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Abstract

This thesis addresses three pivotal challenges in web services environment : QoS-aware service
composition under uncertainty, QoS prediction in dynamic environments, and a comprehensive review
of collaborative filtering techniques for QoS prediction. The first contribution introduces an extended
artificial bee colony algorithm with local search (EABC) to solve the interval-constrained QoS-aware
service composition (IQSC) problem. Here, QoS uncertainty is modeled using an interval-number
representation and the skyline operator is applied to eliminate redundant services, with experimental
results demonstrating superior performance compared to skyline-based PSO, an efficient discrete
gbest-guided artificial bee colony, and Harris Hawks optimization with an elite evolutionary strategy.
The second contribution, denoted as QSCFIoT, tackles QoS ambiguity in fuzzy IoT environments by
representing QoS parameters with generalized trapezoidal fuzzy numbers. This approach integrates a
fuzzy skyline-based module with an improved discrete flower pollination algorithm, and its efficacy is
confirmed through experiments on both real and synthetic datasets, outperforming EFPA, PSO, and
ITL-QCA in terms of composition quality, computational time, and stability. The third contribution
is a systematic literature review (SLR) that rigorously examines QoS prediction methods for web
services, focusing on Collaborative Filtering (CF) techniques in static and dynamic settings. Following
PRISMA guidelines, 512 studies were initially identified and 146 were thoroughly analyzed, revealing
that while traditional CF methods perform well in static environments, they face significant challenges
in dynamic contexts due to data sparsity and variability. This review highlights the advancements
in hybrid and context-aware models and underscores the need for adaptive, real-time prediction
approaches to better meet user demands. Collectively, these contributions provide a robust framework
for enhancing both the composition and prediction of QoS in web services, advancing their reliability
and adaptability in complex, real-world scenarios.

Keywords : QoS-aware service composition ; Quality of Service (QoS) ; Interval number ; Generalized
trapezoidal fuzzy number ; single objective optimization ; combinatorial optimization ; metaheuristics ;
QoS uncertainty ; Dynamic Environments ; Web Service Composition ; Collaborative Filtering ; Fuzzy
Logic ; IoT ; Adaptive Algorithms ; Swarm Intelligence ; Systematic Literature Review.



Résumé

Cette thèse aborde trois défis essentiels dans le domaine des services web : la composition de
services tenant compte de la qualité de service (QoS) en contexte d’incertitude, la prédiction de la QoS
dans des environnements dynamiques, et une revue exhaustive des techniques de filtrage collaboratif
pour la prédiction de la QoS. La première contribution présente une version étendue de l’algorithme
de colonie d’abeilles artificielles avec recherche locale (EABC) destinée à résoudre le problème
de composition de services QoS-consciente à contraintes d’intervalle (IQSC). Dans cette approche,
l’incertitude de la QoS est modélisée à l’aide d’une représentation par nombre intervalle, et l’opérateur
skyline est utilisé pour éliminer les services redondants, les résultats expérimentaux démontrant une
performance supérieure par rapport à la PSO basée sur le skyline, à une colonie d’abeilles artificielles
discrète guidée par gbest efficace, ainsi qu’à l’optimisation par Harris Hawks combinée à une stratégie
évolutive élite. La deuxième contribution, dénommée QSCFIoT, traite de l’ambiguïté de la QoS
dans des environnements IoT flous en représentant les paramètres de la QoS par des nombres flous
trapézoïdaux généralisés. Cette approche intègre un module basé sur le skyline flou avec un algorithme
de pollinisation de fleurs discret amélioré, et son efficacité est confirmée par des expériences menées
sur des jeux de données réels et synthétiques, surpassant l’EFPA, la PSO et l’ITL-QCA en termes
de qualité de composition, de temps de calcul et de stabilité. La troisième contribution est une revue
systématique de la littérature (SLR) qui examine rigoureusement les méthodes de prédiction de la QoS
pour les services web, en se concentrant sur les techniques de filtrage collaboratif dans des contextes
statiques et dynamiques. Conformément aux directives PRISMA, 512 études ont été initialement
identifiées et 146 ont été analysées en profondeur, révélant que, bien que les méthodes de filtrage
collaboratif traditionnelles fonctionnent bien dans des environnements statiques, elles rencontrent des
défis significatifs dans des contextes dynamiques en raison de la rareté et de la variabilité des données.
Cette revue met en lumière les avancées des modèles hybrides et sensibles au contexte et souligne la
nécessité d’approches de prédiction adaptatives et en temps réel pour mieux répondre aux exigences
des utilisateurs. Collectivement, ces contributions offrent un cadre robuste pour améliorer à la fois
la composition et la prédiction de la QoS dans les services web, renforçant ainsi leur fiabilité et leur
adaptabilité dans des scénarios complexes et réels.

Mots clés : Composition des services Web ; Qualité de service ; l’incertitude QoS ; Nombre intervalle ;
des nombres flous trapézoïdaux ; Optimisation mono-objectif ; Optimisation combinatoire ; l’Internet
des Objets ; méta-heuristiques ; Environnements dynamiques ; Filtrage collaboratif ; Logique floue ;
L’IoT ; Algorithmes adaptatifs ; Intelligence en essaim; Revue systématique de la littérature



 ملخص 

 تتناول هذه الرسالة ثلاث تحديات محورية في خدمات الويب: تركيب الخدمات مع مراعاة جودة الخدمة

(QoS)   في ظل عدم اليقين، والتنبؤ بجودة الخدمة في البيئات الديناميكية، ومراجعة شاملة لتقنيات الترشيح

خوارزمية مستعمرة النحل الاصطناعية الموسعة مع  التعاوني لتنبؤ جودة الخدمة. تقُدمّ المساهمة الأولى 

مع مراعاة جودة الخدمة.   (IQSC) لحل مشكلة تركيب الخدمات ذات قيود الفترات (EABC) البحث المحلي

في هذه المقاربة، يتم نمذجة عدم اليقين في جودة الخدمة باستخدام تمثيل الأعداد الفاصلة، ويطُبقّ عامل 

 PSO الـ"سكاي لاين" لإزالة الخدمات الزائدة، حيث تظُهر النتائج التجريبية أداءً متفوّقاً مقارنةً بخوارزمية

، وخوارزمية  gbest المعتمدة على الـ"سكاي لاين"، ومستعمرة النحل الاصطناعية الموجهة بكفاءة بواسطة

 شار إليها باسمتحسين هاريس هوكس مع استراتيجية تطورية نخبويّة. تعُالجِ المساهمة الثانية، والتي يُ 

QSCFIoT  غموض جودة الخدمة في بيئات إنترنت الأشياء الغامضة عن طريق تمثيل معايير جودة ،

الخدمة باستخدام أعداد غامضة شبه منحرفية معممة. تدمج هذه المقاربة وحدة مبنية على الـ"سكاي لاين" 

تجارب على  الغامض مع خوارزمية تحسين تلقيح الزهور المقطعية المحسّنة، وقد تأكدت فعاليتها من خلال 

من حيث   ITL-QCAو PSOو EFPA مجموعات بيانات حقيقية وتركيبية، حيث تفوقت على خوارزميات

 (SLR) جودة التركيب، والوقت الحسابي، والاستقرار. أما المساهمة الثالثة فهي مراجعة منهجية للأدبيات

لويب، مع التركيز على تقنيات الترشيح التعاوني في  تفحص بدقة أساليب التنبؤ بجودة الخدمة لخدمات ا 

 146دراسة في البداية وتم تحليل  512، تم تحديد PRISMA البيئات الثابتة والديناميكية. وباتباع إرشادات

دراسة بشكل مفصل، مما كشف أن الطرق التقليدية للترشيح التعاوني تؤدي أداءً جيداً في البيئات الثابتة، لكنها  

تواجه تحديات كبيرة في السياقات الديناميكية بسبب قلة وتفاوت البيانات. تبرز هذه المراجعة التطورات في  

الهجينة والمعتمدة على السياق وتؤكد الحاجة إلى مقاربات تنبؤية تكيفية وفي الوقت الفعلي لتلبية   النماذج

 قوياً لتعزيز كل من تركيب متطلبات المستخدمين بشكل أفضل. مجتمعة، توفرّ هذه المساهمات إطاراً 

الخدمات والتنبؤ بجودة الخدمة في خدمات الويب، مما يُحسنّ من موثوقيتها وقدرتها على التكيف في  

 .سيناريوهات معقدة وواقعية

 :الكلمات المفتاحية

؛ العدد الفاصل؛ العدد الغامض شبه  (QoS) تركيب الخدمات مع مراعاة جودة الخدمة؛ جودة الخدمة

المنحرف المعمم؛ التحسين لهدف واحد؛ التحسين التركيبي؛ الميتاوريستيك؛ عدم يقين جودة الخدمة؛ البيئات  

؛  (IoT) الديناميكية؛ تركيب خدمات الويب؛ الترشيح التعاوني؛ المنطق الغامض؛ إنترنت الأشياء

 .الخوارزميات التكيفية؛ ذكاء السرب؛ المراجعة المنهجية للأدبيات

 



Table of Contents

List of Figures xiii

List of Tables xv

1 General introduction 1
1 Overview on Context and Problem Introduction . . . . . . . . . . . . . . . . . . . . 1
2 Challenges of QoS-aware service composition . . . . . . . . . . . . . . . . . . . . 5
3 Motivational example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Research major contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 From Web Services to Internet of Things : Architectures and Technologies 15
1 Web Services : Standards and Technologies . . . . . . . . . . . . . . . . . . . . . . 15

1.1 A Brief History on Web Services : from Distributed Computing to Service
Oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.1 Distributed Computing and Web Services . . . . . . . . . . . . . . 17
1.1.2 Service-Oriented Architecture . . . . . . . . . . . . . . . . . . . . 18

1.2 Service Oriented Architecture and Web Services . . . . . . . . . . . . . . . 18
1.3 SOA and Web Service Standards . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Basic Web Service Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.2 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3 WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.4 UDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Other Web Services Standards and Protocols . . . . . . . . . . . . . . . . . 23
1.6 Developing Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Definitions of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 From a Traditional Thing to a Smart Thing . . . . . . . . . . . . . . . . . . 27
2.3 Enabling Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Table of Contents ix

2.4 The Architecture of an IoT System . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 The advantages of Internet of Things . . . . . . . . . . . . . . . . . . . . . . 32
2.7 The disadvantages of Internet of Things . . . . . . . . . . . . . . . . . . . . 33
2.8 The challenges of Internet of Things . . . . . . . . . . . . . . . . . . . . . . 33
2.9 The application fields of Internet of Things . . . . . . . . . . . . . . . . . . 34

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Preliminaries on optimization and uncertain numbers (Interval and fuzzy numbers) 36
1 Background on optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.2 Single/Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . 40

1.2.1 Single objective optimization . . . . . . . . . . . . . . . . . . . . 40
1.2.2 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . 41

1.3 Continuous and discrete optimization problems . . . . . . . . . . . . . . . . 41
1.3.1 Continuous optimization problem . . . . . . . . . . . . . . . . . 42
1.3.2 Discrete optimization problems . . . . . . . . . . . . . . . . . . . 42

2 Background on Generalized Trapezoidal Fuzzy Numbers (GTrFNs) . . . . . . . . . 42
3 Generalities on Interval-numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 An extended artificial bee colony with local search for solving the Skyline-based web
services composition under interval QoS properties 51
1 Related works and literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.1 Solution approaches based on precise QoS values . . . . . . . . . . . . . . . 54
1.1.1 Exact approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.1.2 Heuristic approaches . . . . . . . . . . . . . . . . . . . . . . . . 56
1.1.3 Metaheuristic and bio-inspired approaches . . . . . . . . . . . . . 57

1.2 Solution approaches based on ambiguous QoS values . . . . . . . . . . . . . 59
1.2.1 Probabilistic approaches . . . . . . . . . . . . . . . . . . . . . . . 59
1.2.2 Interval-numbers-based approaches . . . . . . . . . . . . . . . . . 59
1.2.3 Fuzzy-numbers-based approaches . . . . . . . . . . . . . . . . . . 60

2 Interval model of the QoS uncertainty-aware web service composition problem . . . 66
2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.1 Skyline service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Artificial bee colony algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Extended Artificial Bee Colony : EABC . . . . . . . . . . . . . . . . . . . . 75



x Table of Contents

3.3.1 Encoding schema of food sources positions and generation of the
initial food sources area . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Employees work . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.3 Onlookers work . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.4 Scouts work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.5 Local search method . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.6 Ending criterion of EABC . . . . . . . . . . . . . . . . . . . . . . 79

4 Experiments and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1 Interval version of the public QWS dataset . . . . . . . . . . . . . . . . . . 80
4.2 Parameters setting of the compared algorithms . . . . . . . . . . . . . . . . 81
4.3 Comparison results discussion . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Effectiveness of the local search method . . . . . . . . . . . . . . . . . . . . 83

5 Time complexity of the EABC algorithm . . . . . . . . . . . . . . . . . . . . . . . 88
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 An Improved Discrete Flower Pollination Algorithm for Fuzzy QoS-aware IoT Services
Composition Based on Skyline Operator 90
1 Fuzzy constrained optimization model of QSCFIoT . . . . . . . . . . . . . . . . . . 93

1.1 Mathematical formulation of QSCFIoT . . . . . . . . . . . . . . . . . . . . 95
2 Basic Flower Pollination Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.1 Global pollination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.2 Local pollination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3 Proposed solution approach for QSCFIoT . . . . . . . . . . . . . . . . . . . . . . . 101
3.1 Skyline IoT-Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2 Improved Discrete Flower Pollination Algorithm (IDFPA) . . . . . . . . . . 103

3.2.1 Discrete global and local pollination procedures . . . . . . . . . . 104
3.2.2 Updating solutions positions decision . . . . . . . . . . . . . . . . 106
3.2.3 Discard abandoned solutions positions . . . . . . . . . . . . . . . 107
3.2.4 Best solution improvement . . . . . . . . . . . . . . . . . . . . . 108

3.3 Computational complexity of the proposed approach . . . . . . . . . . . . . 108
4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1 Experimental datasets design . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2 Performance comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Composition optimality and composition stability comparisons . . 112
4.2.2 Composition time comparisons . . . . . . . . . . . . . . . . . . . 116

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Table of Contents xi

6 Collaborative Filtering Techniques for Predicting Web Service QoS Values in Static and
Dynamic Environments : A Systematic and Thorough Analysis 120
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2 Preliminaries on Collaborative Filtering and Classical Prediction Methods . . . . . . 122

2.1 Recommendation Systems (RS) . . . . . . . . . . . . . . . . . . . . . . . . 122
2.2 Collaborative Filtering (CF) . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2.3 Memory-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.3.1 Item-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.3.2 User-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.3.3 Hybrid Filtering (HF) Methods . . . . . . . . . . . . . . . . . . . 123

2.4 Model-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.5 Context-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.6 The Role of Collaborative Filtering in WSQP . . . . . . . . . . . . . . . . . 124

2.6.1 Collaborative Filtering in WSQP Research . . . . . . . . . . . . . 124
2.6.2 Contributions of RSs to WSQP . . . . . . . . . . . . . . . . . . . 124

3 Formulation of the WSQP problem . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.1 Motivation of QoS prediction usage . . . . . . . . . . . . . . . . . . . . . . 125
3.2 Textual description of the WSQP problem . . . . . . . . . . . . . . . . . . . 125
3.3 Mathematical Description of the WSQP Problem . . . . . . . . . . . . . . . 126

4 Collaborative Filtering techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1 Memory-based QoS prediction methods . . . . . . . . . . . . . . . . . . . . 134
4.2 Model-based QoS Prediction Methods . . . . . . . . . . . . . . . . . . . . . 137

4.2.1 Clustering-based QoS Prediction Methods . . . . . . . . . . . . . 137
4.2.2 Machine Learning QoS Prediction Techniques . . . . . . . . . . . 138
4.2.3 Matrix Factorization QoS Prediction Methods . . . . . . . . . . . 141

4.3 Context-aware QoS prediction methods . . . . . . . . . . . . . . . . . . . . 144
4.3.1 Location-aware QoS prediction methods . . . . . . . . . . . . . . 144
4.3.2 Time-aware and Time-series QoS Prediction Methods . . . . . . . 145
4.3.3 Trust-aware QoS Prediction Methods . . . . . . . . . . . . . . . . 148

5 Classification of the methods and discussion . . . . . . . . . . . . . . . . . . . . . . 150
5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 General Data-sets and real-world QoS data-sets . . . . . . . . . . . . . . . . 151
5.3 Discussion of the classified methods . . . . . . . . . . . . . . . . . . . . . . 153

5.3.1 QoS Predictions in Static and Dynamic Environments . . . . . . . 155
5.3.2 Importance of Fuzzy Tools in WSQP . . . . . . . . . . . . . . . . 161
5.3.3 WSQP Techniques in Practical Situations . . . . . . . . . . . . . . 162

6 Future Directions and Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



xii Table of Contents

7 General conclusion and Future Work 165

General conclusion and Prospects 165
1 Contributions and research summary . . . . . . . . . . . . . . . . . . . . . . . . . . 165

1.1 An extended artificial bee colony with local search for solving the Skyline-
based web services composition under interval QoS properties . . . . . . . . 165

1.2 An Improved Discrete Flower Pollination Algorithm for Fuzzy QoS-aware
IoT Services Composition Based on Skyline Operator . . . . . . . . . . . . 166

1.3 Collaborative Filtering Techniques for Predicting Web Service QoS Values in
Static and Dynamic Environments : A Systematic and Thorough Analysis . . 167

2 Future Works and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography 169

Appendix A Proof of the Theorem 1’s proprieties 186

Appendix B Proof of the proprieties (P1), (P2) and (P3). 188



List of Figures

1.1 Service Composition Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 State chart of the proposed ACS example . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The evolution of business usage on the WWW . . . . . . . . . . . . . . . . . . . . . 17
2.2 Process of discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 List of Standards associated to Web Services . . . . . . . . . . . . . . . . . . . . . . 20
2.4 The relationship between XML/SOAP/WSDL/UDDI . . . . . . . . . . . . . . . . . 21
2.5 IoT Architecture (https ://sumatosoft.com/blog/what-is-iot-architecture-4-stages-of-

iot-architecture, checked on March 2025) . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 SOA-based architecture for the IoT middleware. . . . . . . . . . . . . . . . . . . . . 31

3.1 Classification of optimization techniques . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Three main components of an optimization system with single objective : inputs,

constraints (operating conditions), and output Mirjalili [2019]. . . . . . . . . . . . . 40
3.3 Graphical representation of a generalized trapezoidal fuzzy number . . . . . . . . . 43
3.4 Graphical representations of TrFN, TFN, IFN and CFN. . . . . . . . . . . . . . . . . 45
3.5 Types of interval-numbers overlapping . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Graphic depiction of the QoS-aware web service composition problem . . . . . . . . 68
4.2 The common control structures for composing elementary web services . . . . . . . 69
4.3 The flowchart of EABC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 The average running times of the compared algorithms in solving the ACSm

n s of n web
services classes per m functionally equivalent web services (for colors, see online
version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 The convergence of the EABC and the basic ABC algorithms to find-out their near
optimal solutions in solving ACS125

20 over 30 independent running times (for colors,
see online version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 The frequently used composition structures to construct CSs Seghir and Khababa
[2021a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



xiv List of Figures

5.2 The convergence curves associated to the average Mid-Supports of the fuzzy utilities
values of the obtained feasible CSbests by the compared algorithms in solving the
QWS100

25 and the RND8334
30 instances over 50 runs (For colors see online version). . . . 117

5.3 Composition time comparisons of IDFPA, EFPA, PSO and ITL-QCA algorithms in
solving five QWSm

n s (For colors see online version). . . . . . . . . . . . . . . . . . . 118
5.4 Composition time comparisons of IDFPA, EFPA, PSO and ITL-QCA algorithms in

solving five RNDm
n s (For colors see online version). . . . . . . . . . . . . . . . . . . 119

6.1 Keyword Co-Occurrence Network for Web Services QoS Prediction Research . . . . 130
6.2 PRISMA Flowchart for Including Publications . . . . . . . . . . . . . . . . . . . . . 133
6.3 Web Service QoS Prediction methods Taxonomy . . . . . . . . . . . . . . . . . . . 133



List of Tables

1.1 QoS values of candidate services for the abstract task . . . . . . . . . . . . . . . . . 9

4.1 Literature review of th QoS-aware service composition problem for static and dynamic
environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Interval QoS aggregation formulas for evaluating the global QoS interval-valued of
concrete composite services CSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Comparison results of the best interval utility values of the obtained near-optimal
solutions by the compared approaches in solving each ACSm

n of IQSC with n web
services classes per m functionally equivalent web services . . . . . . . . . . . . . . 83

4.4 Comparison results of the worst interval utility values of the obtained near-optimal
solutions by the compared approaches in solving each ACSm

n of IQSC with n web
services classes per m functionally equivalent web services . . . . . . . . . . . . . . 83

4.5 Comparison results of the average interval utility values of the obtained near-optimal
solutions by the compared approaches in solving each ACSm

n of IQSC with n web
services classes per m functionally equivalent web services . . . . . . . . . . . . . . 84

4.6 Comparison results of the interval variances of the obtained near-optimal solutions by
the compared approaches in solving each ACSm

n of IQSC with n web services classes
per m functionally equivalent web services . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Comparison results of the best, worst and average interval utility values of the obtained
near-optimal CSs solutions by the EABC and the basic ABC algorithms in solving
each ACSm

n of IQSC with n web services classes per m functionally equivalent web
services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Fuzzy QoS aggregation functions for evaluating global fuzzy QoS values of a CS
using different composition structures . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 An example of nine atomic IoT-services assessed on the qtime parameter . . . . . . . 99
5.3 An example of nine atomic IoT-services assessed on the qprice parameter . . . . . . . 99
5.4 Parameters setting of the compared algorithms . . . . . . . . . . . . . . . . . . . . . 110
5.5 Composition optimality comparisons for five QWSm

n s instance . . . . . . . . . . . . 113
5.6 Composition stability comparisons for five QWSm

n s instances . . . . . . . . . . . . . 114



xvi List of Tables

5.7 Composition optimality comparisons for five RNDm
n s instances . . . . . . . . . . . . 115

5.8 Composition stability comparisons for five RNDm
n s instances . . . . . . . . . . . . . 116

6.1 QoS Parameters with Missing Values ( ?) . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Keywords for Web Services QoS Prediction . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Search Strings for Web Services QoS Prediction Across Different Databases . . . . . 131
6.4 Exclusion Criteria for Selected Studies . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Summary of Clustering-based QoS Prediction Methods . . . . . . . . . . . . . . . . 139
6.6 Summary of Machine Learning-based QoS Prediction Methods . . . . . . . . . . . . 142
6.7 Summary of Matrix Factorization-based QoS Prediction Methods . . . . . . . . . . 143
6.8 Summary of Location-Aware QoS Prediction Methods . . . . . . . . . . . . . . . . 146
6.9 Summary of Time-Aware and Time-Series QoS Prediction Methods . . . . . . . . . 148
6.10 Summary of Trust-Aware QoS Prediction Methods . . . . . . . . . . . . . . . . . . 149
6.11 Web Services QoS data-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.12 Comparative Table of Distinguished CF-Based Prediction Approaches . . . . . . . . 153
6.13 Advantages and Disadvantages of Different Prediction Method Categories . . . . . . 157
6.14 Classification of Methods in Selected Studies . . . . . . . . . . . . . . . . . . . . . 160



Chapter 1

General introduction

1 Overview on Context and Problem Introduction
Over the last few decades, Information Technology (IT) has undergone a remarkable evolution,

shaping and revolutionizing various aspects of our technological landscape. One notable and adaptable
transformation within IT is the emergence and advancement of Service-Oriented Architecture (SOA)
Papazoglou et al. [2007]. SOA represents a paradigm shift in software design and deployment,
focusing on the creation and utilization of services as fundamental building blocks.

This architectural approach heavily relies on Service-Oriented Computing (SOC), which serves
as the underlying framework for managing and utilizing these ’services.’ Services, within the context
of SOA, are conceptualized as modular, independent, and loosely coupled components that can
be discovered, invoked, and composed to facilitate the implementation of complex functionalities,
whether in the form of hardware or software Benatallah and Motahari Nezhad [2008].

In the realm of IT literature, the concept of services encapsulates a versatile approach wherein
these modular components, often considered as the fundamental units of computation, are brought
together to fulfill specific tasks or functionalities. These services possess the flexibility to be combined,
reused, and orchestrated in various ways to build larger and more intricate systems or applications.
Their loosely coupled nature allows them to operate independently, interact with each other through
standardized protocols, and adapt to changing demands and requirements. This integration and
interoperability between services are pivotal in the development of sophisticated and adaptable
business applications Benatallah and Motahari Nezhad [2008].

In essence, the core principle behind SOA is the notion of encapsulating business functionalities
as modular services, promoting reusability, flexibility, and scalability in IT systems. This paradigm
shift has significantly influenced the development and deployment of modern software architectures
by fostering an environment where diverse services can be orchestrated and combined to create agile,
adaptable, and complex systems that cater to evolving business needs and technological advancements.
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Within the realm of modern technological advancements, another significant paradigm that leans
on the foundations of SOA is the Internet of Things (IoT). The IoT represents a vast and interconnected
network comprising smart objects embedded with sensors, actuators, and computational capabilities,
enabling them to communicate, collaborate, and interact seamlessly through the Internet Moreno
et al. [2015]. These smart objects, or ‘things,’ encompass a diverse range of devices such as sensors,
wearables, appliances, vehicles, and industrial equipment. They are empowered with the ability to
gather data, process information, and initiate actions, ultimately contributing to an ecosystem where
physical objects merge with digital connectivity to offer innovative functionalities and services.

The core functionalities and capabilities of these IoT-enabled devices are encapsulated as ’IoT
services.’ Similar to the concept of web services (WSs) within the domain of SOA, these IoT services
represent modular functionalities or tasks that can be advertised, discovered, and composed to facilitate
the creation and implementation of IoT applications Viriyasitavat et al. [2019]. Much like web services,
IoT services are designed to be discoverable and accessible over network protocols, allowing for their
integration into larger systems or applications. They serve as the foundational building blocks upon
which diverse IoT applications are constructed, offering functionalities that range from data sensing
and collection to analysis, decision-making, and control. These IoT services can be orchestrated and
combined in various configurations to address specific user requirements, thus enabling the creation of
innovative and tailored IoT applications catering to diverse domains such as smart homes, healthcare,
transportation, agriculture, and industrial automation. Their interoperability and adaptability form the
backbone of the IoT ecosystem, fostering an environment where the seamless integration of diverse
devices and services contributes to the advancement of technology and enhances user experiences.

The applications, whether they belong to the realm of business applications or fall within the
scope of the Internet of Things (IoT), often take the form of composite services. These composite
services represent a conglomeration or assembly of individual services, each contributing specific
functionalities or capabilities that collectively address a user’s needs or demands. The selection
and assembly of these composite services are guided by the overarching principle of Quality of
Service (QoS). QoS encapsulates a set of metrics or attributes that define the performance, reliability,
efficiency, and other qualitative aspects of services. These QoS metrics act as the yardstick or criteria
against which the composite services are evaluated and selected to meet the global QoS constraints
established for the targeted composite service. In essence, the user’s requirements, expectations,
or preferences for the composite service are translated into specific QoS criteria. These criteria,
which could include parameters such as response time, reliability, security, cost-effectiveness, or
other relevant factors, serve as constraints that the composite service must adhere to in order to
fulfill the user’s expectations effectively. For instance, in the context of a business application, the
composite service might comprise various software components or modules, each contributing specific
functionalities such as data processing, storage, or user interface. The selection and arrangement
of these components are governed by their individual QoS attributes, ensuring that the composite
service meets the desired level of performance and reliability as required by the user. Similarly, in
IoT applications, where various smart devices and sensors collaborate to provide functionalities, the
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composition of these devices into a coherent service also considers their QoS attributes. For example,
an IoT application aimed at smart home automation might involve devices like sensors, actuators, and
controllers, each contributing functionalities like temperature sensing, lighting control, or security
monitoring. The selection and orchestration of these devices into the composite service are driven by
their QoS attributes, ensuring the overall reliability, responsiveness, and efficiency of the smart home
system.

The advent and widespread adoption of Service-Oriented Computing (SOC) have led to the
proliferation of candidate services available on the web. These candidate services, although offering
similar functionalities, exhibit varying Quality of Service (QoS) parameters such as response time,
price, availability, reliability, and others. This diversity in QoS attributes among candidate services
creates a scenario where selecting the most optimal services to construct an efficient and effective
composite service becomes a complex and challenging task Zeng et al. [2004], Alrifai et al. [2012].
The process of selecting the most suitable candidate services aims at constructing an optimal composite
service that meets the global end-to-end QoS constraints. Global end-to-end QoS constraints represent
a set of predefined criteria or requirements established by users or applications, encompassing various
QoS parameters crucial for the overall performance and satisfaction of the composite service. However,
due to the diverse nature of candidate services and their varying QoS parameters, the selection process
becomes intricate and non-trivial. Determining the best combination of services that collectively
fulfill the global end-to-end QoS constraints while optimizing performance, cost, reliability, and other
pertinent factors is a challenging optimization problem. This latter is formally recognized in the
domain of Service-Oriented Architecture (SOA) as the QoS-aware web service composition problem
(QSC). QSC is identified as an NP-hard optimization problem, implying that finding an optimal
solution within a reasonable time frame becomes increasingly complex and resource-intensive as
the number of candidate services and QoS parameters grows Zeng et al. [2004], Alrifai et al. [2012].
Addressing the QSC problem involves developing efficient algorithms, heuristics, or meta-heuristic
approaches capable of intelligently selecting and composing candidate services while adhering to
the global end-to-end QoS constraints. Researchers and practitioners in the field employ various
methodologies, optimization techniques, and intelligent algorithms to tackle this complex problem
and provide solutions that cater to the evolving demands and requirements of service-based systems
and applications.

The primary objective of QoS-aware service composition is to identify and assemble the most
optimal combination of individual atomic services, forming what is referred to as a composite service.
This composite service is tailored and orchestrated to execute a specific business process or fulfill a
particular functional requirement. The ultimate goal is to meet the global constraints and requirements
defined by users or applications, ensuring that the composite service aligns with the desired Quality
of Service (QoS) attributes Jatoth et al. [2015], Hamzei and Navimipour [2018], Asghari et al. [2018].
Despite the extensive research efforts in this field, a predominant focus within the literature has
been on QoS-aware service composition approaches that consider QoS attributes as fixed and precise
values. However, an important aspect often overlooked in these approaches is the inherent uncertainty
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and imprecision associated with QoS attributes Jatoth et al. [2015], Hamzei and Navimipour [2018],
Asghari et al. [2018]. In reality, open and dynamic environments, such as those encountered in modern
web services or IoT ecosystems, face numerous challenges. One significant challenge revolves around
the uncertainty and volatility of QoS attribute values associated with atomic services. These values
can dynamically change over time due to various unforeseen factors, including network congestion,
system overloads, variations in service invocations, or other environmental dynamics. For instance,
the QoS attributes such as response time, availability, or reliability of a web or IoT service might
vary unpredictably with different service invocations, leading to fluctuations in their performance
characteristics. The uncertainty in these QoS attributes poses a challenge in accurately predicting or
guaranteeing the behavior of composite services, thereby affecting their reliability and performance.

In addition to service composition, the prediction of web service QoS in both static and dynamic
environments plays a critical role in ensuring optimal service selection and composition. In static
environments, QoS prediction methods rely on historical data to estimate service performance under
fixed conditions, while in dynamic environments, the prediction becomes more complex due to
fluctuating network conditions, system loads, and other temporal factors Shao et al. [2007], Zhang
et al. [2011b], Ye et al. [2021]. Addressing these challenges requires adaptive prediction approaches
that can accommodate real-time data and evolving service behaviors.

The focus of this thesis lies in addressing the QoS-aware service composition problem within the
context of uncertain QoS attributes associated with elementary web or IoT services, and in developing
robust methodologies for **web service QoS prediction in static and dynamic environments**. By
acknowledging and incorporating the uncertainty and imprecision of QoS attributes into the service
composition process, and by advancing QoS prediction techniques, this research aims to develop novel
methodologies or frameworks that can handle the dynamic nature of QoS attributes while satisfying
the QoS constraints imposed by users or applications.

The subsequent sections of this chapter are structured as follows :
Section 2 : This section delves into an in-depth exploration of the primary challenges encountered

within the scope of our research. It comprehensively examines the hurdles, complexities, or limitations
that the research aims to address or overcome. By thoroughly examining these challenges, the section
sets the stage for understanding the critical issues that form the basis of the research inquiry.

Section 3 : In this section, a compelling and illustrative motivating example is presented. The
purpose of this example is to provide readers with a tangible scenario or use case that vividly
demonstrates the relevance and objectives of this thesis. Through the depicted example, readers gain
insight into the practical implications and real-world applications driving the focus and objectives of
the research.

Section 4 : Here, the primary contributions and significant advancements introduced by this thesis
are outlined and discussed in detail. This section elucidates the novel methodologies, innovative
approaches, or key findings that constitute the core contributions of the research. It provides an
overview of the unique aspects and noteworthy outcomes resulting from the conducted research
efforts.
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Section 5 : Finally, this section offers a succinct yet comprehensive overview outlining the structure
and sequence of the thesis chapters. It provides a road-map or preview of the subsequent chapters,
highlighting the thematic content and focus areas covered in each section. This brief description
helps readers anticipate the flow and organization of the thesis, enabling them to navigate through the
subsequent chapters with clarity.

2 Challenges of QoS-aware service composition
Service-Oriented Computing (SOC) emphasizes the integration of discrete service components

to create composite services capable of executing abstract composite services (ACS). These ACSs,
serving as higher-level representations of functionalities or tasks, necessitate the invocation of elemen-
tary services to fulfill the abstract tasks. Within the realm of Service-Oriented Architecture (SOA), the
fundamental objective of QoS-aware service composition is to adeptly select a subset of elementary
services, each corresponding to an abstract task, in a manner that the resultant service composition
meets both the functional requirements and the defined QoS constraints. In typical scenarios, multiple
services might qualify as candidates for fulfilling a specific abstract task. To discern and differentiate
among these candidate services, the selection process goes beyond merely addressing the functional
requirements. Instead, it places significant emphasis on non-functional attributes, commonly referred
to as Quality of Service (QoS) attributes. These QoS attributes encompass various parameters such as
response time, reliability, availability, cost, and other performance-related metrics associated with
services. However, achieving the optimal selection of services that collectively fulfill all the imposed
constraints represents a daunting challenge, particularly in scenarios involving large-scale problems.
In such scenarios, the sheer magnitude of services, tasks, and constraints complicates the selection
process, making it arduous and resource-intensive Zeng et al. [2004], Alrifai et al. [2012].

The pursuit of identifying the best service composition has garnered substantial attention and
effort from researchers in the field. Despite the active research and numerous advancements in service
selection methodologies, several challenges persist, remaining unresolved in current literature. These
unresolved challenges underscore the complexities inherent in service selection processes and can be
summarized as follows :

1. Scalability and Optimality : The scalability challenge stands as a pivotal concern within
the domain of QoS-aware service composition. Essentially, the QSC process endeavors to
identify the most suitable composite service from an exhaustive array of possibilities. This
quest for the optimal composite service necessitates comparing and evaluating all potential
combinations of services (i.e., composite services), ultimately selecting the most optimal
one among them. However, when confronted with an extensive search space comprising an
incredibly vast number of possible combinations, the issue of scalability promptly arises. The
sheer magnitude of potential combinations to consider, particularly while accommodating
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user-defined constraints, poses a formidable scalability challenge Zeng et al. [2004], Alrifai
et al. [2012].

Moreover, ensuring the optimality of the selected composite service further compounds the
challenge. Achieving an optimal solution that adheres to user-defined constraints is imperative
for the QSC problem. Nonetheless, the task of selecting the best composite service from a
multitude of feasible solutions becomes an intricate and time-consuming endeavor. In practical
terms, exhaustively evaluating and comparing all feasible solutions to determine the optimal
one inevitably intertwines with the scalability issue. The quest for optimality while considering
large volumes of potential solutions accentuates the inherent scalability challenge in this
context.

Furthermore, striking a balance between providing an optimal solution and delivering timely
responses to user requests amplifies the complexity. The need to obtain an optimal solution
within an acceptable time-frame to cater to user requirements brings forth the interplay bet-
ween scalability and achieving solution quality or optimality. The simultaneous operation of
scalability and optimality becomes a critical concern, requiring innovative methodologies and
efficient algorithms that can navigate and resolve these intertwined challenges effectively in
QSC scenarios.

2. Scalability and Linearization : In recent studies addressing the QSC problem Jatoth et al.
[2015], Hamzei and Navimipour [2018], Asghari et al. [2018], exact service selection algo-
rithms have been prominent. These algorithms typically model the QSC problem using integer
or mixed-integer linear programming frameworks Alrifai et al. [2012], Ardagna and Pernici
[2007]. To solve these formulated QSC models, solvers such as LpSolve 1 and CPLEX 2 are
utilized. When the objective functions and constraints of the QSC problem are linearized, these
solvers can efficiently derive optimal solutions.

However, the efficacy of exact service selection algorithms is inversely proportional to the
scalability of the QSC problem. As the complexity and scalability of the QSC increase, the
efficiency of these exact algorithms decreases significantly. This phenomenon highlights an
inherent trade-off between scalability and the performance of exact algorithms, making them
relatively unsuitable for larger, more complex QSC instances.

Consequently, researchers in the field have shifted their focus towards evolutionary and bio-
inspired algorithms, such as Genetic Algorithm (GA) Canfora et al. [2005], Particle Swarm
Optimization (PSO) Liao et al. [2014], and Artificial Bee Colony (ABC) Huo et al. [2015],
x. wang et al. [2019]. These algorithms have garnered attention due to their distinct advantages :

(a) Assurance of Optimal/Near-optimal Solutions : Evolutionary and bio-inspired al-
gorithms demonstrate an ability to provide optimal or near-optimal solutions within
reasonable computational timeframes, even in scenarios involving significant scalability.

1. http ://lpsolve.sourceforge.net/5.5/
2. https ://www.ibm.com/analytics/cplex-optimizer
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(b) Flexibility in Objective Functions : Unlike exact algorithms reliant on linearization,
these evolutionary and bio-inspired algorithms operate without constraints imposed by
linearized objective functions. This flexibility allows for a more robust exploration of
solution spaces, especially in scenarios where linearization might be challenging or
impractical.

3. Ambiguity within dynamic environments : Traditionally, QoS-aware service composition
(QSC) studies have typically operated under the assumption that Quality of Service (QoS)
values are unambiguous and constant. However, in real-world Service Oriented Architecture
(SOA) environments, numerous unforeseen factors like changes in network topologies, eco-
nomic policies, or varying network conditions contribute to the uncertainty and variability of
these QoS values Razian et al. [2020].

In dynamic environments, QoS attributes of candidate services often exhibit uncertainty, making
them inherently uncertain and unreliable for exact quantification Razian et al. [2020]. For
instance, the response time of a web service might fluctuate between different transactions
or invocations due to varying network connectivity, leading to varying QoS response times
for composite services built from these fluctuating services. Similarly, pricing of candidate
services may vary during peak hours, influencing the overall cost of a composite service.

Consequently, the deterministic nature of QoS attributes breaks down in dynamic settings,
rendering QoS values unreliable and subject to constant change. This uncertainty needs to be
considered and addressed while solving the QoS-aware service composition problem. Recent
advancements in this area have proposed approaches that model uncertain QoS parameters
using different methodologies such as :

(a) Interval Numbers : Modeling QoS uncertainty by representing QoS attributes as intervals
Jian et al. [2016], Seghir et al. [2019].

(b) Probabilistic Variables : Considering the uncertain nature of QoS by representing
attributes as probabilistic variables Zheng et al. [2016].

(c) Fuzzy Numbers : Addressing QoS uncertainty through the use of fuzzy numbers to
capture imprecise QoS attributes Xu et al. [2018].

3 Motivational example
The process of composing services, as outlined by AlSedrani and Touir [2016], involves several

sequential stages as illustrated in Figure 1.1. These stages are essential for creating a composite
service that meets the user’s requirements :

— Composition Planning : This initial stage involves planning and specifying the requested
service, breaking it down into an abstract set of tasks. It defines the overall structure and
requirements of the desired composite service.
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— Service Discovery : In the service discovery phase, there’s a search for available services
that match both the functional and non-functional requirements, including Quality of Service
(QoS) attributes, for each task identified in the composition plan. This step involves identifying
potential candidate services that can fulfill the defined tasks.

— Service Selection : Once multiple services matching the requirements from the previous phase
are discovered, the service selection stage comes into play. This phase involves selecting the
most suitable service for each task within the composition. The selection aims to ensure that
the user’s requirements, including functional and QoS aspects, are adequately met.

— Service Execution : The final phase, service execution, involves invoking and executing
individual tasks identified in the composition plan using the selected services. This phase
integrates these tasks to produce the final composite service that fulfills the user’s intended
purpose.

FIGURE 1.1 Service Composition Processes
AlSedrani and Touir [2016]

In order to understand the QoS-aware service composition problem, an illustrative example will
help to fulfill the task. Let’s consider, for instance, an abstract composite service (ACS) of four (04)
abstract tasks, as shown in Figure 1.2 , where each task Ti(i ∈ {1,2,3,4}) has a set of functionality
similar to concrete services CS j

i ( j ∈ {1 . . .5}), and for each concrete service CS j
i , two QoS attributes

are considered in this example : the response time and the price (These attributes need to get minimal
values as it will be explained in further chapters with details). The QoS values of these concrete
services are detailed in Table 1.1.

This ACS example takes into consideration only two global end-to-end QoS constraints :

1. The global response time composite service must not exceed 50 ms.

2. The global price of the composite service must not exceed 15 DZD.

To find the best composite service of four concrete services that implements the ACS example of
Figure 1.1 by giving each task Ti its appropriate selected concrete service CS j

i , where these selected
services must satisfy the above two global constraints.

In this example, the best composite service for ACS that fulfills the QoS user’s constraints is
CCS = (CS2

1,CS3
2,CS2

3,CS2
4). It is selected among 54 = 625 solutions by applying the dominance

notion of Huo et al. [2015] to define the CCS solution. We shall explain, each set of concrete services
is associated to each task Ti, we select the concrete service that dominates all the other concrete
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TABLE 1.1 QoS values of candidate services for the abstract task

Tasks Concrete services
QoS attributes
Response time
(ms)

Price
(DZD)

T1

CS1
1 5 7

CS2
1 8 10

CS3
1 10 8

CS4
1 8 6

CS5
1 13 14

T 2

CS1
2 7 6

CS2
2 39 14

CS3
2 7 3

CS4
2 10 11

CS5
2 42 6

T3

CS1
3 10 9

CS2
3 10 5

CS3
3 12 7

CS4
3 12 8

CS5
3 25 3

T4

CS1
4 20 9

CS2
4 18 5

CS3
4 35 7

CS4
4 40 13

CS5
4 49 15
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FIGURE 1.2 State chart of the proposed ACS example

services in this set of candidate services (e.g. CS1
1 is selected to implement the task T1 as it offers the

best QoS values compared to the QoS values of the concrete services of the same class).
The previous example of Abstract Composite Service (ACS) illustrates QoS values as fixed.

However, real-world QoS attributes of services are often imprecise and uncertain due to various
factors. Therefore, representing these QoS attributes as fixed values doesn’t align with reality. It’s
crucial to account for the uncertainty associated with these QoS attributes to ensure the selection of
the most appropriate composite service.

The QSC problem is notably complex, given its NP-hard complexity and the dynamic nature of
the environments where services are utilized. This inherent complexity makes solving this problem
challenging. Some prior studies Alrifai et al. [2010], Wang et al. [2013], Ying and Jiande [2020]
have employed the Skyline operator Borzsony et al. [2001] to streamline the QoS-aware service
composition process. This operator reduces the search space by eliminating WSs that cannot be
part of the final solutions, as they are dominated by other functionally equivalent WSs. However,
these existing approaches mostly consider static QoS values and fail to handle the imprecision and
uncertainty associated with QoS parameters.

To address these limitations, our work proposes two approaches. Firstly, we aim to tackle the
scalability issue associated with solving the QSC problem, ensuring optimal solutions even in a large
search space. Secondly, we focus on managing the uncertainty linked to QoS attributes. Our motivation
lies in presenting an efficient approach to solve the QoS uncertainty-aware service composition
problem within a reduced search space.

In the subsequent section, we’ll outline and present the distinct contributions of our work,
emphasizing how our proposed approaches aim to overcome the challenges posed by scalability,
optimality, and QoS attribute uncertainty in service composition.

4 Research major contributions
The central focus of this thesis revolves around the QoS-aware service composition problem,

which can be comprehensively described as follows :
Abstract Composite Service Structure : The problem entails the presence of an abstract com-

posite service (ACS) that intricately defines the interconnections among its elementary tasks. Addi-
tionally, it encapsulates the overarching global Quality of Service (QoS) constraints mandated by
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users. Each atomic task within this abstract composite service is associated with a set of functionally
equivalent candidate services. These candidates offer the necessary functionality for each specific task
but exhibit diverse QoS attributes.

Web Service Selection Objective : The primary goal of web service selection is to meticulously
choose the most suitable services. These selections are instrumental in constructing the most optimal
composite service capable of effectively implementing the ACS while concurrently adhering to the
specified user requirements and constraints.

Web Service QoS Prediction : The primary purpose of the prediction module is to estimate the
performance characteristics of candidate services. In static environments, QoS prediction leverages
historical data to forecast service performance under stable conditions, whereas in dynamic environ-
ments, advanced adaptive techniques are employed to capture time-varying QoS parameters affected
by fluctuating network loads, user demands, and other temporal factors. This prediction process plays
a crucial role in guiding the selection of services, ensuring that the assembled composite service
consistently meets the global QoS constraints and adapts effectively to changing conditions.

