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 الملــخص 

سلالة من سبع مختبرات   402جمع    تمفي هذه الدراسة  اليوم.  واحدة من أهم القضايا العالمية في مجال الصحة حتى   مقاومة المضادات الحيويةتمثل  

عينة سريرية مجتمعية    326. أولاً، تم تحديد  2023-2021من    للتشخيص الطبي وثلاثة مستشفيات عامة في منطقة سطيف على مدى ثلاث سنوات

 , واسفرتAPI   ممستشفوية، تم عزلها من مختلف العينات، باستخدام اختبارات ميكروبيولوجية وكيميائية حيوية وتم تأكيدها بواسطة النظا  عينة  76و

هي   E. coli كانت .مأنواع تنتمي إلى البكتيريا موجبة الجرا  3و أنواع من السلالات تنتمي إلى البكتيريا سالبة الجرام  10  عن تحديدالتحليلات    هذه

غالبية    وجد ان%(.  7.7ا بين البكتيريا موجبة الجرام )تواجدهي الأكثر   S. aureus انت%( بينما ك50الممرض السائد بين البكتيريا سالبة الجرام )

  ات التركيز المثبط الأدنى اختبارتم إجراء اختبارات حساسية المضادات الحيوية و  .في عينات البول المأخوذة من المرضى البالغينكانت  هذه السلالات  

نسبة كبيرة من السلالات المحددة أظهرت معدلات مقاومة مرتفعة ضد المضادات الحيوية من الخط  .  لتوصيات الجمعية الفرنسية للأحياء الدقيقة  وفقاً

الإيميبينيم  الأول المستخدمة عادة في علاج مختلف العدوى البكتيرية، بما في ذلك البنسيلينات والسيفالوسبورينات، ولكن تم تسجيل مقاومة كبيرة ضد 

، وأنواع P. aeruginosaد  %(. وبالمثل، أظهرت التوبراميسين والجنتاميسين فعالية محدودة ض32.1)  Proteus  وأنواع E. coli (49.8%)لدى   

Enterobacter( كانت السلالات المقاومة المتعددة  100% و20، وجميع البكتيريا موجبة الجرام تراوحت بين .)%  للأدويةMDR  من 56تمثل %

 .K   من بين عزلات  .%(. الأميكاسين كان المضاد الحيوي الأكثر فعالية26.1)XDRالشديدة  المختبرة، تليها السلالات المقاومة    جميع العزلات

pneumoniae  منها على أنها 66.6، تم تصنيف % K. pneumoniae شديدة الفوعة (hvKp)   بناءً على اختبار التمدد )اختبار الخيط(. في أنواع

S. aureus  كان من61.3،  منها   % S. aureus   كان بينما  للميثيسيلين،  للماكروليد9.7المقاومة  التكويني  النمط  تظهر  منها  - لينكوساميد  -% 

تم اختبار عوامل مختلفة من الفوعة في  D.، كما تم تحديده بواسطة اختبار القابل للتحفيز % منها تظهر النمط الظاهري16.1، و تريبتوغرامين ب  س

تم تقييم تشكيل الأغشية الحيوية في الألواح الدقيقة باستخدام الملون الكريستال البنفسجي، بينما تم تحديد إنتاج الهيموليسين،  حيث  الممرضة.   السلالات

بشكل عام، كانت    والبروتياز، والليسيتيناز، والليباز باستخدام أطباق تحتوي على الدم البشري، والحليب الخالي من الدسم، وصفار البيض على التوالي.

الشديدة   %( قدرة منخفضة على إنتاج الأغشية الحيوية. أظهرت السلالات64.9% من السلالات منتجة للأغشية الحيوية، حيث أظهرت الغالبية )88.1

تليها إنتاج البروتياز    % من السلالات، 55.5%(. تمت ملاحظة إنتاج الهيموليسين في  47.6أعلى نسبة من منتجي الأغشية الحيوية القوية ) المقاومة

، حيث  AmpCذات الطيف الممتد و β-lactamases تم إجراء بحث مظهري لإنتاج .%(10% و23.1% وأنشطة الليسيثيناز والليباز )47.3بنسبة 

إيجابي  32.6أظهر   مظهري  نمط  الممتد β-lactamases لإنتاج%  الطيف  لـ  12.7و  ذات  إيجابي   %AmpC  .   تم ذلك،  إلى  استخدام  بالإضافة 

هو الجين الناشئ من   TEMbla متعدد الطور للتأكيد المظهري. كان  PCRوجينات الكينولون باستخدام lactamase -βالتوصيف الجزيئي لجينات

%(، 10.4الذي تم اكتشافه بشكل متكرر )  AmpCهو الجين CMY IIbla ، بينما كانSHVbla  (%15.9)   ، يليه (53.8%)الأكثر انتشارا   ESBLنوع

إلى أكثر    1.5كانت جميع هذه الجينات وغيرها من جينات الضراوة محمولة على بلازميدات تتراوح أحجامها بين حوالي    .DHAbla   (%7.1)يليه   

بطريقة    10من   تحديدها  وتم  قاعدة،  عزلات    .PCRكيلو  نسبة  جين  E. coliبلغت  حمل  على  الأقل   qnr القادرة  على   .%26.7واحد 

الجين   لـ qnrBوكان  الموجبة  السلالات  بين  انتشارًا  الأكثر  يليه  78.3بنسبة   qnr هو   ،% qnrD   تقنية%.26.1بنسبة استخدام   من PCR تم 

Clermont وآخرين للكشف عن المجموعات النشوء والتطور لبكتيريا E. coli  عزلة سريرية من 86المقاومة للإيميبينيم. من بين البولية E. coli 

المجموعة كان  للإيميبينيم،  المجموعات B2 (48.9%) المقاومة  تليها  انتشارًا،  الأكثر  الفيلوجينية  المجموعة  المعروفةE (%22.1) هي  غير   ، 

(%12.8)  ،(%8.1) A (4.7%) ، و B1بالإضافة إلى ،Clades I  ،D  ،Clade I (1.2%) أو Clade II.  

، المجموعات النشوء  qnr  ، جيناتβ-lactamase ،ESBL ،AmpC: مقاومة المضادات الحيوية، البكتيريا متعددة المقاومة، الكلمات المفتاحية 

 والتطور 



SUMMARY 

Antibiotic resistance (AR) is among the leading global health concerns to date. In our study, 

402 strains were collected from 7 medical diagnostic laboratories and 3 government hospitals 

in Sétif region over three years (2021-2023). First, the identification of 326 clinical community 

samples and 76 hospitalized samples, isolated from different specimens, was carried out using 

microbiological and biochemical tests and confirmed by API gallery. This analysis identified 

10 species belonging to Gram negative bacteria (GNB) and 3 species belonging to Gram 

positive bacteria (GPB). E. coli was the predominant pathogen among GNB (50%) while S. 

aureus was the most common GPB (7.7%). The majority of these strains were found in urine 

samples from adult patients. Antibiotic susceptibility tests and MICs were performed according 

to CA-SFM recommendations. A significant proportion of the identified strains exhibited high 

resistance rates against first-line antibiotics commonly used in the treatment of various bacterial 

infections including penicillins and cephalosporins, but a substantial resistance was recorded 

against imipenem in E. coli (49.8%) and Proteus species (32.1%). Similarly, tobramycin and 

gentamycin exhibited limited effectiveness against P. aeruginosa, Enterobacter spp., (20% to 

100%) and all GPB. MDR strains represented 56% of all tested isolates, followed by XDR 

(26.1%). Amikacin was the most effective antibiotic. Among K. pneumoniae isolates, 66.6% 

were classified as hypervirulent K. pneumoniae (hvKp) based on the string test. In S. aureus 

species, 61.3% were methicillin-resistant S. aureus (MRSA), while 9.7% exhibited the 

constitutive macrolide-lincosamide-streptogramin B (CMLSB) phenotype, and 16.1% 

displayed the inducible MLSB (IMLSB) phenotype, as determined by the D-test. Different 

virulence factors were tested in our pathogenic strains. Biofilm formation was assessed in 

microtiter plates using crystal violet dye, while hemolysin, protease, lecithinase, and lipase 

enzyme production were determined using plates containing human blood, skimmed milk, and 

egg yolk, respectively. Overall, 88.1% of strains were biofilm producers, with the majority 

(64.9%) exhibiting a weak ability to produce biofilms. XDR strains exhibited the highest 

percentage of strong biofilm producers (47.6%). Hemolysin production was found in 55.5% of 

strains, followed by protease production 47.3% and lecithinase and lipase activities (23.1% and 

10%). A phenotypic search for the production of extended-spectrum β-lactamases and AmpC 

was conducted, 32.6% presented ESBL phenotype and 12.7% were positive AmpC, 

furthermore, molecular characterization of β-lactamase genes and quinolone genes with 

Multiplex PCR was used for phenotypic confirmation. blaTEM was the emergence ESBL-type 

gene (53.8%), followed by blaSHV (15.9%), while blaCMY II was the most frequent AmpC 

detected gene (10.4%) followed by blaDHA (7.1%). All these genes and other virulence genes 

were carried by plasmids with size ranged from approximately 1.5 to ˃10 kb profiling by PCR 

method. 26.7% of E. coli strains harbored at least one qnr gene. The most frequent was qnrB 

(78.3%), followed by qnrD (26.1%). Clermont et al. PCR was used for the detection of 

phylogenetic groups of urinary imipenem-resistant E. coli. Of 86 clinical imipenem resistant E. 

coli isolates, the B2 group (48.9%) was the most prevalent phylogroup, followed by groups E 

(22.1%), unknown (12.8%), A (8.1%), and B1 (4.7%), and Clade I, D, Clade I, or Clade II 

(1.2%).  

Keywords: Antibiotic resistance, Multidrug-resistant bacteria, β-lactamase, ESBL, AmpC, qnr 

genes, phylogenetic groups. 

 



RESUME 
La résistance aux antibiotiques (RA) représente parmi les principales préoccupations mondiales en 

matière de santé à ce jour. Dans notre étude, 402 souches ont été collectées dans 7 laboratoires de 

diagnostic médical et 3 hôpitaux publiques de la région de Sétif sur une période de trois ans (2021-

2023). Tout d'abord, l'identification de 326 échantillons cliniques communautaires et de 76 

échantillons hospitalisés, isolés à partir de différents spécimens, a été réalisée à l'aide de tests 

microbiologiques et biochimiques et confirmée par la galerie API. Cette analyse a identifié 10 espèces 

appartenant aux bactéries Gram négatif (GNB) et 3 espèces appartenant aux bactéries Gram positif 

(GPB). E. coli était le pathogène prédominant parmi les GNB (50%) tandis que S. aureus était le GPB 

le plus courant (7,7%). La majorité de ces souches ont été trouvées dans des échantillons d'urine 

provenant de patients adultes. Les tests de sensibilité aux antibiotiques et les CMI ont été réalisés selon 

les recommandations du CA-SFM. Une proportion significative des souches identifiées a montré des 

taux de résistance élevés contre les antibiotiques de première ligne couramment utilisés dans le 

traitement de diverses infections bactériennes, y compris les pénicillines et les céphalosporines, mais 

une résistance substantielle a été enregistrée contre l'imipénème chez E. coli (49,8 %) et les espèces de 

Proteus (32,1 %). De même, la tobramycine et la gentamicine ont montré une efficacité limitée contre 

P. aeruginosa, Enterobacter spp., (20% et 100%) et tous les GPB. Les souches MDR représentaient 

56 % de tous les isolats testés, suivies par les souches XDR (26,1 %) dont l’amikacine était 

l'antibiotique le plus efficace. Parmi les isolats de K. pneumoniae, 66,6 % ont été classés comme K. 

pneumoniae hypervirulente (hvKp) sur la base du test de filamentation (String test). Dans les espèces 

de S. aureus, 61,3 % étaient des S. aureus résistants à la méthicilline (MRSA), tandis que 9,7 % 

présentaient le phénotype constitutif macrolide-lincosamide-streptogramine B (CMLSB), et 16,1 % 

affichaient le phénotype MLSB inductible (IMLSB), comme déterminé par le test-D. Différents 

facteurs de virulence ont été testés dans nos souches pathogènes. La formation de biofilm a été évaluée 

dans des microplaques en utilisant le crystal violet, tandis que la production d'hémolysine, de protéase, 

de lécithinase et de lipase a été déterminée en utilisant des boites contenant respectivement du sang 

humain, du lait écrémé et du jaune d'œuf. Dans l'ensemble, 88,1 % des souches étaient des producteurs 

de biofilms, la majorité (64,9 %) montrant une faible capacité à produire des biofilms. Les souches 

XDR ont montré le pourcentage le plus élevé de producteurs de biofilm forts (47,6 %). La production 

d'hémolysine a été observée dans 55,5 % des souches, suivie par la production de protéase à 47,3 % et 

les activités de lécithinase et de lipase (23,1 % et 10 %). Une recherche phénotypique de la production 

de β-lactamases à spectre étendu et d'AmpC a été menée, 32,6 % présentaient un phénotype BLSE et 

12,7 % étaient positifs pour AmpC. La caractérisation moléculaire des gènes de β-lactamase et des 

gènes de quinolone avec PCR multiplex a été utilisée pour la confirmation phénotypique. blaTEM était 

le gène de type ESBL émergeant (53,8 %), suivi par blaSHV (15,9 %), tandis que blaCMY II était le gène 

AmpC détecté le plus fréquemment (10,4 %), suivi par blaDHA (7,1 %). Tous ces gènes et d'autres gènes 

de virulence étaient portés par des plasmides dont la taille variait d'environ 1,5 à plus de 10 kb, profilés 

par la méthode PCR. Un taux de 26,7 % des souches d’E. coli pouvait héberger au moins un gène qnr. 

Parmi les souches qnr-positives, qnrB était le gène de résistance le plus prévalent (78,3 %) suivi de 

qnrD (26,1 %). Le PCR de Clermont et al. a été utilisée pour la détection des groupes phylogénétiques 

d'E. coli urinaire résistants à l'imipenème. Parmi les 86 isolats cliniques d'E. coli résistants à 

l'imipenème, le groupe B2 (48,9%) était le phylogroupe le plus prévalent, suivi des groupes E (22,1%), 

inconnu (12,8%), A (8,1%), et B1 (4,7%), ainsi que des Clades I, D, Clade I, ou Clade II (1,2%).  

Mots-clés : Résistance aux antibiotiques, Bactéries multirésistantes, β-lactamase, ESBL, AmpC, 

gènes qnr, groupes phylogénétiques. 
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Over many years, pathogenic bacteria have been a major cause of illness and death. The 

discovery of penicillin in 1928 rendered many life-threatening infections treatable, providing 

significant advantages for humans, veterinarians and animal breeders. Nevertheless, since the 

1960s, antibiotics have been extensively utilized in sub-lethal doses as growth enhancers for 

food-producing animals (Muteeb et al., 2023; Zalewska et al., 2021). Also, their massive, 

excessive and sometimes unjustified use in humans has created a selection pressure on bacterial 

populations and allows bacteria to defend and adapt in presence of antibiotic via genetic or 

phenotypic prosses (Bhardwaj et al., 2022; Ahmed et al., 2024). 

Antibiotics resistance (AR) has been acknowledged to be one among the top three major public 

health threats by the World Health Organization (WHO) (Salam et al., 2023). However, the 

spread of antibiotic resistance bacteria (ARB) has become a critical public health issue 

worldwide (Zalewska et al., 2021). WHO published a list of the top 12 bacterial families that 

threaten human health, in this list, bacteria are divided into three priority categories: critical, 

high, and medium priority, depending on how urgently new antibiotics must be developed to 

tackle these pathogens (Salam et al., 2023). Acinetobacter, Pseudomonas, and certain 

Enterobacteriaceae, including K. pneumoniae, E. coli, and Enterobacter spp., are among the 

microorganisms with a critical priority (Mancuso et al., 2021). 

In the European Union (EU) alone, it is estimated that AR causes approximately 25,000 deaths 

annually, while globally, the toll is as high as 700,000 lives lost each year (World Health 

Organization, 2014). An estimated 1.27 million deaths were attributable to AR infections in 

2019 alone, while nearly 5 million deaths were associated with drug-resistant infections, 

according to a major study published in January 2023 (Salam et al., 2023). This number is 

estimated to be increased to 10,000,000 per year by 2050, could surpass cancer as a leading 

cause of mortality worldwide  (World Health Organization, 2014). 

In the face of the development of bacterial resistance, there are an emergence of multi-drug 

resistant bacteria (MDR) (Saha and Sarkar, 2021). The severity of infections in hospitalized 

patients, a rise in immunocompromised individuals, the introduction of resistant pathogens 

from the community, inconsistent infection control practices, frequent use of antimicrobial 

prophylaxis, widespread use of broad-spectrum therapies, and high overall antibiotic usage in 

specific regions, all these factors contributing to increased AR in healthcare settings (Chen et 

al., 2021). 
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In community settings, the factors can include: the overuse of antibiotics by both healthcare 

providers and patients, the administration of antibiotics in numerous fields, patient 

noncompliance with treatment, longer survival of people with chronic infections, and limited 

research into new antibiotics (Chen et al., 2021). The food chain may be an additional factor 

contributing to the AR (Saha and Sarkar, 2021), it can also be affected by factors contributing 

from pharmaceuticals, inappropriate waste management, trade, and finance, socioeconomic 

determinants, accumulation of antibiotics in the environment (Chen et al., 2021; Mancuso et 

al., 2021; Salam et al., 2023). An often-overlooked factor is the role of disinfectant exposure, 

which can also promote AR and lead to the emergence of MDR (Chen et al., 2021). 

Consequently, the reduction of the effectiveness of antibiotic usage in healthcare, decreases the 

probability of controlling and avoiding diseases that compromise the immune system, such as 

HIV, cancer, surgical interventions, and diabetes (Abushaheen et al., 2020; Mancuso et al., 

2021; Salam et al., 2023). As first-line antimicrobials have become less effective, there is an 

increasing dependence on second- and third-line treatments, which are frequently more 

expensive, unsafe, and need longer duration for therapy (Ahmed et al., 2024). Thus, if this 

situation persists, it may result in a "post-antibiotic era" where common illnesses and minor 

injuries become the main causes of mortality (O’Neill, 2016; Abushaheen et al., 2020; Tarín-

Pelló et al., 2022). 

A clear understanding that AR involves humans, animals and environment health, which fall 

within the One Health concept's (Aslam et al., 2021; Larsson and Flach, 2022), human usage 

of antibiotics has been linked to resistance in a number of significant human infections that 

impact different systems of the body. There is currently significant evidence that antibiotic 

usage in animals is an important contributor to antimicrobial resistance among human 

infections, in particular, common enteric pathogens such as Salmonella spp., Campylobacter 

spp., Enterococcus spp., and E. coli and in some cases other bacteria that can also be zoonotic 

like S. aureus. Additionally, there is growing worry that bacteria exposed to biocides (such as 

disinfectants and antiseptics) and heavy metals in animals and environmental niches may co-

select for resistance to antimicrobials (McEwen and Collignon, 2018). 

In the WHO African region, Algeria has one of the highest proportions of infection-related 

deaths associated with resistant pathogens, estimated at 48% the largest share within the region 

(Sartorius et al., 2024). Indeed, over the past years, a significant increase in AR, particularly 

among Gram-negative bacteria (GNB) was observed (Baba Ahmed-Kazi Tani and Arlet, 2014; 
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Yagoubat et al., 2017). Some recent surveys reported an increase in resistance strains, with a 

predominance of extended spectrum β-lactamase (ESBL) Enterobacteriaceae (Zemmour et al., 

2021; Khaldi et al., 2022), with blaCTX-M 3, blaCTX-M 15, blaTEM and blaSHV being the most 

frequently detected genes (Nabti et al., 2021; Merah-Fergani et al., 2022). These genes are 

responsible for enzymes frequently being the cause of potentially serious infections in both 

community and hospital settings. The plasmid-mediated cephalosporinases DHA-1, CMY-2, 

and CMY-12 have been found (Baba Ahmed-Kazi Tani and Arlet, 2014). 

At the regional level, Sétif province have an increase levels of AR genes; especially, blaCTX-M 

15, blaCTX-M 14, blaTEM and blaSHV and also carbapenemase encoding genes blaOXA-48, blaOXA-48 like, 

blaOXA-23 and blaOXA-72 (Baba Ahmed-Kazi Tani and Arlet, 2014; Nabti et al., 2021). Resistance 

genes to quinolones and fluoroquinolones are more recent identification, the most common are 

the qnr determinants like qnrA, qnrB and qnrS (Alouache et al., 2014). 

this work is part of a broader research problem focusing on AR in Sétif region. The purposes 

of this study are: 

• The isolation and identification of strains considered as human pathogens from medical 

analysis laboratories and different hospitals around Sétif province, in the east of Algeria.  

• To test their sensitivity to different antibiotics and the phenotypic characterization of 

different resistance profile and to investigate the relationship between AR profiles and 

biofilm activity and toxins production including: hemolysin, protease, lipase and 

lecithinase. 

• Followed by a molecular characterization of β-lactamase resistance genes responsible 

of β-lactams resistance. 

• Characterize qnr determinants of some strains with plasmid profiling. 

• To found links and to understand and follow these resistances and study the most 

prevalent pathogens and type of resistance distributed in this province. Finally, this 

study assessed: 

• The phylogenetic groups of imipenem-resistant uro-pathogenic E. coli (UPEC). 
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Since their discovery, antibiotics designate against bacterial diseases by reducing bacterial 

capacity to grow, killing bacteria, or inhibiting their multiplication (Abushaheen et al., 2020). 

However, they are also prescribed for the treatment of non-bacterial infections, such as 

respiratory infections caused by viruses (Seifert and Schirmer, 2021).  

2.1 Principal targets and classes of antibiotics 

The fundamental interaction between antibiotics and their targets leads to bacterial cell death 

by blocking vital cellular activities (Singh, 2023). Antibiotics target five essential parts and 

processes in a bacterial cell: cell wall, cell membrane, protein synthesis, nucleic acid synthesis 

and folate synthesis (Fig. 1) (Ghosh et al., 2020; Salam et al., 2023).  

 

Figure. 1 :  Different targets of antibiotics (European Commission. Joint Research Centre., 2018). 

 

By all these processes and based on the specific system or cellular component they target, 

antibiotics either kill the bacteria (bactericidal antibiotic) or inhibit cellular growth 

(bacteriostatic antibiotic) (Singh, 2023); although based on different mechanism of action, 

antibiotics can be subdivided into groups (Mancuso et al., 2021) : 
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2.1.1 Inhibition of cell wall production 

Two main groups of antibiotics use this mechanism: β-lactams and glycopeptide antibiotics 

(Fig. 2.), in addition of bacitracin and fosfomycin (Bhattacharjee, 2022); by inhibiting the 

peptidoglycan polymerization, with direct or indirect ways (Baran et al., 2023).  

 

Figure. 2 : Mode of action of β-lactams and glycopeptide (Baran et al., 2023). 

 

2.1.2 Inhibition of cell membrane synthesis 

These antibiotics alter bacterial cell membrane integrity and cyclic lipopeptide such as 

daptomycin (Huang, 2020) and polymyxins (Ayoub Moubareck, 2020).  

Ca2+- daptomycin combination generates micelles that reach the bacterial inner membrane, 

interact with negatively charged phosphatidylglycerol groups and neutralize them. It 

subsequently integrates into the membrane and initiates oligomerization dependent on 

phosphatidylglycerol. This results in the creation of membrane channels, leading to 

compromised membrane integrity (Fig 3. (1)) (Baran et al., 2023). While polymyxins exhibiting 

polycationic properties, destroys the phosphate groups of lipopolysaccharides in the bacterial 

membrane, owing to its hydrophilic and lipophilic nature. This interaction leads to an increase 
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in membrane permeability, resulting in the leakage of intracellular content (Fig. 3. (2)) (Yin et 

al., 2020; Jian et al., 2021).  

 

Figure. 3 : Mode of action of daptomycin (1) and polymyxins (2) (Baran et al., 2023). 

 

2.1.3 Inhibition of nucleic acid synthesis  

Quinolones, fluoroquinolones and rifamycins were most used in human and animal treatment. 

Quinolones and fluoroquinolones exert their antibacterial effects by targeting DNA synthesis, 

specifically through the inhibition of DNA gyrase and DNA topoisomerase IV, enzymes 

indispensable for the replication and transcription of bacterial DNA (Bush et al., 2020). 

Rifamycins inhibit the synthesis of bacterial RNA, the antibiotic binds to the β-subunit of RNA 

polymerase, this binding inhibits the initiation of bacterial DNA transcription as well as the 

formation of all messenger RNAs, transfer RNAs, and ribosomal RNAs (Fig. 4) (Baran et al., 

2023).  
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Figure. 4 : Mechanism of action of quinolones and rifamycins (Baran et al., 2023). 

 

2.1.4 Inhibition of protein synthesis  

Tetracyclines, aminoglycosides, macrolides, lincosamides, streptogramins B and 

oxazolidinones inhibit protein synthesis by binding selectively to the 30S or 50S subunits of 

intracellular ribosomes (Fig. 5) (Mancuso et al., 2021; Baran et al., 2023). 
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Figure. 5 : Mechanism of action of tetracyclines (1), aminoglycosides (2), macrolides, lincosamides 

and B streptogramins (3) and oxazolidinones (4) (Baran et al., 2023). 

 

2.1.5 Inhibition of folate synthesis  

Bacteria need folic acid for purine and pyrimidine bases synthesis, which are essential for the 

production of bacterial genetic material. Sulfonamides alone or in combination with 

trimethoprim were affect the bacterial metabolic pathway especially by inhibition the 

production of dihydropteroate (DHP) and tetrahydrofolate (THF), which are both essential 

metabolic stages in the folate pathway (Fig. 6) (Chen et al., 2022). 
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Figure. 6 : Mode of action of sulfonamides (1) trimethoprim (2) (Baran et al., 2023). 

 

2.2 Antibiotic resistance 

With their effective performance, antibiotics do not just used for medicinal purposes and in the 

treatment of human infections of all severity levels (Abushaheen et al., 2020), but they have 

also been used in agriculture production and animal treatment and industry (Zalewska et al., 

2021; Salam et al., 2023). Consequently, it must be examined via a One-Health approach, as 

human health is fundamentally interconnected with animal health and ecological sustainability 

(Christaki et al., 2020). 

Due to the ever-increasing use and misuse of antibiotics, their effectiveness has deteriorated 

and bacteria have developed AR (Chen et al., 2021). AR refers to the capacity of 

microorganisms including bacteria, viruses, fungi, parasite to persist, be alive and continue to 

grow and proliferate in the presence of lethal antimicrobial agents like antibiotics and 

antiviruses and antifungal (Chen et al., 2021; Salam et al., 2023). Antibiotics represent the most 

extensively utilized class of antibacterial agents, making AR the most common form of 

resistance among all classes of antimicrobials (Salam et al., 2023). So AR can be defined as the 

capacity of bacteria and other microorganisms to no longer respond to antibiotics that were 

previously sensitive (Chen et al., 2021). 

Since the late of 1950s,  AR was already discovered (Fig. 7) (Christaki et al., 2020; Mancuso 

et al., 2021; Salam et al., 2023). However, for a long time, AR was not a serious worldwide 
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problem, until 1960s and with the discovery of new classes of antibiotic, which suggested that 

the problem of AR can be solved (Mancuso et al., 2021). However, resistance developed 

quickly and AR soon became a major public health concern (Uddin et al., 2021). 

 

Figure. 7 : Timeline of antibiotic discovery and antibiotic resistance (Salam et al., 2023). 

  

2.3 Antibiotic resistance sources 

Bacteria expressed resistance via three forms: 

2.3.1 Natural resistance  

Natural resistance refers to bacteria’s inherent ability to resist specific classes of antibiotic and 

this resistance conferred by their chromosomal genes, without the need for genetic mutations 

or the acquisition of external genes (Mancuso et al., 2021; Salam et al., 2023). As result, bacteria 

occur naturally mechanism for resistance derived from the fundamental structural and/or 

functional characteristics of the bacteria (Baran et al., 2023; Hasan and AL-Harmoosh, 2020; 

Jian et al., 2021).  

2.3.2 Acquired resistance 

This resistance is due to changes in bacterial chromosome, it’s not affected by the antibiotic. It 

was previously susceptible for it (Hasan and AL-Harmoosh, 2020; Naveed et al., 2020), it’s 

originated from the main chromosome or extrachromosomal structures: 
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• Chromosomal resistance due to mutations occur by certain physical and chemical 

factors (Hasan and AL-Harmoosh, 2020; Salam et al., 2023),  

• Mutant strains are able to transfer the mutation via vertical transmission (Mancuso et 

al., 2021).  

• Extrachromosomal resistance can occur via gaining new exogenous DNA via horizontal 

gene transfer (HGT) by transformation, transposition, transduction, conjugation and by 

transmission of plasmids, transposons, integrons… (Fig. 8) (Baran et al., 2023; Hasan 

and AL-Harmoosh, 2020; Singh, 2023). 

 

Figure. 8 : Types of spread of acquired resistance (Mancuso et al., 2021). 

 

2.3.3 Adaptive resistance 

This resistance was affected by environmental changes, depending on the intensity and duration 

of selection pressure (Jovanovic et al., 2021; Langendonk et al., 2021). When bacteria are 

exposed to antibiotic concentrations that are below their minimum levels, with environmental 

factors such as growth conditions, stress, pH, and ion concentrations, they can develop adaptive 

resistance, And the best example of this category of resistance is biofilm formation capacity. 

Unlike intrinsic or acquired resistance, adaptive resistance is typically temporary and reverses 

once the inducing factors are removed (Salam et al., 2023). 
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2.4 Mechanisms of antibiotic resistance 

Bacteria develop and use diverse resistance strategies as long as antibiotic are administed 

against them (Cars et al., 2021). Unfortunately, these AR mechanisms have protected them 

from the effects of these antibiotics (Mancuso et al., 2021). The mechanism of AR is 

categorized into the following: 

2.4.1 Antibiotic inactivation  

Bacteria inactivate antibiotic by two different ways: antibiotic destruction or antibiotic 

alteration and these two mechanisms are enzymatic-dependent mechanisms (Ahmed et al., 

2023). Antibiotic destruction lead by hydrolyzation, β-lactamases are the best example for this 

type of resistance, these enzymes cleave the amide bond of β-lactams ring, rending the antibiotic 

ineffective (Christaki et al., 2020). Second example of TetX enzymes, which catalyze the 

oxygen-dependent destruction of tetracyclines (Fig. 9) (Iskandar et al., 2022). 

