
 الجمهورية الجزائرية الديمقراطية الشعبية 

People's Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

 

UNIVERSITY FERHAT ABBAS - SETIF1 

FACULTY OF TECHNOLOGY 

 

THESIS 

Submitted to the Department of Electronics 

In Fulfilment of the Requirements for the degree of 

DOCTORATE  

Domain: Sciences and Technologies 

 

Field: Electronics  Specialty: Electronics of Embedded Systems  

By  

Abdelaziz KERBOUCHE 

THEME 

Optimized FPGA Implementation of Round-Based 

Ciphers: A High-Performance and Area-Efficient AES 

Implementation  

Defended on   /02/2025 in front of Jury: 

Hamida Abdelhak FERHAT Professor Univ. Ferhat Abbas Sétif 1 President 

Mouloud AYED Professor Univ. Ferhat Abbas Sétif 1 Thesis director 

Abdelhalim MAYOUF Professor Univ. Ferhat Abbas Sétif 1 Examiner 

Abdelhamid DAAMOUCHE Professor Univ. Mʹhamed Bougara Boumerdes Examiner 

Abdellatif KHELIL Professor Univ. Hamma Lakhder El Oued  Examiner 

Hamimi CHEMALI Professor Univ. Ferhat Abbas Sétif 1 Guest 

  



  

 الجمهورية الجزائرية الديمقراطية الشعبية 

République Algérienne Démocratique et Populaire 

Ministère de L'Enseignement Supérieur et de la Recherche Scientifique 

 

UNIVERSITÉ FERHAT ABBAS - SETIF1 

FACULTÉ DE TECHNOLOGIE 

 

Année : 2024-2025 

THÈSE 

Présentée au Département d’Électronique 

Pour l’obtention du diplôme de 

DOCTORAT  

Domaine : Sciences et Technologie 

Filière : Électronique  Option : Électronique des Systèmes Embarqués 

Par  

KERBOUCHE Abdelaziz 

THÈME 

Implémentation optimisée sur FPGA de chiffrements à 

base de rondes : une architecture AES performante et à 

faible empreinte matérielle 

Soutenue le   /02/2025 devant le Jury : 

FERHAT Hamida Abdelhak Professeur Univ. Ferhat Abbas Sétif 1 Président 

AYED Mouloud Professeur Univ. Ferhat Abbas Sétif 1 Directeur de thèse 

MAYOUF Abdelhalim Professeur Univ. Ferhat Abbas Sétif 1 Examinateur 

DAAMOUCHE Abdelhamid Professeur Univ. Mʹhamed Bougara Boumerdes Examinateur 

KHELIL Abdellatif Professeur Univ. Hamma Lakhder El Oued Examinateur 

CHEMALI Hamimi Professeur Univ. Ferhat Abbas Sétif 1 Invité 



 

 

Abstract 

 

Modern life relies heavily on embedded systems, which, despite their compact and resource-

constrained nature, serve as the core intelligence behind most devices. These smart systems collect user 

data to continuously improve decision-making processes. However, the gathered data often includes 

sensitive information, highlighting the critical need for robust security measures that ensure 

trustworthiness and reliability without compromising performance. This project aims to identify an 

optimal implementation technique for security algorithms in embedded systems, balancing resource 

utilization and timing performance. The primary challenge addressed is maintaining the integrity of the 

security algorithm while optimizing hardware architecture to maximize efficiency. The Rijndael 

algorithm, specifically the Advanced Encryption Standard (AES), is chosen as the security core and 

implemented using two distinct techniques. The proposed approach is designed for Field-Programmable 

Gate Arrays (FPGAs), with results benchmarked against similar projects in terms of timing and area 

performance. 

Keywords: Advanced Encryption Standard (AES) algorithm, Field Programmable Gate Array (FPGA), 

Cryptography, embedded systems



 

I 

Table of Contents  

General introduction 8 

 Literature Review 10 

1.3.1.New lightweight block ciphers 14 

1.3.2.Lightweight hash functions 15 

1.3.3.Implementation optimization 15 

 Theoretical Background on Cryptography 17 

 Hardware design optimization strategies 46 



 

II 

 Efficient AES implementation using FPGA 62 

General conclusion ..................................................................................................................... 80 

Reference List ............................................................................................................................ 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

III 

 

List of Figures 

Fig. 1.1. Simple FPGA architecture ................................................................................................... 11 

Fig. 1.2. AES process of a single plaintext. ....................................................................................... 12 

Fig. 1.3. Operational time rate in AES. .............................................................................................. 12 

Fig. 1.4. Chronogram of pipeline implementation. ............................................................................ 13 

Fig. 2.1. Security Y-Diagram. ............................................................................................................ 17 

Fig. 2.2 Caesar shift cipher. ............................................................................................................... 19 

Fig. 2.3 Polyalphabetic Substitution Cipher. ..................................................................................... 20 

Fig. 2.4 Example of Hashing. ............................................................................................................ 20 

Fig. 2.5 Symmetric encryption. .......................................................................................................... 21 

Fig. 2.6 DES Encryption algorithm. .................................................................................................. 22 

Fig. 2.7 Key generation process of DES algorithm. .......................................................................... 23 

Fig. 2.8 The Feistel function in DES algorithm. ................................................................................ 24 

Fig. 2.9 Triple DES Algorithm. ......................................................................................................... 24 

Fig. 2.10 AES-128 Algorithm process. .............................................................................................. 27 

Fig. 2.11 SubBytes operation in AES algorithm. ............................................................................... 28 

Fig. 2.12 MixColumns operation. ...................................................................................................... 30 

Fig. 2.13 Key generation process in AES algorithm.......................................................................... 31 

Fig. 2.14 Message Authentication Code. ........................................................................................... 32 

Fig. 2.15 Pseudo Random Function diagram. .................................................................................... 33 

Fig. 2.16 Keys use in asymmetric cryptography. ............................................................................... 35 

Fig. 2.17 Overall asymmetric algorithm process. .............................................................................. 35 

Fig. 2.18 RSA algorithm flowchart. ................................................................................................... 37 

Fig. 2.19 Signature creation using RSA. ............................................................................................ 39 

Fig. 2.20 RSA signature creation and verification process. ............................................................... 39 

Fig. 2.21 DSA Signature creation and verification. ........................................................................... 40 

Fig. 2.22 Electronic Code Book mode (ECB). .................................................................................. 41 

Fig. 2.23 Cipher Block Chaining mode (CBC). ................................................................................. 42 

Fig. 2.24 Cipher FeedBack mode (CFB). .......................................................................................... 42 

Fig. 2.25 Output feedback mode (OFB). ........................................................................................... 43 

Fig. 2.26 Counter mode (CTR) .......................................................................................................... 45 

Fig. 3.1 FF to FF timing. .................................................................................................................... 47 

Fig. 3.2 Interconnect delay, and FF delay. ......................................................................................... 48 

Fig. 3.3 Multiple paths for the same destination and source. ............................................................. 48 

Fig. 3.4 Critical path of a design. ....................................................................................................... 49 

Fig. 3.5 Setup time. ............................................................................................................................ 49 

Fig. 3.6 clock skew in FPGA circuit. ................................................................................................. 50 

Fig. 3.7 Setup slack in FPGA design. ................................................................................................ 51 

Fig. 3.8 Hold time in FPGA circuit. ................................................................................................... 51 

Fig. 3.9 Hold Slack in FPGA design. ................................................................................................. 52 

Fig. 3.10 Comparison of N/2-bit vectors. .......................................................................................... 53 

Fig. 3.11 Comparison of N bit vectors. .............................................................................................. 53 

Fig. 3.12 Counter design before optimization (counting up). ............................................................ 54 



 

IV 

Fig. 3.13 Counter design after optimization (counting down). .......................................................... 54 

Fig. 3.14 Pipeline structure in FPGA design. .................................................................................... 55 

Fig. 3.15 FPGA design retiming example.......................................................................................... 55 

Fig. 3.16 Simplified pipeline design using automatic retiming: comparator example. ..................... 56 

Fig. 3.17 Interconnect delays: ideal and suboptimal placement. ....................................................... 57 

Fig. 3.18 Resource reduction for a reduced interconnect delay. ........................................................ 58 

Fig. 3.19 Pipelining long interconnect paths for delay optimization. ................................................ 59 

Fig. 3.20 Examples of routing congestion and optimization in FPGA Designs. ............................... 59 

Fig. 3.21 Register Duplication for Reducing Fan-Out and Routing Congestion. .............................. 60 

Fig. 3.22 Pipelining strategy for high fan-out .................................................................................... 61 

Fig. 4.1 Encryption process flowchart of the AES algorithm. ........................................................... 64 

Fig. 4.2 Iterative architecture process. ............................................................................................... 64 

Fig. 4.3 Pipeline Architecture of AES algorithm. .............................................................................. 65 

Fig. 4.4 Pipeline process of AES algorithm. ...................................................................................... 65 

Fig. 4.5 Development process of the proposed designs. .................................................................... 66 

Fig. 4.6 S-box byte-cell schematic diagram. ...................................................................................... 67 

Fig. 4.7 SubBytes schematic diagram. ............................................................................................... 67 

Fig. 4.8 Key Expansion module schematic diagram. ......................................................................... 68 

Fig. 4.9 MixColumns schematic diagram. ......................................................................................... 68 

Fig. 4.10 MixColumns Sub-Module. ................................................................................................. 69 

Fig. 4.11 AddRoundKey schematic diagram. .................................................................................... 69 

Fig. 4.12 Schematic diagram of the round unit. ................................................................................. 69 

Fig. 4.13 The iterative system schematic diagram. ............................................................................ 70 

Fig. 4.14 Pipeline system schematic. ................................................................................................. 70 

Fig. 4.15 Graphical representation of implementation results in Virtex-7 FPGA. ............................ 71 

Fig. 4.16 Graphical representation of implementation results in Zynq7000 FPGA. ......................... 71 

Fig. 4.17 Chronogram result of the iterative system. ......................................................................... 73 

Fig. 4.18 Chronogram result of the pipeline system. ......................................................................... 73 

Fig. 4.19 Implementation footprint of iterative system on Virtex-7 FPGA. ...................................... 74 

Fig. 4.20  iterative structure footprint on Zynq7000. ......................................................................... 74 

Fig. 4.21 Pipeline structure footprint on Virtex-7. ............................................................................. 75 

Fig. 4.22 Pipeline structure footprint on Zynq-7000. ........................................................................ 75 

Fig. 4.23 Pipeline structure of AES-ECB mode. ............................................................................... 76 

Fig. 4.24 Parallel structure of AES-ECB mode. ................................................................................ 76 

Fig. 4.25 Simulation results of parallel structure. .............................................................................. 77 

Fig. 4.26 Simulation results of pipeline structure. ............................................................................. 77 

Fig. 4.27 FPGA In The Loop diagram ............................................................................................... 78 

Fig. 4.28 System Integration of the proposed security core............................................................... 78 

 

 

 

 

 



 

V 

List of Tables 

Table 3.1. Commonly used hash algorithms ...................................................................................... 21 

Table 3.2. Some commonly used algorithms ..................................................................................... 21 

Table 3.3. Commonly used standards for message integrity ............................................................. 33 

Table 3.4. Asymmetric cryptography algorithms .............................................................................. 35 

Table 4.1. Protection Mechanisms for some FPGA vendors. ............................................................ 63 

Table 5.2. Comparison of the proposed architectures results with published works ......................... 72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

VI 

Acknowledgements 

I would like to express my deepest gratitude to my supervisors, Pr Hamimi CHEMALI, and Pr 

Mouloud AYAD, for their invaluable guidance, continuous support, and encouragement throughout 

my research journey. Their expertise and insightful advice have greatly contributed to the completion 

of this work. 

I extend my sincere thanks to the members of the examination committee, Pr Hamida Abdelhak 

FERHAT (University of Setif 1), Pr Abdelhalim MAYOUF (University of Setif 1), Pr Abdelhamid 

DAAMOUCHE (University of Boumerdes), and Pr Abdullatif KHELIL (University of El Oued), for 

their valuable time, constructive feedback, and thoughtful suggestions, which have significantly 

improved the quality of this thesis. 

My appreciation also goes to Ferhat Abbas University of Setif1 and LCCNS laboratory for providing 

the necessary resources, facilities, and a stimulating research environment that have been instrumental 

in the successful completion of my PhD project. 

Finally, I would like to express my heartfelt thanks to Dr Salaheddine LAIB and Mr Zinedine 

MENNANI for their generous help, insightful discussions, and encouragement, which have greatly 

enriched my research experience. 

My gratitude to all those who have contributed to this work in various ways, including friends, 

colleagues, and family members, for their unwavering support, encouragement, and assistance 

throughout this journey.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

VII 

Dedication 

To my dear parents,  

whose constant love, countless sacrifices, and endless wisdom have shaped who 

I am today. Your support has guided me, and your faith in me has been my 

greatest strength. 

To my beloved wife,  

my companion through every challenge and success. Your patience, support, 

and steady belief have been my comfort throughout this journey. Thank you 

for being by my side every step of the way. 

To my wonderful children,  

who fill my life with inspiration and happiness. Your bright smiles and endless 

curiosity remind me daily of the joy of learning. 

To my whole family, this work is dedicated to you all, with heartfelt love and 

gratitude



 

8 

General introduction 

An embedded system is a microcontroller or microprocessor-based system, designed to perform a 

specific task, either independently or as part of a larger system. It typically consists of two main 

components: hardware and software, serving as the core intelligence of electronic systems and 

playing a crucial role in various aspects of daily life. With ongoing technological advancements, 

embedded systems are playing an increasingly vital role in decision-making. Their importance 

continues to grow, particularly in smart and cloud-based applications like IoT solutions, where real-

time data processing and automation are essential [1]. Numerous areas rely on embedded systems, 

such as defense, banking, healthcare, and other critical fields, where even a slight security failure may 

lead to catastrophic consequences for individuals [2]. One example of security failure is the recent 

remote cyberattack targeting embedded systems in some wireless communication devices, causing 

widespread disruption, and physical harm to numerous individuals. A similar cyber operation was 

performed remotely to attack electronic systems that are embedded in a highly sensitive facility, 

causing significant damage to instruments, and leading to a major failure in the system. These 

incidents and others highlight the critical risks of an inadequate or insufficient security, where 

vulnerabilities can be exploited with devastating consequences, which underscores the urgent need 

for robust security measures to protect systems and safeguard lives [3]. Security measures in 

embedded systems must address diverse threats, including physical tampering, side-channel attacks, 

malware, and communication interception. However, the implementation of robust security 

mechanisms, which usually require high computational capabilities and significant energy within a 

constrained systems is a difficult operation [4]. Scientists and researchers have thoroughly focused 

on this challenge, leading to the creation of practical solutions that successfully balance the need for 

security with the inherent limitations of embedded systems. 

This thesis focuses on data security as a critical aspect, emphasizing its role in preventing 

unauthorized access to sensitive information, or injecting unwanted data, either during a run-time, 

during data transfer, or a storage operation. Among all security levels, this thesis focuses on data 

encryption, with a general overview of other security aspects. The research studies the 

implementation of data security within embedded systems and the challenges associated to it. The 

practical side of this project aims to the identification of the optimal trade-off between embedding 

security and maintaining systems’ performance through smooth data processing. In this project, an 

FPGA implementation of the well-known Advanced Encryption Standard (AES) algorithm is 

elaborated using different structures, to address embedded systems constraints; with a main challenge 

of preserving the original algorithm without modifications [6]. 



 

9 

The development process includes several stages: design, optimization, unit testing, integrity testing 

of individual modules, and finally, simulation of the overall system. Resource utilization and timing 

performance form a monitoring parameter along with the efficiency ratio. This comparative analysis 

highlights the effectiveness of the proposed approaches in balancing between security and efficiency. 

The remainder of this thesis is structured as follows: Chapter 1 presents a comprehensive literature 

review of related works and proposed solutions in the field. Chapter 2 provides a foundational 

background on cryptography, security algorithms, and their practical use cases. Chapter 3 examines 

common optimization techniques for FPGA designs. Finally, Chapter 4 details the methodology of 

the proposed project, employing various implementation techniques, and includes an in-depth 

discussion and analysis of obtained results. 

 

 

 

 

 

 

 

 

 



 

10 

 Literature Review 

Embedded systems are fundamental to modern technology, serving as critical components in a diverse 

array of applications, ranging from consumer electronics to essential infrastructure systems. 

However, as the complexity of these systems continues to grow, so too do the challenges associated 

with their design and implementation. Among the most pressing challenges is the need to ensure 

robust security without compromising performance or efficiency. This chapter presents a 

comprehensive literature review of the challenges related to integrating security mechanisms into 

embedded systems, exploring the inherent trade-offs between security, performance, and resource 

constraints. Additionally, it examines the various solutions proposed in this context, highlighting 

innovative approaches and methodologies that aim to address these challenges while maintaining the 

efficiency and reliability of embedded systems. 

1.1.  Limitations and challenge 

Embedded systems face a major challenge when integrating additional safety measures, mainly due 

to their strict constraints on time, resources and performance. These systems often depend on precise 

process control with minimal latency. Accordingly, the introduction of addition security mechanisms, 

such as encryption or secure boot processes, leads usually to a latency in processing, which can be 

considerable in some timing-critical applications [1].  

Closely related to timing, the challenge of resource management is equally crucial. Embedded 

systems generally operate in a limited resource environment, namely, constrained area on hardware 

chips, or computational power, which require some optimization strategies to bypass this limitation. 

Which is opposed to security cores that usually require dedicated resource allocation, with some high 

capabilities and an extended power need. This challenge has attracted the attention of researchers and 

developers to adopt effective resource management techniques, and ensure that the integration of 

security functionalities does not degrade overall performance [1]. While enhancing security is 

essential, the additional layers it introduces can slow down the system, particularly in real-time 

applications. For instance, implementing secure boot processes in a smart appliance may improve 

security but could also lead to longer boot times, negatively impacting user experience. This trade-

off necessitates careful evaluation during the design phase, to ensure that security measures do not 

undermine the system’s efficiency. Developers must strike a delicate balance between robust security 

and optimal performance to meet the demands of real-time applications [2]. 

Beyond these technical challenges, scalability and integration pose additional complexities, 

especially as embedded systems are deployed across diverse applications such as IoT devices. This 

requires adaptable and scalable solutions that can accommodate the unique demands of different 

environments without compromising security or functionality. 



 

11 

In summary, integrating security into embedded systems involves navigating a complex landscape of 

challenges, including timing constraints, resource limitations, performance trade-offs, and scalability 

issues. Addressing these challenges requires a complete approach that combines thoughtful design, 

optimization, and a deep understanding of the interplay between security and system constraints. By 

carefully considering these factors, developers can create embedded systems that are not only secure 

but also reliable and high-performing. 

1.2.  Implementation of cryptographic algorithms 

Field Programmable Gate Arrays (FPGA) are an ideal platform for embedded system developers, 

offering the flexibility to redesign and describe desired architectures using a high-level language. 

FPGA is an integrated circuit or chip that enables the creation of fully customized digital logic. It 

consists of numerous logic cells that serve as the fundamental building blocks for designing digital 

circuits. These cells can be configured to operate in specific ways by interconnecting them and 

optimizing their functionality to form the core of any digital circuit. Additionally, FPGAs provide 

access to various resources, such as clock signals, RAM blocks, and interfaces for managing different 

types of inputs. Some advanced FPGAs include also peripherals like analog-to-digital converters and 

analog outputs. One of the key advantages of FPGAs is the ability to support parallel processing, 

allowing multiple operations to execute within a single clock cycle. A simple architecture of FPGA 

is represented in Fig. 1.1. 

 

Fig. 1.1. Simple FPGA architecture. 

Implementing cryptography and encryption algorithms in embedded systems presents significant 

challenges due to the complexity of the mathematical operations involved. These algorithms often 

require extended processing times because of their recursive nature, which can strain the limited 

computational resources of embedded systems. Compounding this challenge is the fact that data 



 

12 

encryption in such systems is typically a secondary task, operating quietly in the background without 

disrupting primary functions. To address this, the encryption unit is often integrated as a black box, 

designed to process input data and produce output as efficiently and seamlessly as possible. 