Our goal in this work is to propose new service selection approaches in uncertain environments to
deal with the issues previously presented in Section 2. The contributions of this thesis can be seen
from three different angles :

1. Solving Scalability and Optimality Issues : To mitigate issues related to scalability and
optimality, two distinct yet effective approaches have been proposed :

(a) Utilization of Skyline Operator for Pruning : Both approaches incorporate the use of
the skyline operator, a concept introduced by Borzsony et al. Borzsony et al. [2001], aimed
at efficiently eliminating redundant and dominated web services from their respective sets
of functionally equivalent options. Subsequently, both the Extended Artificial Bee Colony
(EABC) and the Improved Discrete Flower Pollination Algorithm (IDFPA) leverage this
pruned dataset to solve the Interval QoS-aware Web Service Composition Problem
(IQSC) and the Fuzzy-IoT Service Composition Problem (QSCFIoT), respectively, in a
reduced search space.

(b) Approach 1 : Extended Artificial Bee Colony (EABC) for IQSC : The first approach
introduces an Extended Artificial Bee Colony (EABC) algorithm specifically tailored
to tackle the Interval QoS-aware Web Service Composition Problem (IQSC). EABC
ensures rapid identification of the best optimal composite service while maintaining a
high standard of solution quality. Its strength lies in embedding a local search capability
that significantly enhances the exploration process. Comparative analysis against existing
algorithms like skyline-based PSO, discrete gbest-guided artificial bee colony, and Harris
Hawks optimization with an elite evolutionary strategy demonstrates EABC’s superiority.
It excels in managing end-to-end constraints and efficiently identifying optimal solutions
within a reasonable computation timeframe.
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(c) Approach 2 : Improved Discrete Flower Pollination Algorithm (IDFPA) for QSC-
FIoT : The second approach introduces an Improved Discrete Flower Pollination Algo-
rithm (IDFPA) designed to swiftly search for near-optimal Composite Services (CSs)
within the Fuzzy-IoT Service Composition Problem. IDFPA employs novel discrete
global and local pollination processes to update the positions of solutions. Additionally,
it integrates a discard abandoned solutions mechanism, which effectively repositions
stagnated CSs that haven’t updated their positions after a predetermined number of
iterations during the near-optimal CSs’ search process. Experimental results illustrate
IDFPA’s superiority over EFPA, PSO, and ITL-QCA in terms of efficiency, showcasing
its capability to outperform existing algorithms when dealing with near-optimal CSs in
the Fuzzy-IoT Service Composition Problem.

2. Addressing Uncertainty in Dynamic Environments : To tackle the challenge of uncertainty
inherent in dynamic environments, both proposed approaches offer solutions for solving the
QoS-aware Service Composition Problem (QSC) under uncertain QoS properties :

(a) Approach 1 : IQSC with Interval-based QoS Parameters : The first approach intro-
duces an Interval Constrained Single Objective Optimization Model aimed at addressing
the QoS Uncertainty-Aware Web Service Composition Problem (IQSC). In this model,
the QoS parameters are represented as interval numbers. The IQSC problem deals with
uncertain QoS attributes associated with web services, allowing for a more realistic
representation of QoS parameters in an uncertain environment.

(b) Approach 2 : QSCFIoT with GTrFN-based QoS Parameters : The second approach
focuses on a Fuzzy Constrained Optimization Model for the IoT-services Composition
Problem, denoted as QSCFIoT. QSCFIoT operates within the realm of IoT services and
employs Generalized Trapezoidal Fuzzy Numbers (GTrFN) to represent QoS parameters.
By leveraging GTrFN-based QoS attributes, this model accounts for uncertainties in QoS
attributes within the IoT services domain.

3. Systematic Literature Review on Web Service QoS Prediction : In addition to the above
contributions, a comprehensive systematic literature review (SLR) has been conducted to
examine the state-of-the-art in web service QoS prediction. This SLR focuses on collaborative
filtering techniques applied in both static and dynamic environments. Following PRISMA
guidelines, 512 studies were initially identified, and 146 were thoroughly analyzed. The
review reveals that while traditional collaborative filtering methods perform adequately in
static settings, they face significant challenges in dynamic environments due to data sparsity
and variability. The SLR highlights advancements in hybrid and context-aware models and
underscores the need for adaptive, real-time prediction approaches that can better accommodate
fluctuating QoS attributes. This insight into QoS prediction further informs and complements
the proposed service selection strategies by providing accurate, context-aware performance
estimates essential for optimal composite service construction.
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5 Thesis Organization
The thesis in hand has three main parts where the first part including Chapter 2 is devoted to

give general information about Web Services and Internet of Things ; Optimization and the uncertain
numbers are introduced in Chapter 3. Whereas, the second part including Chapter 4 and Chapter
5 are derived from research results that were conducted during the course of the doctorate period.
Furthermore, the last chapter 7 is devoted to conclude the thesis and highlight further perspectives
Thus, the thesis is organized as follows :

1. First Part (Chapters 1,2 and 3) :

— Chapter 1 - General Introduction : This chapter provides an overview of the study’s fo-
cus, identifies challenges, and elucidates the motivation behind the research. Additionally,
it outlines the organization of the subsequent chapters.

— Chapter 2 - From Web Services to Internet of Things : This chapter delves into the
fundamentals of web services and Internet of Things (IoT). It covers basic definitions,
architectures, and standards pertaining to both technologies.

— Chapter 3 - Preliminaries on Optimization and Uncertain Numbers : This chapter
introduces essential concepts in optimization, elucidates various types of optimization
problems, and specifically focuses on uncertain numbers such as Interval Numbers and
Fuzzy Numbers (GTrFN). It provides detailed explanations of arithmetic operations on
these numbers and their ranking, as they play a crucial role in formulating problems and
preparing datasets in subsequent chapters (4 and 5).

2. Second Part (Chapters 4, 5 and 6) :

— Chapter 4 - Extended Artificial Bee Colony (ABC) for Interval-based QoS Properties :
This chapter introduces an Extended Artificial Bee Colony algorithm enhanced with
local search to solve Skyline-based web service composition problems under Interval
QoS properties. The proposed approach demonstrates superior performance compared
to existing references, as evaluated on a new interval-valued version of the public QWS
dataset Khababa et al. [2022].

"G. Khababa, F. Seghir, and S. Bessou. An extended artificial bee colony with local search
for solving the skyline-based web services composition under interval qos properties.
Journal of Intelligent & Fuzzy Systems, 42(4) :3855–3870, 2022."

— Chapter 5 - Improved Discrete Flower Pollination Algorithm for Fuzzy QoS-aware
IoT Services Composition : This chapter presents an Improved Discrete Flower Polli-
nation Algorithm designed to address the challenges of Fuzzy QoS-aware IoT services
composition, utilizing the Skyline Operator Seghir and Khababa [2023]

"F. Seghir and G. Khababa. An improved discrete flower pollination algorithm for
fuzzy qos-aware iot services composition based on skyline operator. The Journal of
Supercomputing, 79(10) : 10645–10676, 2023"
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— Chapter 6 - Collaborative Filtering Techniques for Predicting Web Service QoS
Values in Static and Dynamic Environments : A Systematic and Thorough Analysis :
This chapter presents a systematic literature review of state-of-the-art prediction methods
applied in the web service environment. Furthermore, it analyzes these methods from the
perspective of whether they were applied in static or dynamic environments. The sole
purpose of this chapter is to be a roadmap for further implementations Khababa et al.
[2025].

"G. Khababa, S. Bessou, F. Seghir, N. H. Harun, A. S. Almazyad, P. Jangir, and A. W.
Mohamed. Collaborative filtering techniques for predicting web service qos values in
static and dynamic environments : A systematic and thorough analysis. IEEE Access,
2025."

3. Conclusion (Chapter 7) :

— Chapter 7 - Conclusion : This chapter summarizes and concludes the findings and contri-
butions presented in the previous chapters. It also outlines potential future perspectives
that warrant further exploration as potential contributions.

The thesis is logically organized, starting with foundational knowledge and gradually progressing
to innovative research findings and conclusions, providing a comprehensive understanding of the
topics covered.



Chapter 2

From Web Services to Internet of Things :
Architectures and Technologies

Introduction
In recent years, technological advancements have revolutionized task execution through the

Internet. Among the latest innovations, the Internet of Things (IoT) has emerged, amplifying the
use of Web services and establishing standards that have proliferated across various domains. These
technologies have significantly impacted diverse sectors, from streamlining business operations in
hospitality (such as hotel and restaurant management) to enhancing traffic management systems
(enabling real-time vehicle tracking and automatic monitoring of environmental conditions such as
temperature fluctuations).

This chapter aims to provide an in-depth understanding of Web services and the IoT by elucidating
the fundamental definitions, concepts, and standards that underpin these technological frameworks.
Navigate through the intricacies of these technologies, shedding light on their significance and role in
transforming various industries and daily lives.

1 Web Services : Standards and Technologies
In this section, we dive into the theoretical underpinnings and design principles of the Web

services technology. Here, we explore the intricate models, detailed specifications, and accessibility
of this technology as a robust tool that allows disparate systems to collaborate seamlessly, achieving
desired tasks with efficiency and effectiveness.

Web services technology stands as a pivotal mechanism for facilitating interoperability among
diverse systems, allowing them to communicate and work together harmoniously. Its design principles
encompass various protocols, standards, and methodologies that ensure the seamless integration of
functionalities across different platforms and domains.
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At its core, Web Services are built on standards like XML (eXtensible Markup Language), SOAP
(Simple Object Access Protocol), and WSDL (Web Services Description Language), providing a
framework for communication and data exchange between applications over the Internet. These
services encapsulate discrete functions, allowing them to be accessed and utilized remotely by other
software systems Newcomer [2002].

The discussion in this section aims to elucidate the fundamental aspects of Web service technology,
focusing on its conceptual framework, standardization protocols, and practical applications. By
exploring these theoretical foundations and design elements, we gain a comprehensive understanding
of how Web services function as an enabling tool for achieving seamless integration and collaborative
operations among diverse systems, fostering interoperability and streamlined functionalities across
different platforms and applications.

1.1 A Brief History on Web Services : from Distributed Computing to
Service Oriented Architecture

Since its inception in the 1990s, the World Wide Web (WWW) has revolutionized the accessibility
of information for users worldwide. Despite the initial technological constraints associated with the
early days of the WWW that didn’t adequately support online product promotion, the focus shifted
toward developing Business-to-Business (B2B) infrastructures. These infrastructures aimed to assist
organizations in optimizing their processes and enhancing the efficiency of business transactions
conducted over the Internet.

To foster greater integration, many B2B solutions leveraged XML as the primary language for
representing data. XML’s versatility and extensibility made it a preferred choice for facilitating data
interchange and communication between different systems.

The evolution of B2B strategies led to the emergence of the SOA concept. SOA was conceived
to overcome the limitations inherent in B2B approaches, especially in terms of the flexibility and
dynamic adaptability of Information Technology (IT) systems. It introduced a methodology focused
on the design, development, deployment, and management of discrete components of computer logic
or services.

Using XML as its primary language, SOA aimed to structure, promote loose coupling, and stan-
dardize the exchange of business functionalities among various software applications. By employing
XML for data representation, SOA facilitated the seamless interaction and interoperability of diverse
systems, enabling the creation of agile and adaptable IT infrastructures.

Figure 2.1 illustrates the evolutionary trajectory from the initial limitations of WWW technologies
to the development of B2B infrastructures and the subsequent evolution into SOA, highlighting the
pivotal role of XML in facilitating data structuring and interoperability.
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FIGURE 2.1 The evolution of business usage on the WWW
Pennington [2007]

1.1.1 Distributed Computing and Web Services

Distributed computing traced its roots back to the 1980s when sockets emerged as the pioneering
communication technology. At this early stage, Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) served as foundational transport protocols, facilitating low-level messaging
over Internet Protocol (IP) networks. This process involved encoding messages, transmitting them
to recipients, and subsequently decoding them. However, this approach incurred significant time
overheads for both senders and recipients in the processing of messages, hindering efficiency.

Addressing these challenges, Remote Procedure Call (RPC) Birrell and Nelson [1984] emerged
in the late 1980s, primarily introduced by Sun Microsystems. RPC proved to be a viable solution,
especially in the development of two-tier client/server architectures. It facilitated communication
between different applications by enabling a client application to execute procedures or functions on a
remote server as if they were local.

As the demand escalated for more complex N-tier applications, the industry witnessed the
advent of two significant technologies : Common Object Request Broker Architecture (CORBA) and
Distributed Common Object Model (DCOM)Brown and Kindel [1996]. CORBA aimed to enable
communication between distributed objects without considering the operating systems on which
they operated. Meanwhile, DCOM, developed by Microsoft, facilitated communication between
applications running on distributed computers under reliable conditions.

Subsequently, Java Remote Method Invocation (RMI) Downing and Java [1998] emerged, provi-
ding a framework for creating and executing distributed Java programs. It streamlined object method
calls between different Java Virtual Machines (JVMs) across a network Raghavan and Waghmare
[2002], Pennington [2007].

Despite the successes of CORBA, DCOM, and Java RMI, these technologies also exhibited
limitations. They tended to create tightly coupled distributed systems ; they were often platform-
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specific (for instance, COM/DCOM was limited to Windows environments), and they relied on
complex proprietary protocols, message formats, and data representations. These factors led to
challenges in interoperability and system scalability, particularly within heterogeneous environments
Pennington [2007], Booth et al. [2004].

In response to these limitations, Web services emerged as a more standardized and interoperable
solution for developing distributed systems on the web. Web services offer a platform-independent,
language-neutral approach to facilitate communication and interaction between different applications
over the internet. They rely on standardized protocols such as HTTP, XML, SOAP, and WSDL,
fostering loose coupling and providing a more flexible and scalable architecture for distributed
systems.

1.1.2 Service-Oriented Architecture

Recognizing the limitations inherent in traditional distributed objects, the evolution of Service-
Oriented Architecture (SOA) emerged in the early 2000s, offering a more effective solution.

Definition 1 Pennington [2007], Booth et al. [2004] SOA can be defined as a technology that aims
at simplifying the development of modular services that can subsequently be integrated to construct
distributed applications. The fundamental goal of SOA is to facilitate the creation of flexible and
adaptable IT infrastructures by breaking down applications into smaller, more manageable services
that can be accessed independently.

In essence, SOA promotes a modular and loosely-coupled design philosophy, where each service
encapsulates a specific business functionality or task. These services communicate and interact with
each other using standard protocols, enabling them to be flexibly combined and reused to support
various applications and business processes.

1.2 Service Oriented Architecture and Web Services

Web Services play a pivotal role in resolving interoperability issues among applications and
services by providing robust standards to build effective distributed systems. Within the SOA, web
services are associated with three fundamental actions : discovery, request, and response.

The SOA architecture typically involves three main actors : the requester, provider, and registry.
As depicted in Figure 2.2, the process of service discovery and interaction involves several sequential
steps Pennington [2007], Booth et al. [2004], which is described in the following steps :

1. Step 1. This initial phase establishes a connection between two participants — the service
provider and the requester. The service provider publishes crucial details like the WSD and
semantics (Sem) to a registry upon the discovery of the service by the requester.

2. Step 2. Subsequently, there’s an exchange of data during the communication phase. This step
occurs after establishing a mutual understanding between the semantics and the description
provided by the service.
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FIGURE 2.2 Process of discovery
Booth et al. [2004]

3. Step 3. The WSD and Sem are acknowledged and loaded into both the provider and the
requester, facilitating their interaction to execute the necessary operation.

In the context of Web Services within a SOA, a service provider has the capability to create multiple
distinct Web services. Within this framework, each service is required to consist of at least one
operation.

Operations, also referred to as endpoints, play a pivotal role within a service. They are specifi-
cally responsible for processing and managing information. Each operation encapsulates a specific
functionality or task that the service provides.

These operations act as entry points or interfaces through which external systems or clients can
interact with the service. They define the methods or functions that external entities can call or utilize
to request specific functionalities or data from the service.

An operation typically defines the required inputs (parameters or data), processes these inputs
according to the service logic, and produces outputs (response or result) that are sent back to the
requester. Operations encapsulate the core functionalities and capabilities of a service, serving as the
functional units with which external systems interact.

These endpoints or operations, as the building blocks of a Web service, are crucial elements that
enable services to perform specific tasks or provide particular functionalities in response to requests
from various clients or systems Pennington [2007], Booth et al. [2004].
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1.3 SOA and Web Service Standards

SOA heavily relies on standardized protocols to deploy interoperable and compatible services
effectively. Currently, the preferred approach for developing SOA-based products is through Web
service standards. Several key standards associated with Web services play a pivotal role in the
development and implementation of SOA-based solutions. These standards are fundamental in
ensuring interoperability, communication, and seamless interaction between various services and
systems within a SOA environment. Figure 2.3 illustrates some of the essential standards closely
associated with Web services, which are crucial for building robust SOA-based solutions.

FIGURE 2.3 List of Standards associated to Web Services
Cardoso et al. [2004]

To further understand the concept of Web services and their role in SOA, the following definitions
provide clarity on the core elements and characteristics of Web services.

Definition 2 Curbera et al. [2001] Web services are modular, self-describing, self-contained ap-
plications that are accessible over the Internet. They represent the most popular realization of the
SOA.

Definition 3 Bray et al. [2004] A Web service is a software component that can be invoked over the
Web using an XML message following the SOAP standard. Each Web service provides one or more
operations to perform specific actions on behalf of the invoking client. These operations, along with
the formats of input and output messages, are described using WSDL.

Definition 4 Masdari et al. [2021] Web Services are self-contained and reusable software components
which can be accessed and invoked remotely based on the specified protocols and standards such
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FIGURE 2.4 The relationship between XML/SOAP/WSDL/UDDI
Cardoso et al. [2004]

as Universal Description, Discovery and Integration (UDDI), Web Services Description Language
(WSDL), Web Services Inspection Language (WSIL), SOAP, and Web Services Interoperability (WS-I).
Subsequently, they can be applied to create more complicated composite services for users according
to the specified Quality of Service.

Definition 5 Booth et al. [2004] A Web service is a software system designed to support interoperable
machine-to-machine interaction over the network. It contains an interface which is described in a
machine-processable format (specifically WSDL). Other systems interact with the Web service in a
prescribed way by

1.4 Basic Web Service Standards

According to IBM 1, XML, SOAP, WSDL, and UDDI are the fundamental standards to deploy
SOA infrastructures based on Web services where XML is the standard for data representation ; SOAP
specifies the transport layer to send messages between consumers and providers ; WSDL describes
Web services ; and UDDI is used to register and search for Web services, as shown in Figure 2.4.

1.4.1 XML

XML serves as the foundation for data interchange on the Web. It stands as a standard language
for semi-structured data, providing a flexible means of coding and displaying information. Through
XML, data are described using metadata, allowing the creation of a structured tree of nested sets
through open and closed tags, each capable of including multiple attribute-value pairs. This structure

1. https ://www.ibm.com/docs/en/dmrt/9.5 ?topic=overview-web-services-standards checked on December
2023)
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facilitates flexible and readable data representation, often using definitions such as DTD (Document
Type Definition) or XSD (XML Schema Definition) to describe the data structure.

1.4.2 SOAP

SOAP establishes the structure and format for XML-based message exchange within decentralized,
distributed environments. It operates as a communication protocol, fostering seamless interaction
among applications created using diverse programming languages, operating systems, and platforms.

Major technology companies, including Sun, Microsoft, and IBM, have integrated SOAP im-
plementations into their systems. SOAP 1.2 2 stands as the latest version, currently undergoing
standardization processes by the World Wide Web Consortium (W3C). As the standard evolves, minor
changes are anticipated to further refine and enhance its functionality and compatibility across various
environments.

1.4.3 WSDL

WSDL serves as the standard language for describing the syntactical details of Web services. It
offers a model and an XML format that precisely defines the interface of a Web service. Specifically,
WSDL, developed by the World Wide Web Consortium (W3C), plays a critical role in separating the
description of abstract functionality provided by a service from the concrete implementation details.
It defines the interface between the Web service and its requesters.

The interface, referred to as a port type in WSDL 1.x and an interface in version 2.0, provides
comprehensive signatures for all operations. These include the operation name, inputs, outputs, and
potential faults. Additionally, it furnishes information about the service itself.

The latest version of the WSDL standard is WSDL 1.1, available at the link 3. However, WSDL
2.0 has emerged as a candidate recommendation. WSDL 1.1 incorporates XML Schema Definition
(XSD), a specification enabling the creation of complex types 4. The utilization of XSD in WSDL 1.1
facilitates the definition of sophisticated data types used within the service.

WSDL acts as a crucial intermediary, offering a structured and standardized means to describe
the interface details of Web services, thereby enabling seamless interaction between services and
requesters.

1.4.4 UDDI

To register, advertise, and discover Web services, the UDDI specification Alston et al. [2002]
is the needed standard in this case. UDDI standard defines a SOAP-based Web service for locating
WSDL descriptions of Web services to the mitigation of the web by discovering the suitable services
among thousands by following the upcoming process :

2. http ://www.w3.org/TR/soap (checked online on March 2025)
3. http ://www.w3.org/TR/wsdl (checked online on March 2025)
4. http ://www.w3.org/XML/Schema (checked online on March 2025)
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1. The standard defines the content and the type of access provided by service registries.

2. These registries provide the advertisement of the services that can be invoked by a client.

3. UDDI can store descriptions about internal Web services across an organization and public
Web services located on the Internet. Pennington [2007], Booth et al. [2004]

1.5 Other Web Services Standards and Protocols

In addition to the four aforementioned basic standards, these standards play crucial roles in
extending the capabilities and functionalities of web services :

— WS-Policy and WS-PolicyAttachment : WS-Policy provides a framework to define a service’s
requirements and capabilities. It organizes policies in XML, allowing service providers to
publish these policies alongside service descriptions. WS-PolicyAttachment, on the other hand,
defines methods for attaching these policies to WSDL files, making them available in service
directories like UDDI. These policies can be referenced directly within WSDL or linked as
separate XML files via URI, providing flexibility and hierarchy in policy application. Both
WS-Policy and WS-PolicyAttachment are currently under W3C standardization.

— Web Service Security : Security is crucial in web services to prevent unauthorized access and
safeguard privacy. Web services, unlike traditional client-server models, are distributed and thus
more vulnerable to privacy issues due to the increased sharing of information across networks.
Security threats include attacks like Man-In-The-Middle, unauthorized access, and SQL injec-
tion. Encryption, proper authentication, and secure coding practices are essential to mitigate
these risks. WS-Security specifies frameworks for securing messages, including encryption and
integrity mechanisms. Additionally, protocols like WS-Trust, WS-SecureConversation, and
WS-Privacy offer solutions for establishing trust and securing sensitive data exchanges.

— WS-Transaction and Composite Applications : In distributed environments, transaction
management is essential for ensuring reliability across multiple participants. WS-Transaction
specifications like WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity help
define transactional contexts and properties for short or long-running transactions. Composite
applications benefit from managed environments that provide features like event logging, fault
tolerance, and security, which are essential for ensuring reliability.

— Messaging Reliability : WS-ReliableMessaging ensures message delivery even in unreliable
environments, guaranteeing messages are received exactly once and in the correct order. WS-
Eventing and WS-Notification are specifications for handling asynchronous messaging and
event notifications, enabling services to communicate efficiently in dynamic environments.

Web services security, transaction management, and messaging reliability are fundamental to their
effective use in distributed applications. Policies like WS-Policy and WS-PolicyAttachment, along
with security frameworks like WS-Security, address the critical needs for trust, encryption, and privacy
in service-oriented architectures.
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1.6 Developing Web Services

Creating a Web Service is similar to developing other software, but there are some differences
as it can begin by creating a WSDL specification, or by creating, for example, a Java interface or
abstract class. Since tools such as Axis or Radiant can convert one form to the other, it is a matter of
preference where to start. By following fundamental software engineering techniques, Web services
can be created as follows : Pennington [2007], Booth et al. [2004]

1. Create an UML Class Diagram : The initial step involves establishing a Unified Modeling
Language (UML) Class Diagram. This diagram defines the classes that will be essential for the
web service. UML provides a comprehensive representation to model these classes, aiding in
the conceptualization of the service’s structure.

2. Generate Java Code : The UML Class Diagram is then transformed into a Java class skeleton.
Adhering to Java bean programming conventions, this step includes implementing “getters
”and “setters ”for each member variable, outlining the basic structure of the service in Java
code.

3. Integrating Web Services Annotations : Java 6 includes the necessary annotations that
simplify the process, allowing the compiler to recognize the program code as a Web service. A
partial list of available annotations is provided below :

— javax.jws.WebService

— javax.jws.WebMethod

— javax.jws.WebParam

— javax.jws.WebResult

— javax.jws.HandlerChain

— javax.jws.soap.SOAPBinding

4. Generate WSDL : The annotations from the previous step indicate to the Annotation Proces-
sing Tool or the Java compiler that a WSDL file should be generated at compile time. This
description can be used in two ways : First, it serves as an advertisement when published on
the Web. The information from the WSDL file is registered in UDDI repositories, allowing
queries to discover the required service. Second, it provides all the necessary information to
invoke the service remotely.

5. Implement Methods : It is needed to create an implementation class that extends the abstract
class. The difference resides within the need for the developer to write a proper code from the
beginning. Any created class must have getters and setters for all member variables and they
are used during invocation by the SOAP engine to serialize and deserialize the data that is in
the SOAP messages into Java objects and back to SOAP.

6. Deploy Service : Deployment involves hosting the service on a web application server along
with a SOAP engine, like Tomcat and Axis2 respectively. This step puts the service code onto
the server, making it accessible to clients for interaction.



From Web Services to Internet of Things : Architectures and Technologies 25

7. Test Service : A simple Java program can be enough to test a service. However,it requires from
time to time a more complex client code which needs End Point Reference that is a URL to the
service, a call setting the target, and setting the transport information.

8. Publish Service : to publish a service, UDDI registries are required after choosing one. After
deployment and testing, the service is open and ready to accept requests, however, before
getting published, it is unlikely for the service would be known. Tools that can simplify this
process are Radiant and Lumina , both from the METEOR-S tool suite.

2 Internet of Things (IoT)
The Internet of Things (IoT) represents a revolutionary paradigm that bridges the gap between the

physical and digital realms, reshaping the landscape of information technology. This convergence has
brought forth a multitude of possibilities, redefining the way we interact with the world around us.
The idea of having the ability to monitor and control things in the physical world electronically has
inspired a wave of innovation, which can be briefly outlined as follows :

1. Interconnected Physical-Digital Fusion : IoT’s core essence lies in interweaving physi-
cal objects, devices, and systems with digital technologies. This integration enables remote
interaction, monitoring, and management of physical entities through electronic means.

2. Inspiration for Innovation : The notion of electronically monitoring and controlling physical
entities has sparked an era of profound innovation. IoT’s potential to transform various aspects
of our lives has been a driving force behind revolutionary advancements.

3. Revolutionizing Asset Management : IoT has redefined how businesses manage their physical
assets. Through real-time tracking, predictive maintenance, and data analytics, companies
optimize asset utilization and operational efficiency.

4. Personal Health and Fitness Monitoring : IoT-enabled devices allow users to monitor their
health and fitness in real time. Wearables, health trackers, and connected devices enable
individuals to track, analyze, and proactively manage their well-being.

5. Smart City Development : IoT’s influence extends to urban environments, transforming
cities into smart, efficient hubs. It facilitates better waste management, traffic control, energy
consumption optimization, and enhanced public safety measures.

6. Enhancing Vehicle Efficiency : In the automotive sector, IoT plays a pivotal role in improving
vehicle efficiency. IoT devices enable tracking, performance monitoring, and data-driven
insights that optimize fuel consumption and reduce environmental impact.

This section introduces the definitions, concepts and standards related to Internet of Things and their
technologies.
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2.1 Definitions of IoT

A multitude of IT companies have put forward various definitions associated with the IoT,
emphasizing its relationship with technology and communication facilitated by Internet connectivity,
infrastructure, or the interconnection of disparate entities. Some notable definitions among these
include :

— IEEE : (Institute of Electrical and Electronics Engineers) “The IoT is an intelligent network
which connects all things to the Internet for the purpose of exchanging information and
communicating through the information sensing devices in accordance with agreed protocols.
It achieves the goal of intelligent identifying, locating, tracking, monitoring, and managing
things.”Stankovic [2014]

— ITU : (International Telecommunication Union) “Internet of things (IoT) is a global infrastruc-
ture for the information society, enabling advanced services by interconnecting (physical and
virtual) things based on existing and evolving inter-operable information and communication
technologies.” 5

— IETF : (Internet Engineering Task Force) “A world-wide network of interconnected objects
uniquely addressable based on standard communication protocols.”Lee et al. [2012]

— CCSA : (China Communications Standards Association) “a network, which can collect infor-
mation from the physical world objects through various deployed devices with capability of
perception, computation, execution and communication, and support communications between
human and things or between things by transmitting, classifying and processing information.” 6

— CASAGRAS : (Coordination And Support Action for Global RFID-related Activities and
Standardisation) “a global network infrastructure, linking physical and virtual objects through
the exploitation of data capture and communication capabilities.”Smith et al. [2009]

— IBM :(The International Business Machines Corporation) “The Internet of Things is the
concept of connecting any device (so long as it has an on/off switch) to the Internet and to other
connected devices. The IoT is a giant network of connected things and people – all of which
collect and share data about the way they are used and about the environment around them. ” 7

— Oracle : “The Internet of Things (IoT) describes the network of physical objects “things” that
are embedded with sensors, software, and other technologies for the purpose of connecting and
exchanging data with other devices and systems over the internet. These devices range from
ordinary household objects to sophisticated industrial tools. ” 8

5. https ://www.itu.int/en/ITU-T/Workshops-and-Seminars/iot/201402/Documents/S1P1_Marco_CARUGI.pdf
(Checked on March 2025)

6. http ://www.ccsa.org.cn/english/list_std.php?tbname=ydb_doc&keyword=&page_currentPage=4 (Che-
cked on March 2025)

7. https ://www.ibm.com/blogs/internet-of-things/what-is-the-iot/ (Checked on line in March 2025)
8. https ://www.oracle.com/internet-of-things/what-is-iot/ (Checked on line in March 2025)
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As a summary, the Internet of Things can be simply identified as a network which is connected to the
Internet for the purpose of bringing together all the objects (intelligent or transformed into intelligent)
that can be interconnected and communicate with other systems which are also connected to the
Internet.

2.2 From a Traditional Thing to a Smart Thing

The concept of a "thing" in the context of IoT is versatile, encompassing a wide range of objects
and environmental settings. These "things" can take various forms, from a person with a medical
implant monitoring their organs (such as a heart monitor or hearing aid) to a vehicle equipped with
sensors that alert the driver about surrounding obstacles. Each of these entities, whether natural or
artificially created, possesses specific properties that define its role within the IoT ecosystem :

— The identifier : Every IoT-enabled entity is assigned a unique identifier. This identifier often
manifests as a specific Internet Protocol (IP) address, typically drawn from the IPv6 protocol,
ensuring that each entity has its distinct digital identity.

— Sensors : Smart objects within the IoT framework are equipped with one or multiple sensors
that enable them to gather diverse types of information from their surroundings. These sensors
play a crucial role in data collection, processing, and subsequent transmission.

— Intelligence : To make informed decisions based on the collected data, smart entities integrate
inference engines and possess computational capabilities. This intelligence allows them to
process data and execute actions autonomously.

— Internet connection : Connectivity forms the backbone of IoT, enabling seamless communica-
tion between smart objects and facilitating interaction with the broader environment or other
interconnected devices.

— Security : Given their connectivity to the internet, ensuring secure communication and safe-
guarding shared data from potential cyber threats, attacks, and viruses is paramount. Employing
robust network security protocols and data encryption methods is crucial.

— Energy saving : Smart objects need to operate efficiently with minimal energy consumption.
This requirement is essential for their sustained functionality, especially when operating
remotely or away from a direct power source.

— The minimum cost : The proliferation of IoT devices necessitates cost-effectiveness to ensure
scalability. Minimizing costs associated with manufacturing, deployment, and maintenance
becomes a crucial consideration.

— Quality Standards : Maintaining high-quality standards is imperative for IoT devices to
perform reliably in various environments. Ensuring that environmental factors do not adversely
affect information processing is essential to guarantee trustworthy results and decisions.
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2.3 Enabling Technologies

The convergence of various enabling technologies has led to the realization of the Internet of
Things (IoT), reshaping how the physical and digital realms interact. This section delves into some of
the pivotal technologies that contribute significantly to the IoT landscape :

— RFID (Radio Frequency Identification) : RFID systems comprise readers and tags. RFID tags,
affixed to objects, are equipped with unique identifiers and typically consist of a microchip
attached to an antenna. These tags interact with RFID readers, which are powerful devices
equipped with sufficient memory and computational resources. RFID systems facilitate the
identification and tracking of objects in the physical world using radio waves. The reader
queries and communicates with the tags, retrieving information stored in them, enabling
efficient object tracking and identification. RFID technology finds widespread use in supply
chain management, inventory tracking, and asset monitoring due to its capability for seamless
identification.Mishra [2018]

— Sensor networks : In conjunction with RFID systems, sensor networks play a crucial role
in collecting and relaying real-time information about various physical parameters related to
objects. These networks enhance the tracking capabilities of IoT by monitoring parameters
such as location, temperature, movement, and other environmental variables. Sensor networks
consist of multiple sensing nodes interconnected wirelessly, communicating in a multi-hop
manner. Typically, these nodes collect data and transmit it to specific nodes called sinks or base
stations, which process and aggregate the collected information. This collaborative setup forms
a bridge between the physical and digital worlds, providing comprehensive insights into the
status and behavior of physical objects or environments. Atzori et al. [2010]

— WISP 9 (wireless identification and sensing platforms) : aWISPs represent a specific type of
RFID tag that stands out due to its unique functionality. Unlike traditional RFID tags, WISPs
possess the ability to collect sensory data beyond identification purposes. These platforms are
powered and read by standard RFID readers, harnessing energy from the reader’s querying
signal. WISPs have found utility in diverse applications, measuring various environmental
parameters such as light, temperature, acceleration, strain, and liquid levels. By amalgamating
identification and sensing capabilities, WISPs contribute significantly to IoT applications where
data collection and environmental monitoring are essential. Atzori et al. [2010]

These technologies, in their synergy, form the backbone of IoT implementations, providing the
infrastructure and mechanisms necessary to connect and monitor physical objects, transforming them
into intelligent entities capable of interacting with the digital world.

9. http ://seattle.intel-research.net/wisp/ (checked online on March 2025)
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2.4 The Architecture of an IoT System

The architecture for IoT projects lacks a universally agreed-upon standard ; however, a prevalent
approach involves a layered structure that outlines the path of data flow, enabling the connection
between physical devices and the virtual world. This architecture typically consists of several layers,
where each layer communicates with others to facilitate the integration of physical devices with digital
systems. One commonly adopted architecture is the four-layer model, as seen in Figure. 2.5, illustrated
as follows :

— IoT device layer : Positioned as the primary layer, this tier encompasses interconnected smart
devices, which serve as the foundational elements equipped with sensors and actuators. These
devices can establish connections through wired or wireless means, engaging in bidirectional
communication facilitated by a gateway or Data Acquisition System (DAS). In this layer, each
device operates as either a sensor or an actuator :

1. Sensor : A device designed to measure physical quantities in the environment, converting
this data into interpretable digital signals. Sensors gather information about various
physical parameters and can identify other smart objects within their surroundings.

2. Actuator : The component responsible for controlling or manipulating a mechanism or
system. Actuators transform the digital data generated by smart devices into physical
actions, influencing the environment based on received instructions.

— IoT gateway layer : This layer assumes the responsibility of transmitting data over networks
like Wi-Fi or wired local networks. Gateways ensure data security by employing encryption
tools, thereby preventing data leaks into the IoT platform. This security measure mitigates the
risks associated with potential malicious external attacks on IoT devices.

— Data processing layer : Tasked with managing the storage, analysis, and processing of
vast amounts of data, this layer employs robust data analytics engines and machine learning
mechanisms. To achieve effective functionality, various technologies such as databases, cloud
computing, and big data frameworks are utilized.

— Application layer : Serving as the top layer, this tier delivers application-specific services
to users through terminals like smartphones and computers. The application layer simplifies
interactions for non-expert users, presenting information in an easily understandable manner
through user-friendly interfaces.

This four-layer architecture provides a structural framework for IoT systems, enabling the seamless
integration of physical devices with digital systems while facilitating data flow and interaction between
the physical and virtual worlds.
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FIGURE 2.5 IoT Architecture (https ://sumatosoft.com/blog/what-is-iot-architecture-4-stages-
of-iot-architecture, checked on March 2025)

2.5 Middleware

The middleware is a software layer or a set of sub-layers that plays a crucial role in bridging the
gap between the technology layers and the application levels in the context of IoT. As it facilitates the
development of new services, its significance has been increasingly recognized.

In recent years, middleware architectures for IoT have often embraced the principles of SOA. This
approach allows for the decomposition of intricate systems into applications consisting of simpler
and well-defined components. A significant advantage of SOA is its flexibility in terms of technology,
enabling software and hardware reuse without mandating specific implementation technologies.

Most studies emphasize the benefits of the SOA approach in middleware solutions for IoT. Al-
though a universally accepted layered architecture is absent, these solutions tackle similar challenges
of abstracting device functionalities and communication capabilities. They aim to provide a standardi-
zed set of services and a platform for service composition, as depicted in Figure 2.6. Atzori et al.
[2010], De Deugd et al. [2006], Pasley [2005], Spiess et al. [2009]

The middlware relies on the following layers :

1. Applications Layer : Positioned at the top of the architecture, this layer delivers the system’s
functionalities to end-users. While not strictly considered part of the middleware, it leverages
all the capabilities of the underlying layers. By utilizing standard web service protocols and
service composition technologies, this layer ensures seamless integration between distributed
systems and applications. Atzori et al. [2010]

2. Service composition Layer : This layer facilitates the composition of individual services pro-
vided by networked objects to build specific applications. Here, there’s no direct representation
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FIGURE 2.6 SOA-based architecture for the IoT middleware.
Atzori et al. [2010]

of devices ; instead, services are the focal point. Services are dynamically executed at run-time
to construct composite services. Workflow languages define business processes interacting with
external entities via Web Service operations using WSDL.Atzori et al. [2010].

3. Service management Layer : This layer furnishes fundamental functions essential for ma-
naging objects in the IoT scenario. It includes object dynamic discovery, status monitoring,
service configuration, and Quality of Service (QoS) management. Some middleware proposals
extend these functionalities to support remote deployment of new services during runtime to
meet application requirements. A service repository correlates service catalogs with respective
objects in the network. Atzori et al. [2010]

4. Object abstraction Layer : The nature of devices and objects in the realm of IoT is incredi-
bly diverse. Each of these objects possesses unique functionalities and interacts via distinct
languages or protocols. The Object Abstraction Layer plays a pivotal role in unifying and
simplifying the way various devices are accessed and managed within the IoT ecosystem. The
primary objectives and functionalities of this layer include : Standardizing Communication by
establishing a common interface, allowing applications and services to interact with various
devices seamlessly. Unified Access and Control to access and control different devices, irres-
pective of their underlying technologies or manufacturers. Interoperability and Integration as it
ensures that different devices, regardless of their types or functionalities, can work together
harmoniously within the IoT ecosystem.Atzori et al. [2010]
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5. Trust, privacy and security management : embedded RFID tags in the personal devices
can unknowingly be triggered to reply with their ID and other information. This possibility
calls for a surveillance mechanism that would invade large parts of our lives. The middleware
must then include functions related to the management of the trust, privacy and security of
all the exchanged data. The related functions may be either built on one specific layer of the
previous ones or distributed through the entire stack, from the object abstraction to the service
composition, in a manner that does not affect system performance or introduce excessive
overheads. Atzori et al. [2010]

2.6 The advantages of Internet of Things

In order to operate efficiently, most organizations in the industrial community are using IoT where
IoT technology has become an integral part, providing numerous benefits that significantly impact
business value and operational efficiency. These advantages include :

1. Bridging Digital and Physical Realms : IoT strengthens the connection between the digital
and physical worlds, enabling seamless interaction between devices, sensors, and systems. This
integration fosters a more interconnected and efficient ecosystem.

2. Cost Reduction and Resource Optimization : By leveraging IoT devices and data analytics,
organizations can optimize resource usage, reduce operational costs, and identify areas of waste
or inefficiency in processes, thereby enhancing overall cost-effectiveness.

3. Enhanced Assistance for Professional and Personal Activities : IoT technologies offer
valuable support in both professional and personal spheres, providing assistance in tasks,
decision-making processes, and operational workflows, thereby improving productivity and
efficiency.

4. Precise System Control with Minimal Manual Intervention : Through IoT-enabled systems,
users gain precise control over devices and processes, often without the need for manual
intervention. This automation ensures accurate and efficient operations.

5. High-Speed Data Collection and Safety Sensation : Sensors deployed in IoT systems gather
and process vast amounts of data rapidly. This real-time data collection provides a sense of
security, triggering alerts or warnings in case of potential dangers or anomalies, ensuring
prompt responses.

6. Enhanced System Availability and Safety : IoT systems contribute to increased system
availability and safety by proactively identifying and mitigating potential risks or hazards,
thereby preventing down-times and ensuring uninterrupted operations.

7. Time and Effort Savings via Remote Control : Remote management capabilities facilitated
by IoT technologies allow for the control and monitoring of devices and systems from remote
locations, saving time and effort that would otherwise be required for manual operations.
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8. Improved Device Performance with Reduced Human Intervention : IoT-driven automation
minimizes the need for human intervention in system operations, thereby optimizing device
performance and reducing the probability of errors.

9. Enhanced Convenience and Comfort in Daily Life : IoT applications in daily life ensure
convenience and comfort by simplifying routine tasks, improving accessibility, and offering
personalized experiences tailored to individual needs.

10. Creation of New Opportunities and Services : The rise of IoT technology creates opportuni-
ties for the development of new services, job roles, and technological advancements, fostering
innovation and growth in various industries.

2.7 The disadvantages of Internet of Things

Similarly to any existing technology, though the internet of things has brought many benefits in
several areas, it exposed humanity to many types of threats that can cause specific types of damage to
businesses and consumers like :

— Human Dependence on Technology : The increased reliance on IoT devices can lead to human
inactivity, causing physical health issues due to reduced physical activity and psychological
problems related to overdependence on technology.

— Rise in Unemployment : With automation and smart machinery taking over various tasks,
there is a concern about increased unemployment rates, especially in developed societies, where
technology substitutes human labor.

— Privacy and Security Concerns : The vast interconnectedness of IoT devices creates a
potential vulnerability for cyberattacks. Hacker attacks can compromise the confidentiality
of personal data transmitted and stored within IoT systems, leading to privacy breaches and
identity theft.

— Trust and Data Privacy : Users’ trust in companies manufacturing IoT devices may decline
due to concerns about data privacy. Companies might misuse or exploit user data collected by
IoT devices, leading to breaches of privacy and ethical concerns about data usage.

— System Vulnerabilities and Malfunctions : Glitches, software bugs, or vulnerabilities in IoT
systems could lead to system failures or corruption. If a bug or error occurs in the system
controlling connected devices, it can cause disruptions, malfunctions, or even potential safety
hazards.

2.8 The challenges of Internet of Things

The Internet of Things revolution is a recent technology developed in a step-by-step process.
There still problems to be solved and flaws to be eliminated according to Li et al. [2015] such as :
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— Technical Challenges : Designing one SOA for IoT is challenging which leads service-
based things to suffer in terms of their performances. Furthermore, the lack of a common
service description language makes the services incompatible. Moreover, IoT is a complex
heterogeneous network, which includes the connections among various types of networks
through various communication technologies. Thus, the devices and methodologies to address
things are still a challenge.

— Standardization : aims to easily integrate the new service providers and users as it can
improve the interoperability and allow products or services to compete better at a higher level.
The issue within standardization includes interoperability, radio access level issues, semantic
interoperability, and security and privacy issues.

— Security and privacy protection : a reliable security protection mechanism for IoT is still in
demand for data confidentiality, privacy, and trust.

— Innovation in IoT environment : IoT is a complex network that might be managed with great
skills, and the cross-domain systems supporting innovation are still lacking.

— Development Strategies : Getting new opportunities for investments, short term IoT projects
and integrating IoT in all IT infrastructures are the main strategies to spread the IoT technologies

In conclusion, the Internet of Things, while promising, faces significant challenges related to technical
complexity, standardization, security, innovation, and development strategies. Addressing these issues
will be critical for the sustained growth and success of IoT technologies in various industries.

2.9 The application fields of Internet of Things

The potential applications of the IoT span various facets of daily life for different user profiles
including individuals, businesses, and society at large, impacting several domains :

— Smart city : IoT-enabled technologies facilitate smart traffic management, efficient lighting sys-
tems, and integrated smart home solutions, contributing to enhanced urban living experiences.
Arasteh et al. [2016]

— Intelligent environment : Utilizing IoT sensors for predicting and detecting natural disasters
like earthquakes and promptly identifying and responding to fire outbreaks. Alphonsa and Ravi
[2016], Sharma et al. [2020]

— Security and emergency management : Implementing IoT-based solutions for monitoring
radiation levels, detecting attacks and explosions, and responding to emergencies to ensure
public safety. Ahmad et al. [2021], Ahmed and Jaaz [2014]

— Logistics : Real-time asset tracking with IoT sensors to monitor and manage location, tempera-
ture, humidity, and vibrations during transportation.Tran-Dang et al. [2022]

— Industrial control : Utilizing IoT for predictive maintenance, enabling timely intervention to
prevent equipment breakdowns and conducting remote troubleshooting.Shahzad et al. [2017]
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— Healthcare : IoT devices for monitoring vital signs and health metrics, aiding in remote patient
monitoring and facilitating personalized healthcare.Valsalan et al. [2020], Khan et al. [2022]

— Smart agriculture : Applying IoT for precise environmental control in agriculture by regulating
light, humidity, and temperature for optimized crop growth.Gondchawar et al. [2016]

3 Conclusion
This chapter has been focused on delineating and citing the architectures and technologies integral

to both Web Services and the IoT, emphasizing their role in shaping a higher quality of life compared
to the current standards.

