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Introduction

Differential games are a kind of dynamic game that evolve over time. The state of the
game is represented by a system of differential equations involving multiple decision-makers,
known as players. Each player aims to minimize or maximize his individual criteria ( [35], [9]).

Applications of differential games have been used in many fields, such as economics and ma-
nagement science [23], military defense [35] and biology.

On the other hand, differential games are an extension of optimal control problems (OCPs).
Due to their connection, some of the concepts and techniques used in the solution of OCPs can
also be applied in the solution of differential game problems such as Pontryagin maximum prin-
ciple (MP) and Bellman’s dynamic programming principle (DPP) serve as the main significant
approaches for differential games (see e.g., [9]). The MP approach characterizes the open-loop
Nash equilibrium (OLNE) solution of the differential games using Hamiltonian function and
adjoint variables. An OLNE refers to a situation in nonzero-sum differential games where the
strategies of the players depend on the initial state of the system and time. These strategies can
be determined by solving two-point boundary value problems (TPBVPs), which are derived
from MP. This principle provides the necessary conditions for the existence of an OLNE by des-
cribing how players must adjust their strategies over time to maximize or minimize their indi-
vidual objectives, taking into account interactions with other players (see e.g., [9]). Whereas, the
DPP characterizes the feedback Nash equilibrium (FNE) using the value function solution to the
Hamilton-Jacobi-Bellman (HJB) equations (see e.g., [9]) and there is a close relationship between
them. The relation between MP and DPP can be regarded as the connection between adjoint va-
riables and the value function, or the Hamiltonian systems and the H]B equations ( [57]). There
is a lot of research on the study of relationship between them in deterministic and stochastic
optimal control problems (Single player differential games) (see [19,34,37,42,45|/53,57,59]).

The connection between MP and DPP for optimal control problems with a smooth value
function was established by Fleming and Rishel [29], Yong and Zhou [57] and further investi-
gated by Shi in [49] for (zero-sum) stochastic differential games with jump diffusions. However,
even in very simple cases, the value function is not smooth and the HJB equations may not have
a smooth solution at all, so this equations must be studied in viscosity solution (VS). This new
notion is a kind of nonsmooth solutions was first proposed by Crandall and Lions [21] (see
also Crandall et al. [22] and [6]) to overcome the difficulty that the value function of differential
games or single player differential games (OCPs) is not smooth. The VS provides researchers



to explore relationships between adjoint variables and value functions of deterministic and sto-
chastics OCPs (see [7,/19,20,34,[37,41,42,45,53,57,59]).

The connection between the adjoint variables in MP and the value function in DPP for opti-
mal control problems has important applications in mathematical economics and finance. Yong
and Zhou [57]] discusses the economic interpretations of the adjoint variable, also known as the
shadow price, in both smooth and nonsmooth of the value function. For zero-sum stochastic
differential games with jump diffusions, Shi [49] discusses a portfolio optimization problem
under model uncertainty in an incomplete financial market in the smooth case.

Differential game problems are often solved numerically, as analytical solutions are not al-
ways available. Several numerical methods have been proposed, including algorithms based
on dynamic programming [28]], direct and indirect methods [36], an iterative adaptive dynamic
programming method for solving nonlinear zero-sum differential games [58]], and the comple-
mentarity theory, which is specifically used for solving zero-sum pursuit-evasion differential
games [54]. The most efficient and accurate numerical method for solving various types of diffe-
rential equations are spectral methods (see, [48], [15], [16]), which are based on truncated series
of orthogonal polynomials. These methods are commonly classified into three main categories :
Galerkin, Tau, and collocation methods. Among the orthogonal polynomials, Jacobi polyno-
mials (see eg., [24,52]), including special cases such as Legendre and Chebyshev polynomials
(see eg., [13,/15,32]), are widely used in mathematical analysis and practical applications due
to their strong convergence properties. A number of studies have investigated the application
of spectral methods to solve open-loop Nash equilibrium in nonlinear differential games. Spe-
cifically, pseudospectral methods have been used to solve nonlinear two-point boundary value
problems (TPBVPs) in nonzero-sum differential games and min-max optimal control problems
with uncertainty ( [43], [44]). In [3], the Legendre Tau method to find the OLNE of noncoope-
rative nonzero-sum differential games. In addition, the Bernoulli Tau method has been used to
compute these equilibria in nonlinear differential games [5].

The main objective of this thesis, which focuses on the study of the deterministic nonzero-
sum differential games (NZSDGs) on a finite horizon, consist of two parts. In the first part, we
present the connection between the adjoint variables in MP and the value function in the DPP
for differential games. We analyze both the smooth and nonsmooth cases of the value function
in terms of the derivatives and super- and subdifferentials, with their economic interpretations
of the adjoint variables. This result represents a generalization of the results in [57] related to
deterministic OCPs.

In the second part, we apply an appropriate numerical method based on the Jacobi spectral
method (JSM) to approximately solve the nonlinear TPBVPs derived from MP are transferred
to a system of algebraic equations in order to obtain the OLNE of NZSDGs.

The thesis is structured as follows :

e The first chapter provides a general overview of differential game theory by progressively

2



LIST OF FIGURES 3

introducing the basic concepts of optimal control theory, game theory, and differential
games.

e The second chapter, we present a deterministic two-player NZSDGs on a finite horizon.
We explore the connection between the adjoint variables in the maximum principle (MP)
and the value function in the DPP for differential games, both in the smooth and nons-
mooth cases of the value function. The connection is established in terms of derivatives
as well as sub and super-differentials of the value function. This chapter represent a ge-
neralization of the results in [57]] related to deterministic OCPs.

e In the third chapter, we provide an example of a producer-consumer game with sticky
prices taken from [14] to illustrate the theoretical results from the second chapter. This
application illustrates how this connection can be applied to real-world situations, focu-

sing on the economic interpretations of adjoint variables in differential games.

e In the fourth chapter, we present a numerical method based on the MP, using the Jacobi
spectral method (JSM), which allows us to approximately solve the nonlinear TPBVPs in
order to determine the OLNE of NZSDGs in a finite horizon. We then discuss the appli-
cation of the JSM to solve these differential games. Finally, we provide some examples to
demonstrate the accuracy and usefulness of the proposed method.

The results presented in this thesis have been published or are scheduled for submission to
international journals. Chapters [2/ and 3| are included in [12]. The final Chapter is a preprint
and will be submitted for publication.

Rania Benmenni



CHAPTER 1

AN OVERVIEW OF DIFFERENTIAL GAMES
THEORY

In this chapter, we provide an overview of the theoretical foundations of differential games, a
branch of applied mathematics and game theory that focuses on dynamic systems in interac-
tion. These systems are commonly used in contexts where agents’ decisions are influenced by
temporal and strategic factors. We begin by introducing optimal control theory, which offers
the necessary tools to formulate and solve dynamic decision making problems. This theory fo-
cuses on optimizing performance functions subject to dynamic constraints, with methods such
as the maximum principle and dynamic programming principle to finding optimal strategies
over time. We then delve into game theory, which provides a framework for modelling and
analyzing strategic interactions between rational agents (players). Key concepts such as Nash
equilibrium, where no player has an incentive to unilaterally change their strategy, are explo-
red. Finally, we examine differential games, which combine the principles of optimal control
and game theory to address situations where agents” decisions evolve over time in dynamic
systems. Special attention is given to LQDGs, where linear differential equations and quadratic
cost functions. A more comprehensive background on differential game theory can be found in
the references (see [9,[10,.35,50]).

1.1 Optimal Control Theory

This section deals with the theory of optimal control (OC). It can be seen as a theory for
single-player differential games. First, we present the formulation of OC problems. Then we
introduce the two main approaches to solving deterministic OC problems, namely, Maximum
Principle and Dynamic Programming Principle. For more details on the concepts presented in

this section, see reference [57].



1.1. OPTIMAL CONTROL THEORY 5

1.1.1 Problem Formulation

Consider the following control system

{ §(s) = F(s,y(s),b(s)), s €[0,T] (1.1)

y (0) = yo,

where F' : [0,T] x R" x B — R" is a measurable map that represents the dynamical system.
(B;d) is a separable metric space representing the action space of the controller; y(.) is the state
variable, and i, € R" is the initial state; T € R, is called the horizon of the system. For any
instant s € [0, 7], the controller (decision-makers) has to choose an action b (s) € B in order
to influence the trajectory of the state of his system. Any measurable function b : [0,7] — B
is called a control or a feasible strategy of the controller and y (.) solution of is called the
corresponding state trajectory of b (.).

The set of feasible controls is defined

B0, 7] ={b:[0,T] — B, b(.) measurable} .

The cost function is presented as follows

T

J(b() = / G (5,y(s).b(s)) ds + h (y (T)). (1.2)

0

The functions G : [0, 7] x R™ x B — R is called the running cost and h : R" — R is terminal cost.

Definition 1.1. (Admissible Control). A feasible control b (.) € By [0, 7] is called an admissible

control, and (y (.),b(.)) called an admissible pair, if :
1. the equation has an unique solution y (s);
2. J(b(.)) (.

Denote B [0, T'] the set of all admissible controls. The OC problem is stated as follows :
Problem (OC). Find a control b(-) € B[0,T], such that

J(-))= inf J(b()). 1.3
() =, int J(B0) (13)
Any control b(-) € B0, T that satisfies is considered as an optimal control to Problem(OC),
the associated state trajectory 7 (s) is known as the optimal state trajectory, and (7 (-),b(-)) is
called an optimal pair.

Rania Benmenni



1.1. OPTIMAL CONTROL THEORY 6

1.1.2 Approaches to Solving Optimal Control Problem

This section presents two of the most widely used approaches to solving optimal control
problems specifically Maximum Principle, which involves the use of adjoint equations along
with both necessary and sufficient optimality conditions, and the dynamic programming prin-
ciple, which is coupled with the Hamilton-Jacobi-Bellman equations. These methods provide

powerful tools for determining optimal solutions.

The Maximum Principle (MP)

Consider the OC problem (1.1)-(1.2) and we give the tools needed to state the necessary
conditions for the MP.

We introduce the following assumptions :
(OC1) B is aseparable metric space;

(OC2) F'is continuous, linear growth and continuously differentiable in (y,b), and F, F; are
bounded and uniformly Lipchitz in (y,b). There existe M > 0, such that for all y,y €
R",b,b € B,

[F (5,5, 0)] < M (1 +[y| + [b])

and

|Fy (s,9,0)| + [Fy (s,,0)| < M

F, (s,y,b) — F, <s 7, )‘ ’Fb b)—Fb(s,gj,l;)‘§M(\y—3}|+‘b—l§‘>;

(OC3) the functions G and h are C' in (y, b) and its derivatives are uniformly Lipchitz and linear
growth in (y, b). There exist a constant M > 0, such that

Gy (5.5, B)] + G (5,2, b)] < M (1+ [y| + [b]).
h <>|SM<1+\y!>
<M (ly- y|+]b—b])
hy () = by ()] < My — 3], ¥ bic B.

Under assumption (OC2) for any (s,y) € [0,7] x R™ and the controls b(.) € L*([0,T];R™),
equation admits a unique solution y(-) and under (OC3) the functional is well-defined
(see [57])).

We can define the following set of all admissible control as

B([0,T]) ={b(.): [0,T] — BJb(.) € L*([0,T];R™)}.

Rania Benmenni



1.1. OPTIMAL CONTROL THEORY 7

The Hamiltonian function, H : [0,7] x R® x B x R — R is defined by
H (s,y,b,p) = (F (s,y,0) ,p) + G (s,4,b),

where p is called the adjoint or co-state variable.