A prime example of this complexity is the Advanced Encryption Standard (AES), a widely used 

encryption algorithm. The processing time of AES depends on rounds, which are iterative sets of 

operations executed sequentially. In this structure, the output of one function serves as the input to 

the next, creating a recursive sequence that is repeated N times based on the key length. This design 

introduces latency, as each processing unit remains idle while waiting for input from the previous 

operation. As illustrated in Fig. 1.2, the chronogram of an AES encryption process reveals that the 

holding time, which is defined by the period during which units wait for input, is considerable. When 

analyzing the rate of processing time relative to total time in an iterative AES design, the latency 

becomes even more apparent, highlighting the need for optimization in embedded systems where 

efficiency is critical. 

 

Fig. 1.2. AES process of a single plaintext. 

The chronogram demonstrates that only one in four operations is executed each time, resulting to an 

operational rate of 𝑅 = 24%, which signifies a 76% of holding time as shown in Fig. 1.3. 

 

Fig. 1.3. Operational time rate in AES. 

R0

Key Generation

AddRoundKey

SubBytes

ShiftRows

MixColumns

R10

…

R1 R2 R3 R4 R9



 

13 

In contrast, the pipeline implementation of the AES divides the encryption process into multiple 

stages that operate concurrently. This parallelism allows each stage to process data independently, 

eliminating the idle waiting time and enabling a continuous flow of operations. As shown in Fig. 1.4, 

the chronogram of the pipeline approach demonstrates a high reduction in holding time, leading to a 

faster and more efficient encryption process. The throughput of the system increases significantly, as 

data moves seamlessly through the pipeline without the bottlenecks inherent in the traditional method. 

 

Fig. 1.4. Chronogram of pipeline implementation. 

The chronogram in Fig. 1.4 clearly shows that the operational rate, defined as the ratio of active 

processing modules to holding modules, is approximately 50% for the first input. Since each module 

performs a single round, the first module becomes available to process the next plaintext immediately 

after completing the current one. Additionally, the operational rate reaches 100% after 10 ciphertexts 

with a steady data flow. 

The key takeaway that we conclude from the comparison made above, is the profound impact that 

the choice of implementation method has on the overall performance of cryptographic algorithms in 

embedded systems. By carefully selecting and optimizing the implementation approach (whether 

iterative, pipeline, or another technique) designers can significantly enhance processing speed, reduce 

latency, and improve resource utilization. The implementation technique is not the only method to 

enhance performance, other techniques are thoroughly described in literature, addressing the 

efficiency of the implementation of cryptography algorithms in hardware and software. The following 

section enumerates some of recent works on this field.  

1.3.  Related works  

The growing demand for secure and efficient embedded systems has driven researchers to explore 

various techniques for optimizing security cores, particularly in the context of cryptography and 

encryption. As embedded systems often operate under stringent constraints, such as limited 

computational power, memory, and energy resources, traditional cryptographic algorithms and their 

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10



 

14 

implementations may not always be suitable. To address these challenges, researchers have proposed 

a wide range of optimization strategies, each targeting different aspects of the design and execution 

of security cores. This section provides a comprehensive overview of these optimization techniques, 

categorized based on the type of modification they introduce.  

1.3.1. New lightweight block ciphers 

Several approaches are proposed in literature to propose new lightweight block ciphers. Authors in 

[3], developed a lightweight block cipher, the proposed algorithm was examined to test its efficiency, 

where it acquires a good level of cryptographic characteristics, and a crypto analyses was performed 

to test security. The algorithm is derived from the WG stream cipher. The proposed algorithm was 

implemented in a low-power MCU to evaluate its performance and compared with other similar 

works. The contribution of this work was on the power consumption which represents a major 

limitation in embedded systems. This proposed cipher was designed for energy-constraint systems, 

especially those powered from an external source such as RFID tags, smart cards, wireless sensors 

etc.  

In [4], authors designed a combination of Feistel and ARX structures to develop a new block cipher 

GFRX for resources-limited systems. The proposed algorithm intervenes in the round function by 

reducing complex operations, and take advantage of the flexible combination of Feistel and ARX to 

resolve the diffusion and confusion latency in traditional structures. This project shows better results 

compared to ARX and Feistel separated. It was tested against effective differential and linear attacks, 

and therefore is considered secure.  

Yan et al in [5], suggested a new dynamic S-box based block cipher DBST, this new approach is 

based on bit-slice technology, where the s-box depends on the key. This new approach increases 

randomness, and enhance security against differential and linear attacks. The rounds operation is 

based on a new Feistel variant structure, and shows more infusibility compared to traditional 

structure. The authors compared their work to similar lightweight algorithms, and concluded that it 

is well adapted for 5G applications.  

Authors in [6], investigated a new block cipher RAZOR designed for IoT application. The new 

approach is aimed to enhance security, but also to be resource-efficient for resource-limited systems. 

The diffusion layer is based on XOR operations and rotation, the project was implemented in 

software. Security analyses is proven against both differential and linear attacks. RAZOR was 

compared with other similar algorithms in terms of security.  

A lightweight crypto algorithm named LBC-IoT is proposed in [7]. The objective of the project is to 

design a security-enhanced algorithm adapted to resource-limited systems. LBC-IoT uses a compact 

s-box. The advantage of the proposed algorithm is its simplicity, and the low GE it has compared to 



 

15 

similar works. Additionally, it is well adapted to resource-limited devices as it has a small software 

footprint. 

Buja et al in [8] presented a survey on lightweight ciphers for mobile big data computing. The study 

addresses data security concerns on mobile, and concluded that existing lightweight algorithms have 

some issue that should be taken in consideration. The necessity to develop data security algorithms 

for resource-limited systems, and the drive to propose compact algorithms should never come at the 

expense of ignoring or downplaying security concerns. The advancement of computer calculation 

capacities accelerates the attacks technique and put current data security systems into danger, which 

requires finding new solution, or enhancing existing methods.  

1.3.2. Lightweight hash functions 

Hash functions have also been a significant focus of research, particularly in optimizing their 

efficiency and security for resource-constrained embedded systems. Andrey et al, proposed in [9] a 

lightweight Hash function named SPONGENT. The new function supports 88, 128, 160, 224, and 

256 bits. This function has a small footprint, compared to similar functions, while for throughput and 

area requirement, they depend on the technology used. 

In [10], Susila et al, presented an implementation of a lightweight hash functions LWCHF. The 

proposed implementation is done in hardware and software, and results were examined based on nine 

metrics. The cost of the final solution, and the security against different attacks, in addition to 

performance were considered in the development process. 

Sevin and Çavuşoğlu in [11], proposed a new lightweight hash based on encryption algorithm. The 

efficiency of proposed system was examined, and security performance was carried out and detailed 

in the study. The algorithm shows a robustness against differential and linear attacks, and sensitivity 

of hash value analyses showed a high precision for all cases. 

Jian, Thomas and Axel in [12], proposed PHOTON, based on a well-known AES design strategy, 

with the introduction of a new layer without affecting its size, to make fit small area devices. The 

proposed approach attained an excellent area / throughput trade-off. 

1.3.3. Implementation optimization 

Another optimization approach focuses on enhancing the implementation technique of the algorithm 

itself, without making adjustments to its core structure. A pipeline and parallel implementation of the 

AES is presented by Nabil et al in [13]. The aim of this research is the reduction of processing time. 

The idea was to use maximum resources available in the design, and eliminate idle time. Results are 

compared to traditional implementation method proposed by them, and also compared to software 



 

16 

implementation and similar hardware approaches, in terms of resources and timing performance. The 

parallel architecture achieved the highest throughput at the cost of increased resource utilization. 

A hybrid pipeline architecture was proposed in [14] by Algredo-Badillo et al. The proposed 

architecture combines time redundancy and hardware redundancy, and results show an enhanced 

resource utilization compared to standard AES. The designed system is based on error detection to 

avoid cascade effect, and it is well adapted to IoT systems. 

In  [15], P Rajasekar and H. Mangalam proposed an area optimized and power efficient AES 

implementation in FPGA for IoT applications. This proposed approach addresses issues related to 

power consumption and area, to design and implement optimized functions for AES core. Simulation 

results show that the proposed architecture provides high security with low power, and reaches a 

maximum frequency of 190 MHz. 

Authors in [16] propose a low area high-speed FPGA implementation of the AES architecture for 

cryptography applications. It introduces a modified positive polarity reed muller (MPPRM) 

architecture for the SubBytes and InvSubBytes transformations to reduce hardware requirements and 

improve speed.  

In  [17], S. J. H. Pirzada et al describe an optimization proposition of the AES algorithm for satellite 

applications. This proposed optimization is adapted to the space environment. Implementation results 

are presented in details, with a security analysis against recent attacks. 

1.4.  Conclusion 

Advancements in cybersecurity demand the enhancement of security algorithms, resulting in more 

complex mathematical operations and arithmetic functions. This, in turn, requires greater energy, 

resources, and processing time; further emphasizing the challenges of constrained systems, and 

making the integration of security solutions into embedded systems a challenging task. 

In summarize, it is noticeable when looking to proposed solution that there are two major axes of 

cryptography algorithms optimization for embedded systems. The first intervene on the algorithm 

itself, via proposing new block cipher algorithms, combining several methods or applying some 

adjustments on existing approaches. The second preserves the original algorithm without any 

adjustments, but focus on implementation technique, via introducing parallelism to the design, 

implement pipeline stages, or switching between implementation methods such as logic-based, 

memory-based or hybrid implementation. The distinction between these approaches lies in the 

validation phase. Where methods that involve modifying existing algorithms or proposing new ones 

require additional security analyses to demonstrate the robustness and reliability of their approach 

against various attacks and threats. 



 

17 

 Theoretical Background on Cryptography 

2.1.  Introduction 

The written word stands as one of humanity’s most transformative inventions, it enables the sharing 

and preservation of knowledge across generations. With the presence of the ability to communicate, 

came the equally the important need to protect sensitive information from unintended eyes. This dual 

necessity to share and to conceal, has driven the evolution of cryptography, a field dedicated to 

securing information through encoding and decoding techniques. From ancient ciphers to modern 

encryption algorithms, cryptography has played an important role in safeguarding communication, 

ensuring privacy, and enabling trust in an increasingly interconnected world. This chapter explores 

the foundational concepts and historical development of cryptography, providing the essential 

background for understanding its critical role in today’s digital age. 

2.2.  Core Security Principles 

The fundamental aspects of security provide a solid framework for protecting embedded systems and 

digital technologies. These principles ensure the protection of data and system integrity, enabling 

trusted operations in increasingly connected environments. By addressing confidentiality, integrity, 

authentication, they offer a comprehensive approach to mitigating security risks. Each system that 

deals with data transferring or data storage have this compromise of three characteristics to guarantee 

a good level of security [18]. The balance between these characteristics varies depending on the field 

of application of that system. Core Security principles and threats with corresponding solutions are 

illustrated in Fig. 2.1, as designed by Shoufan and Huss in [19]. The diagram shows the level of 

intervention for each security concern and the dedicated solution. 

 

Fig. 2.1. Security Y-Diagram. 

Denial of service 

Eavesdropping 

Manipulation 

Masquerade 

Denying 

Availability 

Confidentiality 

Integrity 

Authentication 

Non-Repudiation 

Digital Signature 

Message Authentication Code 

Secure Hash Functions 

Encryption 

Syn Cookies 

Solution 

RequiremeThreat 



 

18 

2.2.1. Confidentiality 

Confidentiality is the principle of ensuring that sensitive information is accessible only to authorized 

individuals or systems. For embedded systems, this may involve encrypting data stored in memory, 

transmitted over networks, or processed within the device. Confidentiality is crucial in applications 

like IoT, where devices usually handle personal or private information. For example, a smart home 

system must ensure that communication between sensors and the central controller remains private 

to prevent unauthorized access. 

Embedded systems achieve confidentiality through cryptographic methods such as symmetric 

encryption (e.g. AES) and asymmetric encryption (e.g. RSA). However, implementing these methods 

in resource-constrained devices can be challenging. Hardware accelerators, including FPGAs, are 

often used to optimize encryption processes while maintaining high performance [20]. 

2.2.2. Integrity 

Integrity ensures that data remains unaltered during storage, processing, and transmission, barring 

any unauthorized changes. In embedded systems, this principle is critical for maintaining the 

reliability and accuracy of operations. For instance, in automotive systems, ensuring the integrity of 

control signals between the vehicle's sensors and actuators is essential for safety. 

To safeguard integrity, embedded systems employ techniques like checksums, cryptographic hash 

functions, and digital signatures. These mechanisms verify that data has not been tampered with, 

whether due to accidental corruption or malicious attacks. Secure firmware updates are another 

critical aspect, ensuring that only authentic and verified software runs on the device [21]. 

2.2.3. Availability 

Availability refers to ensuring that a system remains operational and accessible to authorized users 

whenever needed. This principle is especially vital for embedded systems in critical applications, 

such as medical devices or industrial control systems, where downtime could lead to severe 

consequences [22]. 

Threats to availability include denial-of-service (DoS) attacks, hardware failures, and resource 

exhaustion. Embedded systems mitigate these risks through redundancy, fault-tolerant designs, and 

real-time monitoring. For instance, a pacemaker must remain available under all circumstances to 

sustain a patient’s life. In such cases, embedded systems incorporate backup components and failover 

mechanisms to ensure uninterrupted operation. 

 

 



 

19 

2.2.4. Authentication 

Authentication is the process of verifying the identity of users, devices, or systems before granting 

access to resources. In embedded systems, authentication is a cornerstone of secure communication 

and operation. For example, in IoT networks, devices must authenticate themselves to a central hub 

to establish trusted communication channels. 

Authentication mechanisms include passwords, digital certificates, and biometric verification. 

Embedded systems often use lightweight authentication protocols, such as HMAC or public-key 

infrastructure (PKI), tailored to their resource constraints. Secure boot processes also rely on 

authentication to ensure that only trusted firmware is executed, protecting the system from malicious 

code [23]. 

2.3.  Cryptography 

The word cryptography comes from the Greek meaning “hidden writing”. Some of the earliest forms 

of secret writing come from ancient Greece as well, where military used a covered letters that are 

written in a wooden board on what is known as “steganography” which means a covered writing. 

This approach has some issues, the main one is that once the message is discovered, its contents will 

be easily revealed. This dilemma gave rise to “cryptography” which doesn't hide the existence of a 

message but instead hides its meaning.  

Cryptography can be broken down into two subtypes: transposition and substitution. Transposition is 

when a document is rearranged creating an anagram, which is the earlier form of cryptography. An 

early historical example is once again from ancient Greece, where they used military method of 

communications, consists of wrapping the message around a wooden rod, in a way that it can’t be 

read unless it is wrapped again around an identical rod, otherwise the message would seem like jumble 

of letter. This method has its limitations, especially when dealing with large messages. 

Because of the limitations in the transposition cryptography, the substitution cryptography was 

created. Substitution replaces the letters of a message rather than rearranging them. The most famous 

substitution cipher is the Caesar cipher, also known as the Caesar shift cipher as illustrated in Fig. 

2.2, where it replaces any given letter with another letter from the alphabet (shift over a given offset) 

[24]. 

 

Fig. 2.2 Caesar shift cipher. 

A B C D E F G H … 

X Y Z A B C D E … 



 

20 

The only information that keeps the original message secure in the case of shift cipher is the shifting 

offset value, which is not enough to prevent unauthorized decryption in most cases. Cryptography 

progressed steadily over time, and hacking techniques were also advancing. Nowadays it includes 

combinations of complex operations such as characters substitution, data shifting, and mixing with 

keywords. Fig. 2.3, shows an example of an obsolete substitution cipher (Polyalphabetic Substitution 

Ciphers). 

 

Fig. 2.3 Polyalphabetic Substitution Cipher. 

The process of securing data using this set of operation is called Encryption, which is defined as the 

process of converting plaintext into secure, unreadable data (ciphertext) using specific algorithms. 

2.4.  Hashing and Hashing Algorithms  

Hashing or hashing algorithms are mathematical formula, that transform messages into a 

deterministic fixed length representation of the original string. The result of a hashing algorithm is 

called the “digest”, and this digest is the representational string that represents the original message. 

A simple example of a hashing algorithm, is the summation of the alphabetic orders of the original 

message letters, an example is presented in Fig. 2.4. 

 

Fig. 2.4 Example of Hashing. 

The purpose of a hashing algorithms, is to determine if the original message has changed since it was 

last hashed. If word “hello” in the previous example is changed to the word “cello”, the same hashing 

algorithm will result 47 instead of 52. We can easily then tell that the message has been changed by 

simply comparing the resulting digest. It is impossible to reverse engineer Hash unless the number of 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

52 

Digest 

Hashing algorithm 

8 + 5 + 12 + 12 + 15 
HELLO 



 

21 

characters of the original message is known. In this case a brute force attack can be applied to get all 

the possible combinations [25]. Some commonly used hash algorithms are presented in Table 2.1. 

Table 2.1. Commonly used hash algorithms 

Legacy md5, sha1 

Modern SHA224, SHA256, SHA384, SHA512 

Future SHA3-224, SHA3-256, SHA3-384, SHA3-512 

2.5.  Symmetric cryptography 

Symmetric cryptography is mathematical operations that are performed with a secret key, and either 

verified or undone with the same secret key. Symmetric cryptography includes three operations: 

encryption, Message Authentication Code (MAC), and pseudo random function [26]. 

2.5.1. Symmetric encryption 

Encryption is a subset of cryptography and involves the process of converting readable data into 

unreadable. It is needed to protect important information from being accessed by unauthorized parties 

before transmitting or storing. Encryption uses a secret key, and a specific algorithm to process data, 

so that it appears as random and incomprehensible as possible.  

The word symmetric signifies that the same key is used for encryption and decryption. The simplest 

example. The symmetric encryption process is shown in Fig. 2.5. 

 

Fig. 2.5 Symmetric encryption. 

There are many encryption algorithms, Table 2.2 lists some common algorithms. AES is one of the 

most famous algorithms. 

Table 2.2. Some commonly used algorithms 

Legacy DES, RC4, 3DES 

Modern AES-128, AES-192, AES-256 

Future AES (is considered Quantum safe) 

 

Plaintext Plaintext 
Ciphertext 



 

22 

2.5.1.1. Data Encryption Standard algorithm (DES) 

Data encryption standard (DES) is one of popular symmetric encryption algorithms. DES is 

developed between 1972-1977. It is a block cipher of 64-bit block, and a key length of 56-bit, which 

means that it processes 64-bits of data at a time. The full Encryption and Decryption process of the 

DES algorithm is illustrated in Fig. 2.6. The small size of DES key makes it fragile against brute 

force, a reason that made the algorithm obsolete, and no longer supported. DES is separated into two 

processes, the key generation known also by Key schedule, and the encryption process.  

The key generation process, as the name suggests, involves creating subkeys for each round of the 

encryption process. [27]. The first step in this process is the key selection, where 56-bits are selected 

from the initial key through the Permuted Choice, which is a table that rearranges the key, and reduces 

it from 64 bits to 56-bits by discarding the rest (8-bit), which are used as parity bits. the selected bits 

are split after that into two parts: left and right (C0 and D0). Each part is shifted cyclically to the left 

by 1 or 2 positions depending on the round number. Both halves are compressed in the final operation 

to form a 48-bit key that serves the encryption process as a subkey. The operations described above 

are repeated for all the 16 rounds. Fig. 2.7 presents the Key generation process of the DES algorithm. 

 

Fig. 2.6 DES Encryption algorithm. 

 
 

 

 
 



 

23 

 

Fig. 2.7 Key generation process of DES algorithm. 

The encryption process on the other hand is a set of operations applied to the plaintext to generate the 

ciphertext using the provided key. The plaintext passes by the Initial permutation (IP) to reorder all 

the bits according to a predefined table. The output of the IP is then divided into two parts (L0 and 

R0), the size of each is 32 bits. Each half goes through a Feistel Cipher function to perform the 16 

rounds as follows: 

Input:  𝐿𝑖−1 and 𝑅𝑖−1 (the left and right 32-bit halves from the previous round). 

Process: For each round i (where 𝑖 ∈ [1 , 16]) 

- Compute the new left half:  𝐿𝑖 = 𝑅𝑖−1  

-  Compute the new right half:   𝑅𝑖 = 𝐿𝑖−1 ⨁𝐹(𝑅𝑖−1, 𝐾𝑖)    

Where:  

- 𝐹 is the Feistel function. 