In the upcoming chapter titled "Preliminaries on Optimization and Uncertain Numbers (Interval
and Fuzzy Numbers)," our aim is to delve into the fundamental objectives and various types of
optimization methods. Additionally, we will explore the key definitions and concepts related to
uncertain numbers, specifically focusing on two significant types : fuzzy numbers and interval
numbers.



Chapter 3

Preliminaries on optimization and
uncertain numbers (Interval and fuzzy
numbers)

Introduction
The upcoming chapter serves as a foundational platform to comprehend optimization problems,

interval numbers, and generalized trapezoidal fuzzy numbers. These preliminaries constitute an
essential stepping stone for a comprehensive understanding of the subsequent chapters, particularly
Chapter 4 and Chapter 5.

By delving into these fundamental concepts in the preliminary chapter, readers will gain a solid
grasp of the theoretical underpinnings essential for comprehending the subsequent chapters. The
knowledge acquired regarding optimization problems, interval numbers, and generalized trapezoidal
fuzzy numbers will serve as a crucial foundation for the in-depth discussions and applications
illustrated in further chapters.

1 Background on optimization

1.1 Optimization problems

Optimizing refers to the process of improving or refining a problem or system in order to achieve
the best possible outcome. It involves searching for the optimal solution from a range of available
choices. This optimal solution represents the most efficient state or configuration of the problem under
consideration.



Preliminaries on optimization and uncertain numbers (Interval and fuzzy numbers) 37

In mathematical terms, optimization is typically framed as a maximization or minimization
problem. It seeks to either maximize or minimize a particular objective function or set of criteria,
depending on the nature of the problem and the variables involved.

In the realm of Computer Science, optimization techniques are employed to enhance the perfor-
mance of computer systems or algorithms. This enhancement is based on specific predefined criteria
or metrics that measure the system’s efficiency, speed, resource utilization, or other relevant factors.
The goal is to optimize the system’s behavior or output, ensuring it operates at its best possible level
according to the established benchmarks or objectives.

Non-scalable problems, typically simpler or less complex ones, might find their optimal solutions
without the need for computers. These problems could be solved through traditional analytical or
manual methods without requiring computational resources. Conversely, complex problems, especially
those involving numerous variables or intricate constraints, usually demand computational power to
derive optimal solutions. Computers are essential for handling the complexity and computational load
of these intricate problems.Amiri et al. [2017], Ruder [2016]

Many optimization problems are nonlinear, meaning the relationship between the variables and
the objective function isn’t a simple linear one. These problems often operate under multifaceted
constraints where various objectives might conflict with each other. Such complexities make finding
an optimal solution challenging Amiri et al. [2017], Ruder [2016].

Due to the complexities involved, obtaining an optimal solution for nonlinear and multi-objective
optimization problems can be considered a difficult task. Conflicting objectives, intricate constraints,
and nonlinear relationships between variables pose significant challenges. Achieving an optimal or
near-optimal solution for these problems is computationally demanding and often requires sophistica-
ted optimization techniques and algorithms.Amiri et al. [2017], Ruder [2016]

The realm of optimization is supported by a diverse array of algorithms, each aimed at attaining
optimal or near-optimal solutions for various problems. These algorithms can be broadly classified
into different categories, with meta-heuristic algorithms emerging as effective tools for addressing
complex optimization challenges Amiri et al. [2017], Ruder [2016].

Figure 3.1 illustrates the classification of optimization algorithms into two primary classes :

1. Exact optimization methods refer to algorithms and techniques used to solve optimization
problems precisely, aiming to find the globally optimal solution within a given problem space.
These methods guarantee finding the best possible solution based on specific criteria, such as
maximizing or minimizing an objective function while satisfying defined constraints.

These approaches explore various strategies to mathematically model and systematically
search for the most favorable solution without approximation or error. They are particularly
advantageous for problems where an optimal solution must be determined with certainty,
regardless of the computational resources required. Key characteristics of exact optimization
methods include :



38 Preliminaries on optimization and uncertain numbers (Interval and fuzzy numbers)

— Iterative methods : These optimization techniques involve a process of continuously
refining a solution by iteratively moving towards an optimal. They start with an initial
solution and iteratively modify it to improve its quality based on certain criteria or
constraints. Through successive iterations, these methods adjust the solution until a
stopping criterion is met, typically when no further improvements can be made. Gradient
descent, Newton’s method, and linear programming solvers like the Simplex algorithm
are examples of iterative methods used in optimization.

— Enumerative methods : These methods involve an exhaustive search through the entire
solution space to identify the optimal solution. Unlike iterative methods that refine a
given solution, enumerative methods systematically explore all possible solutions within
the solution space to identify the best one. While they guarantee finding the optimal
solution in theory, enumerative methods can be computationally expensive, especially in
high-dimensional or complex problem spaces, as they require evaluating a large number
of potential solutions. Examples include brute-force search, exhaustive enumeration, and
certain types of branch-and-bound algorithms used in optimization problems.

2. Approximate methods : are techniques employed to find solutions that are close to the optimal
solution of an optimization problem. Unlike exact optimization methods that guarantee the
precise best solution, approximate methods aim to deliver solutions that are near-optimal within
a reasonable computational time frame. They can be categorized into two main parts :

— Search algorithms : refer to the capability of optimization algorithms to explore and
navigate through the solution space effectively in search of an optimal or near-optimal
solution for a given problem. The search ability of an algorithm is crucial, as it determines
how well and efficiently the algorithm can traverse the solution space to find the best
possible solution. They can be simply classified into :

(a) Local search algorithms : These methods are geared towards investigating solutions
within a limited or specific range of the solution space. They intensively explore
a local neighborhood around a given solution, aiming to improve it incrementally.
However, due to their localized nature, they often converge to local optima, achieving
the best solution within the immediate vicinity but failing to explore beyond it. As
a result, these algorithms might miss out on the best possible solution available
globally.

(b) Global search algorithms : These algorithms address the limitations of local
search techniques. They adopt strategies, often utilizing meta-heuristic approaches,
to break away from local optima and navigate the broader solution space. By
exploring multiple regions simultaneously and employing more comprehensive
search strategies, global search algorithms aim to locate the global optimum, which
represents the best solution across the entire solution space. These methods are
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generally more effective in discovering the optimal solution in complex, multi-
dimensional problem spaces compared to local search algorithms.

— Meta-heuristics : Many meta-heuristic algorithms exist in literature such as Genetic
Algorithms (GA) ,Particle Swarm Optimization (PSO), Bee Colony Algorithm (BCA),
and Firefly Algorithm (FA Amiri et al. [2017], Eusuff et al. [2006]. These algorithms can
be classified into :

(a) Trajectory-based algorithms : These types of optimization algorithms employ
a single agent or solution trajectory to navigate towards the optimal solution. At
each iteration, the algorithm progresses along a specific path, making adjustments
or changes to refine the solution towards optimization. It’s akin to a single path-
finding approach, where the algorithm steadily advances with each step, gradually
converging towards an optimal or near-optimal solution.

(b) Population-based algorithms : Unlike trajectory-based methods, population-based
optimization algorithms involve multiple agents or solutions exploring various
potential paths simultaneously. Each agent or solution represents a possible solution
to the problem. These methods operate by maintaining a population of solutions and
iteratively evolving or updating these solutions based on certain rules or algorithms.
This simultaneous exploration of multiple paths allows for a broader exploration of
the solution space, increasing the likelihood of finding a globally optimal solution
rather than converging to a local optimum.

FIGURE 3.1 Classification of optimization techniques
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FIGURE 3.2 Three main components of an optimization system with single objective : inputs,
constraints (operating conditions), and output Mirjalili [2019].

1.2 Single/Multi-Objective Optimization

1.2.1 Single objective optimization

In any single-objective problem, several critical components contribute to defining and solving
the optimization challenge. These components include inputs seeking optimal values, constraints that
must be adhered to, and the system’s resulting outputs, as depicted in Figure 3.2. These elements
collectively shape the boundaries of a system, guiding the search for a suitable solution by identifying
valid sets of input values. Any solution that violates a constraint is considered invalid, regardless of its
objective value Mirjalili [2019].

When faced with multiple criteria, merging them into a single-objective optimization problem
becomes possible by formulating a unified cost function. This single-objective function aggregates the
various criteria by assigning weights to each and computing a weighted sum of their normalized costs.
Each metric contribution to the final function is scaled and combined, allowing for a comprehensive
assessment of the trade-offs between different objectives.

By combining multiple metrics into a single-objective function, decision-makers can streamline
the optimization process, creating a unified criterion that captures the essence of various considerations.
This approach simplifies the evaluation and facilitates the search for an optimal solution that balances
multiple objectives effectively.

A minimized single-objective optimization problem can be formulated as follows :
min : f (x1,x2, . . . ,xn)

s.t : gi(x1,x2, . . . ,xn)≥ 0, i = 1,2, . . . ,m
gi(x1,x2, . . . ,xn) = 0, i = 1,2, . . . , p
lbi ≤ xi ≤ ubi, i = 1,2, . . . ,n

(3.1)

Where :

— n is the number of variables,
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— m is the number of inequality constraints,

— p is the number of equality constraints,

— lbi is the lower bound of the i-th variable,

— ubi is the upper bound of the i-th variable.

1.2.2 Multi-objective optimization

Several fields, including engineering, economics, and logistics, encounter scenarios where optimal
decisions must navigate trade-offs between two or more conflicting objectives, all needing simulta-
neous optimization. Multi-Objective Optimization (MOO), credited to Vilfredo Pareto, has proven
instrumental in handling such complexities. In MOO, an objective function vector exists, where each
vector represents a function of the solution vector. Contrary to seeking a singular best solution, MOO
aims to generate multiple solutions that offer trade-offs among conflicting objectives.

Mathematically, the formulation of a MOO problem involves defining an equation that encapsu-
lates multiple objective functions. The objective function vector represents various criteria or goals
that need to be simultaneously optimized Gunantara [2018]. The problem can be represented as :{

min/max : f1(x), f1(x), . . . , fn(x)
s.t : x ∈U

(3.2)

Where :

— x is a solution,

— n is the number of objective function,

— U is feasible set,

— fn(x) is n-th objective function,

— min/max is combined object operations.

A set of optimal Pareto solutions exists because it’s not feasible to have one solution that optimizes
every goal simultaneously. In this case, all Pareto solutions are considered equally good.

MOO is also known as multi-objective programming, vector optimization, multi-criteria
optimization, multi-attribute optimization, or Pareto optimization.

1.3 Continuous and discrete optimization problems

Models in optimization problems vary based on the type of variables they incorporate. The
distinction lies between discrete optimization problems, where variables are confined to discrete
sets—often subsets of integers, and continuous optimization problems, where variables can take on
any real value within a specific range impacting the problem-solving approach due to mathematical
and computational differences.
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In particular, optimization problems dealing with binary (restricted to values 0 and 1) or integer
variables face distinct challenges compared to continuous problems. The key challenge arises from
the nature of these variables and their effect on the mathematical functions used in optimization,
especially regarding derivatives.

1.3.1 Continuous optimization problem

In continuous optimization problems, as outlined by Rubinstein [1999], Rao et al. [2012],
variables possess the freedom to assume real number values. This stands in contrast to discrete
optimization, where variables can be binary (limited to values of 0 and 1), integer, or selected from
sets with a finite number of elements.

Within continuous optimization, a pivotal differentiation exists between problems with no
constraints on variables (unconstrained optimization problems) and those with explicit limita-
tions on variables (constrained optimization problems). Unconstrained optimization problems are
common in various practical applications and often surface when constraints are transformed into
penalty terms within the objective function.

On the other hand, constrained optimization problems emerge from scenarios where specific
limitations govern the variables. Various specialized areas within constrained optimization have their
own sets of algorithms tailored to address these constraints effectively.

1.3.2 Discrete optimization problems

Discrete optimization problems restrict some or all variables within a model to discrete sets,
contrasting with continuous optimization where variables have a continuous range. Discrete optimiza-
tion branches into two key categories :

— Integer Programming, where the discrete set comprises a subset of integers.

— Combinatorial Optimization, where the discrete set is composed of combinatorial structures,
like assignments, combinations, routes, schedules, or sequences. This subject has been extensi-
vely explored in literature, particularly in works such as Lawler [1972], Bertsimas and Sim
[2003], Lawler and Bell [1966].

It’s notable that optimization problems involving binary or integer variables face challenges with
discontinuous derivatives, rendering these problems more intricate compared to continuous problems.

2 Background on Generalized Trapezoidal Fuzzy Numbers
(GTrFNs)

In this section, we delve into the concept of the generalized trapezoidal fuzzy number (GTrFN)
and its fundamental properties. A GTrFN is a type of fuzzy number characterized by a membership
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FIGURE 3.3 Graphical representation of a generalized trapezoidal fuzzy number

function that represents uncertainty within a defined range. It extends the concept of a standard
trapezoidal fuzzy number to provide a more versatile and flexible representation of uncertainty.

We explore the basic arithmetic operations applicable to sets of GTrFNs, which include operations
like addition, subtraction, multiplication, and division. These operations allow for computations invol-
ving fuzzy numbers, enabling the manipulation and analysis of uncertain data in various applications.

Furthermore, we introduce two essential fuzzy operators : the fuzzy minimum operator and
the fuzzy maximum operator. These operators are crucial in the context of fuzzy optimization
problems. The fuzzy minimum operator helps rank GTrFN values, particularly in scenarios involving
fuzzy minimization problems, where the objective is to find the minimum value under uncertainty.
Conversely, the fuzzy maximum operator aids in ranking GTrFN values for fuzzy maximization
problems, where the goal is to find the maximum value amidst uncertainty.

Understanding these fundamental operations and operators is pivotal in handling uncertainty
within optimization problems involving generalized trapezoidal fuzzy numbers, enabling decision-
making in scenarios where imprecision and ambiguity are present.

Definition 6 Chen and Chen [2003] A GTrFN Ã = (a,b,c,d;ω) is a fuzzy subset of the real line R
that is defined by the membership function µA as

µA(x) =


x−a
b−a , a < x < b
ω, b≤ x≤ c
d−x
d−c , c < x < d
0, otherwise

, (3.3)

where a,b,c,d,w ∈ R with a≤ b≤ c≤ d and 0 < ω ≤ 1.

For a graphical representation, Ã can be shown as given in Figure 3.3, which represents the real values
of µA(x) ∈ [0,ω] for each x ∈ R.

Definition 7 Given a GTrFN Ã = (a,b,c,d;ω), if b = c then Ã is called a generalized triangular
fuzzy Number (GTFN), and if a = b and c = d then Ã is called a generalized interval fuzzy number
(GIFN), and if a = b = c = d then Ã is called a generalized crisp fuzzy number (GCFN).
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Definition 8 Given a GTrFN Ã = (a,b,c,d;ω), If ω = 1, then a GTrFN Ã is called a normal trape-
zoidal fuzzy number (TrFN) Ã = (a,b,c,d), and a GTFN Ã is called a normal triangular fuzzy number
(TFN) Ã = (a,b,b,d) , and a GIFN Ã is called a normal interval fuzzy number (IFN) Ã = (a,a,d,d),
and a GCFN Ã is called a normal crisp fuzzy number (CFN) Ã = (a,a,a,a).

Figure 3.4 shows the graphical representations of TrFN, TFN, IFN and CFN where the GTrFN is
more general and covers them as particular cases.

Definition 9 Chen and Chen [2003] The fuzzy arithmetic operations between two GTrFNs Ã =

(a1,a2,a3,a4;ωA) and B̃ = (b1,b2,b3,b4;ωB) are as follows :

— GTrFNs Addition ⊕ :
Ã⊕B̃=(a1,a2,a3,a4;ωA)⊕(b1,b2,b3,b4;ωB)= (a1+b1,a2+b2,a3+b3,a4+b4;min(ωA,ωB))

— GTrFNs Subtraction ⊖ :
Ã⊖B̃=(a1,a2,a3,a4;ωA)⊖(b1,b2,b3,b4;ωB)= (a1−b4,a2−b3,a3−b2,a4−b1;min(ωA,ωB))

— GTrFNs Multiplication ⊗ :
Ã⊗B̃=(a1,a2,a3,a4;ωA)⊗(b1,b2,b3,b4;ωB)= (a,b,c,d;min(ωA,ωB)), where : a=min(a1∗
b1,a1 ∗ b4,a4 ∗ b1,a4 ∗ b4), b = min(a2 ∗ b2,a2 ∗ b3,a3 ∗ b2,a3 ∗ b3), c = max(a2 ∗ b2,a2 ∗
b3,a3∗b2,a3∗b3) and d = max(a1∗b1,a1∗b4,a4∗b1,a4∗b4).

— GTrFNs Scalar Multiplication : for any real number λ ∈ R,

λ ⊗ Ã = λ ⊗ (a1,a2,a3,a4;ωA) =

{
(λ ∗a1,λ ∗a2,λ ∗a3,λ ∗a4;ωA) if λ >= 0
(λ ∗a4,λ ∗a3,λ ∗a2,λ ∗a1;ωA) if λ < 0

— GTrFNs Division ⊘ :

— For the GTrFN Ã = (a1,a2,a3,a4,ωA), if a1,a2,a3 and a4 are all nonzero positive-real
numbers or all nonzero negative-real numbers, then, the inverse of Ã is defined as follows :
1⊘ Ã = ( 1

a4 ,
1

a3 ,
1

a2 ,
1

a1 ,ωA).

— For the GTrFNs Ã=(a1,a2,a3,a4,ωA) and B̃=(b1,b2,b3,b4;ωB), if a1,b1,a2, b2,a3,b3,
a4, and b4 are all nonzero positive-real numbers or all nonzero negative-real numbers,
then, the division of Ã and B̃ is defined as follows :
Ã⊘ B̃ = (a1

b4 ,
a2
b3 ,

a3
b2 ,

a4
b1 ;min(ωA,ωB)).

Given a GTrFN Ã = (a1,a2,a3,a4;ωA), the Mid-Support (MS ), Mid-Kernel (MK ), Support-
Width (S W ) and Kernel-Width (K W ) of Ã, are defined respectively, as follows :

MS (Ã) =
(a4+a3+a2+a1)

4
(3.4)

MK (Ã) =
(a3+a2)

2
(3.5)

S W (Ã) =
(a4−a1)

2
(3.6)
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FIGURE 3.4 Graphical representations of TrFN, TFN, IFN and CFN.
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K W (Ã) =
(a3−a2)

2
(3.7)

Based on the prescribed equations, two new definitions of fuzzy order relations for ranking
GTrFNs values of minimization (maximization) optimization problems are concluded as in the
following :

Definition 10 For two GTrFNs Ã= (a1,a2,a3,a4;ωA) and B̃= (b1,b2,b3,b4;ωB), the fuzzy minimum
order relation for a fuzzy minimization optimization problem, denoted as ≺min, is defined as follows :

1. If MS (Ã)< MS (B̃) then Ã is smaller than B̃ (represented as Ã≺min B̃)

2. If MS (Ã) = MS (B̃) then :

(a) If MK (Ã)< MK (B̃) then Ã≺min B̃

3. If MS (Ã) = MS (B̃) and MK (Ã) = MK (B̃) then :

(a) If S W (Ã)< S W (B̃) then Ã≺min B̃

4. If MS (Ã) = MS (B̃), MK (Ã) = MK (B̃) and S W (Ã) = S W (B̃) then :

(a) If K W (Ã)< K W (B̃) then Ã≺min B̃

5. If MS (Ã)=MS (B̃), MK (Ã) =MK (B̃), S W (Ã)=S W (B̃) and K W (Ã)=K W (B̃)
then :

(a) If ωA < ωB then Ã≺min B̃

Definition 11 For two GTrFNs Ã = (a1,a2,a3,a4;ωA) and B̃ = (b1,b2,b3,b4;ωB), the fuzzy maxi-
mum order relation for a fuzzy maximization optimization problem, denoted as ≻max, is defined as
follows :

1. If MS (Ã)> MS (B̃) then Ã is greater than B̃ (represented as Ã≻max B̃)

2. If MS (Ã) = MS (B̃) then :

(a) If MK (Ã)> MK (B̃) then Ã≻max B̃

3. If MS (Ã) = MS (B̃) and MK (Ã) = MK (B̃) then :

(a) If S W (Ã)< S W (B̃) then Ã≻max B̃

4. If MS (Ã) = MS (B̃), MK (Ã) = MK (B̃) and S W (Ã) = S W (B̃) then :

(a) If K W (Ã)< K W (B̃) then Ã≻max B̃

5. If MS (Ã)=MS (B̃), MK (Ã) =MK (B̃), S W (Ã)=S W (B̃) and K W (Ã)=K W (B̃)
then :

(a) If ωA > ωB then Ã≻max B̃

Adding to the two aforesaid definitions, we have provided the following observations :

(O1) For the fuzzy minimization (maximization) optimization problems, If MS (Ã) = MS (B̃),
MK (Ã) = MK (B̃), S W (Ã) = S W (B̃), K W (Ã) = K W (B̃) and ωA = ωB then Ã and
B̃ have the same rank (represented as Ã∼ B̃).
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(O2) For the fuzzy minimization optimization problems, the fuzzy smaller or equal operator, denoted
as ≼min, is defined as

— Ã ≼min B̃⇔ (Ã≺min B̃) or (Ã∼ B̃)

(O3) For the fuzzy maximization optimization problems, the fuzzy greater or equal operator, denoted
as ≽max, is defined as

— Ã ≽max B̃⇔ (Ã≻max B̃) or (Ã∼ B̃)

Moreover, based on the above ranking definitions, given any three GTrFN Ã, B̃ and C̃, the following
proprieties are introduced :

(P1) Ã ≼min (≽max)Ã, which is called reflexivity.

(P2) If Ã ≼min (≽max)B̃ and B̃ ≼min (≽max)Ã then Ã∼ B̃, which is called anti-symmetry.

(P3) If Ã ≼min (≽max)B̃ and B̃ ≼min (≽max)C̃ then Ã ≼min (≽max)C̃, which is called transitivity.

For the proofs of these proprieties, readers can refer to appendix B. As result, ≼min and ≽max are
partial order relations among GTrFNs.

3 Generalities on Interval-numbers
In this section, we delve into the concept of interval numbers and their fundamental characteristics.

Interval numbers are mathematical constructs that represent a range of real numbers within defined
bounds. They are commonly depicted as intervals between lower and upper bounds, signifying
uncertainty or imprecision in the represented values.

We explore the basic arithmetic operations applicable to sets of interval numbers, including
addition, subtraction, multiplication, and division. These operations allow for computations involving
intervals, enabling the manipulation and analysis of uncertain or imprecise data in various applications.

Furthermore, we introduce two essential interval operators : the interval minimum operator and the
interval maximum operator. These operators are instrumental in the context of interval optimization
problems. The interval minimum operator facilitates the ranking of interval values in scenarios
involving interval minimization problems, where the objective is to determine the minimum value
within the interval bounds. Conversely, the interval maximum operator aids in ranking interval values
for interval maximization problems, where the goal is to identify the maximum value within the
interval bounds.

Definition 12 (interval number) [Bhunia and Samanta, 2014] Let’s have (al,au) ∈ R2 two real
numbers with al ≤ au. The set A = {x : x ∈ R and al ≤ x≤ au} is named an interval number, which
is represented as A = [al,au], where al and au are considered as its lower (left) and upper (right)
limits, respectively. The interval number A can be also expressed as A =< ac,aw >, where the real
numbers ac = (al + au)/2 and aw = (au− al)/2 are its mid-point (center) and mid-width (radius),
respectively. If al = au, then A = [al,al] = [au,au] =< al,0 >=< au,0 > is a real number, which has
zero mid-width.
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Arithmetic operations on interval numbers We have two interval numbers A = [al,au] and
B = [bl,bu], the arithmetic operations, known as addition, subtraction, multiplication and division are
applied on A and B as follows [Mahato and Bhunia, 2006] :

— Interval-numbers addition ⊕ :
A⊕B = [al,au]⊕ [bl,bu] = [al +bl,au +bu]

— Interval-numbers subtraction ⊖ :
A⊖B = [al,au]⊖ [bl,bu] = [al−bu,au−bl]

— Interval-numbers multiplication ⊗ :
A⊗B= [al,au]⊗[bl,bu] = [ml,mu], where ml =min(albl,albu,aubl,aubu) and mu =max(albl,albu,aubl,aubu)

— Interval-numbers scalar multiplication :

Given any real number λ ∈ R, λ ⊗A = λ ⊗ [al,au] =

{
[λ ∗al,λ ∗au] if λ >= 0[
λ ∗au,λ ∗al

]
if λ < 0

— Interval-numbers division ⊘ :
A⊘B = [al,au]⊘ [bl,bu] = [al,au]⊗

[ 1
bu ,

1
bl

]
, provided 0 /∈ [bl,bu]

Ranking interval numbers Let A =
[
al,au

]
and B =

[
bl,bu

]
be any two interval numbers that

can be classified as three possible overlapping types : Type I (non-overlapping interval numbers)
as depicted in Figure 3.5a, Type II (partially overlapping interval numbers) as seen in Figure 3.5b,
or Type III (completely overlapping interval numbers) as shown in Figure 3.5c [Karmakar and
Bhunia, 2012]. These types are used for ordering and ranking interval numbers of the maximization
(minimization) optimization problems along with objective functions modeled using interval numbers
as it will be described in the definitions that follows :

Definition 13 (smaller order relation <min) [Seghir et al., 2019] For interval minimization optimiza-
tion problems, the order relation <min that is applied to rank two given interval numbers A =

[
al,au

]
and B =

[
bl,bu

]
is shaped as follows :

1. For interval numbers of Type I and Type II, A <min B if (al < bl) and (au < bu) ;

2. For interval numbers of Type III, A <min B if :

(a) (al−bl)< (bu−au) ;

(b) or
(
(al−bl) = (bu−au)

)
and (au < bu)

Definition 14 (greater order relation >max) [Seghir et al., 2019] For interval maximization optimiza-
tion problems, the order relation >max that is used to rank any two interval numbers A =

[
al,au

]
and

B =
[
bl,bu

]
is defined as follows :

1. For interval numbers of Type I and Type II, A >max B if (al > bl) and (au > bu) ;

2. For interval numbers of Type III, A >max B if :

(a) (al−bl)> (bu−au) ;
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(b) or
(
(al−bl) = (bu−au)

)
and (au < bu)

Furthermore, if the two order relations <min and >max are not taken as two closed interval numbers
A and B, which implies by deduction that al = bl and au = bu, and, thus, A and B are considered
equivalent interval numbers or have the same rank, denoted as A∼ B. Subsequently, we define the
greater or equal (≥max) and the smaller or equal (≤min) order relations that can be used upon any
two interval numbers A and B for the interval maximization (minimization) optimization problems,
respectively, as given in the following two definitions :

Definition 15 (smaller or equal order relation≤min) For interval minimization optimization problems,
the order relation ≤min that is used to rank any two interval numbers A =

[
al,au

]
and B =

[
bl,bu

]
, is

defined as follows : A≤min B⇔ (A <min) or (A∼ B)

Definition 16 (greater or equal order relation ≥max) For interval maximization optimization pro-
blems, the order relation ≥max that is used to rank any two interval numbers A =

[
al,au

]
and

B =
[
bl,bu

]
, is defined as follows : A≥max B⇔ (A >max) or (A∼ B)

Theorem 1 Given any three interval numbers A, B and C, the following proprieties are provided :

(P1) A≤min (≥max)A, which is called reflexivity.

(P2) If A≤min (≥max)B and B≤min (≥max)A then A∼ B, which is called anti-symmetry.

(P3) If A≤min (≥max)B and B≤min (≥max)C then A ≤min (≥max)C, which is called transitivity.

For the proof of the Theorem 1’s proprieties, you can refer to Appendix A. Consequently, ≤min

and ≥max are partial order relations for the sets of interval numbers.

4 Conclusion
As we conclude this chapter, we will have acquired comprehensive insights into various types of

optimization problems and a profound understanding of uncertain numbers, encompassing fuzzy and
interval numbers. This acquired knowledge forms a robust foundation that will prove to be immensely
valuable in comprehending and engaging with the subsequent chapters’ content.

Our exploration into the diverse spectrum of optimization problems will provide us with a nuanced
understanding of the different problem types, such as single-objective optimization, multi-objective
optimization, continuous optimization problems, and discrete optimization problems. Understanding
these distinct problem types equips us with the necessary knowledge to approach varied scenarios in
decision-making, problem-solving, and mathematical modeling, where optimization techniques play
a crucial role.

Furthermore, our immersion into uncertain numbers, specifically fuzzy and interval numbers,
will empower us to grapple with imprecision, variability, and uncertainty in data representation
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FIGURE 3.5 Types of interval-numbers overlapping

and analysis. We will have gained insights into fuzzy arithmetic operations, generalized trapezoidal
fuzzy numbers, and interval arithmetic operations. These mathematical concepts will be pivotal in
handling and interpreting ambiguous or imprecise information in real-world scenarios, especially in
optimization problems where uncertainty prevails.

This accumulated wealth of knowledge and understanding serves as a robust toolkit, enabling us
to navigate through complex optimization problems and uncertainty-laden scenarios effectively. Such
insights will play a pivotal role in dissecting and comprehending the intricacies of the composition
problem, enhancing our ability to address real-world challenges and make informed decisions based
on uncertain or imprecise data.



Chapter 4

An extended artificial bee colony with
local search for solving the Skyline-based
web services composition under interval
QoS properties

Introduction
In the domain of SOA, virtually any hardware or software resource can be perceived as a web

service accessible to end-users. However, as the number of web services offering similar functiona-
lities grows, their distinctions emerge in nonfunctional attributes such as Quality of Service (QoS)
parameters like response time, cost, availability, and more. This proliferation of services with functio-
nally equivalent capabilities but varying QoS metrics poses a significant challenge : selecting the most
suitable web services among functionally similar ones to compose the optimal Composite Service
(CS) that meets both local and global QoS requirements of end users. This dilemma is known as the
QoS-aware web service composition (QSC), an intricate problem that has attracted the attention of
both industry practitioners and academic researchers Zeng et al. [2004], Alrifai et al. [2012].

QSC represents an NP-hard optimization problem, implying its complexity and the computational
challenges associated with solving it. To address this, diverse optimization techniques have been
developed, ranging from precise and exact methods to more heuristic and metaheuristic approaches
within the domain of web service composition Jatoth et al. [2015].

The core issue underlying QSC arises from the need to identify the most optimal combination of
web services, considering their similar functionalities but varied QoS attributes. This task involves
determining an optimal selection that fulfills users’ QoS expectations while considering both local
and global requirements.



52 An EABC method for solving the Skyline-based IQSC under interval QoS properties

This multifaceted problem has garnered significant attention from researchers who are looking to
devise efficient algorithms and methodologies to tackle the complexities of the composition of web
services. Various approaches have been explored, from exact optimization methods that rigorously
handle the QSC problem to heuristic and metaheuristic approaches that offer more pragmatic solutions.

The review conducted in Jatoth et al. [2015] highlights that the majority of the prevailing algo-
rithms for exact web service selection in QSC have been formulated using integer / mixed integer linear
programming models Alrifai et al. [2012], Ardagna and Pernici [2007]. These models are typically
solved using powerful solvers such as LpSolve 1 and CPLEX 2, which are capable of deriving optimal
solutions. However, to utilize these solvers effectively, the QSC problem requires the linearization of
its objective functions and constraints. Unfortunately, as the scale of QSC expands, the efficiency of
these exact Web service selection algorithms tends to diminish.

In response to this efficiency challenge, evolutionary and bio-inspired algorithms such as the
Genetic Algorithm (GA) Canfora et al. [2005], Particle Swarm Optimization (PSO) Liao et al. [2014],
Artificial Bee Colony (ABC) Huo et al. [2015], x. wang et al. [2019], and Harris Hawks Optimization
(HHO) Li et al. [2021b], among others, have gained attention from QSC researchers. These algorithms
have demonstrated the ability to produce near-optimal solutions in reasonable computational times
without necessitating the linearization of objective functions or user-defined QoS constraints in the
QSC problem.

However, previous studies focusing on QSC have predominantly assumed QoS values as unam-
biguous, neglecting real-world complexities and inherent uncertainties prevalent in SOA, such as
network topology alterations and economic policy fluctuations Razian et al. [2020]. As a result, QoS
attributes associated with web services are inherently uncertain and ambiguous in nature.

Recent approaches have emerged to tackle QoS uncertainty in web service composition by
representing QoS parameters as interval numbers Jian et al. [2016], Seghir et al. [2019], probabilistic
variables Zheng et al. [2016], or fuzzy numbers Xu et al. [2018], Seghir [2021]. These approaches
consider all available web services as potential candidates for constructing the final CS. However,
certain web services may be dominated by functionally equivalent alternatives, making them unsuitable
for inclusion in the final solution. To address this issue, some studies Alrifai et al. [2010], Wang et al.
[2013], Ying and Jiande [2020] have employed the Skyline operator Borzsony et al. [2001] to prune
web services that cannot contribute to the final solutions, thereby reducing the search space in QSC.
It’s crucial to note that in these Skyline-based QSC studies, QoS parameters were assumed to possess
precise and exact values.

The motivation behind this study lies in devising an efficient approach to tackle QoS uncertainty
in web service composition, particularly within a reduced search space. The primary contributions of
this chapter can be summarized as follows :

1. http ://lpsolve.sourceforge.net/5.5/
2. https ://www.ibm.com/analytics/cplex-optimizer
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1. First, an interval constrained single-objective optimization model termed IQSC for QoS
uncertainty-aware web service composition, where QoS parameters are represented as in-
terval numbers, is presented ;

2. Then, a proposal of an approach comprising two components is conducted : (1) Utilization of
the Skyline operator to drastically reduce the search space in IQSC, enabling quick discovery
of high-quality CS solutions. (2) Introduction of an extended version of the basic ABC
algorithm, named EABC, augmented with an effective local search method to solve IQSC
efficiently within a reduced search space.

3. Finally, the demonstration of the efficiency and performance of the proposed approach was
illustrated through comparative experiments against existing methods Wang et al. [2013],
Huo et al. [2015], Li et al. [2021b] on a modified interval-based QWS dataset Al-Masri and
Mahmoud [2008].

The subsequent sections of this chapter are structured as follows : Section 1 delves into a compre-
hensive review of relevant works in the domain, categorizing them based on the nature and precision
of QoS values. Section 2 presents the mathematical formulation of QoS uncertainty-aware web
service composition under interval QoS properties (IQSC). Section 3 details the proposed approach,
encompassing the Skyline operator and the EABC algorithm, designed to solve the formulated IQSC
efficiently. Section 4 discusses the outcomes of comparative experiments, showcasing the efficiency of
the proposed approach. Lastly, Section 6 concludes and offers insights into future research directions.

1 Related works and literature review
In the existing body of literature, the QSC problem has been classified into three primary cate-

gories within web service selection methodologies : (1) Exact (2) Heuristic and (2) Meta-heuristic
optimization approaches, specifically those rooted in evolutionary and bio-inspired algorithms, as
discussed by Jatoth et al. [2015]. These categories serve as frameworks for devising strategies to
select optimal WSs based on QoS criteria. To enhance the efficacy of QSC methodologies, researchers
have explored the integration of the Skyline operator, a concept introduced by Borzsony et al. [2001].
This operator is leveraged by certain studies to streamline the process of web service selection,
consequently reducing the time involved. Noteworthy works in this regard include the contributions
of Alrifai et al. [2010], Wang et al. [2013], Ying and Jiande [2020]. Furthermore, acknowledging the
unpredictable nature of SOA environments due to factors such as network topological changes and
economic policies, as highlighted by Razian et al. [2020], several QSC studies have extended their
focus to address QoS parameters characterized by ambiguous values. This is evident in research efforts
by Jian et al. [2016], Zheng et al. [2016], Xu et al. [2018], where QoS parameters are considered with
uncertain values.

This section provides an overview of state-of-the-art studies in the field, classifying them based
on their approaches to addressing the QSC problem. The initial segment delves into a review of
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solution approaches dedicated to resolving the QSC problem when confronted with precise and
exact QoS values. Subsequently, attention is directed towards recently proposed solution methods
designed to tackle the QSC problem in scenarios characterized by uncertain QoS parameters, and a
brief exposition of these approaches is presented.

1.1 Solution approaches based on precise QoS values

Numerous research endeavors have focused on effectively addressing the QSC problem by treating
the QoS values as precise and exact quantities, as highlighted in studies such as those by Jatoth et al.
[2015] and She et al. [2019].

These studies contribute to a nuanced understanding of solution approaches designed for tackling
the QSC problem under the assumption of precise QoS values. These approaches can be broadly
classified into three main categories : (1) Exact (non-heuristic) approaches, (2) Heuristic methods,
and (3) Meta-heuristic and bio-inspired approaches.

1.1.1 Exact approaches

In these methodologies, the QSC problem has been conceptualized as a mixed-integer linear
programming (MILP) model, ensuring a reliable solution through the utilization of mixed-integer
linear programming solvers like CPLEX Ardagna and Pernici [2007] and LpSolve Alrifai et al. [2012].

In the work presented by Zeng et al. [2004], the QSC problem has been cast as an Integer Linear
Programming (ILP) optimization model. Two distinct approaches have been integrated into addressing
this model : (1)Local Optimization Approach which was characterized by its computational effi-
ciency, ensuring a swift computation time. However, it comes with the drawback of not guaranteeing
a feasible optimal solution when adhering to global QoS user-constraints. (2) Global Optimization
Method : In contrast to its predecessor, it addresses the limitations of the local optimization approach
as It aims to find an optimal feasible composite service that satisfies global QoS user-constraints. Des-
pite overcoming the issues of its predecessor, this method entails a notable consumption of processing
time in the pursuit of identifying the optimal solution.

In the study conducted by Ardagna and Pernici [2007], the QSC problem was cast as a mixed-
integer linear programming (MILP) optimization model, and the researchers employed the CPLEX
solver for its resolution. Additionally, due to the initial absence of a feasible solution for the solved
QSC problem, the researchers explored negotiation techniques to secure the necessary feasible
solutions.

In the work presented by Alrifai et al. [2012], a hybrid approach was introduced, amalgamating
both local and global optimization methods to address the QSC problem. Initially, the global optimi-
zation method was executed to delineate the optimal decomposition of global QoS user-constraints
into local quality levels. This was achieved by solving a relatively smaller Mixed Integer Linear
Programming (MILP) model compared to those in previous works such as Zeng et al. [2004], Ardagna
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and Pernici [2007]. Subsequently, a distributed local optimization method utilized the derived local
thresholds to meticulously select the most suitable atomic WSs from their respective service providers,
ultimately constructing the best feasible composite service.

In the work conducted by Ghobaei-Arani and Souri [2019], the QSC problem within geographi-
cally distributed environments was systematically addressed by formulating it as an Integer Linear
Programming (ILP) model. In response to this modeling framework, the researchers introduced a
novel methodology known as the linear programming web service composition (LP-WSC) approach.
This approach was meticulously designed to provide a systematic and structured solution for the
intricacies posed by the QSC problem within the context of geographically distributed environments.

Despite the effectiveness of exact methods in providing high-quality solutions for addressing
the QSC problem, there are inherent challenges associated with the functional linearization of the
totality of optimized objectives and QoS user-constraints within LIP or MILP optimization models.
This necessitates a thorough linearization process to ensure the compatibility and feasibility of the
solutions obtained through these methods. Moreover, when employing solvers such as CPLEX and
LpSolve, a noteworthy limitation arises in terms of scalability. These solvers may exhibit suboptimal
performance when confronted with constrained QSC problems of considerably large scales. The
ability to efficiently handle and resolve QSC problems characterized by extensive scales remains
a significant concern, urging researchers and practitioners to explore alternative methodologies or
enhancements to existing solvers to address scalability challenges effectively.

In the pursuit of enhancing the efficiency QSC optimization approaches, a notable strategy known
as the Skyline operator Borzsony et al. [2001] has been employed to strategically narrow down the
search space of the QSC problem. This application of the Skyline operator plays a pivotal role in
reducing the computational time cost associated with these approaches.

Pioneering this initiative, the authors in Alrifai et al. [2010] took a significant step by integrating
the Skyline operator into the QSC problem. In their approach, a novel service dominance criterion,
based on QoS attributes of WSs, was introduced among the set of WSs. This criterion facilitated the
pruning of dominated web services, thereby effectively reducing the overall search space. The QSC
problem, within the context of this study, was formulated as an Integer Linear Programming (ILP)
model. Leveraging the Skyline operator and the service dominance criterion, the authors demonstrated
its ability to solve the problem more efficiently. Notably, the utilization of the existing LpSolve solver
in the reduced search space further contributed to the optimization of the computational process. This
innovative approach stands as an illustrative example of how the integration of the Skyline operator
can lead to improved efficiency in solving the QSC problem by strategically managing the exploration
of potential service compositions.

In the work presented by Ying and Jiande [2020], the authors employed the mathematical
programming language (AMPL) Gay [2015] to articulate the QSC problem as a nonlinear integer
programming model. The solution to this formulated model was achieved using the established
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Bonmin solver 3. To enhance the efficiency of the QSC optimization process, the study incorporated
the utilization of the Skyline operator, strategically applied to curtail the expansive search space
associated with the QSC problem. This integration of the Skyline operator serves as a valuable
mechanism for refining and streamlining the exploration of potential service compositions within the
nonlinear integer programming framework.

1.1.2 Heuristic approaches

Within the realm of heuristic approaches, examples of widely employed methods include the
hill-climbing algorithm Klein et al. [2011] and the A∗ algorithm Neiat et al. [2014]. These heuristic
strategies have been applied effectively to tackle the QSC problem when dealing with precise QoS
values.

In the study presented by Luo et al. [2011], the authors introduced a heuristic-enhanced cross-
entropy algorithm (HCE) designed for addressing the QSC problem. This heuristic approach draws
inspiration from the hill-climbing algorithm, which was previously developed in Klein et al. [2011].

In the study conducted by Neiat et al. [2014], the A∗ algorithm was implemented to address
the spatio-temporal composition of sensor cloud services. In this context, two novel QoS attributes
including freshness and certainty were introduced to enhance the compositional considerations.
Furthermore, an additional heuristic algorithm aimed at the efficient selection and composition of
trustworthy services was put forth in a separate work by Li et al. [2014].

Heuristic approaches hold a distinct advantage over exact algorithms, particularly in their ability to
swiftly identify good near-optimal or optimal solutions within a reasonable time-frame. This efficiency
is particularly valuable in addressing complex optimization problems where exact algorithms might
incur significant computational costs. However, a notable drawback warrants attention : heuristic
approaches are crafted based on "experience" and are often tailored for specific optimization problems.
This specialization renders them susceptible to converging to a local optimum, potentially limiting
their applicability in exploring the broader solution space.

Recognizing this limitation, researchers have turned their attention to metaheuristic and bio-
inspired algorithms Jatoth et al. [2015], She et al. [2019] as a promising avenue to mitigate the
challenges associated with heuristic approaches. Metaheuristic algorithms, inspired by natural pro-
cesses or optimization techniques, offer a more versatile and adaptive approach to optimization
problems. By harnessing concepts from evolutionary processes, swarm intelligence, and other bio-
inspired mechanisms, these algorithms can explore diverse regions of the solution space, potentially
avoiding the pitfalls of local optima encountered by traditional heuristic methods. This shift towards
metaheuristic and bio-inspired algorithms reflects a strategic response to enhance the robustness
and global exploration capabilities of optimization techniques, ensuring more effective solutions to
complex problems such as the QSC problem.

3. https ://github.com/coin-or/Bonmin
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1.1.3 Metaheuristic and bio-inspired approaches

Some of the frequently used Metaheuristic and bio-inspired algorithms in addressing the QSC
problem, are listed as follows : genetic algorithm (GA) Wu et al. [2014a], particle swarm optimization
(PSO) Wang et al. [2013], artificial bee colony (ABC) Huo et al. [2015], ant colony optimization
(ACO) Wu and Zhu [2013], teaching learning based optimization (TLBO) Deng et al. [2014a],
Khanouche et al. [2020b], and so on.

In the quest for solutions to scalable optimization problems, meta-heuristic methods emerge
as efficient alternatives, capable of achieving near-optimal solutions with significantly reduced
computation time when compared to the Linear Integer Programming (ILP)/ Mixed Integer Linear
Programming (MILP) approaches. While ILP/MILP approaches may yield optimal solutions, they
often demand excessive processing time.

An additional advantage of metaheuristic methods lies in their flexibility to accommodate non-
linear function formulations for optimized objectives and constraint equations within the optimization
problems. This adaptability contributes to their versatility in handling a broad spectrum of optimization
challenges.

Metaheuristic approaches represent a higher-level of heuristic algorithms, intentionally designed
to autonomously address general and complex optimization problems. Consequently, over the past
few decades, a noteworthy trend has emerged wherein evolutionary and bio-inspired optimization
algorithms have been repurposed and tailored to effectively tackle the specific intricacies presented
by the QSC problem. This shift underscores the recognition of meta-heuristic methods as valuable
tools for addressing scalability, computational efficiency, and complexity challenges in the domain of
optimization.

The pioneers in leveraging genetic algorithms for addressing the QSC problem were the authors of
Canfora et al. [2005]. To guide the evolution process of the proposed genetic algorithm (GA) towards
satisfying constraints, the authors experimented with two distinct fitness functions, each incorporating
penalties of either static or dynamic nature. The comparative analysis of the results revealed that the
near-optimal solutions achieved by the static and dynamic fitness functions did not exhibit notably
distinguishable differences.

In recent times, several optimization approaches based on genetic algorithms (GAs) have been
employed to address the challenges posed by the QSC problem. Notably, in works such as Wu
et al. [2014a], Jin et al. [2017], authors have delved into the consideration of inter-dependencies and
business correlations among elementary WSs when formulating QSC problems, particularly in the
context of cloud manufacturing. These formulated problems have then been effectively solved through
the application of genetic algorithms.