2.4.2 Chemical modification of antibiotic 

Bacteria possess the ability to synthesize enzymes that modify antibiotics through the addition 

of chemical groups, preventing it from binding to their targets. The most common ways bacteria 

inactivate drugs are by adding phosphoryl, acetyl or adenyl groups. Acetylation is used to 

inactivate drugs like aminoglycosides, chloramphenicol, streptogramins and fluoroquinolones. 

Aminoglycosides are also inactivated by adenylation and phosphorylation (Uddin et al., 2021). 

Enzymes called aminoglycoside modifying enzymes (AMEs) modify the antibiotic’s structure 

(alerts the hydroxyl or amino groups), rendering it inactive, and this is a key example of 

bacterial resistance through drug modification (Christaki et al., 2020). 

2.4.3 Antibiotic target modification 

The changes in target sites are bacterial mechanism that consist of: target replacement, 

alteration and protection (Fig. 9) (Iskandar et al., 2022):      

2.4.3.1 Target replacement 

Three examples can explain this mechanism:  
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• Changes in the arrangement of penicillin-binding proteins (PBP) lead to β-lactams 

resistance (Uddin et al., 2021). 

• In S. aureus, methicillin resistance was occurred by the acquisition of mecA gene, which 

incorporate and becomes a part of their DNA, this gene is found in mobile genetic 

element (MGE) called staphylococcal chromosomal cassette (SCC mec); the mecA gene 

produce PBP2a, a specific PBP with low affinity to for β-lactams(Abebe and Birhanu, 

2023).  

• The acquisition of van gene cluster in enterococci by MGEs induces structural 

modifications in peptidoglycan precursors lead to the replacement of glycopeptide 

target (Christaki et al., 2020).    

2.4.3.2 Target alteration  

Target alteration by mutation is a type of resistance witch was observed in drugs that inhibit 

nucleic acid synthesis like: quinolones and fluoroquinolones, with chromosomal mutation in 

bacterial DNA gyrase and/or topoisomerase IV (Christaki et al., 2020). These changes reducing 

and limiting the drug’s capacity to bind to certain components (Uddin et al., 2021), while 

mutations in β-subunit genes of RNA polymerase result to rifamycins resistance (Patel et al., 

2023).  

The enzymatic alteration was seen in resistance to chloramphenicol, clindamycin and linezolid, 

it has been attributed to methylation of the 23S rRNA, catalyzed by an enzyme encoded by the 

cfr gene (Tsai et al., 2022) and also in macrolides, lincosamides and streptogramin B. This 

resistance was conferring by large group of erythromycin ribosomal methylation (erythromycin 

ribosomal methylase: erm) genes (Cars et al., 2021; Christaki et al., 2020).  

2.4.3.3 Target protection 

This method of resistance was described in both GPB and GNB (Christaki et al., 2020). Several 

genetic determinants encoding proteins that mediate target site protection have been identified 

in bacterial chromosomes. This form of resistance is frequently associated with MGEs, which 

facilitate the transfer of these genes (Ndagi et al., 2020).  

These protective proteins safeguard particular antibiotic targets from the inhibitory effects of 

various antibiotics (Zhang and Cheng, 2022). Examples included: tetracycline ribosomal 
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protection proteins (TRPPs), which bind to ribosomes and restore their structure, preventing 

tetracycline from binding (Iskandar et al., 2022; Zhang and Cheng, 2022). Quinolone’s 

protection proteins by functioning as a DNA analogue and decreasing the interaction between 

bacterial gyrase and topoisomerase IV and DNA (Christaki et al., 2020).  

Changing of the target’s structure mediated by ABC-F proteins, which are the main contributors 

to resistance in drugs targeting the 50S ribosomal subunit. These drugs include macrolides, 

lincomycins, phenols and streptogramins (Zhang and Cheng, 2022) and resistance to fusidic 

acid by FusB-type protein, which bind to elongation factor G (EF-G), FusB drives EF-G's 

release from the ribosome. Even in the presence of fusidic acid, weakening the drug’s ability to 

bind to EF-G, and allowing resistance to occur (Tomlinson et al., 2020). 

2.4.4 Limiting drug uptake 

GNB possess an outer membrane that serves as a permeability barrier for numerous chemical 

compounds, including antibiotics (Christaki et al., 2020). They are intrinsically less permeable 

to several antibiotics than GPB (Uddin et al., 2021) because the outer membrane constituted of 

proteins and lipopolysaccharides, where hydrophilic molecules have difficulty to traverse the 

lipid layer and require facilitation via porin channels or outer membrane porins (Omps) (Zhang 

and Cheng, 2022). This explain the intrinsic resistance of some GNB to hydrophilic molecules, 

such as vancomycin (Fig. 9) (Christaki et al., 2020; Iskandar et al., 2022).  

Moreover, alterations in outer membrane permeability may facilitate the emergence of acquired 

resistance (Christaki et al., 2020). Porins serve as the primary pathway for the introduction of 

hydrophilic antibiotics through the bacterial outer membrane such as β-lactams, tetracyclines, 

fluoroquinolones and chloramphenicol (Christaki et al., 2020). Each bacterial type synthesizes 

distinct porins (OmpF, OmpC and OmpE), the entry of hydrophilic antibiotics will be 

influenced by the number and the type of expressed Omps and the loss or impairment of one or 

more Omps contributes to bacterial resistance (Zhang and Cheng, 2022).  

Limiting antibiotics uptake may result from mutations that modify the expression, structure or 

function of porins (Saha and Sarkar, 2021); these mutations can have different affects such as: 

deletion of porin, changes of the size and conductance or reduced the expression of porins 

(Christaki et al., 2020). For example, resistance to carbapenems in Enterobacteriaceae will be 
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emerged even in the absence of carbapenemase enzymes by mutations which decrease porin 

production (Uddin et al., 2021).  

However, in many bacterial strains, this effect is amplified when combined with other resistance 

mechanisms. Reduced antibiotic uptake from porin changes boosts the impact of co-existing 

mechanisms like efflux pumps or antibiotic-degrading enzymes, leading to high-level resistance 

(Christaki et al., 2020; Saha and Sarkar, 2021). 

2.4.5 Efflux pumps 

One of the typical mechanisms of drug resistance is the drug efflux from bacterial cells to 

prevent the intracellular accumulation of toxic substances in a way does not involve 

modification or deterioration (Baran et al., 2023). Efflux pumps (Eps) are among the fastest and 

most effective resistance mechanisms bacteria deploy in response to antibiotics or toxins. These 

systems have evolved as a self-defense strategy, preventing the buildup of harmful compounds 

within bacterial cells by actively pumping them out. These proteins are located in the plasma 

membrane (Gaurav et al., 2023). Eps transport a wide range of substances from the cytoplasm 

to protect the cell from antibiotic accumulation, making it less effective. This phenomenon is 

responsible for MDR (Fig. 9) (Zhang and Cheng, 2022; Muteeb et al., 2023).  

Eps are energy-dependent complex bacterial transporter systems that have been identified in 

both GNB and GPB (Christaki et al., 2020). There are two types of genes that encode antibiotic 

Eps: acquired and intrinsic (Iskandar et al., 2022). Multidrug efflux mechanisms are usually 

chromosomally encoded in GNB, contributing to the bacteria's intrinsic resistance (Uddin et al., 

2021). In contrast, genes found in plasmids, MGEs, and mutations may increase pump 

expression or efficiency, often driving clinically acquired resistance (Christaki et al., 2020; 

Baran et al., 2023). 

Therefore, numerous active Eps classes are found in both kinds of bacteria, which are divided 

into five groups based on several factors, including their composition, the nature of the 

substrates, their transport and their energy source (Tab. 1) (Ebbensgaard et al., 2020; Iskandar 

et al., 2022). 
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Table 1. Five primary families of efflux pump (Jagessar et al., 2020; Drew et al., 2021; Kim et 

al., 2021; Klenotic et al., 2021; AL-Lami et al., 2022). 

Transporter system Acronym Nature Location Substrate Transport system 

Resistance 

nodulation and cell 

division 

RND Multi-proteins 

transporter 

In the entire 

bacterial cell 

membrane 

antibiotics, heavy 

metals, toxins 

From cytoplasm to 

the external 

environment 

Major facilitator 

superfamily 

MFS Single protein 

transporter 

Cytoplasmic 

membrane 

Fluoroquinolones, 

macrolides, 

chloramphenicol, 

linezolid, 

trimethoprim, 

tetracycline 

From the cytoplasm 

into the periplasmic 

space 

Multidrug and 

toxic compounds 

extrusion 

MATE Multi-proteins 

transporter 

In the entire 

bacterial cell 

membrane 

Fluoroquinolones and 

some 

aminoglycosides 

Use the energy from 

the H+ or Na+ ion 

gradient to extrude 

the antibiotic from 

the cytoplasm to the 

external environment 

Small multidrug 

resistance 

SMR Multi-proteins 

transporter 

In the entire 

bacterial cell 

membrane 

β-lactams and some 

aminoglycosides 

From cytoplasm to 

the external 

environment 

ATP-binding 

cassette 

ABC Multi-proteins 

transporter 

In the entire 

bacterial cell 

membrane 

Tetracyclines and 

macrolides 

Use the energy 

generated from ATP 

hydrolysis for 

transport antibiotics 

outside the bacterial 

cell 

 

According to energy source, ABC classified as "primary active transporters" remove substrates 

using energy from ATP hydrolysis. In contrast, "secondary active transporters" such as MATE, 

, RND, SMR and MFS rely on the proton motive force (PMF) to drive the expulsion of sodium 

and hydrogen ions across the membrane (Zhang and Cheng, 2022). 

The RND superfamily is regarded as the primary drug Eps family, playing a key role in 

conferring drug resistance to various contributing significantly to multidrug resistance in GNB 

(Baran et al., 2023). While RND is exclusive for GNB; MATE, SMR, MFS and ABC families 

are found in both GPB and GNB (Ebbensgaard et al., 2020; Iskandar et al., 2022; Zhang and 

Cheng, 2022). 

The classic example for Eps mechanisms were MexAB-OprM in P. aeruginosa and AcrAB-

TolC in Enterobacteriaceae, both from RND family (Uddin et al., 2021; Zhang and Cheng, 
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2022). Eps help bacteria regulate their internal environment by removing not only antibiotics 

but also toxic substances, virulence molecules and heavy metals (Gaurav et al., 2023). 

2.4.6 Biofilm  

Bacterial biofilm is a unique survival mechanism formed by bacteria that adhere to inert 

surfaces (Zhang and Cheng, 2022), where they are encased in a self-produced polymer matrix 

contain polysaccharides, proteins and DNA (Uddin et al., 2021). Biofilm formation can lead to 

resistance to antibiotics, this is due to the fact that bacterial cells can become more resistant to 

antimicrobials when they develop biofilms and are subsequently encased in a complex matrix, 

which limits the penetration of antibiotics, which prevents drug penetration at bactericidal 

concentrations (Fig. 9) (Abebe, 2020). Biofilms are particularly problematic in medical settings, 

especially on indwelling devices such as urinary catheters, where they serve as persistent 

sources of infection that are difficult to eradicate (Donlan, 2001) 

Biofilms exhibit the ability to tolerate antimicrobial agents at concentrations 10-1000 times 

greater than what is needed to inactivate genetically identical planktonic bacteria. This 

increased resistance in biofilm-associated microorganisms is attributed to several suggested 

factors (Dincer et al., 2020; Zhang and Cheng, 2022): 

• Polymeric matrix, which is capable of inhibiting antibiotic diffusion. 

• Combination of antibiotics with a polymeric matrix that diminishes their efficacy. 

• Enzyme-mediated resistance. 

• Alterations in metabolic activity inside the biofilm. 

• In term of communities, the interaction within the community lead to augmentation of 

members ability to resist antibiotics, antibiotics tolerance and protection of sensitive 

members caused by high rate of mutation and genetic changes which allows them to 

develop defense mechanisms (Sharma et al., 2023). 
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Figure. 9 : Common mechanism of antibiotic resistance (Gauba and Rahman, 2023). 

 

2.5 Resistance for β-lactam antibiotics  

β-lactam antibiotics are among the safest and most effective antimicrobial agents available 

(Watkins and Bonomo, 2016), this group represents a broad class of antimicrobial agents, 

encompassing penicillins, cephalosporins, monobactams, and carbapenems (Fig. 10) (Hasan 

and AL-Harmoosh, 2020; Schaenzer and Wright, 2020). The most prevalent resistance 

mechanism against these antibiotics involves the production of β-lactamase enzymes (Muteeb 

et al., 2023). 
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Figure. 10 : β-lactam antibiotics: a) penicillin, b) cephalosporin, c) carbapenem, d) monobactam 

(Alfei and Schito, 2022). 

 

 

The Centers for Disease Control and Prevention (CDC) and the WHO have identified β-

lactamase-producing GNB as some of the most serious or critical global health threats (Watkins 

and Bonomo, 2016). These enzymes neutralize the bactericidal activity of β-lactams by 

hydrolyzing the amide bond within the β-lactam ring. They can hydrolyze β-lactam antibiotics 

before they reach their intended targets, such as the PBPs, further contributing to the 

inactivation of the antibiotics and rendering it ineffective (Fig.11) (Munita and Arias, 2016; 

Ding et al., 2021).  

However, genes encoding β-lactamase enzymes are conventionally designated as bla, followed 

by the specific enzyme variant (ex: blaTEM). These genes may be located on the bacterial 

chromosome or within MGEs as part of the accessory genome, facilitating their HGT. 

Additionally, they are often associated with integrons, further promoting their dissemination. 

The expression of these genes can either be constitutive or inducible, depending on whether an 

external signal is required to activate their transcription (Munita and Arias, 2016). 
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Figure. 11 : Hydrolysis mechanism for penicillin with β-lactamase (Ding et al., 2021). 

 

Two main classification schemes have been proposed based on two major attributes of the 

physiologically important enzymes: structure and function. Structural classes were first defined 

by Ambler in 1980 (Ambler classification) categorizes β-lactamases based on their amino acid 

sequence identity, dividing them into four distinct groups: A, B, C, and D (Watkins and 

Bonomo, 2016). Bush-Jacoby classification system organizes β-lactamases into four primary 

categories, each comprising several subgroups, based on their biochemical function, with a 

particular focus on substrate specificity (Fig. 12) (Bush and Bradford, 2020).  

 

Figure. 12 : β-lactamase classification: Ambler classification (molecular classification), Bush-Jacoby 

classification (Functional groups), † Class A enzymes include penicillinases, ESBLs, and 

carbapenemases. ¥ Ambler class D enzymes belong to the functional group/subgroup 2d (Munita 

and Arias, 2016). 
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2.5.1 Class A β-lactamases 

This class was characterized by the presence of a serine residue in their catalytic site and use 

amino acids as their active centers, a characteristic it shares with enzymes in classes C and D 

(Munita and Arias, 2016; Ding et al., 2021). They are most inhibited by clavulanic acid or 

tazobactam and exhibit activity against monobactams while lacking efficacy against 

cephamycins (cefoxitin and cefotetan) and confer resistance for both GNB and GPB (Hasan 

and AL-Harmoosh, 2020).  

This class includes a diverse range of enzymes with varying catalytic activities, including 

penicillinases (TEM-1 and SHV-1, which hydrolyze only penicillins), ESBL such as CTX-M, 

and carbapenemases like KPC (K. pneumoniae carbapenemase) (Hasan and AL-Harmoosh, 

2020; Carcione et al., 2021). 

2.5.1.1 TEM β-lactamases 

TEM enzyme plays a role in producing ESBL and penicillinase characters, capable of hydrolyze 

β-lactam antibiotics such as penicillins and few cephalosporins, this can render these antibiotics 

ineffective over the course of treatment, leading to an increase of resistance (Carcione et al., 

2021; Effendi et al., 2022). The majority of β-lactamase TEM enzymes are originated from 

parent enzymes such as TEM-1 and TEM-2, this evolution is attributed to point mutations 

occurring within the active sites of the TEM sequence, altering their substrate specificity and 

resistance profiles (Ejaz et al., 2021; Islam et al., 2023). 

TEM type enzymes are encoding by blaTEM genes which reside on bacterial plasmids, 

facilitating their rapid HTG both within and across bacterial species (Effendi et al., 2022). It’s 

the most common plasmid mediated class A β-lactamases in GNB, including 

Enterobacteriaceae, P. aeruginosa. To date, approximately 140 variants of TEM-type enzymes 

have been identified (http://www.lahey.org/Studies/other), resulting from single amino acid 

substitutions (Carcione et al., 2021). 

2.5.1.2 SHV β-lactamases 

SHV enzyme are the mutant form of SHV-1 parent enzyme which was identified in the 1970s 

in E. coli and was commonly found in K. pneumoniae and shares 68% of its amino acids with 

http://www.lahey.org/Studies/oth
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TEM-1 (Liakopoulos et al., 2016; Ejaz et al., 2021; Islam et al., 2023; Shakil et al., 2023), 

named for their response to sulfhydryl variable reagents and represent a significant group of 

resistance enzymes with more than 60 variants reported capable of hydrolyzing aztreonam and 

third generation cephalosporins. However, they remain susceptible to inhibition by clavulanic 

acid and are ineffective against cephamycins, fourth generation cephalosporins and 

carbapenems (Saravanan et al., 2018; Carcione et al., 2021).  

The majority blaSHV encoding genes confer the ESBL phenotype  in various members of bacteria 

like Enterobacteriaceae and P. aeruginosa (Bush and Bradford, 2020; Carcione et al., 2021). 

2.5.1.3 CTX-M β-lactamases 

CTX-M β-lactamases were first identified in the 1980s (Bush and Bradford, 2020), they show 

greater significance against cefotaxime and ceftriaxone when compared with ceftazidime or 

cefepime (Carcione et al., 2021). Notably, these enzymes are effectively inhibited by all 

commercially available β-lactamase inhibitors, including newer agents such as avibactam and 

vaborbactam. They are originated from the chromosome of environmental rarely pathogenic. 

These enzymes are the examples of the plasmid-mediated acquisition of β-lactamase genes 

(Blair et al., 2015), because blaCTX-M genes have been identified in association with insertion 

sequences (ISEcp1) and with transposable elements which lead to be captured by a broad range 

of conjugative plasmids or phage-like sequences that act like as vehicles for their dissemination. 

They have 40% of similarity with TEM and SHV enzymes (Munita and Arias, 2016).  

CTX-M β-lactamases are frequently identified in E. coli and K. pneumoniae but are also 

detected in other Enterobacteriaceae species, including typhoidal and nontyphoidal Salmonella 

spp., Enterobacter spp., Citrobacter freundii, Shigella spp. and Serratia marcescens. 

Additionally, they have been found in various species of non-fermenting bacteria (Saravanan 

et al., 2018; Bush and Bradford, 2020).  

In the late 1980s and 1990s, CTX-M-type enzymes emerged and replaced TEM and SHV 

mutants, which were the first two ESBL variants identified. Over time, they became the 

predominant group of AR determinants among ESBL (Jovanovic et al., 2021).  
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2.5.1.4 Epidemiology of ESBL β-lactamases 

ESBL pose a significant global challenge, affecting both hospitalized and community settings. 

The prevalence of ESBL-producing organisms varies widely across different healthcare 

institutions, countries, and continents.  

Among European nations, the highest prevalence rate was detected in Greece (27.4%), and the 

lowest rate was observed in Netherlands and Germany (2% and 2.6%, respectively). The United 

States showed a relatively low prevalence, with approximately 3% of Enterobacteriaceae 

encoding ESBL (Nagshetty et al., 2021).  

Moreover, In Africa, Egypt has the highest rate (38.5%) (Nagshetty et al., 2021). In Algeria, 

several studies conducted in hospital and community settings indicate the prevalence of ESBL 

producer Enterobacteriaceae ranges were found between 16.4%-99%. Among these, Class A 

ESBLs were the most commonly identified (Saravanan et al., 2018), several ESBL variants 

were identified in Algeria blaCTX-M 3, blaCTX-M 15, blaSHV 12, blaCTX-M 14, blaCTX-M 28, blaSHV 98, 

blaSHV 99, blaSHV 100, blaTEM 4, blaTEM 48, blaTEM 188, blaSHV 11, blaSHV 12, blaSHV 28, blaSHV 110, blaTEM 

1, blaCTX-M 1 (Baba Ahmed-Kazi Tani and Arlet, 2014), the presence of plasmid-encoded AmpC 

(pAmpC) was also observed (Saravanan et al., 2018). 

2.5.2 Class B β-lactamases 

Referred to metallo-β-lactamases (MBL), employ a metal ion (often zinc) as a cofactor for the 

nucleophilic attack on the β-lactam ring, in place of a serine residue (Oelschlaeger et al., 2023), 

these enzymes were encoded by genes typically situated within the chromosomes of 

nonpathogenic bacteria (Boyd et al., 2020).  

Their activity is inhibited by ion-chelating agents like EDTA (Fig. 12); however, they exhibit 

efficacy against a broad spectrum of β-lactams, MBL are resistant to inhibition by clavulanic 

acid or tazobactam and although they effectively hydrolyze cephamycins. Aztreonam is often 

an ineffective substrate (Munita and Arias, 2016; Hasan and AL-Harmoosh, 2020; Nagshetty 

et al., 2021). In 1990, with the discovery of new MBL like: IMP and VIM in clinical strains of 

Enterobacteriaceae, Pseudomonas species and Acinetobacter spp., caused a major change in the 

antimicrobial resistance landscape; because, genes encoding for MBL enzymes have been 
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found in pathogenic bacteria as part of its accessory genome, which strongly suggests that HGT 

as a way of spread (Munita and Arias, 2016).  

The most clinically important metallo-carbpemase belong to 4 families: IMP (Imipenemases), 

VIM (Verona Integron-encoded Metallo-β-lactamase), SPM (São Paulo Metallo-β-lactamase), 

and NDM (New Delhi Metallo-β-lactamase) (Boyd et al., 2020). 

2.5.3 Class C β-lactamases 

This class provides resistance to all penicillins and cephalosporins, including cephamycins, 

although cefepime is usually not effectively targeted by these enzymes. They generally do not 

hydrolyze aztreonam effectively and are not effected by clavulanic acid inhibition (Carcione et 

al., 2021).  

The most clinically significant enzyme in this class is AmpC, a cephalosporinase predominantly 

encoded chromosomally (Hasan and AL-Harmoosh, 2020). However, the blaAmpC gene has also 

been identified on plasmids, facilitating its HGT. The chromosomal expression of blaAmpC genes 

is a property of Enterobacter cloacae, E. aerogenes, P. aeruginosa, Providencia species, C. 

freundii, S. marcescens and Morganella morganii. On the other hand, the blaAmpC gene is not 

present in the core genome of the classic examples of Proteus mirabilis, P. vulgaris, E. coli and 

Klebsiella species (Munita and Arias, 2016).  

The most commonly reported plasmid-mediated AmpC (pAmpC) β-lactamase genotypes 

include ACC, DHA, CMY, FOX, MOX, EBC and CIT. Among these, CMY-2-like enzymes 

are the most prevalent in clinical isolates of Enterobacteriaceae. Although DHA-like β-

lactamases have also shown significant dissemination, these enzymes exhibit a resistance 

profile similar to the overproduction of chromosomal AmpC β-lactamases, conferring 

resistance to nearly all β-lactam antibiotics except carbapenems and cefepime (Peymani et al., 

2016). 

2.5.4 Class D β-lactamases (OXA-type enzymes) 

This class Include a diverse group of enzymes that were initially distinguished from class A 

penicillinases due to their ability to hydrolyze oxacillin and their poor inhibition by clavulanic 

acid (Munita and Arias, 2016; Saravanan et al., 2018; Hasan and AL-Harmoosh, 2020). They 
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are entirely differs from TEM and SHV enzymes and showing 20% of similarity with the other 

members of ESBL family (Saravanan et al., 2018).  

Several variants of OXA-type enzymes have been described such as enzymes have the capacity 

to degrade third generation cephalosporins (OXA-11) and carbapenems (OXA-23), resist to 

clavulanic acid (OXA-48 and OXA-48 like), hydrolyze cefepime (OXA-1) (Nagshetty et al., 

2021), resistance to cefotaxime and cefepime (OXA-17) (Munita and Arias, 2016; Bush and 

Bradford, 2020; Hasan and AL-Harmoosh, 2020; Carcione et al., 2021). They have been 

identified in many clinical species, including E. coli, Enterobacter spp., K. pneumoniae, P. 

aeruginosa and also produced in GPB such as S. aureus (Munita and Arias, 2016; Hasan and 

AL-Harmoosh, 2020). 

in Algeria, their role and relationship with Acinetobacter baumannii has become increasingly 

concerning. Local surveillance has demonstrated that blaOXA-23-like is highly prevalent, detected 

in approximately 40–70% of imipenem-resistant A. baumannii clinical isolates across multiple 

regions including western Algeria, Constantine, and Batna (Mesli et al., 2013). In addition, 

blaOXA-24-like has emerged in a high proportion of these isolates up to 63% in some recent Batna 

hospitals and occasionally co-expressed alongside blaOXA-23 (Bouali et al., 2025).  

2.6 Plasmid-mediated Quinolone Resistance (PMQR) 

Recent studies have indicated that quinolone (Fig. 13) resistance is not solely chromosomally 

encoded but can also be mediated by MGE, such as plasmids. PMQR is primarily associated 

with the qnr genes, which encode proteins belonging to the small-pentapeptide repeat family. 

These proteins protect critical bacterial enzymes, DNA gyrase and topoisomerase IV, from the 

inhibitory effects of quinolone compounds (Fig. 9) (Rezazadeh et al., 2016; Hasan and AL-

Harmoosh, 2020). 
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Figure. 13 : Quinolone structures (Aldred et al., 2014). 

 

The first PMQR gene was identified in a K. pneumoniae isolate from Birmingham (Alabama) 

in 1994, that contain plasmid confer for resistance to ciprofloxacin (Nourozi et al., 2020; 

Miranda et al., 2022). qnr genes are typically located within multi-resistance plasmids that also 

contain additional resistance determinants like β-lactamase genes including: ESBL genes, 

AmpC genes and carbapenem genes (Hooper and Jacoby, 2015). 

Different qnr genes have been identified in pathogenic and non-pathogenic bacterial strains 

from diverse regions worldwide include: qnrA, qnrS, qnrB, qnrC, and qnrD, as well as more 

recently discovered variants such as qnrVC and qnrT. The first qnrB was found in K. 

pneumoniae which code for Qnr protein with 214 amino acid, wihle qnrC was identified in P. 

mirabilis, qnrD in S. enterica, qnrS in Shigella flexneri 2b and the qnrVC from V. cholerae 

(Rodríguez-Martínez et al., 2016; Yanat et al., 2017; Amereh et al., 2023; Abdelrahim et al., 

2024). 

The qnr genes alleles differ by 35% or more in their sequences, table 2 presents the nucleotide 

and amino acid sequence identities of the qnr alleles, the highest similarity is observed between 

the qnrB and qnrE alleles, with 75.81% and 85.98% identity at the nucleotide and amino acid 

levels, respectively. Followed by qnrC and qnrVC alleles, which show 68.65% and 73.85% 

identity, respectively. Conversely, the qnrS allele shows the lowest amino acid similarities 
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when compared to the qnrE, qnrD and qnrB alleles, exhibiting approximately 36%, 39%, and 

40% identity, respectively (Yanat et al., 2017; Miranda et al., 2022). 

Table 2. Percentages of the similarity of nucleotide and amino acid sequences of the qnr genes 

(Miranda et al., 2022). 

Genes 
Percentage of nucleotide/Amino acid similarity (%) 

qnrA qnrB qnrC qnrD qnrE qnrS qnrVC 

qnrA 100/100 46.33/41.59 59.36/64.22 47.91/46.26 48.99/42.06 58.75/59.63 60.43/61.93 

qnrB  100/100 48.78/42.99 62.79/64.49 75.81/85.98 48.32/39.72 50/42.99 

qnrC   100/100 49.77/44.39 46.98/42.52 60.73/60.09 68.65/73.85 

qnrD    100/100 63.10/65.89 46.51/39.25 50.70/43.93 

qnrE     100/100 48.37/35.98 49.61/42.06 

qnrS      100/100 63.93/64.68 

qnrVC       100/100 

 

qnrA gene has been identified on plasmid in Aeromonas punctata and Vibrio fluvialis. It is an 

unusual member of the qnr family that differentiates oneself from the plasmid-mediated qnr 

genes due to the presence of the attC site, a feature typical of integron cassettes (Yanat et al., 

2017), this gene encodes a 218-amino acid QnrA protein (Al-Rafyai et al., 2021) is one of the 

resistance genes that has not been commonly found in E. coli (Tageldin et al., 2023).  

2.7 Phylogenetic groups of E. coli 

Phenotypic assays, including the identification of serogroups in E. coli and metabolic assays, 

play a central role in bacterial classification. While these characteristics serve as valuable 

markers, they are relatively imprecise indicators that offer only limited insights (Robins-

Browne et al., 2016).  

PCR and sequencing techniques enable the phylogenetic classification (categorizing of 

organisms into groups within large phylogenetic entity) within the species of bacteria by 

elucidating evolutionary relationships among genera, species, and strains (Bhattacharjee, 2022; 

Denamur et al., 2021). Comparative analyses of 5S and 16S ribosomal RNA sequences have 

indicated that Escherichia and Salmonella originated from a common ancestor approximately 

120-160 million years ago, coinciding with the emergence of mammals (Hu et al., 2010). 

Conversely, genomic DNA sequence analysis of Escherichia and Shigella has revealed a high 

level of sequence similarity, despite their historical classification into separate genera within 

the family Enterobacteriaceae (Pettengill et al., 2016).  
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The genus Escherichia is now composed of three nomen species (E. albertii, E. fergusonii and 

E. coli) and five Escherichia clades labelled I–V (Denamur et al., 2021). In the early 1980s, 

Whittam et al. identified a genetic substructure within E. coli, a discovery later validated by 

subsequent research. This work revealed that E. coli strains are categorized into four primary 

phylogenetic groups (A, B1, B2, and D) (Hyun et al., 2021), with non-random distribution based 

on their source of isolation.  

