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Introduction

Sequences, defined as ordered collections of elements, are used to model sequential
phenomena and discrete processes. Series, which are infinite sums of elements in a sequence,
are used to explore concepts such as convergence, divergence and summation. These notions
are particularly relevant to the study of functions, where Taylor and Fourier series are used to
represent and analyze complex functions.

They are fundamental concepts in mathematics, playing a crucial role in various branches such
as analysis, number theory and differential equations. Sequences and series play a crucial role
in many scientific and technical disciplines. Here are a few notable applications in various
fields

Their study goes back centuries, with significant contributions from famous mathematicians
such as Isaac Newton, Gottfried Wilhelm Leibniz and Augustin-Louis Cauchy. Not only are
sequences and series essential theoretical tools, they also have practical applications in fields
such as physics Quantum mechanics: Fourier series are used to solve the Schrodinger equation
in quantum systems. Eigen function series help to represent quantum states of particles in
potentials. Electromagnetism: Laurent and Taylor series are used to solve Maxwell's equations
in complex media. Fourier series are also used in the analysis of electrical circuits and signals.
Engineering: Signal Processing: Fourier series and wavelet transforms are essential for signal
processing, particularly in data compression, noise reduction and frequency analysis.
Structural Analysis: In civil and mechanical engineering, series are used to analyze structural
vibrations and model deformations under various loads. Economics and Finance: Time Series
Models: Sequences and series are fundamental in time series models for the analysis of
financial data. For example ARIMA (Auto Regressive Integrated Moving Average) models use
sequence concepts to predict market movements. Compound interest calculation: Geometric
series are used to calculate compound interest and investment returns over extended periods.
Computer science: Algorithms : Recurrent sequences, such as Fibonacci sequences, are used in
the design of efficient, optimized algorithms for a variety of problems, including sorting and
searching. Data Compression: Fourier series and wavelets play a key role in image and video
compression techniques, such as JPEG and MPEG.

Number Theory: Zeta functions: Infinite series are essential for the study of Riemann zeta
functions, which have profound implications in number theory, particularly in relation to the
distribution of prime numbers. Dirichlet series: used in the proofs of many number theorems,
these series help to analyze the properties of arithmetic functions.

Numerical Analysis: Approximation Methods: Taylor polynomials and Fourier series are used
to approximate complex functions, facilitating the numerical calculation of solutions for
differential and integral equations. Solving Differential Equations: Series methods are
commonly used to find analytical and numerical solutions to ordinary differential equations
and partial differential equations.

Many authors can be found in the literature among others Bartle gives a classic text covering
the fundamental concepts of real analysis, including sequences and series, Knopp has given a
thorough reference on infinite series, exploring both theory and practical applications. Apostol
in his book, covers many aspects of analysis, including Fourier series and Taylor series, In his
reference in mathematical analysis, Rudin, offers a solid grounding in the theory of sequences
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and series. Zygmund, has studied trigonometric series in depth, with applications to Fourier
analysis, and as research articles in his work Hardy has given an important background dealing
with the convergence of multiple series, Dym in his article explores the properties of Fourier
series and their applications. A reference on function theory, including discussions of Laurent
and Taylor series is due to Titchmarsh. We can add to this bibliography, online resources Khan
Academy - Sequences and Series. A series of educational videos covering the basic concepts of
sequences and series, available on Khan Academy and MIT Open Course Ware - Single
Variable Calculus, a free online course including material on Taylor and Fourier series,
available on MIT Open Course Ware. In his thesis, Smith explored the applications of series in
various engineering problems. A technical report discussing the convergence properties of
special series used in mathematical physics was prepared by Brown. Finally, we end with
review articles by Stein, featuring interesting book and related articles on complex analysis,
including in-depth discussions of Laurent series. Gasquet, provides a comprehensive text
combining Fourier analysis with practical applications, including the use of series for filtering
and numerical computation.

This work, entitled "Studies in Sequences and Series", aims to offer an in-depth exploration of
these topics. We'll start with a review of basic concepts and fundamental theorems, before
delving into more advanced developments and their modern applications.

