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INTRODUCTION  

The determination of lateral earth pressures is a very important element in geotechnical 

engineering, influencing the design and stability of various structures such as retaining walls, 

foundations, and earth embankments. Understanding the mechanisms governing these pressures is 

crucial to their correct estimation and to the stability and safety of geotechnical structures. Traditional 

methods for estimating lateral earth pressures, such as Rankine and Coulomb theories, provide 

valuable insights but often rely on simplifying assumptions that may not accurately reflect the 

complexities of granular soil behavior under different loading conditions. 

In recent years, the discrete element method (DEM) has gained prominence as a powerful 

numerical approach for simulating the behavior of granular materials. This method, based on the 

concept of modeling particles as independent elements interacting across contact points, can provide 

a more detailed understanding of the mechanics involved in lateral earth pressure. The aim of this 

thesis is to investigate, using DEM, the lateral pressures of a granular soil in different states: at rest 

and in the active and passive states. 

The thesis is structured into five chapters. The first chapter provides an overview of some 

fundamental aspects relating to the behavior of granular soils and lateral earth pressures, discussing 

key concepts and existing theories underlying the analysis of these pressures.  

The second chapter discusses the principles of the discrete element method, highlighting its 

advantages over continuum-based approaches, and detailing its implementation for the simulation of 

granular materials. 

The third chapter focuses on the development of the intergranular friction model used in this 

work. Friction is a key ingredient in the macromechanical response of granular materials. This model 

should help improve the fidelity of simulations and provide a better understanding of how frictional 

forces influence lateral pressure behavior. 

The fourth chapter presents an investigation of the lateral pressure at rest in a granular soil by 

means of the discrete element method. This chapter highlights the underlying physics involved in the 

variation of lateral earth pressure when the soil is subjected to loading – unloading cycles. 

Finally, the fifth presents an analysis of the lateral earth pressure in both active and passive 

states. By examining various scenarios and loading conditions, this chapter aims to demonstrate how 

DEM can provide a better understanding of the estimation of lateral earth pressures.  
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Chapter  01 

 GRANULAR SOILS  

1.1.  Introduction  

Soils, in general, are complex mixtures of mineral grains resulting from chemical (oxidation), 

physical (temperature variations, freezing, etc.), and mechanical (erosion) weathering of rocks [1]. In 

geotechnical engineering, soils are typically classified based on grain size for granular materials 

(gravel, sand) and plasticity indices for cohesive soils (silt, clay). According to various classifications 

found in the literature [2], cohesive soils (fine soils) have particle sizes smaller than 20 µm. Their 

behavior is influenced by intergranular forces (such as electrical forces and Van der Waals forces…) 

that produce cohesion, as well as moisture content (capillarity). In contrast, granular soils (coarse 

soils) have particle sizes greater than 20 µm and lack chemical bonding, resulting in low cohesion. 

From a modeling perspective, two distinct models of soil behavior can be identified: the 

continuous model, which assumes that the soil is a continuum characterized by stress - strain 

relationships, and the discrete model, which treats soil as a medium composed of multiple 

independent elements (granular soils), where macroscopic behavior is governed by the microscopic  

interactions of the particles. 

In the context of this study, the term "granular soil" refers both to the discrete nature of the soil and 

to grained soils and all materials are considered non-cohesive soils. 

 Granular soils are commonly found in various geological settings and are characterized by their 

discrete particle nature. Here are some locations where granular soils can be encountered: 

 Riverbeds and Floodplains: Granular soils, such as sands and gravels, are often deposited in 

riverbeds and floodplains through alluvial processes. These areas typically contain alluvial 

deposits that can vary significantly in composition and grain size due to sediment transport 

by water. 

 Coastal Areas: Beach environments feature granular materials like sands, shaped by the action 

of waves and currents. Coastal dunes also consist of granular soils that have been formed by 

wind erosion and deposition. 
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 Construction Sites: During excavations for foundations or other civil engineering projects, 

granular soils may be encountered at varying depths. Their properties are essential for 

assessing stability and load-bearing capacity. 

 Natural Landscapes: Granular soils can be found in natural landscapes such as deserts, where 

wind action creates sandy terrains, and in arid regions where erosion exposes underlying 

granular materials. 

Granular soils exhibit distinctive behaviors. There is often a significant gap between the macro-scale 

properties of the soil and the individual characteristics of the grains. The structure of granular soils 

typically consists of a framework formed by larger particles, with smaller particles filling the pores 

between them. These smaller particles can move within these pores under the influence of hydraulic 

or mechanical forces. A mass of this material remains stable solely due to intergranular contact forces. 

 

1.2. Physical characteristics of a granular soil 

The macroscopic properties of a granular soil are closely linked to its particle characteristics, such as 

mineralogy, particle geometry, dimensions, particle size distribution, density and stiffness. They also 

depend on the structure of the material, its pore content, and the contents of the pores (e.g. air, water, 

etc.)  

1.2.1. The shape descriptors  

The shape of the grains is an intrinsic characteristic that plays a major role in the mechanical behavior 

of granular media. The shape descriptors (sphericity, roundness, roughness and the size distribution) 

of the grains are the main factors that influence the interparticular forces [3], [4], [5]. Due to the 

diversity of the minerals entering into their composition and that of the conditions of their formation, 

granular soils appear as natural materials presenting the most varied grain shapes. At the particle 

scale, the general shape of the particle is described in terms of sphericity, roundness as opposed to 

angularity [7]. On a lower scale, that of the asperities; it is the surface state of the particles which is 

described in terms of roughness, the rounding of the vertices.  

1.2.1.1. Roundness and sphericity  

The criteria established by Wadell (1932) [8] and Powers (1953) [9], which focus on roundness and 

sphericity, are commonly used to characterize the morphology of grains. This concept of roundness 
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and sphericity was initially introduced to describe quartz particles.  

The most commonly used definition of the roundness of a particle was proposed by Wadell [10], who 

defined roundness (𝜉) as the ratio of the average radius of curvature (𝑟𝑐) of the corners on the effective 

surface (S𝑔) of the particle to the radius (R) of the maximum inscribed circle in the plane of 

measurement: 

 

       𝜉 =
∬ 𝑟𝑐⋅ⅆ𝑠

S𝑔 𝑅
       (1.1) 

He also defined a parameter 𝛹 known as the sphericity index, which characterizes the 

sphericity of a particle as the ratio of the surface area of a sphere with the same volume as the grain 

(𝑆𝑠) to the effective surface of the grain: 

𝛹 = 𝜋
1
3(6𝑆𝑆)

2
3

𝑆𝑔
      (1.2) 

Powers (1953) developed a method that illustrates the concept of roundness through photographs. As 

shown in Table 1.1 and depicted in Figure 1.1, a roundness value close to 1 indicates that the particle's 

surface has relatively large radii of curvature (in relation to the grain size), while a roundness value 

close to 0 indicates very high angularity. 

Table 1.1. Roundness Grades (Power 1953) 

Grade terms Class intervals Geometric means 

Very angular 0.12-0.17 0.14 

Angular 0.17-0.25 0.21 

Subangular 0.25-0.35 0.30 

Subrounded 0.35-0.49 0.41 

Rounded 0.49-0.7 0.59 

Well rounded 0.7-1.00 0.84 
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Figure 1.1. Roundness Scale. (Power 1953) 

In soil mechanics, the visual determination of the roundness is not always applicable; instead, 

developed techniques are often used, such as fractal analysis, Fourier methods and image analysis 

and processing [11][12]. 

1.2.1.2. Roughness 

The roughness of a particle describes the texture in relation to its radius, on a scale that is much 

smaller than the diameter of the particle. The direct measurement of the roughness is difficult; 

therefore, it is usually measured in relation to the length of the interparticle contact zone. For a particle 

rolling on a sliding surface of the same material or of a different material, the roughness controls the 

viscous friction. Senetakis et al [13] and Sandeep et al [14] measured the roughness of sand quartz 

minerals using white light interferometry and a Sympatec QicPic laser scanner, and the average 

roughness was found to be 0.38 ± 0.19 μm. Similar work was conducted by Yang and Baudet [15] 

using the power spectrum method. Miura, Maeda and Toki [16] noted that by increasing the roughness 

of the base on which the sand is piled, the angle of repose also increases; consequently, the formation 

of a pile on a frictionless base is almost impossible. 

1.2.1.3. The particules size distribution 

In geotechnical engineering, a soil sample can be defined by its grain size distribution. This 

distribution provides information about the mass proportions of each particle size present in the 

material. The presence of particles of different sizes in different proportions can radically alter the 

arrangement of particles, and consequently play an important role in the mechanical behavior of 

granular materials [17]. Macroscopic behavior depends on the network of intergranular contacts; 

consequently, any change in their arrangement also affects the local and macroscopic characteristics 

of the granular material.  
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Figure 1.2 illustrates a typical grain size curve for a soil sample. In this figure, the 𝑥 values represent 

diameters corresponding to 𝑥 percent passing. The diameters 𝑑10 , 𝑑30, 𝑑50, and 𝑑60 are 

characteristic values of the grain size curve and are used to define: 

 Uniformity Coefficient  𝐶𝑢 = 𝑑60 𝑑10⁄  : This coefficient characterizes the spread of the 

grain size distribution curve. A distribution is considered well-graded when the uniformity 

coefficient 𝐶𝑢 > 3 and poorly graded when 𝐶𝑢 < 3. 

 Curvature Coefficient  𝐶𝑐 = 𝑑30
2 (𝑑10 × 𝑑60)⁄  : This coefficient provides information about 

the shape of the grain size distribution curve. For example, when 𝐶𝑢 > 3 for sand, a value 

of  1 < 𝐶𝑐 < 3 indicates a well-graded distribution. 

These particle size characteristics have a major impact on aggregate quality. In the field of civil 

engineering, these characteristics play an important role in the classification of the materials used.  A 

basic classification of soils according to grain diameter, in accordance with the NF P18-560 standard, 

is presented in Table 1.2. This classification, along with many others (ASTM, AASHTO, MIT) [1], 

is found in the literature and distinguishes two types of soils: granular soils, which are the focus of 

this study, and fine soils. 

 

 

 

 

 

 

 

 

 

Figure 1.2. Typical granulometric curve. 

Table 1.2. MIT System of soil classification. F = Fine, M = Medium, C = Coarse. 
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1.2.1.4. Density of a granular media 

The relative density of a soil can be defined by several parameters, including compactness, 

porosity, and void ratio. It reflects the quantitative distribution of pores within the soil. Considering 

a soil sample with a total volume of 𝑉𝑇, the volume of solid particles 𝑉𝑠 , and the volume of pores 𝑉𝑉

, we can express: 

 

Porosity:    𝒏 =
𝑉𝑉

𝑉𝑇
                            (1.3) 

Void ratio:              𝒆 =
𝑉𝑉

𝑉𝑠
   (1.4) 

 

 

 According to Bonneau and Soucher (1994), it is important to distinguish between textural 

porosity and structural porosity: 

 Textural porosity is closely related to the arrangement of the particles constituting the 

material (sands, clay, etc.). Within this textural porosity, we also distinguish two types of 

porosity: 

 Effective porosity: This is generally used to characterize the entire network of 

connected pores through which water can flow. The permeability of the 

material is closely related to this parameter, i.e. effective porosity. 

 Total porosity corresponds to both connected and unconnected pores. It significantly 

influences the soil strength. 

 Structural porosity: it represents the spaces existing between the aggregates of the soil. It 

is greatly influenced by time and is considered variable throughout the history of the 

material. 

1.3.  Mechanical behavior of granular soils  

Granular soils are often treated as continuous media when the scale of observation of these 

soils is large in comparison with the size of the grains of which they are composed. In this case, it is 

assumed that these materials obey to a constitutive law (or rheological law), thus one can know the 

response in stresses and strains for a given loading path (in stresses and/or strains). However, 

obtaining a general constitutive law remains difficult, so we are often limited to particular constitutive 

laws often linked to specific stress paths. The specification of a stress path is made according to the 

practical problem treated.  
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Shear tests are used to characterize the shear strength of materials. The most common tests 

are the direct shear test and the triaxial test. For the latter, a distinction must be made between 

compression and extension tests, which differ in terms of stress path and boundary conditions 

imposed. Although the direct shear test is easier to implement than the triaxial test, it has drawbacks 

such as the lack of access to stresses on its walls (the same drawback applies to ring shear tests) and 

the non-homogeneity of stresses in the volume due to an imposed failure surface. In the following, 

we limit ourselves to describing the mechanical behavior typically observed in granular soils 

subjected to triaxial testing. The mechanical responses of triaxial extensional compression tests are 

analyzed in Chapter 5 through a numerical modeling. 

1.3.1. Mechanical behavior under compression triaxial conditions  

The mechanical behavior of sand is critical for understanding its performance in various geotechnical 

applications. Triaxial testing is a widely accepted laboratory procedure used to evaluate the shear 

strength and deformation characteristics of soils, including sands. This section provides a detailed 

overview of the behavior of sand subjected to triaxial conditions, focusing on the effects of confining 

pressure, drainage conditions, and loading paths. 

1.3.2. Triaxial Test Overview 

The triaxial testing involves subjecting a soil specimen to controlled stresses in three dimensions. The 

samples tested are cylindrical, with a typical slenderness ratio of 2. They are protected by a thin 

impermeable membrane and placed in a triaxial cell consisting of a cylindrical chamber and an axial 

piston, as shown in figure 1.3. A hydrostatic pressure known as confining pressure (𝜎3) is applied to 

the sample through a fluid contained in the chamber. The test consists of applying to the sample a 

confining stress (often isotopically: 𝜎1 = 𝜎3), then imposing an axial deformation (ε1) using the piston, 

this is the shear phase where 𝜎1 > 𝜎3 (𝜎1 and 𝜎3 are illustrated in Figure 1.3, on the right).  The 

deviator stress, noted as 𝑞, is expressed in terms of 𝜎1 and 𝜎3 as given by equation 1.5. The test can 

be conducted under different drainage conditions, leading to three primary types: Consolidated 

Drained (CD), Consolidated Undrained (CU), and Unconsolidated Undrained (UU) tests. Each type 

provides insights into the mechanical properties of sand under varying stress states. 

1. Consolidated Drained (CD) Test: A test is classified as a consolidated drained (CD) test 

when the internal drainage remains open during the phases of isotropic compression (or 

confinement) and shear phases. This test is particularly useful for understanding the long-term 

behavior of sands under effective stress conditions. 
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𝑞 = 𝜎1 − 𝜎3       (1.5)    

 

 

Figure 1.3. scheme of a triaxial cell extracted from the NF P 94-074(on the left) and the stresses on the 

sample (on the right). 

 

2. Consolidated Undrained (CU) Test: In this procedure, the specimen is allowed to 

consolidate under confining pressure (drained), but it is sheared without drainage (during the 

application of deviator stress). This test is essential for assessing the short-term stability of 

saturated soils, especially during rapid loading scenarios. 

3. Unconsolidated Undrained (UU) Test: In this test, the drainage is not allowed during both 

phases of confining and shearing. The test is therefore suitable for evaluating the immediate 

response of saturated soils to rapid loadings. 

1.3.3. Stress-Strain Response 

  In the following we focus on the mechanical behavior of granular soils such as dry sands. For 

these materials, the typical stress-strain behavior obtained from the compression triaxial test 

performed on loose and dense samples are presented in Figure 1.4. For an initially dense material, 

mobilization of the maximum strength occurs at low strain, the strength reaches a maximum value 
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(peak strength) before decreasing and stabilizing at a value called constant-volume shear stress. For 

an initially loose sample, peak resistance does not occur, but maximum resistance is reached at higher 

strain, corresponding to the constant-volume shear stress plateau. This plateau is almost the same for 

initially dense and loose samples.   Regarding the volume deformation, it can be seen that the dense 

sample initially exhibits a small contracting phase, then becomes dilating throughout the rest of the 

shearing process :  (𝑑𝜀𝑣/𝑑𝑡 > 0). The loose sample, on the other hand, shows rapid contracting at the 

start of shearing (𝑑𝜀𝑣/𝑑𝑡 < 0), after which it deforms at almost constant volume.   

 

Figure 1.4. Typical stress-strain curves (on the left) and volumetric strain Vs axial strain curves (on the right) 

obtained from conventional biaxial tests. 

Figure 1.5 summarizes the main parameters used to characterize the stress-axial strain curves and 

volumetric strain-axial strain curves. The parameters 𝐸0 and 𝜐0 characterize the initial slope of the 

stress and volumetric strain curves during their quasi-linear phase, referred to the pseudo-elastic 

phase. The maximum value reached by the deviator is called 𝑞𝑝𝑒𝑎𝑘 , and the "plateau" value for large 

deformations is 𝑞𝑟𝑒𝑠. This so-called residual value characterizes the critical state. Values of friction 

angles can also be used to characterize the resistance of a material. For a non-cohesive soil, equation 

1.6 provides the relationship between the friction angle 𝜑 and the deviator 𝑞 for any axial 

deformation. The quasi-linear part of the dilatancy phase is characterized by a dilatancy angle (𝜓) 

defined by Sallam (2004) [18] according to equation 1.7. In the following sections of the thesis, the 

conventional biaxial tests are CD tests. The notation 𝜀1 will denote absolute axial strain. 

sin(𝜑) =
𝑞

𝑞+2𝜎3
       (1.6) 

sin(𝜓) = (𝑑𝜀𝑣/𝑑𝜀1) (2 −
ⅆ𝜀𝑣

ⅆ𝜀1
)⁄      (1.7) 
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Figure 1.5. parameters characterizing the stress-axial strain curves and volumetric strain-axial strain curves. 

 

1.3.4. Characteristic state 

 As defined by Schofield wroth 1968 [19], Habib and Luong (1978) [20], it corresponds to 

the state of the material at its transition from contractive behavior to dilative behavior during shear 

loading, whether drained or undrained. Scott (1963) [21] showed that the dilatancy of a soil 

depends on the density of the initial packing. If this density exceeds the value of a critical density, 

a dilatancy occurs during shearing ; if it is lower, contraction occurs (Figure 1.3). This critical 

density corresponds to large deformations of the soil at constant volume under constant shear 

stress. According to Bousaid (2004) and Casagrande (1936), the critical density or the critical 

void ratio of sand depend of the normal stress 𝜎𝑛. 
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Figure 1.6. Behavior of loose and dense granular materials obtained from a simple shear test [22]. 

 

In the case of saturated sand subjected to undrained shear, the tendency toward dilatancy or 

contractance for a respectively dense or loose state is reflected by a decrease or an increase in pore 

pressure. Under these conditions, the undrained shear of loose sand, whose initial state is above the 

critical void ratio, can lead to an accumulation of pore pressures and result in its collapse after losing 

its strength. This mode of collapse is the phenomenon of liquefaction.  

Since Casagrande (1936), there has been a considerable discussion regarding the relevance of 

critical density under large deformations. Several experiments have been conducted on Hostun sand 

to investigate critical density [23-25]. The results of [24] and [25] indicate that the critical density is 

the same for equal mean effective stresses when the strain reaches 30% or 40%, even for different 

initial relative densities. Experiments on dense sand presented in [24] showed a tendency towards a 

horizontal asymptote for axial deformations exceeding 30% (figure 1.4). It was concluded that the 

critical density only becomes apparent after 30% deformation. 
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Figure 1.7: Critical state at large deformations [24]. 

1.4. Conclusion  

In this chapter we present a review of the characteristics of granular soils, covering 

their definitions, physical characteristics and mechanical behavior. Granular soils play a 

crucial role in geotechnical engineering due to their widespread presence and significant 

influence on soil behavior and stability. 

We began by defining granular soils and discussing their classification according to 

grain size and shape, which directly affects their physical properties. Key characteristics such 

as density, porosity and particle size distribution were examined, highlighting how these 

factors influence the overall behavior of granular materials. We then focused on shear 

strength, dilatancy, and contraction, illustrating how these behaviors are influenced by factors 

such as relative density and confining pressure.  
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Chapter  02  

DISCRETE ELEMENT METHOD 

2.1. Introduction  

Historically, the principles of discrete modeling originated from the foundational paper by 

P.A. Cundall and O.D.L. Strack (1979 ) [27]. Around the same time, a similar method known as 

Molecular Dynamics (MD) was already quite widespread among physicists for calculating particle 

trajectories at the atomic scale; this approach would later be extended to more macroscopic and 

granular scales by Allen and Tildesley (1987 ). An alternative method called Non-Smooth Contact 

Dynamics (NSCD) was proposed in 1992 by J.J. Moreau and M. Jean [28], based on rigorous 

mathematical formalism. 

Currently, Cundall and Strack's DEM approach remains the most widely used in the world, 

and its application is becoming increasingly common in both academic and industrial circles. This 

method, sometimes referred to as DEM-MD (although this name is often debated as it does not 

concern molecules but solids), is being adopted within the scope of the present thesis project.  

2.2. Molecular Dynamics 

This method has the advantage of being simple, since it is based on the idea of solving 

Newton's equation of motion applied to each grain : 

∑𝐹 =  𝑚𝑖
ⅆ2𝑥 𝑖

ⅆ𝑡2         (2.1) 

In this expression, 𝑚𝑖 is the mass of the grain 𝑖, 𝑥 𝑖 is its position vector, and 𝐹  is the resultant 

of the forces acting on this grain (including contact forces and gravity). An analogous equation can 

be written for rotational degrees of freedom.  

The DEM-MD method is also flexible, as it can integrate all types of forces that can act on 

grain equilibrium, arising from different physics such as friction, cohesion, cementation, magnetism, 

hydraulic drag, etc. It is general because it enables a wide variety of situations ranging from quasi-

static to violent collisional conditions. In addition, it is very informative since it provides kinematic 

and dynamic information at the grain scale (instantaneous velocities and contact forces, for example), 

which remains largely inaccessible to experimental measurement. Thus, discrete simulation is often 
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likened to "numerical experimentation," although it is important to keep in mind the limitations of 

this experimental analogy. However, it should be pointed out that the DEM method has a major 

drawback in terms of its excessively long computation times. For this reason, it is generally applied 

to the simulation of granular samples of limited size, and its application is often restricted to an 

academic context. Nevertheless, the constant improvement in computing resources and the 

development of parallel computing algorithms are enabling it to be used more and more in industry 

in a truly operational context. 

2.2.1. Contact Forces 

Contact force models are an essential part of discrete element modeling. An intergranular 

contact force is commonly decomposed into normal and tangential components, each of which is 

calculated by a specific model. It is common practice to use simple models to save calculation time.   

