
People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University of Sétif 1 – Ferhat ABBAS

Faculty of Sciences

Department of Computer Science

MASTER'S THESIS

Presented by :

ZITOUNI Ahmed Faouzi

SEDJAL Moheamed Aymen Dhaya Eddin

Field of Study : Computer Science

Specialty : Data Engineering and Web Technologies

Title :

Detecting SQL Injections using Deep Learning

In front of the jury

DR. BENZINE Mehdi University of Sétif 1 – Ferhat ABBAS Supervisor

DR. LAKHFIF Abdelaziz University of Sétif 1 – Ferhat ABBAS Chairperson

DR. MEDIANI Chahrazed University of Sétif 1 – Ferhat ABBAS Examiner

Academic Year: 2024–2025

Dedication

To our parents

 Thank you for your continuous support and guidance throughout our

studies.

To our brothers and sisters

 Thank you for your encouragement and presence during this academic

journey.

To our friends

 Thank you for your help and for contributing to a positive working

environment.

Abstract

 SQL injection attacks remain one of the biggest threats to web applications, because they

allow the attacker to gain trusted access to data without authorization, which can lead to

irreparable damages. As part of this project, we examined how deep learning and machine

learning can aid in detecting these attacks automatically. In total, we built and evaluated six

models: Logistic Regression, Support Vector Machine (SVM), Multilayer Perceptron (MLP),

Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and BERT

(Bidirectional Encoder Representations from Transformers). Overall, BERT achieved the

highest scores in accuracy, precision, recall, and F1-score. This demonstrates that transformer-

based models such as BERT have a better understanding of SQL query structures, which makes

them efficient in detecting complex attacks. This study shows how deep learning, especially

BERT, can improve web application security.

Keywords: SQL Injection, Web Application Security, Deep Learning, Machine Learning,

BERT, Transformer Models, Model Comparison, Threat Detection

Résumé

 Les attaques par injection SQL restent l’une des plus grandes menaces pour les applications

web, car elles permettent à un attaquant d’accéder de manière non autorisée aux données, ce

qui peut entraîner des dommages irréparables. Dans le cadre de ce projet, nous avons étudié

comment le deep learning et le machine learning peuvent aider à détecter automatiquement ces

attaques. Au total, nous avons construit et évalué six modèles : la régression logistique, la

machine à vecteurs de support (SVM), le perceptron multicouche (MLP), le réseau de neurones

récurrent (RNN), mémoire longue à court terme (LSTM) et BERT (Bidirectional Encoder

Representations from Transformers). Dans l’ensemble, BERT a obtenu les meilleurs résultats

en termes de précision, rappel, exactitude et score F1. Cela démontre que les modèles basés sur

les transformers, comme BERT, ont une meilleure compréhension de la structure des requêtes

SQL, ce qui les rend efficaces pour détecter des attaques complexes. Cette étude montre

comment le deep learning, en particulier BERT, peut améliorer la sécurité des applications web.

Mots-clés : Injection SQL, Sécurité des applications web, Apprentissage profond,

Apprentissage automatique, BERT, Modèles Transformer, Comparaison de modèles, Détection

de menaces

 ملخص

للمهاجم الوصول غير المصرح به من أخطر التهديدات التي تواجه تطبيقات الويب، حيث تتيح SQL تظل هجمات حقن

إلى البيانات، مما قد يؤدي إلى أضرار جسيمة لا يمكن إصلاحها. في إطار هذا المشروع، قمنا بدراسة كيفية استخدام التعلم

للمساعدة في الكشف التلقائي عن هذه الهجمات. طورنا وقمنا بتقييم ستة نماذج: الانحدار اللوجستي، آلة العميق والتعلم الآلي

، الذاكرة طويلة (RNN) ، الشبكة العصبية التكرارية(MLP) ، الشبكة العصبية متعددة الطبقات(SVM) الدعم الناقل

أفضل النتائج من BERT من المحولات(. حقق نموذج)تمثيلات المشفر ثنائية الاتجاه BERT ، ونموذج(LSTM) المدى

تمتلك BERT هذا يوضح أن النماذج المعتمدة على المحولات مثل .F1 حيث الدقة، الاستدعاء، الدقة النوعية، ومقياس

تعلم ، مما يجعلها فعالة في اكتشاف الهجمات المعقدة. تبرز هذه الدراسة كيف يمكن للSQL فهماً أفضل لهياكل استعلامات

 .، تحسين أمان تطبيقات الويبBERT العميق، وخاصة

، نماذج المحولات، BERT، أمان تطبيقات الويب، التعلم العميق، التعلم الآلي، SQL حقن هجمات ة.:الكلمات المفتاحي

 مقارنة النماذج، اكتشاف التهديدات

General Introduction .. 1

Chapter 1 ... 2

SQL Injections ... 2

1.1 Introduction .. 2

1.2 SQL injection ... 2

1.2.1 Definition ..2

1.2.2 How SQL Injection Works ..3

1.3 Techniques of SQL Injection ... 4

1.3.1 Error-Based SQL Injection ..4

1.3.2 Blind SQL Injection ...5

1.3.2.1 Content-Based Blind SQL Injection ...6

1.3.2.2 Time-Based Blind SQL Injection ...7

1.3.3 Tautology-Based SQL Injection ...8

1.3.4 Union-Based SQL Injection ...9

1.4 Methods to prevent SQL Injection attacks ... 13

1.4.1 Prepared Statements (with Parameterized Queries) ... 13

1.4.2 Stored Procedures .. 13

1.4.3 Input validation ... 14

1.4.4 Escaping All User-Supplied Input ... 15

1.5 Conclusion ... 15

Chapter 2 ... 16

Deep Learning ... 16

2.1 Introduction .. 16

2.2 Machine learning .. 16

2.2.1 Machine Learning Types ... 16

2.2.1.1 Supervised Learning (SL): ... 16

2.2.1.2 Unsupervised Learning: ... 18

2.2.1.3 Reinforcement Learning: ... 18

2.2.2 Machine learning algorithms... 18

2.2.2.1 Logistic regression .. 18

2.2.2.2 Support Vector Machine (SVM) .. 19

2.2.3 Real-world machine learning use cases ... 20

2.3 Deep Learning ... 21

2.3.1 Artificial Neural Networks (ANNs) ... 22

2.3.4 Deep Learning Training Cycle... 24

2.3.2 Activation functions .. 24

2.3.2.1 Non-Linear Activation Functions ... 25

2.3.3 Deep learning architectures ... 27

2.3.3.1 Recurrent Neural Networks ... 27

2.3.3.2 Long Short-Term Memory Networks ... 30

2.3.3.4 Transformers ... 32

2.3.3.5 BERT .. 37

2.4 Related works .. 39

2.4.1 Introduction .. 39

2.4.2 Detection Approaches Using Machine Learning ... 39

2.4.3 Deep Learning for SQL Injection Detection .. 40

2.5 Conclusion ... 41

Chapter 3 ... 42

 Conception and Implementation ... 42

3.1 Introduction .. 42

3.2. Dataset .. 42

3.3 Development Environment Overview ... 43

3.3.1 Programming language .. 43

3.3.2 Libraries Used .. 44

3.3.3 Development setup .. 44

3.3.3.1 Visual Studio Code .. 44

3.3.3.2 Jupyter Notebook .. 45

3.3.3.3 Google Colab .. 45

3.4 Models Implemented .. 45

3.4.1 Support Vector Machine (SVM) .. 46

3.4.2 Logistic Regression (LR) .. 46

3.4.3 Multilayer Perceptron (MLP) .. 46

3.4.4 Recurrent Neural Network (RNN) .. 47

3.4.5 Long Short-Term Memory (LSTM) ... 48

3.4.6 BERT .. 49

3.4.6.1 Why BERT for SQL Injection Detection .. 49

3.4.6.2 BERT Code and Implementation ... 50

3.5 Comparative Summary of Model Architectures 52

3.6 Conclusion ... 54

Chapter 4 ... 55

 Performance Evaluation and Results .. 55

4.1 Introduction .. 55

4.2 Performance Evaluation Metrics .. 55

4.3 Evaluation on Test Set (20%) .. 57

4.3.1 Results Presentation .. 57

4.3.2 Visual Performance Analysis ... 60

4.3.3 Performance Analysis of BERT ... 61

4.4.3.1 Training Loss Curve .. 61

4.3.3.2 Model Evaluation on New Unseen Data .. 61

4.4 Conclusion ... 64

General Conclusion ... 65

References .. 66

List of figures

Figure 1. 1 SQL Injection attack ..2

Figure 2.1 Linear Regression Example – House Price Prediction ... 17

Figure 2.2 Classification Example – Spam vs Not Spam Emails .. 17

Figure 2.3 Example Curve: How Study Hours Affect Exam Success Rate 19

Figure 2.4 SVM: Optimal Hyperplane and Support Vectors ... 20

Figure 2.5 Neuron Computation in an Artificial Neural Network.. 22

Figure 2.6 The Mathematic of Neural Networks .. 22

Figure 2.7 Basic Structure of an Artificial Neural Network .. 23

Figure 2.8 Sigmoid Activation Function ... 25

Figure 2.9 Tanh (Hyperbolic Tangent) Function ... 26

Figure 2.10 ReLU (Rectified Linear Unit) Function ... 26

Figure 2.11 Recurrent Neural Network (RNN) Architecture ... 28

Figure 2.12 Types of RNN's ... 29

Figure 2.13 LSTM Gate Mechanisms .. 31

Figure 2.14 Mathematical Formulation of LSTM Gates and States....................................... 31

Figure 2.15 LSTM Layer Architecture and Operations ... 32

Figure 2.16 Transformer Model Architecture with Multi-Head Attention 33

Figure 2.17 Scaled Dot-Product Attention Mechanisms ... 34

Figure 2.18 Self-Attention Equation... 34

Figure 2.19 Scaled Dot-Product Attention Mechanisms ... 35

Figure 2.20 Multi-Head Attention Equation ... 35

Figure 2.21 Multi-Head Attention Mechanisms .. 36

Figure 2.22 Feedforward Network Equation .. 36

Figure 2.23 Main BERT Models .. 37

Figure 3.1 Label Distribution of The Dataset ... 43

Figure 4.1 Confusion Marix ... 55

Figure 4.2 F1-Score Across Cross-Validation Folds for the SVM Model 60

Figure 4.3 LSTM Training and Validation Loss over Epochs ... 60

Figure 4.4 Training Loss Curve for the Fine-Tuned BERT Model .. 61

Figure 4.5 Confusion Matrix on Unseen Data .. 62

List of tables

Table 1.1 Results of a SELECT query without UNION .. 11

Table 1.2 Result of user query after a Union based SQL injection .. 12

Table 3.1 Overview of HyperParameters and Architectures Used in Model Implementation . 52

Table 3.2 Optimization Techniques, Regularization Methods, and Training Epochs Used per

Model ... 53

Table 4.1 Performance Comparison of Models on SQL Injection Dataset 57

Table 4.2 Proposed Models vs. Existing Work .. 59

Table 4.3 Performance Comparison of Models on Unseen SQL Injection Dataset 63

Page | 1

General Introduction
 Web applications became a critical part of our routine, supporting everything from e-

commerce via social networks and banking to even healthcare services. Their spread has

brought about a revolutionary change in the way we relate to each other, communicate, and do

business. At the same time, this growing dependency on web platforms also makes them very

attractive targets for cyberattacks. Among these threats, SQL injection remains the highest and

most dangerous vulnerability, posing a few severe dangers to data security and user privacy.

To counter SQL injection attacks, input validation and parameterization of queries have been

used as base security measures, in addition to the extra firewalls for protection. While some of

these older techniques can protect against risks, many examples have failed to detect many

cases when faced with smarter and constantly evolving attacks. Given the very dynamic trends

in the cyber world, there lies a need for more advanced and flexible measures for detecting real-

time malicious SQL queries.

 Modern breakthroughs in AI and deep learning have created new room for cybersecurity with

intelligent models capable of learning and adapting toward highly complex patterns of attack

behavior. Among them, transformer architectures, especially BERT (Bidirectional Encoder

Representations from Transformers), can truly be said to stand out in their ability to understand

textual patterns and contextual relationships. Although intended for NLP tasks, BERT has

potential applications in cybersecurity, including cyberattack and malicious query

classification.

 This research aims to apply deep learning techniques to establish an intelligent detection

system for SQL injection. The focus of training on real-world datasets is to create a highly

robust detection framework that distinguishes between legitimate SQL queries and malicious

ones with great precision. The principal advantage of our method is its ability to dynamically

adapt to new attack patterns, thus adding enhanced security to web applications, unlike the

conventional rule-based approach.

 Chapter 1 introduces SQL injection attacks, covering definitions, types, real-world examples,

and traditional detection methods.

 Chapter 2 explains key concepts in Machine Learning and Deep Learning and presents the

neural network architectures used in our experiments.

 Chapter 3 describes the dataset, preprocessing steps, and technical details, including model

architectures and hyperparameters.

 Chapter 4 presents and analyzes the results using various evaluation metrics and discusses

model performance.

Through this study, we aim to demonstrate the effectiveness of deep learning techniques in

cybersecurity, particularly for the early detection of SQL injection attacks.

Chapter 1 SQL injection

Page | 2

Chapter 1

SQL Injections

1.1 Introduction

 With increasingly digital living, web applications are at the core of day-to-day life from

managing finances and online purchasing to collaborating and communicating. This ease of the

virtual world comes with inherent security challenges. Cyber attackers persistently evolve their

methods to exploit weaknesses, thereby endangering unauthorized data access, downtime of

services, and irreparable damage to reputation.

1.2 SQL injection

1.2.1 Definition

 An SQL injection attack consists of insertion or “injection” of a SQL query via the input data

from the client to the application. A successful SQL injection exploit can read sensitive data

from the database, modify database data (Insert/Update/Delete), execute administration

operations on the database (such as shutdown the DBMS), recover the content of a given file

present on the DBMS file system and in some cases issue commands to the operating system.

SQL injection attacks are a type of injection attack, in which SQL commands are injected into

data-plane input in order to affect the execution of predefined SQL commands[1].

Figure 1. 1 SQL Injection attack

file:///C:/Users/ASUS%20ROG/Downloads/SQL%23_%5b2%5d_OWASP_

Chapter 1 SQL injection

Page | 3

1.2.2 How SQL Injection Works

 It typically involves the following steps:

1. Identification of vulnerable inputs: Attackers first identify inputs within the web

application that are vulnerable to SQL injections. These inputs such as text fields in a

form, URL parameters, or any other input mechanisms.

2. Crafting the malicious SQL query: Once a vulnerable input is identified, attackers

create an SQL statement intended to be inserted into the query executed by the

application. This statement aims to alter the original SQL query to perform actions

unintended by the application developers.