The following adjoint equation

{ p(s)=—Hy(s,y(s),b(s),p(s)), s€[0,T] (1.4)
p(T) = hy(y (1)),

Theorem 1.1. Let (OC1)-(OC3) hold. Suppose that (i (.),b(.)) is an optimal pair of Problem (OC),
then there exist a unique (p(.)) € (C ([0, T];R™)) solution of the adjoint equations

{ 1?(5) = —Hyi(s,g (5),b(s) 725(5)) , s €1[0,T] : (1.5)
p(T) = hy(y (1))

and,
H (SJJ(S) ,B(S) ,]5(3)) = ian(S,ﬂ(S) ?b7ﬁ(8)) )

beB

Remark 1.1. The following system is called an Hamiltonian system.

Now, under some appropriate convexity conditions, we recall the following sufficiency

conditions for optimal control problem.

(OC4) H is convexin (y,b) and h is convexin y, Vs € [0, 7.

Theorem 1.2. Let (OC1)-(OC4) hold. Suppose that (3 (.),b(.)) is an admissible pair. Suppose there
exist a solution (p(.)) € C ([0, T];R") of the adjoint equations . Then, (§(.),b(.)) is an optimal
pair if

(s) ,]3(5)) =inf H (s,7(s),b,p(s)),

beB

H (s, (s),

The Dynamic Programming Principle (DPP)

Dynamic programming, introduced by Richard Bellman [11] in the early 1950s, involves
solving a family of optimal control problems by the Hamilton-Jacobi-Bellman (HJB) equation,
as a nonlinear first-order partial differential equation (PDE). When the HJB equation is solvable,

it allows for the determination of an optimal feedback control by maximizing or minimizing the

Rania Benmenni



1.1. OPTIMAL CONTROL THEORY 8

Hamiltonian involved in the HJB equation; see for example [30] and [57] for a more detailed
discussion.
Fort € [0,7] and = € R", consider a control system given by the following ordinary differential
equations (ODE)
{y®:F@w®ﬁ®»s€%ﬂ, 16)
y(t) = z.

The cost functional defined by
Heab()) = [ Glsy(s).b(s)) ds+ h(y (D). 17)

We need to the following assumptions :

(OC5) F is uniformly Lipchitz and linear growth in (y, b). There existe M > 0, such that for all
v, ) ER,bbE B,
[E (5,9, 0)[ < M (1 +[y| + [b])

F(s,9,8) = F (s,9,0)| < M (ly — 31).

(OC6) The functions G and h are continuous and quadratic growth in (y, b).

Under assumption (OC5) for any (s,y) € [0,T]xR™ and the controls b(.) € B0, 7], equation
admits a unique solution y(-) and under (OC6) the functional is well-defined (see [57]).
Then, we define the value function

W (t,z) = inf J(t,z,b(-
2) = ) By T (6 00) (1.8)
W(T, z) = h(x),
which satisfies the Problem (OC).

Theorem 1.3. Suppose (OC1), (OC5) and (OC6) hold. Then for any (s,y) € [0,T] x R",

b(-)EBIt,T]

W(t,z) = inf {/G(s,y(s),b(s))ds+W(f,y(f))},er [t,T].

t

The HJB equations defined by,

ot
W(T,z) =h(x),

ow i ow B .
{ — (t,x)+ H (t,x, B (t,x)) =0,V (t,z) € [0,T] xR (1.9)

Rania Benmenni



1.2. BASIC NOTIONS OF GAME THEORY 9

where W(-,-) € (C*([0,T] x R");R) and

. ow - oW _ ow
H (t,x, B (t, x)) =H (t,x, b, B (t, $)> = belBIgT} H (t, x, b, B (t, I)) )

Theorem 1.4. (Verification Theorem). Let assumptions (OC1), (OC5) and (OC6) hold. Assume that
W(-,-) € C*([0,T] x R") is a solution to equations (1.9). Then we have the following :
()W (t,2) < J (t,2:5()) ¥ (t,2) € [0, 7] x R", b() € B[t,T];

(ii)suppose
ow

W(t,x) + H” (t,a:,a—W (t,x)) =0,V (t,z) € [0,7] x R",

ox

and there exist an (b(-)) € B[t,T| admissible strateqy with the corresponding state trajectory y(-) for
Problem (OC)

N O s = OW

i (00, 5 G @) =1 (L (0).06). 5

Xz

(f,y(z?))) vienT).

i

Then (b(-), 5 (+)) , is an optimal pair for Problem (OC) in (t, ).

1.2 Basic Notions of Game Theory

Game theory provides a framework for analyzing strategic interactions among rational mul-
tiple decision makers, called players, where each player seeks to achieve their own goals and
each decision is influenced by the others. This section introduces game classification and stra-

tegic form games. It then presents the central concept of Nash equilibrium.

1.2.1 Game Classification

Games can be classified into various categories based on factors such as players interaction,

available information, and the objective functions (see. eg [8]]).

e Simultaneous and Sequential :
In simultaneous or static games, players make their decisions at the same time, the game
is usually represented in normal form (stategic form). For sequential (or dynamic) games
are played in stages, with each player’s decision depending on previous actions.

e Complete information and incomplete :
In games with complete information, all factors of the game, such as the players, their
strategies, and their objective functions (payoff or cost functions), are known to all players.

Otherwise, the game is said to be incomplete.

e Zero-sum and nonzero-sum game :
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1.2. BASIC NOTIONS OF GAME THEORY 10

A zero-sum game is a game in which the sum of the objective functions of two players is
zero. A nonzero-sum game, on the other hand, is a game in which the sum of the players

objective functions cannot be made to equal zero [8§].

e Cooperative and non-cooperative games :
Cooperative games are those in which players can form coalitions and agreements to
achieve mutual benefits, while in non-cooperative games, players make independent
decisions, without cooperating, each aiming to maximize (minimize) their own payoff
(cost) based on the strategies of others.

In cooperative game theory, the Shapley value is one of the most fundamental solution concepts
[47]. Aumann and Shapley [1] define the Shapley value specifically for nonatomic (market)
games. Edhan [26] introduces new diagonal formulas for the Mertens value [38] and the Ney-
man value [40] for a large space of non-differentiable games. In this thesis, we focus on non-
cooperative games, especially in the context of differential games.

1.2.2 Strategic-Form Games

Definition 1.2. (see. eg. [31]). A game in normal form (strategic form) consists of :
(¢) afinite number of players N = {1,2,...,n};
(¢7) for each player i, a set X; of available strategies;

(17i) for each player i, a payoff function (cost functions) .J; : X — R, which assigns a specific
payoff to each player based on their strategy and the strategies of others,

where, X = [[ X, denotes the set of all possible strategy profiles.
1=1

The following notations can be presented as follows :

for a strategy profile x = (21, ...,...,z,), Vi € {1,2,....,n}, x; € X;;

for the strategy profile of all players except player i,

T_; = (f]}l7 ...,$¢71,Ii+1---al’n) 3

X, represents the strategy set of player 7, containing all possible strategies available to that
player;

X_; is the set of strategies of all players except player ¢,

X—i = X1 X ... X Xi—l X Xi—i—l X Xn
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1.2.3 Nash Equilibrium

The Nash equilibrium (NE) is a key concept in non-cooperative game theory, where coope-
ration among players is often difficult. It describes a situation in which each player makes the
best decision possible, taking into account the decisions of the others. In this state, no player
has an incentive to change their strategy unilaterally. The concept was developed by the ma-
thematician John Nash [39].

The best-response function is defined as follows :

Definition 1.3. The strategy «; for a player i is considered a best response to a strategy profile
Tr_; if
Ji(z;,x_;) = inf J; (z;,2_;).

z,€X;

The best response function can also be expressed as :

r_; = BR; (.l’_l) = {[E;k € X;, J; (I’:,ZL‘_ ) < J; (ZL‘Z, z)} ,VCL’Z‘ € X;.

We note BR; (z_;) the set of rational responses of player i against strategies x_;.

Definition 1.4. (Nash Equilibrium, see e.g., [8,9,31]). A strategy profile z* € X is a Nash equi-
librium if

xf € BR; (z%;),Vi€ {1,2,...,n}.
In other terms,

Ji(xx )<J(wz, )VxlEX

7

1.3 Differential Games

This section focuses mainly on differential games, an extension of game theory to dyna-
mic contexts. We start with the problem formulation of differential games. Information struc-
tures and strategies are then introduced, and finally a special case of differential games, linear-

quadratic differential games, is discussed.

1.3.1 Problem Formulation

The concepts introduced for the case where n = 1 for the optimal control problem, as dis-
cussed in Section [1.1| can be extended to the general case of n players. Consider the n-player
nonzero-sum differential games on finite horizon and the dynamical system [9] :

{ y(s)=F(s,y(s),b1(s),b2(s),....,bn(s)), s €[0,T] (1.10)
Yo,
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N

where y(s) € R™ is the state variables of the game and F: [0,7] x R" x [[ B; — R" is a function
i=1

determining the evolution of the system, and 7" is a time horizon. The control (strategy) for the

i-th player b; : [0,T] — B;, for some given sets B; C R™:, (B; = By X By X ... X Bp,i =1,2,...,n),

and B; is called admissible set of the b;(-) = (b1(-), ba2(+), -....b,(-)) defined by the following :

Bi[0,7] = {b; (.) : [0,T] — B;i|b; (.) € L*([0,T];R™)}, i =1,2,....,n;

and the cost functionals as follows

Ji(bl(-),....,bn(-))_/Gi (5,9 (5) b1 (8) )by () oo b (8)) ds + By (y (T)), i = 1,2, -+, m. (1.11)

Here G, is a running cost and h; is a terminal cost.

The aim of the i-th player is to minimize his own cost functionals (I.11). This problem is known

as the n-player nonzero-sum differential game problem given as follows.

Problem (NZSDG). Find a b;(-) = (b1(-), ba(*), ..., bu(+)) € Bi[0,T],i = 1,2, ..., n such that
Ji(bi(+),b-i(+)) = bi(.)é%lf[oﬂ Ji(bi(+), b-i(+))- (1.12)

where b;(-) is the control (strategy) for the i-th player and b_;(-) are the controls for the rest of

the players b_; = b;, (j # 1).

An n-player NZSDGs (I.10)-(I.11I) requires assumptions on the functions F,; and h; to en-

sure the existence of a unique solution of and the well-defined of the functionals (1.11).

These assumptions commonly used in differential games (see e.g., [9,10]) and are presented in

Chapter [2]for two-player nonzero-sum differential games, which can be extended to the general

case with n players. The following theorem provides conditions that ensure the existence and

uniqueness of the state trajectory y(.).

Theorem 1.5. Let the differential games defined by - . Then, if the function F satisfy,

|EF (s,9,b1, .0y 00) — F (8,9,b1, ..., 00)| < M|y — 9],
‘F(S7y7b17 7bn>| S M<1 + ‘y|)7

then for any measurable b; (-) ,7 = 1, ..., n, the equation admits a unique state trajectory y(.)

The NE solution concept for the n-player differential game defined by (1.10) and (1.11) given
as follows :

Definition 1.5. The control strategies b;(-) = (b;(-), ba(+), ..., bu(+)) € B;[0,T] is a NE of Problem
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(NZSDG) if the following holds :

This means that the NE is a situation where, for each player i, the strategy b;(-) of that player

is a best response to the strategies of the other players b_;(-).

1.3.2 Information Structures and Strategies

The information structure in a differential game represents the available information for
each player at any given time and that significantly influences their decision making process.
The NE depends on the information structure employed (see e.g., [9,[10]). In this context, we
focus on open-loop Nash equilibrium (OLNE) and feedback Nash equilibrium (FNE) strategies.
In an open-loop information structure, players’ decisions depend on time and the initial state,
while in feedback the decisions depend on both time and the current state (see [10]).

e Open-loop strategy : The control action is selected according to a decision rule v;, which

is a function of the initial state y,
bi(s) = vi(s,40), VYo, Vs € [0,T], i = 1,...,n.

e Feedback strategy : The control action is selected according to a feedback rule v;, which

is a function of the current state
bi(s) = vi(s,y(s)),Vs €[0,T], i=1,..,n.