Consider here the situation where two grains, denoted as 𝑖 (with center 𝐶𝑖 and radius 𝑟𝑖 ) and 𝑗 (with 

center 𝐶𝑗  and radius 𝑟𝑗  ), are in contact at a point 𝐶. The points 𝐶𝑖 , 𝐶𝑗 and 𝐶 are aligned, and this 

alignment allows to define a direction  𝑛⃗  called the "normal to contact," pointing from 𝐶𝑖 to 𝐶𝑗 . The 

line tangent to both circles and passing through the point 𝐶 is orthogonal to 𝑛⃗  , defining a direction 𝑠  

called the "tangential to contact" (Figure. 2.1). With this reference frame, we can express any contact 

force applied by grain 𝑗 on grain 𝑖 as follows: 

                                            𝐹 𝑖𝑗 = 𝐹𝑛 𝑛⃗ + 𝐹𝑠 𝑠      (2.2)  

The normal 𝐹𝑛 and tangential 𝐹𝑠 components of the contact force are generally calculated according 

to different procedures, based on kinematic quantities (positions and velocities of the two grains) or 

multiphysical parameters. 

 

 

 

 

 

 

 

Figure 2.1.: Local contact reference frame 
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In the general case of contact between two solids, deformation occurs and contact is actually 

made on a surface instead of a point (e.g., according to Hertz theory). This deformation is generally 

negligible compared to the size of the contacting solids. Within the framework of the DEM-MD, it is 

assumed that the grains remain rigid and undeformable but have the ability to slightly overlap, and 

the contact force is then calculated based on this overlap.  

2.2.2. Normal stiffness 

Referring to Fig. 2.1, the normal relative distance 𝐷𝑛 between grains 𝑖 and 𝑗, referred to as the 

gap or the overlap is calculated as follows:  

𝐷𝑛 = ‖𝑥 𝑖 − 𝑥 𝑗‖ − 𝑟𝑖 − 𝑟𝑗    (2.3) 

In this expression, 𝑥 𝑖 and 𝑥 𝑗 are the position vectors of the centers of the two grains. When, 

𝐷𝑛 > 0 the grains are not in contact and no repulsive force exists. In contrast, when 𝐷𝑛 < 0, the 

grains are in contact and a repulsive force is developed, the greater the overlap, the greater the 

repulsive force. The simplest model is to consider that this force is proportional to the intergranular 

overlap, thus the intergranular repulsive force in expressed : 

𝐹𝑛 = {
0                   𝑖𝑓𝐷𝑛 > 0
−𝑘𝑛𝐷𝑛        𝑖𝑓𝐷𝑛 < 0

                (2.4) 

 

The spring constant 𝑘𝑛 is referred to as the "normal contact stiffness". Unlike the Hertz theory 

where the repulsive force depends the grain material properties, the stiffness 𝑘𝑛 is considered as a 

modeling parameter chosen to ensure efficient modeling. Note that this stiffness must be sufficiently 

high to ensure that overlap between grains remains limited. 

 

               

 

 

 

 

 

Figure 2.2.: Normal contact law. a. Normal contact stiffness; b. Normal stiffness and viscous damping. 

a 

b 
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2.2.3. Viscous Damping 

The use of an elastic contact cannot reproduce the reality of granular material behavior, as it 

does not introduce any energy dissipation. However, it is clear that one of the main characteristics of 

a granular medium is its strong dissipative nature during each interaction between grains. The 

simplest way to model this dissipation in explicit DEM is to introduce viscous damping in parallel 

with the normal contact stiffness (Figure. 2.2b). The damping coefficient is denoted as 𝑣𝑛 . 

Specifically, this amounts to applying a force proportional to the relative normal velocity of the 

grains, directed opposite to this velocity. 

On a single impact, this force will be repulsive when the grains move closer together, and attractive 

when the grains move apart. The viscoelastic normal force model is therefore expressed as follows : 

𝐹𝑛 = {
0                                     𝑖𝑓𝐷𝑛 > 0

−𝑘𝑛𝐷𝑛 − 𝑣𝑛
ⅆ𝐷𝑛

ⅆ𝑡
        𝑖𝑓𝐷𝑛 < 0

               (2.5) 

 

However, it should be noted that, this formulation has the disadvantage of applying an overall 

attractive force (including both the spring and the damper) during a certain phase of the contact. 

Indeed, at the very end of the unloading phase (when the two grains are about to separate), the 

interpenetration has become very small while the separation velocity is at its maximum. The repulsive 

force −𝑘𝑛𝐷𝑛 becomes negligible compared to the attractive force −𝑣𝑛
ⅆ𝐷𝑛

ⅆ𝑡
 , and the grains tend to 

develop a net contact force that restricts their separation. In the absence of cohesion, this force is not 

physically realistic. To resolve this issue, one can decide to truncate the contact force: we calculate a 

value of 𝐹𝑛 from equation (2.5) and replace it with zero if it is attractive. It is worth noting that, the 

equation (2.5) involves the quantity 𝑣𝑛
ⅆ𝐷𝑛

ⅆ𝑡
, which has not yet been expressed. In equation (2.5), 

ⅆ𝐷𝑛

ⅆ𝑡
 

represents the relative velocity of the grains projected onto the normal direction 𝑛⃗  , which can be 

expressed as : 

ⅆ𝐷𝑛

ⅆ𝑡
= (𝑉𝑖⃗⃗ − 𝑉𝑗⃗⃗ )𝑛⃗        (2.6) 

For grains without rotations, 𝑉𝑖⃗⃗  and  𝑉𝑗⃗⃗  represent the velocity vectors of the centers of mass 

of the grains 𝑖and 𝑗 in the global reference frame, defined by: 

𝑉𝑖⃗⃗ =
ⅆ𝑥 𝑖

ⅆ𝑡
      (2.7) 
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2.2.4. Tangential Stiffness 

The calculations of stiffness proposed in the normal direction are made simple by the existence 

of equation (2.3), which allows us to know the state of compression of the normal spring at any 

moment based on the positions of the particles. It is known, in particular, that the equilibrium point 

of the spring corresponds to positions where the grains are perfectly tangent. Such an equation does 

not exist in the tangential direction, which complicates matters. However, we wish to take advantage 

of the flexibility of the regularized approach (i.e., involving a stiffness opposing overlap) in the 

tangential direction as well. For this reason, we imagine that, during overlap, a spring is also set up 

in the tangential direction, developing a tangential force that adds to the normal forces from the 

previous sections (Figure. 2.3). By analogy with the normal direction, we refer to the elongation of 

this spring as 𝐷𝑠. 

 

 

 

 

 

Figure 2.3.: Tangential Contact Stiffness 

At a given moment and for a specific position of the overlapping particles, it is impossible to 

determine the value of 𝐷𝑠, as we do not know the path by which the particles arrived at this 

configuration: it could be through a purely normal trajectory (in which case we would have 𝐷𝑠 = 0 ) 

or with a certain amount of tangential momentum (in which case we would have 𝐷𝑠 ≠ 0 but it would 

be unknown). Therefore, we must consider the loading history, rather than solely relying on the 

instantaneous configuration of the system. Assuming for now that the grains cannot rotate, we must 

use the following equation, analogous to (2.6). 

ⅆ𝐷𝑠

ⅆ𝑡
= (𝑉𝑖⃗⃗ − 𝑉𝑗⃗⃗ )𝑠        (2.8) 

With this equation, we are able to calculate the tangential force by temporal integration of the 

kinematics of the two grains (𝑉𝑖⃗⃗  and 𝑉𝑗⃗⃗ ), meaning we can account for the loading history, provided 

that we have defined an initial condition for this integration. This condition is straightforward: we 

consider that at the moment the grains come into contact 𝐷𝑠 = 0. In other words, the tangential spring 

is in equilibrium at the moment the grains first come into contact, and its elongation is integrated over 
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time based on the relative tangential movements of the grains. We can then establish a tangential 

contact force:  

𝐹𝑠 = −𝑘𝑠𝐷𝑠       (2,9) 

This equation involves a tangential contact stiffness 𝑘𝑠, which is a numerical regularization 

parameter just like 𝑘𝑛. If necessary, a tangential viscous damping can also be added 𝑣𝑠. 

2.2.5. Friction and Sliding 

As in any contact between two solids, one should incorporate the concept of friction into the 

tangential law. This specifies an upper limit to the magnitude of the tangential force, chosen to be 

proportional to the value of the normal force. Thus, we define a contact friction coefficient 𝜇, and we 

constrain the tangential force as follows: 

|𝐹𝑠| ≤ µ|𝐹𝑛|       (2.10) 

To impose this condition, we proceed in a manner analogous to that used for the normal 

force: a tangential force is first calculated from equation (2.9) (which requires prior integration of 

ⅆ𝐷𝑠

ⅆ𝑡
  to access  𝐷𝑠 ), and then its absolute value is compared to the upper bound  µ|𝐹𝑛| (which 

assumes 𝐹𝑛 is previously calculated)  :   

𝐹𝑠 = {
−𝑘𝑠𝐷𝑠                                    𝑖𝑓|−𝑘𝑠𝐷𝑠|  ≤ µ|𝐹𝑛|

𝑠𝑖𝑔𝑛(−𝑘𝑠𝐷𝑠). µ 𝐹𝑛            𝑖𝑓|−𝑘𝑠𝐷𝑠|  > µ|𝐹𝑛|
              (2.11) 

 

In the case where  |−𝑘𝑠𝐷𝑠|  > µ|𝐹𝑛|, the contact transitions from "adhesion" mode to "sliding" 

mode takes place. In the first case, the tangential restoring force was entirely associated with the 

extension of the tangential spring. In the second case, it is limited by the concept of friction, and the 

particles slide without retaining memory of their initial adhesive contact state. The tangential spring 

no longer extends; otherwise, its additional elongation would increase the tangential force beyond the 

threshold value, according to equation (2.9). Consequently, during sliding, we gradually shift the 

equilibrium position of the tangential spring by setting:  

𝐷𝑠 = ∓
µ 𝐹𝑛

𝑘𝑠
        (2.12) 

The final contact law takes the form of the rheological model presented in Figure 2.4. 
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Figure 2.4.: Standard Contact Law 

We have thus fully defined the standard contact law for explicit DEM. This includes two 

numerical regularization parameters (the normal and tangential stiffnesses) and two more physical 

parameters related to energy dissipation modes in the normal direction (viscous damping) and 

tangential direction (friction coefficient). Locally, the contact conditions are governed by the overlap 

distance and the elongation of the tangential spring 𝐷𝑠. 

So far, we have made the simplifying assumption that the grains cannot undergo rotation. This 

assumption needs to be lifted to account for the realistic behavior of granular materials, where the 

concept of rolling is essential. Indeed, it is possible to have relative motion between the contacting 

grains while locally maintaining the condition 
ⅆ𝐷𝑠

ⅆ𝑡
= 0 , provided that, the rolling without slipping 

conditions are met. In this case, the relative tangential velocity is zero, and the tangential spring does 

not load.  

In the general case, we should therefore use the angular velocities of the grains, denoted as 𝑤⃗⃗ 𝑖 

and 𝑤⃗⃗ 𝑗. For simplicity, we can assume that the grains touch at a single point denoted as 𝐶 (thus 

following the schematic of Figure. 2.1). The relative tangential velocity of the particles at their contact 

point is then given by:  

ⅆ𝐷𝑠

ⅆ𝑡
= (𝑉𝑖⃗⃗ − 𝑉𝑗⃗⃗ )𝑠 − (𝑟𝑖 𝑤⃗⃗ 𝑖 + 𝑟𝑗 𝑤⃗⃗ 𝑗)⋀ 𝑛⃗⃗⃗      (2.13) 

This expression enriches equation (2.8) by taking into account the rotation of the grains. To 

dynamically address these rotations, it is necessary to define the torques applied to the particles by 

the tangential components of the contact forces. For particle 𝑖 , the torque applied by the contact with 

particle  𝑗 will be denoted as  𝑇⃗ 𝑖, and is given by: 

𝑇⃗ 𝑖 = −(𝑟𝑖.  𝑛⃗⃗⃗ )⋀(𝐹𝑠.  𝑠⃗⃗ )      (2.14) 

 



CHAPTER 03  DEVELOPMENT OF THE STICK-SLIP FRICTION MODEL FOR DISCRETE ELEMENTS MODELING 

 

p. 20 

The particle rotation and the total torque ∑ 𝑇⃗ 𝑖 it experiences from all its contacts are then 

related by a dynamic equation analogous to equation (2.1), which incorporates the inertia 𝐼𝑖 of the 

particle: 

∑ 𝑇⃗ 𝑖 = 𝐼𝑖 .
ⅆ𝑤⃗⃗ 𝑖

ⅆ𝑡
      (2.15) 

It should be noted that equations (2.13) and (2.14) are based on the assumption that the grains 

touch at a single point, which is inaccurate in the context of explicit DEM since small overlaps are 

allowed. This often results in a slight deviation of the simulated results from the momentum 

conservation. Depending on the desired accuracy, these errors can be neglected (ensuring that the 

normal stiffness is sufficiently large to guarantee minimal overlap and limit the amplitude of the 

deviation), or they can be corrected with appropriate additional terms (see [29]).  

2.2.6. Rolling Resistance 

The possibility of rolling without slipping was mentioned in the previous section. In classical 

solid dynamics, this situation corresponds to a limiting case of perfect contact where no energy is 

dissipated. In the context of granular mechanics, however, it is often useful to challenge this 

perfection by considering that two grains are not entirely free to roll over one another without 

dissipating energy. Therefore, rolling resistance is sometimes introduced as resisting torques applied 

to grains in relative rolling motion. This can serve to represent surface roughness of circular particles 

or even to incorporate non-circular shapes in the modeling of actual grains (which naturally oppose 

rolling). 

The simplest method to introduce rolling resistance is to apply torques to the contacting grains 

that are proportional to the rolling velocity 𝑤⃗⃗ ′ and have opposite signs, which is analogous to the 

concept of viscous damping defined for the normal force. The relative rolling velocity 𝑤⃗⃗ ′ of two 

grains is defined as: 

𝑤⃗⃗ ′ =
𝑟𝑖𝑟𝑗

𝑟𝑖+𝑟𝑗
(𝑤⃗⃗ 𝑖 − 𝑤⃗⃗ 𝑗)      (2.16) 

The rolling resistance could be written therefore as : 

𝑇⃗ 𝑟 = −𝐷𝑟 . 𝑤⃗⃗ 
′      (2.17) 

where 𝐷𝑟 is the rolling damping. 
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This rolling resistance torque must then be introduced into the equation for the rotational 

equilibrium of each individual grain (Eq. 2.15). Another approach would be to define a threshold 

analogous to the friction coefficient 𝜇𝑟, but adapted for rolling resistance. This would require, 

similarly to the tangential force, the use of a regulation parameter comparable to a torsional stiffness 

𝑘𝑟 positioned at the contact point. 

2.3. Numerical Resolution 

2.3.1. Explicit Resolution Scheme 

The numerical resolution of a discrete-element modeling problem is based on the time 

integration of a system of ordinary differential equations, consisting of equations (2.1) and (2.15) for 

each particle. Several resolution schemes are available in the literature to address this type of 

numerical problem. For example, the explicit Newmark scheme (used notably in structural dynamics) 

or Gear's predictor-corrector scheme (used in traditional molecular dynamics). In the same 

framework, the Verlet integration scheme, also known as "leapfrog" is most commonly used. This 

scheme starts from an initial state at time 𝑡0 = 0 for which all positions 𝑥 𝑖 and velocities  𝑉⃗ 𝑖 are 

known, defines a time step 𝑑𝑡, and progresses incrementally by linearizing the equations of motion. 

All position and acceleration variables will be calculated at times corresponding to integer values of 

the time step (i.e., 𝑡0 = 0, 𝑑𝑡, 2𝑑𝑡, 3𝑑𝑡… etc.), while velocity variables will be calculated at half 

values of the time step (i.e.,  𝑡 = 𝑑𝑡/2 ,  3𝑑𝑡/2 , 5𝑑𝑡/2... etc.). 
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Figure 2.5.: Verlet Time Integration Scheme 

                                                  

 

In the following, we will denote the position  𝑥 𝑘 and 𝑎 𝑘 acceleration of a particle's center of 

mass at time 𝑡 = 𝑘𝑑𝑡, and its velocity 𝑉⃗ 𝑘+1/2 at time 𝑡 = (𝑘 +
1

2
)𝑑𝑡 . The rotational degrees of 

Known quantity Unknown quantity 
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freedom are treated similarly to the translational ones, although they are not detailed here for clarity. 

The calculations proceed by local linearization of the motion, using the following relations: 

                                       𝑥 𝑘 = 𝑥 𝑘−1 + 𝑉⃗ 𝑘−1/2𝑑𝑡                 (2.18) 

                     𝑉⃗ 𝑘+1/2 = 𝑉⃗ 𝑘−1/2 + 𝑎 𝑘𝑑𝑡                                            (2.19) 

It is clear that, each quantity is calculated from quantities that strictly precede it in time, which 

is the definition of an explicit scheme. It is also noted that equation (2.19) involves the acceleration 

at time 𝑡 = 𝑘𝑑𝑡, which is obtained from the fundamental principle of dynamics (2.1), thus, involving 

the forces applied to each grain at the same instant. These forces are calculated using the equations 

describing the contact law, depending notably on 𝑥 𝑘 and 𝑉⃗ 𝑘 . 

 When equation (2.19) is used, the position 𝑥 𝑘 is known, but this is not the case for 𝑉⃗ 𝑘  (in fact, 

only 𝑉⃗ 𝑘−1/2 is known). Before calculating the contact forces and applying (2.19), we therefore resort 

to the following equation over a half time step: 

𝑉⃗ 𝑘 = 𝑉⃗ 𝑘−1/2 + 𝑎 𝑘−1𝑑𝑡/2      (2.20) 

The scheme, presented in this way, provides an estimate of the new positions of the particles 

𝑥 𝑘 based on the old positions 𝑥 𝑘−1. All of these steps are summarized in Figure2.5. 

2.4. Numerical modeling Parameters 

Several modeling parameters should be selected in order to perform numerical simulations. In 

particular, the values of the normal and tangential contact stiffnesses must be defined, as well as the 

time step used in the integration scheme. The normal stiffness 𝑘𝑛 should be chosen so that the overlap 

distances remain small in relation to the particle diameters. For reasons of simulation speed, which 

will be explained later, it is also desirable that this stiffness is not too high. It is therefore not desirable 

to assign it an unreasonably high value to minimize overlaps; on the contrary, low values that do not 

produce high overlaps should be used. 

The value of the normal contact stiffness is linked to the model's critical time step, which is 

crucial to the stability of the calculations. For stable simulations, the contact phase during the collision 

of two grains must be well resolved. Indeed, the integration time step must be sufficiently small in 

relation to the contact duration.  Given the normal contact force model presented above, the collision 

phase of a grain with a plane could be represented by the oscillating system is presented in Fig. 2.6. 

This is the classic Kelvin-Voigt oscillator, obeys the following differential equation: 



CHAPTER 03  DEVELOPMENT OF THE STICK-SLIP FRICTION MODEL FOR DISCRETE ELEMENTS MODELING 

 

p. 24 

𝑚
ⅆ2𝑥

ⅆ𝑡2 = −𝑚𝑔 − 𝑘𝑛𝐷𝑛 − 𝑣𝑛
ⅆ𝐷𝑛

ⅆ𝑡
       (2.21) 

In this expression, the position parameter 𝑥 and the interpenetration distance 𝐷𝑛 are related 

by:  

𝐷𝑛 = 𝑥 − 𝑟        (2.22) 

If we denote the equilibrium position of the spring as 𝑥0 = 𝑟 − 𝑚𝑔/𝑘𝑛, equation (2.21) can 

be rewritten as: 

𝑚
ⅆ2𝑥

ⅆ𝑡2 = −𝑘𝑛(𝑥 − 𝑥0) − 𝑣𝑛
ⅆ𝐷𝑛

ⅆ𝑡
        (2.23) 

The grain of mass 𝑚  undergoes a damped oscillation around the position 𝑥0, the expression 

of which is given by: 

𝑥(𝑡) = 𝑥0 + 𝐴. 𝑒𝑠0𝑡      (2.24) 

In this expression, 𝐴 represents the amplitude of the oscillation (which depends on the initial 

conditions), 𝑠0 = −𝜇0 ± √𝜇0
2 − 𝜔0

2 and 𝜔 is the natural frequency. The system therefore contains 

two different time scales, related respectively to stiffness and damping, with characteristic 

frequencies given by: 

𝜔0 = √𝑘𝑛
𝑚⁄        (2.25) 

𝜇0 =
𝑣𝑛

2𝑚
       (2.26) 

Depending on the values of 𝑘𝑛, 𝑣𝑛 and  𝑚, several types of behavior can occur. If  𝜇0 ≫ 𝜔0 

damping dominates and the system does not oscillate; it asymptotically approaches its equilibrium. 

In contrast, if 𝜇0 ≪ 𝜔0 damping is not significant on the scale of one oscillation, and the system 

oscillates nearly freely with a period equal to 𝑇 = 2𝜋 𝜔0⁄  . 

 

 

 

 

 

 

Figure 2.6.: Dynamic equivalent of a Disk Resting on a horizontal surface. 
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The time integration algorithm must be able to accurately resolve these small rapid 

movements, and the duration of the time step in the Verlet scheme must therefore be chosen in relation 

to this oscillatory motion. The following rule is generally used: 

𝑑𝑡 = 𝜀 √𝑚𝑚𝑖𝑛/𝑘𝑛      (2.27) 

Values of 𝜀 close to 1/50 are commonly used, which means that the critical time step 𝑑𝑡 is 

chosen to discretize one period of the fastest oscillator in the system (usually corresponding to the 

particle with the lowest mass) into 50 successive steps.  

It is clear that, as previously mentioned, it would be not reasonable to choose a normal 

stiffness that is too high. While this would limit overlapping, it would lead to a much smaller critical 

time step (since a stiffer oscillator oscillates faster), resulting in significantly higher computational 

costs. Therefore, one often has to strike a balance between accuracy (high 𝑘𝑛) and computational cost 

(low 𝑑𝑡) in a simulation, similar to what is done in defining a finite element mesh.  

2.5. Modeling Techniques 

2.5.1. Neighborhood Detection 

In the general explicit resolution algorithm for a discrete problem, update of the grain 

neighborhood list represent a significant portion of the computational cost of the simulation. This step 

involves generating a neighborhood list for each particle. This operation relies on a neighborhood 

detection step, which determines whether it is likely that two particles, 𝑖 and 𝑗, will come into contact 

in the near future. The notion of "near future" is quite vague, so it is immediately clear that all 

neighborhood detection methods will depend on arbitrary parameters chosen by the modeler, allowing 

for a trade-off between computational cost and the assurance of not missing any contacts. In practice, 

this detection can be performed using a wide variety of methods. These methods stem from an 

emerging field that extends well beyond granular media, known as "computational geometry", they 

are commonly used in industries such as computer graphics and video games, as well as in robotics. 

