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Introduction

Differential games are a kind of dynamic game that evolve over time. The state of the
game is represented by a system of differential equations involving multiple decision-makers,
known as players. Each player aims to minimize or maximize his individual criteria ( [35], [9]).

Applications of differential games have been used in many fields, such as economics and ma-
nagement science [23], military defense [35] and biology.

On the other hand, differential games are an extension of optimal control problems (OCPs).
Due to their connection, some of the concepts and techniques used in the solution of OCPs can
also be applied in the solution of differential game problems such as Pontryagin maximum prin-
ciple (MP) and Bellman’s dynamic programming principle (DPP) serve as the main significant
approaches for differential games (see e.g., [9]). The MP approach characterizes the open-loop
Nash equilibrium (OLNE) solution of the differential games using Hamiltonian function and
adjoint variables. An OLNE refers to a situation in nonzero-sum differential games where the
strategies of the players depend on the initial state of the system and time. These strategies can
be determined by solving two-point boundary value problems (TPBVPs), which are derived
from MP. This principle provides the necessary conditions for the existence of an OLNE by des-
cribing how players must adjust their strategies over time to maximize or minimize their indi-
vidual objectives, taking into account interactions with other players (see e.g., [9]). Whereas, the
DPP characterizes the feedback Nash equilibrium (FNE) using the value function solution to the
Hamilton-Jacobi-Bellman (HJB) equations (see e.g., [9]) and there is a close relationship between
them. The relation between MP and DPP can be regarded as the connection between adjoint va-
riables and the value function, or the Hamiltonian systems and the HJB equations ( [57]). There
is a lot of research on the study of relationship between them in deterministic and stochastic
optimal control problems (Single player differential games) (see [19, 34, 37, 42, 45, 53, 57, 59]).

The connection between MP and DPP for optimal control problems with a smooth value
function was established by Fleming and Rishel [29], Yong and Zhou [57] and further investi-
gated by Shi in [49] for (zero-sum) stochastic differential games with jump diffusions. However,
even in very simple cases, the value function is not smooth and the HJB equations may not have
a smooth solution at all, so this equations must be studied in viscosity solution (VS). This new
notion is a kind of nonsmooth solutions was first proposed by Crandall and Lions [21] (see
also Crandall et al. [22] and [6]) to overcome the difficulty that the value function of differential
games or single player differential games (OCPs) is not smooth. The VS provides researchers
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to explore relationships between adjoint variables and value functions of deterministic and sto-
chastics OCPs (see [7, 19, 20, 34, 37, 41, 42, 45, 53, 57, 59]).

The connection between the adjoint variables in MP and the value function in DPP for opti-
mal control problems has important applications in mathematical economics and finance. Yong
and Zhou [57] discusses the economic interpretations of the adjoint variable, also known as the
shadow price, in both smooth and nonsmooth of the value function. For zero-sum stochastic
differential games with jump diffusions, Shi [49] discusses a portfolio optimization problem
under model uncertainty in an incomplete financial market in the smooth case.

Differential game problems are often solved numerically, as analytical solutions are not al-
ways available. Several numerical methods have been proposed, including algorithms based
on dynamic programming [28], direct and indirect methods [36], an iterative adaptive dynamic
programming method for solving nonlinear zero-sum differential games [58], and the comple-
mentarity theory, which is specifically used for solving zero-sum pursuit-evasion differential
games [54]. The most efficient and accurate numerical method for solving various types of diffe-
rential equations are spectral methods (see, [48], [15], [16]), which are based on truncated series
of orthogonal polynomials. These methods are commonly classified into three main categories :
Galerkin, Tau, and collocation methods. Among the orthogonal polynomials, Jacobi polyno-
mials (see eg., [24, 52]), including special cases such as Legendre and Chebyshev polynomials
(see eg., [13, 15, 32]), are widely used in mathematical analysis and practical applications due
to their strong convergence properties. A number of studies have investigated the application
of spectral methods to solve open-loop Nash equilibrium in nonlinear differential games. Spe-
cifically, pseudospectral methods have been used to solve nonlinear two-point boundary value
problems (TPBVPs) in nonzero-sum differential games and min-max optimal control problems
with uncertainty ( [43], [44]). In [3], the Legendre Tau method to find the OLNE of noncoope-
rative nonzero-sum differential games. In addition, the Bernoulli Tau method has been used to
compute these equilibria in nonlinear differential games [5].

The main objective of this thesis, which focuses on the study of the deterministic nonzero-
sum differential games (NZSDGs) on a finite horizon, consist of two parts. In the first part, we
present the connection between the adjoint variables in MP and the value function in the DPP
for differential games. We analyze both the smooth and nonsmooth cases of the value function
in terms of the derivatives and super- and subdifferentials, with their economic interpretations
of the adjoint variables. This result represents a generalization of the results in [57] related to
deterministic OCPs.

In the second part, we apply an appropriate numerical method based on the Jacobi spectral
method (JSM) to approximately solve the nonlinear TPBVPs derived from MP are transferred
to a system of algebraic equations in order to obtain the OLNE of NZSDGs.
The thesis is structured as follows :

• The first chapter provides a general overview of differential game theory by progressively

2



LIST OF FIGURES 3

introducing the basic concepts of optimal control theory, game theory, and differential
games.

• The second chapter, we present a deterministic two-player NZSDGs on a finite horizon.
We explore the connection between the adjoint variables in the maximum principle (MP)
and the value function in the DPP for differential games, both in the smooth and nons-
mooth cases of the value function. The connection is established in terms of derivatives
as well as sub and super-differentials of the value function. This chapter represent a ge-
neralization of the results in [57] related to deterministic OCPs.

• In the third chapter, we provide an example of a producer-consumer game with sticky
prices taken from [14] to illustrate the theoretical results from the second chapter. This
application illustrates how this connection can be applied to real-world situations, focu-
sing on the economic interpretations of adjoint variables in differential games.

• In the fourth chapter, we present a numerical method based on the MP, using the Jacobi
spectral method (JSM), which allows us to approximately solve the nonlinear TPBVPs in
order to determine the OLNE of NZSDGs in a finite horizon. We then discuss the appli-
cation of the JSM to solve these differential games. Finally, we provide some examples to
demonstrate the accuracy and usefulness of the proposed method.

The results presented in this thesis have been published or are scheduled for submission to
international journals. Chapters 2 and 3 are included in [12]. The final Chapter is a preprint
and will be submitted for publication.

Rania Benmenni



CHAPTER 1

AN OVERVIEW OF DIFFERENTIAL GAMES

THEORY

In this chapter, we provide an overview of the theoretical foundations of differential games, a
branch of applied mathematics and game theory that focuses on dynamic systems in interac-

tion. These systems are commonly used in contexts where agents’ decisions are influenced by
temporal and strategic factors. We begin by introducing optimal control theory, which offers
the necessary tools to formulate and solve dynamic decision making problems. This theory fo-
cuses on optimizing performance functions subject to dynamic constraints, with methods such
as the maximum principle and dynamic programming principle to finding optimal strategies
over time. We then delve into game theory, which provides a framework for modelling and
analyzing strategic interactions between rational agents (players). Key concepts such as Nash
equilibrium, where no player has an incentive to unilaterally change their strategy, are explo-
red. Finally, we examine differential games, which combine the principles of optimal control
and game theory to address situations where agents’ decisions evolve over time in dynamic
systems. Special attention is given to LQDGs, where linear differential equations and quadratic
cost functions. A more comprehensive background on differential game theory can be found in
the references (see [9, 10, 35, 50]).

1.1 Optimal Control Theory

This section deals with the theory of optimal control (OC). It can be seen as a theory for
single-player differential games. First, we present the formulation of OC problems. Then we
introduce the two main approaches to solving deterministic OC problems, namely, Maximum
Principle and Dynamic Programming Principle. For more details on the concepts presented in
this section, see reference [57].

4



1.1. OPTIMAL CONTROL THEORY 5

1.1.1 Problem Formulation

Consider the following control system{
ẏ (s) = F (s, y (s) , b (s)) , s ∈ [0, T ]

y (0) = y0,
(1.1)

where F : [0, T ] × Rn × B → Rn is a measurable map that represents the dynamical system.
(B; d) is a separable metric space representing the action space of the controller ; y(.) is the state
variable, and y0 ∈ Rn is the initial state ; T ∈ R̄+ is called the horizon of the system. For any
instant s ∈ [0, T ], the controller (decision-makers) has to choose an action b (s) ∈ B in order
to influence the trajectory of the state of his system. Any measurable function b : [0, T ] → B

is called a control or a feasible strategy of the controller and y (.) solution of (1.1) is called the
corresponding state trajectory of b (.).
The set of feasible controls is defined

Bf [0, T ] = {b : [0, T ]→ B, b (.) measurable} .

The cost function is presented as follows

J (b (.)) =

T∫
0

G (s, y (s) , b (s)) ds+ h (y (T )) , (1.2)

The functions G : [0, T ]×Rn×B → R is called the running cost and h : Rn → R is terminal cost.

Definition 1.1. (Admissible Control). A feasible control b (.) ∈ Bf [0, T ] is called an admissible
control, and (y (.) , b (.)) called an admissible pair, if :

1. the equation (1.1) has an unique solution y (s) ;

2. J(b(.)) 〈∞.

Denote B [0, T ] the set of all admissible controls. The OC problem is stated as follows :
Problem (OC). Find a control b̄(·) ∈ B [0, T ] , such that

J(b̄(·)) = inf
b(·)∈B[0,T ]

J(b(·)). (1.3)

Any control b̄(·) ∈ B [0, T ] that satisfies (1.3) is considered as an optimal control to Problem(OC),
the associated state trajectory ȳ (s) is known as the optimal state trajectory, and

(
ȳ (·) , b̄(·)

)
is

called an optimal pair.

Rania Benmenni



1.1. OPTIMAL CONTROL THEORY 6

1.1.2 Approaches to Solving Optimal Control Problem

This section presents two of the most widely used approaches to solving optimal control
problems specifically Maximum Principle, which involves the use of adjoint equations along
with both necessary and sufficient optimality conditions, and the dynamic programming prin-
ciple, which is coupled with the Hamilton-Jacobi-Bellman equations. These methods provide
powerful tools for determining optimal solutions.

The Maximum Principle (MP)

Consider the OC problem (1.1)-(1.2) and we give the tools needed to state the necessary
conditions for the MP.
We introduce the following assumptions :

(OC1) B is a separable metric space ;

(OC2) F is continuous, linear growth and continuously differentiable in (y, b), and Fy, Fb are
bounded and uniformly Lipchitz in (y, b). There existe M > 0 , such that for all y, ŷ ∈
Rn, b, b̂ ∈ B,

|F (s, y, b)| ≤M (1 + |y|+ |b|)

and

|Fy (s, y, b)|+ |Fb (s, y, b)| ≤M∣∣∣Fy (s, y, b)− Fy
(
s, ŷ, b̂

)∣∣∣+
∣∣∣Fb (t, y, b)− Fb

(
s, ŷ, b̂

)∣∣∣ ≤M
(
|y − ŷ|+

∣∣∣b− b̂∣∣∣) ;

(OC3) the functionsG and h areC1 in (y, b) and its derivatives are uniformly Lipchitz and linear
growth in (y, b). There exist a constant M > 0, such that

|Gy (s, y, b)|+ |Gb (s, x, b)| ≤M (1 + |y|+ |b|) ,

|hy (y)| ≤M (1 + |y|) .∣∣∣Gy (s, y, b)−Gy

(
s, ŷ, b̂

)∣∣∣+
∣∣∣Gb (s, y, b)−Gb

(
s, ŷ, b̂

)∣∣∣ ≤M
(
|y − ŷ|+

∣∣∣b− b̂∣∣∣)
|hy (y)− hy (ŷ)| ≤M |y − ŷ| , ∀y, ŷ ∈ Rn, b, b̂ ∈ B.

Under assumption (OC2) for any (s, y) ∈ [0, T ] × Rn and the controls b(.) ∈ L2([0, T ] ;Rm),
equation (1.1) admits a unique solution y(·) and under (OC3) the functional (1.2) is well-defined
(see [57]).
We can define the following set of all admissible control as

B([0, T ]) = {b (.) : [0, T ]→ B|b (.) ∈ L2([0, T ] ;Rm)}.

Rania Benmenni



1.1. OPTIMAL CONTROL THEORY 7

The Hamiltonian function, H : [0, T ]× Rn ×B × R→ R is defined by

H (s, y, b, p) = 〈F (s, y, b) , p〉+G (s, y, b) ,

where p is called the adjoint or co-state variable.
The following adjoint equation{

ṗ (s) = −Hy (s, y (s) , b (s) , p (s)) , s ∈ [0, T ]

p (T ) = hy (y (T )) ,
(1.4)

Theorem 1.1. Let (OC1)-(OC3) hold. Suppose that
(
ȳ (.) , b̄ (.)

)
is an optimal pair of Problem (OC),

then there exist a unique (p̄ (.)) ∈ (C ([0, T ] ;Rn)) solution of the adjoint equations{
˙̄p (s) = −Hy

(
s, ȳ (s) , b̄ (s) , p̄ (s)

)
, s ∈ [0, T ]

p̄ (T ) = hy (ȳ (T ))
, (1.5)

and,
H
(
s, ȳ (s) , b̄ (s) , p̄ (s)

)
= inf

b∈B
H (s, ȳ (s) , b, p̄ (s)) ,

Remark 1.1. The following system is called an Hamiltonian system.
˙̄y (s) = F

(
s, ȳ (s) , b̄ (s)

)
,

˙̄p (s) = −Hy

(
s, ȳ (s) , b̄ (s) , p̄ (s)

)
, s ∈ [0, T ] ,

p̄ (T ) = hy (ȳ (T )) , ȳ (0) = y0,

H
(
s, ȳ (s) , b̄ (s) , p̄ (s)

)
= inf

b∈B
H (s, ȳ (s) , b, p̄ (s)) .

Now, under some appropriate convexity conditions, we recall the following sufficiency
conditions for optimal control problem.

(OC4) H is convex in (y, b) and h is convex in y, ∀s ∈ [0, T ].