The aim is to provide readers not only with a solid understanding of the underlying principles,
but also to familiarize them with the latest advances in this dynamic field. Whether you're a
student, a researcher, or a practitioner, this document will serve as a comprehensive guide to
navigating the rich landscape of sequences and series, and to applying these concepts to real
and theoretical problems.

At the end we give a bibliography which offers a diverse set of resources for deepening
understanding of sequences and series, covering both theoretical and practical aspects. The
books, articles and online resources listed here provide a solid foundation for any advanced
study of the subject.
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Chapter 01

Sequences and Series

This chapter introduces sequences and series, important mathematical constructions that
are useful when solving a large variety of mathematical problems, the content of this chapter is
considerably different from the content of the chapters before it, while the material we learn
here definitely, falls under the scope of “calculus”, we will make very little use of derivatives or
integrals. limits are extremely important , though , especially limits that involve infinity .
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1-Sequences

We commonly refer to a set of events that occur one after the other as a sequence of events. In
mathematics, we use word sequence to refer to an ordered set of numbers, i.e., a set of
numbers that “occur one after the other.”

For instance, the numbers 2, 4, 6, 8, ..., from a sequence . The order is important; the first
number is 2, the second is 4, etc . It seems natural to seek a formula that describes a given
sequence, and often this can be done. for instance , the sequence above could be described by

the function a(n) = 2 n , for the values of n = 1,2, ... To find the 10" term in the sequence
we would compute a(10) . This leads us to the following formal definition of a sequence

* A sequence is a function a(n) whose domain is N

* The range of a sequence is the set of all distinct values of a(n)

* The terms of a sequence are the values a(1), a(2), ..., which are usually denoted with
subscripts as aq,a; , ...

A sequence a(n) is often denoted as {a,, }

Notation : We use N to describe the set of natural numbers, that is, the integers 1,2, 3, ...

the expression 3 ! refers to the number 3. 2. 1 = 6 In general,
n'=n.(n-1).(n—-2)..2.1

where n is a natural number. We define 0! = 1. while this does not immediately make sense;
it makes many mathematical formulas work properly.

List the first four terms of the following sequences.

L ta) = )

2. {a}={4+ (-1)"}

( )n(n+1)
1) 2
3. {an) = {— }

L tan) = {5

1
n:]. |:> al= 3—:3
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32 9
n=2 ©=> a,= >—=-—=-=:=45
2! 2x1 2
33 27 9
n=3 0= a;= > = =2 =45
3! 3x2x1 2
34 34 33 33 27
n=4 = a,= -—=-——=—2_=->-2-33g
4! 4x3x2x1  4%8%x2x1 8 8
35 243 81
n=5 = ag= —=——__="=2025
5!  5x4x3x2x1 40
36 729 81
n=6 —> Qg = —=————=—=1,012
6! 6X5x4x3x2x1 80
37 2187 243
n=7 = ;= m-=—-—-—=—=0,43
7! 7x6x5x4x3x2x1 560
. - a
Using d'Alempart's rule: lim = = [
n—-oo anp
311
1 {an}= {3}
3n+1
. a - 1)!
o lim™ = lim—%
n—-oco Qap n—oo
n!
. 3n+l n!
=lim
n—ooo (n+1)! 3n

3n. 31

=lim =2—
n-o (n+1)n!
31

1m
n-oo (n+1)

1m
n-oo (n+1)

3
)

=0<1

3" .
{a,} = {;} (so sequence is convergent)

7n!
311
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Figure A

We can plot the terms of a sequence with a scatter plot. The " X "-axis is used for the values of, and the values
of the terms are plotted on the "y "-axis. To visualize this sequence, see Figure A

2. {a,}={4+ (-1)"}

n=1 = a; =4+ (-1)! =3
n=2 = a, =4+ (-1)%2 =5
n=3 = a; =4+ (-1)3=3




s 5 5 5

a, = 4+ (-1)* =5
as = 4+ (-1)°> =3
6 = 4+ (-1)¢ =5
a; = 4+ (-1)” =3

Q

~ o s

=
=>
=>
=>

an =4+ (—1)"