Here, we will briefly describe only the most widely used methods in the case of circular/spherical 

particles. 

a. Direct Method 

It simply involves performing a double loop over all possible pairs of particles and selecting as 

likely to come into contact all pairs of particles whose distance  𝐷𝑛 is less than a distance  𝐷𝑛𝑒𝑖𝑔 

chosen by the modeler (Figure2.7). For example, one might take 𝐷𝑛𝑒𝑖𝑔≅ the diameter of the largest 
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particle in the system. The direct method has the advantage of being very simple to code, but it is 

relatively expensive in terms of computation time.  

 

Figure 2.7. Direct Detection Method. 

b. Container Partitioning Method 

This method involves subdividing the entire system according to a fixed grid (in two or three 

dimensions depending on the problem), with a given spatial step (Figure. 2.8). Thus, each particle 

has its center that belongs to a "cell" with an area 𝐴 (or volume  𝑉 for 3D), and the identity of this 

cell can be easily determined from the coordinates of the center in question. Then, for a given particle, 

the neighborhood list consists of all particles whose centers belong to the same cell and its 

neighboring cells. The length of the side of the cell can be taken, for example, as 𝑑𝑐𝑒𝑙𝑙 =

diameter of the largest particle. This method is very efficient, except for materials that are highly 

polydisperse, for which it tends to form neighborhood lists that are too long. The method can also 

become very costly if the particles are widely dispersed in space. Nevertheless, it remains the most 

widely used neighborhood detection method. 

 

Figure 2.8.: Container dividing Method. 
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c. Triangulation Method 

This method relies on a widely used mathematical tool known as Delaunay triangulation (Fig. 2.9). 

It is a technique that connects a set of randomly dispersed points in space using a network of triangles 

that are as regular as possible. This results in a tiling of space and a direct relationship between each 

point and its nearest neighbors. When applied to neighborhood detection, this method is appealing 

but has the drawback of being computationally expensive, and it may sometimes fail to capture certain 

neighborhoods if the sample is highly polydisperse. Therefore, it is rarely used in the context of 

Discrete Element Method (DEM).  

 

Figure 2.9.: Delaunay Triangulation Method. 

 

It should also be noted that, in addition to the neighborhood detection technique and its 

potential numerical parameters, the modeler must be very mindful of the frequency at which this 

operation is performed. This frequency primarily depends on the type of simulation being conducted. 

If the situation involves grains that move little (quasi-static loading), it is possible to considerably 

space out the updates of the neighborhood lists, which are generally costly. In contrast, in a highly 

vibrated medium or disordered flow situation, the geometric configuration of the system evolves very 

quickly, and this update will need to be more frequent. Therefore, the trade-off between time savings 

and the risk of missing a collision is a choice made by the modeler. 

2.6. Generation of an Initial State (samples creation) 

This involves creating a sample that meets the granular material's target conditions in terms 

of particle size distribution, solid fraction, state of stress, and so on. This is not a trivial problem, 

however, it can be broken down into two different parts. 

On one side, we focus on the positions and diameters of the particles, which allow us to meet 

the general shape criteria of the sample, particle size distribution, and solid fraction. These are 
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essentially geometric quantities that do not involve mechanics in their definition. Methods based 

solely on geometry can be used to solve this part of the problem. 

On the other side, we focus on the contact forces in the initial sample, which allows us to meet 

the criteria for the stress state. The presence of contact forces implies the concepts of overlap, contact 

laws, loading history,… etc. Thus, it appears that, from this perspective, In a recursive manner, the 

establishment of the stress state of an initial sample for discrete simulation can only be achieved 

through a prior discrete simulation. However, it is not necessary for this simulation to start from a 

well-controlled initial state; only its final state is important. The overall approach is therefore as 

follows: 

1 Generate an initial sample (positions and diameters of all particles) using a geometric 

method in the absence of contact. 

2 Perform a discrete simulation of this sample under certain loads to achieve the desired 

stress state. 

3 Finally, perform the desired simulation on this well-controlled sample. 

Each of steps 1 and 2 can be extremely costly in terms of computing time, even if they do not 

yet represent the desired simulation (step 3). Consequently, the aim is generally to use a geometric 

method (step 1) that limits costs while providing a sample very close to the desired state, thus 

minimizing the cost of step 2. We will briefly introduce some of these geometric methods  

a. Implementation on a Fixed Grid 

This method the simplest and fastest of all (Figure 2.10) (it is adopted in this thesis). It involves 

positioning the centers of the particles on a fixed grid (with rectangular or hexagonal cells), ensuring 

that the grid spacing is greater than the diameter of the largest particle. This ensures that no overlap 

occurs in this initial state. The resulting solid fractions are extremely low (especially for highly 

polydisperse samples), which means that the next step of compacting this sample is always very 

costly. Therefore, more sophisticated techniques are generally preferred. 
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Figure 2.10.: Packing on a Square Grid. 

b. Random positioning 

This method consists of placing the grains one by one at a random point in the container, 

ensuring that each time a particle is placed, it does not overlap with the particles already placed. If an 

overlap occurs, the position is rejected, and another random position is proposed for the particle, 

followed by a new test, and so on. This method is interesting, especially if care is taken to place the 

particles in decreasing order of size. However, it can be extremely costly if the sample is large (as 

each new particle must be tested for overlap with all previous particles), and if a high solid fraction 

is targeted (the empty spaces become increasingly rare, and the probability of a valid random 

placement decreases rapidly). Nonetheless, some recent techniques based on the concept of level sets 

can make these methods very appealing. 

c. Constraint Voronoi Partition 

It is a method based on creating a constrained Voronoi partition of the container to perform 

the packing (Figure. 2.11). The Voronoi partition is a mathematical tool (conceptually very close to 

Delaunay triangulation), which divides space into as many polygonal regions (polyhedral in 3D) as 

there are points, based on a set of points arbitrarily positioned in space. In particular, the polygon 

corresponding to a given point in the initial point cloud is made up of all the points in space that are 

closer to this point than to any other point in the initial cloud. Such a polygon/polyhedron is called a 

“Voronoi cell”. A judicious placement (which can be achieved through various methods) of the points 

in the initial cloud allows for very precise control over the size distribution of the cells. Each cell can 
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then be filled with a grain, and the particle size distribution will replicate that of the cells. This method 

has certain analogies with the grid technique but allows for much denser packings.  

 

Figure 2.11.: Voronoi Partition and Filling of Cells with Circular shaped Grains. 

2.7. Boundary condition  

In discrete element modeling (DEM), boundary conditions play a crucial role in simulating 

the mechanical behavior of materials accurately. Commonly used boundary conditions include rigid 

friction walls, rigid frictionless walls, periodic boundaries, and flexible membranes [30].  

Rigid walls with friction are often used to simulate confinement, providing a positionally 

controlled edge that can resist shear forces, thus influencing the stress distribution within the material. 

In contrast, frictionless rigid walls are position-controlled edges that allow particles to slide freely 

along the edge, which is useful for simulating ideal conditions where friction is negligible. Periodic 

boundary conditions are utilized to replicate an infinite medium by allowing particles exiting one side 

of the simulation box to re-enter from the opposite side, effectively minimizing edge effects and 

enabling the study of bulk material properties. Flexible membranes have gained attention for their 

ability to mimic real-world scenarios where boundaries can deform under stress. This approach allows 

for more realistic simulations of materials that experience significant deformation, such as granular 

materials under triaxial testing. The integration of flexible membranes into DEM not only enhances 

the accuracy of simulations but also facilitates the investigation of complex behaviors like particle 

breakage and shear localization, which are critical in understanding granular material mechanics 

under various loading conditions. By combining these boundary conditions thoughtfully, researchers 

can create more robust models that better reflect the physical phenomena observed in experiments. 
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Figure 2.12 Illustration of rigid, periodic and flexible boundaries used in DEM simulations. 

(a) Rigid boundary illustration; (b) periodic boundaries (c) flexible boundary [30] 

2.8. Representative Elementary Volume 

It is generally accepted that the mechanical behavior of a granular material can be assimilated 

to that of a continuous medium, with behavior defined at each point by a macroscopic constitutive 

law relating strains to stresses. For this reason, laboratory tests (triaxial, oedometer, etc.) are 

conducted on soil samples containing a sufficient number of grains, whose size must be small relative 

to the size of the sample. Obviously, this precaution must also be verified in discrete numerical 

simulations. One must ensure, by using a sufficient number of particles, that the dimension of the 

heterogeneities is small compared to the dimensions of the assembly as well as to the applied loading. 

However, as pointed out by Chareyre 2003 [31], what does "sufficient" mean? How can one assess 

the validity of simulations? 

In the context of studies on heterogeneous materials using multi-scale approaches, this 

generally translates into defining a Representative Elementary Volume (REV). It is termed 

"elementary" because it is considered as a material point of the medium, and "representative" because 

it exhibits mechanical behavior identical to that of the equivalent macroscopic medium: it is the 

smallest volume for which, according to Cambou and Jean (2001) [32], it is possible to determine a 

unique behavior law linking stresses to strains. This definition of REV, based on the uniqueness of 

the behavior, is hardly conceivable in the context of discrete simulations. Indeed, how can one 

characterize the unique behavior of a granular assembly knowing that, inevitably, the specific initial 

configurations of a simulation generate as many corresponding "exact" solutions? Variability is 

inherent in discrete methods, regardless of errors related to the resolution method. 
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Thus, several authors [32] have focused on characterizing the REV and have attempted to 

estimate the minimum number of heterogeneities to consider. For instance, based on experimental 

tests on Schneebeli rolls, [34]. showed that, calculating global deformations from the discrete 

displacement field (also known as kinematic homogenization) depends on the size of the domain over 

which the calculation is performed. They estimate satisfactory convergence of calculations towards 

experimentally measured values from a volume equal to ten times the size of the largest element, 

which would correspond to the REV and confirm analyses already conducted in reference [23]. 

Nevertheless, because of the variability inherent in the discrete element method (DEM), 

characterizing the REV on the basis of the dispersion of results seems the most relevant, since it is 

well established that this variability decreases with increasing particle number, an asymptotic 

behavior being evidenced in large systems. In [32] for example, it is demonstrated that in two-

dimensional simulations, the standard deviation calculated from peak stress values decreases with the 

number of grains N involved, proportionally to 𝑁−1 2⁄  . 

This probabilistic approach has ultimately led experimenters and numerical analysts to 

characterize the Representative Elementary Volume (REV) based on the results of their simulations: 

the number of grains to be considered is determined by the fact that differences become negligible 

from one test to the other. Several samples of the same material must be able to reproduce equivalent 

mechanical behaviors. This equivalence, of course, is left to the experimenter's judgment. However, 

in the context of numerical simulations, it's important to bear in mind that the computational cost is 

directly related to the number of interacting particles. 

 

 

 

 

 

 

 

 

Figure 2.13 Dispersion of the σ-ε curves for two samples with identical properties of 500 and 4000 grains 

subjected to biaxial loading according to [31]. 
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2.9. Usual grain shape models  

In DEM, the classical grain shape used is disk in 2D and spherical shaped grains in 3D to 

optimize computation times during contact detection. In [35], it is shown that these models do not 

quantitatively reproduce the shear resistance of a non-cohesive soil subjected to triaxial tests. The 

rolling mechanisms that may develop with spherical elements reduce the shear resistance. 

Matsushima and Saomoto (2002) [36], showed that more angular elements can increase shear 

resistance without the mechanism being clearly identified. Several methods have been proposed to 

address the rolling of grains. These methods are either based on the use of non-spherical elements, 

which may or may not be convex, or they incorporate specific contact laws that result in partial or 

total locking of the elements rotations. In contrast, on models composed of spherical elements, the 

normal contact forces generated within assemblies of non-spherical convex elements contribute to 

the creation of moments. Many authors have developed 2D polygonal elements, such as [37] or [38], 

who varied the elongation of the elements and demonstrated that, in contact dynamics, elongated 

polygons help to limit rotations within the sample. In [39], more complex 2D assemblies of elements 

whose shape can evolve from a circle to a triangle or a square are proposed, while [40] develop 3D 

element shapes initially composed of spheres but made convex. These authors develop specific 

algorithms for contact detection, but no mechanical tests are conducted on these assemblies, and no 

indication is given regarding the possible anisotropy of the medium. [41] conducted biaxial tests 

(using a 2D model) and triaxial tests (using a 3D model). The shapes of the tested elements are disks 

and oval shapes in 2D, and spheres and elongated or flattened spheroids in 3D. they observed that 

samples composed of perfectly symmetrical shapes (disks and spheres) exhibit lower resistance.  

Table 2.1. Usual grain shape models. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Grain shapes with rolling resistance 

contacts laws 
Grain shapes without rolling resistance contacts laws 

Emeriault and Claquin (2004) 
Lu et McDowell,2007 

Potapov and Campbell (1998) 

Nouguier-Lehon et al., 2003 

Disk 

Sphere 
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2.10. Conclusion  

 In conclusion, this chapter provided a comprehensive overview of the Discrete Element 

Method (DEM), highlighting its fundamental principles and applications in the study of granular 

materials. We began with a general description of the DEM, emphasizing its capability to simulate 

the behavior of discrete particles and their interactions. We explored various contact models that are 

essential for accurately representing the interactions between particles, including the mechanisms of 

rolling resistance that influence the behavior of granular assemblies. 

 The methods for creating representative samples were discussed, illustrating how sample 

preparation can significantly impact the results of DEM simulations. Boundary conditions play a 

crucial role in defining the behavior of the modeled system, we presented different approaches to 

implementing these conditions effectively. Additionally, we addressed the concept of representative 

volume elements, which is important for ensuring that simulations reflect the characteristics of larger 

systems. Finally, we reviewed the common grain shapes utilized in DEM, noting how these shapes 

affect particle interactions and overall system behavior.  
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Chapter  03 

 A STICK-SLIP FRICTION MODEL FOR 

DISCRETE ELEMENTS MODELING 

3.1.  Introduction  

The discrete element method (DEM) is a numerical technique used to simulate the behavior 

of granular materials by modeling each particle as a discrete entity with its own position, velocity, 

and contact forces. For the intergranular contact treatment two distinct methodologies can be 

distinguished. the soft-contact approach [27] and the hard-contact approach [42, 43]. In the soft-

contact approach, the particles are modeled as pseudo-rigid bodies with deformation mainly occurring 

at the contact point, allowing a small particle deformation referred as overlap. This latter is then used 

to calculate the contact forces modeled via rheological models selected to reproduce the overall 

behavior of granular media in a given context [44–47]. 

Intergranular tangential forces are governed by intergranular friction which has a determinant 

effect on the macroscopic behavior of the simulated material [48–50]. Therefore, the development 

and calibration of friction models in DEM are essential to ensuring the fidelity and effectiveness of 

simulations in studying granular systems and complex particle interactions. In this context, many 

friction models are developed, some of these models are based on Coulomb friction laws [27, 51–53] 

and others on elastic Mindlin's theory [54–56]. 

In this chapter we present the dry friction model extended to the stick-slip behavior commonly 

observed in systems characterized by friction coefficients different in static and dynamic regimes. 

First, the model is formulated and implemented in a 2D discrete element model. Then, three examples 

involving a static, quasi-static and dynamic situations are modeled and analyzed in detail to show the 

effectiveness and robustness of the model. 

3.2. Stik-slip motion 

When two surfaces are in contact, they are effectively in contact only in certain areas, called 

asperities [57, 58], Fig. 1, 2. The junctions created by the contacts at the level of the asperities have 

two behaviors during shearing motion. 
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a                                              b 

Figure 3.1.  Ottawa sands: a – SEM photomicrograph, b – an enlargement image of the framed area in (a) 

[59] 

 

 
Figure 3.2. Schematic view of the microscopic contact of tow surfaces: nF  – Normal forces, sF  – 

shear forces 

 
Stick stage: Under the effect of an external force of small amplitude, the links stretch and allow 

a microscopic relative displacement between the two surfaces in contact. This deformation is 

«reversible», therefore, if the external force cancels, the deformation disappears, the two solids 

resume their relative starting position. 

Slip stage: Under the effect of external force of amplitude greater than coulomb’s threshold 

s nµ F , called the «breakaway force», the deformation is irreversible, the connection created by the 

asperities break and relative sliding occurs. 
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Stick-slip motion is characterized by a sawtooth displacement-time evolution. Fig. 3 illustrates 

the static phase and the kinetic phases involving the stick-slip phenomenon. The motion is bonded by 

the static friction force s nµ F  in the stick phase and the kinetic friction force k nµ F  in the slip phase. 

Where sµ  and kµ  are respectively the static and the dynamic friction coefficients with k sµ µ . 

 

 
Figure 3.3. Illustrative scheme of stick-slip behavior 

 
A number of factors affect the Stick-slip phenomenon. The most important factors are: the shear 

velocity and the quantity and nature of asperities of the contact surface. The shear velocity SV  has a 

very important effect on the frictional force. The experiments show that the average friction force sF  

depends on the shear rate. Typically, sF  decreases as SV  increases as shown in Fig. 4. 

 

 
Figure 3.4. Typical evolution of friction force in terms of shear velocity  

cV 
 being the critical shear velocity [60] . 

 

The critical shear velocity 
c

sV  is defined as the velocity beyond which the friction force 
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disturbances due to stick-slip become negligible, above this velocity the relative surfaces motion is 

referred to as steady sliding [60–64]. 

 

3.3. Usual contact models in DEM 

 
In 2D simulation of granular media composed of circular-shaped particles, each grain i is 

defined by its mass im , radius ir  and position 𝑥𝑖⃗⃗⃗   and the same for grain j, the deformation of the grains 

is parametrized by the overlap 𝐷𝑛 = (𝑥𝑖⃗⃗⃗  + 𝑥𝑗⃗⃗⃗  ) − (𝑟𝑖 − 𝑟𝑗)𝑛⃗  (Fig. 5). The dynamics of a grain i is 

governed by second Newton's law, where the equations of translation and rotation are integrated 

involving all external forces acting on this grain such as contact forces and gravity: 

 

 𝒎𝒊𝒙𝒊̈⃗⃗  ⃗ = 𝑭𝒊𝒋
𝑪⃗⃗⃗⃗  ⃗ + 𝒎𝒊𝒈⃗⃗  (3.1) 

 

The contact force 𝐹𝑖𝑗
𝐶⃗⃗⃗⃗  ⃗ defined as the action of the grain j on the grain i can be decomposed into 

normal and tangential components, 𝐹 𝑛 and 𝐹 𝑠 respectively: 

 

 𝑭𝒊𝒋
𝑪⃗⃗⃗⃗  ⃗ = 𝑭𝒏𝒏⃗⃗ + 𝑭𝒔𝒔⃗  (3.2) 

 
where 𝑛⃗  is the normal unit vector pointed from i to j, and 𝑠  is the tangential unit vector obtained from 

a+90° rotation of 𝑛⃗ . 
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Figure 3.5. Soft-contact particles interaction 

 
For the normal component, particles collusion is commonly modeled with linear visco-elastic 

model. Where the contacting grains are treated as a harmonic damped oscillator having an effective 

masse equals to / ( )i j i jm m m m . The natural half-period of this oscillator is considered as the contact 

duration CT . This latter is discretized into small time steps dt  in order to properly resolve the contact 

evolution. 

Thus, 𝐹𝑛
⃗⃗  ⃗ is the sum of the elastic and damping forces: 

 

 𝑭⃗⃗ 𝒏 = (𝑫𝒏𝑲𝒏 + 𝒗𝒏𝑽𝒏)𝒏⃗⃗  (3.3) 

 

where nK  is the normal stiffness of the spring and nV  is the velocity of grain i relative to grain j 

velocity given by: 

 

 𝑽𝒏 = (𝒙𝒋̇⃗⃗  ⃗ − 𝒙𝒊̇⃗⃗  ⃗)𝒏⃗⃗  (3.4) 

more details about normal force modeling are presented in references [56, 65–68]. 

The tangential component 𝐹𝑠
⃗⃗⃗   is often represented by models based on Coulomb's law, due to 

their simplicity of implementation and short computational time. For dynamic problems, the linear 

model is the most representative. This model assumes that the frictional force is proportional to the 

normal contact force according to Coulomb's law. the disadvantage of this model is that the tangential 
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force becomes undefined if the interparticle shear velocity is zero (𝑉𝑠⃗⃗⃗  = 0⃗ ). For static or quasi-static 

problems tow models was distinguished. The visco-plastic model and visco-elastic friction model in 

both the tangential force was limited by coulomb threshold, beyond this threshold an intergranular 

slip occurs. These models are summarized in Table 1. 

 
Table 3.1. Usual friction model. 

Rheologic model Description References 

 

Coulomb friction model: 

𝑭⃗⃗ 𝒔 = µ|𝑭𝒏|𝒔𝒊𝒈𝒏(𝑽𝒔
⃗⃗⃗⃗ ) 

,kµ µ  

 

where 𝑽⃗⃗ 𝒔 – relative shear velocity 

[69–71] 

 

Visco-plastic model: 

 

𝑭⃗⃗ 𝒔 = 𝐦𝐢𝐧(|𝒗𝒔𝑽𝒔|; |µ𝑭𝒏|)𝒔𝒊𝒈𝒏(𝑽𝒔
⃗⃗⃗⃗ ) 

kµ µ  

[66, 72, 73] 

 

Visco-elastic model: 

 

𝑭⃗⃗ 𝒔 = 𝐦𝐢𝐧 (|𝑲𝒔𝑫𝒔 + 𝒗𝒔𝑽𝒔|;  µ|𝑭𝒏|) 

 ,s s s ssign K D v V  

 

where sv  – damping coefficient 

[52, 53, 74–76] 

 

3.4. Stick-slip friction model 

In this section, the tangential contact model and the calculation algorithm during a contact 

evolution will be presented in detail. The tangential force is modeled by an elastic spring with a 

dashpot in series with a slider (Fig. 6). The elastic spring allows to simulate the deformation or the 

reversible phase (stick phase) and the slider defines the Coulomb’s threshold characterized by 

different friction coefficients in static and dynamic regimes. 
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Figure 3.6. Stick-slip friction model 

 
As mentioned in subsection 2.1, stick-slip motion has static and dynamic phases. In the static 

phase the stick force remains below the coulomb’s static threshold s s nF µ F  and the spring 

deformation is equal to the relative tangential displacement sD . Therefore, the tangential force is 

computed as the sum of the elastic force and the viscous force: 

 

 𝑭𝒔
⃗⃗⃗⃗ = (−𝑫𝒔𝑲𝒔 − 𝒗𝒔𝑽𝒔)𝒔⃗  (3.5) 

 

where sK  is the tangential spring stiffness and sV  the relative tangential velocity: 

 
 𝐕⃗⃗ 𝒔 = (𝑽𝒋 − 𝑽𝒊)𝒔⃗  (3.6) 

 

During contact evolution sD  increases at each time step (dt) so that: 

 

 .s s

dt

D V dt  (3.7) 

 

Once the tangential force exceeds the Coulomb’s static threshold s s nF µ F  the kinetic phase 

is activated and sF  set to 
min

sF . In this moment the spring deformation should be adjusted to conform 

the kinematic friction force: 

 

 .
min

s
s

s

F
D

K
  (3.8) 
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Immediately another stick phase will be activated. It should be noted that the lower limit of the 

friction force min

sF  during the stick-slip motion is chosen  2 k s nµ µ F  so that the average tangential 

force is equal to k nµ F . 

