zijt + k × (2r − 1)× zijt
11: end if
12: Phase 2: Migration behavior
13: Select a random individual r
14: if Fi < Fri then . Leader gives up

15: zijt+1 = zijt + C(0, 1)×
(
zijt − Lji

)

16: else . Continue to lead
17: y = 2× sin(r + π/2)

18: zijt+1 = zijt + C(0, 1)×
(
Lji − y × zijt

)

19: end if
20: Apply boundary constraints and update fitness
21: Update Xbest if improved
22: end while
23: return Xbest

Flo

1: Input: Objective function f(x), population size n, max iterations T
2: Output: Best solution Xbest

3: Initialize population matrix randomly using Equation (4.25)
4: Evaluate fitness Fi = f(Xi) for each Xi

5: for t = 1 to T do
6: for each frilled lizard Xi do
7: Phase 1: Hunting strategy . Exploration
8: Identify candidate prey Pi using Equation (4.27)
9: Randomly select the prey for the ith frilled lizard

10: Calculate the new position of ith frilled lizard using Equation (4.28)
11: Update position using attack strategy (Equation (4.29)) → XP1

i

12: Phase 2: Moving up the Tree . Exploitation
13: Calculate the new position of the ith frilled lizard using Equation (4.30)
14: Update position using retreat strategy (Equation (4.31)) → XP2

i

15: end for
16: Update Xbest if a better solution is found
17: end for
18: return Xbest

13

Figure 4.9: Pseudo code of the BKA algorithm

4.5.4 Frilled lizard optimization (FLO) algorithm

The Frilled Lizard Optimization (FLO) algorithm, introduced in 2024 by Ibraheem Abu
Falahah et al. [190], is a recent bio-inspired metaheuristic that mimics the predatory
behavior of the frilled lizard in nature. This lizard waits patiently for prey, staying
motionless until prey appears, then launching a rapid attack and feeding on it before
retreating to the safety of the treetops. This intelligent behavioral pattern, characterized
by a balance between patience and rapid action, enables the FLO to efficiently explore
the solution space, refine candidate solutions, and strategically converge toward optimal
results. Figure 4.10 shows a live picture of a frilled lizard.

The following subsections provide the mathematical modeling of frilled lizard
behavior in nature.

4.5.4.1 Initialization

The FLO algorithm initiates the search process by generating a population of randomly
distributed candidate solutions within the defined search space. Each individual in
the population, representing a frilled lizard, corresponds to a potential solution and
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Figure 4.10: Frilled lizard taken from Pinterest

is structured as a vector, as described in Equation (4.25). The entire set of these
candidate solutions is collectively represented by a matrix illustrated in Equation (4.26).
Throughout the iterative optimization process, the algorithm continuously evaluates
the fitness of each solution and selects the most optimal candidate at each iteration
[190].

xi,k = Lb+ rand× (UB −LB) k = 1,2, ...,dim. (4.25)

X =



X1
...

Xi
...

Xn


=



x1,1 · · · x1,k · · · x1,dim
... . . . ... . . . ...

xi,1 · · · xi,k · · · xi,dim
... . . . ... . . . ...

xn,1 · · · xn,k · · · xn,dim


(4.26)

where X represents the population matrix of the FLO algorithm, while Xi corre-
sponds to the ith candidate solution. Each element xi,k within this matrix represents
the kth decision variable of the ith solution. dim defines the optimization problem
dimension, while n indicates the total number of frilled lizards.

4.5.4.2 Hunting Strategy: Exploration phase

One of the distinctive natural behaviors of the frilled lizard is its sit-and-wait hunting
strategy, in which it remains unmoving and attacks prey immediately upon detection.
This behavior inspires substantial shifts in the positions of candidate solutions within

85



Chapter 4 Optimization and Metaheuristic Algorithms

the search space, thereby improving the global exploration capability of the algorithm.
In the initial stage of the FLO algorithm, the position of each individual in the
population is updated by simulating this predatory behavior. Specifically, each frilled
lizard identifies other individuals with better fitness values as prey and updates its
position accordingly, as formulated in Equation (4.27) [190].

Pi = {Xj : Fj < Fi and j ̸= i}, i = 1,2, . . . ,n and j ∈ {1,2, . . . ,n} (4.27)

Here, P represents the set of potential prey for the ith frilled lizard, where each Xj

denotes a member of the population with a better fitness value compared to that of the
ith frilled lizard. The term Fj corresponds to the objective function value associated
with the candidate solution Xj .

The FLO algorithm assumes that each frilled lizard randomly chooses one candidate
from its set of potential prey and then attacks it. This predatory action is simulated
by updating the lizard’s position based on its movement toward the selected prey, as
expressed in Equation (4.28). If the newly generated position yields a better fitness
value than the current one, it is adopted as the new position of the corresponding
individual following Equation (4.29) [170, 190].

xP 1
i,k = xi,k + rand× (SPi,k − I ·xi,k), i = 1,2, . . . ,n, and k = 1,2, . . . ,dim (4.28)

Xi =

XP 1
i , F P 1

i < Fi

Xi, else
(4.29)

where XP 1
i denotes the newly generated position of the ith frilled lizard during the

initial phase of the FLO algorithm. The component xP 1
i,k refers to the kth dimension

of this new position, while F P 1
i represents its corresponding objective function value.

The term SPi,k indicates the kth dimension of the selected prey position for the ith

lizard, and I is a randomly selected integer from the set {1,2}.

4.5.4.3 Moving up the Tree: Exploitation phase

After feeding, the frilled lizard climbs to the top of a nearby tree. This natural behavior
is emulated in the FLO algorithm to perform refining solutions, resulting in minor
positional adjustments that enhance the algorithm’s local search capability. In the
second phase of the FLO process, individual positions are updated based on the modeled
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retreat behavior of the frilled lizard. A new candidate position for each individual is
determined using Equation (4.30). If this new position yields an improved objective
function value, it replaces the previous one, as specified in Equation (4.31) [170, 190].

xP 2
i,k = xi,k +(1−2rand) · (UBk −LBk)

t
, i = 1,2, . . . ,n,

k = 1,2, . . . ,dim, t = 1,2, . . . ,Tmax

(4.30)

Xi =

XP 2
i , if F P 2

i < Fi

Xi, else
(4.31)

Here, XP 2
i represents the newly generated position of the ith frilled lizard during the

second phase of the FLO algorithm, while xP 2
i,k denotes its kth decision variable. The

corresponding objective function value is given by F P 2
i . t indicates the current iteration

number, and Tmax denotes the maximum number of iterations allowed. Figure 4.11
illustrates the pseudo code of the FLO algorithm.

1: Input: Objective function f(x), population size Npop, max iterations Tmax
2: Output: Best solution Xbest

3: Initialize population Pi for i = 1, 2, ..., Npop within bounds
4: Evaluate fitness F of each individual
5: while t < Tmax do
6: Phase 1: Attacking behavior
7: if ρ < r then
8: zijt+1 = zijt + k(1 + sin(r))× zijt
9: else

10: zijt+1 = zijt + k × (2r − 1)× zijt
11: end if
12: Phase 2: Migration behavior
13: Select a random individual r
14: if Fi < Fri then . Leader gives up

15: zijt+1 = zijt + C(0, 1)×
(
zijt − Lji

)

16: else . Continue to lead
17: y = 2× sin(r + π/2)

18: zijt+1 = zijt + C(0, 1)×
(
Lji − y × zijt

)

19: end if
20: Apply boundary constraints and update fitness
21: Update Xbest if improved
22: end while
23: return Xbest

Flo

1: Input: Objective function f(x), population size Npop, max iterations Tmax
2: Output: Best solution Xbest

3: Initialize population matrix randomly using Equation (4.25)
4: Evaluate fitness Fi = f(Xi) for each Xi

5: for t = 1 to Tmax do
6: for each frilled lizard Xi do
7: Phase 1: Hunting strategy . Exploration
8: Identify candidate prey Pi using Equation (4.27)
9: Randomly select the prey for the ith frilled lizard

10: Calculate the new position of ith frilled lizard using Equation (4.28)
11: Update position using attack strategy (Equation (4.29)) → XP1

i

12: Phase 2: Moving up the Tree . Exploitation
13: Calculate the new position of the ith frilled lizard using Equation (4.30)
14: Update position using retreat strategy (Equation (4.31)) → XP2

i

15: end for
16: Update Xbest if a better solution is found
17: end for
18: return Xbest

13
Figure 4.11: Pseudo code of the FLO algorithm
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4.6 Improved Frilled Lizard Optimization (IFLO)
algorithm

The ongoing advancements in engineering and scientific domains have created in-
creasingly complex optimization problems, posing significant challenges for existing
conventional algorithms. Consequently, there has been a growing research interest in
improving algorithms to address these rising complexities. The pursuit of algorithmic
improvement has emerged as a pivotal research focus, aiming to enhance both the
efficiency and adaptability of optimization techniques [191].

One notable stride in this process of algorithm improvement involves the incorpora-
tion of advanced strategies designed to improve robustness, convergence speed, and
avoid premature convergence.

In our specific study, improvements were implemented within the FLO algorithm,
originally designed to emulate the natural hunting behavior of the frilled lizard. The
proposed improvements include the incorporation of three distinct strategies: fitness
distance balance (FDB), quasi-opposite-based learning (QOBL), and Cauchy mutation
(CM), each contributing distinctively to improving the algorithm’s performance. The
integration of these strategies serves the purpose of further amplifying its exploration ca-
pabilities while addressing limitations linked to premature convergence and constrained
exploration and effectively escaping local optima traps. The subsequent subsections
provide a detailed mathematical description of each incorporated improvement strategy.

4.6.1 Fitness Distance Balance (FDB)

The FDB strategy serves as an effective selection mechanism in optimization algorithms,
particularly enhancing the exploration process by evaluating candidate solutions ac-
cording to their fitness and proximity to the optimal solution [192, 193]. By prioritizing
solutions that exhibit both better objective values and minimal distances to the current
optimal solution, FDB enables the algorithm to effectively explore new areas while
refining promising regions. The distance of the current candidate solution (DPi) from
the best solution (Pbest) is calculated as follows:

DPi =

√√√√√dim∑
k=1

(xi,k −Pbest,k)2, ∀i ∈ {1,2, . . . ,n}, Pi ̸= Pbest (4.32)

Subsequently, two vectors are constructed to represent the fitness and distance
values of all candidate solutions. The distance vector DP and the fitness vector F are
created as follows:
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DP = [DP1,DP2, . . .DPn] (4.33)

F = [F1,F2, . . .Fn] (4.34)

In the final stage of the FDB method, a score is computed for each candidate
solution to guide the selection process using the following formula:

SF DBi = ω × (1−normFi)+(1−ω)×normDPi (4.35)

where normFi and normDPi denote the normalized fitness and distance values
of the ith candidate solution, respectively. The parameter ω ∈ [0,1] is a weighting
coefficient that regulates the relative influence of fitness and distance score. It is
dynamically adjusted throughout the optimization process and can be formulated as
follows:

ω = 0.5×
(

1+ t

T

)
(4.36)

4.6.2 Quasi-Opposite-Based Learning (QOBL)

QOBL is an enhanced strategy derived from oppositional-based learning, designed
to improve the exploration and exploitation capabilities of the algorithm [194, 195].
QOBL enhances the search process by simultaneously considering both the current
candidate solutions and their quasi-opposite counterparts, thereby increasing the
probability of convergence toward the global optimum. Let a candidate solution be
represented as X(x1,x2, . . . ,xdim), where each decision variable xk ∈ [LBk,UBk] ∀k ∈
{1,2, . . . ,dim} is defined as Y (y1,y2, . . .ydim). Each opposite point yk is calculated as
yk = LBk +UBk −xk, and the midpoint is obtained as:

Mk = LBk +UBk

2 (4.37)

To generate a quasi-opposite point yq
k, which is statistically more probable to be

closer to the optimal solution than the opposite point yk, the following formulation is
applied:

yq
k =

Mk + rand× (yk −Mk) if yk < Mk

yk + rand× (Mk −yk) otherwise
(4.38)

where rand is the uniformly distributed random number in the range of [0, 1].
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4.6.3 Cauchy Mutation (CM)

CM is integrated into the FLO algorithm to enhance its exploration capabilities more
thoroughly across the solution space. This strategy introduces significant variability
into the population using a CM operator, thereby allowing the algorithm to escape
local optima traps and preventing premature convergence [196, 197]. The Cauchy
distribution, a continuous probability distribution characterized by two parameters, µ

and σ, governs this mutation. The probability density function of the one-dimensional
Cauchy distribution is mathematically expressed as:

f(z;σ,µ) = 1
π

σ

σ2 +(z −µ)2 , z ∈ (−∞,∞), (4.39)

When σ = 1 and µ = 0, the Cauchy probability density function simplifies to its
standard form, which is given by:

f(x;1,0) = 1
π(z2 +1) , z ∈ (−∞,∞), (4.40)

The formula for the standard Cauchy distribution is represented by Equation (4.41):

cauchy(0,1) = tan[π (ξ −0.5)] , ξ ∈ [0,1]. (4.41)

Equation (4.42) is employed to apply the CM operator on newly generated candidate
positions.