In the study outlined in Wu and Zhu [2013], the incorporation of transactional properties among
atomic WSs led to the formulation of the QSC problem as a directed acyclic graph. Subsequently, this
formulated problem was addressed through the application of an ACO algorithm.
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The application of the PSO algorithm for addressing the QSC problem in manufacturing grid
systems is exemplified in Tao et al. [2008]. In an effort to enhance the computational efficiency of
the PSO-based approach introduced in Wang et al. [2013], the researchers incorporated the skyline
operator. This addition served to mitigate the computational burden by reducing the search space of
the solved QSC problem, effectively pruning redundant candidate WSs that were dominated by others.

The authors in Huo et al. [2015] introduced a discrete variant of the ABC algorithm tailored for
addressing the QSC problem within cloud environments.

In pursuit of effective near-optimal solutions for addressing the QSC problem, researchers have
introduced several recent optimization methods based on the ABC algorithm, as evidenced by works
such as x. wang et al. [2019], Dahan et al. [2017].

In addressing the QSC problem within mobile and IoT environments, the authors in Deng et al.
[2014a], Khanouche et al. [2020b] applied the TLBO algorithm.

In reference Fathollahi-Fard et al. [2020], the authors introduced a novel nature-inspired meta-
heuristic algorithm known as the red deer algorithm (RDA), drawing inspiration from the behavior
of Scottish red deer. The efficacy and efficiency of the developed RDA were showcased through its
application to various real-world engineering optimization problems akin to QSC. These issues inclu-
ded the single-machine scheduling problem, traveling salesman problem, fixed-charge transportation
problem, and vehicle routing problem.

Several multi-objective optimization approaches have been introduced to address the QSC problem.
Unlike the conventional metaheuristic algorithms mentioned earlier, which typically yield a single
compromise solution, multi-objective optimization approaches offer a distinct advantage. These
approaches guarantee the generation of multiple non-dominated near-optimal or optimal solutions,
commonly known as Pareto optimal solutions. Consequently, users have the flexibility to choose a
solution that aligns with their specific preferences or requirements from the set of non-dominated
solutions. For an in-depth exploration of the various multi-objective optimization approaches proposed
for the QSC problem, interested readers are encouraged to delve into comprehensive literature reviews
such as those presented in Cremene et al. [2016], Ramírez et al. [2017]. These reviews offer a detailed
analysis and comparison of the most prominent multi-objective optimization methodologies devised
to tackle the challenges inherent in QSC, providing valuable insights for researchers and practitioners
in the field.

It is worth noting that the previously mentioned approaches primarily operate under the assumption
that QoS values are certain and precise. However, in practical applications of the QSC problem, QoS
values often exhibit inexactness or ambiguity due to diverse factors such as network topology changes,
variations in workstation load, system congestion, and economic policies, as discussed in Razian et al.
[2020]. These uncertainties inherent in QoS values emphasize the need for a more realistic modeling
approach. In response to this practical consideration, some researchers have chosen to formulate the
QSC problem as a non-deterministic optimization model. This involves representing QoS values using
interval numbers Jian et al. [2016], Seghir et al. [2019], fuzzy numbers Xu et al. [2018], Seghir [2021],
or probabilistic models Zheng et al. [2016]. These alternative formulations account for the inherent
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uncertainty in QoS values, enabling a more accurate representation of the real-world complexities
associated with dynamic and unpredictable service-oriented environments.

1.2 Solution approaches based on ambiguous QoS values

Addressing the inherent ambiguity and vagueness in QoS parameters’ values necessitates the
utilization of three (03) representation models capable of expressing and representing this uncertainty :
(1) Random variables, defined by probability distribution functions, (2) Interval-numbers, can bound
the ambiguity within their lowers (lefts) and uppers (rights) limits on the real line R, or (3) Fuzzy
numbers that can be expressed using membership functions.

In the following, a concise overview of contemporary approaches that employ probabilistic,
interval-number-based, and fuzzy-number-based methodologies for addressing the QSC problem,
specifically in the context of ambiguous QoS parameters, will be provided.

1.2.1 Probabilistic approaches

Recently, some works have been devoted to address the QSC problem under uncertain QoS
parameters, where the vagueness and ambiguity of the QoS values are expressed with random
variables Chattopadhyay and Banerjee [2016], Kim et al. [2016] that are defined through probability
distribution functions Zheng et al. [2016].

In the work detailed in Chattopadhyay and Banerjee [2016], the authors introduced a stochastic
Integer Linear Programming (ILP) model for the QSC problem. This model served as the foundation
for the development of a probabilistic heuristic algorithm, offering potential advantages, particularly
in terms of scalability, for solving the QSC problem.

In the study outlined in Kim et al. [2016], a robust approach for web service selection in the
presence of outliers was devised to address a probabilistic QoS model. This model was formulated
based on historical executions of requested web services. The proposed method focuses on selecting a
candidate service for each task within a composite service. This selection is determined by considering
the service’s ranking score and its satisfaction of a local threshold, derived from the decomposition of
global constraints.

The probabilistic approaches mentioned earlier necessitate prior knowledge of the probability
distribution functions associated with ambiguous QoS attributes Zheng et al. [2016]. However,
accurately defining the specific type of QoS probability distribution poses a challenge for researchers,
as it requires reliable historical QoS values, which may not always be readily available or easily
defined with precision.

1.2.2 Interval-numbers-based approaches

In the study presented in Jian et al. [2016], the authors employed interval numbers to encapsulate
the uncertainty associated with QoS attributes. They introduced a novel interval-based model to address
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the uncertain QSC problem. The authors introduced a unique interval-based fuzzy ranking method to
rank the interval numbers. This method was subsequently integrated into the PROMETHEE decision-
making approach for resolving uncertain QSC problems with smaller dimensions. Additionally, for
larger-scale QSC problems, the authors developed a genetic algorithm incorporating the extended
PROMETHEE method (GAP).

In the study outlined in Niu et al. [2019], the authors conceptualized the uncertain QSC problem
as an Interval Number-based Multi-Objective Optimization Problem with Global Constraints (IMOPs).
To address this formulation, they devised a non-deterministic multi-objective optimization-based
decomposition algorithm (NDmoea/d) for its resolution.

In the work presented in Seghir et al. [2019], the authors approached the uncertain QSC problem
by formulating it as an Interval Number-based Multi-Objective Optimization Problem with Global
Constraints (IMOPs). To address this model, they introduced the interval-based multi-objective artifi-
cial bee colony (IM_ABC) algorithm. This algorithm incorporates a novel interval-based feasibility
technique designed to handle interval constraints effectively. Additionally, it integrates a new interval-
distance metric, an extension of the original crowding distance of NSGA-II. This extension ensures
the IM_ABC’s non-dominated solutions maintain a diverse set, thereby enhancing the algorithm’s
control over solution diversity.

While interval approaches have proven effective in addressing interval-based models for uncertain
QSC problems, they face limitations in accurately describing ambiguous Quality of Service (QoS)
values. Consider a dynamic web service where the response time attribute varies in the interval [1,4]
seconds, but it is more likely to fall within the interval [2,3] seconds. In such cases, the interval-number
model may inadequately capture the uncertainty of this QoS attribute. Consequently, the utilization of
fuzzy numbers becomes crucial to precisely describe and account for the ambiguity associated with
such QoS values.

1.2.3 Fuzzy-numbers-based approaches

In the study outlined in Zhang et al. [2017], the authors addressed the ambiguity associated with
four fundamental QoS properties : price, execution time, reliability, and availability. To represent this
ambiguity, they employed triangular fuzzy numbers (TFNs). These TFNs were then utilized to formu-
late the QSC problem within dynamic manufacturing environments as a fuzzy optimization problem.
The authors proposed a solution approach leveraging an extended flower pollination algorithm (EFPA)
to effectively solve the formulated fuzzy optimization problem.

In the work presented in Zhang et al. [2019c], the authors employed the Triangular Fuzzy Number
(TFN) model to articulate the impreciseness inherent in the uncertain QoS attributes relevant to both
vertical and horizontal QSC formulations within fuzzy manufacturing environments. Additionally,
they devised an enhanced flower pollination algorithm to effectively address and solve the TFN-based
optimization model associated with the QSC problem.
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In the study presented in Xu et al. [2018], the authors employed both Triangular Fuzzy Number
(TFN) and crisp-valued models to represent uncertainty in QoS properties and non-ambiguous ones,
respectively. Leveraging these models, the authors introduced a fuzzy optimization model for the QSC
problem. To solve this model, they developed a triangular fuzzy genetic algorithm (TGA).

In the study outlined in Zhang et al. [2018], the authors utilized the Intuitionistic Fuzzy Entropy
Weight (IFEW) method to accurately determine preference weights for QoS properties. They applied
an extended Biogeography-Based Optimization (BBO) algorithm to address the challenges of ma-
nufacturing service supply chain optimization. Within this algorithm, the Triangular Fuzzy Number
(TFN) model was employed to effectively represent the uncertainty associated with the considered
QoS attributes.

In the study outlined in Feng and Kong [2015], the authors introduced a Fuzzy Multi-Objective
Genetic Algorithm (FMOGA) as a solution to the QSC problem. In this approach, both the QoS
attributes and the users’ preference weights were formulated based on the TFN model.

In the study presented in Seghir and Khababa [2021b], the authors introduced a novel fuzzy
optimization approach tailored for the QSC problem under uncertain Qos parameters. These laters
were represented using Generalized Trapezoidal Fuzzy Numbers (GTrFN). Furthermore, the QSC
problem was formulated as a fuzzy optimization (FQSC) problem, modeling QoS properties with
GTrFNs. To address the FQSC model, the authors developed a new Fuzzy Teaching Learning-Based
Optimization (FTLBO) algorithm. This later incorporates a local search method and an elitism search
operator to enhance exploitation ability and expedite the convergence of FTLBO in discovering
optimal or suboptimal composite service solutions.

Table 4.1 provides a summary of the studies mentioned, categorizing them based on the repre-
sentation model for QoS parameters, the mathematical formulation of the QSC problem, and the
respective solution approaches. Unlike most referenced papers, our representation of QoS uncertainty
adopts the interval number model. Consequently, we formulate the QSC problem as a single-objective
optimization with interval constraints. This formulation is addressed using an extended artificial
bee colony algorithm. Additionally, an interval-valued version of the existing crisp Skyline operator
is applied to narrow the search space of the Interval QSC (IQSC), enhancing the efficiency of the
proposed algorithm.
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2 Interval model of the QoS uncertainty-aware web service
composition problem

To understand the issue in hand, we shall start by introducing the general concepts which will
provide the needed information for the rest of this study :

— Consider a set of atomic web services, with each web service, denoted as ws, characterized
by two distinct types of properties : functional and non-functional. The functional parameters,
encompassing input and output attributes, serve to represent the supported functionality of a
given ws. In contrast, the non-functional properties, including QoS attributes such as response
time, availability, reputation, price, and more, reflect the quality parameters associated with a
ws.

— Each QoS attribute, represented by qt where t = 1,2, . . . ,r and r is the count of the considered
QoS parameters, is viewed as either a positive or a negative parameter. For positive qt values, a
higher value signifies better performance, while for negative qt values, a lower value indicates
inferior performance. In essence, a web service with larger positive qt values is considered
better, whereas a web service with smaller negative qt values is also deemed worse.

— The set of positive qt values is denoted as QoS+, while the negative values are represented by
QoS−. For instance, attributes such as reputation and availability are categorized in the QoS+

list, whereas parameters like price and response time fall under the QoS− list.

— A class of web services, denoted as S = ws1,ws2, . . . ,wsm, represents a collection of m atomic
web services sharing similar functionalities while exhibiting distinct values in their respective
qt attributes.

— As illustrated in Fig. 4.1, providing a graphical representation of the QSC problem, consider
an abstract composite service denoted as ACS = S1,S2, . . . ,Sn. This abstract composite service
represents the n required web service classes to fulfill a user request.

— A set of k user’s global Quality of Service (QoS) requirements, indicated as Cstqt with t =
1,2, . . . ,k and k ≤ r.

A concrete composite service, denoted as CS and representing the response to a user request, is
constructed by choosing a unique web service ws j

i from each web service class Si = ws1
i ,ws2

i , . . . ,wsmi
i ,

where j ≤ mi. The global QoS values of CS, determined by aggregating the QoS values of its atomic
web services wss, must align with the specified Cstqt requirements (i,e. a feasible concrete composition
is characterized by its adherence to the global QoS constraints of the end-user. This composition is
constructed by choosing a distinct ws and aggregating QoS values for both benefit and cost aspects in
the intended feasible solution must align with the global QoS user-constraints).

In this study, as depicted in Fig 4.2, we have considered four fundamental connection structures :
sequential, parallel, branch, and loop to compose the atomic web services of composite services (CSs).
Additionally, owing to uncontrollable factors in SOAs, such as changes in network architectures and
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economic policies, the QoS values associated with elementary web services are inherently uncertain
Razian et al. [2020]. Recognizing the efficacy of the interval number as a versatile and straightforward
representation model for expressing uncertain QoS values Jian et al. [2016], Seghir et al. [2019], and
considering the four most commonly used QoS parameters in solving the QSC problem Alrifai et al.
[2012], including two positive QoS attributes—availability (q1) and throughput (q2), and two negative
ones—response time (q3) and price (q4), we formulate the interval constrained single-objective
optimization model for QSC, denoted as IQSC, as given in the following subsection.
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ws2n

wsmn
n

Sn
ACS:

User request response:
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ws?2

ws?3

ws?n

Each web service ws has r QoS criteria qts,

User request: an abstract composite service (ACS) with the user’s

S3

What is the best CS solution among the whole possible ones, which represents
the best compromise solution in its aggregated global QoS values and satisfies Cstqts?

which are classified into positive QoS+ and

Each web services class Si has mi functionally
identical wss, but they differ in their qt values.

negative QoS− parameters.

global QoS constraints Cstqts.

CS:

FIGURE 4.1 Graphic depiction of the QoS-aware web service composition problem
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(a) Sequential composition of n web services
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(b) Parallel composition of m web services
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pr1

s1

pr2 s2
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(c) Conditional composition of m web services with their pris probabilities, ∀i= 1,2 . . . ,m : pri ∈ [0,1]
and ∑

m
i=1 pri = 1

ss

r
s1 s2 sn se

(d) Loop composition of n web services with r calls

FIGURE 4.2 The common control structures for composing elementary web services
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2.1 Problem formulation

Identify the best CS solution among all the possible ones 4, which maximizes

Maximize IU(CS) = ∑
r
t=1 wqt ⊗CSqt (4.1)

Subject to k global QoS constraints

∀t = 1 . . .k

{
CSqt ≤min Cstqt , if qt ∈ QoS−

CSqt ≥max Cstqt , if qt ∈ QoS+
(4.2)

Where :

— CSqt is the global QoS interval-valued of the CS solution in the qt attribute that can be evaluated,
as seen in Table 4.2, using the interval arithmetic operations given in Definitions 3 and 14 as
seen in the previous chapter, the four basic connection structures as depicted in Fig. 4.2

— the interval-valued wsi,qt =
[
wsl

i,qt
,wsu

i,qt

]
of each atomic web service wsi of CS in the qt

attribute.

— IU(CS) is the interval utility function of CS that maps the CSqt s values into a single interval-
valued.

This function adopts the well-known Simple Additive Weighting (SAW) method Rao [2007]
through scaling the interval values CSqt s into their normalized interval ones CSqt s.

Then afterwards, the normalized interval values are weighted and summed-up using the weights
wqt s with wqt ∈ [0,1] and ∑

r
t=1 wqt = 1, which represent the importance and priority of each qt by the

user.
The normalized interval-valued CSqt of its related original one CSqt =

[
CSl

qt
,CSu

qt

]
is calculated

according to the type of the used qt criterion, i.e., positive or negative parameter, as given in the
following interval positive and negative normalization Equations 4.3 and 4.4, receptively.

— Interval positive normalization

∀qt ∈ QoS+,CSqt =
[

CSl
qt−minl

qt
maxu

qt−minl
qt
,

CSu
qt−minl

qt
maxu

qt−minl
qt

]
if maxu

qt
̸= minl

qt

[1,1] if maxu
qt
= minl

qt

(4.3)

— Interval negative normalization

∀qt ∈ QoS−,CSqt =
[

maxu
qt−CSu

qt
maxu

qt−minl
qt
,

maxu
qt−CSl

qt
maxu

qt−minl
qt

]
if maxu

qt
̸= minl

qt

[1,1] if maxu
qt
= minl

qt

(4.4)

4. For an ACS of n web services classes, where each one has m candidate web services, then mn different
CSs can be obtained



72 An EABC method for solving the Skyline-based IQSC under interval QoS properties

Where the real limit values minl
qt

and maxu
qt

for an ACS = (S1,S2, . . . ,Sn) with ∀i ∈ {1,2 . . . ,n},
Si = {ws1

i ,ws2
i , . . . ,wsmi

i } and ∀ j ∈ {1,2 . . . ,mi}, ws j
i,qt

=
[
ws j,l

i,qt
,ws j,u

i,qt

]
are evaluated as follows

maxu
qt
= Agg n

qt i=1

(
maxmi

j=1

{
ws j,u

i,qt

})
(4.5)

minl
qt
= Agg n

qt i=1

(
minmi

j=1

{
ws j,l

i,qt

})
(4.6)

Where :
Agg n

qt i=1 denotes the related crisp QoS aggregation formula, i.e., ∑, ∏, min and max, for the qt

attribute, as defined in Table 4.2, that has been employed to aggregate the n obtained real values
max

{
ws j,u

i,qt

}
/min

{
ws j,l

i,qt

}
from each web services class Si with j = 1,2, . . . ,mi.

3 Proposed approach
To address the IQSC problem, a proposed approach incorporates two components. The first

component utilizes the Skyline operator Borzsony et al. [2001] to diminish the search space of IQSC
by eliminating dominated candidate web services. The second component involves swiftly obtaining
near-optimal solutions for IQSC by implementing an extended version of the basic Artificial Bee
Colony (ABC) algorithm, enhanced with an effective local search method, named EABC.

3.1 Skyline service

The primary objective is to discover a near-optimal solution for the IQSC problem, aiming to
maximize the interval utility value defined in Equation 4.1 while adhering to the user’s overall QoS
constraints outlined in Equation 4.2.

The near-optimal solution comprises a set of atomic web services (wss), with each selected from
its respective web services class. A challenge arises when not all wss in each web services class
are potential candidates for constructing the final near-optimal solutions of IQSC. Some previous
studies Alrifai et al. [2010], Wang et al. [2013], Ying and Jiande [2020] have utilized the Skyline
operator Borzsony et al. [2001] to narrow down the search space of QSC by eliminating wss that are
not eligible for inclusion in the construction of final solutions, as they are dominated by some of their
functionally equivalent wss partners. However, a limitation of the existing skyline-based studies is
that they consider QoS parameters with precise and exact values. To overcome this limitation, we
extend the crisp definitions of Service Dominance and Skyline Service from Alrifai et al. [2010], Wang
et al. [2013], Ying and Jiande [2020] to incorporate the representation of QoS properties using the
interval-number model, as explained below.

Definition 17 (Service Dominance) Let’s consider a web services class S and two web services ws1,
ws2 ∈ S, where each one has a set of QoS parameters qts. We say ws1 dominates ws2, denoted as
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ws1 ≺ws2, if and only if : (1) ∀qt ∈QoS+ : ws1,qt ≥max ws2,qt , and (2) ∀qt ∈QoS− : ws1,qt ≤min ws2,qt ,
and (3) ∃qt ∈ QoS+,ws1,qt >max ws2,qt or ∃qt ∈ QoS− ,ws1,qt <min ws2,qt .

Definition 18 (Skyline Service) For a given web services class S = {ws1,ws2, . . . ,wsm} of m functio-
nally equivalent wss. The skyline service of S, denoted by SkS, contains the candidate wss in S that
cannot be dominated by any other ws of S. i.e, SkS = {wsi ∈ S | ∄ws j ∈ S : ws j ≺ wsi}.

To define the skyline service (SkS) for each web service class (S), the skyline computation
process performs pairwise comparisons between the interval values of wsqt for the compared web
services (wss) within S. This computational process can be computationally expensive, particularly if
S encompasses a large number of functionally equivalent wss. However, for the IQSC interval-number
based problem, the skyline service calculation is independent of any online user request Alrifai et al.
[2010]. Therefore, the skyline computation can be performed offline using any of the existing efficient
skyline algorithms Borzsony et al. [2001]. In our study, we calculate each skyline service for IQSC
by adapting the well-known non-dominated method from Deb et al. [2002], employing the service
dominance operator ≺ as defined in Definition 17. The pseudo code for the interval non-dominated
procedure, evaluating each skyline service SkS for its associated web services class S, is presented in
Algorithm 1.

Algorithm 1 Interval non-dominated procedure for evaluating skyline service.
Input : The web service class S
Output : The calculated skyline service SkS of S

1: SkS = /0
2: for each web service ws ∈ S do
3: Nws← 0 ▷ Nws : is the number of web services in S dominating ws
4: for each web service ws′ ∈ S that differs to ws do
5: if ws′ ≺ ws then
6: Nws← Nws +1
7: end if
8: end for
9: if Nws = 0 then

10: SkS← SkS∪{ws}
11: end if
12: end for

3.2 Artificial bee colony algorithm

To comprehend the extended version of the ABC algorithm, it is essential to first introduce a brief
overview of the canonical ABC :
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The ABC algorithm, a swarm intelligence research method introduced by Karaboga and Basturk
[2007], draws inspiration from the intelligent behavior of bee swarms in their search for optimal
solutions. In this algorithm, the evolution within the bee swarm is guided and targeted.

In the basic ABC algorithm, each food source represents a feasible solution to the problem being
solved, and its nectar amount signifies the quality (fitness value) of that solution. The ABC algorithm
employs three (03) types of bees to achieve global optimization :

1. Employed Bees : Each food source is assigned a single employed bee. This bee explores its
assigned food source to exploit new neighboring food sources and employs a greedy selection
technique to choose the best. The information obtained is then disseminated to onlookers within
the hive.

2. Onlooker Bees : Within their hive, the onlooker bees await the information from the employed
bees to select an exploitable food source compared to the one they originally exploited. When
they identify better sources, they notify the relevant bees employed to update their locations.

3. Scout Bees : If a food source remains unchanged in position after being exploited by employed
and onlooker bees for a specific duration, it is considered abandoned. The bee used associated
with this source transforms into a scout, tasked with searching for a new food source by
exploring a different search area.

The synergy of the three types of bees in the aforementioned algorithm leads to a gradual convergence
in the search for the optimal feasible solution. The fundamental strategy of the ABC algorithm is
summarized in the following steps :

— 1st Step. The process begins with the random generation of a population consisting of SN
food sources or solutions. Subsequently, the fitness value, representing the nectar amount, is
evaluated for each solution within the generated population.

— 2nd Step. Employed Bee Phase : During the employed bee phase, each bee associated with a
particular food source generates a new solution by exploring the neighborhood of its assigned
food source. Following the generation of the solution, the fitness value is evaluated. A greedy
selection strategy is then applied to decide whether to update the position. This update is
executed only if the nectar amount of the newly generated solution surpasses that of the existing
one. The process ensures that the algorithm progresses towards more promising solutions.

— 3rd Step. Onlooker Bee Phase : In the onlooker bee phase, each onlooker bee selects a food
source from the population based on the probability value associated with that particular source.
Subsequently, the onlooker bee explores the neighborhood of the chosen food source to create
a new solution. The nectar amount of the newly formed solution is then evaluated, and a
greedy selection mechanism is employed between the old and new solutions to determine the
position interchange. This phase ensures a dynamic exploration of the search space by allowing
onlooker bees to adapt their choices based on the probability and neighboring solutions.

— 4th Step. Scout Bee Phase : In the scout bee phase, the algorithm introduces scout bees, which
play a crucial role in discovering new food sources. If a food source remains unchanged in
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position after being exploited by employed and onlooker bees for a certain number of iterations,
it indicates abandonment. The employed bee associated with this abandoned source transforms
into a scout bee. Subsequently, the scout bee is dispatched to explore new regions in the
search space, aiming to identify potential food sources that can contribute to improving the
overall solution quality. This phase enhances the algorithm’s exploration capability and ensures
adaptability to changes in the optimization landscape.

— 5th Step. Memorization of Best Solution : The algorithm maintains a record of the best
solution identified throughout its execution. This best solution, referred to as the food source,
represents the optimal outcome discovered up to the current iteration. The memorization process
allows the algorithm to track the most promising solution encountered during its search. This
information is crucial for reporting the final result once the algorithm concludes its exploration.
The algorithm continually updates this memorized solution whenever a superior food source is
found, ensuring that the best-known solution is always retained for further evaluation.

— 6th Step. Verification of Stopping Criterion : The algorithm regularly assesses whether
the predefined stopping criterion has been met. If the specified criterion is not fulfilled, the
algorithm returns to the 2nd Step, resuming the iterative process. On the contrary, if the
stopping criterion is satisfied, indicating that a satisfactory solution has been reached or a
predetermined number of iterations has been completed, the algorithm concludes. At this point,
the algorithm showcases the best-known food source discovered throughout its execution. This
final display provides insights into the optimal solution obtained by the algorithm, completing
the execution cycle.

3.3 Extended Artificial Bee Colony : EABC

The ABC algorithm has found widespread application in addressing the QSC problem across
various service-based environments, such as service-oriented applications x. wang et al. [2019]
and cloud computing Huo et al. [2015]. Similar to the fundamental ABC algorithm, the EABC
method aims to iteratively and successively employ three types of bees (Employees, Onlookers, and
Scouts) within each explored food source area srcg. This iterative process seeks to discover a better
alternative, denoted as srcg+1, with g ∈ 0,1,2, . . . ,MIT R, where MIT R represents the maximum
iteration number for the EABC algorithm. To initiate the algorithm, an initial set of food sources
Z, represented by solutions CS1,CS2, . . . ,CSZ with their initial positions src0 =CS0

1,CS0
2, . . . ,CS0

Z is
randomly generated. The dimensional values (web services) of each food source position CS0

z , with
z = 1,2, . . . ,Z, are defined according to the encoding schema provided in 3.3.1. The nectar amount,
representing the fitness value, is evaluated using the interval utility function, denoted as IU(CS0

z ), as
defined in Equation 4.1. Additionally, for each generated food source CSz, an integer variable trialz is
assigned, initialized to zero.

Moreover, to augment the local search capability of the EABC algorithm, a local search method
is applied to the best food source position within each newly discovered food source area srcg+1,
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denoted as CSg+1
best . The EABC algorithm is illustrated by a flowchart in Fig 4.3. Subsequently, in the

following subsections, the encoding schema of CSs, the generation of the initial food source area
src0, and the operations of the three types of bees involved in searching for favorable food source
areas—namely, Employees’ work, Onlookers’ work, and Scouts’ work are detailed. Additionally, the
integrated local search method and the termination criterion of the proposed EABC algorithm are
thoroughly described.

3.3.1 Encoding schema of food sources positions and generation of the initial food
sources area

Each food source position CSg
z in the gth food source area srcg is represented by an n-dimensional

array of integers, where z = 1,2, . . . ,Z, and Z is the population size of EABC. The gth food source
position CSg

z for the solution CSz, denoted as CSg
z = (CSg

z,1,CSg
z,2, . . . ,CSg

z,n), consists of n integer
elements indicating the selected candidate wss from their skyline services SkSi, where i = 1,2, . . . ,n.
For the initial food source area src0, each integer element of each food source position CS0

z =

(CS0
z,1,CS0

z,2, . . . ,CS0
z,n) was randomly generated using the following procedure :

∀ : i = 1,2, . . . ,n
CS0

z,i = 1+ ⌈rand(0,1)∗ (mi−1)⌉
(4.7)

Where CS0
z,i is an integer number representing the ith selected ws from the ith skyline service SkSi that

has mi functionally equivalent wss, rand(0,1) is considered as a real number, which was randomly
generated from the range [0,1], and ⌈ ⌉ represents the rounding up integer function.

3.3.2 Employees work

The employed bees explore each current food source area srcg to find a new and better source
srcEmp

g . Similar to the conventional updating positions of food sources in ABC Karaboga and
Basturk [2007], only one dimension (a unique web service) of each food source position CSg

z =

(CSg
z,1,CSg

z,2, . . . ,CSg
z, j, . . . ,CSg

z,n) with n atomic web services is considered to update the CSg
z position

of CSz.
Hence, the new food source position CSEmp

z = (CSg
z,1,CSg

z,2, . . . ,CSEmp
z, j , . . . ,CSg

z,n) has the same
atomic web services as its old one CSg

z , except for the jth web service (i.e., the CSEmp
z, j value), which is

defined as follows :
CSEmp

z, j = ⌈CSg
z, j +φ j ∗ (CSg

z, j−CSg
l, j)⌉ (4.8)

Where :
For each explored CSg

z , j is a randomly-selected dimension, i.e., the jth skyline service SkS j, from
the range [1,n], CSg

l with l ̸= z represents a randomly-selected food source position from srcg,
φ j is a real value randomly generated within the range [−1,1] for every selected skyline service

SkS j and ⌈ ⌉ is the rounding up integer function.
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If the CSEmp
z, j value is out of the range [1,m j] with m j is the total number of the functionally

equivalent wss of SkS j, then the CSEmp
z, j value will be updated by the nearest one of the two bounds

{1,m j}.
After the definition of the new food sources positions CSEmp

z s with z = 1,2, . . . ,Z, their interval
utility values, i.e., IU(CSEmp

z ), are calculated using Equation 4.1.
In order to update each old food source position CSg

z of CSz by its new defined one CSEmp
z , the

greedy selection mechanism of ABC Karaboga and Basturk [2007] is adapted by using the following
Deb’s solutions selection rules Deb [2000].

R 1. If CSEmp
z and CSg

z are feasible food sources positions, i.e., the user’s global QoS constraints as
given in Equation 4.2 are satisfied, then :

R 1.1. If IU(CSEmp
z )>max IU(CSg

z ) then CSEmp
z is the new food source position of CSz and its

trialz is reset to zero ;

R 1.2. Otherwise, the old food source position CSg
z of CSz is maintained and its trialz is

incremented by one.

R 2. If CSEmp
z is a feasible food source position and CSg

z is an infeasible one, then CSEmp
z is the new

food source position of CSz and its trialz is reset to zero.

R 3. If CSEmp
z is an infeasible food source position and CSg

z is a feasible one, then the old food source
position CSg

z of CSz is maintained and its trialz is incremented by one.

R 4. If CSEmp
z and CSg

z are infeasible food sources positions then :

R 4.1. If the normalized global constraint violation of CSz by considering its new food source
position CSEmp

z , as will be defined in Equation 4.11, is larger than its one by considering
its old food source position CSg

z , then CSEmp
z is the new food source position of CSz and

its trialz is reset to zero ;

R 4.2. Otherwise, the old food source position CSg
z of CSz is maintained and its trialz is

incremented by one.

Normalized global constraint violation of an infeasible food source position : Given any infeasible
food source position, denoted by ICS, the constraint violation amounts of its violated user’s overall
QoS requirements, denoted by ICScst

qk
s, are evaluated as follows.

∀qk ∈ QoS+ : if Cstqk >max ICSqk then
ICScst

qk
=Cstqk ⊖ ICSqk

(4.9)

∀qk ∈ QoS− : if Cstqk <min ICSqk then
ICScst

qk
= ICSqk ⊖Cstqk

(4.10)



78 An EABC method for solving the Skyline-based IQSC under interval QoS properties

By adapting the simple additive weighting -SAW- method Rao [2007] to support the interval
numbers’ calculations, the ICScst

qk
s interval-values are aggregated into a single interval value ICScst

through using the following equation.

ICScst =
1
V
⊗

k

∑
t=1

ICScst
qt

(4.11)

Where :
V is the total number of the violated overall QoS constraints by ICS,
ICScst

qk
is the normalized interval-valued of its associated original one ICScst

qk
=
[
ICSl,cst

qk , ICSu,cst
qk

]
for the kth violated user’s global QoS constraint Cstqk =

[
Cst l

qk
,Cstu

qk

]
.

Since the lower ICScst
qk

s are, the lower its global constraint violation amount is (i.e., in other words,
the higher its aggregated normalized interval-valued ICScst is). Therefore, the lower and upper limit
values of the interval-valued ICScst

qk
=
[
ICSl,cst

qk , ICSu,cst
qk

]
are calculated by using the interval negative

normalization process as given in Equations 4.12 and 4.13, respectively.

ICSl,cst
qk =


maxu

qk
−Cst l

qk
−ICSu,cst

qk(
maxu

qk
−Cst l

qk

)
−
(

minl
qk
−Cstu

qk

) if
(
maxu

qk
−Cst l

qk

)
̸=
(
minl

qk
−Cstu

qk

)
1 if

(
maxu

qk
−Cst l

qk

)
=
(
minl

qk
−Cstu

qk

) (4.12)

ICSu,cst
qk =


maxu

qk
−Cst l

qk
−ICSl,cst

qk(
maxu

qk
−Cst l

qk

)
−
(

minl
qk
−Cstu

qk

) if
(
maxu

qk
−Cst l

qk

)
̸=
(
minl

qk
−Cstu

qk

)
1 if

(
maxu

qk
−Cst l

qk

)
=
(
minl

qk
−Cstu

qk

) (4.13)

Where maxu
qk

and minl
qk

have been previously defined in Equations 6.11 and 6.12, respectively.

3.3.3 Onlookers work

The onlooker bees select Z food source positions from those discovered by the employed bees,
i.e., srcEmp

g , for further exploration. In the basic ABC algorithm, the selection criterion for the Z food
source positions is based on the roulette wheel selection Karaboga and Basturk [2007]. However,
this method faces the problem of local optima stagnation Xiang and An [2013]. Therefore, in this
study, the binary tournament selection method Miller et al. [1995] is employed to determine the newly
selected food source positions, denoted by srcSel

g . The same solution selection rules as defined by Deb
in the above subsection are used to determine srcSel

g by repeating this selection procedure Z times for
each pair of randomly selected food source positions from srcEmp

g .
srcSel

g is re-explored to find new food sources area srcOnl
g by employing the same updating formula

of food sources positions, as given in Equation 4.8, where the aforesaid Deb’s solutions selection
rules, which are itemized in the Employees work part, are used to update the explored food sources
positions srcSel

g by its new discovered ones srcOnl
g .
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3.3.4 Scouts work

Similar to the scouts work of the basic ABC algorithm, the scout bees of EABC are used to
update one randomly-selected food source position from the discovered ones by the onlooker bees,
i.e., srcOnl

g , that have not updated theirs positions after limit iterations, where the limit parameter of
EABC indicates the criterion to identify an abandoned food source position. This latter is updated
using Equation 4.7 and its associated trial variable is reinitialized to zero. As a result, by performing
the above works of Employee, Onlooker and Scout bees, a new food sources area srcg+1 is discovered
to replace the old one srcg.

3.3.5 Local search method

To enhance the quality of the final best CS solution (CSbest). Therefore, for each new discovered
food sources area srcg+1, a local search method is employed for its best food source position,
represented by CSg+1

best = (CSg+1
best,1,CSg+1

best,2, . . . ,CSg+1
best,n), where n indicates the number of its skylines

services and CSg+1
best,i with i≤ n represents the subscript value of the ith selected web service from its

associated skyline services SkSi. The following steps describe the incorporated local search method to
the EABC algorithm.

Step 1. j is a randomly selected integer number from the set {1,2, . . . ,n} that represents the selected
skyline service SkS j form the n existing ones.

Step 2. L are the different generated new food source positions CSg+1
best,l with l ∈ {1,2, . . . ,L} from

CSg+1
best , where each CSg+1

best,l is created with the same atomic web services of CSg+1
best except for

its jth web service, which has been randomly selected from its related SkS j.

Step 3. The interval utility values of the generated CSg+1
best,ls are evaluated, as given in Equation 4.1,

and determine the best one among the new generated CSg+1
best,ls and CSg+1

best to update the food
source position of CSbest by the determined one.

3.3.6 Ending criterion of EABC

The afore-explained tasks of the Employee, Onlooker, and Scout bees, along with the integrated
local search method, are iteratively performed for each newly discovered food source area until the
stopping criterion of the EABC algorithm is met, i.e., the maximum iteration number MIT R is reached.
The best feasible food source position among those in the last discovered food source area, with the
highest interval utility value, represents the final near-optimal solution to the IQSC problem using
EABC.
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4 Experiments and tools
The compared algorithms are implemented with Matlab R2016b, and performed on the same

personnel computer, which runs Windows 7 and has an Intel(R) Core(TM) i5-4570, CPU 3.20 GHz
and 4 Go of memory as a hardware configuration.

In order to assess the effectiveness of the proposed approach,two comparison metrics have been
used.

— (a) Running time : This metric denotes the computation time required by each executed
algorithm to identify its near-optimal solutions for solving the IQSC problem.

— (b) Optimality : This metric serves as an indicator of the solution quality, assessing the obtained
solutions based on their interval utility values as defined in Equation 4.1. This metric provides
insights into how well the solutions meet the criteria specified in the optimization process.

4.1 Interval version of the public QWS dataset

In the comparison experiments, as the public QWS dataset Al-Masri and Mahmoud [2008] was
published with 2507 atomic web services, where each web service has 09 non-ambiguous QoS
values for 09 QoS properties including (1) Response Time, (2) Availability, (3) Throughput, (4)
Successability, (5) Reliability, (6) Compliance, (7) Best Practices, (8) Latency and (9) Documentation.
Therefore, an interval version of QWS, denoted by IQWS, is provided to be used in the upcoming
experiments, where the QoS interval values of IQWS are generated via multiplying the precise
QoS values of each considered QoS parameter of QWS by the random interval number [r1,r2] with
r1 = 0.9+ 0.1 ∗ rand(0,1), r2 = 1.0+ 0.1 ∗ rand(0,1), and rand(0,1) is a uniformly distributed
random real number in the range [0,1]. Since the QWS dataset does not contain the web service price
parameter, and as mentioned previously, only the availability (q1), throughput (q2), response time
(q3) and service price (q4) attributes are considered to generate the IQWS dataset. Hence, the interval
values of the IQSW’s web services in the price attribute have been randomly generated by r3⊗ [r1,r2]

with r3 is a random generated real number from the range [2,5]$. Moreover, the importance and
priorities of the four considered QoS attributes were set to the same value, i.e, ∀t ∈ {1,2,3,4},wqt =

1
4 ,

and each considered user’s global QoS requirement Cstqt for the qt attribute was set as given in the
following Equation.

Cstqt =[
max

(
r1 ∗SUqt ,minl

qt

)
,min

(
r2 ∗SUqt ,maxu

qt

)]
With SUqt ={

µqt ∗ (maxu
qt
−minl

qt
)+minl

qt
if qt ∈ QoS+

maxu
qt
−µqt ∗ (maxu

qt
−minl

qt
) if qt ∈ QoS−

(4.14)

Where :
µqt ∈ [0,1] is a severity factor used to adjust the considered user’s global QoS constraint Cstqt
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maxu
qt

and minl
qt

are calculated as given by Equations 6.11 and 6.12, respectively.
Here, only two global QoS constraints Cstq3 and Cstq4 of the response time and price attributes are

considered in solving IQSC by setting their severity factors µq3 and µq4 to 0.3 and 0.2, respectively,
whereas, µq1 and µq2 of the availability and throughput properties are set to the zero values.

4.2 Parameters setting of the compared algorithms

To investigate the performance and the efficiency of the proposed EABC, a series of comparison
to the one obtained using the PSO algorithm with skyline operator Wang et al. [2013], the proposed
Discrete Gbest-guided Artificial Bee Colony (DGABC) approach in Huo et al. [2015] and the improved
Harris Hawks Optimization (HHO) algorithm by a developed Elite Evolutionary Strategy (EES) in
Li et al. [2021b] that has been named by its authors EESHHO, have been conducted. The compared
approaches to the proposed one (i.e., PSO, DGABC and EESHHO) were proposed to solve the QSC
problem with non-ambiguous QoS parameters. Hence, these approaches have been adopted to support
interval utility calculations of solutions as defined in Equation 4.1. To simplify things, the interval
extended versions of the PSO-based approach Wang et al. [2013], the DGABC Huo et al. [2015] and
the EESHHO Li et al. [2021b] algorithms are named IPSO, IDGABC and IEESHHO, respectively.

For the parameters setting of the compared algorithms, EABC, IPSO, IDGABC and IEESHHO
share the same population size (Z = 40) and the same stopping criterion, which is the number of
solutions evaluations that was set to 50000. However, for their appropriate parameters, the inertia
weight (w) and the two accelerating coefficients (c1 and c2) of IPSO were set to w = 0.8 and
c1 = c2 = 2.0, as they were recommended in their related reference Wang et al. [2013].

The limit parameter for both EABC and IDGABC, which indicates the criterion to identify an
abandoned food source position, was set to 80. Whereas, the L parameter of EABC that represents the
number of neighbor food source positions of the best solution in the EABC’s local search method was
set to 3. Moreover, the control parameters E and sp of IEESHHO, which are used to switch between
the exploration and exploitation phases, and controls the proportion of the best parental genes in EES,
respectively, were set by Equations 4.15 and 4.16 as designed by the authors of EESHHO Li et al.
[2021b].

sp = rand(−1,1)×
(

1− t
T

)
(4.15)

E = 2E0×
(

1− t
T

)
(4.16)

Where :
t and T are respectively the current and the maximum number of the IEESHHO’s iterations cycles
rand(−1,1) and E0 are random generated numbers between −1 and 1 with E0 is updated by each

agent (solution) for each population evolution.
The afore-listed algorithms are performed to solve five abstract composite services ACSm

n s, with
(n,m) ∈ {(5,501),(10,250),(15,167),(20,125) ,(25,100)}, where each ACSm

n consists of solving
IQSC with n web services classes per m functionally equivalent ones that have been randomly selected
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from the 2507 WSs of IQWS. For each ACSm
n , the compared EABC, IPSO, IDGABC and IEESHHO

are carried out 30 independent times to define the best, worst and average optimality values, and
average running times of their obtained near-optimal solutions.

4.3 Comparison results discussion

For each solved ACSm
n , the best, worst and average interval utility values of the obtained near-

optimal solutions by the compared algorithms have been listed in Tables 4.3, 4.4 and 4.5, respectively.
As it is shown from the results of solving the five ACSm

n s written down in these Tables that the
proposed EABC in this study reaches very higher interval optimality values compared to the ones of
its opponent approaches.

Furthermore, as seen in Table 4.6, listing the interval variances (IVs), as calculated by Equation
4.17 of the compared algorithms in solving each ACSm

n over the 30 independent running times where
EABC and IDGABC have obtained two optimal IVs in solving the five ACSm

n s, IPSO has obtained
one optimal IVs in solving the five ACSm

n s. Whereas, the IEESHHO algorithm has not obtained any
optimal IV for the five solved ACSm

n s. Moreover, the average IVs for the five solved ACSm
n s of the

EABC algorithm is superior to the ones of other compared algorithms. Therefore, EABC has better
stability than IDGABC, IPSO and IEESHHO.

IV =
1
30
⊗

30

∑
i=1

(
IU i

best ⊖ IU
)
⊗
(
IU i

best ⊖ IU
)

(4.17)

Where :
IU i

best is the ith interval utility value of the ith obtained near-optimal solution by a compared
algorithm. IU = ∑

30
i=1 IU i

best is the average interval-valued of the all obtained near-optimal solutions.
In addition, as we can see from Fig. 4.4, the one that plots the average running times of the com-

pared approaches to get their near-optimal solutions in solving the listed ACSm
n s in Table 4.6 over the

30 independent executions when the number of web services classes n was set with small values, i.e.,
n≤ 5, the average running times of IPSO are slightly better than the ones of EABC. However, when n
was set with medium or large values, n≥ 10, the proposed EABC algorithm obtained near-optimal
solutions with less average running times compared to the ones of IPSO. Besides, for all the solved
ACSm

n s, EABC is faster than IEESHHO and slightly better than IDGABC in terms of computation time.

From this discussion, EABC outperforms the compared IPSO, IDGABC and IEESHHO algo-
rithms in terms of final CS solutions optimality as-well-as efficiency, especially in solving users’
requests that need the composition of an important number of elementary web services.
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TABLE 4.3 Comparison results of the best interval utility values of the obtained near-optimal
solutions by the compared approaches in solving each ACSm

n of IQSC with n web services
classes per m functionally equivalent web services

ACSm
n EABC IPSO IDGABC IEESHHO

ACS501
5 [0.7075,0.8234] [0.6849,0.7894] [0.6825,0.8080] [0.7156,0.8037]

ACS250
10 [0.6240,0.7140] [0.5690,0.7051] [0.5843,0.7102] [0.5980,0.7006]

ACS167
15 [0.5603,0.7116] [0.5079,0.6015] [0.5482,0.6935] [0.5440,0.6412]

ACS125
20 [0.5305,0.6839] [0.4753,0.5477] [0.5126,0.6454] [0.4898,0.5664]

ACS100
25 [0.5141,0.6239] [0.4813,0.5208] [0.5231,0.5624] [0.5107,0.5396]

The best interval utility values are in boldface.

TABLE 4.4 Comparison results of the worst interval utility values of the obtained near-
optimal solutions by the compared approaches in solving each ACSm

n of IQSC with n web
services classes per m functionally equivalent web services

ACSm
n EABC IPSO IDGABC IEESHHO

ACS501
5 [0.6936,0.8024] [0.6337,0.7443] [0.6623,0.7615] [0.6474,0.7584]

ACS250
10 [0.5826,0.7303] [0.5296,0.6487] [0.5705,0.6793] [0.5377,0.6227]

ACS167
15 [0.5407,0.7106] [0.4616,0.5295] [0.5413,0.6421] [0.4825,0.5924]

ACS125
20 [0.5273,0.6529] [0.4605,0.5002] [0.4929,0.6003] [0.4573,0.5059]

ACS100
25 [0.5122,0.5839] [0.4430,0.4631] [0.5016,0.5247] [0.4579,0.4840]

The best interval utility values are in boldface.