The model implementation can be done according to the diagram in Fig. 7. This diagram 

indicates that calculation of the shear force begins from the moment contact begins, i. e. ( 0)nD  . At 

this moment, contact duration and shear deformation are initiated to zero ( 0 t  and 0sD  ). During 

the contact, the algorithm checks if the stick force is less than the static threshold; if so, it calculates 

the static friction force using the tangential deformation and maintains the state as «sticking».  
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Figure 3.7. The diagram of the model implementation 

 

When the stick force exceeds the static coulomb’s threshold, the algorithm transits to the 

slipping phase, where it calculates the friction force using the dynamic friction coefficient, the friction 

force drops below the dynamic threshold again, the system returns to the sticking phase. This process 

is repeated for as long as the contact continues. The Coulomb slip threshold evolves with time, since 

it depends on the normal contact force, which varies with time. 

 

Contact test 
𝑫𝒏 < 0 

𝒕 = 0 

𝑫𝒔
0 = 0 

 

Shear displacement computation 

𝑫𝒔
𝒕 = 𝑫𝒔

0 + 𝑽𝒔𝒅𝒕 
 

Stick force computation 

𝑭𝒔 = −𝑫𝒔
𝒕𝑲𝑺 − 𝒗𝒔𝑽𝒔 

 

Static friction force threshold test  

𝑰𝒇 |𝑭𝒔| > (µ𝒔|𝑭𝒏|) 
 

The stick force remains unchanged 

𝑫𝒔
0 = 𝑫𝒔

𝒕  
 

Slip phase/Switching from stick force to kinematic 
friction force  

𝑭𝒔 = 𝑭𝒔
𝒎𝒊𝒏 

 

Correction of the grain deformation 

𝑫𝒔
0 = 𝑭𝒔

𝒎𝒊𝒏 𝑲𝒔⁄  
 

No Yes 
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3.5. Simulations and Discussion 

It should be mentioned that, in the following examples, the grains motion is assumed to be a 

pure translation without rolling, so that the sliding velocity equals to the translational velocity. These 

examples allow to highlight the friction force evolution. 

The common parameters for all simulations are summarized in Table 3.2. 

 

Table 3.2. Simulations parameters. 

Characteristics Symbol Value Unite 

Normal stiffness 
nK  12000000 N/m2 

Tangentiel stiffness 
sK  9600000 N/m2 

Normal viscous damping coefficient  
nv  41.38 kg/s-1 

Tangentiel viscous damping coefficient 
sv  33.10 kg/s-1 

Static friction coefficient 
s  0.5 – 

Kinetic friction coefficient  
k  0.45 – 

Gravity g 9.81 m/s2 

Density of grains   2600 kg/m3 

 

 

3.5.1. Quasi-static example 

A basic example which shows the stick-slip phenomenon consists on a grain translation on a 

planar surface (Fig. 8), the grain i  has a radius 0.002 mr   and mass ,im  it is supported by a planar 

surface and subjected to a constant horizontal velocity (V=0.00001 m/s), this velocity is selected 

relatively small in order to observe the stick-slip phenomenon. 

 

 
Figure 3.8.  Circular shaped grain translating on a planar surface 

 
The friction force and the grain's slippage evolution as function of the relative displacement 
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between the grain and the planar surface are shown in Fig. 9. For the friction force plot, two main 

phases are distinguished, a static phase and dynamic phase. In the first one, the relative displacement 

equals to the grain deformation without sliding. In this case, the friction force increases linearly until 

reaching the coulomb's static threshold µs nF . In the dynamic phase, the stick-slip phenomenon occurs 

where the frictional force switches between the static limit µs nF  and the dynamic limit  2 k s nµ µ F

. During the sticking periods, the frictional force increases linearly to reach the static friction limit, as 

described in phase 1. However, when Fs reaches the static frictional limit, the grain starts to slip and 

the frictional force drops to the dynamic friction limit. This drop in frictional force is represented by 

a vertical line segment in the graph. 

As mentioned in the description of the model, the lower limit of the friction force min

sF  during 

the stick-slip motion is chosen so that the average tangential force is equal to k nµ F . 

 

 
Figure 3.9. The friction force and the grain sliding evolution 

 
During translation, it is noticed that the grain makes sliding jumps presented on the graph by 

vertical segments (slip segments), and deformation phases presented by horizontal segments (stick 

segments). during the stick phase there is no sliding between the grain and the planar surface and the 
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friction force increases linearly as the deformation increases. 

 

3.5.2. Static example 

In order to highlight the differences between the friction models presented in subsection 2.2, a 

simple static problem is simulated. In this problem, two circular particles denoted 1 and 2, with equal 

radii 1 2 0.005 mr r   and masses 1 2m m , are placed in a rectangular tray (Fig. 10). The length L 

of the tray is less than the sum of the diameters of the two grains  1 22 2L r r  . In addition, since 

the grains are slightly deformable, L is selected sufficiently large so that the normal forces alone 

cannot support the weight of grain 1. 

 

 
Figure 3.10. Schematic illustration of the static example 

 
Initially, the grains are placed almost in contact. At the instant 0t  , the acceleration of gravity 

is applied to the system, therefore, the grain 1 moves downwards and the contact forces between the 

grains develop. 

The evolution of the vertical position of the grain 1 for different friction models is shown in 

Fig. 11. 
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Figure 3.11. Vertical position of the grain 1 

 
It can be observed that both models (coulomb model and the visco-plastic model) exhibit a 

nonrealistic behavior, in fact the grain 1 can’t be supported by the friction forces and reaches at the 

end the bottom of the tray. Note that the grain displacement has different paths for these two models. 

Contrarily, for the viscoelastic model with stick-slip, shows a more realistic behavior where the grain 

1 is supported by the contact forces in a position above the bottom of the tray. 

In order to understand the observed behaviors, the evolution of the grain-grain tangential force 

with time is plotted in Fig. 12 for the three models. 
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a 

 
b 

Figure 3.12. Comparison between the presented friction models: 

a – coulomb model; b – visco-plastic model 

 
Fig. 12, a shows that, for the coulomb model the tangential force alternates between two equal 

values of different signs. Since the average of these values is zero, the grain 1 cannot remain 

suspended above the bottom of the tray. It should be noted that the friction force values correspond 

to the static Coulomb’s threshold that evolves with the grain displacement which induces the increase 
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in the overlap and consequently the increase in the normal force. Compared to the Coulomb’s model 

the friction force values for the other models are very small. These forces result from the tangential 

deformation of the grains. 

For the visco-plastic model (Fig. 12, b), at the beginning of the test, the grain 1 reaches a certain 

vertical velocity before the initiation of the contact, which is why  

 

the friction force is initially close to 0.6 N. This latter gradually slows down the grain 1 which 

decreases the relative tangential velocity to reach a zero value. Consequently, the friction force 

becomes close to zero and the grain restarts an accelerated downward movement under the effect of 

its weight. The increase in the velocity produces an increase in the friction force until the instant 

t=2.65 s, where the grain reaches the bottom of the tray (Fig. 11). Thus, from this moment the velocity 

of the grain 1 becomes zero. It can be concluded that at a quasi-static regime, the visco-plastic model 

alternates the movement between accelerated and decelerated, which leads to a continuous movement 

of the grain. 

For the visco-elastic model with stick-slip, the friction force reaches a constant value (close to 

0.6 N) from the beginning of the test. This allows to retain the grain 1 locked between the gain 2 and 

the tray wall under the effect of this force as well as the normal contact force. 

 

3.5.3. Dynamic example 

The aim of this example is to show the transition from static to dynamic regime and the effect 

of the translation velocity on the friction force modeled through the visco-elastic with stick-slip 

model. In this simulation a particle of weight 𝑃⃗  placed on a non-deformable plate initially horizontal. 

This plate is then rotated with a constant angular velocity until reaching the coulomb static threshold, 

i. e. tanβ=µs  (   – plate inclination). It should be noted that the grain motion is due to its own weight 

and the grain rotation is locked such that it undergoes only a translation motion as illustrated in 

Fig. 13. In this way the shape of the grain (circular, rectangular, square, etc.) has no effect on the 

results, the circular element is chosen, since it is the most common element used in DEM modeling 

practice. 
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Figure 3.13. Schematic representation of the performed test the grain can undergo only a translation 

motion, the rotation being locked 

 
Fig. 14, a shows the evolution of the surface inclination angle β and the friction force with time. 

It is clear that before the motion triggering stan µ  , β evolves linearly with time since the rotation 

velocity of the plate is constant. Whereas, the evolution of the friction force follows the sinusoidal 

form sin  given that it is the reaction to the tangential driving force which is equal to ‖𝑝 ⃗⃗⃗  ‖𝑠𝑖𝑛𝛽. 

When tanβ= sµ , FS reaches the static threshold and the grain starts to slid. 

Fig. 14, b shows a zoom of the dynamic part of the test where β is maintained constant such as 

stan µ  . In this case the friction force evolution could be decomposed in three distinct phases: a 

transition phase, a stick-slip phase, and a steady sliding phase. The transition phase represents the 

transition from the static equilibrium state to the sliding state. It is notable that, when the rotation of 

the plate stops, the grain momentum causes a sharply and instantaneous decreasing in the normal 

force, which causes a sharply decreasing in the friction force. The variation in the tangential force in 

this phase is due to the variation in the normal force caused by the normal movement of the grain 

resulting from the sudden stop of the plate. 
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a                                              b 

Figure 3.14. Friction force and tan(β) evolution: a – with time; b – a zoom of the dynamic part of the 

test where β is maintained constant such as stan µ   

After the transition phase, the grain enters the stick-slip motion and the friction force switches 

between static and dynamic thresholds as described in example 1. During this phase the average of 

the friction forces is lower than the static limit, the balance of forces produces a non-zero acceleration, 

consequently the movement of the grain becomes accelerated. At the beginning of the stick-slip 

phase, the grain has a low translation velocity and the stick stage is well resolved as illustrated in 

Fig. 15. Therefore, the average of the friction forces is close to k nµ F . With the increase in the 

translation velocity the stick stage becomes poorly resolved and sometimes undetectable, therefore, 

the slip stage becomes predominant and the average of the friction forces decreases. As a result, 

during this phase the friction forces average is decreasing thus the movement acceleration is 

continuously increasing as shown in Fig. 15. 

When the translation velocity is sufficiently high, the stick stages become invisible, the friction 

force is constant and equals to 
min

sF , thus the acceleration remains constant (Fig. 15). This is the 

steady sliding phase, where continuous and smooth motion occurs. 
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Figure 3.15. Translation velocity evolution 

The above behavior is generally in good agreement with what has been observed experimentally 

as described in Fig. 3.4. Therefore, the friction model presented in this paper captures clearly the 

effect of the shear rate on the friction force. This latter will be detailed in future research and more 

parameters should be studied. 

3.6. Discussion of results and model 

A two-dimensional model of friction that incorporates the stick-slip phenomenon offers 

valuable insights into the complex interactions between surfaces in contact. In the presented model, 

the stick-slip behavior is characterized by phases of static friction (stick) followed by sudden motion 

(slip). These phases are governed by the elastic deformation, the static and dynamic Coulomb friction 

coefficients. In this research work, numerical tests with details on the evolution of the tangential force 

with displacement (stick and slip) were carried out. These tests have shown that the model effectively 

captures the characteristics of static and dynamic intergranular friction. In particular, these tests have 

shown that formulating the model in the way presented here captures the dependence of friction force 

on tangential velocity in the case of dynamic sliding, a phenomenon well known from experience. 

This model could thus contribute, through discrete element modeling, to the understanding of 

phenomena involved in the mechanics of granular materials. It should be remembered, however, that 

the precision of numerical modeling results, always depends on the introduced model parameters. For 

this model, the micromechanical input parameters, i. e. the tangential elastic stiffness and the static 
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and dynamic friction coefficients, should be well identified in order to achieve efficient modeling. 

Besides, in this work, the model is presented in 2D configuration, in which only one 

deformation variable per contact is required. When considering the extension of this model to 3D 

discrete element modeling, certain difficulties arise: firstly, the number of contacts increases rapidly 

with the number of grains; secondly, shear deformation is characterized by three variables per contact. 

This leads to substantial increases in computational time and memory requirements. The challenge, 

therefore, is to achieve a simplified 3D formulation of the model that can be less memory- and 

computation-time-consuming, and this is one of the aims of future work. 

3.7. Model application for large scale specimen  

One of the experimental methods used to investigate the mechanical behavior of granular 

materials is the biaxial test. In this test, the soil specimen is subjected to compressive stresses along 

two axes, allowing for the analysis of shear band formation and material failure under controlled 

conditions. 

In order to test the new friction model under a large-scale granular media, three biaxial tests 

were performed. in these tests the biaxial apparatus is designed to facilitate precise control over 

loading conditions and to measure critical parameters such as axial load, lateral pressure, and 

displacement. The dimensions (height h and length L) of the samples are chosen to respect the 

ratio h=2L, where h=12 cm and L=6 cm (fig 3.17).  

 The sample is composed of polydisperse circular shaped particles whose diameters are 

obtained from the cumulate volume distributions model proposed by Voivret et al [17].  In our 

simulations, the maximum and minimum diameter values are taken: 𝑑𝑚𝑎𝑥 = 2𝑑𝑚𝑖𝑛 = 1𝑚𝑚. The 

grain size distribution curve is shown in figure 3.16. The sample is built by isotropic compression 

with a pressure of 10 kPa and without gravity acceleration. In order to obtain a dense specimen, the 

inter-granular friction is set to zero in the isotropic confining step. During the biaxial compression, 

the friction coefficient is set to the required value.  

 As recommended by several researchers [31], the model’s grains number is taken greater 

than 4000 particles in order to respect the representative elementary volume.  
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The discrete elements modeling parameters used in the simulations are summarized in table 3.3: 

Table 3.3. Parameters used for Biaxial tests 

Characteristics Symbol Value Unite 

Normal Stiffness        𝑲𝒏 12000000 𝑵 𝒎𝟐⁄  

Tangential stiffness  𝑲𝒔 9600000 𝑵 𝒎𝟐⁄  

Normal viscous damping 

coefficient calculated from a 

restitution coefficient of 0.1 

𝒗𝒏 41.38 𝑲𝒈 𝒔−𝟏⁄  

Tangential viscous damping 

coefficient 

𝒗𝒔 33.10 𝑲𝒈 𝒔−𝟏⁄  

Kinetic coefficient of friction 𝝁𝒌 0.4  

Static coefficient of friction 𝝁𝒔 0.5  

Gravity G 0 𝒎 𝒔𝟐⁄  

Max radius of grain   𝒓𝒊 𝒎𝒂𝒙 0.001 𝒎 

Density of grains 𝝆 2600 𝑲𝒈 𝒎𝟑⁄  

 

 

 

Figure 3.16.  Grain size distribution 
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Figure 3.17. Diagram of the performed biaxial compression shear test 

 

 

 

 

 

 

 

 

 

The evolution of the deviatoric stresses during the three tests are ploted in figure 3.18. as showing in 

this figure the material presents a deletant behavior. 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. A snapshot of a simulated biaxial at failure phase 

The blue grains represent the grains with high rolling displacement (shear band) 
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Figure 3.19. Deviatoric stresses Vs Axial strain  

 To evaluate the shear strength parameters, three shear tests are performed with three different 

confining stresses (50kPa, 100kPa,150kPa). The deviatoric stress versus axial strain curve obtained 

from a biaxial test on a dense model material exhibits distinct characteristics that reflect the behavior 

of dense sand. This curve is composed of three individual curves corresponding to different 

confinement states. Each curve demonstrates a clear peak, indicating the maximum deviatoric stress 

that the material can withstand before failure, which is influenced by the level of confining pressure 

applied during the test. As the confinement increases, the peak deviatoric stress rises, showcasing the 

material's ability to resist deformation under higher pressures. Beyond the peak, each curve gradually 

transitions into a critical state, where further axial strain leads to a stabilization of stress, highlighting 

the material's tendency to reach a consistent state of deformation regardless of additional loading. 

This behavior is characteristic of dense sands, where increased confinement enhances strength and 

alters the failure mechanisms, thereby providing valuable insights into the mechanical properties of 

granular materials under varying stress conditions. 

The confining stresses and the corresponding peak deviatoric failure stresses are given in Table3.4. 
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Table 3.4. Data and results of the performed shear tests 

 Specimen 1 

(BC-SPC1) 

Specimen 2 

(BC-SPC2) 

Specimen 3 

(BC-SPC3) 

Confining stress 

𝝈𝟑 (kPa) 
50 100 150 

Peak failure stress  

𝝈𝟏  (kPa) 
153 307 452 

 

 As shown in figure 3.19, the volumetric strain versus axial strain graph obtained from the 

biaxial test on a dense model material reveals important insights into the material's behavior under 

loading conditions. This graph typically features a distinct pattern characterized by an initial 

contraction phase, where the volumetric strain decreases as axial strain increases. This phase indicates 

that the material is compacting under applied stress, a common behavior observed in dense granular 

materials. As the axial strain continues to increase, the graph eventually shows a transition to a dilatant 

phase, where volumetric strain begins to increase, reflecting the material's tendency to expand as it 

approaches its critical state. The transition point marks a significant change in the internal structure 

of the material, where particle rearrangement leads to an increase in volume despite ongoing axial 

deformation. This behavior is indicative of dense sands, where the interplay between compaction and 

dilation is crucial for understanding their mechanical response under varying loading conditions. 

Overall, this volumetric strain curve complements the deviatoric stress curve by providing a 

comprehensive view of the material's response to stress, highlighting its complex behavior during 

deformation. 
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Figure 3.20. Volumetric deformation Vs Axial strain. 

The peak failure stresses are used to plot the Mohr circles and consequently the envelope curves at 

failure in both cases peak and critical state as shown in (Fig.3.20.). 

 

 

Figure 3.20. Mohr circles and envelope curve at peak failure. 

Peak friction angle ('p ) obtained from the diagrams of Figure3. 20 is 29.86°, whereas the cohesion 

(C) has a negligible value. The macroscopic shear strength parameters of the simulated granular 

material are therefore listed in table 3.5: 
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Table 3.5. Macroscopic shear strength parameters of the material obtained from a biaxial test. 

'p C (kPa) 

30° 0 

 

The results obtained show that the model is well implemented in the calculation code and that the 

behavior of the material model behaves well like dry sand. 

3.8. Conclusions 

Discrete element modeling is a powerful tool for simulating the different phenomena and 

behaviors related to the granular materials. The micro-macro relationship is governed by the 

appropriate choice of rheological models at the intergranular contact’s level. In this work a dry friction 

model for DEM soft contact modeling is formulated and analyzed. The model is based on the 

regularized Coulomb friction model accounting for the stick-slip behavior. Various numerical 

validation tests have been designed and carried out, the first test explored the quasi-static regime, in 

which it is shown that the model successfully depicts the alternating periods of sticking and slipping. 

The second example focused on the static regime, where it is demonstrated that the model operates 

robustly for zero shear rate cases. Such a performance is crucial for applications where objects remain 

stationary and are subjected to gradually increasing forces. The third example combined both static 

and dynamic regimes. Through this example, it is shown that the model effectively captures the 

variation of the friction force with the shear rate. 

 In conclusion, the biaxial test conducted on the dense model material serves as a critical 

evaluation of the proposed intergranular friction model within the framework of the Discrete Element 

Method (DEM). This experiment was designed to rigorously assess the effectiveness and accuracy of 

the friction model in simulating the behavior of granular materials under controlled loading 

conditions. By applying varying levels of confinement and measuring the resulting stress and strain 

responses, we were able to gather valuable data that highlight the model's performance in predicting 

key mechanical properties such as shear resistance and volumetric changes. The insights gained from 

this biaxial testing not only validate the proposed friction model but also enhance our understanding 

of particle interactions and their influence on the overall behavior of granular assemblies. 
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Chapter  04 

 APPLICATION OF DEM TO THE ANALYSIS OF 

LATERAL EARTH PRESSURES AT REST IN DRY 

GRANULAR SOILS  

4.1.  Introduction  

The lateral earth pressure coefficient at rest (𝐾0) is defined as the ratio of the horizontal 

effective stress to the vertical effective stress in a soil deposited under zero horizontal displacement 

(as would be the case of a natural accumulating sediment). Terzaghi (1923) expressed 𝐾0 in terms of 

a so-called "mobilized" internal friction angle (
𝑚𝑜𝑏

): 

𝐾0 =
1−sin ∅𝑚𝑜𝑏

1+sin ∅𝑚𝑜𝑏
                                                       (4.1) 

 

(
𝑚𝑜𝑏

 is a friction angle less than the effective limit state friction angle ('). However, this angle 

(
𝑚𝑜𝑏

) is still difficult to quantify.   

Subsequently, given that this coefficient (𝐾0) is involved in the design of many underground 

structures, it has been the subject of much interest. The first outstanding theory on the subject is due 

to Jacky in 1944 [77], who obtained a simplified relationship between 𝐾0 and the effective internal 

friction angle (') for a normally consolidated soil, known by the expression: 

𝐾0 = 1 − sin ∅′                                                     (4.2) 

 

Even if this relationship is not theoretically sound since it connects a parameter of zero 

horizontal strain state (𝐾0) to a parameter of failure state ('), it remains widely used in practice 

engineering to this day due to its simplicity and the acceptable results it provides for a wide range of 

situations. 

Later, it was shown that lateral earth pressure is affected by many factors, namely void ratio or 

packing density, confining pressure, stress history, sample preparation (fabric) and particles 

properties including shape, angularity and inter-particles friction or roughness. A large number of 

experimental studies have been carried out to show the effects of the different factors on 𝐾0 for 
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granular soils. These studies have mainly been carried out using oedometric devices equipped with 

means for measuring lateral pressure, or using the triaxial device with a controlled strain path in order 

to maintain zero radial strain. The main conclusions that can be drawn from these studies may be as 

follows: (1) 𝐾0 seems to decrease with the increase in the relative density, generally the denser the 

sand the lower the 𝐾0 value [78], [79], [80], [81], [82] and [83]. However, this finding is contradicted 

by the results of certain studies [84][85]. (2) To assess the effect of fabric on 𝐾0, different sample 

reconstitution methods were used, including air pluviation, water pluviation and wet tamping.  

Generally, it is found that the method of preparation, i.e. the fabric, affects the 𝐾0 values. It 

seems that pluviation methods result in higher 𝐾0 compared to tamping methods [80], [81], [86]. 