The clinical significance of these findings prompted Clermont et al. (2000) to develop and 

validate a simpler, faster, and more effective method for assigning E. coli isolates to their 

respective phylogenetic groups, compared to existing approaches (Clermont et al., 2000). 

Clermont et al. designed a multiplex PCR assay targeting three genetic markers: the chuA gene 

(required for heme transport in enterohemorrhagic E. coli O157:H7), the yjaA gene (identified 

in the genomic sequence of E. coli K-12 with an as-yet-unknown function), and a 14.9 Kb DNA 

fragment, TspE4.C2, which encodes a lipase closely associated with strains causing neonatal 

meningitis (Clermont et al., 2000). The method's accuracy was validated by multi-locus 

sequence typing (MLST), with only a small percentage of misclassifications reported. 

Subsequent research, spanning from 2000 to the present, has expanded the understanding of E. 

coli phylogenetics through MLST and, to a lesser extent, whole genome sequencing. These 

analyses have identified additional phylogenetic groups, including groups E and F (a sister 

group to B2) and group C (related to group B1, but distinct from it). Furthermore, Walk and 

colleagues uncovered cryptic lineages that are genetically distinct but phenotypically identical 

to E. coli (Walk et al., 2009). Among these is the clade I, which is now considered a 

phylogenetic group within E. coli (Okuno et al., 2023). 

Currently, eight phylogenetic groupings of E. coli are acknowledged: A, B1, B2, C, D, E, F, 

and clade I.  Consequently, Clermont et al. updated the original methodology, preserving the 

same target genes, altering the primer sequences that identify them, and incorporating an 

additional gene, arpA, which is found in all E. coli strains except those belonging to 

phylogroups B2 and F, as well as in the cryptic clades II, III, IV, and V, and in E. albertii and 

E. fergusonii. The final gene acts as an internal control to assess DNA quality and is utilized to 

differentiate phylogroup F from phylogroup D (Fig. 14) (Clermont et al., 2013). 
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Figure. 14 : PCR profiles that can be observed using the Clermont et al. (2013) method. On the left 

are indicated the amplified gene targets and the respective expected bands; the last well on the right 

shows the 100 bp DNA ladder. The band pattern obtained allows to attribute the phylogenetic 

group (A, B1, C, E, D, F, B2, E. clade I) to the isolated strains (Clermont et al., 2013). 

 

To date, the definition of E. coli pathovars is based on various factors, including the target organ 

(urinary tract and uropathogenic E. coli (UPEC)), the infected host (bird and avian pathogenic 

E. coli (APEC)), the association with specific organs and hosts (cerebro-spinal fluid in 

newborns and newborn meningitis E. coli (NMEC)), the relationship with the targeted organs, 

the presence of particular genes or virulence in an animal model (extra-intestinal pathogenic E. 

coli (ExPEC)), the type of pathology caused by the strains (diarrhea and intestinal pathogenic 

E. coli (InPEC)); the presence of a specific gene or genes combinations (Shiga-toxin encoding 

stx gene and Shiga toxin-producing E. coli (STEC))… with phylogenetic relationships (Tab. 3) 

(Denamur et al., 2021; Kara et al., 2024). 

Table 3. Main characteristics of the more commonly E. coli pathotypes (Denamur et al., 2021). 
Pathotype Definition basis Main strain host Strain phylogenetic 

background 

ExPEC Non-intestinal infection, specific 

genes, animal model 

Human, domestic  

mammals, birds 

B2, D, C, F 

UPEC Isolated form urine Human, domestic 

mammals 

B2, D 

NMEC Isolated from cerebrospinal fluid of 

neonates 

Human B2, F 

Pneumonia-associated 

E. coli 

Isolated from lung Human B2 

APEC Isolated from birds Poultry B2, C 

InPEC Diarrhoeal disease Human, domestic 

mammals 

All phylogroups 

STEC and/or EHEC stx genes Human, cattle, sheep E, B1 

EPEC Attaching and effacing lesions on 

intestinal epithelial cells 

Human, domestic  

mammals 

A, B1, B2, E 

ETEC Heat-stable and heat-labile 

enterotoxins 

Human, pig, cattle A, B1, C, E 
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EIEC Colonocyte invasion Strictly human A, B1, E 

EAEC Aggregative adhesion on 

enterocytes 

Human, domestic  

mammals 

A, B1, B2, D 

DAEC Diffuse adhesion on enterocytes Human All phylogroups 

AIEC Adhesion and invasion of intestinal 

epithelial cells 

Human All phylogroups, 

majority of B2 

Hybrid InPEC EHEC and EAEC characteristics Human B1 

Hybrid InPEC–ExPEC HUS and septicemia Human, cattle A 
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3.1 Place of study 

This study was conducted in several geographical locations around Sétif province in the 

northeastern of Algeria; the collection were distributed on seven medical diagnostic 

laboratories, two laboratories from the southwest of the province (Aïn Oulmène city), one from 

the extreme north (Bouandas city), two laboratories from the capital (Sétif city), two 

laboratories from the north (Tizi N’Bechar city and Bougaa city) and three government 

hospitals: Ain Oulmène and El-Eulma hospitals, Sétif university hospital (Fig. 15). 

 

Figure. 15 : Geographical carte of samples locations 

(https://images.app.goo.gl/iRKfjtiQKChNpz1e7). 
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3.2 Chemical reagents, antibiotics and media 

The media used in this study included Nutrient agar (TM-Media, Delhi, India; Oxoid, Milano, 

Italy), Hektoen agar, Chapman agar, MacConkey agar, Nutrient broth, Mueller-Hinton agar, 

and Mueller-Hinton broth (all from TM-Media, Delhi, India), as well as blood base agar 

(BioScan Industrie, Sétif, Algeria).  

Classical biochemical identification tests were obtained from BioScan Industrie (Sétif, 

Algeria), while the API 20E and API Staph systems were sourced from BioMérieux (France). 

Antibiotics were acquired from three different laboratories HiMedia Laboratories (Mumbai, 

India), BioMaxima (Lublin, Poland), and BioScan Industrie (Sétif, Algeria).  

Additional microbiological reagents, including peptone, agar, and Brain Heart Infusion Broth 

(BHIB), were supplied by Liofilchem (Abruzzo, Italy).  

Chemical reagents such as DMSO, phosphate buffer, EDTA, yeast extract, glucose, crystal 

violet, ethanol, and methanol were purchased from Sigma-Aldrich. Sterile UHT non-fat milk 

was obtained from Soummam (Béjaïa, Algeria).  

For PCR procedures, agarose gel was sourced from PanReac AppliChem (Milano, Italy); DNA 

marker (GeneRuler™) from Thermo Fisher Scientific (MA, USA), buffer, dNTPs, MgCl₂, and 

DreamTaq polymerase enzyme were from Thermo Fisher Scientific (MA, USA); and additional 

reagents, including ethidium bromide, TAE buffer, blue bromophenol (Sigma-Aldrich), and 

RNase (Invitrogen), were used. 

 

3.3 Isolation of bacterial strains 

Over a period of three years (2021–2023), 402 patients out of 450 from the previously defined 

care territories were selected for this study. The samples originated from different specimens: 

urine, pus, blood, vaginal swab and bladder catheter.  

• Inclusion criteria: 1) isolates from all clinical samples, 2) patients from all ages and both 

sexes, 3) isolates showing decreasing sensitivity to at least one family of used antibiotics 

were included in this study. 

• Exclusion criteria: 1) incomplete clinical or laboratory data, 2) samples that did not 

establish quality control or sterility criteria, 4) samples doesn’t respect temperature and 

duration of conservation before analysis were excluded from this study. 
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• Information about patients (age, gender, nature of sample, date of sample collection and 

type of patient) was collected and recorded in the microbiology laboratory’s sample 

register after patient consent. 

All samples were collected under aseptic precautions, and cultured on various non-selective 

and selective media (Annex 1), including nutrient agar, Hektoen agar, MacConkey agar 

Chapman agar and nutrient broth and incubated at 37°C for 24 h. Urine samples were cultured 

using the calibrated loop technique, pus samples were directly streaked onto the specific media 

described in annex 1, blood and vaginal swab samples were directly culturing in the covenant 

media; while for samples collected from medical devices, such as catheters, were vortexed in 

sterile saline to dislodge adherent microorganisms, and the suspension was plated on specific 

media (Annex 1). 

3.4 Identification of bacterial strains 

All isolates were identified based on their microscopic examination and colony morphology, 

Gram staining, motility and biochemical tests: indole production, mannitol, citrate utilization, 

glucose, sucrose, lactose fermentation in TSI agar, catalase, oxidase, urease and gas production 

(Annex 1). The primary identification was confirmed by API 20E biochemical gallery for non-

oxidative bacteria and API Staph gallery for the research of S. aureus strains. The identified 

strains were preserved in nutrient broth containing 30% of sterile glycerol. 

3.4.1 Identification with API gallery 

The primary identification was confirmed by API 20E biochemical gallery for non-oxidative 

bacteria especially for the differentiation of members of Enterobacteriaceae family and API 

Staph gallery for the research of S. aureus strains. The identified strains were preserved in 

nutrient broth containing 30% of sterile glycerol. 

From pure culture of 18 to 24 h, one colony was used to prepare 0.5 McFarland standard 

solution in saline solution (0.9%). The bacterial suspension was used to rehydrate each of the 

wells and the strips were incubated. For CET, VP, GEL the microtubes should fill up with 

bacterial suspension, and for ADH, LDC, ODC, H2S, URE compartments anaerobic conditions 

should be created by adding sterile oil. The gallery was incubated at 37°C for 18-24 h. 
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During incubation, metabolic activity causes color changes that were either spontaneous or 

upon the addition of reagents. All positive and negative test results were compiled to create a 

profile number, which was then compared with profile numbers in a commercial codebook (or 

online) to identify the bacterial species (Annex 2). E. coli ATCC 25922 and S. aureus ATCC 

25923 were the positive control. 

3.5 Phenotypic study 

3.5.1 Antimicrobial susceptibility testing 

The Kirby-Bauer disk diffusion method was employed to assess susceptibility in Muller-

Hinton’s agar plates (Hudzicki, 2009). Susceptibility testing was conducted for 28 antimicrobial 

drugs (Tab. 4). 

From young culture of 18h to 24h in non-selective agar media, a bacterial inoculum was 

prepared in saline solution of 0.9% of NaCl equivalent to the 0.5 McFarland standard (OD= 

0.08 - 0.13 at 625 nm, ≈108 CFU/ml). 

The bacterial solution (should be inoculated within 15 min of inoculum preparation) was 

inoculated on the surface of Muller Hinton agar plates using swabs, the swab was moved across 

the whole surface of the agar plate three times, the plate was rotated about 60° after each streak 

to ensure the distribution of the inoculum. The antibiotic disks were applicated and placed on 

agar surface of the plates using sterile forceps, each disk must be pressed down to ensure the 

disk-agar contact. The plates were incubated from 18 to 24 h at 37°C. Each bacterial isolate 

was processed in duplicate to ensure the reliability and reproducibility of the results. 

After incubation, and using a ruler, the different inhibition zones were measured, and compared 

with the critical diameter published on (The European Committee on Antimicrobial 

Susceptibility Testing, 2022), to interpretate the resistance profile of the strains: resistant (R) if 

the inhibition zone diameter was less than the defined critical diameter, sensitive (S) if it was 

equal to or greater than the susceptibility point, intermediate (I) when the diameter fell between 

the resistant and sensitive cutoffs, E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. aureus 

ATCC 29213 and Enterococcus faecalis ATCC 29212 were used as quality control. 
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After interpreting the resistance profile of strains, resistance classification was performed using 

acronyms (R, MDR, XDR); R is defined as strains that resist to fewer than three classes of 

antibiotics; MDR was defined as acquired nonsusceptibility to at least one agent in three or 

more antimicrobial categories. Extensively drug resistant (XDR) was defined as 

nonsusceptibility to at least one agent in all but two or fewer antimicrobial categories (one or 

two antimicrobial categories) (Basak et al., 2016). 

Table 4. Antibiotic tested list. 

Family Antibiotic Acronym Disk charge (µg) 

Penicillins 

Amoxicillin AMX 25 

Ticarcillin TC 75 

Piperacillin PRL 30 

Oxacillin OX 10 

Penicillins + inhibitor 

Amoxicillin + clavulanic acid AMC 30 

Ticarcillin + clavulanic acid TCC 85 

Piperacillin + tazobactam TPZ 110 

1st generation cephalosporins Cefalexin CN 30 

2nd generation cephalosporins Cefoxitin FOX 30 

3rd generation cephalosporins 

Cefixime CFM 5 

Ceftazidime CAZ 30 

Cefotaxime CTX 30 

4th generation cephalosporins Cefepime FEP 30 

Carbapenems Imipenem IMP 10 

Aminoglycosides 

Gentamicin GEN 10 

Amikacin AK 30 

Tobramycin TOB 10 

Kanamycin K 30 

Quinolones Nalidixic acid NA 30 

Fluoroquinolones 

Ciprofloxacin CIP 5 

Ofloxacin OF 5 

Levofloxacin LE 5 

Phenicolates Chloramphenicol C 30 

Monobactams Aztreonam ATM 30 

Sulfamids Trimethoprim/sulfamethoxazole SXT 25 

Nitrofurans Nitrofurantoin NIT 300 

Lincosamides Clindamycin CD 2 

Macrolides Erythromycin E 15 

Tetracycline Doxycyclin DO 30 

Phosphonic Fosfomycin FF 50 

Polymyxin Colistin CS 10 

3.5.2 Minimal Inhibitory Concentration (MIC) 

MIC concentration of an antibiotic is defined as the minimum concentration (mg/l) that inhibit 

visible bacterial growth under defined growth conditions. For all susceptible strains MIC 
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concentration was determined through broth microdilution method as described in (The 

European Committee on Antimicrobial Susceptibility Testing, 2022). 

To determine MIC by dilution method, antibiotics solutions should be prepared, antibiotics 

need to be dissolved first to create a stock solution, then diluted to reach the desired starting 

concentration. Sterile water serves as both a solvent and diluter for most of antibiotics, including 

β-lactams, fluoroquinolones, and aminoglycosides. Some require alcohol as a solvent, including 

macrolides, chloramphenicol, and rifampicin; others require a phosphate buffer or dimethyl 

sulfoxide (DMSO). Stock solutions must include double dilutions of antibiotics, with the 

concentration range selected for testing varying based on the specific antibiotic (Tab. 5). These 

concentrations should be determined in accordance with the MIC breakpoints established in 

(The European Committee on Antimicrobial Susceptibility Testing, 2022). 

The selected strains were cultured on non-selective agar media, after an incubation period of 

about 18 to 24 h and confirming that all the isolates were indeed pure and viable, bacterial 

suspension adjusted at 0.5 McFarland was prepared in saline solution (0.9% NaCl); after 

turbidity adjustment, the bacterial suspension should be used within 15 min. 

96-well microtiter plate was used, 100 µl of Muller-Hinton broth (MHB) was distributed along 

the wells, 100 µl of antibiotic solution was added in the first well, a sequence of geometric ratio 

2 dilutions (1/2-fold dilution) was performed in MHB using the stock solution from the first 

well, this involved moving 100 µl from one well to the next, up to the last well, with the 100 µl 

in the last well being discarded. 100 µl of the inoculum previously diluted at ratio 1/100 or 

about 106 CFU/ml was added to each well, two wells were servers as negative control (200 µl 

of sterile MHB) and positive control (MHB + bacterial suspension), the microtiter plates were 

incubated at 37°C for 18 to 24 h. 

After incubation, 20 µl of 2,3,5-triphenyl-2H-tetrazolium chloride (Filter sterilized solution: 

TTC) at 0.05% was added to each well. for the detection of bacterial growth based on color 

changing. 

Table 5. MIC dilution range of antibacterial agents used in the susceptibility test of isolates. 

Antibiotics MIC dilution range 

(mg/l) 

Antibiotics MIC dilution range 

(mg/l) 

Amoxicillin 2 - 32 Gentamycin 1 - 16 

Piperacillin 4 - 64 Tobramycin 0.25- 4 

Cefalexin 8 - 128 Nalidixic acid 8 - 128 
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Cefixime 1 - 16 Ciprofloxacin 0.125 - 2 

Ceftazidime 0.25 - 4 Ofloxacin 0.125 - 2 

Cefotaxime 0.25 - 4 Chloramphenicol 2 - 32 

Imipenem 0.25 - 4 Aztreonam 0.125 - 2 

Trimethoprim/sulfamethoxazole 2 - 32   

3.5.3 Phenotypic identification of ESBL producing bacteria    

All strains were screened for ESBL production using Kirby Bauer disk diffusion method during 

the antibiogram technic. Isolates which demonstrate resistant to one or more third generation 

cephalosporins, were screened as ESBL production. All screened isolated were examined by 

using phenotypic confirmatory test or synergy test (a synergy between a third-generation 

cephalosporin, a fourth-generation cephalosporin or aztreonam, and an association containing 

clavulanic acid). Following the criteria established by (The European Committee on 

Antimicrobial Susceptibility Testing, 2022) the confirmation of ESBL production was carried 

out by disk diffusion method on Muller Hinton agar and incubation at 37°C for 24 h, ESBL 

production was confirmed when the inhibition zone around cefotaxime (30µg), ceftazidime 

(30µg), cefepime (30µg), or aztreonam (30µg) antibiotics disks was enhanced on the side of 

amoxicillin + clavulanic acid central disk, resulting in characteristically shaped zone referred 

to as “champagne cork” (Fig. 16) (Kettani Halabi et al., 2021).  

 

Figure. 16 : Phenotypic detection of ESBL strains. 

3.5.4 Phenotypic detection of AmpC strains 

AmpC screening was conducted when isolates showing resistance to cefoxitin (FOX-30 µg) 

during antibiogram method, according to (The European Committee on Antimicrobial 
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Susceptibility Testing, 2022) standards the critical diameter of cefoxitin was 18 mm (˃18 mm: 

sensitive strain, <18 mm: resistant strains = phenotypically positive AmpC strains) (Fig. 17) 

(Powell et al., 2020; Tekele et al., 2020). 

 

Figure. 17 : Isolates with decreased diameter against cefoxitin (CX-30 µg). 

3.5.5 Phenotypic detection of carbapenemases 

3.5.5.1 Modified Hodge test (MHT) 

Hodge modified test is for objective of carbapenemases phenotypic detection, all strains that 

showed reduced sensitivity against carbapenem, were selected for phenotypic detection of 

carbapenemases tests. A suspension of E. coli ATCC 25922 was prepared and adjusted at 0.5 

McFarland standard, using cotton swab the suspension was inoculated evenly on the surface of 

Muller-Hinton agar plates, the plates were allowed stand 15 min at room temperature for drying. 

Next, a 10-µg imipenem disk was placed in the center of the plate, carbapenem-resistant strains 

from the overnight culture plates were streaking heavily in a straight line from the edge of the 

disk to the periphery of the plate, the plates were incubated at 37°C for 24 h. After incubation, 

the clover leaf like appearance between the test streaks near the disk was taken as positive MHT 

test (Ramana et al., 2013; Aminul et al., 2021).  

Quality control of the following organisms MHT positive K. pneumoniae ATCC 1705 and 

MHT negative K. pneumoniae ATCC 1706 (Fig. 18). 
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Figure. 18 : Modified Hodge test (C-: negative control, C+: positive control, P: positive MHT strain, 

N: negative MHT strain). 

3.5.5.2 Imipenem (IMP)-EDTA combined disk test 

The EDTA was used in this test as inhibitor of imipenemase activity, an adjusted solution of 

tested organism was prepared (0.5 McFarland) and inoculated onto plate with Muller Hinton 

agar. Two disks of imipenem were placed 20 mm apart from the center, 10 µl of EDTA solution 

(0.5M) were added to one of them (Combination imipenem-EDTA), after incubation from 16 

to 18 h at 35°C, the inhibition zones of imipenem and imipenem-EDTA disks were measured 

and compared. The inhibition zone of imipenem + EDTA ≥ 5 mm than that of imipenem alone 

confirmed the MBL production, P. aeruginosa ATCC 27853 was used as control organism (Fig. 

19) (Deshmukh et al., 2011; Radhika et al., 2022; Shrestha et al., 2023). 

 

Figure. 19 : Imipenem-EDTA combined disk test for phenotypic detection of MBL strains. 
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3.5.6 Strig test for hypervirulent K. pneumoniae 

The string test was performed as previously described (Eisenmenger et al., 2021). K. 

pneumoniae isolates were cultured on nutrient agar plates and incubated overnight at 37 °C. A 

standard inoculating loop was used to gently touch and lift the colonies. A positive result was 

indicated by the formation of a mucoid string longer than 5 mm, observed visually (Fig. 20).  

 
Figure. 20 : Mucoviscous string test for hypervirulent K. pneumoniae. 

3.5.7 Phenotypic resistance in S. aureus 

3.5.7.1 Phenotypic detection of resistance to methicillin (MRSA) 

The resistance of S. aureus to isoxazolyl-penicillins (oxacillin) is investigated in our study using 

a cefoxitin disk (30 μg) under standard conditions of the staphylococcal antibiogram (in Mueller 

Hinton medium with a 0.5 MacFarland inoculum and incubation for 18-24 h). The inhibition 

zone was measured following incubation at 35°C for 16–18 h. Zone size was interpreted 

according to (The European Committee on Antimicrobial Susceptibility Testing, 2022) criteria. 

Isolates with an inhibition zone ≤ 22 were classified as MRSA, while isolates with an inhibition 

zone ≥ 22 were classified as MSSA (methicillin sensitive S. aureus), S. aureus ATCC 25923 

was used as quality control.  

3.5.7.2 Phenotypic detection of inducible MLSB resistance (D-Zone Test) 

The D-zone test is simple test used to macrolide lincosamide streptogramin B resistance 

(MLSB) S. aureus, by disk diffusion method, the test consist briefly, two antibiotics disks 

erythromycin (macrolide) and clindamycin (lincosamide derivative) are placed adjacent to each 
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other over the Mueller Hinton agar medium inoculated with the test isolate. The growth of the 

organism up to the edges of the disc indicating that the organism having constitutive MLSB 

(CMLSB), flattening of the clindamycin zone (D test positive) near the erythromycin disc 

(resistant) indicating the presence of inducible MLSB (IMLSb) (Fig. 21), MSB phenotype if 

isolate was resistant to erythromycin and susceptible to clindamycin with negative D test, L 

phenotype when organism was resistant to clindamycin and susceptible to erythromycin and S 

phenotype if isolate was susceptible to both erythromycin and clindamycin, respectively. S. 

aureus ATCC 25923 was used as quality control (Shrestha and Rana, 2014). 

 
Figure. 21 : D- zone test for S. aureus strains. 

 

 

3.6 Biofilm production assay 

The biofilm is a collection of microbial cells that attached to surface enclosed in extracellular 

polysaccharide; it displays a crucial role in increasing of AR and host immune defense, it’s an 

important virulence factors of some microorganism pathogens. Biofilm formation ability was 

performed according to the microtiter plate assay, essentially as described by O’Toole and 

Kolter, (1998); Stepanović et al., (2007) and Türkel et al., (2018). 

After incubation, the medium was discarded and the wells were washed three times with 

distilled water to eliminate any planktonic cells, adherent cells were fixed by adding 150 µl of 

methanol for 20 min. Biofilms were stained by 0.2% crystal violet (w/v) solution for 15 min at 

room temperature.  

Crystal violet was removed and each well was rinsed with sterile distilled water and plates were 

allowed to air dray. The biofilms were solubilized by 150 µl of ethanol 95% and absorbance at 

E CD 

D zone shape 
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570 nm was measured by ELISA reader (BioTek, El Dorado Hills, CA, USA). Sterile broth was 

served as a negative control and E. coli ATCC 25922 was used as the control organism (Fig. 

22B). The interpretation of the results divided into:  

• No biofilm production: OD sample ≤ OD control. 

• Weak biofilm production: OD control < OD sample < 2 x OD control. 

• Moderate biofilm production: 2 x OD control < OD sample < 4 x OD control. 

• Strong biofilm production: 4 x OD control < OD sample. 

                   (A)                                                                 ( B) 

       

Figure. 22 : Biofilm formation assay using CV staining (A: 96-well microtiter plate before staning 

and incubation, B: 96-well microtiter plate after staining with CV). 

 

 

3.7 Hemolysin production 

The hemolysin production was determined using 5% human blood agar. The isolates were 

grown on BHIB, then a blood agar was prepared by adding 5% of human blood to blood agar 

base at 45°C-50°C. The tested isolates were streaked on blood agar plates and incubated at 37°C 

for 18-24 h.  

The organisms were classified as either α, β or γ-hemolytic. Complete lysis of red blood cells 

shown by clear zone around the colonies was taken as β-hemolysis (Fig. 23A). The presence of 

a halo (greenish coloration: reduction of hemoglobin of the red blood cells to methemoglobin) 

around the bacterial growth was taken as α-hemolysis (partial hemolysis) (Fig. 23B), while γ-

hemolysis was documented when there was normal growth without changes in the culture 

medium (no hemolysis) (Fig. 23C) (Mogrovejo-Arias et al., 2020; Tula et al., 2023). 
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(A) 

 

(B) 

 

(C) 

 

Figure. 23 : Detection of hemolysin production (A: β-hemolysis, B: α-hemolysis, C: γ-hemolysis). 

 

 

3.8  Protease production 

The Protease production is one of important virulence factors, which increase the pathogenicity 

of microorganisms. Proteolytic activity was detected using skimmed milk agar plates, the plates 

were prepared for primary screening, to prepare skimmed milk agar using: peptone, yeast 

extract and agar, the mixture was sterilized by autoclaving and 100 ml/l sterile UHT non-fat 

milk was added to the base in temperature of (45°C- 50°C). The tested strains were inoculated 

by swab streaking on the surface of the plates and incubated at 37°C for 24h. The presence of 

a clear zone around the bacterial colonies was considered indicative of protease positivity. E. 

coli ATCC 25922 was used as negative control and  P. aeruginosa ATCC 27853 was used as 

positive control (Fig. 24) (Riffel and Brandelli, 2006; Hammood Abed Al Doori et al., 2020).  
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Figure. 24 : Protease production test on skimmed milk agar (SMA) (C+: positive control, C-: 

negative control, P: positive protease production, N: negative protease production). 

 

 

3.9 Lecithinase and lipase production 

For the detection of lecithinase and lipase production, the strains were cultured on egg yolk 

agar (EYA) and incubated at 37°C for 24h, non-selective agar was prepared and sterilized and 

an emulsion of egg yolk (egg yolk + sterile saline solution) was added to nutrient agar (45°C- 

50°C), the strains were streaked on EYA.  

Lecithinase production is found by the emergence of halos around the colonies. E. coli ATCC 

25922 and P. aeruginosa ATCC 27853 were used as negative control for lecithinase production, 

The lipase enzyme is also inferred through the appearance of iridescent sheen on the surface of 

the colony, the incubation of the plates for the detection of lipase production can be delayed for 

5 days to one week at the same temperature.  

P. aeruginosa ATCC 27853 and  S. aureus ATCC 29213 as positive and negative controls, 

respectively for the lipase detection  (Fig. 25) (Hammood Abed AlDoori et al., 2020). 
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Figure. 25 : Detection of lecithinase and lipase production on egg yolk agar (EYA) (Ct+: licethinase 

positive, Ct-: licethinase negative, Lp+: lipase positive). 

 

 

3.10 Molecular study of gene’s resistance 

3.10.1 Total DNA extraction 

DNA was extracted from strains using the Direct PCR of intact bacteria (Colony PCR) method 

described previously (Woodman et al., 2016). Briefly, after growing strains in nutrient agar 

overnight, 1-2 colonies were dissolved in an Eppendorf tube with 100 µl of distilled sterile 

water. The mixtures were vortexed for 10 sec and then incubated at 99°C for 15 min in a block 

heater (Sparks, USA). Supernatants were collected after centrifugation at 10000 ×g for 10 min 

and pellets were discarded. A 1% agarose gel electrophoresis was conducted to evaluate the 

quality of DNA, in addition, NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, 

MA, USA) was used to assess purity and concentration of extracted DNA. 

3.10.2 PCR for detection of 16s DNA 

The bacterial 16s ribosomal gene (approximately 1500 bp) was amplified to evaluate the 

amplifiability of the previously extracted genomic DNA using primers F1 and R12 described 

in (Coy et al., 2014) (Tab. 6). Mix PCR was prepared for one sample, 2.5 µl of Dream Taq 

buffer (10x) + 0.5 µl of dNTP (10 µM) + 0.5 µl of MgCl2 + 0.5 µl of forward and rivers primers 

(100 pmol/ µl) + 0.125 µl of Taq polymerase enzyme (5 U/µl) was mixed with 2 µl of extract 

DNA and filled with to 25 µl total volume of distilled sterile water and vortexed for 10 sec (Fig.  

26a). 

 Ct+ Ct- 

Lp+ 
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Table 6. Primers used for the 16s gene. 

 

Target gene Primer ID Sequence Amplification size 

(bp) 

16s rDNA gene F1 

R12 

5’-GAGTTTGATCCTGGCTCAG-3’ 

5’-ACGGCTACCTTGTTCAGACT-3’ 

1500 

 

After preparing PCR Mix, negative control was preparing by mixing all the Mix PCR 

compound without DNA, and a previously amplifiable DNA was used as positive control; all 

PCR mix, negative and positive controls were placed in thermocycler (Biometra, Germany) 

following the conditions cycle of amplification in table 7.  

An electrophoresis (Bio-Rad, Bd Raymond Poincaré, Belgium) of 1.5% agarose gel was 

performed for PCR products, by applauding 5 µl of PCR product and 1 µl of blue bromophenol 

and 3 µl of DNA maker. After migration, agarose gel was incubated in TAE 1x with 3 µl of 

ethidium bromide (0.5%) for 12 min. The final results were reading under UV lamp (Fig. 26b). 

Table 7. Cycles conditions of PCR amplification. 