3. Bypassing application security measures: Attackers often have to bypass protections

like input validation or escaping special characters. They achieve this through

techniques like string concatenation or utilizing SQL syntax to comment out parts of the

original query.

4. Executing the malicious query: When the application executes the SQL query, it

includes the attacker’s malicious input. This modified query can perform actions such

as unauthorized viewing of data, deletion of data, or even database schema alterations.

5. Extracting or manipulating data: Depending on the attack, the outcome might be the

extraction of sensitive information (like user credentials), altering existing data, adding

new data, or even deleting significant portions of the database.

6. Exploiting database server vulnerabilities: Advanced SQL injections may exploit

vulnerabilities in the database server, extending the attack beyond the database to the

server level. This can include executing commands on the operating system or accessing

other parts of the server’s file system.

This process leverages the dynamic execution of SQL in applications where user inputs are

directly included in SQL statements without proper validation or escaping. takes advantage of

how SQL queries are built, often in a way that the developers did not anticipate[2].

Real-Life SQL Injection Attack Examples

Over the past 20 years, many SQL injection attacks have targeted large websites, business and

social media platforms. Some of these attacks led to serious data breaches. A few notable

examples are listed below :

 GhostShell university attack (2012) : Team GhostShell, a hacker collective, conducted

a major SQL injection attack targeting 53 universities worldwide. They stole and

published 36,000 personal records, including data from students, faculty, and staff.

 Cisco Prime License Manager vulnerability (2018) : A critical SQL injection

vulnerability was found in Cisco Prime License Manager, a tool used to manage

software licenses. Attackers could use this flaw to gain shell access to systems,

potentially leading to full system control. Cisco quickly patched the vulnerability.

 7-Eleven breach (2007) : A group of attackers used SQL injection to compromise the

payment systems of several companies, including the 7-Eleven retail chain. This breach

led to the theft of over 130 million credit card numbers. The attack was one of the largest

data breaches of its time.

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/SQL%23_%5b3%5d_OWASP_
https://security.research.ucf.edu/Documents/News/Hackers%20Breach%2053%20Universities%20and%20Dump%20Thousands%20of%20Personal%20Records%20Online.pdf
https://www.cisco.com/c/en/us/support/docs/csa/cisco-sa-20181128-plm-sql-inject.html
https://www.justice.gov/iso/opa/resources/5182013725111217608630.pdf

Chapter 1 SQL injection

Page | 4

 HBGary hack (2011) : Hackers associated with the Anonymous group exploited an

SQL injection vulnerability to breach the IT security firm HBGary. They took down the

company’s website and leaked confidential internal communications.[3]

1.3 Techniques of SQL Injection

1.3.1 Error-Based SQL Injection

 Error-based SQL injection is a type of security vulnerability and attack that occurs when an

attacker injects malicious SQL statements into a web application’s input fields, causing the

application to generate SQL errors.

These errors can reveal sensitive information about the application’s database structure, data,

or configuration[4].

How It Works:

 Injection point: An attacker identifies a vulnerable input field, such as a search box or login

form, where user input is directly incorporated into SQL queries.

 Injecting malicious code: The attacker inputs carefully crafted SQL code as part of their

input. This code is designed to cause SQL syntax errors when the application processes it.

Example[5]: Conditional Errors in Oracle/MS-SQL

Explanation:

1. Subquery:

o The subquery (SELECT username FROM all_users WHERE username =

'DBSNMP') checks if a user named DBSNMP exists in the all_users table.

2. Condition:

o If the user DBSNMP exists, the condition (SELECT username FROM all_users

WHERE username = 'DBSNMP') = 'DBSNMP' evaluates to TRUE.

3. Error Induction:

o When the condition is TRUE, the database evaluates the expression 1/0, which

causes a divide-by-zero error.

o If the condition is FALSE (i.e., the user does not exist), the expression 1/0 is not

evaluated, and no error occurs.

Detection:

 If the application returns an HTTP 500 error or a database error message, the attacker

can infer that the condition is TRUE (i.e., the user DBSNMP exists).

 If no error occurs, the condition is FALSE (i.e., the user does not exist).

https://krebsonsecurity.com/2011/02/hbgary-federal-hacked-by-anonymous/
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/SQL%23_%5b3%5d_Radware,_
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Blind%23_%5b4%5d_OWASP,_

Chapter 1 SQL injection

Page | 5

Advanced Use Case: Data Exfiltration

Scenario:

 A web application allows users to sort search results using a sort parameter:

 The backend SQL query:

Malicious Injection:

The attacker injects a payload into the sort parameter to test a condition:

Explanation:

1. Subquery :

o The subquery (SELECT SUBSTR(MAX(object_name),1,1) FROM

user_objects) extracts the first character of the largest object name in

the user_objects table.

2. Condition :

o If the first character is 'Y', the condition evaluates to TRUE, and the database

attempts to evaluate 1/0, causing a divide-by-zero error.

o If the first character is not 'Y', no error occurs, and the query returns results

normally.

3. Inference :

o The attacker can use this technique to brute-force each character of the object

name by testing different values (e.g., 'A', 'B', 'C', etc.).

1.3.2 Blind SQL Injection

 Blind SQL (Structured Query Language) injection is a type of SQL Injection attack that asks

the database true or false questions and determines the answer based on the applications

response. This attack is often used when the web application is configured to show generic error

messages, but has not mitigated the code that is vulnerable to SQL injection.

https://owasp.org/www-community/attacks/SQL_Injection

Chapter 1 SQL injection

Page | 6

 When an attacker exploits SQL injection, sometimes the web application displays error

messages from the database complaining that the SQL Query’s syntax is incorrect. Blind SQL

injection is nearly identical to normal SQL Injection, the only difference being the data retrieved

from the database is not inserted in the response. When the database does not output data to the

web page, an attacker is forced to steal data by asking the database a series of true or false

questions. This makes exploiting the SQL Injection vulnerability more difficult, but not

impossible [6].

1.3.2.1 Content-Based Blind SQL Injection

How It Works:

 Unlike traditional SQL injection, where database error messages expose data directly, blind

SQL injection does not return query results to the user. Attackers exploit this by providing

conditional queries and observing the application's response to infer data from the database.

Technical Explanation:

 Blind SQL injection relies on evaluating conditions based on the application's responses.

Attackers inject SQL conditions and observe response differences (e.g., message change or page

behavior) to deduce data.

Example:

 vulnerable web application allows the attacker to inject SQL on a URL parameter that

fetches data based on an id. The attacker confirms the vulnerability by injecting true/false

statements in the id parameter to identify between valid and invalid SQL queries.

The attacker first sends a request like:

This executes:

Next, the attacker tests for SQL injection by adding a false condition:

The query becomes:

https://owasp.org/www-community/attacks/SQL_Injection
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Blind%23_%5b6%5d_OWASP,_

Chapter 1 SQL injection

Page | 7

Since 1=2 is false, the page returns no content, confirming the injection.

Then, the attacker tests a true condition:

The query becomes:

This question retrieves the anticipated data, revealing the vulnerability. Contrasting the output

of these two injections, the attacker can determine that the page is vulnerable to SQL injection

and proceed to pull data from the database[6].

Explanation:

Here, the attacker uses a spurious condition (and 1=2) to decide whether the page is vulnerable

to SQL injection. Since no information is returned, the attacker confirms the vulnerability. A

real condition (and 1=1) provides expected information, ascertaining that the injection has been

successful. The attacker now iterates data, e.g., table names or other confidential data, using

similar true/false conditions based on the database schema.

1.3.2.2 Time-Based Blind SQL Injection

How It Works:

 In time-based blind SQL injection, attackers use SQL functions like SLEEP() to introduce a

delay in the server’s response. If the delay occurs, it indicates the injected SQL condition is

true; if not, it is false. This helps attackers extract data even when no visible content is returned.

Technical Explanation:

The attacker sends queries that include conditional delays, such as:

xyz' AND IF(1=1, SLEEP(5), 0) – The server delays for 5 seconds, confirming the condition is

true.

xyz' AND IF(1=2, SLEEP(5), 0) – No delay occurs, confirming the condition is false.

 Example:

Consider a web application that retrieves user information based on a user ID provided in the

URL:

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Blind%23_%5b5%5d_OWASP,_

Chapter 1 SQL injection

Page | 8

The corresponding SQL query might be:

If the application is vulnerable to Time-Based Blind SQL Injection, an attacker can

manipulate the id parameter to include a time delay function.

Malicious Injection:

In this example, the injected SQL statement includes a conditional function that causes the

database to pause for 5 seconds if the condition 1=1 is true.

Explanation:

Here, the attacker is inserting a conditional SQL function that will intentionally delay the

database's response time. The inserted SQL query is:

The IF(1=1, SLEEP(5), 0) function will evaluate the condition 1=1, which is always fulfilled.

So the SLEEP(5) function will be invoked, and the database will take 5 seconds to reply.

If the application responds in 5 seconds, the attacker confirms successful injection and exposure

of the application to Time-Based Blind SQL Injection.

The attackers may use this technique to provide educated guesses on the structure and content

of the database even when direct extraction is not possible.

1.3.3 Tautology-Based SQL Injection

The term ‘tautology’ originates from the field of logic, where it is used to describe a statement

that is always true, regardless of the truth values of its components. In other words, a

tautological statement is one that is true by virtue of its logical form alone [7].

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/SQL%23_%5b7%5d_Moxso,_

Chapter 1 SQL injection

Page | 9

How It Works:

 This attack exploits the use of tautological SQL statements.

Always result in true and thus bypasses authentication and other security measures.

Technical Explanation:

 A tautology is a logical statement that remains true under any combination of values. Malicious

users insert such statements into SQL queries, compelling the database to execute and

authenticate unauthorized requests.

OR '1'='1' in this example guarantees the condition will always be true, giving access.

Real-World Scenario: An attacker hacks a login form on a web page, bypassing user

authentication and accessing an administrator account.

1.3.4 Union-Based SQL Injection

How It Works:

 The UNION operator is used in SQL to combine the results of two or more SELECT

statements into a single result set. When a web application contains a SQL injection

vulnerability that occurs in a SELECT statement, attackers can utilize this operator to insert an

additional query and merge its outcome with the outcome of the initial query[5].

Technical Explanation:

 Using this method, malicious users can retrieve unauthorized data from the database. UNION-

based SQL injection is widely supported by all the major database management systems

(DBMS) and is generally the best way to extract specific database contents when query results

are directly presented on the application interface.

Example 1[8]: Extracting the Current Database User

Scenario:

A web application shows product information based on a product ID passed in the URL. The

application is susceptible to SQL injection since it puts user input directlyinto the SQL query

without sanitizing. The attacker finds such vulnerability and chooses to exploit it in order to

get the current database user, which can assist them in knowing the access level they have

and strategize future attacks.

The attacker knows that the application has a database backend (for example, Microsoft SQL

Server, MySQL, or Oracle) and wishes to extract the username of the

account which issued the queries.

Chapter 1 SQL injection

Page | 10

Malicious Injection:

The attacker sends the following malicious URL to the application:

Explanation:

1. Original Query:

The application executes the following query to retrieve product details:

This query returns the details of the product with ID 12.

2. Injected Query

The attacker appends a UNION SELECT statement to the original query to retrieve

the current database user:

o The UNION operator combines the results of the original query with the results

of the injected query.

o The system_user function (or equivalent, depending on the database) retrieves

the username of the current database user.

o The NULL values are used to match the number of columns in the original query

(since the injected query only needs one column for the username, but the

original query returns four columns).

3. Combined Query:

The database executes the following combined query:

Chapter 1 SQL injection

Page | 11

Result:

Id

Type Description Price

12 Book SQL Injection

Attacks

50

NULL db_user NULL NULL

Table 1.1 Results of a SELECT query without UNION

Example 2: Extracting Multiple Rows from the customers Table

Scenario:

 A web application displays product details based on a product ID passed in the URL. The

application is vulnerable to SQL injection because it directly incorporates user input into the

SQL query without proper sanitization. The attacker discovers this vulnerability and decides to

exploit it to extract sensitive customer data from the customers table in the database.

 The attacker's goal is to retrieve the full list of customers (first and last names) from the

database.

Malicious Injection:

The attacker sends the following malicious URL to the application:

Explanation:

1. Original Query:

The application executes the following query to retrieve product details:

This query returns the details of the product with ID = 12.

Chapter 1 SQL injection

Page | 12

2. Injected Query:

The attacker appends a UNION SELECT statement to the original query to retrieve data

from the customers table:

o The UNION operator combines the results of the original query with the results

of the injected query.

o The NULL value is used to match the number of columns in the original query

(since the customers table has only three columns, but the original query returns

four columns).

3. Combined Query:

The database executes the following combined query:

Result:

id Type Description Price

12 Book SQL Injection

Attacks

50

1 Charles Smith NULL

2 Lydia Clayton NULL

3 Bernard Jones NULL

Table 1.2 Result of user query after a Union based SQL injection

4 Explanation of the Result:

 The first row represents the product details from the original query.

 The subsequent rows represent the data extracted from the customers table,

including userid, first_name, and second_name.

 The NULL value in the Price column is used to align the injected data with the original

query's column structure.

Chapter 1 SQL injection

Page | 13

1.4 Methods to prevent SQL Injection attacks

 Attackers can use SQL injection on an application if it has dynamic database queries that use

string concatenation and user supplied input. To avoid SQL injection flaws.

 There are simple techniques for preventing SQL injection vulnerabilities and they can be

used with practically any kind of programming language and any type of database [9].

1.4.1 Prepared Statements (with Parameterized Queries)

 When developers are taught how to write database queries, they should be told to use

prepared statements with variable binding (also known as parameterized queries). Prepared

statements are simple to write and easier to understand than dynamic queries, and parameterized

queries force the developer to define all SQL code first and pass in each parameter to the query

later.

 If database queries use this coding style, the database will always distinguish between code

and data, regardless of what user input is supplied. Also, prepared statements ensure that an

attacker cannot change the intent of a query, even if SQL commands are inserted by an attacker.

 In PHP, PHP Data Objects (PDO) offer a more effective approach to database interactions.

By providing methods that simplify parameterized queries, PDO ensures that user input is

always treated as data rather than executable SQL code and enhances code readability and also

ensures greater portability across multiple databases.

Prepared Statements example using php[10] :

 1.4.2 Stored Procedures

 Though stored procedures are not always safe from SQL injection, developers can use

certain standard stored procedure programming constructs. This approach has the same effect

as using parameterized queries, as long as the stored procedures are implemented safely (which

is the norm for most stored procedure languages).