The MP and DPP approaches characterize the OLNE and FNE solutions of differential games.
These approaches are used in solving differential games, respectively. In Chapter [2, we discuss
them in detail, particularly in the context of two-player differential game.

Zero-sum differential games (ZSDGs)

A common special case of differential games when n = 2 are known as a two-player zero-
sum differential games, where the sum of the cost functionals for both players is zero,
meaning that the players are adversaries. A gain for Player 1 implies an equal loss for Player 2
(see [9,35,556]).

{ G (s,y,b1,02) = —Ga (8,9, b1, b2)
hi(y) = —ha ()
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Then,
J(b1(-), b2(+)) = Ju(br(), b2(+)) = —Ja(ba(:), ba(-))-
In the ZSDGs, the NE (b;(-), bs(+)) is called the Saddle point Equilibrium (SPE), defined as fol-

lows

J(01(+),02(-)) < J(br(+), b2(+)) < J(ba(+), ba(+)),
V(bl(),bg()) € B {O,T] X Bay [O,T] .

1.3.3 Linear Quadratic Differential Games (LQDGs)

Consider a special case of two-player nonzero-sum differential games on a finite time hori-
zon in which the dynamical system of (1.10) is linear, and cost functionals (1.11) are quadratic

and given respectively by

y(s) = As)y(s) + Er(s)bi(s) + Ea(s)ba(s), s € [0, T]

(1.14)
y(0) = yo € R™,
Ji(b1(+),bo(+)) = fOT %(y<t)TZi(5) y(s) +b1(s) " Rir(t)b1(s) + ba(s) T Ria(s)ba(s))ds
(1.15)
—|—%y(T>TSz‘T y(T), i=12,

where y, b, and b, are the state and the strategies of players as defined in Section The
matrices A(-) € R™™, E;(+) : [0,T] — R™™i § =1,2.

The weighting matrices Z;(-), Sir € R™", R;;(-) € R™>*™ R;;(-) € R™*™ are symmetric and
verify Z;(t) > 0, and S;r > 0, R;; > 0, i = 1,2,

For the two player LQDGs, the characterization of the OLNE and FNE often involves using the
MP and DPP. These problems necessitate the solution of Riccati differential equations (RDE),
coupled to equations. The Riccati equations correspond to the open-loop and the feedback
Nash strategies for the players, which are defined respectively as follows (see e.g., [9,23,27,50]).

[ Ki(s) = —Ki(s)A — ATK () — Zi(s) + Ki1(s)Ya(s) K (s) + Ki(s)Ya(s) Ks(s)
Ky(T) = Sir,

Ky(s) = —Ky(s)A — AT Ky(s) — Zo(s) + Ky(s)Ya(s)Ka(t) + Ka(s)Yi(s) K1 (s)

KQ(T) = SQT; S € [O,T] .

\
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((Ki(s) = —Ki(s)A = ATE (s) = Qu(s) + Ki(5)Y1(s) K (s)
+K1(5)Ya(s) Ka(s) + Ka(s)Ya(s) Ki(s) — Ka(s)Y12(s) Ka(s)
K\(T) = Sir,
Ky(s) = —Ky(s)A — ATKy(s) — Zy(s) + Ky (s)Ya(s) Ky (s)

+Ka()Y1(s) K1 (s) + K1(s)Yi(s)Ka(s) — Ki(s)Yar(s)K1(s)

K2(T) = SQT? ;S € [07T] )

\

where,
Yi(s) = Ei(s)Ru(s) " B (s); =12

Yij(s) = Ej(s)Rjj(s) ™" Rij(s)Ryj(s) "B (s), 1< 0,5 <2.

J

Linear State Differential Games (LSDGs)

Consider a deterministic LSDGs with linear scalar dynamics system (1.14) and the cost func-
tions (1.15) which are quadratic scalar functions for the two player

y(s) = ay(s) + e1b1(s) + ezba(s), s € [0, T

y(0) = wo,

where y (s) is the state of the system at time s, which is scalar in this case. y, € R is the initial
state of the system. The strategies of two players b;(s) # 0,7 = 1,2,. The constants a, e; and ey
define the dynamic system.

Each player aims to minimize their own cost function over [0, T']. The typical cost functions are

of the form :
Ti(b1(-),ba () = [ (zi(s)y(t)? + ri()b3(s)) ds

+sir y*(T), i=1,2.

The coefficients verify z;, zir € R,i =1, 2,.
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CHAPTER 2

A CONNECTION BETWEEN THE ADJOINT
VARIABLES AND VALUE FUNCTION FOR
DIFFERENTIAL GAMES

In this chapter, we give the problem formulation of a deterministic two-player NZSDGs in

a finite horizon and we recall the preliminaries results of the two main approaches, both the
Maximum Principle (MP) and dynamic programming principle (DPP) ( see e.g., [9]) in section 1.
The last two subsequent sections contain the main results of the connection between the adjoint
variables in the maximum principle and the value function in the dynamic programming prin-
ciple where the value function is smooth and nonsmooth. For the smooth case, the connection
between the solutions of the adjoint equations of the Maximum Principle and the derivatives
of the value function are equal to each other along optimal trajectories. Furthermore, for the
nonsmooth case, this relationship is given in terms of viscosity solutions (VS), which provides
a more general framework to handle cases where the value function is not smooth and this
relation is represented in terms of the adjoint variables and the first order super- and subdiffe-
rentials of the value function.

2.1 Formulation of the Game Problem

In this section, we give the problem formulation of (NZSDGs) and we recall some prelimi-
nary of the MP and DPP without proofs (see e.g., [9]) necessary for the main results. We first
give a brief exposition of the MP, introduce the Hamiltonian, the adjoint equations, and the
necessary and sufficient maximum principle for differential games to characterize open-loop
Nash equilibrium (OLNE). This section also includes the DPP. This principle leads to Hamilton
Jacobi Bellman (HJB) equation, a nonlinear first-order PDE, and if the H]B equation is solvable,
then the feedback Nash equilibrium (FNE) is obtained by minimizing the Hamiltonian invol-
ved in the HJB equation. Furthermore, the HJB equation is satisfied by the verification theorem.
However, even in very simple cases, the value function is not smooth and the HJB equations
may not have a smooth solution at all, so these equations must be studied in viscosity solu-
tion (VS). This new notion is a kind of nonsmooth solutions. It was first proposed by Crandall

16
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and Lions [21] (see also Crandall et al. [22] and [6]) to overcome the difficulty that the value
function of differential games or single player differential games (OCPs) is not smooth; see for
example [30] and [57] for a more detailed discussion.

Let us consider a non-cooperative two-player nonzero-sum differential games equivalent to
(1.10)-(1.11) on the finite horizon and the dynamical system are described by (ODE)

{ §(s) = F(s,y(s),b1(s) b2 (5), s € [0, 7] 2.1)

y(0) = b,
where y(s) € R" is the state variables of the game at time s € [0, T that is influenced by both
players and the control (strategy) for the i-th player b; : [0,7] — B;, where B; is closed subset
of R™ (B; = By X By,i =1,2). T > 01is a fixed time horizon, and B; is called admissible set of
the control b;(-) = (b1(-), b2(+)) defined by the following :

Bi([0,T]) = {b: (.) : [0,T] — Bilb; (.) € L2([0, T]; R™)}, i = 1,2.

The cost functional for the two players is :

Ji(s,90;01(), ba(+)) = /Gi (s,y(s),b1(s),ba(s))ds+ h;(y(T)), i=1,2. (2.2)

We give the following assumptions for the coefficients of and (]2.2).

(DG1) The function F' : [0,7] x R® x By x By — R" is continuous and there exists a constant
M > 0 such that for every s € [0,7],y,y € R",b, b e B; withb = (b1,b2), we have

F(s,9,0) = F (5,9,0)| < M (ly = gl + |p— ]
|F (s,9,0)] < M (1+ [yl + |b]),

(DG2) The functions G; : [0, 7] x R" x B; x By — R and h; : R" — R are continuous, and there

exists a constant M > 0 such that

|hi (y) — hi (9)] < M |y — 9],
G (5,9, 01, 02)| + |hi (y) | < M (1 + |y|), Vs € [0,T],y,5 € R, b,be By, i = 1,2.

Under assumption (DG1) for any (s,y) € [0, 7] xR"™ and the controls b;(.) € B; [0, T, equation
admits a unique solution y(-) = y*¥%()(.) and under (DG2) the functional ) is well-
defined. (see ( [57]).

Consider the following nonzero-sum differential game problem.
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Problem (NZSDG). For given (s,y) € [0,T] x R", find a b;(:) € B;[0,T],% = 1,2, such that

Ji(8,90; bi(+)) = ol Ji(8, y0; bi(+))- (2.3)
The NE concept was defined for n-player differential games in Definition It is now given
again for the two-player case.

Definition 2.1. For i = 1,2, here b;(:) € B;[0,T] satisfying is called a NE of Problem
(NZSDG) if for any other admissible control actions b;(-) the following inequalities hold :

Ji(s, 903 b1(+), b2(+)) < Ji(s, 903 01(+), ba(+)), Vbi(-) € By [0,T],

Ja(8, 403 b1.(-), ba(+)) < Ja(s, 403 b1.(), ba(:)), Vba(-) € B2 [0,T].

This implies that the controls (b;(-), bo(-)) represent a NE, indicating that neither player can
benefit by changing their own control, making it the optimal choice for both [39].

2.1.1 Maximum Principle (MP)

Here, we present the approach to find the equilibrium, based on the Pontryagin’s maximum
principle (MP) for differential games (e.g., [9]). First, consider the maximum principle for Pro-
blem (NZSDG), as published in multiple articles (see e.g., [46}57] and [9]), by using the neces-
sary conditions (2.4), 2.5), and for an OLNE b;(-) = (b1(-),b2(+)) € By [0,T] x By [0,T]

and the assumption is as follows :

(DG3) Fis C'in (y,b) and its derivatives are bounded and uniformly Lipchitz in (y, b). In ad-
dition, G; and h; are C" in (y,b), and the partial derivatives G|, G}, b}, are uniformly

Lipchitz and linear growth.

The Hamiltonian functions associated with this game H; : [0,7] xR" x B; xR — Ris defined

by
Hi (SuyvblabQJPi) = <F (Suyab17b2) 7pl> + GZ (57%51762) ) 1= 172 (24)

The determination of Nash equilibrium is related to the minimization of the Hamiltonian.
Under the assumptions (DG1)-(DG3), let (b;(-), b2(+)) be an OLNE of Problem (NZSDG) and #(s)
is the corresponding state trajectory, there exist a unique adjoint variables (p; (.)) € (C ([0, T];R"))
for i = 1,2 solution of the adjoint equations

{ pi(s) = —H, (5,9(s),bi(s). 7 (5), s €[0T _ (2.5)

pi (T) = hy, (5 (T))
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and the infimum condition

Hz* (87 y(5)7ﬁ1<5)) - Hz (57 g(S), 61(5)7132(‘9)) = bl()é%f[O,T] Hz (57 g<8), b’L(S)?ﬁZ(S)) : (26)

Such that,
H; (s,9(s),bi(s), pi(s)) =0, s € 0,T7]. (2.7)

(DG4) H;,i =1,2,is convexin (y, by, by) and h;,i = 1,2, is convex in y, Vs € [0, T].

Under some appropriate convexity conditions (DG4) we can recall the sufficient maximum
principle for an OLNE can be regarded as an extension of the MP for single player differen-

tial games in (see e.g., [57], we introduce the following theorem (see e.g., [57]).

Theorem 2.1. Let (DG1)-(DG4) hold. Suppose that (b, (-),ba(+)) admissible strategqy with the corres-
ponding state trajectory y(-). Suppose there exist a solution (p; (.)) € (C([0,T];R™),i=1,2) of the
adjoint equations such that the infimum conditions hold

Hz* (S7g(8)7pi(s)) = b()é%f[o 7] HZ (S,Q(S), bl(s)7ﬁl(8)) ) = 17 2.