Step Temperature (°C) Time 

Initial denaturation 95°C 5 min 

Denaturation 95°C 30 sec 

Primers annealing 56°C 30 sec 

extension 72°C 1 min 

Final extension 72°C 5 min 

(a)                                                                 (b)                                

 

Figure. 26 : Agarose gel after PCR assay (a: total DNA, b: 16s ribosomal DNA, M: marker, 1-29: 

strains, C-: negative control, C+: positive control) 

× 35 cycles 



    Material et methods 

 50  

3.10.3 Multiplex PCR for detection of resistance genes 

3.10.3.1 Molecular detection of β-lactamase  

Two multiplex PCRs were prescribed by Kim et al., (2009) and used for the detection of β-

lactamase genes : 

• The first multiplex assay (Set I) was designed to detect TEM, SHV, CTX-M IV group, 

and OXA β-lactamase encoding genes (Tab. 8).  

• The second assay (Set II) was designed to detect CTX-M I group, CTX-M II group, 

CMY II, and DHA encoding genes (Tab. 8). 

Both PCR reactions were conducted under the same conditions, reactions were performed in a 

final volume of 25 μl containing 2 μl of template DNA, 2.5 µl reaction buffer, 0.5 μl of dNTPs, 

0.5 μl of each primer, and 0.125 µl of Taq polymerase.  

Both assays were conducted with the same cycling conditions: denaturation at 94℃ for 5 min 

followed by 30 cycles of 94℃ for 1 min, 61℃ for 1 min and 72℃ for 1 min, ending with final 

extension of 72℃ for 5 min. After PCR amplification, 3 μl of each reaction was loaded onto 

2% agarose gel for electrophoresis.  

The PCR products were electrophoresed for 30-40 min at 100 V in 1× TEA buffer. DNA was 

stained with ethidium bromide and the gels were imaged under UV light. The sizes of PCR 

amplicons were determined by a comparing them with molecular weight size markers (Fig. 27 

a,b). 

Table 8. Primers used in multiplex PCR for the detection of β-lactamase genes. 

Assay Primers Primer’s sequence (5’_3’) Size (bp) 

S
E

T
 I

 

CTX-M IV F 

CTX-M IV R 

GACAAAGAGAGTGCAACGGATG 

TCAGTGCGATCCAGACGAAA 

501 

TEM F 

TEM R 

AGTGCTGCCATAACCATGAGTG 

CTGACTCCCC GTCGTGTAGATA 

431 

OXA F 

OXA R 

ATTATCTACAGCAGCGCCAGTG 

TGCATCCACGTCTTTGGTG 

296 

SHV F 

SHV R 

GATGAACGCTTTCCCATGATG 

CGCTGTTATCGCTCATGGTAA 

214 

S
E T
 

II
 CMY II F 

CMY II R 

AGCGATCCGGTCACGAAATA 

CCCGTTTTATG CACCCATGA 

695 
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CTX-M I F 

CTX-M I R 

TCCAGAATAAGGAATCCCATGG 

TGCTTTACCCAGCGTCAGAT 

621 

CTX-M II F 

CTX-M II R 

ACCGCCGATAATTCGCAGAT 

GATATCGTTGGTGGTGCCATAA 

588 

DHA F 

DHA R 

GTGGTGGACAGCACCATTAAA 

CCTGCGGTATAGGTAGCCAGAT 

314 

 

(a) (b) 

Figure. 27 : Amplification profile of multiplex PCR for β-lactamase genes (a: SET I and SET II in 

kim et al. comparison, b: SET II gel). 

3.10.3.2 Multiplex PCR for the detection of qnr genes 

The presence of qnr genes qnrA, qnrB, qnrC, qnrD and qnrS was detected used multiplex PCR 

based on methods described by Zhao et al., 2020. Amplification was carried out with the 

previously thermal cycling profile (of β-lactamase multiplex PCR), each primer had a specific 

annealing temperature (Tab. 9). 

Table 9. Primes used for the amplification of qnr genes. 
Gene Sequence (5’_3’) Tm (°C) Size (bp) 

qnrA F 

qnrA R 

ATTTCTCACGCCAGGATTTG 

TGCCAGGCACAGATCTTGAC 

55 516 

qnrB F 

qnrB R 

CGACCTKAGCGGCACTGAAT 

GAGCAACGAYGCCTGGTAGYTG 

55 515 

qnrC F 

qnrC R 

GGGTTGTACATTTATTGAATC 

TCCACTTTACGAGGTTCT 

50 446 

qnrD F 

qnrD R 

CGAGATCAATTTACGGGGAATA 

AACAAGCTGAAGCGCCTG 

50 581 

qnrS F 

qnrS R 

GACGTGCTAACTTGCGTGAT 

TGGCATTGTTGGAAACTTG 

56 118 

Tm: Annealing temperature 
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3.10.3.3 Plasmid profiling 

Plasmid DNA was extracted by alkaline lysis method. Briefly, from an overnight liquid culture 

and after centrifugation at 13 000 g for 6 min, the supernatant was discarded and the pellet was 

resuspen²²ded in 100 µl of solution 1 (Glucose 50 Mm, Tris-HCl 25 Mm, EDTA 10 Mm at 

pH=8).  

The tubes were placed on ice and add 200 µl of freshly prepared solution 2 (NaOH 10N 1 ml, 

SDS 10% 0.5 ml, make up the solution to 100 ml and store at 4°C). The tubes were closed and 

inverted 7-9 times, then placed on ice. 150 µl of solution 3 was added (Glacial acetic acid 11.5 

ml, potassium acetate 5M 60 ml, make up the solution to 100 ml and store at 4°C). After second 

centrifugation, the supernatants were transferred to a new Eppendorf tubes and 1 ml of 100% 

ethanol was added and mixed by inversion.  

Next centrifugation, the pellets were washed with 400-500 µl of 70% ethanol and re-centrifuged 

for 6 min at 13 000 g. Inverted onto absorbent paper to allow the ethanol to drain, then the 

pellets were dried in a speed vacuum for 20 min. 

All the pellets were resuspended in 50 µl of H2O and 1 µl of RNase and incubated at 37°C for 

10 min. The extracted DNA was separated using 1% agarose gel electrophoresis at 100V for 

more than 30 min (Fig. 28). 

Plasmidic DNA appear as one or multiple bands with small molecular size compared with 

chromosomal DNA, which is much larger and usually appear as unique and very large band 

near the well. 

 

Figure. 28 : Separation of plasmid DNA on agarose gel stained with ethidium bromide (M: gene 

marker). 
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3.10.4 Phylogenetic grouping of E. coli strains by quadruplex PCR 

The "Clermont method" (described in Clermont, 2013) was used to characterize the E. coli 

strains within the seven phylogroups (A, B1, B2, C, D, E, F). PCR assays for assignment 

phylogenetic groups were carried out using DreamTaq DNA polymerase with phylogenetic 

primers (arpA, chuA, yjaA, TspE4.C2) and cycle conditions (modification in primers annealing 

temperature) reported in table 10. The amplicons obtained were detected on with 

electrophoretic run (100 V in TAE 1x) on 1.5% agarose gel under UV light (Fig. 29). 

Table 10. List of primers with annealing temperatures (the amounts of primer used were 20 pmol 

for phylogenetics grouping primers, except for AceK.f (40 pmol), ArpA1.r (40 pmol)).  

Tm: Temperature. 

Finally, the assignment of all clinical strains into phylogroups was performed using the scheme 

proposed by Clemont et al. reported in table 11. Briefly, Phylogroups were assigned to each 

strain based on the presence or absence of four genes (arpA/chuA/yjaA/TspE4.C2) evaluated 

with quadruplex PCR.  

Using specific primers C and E, further PCR were conducted to differentiate strains in A or C, 

D or E and E or Clade I. C-specific/arpA (301bp) was used to differentiate strains in A or C 

group, while E-specific/trpA (219bp) were used to differentiate strains in D or E and E or Clade 

I groups, the presence of amplicon classified strains in C and E groups, respectively. While the 

absence of amplicon classified strains in C, D, Clade I groups, respectively. 

 

Target 

gene 

Primer ID Primer sequences Amplification 

size (bp) 

Tm Reference 

chuA chuA.1b 

chuA.2 

F: 5′-ATGGTACCGGACGAACCAAC-3′ 

R: 5′-GCCGCCAGTACCAAAGACA-3′ 

288 59 (Clermont et al., 

2013) 

yjaA yjaA.1b 

yjaA.2b 

F: 5′-CAAACGTGAAGTGTCAGGAG-3′ 

R: 5′-AATGCGTTCCTCAACCTGTG-3′ 

211 59 (Clermont et al., 

2013) 

TspE4.C2 TspE4C2. 1b 

TspE4C2.2b 

F: 5′-CACTATTCGTAAGGTCATCC-3′ 

R: 5′-AGTTTATCGCTGCGGGTCGC-3′ 

152 59 (Clermont et al., 

2013) 

arpA AceK.f 

ArpA1.r 

F: 5′-AACGCTATTCGCCAGCTTGC-3′ 

R: 5′-TCTCCCCATACCGTACGCTA-3′ 

400 59 (Clermont et al., 

2000, 2004) 

arpA ArpAgpE.f 

ArpAgpE.r 

F: 5′-AACGCTATTCGCCAGCTTGC-3′ 

R: 5′-TCTCCCCATACCGTACGCTA-3′ 

301 57 (Lescat et al., 

2013) 

trpA trpAgpC.1 

trpAgpC.2 

F: 5′-AGTTTTATGCCCAGTGCGAG-3′ 

R: 5′-TCTGCGCCGGTCACGCCC-3′ 

219 57 (Lescat et al., 

2013) 

trpA trpBA.f 

trpBA.r 

5′-CGGCGATAAAGACATCTTCAC-3′ 

5′-GCAACGCGGCCTGGCGGAAG-3′ 

489 57 (Clermont et al., 

2008) 
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Table 11. Method applied to assign the phylogroup to each E. coli strain. 
QUADRUPLEX PCR 

arpA (400 

bp) 

chuA (288 

bp) 

yjaA (211 

bp) 

TspE4.C2 (152 

bp) 

Phylo-

group 

Next step 

+ - - - A  

+ - - + B1  

- + - - F  

- + + - B2  

- + + + B2  

- + - + B2  

+ - + - A or C distinguish with C-specific 

primer arpA (301 bp) 

+ + - - D or E  

distinguish with E-specific 

primer trpA (219 bp) 

 

+ + - + D or E 

+ + + - E or clade 

I 

- - + - Clade I or 

II 

 

- - - + Unknow  

- - + + Unknow  

+ - + + Unknow  

+ + + + Unknow  

- - - - Unknow  

 

Figure. 29 : Quadruplex polymerase chain reaction amplification of phylogenetic genes. 

3.11 Statistical analysis 

All data were collected and organized using Excel (Microsoft office 16), statistical analysis was 

performed using the Statistical Package for the Social Sciences software, SPSS (version 27.0). 

Categories were compared using the chi-square test. Graphs or chart were used to show the 

prevalence and distribution of the isolated bacteria against gender (male and female), age 

groups (children, adults and elderly), specimens (urine, pus, vaginal swab, blood, catheters) 

species, resistance profiles and virulence factors. In addition, a frequency table expressed in 

percentage and absolute numbers was used to display the susceptibility patterns, distribution of 

resistance strains, distribution of genes….. Correlation test was used to establish relationship 

between different factors. ANOVA and Tukey tests were used for analyzed the continuous 

variable (OD), while means independent comparison test confer the comparison between two 
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means, the significance level was set at p < 0.05 with 95% of confidence that the observed 

results were statistically significant, p ˂ 0.01 indicate a 99% of confidence level. 
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4 Results and discussion 
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During the work period that spanned from May 2021 to May 2023 at three government hospitals 

and seven medical private laboratories, a screening of 402 bacterial strains was conducted to 

achieve the objective of our study. 

4.1 Demographic Characteristics  

The clinical analysis of the samples showed that 326 (81.09%) isolates collected from 

community setting. While 76 (18.91%) isolates were collected from hospital environment, the 

highest percentage (36.8%) originated from the infectious diseases unit (IND), and the lowest 

percentage (1.3%) obtained from the hemodialysis unit (HDM) (Fig. 30). 

 
 

Figure. 30 : Distribution of samples according to infection category and hospital unit (IND: 

infectious diseases, RNM: reanimation, FIM: female internal medicine, PNP: pneumophtisiology, 

SRG: surgery, EME: emergency, ONC: oncology, HMD: hemodialysis, *: p ˂0.01).  

 

A total of 402 clinically suspected patients for bacterial infections were included in this study. 

The majority of study participants were females 266 (66.2%), confirmed by a 99% of 

confidence showed by the statistical analysis (p˂0.01), with a male-to-female ratio of 1/4. The 

mean age of participants was 40.8 ±24.5 years ranged between 1 day and 96 years. The majority 

(67.9%) of patients were adults, while 17.2% were children’s patients and 14.9% belongs to 

elderly group. The main samples were isolated from urine (83.6%, p˂0.0001) followed by pus 

(10.4%), vaginal swab (2%) and 1% were isolated from thoracic drainage and bladder catheter 

(Tab. 12). 
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Table 12. Characteristics of patients including in this study. 

Characteristics Total (%) 

Gender 
Male 136 (33.8) 

Female 266 (66.2) 

Age group 

Children (1d- 18y) 69 (17.2) 

Adult (19y- 64y) 273 (67.9) 

Elderly (≥ 65y) 60 (14.9) 

Nature of sample 

Urine 336 (83.6) 

Pus 42 (10.4) 

Vaginal swab 8 (2) 

Central catheter 2 (0.5) 

Thoracic drainage 4 (1) 

Blood 3 (0.7) 

Femoral catheter 2 (0.5) 

Tracheal tube 1 (0.2) 

Bladder catheter 4 (1) 

 

From urinary samples adult were more susceptible to develop UTI especially female (50%), 

also in pus samples female adult were more prevalent (50%), while vaginal swab was 

exclusively found in adult female. Males were more susceptible to occur bacterial infections 

originated from central catheter (100%), thoracic drainage (75%), tracheal tube (100%) and 

bladder catheter (75%) (Tab. 13). 

Table 13. Nature of samples according to demographic characteristics: age groups and gender. 

 Age groups n (%) 

Children Adult Elderly 

Male Female Male Female Male Female 

N
a
tu

re
 o

f 
sa

m
p

le
 

Urine 31 (9.2) 33 (9.8) 54 (16.1) 168 (50) 26 (7.7) 24 (7.1) 

Pus 4 (9.5) 0 8 (19) 21 (50) 1 (2.4) 8 (19) 

Vaginal swab 0 0 0 8 (100) 0 0 

Central catheter 0 0 2 (100) 0 0 0 

Thoracic drainage 0 0 3 (75) 0 1 (25) 0 

Blood 1 (33.3) 0 1 (33.3) 1 (33.3) 0 0 

Femoral catheter 0 0 0 2 (100) 0 0 

Tracheal tube 0 0 1 (100) 0 0 0 

Bladder catheter 0 0 3 (75) 1 (25) 0 0 

 

The results obtained shows that the most of bacterial infections in hospital setting were found 

in infectious diseases unit, these results align with the definition of infectious diseases unit as a 

hotspot for bacterial infections due to various factors such as prolonged hospital stays, invasive 

procedures, and the use of immunosuppressive therapies (Peleg and Hooper, 2010).  

this study revealed that adult patients were more susceptible to develop bacterial infections 

especially UTIs, which is in accordance with Assefa et al., (2022) in Ethiopia, where 52.6% of 

bacterial infections were reported among adult patients aged ≥ 36 years. Another research was 
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conducted in COVID-19 phase report that the majority of patients with bacterial infections were 

above 60 years (Mutua et al., 2023). The biological immune system's diminished response with 

age and its weakening in adults can explain this observation (Díaz et al., 2020).  

Adult females (50%) were more at risk to occur bacterial UTIs compared to males (16.1%) in 

our study, these results are consistent with findings of Nzalie et al., (2016), who reported similar 

gender disparities in UTI prevalence with a percentage of (83.6%), Kiiru et al., (2023) report 

also in their document that female were more likely to have UTIs compared to males. Recent 

studies show that women face a 50 times greater risk of developing UTIs than men (Aslam et 

al., 2020; Islam et al., 2022; Konwar et al., 2022), the increased risk among females may be 

influenced by factors including: the shorter urethra female anatomy, sexual activity, pregnancy, 

diabetes and menopause (Aslam et al., 2020; Lee et al., 2020; Czajkowski et al., 2021). 

4.2 Bacterial strains identification 

In the current study, 88.1% of isolates were GNB, while 11.9% were GPB. Among GNB, E. 

coli was the predominant species 56.78% (p˂0.01) followed by Enterobacter spp. 10.17%, 

Klebsiella spp. 8.76%, Proteus spp. 7.63%, P. aeruginosa 7.06%, Citrobacter spp. 3.95% and 

Providencia spp. 3.39%. On the other hand, inside GPB, Staphylococcus spp. were the 

predominant organisms (p˂0.01) with a percentage of 81.25% followed by Streptococcus spp. 

12.5% and finally Enterococcus spp. 6.3% (Fig. 31). 

 

 

a 
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Figure. 31 : Prevalence of bacterial isolates (a: GNB, b: GPB). 

 

After identification of isolate species, E. coli and S. aureus were the most identified organisms 

50%, 7.7%, klebsiella sp., P. aeruginosa and P. mirabilis have showed an important number 

among identified organisms 6.2%, 6.2% and 5.7%, respectively (Tab. 14). A significantly 

higher number of females had an infection with both GNB and GPB (p<0.001), exception K. 

oxytoca which found exclusively in male patients in both children and adult group. 

 

Table 14. Prevalence of identified microorganism among the clinical samples by age groups and 

gender. 

Species (n, %) 

Age groups n (%) 

Children Adult Elderly 

M F M F M F 

E. cloacae (n=10, 2.5) 1 (10) 1 (10) 1 (10) 5 (50) 1 (10) 1 (10) 

E. aerogenes (n=16, 4) 2 (12.5) 0 3 (18.75) 8 (50) 1 (6.25) 2 (12.5) 

Enterobacter sp. (n=10, 2.5) 0 1 (10) 3 (30) 4 (40) 0 2 (20) 

P. mirabilis (n=23, 5.7) 3 (13) 4 (17.4) 4 (17.4) 8 (34.8) 2 (8.7) 2 (8.7) 

P. vulgaris (n=4, 1) 0 0 0 1 (25) 3 (75) 0 

E. coli (n=201, 50) 18 (9) 19 (9.5) 34 (16.9) 104 (51.7) 10 (5) 16 (7.9) 

Providencia alcalifaciens (n=9, 2.2) 2 (22.2) 0 0 6 (66.7) 1 (11.1) 0 

Providencia stuartii (n=2, 0.5) 0 0 1 (50) 1 (50) 0 0 

Providencia sp. (n=1, 0.2) 0 0 0 1 (100) 0 0 

C. diversus (n=8, 2) 1 (12.5) 2 (25) 0 5 (62.5) 0 0 

C. freundii (n=6, 1.5) 0 2 (33.3) 1 (16.7) 3 (50) 0 0 

P. aeruginosa (n=25, 6.2) 2 (8) 2 (8) 4 (16) 11 (44) 3 (12) 3 (12) 

K. pneumoniae (n=3, 0.7) 1 (33.3) 0 1 (33.3) 1 (33.3) 0 0 

K. oxytoca (n=3, 0.7) 1 (33.3) 0 2 (66.7) 0 0 0 

b 
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Klebsiella sp. (n=25, 6.2) 3 (12) 0 3 (12) 16 (64) 1 (4) 2 (8) 

M. morganii (n=3, 0.7) 0 0 2 (66.7) 1 (33.3) 0 0 

Acinetobacter sp. (n=2, 0.5) 0 0 0 2 (100) 0 0 

Serratia marcescens (n=3, 0.7) 0 0 0 2 (66.7) 0 1 (33.3) 

Streptococcus sp. (n=6, 1.5) 0 0 4 (66.7) 2 (33.3) 0 0 

Enterococcus sp. (n=3, 0.7) 0 0 0 1 (33.3) 1(33.3) 1(33.3) 

S. aureus (n=31, 7.7) 2 (6.5) 0 4 (12.9) 18 (58) 5 (16.1) 2 (6.5) 

CoNS (n=4, 1) 0 1 (25) 3 (75) 0 0 0 

Staphylococcus sp. (n=4, 1) 0 1 (25) 2 (50) 1 (25) 0 0 
M: male, F: female, CoNS: Coagulase negative Staphylococcus. 

 

There was a strong correlation between species and the nature of samples (p˂0.01). The 

majority of identified strains were originated from urine, where E. coli was the most found 

species (52.38%). Important numbers of strains were originated from pus specimen (P. 

aeruginosa, Acinetobacter sp., Serratia marcescens). The second source of K. pneumoniae 

species after urine was blood, which was also a second source of C. freundii (Fig. 32). 

 

 
Figure. 32 : Distribution of isolates by specimen sources. 

 

The bacterial identification of strains in our study showed that E. coli was the predominant 

species, accounting for the majority of isolated pathogens, this predominance can be attributed 

to the high proportion of samples derived from urine. Also, E. coli was identified as the leading 

pathogen in urine samples (52.38%), these finding align with previous studies, such as  Bereanu 

et al., (2024), which similarly reported E. coli as the primary organism in urine cultures. The 
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same percent was found by Islam et al., (2022) study, which found that E. coli was the 

predominant organism in their urine bacterial samples (51.6%). E. coli was the most prevalent 

uropathogen in the both studies by Akrami et al., (2020) and Al Benwan and Jamal, (2022), 

with prevalence rates of 54.8% and 67.3%, respectively. The ability of this germ to adhere to 

host uroepithelial cells via fimbriae and produce virulence factors, such as toxins contributes to 

its dominance in urine and its capacity to cause UTIs (Terlizzi et al., 2017; Kim et al., 2022). 

4.3 Antibiotic susceptibility study 

4.3.1 Trend of antibiotic resistance by year of isolation 

Over the three-year period of collection, a general variation (increase/decrease) in resistance 

levels was observed across several antibiotic classes. However, the degree and direction of 

change varied significantly across specific antibiotics and bacterial strains. For penicillins 

higher rates were recorded in 2022 and 2023 (87.1% and 71.4%, respectively). Also, for the 

combination β-lactams/inhibitor similar resistance rates were recorded over the three years, 

with an advantage for the year 2022 (74.2%) (Fig. 33). 

Resistance to cephalosporins increased significatively (p˂0.001) across the three years 

especially in 2023, where the increase rate was 57% from 2022 to 2023. The resistance to 

carbapenem was relatively high in 2022 (77.4%, p=0.001) compared with the other years (Fig. 

33). 

The same rate of resistance was recorded in 2021 and 2023 (21%, p˂0.001) for aminoglycosides 

while the low rate was found in 2022 (12.9%). By 2023, an increase resistance levels (39.4%, 

24.9% and 39.8%) were recorded in quinolones, phenicolates and monobactams, respectively 

(Fig. 33). 

Regarding sulfamids, the high rate was recorded in 2021 (58%), while for phosphonic family, 

a significant high rate was found in 2022 (48.4%, p=0.039) and the rate declined in 2023 (Fig. 

33). 
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Figure. 33 : Trend of resistance to various antibiotics in 2021, 2022 and 2023 (*: statistical 

significance p˂0.05, **: p˂0.001). 

 

The study report data on the prevalence of antibiotic patterns among the most common pathogen 

bacteria from 2021 to 2023, similar tendencies were reported from different locations in Africa, 

notably in Uganda (Namubiru et al., 2024); resistance spikes were found particularly against 

commonly-used antibiotics such as β-lactams, cephalosporins, carbapenems and monobactams. 

The documented increase in resistance among several antibiotic classes, impacting both GPB 

and GNB, highlights a diminishing range of practical therapeutic alternatives, this development 

presents a significant risk to patient care, potentially leading to extended diseases, worsening 

infections, and increased mortality rates. 

4.3.2 Distribution of resistance by source of sample 

The examination of AR rates among several sample types including: urine, pus, vaginal swabs, 

blood, and medical devices revealed distinct patterns indicative of microbial diversity. 

Resistance rates in urine samples were significatively higher for penicillins and polymyxin 

(73.2%, 57.1% (p˂0.001), respectively). Pus samples demonstrated a significant elevated 

resistance rate to cephalosporins and lincosamides (73.8%, 38.1%, p=0.009, respectively). 

However, a significant level of resistance to combination β-lactams/inhibitor, cephalosporins, 

aminoglycosides and quinolones were found in medical devices species (61.5%, 76.9%, 

p=0.015 and 53.8%, 76.9%, p˂0.001, respectively) (Fig. 34). 
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Blood cultures revealed concerning resistance level to monobactams (100%. p˂0.001), while 

phenicolates and sulfamids record statistical levels in medical devices species (69.2%, p˂0.001, 

84.6%, p=0.008, respectively), for the other families no significative difference was found 

through the sources (Fig. 34). 

 
Figure. 34 : Prevalence of antibiotic resistance by nature of sample (*: statistical significance 

p˂0.05, **: p˂0.001). 

 

The finding of our study reveals important rates of resistance across various sample types, the 

significantly high resistance rates to penicillins and polymyxins in urine samples are 

particularly concerning aligns with global trend: USA (Dunne et al., 2022), Saudi Arabia 

(Ahmed et al., 2019). These findings suggest that commonly prescribed antibiotics for UTIs 

may be losing their efficacy, likely due to overuse or misuse. The resistance to polymyxins, 

often considered a last-resort therapy, raises further concerns about treatment options for MDR 

uropathogens.  

The elevated resistance rates observed for cephalosporins and lincosamides in pus samples were 

in accordance with trends in Rwanda (Ntirenganya et al., 2015) and Saudi Arabia (AlBahrani 

et al., 2024).  

Resistance to combination β-lactams/inhibitor, cephalosporins, aminoglycosides, and 

quinolones among medical device pathogens is a significant concern. These pathogens are often 

implicated in healthcare-associated infections, which are challenging to treat due to biofilm 
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formation and persistent exposure to antibiotics (Mishra et al., 2024). The high resistance levels 

observed align with a research in Italy (Folliero et al., 2021). 

The complete resistance to monobactams (100%) in blood cultures represent a significant health 

concern which reported also in China (Zhang et al., 2015), aztreonam is β-lactam antibiotics 

effective primarily against GNB and this observed resistance implies that our blood pathogens 

have either acquired resistance genes or have intrinsic mechanisms that render monobactam 

ineffective. 

4.3.3 Distribution of resistance by species 

4.3.3.1 Enterobacter species 

The antibiotic resistance profile of species included in this study were illustrated in figure 35, 

among GNB, Enterobacter spp. showed a high rate of resistance (p˂0.01) for amoxicillin, 

colistin (88.9%, 79.5%), ticarcillin + clavulanic acid (83.3%) and piperacillin (80.6%) and also 

for trimethoprim/sulfamethoxazole and fosfomycin (69.4% and 52.8%). The rate of resistance 

to different generations of cephalosporins ranged between 50% to 61.1%; the most effective 

antibiotics against Enterobacter spp. were imipenem and amikacin (19.4% and 8.3%, 

respectively). 

 

Figure. 35 : Resistance rates of Enterobacter species. 
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Enterobacter spp. are significant opportunistic pathogens implicated in various healthcare 

associated infections. Our findings are similar with previous studies conducted in Bangladesh 

and in India, which reported the same resistance profiles to β-lactams and cephalosporins 

(Mishra et al., 2020; Haque et al., 2023). Therefore, the resistance of Enterobacter spp. to 

amoxicillin, first-generation cephalosporins and cefoxitin was resulted to intrinsically 

resistance due to the presence of constitutive AmpC β-lactamase (Liu et al., 2022).  

However, the prevalence of imipenem-resistant Enterobacter species in our study matches with 

what Haque et al., (2023) found, which was also 20%. But it was lower than what was reported 

by Mishra et al., (2020), they found a percentage of 30%. Regional factors can be the cause of 

this difference. 

 The report of colistin and fosfomycin resistance was higher inside our Enterobacter spp. than 

the studies conducted by Mishra et al. with 50% for colistin. In Haque et al. study, 40% for 

fosfomycin and 20% for colistin. The WHO report Enterobacter spp. as being naturally 

susceptible to colistin but heterogenic resistance was observed in several Enterobacter species 

(Doijad et al., 2023). The emergence use of colistin as a last resort for the treatment might be 

the reason for increasing this type of resistance. 

4.3.3.2 E. coli 

In our study, a total of 201 E. coli isolates were tested, revealing high resistance rates to 

commonly used antibiotics (p˂0.01) such as the first-line antibiotics: amoxicillin (82.6%), 

piperacillin (77.6%), ticarcillin + clavulanic acid (72.1%), a moderate resistance levels were 

showed for the combination piperacillin + tazobactam (32.8%) and also for cephalosporins 

(between 26.9% for cefotaxime to 39.3% for ceftazidime), trimethoprim/sulfamethoxazole 

(51.2%), fosfomycin (40.3%) and nitrofurantoin (35.8%) (Fig. 36).  

For the second line, E. coli showed a moderate resistance to quinolones family (33.8%-39.8%). 

In last-resort antibiotics, 49.8% of E. coli isolates exhibited a resistance for imipenem, while a 

high rate of resistance was observed in colistin case (55.2%). Notably, aminoglycosides showed 

the best performance against this pathogen, with low resistance rates were noticed for amikacin 

(13.9%) and chloramphenicol (13.4%). 
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Figure. 36 :  Resistance rates of E. coli. 

 

In the current study, E. coli showed differences in AR patterns, it was highly resistance to the 

first-line treatment including amoxicillin, piperacillin and ticarcillin + clavulanic acid, same 

rates was observed in Marwa and Ibrahim, (2024) study in Iraq, which demonstrated a 

significant resistance level to piperacillin. A higher resistance rate was observed for ticarcillin 

+ clavulanic acid (89.09%) and piperacillin (70.09%) in Shahid and Yousif study, (2022).  

In our study, moderate resistance to cephalosporins was observed, consistent with findings from 

previous studies conducted in Thailand and Poland, which also reported moderate resistance to 

various classes of cephalosporins (Tewawong et al., 2020; Kot et al., 2021). 

It was observed that the rate of resistance of E. coli to trimethoprim/sulfamethoxazole was 

significant high in our results, which aligns with previous studies reporting similar resistance 

rates (53.3%, 54.3%, 63%) (Nouri et al., 2020; Tewawong et al., 2020; Nji et al., 2021). 