Safe Approach to Stored Procedures :

 If stored procedures are needed, the safest approach to using them requires the developer to

build SQL statements with parameters that are automatically parameterized, unless the

developer does something largely out of the norm. The difference between prepared statements

and stored procedures is that the SQL code for a stored procedure is defined and stored in the

database itself, then called from the application.

Chapter 1 SQL injection

Page | 14

 Since prepared statements and safe stored procedures are equally effective in preventing SQL

injection, your organization should choose the approach that makes the most sense for you.

 The following code example call a stored procedure with an input/output parameter using

PHP[11].

1.4.3 Input validation

 Input validation is performed to ensure only properly formed data is entering the workflow

in an information system, preventing malformed data from persisting in the database and

triggering malfunction of various downstream components.

 Input validation should happen as early as possible in the data flow, preferably as soon as

the data is received from the external party.

 Data from all potentially untrusted sources should be subject to input validation, including

not only Internet-facing web clients but also backend feeds over extranets, from suppliers,

partners, vendors or regulators, each of which may be compromised on their own and start

sending malformed data.

Example validating email addresses with filter_var() using PHP[12]

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Prepared_statements%23_%5b11%5dPHP_
https://badcyber.com/several-polish-banks-hacked-information-stolen-by-unknown-attackers/
https://badcyber.com/several-polish-banks-hacked-information-stolen-by-unknown-attackers/
https://www.php.net/manual/en/function.filter-var.php
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Validation%23_%5b12%5dPHP_,_

Chapter 1 SQL injection

Page | 15

1.4.4 Escaping All User-Supplied Input

 In this approach, the developer will escape all user input before putting it in a query. It is

very database specific in its implementation. This methodology is frail compared to other

defenses, and we CANNOT guarantee that this option will prevent all SQL injections in all

situations.

 If an application is built from scratch or requires low risk tolerance, it should be built or re-

written using parameterized queries, stored procedures, or some kind of Object Relational

Mapper (ORM) that builds your queries for you.

1.5 Conclusion

 SQL injection remains a very important security threat to web applications. Some of the

basic security measures that, if applied correctly, can protect against these attacks are input

validation, prepared statements, and escaping user inputs. Other steps include restricting the

functions that the user is allowed to perform. But no single method can fully guarantee

protection from attacks of multitude types and changing SQL injection techniques. An attacker's

primary goal is searching for a new way to bypass security, especially when not properly

applied; this may result in a serious breach of sensitive data. For these reasons, these security

steps must be followed consistently, regularly reviewed as part of a full security strategy, and

supported by AI-based tools that help catch and block advanced and automated SQL injection

attacks.

 To gain a better understanding of how AI-based tools operate, it is critical to explore the areas

of machine learning and deep learning. These enable systems to learn from data, identify

complex patterns, and upgrade themselves over time. A new dimension that significantly

enhances cybersecurity. Hence, the following chapter will explain the background of machine

learning, its various types and algorithms, and then proceed to deep learning architectures.

Chapter 2 Deep Learning

Page | 16

Chapter 2

Machine Learning and Deep Learning

2.1 Introduction

 The field of Artificial Intelligence (AI), using the strongest tools available in computer

science, works toward imitating intelligence in a human being. These systems can perform a

variety of tasks typically attributed to human cognitive abilities, such as decision-making,

pattern recognition, and problem-solving. Artificial intelligence has come a long way over the

years, fueling innovations such as self-driving cars, intelligent virtual assistants, and highly

advanced recommendation systems, revolutionizing industries and everyday life.

 In this part, basic machine-learning (ML) methodologies are looked into, a major subfield

of AI. We will describe the three paradigms of learning: supervised learning, unsupervised

learning, and reinforcement learning. Standard algorithms in machine learning will also be

addressed followed by a transition into deep learning (DL), which is an enhanced version of

ML that exploits multi-layer neural networks. The immediate goal in this instance is to firmly

establish some of the fundamental concepts of these methods and their frameworks, in

preparation for their application to real-world problems, including cybersecurity and SQL

injection detection.

2.2 Machine learning

 The field of machine learning is concerned with the question of how to construct computer

programs that automatically improve with experience. In recent years many successful machine

learning applications have been developed, ranging from data-mining programs that learn to

detect fraudulent credit card transactions, to information-filtering systems that learn users'

reading preferences, to autonomous vehicles that learn to drive on public highways. At the same

time, there have been important advances in the theory and algorithms that form the foundations

of this field.[13]

2.2.1 Machine Learning Types

 In machine learning, this kind of learning process is usually classed into three main parts

which are supervised learning, unsupervised learning, and reinforcement learning. Each type

serves a certain distinct purpose and is used with certain types of problems. Besides those three

types, hybrid approaches such as commodity inclusion and special techniques have also

emerged to maintain and solve more complex issues.

2.2.1.1 Supervised Learning (SL):

 Supervised learning (SL) is a machine learning approach that leverages labelled data to

educate a system in forecasting outcomes based on its training. It closely mimics the process of

Chapter 2 Deep Learning

Page | 17

human learning under the guidance of an instructor, employing specific instances to deduce

overarching principles. SL is typically divided into two main categories.

Regression: Regression is a term used in statistics, which is a type of statistical analysis that

aims to understand the relationship between a dependent variable (response variable) and one

or more independent variables (predictors) such as in market trends or weather forecasting. The

most common type is linear regression

A typical example of regression is house price prediction, where features like house size,

number of rooms, and location are used to estimate the price.

Figure 2.1 Linear Regression Example – House Price Prediction

 Classification: Classification is a SL technique that involves categorizing data into distinct

classes. It is a predictive process that recognizes and groups data objects into pre-defined

categories or labels. This technique is used to predict the outcome of a given problem based on

input features. It can be applied to structured or unstructured data, and the classes are commonly

known as target, label, or categories. The aim of classification is to assign an unknown pattern

to a known class. For example, classifying emails as "spam" or "not spam" is a common

application of classification.

Figure 2.2 Classification Example – Spam vs Not Spam Emails

Chapter 2 Deep Learning

Page | 18

 Both the Classification and Regression algorithms can be used for forecasting in machine

learning and operate with the labelled datasets. But the distinction between classification vs

regression is how they are used on particular machine learning problems. [14]

2.2.1.2 Unsupervised Learning:

 Unsupervised learning, also known as unsupervised machine learning, uses machine learning

algorithms to analyze and cluster unlabeled datasets (subsets called clusters). These algorithms

discover hidden patterns or data groupings without the need for human intervention.

 Unsupervised learning’s ability to discover similarities and differences in information make it

ideal for exploratory data analysis, cross-selling strategies, customer segmentation, and image

and pattern recognition. It’s also used to reduce the number of features in a model through the

process of dimensionality reduction. Principal component analysis (PCA) and singular value

decomposition (SVD) are two common approaches for this. Other algorithms used in

unsupervised learning include neural networks, k-means clustering, and probabilistic clustering

methods.[15]

2.2.1.3 Reinforcement Learning:

 Reinforcement learning problems involve learning how to map situations to actions to

maximize a numerical reward signal. These problems are inherently closed-loop, as the

system’s actions influence its future inputs. Unlike other forms of machine learning, the learner

is not explicitly told which actions to take but must discover the best ones through trial and

error. In more complex scenarios, actions impact not only immediate rewards but also future

states and long-term rewards, making decision-making more challenging.[16]

2.2.2 Machine learning algorithms

2.2.2.1 Logistic regression

 Logistic regression is a supervised machine learning algorithm used for classification tasks,

predicting the probability that an instance belongs to a specific class. It is a statistical method

that analyzes the relationship between independent variables and a categorical outcome.

 Logistic regression applies the sigmoid function to map input values to a probability ranging

between 0 and 1. Instead of fitting a regression line, it models an "S"-shaped curve to distinguish

between classes.[17]

Key Points:

 Logistic regression predicts the output of a categorical dependent variable.

 The outcome is discrete (e.g., Yes/No, 0/1, True/False) but represented as a probability

between 0 and 1

https://www.ibm.com/think/topics/unsupervised-learning
https://www.ibm.com/think/topics/principal-component-analysis
https://www.ibm.com/think/topics/k-means-clustering
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Machine%23_%5b14%5d_IBM_,
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/_Logistic%23_%5b17%5dGeeksforGeeks_,

Chapter 2 Deep Learning

Page | 19

Figure 2.3 Example Curve: How Study Hours Affect Exam Success Rate

2.2.2.2 Support Vector Machine (SVM)

 A support vector machine (SVM) is a supervised learning algorithm used for many

classification and regression problems, including signal processing, medical applications,

natural language processing, and speech and image recognition.

 The objective of the SVM algorithm is to find a hyperplane that, to the best degree possible,

separates data points of one class from those of another class. “Best” is defined as the

hyperplane with the largest margin between the two classes, represented by plus versus minus

in the figure below. Margin means the maximal width of the slab parallel to the hyperplane that

has no interior data points. Only for linearly separable problems can the algorithm find such a

hyperplane; for most practical problems, the algorithm maximizes the soft margin, allowing a

small number of misclassifications.

 Support vectors are a subset of the training observations that define the position of the

separating hyperplane. These are the data points closest to the hyperplane and are crucial for

determining the optimal margin. While SVMs are originally designed for binary classification,

they can be extended to multiclass problems by combining multiple binary classifiers.

Chapter 2 Deep Learning

Page | 20

Figure 2.4 SVM: Optimal Hyperplane and Support Vectors

 To handle non-linearly separable data, SVMs use kernel methods. Kernel functions transform

the data into a higher-dimensional space, where classes may become linearly separable. This

transformation is implicit and computationally efficient, thanks to the kernel trick. Common

kernel types include:

 Linear: Suitable for linearly separable data.

 Polynomial: Captures polynomial relationships between features.

 Radial Basis Function (RBF): Effective for complex, non-linear boundaries.

 Sigmoid: A Mercer kernel under specific conditions.

 Training an SVM involves solving a quadratic optimization problem to find the hyperplane

that minimizes the soft margin. The number of transformed features depends on the number of

support vectors, making the model compact and efficient once trained.

Key advantages of SVMs include their ability to handle high-dimensional data, robustness to

outliers, and effectiveness in solving non-linear problems using kernels. Once trained, only the

support vectors are needed to define the decision boundary, making SVMs suitable for

automated code generation and real-world applications.[18]

2.2.3 Real-world machine learning use cases

Here are just a few examples of machine learning you might encounter every day:

Speech recognition: It is also known as automatic speech recognition (ASR), computer speech

recognition, or speech-to-text, and it is a capability which uses natural language processing

(NLP) to translate human speech into a written format. Many mobile devices incorporate speech

recognition into their systems to conduct voice search—e.g. Siri—or improve accessibility for

texting.

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Support%23_%5b17%5d_GeeksforGeeks_,

Chapter 2 Deep Learning

Page | 21

Customer service : Online chatbots are replacing human agents along the customer journey,

changing the way we think about customer engagement across websites and social media

platforms. Chatbots answer frequently asked questions (FAQs) about topics such as shipping,

or provide personalized advice, cross-selling products or suggesting sizes for users. Examples

include virtual agents on e-commerce sites, messaging bots, using Slack and Facebook

Messenger, and tasks usually done by virtual assistants and voice assistants.

Computer vision : This AI technology enables computers to derive meaningful information

from digital images, videos, and other visual inputs, and then take the appropriate action.

Powered by convolutional neural networks, computer vision has applications in photo tagging

on social media, radiology imaging in healthcare, and self-driving cars in the automotive

industry.

Recommendation engines: Using past consumption behavior data, AI algorithms can help to

discover data trends that can be used to develop more effective cross-selling strategies.

Recommendation engines are used by online retailers to make relevant product

recommendations to customers during the checkout process.

Robotic process automation (RPA): Also known as software robotics, RPA uses intelligent

automation technologies to perform repetitive manual tasks.

Automated stock trading: Designed to optimize stock portfolios, AI-driven high-frequency

trading platforms make thousands or even millions of trades per day without human

intervention.

Fraud detection: Banks and other financial institutions can use machine learning to spot

suspicious transactions. Supervised learning can train a model using information about known

fraudulent transactions. Anomaly detection can identify transactions that look atypical and

deserve further investigation.[19]

2.3 Deep Learning

 Deep learning is a subfield of machine learning that employs deep neural networks for

analyzing and interpreting complex data. Such networks are modeled after the human brain and

allow the computer to identify patterns and relationships without human intervention in large

amounts of unstructured information. The deep learning model is continuously improving its

accuracy by tuning internal parameters with training.

 Deep learning models can be trained to perform classification tasks and recognize patterns in

images, text, audio, and other types of data. This technology also enables automation of tasks

that typically require human intelligence, such as image description and audio transcription.

Where human brains have millions of interconnected neurons that work together to learn

information, deep learning features neural networks constructed from multiple layers of

software nodes that work together.

https://www.ibm.com/products/watsonx-orchestrate/customer-service
https://www.ibm.com/products/watsonx-assistant
https://www.ibm.com/consulting/artificial-intelligence
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Machine%23_%5b18%5d_IBM_,

Chapter 2 Deep Learning

Page | 22

 This technique has achieved astonishing outcomes in image recognition, understanding natural

language, and processing speech, making it the foundation of contemporary artificial

intelligence systems.[20]

2.3.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANN) are inspired by the way biological neural system works, such

as the brain process information. The information processing system is composed of a large

number of highly interconnected processing elements (neurons) working together to solve

specific problems. ANNs, just like people, learn by example. Similar to learning in biological

systems, ANN learning involves adjustments to the synaptic connections that exist between the

neurons.

Figure 2.5 Neuron Computation in an Artificial Neural Network

Here [X1, X2, X3] are the input features to the neuron represented as X. Whereas the superscript

is used to denote the layer. The weights are denoted by [w1, w2, w3] associated with each

connection to the neuron from the input of that particular layer. The bias is represented by b

associated with the neuron. “z” is the weighted sum of inputs added with the bias which is linear

by nature. “a” is the activation function that is applied to z to add non-linearity as complex

models can't be represented as a line.

 n = the number of inputs

from the incoming layer

Figure 2.6 The Mathematic of Neural Networks

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/What%23_%5b19%5d_TeckTarget,_

Chapter 2 Deep Learning

Page | 23

 The activation function is applied to the weighted sum of inputs to the neuron, including the

bias term, and the resulting value becomes the neuron's output, which is then passed to the next

layer. Its primary role is to introduce non-linearity into the model, allowing the network to learn

complex patterns and approximate any arbitrary function. In this one-layer neural network

architecture, the output of the activation function in layer serves as the final output, denoted as

y’. This output is used to compute the loss function, L (a, y), which measures the deviation

between the predicted and actual output. This deviation is crucial for backpropagation and

optimization, which will be discussed in later sections.[21]

Figure 2.7 Basic Structure of an Artificial Neural Network

 An artificial neural network is primarily composed of three “types” of layers: the input layer,

one or more hidden layers, and the output layer. These layers collectively work to process the

information and yield meaningful predictions.