Xt+1
i = Xt

i +α ⊗Cauchy(0,1)⊗ (Xt
i −Xbest) (4.42)

where α symbolizes the step size and ⊗ denotes the entrywise multiplication
operator. Figure 4.12 show a psuedo code of the proposed IFLO algorithm.

4.7 Simulation results

The effectiveness and robustness of the suggested Improved Frilled Lizard Optimiza-
tion (IFLO) algorithm were rigorously assessed through a comparison with several
well-known and recently developed optimization methods, including the Grey Wolf
Optimizer (GWO) [186], Dingo Optimization Algorithm (DOA) [198], Harris Hawks
optimization (HHO) [199], Whale Optimization Algorithm (WOA) [200], Chernobyl
Disaster Optimizer (CDO) [201], Black-winged Kite Algorithm (BKA) [189], and the
standard Frilled Lizard Optimization (FLO) [190]. All these algorithms and simulations
were carried out using MATLAB R2021a on a computing platform equipped with
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ILFO

1: Input: Objective function f(x), population size Npop, max iterations Tmax
2: Output: Best solution Xbest

3: Initialize population matrix randomly using Equation (4.25)
4: Evaluate fitness Fi = f(Xi) for each Xi

5: for t = 1 to Tmax do
6: for each frilled lizard Xi do
7: Phase 1: Hunting strategy . Exploration
8: Identify candidate prey Pi using Equation (4.27)
9: Randomly select the prey for the ith frilled lizard

10: Calculate the new position of ith frilled lizard using Equation (4.28)
11: Update position using attack strategy (Equation (4.29)) → XP1

i

12: Phase 2: Moving up the Tree . Exploitation
13: Calculate the new position of the ith frilled lizard using Equation (4.30)
14: Update position using retreat strategy (Equation (4.31)) → XP2

i

15: The proposed modifications:
16: Apply the FDB selection strategy to update the Frilled Lizard’s position
17: and assign the best found solution
18: Update the Frilled Lizard’s position using QOBL and assign the best

found solution
19: Update the Frilled Lizard’s position based on CM and assign the best

found solution
20: end for
21: Update Xbest if a better solution is found
22: end for
23: return Xbest

14

Figure 4.12: Pseudo code of the proposed IFLO algorithm

an Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz, 8.00 GB of RAM, and a 64-bit
Windows operating system.

4.7.1 IFLO evaluation on standard benchmark functions

At the beginning, we wanted to test the efficacy of the suggested IFLO algorithm
using a set of 23 standard benchmark functions, encompassing unimodal, multimodal,
and fixed-dimension multimodal categories, as detailed in Appendix B [202–204].
The parameter settings used for all compared algorithms are provided in Table 4.1.
Each algorithm was evaluated over 30 independent trial runs, and the results were
systematically recorded.

4.7.1.1 Analysis of the statistical results

In this case, the performance of the suggested IFLO algorithm was compared with
several optimization methods, including GWO [186], DOA [198], HHO [199], WOA [200],
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Table 4.1: Setting parameters of each algorithm

Algorithm Parameter Setting Value

GWO [186]
Population size
Tmax

a

30
300
[2,0]

DOA [198]

Population size
Tmax

P
Q
β1
β2

30
300
0.5
0.7
[-2,2]
[-1,1]

HHO [199]
Population size
Tmax

Eo

30
300
[-1,1]

WOA [200]

Population size
Tmax

a1 = a2
b
l

30
300
[2,0]
1
[-1,1]

CDO [201]
Population size
Tmax

r

30
300
rand[0,1]

BKA [189]
Population size
Tmax

p

30
300
0.9

FLO [190]
Population size
Tmax

I

30
300
rand[1,2]

IFLO
Population size
Tmax

I

30
300
rand[1,2]

CDO [201], BKA [189], and the standard FLO [190]. Table 4.2 displays the statistical
outcomes, consisting of the best, average, worst, and standard deviation (SD) values for
all algorithms. As observed from the table, the proposed IFLO consistently outperforms
other compared methods across all benchmark functions. These findings demonstrate
the superior optimization capability and robustness of the proposed IFLO algorithm
in achieving optimum results.
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Table 4.2: Statistical results of optimization algorithms on the benchmark functions

Function Measure GWO [186] DOA [198] HHO [199] WOA [200] CDO [201] BKA [189] FLO [190] IFLO

F1

Best
Average
Worst
SD

1.287E-16
3.442E-15
1.858E-14
3.834E-15

4.120E-247
2.167E-28
6.500E-27
1.187E-27

3.766E-75
1.767E-60
5.218E-59
9.522E-60

2.197E-54
3.221E-42
4.059E-41
9.726E-42

1.892E-82
8.327E-79
8.524E-78
1.912E-78

6.818E-63
7.522E-44
2.256E-42
4.120E-43

5.179E-245
6.963E-227
2.022E-225
0

0

0

0

0

F2

Best
Average
Worst
SD

5.297E-10
1.316E-09
3.509E-09
7.725E-10

1.376E-124
3.737E-23
1.111E-21
2.028E-22

2.489E-38
7.004E-33
7.354E-32
1.650E-32

3.446E-35
9.276E-30
1.942E-28
3.561E-29

1.189E-43
6.960E-41
4.876E-40
1.070E-40

3.106E-31
1.741E-28
1.143E-27
3.153E-28

1.549E-122
7.132E-114
2.118E-112
3.865E-113

0

0

0

0

F3

Best
Average
Worst
SD

5.384E-04
8.805E-02
4.287E-01
1.086E-01

2.714E-289
8.763E-36
2.629E-34
4.800E-35

1.232E-63
1.089E-45
2.028E-44
4.235E-45

2.866E+04
6.282E+04
1.089E+05
1.963E+04

6.503E-71
3.142E-54
9.421E-53
1.720E-53

2.358E-62
3.884E-49
7.588E-48
1.549E-48

3.595E-212
1.374E-162
4.121E-161
7.372E-162

0

0

0

0

F4

Best
Average
Worst
SD

2.486E-04
6.748E-04
1.494E-03
3.103E-04

2.368E-151
6.268E-25
1.331E-23
2.562E-24

2.575E-37
5.684E-31
1.580E-29
2.880E-30

8.811E-02
5.360E+01
8.827E+01
3.300E+01

7.006E-40
1.267E-37
7.342E-37
1.861E-37

2.378E-31
4.300E-24
1.289E-22
2.353E-23

4.299E-125
7.956E-117
1.236E-115
3.019E-116

0

0

0

0

F5

Best
Average
Worst
SD

2.593E+01
2.747E+01
2.877E+01
8.984E-01

2.882E+01
2.892E+01
2.899E+01
4.198E-02

1.471E-04
3.370E-02
3.283E-01
6.005E-02

2.787E+01
2.841E+01
2.881E+01
3.590E-01

2.789E+01
2.819E+01
2.874E+01
2.243E-01

2.733E+01
2.826E+01
2.896E+01
4.958E-01

0
0
0
0

0

0

0

0

F6

Best
Average
Worst
SD

2.234E-01
9.570E-01
1.996E+00
4.891E-01

3.497E+00
5.636E+00
6.898E+00
8.675E-01

7.151E-07
4.801E-04
3.278E-03
7.050E-04

1.753E-01
8.839E-01
1.690E+00
4.102E-01

7.500E+00
7.500E+00
7.500E+00
0

1.554E+00
3.049E+00
6.414E+00
1.224E+00

0
0
0
0

0

0

0

0

F7

Best
Average
Worst
SD

1.639E-03
3.711E-03
9.103E-03
1.653E-03

3.961E-05
8.825E-04
2.949E-03
9.445E-04

2.108E-05
2.981E-04
2.256E-03
4.127E-04

2.851E-05
5.719E-03
2.886E-02
6.123E-03

8.888E-06
1.630E-04
7.011E-04
1.401E-04

8.786E-05
5.436E-04
1.413E-03
3.324E-04

5.163E-06
8.908E-05
3.692E-04
7.645E-05

5.354E-07

5.209E-05

1.438E-04

3.517E-05

F8

Best
Average
Worst
SD

-8.063E+03
-6.010E+03
-3.426E+03
1.028E+03

-6.554E+03
-4.724E+03
-3.455E+03
7.277E+02

-1.257E+04
-1.256E+04
-1.235E+04
4.002E+01

-1.256E+04
-9.889E+03
-6.684E+03
1.912E+03

-5.167E+03
-3.728E+03
-2.936E+03
4.744E+02

-1.050E+04
-8.817E+03
-7.081E+03
8.633E+02

-1.257E+04
-9.597E+03
-8.681E+03
1.353E+03

-1.257E+04

-1.079E+04

-9.016E+03

1.807E+03

F9

Best
Average
Worst
SD

4.093E-12
8.162E+00
2.349E+01
6.094E+00

0
0
0
0

0
0
0
0

0
0
0
0

0
1.088E+02
2.512E+02
1.149E+02

0
0
0
0

0
0
0
0

0

0

0

0

F10

Best
Average
Worst
SD

4.975E-09
1.156E-08
3.124E-08
5.925E-09

8.882E-16
1.007E-15
4.441E-15
6.486E-16

8.882E-16
8.882E-16
8.882E-16
0

4.441E-15
7.046E-15
1.510E-14
2.273E-15

4.441E-15
4.441E-15
4.441E-15
0

8.882E-16
1.007E-15
4.441E-15
6.486E-16

8.882E-16
8.882E-16
8.882E-16
0

8.882E-16

8.882E-16

8.882E-16

0

F11

Best
Average
Worst
SD

2.554E-15
6.080E-03
3.807E-02
1.099E-02

0
0
0
0

0
0
0
0

0
5.407E-02
5.527E-01
1.470E-01

0
3.404E-03
2.346E-02
6.600E-03

0
0
0
0

0
0
0
0

0

0

0

0

93



Chapter 4 Optimization and Metaheuristic Algorithms

Table 4.2: Statistical results of optimization algorithms on the benchmark functions
(Continued)

Function Measure GWO [186] DOA [198] HHO [199] WOA [200] CDO [201] BKA [189] FLO [190] IFLO