However, [87], [88], [89] showed that samples prepared by tamping exhibit more expansion than 

samples obtained by pluviation, therefore they have greater Poisson's ratios and consequently greater 

𝐾0 values. This conclusion contradicts the first findings. (3) The particle surface roughness has 

relatively small effect on 𝐾0, whereas the particle shape and angularity have significant effects [82]. 

(4) For normally consolidated sands, the Jaky equation based on the soil's internal friction angle, may 

still accepted as an approximation of 𝐾0 [82], [86], [90]. In general the use of the critical state friction 

angle ('cv) gives a better approximation of 𝐾0 compared to the peak friction angle (′𝑃). However, a 

large number of studies indicate that the experimental values of 𝐾0 are far from those given by Jaky 

equation [78], [80], [82], [83], [90] and [91]. This could be attributed to not taking into account all 

parameters having an effect on 𝐾0. (5) For overconsolidated sands, the coefficient 𝐾0 increases with 

the increase in of overconsolidation ratio, but depends on the stress path, i.e. loading or unloading. 

Based on a large number of experimental results, Mayne and Kulhawy (1982) [92] obtained a well-

known relationship for this case, expressed as follows: 

         {
𝐾0𝑙 = (1 − sin∅′)                            𝐿𝑜𝑎𝑑𝑖𝑛𝑔 (𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒𝑑)      

𝐾0𝑢𝑙 = (1 − sin∅′)𝑂𝐶𝑅sin ∅′        𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝑜𝑣𝑒𝑟𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒𝑑)              
   (4.3) 

 

Where 𝐾0𝑙 and 𝐾0𝑢𝑙  are the lateral earth pressure coefficient at rest during loading and unloading 

phases, respectively.  

 

Later, Zeng and Ni (1999) [93] improved this relationship to accommodate more experimental results, 

giving the relationship:     

 {
𝐾0𝑙 = 𝑎(1 − 𝑠𝑖𝑛∅′)                             𝐿𝑜𝑎𝑑𝑖𝑛𝑔 (𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒𝑑)      

𝐾0𝑢𝑙 = 𝑎(1 − 𝑠𝑖𝑛∅′)𝑂𝐶𝑅𝑏𝑠𝑖𝑛∅′        𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝑜𝑣𝑒𝑟𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒𝑑)               
 (4.4) 



 CHAPTER 04  APPLICATION OF DEM TO THE ANALYSIS OF LATERAL EARTH PRESSURES AT REST  
IN DRY GRANULAR SOILS  

  

p. 63 

Where 𝑎 and 𝑏 are parameters dependent on soil particle properties, such that 𝑎 adjusts 𝐾0 for 

normally consolidated soil and 𝑏 adjusts the variation of 𝐾0 with the overconsolidation ratio, they 

proposed to set 𝑏 =
𝑎

2
 . 

 

The discrepancies between certain experimental results highlight the complexity of the 

problem. Thus, in order to better understand the origin of 𝐾0 at the particle scale and taking into 

account the discrete nature of granular materials, several researchers have attempted to understand 

the problem using discrete element modeling. Yun et al [94] carried out discrete element simulations 

to highlight the effects of intergranular friction and grain shape on 𝐾0. For this purpose, they used the 

PFC3D 4.0 code with spherical grains as well as sphere clusters to simulate the grain shape of natural 

sands. They concluded that changing the friction coefficient adequately captures the variation of 𝐾0 

during loading and unloading cycles for the glass beads.  

Whereas, in order to capture the evolutions of 𝐾0 observed experimentally for natural sand, it 

is necessary to use grain clusters. Lopera Perez et al [95] studied the one-dimensional vertical 

compression of an idealized soil through discrete element modeling using a modified version of the 

Lampps open source code. They found that 𝐾0 increases with the increase of the void ratio, which is 

explained by: for dense samples (low void ratio), the contacts are oriented more horizontally, which 

reduces the transmitted horizontal stresses resulting from the vertical pressures. On the contrary, for 

loose samples, the distribution of contact orientations is rather isotropic, which increases the 

transmitted horizontal stresses. Khalili et al [96] have performed a discrete elements micromechanical 

analysis of the oedometric compression up to high stresses. The used material is made of slightly 

polydisperse beads with Hertz - Mindlin elastic - frictional contacts. They found that for dense 

samples, the coordination number depends on the sample packing procedure, but changes little with 

compression cycles. In addition, they mentioned that the reversibility of the behavior is much more 

pronounced for the used model than that of natural sands. They attributed this result to the possibility 

of plasticity and damage of sand grains, which is not supported by the numerical model used. Gu et 

al [97] used DEM to study the one-dimensional (1D) compression (oedometer) test to determine 𝐾0 

of granular soil at different void ratios and confining pressures. The samples used are built by 

pluviation in a cubic mold with smooth and non-deformable walls. The void ratios are varied in 

different ways; by changing the coefficient of intergranular friction during pluviation or by removing 

grains after deposition. They found that 𝐾0 of specimens prepared by different methods may be quite 

different even if the void ratio and vertical stress are the same. On the other hand, based on the 

analysis at the particulate level, they indicated that the coordination number of the soil is a dominant 
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parameter on the 𝐾0. In addition, using the friction angles obtained from triaxial tests on the same 

material model, they found that using of peak friction angle in the Jaky's equation better predicts the 

numerically calculated 𝐾0 compared to critical friction angle. 

Chen et al [98] carried out numerical simulations of oedometric compression of granular materials 

using the discrete element method with focusing on the effect of particle shape. They used the open-

source discrete element code, SudoDEM to model ellipsoids and superballs shaped particles. Their 

work led to the conclusion that the anisotropy of normal contact forces has a more significant effect 

on 𝐾0 compared to the anisotropy of contacts and grain shape. 

 

As a conclusion to the above literature review, it may be seen that the parameters influencing 

𝐾0 and the relative underlying physics are far from well understood, prompting a revisiting of the 

subject. This is the context of the present work, it is an investigation of the lateral earth pressure at 

rest coefficient 𝐾0 for a cohesionless dense soil (sand) through a discrete elements modeling. A 2D 

modeling of an oedometric test with controlled vertical displacement is first carried out. Then, the 

variation of 𝐾0 as well as some micromechanical parameters such as contact orientations, number of 

contacts and intensities of normal contact forces with the stress history is analyzed. The evolution of 

the effect of stress history on 𝐾0 and fabric anisotropy as a function of intergranular friction is also 

demonstrated using a simple assembly of grains. 

4.2.  Discrete Element Method  

The discrete element model used in this work is based on the molecular dynamics method 

developed for granular media by Cundall and Strack [27]. This method assumes that the grains of the 

material are independent elements that interact through contact forces.  The overall deformation of 

the material results from the relative displacement of the elements. The movement of each element is 

governed by Newton's second law which takes into account contact forces and external forces such 

as gravity. In molecular dynamics, elements are assumed to be slightly deformable, thus contact 

forces are calculated explicitly in terms of grain deformations. Each contact force (𝐹𝑖𝑗
⃗⃗⃗⃗ ) has two 

components one is normal to the contact area and the other is tangential. In this work, the simple 

viscoelastic model (Fig.1b) is used to calculate the normal contact force, therefore 𝐹𝑛 = (−𝛿𝑛𝐾𝑛 −

𝑣𝑛𝑉𝑛), where 𝐾𝑛 is the normal elastic stiffness, 𝑣𝑛 is the viscous damping coefficient and  𝑉𝑛 is the 

normal velocity of the grain 𝑗 with respect to the grain 𝑖. For the tangential contact force (𝐹𝑠), it is 

calculated through a damped elastic perfectly plastic model (Fig.1b), so it is expressed 𝐹𝑠 =

min (𝐾𝑠𝛿𝑠 + 𝑣𝑠𝑉𝑠 ;  µ|𝐹𝑛|), where 𝐾𝑠 is the tangential stiffness,𝑣𝑠 is the tangential viscous damping 
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coefficient,  𝑉𝑠 is the tangential velocity of the grain 𝑗 relative to the grain 𝑖 at the contact point, 𝜇 is 

the friction coefficient and 𝛿𝑠 is the tangential contacting grains deformation.   

  

                      (a)                        (b) 

 

Figure 4.1.  Grain interaction force models. 

(a) Normal force model, (b) Tangential force model. 

 

In this work, the grains are assumed to be circular in shape, in order to approximate the rolling 

resistance that naturally exists in reality, a simple rolling resistance model is integrated. It is assumed 

that the normal contact force is shifted from the contact surface center in the rolling sens (Fig.4.2.). 

 

 

 

 

 
 
 
 

Figure 4.2.  Illustration of the rolling resistance model. 

 
 

The rolling resistance moment is therefore calculated by:  

 

                                                         𝑀⃗⃗ 𝑟 = −𝜆 𝐹𝑛
𝑤𝑖

′⃗⃗ ⃗⃗ ⃗⃗  

‖𝑤𝑖
′⃗⃗ ⃗⃗ ⃗⃗  ‖

                   (4.5) 

Where 𝑤𝑖
′⃗⃗ ⃗⃗  ⃗  is the relative angular velocity of grain 𝑖, it is expressed in the general case of rolling of 

grain 𝑖 on grain 𝑗 by: 𝑤𝑖
′⃗⃗ ⃗⃗  ⃗=𝑤𝑖⃗⃗⃗⃗  - 𝑤𝑗⃗⃗⃗⃗ , and 𝜆 is the normal force shift given by: 

                                                       𝜆 = 𝜓 √𝑟𝑖
2 − (𝑟𝑖 −

𝛿𝑛

2
)2                                       (4.6) 

𝜓  is a coefficient that controls the position of  𝐹𝑛 . In all simulations we adopted 𝜓 = 0.5. 
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Finally, it should be noted that for the following applications, a C++ code is developed using the 

contact force models described above.   

4.3. Model properties  

4.3.1.  A description of the simulated oedometer 

The 2D simulated oedometer cell is shown in Figure 4.3, the left and right walls of the cell are 

fixed and smooth to simulate the 𝐾0 condition. During the tests, the vertical stress (𝜎𝑣) is applied 

through a horizontal undeformable plate placed above the sample inside the cell. This stress is 

adjusted by a servo-controlled vertical displacement of the plate.   

 

 

 

 

It should be remembered that in laboratory oedometric tests, it is recommended to use cells 

having a diameter/height ratio greater than 2.5 in order to minimize the effects of soil friction on the 

side walls [99]. This condition is not necessary in the simulations since the friction on the lateral walls 

can be eliminated completely in the numerical model.  

4.3.2. Microscopic sample properties 

 The sample is composed of polydisperse circular shaped particles whose diameters are 

obtained from the cumulate volume distributions model proposed by Voivret et al [25].  In our 

simulations, the maximum and minimum diameter values are taken: 𝑑𝑚𝑎𝑥 = 2𝑑𝑚𝑖𝑛 = 1𝑚𝑚. The 

grain size distribution curve is shown in figure 3.16(see chapter 3). The sample is built by isotropic 

compression with a pressure of 10 kPa and without gravity acceleration. In order to obtain a dense 

specimen, the inter-granular friction is set to zero in the isotropic confining step. During the 

oedometric compression, the friction coefficient is set to the required value.  

 As recommended by several researchers [26], the model’s grains number is taken greater 

 

H 

L 

Moving wall 

Fixed wall 

 

Fixed wall 

 

Figure 4.3.   Diagram of the simulated oedometer 
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than 4000 particles in order to respect the representative elementary volume.  

The simulation parameter are taken the same as for the biaxial test described in the previous chapter. 

4.3.3. Macroscopic geotechnical parameters 

 In order to compare the numerical results with empirical formulas based on the soil’s internal 

friction angle, biaxial compression tests (BC) are carried out on same material. The used BC samples 

are built under the same conditions (see chapter 3). 

  

Peak friction angle ('p ) and  cohesion (C) are estimated through the biaxial tests. The macroscopic 

shear strength parameters of the simulated granular material are therefore listed in table 4.3: 

 

Table 4.1. Macroscopic shear strength parameters of the material obtained from a biaxial test. 

'p C (kPa) 

30° 0 

4.4. Evolution of 𝑲𝟎 under oedometric loading  

The lateral earth pressure at rest have the expression 𝐾0 =
𝜎ℎ

𝜎𝑣
, where 𝜎ℎ and 𝜎𝑣 are components of 

the average intergranular stress tensor. For static or quasi-static problems in granular media, the 

average stress tensor is expressed by [27]:                       

                                                                                   

                                    𝜎𝑖𝑗 =
1

𝑉
∑ 𝐹𝑖

𝑛𝑐𝑁𝑐
𝑛𝑐=1 𝐿𝑗

𝑛𝑐                                (4.7) 

Where i and j define the computed component of the stress tensor at the center of the volume V, 𝑁𝑐 

being the total number of contacts in the volume V, 𝐹𝑖
𝑛𝑐 is the 𝑖 component of the interaction force at 

the contact 𝑛𝑐 and 𝐿𝑗
𝑛𝑐 is the 𝑗 component of the vector 𝐿⃗  connecting the centers of the two contacting 

grains (branch vector). The stress components involved in 𝐾0 expression are 𝜎ℎ = 𝜎𝑥𝑥  (𝑖, 𝑗 = 𝑥, 𝑥) 

and 𝜎𝑣 = 𝜎𝑦𝑦 (𝑖, 𝑗 = 𝑦, 𝑦).                                                                                                                                        

4.4.1. Evolution of K0 for a one loading-unloading cycle 

 In order to evaluate the effect of the loading history on 𝐾0, an oedometric test on a normally 

consolidated sample with one loading-unloading cycle is simulated. During the test, horizontal and 

vertical stresses as well as 𝐾0 are continuously calculated. Figure 4.4 shows a plot of the evolution of 
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𝐾0 during the test. For comparison, the empirical equations (4.3) and  (4.4), relating 𝐾0  to the soil’s 

internal friction angle and the over consolidation ratio are plotted on the same graph. 
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Figure 4.4.  Evolution of 𝑲𝟎 for one loading-unloading cycle, 

𝑲𝟎 computed using DEM model and empirical formulas. 

 

For the DEM model, during the loading phase, the soil remains normally consolidated.  It may first 

be noted that the stress state is initially isotropic (𝐾0=1). As vertical stress increases, 𝐾0 decreases 

rapidly, reaching a plateau where it becomes almost constant, although a slight increase can be 

observed with increasing load. This plateau corresponds to the situation of a normally consolidated 

soil. 

It may be noted that for this situation, 𝐾0 obtained from the DEM model is slightly lower than that 

calculated by Jacky equation, shown in the figure as the Mayne and Kulhawy equation for the 

normally consolidated (NC) case. A similar result was obtained in the work of Gu et al [21] through 

a DEM model with spherical elements. Note that in their work, the internal friction angle was also 

determined from a discrete element model of the triaxial test. 

In the unloading phase, the soil becomes overconsolidated, with the overconsolidation ratio (OCR) 

increasing as the vertical stress decreases. It is clear that during this phase, 𝐾0 increases according to 

a non-linear shape. The 𝐾0 curve obtained from the DEM model is very similar to that of [16] (Eq.4.3), 
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the shift that can be observed between the two curves results from the loading phase. Besides, we 

noticed that the variation of 𝐾0  according to our DEM model, can be reproduced almost exactly for 

both loading and unloading phases, by equations similar to those of [17] (Eq. 4.4), but with fitting 

coefficients 𝑎 = 0.9 and 𝑏 = 0.8. 

4.4.2. Evolution of K0 for a three-cycle loading 

 In order to show the effect of cyclic loading on 𝐾0, the same sample is subjected to three 

loading-unloading cycles, where the maximum vertical stress is set to 200kPa. Figure 4.5 shows the 

evolution of 𝐾0 during the three loading cycles. 

 For the first cycle loading phase, the behavior of the soil is similar to that described in the 

previous section, where 𝐾0 rapidly tends to reach its value of normally consolidated state.  For the 

following cycles, the evolution of 𝐾0 during the loading phases is rather progressive compared to the 

first cycle, but at the end of loading, when the sample becomes normally consolidated, the same value 

is reached for all cycles. For the unloading phases, these curves show that even for the same 

overconsolidation ratio (at the same vertical stress), 𝐾0 is greater in the unloading phases than in the 

loading phases. Furthermore, it is noted that in the unloading phases, 𝐾0 is greater in third cycle than 

in the first and second cycles, this could be attributed to a non-reversible evolution of contact 

orientations following loading and unloading cycles.    
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Figure 4.5.  Evolution of 𝑲𝟎  for three loading – unloading cycles. 

  

4.5. Effects of micromechanical parameters on 𝑲𝟎  

 DEM modeling enables monitoring the sample structure at the particle scale. This section 

presents the evolution of some micromechanical parameters and their effect on 𝐾0 during the loading 

and unloading phases. We focus namely on the contacts orientations, the number of contacts and 

normal contact force intensities.  

4.5.1.  Contact orientations and contact number  

The orientation trend of contacts in a granular deposit can be described by the fabric tensor [28], [29], 

[30] (Φ𝑖𝑗) defined as: 

 Φ𝑖𝑗 =
1

𝑁𝑐
∑ 𝑛𝑖

𝑁𝑐
𝑛𝑐=1 𝑛𝑗     (4.8) 

Where 𝑁𝑐 is the total number of contacts and 𝑛𝑖 is the 𝑖  component of the contact’s normal unit 

vector. The fabric tensor is symmetric, its diagonal components vary between 0 and 1 (0 ≤ Φ𝑖𝑗 ≤

1, for 𝑖 = 𝑗). In 2D case this tensor has three components denoted Φ𝑥𝑥, Φ𝑦𝑦  and Φ𝑥𝑦 , that define the 

average orientation of the contacts in the material. In the following, we refer to horizontal contact, 

when the unit normal vector of the contact is oriented in the vertical direction. Conversely, horizontal 
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contacts are those whose unit normal vectors are oriented vertically.  In the case where the contacts 

are rather horizontal (x-direction), Φ𝑦𝑦  is greater than Φ𝑥𝑥, the opposite happens when the contacts 

are rather vertical (y-direction). In all cases the sum of these two components is 1 (Φ𝑥𝑥 + Φ𝑦𝑦 = 1). 

The ratio 𝐹 =
Φ𝑥𝑥

Φ𝑦𝑦
  describes the structural anisotropy and is usually referred to as the degree of fabric 

anisotropy, for an isotropic fabric state 𝐹 ≈ 1. 

 

The evolution of the fabric tensor components Φ𝑥𝑥 and  Φ𝑦𝑦  and the degree of anisotropy F during 

a loading-unloading cycle with a maximum load of 100kPa are shown in figures 4.6a and 4.6b 

respectively. 

 

 

 

 
 

 
 
 

 
 

 
 

 
 

 
 
 
 

Figure 4.6.  Fabric properties of the sample during the loading-unloading cycle. 

(a) Fabric tensor components vs vertical stress, (b) Degree of anisotropy vs. vertical stress 

 
   

These figures show clearly that the sample is initially isotropic (Φ𝑥𝑥 = Φ𝑦𝑦 = 0.5; 𝐹 = 1). With load 

variation, we note the following key points: (1) during the loading phase Φ𝑥𝑥 decreases and Φ𝑦𝑦  

increases, indicating that the horizontal contacts become more weighty compared to the vertical 

contacts. The sharp variation at the start of loading reflects a transition phase between the isotropic 

compression state characterizing the initial sample and a state where vertical stress is more dominant. 

This may indicate that normally consolidated granular deposits subjected to gravity are naturally 
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characterized by a structural anisotropy where horizontal contacts are more dominant. (2) In the 

unloading phase, the opposite occurs: Φ𝑥𝑥 increases and Φ𝑦𝑦  decreases, but more gradually. This 

indicates that vertical contacts become increasingly weighty, until they become more dominant 

towards the end of the unloading phase (i.e. 𝐹 =
Φ𝑥𝑥

Φ𝑦𝑦
  becomes greater than 1) even though the sample 

remains vertically compressed. This may indicate that vertical contacts are more frequent in 

overconsolidated deposits, and may even be more dominant than horizontal contacts, depending on 

the overconsolidation ratio.  

The observed variation in fabric tensor components under vertical compression may result from the 

opening of vertical contacts (i.e. a decrease in their number), a change in the orientation of existing 

contacts towards the horizontal, even without a significant change in the total number of contacts, or 

a dominant increase in horizontal contacts. In order to explore the influence of these possible 

scenarios, we proposed to plot the evolution of the number of contacts in the different directions 

during the loading-unloading cycle. To simplify the presentation of results, only curves for quasi-

vertical contacts (with normal unit vectors between 0° and 10°) and quasi-horizontal contacts (with 

normal unit vectors between 80° and 90°) are presented (Fig.4.7). As they correspond to extreme 

directions, these two orientation intervals show the most pronounced variations and have the greatest 

influence on the evolution of the fabric tensor. 

                                            

 
                                   

Figure 4.7.  Evolution of horizontal and vertical contact numbers in terms of vertical stress for a loading-

unloading cycle 

normal unit vectors between 0° and 10°, (b) normal unit vectors between 80° and 90° 

 

 



 CHAPTER 04  APPLICATION OF DEM TO THE ANALYSIS OF LATERAL EARTH PRESSURES AT REST  
IN DRY GRANULAR SOILS  

  

p. 73 

 

 The plots show that in the loading phase, the number of contacts for both orientations 

increase with the applied stress. This increase goes essentially through three stages; first for vertical 

stress below 10kPa, contact numbers increase sharply, with a more significant increase for horizontal 

contacts. This stage is related to the transition phase, where vertical pressure leads to the closure of 

essentially horizontal contacts. This explains the rapid decrease in  𝐾0 in this phase, since the increase 

in horizontal contacts leads to an increase in horizontally oriented friction forces. In the second stage 

where the vertical stress is between 10𝑘𝑃𝑎 and 50𝑘𝑃𝑎, the number of contacts increases almost 

equally in both directions, resulting in a minor variation in the degree of structural anisotropy 

(Fig.4.6b). The invariability of 𝐾0 in this stage (see Fig.4.4), reveals an increase in horizontal stress 

proportional to that of vertical stress.  This increase may be attributed to the noted increase in the 

number of vertical contacts, and possibly to the increase in normal forces on these contacts. In the 

third stage (vertical stress above 50kPa), the number of vertical contacts reaches a plateau while 

horizontal contacts continue to increase, resulting in a significant change in the degree of structural 

anisotropy (Fig.4.6b). In this stage, the steadiness of 𝐾0 even with a stable number of vertical contacts, 

indicates an increase in normal forces on the vertical contacts. 

 Based on this discussion, we can conclude that, (1) during the loading phase, the number of 

contacts increases, but differently according to their orientation, with horizontal contacts increasing 

more in response to the applied vertical stress. (2) The influence of the increase in the number of 

contacts on  𝐾0 is only noticeable in the first transition phase (vertical stress below 10kPa). (3) Due 

to the relatively small change in the number of vertical contacts after the transition phase, we can 

understand that loading is also accompanied by a change in the normal forces exerted on the contacts, 

keeping   𝐾0 almost constant after the transition phase.   