 The input layer serves as the entry point for data into the neural network. Each neuron in this

layer corresponds to either a specific feature of the input dataset or an input vector. For instance,

in an image classification problem, all input neurons may specify the intensity of each

individual pixel. This layer exists purely for the purpose of passing on the raw input values to

the next layer without change.

 The hidden layers serve to process and transform information passed to them from the input

layer. They are called hidden since nothing about their inner workings can be observed directly.

In a typical hidden layer, a neuron takes in inputs from the preceding layer, applies a weighted

summation, adds a bias, and applies an activation function on the result. Depending on the

complexity of the task, a network can have varying numbers of hidden layers with varying

numbers of neurons in each layer. DNNs having multiple hidden layers are quite popular in

applications such as image recognition, speech processing, and natural language understanding

since they can efficiently extract many complex patterns from the data.

file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Basic%23_%5b21%5d_Medium_

Chapter 2 Deep Learning

Page | 24

 The output layer is the final layer of the network that provides the prediction made by the

model. The structure of this layer is based on the solved problem. In the case of classification

networks, each output neuron corresponds to one class; in regression problems, usually only

one output neuron provides a continuous value: an activation function is then used in the output

layer according to the type of task, e.g., softmax for multi-class classification and any linear

function for regression.

 These layers are interconnected by weighted links that determine the importance of each

input. The weights are adjusted during training.

2.3.4 Deep Learning Training Cycle

1 Data input and preprocessing: First load the data and clean it, removing any missing values

or corrupted entries, and outliers. Next is to transform inputs into a uniform format. For

example, numerical features should be normalized or scaled to lie in a common range, and any

required data augmentation strategies should be applied. The last step is splitting the data into

three sets: training, validation, and test sets so that the model is evaluated on new or unseen

data.

2 Forward propagation : Pass each training sample through the network layer by layer to

produce an output prediction. At each layer, the inputs are combined with the weights and biases

of that layer and then passed through an activation function. The output from a "forward pass"

through the network shows the final network output based on the current parameters.

3 Loss function calculation: Measure the quality of a prediction by comparing it to the true

target using a loss function. The loss function quantifies the error, for example, with regression,

mean squared error could be used, whereas with classification, it would be cross-entropy. In

other words, the loss measures, in a quantitative manner, the difference between the predicted

output and the actual label, a larger difference leads to a larger loss value.

4 Backpropagation: Compute the gradient of the loss with respect to each weight by

propagating the error backward through the network. During this backward pass, the chain rule

is used to determine how much each weight contributed to the final error. Essentially,

backpropagation can create an error signal at each layer so that it is clear how to change the

weights in order to reduce the error.

5 Weight updates (optimization): Use an optimization algorithm (stochastic gradient descent

or Adam) to update the weights and biases of the network based on the gradients obtained from

backpropagation. For example, stochastic gradient descent (SGD) subtracts a fraction (the

learning rate) of the gradient from each weight, moving it in the direction that reduces loss.

More advanced optimizers like Adam adapt the learning rate for each parameter and include

momentum terms (combining ideas from momentum and RMSprop) to speed up convergence.

2.3.2 Activation functions

 Activation functions play a fundamental role in neural networks by determining how neurons

process input data and transfer information to subsequent layers. The choice of activation

function significantly influences the network's performance and learning capability

Chapter 2 Deep Learning

Page | 25

2.3.2.1 Non-Linear Activation Functions

 A network using only a linear activation functions is essentially equivalent to a simple linear

model, limiting its ability to capture complex patterns in data. Non-linear activation functions

enable deep networks to model intricate relationships between inputs and outputs.

They allow backpropagation by ensuring derivatives depend on input values, facilitating

effective weight adjustments. They also enable the creation of deep networks, where

transformed outputs from one layer pass non-linearly to the next, improving the model's ability

to learn complex representations.

1. Sigmoid (Logistic) Activation Function

This function takes any real value as input and outputs values in the range of 0 to 1 making it

useful for probabilistic models and binary classification tasks.

 The larger the input (more positive), the closer the output value will be to 1.0, whereas the

smaller the input (more negative), the closer the output will be to 0.0, as shown below.

Figure 2.8 Sigmoid Activation Function

 It is ideal for probability-based applications due to its constrained output range and is

differentiable, ensuring smooth gradient updates during optimization. However, it suffers from

the vanishing gradient problem, as extreme values lead to near-zero derivatives, hindering

learning. Additionally, it is not zero-centered, which can slow down the training process.

2.Tanh (Hyperbolic Tangent) Function

 The Tanh function is similar to the sigmoid function but maps input values to a range between

-1 and 1, providing stronger non-linearity.

Chapter 2 Deep Learning

Page | 26

Figure 2.9 Tanh (Hyperbolic Tangent) Function

 Its outputs are zero-centered, which improves convergence speed in deep networks, and it is

often used in recurrent neural networks (RNNs) and convolutional neural networks (CNNs).

However, it still suffers from the vanishing gradient problem, albeit less than the sigmoid

function.

3. ReLU (Rectified Linear Unit) Function

 ReLU is one of the most commonly used activation functions in deep learning. It introduces

non-linearity by returning zero for negative inputs while retaining positive values unchanged.

Figure 2.10 ReLU (Rectified Linear Unit) Function

 It is computationally efficient, as only a subset of neurons activates at a time, and helps

accelerate gradient descent convergence due to its non-saturating nature. However, it suffers

Chapter 2 Deep Learning

Page | 27

from the Dying ReLU problem, where neurons can become permanently inactive for negative

inputs, preventing further updates.[22]

2.3.3 Deep learning architectures

Deep learning has enjoyed tremendous advancement in the last few years, serving as the major

pillar for innovation in many different fields. Each architecture is designed for particular

problems, with the performance in each case optimized for the specific needs of the task at

hand.

Over the years, many deep learning models have been developed, often extending some

fundamental designs. Among these, convolutional neural networks (CNNs), recurrent neural

networks (RNNs), and long short-term memory networks (LSTMs) are the most commonly

known. In their respective areas, these architectures have been very efficient, thereby enabling

progress in image recognition, sequence modeling, and time series analysis.

2.3.3.1 Recurrent Neural Networks

 Recurrent Neural Networks (RNNs) are neural networks designed to recognize patterns in

sequences of data. They’re used for identifying patterns such as text, genomes, handwriting, or

numerical time series data from stock markets, sensors, and more.

Unlike traditional feedforward neural networks, where inputs are processed only once in a

forward direction, RNNs possess a unique feature: They have loops in them, allowing

information to persist.

 This looping mechanism enables RNNs to remember previous information and use it to

influence the processing of current inputs. This is like having a memory that captures

information about what has been calculated so far, making RNNs particularly suited for tasks

where the context or the sequence is crucial for making predictions or decisions.[23]

Structure of RNNs

RNNs are made of neurons: data-processing nodes that work together to perform complex tasks.

The neurons are organized as input, output, and hidden layers. The input layer receives the

information to process, and the output layer provides the result. Data processing, analysis, and

prediction take place in the hidden layer.

https://www.analyticsvidhya.com/blog/2022/03/basic-introduction-to-feed-forward-network-in-deep-learning/
file:///C:/Users/ASUS%20ROG/AppData/Roaming/Microsoft/Word/Why%23_%5b23%5d_Shelf_

Chapter 2 Deep Learning

Page | 28

Figure 2.11 Recurrent Neural Network (RNN) Architecture

The diagram illustrates the unrolled RNN over time steps, showing:

• Inputs (xₜ): Sequential data (e.g., words in a sentence).

• Hidden states (hₜ): Memory units with recurrent weights (Wₕₕ).

• Outputs (yₜ): Predictions at each step.

• Weight matrices (Wₓₕ, Wₕₕ, Wₕᵧ): Shared across time steps for efficiency

Hidden layer

 RNNs work by passing the sequential data that they receive to the hidden layers one step at a

time. However, they also have a self-looping or recurrent workflow: the hidden layer can

remember and use previous inputs for future predictions in a short-term memory component. It

uses the current input and the stored memory to predict the next sequence.

 For example, consider the sequence: Apple is red. You want the RNN to predict red when it

receives the input sequence Apple is. When the hidden layer processes the word Apple, it stores

a copy in its memory. Next, when it sees the word is, it recalls Apple from its memory and

understands the full sequence: Apple is for context. It can then predict red for improved

accuracy. This makes RNNs useful in speech recognition, machine translation, and other

language modeling tasks.

Training

 Recurrent Neural Networks (RNNs) are trained by feeding them sequences of data and

adjusting their internal parameters specifically the weights to minimize prediction errors. In an

RNN, the same set of weights is shared across all time steps, which allows the network to

process sequential information efficiently and retain temporal dependencies.

The training process involves computing a loss between the predicted output and the actual

target, then updating the weights to reduce this loss using gradient descent. To compute

Chapter 2 Deep Learning

Page | 29

gradients in an RNN, a specialized form of backpropagation called Backpropagation Through

Time (BPTT) is used.

 BPTT works by unfolding the RNN over time, treating it as a feedforward network across the

sequence of time steps. It computes the error at each time step and then propagates gradients

backward through the entire sequence. These gradients are accumulated and used to adjust the

weights, allowing the model to learn dependencies across time and improve its prediction

accuracy.

Types of recurrent neural networks:

 RNNs are often characterized by one-to-one architecture: one input sequence is associated

with one output. However, you can flexibly adjust them into various configurations for specific

purposes. The following are several common RNN types.

 One-to-One

A One-to-One RNN is the simplest architecture where a single input maps to a single output.

It’s typically used for tasks like classification, where the entire input sequence is processed to

produce one prediction.

One-to-many

 This RNN type channels one input to several outputs. It enables linguistic applications like

image captioning by generating a sentence from a single keyword.

Many-to-many

The model uses multiple inputs to predict multiple outputs. For example, you can create a

language translator with an RNN, which analyzes a sentence and correctly structures the words

in a different language.

Many-to-one

Several inputs are mapped to an output. This is helpful in applications like sentiment analysis,

where the model predicts customers’ sentiments like positive, negative, and neutral from input

testimonials.[24]

Figure 2.12 Types of RNN's

Chapter 2 Deep Learning

Page | 30

Limitations of RNNs

Despite their effectiveness, RNNs suffer from several limitations that impact their performance,

especially when dealing with long sequences:

 Vanishing gradient problem: One of the significant drawbacks of basic RNNs is the

vanishing gradient problem. It occurs when gradients during training become extremely small

as they are backpropagated through time. This limits the network's ability to capture long-range

dependencies.

 Exploding gradient problem: RNNs can also suffer from the exploding gradient problem,

where gradients become exceptionally large during training, causing numerical instability.

Exploding gradient is easier to detect and manage.

 Limited memory: Traditional RNNs have a limited memory capacity, and they struggle to

carry information across many time steps. This can be problematic when dealing with long

sequences where the network may "forget" important information from earlier time steps.[25]

2.3.3.2 Long Short-Term Memory Networks

Traditional RNNs struggle with long-term dependencies due to the vanishing and exploding

gradient problem. To address this, Long Short-Term Memory (LSTM) networks were

introduced.

A long short-term memory (LSTM) network is a type of recurrent neural network (RNN).

LSTMs are predominantly used to learn, process, and classify sequential data because they can

learn long-term dependencies between time steps of data.

Architecture and Functioning

LSTM layers use additional gates to control what information in the hidden state is exported as

output and to the next hidden state. These additional gates overcome the common issue with

RNNs in learning long-term dependencies. In addition to the hidden state in traditional RNNs,

the architecture for an LSTM block typically has a memory cell, input gate, output gate, and

forget gate. The additional gates enable the network to learn long-term relationships in the data

more effectively. Lower sensitivity to the time gap makes LSTM networks better for analyzing

sequential data than simple RNNs. In the figure below, you can see the LSTM architecture and

data flow at time step t.

file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/What_are%23_%5b25%5dAIML,_

Chapter 2 Deep Learning

Page | 31

Figure 2.13 LSTM Gate Mechanisms

Data flow at time step t for an LSTM unit. The forget gate and memory cell prevent the

vanishing and exploding gradient problems.

These formulas define the internal mechanisms of the LSTM cell and correspond to the diagram

above.

As illustrated in Figure 2.13, the diagram shows the equations used to compute the forget gate

fₜ, input gate iₜ, candidate memory Cₜ, updated cell state Cₜ, output gate oₜ, and hidden state hₜ.

Figure 2.14 Mathematical Formulation of LSTM Gates and States.

Gate Mechanisms and Information Flow

The weights and biases to the input gate control the extent to which a new value flows into the

LSTM unit. Similarly, the weights and biases to the forget gate and output gate control the

extent to which a value remains in the unit and the extent to which the value in the unit is used

to compute the output activation of the LSTM block, respectively.

The following diagram illustrates the data flow through an LSTM layer with multiple time

steps. The number of channels in the output matches the number of hidden units in the LSTM

layer

Chapter 2 Deep Learning

Page | 32

Figure 2.15 LSTM Layer Architecture and Operations

Data flow for an LSTM with multiple time steps. Each LSTM operation receives the hidden

state and cell state from the previous operation and passes an updated state and cell state to the

next operation.

Applications of LSTM Networks:

LSTMs work well with sequence and time-series data for classification and regression tasks.

LSTMs also work well on videos because videos are essentially a sequence of images. Similar

to working with signals, it helps to perform feature extraction before feeding the sequence of

images into the LSTM layer. Leverage convolutional neural networks (CNNs) (e.g.,

GoogLeNet) for feature extraction on each frame. The following figure shows how to design

an LSTM network for different tasks.[26]

2.3.3.4 Transformers

Recurrent neural networks (RNNs), including LSTMs and GRUs, are state-of-the-art for

sequence modeling and transduction tasks like machine translation. However, their sequential

computation limits parallelization, especially for long sequences. Attention mechanisms

improve dependency modeling but are typically used with RNNs.

The Transformer eliminates recurrence, relying entirely on attention for global dependencies,

enabling greater parallelization and state-of-the-art results. Unlike convolutional models (e.g.,

ByteNet, ConvS2S), the Transformer reduces operations for distant dependencies to a constant.

It is the first model to use only self-attention, avoiding RNNs or convolutions.

file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/Long%23_%5b26%5d_MathsWorks,_

Chapter 2 Deep Learning

Page | 33

Figure 2.16 Transformer Model Architecture with Multi-Head Attention

1. Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical encoders. Each encoders has

two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple,

positionwise fully connected feed-forward network. We employ a residual connection around

each of the two sub-layers, followed by layer normalization. That is, the output of each sub-

layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the

sub-layer itself. To facilitate these residual connections, all sub-layers in the model, as well as

the embedding layers, produce outputs of dimension dmodel= 512.