Then, (by(+), ba(+)) is an open-loop Nash equilibrium.

2.1.2 Dynamic Programming Principle (DPP)

Now, we present the DPP (see e.g., [9]), HJB Equations, verification theorem and viscosity
solution for the (NZSDG) problem when the controls b;(-) = (by(+), ba(+)) € By [s,T] x By [s, T]
is feedback Nash equilibrium (FNE). However, before presenting this approach, we must first
adopt a dynamic formulation of the NZSDG problem.

Fort € [0,T] and = € R", we rewrite (2.1]) and as the following :

{ i (s) = F (5,5/(5) b (5) b2 (5), s € [1,7] 2.8
y(t) =,
The objective of the players is to minimize

Ji(t,z;01(4), ba()) = /Gi (s,y(s),b1(s),b2(s))ds+ h;(y(T)), i=1,2. (2.9

t

Then, we define the value function as

b (-)EB; [t T (2.10)

Wi (t,x) = inf  J;(t,z;6;(+))
Wi(T,x) = hi(x), i =1,2.
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It represents the minimum cost that can be achieved starting at time ¢ with state  under the
optimal decision strategy b;.
We present the following Bellman’s Principle of optimality [11] for the Problem (NZSDG) :

bz()EBZ [th}
t

Wi (t,x) = inf {/gZ (s,y(s),bi(s))ds + Wi (t,y (f))} Vet ], i=1,2. (2.11)

Similarly to the Pontryagin’s MP approach, the search for the FNE is related to the minimization
of the Hamiltonian (2.6). The development of the principle of optimality to equation (2.11)), leads
immediately to HJB equations

oW (4 Wi - "
{ o (t,z) + H; (t,:r, s (t,x)) =0,Y(t,z) € [0,T] xR i=1,2, (2.12)

Wi (T, x) = h; (z),

where W;(-,-) € (C*' ([0,T] x R");R) and

. ow; B - OW; . ow; .

H; (t, e (¢, w)) = H; (t, x, b;, s (t,x)) = biellg[f;,T} H; (t, x, b;, s (t,x)) 1=1,2.
Now, we are going to state the following verification theorem that is a generalization of similar
results from (e.g., [57]) for a single player differential game that gives a sufficient condition for
a FNE. It allows us to verify that an admissible strategy is optimal.

Theorem 2.2. (Verification Theorem). Let assumptions (DG1)-(DG2) hold. Assume that W;(-,-) €
CH1([0,T] x R™) is a solution to equations (2.12). Then we have the following :

@) Wi (t,x) < J; (6,23 6:(-)) .V (¢, 2) € [0, T] x R, bi(-) € B; [¢, T];

(ii) suppose

WZ‘ % aWz _ no,o__
p (t,x) + H; (t,x,W(t,xO =0,V(t,z) €[0,T] xR", i =1,2,

and there exist an (b (+),bo(-)) € By [t,T| x By [t, T) admissible strategy with the corresponding state
trajectory y(-) for Problem (NZSDG)

ow; - ow;

H (f,y(z?), e (t,y(f))) _ 1, (f,y(f),l_;l (0).5: 7). 2

(f,y(f))) vie ).

X

Then (b1 (-),bs(+)) is a feedback Nash equilibrium (FNE) with the optimal state (-) for Problem
(NZSDG) in the point (t,x) .

As the value function W; (-, ) is nonsmooth, it is crucial to recall the definition of viscosity
solution (VS) (see [22] and [57]).
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Definition 2.2. (Viscosity Solution) A continuous function w; on [0,7] x R" is a viscosity sub-
solution ( respectively, supersolution) of (2.12), if w;(T,y) < (>)h; (y) for all y € R™ and

¢; (Say) + Hz* (S7y7¢§/ (S7y)) > (S)O, 1=1,2,

whenever w; — ¢; attains a local maximum (respectively, minimum) at (s,y) € [0,7] x R" for
¢; € CH1([0,T] x R™). A function w; is called a viscosity Solution to (2.12) if it is both a viscosity
subsolution and viscosity supersolution to (2.12).

Thus, the following result is the uniqueness of viscosity solution of the HJB equations (2.12)
(see, [57]).

Proposition 2.1. Suppose (DG1)-(DG2) hold. Then, satisfies
(Wi (t,x) = Wi (t,2*) | < M (|lx — z*| + [t = t7]), Vt,t" € [0,T],x,2* € R",
and
Wi (t,x)| < M (1+|z|), Y(t,z) € [0,T] xR", i =1,2.

Furthermore, W; (-, -) is the viscosity solution to (2.12).

2.2 The Connection Between MP and DPP : Smooth Case

The following theorem states that the connection between the MP and the DPP is same to
the connection between the adjoint variables and the derivatives of the value function along

optimal trajectories.

Theorem 2.3. Assume (DG1)-(DG3) hold and (t,z) € [0, T) x R™ be fixed. Let (b (-) ,bs (+)) is a Nash
equilibrium with the optimal state y (-) for Problem (NZSDG) and p; be the corresponding solution of
the adjoint equations (2.5). Assume that W;(-,-) € (C*' ([0, T] x R");R), then

ow; 7 - ow;
- ) =, (500501 6) B s), T (5,99
(2.13)
: _ ow; .
= dnt (5005001 ()02 (9, () ) i = 1.2
Vs € [t, T). Further, if W;(-,-) € (C**([0,T] x R™);R) and W, is continuous, then
pls) = St (s,3(5) Vs € (6T, i = 1.2 (2.14)
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Proof. By the optimality of (4 (), b; (+), bz (+)) for Problem (NZSDG)

5,9(s),b1(5), b2 (s)), s € [t,T] (2.15)

—N—
Q.
S
Il
S|
—

and the cost functional :

Wilt, ) = Ji(t, 2;b1(-), ba() = /Gi (5.5 (s). b1 (s).b2(s)) ds+ hi (§(T)), i = 1,2,V € [5,T].

(2.16)

ow; ,
P (s5,9(s)) + o

According to (2.15), we can deduce that

8;:' (s,9(s)) + <F (5,7,b1(5),b2(s)), 35;/3 (S,g/(t))> = —G, (5,5(s),b1 (5),ba(s))

By (2.4), we get the first equality in (2.13)

_% (s,4(s)) = Hi (s,ﬂ(s),l_n (5), by (s), 86_1/;@ (37?7(5))) =12,

Since W; € C*! ([0, 7] x R™) be a solution of the equations (2.12), we obtain that, for each y € R",

8;/; (s,9(s)) + H; (S,?J(s), by (s), by (s), 8;/;@ (s,7 (S)))

oW . = oW
— 0 T s+ 1 (5 (.02 ). 5 (50

Thus we have the second equality in (2.13).
Therefore, if W;(-,-) € (C**([0,T] x R");R) and W}, is continuous, thus

o [oW; T - oW
5o A e ot (s 60,8260 5 (5 ) Pl =0

This implies that

O R A E I CEICRACRAL)

ow; _ _

+ 3y (t,5(s)) Fy (5,5(s), b1 (s), b2 (s)) + G; (5,9 (s),b1(s),ba(s)) =0.i=1,2.
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We have R -
s 8y2 (s,5(s)) = —H, (s,g (s),01(s) by (s), 8_3;2 (s, g(s))> ,
where,
, ( 7(5),b1(s), b2 (s). %—Vyv (s, y(s))) = aa;vi (5.9(5)) F (5,5 (5) B (5) . B2 (5)
+5sz (5,9(5)) Fy (5,5 (5),b1(s),b2(5)) + G, (5,5 (s) b1 (s) b2 (s)) . i =1,2.

dy

Noting that 8;% (T,5(T)) = hi (y(T)), and 8(;% (s,y(s)) satisfies the equation 1} Then by
Yy Y

the uniqueness of the solutions to the adjoint equation (2.5), we get (2.14). O

Remark 2.1. The Theorem [2.3|is proved by Shi [49] in particular case of differential games (

zero sum stochastic differential games ) with jump diffusions.

2.3 The Connection Between MP and DPP : Nonsmooth Case

In this section, we present the connection between the adjoint variables in the MP and the
value function in the DPP within the framework of the Viscosity Solution (VS), which represents
this relationship in terms of the adjoint variables and the first-order super- and subdifferentials
of the value function.

Now, we recall the notion of the first-order super- and subdifferentials (see, e.g; [57]). For w; €
C([0,7] x R™) and (s,y) € [0,7] x R", we have :

Dgywi(s,y) = {(qi,pi) ERxR" limsup — (t,2) —wi(s,y) —qi (t =) = (pis® — y) SO}

t—s,t€[0,T),z—y |t - 8‘ + ‘33 - y‘
_ . w; (t,x) —wi (s,y) — ¢ (t —s5) — (pi,x —y)
DY w; (s,y) = < (¢i,pi) € R X R 1 f ’ >0
oy Wi (8,9) {(q Pi) |H5,§§{6,¥§,Hy TR >

Next, the viscosity solution to HJB equation (2.12) can be expressed equivalently in terms of
super- and subdifferentials (see, [57]). w; € C ([0, T] x R™) is a VS of the equations (2.12)) and for
all (s,y) € [0,7] x R",

( i _'_H’L* (Sagvpi) > 07 V(QHE’L) < D;:;wl (Say>

L wi(T,y) = hi (y) .
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The following theorem establishes the connection between MP and DPP in terms of the connec-
tion between the adjoint variables and the first-order super- and subdifferentials of the value
function.

Theorem 2.4. Assume (DG1)-(DG3) hold. Let (t,x) € [0,T) x R™ be fixed and (b (-) , by (-)) is a Nash
equilibrium with the optimal state trajectory g (-) for Problem (NZSDG). Let p; () be the solution to
equation (2.5). Suppose that the value function W;(-,-) € (C'([0,T] x R™);R). Then

Dy Wi(s,5(s)) € {(Hi (5,5(s): b1 (5) . b2 (5) . Bi(5)) , Di(s)) } © Doy Wi (5,5(s)) (2.18)

where

Dy~ Wi (s,5(s)) S {pi(s)} € Dy Wi (s,5(s)), i = 1,2, Vs € [5,T], (2.19)

Y

and

Qi = Hz (Sag(s)a Bl (S) 762 (S) 7pz(s)> = inf H’L (87 g(5)7 bl(s)> b2 (S) 7]2(3)) ) 1= 17 2’ (220)

b7()687[0,T]

V (G, Di) € Do Wi(s,5(s)) U Doy Wi(s,5(s)), Vs € [s,T],

Proof. Note that

s+h

lim — /w Va9 = ¥(s), ae. s € (t,T), (2.21)

h—0 h

and ¢(9) = F (0,7 (9) , b1 (9) ,b2 () , G; (9,5 (9), b1 (9), b2 (9)) , i = 1,2.Fix s € (¢, T) such that
holds.

For any € R" and 7 € [t, T], consider the following ODE :
(2.22)

Denote by y™" (-) the solution of (2.22) starting from (7, y) under the controls b; (-) = (b1 (-), b2 (")) ,
fori=1,2,

9
y™" (9) =n+ /F (o, y™" (@) , b1 (@) ,bs () dev, O € [1,T],
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and 3 (-) the solution of ODE

0

y<ﬁ>=y<s>+/F(a,g<@>,

s

by () ,bs () dav, ¥ € [7,T7,

Then 7 < s and for any ¢ € [, T], we have

=n—7(s) = [ F(o,g(a),b (@),bs()) dov (2.23)

We obtain the second equality of (2.23) by using the variational equation for ¢ (9) = y™" (9) —
y (V) given by

E0) = Fy (9,5/(9).51 (9) 52 (9)) € (0) + eny (9) (D), 9 € [1,T]
{ ) =n=3(5) = [ F (0.7(0),51(0) 52 (9)) 0, (224
where,
(oo @)= [ (B (05 @)+ B0 (@) = 5 (a) B (@) B )
—F, (o, 5 (a), by (@) by () } dBS
(2.25)

lim  €.,(a)=0, Yael0,1],

T—5,M—=F(8)

sup |e-, (o) | < K.