In the unloading phase, the number of horizontal contacts decreases at a rate comparable to that of 

the loading phase. On the contrary, there is a slight increase in the number of vertical contacts. These 

changes explain the increase in the degree of structural anisoropy (Fig.4.6) and induce an increase in 

horizontal stress and consequently an increase in  𝐾0. 

The number of contacts in the different directions for the initial state and after the loading-unloading 

cycle is illustrated in Figure4.8 by a rose diagram representing the number of contacts per direction. 

The interval of contact orientation angles from 0° to 180° is divided into segments of 10° each, in 

which the number of contacts is counted. 
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Figure 4.8.   Rose diagram of number of contacts per direction, 

(a) in the initial state, (b) After a loading-unloading cycle. 

 

 

These two diagrams show that in the initial state, there is an almost isotropic distribution of contacts, 

whereas after the loading-unloading cycle, vertical contacts become more prevalent, as can be noted 

on the graphs in figure4.7. 

4.5.2. Normal contacts forces intensities  

 

Similar rose diagrams representing the contact normal forces intensities according to their orientation 

for the initial state and after the loading-unloading cycle are represented in figure4.9.  
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Figure 4.9.    Normal contact forces rose diagram. 

 
 
 
 

Again, these diagrams show that in the initial state, there is an almost isotropic distribution of normal 
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forces intensities at contacts. However, after the loading-unloading cycle, it is shown that the vertical 

forces return to their initial values, while the horizontal forces increase substantially, which explains 

the significant increase in 𝐾0. Compared with the diagrams in figure4.8, it can be seen that the 

increase in horizontal forces is much more pronounced than the corresponding vertical contacts. This 

may indicate that the anisotropy of the fabric tensor can give a qualitative description of the 𝐾0 trend 

that depends on the dominant direction of the contacts, i.e. 𝐾0 is low when the dominant direction of 

the contacts is horizontal, on the contrary 𝐾0 is high when the dominant direction of the contacts is 

vertical. However, from a quantitative point of view, the value of 𝐾0 is governed by the intensity of 

the forces acting on the contacts. 

 

4.5.3. A demonstration of the effect of intergranular friction on 𝑲𝟎 in the 

overconsolidated state 

 

This section aims to demonstrate the effect of intergranular friction on 𝐾0 in the overconsolidated 

state using a simple grain assembly. We consider the example of three grains symmetric assembly 

subjected to an oedometric loading-unloading cycle, depicted in Figure4.10. We analyze the evolution 

of lateral pressure coefficient (𝐾0) and the degree of anisotropy (F) with the vertical stress variation. 

Two cases are considered; frictionless and rough grains (Fig.4.10).  

 

 
                    (a)                                               (b)                                           (c) 

 

 

Figure 4.10.  Force diagrams; (a) Frictionless grains, loading and unloading phases, 

(b)Rough grains during loading phase, (c) Rough grains during unloading phase. 

 

 

4.5.4. Analytical description 
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a. Frictionless grains  

 

In this case the friction forces are zero, the interaction force is normal to the contact and its 

components are 𝐹𝑛𝑥 = 𝐹𝑛 𝑐𝑜𝑠 𝛼 and 𝐹𝑛𝑦 = 𝐹𝑛 𝑠𝑖𝑛 𝛼  (Fig 4.10 a.).  

Using equation 15 and taking account of the problem’s symmetry, the at rest lateral earth pressure 

coefficient 𝐾0 can be expressed:   

𝐾0 =
𝜎𝑥𝑥

𝜎𝑦𝑦
=

𝑁𝑐𝐹𝑛𝑥𝐿𝑥

𝑁𝑐𝐹𝑛𝑦𝐿𝑦
      (4.9) 

With 𝑁𝑐 = 2 contacts, 𝐿𝑥 = 𝐿 𝑐𝑜𝑠 𝛼 and 𝐿𝑦 = 𝐿 𝑐𝑜𝑠 𝛼, it follows therefore: 

𝐾0 =
𝑐𝑜𝑠2 𝛼

𝑠𝑖𝑛2 𝛼
     (4.10) 

On the other hand, from equation 16 the degree of structural anisotropy is: 

𝐹 =
Φ𝑥𝑥

Φ𝑦𝑦
=

𝑛𝑥
2

𝑛𝑦
2 =  

𝑐𝑜𝑠2 𝛼

𝑠𝑖𝑛2 𝛼
     (4.11) 

It is clear that in this particular case 𝐾0 and  𝐹 are similarly expressed in terms of the contact 

orientation 𝐾0 =
𝑐𝑜𝑠2 𝛼

𝑠𝑖𝑛2 𝛼
= 𝐹. Therefore 𝐾0 depends only on the degree of anisotropy F, it does not 

depend on the contacts number, the applied loading stress and stress path (loading or unloading). It 

should be noted that when 𝛼 tends towards zero 𝐾0 becomes infinite, this is the case of grains forced 

on the same alignment. On the other hand, when 𝛼 tends towards 90° 𝐾0 becomes zero, this 

corresponds to the case of a stack of bricks for example. It should be highlighted that for a granular 

material the average orientation of the contacts is far from these two extremums, i.e.  the degree of 

anisotropy (𝐹) varies around 1. 

 

b. Rough grains  

The friction forces are tangent to the contact, they change their directions according to the stress path 

(loading or unloading) (Fig. 4.10b and Fig. 4.10c). The force diagrams show that in the loading phase 

the friction force increases the vertical component and decreases the horizontal component of the 

contact force. The opposite happens in the unloading phase. The ratio 𝐾0 =
𝜎𝑥𝑥

𝜎𝑦𝑦
  is then greater in the 

unloading phase than in the loading phase. Thus, the force anisotropy depends on the stress path.   

 

4.5.5. Numerical simulations  

The idealized example of three grains described above is simulated numerically. The sample is first 

confined with isotropic pressure of 10kPa, then subjected to an oedometric loading-unloading cycle. 
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(Fig 4.11) shows snapshots of the simulated example in the two states; the isotropic confining and 

the oedometric compression states. 

 

 

 
Figure 4.11.  The simulated example. 

 

The evolution of the degree of structural anisotropy F versus the vertical stress increase is shown in 

Figure 4.12. 

 This plot shows that the degree of structural anisotropy increases with increasing vertical 

stress and decreases with decreasing vertical stress. For a friction coefficient of zero, this occurs along 

the same path. However, in the presence of friction, a transient locking phase (see figure 4.12) occurs 

when the shear force is below the Coulomb friction threshold, forming a loading-unloading loop.  

In this example, such variation of the degree of structural anisotropy with vertical stress is obvious, 

given that: (1) the number of contacts remains unchanged (2 contacts) and (2) the contacts tend to 

become vertical as the load increases. Note that this last statement should be valid for all contacts of 

any granular deposit subjected to increasing vertical compression. 

If we return to the granular deposit considered above, on the contrary, it has been observed that the 

degree of structural anisotropy decreases with increasing vertical stress. As the change in direction of 

existing contacts should not lead to a decrease in the degree of structural anisotropy, this demonstrates 

that the decrease is mainly due to the dominant increase in horizontal contacts. 
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(a)                                                  (b) 

Figure 4.12.  The degree of structural anisotropy vs vertical stress, 

(a) frictionless grains, (b) grains with friction. 

This figure shows that for frictionless grains, the degree of structural anisotropy increases with 

vertical stress increase and decreases with vertical stress decrease on the same path. However, for 

rough grains (with friction), the variation of F follows two different paths during the loading and 

unloading, due to the presence of the friction forces. As a result, the F variation follows a loop for a 

loading-unloading cycle.  

 

Figure 4.13a shows the evolution of 𝐾0 for a loading-unloading cycle in case of low intergranular 

friction coefficients( µ = 0 , µ = 0.02). Again, for rough grains, 𝐾0 evolves following a loop shape 

during the loading and unloading cycle. The branches of the loops of Figures4.12b and 4.13a may be 

described as follows: 

(1) Loading with a frictional force below the coulomb's slip threshold; in this case, there is no 

sliding, the change in the contacts orientation is negligible, F remains almost constant, K0 

decreases given that the vertical stress increases while the horizontal stress undergoes little 

variation. 

(2) Loading with a frictional force close the coulomb’s slip threshold; the load increasing 

produces an intergranular slip, F increases as contact orientation tends towards the vertical. 

K0 increases proportionally to F (according to Eqs.4.10 and 4.11). 

(3) Unloading with a frictional force less than the coulomb's sliding threshold; in this phase, the 

frictional force changes direction by passing through zero, the sliding is locked, the change in 

the contacts orientation is negligible, F remains almost constant, K0 increases since the 

vertical stress decreases while the horizontal stress undergoes little variation. 
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(4) Unloading with a frictional force close to the coulomb’s slip threshold; the load decreasing 

produces an intergranular slip, F decreases as contacts orientation tends towards the 

horizontal. K0 decreases proportionally to F (according to Eqs4.10and 4.11). 

 
 
 

 
                   

   (a) 
    

(b) 

 

Figure 4.13.  Evolution of 𝑲𝟎 in terms of the applied vertical stress. 

(a) Low friction coefficient, (b) Different friction coefficients. 

 

 Figure 4.13b shows the variation of 𝐾0 in terms of the applied vertical stress for different 

coefficients of friction under a loading-unloading cycle. This figure indicates that when the friction 

coefficient increases, the loading sliding phase exhibits little change, the unloading locking phase 

becomes more significant and the unloading sliding phase decreases, consequently there is a residual 

slip maintained in the system after unloading. In soil mechanics this effect results in the increase of 

the over-consolidation ratio. It is worth noting that for natural soils, intergranular friction is relatively 

high i.e. µ≥0.4, thus friction forces become a determining parameter on 𝐾0 for an overconsolidated 

soil as illustrated by Figure 4.13b. Besides, the loops corresponding to the high friction coefficients 

of figure 4.13b explain well the effect of stress history on 𝐾0 in the oedometric experiment, plotted 

in Figure 4.4. 

 

4.6. Summary discussion 

The coefficient of lateral earth pressure at rest (𝐾0) is an important quantity in geotechnical 

engineering, as it is involved in the design of many geotechnical structures. Research on the subject 
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has indicated that this coefficient is influenced by various material and state factors, but complete 

agreement on the effect of some factors on this coefficient is still lacking. Using 2D discrete element 

modeling, we aim in this work to contribute to a better understanding of the underlying physics 

involved in this coefficient, focusing in particular on the effect of loading history on this coefficient. 

Single-cycle and multiple-cycle oedometer tests are carried out on a granular sample, and an analysis 

of macromechanical and micromechanical parameters is performed. For a single-cycle test, obtained 

results showed that the shape of variation of K0 with applied vertical stress is very similar to that 

given by the well-known Mayne and Kulhawy (1982) empirical formula. From a quantitative point 

of view, applying fitting coefficients to this empirical formula, as proposed by Zeng and Ni (1999), 

gives a perfect match between numerical and empirical results as shown in Figure 4.4. For a three-

cycle loading-unloading test, it is shown that in the overconsolidation state, K0 evolves according to 

a loop composed of two loading and unloading curves, with the loading curve always below the 

unloading curve. Furthermore, it is shown that K0 in the unloading phase increases slightly as the 

loading cycles progress (Fig4.5). 

 Micromechanical analysis has shown that in the normally consolidated state, for an isotropic 

stress state, contact orientation is also almost isotropically distributed. The slightest deviation from 

stress isotropy quickly leads to significant anisotropy in the fabric tensor describing the orientation 

of contacts in the sample, with contacts perpendicular to the load direction becoming more dominant. 

For the oedometer test, as the load is vertical, horizontal contacts and, accordingly, horizontal friction 

forces increase rapidly at the start of loading (Fig. 4.6 and Fig.4.7), resulting in a sharp decrease in 

K0 (Fig.4.4). During unloading, the sample becomes increasingly overconsolidated, with vertical 

contacts becoming more frequent and may even become more dominant than horizontal contacts (Fig. 

4.6). The increase in vertical contacts leads to an increase in horizontal stress and, consequently, an 

increase in K0 (Fig.4.4). Besides, it is shown in this analysis that the change in the fabric tensor is 

mainly due to the differential change in the number of contacts in the different directions as the load 

varies. Thus, the isotropic change in the number of contacts does not influence the fabric tensor and 

is not expected to have a significant effect on K0.  

The rose diagram plotting the number of contacts per direction showed that there is a change 

in contact orientation between the two states; before and after a loading cycle (Fig.4.8). However, 

this change appears too small to be the only cause of the significant variation in K0. On the contrary, 

the rose diagram representing the intensity of normal contact forces per direction, showed a 

significant change (Fig.4.9). Thus, it is concluded that the increase in K0 between the initial state and 

after a loading cycle results, in addition to the change in contact orientation, from a change in the 

intensity of the forces acting on these contacts. Therefore, the anisotropy of the fabric tensor can give 
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a qualitative description of the K0 trend, which depends on the dominant direction of the contacts, i.e. 

K0 is low when horizontal contacts are dominant and K0 is high when vertical contacts are dominant.  

However, from a quantitative point of view, the value of K0 is also influenced by the intensity of the 

contact forces in the different directions. 

An analysis of the effect of intergranular friction is carried out using a simple three-grain 

model. This analysis showed that the change in orientation of existing contacts acts in the opposite 

direction to the observed change in fabric tensor for a granular sample subjected to oedometer loading 

(Fig.4.12 vs Fig.4.6b). This confirms that the differential variation in the number of contacts per 

direction is the main cause of the change in fabric tensor in the granular sample (Fig. 4.6). This 

analysis also explained the formation of a loop according to which K0 changes during a loading-

unloading cycle. This loop results from locking and sliding phases in the contacts depending of 

tangential force level with respect to the Coulomb sliding threshold as illustrated by Figure 4.13. This 

shows that the evolution of K0 highlighted in the oedometer test is due to intergranular friction, such 

a parameter has therefore a determining effect on K0 for an overconsolidated soil. 

4.7. Conclusion 

It is well known that the lateral earth pressure coefficient at rest (𝐾0) depends on the load to 

which the soil has been subjected during its history, i.e. its state of consolidation.  

This chapter aims to understand the particle-scale physics involved in cyclically loaded granular soil 

and its effect on 𝐾0. To this end, a 2D discrete element modeling of a cyclic oedometer tests is 

performed. One-cycle and three-cycle tests are simulated and the resulting macromechanical and 

micromechanical parameters are analyzed. 

The obtained results showed that the evolution of K0 with loading is in good agreement with that of 

the will-known empirical formulas derived from experience. In addition, the three-cycle test showed 

that K0 in the unloading phase increases slightly as the loading cycles progress. This may be attributed 

to the grain arrangement, which leads to more overconsolidation with increasing loading cycles. 

Analysis of the variation of certain load-dependent micromechanical parameters, namely the 

fabric tensor, number of contacts and contact forces, allows the following main conclusions to be 

drawn:  

- The evolution of the fabric tensor, which describes the relative distribution of contact 

orientations, as a function of load is mainly due to the differential variation in the number of 

contacts in the different directions. 
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- For an isotropic stress state, the distribution of contact orientations is almost isotropic, the 

deviation of the stress isotropy, even small, leads to a significant deviation from the isotropy 

of contact orientations.  

- For a normally consolidated sample i.e. for the first cycle loading phase, horizontal contacts 

are more dominant, this increases horizontal components of friction forces and leads to a 

decrease of K0. 

- For an overconsolidated sample, vertical contacts become more frequent, which increases 

horizontal components of contact normal forces and leads to an increase of K0.  

- K0 is not only influenced by the dominant orientation of the contacts, but it also depends on 

the intensity of the forces acting on these contacts.  

- By using a simple three-grain model, it is highlighted that the evolution of K0 according to a 

loop for a loading-unloading cycle in the oedometer test, is ultimately governed by 

intergranular friction. Such a parameter has therefore a determining effect on K0 for an 

overconsolidated soil. 
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Chapter  05 

APPLICATION OF DEM TO THE ANALYSIS OF 

THE ACTIVE AND PASSIVE LATERAL EARTH 

PRESSURES IN DRY GRANULAR SOILS  

5.1. Introduction 

Determination of active and passive earth pressures is a routine process in the design of 

geotechnical structures such as retaining walls and bridge abutments. Factors that influence the 

magnitude of the lateral earth pressures have been reported by Duncan and Mokwa (2001)[100]. For 

rigid retaining structures, soil properties (cohesion and internal friction angle), mode of wall 

movement, soil-wall roughness, and wall shape are considered the most influential parameters. 

Traditionally, the design of retaining structures was executed by using the limit equilibrium method 

where the earth pressures acting on the wall are derived from the classical earth pressure theories i.e., 

Rankine (1857) [101] or Coulomb (1776) [102]. Both the active and passive earth pressures are 

characterized by the active earth pressure coefficient (𝐾𝑎) and the passive earth pressure coefficient 

(𝐾𝑝), which are dependent mainly on the internal friction angle of backfill soil (𝜑), the friction angle 

of the soil-wall interface (𝛿), the slope of the backfill and the wall geometry. In Rankine’s earth 

pressure theory, the retaining wall is assumed to be smooth whereas Coulomb’s theory considers the 

soil-wall friction. Many researchers have studied the earth pressure problems using various methods 

such as the limit equilibrium method, the method of stress characteristics, and the limit analysis 

method. Other studies also show that the retaining wall movement mode (translation or rotation) has 

a significant effect on lateral earth pressures distribution [103]. In addition to the theoretical approach 

[104-108] and the experimental approach [103] [109-118], numerical simulation has emerged as an 

effective alternative to study earth pressure distribution with greater flexibility to deal with a variety 

of boundary conditions and backfill material behaviors. In this context, the finite element method 

(FEM) was the most widely used [119–124].  

Active and passive earth pressure problems are accompanied by localized deformation and 

failure. Deformation in granular materials tends to be localized along concentrated bands, known as 

shear bands. Modeling this localization phenomenon is important, as many engineering structure 
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failures are characterized by the formation and propagation of shear bands [125–130]. This is one of 

the difficulties of finite element modeling, given that this method is based on continuum mechanics, 

which relies on material behavior laws that need to be updated with the state of the material [131]. 

The DEM, because it is based on the theory of discrete mechanics, has obvious advantages for solving 

problems involving large deformations and failure [27] [132]. In addition, when dealing with the soil-

wall interface, the friction coefficient between the wall and sand particles can be given, this is very 

simple and the meaning is clear [133]. 

In this chapter, we use DEM to analyze the active and passive lateral pressures generated by 

a cohesionless granular soil on a vertical, smooth retaining wall. Simulation results are compared 

with those of Rankine theory. 

5.2. Rankine limit states 

Using the Mohr-Coulomb model, Rankine's theory describes the limit states of failure in a 

mass of soil subjected to displacements imposed on its edges. Consider a point in a normally 

consolidated granular soil mass at rest between smooth planes (Fig. 5.1a). In this situation, the 

principal directions are oriented along the vertical and horizontal axes, with the maximum principal 

stress being the vertical stress resulting from self-weight, and the minimum principal stress being the 

lateral earth pressure at rest. These two stresses are related by a proportionality relationship: 

𝜎ℎ0 = 𝐾0. 𝜎𝑣0      (5.1)  

 Where 𝐾0 is the coefficient of lateral earth pressure at rest. 

This state of stress is represented in figure 5.1b by a Mohr circle with the soil's Mohr envelope 

curves. 

 

Figure 5.1.: a. Stress state in a normally consolidated soil mass resting between smooth planes; 

 b. Corresponding Mohr circle and envelope curves 
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If one of the container's side walls is gradually moved outwards, the soil will progressively 

relax (Fig. 5.2a): the vertical stress will remain unchanged (𝜎𝑣 = 𝜎𝑣0), but the horizontal stress will 

gradually decrease (successive circles in Fig. 5.2b. However, Mohr's envelope indicates that this 

stress cannot decrease indefinitely without leading to material failure, as Mohr's circle eventually 

becomes tangent to the envelope lines: the material thus becomes in a state of failure and “follows” 

the side walls by applying a constant horizontal stress denoted  𝜎ℎ.  

 

 

Figure 5.2.: Active limit equilibrium. a. Failure shape; b. Corresponding Mohr circles. 

In this case, the soil is in “active limit equilibrium”, or “active state”, the horizontal and 

vertical stresses are related by: 

𝜎ℎ𝑎 = 𝐾𝑎 . 𝜎𝑣      (5 .3) 

 

The coefficient 𝐾𝑎 is referred to as the “active state earth pressure coefficient”. Using the Mohr plane 

(Fig. 5.2b), this coefficient can be directly related to the soil’s angle of friction as follows: 

𝐾𝑎 = 𝑡𝑎𝑛2(
𝜋

4
−

𝜑

2
)     (5.4) 

 

In the active state, a slip line develops, and a 'wedge' of material detaches from the mass to follow the 

moving wall (Figure 5.2a).  

Figure 5.3 illustrates the failure surface and the detached soil wedge, obtained from physical 

reduced-model modeling combined with the image correlation technique. 
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Figure 5.3: Experimental failure mode in active limit state [134]. 

 

In another situation, if the side wall is moved from its resting position towards the soil mass 

(Fig. 5.4a), the material becomes compressed. The vertical stress does not change but, in contrast, the 

horizontal stress progressively increases. It passes through a state of isotropic stress (Fig. 5.4), then 

as it exceeds the vertical stress, it becomes the maximum principal stress. As this stress increases, 

Mohr's circle becomes tangent to the envelope lines, and a new state of failure is reached, it is the 

“passive state”. Horizontal stress reaches a maximum value expressed as: 

𝜎ℎ𝑝 = 𝐾𝑝. 𝜎𝑣      (5.5) 

 

 

Figure 5.4. Passive limit equilibrium. a. Failure shape; b. Corresponding Mohr circles. 

The coefficient 𝐾𝑝 is referred to as the “passive state earth pressure coefficient”. Using the 

Mohr plane (Fig. 5.4b), this coefficient can be directly related to the soil’s angle of friction as follows: 

𝐾𝑝 = 𝑡𝑎𝑛2(
𝜋

4
+

𝜑

2
)     (5.6) 

 

At passive state, a slip line different from that of active state develops, and a 'wedge' of material (with 

a significantly larger volume) detaches from the mass and moves with the wall (Figure. 5.4a). 
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5.3. Lateral forces on a vertical wall 

In the design of retaining walls, the resultant of the lateral earth pressures on the wall is an 

important information. This resultant does not change significantly if it is calculated using the 

Coulomb or Rankine method. In addition to the value of the lateral earth pressure resultant, its point 

of application is an important design issue. Rankine's method gives the resultant at one third of the 

wall height from the base. For a backfill with a horizontal surface and without overload (Fig. 5.5a), 

the resultant lateral pressure P, which is equal to the area of the load diagram, is assumed to act at a 

height of H/3 above the base of the wall, H being the height of the surface subjected to pressure.  