F12

Best
Average
Worst
SD

2.042E-02
5.770E-02
1.400E-01
3.109E-02

2.512E-01
5.677E-01
1.626E+00
2.770E-01

6.700E-08
2.588E-05
1.245E-04
3.245E-05

1.570E-02
5.879E-02
4.630E-01
8.221E-02

1.106E+00
1.451E+00
1.669E+00
2.723E-01

6.368E-02
1.890E-01
6.891E-01
1.611E-01

1.571E-32
1.571E-32
1.571E-32
5.567E-48

1.571E-32

1.571E-32

1.571E-32

5.567E-48

F13

Best
Average
Worst
SD

4.533E-01
8.546E-01
1.479E+00
2.540E-01

2.119E+00
2.861E+00
3.156E+00
2.634E-01

1.323E-06
2.315E-04
8.604E-04
2.270E-04

2.817E-01
7.618E-01
1.442E+00
3.073E-01

3.547E-01
5.825E-01
8.250E-01
1.146E-01

1.188E+00
2.090E+00
2.998E+00
4.718E-01

1.350E-32
1.350E-32
1.350E-32
5.567E-48

1.350E-32

1.350E-32

1.350E-32

5.567E-48

F14

Best
Average
Worst
SD

9.980E-01
5.761E+00
1.267E+01
4.386E+00

9.980E-01
2.670E+00
5.929E+00
1.766E+00

9.980E-01
1.592E+00
5.929E+00
1.285E+00

9.980E-01
2.837E+00
1.076E+01
2.618E+00

8.937E+00
1.506E+01
1.830E+01
2.611E+00

9.980E-01
1.295E+00
4.950E+00
8.677E-01

9.980E-01
9.982E-01
1.003E-00
9.639E-04

9.980E-01

9.980E-01

9.980E-01

0

F15

Best
Average
Worst
SD

3.160E-04
5.806E-03
2.036E-02
8.930E-03

3.075E-04
2.918E-03
2.255E-02
6.435E-03

3.081E-04
4.139E-04
1.630E-03
2.357E-04

3.086E-04
8.229E-04
2.252E-03
6.231E-04

3.164E-04
3.740E-04
7.761E-04
9.749E-05

3.075E-04
2.492E-03
2.036E-02
6.071E-03

3.196E-04
7.698E-04
1.661E-03
4.607E-04

3.075E-04

3.111E-04

3.266E-04

4.821E-06

F16

Best
Average
Worst
SD

-1.032E+00
-1.032E+00
-1.032E+00
6.438E-08

-1.032E+00
-1.032E+00
-1.032E+00
1.803E-10

-1.032E+00
-1.032E+00
-1.032E+00
6.040E-08

-1.032E+00
-1.032E+00
-1.032E+00
8.293E-09

-1.029E+00
-1.004E+00
-9.999E-01
8.734E-03

-1.032E+00
-1.032E+00
-1.032E+00
5.455E-16

-1.032E+00
-1.029E+00
-1.012E+00
5.022E-03

-1.032E+00

-1.032E+00

-1.032E+00

6.584E-16

F17

Best
Average
Worst
SD

3.979E-01
3.980E-01
3.996E-01
3.115E-04

3.979E-01
3.979E-01
3.979E-01
3.243E-16

3.979E-01
3.980E-01
3.987E-01
1.690E-04

3.979E-01
3.979E-01
3.981E-01
4.157E-05

3.979E-01
4.058E-01
5.820E-01
3.334E-02

3.979E-01
3.979E-01
3.979E-01
0

3.979E-01
4.216E-01
6.257E-01
5.690E-02

3.979E-01

3.979E-01

3.979E-01

0

F18

Best
Average
Worst
SD

3.000E+00
3.000E+00
3.001E+00
1.192E-04

3.000E+00
3.000E+00
3.004E+00
6.823E-04

3.000E+00
3.000E+00
3.000E+00
5.150E-06

3.000E+00
3.000E+00
3.000E+00
2.125E-07

3.000E+00
3.182E+01
8.404E+01
3.510E+01

3.000E+00
3.000E+00
3.000E+00
3.141E-15

3.000E+00
9.163E+00
3.131E+01
9.370E+00

3.000E+00

3.000E+00

3.000E+00

1.330E-15

F19

Best
Average
Worst
SD

-3.863E+00
-3.862E+00
-3.860E+00
7.728E-04

-3.863E+00
-3.828E+00
-3.090E+00
1.439E-01

-3.863E+00
-3.858E+00
-3.852E+00
3.401E-03

-3.863E+00
-3.852E+00
-3.810E+00
1.323E-02

-3.862E+00
-3.858E+00
-3.848E+00
3.347E-03

-3.863E+00
-3.863E+00
-3.863E+00
4.025e-13

-3.862E+00
-3.705E+00
-2.907E+00
1.814E-01

-3.863E+00

-3.863E+00

-3.863E+00

2.710E-15

F20

Best
Average
Worst
SD

-3.322E+00
-3.271E+00
-3.084E+00
7.157E-02

-3.322E+00
-3.185E+00
-2.578E+00
1.473E-01

-3.277E+00
-3.011E+00
-2.600E+00
1.596E-01

-3.321E+00
-3.238E+00
-3.031E+00
1.006E-01

-3.314E+00
-3.219E+00
-3.101E+00
5.720E-02

-3.322E+00
-3.293E+00
-3.202E+00
5.082E-02

-3.128E+00
-2.629E+00
-1.953E+00
3.297E-01

-3.322E+00

-3.290E+00

-3.203E+00

5.348E-02

F21

Best
Average
Worst
SD

-1.015E+01
-8.212E+00
-2.369E+00
2.867E+00

-1.015E+01
-7.597E+00
-2.630E+00
2.977E+00

-9.825E+00
-5.201E+00
-4.996E+00
8.734E-01

-1.015E+01
-8.578E+00
-2.627E+00
2.594E+00

-9.627E+00
-5.374E+00
-2.795E+00
1.510E+00

-1.015E+01
-9.652E+00
-2.630E+00
1.909E+00

-1.015E+01
-9.139E+00
-5.055E+00
1.915E+00

-1.015E+01

-1.015E+01

-1.015E+01

6.019E-15

F22

Best
Average
Worst
SD

-1.040E+01
-1.040E+01
-1.039E+01
2.244E-03

-1.040E+01
-7.430E+00
-2.766E+00
3.313E+00

-5.088E+00
-5.077E+00
-5.029E+00
1.405E-02

-1.040E+01
-7.817E+00
-1.836E+00
3.169E+00

-6.926E+00
-5.240E+00
-3.209E+00
9.806E-01

-1.040E+01
-9.958E+00
-3.724E+00
1.694E+00

-1.040E+01
-9.741E+00
-5.088E+00
1.679E+00

-1.040E+01

-1.040E+01

-1.040E+01

4.665E-16

F23

Best
Average
Worst
SD

-1.054E+01
-9.992E+00
-2.422E+00
2.058E+00

-1.054E+01
-7.595E+00
-2.419E+00
3.476E+00

-5.128E+00
-5.037E+00
-2.764E+00
4.295E-01

-1.053E+01
-5.368E+00
-1.676E+00
2.850E+00

-7.510E+00
-5.503E+00
-2.675E+00
1.218E+00

-1.054E+01
-9.866E+00
-3.833E+00
2.045E+00

-1.054E+01
-9.82E+00
-5.128E+00
1.782E+00

-1.054E+01

-1.054E+01

-1.054E+01

1.143E-15
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4.7.1.2 Analysis of convergence curves

The convergence curve of the suggested IFLO algorithm is illustrated in Figure 4.13,
alongside other efficient optimization techniques, including GWO [186], DOA [198],
HHO [199], WOA [200], CDO [201], BKA [189], and the original FLO [190]. According
to the convergence curves, the suggested IFLO achieves faster convergence across
unimodal, multimodal, and fixed-dimension multimodal benchmark functions. Notably,
IFLO surpasses the performance of the original FLO by reaching the optimal solution
more swiftly. This improved performance can be attributed to the proposed enhance-
ments, which effectively strengthen both the exploration and exploitation capabilities of
the algorithm, thereby enabling a more efficient convergence toward optimal solutions.
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Figure 4.13: Comparative convergence analysis of algorithms on benchmark functions
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Figure 4.13: Comparative convergence analysis of algorithms on benchmark functions
(continued)

4.7.1.3 Analysing data using Boxplots

Boxplots serve as an effective means for visualizing the statistical distribution of
data, particularly through quartile representation, and are widely used to emphasize
key features such as central tendency, spread, and the presence of outliers. In this
study, Figure 4.14 presents a comparative boxplot analysis of the proposed IFLO
algorithm against several well-established and efficient optimizers. These boxplots
provide a statistical summary of the performance distributions derived from multiple
simulation runs across 23 benchmark functions. A narrower boxplot observed for the
IFLO algorithm indicates lower variance, signifying that it delivers more stable and
consistent results concerning solution quality and convergence speed. This consistency
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also implies reduced sensitivity to random initialization and fewer outliers. Contrarily,
the wider boxplots of other algorithms on certain benchmark functions reveal higher
variability, underscoring less reliable performance and a diminished ability to achieve
the optimal optimization goals. Moreover, the occurrence of outliers in the boxplots
of the compared algorithms underscores their occasional performance degradation in
certain problems. This variability indicates a lack of robustness in handling diverse
optimization scenarios. Hence, the IFLO algorithm exhibits a more stable performance
with minimal outliers, reinforcing its superiority in terms of consistency across a wide
range of benchmark functions and simulation scenarios.
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Figure 4.14: Statistical comparison of various optimizers using boxplots on test
function
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Figure 4.14: Statistical comparison of various optimizers using boxplots on test
function (Continued)

4.8 Conclusion

In this chapter, we explored the foundational principles of optimization and dis-
tinguished between exact optimization methods and metaheuristic techniques. We
provided an in-depth description of various metaheuristic optimization algorithms,
providing the mathematical modeling inspired by their natural behaviors. Particular
attention was given to the proposed Improved Frilled Lizard Optimization (IFLO)
algorithm, which incorporates three advanced strategies, including fitness distance
balance (FDB), quasi-opposite-based learning (QOBL), and Cauchy mutation (CM) to
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strengthen the algorithm’s search capabilities and establish a more effective balance
between the exploration and exploitation processes.

The performance of the IFLO algorithm was rigorously evaluated using a set of 23
benchmark test functions and compared against several well-established and recent
optimization algorithms, including Grey Wolf Optimizer (GWO), Dingo Optimization
Algorithm (DOA), Harris Hawks Optimization (HHO), Whale Optimization Algorithm
(WOA), Chernobyl Disaster Optimizer (CDO), Black-winged Kite Algorithm (BKA),
and the conventional Frilled Lizard Optimization (FLO). The comparative analysis,
drawn from statistical evaluations, convergence curves, and boxplot visualizations,
confirmed the superior performance level of the suggested IFLO technique. Specifically,
the algorithm consistently achieved higher-quality solutions and demonstrated faster
convergence over these existing methods.

Overall, the proposed modifications effectively enhanced exploration capability,
mitigated the risks of premature convergence, and improved the algorithm’s ability to
escape local optima traps, thereby ensuring robust and reliable performance across a
diverse set of optimization problems.
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Chapter 5

Solving the Optimal Planning
Problem of Renewable Energy
Sources in Distribution Grids

5.1 Introduction

The integration of renewable energy source-based distributed generation (RES-based
DG), as said in Chapter One, plays a crucial role in enhancing network performance.
However, when not optimally planned, incorporating these energy sources may lead to
increased power losses, significant voltage deviations, and reduced system stability [8].
Therefore, the optimal allocation and sizing of DG units are essential to ensure their
beneficial impact on the overall operation and reliability of the distribution system.

Solving the optimal planning problem of RES-based DG in distribution grids presents
a complex optimization challenge that must consider various operational constraints
and inherent uncertainties, including fluctuations in load demand and the intermittent
nature of renewable energy generation. To effectively address these challenges, advanced
optimization techniques are needed to determine the most suitable locations, sizes,
and operating power factors of DG units in non-convex search spaces while satisfying
system constraints and maintaining power quality standards. Traditional methods
often fail to locate the global optimum as they can become trapped in local minima.