- 𝐾𝑖 is the subkey from the key generation process 

The Feistel function 𝐹(𝑅𝑖−1, 𝐾𝑖) : 

- Expansion (E): The expansion of the 32-bits to 48-bits.  

𝐸(𝑅𝑖−1) = 48 𝑏𝑖𝑡 

- Key Mixing: The expended 48-bits block is XORed with the 48-bits 

subkey 𝑘𝑖 

Rounds 1,2,9,16 ➔ one bit shifting 

Others ➔ two bits shifting 

Key with 

parity bits (64 
bits) 

Parity drop 

 

Shift left Shift left 

Compression  

P-box  
R Key 1 

48 bits 
Shift left Shift left 

Compression  

P-box  
R Key 2 

48 bits 

Shift left Shift left 

Compression  

P-box  

R Key 16 

48 bits 

28 bits 28 bits 

28 bits 28 bits 



 

24 

      𝐴 = 𝐸(𝑅𝑖−1) ⨁𝑘𝑖 

- Substitution (S-boxes): The 48-bit result A is divided into 8 groups of 6 

bits each. Each group is processed by a corresponding S-box (Substitution 

box), which reduces the 6 bits to 4 bits. This results in a 32-bit output. 

     𝐵 = 𝑆1(𝐴1) ∥  𝑆2(𝐴2) ∥ ⋯ ∥ 𝑆8(𝐴8)  

- Permutation (P): The 32-bit output B is permuted using the Permutation 

Table (P-table) 

a𝐹(𝑅𝑖−1, 𝐾𝑖) = 𝑃(𝐵) 

The Feistel function is represented in Fig. 2.8. 

 

Fig. 2.8 The Feistel function in DES algorithm. 

2.5.1.2. Triple DES Encryption algorithm 

As its name indicates, the Triple DES algorithm is an extended version of the DES algorithm. 3DES 

uses three different keys to be able to perform its encryption process. It actually performs three 

separate passes through the data, and that's the signification of number 3 in its name. The first pass 

encrypts the plaintext with the first key, the second pass decrypts the result with the second key, and 

the third pass performs an encryption of result with the third key [28]. A presentation of the 3DES 

algorithm is shown in Fig. 2.9. 

 

Fig. 2.9 Triple DES Algorithm. 



 

25 

2.5.1.3. RC4 Algorithm 

RC4 is a stream cipher algorithm, it was created by Ron Rivest as a part of the original web stand, 

that is no longer used in today wireless networks. it was also a part of the SSL standard, but when 

replaced by TLS, RC4 was also replaced. One of the major problems in RC4 is the biased output, that 

means if the third byte of the original state is zero, and the second byte is not equal to two, then the 

second output byte is always zero. This little quirk that caused the deprecate of use of RC4 making it 

not a very common symmetric encryption today [29]. The RC4 algorithm is illustrated in Figure 9. 

Here's a breakdown of the mathematics behind RC4 

The Key Scheduling Algorithm (KSA) initializes the permutation of an array S, based on the input 

key: 

- Initialization of S: The array S is initialized with values from 0 to 255: 

   𝑆[𝑖] = 𝑖, 𝑓𝑜𝑟 𝑖 = 0,1, … ,255 

- Mixing S using the Key K:  

   𝑗 = 0 

    𝐹𝑜𝑟 𝑖 = 0 𝑡𝑜 255 ∶ 

𝑗 = (𝑗 +  𝑆[𝑖]  +  𝐾 [𝑖 𝑚𝑜𝑑 𝑙𝑒𝑛(𝑘)]) 𝑚𝑜𝑑 256 

Swap [𝑖] ↔ 𝑆[𝑗] 

    Where:      

▪ K is (a variable-length key, typically 5 to 256 bytes). 

▪ len(k) is the length of K. 

The result is a scrambled array S that depends on the input key. 

Pseudo-Random Generation Algorithm (PRGA) uses the scrambled S array to generate a stream of 

pseudorandom bytes: 

- Initialization    

𝑖 = 0, 𝑗 = 0 

- Generate pseudo-random byte: For each iteration 

▪ Increment i 𝑖 = (𝑖 + 1) 𝑚𝑜𝑑 256  

▪ Update j  𝑗 = (𝑗 + 𝑆[𝑖]) 𝑚𝑜𝑑 256 

▪ Swap  𝑆[𝑖] ↔ 𝑆[𝑗] 

- Generate pseudorandom byte (Output): 

   𝑆[(𝑆[𝑖] + 𝑆[𝑗]) 𝑚𝑜𝑑 256] 

RC4 encryption and decryption are performed by XORing each byte of the plaintext or ciphertext 

with the corresponding byte of the keystream: 

- Encryption   

𝐶[𝑛] = 𝑃[𝑛] ⊕ 𝐾[𝑛] 



 

26 

    Where: 

▪ 𝐶[𝑛]  is the nth byte of the ciphertext. 

▪ 𝑃[𝑛] is the nth byte of the plaintext. 

▪ 𝐾[𝑛] is the nth byte of the keystream. 

- Decryption  

𝑃[𝑛] = 𝐶[𝑛] ⊕ 𝐾[𝑛] 

    Where:     

▪ 𝑃[𝑛] is the nth byte of the recovered plaintext. 

▪ 𝐾[𝑛] is the nth byte of the keystream. 

▪ 𝐶[𝑛] is the nth byte of the ciphertext. 

RC4 is mathematically simple and efficient, it has several cryptographic weaknesses, such as non-

random initial bytes in the keystream (susceptible to bias), and the vulnerability to key-reuse attacks 

(as in WEP). These weaknesses make RC4 unsuitable for modern cryptographic applications 

2.5.1.4. The Advanced Encryption Standard (AES) 

The Advanced Encryption Standard (AES) was established as the standard encryption algorithm by 

the National Institute of Standards and Technology (NIST) in the United States. It was officially 

adopted as a Federal Information Processing Standard (FIPS 197) in November 2001. AES was 

selected as the successor to the Data Encryption Standard (DES) after a rigorous evaluation process, 

which included public submissions and extensive analysis of security, performance, and efficiency 

[30]. AES is a symmetric block cipher that encrypts 128-bits in a single pass, and it supports 128, 192 

and 256-bits key size. It was developed by Joan Daemen and Vincent Rijmen, and is commonly used 

algorithm especially in wireless communication. The encryption and Decryption process of AES-128 

is presented in Fig. 2.10. The AES-128 means using 128-bits key length [31]. As illustrated in Fig. 

2.10, the AES consists of 10 rounds in case of 128 key length, but the number of rounds is 12 and 14 

in case of 192-bits and 256-bits respectively. The round in AES represents an iteration, and each 

iteration consists of a set of operations: AddRoundKey, SubBytes, ShiftRows, and MixColumns. 

These operations are performed in every round except the final round, where the MixColumns 

operation is omitted. The AddRoundKey operation is a XOR of the output from the previous 

operation and the subkey of the active round. The subkeys are generated through the key expansion 

process, which derives a unique subkey for each round using a series of defined operations [31]. 



 

27 

 

Fig. 2.10 AES-128 Algorithm process. 

The AddRoundKeyis considered the most important operation despite its simplicity, because it hides 

the relationship between the ciphertext and the plaintext. Here is the description of each operation in 

AES algorithm: 

a- The SubBytes 

The Byte substitution operation replaces each byte in the State, a 4x4 byte matrix, with a 

corresponding byte from the S-Box. The S-Box is a pre-calculated substitution table, where each State 

byte is used to index and retrieve the new byte. In this context, the S-Box provides the nonlinear 

substitution for each byte of the State, and is represented by the following formula:  

𝑆: {0,1}𝑛 → {0,1}𝑚 

Where  n is number of input bits, and 𝑚 is the number of output bits. 

Each byte in the AES state is treated as an element of the finite field 𝐺𝐹(28), defined by the 

irreducible polynomial: 

𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 

For each non-zero-byte b in 𝐺𝐹(28), the multiplicative inverse 𝑏−1 in the field is calculated using the 

following formula: 

𝑏. 𝑏−1 𝑚𝑜𝑑 𝑚(𝑥) = 1 

Note:  if b=0, its inverse is defined as 0. 

 

The multiplicative inverse 𝑏−1 undergoes an affine transformation in 𝐺𝐹(28) to further increase non-

linearity. The transformation is defined as 



 

28 

𝑆(𝑏) = 𝐴. 𝑏−1 ⨁ 𝑐 

Where:   

▪ 𝑏−1 is treated as an 8-bit column vector. 

▪ 𝑐     is a constant binary vector: 

𝑐 = [1 1 0 0 0 1 1 0]𝑇 

▪ A is 8x8 binary matrix, defined by: 

     𝐴 =

[
 
 
 
 
 
 
 
1
1
1
1

0
1
1
1

1
0
0
0

1
1
0
0

    

0
0
1
1
1
1
1
0

     

0
0
0
1
1
1
1
1

     

1
0
0
0

1
1
0
0

1
1
1
1

0
1
1
1

    

1
1
1
0
0
0
1
1

     

1
1
1
1
0
0
0
1]
 
 
 
 
 
 
 

 

The SubBytes operation is illustrated in Fig. 2.11. the SubBytes operation relays on the s-box table 

to replace bytes. 

 

Fig. 2.11 SubBytes operation in AES algorithm. 

b- ShiftRows 

ShiftRows is permutation step that operates on the state matrix to introduce diffusion to the AES 

algorithm. It consists on re-arranging the bytes in each row of the state by shifting them to the left 

[32]. The state matrix is defined as follows: 

𝑆 = [

𝑠0,0 𝑠0,1

𝑠1,0 𝑠1,1

𝑠0,2 𝑠0,3

𝑠1,2 𝑠1,3

𝑠2,0 𝑠2,1

𝑠3,0 𝑠3,1

𝑠2,2 𝑠2,3

𝑠3,2 𝑠3,3

] 

Where each element 𝑠𝑖,𝑗 represents a byte. 

The first row remains unchanged, the second row is shifted left by 1 byte, the third row and the fourth 

row are shifted by 2 and 3 bytes respectively, the mathematical description of this operation is defined 

as follows: 

𝑠𝑖,𝑗 → 𝑠𝑖,(𝑗−𝑖) 𝑚𝑜𝑑 4 



 

29 

According to this definition, the state presented gives the following state after applying the ShiftRows 

operation: 

𝑆′ = [

𝑠0,0 𝑠0,1

𝑠1,1 𝑠1,2

𝑠0,2 𝑠0,3

𝑠1,3 𝑠1,0

𝑠2,2 𝑠2,3

𝑠3,3 𝑠3,0

𝑠2,0 𝑠2,1

𝑠3,1 𝑠3,2

] 

The ShiftRows operation ensures that the bytes in each column depend on bytes from multiple rows 

after the subsequent MixColumns step that will be described in the following section. It also prevents 

having independent columns during the encryption which render security weak. 

c- MixColumns 

This operation is a linear transformation of data applied to the state columns. It mixes the bytes of 

each column of the state matrix to provide diffusion across the ciphertext which ensures that changes 

in each bytes affects other bytes [32]. Each column is multiplied by a fixed 4x4 matrix in 𝐺𝐹(28) as 

follows: 

[
 
 
 
 
𝑠′0,𝑐

𝑠′1,𝑐

𝑠′2,𝑐

𝑠′3,𝑐]
 
 
 
 

=  [

2 3
1 2

1 1
3 1

1 1
3 1

2 3
1 2

] . [

𝑠0,𝑐

𝑠1,𝑐

𝑠2,𝑐

𝑠3,𝑐

] 

   Where: 

▪ The coefficients 1,2 and 3 are constants in 𝐺𝐹(28) 

▪ The multiplication is performed modulo 𝑥8+ 𝑥4+ 𝑥3 +

𝑥 + 1 

The multiplication and addition performed in 𝐺𝐹(28) using XOR for addition and finitr field 

multiplication for products. The output bytes are: 

𝑠′
0,𝑐 = (2.  𝑠0,𝑐)⨁(3. 𝑠1,𝑐) ⨁ (1. 𝑠2,𝑐) ⨁ (1. 𝑠3,𝑐) 

     𝑠′
1,𝑐 = (1.  𝑠0,𝑐)⨁(2. 𝑠1,𝑐) ⨁ (3. 𝑠2,𝑐) ⨁ (1. 𝑠3,𝑐) 

𝑠′
2,𝑐 = (1.  𝑠0,𝑐)⨁(1. 𝑠1,𝑐) ⨁ (2. 𝑠2,𝑐) ⨁ (3. 𝑠3,𝑐)  

𝑠′
3,𝑐 = (3.  𝑠0,𝑐)⨁(1. 𝑠1,𝑐) ⨁ (1. 𝑠2,𝑐) ⨁ (2. 𝑠3,𝑐)  

Multiplication in 𝐺𝐹(28): 

   1 . 𝑥 = 𝑥  

2 . 𝑥 = 𝑙𝑒𝑓𝑡 𝑠ℎ𝑖𝑓𝑡 (𝑥 ≪ 1), 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑜 (𝑥8+ 𝑥4+ 𝑥3 + 𝑥 + 1) 

3 . 𝑥 = (2 . 𝑥) ⨁ 𝑥 

The transformation matrix for decryption is: 

[

14 11
9 14

13 9
11 13

13 9
11 13

14 11
19 14

] 



 

30 

The MixColumns operation is presented in Fig. 2.12. 

 

 

Fig. 2.12 MixColumns operation. 

d- AddRoundKey 

At this step the encryption process meets the Key generation process. The State in AddRoundKey is 

XORed with the round Subkey [32]. This operation is defined mathematically as follows: 

     𝑠′𝑖,𝑗 = 𝑠𝑖,𝑗  ⨁ 𝑘𝑖,𝑗 

   Where: 

▪ 𝑠𝑖,𝑗: Byte in the state matrix. 

▪ 𝑘𝑖,𝑗: Corresponding byte in the round key matrix. 

▪ 𝑠′𝑖,𝑗: Resultant byte in the transformed state matrix. 

 

The inputs to the AddRoundKey is: 

The state 𝑆 = [

𝑠0,0 𝑠0,1

𝑠1,0 𝑠1,1

𝑠0,2 𝑠0,3

𝑠1,2 𝑠1,3

𝑠2,0 𝑠2,1

𝑠3,0 𝑠3,1

𝑠2,2 𝑠2,3

𝑠3,2 𝑠3,3

] 

 

The Key  𝑘 =

[
 
 
 
𝑘0,0 𝑘0,1

𝑘1,0 𝑘1,1

𝑘0,2 𝑘0,3

𝑘1,2 𝑘1,3

𝑘2,0 𝑘2,1

𝑘3,0 𝑘3,1

𝑘2,2 𝑘2,3

𝑘3,2 𝑘3,3]
 
 
 

 

The output of the AddRoundKey is: 

The output 𝑆′ =

[
 
 
 
𝑠0,0⨁𝑘0,0 𝑠0,1⨁𝑘0,1

𝑠1,0⨁ 𝑘1,0 𝑠1,1⨁𝑘1,1

𝑠0,2⨁𝑘0,2 𝑠0,3⨁𝑘0,3

𝑠1,2⨁𝑘1,2 𝑠1,3⨁𝑘1,3

𝑠2,0⨁𝑘2,0 𝑠2,1⨁𝑘2,1

𝑠3,0⨁𝑘3,0 𝑠3,1⨁𝑘3,1

𝑠2,2⨁𝑘2,2 𝑠2,3⨁𝑘2,3

𝑠3,2⨁𝑘3,2 𝑠3,3⨁𝑘3,3]
 
 
 

 

e- Key Generation 

The key generation is the process of generating subkeys for each round starting from the initial key. 

Number of rounds as mentioned before is 10, 12 or 14 depending on the length of the key, 128, 192 

or 256 respectively. The initial key is divided into 4-byte words (𝑊[𝑖]). Number of words 𝑁𝐾 is 16, 



 

31 

24 or 32 according the key length 128, 192 or 256. The process of key generation is presented in Fig. 

2.13. 

 

Fig. 2.13 Key generation process in AES algorithm. 

The total number of words in the expended key is: 

𝑁𝑏 𝑥 (𝑁𝑟 + 1) 

Where:    

▪ 𝑁𝑏 = 4 : Number of columns in the state matrix 

▪ 𝑁𝑟: Number of rounds (10, 12 or 14) 

The round constant (RCON) is a table of constants used in the key expansion to add a nonlinearity to 

the output. 𝑅𝐶𝑂𝑁 [𝑖] is divided from power of 2 in the finite field 𝐺𝐹(28):  

𝑅𝐶𝑂𝑁 [1] = 0𝑥01, 𝑅𝐶𝑂𝑁 [2] = 0𝑥02, 𝑅𝐶𝑂𝑁 [3] = 0𝑥04, … 

The steps to expend the key are:   

For 𝑖 < 𝑁𝑘:  

The initial key word  𝑊[0] 𝑡𝑜 𝑊[𝑁𝑘 − 1]  

are directly copied from the original key 

For 𝑖 ≥ 𝑁𝑘:  

      𝑊[𝑖] = 𝑊[𝑖 − 𝑁𝑘] ⊕ 𝑇(𝑊[𝑖 − 1]) 

 If 𝑖 𝑚𝑜𝑑 𝑁𝑘 = 0  Or  𝑊[𝑖] = 𝑊[𝑖 − 𝑁𝑘] ⊕ 𝑊[𝑖 − 1] 



 

32 

T function (For 𝑖 𝑚𝑜𝑑 𝑁𝑘 = 0): 

    Rotate 𝑊[𝑖 − 1]: Circularly rotate the bytes by one position. 

    Substitute bytes from the S-box as described in the SubByte section. 

    XOR the first byte of the word with 𝑅𝐶𝑂𝑁[𝑖/𝑁𝐾]. 

The following step is additional for the 256-bits key length: 

    If 𝑖 𝑚𝑜𝑑 𝑁𝑘 = 4, the [𝑖 − 1] word is substituted using S-box table. 

2.5.2. Message authentication codes (MAC) 

Message authentication codes is the concept of combining a message with a secret key before hashing. 

The purpose is to detect alterations of the message or the digest. While this may appear similar to the 

definition and purpose of hashing outlined in the preceding sections, it is, in fact, distinct. Hashing 

alone is not enough when sending packets across a communication channel, the reason is that the 

digest (result of hashing) is sent alongside the original message to enable the receiver to verify if the 

message has been altered or damaged. However, in a scenario where the message is intercepted and 

modified, with calculation of the new digest, the receiver would generate the same altered digest. As 

a result, the receiver would remain unaware that the message has been tampered. To address this 

issue, and given that the hash function ensures data integrity rather than message confidentiality, the 

Message authentication codes is the optimal solution for this issue, the process of MAC is illustrated 

in the Fig. 2.14. 

 

Fig. 2.14 Message Authentication Code. 

An important characteristic on hashing is that the order is important, which means combining 

Message + Key is different that combining Key + Message. So, even if the key is the same, and the 

message is the same but the order is different, the receiver will not get the same digest, that’s where 

a Hash-Based Message Authentication Code (HMAC) comes into play. HMAC is merely a standard 

way of combining a message and a key so if transmitter and receiver want to speak in a way that 

guarantees the integrity of the message, they not only have to agree upon using the concept of 

combining a message and a key, but they also have to agree on combining that message and a key in 

a specific way. HMAC is defined and detailed in RFC 2104 [33]. it includes all the instructions for 

exactly how you can combine a message and a key, in order to guarantee integrity of that message. 

Message 

Digest 

Key 

Message 

Key 

Digest 

  

Key exchange 

Data exchange 



 

33 

Table 2.3 lists some standard way of combining a message and a secret key to guarantee message 

integrity. 

Table 2.3. Commonly used standards for message integrity  

Legacy - 

Modern HMAC, Poly1305 

Future GCM, CCM, AEAD Ciphers 

2.5.3. Pseudo Random Functions (PRF)  

Pseudo random function is similar as hashing function, except for output which is arbitrary length, 

meaning that the length is controllable. It's like a hashing algorithm that feeds back in on itself. The 

purpose of a PRF is to use a single key to generate an unlimited number of keys. In secure 

communication, a PRF enables the transmitter and receiver to derive multiple secret keys from a 

shared secret key, which can then be used for data encryption (confidentiality) and MAC 

(authentication and integrity). This approach eliminates the need for multiple key exchanges, which 

is a complex and risky operation. The diagram in Fig. 2.15 represent the PRF function. 