                            

 

 

 

 

 

 

 

 

Figure 5.5: lateral pressure distribution acting on vertical wall:(a) without surcharge, (b) with uniform 

surcharge. 

The lateral pressure is obtained by integration as follows: 

     𝑃 = ∫ 𝐾. 𝛾
𝐻

0
. 𝑦. 𝑑𝑦       (5.6)                   

Where  𝛾 is the specific weight of the sample. 

  At rest state: 

      𝑃0 = 𝐾0. 𝛾.
𝐻2

2
            (5.7) 

  Active state: 

      𝑃𝑎 = 𝐾𝑎 . 𝛾.
𝐻2

2
       (5.8)      

  Passive state: 

Backfill 

H 

H/3 

𝑷⃗⃗  

Vertical wall 

Backfill 

𝒒𝒖 

(a) (b) 

𝑷 = 𝑲. 𝜸.
𝑯𝟐

𝟐
+ 𝑲.𝒒𝒖 
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𝑃𝑝 = 𝐾𝑝. 𝛾.
𝐻2

2
     (5.9) 

For a backfill with a horizontal surface and with an overload intensity 𝑞𝑢 per unit area (Fig. 

5.5b), the vertical pressure increment at any depth will increase by 𝑞𝑢. The increase in the lateral 

pressure due to this surcharge will be (𝐾 × 𝑞𝑢). Hence lateral pressure at any depth is given by: 

𝑃 = 𝐾. 𝛾.
𝐻2

2
+ 𝐾. 𝑞𝑢      (5.10)   

5.4.  Active and passive pressure mobilization displacements 

As mentioned above, the active and passive states are reached after the development of the 

shear surface; this development phase requires minimal wall displacements. Figure 5.6 illustrates the 

variation in lateral earth pressures as a function of wall displacement, with 𝑆𝑎 and 𝑆𝑝 being the 

displacements corresponding to the passive and active states respectively.  

 

 

 

 

 

 

 

Figure 5.6: Variation of earth pressure with displacement 

Terzaghi (1934) [111] experimentally investigated the magnitude of displacement required to reach 

plastic equilibrium in the active state (𝑆𝑎). He concluded that this displacement was around H/1000 

(H: height of a retaining wall) for dense sandy soils and slightly greater than H/1000 for cohesive-

frictional soils. Later, several studies focused on estimating this displacement [135-137]. 

Experimental studies show that the main factor influencing this displacement is soil density. [138] 

report that in translational mode, the wall displacements required to achieve a passive state for loose 

and dense embankments are 8.9% and 6.8% of wall height, respectively. Different values of 𝑆𝑎  and  

𝑆𝑝 are shown in the table 5.1, where 𝑆𝑎 , 𝑆𝑝 are displacements required to mobilize the full active and 

passive earth pressure respectively. 
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Table 5.1. Approximate Displacement Required to Mobilize Active and Passive Earth Pressures 

 

 

 

 

 

 

5.5. Discrete element modeling of passive and active earth pressure test 

5.5.1. Model dimensions   

Figure (5.7) shows the model used to model lateral earth pressure in the active and passive 

states. The retaining wall is modeled as a smooth rigid wall with a height of 6 cm. The width of the 

model is deliberately chosen to be large enough to avoid the influence of the fixed wall on the 

formation of the shear surface for both active and passive states. 

 

 

 

 

 

 

 

Figure 5.7: Model dimensions and boundary conditions. 

In the passive state, the fracture surface can drop below the wall base, as shown in Fig. 5.8. For this 

reason, and to avoid the influence of the model base on the free development of the fracture surface, 

the base of the moving wall starts at a height 𝐻𝑏 = 0.5𝑐𝑚 above the model base. 
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Figure 5.8: Passive wedge calculated with Terzaghi’s log-spiral method [117]. 

5.5.2. Backfill properties  

 The Backfill is composed of 4500 polydisperse circular shaped particles, with the same 

physico-mechanical proprieties as described previously (see chapter 3). The Backfill is built using 

the fixed-grid method, then subjected to a uniform loading (𝑞𝑢) via a flexible chain of 120 grains 

(Fig. 5.9) that have the same radius 𝑟𝑐 = 0.5𝑚𝑚  and a higher specific weight determined from the 

target load. A model for flexible fibers consisting of series of spheres proposed by Kalonji and Jean-

François (2012)[139] was used, where the grains are connected by elastic springs whose stiffnesses 

are typically governed by simple contact models (figure 5.10). 

 

 

 

 

 

 

 

 

Figure 5.9: Snapshot of the backfill with flexible load chain above (black disks). 
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Figure 5.10: Flexible chain contact’s model. 

The models used in this work to calculate the interaction forces between the chain grains are as 

follows: 

 Normal force 

𝐹𝑐𝑛 = −𝛿𝑛𝐾𝐶𝑛 − 𝜗𝐶𝑛𝑉𝑛  

 Shear force 

𝐹𝑐𝑠 = 𝐾𝐶𝑠𝛿𝑠 + 𝜗𝐶𝑠𝑉𝑠 

 Bending moment  

𝑀𝑏 = 𝐾𝐶𝑟𝜃 

Where  𝛿𝑛 is the normal overlap between two successive grains, 𝛿𝑠 is the relative tangential 

displacement described previously in chapter 3 and 𝜃 being the angle of relative rotation between two 

grains with respect to the initial rectilinear state. The spring stiffness and damping coefficients for 

each contact model are shown in Table 5.2. 

Table 5.2. microscopic flexible chain grains parameters   

Characteristics Symbol Value Unite 

Normal stiffness 𝐾𝐶𝑛 1200000 N/m2 

Tangentiel stiffness 𝐾𝐶𝑠 960000 N/m2 

Normal viscous damping coefficient  𝜗𝐶𝑛 41.38 kg/s-1 

Tangentiel viscous damping coefficient 𝜗𝐶𝑠 33.10 kg/s-1 

Bending resistance stiffness  𝐾𝐶𝑟 0.5 – 

Gravity 𝒈𝒄 Variable m/s2 

Density of grains   2600 kg/m3 

 

𝑀𝑏 

𝒊 𝒊 + 𝟏 
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The specific weight of the flexible chain grains is increased by increasing the gravity acceleration 

(𝑔𝑐) applied to each grain until the target pressure is reached. The uniform load is thus calculated as 

follows: 

𝑞𝑢 =
120𝜋𝑟𝑐

2.𝜌.𝑔𝑐

120×2×𝑟𝑐

     (5.11) 

𝑞𝑢 =
𝜋𝑟𝑐.𝜌.𝑔𝑐

2
     (5.12) 

With: 𝑟𝑐 = 0.0005𝑚 and 𝜌 = 2600𝐾𝑔/𝑚3 so: 

 

𝑞𝑢 = 2.041 𝑔𝑐     (5.13) 

 

It should be noted that, to obtain a normally consolidated sample, we first create a sample 

under isotropic compression without intergranular friction, i.e. under equal vertical and horizontal 

stresses (𝜎𝑣 ≈ 𝜎ℎ = 5𝑘𝑃𝑎), hence 𝐾 ≈ 1. Next, the sample is subjected to the desired vertical stress 

by gradually increasing 𝑔𝑐. In this phase, the vertical edges are kept fixed, i.e. horizontal displacement 

is prevented. Figure 5.11 shows the evolution of the lateral pressure coefficient as a function of the 

vertical stress applied across the flexible chain. It can be seen that from a vertical load of 15 kPa, the 

ratio between horizontal and vertical stresses is close to the value 0.5, then it stabilizes around this 

value even if vertical stresses continue to increase. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: lateral pressure coefficient variation under a variable vertical stress. 
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5.6. Lateral earth pressure distribution at rest 

To plot the distribution of lateral earth pressures at rest, we subdivided the backfill into five 

layers of equal thickness (Fig. 5.12), then calculated the lateral pressure acting on the wall through 

each layer. This pressure is calculated as the sum of the normal forces in the grain-wall contacts in 

each layer, divided by the layer thickness. In this application, the flexible chain grains gravity 𝑔𝑐 is 

set to 15000 𝑚/𝑠2 which give a vertical pressure 𝑞𝑢 = 30 𝑘𝑃𝑎. 

 

 

 

 

 

 

 

 

Figure 5.12: Backfill decomposition into 5 layers. 

The lateral pressure distribution acting on the retaining wall at-rest is presented in figure 5.13. 

It is clear that the distribution of lateral pressures at rest is almost constant, indicating that stresses 

due to overloading are dominant. The resulting average lateral pressure is 15 kPa, giving a coefficient 

of lateral pressure at rest: 

𝐾0 =
𝜎ℎ

𝜎𝑣
=

15

30
= 0.5 

Terzaghi (1943) indicated that arching may play a role in the distribution of loads on retaining 

structures. Although the term arching has been accepted in geotechnical literature, the concept is not 

linked to the formation of a physical arch, but rather to a stress distribution in which the stiffer 

components of the system attract more loads. Arching means that stresses are transferred from the 

plastified zones to the elastic zones of the soil.  

H 
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Figure 5.13: Lateral Pressure distribution at-rest without wall-backfill friction. 

Many researchers have studied active earth pressure on a rigid retaining wall considering arching 

effect. [140] proposed a differential equation for pressure in silos. He provided a theoretical basis for 

understanding the effect of arching. Based on this theory, [141] and [142] proposed procedures for 

estimating the nonlinear pressure distribution of active earth pressure on a wall. [143] showed that 

lateral earth pressure behind a retaining wall depends on the wall's mode of movement, i.e. translation 

or rotation of the wall around the top or bottom and that the pressure distribution is nonlinear. This 

non-linearity is attributed to arching effect [144]. The arching effect is much more apparent during 

the movement of the retaining wall, as shown in the next section. 

In granular media, force chains are a key concept that allows to understand the stress 

distribution. These chains represent preferential pathways through which forces are transmitted. 

Indeed, forces are not uniformly distributed throughout the material; some particles bear higher loads, 

forming active force chains, while others experience relatively low stress. The force chains are 

dynamic, continually evolving in response to particle movements and loading conditions. They can 

break and reform as the material deforms. Under loading, these chains tend to align with the direction 

of the principal stresses. Moreover, they significantly contribute to the overall rigidity of the system 

and play a crucial role in determining the material's mechanical strength.  

In discrete element analysis, force chains are used to visualize and quantify stress distribution 

within a granular material. They are represented by segments connecting the centers of the grains in 

contact. The thickness of each segment is proportional to the intensity of the normal force [7].  
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Figure 5.13 shows the force chains distribution inside the backfill. Under a load 𝑞𝑢 = 30𝑘𝑝𝑎, 

these chains clearly demonstrate that the widest chains are oriented vertically, suggesting the 

dominance of the main vertical stresses. In addition, the intensity of horizontally oriented force chains 

along the retaining wall varies from with depth, indicating that the vertical distribution of lateral 

pressures is not uniform. 

              (a)                                                                            (b) 

Figure 5.14. Force chains distribution inside the backfill without wall-backfill friction. 

(a) Isotrope phase, (b) at 𝒒𝒖 = 𝟑𝟎𝒌𝒑𝒂 .              

5.7. Active and passive states simulations  

 In this section the lateral pressure coefficient 𝐾, defined as the ratio between the effective 

horizontal stresses (𝜎ℎ) and the vertical stresses (𝜎𝑣) is analyzed for the active and passive states 

described above. In these simulations, horizontal stress is calculated as the ratio of the resultant of 

grain actions on the retaining wall to the height of the wall. Whereas vertical stress is equal to the 

pressure applied across the flexible chain 𝑞
𝑢
. In both passive and active states, and for all simulations, 

the wall translation rate is set to 0.0001𝑚/𝑠.   

a. Moved soil volume   

The active state results from the movement of the retaining wall in the direction of lateral 

pressure, allowing the embankment to relax and deform laterally. This leads to increased shear 

stresses within the soil and a decrease in the lateral pressure. Ultimately, when the shear strength is 

reached in a certain zone, a shear surface develops, isolating a detached wedge from the rest of the 

soil. Figure 5.10a illustrates the volume of soil that moves behind a retaining wall in the active state. 

The passive state results from the movement of the retaining wall in the opposite direction to 

the lateral pressures, which causes additional compression of the supported soil and leads to an 

increase in lateral pressure.  Figure 5.10b shows the volume of soil displaced during the passive state, 

the shape obtained indicating a main slip plane starting from the base of the wall and extending 
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upwards with a slightly curved shape (highlighted in yellow). A secondary downward failure surface 

also appears (highlighted in green), which can be attributed to soil compression, isolating the 

compressed part from the rest of the soil.  

 

 

                (a)      (b) 

Figure 5.15: The sliding wedge and shearing bands (a) active state, (b) passive state. (the blue-colored 

grains undergo more rolling movement) 

 

b. Lateral stress evolution  

The evolution of horizontal stresses as a function of wall displacement is illustrated in figure 

5.16, highlighting distinct behaviors between the active and passive states. In the passive state, the 

horizontal stress was initially 15 𝑘𝑃𝑎, it increased significantly with wall displacement, reaching a 

peak of 90 𝑘𝑃𝑎. This increase reflects the soil's resistance to compression as the wall moves inward. 

After the peak, horizontal stress gradually decreases and stabilizes at around 75 kPa. This behavior is 

similar to the shear behavior of dense sands. On the other hand, as the wall moves outwards, the 

horizontal stress decreases rapidly from its resting value (15 kPa) to a stable value of 11.5 kPa, 

representing the lateral pressure of the active state. This rapid reduction in stress is characteristic of 

the soil's response to extensional shear. The different behavior in the passive and active states 

highlights the significant influence of the direction of wall displacement on stress evolution, with the 

passive state showing a peak behavior followed by a higher residual pressure, and the active state 

showing a monotonic decrease down to the lower residual pressure.  



 CHAPTER 05  ACTIVE AND PASSIVE LATERAL EARTH PRESSURES  

  

p. 97 

 

Figure 5.16: Lateral earth pressure. (left) passive state, (right) active state. 

An analysis of the volume deformation during wall displacement is conducted. The void ratio during 

the passive tests is estimated as follows: 

𝑒 =
𝑉𝑇−𝑉𝑠

𝑉𝑠
=

[(𝐿×𝐻𝑇)−(𝐻×𝑆𝑝)]−[∑ (𝜋.𝑟𝑖
2)𝑁−1

𝑖=0 ]

∑ (𝜋.𝑟𝑖
2)𝑁−1

𝑖=0

    

Where: 𝑉𝑠 and 𝑉𝑇 are the grains volume and sample volume respectively. 

𝐻T is the sample height calculated during the test as: 

𝐻𝑇 = (𝐻𝑚𝑎𝑥 + 𝐻0)/2 

𝐻0 is the initial sample height and 𝐻𝑚𝑎𝑥  is the vertical position of the highest grain in the sample. 

For the active state, it can be observed that the height of the backfill remains practically 

unchanged (𝐻𝑚𝑎𝑥 ≈ 𝐻0) until failure (see figure 5.15a). Consequently, the void ratio is calculated by 

the formula: 

𝑒 =
𝑉𝑇−𝑉𝑠

𝑉𝑠
=

[(𝐿×𝐻0)−(𝐻×𝑆𝑎)]−[∑ (𝜋.𝑟𝑖
2)𝑁−1

𝑖=0 ]

∑ (𝜋.𝑟𝑖
2)𝑁−1

𝑖=0

    

 

The evolution of the void ratio during the wall displacement is shown on figure 5.17. For the 

passive state, the soil exhibits contracting and then dilating behavior with increasing displacement. 

Initially, the void ratio decreases until a displacement ratio of 𝑆𝑝 𝐻⁄ ≈ 0.017 is reached, indicating a 

contracting phase where the material compacts under increasing lateral pressure. Then a dilating 
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behavior occurs until the end of the test, this phase should correspond to the phase of failure. On the 

other hand, for the active state, the behavior is essentially dilating with increasing displacement. This 

could be due to the reduction in pressure as the wall moves away, which allows the soil to expand, in 

addition to the development of failure, which makes the soil looser. These contrasting behaviors for 

the two states highlight the critical role of the stress path leading to the development of fracture, as 

the two failure limit states are reached by different stress paths; one by compression (passive state) 

and the other by extension (active state).  

 

 

Figure 5.17: Void ratio. (left) passive state, (right) active state. 

 

c. Passive and active earth pressure coefficients 

 Figure 5.18 shows the evolution of lateral earth pressure coefficients for both passive and 

active states. For the passive state, we note that the lateral pressure coefficient 𝐾𝑝 is initially close to 

0.5 and increases progressively as the retaining wall moves inwards, reaching a maximum value of 3 

between displacements of 3𝐻/100  and 4𝐻/100. For the active state, a different trend is observed: 

the lateral pressure coefficient 𝐾𝑎 also starts from an initial value close to 0.5, but decreases 

monotonically with wall displacement to stabilize at around 0.4. The displacement required to reach 

the active state is significantly smaller, it is about between 3𝐻/1000 to 4𝐻/1000. This shows that 

the material reaches the active state at much lower displacements than in the passive state. The lateral 

pressure coefficient is also much lower, remaining almost constant for larger wall displacement. 
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Figure 5.18: Lateral earth pressure coefficients. (left) passive state, (right) active state. 

d. Lateral pressure distribution  

In order to show the evolution of the pressure distribution on the retaining wall, the mean 

pressures at the middles of the five backfill layers were calculated at specific displacement ratios, for 

both the passive and active states. For the passive state, the measurements were taken at 

displacements  
𝑆𝑝

𝐻
= 0.01 and  0.03, corresponding to an intermediate phase and the peak failure 

phase respectively. The corresponding pressure distributions are shown in figure 5.19. It could be 

observed that in the intermediate phase (
𝑆𝑝

𝐻
= 0.01), the pressure is increasing almost linearly from 

the surface layer until the fourth layer. This result could be attributed to the compressibility of the 

soil between the shear strip and the wall. In fact, for layers where the wall is well away from the shear 

band (upper layers), the displacement of the wall is absorbed by the compressibility of the soil, which 

delays the increase in horizontal stress. On the other hand, for deeper layers, the shear band becomes 

close to the wall, so there is less soil compressibility and horizontal stress increases more rapidly. At 

a higher displacement (
𝑆𝑝

𝐻
= 0.03), the failure band becomes developed over the entire height of the 

deposit, and the pressure distribution tends to become more uniform. Recall that the uniformity of the 

distribution results from the dominance of the load applied to the surface of the deposit in comparison 

with the soil's self-weight. 

 For the active state, the stress distribution was measured at a displacement ratio of 𝑆𝑎/𝐻 =

0.001 (figure 5.19, right). In this case, the lateral pressures decreased more significantly in the lower 
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layers. This finding could also be related to the narrow width of the sliding wedge in these layers. 

This small width allows less deformation of the soil and consequently less pressure in the intermediate 

phase. The nonlinear shape of the distribution could be attributed to arching effects. 

 

Figure 5.19: Lateral pressure distribution in backfill layers. (left) passive state, (right) active state. 

5.8. Quantitative discussion of pressure coefficients with Rankine theory  

 The results obtained from the tests for both passive and active states show a good quantitative 

agreement with lateral pressure theory, particularly in terms of the lateral pressure coefficients. 

Qualitatively, in the passive state, the obtained peak lateral pressure coefficient (𝐾𝑝 ≈ 3) aligns well 

with the value calculated from Rankine's equation using the peak friction angle (𝜑𝑝𝑒𝑎𝑘 = 30°,→

 𝐾𝑝 = tan2 (
𝜋

4
+

𝜑

2
) = 3). However, in the active state, the lateral pressure coefficient obtained 

(𝐾𝑎 = 0.4), is slightly higher than that predicted by the Rankine equation using the peak friction 

angle  (𝜑𝑝𝑒𝑎𝑘 = 30°,→  𝐾𝑎 = tan2 (
𝜋

4
−

𝜑

2
) = 0.33), but also slightly lower than that calculated 

using the critical state friction angle (𝜑𝑐 = 20°,→  𝐾𝑎 = tan2 (
𝜋

4
−

𝜑

2
) = 0.49). These differences 

raise an important question: why do these deviations occur? In this context, we considered the 

influence of the stress path, as the passive and active states involve distinct stress paths. The evolution 

of stresses in the passive state follows typically the path of the compression shear test. While in the 

active state, the evolution of stresses follows an extensional shear test. This indicates that the 

deviation observed for the active pressure coefficient could result from the difference between the 
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stress paths.  

5.9. Analysis of the effect of stress path on lateral pressure  

5.9.1. A review on triaxial testing with different stress paths 

To better illustrate the different stress paths, let us first examine the different cases of the 

triaxial test, which is the most popular test in soil mechanics. In triaxial testing, common stress paths 

followed during compression and extension tests include the conventional triaxial compression 

(CTC) path, where the axial stress 𝜎1 is increased while the confining pressure is held constant (∆𝜎3 =

0), leading to an increase in the mean effective stress and an increase in deviatoric stress. Conversely, 

the conventional triaxial extension (CTE) path involves reducing the axial stress while maintaining 

constant confining pressure, resulting in a decrease in mean effective stress and an increase in 

deviatoric stress. Other stress paths include the constant mean effective stress (𝑝) path, where the 

mean stress is kept constant while the deviatoric stress is varied, and the constant deviatoric stress (𝑞) 

path, where the deviatoric stress is maintained while the mean stress is altered. These paths help 

characterize soil behavior under different loading conditions. Figure 5.21 illustrates various stress 

paths for the triaxial test, each representing distinct loading conditions.  

 

 

 

 

 

 

 

 

 

Figure 5.20: Triaxial total stress paths in p-q stress plane (drained test). 
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The first path, denoted by vector 𝑂𝐴⃗⃗ ⃗⃗  ⃗, corresponds to a conventional compression path where 

the confining pressure remains constant while the axial stress increases. The second path, represented 

by vector 𝑂𝐵⃗⃗ ⃗⃗  ⃗, is a conventional extension path where the axial stress is held constant, and the lateral 

stress is increased. The third path, indicated by vector 𝑂𝐶⃗⃗⃗⃗  ⃗, depicts an extension path that maintains a 

constant mean stress by decreasing the axial stress while simultaneously increasing the lateral stress. 

The fourth path, shown by vector 𝑂𝐷⃗⃗⃗⃗⃗⃗ , represents an extension path where the axial stress is reduced 

while the confining pressure remains unchanged. Finally, the fifth path indicated by vector 𝑂𝐸⃗⃗⃗⃗  ⃗,  is a 

compression path where the axial stress is kept constant, and the lateral stress is decreased. 

A bibliographic review on triaxial tests conducted on sands under different stress paths reveals 

a wide range of insights into the mechanical behavior of granular materials. (Alain Corfdir 2008) 

(Theocharis; A 2016) have shown that the stress-strain response, strength, and deformation 

characteristics of sands are highly dependent on the loading path applied. Conventional compression 

paths, where the confining pressure is held constant while the axial stress is increased, typically result 

in contractive behavior followed by strain hardening, leading to peak strength. In contrast, 

conventional extension paths, where the axial stress remains constant and the lateral stress increases, 

often exhibit dilative behavior and lower peak strengths compared to compression paths. 