To overcome the limitations of conventional optimization techniques, this chapter
introduces a novel Improved Frilled Lizard Optimizer (IFLO), specifically developed
to address the optimal planning problem of renewable energy sources, namely wind
turbines (WT) and solar photovoltaic (SPV) systems, within radial distribution grids
(RDGs). This chapter is structured to examine the applied algorithm across two
distinct cases. In the first case, a single-objective optimization problem is addressed
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without considering uncertainty in load or generation, focusing solely on minimizing
active power losses within the IEEE 69-bus medium-scale distribution system. The
second case involves a more complex and realistic case study applied to the IEEE
85-bus large-scale distribution system. Here, a multi-objective optimization framework
is adopted, incorporating uncertainties in both load and generation over a seasonal
planning horizon. The objectives in this scenario are to simultaneously minimize
average annual active power losses and voltage deviation while maximizing the yearly
average voltage stability index, all within the bounds of operational constraints. This
approach reflects practical and forward-looking planning goals for modern distribution
systems.

The effectiveness of the proposed IFLO algorithm is rigorously compared to other
well-established and efficient methods, including GWO, JSO, BKA, and the original
FLO, all of which are also proposed and implemented in this chapter.

5.2 RES-based DG planning without uncertainties

In this case study, we focus on an analysis conducted on a system operating under
peak load conditions within a controlled environment free from uncertainties. This
deterministic setup simplifies the optimization process by neglecting any uncertainties
related to load demand or renewable generation outputs, thereby enabling a direct
evaluation of the algorithm’s performance under ideal operating conditions. This pre-
liminary investigation serves as a foundational step, providing a clearer understanding
of system dynamics, unraveling its inherent characteristics, and paving the way for
more complex analyses that account for uncertainty. These visualizations contribute
to a deeper, holistic understanding of the key dynamic elements that influence power
systems, aiding in strategic decision-making and resource planning.

5.2.1 Problem Description

The primary objective of this initial case of DG planning problem is to minimize
active power losses in the distribution grid while adhering to all system operational
constraints. Referring to Figure 5.1, the branch’s active power loss, denoted as Piloss

is expressed as follows:

Piloss = RbiI
2
bi = Rbi

P 2
i+1 +Q2

i+1
|Vi+1|2

(5.1)

Similarly, The branch’s reactive power loss, denoted as Qiloss, is given by
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Qiloss = XbiI
2
bi = Xbi

P 2
i+1 +Q2

i+1
|Vi+1|2

(5.2)

where Pi+1 and Qi+1 denote the active and reactive power demands at bus i+1,
respectively. Vi+1 represents the voltage magnitude at the same bus. Ibi refers to the
current flowing through the branch i, while Rbi and Xbi denote the corresponding
branch resistance and reactance, respectively.

The total active power loss, indicated by TPloss, is expressed as

TPloss =
Nb∑
i=1

Piloss (5.3)

The corresponding total reactive power loss, indicated by TQloss, is given by

TQloss =
Nb∑
i=1

Qiloss (5.4)

where Nb represents the total number of branches.

Figure 5.1: Equivalent two-bus model of the grid

5.2.2 System limitations

The proposed optimization methods must adhere to all system constraints, including
voltage limits (minimum and maximum), DG unit location and capacity, power balance,
permissible DG power factor range, and thermal limits. A detailed description of each
constraint is provided below.

5.2.2.1 Equality constraints

The power balance equations are defined as equality constraints expressed as follows:

Psub +
∑

PDG =
∑

Pi,loss +
∑

Pd (5.5)

Qsub +
∑

QDG =
∑

Qi,loss +
∑

Qd (5.6)
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where Psub and Qsub symbolize the active and reactive power injected by the
substation into the distribution grid, respectively. PDG and QDG represent the active
and reactive power contributions from the DGs. Pd and Qd correspond to the active and
reactive power demands of loads. The power losses within the system are represented
by Pi,loss for active power loss and Qi,loss for reactive power loss.

5.2.2.2 Inequality constraints

• DG location limits: DGs can be placed on any bus in the system, except the
slack bus as follow:

2 ≤ DGloc ≤ Nb (5.7)

• Bus voltage limits: The voltage magnitude at each bus is constrained within the
following bounds (in per unit):

0.95 ≤ Vi ≤ 1.05 (5.8)

• DG capacity limits: The generation limits of DGs are defined as follows:

∑
PDG ≤ Pd,

∑
QDG ≤ Qd (5.9)

• Thermal limit: The current in each branch must not exceed its maximum allowable
capacity, as follows:

Ii ≤ Ii,max (5.10)

• DG power factor limits: The PF range for each DG unit can be set as:

0.7 ≤ PFDG ≤ 1 (5.11)

5.2.3 Simulation Results and Discussions

The developed IFLO algorithm is initially implemented and tested on the IEEE 69
bus medium-scale system [146] without considering any uncertainty. The system load
flow calculations are carried out using the backward/forward-sweep method [87, 138],
chosen for its accuracy, simplicity, and computational efficiency. The study seeks to
determine the optimal placement and sizing of DG units in the RDG to reduce total
active power losses while respecting all operational constraints. The optimization
process examines two operating PFs of DG units across two distinct scenarios:
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• Scenario 1: DGs integration operating at unity power factor (unity-PF)

• Scenario 2: DGs integration operating at optimal power factor (optimal-PF)
within the permissible range specified in Equation (5.11)

For each scenario, system performance is recorded for configurations with one, two,
and three DG units. The effectiveness of the proposed IFLO method is evaluated
by comparing its outcomes against other well-established and effective optimization
techniques, including GWO, JSO, BKA, and the original FLO, which are also proposed
and implemented in this study, along with other existing optimization methods from
the literature. A common population size of 100 and a maximum of 100 iterations are
applied to each algorithm to ensure a fair comparison.

5.2.3.1 Scenario 1: DGs integration operating at unity-PF

In this scenario, DGs are assumed to generate only active power, typical of solar PV
arrays. Table 5.1 presents the optimal DG placement and sizing results identified by
the proposed IFLO algorithm, alongside results produced by additional techniques
implemented in this study, including GWO, JSO, BKA, and the original FLO. It also
includes results from techniques in the literature addressing the same optimization
problem, such as Particle Swarm Optimization (PSO) [205] and the Modified Gravita-
tional Search Algorithm (MGSA) [87]. Upon reviewing the table, the IFLO algorithm
matches or outperforms other methods in achieving the optimum results. With a
single DG integrated into the RDG, IFLO lowers the system’s active power losses from
224.961 kW/102.147 kVAr to 83.192 kW/40.523 kVAr. The optimal placement is at bus
61, with a recommended size of 1872.647 kW. This solution raises the lowest voltage of
node 65 from 0.9092 p.u. to 0.9789 p.u. The new lowest voltage node becomes node
27, whose voltage is 0.9683 p.u. The average execution time was 5.93 seconds.

For two DG units installed, the IFLO further lowers active power losses to 71.658
kW. The optimal siting involves installing a 1781.467 kW unit at bus 61 and a 531.175
kW unit at bus 17. This configuration raises the minimum system voltage from
the base case value of 0.9092 p.u. to 0.9790 p.u. at bus 65, providing a slightly
better performance than other methods. Indicatively, the mean execution time for our
developed IFLO was 6.46 seconds. When three DG units are integrated, the IFLO
algorithm effectively determines their optimal locations and sizes, outperforming other
methods by achieving the lowest power losses of 69.419 kW. The most suitable locations
are buses 11, 61, and 17, with the minimum system voltage reaching 0.9790 pu at bus
65. Roughly, the average execution time of the proposed IFLO was 6.59 seconds.

Figures 5.2 - 5.4 display the convergence curves of the different optimization methods
for configurations with one, two, and three DG units, respectively. In every case, IFLO
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Table 5.1: Results of integrating 1, 2, and 3 DGs with unity power factor into the RDG

Scenario Method Optimal
Location

Optimal
Sizes (kW) TPloss (kW) TQloss (kVAr) Vmin /Bus

No DGs - - - 224.961 102.147 0.9092/65

1 DG

MGSA [87] 61 1820.81 83.28 40.64 0.9682/27
PSO [205] 61 1870 83.22 - -
GWO 61 1872.589 83.192 40.523 0.9683/27
JSO 61 1872.647 83.192 40.523 0.9683/27
BKA 61 1872.647 83.192 40.523 0.9683/27
FLO 61 1872.647 83.192 40.523 0.9683/27
IFLO 61 1872.647 83.192 40.523 0.9683/27

2 DGs

MGSA [87] 61 1786.90 71.73 - -17 573.24
PSO [205] 61 530 71.68 - -17 1870
GWO 61 1781.353 71.660 35.935 0.9789/6518 530.296
JSO 61 1781.464 71.659 35.933 0.9789/6517 531.174
BKA 61 1781.467 71.659 35.933 0.9789/6517 531.175
FLO 22 487.272 72.126 36.133 0.9789/6561 1787.444
IFLO 61 1781.467 71.658 35.933 0.9790/6517 531.175

3 DGs

MGSA [87] 15 562.65
71.90 - -61 1190.11

63 523.31
PSO [205] 11 460

69.54 - -17 440
61 1700

GWO 20 358.812
69.732 35.069 0.9788/6561 1723.270

66 503.666
JSO 67 368.882

70.002 35.199 0.9768/6518 477.379
61 1666.482

BKA 61 1726.930
69.675 35.051 0.9790/6566 459.695

18 399.268
FLO 20 378.125

69.718 35.052 0.9768/6511 635.620
61 1637.144

IFLO 11 526.827
69.410 34.953 0.9790/6561 1718.966

18 380.052
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Figure 5.2: Convergence curves for single DG optimisation at Unity-PF
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Figure 5.3: Convergence curves for two DG optimisation at Unity-PF

demonstrates a faster convergence rate, achieves the optimum fitness value, and does
so in markedly fewer iterations than the competing algorithms.

Figure 5.5 illustrates the voltage profiles recorded with and without DG integration
relative to the base case. The plot demonstrates that the voltage level improves
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following the integration of DG units, with the most significant enhancements observed
when two or three DGs are installed.
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5.2.3.2 Scenario 2: DGs integration operating at optimal-PF

Unlike the former scenario, where DG units were assumed to supply solely active power,
this scenario considers DGs capable of generating both active and reactive powers,
typical of wind turbines. Here, the DG’s power factor is treated as an additional
decision variable, ranging from 0.7 to 1. In simpler words, the optimization process
simultaneously determines the three parameters of optimal placement, sizing, and
PF of each DG unit. The corresponding reactive power output is calculated based
on the active power and the optimized PF. Accordingly, the optimization problem is
formulated as a three-dimensional problem for a single DG operating at an optimal
PF, and it expands to six and nine dimensions when considering two and three DG
units, respectively.

Table 5.2 summarizes the optimal locations, sizes, and PFs for one, two, and
three DGs integrated into the RDG without imposing a fixed unity-PF, alongside the
corresponding reductions in system active losses, reactive losses, and improvements in
minimum voltages. Likewise, the obtained results are compared with those from other
proposed and implemented efficient algorithms, along with findings from previous state-
of-the-art studies, to confirm the effectiveness of the proposed approach. Once again,
the results in Table 5.2 demonstrate the superior performance of the proposed IFLO
algorithm in solving the optimal DG planning problem compared to other methods.
This scenario confirms that operating DG units at optimal PFs leads to significantly
greater reductions in power losses and improvements in voltage profiles than Scenario
1, where DGs were assumed to operate at unity PF.