\ «,7,n

In this case, the assumption (DG3) was employed.
By the definition of W; (7, 7)

Wi(r,n) < /Gi (9,577 (), by (9) , b2 (9)) dV) + hi (y™" (1)), i = 1,2,
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and the optimality of (4 (-), b1 (-), b2 (+)), we get

T

Wi (s, 5(t) = /Gi (90,9 (0) 01 (9) ;b2 (9)) 9+ hi (5 (T)), i = 1,2.

S

Then, compute W; (1,17) — W, (s, 7 (s)) we obtain

_ _ (2.26)

where €., (.) is defined similar to ¢.,, (.), with the substitution of F), for G}, and has the same pro-
perties are present in (2.25)(see, [57]). Then, by the duality relation between the adjoint equation
(2.5) p; (.) and the variational equation (2.24) y™" (.) — ¢ (.), we have

(hy (1)), 6(T))

(2.27)
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After that, with respect to the term on the right side of (2.27)

7). & (T
— <; jF(ﬁ,y(ﬁ),bl (9) B (0)) (w>
+< @ () —SfF(ﬁ,g(ﬁ) by (9) .52 (9)) d19>
— <pz jF(ﬂ,y‘(ﬁ),Bl (9) .52 (9)) d19>
4 <f By (9) .52 (0)) s (9) — G (9, (9) By (9) B (9))] @0
(s) - fF (9,5 (9), by (9) B2 (8)) d19>
= (pi (s),n—y(s)) — ( Pi (S)aZF(ﬁ@(T%El ()02 (1)) dT> +o(lr—sl+n—y(s)])

(2.28)
Here the properties presented in (2.25) was empolyed (see, [57]), for & () = y™" (J) — y (¥), we
have

sup |€(0)| < M{lnp—g(s)|+]|m—sl],

T<Y9<T

and,

/ﬁm 9)|d0 < Clln—g(s)| + | — s

Thus, by (2.26)-(2.28), we obtain

G (2.5(9).51 (9), B2 (9)) 9+ o (17— 8| + In — 5 (s) ] (2.29)
= (i (s).n— 5 () + (7 — ) Hi (5,5(5). By ()52 () . Pu(s))
to(lr—sl+ln—g(s)), i=12

which implies

(Hz (Sag(8)7bl (S) 7b2 (8) 7]32(3)) 7252(8)) - D;:;Wz (5737<3)) ai = 1727 Vs € [t7T]7

by the definition of superdifferential and for such a s, D{;fW; (s, §(s)) is nonempty.

Rania Benmenni



2.3. THE CONNECTION BETWEEN MP AND DPP : NONSMOOTH CASE 28

Now we prove that

D;,’y—m (87 g(S)) g {(%7« (87 g(S), 61 (S) 71_)2 (S) 7231(5)) 7132(8))} )
with s € (¢,7T) such that holds. For any (g;, ;) € Dy, Wi (s,7(s)), by definition of subdif-
ferential and (2.29), we have
rts 7= s[4+ =5y (s)l
{ (Hi (5,9(5),01 (), b2 (5) . Bi(s)) = @) (7 = 8) + (pi (5) = Pin — § (5)) }

7= sl +n—5(s)]

< liminf
T1s

Thus, the first inclusion of holds.

Let us show by taking 7 = s from the above proof of the inclusion in (2.18). Then we do not
need s to satisfy (2.21). As a consecontly, holds for all s € [¢,T). Finally, we prove (2.20).
Taking s € (¢,T) such that holds. If V (G;, pi) € Di;fWi (s, 7(s)), then by the definition of
superdifferential and Bellman’s Principle of optimality we have

| W, (0,5(9)) — Wi (5,5(5)) — 0 — 8) — (51, 5(9) — 5(5))
0= 1”%&“"{ 0 — 5|+ 1500) — §(s) }
. 1 v L
—tmsup { o | G (@), b)) da

G —s) — /f (57, F (0, (), (@), () da] }

_ Jim sup { ; ! . {— /j G, (. 5(0), by (@), by(a) da

I s
' |¥ — 5]
[0 = s|+ [5(9) = y(s)]

By using (2.21) and the limit of the first term on the right-hand side exists ( constant). Because
|y (V) —y (s)| < C|Y — s| for some constant C' > 0, the inequality (2.30) yields

9
—q;(9 — ) —/ <]§Z-(7'),F (a,@(a),l_)l(a),l_)g(a))> da] } (2.30)

0> —G; (5,5(5),b1(s),b2(3)) — @ — {Pi, F (5,5 (s) , b1 (), b2 (5)))

Then
G > Hi (s,7(s),b1(s),ba(s),Di(s)) - (2.31)
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Similarly, letting ) 1 s, we can conclude

G < Hi(s,5(s), b1 (s), b2 (s),pi(s)) - (2.32)

Then, from (2.31) and (2.32) the first equality in (2.20) holds.
Next, since W; is the VS of the equations (2.12) by (2.17) we have,

_i_ f Hz ,_ ,b ’b 7_i 20’.:1’2’
¢ bi(')é%i[QT} (s:9(s),b1(s), b2 (), Pi(s)) i

which yields the second equality of (2.20). O

Remark 2.2. We note that :
(i) When W; is differentiable, the inclusions (2.18)-(2.19) is reduced to (2.13) and (2.14) in Theo-
rem [2.3];

(ii) the principal results of this study might be considered as an extension of similar results
in [57] related to deterministic optimal control problem.
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CHAPTER 3

APPLICATIONS TO ECONOMIC

In this chapter, we provide an example of a producer-consumer game with sticky prices, taken

from [14] to illustrate the connection between adjoint variables in the MP and value function in
the DPP, both in the smooth and nonsmooth cases. This application illustrates how this connec-
tion can be applied to real-world situations, focusing on the economic interpretations of the
adjoint variables and showing their role in determining Nash equilibria in differential games.
More specifically, we will apply the results seen in Chapter [2, about as, we start by presenting
the formulation of the producer-consumer game problem, which we can see this problem as
a deterministic two-player nonzero-sum differential games between producer and consumer.
Then we move on to present the two of the most important approaches, both the MP ( [14]) and
the DPP of this game problem with their economic applications. In the last section, the connec-
tion between MP and DPP, both in the smooth and nonsmooth cases of the value function is
established with their application to economic.

3.1 Producer-Consumer Game with Sticky Price

The producer-consumer model is a concept in economics that represents the interaction bet-
ween producers and consumers in a market economy. This model is used to understand eco-
nomic phenomena such as price setting, resource allocation and market efficiency. We present
this example formulated as a two-player NZSDG, taken from ( [14]) to illustrate the theoretical
results (Theorem [2.3/and Theorem [2.4).

3.1.1 Formulation of the Problem

Here, we present the formulation of the producer-consumer game problem, which we can
consider this problem as a deterministic two-player nonzero-sum differential games between
producer and consumer.

Consider a company manufacturing a good, let y (s) denote the sale price of a good at time
s, and this good is produced at rate b; (s) by the company and consumed at rate b, (s) by the
consumer.

The dynamical system (2.1) represent the variation of the price in time is given by the following

30
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ODE

{ 9 (s) =y (s) (b2 (s) = bi(5), s € [0,7] (3.1)

y(0) = %o,
The controls b; (s) ,i = 1, 2 represent the rate of production and consumption of a good at time
s, respectively. According to (3.1), the price increases when the consumption is larger than the
production of goods, and decreases otherwise.
To simplify, let ¢; (r) , < = 1,2 denote the cost function of company i. We assume that

The producer’s payoff is given by the profit generated from sales minus the cost of production
c1 (b1 (s)), depending on the rate of production b; (s). The consumer’s payoff is measured by
an utility function ¢, (b2 (s)), which represents the benefit obtained from consuming the goods
minus the price paid to purchase the goods. The payoff functional for the two player over the
[0, T are given by

Ji(5,90; b1 (5) b2 (5))

St — s T

[y () bz (s) — c1 (b1 (s))] ds,
(3.2)

Ja(8, 90301 (s) b2 (5)) = [ [e2 (b2 (5)) —y (s) ba (s)] ds,

The problem is to maximize the payoffs for both the producer and the consumer (3.2), which

can be rewrittten as the minimization of

J1(8,90; b1 (8) ;02 (5)) = — [ [y (s) b2 (s) — c1 (b1 (5))] ds,

(3.3)

(5,40 01 (5) , b2 (s)) = = [ [ea (b2 (5)) =y (s) ba ()] ds.

Sty T —

Maximum Principle approach :

Now, we apply maximum principle approach as mentioned in the section to a two-
player NZSDG involving a producer and a consumer (see, e.g [14]).
To derive the OLNE of this producer-consumer game, the Hamiltonian (2.4) for producer (Player
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1) and consumer (Player 2) is defined as follows :

Hy (s,9,b1,b2,p1) = p1(s) (y(s) (ba(s) — b1(s))) — y(s)ba(s) + b%és)’

Hy (5,9, b1, by, p2) = pa(s) (y(s) (ba(s) = bi(s))) = 2v/ba(s) +y(s)bal(s).

By minimizing H; (s,y, by, b, p1) and Hs (s, y, by, ba, p2) with respect to b; and b, using (2.7) we

get the OLNE b; and b, for producer and consumer are given, respectively, by
b1 (s) = p1(s)y (s),

1
72 () (P2 (5) +1)*

here y > 0,p; > 0and py > —1.
The adjoint equations (2.5)) for the two player are given by

Bi () = 72 ()9 (s) — el
(3.4)
P (T) =0,
and
L 7o (s)+1
P2 (s) =P (s) P2 ()7 (s) — =Bty
(3.5)

p2(T) = 0.
The state equation is given by the following (ODE)

¥(9) = e — P (8) 57 ()
g(o) = Yo,

Dynamic Programming approach :
Here, we apply the dynamic programming approach as mentioned in the section toa

two-player NZSDG involving a producer and a consumer.
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The value functions (2.10) are defined as the following :

Wl (S,y) = J1(37y361<'>762<')>7

W2 (8; y) = J2(87 Y, Bl(')? BQ())

Where W; (s,y),i = 1,2 is the value function for the problem of minimizig , which repre-
sents the minimum achievable cost or loss that either the producer or the consumer can incur,
given the initial time s and the state y.

Thus, by introducing the Hamiltonian functions

L (Swabhbzy 88_14; (s,y(S))> = 8;; (5,5(s)) (y(s) (ba(s) = ba(s))) — y(s)ba(s) + 51;3)7

Ha (5,001, 0 (5.0(60) ) = T2 500(60) (4(5)(0a(6) = B(9) = 23]+ w(5)n).

The value function W; satisfies HJB equations (2.12), as established in Theorem for the two

player as follows

T (st int e {(06) G (6) = b ) T (5090 = () 5) + 52 b =0,

Wiy (T,xz) =0,
(3.6)
and
oW, _ oWy
5s (5U) T infyensr) ) (¥ (s) (b2 (s) = b1 (s))) o (5,y) = 24/ba(s) +y(s)b2(s) p =0
W2 (Tu l’) = 07
(3.7)
Minimizing H; (s,y, by, ba, 88—M; (s, y(s))) and H, (s, Y, b1, ba, 88_Wy/2 (ay(s))) with respect to b,
and b, leads to FNE for our problem, which we can write as :
- B ow, _
b (5) = 5(5). . (s 3()
_ 1
by (s) =
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When ENE is substituted into the HJB equations (3.6) and (3.7), the HJB equations take the

forms :

;

oW, B 1 oW, oW,
5s (5¥) +9(s) (aw2 ] )2 y(S)'ay (5,9(s)) o (s,9)
72(s) b (5,9(s))+1
Yy
15)%% ?
(g(s»a—yl(s,y(s))) (38)
— 1 —
7 (s) 7 o 1 7 + 3 0,
72(s) dy (5,3(s))+
. W1 (T, iL') = O,
and
aW2 _ 1 _ 8W1 _ 8W2
88 (Say)_'_ y(S) ] (8W2 ] )2 _y<8)' 8y (S,y(S)) ay (Svy)
72(s oy e )+1
\ Yy
(3.9)
_ 1 . 1 o
2 - 8W2 ] 1 7 + Yy (8) B 8W2 ] 1 2 =0
\ 72(s) y (5,5())+ 72(s) y (5,5(s))+
W2 (T, I) = 0,

\

3.2 The Connection Between MP and DPP

In this section, we present the economic interpretation of the connection between the MP
and the DPP in both the smooth and nonsmooth cases.