Decoder: The decoder is also composed of a stack of N = 6 identical Decoders. In addition to

the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs

multi-head attention over the output of the encoder stack. Similar to the encoder, we employ

residual connections around each of the sub-layers, followed by layer normalization. We also

modify the self-attention sub-layer in the decoder stack to prevent positions from attending to

subsequent positions. This masking, combined with fact that the output embeddings are offset

by one position, ensures that the predictions for position i can depend only on the known outputs

at positions less than i.

2. Embeddings and Softmax

Similarly to other sequence transduction models, learned embeddings are used to convert the

input tokens and output tokens to vectors of dimension dmodel. The usual learned linear

transformation and softmax function are used to convert the decoder output to predicted next-

token probabilities. In this model, the same weight matrix is shared between the two embedding

Chapter 2 Deep Learning

Page | 34

layers and the pre-softmax linear transformation, similar to. In the embedding layers, those

weights are multiplied by √ dmodel.

3. Attention

 An attention function can be described as mapping a query and a set of key-value pairs to an

output, where the query, keys, values, and output are all vectors. The output is computed as a

weighted sum of the values, where the weight assigned to each value is computed by a

compatibility function of the query with the corresponding key.[27]

Figure 2.17 Scaled Dot-Product Attention Mechanisms

3.1 Scaled Dot-Product Attention

The scaled dot-product attention mechanism is an important part of Transformer architecture

and works with queries, keys, and values as the input. First, now, the model computes a dot

product over the similarity of each query with all the keys. To avoid any training instability due

to very large similarity scores, the values of these similarity scores are scaled down by dividing

them by the square root of the key dimension.

Each word in a sequence is mapped to three vectors:

 Q = Query

 K = Key

 V = Value

Figure 2.18 Self-Attention Equation

Chapter 2 Deep Learning

Page | 35

These scaled scores are subsequently put through a softmax, which returns the normalized

weights. The weights tell the model how much importance to attach to each value whilst

combining them into a final output. This mechanism enables an efficient focus on only the

relevant parts of the input. Scaled dot-product attention, being much faster and memory-

efficient compared to additive attention that involves computing similarities with a small neural

network, perfectly fits the bill in case of large-scale applications.

Figure 2.19 Scaled Dot-Product Attention Mechanisms

 3.2 Multi-Head Attention

 Multi-head attention is extension of the basic attention mechanism in that it enables the model

to jointly attend to different regions of the input simultaneously. Instead of computing one

attention function, it computes multiple projections of the queries, keys, and values using

different learned projections. They are computed in parallel and concatenated, projected one

last time to produce the final output.

Figure 2.20 Multi-Head Attention Equation

 This enables the model to capture diverse information from different representation subspaces,

thus it is better suited to handle complex patterns. For example, Transformers typically consist

of eight attention heads that run on reduced dimensions in an attempt to provide computational

efficiency.

Chapter 2 Deep Learning

Page | 36

Figure 2.21 Multi-Head Attention Mechanisms

4. Positional Encoding

Transformers lack inherent information about the order of the input sequence due to their

parallel processing nature. Positional encoding is introduced to provide the model with

information about the position of each token in the sequence.

Positional encodings are added to the input embeddings to give the model a sense of token

order. These encodings can be either learned or fixed.[28]

In the original Transformer architecture, fixed sinusoidal functions are used for encoding

positions.

5. Point-wise Feedforward Network

Point-wise feedforward networks are used extensively in transformer architectures. These

networks consist of two linear transformations with a ReLU activation in between. The first

linear transformation expands the dimensionality of each input position and the second reduces

it back to the original dimension. This layer operates independently on each position within the

input sequence, which allows it to efficiently process long sequences in parallel. Its significance

lies in its ability to introduce non-linearity and increase the model's capacity to capture complex

features, improving the performance of tasks like language modeling, translation, and more.

The mathematical formulation is:

Figure 2.22 Feedforward Network Equation

where W1 expands dimensions (e.g., from dmodel to dff), and W2 compresses back to dmodel.

https://www.geeksforgeeks.org/positional-encoding-in-transformers/
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/Architecture%23_%5b28%5d_GeeksforGeeks,_

Chapter 2 Deep Learning

Page | 37

The point-wise feedforward network concept gained prominence with the introduction of the

Transformer model in the seminal paper "Attention Is All You Need" by Vaswani et al. in 2017.

The model's innovative architecture, including this type of feedforward network, revolutionized

the field of natural language processing (NLP).[29]

2.3.3.5 BERT

1.Introduction to BERT

In recent years, deep learning has brought tremendous changes in natural language processing.

Among such great innovations is BERT, by Google, that introduced this powerful bidirectional

training mechanism within the Transformer construct. BERT’s construction is able to capture

deeper contextual relationships in text and set new state-of-the-art benchmarks across the

different NLP tasks. The general-purpose nature of BERT allows it to be easily fine-tuned,

making it well-suited for SQL injection detection, where subtle semantic patterns are crucial.

2.BERT Architecture Overview

The BERT model architecture is a multilayer bidirectional Transformer encoder, based on the

encoder component of the original Transformer model. While the original Transformer use an

encoder-decoder structure where the encoder processes input sequences using self-attention

mechanisms and the decoder combines self-attention with encoder-decoder attention, BERT

focuses exclusively on the encoder to learn deep contextual representations.

Figure 2.23 Main BERT Models

file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/Point-wise%23_%5b29%5d_Envisioning,_

Chapter 2 Deep Learning

Page | 38

 The BERT architecture is available in two main configurations: BERTBASE and

BERTLARGE. BERTBASE consists of 12 encoder layers(Transformer blocks), 768 hidden

units per layer, and 12 attentions heads, resulting in approximately 110 million parameters. In

contrast, BERTLARGE extends the architecture to 24 encoder layers(Transformer blocks),

1024 hidden units, and 16 attentions heads, totaling around 340 million parameters.[30]

 BERT-Base’s encoder uses the standard Transformer encoder design. It is a stack of 12 encoder

layers. Each layer contains two sub-layers, first a multi-head self-attention module and second

a position-wise feed-forward network. In line with the original Transformer, each sub-layer is

wrapped with a residual (add) connection and then followed by layer normalization. Precisely,

the output of each sub-layer is computed as

LayerNorm(x + SubLayer(x)), where SubLayer(x) is either the attention or feed-forward

function. This architecture ensures that the output dimensionality in every layer matches the

input dimensionality, so the representation size remains unchanged across all 12 layers.

 As a result, BERT models are capable of learning more complex contextual representations

from input sequences.

3 Pre-training BERT

In the pre-training stage, BERT is trained on a gigantic corpus of unlabeled text with two

unsupervised tasks:

Masked Language Modeling (MLM):

Instead of predicting the next word in a sequence (as with typical language models), BERT sifts

through and randomly masks some of the input tokens and subsequently learns to predict the

masked tokens from the context in which they appear. For example, given the sentence "The

SQL [MASK] is malicious," the model will learn the missing word is likely "query."

Next Sentence Prediction (NSP):

This task is forecasting whether a specific sentence B has a tendency to follow sentence A

naturally in the original text. This helps in providing the model with an appreciation of

correspondence between sets of sentences, and this is useful for question answering and

sentence classification.

By learning from these two tasks, BERT learns a rich bidirectional language understanding,

which allows it to learn nuanced semantic and syntactic relationships between words in text.

Chapter 2 Deep Learning

Page | 39

4 Fine-tuning

After the pre-training was accomplished, BERT-instance could be fine-tuned to perform

specific downstream tasks, such as text classification, sentiment analysis, named entity

recognition, or in this piece of work, SQL injection detection.

During fine-tuning:

. BERT with weights from pre-training is loaded.

. Then, a simple classification layer is added on top of the output of BERT (e.g., a single dense

layer followed by a softmax or sigmoid activation).

. The entire network, including the pre-trained layers, is then trained on the target dataset with

labeled examples.

This step requires far less time and fewer labeled examples than would normally be required to

train a deep model from scratch, because BERT provides a strong linguistic knowledge base to

begin with.

5 Advantages and Limitations of BERT

BERT has revolutionized natural language understanding by enabling deep bidirectional

context learning. It has set state-of-the-art performance on a wide range of tasks. However, it is

computationally expensive, and fine-tuning may require careful hyperparameter tuning and

preprocessing strategies. Furthermore, its effectiveness may decrease on tasks involving very

short texts or domain-specific language if not properly adapted.

2.4 Related works

2.4.1 Introduction

 SQL Injection remains one of the most persistent and potential threats to web application

security. Over the last decade, researchers have exploited distinct and varying machine-

learning and deep-learning approaches to automate the detection and mitigation of SQL

injection attacks. This chapter is a synthesis of important works in the area, with special

emphasis on advanced techniques that use artificial intelligence to enhance accuracy in

detection, reduce false alarms, and, in some cases, help with prioritization and prevention of

attacks in real-time.

2.4.2 Detection Approaches Using Machine Learning

Early works on SQLi detection focused on the classical machine learning paradigm, such as

Support Vector Machines (SVM), Decision Trees, Naïve Bayes, and Logistic Regression.

These methods generally required engaged features obtained from HTTP request content,

Chapter 2 Deep Learning

Page | 40

URL, or even SQL query structure. They showed decent performances but were constrained

by the quality and view of the features extracted. Sometimes, a minor change in the attack

pattern would deter these methods from detecting them.

With the appearance of a few hybrid methods merging rules with machine learning classifiers

to improve detection, more flexibility and accuracy were introduced but confronted again with

false positive and false negative alarms, especially concerning large-scale data and obfuscated

attacks.

2.4.3 Deep Learning for SQL Injection Detection

Recent research has increasingly turned to deep learning to overcome the limitations of

traditional models. Three notable contributions illustrate the evolution and diversification of

deep learning-based detection approaches.

2.4.3.1 NLP and BERT-Based Detection [31]

Lakhani et al. proposed an NLP approach to SQLi detection. Their model uses BERT or

Bidirectional Encoder Representations from Transformers for contextual feature extraction.

BERT was fine-tuned on a labeled dataset of SQL queries and indicated good performance

with 97% accuracy and 0.8% false positives, and 5.8% false negatives.

The study argues that traditional code-level prevention mechanisms are insufficient and

suggests that NLP-based approaches, such as BERT, offer adaptable detection capabilities for

various SQLi variants.

2.4.3.2 MLP vs. LSTM Comparative Study [32]

Tang et al. did a successful study by comparing Multi-Layer Perceptron and Long Short-Term

Memory networks for exploiting SQL injections in real ISP traffic data. The study involved

feature extraction of eight handcrafted features from URL payloads: number of keywords,

number of special characters, length of the payload, and so on.

The MLP with three hidden layers gave excellent results, with an accuracy of 99.67%,

precision of 100%, and recall of 99.41%. On the other hand, LSTM, on its promise in

sequential learning, gave accuracy results of 97.68% with heavy training time, thus being

inefficient in this task. It was concluded that the feature-rich MLPs were much more efficient

in this task, but the LSTM had potential in more complex scenarios.

2.4.3.3 CNN-LSTM Hybrid with Risk Prioritization [33]

Alan Paul et al. proposed an all-encompassing framework, i.e., SQLR34P3R, which puts the

problem of SQL injection detection into a multi-class classification setting. The system

detects the SQLi, prioritizes the attacks, and aids the prevention strategies. The system

consists of a CNN-LSTM hybrid model, which is trained on a massive dataset of over

520,000 samples collected from the web and network traffic, attaining an average f-score of

97%.

Chapter 2 Deep Learning

Page | 41

Unlike previous approaches, SQLR34P3R performs contextual risk assessment based on

known CVE vulnerabilities and operates its detection engine in real time, catching traffic

from platforms such as DVWA and Vulnerado. The work is unique in that it combines threat

intelligence with deep learning for a comprehensive and usable solution.

2.4.4 Comparative Discussion

These three contributions reflect the maturation of SQL injection detection research:

 Lakhani et al. demonstrated how pre-trained language models can improve detection

with minimal feature engineering.

 Tang et al. emphasized the efficiency of classical MLPs combined with statistical

features from real traffic.

 Alan Paul et al. introduced a real-time system combining deep learning with

vulnerability assessment.

While MLPs are computationally light and achieve high accuracy, models like BERT or

CNN-LSTM provide deeper semantic understanding and adaptability to novel threats. The

choice between these methods depends on the deployment context: lightweight detection at

the edge (MLP), semantic understanding (BERT), or full-stack risk management (CNN-

LSTM).

2.4.5 Summary

 In sum, these works provide promising evidence of how deep learning has been effectively

used to detect SQL injection attacks with high precision and recall. In addition, they show that

the combination of data-driven approaches and domain knowledge (CVE, traffic patterns) can

help maximize performance and applicability. The following chapter details the

implementation and experimental evaluation of our own SQLi detection models, including

both traditional and transformer-based models.

2.5 Conclusion

This chapter explored the fundamentals of machine learning and deep learning, examining their

core concepts, key algorithms, and architectural models. These technologies are the cornerstone

of modern-day artificial intelligence, in the sense that AI systems learn from data and take

decisions based on need. An understanding of these frameworks will thus allow a reader to

understand how advanced models such as BERT are operationalized for complex tasks such as

SQL injection detection. We shall now use this understanding to study deep learning model

implementation in practical cybersecurity scenarios.

Chapter 3 Conception and Implementation

Page | 42

Chapter 3

 Conception and Implementation

3.1 Introduction

This chapter describes the models' design and implementation for SQL injection detection.

Different architectures evaluated in our work include the traditional machine learning and deep

learning approaches. The rationale behind this approach is to assess and compare the models'

performances on the same dataset in order to find the one most suitable for accurately detecting

SQL injection attempts. The next sections describe the dataset employed, as well as the

preprocessing done on it, followed by the design for each of the models and the evaluation

strategy considered for training and testing.

3.2. Dataset

To train an effective deep learning model successfully, we need to make sure the dataset is

properly chosen. For our project, we needed a dataset that includes samples classified into two

categories: queries containing SQL injection and those that do not. Using this dataset, the

trained model will be able to detect whether a query is a SQL injection or a normal query.

After conducting research on Kaggle, we found a collection of "SQL Injection Datasets" on

Kaggle. Among these datasets, we used a collection of datasets that put together by

a person named " Syed Saqlain Hussain Shah" and it contain three (3) datasets.

SQLi.csv contains 3951 samples with 78% classified as normal queries and 28% as malicious

queries.