Figures 5.6 - 5.8 illustrate the convergence curves of the various optimization
methods for scenarios involving one, two, and three DG units operating at optimal PFs,
respectively. In each case, the proposed IFLO algorithm exhibits a faster convergence
rate and attains the optimal fitness value within significantly fewer iterations than
other compared algorithms. For indicative purposes, the average execution time for our
developed IFLO was 6.63 seconds. This accelerated convergence and superior optima
are attributable to the enhanced strategies embedded in IFLO, which help it avoid
premature convergence on local minima while rapidly steering the search toward the
global optimum.

Comparing the two scenarios, operating DG units at optimal PFs delivers a marked
improvement in system performance over operation at unity PF, underscoring the
benefits of flexible PF operation. Moreover, as displayed in Figure 5.9, a significant
enhancement in voltage profiles across all buses is observed. The results presented
in Table 5.1 and Table 5.2 validate the effectiveness of the proposed IFLO algorithm,
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Table 5.2: Results of integrating 1, 2, and 3 DGs with optimal power factor into the
RDG

Scenario Method Optimal
Location

Optimal
Sizes (kW)/PF TPloss (kW) TQloss (kVAr) Vmin /Bus

No DGs - - - 224.961 102.147 0.9092/65

1 DG

MGSA [87] 61 1820.59/0.815 23.15 14.38 0.9724/27
PSO [205] 61 2220/0.81 23.20 - -
GWO 61 1825.968/0.815 23.147 14.375 0.9724/27
JSO 61 1828.412/ 0.815 23.147 14.369 0.9725/27
BKA 61 1828.412/ 0.815 23.147 14.369 0.9725/27
FLO 61 1828.412/ 0.815 23.147 14.369 0.9725/27
IFLO 61 1828.412/0.815 23.147 14.369 0.9725/27

2 DGs

MGSA [87] 61 1647.04/0.812 7.89 8.52 0.9923/6918 456.31/0.826
PSO [205] 61 2130/0.81 7.20 - -17 630/0.82
GWO 61 1670.270/ 0.783 8.520 8.387 0.9942/5014 641.932/0.870
JSO 61 1736.379/0.814 7.202 8.042 0.9942/5017 522.596/0.827
BKA 18 525.530/0.833 7.204 8.046 0.9942/5061 1732.700/0.813
FLO 18 630.599/ 0.862 8.189 8.370 0.9934/6561 1597.907/ 0.782
IFLO 17 522.042/0.828 7.201 8.044 0.9943/5061 1734.674/0.814

3 DGs

MGSA [87] 61 970.82/0.715
8.61 8.47 0.9943/5064 722.92/0.902

17 601.04/0.789
PSO [205] 11 660 0.83

4.61 - -18 460 0.81
61 2060 0.81

GWO 21 282.944/0.816
7.459 8.199 0.9935/6961 1701.814/0.784

15 202.984/0.891
JSO 18 473.975/0.827

5.188 2.784 0.9930/6961 1703.679/0.815
50 637.569/0.845

BKA 23 336.425/ 0.821
4.652 6.960 0.9943/5061 1663.489/ 0.808

12 404.234/ 0.756
FLO 22 425.437/0.797

6.212 7.493 0.9911/6511 526.497/0.777
61 1479.322/0.781

IFLO 11 494.322/0.813
4.267 6.758 0.9943/5061 1674.327/0.814

18 378.861/0.833

109



Chapter 5 Solving the Optimal Planning Problem of Renewable Energy
Sources in Distribution Grids

0 10 20 30 40 50 60 70 80 90 100

Iteration

23

24

25

26

27

28

29

30

31
T

P
lo

ss
 (

kW
)

GWO
JSO
BKA
FLO
IFLO

90 95 100
23.146

23.148

23.15

23.152
Zoomed-in View

Figure 5.6: Convergence curves for one DG optimization at Optimal-PF
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Figure 5.7: Convergence curves for two DG optimization at Optimal-PFs

demonstrating its capability to address problems involving multiple decision variables
and expanded search spaces.

By neglecting uncertainties associated with load demand and renewable energy
generation, the study highlights the potential of the proposed optimization method
to enhance system performance over other conventional methods, under idealized
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Figure 5.9: Voltage profile of RDG before and after DG integration at optimal-PFs

conditions. However, while these results provide valuable insights, they serve as a
benchmark for evaluating the performance of the optimization approach under more
complex and realistic scenarios, where uncertainty plays a significant role.
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5.3 RES planning considering uncertainties

In this section, we delve into a more complex optimization framework that accounts for
uncertainties in both load demand and power generation within a larger distribution
grid while addressing multiple objective functions. This realistic scenario captures
the inherent variability of distribution grids integrating RESs. The presence of these
uncertainties significantly increases the complexity of the optimization problem, requir-
ing the application of sophisticated techniques capable of effectively addressing this
dynamic optimization challenge. To this end, we apply our proposed IFLO algorithm
to concurrently determine the optimal number and placement of WTs and SPV strings,
as well as the optimal PF settings of the WTs, within an 85-bus large-scale distribution
system [147].

The multi-objective functions include minimizing average annual power losses and
voltage deviation while maximizing the yearly average voltage stability index, all
within operational constraints. This study incorporates real-world uncertainties in
RES, including variations in wind speed, solar irradiance, ambient temperature, and
time-varying load demand, using historical data collected from a study region located
in the south of Algeria over a seasonal planning horizon. The proposed IFLO approach
is compared against other established and efficient optimization techniques, which are
also proposed and implemented in this work.

Finally, a comprehensive analysis of the results will be conducted to gain a deeper
understanding of the system’s behavior under uncertain conditions, offering insights
into both the challenges and potential opportunities that may arise. This analysis
facilitates predictive decision-making through a nuanced, data-driven assessment of
probabilistic outcomes.

5.3.1 Problem description with uncertainty

This work case addresses the challenge of achieving optimal grid operation by solving
the optimal planning problem for RESs, specifically WTs and SPV arrays, alongside
determining the optimal PF settings for the WTs within the RDG. Under uncertain
conditions, the optimization must be adapted to account for the variability in key
parameters. The following subsections present the detailed mathematical formulations
of the three objective functions and the associated constraints.

5.3.1.1 Objective functions

The objective functions examined in this case study are as follows:
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a) Power loss reduction: RDGs are particularly prone to high real power losses,
primarily due to their elevated resistance to reactance (R/X) ratios. Assessing
and minimizing these losses is essential for improving the overall operational
efficiency of the grid. Following load flow analysis, the annual average power loss
can be expressed as follows:

APloss =

Nt∑
t=1

Nb∑
i=1

Rbi

∣∣∣∣ V t
i −V t

i+1
Rbi+jXbi

∣∣∣∣2
Nt

(5.12)

where Vi and Vi+1 denote the voltage magnitudes at the sending bus i and
the receiving bus i + 1 at the tth hour, respectively. Rbi and Xbi represent the
resistance and reactance of the ith branch. Nb is the total number of branches,
and Nt is the total number of time periods (hours).

b) Voltage deviation minimization: Voltage deviation quantifies the deviation
of bus voltage magnitudes from a specified reference value, Vref, typically set
to 1 p.u. Minimizing VD is essential for ensuring compliance with operational
standards and maintaining power quality. The annual average total voltage
deviation (AVD) can be formulated as follows:

AV D =

Nt∑
t=1

N∑
i=1

(
Vref −|V t

i |
)2

Nt
(5.13)

Here, N denotes the total number of buses, and V t
i represents the voltage

magnitude at bus i during the tth hour.

c) Voltage stability index maximization:

As discussed in Chapter Two, the Voltage Stability Index (VSI) reflects the power
system’s ability to maintain stable voltage levels under varying load conditions.
For reliable grid operation, the VSI should remain greater than zero across
all buses in the distribution grid. Buses exhibiting lower VSI values are more
vulnerable to voltage instability. Therefore, maximizing the VSI is essential to
ensure system stability. The mathematical expression for the VSI at the (i+1)th

bus in a radial distribution grid at the tth hour is given as follows [206]:

V SIt
i+1 = |V t

i |4−4(P t
di+1Rbi +Qt

di+1Xbi)|V t
i |2−4(P t

di+1Xbi −Qt
di+1Rbi)2 (5.14)
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where P t
di+1 and Qt

di+1 represent the active and reactive power demands, re-
spectively, at the (i+1)th bus during the tth hour. The annual average voltage
stability index (AVSI) for the entire distribution grid can be expressed as follows:

AV SI =

Nt∑
t=1

N−1∑
i=1

V SIt
i+1

Nt
(5.15)

The optimization problem simultaneously considers the three aforementioned ob-
jective functions. A weighted aggregation sum method is employed to formulate the
multi-objective function. Accordingly, the fitness function is defined as follows:

Fitness = δ1F1 + δ2F2 + δ3F3 (5.16)

with,

3∑
i=1

δi = 1, δi ∈ [0,1] (5.17)

The following formulas are used to normalize the objective functions:

F1 = APloss

APlossbase
(5.18)

F2 = AV D

AV Dbase
(5.19)

F3 = AV SI

AV SIbase
(5.20)

where F1, F2, and F3 denote the normalized objective functions, and δ1, δ2, and δ3

are the corresponding weighting factors, chosen as 0.5, 0.25, and 0.25, respectively [207].

5.3.1.2 System constraints

In addressing the optimal planning problem of RESs, the proposed approach must
satisfies all system constraints, including both equality and inequality constraints, as
outlined below.

a) Equality constraints Maintaining a balance between power generation and the
total power demand, including losses, is essential to prevent reverse power flow,
which can potentially harm the system. These power balance constraints are
formulated as follows:
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P t
sub +

Nf∑
i=1

P t
WT ×nWT,i +

Nf∑
i=1

P t
PVS ×nPVS,i =

N∑
j=2

P t
d,j +

Nb∑
j=1

P t
loss,j (5.21)

Qt
sub +

Nf∑
i=1

Qt
WT ×nWT,i =

N∑
j=2

Qt
d,j +

Nb∑
j=1

Qt
loss,j (5.22)

where P t
sub and Qt

sub denote the total active and reactive power supplied by
the substation to the distribution grid at the tth hour, respectively. P t

WT and
P t

PVS represent the power generated by WTs and SPV strings at the tth hour,
respectively. Nf indicates the number of farms, while nWT,i and nPV,i denote the
number of installed WT and SPV units in the ith farm. P t

d,j and Qt
d,j correspond

to the active and reactive power demands at branch j during time period t. The
total active and reactive power losses in branch j at time t are represented by
P t

loss,j and Qt
loss,j , respectively.

b) Inequality constraints

• RES-based DG location limit: Each type of DG can be installed at any bus
in the system, except at the slack bus (substation), as expressed below:

2 ≤ DGloc,j ≤ N j ∈ type (5.23)

• Bus voltage limit: The voltage level at each bus must be held within specified
standard limits in real-time, as given below:

Vmin ≤ V t
i ≤ Vmax (5.24)

In the inequality above, Vmin and Vmax represent the minimum and maximum
permissible voltage levels at any bus during each hour.

• RES-based DG penetration limits: The total rated capacity of the integrated
RESs must not exceed the overall system load demand, as described below:

Nf∑
i=1

P t
WT,rated ×nWT,i +

Nf∑
i=1

P t
PVS,rated ×nPVS,i ≤

N∑
j=2

P t
d,j (5.25)

• WT power factor limit: The PF of each wind farm is treated as an adjustable
parameter within the optimization process, enabling reactive power support
when needed. It falls within the following range:
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PFmin ≤ PFi ≤ PFmax i = 1,2, . . . ,Nf (5.26)

Accordingly, the reactive power supplied by each wind farm at each hour t

is defined as a function of the active power and PF as expressed below:

Qt
WT ×nWT,i = P t

WT ×nWT,i × tan
(
cos−1(PFi)

)
i = 1,2, . . . ,Nf (5.27)

On the other side, SPV arrays are assumed to operate at a unity-PF, as
they are typically designed to generate only active power, without supplying
or absorbing reactive power.