4.4 Effectiveness of the local search method

In this subsection, the feasibility of the employed local search method is investigated, the afore-
mentioned ACSm

n s of Table 4.6 have been solved by the EABC algorithm without the local search
method (i.e., the basic ABC algorithm) over 30 independent executions where its obtained results
are compared to the ones of the developed EABC. As shown in Table 4.7 that illustrates the obtained
results by EABC and ABC algorithms, it is obvious that the best, worst and average interval utility
values of the obtained near-optimal solutions by EABC, as listed previously in Tables 4.3, 4.4 and
4.5, are better than the ones of the basic ABC algorithm. Moreover, for comparing the convergence
of EABC to that of the basic ABC algorithm, Fig. 4.5 plots the average mid-points 5 of the interval
utility values of the obtained near-optimal solutions of both EABC and ABC in solving the ACS125

20

instance over 30 independent running times.
In this experiment, the stopping criterion of each compared algorithm is set to 15 seconds. It is

clear from this figure that EABC gives a better convergence rate compared to the basic ABC algorithm.
Therefore, by integrating the proposed local search method into EABC, its convergence is improved
in order to get near-optimal solutions with high quality.

5. A mid-point (i.e., center) of an interval number A= [al ,au], which represents its performance, is calculated
as (al +au)/2 Bhunia and Samanta [2014].
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TABLE 4.5 Comparison results of the average interval utility values of the obtained near-
optimal solutions by the compared approaches in solving each ACSm

n of IQSC with n web
services classes per m functionally equivalent web services

ACSm
n EABC IPSO IDGABC IEESHHO

ACS501
5 [0.7039,0.8164] [0.6742,0.7711] [0.6742,0.7885] [0.6769,0.7829]

ACS250
10 [0.5924,0.7366] [0.5626,0.6691] [0.5727,0.7022] [0.5646,0.6631]

ACS167
15 [0.5545,0.7102] [0.4949,0.5718] [0.5422,0.6714] [0.5133,0.6015]

ACS125
20 [0.5279,0.6722] [0.4566,0.5287] [0.5028,0.6177] [0.4636,0.5442]

ACS100
25 [0.5245,0.5947] [0.4640,0.4940] [0.5091,0.5447] [0.4893,0.5212]

The best interval utility values are in boldface.

TABLE 4.6 Comparison results of the interval variances of the obtained near-optimal solutions
by the compared approaches in solving each ACSm

n of IQSC with n web services classes per
m functionally equivalent web services

ACSm
n EABC IPSO IDGABC IEESHHO

ACS501
5 [-0.0130,0.0149] [-0.0096,0.0116] [-0.0135,0.0153] [-0.0115,0.0136]

ACS250
10 [-0.0216,0.0221] [-0.0117,0.0136] [-0.0174,0.0190] [-0.0100,0.0120]

ACS167
15 [-0.0251,0.0259] [-0.0060,0.0079] [-0.0173,0.0189] [-0.0080,0.0100]

ACS125
20 [-0.0215,0.0227] [-0.0055,0.0066] [-0.0137,0.0151] [-0.0067,0.0085]

ACS100
25 [-0.0052,0.0060] [-0.0008,0.0017] [-0.0013,0.0019] [-0.0009,0,0019]

Average [-0.0173 0.0183] [-0.0067 0.0083] [-0.0126 0.0140] [-0.0074 0.0092]
The best interval variances are in boldface.



An EABC method for solving the Skyline-based IQSC under interval QoS properties 85

srcg+1 ← Scouts (srcOnl
g ) F

o
o
d

se
a
rc
h

Determine the best food source

Check stopping
criterion g ≥MITN?

The final near-optimal solution
Yes

No

srcOnl
g ← Onlookers(srcEmp

g )

srcEmp
g ← Employees(srcg)

a
re
a
s
b
y
b
e
e
s

Random Initial food sources area srcg=0

position of srcg+1, denoted as CSg+1
best

CSg+1
best ← LocalSearch(CSg+1

best )

of IQSC: CSbest

FIGURE 4.3 The flowchart of EABC.



86 An EABC method for solving the Skyline-based IQSC under interval QoS properties

ACS
5
501 ACS

10
250 ACS

15
167 ACS

20
125 ACS

25
100

0

1

2

3

4

5

6

7

8

9

T
h

e
 a

v
e
ra

g
e
 r

u
n

n
in

g
 t

im
e
s
 (

s
e
c
o

n
d

s
) EABC

IPSO

IDGABC

IEESHHO

FIGURE 4.4 The average running times of the compared algorithms in solving the ACSm
n s

of n web services classes per m functionally equivalent web services (for colors, see online
version).



An EABC method for solving the Skyline-based IQSC under interval QoS properties 87
TA

B
L

E
4.

7
C

om
pa

ri
so

n
re

su
lts

of
th

e
be

st
,w

or
st

an
d

av
er

ag
e

in
te

rv
al

ut
ili

ty
va

lu
es

of
th

e
ob

ta
in

ed
ne

ar
-o

pt
im

al
C

Ss
so

lu
tio

ns
by

th
e

E
A

B
C

an
d

th
e

ba
si

c
A

B
C

al
go

ri
th

m
s

in
so

lv
in

g
ea

ch
A

C
Sm n

of
IQ

SC
w

ith
n

w
eb

se
rv

ic
es

cl
as

se
s

pe
rm

fu
nc

tio
na

lly
eq

ui
va

le
nt

w
eb

se
rv

ic
es A

C
Sm n

E
A

B
C

B
as

ic
A

B
C

B
es

t
W

or
st

Av
er

ag
e

B
es

t
W

or
st

Av
er

ag
e

A
C

S50
1

5
[0

.7
07

5,
0.

82
34

]
[0

.6
93

6,
0.

80
24

]
[0

.7
03

9,
0.

81
64

]
[0

.7
07

5,
0.

82
34

]
[0

.7
04

3,
0.

77
77

]
[0

.7
00

0,
0.

80
49

]
A

C
S25

0
10

[0
.6

24
0,

0.
71

40
]

[0
.5

82
6,

0.
73

03
]

[0
.5

92
4,

0.
73

66
]

[0
.6

10
9,

0.
72

19
]

[0
.5

78
8,

0.
72

65
]

[0
.5

88
5,

0.
73

17
]

A
C

S16
7

15
[0

.5
60

3,
0.

71
16

]
[0

.5
40

7,
0.

71
06

]
[0

.5
54

5,
0.

71
02

]
[0

.5
51

8,
0.

71
37

]
[0

.5
34

0,
0.

70
69

]
[0

.5
51

2,
0.

70
28

]
A

C
S12

5
20

[0
.5

30
5,

0.
68

39
]

[0
.5

27
3,

0.
65

29
]

[0
.5

27
9,

0.
67

22
]

[0
.5

29
4,

0.
66

62
]

[0
.4

99
8,

0.
65

39
]

[0
.5

14
3,

0.
65

83
]

A
C

S10
0

25
[0

.5
14

1,
0.

62
39

]
[0

.5
12

2,
0.

58
39

]
[0

.5
24

5,
0.

59
47

]
[0

.5
18

3,
0.

59
56

]
[0

.5
13

89
,0

.5
55

6]
[0

.5
18

1,
0.

57
57

]
T

he
be

st
in

te
rv

al
ut

ili
ty

va
lu

es
ar

e
in

bo
ld

fa
ce

.



88 An EABC method for solving the Skyline-based IQSC under interval QoS properties

5 Time complexity of the EABC algorithm
Given n is the number of services classes, m is the total number of the equivalent web services

per each services class, r is the total number of the QoS parameters, and K is the total number of the
users’ global QoS constraints. Moreover, by considering the population size Z of food sources and the
maximum iteration number MIT R of the proposed extended artificial bee colony EABC algorithm, so,
its time complexity, which is decided by one loop of three food search works by bees : (1) Employees
work, (2) Onlookers work, and the (3) Scoots work, is analyzed as follows :
The Employees (1) and the Onlookers (2) works need 2 ∗ Z calculation times to define the new
positions of Z food sources, 2∗Z ∗n∗ r computation times to calculate the global QoS interval-values
of the new defined food sources’ positions, and 2 ∗Z solution comparisons to update the old food
sources’ potions by the new ones through using the greedy selection mechanism of ABC. Therefore,
the complexity of (1) and (2) is O(2∗Z +2∗Z ∗n∗ r+2∗Z) = O(Z ∗n∗ r). The complexity of the
Scoots (3) work is decided by one update of an arbitrary selected abandoned food source from the
abounded ones. Hence, the complexity of (3) is O(n∗ r) indicating the computation time to evaluate
the global QoS interval-valued of the selected abandoned food source. As a conclusion, by considering
the MIT R iteration cycles for the proposed EABC; so, its time complexity is O(MIN ∗Z ∗n∗ r).

6 Conclusion
In this chapter, we proposed a novel approach that combines two key components, namely the

skyline operator and an extended artificial bee colony with a local search method (EABC), to tackle the
QoS-aware web service composition problem under uncertain QoS parameters dubbed as IQSC which
is demonstrated to be a part of the NP-hard class. We represented the ambiguity of QoS values using
interval numbers and formulated the problem as an interval constrained single-objective optimization
model (IQSC).

The introduced approach leverages both the skyline operator and EABC to address the formulated
IQSC. The skyline operator plays a crucial role in reducing the search space of the model by elimina-
ting redundant and dominated web services from sets of functionally equivalent ones. Meanwhile, the
EABC efficiently explores the reduced search space to identify near-optimal composite services of
IQSC, incorporating a local search method for enhanced performance.

To assess the effectiveness of EABC, we conducted experiments using an interval-extended
version of the public QWS dataset. The results demonstrates that our proposed approach outperforms
existing methods, including skyline-based PSO, an efficient discrete gbest-guided artificial bee colony,
and a recently introduced Harris Hawks optimization with an elite evolutionary strategy, in terms of
both Optimality and Running Time.
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Chapter 5

An Improved Discrete Flower Pollination
Algorithm for Fuzzy QoS-aware IoT
Services Composition Based on Skyline
Operator

Introduction
The Internet of Things (IoT) encompasses a global network of smart objects that communicate

and collaborate to deliver IoT-based applications for end-users Mashal et al. [2015]. Typically, these
applications leverage the functionalities provided by combining atomic IoT services from cooperating
smart devices Viriyasitavat et al. [2019]. However, as the number of atomic IoT services with similar
functionalities grows, the challenge arises of selecting and composing these services for optimal
performance, taking into account their varying non-functional parameters, known as Quality of Service
(QoS) properties (e.g., cost, reputation, execution and response times, reliability, and availability)
Hamzei and Navimipour [2018].

Developing IoT service selection and composition engines that automatically choose the most
suitable atomic IoT services for a given complex user request (IoT-based application) and provide
an optimal Composite of IoT-Services (CS) in terms of QoS values has become challenging. The
composition of this CS involves selecting several atomic IoT services, each chosen from its associated
set of functionally-equivalent IoT services. Furthermore, the global QoS values of the composed
CS, calculated by aggregating the QoS values of its atomic IoT services, must meet the global QoS
constraints specified by the end-user. This challenge, recognized in the literature as a formidable NP-
hard constrained optimization problem, is referred to as the QoS-aware service composition/selection
(QSC) problem Abosaif and Hamza [2020].
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Approaches addressing the QoS-aware service composition (QSC) problem can be categorized into
several types, including those utilizing integer linear programming (ILP), meta-heuristic optimization
algorithms (bio-inspired or evolutionary), and Skyline-based (Pareto-based) QSC methods Jatoth et al.
[2015], She et al. [2019]. ILP solvers, such as LpSolve 1 or CPLEX 2, have been applied in studies
like Ardagna and Pernici [2007], Alrifai et al. [2012] to find optimal Composite of IoT-Services (CS)
solutions in terms of Quality of Service (QoS). However, the ILP/MILP formulations in these studies
require linear equations for optimized QoS-based objectives and global QoS constraints, posing
limitations on non-linear QoS models. Additionally, due to the NP-hard nature of the QSC problem,
ILP solvers become inefficient, especially for problems with large search spaces.

To overcome these limitations, researchers have turned to bio-inspired and evolutionary optimi-
zation algorithms to obtain near-optimal solutions within reasonable processing times. For instance,
Ding et al. [2015] introduced a QoS-aware service selection approach using the evolutionary Genetic
Algorithm (GA) to solve the QSC problem under transactional properties of web services and CSs.
Bio-inspired intelligent optimization algorithms such as particle swarm optimization (PSO) Naseri
and Jafari Navimipour [2019], artificial bee colony (ABC) Xu et al. [2016a], and whale optimization
algorithm (WOA) Jin et al. [2022], among others, have been employed in various QSC approaches.

Skyline-based QSC approaches Alrifai et al. [2010], Wang et al. [2013], Ying and Jiande [2020],
Guo et al. [2017] leverage the skyline operator Borzsony et al. [2001], based on Pareto dominance,
to reduce the search space. This technique filters out poor-quality candidate services, improving
computational efficiency in QSC approaches.

Recent review papers Abosaif and Hamza [2020], Masdari and Khezri [2021], Razian et al. [2022]
emphasize a significant limitation in existing approaches addressing the QoS-aware service compo-
sition (QSC) problem within IoT environments. The prevalent trend in these approaches involves
the consideration of Quality of Service (QoS) parameters with deterministic values Khanouche et al.
[2020a], Sefati and Navimipour [2021], Chai et al. [2021], Asghari et al. [2020]. However, this
approach is deemed impractical due to the dynamic nature of QoS values in IoT services. These values
are subject to constant changes influenced by variations in the topological structure of IoT networks,
the mobility of IoT devices, system congestion, and economic policies Razian et al. [2020]. Conse-
quently, the primary motivation behind this study is to address the QoS-aware IoT service composition
problem while taking into account the inherent uncertainty associated with QoS parameters.

Addressing the Quality of Service-aware service composition (QSC) problem under uncertain
QoS properties requires the consideration of various uncertainty representation models for QoS
parameters Razian et al. [2022], Masdari and Khezri [2021]. These models encompass (1) Interval
numbers Jian et al. [2016], Khababa et al. [2022], (2) Fuzzy numbers Xu et al. [2018], Zhang et al.
[2019b], Seghir and Khababa [2021a], (3) Probabilistic models Zheng et al. [2016], (4) Machine
learning-based methods, and (5) Service recommendation approaches. Researchers have leveraged
these models to articulate the ambiguity inherent in QoS values. In this study, we specifically adopt the

1. http ://lpsolve.sourceforge.net/5.5/
2. https ://www.ibm.com/analytics/cplex-optimizer
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generalized trapezoidal fuzzy number (GTrFN) due to its perceived versatility compared to interval
numbers and its simplicity in contrast to probabilistic functions, machine learning-based methods, and
service recommendation approaches. The primary contributions of our research are outlined below :

1. First, we propose a fuzzy constrained optimization model for the IoT-service composition
problem, considering Generalized Trapezoidal Fuzzy Number (GTrFN)-based QoS parameters.
This model, denoted as QSCFIoT, addresses the uncertainty in QoS values.

2. Second, to solve the QSCFIoT problem, we introduce an approach consisting of two modules.
The first module employs a fuzzy extension of the deterministic Skyline operator Borzsony
et al. [2001] to reduce the search space of QSCFIoT. The second module utilizes an improved
discrete flower pollination algorithm (IDFPA) along with an effective best solution improvement
method. This two-module approach allows for the efficient search for near-optimal Composite
of IoT-Services (CS) in the reduced search space. Recognizing QSCFIoT as a combinatorial
optimization problem, we incorporate two innovative processes within IDFPA : discrete global
and local pollination processes. These processes update the positions of solutions, contributing
to the algorithm’s exploration capabilities. IDFPA employs a "discard abandoned solutions
mechanism" to enhance exploration during the search. This mechanism regenerates new
positions for stagnated CSs that have not updated their positions after a predetermined number
of iterations.

3. Finally, the performance and efficiency of the proposed approach are validated in solving
QSCFIoT with different scales over using fuzzy versions of the QWS Al-Masri and Mahmoud
[2008] and a synthetic datasets, where IDFPA is compared to other bio-inspired-based QSC
algorithms including extended flower pollination algorithm (EFPA) Zhang et al. [2019b],
particle swarm optimization (PSO) algorithm Wang et al. [2013] and a recently proposed
improved teaching learning-based QoS-aware services composition algorithm (ITL-QCA)
Khanouche et al. [2020a].

The remaining sections of this paper are organized as follows :

— Section 1 : Fuzzy Constrained Optimization Model for QSCFIoT : This section offers a
comprehensive explanation of the fuzzy constrained optimization model tailored to tackle the
QoS-aware service composition problem in the context of the Internet of Things (QSCFIoT).

— Section 2 : Basic Flower Pollination Algorithm (FPA) : Here, we introduce the basic flower pol-
lination algorithm (FPA) as the foundational optimization algorithm upon which our proposed
solution approach builds.

— Section 3 : Proposed Solution Approach : In this section, we present our comprehensive solution
approach, which involves the integration of a fuzzy Skyline-based module and an improved
discrete flower pollination algorithm (IDFPA) for effectively tackling the QSCFIoT problem.

— Section 4 : Experimental Results : The performance and efficiency of the proposed approach
are thoroughly validated through a series of comparison experiments, addressing QSCFIoT
with varying scales.
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— Section 5 : Conclusion and Future Directions : The paper concludes in this section, summarizing
the research findings and providing insights into potential directions for future work.

1 Fuzzy constrained optimization model of QSCFIoT
This section is dedicated to formulating the fuzzy constrained optimization model for QSCFIoT.

To facilitate the mathematical representation of QSCFIoT, the following definitions are presented
before delving into the detailed formulation of the problem.

Definition 19 (IoT-service) refers to a software entity offered by an IoT device, which serves as the
core component of IoT technology. In this technological paradigm, smart objects (IoT devices) can
provide their published services, encompassing functions and operations, to end-users via the internet.

Definition 20 (IoT-service properties) an IoT service denoted as S through a 2-tuple notation, ex-
pressed as S = (F,NF). Here, F represents the functional properties, encompassing input and output
attributes that define the functions and operations provided by the IoT service. On the other hand,
NF denotes the non-functional properties, commonly referred to as Quality of Service (QoS) attri-
butes. These QoS attributes include factors such as price, response time, availability, and throughput,
providing a comprehensive description of the service quality.

The QoS attributes are further categorized into two classes : QoS+ and QoS−, representing
the benefit and cost criteria, respectively. Higher values for QoS+ attributes (e.g., availability and
throughput) indicate superior performance, while lower values for QoS− attributes (e.g., response
time and price) suggest enhanced service quality. Conversely, lower (higher) values for QoS+ (QoS−)
are associated with poorer service quality. This formal representation establishes a clear framework
for understanding and characterizing IoT services based on their functional and non-functional
attributes.

Definition 21 (IoT-services class) An IoT-services class, denoted as C = S1,S2, . . . ,Sm, refers to a
collection of m IoT services sharing similar functionalities. In other words, these services within the
class have identical functional properties, signifying common functions and operations. However,
despite their shared functionalities, each IoT service within the class exhibits noticeable differences
in their Quality of Service (QoS) values. These distinctions in QoS values contribute to the unique
characteristics and performance attributes of individual services within the class, reflecting the diverse
quality aspects that each service can provide to end-users.

Definition 22 An abstract composite of IoT-services, represented by ACS =C1,C2, . . . ,Cn, serves to
outline the required IoT-service classes, each contributing to the fulfillment of a complex user request.
The specific instance of this abstract composite, denoted as CS = (S1i1,S2i2, . . . ,Snin), is termed a
concrete composite of IoT-services. In this concrete composite, each S ji j, where j ∈ 1,2, . . . ,n and
i j ∈ 1,2, . . . ,m j, refers to an IoT-service selected from the jth IoT-service class C j = S j1,S j2, . . . ,S jm j
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comprising m j functionally equivalent IoT-services. The assembly of these n selected atomic IoT
services follows various composition patterns, such as sequential, parallel, branch, and loop structures,
as illustrated in Fig. 5.1. These composition patterns, including sequential, parallel, branch, and loop
structures, are commonly employed in constructing concrete composites (CSs) Seghir and Khababa
[2021a].

s1 s2 s3 sn

(a) Sequential composition of n Ss

ss

s1

s2

sm

se

(b) Parallel composition of m Ss

ss

pr1

s1

pr2 s2

prm

sm

se

(c) Branch composition of m Ss with their execution probabilities pris

ss

r
s1 s2 sn se

(d) Loop composition of n Ss with p calls

FIGURE 5.1 The frequently used composition structures to construct CSs Seghir and Khababa
[2021a]
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1.1 Mathematical formulation of QSCFIoT

The uncertainty in the QoS values of IoT services arises from dynamic factors such as changes in
the topological structure of IoT networks, mobility of IoT devices, congestion in IoT systems, and
economic policies Razian et al. [2020]. To capture this uncertainty, the Generalized Trapezoidal Fuzzy
Number (GTrFN) model is employed due to its effectiveness in representing uncertain parameters
Chen and Chen [2003].

In this study, we focus on four widely used QoS attributes in QSC problem-solving Alrifai et al.
[2012] : two beneficial QoS attributes (availability (qavail) and throughput (qthrpt)) and two cost QoS
parameters (response time (qtime) and price (qprice)). The fuzzy constrained optimization model for
QSCFIoT is formulated as follows :
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Identify the best CS among all the possible ones 3 that :

M̃ax Ũ(CS) =
(
(wqtime⊗C̃Sqtime)⊕ (wqprice⊗C̃Sqprice)

⊕(wqavail ⊗C̃Sqavail )⊕ (wqthrpt ⊗C̃Sqthrpt )
) (5.1)

Subject to the following global QoS constraints of end-users :

— Fuzzy benefit QoS constraints

C̃Sqavail ≥max C̃stqavail ,C̃Sqthrpt ≥max C̃stqthrpt (5.2)

— Fuzzy cost QoS constraints

C̃Sqtime ≤min C̃stqtime ,C̃Sqprice ≤min C̃stqprice (5.3)

where :

— C̃Sqb and C̃Sqc , with qb ∈ {qavail,qthrpt} and qc ∈ {qtime,qprice}, are the global fuzzy benefit
and cost QoS values of CS, respectively.

— C̃stqb and C̃stqc are the fuzzy benefit and cost QoS requirements of users, respectively.

— As illustrated in Table 5.1, depending on (1) The used fuzzy QoS aggregation function, i.e.,

∑̃,∏̃,M̃in or M̃ax, (2) The type of the composition structure, i.e., sequential, parallel, branch or
loop, and (3) The considered benefit or cost QoS parameter ;

— the C̃Sqb and C̃Sqc are evaluated by aggregating the fuzzy benefit S̃qb = (S1
qb
,S2

qb
,S3

qb
,S4

qb
;Sw

qb
)

and cost S̃qc = (S1
qc
,S2

qc
,S3

qc
,S4

qc
;Sw

qc
) QoS values of the assembled IoT-services Ss of CS.

— Ũ(CS) is the fuzzy utility function of CS that melts its fuzzy benefit C̃Sqb and cost C̃Sqc values
into a single fuzzy value.

The afore-used function adapts the Simple Additive Weighting (SAW) method Rao [2007] by scaling
the fuzzy values C̃Sqb and C̃Sqc into their normalized fuzzy ones C̃Sqb and C̃Sqc , respectively.

Subsequently, the normalized fuzzy values are subjected to weighting and summation using
the benefit weight (wqb) and the cost weight (wqc), where wqc ∈ [0,1], wqb ∈ [0,1], and wqtime +
wqprice + wqthrpt + wqavail = 1. This approach emphasizes the significance and priority assigned to each
QoS parameter by the user. The normalized fuzzy values C̃Sqb and C̃Sqc of their related original
ones C̃Sqb = (CS1

qb
,CS2

qb
,CS3

qb
,CS4

qb
;CSw

qb
) and C̃Sqc = (CS1

qc
,CS2

qc
,CS3

qc
,CS4

qc
;CSw

qc
) are calculated as

given in the following fuzzy benefit and cost QoS parameter normalization Equations 5.4 and 5.5,
respectively.

3. For instance, if an ACS has n IoT-services classes, where each one has m functionally similar IoT-services,
then mn different CSs can be instantiated
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— Fuzzy benefit QoS parameter normalization

C̃Sqb =



(
CS1

qb
−min1

qb
max4

qb
−min1

qb
,

CS2
qb
−min1

qb
max4

qb
−min1

qb
,

CS3
qb
−min1

qb
max4

qb
−min1

qb
,

CS4
qb
−min1

qb
max4

qb
−min1

qb
;CSw

qb

)
if max4

qb
̸= min1

qb(
1,1,1,1;CSw

qb

)
if max4

qb
= min1

qb

(5.4)

— Fuzzy cost QoS parameter normalization

C̃Sqc =



(
max4

qc−CS4
qc

max4
qc−min1

qc
,

max4
qc−CS3

qc
max4

qc−min1
qc
,

max4
qc−CS2

qc
max4

qc−min1
qc
,

max4
qc−CS1

qc
max4

qc−min1
qc

;CSw
qc

)
if max4

qc
̸= min1

qc(
1,1,1,1;CSw

qc

)
if max4

qc
= min1

qc

(5.5)

Where :
min1

qt
and max4

qt
are the crisp QoS limit values of ACS = (C1,C2, . . . ,Cn) for each consi-

dered QoS parameter qt , with ∀ j ∈ {1,2 . . . ,n}, C j = {S j
1,S

j
2, . . . ,S

j
m j}, and ∀i ∈ {1,2 . . . ,m j},

S̃ j
i,qt

= (S j,1
i,qt

,S j,2
i,qt

,S j,3
i,qt

,S j,4
i,qt

;S j,w
i,qt

). min1
qt

and max4
qt

are evaluated as follows :

min1
qt
= Agg n

qt j=1

(
Minm j

i=1{S
j,1
i,qt
}
)

(5.6)

max4
qt
= Agg n

qt j=1

(
Maxm j

i=1{S
j,4
i,qt
}
)

(5.7)

where :

— Agg n
qt j=1 is the associated crisp QoS aggregation function of the qt parameter as described in

Table 5.1, (i.e., ∑, ∏,Min and Max), it was applied to aggregate the n obtained real values
Max{S j,4

i,qt
}/Min{S j,1

i,qt
} from each IoT-services class C j of m j functionally equivalent IoT-

services.

An illustrative example will show how the fuzzy utility value of a CS is calculated. Let’s consider,
for example, a sequential composition structure of 3 IoT-services classes Ci=1,2,3 per 3 functionally
equivalent IoT-services S j=1,2,3

i , where each S j
i has two cost QoS criterion : the response time qtime

(ms) and the price qprice ($) attributes, which are assigned by the wqtime = 0.5 and the wqprice = 0.5
cost-weights, respectively.

The fuzzy QoS values of these nine atomic IoT-services in the considered qtime and qprice pa-
rameters are shown in Tables 5.2 and 5.3, respectively. Using the formulas of Equations 5.6 and
5.7, it is possible to evaluate the min1

qtime
, max4

qtime
, min1

qprice
and max4

qprice
as follows : min1

qtime
=
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∑
3

qtime j=1

(
Min3

i=1{S j,1
i,qtime
}
)
= 1+1+1 = 3, max4

qtime
= ∑

3
qtime j=1

(
Max3

i=1{S j,4
i,qtime
}
)
= 6+5+6 = 17,

min1
qprice

= ∑
3

qprice j=1

(
Min3

i=1{S j,1
i,qprice

}
)
= 1+1+1 = 3 and

max4
qprice

= ∑
3

qprice j=1

(
Max3

i=1{S j,4
i,qprice

}
)
= 5+5+5 = 15

In the illustrated example, let’s give CS′ = (S1
1,S

2
3,S

3
1) as an instance of an implemented composite

of IoT-services, its C̃S′qtime
and C̃S′qprice

can be calculated as demonstrated in Table 5.1 using the fuzzy
aggregation function ∑̃ for a sequential composition structure of three atomic IoT-services as follows :

C̃S′qtime
= (1,2,3,4;0.9)⊕(1,2,2,3;0.9)⊕(3,4,5,6;0.9) = (1+1+3,2+2+4,3+2+5,4+3+

6;min(0.9,0.9,0.9)) = (5,8,10,13;0.9) and
C̃S′qprice

= (2,3,3,5;0.8)⊕ (3,4,5,5;0.9)⊕ (1,2,2,3;0.9) = (2+ 3+ 1,3+ 4+ 2,3+ 5+ 2,5+
5+3;min(0.8,0.9,0.9)) = (6,9,10,13;0.8).

Using Equation 5.4, the normalized fuzzy values C̃S′qtime
and C̃S′qprice

of C̃Sqtime and C̃Sqprice , respec-
tively are calculated as given in the following :{

C̃S′qtime
=
( 5−3

17−3 ,
8−3

17−3 ,
10−3
17−3 ,

13−3
17−3 ;0.9

)
= (0.14,0.36,0.5,0.71;0.9)

C̃S′qprice
=
( 6−3

15−3 ,
9−3
15−3 ,

10−3
15−3 ,

13−3
15−3 ;0.8

)
= (0.25,0.5,0.58,0.83;0.8)

Finally, using the above C̃S′qtime
and C̃S′qprice

fuzzy values, the fuzzy utility value of CS′

can be calculated by Equation 5.1 as Ũ(CS′) =
(
wqtime ⊗ C̃S′qtime

)
⊕
(
wqprice ⊗ C̃S′qprice

)
=
(
0.5⊗

(0.14,0.36,0.5,0.71;0.9)
)
⊕
(
0.5⊗ (0.25,0.5,0.58,0.83;0.8)

)
= (0.19,0.43,0.54,0.77;0.8).

TABLE 5.2 An example of nine atomic IoT-services assessed on the qtime parameter

C1 C2 C3
S̃1

1,qtime
= (1,2,3,4;0.9) S̃2

1,qtime
= (2,2,3,4;0.9) S̃3

1,qtime
= (3,4,5,6;0.9)

S̃1
2,qtime

= (2,3,4,5;0.8) S̃2
2,qtime

= (1,3,4,5;0.8) S̃3
2,qtime

= (1,2,4,5;0.8)
S̃1

3,qtime
= (3,4,5,6;0.9) S̃2

3,qtime
= (1,2,2,3;0.9) S̃3

3,qtime
= (2,3,3,5;0.8)

TABLE 5.3 An example of nine atomic IoT-services assessed on the qprice parameter

C1 C2 C3
S̃1

1,qprice
= (2,3,3,5;0.8) S̃2

1,qprice
= (1,2,2,3;0.9) S̃3

1,qprice
= (1,2,2,3;0.9)

S̃1
2,qprice

= (1,2,3,4;0.8) S̃2
2,qprice

= (2,3,3,4;0.8) S̃3
2,qprice

= (2,3,3,4;0.8)
S̃1

3,qprice
= (2,2,3,4;0.9) S̃2

3,qprice
= (3,4,5,5;0.9) S̃3

3,qprice
= (3,4,4,5;0.9)

2 Basic Flower Pollination Algorithm
The Flower Pollination Algorithm (FPA) is considered as a nature-inspired intelligent optimization

algorithm which simulates the flower pollination behavior to solve global optimization problems Yang
[2012]. It has been proven as an effective algorithm to handle the QSC problem under precise Wu and
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Tan [2021] or ambiguous Zhang et al. [2019b] QoS parameters. FPA searches for the optimal solutions
of an optimization problem using the abiotic and self-pollination, and the biotic and cross-pollination
mechanisms, where the switch probability parameter P ∈ [0,1] is used by FPA to alter between its
global (the biotic and cross-pollination) and local (the abiotic and self-pollination) search processes
of optimal solutions. In the flower pollination, the abiotic and self-pollination processes can intervene
more than the biotic and cross-pollination. Therefore, in order to perform the local search more than
the global one in the pollination processes of FPA, Yang [2012] suggested that the switch probability
P to be set with a value of 0.8.

2.1 Global pollination

In the biotic and cross-pollination process, pollinators such as insects and birds who can move
and fly over long distances, are employed to transport flower pollen gametes.

Mathematically, the global pollination is given by Equation 5.8, where each pollen/solution xi

updates its old position xt
i by a new one xt+1

i using the Lévy flight behavior pollinators, which is
mathematically formulated by the Lévy flight step size L(λ ) as illustrated in Equation 5.9.

xt+1
i = xt

i + γL(λ )(xt
i−g∗) (5.8)

Where :

— i = 1,2, . . . ,z and z is the number of pollens (population size of FPA),

— g∗ is the position of the current best pollen found among the whole z solutions at the tth

iteration,

— γ ∈ [0,1] is a scaling factor, which is used to control the step size of pollinators.

According to Yang [2012], γ was suggested to be set with a value of 0.1.

L∼ λΓ(λ )sin(πλ/2)
π

∗ 1
S1+λ

,(S >> S0 > 0) (5.9)

Where :

— Γ(λ ) is the standard gamma function,

— S is the step size,

— S0 is the smallest step size

— λ is the distribution factor.

Referring to Yang [2012], S0 and λ were recommended to be set to 0.1 and 1.5, respectively.
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2.2 Local pollination

The mathematical formulation of the abiotic and self-pollination process to update the old pollen
position xt

i of a given solution xi by a new one xt+1
i is defined by Equation 5.10

xt+1
i = xt

i +U(xt
p− xt

k) (5.10)

Where :

— xt
p and xt

k represent the positions of two different pollens that have been randomly selected
from the same plant, i.e., the current population of FPA,

— U is a random generated number drawn from a uniform distribution in [0,1].

For each iteration cycle t = 1,2, . . .maxItr, where maxItr is the maximum iteration number of
FPA, for both the local and global pollinations, xt

i is replaced by xt+1
i , if the latter is better than xt

i in
terms of optimality value to solve the global optimization problem; otherwise xt+1

i is discarded and
xt

i is maintained for the (t +1)th iteration. The pseudo-code of the basic FPA can be referred to in
Algorithm 2

3 Proposed solution approach for QSCFIoT
The proposed solution approach for QSCFIoT comprises two main modules. The first module

utilizes a fuzzy extended version of the Skyline operator to narrow down the search space of QSCFIoT.
In this module, only the non-dominated IoT services from each IoT services class are selected as
candidate services to construct the Composite of IoT Services (CS) for end-user requests.

The second module involves an improved discrete Flower Pollination Algorithm (FPA) with an
effective best solution improvement method, termed IDFPA. This module is responsible for efficiently
searching for the final CS solutions of QSCFIoT, leveraging the reduced search space obtained from
the first module.

3.1 Skyline IoT-Services

Upon careful consideration, the objective of this study is to acquire a near-optimal Composite of
IoT Services (CS) solution. This solution aims to maximize the fuzzy utility function, as articulated in
Equation 5.1, while simultaneously adhering to the fuzzy benefit and cost overall Quality of Service
(QoS) constraints outlined in Equations 5.2 and 5.3, respectively.

A Composite of IoT Services (CS) solution is formulated by assembling a set of IoT services,
with each service selected from its respective class. However, not all IoT service partners within each
class are considered potential candidates for constructing CSs. Therefore, certain studies Alrifai et al.
[2010], Wang et al. [2013], Ying and Jiande [2020] have employed the Skyline operator Borzsony
et al. [2001] to streamline the QoS-aware service composition (QSC) process. The Skyline operator is
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Algorithm 2 Basic Flower Pollination Algorithm.

1: Initialize a population of z pollens {x1,x2, . . . ,xz}
2: Evaluate each pollen (solution) of the initialized population using the optimization

function of the solved problem
3: Identify the best pollen g∗ in the initialized population
4: for t = 1,2, . . .maxItr do
5: for i = 1,2, . . . ,z do
6: if rand ≤ P then
7: Calculate the Lévy flight step size L(λ ) using L ∼ λΓ(λ )sin(πλ/2)

π
∗

1
S1+λ

,(S >> S0 > 0)
8: Perform the global pollination by xt+1

i = xt
i + γL(λ )(xt

i−g∗)
9: else

10: Perform the local pollination by xt+1
i = xt

i +U(xt
j− xt

k)
11: end if
12: Evaluate xi using its new position xt+1

i
13: if xt+1

i is better than xt
i then

14: update xt
i with the new position xt+1

i
15: else
16: Discard xt+1

i and maintain the old position xt
i of xi for the (t +1)th iteration

17: end if
18: end for
19: Find the current best pollen g∗ in the current population
20: end for

return the best solution g∗
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utilized to eliminate candidate services that may not contribute significantly to CS construction, as
they are dominated by some of their functionally equivalent counterparts.

A challenge surfaced in the aforementioned Skyline-based studies is the consideration of QoS
parameters with crisp values. This approach is not realistic for dynamic IoT environments, where
addressing the QoS uncertainty becomes crucial in solving the QoS-aware Service Composition
for IoT (QSCFIoT) problem, particularly due to challenges posed by IoT architecture Razian et al.
[2020]. To address this limitation, we propose fuzzy extended versions of the crisp Service Dominance
Operator and Skyline Service Alrifai et al. [2010], Wang et al. [2013], Ying and Jiande [2020].
These extended versions incorporate the Generalized Trapezoidal Fuzzy Number (GTrFN) model for
representing QoS properties, as defined in the following two expressions :

Definition 23 (Fuzzy Service Dominance Operator : ≺̃) Let’s consider an IoT-services class C and
two IoT-services S1, S2 that belong to C, where each one has a set of QoS parameters qts. We say
S1 fuzzy dominates S2, represented by S1≺̃S2, if and only if : (1) ∀qt ∈ QoS+ : S̃1,qt ≥max S̃2,qt , (2)
∀qt ∈ QoS− : S̃1,qt ≤min S̃2,qt , and (3) ∃qt ∈ QoS+, S̃1,qt >max S̃2,qt or ∃qt ∈ QoS−, S̃1,qt <min S̃2,qt .

Definition 24 (Skyline IoT-Services) Considering a class C = {S1,S2, . . .Sm} of m functionally equi-
valent IoT-services. The Skyline of this latter, represented by SkC, gathers the candidates Ss from C
that cannot be fuzzy dominated by any other S from C. i.e, SkS = {Si ∈C | ∄S j ∈C : S j≺̃Si}.

Each IoT services class C is associated with a definition of its Skyline IoT services SkC, which
undergoes the Skyline calculation process. This process involves conducting pair-wise comparisons
between the fuzzy values S̃qt of the compared IoT services S within class C. However, the computation
time for the Skyline calculation process can be prohibitively expensive, particularly when class C
encompasses a large number of functionally equivalent Ss. Furthermore, it’s worth noting that the
Skyline services calculation is conducted independently of any online user request for web services
composition Alrifai et al. [2010]. As a result, this computation process is typically performed offline
using existing efficient Skyline algorithms Borzsony et al. [2001].

For this study, the computation of each Skyline IoT services set SkC from its corresponding IoT
services class C follows the well-known non-dominated method introduced by Deb et al. [2002].
This approach employs the fuzzy service dominance operator ≺̃, as defined in Definition 23, to
establish dominance relationships among the fuzzy service values. The adapted algorithm is outlined
in Algorithm 3.

3.2 Improved Discrete Flower Pollination Algorithm (IDFPA)

The pseudo-code for the proposed Improved Discrete Flower Pollination Algorithm (IDFPA)
is outlined in Algorithm 4, encompassing six main procedures : (1) Population Initialization, (2)
Population Evaluation, (3) Discrete Global Pollination, (4) Discrete Local Pollination, (5) Discard
Abandoned Solutions Positions, and (6) Best Solution Improvement. While the first two procedures
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Algorithm 3 Fuzzy non-dominated method to calculate the SkC from its associated IoT-
services class C.

1: SkC = /0 ▷ SkC : is the set of the non-dominated IoT-services (i.e., Skyline IoT-services)
to be calculated from its associated IoT-services class C

2: for each IoT-service S ∈C do
3: NS← 0 ▷ NS : is the number of IoT-services that fuzzy dominate S
4: for each IoT-service S′ ∈C and different to S do
5: if S′≺̃S then ▷ if S′ fuzzy dominates S using Definition 23
6: NS← NS +1
7: end if
8: end for
9: if NS = 0 then

10: SkC← SkC∪{S}
11: end if
12: end for

return SkC .

are elaborated within the algorithm, the subsequent subsections provide detailed descriptions of the
remaining four procedures.

3.2.1 Discrete global and local pollination procedures

In the standard Flower Pollination Algorithm (FPA), solution positions are updated with conti-
nuous values. However, the QoS-aware Service Composition for the Internet of Things (QSCFIoT)
poses a unique challenge as it is a discrete global optimization problem. In this context, each Com-
posite of IoT-Services (CS) solution position, consisting of n atomic IoT-services, is encoded as an
n-dimensional vector of integer values, represented as CS = (CS1,CS2, . . . ,CSn). Here, each value CS j,
with j ∈ 1,2, . . . ,n, signifies the index number of an atomic IoT-service selected from its associated
Skyline IoT-services class SkC j = S1

j ,S
2
j , . . . ,S

m j
j containing m j functionally equivalent IoT-services.

Given the discrete nature of the QSCFIoT problem, the original continuous pollination processes
of FPA are adapted to discrete global and local pollinations. These adaptations, presented in the
following subsections, facilitate the exploration of the discrete search space to effectively address the
QSCFIoT problem.

Discrete global pollination : Deriving inspiration from the original continuous global pollination
process in FPA (refer to Equation 6.13), the discrete global pollination in the proposed Improved
Discrete Flower Pollination Algorithm (IDFPA) is executed as outlined below :

For a given current population popt of z solutions at the tth iteration, each CSi solution, with
i ∈ {1,2, . . . ,z}, updates its old position CSt

i = (CSt
i,1,CSt

i,2, . . . ,CSt
i,n) by a new one

CSt+1
i = (CSt+1

i,1 ,CSt+1
i,2 , . . . ,CSt+1

i,n ) using so far the best-solution position CSt
best =

(CSt
best,1,CSt

best,2, . . . ,CSt
best,n) of popt , as described by the following steps :
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Algorithm 4 Improved Discrete Flower Pollination Algorithm.

1: Population initialization : initialize a population of z solutions {CS1,CS2, . . . ,CSz},
where each initial dimensional value CS0

i, j of each CSi’s initial position, denoted by
CS0

i = (CS0
i,1,CS0

i,2, . . . ,CS0
i,n) with i ∈ {1,2, . . . ,z}, j ∈ {1,2, . . . ,n} and n is the number

of the Skyline IoT-services classes SkCs, is initialized with the index number d ∈
{1,2, . . .m j} of a randomly selected IoT-service Sd

j from its SkC j = {S1
j ,S

2
j , . . . ,S

m j
j } of

m j functionally equivalent IoT-services.
2: Population evaluation : for each CSi, if its initial position CS0

i is a feasible one, evaluate
its fuzzy utility value Ũ(CS0

i ) by Equation 4.1. Otherwise, evaluate its global aggregated
normalized QoS constraints violations C̃S0

i,cst by Equation 5.13.
3: Identify the initial best-solution position CS0

best among the z generated ones of the initial
population.

4: for t = 0,1,2, . . .maxItr do
5: for i = 1,2, . . . ,z do
6: if rand ≤ P then
7: Discrete global pollination : calculate the new solution position CSt+1

i of
CSi using its current one CSt

i and the so far best-solution position CSt
best . (see Subsection

3.2.1).
8: else
9: Discrete local pollination : calculate the new position CSt+1

i of CSi using its
current one CSt

i and two different neighborhood solutions CSt
p and CSt

k selected randomly
from the current population. (see Subsection 3.2.1).

10: end if
11: If CSt+1

i is a feasible solution position, evaluate its fuzzy utility value Ũ(CSt+1
i )

using Equation 4.1. Otherwise, evaluate its global aggregated normalized QoS constraints
violations ˜CSt+1

i,cst using Equation 5.13.
12: Decide if the current position CSt

i of CSi will be updated by its new calculated
one CSt+1

i (see Subsection 3.2.2).
13: end for
14: Discard abandoned solutions positions : update the position of each CSi solution

that does not change its current position after Limit iterations (see Subsection 3.2.3).
15: Find the current best-solution position CSt

curBest of the current population.
16: If CSt

curBest is better than CSt
best update this latter by CSt

curBest .
17: Best solution improvement : improve CSt

best by a new neighborhood one (see Sub-
section 3.2.4).

18: end for
return the best solution position of CSbest .
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— Initialize the CSt+1
i position with the same n-dimensional values of the old position CSt

i , i.e.,
∀ j = 1,2 . . . ,n : CSt+1

i, j ←CSt
i, j.

— Select randomly a dimension j ∈ [1,n].

— If the jth dimension value of CSt+1
i is different than the one of CSt

best , i.e., CSt+1
i, j ̸= CSt

best, j,
then update the CSt+1

i, j value by the CSt
best, j one. Otherwise, update the jth dimension value of

CSt+1
i by a different integer value selected randomly from the range [1,m j], which represents

the indexes values of the m j IoT-services that belong to the jth Skyline IoT-services class SkC j.

Discrete local pollination Similar to the local pollination process of the basic FPA (as seen in
Equation 5.10), in our proposed IDFPA, each CSi solution updates its old position CSt

i according
to the positions CSt

p and CSt
k of two different neighborhood solutions, with p ̸= k ̸= i, selected

randomly from the current population popt at the tth iteration. The following steps describe the
introduced discrete local pollination to update the old position CSt

i = (CSt
i,1,CSt

i,2, . . . ,CSt
i,n) by a new

one CSt+1
i = (CSt+1

i,1 ,CSt+1
i,n , . . . ,CSt+1

i,n ) using the two different solutions positions CSt
p and CSt

k :

— Identify the best-solution position, denoted as CSt
b = (CSt

1,b,CSt
2,b, . . . ,CSt

n,b), between the two
selected ones CSt

p and CSt
k.

— Initialize the CSt+1
i position with the same n-dimensional values of the old position CSt

i , i.e.,
∀ j = 1,2 . . . ,n : CSt+1

i, j ←CSt
i, j.