Figure B

Note that the range of this sequence is finite, consisting of only the values 3 ans 5. This

sequence is plotted in figure B




1 n(n+1)
- 2
3. {an} = {L}

n2

1(2)
n=1 = a,= (—11)2T _ (—11)1 _ 4
(—1)2(2—3) (-1)3 -1
n=2 —=> a,= ==
3
n=3 = a;= S =Cr=-l-omn
(—1)@ (-0 1
h=4 = a= 2 16 16
(_1)¥ (-t 1
n=>5 = A= =T
(_1)¥ (-n* 1
n==6 —= dg = o2 = 36 = —g
VT _ P _ 1
h=7 =  a;= 72 49 49

Using d'Alempart's rule: lim 221 = [,

n-oco an
( )n(n+1)
-1 2
o o=

n2

(- 1)(n+1)-((n+ 1)+1)/2

lim —*1 = Jjm —— &
n-o a, n—-oo (—1)"'(n+1)/2
nZ
(_1)(11+1)'(11+2)/2
IR T (n+1)2
—1111_)11010 Conm+D/2
n2
. (n+1)-ﬁ
=lim &2 — 2 x
n—-oo (n+1) (D)™ 2

_ ]im (_1)(n+2)/2

n—ooco  (m+1)?2 X (/2

. _ /2.1
= lim &2 CD

nooco @+1Z (=Hn




i (mD1m?
_1l;l—>lg (n+1)2

N

-n
n-oo n2+2n+1

im =%
oo %

=1
n

=-1<1. (sosequenceis convergent)

1.5

ad = (71)nw(ﬂ+1 /2/71,2

0.5

-1 °

Figure C

We gave one extra term to begin to show the pattern of signsis —,—,+,+,—,—, ... , due to the fact that the
exponent of - 1 is a special quadratic. This sequence is plotted in Figure C




Find the n*® term of the following sequences, i.e., find a function that describes each of the
given sequences..

1.2,5,8,11,14,...
2.2,-5,10,-17,26,-37,...

3.1,1,2,6,24,120,720,..

4 5 5 15 5 25
277278747 32"

we should first note that there is never exactly one function that describes a finite set of
numbers as a sequence. There are many sequences that start with 2, then 5, as our first
example does. We are looking for a simple formula that describes the terms given, knowing
there is possibly more than one answer.

1. Note how each term is 3 more than the previous one. This implies a linear function would be
appropriate: a(n) = a,, = 3n + b for some appropriate value of b. As we want a; = 2 we set
b = —1thusa, = 3n—1, see Figure a (1)

using d'Alempart's rule: lim 221 = [,

n-oco an

{ay} ={83n-1}

. Qpyp . 3m+1)-1
lim =lim——

n-o a, n-oo 3n—-1

. 3n+3-1
= lim
n-oo 3n-1

3n+2
im
no>o3n—1

. -3n
lim —

n—oo

I
—

The sequence is inconclusive
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L /=]

*

W

+

N

*

-

*

3n — 1

a(1

ap =

*

*

*

*

*

*

*

39

36

33

27

24

21

18

15

12

16

15

14

13

12

1"

10

Figure a (1)
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2. First notice how the sign changes from term to term. This is most commonly accomplished
by multiplying the terms by either (—1)" or (—1)™*1. Using (—1)" multiplies the odd terms
by (—1) ; using (—1)™*1 multiplies the even terms by (—1) . As this sequence has negative
even terms, we will multiply by (—=1)"*1 .

After this, we might feel a bit stuck as to how to proceed. At this point, we are just looking for
a pattern of some sort: what do the numbers 2,5,10,17, etc, have in common? There are
many correct answers, but the one that we'll use here is that each is one more than a perfect
square. Thatis,2 = 11 +1,5 =22 +1,10 = 32 + 1, etc . Thus our formula is

a,= (—1D™?1-(n?+ 1), see Figure b (1).

a1~
=0 b4
4 F ~
20y — (|— Z D7* = 2T T ) -
zoo
4
-
150
%'
-
T oo L
-
]
s50 =
aE
o~ AG
> =13
b - = = o 7= E E
o
=
-
—=e =<
-
nA
—Too >
><
— 750 -
& L =

—zoo C 7D

Figure b (1)




3. One who is familiar with the factorial function will readily recognize these numbers. They
are 0!,1!,2!,3!, etc. Since our sequences start with n = 1 , we cannot write a,, = n! , for this
misses the 0! term. Instead, we shift by 1, and write a,, = (n — 1)! , see Figure c (1)

an = (1 — 1)1 7

Figure c (1)




4. This one may appear difficult, especially as the first two terms are the same, but
a little * “sleuthing" will help. Notice how the terms in the numerator are always
multiples of 5, and the terms in the denominator are always powers of 2 . Does
something as simple as

5n
a, = —

= work?