3.2.1 Smooth Case

In order to explain the results of Theorem we can derive the equality directly
from equations (3.6)-(3.9). About equality (2.14), the adjoint variables ; (s) i = 1,2 represent
the marginal value (also known as the shadow prices) of the sale price 7 (s). This provides an
economic interpretation to the adjoint variables (see [25], [57], [2]). In addition, the change in
the value of the sale price of the system from state 7 (s) to 7 (s) + vy (s) is

Wi (s,5(s)+vy(s) —Wi(s,7(s)) =pi(s)vy(s).i=1,2. (3.10)

This implies (Fréchet) differentiability of W; (s, 7 (s)) at y (s) ( see e.g., [2]). Thus, p; (s) ,i = 1,2
represents the marginal value of the rate of change in the profit W; for slight adjustments in the
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sale price ¢ (s). As sale prices increase due to increased consumption, p; (s) decreases for the
producer while p (s) increases for the consumer. Furthermore, the marginal value for producer
p1 (s) can be interpreted as the incremental profit of producing and selling another product, and
for consumers, p; (s) represents the maximum price they are actually willing to pay for the last
thing they consume.

3.2.2 Nonsmooth Case

Similar to the smooth case, we illustrate the result of the Theorem [2.4 when the value func-
tion W; (-, -) is nonsmooth, satisfying the VS; see [57]. As we have seen in Section since
the second inclusion in and when the increment vy (s) is small, the increase in the value
of the system from state 7 (s) to 4 (s) + vy (s) is defined as

Wi (s, (s) +7y(s)) = Wi(s,5(s)) < pi(s) vy (s). (3.11)

Due to the positivity of both sides (3.11), we conclude that

(Wi (s, 4 (s) +yy(s)) = Wils, g (s)) | <pi(s) vy (s) -

This indicates that the effect of slight changes vy (s) in the sale price on the producer’s and the
customer’s payoffs is dependent on their individual marginal values. Then, as the sale price
increases, the producer’s marginal value p; (s) decreases, suggesting that the rate of increase in
the producer’s reward per unit sold slows down. Meanwhile, the consumer’s marginal value
P2 (s) increases, suggesting that consumer are prepared to pay more for each unit they consume.
The other side, the decrease in the value of the sale price state from state y (s) to 7 (s) — vy (s),
then

Wi (5,9 (s) —vy(s)) = Wi (5,9 (s)) < —pi (s) vy (s).- (3.12)

Both sides of (3.12) are negative ( vy (s) > 0). So,

(Wi (5,9 (s) = vy(s)) = Wils,5(s)) | = pi(s) vy (s) |

When the sale prices decrease, the producer’s marginal value p, (s) increases, proving that the
additional profit made from producing and selling more units rises as well. Conversely, the
consumer’s marginal value p; (s) decreases, which indicates that consumers are less able to pay
for every product that they consume as prices decrease. Similarly, we can also interpret the Ha-
miltonian H; (s, y, b1, be,p;),i = 1,2 as the rate of change for the maximum profit with respect
to time using (2.18).

In a producer-consumer game, the adjoint variable p; (s) illustrates how changes in the state

y (s) (the sale prices) affect the optimal cost or payoff W; (s, 7 (s)) (value function). To be more

Rania Benmenni



3.2. THE CONNECTION BETWEEN MP AND DPP 36

precise, the rate at which changes in the state variable affect the value function is indicated by
the adjoint variable, often known as the marginal value. Essentially, p; (s) expresses the sensiti-

vity of optimal costs or payoffs to small state adjustments in the state.
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CHAPTER 4

JACOBI SPECTRAL METHOD FOR SOLVING
DIFFERENTIAL GAMES

This chapter presents a numerical method based on the MP, as mentioned in section2.1.1} using

the Jacobi spectral method (JSM), which allows us to approximately solve the nonlinear two-
point boundary value problems (TPBVPs) derived from MP is transferred to a system of alge-
braic equations in order to determine the OLNE of nonzero-sum differential games (NZSDGs)
in a finite horizon. First, we present the formulation of the problem for deterministic n-player
NZSDGs. We then discuss the application of the JSM to solve these differential games. Finally,
we provide some examples to demonstrate the accuracy and usefulness of the proposed me-
thod.

4.1 Problem Statement

In this section, consider the n-player nonzero-sum differential game with the finite horizon

which has the following nonlinear differential equation [9,55]

y(s)=F (s,y(5),b1(5),b2(8),.0,, 0, (5)), s €1[0,T]
4.1)

y(0) = yo,

and cost functionals given as

Ji(b1(+)y s b (4)) = /Gi (s,9(8),01(8),b2(8) ey by (8))ds+ h; (y(T)), i=1,2,--- ,n. (4.2)

Each players aim is to minimize the functional by finding the control b;(-) = (b;(), ba(+), ., b (+)) €
B;i[0,T],i=1,2,.,n. In particular, b;(-) an OLNE solves the Problem (NZSDG) :

Ji(bi(-),b-i(-)) = nf Ti(bi(), b))

where b; is the control strategy for the i-th player and b_; are the controls for the rest of the
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players b_; = b;, (j # ).

Now, we apply the necessary conditions of the MP approach as presented in section 2.1.1]
for two-player differential games, which can be directly extended to the general case with n
players, as follows :

g (s)=F (s,y(s),b1(s),b2(5),..,0,(8)), y(0)=yo, (4.3)
pi(s) = —H; (5,9(8),0i(s),b-i(s),pi(s)), pi(T)= h; (y(T)) (4.4)
Hy (s,y(s),bi(s),b_; (s),pi(s)) =0, i=1,2,..,n (4.5)

According to the equation (4.5), we get the OLNE b;(s) = b; (s, 9(s), p;(s)). Then, by substituting
into equations and (4.4), we obtain the following system of TPBVPs :

Y(s)=F (5,5(5),b1(5),b2(5),....bn (5)),  H(0) = o, (4.6)

_pl(s) = _H; (57?3(‘9)762 (8>7B—z (8)7]71 (S)) ) ﬁz (T) = h; (g (T))7 P = 1727“'7”’7 (47)

We can use an Algorithm to summarize all we have discussed so far on the steps for
determining OLNE in differential games, similar to the case of FNE in [4].

Algorithm 4.1. Input :The nonzero-sum differential game (4.1)-(4.2).

Step 1. Write down the necessary condition for a MP (4.3)-(4.5).

Step 2. Minimize the Hamiltonian functions using and find the optimal control strategies given by
bi(s) = b; (5,75(s),ps(s)),i=1,2,...,n.

Step 3. Insert the obtained optimal control strategies as the function of y and p;,i = 1,2, ..., n from Step
2 in the system (4.3)-(4.5) in Step 1. This leads to the system of TPBVPs (4.6)-(4.7).

Step 4. Solve the obtained system of TPBVPs from Step 3 and find the state variable y(s) and adjoint
variables p;(s),i = 1,2, ..., n.

Step 5. According to Steps 2 and 4, write down the optimal control strategies b;(s).

Output : OLNE b;(-),i = 1,2, ...,n.

The difficulties in solving this system of TPBVPs (4.6)-(4.7) are mainly due to the combi-
nation of nonlinearity and split boundary conditions. Therefore, obtaining an exact analytical
solution is highly complex, and the application of appropriate numerical methods is essential
to solve these problems (see e.g., [5,143]).
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4.2 Jacobi Spectral Method for Nonzero-sum Differential Games

In this section, we present the application of the JSM using Jacobi polynomials (JPs), which
play a crucial role in solving the system of TPBVPs (£.6)-(4.7) and finding the OLNE of a
nonzero-sum differential games (4.1)-(#.2).

The main concept of this method is consists of approximating a function u(x) € L?(—1,1) by

converting it into a finite series expansion of basis functions. This can be written as :

N
pla) = N (w) = T (x)
5=0
where jjk’g (x),j=0,1,...., N are Jacobi polynomials (basis functions) and y;, j = 0,1, ...., N are

spectral coefficients (see e.g., [43,48]).
We recall the definition of classical JPs and their properties as follows.

Definition 4.1. The Jacobi polynomials J** (), (r > 0) for k,¢ > —1 are the eigenfunctions of
the singular Sturm Liouville problem (see e.g., [52])

(1=)Y"+ (U =k = (k+L+2)2)Y +r(r+k+0+1)Y =0, V=T (x).
Hence, JPs are orthogonal in L2, , (—1, 1) with respect to the weight function w**(z) = (1 —
z)*(1 + z)¢ (see e.g., [33]).

1

[ T ) T8 @) e = 1S,

—1
where J,.,,, is the Kronecker function, and

v T (r+ k+1)T (r+0+1)

" r+k+(+)Tr+)D(r+k+0+1)

The following recurrence formula for JPs as follows (see e.g., [52]).

(

2r(r+k+0)2r+k+0—2) T () =
2r+k+0—D[, =)+ 2r+k+0Qr+k+0—2) 21T (2)
2+ k=1 (r+L=1)2r+k+0T" (), r=2,3,..;
jow(flf):l»

| T @)=tk +0+2)x+L(k—0),

Remark 4.1. There are particular JPs that form a family of orthogonal polynomials, including

several well-known special cases.
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e Legendre polynomials are a particular case of Jacobi polynomials when £ = ¢ = 0.

e Chebyshev polynomials of the first kind correspond to k = ¢ = —35, while Chebyshev
polynomials of the second kind k = ¢ = 3

e Chebyshev polynomials of the third and fourth kind correspond to k = —¢ = +1,
e JPs can be symmetric when £ = ¢ and non-symmetric of JPs when k # /.

The following two theorems have been applied to Chebyshev and Legendre polynomials
([43], [3]]). The application is extended to JPs, which generalize the above polynomials.

Theorem 4.1. [15]. Let pi(x) € H™,, (—1,1), ™ (z) = Z;‘V:[) ,ujjjk’Z (x) be the best approximation of
p(x) in L2, .- norm, then

Hu(x) — ||]L2 < MoN""[[pu(2) | ggm

Wk =1 kf(11)'

where My is a positive constant, which depends on the selected norm, independent of p(x) and N.

The main results of the presented approach, as well as the theoretical analysis of its conver-

gence, are related to the well-known Weierstrass approximation theorem [48].

Theorem 4.2. Suppose that |1 € L2 [-1,1] and N € N. Then there exists a unique uN* € Py, such

that

Yl = ot e = e,

pNePy

= p

where

~ <:u7wj>w
ﬂby j = )
< SR

and {;}_ form an IL2-orthogonal basis of Py.

Mz

To apply the JPs on the interval [0, 7], we defined shifted JPs through a change of variable
x = 22 — 1, which satisfies the same properties mentioned above and is defined by j{f £ (s).
In order, to present the application of the JSM for solving the system of TPBVPs (#.6)-(4.7) in
nonzero-sum differential games in the finite horizon 7', we can approximate the state of game
y(s) and the adjoint variables p;(s),? = 1,2, ....n as finite expansions of shifted JPs that have the

following form

N
(s = I8 (s) = CTI (s), (4.8)
=0
N
pi(s) = pN(s) = di T (s) = DI T (s),i=1,..,n, (4.9)
=0
where CT = [¢1, o, ¢3, ..., cy] and D] = [dio, diy, diy...., d; ] are unknown coefficients and 75 (s) =

ol . . T
[jT,’o (8),Ira (8) o Triy (s)] is the shifted JPs on the interval [0, T'].
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Furthermore, we can approximate the derivatives of 4" (s) and pY (s) in terms of the deriva-
tives of the shifted JPs.