• Thermal limit: To ensure line security, the current flowing through branch i

at the tth hour, denoted as It
bi, must remain below its specified maximum

limit, as expressed below:

It
bi ≤ Imax

bi i = 1,2, . . . ,Nb (5.28)

where Imax
bi symbolizes the maximum current-carrying capacity of the ith

branch.

5.3.2 Data analysis

Analyzing local weather data alongside load patterns is a critical initial step in ad-
dressing the optimal planning problem of RESs into distribution grids. The system
under study is assumed to follow the standard time-varying load profile of the IEEE-
RTS [64, 169]. The annual load is divided into four seasons: summer, autumn, winter,
and spring. Each seasonal load is represented by the hourly load of a day (24 hours),
resulting in a total of 96 hours (24 × 4) that represent the entire year’s load profile
(8760 hours). Accordingly, the seasonal hourly load profile is illustrated in Figure 5.10.

Historical data on wind speed, solar irradiance, and ambient temperature were
collected from the In Salah region, a province located in central Algeria, in the Sahara,
over a decade (from 01 January 2012 to 31 December 2021). These data are accessible
through the NASA website [208]. Figure 5.11 shows the precise location of In Salah
Province.

For this study, each year is divided into four seasons: summer (May to July),
autumn (August to October), winter (November to January), and spring (February
to April). Each season is represented by a day of 24 hours, capturing the hourly
variability of RESs during that season. Consequently, the entire year is represented
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Figure 5.10: Seasonal hourly load profile

Figure 5.11: Geographical location of the studied area shown on Google Maps

by four seasonal days, totaling 96 hours. Weibull and beta PDFs are then generated
for each hour to accurately fit the hourly seasonal wind speed and solar irradiance,
respectively. The adjustment steps are set at 1 m/s for wind speed and 0.05 kW/m2

for solar irradiance. For illustration, the probability distributions of wind speed for
the 22nd hour in summer and solar irradiance for the 14th hour in spring are shown in
Figure 5.12 and Figure 5.13, respectively.

The ambient temperature is represented by averaging the hourly temperature values
for each season. Accordingly, the seasonal hourly average temperatures are depicted in
Figure 5.14.
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Figure 5.12: Weibull PDF of wind speed for the 22nd hour of summer (for k = 3.4217
and c = 9.8850).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Solar irradiance (kW/m²)

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Figure 5.13: Beta PDF of solar irradiance for the 14th hour of spring (for µ=0.4042
and σ= 0.1012)

5.3.3 Simulation Results and Discussions

The proposed IFLO algorithm is applied to the 85-bus large-scale RDG of 11 kV [147].
The developed load-generation model serves as input data to address the optimal
planning problem of RESs into the distribution grid. Load flow analysis is performed
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Figure 5.14: Seasonal hourly average temperature

using the backward/forward sweep method [138], which is well-suited for radial grid
structures. A schematic representation of the optimization flow process adopted in the
proposed framework is shown in Figure 5.15.

This study examines the integration of two wind farms and two solar farms into
the RDG. The WTs employed have a rated capacity of 250 kW each, while each SPV
string comprises 20 panels, yielding a total output rated at 4.4 kW per string. The
technical specifications of both the SPV modules and WTs are summarized in Table
5.3 [103].

To evaluate the performance of the proposed IFLO algorithm, a comparative analysis
is conducted against three well-established and effective optimization techniques, namely
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Figure 5.15: Optimization flow process for addressing the optimal planning problem of
RESs into the RDG
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Table 5.3: Technical Parameters of SPV and WT unit

Parameters Value
SPV unit
Current at maximum power point, IMPP 7.76 A
Voltage at maximum power point, VMPP 28.36 V
Short circuit current, Isc 8.38 A
Open circuit voltage, Voc 36.96 V
Nominal cell operating temperature, NOT 49 ◦C
Current temperature coefficient, Ki 0.00545 A/◦C
Voltage temperature coefficient, Kv 0.1278 V/◦C
WT unit
Rated output power, Prated 250 kW
Cut-in speed, win 3 m/s
Rated speed, wN 12 m/s
Cut-out speed, wout 25 m/s

GWO, BKA, and the original FLO algorithm. All algorithms are applied to the same
dataset to ensure consistency and fairness in comparison. The population size and
maximum number of iterations are fixed at 30 and 50, respectively, as detailed in
Table 5.4, along with the operational system constraints. The modeling of uncertainties
associated with WTs, SPV systems, and load demand is discussed in detail in Chapter
Three, within the context of the hourly planning horizon.

Table 5.4: Parameters values limitations

Parameters Value
Number of population 30
Maximum iterations 50
Voltage boundaries [108] 0.9 p.u ≤ V t

i ≤ 1.05 p.u

Size of WT units 0 ≤ WT ≤ 10 turbines
Size of SPV strings 0 ≤ SPV ≤ 584 strings
WT Power factor 0.7 ≤ PF ≤ 1
SPV system power factor 1

Table 5.5 summarizes the energy management results for the 85-bus system using
the different optimization techniques, both before and after the integration of RES units.
These results underscore the system performance enhancements achieved through the
suitable installation of WTs and SPV strings. In the base case, without any RES
integration, the annual average power losses, voltage deviation, and voltage stability
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Table 5.5: Optimal planning results for RESs integration into the 85-bus RDG

Specification Without RESs
With RESs installation

GWO BKA FLO IFLO

RES Parameters

Optimal location of SPV farms –
46

29

42

51

45

48

52

70

Optimal number of SPV strings –
25

84

114

12

83

103

74

55

Optimal rated power of SPV farms (kW) –
110

370

502

53

365

453

326

242

Optimal location of WT farms –
63

34

34

68

35

64

35

68

Optimal number of installed WT units –
1

7

5

3

4

3

5

3

Optimal rated power of WT farms (kW) –
250

1750

1250

750

1000

750

1250

750

Optimal PF of WTs (kW) –
1

0.7000

0.7068

0.7005

0.7264

0.7066

0.7000

0.7000

System Performance Metrics

Annual average Ploss (kW) 118.2953 46.0170 35.6760 40.0428 35.1939

Annual average VD (p.u) 0.30662 0.0790 0.0688 0.0753 0.0659

Annual average VSI (p.u) 1.3744 1.1757 1.1359 1.1515 1.1315

Annual average min VSI (p.u) 0.7355 0.8566 0.8856 0.8737 0.8884

Annual average min voltage (p.u) 0.9252 0.9614 0.9696 0.9663 0.9704

Best fitness value - 0.47277 0.41347 0.44013 0.40834
Note: Bolded values represent the best obtained solutions.

index were recorded at 118.2953 kW, 0.30662 p.u., and 0.7355 p.u., respectively.
Following the incorporation of RES units, the proposed IFLO algorithm effectively
determines optimal control parameters for WTs and SPV strings, resulting in a
significant reduction in annual average power losses to 35.1939 kW (a 70.25% decrease),
a reduction in voltage deviation to 0.0659 p.u. (an improvement of 78.51%), and an
increase in the voltage stability index to 0.8884 p.u. (a 20.79% enhancement).

The optimal placements for WT farms are determined at Buses 35 and 68, with 5
and 3 WT units installed, respectively. For SPV farms, the optimal locations are Buses
52 and 70, comprising 74 and 55 SPV strings, respectively. This corresponds to WT
ratings of 1250 kW and 750 kW and SPV ratings of 326 kW and 242 kW, respectively.
According to the obtained results in Table 5.5, it is evident that the proposed IFLO
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algorithm exhibits superior performance over other methods, namely GWO, BKA, and
the original FLO, in achieving optimum results.

Figure 5.16 and Figure 5.17 display the predicted seasonal power generation from
each WT and SPV farm. These figures demonstrate the variability in power output
throughout the year due to changes in key uncertain factors such as wind speed, solar
irradiance, and ambient temperature.
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Figure 5.16: Predicted hourly seasonal power generated by wind farms
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Figure 5.17: Predicted hourly seasonal power generated by SPV farms

Figure 5.18 and Figure 5.19 show the system voltage profiles of both with and
without RES integration. It is clear from these figures that there is a significant
enhancement in voltage levels following the incorporation of WT units and SPV
strings.
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Figure 5.18: Seasonal voltage profiles for the 85-bus RDG without RESs integration
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Figure 5.19: Seasonal voltage profiles for the 85-bus RDG in the presence of RESs

Moreover, as shown in Figure 5.20, the incorporation of RES leads to a notable
reduction in power losses across seasons of the year, particularly during peak load
periods, demonstrating the impact of RES in improving system efficiency and reducing
energy costs. Additionally, Figure 5.21 depicts the positive effect of RES integration

123



Chapter 5 Solving the Optimal Planning Problem of Renewable Energy
Sources in Distribution Grids

on voltage stability, with a consistent improvement observed throughout seasons of the
year. These findings further underscore the benefits of RES integration in maintaining
stable and reliable voltage levels.
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Figure 5.20: Seasonal power losses for the 85-bus RDG without and with the
integration of RESs
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Figure 5.21: Minimum VSI recorded at prior and after the integration of RESs for
each season and hour

Table 5.6 provides a performance comparison of fitness values obtained by the IFLO
algorithm against other efficient optimization techniques, namely GWO, BKA, and
the original FLO. The results demonstrate that the proposed method outperforms the
others across key performance metrics: mean, best, and worst values, demonstrating
its robustness and effectiveness in addressing the optimal planning problem of RESs.
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Table 5.6: Fitness value comparison of algorithms

Algorithm Best Average Worst SD
GWO 0.47277 0.48293 0.50171 0.008884
BKA 0.41347 0.425872 0.44654 0.012735
FLO 0.44013 0.45965 0.47262 0.010950
IFLO 0.40834 0.40960 0.41207 0.001232

Note: Bolded values represent the best obtained solutions.
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Figure 5.22: Convergence behavior of various algorithms addressing the optimal
planning problem of RESs in the 85-bus RDG

Besides, Figure 5.22 presents the convergence behavior for the RES integration problem
in the RDG. The proposed IFLO algorithm demonstrates the fastest convergence and
achieves the lowest fitness value among the compared methods. As an indication,
the mean convergence time achieved with the proposed IFLO was 246.66 seconds per
iteration, which is very acceptable. This enhanced performance is attributed to the
improvement strategies incorporated within the algorithm.

5.4 Conclusion

This chapter tackled the complex challenge of the optimal planning problem for re-
newable energy sources (RESs), specifically the integration of wind turbines (WTs)
and solar photovoltaic (SPV) farms into distribution grids. A comprehensive analysis
and comparison were conducted to evaluate the performance of the proposed Improved
Frilled Lizard Optimization (IFLO) algorithm against other recent and efficient opti-
mization techniques, including GWO, JSO, BKA, and the original FLO, all of which
were also proposed and implemented in this study. The chapter examined two distinct
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case studies. The first addressed a single-objective optimization problem, focusing
solely on minimizing active power losses within the common IEEE 69-bus medium-scale
distribution system without accounting for uncertainties. In contrast, the second case
study considered a further complex and realistic scenario based on the IEEE 85-bus
large-scale distribution system. Here, uncertainties in both load and generation were
incorporated over a seasonal planning horizon, in which a multi-objective optimization
framework is adopted, including minimizing average annual active power losses and
voltage deviation while maximizing the yearly average voltage stability index. The
results demonstrate that the proposed IFLO algorithm significantly outperforms con-
ventional optimization methods in terms of convergence speed and solution quality.
Moreover, the detailed investigation conducted under uncertainty further confirmed
the efficacy and robustness of the IFLO technique in selecting appropriate control
parameters in the presence of uncertain factors.