Whenn =1 , we see that we indeed get a, = ; as desired. When n = 2 we get

10 _ 5 . . .

a; =—,=3 Further checking shows that this formula indeed matches the other
terms of the sequence, see

Figured (1)

using d'Alempart's rule: lim 221 = [,

n-oco an

5(n+1)

o lim®t = [jm 20
n-o 0an n—oo %
— lim 5(n+1) 2n
- n—oo 2(m+1) 5n

= i S5n+1) 2"
- n—oo 2121 5n

. 5n+1 1
=lim —/)— X —
n-o 2 5n

=lim
n—oo 21‘5?1

=lim -2
n—oo 107

1
_E<1

(So sequence is convergent)

0



d(1)
an
Ay = EF
A
+
C
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D
+
E
+
F
+
G
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+ J
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1 3 4 H [ 7 E] 9 10 n 12 14
N 5n
an E

Figure d (1)




Let {a,} be asequence and let L be a real number. given any € > 0, if an m can be found such that
la, — L| < € for allmn > m , then we say the limit of {a,,} , as n approaches infinity , is L, denoted

lima, =L

n—oo

If lim a,, exists,we say the sequence converges ,otherwise ,the sequence diverges

n—oo

this definition states , informally, that if the limit of a sequence is L, then if you go far enough out along the

sequence , all subsequent terms will be really close to L. of course, the terms “far enough“ and “really close’

are subjective terms , but hopefully the intent is clear

Theorem 01: Limit of a sequence

Let {a,,} be a sequence and let f(x) be a function whose domain contains the positive real numbers where
f(n) =a, forallnin N.

1. If lim f(x) does not exist, we can not conclude that
X—00

n—-oo

instance, we can define a sequence {a,} = {cos(2rn)} .

Let f(x) = cos(2mn) . Since the cosine function oscillates over the real numbers, the limit lim f(x) does not
X—00

exist.

However, for every positive integer n, cos (2nmn) =1,s0 lima, =1
n—oo

2. If we can not find a function f(x) whose domain contains the positive real numbers where
f(n) = a, forallnin N, we can not conclude lim a,, does not exist. It may, or may not, exist.
n—oo

determine the convergence or divergence of the following sequences.

3n2-2n+1
1{a,} = { n2-1000 }

2. {a,} = {cosn}

3 (e} = (2]

3x2-2x+1
1.W n hat lim ———
e can state that lim == 060

thus the sequence {a,} converges, and its limit is 3. A scatter plot of every 5 values of a,, is

= 3 (We could have also directly applied ' H\"opital’s Rule.

lim a,, does not exist. It may, or may not, exist. For

@
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given in Figure D

Ay

10

an, = (3n” -

-2n +1)/(n*—

1000)

(d)

-5

\
ey

a, = (3n®*—2n+1)/(n*— 1000)

2. The limit lim cos x does not exist, as cos x oscillates (and takes on every value in
n—-0o

[-1, 1] infinitely many times). Thus we cannot apply Theorem 01.

The fact that the cosine function oscillates strongly hints that cos n , when n is restricted to
N, will also oscillate. Figure E, where the sequence is plotted, shows that this is true. Because
only discrete values of cosine are plotted, it does not bear strong resemblance to the familiar

cosine wave.

1 N
FI glirn

E



Figure E

We conclude that lima,, does not exist.
n—-oo

EY)

3. We cannot actually apply Theorem o1 here, as the function f(x) = % is not well defined.

(What does (—1)VZ mean? In actuality, there is an answer, but it involves complex analysis,

@




beyond the scope of this text.) So for now we say that we cannot determine the limit. (But we
will be able to very soon.) By looking at the plot in Figure F, we would like to conclude that
the sequence converges to o. That is true, but at this point we are unable to decisively say so.