— Select randomly a dimension j ∈ [1,n].

— If the jth dimension value of CSt+1
i is different than the one of CSt

b, i.e., CSt
i, j ̸= CSt

b, j, then
update the CSt+1

i, j value by the CSt
b, j one. Otherwise, update the jth dimension value of CSt+1

i

by a different integer value selected randomly from the range [1,m j], which represents the
indexes values of the m j IoT-services that belong to the jth Skyline IoT-services class SkC j.

3.2.2 Updating solutions positions decision

Following the appliance of the discrete local (global) pollination processes by IDFPA, and similar
to the solutions positions update of the basic FPA, here in our proposed IDFPA, updating each old
solution position CSt

i by its new calculated one CSt+1
i , at a given iteration cycle t, is decided according

to the following adapted Deb’s selection criteria Deb [2000].

— CSt
i is replaced by CSt+1

i if the latter is a feasible solution position and CSt
i is an infeasible one,

i.e., CSt+1
i satisfies the global QoS requirements as given by the fuzzy benefit and cost QoS

constraints of Equations 5.2 and 5.3, respectively ; whereas, at least one global QoS constraint
of Equations 5.2 and 5.3 is not satisfied by CSt

i .

— If CSt
i is a feasible solution position and CSt+1

i is an infeasible one, then CSt+1
i is discarded

and CSt
i is maintained for the (t +1)th iteration.
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— When CSt
i and CSt+1

i are both feasible solutions positions. If the fuzzy utility value of CSt
i

calculated by Equation 5.1 is higher than the one of CSt+1
i , then the latter is discarded and CSt

i

is maintained for the (t +1)th iteration. Otherwise, CSt
i is replaced by CSt+1

i .

— If both CSt
i and CSt+1

i , are infeasible solutions positions, then the one with the higher aggregated
normalized global QoS constraints violations is maintained for the (t +1)th iteration, i.e., if

˜CSt+1
i,cst >max

˜CSt
i,cst where ˜CSt+1

i,cst and ˜CSt
i,cst are calculated as will be presented in Equation 5.13,

then CSt
i is replaced by CSt+1

i . Otherwise, CSt+1
i is rejected and CSt

i is maintained.

Given any infeasible solution position ICS, the fuzzy benefit and cost constraint violations quantities
of its violated fuzzy benefit C̃stqb and cost C̃stqc global QoS constraints, denoted respectively by

˜ICScst
qb

and ˜ICScst
qc

, are evaluated as follows.

∀qb ∈ QoS+ : if C̃stqb >max ˜ICSqb then
˜ICScst

qb
= C̃stqb⊖ ˜ICSqb

(5.11)

∀qc ∈ QoS− : if C̃stqc <min ˜ICSqc then
˜ICScst

qc
= ˜ICSqc⊖C̃stqc

(5.12)

To calculate the global aggregated normalized QoS constraints violations of ICS, denoted by ˜ICScst ,
the SAW method Rao [2007] has been adapted and employed to aggregate the fuzzy values ˜ICScst

qb

and ˜ICScst
qc

into a single fuzzy value ˜ICScst , as given by the following Equation.

˜ICScst =
1
V
⊗
(

˜
∑qb∈QoS+

˜ICScst
qb
⊕ ˜

∑qc∈QoS−
˜ICScst

qc

)
(5.13)

Where :

— V is the number of the violated global QoS constraints by ICS,

— ˜ICScst
qb

and ˜ICScst
qc

are the normalized fuzzy values of their associated original ones ˜ICScst
qb

and
˜ICScst

qc
, respectively.

— ˜ICScst
qb

and ˜ICScst
qc

have been calculated following the same formula of the fuzzy cost QoS
parameter normalization given by Equation 5.5, since the lower fuzzy values ˜ICScst

qb
and ˜ICScst

qc

of ICS are, the higher its aggregated normalized QoS constraints violations ˜ICScst is.

3.2.3 Discard abandoned solutions positions

To enhance the exploration search of IDFPA through escaping from local optimums, for each CSi

solution of a population popt at the tth iteration having z solutions, with i ∈ {1,2, . . . ,z}, and which
does not update its current position CSt

i = (CSt
i,1,CSt

i,2, . . . ,CSt
i,n) after a predetermined number of

iterations Limit, then CSt
i is replaced by a new solution position CS′ti = (CS′ti,1,CS′ti,2, . . . ,CS′ti,n), where

each new dimension value CS′ti, j of the CSi solution is set to the index number d ∈ {1,2, . . . ,m j} of
an IoT-service Sd

j that has been randomly selected from its associated Skyline IoT-services class
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SkC j = {S1
j ,S

2
j , . . . ,S

m j
j } of m j functionally equivalent IoT-services. Accordingly, if the new position

of the CSi solution (i.e.,CS′ti ) that replaces its stagnated old position (i.e., CSt
i) is a feasible one, then

the fuzzy utility value of CS′ti is evaluated using Equation 5.1. Otherwise, the global aggregated
normalized QoS constraints violations of this new CS′ti position is calculated by Equation 5.13.

3.2.4 Best solution improvement

To accelerate the convergence rate of IDFPA in discovering its near-optimal solution, a neigh-
borhood local search method is executed at each iteration t by IDFPA to enhance the best-solution
position CSt

best of the current population popt . The following steps describe this process :

— Generate L neighborhood solutions positions that have the same IoT-services as the ones of
CSt

best .

— For each generated neighborhood solution position, select randomly one of its IoT-services and
update it by a different one from its Skyline IoT-services class.

— Evaluate the L updated neighborhood solutions positions and identify the best one, denoted as
Gt

best , among them.

— If Gt
best is better than CSt

best , then CSt
best is replaced by Gt

best . Otherwise, the CSt
best position is

maintained for the (t +1)th iteration.

3.3 Computational complexity of the proposed approach

In order to solve the QSCFIoT problem, the proposed approach includes two modules (1) a fuzzy
skyline-based module and (2) an improved discrete flower pollination algorithm (IDFPA). As the
Skyline-services calculation is independent from any online user request of web services composition
Alrifai et al. [2010]. Therefore, the utilization of this computation process is carried on offline by
adapting the first step of the famous non-dominated sorting method Deb et al. [2002] which has in its
worst case a time complexity of O(r∗n∗m2), where r is the number of the considered QoS parameters,
n is the number the used IoT-services to implement a CS solution using n IoT-services classes, and m
is the number of the functionally equivalent IoT-services per each used IoT-services class. For the
IDFPA illustrated in Algorithm 4, its time complexity is analyzed as follows : the time complexity of
the Population initialization and the Population evaluation procedures, are respectively calculated as,
CompInitPop = O(n∗ z) and CompEvalPop = O(n∗ r ∗ z), where z is the population size (i.e., number
of the performed CS solutions by IDFPA). Furthermore, in the Discrete global/local pollination
procedure, n and n ∗ r computation times are needed to calculate the new position and evaluate
the fuzzy utility value of each CS solution, respectively. Hence, the time complexity of the Discrete
global/local pollination procedure applied to z solutions is CompGlobalPol/LocalPol =O((n∗r+n)∗z)=
O(n∗ r ∗ z). In addition, the time complexity of the Discard abandoned solutions positions procedure
for updating and evaluating a new position of an abandoned solution in each iteration cycle of
IDFPA is CompAband = O(n+n∗ r) = O(n∗ r). Moreover, the time complexity of the Best solution
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improvement procedure which needs a number of n ∗ r ∗ l calculations to select the best solution
among the l evaluated neighborhood ones per each IDFPA iteration is CompImpro = O(n∗ r ∗ l). As a
result, the overall time complexity of IDFPA under maxItr iterations is CompInitPop +CompEvalPop +

maxItr∗(CompGlobalPol/LocalPol +CompAband +CompImpro) =O
(
n∗z+n∗r∗z+maxItr∗(n∗r∗z+

n∗ r+n∗ r ∗ l)
)
= O

(
maxItr ∗n∗ r ∗ (z+ l)

)
.

4 Experimental results
In this section, the obtained performance results of the proposed IDFPA in solving QSCFIoT with

different scales are compared to ones that were obtained by some other nature-inspired optimization
algorithms, including EFPA Zhang et al. [2019b], PSO Wang et al. [2013] and ITL-QCA Khanouche
et al. [2020a]. For coherent results compared to the originals ones, all the compared algorithms with
their parameters setting as presented in Table 5.4 have been implemented with MATLAB R2016b
under Windows 7 and performed on the same personal computer having an Intel(R) Core(TM) i5-4570
(3.20GHZ) and 4 GB RAM. The three used performance metrics to compare IDFPA, EFPA, PSO and
ITL-QCA are described as follows :

— Composition time : measures the time taken by a specific algorithm to identify the optimal
Composite of IoT-Services (CS) when solving an instance of the QoS-aware IoT Service
Composition (QSCFIoT) problem with an experimental dataset. This metric is crucial for
evaluating the efficiency and speed of an algorithm in addressing the composition problem. In
experimental scenarios, the composition time serves as a key indicator, helping researchers
gauge the algorithm’s responsiveness and suitability for handling complex user requests and
large datasets.

— Composition optimality : assesses the quality of the best feasible Composite of IoT-Services
(CSbest) found by a given algorithm in terms of its fuzzy utility value for a solved instance of the
QoS-aware IoT Service Composition (QSCFIoT) problem using an experimental dataset. The
fuzzy utility value represents the overall goodness or desirability of the composed IoT-services,
considering both benefit and cost criteria. It is a comprehensive measure that accounts for the
trade-off between various QoS parameters, such as availability, throughput, response time,
and price. The higher the fuzzy utility value of CSbest , the better the quality of the composed
solution.

— Composition stability : quantifies the fuzzy variance ( ˜var) for a set of n fuzzy utility values
of CSbest instances. These instances are obtained by a compared algorithm when solving an
experimental dataset instance of the QoS-aware IoT Service Composition (QSCFIoT) problem
for n independent running times. The fuzzy variance, as expressed in Equation 5.14, provides
a measure of the variability or dispersion in the fuzzy utility values of the best-composed
solutions across multiple runs. A lower fuzzy variance indicates greater stability, suggesting
that the algorithm consistently produces solutions with similar fuzzy utility values under
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different experimental conditions.

˜var =
1

n−1
⊗ ˜

∑
n

i=1

(
C̃Si,best ⊖ ˜avg

)
⊗
(
C̃Si,best ⊖ ˜avg

)
(5.14)

, where C̃Si,best = Ũ(CSi,best) is the ith fuzzy utility value evaluated by Equation 5.1 of the
ith obtained CSi,best and ˜avg = 1

n ⊗ ∑̃
n
i=1C̃Si,best is the average fuzzy value of the n calculated

C̃Si,bests.

TABLE 5.4 Parameters setting of the compared algorithms

Algorithm Parameters setting
PSO Wang et al. [2013] The accelerations factors C1 and C2 are

set with a value of 2.0 and the inertia weight
w is set to 0.8

EFPA Zhang et al. [2019b] The step size of the adaptive switch probability δ

is set to 0.2
ITL-QCA Khanouche et al. [2020a] The learning probability Pc is set to 0.8

and the number of iterations to rearrange learners Pm
is set to 80

Proposed The switch probability P is set to 0.8, the number
of iterations for the abandoned solutions Limit is set

IDFPA to 80 and the number of neighborhood solutions
positions L is set to 3

For all the compared algorithms, the population size is set to 40 and the maximum
number of solutions evaluations is set to 50000

4.1 Experimental datasets design

Following the experimental dataset design outlined in reference Khanouche et al. [2020a], we
have generated various instances of the QoS-aware Service Composition for IoT (QSCFIoT) problem
using two datasets : (1) QWS dataset and (2) Random dataset. The QWS dataset, sourced from Guelph
University by Eyhab Al-Masri, comprises 2507 real web services with consideration for 09 QoS
parameters Al-Masri and Mahmoud [2008]. Conversely, the random dataset is synthetically created
to simulate a large-sized dataset of 250,000 IoT services, as the QWS dataset is relatively small. In
line with Section 1, where the QSCFIoT problem is detailed, only four QoS parameters—availability
(qavail), throughput (qthrpt), response time (qtime), and price (qprice)—with identical QoS weights and
priorities are considered to generate the fuzzy QoS values for each IoT service in both the QWS and
Random datasets, as presented below :
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— Fuzzy QoS values generation of the QWS dataset
For each web service Si={1,2,...,2507} ∈ QWS :

S̃i,qavail = Si,qavail ⊗ R̃, S̃i,qthrpt = Si,qthrpt ⊗ R̃,
S̃i,qtime = Si,qtime⊗ R̃ and S̃i,qprice = rndqprice⊗ R̃

— Fuzzy QoS values generation of the Random dataset
For each simulated IoT-service Si={1,2,...,250000} :

S̃i,qavail = rndqavail ⊗ R̃, S̃i,qthrpt = rndqthrpt ⊗ R̃,
S̃i,qtime = rndqtime⊗ R̃ and S̃i,qprice = rndqprice⊗ R̃

Where :
Si,qavail , Si,qthrpt and Si,qtime are the crisp QoS values of the ith web service from QWS in the qavail ,

qthrpt and qtime attributes, respectively. Since the QWS does not have the price parameter, hence each
fuzzy QoS value S̃i,qprice of the QWS/Random datasets is generated using a random generated price
value rndqprice from the range [2,5]$. Moreover, rndqavail , rndqthrpt and rndqtime are three random crisp
QoS values that are drawn from the ranges [0.70,0.90], [10,90] and [7,4], respectively, and have been
used to generate the other fuzzy QoS values of the Random dataset (i.e., S̃i,qavail , S̃i,qthrpt and S̃i,qtime).
R̃ = (0.8,r1,r2,1.1;w) is a random generated GTrFN by the three real numbers r1,r2 and w that are
randomly drawn from the interval [0.9,1] with r1≤ r2.

The experimental datasets instances of solving each abstract composite IoT-services ACSm
n with

sequential composition structure of n IoT-services classes per m functionally equivalent IoT-services
using the QWS and the Random datasets are denoted by QWSm

n and RNDm
n , respectively.

4.2 Performance comparisons

To assess the performance of IDFPA, a comprehensive statistical experiment is conducted, invol-
ving variations in the number of IoT-services classes (n) and the number of functionally equivalent
IoT-services (m) within each class. The experiment comprises the solution of five small-sized QWSm

n

instances and five large-sized RNDm
n instances, with each algorithm undergoing 50 independent runs

for each QWSm
n /RNDm

n instance.
Given the stochastic nature of the algorithms under comparison, multiple runs are essential to

capture the variability in their performance. By conducting 50 independent runs for each instance,
the obtained results are subjected to a robust statistical analysis. The performance of the compared
algorithms is then evaluated using the three aforementioned metrics for performance comparison.
This rigorous experimental design ensures a comprehensive and reliable assessment of IDFPA across
different scenarios, providing insights into its effectiveness under varying conditions.
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4.2.1 Composition optimality and composition stability comparisons

The fuzzy average value, fuzzy best value, and fuzzy worst value of the fuzzy utility values for the
obtained feasible CSbests by the compared algorithms in solving each instance of the five QWSm

n s and
the five RNDm

n s per 50 independent running times are reported in Table 5.5 and Table 5.7, respectively.
Additionally, the fuzzy variances of the obtained CSbests per each QWSm

n /RNDm
n by the compared

algorithms are listed in Table 5.6 and Table 5.8, respectively.
Analyzing the results for the QWSm

n instances in Table 5.5, IDFPA exhibits superior composition
optimality compared to the other algorithms. Specifically, IDFPA achieves higher fuzzy best utility va-
lues in 3 out of 5 cases, higher fuzzy worst utility values in all 5 cases, and higher fuzzy average utility
values in 4 out of 5 cases. Turning to the RNDm

n instances in Table 5.7, all fuzzy best/worst/average
utility values of the obtained feasible CSbests by IDFPA surpass those of the compared approaches.

Regarding composition stability, the fuzzy variances of IDFPA in solving the QWSm
n instances

(as shown in Table 5.6) outperform those of the compared algorithms. Similarly, in Table 5.8, which
lists the composition stability results for the five RNDm

n instances, ITL-QCA exhibits the best fuzzy
variances in 3 out of 5 cases, IDFPA achieves the best fuzzy variances in 2 out of 5 cases, and EFPA
and PSO do not achieve the best fuzzy variances in any of the 5 cases.

Furthermore, the convergence curves associated with the average Mid-Supports of the fuzzy utility
values of the obtained feasible CSbests by the compared algorithms in solving the QWS100

25 and the
RND8334

30 instances over 50 runs are depicted in Fig. 5.2.
For a fair comparison, each compared algorithm is executed to solve each of the two instances

per run for a fixed time limit of 15 seconds. The convergence curves in Fig. 5.2 vividly demonstrate
that IDFPA achieves a superior convergence rate compared to EFPA, PSO, and ITL-QCA algorithms.
The notable improvement in convergence rate for IDFPA can be attributed to its integration of the
"Best solution improvement" procedure, which retains improved CS solutions, and its utilization of
the "Discard abandoned solutions positions" procedure, enhancing its exploration search for more
desirable solutions.

It can be concluded from this comparison discussion that IDFPA have better composition optima-
lity and convergence rate as well as higher stability than the compared algorithms for solving both the
real and the synthetic fuzzy datasets instances.
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TABLE 5.6 Composition stability comparisons for five QWSm
n s instances

QWSm
n Algorithm Fuzzy variance

IDFPA (-0.0741,-4.6962e−04,5.4591e−04,0.0758 ;0.9016)
QWS501

5 EFPA (-0.0748,-4.9972e−04,6.3488e−04,0.0768 ;0.9013)
PSO (-0.0615,-5.5436e−04,0.0011,0.0658 ;0.9001)

ITL-QCA (-0.0828,-8.0784e−04,0.0012,0.0855 ;0.9016)
IDFPA (-0.0827,-5.7861e−04,7.9728e−04,0.0844 ;0.9041)

QWS250
10 EFPA (-0.0810,-5.2021e−04,0.0012,0.0859,0.9018)

PSO (-0.0581,-3.6168e−04,0.0014,0.0632 ;0.9001)
ITL-QCA (-0.0498,-4.1254e−04,8.0159e−04,0.0532 ;0.9013)

IDFPA (-0,0724,-2.9728e−04,5.0072e−04,0.0743 ;0.9001)
QWS167

15 EFPA (-0.0706,-2.8371e−04,5.5548e−04,0.0733 ;0.9001)
PSO (-0.0391,-1.6165e−04,6.2049e−04,0.0428 ;0.9000)

ITL-QCA (-0.0424,-1.9645e−04,4.9341e−04,0.0450 ;0.9001)
IDFPA (-0.0552,-2.5551e−04,3.3119e−04,0.0564 ;0.9010)

QWS125
20 EFPA (-0.0548,-1.8979e−05,0.0010,0.0592 ;0.9010)

PSO (-0.0271,-1.3855e−04,3.6030e−04,0.0315 ;0.9006)
ITL-QCA (-0.0201,-5.0292e−05,3.9723e−04,0.0221 ;0.9002)

IDFPA (-0.0483,-1.0784e−04,2.5789e−04,0.0494 ;0.9006)
QWS100

25 EFPA (-0.0469,-4.8811e−05,3.9553e−04,0.0497 ;0.9004)
PSO (-0.0085,2.9974e−05,2.8760e−04,0.0104 ;0.9001)

ITL-QCA (-0.0121,-5.0810e−05,2.0072e−04,0.0133 ;0.9003)
For each QWSm

n , the better fuzzy value among the ones of the compared algorithms
is in bold.
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TABLE 5.8 Composition stability comparisons for five RNDm
n s instances

RNDm
n Algorithm Fuzzy variance

IDFPA (-0.1587,-0.0014,0.0015,0.1591 ;0.9023)
RND25000

10 EFPA (-0.1567,-0.0015,0.0017,0.1592 ;0.9001)
PSO (-0.1335,-0.0014,0.0018,0.1378 ;0.9001)

ITL-QCA (-0.1482,-0.0015,0.0018,0.1514 ;0.9001)
IDFPA (-0.1552,-8.7115e−0.4,0.0013,0.1588 ;0.9013)

RND12500
20 EFPA (-0.1442,-7.2699e−0.4,0.0015,0.1506 ;0.9001)

PSO (-0.0776,-5.3979e−0.4,0.0012,0.0816 ;0.9001)
ITL-QCA (-0.1071,-6.2693e−0.4,0.0010,0.1123 ;0.9001)

IDFPA (-0.1475,-5.4027e−0.4,0.0012,0.1537 ;0.9002)
RND8334

30 EFPA (-0.1241,-4.1049e−0.4,0.0011,0.1300 ;0.9000)
PSO (-0.0551,-2.5838e−0.4,0.0011,0.0610 ;0.9000)

ITL-QCA (-0.0721,-3.4219e−0.4,7.3102e−0.4,0.0757 ;0.9000)
IDFPA (-0.1436,-2.4438e−0.4,0.0010,0.1515 ;0.9000)

RND6250
40 EFPA (-0.0883,-2.6465e−0.4,0.0011,0.0970 ;0.9000)

PSO (-0.0314,-6.4843e−0.5,0.0013,0.0377 ;0.9000)
ITL-QCA (-0.0506,-3.7136e−0.4,7.2058e−0.4,0.0541 ;0.9001)

IDFPA (-0.1275,-1.7232e−0.4,8.7794eI.−0.4,0.1362,0.9001)
RND5000

50 EFPA (-0.0423,-7.0779e−0.5,0.0015,0.0479 ;0.9000)
PSO (-0.0309,-2.5464e−0.4,8.5049e−0.4,0.0345 ;0.9000)

ITL-QCA (-0.0412,-3.0229e−0.4,7.3218e−0.4,0.0445,0.9000)
For each RNDm

n , the better fuzzy value among the ones of the compared algorithms
is in bold.

4.2.2 Composition time comparisons

The average composition times taken by each compared algorithm to solve each instance of the
five QWSm

n and the five RNDm
n scenarios over 50 independent runs are illustrated in Fig. 5.3 and Fig.

5.4, respectively.
As evident from the two figures, the composition times of PSO are slightly lower compared to

those of IDFPA when solving fuzzy dataset instances with a small number of IoT-services classes
n, as indicated by the bar graphs of the QWSm

n and the RNDm
n with n≤ 20. However, as the number

of IoT-services classes n increases, illustrated by the bar graphs of the QWSm
n and the RNDm

n with
n≥ 25, IDFPA outperforms PSO in terms of speed. One of the key factors contributing to IDFPA’s
superior speed in solving ACSs with large compositions of IoT-services is the implementation of
Discrete Global/Local Pollination procedures, which employ simple integer operations to update
only one position among n positions in each CS solution for each iteration cycle of IDFPA. This
stands in contrast to PSO, which updates all positions in each iteration. Furthermore, IDFPA exhibits
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FIGURE 5.2 The convergence curves associated to the average Mid-Supports of the fuzzy
utilities values of the obtained feasible CSbests by the compared algorithms in solving the
QWS100

25 and the RND8334
30 instances over 50 runs (For colors see online version).
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FIGURE 5.3 Composition time comparisons of IDFPA, EFPA, PSO and ITL-QCA algorithms
in solving five QWSm

n s (For colors see online version).

significantly faster performance than both EFPA and ITL-QCA in solving all the fuzzy real and
synthetic dataset instances.

From this discussion, we can conclude that IDFPA demonstrates superior composition times
compared to those of the compared algorithms, particularly when solving an ACS with a substantial
number of IoT-services classes.
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5 Conclusion
In this chapter, a novel approach is proposed to tackle the uncertainty in QoS-aware IoT service

composition, a problem known to be NP-hard. The approach combines two key modules : a fuzzy
skyline-based module and an improved discrete flower pollination algorithm (IDFPA). The Genera-
lized Trapezoidal Fuzzy Numbers are employed to represent the ambiguity inherent in QoS values.
The problem is formalized as a fuzzy constrained single-objective optimization model, denoted as
QoS-aware Service Composition for IoT (QSCFIoT).

The combined approach, integrating both components, is introduced to effectively address the
formulated QSCFIoT. The fuzzy-based skyline module plays a crucial role in reducing the search
space by eliminating redundant and dominated IoT services from sets of functionally equivalent ones.
The IDFPA is then applied to explore the reduced search space and seek near-optimal composite
services for QSCFIoT, leveraging an effective best solution improvement method.

To validate the performance of IDFPA, experiments are conducted using a fuzzy extended version
of the public QWS dataset and a random dataset. The results highlight the efficiency of our proposed
approach in terms of Composition Time, Composition Optimality, and Composition Stability when
compared to existing methods such as the extended flower pollination algorithm, Particle Swarm
Optimization, and an improved teaching-learning-based QoS-aware services composition algorithm.



Chapter 6

Collaborative Filtering Techniques for
Predicting Web Service QoS Values in
Static and Dynamic Environments : A
Systematic and Thorough Analysis

1 Introduction
Over the past decades, the rapid expansion of the World Wide Web has driven a significant

increase in online services. Research in this area has covered various aspects, including Web Service
(WS) selection and composition Zeng et al. [2004], which involves employing optimization algorithms
to identify the best services from a set of candidates, forming efficient execution paths for clients.
Additionally, studies have explored WS recommendation Zheng et al. [2010a] and WS discovery Ran
[2003], the latter focusing on retrieving candidate services that align with the functional requirements
of specific workflow tasks. Each WS exhibits both functional and non-functional attributes during
invocation. Prior research has predominantly emphasized Quality of Service (QoS) parameters such
as response time, throughput, and cost, as these non-functional attributes significantly impact WS
performance Jatoth et al. [2015].

QoS attributes are generally categorized into subjective and objective attributes. Subjective
attributes—such as cost and reputation—are influenced by user opinions and service evaluations,
while objective attributes, including response time and availability, remain independent of user
preferences Ma et al. [2015]. Furthermore, QoS parameters can be classified as static or dynamic,
with static attributes like cost remaining unchanged, whereas dynamic attributes, such as response
time, fluctuate based on system conditions Syu et al. [2017]. In QoS-aware WS composition, objective
and dynamic attributes are typically more relevant Ghafouri et al. [2020].
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During composition, multiple abstract services can be instantiated by selecting suitable candidates
from equivalent functional sets. However, many studies assume that QoS values remain uniform for
all users, which is not always realistic. Factors such as internet topology changes, system congestion,
and economic policies can cause QoS variations Razian et al. [2020]. As a result, key parameters
like reputation, response time, and throughput may differ among users. Evaluating WSs from the
user’s perspective is therefore crucial. However, relying on service providers for QoS values is often
impractical due to inconsistencies caused by network conditions, geographical location, and invocation
time. At the same time, user-based evaluation is inefficient, as it is resource-intensive, costly, and
unreliable due to fluctuations in QoS values and the limitations of individual user observations Zheng
et al. [2010a].

Given these challenges, an effective approach for determining QoS values is essential, making
personalized WS QoS prediction (WSQP) increasingly important in QoS-aware WS applications.
Collaborative Filtering (CF), a widely used technique in recommender systems, has been extensively
applied to WSQP. CF-based QoS prediction techniques leverage user and service interactions to
generate personalized QoS value predictions, improving accuracy and adaptability Zheng et al. [2020].
CF approaches are typically classified into memory-based, model-based, and context-aware techniques
Zheng et al. [2020], Ghafouri et al. [2020]. The introduction of CF in personalized QoS prediction
was pioneered by Shao et al. [2007], and since then, numerous researchers have adopted and expanded
upon this methodology for WSQP studies.

As research in this field has grown, several surveys have emerged, analyzing CF-based methods
for WSQP Ghafouri et al. [2020], Shao et al. [2007], Ning et al. [2015], Desrosiers and Karypis [2011],
Su and Khoshgoftaar [2009], Zheng et al. [2020]. However, the classification of these approaches
remains an evolving area, with new techniques continuously being introduced.

CF-based techniques operate by leveraging collaborative data—utilizing user experiences and ser-
vice behavior—to predict QoS attributes. This survey systematically categorizes CF-based approaches
according to their distinct characteristics and methodologies, highlighting their effectiveness in both
static and dynamic environments Tong et al. [2021], Herlocker et al. [2004]. Static environments are
characterized by relatively stable parameters, whereas dynamic environments involve fluctuating net-
work conditions and evolving user behaviors, both of which significantly impact QoS Yan et al. [2022].
The chapter also examines the role of fuzzy logic tools, which address uncertainty and imprecision in
QoS data. These tools enhance WSQP accuracy by incorporating real-world uncertainties, resulting
in more robust and adaptive predictions Chen et al. [2020b]. Furthermore, the survey presents an
overview of the WS QoS datasets utilized for WSQP evaluation, comparing their characteristics and
contributions to state-of-the-art studies.

The remainder of this chapter is structured as follows : Section 2 introduces Collaborative
Filtering (CF) and its related subtopics, forming the foundation of our study. Section 3 defines the
WSQP problem and outlines the motivation behind our research. Additionally, Section 4 provides
a classification of recent and influential CF-based research. The approaches reviewed in Section 4
are then analyzed in detail in Section 5, covering their strengths and limitations. Section 6 discusses
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potential improvements and directions for future research. Finally, Section 7 summarizes the key
findings and implications of this study.

2 Preliminaries on Collaborative Filtering and Classical
Prediction Methods

This section provides a foundational overview of Collaborative Filtering (CF), a critical tech-
nique in Web Service QoS Prediction (WSQP). It introduces fundamental concepts related to
Recommendation Systems (RS), Collaborative Filtering, and the classical prediction methods
commonly employed in this field.

2.1 Recommendation Systems (RS)

Recommendation Systems (RSs) are designed to provide personalized suggestions by analyzing
user preferences and historical interactions. These systems leverage intelligent algorithms to predict
user interests and recommend relevant items based on item attributes and past user behavior Mashal
et al. [2016]. RSs play a crucial role in decision-making processes, such as product recommendations
in e-commerce or book suggestions in digital libraries Adomavicius and Tuzhilin [2011], Ricci et al.
[2011].

2.2 Collaborative Filtering (CF)

Collaborative Filtering (CF) is a widely used technique for predicting user preferences by
analyzing shared behaviors among users. It operates under the assumption that users with similar
interests are likely to prefer similar items Lo et al. [2012a]. For instance, if a user group shares
common preferences for specific items, CF can recommend items they have not yet encountered Tong
et al. [2021], Herlocker et al. [2004]. CF approaches are broadly categorized into three main groups :
Memory-based methods, Model-based methods, Context-based methods

2.3 Memory-Based Approaches

Memory-based CF methods identify the top K most similar users in the dataset and utilize their
ratings to predict missing values for an active user. This process involves two fundamental steps :

1. Identifying similar users or items based on rating patterns.

2. Aggregating these ratings to generate predictions Xue et al. [2005].

Memory-based CF techniques can be further divided into the following categories :
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2.3.1 Item-Based Methods

These methods analyze similarities between items based on user ratings. The assumption is
that if a user has shown interest in a particular item, they are likely to prefer other items with similar
characteristics Singh et al. [2020a, 2021b]. For example, in service recommendations, an item-based
CF approach might suggest web services with functionalities similar to those previously selected by
the user.

2.3.2 User-Based Methods

This approach focuses on the relationships between users rather than items. By measuring
the similarity between users’ rating histories, it recommends items favored by users with similar
preferences Singh et al. [2020a, 2021b]. This technique assumes that if two users have a history of
similar ratings, one user is likely to appreciate items recommended by the other.

2.3.3 Hybrid Filtering (HF) Methods

Hybrid filtering methods combine item-based and user-based approaches to enhance prediction
accuracy. These methods mitigate issues such as cold-start problems, which arise when new users or
items lack sufficient interaction history Burke [2007]. By leveraging both user and item similarities,
hybrid approaches offer more reliable and adaptive recommendations.

2.4 Model-Based Approaches

Model-based CF techniques group users with similar rating behaviors into predefined classes.
These approaches classify the active user into an appropriate class and use the ratings from that class
to predict unknown preferences Xue et al. [2005]. Instead of relying on direct similarity measurements,
model-based approaches leverage machine learning techniques, such as latent factor models and
neural networks, to uncover hidden patterns in user interactions.

2.5 Context-Based Approaches

Context-based CF methods make recommendations by considering a user’s historical prefe-
rences and contextual factors. These approaches analyze item characteristics, user interactions,
and service metadata to generate more relevant recommendations. In Web Services (WS) selec-
tion, context-based filtering incorporates elements such as service descriptions, user reviews, QoS
parameters, and past interactions to enhance prediction accuracy Burke [2007], Yu et al. [2023].
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2.6 The Role of Collaborative Filtering in WSQP

It is important to note that CF techniques are not mutually exclusive, and many methods combine
different approaches to enhance performance. The diversity in CF-based methods for WSQP reflects
the varying strategies used to address the challenges of QoS prediction in both static and dynamic
environments.

2.6.1 Collaborative Filtering in WSQP Research

Studies have identified CF as a powerful tool for WSQP. Several reviews have provided compre-
hensive analyses and classifications of CF-based approaches in WSQP research Ghafouri et al. [2020],
Shao et al. [2007], Ning et al. [2015], Desrosiers and Karypis [2011], Su and Khoshgoftaar [2009],
Zheng et al. [2020].

2.6.2 Contributions of RSs to WSQP

Recommendation systems contribute significantly to WSQP, particularly in addressing challenges
in static and dynamic service environments. Their impact can be observed in the following areas :

— Personalized Service Selection : RSs provide tailored recommendations by analyzing user
preferences and historical interactions. By considering unique user needs and prior experiences,
RSs predict which web services best meet specific QoS requirements, assisting users in
service selection.

— QoS Prediction : RSs leverage multiple QoS attributes—such as response time, availability,
reliability, and throughput—to assess WS performance. By analyzing historical QoS data
and user feedback, these systems predict QoS values for services that users have not yet
invoked.

— Adaptation to Dynamic Environments : In dynamic environments, QoS values fluctuate
due to network congestion, service load, and user demand. RSs dynamically update their
predictions using real-time data, ensuring that recommendations reflect the most current
service conditions.

— Feedback-Based Improvements : RSs collect and analyze user feedback on recommended
services. This feedback loop is essential for refining future predictions and enhancing the
accuracy of WSQP models over time.

3 Formulation of the WSQP problem
In this section, we delve deep into the rationale behind employing the WSQP, providing compre-

hensive textual and mathematical explanations of the QoS prediction problem.
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3.1 Motivation of QoS prediction usage

The motivation for addressing the WSQP problem in both static and dynamic environments stems
from the need to enhance the performance, reliability, and user satisfaction of web-based applications
and services. Accurate WSQP optimizes system performance, leading to better decisions regarding
service selection and composition, which in turn reduces response time during WS invocations.
Properly predicted QoS values aid in selecting and recommending services that best meet users’ end-
to-end requirements. Additionally, QoS-aware WS composition is easily achieved by meeting specific
local and global criteria, ensuring reliable and efficient service delivery. In dynamic environments,
where service invocation conditions may change over time, WSQP becomes crucial for adapting to
these changes. Therefore, continuous monitoring and prediction of QoS values are essential.

3.2 Textual description of the WSQP problem

QoS attributes of WSs should be evaluated separately, distinguishing between static and dynamic
characteristics. Static attributes, such as price, remain constant and pose no challenges since they
are identical for all users. Static QoS prediction methods are relatively straightforward due to the
invariant nature of static attributes. Regression analysis and rule-based models are often sufficient
for these predictions, as they rely on consistent input-output relationships. For example, a linear
regression model can accurately predict a static QoS value based on historical data. Additionally,
rule-based approaches can be used to assign static QoS attributes directly from service descriptions,
minimizing computational complexity. These methods are computationally efficient and well-suited
for environments with minimal variability in QoS parameters. However, dynamic QoS attributes, like
response time and availability, vary by user and require careful handling.

To address this issue, a user-service matrix can be employed to evaluate dynamic QoS attributes
and predict missing values. This matrix represents users as rows, dynamic QoS attributes as columns,
and corresponding QoS values in the cells. Techniques like CF, Matrix Factorization (MF), or Machine
Learning (ML) algorithms can predict missing values, enhancing the evaluation of dynamic QoS
attributes.

Static QoS attributes are fixed values applicable to all users and need no further analysis. In
contrast, dynamic QoS attributes fluctuate based on user interactions and external factors like topologi-
cal changes and system congestion. Capturing these variations accurately is crucial, and a user-service
invocation matrix can help manage and analyze dynamic QoS data efficiently.

By using a matrix-based approach, we can handle dynamic QoS data for multiple users and
services, predict missing values accurately, and improve the overall evaluation of dynamic QoS
attributes.
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3.3 Mathematical Description of the WSQP Problem

Let’s consider a QoS prediction framework centered around a user-service matrix (U,S) designed
to capture dynamic QoS attributes. The system is formally characterized as follows :

— U = {u1,u2, ...,um} : Set of m service users where ui represents an individual user (1≤ i≤ m)

— S = {s1,s2, ...,sn} : Set of n functionally equivalent web services (1≤ j ≤ n), meaning they
provide identical operational capabilities but may differ in QoS characteristics

— Mm×n : User-Service Invocation Matrix, where

M = {mi j} , with mi j =

1 if ui invoked s j

0 otherwise
(6.1)

Real-world matrices exhibit extreme sparsity (up to 99% ) due to limited user-service interactions
Guo [2012]. Our goal is to predict missing QoS values using CF techniques while handling this data
sparsity challenge.

QoS Parameter Definitions For each observed user-service pair (ui,s j), we measure four key
QoS attributes :

— Ri j : Response time (ms) which represents latency between request and response

— Ti j : Throughput (req/s) is defined as requests processed per second

— Ai j : Availability (%) is seen as operational uptime probability

— Pi j : Reliability (%) represents success rate of request processing

Optimization Objectives Formulation To enable multi-criteria decision making, an objective
function is defined for each QoS parameter :

— Response time minimization (lower values preferred) :

f1(ui,s j) = Ri j (6.2)

— Throughput maximization (higher values preferred, thus negated for minimization) :

f2(ui,s j) =−Ti j (6.3)

— Availability maximization (higher values preferred, negated) :

f3(ui,s j) =−Ai j (6.4)

— Reliability maximization (higher values preferred, negated) :

f4(ui,s j) =−Pi j (6.5)
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Multi-Objective Optimization Framework The QoS-aware service selection problem is
formulated as :

Minimize f(ui,s j) = [ f1(ui,s j), f2(ui,s j), f3(ui,s j), f4(ui,s j)]

Subject to (ui,s j) ∈U×S

mi j = 1 (considering only observed interactions)

(6.6)

Pareto Optimality Criterion A solution (ui,s j)
∗ is Pareto optimal if no other solution (uk,sl)

satisfies :
∀i ∈ {1,2,3,4} : fi(uk,sl)≤ fi((ui,s j)

∗)

with ∃i ∈ {1,2,3,4} : fi(uk,sl)< fi((ui,s j)
∗)

(6.7)

This means no alternative service provides equal or better performance across all QoS dimensions
without degrading at least one parameter.

Weighted Aggregation Approach To handle multiple objectives, a scalarization technique with
user-defined preferences is employed :

Minimize F(ui,s j) =
4

∑
k=1

wk fk(ui,s j) (6.8)

Where wk ≥ 0 are weights satisfying ∑wk = 1, reflecting relative importance of each QoS attribute.

Parameter Normalization To address scale differences between QoS parameters (e.g., millise-
conds vs percentages), min-max normalization is applied :

f̂k(ui,s j) =

fk(ui,s j)−min
(u,s)

fk

max
(u,s)

fk−min
(u,s)

fk
(6.9)

Normalized objectives are then combined as :

Minimize F̂(ui,s j) =
4

∑
k=1

wk f̂k(ui,s j) (6.10)

Illustrative Example

Let’s consider 2 users and 3 services with QoS parameters recorded in Table 6.1. Missing values
(marked ’?’) correspond to unobserved interactions in matrix M :

Moreover, the following invocation matrix is considered for these two users and three services.
In this matrix, a value of 0 indicates that the service was not invoked by the user, while a value of 1
signifies that the service was invoked. The columns represent the users, and the rows represent the
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TABLE 6.1 QoS Parameters with Missing Values ( ?)

User ui Service s j Ri j(ms) Ti j(req/s) Ai j(%) Pi j(%)
u1 s1 200 50 0.95 0.98
u1 s2 300 40 0.90 0.95
u1 s3 ? ? ? ?
u2 s1 210 55 0.94 0.99
u2 s2 ? ? ? ?
u2 s3 240 48 0.91 0.95

services.

M =

[
1 1 0
1 0 1

]
(6.11)

The following steps outline the calculated scores for services s2 and s3 corresponding to users u1 and
u2, respectively.

Stp. 1 : Normalization Calculations :Using only observed values from Table 6.1 :

— Response Time : minR = 200, maxR = 300

— Throughput : minT = 40, maxT = 55

— Availability : minA = 0.90, maxA = 0.95

— Reliability : minP = 0.95, maxP = 0.99

Example normalization for (u1,s1) :

R̂11 =
R11−min(Ri j)

max(Ri j)−min(Ri j)
= 200−200

300−200 = 0

T̂11 =
T11−min(Ti j)

max(Ti j)−min(Ti j)
= 50−40

55−40 = 10
15 = 0.67

Â11 =
A11−min(Ai j)

max(Ai j)−min(Ai j)
= 0.95−0.90

0.95−0.90 = 1

P̂11 =
P11−min(Pi j)

max(Pi j)−min(Pi j)
= 0.98−0.95

0.99−0.95 = 0.03
0.04 = 0.75

Stp. 2 : Weighted Sum Evaluation : Assuming the weight vector [0.4,0.3,0.2,0.1], which reflects the
priorities of the four considered QoS attributes, we obtain :
F(u1,s1) = 0.4(0)+0.3(0.67)+0.2(1)+0.1(0.75) = 0.476
Full calculations yield comparative scores :

— F(u1,s1) = 0.476, F(u1,s2) = 0.400

— F(u2,s1) = 0.600, F(u2,s3) = 0.359

Stp. 3 : Optimal Service Selection :

— User u1 : Service s2 (min score 0.400)

— User u2 : Service s3 (min score 0.359)

This example demonstrates how normalized QoS parameters and weighted aggregation enable sys-
tematic service selection despite missing data. Contemporary research continues to refine these
CF-based approaches to improve prediction accuracy and handling of sparse matrices.
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4 Collaborative Filtering techniques
To understand the WSQP problem, the following questions are posed, and their answers could

facilitate a clearer understanding of the issue at hand.

— RQ1 : What is the distinction between static and dynamic environments in web services?

— RQ2 : Why is it important to differentiate between static and dynamic environments when
predicting QoS?

— RQ3 : What are the commonly used prediction models and algorithms in static QoS prediction ?

— RQ4 : How do these models adapt to dynamic QoS prediction?

To effectively address the aforementioned questions, the initial phase of our research involved
conducting a comprehensive literature survey to identify pertinent keywords related to CF techniques
for WSQP. These keywords played a crucial role in facilitating targeted searches across multiple
academic databases, ensuring the relevance of retrieved publications. We identified 31 keywords,
categorized into domains such as static and dynamic environments, paper types, and contextual
information (see Table 6.2). This categorization ensured a systematic and exhaustive exploration of
the literature.

The initial visualization of keyword co-occurrence network generated using VOS Viewer 1 (See
Figure 6.1) highlighted key research themes in WSQP. At this stage, it informed us about further
refinement of inclusion criteria and provide an intuitive overview of key research themes before full-
text eligibility assessment.Subsequently, it helped to aligning closely with the categorized keywords
presented in Table 6.2. Core domain terms such as "Web Services", "Quality of Service (QoS)", and
"Prediction Models" appear centrally in the visualization, reflecting their foundational role in the
field. Keywords related to static environments, including "Feature Engineering", "Feature Selection",
"Historical Data", and "Regression Models" are well-represented, indicating their significance in
offline QoS prediction. Similarly, dynamic environment terms such as "Real-time QoS", "Time-Series
Prediction", and "Adaptive Models" are interconnected, emphasizing the growing focus on real-time
and adaptive QoS forecasting. The network further reveals strong associations with "Deep Lear-
ning", "Forecasting", and "Optimization" underscoring the increasing reliance on machine learning
techniques for QoS prediction. Subsequently, the connections in the network helped to refine the
categorization in Table 6.2, illustrating the interplay between static and dynamic QoS prediction
methodologies while reinforcing the field’s emphasis on predictive analytics and adaptive modeling.
As for the remainder of the selected keywords that do not show in this visualization, they were
taken into consideration using Google Scholar due to the fact that the bibliometric datasets used for
visualization are limited and do not contain all the needed keywords and information.

Moreover, to systematically retrieve relevant studies on WSQP, we formulated a set of search
strings based on the retrived keywords and key concepts. Table 6.3 presents the most relevant search
strings used to query academic databases.