In summary, the IFLO algorithm offers a valuable and efficient optimization tool for
the sustainable and reliable planning of RES units in distribution grids. By leveraging
this approach, significant reductions in power losses, enhancements in voltage profiles,
improvements in grid voltage stability, and overall increases in network efficiency
and robustness can be achieved. Consequently, the proposed method supports the
development of smart planning and operational strategies, facilitating present and
future applications in modern power system planning.
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The continued increase in energy consumption has positioned distribution networks as
a central focus from an optimization perspective. Distributed generation (DG) presents
a promising pathway to mitigate power losses, reduce voltage drops, enhance system
stability, lower carbon emissions, alleviate heavy loading, and boost long-term system
reliability. However, the unplanned integration of such DG units can negatively impact
the operational performance of distribution grids. In this context, the work presented
in this thesis addressed the challenge of the optimal planning of renewable energy
sources (RESs)-based DG, specifically wind turbines and solar photovoltaic systems
integration within radial distribution grids of various sizes and complexities.

Accordingly, we have identified the optimal locations and sizes for integrating solar
photovoltaic and wind energy sources into the IEEE 69-bus medium-scale and 85-bus
large-scale distribution grids. This was achieved by developing a novel approach, the
Improved Frilled Lizard Optimizer (IFLO) algorithm, specifically designed to address
the optimal planning problem for renewable energy integration. This approach incor-
porates advanced strategies to enhance its search capabilities and prevent premature
convergence or entrapment in local minima. In addition, other recent algorithms,
including GWO, JSO, BKA, and the original FLO, were also proposed and imple-
mented within this thesis to enable a comprehensive comparative analysis. The impact
of RES integration on key system performance metrics, such as active power losses,
voltage deviation, and voltage stability index, was thoroughly analyzed through single
and multi-objective function formulations. The backward/forward sweep method was
employed for the load flow solution due to its accuracy, robustness, and computational
efficiency, utilizing a topology-based approach.

The study accounted for uncertainties inherent to renewable energies to ensure their
reliable integration into distribution grids. Uncertainty modeling based on probability
density functions involved considering seasonal variation in wind speed, solar irradiance
availability, and fluctuation in ambient temperature throughout the year, alongside
the seasonal fluctuation in load demand. This analysis was supported by a decade of
historical meteorological data collected from the In Salah region of Algeria, all within a
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time-dependent generation-load model to develop robust and resilient renewable energy
integration strategies. Simulation results demonstrate that the newly developed IFLO
algorithm significantly outperforms other conventional methods, including GWO, JSO,
BKA, and the original FLO, in terms of convergence speed toward the global optimum
and solution quality across all scenarios.

This research presented a foundation for understanding the potential benefits and
limitations of incorporating renewable energy into electrical grids. The developed
methodological framework provides valuable guidance for planners and operators,
enabling robust and informed decision-making in the face of the increasing uncertainty
and variability inherent in modern power systems. Besides, the proposed IFLO
approach offers a powerful and promising optimization tool for enhancing multiple
performance metrics, paving the way to effective and sustainable system integration
while demonstrating its applicability to real-world scenarios.

Looking ahead, this research opens several promising directions for future investiga-
tions. The following recommendations are proposed for future work:

• Examining recent optimization techniques for solving the optimal planning
problem of RES while accounting for uncertainty. Additionally, enhancing the
search capabilities of these algorithms by integrating newly advanced strategies
to more effectively explore the search space.

• A promising area for further research is the integration of electric vehicle (EV)
charging stations alongside RES into distribution grids, considering uncertainties
related to EVs, electricity pricing fluctuations, and load growth.

• Expanding the current framework by considering additional emerging factors such
as cost-effectiveness, grid resilience under extreme conditions, and grid capacity
expansion.

• Explore and investigate advanced forecasting techniques, such as machine learning-
based models, to manage uncertainty effectively.

• Future research could investigate the optimization of distributed energy resources,
such as rooftop solar panels, small-scale wind turbines, and battery storage
systems, within distribution grids. This includes studying their impact on
distribution system security, voltage regulation, and power quality issues, such
as frequency balance, voltage stabilization, and reactive power regulation.

• Optimization in the presence of demand response programs, where consumers
adjust their power usage during peak times in response to price signals, could be
integrated into optimization frameworks to enhance network performance and
reduce operational costs.
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Appendix A

Load and line data

Table A.1: Bus data for 69-bus test system

Bus No. PL (kW) QL (kVar)
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 2.60 2.20
7 40.40 30
8 75 54
9 30 22
10 28 19
11 145 104
12 145 104
13 8 5.50
14 8 5.50
15 0 0
16 45.50 30
17 60 35
18 60 35
19 0 0
20 1 0.60
21 114 81
22 5.30 3.50
23 0 0
24 28 20
25 0 0
26 14 10
27 14 10
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Load and line data

Table A.1: Bus data for 69-bus test system (Continued)

Bus No. PL (kW) QL (kVar)
28 26 18.60
29 26 18.60
30 0 0
31 0 0
32 0 0
33 14 10
34 19.50 14
35 6 4
36 26 18.55
37 26 18.55
38 0 0
39 24 17
40 24 17
41 1.20 1
42 0 0
43 6 4.30
44 0 0
45 39.22 26.30
46 39.22 26.30
47 0 0
48 79 56.40
49 384.70 274.50
50 384.70 274.50
51 40.50 28.30
52 3.60 2.70
53 4.35 3.50
54 26.40 19
55 24 17.20
56 0 0
57 0 0
58 0 0
59 100 72
60 0 0
61 1244 888
62 32 23
63 0 0
64 227 162
65 59 42
66 18 13
67 18 13
68 28 20
69 28 20
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Load and line data

Table A.2: Line data for 69-bus test system

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

1 1 2 0.0005 0.0012
2 2 3 0.0005 0.0012
3 3 4 0.0015 0.0036
4 4 5 0.0251 0.0294
5 5 6 0.3660 0.1864
6 6 7 0.3811 0.1941
7 7 8 0.0922 0.0470
8 8 9 0.0493 0.0251
9 9 10 0.8190 0.2707
10 10 11 0.1872 0.0619
11 11 12 0.7114 0.2351
12 12 13 1.0300 0.3400
13 13 14 1.0440 0.3450
14 14 15 1.0580 0.3496
15 15 16 0.1966 0.0650
16 16 17 0.3744 0.1238
17 17 18 0.0047 0.0016
18 18 19 0.3276 0.1083
19 19 20 0.2106 0.0696
20 20 21 0.3416 0.1129
21 21 22 0.0140 0.0046
22 22 23 0.1591 0.0526
23 23 24 0.3463 0.1145
24 24 25 0.7488 0.2475
25 25 26 0.3089 0.1021
26 26 27 0.1732 0.0572
27 3 28 0.0044 0.0108
28 28 29 0.0640 0.1565
29 29 30 0.3978 0.1315
30 30 31 0.0702 0.0232
31 31 32 0.3510 0.1160
32 32 33 0.8390 0.2816
33 33 34 1.7080 0.5646
34 34 35 1.4740 0.4873
35 3 36 0.0044 0.0108
36 36 37 0.0640 0.1565
37 37 38 0.1053 0.1230
38 38 39 0.0304 0.0355
39 39 40 0.0018 0.0021
40 40 41 0.7283 0.8509
41 41 42 0.3100 0.3623
42 42 43 0.0410 0.0478
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Load and line data

Table A.2: Line data for 69-bus test system (Continued)

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

43 43 44 0.0092 0.0116
44 44 45 0.1089 0.1373
45 45 46 0.0009 0.0012
46 4 47 0.0034 0.0084
47 47 48 0.0851 0.2083
48 48 49 0.2898 0.7091
49 49 50 0.0822 0.2011
50 8 51 0.0928 0.0473
51 51 52 0.3319 0.1114
52 9 53 0.1740 0.0886
53 53 54 0.2030 0.1034
54 54 55 0.2842 0.1447
55 55 56 0.2813 0.1433
56 56 57 1.5900 0.5337
57 57 58 0.7837 0.2630
58 58 59 0.3042 0.1006
59 59 60 0.3861 0.1172
60 60 61 0.5075 0.2585
61 61 62 0.0974 0.0496
62 62 63 0.1450 0.0738
63 63 64 0.7105 0.3619
64 64 65 1.0410 0.5302
65 11 66 0.2012 0.0611
66 66 67 0.0047 0.0014
67 12 68 0.7394 0.2444
68 68 69 0.0047 0.0016
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Load and line data

Table A.3: Bus Data for 85-Bus Test System

Bus No. PL (kW) QL (kVar)
1 0 0
2 0 0
3 0 0
4 56 57.13
5 0 0
6 35.28 35.99
7 0 0
8 35.28 35.99
9 0 0
10 0 0
11 56 57.13
12 0 0
13 0 0
14 35.28 35.99
15 35.28 35.99
16 35.28 35.99
17 112 114.26
18 56 57.13
19 56 57.13
20 35.28 35.99
21 35.28 35.99
22 35.28 35.99
23 56 57.13
24 35.28 35.99
25 35.28 35.99
26 56 57.13
27 0 0
28 56 57.13
29 0 0
30 35.28 35.99
31 35.28 35.99
32 0 0
33 14 14.28
34 0 0
35 0 0
36 35.28 35.99
37 56 57.13
38 56 57.13
39 56 57.13
40 35.28 35.99
41 0 0
42 35.28 35.99
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Load and line data

Table A.3: Bus Data for 85-Bus Test System (Continued)

Bus No. PL (kW) QL (kVar)
43 35.28 35.99
44 35.28 35.99
45 35.28 35.99
46 35.28 35.99
47 14 14.28
48 0 0
49 0 0
50 36.28 37.01
51 56 57.13
52 0 0
53 35.28 35.99
54 56 57.13
55 56 57.13
56 14 14.28
57 56 57.13
58 0 0
59 56 57.13
60 56 57.13
61 56 57.13
62 56 57.13
63 14 14.28
64 0 0
65 0 0
66 56 57.13
67 0 0
68 0 0
69 56 57.13
70 0 0
71 35.28 35.99
72 56 57.13
73 0 0
74 56 57.13
75 35.28 35.99
76 56 57.13
77 14 14.28
78 56 57.13
79 35.28 35.99
80 56 57.13
81 0 0
82 56 57.13
83 35.28 35.99
84 14 14.28
85 35.28 35.99
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Load and line data

Table A.4: Line data for 85-bus test system

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

1 1 2 0.108 0.075
2 2 3 0.163 0.112
3 3 4 0.217 0.149
4 4 5 0.108 0.074
5 5 6 0.435 0.298
6 6 7 0.272 0.186
7 7 8 1.197 0.82
8 8 9 0.108 0.074
9 9 10 0.598 0.410
10 10 11 0.544 0.373
11 11 12 0.544 0.373
12 12 13 0.598 0.410
13 13 14 0.272 0.186
14 14 15 0.326 0.223
15 2 16 0.728 0.302
16 3 17 0.455 0.189
17 5 18 0.82 0.340
18 18 19 0.637 0.264
19 19 20 0.455 0.189
20 20 21 0.819 0.340
21 21 22 1.548 0.642
22 19 23 0.182 0.075
23 7 24 0.910 0.378
24 8 25 0.455 0.189
25 25 26 0.364 0.151
26 26 27 0.546 0.226
27 27 28 0.273 0.113
28 28 29 0.546 0.226
29 29 30 0.546 0.226
30 30 31 0.273 0.113
31 31 32 0.182 0.075
32 32 33 0.182 0.075
33 33 34 0.819 0.340
34 34 35 0.637 0.264
35 35 36 0.182 0.075
36 26 37 0.364 0.151
37 27 38 1.002 0.416
38 29 39 0.546 0.226
39 32 40 0.455 0.189
40 40 41 1.002 0.416
41 41 42 0.273 0.113
42 41 43 0.455 0.189
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Load and line data

Table A.4: Line data for 85-bus test system (Continued)