Theorem 1.2. Let (OC1)-(OC4) hold. Suppose that
(
ȳ (.) , b̄ (.)

)
is an admissible pair. Suppose there

exist a solution (p̄ (.)) ∈ C ([0, T ] ;Rn) of the adjoint equations (1.5). Then,
(
ȳ (.) , b̄ (.)

)
is an optimal

pair if
H
(
s, ȳ (s) , b̄ (s) , p̄ (s)

)
= inf

b∈B
H (s, ȳ (s) , b, p̄ (s)) ,

The Dynamic Programming Principle (DPP)

Dynamic programming, introduced by Richard Bellman [11] in the early 1950s, involves
solving a family of optimal control problems by the Hamilton-Jacobi-Bellman (HJB) equation,
as a nonlinear first-order partial differential equation (PDE). When the HJB equation is solvable,
it allows for the determination of an optimal feedback control by maximizing or minimizing the
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Hamiltonian involved in the HJB equation ; see for example [30] and [57] for a more detailed
discussion.
For t ∈ [0, T ] and x ∈ Rn, consider a control system given by the following ordinary differential
equations (ODE) {

ẏ (s) = F (s, y (s) , b (s)) , s ∈ [t, T ] ,

y(t) = x.
(1.6)

The cost functional defined by

J(t, x; b(·)) =

T∫
t

G (s, y (s) , b (s)) ds+ h (y (T )) . (1.7)

We need to the following assumptions :

(OC5) F is uniformly Lipchitz and linear growth in (y, b). There existe M > 0, such that for all
y, ŷ ∈ Rn, b, b̂ ∈ B,

|F (s, y, b)| ≤M (1 + |y|+ |b|)∣∣∣F (s, y, b)− F
(
s, ŷ, b̂

)∣∣∣ ≤M (|y − ŷ|) .

(OC6) The functions G and h are continuous and quadratic growth in (y, b).

Under assumption (OC5) for any (s, y) ∈ [0, T ]×Rn and the controls b(.) ∈ B [0, T ], equation (1.6)
admits a unique solution y(·) and under (OC6) the functional (1.7) is well-defined (see [57]).
Then, we define the value function W (t, x) = inf

b(·)∈B[t,T ]
J(t, x, b(·))

W (T, x) = h(x),
(1.8)

which satisfies the Problem (OC).

Theorem 1.3. Suppose (OC1), (OC5) and (OC6) hold. Then for any (s, y) ∈ [0, T ]× Rn,

W (t, x) = inf
b(·)∈B[t,T ]


t̂∫
t

G (s, y (s) , b (s)) ds+W
(
t̂, y
(
t̂
)) , ∀t̂ ∈ [t, T ] .

The HJB equations defined by,
∂W

∂t
(t, x) +H∗

(
t, x,

∂W

∂x
(t, x)

)
= 0, ∀ (t, x) ∈ [0, T ]× Rn

W (T, x) = h (x) ,
(1.9)
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where W (·, ·) ∈ (C1 ([0, T ]× Rn) ;R) and

H∗
(
t, x,

∂W

∂x
(t, x)

)
= H

(
t, x, b̄,

∂W

∂x
(t, x)

)
= inf

b∈B[t,T ]
H

(
t, x, b,

∂W

∂x
(t, x)

)
.

Theorem 1.4. (Verification Theorem). Let assumptions (OC1), (OC5) and (OC6) hold. Assume that
W (·, ·) ∈ C1 ([0, T ]× Rn) is a solution to equations (1.9). Then we have the following :
(i) W (t, x) ≤ J (t, x; b(·)) ,∀ (t, x) ∈ [0, T ]× Rn, b(·) ∈ B [t, T ] ;

(ii)suppose
∂W

∂t
(t, x) +H∗

(
t, x,

∂W

∂x
(t, x)

)
= 0,∀ (t, x) ∈ [0, T ]× Rn,

and there exist an (b̄(·)) ∈ B [t, T ] admissible strategy with the corresponding state trajectory ȳ(·) for
Problem (OC)

H∗
(
t̂, ȳ
(
t̂
)
,
∂W

∂x

(
t̂, ȳ
(
t̂
)))

= H

(
t̂, ȳ
(
t̂
)
, b̄
(
t̂
)
,
∂W

∂x

(
t̂, ȳ
(
t̂
)))

, ∀t̂ ∈ [t, T ] .

Then
(
b̄ (·) , ȳ (·)

)
, is an optimal pair for Problem (OC) in (t, x) .

1.2 Basic Notions of Game Theory

Game theory provides a framework for analyzing strategic interactions among rational mul-
tiple decision makers, called players, where each player seeks to achieve their own goals and
each decision is influenced by the others. This section introduces game classification and stra-
tegic form games. It then presents the central concept of Nash equilibrium.

1.2.1 Game Classification

Games can be classified into various categories based on factors such as players interaction,
available information, and the objective functions (see. eg [8]).

• Simultaneous and Sequential :
In simultaneous or static games, players make their decisions at the same time, the game
is usually represented in normal form (stategic form). For sequential (or dynamic) games
are played in stages, with each player’s decision depending on previous actions.

• Complete information and incomplete :
In games with complete information, all factors of the game, such as the players, their
strategies, and their objective functions (payoff or cost functions), are known to all players.
Otherwise, the game is said to be incomplete.

• Zero-sum and nonzero-sum game :
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A zero-sum game is a game in which the sum of the objective functions of two players is
zero. A nonzero-sum game, on the other hand, is a game in which the sum of the players
objective functions cannot be made to equal zero [8].

• Cooperative and non-cooperative games :
Cooperative games are those in which players can form coalitions and agreements to
achieve mutual benefits, while in non-cooperative games, players make independent
decisions, without cooperating, each aiming to maximize (minimize) their own payoff
(cost) based on the strategies of others.

In cooperative game theory, the Shapley value is one of the most fundamental solution concepts
[47]. Aumann and Shapley [1] define the Shapley value specifically for nonatomic (market)
games. Edhan [26] introduces new diagonal formulas for the Mertens value [38] and the Ney-
man value [40] for a large space of non-differentiable games. In this thesis, we focus on non-
cooperative games, especially in the context of differential games.

1.2.2 Strategic-Form Games

Definition 1.2. (see. eg. [31]). A game in normal form (strategic form) consists of :

(i) a finite number of players N = {1, 2, ..., n} ;

(ii) for each player i, a set Xi of available strategies ;

(iii) for each player i, a payoff function (cost functions) Ji : X → R, which assigns a specific
payoff to each player based on their strategy and the strategies of others,

where, X =
n∏
i=1

Xi denotes the set of all possible strategy profiles.

The following notations can be presented as follows :

• for a strategy profile x = (x1, ..., ..., xn) ,∀i ∈ {1, 2, ..., n} , xi ∈ Xi ;

• for the strategy profile of all players except player i,

x−i = (x1, ..., xi−1, xi+1..., xn) ;

• Xi represents the strategy set of player i, containing all possible strategies available to that
player ;

• X−i is the set of strategies of all players except player i,

X−i = X1 × ...×Xi−1 ×Xi+1 × ...Xn.
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1.2.3 Nash Equilibrium

The Nash equilibrium (NE) is a key concept in non-cooperative game theory, where coope-
ration among players is often difficult. It describes a situation in which each player makes the
best decision possible, taking into account the decisions of the others. In this state, no player
has an incentive to change their strategy unilaterally. The concept was developed by the ma-
thematician John Nash [39].
The best-response function is defined as follows :

Definition 1.3. The strategy x∗i for a player i is considered a best response to a strategy profile
x−i if

Ji (x
∗
i , x−i) = inf

xi∈Xi

Ji (xi, x−i) .

The best response function can also be expressed as :

BRi : X−i → P (Xi)

x−i → BRi (x−i) = {x∗i ∈ Xi, Ji (x
∗
i , x−i) ≤ Ji (xi, x−i)} ,∀xi ∈ Xi.

We note BRi (x−i) the set of rational responses of player i against strategies x−i.

Definition 1.4. (Nash Equilibrium, see e.g., [8, 9, 31]). A strategy profile x∗ ∈ X is a Nash equi-
librium if

x∗i ∈ BRi

(
x∗−i
)
,∀i ∈ {1, 2, ..., n} .

In other terms,
Ji
(
x∗i , x

∗
−i
)
≤ Ji

(
xi, x

∗
−i
)
,∀xi ∈ Xi.

1.3 Differential Games

This section focuses mainly on differential games, an extension of game theory to dyna-
mic contexts. We start with the problem formulation of differential games. Information struc-
tures and strategies are then introduced, and finally a special case of differential games, linear-
quadratic differential games, is discussed.

1.3.1 Problem Formulation

The concepts introduced for the case where n = 1 for the optimal control problem, as dis-
cussed in Section 1.1 can be extended to the general case of n players. Consider the n-player
nonzero-sum differential games on finite horizon and the dynamical system [9] :{

ẏ (s) = F (s, y (s) , b1 (s) , b2 (s) , ..., , bn (s)) , s ∈ [0, T ]

y(0) = y0,
(1.10)
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where y(s) ∈ Rn is the state variables of the game and F : [0, T ]×Rn×
N∏
i=1

Bi → Rn is a function

determining the evolution of the system, and T is a time horizon. The control (strategy) for the
i-th player bi : [0, T ]→ Bi, for some given setsBi ⊂ Rmi , (Bi = B1×B2× .....×Bn, i = 1, 2, ..., n),
and Bi is called admissible set of the bi(·) = (b1(·), b2(·), .....bn(·)) defined by the following :

Bi [0, T ] = {bi (.) : [0, T ]→ Bi|bi (.) ∈ L2([0, T ] ;Rmi)}, i = 1, 2, ...., n;

and the cost functionals as follows

Ji(b1(·), ...., bn(·)) =

T∫
0

Gi (s, y (s) , b1 (s) , b2 (s) , ....., bn (s)) ds+ hi (y (T )) , i = 1, 2, · · · , n. (1.11)

Here Gi is a running cost and hi is a terminal cost.
The aim of the i-th player is to minimize his own cost functionals (1.11). This problem is known
as the n-player nonzero-sum differential game problem given as follows.
Problem (NZSDG). Find a b̄i(·) =

(
b̄1(·), b̄2(·), ..., b̄n(·)

)
∈ Bi [0, T ] , i = 1, 2, ..., n such that

Ji(b̄i(·), b̄−i(·)) = inf
bi(·)∈Bi[0,T ]

Ji(bi(·), b−i(·)). (1.12)

where bi(·) is the control (strategy) for the i-th player and b−i(·) are the controls for the rest of
the players b−i = bj, (j 6= i).
An n-player NZSDGs (1.10)-(1.11) requires assumptions on the functions F,Gi and hi to en-
sure the existence of a unique solution of (1.10) and the well-defined of the functionals (1.11).
These assumptions commonly used in differential games (see e.g., [9, 10]) and are presented in
Chapter 2 for two-player nonzero-sum differential games, which can be extended to the general
case with n players. The following theorem provides conditions that ensure the existence and
uniqueness of the state trajectory y(.).

Theorem 1.5. Let the differential games defined by (1.10)-(1.11). Then, if the function F satisfy,

|F (s, y, b1, ..., bn)− F (s, ŷ, b1, ..., bn)| ≤M |y − ŷ| ,

|F (s, y, b1, ..., bn)| ≤M (1 + |y|) ,

then for any measurable bi (·) , i = 1, ..., n, the equation (1.10) admits a unique state trajectory y(.)

The NE solution concept for the n-player differential game defined by (1.10) and (1.11) given
as follows :

Definition 1.5. The control strategies b̄i(·) = (b̄1(·), b̄2(·), ...., b̄n(·)) ∈ Bi [0, T ] is a NE of Problem

Rania Benmenni



1.3. DIFFERENTIAL GAMES 13

(NZSDG) if the following holds :

Ji(b̄i(·), b̄−i(·)) ≤ Ji(bi(·), b̄−i(·)), ∀bi(·) ∈ Bi [0, T ] , i = 1, ..., n. (1.13)

This means that the NE is a situation where, for each player i, the strategy b̄i(·) of that player
is a best response to the strategies of the other players b̄−i(·).

1.3.2 Information Structures and Strategies

The information structure in a differential game represents the available information for
each player at any given time and that significantly influences their decision making process.
The NE depends on the information structure employed (see e.g., [9, 10]). In this context, we
focus on open-loop Nash equilibrium (OLNE) and feedback Nash equilibrium (FNE) strategies.
In an open-loop information structure, players’ decisions depend on time and the initial state,
while in feedback the decisions depend on both time and the current state (see [10]).

• Open-loop strategy : The control action is selected according to a decision rule νi, which
is a function of the initial state y0

bi(s) = νi(s, y0), ∀y0, ∀s ∈ [0, T ] , i = 1, ..., n.

• Feedback strategy : The control action is selected according to a feedback rule νi, which
is a function of the current state

bi(s) = νi(s, y(s)),∀s ∈ [0, T ] , i = 1, ..., n.

The MP and DPP approaches characterize the OLNE and FNE solutions of differential games.
These approaches are used in solving differential games, respectively. In Chapter 2, we discuss
them in detail, particularly in the context of two-player differential game.

Zero-sum differential games (ZSDGs)

A common special case of differential games when n = 2 are known as a two-player zero-
sum differential games, where the sum of the cost functionals (1.11) for both players is zero,
meaning that the players are adversaries. A gain for Player 1 implies an equal loss for Player 2
(see [9, 35, 56]). {

G1 (s, y, b1, b2) = −G2 (s, y, b1, b2) ,

h1 (y) = −h2 (y) .
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Then,
J(b1(·), b2(·)) = J1(b1(·), b2(·)) = −J2(b1(·), b2(·)).

In the ZSDGs, the NE
(
b̄1(·), b̄2(·)

)
is called the Saddle point Equilibrium (SPE), defined as fol-

lows
J(b̄1(·), b2(·)) ≤ J(b̄1(·), b̄2(·)) ≤ J(b1(·), b̄2(·)),

∀ (b1(·), b2(·)) ∈ B1 [0, T ]× B2 [0, T ] .