Y
1.5
n
ap = (—1)"/n
1
B

0.5 L

D

L .F K M W v

e U u P
0 ® L e ;e , e o e L
5 ‘G .L 10 °® ® ® e [] 20
c L]
@
-05
A
1le
(f)

15

4,

1

(f) a, = (—1)"/n

Figure F

-1 n
It seems that ( n)

converges to o but we lack the formal tool to prove it. The following

theorem gives us that tool.

Theorem 02: Absolute value theorem

let a,, be a sequence. lim|a,| =0, thenlima, =0
n—oo mn—oo

E



determine the convergence or divergence of the following sequences.

L (a){2)

n

2 an}z{(—n"(nﬂ)}

n

1. This appeared in Example 03 we want to apply Theorem 02, so consider the limit of {a,}

. . -1
lim|a,|] = lim |u|
n—oo n

X—00

1
= lim-
n—-oon

=0

since this limit is 0, we can apply Theorem 02 and state that lim{a,} = 0, see Figure F
mn—-oo

fai= ()

n

(_1)n+1
(n+1)
(G

n

. a. .
o lim2L=1lim

n—-oo Qp n—oo

s (_1)n+1 n
_1111_% (n+1) X (-1

. D™ (-1)! n
=lim - b))
n-oo (n+1) ="

. -n
=lim
n-ooo n+1

- -n
=lim —
n—ooo N

=-1<1.
(So sequence is convergent)

2. Because of the alternating nature of this sequence (i.e., every other term is multiplied by),

(-D*(x+1)
X

we cannot simply look at the limit lim , and we can try to apply the techniques of
X—00

Theorem 02

im—-=

—oco0 N

lim|a,| = lim

n—»oo X—00

|(—1)"7En+1)| =7ll n+1 1

g



We have concluded that when we ignore the alternating sign, the sequence approaches 1. This
means we cannot apply Theorem 02, it states the the limit must be o in order to conclude
anything.

Since we know that the signs of the terms alternate and we know that the limit of |a,| is 1, we
know that as n approaches infinity, the terms will alternate between values close to 1 and -1 ,
meaning the sequence diverges. A plot of this sequence is given in Figure G.

y
E an = (—1)"% (n+1)/n
° - : K )
) ° ° . .\-' .x .s .J T
0 [
—1 = - L ‘m ‘w “o .H .R
c L] ® *
. ]
(2
A
2l e
‘Z
® a,=(—1)"x(n+1)/n

Figure G

We continue our study of the limits of sequences by considering some of the properties of
these limits.

E



Theorem 03: Properties of the limits of sequences

Let {a,} and {b,,}be sequences such that lima,, = L , limb,, = K, and let c be a real number.

n—oo n—oo

1.lim(a, + b,) =L+K 3.lim(a,/b,) =L/K, K+o
n—-oo n—-oo

2. lim(a,, - b,) =L-K 4. lim(c-a,) =c-L
n-ooo n—-oo

Let the following sequence, and their limits, be given:

o {an}={nni} ,and Tlli_)m.oan =0
o b)={(1+2)"} and limb, = e

o {c,} ={nsin(i)}, andlimc, =5
n n—oo

We will use Theorem to answer each of these.

1. Since lim a,,=0 and lim b,, = e , we conclude that lim(a,, + b,)=0+ e= e.So even though

n—oo n—oo n—oo
we are adding something to each term of the sequence b,,, we are adding something so
small that the final limit is the same as before.

2. Since limb,, = e and limc, = 5, we conclude that lim(b,, - ¢,)= e-5=5e

n—oo n—oo n—oo

3. Since lim a,,=0, we have lim 1000 - a,, = 1000 - 0 = 0. It does not matter that we

n—-oo n—oo

multiply each term by 1000; the sequence still approaches o. (It just takes longer to get
close to 0.)

There is more to learn about sequences than just their limits. We will also study their
range and the relationships terms have with the terms that follow. We start with some
definitions describing properties of the range.

1. A sequence {a,} is said to be bounded if there exists real numbers m and M such that
m<a,<MforallninN .

2. A sequence {a,} is said to be unbounded if it is not bounded.

3. A sequence {a,} is said to be bounded above if there exists an M such that a,, < M for all n in
N it is bounded below if there exists an m such that m < a,, forallnin N .

i




Example 06: Determining boundedness of sequences

Determine the boundedness of the following sequences.