SQLiV2.csv contains 33726 samples with 66% classified as normal queries and 34% as

malicious queries.

SQLiV3.csv contains 30873 samples with 62% classified as normal queries and 37% as

malicious queries and 1% as other.

 After training and testing multiple machine learning and deep learning models on the three

datasets, we found SQLIV3.CSV to be the most suitable dataset for our project. Models

trained on this dataset were better able to detect SQL injection attacks and benign queries

compared to other datasets, SQLIV3.csv consistently led to a higher accuracy and better

generalization across different models, making it the optimal choice for our final

implementation.

DATA preprocessing

Before training the models, the SQLIV3.csv dataset needs to be preprocessed as follows:

Chapter 3 Conception and Implementation

Page | 43

-We found two trailing commas (,,) at the end of all the lines in the CSV file and removed these

unnecessary characters using a Python script.

- Filters the rows to keep only those that contain exactly 2 columns and removes empty rows.

By applying the above preprocessing steps, we ultimately created a partitioned dataset

containing:

 30,614 SQL queries.

 Each entry consists of a Sentence (the SQL query) and a Label (0 for benign, 1 for SQL

Injection).

Label distribution :

 Normal (Label = 0) : 19,268 queries

 Malicious (Label = 1) : 11,346 queries

Figure 3.1 Label Distribution of The Dataset

3.3 Development Environment Overview

3.3.1 Programming language

Python

Python is widely used in machine learning and deep learning, and for good reason. Its clean and

simple syntax makes it easy to learn and work with, which is especially helpful when building

and testing complex models. A key strong point of Python is its huge selection of

Chapter 3 Conception and Implementation

Page | 44

libraries, which include TensorFlow, PyTorch, Scikit-learn, and Keras.

These libraries offer pre-written code and functions that save time and make the development

process easier. Python also has a huge community of developers and researchers, which means

there’s plenty of documentation, tutorials, and support available online.

Python offers simplicity, flexibility, and strong tools, all of which render it

an optimal language for machine learning and deep learning projects.

3.3.2 Libraries Used

Numpy: The fundamental library for numerical computation in Python, NumPy, handles arrays,

mathematical operations, and prediction outputs such as probability arrays and class labels.

Pandas: The pandas library is efficient for data manipulation and data analysis. we used it in

this study to import the CSV dataset, remove duplicate rows, handle missing data, and cast data

into appropriate formats for training models

Chardet: Chardet library is a character encoding detection library, and we have used it in order

to detect an appropriate encoding for our CSV file which could be read by pandas successfully.

Ktrain : A high-level TensorFlow/Keras library that facilitates easy training, testing, and

interpretation of deep learning models. Consistent with this, we used it to transform data into

BERT-compatible format, train a text classification model, and evaluate the performance of the

model.

Matplotlib: matplotlib is a graph and chart creation library. We leveraged it to plot class

distributions, training loss and validation loss, training accuracy and validation accuracy, and

the confusion matrix.

3.3.3 Development setup

3.3.3.1 Visual Studio Code

 Visual Studio Code (VS Code) is free, open-source software meant for coding, developed by

Microsoft. Its support many programming languages such as Python, C++, JavaScript, etc.

Equipped with syntax highlighting, code completion (IntelliSense), a debugging tools, and a

customizable user interface, and an integrated terminal.

 VS Code is very extensible and its capability can, therefore, be enhanced by any user with

thousands of extensions that support frameworks, debugger.

 It has support for Markdown to style text, allowing users to document alongside their code.

With its lightweight might combined with powerful development features, Visual Studio Code

is among the most popular editors for web developers, data scientists, DevOps engineers, and

others.

Chapter 3 Conception and Implementation

Page | 45

3.3.3.2 Jupyter Notebook

 The Jupyter Notebook is an open-source, browser-based interactive environment that offers

users the ability to create and share documents that contain live code, equations, visualizations,

and narrative text. Data scientists, machine learning specialists and scientific researchers are

massive user bases of Jupyter Notebooks. They are used for easy experimentation,

reproducibility, and collaborative purposes. A notebook is divided into cells, cells can be

individually run. Having such a structure makes the Jupyter Notebook very handy for stepwise

analysis, prototyping, and reporting. The format enhances understanding by combining code

with explanations and visual output.

3.3.3.3 Google Colab

 Google Colaboratory (or Colab) is a free cloud service that allows users to write and execute

Python in Jupyter Notebook environment without the necessity of local setup. Supporting

machine learning, deep learning, data analysis, and research workflows. Colab offers access to

computing resources , i.e., CPUs, GPUs, and TPUs, right within the browser. It is majorly used

for prototyping, or collaborative development, built-in support for Google Drive and support

for major Python libraries such as TensorFlow, PyTorch, and Pandas.

 For our work, we used The NVIDIA Tesla T4. It is a powerful energy-efficient GPU designed

for a wide range of AI workloads. It was built over the Turing architecture and includes Tensor

Cores to accelerate deep learning compute and RT Cores for ray tracing. The T4 GPU comes

with 16 GB of GDDR6 memory and supports mixed precision computing. It also delivers up to

260 TOPS (Tera Operations per Second) for INT8 inference. It is mostly used in cloud

environments (like Google Colab) for efficiently accelerated machine learning workflows.

3.4 Models Implemented

 This section on models presents the various models that have been developed for detecting

SQL injections. A number of machine learning models and deep learning models were trained

and evaluated with varying architecture and hyperparameters. The aim is to see how traditional

techniques and modern, state-of-the-art techniques differ in input to achieve results on the same

dataset.

For each model, we describe the structure, the main hyperparameters used during training, and

the results obtained. These models are as follows:

Support Vector Machine (SVM)

Logistic Regression (LR)

Multilayer Perceptron (MLP)

Recurrent Neural Network (RNN)

Long Short-Term Memory (LSTM)

Chapter 3 Conception and Implementation

Page | 46

Bidirectional Encoder Representations from Transformers (BERT)

3.4.1 Support Vector Machine (SVM)

We used a Support Vector Machine with a linear kernel (`kernel='linear'`) and regularization

parameter C = 0.1. The input queries were transformed into vectors by applying TF-IDF with

3000 features as the maximum. We dropped duplicates and split the dataset into 80% training

and 20% testing sets prior to model training.

3.4.2 Logistic Regression (LR)

We trained a Logistic Regression classifier to detect SQL injection payloads using TF-IDF

features (maximum of 3000 features). The classifier was initialized with solver='liblinear' and

penalty='l1'. After removing duplicate queries, the dataset was divided into 80% for training

and 20% for testing.

3.4.3 Multilayer Perceptron (MLP)

We trained a Multi-Layer Perceptron (MLP) neural network Using ReLU activation functions

with three hidden layers comprising 512, 256, and 128 units respectively. For binary

classification, the output layer employed a sigmoid activation function. Using TF-IDF with a

maximum of 3000 characteristics, input queries were vectorized.

Using the binary cross-entropy loss function and the SGD optimizer with a learning rate of 0.01,

the model was compiled. Using 20% of the training set for validation, it was trained for 18

epochs on 80% of the data with early stopping activated (patience = 3). To guarantee clean input

data, duplicates were deleted from the test set prior to evaluation.

Build and Compile the Model

Chapter 3 Conception and Implementation

Page | 47

Train with Early Stopping

3.4.4 Recurrent Neural Network (RNN)

 We trained a Recurrent Neural Network to detect sequential patterns in SQL injection attempts

by feeding in tokenized and padded input queries. Character filters were disabled, and case

sensitivity was preserved during preprocessing to maintain the SQL syntax and structure.

 The first layer of the model architecture was an Embedding layer of 128 dimensions, followed

by a SimpleRNN layer of 128 units. To avoid overfitting, we put in a Dropout layer at 0.5. Then

a Dense layer of 64 units was added with ReLU activation and L2 regularization (λ = 0.01).

The output layer has a sigmoid activation for binary classification.

 The model was compiled using binary crossentropy as the loss function and the Adam

optimizer with a learning rate of 0.0001. The model was trained for 20 epochs with early

stopping at 3 epochs' patience, and the best weights from validation were restored.

Chapter 3 Conception and Implementation

Page | 48

Build and Compile the Model

Train with Early Stopping

3.4.5 Long Short-Term Memory (LSTM)

We have trained an LSTM network to recognize sequential patterns in SQL injection attempts

by feeding in tokenized and padded sequences. Character filters were disabled and case

sensitivity was preserved during preprocessing to preserve the integrity of the SQL syntax.

The model architecture consisted of a 256-dimensional embedding layer, followed by two

stacked LSTM layers with 256 and 128 units respectively. This was followed by a fully

connected Dense layer of 64 units with ReLU activation, and a sigmoid-activated output layer

for binary classification.

Training was carried out for 30 epochs using the Adam optimizer, a learning rate of 0.001, and

the binary cross-entropy loss function to minimize. Early stopping with patience of 3 epochs

was employed to prevent overfitting, and the best model weights were restored based on

validation performance.

Chapter 3 Conception and Implementation

Page | 49

Build and Compile the Model

Train with Early Stopping

While several classical and deep learning models were implemented (see Sections 3.4.1 to

3.4.5), particular emphasis is placed on the BERT model due to its recent state-of-the-art

performance and its central role in our contribution. Therefore, Section 3.4.6 provides a more

detailed explanation of its implementation.

3.4.6 BERT

3.4.6.1 Why BERT for SQL Injection Detection

 We selected BERT as our SQL injection detection model due to its high capacity to

comprehend both meaning and context of textual information, particularly in structured input

such as SQL queries. What makes BERT distinctively effective is the fact that it processes the

whole input bidirectionally which helps it pick up on subtle patterns that might indicate an

attack. Unlike older models that generally rely on basic keyword matching or predefined rules,

BERT learns from the actual composition and intent of the query. After fine-tuning on a

database consisting of normal and malicious SQL queries, the model was able to accurately

identify suspicious inputs that could potentially represent injection attempts. Thus, BERT

proves to be a reliable and effective tool for web application security improvement.

Chapter 3 Conception and Implementation

Page | 50

 We decided to use the BERTBASE model for our implementation mainly because our dataset

contains 30,614 labeled queries. Since BERTBASE is less complex than BERTLARGE, it

trains faster and uses fewer resources, while still performing well for classification tasks like

detecting SQL injection attacks.

3.4.6.2 BERT Code and Implementation

 In this section, we present the code and detailed implementation of our SQL injection detection

model, which is based on the BERT architecture.

Reading and displaying the dataset

 This code detects the character encoding of the CSV file SQLiV3_cleaned2.csv using the

chardet library and then reads the file into a pandas DataFrame (df) with the correct encoding.

This ensures the file is read without encoding errors, especially if it's not in UTF-8 format.

Creating the training and test sets

 In this code, the text data (Sentence column) and the corresponding label data (Label column)

are extracted from the DataFrame and converted to lists. Afterward, the texts_from_array

function of ktrain is used to do the preprocessing of these texts so that they can be used for fine-

tuning the model. With preprocess_mode='bert', the word text is passed through a BERT

tokenizer that lowercases, tokenizes into word pieces, pads, and then sequences exceeding 100

tokens are automatically shortened. It is intentionally split into training and validation (with

20% of samples used for validation) sets (val_pct=0.2), the class_names parameter specifies

the two label classes allowing the function to handle the binary classification task of SQL

Chapter 3 Conception and Implementation

Page | 51

injection detection Then, the function returns the preprocessed train and validation sets (x_train,

y_train, x_test, y_test), while the preproc object contains the tokenizer and configurations used

during the preprocessing stage.

Building the model

This code initializes a text classification model using the BERT architecture with the

preprocessed training data (x_train, y_train) and the associated preprocessing configuration

preproc. It sets up the model ready for fine-tuning on our dataset.

Fine-tuning the BERT model

The ktrain.get_learner function creates a learner object that combine the model and training

procedure. The model argument takes the pre-trained BERT model that we want to fine-tune.

The training data (train_data) is passed as a tuple containing the input features (x_train) and

their corresponding labels(y_train). Validation data (val_data), given as a tuple, then get their

inputs and labels (x_test and y_test) used to measure performance of the model during training.

The batch_size=32 means that the training data will be divided into mini-batches of 32 samples,

which helps with efficient gradient updates and memory usage. Returned as the learner object,

it can now hold the model and data so it is ready to be fine-tuned and validated and later used

for prediction purposes.

 This method of fit_onecycle is used to fine-tune the pretrained model. The learning rate (lr=2e-

5) control the update of the model weights and has been made very low for stable fine-tuning.

The number of epochs is 4, meaning that the training dataset is passed through the model four

times.

 The One Cycle learning rate policy applied by this method slowly increases the learning rate

Chapter 3 Conception and Implementation

Page | 52

from a very low value to max value and then brings it down to its lowest rate, helping to improve

training speed and overall model performance.

3.5 Summary of Model Architectures

 To summarize the architecture and training settings of all implemented models, including

BERT, we present in the following tables a comparative overview of the key hyperparameters

and configurations.

Model Preprocessing Architecture Hyperparameters

SVM

- TF-IDF (max 3000

features)

- Deduplication

- Linear kernel - C=0.1

LR

- TF-IDF (max 3000

features)

- Deduplication

- Linear kernel
- penalty='l1'

- solver='liblinear'

MLP

- TF-IDF (max 3000

features)

- Deduplication

- 512-256-128

(ReLU/Sigmoid)
- learning_rate=0.01

RNN

- Tokenization +

padding

- Lowercasing

- Deduplication

- SimpleRNN(128) +

Embedding(128)

- learning_rate

=0.0001

LSTM

 Tokenization +

padding

- Lowercasing

- Deduplication

- Embedding(256) +

LSTM(256 → 128)
- learning_rate=0.001

BERT

- BERT tokenizer

- Lowercasing

- Deduplication

- BERTBASE (12 layers)

- lr=2e-5 (OneCycle)

- maxlen =100

- batch_size = 32

Table 3.1 Overview of HyperParameters and Architectures Used in Model Implementation

Chapter 3 Conception and Implementation

Page | 53

 As shown in Table 3.1, traditional models like SVM and Logistic Regression were paired with

TF-IDF vectorization and simple linear kernels, allowing for efficient training and

interpretability. The regularization parameters (C for SVM, L1 penalty for LR) were chosen to

balance generalization and sparsity.

 For neural networks, the MLP was designed with three dense layers that progressively shrink

to capture nonlinear patterns in TF-IDF features, whereas RNN and LSTM models processed

tokenized input sequences that preserve the syntactic structure of queries. RNN architecture

remains relatively shallow so as to prevent overfitting, whereas LSTM is stacked with memory

units that capture long-term dependencies.

 BERT, on the other hand, is the language model under the transformers trained on big corpora.