Now, by substituting the approximations and into the differential equations of the
system of TPBVPs (#.6)-(4.7), we can define the following residual functions

Res, (s) = 4™ (s) — F (s,y™ (s), 0y (s),b5 (s),....,b) (s)), (4.10)

Res; (s) = p (s) + H;N (5, ¥V (s),b) (s),bY; (s),pN (s)) ,i=1,...,n.

By multiplying these residuals by the shifted JPs Jﬁf (s),j =0,...N — 1 and integrating over
the interval [0, 7] , and then setting the result equal to zero along with the boundary values, a
system of (n + 1)(N + 1) algebraic equations is obtained.

;

T
{Resy (s) jjlff (s)ds =0,

T

[ Res; (s) J7; (s)ds = 0, (4.11)
0

yN (0) = Yo,

L oM (1) =hin (YN (T)) ,i=1,.in.

Subsequently, Newton'’s iteration method can be used to solve this system and determine the
unknown coefficients C" and D, ;i =1, ....n.

4.3 Numerical Examples

The purpose of this section is to apply the proposed method to three examples. The first two
(Example 4.1 and Example are LQDGs. The solutions obtained by our method are compa-
red with exact solutions as well as with those obtained by existing methods : the Bernoulli Tau
method (BTM) [5] for Example and the Chebyshev pseudospectral method (CPM) [43] and
BTM [5] for Example Example |4.3|is a differential game arising from an economic model
based on a nonlinear system of TPBVPs, for which no exact solution is available. This example
is introduced in [5]). In this case, a residual function is defined to assess the performance of the
proposed method. For these examples, we follow the steps of Algorithm which represents
the necessary conditions of the MP. In addition, different values of the Jacobi parameters are
used.
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Example 4.1. Consider the following differential game problem defined by the system [27]

{ §(s) = by () + by (s), s €[0,1]
y(0) = 1.

The cost functional for the two players who want to minimize are as follows :

1

A@mww»:/cw%@+@@»@7

0

1

Bt () ba()) = [ (27 (5) + B (9) ds + 47(0).

0
The exact solution for OLNE of this problem is [27]

_ 1
bl (S) = _g + 6_87

- 1
bQ(S):g—26—S.

Thus, the exact values of the cost functionals for Player 1 and Player 2 are

Ji (b1 (s) b2 (s)) = —0.32975303263305,

Jo (b1 (), b2 (s)) = 1.9344880850240.

The Hamiltonian for Player 1 and Player 2 are defined by
Hy (5,9, b1, ba, 1) = pi(s) (b1 (s) + a2 () — y* (s) + b7 (s),

Hy (5,9, b1, by, p2) = pa(s) (b1 (5) + ba (5)) + 2" (5) + b3 (5) .

where the adjoint variables for two player are denoted by py, ps.
By minimizing H; (s, y, b, b2, p1) and Hs (s, y, by, be, p2) with respect to b; and b, we get the OLNE
by and b, for two players are given, respectively, by
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Then, the system of TPBVPs (4.6)-(#.7) of this example can be expressed as follows

p2(s) = —4y(s), p2(1) =2g(1),

A comparison of optimal cost functionals J; and J, obtained using JSM with the exact solutions
is presented in Table Table Table §.3] and Table showing the results with various
choices of k, ¢ and different values of N for Example In Figure we show the approxi-

mate solutions of y(s),bi(s) and bs(s) along with the exact solutions and absolute errors for
k=/¢=0and N = 10.

Jiism Jojsm |y — Jvsml | |2 — Jassul
-0.32975302954236861650594603530789 | 1.934488137365525879500666069862 | 3.091e-009 | 5.234e-008
-0.32975303263303305145518126348297 | 1.934488085024296353144451807013 | 1.693e-014 | 2.963e-013
-0.32975303263304656749214145627909 | 1.9344880850240688000077478452531 | 3.435e-015 | 6.875e-014
10 | -0.32975303263304656750904904722969 | 1.9344880850240687997237177743588 | 3.435e-015 | 6.875e-014

||| =

TABLE 4.1 — A comparison of the optimal cost functionals J; and J, for Example 4.1| using JSM
with the exact solutions for k = ¢ = 0.
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FIGURE 4.1 — The graphs of the numerical and the exact solutions with absolute errors for k =
¢=0and N = 10 for Example[d.T}
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N Jiism Joysm |1 — Jissul | |2 — Jassul
4 | -0.32975302954236861650594603530789 | 1.934488137365525879500666069862 | 3.091e-009 | 5.234e-008
6 | -0.32975303263303305145518126348297 | 1.934488085024296353144451807013 | 1.695e-014 | 2.963e-013
8 | -0.32975303263304656749214145627909 | 1.9344880850240688000077478452531 | 3.435e-015 | 6.875e-014
10 | -0.32975303263304656750904904692834 | 1.934488085024068799723717774528 | 3.435e-015 | 6.875e-014

TABLE 4.2 — A comparison of the optimal cost functionals J; and J, for Example 4.1| using JSM

with the exact solutions for k = ¢ = =L,

2

N Jrism Jaism |Ji = Jrsul | |J2 = Jossul
4 | -0.32975302954236861650594603530789 | 1.934488137365525879500666069862 | 3.091e-009 5.234e-008
6 | -0.32975303263303305145518126348297 | 1.934488085024296353144451807013 | 1.695e-014 2.963e-013
8 | -0.32975303263304656749214145627909 | 1.9344880850240688000077478452531 | 3.435e-015 6.875e-014
10 | -0.32975303263304656750904904722969 | 1.9344880850240687997237177743588 | 3.435e-015 6.875e-014

TABLE 4.3 — A comparison of the optimal cost functionals J; and J, for Example 4.1| using JSM

with the exact solutions for k = ¢ = 1.

N Jiism Jojsm |1 — Jissul | |2 — Jassul
4 | -0.32975302954236861650594603530789 | 1.934488137365525879500666069862 | 3.091e-009 | 5.234e-008
6 | -0.32975303263303305145518126348297 | 1.934488085024296353144451807013 | 1.695e-014 | 2.963e-013
8 | -0.32975303263304656749214169210629 | 1.9344880850240688000077476123017 | 3.435e-015 | 6.875e-014
10 | -0.32975303263304656750904904722969 | 1.9344880850240687997237177743588 | 3.435e-015 | 6.875e-014

TABLE 4.4 — A comparison of the optimal cost functionals J; and J, for Example 4.1| using JSM
with the exact solutions for k = —1 ¢ = 1.

Furthermore, the results of the BTM [5] are presented in Table

N JiBrm JoBTM
4 | -0.32975302954236861650 | 1.93448814833633875533
6 | -0.32975303263303305145 | 1.93448808502434431993
8 | -0.32975303263304656749 | 1.93448808502406878964
10 | -0.32975303263304656750 | 1.93448808502406878929

TABLE 4.5 — The optimal cost functionals .J; and J; for Example by BTM.

It can be observed that applying the JSM with variables £ and ¢ for Example 4.1} gives accu-
rate approximations. As shown in Figure there is a strong agreement between the approxi-
mate and exact solutions. Tables Table Table 4.3/ and Table 4.4 show that the results are
sufficiently accurate. For different values of £ and ¢, the differences in the approximate solutions
are minimal at N = 6, which is due to the effect of the Jacobi polynomial coefficients.
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Example 4.2. Consider the linear quadratic nonzero-sum differential game defined by the state
equation ( [27]) as :
y(s) =2y (s)+bi(s)+ba(s), s€0,3]

y(0) =1.
The cost functional for the two players who want to minimize are as follows :
3
Ji( / )+ b7 (s)) ds,
0

3

B0 50) = [ (4 (5)+B() ds +552(3).

0
The exact solution for OLNE of this problem is ( [27])

Thus, the exact values of the cost functionals for Player 1 and Player 2 are given, respectively,
by

Ji (b1 (s), b2 (s)) = 0.3140381912,

Jy (b1 (), b2 (s)) = 3.4136123279.

The Hamiltonian for two player are defined by
Hy (5,9, b1,ba, p1) = pi(s) (29 (5) + b1 (s) + ba (5)) + 7 (5) + b7 (s),

Hy (5,9, b1, b2, p2) = pa(s) (2y (s) + b () + b2 (5)) +4y” (s) + b5 (s) -

By minimizing H; (s, y, b1, b2, p1) and Hs (s, y, by, ba, p2) with respect to b, and b, we get the OLNE
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b, and b, for two players are given by

p(s) = =25 (s) —2p1(s), p1(3) =0,
D2 (s) = =87 (s) —2p2(s), p2(3) =107 (3),

The values of optimal cost functionals determined through the JSM and the comparison with
the exact solutions are shown in Table [4.6] In Figure 4.2 we plot the approximate solutions of

y(s), b1(s) and by(s) with the exact solutions and absolute errors for k = —1,¢ = 1 and N = 20.
N Jiism Jajsm |1 — Jvasul | |J2 = Jossul
10 | 0.31403763402282735215 | 3.4136147802083237797 | 5.572e-007 | 2.452e-006
15 | 0.31403819123820213086 | 3.413612327973873465 | 3.820e-011 | 7.387e-011
20 | 0.31403819124108284469 | 3.4136123279613940355 | 4.108e-011 | 6.139e-011

TABLE 4.6 — A comparison of the optimal cost functionals J; and J, for Example 4.2 using JSM
with the exact solutions for k = —1; ¢ = 1.
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FIGURE 4.2 — The graphs of the numerical and the exact solutions with absolute errors for k =
—3,¢ =4 and N = 20 for Example 4.2}

The results obtained by the JSM with different parameters for k, ¢ , and different values of N
for Example [4.2] are given in Table [4.7] Table 4.8, Table 4.9 Table Table and Table
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respectively. In Figure the approximate solutions of y(s),b;(s) and by(s) are shown along-
side the exact solutions and absolute errors for k = 0, ¢ = % and N = 20.

N Jrrsm Jaysm | Jy = Jussml| | |2 — Jagsul
10 | 0.31403763402282735215 | 3.4136147802083237797 | 5.572e-007 2.452e-006
15 | 0.31403819123820213086 | 3.413612327973873465 | 3.820e-011 7.387e-011
20 | 0.31403819124108284469 | 3.4136123279613940355 | 3.788e-011 7.526e-011

TABLE 4.7 — A comparison of the optimal cost functionals J; and J, for Example 4.2| using JSM

with the exact solutions for k = —%, ¢ = —1.
N Jrsm Jogsm \Ji = Jigsul | [J2 — Jossul
10 | 0.31403763402282735215 | 3.4136147802083237797 | 5.572e-007 2.452e-006
15 | 0.31403819123820213086 | 3.413612327973873465 | 3.820e-011 7.387e-011
20 | 0.31403819124108284469 | 3.4136123279613940355 | 3.949e-011 6.830e-011

TABLE 4.8 — A comparison of the optimal cost functionals .J; and J, for Example 4.2| using JSM

with the exact solutions for k = ¢ = 1.

N Jiism Jogsm \Jy — Jusml| | |2 — Jagsul
10 | 0.31403763402282735215 | 3.4136147802083237797 | 5.572e-007 2.452e-006
15 | 0.31403819123820213086 | 3.413612327973873465 | 3.820e-011 7.387e-011
20 | 0.31403819124108284469 | 3.4136123279613940355 | 3.658e-011 8.092e-011

TABLE 4.9 — A comparison of the optimal cost functionals J; and J, for Example 4.2 using JSM

with the exact solutions for k = ¢ = 0.