Lo = )
2. {a,} ={2"}
Solution

1. The terms of this sequence are always positive but are decreasing, so we have
0 < a, < 2forall n.Thus this sequence is bounded, Figure H illustrates this.

Figure H

@



2. The terms of this sequence obviously grow without bound. However, it is also true that these
terms are all positive, meaning 0 < a,, . Thus we can say the sequence is unbounded, but also

bounded below. Figure I illustrates this.

100

(%)

Figure I

@




Theorem 04: Convergent sequences are bounded

let {a,} be a convergent sequence. Then {a,} is bounded.

In Example 05 we saw the sequence {b,,} = {(1 + %)"} , where it was stated that
lim b,, = e . (Note that this is simply restating part of Theorem 05.) Even though it may be

n—oo

difficult to intuitively grasp the behaviour of this sequence, we know immediately that it is
bounded.

. . . 1
Another interesting concept to come out of Example 06 again involves the sequence ~. We

stated, without proof that the terms of the sequence were decreasing. That is, that a,,,1 < a,

for all n. (This is easy to show. Clearly n< n + 1. Taking reciprocals flips the inequality:
1 1

n  (n+l)
are important, so we give this property a name.

. This is the same as a,, > a,,,1 . ) Sequences that either steadily increase or decrease

1. A sequence {a,} is monotonically increasing if a, <a,,q forall n,
A <a; <az3<--a, <0auiq ..

2. A sequence {a,} is monotonically decreasing if a,, > a, 4 forall n,
aq = a, = as = R/ = Api oo

3. A sequence is monotonic if it is monotonically increasing or monotonically decreasing.
NOTE: It is sometimes useful to call a monotonically increasing sequence strictly increasing if

a, < a,,q forall ;ie, we remove the possibility that subsequent terms are equal . A similar
statement holds for strictly decreasing

Determine the monotonicity of the following sequences.

1 {ay} = {~=} 3 {ay} = {%}
2 (e = (221 + o) = {7}

In each of the following, we will examine a,,,, — a,, . If a,,,1 — a,, > 0, we conclude that

a, < a,,1and hence the sequence is increasing. If a,,,1 — a,, < 0, we conclude that

a, > a,,1and the sequence is decreasing. Of course, a sequence need not be monotonic and
perhaps neither of the above will apply.

-



We also give a scatter plot of each sequence. These are useful as they suggest a pattern of
monotonicity, but analytic work should be done to confirm a graphical trend.

n+1
1 {an} = {7}
Analytical

_n+2 n+l
In1 = O =0y~

_ (n+2)(n)—(n+1)2
- (n+1)n

_n2+2n— (n?+2n+1)
- n(n+1)

_ aflon 21

n(n+1)

-1
T nn+1)

<0

Since a1 — a, <0 for all n,we conclude that the sequence is decreasing .

Graphical

v

a, = (1 +n)/n

Figure ]




2 {a = {25

n+1
Analytical

_ (m+D?+1 n?+1
(n+1 n n+2 n+1

_(m+1)2+1)(n+1)—-(n?+1)(n+2)
- (n+2)(n+1)

_ (m2+1+2n+1)(n+1)—(n%+1)(n+2)
- (n+2)(n+1)

_(n?+2+2n)(n+1)-(n3+2n2+n+2)
- (n+2)(n+1)

_ m34+2n?+2n4+n?+242n) -3 +2n%+n+2)
- (n+1)(n+2)

=;f§+3n2 +4-n+,24){{—2n2 —n—/

(n+1)(n+2)

_ n*+3n
T (m+1)(n+2)

Since a, ;1 — a, > 0 for all n,we conclude that the sequence is increasing .