1.3.3 Linear Quadratic Differential Games (LQDGs)

Consider a special case of two-player nonzero-sum differential games on a finite time hori-
zon in which the dynamical system of (1.10) is linear, and cost functionals (1.11) are quadratic
and given respectively by

ẏ(s) = A(s)y(s) + E1(s)b1(s) + E2(s)b2(s), s ∈ [0, T ]

y(0) = y0 ∈ Rn,

(1.14)

Ji(b1(·), b2(·)) =
∫ T

0

1

2
(y(t)>Zi(s) y(s) + b1(s)>Ri1(t)b1(s) + b2(s)>Ri2(s)b2(s))ds

+
1

2
y(T )>SiT y(T ), i = 1, 2,

(1.15)

where y, b1, and b2 are the state and the strategies of players as defined in Section 1.3.1. The
matrices A(·) ∈ Rn×n, Ei(·) : [0, T ]→ Rn×mi , i = 1, 2.
The weighting matrices Zi(·), SiT ∈ Rn×n, Rii(·) ∈ Rmi×mi , Rij(·) ∈ Rmj×mj are symmetric and
verify Zi(t) ≥ 0, and SiT ≥ 0, Rii > 0, i = 1, 2,

For the two player LQDGs, the characterization of the OLNE and FNE often involves using the
MP and DPP. These problems necessitate the solution of Riccati differential equations (RDE),
coupled to (1.14) equations. The Riccati equations correspond to the open-loop and the feedback
Nash strategies for the players, which are defined respectively as follows (see e.g., [9,23,27,50]).

K̇1(s) = −K1(s)A− A>K1(s)− Z1(s) +K1(s)Y1(s)K1(s) +K1(s)Y2(s)K2(s)

K1(T ) = S1T ,

K̇2(s) = −K2(s)A− A>K2(s)− Z2(s) +K2(s)Y2(s)K2(t) +K2(s)Y1(s)K1(s)

K2(T ) = S2T ; s ∈ [0, T ] .
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

K̇1(s) = −K1(s)A− A>K1(s)−Q1(s) +K1(s)Y1(s)K1(s)

+K1(s)Y2(s)K2(s) +K2(s)Y2(s)K1(s)−K2(s)Y12(s)K2(s)

K1(T ) = S1T ,

K̇2(s) = −K2(s)A− A>K2(s)− Z2(s) +K2(s)Y2(s)K2(s)

+K2(s)Y1(s)K1(s) +K1(s)Y1(s)K2(s)−K1(s)Y21(s)K1(s)

K2(T ) = S2T , ; s ∈ [0, T ] ,

where,
Yi(s) = Ei(s)Rii(s)

−1E>i (s); i = 1, 2.

Yij(s) = Ej(s)Rjj(s)
−1Rij(s)Rjj(s)

−1E>j (s), 1 ≤ i, j ≤ 2.

Linear State Differential Games (LSDGs)

Consider a deterministic LSDGs with linear scalar dynamics system (1.14) and the cost func-
tions (1.15) which are quadratic scalar functions for the two player

ẏ(s) = ay(s) + e1b1(s) + e2b2(s), s ∈ [0, T ]

y(0) = y0,

where y (s) is the state of the system at time s, which is scalar in this case. y0 ∈ R is the initial
state of the system. The strategies of two players bi(s) 6= 0, i = 1, 2,. The constants a, e1 and e2

define the dynamic system.
Each player aims to minimize their own cost function over [0, T ]. The typical cost functions are
of the form :

Ji(b1(·), b2(·)) =
∫ T

0
(zi(s)y(t)2 + ri(t)b

2
i (s)) ds

+siT y
2(T ), i = 1, 2.

The coefficients verify zi, ziT ∈ R, i = 1, 2,.
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CHAPTER 2

A CONNECTION BETWEEN THE ADJOINT

VARIABLES AND VALUE FUNCTION FOR

DIFFERENTIAL GAMES

In this chapter, we give the problem formulation of a deterministic two-player NZSDGs in
a finite horizon and we recall the preliminaries results of the two main approaches, both the

Maximum Principle (MP) and dynamic programming principle (DPP) ( see e.g., [9]) in section 1.
The last two subsequent sections contain the main results of the connection between the adjoint
variables in the maximum principle and the value function in the dynamic programming prin-
ciple where the value function is smooth and nonsmooth. For the smooth case, the connection
between the solutions of the adjoint equations of the Maximum Principle and the derivatives
of the value function are equal to each other along optimal trajectories. Furthermore, for the
nonsmooth case, this relationship is given in terms of viscosity solutions (VS), which provides
a more general framework to handle cases where the value function is not smooth and this
relation is represented in terms of the adjoint variables and the first order super- and subdiffe-
rentials of the value function.

2.1 Formulation of the Game Problem

In this section, we give the problem formulation of (NZSDGs) and we recall some prelimi-
nary of the MP and DPP without proofs (see e.g., [9]) necessary for the main results. We first
give a brief exposition of the MP, introduce the Hamiltonian, the adjoint equations, and the
necessary and sufficient maximum principle for differential games to characterize open-loop
Nash equilibrium (OLNE). This section also includes the DPP. This principle leads to Hamilton
Jacobi Bellman (HJB) equation, a nonlinear first-order PDE, and if the HJB equation is solvable,
then the feedback Nash equilibrium (FNE) is obtained by minimizing the Hamiltonian invol-
ved in the HJB equation. Furthermore, the HJB equation is satisfied by the verification theorem.
However, even in very simple cases, the value function is not smooth and the HJB equations
may not have a smooth solution at all, so these equations must be studied in viscosity solu-
tion (VS). This new notion is a kind of nonsmooth solutions. It was first proposed by Crandall
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and Lions [21] (see also Crandall et al. [22] and [6]) to overcome the difficulty that the value
function of differential games or single player differential games (OCPs) is not smooth ; see for
example [30] and [57] for a more detailed discussion.
Let us consider a non-cooperative two-player nonzero-sum differential games equivalent to
(1.10)-(1.11) on the finite horizon and the dynamical system are described by (ODE){

ẏ (s) = F (s, y (s) , b1 (s) , b2 (s)) , s ∈ [0, T ]

y(0) = y0,
(2.1)

where y(s) ∈ Rn is the state variables of the game at time s ∈ [0, T ] that is influenced by both
players and the control (strategy) for the i-th player bi : [0, T ] → Bi, where Bi is closed subset
of Rmi , (Bi = B1 × B2, i = 1, 2). T > 0 is a fixed time horizon, and Bi is called admissible set of
the control bi(·) = (b1(·), b2(·)) defined by the following :

Bi([0, T ]) = {bi (.) : [0, T ]→ Bi|bi (.) ∈ L2([0, T ] ;Rmi)}, i = 1, 2.

The cost functional for the two players is :

Ji(s, y0; b1(·), b2(·)) =

T∫
0

Gi (s, y (s) , b1 (s) , b2 (s)) ds+ hi (y (T )) , i = 1, 2. (2.2)

We give the following assumptions for the coefficients of (2.1) and ( 2.2).

(DG1) The function F : [0, T ] × Rn × B1 × B2 → Rn is continuous and there exists a constant
M > 0 such that for every s ∈ [0, T ] , y, ŷ ∈ Rn, b, b̂ ∈ Bi with b = (b1, b2), we have∣∣∣F (s, y, b)− F

(
s, ŷ, b̂

)∣∣∣ ≤M
(
|y − ŷ|+

∣∣∣b− b̂∣∣∣) ,
|F (s, y, b)| ≤M (1 + |y|+ |b|) ,

(DG2) The functions Gi : [0, T ]× Rn × B1 × B2 → R and hi : Rn → R are continuous, and there
exists a constant M > 0 such that∣∣∣Gi (s, y, b)−Gi

(
s, ŷ, b̂

)∣∣∣ ≤M
(
|y − ŷ|+

∣∣∣b− b̂∣∣∣) ,
|hi (y)− hi (ŷ)| ≤M |y − ŷ| ,

|Gi (s, y, b1, b2)|+ |hi (y) | ≤M (1 + |y|) ,∀s ∈ [0, T ] , y, ŷ ∈ Rn, b, b̂ ∈ Bi, i = 1, 2.

Under assumption (DG1) for any (s, y) ∈ [0, T ]×Rn and the controls bi(.) ∈ Bi [0, T ], equation
(2.1) admits a unique solution y(·) = ys,y0,bi(·)(·) and under (DG2) the functional (2.2 ) is well-
defined. (see ( [57]).
Consider the following nonzero-sum differential game problem.
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Problem (NZSDG). For given (s, y) ∈ [0, T ]× Rn, find a b̄i(·) ∈ Bi [0, T ] , i = 1, 2, such that

Ji(s, y0; b̄i(·)) = inf
bi(·)∈Bi[0,T ]

Ji(s, y0; bi(·)). (2.3)

The NE concept was defined for n-player differential games in Definition 1.5. It is now given
again for the two-player case.

Definition 2.1. For i = 1, 2, here b̄i(·) ∈ Bi [0, T ] satisfying (2.3) is called a NE of Problem
(NZSDG) if for any other admissible control actions bi(·) the following inequalities hold :

J1(s, y0; b̄1(·), b̄2(·)) ≤ J1(s, y0; b1(·), b̄2(·)), ∀b1(·) ∈ B1 [0, T ] ,

J2(s, y0; b̄1(·), b̄2(·)) ≤ J2(s, y0; b̄1(·), b2(·)), ∀b2(·) ∈ B2 [0, T ] .

This implies that the controls (b̄1(·), b̄2(·)) represent a NE, indicating that neither player can
benefit by changing their own control, making it the optimal choice for both [39].

2.1.1 Maximum Principle (MP)

Here, we present the approach to find the equilibrium, based on the Pontryagin’s maximum
principle (MP) for differential games (e.g., [9]). First, consider the maximum principle for Pro-
blem (NZSDG), as published in multiple articles (see e.g., [46, 57] and [9]), by using the neces-
sary conditions (2.4), (2.5), (2.6) and (2.7) for an OLNE b̄i(·) = (b̄1(·), b̄2(·)) ∈ B1 [0, T ] × B2 [0, T ]

and the assumption is as follows :

(DG3) F is C1 in (y, b) and its derivatives are bounded and uniformly Lipchitz in (y, b). In ad-
dition, Gi and hi are C1 in (y, b), and the partial derivatives Gi

y, G
i
b, h

i
y are uniformly

Lipchitz and linear growth.

The Hamiltonian functions associated with this gameHi : [0, T ]×Rn×Bi×R→ R is defined
by

Hi (s, y, b1, b2, pi) = 〈F (s, y, b1, b2) , pi〉+Gi (s, y, b1, b2) , i = 1, 2. (2.4)

The determination of Nash equilibrium is related to the minimization of the Hamiltonian.
Under the assumptions (DG1)-(DG3), let (b̄1(·), b̄2(·)) be an OLNE of Problem (NZSDG) and ȳ(s)

is the corresponding state trajectory, there exist a unique adjoint variables (p̄i (.)) ∈ (C ([0, T ] ;Rn))

for i = 1, 2 solution of the adjoint equations{
˙̄pi (s) = −H i

y

(
s, ȳ (s) , b̄i (s) , p̄i (s)

)
, s ∈ [0, T ]

p̄i (T ) = hiy (ȳ (T ))
, i = 1, 2, (2.5)
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and the infimum condition

H∗i (s, ȳ(s), p̄i(s)) = Hi

(
s, ȳ(s), b̄i(s), p̄i(s)

)
= inf

bi(·)∈Bi[0,T ]
Hi (s, ȳ(s), bi(s), p̄i(s)) . (2.6)

Such that,
H i
bi

(
s, ȳ(s), b̄i(s), p̄i(s)

)
= 0, s ∈ [0, T ] . (2.7)

(DG4) Hi, i = 1, 2, is convex in (y, b1, b2) and hi, i = 1, 2, is convex in y, ∀s ∈ [0, T ].

Under some appropriate convexity conditions (DG4) we can recall the sufficient maximum
principle for an OLNE can be regarded as an extension of the MP for single player differen-
tial games in (see e.g., [57], we introduce the following theorem (see e.g., [57]).

Theorem 2.1. Let (DG1)-(DG4) hold. Suppose that (b̄1(·), b̄2(·)) admissible strategy with the corres-
ponding state trajectory ȳ(·). Suppose there exist a solution (p̄i (.)) ∈ (C ([0, T ] ;Rn) , i = 1, 2) of the
adjoint equations (2.5) such that the infimum conditions hold

H∗i (s, ȳ(s), p̄i(s)) = inf
bi(·)∈Bi[0,T ]

Hi (s, ȳ(s), bi(s), p̄i(s)) , i = 1, 2.

Then, (b̄1(·), b̄2(·)) is an open-loop Nash equilibrium.

2.1.2 Dynamic Programming Principle (DPP)

Now, we present the DPP (see e.g., [9]), HJB Equations, verification theorem and viscosity
solution for the (NZSDG) problem when the controls b̄i(·) = (b̄1(·), b̄2(·)) ∈ B1 [s, T ] × B2 [s, T ]

is feedback Nash equilibrium (FNE). However, before presenting this approach, we must first
adopt a dynamic formulation of the NZSDG problem.
For t ∈ [0, T ] and x ∈ Rn, we rewrite (2.1 ) and (2.2) as the following :{

ẏ (s) = F (s, y (s) , b1 (s) , b2 (s)) , s ∈ [t, T ]

y(t) = x,
(2.8)

The objective of the players is to minimize

Ji(t, x; b1(·), b2(·)) =

T∫
t

Gi (s, y (s) , b1 (s) , b2 (s)) ds+ hi (y (T )) , i = 1, 2. (2.9)

Then, we define the value function as Wi (t, x) = inf
bi(·)∈Bi[t,T ]

Ji(t, x; bi(·))

Wi(T, x) = hi(x), i = 1, 2.
(2.10)
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It represents the minimum cost that can be achieved starting at time t with state x under the
optimal decision strategy b̄i.
We present the following Bellman’s Principle of optimality [11] for the Problem (NZSDG) :

Wi (t, x) = inf
bi(·)∈Bi[t,T ]


t̂∫
t

gi (s, y (s) , bi (s)) ds+Wi

(
t̂, y
(
t̂
)) ,∀t̂ ∈ [t, T ] , i = 1, 2. (2.11)

Similarly to the Pontryagin’s MP approach, the search for the FNE is related to the minimization
of the Hamiltonian (2.6). The development of the principle of optimality to equation (2.11), leads
immediately to HJB equations

∂Wi

∂t
(t, x) +H∗i

(
t, x,

∂Wi

∂x
(t, x)

)
= 0, ∀ (t, x) ∈ [0, T ]× Rn

Wi (T, x) = hi (x) ,
i = 1, 2, (2.12)

where Wi(·, ·) ∈ (C1,1 ([0, T ]× Rn) ;R) and

H∗i

(
t, x,

∂Wi

∂x
(t, x)

)
= Hi

(
t, x, b̄i,

∂Wi

∂x
(t, x)

)
= inf

bi∈Bi[t,T ]
Hi

(
t, x, bi,

∂Wi

∂x
(t, x)

)
. i = 1, 2.