Fine-tuning with a small learning rate of 2e-5 and an OneCycleLR scheduler guarantees the

achievement of stable convergence. The preprocessing step⎯truncation and lowercasing⎯keeps

in line with the pretraining settings of BERTBASE.

The adjustments on architecture and preprocessing were made so that a fair comparison can be

effected across the various learning paradigms, adapting each model to its strong points in text

classification.

Model Optimization Regularization Epochs

SVM - N/A (solver) - Implicit L2 N/A

LR -N/A (solver) -L1 penalty N/A

MLP - SGD + BCE -Early Stopping (patience=3) 27

RNN - Adam + BCE
-Dropout(0.5) + L2(λ=0.01)

-Early Stopping (patience=3)
 20

LSTM -Adam + BCE
-Dropout(0.3) + L2(λ=0.001)

-Early Stopping (patience=3)
 30

BERT - AdamW + BCE - Built-in dropout 4

Table 3.2 Optimization Techniques, Regularization Methods, and Training Epochs Used per Model

Chapter 3 Conception and Implementation

Page | 54

 Each model was configured and hyper parametrized by several configurations and

hyperparameters to ensure they reached their maximal performance. The general settings

outlined in the above table are essentially the best combinations available for the experiments

carried out. Different learning rates, optimizers, regularizers, and epochs were observed with

respect to their behavior during training. For example, with recurrent models like RNN and

LSTM, there were issues with vanishing gradient; hence, hidden units were tuned, dropout

layers employed, and early stopping used. Also, the epochs needed control not to lead to

overfitting, which was more critical for deeper architectures. This final configuration, including

using AdamW for BERT, dropout for RNNs, and early stopping for MLP and LSTM,

consistently showed better performance than alternatives. They provide a compromise between

the model's complexity, its rate of training, and its capacity to generalize, thus standing as the

best of all configurations we tried.

3.6 Conclusion

In this chapter, we described the building and preparing processes for the various SQL injection

detection models. We gave the dataset, how it was cleaned and processed, the model structure,

and the parameters used in training. The work also offered some code examples and comparison

tables to keep things clear.

Testing of the models and analyzing results follow in this; therefore, this work was laying the

foundation for the next step. In Chapter 4, we will assess the performance of these models with

test data and on fresh unseen data as well: normal and attack. We will compare the results to

know which one is the best.

Chapter 4 Performance Evaluation and Resaults

Page | 55

Chapter 4

 Performance Evaluation and Results

4.1 Introduction

 In this chapter, we present the evaluation of our SQL injection detection models. After

building, training and fine-tuning the models in the previous chapter, we now assess their

performance using different metrics. The evaluation is done on both the test dataset and unseen

data to check how well each model generalizes. We also compare our results with other existing

works and provide explanations for the performance differences.

4.2 Performance Evaluation Metrics

 The classification performance of the fine-tuned BERT model in detecting SQL injection

attacks was evaluated with the help of multiple performance evaluation metrics. They include

accuracy, precision, recall, and F1-score, which help to analyze the effectiveness of the model

detecting malicious and benign SQL queries.

Confusion Marix

A confusion matrix is a table that summarizes the performance of a classification model by

comparing its predicted labels to the true labels. It displays the number of true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN) of the model's

predictions.[34]

Figure 4.1 Confusion Marix

True Positive (TP) : It shows the number of correctly identified positive cases.

True Negative (TN) : It shows the number of correctly identified negative cases.

Chapter 4 Performance Evaluation and Resaults

Page | 56

False Positive (FP) : It shows the number of incorrectly predicted positive cases.

False Negative (FN) : It shows the number of incorrectly predicted negative cases.

 Accuracy:

 Accuracy is a fundamental metric for evaluating the performance of a classification model,

providing a quick snapshot of how well the model is performing in terms of correct predictions.

 Precision:

 Precision is a measure of a model’s performance that tells you how many of the positive

predictions made by the model are actually correct. This metric reflects the model’s ability to

avoid false positives, high precision means that when the model predicts “positive,” it is usually

correct.

 Recall:

It measures how well the model captures all relevant positive cases. This measures the model’s

ability to capture positive instances, high recall means most true positives are detected by the

classifier.

 F1-score:

The F1-score is metric that balances both precision and recall. This metric usually tells us

how precise (correctly classifies true positives) and robust (minimizes false negatives) our

classifier is. The more the F1 score better will be performance.

Chapter 4 Performance Evaluation and Resaults

Page | 57

4.3 Evaluation on Test Set (20%)

4.3.1 Results Presentation

In this section, we present the performance results of the proposed models evaluated on the test

dataset, which represents 20% of the original data. We report common classification metrics

such as Accuracy, Precision, Recall, and F1-score to assess each model's ability to correctly

detect SQL injection attempts.

Model Accuracy Precision Recall F1 Score

SVM 98.56% 99.86 % 96.25% 99.02%

LR 98.12% 99.72% 95.25% 97.44%

MLP 99.44% 99.51% 98.98% 99.25%

RNN 99.06% 100% 97.51% 98.74%

LSTM 99.62% 99.73% 99.25% 99.49%

BERT 99.92% 100% 99.78% 99.89%

Table 4.1 Performance Comparison of Models on SQL Injection Dataset

 The experimental results demonstrate outstanding performance across all evaluation metrics.

Traditional machine learning models such as Support Vector Machine (SVM) and Logistic

Regression are strong contenders, for instance, the SVM model got an accuracy of 98.56% and

an F1-score of 99.02%. Contrary to popular belief, which states that SVM accuracy tends to

saturate on complex tasks, our model indeed showed fine generalization ability along with

confirmation of training and validation curves.

 The deep learning models; the MLP and RNN also enhanced the system. LSTM had slightly

higher performance: 99.62% accuracy and 99.49% F1-score. But BERT was the strongest

performer, with 99.92% accuracy, 100% Precision and 99.78% recall-an indication that it is

unbeatable when it comes to detecting SQL injections from very complex types of input

patterns.

 Beyond the ability of any model, the dataset was a big factor for such astounding

performances, having been cleaned and preprocessed to minimize noise and ensure higher

consistency of training data. Extensive hyperparameter tuning was done for every model to

extract the maximum out of the training, including trying out numerous configurations before

finally settling on the best.

These results demonstrate the effectiveness of using deep learning, especially Transformer-

based models, for SQL injection detection. The next section provides additional visualizations

Chapter 4 Performance Evaluation and Resaults

Page | 58

(learning curves and confusion matrices) to support these findings and illustrate the training

behavior of selected models.

Comparative Analysis : Proposed Models vs. Existing Work

To evaluate our models, we explored similar works on Kaggle, GitHub, and in published

articles. We compared our results with existing machine learning and deep learning models

applied to the same dataset. This comparative analysis highlights how our models outperform

previous approaches in terms of accuracy, precision, and F1-score, especially with a more

complete use of the dataset.

We found several works on Kaggle that applied both machine learning and deep learning

models to similar problems using the same dataset.

[35] : Created by Hassan Bechara, this Kaggle notebook applies Support Vector Machine

(SVM) and Logistic Regression (LR) models on the same dataset we used. However, it only

uses 3,941 samples, which we consider insufficient for a reliable evaluation.

[36] : Created by Aman Rajput, this Kaggle notebook also implements SVM and Logistic

Regression models using nearly the same dataset and over 30,000 samples, closely matching

our experimental setup. It served as a strong comparative baseline for our work.

[37]: Created by Syed Saqlain Hussain Shah, the same author who originally published the

dataset we used. In this notebook, he applied a Multi-Layer Perceptron (MLP) model but used

only 4,200 samples from the dataset, which we consider too limited to fully explore its

potential.

[38] : Created by Saumya Verma, this Kaggle notebook also implements a Multi-Layer

Perceptron (MLP) model using the same dataset. It use only 4,200 samples, which limits the

depth of evaluation and generalization.

[39] : Created by Derara Duba, this GitHub project implements an LSTM model using the

same dataset and the same number of samples as our work (30,907). It provides a relevant

deep learning baseline for performance comparison.

Chapter 4 Performance Evaluation and Resaults

Page | 59

Source Model Samples Used Accuracy Precision F1 Score

Our Work SVM 30,602 98.56% 99.86% 99.02%

[35] SVM 3,941 90.87% 94.5% 86%

[36] SVM 30,920 80.83% N/A 36.86%

Our Work LR 30,602 98.12% 99.72% 97.44%

[35] LR 3,941 90.74% 93% 86%

[36] LR 30,920 93.69% N/A 85.55%

Our Work MLP 30,602 99.44% 99.51% 99.25%

[37] MLP 4,200 97.74% 92.99% N/A

[38] MLP 4,200 97.98% 94.01% N/A

Our Work LSTM 30,602 99.62% 99.73% 99.49%

[39] LSTM 30,907 96.42% 99.62% 96.34%

Table 4.2 Proposed Models vs. Existing Work

file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/hassan%23_%5b31%5d_Kaggle,_
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/Aman%23_%5b32%5d_Kaggle,_
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/hassan%23_%5b31%5d_Kaggle,_
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/Aman%23_%5b32%5d_Kaggle,_
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/cmdrsam,%23_%5b34%5d_Kaggle,_
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/cmdrsam,%23_%5b34%5d_Kaggle,_
file:///C:/Users/m/Library/Containers/com.apple.mail/Data/Library/Mail%20Downloads/70244213-748E-4591-92E1-BF45DF9CD61E/Derara%23_%5b35%5d_Kaggle,_

Chapter 4 Performance Evaluation and Resaults

Page | 60

 4.3.2 Visual Performance Analysis

Figure 4.2 F1-Score Across Cross-Validation Folds for the SVM Model

For the SVM model, additional cross-validation was performed. The F1-score remained

consistently high across folds, and the training/cross-validation curve shows a stable gap,

confirming that the model does not overfit and generalizes well.

Figure 4.3 LSTM Training and Validation Loss over Epochs

This figure illustrates the training and validation loss progression for the LSTM model. The

close alignment of both curves and the continuous decrease in loss demonstrate stable learning

and the absence of overfitting.

Chapter 4 Performance Evaluation and Resaults

Page | 61

4.3.3 Performance Analysis of BERT

 The results obtained reflect the model’s ability to correctly classify instances and demonstrate

its effectiveness in detecting SQL injection queries benign queries.

4.4.3.1 Training Loss Curve

We show the training loss curve to better understand how the BERT model learned during

training. The loss keeps going down steadily, which means the model is learning well without

problems like overfitting. This shows that the training went smoothly and the model works well.

Figure 4.4 Training Loss Curve for the Fine-Tuned BERT Model

4.3.3.2 Model Evaluation on New Unseen Data

First, we created a predictor object that use the fine-tuned model and preprocessing pipeline to

make predictions on new data:

We then took a test dataset named sqliv2_utf8.csv. From this dataset, 500 examples were

sampled for each class (label 0, label 1), a total of 1000 examples. The prediction results are

summarized below:

For Label = 1:

Chapter 4 Performance Evaluation and Resaults

Page | 62

The model correctly predicted all 500 samples as SQL injections, reaching an accuracy of

100% for this class. This means that no positive instances were missed by the model.

For Label = 0:

Of the 500 Label 0 samples, the model predicted 499 were predicted correctly as benign

queries, and 1 was predicted incorrectly as a SQL injection. An accuracy of 99.8% for the

benign queries.

Overall Performance :

Below is the confusion matrix showing these results:

Figure 4.5 Confusion Matrix on Unseen Data

The confusion matrix offers a comprehensive overview of the model's ability to correctly

classify each category on unseen data, demonstrating its ability to accurately distinguish

between Class 0 (benign queries) and Class 1 (SQL injection) instances. The analysis shows

exceptional performance across all standard evaluation metrics:

1. Accuracy (99.90%) :

With almost perfect accuracy, the model made 999 out of 1000 correct predictions. This

exceptional performance suggests that the model has learned the underlying patterns in the data

extremely well. That one misclassification accounts for just 0.1% error rate.

Chapter 4 Performance Evaluation and Resaults

Page | 63

2. Precision (99.80%)

With a single false positive, this implies the precision value of 99.8%, which means that

whenever the model predicted Class 1, it was almost surely correct. High precision is

particularly valuable in scenarios where false positives carry significant costs.

3. Recall (100%)

The perfect recall score indicates the model successfully identifies all actual positive cases

without any false negatives. This is crucial for applications where missing positive cases (Type

II errors) could have serious consequences, such as detecting SQL injection attacks.

4. F1-Score (99.90%)

Almost perfectly balanced between precision and recall, the F1 indicates that there is a clear

balance of these metrics with no trade-offs. This means that in terms of the model, one metric

is not sacrificed for the other: achieving high precision and perfect recall at the same time.

Model Accuracy Precision Recall F1 Score

SVM 99,08% 99.76% 99,08% 99.02%

LR 97,44% 98.41% 97,44% 98,70%

MLP 98,99% 99.06% 98,99% 99,49%

RNN 98,85% 98.73% 98,85% 99,42%

LSTM 98,35% 98.96% 97.85% 99,17%

BERT 99.90% 99.80% 100% 99.90%

Table 4.3 Performance Comparison of Models on Unseen SQL Injection Dataset

 Among all the models evaluated, BERT stands out with the highest accuracy of 99.90%,

alongside with excellent precision and perfect recall, showing that BERT has a clear advantage

over some traditional and neural approaches, however, with F1 scores of SVM, MLP, and RNN

all above 99%, these three approaches also perform very well. Logistic Regression holds up

surprisingly well, given its simplicity, LSTM has very decent results, but lags alittle behind the

others. Overall, while all models demonstrate strong performance, BERT has a slight edge,

offering a more refined and consistent detection capability.

Chapter 4 Performance Evaluation and Resaults

Page | 64

4.4 Conclusion

 This chapter presented a detailed evaluation of various models for SQL injection detection.

Traditional approaches such as SVM and Logistic Regression achieved strong results. However,

deep learning methods, particularly LSTM and BERT, performed even better. BERT achieved

outstanding performance, with an accuracy of 99.90% and a recall of 100% on the test set. It

also showed excellent generalization on unseen data. These results confirm that transformer-

based architectures are highly effective in accurately and reliably detecting SQL injection

attacks.

Page | 65

General Conclusion

 In this thesis, we studied the problem of SQL Injection attacks, which are among the most

common and dangerous threats to web applications. We explored different approaches to detect

these attacks using both traditional machine learning models and deep learning techniques.

 Our experiments showed that classical models such as Logistic Regression and SVM gave

good results when using proper text preprocessing and vectorization. However, deep learning

models performed better. Among them, BERT, a pre-trained language model based on the

Transformer architecture, achieved the best performance. It reached very high accuracy and

recall, even when tested on new and unseen data.