Graphical

n=(n"41)/(n+1)

Figure K




2 {an) = {22

we can clearly see in Figure L where the sequence is plotted, that it is not monotonic.
However, it does seem that after the first 4 terms it is decreasing. To understand why, perform
the same analysis as done before:

n+1)%2 -9 n?-9
Mm+1)2-10(n+1)+26 n%2-10n+26

Ani1 — Ap=

_ (n?+1+2n)-9 n?-9
T (n2+1+2n)-10n-10+26  n2-10n+26

_ n%+2n-8 n2-9
T n2-8n+17  n2-10n+26

__(n?+2n-8)(n?-10n+26)—(n?-9)(n>-8n+17)
- (n2-8n+17)(n2-10n+26)

_n*-10n3+26n%+2n%-20n%+52n—8n2+80n-208-n*+8n3—17n2+9n%-72n-153
- (n2-8n+17)(n%-10n+26)

_—}({—an+132n—208+§«n’{—8n2—72n+158

(n%2-8n+17)(n2-10n+26)

_ —-10n?+60n-55
T (n2-8n+17)(n%2-10n+26)

—10n? + 60n — 55 = () =———) A= (+60)% — 4 X (—55) x (—10)

A= 1400
= —ef;riggﬁ _ +e-2m ~113
VA=+/1400 =10V14 has two solution ;
-60-10V14  +6+V14
M= - 2 87

We want to know when this is greater than, or less than, 0. The denominator is always positive;
therefore we are only concerned with the numerator. Using the quadratic formula, we can
determine that —10n? + 60n — 55 = 0 when n, ,n, . So for, n < 1,13 the sequence is
decreasing. Since we are only dealing with the natural numbers, this means that a; > a, .

Between nq andn,, forn=2,3 and 4, we have that a,,1 > a, and the sequence is
increasing. (That is, when = 2,3 and 4, the numerator —10n? + 60n — 55 from the fraction
above is.)

When, n > n, for > 5, we have that —10n? + 60n — 55 < 0, hence a,;;; — a, < 0, so the
sequence is decreasing.

In short, the sequence is simply not monotonic. However, it is useful to note that for > 5, the
sequence is monotonically decreasing.

g



a, = (n®*—9)/(n? —10n + 26)

Figure L

1o = 2]

Analytical

Again, the plot in Figure M shows that the sequence is not monotonic, but it suggests that it is
monotonically decreasing after the first term. We perform the usual analysis to confirm this.

_ (n+1)2 n?
ne1 = @n = 000 ~ o

_ (n+1)2n!—n2 (n+1)!
- nl(n+1)!

_ (n+1)2.at!/—n2 (n+ l)nf
- (n+1)lpt

@



__#+2n+1-nd 2

(n+1)!

_-n®+2n+1
(n+1)!

When n = 1, the above expression is< 0, for > 2, the above expression is < 0 . Thus this
sequence is not monotonic, but it is monotonically decreasing after the first term.

Graphical

a, = n?/n!

0.5

(m) a, = n?/n!

Figure M

@



Theorem 05: Bounded monotonic sequence are convergent

1. Let {a,} be a bounded, monotonic sequence. Then {a,} converges; lim a,, exists.
n-oo
2. Let {a,} be a monotonically increasing sequence that is bounded abouve. Then {a,,} converges.

3. Let {a,} be a monotonically decreasing sequence that is bounded below. Then {a,} converges.

2-Infinite Series

Given the sequence {a,} = {1/2"}
n=1—2m a;= 1/2
N=2ee a,=1/4
N=3=— a3=1/8
n=4=—= a,=1/16

consider the following sums:

a; = 1/2 = 1/2
a, + a = 1/2 + 1/4 = 3/4
a, + a, +az = 1/2 + 1/4 + 1/8 = 7/8
a; + a, + a3 + a, = 1/2 + 1/4 + 1/8 + 1/16 = 15/16

In general, we can show that:
a, + a; + a3 + ... Ay = =1—2—n

Let S, be the sum of the first n terms of the sequence {1/2"} . From the above, we see that
S.= 1/2, 8,= 3/4,etc. Our formula at the end shows that §,, = 7—-1/2".

Now consider the following limit:

limS, = lim(1 —1/2") = 1
n—oo

n—oo
This limit can be interpreted as saying something amazing: the sum of all the terms of the

sequence {1/2"} is 1.} This example illustrates some interesting concepts that we explore in
this section. We begin this exploration with some definitions.