Now, we are going to state the following verification theorem that is a generalization of similar
results from (e.g., [57]) for a single player differential game that gives a sufficient condition for
a FNE. It allows us to verify that an admissible strategy is optimal.

Theorem 2.2. (Verification Theorem). Let assumptions (DG1)-(DG2) hold. Assume that Wi(·, ·) ∈
C1,1 ([0, T ]× Rn) is a solution to equations (2.12). Then we have the following :
(i) Wi (t, x) ≤ Ji (t, x; bi(·)) ,∀ (t, x) ∈ [0, T ]× Rn, bi(·) ∈ Bi [t, T ] ;

(ii) suppose

∂Wi

∂t
(t, x) +H∗i

(
t, x,

∂Wi

∂x
(t, x)

)
= 0,∀ (t, x) ∈ [0, T ]× Rn, i = 1, 2,

and there exist an (b̄1(·), b̄2(·)) ∈ B1 [t, T ] × B2 [t, T ] admissible strategy with the corresponding state
trajectory ȳ(·) for Problem (NZSDG)

H∗i

(
t̂, ȳ
(
t̂
)
,
∂Wi

∂x

(
t̂, ȳ
(
t̂
)))

= Hi

(
t̂, ȳ
(
t̂
)
, b̄1

(
t̂
)
, b̄2

(
t̂
)
,
∂Wi

∂x

(
t̂, ȳ
(
t̂
)))

, ∀t̂ ∈ [t, T ] .

Then
(
b̄1 (·) , b̄2 (·)

)
is a feedback Nash equilibrium (FNE) with the optimal state ȳ (·) for Problem

(NZSDG) in the point (t, x) .

As the value function Wi (·, ·) is nonsmooth, it is crucial to recall the definition of viscosity
solution (VS) (see [22] and [57]).
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Definition 2.2. (Viscosity Solution) A continuous function wi on [0, T ] × Rn is a viscosity sub-
solution ( respectively, supersolution) of (2.12), if wi(T, y) ≤ (≥)hi (y) for all y ∈ Rn and

φis (s, y) +H∗i
(
s, y, φiy (s, y)

)
≥ (≤)0, i = 1, 2,

whenever wi − φi attains a local maximum (respectively, minimum) at (s, y) ∈ [0, T ] × Rn for
φi ∈ C1,1 ([0, T ]× Rn). A function wi is called a viscosity Solution to (2.12) if it is both a viscosity
subsolution and viscosity supersolution to (2.12).

Thus, the following result is the uniqueness of viscosity solution of the HJB equations (2.12)
( see, [57]).

Proposition 2.1. Suppose (DG1)-(DG2) hold. Then, (2.10) satisfies

|Wi (t, x)−Wi (t, x
∗) | ≤M (|x− x∗|+ |t− t∗|) , ∀t, t∗ ∈ [0, T ] , x, x∗ ∈ Rn,

and
|Wi (t, x) | ≤M (1 + |x|) , ∀(t, x) ∈ [0, T ]× Rn, i = 1, 2.

Furthermore, Wi (·, ·) is the viscosity solution to (2.12).

2.2 The Connection Between MP and DPP : Smooth Case

The following theorem states that the connection between the MP and the DPP is same to
the connection between the adjoint variables and the derivatives of the value function along
optimal trajectories.

Theorem 2.3. Assume (DG1)-(DG3) hold and (t, x) ∈ [0, T )×Rn be fixed. Let (b̄1 (·) , b̄2 (·)) is a Nash
equilibrium with the optimal state ȳ (·) for Problem (NZSDG) and p̄i be the corresponding solution of
the adjoint equations (2.5). Assume that Wi(·, ·) ∈ (C1,1 ([0, T ]× Rn) ;R), then

−∂Wi

∂s
(s, ȳ(s)) =Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, ȳ (s))

)
= inf

bi∈Bi[s,T ]
Hi

(
s, ȳ(s), b1 (s) , b2 (s) ,

∂Wi

∂y
(s, ȳ(s))

)
, i = 1, 2,

(2.13)

∀s ∈ [t, T ]. Further, if Wi(·, ·) ∈ (C1,2 ([0, T ]× Rn) ;R) and W i
sx is continuous, then

p̄i(s) =
∂Wi

∂y
(s, ȳ(s)) , ∀s ∈ [t, T ], i = 1, 2. (2.14)
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Proof. By the optimality of (ȳ (·) , b̄1 (·) , b̄2 (·)) for Problem (NZSDG){
˙̄y (s) = F

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
, s ∈ [t, T ]

ȳ(t) = x,
(2.15)

and the cost functional :

Wi(t, x) = Ji(t, x; b̄1(·), b̄2(·)) =

T∫
t

Gi

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
ds+ hi (ȳ (T )) , i = 1, 2,∀t ∈ [s, T ].

(2.16)
Differentiating both sides of the (2.16) with respect to s :

∂Wi

∂s
(s, ȳ(s)) +

∂Wi

∂y
(s, ȳ(s)) ˙̄y (s) = −Gi

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
, i = 1, 2

According to (2.15), we can deduce that

∂Wi

∂s
(s, ȳ(s)) +

〈
F
(
s, ȳ, b̄1(s), b̄2 (s)

)
,
∂Wi

∂y
(s, ȳ(t))

〉
= −Gi

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
By (2.4), we get the first equality in (2.13)

−∂Wi

∂s
(s, ȳ(s)) = Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, ȳ (s))

)
, i = 1, 2,

SinceWi ∈ C1,1 ([0, T ]× Rn) be a solution of the equations (2.12), we obtain that, for each y ∈ Rn,

∂Wi

∂s
(s, ȳ(s)) +Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, ȳ (s))

)
= 0 ≤ ∂Wi

∂s
(s, y) +Hi

(
s, y, b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, y)

)
Thus we have the second equality in (2.13).
Therefore, if Wi(·, ·) ∈ (C1,2 ([0, T ]× Rn) ;R) and W i

sy is continuous, thus

∂

∂y

{
∂Wi

∂s
(s, y) +Hi

(
s, y, b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, y)

)}
|y=ȳ(s) = 0

This implies that

∂

∂s

{
∂Wi

∂y
(s, ȳ(s))

}
+
∂2Wi

∂y2
(s, ȳ(s))F

(
s, z̄ (s) , b̄1 (s) , b̄2 (s)

)
+
∂Wi

∂y
(t, ȳ(s))Fy

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
+Gi

y

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
= 0. i = 1, 2.
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We have
∂

∂s

∂Wi

∂y
(s, ȳ(s)) = −H i

y

(
s, ȳ (s) , b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, ȳ(s))

)
,

where,

H i
y

(
s, ȳ (s) , b̄1 (s) , b̄2 (s) ,

∂Wi

∂y
(s, ȳ(s))

)
=
∂2Wi

∂y2
(s, ȳ(s))F

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
+
∂Wi

∂y
(s, ȳ(s))Fy

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
+Gi

y

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
. i = 1, 2.

Noting that
∂Wi

∂y
(T, ȳ(T )) = hiy (ȳ (T )), and

∂Wi

∂y
(s, ȳ(s)) satisfies the equation (2.5). Then by

the uniqueness of the solutions to the adjoint equation (2.5), we get (2.14).

Remark 2.1. The Theorem 2.3 is proved by Shi [49] in particular case of differential games (
zero sum stochastic differential games ) with jump diffusions.

2.3 The Connection Between MP and DPP : Nonsmooth Case

In this section, we present the connection between the adjoint variables in the MP and the
value function in the DPP within the framework of the Viscosity Solution (VS), which represents
this relationship in terms of the adjoint variables and the first-order super- and subdifferentials
of the value function.
Now, we recall the notion of the first-order super- and subdifferentials (see, e.g ; [57]). For wi ∈
C ([0, T ]× Rn) and (s, y) ∈ [0, T ]× Rn, we have :

D1,+
s,y wi (s, y) =

{
(qi, pi) ∈ R× Rn| lim sup

t→s,t∈[0,T ),x→y

wi (t, x)− wi (s, y)− qi (t− s)− 〈pi, x− y〉
|t− s|+ |x− y|

≤ 0

}

D1,−
s,y wi (s, y) =

{
(qi, pi) ∈ R× Rn| lim inf

t→s,t∈[0,T ),x→y

wi (t, x)− wi (s, y)− qi (t− s)− 〈pi, x− y〉
|t− s|+ |x− y|

≥ 0

}
Next, the viscosity solution to HJB equation (2.12) can be expressed equivalently in terms of
super- and subdifferentials (see, [57]). wi ∈ C ([0, T ]× Rn) is a VS of the equations (2.12) and for
all (s, y) ∈ [0, T ]× Rn,

qi +H∗i (s, ȳ, p̄i) ≥ 0, ∀ (qi, p̄i) ∈ D1,+
s,y wi (s, y)

qi +H∗i (s, ȳ, p̄i) ≤ 0, ∀ (qi, p̄i) ∈ D1,−
s,y wi (s, y) ,

wi(T, y) = hi (y) .

i = 1, 2 (2.17)
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The following theorem establishes the connection between MP and DPP in terms of the connec-
tion between the adjoint variables and the first-order super- and subdifferentials of the value
function.

Theorem 2.4. Assume (DG1)-(DG3) hold. Let (t, x) ∈ [0, T )×Rn be fixed and (b̄1 (·) , b̄2 (·)) is a Nash
equilibrium with the optimal state trajectory ȳ (·) for Problem (NZSDG). Let p̄i (·) be the solution to
equation (2.5). Suppose that the value function Wi(·, ·) ∈ (C ([0, T ]× Rn) ;R). Then

D1,−
s,y Wi (s, ȳ(s)) ⊆

{(
Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
, p̄i(s)

)}
⊆ D1,+

s,y Wi (s, ȳ(s)) (2.18)

where
Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
= −Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
, i = 1, 2,

D1,−
y Wi (s, ȳ(s)) ⊆ {p̄i(s)} ⊆ D1,+

y Wi (s, ȳ(s)) , i = 1, 2, ∀s ∈ [s, T ], (2.19)

and

q̄i = Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
= inf

bi(·)∈Bi[0,T ]
Hi (s, ȳ(s), b1(s), b2 (s) , p̄i(s)) , i = 1, 2, (2.20)

∀ (q̄i, p̄i) ∈ D1,+
s,y Wi (s, ȳ(s)) ∪D1,−

s,y Wi (s, ȳ(s)) , ∀s ∈ [s, T ],

Proof. Note that

lim
h→0

1

h

s+h∫
s

ψ(ϑ)dϑ = ψ(s), a.e. s ∈ (t, T ), (2.21)

and ψ(ϑ) = F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
, Gi

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
, i = 1, 2. Fix s ∈ (t, T ) such that

(2.21) holds.
For any η ∈ Rn and τ ∈ [t, T ], consider the following ODE :{

ẏτ,η (ϑ) = F
(
ϑ, yτ,η (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
, ϑ ∈ [τ, T ]

yτ,η(τ) = η.
(2.22)

Denote by yτ,η (·) the solution of (2.22) starting from (τ, y) under the controls b̄i (·) =
(
b̄1 (·) , b̄2 (·)

)
,

for i = 1, 2,

yτ,η (ϑ) = η +

ϑ∫
τ

F
(
α, yτ,η (α) , b̄1 (α) , b̄2 (α)

)
dα, ϑ ∈ [τ, T ] ,
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and ȳ (·) the solution of ODE

ȳ (ϑ) = ȳ (s) +

ϑ∫
s

F
(
α, ȳ (α) , b̄1 (α) , b̄2 (α)

)
dα, ϑ ∈ [τ, T ] ,

Then τ < s and for any ϑ ∈ [τ, T ], we have

yτ,η (ϑ)− ȳ (ϑ) = η − ȳ (s)−
τ∫
s

F
(
α, ȳ (α) , b̄1 (α) , b̄2 (α)

)
dα

+
ϑ∫
τ

[
F
(
α, yτ,η (α) , b̄1 (α) , b̄2 (α)

)
− F

(
α, ȳ (α) , b̄1 (α) , b̄2 (α)

)]
dα

= η − ȳ (s)−
τ∫
s

F
(
α, ȳ (α) , b̄1 (α) , b̄2 (α)

)
dα

+
ϑ∫
τ

Fy
(
α, ȳ (α) , b̄1 (α) , b̄2 (α)

)
(yτ,η (α)− ȳ (α)) dα

+
ϑ∫
τ

ετ,η (α) (yτ,η (α)− ȳ (α)) dα.

(2.23)

We obtain the second equality of (2.23) by using the variational equation for ξ (ϑ) = yτ,η (ϑ) −
ȳ (ϑ) given by ξ̇ (ϑ) = Fy

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
ξ (ϑ) + ετ,η (ϑ) ξ (ϑ) , ϑ ∈ [τ, T ]

ξ(ϑ) = η − ȳ (s)−
τ∫
s

F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ.