1. https ://www.vosviewer.com/getting-started
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FIGURE 6.1 Keyword Co-Occurrence Network for Web Services QoS Prediction Research

TABLE 6.2 Keywords for Web Services QoS Prediction

Types of keywords Lists of keywords
Domain Web Service,Quality of Service, QoS Prediction, Dynamic

QoS Prediction, Static QoS Prediction, Collaborative Filte-
ring

Static environment Static QoS, Offline Prediction, Historical Data, Static Analy-
sis, Static Evaluation, Regression Models, Feature Enginee-
ring

Dynamic environment Dynamic QoS Prediction, Real-time QoS, QoS Adaptation,
QoS Variation, QoS Dynamics, Online QoS, Temporal QoS,
Dynamic Service Quality, Time-Series Prediction, Dynamic
Adaptability, Adaptive Models

Paper types Conference, Proceedings, Review
Other Web service data-sets, evaluation metrics, contextual infor-

mation, contextual prediction
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TABLE 6.3 Search Strings for Web Services QoS Prediction Across Different Databases

Database/Focus Search String
IEEE Xplore / ACM
Digital Library

("Web Service" OR "Quality of Service" OR "QoS Prediction"
OR "Dynamic QoS Prediction" OR "Static QoS Prediction") AND
("Collaborative Filtering" OR "Time-Series Prediction" OR "Machine
Learning" OR "Deep Learning") AND ("Static QoS" OR "Offline
Prediction" OR "Historical Data" OR "Feature Engineering"
OR "Dynamic QoS" OR "Adaptive Models" OR "Real-time QoS" OR
"Context-aware QoS")

Scopus (Title, Abstract,
Keywords)

TITLE-ABS-KEY(("Web Service" OR "Quality of Service" OR "QoS
Prediction" OR "Dynamic QoS Prediction" OR "Static QoS Prediction")
AND ("Collaborative Filtering" OR "Time-Series Prediction" OR
"Machine Learning" OR "Deep Learning") AND ("Static QoS" OR
"Offline Prediction" OR "Historical Data" OR "Feature Engineering"
OR "Dynamic QoS" OR "Adaptive Models" OR "Real-time QoS" OR
"Context-aware QoS"))

Web of Science (Topic
Search)

TS=("Web Service" OR "Quality of Service" OR "QoS Prediction"
OR "Dynamic QoS Prediction" OR "Static QoS Prediction" OR "QoS
Adaptation" OR "QoS Variation" OR "QoS Dynamics" OR "Online QoS" OR
"Temporal QoS" OR "Dynamic Service Quality") AND TS=("Collaborative
Filtering" OR "Time-Series Prediction" OR "Machine Learning"
OR "Deep Learning" OR "Predictive Analytics" OR "Forecasting"
OR "Learning Algorithms") AND TS=("Static QoS" OR "Offline
Prediction" OR "Historical Data" OR "Static Analysis" OR "Static
Evaluation" OR "Regression Models" OR "Feature Engineering" OR
"Feature Extraction" OR "Dynamic QoS" OR "Adaptive Models" OR
"Real-time QoS" OR "Context-aware QoS" OR "Contextual Information"
OR "Contextual Prediction") AND TS=("Web Service Data-sets" OR
"Evaluation Metrics" OR "Benchmarking")

Google Scholar "Web Service" OR "Quality of Service" OR "QoS Prediction"
OR "Dynamic QoS Prediction" OR "Static QoS Prediction" AND
"Collaborative Filtering" OR "Time-Series Prediction" OR "Machine
Learning" OR "Deep Learning" AND "Static QoS" OR "Offline
Prediction" OR "Historical Data" OR "Feature Engineering"
AND "Dynamic QoS" OR "Adaptive Models" OR "Real-time QoS" OR
"Context-aware QoS"

Focused Search Strings
Static QoS Prediction ("Static QoS" OR "Offline Prediction" OR "Historical Data" OR

"Static Analysis" OR "Regression Models") AND ("Web Service" OR
"Quality of Service" OR "QoS Prediction")

Dynamic QoS Predic-
tion

("Dynamic QoS Prediction" OR "Real-time QoS" OR "QoS Adaptation" OR
"Time-Series Prediction" OR "Adaptive Models") AND ("Web Service"
OR "Quality of Service" OR "QoS Prediction")

Collaborative Filtering
in QoS

("Collaborative Filtering" OR "Trust-aware Filtering" OR
"User-based QoS Prediction" OR "Matrix Factorization") AND ("Web
Service" OR "Quality of Service" OR "QoS Prediction")

Context-Aware QoS
Prediction

("Context-aware QoS" OR "Contextual Information" OR "Location-aware
QoS" OR "Temporal QoS" OR "Dynamic Adaptability") AND ("Web
Service" OR "Quality of Service" OR "QoS Prediction")
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To refine our search, we adhered to strict inclusion criteria, focusing on publications that provided
substantial insights into methodologies, evaluation strategies, and the application contexts of proposed
solutions. A total of 146 peer-reviewed publications (2007-2024) were selected following a rigorous
full-text review. Non-peer-reviewed articles, abstracts, and opinion-driven pieces were excluded to
maintain the academic rigor of our study. To ensure the inclusion of only relevant and high-quality
studies, we applied a set of exclusion criteria to filter out papers that do not align with the scope of
WSQP. Table 6.4 presents the key exclusion criteria used in the selection process.

TABLE 6.4 Exclusion Criteria for Selected Studies

Criterion Description
Non-QoS-related stu-
dies

Papers that do not explicitly focus on Web Service QoS
prediction, evaluation, or adaptation.

Non-predictive ap-
proaches

Studies that focus on general QoS measurement, monitoring,
or benchmarking without predictive techniques.

Non-collaborative filte-
ring methods

Studies that do not involve collaborative filtering, machine
learning, or time-series forecasting for QoS prediction.

Irrelevant domains Research focusing on non-web-service applications, such as
hardware-level optimizations or sensor network QoS.

Non-peer-reviewed
sources

Papers from non-peer-reviewed journals, preprints, technical
reports, or blog posts.

Limited empirical vali-
dation

Studies without real-world datasets, case studies, or proper
evaluation metrics (e.g., RMSE, MAE, precision-recall).

Redundant studies Duplicate papers, extended versions without major contribu-
tions, or studies already included in a previous survey.

Non-peer reviewed stu-
dies

Studies published in blogs and opinion studies were excluded
from the primary selection, as only studies published in high
reputed journals and well ranked conferences were included.

The PRISMA flowchart in Fig 6.2 illustrates the step-by-step process for publication selection.
The initial 512 records were identified through a comprehensive search of Google Scholar, ACM DL,
and Scopus using the predefined search terms indicated in Table 6.2. During the screening phase, 239
records were excluded : 152 did not meet the inclusion criteria, and 87 were duplicates. This left 273
records for title and abstract research screening phase. The exclusion criteria were applied rigorously
during this phase, ensuring that only studies meeting the inclusion criteria progressed to the full-text
eligibility assessment. From 196 records that were assessed for eligibility, only 146 reports met the
criteria, as at the assessment phase 50 records were excluded due to their lack of novelty and their
limited empirical studies. Ultimately, all 146 records met the inclusion criteria and were included in
the review.

Subsequent data extraction and analysis focused on extracting algorithmic approaches, evaluation
metrics, and implementation details. These findings were then categorized to provide a condensed yet
comprehensive overview, presented in the following sections. The taxonomy developed in this study
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FIGURE 6.2 PRISMA Flowchart for Including Publications

highlights a key contribution : the integration of time-aware and time-series techniques, bridging the
gap between temporal dynamics and predictive accuracy. By capturing time-based QoS fluctuations,
this taxonomy addresses limitations of traditional WSQP methods. Fig 6.3 showcases this taxonomy
and its emphasis on dynamic adaptability.

FIGURE 6.3 Web Service QoS Prediction methods Taxonomy

While the methodology provided a structured approach, challenges such as keyword ambiguity
and publication overlap were encountered. Future work will focus on refining the inclusion criteria
and expanding the scope to cover emerging methodologies.
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4.1 Memory-based QoS prediction methods

Memory-based CF techniques are extensively used in WSQP, leveraging the user-service QoS
matrix to improve prediction accuracy. These methods emphasize several critical aspects, such as
data preprocessing, similarity measurement, selection of similar neighbors, and QoS value estimation
Zheng et al. [2020].

Data Pre-processing

Enhancing data quality is essential for improving WSQP accuracy. To address sparse QoS data,
various techniques are employed, such as imputing missing values using defaults like the mean or
median. Methods like K-means clustering and data smoothing are also applied to mitigate missing
data issues Zheng et al. [2010a], Ma et al. [2007]. Additionally, normalizing QoS values across
different scales—using approaches like Gaussian normalization or the 3-sigma rule—has been shown
to significantly enhance CF prediction accuracy Zhang et al. [2012].

Similarity Computation

plays a vital role in identifying comparable neighbors for collaborative prediction and determining
influence weights, making similarity metrics crucial for the effectiveness of CF. Commonly used
similarity measures include :

— Pearson Correlation Coefficient (PCC) : Measures the linear relationship between two
variables Obidallah et al. [2020]. In CF, PCC is widely applied to assess similarity between
users or items based on their QoS ratings. A positive correlation value indicates a strong
positive relationship, while a negative value signifies an inverse correlation Ma et al. [2007],
Yin et al. [2014], Qi et al. [2015].

— A-Cosine (Adjust-Cosine) similarity : Enhances cosine similarity by subtracting each servi-
ce’s average QoS value, effectively addressing variations in QoS scales Chen et al. [2019b],
Wu et al. [2012].

— JacMinMax : Useful in scenarios where QoS values exhibit significant fluctuations. This
method utilizes a MinMax ratio to capture the variance in service experiences among users,
improving the accuracy of similarity computation Chen et al. [2019b], Zheng et al. [2020].

Similar neighbor selection

Before predicting missing values, it is essential to identify relevant neighborhoods consisting
of similar services or users. Effective neighbor selection plays a critical role in ensuring accurate
predictions, as incorporating dissimilar neighbors can reduce prediction reliability Singh et al. [2020b,
2021a]. Various approaches are employed for neighbor selection, including :
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— Top-N Filtering : Identifies the N most similar services or users based on their similarity
scores, selecting them as relevant neighbors for prediction Ren and Wang [2018].

— Negative Filtering : An enhancement of the Top-N approach, this method excludes neighbors
with negative PCC similarities, addressing scenarios where fewer than N similar neighbors are
available Zheng and Lyu [2010].

— Threshold Filtering : This technique applies a predefined similarity threshold to determine
whether a neighbor should be included in the collaborative prediction process. It is particularly
useful for evaluating QoS attributes such as response time and reliability Ma et al. [2007].

QoS values prediction

After identifying a set of similar neighbors for each user or service, their QoS values are utilized
to estimate the missing QoS values for the target user or service. The prediction approach varies based
on the filtering method employed : User-based approaches predict QoS values by leveraging the QoS
data from similar users. Item-based approaches estimate QoS values using information from similar
web services (WSs) and Hybrid approaches integrate both user-based and item-based methods, with a
tunable parameter controlling the balance between the two strategies Zheng et al. [2010a], Yin et al.
[2014], Shao et al. [2007], Jiang et al. [2011]. The following works provide a concise overview of the
most notable contributions in QoS value prediction as each study addressed specific challenges in
web service environments. :

In Zheng et al. [2010a], a hybrid CF mechanism was introduced to improve WSQP by integrating
user-based and item-based CF approaches, allowing for the collection of historical QoS data without
directly invoking services. While this method effectively mitigates data sparsity by leveraging shared
user-service interactions, it heavily relies on historical data, limiting its adaptability to new services
and dynamic environments. Similarly, Tong et al. [2021] enhances prediction accuracy by discarding
outdated QoS values and incorporating similarity computation across multiple time slices, emphasizing
temporal dynamics to ensure the use of relevant data for WSQP. However, despite its improved
reliability in dynamic environments, this approach faces scalability challenges due to the computational
overhead associated with processing multiple time slices, and its reliance on historical data restricts its
ability to accommodate new services. The Colbar framework, introduced in Yin et al. [2014], integrates
matrix factorization (MF) with personalized geographical and QoS data to refine prediction accuracy
by leveraging latent factor models and spatial information, enabling location-based personalized QoS
predictions. However, its susceptibility to outliers and dependence on historical data pose challenges
when applied to new or sparsely rated services. In Chen et al. [2010], the **RegionKNN** method
was proposed to enhance WSQP by clustering users and identifying region-sensitive WSs, yet its
performance is highly dependent on parameters such as the size of the region and the number of
neighbors (K), necessitating careful tuning for optimal results, which in turn affects its scalability
and applicability. The User Services Matrix Factorization (US-MF) approach, developed in Qi et al.
[2015], integrates user networks and service neighborhoods to improve personalized WSQP by
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leveraging additional network-based data, yet it remains constrained by its reliance on historical
data, reducing its effectiveness in scenarios involving new services or users. The Big Range-Aware
Collaborative Filtering (BRACF) model proposed in Chen et al. [2020a] addresses variations in
QoS attributes to enhance prediction reliability by tackling data diversity and attribute-specific
challenges ; however, while focusing on improving accuracy, it fails to effectively handle scalability
and adaptability in dynamic web service environments. The personalized CF-based QoS data collection
technique introduced in Shao et al. [2007] tailors WSQP predictions to individual users by utilizing
historical QoS data and user-specific preferences, yet its effectiveness diminishes in cases with
sparse datasets or insufficient user history. In Zheng et al. [2009], a user-contribution method for
QoS data collection was introduced alongside a hybrid CF algorithm combining user-based and
item-based filtering, enhancing prediction accuracy by leveraging the strengths of both approaches,
though its dependence on historical data and limited adaptability to dynamic QoS conditions remain
challenges. The collaborative WSQP approach in Zheng et al. [2012] utilized shared user experiences
and a neighborhood-based model to extend WSQP capabilities by leveraging user collaboration
and QoS data aggregation for personalized predictions. Addressing the cold-start problem, Qi et al.
[2017] introduced the Inverse CF approach (Inverse_CF_Rec), based on Social Balance Theory,
which leverages social network structures to predict QoS values for new users or services with
minimal historical data, yet its reliance on well-defined and accurate social network data restricts
its applicability in cases where such data is unavailable or incomplete. The item-based prediction
algorithm analyzed in Sarwar et al. [2001] emphasized scalability for online systems by introducing
precomputed item similarity models to improve real-time recommendation efficiency, though this
method struggles in dynamic environments where frequent changes render precomputed models
obsolete. The pioneering item-based CF approach introduced by Linden et al. [2003] for Amazon.com
focused on item-to-item similarity for predicting user preferences, providing a computationally
efficient solution for static environments but lacking adaptability to temporal changes or dynamic QoS
attributes in WSQP. Similarly, the item-based recommendation algorithm proposed in Deshpande and
Karypis [2004] achieved high efficiency and scalability by relying on item similarities for predictions
but did not account for temporal variations or user-specific QoS preferences. A trust-based and
location-aware WSQP approach, integrating user trust metrics with geographical data to improve
prediction accuracy, was introduced in Chen et al. [2017a], yet its dependence on reliable trust data
presents challenges, particularly in environments with limited user feedback or conflicting trust
evaluations. In White et al. [2018a], the IoT prediction model (IoTPredict) was designed to reduce
computational overhead while maintaining accuracy by eliminating direct service invocation, but its
effectiveness is constrained in dynamic IoT environments where QoS attributes fluctuate frequently.
The LoRec framework proposed in Chen et al. [2013] incorporated location data and QoS attributes
into WS recommendations, improving predictions through geographical proximity and service quality
considerations, but its applicability is limited to location-aware systems, restricting its generalization
to broader contexts. The Highly Accurate Prediction Algorithm (HAPA) introduced in Ma et al.
[2015] leveraged MF for WSQP, achieving high accuracy in static environments but struggling to
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adapt to dynamic QoS fluctuations and facing difficulties in addressing the cold-start problem. The
Personalized Hybrid Collaborative Filtering (PHCF) method developed in Jiang et al. [2011] combined
item-based and user-based CF techniques to improve prediction accuracy by integrating personalized
user data, yet it requires substantial computational resources for large-scale datasets. The Hybrid User-
Based Fuzzy Collaborative Filtering (HU-FCF) method presented in Son [2014] incorporated fuzzy
logic for more refined similarity measurements, achieving high accuracy but demanding careful tuning
of fuzzy parameters, making it computationally intensive. Lastly, Zhu et al. [2023] introduced the
Bi-Subgraph Network based on Graph Contrastive Learning (BGCL), designed to improve WSQP in
sparse user-service interaction scenarios by employing an edge dropout strategy for data augmentation
and leveraging user and service embeddings. While BGCL effectively addresses cold-start issues
and enhances prediction accuracy, its high computational requirements may hinder its scalability in
large-scale systems.

4.2 Model-based QoS Prediction Methods

Model-based WSQP methods overcome the drawbacks of traditional memory-based approaches
by leveraging user-service invocation datasets to identify patterns within training data, leading to
more precise QoS predictions Ghafouri et al. [2020]. The following section highlights key studies in
this category, classified into clustering-based, machine learning, and matrix factorization techniques.

4.2.1 Clustering-based QoS Prediction Methods

Clustering-based QoS prediction methods aim to group similar data points while maintaining
distinct differences between clusters, improving scalability, reducing computational overhead, and
addressing the cold-start problem in WSQP Su and Khoshgoftaar [2009]. Several studies have made
significant contributions in this domain. A CF model proposed in AL-Bakri and Hassan [2019]
integrates Fuzzy c-means clustering with a fuzzy user-based similarity measure, incorporating both
user ratings and fuzzy truthfulness information. While this approach enhances prediction accuracy,
its computational efficiency diminishes when applied to large-scale datasets. In Zhu et al. [2012],
a landmark-based WSQP framework was introduced, incorporating User-Based Clustering (UBC)
and Web Service-Based Clustering (WSBC) algorithms that utilize hierarchical clustering on real-
world QoS data from PlanetLab 2. Though effective for hierarchical datasets, its adaptability to flat
data remains limited. Similarly, He et al. [2014] developed a location-based hierarchical matrix
factorization (HMF) algorithm, clustering users and services based on location information. While
this approach effectively leverages spatial data, it may fail to account for temporal QoS variations.
To address data sparsity, Chen et al. [2015] introduced SCQP, a hybrid QoS prediction method that
combines web service clustering with user similarity calculations. Despite its robustness, the model
suffers from computational complexity. A fuzzy clustering technique known as Possibilistic Fuzzy

2. http ://www.planet-lab.org
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C-Means (PFCM) was employed in Zhang et al. [2012] to model QoS as a multi-dimensional object,
treating each property as a separate dimension. Although this method enhances multidimensional
modeling, handling high-dimensional data presents challenges. Another notable contribution is the
ADF approach proposed in Wu et al. [2012], a neighborhood-based CF method that employs a Two-
Phase Neighbor Selection (TNS) strategy to refine prediction accuracy. While this enhances scalability,
it does not effectively address the cold-start problem. A clustering-based WSQP framework utilizing
k-means clustering was introduced in Zhang et al. [2013] to strengthen the relationship between
service ratings and user expectations. While simple and effective, its performance is highly sensitive to
the choice of initial centroids. The CLUS model, presented in Silic et al. [2013], focuses on predicting
atomic web service reliability while addressing scalability through k-means clustering. However, its
lack of adaptability to dynamic environments limits its applicability. To improve prediction robustness,
Wu et al. [2020] introduced the DCALF model, combining latent factor analysis with density peaks-
based clustering to mitigate noise in QoS data. While effective against noisy data, its computational
overhead may hinder real-time deployment. A personalized recommendation algorithm proposed in
Wu et al. [2014b] addresses inaccuracies due to sparse datasets by utilizing fuzzy clustering to identify
the most relevant neighbors for target users. Although this method improves accuracy by mitigating
sparsity, it struggles in highly dynamic environments where user preferences change frequently.
Additionally, the reliance on fuzzy clustering introduces computational complexity, particularly in
large-scale datasets, affecting its real-time efficiency. More recently, Li et al. [2021a] presented QSPC,
a deep learning-based QoS prediction model incorporating temporal information and request context
to improve accuracy. Evaluations on the WS-DREAM dataset demonstrated its superiority over
traditional CF and MF approaches in dynamic environments. The study further employed t-distributed
Stochastic Neighbor Embedding (t-SNE) for visualizing request context embeddings, validating their
meaningful organization. While QSPC effectively captures temporal patterns, its ability to adapt
to sudden, unpredictable QoS variations remains a challenge, particularly in real-time web service
environments.

From these studies, it can be concluded that t-SNE plays a crucial role in enhancing WSQP by
facilitating the visualization of high-dimensional QoS data, revealing underlying user-service patterns
that improve clustering accuracy—complementing traditional methods like k-means. Integrating
clustering techniques with t-SNE not only aids in outlier detection for robust data filtering but also
enables intuitive visualizations of clustered QoS values, supporting more informed service selection.
These advancements collectively contribute to improving prediction interpretability and reliability in
dynamic web service environments.

Table 6.5 summerizes the key-findings of the cluster-based WSQP methods.

4.2.2 Machine Learning QoS Prediction Techniques

These techniques have been widely applied to WSQP, effectively addressing undetermined QoS
values and capturing nonlinear relationships to enhance prediction performance Ghafouri et al. [2020],
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TABLE 6.5 Summary of Clustering-based QoS Prediction Methods

Study Unique Contribution Limitation
AL-Bakri and
Hassan [2019]

Fuzzy c-means clustering with
user-based similarity mea-
sures integrating fuzzy truth-
fulness.

Computational inefficiency
for large datasets.

Zhu et al. [2012] Landmark-based framework
with user-based and service-
based clustering.

Limited applicability to flat
datasets.

He et al. [2014] Location-based hierarchical
matrix factorization (HMF).

Neglects temporal QoS varia-
tions.

Chen et al. [2015] SCQP hybrid method combi-
ning clustering and similarity
calculations.

High computational com-
plexity.

Zhang et al.
[2012]

Fuzzy clustering to model
multi-dimensional QoS.

Challenges in handling high-
dimensional data.

Wu et al. [2012] ADF with a two-phase neigh-
bor selection strategy.

Persistent cold-start problem.

Zhang et al.
[2013]

k-means clustering to enhance
service rating relationships.

Sensitivity to initial centroids.

Silic et al. [2013] CLUS model addressing relia-
bility through clustering.

Limited adaptability for dyna-
mic environments.

Wu et al. [2020] DCALF combining latent
factor analysis with density
peaks-based clustering.

Computational overhead for
real-time applications.

Li et al. [2021a] QSPC model combining tem-
poral information and request
context

struggle to adapt to sudden
and unpredictable changes in
QoS values and high computa-
tional resources.

Palaios et al. [2023]. Several studies have contributed significantly to this domain. In Luo et al.
[2016], a data-driven strategy combining Kernel Least Mean Square (KLMS) and Pearson Correlation
Coefficient (PCC) was proposed to extract relevant QoS values from similar users and services,
successfully modeling nonlinear relationships but struggling with scalability in large datasets. The
Joint CNN-MF (JCM) model introduced in Yin et al. [2020] combines deep features extracted from
Convolutional Neural Networks (CNNs) with MF, enhancing neighbor selection accuracy using CNN-
based similarity computation, though it requires substantial computational resources. In Luo et al.
[2015a], fuzzy neural networks and adaptive dynamic programming (ADP) were employed to model
nonlinear and dynamic QoS attributes while ensuring stability through convergence boundedness,
yet real-time application remains a challenge. A model incorporating geographical data, user usage
patterns, privacy, and retention levels was designed in Anithadevi and Sundarambal [2019], integrating
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Neuro Fuzzy Logic (NFL) for precision and the detection of undesirable web services, but its multi-
dimensional approach increases implementation complexity. VMCF4SR, a Support Vector Machine
(SVM)-based collaborative filtering model, was presented in Ren and Wang [2018], utilizing historical
ratings to establish a hyperplane for direct Top-N service recommendations, effectively handling data
sparsity but lacking adaptability to dynamic QoS changes. In Wu et al. [2017a], Deviation-based
Neighborhood Models (DbNMs) leveraged crowd intelligence and user location for improved IoT
and cloud QoS predictions, enhancing location-based accuracy but remaining sensitive to outlier data.
Similarly, Wu et al. [2017b] developed EFMPred, which employs embedding vectors and neural
networks to capture implicit user-service relationships, improving latent factor modeling but requiring
extensive training data. The LANFM (Location-Aware QoS Prediction) model presented in Chen
et al. [2019a] utilizes factorization machines and neural networks to transform geographical data into
embedding vectors for more precise predictions, though computational intensity remains a concern.
To reduce training and request times while maintaining prediction accuracy, White et al. [2019]
employed stacked autoencoders in neural networks, effectively minimizing latency but at the cost of
interpretability. The STCA-1 and STCA-2 models, introduced in Zhou et al. [2019], incorporate spatio-
temporal context awareness, considering invocation time and spatial attributes for WSQP, providing
robust performance but being computationally expensive. The LA-LMRBF model, an online QoS
prediction approach developed in Zhang et al. [2019a], integrates the Affinity Propagation clustering
algorithm with RBF neural networks to predict time-sensitive QoS attributes, achieving high accuracy
but requiring precise parameter tuning. In Jin et al. [2019b], NDL (Neighborhood Deep Learning)
employed PCC for top-k neighbor extraction and a CNN-based feature extraction mechanism for
QoS prediction, demonstrating effectiveness but demanding significant computational resources.
The MFDK model introduced in Yan et al. [2022] addresses sparse QoS values by incorporating
non-negative matrix decomposition and a Kalman filter for real-time QoS observations, effectively
managing sparsity but requiring frequent updates for real-time performance. Deep feature fusion
was explored in Ding et al. [2023], integrating environmental preference and multi-class QoS traits
through a user-service bipartite graph and a multi-component graph CNN, providing comprehensive
feature extraction but remaining computationally intensive for both static and dynamic environments.
Similarly, Zhu et al. [2024] introduced LDIF (Location-Aware Deep Interaction Forest), combining
location-awareness, scanning interactive structures, and deep forest techniques for QoS prediction,
demonstrating innovation but facing scalability limitations due to high computational cost. The Wide
and Deep model, proposed in Cheng et al. [2016], combines wide linear models with deep neural
networks to capture both low-order and high-order feature interactions, proving effective for diverse
feature representations but prone to overfitting on small datasets. In Wang et al. [2017], the Deep and
Cross model replaced polynomial regression with a Cross network for feature interaction modeling,
enhancing predictive accuracy but requiring extensive training. The MultiFed framework, presented
in Xu et al. [2023], employs a cloud-edge collaboration mechanism combined with MF for WSQP,
effectively handling heterogeneous data but imposing high computational requirements. Finally, the
IRE4DQP framework, introduced in Li et al. [2023], integrates intelligent route estimation (IRE) as
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a Markov decision process with neural models for dynamic QoS prediction, offering an innovative
approach but requiring careful fine-tuning to maintain stability.

Table 6.6 provides a summary of the key findings from machine learning-based WSQP methods,
outlining their strengths, limitations, and specific contributions to enhancing QoS prediction accuracy.

4.2.3 Matrix Factorization QoS Prediction Methods

Matrix Factorization (MF) is widely recognized as a powerful approach for WSQP, effectively
addressing challenges such as data sparsity and scalability by reducing the dimensionality of the
user-service matrix while preserving key structural relationships Mnih and Salakhutdinov [2007].
Several studies have leveraged MF techniques to improve QoS predictions. Extended Matrix Factori-
zation (EMF) with relational regularization terms was introduced in Lo et al. [2012b] to incorporate
user and service neighborhood information, enhancing prediction accuracy through neighborhood
relationships, though it may face difficulties in adapting to dynamic data changes. Similarly, the
Service Neighborhood Extended Matrix Factorization (SN-EMF) and User Neighborhood Extended
Matrix Factorization (UN-EMF) models, proposed in Xu et al. [2013a], integrate historical QoS
records and geographical data, making them effective in static environments but potentially limited
in real-time applications. Probabilistic Matrix Factorization (PMF) was applied to WSQP in Xu
et al. [2013b], where L-PMF and WL-PMF were introduced to incorporate collective intelligence
and geographical insights, achieving a balance between precision and scalability while remaining
highly dependent on data quality. To address the cold-start problem, the Latent Neighbors Latent
Factor Model (LN-LFM) was introduced in Yu et al. [2014], leveraging latent neighbor features for
improved prediction accuracy ; however, its computational complexity remains a challenge. Network-
aware models such as Network-Aware Matrix Factorization (NAMF) Tang et al. [2016] combine
MF with a network map to evaluate user distances, enhancing prediction reliability while requi-
ring significant preprocessing efforts. Similarly, Reputation-based Matrix Factorization (RMF) Xu
et al. [2015] incorporates user reputation based on contributed QoS values, improving prediction
credibility, though the reliance on reputation metrics may introduce biases. Non-Negative Collabo-
rative Matrix Factorization (NCNMF) Su et al. [2016] integrates memory-based and model-based
CF with Expectation-Maximization (EM) for training, effectively tackling data sparsity but at the
cost of high computational demands. In Chen et al. [2016], Neighborhood Regularized Matrix Fac-
torization (NRMF) was proposed to integrate **user and service neighborhood data**, improving
prediction accuracy for sparse datasets, though it remains sensitive to parameter tuning. Similarly,
the Hybrid Asymmetric Correlation Regularized (HACR) MF modelXie et al. [2016] introduces
asymmetric correlation for QoS prediction, offering a balance between accuracy and scalability, albeit
with computational trade-offs. MF-based models have also been tailored for cloud environments,
as seen in CloudPred Zhang et al. [2011a], which integrates neighborhood-based and latent factor
approaches to optimize predictions for cloud services, though its applicability to other domains
remains limited. More recently, Matrix Factorization Automatic Interaction Network (MFAIN) Zhang
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TABLE 6.6 Summary of Machine Learning-based QoS Prediction Methods

Study Unique Contribution Limitation
Luo et al. [2016] Combines kernel least mean square (KLMS)

and PCC for QoS prediction.
Scalability issues for large data-
sets.

Yin et al. [2020] Joint CNN-MF (JCM) combines CNNs with
matrix factorization for improved accuracy.

Computational resource-
intensive.

Luo et al. [2015a] Fuzzy neural networks and ADP for nonlinear
and dynamic QoS modeling.

Real-time application challenges.

Anithadevi and
Sundarambal
[2019]

Integrates geographical data, usage patterns,
and Neuro Fuzzy Logic (NFL).

Complexity in implementation.

Ren and Wang
[2018]

SVMCF4SR employs SVM for top-N service
recommendations.

Limited adaptability for dynamic
QoS attributes.

Wu et al. [2017a] Deviation-based Neighborhood Models
(DbNMs) incorporating crowd intelligence.

Sensitivity to outlier data.

Wu et al. [2017b] EFMPred captures implicit user-service
connections using neural networks.

Substantial training data requi-
red.

Chen et al. [2019a] LANFM transforms geographic data into em-
beddings for QoS prediction.

Computationally intensive.

White et al. [2019] Stacked auto-encoders reduce training and re-
quest times while maintaining precision.

Sacrifices interpretability.

Zhou et al. [2019] Spatio-temporal context-aware neural models
(STCA-1, STCA-2) for WSQP.

High computational demands.

Zhang et al. [2019a] LA-LMRBF uses RBF neural networks for
time-sensitive QoS predictions.

Sensitive to parameter tuning.

Jin et al. [2019b] NDL extracts features using CNNs and pre-
dicts QoS with PCC.

High computational cost.

Yan et al. [2022] MFDK uses non-negative matrix decomposi-
tion and Kalman filter for real-time predic-
tions.

Frequent updates needed for real-
time performance.

Ding et al. [2023] Deep feature fusion with multi-class QoS traits
and graph CNNs.

Computational intensity.

Zhu et al. [2024] LDIF combines location-awareness and deep
forests for QoS prediction.

Limited scalability.

Cheng et al. [2016] Wide and Deep model captures low-order and
high-order feature interactions.

Potential overfitting on smaller
datasets.

Wang et al. [2017] Deep and Cross model enhances feature inter-
action modeling.

High training requirements.

Xu et al. [2023] MultiFed employs federated learning with
cloud-edge collaboration.

High computational require-
ments.

Li et al. [2023] IRE4DQP uses intelligent route estimation for
dynamic QoS prediction.

Requires fine-tuning for stability.
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et al. [2023] combines MF with self-attention mechanisms, demonstrating strong performance in
dynamic scenarios, yet requiring substantial computational resources. In Chen et al. [2022], a hybrid
QoS prediction model for IoT services was introduced, incorporating factorization machines and deep
learning techniques to manage low-order and high-order feature interactions, effectively addressing
challenges such as data sparsity and dynamic user-service interactions by leveraging historical QoS
data and contextual information. The QoS range model JacMinMax, proposed in Chen et al. [2019b],
introduced two neighborhood selection strategies—neighborhood-based and model-based—rooted in
MF principles to enhance WSQP, though its inability to adapt to new users and dynamic environments
remains a limitation. Additional MF-based models include DNLF, introduced in Luo et al. [2015b],
which employs non-negative latent features for WSQP, adapting training processes to individual
elements while requiring significant computational power. Wide-Range Aware Matrix Factorization
(WRAMF) Chen et al. [2020b] was designed to explicitly handle wide-ranging influences, integrating
adaptive learning and efficient parallel stochastic gradient descent, enabling improved adaptability
in dynamic environments. Table 6.7 provides a comparative summary of these MF-based WSQP
techniques, outlining their contributions in tackling QoS prediction challenges.

TABLE 6.7 Summary of Matrix Factorization-based QoS Prediction Methods

Study Unique Contribution Limitation
Lo et al. [2012b] Relational regularization terms to enhance

predictions.
Limited adaptability to dynamic
data.

Xu et al. [2013a] Integrates historical QoS and geographical
data.

Ineffective in real-time scenarios.

Xu et al. [2013b] Introduced L-PMF and WL-PMF for col-
lective intelligence.

Heavily reliant on data quality.

Yu et al. [2014] Addressed cold-start problem with latent
neighbor features.

Computationally intensive.

Tang et al. [2016] Combines MF with a network map for user
distances.

Extensive preprocessing required.

Xu et al. [2015] Reputation-based MF using user reputa-
tion metrics.

Potential bias from reputation me-
trics.

Su et al. [2016] Combines memory-based and model-
based CF with EM learning.

High computational demands.

Chen et al. [2016] Neighborhood Regularized MF for sparse
datasets.

Sensitive to parameter tuning.

Xie et al. [2016] Hybrid Asymmetric Correlation Regulari-
zed MF.

Computationally demanding.

Zhang et al.
[2011a]

Combines neighborhood-based and latent
factor approaches.

Limited generalizability.

Zhang et al.
[2023]

Integrates MF with self-attention for dyna-
mic scenarios.

High computational resource requi-
rements.
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4.3 Context-aware QoS prediction methods

Context-aware approaches acknowledge that various contextual factors, including user preferences,
service history, and ambient conditions, can significantly impact QoS attributes Hamzei et al. [2023],
Zeng et al. [2023]. By incorporating contextual information into the prediction process, these methods
enhance the accuracy and personalization of WSQP, enabling more precise and user-specific QoS
estimations Chen et al. [2017a], Wu et al. [2018b].

4.3.1 Location-aware QoS prediction methods

Location-aware QoS prediction methods utilize geographical proximity between users and services
to improve prediction accuracy, as QoS attributes like response time, availability, and throughput
are directly influenced by network performance and service distance Wu et al. [2018a], Abdullah
and Bhaya [2021], Yin et al. [2014]. Several studies have contributed to this field, each employing
unique methodologies to refine QoS predictions. In Mezni et al. [2021], Dilated RNNs were utilized
to construct a Context-Aware Service Knowledge Graph (C-SKG), which was then mapped to a
low-dimensional vector space to enhance computational efficiency. While effective in handling sparse
data, the model’s complexity may limit its scalability in real-time applications. A location-based
regularization framework integrated with Matrix Factorization (MF) was proposed in Lo et al. [2012a]
to improve WSQP by leveraging local service connectivity, achieving high accuracy in geographically
influenced scenarios but struggling in datasets that lack location metadata. Similarly, the Local
Neighborhood MF (LoNMF) method Lo et al. [2015] applies domain knowledge and a two-level
neighborhood selection process for improved predictions, though it performs well on small datasets,
it faces scalability issues in larger environments. A deep neural model (DNM) for multi-context
QoS prediction, integrating location and service history, was introduced in Wu et al. [2018b]. This
approach effectively incorporates multiple contextual factors, but its computational intensity presents
challenges for large-scale applications. In Liu et al. [2015], a personalized CF method that considers
user and WS locations was proposed to refine neighbor selection for WS recommendations, tailoring
predictions effectively but lacking adaptability in dynamic temporal contexts. To enhance scalability
and prediction quality in dynamic environments, Yu and Huang [2016] introduced time-aware and
location-aware CF techniques, which effectively handle geographical and temporal variability but
require extensive historical data. A geographical clustering-based MF model was proposed in Chen
et al. [2017c] to improve prediction accuracy by clustering neighbors based on location similarities,
proving effective in location-aware scenarios, though it remains computationally demanding. Further
refining location-aware WSQP, the GNMF framework Chen et al. [2017b] integrates hierarchical
clustering and geographical information for personalized predictions, demonstrating effectiveness
in hierarchical datasets while performing suboptimally in flat data structures. Ensemble models
that incorporate user and service contextual data were introduced in Xu et al. [2016b] to enhance
prediction accuracy, though they may be prone to overfitting in sparse datasets. A two-tower deep
residual network, NCRL, was developed in Zou et al. [2022] to employ location-aware collaborative
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learning for WSQP, excelling in capturing complex relationships but being resource-intensive, making
its implementation challenging in dynamic environments. Similarly, GAIN-QoS, designed for edge
computing environments, was proposed in Choi et al. [2022], utilizing clustering and Generative
Adversarial Imputation Nets (GAIN) to address missing data. While robust against data sparsity, it
suffers from computational overhead concerns. A more general context-sensitive matrix factorization
approach (CSMF) was introduced in Wu et al. [2018a], integrating user-to-service and environment-to-
environment interactions while accounting for both implicit and explicit contextual factors. Although
it improves prediction accuracy across diverse scenarios, its computational complexity can be a
limitation, especially for large-scale datasets. The Context-Aware Services Recommendation (CASR)
method Kuang et al. [2012] employs Bayesian inference to group service invocation records based
on context attribute similarity, enabling nuanced relationship modeling and improving probabilistic
predictions. However, its reliance on accurate context grouping can result in performance degradation
when dealing with noisy or incomplete context data. Additionally, the PSO-USRec approach Chen et al.
[2023] improves Particle Swarm Optimization (PSO) by reducing outlier particles and diversifying
initial local solutions, enhancing robustness in WSQP. Despite its strengths, scalability challenges
arise as the number of users and services increases, necessitating additional optimizations to mitigate
computational overhead.

Table 6.8 provides a summary of the key location-aware QoS prediction methods, outlining their
methodologies, contributions, and limitations.

4.3.2 Time-aware and Time-series QoS Prediction Methods

Time plays a crucial role in WSQP, as QoS attributes often fluctuate due to network conditions,
service load, and temporal variations. To address these changes, time-aware and time-series QoS
prediction methods have been developed to incorporate historical trends, temporal dependencies, and
real-time fluctuations into QoS prediction.

Time-aware QoS Prediction Methods : The dynamic nature of service conditions and network
performance significantly influences QoS attributes such as response time and availability, prompting
researchers to explore WSQP methods that integrate **invocation time** to account for temporal
variations Syu et al. [2017], Yan et al. [2022], Mezni and Fayala [2018]. To model complex user-
service interactions, a temporal service knowledge graph (TSKG) approach was introduced in Mezni
[2021], leveraging CNNs to extract top-rated services based on temporal interactions, though its high
computational cost presents scalability challenges. Similarly, Mezni et al. [2020] proposed a context-
aware WS recommendation framework, combining K-means clustering and PSO with Slope One for
missing rating predictions ; while it achieves high accuracy in specific contexts, its generalizability
across diverse datasets remains a challenge. In Zhang et al. [2011b], WSPred was developed as
a time-aware QoS framework that personalizes QoS values without additional WS invocations,
reducing real-time data collection needs but struggling in highly dynamic environments. To address
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TABLE 6.8 Summary of Location-Aware QoS Prediction Methods

Study Unique Contribution Critical Evaluation
Mezni et al.
[2021]

Dilated RNNs to construct C-SKG for
computational efficiency.

Handles sparse data well but has scalabi-
lity limitations.

Lo et al.
[2012a]

Location-based regularization with MF
for WSQP.

Effective for geographically influenced
data ; struggles without location meta-
data.

Lo et al.
[2015]

LoNMF with domain knowledge for
neighborhood selection.

Strong predictive capabilities but lacks
scalability.

Wu et al.
[2018b]

DNM integrating multi-context attri-
butes.

Effective multi-context integration but
resource-intensive.

Liu et al.
[2015]

Location-aware CF for refining neighbor
selection.

Tailored recommendations but lacks tem-
poral adaptability.

Yu and Huang
[2016]

Time and location-aware CF for dynamic
environments.

Handles variability but needs extensive
historical data.

Chen et al.
[2017c]

Neighborhood clustering using geogra-
phical similarities.

Accurate but computationally deman-
ding.

Chen et al.
[2017b]

GNMF framework with hierarchical clus-
tering.

Effective for hierarchical data ; limited
for flat datasets.

Xu et al.
[2016b]

Ensemble models using contextual user
and service data.

Versatile but prone to overfitting sparse
datasets.

Zou et al.
[2022]

NCRL with a two-tower residual net-
work.

Excels in complex relationships but
resource-intensive.

Choi et al.
[2022]

GAIN-QoS combining clustering with
imputation nets.

Robust against missing data but compu-
tationally expensive.
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data sparsity, Hu et al. [2014] proposed a random-walk-based time-aware approach, integrating
temporal information into user-service similarity calculations, effectively mitigating sparsity issues
but increasing algorithmic complexity with larger datasets. A spatio-temporal WSQP model using
sparse representation was introduced in Wang et al. [2016], improving QoS fluctuation modeling
but facing limitations in capturing non-linear trends. To enhance real-time adaptability, Zhu et al.
[2017] introduced an Adaptive Matrix Factorization (AMF) model, incorporating online learning
and adaptive weights, making it highly responsive to real-time changes while being computationally
demanding. A time-aware service recommendation system (taSR) in Ding et al. [2018] integrated
ARIMA with collaborative filtering, effectively merging statistical and collaborative approaches,
though it remains highly dependent on accurate historical data. A Biased Non-Negative Latent
Factorization of Tensors (BNLFTs) model, introduced in Luo et al. [2019], utilizes time-varying data
for temporal QoS prediction, excelling in time-sensitive contexts but requiring precise parameter
tuning across different scenarios. In Jin et al. [2019a], a Two-Phase Dynamic Time-Aware WSQP
(TWQP) method was proposed, balancing historical and real-time data for QoS predictions, ensuring
robustness but suffering from high computational demands. To further capture temporal patterns,
Hu et al. [2022] developed a dynamic graph neural collaborative learning framework, employing
GRUs and GCNs to model user-service interactions, excelling in temporal representation but requiring
significant computational resources for large-scale applications. Lastly, an outlier-resilient WSQP
method in Ye et al. [2021] utilized Cauchy loss to manage temporal anomalies while predicting
missing QoS values, demonstrating robustness against outliers but necessitating extensive fine-tuning
to adapt to diverse datasets.

Time-series QoS Prediction Methods : are designed to handle sequential data, capturing
trends, patterns, and seasonal fluctuations in QoS attributes such as throughput and response time,
making them essential for understanding and forecasting dynamic QoS behaviors Syu et al. [2017].
In White et al. [2018b], Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
architectures were explored for future WSQP, effectively capturing long-term dependencies, though
their high computational cost remains a challenge. Similarly, Genetic Programming (GP) was applied
in Syu et al. [2015] for time-aware WSQP, demonstrating strong predictive capabilities and high
adaptability, but requiring significant computational resources for training. In Zadeh and Seyyedi
[2010], Time Series Forecasting (TSF) with Neural Networks was introduced to reduce monitoring
costs and SOA overhead in WSQP, effectively minimizing operational expenses, though it may
struggle to scale across diverse datasets. To address QoS attribute volatility, Amin et al. [2012a]
employed a combination of ARIMA and GARCH models, improving forecasting accuracy, but
requiring specialized expertise for model configuration. An automated forecasting approach, blending
linear and nonlinear models for dynamic QoS attributes, was introduced in Amin et al. [2012b],
demonstrating strong adaptability in dynamic environments while posing risks of overfitting in data-
limited scenarios. The CI-ANFIS model, combining Clustered IOWA and ANFIS, was proposed in
Hussain et al. [2022] for cloud QoS prediction, excelling in handling non-linear datasets, though it
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demands significant computational power. More recently, the SCATSF framework was introduced in
Zhou et al. [2023], integrating spatial and temporal contexts for WSQP using a SCA-GRU model for
time series forecasting, effectively capturing spatio-temporal dynamics but remaining computationally
expensive. Table 6.9 summarizes the key findings of Time-Aware and Time-Series QoS Prediction
Methods, highlighting their contributions and limitations in dynamic service environments.

TABLE 6.9 Summary of Time-Aware and Time-Series QoS Prediction Methods

Study Unique Contribution Critical Evaluation
Mezni [2021] Temporal knowledge graphs (TSKG) com-

bined with CNNs for service recommen-
dation.

Effective temporal modeling
but high computational cost.

Zhu et al. [2017] Adaptive MF with online learning for
WSQP.

Real-time adaptability but
resource-intensive.

White et al. [2018b] LSTM and GRU mechanisms for future
WSQP.

Strong sequential modeling
but computationally expen-
sive.

Amin et al. [2012a] ARIMA and GARCH for volatility and
accuracy in QoS forecasting.

Handles volatility well but re-
quires expertise in tuning.