Additionally, tests involving constant mean stress paths or reduced axial stress paths highlight the 

influence of stress anisotropy and intermediate principal stress on sand behavior (Zhang, K 2018). 

These studies emphasize the importance of considering non-conventional stress paths, such as those 

encountered in actual geotechnical problems, to better understand the complex response of sands 

under varying loading conditions. The review underscores the need for advanced experimental and 

numerical approaches to capture the full spectrum of sand behavior under diverse stress paths. 

5.9.2. Biaxial tests for passive and active pressure states 

In order to analyze the effect of stress path on lateral earth pressure coefficients, we proposed 

to perform biaxial shear tests with different stress paths. In addition to the conventional biaxial 

compression test (CBCT) presented previously in section 3.7, which simulates well the passive state, 

we performed a biaxial compression unloading test (BUCT) designed to replicate the stress path in 

the active earth pressure condition. In this test, the vertical stress remains constant (∆𝜎1 = 0), while 

the lateral stress decreases (∆𝜎2 = −). This test corresponding to the triaxial stress path 𝑂𝐸⃗⃗⃗⃗  ⃗ shown 

in fig 5.21, is of particular interest as it simulates different cases commonly encountered in 

geotechnical engineering, such as the behavior of soil behind retaining walls or in excavation zones.  
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The same samples that were used for both tests; the conventional biaxial compression test (CBCT) 

and the biaxial compression unloading test (BUCT).   Furthermore, in order to compare the results of 

the two types of test, we have opted to perform them under similar mean compressive stresses. To 

this end, it is assumed that the BUCT test comparable to a CBCT test already performed, is carried 

out under an initial confining stress equal to the major principal stress at failure of the CBCT test. 

Three CBCT tests were carried out with initial confining pressures of 50, 100 and 150 kPa. The 

maximum axial stresses at failure were 153, 307 and 452 kPa respectively. Consequently, the 

corresponding BUCT tests are conducted under these latter respective values of initial confining 

stress. Figure 5.21 shows the evolution of deviatoric stress for both types of shear test and for different 

average compressive stresses. Deviatoric stress is plotted as a function of vertical strain for CBCT 

tests and as a function of lateral strain for BUCT tests. For CBCT tests. The samples showed typical 

behavior of dense sand, characterized by a pronounced peak in deviatoric stress followed by a 

softening for higher strains. In contrast, for BUCT tests, the soil showed a behavior similar to that of 

loose sand, with a continuous increase in deviatoric stress without a distinct peak. The comparison 

highlights the influence of stress paths and confining pressures on the mechanical behavior of the 

materials, with the sand being initially dense, exhibiting a dense sand response under conventional 

compressive loading and loose sand-like behavior under lateral unloading conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: deviatoric stresses evolution during CBCT and BUCT. 
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Figure 5.22 shows the evolution of volumetric strain for CBCT and BUCT tests. The figure 

shows that for CBCT tests, the soil model initially exhibits contraction behavior, where volumetric 

strain decreases as axial strain increases. However, beyond a certain axial deformation, the behavior 

becomes dilative, reflecting soil expansion at peak strength and in the softening phase. This behavior 

is typical of dense sand subjected to this type of test. In contrast, for the BUCT test, the soil model 

shows a predominantly dilative behavior throughout the test. Volumetric strain increases 

continuously with axial strain, indicating persistent expansion of the soil structure. This response has 

similarities to the behavior of loose sand subjected to compressive shear. The contrasting volumetric 

responses thus highlight the influence of stress paths and initial density on the deformation 

characteristics of granular soils. 

 

 

Figure 5.22: Volumetric strain during CBCT and BUCT. 

 

The maximum axial stresses obtained from all the CBCT and BUCT tests were used to plot Mohr's 

circles and linear Mohr’s envelopes (figure 5.23). 
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Figure 5.23 CBCT and BUCT Mohr circles and linear Mohr envelopes. 

The shear strength parameters obtained from the Mohr envelopes are summarized in the table 5.3. 

Table 5.3. CBCT and BUCT shear strength parameters 

Test type  Peack friction angle (𝝋𝒑𝒆𝒂𝒌) Critical friction angle (𝝋𝑪) Cohesion (𝑪) 

 

 

CBCT  

 

30 20 0 

 

BUCT 

 

25 // 0 

 

It is clear that the internal friction angle obtained from the unloading shear (BUCT) test (𝜑 = 25°), 

is different from the two angles obtained from the loading shear (CBCT) test, namely the peak angle 

(𝝋𝒑𝒆𝒂𝒌 = 30°) and the critical state angle 𝝋𝒄 = 20°. This shows that the stress path has a significant 

effect on soil shear strength parameters. 

Using the angle of friction obtained from BUCT tests, one obtains a coefficient of lateral pressure in 

the active state (𝜑 = 25°,→  𝐾𝑎 = tan2 (
𝜋

4
−

𝜑

2
) ≈ 0.4). This value corresponds well to that 

obtained from the moving retaining wall model carried out above. 

These findings indicate that the accuracy of results for estimating lateral earth pressures using 

theoretical equations such as the Rankine equation is dependent on the friction angle used.  For an 

accurate calculation, the friction angle to be introduced should be obtained from tests with a stress 
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path similar to that of the problem to be addressed. Specifically, for this 2D modeling of lateral earth 

pressure, it is shown that: 

 For the passive state, using the peak friction angle obtained from biaxial shear tests with 

loading yields good results. 

 For the active state, the most appropriate test for determining the friction angle, which allows 

for a correct estimation of lateral pressure, is the biaxial shear test with unloading. 

5.10. Conclusion  

In this chapter, we investigated the lateral earth pressures in dry granular soils under active 

and passive limit states using the Discrete Element Method (DEM). A 2D granular backfill was 

modeled behind a smooth retaining wall, which was subjected to displacements in two directions: 

towards the backfill for the passive state and away from the backfill for the active state. Additionally, 

we presented the distribution of lateral earth pressures at rest on the retaining wall and observed that 

this distribution is not linear due to the presence of arching effects within the granular medium. 

Furthermore, we analyzed the evolution of lateral pressure distributions on the retaining wall for 

incremental wall displacements corresponding to an intermediate state and the failure state. The 

results revealed non-linear pressure distributions in both active and passive states, emphasizing the 

complexity of stress transfer mechanisms in granular materials. 

For the lateral pressure at passive state, the obtained results showed good agreement with those 

predicted by Rankine's theory using the peak friction angle obtained from conventional biaxial tests. 

However, in the active state, the lateral pressures obtained were different from those predicted by 

Rankine's theory. To explain this discrepancy, a biaxial compression test was proposed, replicating 

the stress path corresponding to the active state. This test yielded a friction angle between the peak 

and critical state friction angles obtained from conventional biaxial tests. By substituting this friction 

angle into the Rankine equation, the results obtained are well aligned with those obtained from DEM 

retaining wall simulations. This finding highlights the significant influence of the stress path on lateral 

earth pressures, a factor not accounted for in classical lateral earth pressure theories. 

This study underscores therefore, the importance of considering stress path effects and the 

non-linear distribution of lateral pressures due to arching in the analysis of lateral earth pressures.  
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CONCLUSIONS AND PERSPECTIVES 

In this thesis, the discrete element method (DEM) was used to model a granular soil, 

considering the complex particle-level interactions that govern the macroscopic behavior of the 

material. Within this framework, specific constitutive models were selected and implemented to 

accurately capture the mechanical response of granular materials. Notably, the intergranular friction 

model was a central focus, where an extended Coulomb friction model was implemented to account 

for the stick-slip phenomenon during interparticle contacts. This approach allowed for a more realistic 

representation of the complex dynamics inherent in granular systems, particularly under varying 

loading conditions. 

The first application of the developed model was dedicated to the analysis of lateral earth 

pressure at rest. In this context, a 2D discrete element modeling was used to simulate cyclic oedometer 

tests, including one-cycle and three-cycle loading scenarios, to investigate the evolution of the lateral 

earth pressure coefficient (𝐾0). The obtained results showed that the evolution of 𝐾0 with loading is 

in good agreement with well-known empirical formulas derived from experience. In addition, the 

three-cycle test revealed that 𝐾0 during the unloading phase increases slightly as the loading cycles 

progress, which can be attributed to grain rearrangement leading to greater overconsolidation with 

successive cycles. Analysis of load-dependent micromechanical parameters, such as the fabric tensor, 

the number of contacts, and contact forces, provided the following insights: the evolution of the fabric 

tensor, which describes the distribution of contact orientations, is primarily driven by differential 

changes in the number of contacts across different directions. Under isotropic stress conditions, 

contact orientations are nearly isotropic, but even a slight deviation from stress isotropy significantly 

disrupts this isotropy. In normally consolidated samples, such as during the first loading cycle, 

horizontal contacts dominate, increasing horizontal frictional forces and reducing 𝐾0. Conversely, in 

overconsolidated samples, vertical contacts become more frequent, enhancing horizontal normal 

forces and raising 𝐾0. Furthermore, 𝐾0 is not only influenced by the dominant orientation of contacts 

but also by the intensity of forces acting on them. A simple three-grain model demonstrated that the 

evolution of 𝐾0 during a loading-unloading cycle in the oedometer test is ultimately governed by 

intergranular friction, highlighting its critical role in determining 𝐾0 for overconsolidated soils. 

The second application focused on analyzing lateral earth pressures at the active and passive 

limits using the same model. For this purpose, a moving retaining wall supporting a granular backfill 

was simulated. The displacements applied to the wall replicate active and passive states. The obtained 
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lateral earth pressures were compared with those derived from Rankine's equations. Qualitatively, the 

results aligned well with Rankine's theory; however, quantitative differences were observed. For the 

passive state, the lateral earth pressure coefficient at peak (Kₚ) matched the value obtained from 

Rankine's equation using the peak friction angle derived from a conventional biaxial compression 

test. In contrast, for the active state, the lateral earth pressure coefficient (Kₐ) obtained from the 

simulation was different from that predicted by Rankine's equation. This discrepancy was attributed 

to the difference in stress paths between the two states. To investigate further, a biaxial compression 

test with a stress path matching the active state was simulated (unloading biaxial compression test). 

The friction angle obtained from this test was between the peak and critical state friction angles 

obtained from the conventional biaxial compression test and estimates accurately the lateral earth 

pressure through Rankine’s theory. This finding indicates that, for an accurate calculation of the 

lateral earth pressure, the friction angle to be introduced should be obtained from tests with a stress 

path similar to that of the problem to be addressed.  

As perspectives, first, it should be recalled that the results presented in this thesis are obtained 

from a 2D discrete element modeling with circular shaped elements. The conclusions drawn, even if 

interesting, remain more qualitative than quantitative. We believe that, in order to be sounder and 

more beneficial, they should be verified by more advanced numerical models such as 3D models that 

model natural soils with more details. On the other hand, it would also be interesting to detail more, 

the micromechanical analysis of the development of failures in the cases of active and passive states, 

which should contribute to a better understanding of the mechanisms involved as well as the overall 

macroscopic behavior. Furthermore, it is also interesting to develop physical experiments that support 

the results obtained. These experiments could, for example, be based on the triaxial device with more 

control over the imposed stresses and/or displacements. 
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  :ملـخـص

 باستخدام جافة حبيبية عينة على الدراسة تركز. النشطة والحالة السلبية الحالة السكون، حالة: مختلفة حالات في الجانبية التربة ضغوط تحليل في مساهمة الأطروحة هذه تقدم

 باستخدام لتفاغلل الناظمية القوى حساب تم. للدوران مقاومة إدخال مع باقراص الحبيبات تمثيل تم العمل، هذا في. المنفصلة العناصر بطريقة الأبعاد ثنائية العددية النمذجة

 .(stick-slip) والانزلاق الالتصاق وظاهرة الانزلاق الاعتبار في يأخذ مرن لزج نموذج باستخدام قوى الاحتكاك تحديد تم بينما مرن، لزج نموذج

 مع𝐾0 الجانبي التربة ضغط معامل تطور أن النتائج أظهرت. الأودوميتر لاختبار نموذج تطوير تم حيث السكون، حالة في الجانبي التربة ضغط يتناول التحليل من الأول الجزء

 التحليل أظهر ذلك، إلى بالإضافة. للتربة التضاغط نسبة زيادة مع𝐾0 يزداد حيث التجريبية، البيانات من المستخلصة التجريبية الصيغ مع جيد بشكل يتوافق التحميل تاريخ

 المقابل، في .𝐾0 لـ أقل قيمة وبالتالي أعلى أفقية احتكاك قوى إلى يؤدي مما ،بين الحبيبات الأفقية الاتصالات تسود طبيعي، بشكل المضغوطة العينة في أنه الميكروميكانيكي

 ثلاث من بسيط نموذج باستخدام .𝐾0 زيادة إلى ويؤدي الأفقية الناظمية القوى من يزيد مما تواترًا، أكثر العمودية الاتصالات تصبح زائد، بشكل المضغوطة العينة في

 .الحبيبات بين بالاحتكاك يتأثر الأودوميتر اختبار في وتفريغ تحميل دورة خلال𝐾0 تطور أن إبراز تم حبيبات،

 النتائج أظهرت. صلب متحرك بجدار مدعومة حبيبية عينةل نموذج تطوير تم. والنشطة السلبية الحالتين من كل في الجانبية التربة ضغوط على يركز التحليل من الثاني الجزء

 الذروية الاحتكاك زاوية استخدام عند رانكين معادلة من عليها الحصول تم التي القيمة مع (Kₚ) الذروة عند الجانبي التربة ضغط معامل يتطابق السلبية، الحالة في أنه

 تم إذا رانكين معادلة من المتوقع المعامل مع يتطابق (Kₐ) الجانبي التربة ضغط معامل فإن النشطة، الحالة في أما. التقليدي المحوري الثنائي الضغط اختبار من المستخلصة

 .النشط الجانبي الضغط لحالة مشابهًا فيها الإجهاد مسار يكون التي القص اختبارات من المستخلصة الداخلي الاحتكاك زاوية استخدام

 السلبية. النشطة، السكون،حالة  ،الضغط الجانبي ،الاحتكاك، ةصر المنفصلاطريقة العن ،الرمليةالتربة كلمـات مفتاحيـــة: 

Résumé : 

Cette thèse présente une contribution à l’analyse des pression latérales des terres aux différents états ; de repos, passif et 

actif. L’analyse concerne un dépôt granulaire à l’état sec, elle est menée par une modélisation numérique par éléments discrets 2D. 

Dans ce travail, les grains sont modélisés par des éléments circulaires avec introduction d’une résistance au roulement, les forces 

normales de contact sont calculées par un modèle viscoélastique et les forces tangentielles sont calculées par un modèle 

viscoélastique avec glissement tenant compte du phénomène stick-slip. La première partie de cette analyse concerne la pression 

latérale au repos, pour cela un modèle d’un essai œdométrique cyclique est mis au point. Les résultats obtenus ont démontré que 

l'évolution du coefficient des pressions latérales des terres 𝐾0 avec l'historique du chargement est en bon accord avec celle des 

formules empiriques dérivées de l'expérience, où 𝐾0 augmente avec le degré de surconslidation du sol. De plus, l'analyse 

micromécanique a montré que pour un échantillon normalement consolidé, les contacts horizontaux sont plus dominants, par 

conséquence les forces de frottement horizontales sont plus élevées ce qui donne une faible valeur de 𝐾0. Pour un échantillon 

surconsolidé, les contacts verticaux deviennent plus fréquents, ce qui augmente les forces normales horizontales et conduit à une 

augmentation de 𝐾0. En utilisant un modèle simple à trois grains, il est mis en évidence que l'évolution de 𝐾0 selon une boucle pour 

un cycle de chargement-déchargement dans l'essai oedométrique résulte du frottement intergranulaire. La deuxième partie concerne 

l’analyse concerne la pression latérale des terres aux deux états, passif et actif. Pour un modèle d’un dépôt granulaire soutenu par 

un mur rigide déplaçable est mis au point. Les résultats obtenus ont montré que, pour l'état passif, le coefficient de pression latérale 

du sol au pic (Kₚ) correspondait à la valeur obtenue à partir de l'équation de Rankine en utilisant l'angle de frottement au pic dérivé 

d'un essai de compression biaxiale conventionnel. En revanche, pour l'état actif, le coefficient de pression latérale des terres (Kₐ) 

correspond au coefficient prédit par l'équation de Rankine si l'angle de frottement interne introduit est dérivé d'essais de cisaillement 

avec un chemin de contrainte similaire à celui de l'état actif des pression latérales. 
Mots Clés : Sol Granulaire, Méthode des Éléments Discrets, pressions latérales des terres, au repos, active, passive. 

Abstract:  

    This thesis presents a contribution to the analysis of lateral earth pressures in different states; at rest, passive and active. The 

analysis concerns a granular deposit in the dry state, and is carried out using 2D discrete element numerical modeling. In this work, 

the grains are modeled by circular elements with the introduction of a rolling resistance, the normal contact forces are calculated by 

a viscoelastic model and the tangential forces are calculated by a viscoelastic model with sliding taking into account the stick-slip 

phenomenon. The first part of this analysis deals with lateral pressure at rest, for which a model of a cyclic odometer test is 

developed. It is shown that the evolution of the lateral earth pressure coefficient 𝐾0 with loading history is in good agreement with 

that of empirical formulas derived from experience, where 𝐾0 increases with the increase of soil’s overconsolidation ratio. 

Furthermore, micromechanical analysis has shown that for a normally consolidated sample, horizontal contacts are more dominant, 

and consequently horizontal friction forces are higher, resulting in a low value of 𝐾0. For an overconsolidated sample, vertical 

contacts become more frequent, increasing horizontal normal forces and leading to an increase in 𝐾0. Using a simple three-grain 

model, it is highlighted that the evolution of 𝐾0 along a loop for a loading-unloading cycle in the oedometer test results from 

intergranular friction. The second part concerns the analysis of lateral earth pressure in both passive and active states. A model of a 

granular deposit supported by a rigid moving wall is developed. The obtained results have shown that, for the passive state, the 

lateral earth pressure coefficient at peak (Kₚ) matched the value obtained from Rankine's equation using the peak friction angle 

derived from a conventional biaxial compression test. Whereas, for the active state, the lateral earth pressure coefficient (Kₐ) matches 

the coefficient predicted by Rankine's equation if the introduced internal friction angle is derived from shear tests with stress path 

similar to that of the active lateral pressure state. 

Key Words: Granular soil, Discrete Element Method, lateral earth pressure, at rest, active, passive. 



   

 

 


	الجمهورية الجزائرية الديمقراطية الشعبية
	Domaine : Sciences et Technologie
	Filière: Génie civil                                     Option: Matériaux et structures
	Dedications
	Acknowledgments
	List of Figures
	List of tables
	List of Symbols
	Introduction

	Chapter  01
	Granular Soils
	1.1.  Introduction
	1.2. Physical characteristics of a granular soil
	1.2.1. The shape descriptors
	1.2.1.1. Roundness and sphericity
	1.2.1.2. Roughness
	1.2.1.3. The particules size distribution
	1.2.1.4. Density of a granular media


	1.3.  Mechanical behavior of granular soils
	1.3.1. Mechanical behavior under compression triaxial conditions
	1.3.2. Triaxial Test Overview
	1.3.3. Stress-Strain Response
	1.3.4. Characteristic state

	1.4. Conclusion


	Chapter  02
	Discrete Element Method
	2.1. Introduction
	2.2. Molecular Dynamics
	2.2.1. Contact Forces
	2.2.2. Normal stiffness
	2.2.3. Viscous Damping
	2.2.4. Tangential Stiffness
	2.2.5. Friction and Sliding
	2.2.6. Rolling Resistance

	2.3. Numerical Resolution
	2.3.1. Explicit Resolution Scheme

	2.4. Numerical modeling Parameters
	2.5. Modeling Techniques
	2.5.1. Neighborhood Detection
	a. Direct Method
	b. Container Partitioning Method
	c. Triangulation Method


	2.6. Generation of an Initial State (samples creation)
	a. Implementation on a Fixed Grid
	b. Random positioning
	c. Constraint Voronoi Partition

	2.7. Boundary condition
	2.8. Representative Elementary Volume
	2.9. Usual grain shape models
	2.10. Conclusion


	Chapter  03
	A Stick-Slip Friction Model For Discrete Elements Modeling
	3.1.  Introduction
	3.2. Stik-slip motion
	3.3. Usual contact models in DEM
	3.4. Stick-slip friction model
	3.5. Simulations and Discussion
	3.5.1. Quasi-static example
	3.5.2. Static example
	3.5.3. Dynamic example

	3.6. Discussion of results and model
	3.7. Model application for large scale specimen
	3.8. Conclusions


	Chapter  04
	Application of DEM to the analysis of lateral earth pressures at rest in dry granular soils
	4.1.  Introduction
	4.2.  Discrete Element Method
	4.3. Model properties
	4.3.1.  A description of the simulated oedometer
	4.3.2. Microscopic sample properties
	4.3.3. Macroscopic geotechnical parameters

	4.4. Evolution of ,𝑲-𝟎. under oedometric loading
	4.4.1. Evolution of K0 for a one loading-unloading cycle
	4.4.2. Evolution of K0 for a three-cycle loading

	4.5. Effects of micromechanical parameters on ,𝑲-𝟎.
	4.5.1.  Contact orientations and contact number
	4.5.2. Normal contacts forces intensities
	4.5.3. A demonstration of the effect of intergranular friction on ,𝑲-𝟎. in the overconsolidated state
	4.5.4. Analytical description
	a. Frictionless grains
	b. Rough grains

	4.5.5. Numerical simulations

	4.6. Summary discussion
	4.7. Conclusion


	Chapter  05
	Application of DEM to the analysis of the active and passive lateral EARTH PRESSURES in dry granular soils
	5.1. Introduction
	5.2. Rankine limit states
	5.3. Lateral forces on a vertical wall
	5.4.  Active and passive pressure mobilization displacements
	5.5. Discrete element modeling of passive and active earth pressure test
	5.5.1. Model dimensions
	5.5.2. Backfill properties

	5.6. Lateral earth pressure distribution at rest
	5.7. Active and passive states simulations
	a. Moved soil volume
	b. Lateral stress evolution
	c. Passive and active earth pressure coefficients
	d. Lateral pressure distribution
	5.8. Quantitative discussion of pressure coefficients with Rankine theory
	5.9. Analysis of the effect of stress path on lateral pressure

	5.9.1. A review on triaxial testing with different stress paths
	5.9.2. Biaxial tests for passive and active pressure states

	5.10. Conclusion

	Conclusions AND Perspectives
	Annexe A- ………………………………….
	Bibliographic References