 

Fig. 2.15 Pseudo Random Function diagram. 

If a PRF is running using only the key and data length input, the same output will be generated each 

time, because the starting information (seed data) hasn't changed, the seed data allows to differentiate 

the pseudo random data [34]. The PRF function is defined as follows: 

𝐹: {0,1}𝑘  ×   {0,1}𝑛  →   {0,1}𝑚 

Input Key  𝑘 ∈ {0,1} (secret and fixed) 

   Seed data 𝑥 ∈ {0,1}  

   Output  Pseudo random 𝑚 ∈ {0,1} 

2.5.4. Key Derivation Function (KDF) 

KDF is similar to a PRF but requires also an additional random data that is mixed into the initial data, 

and a Slowdown mechanism. The purpose of this extra data, which is known also by the name “Salt” 

is to guarantee a minimum level of entropy, while the Slowdown mechanism can be any one of a 

number of strategies, like running the KDF for a certain number of iterations instead of going straight 

from input to Output by recalculating the output several times through the same KDF, or through 

using a memory intensive match, or even prevent parallelization intestinally. 

Pseudo Random 

Function PRF 

Key 

Data length 

Seed data 

Pseudo random data 



 

34 

The purpose of a KDF is to make brute forcing the output infeasible. A good example of this is 

password storage, it is commonly known that it's better to use longer passwords, but there's probably 

a lot of people that are still using eight-character passwords or even less, that's where salt comes into 

play, salt adds some level of randomness to the password so that even in case of an insecure five-

character password, salt might add another 40 characters to it, making it more secure . Additionally, 

passwords to online application are not stored in clear text on servers because it is insecure, but instead 

they are stored on a sort of hash of that password combined with the salt to enhance security. 

Furthermore, hashing and PRF are built for Speed, whereas KDFs are intentionally built to slow down 

the process, that’s because modern cracking array can run through calculations of hashes on PRFs at 

a rate of billions or even trillions per second, but if each of those calculations is slightly slow down, 

it takes years to do the same number of guesses [36]. The KDF function is described as follows: 

𝐾𝐷𝐹(𝑆, 𝑃) → 𝑘 

   Where:  

▪ 𝑆 is the secrete input (e.g., a password) 

▪ 𝑃 is optional contextual information (e.g., salt) 

▪ 𝐾  is the derived key(s) of the desired length   

2.6.  Asymmetric cryptography 

Asymmetric cryptography relies on a pair of keys to perform mathematical operations: one key is 

used to encrypt or sign data, while the other is used to decrypt or verify it. The first key, known as 

the private key, is kept secret and securely held by the owner. The second key, called the public key, 

is shared openly and can be used by others to verify signatures or encrypt messages intended for the 

private key holder [37]. The mathematics underlying asymmetric cryptography, which enables 

encryption with one key and decryption with another, is integrally complex. These mathematical 

operations involve multiple calculations and values within a single process. When referring to the 

private key or public key, it is important to note that these are not necessarily single values. Instead, 

a public key contains all the values required to perform an asymmetric cryptographic operation (such 

as encryption or signature verification), while a private key consists of the values needed to reverse 

or verify that operation (such as decryption or signing). In summary, the public and private keys 

represent the sets of values necessary to carry out their respective roles in asymmetric cryptography. 

Another important thing about asymmetric cryptography is that the keys used to perform an operation, 

and the keys used to verify that operation can sometimes be switched [44]. The keys used in 

asymmetric cryptography and their utilization is illustrated in Fig. 2.16. 

 



 

35 

 

Fig. 2.16 Keys use in asymmetric cryptography. 

Asymmetric cryptography allows to make three operations, encryption, signatures, and key exchange. 

The asymmetric cryptography process is illustrated in Fig. 2.17. 

 

Fig. 2.17 Overall asymmetric algorithm process. 

To perform these operations, we need specific algorithms that are listed in the Table 2.4. 

Table 2.4. Asymmetric cryptography algorithms 

RSA Rivest, Shamir, Adleman 

DSA Digital Signature Algorithm 

DH Diffie-Hellman Key Exchange 

 

RSA is the only algorithm that can do all the operations, other algorithms are designed to do specific 

operations. The following sections describes asymmetric cryptography operations. 

2.6.1. Asymmetric encryption 

The key difference between Symmetric and Asymmetric Encryption is the used keys, the first uses a 

single key to lock and decrypt data, while the second uses two different keys. The purpose of 

asymmetric encryption is to provide a cryptographic property known as confidentiality this is 

provided because only whoever has the private key can reverse the cipher text back into the original 

plaintext and therefore read the original data [45]. Encryption and decryption are a set of mathematical 

Public Key Private Key 

Needed to 

Verify/Undo Perform 

Asymmetric crypto operation 

Plaintext Plaintext 
Ciphertext 

≠ 



 

36 

operations defined to encrypt with one value “Public key” and decrypt with another value “Private 

key”. 

2.6.1.1. Rivest, Shamir, Adleman (RSA) encryption algorithm 

RSA (Rivest-Shamir-Adleman) is an asymmetric encryption algorithm that ensures secure data 

transmission by leveraging the mathematical difficulty of factoring large integers. It uses a public key 

for encryption and a private key for decryption. The overall encryption and decryption algorithm is 

illustrated in Fig. 2.18. The mathematical definition of the RSA algorithm is given as follow: 

Key setup: 

Choosing two large prime numbers 𝑝 and 𝑞 Where 𝑝 ≠ 𝑞. 

The security of RSA relies on the difficulty of factoring the product 𝑛 = 𝑝 × 𝑞. 

Compute Euler's totient function: 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1) 

Choose a public exponent 𝑒 where 1 < 𝑒 <  𝜙(𝑛)  and gcd(𝑒, 𝜙(𝑛)) = 1. 

- 𝑒  and (𝑛) are coprime. 

- 𝑒 is often a small value like 3, 17, or 65537 (216+1) as they make encryption 

efficient. 

Compute the private exponent  𝑑 ≡ 𝑒−1 𝑚𝑜𝑑 𝜙(𝑛) which means 𝑑 × 𝑒 ≡ 1 (𝑚𝑜𝑑 𝜙(𝑛)) 

  Resulting keys: 

- Public Key:  (𝑒, 𝑛) used for encryption or verifying signatures. 

- Private Key:  (𝑑, 𝑛) used for encryption or verifying signatures. 

Encryption: 

Given a plaintext message 𝑀 represented as an integer where 0 ≤ 𝑀 < 𝑛. 

And a public key (𝑒, 𝑛) where 𝑒 is the public exponent and 𝑛 is the modulus. 

The ciphertext 𝐶 is composed as 𝐶 ≡ 𝑀𝑒 (𝑚𝑜𝑑 𝑛) 

Decryption: 

Given a ciphertext 𝐶. 

And a private key (𝑑, 𝑛), where 𝑑 is the private exponent and 𝑛 is the modulus. 

The original plaintext  𝑀 is recovered as 𝑀 = 𝐶𝑑  𝑚𝑜𝑑 𝑛 

The correctness of RSA relies on the mathematical relationship between the public exponent 𝑒, the 

private exponent 𝑑 and Euler's totient function 𝜙(𝑛). 

This works because:  𝑀 ≡ (𝑀𝑒)𝑑 𝑚𝑜𝑑 𝑛 ≡  𝑀(𝑒.𝑑) 𝑚𝑜𝑑 𝑛 

During the key generation, d is chosen such that  𝑒. 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙(𝑛) 

Which means    𝑒. 𝑑 = 𝑘. 𝜙(𝑛) + 1 for some integer 𝑘. 

Starting from the ciphertext 𝐶 ≡  𝑀𝑒  (𝑚𝑜𝑑 𝑛) raising 𝐶 to the power of 𝑑 gives: 

     𝐶𝑑 = (𝑀𝑒)𝑑 (𝑚𝑜𝑑 𝑛) 



 

37 

Substitute 𝑒. 𝑑 = 𝑘. 𝜙(𝑛) + 1 : 

     𝐶𝑑  ≡  𝑀𝑘.𝜙(𝑛)+1 (𝑚𝑜𝑑 𝑛) 

Using Euler’s theorem, which states that if gcd(𝑀, 𝑛) = 1, then: 

     𝑀𝜙(𝑛) ≡ 1𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛) 

Therefore: 

     𝑀𝑘.𝜙(𝑛) ≡ 1𝑘 ≡ 1 (𝑚𝑜𝑑 𝑛) 

Substitution back, Thus, recovering the original plaintext M: 

     𝐶𝑑  ≡ 𝑀𝑘.𝜙(𝑛)+1 ≡  𝑀.𝑀𝑘.𝜙(𝑛)  ≡ 𝑀. 1 ≡ 𝑀 (𝑚𝑜𝑑 𝑛) 

Breaking RSA requires factoring 𝑛 into 𝑝 and 𝑞, which is computationally infeasible for large primes. 

Modern implementations use 𝑛 with at least 2048 bits for strong security [45]. The RSA algorithm 

flowchart is shown in Fig. 2.18. 

 

Fig. 2.18 RSA algorithm flowchart. 

2.6.2.  Signatures 

Digital signatures provide two important cryptographic principles: integrity, and authentication. 

signatures are one of the operations that exist within asymmetric cryptography. It is an operation that 

guarantees that data has not changed since it was signed, so if some sort of message run through a 

signature operation, the output can be used to verify that this data has not changed since the signature 

was created. Signatures are an asymmetric crypto operation, which means two different keys are 

involved: one key to do the signature and the other key to do the verification [41]. The private key in 

Encryption Decryption Start 

Read plain text 

Generate R.S.A keys 

Compress data 

Read each 470 

bytes of data 

Encrypt using RSA Functions 

All data 

encrypted?  

Collect all encrypted data and 

encoding based 64 

Encrypted data 

End 

No 

Start 

Read encrypted data 

Generate R.S.A keys 

Decode using base 64 

Read each 512 

bytes of encrypted 

data 

decrypt using RSA Functions  

All data 

encrypted?  

Collect all encrypted data and 

encoding based 64 

Encrypted data 

End 

No 



 

38 

signatures is the one that is used to create the signature, while the public key is used to verify the 

signature.  

A practical example to understand digital signatures is the passport or the driving license, where the 

owner is the only person that should be able to sign the document, but anybody can verify the 

signature on the passport or driving license. Similarly, the only person that should be able to create a 

digital signature is the one that has the private key, which in theory has never been shared with 

anybody else, but the public key allows the verification of a digital signature by anyone.  

Not only messages can be signed, but nearly anything can be signed, whether it is a document, an 

email, a file, a software, or even certificates. However, and since signatures are an asymmetric crypto 

operation, the math is somewhat computationally expensive. Therefore it wouldn't be used for every 

file or every message between two people, but occasionally for selected files it might make sense to 

use it [42].  

The purpose of signatures is providing both integrity and authentication to data, integrity because if 

anything changes in the message this signature -which applies only to this message- will no longer 

verify with the new changed-message, and authentication because the only person that can create this 

signature is whoever has the private key. Another fact is, when verifying a signature with a particular 

public key, the only person that could have created that signature is whoever had the matching private 

key, that's what gives authentication. 

There are two cryptographic operations that provide integrity and authentication, MAC as described 

in symmetric cryptography section, and Signatures. The major difference between signatures and 

MAC is that signatures are an asymmetric operation and MAC are a symmetric operation, which 

means MAC are more efficient to calculate on bulk data, whereas signatures are more limited to 

smaller data sets. When doing something with one value and then verifying it with another value, as 

in asymmetric operations, it understandably going to be more complicated than doing and undoing 

something with the same value. This fact brings us to the second major difference between signatures 

and MAC, signatures can be verified by anyone, the public key is shared publicly, which means 

anybody can attain the public key and therefore verify the signature, whereas with MACs, only the 

peer that has the secret key can verify the MAC and ensure the integrity and authentication of data.  

2.6.2.1. Signatures using RSA algorithm 

The process of signature creation is shown in Fig. 2.19. It all starts with some sort of data that needs 

to be signed, this data can be of any kind, file, message, or any other data. To create a signature on 

this data using RSA algorithm we first need to run it through a hashing algorithm which is going to 

create a digest. Then that digest will be encrypted using the RSA private key to have the final 

signature. The hashing step is very important since the RSA signatures is computationally expensive, 

we can't expect to do the math on large amount of data, but if it is run through a hashing algorithm, 



 

39 

any file of any size is compressed into a smaller representational value, and then it's much more 

feasible to do the complex math of RSA signatures on that smaller value. Once created, the signature 

can then be attached to the original data before sending that it across the wire or simply including it 

in the metadata of the file itself on a hard drive [41].  

 

Fig. 2.19 Signature creation using RSA. 

The signature verification process consists on separating data from signature, the data is then run 

through the same hashing algorithm that was used when creating the signature to generate a digest. 

The signature on the other hand is decrypted using RSA public key that matches the private key used 

in the encryption. data is considered unchanged if, and only if the decrypted signature matches the 

value of calculated digest, as presented in Fig. 2.20. 

 

Fig. 2.20 RSA signature creation and verification process. 

2.6.2.2. Signatures using DSA algorithm 

The Digital Signature Algorithm (DSA) is a widely adopted public-key cryptographic algorithm 

specifically designed for generating digital signatures. It is formally defined in FIPS 186, a standard 

published by the National Institute of Standards and Technology (NIST). DSA ensures the integrity 

and authenticity of a message by enabling the recipient to verify that the message originated from the 

legitimate sender and has not been altered. Unlike RSA, which supports encryption, decryption, and 

key exchange, DSA is designed for digital signatures and cannot be used for other purposes. [43]. It 

involves two formulas, the first generates the signature, and the second verifies it. the formula for 

Signature generation requires the original data as input along with the private key. The DSA signature 

generation and verification is illustrated in Fig. 2.21. 

Data Digest Signature Hash function RSA Encryption 



 

40 

 

Fig. 2.21 DSA Signature creation and verification. 

Verification process uses a combination of the received data and signature with the public key, to get 

one or a zero indicating true or false whether the signature checked out or not. The difference between 

DSA and RSA is the absence of encryption and decryption in DSA.  

2.6.3. Key exchange 

Key exchange addresses a critical challenge in data cryptography: securely sharing the key between 

the encryption and decryption parties (the transmitter and receiver). For example, when data is shared 

over the internet, two essential elements are required to ensure secure transmission. The first is 

confidentiality, which guarantees that the transmitted information is only accessible to the intended 

users. The second is integrity, which ensures that the data cannot be altered or tampered with during 

transit. Confidentiality can be achieved by using symmetric encryption and this is going to require a 

secret key, and Integrity can be guaranteed by using a message authentication code, which requires 

also a secret key. The issue here is how to get these secret keys across the internet to the other side, 

it can’t be just sent because anybody is listening, will then get a copy of those keys and will therefore 

be able to intercept and read, or even change anything sent, that is what is known as the key exchange 

problem.  

Key exchange enables the transmitter and receiver to establish a shared secret key over an unsecured 

medium, such as the internet. The key exchange itself will have both of these endpoints exchanging 

certain pieces of information with each other, and the result is known as a “shared secret”, which is a 

string of ones and zeros known only by the intended parties, it is used as the seed value from which 

to generate as many symmetric secret keys as needed using a pseudo random function (PRF) [44].  

2.6.3.1. RSA key exchange 

The goal of key exchanges is to establish a mutual shared secret on either side of the wire, and RSA 

is well adapted to this operation. Doing a key exchange with RSA simply takes advantage of the 

algorithm’s ability to encrypt and decrypt, to perform the operation efficiently. One side of 

communication (receiver), must have an RSA asymmetric key pair (public and private). The other 



 

41 

side (transmitter) randomly generates a seed (ones and zeros), and encrypt it using the public key to 

generate the Ciphertext. this Ciphertext is sent across the communication channel, even if it is 

intercepted it needs to be decrypted using the private key, so it is safe.  The receiver uses its private 

key to decrypt that seed value, and the result will be the exact identical value that transmitter randomly 

generated in the first step, and now both parties have the same mutual shared secret, which can be 

used to generate any amount of symmetric secret keys to do symmetric encryption. Since only the 

transmitter and the receiver have the same seed value, they're the only users that could have generated 

the exact set of secret keys, and therefore anything shared between them that is protected by these 

keys is only readable by them. so that is how RSA algorithm is used for key exchange [45].  

2.7.  Block cipher operation modes 

The block cipher processes data in fixed-length blocks. If more data needs to be encrypted, 

adjustments are required to handle the additional input, which is why different operation modes exist. 

These modes vary based on how they manage the relationship between blocks during encryption. 

2.7.1. Electronic Code Book (ECB) 

Electronic code book is a mode where each block of data is processed separately, and then 

concatenated after encryption. If the same input plaintext is encrypted using this mode repeatedly, the 

ciphertext is going always to be the same. ECB is considered weak against some known attacks. Fig. 

2.22 illustrates the ECB mode [46]. 

 

Fig. 2.22 Electronic Code Book mode (ECB). 

2.7.2. Cipher Block Chaining (CBC) 

Cipher Block Chaining (CBC) differs from ECB. In CBC, the first plaintext block is XORed with an 

initialization vector (IV) before encryption. The resulting ciphertext is then used as the IV for the next 

block. This process continues, with each ciphertext block becoming the IV for the subsequent block, 

until the end of the message. This chaining mechanism introduces greater randomness and obscures 

the relationship between the input and output, enhancing security [46]. Fig. 2.23 illustrates the CBC 

encryption mode. 



 

42 

 

Fig. 2.23 Cipher Block Chaining mode (CBC). 

The encryption of the Cipher Block Chaining formula is presented in the following formula 

𝐶𝑖 = 𝐸𝑘(𝑃𝑖 ⊕ 𝐶𝑖−1) 

   Where  𝐶0 = 𝐼𝑉 (Initial vector) 

And for the decryption, the formula is presented as follows: 

     𝑃𝑖 = 𝐷𝑘(𝐶𝑖) ⊕ 𝐶𝑖−1 

   Where  𝐶0 = 𝐼𝑉 (Initial vector) 

The advantage of this chaining mode is the randomness introduced to the vectors, which obscures 

patterns in the plaintext even when blocks are identical. However, the process is sequential, making 

it less suitable for parallel processing. 

2.7.3. Cipher FeedBack (CFB) 

Unlike ECB and CBC, CFB does not directly encrypt the plaintext, but instead, A first initialization 

vector is encrypted with an algorithm such as the advanced encryption standard after being randomly 

generated or created, and then XORed with the plaintext. The result is considered to be the first 

ciphertext, and is also driven to be used as the initialization vector for the next block, and so on. This 

process goes on forever as presented in the block diagram of  Fig. 2.24. The important thing about 

Cipher FeedBack is that it's a self-synchronizing stream [46]. 

 

Fig. 2.24 Cipher FeedBack mode (CFB). 

The encryption formula of the CFB is defined as follows: 



 

43 

 𝐶𝑖 = 𝑃𝑖  ⊕ 𝐸𝑘(𝐶𝑖−1) 

Where: 

▪ Ci = ciphertext block at position i 

▪ Pi = plaintext block at position i 

▪ 𝐶0 = 𝐼𝑉 (Initial vector) 

▪ 𝐶𝑖−1 =ciphertext block at position i-1 

▪ Ek = encryption function using key k 

▪ 𝑖 ≥ 1 

The decryption is defined by the formula: 

𝑃𝑖 = 𝐶𝑖  ⊕ 𝐸𝑘(𝐶𝑖−1) 

Where: 

▪ Ci = ciphertext block at position i 

▪ Pi = plaintext block at position i 

▪ 𝐶0 = 𝐼𝑉 (Initial vector) 

▪ Ek = encryption function using key k 

One of the disadvantages of this mode is the sequential nature of the algorithm, which limits the 

parallelization.  

2.7.4. Output feedback (OFB) 

Output Feedback is a block cipher mode of operation that converts a block cipher into a synchronous 

stream cipher. The block cipher encrypts an Initialization Vector (IV), and the result is used as a 

keystream. The keystream is XORed with the plaintext to produce the ciphertext [46]. Unlike other 

modes, neither the plaintext nor the ciphertext are fed back into the encryption process. The blocks 

diagram of the OFB is presented in Fig. 2.25. 

 

Fig. 2.25 Output feedback mode (OFB). 