(2.24)

where, 

ετ,η (α) =
1∫
0

{
Fy
(
α, ȳ (α) + β (yτ,η (α)− ȳ (α)) , b̄1 (α) , b̄2 (α)

)
−Fy

(
α, ȳ (α) , b̄1 (α) , b̄2 (α)

)}
dβ

lim
τ→s,η→ȳ(s)

ετ,η (α) = 0, ∀α ∈ [0, T ] ,

sup
α,τ,η
|ετ,η (α) | ≤ K.

(2.25)

In this case, the assumption (DG3) was employed.
By the definition of Wi (τ, η)

Wi (τ, η) ≤
T∫
τ

Gi

(
ϑ, yτ,η (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ+ hi (y

τ,η (T )) , i = 1, 2,
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and the optimality of (ȳ (·) , b̄1 (·) , b̄2 (·)), we get

Wi (s, ȳ(t)) =

T∫
s

Gi

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ+ hi (ȳ (T )) , i = 1, 2.

Then, compute Wi (τ, η)−Wi (s, ȳ (s)) we obtain

Wi (τ, η)−Wi (s, ȳ (s))

≤
T∫
τ

{
Gi

(
ϑ, yτ,η (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
−Gi

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)}
dϑ

+ {hi (yτ,η (T ))− hi (ȳ (T ))} −
τ∫
t

Gi

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

=
T∫
τ

〈
Gi
y

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
, yτ,η (ϑ)− ȳ (ϑ)

〉
dϑ

+
〈
hiy (ȳ (T )) , yτ,η (T )− ȳ (T )

〉
−

τ∫
s

Gi

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

+
T∫
τ

ε̃τ,η (ϑ) (yτ,η (ϑ)− ȳ (ϑ)) dϑ+ o (|yτ,η (T )− ȳ (T ) |) , i = 1, 2.

(2.26)

where ε̃τ,η (.) is defined similar to ετ,η (.), with the substitution of Fy forGi
y and has the same pro-

perties are present in (2.25)(see, [57]). Then, by the duality relation between the adjoint equation
(2.5) p̄i (.) and the variational equation (2.24) yτ,η (.)− ȳ (.), we have〈

hiy (ȳ (T )) , ξ (T )
〉

= 〈p̄i (T ) , ξ (T )〉

= 〈p̄i (T ) , ξ (T )〉 − 〈p̄i (τ) , ξ (τ)〉+ 〈p̄i (τ) , ξ (τ)〉

=
T∫
τ

〈 ˙̄pi (ϑ) , ξ (ϑ)〉 dϑ+
T∫
τ

〈
p̄i (ϑ) , ξ̇ (ϑ)

〉
dϑ+ 〈p̄i (τ) , ξ (τ)〉

= 〈p̄i (τ) , ξ (τ)〉+
T∫
τ

〈p̄i (ϑ) , ετ,η (ϑ) ξ (ϑ)〉 dϑ

−
T∫
τ

〈
Gi
y

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
, ξ (ϑ)

〉
dϑ

(2.27)

Rania Benmenni



2.3. THE CONNECTION BETWEEN MP AND DPP : NONSMOOTH CASE 27

After that, with respect to the term on the right side of (2.27)

〈p̄i (τ) , ξ (τ)〉

=

〈
p̄i (s) , η − ȳ (s)−

τ∫
s

F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

〉
+

〈
p̄i (τ)− p̄i (s) , η − ȳ (s)−

τ∫
s

F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

〉
=

〈
p̄i (s) , η − ȳ (s)−

τ∫
s

F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

〉
+

〈
τ∫
s

[
−Fy

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
p̄i (ϑ)−Gi

y

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)]
dϑ

, η − ȳ (s)−
τ∫
s

F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

〉
= 〈p̄i (s) , η − ȳ (s)〉 −

〈
p̄i (s) ,

τ∫
s

F
(
r, ȳ (r) , b̄1 (r) , b̄2 (r)

)
dr

〉
+ o (|τ − s|+ |η − ȳ (s) |)

(2.28)
Here the properties presented in (2.25) was empolyed (see, [57]), for ξ (ϑ) = yτ,η (ϑ)− ȳ (ϑ), we
have

sup
τ≤ϑ≤T

|ξ (ϑ) | ≤M [|η − ȳ (s) |+ |τ − s|] ,

and,
T∫
τ

|ετ,η (ϑ) ξ (ϑ) |dϑ ≤ C [|η − ȳ (s) |+ |τ − s|]

Thus, by (2.26)-(2.28), we obtain

Wi (τ, η)−Wi (s, ȳ (s))

≤ 〈p̄i (s) , η − ȳ (s)〉 −
〈
p̄i (s) ,

τ∫
s

F
(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ

〉
−

τ∫
s

Gi

(
ϑ, ȳ (ϑ) , b̄1 (ϑ) , b̄2 (ϑ)

)
dϑ+ o (|τ − s|+ |η − ȳ (s) |)

= 〈p̄i (s) , η − ȳ (s)〉+ (τ − s)Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
+o (|τ − s|+ |η − ȳ (s) |) , i = 1, 2,

(2.29)

which implies

(
Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
, p̄i(s)

)
⊆ D1,+

s,y Wi (s, ȳ(s)) , i = 1, 2, ∀s ∈ [t, T ],

by the definition of superdifferential and for such a s,D1,+
s,y Wi (s, ȳ(s)) is nonempty.
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Now we prove that

D1,−
s,y Wi (s, ȳ(s)) ⊆

{(
Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
, p̄i(s)

)}
,

with s ∈ (t, T ) such that (2.21) holds. For any (q̄i, p̄i) ∈ D1,−
s,y Wi (s, ȳ(s)), by definition of subdif-

ferential and (2.29), we have

0 ≤ lim inf
τ↑s

{
Wi (τ, η)−Wi (s, ȳ (s))− q̄i (τ − s)− 〈p̄i, η − ȳ (s)〉

|τ − s|+ |η − ȳ (s)|

}
≤ lim inf

τ↑s

{(
Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
− q̄i

)
(τ − s) + 〈p̄i (s)− p̄i, η − ȳ (s)〉

|τ − s|+ |η − ȳ (s)|

}

Thus, the first inclusion of (2.18) holds.
Let us show (2.19) by taking τ = s from the above proof of the inclusion in (2.18). Then we do not
need s to satisfy (2.21). As a consecontly, (2.19) holds for all s ∈ [t, T ]. Finally, we prove (2.20).
Taking s ∈ (t, T ) such that (2.21) holds. If ∀ (q̄i, p̄i) ∈ D1,+

s,y Wi (s, ȳ(s)), then by the definition of
superdifferential and Bellman’s Principle of optimality (2.11) we have

0 ≥ lim sup
ϑ↓s

{
Wi (ϑ, ȳ(ϑ))−Wi (s, ȳ(s))− q̄i(ϑ− s)− 〈p̄i, ȳ(ϑ)− ȳ(s)〉

|ϑ− s|+ |ȳ(ϑ)− ȳ(s)|

}
= lim sup

ϑ↓s

{
1

|ϑ− s|+ |ȳ(ϑ)− ȳ(s)|

[
−
∫ ϑ

s

Gi

(
α, ȳ(α), b̄1(α), b̄2(α)

)
dα

−q̄i(ϑ− s)−
∫ ϑ

s

〈
p̄i(τ), F

(
α, ȳ(α), b̄1(α), b̄2(α)

)〉
dα

]}
= lim sup

ϑ↓s

{
1

|ϑ− s|

[
−
∫ ϑ

s

Gi

(
α, ȳ(α), b̄1(α), b̄2(α)

)
dα

−q̄i(ϑ− s)−
∫ ϑ

s

〈
p̄i(τ), F

(
α, ȳ(α), b̄1(α), b̄2(α)

)〉
dα

]
· |ϑ− s|
|ϑ− s|+ |ȳ(ϑ)− ȳ(s)|

}
(2.30)

By using (2.21) and the limit of the first term on the right-hand side exists ( constant). Because
|ȳ (ϑ)− ȳ (s)| ≤ C |ϑ− s| for some constant C > 0, the inequality (2.30) yields

0 ≥ −Gi

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)
− q̄i −

〈
p̄i, F

(
s, ȳ (s) , b̄1 (s) , b̄2 (s)

)〉
= Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i

)
− q̄i,

Then
q̄i ≥ Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
. (2.31)
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Similarly, letting ϑ ↑ s, we can conclude

q̄i ≤ Hi

(
s, ȳ(s), b̄1 (s) , b̄2 (s) , p̄i(s)

)
. (2.32)

Then, from (2.31) and (2.32) the first equality in (2.20) holds.
Next, since Wi is the VS of the equations (2.12) by (2.17) we have,

q̄i − inf
bi(·)∈Bi[0,T ]

Hi (s, ȳ(s), b1(s), b2 (s) , p̄i(s)) ≥ 0, i = 1, 2,

which yields the second equality of (2.20).

Remark 2.2. We note that :
(i) When Wi is differentiable, the inclusions (2.18)-(2.19) is reduced to (2.13) and (2.14) in Theo-
rem 2.3 ;
(ii) the principal results of this study might be considered as an extension of similar results
in [57] related to deterministic optimal control problem.
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CHAPTER 3

APPLICATIONS TO ECONOMIC

In this chapter, we provide an example of a producer-consumer game with sticky prices, taken
from [14] to illustrate the connection between adjoint variables in the MP and value function in

the DPP, both in the smooth and nonsmooth cases. This application illustrates how this connec-
tion can be applied to real-world situations, focusing on the economic interpretations of the
adjoint variables and showing their role in determining Nash equilibria in differential games.
More specifically, we will apply the results seen in Chapter 2, about as, we start by presenting
the formulation of the producer-consumer game problem, which we can see this problem as
a deterministic two-player nonzero-sum differential games between producer and consumer.
Then we move on to present the two of the most important approaches, both the MP ( [14]) and
the DPP of this game problem with their economic applications. In the last section, the connec-
tion between MP and DPP, both in the smooth and nonsmooth cases of the value function is
established with their application to economic.

3.1 Producer-Consumer Game with Sticky Price

The producer-consumer model is a concept in economics that represents the interaction bet-
ween producers and consumers in a market economy. This model is used to understand eco-
nomic phenomena such as price setting, resource allocation and market efficiency. We present
this example formulated as a two-player NZSDG, taken from ( [14]) to illustrate the theoretical
results (Theorem 2.3 and Theorem 2.4).

3.1.1 Formulation of the Problem

Here, we present the formulation of the producer-consumer game problem, which we can
consider this problem as a deterministic two-player nonzero-sum differential games between
producer and consumer.
Consider a company manufacturing a good, let y (s) denote the sale price of a good at time
s, and this good is produced at rate b1 (s) by the company and consumed at rate b2 (s) by the
consumer.
The dynamical system (2.1) represent the variation of the price in time is given by the following
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ODE {
ẏ (s) = y (s) (b2 (s)− b1 (s)) , s ∈ [0, T ]

y(0) = y0,
(3.1)

The controls bi (s) , i = 1, 2 represent the rate of production and consumption of a good at time
s, respectively. According to (3.1), the price increases when the consumption is larger than the
production of goods, and decreases otherwise.
To simplify, let ci (r) , i = 1, 2 denote the cost function of company i. We assume that

c1 (r) =
r2

2
, c2 (r) = 2

√
r.

The producer’s payoff is given by the profit generated from sales minus the cost of production
c1 (b1 (s)), depending on the rate of production b1 (s). The consumer’s payoff is measured by
an utility function c2 (b2 (s)), which represents the benefit obtained from consuming the goods
minus the price paid to purchase the goods. The payoff functional for the two player over the
[0, T ] are given by

J1(s, y0; b1 (s) , b2 (s)) =

T∫
0

[y (s) b2 (s)− c1 (b1 (s))] ds,

J2(s, y0; b1 (s) , b2 (s)) =

T∫
0

[c2 (b2 (s))− y (s) b2 (s)] ds,

(3.2)

The problem is to maximize the payoffs for both the producer and the consumer (3.2), which
can be rewrittten as the minimization of

J1(s, y0; b1 (s) , b2 (s)) = −
T∫

0

[y (s) b2 (s)− c1 (b1 (s))] ds,

J2(s, y0; b1 (s) , b2 (s)) = −
T∫

0

[c2 (b2 (s))− y (s) b2 (s)] ds.

(3.3)

Maximum Principle approach :

Now, we apply maximum principle approach as mentioned in the section 2.1.1 to a two-
player NZSDG involving a producer and a consumer (see, e.g [14]).
To derive the OLNE of this producer-consumer game, the Hamiltonian (2.4) for producer (Player
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1) and consumer (Player 2) is defined as follows :

H1 (s, y, b1, b2, p1) = p1(s) (y(s) (b2(s)− b1(s)))− y(s)b2(s) +
b2

1(s)

2
,

H2 (s, y, b1, b2, p2) = p2(s) (y(s) (b2(s)− b1(s)))− 2
√
b2(s) + y(s)b2(s).

By minimizing H1 (s, y, b1, b2, p1) and H2 (s, y, b1, b2, p2) with respect to b1 and b2 using (2.7) we
get the OLNE b̄1 and b̄2 for producer and consumer are given, respectively, by

b̄1 (s) = p̄1 (s) ȳ (s) ,

b̄2 (s) =
1

ȳ2 (s) (p̄2 (s) + 1)2 ,

here ȳ > 0, p̄1 ≥ 0 and p̄2 > −1.
The adjoint equations (2.5) for the two player are given by

˙̄p1 (s) = p̄2
1 (s) ȳ (s)− p̄1(s)−1

ȳ2(s)(p̄2(s)+1)2

p̄1 (T ) = 0,

(3.4)

and 
˙̄p2 (s) = p̄1 (s) p̄2 (s) ȳ (s)− p̄2(s)+1

ȳ2(s)(p̄2(s)+1)2

p̄2 (T ) = 0.

(3.5)

The state equation (2.1) is given by the following (ODE)
˙̄y (s) = 1

ȳ(s)(p̄2(s)+1)
− p̄1 (s) ȳ2 (s)

ȳ(0) = y0,

Dynamic Programming approach :

Here, we apply the dynamic programming approach as mentioned in the section 2.1.2 to a
two-player NZSDG involving a producer and a consumer.
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The value functions (2.10) are defined as the following :

W1 (s, y) = J1(s, y; b̄1(·), b̄2(·)),

W2 (s, y) = J2(s, y; b̄1(·), b̄2(·)).