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

43 34 44 1.002 0.416
44 44 45 0.911 0.378
45 45 46 0.911 0.378
46 46 47 0.546 0.226
47 35 48 0.637 0.264
48 48 49 0.182 0.075
49 49 50 0.364 0.151
50 50 51 0.455 0.189
51 48 52 1.366 0.567
52 52 53 0.455 0.189
53 53 54 0.546 0.226
54 52 55 0.546 0.226
55 49 56 0.546 0.226
56 9 57 0.273 0.113
57 57 58 0.819 0.340
58 58 59 0.182 0.075
59 58 60 0.546 0.226
60 60 61 0.728 0.302
61 61 62 1.002 0.415
62 60 63 0.182 0.075
63 63 64 0.728 0.302
64 64 65 0.182 0.075
65 65 66 0.182 0.075
66 64 67 0.455 0.189
67 67 68 0.910 0.378
68 68 69 1.092 0.453
69 69 70 0.455 0.189
70 70 71 0.546 0.226
71 67 72 0.182 0.075
72 68 73 1.184 0.491
73 73 74 0.273 0.113
74 73 75 1.002 0.416
75 70 76 0.546 0.226
76 65 77 0.091 0.037
77 10 78 0.637 0.264
78 67 79 0.546 0.226
79 12 80 0.728 0.302
80 80 81 0.364 0.151
81 81 82 0.091 0.037
82 81 83 1.092 0.453
83 83 84 1.002 0.416
84 13 85 0.819 0.340
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Load and line data

Table A.5: Bus Data for the actual Portuguese 94-Bus System

Bus No. PL (kW) QL (kVar)
1 0 0
2 22.5 10.9
3 240.3 116.4
4 24.3 11.8
5 0 0
6 0 0
7 28.8 14
8 0 0
9 0 0
10 0 0
11 0 0
12 0 0
13 0 0
14 57.6 27.9
15 0 0
16 0 0
17 18.9 9.2
18 0 0
19 0 0
20 55.8 27
21 40.5 19.6
22 0 0
23 54 26.2
24 0 0
25 0 0
26 46.8 22.7
27 0 0
28 0 0
29 13.5 6.5
30 3.6 1.7
31 18 8.7
32 21.6 10.5
33 9 4.4
34 64.8 31.4
35 65.7 31.8
36 59.4 28.8
37 13.5 6.5
38 161.1 78
39 26.1 12.6
40 134.1 65
41 85.5 41.4
42 41.4 20.1
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Load and line data

Table A.5: Bus Data for the actual Portuguese 94-Bus System (Continued)

Bus No. PL (kW) QL (kVar)
43 41.4 20.1
44 41.4 20.1
45 21.6 10.5
46 25.2 12.2
47 45.9 22.2
48 36.9 17.9
49 63.9 31
50 68.4 33.1
51 27.9 13.5
52 81 39.2
53 69.3 33.6
54 62.1 30.1
55 35.1 17
56 205.2 99.4
57 31.5 15.3
58 521.1 252.4
59 212.4 102.9
60 39.6 19.2
61 45 21.8
62 17.1 8.3
63 21.6 10.5
64 35.1 17
65 70.2 34
66 34.2 16.6
67 22.5 10.9
68 45.9 22.2
69 33.3 16.1
70 36.9 17.9
71 45 21.8
72 75.6 36.6
73 67.5 32.7
74 27.9 13.5
75 38.7 18.7
76 53.1 25.7
77 65.7 31.8
78 63 30.5
79 67.5 32.7
80 45 21.8
81 9 4.4
82 16.2 7.8
83 67.5 32.7
84 296.1 143.4
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Load and line data

Table A.5: Bus Data for the actual Portuguese 94-Bus System (Continued)

Bus No. PL (kW) QL (kVar)
85 72 34.9
86 76.5 37.1
87 90.9 44
88 72 34.9
89 63 30.5
90 21.6 10.5
91 36.9 17.9
92 20.7 10
93 17.1 8.3
94 90 43.6
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Load and line data

Table A.6: Line data for the actual Portuguese 94-bus system

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

1 1 2 0.1120 0.1873
2 2 3 0.0763 0.1274
3 3 4 0.1891 0.3161
4 4 5 0.2243 0.3749
5 5 6 0.2571 0.4297
6 6 7 0.1340 0.2239
7 7 8 0.2986 0.4991
8 8 9 0.1953 0.3265
9 9 10 0.5097 0.8519
10 10 11 1.5303 1.5101
11 11 12 0.1889 0.1864
12 12 13 0.1816 0.1793
13 13 14 0.0661 0.0653
14 14 15 0.4115 0.4061
15 15 16 0.2584 0.2550
16 16 17 0.2033 0.2006
17 17 18 0.7243 0.7148
18 18 19 0.2162 0.2134
19 19 20 0.3500 0.3454
20 20 21 1.4775 0.3891
21 21 22 0.4500 0.1185
22 22 23 0.7710 0.2030
23 23 24 0.8850 0.2331
24 24 25 0.9915 0.2611
25 25 26 0.3840 0.1011
26 26 27 0.7245 0.1908
27 27 28 1.1850 0.3121
28 28 29 1.2353 0.6899
29 29 30 0.3557 0.1987
30 30 31 0.9494 0.3406
31 31 32 0.6899 0.3853
32 32 33 1.5707 0.8773
33 5 34 1.2655 0.4540
34 5 35 0.1688 0.0943
35 35 36 0.2741 0.1531
36 36 37 0.2552 0.1426
37 6 38 0.4165 0.2326
38 6 39 1.4835 0.3907
39 39 40 1.8000 0.4740
40 40 41 0.5177 0.2892
41 41 42 0.7148 0.3992
42 8 43 1.0575 0.2785
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Load and line data

Table A.6: Line data for the actual Portuguese 94-bus system (Continued)

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

43 43 44 0.5198 0.2903
44 44 45 0.3341 0.1866
45 9 46 0.3490 0.1949
46 10 47 0.5771 0.3223
47 47 48 0.3598 0.2009
48 48 49 0.7688 0.4294
49 49 50 0.2599 0.1451
50 50 51 0.8654 0.4833
51 10 52 0.5248 0.5179
52 52 53 0.1737 0.1714
53 53 54 0.6148 0.6068
54 54 55 0.1980 0.1954
55 55 56 0.1980 0.1954
56 56 57 0.2850 0.2813
57 57 58 0.1429 0.1410
58 58 59 0.3409 0.1904
59 59 60 0.3679 0.2055
60 60 61 0.3591 0.2006
61 61 62 0.3503 0.1957
62 62 63 0.4219 0.2356
63 63 64 1.5380 0.5517
64 64 65 0.9788 0.3511
65 65 66 1.4911 0.5349
66 11 67 0.9690 0.2552
67 67 68 0.6705 0.1766
68 12 69 0.4354 0.2432
69 13 70 0.4631 0.2586
70 70 71 0.2707 0.1512
71 15 72 0.6683 0.3732
72 72 73 0.8525 0.4762
73 16 74 0.3314 0.1851
74 18 75 0.4050 0.2262
75 19 76 0.4367 0.2439
76 19 77 0.3416 0.1908
77 77 78 0.2113 0.1180
78 78 79 1.1249 0.4035
79 79 80 1.1738 0.6556
80 80 81 0.6190 0.3457
81 81 82 0.5684 0.3174
82 20 83 0.8393 0.3011
83 83 84 0.2133 0.1191
84 84 85 0.3645 0.2036
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Load and line data

Table A.6: Line data for the actual Portuguese 94-bus system (Continued)

Line
Number From bus To bus Resistance (Ω) Reactance (Ω)

85 85 86 0.3206 0.1791
86 22 87 0.7675 0.4286
87 24 88 1.5914 0.5709
88 25 89 0.7020 0.3921
89 25 90 20.743 0.7441
90 90 91 0.6780 0.2432
91 91 92 0.5738 0.3205
92 27 93 0.5913 0.3303
93 28 94 1.1865 0.3124
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Appendix B

Benchmark test functions

Table B.1: Unimodal functions.

Function Dim Range Global Fmin

f1(z) =∑n
j=1 z2

j 30 [−100,100] 0
f2(z) =∑n

j=1 |zj |+
∏n

j=1 |zj | 30 [−10,10] 0
f3(z) =∑n

j=1
(∑j

i=1 zi

)2
30 [−100,100] 0

f4(z) = maxj |zj |, 1 ≤ j ≤ n 30 [−100,100] 0
f5(z) =∑n−1

j=1
[
100(zj+1 − z2

j )2 +(zj −1)2
]

30 [−30,30] 0
f6(z) =∑n

j=1([zj +0.5])2 30 [−100,100] 0
f7(z) =∑n

j=1 jz4
j +rand(0,1) 30 [−1.28,1.28] 0

Table B.2: Multimodal functions.

Function Dim Range Global Fmin

f8(z) =∑n
j=1 −zj sin

(√
|zj |

)
30 [−500,500] −12569.5

f9(z) =∑n
j=1

[
z2

j −10cos(2πzj)+10
]

30 [−5.12,5.12] 0

f10(z) = −20exp
(
−0.2

√
1
n

∑n
j=1 z2

j

)
− exp

(
1
n

∑n
j=1 cos(2πzj)

)
+20+ e 30 [−32,32] 0

f11(z) = 1
4000

∑n
j=1 z2

j −∏n
j=1 cos

(
zj√

j

)
+1 30 [−600,600] 0

f12(z) = π
n

{
10sin2(πx1)+∑n−1

j=1
[
(xj −1)2

(
1+10sin2(πxj+1)

)]
+(xn −1)2

}
+∑n

j=1 u(zj ,10,100,4)
30 [−50,50] 0

f13(z) = 0.1
{
sin2(3πz1)+∑n−1

j=1 (zj −1)2
[
1+sin2(3πzj +1)

]
+(zn −1)2

[
1+sin2(2πzn)

]}
+∑n

j=1 u(zj ,5,100,4)

u(zj ,a,b,c) =


b(zj −a)c, zj > a

0, −a ≤ zj ≤ a

b(−zj −a)c, zj < −a

30 [−50,50] 0
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Benchmark test functions

Table B.3: Fixed-dimension multimodal benchmark functions.

Function Dim Range Global Fmin

f14(z) =
[

1
500 +∑25

i=1
1

i+
∑2

j=1(zj−aij)6

]−1
2 [−65.536,65.536] 0.998

f15(z) =∑11
j=1

[
bj − zj(b2

j +bjz2)
b2

j +bjz3+z4

]2
4 [−5,5] 0.00030

f16(z) = 4z2
1 −2.1z4

1 + 1
3z6

1 + z1z2 −4z2
2 +4z4

2 2 [−5,5] −1.0316

f17(z) =
(
z2 − 5.1

4π2 z2
1 + 5

π z1 −6
)2

+10
(
1− 1

8π

)
cosz1 +10 2 [−5,5] 0.3979

f18(z) =
[
1+(z1 + z2 +1)2

(
19+14z1 +3z2

1 −14z2

+6z1z2 +3z2
2
)]

×
[
30+(2z1 −3z2)2 (18−32z1

+12z2
1 −48z2 −36z1z2 +27z2

2
)]

2 [−2,2] 3

f19(z) = −∑4
j=1 cj exp

[
−∑3

i=1 aji(zi −pji)2
]

3 [1,3] −3.86

f20(z) = −∑4
j=1 cj exp

[
−∑6

i=1 aji(zi −pji)2
]

6 [0,1] −3.32

f21(z) = −∑5
j=1

[
(z −aj)(z −aj)T + cj

]−1
4 [0,10] −10.1532

f22(z) = −∑7
j=1

[
(z −aj)(z −aj)T + cj

]−1
4 [0,10] −10.4028

f23(z) = −∑10
j=1

[
(z −aj)(z −aj)T + cj

]−1
4 [0,10] −10.5363
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