4.3.3 Trust-aware QoS Prediction Methods

Trust-aware QoS prediction methods address the issue of unrealistic QoS values recorded by
users, incorporating trustworthiness between users and services to enhance WSQP accuracy Xu
et al. [2016b]. These methods assume that users develop trust preferences for certain services based
on historical interactions or feedback, integrating this trust information into the prediction process
to improve reliability Wang et al. [2014]. In Tao et al. [2012], a trustworthy WSQP approach was
proposed, extending UDDI and introducing the T_QoS algorithm with PAM clustering to enhance
prediction accuracy, though its scalability remains a concern for large datasets. Similarly, a reputation-
measuring approach for WS recommendations was introduced in Wang et al. [2014], utilizing the
CUSUM control chart to detect malicious feedback ratings and PCC to mitigate user bias. While
effective in filtering biased data, this method is computationally intensive for real-time applications.
A Reputation-Aware WSQP approach (RAP) Qiu et al. [2013] was designed to rank users based on
contributions, filtering untrusted feedback to improve prediction accuracy, though it may struggle
in sparse environments. A social network-based service recommendation model was introduced in
Deng et al. [2014b], leveraging the Relevant Trust Walker algorithm and MF to assess intra-user trust,
improving recommendation precision but demanding high computational resources for large-scale
networks. Similarly, Deng et al. [2014c] proposed a Trust-Based Service Recommendation System
(TSR), which establishes trust ties between users and WSs to generate personalized recommendations.
While excelling in personalization, it requires extensive trust data for accurate predictions. The User-
Trust Propagation (UTP) model was presented in Thinh and Tu [2017], integrating trust propagation
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and user evaluations with MF training, improving prediction accuracy but facing challenges with
data sparsity. A decentralized service discovery technique was proposed in Kalaï et al. [2018],
combining trust detection and collaborative service recommendation, effectively merging trust and
collaboration, though requiring high computational resources. The Data-Aware Latent Factor (DALF)
model, introduced in Wu et al. [2019], incorporated QoS data characteristics and used the DPClust
algorithm to identify neighborhoods and untrustworthy data providers, making it robust against
untrustworthy data but computationally expensive for large-scale clustering. A trust-aware clustering-
based technique (TACF) was proposed in Liu et al. [2015] to personalize cloud manufacturing QoS
forecasts, integrating local and global trust values into the k-medoids algorithm. While it balances
local and global trust, it may struggle with high-dimensional data. Finally, the Trust-Aware Prediction
(TAP) method in Su et al. [2017] incorporated clustering and reputation systems for personalized
WSQP, improving reliability through user trust metrics but failing to effectively manage biased or
incomplete reputation data. Table 6.10 summarizes the key findings of Trust-Aware QoS Prediction
Methods, outlining their contributions, limitations, and effectiveness in trust-based WSQP.

TABLE 6.10 Summary of Trust-Aware QoS Prediction Methods

Study Unique Contribution Critical Evaluation
Tao et al. [2012] Introduced T_QoS algorithm using PAM

clustering for trustworthy WSQP.
Improves accuracy but scalability is-
sues exist for large datasets.

Wang et al. [2014] Reputation measuring approach mitigating
feedback bias with PCC.

Strong filtering of biased data but
computationally intensive.

Qiu et al. [2013] RAP calculates user reputation and filters
untrusted contributions.

Reliable for untrusted data but
struggles with sparse contributions.

Deng et al.
[2014b]

Social network-based recommendation
using Relevant Trust Walker.

Robust social trust integration but
computationally demanding.

Deng et al.
[2014c]

TSR investigates trust ties for personalized
recommendations.

Excels in personalization but re-
quires extensive trust data.

Thinh and Tu
[2017]

UTP predicts QoS using trust propagation
and MF.

Accurate but faces challenges with
data sparsity.

Kalaï et al. [2018] Decentralized discovery combining trust
detection and collaborative approaches.

Effective but computationally inten-
sive.

Wu et al. [2019] DALF model identifies untrustworthy data
using DPClust.

Strong in handling untrustworthy
data but resource-intensive.

Liu et al. [2015] TACF incorporates task similarity and
builds a trust network.

Balances local and global trust ef-
fectively but struggles with high-
dimensional data.

Su et al. [2017] TAP uses clustering and reputation sys-
tems for WSQP.

Improves reliability but faces chal-
lenges with biased reputation data.
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5 Classification of the methods and discussion
This section focuses on classifying and analyzing state-of-the-art methods previously summarized

in Section 4. The discussion begins with an overview of the evaluation metrics used in WSQP research
in both static and dynamic environments, followed by a detailed examination of the datasets employed
in these studies. Furthermore, a systematic classification of the methods is provided, considering their
performance, applicability in static or dynamic environments, and the significance of fuzzy tools in
enhancing predictive model accuracy.

5.1 Evaluation Metrics

QoS prediction studies utilize various evaluation metrics to measure prediction accuracy, with
Mean Absolute Error (MAE), Normalized Mean Absolute Error (NMAE), and Root Mean Squared
Error (RMSE) being among the most commonly applied criteria Hyndman and Koehler [2006],
Goldberg et al. [2001].

— MAE : Rather than emphasizing classification accuracy or classification error, the evaluation
focuses on computing the average absolute difference between predicted and actual ratings to
assess prediction accuracy.

MAE =
1
N ∑ i, j

∣∣q̂i, j−qi, j
∣∣ (6.12)

— NMAE : Since recommendation systems (RSs) utilize various numerical rating scales, Nor-
malized Mean Absolute Error (NMAE) normalizes MAE, allowing errors to be expressed as
percentages of the full scale.

NMAE =
MAE

rmax− rmin
(6.13)

— RMSE : Widely used as a performance metric in movie recommendation systems, Root Mean
Squared Error (RMSE) gained particular significance as a key evaluation criterion in the Netflix
Prize competition 3.

RMSE =

√
∑ i, j(q̂i, j−qi, j)2

N
(6.14)

Where :

— qi, j is the actual value

— q̂i, j is the QoS property’s predicted value

— N is the number of predicted QoS values

— rmin and rmax are the upper and the lower bounds of the ratings

While MAE and NMAE are intuitive and straightforward, they fail to penalize larger errors adequately.
RMSE, though sensitive to large deviations, may overemphasize outliers. These metrics could be

3. Netflix Prize, http ://www.netflixprize.com/.
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supplemented with additional measures like Mean Absolute Percentage Error (MAPE) to offer a more
comprehensive evaluation.

The Mean Absolute Percentage Error (MAPE) is calculated using the following equation :

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣×100 (6.15)

where :

— n represents the total number of predictions,

— yi denotes the actual QoS value,

— ŷi is the predicted QoS value.

This metric expresses prediction errors as a percentage of actual values, making it particularly
useful for comparing errors across different datasets and scales.

5.2 General Data-sets and real-world QoS data-sets

WSQP algorithm research often relies on large-scale real-world WS QoS datasets for comparative
analysis, though in some cases, movie-rating datasets have also been used for experimental evaluations.
The diversity of datasets employed in these studies has led to the development of a structured
categorization based on their characteristics and application domains.

Subjective data-sets consist of values derived from users’ subjective evaluations, which can be
influenced by cognitive disposition and personal preferences Ma et al. [2015]. A widely used dataset
in this category is MovieLens 4 Herlocker et al. [2000], frequently employed in WSQP research Zhang
et al. [2013], Ma et al. [2015], Chen et al. [2020a]. This dataset collects user ratings for various
movies, incorporating diverse rating scales, as summarized in Table 6.11.

Objective data-sets refer to the values associated with a service’s objective attributes, such as
response time, throughput, and reliability. These values, although not directly gathered from users, are
derived from objective aspects that influence user experience. For example, when a user invokes a web
service (WS), its accessibility may depend on objective factors like network traffic and bandwidth,
over which the user has no control, as service availability is dictated by these factorsMa et al. [2015].
The most well-known datasets in this category include the following :

— WSDream Zheng et al. [2010a] : a real world data-set with over 2.5 million WSs. This data-set
collection is publicly available as it was collected from real-world WSs. It comprises static and
dynamic QoS data-sets :

4. https ://grouplens.org/datasets/movielens/
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TABLE 6.11 Web Services QoS data-set

Reference Data-set Number of Ser-
vices

Number of Users

Herlocker et al. [2000] MovieLens 100K 1700 movies 1000
GroupLens MovieLens 25M 62000 movies 162000
GroupLens MovieLens 1B

synthetic data-set
855776 movies 2 197 225

Zheng et al. [2010a] WSDream 100 150
Zheng et al. [2010b] WSDream 339 21 358
Zhang et al. [2011b] WSDream 4 532 142
Al-Masri and Mahmoud [2008] QWS 2507 1
Shao et al. [2007] Real-world

records
20 136

Silic et al. [2013] RESTful 49 50

— The static ones include real-world QoS measurements, this data-set Zheng et al. [2010a]
has 150 files and each file involves 10000 WS invocations on 100 WSs by a service user.
This results in more than 1,5 million WS invocations. The second version of this data-set
Zheng et al. [2010b] includes response time and throughput values, it was gathered from
339 users on 5825 WS.

— The dynamic one aggregates real-world QoS measurements from 142 users on 4500
WSs over 64 consecutive time slices with 15-minute interval. This dynamic data-set also
contains records of response time and throughput values Zhang et al. [2011b].

— Quality of Web Service (QWS) Al-Masri and Mahmoud [2008] : involves a single service
user interacting with 2,507 WSs. This data-set has one limits which rests in the fact that various
users will observe different QoS for the same WS.

— Real-world records Shao et al. [2007] : Records were collected from 136 users for 20 real-
world WSs , each user invoked each service an average of 200 times.

— RESTful Silic et al. [2013] : This dataset encompasses a range of computational complexities,
as services are located across different geographic locations worldwide. It involves 50 users
and 49 services.

While CF initially started with subjective data types, QoS data related to WSs, tends to rely on the
objective type. This preference arises from the substantial differences between these two types, which
can significantly impact the accuracy of predictions, as highlighted in Ma et al. [2015]. For additional
details on the QoS datasets, readers can refer to the summary in Table 6.11. Subjective datasets
effectively capture user preferences but are susceptible to bias and inconsistencies, while objective
datasets offer reliable QoS attributes, though they may lack personalization. Hybrid approaches that
combine both data types can improve prediction models by balancing the objectivity of the former
with the user-centric insights of the latter.
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Relevance of real-world QoS data-sets in static and dynamic predictions

— Objective data-sets play a crucial role in static Web Service QoS Prediction (WSQP) by offering
a historical perspective on service performance. Analyzing past performance data enables static
prediction models to identify trends, patterns, and correlations, facilitating predictions of future
QoS values. In dynamic environments, these datasets serve as a baseline, helping models
detect anomalies or deviations from historical performance. By combining objective data with
real-time information, dynamic models can adjust predictions to fit the evolving environment.

— Subjective data-sets complement objective data in static predictions by providing insights
into user preferences, allowing static models to incorporate user-centric elements. In dynamic
environments, however, user feedback becomes a key QoS attribute. Dynamic models leverage
sentiment analysis and user ratings to adjust predictions in real-time, reflecting the rapidly
changing conditions.

5.3 Discussion of the classified methods

Table 6.12 classifies various methods discussed in Section 4, emphasizing the interconnected
nature of these techniques. Many studies integrate multiple approaches within a single framework,
utilizing their combined strengths to improve prediction accuracy and adaptability.

TABLE 6.12 Comparative Table of Distinguished CF-Based Prediction Approaches

Reference Year Contribution Dataset Evaluation Me-
trics

Prediction Me-
thods

Shao et al.
[2007]

2007 User-based similarity QoS data Mean Difference
Comparison

User-based

Zheng et al.
[2009]

2009 Combined user and ser-
vice similarity

WSRec MAE, NMAE User-based and
Service-based

Zheng et al.
[2010a]

2010 Linear combination of
user and service simila-
rity

WSRec MAE, RMSE User-based and
Service-based

Yin et al.
[2014]

2014 Location-aware regula-
rization in MF

WSRec MAE, RMSE MF, Location-
aware, User-based

Chen et al.
[2015]

2015 Clustering using user-
QoS patterns

WSRec MAE, RMSE Clustering, User-
based

Thinh and Tu
[2017]

2017 User trust integrated
with MF

WSDream RMSE Trust-aware, MF
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Reference Year Contribution Dataset Evaluation Me-
trics

Prediction Me-
thods

Ren and
Wang [2018]

2018 SVM for service re-
commendation

WSDream Classification Accu-
racy, Precision, Re-
call

ML, Clustering

Tong et al.
[2021]

2021 Time-aware similarity
calculations

WSDream MAE, RMSE Time-aware,
Model-based

Choi et al.
[2022]

2022 Imputation nets for
edge environments

WSDream MAE, RMSE Clustering,
Location-aware

Jiang et al.
[2011]

2011 Personalized recom-
mendations for WSs

WSRec MAE, Precision,
Recall, F1-Score

User-based and
Service-based

Zhou et al.
[2019]

2019 Incorporates spatial at-
tributes with ML

WSRec MAE, RMSE ML, Time-aware

Lo et al.
[2012a]

2012 Location-based regula-
rization CF

WSDream MAE, RMSE Location-aware,
Matrix Factoriza-
tion

Lo et al.
[2015]

2015 Local neighborhood
with MF

WSDream RMSE User-based,
Location-aware,
MF

Chen et al.
[2020a]

2020 Big range-aware CF WSDream MAE, RMSE User-based,
Location-aware,
Clustering

Chen et al.
[2023]

2023 Swarm intelligence
techniques for neigh-
bor detection

WSDream MAE, RMSE Location-aware,
Swarm Intelligence

White et al.
[2018a]

2018 Metrics for IoT-based
similarity

WSDream MAE, RMSE,
NPRE

User-based,
Service-based

Zhu et al.
[2024]

2024 Dynamic location-
based for user/service
updates

WSDream MAE, RMSE Location-aware,
Dynamic Predic-
tion

Amin et al.
[2012a]

2012 Combined ARIMA
and GRAPH models

WSRec MAE, RMSE Time-series, Static
Prediction

Amin et al.
[2012b]

2012 Automated forecasting
with ARIMA and SE-
TARMA

WSRec MAE, RMSE Time-series, Static
Prediction

Qiu et al.
[2013]

2013 Reputation-aware ran-
king for QoS values

WSRec MAE, RMSE Trust-aware, User-
based, Service-
based
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Reference Year Contribution Dataset Evaluation Me-
trics

Prediction Me-
thods

Wang et al.
[2014]

2014 CUSUM and bloom fil-
ter for malicious detec-
tion

WSRec Trust Metrics Trust-aware, User-
based

Xu et al.
[2023]

2023 Federated learning fra-
mework for QoS pre-
dictions

WSRec TCR, TCD ML, MF, Dynamic
Prediction

5.3.1 QoS Predictions in Static and Dynamic Environments

In static WSQP scenarios, predictions are made within fixed time slices, relying heavily on
contextual factors such as user locations and network information. However, CF techniques face
challenges in this setting. For instance, location-aware and neighborhood-based CF algorithms assume
stable similarity relationships between users or services, typically relying on historical data of similar
users, often derived from past QoS values. In contrast, model-based CF approaches incorporate
implicit relationships by applying specific models to WSQP. This approach addresses RQ1.

In real-world scenarios, however, the situation is more complex. Over different time slices, users
interact with the same services, but the QoS values for these services fluctuate. Accurately predicting
WSQP for future time slices becomes essential to meet user demand for high-quality services, driving
the development of dynamic QoS prediction algorithms that use historical QoS data features to
forecast future QoS values. This approach addresses RQ2.

As noted by Yan et al. [2022], time-series prediction algorithms often fall short in improving
WSQP results due to the need for manual intervention and specialized knowledge in feature extraction.
Unlike traditional methods, deep learning-based WSQP approaches—specifically deep NNs—are
effective in capturing time-series characteristics, reducing technical complexity, and significantly
enhancing prediction accuracy. These dynamic methods leverage historical QoS values to forecast
future values by modeling temporal dependencies. However, two main challenges of conventional
deep learning-based WSQP techniques include :

— Limited real-time adaptability : These models often struggle to adjust to real-time QoS values
generated by users during service invocation.

— Inefficient integration of historical data : These models encounter difficulties in incorporating
past QoS data during training, thus diminishing prediction accuracy.

To address these limitations, advanced methodologies like edge computing and adaptive online
learning frameworks are emerging. Edge computing facilitates real-time QoS data processing closer
to the source, while adaptive online learning enables dynamic model updates as new data becomes
available. These approaches improve the relevance and responsiveness of WSQP systems, thus
addressing RQ3.
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The classification of prediction methods is crucial for understanding their strengths and weak-
nesses. Researchers often face the dilemma of choosing between static and dynamic methods, with the
choice being influenced by application requirements and dataset characteristics. While static methods
offer computational efficiency and simplicity, dynamic approaches are better suited to scenarios where
user preferences and service quality change over time. It’s important to note that the classification
of these methods is not fixed, but rather dependent on their adaptability to changing conditions.
Therefore, the decision to use static or dynamic methods depends on factors such as the nature of the
problem, data availability, and the level of adaptability required in the WSQP system.

Table 6.13 presents a comprehensive comparison of three distinct categories of prediction methods
used in WS QoS prediction : "Memory-based methods," "Model-based methods," and "Context-based
methods." Each category is carefully analyzed, outlining its advantages and disadvantages, offering
valuable insights to researchers and practitioners in selecting the most suitable method based on their
specific challenges and requirements.

Memory-based QoS Prediction Methods use historical data from user-service interactions
to make accurate WSQP predictions. However, they face several limitations, especially in static and
dynamic environments, such as :

— Scalability : With large datasets, the computational complexity of calculating and updating
similarities for all users and services can become overwhelming Yu and Huang [2016], Zheng
et al. [2020]. Memory-based methods struggle to adapt to dynamic shifts in user preferences
and service behaviors over time. Static memory-based models also fail to capture changes in
user behavior or service performance accurately.

— Data Sparsity : Limited user interactions with services result in sparse data, making it dif-
ficult to find sufficient similar neighbors for accurate predictions Wu et al. [2018a], Zheng
et al. [2020]. This problem intensifies as the dataset grows, with sparsity causing inaccurate
predictions in static environments and making adaptation to new patterns difficult in dynamic
environments.

— Cold Start : In static environments, the issue when new users or services have limited interac-
tion history Chen et al. [2017c], Zhu et al. [2023]. In dynamic environments, this challenge
persists with the continuous introduction of new entities into the system.

— Data Quality : Incomplete or unreliable QoS data can skew similarity calculations, leading to
inaccurate predictionsWu et al. [2020]. Outliers in the data further impact prediction qualityYe
et al. [2021].

— Similarity Metric Choice : The selection of an appropriate similarity metric is crucial for
accurate predictions. Using an unsuitable metric can degrade performanceWu et al. [2018b],
particularly when dealing with diverse or dynamic QoS attributes White et al. [2018a].

— Data Temporal Dynamics : Dynamic environments introduce temporal changes in QoS
valuesLuo et al. [2019], which can significantly affect predictions. Memory-based methods do
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TABLE 6.13 Advantages and Disadvantages of Different Prediction Method Categories

Prediction Method
Category

Advantages Disadvantages

Memory-based me-
thods — Simple usage and explainable

recommendations

— High accuracy when sufficient
data is available

— Cold start problem with new
users or services

— Scalability issues

— Low accuracy due to sparse in-
vocation matrices

— High computational time

Model-based me-
thods — High scalability tolerance

— Mitigates cold start problem

— Models complex features

— Reduced computational time for
clustering

— High accuracy

— Difficult feature extraction

— Accuracy dependent on parame-
ter settings

— Long computation time for mo-
del learning

— Need for model reconstruction
with new users or services

Context-based me-
thods — Improved accuracy

— Mitigates cold start and data
sparsity issues

— Considers dynamic nature of
QoS

— Data validation

— Requires additional parameter
configuration

— High computational time

— Periodic invocation data requi-
red
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not explicitly model these temporal aspects, potentially leading to outdated predictionsZheng
et al. [2020].

Researchers are addressing these challenges by developing techniques that enhance WSQP
accuracy Herlocker et al. [2004], Goldberg et al. [1992], Zheng et al. [2020], including :

— Model-based approaches, which outperform memory-based methods by addressing issues
like cold start and data sparsity, and incorporating contextual information when new users or
services are introduced.

— Clustering techniques, which reduce computational time by grouping similar users and services
together, improving scalability and accuracy.

— Incorporating time-aware models to capture the dynamic nature of QoS values and ensure
relevance in predictions.

— Online prediction and trustworthiness models, which balance computational efficiency and
prediction accuracy.

— Machine learning techniques such as autoencoders and deep learning, which provide enhanced
accuracy by modeling complex relationships in QoS data.

Model-based CF Methods Mathematical models are created to capture patterns in user-service
interactions, but they encounter several challenges :

— Overfitting : Occurs when a model learns noise rather than meaningful patterns, especially
in static environments with limited data Yin et al. [2020], Wu et al. [2018b]. It reduces the
prediction accuracy.

— Feature Extraction/Engineering Difficulty : Model-based methods require complex feature
extraction from data. In dynamic environments, shifting data distributions complicate feature
selection, making it hard to adapt to emerging patterns Yin et al. [2020], Zou et al. [2022].

— Parameter Dependency : The accuracy of model-based methods is highly sensitive to the
selection of parameters Wu et al. [2018b], such as latent factors or regularization terms, which
require significant fine-tuning.

— Computation Time : Training model-based approaches can be computationally expensive,
particularly with large datasets Lo et al. [2012a].

— Model Reconstruction : In static environments, adding new users or services necessitates
retraining or rebuilding the model Wang et al. [2016], which is time-consuming.

To improve WSQP accuracy, researchers are combining model-based techniques with context-
based filtering, hybrid models, and reinforcement learning, leveraging the strengths of each approach
to overcome their limitations.
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Hybrid Approaches Multiple models are combined to improve accuracy and adaptability. For
instance, a memory-based method may be enhanced by a model-based approach to alleviate cold-start
issues, or deep learning models could be used alongside simpler algorithms to capture both long-term
and short-term patterns in QoS data. Emerging hybrid techniques combining traditional methods with
ML models hold great promise for improving QoS prediction in both static and dynamic environments.
As research progresses, more adaptive, accurate, and scalable models are anticipated. Subsequently,
this answers the RQ4.

The classification of these integrated methods as static or dynamic depends on their implementa-
tion and the extent to which they incorporate temporal or contextual factors in their predictions, as
illustrated in Table 6.14.
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Based on the existing literature, only a few studies tackle the ambiguity in QoS values. Conse-
quently, the focus has shifted toward developing fuzzy personalized WSQP systems. These systems
utilize various features, including individual user characteristics, trustworthiness, available services,
environmental factors, response times, and contextual information such as location. The goal of this
approach is to better capture the dynamic and uncertain nature of QoS data in real-world scenarios.

5.3.2 Importance of Fuzzy Tools in WSQP

The need to address uncertainty in WSQP has gained increasing attention within the academic
community. A notable study by Yera and Martinez [2017] explored the integration of fuzzy logic tools
into recommender systems (RS) to handle the ambiguity and variability of QoS values, improving
prediction accuracy and adaptability. Several fuzzy tools have gained widespread application in this
context, including :

— Fuzzy C-Means Clustering (FCM) : An unsupervised learning algorithm that partitions a
dataset into C clusters, allowing data points to belong to multiple clusters with varying degrees
of membership, thus enhancing flexibility in dealing with uncertain data.

— Fuzzy Logic-based Recommendation : Utilizes fuzzy logic principles to manage uncertainty
and imprecision in user preferences and item characteristics, enabling recommendations based
on vague or subjective user input.

— Fuzzy Inference System (FIS) : A framework for reasoning with fuzzy logic, using fuzzy sets,
rules, and inference methods to map inputs to outputs, making it effective in capturing complex
relationships.

— Fuzzy k-Nearest Neighbors (FkNN) : Extends the k-NN algorithm by incorporating fuzzy
logic to address uncertainty in the classification of data points.

— Fuzzy Association Rules : Discovers interesting relationships between variables in datasets
where data is uncertain or imprecise.

Fuzzy Logic and Uncertainty Conventional WSQP models often treat QoS values as determinis-
tic, overlooking their inherent variability due to factors such as network congestion, service provider
changes, and user behaviors. Fuzzy logic addresses this limitation by representing QoS values as
ranges rather than fixed points, offering a more accurate model for the dynamic and ambiguous nature
of real-world data Seghir and Khababa [2021a].

Traditional QoS Prediction vs. Fuzzy Approach Traditional WSQP models aim for accuracy
based on historical data but typically fail to account for the inherent fuzziness of QoS values,
compromising prediction accuracy, particularly in dynamic environments. Fuzzy logic improves this
by :

— Capturing imprecise QoS attributes, thus enhancing prediction reliability.
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— Offering personalized predictions that align with users’ subjective preferences.

These advancements underscore the indispensable role of fuzzy tools in handling the complexity
and uncertainty of WSQP, enabling more accurate, personalized, and adaptive predictions.

5.3.3 WSQP Techniques in Practical Situations

WSQP plays a crucial role in service-oriented architectures and cloud environments, where
performance, reliability, and scalability are essential. In cloud service selection, QoS prediction helps
identify the optimal provider based on metrics such as response time, throughput, and availability. For
example, e-commerce platforms He and He [2021] may switch cloud providers during peak traffic
to maintain optimal performance. In service composition, QoS prediction aids in selecting the best
combination of services for tasks such as booking systems that integrate flight, hotel, and payment
services to reduce latency and improve reliability.

WSQP is also critical for real-time service monitoring, especially in high-stakes systems like
financial platforms, healthcare, and telecommunications, where performance lags can trigger proactive
service switching. For example, in healthcare systems, QoS prediction anticipates delays in critical
services, ensuring timely responses. Additionally, QoS prediction enhances recommendations, helping
users or developers select the most efficient services based on anticipated performance. It also aids in
dynamic load balancing by forecasting server loads and optimizing traffic routing. In content delivery
networks, QoS prediction ensures faster access by predicting response times.

6 Future Directions and Open Issues
In this section, we highlight key open issues and suggest potential directions for future research.

— Incorporation of Fuzzy Logic :

— Hybrid systems that combine fuzzy logic with neural networks or reinforcement learning
can further enhance adaptability and scalability, aligning predictions more closely with
the dynamic nature of web services and user expectations. This area remains critical for
innovation.

— Despite increasing adoption, many studies still overlook the importance of addressing
uncertainty in QoS values.

— One challenge is the computational complexity involved in integrating fuzzy logic with
deep learning, especially in real-time scenarios.

— Standardized evaluation frameworks are needed to assess the impact of fuzzy systems on
QoS prediction accuracy.

— Emerging Trends in WSQP :

— Advanced ML and AI Techniques : Deep learning (DL) and reinforcement learning
are employed to capture complex patterns and dynamically optimize QoS predictions.
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However, the computational cost and data requirements of these models remain significant
challenges.

— Big Data Analytics : Frameworks such as Hadoop and Spark facilitate efficient pro-
cessing and analysis of large-scale QoS datasets, but ensuring data integration and
consistency across different sources is crucial for leveraging these technologies effecti-
vely.

— Hybrid Approaches : Combining multiple predictive techniques is increasingly common
to overcome the limitations of single-method approaches. For instance, integrating
memory-based and model-based methods can improve scalability and accuracy.

— Real-Time Monitoring : Adaptive prediction systems are gaining importance for main-
taining relevant predictions under changing network conditions. However, achieving low
latency while maintaining prediction accuracy remains an open issue.

— Security and Privacy in WSQP :

— Privacy-Preserving Techniques : Federated learning is being adopted to address security
concerns in QoS predictions. Challenges include maintaining model performance while
minimizing data leakage risks.

— User Feedback and Crowdsourcing : These approaches enhance the quality of QoS
datasets but raise concerns about data reliability and trustworthiness. Incorporating
blockchain technology could help ensure data integrity.

— Technological Enhancements :

— Edge and Fog Computing : These technologies enable faster processing and real-time
updates by placing models closer to data sources. However, issues such as resource
constraints and load balancing require further investigation.

— Blockchain Technology : Blockchain ensures the integrity and authenticity of QoS data,
fostering trust in web service environments. Key challenges to its widespread adoption
include scalability and energy consumption.

— Interdisciplinary Research :

— Combining insights from human-computer interaction and cognitive science can improve
the usability and interpretability of WSQP systems.

— Cross-domain applications, such as integrating WSQP into IoT ecosystems or healthcare
services, represent promising but underexplored areas.

— Evaluation and Benchmarking :

— Developing standardized metrics and benchmarking frameworks to evaluate new WSQP
techniques is essential for their adoption.

— Comparative studies across different datasets and real-world environments can provide
valuable insights into the scalability and robustness of various methods.
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These advancements are shaping the next generation of intelligent and user-centric WS quality
assessments, while addressing the outlined challenges will be crucial for their successful implementa-
tion.

7 Conclusions
This chapter has provided a systematic review of collaborative filtering (CF) techniques for

predicting web service Quality of Service (QoS) in both static and dynamic environments. Following
PRISMA guidelines, we screened 512 records and conducted in-depth analysis on 146 studies. Our
findings revealed the strengths and limitations of traditional CF methods, which are effective in static
environments but struggle with data sparsity, scalability, and high bias/variance when applied to
dynamic scenarios.

A key insight from the review is that incorporating temporal information and context-aware
models leads to significant improvements in predictive performance. Hybrid models that combine
time-series analysis, deep learning, and contextual filtering demonstrate considerable reductions in
error metrics, effectively bridging the gap between static and dynamic prediction approaches. This
validates our proposed taxonomy, which emphasizes the integration of time-aware techniques to
address fluctuating QoS values.

Furthermore, our analysis highlights the adaptability and robustness of dynamic models that
utilize real-time data, compared to static models reliant on historical data. This shift underscores the
importance of developing more flexible and scalable prediction techniques in the face of modern web
service complexities.

Despite these advancements, several challenges remain, including computational inefficiencies,
limited access to large-scale datasets, and the need for improved model interpretability. Moving
forward, research should focus on scalable, privacy-preserving techniques such as federated learning
and distributed machine learning, while also exploring promising methods like graph neural networks,
reinforcement learning, and self-supervised learning. These innovations hold potential to enhance
predictive accuracy and broaden the applicability of web service QoS prediction models in real-world
scenarios.

Although this chapter marks the final section of the thesis, it sets the stage for future work. We
will implement a dynamic, time-aware web service QoS prediction method based on the insights
derived from this review. This practical implementation aims to advance the field by integrating the
discussed approaches into a robust, adaptive system capable of accurately predicting QoS in real-time,
dynamic environments.



Chapter 7

General conclusion and Future Work

This thesis introduces three significant contributions to the QoS-aware service composition pro-
blem (QSC), which is recognized as an NP-complete problem. While the QSC has been acknowledged
as NP-complete, there has been relatively limited research aimed at resolving the QSC considering
imprecise or uncertain QoS values. The majority of existing contributions have primarily focused
on formulating and solving the problem with precise QoS values incorporated into the optimization
processes.

1 Contributions and research summary
This section aims to provide a comprehensive overview summarizing the diverse contributions

presented in our research work. The thesis encompasses three principal contributions, each contributing
significantly to the advancement of the field :

— An extended artificial bee colony with local search for solving the Skyline-based web services
composition under interval QoS properties.

— An Improved Discrete Flower Pollination Algorithm for Fuzzy QoS-aware IoT Services
Composition Based on Skyline Operator.

— Collaborative Filtering Techniques for Predicting Web Service QoS Values in Static and
Dynamic Environments : A Systematic and Thorough Analysis

1.1 An extended artificial bee colony with local search for solving the
Skyline-based web services composition under interval QoS proper-
ties

In this thesis, the simple interval number is applied to represent the ambiguity of the QoS values
in solving the QoS uncertainty-aware web service composition problem. This later is modeled as an
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interval constrained single-objective optimization (IQSC) model, while a new approach combining
two components : skyline operator and an interval extended version of the basic artificial bee colony
(EABC) algorithm, is shaped to address the formulated IQSC. The first component (skyline operator)
is utilized to reduce the search space of IQSC by pruning the redundant and dominated web services
from their sets of functionally equivalent ones. Whereas, the second component which is (EABC) is
performed to obtain the optimal/near-optimal composite service of IQSC in a reduced search space.
The experimental results, which have been performed on an interval extended version of the public
QWS dataset, of comparing our proposed approach to an existing skyline-based PSO, an efficient
discrete gbest-guided artificial bee colony and a recently provided Harris Hawks optimization with an
elite evolutionary strategy algorithms, demonstrate and validate both the performance superiority and
the efficiency of our introduced approach.

1.2 An Improved Discrete Flower Pollination Algorithm for Fuzzy QoS-
aware IoT Services Composition Based on Skyline Operator

In this thesis, the generalized trapezoidal fuzzy number is applied to represent the ambiguity of
the QoS values in solving the QoS uncertainty-aware IoT service composition problem. We have
proposed an new approach that combines two modules : (1) a fuzzy skyline-based module and (2)
an improved discrete flower pollination algorithm (IDFPA) to solve with rapidity and efficiency
the QoS-aware IoT services composition problem under GTrFN-based QoS parameters (QSCFIoT),
which is formulated as a fuzzy constrained single-objective optimization model. In the proposed
approach, the fuzzy-skyline-based module is utilized to reduce the search space of QSCFIoT, whereas
the IDFPA is employed to quickly look for near-optimal CSs with high-quality solutions in the reduced
search space of QSCFIoT. Compared to some existing QoS-aware services composition algorithms
(flower pollination algorithm, Particle Swarm Optimization and an improved teaching-learning-based
QoS-aware services composition algorithm), experimental results, which have been performed on both
synthetic and real datasets for the QSCFIoT with different scales, show that the proposed approach is
efficient and obtains better CSs solutions.

In the QoS-aware IoT-services composition problem, the dynamic demand of users and the
geographical states of the IoT devices will change over time, which may affect the composition quality
in terms of QoS properties of the IoT-services composition algorithms. In future work, we further
plan to investigate these hard constraints in the performance evaluation of such algorithms in dynamic
IoT environments.
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1.3 Collaborative Filtering Techniques for Predicting Web Service QoS
Values in Static and Dynamic Environments : A Systematic and
Thorough Analysis

In this thesis, a systematic literature review (SLR) was constructed to comprehensively examine
collaborative filtering (CF) techniques for predicting Quality of Service (QoS) values in web services,
with a focus on both static and dynamic environments. As the prediction is a crucial step for the
QSC problem. Following the PRISMA guidelines, the study systematically screened 512 records and
conducted full-text evaluations of 146 studies. The synthesis of these studies provided a consolidated
view of the prevailing algorithmic approaches, evaluation metrics, benchmark datasets, and reported
performance outcomes.

The findings reveal that while traditional CF methods demonstrate effectiveness in static contexts,
they are often hindered by issues such as data sparsity, limited scalability, and susceptibility to
high bias and variance, particularly in dynamic scenarios. In contrast, approaches that incorporate
temporal and contextual information—such as time-aware models, context-based filtering, and hybrid
frameworks integrating deep learning and time-series analysis—consistently outperform conventional
models. These hybrid and context-enriched strategies have shown notable reductions in error metrics,
underscoring the performance benefits of dynamic modeling in fluctuating environments.

The review supports a growing consensus that bridging the gap between static and dynamic
prediction requires models that are both adaptive and aware of temporal and contextual changes. This
observation validates the proposed taxonomy, which emphasizes time-aware modeling as a unifying
framework for future research. Furthermore, it is evident that leveraging real-time, dynamic data
yields greater adaptability and robustness compared to static models reliant on historical data. Visual
analysis using VOSviewer further reinforces this classification, highlighting strong co-occurrence of
emerging concepts in adaptive and predictive analytics with domain-specific keywords.

Nonetheless, several challenges persist. These include computational inefficiencies in complex
models, the predominance of small-scale experimental datasets, and ongoing concerns related to
model transparency and interpretability. To address these gaps and advance the field of Web Service
QoS Prediction (WSQP), future research should prioritize the development of scalable and privacy-
preserving methods, such as federated and distributed learning. In parallel, novel approaches including
graph neural networks, reinforcement learning, and self-supervised learning offer promising directions
for enhancing both prediction accuracy and real-world applicability.

In conclusion, this review not only synthesizes the current state-of-the-art in collaborative filtering
for QoS prediction but also outlines a clear and structured roadmap for future inquiry. By promoting
the integration of dynamic, context-aware, and scalable methodologies, the field can better meet the
evolving challenges of modern web service environments.



168 General conclusion

2 Future Works and Perspectives
Following the notable contributions mentioned earlier, there remain several potential avenues for

future contributions to the field of research. These perspectives are pivotal and could significantly
contribute to the advancement of science and technology. Some of these perspectives include :

— QoS Uncertainty-Aware Service Composition in Cloud and Fog Computing : Future
plans include extending the scope of solving QoS uncertainty-aware web service composition,
specifically focusing on Cloud and Fog computing environments. This expansion involves
considering more specialized QoS parameters and context-aware information, such as the
geographical location of users and available web services.

— Utilization of Contextual Information for Web Service Recommendation : Incorporating
contextual information like geographical location and the distribution of users and web service
providers through personalized collaborative filtering techniques for web service recommenda-
tion Shao et al. [2007] is an upcoming area of exploration.

— Development of Multi-Objective Versions of IQSC and QSCFIoT Models : A focus will be
on developing efficient multi-objective versions of the introduced IQSC and QSCFIoT models
to handle various objectives simultaneously, providing a more comprehensive solution.

— Exploration of Probabilistic Methods for QoS Uncertainty : The current thesis primarily
focused on interval and fuzzy numbers to represent QoS attribute uncertainty. Future investiga-
tions will delve into probabilistic methods to represent the impreciseness of QoS attributes in
solving the QoS-uncertainty-aware service composition problem.

— Implementation of Collaborative Web Services Selection Platform : A planned endeavor in-
volves the implementation and validation of an effective collaborative platform for web service
selection and composition, validating its functionality in both synthetic and real environments.

— Addressing Data Sparsity in Real-World QoS Datasets : In consideration of the reference
Mezni [2021], the interrelation between service selection and recommendation has been
recognized as a significant element within service filtering procedures. Service selection
involves identifying the most suitable candidate services based on their QoS (Quality of Service)
and contextual criteria. Conversely, service recommendation refines selection outcomes by
integrating additional factors like feedback, ratings, user similarities, service similarities,
and more. The QWS (Quality of Web Services) dataset is static and lacks empty entries,
differing from real-world datasets like the WSDream dataset in Zheng et al. [2009], which are
characterized by sparsity and multiple missing values. Subsequently, future research endeavors
will address this data sparsity challenge by developing a precise model capable of efficiently
predicting missing QoS values.
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Appendix A

Proof of the Theorem 1’s proprieties

(P1) Let A = [al,au] be an arbitrary interval-number. As the two order relations <min and >max are
not held to rank the closed interval-number A with itself, i.e, (al = al) and (au = au), then A
is considered equivalent to itself, i.e., A∼ A, which implies A≤min (≥max) A. Therefore, the
reflexivity priority is satisfied.

(P2) Here, the anti-symmetry is trivial by Definitions 15 and 16.

(P3) Let A= [al,au], B= [bl,b u] and C = [cl,cu] be three arbitrary interval-numbers. Given A≤min B.
Hence, according to the Definitions 13 and 15, we have :

1. (al = bl) and (au = bu) ;

2. or (al < bl) and (au < bu) ;

3. or (al−bl)< (bu−au) ;

4. or
(
(al−bl) = (bu−au)

)
and (au < bu)

Similarly for B≤min C,

1. (bl = cl) and (bu = cu) ;

2. or (bl < cl) and (bu < cu) ;

3. or (bl− cl)< (cu−bu) ;

4. or
(
(bl− cl) = (cu−bu)

)
and (bu < cu)

This implies that,

1.
[
(al = bl) and (au = bu) and (bl = cl) and (bu = cu)

]
⇒ (al = cl) and (au = cu) ;

2. or
[
(al = bl) and (au = bu) and (bl < cl) and (bu < cu)

]
⇒ (al < cl) and (au < cu) ;

3. or
[
(al = bl) and (au = bu) and (bl− cl)< (cu−bu)

]
⇒ (al− cl)< (cu−au) ;

4. or
[
(al = bl) and (au = bu) and

(
(bl− cl) = (cu−bu)

)
and (bu < cu)

]
⇒(

(al− cl) = (cu−au)
)

and (au < cu) ;

5. or
[
(al < bl) and (au < bu) and (bl = cl) and (bu = cu)

]
⇒ (al < cl) and (au < cu) ;

6. or
[
(al < bl) and (au < bu) and (bl < cl) and (bu < cu)

]
⇒ (al < cl) and (au < cu) ;
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7. or
[
(al < bl) and (au < bu) and (bl− cl)< (cu−bu)

]
⇒ (al + au) < (bl + bu) < (cl +

cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

8. or
[
(al < bl) and (au < bu) and

(
(bl− cl) = (cu−bu)

)
and (bu < cu)

]
⇒ (al + au) <

(bl +bu) = (cl + cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

9. or
[
(al−bl)< (bu−au) and (bl = cl) and (bu = cu)

]
⇒ (al− cl)< (cu−au)

10. or
[
(al−bl)< (bu−au) and (bl < cl) and (bu < cu)

]
⇒(al + au) < (bl + bu) < (cl +

cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

11. or
[
(al−bl)< (bu−au) and (bl− cl)< (cu−bu)

]
⇒(al + au) < (bl + bu) < (cl +

cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

12. or
[
(al−bl)< (bu−au) and

(
(bl− cl) = (cu−bu)

)
and (bu < cu)

]
⇒(al +au)< (bl +

bu) = (cl + cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

13. or
[(
(al−bl) = (bu−au)

)
and (au < bu) and (bl = cl) and (bu = cu)

]
⇒(

(al− cl) = (cu−au)
)

and (au < cu)

14. or
[(
(al−bl) = (bu−au)

)
and (au < bu) and (bl < cl) and (bu < cu)

]
⇒(al + au) =

(bl +bu)< (cl + cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

15. or
[(
(al−bl) = (bu−au)

)
and (au < bu) and (bl− cl)< (cu−bu)

]
⇒(al +au) = (bl +

bu)< (cl + cu)⇒ (al +au)< (cl + cu)⇒ (al− cl)< (cu−au) ;

16. or
[(
(al−bl) = (bu−au)

)
and (au < bu) and

(
(bl− cl) = (cu−bu)

)
and (bu < cu)

]
⇒

(al + au) = (bl + bu) = (cl + cu) and (au < bu < cu) ⇒ (al + au) = (cl +

cu) and (au < cu)⇒
(
(al− cl) = (cu−au)

)
and (au < cu)

This implies that,

1. (al = cl) and (au = cu) ;

2. or (al < cl) and (au < cu)

3. or (al− cl)< (cu−au) ;

4. or
(
(al− cl) = (cu−au)

)
and (au < cu)

Therefore A≤min C. Similar to the transitivity proof of≤min, it is easy to check that if A≥max B
and B≥max C then A≥max C.



Appendix B

Proof of the proprieties (P1), (P2) and
(P3).

(P1) Let Ã = (a1,a2,a3,a4;ωA) be an arbitrary GTrFN. Now, MS (Ã) = MS (Ã), MK (Ã)
= MK (Ã), S W (Ã) = S W (Ã), K W (Ã) = K W (Ã) and ωA = ωA, i.e., Ã ∼ Ã, which
implies Ã ≼min (≽max)Ã ; as result, the reflexivity priority is satisfied.

(P2) Here, the anti-symmetry is trivial by Definitions 10 and 11 as well as (O2).

(P3) Let Ã = (a1,a2,a3,a4;ωA), B̃ = (b1,b2,b3,b4;ωB) and C̃ = (c1,c2,c3,c4;ωC) be three arbi-
trarily GTrFNs. Given Ã ≼min B̃, hence, according to the Definition 10 and (O2), we have :

(1) MS (Ã)< MS (B̃)

(2) Or (MS (Ã) = MS (B̃)) and (MK (Ã)< MK (B̃))

Or (MS (Ã) = MS (B̃)) and (MK (Ã) = MK (B̃)) and (S W (Ã)< S W (B̃))

(3) Or (MS (Ã) = MS (B̃)) and (MK (Ã) = MK (B̃)) and (S W (Ã) = S W (B̃)) and
(K W (Ã)< K W (B̃))

(4) Or (MS (Ã) = MS (B̃)) and (MK (Ã) = MK (B̃)) and (S W (Ã) = S W (B̃)) and
(K W (Ã) = K W (B̃)) and (ωA < ωB)

(5) Or (MS (Ã) = MS (B̃)) and (MK (Ã) = MK (B̃)) and (S W (Ã) = S W (B̃)) and
(K W (Ã) = K W (B̃)) and (ωA = ωB)

Similarly for B̃ ≼min C̃,

(1) MS (B̃)< MS (C̃)

(2) Or (MS (B̃) = MS (C̃)) and (MK (B̃)< MK (C̃))

(3) Or (MS (B̃) = MS (C̃)) and (MK (B̃) = MK (C̃)) and (S W (B̃)< S W (C̃))

(4) Or (MS (B̃) = MS (C̃)) and (MK (B̃) = MK (C̃)) and (S W (B̃) = S W (C̃)) and
(K W (B̃)< K W (C̃))

(5) Or (MS (B̃) = MS (C̃)) and (MK (B̃) = MK (C̃)) and (S W (B̃) = S W (C̃)) and
(K W (B̃) = K W (C̃)) and (ωB < ωC)



Proof of the proprieties (P1), (P2) and (P3). 189

(6) Or (MS (B̃) = MS (C̃)) and (MK (B̃) = MK (C̃)) and (S W (B̃) = S W (C̃)) and
(K W (B̃) = K W (C̃)) and (ωB = ωC)

This implies that,

(1) MS (Ã)< MS (B̃)< MS (C̃)

(2) Or (MS (Ã) = MS (B̃) = MS (C̃)) and (MK (Ã)< MK (B̃)< MK (C̃))

(3) Or (MS (Ã) = MS (B̃) = MS (C̃)) and (MK (Ã) = MK (B̃) = MK (C̃)) and
(S W (Ã)< S W (B̃)< S W (C̃))

(4) Or (MS (Ã) = MS (B̃) = MS (C̃)) and (MK (Ã) = MK (B̃) = MK (C̃)) and
(S W (Ã) = S W (B̃) = S W (C̃)) and (K W (Ã)< K W (B̃)< K W (C̃))

(5) Or (MS (Ã) = MS (B̃) = MS (C̃)) and (MK (Ã) = MK (B̃) = MK (C̃)) and
(S W (Ã) = S W (B̃) = S W (C̃)) and (K W (Ã) = K W (B̃) = K W (C̃)) and (ωA <

ωB < ωC)

(6) Or (MS (Ã) = MS (B̃) = MS (C̃)) and (MK (Ã) = MK (B̃) = MK (C̃)) and
(S W (Ã) = S W (B̃) = S W (C̃)) and (K W (Ã) = K W (B̃) = K W (C̃)) and (ωA =

ωB = ωC)

Hence Ã ≼min C̃. Similar to the transitivity proof of ≼min, it is easy to check that if Ã ≽max B̃
and B̃ ≽max C̃ then Ã ≽max C̃.
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