Where Wi (s, y) , i = 1, 2 is the value function for the problem of minimizig (3.3), which repre-
sents the minimum achievable cost or loss that either the producer or the consumer can incur,
given the initial time s and the state y.

Thus, by introducing the Hamiltonian functions (2.4)

H1

(
s, y, b1, b2,

∂W1

∂y
(s, y(s))

)
=
∂W1

∂y
(s, y(s)) (y(s) (b2(s)− b1(s)))− y(s)b2(s) +

b2
1(s)

2
,

H2

(
s, y, b1, b2,

∂W2

∂y
(s, y(s))

)
=
∂W2

∂y
(s, y(s)) (y(s) (b2(s)− b1(s)))− 2

√
b2(s) + y(s)b2(s).

The value function Wi satisfies HJB equations (2.12), as established in Theorem 2.2, for the two
player as follows

∂W1

∂s
(s, y) + infb1(s)∈B1[s,T ]

{
(y (s) (b2 (s)− b1 (s)))

∂W1

∂y
(s, y)− y (s) b2 (s) +

b21(s)

2

}
= 0,

W1 (T, x) = 0,

(3.6)
and

∂W2

∂s
(s, y) + infb2(s)∈B2[s,T ]

{
(y (s) (b2 (s)− b1 (s)))

∂W2

∂y
(s, y)− 2

√
b2 (s) + y (s) b2 (s)

}
= 0

W2 (T, x) = 0,

(3.7)

Minimizing H1

(
s, y, b1, b2,

∂W1

∂y
(s, y(s))

)
and H2

(
s, y, b1, b2,

∂W2

∂y
(s, y(s))

)
with respect to b1

and b2 leads to FNE for our problem, which we can write as :

b̄1 (s) = ȳ (s) .
∂W1

∂y
(s, ȳ(s)) ,

b̄2 (s) =
1

ȳ2 (s)

(
∂W2

∂y
(s, ȳ (s)) + 1

)2 .
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When FNE is substituted into the HJB equations (3.6) and (3.7), the HJB equations take the
forms :

∂W1

∂s
(s, y) +

ȳ (s)

 1

ȳ2(s)

∂W2

∂y
(s,ȳ(s))+1

2 − ȳ (s) .
∂W1

∂y
(s, ȳ (s))

 ∂W1

∂y
(s, y)

−ȳ (s) 1

ȳ2(s)

∂W2

∂y
(s,ȳ(s))+1

2 +

ȳ(s).
∂W1

∂y
(s,ȳ(s))

2

2

 = 0,

W1 (T, x) = 0,

(3.8)

and 

∂W2

∂s
(s, y) +

ȳ (s)

 1

ȳ2(s)

∂W2

∂y
(s,ȳ(s))+1

2 − ȳ (s) .
∂W1

∂y
(s, ȳ (s))

 ∂W2

∂y
(s, y)

−2
√√√√ 1

ȳ2(s)

∂W2

∂y
(s,ȳ(s))+1

2 + ȳ (s) 1

ȳ2(s)

∂W2

∂y
(s,ȳ(s))+1

2

 = 0

W2 (T, x) = 0,

(3.9)

3.2 The Connection Between MP and DPP

In this section, we present the economic interpretation of the connection between the MP
and the DPP in both the smooth and nonsmooth cases.

3.2.1 Smooth Case

In order to explain the results of Theorem 2.3, we can derive the equality (2.13) directly
from equations (3.6)-(3.9). About equality (2.14), the adjoint variables p̄i (s) , i = 1, 2 represent
the marginal value (also known as the shadow prices) of the sale price ȳ (s). This provides an
economic interpretation to the adjoint variables (see [25], [57], [2]). In addition, the change in
the value of the sale price of the system from state ȳ (s) to ȳ (s) + γy (s) is

Wi (s, ȳ (s) + γy (s))−Wi (s, ȳ (s)) ≈ p̄i (s) γy (s) . i = 1, 2. (3.10)

This implies (Fréchet) differentiability of Wi (s, ȳ (s)) at ȳ (s) ( see e.g., [2]). Thus, p̄i (s) , i = 1, 2

represents the marginal value of the rate of change in the profit Wi for slight adjustments in the
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sale price ȳ (s). As sale prices increase due to increased consumption, p̄1 (s) decreases for the
producer while p̄2 (s) increases for the consumer. Furthermore, the marginal value for producer
p̄1 (s) can be interpreted as the incremental profit of producing and selling another product, and
for consumers, p̄2 (s) represents the maximum price they are actually willing to pay for the last
thing they consume.

3.2.2 Nonsmooth Case

Similar to the smooth case, we illustrate the result of the Theorem 2.4 when the value func-
tion Wi (·, ·) is nonsmooth, satisfying the VS ; see [57]. As we have seen in Section 3.2.1, since
the second inclusion in (2.19) and when the increment γy (s) is small, the increase in the value
of the system from state ȳ (s) to ȳ (s) + γy (s) is defined as

Wi (s, ȳ (s) + γy(s))−Wi (s, ȳ (s)) ≤ p̄i (s) γy (s) . (3.11)

Due to the positivity of both sides (3.11), we conclude that

|Wi (s, ȳ (s) + γy(s))−Wi (s, ȳ (s)) | ≤ p̄i (s) |γy (s) |.

This indicates that the effect of slight changes γy (s) in the sale price on the producer’s and the
customer’s payoffs is dependent on their individual marginal values. Then, as the sale price
increases, the producer’s marginal value p̄1 (s) decreases, suggesting that the rate of increase in
the producer’s reward per unit sold slows down. Meanwhile, the consumer’s marginal value
p̄2 (s) increases, suggesting that consumer are prepared to pay more for each unit they consume.
The other side, the decrease in the value of the sale price state from state ȳ (s) to ȳ (s) − γy (s),
then

Wi (s, ȳ (s)− γy(s))−Wi (s, ȳ (s)) ≤ −p̄i (s) γy (s) . (3.12)

Both sides of (3.12) are negative ( γy (s) > 0). So,

|Wi (s, ȳ (s)− γy(s))−Wi (s, ȳ (s)) | ≥ p̄i (s) |γy (s) |.

When the sale prices decrease, the producer’s marginal value p̄1 (s) increases, proving that the
additional profit made from producing and selling more units rises as well. Conversely, the
consumer’s marginal value p̄2 (s) decreases, which indicates that consumers are less able to pay
for every product that they consume as prices decrease. Similarly, we can also interpret the Ha-
miltonian Hi (s, y, b1, b2, pi) , i = 1, 2 as the rate of change for the maximum profit with respect
to time using (2.18).
In a producer-consumer game, the adjoint variable p̄i (s) illustrates how changes in the state
ȳ (s) (the sale prices) affect the optimal cost or payoff Wi (s, ȳ (s)) (value function). To be more
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precise, the rate at which changes in the state variable affect the value function is indicated by
the adjoint variable, often known as the marginal value. Essentially, p̄i (s) expresses the sensiti-
vity of optimal costs or payoffs to small state adjustments in the state.
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CHAPTER 4

JACOBI SPECTRAL METHOD FOR SOLVING

DIFFERENTIAL GAMES

This chapter presents a numerical method based on the MP, as mentioned in section 2.1.1, using
the Jacobi spectral method (JSM), which allows us to approximately solve the nonlinear two-

point boundary value problems (TPBVPs) derived from MP is transferred to a system of alge-
braic equations in order to determine the OLNE of nonzero-sum differential games (NZSDGs)
in a finite horizon. First, we present the formulation of the problem for deterministic n-player
NZSDGs. We then discuss the application of the JSM to solve these differential games. Finally,
we provide some examples to demonstrate the accuracy and usefulness of the proposed me-
thod.

4.1 Problem Statement

In this section, consider the n-player nonzero-sum differential game with the finite horizon
which has the following nonlinear differential equation [9, 55] :

ẏ (s) = F (s, y (s) , b1 (s) , b2 (s) , ..., , bn (s)) , s ∈ [0, T ]

y(0) = y0,

(4.1)

and cost functionals given as

Ji(b1(·), ...., bn(·)) =

T∫
0

Gi (s, y (s) , b1 (s) , b2 (s) , ....., bn (s)) ds+ hi (y (T )) , i = 1, 2, · · · , n. (4.2)

Each players aim is to minimize the functional (4.2) by finding the control b̄i(·) = (b1(·), b2(·), ., bn(·)) ∈
Bi [0, T ] , i = 1, 2, ., n. In particular, b̄i(·) an OLNE solves the Problem (NZSDG) :

Ji(b̄i(·), b̄−i(·)) = inf
bi(·)∈Bi[0,T ]

Ji(bi(·), b−i(·)).

where bi is the control strategy for the i-th player and b−i are the controls for the rest of the
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players b−i = bj, (j 6= i).
Now, we apply the necessary conditions of the MP approach as presented in section 2.1.1
for two-player differential games, which can be directly extended to the general case with n
players, as follows :

ẏ (s) = F (s, y (s) , b1 (s) , b2 (s) , ..., bn (s)) , y(0) = y0, (4.3)

ṗi (s) = −H i
y (s, y (s) , bi (s) , b−i (s) , pi (s)) , pi (T ) = hiy (y (T )) (4.4)

H i
bi

(s, y(s), bi(s), b−i (s) , pi(s)) = 0, i = 1, 2, ....., n. (4.5)

According to the equation (4.5), we get the OLNE b̄i(s) = b̄i (s, ȳ(s), p̄i(s)). Then, by substituting
into equations (4.3) and (4.4), we obtain the following system of TPBVPs :

˙̄y (s) = F
(
s, ȳ (s) , b̄1 (s) , b̄2 (s) , ..., b̄n (s)

)
, ȳ(0) = y0, (4.6)

˙̄
ip (s) = −H i

y

(
s, ȳ (s) , b̄i (s) , b̄−i (s) , p̄i (s)

)
, p̄i (T ) = hiy (ȳ (T )) , i = 1, 2, ..., n, (4.7)

We can use an Algorithm 4.1 to summarize all we have discussed so far on the steps for
determining OLNE in differential games, similar to the case of FNE in [4].

Algorithm 4.1. Input :The nonzero-sum differential game (4.1)-(4.2).
Step 1. Write down the necessary condition for a MP (4.3)-(4.5).
Step 2. Minimize the Hamiltonian functions using (4.5) and find the optimal control strategies given by
b̄i(s) = b̄i (s, ȳ(s), p̄i(s)) , i = 1, 2, ..., n.
Step 3. Insert the obtained optimal control strategies as the function of ȳ and p̄i, i = 1, 2, ..., n from Step
2 in the system (4.3)-(4.5) in Step 1. This leads to the system of TPBVPs (4.6)-(4.7).
Step 4. Solve the obtained system of TPBVPs from Step 3 and find the state variable ȳ(s) and adjoint
variables p̄i(s), i = 1, 2, ..., n.
Step 5. According to Steps 2 and 4, write down the optimal control strategies b̄i(s).
Output : OLNE b̄i(·), i = 1, 2, ..., n.

The difficulties in solving this system of TPBVPs (4.6)-(4.7) are mainly due to the combi-
nation of nonlinearity and split boundary conditions. Therefore, obtaining an exact analytical
solution is highly complex, and the application of appropriate numerical methods is essential
to solve these problems (see e.g., [5, 43]).
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4.2 Jacobi Spectral Method for Nonzero-sum Differential Games

In this section, we present the application of the JSM using Jacobi polynomials (JPs), which
play a crucial role in solving the system of TPBVPs (4.6)-(4.7) and finding the OLNE of a
nonzero-sum differential games (4.1)-(4.2).
The main concept of this method is consists of approximating a function µ(x) ∈ L2 (−1, 1) by
converting it into a finite series expansion of basis functions. This can be written as :

µ(x) ' µN(x) =
N∑
j=0

µjJ k,`
j (x) ,

where J k,`
j (x) , j = 0, 1, ...., N are Jacobi polynomials (basis functions) and µj , j = 0, 1, ...., N are

spectral coefficients (see e.g., [43, 48]).
We recall the definition of classical JPs and their properties as follows.

Definition 4.1. The Jacobi polynomials J k,`
r (x) , (r ≥ 0) for k, ` > −1 are the eigenfunctions of

the singular Sturm Liouville problem (see e.g., [52])

(
1− x2

)
Y ′′ + (`− k − (k + `+ 2)x)Y ′ + r (r + k + `+ 1)Y = 0, Y = J k,`

r (x) .

Hence, JPs are orthogonal in L2
ωk,` (−1, 1) with respect to the weight function ωk,`(x) = (1 −

x)k(1 + x)` (see e.g., [33]).

1∫
−1

J k,`
r (x)J k,`

m (x)ωk,`(x)dx = hk,`r δr,m,

where δr,m is the Kronecker function, and

hk,`r =
2k+`+1Γ (r + k + 1) Γ (r + `+ 1)

(2r + k + `+ 1) Γ(r + 1)Γ (r + k + `+ 1)
.

The following recurrence formula for JPs as follows (see e.g., [52]).

2r (r + k + `) (2r + k + `− 2)J k,`
r (x) =

(2r + k + `− 1) [(k2 − `2) + (2r + k + `) (2r + k + `− 2)x]J k,`
r−1 (x)

−2 (r + k − 1) (r + `− 1) (2r + k + `)J k,`
r−2 (x) , r = 2, 3, ....;

J k,`
0 (x) = 1,

J k,`
1 (x) = 1

2
(k + `+ 2)x+ 1

2
(k − `) ,

Remark 4.1. There are particular JPs that form a family of orthogonal polynomials, including
several well-known special cases.
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• Legendre polynomials are a particular case of Jacobi polynomials when k = ` = 0.

• Chebyshev polynomials of the first kind correspond to k = ` = −1
2
, while Chebyshev

polynomials of the second kind k = ` = 1
2
.

• Chebyshev polynomials of the third and fourth kind correspond to k = −` = ±1
2
,

• JPs can be symmetric when k = ` and non-symmetric of JPs when k 6= `.