Nitrofurantoin, colistin and fosfomycin are mainly used in treatment of several E. coli 

infections, our tested E. coli showed a high resistance to colistin, same results was reported by 

Mahmoud et al., (2022) in Egypt, they found that the rate of colistin resistance was 42.9%. This 

increasing rate in north Africain countries may be due the dissemination of mrc-1 gene among 

E. coli strains which has been reported as epidemiological alert by WHO (Carmona-Cartaya et 

al., 2022). 
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Similar rates were showed against fosfomycin and nitrofurantoin in other studies (34.35% and 

46% for fosfomycin, 29% for nitrofurantoin only) in Kanaujia et al., (2020) and Ejaz et al., 

(2021) studies. Our results reveal a higher resistance rate to nitrofurantoin compared to a meta-

analysis of 14 studies across 8 countries, which analyzed 1,888 E. coli strains and reported a 

resistance rate of 20% (Bunduki et al., 2021). These results can be explained by the fact that 

antibiotics are highly effective in treating UTIs, particularly due to their rapid oral absorption 

(Sorlozano-Puerto et al., 2020).  

For carbapenems, a rate of 49.8% was exhibited against imipenem which is in accordance with 

Nasif et al., (2023); Marwa and Ibrahim, (2024) studies in Iraq and Egypt (30% and 30.9%, 

respectively). A moderate resistance was showed for quinolones family, in agreement with 

results obtained by Kot et al., (2021); Nji et al., (2021) and Bunduki et al., (2021) studies 

(28.6%, 30% and 49.4%, respectively). 

4.3.3.3 Klebsiella and Proteus species 

The resistance profiles of Klebsiella and Proteus species revealed significant patterns of MDR, 

the highest resistance was observed against amoxicillin (100%, 96.8% for Proteus spp. and 

Klebsiella spp., respectively). Ticarcillin, piperacillin and ticarcillin + clavulanic acid showed 

a high rate of resistance ranged between 60.7% to 67.9%. The amoxicillin + clavulanic acid 

noticed a significant level of resistance (p˂0.001) in Proteus species (85.7%). Piperacillin + 

tazobactam represented the most effective β-lactam/inhibitor antibiotic among these two 

species, a moderate to high level of resistance exhibited by the previous species against 

cephalosporins with cefotaxime being the most effective one (28.6% for Proteus spp. and 

19.3% for Klebsiella spp.) (Fig. 37).  

For carbapenem, Proteus species have a significate rate of resistance 32.1%, while for 

Klebsiella spp. it showed a good efficacity 16.1%. Aminoglycosides improved the best 

performance for these two species, amikacin was the best aminoglycoside for Proteus spp. 

(3.6%).  

While for Klebsiella spp., gentamicin and tobramycin were the best (9.7% for both). Klebsiella 

spp. showed a high sensitivity for chloramphenicol (12.9%); while 

trimethoprim/sulfamethoxazole showed a low efficacity for Proteus spp. (67.9%) and inversely 

for Klebsiella spp. (32.2%).  
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Klebsiella and Proteus isolates exhibited substantial resistance for nitrofurantoin and colistin, 

fosfomycin showed a lower resistance (17.9%) in Proteus spp. comparatively with Klebsiella 

spp. which showed a high resistance (45.2%) (Fig. 37).  

 

 

Figure. 37 :  Resistance rates of Klebsiella and Proteus species. 

 

Proteus spp. and Klebsiella spp. have showed a strong resistance to several antibiotics, 

especially to amoxicillin, similar resistance rates have been reported in several studies: in 

Ethiopia (Gebremeskel et al., 2023) and in Nigeria (Osei Sekyere and Reta, 2020).  

A high rate was also showed for ticarcillin, piperacillin and the combination ticarcillin + 

clavulanic acid, similar rates were found in Saudi Arabia, Iraq and Iran  (Al-Zalabani et al., 

2020; Thabit et al., 2020; Vaez et al., 2022). A significant resistance level to 

amoxicillin/clavulanic acid (75%) was observed in Thabit et al., (2020) study among Proteus 

species which in accordance with our finding (85.7%). These high resistance rates could be 

explained by the overuse of this class of antibiotics, which is considered the safest class for the 

majority of bacterial infections. 
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Piperacillin + tazobactam showed a good efficacity among β-lactam/inhibitor family for both 

species, this finding is similar to a study in Iraq (3.33%) for Klebsiella spp. (Hussein et al., 

2024) and (13.3%) for Proteus spp. in Namibia (Haindongo et al., 2022).  

Proteus isolates showed a significant rate of resistance to imipenem similarly to that of 35.3% 

reported in Italy (Facciolà et al., 2022), contrary Klebsiella spp. showed a good sensitivity, 

similar to that of 13.2%-20% reported in Iraq (Jalil and Al Atbee, 2022; Jwair et al., 2023). The 

resistance rate to trimethoprim/sulfamethoxazole among Klebsiella species was 36.84% in 

Spain and 36.89% in Bangladesh (Ballén et al., 2021; Salam et al., 2024) which aligns closely 

with our results.  

Significant resistance was observed for nitrofurantoin and colistin, consistent with a rate of 85% 

for nitrofurantoin in Klebsiella spp. in Nigeria, 67.6% and 83.3% for klebsiella and Proteus 

species, respectively, in Saudi Arabia (Al-Zalabani et al., 2020; Osei Sekyere and Reta, 2020). 

In contrast, fosfomycin demonstrated lower resistance, with a rate of 17.9% in Klebsiella spp., 

comparable to the 24.56% reported in Iraq (Hussein et al., 2024). 

Regarding aminoglycosides, resistance to amikacin is due to cell wall permeability, it showed 

a high efficacity for Proteus spp. in several studies, (2.6%) in China (Mo et al., 2022) and 

(2.5%) in Indonesia (Suhartono et al., 2022) which is align with our results. While gentamicin 

and tobramycin had the best performance against Klebsiella spp. in our study which confirmed 

in Iran and Saudi Arabia (Jafari-Sales, 2020; Alsubaie et al., 2023). 

4.3.3.4 P. aeruginosa 

Among P. aeruginosa isolates, the resistance rates varied significantly across the tested 

antibiotics. Cefalexin showed a higher resistance rate of 92% (p˂0.001), followed by 

nitrofurantoin of 88%, cefoxitin and amoxicillin (84% for both). 80% of P. aeruginosa isolates 

showed resistance to amoxicillin + clavulanic acid and trimethoprim/sulfamethoxazole.  

A considerable resistance was showed also for gentamicin (76%) and chloramphenicol (60%), 

a moderate to higher resistance was showed against quinolones (40%-48%). Among 

cephalosporins, cefotaxime showed a high efficacity (19%), similar to imipenem and amikacin, 

with only 12% of isolates exhibited resistance (Fig. 38). 
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The findings of our study provide critical insights into the AR patterns of P. aeruginosa, 

substantial resistance rates were demonstrated (92.9%) against cefalexin in Iran (Gharavi et al., 

2021) with was in accordance with our results. The high rate presented for nitrofurantoin, is 

consistent with a study in Nigeria with a rate of 92% among 39 clinical P. aeruginosa 

(Ugwuanyi et al., 2021). A high level of resistance was found among P. aeruginosa isolates for 

cefoxitin and nitrofurantoin in Saudi Arabia (Ahmad et al., 2020).  

 

 

Figure. 38 :  Resistance rates of P. aeruginosa. 

A significant level of resistance was observed in 110 P. aeruginosa in Nigeria for amoxicillin 

and cefoxitin (Akingbade et al., 2012) which accord with our study, the reason for higher 

resistance to β-lactams and cephalosporins could be attributed to the non-permeability of these 

antibiotics through the plasma membrane (Alaboudi and Aljwaid, 2024). Between all 

cephalosporins tested, cefotaxime showed a good efficacity, same results (15.4%) were reported 

in Brazil (Ribeiro et al., 2020). 

A rate ranged between 74.1% to 84.2% was observed during five years of study on 729 P. 

aeruginosa for amoxicillin + clavulanic acid in Ethiopia (Araya et al., 2023) and (89% and 

75.41%) for trimethoprim/sulfamethoxazole in Somalia and Ethiopia, respectively (Mohamed 

et al., 2022; Asmare et al., 2024) which is similar to our findings.  
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P. aeruginosa showed a lower sensitivity to gentamicin (76%), similarly to those reported in 

Iran (64.7%) (Zahedi Bialvaei et al., 2021) and in Ethiopia (62.2%) (Tsigereda Asamenew et 

al., 2023), a lower sensitivity was also showed against chloramphenicol (60%), a concordance 

results was reported in Chad (69%) (Ahmat et al., 2023). 

Our work showed that imipenem and amikacin exhibited the best performance on P. aeruginosa 

among all tested antibiotics; likewise, other studies confirm our results (Ullah et al., 2019; 

Roulová et al., 2022; Araya et al., 2023). The resistance to amikacin could be associated with 

the production of the AMEs (Khabipova et al., 2022), regarding the resistance to imipenem, 

The European Centre for Disease Prevention and Control's annual report indicates that 18.7% 

of P. aeruginosa isolates were resistant to carbapenems (ECDC, 2020). 

Alongside the natural antibiotic resistance in P. aeruginosa, the misuse and overuse of 

antibiotics have resulted in the emergence of MDR. Moreover, this bacterium has developed 

resistance to antibiotics via the HTG of resistance genes from resistant strains and other 

bacterial species (Thuo et al., 2019). 

4.3.3.5 Staphylococcus species 

The AR profile of the frequently isolated GPB showed a high rate of resistance (p˂0.001) to 

oxacillin (89.7%), erythromycin (82.1%), clindamycin and cefixime (76.9%), ceftazidime and 

kanamycin (74.3%), cefalexin and cefepime (71.8%), cefoxitin and aztreonam (69.2%), 

followed by nalidixic acid and doxycycline (56.4%), nitrofurantoin (51.3%) and 48.7% for 

trimethoprim/sulfamethoxazole. Staphylococcus spp. showed a notable resistance for 

fosfomycin (41%) and levofloxacin (35.9%), while a lower resistance was showed in amikacin 

and chloramphenicol (28.3%) and 17.9% for imipenem (Fig. 39). 
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Figure. 39 :  Resistance rates of Staphylococcus species. 

 

This study underscores the growing prevalence of AR in Staphylococcus species, same rates 

were found in Vietnam for erythromycin (82.82%) and clindamycin (82.32%) (An et al., 2024). 

Likewise, 75.6% for erythromycin in China (Zhang et al., 2022). A high rate of resistance was 

found for cefoxitin (75%) in Nepal (Gurung et al., 2020), clindamycin (87.5%) and 

erythromycin (81.9%) and cefoxitin (61.7%) in Italy (Petrillo et al., 2021). Similarly, 

Staphylococcus species isolated in Egypt showed a higher levels including: erythromycin 

(83.98%), cefoxitin (76.52%) and clindamycin (52.1% - 60.2%) (Fahim, 2021) which align 

with our findings. 

Accordance rates of resistance were reported for oxacillin (74.2%) and 

trimethoprim/sulfamethoxazole (58.1%) in Italy (Folliero et al., 2021), the same rate also was 

found in Bangladesh for trimethoprim/sulfamethoxazole (53.33%) (Majumder et al., 2022), and 

in Egypt for nitrofurantoin (40%) and doxycycline (43%) (Fahim, 2021), (57.1%) for 

doxycycline in Ethiopia (Birru et al., 2021). 

Our Staphylococcus spp. showed a lower resistance to amikacin, chloramphenicol and 

imipenem, in agreement with 25% reported to chloramphenicol in Iran (Hashemzadeh et al., 

2021) and with 90.6% were resistant for oxacillin in Peru (Suaréz-Del-Aguila et al., 2020) and 

also with 98% of sensitivity for imipenem reported in Kenya (Gitau et al., 2018), a high 
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sensitivity was showed also to amikacin for urinary Staphylococcus spp. in Iraq (Mohamed, 

2023). 

The variations in antibiotic susceptibility patterns inside all tested species might be due to the 

frequent and varied use of these antimicrobials in treating bacterial infections in different 

geographical areas.  

Additionally, the increase in AR among different bacterial types may be attributed to their 

misuse, storage, purchase without a physician's prescription, and the inappropriate prescription 

of these antibiotics for treating every infection. All resistance rates of all isolated species are 

summarized in table 15. 
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Table 15. Antibiotic resistance among species. 

NT: non tested. 

 Enterobacte

r spp. 

E. coli Proteus 

spp. 

Providencia 

spp. 

Citrobacter 

spp. 

P. 

aeruginosa 

M. 

morganii 

Klebsiella 

spp. 

S. 

marcescens 

Acinetobacter 

spp. 

Streptococcus 

spp. 

Enterococcus 

spp. 

Staphylococcus 

spp. 

AX  88.9 82.6 100 81.8 92.9 84 66.7 96.8 66.7 50 40 75 NT 

AMC 75 68.2 85.7 72.7 71.4 80 66.7 61.3 66.7 50 20 75 NT 

TC 36.1 51.7 60.7 63.6 42.9 40 33.3 64.5 33.3 50 0 NT NT 

TTC 83.3 72.1 67.9 63.6 50 44 66.7 64.5 33.3 50 20 75 NT 

PRL 80.6 77.6 67.9 81.8 50 24 66.7 61.3 0 50 20 75 NT 

TPZ 47.2 32.8 28.6 18.2 35.7 28 0 32.2 0 0 NT NT NT 

CN 58.3 37.8 67.9 54.5 50 92 66.7 61.3 66.7 50 60 75 71.8 

FOX 50 30.3 50 27.2 35.7 84 33.3 41.9 66.7 50 100 100 69.2 

CFM 61.1 37.8 53.6 45.4 42.9 23 66.7 38.7 33.3 100 100 100 76.9 

CAZ 61.1 39.3 42.9 36.3 50 36 33.3 38.7 0 100 40 75 74.3 

CTX 52.7 26.9 28.6 36.3 35.7 19 0 19.3 0 50 80 25 46.2 

FEP 55.6 36.3 46.4 36.3 42.9 24 0 38.7 66.7 50 40 50 71.8 

IMP 19.4 49.8 32.1 18.2 14.3 12 33.3 16.1 0 0 0 0 17.9 

GEN 38.9 17.4 17.9 9.1 7.1 76 0 9.7 33.3 50 60 100 30.8 

AK 8.3 13.9 3.6 9.1 7.1 12 0 12.9 0 0 20 25 28.2 

TOB 36.1 18.9 21.4 0 17.6 20 33.3 9.7 0 50 60 75 30.8 

K NT NT NT NT NT NT NT NT NT NT 80 100 74.3 

NA 50 34.3 57.1 36.3 28.6 48 0 25.8 0 100 60 25 56.4 

OF 55.6 39.8 50 36.3 50 48 66.7 38.7 0 50 40 25 46.2 

CIP 58.3 33.8 35.7 36.3 35.7 40 66.7 22.6 0 50 60 25 43.6 

LE NT NT NT NT NT NT NT NT NT 100 80 50 35.9 

C 47.2 13.4 35.7 18.2 28.6 60 0 12.9 0 50 40 0 28.2 

ATM 47.2 29.3 35.7 18.2 50 24 33.3 32.2 0 100 60 25 69.2 

NIT 55.6 35.8 78.6 27.2 57.1 88 33.3 64.5 100 100 60 75 51.3 

SXT 69.4 51.2 67.9 36.3 50 80 66.7 32.2 0 50 60 75 48.7 

FF 52.8 40.3 17.9 36.4 57.1 40 100 45.2 66.7 0 40 100 41 

CS 79.5 55.2 64.3 45.5 57.1 28 66.7 61.3 33.3 50 40 50 NT 

CD NT NT NT NT NT NT NT NT NT NT 100 75 76.9 

E NT NT NT NT NT NT NT NT NT NT 80 100 82.1 

OX NT NT NT NT NT NT NT NT NT NT 80 100 89.7 

DO NT NT NT NT NT NT NT NT NT NT 80 75 56.4 
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4.3.4 MIC concentration 

The secondary analysis assessed the resistance prevalence using the MIC breakpoint values 

published in EUCAST recommendations, most sensitive tested strains showed their capacity to 

tolerated the critical concentration; excepted for the following antibiotics: ceftazidime 

(p˂0.001), cefotaxime, imipenem, tobramycin (p˂0.001), nalidixic acid (p˂0.001) and 

aztreonam (p˂0.001) (Fig. 40); for imipenem all isolates were susceptible at the recommended 

breakpoint, while the previous antibiotics showed good efficacity at the EUCAST critical 

breakpoints.  

 
 
Figure. 40 : Minimum inhibitory concentration (MIC) for the most important antibiotics of isolates 

(RcBp: resistant clinical breakpoint, *: statistical significance p˂0.05, **: p˂0.001). 

 

4.4 Phenotypic resistance 

4.4.1 Antibiotic resistance profiles 

The data presented in the chart highlights trends in the percentages of R, MDR, and XDR across 

the isolation years. During the three years of isolation MDR strains recorded in higher percent 

compared with R and XDR (p˂0.001). In the R category, there is a fluctuating pattern with a 

decline from 22% in 2020 to 12.5% in 2021, followed by a slight increase to 17% in 2022.  
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In contrast, the MDR category showed a consistent decrease over the three years, dropping from 

66% in 2020 to 62.5% in 2021 and further to 51.5% in 2022. On the other hand, the XDR 

category exhibited a significant and consistent upward trend (p=0.011), rising from 12% in 

2020 to 25% in 2021, and further to 31.5% in 2022 (Fig. 41),  

 
 
Figure. 41 : Trends in R, MDR, and XDR percentages from 2020 to 2022 (*: statistical significance 

p˂0.05). 

 

The observed trends in the chart provide critical insights into the resistance profile over the 

three-year period from 2020 to 2022. The fluctuating pattern in R percentages, with a decline 

in 2021 followed by a slight increase in 2022, may suggest variable efficacy in preventive 

measures during COVID-19 period.  

Meanwhile, the higher percentages in MDR during the same period, could be explained by the 

widespread use of broad-spectrum antibiotics in COVID-19 treatment (Bentivegna et al., 2021). 

While the decline percentages in 2022 and 2023 could represent a proof for the impact of 

improved management strategies. However, the increasing trend in XDR percentages is 

particularly concerning, as it indicates the emergence and spread of highly resistant strains 

particularly following the COVID-19 pandemic, which is in accordance with other study 

(Lagadinou et al., 2024).  

MDR strains represented 56% of all tested isolates, followed by XDR (26.1%) and R (17.9%). 

The analysis of gender distribution across these resistance profiles revealed significant 

differences; among individuals with R profile, males accounted for 23.6%, while females 
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represented a significantly larger proportion at 76.4%. In the MDR group, males constituted 

32.9%, whereas females were 67.1%. For XDR, the male proportion increased to 42.9%, with 

females making up the remaining 57.1%. There is a strong correlation between resistance 

profile and gender distribution (p=0.007) (Tab. 16). 

The distribution of phenotypic resistance categories across age groups revealed that adult 

represent the dominant group across all categories (Tab. 16). Regarding the nature of sample, 

all the resistance profiles were dominant in urine samples, while in pus samples there is an 

increasing trend of resistance profile from R to XDR. A minimal proportion of MDR and XDR 

recorded in vaginal isolates. Medical devices and blood samples showed a rising proportion of 

XDR (Tab. 16). E. coli demonstrated particularly high frequencies in the R (51.4%), MDR 

(56.4%) and XDR (35.2%) profiles, P. aeruginosa and Klebsiella spp. showed a high 

proportion in MDR isolates. Rare species like Providencia spp., M. morganii, and S. 

marcescens exhibit lower frequencies but demonstrate resistance trends. Staphylococcus spp. 

exhibited a strong presence in XDR (24.8%) followed by Enterobacter spp. (13.3%) (Tab. 16).  

Table 16. Demographical and species distribution of R, MDR and XDR. 

 Resistance profile n (%) Correlation 

(p value) R (72; 17.9) MDR (225; 56) XDR (105; 26.1) 

Gender Male 17 (23.6) 74 (32.9) 45 (42.9) 
0.007 

Female 55 (76.4) * 151 (67.1) * 60 (57.1) 

Age groups Children 15 (20.8) 43 (19.1) 11 (10.5) 

0.035 Adult 50 (69.4) * 147 (65.3) * 76 (72.4) * 

Elderly 7 (9.7) 35 (15.6) 18 (17.1) 

Nature of sample Urine 67 (93) * 199 (88.4) * 70 (66.7) * 

˂0.001 

Pus 4 (5.6) 17 (7.6) 21 (20) 

Vaginal swab 0 4 (1.8) 4 (3.8) 

Medical devices 1 (1.4) 4 (1.8) 8 (7.6) 

Blood 0 1 (0.4) 2 (1.9) 

Species Enterobacter spp. 7 (9.6) 15 (6.8) 14 (13.3) 

˂0.001 

E. coli 37 (51.4) * 127 (56.4) * 37 (35.2) 

Proteus spp. 5 (6.9) 14 (6.2) 9 (8.6) 

Providencia spp. 4 (5.6) 6 (2.7) 1 (1) 

Citrobacter spp. 4 (5.6) 7 (3.1) 3 (2.9) 

P. aeruginosa 1 (1.4) 20 (8.9) 4 (3.8) 

M. morganii 0 2 (0.9) 1 (1) 

Klebsiella spp. 9 (12.5) 19 (8.4) 3 (2.9) 

S. marcescens 2 (2.8) 1 (0.4) 0 

Acinetobacter spp. 1 (1.4) 0 1 (1) 

Streptococcus spp. 0 1 (0.4) 4 (3.8) 

Enterococcus spp. 0 2 (0.9) 2 (1.9) 

Staphylococcus spp. 2 (2.8) 11 (4.9) 26 (24.8) 
*: statistical significance p˂0.001, R: strains that resist less than three classes of antibiotics, MDR: strains that resist 

three or more classes of antibiotics, XDR: strains susceptible to one or fwer classes of antibiotics. 
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The results of this study determine a strong association between distribution of phenotypic 

resistance and gender and age (most of R, MDR and XDR being found in females and adult 

group) which is in accordance with a study conducted in Nepal (Sah et al., 2023). Gender and 

age among the risk factors that influence the distribution of resistance strains (Dias et al., 2022).  

Urine samples were the most frequent source of resistant isolates across all profiles. This 

dominance was in accordance with other results reported in Nepal (Shilpakar et al., 2021; 

Rajbhandari et al., 2024) and in Congo (Irenge et al., 2024), various factors contribute to this 

prevalence including: the high incidence of UTIs and the frequent use of antibiotics for their 

treatment.   

E. coli emerges as the most dominant species across all resistance categories, particularly in 

MDR and XDR profiles. This finding aligns with studies conducted in Bangladesh(Runa et al., 

2019), Nepal (Sah et al., 2023; Rajbhandari et al., 2024) and a cross study conducted in east 

Africa: Kenya, Tanzania, Uganda (Maldonado-Barragán et al., 2024), that identifying E. coli 

as a leading MDR pathogen. Similarly, Klebsiella spp. demonstrates significant representation 

in MDR profiles in Ethiopia (Hailemariam et al., 2021) which is consistent with our findings. 

Staphylococcus spp., predominantly contributing to the XDR category, similar findings were 

reported in Nepal (Sah et al., 2023) and Gabon (Mouanga-Ndzime et al., 2023), that 

highlighting Staphylococcus species including:  MRSA as a global concern due to its resistance 

to multiple antibiotic classes. 

4.4.2 Phenotypic detection of carbapenemases 

Concerning phenotypic detection of carbapenem resistance, 33.8% (136/402) of positive 

screened isolates (that showed decreasing sensitivity to carbapenem by disc diffusion) were 

selected to confirmatory test (MHT). 86% were MHT positive, all positive MHT strains were 

screened for combined disk test (CDT), the results record 37.6% were positive MBL strains 

confirmed by CDT, where the most detected positive MBL organism was E. coli (56.8%), 

followed by P. mirabilis (11.4%), K. pneumoniae and P. aeruginosa (9.1%) (Tab. 17). 
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Table 17. Phenotypic resistance of isolates. 

Phenotype resistance n (%) 

Positive MHT 117 (86) 

Negative MHT 19 (14) 

Positive MBL 44 (37.6) 

Negative MBL 73 (62.4) 
MHT: modified Hodge test, MBL: Metallo-β-lactamase. 

These finding were correlated with other studies that reported a high rate of MHT-positive 

strains: 100% in Algeria (Bourafa et al., 2018), 75% in Ghana and Bangladesh (Dwomoh et al., 

2022; Munny et al., 2023), 71.4% in Sri Lanka (Jayathilaka et al., 2024) and 79.72% in Nepal 

(Hamal et al., 2023). For MBL positive strains, similar rate was found in Bangladesh (Aminul 

et al., 2021).  

While phenotypic methods like MHT and CDT provide valuable insights, they require 

integration with molecular tools for comprehensive resistance profiling and to address the 

limitations in detecting specific resistance mechanisms or non-MBL carbapenemase types. 

4.4.3 Phenotypic detection of hvKp, MRSA and MLSB resistant strains 

Hypervirulent K. pneumoniae (hvKp) is an emerging pathotype that is more virulent than 

classical K. pneumoniae. Out of 3 strains of K. pneumoniae tested in our study, 66.7% (2/3) 

were hvKp, these two strains were originated from both community and hospitalized patients, 

and presented a significant resistance profile with one was MDR and the other was XDR, both 

were found in females with UTI (Tab. 18). 

From thirty-one S. aureus, (61.3%) were reported as MRSA strains, while 38.7% were 

identified as methicillin-sensitive (MSSA) strains, MRSA strains were distributed in 57.9% 

XDR and 36.8% MDR.  

The phenotypic identification of macrolide lincosamide streptogramin B (MLSB) of S. aureus 

in our study showed that among 45.2% of erythromycin resistant S. aureus (MSB), 9.7% was 

constitutive macrolide lincosamide streptogramin B (CMLSB) and inducible macrolide 

lincosamide streptogramin B (IMLSB) represent 16.1%. 6.5% of isolates resistant to 

clindamycin only and 25.8% were susceptible to both; among MRSA strains 6.5% were 

CMLSB while 12.9% were IMLSB (Tab. 18). 
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Table 18. Phenotypic resistance of isolates. 

Phenotype resistance n (%) 

hvKp 2 (66.7) 

MRSA 19 (61.3) 

MSSA 12 (38.7) 

CMLSB 3 (9.7) 

IMLSB 5 (16.1) 

MSB 14 (41.9) 

L 2 (6.5) 

S 8 (25.8) 
hvKp: hypervirulent K. pneumoniae, MRSA: Methicillin Resistant S. aureus, MSSA: Methicillin Sensitive S. aureus, CMLSB: 

Constitutive Macrolide Lincosamides Streptogramin B Resistant S. aureus, IMLSB: Inducible Macrolide Lincosamides 

Streptogramin B Resistant S. aureus, MSB: S. aureus resistant to erythromycin and susceptible to clindamycin with negative 

D test, L: S. aureus resistant to clindamycin and susceptible to erythromycin, S: S. aureus susceptible to clindamycin and 

erythromycin. 

The frequency of hvKp in our study was consistent with 62.5% found in Egypt (Mohammed et 

al., 2024) and 51% in Iraq (Jassim et al., 2023), these hvKp exhibited a high resistance profile. 

hvKp harbors plasmids containing genes that encode numerous virulence factors, including a 

protective capsule, fimbriae, lipopolysaccharides and siderophores, as well as resistance to 

heavy metals and antibiotics (Loaiza et al., 2023; Dingiswayo et al., 2024). 

The study revealed a high prevalence of MRSA among S. aureus isolates, with 57.9% of MRSA 

strains classified as XDR. These findings are consistent with reports from Egypt, where MRSA 

accounted for 55.3% of S. aureus isolates, while MSSA represented 44.7% (Ajlan et al., 2022). 

Similarly, another study in Egypt documented an MRSA prevalence of 65.2%, and data from 

Nigeria reported MRSA and MSSA rates of 67.46% and 32.3%, respectively (Yahaya et al., 

2022). However, our results are significantly higher than those reported from Tanzania, where 

MRSA prevalence was documented at 49.3% (Juma et al., 2024). These disparities likely reflect 

variations in antibiotic stewardship programs and infection control practices across different 

regions. 

The extensive use of MLSB antibiotics in Staphylococcus infections lead to the emergence of 

S. aureus resistant to MLSB, the same rate of MSB resistance  (45.2%) was reported in Egypt 

(Kishk et al., 2020) and the predominance of IMLSB in our study aligns with findings from 

similar studies: India (Modukuru et al., 2021), Nigeria (Yahaya et al., 2022) and in Nepal 

(Gurung et al., 2020), which call to a higher level of attention in the prescription of macrolides. 

Lower prevalence of CMLSB S. aureus reported in our study can be attributed to the rational 



                       Results and discussion   

 82  

prescription and usage of macrolides, both within community and hospital settings which has 

not favored the predominance of hyper-resistant strains and molecular types. 

4.5 Biofilm formation ability 

Biofilm formation assays were carried out in a microtiter plate, using CV staining. The results 

indicated that the majority of tested strains were biofilm producers (88.1%, p˂0.001) while non 

producers represented a low frequency (11.9%). Of 88.1% positive biofilm producers, 64.9% 

were weak producers, 17.9% have moderate production and only 5.2% formed biofilm strongly. 

The distribution of biofilm producers across age groups revealed that no significant difference 

was observed between the OD mean in the three categories, but the weak production profile 

was the predominant profile in all groups (Fig. 42).   

 
 

Figure. 42 : Difference in OD mean among age groups. 

 

 

These results are consistent with other studies reporting high biofilm formation capabilities 

among clinical isolates. For instance, Asaad et al., (2021) observed biofilm production in 70.1% 

of their tested strains. Similarly, Nirwati et al., (2019) reported biofilm formation in 

approximately 85.6% of isolates and Syaiful et al., (2023) observed 87.5% of biofilm producers, 

Namuq et al., (2019) suggested a percentage of 98% of biofilm forming strains. The high 
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prevalence of biofilm production in clinical samples could be explained by different factors 

including: the exchange of genetic materials and virulence genes, the use of disinfectants and 

antibiotics in hospital and community settings, which creates selective pressure, allowing 

biofilm-producing strains to thrive and outcompete non-biofilm producers. 

However, some studies showed variability in biofilm formation rates. For example, Kulayta et 

al., (2024) found a lower percentage (62.2%) of biofilm producers when testing isolates from 

wounds, the observed variations in prevalence could be influenced by the non-uniformity in the 

sample size, study period, demographic characteristics of study participants, region, applied 

methodology. 