Formula for encryption in OFB mode:  

𝐶𝑖 = 𝑃𝑖  ⊕ 𝑂𝑖 

Where: 



 

44 

▪ Ci = ciphertext block at position i 

▪ Pi = plaintext block at position i 

▪ Oi = keystream block at position i generated as: 

•  𝑂𝑖 = 𝐸𝑘(𝑂𝑖−1) 

▪ 𝑂0 = 𝐼𝑉 (Initial vector) 

▪ Ek = encryption function using key k 

▪ 𝑖 ≥ 1 

 

The decryption mode is presented by the formula: 

𝐶𝑖 = 𝑃𝑖  ⊕ 𝑂𝑖 

Where:  

▪ Ci = ciphertext block at position i 

▪ Pi = plaintext block at position i 

▪ Oi = keystream block at position i generated as: 

•  𝑂𝑖 = 𝐸𝑘(𝑂𝑖−1) 

▪ 𝑂0 = 𝐼𝑉 (Initial vector) 

▪ Ek = encryption function using key k 

▪ 𝑖 ≥ 1 

OFB mode is ideal for scenarios where error tolerance is crucial, such as satellite communications 

and real-time audio or video streams. 

2.7.5. Counter mode (CTR) 

The counter mode (CTR) is another common type of block cipher. Counter mode uses an incremental 

counter to be able to add randomization to the encryption process. The incremental counter starts with 

an initial value, for the first encryption operation, and is incremented for next encryption operations. 

The difference of CTR compared to other modes, is that the plaintext is not encrypted, instead, the 

counter value is encrypted and then XORed with the plaintext to create the ciphertext. Another thing 

about CTR, is that the ciphertext is not mixed with the following plaintext, alternatively, the counter 

is incremented and mixed to the plaintext to repeat the same process.  These modes of operation can 

not only provide encryption but can also provide authentication. A good example is the Galois 

Counter Mode (GCM), which combines counter mode with Galois authentication. This mode 

provides a way to not only encrypt data very quickly but make sure that we can authenticate where 

the data came from. This is commonly used in wireless connectivity. The CTR mode is illustrated in 

Fig. 2.26. 



 

45 

 

Fig. 2.26 Counter mode (CTR) 

The encryption formula of the CTR mode is: 

𝐶𝑖 = 𝑃𝑖  ⊕ 𝐸𝑘(𝑇𝑖) 

 Where: 

▪ Ci = ciphertext block at position i 

▪ Pi = plaintext block at position i 

▪ 𝑇𝑖 = counter value at position i 

▪ Ek = encryption function using key k 

The encryption formula of the CTR mode is: 

𝑃𝑖 = 𝐶𝑖  ⊕ 𝐸𝑘(𝑇𝑖) 

Where: 

▪ Ci = ciphertext block at position i 

▪ Pi = plaintext block at position i 

▪ 𝑇𝑖 = counter value at position i 

▪ Ek = encryption function using key k 

▪  𝑖 ≥ 1 

 

The counter value Ti is defined as follows: 

𝑇𝑖 = Nonce ∥ Counter 

   Where:  

▪ Nonce: A unique value used once, usually random 

▪ Counter: A block-specific value that increments for each 

block 



 

46 

 Hardware design optimization strategies 

Field-Programmable Gate Arrays (FPGA) offer flexibility in electronic design, which provides the 

ability to achieve an optimal performance. This chapter provides some common strategies for designs 

optimization, focusing on resource utilization and timing efficiency. Design optimization aims to 

reduce logic elements, memory, and power consumption. Timing optimization on the other hand, 

ensures meeting circuit requirements, via using several techniques, such as pipelining, and clock 

domain management. The following sections highlight the impact of these strategies on design 

efficiency, and maximizing FPGA performance, to enable a faster, more reliable, and resource-

efficient implementations for a wide range of applications.  

3.1.  Timing Constraints 

One of the first things to do when creating an FPGA application, is specifying the timing constraints 

of the design. The synthesis tool then tries to generate the designed circuit that meets those timing 

constraints, using something called static timing analysis. if any of the constraints aren't met after 

static timing analysis, this means timing optimization must be performed until all constraints are met 

also known as timing closure, which is a difficult operation that requires a long development time. 

This section explains the background material and underlying challenges followed by practical acts 

to perform a timing optimization [47]. 

The definition of timing constraints depends on different factors and situations. The first situation is 

when the FPGA itself has a fixed clock frequency; in this case, the timing constraint is based on that 

specific clock frequency. Essentially, the constraints in this case tell the synthesis tool that the design, 

after placement and routing, should run at least at this specific clock frequency. The second situation 

is working with an application that has real-time requirements, such as a signal processing circuit that 

must produce outputs every 1000 cycles while processing 44.1 kHz audio. This means the design 

needs to have a clock frequency 1000 times faster than the processing requirements (44.1 MHz), 

which corresponds to the timing constraint. Another situation is when having a design with specific 

bandwidth requirements, for example a circuit with a 32-bit bus (4 bytes) and requires 1.6 GB/s of 

input bandwidth to achieve the desired functionality. the clock in this case must be at least 400 MHz 

in order to achieve this amount of bandwidth, which corresponds to the timing constraint. The fourth 

situation is a common case where the objective is maximizing performance of design as much as 

possible. In this case there is no specific timing constraints, so the development process starts with 

an aggressive constraint, and then a timing optimization is performed, until that constraint is met, or 

the process is repeated until the clock frequency can’t be enhanced anymore. alternatively, it's also 

reasonably common to pick an aggressive constraint that is not expected to be met actually, and then 

fall back to whatever clock frequency is actually reported as safe by the timing analyzer.  



 

47 

Before proceeding to the global timing constraints and the delay paths, it's very important to have a 

background on the possible path endpoints that are taken in consideration during synthesis of a design. 

While global timing constraints are very simple, understanding possible path endpoints is useful when 

learning about path-specific timing constraints, to properly define the design timing objectives to the 

implementation tools. Simply put, path endpoints are IO pads, and synchronous elements. 

Synchronous elements include flip-flops, latches, RAMs, DSP slices, and shift register. Path 

endpoints do not include LUTs, nets, or any other purely asynchronous elements, so basically 

anything without a clock port. To be noticed that, while the LUT itself is not an endpoint, but 

reconfiguring it as a RAM or shift register makes it becomes synchronous, and thus, it can be a path 

endpoint.  

3.2.  Clock Frequency 

The first thing to take in consideration before performing any kind of timing optimization, is how 

clock frequencies and periods are determined. For any set of connected flip-flops for example, data 

must arrive at each flip-flop before the next clock cycle. This means that the clock period essentially 

acts as a deadline for the delay that can occur between flip flops, this clock period (T clk) is called the 

deadline (T Deadline) and the delay between flip flops (T FF-to-FF). So, what should be ensured during 

timing optimization is that the delay between FF is less than the deadline, 𝑇𝐹𝐹−𝑡𝑜−𝐹𝐹 ≤ 𝑇𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 

where 𝑇𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = 𝑇𝐶𝑙𝑘. Fig. 3.1 shows a simple example of this situation. If  𝑇𝐹𝐹−𝑡𝑜−𝐹𝐹 = 5 𝑛𝑠 in 

Fig. 3.1, then  𝑇𝐶𝑙𝑘 ≥  5𝑛𝑠. 

 

 

Fig. 3.1 FF to FF timing. 

The definition of TDeadline is updated according to the design size, and the parameters involved 

accordingly, which is discussed in the next sections. 

Delays consist of the summation of two different components, cell delays (TC), and interconnect 

delays (TIC). A cell is a generic term used to refer to any non-interconnect FPGA resource, like 

Configurable Logic Blocks (CLBs,) lookup tables, Random Access Memories (RAM), Digital Signal 

Processing (DSP), etc. Even a simple flip flop contributes to cell delays, where they don't immediately 

output a value after a rising clock edge, instead there is a small amount of time often referred to as a 

FF1 

FF2 

FF3 

TFF-to-FF 



 

48 

clk-to-Q delay, that passes before the output appears. Interconnect delays are the delays of all the 

connections between cells, which includes the FPGA routing tracks, the connection boxes, the switch 

boxes, basically all the interconnect components of the FPGA [47]. An example of delays is illustrated 

in Fig. 3.2. 

 

Fig. 3.2 Interconnect delay, and FF delay. 

Cell delays and interconnect delays in Fig. 3.2 are calculated as follows: 

TC = 0.8ns + 1ns + 1ns = 2.8ns 

TIC = 1.2ns + 2ns + 0.6ns = 3.8ns 

TFF-to-FF = TC + TIC = 2.8ns + 3.8ns = 6.6ns 

Frequency = 1/ TFF-to-FF = 1/ 6.6ns = 151 MHz 

One of the common situations, is having multiple paths between the same set of flip flops with 

different delays. Even when using the same set of resources, result may give different delays due to 

differences in the routing of each path. The critical path in this case is the one with the maximum 

delay. Fig. 3.3 illustrates an example of this situation where there are two paths between the source 

and destination flip flops. 

 

Fig. 3.3 Multiple paths for the same destination and source. 

The cell delays of each path in Fig. 3.3, are identical since both pass through two lookup tables; 

however, the interconnect delays of each path are different. 

TC of both paths = 0.2 ns + 1 ns + 1 ns = 2.8 ns 

TIC of bottom path = 1.2 ns + 2 ns + 0.6 ns = 3.8 ns 

Max TFF-to-FF = TC + TIC = 2.8 ns + 3.8 ns = 6.6 ns 

Frequency = 1/ TFF-to-FF = 1/ 6.6 ns = 151 MHz 

If the top path is considered to calculate the frequency, result would be higher, but it does not work, 

because the bottom path would not yet have its data available by the next rising clock edge. 

 

FF1 LUT1 LUT2 FF2 

0.8 ns (Clk-to-Q) 

1.2 ns 2 ns 0.6 ns 

1 ns 1 ns 

FF1 

LUT1 

LUT2 FF2 

0.2 ns LUT1 

1 ns 0.8 ns 

2 ns 

0.6 ns 

1.2 ns 

1 ns 

1 ns 

1 ns 



 

49 

3.3.  Maximum frequency and timing optimization  

Timing optimization is ultimately looking for the maximum clock frequency that can be used for the 

entire design. This frequency is often referred to as Fmax, and is determined by the timing analyzer 

through performing the analysis to identify the longest FF-to-FF delay in the design, which is referred 

to as the critical path. Fig. 3.4 shows an example of circuit with three pairs of FF, with the propagation 

delays between each pair. The considered critical path for this example is the path between FF 3 and 

4, which has the longest FF-to-FF propagation delay in the entire design. this path requires a Clk ≥ 

10ns, which signifies a maximum frequency of a 100 MHz. Even though the other FF pairs can run 

faster than 100 MHz, but they have to synchronize with the critical path at a lower frequency. 

 

Fig. 3.4 Critical path of a design. 

3.4.  Cells-Clock synchronization 

3.4.1. Setup times 

Setup time (T setup) is a small window of time before a rising clock edge, where the input to the cell 

(FF) cannot change. if the inputs change during the setup window, the output of the FF becomes 

metastable, which is an issue. So, data should arrive to the destination FF not only before the next 

clock edge, but before the setup window of the next clock edge [47] [48]. Fig. 3.5 illustrates Setup 

time window. 

 

Fig. 3.5 Setup time. 

From the previous definition and, the new definition of deadline time (Tdeadline) as illustrated in Fig. 

3.5, is the Tsetup event instead the rising clk edge. Basically, the summation of the cell delays and 

interconnect delays along each path, must be less than or equal to the clock period minus the setup 

time. 

FF1 FF2 
8 ns 

FF5 FF6 
6 ns 

2 ns 

FF3 FF4 
10 ns 

Critical path 

 

TC + TIC Tsetup 

Tclk 
Tdeadlin



 

50 

𝑇𝐶  + 𝑇𝑖𝑐 ≤ 𝑇𝑐𝑙𝑘 – 𝑇𝑆𝑒𝑡𝑢𝑝 

If there exist paths that violates this condition, it’s called a setup violation, and must be optimized to 

ensure correct functionality.  

𝑇𝐶  + 𝑇𝑖𝑐 > 𝑇𝑐𝑙𝑘 – 𝑇𝑆𝑒𝑡𝑢𝑝  (Setup violation). 

3.4.2. Clock Skew 

In most timing diagrams, the clock signals instantly propagate to all destinations, however, this is not 

possible physically, in addition, clocks are usually extremely high fanout signals, which makes it 

impossible to deliver the clock to every cell at the same time, so the inevitable differences in clock 

arrival times between cells is known as the clock skew [49]. This skew is important because it affects 

the available time before a setup violation as shown in the Fig. 3.6. 

 

Fig. 3.6 clock skew in FPGA circuit. 

A positive skew increases deadline, which can help avoiding setup violations. Positive skew means 

that the destination FF receives its clock signal after the source FF, so in this case the allowable time 

for the FF-to-FF delay, which is the sum of this cell and interconnect delays, is actually increased as 

the skew shifts the rising clock edge of the destination clock like shown in Fig. 3.6 [50]. When taking 

skew into consideration the summation of the cell delays and interconnect delays verifies the 

following equation. 

𝑇𝐶  + 𝑇𝐼𝐶 > 𝑇𝑐𝑙𝑘 + 𝑇𝑆𝑘𝑒𝑤 – 𝑇𝑆𝑒𝑡𝑢𝑝 

This is still the same goal of ensuring that the delay between FF is less than or equal to the deadline, 

with an update of the deadline to include both the setup time and the clock skew. While positive skew 

allows avoiding setup violations because it increases the maximum allowable delay between FF, a 

negative skew has the opposite effect which can be counter-intuitive when performing timing 

optimization. 

 

 

TC + TIC 

Tsetup 

Tdeadline 

Tskew 

CLK 

CLK FF 



 

51 

3.4.3. Setup Slack 

One important parameter during timing optimization is setup slack (Ssetup), it is defined by the 

difference in time between the setup deadline and the time where data arrives to the destination FF. 

When the setup slack is negative for a given path, it means that the path has a setup violation, and 

must be optimized. A positive slack on the other hand, means that the path meets timing constraints 

[47]. The setup slack is illustrated in Fig. 3.7, and is represented by the following equation: 

𝑆𝑆𝑒𝑡𝑢𝑝 = (𝑇𝑐𝑙𝑘 + 𝑇𝑆𝑘𝑒𝑤 – 𝑇𝑆𝑒𝑡𝑢𝑝) − (𝑇𝐶 − 𝑇𝐼𝐶 ) = 𝑇𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 − 𝑇𝐹𝐹−𝑡𝑜−𝐹𝐹 

 

 

Fig. 3.7 Setup slack in FPGA design. 

3.4.4. Hold Times 

Hold times are the opposite of setup times; an FF hold time is a small window after the rising clock 

edge, where the input to the FF must not change, otherwise the output is meta-stable [51]. This means 

that new data must not arrive at the FF during this hold window. 

𝑇𝐶 − 𝑇𝐼𝐶 ≥ 𝑇𝐻𝑜𝑙𝑑 + 𝑇𝑠𝑘𝑒𝑤 

Mathematically, the sum of the cell and interconnect delays must exceed both the clock skew and 

hold time as shown in Fig. 3.8. 

 

Fig. 3.8 Hold time in FPGA circuit. 

 

TC + TIC 

Tsetup Tskew 

CLK 

CLK FF 

Ssetup 

TC + TIC 

THold Tskew 

CLK 

CLK FF 



 

52 

3.4.5. Hold Slack 

A hold slack concept is defined by the time between the arrival of data at the destination FF and the 

hold violation 

𝑆𝐻𝑜𝑙𝑑 = (𝑇
𝐶 

+ 𝑇𝐼𝐶) − (𝑇𝑠𝑘𝑒𝑤 + 𝑇𝐻𝑜𝑙𝑑) 

Like in the setup slack, a negative hold slack corresponds to a hold violation, which tend to be much 

less common than setup violations, but both are usually caused by the clock skew, because an 

increased skew decreases the slack [48]. FPGAs usually have specialized clock networks to help 

minimize this skew. Hold Slack in FPGA design is presented in Fig. 3.9 

 

Fig. 3.9 Hold Slack in FPGA design. 

3.5.  Timing optimization methodology 

Once a clock period is defined in a design constraint, the only possible control after synthesis is the 

delay between FF, which leaves two optimization options: reducing cell delays, or reducing 

interconnect delays. Through analyzing the timing statistics report which is generated by the timing 

analyzer after the design synthesis, the total negative slack (TNS) is one of the most important 

parameters that should be noticed. This total negative slack is the summation of slack on all failing 

paths that have setup violations. If the TNS is positive, it basically means there are no timing 

violations; However, if its value is negative, then the magnitude of that negative number provides an 

estimate of the effort required for timing optimization. For example, if the total negative slack is (- 

0.01 ns), that will likely only require very small optimizations on one or several paths. If the total 

negative slack is less than (– 1000 ns) on the other hand, the design requires a major correction. 

Path analyzing, means looking for cells and interconnect delays (or possibly both) that are violating 

timing setup, and causing a bottleneck to the design which limits the maximum frequency. After 

identifying those bottlenecks, the design must be modified by applying one of the timing optimization 

techniques to eliminate that bottleneck [51]. The operation of bottlenecks correction consists of 

identifying the sources of the timing violation within the most critical path, and correcting it if 

possible. This process is repeated until meeting the timing requirements. Timing characteristics of 

SHold 

TC + TIC 

THold TSkew 

CLK 

CLK FF 



 

53 

the entire circuit may change significantly after performing some optimizations, leading to resolving 

some of the previous bottlenecks, but also new bottlenecks may appear.  

3.5.1. Logic delays optimization 

3.5.1.1. Reducing number of logic inputs 

One of the common strategies used to reduce lookup table delays, focuses on reducing the number of 

logic inputs, which allows fitting the same function into fewer lookup tables, and therefore reducing 

the depth of lookup table hierarchy. A Lookup Table (LUT) in an FPGA is a small memory block 

that stores pre-defined outputs for every possible input combination, effectively implementing a logic 

function. A LUT has N inputs and one (or two) outputs. This implies, that any function with more 

than N inputs requires more than one LUT as shown in Fig. 3.10 and Fig. 3.11.  

 
 

Fig. 3.10 Comparison of N/2-bit vectors. 

 

 

Fig. 3.11 Comparison of N bit vectors. 

A counter implementation is a good example to illustrate resource optimization, as there are two 

possible methods; either counting up from zero to the target or counting down from the target to zero. 

The target in both cases is defined as input [52]. However, Counting down is more resource-efficient, 

where the counter is initialized with the target value and decremented until reaching zero, therefore 

there is no need for additional register to store the target value for comparison purposes, which saves 

6 bits register in case of 6 bits counter [48]. Furthermore, it trims down the comparator logic, reducing 

the number of LUTs getting used in the design, as it needs to compare with all bits at zero.  Fig. 3.12 

and Fig. 3.13 shows the two methods for implementing a counter in FPGA. 

A (N/2) bits 

B (N/2) bits 

N input 

LUT 
Comparison result 

Comparison result 

A LSB 

B LSB 

(N/2) 

N input 

LUT 

A MSB 

(N/2) 

B MSB 

(N/2) 

N input 

LUT 

N input 

LUT 



 

54 

 

Fig. 3.12 Counter design before optimization (counting up). 

 

Fig. 3.13 Counter design after optimization (counting down). 

3.5.1.2. Pipelining 

A second strategy for minimizing lookup table (LUT) delays is reducing the longest LUT path by 

incorporating additional registers, this technique also referred to as pipelining. Pipelining is a 

frequently employed timing optimization methods. The principle of pipelining is increasing latency 

for exchange of a reduction in logic delays, which leads to higher the clock frequency. Taking the 

context of a -input comparator as example, several scenarios where the number of inputs cannot be 

reduced, resulting in a fixed LUT hierarchy that is two levels deep. Pipelining in such cases, can be 

applied by introducing additional registers at the outputs of each LUT, which effectively result into 

trading extra cycles of latency for a remarkable reduction in LUT delays, as illustrated in the Fig. 