The following two theorems have been applied to Chebyshev and Legendre polynomials
( [43], [3]). The application is extended to JPs, which generalize the above polynomials.

Theorem 4.1. [15]. Let µ(x) ∈ Hm
ωk,` (−1, 1), µN(x) =

∑N
j=0 µjJ

k,`
j (x) be the best approximation of

µ(x) in L2
ωk,`- norm, then

∥∥µ(x)− µN(x)
∥∥
L2
ωk,`[−1,1]

≤M0N
−m ‖µ(x)‖Hm

ωk,`(−1,1)

.

where M0 is a positive constant, which depends on the selected norm, independent of µ(x) and N .

The main results of the presented approach, as well as the theoretical analysis of its conver-
gence, are related to the well-known Weierstrass approximation theorem [48].

Theorem 4.2. Suppose that µ ∈ L2
ω [−1, 1] and N ∈ N. Then there exists a unique µN∗ ∈ PN , such

that ∥∥µ− µN∗∥∥
ω

= inf
µN∈PN

∥∥µ− µN∥∥
ω
,

where

µN∗(s) =
N∑
j=0

µ̂jψj(s), µ̂j =
〈µ, ψj〉ω
‖ψj‖2

ω

,

and {ψj}Nj=0 form an L2
ω-orthogonal basis of PN .

To apply the JPs on the interval [0, T ], we defined shifted JPs through a change of variable
x = 2s

T
− 1, which satisfies the same properties mentioned above and is defined by J k,`

T,r (s).
In order, to present the application of the JSM for solving the system of TPBVPs (4.6)-(4.7) in
nonzero-sum differential games in the finite horizon T , we can approximate the state of game
ȳ(s) and the adjoint variables p̄i(s), i = 1, 2, ....n as finite expansions of shifted JPs that have the
following form

ȳ(s) ' yN(s) =
N∑
j=0

cjJ k,`
T,j (s) = C>J k,`

T (s) , (4.8)

p̄i(s) ' pNi (s) =
N∑
j=0

dijJ k,`
T,j (s) = D>i J

k,`
T (s) , i = 1, ..., n, (4.9)

whereC> = [c1, c2, c3, ...., cN ] andD>i = [di0, di1, di2...., diN ] are unknown coefficients andJ k,`
T (s) =[

J k,`
T,0 (s) ,J k,`

T,1 (s) , ....,J k,`
T,N (s)

]>
is the shifted JPs on the interval [0, T ].
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Furthermore, we can approximate the derivatives of ȳN (s) and p̄Ni (s) in terms of the deriva-
tives of the shifted JPs.
Now, by substituting the approximations (4.8) and (4.9) into the differential equations of the
system of TPBVPs (4.6)-(4.7), we can define the following residual functions

Resy (s) = ẏN (s)− F
(
s, yN (s) , bN1 (s) , bN2 (s) , ..., bNn (s)

)
, (4.10)

Resi (s) = ṗNi (s) +H i
yN

(
s, yN (s) , bNi (s) , bN−i (s) , p

N
i (s)

)
, i = 1, ....., n.

By multiplying these residuals by the shifted JPs J k,`
T,j (s) , j = 0, ....N − 1 and integrating over

the interval [0, T ] , and then setting the result equal to zero along with the boundary values, a
system of (n+ 1)(N + 1) algebraic equations is obtained.

T∫
0

Resy (s)J k,`
T,j (s) ds = 0,

T∫
0

Resi (s)J k,`
T,j (s) ds = 0,

yN (0) = y0,

pNi (T ) = hiyN
(
yN (T )

)
, i = 1, ....., n.

(4.11)

Subsequently, Newton’s iteration method can be used to solve this system and determine the
unknown coefficients C> and D>i , i = 1, ....n.

4.3 Numerical Examples

The purpose of this section is to apply the proposed method to three examples. The first two
(Example 4.1 and Example 4.2) are LQDGs. The solutions obtained by our method are compa-
red with exact solutions as well as with those obtained by existing methods : the Bernoulli Tau
method (BTM) [5] for Example 4.1, and the Chebyshev pseudospectral method (CPM) [43] and
BTM [5] for Example 4.2. Example 4.3 is a differential game arising from an economic model
based on a nonlinear system of TPBVPs, for which no exact solution is available. This example
is introduced in [5]. In this case, a residual function is defined to assess the performance of the
proposed method. For these examples, we follow the steps of Algorithm 4.1, which represents
the necessary conditions of the MP. In addition, different values of the Jacobi parameters are
used.
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Example 4.1. Consider the following differential game problem defined by the system [27]{
ẏ (s) = b1 (s) + b2 (s) , s ∈ [0, 1]

y(0) = 1.

The cost functional for the two players who want to minimize are as follows :

J1(b1(·), b2(·)) =

1∫
0

(
−y2 (s) + b2

1 (s)
)
ds,

J2(b1(·), b2(·)) =

1∫
0

(
2y2 (s) + b2

2 (s)
)
ds+ y2(1).

The exact solution for OLNE of this problem is [27]

b̄1 (s) = −1

e
+ e−s,

b̄2 (s) =
1

e
− 2e− s.

Thus, the exact values of the cost functionals for Player 1 and Player 2 are

J̄1

(
b̄1 (s) , b̄2 (s)

)
= −0.32975303263305,

J̄2

(
b̄1 (s) , b̄2 (s)

)
= 1.9344880850240.

The Hamiltonian for Player 1 and Player 2 are defined by

H1 (s, y, b1, b2, p1) = p1(s) (b1 (s) + b2 (s))− y2 (s) + b2
1 (s) ,

H2 (s, y, b1, b2, p2) = p2(s) (b1 (s) + b2 (s)) + 2y2 (s) + b2
2 (s) .

where the adjoint variables for two player are denoted by p1, p2.
By minimizingH1 (s, y, b1, b2, p1) andH2 (s, y, b1, b2, p2) with respect to b1 and b2 we get the OLNE
b̄1 and b̄2 for two players are given, respectively, by

b̄1 (s) = − p̄1 (s)

2
,

b̄2 (s) = −
p̄2(s)

2
,
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Then, the system of TPBVPs (4.6)-(4.7) of this example can be expressed as follows

˙̄y (s) = − p̄1 (s)

2
− p̄2 (s)

2
, ȳ(0) = 1,

˙̄p1 (s) = 2ȳ (s) , p̄1(1) = 0,

˙̄p2 (s) = −4ȳ (s) , p̄2(1) = 2ȳ (1) ,

A comparison of optimal cost functionals J1 and J2 obtained using JSM with the exact solutions
is presented in Table 4.1, Table 4.2, Table 4.3 and Table 4.4, showing the results with various
choices of k, ` and different values of N for Example 4.1. In Figure 4.1, we show the approxi-
mate solutions of y(s), b1(s) and b2(s) along with the exact solutions and absolute errors for
k = ` = 0 and N = 10.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
4 -0.32975302954236861650594603530789 1.934488137365525879500666069862 3.091e-009 5.234e-008

6 -0.32975303263303305145518126348297 1.934488085024296353144451807013 1.693e-014 2.963e-013

8 -0.32975303263304656749214145627909 1.9344880850240688000077478452531 3.435e-015 6.875e-014

10 -0.32975303263304656750904904722969 1.9344880850240687997237177743588 3.435e-015 6.875e-014

TABLE 4.1 – A comparison of the optimal cost functionals J1 and J2 for Example 4.1 using JSM
with the exact solutions for k = ` = 0.
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FIGURE 4.1 – The graphs of the numerical and the exact solutions with absolute errors for k =
` = 0 and N = 10 for Example 4.1.
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N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
4 -0.32975302954236861650594603530789 1.934488137365525879500666069862 3.091e-009 5.234e-008

6 -0.32975303263303305145518126348297 1.934488085024296353144451807013 1.695e-014 2.963e-013

8 -0.32975303263304656749214145627909 1.9344880850240688000077478452531 3.435e-015 6.875e-014

10 -0.32975303263304656750904904692834 1.934488085024068799723717774528 3.435e-015 6.875e-014

TABLE 4.2 – A comparison of the optimal cost functionals J1 and J2 for Example 4.1 using JSM
with the exact solutions for k = ` = −1

2
.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
4 -0.32975302954236861650594603530789 1.934488137365525879500666069862 3.091e-009 5.234e-008

6 -0.32975303263303305145518126348297 1.934488085024296353144451807013 1.695e-014 2.963e-013

8 -0.32975303263304656749214145627909 1.9344880850240688000077478452531 3.435e-015 6.875e-014

10 -0.32975303263304656750904904722969 1.9344880850240687997237177743588 3.435e-015 6.875e-014

TABLE 4.3 – A comparison of the optimal cost functionals J1 and J2 for Example 4.1 using JSM
with the exact solutions for k = ` = 1.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
4 -0.32975302954236861650594603530789 1.934488137365525879500666069862 3.091e-009 5.234e-008

6 -0.32975303263303305145518126348297 1.934488085024296353144451807013 1.695e-014 2.963e-013

8 -0.32975303263304656749214169210629 1.9344880850240688000077476123017 3.435e-015 6.875e-014

10 -0.32975303263304656750904904722969 1.9344880850240687997237177743588 3.435e-015 6.875e-014

TABLE 4.4 – A comparison of the optimal cost functionals J1 and J2 for Example 4.1 using JSM
with the exact solutions for k = −1

2
, ` = 1

2
.

Furthermore, the results of the BTM [5] are presented in Table 4.5.

N J1BTM J2BTM

4 -0.32975302954236861650 1.93448814833633875533

6 -0.32975303263303305145 1.93448808502434431993

8 -0.32975303263304656749 1.93448808502406878964

10 -0.32975303263304656750 1.93448808502406878929

TABLE 4.5 – The optimal cost functionals J1 and J2 for Example 4.1 by BTM.

It can be observed that applying the JSM with variables k and ` for Example 4.1, gives accu-
rate approximations. As shown in Figure 4.1, there is a strong agreement between the approxi-
mate and exact solutions. Tables 4.1, Table 4.2, Table 4.3 and Table 4.4 show that the results are
sufficiently accurate. For different values of k and `, the differences in the approximate solutions
are minimal at N = 6, which is due to the effect of the Jacobi polynomial coefficients.
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Example 4.2. Consider the linear quadratic nonzero-sum differential game defined by the state
equation ( [27]) as : {

ẏ (s) = 2y (s) + b1 (s) + b2 (s) , s ∈ [0, 3]

y(0) = 1.

The cost functional for the two players who want to minimize are as follows :

J1(b1(·), b2(·)) =

3∫
0

(
y2 (s) + b2

1 (s)
)
ds,

J2(b1(·), b2(·)) =

3∫
0

(
4y2 (s) + b2

2 (s)
)
ds+ 5y2 (3) .

The exact solution for OLNE of this problem is ( [27])

b̄1 (s) = −e−3s +
1

e−3
e−2s,

b̄2 (s) = −4e−3s − 1

e−3
e−2s,

ȳ (s) = e−3s.

Thus, the exact values of the cost functionals for Player 1 and Player 2 are given, respectively,
by

J̄1

(
b̄1 (s) , b̄2 (s)

)
= 0.3140381912,

J̄2

(
b̄1 (s) , b̄2 (s)

)
= 3.4136123279.

The Hamiltonian for two player are defined by

H1 (s, y, b1, b2, p1) = p1(s) (2y (s) + b1 (s) + b2 (s)) + y2 (s) + b2
1 (s) ,

H2 (s, y, b1, b2, p2) = p2(s) (2y (s) + b1 (s) + b2 (s)) + 4y2 (s) + b2
2 (s) .

By minimizingH1 (s, y, b1, b2, p1) andH2 (s, y, b1, b2, p2) with respect to b1 and b2 we get the OLNE
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b̄1 and b̄2 for two players are given by

b̄1 (s) =
−p̄1 (s)

2
,

b̄2 (s) =
−p̄2 (s)

2
,

Then, the system of TPBVPs (4.6)-(4.7) of this example can be expressed as follows

˙̄y (s) = 2ȳ (s)− p̄1 (s)

2
− p̄2 (s)

2
, ȳ(0) = 1,

˙̄p1 (s) = −2ȳ (s)− 2p̄1 (s) , p̄1(3) = 0,

˙̄p2 (s) = −8ȳ (s)− 2p̄2 (s) , p̄2(3) = 10ȳ (3) ,

The values of optimal cost functionals determined through the JSM and the comparison with
the exact solutions are shown in Table 4.6. In Figure 4.2, we plot the approximate solutions of
y(s), b1(s) and b2(s) with the exact solutions and absolute errors for k = −1

2
, ` = 1

2
and N = 20.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735215 3.4136147802083237797 5.572e-007 2.452e-006

15 0.31403819123820213086 3.413612327973873465 3.820e-011 7.387e-011

20 0.31403819124108284469 3.4136123279613940355 4.108e-011 6.139e-011

TABLE 4.6 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = −1

2
; ` = 1

2
.
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FIGURE 4.2 – The graphs of the numerical and the exact solutions with absolute errors for k =
−1

2
, ` = 1

2
and N = 20 for Example 4.2.