Our data indicated a significant (p˂0.001) portion of the population exhibited low production 

capabilities, similar to that reported in Haghighifar et al., (2021) study, which found a 

predominance of weak producers and to what reported in Shadkam et al., (2021) study. 

4.5.1 Biofilm production among specimens 

Among different clinical specimens, there are significant difference in frequency distribution 

(p=0.023), with the most biofilm producers were found in urine (293/402), but by mean OD 

comparison, no difference was found between the specimens (Fig. 43).  

 

 
Figure. 43 : Difference in OD mean among specimens. 
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This comparison confirmed that the weakly production is the predominant profile in all types 

of samples 61.9%, 7.3%, 1.7%, 2.3% and 0.6% in urine, pus, vaginal swab, medical devices 

and blood, respectively. The most elevated rate of moderate production was found in urine, pus 

and medical devices while strong production was found only in urine and pus specimen types 

(Tab. 19). 

 
Table 19. Biofilm formation in different specimens. 

Sample type 
Biofilm formation strength 

No production (%) Weak (%) Moderate (%) Strong (%) 

Urine 43 (89.6) 219 (61.9) 61 (17.2) 13 (3.7) 

Pus 2 (4.1) 26 (7.3) 6 (1.7) 8 (2.2) 

Vaginal swab 1 (2.1) 6 (1.7) 1 (0.3) 0 

Medical devices 1 (2.1) 8 (2.3) 4 (1.1) 0 

Blood 1 (2.1) 2 (0.6) 0 0 

 

The urine samples exhibited the highest proportion of biofilm producers, because the majority 

of our strains were originated from urine samples, these results indicating the strong association 

of biofilm formation with UTIs, this aligns with findings from Ethiopia (Gebremariam et al., 

2024), who reported a similar dominance of biofilm producers in urine specimens. 

The predominance of weak biofilm production across all sample types underscores a consistent 

trend observed in other studies, such as, Karimi et al., (2021) who noted that weak producers 

dominate clinical isolates. 

The moderate biofilm production rates were elevated in urine, pus, and medical devices. This 

observation aligns with findings of Ashwath et al., (2022), who also found moderate and strong 

production rates to be associated with wound infections, and with Folliero et al., (2021), who 

found a high rate of moderate producers isolates in medical devices pathogens, potentially due 

to higher selective pressures in these environments.  

4.5.2 Biofilm production among species 

The biofilm formation ability across bacterial species showed critical results, in GNB, E. 

cloacae showed the high rates of strong biofilm production (20%), followed by P. mirabilis 

(13%), C. diversus (12.5%), (12%) Klebsiella species and (10%) for Enterobacter sp. 

Streptococcus sp. showed the highest level of strong biofilm formation among GPB (Fig. 44). 

Moderate biofilm production was observed in high proportions in Providencia sp. (100%), K. 

oxytoca (66.7%) and (50%) for C. diversus and Acinetobacter sp. For GPB, Enterococcus sp. 

recorded the high proportion (33.3%). 
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A predominant number of bacterial species exhibit weak biofilm production, total species 

(100%) of P. stuartii, C. freundii and Staphylococcus sp. were weak biofilm producers, a 

prevalence rate of 80% was observed in Enterobacter sp. while a range between 60% to 70% 

was showed for E. aerogenes, E. cloacae, P. mirabilis, P. vulgaris, E. coli, P. aeruginosa, 

Klebsiella sp., M. morganii, Serratia marcescens, Streptococcus sp., Enterococcus sp., S. 

aureus and CoNS (Fig. 44). 

Some species demonstrated their inability to produce biofilm, among these: P. aeruginosa 

(36%), K. pneumonia (33.3%) and P. alcalifaciens (22.2%). 

 
Figure. 44 : Biofilm formation among species. 

 

 

The findings of this study revealed notable differences in biofilm formation across bacterial 

species. Among Enterobacter species, E. cloacae and Enterobacter sp. showed significant 

levels of strong biofilm production (20% and 10%, respectively). These results align with (Liu 

et al., 2022; Misra et al., 2022) studies highlighting Enterobacter species as robust biofilm 

formers, particularly in clinical and environmental settings. 

 

E. coli and P. mirabilis showed a variability in biofilm production which infected by several 

genetic and environmental factors, these findings supported in previous study by (Folliero et 

al., 2021). The study of Garousi et al., (2022) and Alshaikh et al., (2024) showed that the high 
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proportion of biofilm production in E. coli was recorded in weak ability, which align with our 

results. A high proportion of weak biofilm producers was reported also in the study of Ramadan 

et al., (2021). 

Interestingly, P. aeruginosa showed the largest percentage of non-biofilm producers (36%). 

This result contrasts with findings of Karami et al., (2020). Compared to other studies, P. 

aeruginosa showed a strong ability to produce biofilm (Davarzani et al., 2021; Ratajczak et al., 

2021), this deviation may reflect differences in isolate origin or environmental conditions.  

Enterococcus sp. showed significant capability of moderate production, followed by CoNS 

species and S. aureus (25%), similar levels were found in Ethiopia and Iran (Ghazvinian et al., 

2024; Kulayta et al., 2024).  

4.5.3 Correlation between antibiotic resistance and biofilm formation 

The table 20 demonstrates a clear correlation between biofilm strength and antibiotic resistance 

profile among tested isolates. A significant correlation was found between biofilm producers 

isolates and resistance to amoxicillin (p=0.0025), resistant-strains to amoxicillin + clavulanic 

acid and tazobactam + piperacillin showed a high ability to produce moderate biofilms. 

Among the cephalosporins, cefalexin, cefoxitin and cefotaxime-resistant strains showed a high 

capability to produce moderate biofilms compared with sensitive strains. In contrast, imipenem-

resistant strains exhibited high resistance (69.9%) in weak biofilms, but this rate diminished in 

moderate and strong biofilms (Tab. 20).  

Strains resistant to quinolones were more associated with strong biofilm production especially 

nalidixic acid, which showed notable resistance across moderate and strong biofilms. Similar 

trends were observed for levofloxacin, ciprofloxacin and ofloxacin. 

The evaluation of chloramphenicol against biofilms reveals that strains resistant to this 

antibiotic were more strongly associated with moderate and strong biofilm production. 

Resistance rates were 54.3% in weak biofilms, increasing to 30% in moderate biofilms and 

7.1% in strong biofilms. Correspondingly, susceptibility decreased significantly with biofilm 

strength, with susceptibility rates of 68.2% in weak biofilms, dropping to 13.3% in moderate 

biofilms and 3.3% in strong biofilms. 
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Positive correlation was found between biofilm formation and polymyxins (p=0.002) with a 

strong association with colistin-resistance (p=0.003). Resistance rates were 68.6% in weak 

biofilms, 17.1% in moderate biofilms, and 5.7% in strong biofilms compared with high 

susceptibility across biofilm types, with 52.6% in weak biofilms, decreasing to 10.5% in 

moderate biofilms, and 0% in strong biofilms, demonstrating its reduced effectiveness as 

biofilms matured. 

Table 20. Correlation between biofilm formation and antibiotic resistance. 

Antibiotic 
Biofilm strength 

Antibiotic 
Biofilm strength 

Weak Moderate Strong Weak Moderate Strong 

 AX R% 65.7 18.9 4.4 TOB R% 60.2 19,3 8 

S% 58.2 16.4 3.6 S% 66.2 17.5 4.5 

AMC R% 65.4 19.8 3.8 K R% 61.5 18.9 9.8 

S% 63.8 13.8 7.7 S% 71.7 13 8.7 

TC R% 68.3 17.5 1.1 NA R% 55.5 19.7 8.8 

S% 53.3 20 3.3 S% 69.4 17.8 3.9 

TTC R% 68 17 3.6 OFX R% 65.3 19.1 5.2 

S% 60.9 20.3 2.9 S% 65 17.7 5.4 

PRL R% 68.6 16.7 3.9 CIP R% 64.6 21.8 4.1 

S% 59.3 22 2,2 S% 63.5 16.7 5.9 

TPZ R% 59.1 20.5 0 LE R% 50 22.2 22.2 

S% 63.9 18.8 2.8 S% 100 0 0 

CN R% 59.8 20.6 6.7 C R% 54.3 30 7.1 

S% 70 15.3 3.7 S% 68.2 13.3 3.3 

FOX R% 57.3 23.4 7 ATM R% 64.3 17.5 6.3 

S% 70.5 14.3 3.6 S% 66.2 19.2 4.1 

CFM R% 63.2 17.1 6.2 NIT R% 63.7 22.3 3.8 

S% 65.3 19.4 4.1 S% 65.8 11.7 5.4 

CAZ R% 66.4 15.3 6.9 SXT R% 65.6 17.2 6 

S% 64.2 20.8 2.5 S% 64.5 18 4.4 

CTX R% 63.8 19 5.7 FF R% 62.1 18.5 5.6 

S% 67 16.3 4.4 S% 61.6 21.2 6.1 

FEP R% 65.9 15.5 5.4 CS R% 68.6 17.1 5.7 

S% 64.6 20.2 3 S% 52.6 10.5 0 

IMP R% 69.9 14.7 4.4 CD R% 52.5 20 17.5 

S% 63 19.6 6 S% 71.4 0 14.3 

GEN R% 60.2 20.4 5.1 E R% 51.3 17.9 17.9 

S% 66.3 17.2 5.3 S% 85.7 0 14.3 

AK R% 71.1 13.3 4,4 OX R% 55 15 20 

S% 64 17.8 5  S% 100 0 0 

DO R% 36.4 22.7 22.7 

S% 75 8.3 16.7 
R: resistance, S: sensitive, AX: amoxicillin, AMC: amoxicillin clavulanic acid, TC: ticarcillin, TTC: ticarcillin + clavulanic 

acid, PRL: piperacillin, TPZ: piperacillin + tazobactam, CN: cefalexin, FOX: cefoxitin, CFM: cefixime, CAZ: ceftazidime, 

CTX: cefotaxime, FEP: cefepime, IMP: imipenem, GEN: gentamicin, AK: amikacin, DO: doxycyclin, TOB: tobramycin, K: 

kanamycin, NA: nalidixic acid, OFX: ofloxacin, CIP: ciprofloxacin, LE: levofloxacin, C: chloramphenicol, ATM: aztreonam, 

NIT: nitrofurantoin, SXT: trimethoprim/sulfamethoxazole, FF: fosfomycin, CS: colistin, CD: clindamycin, E: erythromycin, 

OX: oxacillin. 
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The finding of the current study highlight the correlation between biofilm formation and AR, 

which supported by the results of meta-analysis study, that reported 82.35% of studies showed 

a positive correlation between biofilm and AR (Garousi et al., 2022). 

Our study found that amoxicillin-resistant strains were more likely to produce biofilm, 

consistent with previous studies by Qi et al., (2016); Kadhim and Jameel, (2024) indicating that 

amoxicillin-resistant strains were dependent on AR as biofilm-forming strains to survival. 

All strong biofilm producing isolates showed a high rate of resistance to cephalosporins, align 

with Folliero et al. who noted that all biofilm forming strains isolated from medical devices 

showed a high rate of resistance to cephalosporins, while the rate diminished to 50% in 

carbapenem, this also confirmed in Qi et al., who reported that biofilm-forming isolates were 

less frequently resistant to imipenem, indicating the efficacity and great effect of this antibiotics 

to treat biofilm forming and resistant pathogens. 

Strong biofilm forming strains showed a significant level of resistant against nalidixic acid, our 

findings are in agreement with a study in Uganda (Katongole et al., 2020), India (Karigoudar 

et al., 2019) and China (Sun et al., 2020), might be due to the introduction of quinolones as 

antibiotics of choice in human health treatment. 

Positive strong correlation was found between colistin-resistant strains and biofilm formation 

in our study; however, this align with a study found that 78% of colistin-resistant isolates were 

identified as strong biofilm producers (Ozer et al., 2019), this can be due to the exposition to 

colistin that can induce resistance mechanisms in bacteria and expression of more resistance 

genes, which lead to increased biofilm formation (Park et al., 2021).  

 

4.5.4 Comparison of biofilm production among resistant strains 

The table 21 presents a comparative evaluation of biofilm formation capabilities (weak, 

moderate and strong categories) measured as optical density (OD) and percentages across 

phenotypic groups, including R, MDR, XDR, MSSA, MRSA, CMLSB and IMLSB.  

 
Table 21.  Comparison in biofilm production capacity among different phenotypic resistance 

profiles. 

 Phenotypic profile 

R MDR XDR MSSA MRSA CMLSB IMLSB 

OD (mean ±SD) 0.11±0.07 0.12±0.1 0.16±0.25* 0.13±0.1 0.16±0.17* 0.17±0.08 0.21±0.16* 

Weak (%) 17.2 57.9 24.9 55.6 44.4 6.3 18.8 

Moderate (%) 19.4 54.2 26.4 0 100** 11.1 22.2 

Strong (%) 9.5 42.9 47.6** 40 60 20* 0 
*: statistical significance p˂0.05, **: statistical significance p˂0.001, R: strains that resist less than three classes of antibiotics, 

MDR: strains that resist three or more classes of antibiotics, XDR: strains susceptible to one or fwer classes of antibiotics, 
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MSSA: methicillin sensitive S. aureus, MRSA: Methicillin resistant S. aureus, CMLSB: Constitive Macrolide Lincosamide 

Streptogramine B resistant S. aureus, IMLSB: Inducible Macrolide Lincosamide Streptogramine B resistant S. aureus. 

 

Among resistance profile, the mean OD values reveal a significant difference, with the highest 

value recorded among XDR strains (p=0.032), the majority of biofilm forming strains were 

found in MDR and XDR groups, with XDR exhibited the highest percentage of strong biofilm 

producers (47.6%), significantly greater than other phenotypic groups. 

With S. aureus strains, MRSA showed a high mean OD (p=0.038) compared to MSSA strains. 

MSSA were predominant in weak biofilm formation (55.6%), while MRSA strains displayed a 

significant production of moderate and strong biofilms (p˂0.001). 

High capacity to produce biofilm was observed in IMLSB, which confirmed by a significant 

difference in OD mean compared with CMLSB (p=0.027); IMLSB stains demonstrated a high 

capacity to produce weak and moderate biofilms. In opposite, no strong production of biofilm 

was observed in IMLSB group; while CMLSB showed the high level (20%, p=0.017) of strong 

biofilm producers among MSLB isolates. 

 

The results of this study demonstrate a significant relationship between resistance phenotypes 

and biofilm production capabilities. Strains with more advanced resistance profiles, such as 

MDR and XDR exhibited high capacity to produce moderate and strong biofilms. These 

findings are consistent with previous studies by Karigoudar et al., (2019); Folliero et al., (2021) 

and Qian et al., (2022), who reported that MDR strains have greater capacity to moderate and 

strong biofilm production, due to the overexpression of resistance genes associated with biofilm 

production. 

Similarly, MRSA strains noticed the higher OD mean with maximum production of moderate 

and strong biofilms compared to MSSA in this study. This is in agreement with Omidi et al., 

2020; Taşkin Dalgiç et al., 2022 and Pokhrel et al., (2024), who highlighted MRSA as resistant-

strong biofilm forming isolate due to its isolation from clinical specimens.  

Gaire and colleges, (2021) found that MRSA produced more moderate biofilms than MSSA but 

strong production was found exclusively in MSSA. Biofilm production is influenced by various 

elements, including environmental conditions, nutrition availability, geographical origin, 

specimen kinds, surface adhesion properties, and the organism's genetic composition. 

In terms of MLSB resistance, CMLSB strains exhibited a greater propensity for strong biofilm 

formation compared to IMLSB strains, which primarily produced weak biofilms and moderate 

biofilms. This consistent with the studies of Manandhar et al., (2021) and Aniba et al., (2024) 

as their ability to grow in biofilms, these pathogens exhibited drug tolerance to broad-spectrum 
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of antibiotics. In contrast, IMLSB were identified as strong biofilm producers in the study by 

Mohamed et al., (2020).This disparity may be attributable to differences in the bacterial strains, 

strain origin and assay conditions. 

 

4.6 Characterization of the enzymatic activities 

The Data represented in chart 45 show the percentage of bacterial isolates produced the four 

enzymes: hemolysin, protease, lecithinase and lipase. Hemolysin activity had the highest 

production (55.5%, p=0.028) followed by protease production 47.3%, lecithinase and lipase 

activities (23.1% and 10%, respectively). 

Regarding the hemolysin activity, the majority of isolates were non-hemolysin producers 44.5% 

(p˂0.001) followed by β-hemolysin 28.9% and α-hemolysin 26.6%. A strong negative 

correlation was recorded in hemolysin and lecithinase production; a negative significance was 

showed also between protease activity and lecithinase and lipase production. 

 

 
Figure. 45 :  Percentage to bacterial isolate produced hemolysin, protease, lecithinase and lipase. 

(Comparison between positive and negative production was performed with *: statistical 

significance p˂0.05, **: statistical significance p˂0.001, positive comparison was found in 

hemolysin and negative comparison was found in lecithinase and lipase production). 

 

 

Virulence refers to the extent of pathogenicity demonstrated by various pathogens and serves 

as a criterion to distinguish between pathogenic and non-pathogenic strains. The degree of 



                       Results and discussion   

 91  

virulence depends on several virulence factors. In this study, the most notable finding was the 

production of hemolysin, observed in 55.5% of isolates. This rate aligns with the results 

reported by Fakruddin et al., (2013) study. Hemolytic expression is always connected to the 

expression of a key virulence factor. 

Meanwhile, the second highest virulence factor produced in pathogens was protease observed 

in 47.3% of isolates. Bacterial proteases are recognized as virulence factors in a number of 

infectious diseases due to their cell and tissue damaging effects, similar findings were reported 

in the study by Aqel et al., (2023).  

Low percentage of lecithinase production was reported in Dougnon et al., (2021) study. The 

lowest percentage of virulence factors in the current study was recorded at 23.1% and 10% for 

both lecithinase and lipase. The lecithinase is a type of enzyme called phospholipases, 

characterized by its ability to destroy tissues by breaking down the phosphoryl (lecithin) in the 

cell membrane. 

Similarly, the tested strains showed a reduced percentage of lipase production, which has a 

significant role in several biological processes, it catalyzes the hydrolysis of water-insoluble 

free fatty acid and glycerol. The results of our study are similar to those of (Ali et al., 2015), in 

which they found that the tested strains showed a production of 10.16% of lipase. 

4.6.1 Enzymatic activities among species 

The distribution of virulence factors production among species was evaluated and presented in 

chart 46, hemolysin production is prominently observed in the majority of GNB: E. cloacae, 

Enterobacter sp., E. coli, P. alcalifaciens, P. aeruginosa, K. pneumoniae, Enterococcus sp. and 

S. aureus. The protease production was found in higher levels in species like: P. stuartii, E. 

coli, M. morganii, S. marcescens, Staphylococcus sp. and S. aureus.  Lecithinase and lipase 

were exhibited in high levels by Enterobacter sp., E. coli, C. freundii, P. aeruginosa, all 

klebsiella species, S. aureus and CoNS. 
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Figure. 46 : The ability of bacterial isolates to produce virulence factors. 

 

It was found that K. pneumoniae produced hemolysin, lecithinase and lipase genes, while E. 

cloacae produced hemolysin, lipase and protease genes in Aldoori et al., (2020) study.  

K. pneumoniae in Truşcă et al., (2023) study was more likely to produce lecithinase and lipase, 

while P. aeruginosa showed high production of hemolysin, lecithinase and protease. 32% of E. 

coli exhibited hemolytic activity in Kumar M et al., (2022).  

P. aeruginosa presented as the highest lipase (69.23%) and protease (76.92%) producer, 

followed by S. aureus (lipase 62.16% and protease 70.27%) in Rahman et al., (2024) study, 

which is in agreement with our findings.  

The presence of several virulence factors in bacteria indicated distinct infection methods, 

potentially augmenting their capacity to induce diseases in humans and other organisms. 

4.7 Association between virulence factors and biofilm and resistance 

profiles 

The relationship between virulence factors tested: hemolysin, protease, lecithinase and lipase 

across resistance profile and biofilm production was presented in table 22. Statistical analysis 

showed strong positive correlation between lipase production and fosfomycin (p=0.01), a 

second correlation was observed in resistant-clindamycin isolates that produce more hemolysin 
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and lecithinase (p=0.044 and p=0.008, respectively), erythromycin resistant strains positively 

correlated with lecithinase production (p=0.023).  

The statistical analysis results were confirmed by the distribution of virulence factors 

production among different resistance profiles, where the highest production of hemolysin 

showed in XDR category (28.7%) compared with negative producers. MDR strains 

demonstrated a higher rate of protease production (61.6%) compared with negative ones, but 

lower level of production was observed among producer strains compared to positive strains. 

Lecithinase producers have similar XDR percentages (26.9%) to negative producers (25.9%), 

with slightly increased MDR levels in positive producers (60.2% vs. 54.7%). Regarding lipase 

production, MDR strains showed a high level of production 60% compared to non-producer 

strains (55.5%) (Tab. 22). 

Positive producers of hemolysin have a higher proportion of moderate (15.7%) and strong 

(5.8%) biofilm production compared to negative producers (20.7% and 4.5%, respectively), 

showing a link between hemolysin activity and biofilm formation. While, protease-producers 

demonstrated higher rates of strong biofilm production (6.3%) compared to negative producers 

(4.2%), also for moderate biofilm production (20.5% vs. 15.6%); reinforcing the role of 

protease in biofilm development. 

Similarly, lecithinase producers have a greater prevalence of strong biofilm production (6.5%) 

than negative producers (4.9%), moderate biofilm producers showed considerable level of 

lecithinase production compared with negative producers (20.4% vs. 17.2%). 

Lipase production showed the highest proportion of strong biofilm production (7.5%), with 

moderate biofilm rates (32.5%) also surpassing those of negative producers (16.3%). Among 

all enzymes, strong biofilm producers showed a high capability to produce different virulence 

factors, also for moderate biofilm producers, which showed a high rates of enzymes production 

expect for hemolysin. 

 

Table 22. Association between virulence factors, antimicrobial resistance profiles, and biofilm 

production in bacterial isolates.  

VF 
Resistance profile Biofilm production 

R MDR XDR Negative Weak Moderate Strong 

Hemolysin N (%) 16.8 60.3 22.9 11.7 63.1 20.7 4.5 

P (%) 18.8 52.5 28.7 12.1 66.4 15.7 5.8 

Protease N (%) 20.3 50.9 28.8 13.7 66.5 15.6 4.2 

P (%) 15.3 61.6 23.2 10 63.2 20.5 6.3 

Lecithinase N (%) 19.4 54.7 25.9 12.3 65.7 17.2 4.9 

P (%) 12.9 60.2 26.9 10.8 62.4 20.4 6.5 
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Lipase N (%) 18 55.5 26.5 12.7 66 16.3 5 

P (%) 17.5 60 22.5 5 55 32.5 7.5 

VF: virulence factors, N: negative production, P: positive production, R: strains that resist less than three classes of 

antibiotics, MDR: strains that resist three or more classes of antibiotics, XDR: strains susceptible to one or fwer classes of 

antibiotics 

 

The production of hemolysin, protease, lecithinase and lipase was correlated with higher levels 

of AR, particularly with MDR and XDR profiles, these findings align with studies like those of 

Dhahir and Mutter, (2023) which demonstrated that AR profiles had strong correlation with 

virulence factors. Similarly, Gunjal and Gunjal, (2024) noted that hemolysin-positive E. coli 

strains exhibited higher MDR rates (93.55%), comparable to positive- hemolysin in non-MDR 

strains (6.45%).  

Hemolysin and protease production was higher in MDR and XDR P. mirabilis isolates 

compared to non-MDR strains in Elhoshi et al., (2023); the same for MDR P. aeruginosa, 

which showed an increased protease production compared with susceptible P. aeruginosa (Naik 

et al., 2021)  

However, lecithinase production was significatively higher in MDR P. aeruginosa compared 

to non-MDR strains in Ghanem et al., (2023) study. Lipase and protease-producing bacteria 

revealed higher resistance to selected antibiotics than non-producers in Rahman et al., (2024) 

study. A significant association was found in XDR profile of P. aeruginosa and the production 

of virulence factors in Truşcă et al., (2023). 

Our data showed that positive virulence factors production correlated with enhanced biofilm 

production, with lipase-positive strains showed the highest proportion of strong biofilm 

producers (7.5%). This observation is consistent with findings by Şahin, (2019) which 

highlighted the presence of evident relationship between biofilm formation with lipase activity 

among S. aureus. These results suggest that the formation of lipase and biofilm, may function 

together in pathogenic strains. 

 

4.8 Molecular detection of β-lactamase encoding genes 

Phenotypic analysis of β-lactamase producing strains reveals that a total of 182 strains were 

screened as positive β-lactamase-producing strains, with 32.6% presented ESBL phenotype and 

12.7% were cefoxitin screened positive (AmpC). Similar rates were found in Mozambique, 

where 32.6% were ESBL strains and 10.8% were AmpC strains (Estaleva et al., 2021). The 
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prevalence of ESBL in Sri Lanka was reported at 36.2% (Kumudunie et al., 2020) while the 

prevalence of AmpC in Nepal was 12.6% (Dhungana et al., 2019), in Algeria the rate was 

ranged between 23% to 55% (Benyagoub et al., 2021). This wide variation might be due to 

differences in study population, type of specimen, sample size and the extent of antibiotic use. 

There was a statistically significant agreement between phenotypic and genotypic results in the 

detection of β-lactamase producing strains (p<0.001). The overall prevalence rates of β-

lactamase producing strains in our study was as follows: out of 124 (68.1%) positive-PCR 

isolates, the majority were E. coli strains with a percentage of 55.6% (p<0.001) followed by 

Klebsiella species (12.9%), Enterobacter spp. (9.7%) and Staphylococcus species (8.9%). This 

distribution of strains was found in urine (78.2%) while 12.1% of positive β-lactamase 

producing strains were found in pus, and 5.6% in different medical devices. 

 

Out of 182 positive screened strains, and among 65.9% of isolates confirmed as ESBL strains, 

blaTEM was the most prevalent gene, detected in nearly 53.8% of the isolates, followed by blaSHV 

with a detection rate of around 15.9%. The blaCTX-M II, blaOXA and blaCTX-M I were detected at 

similar levels (9.9%, 9.3% and 8.8%, respectively), while the lowest rate was recorded for 

blaCTX-M IV (6.6%). blaCMY II was the most frequent AmpC detected gene (10.4%) followed by 

blaDHA (7.1%) in total of 17% confirmed as positive producing AmpC isolates (Fig. 47). 
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Figure. 47 : Prevalence of detected β-lactamase genes among isolates. 

 

 

The dominance of blaTEM as ESBL gene was reported in several studies, first of all in Algeria 

(Yahiaoui et al., 2015) and it was the major ESBL gene observed in Hadizadeh et al., (2017) 

study. In a study on 4083 clinical isolates by Armin et al., (2020) blaTEM was the most common 

ESBL gene found in phenotypic positive strains (255/4083). The blaTEM gene was most detected 

in 42% of isolates in Abdar et al., (2019) study, the prevalent ESBL genotype of blaTEM was 

(55%, 86%) in Ugbo et al., (2020) and Dirar et al., (2020) studies respectively. TEM and SHV 

types have mostly been found in clinical samples conferring AR (Aabed et al., 2021). The 

prevalence of plasmid mediated AmpC genes was previously reported in Algeria with a rate of 

29.4% (Bougouizi et al., 2024), 5.71% (Khaldi et al., 2022). The blaCMY II was the most AmpC 

prevalent gene in Algeria (1.6%) (Iabadene et al., 2009), as well as in Iran (47.4%) (Fallah et 

al., 2020) in Egypt (32%%) and in Nigeria (Onanuga et al., 2019).  

In all screened strains, the majority of positive phenotypic ESBL and AmpC recorded the 

absence of β-lactamase genes (34.1% and 83% for ESBL and AmpC, respectively). 37.4% of 

ESBL strains expressed the genotype by one ESBL gene, 20.9% by two genes, 10% by three 

genes and only 2.2% expressed the ESBL genotype by four bla genes, 16.5% of positive 

screened confirmed the AmpC phenotype by one gene (Tab. 23). blaTEM /blaCTX-M II was the most 

prevalent combination in ESBL genotype (17.3%) followed by blaTEM /blaSHV and blaTEM 

/blaCTX-M I (15.4% for both) and blaTEM /blaCTX-M IV (9.6%). 13.7% of screened isolates presented 

ESBL/AmpC genotype. 

Table 23.  Prevalence of different genotype. 

Genotype n (%) Genotype n % 

No ESBL gene 62 34.1 Four ESBL gene 4 2.2 

One ESBL gene 68 37.4 No AmpC gene 151 83 

Two ESBL genes 38 20.9 One AmpC gene 30 16.5 

Three ESBL genes 10 5.5 Two AmpC genes 1 0.5 

 

The most common ESBL-encoding gene combination identified in this study was blaTEM /blaCTX 

M I, our findings are comparable with those in India reported a predominance of the combination 

blaTEM /blaCTX M I (22.72%) (Khan et al., 2019) as well as in Nigeria, where it was reported at 

20.8% among UPEC isolates (Adekanmbi et al., 2020).  

An important observation is that many positive ESBL strains were also AmpC positive, this 

was in accordance with Khalifa et al., (2021) study. The presence of more than one genotype 

in some of the isolates means that the ESBL producing strains may be related to a complex 
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antimicrobial resistance. TEM gene is a broad spectrum β-lactamase that is always combined 

with CTX-M on the same plasmid (Elsafi, 2020).  

4.8.1 Distribution of β-lactamase genes among specimens and species 

The bar chart in figure 48 represents the prevalence of β-lactamase genes across different 

clinical specimens; blaTEM was the most prevalent gene across all sources, it dominated in blood, 

urine, vaginal swabs and pus, confirming its widespread presence in various infections.  

 

blaSHV and blaCTX-M genes are distributed across multiple sources, blaSHV appeared notably in 

pus, vaginal swabs, and medical devices, while blaCTX-M I and blaCTX-M II were detected in urine, 

pus, and vaginal swabs, suggesting their role in UTIs and gynecological infections. The blaOXA 

was significantly present in urine, pus, and medical devices. On other hand, blaCMY II and blaDHA 

detected at lower levels, especially in urine and pus. 