N Jigsm Jajsm |y — Jigsml | | Jo — Jagsul
10 | 0.31403763402282735242 | 3.4136147802083237785 | 5.572e-007 2.452e-006
15 | 0.31403819124203047349 | 3.4136123279572897834 | 4.203e-011 5.729e-011
20 | 0.3140381912439577814 | 3.4136123279489403343 | 4.396e-011 4.894e-011

TABLE 4.10 — A comparison of the optimal cost functionals J; and .J, for Example 4.2/ using JSM

with the exact solutions for &k = 0,/ = %
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FIGURE 4.3 — The graphs of the numerical and the exact solutions with absolute errors for k =

0, =% and N = 20 for Example
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51

N Jiism Jogsm \Ji = Jigsul | |J2 — Jossul
10 | 0.31403763402282735242 | 3.4136147802083237785 | 5.572e-007 2.452e-006
15 | 0.31403819124332684495 | 3.4136123279516741388 | 4.333e-011 5.167e-011
20 | 0.31403819124071578177 | 3.4136123279629840847 | 4.072e-011 6.298e-011

TABLE 4.11 — A comparison of the optimal cost functionals .J; and .J; for Exampleusing JSM

with the exact solutions for k = 0,/ = %

N J1ysm Joysm |1 = Jvsul | |J2 = Jossul
10 | 0.31403763402282735242 | 3.4136147802083237785 | 5.572e-007 | 2.452e-006
15 | 0.31403819123820213086 | 3.413612327973873465 | 3.820e-011 | 7.387e-011
20 | 0.31403819123737936103 | 3.4136123279774368509 | 3.738e-011 | 7.744e-011

TABLE 4.12 — A comparison of the optimal cost functionals .J; and .J; for Example 4.2/ using JSM
with the exact solutions for k = ¢ = 1.

In addition, the CPM [43] and BTM [5] results are shown in Table and Table res-

pectively.

2

N Jicpm

Jacrm

10

0.3140689582

3.4134809955

15

0.3140381906

3.4136123306

20

0.3140381912

3.4136123279

TABLE 4.13 — The optimal cost functionals J; and .J, for Example by CPM.

N JiBTM

10 | 0.31403763402282
15 | 0.31403819123820
20 | 0.31403819123819

Japrm
3.41361478021289

3.41361232797387
3.41361232797391

TABLE 4.14 — The optimal cost functionals .J; and .J; for Example by BTM.

The analysis show that the J[SM offers highly accurate approximations across all cases stu-
died for Example There is good agreement between the approximate and exact solutions,
especially as N increases, reducing errors, as shown in Figures and For instance, at
N = 15 with different values of k£ and ¢, the absolute errors were very small. Although slight
differences in errors were observed with different values of £ and ¢, these differences remained
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within acceptable limits, indicating minimal impact on accuracy. Furthermore, the accuracy im-
proves as N increases, with significantly smaller errors at N = 20, demonstrating the ability of
the method to improve accuracy with more points.

Example 4.3. The differential game described below models the competition between two players
striving to harvest a natural renewable resource.

Consider the dynamic state of this game defined as follows

§(s) = 0.1y (s) = 0.001y> (s) = y (s) by (s) =y (s) b2 (s), s € [0,1]
y(0) =1.
The payoff for each player over [0, 7] who want to maximize is as follows :

A@Oﬁ%»=}(@wwﬂ$—%@®)%,

(Mmmwwzj(w@mwwéﬁw)m

where the value y(s) > 0 is the resource level and the amounts b; (s) > 0 and by (s) > 0 are
the players’ efforts for harvesting this resource, all at time s. In addition, 17 (s) and b3 (s)
represent the costs of the harvest at each level of effort b, (s) and b; (s) , respectively [17].

The Hamiltonian for two players are defined by

Hy (5,9, b1, ba, p1) = pa(s) (0.1y(s) — 0.001y%(s) — y(s)bi(s) — y(s)ba(s)) + 3y(s)ba(s) — %b?(S),

1
Hy (5,9, b1, b2, p2) = pa(s) (0-1y(s) = 0.001y"(s) — y(s)br(s) — y(s)ba(s)) + 2u(s)ba(s) — 5bi(s).
By maximizing H; (s,y, b1, b2, p1) and Hs (s,y, b1, by, p2) with respect to b; and b, we get the

OLNE b, and b, for two players are given by,

Remark 4.2. (see, [51]]). By the linearity of the dynamic state of this game with respect to the

controls b;,7 = 1,2, and the concavity of performance J;,i = 1,2, with respect to b;, ( since
02 J;
ov?
concerning the Filippov-Cesari existence theorem [18].

= —1<0,i = 1,2), it leads to the open-loop strategy exists and is unique for this game
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Then, the system (4.6)-(#.7) of this game is obtained as

j = 0.17 — 5.0017% + §°p1 + §Pa,

P = —97 — 0.1, + 8.002551 — §p? — P12,
Po = —47 — 0.1p5 + 7.002p5 — §p3 — §p1po2,
y(0) =1, pi(1)=0, p(1) =0,

Table Table Table and Table presents the numerical results obtained by the
JSM with various choices of k, ¢ and different values of NV for Example It is worth mentio-
ning that since the exact solution to this differential game is not available, to verify the accuracy
and the validity of the JSM for the differential game concerned, the residuals error is determined

as follows : X

IR|? = / (Res (s) + Resi (s) + Resj (s)) ds,
0

where Res,, Res;, i = 1,2, are the residuals functions defined in (4.10).
Figure presents the sum of squared residuals for the state of game and adjoint variables
pi(s),i = 1, 2. Figure|4.5displays the numerical solutions of §(s) and b;(s), i = 1,2, while Figure
shows the approximate solutions for the adjoint variables p;(s),7 = 1,2 of both players. In
general, these figures represent the approximate solutions for the various variables involved in
the game with k = 0,/ = 1 and N = 6.

JlJSM

JQJSM

IR’

0.94699053011063

0.45265191690172

1.70224879159856510e-002

0.94617331743847

0.45217675952914

2.29690776765495560e-003

0.94616311331662

0.45217517076851

2.9836687468064280e-004

N Ul | W[ =

0.94616143782921

0.45217455203462

3.74812018674081340e-005

TABLE 4.15 — Optimal payoff functionals .J; and J; and residuals error using JSM for Example

fork =—2,0=1.

JIJS]M

JQJSM

IR

0.94699053011063

0.45265191690172

1.70224879159855820e-002

0.94617331743847

0.45217675952914

2.29690776765471230e-003

0.94616311331662

0.45217517076851

2.9836687468064280e-004

N Ul | W2

0.94616143782921

0.45217455203462

3.74812018674076260e-005

TABLE 4.16 — Optimal payoff functionals J; and J; and residuals error using JSM for Example

fork::O,fz %
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JlJS]\/I

Jagsm

IR’

0.94699053011063

0.45265191690172

1.70224879159856510e-002

0.94617331743847

0.45217675952914

2.29690776765471230e-003

Ul k| w|=

0.94616311331662

0.45217517076851

2.9836687468064280e-004

0.94616143782921

0.45217455203462

3.74812018674267890e-005

TABLE 4.17 — Optlmal payoff functionals .J; and .J; and residuals error using JSM for Example

.for k=—=z

2 .

JlJSM

JQJSJ\/[

IR’

0.94699053011063

0.45265191690172

1.70224879159856370e-002

0.94617331743847

0.45217675952914

2.29690776765471230e-003

0.94616311331662

0.45217517076851

2.9836687468064280e-004

Ul | W[ =2

0.94616143782921

0.45217455203462

3.74812018674075650e-005

TABLE 4.18 — Optimal payoff functionals .J; and J, and residuals error using JSM for Example

A3lfor k =(=0.

x 10~

Sum of squared residuals
© © © © o ©o o o
N w > (6] (<] ~ (o) ©
— T . T

o

o

FIGURE 4.4 — The graphs of the sum of squared residuals for the state of game and adjoint
variables with k = 0,/ = 3, for N = 6 for Example
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0.5r

0.4F ™

0.3F T~

0.2 1 1 1
0 0.2 0.4 0.6
s

0.8

e

FIGURE 4.5 — The graphs of the numerical solutions for the state of game and the OLNE with
k=0,(= 13, for N = 6 for Example[4.3]

0.5r

——p(s
——P,(8)

0.2 0.4 0.6 0.8
s

FIGURE 4.6 — The graphs of the numerical solutions for the adjoint variables with k = 0,/ = 1,

for N = 6 for Example

The results of Example 4.3| show that increasing N generally leads to a reduction in error,
consistent with the theoretical properties of spectral methods. Higher IV improves the accuracy
of the numerical solution, leading to lower residual error. While the effect of k£ and ¢ on the error

was less pronounced compared to N, variations in these parameters still contributed to a slight

reduction in the error, highlighting their role in refining the solution.
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Conclusion

The main contributions of the work presented in this thesis, focusing on the study of deter-
ministic nonzero-sum differential games (NZSDGs) on a finite horizon, are divided into two
parts.

In the first part, we established the connection between the adjoint variables in the maxi-
mum principle and the value function in the dynamic programming principle for two-player
nonzero-sum differential games. We extended existing results to nonzero-sum differential games
and addressed this relationship in both smooth and nonsmooth scenarios using viscosity so-
lutions. This relationship is established in terms of derivatives, as well as sub- and super-
differentials of the value function, with economic interpretations related to the adjoint variables.

In the second part, we presented a numerical method based on the Jacobi spectral me-
thod (JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from
the maximum principle. These problems were converted into a system of algebraic equations
to obtain the open-loop Nash equilibrium (OLNE) for nonzero-sum differential games. Some
examples were provided to validate the accuracy and effectiveness of the proposed method.

For future research, this work can inspire further directions in the field, such as extending

the results to stochastic differential games, in order to explore the connection between adjoint
variables and the value function in both smooth and nonsmooth cases. Another research di-
rection involves using the numerical method introduced to find feedback Nash equilibrium in

both deterministic and stochastic differential games.
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Abstract: The main objective of this thesis is to present the connection between the
adjoint variables in the maximum principle (MP) and the value function in the dynamic
programming principle (DPP) for two-player nonzero-sum differential games, both in the
smooth and nonsmooth cases. This relationship is established in terms of derivatives in
the smooth case and through viscosity solutions when the value function is not smooth,
with economic interpretations related to the adjoint variables.

In the second part, we apply a numerical method based on the Jacobi spectral method
(JSM) to solve the nonlinear two-point boundary value problems (TPBVPs) derived from
the maximum principle. These problems are then transferred into a system of algebraic
equations to determine the open-loop Nash equilibrium (OLNE) for nonzero-sum differ-
ential games. lllustrative examples are presented to demonstrate the effectiveness and
validity of the proposed method.

Keywords: Nonzero-sum differential games, maximum principle, dynamic
programming principle, viscosity solutions, Jacobi spectral method, open-loop Nash
equilibrium.

Résumé : L'objectif principal de cette thése est de présenter la relation entre les
variables adjointes dans le principe du maximum et la fonction valeur dans le principe de
la programmation dynamique pour les jeux différentiels a deux joueurs a somme non
nulle, dans les cas lisses et non lisses. Cette relation est établie en termes de dérivées
dans le cas lisse et par des solutions de viscosité lorsque la fonction valeur n'est pas lisse,
avec des interprétations économiques liées aux variables adjointes.

Dans la deuxiéme partie, nous appliquons une méthode numérique basée sur la méthode
spectrale de Jacobi pour résoudre les problemes aux limites non linéaires a deux points
dérivés par le principe du maximum. Ces problémes sont ensuite convertis en un systéeme
d'équations algébriques pour déterminer I'équilibre de Nash a boucle ouverte pour les
jeux différentiels a somme non nulle. Des exemples illustratifs sont présentés pour
démontrer l'efficacité et la validité de la méthode proposée.

Mots-clés : Jeux différentiels a somme non nulle, principe du maximum,
programmation dynamique, solution de viscosité, méthode spectrale de Jacobi, I'équilibre
de Nash a boucle ouverte.
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