3.14. Despite its effectiveness, pipelining has also some limitations [48]. Namely, modifying latency 

by adding registers to a component can disturb the functionality of the overall circuit. This is why 

register-transfer level (RTL) synthesis tools cannot automatically implement such changes, 

necessitating manual adjustments to other parts of the circuit, which may, in turn, introduce new 

bottlenecks that require further pipelining [52]. Additionally, implementing pipelining in RTL code 

can be challenging. For example, while a purely combinational comparator can be easily implemented 

using the equality operator, introducing registers into the logic may require a counterintuitive design 

approach. This could involve explicitly partitioning the logic based on LUT placement and manually 

inserting registers at the outputs of each LUT, a process that is neither intuitive nor efficient. 

Fortunately, automated solutions exist in many cases to streamline this process, mitigating some of 

the practical challenges associated with manual implementation. 

N-input 
LUT 

Comparison result 

Target value  

(n bits) 

Initial value 
(n bits) 

N-input 

LUT 

N-input 

LUT 

N-input 
LUT 

Comparison result 

Target value  

(n bits) 

Register 

« Zero » 

N-input 

LUT 



 

55 

 

Fig. 3.14 Pipeline structure in FPGA design. 

3.5.1.3. Balancing Logic and Register Placement 

The third strategy for reducing lookup table delays is re-timing, which is the process of moving 

registers either forwards or backwards to help balancing logic delays. Basically, re-timing tries to 

move logic from a stage with low slack into a stage with higher slack. For example, as illustrated in 

Fig. 3.15, the original circuit has two adders with no registers in between them but with a register on 

the output, retiming can take the output register, and move it backwards onto both inputs of the second 

adder, which reduces the maximum cell delay from two adders to one adder, at the cost of one extra 

register [52]. Alternatively, forward retiming could be applied by moving the two input registers of 

the first adder to a single register at the output, which improves cell delays and reduces the 

number of required registers by one [51]. However, the feasibility of such adjustments depends on 

the broader context of the circuit, as the impact of retiming cannot be fully assessed without 

considering the preceding logic. 

 

Fig. 3.15 FPGA design retiming example. 

Retiming can be done manually through placing registers in their exact position, or automatically via 

synthesis tools. Automatic retiming requires the existence of the registers, as not all RTL synthesis 

can add extra registers or take away existing registers, but it moves around existing registers. 

R 

R 

N-input 

LUT 

Comparison result 

Target value  

(n bits) 

Initial value 
(n bits) 

N-input 
LUT 

N-input 

LUT 

+ 
+ 

R 

R 

R 
R 

R 

R 

+ 
+ 

R 

R 

R 

R 

+ 
+ 

R 

R 

R 

Original design 



 

56 

 

Another critical consideration is that automatic retiming is constrained by the need to preserve the 

initial states. This means that upon reset, there can be parts of the logic with slight harmless 

differences between the original circuit and the re-time circuit, but the synthesis tool identifies them 

as differences anyway, regardless if they impact or not the functionality of the design [52]. Fig. 3.16 

highlights the ability of automatic retiming to streamline the implementation of pipeline designs, such 

as the comparator example discussed earlier.  

 

Fig. 3.16 Simplified pipeline design using automatic retiming: comparator example. 

By simply adding an extra flip-flop at the output and enabling retiming in the synthesis tool, the tool 

can automatically reposition the flip-flop between the lookup tables, achieving the desired pipeline 

structure without manual intervention. However, the effectiveness of automatic retiming can vary 

across different synthesis tools, and comprehensive guidelines for its use compared to manual 

retiming are not universally established. Therefore, it is advisable to evaluate automatic retiming in a 

modular manner, testing its performance on individual components of the design before scaling up 

[53]. This approach ensures that the synthesis tool can achieve the desired retiming outcomes without 

necessitating extensive manual adjustments, thereby avoiding potential inefficiencies in the design 

process. 

3.5.1.4. Precision optimization for reducing Lookup Table Delays 

A fourth common strategy for reducing lookup table delays is to optimize precision. For instance, the 

previous comparator example, the two N-bit inputs can be replaced with three bits each, which 

enables using a single six-bit LUT instead of two. The obvious limitation in this strategy is that the 

optimized precision, this comparator situation is for explanation purposes, as it does not fit every 

situation, and the circuit functionality may be impacted by such modification. However, there are 

many other realistic situations where the precision optimization can be applied. Machine learning and 

A LSB 

B LSB 

(N/2) 
A MSB 

(N/2) B MSB 

(N/2) 

R 

N-input 

LUT 

Comparison result 

N-input 

LUT 

N-input 
LUT 

Extra register enables 
automatic retiming via 

pipelining 

R 

R 
N input 

LUT 

LUT Comparison result 

A LSB 

B LSB 

(N/2) 

N input 

LUT 

A MSB 

(N/2) B MSB 

(N/2) 

R 



 

57 

signal processing for example, are widely known to perform well with reduced precision compared 

to other applications. Neural networks are a good example, where the 32-bit floating point could 

potentially be replaced by 16-bit fixed point, or in many cases even by 10-bit fixed point. So basically, 

the idea is to identify an application specific optimized precision, which then enables a ton of logic 

optimization that will also reduce lookup table delays. One important remark, is that optimizing the 

precision does not guarantee a reduction in the number of lookup tables, or the maximum lookup 

table delay, a 4-bit comparator for example, would have the same maximum lookup table delay as 

the 6-bit comparator, despite the fact that the inputs used 2 fewer bits, so in this example, the reduction 

in delay cannot be noticed until the number of bits is reduced from 6 to 3 [54]. 

3.5.2. Interconnect delays 

During the placement step of compilation, the placer tries to solve interconnect delay problem, which 

results from distantly placed resources, by minimizing the distances of connections between 

resources. This interconnect delays cannot be done manually especially in high resource utilization 

designs. For instance, Fig. 3.17 illustrates a simple example of this problem, the circuit shown in the 

figure contains a 4-to-1 MUX with flip flops on the inputs as shown in the left of the figure. The ideal 

placement of this MUX is represented in the middle of the figure, where, if we consider the 

fundamental building block in the target FPGA as a single six input lookup table, all of the connected 

components in this case are as close together as possible on the FPGA, which minimizes interconnect 

delays. Unfortunately, such a placement is not feasible in most cases, as FPGA designs typically 

require high resources, and when considering the design as a whole, the result would closely resemble 

the circuit shown on the right of the figure, where other components represented with “X” interfere 

with the placement of the MUX and corresponding FF, this, in turn, pushes some input further away 

from the MUX, leading to interconnect delay increases [52].  

 

Fig. 3.17 Interconnect delays: ideal and suboptimal placement. 

M
U

X
 

A0 

A1 

A2 

A3 

S1 S0 

O 

A0 A1 A2 

A3 

S1 S0 

O MUX 

Ideal placement Original circuit 

A0 A1 A2 

A3 

S1 S0 

X 

MUX X 

X 

O 

X 

Real placement  



 

58 

3.5.2.1. Interconnect delay optimization through resource utilization reduction 

One common technique for optimizing interconnect delays is to reduce resource usage. In practice, 

this involves modifying resource types, specifically those causing bottlenecks in the design. Delaying 

a signal by many cycles for example, could use a large number of FF resources, however, it could 

also be implemented in any type of embedded memory. Similarly, DSPs often have low level 

optimizations that allows performing multiple operations within a single DSP. Another method that 

helps optimizing resources involves sacrificing performance, assuming this is possible, within design 

constraints by time multiplexing operations across fewer shared resources. Fig. 3.18 illustrates how 

resource reduction can help placement tool taking distant resources and move them closer together. 

 

Fig. 3.18 Resource reduction for a reduced interconnect delay. 

3.5.2.2. Pipelining interconnect paths to reduce routing delay 

Placing additional flip-flops along long routing paths is another strategy to reduce the distance 

between resources, a technique known as pipelining. This technique impacts interconnect delays, 

where is sacrificing latency by adding extra registers, to break up a long delay into several shorter 

pipeline stages. Pipelining wires in this manner can be an effective technique for improving 

performance; however, its implementation can be complex. To be able to benefit from pipelining, a 

timing analyze should be used to identify distant connections first, subsequently the design must be 

modified to incorporate additional FF for the corresponding wires. The challenge of pipelining 

operation is that placement and routing aren't guaranteed to produce the same results on every run, 

where a lengthy connection in one compilation, might not be lengthy in another compile, but it may 

lead to the appearance of new lengthy connections, it all depends on how the components are placed. 

Large designs therefore face an additional challenge; besides potentially iterating multiple times to 

add registers to different wires -each time shifting the bottleneck- there is also an increased flip-flop 

usage, which can lead to routing congestion. Fortunately, these limitations are not always present and 

depend on the targeted FPGA. Fig. 3.19 illustrates a design pipelining example. 

M
U

X
 

A0 

A1 

A2 

A3 

S1 S0 

O 

A0 A1 A2 

A3 

S1 S0 

X 

MUX X 

X 

O 

X 

A0 A1 A2 

A3 

S1 S0 

X 

MUX O 

X X 

Auto placement result Original circuit Resource reduction placement  



 

59 

 

Fig. 3.19 Pipelining long interconnect paths for delay optimization. 

3.5.3. Routing Congestion in FPGA Designs 

After improving the placement of distant resources, the developed design may be face to a high 

routing congestion, which is a frequent issue in FPGA designs. Routing congestion usually occurs 

when many signals attempt to use the same routing resources in a specific region of the FPGA, leading 

to a high density of interconnects and components in that area. an example of this problem is shown 

in Fig. 3.20, where the red areas signify a high concentration of signals passing through that part of 

the design, resulting in heavy congestion. The main concern with routing congestion is not only the 

congestion itself, but the longer paths it creates, as the router attempts to reroute signals through 

alternative paths -often much longer- to avoid congested areas, interconnect delays increase. 

 

Fig. 3.20 Examples of routing congestion and optimization in FPGA Designs. 

While numerous application-specific strategies exist to mitigate routing congestion, several general 

approaches can be highlighted. Resources reduction is one possible solution for routing congestion, 

with fewer resources or fewer connections between resources, routing congestion will potentially be 

reduced. Pipelining can also be a solution for long paths caused by congestion, but must be conducted 

carefully, as it has similar drawbacks as previously mentioned: long paths might change between 

compilations, and adding more FF to an already crowded design could make congestion worse, 

possibly canceling out the advantages of pipelining. 

 

Source Destination 

Source Destination R R 



 

60 

3.5.4. Optimizing Fanout 

3.5.4.1. Register Duplication 

Routing congestion is frequently caused by high fan-out signals, particularly wide ones, making this 

a common bottleneck in FPGA designs. When analyzing interconnect delays using a timing analyzer, 

it is crucial to identify nets with high fan-out, as these are often primary contributors to timing issues. 

One effective strategy for addressing fan-out bottlenecks is register duplication. High fan-out signals 

typically result in distant resource placements and routing congestion, as illustrated in the left part of 

Fig. 3.21, where the sinks (flip-flops 2 through 7) cannot all be placed close to the source (flip-flop 

0). Register duplication mitigates this issue by replicating the source register, as shown in the right 

part of the figure. Here, a copy of flip-flop 0 is created, which reduced fan-out of three instead of six, 

enabling closer placement of some sinks. 

 

Fig. 3.21 Register Duplication for Reducing Fan-Out and Routing Congestion. 

This optimization comes at a cost, in addition to the increased flip-flop usage, register duplication 

also raises the fan-out of the preceding signal (flip-flop 0 in this case). If the path between flip-flop 0 

and flip-flop 1 meets timing constraints, the duplication is an effective optimization. However, 

register duplication essentially redistributes slack from the preceding path to the fan-out paths, which 

can sometimes shift timing violations from the original fan-out to the preceding logic. This trade-off 

makes it challenging to determine the optimal amount of duplication. While synthesis tools can 

automate this process, manual exploration of replication amounts is often necessary to achieve the 

best results [49]. 

3.5.4.2. Pipelined Fan-Out 

A second strategy for addressing high fan-out signals is the use of pipelined fan-out trees. This 

approach distributes a high fan-out signal across multiple cycles, each with a lower fan-out, as 

illustrated in Fig. 3.22. The original circuit, with a fan-out of 8 from flip-flop 0, is transformed into 

the structure of a tree of flip-flops, added to connect flip-flop 0 to all sinks over two cycles, ensuring 

that no stage exceeds a fan-out of 3. Like other pipelining techniques, pipelined fan-out trees increase 

FF0 

FF1 

FF2 

FF3 

FF7 

…
 

FF 

FF1 

FF2 

FF3 

FF6 

…
 

FF 

FF4 

FF0 



 

61 

flip-flop usage and latency, which may introduce limitations discussed earlier. Additionally, manual 

implementation can be cumbersome, as the optimal number of cycles and fan-out distribution for 

each instance may vary [49]. 

To simplify this process, some synthesis tools offer automated features, such as Hierarchical 

Proximity Register Chains, which allow designers to add registers before a fan-out source. The tool 

then retimes the design to automatically generate the desired tree structure [48]. However, this feature 

may impose coding restrictions that necessitate significant design modifications, potentially making 

manual implementation a more practical option in some cases. 

 

Fig. 3.22 Pipelining strategy for high fan-out 

FF0 

FF1 

FF2 

FF3 

FF8 

FF 

FF 

FF 

FF 

FF 

FF4 

FF5 

FF6 

FF8 

…
 

FF 

FF7 

FF0 

FF3 

FF2 

FF1 

…
 



 

62 

 Efficient AES implementation using FPGA 

4.1.  Introduction 

The Advanced Encryption Standard is an iterative algorithm with recursive operations as described 

earlier, where the input to each operation depends on the output from the previous operation. 

Similarly, the input to each round depends on the output from the previous round, which indeed, is a 

point of strength in terms of security as it guaranties diffusion and breaks the relation between the 

plaintext and the ciphertext, but also a big challenge for resources-constrained systems. This 

challenging situation drew researchers’ attention and motivated scientists to propose effective 

solutions to bypass the extended processing time because of the large number of rounds, and the 

complexity of its integration into resource-constrained systems. Among suggested solution we 

distinguish two categories:  

The first solution involves modifications to the algorithm to reduce processing time and resources 

requirement. The resulting algorithm after this modification is a lightweight version of the original 

algorithm. Results in this case are satisfying in term of resource utilization and operational timing, 

however, it usually requires additional security analyses as it does not guarantee the same level of 

security as the original algorithm. 

The second solution suggests maintaining the original algorithm without any adjustments to preserve 

its high level of security, but intervenes in the implementation technique instead to reduce processing 

time and resources utilization. 

This section describes the designed system that takes advantage of the AES algorithm modularity to 

synthesize two efficient implementations, namely Pipeline and Iterative architectures. The iterative 

system is the classic implementation technique of AES, and the pipeline is one of famous 

architectures. observing timing and area occupation as monitoring parameters along with the 

efficiency ratio. obtained results are validated and compared to similar works. 

4.2.  Motivation for the Proposed Approach 

 The choice of the AES algorithm is based on its proven robustness, making it the most widely used 

encryption method. Furthermore, it is often integrated into MCUs and FPGAs as a security engine or 

core to safeguard configurations and firmware from reverse engineering aiming to trustworthiness. 

These factors have driven researchers to develop lightweight and high-speed encryption cores to 

ensure an efficient encryption mechanism with a steady dataflow. Thomas in [55] has listed the 

security measures taken by some FPGA vendors to protect configurations and prevent them from 

cloning and overbuilding, this list is presented in Table 4.1. 

 



 

63 

Table 4.1. Protection Mechanisms for some FPGA vendors. 

Manufacturer Device Bitstream Encryption Key storage 

Achronix Speedster22i HD AES-256 (CBC) eFuse 

Altera Stratix II/II GX  

Stratix III/IV/V  

Cyclone III LS [Alt11a] 

AES-128 

AES-128 

AES-128 

NVM 

Volatile/NVM 

Volatile 

Latice ECP2/M SS-Series 

ECP3 

ECP4 

XP2 

AES-128 

AES-128 

AES-128 

AES-128 

eFuse 

eFuse 

eFuse 

eFuse 

MicroSemi IGLOO 

ProASIC3 

SmartFusion 

SmartFusion2 

AES-128 

AES-128 

AES-128 

AES-128 

NVM 

NVM 

NVM 

PUF 

Xilinx Spartan3-AN 

Virtex-II 

Virtex-4 

Virtex-5 

Spartan-6 

Virtex-6 

7 Series FPGAs 

Zynq-7000 

- 

DES / triple-DES 

AES-256 

AES-256 

AES-256 

AES-256 

AES-256 

AES-256 

NVM 

Volatile 

Volatile 

Volatile 

eFuse/volatile 

eFuse/volatile 

eFuse/volatile 

eFuse/volatile 

 

As presented in Table 4.1, most of FPGA vendors use AES as the encryption core of their 

configurations. Similarly, several other devices like MCU consider AES as the security system. 

The Encryption process of AES consists of repeated iterations known by Rounds [56], each round is 

composed of sequential operations called SubBytes, ShiftRows, MixColumns,  AddRoundKey, and 

key generation. The overall AES algorithm is presented in Fig. 4.1.  

Iterative implementation is a closed loop structure of the main operations interconnected as point-to-

point blocks in a feedback loop, the same blocks are therefore used during all the rounds. 

 



 

64 

 

Fig. 4.1 Encryption process flowchart of the AES algorithm. 

The major limitation of this method is the idle time caused by the iterations effect, but it requires less 

resources compared to other techniques, which makes it more compatible with resource-limited 

systems [57] . The iterative system process is illustrated in Fig. 4.2. 

. 

 

Fig. 4.2 Iterative architecture process. 

Pipeline structure consists of multiple AES modules interconnected sequentially [58]. Each module 

processes one round, hence, it operates one time during the encryption process and becomes free for 

the next input. As pipeline architecture allows processing several inputs for reducing idle time and 

critical path, it increases the operating frequency, but consumes more resources. Fig. 4.3 illustrates 

the AES pipeline architecture, and Fig. 4.4 shows the pipeline process. This technique is well adapted 

to systems that require a steady stream of data. 

Add round-key Sub bytes Shift rows Mix columns 

Round 0 Processing IDLE IDLE IDLE

IDLE Processing IDLE IDLE

IDLE IDLE Processing IDLE

IDLE IDLE IDLE Processing

Processing IDLE IDLE IDLE

IDLE Processing IDLE IDLE

IDLE IDLE Processing IDLE

IDLE IDLE IDLE Processing

Processing IDLE IDLE IDLE

IDLE Processing IDLE IDLE

IDLE IDLE Processing IDLE

Processing IDLE IDLE IDLE

Round 10

Round 1

Round 2

.

.

.

SubBytes 

ShiftRows 

MixColumns 

SubBytes 

Key generation 

Plaintext Key 

ShiftRows 

Cipher text 

Initial round 

i=0  

Main rounds  

i=1 ➔ Nr-1 

Final round 

i= Nr 



 

65 

 

Fig. 4.3 Pipeline Architecture of AES algorithm. 

SubBytes is a nonlinear operation, in which each byte in the input is transformed as a polynomial in 

the Galois Field GF(28) using the affine transformation and matrix multiplication [59]. The same 

results can be obtained using a precalculated substitution table called S-box. 

ShiftRows and MixColumns are linear transformations to the plaintext, where rows are shifted and 

columns are mixed in an invertible manner. Rows shifting operation consists of sliding rows to the 

left by a given offset, the first row is unchanged, while the second row is shifted over one byte, 

similarly the third and the last rows are shifted by two and three bytes respectively. In the same way, 

MixColumns changes the order of columns by multiplying the plaintext by a given matrix. 

AddRoundKey is the operation where the main process meets the key generation process. It is 

considered the most important step since it mixes the plaintext with the secret key to hides the 

relationship between the original data and the ciphertext [60].  

The set of operations described earlier are repeated N times in a feedback loop, where N is the number 

of rounds. The input to each round during the encryption process is driven from the output of the 

previous round in a closed loop structure, which is a point of strength in terms of security [61], but 

also a big challenge for resources-limited and interactive systems. Numerous methodologies of AES 

implementation have been elaborated, and this work focuses on iterative and pipeline techniques.  

 

Fig. 4.4 Pipeline process of AES algorithm. 

Proposed architectures are designed using a Hardware Description Language (HDL). Synthetization 

and simulation results are compared to similar works in terms of resource utilization, throughput, and 

efficiency ratio 

 

Round 0 

R
eg

is
tr

e 

… 

R
eg

is
tr

e 

R
eg

is
tr

e 

Round 1 

Plaintext 

Round N Ciphertext 

Key 



 

66 

4.3.  Development process 

The Synthesis and simulation proposed architectures is performed using Vivado HLx. Developed 

approach is built following steps illustrated in Fig. 4.5. The design is developed hierarchically, 

beginning with the simplest components and progressing towards the top-level structure. 