 
Figure. 48 : Prevalence of β-lactamase genes based on clinical specimens. 

 

The widespread presence of the blaTEM gene across different infection types with coexistence 

of other β-lactamase genes have reported in several studies, it’s the most frequented gene across 

all the type of isolates (sputum, urine, wound, blood, tracheal aspirate and eye swab) while 

blaCTX-M was found among wound, sputum, blood and urine in Saudi Arabia (Ibrahim et al., 

2021).  
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The table 24 illustrate the distribution of β-lactamase genes among bacterial isolates, regarding 

ESBL encoding genes: blaCTX-M gene types were most frequently found in E. coli and Klebsiella 

species especially blaCTX-M IV and blaCTX-M I. Citrobacter and Enterococcus species showed a 

considerable rate of blaCTX-M IV production (8.3%). A strong positive correlation was found 

between blaTEM and E. coli (p˂0.001), with E. coli being the predominant producer (60.2%). 

Enterobacter and Klebsiella species exhibited similar production levels of blaTEM (10.2% each), 

followed by Staphylococcus spp. (9.2%). Similar levels were recorded in blaOXA case. blaSHV is 

highly characterized of Klebsiella spp. (34.5%) compared with other species, followed by E. 

coli (31%) and P. aeruginosa (10.3%). 

AmpC β-lactamase genes were predominantly detected in E. coli (57.9% for blaCMY II, 61.5% 

for blaDHA). Enterobacter spp. and Klebsiella spp. displayed moderate prevalence of blaCMY II 

(21.1% and 10.5%, respectively) and blaDHA (7.7% and 15.4%, respectively). Interestingly, P. 

mirabilis, P. aeruginosa, and Acinetobacter spp. exhibited minimal AmpC gene presence, by 

P. mirabilis and Acinetobacter spp. produced 5.3% of blaCMY II, while Citrobacter and 

Acinetobacter species produced 7.7% of blaDHA. 

Table 24. Prevalence of β-lactamase genes among bacterial isolates. 

Species 

β-lactamase genes n (%) 

ESBL genes AmpC genes 

blaCTX-M IV blaTEM blaOXA blaSHV blaCTX-M I blaCTX-M II blaCMY II blaDHA 

E. coli 5 (41.7) 59 (60.2) 7 (41.2) 9 (31) 11 (68.8) 9 (50) 11 (57.9) 8 (61.5) 

Enterobacter spp. 2 (16.7) 10 (10.2) 2 (11.8) 2 (6.9) 1 (6.3) 5 (27.8) 4 (21.1) 1 (7.7) 

Klebsiella spp. 3 (25) 10 (10.2) 5 (29.4) 10 (34.5) 2 (12.5) 2 (11.1) 2 (10.5) 2 (15.4) 

P. mirabilis 0 3 (3.1) 1 (5.9) 2 (6.2) 0 1 (5.6) 1 (5.3) 0 

P. aeruginosa 0 4 (4.1) 0 3 (10.3) 0 0 0 0 

Staphylococcus spp. 0 9 (9.2) 1 (5.9) 2 (6.9) 1 (6.3) 1 (5.6) 0 0 

Citrobacter spp. 1 (8.3) 1 (1) 0 0 0 0 0 1 (7.7) 

Acinetobacter spp. 0 1 (1) 1 (5.9) 1 (3.4) 1 (6.3) 0 1 (5.3) 1 (7.7) 

Streptococcus spp. 0 1 (1) 0 0 0 0 0 0 

Enterococcus spp. 1 (8.3) 0 0 0 0 0 0 0 

S. marcescens 0 0 0 0 0 0 0 0 

 

ESBL and AmpC β-lactamases are the prevalent enzymes generated by GNB, which are their 

principal mechanisms of resistance to all generations of cephalosporins (Tekele et al., 
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2020).The analyze of ESBL-encoding genes indicated that ESBL production in E. coli, P. 

mirabilis, Enterobacter spp., Staphylococcus spp. and Citrobacter spp. was harbored by blaTEM  

(Ojdana et al., 2014; Hadizadeh et al., 2017; Pishtiwan and Khalil Mustafa, 2019; Hosu et al., 

2021; Ibrahim et al., 2021; Aso Bakr and Khanda Abdullateef, 2022; Dong et al., 2023).  

The blaTEM was the most ESBL gene detected in E. coli, Klebsiella species, P. mirabilis and 

Enterobacter species in Algeria, Sudan and Sri Lanka (Yahiaoui et al., 2015; Perera et al., 2022; 

Dirar et al., 2020), which were in accordance with our findings.  

SHV ESBL-type was most prevalent in Klebsiella spp., this dominance was supported by 

several researches: it was the most detected gene among Klebsiella species in Algeria (Yaici et 

al., 2017) and seven countries: United States, Taiwan, Australia, South Africa, Turkey, 

Belgium, and Argentina, documented by Paterson et al., (2003) and in India (Ahmed et al., 

2014) indicating its role in pathogenicity and resistance of Klebsiella species in hospital and 

community settings.  

Previous study reported that blaCMY II was the most common AmpC encoding gene found in E. 

coli, P. mirabilis and Enterobacter spp., in Iran (Fallah et al., 2020; Rizi et al., 2020) and in 

Algeria (Iabadene et al., 2009). 

4.8.2 Correlation of β-lactamase genes with antibiotic resistance 

The correlation between the distribution of β-lactamase genes and AR with comparison of most 

significant resistance rate was showed in figure 49. The presence of bla genes allowed the 

differentiation of three genotypes: ESBL genotype (possessed ESBL gene), AmpC genotype 

(possessed AmpC gene) and ESBL/AmpC genotype (presence of both ESBL and AmpC genes). 

The three genotype profiles showed high resistance to amoxicillin, ticarcillin, ticarcillin + 

clavulanic acid and imipenem, with ESBL/AmpC being the dominant profile (100% for both 

AX and TC, 85,7% for TCC).  

In case of cephalosporins, ESBL/AmpC profile showed a high resistance level for first and 

second generation cephalosporins (cefalexin and cefoxitin) also for ceftazidime, cefotaxime 

and cefepime compared with ESBL and AmpC profiles (78.6%, 64.3%, 60.7%, 57.1% and 

78.6%, respectively), while AmpC profile had a great resistance for cefixime (75%), but in 

contrast cefotaxime and cefepime have the best effect on this category with 0% resistance rate.  
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For β-lactams combined with an inhibitor, the resistance rate decreased with the addition 

of clavulanic acid. Specifically, the resistance rates against amoxicillin were 87.8% for ESBL 

producers, 75% for AmpC producers, and 100% for ESBL/AmpC co-producers. However, with 

the administration of clavulanic acid, these rates dropped to 61.1% for ESBL producers, 50% 

for AmpC producers, and 85.7% for ESBL/AmpC co-producers. And it was 77.8%, 50% and 

100% respectively against ticarcillin, to become 68.9%, 50% and 85.7% in the presence of 

clavulanic acid. On the other hand, the tazobactam inhibitor demonstrated the most significant 

impact, reducing the resistance rate by approximately 50% (Fig. 49). 

AmpC genes harboring strains showed a high resistance level for monobactam (75%) followed 

by ESBL/AmpC profile (51.7%). The efficacity of aminoglycosides family showed in 

gentamycin for AmpC genes harboring isolates (0%) and amikacin for ESBL/AmpC positive 

strains (14.3%) while for ESBL genes harboring isolates similar rates were observed (23.3% to 

25.6%). ESBL strains had significant resistance to both colistin and fosfomycin and the 

combination trimethoprim/sulfamethoxazole with levofloxacin had the maximal impact (4.4%). 

 

Figure. 49 : Relationship between antibiotic resistance and β-lactamase production (* 

significant: p < 0.05, ** significant: p < 0.01). 

 

Our results reveals that the ESBL/AmpC profile was the most dominant, exhibiting high 

resistance rates to β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems. 
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These findings align with previous studies reporting the broad-spectrum resistance conferred 

by the co-occurrence of ESBL and AmpC genes (Lee et al., 2020; Marzah et al., 2024). 

In contrast, the AmpC profile exhibited lower resistance to certain cephalosporins, such 

as cefotaxime and cefepime, with a resistance rate of 0%. These findings align with previous 

studies in Malaysia, where AmpC-positive strains also demonstrated reduced resistance to 

cefotaxime (Mohd Khari et al., 2016).  

Similarly, Hoellinger et al., (2023) confirmed in their study that cefepime was more effective 

against AmpC-producing Enterobacterales compared to carbapenems. Additionally, high 

sensitivity to cefotaxime was observed in AmpC-producing K. pneumoniae in Taiwan (Lin et 

al., 2016). 

ESBL profile displayed resistance to several classes of antibiotics with moderate resistance 

rates to aminoglycosides. These results are congruent with several studies reported that ESBL 

producing bacteria showed a resistance to several antibiotics: aminoglycoside, fluoroquinolone, 

tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole (Nasehi et al., 2010; 

Hadizadeh et al., 2017; Wibisono et al., 2020; Mirkalantari et al., 2020; Ibrahim et al., 2021; 

Habibzadeh et al., 2022). 

The addition of β-lactamase inhibitors, such as clavulanic acid and tazobactam, significantly 

reduced resistance rates, with tazobactam showed the most pronounced effect (≈50% 

reduction). Same results were reported in Sadeghi et al., (2022) study, where the resistance rate 

in ESBL E. coli was reduced from 69.7% in amoxicillin to 40.8% in amoxicillin + clavulanic 

acid.  

Lower resistance rates were observed for amoxicillin + clavulanic acid and piperacillin + 

tazobactam in ESBL/AmpC Klebsiella species (5.2% and 18.5%, respectively) in  (Watanabe 

et al., 2024) study. All these results confirm that the use of tazobactam or clavulanic acid in 

conjunction with β-lactams leads to a notable decrease in resistance rates. 

4.8.3 Association between β-lactamase genes and virulence factors 

The correlation between the prevalence of β-lactamase genes with virulence factors was 

presented in table 25. Weak biofilm formation was predominant across all bla genes, ranging 

from 58.3% (blaCTX-M IV) to 94.4% (blaCTX-M II). The highest weak biofilm percentage is seen in 

blaCTX-M II (94.4%), moderate biofilm formation was generally low, with the highest percentage 
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in blaCTX-M I (18.7%), while blaCTX-M II and blaCMY II showed no moderate biofilm formation at 

all. Positive strong association was found in biofilm formation and blaTEM (p=0.049) with 

blaTEM being the only gene with any significant presence (2%). Regarding odds ratio, blaCTX-M 

II (OR = 2.8) has the strongest association with weak biofilm formation, blaOXA (OR = 2.6) and 

blaSHV (OR = 2.3) also show potential positive associations. 

Non-hemolysin production (γ-hemolysin) was the most prevalent hemolysin type across all 

strains, particularly associated with strains carrying the blaDHA gene (84.6%). α-hemolysin 

ranging from 6.2% (blaCTX-M I) to 29.4% (blaOXA). While for β-hemolysin, blaCTX-M I positive 

isolates were the most produced strains (43.8%), blaOXA showed the highest OR for α and β-

hemolysin (1.2). blaDHA show the lowest OR (0.1), with very low 95% CI (0.03-0.6).  

Protease activity is an important virulence factor influencing bacterial pathogenicity. Protease-

positive isolates was most frequent in blaSHV (69%) followed by blaOXA (64.7%) and blaCTX-M IV 

(58.3%), blaCTX-M I has the lowest proportion of protease-positive isolates (25%). The blaSHV 

has the highest OR (2.9), indicating a strong positive association with protease production. 

Lecithinase activity is generally low across all groups.  However, the blaOXA gene was detected 

in 23.6% of cases, and the blaSHV gene in 20.7% of cases, showing the highest positivity rates 

among the tested groups. Lipase activity followed a similar trend, with low positivity across all 

genes, the highest frequency was in blaOXA (17.6%). 

Table 25. Association between β-lactamase genes and virulence factors in bacterial isolates. 

VF 
% 

blaCTX-M IV blaTEM blaOXA blaSHV blaCTX-M I blaCTX-M II blaCMY II blaDHA 

B
io

fi
lm

 

Negative 25 11.2 5.9 6.9 12.5 5.6 10.5 7.7 

Weak 58.3 78.6 88.2 75.9 68.8 94.4 89.5 84.6 

Moderate 16.7 8.2 5.9 17.2 18.7 0 0 7.7 

Strong 0 2 0 0 0 0 0 0 

OR 0.4 1.4 2.6 2.3 1.1 2.8 1.3 1.9 

95% IC 0.1-1.7 0.6-3.4 0.3-20.5 0.5-10.2 0.2-5 0.3-21.9 0.3-6.1 0.2-15.2 

H
em

o
ly

si
n

 γ-hemolysin 50 51 41.2 51.7 50 55.5 52.6 84.6 

α-hemolysin 25 16.3 29.4 27.6 6.2 27.8 26.3 7.7 

β-hemolysin 25 32.7 29.4 20.7 43.8 16.7 21.1 7.7 

OR 0.8 0.6 1.2 0.7 0.8 0.6 0.7 0.1 

95% IC 0.2-2.5 0.3-1 0.4-3.2 0.3-1.6 0.3-2.2 0.2-1.6 0.3-1.8 0.03-0.6 

P
ro

te
a

se
 Negative 41.7 59.2 35.3 31 75 66.7 63.2 61.5 

Positive 58.3 40.8 64.7 69 25 33.3 36.8 38.5 

OR 1.6 0.5 2.1 2.9 0.3 0.5 0.6 0.7 

95% IC 0.5-5.2 0.3-1 0.8-6.1 1.2-6.7 0.1-1.1 0.2-1.4 0.2-1.6 0.2-2.1 

L ec it h
i n a
s e Negative 100 85.7 76.7 79.3 87.5 94.4 94.7 84.6 
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Positive 0 14.3 23.6 20.7 12.5 5.6 5.3 15.4 

OR 0.9 0.3 1 0.8 0.4 0.2 0.2 0.6 

95% IC 0.9-1 0.2-0.7 0.3-3.2 0.3-2.2 0.1-2 0.02-1.3 0.02-1.2 0.1-2.7 

L
ip

a
se

 Negative 100 91.8 82.4 96.6 93.8 94.4 94.7 92.3 

Positive 0 8.2 17.6 3.4 6.2 5.6 5.3 7.7 

OR 0.9 0.4 1.4 0.2 0.4 0.3 0.3 0.5 

95% IC 0.9-1 0.1-0.9 0.4-5.2 0.03-1.5 0.05-3.1 0.04-2.7 0.04-2.5 0.06-4.1 

OR: odds ratio, CI: Confidence interval (OD ranged between: OR=0, OR˃1 and OR˂1).  

The results of our study identified that 86.8% of bla genes harboring isolates produce biofilm, 

Subramanian et al., (2012) found that ESBL producing isolates had a higher ability to form 

biofilm in comparison with non-ESBL isolates; a similar association was found in Neupane et 

al., (2016) study, where E. coli ESBL strains had more ability to produce biofilm that non-

ESBL strains.  

Meta-analysis study conducted by Keikha and Karbalaei in (2023) demonstrated that ESBL 

producing clinical isolates have more potential capacity to produce biofilm comparing with non 

ESBL stains. In Maheshwari et al. in (2016) study also, ESBL producing bacteria exhibited 

varying levels of biofilm formation.  

Positive correlation was detected between the presence of blaCTX-M I, blaCTX M II, blaSHV, blaOXA 

and blaTEM with biofilm production ability in our study, a significant correlation between blaCTX 

and blaSHV β-lactamase type and biofilm producing in K. pneumoniae was confirmed in Hamam 

et al., (2019) study. Giedraitiene et al., (2022) confirmed also the association between blaCTX M 

β-lactamase type and biofilm formation. Heydari and Eftekhar, (2015) confirmed that there was 

an association between the presence of two or three β-lactamases genes and strong biofilms in 

P. aeruginosa. 

β-lactamases P. mirabilis were statistically better expressed in biofilm formation in Nucleo et 

al., (2010) study. Biofilms are known to protect bacteria from antibiotics and immune 

responses, contributing to chronic and recurrent infections. The strong association between bla 

genes and biofilm activity suggests that these genes may be critical in promoting biofilm-related 

pathogenicity because these biofilms provide a favorable environment for the exchange of 

virulence factors and resistance genes, and the simultaneous expression of several virulence 

genes may promote the creation of new resistance determinants, aggravating the control and 

treatment of bacterial infection disease (Subramanian et al., 2012; Maheshwari et al., 2016; 

Surgers et al., 2019). 
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Among all examined strains, 55.5% of β-lactamase producing isolates demonstrated hemolytic 

activity. Our results were higher comparing to findings of Lopes et al., (2018) study in Brazil 

(44.9%) and of Al Zoubi et al., (2020) in the USA, where only 24.5% of the ESBL-generating 

isolates exhibited hemolytic activity. Sample size, isolate source and geographical location can 

explain this difference.  

Our findings demonstrated a significant positive correlation in blaCTX-M I, blaTEM and blaOXA 

positive strains, with blaOXA harboring strains exhibited the highest odds ratio for the presence 

of hemolysin enzyme. These results were confirmed in Abd El-Baky et al., (2020) study, which 

found that blaCTX M IV showed a significant positive association with hlyA (hemolysin gene) in 

uropathogenic E. coli, blaOXA also associated with hlyA in E. coli isolated from wound samples. 

A study by Escudeiro et al., (2019) confirmed that there are an association between AR genes 

and virulence genes in bacterial clones, a positive strong correlation was observed between the 

acquisition of new AR genes and new virulence genes. The widespread of virulence factors in 

association with resistance genes can be explained by the acquisition of hybrid plasmids that 

carry virulence genes in association with AR genes, and the selection of these plasmids by the 

antibiotics result to the selection of some virulence characteristics (Shankar et al., 2022). 

Protease significantly contributes to host immune evasion, invasiveness, and tissue damage. it 

was observed in 47.8% of screened isolates in our study. 60.7% of ESBL K. pneumoniae 

produced protease enzyme in Mirbag et al., (2024), protease gene was found in association with 

blaTEM, blaSHV and blaCTX-M type in K. pneumoniae isolates (Ndiaye et al., 2023). 

4.9 Phylogenetic grouping of E. coli strains 

The strain E. coli, GNB frequently located in the gastrointestinal tract of humans and several 

animals (Bozorgomid et al., 2023) and one of the most important and prevalent species of the 

Escherichia genus in veterinary and medicinal contexts, accounting for around 80–90% of 

infections (Bozorgomid et al., 2023). 

Among all identified E. coli, 86 imipenem-resistant E. coli were selected to phylogenetic 

grouping and quinolones detection. The eighty-six unique strains of E. coli were isolated only 

from urine specimens (UPEC), from both hospitalized and non-hospitalized patients of all age 

groups with a diagnosis of UTI. 



                       Results and discussion   

 105  

Based on the quadruplex PCR assay, phylogenetic analysis of E. coli isolates showed that they 

mainly belonged to phylogroup B2 (48.9%) and E (22.1%) (statistically significant, p<0.0001), 

unknown group were also prevalent with a great frequency (12.8%), the other phylogroups were 

prevalent as followed: A (8.1%), B1 (4.7%), and D, Clade I, Clade I or Clade II (1.2% for each 

one), no strain belonging to the phylogroup F was found (Fig. 50). However, the statistical 

analyses did not reveal any significant correlation between the gender, the age of the patient, 

and the phylogenetic groups (p=0.578 and 0.171, respectively). 

       
Figure. 50 : Distribution of the seven phylogenetic groups (A, B1, B2, D, E, Unknown, Clade I, and 

Clade I or Clade II). 

 

 

Most strains causing extraintestinal infections are predominantly categorized into B2 and D 

groups (Halaji et al., 2022), while commensal isolates are categorized into groups A and B1 

(Saralaya et al., 2015). Our findings align with numerous studies that have identified B2 group 

strains as the dominant type in UTIs. In Iraq and from 150 urine strains, 58% belonged to 

phylogroup B2 followed by phylogroup A (22%) (Mohammed et al., 2022). In a study on 105 

E. coli isolates from Slovenian patients with bacteremia of urinary tract origin showed that 51% 

belonged to group B2, 20% to group D, 15% to group A, and 13% to the B1 group (Rijavec et 

al., 2008).  

Another study on 190 urinary E. coli isolates in Colombia showed that 46.8% of the isolates 

belonged to group B2 (Baldiris-Avila et al., 2020). In a study on 228 UPEC in Egypt, 64.6% of 
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the isolates belonged to phylogroup B2 (Elsayed Gawad et al., 2018). Similarly in a study on 

113 UPEC isolates in Iran, 44.2% of the strains were classified into group B2, 31% into group 

D, 20.4% into group A, and 4.4% into group B1 (Bakhtiari et al., 2020).  

Similarly, studies in Uganda (Katongole et al., 2020), South Africa (Alfinete et al., 2022), Iraq 

(Allami et al., 2022), India (Agarwal et al., 2013; Saralaya et al., 2015), Iran (Moez et al., 2020) 

and Egypt (Hassuna et al., 2020; Farahat et al., 2021), demonstrated that most UPEC isolates 

from UTIs belonged to the B2 group.  

Among E. coli phylogenetic groups, the B2 phylogroup is believed to be more important than 

others. This phylogroup is associated with a high evolution of virulence capacity and 

characteristics, which may cause the spread and persistence of extraintestinal infections 

representing, therefore, a major public health concern (Mansouri et al., 2022; Hogins et al., 

2023). 

Our methodology did not allow the classification of a minor percentage of E. coli isolates 

(12.8%). This latter result can be dependent on the recombination of different or rare 

phylogroups resulting from the combination of the presence and absence of certain genes, as 

suggested by Boroumand et al., (2021). Phylogenetic group E also had a high prevalence among 

our strains, as found in a very recent study (Gunathilaka et al., 2024). However, it should be 

noted that variations in the source of bacterial isolation, host health state, geographic locations, 

and genetic variables can affect the distributions and proportions of phylogenetic groupings. 

 

4.9.1 Correlation of phylogenetic groups with antibiotic resistance and virulence 

factors 

The correlation between phylogenetic groups and AR was illustrated in figure 51, with the most 

significatively higher sensitivity profile (resistance, sensible and intermediate) was presented 

in the graph. The 86 E. coli isolates showed different resistance profiles. Apart from the 

resistance to imipenem, the highest resistance percentage was significantly (p<0.0001) 

observed against β-lactam antibiotics: amoxicillin (86%) and ticarcillin (82.6%), followed by 

piperacillin (73.3%). The association of the β-lactamase inhibitor tazobactam significantly 

reduced the resistance to piperacillin from 73% to 19%. However, the addition of the β-

lactamase inhibitor: clavulanic acid did not significantly reduce the resistant strains to 
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amoxicillin (from 86% for amoxicillin to 62% for amoxicillin + clavulanic acid) and ticarcillin 

(from 83% for ticarcillin to 76% for ticarcillin + clavulanic acid).  

The lowest percentage of resistance was exhibited towards cephalosporin antibiotics (19.8-

38.4%). However, almost all isolates were resistant to nitrofurantoin (84.9%) and 

trimethoprim/sulfamethoxazole (51.2%). The resistance rate of isolates against fosfomycin was 

27.9% and to colistin 38.4%, and lower percentages of nalidixic acid (37.2%), ofloxacin (36%), 

aztreonam (31.4%) and ciprofloxacin (32.6%) resistant strains were found. Most of isolates 

were susceptible to chloramphenicol, gentamycin, amikacin, and tobramycin (86.1%, 81.4%, 

83.7%, and 76.8%, respectively).  

 

 
Figure. 51 : Antibiotic resistance profile of E. coli isolates (*: p˂0.05; **: p<0.01; ***: p<0.0001; 

ND: non detected).  

 

 

Our study was focused on imipenem-resistant E. coli, since carbapenems are frequently used in 

hospital setting as first line drugs in the empirical treatment of several bacterial infections in 

Algeria, the 86 imipenem-resistant isolates displayed a high percentage of resistance to 

penicillins, similar to other studies in Uganda and Mongolia, respectively (Kabugo et al., 2017; 

Munkhdelger et al., 2017). Nitrofurantoin and trimethoprim/sulfamethoxazole are 

recommended as the first-line therapy, while β-lactams and fluoroquinolones are used as 

alternative agents in UTI therapy (Tewawong et al., 2020; Zhou et al., 2023), this justifies the 

maximum rates observed against these antibiotics.  
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The evidence that a lower percentage of isolates was resistant to aminoglycosides (16.2-23.6%), 

as reported in other studies (Naziri et al., 2020), carried out in Iran (16.7% and 21.8%) could 

be explained by the limited use of this antibiotic in UTI treatment in developing countries. 

These results indicate a worrying trend of increased resistance to first-line treatments. 

 

Furthermore, 70% and 23% of the examined strains were MDR and XDR strains, respectively. 

The prevalence of MDR and XDR strains was very significant (p<0.0001) in the adult group. 

According to phylogenetic groups, the prevalence of MDR strains was higher in phylogroup 

B1, unknown, and E. In contrast, only a few strains (7%) were resistant to less than three classes 

of antibiotics (Tab. 26). 

 

Table 26. Distribution of phenotypic resistance profiles and association with gender, age, clinical 

status, phylogroups, ESBL production, and hemolytic activity. 

 R (n=6, 7%) MDR (n=60, 70%) XDR (n= 20, 23%) Total (n=86,100%)  

Gender         

M 3 (3%) 26 (30%) 6 (7%) 35 (41%) 

F 3 (3%) 34 (40%) 14 (16%) 51 (59%) 

Age         

Adulte 3 (3%) 37 (43%) 16 (19%) 56 (65%) 

Children 2 (2%) 18 (21%) 2 (2%) 22 (26%) 

Elderly  1 (1%) 5 (6%) 2 (2%) 8 (9%) 

Clinical statuts         

In Patient 0 10 (11%) 1 (1%) 11 (13%) 

Out-Patient 6 (7%) 50 (58%) 19 (21%) 75 (87%) 

Phylogroups         

A 1 (1%) 4 (5%) 2 (2%) 7 (8%) 

B1 0 4 (5%) 0 4 (5%) 

B2 4 (5%) 27 (31%) 11 (13%) 42 (49%) 

Clade I 0 0 1 1 (1%) 

Clade I or II 0 1 (1%) 0 1 (1%) 

D 0 1 (1%) 0 1 (1%) 

E 0 14 (16%) 5 (6%) 19 (22%) 

Unknown 1 (1%) 9 (10%) 1 (1%) 11 (13%) 

ESBL production         

No 5 (6%) 33 (38%) 6 (7%) 44 (51%) 

Yes 1 (1%) 27 (31%) 14 (16%) 42 (49%) 

Hemolysin activity         

γ-hemolysin 2 (2%) 32 (37%) 8 (9%) 42 (49%) 

α-hemolysin 1 (1%) 9 (10%) 9 (10%) 19 (22%) 

β-hemolysin 3 (3%) 19 (22%) 3 (3%) 25 (29%) 

R: strains that resist less than three classes of antibiotics, MDR: strains that resist three or more 

classes of antibiotics, XDR: strains susceptible to one or fwer classes of antibiotics 

The production of ESBL was one of the main mechanisms by which bacteria resist to 

antibiotics. Out of the isolates tested, 49% were found to be ESBL positive while 51% were 
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ESBL negative (Tab. 26). However, most of the strains tested did not present hemolytic activity 

(49%) while others showed α-hemolysin (22%) and β-hemolysin activity (29%). ESBL 

producing isolates and also strains that produced hemolysin (57.89% for α-hemolysin, and 48% 

for β-hemolysin) were preferentially observed in phylogenetic group B2 more than the other 

phylogroups. 

Our finding is consistent with several studies (Boroumand et al., 2021; Halaji et al., 2022) 

confirmed that B2 groups were more resistant than the other phylogenetic groups. This can be 

explained by the fact that this phylogroup has a greater ability to exhibit characteristics 

associated with AR (AR genes), the coexistence of some virulence factors, followed by the 

acquisition of resistance (Rijavec et al., 2008). Conversely, numerous investigations have 

demonstrated that phylogroup B2 is more vulnerable than the others (Iran, Taiwan) (Norouzian 

et al., 2019; Wang et al., 2023). Social and environmental conditions and the therapy profile of 

patients may explain this difference.  

Most of our B2 strains were ESBL and MDR, similar to studies conducted in Egypt and Sri 

Lanka, featuring 65.17% and 60.3% of MDR strains, respectively (Kadry et al., 2020; 

Gunathilaka et al., 2024). In Kenya, where the most of ESBL strains belonged to B2 group 

(Muriuki et al., 2022), this high similarity in percentage of MDR and ESBL may be due to the 

similar inappropriate use of antibiotics and poor healthcare infrastructure and management in 

these developing countries.  

According to biofilm formation assay results, most of the tested clinical strains were weak 

biofilm producers (71% with p<0.0001), while other strains did not produce biofilm at all 

(19%), moderate (9%) and strong biofilm (1%) producers were in the minority. Biofilm-

forming strains were mostly found in the phylogroup B2, although they were mostly weak 

producers (30%), while the only strong biofilm-forming strain belonged to phylogroup E (n = 

1, 1.1%). 

In the present study, the production of biofilm and AR were analyzed in figure 52. It was 

observed that strains possessing resistance to multiple classes of drugs (XDR) exhibited weak 

biofilm production (75%), or moderate (5%), or were completely unable to produce biofilm 

(20%).  

Regarding MDR, most tested isolates had a weak production of biofilm (72%). Furthermore, 

50% of R strains were not able to form biofilm or produced only weak biofilm (50%). Several 
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previous studies showed that the most of biofilm-forming strains belonged to phylogenetic 

group B2 (Soto et al., 2007; Javed et al., 2021), virulence factors, toxin proteins, multi-drug 

resistance, and ESBL increased in UPEC and is connected to phylogroup B2 (Matinfar et al., 

2021).  

 
Figure. 52 : Absolute frequencies of R, MDR and XDR strains among non-producers, weak, 

moderate, and strong biofilm producers. 

 

4.9.2 Distribution of resistance genes among phylogenetic groups 

4.9.2.1 β-lactamase genes 

Among 86 E. coli isolates, blaTEM was the most frequent gene (62.8%) followed by blaCMYII 

(12.8%), while blaSHV, blaCTX-M I and blaCTX-M II distributed with similar level (10.5%). Across 

phylogenetic groups, B2 phylogroup showed a high variability of bla genes production, it’s the 

primary reservoir for almost all tested bla-type genes (Tab. 27).  