 These results confirm the strong potential of deep learning in the field of cybersecurity.

BERT’s ability to understand the context and meaning of queries makes it especially suited for

detecting malicious SQL statements. Its success in this task shows that language models can

play a key role in building more secure web applications.

 Even if the results are promising, future work could involve testing the model in real-world

environments, increasing the size and diversity of the dataset, and adapting the system to detect

other types of attacks. This would make the solution more robust and useful in practice.

 To conclude, this work proves that modern deep learning models like BERT are powerful

tools for improving web security. They offer a high level of precision and can help in building

smarter and more adaptive defense systems against SQL Injection attacks

Page | 66

References
[1] OWASP, “SQL Injection (SQLI)”

https://owasp.org/www-community/attacks/SQL_Injection

[2] Bright security, “SQL Injection Attack”

https://brightsec.com/blog/sql-injection-attack/

[3] Radware, “SQL Injection: Examples, Real Life Attacks & 9 Defensive Measures”

https://www.radware.com/cyberpedia/application-security/sql-injection/

[4] Beagle Security “Error based SQL Injection”

https://beaglesecurity.com/blog/vulnerability/error-based-sqli.html

[5] Dafydd Stittard and Marcos Pinto,The web Application Hacker’s Handbook: Finding and

Exploiting Security Flaws, 2nd Edition, Wiley Publishing Inc, 2011.

[6] OWASP, “Blind SQL injection”

https://owasp.org/www-community/attacks/Blind_SQL_Injection

[7] Moxso, “SQL Tautology”

https://moxso.com/blog/glossary/tautology

[8] Justin Clarke, SQL Injection Attackes and Deffense

[9] OWASP Cheat Sheet Series, “SQL Injection Prevention”

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

[10] OWASP Cheat Sheet Series, “Query Parameterization”

https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html

[11] PHP “Prepared statements and stored procedures”

https://www.php.net/manual/en/pdo.prepared-statements.php

[12] PHP , “Validation”

https://www.php.net/manual/fr/filter.examples.validation.php

[13] Mitchell, T. M, Machine Learning. McGraw-Hill, 1997.

[14] Amer F.A.H. ALNUAIMI and Tasnim H.K. ALBALDAWI, An overview of machine

learning classification techniques.

[15] IBM ,“Machine Learning”

https://www.ibm.com/think/topics/machine-learning

[16] Reinforcement Learning: An Introduction Second edition, in progress Richard S. Sutton

and Andrew G. Barto c 2014, 2015

[17] GeeksforGeeks ,“ Logistic Regression in Machine Learning”

https://www.geeksforgeeks.org/understanding-logistic-regression/

https://owasp.org/www-community/attacks/SQL_Injection
https://brightsec.com/blog/sql-injection-attack/
https://www.radware.com/cyberpedia/application-security/sql-injection/
https://beaglesecurity.com/blog/vulnerability/error-based-sqli.html
https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://moxso.com/blog/glossary/tautology
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://www.php.net/manual/en/pdo.prepared-statements.php
https://www.php.net/manual/fr/filter.examples.validation.php
https://www.ibm.com/think/topics/machine-learning
https://www.geeksforgeeks.org/understanding-logistic-regression/

Page | 67

[18] MathsWorks, “Support Vector Machine”

https://www.mathworks.com/discovery/support-vector-machine.html

[19] IBM ,“Machine Learning”

https://www.ibm.com/think/topics/machine-learning

[20] TeckTarget, “What is deep learning and how does it work?”

https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network

[21] Medium “Basic Notations and Representation: Neural Networks”

https://medium.com/@anushruthikae/basic-notations-and-representation-neural-

networks-d46a1be97471

[22] V7 Labs, “Activation Functions in Neural Networks [12 Types & Use Cases]”

https://www.v7labs.com/blog/neural-networks-activation-functions#3-types-of-neural-

networks-activation-functions

[23] Shelf, “Why Recurrent Neural Networks (RNNs) Dominate Sequential Data Analysis”

https://shelf.io/blog/recurrent-neural-networks/

[24] Amazone Web Services, “What is RNN (Recurrent Neural Network)?”

https://aws.amazon.com/what-is/recurrent-neural-network/?nc1=h_ls

[25] AIML, “What are the advantages and disadvantages of a Recurrent Neural Network

(RNN)? ”

https://aiml.com/what-are-the-advantages-and-disadvantages-of-a-recurrent-neural-network-

rnn/

[26] MathsWorks, “Long Short-Term Memory (LSTM)”

https://www.mathworks.com/discovery/lstm.html

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, Illia Polosukhin, Attention is all you need, version 5, 2017.

[28] GeeksforGeeks, “Architecture and Working of Transformers in Deep Learning”

https://www.geeksforgeeks.org/architecture-and-working-of-transformers-in-deep-learning/

[29] Envisioning, “Point-wise Feedforward Network”

https://www.envisioning.io/vocab/point-wise-feedforward-network

[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding,”

[31] S. Lakhani, A. Yadav, and V. Singh, “Detecting SQL Injection Attack using Natural

Language Processing,”

[32] P. Tang, W. Qiu, Z. Huang, H. Lian, and G. Liu, “Detection of SQL injection based on

artificial neural network,”

https://www.mathworks.com/discovery/support-vector-machine.html
https://www.ibm.com/think/topics/machine-learning
https://www.techtarget.com/searchenterpriseai/definition/deep-learning-deep-neural-network
https://medium.com/@anushruthikae/basic-notations-and-representation-neural-networks-d46a1be97471
https://medium.com/@anushruthikae/basic-notations-and-representation-neural-networks-d46a1be97471
https://www.v7labs.com/blog/neural-networks-activation-functions#3-types-of-neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions#3-types-of-neural-networks-activation-functions
https://shelf.io/blog/recurrent-neural-networks/
https://aws.amazon.com/what-is/recurrent-neural-network/?nc1=h_ls
https://aiml.com/what-are-the-advantages-and-disadvantages-of-a-recurrent-neural-network-rnn/
https://aiml.com/what-are-the-advantages-and-disadvantages-of-a-recurrent-neural-network-rnn/
https://www.mathworks.com/discovery/lstm.html
https://www.geeksforgeeks.org/architecture-and-working-of-transformers-in-deep-learning/
https://www.envisioning.io/vocab/point-wise-feedforward-network

Page | 68

[33] A. Paul, V. Sharma, and O. Olukoya, “SQL injection attack: Detection, prioritization &

prevention,”

[34] EVIDENTLY AI, “How to interpret a confusion matrix for a machine learning model”

https://www.evidentlyai.com/classification-metrics/confusion-matrix

[35] Kaggle, “hassan bechara, sql-injection-detection”

https://www.kaggle.com/code/hassanbechara/sql-injection-detection

[36] Kaggle, “Aman Rajput, PPAI Project: Comparison with other ML algorithms”

https://www.kaggle.com/code/amanrajput27/ppai-project-comparison-with-other-ml-

algorithms

[37] Kaggle, “Syed Saqlain Hussain Shah, SQL Injection dectection using neural network”

https://www.kaggle.com/code/syedsaqlainhussain/sql-injection-dectection-using-neural-

network

[38] Kaggle, “cmdrsam, Information security project”

https://www.kaggle.com/code/cmdrsam/information-security-project

[39] Kaggle, “Derara Duba, SQL-Injection-Detection-via-RNN-autencoder-and-LSTM-

classifier”

https://github.com/DeraraD/SQL-Injection-Detection-via-RNN-autencoder-and-LSTM-

classifier

https://www.evidentlyai.com/classification-metrics/confusion-matrix
https://www.kaggle.com/code/hassanbechara/sql-injection-detection
https://www.kaggle.com/code/amanrajput27/ppai-project-comparison-with-other-ml-algorithms
https://www.kaggle.com/code/amanrajput27/ppai-project-comparison-with-other-ml-algorithms
https://www.kaggle.com/code/syedsaqlainhussain/sql-injection-dectection-using-neural-network
https://www.kaggle.com/code/syedsaqlainhussain/sql-injection-dectection-using-neural-network
https://www.kaggle.com/code/cmdrsam/information-security-project
https://github.com/DeraraD/SQL-Injection-Detection-via-RNN-autencoder-and-LSTM-classifier
https://github.com/DeraraD/SQL-Injection-Detection-via-RNN-autencoder-and-LSTM-classifier

	General Introduction
	Chapter 1
	SQL Injections
	1.1 Introduction
	1.2 SQL injection
	1.2.1 Definition
	1.2.2 How SQL Injection Works
	Real-Life SQL Injection Attack Examples

	1.3 Techniques of SQL Injection
	1.3.1 Error-Based SQL Injection
	1.3.2 Blind SQL Injection
	1.3.2.1 Content-Based Blind SQL Injection
	1.3.2.2 Time-Based Blind SQL Injection

	1.3.3 Tautology-Based SQL Injection
	1.3.4 Union-Based SQL Injection

	1.4 Methods to prevent SQL Injection attacks
	1.4.1 Prepared Statements (with Parameterized Queries)
	1.4.2 Stored Procedures
	1.4.3 Input validation
	1.4.4 Escaping All User-Supplied Input

	1.5 Conclusion

	Chapter 2
	Machine Learning and Deep Learning
	2.1 Introduction
	2.2 Machine learning
	2.2.1 Machine Learning Types
	2.2.1.1 Supervised Learning (SL):
	2.2.1.2 Unsupervised Learning:
	2.2.1.3 Reinforcement Learning:

	2.2.2 Machine learning algorithms
	2.2.2.1 Logistic regression
	2.2.2.2 Support Vector Machine (SVM)

	2.2.3 Real-world machine learning use cases

	2.3 Deep Learning
	2.3.1 Artificial Neural Networks (ANNs)
	2.3.4 Deep Learning Training Cycle
	2.3.2 Activation functions
	2.3.2.1 Non-Linear Activation Functions

	2.3.3 Deep learning architectures
	2.3.3.1 Recurrent Neural Networks
	2.3.3.2 Long Short-Term Memory Networks
	2.3.3.4 Transformers
	2.3.3.5 BERT

	2.4 Related works
	2.4.1 Introduction
	2.4.2 Detection Approaches Using Machine Learning
	2.4.3 Deep Learning for SQL Injection Detection

	2.5 Conclusion

	Chapter 3
	Conception and Implementation
	3.1 Introduction
	3.2. Dataset
	3.3 Development Environment Overview
	3.3.1 Programming language
	3.3.2 Libraries Used
	3.3.3 Development setup
	3.3.3.1 Visual Studio Code
	3.3.3.2 Jupyter Notebook
	3.3.3.3 Google Colab

	3.4 Models Implemented
	3.4.1 Support Vector Machine (SVM)
	3.4.2 Logistic Regression (LR)
	3.4.3 Multilayer Perceptron (MLP)
	3.4.4 Recurrent Neural Network (RNN)
	3.4.5 Long Short-Term Memory (LSTM)
	3.4.6 BERT
	3.4.6.1 Why BERT for SQL Injection Detection
	3.4.6.2 BERT Code and Implementation

	3.5 Summary of Model Architectures
	3.6 Conclusion

	Chapter 4
	Performance Evaluation and Results
	4.1 Introduction
	4.2 Performance Evaluation Metrics
	4.3 Evaluation on Test Set (20%)
	4.3.1 Results Presentation
	4.3.2 Visual Performance Analysis
	4.3.3 Performance Analysis of BERT
	4.4.3.1 Training Loss Curve
	4.3.3.2 Model Evaluation on New Unseen Data

	4.4 Conclusion

	General Conclusion
	References
	[1] OWASP, “SQL Injection (SQLI)”
	[2] Bright security, “SQL Injection Attack”
	[3] Radware, “SQL Injection: Examples, Real Life Attacks & 9 Defensive Measures”
	[4] Beagle Security “Error based SQL Injection”
	[5] Dafydd Stittard and Marcos Pinto,The web Application Hacker’s Handbook: Finding and Exploiting Security Flaws, 2nd Edition, Wiley Publishing Inc, 2011.
	[6] OWASP, “Blind SQL injection”
	[7] Moxso, “SQL Tautology”
	[8] Justin Clarke, SQL Injection Attackes and Deffense
	[9] OWASP Cheat Sheet Series, “SQL Injection Prevention”
	[10] OWASP Cheat Sheet Series, “Query Parameterization”
	[11] PHP “Prepared statements and stored procedures”
	[12] PHP , “Validation”
	[13] Mitchell, T. M, Machine Learning. McGraw-Hill, 1997.
	[14] Amer F.A.H. ALNUAIMI and Tasnim H.K. ALBALDAWI, An overview of machine learning classification techniques.
	[15] IBM ,“Machine Learning”
	[16] Reinforcement Learning: An Introduction Second edition, in progress Richard S. Sutton and Andrew G. Barto c 2014, 2015
	[17] GeeksforGeeks ,“ Logistic Regression in Machine Learning”
	[18] MathsWorks, “Support Vector Machine”
	[19] IBM ,“Machine Learning”
	[20] TeckTarget, “What is deep learning and how does it work?”
	[21] Medium “Basic Notations and Representation: Neural Networks”
	[22] V7 Labs, “Activation Functions in Neural Networks [12 Types & Use Cases]”
	[23] Shelf, “Why Recurrent Neural Networks (RNNs) Dominate Sequential Data Analysis”
	[24] Amazone Web Services, “What is RNN (Recurrent Neural Network)?”
	[25] AIML, “What are the advantages and disadvantages of a Recurrent Neural Network (RNN)? ”
	[26] MathsWorks, “Long Short-Term Memory (LSTM)”
	[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention is all you need, version 5, 2017.
	[28] GeeksforGeeks, “Architecture and Working of Transformers in Deep Learning”
	[29] Envisioning, “Point-wise Feedforward Network”
	[30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,”
	[31] S. Lakhani, A. Yadav, and V. Singh, “Detecting SQL Injection Attack using Natural Language Processing,”
	[32] P. Tang, W. Qiu, Z. Huang, H. Lian, and G. Liu, “Detection of SQL injection based on artificial neural network,”
	[33] A. Paul, V. Sharma, and O. Olukoya, “SQL injection attack: Detection, prioritization & prevention,”
	[34] EVIDENTLY AI, “How to interpret a confusion matrix for a machine learning model”
	[35] Kaggle, “hassan bechara, sql-injection-detection”
	[36] Kaggle, “Aman Rajput, PPAI Project: Comparison with other ML algorithms”
	[37] Kaggle, “Syed Saqlain Hussain Shah, SQL Injection dectection using neural network”
	[38] Kaggle, “cmdrsam, Information security project”
	[39] Kaggle, “Derara Duba, SQL-Injection-Detection-via-RNN-autencoder-and-LSTM-classifier”