The results obtained by the JSM with different parameters for k, ` , and different values of N
for Example 4.2 are given in Table 4.7, Table 4.8, Table 4.9, Table 4.10, Table 4.11 and Table 4.12,
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respectively. In Figure 4.3, the approximate solutions of y(s), b1(s) and b2(s) are shown along-
side the exact solutions and absolute errors for k = 0, ` = 1

2
and N = 20.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735215 3.4136147802083237797 5.572e-007 2.452e-006

15 0.31403819123820213086 3.413612327973873465 3.820e-011 7.387e-011

20 0.31403819124108284469 3.4136123279613940355 3.788e-011 7.526e-011

TABLE 4.7 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = −1

2
, ` = −1

2
.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735215 3.4136147802083237797 5.572e-007 2.452e-006

15 0.31403819123820213086 3.413612327973873465 3.820e-011 7.387e-011

20 0.31403819124108284469 3.4136123279613940355 3.949e-011 6.830e-011

TABLE 4.8 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = ` = 1.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735215 3.4136147802083237797 5.572e-007 2.452e-006

15 0.31403819123820213086 3.413612327973873465 3.820e-011 7.387e-011

20 0.31403819124108284469 3.4136123279613940355 3.658e-011 8.092e-011

TABLE 4.9 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = ` = 0.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735242 3.4136147802083237785 5.572e-007 2.452e-006

15 0.31403819124203047349 3.4136123279572897834 4.203e-011 5.729e-011

20 0.3140381912439577814 3.4136123279489403343 4.396e-011 4.894e-011

TABLE 4.10 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = 0, ` = 1

2
.
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FIGURE 4.3 – The graphs of the numerical and the exact solutions with absolute errors for k =
0, ` = 1

2
and N = 20 for Example 4.2.
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N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735242 3.4136147802083237785 5.572e-007 2.452e-006

15 0.31403819124332684495 3.4136123279516741388 4.333e-011 5.167e-011

20 0.31403819124071578177 3.4136123279629840847 4.072e-011 6.298e-011

TABLE 4.11 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = 0, ` = 3

2
.

N J1JSM J2JSM |J̄1 − J1JSM | |J̄2 − J2JSM |
10 0.31403763402282735242 3.4136147802083237785 5.572e-007 2.452e-006

15 0.31403819123820213086 3.413612327973873465 3.820e-011 7.387e-011

20 0.31403819123737936103 3.4136123279774368509 3.738e-011 7.744e-011

TABLE 4.12 – A comparison of the optimal cost functionals J1 and J2 for Example 4.2 using JSM
with the exact solutions for k = ` = 1

2
.

In addition, the CPM [43] and BTM [5] results are shown in Table 4.13 and Table 4.14, res-
pectively.

N J1CPM J2CPM

10 0.3140689582 3.4134809955

15 0.3140381906 3.4136123306

20 0.3140381912 3.4136123279

TABLE 4.13 – The optimal cost functionals J1 and J2 for Example 4.2 by CPM.

N J1BTM J2BTM

10 0.31403763402282 3.41361478021289

15 0.31403819123820 3.41361232797387

20 0.31403819123819 3.41361232797391

TABLE 4.14 – The optimal cost functionals J1 and J2 for Example 4.2 by BTM.

The analysis show that the JSM offers highly accurate approximations across all cases stu-
died for Example 4.2. There is good agreement between the approximate and exact solutions,
especially as N increases, reducing errors, as shown in Figures 4.2 and 4.3. For instance, at
N = 15 with different values of k and `, the absolute errors were very small. Although slight
differences in errors were observed with different values of k and `, these differences remained
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within acceptable limits, indicating minimal impact on accuracy. Furthermore, the accuracy im-
proves as N increases, with significantly smaller errors at N = 20, demonstrating the ability of
the method to improve accuracy with more points.

Example 4.3. The differential game described below models the competition between two players
striving to harvest a natural renewable resource.
Consider the dynamic state of this game defined as follows{

ẏ (s) = 0.1y (s)− 0.001y2 (s)− y (s) b1 (s)− y (s) b2 (s) , s ∈ [0, 1]

y(0) = 1.

The payoff for each player over [0, T ] who want to maximize is as follows :

J1(b1(·), b2(·)) =

1∫
0

(
3y (s) b1 (s)− 1

2
b2

1 (s)

)
ds,

J2(b1(·), b2(·)) =

1∫
0

(
2y (s) b2 (s)− 1

2
b2

2 (s)

)
ds,

where the value y(s) > 0 is the resource level and the amounts b1 (s) ≥ 0 and b2 (s) ≥ 0 are
the players’ efforts for harvesting this resource, all at time s. In addition, 1

2
b2

1 (s) and 1
2
b2

2 (s)

represent the costs of the harvest at each level of effort b1 (s) and b2 (s) , respectively [17].
The Hamiltonian for two players are defined by

H1 (s, y, b1, b2, p1) = p1(s)
(
0.1y(s)− 0.001y2(s)− y(s)b1(s)− y(s)b2(s)

)
+ 3y(s)b1(s)− 1

2
b2

1(s),

H2 (s, y, b1, b2, p2) = p2(s)
(
0.1y(s)− 0.001y2(s)− y(s)b1(s)− y(s)b2(s)

)
+ 2y(s)b2(s)− 1

2
b2

2(s).

By maximizing H1 (s, y, b1, b2, p1) and H2 (s, y, b1, b2, p2) with respect to b1 and b2 we get the
OLNE b̄1 and b̄2 for two players are given by,

b̄1 (s) = 3ȳ(s)− p̄1(s)ȳ(s),

b̄2 (s) = 2ȳ(s)− p̄2(s)ȳ(s).

Remark 4.2. (see, [51]). By the linearity of the dynamic state of this game with respect to the
controls bi, i = 1, 2, and the concavity of performance Ji, i = 1, 2, with respect to bi, ( since
∂2Ji
∂b2

i

= −1 < 0, i = 1, 2 ), it leads to the open-loop strategy exists and is unique for this game

concerning the Filippov-Cesari existence theorem [18].
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Then, the system (4.6)-(4.7) of this game is obtained as
˙̄y = 0.1ȳ − 5.001ȳ2 + ȳ2p̄1 + ȳ2p̄2,

˙̄p1 = −9ȳ − 0.1p̄1 + 8.002ȳp̄1 − ȳp̄2
1 − ȳp̄1p̄2,

˙̄p2 = −4ȳ − 0.1p̄2 + 7.002ȳp̄2 − ȳp̄2
2 − ȳp̄1p̄2,

ȳ(0) = 1, p̄1(1) = 0, p̄2(1) = 0,

Table 4.15, Table 4.16, Table 4.17 and Table 4.18 presents the numerical results obtained by the
JSM with various choices of k, ` and different values of N for Example 4.3. It is worth mentio-
ning that since the exact solution to this differential game is not available, to verify the accuracy
and the validity of the JSM for the differential game concerned, the residuals error is determined
as follows :

‖R‖2 =

1∫
0

(
Res2

y (s) +Res2
1 (s) +Res2

2 (s)
)
ds,

where Resy, Resi, i = 1, 2, are the residuals functions defined in (4.10).
Figure 4.4, presents the sum of squared residuals for the state of game and adjoint variables
p̄i(s), i = 1, 2. Figure 4.5 displays the numerical solutions of ȳ(s) and b̄i(s), i = 1, 2, while Figure
4.6 shows the approximate solutions for the adjoint variables p̄i(s), i = 1, 2 of both players. In
general, these figures represent the approximate solutions for the various variables involved in
the game with k = 0, ` = 1

2
and N = 6.

N J1JSM J2JSM ‖R‖2

3 0.94699053011063 0.45265191690172 1.70224879159856510e-002

4 0.94617331743847 0.45217675952914 2.29690776765495560e-003

5 0.94616311331662 0.45217517076851 2.9836687468064280e-004

6 0.94616143782921 0.45217455203462 3.74812018674081340e-005

TABLE 4.15 – Optimal payoff functionals J1 and J2 and residuals error using JSM for Example
4.3 for k = −1

2
, ` = 1

2
.

N J1JSM J2JSM ‖R‖2

3 0.94699053011063 0.45265191690172 1.70224879159855820e-002

4 0.94617331743847 0.45217675952914 2.29690776765471230e-003

5 0.94616311331662 0.45217517076851 2.9836687468064280e-004

6 0.94616143782921 0.45217455203462 3.74812018674076260e-005

TABLE 4.16 – Optimal payoff functionals J1 and J2 and residuals error using JSM for Example
4.3 for k = 0, ` = 1

2
.
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N J1JSM J2JSM ‖R‖2

3 0.94699053011063 0.45265191690172 1.70224879159856510e-002

4 0.94617331743847 0.45217675952914 2.29690776765471230e-003

5 0.94616311331662 0.45217517076851 2.9836687468064280e-004

6 0.94616143782921 0.45217455203462 3.74812018674267890e-005

TABLE 4.17 – Optimal payoff functionals J1 and J2 and residuals error using JSM for Example
4.3 for k = −1

2
, ` = −1

2
.

N J1JSM J2JSM ‖R‖2

3 0.94699053011063 0.45265191690172 1.70224879159856370e-002

4 0.94617331743847 0.45217675952914 2.29690776765471230e-003

5 0.94616311331662 0.45217517076851 2.9836687468064280e-004

6 0.94616143782921 0.45217455203462 3.74812018674075650e-005

TABLE 4.18 – Optimal payoff functionals J1 and J2 and residuals error using JSM for Example
4.3 for k = ` = 0.
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FIGURE 4.4 – The graphs of the sum of squared residuals for the state of game and adjoint
variables with k = 0, ` = 1

2
, for N = 6 for Example 4.3.
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, for N = 6 for Example 4.3.
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FIGURE 4.6 – The graphs of the numerical solutions for the adjoint variables with k = 0, ` = 1
2
,

for N = 6 for Example 4.3.

The results of Example 4.3 show that increasing N generally leads to a reduction in error,
consistent with the theoretical properties of spectral methods. Higher N improves the accuracy
of the numerical solution, leading to lower residual error. While the effect of k and ` on the error
was less pronounced compared to N , variations in these parameters still contributed to a slight
reduction in the error, highlighting their role in refining the solution.
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Conclusion

The main contributions of the work presented in this thesis, focusing on the study of deter-

ministic nonzero-sum differential games (NZSDGs) on a finite horizon, are divided into two

parts.

In the first part, we established the connection between the adjoint variables in the maxi-

mum principle and the value function in the dynamic programming principle for two-player

nonzero-sum differential games. We extended existing results to nonzero-sum differential games

and addressed this relationship in both smooth and nonsmooth scenarios using viscosity so-

lutions. This relationship is established in terms of derivatives, as well as sub- and super-

differentials of the value function, with economic interpretations related to the adjoint variables.

In the second part, we presented a numerical method based on the Jacobi spectral me-

thod (JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from

the maximum principle. These problems were converted into a system of algebraic equations

to obtain the open-loop Nash equilibrium (OLNE) for nonzero-sum differential games. Some

examples were provided to validate the accuracy and effectiveness of the proposed method.

For future research, this work can inspire further directions in the field, such as extending

the results to stochastic differential games, in order to explore the connection between adjoint

variables and the value function in both smooth and nonsmooth cases. Another research di-

rection involves using the numerical method introduced to find feedback Nash equilibrium in

both deterministic and stochastic differential games.
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[8] T. Başar, Lecture notes on non-cooperative game theory, Hamilton Institute, Dublin, Ireland,
2010.
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الهدف الرئيسي من هذه الأطروحة هو عرض العلاقة بين المتغيرات المرافقة في مبدأ الحد الأقصى ودالــــــــــة   ملخّص:

القيمة في مبدأ البرمجة الديناميكية للألعاب التفاضلية غير الصفرية للاعبين، وذلك في كل من الحالات الملساء وغير الملساء 
لدالة القيمة. يتم إثبات هذه العلاقة من حيث المشتقات في الحالة الملساء ومن خلال حلول اللزوجة عندما لا تكون دالة القيمة 

رافقة. ملساء، مع تفسيرات اقتصادية تتعلق بالمتغيرات الم  

مة الحدية في نقطتين غير في الجزء الثاني قمنا بتطبيق طريقة عددية تعتمد على طريقة جاكوبي الطيفية لحل مشاكل القي
الخطية المشتقة من مبدأ الحد الأقصى. ثم يتم تحويل هده المشاكل إلى نظام من المعادلات الجبرية وذلك من أجل تحديد توازن  

ناش في الحلقة المفتوحة للألعاب التفاضلية غير الصفرية. يتم تقديم أمثلة توضيحية لإظهار فعالية وصحة الطريقة  
.ةالمقترح     

الألعاب التفاضلية غير الصفرية. الحد الأقصى. البرمجة الديناميكية. حلول اللزوجةالكلمات المفتاحية:  . 

    .طريقة جاكوبي الطيفية. توازن ناش في الحلقة المفتوحة

 
 

 

Abstract: The main objective of this thesis is to present the connection between the 

adjoint variables in the maximum principle (MP) and the value function in the dynamic 
programming principle (DPP) for two-player nonzero-sum differential games, both in the 
smooth and nonsmooth cases. This relationship is established in terms of derivatives in 
the smooth case and through viscosity solutions when the value function is not smooth, 
with economic interpretations related to the adjoint variables. 
In the second part, we apply a numerical method based on the Jacobi spectral method 
(JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from 
the maximum principle. These problems are then transferred into a system of algebraic 
equations to determine the open-loop Nash equilibrium (OLNE) for nonzero-sum differ-
ential games. Illustrative examples are presented to demonstrate the effectiveness and 
validity of the proposed method. 
 

Keywords: Nonzero-sum differential games, maximum principle, dynamic 

programming principle, viscosity solutions, Jacobi spectral method, open-loop Nash 
equilibrium. 
 
 

 

Résumé : L'objectif principal de cette thèse est de présenter la relation entre les 

variables adjointes dans le principe du maximum et la fonction valeur dans le principe de 
la programmation dynamique pour les jeux différentiels à deux joueurs à somme non 
nulle, dans les cas lisses et non lisses. Cette relation est établie en termes de dérivées 
dans le cas lisse et par des solutions de viscosité lorsque la fonction valeur n'est pas lisse, 
avec des interprétations économiques liées aux variables adjointes. 
Dans la deuxième partie, nous appliquons une méthode numérique basée sur la méthode 
spectrale de Jacobi pour résoudre les problèmes aux limites non linéaires à deux points 
dérivés par le principe du maximum. Ces problèmes sont ensuite convertis en un système 
d'équations algébriques pour déterminer l'équilibre de Nash à boucle ouverte pour les 
jeux différentiels à somme non nulle. Des exemples illustratifs sont présentés pour 
démontrer l'efficacité et la validité de la méthode proposée. 

 
  Mots-clés : Jeux différentiels à somme non nulle, principe du maximum, 

programmation dynamique, solution de viscosité, méthode spectrale de Jacobi, l'équilibre 
de Nash à boucle ouverte. 
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