The blaTEM gene was predominant in B2 and E phylogroups, blaOXA was strongly related with 

B2 (83.3%), this phylogroup produced blaSHV, blaCTX-M I and blaCTX-M II genes with similar rates 
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(55.6%). The second producer of blaCTX-M I was E group, blaCMY II and blaDHA spread among all 

phylogenetic groups. The E group being the second significant phylotype, while A, B1 and D 

have minimal resistance gene presence (Tab. 27). 

 

Table 27. Prevalence and distribution pattern of β-lactamase genes among phylotypes. 

Variables no. of isolates in each phylotype (%) 

Single gene A B1 B2 Clade I Clade I or II D E Unknown 

blaCTX-M IV (n=3) 0 0 1 (33.3) 0 0 0 1 (33.3) 1 (33.3) 

blaTEM (n=54) 3 (5.5) 1 (1.9) 27 (50) 0 0 1 (1.9) 15 (27.7) 7 (13) 

blaOXA (n=6) 1 (16.7) 0 5 (83.3) 0 0 0 0 0 

blaSHV (n=9) 1 (11.1) 1 (11.1) 5 (55.6) 0 0 0 1 (11.1) 1 (11.1) 

blaCTX-M I (n=9) 0 0 5 (55.6) 0 0 0 4 (44.4) 0 

blaCTX-M II (n=9) 1 (11.1) 1 (11.1) 5 (55.6) 0 0 0 0 2 (22.2) 

blaCMY II (n=11) 1 (9.1) 1 (9.1) 5 (45.5) 0 0 0 1 (9.1) 3 (27.2) 

blaDHA (n=7) 1 (14.3) 1 (14.3) 3 (42.8) 0 0 0 1 (14.3) 1 (14.3) 

 

The phylogenetic groups of E. coli didn’t express their resistance with single genes only, but 

diverse gene combinations are present in multiple phylotypes, with B1, B2, and E showing the 

most variation (Fig. 53)  and with blaTEM/blaCTX-M I was the most prevalent combination in B2 

and E groups. 

 

 
Figure. 53 : Distribution of β-lactamase gene combinations among phylogroups. 
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These findings were consistent with other studies showed that B2 phylogroup is major reservoir 

of β-lactamase genes. Afsharikhah et al., (2023) demonstrated in their study that blaTEM and 

blaCTX-M genes were predominant among the strains that mostly belonged to the pathogenic 

phylotypes B2 and D. Another study in Egypt reported that the carriage of ESBL genes in UPEC 

phylogroups, with ESBL genes being more frequent in phylogroup B2 and D than in other 

phylogroups (El Maghraby et al., 2024). 

4.9.2.2 Distribution of qnr genes 

The rate of 26.7% of E. coli strains can harbored at least one qnr gene. Among qnr positive 

strains, qnrB was the most prevalent resistant gene (78.3%, p˂0.01) followed by qnrD (26.1%), 

qnrA and qnrS (13%) and finally qnrC (4.3%). These results were in accordance with what was 

reported (30.2%) in Boroumand et al., (2021) study, qnrB being the most dominant gene in 

several studies in Togo (Salah et al., 2019), Nigeria (Nsofor et al., 2021), because PMQR genes 

are mobile, they may migrate across plasmids or use MGE to spread from one species to another 

(Nsofor et al., 2021). 

The distribution of qnr genes across phylogenetic groups was presented in table 28, B2 

phylogroup was the primary reservoir of qnr genes, with highest prevalence of qnrB (77.8%), 

qnrD (66.8%) and qnrA (66.7%). B1 group showed limited presence of qnr genes, only qnrD 

(16.6%) and qnrS (33.3%) were detected. E phylotype harbored various qnr variants: qnrA 

(33.3%), qnrB and qnrD (16.6%), it’s the only expressor of qnrC. Unclassified class harbored 

qnrS (33.3%) and qnrB (5.5%). No qnr genes were detected in Clade I, Clade I or II, or D. 

Generally, qnr genes was found in association with ExPEC, specifically with B2 and D groups 

(Al-Rafyai et al., 2021). 

The concomitant presence of two qnr genes was detected (Tab. 28), qnrB + qnrD was the most 

prevalent combination found exclusively in B2 group, supporting the mobility character of qnrB 

gene. 

Table 28. Distribution of qnr genes among phylogenetic groups of E. coli. 

    n (%)     

 A B1 B2 Clade I Clade I or II D E Unknown 

qnrA 0 0 2 (66.7) 0 0 0 1 (33.3) 0 

qnrB 0 0 14 (77.8) 0 0 0 3 (16.7) 1 (5.5) 

qnrC 0 0 0 0 0 0 1 (100) 0 

qnrD 0 1 (16.6) 4 (66.8) 0 0 0 1 (16.6) 0 

qnrS 0 1 (33.3) 1 (33.3) 0 0 0 0 1 (33.3) 
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qnrA + qnrB 0 0 1 (100) 0 0 0 0 0 

qnrA + qnrC 0 0 0 0 0 0 1 (100) 0 

qnrA + qnrS 0 0 1 (100) 0 0 0 0 0 

qnrB + qnrD 0 0 4 (100) 0 0 0 0 0 

 

 

4.9.2.3 Association of quinolone antibiotics resistance and qnr genes 

The table 29 presents the relationship between quinolone AR and the distribution of qnr genes. 

Comparison test was used to distinct the difference in quinolones resistance between positive 

and negative qnr strains, qnrA harbored strains showed completely resistance to ofloxacin. For 

nalidixic acid and ciprofloxacin, qnrA-negative strains were more resistant compared with 

qnrA-positive strains. qnrB positive isolates exhibited higher resistance to all quinolones. 

 

The qnrC-positive isolates showed 100% resistance across all quinolones, qnrD-negative 

isolates showed high resistance levels for nalidixic acid and ofloxacin (72.5% and 70%, 

respectively) compared with positive strains, which express good resistance in ciprofloxacin 

case (66.7%). The qnrS-positive strains showed relatively lower resistance to nalidixic acid 

(33.3%) and ciprofloxacin (33.3%) and ofloxacin (66.7%) compared with negative isolates 

which stilled exhibited significant resistance (Tab. 29). 

 

Table 29. Distribution of qnr genes in relation with quinolone resistance. 

 NA CIP OF 

qnrA-positive 66.7% 33.3% 100% * 

qnrA-negative 72.1% 65.1% ** 67.4% 

qnrB-positive 77.8% 66.7% 77.8% 

qnrB-negative 67.9% 60.7% 64.3% 

qnrC-positive 100% * 100% ** 100% * 

qnrC-negative 71.1% 62.2% 68.9% 

qnrD-positive 66.7% 66.7% 66.7% 

qnrD-negative 72.5% 62.5% 70% 

qnrS-positive 33.3% 33.3% 66.7% 

qnrS-negative 74.4% *** 65.1% ** 69.8% 
*: statistical signification p˂0.05, **: statistical signification p˂0.01, ***: statistical signification p˂0.001. 
 
The correlation between qnr genes and quinolone AR was confirmed in various studies, 

Boroumand et al., (2021) reported that there was a significant relationship between qnr variants 

and nalidixic acid and ciprofloxacin, Nsofor et al., (2021) reported that isolates encoding qnr 

genes showed more resistance to pefloxacin, ciprofloxacin, sparfloxacin, levofloxacin, nalidixic 
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acid, ofloxacin and moxifloxacin, the same observations were confirmed in Salah et al., (2019) 

study. These results confirmed the crucial role of these genes in quinolones resistance. 

The presence of resistance in qnr-negative strains indicates that other resistance mechanisms 

may be contributing to quinolone resistance, which conferring by other genes such as AAC (6′)-

Ib gene that causing drug modification or genes for quinolone efflux pumps (QepA and OqxAB) 

that enhanced efflux of drugs (Das et al., 2022).  

4.9.2.4 Correlation of qnr genes and β-lactamase genes 

The distribution of qnr genes among bacterial isolates carrying different β-lactamase genes 

(blaCTX-M, blaTEM, blaOXA, blaSHV, blaCMY, blaDHA) presents in table 30, the qnrA gene was 

frequently observed in blaCTX-M harboring isolates (6.3%, 5.6% for blaCTX-M I and blaCTX-M II 

positive isolates, respectively). The qnrB gene was presented across all β-lactamase groups 

except blaCTX-M IV, the highest prevalence was found in blaDHA (23.8%), followed by blaOXA 

(17.6%) and blaCTX-M II (16.7%). 

The qnrC gene was absent in all β-lactamase genes, qnrD was associated with blaDHA (15.4) in 

our study, it was presented in some groups blaCTX-M II (11.1%), blaCMY II (10.5%), blaOXA (5.9%) 

and blaTEM (2%). The qnrS gene was highly detected in blaCTX-M II (11.1%) followed by blaCMY 

II (10.5%). 

Table 30. Distribution of qnr genes among different β-lactamase encoding genes. 

 n (%) 
 qnrA qnrB qnrC qnrD qnrS 

blaCTX-M IV (n=12) 0 0 0 0 1 (8.3) 

blaTEM (n=98) 2 (2) 13 (13.3) 0 2 (2) 2 (2) 

blaOXA (n=17) 0 3 (17.6) 0 1 (5.9) 0 

blaSHV (n=29) 1 (3.4) 2 (6.9) 0 0 2 (6.9) 

blaCTX-M I (n=16) 1 (6.3) 2 (12.5) 0 0 0 

blaCTX-M II (n=18) 1 (5.6) 3 (16.7) 0 2 (11.1) 2 (11.1) 

blaCMY II (n=19) 1 (5.3) 3 (15.8) 0 2 (10.5) 2 (10.5) 

blaDHA (n=13) 0 3 (23.8) 0 2 (15.4) 0 

 

A strong association between qnr genes and β-lactamase-producing isolates, with qnrB being 

the most prevalent, particularly in blaTEM (73.7%), blaOXA (33.3%), and blaCTX-M (60%) was 

found in Das et al., (2022) and Juraschek et al., (2022) studies. The qnr genes were highly 

found in ESBL-positive strains, especially with blaCTX-M I in Liu et al., (2016); Salah et al., 

(2019); Amin et al., (2021) and Carey et al., (2022). A significant association was found 
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between qnrB and ESBL production in Abdel Salam et al., (2019), these results aligns with our 

findings. 

The correlation matrix represented in figure 54 with color-coded values ranging between -1 and 

1 showed strong positive correlation between qnrA and qnrC presence (r=0.571, p˂0.001), 

moderate positive correlation was found between qnrA and qnrS (0.309, p=0.004). A weak 

positive correlation was recorded in qnrA with blaSHV, blaCMY II, blaCTX-M I and blaCTX-M II (≈0.1). 

Moderate positive correlation was recorded between qnrB and qnrD (0.42, p˂0.001), while 

weak positive correlation was found in qnrB with blaTEM (0.1), blaOXA (0.196), blaCTX-M II (0.142) 

and blaDHA (0.16). 

Regarding qnrD, weak to moderate positive correlation was showed with blaCTX-M II and blaDHA 

(0.205 and 0.252, p=0.05, 0.019 respectively). Good results were showed for qnrS, where 

moderate positive correlations were found with blaCTX-M IV, blaCTX-M II, blaSHV, blaCMY II (0.307 

to 0.349, p ranged from 0.001 to 0.004). Inside β-lactamase genes, strong positive correlation 

was noticed between blaCMY II and blaOXA with blaCTX-M II (0.893 and 0.503, respectively, 

p˂0.001). 

 

Figure. 54 : Correlation matrix of the presence of qnr genes with β-lactamase encoding genes in E. 

coli (Green indicated positive correlation. Blue indicated significant negative correlation. R 

indicated correlation coefficient). 

 

 

The qnrS gene was positively associated with blaCTX-M I while qnrB was positively correlated 

with blaTEM in Amin et al. study, strong positive correlation was documented between qnrS 

with blaTEM and blaCTX-M in Li et al., (2014) study. The qnrS gene was found in association with 

blaTEM and blaCTX-M and the combination qnrS + qnrB was frequently associated with blaTEM 

and blaCTX-M I in Salah et al. study. The same combination was demonstrated in Algeria 

qnrA qnrB qnrC qnrD qnrS blaCTX M IV blaTEM blaOXA blaSHV blaCMY II blaCTX M I blaCTX M II blaDHA R

qnrA

qnrB 0,058

qnrC 0,571 -0,056 1

qnrD -0,052 0,420 -0,030 0,2

qnrS 0,309 -0,098 -0,021 -0,052 0,2

blaCTX M IV -0,036 -0,098 -0,021 -0,052 0,309 0,2

blaTEM 0,015 0,100 -0,141 -0,167 0,015 0,015 0,2

blaOXA -0,052 0,196 -0,030 0,104 -0,052 -0,052 -0,072 0

blaSHV 0,142 0,011 -0,037 -0,094 0,349 0,142 0,027 -0,094 -0,2

blaCMY II 0,117 0,060 -0,042 0,168 0,307 -0,073 -0,065 0,442 0,324 -0,4

blaCTX M I 0,142 0,011 -0,037 -0,094 -0,065 -0,065 0,263 -0,094 0,131 -0,017 -0,6

blaCTX M II 0,142 0,104 -0,037 0,205 0,349 -0,065 -0,051 0,503 0,255 0,893 -0,117 -0,8

blaDHA -0,057 0,160 -0,032 0,252 -0,057 -0,057 -0,035 0,085 -0,102 -0,114 -0,102 -0,102 -1
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(Alouache et al., 2014). Kimera et al., (2024) reported in their study that the combination blaCTX-

M  and qnrS was most frequent.  

These findings raise the hypothesis that the qnr genes detected in this study could also have the 

same plasmid location with β-lactamase genes, especially in qnrS and blaCTX-M and blaTEM. The 

second reason of this co-occurrence is that strains with blaCTX-M or blaTEM are more likely to 

carry qnrS gene. This co-existence contributed to the development and spread of plasmids 

transmission, these plasmids conferring fluoroquinolone and β-lactam resistance in E. coli. 

4.10 Plasmid profiling and antibiotic resistance 

The 183 screened strains, that selected for molecular study, were subjected to plasmid analysis. 

The results revealed that 20.3% out selected strains possessed plasmids with size ranged from 

approximately 1.5 to ˃10 kb. Out of 37 strains that contained plasmid, 67.6% (25/37) harbored 

single plasmid, while 13.5% contained more than one plasmid. The most common plasmid of 

size approximately 8 kb, the majority of detected plasmids were found in E. coli strains 91.9% 

(p˂0.001), followed by 5.4% in Enterobacter species and 2.7% in P. aeruginosa.  

The relationship between AR and plasmid carriage was presented in figure 55, comparison of 

resistance rates among different antibiotics in positive-plasmid isolates was evaluated. Plasmid 

harboring isolates showed high resistance score for imipenem, amoxicillin, ticarcillin, ticarcillin 

+ clavulanic acid, piperacillin and amoxicillin + clavulanic acid (83.8%, 75.7%, 67.6%, 64.9%, 

62.2% and 54.1%, respectively), a good rate of resistance was showed also against 

trimethoprim/ sulfamethoxazole (51.4%).  
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Figure. 55 : Antibiotic resistance among plasmid harboring isolates. 

Enterobacteriaceae are recognized for possessing plasmids in several copies of diverse sizes 

(Al-Shamarti and Mohsin, 2019). The findings from the present study are in agreement with 

previous studies on the carriage of plasmids by members of Enterobacteriaceae especially E. 

coli with different size (Thapa Shrestha et al., 2020; Uzeh et al., 2021).  

There was a correlation between resistance to amoxicillin, ticarcillin, piperacillin, ticarcillin + 

clavulanic acid and imipenem and the carriage of plasmids, that was also reported in Talukder 

et al., (2021) study, who found that positive plasmid P. aeruginosa were resistant to 

amoxicillin, ampicillin, cloxacillin, cotrimoxazole, erythromycin and tetracycline. HGT of 

plasmid-encoded resistance genes is the predominant method for the acquisition of AR, and 

plasmid-encoded AR includes the majority of clinically important antibiotic classes currently 

in use.  

The distribution of AR among isolates suggests a strong correlation between plasmid presence 

and multidrug resistance. A highest number of plasmid harboring isolates (n=6) exhibited 

resistance to 8 antibiotics, indicating that the most of positive plasmid isolates possessed MDR 

character. The presence of isolates resistant to 17 or more antibiotics suggested that plasmid 

carriage related with XDR character (Fig. 56).  
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Figure. 56 : Distribution of multidrug resistance among plasmid-harboring bacterial isolates. 

 

There was a correlation between plasmid profiles among the isolated bacteria and their multiple 

drug resistance in the present study, which is in accordance with the findings of Uzeh et al. and 

Thapa Shrestha et al., thus suggesting the carriage of plasmids may be associated with the 

resistance profiles. Plasmids are regarded as the primary vectors in the acquisition and 

dissemination of multi-resistant traits, either phenotypically or genotypically. 

However, our study reported that there was MDR and XDR profiles in our bacterial isolates 

without the carriage of plasmids, indicating that the latter’s resistance was chromosomally 

borne in these strains, in contrast, the containing plasmid resistant strains acquired their 

plasmids (Okoye et al., 2022). 

A percentage of 67.6% of plasmid containing isolates showed ESBL profile with acquisition of 

one or more bla genes, and 18.9% possessed AmpC β-lactamase genes. While for qnr genes, 

24.3% of positive plasmid isolates have at least one qnr gene. 
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4.10.1 Presence of resistance genes in plasmid harboring isolates 

The table below reveals high prevalence and presence of β-lactamase genes and quinolone 

genes, all resistance genes were present in variant rates with predominance of blaTEM (56.8%). 

All the subtypes of blaCTX-M were present in similar percent (10.8%), the same rate was recorded 

for AmpC genes (blaCMY II and blaDHA). Between all qnr genes, qnrB was the most presented 

quinolone gene in plasmid harboring isolates (16.2%) followed by qnrA and qnrD (5.4%) and 

finally qnrC and qnrS (2.7%). 18.9% of plasmid containing isolates showed coexistence of bla 

and qnr genes. 

Table 31. Distribution of antibiotic resistance genes among plasmid harboring isolates. 

Gene n (%) Gene n (%) 

blaCTX-M IV 4 (10.8) blaDHA 4 (10.8) 

blaTEM 21 (56.8) qnrA 2 (5.4) 

blaOXA 3 (8.1) qnrB 6 (16.2) 

blaSHV 1 (2.7) qnrC 1 (2.7) 

blaCTX-M I 3 (8.1) qnrD 2 (5.4) 

blaCTX-M II 4 (10.8) qnrS 1 (2.7) 

blaCMY II 4 (10.8)   

 

It has been reported that AR genes, which encode resistance to multiple antibiotic classes such 

as fluoroquinolones, aminoglycosides, and β-lactams, are carried on plasmids and can be 

transmitted from bacteria to bacteria through HGT within bacterial communities.  

Many papers reported the production of β-lactamase genes with isolates possessed plasmids 

(Thapa Shrestha et al., 2020; Negeri et al., 2023), this can be explained that the resistance to β-

lactams and quinolones in these strains was originated by antimicrobial plasmids that contains 

the resistance genes. Resistance to other antibiotic classes may result from the potential 

dissemination of additional clinically significant resistant genes, including those that confer 

resistance to trimethoprim/sulfamethoxazole, ciprofloxacin, amoxicillin + clavulanic acid, 

gentamicin, amikacin, and cefoxitin (Negeri et al., 2023). 

Plasmid analysis in Li et al., (2019) study showed that plasmid carrying isolates contained also 

blaCTX- M, blaTEM and qnrS. The presence of resistance genes in plasmids lead to the spread of 
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multi-resistance. The detection of bla genes in plasmid harboring isolates indicates that these 

germs can easily transfer ESBL and AmpC genes to other pathogens. Also, the presence of qnr 

genes lead to rapid spread of quinolones resistance even in the absence of these antibiotics. 

4.10.2 Relationship of plasmids with virulence factors 

The prevalence of different virulence factors in harboring plasmid and non plasmid strains was 

presented in figure 57. Biofilm formation remained the most prevalent virulence factor, with a 

slightly higher occurrence in plasmid-containing strains (89.2%) compared to non-plasmid 

strains (86.2%). Similar prevalence was recorded for hemolysin production in both groups 

(55.9% vs. 54.1%), protease production was negatively correlated with plasmid containing 

(p=0.004) where the high prevalence was found in non plasmid strains (53.1%), the same trends 

were showed in lecithinase production (p=0.04). Lipase production was less prevalent with 

noticeable reductions in plasmid-harboring strains (15.9% to 5.4%). 

 
Figure. 57 : Prevalence of virulence factors in plasmid containing and non plasmid strains.  

 

 

The statistical analysis of virulence factor prevalence in plasmid-harboring and non-plasmid 

bacterial strains indicating that there is no statistically significant association between plasmid 

presence and the biofilm and hemolysin production but minor variations in prevalence rates 

were observed across the two categories. The same observations were found by Qi et al., (2016), 
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where no differences in biofilm formation were observed among strains with different plasmid 

profiles. 

Meanwhile, several papers reported that the presence of plasmids was associated with AR and 

biofilm formation, genes encoded proteins and virulence factors are also located in plasmids. 

In contrast to our findings, where protease, lecithinase and lipase production was higher in non 

plasmid strains; suggested that the presence of plasmids alone may not be a primary determinant 

of virulence factor expression in the studied bacterial population. However, further analysis 

including larger sample sizes, functional assays, molecular analyses and detailed plasmid map 

are needed to figure out the influence of plasmid on biofilm, hemolysin, protease, lecithinase 

and lipase capacities. 

 



Conclusion and perspectives 

 

Conclusion and perspectives 

Antibiotic resistance (AR) is one of the most pressing global health threats, severely 

compromising the treatment of bacterial infections. The emergence of multidrug-resistant 

(MDR), extensively drug-resistant (XDR), and highly virulent strains has led to treatment 

failures, limited therapeutic options, and increased healthcare burdens. Beyond clinical settings, 

AR is now recognized across other reservoirs, such as animals, water, and soil, reinforcing the 

importance of a One Health approach. 

This study was conducted over a three-year period (2021–2023) in the Sétif province of 

northeastern Algeria. It aimed to determine the epidemiological and bacteriological profiles of 

major clinical bacterial strains isolated from urine, pus, blood, vaginal swabs, and medical 

devices. Additionally, it assessed the evolution of AR over these years and explored the 

associated resistance mechanisms, virulence factors, and phylogenetic traits. 

A wide range of bacterial strains was identified, with Gram-negative bacteria (GNB) being 

more prevalent than Gram-positive bacteria (GPB). Escherichia coli was the dominant species 

among Enterobacteriaceae, while Staphylococcus aureus was the most common GPB. Over the 

study period, an increasing trend of resistance was observed, especially in 2023, where 

resistance to cephalosporins, quinolones, phenicols, and monobactams rose significantly. XDR 

strains increased steadily across the years, indicating worsening resistance profiles and more 

complex treatment challenges. 

Antibiotic susceptibility testing revealed a high level of resistance to first-line antibiotics. 

Fourth-generation cephalosporins, particularly cefepime, showed declining efficacy, while 

carbapenems lost substantial activity, notably against E. coli, Proteus spp., and Morganella 

morganii. Tobramycin was less effective against Pseudomonas aeruginosa, Enterobacter spp., 

and GPB. Although nitrofurantoin, colistin, and fosfomycin were considered effective options, 

significant resistance was also observed. Only amikacin retained strong activity across all tested 

strains. 

Phenotypic analysis revealed a high prevalence of resistance profiles such as ESBL, AmpC, 

MRSA, CMLSB, IMLSB, and hypervirulent Klebsiella pneumoniae (hvKp). Biofilm formation 

was notably associated with resistance to polymyxins and amoxicillin, and was especially 
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strong in XDR strains. Hemolysin and protease were the most frequently produced virulence 

enzymes, with hemolysin strongly linked to XDR strains, while MDR strains were more likely 

to produce protease, lecithinase, and lipase. 

Molecular analyses via multiplex PCR revealed widespread distribution of resistance genes, 

including blaTEM, blaSHV, blaCTX-M (groups I, II, IV), blaOXA, and AmpC genes such as 

blaCMY II and blaDHA. These genes were often plasmid-borne, facilitating rapid 

dissemination. The combined ESBL/AmpC genotype demonstrated the broadest resistance 

across antibiotic classes. Statistical correlations showed strong associations between certain bla 

genes and specific virulence factors, particularly hemolysin, protease, and lipase, suggesting a 

link between resistance and pathogenicity. 

Phylogenetic analysis of imipenem-resistant E. coli from urinary tract infections revealed a 

predominance of the B2 group, followed by the E group. These phylogroups carried multiple 

resistance and virulence genes, with B2 harboring the highest load. Despite broad resistance, 

aminoglycosides remained among the most effective treatments for these strains. 

Overall, between 2021 and 2023, this study documented a clear and concerning rise in AR, 

especially in 2023, across several antibiotic classes and resistance phenotypes. Our region, like 

the rest of the world, has witnessed a significant increase in resistant strains, which has led to 

the concerted efforts of international governmental and nongovernmental agencies to 

combating AR and to minimize the health and economic burdens on people. Further, 

recommended measures were needed to achieve these goals:  

• Establishing infection prevention and control committees in healthcare settings. 

• good microbiology practice, particularly good hand hygiene practices to reduce 

infection transmission. 

• Proper diagnosis and successful treatment of bacterial infections. 

• Encouraging the responsible use of antibiotics and fight against self-medication, 

probabilistic antibiotic therapy, overconsumption, and the anarchy in antibiotic 

prescription to prevent unnecessary resistance development. 

• Continuous surveillance and monitoring of antibiotic use and AR. 

• Good microbiological laboratory practices and raising awareness among all healthcare 

professionals: doctors, microbiologists, caregivers, hygienists. 
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Prevention is still the best strategy to reduce AR infections and their spread globally. urgent 

efforts must also be directed toward the development of novel, effective antimicrobial agents, 

alternatives to antibiotics, and innovative progress in diagnostics and vaccine development. 

In the perspective of this work, it would be interesting to: 

• To more focusing on genetic characterization of AR in all strains even GNB or GPB 

and identified the genetic support related with resistance to several antibiotic classes. 

• Identified the genetic support in MRSA, IMLSB and CMLSB profiles. 

• Characterize different virulence genes associated with the presence of phenotypic 

virulence profiles (biofilm, hemolysin, protease, lecithinase and lipase). 

• Enzymatic characterization by zymography technic. 

• Identified all the clones in all isolated strains (GNB and GPB) by MLST technic 

(Multilocus Sequence Typing) and determined genetic diversity and evolutionary 

relationships between isolates. 
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Annex 1 

Table 1. Culture media according to nature of sampling. 

Nature of sampling Systematic media 

Urine Chapman, nutrient agar 

Pus Chapman, chocolate blood agar, nutrient broth 

Blood Chapman, blood agar, chocolate blood agar 

Vaginal swab Chapman, chocolate blood agar, nutrient broth 

Catheter Blood agar, MacConkey agar 

 

 

   

a b c 

  

c d 

Identification of strains (a: microscopic examination, b: Gram staining, c: bacterial culture, d: classic 

biochemical gallery, e: API 20E gallery). 
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Annex 2 

Table2.  Reading table of API 20E gallery for Enterobacteriaceae. 

Caractere Active 

ingredient 

Enzyme/reaction Reagent Results 

Positive Negative 

ONPG ONPG β-galactosidase - Yellow Incolor 

ADH Arginine Arginine dihydrolase - Red/orange Yellow 

LDC Lysine Lysine decarboxylase - Red/orange Yellow 

ODC Ornithine Ornithine decarboxylase - Red/orange Yellow 

CIT Citrate Citrate utilisation - Bleu green 

H2S S2O3 Thiosulfate reductase - black Incolor 

URE Urea Urease - Red Yellow 

TDA Tryptophane Tryptophan deaminase Ferric chloride Brown Yellow 

IND Tryptophane Tryptophanase Kovacs Red Incolor 

VP Pyruvate Acetoin production VP1 (KOH) + 

VP2 (α-

naphthol) 

Red Incolor 

GEL Gelatine Gelatinase - Black Incolor 

GLU Glucose Fer -  

 

 

 

 

Yellow 

 

 

 

 

 

Bleu 

MAN Mannose Fer - 

INO Inositol Fer - 

SOR Sorbitol Fer - 

RHA Rhamnose Fer - 

SAC Sucrose Fer - 

MEL Melibiose Fer - 

AMY Amygdalin Fer - 

ARA Arabinose Fer - 
ONPG: ortho-Nitrophenyl-β-galactoside, S203: thiosulfate, Fer: fermentation.  

 

 

 

 

 

 

 

 

 

 

Table 3.  Reading table of API Staph gallery. 
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Caractere Active ingredient Enzyme/reaction Reagent Results 

Positive Negative 

0 No substrate  Negative 

control 

- Red 

GLU Glucose Aci -  

 

 

 

Yellow 

 

 

 

 

Red* 

FRU Fructose Aci - 

MNE Mannose Aci - 

MAL Maltose Aci - 

LAC Lactose Aci - 

TRE Trehalose Aci - 

MAN Mannitol Aci - 

XLT Xylitol Aci - 

MEL Melibiose Aci - 

NIT Potassium nitrate Reduction of 

nitrates to nitrites 

NIT 1 + 

NIT 2 

Red Colorless-

light pink 

PAL β-naphthyl 

phosphate 

Alkaline 

Phosphatase 

ZYM A + 

ZYM B 

Violet Yellow 

VP Pyruvate Acetoin production VP 1 + VP 

2 

Violet-

pink 

Colorless-

light pink 

RAF Raffinose Aci -  

 

Yellow 

 

 

Red 
XYL Xylose Aci - 

SAC Saccharose Aci - 

MDG methyl-α-

glucopyranoside 

Aci - 

NAG N-acetyl-

glucosamine 

Aci - 

ADH Arginine Arginine 

dihydrolase 

- Orange-

red 

Yellow 

URE Urea Urease - Red-violet Yellow 
*: When MNE and XLT are preceded or followed by positive tests, then an orange test should be considered negative, 

Aci: acidification. 

 