 

 

Fig. 4.5 Development process of the proposed designs. 

4.4.  Development of different modules 

As described in previous sections, AES is a set of operations grouped into a Round, which is repeated 

a fixed number of times depending on the key size (10 rounds for 128-bit keys, 12 rounds for 192-bit 

keys, and 14 rounds for 256-bit keys). The hardware design of this algorithm starts with basic 

elements, such as S-boxes and XOR gates, and builds up hierarchically. Since HDL (Hardware 

Description Language) supports modular design, the implementation is constructed step by step, from 

simple components to the full AES module.   

4.4.1. SubBytes unit 

SubBytes is the part of AES that guarantees the non-linearity of output to input data. This module is 

based on the S-box, as it uses the state bytes as the s-box coordinates to permutate them by the 

precalculated bytes. The S-box has two possible implementations techniques, namely Memory based 

and-Logic-based implementations [62]. The S-box is set to memory-based implementation as it is 

S-BOX function 

SubBytes 

module 

Key Generation 

module 

ShiftRows module 
MixColumns 

module 
 AddRoundKey 

module 

Round unit 

Unit test 

Functional and timing test 

AES-ECB Parallel 

structure 

Integration test 

AES-ECB 

Pipeline structure 

Rounds 
controlling unit 

Iterative structure Pipeline structure 



 

67 

static, and does not require updates during the process. The choice of memory-based implementation 

of S-box is done based on experiments, as it results to a reduced latency compared to logical 

implementation. The schematic diagram of the S-Box module as generated form the design IDE is 

illustrated in Fig. 4.6, and the SubByte schematic in Fig. 4.7. 

 

Fig. 4.6 S-box byte-cell schematic diagram. 

 

Fig. 4.7 SubBytes schematic diagram. 

4.4.2. Key Generation (Key expansion) 

Key Generation uses the same s-box architecture as in the SubBytes module, combined with logic 

operations to generate a sub-key for each round of the algorithm. The schematic diagram of the Key 

Generation is illustrated in Fig. 4.8. 



 

68 

 

Fig. 4.8 Key Expansion module schematic diagram. 

4.4.3. ShiftRows 

ShiftRows is a linear operation, it consists on driving input bits in a different order to the output, this 

module does not include complex operations.  

4.4.4. MixColumns 

MixColumns is another linear operation, but it involves some operation as it modulo-multiply each 

column from the input in Galois field by a predefined matrix. The overall Mixcolums schematic 

diagram is presented in Fig. 4.9, and the MixColumn sub-module in Fig. 4.10. 

 

Fig. 4.9 MixColumns schematic diagram.  



 

69 

 

Fig. 4.10 MixColumns Sub-Module. 

4.4.5. AddRoundKey 

The encryption main process meets the key Generation process at this level to perform a XOR 

operation between the subkey of the active round and the state. The output of this module is the 

ciphertext itself in case the active round is the last round, else it is driven to the SubBytes input of 

the next round. The schematic diagram of the AddRoundKey module is illustrated in Fig. 4.11. 

 

Fig. 4.11 AddRoundKey schematic diagram. 

4.4.6. Round units 

The AES-round unit envelops the units: SubBytes, ShiftRows, MixColumns and AddRoundkey, in 

addition to the Key Generation operations. At this level we notice the pipeline effect in the developed 

system. A synchronization registers are placed in order to avoid latency cumulation that may be 

causes by the cascade effect in the case of pipeline architecture. This module is considered the 

fundamental component for both iterative and pipeline architectures. Using the same round modules 

gives a better observation of the architecture impact on the design performance. The schematic 

diagram of the round unit is presented in Fig. 4.12. 

 

Fig. 4.12 Schematic diagram of the round unit. 



 

70 

4.4.7. Iterations control unit 

The rounds controlling unit plays a key role in timing performance and reducing latency through 

managing rounds counting, dataflow, and synchronize between modules. This module is designed for 

the iterative system. It allows using one single round to run all the encryption process recursively. 

This module controls all dataflow, it drives inputs according to the active operation and the active 

round. It also puts the plaintext in hold while processing a data, and can be updated to generate a 

status output along with operations flags to manage dataflow. This feature makes the designed 

architecture scalable as it is modular and include a centralized control unit. The schematic diagram 

of the control unit is illustrated in Fig. 4.12. 

4.4.8. Design of the iterative system 

The Iterative system at this level is obtained by assembling the round unit with the controlling unit in 

a closed loop structure. The schematic of the iterative system is presented in Fig. 4.13. 

 

Fig. 4.13 The iterative system schematic diagram. 

4.4.9. Design of the pipeline system 

Pipeline implementation is designed through placing 10 round units in serial, each round unit operates 

one single time during the same encryption process, as a result, the system processes a new input each 

clock cycle. Synchronization registers are placed in each round output to reduce data latency 

cumulation. These registers are essential in pipeline designs.  Fig. 4.14 shows the schematic diagram 

of pipeline implementation. 

 

Fig. 4.14 Pipeline system schematic. 

… 



 

71 

4.5.  Results and discussion 

The proposed architectures are implemented in Zynq 7000, and Virtex-7 FPGA. Fig. 4.15 and Fig. 

4.16 illustrate a graphical representation of resource utilization, throughput, and efficiency ratio of 

proposed architecture in Virtex-7 and Zynq 7000 FPGAs respectively. 

 

Fig. 4.15 Graphical representation of implementation results in Virtex-7 FPGA. 

 

Fig. 4.16 Graphical representation of implementation results in Zynq7000 FPGA. 

We notice that pipeline architecture processes data faster at the expense of using more resources than 

the iterative system. This remark is applicable for both platforms.  The progression of efficiency ratio 

when transitioning from iterative to pipeline systems provides a distinct indication of the optimal 

trade-off between resource utilization and operational time.  

Table 4.2. Comparison of the proposed architectures results with published works summarizes timing 

results of the methods proposed in this work, and a comparison with similar works elaborated in [13], 

[15], [16], [17] and [63] in terms of resource utilization and efficiency ratio.  

Iterative Pipeline

Throughput (Gbps) 4,66 55,65

Efficiency (Mbps / Slice) 3,51 5,87

Number of slice / LUT 1329 9466

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 -

 2,00
 4,00

 6,00

 8,00

 10,00

 12,00

 14,00

 16,00

 18,00

 20,00
 22,00

 24,00

 26,00

 28,00

N
u

m
b

er
 o

f 
S

li
ce

s 
/ 

L
U

T

T
h

r
o

u
g

h
p

u
t 

(G
b

p
s

E
ff

ic
ie

n
c
y
 (

M
b

p
s 

/ 
S

li
c
e
)

Iterative Pipeline

Throughput (Gbps) 1,40 28,98

Efficiency (Mbps / Slice) 1,99 2,87

Number of slice / LUT 706 10113

0

2000

4000

6000

8000

10000

12000

 -

 2,00

 4,00

 6,00

 8,00

 10,00

 12,00

 14,00

 16,00

 18,00

 20,00

 22,00

 24,00

 26,00

 28,00

N
u

m
b

e
r
 o

f 
S

li
c
e
s 

/ 
L

U
T

T
h

r
o

u
g

h
p

u
t 

(G
b

p
s

E
ff

ic
ie

n
cy

 (
M

b
p

s 
/ 

S
li

ce
)



 

72 

The maximum frequency Fmax of a design is computed through running the synthesis and 

implementation and increasing the timing constraint until getting the smallest Slack violation (WNS 

<0) in the timing analyses report. The Fmax is calculated using the following equation: 

𝐹𝑚𝑎𝑥 (𝑀𝐻𝑧) = max (
1000

𝑇𝑖 − 𝑊𝑁𝑆
) 

   Where:   

▪ 𝑇𝑖 is the target clock period (ns). 

▪ 𝑊𝑁𝑆  is the worst negative slack (ns) of the target clock. 

Table 4.2. Comparison of the proposed architectures results with published works 

Architecture Device 
Number of 

clock cycles 

Frequency 

(MHz) 
Slices 

Throughput 

(Gbps) 

Efficiency 

(Mbps/Slice) 

Pipeline system [13] Spartan-3 12 - 46745 
0.75 

(Cycles/Byte) 
- 

Pipeline system [15] Virtex-6 - 190.65 1551 0.56 0.361 

AES- MPPRM [16] Virtex-6 1 433.28 8342 - - 

Pipeline system (proposed) Virtex-7 1 434.78 9466 55.65 5.87 

Pipeline system (proposed) Zynq 7000 1 226.44 10113 28.98 2.87 

AES-CTR [64] Virtex-6 11 318.67 
7758 

(area) 
20.3 2.85 

Non-Pipelined [65] Virtex-7 11 456 2444 5.30 - 

Iterative system (proposed) Virtex-7 10 364.17 1329 4.66 3.51 

Iterative system (proposed) Zynq 7000 10 109.56 706 1.402 1.99 

 

Throughput is calculated using the Fmax and the number of clock cycles, Throughput is defined by 

the following equation:  

𝑆 (𝑀𝑏𝑝𝑠)  =  (
𝐹𝑚𝑎𝑥 ×  𝑙𝑒𝑛(𝑑)

𝑛
) 

   Where:   

▪ Fmax is the maximum frequency of the design (MHz). 

▪ len(d) = 128 is the block size (bits). 

▪ n Number of clock cycles. 

Efficiency is the ratio of area to speed, and is calculated as follows: 

     𝐸 =  (
𝑆

𝑁
) 

   Where:  

▪ S is throughput (Mbps) 

▪ N in number of slices  



 

73 

4.6.  Simulation results 

Simulation results of iterative and pipeline implementations are shown in Fig. 4.17 and Fig. 4.18 

respectively 

 

Fig. 4.17 Chronogram result of the iterative system. 

 

Fig. 4.18 Chronogram result of the pipeline system. 



 

74 

4.7.   Implementation results 

Both iterative and pipeline architectures are implemented in Virtex-7 and Zynq7000 FPGA families 

of Xilinx. Resource utilization is measured post optimization and implementation of the design. 

Implementation footprints of iterative architecture in Virtex-7 and Zynq7000 devices are illustrated 

in Fig. 4.19, and Fig. 4.20 respectively. Implementation footprints of pipeline architecture in Virtex-

7 and Zynq7000 devices are illustrated in Fig. 4.21 and Fig. 4.22 respectively.  

 

Fig. 4.19 Implementation footprint of iterative system on Virtex-7 FPGA. 

 

Fig. 4.20  iterative structure footprint on Zynq7000. 



 

75 

 

 
 

Fig. 4.21 Pipeline structure footprint on Virtex-7. 

 

Fig. 4.22 Pipeline structure footprint on Zynq-7000. 

The iterative architecture processes each plaintext in 10 clock cycles, as it has a single core of round 

unit controlled by a central controller.  



 

76 

In the pipeline simulation results we notice the presence of the 10 modules that represent the 10 

rounds, where each module processes a single round. The pipeline dataflow is also illustrated in the 

chronogram. The first input is processed in 10 clock cycles, and the following plaintexts are processed 

each clock cycle. The pipeline design succeeded to work on ECB mode with a steady dataflow, where 

it can be loaded with a new input each clock cycle, and does the implementation separately.  

4.8.  Design of Electronic codebook mode 

The pipeline structure is tested in ECB mode to encrypt larger datasets, as it has been proven to be 

the most efficient approach as mentioned earlier and supported by related works. In this step, the AES 

- ECB is tested using two distinct methods. The first method uses a single AES unit with an extra 

module at the input to divide original data into vectors, and another module in the output to 

concatenate ciphertext to generate encrypted data. The overall structure of the first method uses an 

inner pipelining system, while the AES unit itself is an outer-round pipelining. This combination 

allows achieving a maximum throughput with an optimized area. The structure of this method is 

shown in Fig. 4.24. 

 

Fig. 4.23 Pipeline structure of AES-ECB mode. 

The second method uses a similar inner-round pipelining system, but defer in the overall structure, 

where it uses a parallel data processing instead via integrating multiple encryption units. The 

generated ciphertexts are concatenated using a buffer positioned in the output as illustrated in Fig. 

4.24.  

The simulation results of parallel and pipeline structures are illustrated in Fig. 4.25, and Fig. 4.26 

respectively. The pipeline structure processes the first input in 10 clock cycles, while one plaintext is 

loaded every clock cycle. The parallel structure processes several inputs simultaneously; therefore, it 

achieves a high throughput at the cost of high resource utilization. 

 

Fig. 4.24 Parallel structure of AES-ECB mode. 

Input data 
Encryption 

unit 

Key 

Data formatting 
Data 

formatting 
Encrypted Data 

Encryption 

unit 
Encryption 

unit 
Encryption 

unit 
… 

Encrypted data 

Original data 



 

77 

 

Fig. 4.25 Simulation results of parallel structure. 

 

Fig. 4.26 Simulation results of pipeline structure. 

FPGA-in-the-Loop (FiL) is a common and efficient technique to validate the functionality of a 

developed system. This technique involves connecting the FPGA to an external system to exchange 

data via standard interfacing protocols such as Universal Asynchronous Receiver-Transmitter 

(UART), Ethernet, or PCIe. The external system takes in charge data formatting, metadata separation, 



 

78 

concatenation after encryption, and data decryption. Based on this definition, Fig. 4.27 illustrates a 

simple FiL schematic of the AES core. 

 

Fig. 4.27 FPGA In The Loop diagram 

The major advantage of this validation method is that it isolates the Design Under Test (DUT), 

allowing it to focus on its primary task and necessary processing, while offloading validation to the 

test bench. The test bench includes dedicated applications for visualization, real-time verification, 

and comparison mechanisms. By reducing the need for full prototyping, this method helps catch 

design flaws early, saving time and costs. FiL is widely used in environments like 

MATLAB/Simulink, making it easier to integrate with control algorithms, DSP applications, and AI 

accelerators. 

4.9.  System Integration 

The pipeline structure is designed for general purpose utilization, it accepts any format of data after 

converting it to binary. For example, an image can be encrypted after passing through a data 

separation process to separate metadata from raw data. The raw data goes then to the encryption 

system through ECB stream mode, and get concatenated again with the metadata. Similarly, any kind 

of information can be encrypted. Fig. 4.28 shows an illustration of the integration of encryption core 

within embedded system. 

 

Fig. 4.28 System Integration of the proposed security core. 

Data 
Source 

DUT (FPGA) 

AES Core 

Data formatting 

Test Bench 

C
o

m
m

u
n

ic
at

io
n
 i

n
te

rf
ac

e I/O Interface  

Image, file … 

Metadata 
separation 

Row data 

Data 
decryption 

Metadata 
concatenation 

Original data 

Data Comparison 

Data 
Source 

AES Core 

I/O interface 

Data bus 

 

Memory 



 

79 

The AES core processes input data and provides output ciphertext regardless the type of original 

information, making it well adapted to general purpose embedded systems.  

 

4.10.  Conclusion 

In this chapter, efficient techniques implementing AES in FPGA are developed to mainly address 

resource-limitation and timing-performance constraints in embedded systems. Iterative and pipeline 

architectures are built and then compared in terms of throughput-occupied area ratio. The considered 

configurations differ in the global structures, but use the same round module design aiming to perform 

a valid comparison between them. 

Although the iterative system has led to the lowest efficiency ratio compared the pipeline 

configurations, it stands for its lightest implementation, making it well suitable for resource 

constrained systems. Simulation results have shown, in steady data flow, a superiority of the pipeline 

structure making suitable for systems in which timing is of paramount importance. 



 

80 

General conclusion 

This thesis explores the key challenges of implementing security algorithms within resource-

constrained embedded systems, with an in-depth discussion of various security techniques. The 

research includes a background study on cryptographic algorithms, and a literature review of related 

works on optimizing security algorithms. Previous optimizations projects of security algorithms are 

categorized into two types: the first focuses on modifying the algorithm by reducing complex 

operations and altering or removing certain stages, whereas the second approach centers on 

implementation techniques without modifying the algorithm itself. The proposed project addresses 

the challenge of preserving the integrity of the original AES algorithm, while developing efficient 

FPGA architectures. To this end, the final section presents two innovative implementation techniques, 

designed specifically to tackle resource limitations and timing performance constraints in embedded 

systems. Following the project presentation, the construction and comparison of iterative and pipeline 

architectures in terms of throughput, occupied area, and efficiency ratio are discussed, where the 

configurations differ in overall structure while utilizing the same round module design, enabling a 

fair and valid comparison between them. The observed metrics include area utilization, timing 

performance, and efficiency ratio. The pipeline architecture proved to be the most efficient, which 

aligns with the FPGA optimization strategies presented in the third section of this thesis. This section 

identifies pipelining as a key optimization strategy for addressing common design issues. The 

robustness of the proposed pipeline architecture is proven as capable of encrypting all types of data 

regardless of the final application, thus making it adaptable to various applications, whether as a 

cipher block or in chaining modes. 

 



 

81 

Reference List 

[1] P. Marwedel, “Embedded System Hardware,” in Embedded System Design, in Embedded 

Systems. , Cham: Springer International Publishing, 2018, pp. 125–196. doi: 10.1007/978-3-

319-56045-8_3. 

[2] P. Marwedel, “Optimization,” in Embedded System Design, in Embedded Systems. , Cham: 

Springer International Publishing, 2018, pp. 337–366. doi: 10.1007/978-3-319-56045-8_7. 

[3] X. Fan, K. Mandal, and G. Gong, “WG-8: A Lightweight Stream Cipher for Resource-

Constrained Smart Devices,” in Quality, Reliability, Security and Robustness in Heterogeneous 

Networks, vol. 115, K. Singh and A. K. Awasthi, Eds., in Lecture Notes of the Institute for 

Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 115. , Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 617–632. doi: 10.1007/978-3-642-37949-

9_54. 

[4] X. Zhang, S. Tang, T. Li, X. Li, and C. Wang, “GFRX: A New Lightweight Block Cipher for 

Resource-Constrained IoT Nodes,” Electronics, vol. 12, no. 2, p. 405, Jan. 2023, doi: 

10.3390/electronics12020405. 

[5] L. Yan, L. Li, and Y. Guo, “DBST: a lightweight block cipher based on dynamic S-box,” Front. 

Comput. Sci., vol. 17, no. 3, p. 173805, Jun. 2023, doi: 10.1007/s11704-022-1677-5. 

[6] D. Singh, M. Kumar, and T. Yadav, “RAZOR A Lightweight Block Cipher for Security in IoT,” 

Def. Sc. J., vol. 74, no. 01, pp. 46–52, Jan. 2024, doi: 10.14429/dsj.74.18421. 

[7] R. A. Ramadan, B. W. Aboshosha, K. Yadav, I. M. Alseadoon, M. J. Kashout, and M. Elhoseny, 

“LBC-IoT: Lightweight Block Cipher for IoT Constraint Devices,” Computers, Materials & 

Continua, vol. 67, no. 3, pp. 3563–3579, 2021, doi: 10.32604/cmc.2021.015519. 

[8] A. G. Buja and S. F. A. Latip, “The Direction of Lightweight Ciphers in Mobile Big Data 

Computing,” Procedia Computer Science, vol. 72, pp. 469–476, 2015, doi: 

10.1016/j.procs.2015.12.128. 

[9] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I. Verbauwhede, “spongent: A 

Lightweight Hash Function,” in Cryptographic Hardware and Embedded Systems – CHES 

2011, vol. 6917, B. Preneel and T. Takagi, Eds., in Lecture Notes in Computer Science, vol. 

6917. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 312–325. doi: 10.1007/978-

3-642-23951-9_21. 

[10] S. Windarta, S. Suryadi, K. Ramli, B. Pranggono, and T. S. Gunawan, “Lightweight 

Cryptographic Hash Functions: Design Trends, Comparative Study, and Future Directions,” 

IEEE Access, vol. 10, pp. 82272–82294, 2022, doi: 10.1109/ACCESS.2022.3195572. 

[11] A. Sevin and Ü. Çavuşoğlu, “Design and Performance Analysis of a SPECK-Based Lightweight 

Hash Function,” Electronics, vol. 13, no. 23, p. 4767, Dec. 2024, doi: 

10.3390/electronics13234767. 

[12] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON Family of Lightweight Hash Functions,” 

in Advances in Cryptology – CRYPTO 2011, vol. 6841, P. Rogaway, Ed., in Lecture Notes in 

Computer Science, vol. 6841. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 222–

239. doi: 10.1007/978-3-642-22792-9_13. 

[13] M. Nabil, A. A. M. Khalaf, and S. M. Hassan, “Design and implementation of pipelined and 

parallel AES encryption systems using FPGA,” IJEECS, vol. 20, no. 1, p. 287, Oct. 2020, doi: 

10.11591/ijeecs.v20.i1.pp287-299. 

[14] I. Algredo-Badillo, K. A. Ramírez-Gutiérrez, L. A. Morales-Rosales, D. Pacheco Bautista, and 

C. Feregrino-Uribe, “Hybrid Pipeline Hardware Architecture Based on Error Detection and 

Correction for AES,” Sensors, vol. 21, no. 16, p. 5655, Aug. 2021, doi: 10.3390/s21165655. 

[15] R. P. and M. H., “Design and implementation of power and area optimized AES architecture on 

FPGA for IoT application,” CW, vol. 47, no. 2, pp. 153–163, Jun. 2021, doi: 10.1108/CW-04-

2019-0039. 



 

82 

[16] T. Kumar, K. Reddy, S. Rinaldi, B. Parameshachari, and K. Arunachalam, “A Low Area High 

Speed FPGA Implementation of AES Architecture for Cryptography Application,” Electronics, 

vol. 10, no. 16, p. 2023, Aug. 2021, doi: 10.3390/electronics10162023. 

[17] S. J. H. Pirzada, M. N. Hasan, Z. W. Memon, M. Haris, T. Xu, and L. Jianwei, “High-

Throughput Optimizations of AES Algorithm for Satellites,” in 2020 International Symposium 

on Recent Advances in Electrical Engineering & Computer Sciences (RAEE & CS), Islamabad, 

Pakistan: IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/RAEECS50817.2020.9265688. 

[18] A. Li and Y. Pan, “A Theory of Network Security: Principles of Natural Selection and 

Combinatorics,” Internet Mathematics, vol. 12, no. 3, pp. 145–204, May 2016, doi: 

10.1080/15427951.2015.1098755. 

[19] A. Shoufan and S. A. Huss, “High-Performance Rekeying Processor Architecture for Group 

Key Management,” IEEE Trans. Comput., vol. 58, no. 10, pp. 1421–1434, Oct. 2009, doi: 

10.1109/TC.2009.88. 

[20] G. Savva, K. Manousakis, and G. Ellinas, “Providing Confidentiality in Optical Networks: 

Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation 

Problem,” in 2020 22nd International Conference on Transparent Optical Networks (ICTON), 

Bari, Italy: IEEE, Jul. 2020, pp. 1–4. doi: 10.1109/ICTON51198.2020.9203018. 

[21] T. O. Oladoyinbo, S. O. Olabanji, O. O. Olaniyi, O. O. Adebiyi, O. J. Okunleye, and A. I. Alao, 

“Exploring the Challenges of Artificial Intelligence in Data Integrity and its Influence on Social 

Dynamics,” AJARR, vol. 18, no. 2, pp. 1–23, Jan. 2024, doi: 10.9734/ajarr/2024/v18i2601. 

[22] I. Verbauwhede and P. Schaumont, “Design methods for Security and Trust,” in 2007 Design, 

Automation & Test in Europe Conference & Exhibition, Nice, France: IEEE, Apr. 2007, pp. 1–

6. doi: 10.1109/DATE.2007.364671. 

[23] Z. Cui et al., “A Hybrid BlockChain-Based Identity Authentication Scheme for Multi-WSN,” 

IEEE Trans. Serv. Comput., pp. 1–1, 2020, doi: 10.1109/TSC.2020.2964537. 

[24] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, 

1st ed. CRC Press, 2018. doi: 10.1201/9781439821916. 

[25] A. Sadeghi-Nasab and V. Rafe, “A comprehensive review of the security flaws of hashing 

algorithms,” J Comput Virol Hack Tech, vol. 19, no. 2, pp. 287–302, Oct. 2022, doi: 

10.1007/s11416-022-00447-w. 

[26] H. N. Noura, A. Chehab, and R. Couturier, “Overview of Efficient Symmetric Cryptography: 

Dynamic vs Static Approaches,” in 2020 8th International Symposium on Digital Forensics and 

Security (ISDFS), Beirut, Lebanon: IEEE, Jun. 2020, pp. 1–6. doi: 

10.1109/ISDFS49300.2020.9116441. 

[27] S. Oukili and S. Bri, “High throughput FPGA Implementation of Data Encryption Standard with 

time variable sub-keys,” IJECE, vol. 6, no. 1, p. 298, Feb. 2016, doi: 10.11591/ijece.v6i1.pp298-

306. 

[28] C. Atika Sari, E. H. Rachmawanto, and C. A. Haryanto, “Cryptography Triple Data Encryption 

Standard (3DES) for Digital Image Security,” SJI, vol. 5, no. 2, pp. 105–117, Nov. 2018, doi: 

10.15294/sji.v5i2.14844. 

[29] G. Paul and S. Maitra, RC4 Stream Cipher and Its Variants, 0 ed. CRC Press, 2011. doi: 

10.1201/b11310. 

[30] J. Daemen and V. Rijmen, “The Block Cipher Rijndael,” in Smart Card Research and 

Applications, vol. 1820, J.-J. Quisquater and B. Schneier, Eds., in Lecture Notes in Computer 

Science, vol. 1820. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 277–284. doi: 

10.1007/10721064_26. 

[31] J. M. Koshy, “Introduction Advanced Encryption Standard (AES),” ScienceOpen. Accessed: 

Jan. 04, 2025. [Online]. Available: https://scienceopen.com/hosted-

document?doi=10.14293/S2199-1006.1.SOR-.PPBWB9Z.v1 

[32] G. Singh and S. Supriya, “A Study of Encryption Algorithms (RSA, DES, 3DES and AES) for 

Information Security,” IJCA, vol. 67, no. 19, pp. 33–38, Apr. 2013, doi: 10.5120/11507-7224. 



 

83 

[33] M. Fischlin, C. Janson, and S. Mazaheri, “Backdoored Hash Functions: Immunizing HMAC 

and HKDF,” in 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford: 

IEEE, Jul. 2018, pp. 105–118. doi: 10.1109/CSF.2018.00015. 

[34] F. Bourse, D. Pointcheval, and O. Sanders, “Divisible E-Cash from Constrained Pseudo-

Random Functions,” in Advances in Cryptology – ASIACRYPT 2019, vol. 11921, S. D. Galbraith 

and S. Moriai, Eds., in Lecture Notes in Computer Science, vol. 11921. , Cham: Springer 

International Publishing, 2019, pp. 679–708. doi: 10.1007/978-3-030-34578-5_24. 

[35] F. Chen and J. Yuan, “Enhanced Key Derivation Function of HMAC-SHA-256 Algorithm in 

LTE Network,” in 2012 Fourth International Conference on Multimedia Information 

Networking and Security, Nanjing, China: IEEE, Nov. 2012, pp. 15–18. doi: 

10.1109/MINES.2012.106. 

[36] C. C. Wen, E. Dawson, and L. Simpson, “Stream cipher based key derivation function,” IJSN, 

vol. 12, no. 2, p. 70, 2017, doi: 10.1504/IJSN.2017.083813. 

[37] B. Sankhyan, “Review on Symmetric and Asymmetric Cryptography,” IJRASET, vol. 12, no. 3, 

pp. 2934–2940, Mar. 2024, doi: 10.22214/ijraset.2024.59538. 

[38] M. S. A. Mohamad, R. Din, and J. I. Ahmad, “Research trends review on RSA scheme of 

asymmetric cryptography techniques,” Bulletin EEI, vol. 10, no. 1, pp. 487–492, Feb. 2021, doi: 

10.11591/eei.v10i1.2493. 

[39] Y. Cheng, Y. Liu, Z. Zhang, and Y. Li, “An Asymmetric Encryption-Based Key Distribution 

Method for Wireless Sensor Networks,” Sensors, vol. 23, no. 14, p. 6460, Jul. 2023, doi: 

10.3390/s23146460. 

[40] P. K. Panda and S. Chattopadhyay, “A hybrid security algorithm for RSA cryptosystem,” in 

2017 4th International Conference on Advanced Computing and Communication Systems 

(ICACCS), Coimbatore, India: IEEE, Jan. 2017, pp. 1–6. doi: 10.1109/ICACCS.2017.8014644. 

[41] J. H. Seo, “Efficient digital signatures from RSA without random oracles,” Information 

Sciences, vol. 512, pp. 471–480, Feb. 2020, doi: 10.1016/j.ins.2019.09.084. 

[42] X.-Q. Cai, T.-Y. Wang, C.-Y. Wei, and F. Gao, “Cryptanalysis of multiparty quantum digital 

signatures,” Quantum Inf Process, vol. 18, no. 8, p. 252, Aug. 2019, doi: 10.1007/s11128-019-

2365-8. 

[43] A. Saepulrohman and A. Ismangil, “Data integrity and security of digital signatures on 

electronic systems using the digital signature algorithm (DSA),” IJECS, vol. 1, no. 1, pp. 11–

15, Jun. 2021, doi: 10.24042/ijecs.v1i1.7923. 

[44] C.-M. Chen, Y. Huang, K.-H. Wang, S. Kumari, and M.-E. Wu, “A secure authenticated and 

key exchange scheme for fog computing,” Enterprise Information Systems, vol. 15, no. 9, pp. 

1200–1215, Oct. 2021, doi: 10.1080/17517575.2020.1712746. 

[45] C. Gupta and N. V. Subba Reddy, “Enhancement of Security of Diffie-Hellman Key Exchange 

Protocol using RSA Cryptography.,” J. Phys.: Conf. Ser., vol. 2161, no. 1, p. 012014, Jan. 2022, 

doi: 10.1088/1742-6596/2161/1/012014. 

[46] X. Hou and J. Breier, Cryptography and embedded systems security. Cham: Springer, 2024. 

[47] P. Simpson, “Timing Closure,” in FPGA Design, New York, NY: Springer New York, 2010, 

pp. 107–132. doi: 10.1007/978-1-4419-6339-0_12. 

[48] G. Stitt, R. Lysecky, and F. Vahid, “Dynamic hardware/software partitioning: a first approach,” 

in Proceedings of the 40th annual Design Automation Conference, Anaheim CA USA: ACM, 

Jun. 2003, pp. 250–255. 

[49] K. Fujiwara, K. Kawamura, M. Yanagisawa, and N. Togawa, “Clock skew estimate modeling 

for FPGA high-level synthesis and its application,” in 2015 IEEE 11th International Conference 

on ASIC (ASICON), Chengdu, China: IEEE, Nov. 2015, pp. 1–4. 

[50] G. Stitt, W. Piard, and C. Crary, “Low-Latency, Line-Rate Variable-Length Field Parsing for 

100+ Gb/s Ethernet,” in Proceedings of the 2024 ACM/SIGDA International Symposium on 

Field Programmable Gate Arrays, Monterey CA USA: ACM, Apr. 2024, pp. 12–21. 

[51] C. Crary, W. Piard, G. Stitt, C. Bean, and B. Hicks, “Using FPGA Devices to Accelerate Tree-

Based Genetic Programming: A Preliminary Exploration with Recent Technologies,” in Genetic 



 

84 

Programming, vol. 13986, G. Pappa, M. Giacobini, and Z. Vasicek, Eds., in Lecture Notes in 

Computer Science, vol. 13986. , Cham: Springer Nature Switzerland, 2023, pp. 182–197. 

[52] P. Simpson, “RTL Design,” in FPGA Design, New York, NY: Springer New York, 2010, pp. 

51–78. 

[53] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A High Memory Bandwidth 

FPGA Accelerator for Sparse Matrix-Vector Multiplication,” in 2014 IEEE 22nd Annual 

International Symposium on Field-Programmable Custom Computing Machines, Boston, MA, 

USA: IEEE, May 2014, pp. 36–43. doi: 10.1109/FCCM.2014.23. 

[54] S. Kilts, Advanced FPGA Design: Architecture, Implementation, and Optimization, 1st ed. 

Wiley, 2007. doi: 10.1002/9780470127896. 

[55] T. Feller, “Design Security and Cyber-Physical Threats,” in Trustworthy Reconfigurable 

Systems, Wiesbaden: Springer Fachmedien Wiesbaden, 2014, pp. 61–84. doi: 10.1007/978-3-

658-07005-2_4. 

[56] A. U. - and A. B. K. -, “Implementation of AES Algorithm,” IJFMR, vol. 5, no. 2, p. 1766, Mar. 

2023, doi: 10.36948/ijfmr.2023.v05i02.1766. 

[57] M. A. Rabbi Emon et al., “Advanced Encryption Standard for embedded applications: An 

FPGA-based implementation using VHDL,” in 2021 3rd IEEE Middle East and North Africa 

COMMunications Conference (MENACOMM), Agadir, Morocco: IEEE, Dec. 2021, pp. 120–

124. doi: 10.1109/MENACOMM50742.2021.9678241. 

[58] Department of Electronics and Communications, Faculty of Engineering, Minia University, 

Minia, Egypt., M. Nabil*, A. A. M. Khalaf, Department of Electronics and Communications, 

Faculty of Engineering, Minia University, Minia, Egypt., S. M. Hassan, and Department of 

Electronics and Communications, Faculty of Engineering, Modern Academy, Cairo, Egypt., 

“Design and Implementation of Pipelined AES Encryption System using FPGA,” IJRTE, vol. 

8, no. 5, pp. 2565–2571, Jan. 2020, doi: 10.35940/ijrte.E6475.018520. 

[59] G. Y. Yen, S. Z. M. Naziri, R. C. Ismail, M. N. M. Isa, and R. Hussin, “Design of Multiplicative 

Inverse Value Generator using Logarithm Method for AES Algorithm,” in 2020 32nd 

International Conference on Microelectronics (ICM), Aqaba, Jordan: IEEE, Dec. 2020, pp. 1–

5. doi: 10.1109/ICM50269.2020.9331497. 

[60] S. Liu, Y. Li, and Z. Jin, “Research on Enhanced AES Algorithm Based on Key Operations,” in 

2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology 

(ICCASIT), Dali, China: IEEE, Oct. 2023, pp. 318–322. doi: 

10.1109/ICCASIT58768.2023.10351719. 

[61] A. Tripathy and B. Singh, “A Study of AES Software Implementation for IoT Systems,” in 2022 

3rd International Conference on Issues and Challenges in Intelligent Computing Techniques 

(ICICT), Ghaziabad, India: IEEE, Nov. 2022, pp. 1–4. doi: 

10.1109/ICICT55121.2022.10064507. 

[62] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy, “Implementation of 

the AES-128 on Virtex-5 FPGAs,” in Progress in Cryptology – AFRICACRYPT 2008, vol. 5023, 

S. Vaudenay, Ed., in Lecture Notes in Computer Science, vol. 5023. , Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2008, pp. 16–26. doi: 10.1007/978-3-540-68164-9_2. 

[63] U. Hussain and H. Jamal, “An Efficient High Throughput FPGA Implementation of AES for 

Multi-gigabit Protocols,” in 2012 10th International Conference on Frontiers of Information 

Technology, Islamabad, Pakistan: IEEE, Dec. 2012, pp. 215–218. doi: 10.1109/FIT.2012.45. 

[64] S. J. H. Pirzada, M. N. Hasan, Z. W. Memon, M. Haris, T. Xu, and L. Jianwei, “High-

Throughput Optimizations of AES Algorithm for Satellites,” in 2020 International Symposium 

on Recent Advances in Electrical Engineering & Computer Sciences (RAEE & CS), Islamabad, 

Pakistan: IEEE, Oct. 2020, pp. 1–6. doi: 10.1109/RAEECS50817.2020.9265688. 

[65] U. Hussain and H. Jamal, “An Efficient High Throughput FPGA Implementation of AES for 

Multi-gigabit Protocols,” in 2012 10th International Conference on Frontiers of Information 

Technology, Islamabad, Pakistan: IEEE, Dec. 2012, pp. 215–218. doi: 10.1109/FIT.2012.45. 

 



 

 

Résumé  

La vie moderne dépend fortement des systèmes embarqués, qui, malgré leur nature compacte et à 

ressources limitées, constituent le noyau intelligent derrière la plupart des appareils. Ces systèmes 

intelligents collectent des données utilisateur pour améliorer continuellement les processus de prise 

de décision. Cependant, les données collectées incluent souvent des informations sensibles, 

soulignant le besoin crucial de mesures de sécurité robustes pour garantir la fiabilité et la confiance 

sans compromettre les performances. Ce projet vise à identifier une technique d'implémentation 

optimale pour les algorithmes de sécurité dans les systèmes embarqués, en équilibrant l'utilisation des 

ressources et les performances temporelles. Le défi principal abordé est de maintenir l'intégrité de 

l'algorithme de sécurité tout en optimisant l'architecture matérielle pour maximiser l'efficacité. 

L'algorithme Rijndael, plus précisément la norme de chiffrement avancé (AES), est choisi comme 

noyau de sécurité et est implémenté en utilisant deux techniques distinctes. L'approche proposée est 

conçue pour les réseaux de portes programmables (FPGA), avec des résultats comparés à des projets 

similaires en termes de performances temporelles et de surface. 

Mots-clés : Algorithme Advanced Encryption Standard (AES), FPGA (Field Programmable Gate 

Array), cryptographie, systèmes embarqués, 

 خصمل

تعتمد الحياة الحديثة بشكل كبير على الأنظمة المدمجة، والتي، على الرغم من طبيعتها الصغيرة والمحدودة الموارد، تعُد بمثابة العقل  

المدبر وراء معظم الأجهزة. تقوم هذه الأنظمة الذكية بجمع بيانات المستخدم لتحسين عمليات اتخاذ القرار بشكل مستمر. ومع ذلك،  

المجمعة غالبًا ما تتضمن معلومات حساسة، مما يبرز الحاجة الماسة إلى إجراءات أمنية قوية لضمان الموثوقية والثقة   فإن البيانات

دون المساس بالأداء. يهدف هذا المشروع إلى تحديد تقنية تنفيذ مثالية لخوارزميات الأمان في الأنظمة المدمجة، مع تحقيق التوازن  

التوقيت. التحدي الرئيسي الذي يتم معالجته في هذا المشروع هو الحفاظ على سلامة خوارزمية الأمان مع بين استخدام الموارد وأداء  

(، كنواة  AES)  Advanced Encryption Standard، وتحديداً  Rijndaelتحسين بنية العتاد لتعظيم الكفاءة. تم اختيار خوارزمية  

(، مع  FPGAsتصميم النهج المقترح ليعمل على مصفوفات البوابات القابلة للبرمجة )  أمنية يتم تنفيذها باستخدام تقنيتين مختلفتين. تم

 مقارنة النتائج بمشاريع مماثلة من حيث أداء التوقيت والمساحة.

نظمة ، التشفير، الأ(FPGA) ، مصفوفة البوابة الميدانية القابلة للبرمجة  (AES) : خوارزمية معيار التشفير المتقدم  الكلمات المفتاحية

 .المدمجة

Abstract 

Modern life relies heavily on embedded systems, which, despite their compact and resource-

constrained nature, serve as the core intelligence behind most devices. These smart systems collect 

user data to continuously improve decision-making processes. However, the gathered data often 

includes sensitive information, highlighting the critical need for robust security measures that ensure 

trustworthiness and reliability without compromising performance. This project aims to identify an 

optimal implementation technique for security algorithms in embedded systems, balancing resource 

utilization and timing performance. The primary challenge addressed is maintaining the integrity of 

the security algorithm while optimizing hardware architecture to maximize efficiency. The Rijndael 

algorithm, specifically the Advanced Encryption Standard (AES), is chosen as the security core and 

implemented using two distinct techniques. The proposed approach is designed for Field-

Programmable Gate Arrays (FPGAs), with results benchmarked against similar projects in terms of 

timing and area performance 

Keywords: Advanced Encryption Standard (AES) algorithm, Field Programmable Gate Array 

(FPGA), Cryptography, embedded systems 