.




let {a,} be a sequence.
1. The sum Y,,_; @, is an infinite series (or, simply series)
2. Let S, = ¥, a; , the sequence {S,,} is the sequence of n'* partial sums of {a,, }

3. If the sequence {S,,} converges to L, we say the series },;_; a,, converges to L, and we write
Z;.lo=1 a, =L

4. If the sequence {S,} diverges, the series Y-, a, diverges

Using our new terminology, we can state that the series Y, 1/2™ converges, and
Yme11/2" =1

We will explore a variety of series in this section. We start with two series that diverge,
showing how we might discern divergence.

Theorem 06: Properties of summations

1. YL, ¢ = c-n ,where cis a constant.
2. ?=m (a; £ by)= 2?=m a; + ?=m b;

n — n
3. Yicm €@ = € X

4. Z],-'zm a +Y 4 = Yim
5 ?=1 Cp- n(n2+1)

6. ?:1 iz _ n(n+1)6(2n+1)

73 #=( )

1. Let {a,} = {n?}.Show ¥, a, diverges.

2. Let {b,} ={(—1)"*'}.Show ¥, b, diverges.

1.{a,} ={n?}

Consider S,,, the n®* partial sum.
S, =ay + a; + a3 + ...+ a,

=12 + 22 + 32 4 .. + n?

-




By Theorem 06, this is

since lim §,, =
n—oo

_n(n+1)(2n+1)
6

o , we conclude that the series Yo, n? diverges. It is instructive to write

Yoy n? = oo for this tells us how the series diverges: it grows without bound.

A scatter plot of the sequences {a,} and {S,,} is given in Figure N. The terms of {a,,} are
growing, so the terms of the partial sums {S,,} are growing even faster, illustrating that the

series diverges.

Graphical

'

S, =mn*x(1+n)+x(2n+1)/6

(n)

(n)

S, =n*(n+1)*(2n+1)/6

Figure N

2.{b} ={(-1)™"}

E



The sequence {b,} starts with 1,—1,1,—1 Consider some of the partial sums {S,,} of {b,} :

Sl=
SZ=
S;=1
S4_=0

1 nisodd

This pattern repeats; we find that §,, = { 0 niseven

As {S,} oscillates , repeating 1,0,1,0, ..., we conclude that lim S,, does not exist , hence
n—-oo
Yo . (=™ diverges .

A scatter plot of the sequence {b,,} and the partial sums {S,,} is given in Figure O. When n is
odd, b,, = §,, so the marks for b,, are drawn oversized to show they coincide.

Graphical

(o)

Figure O

E



One important type of series is a geometric series.

A geometric series is a series of the form

o oT'=1+1+ r24r3 44

Note that the index starts at n=0, not n=1.

We started this section with a geometric series, although we dropped the first term of 7. One
reason geometric series are important is that they have nice convergence properties.

Theorem 07: Convergence of geometric series

consider the geometric series Yy 7™

1— rn+1

1. The nt* partial sum is: S, =

2. The series converges if, and only if 1 . When |r| < 1,

1
Zn=oT" =17

check the convergence of the following series. If the series converges, find its sum.

Ly, (3) 2,553

o (3\"
L% (3)
Sincer = 3/4 < 1, this series converges. By Theorem 07, we have that

o (3\"_ 1 _ 1 _1_ _
2"=0(Z) ={sa-13-— =1x4 =4

4

N




However, note the subscript of the summation in the given series: we are to start with n = 2
Therefore we subtract off the first two terms, giving:

Na())=4-1-0=1

Graphical
hv & o ®
E ®
= [ ]
3 [ ]
C
.B
| Sa=4x(1—(3/4)""") (P)
a, = (3/4)"
‘K
OL M
N 1PN o
- .F’ .Q »R .s .

Sp=4*x(1—(3/4)"+1)
an = (3/4)"

(»)

Figure P




2. Y03
Sincer > 1 , the series diverges. (This makes "common sense”; we expect the sum
1+3+9+27+81+243+ -

to diverge.) This is illustrated in Figure R.

Graphical

(r) .

1000

Sp = (1 —(3)""")/ — =2

a, = I

e
la)

Sa=(1-(3)""/ -2

a, = 3"

Figure R
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Another important type of series is the p-series.

1. A p-series is a series of the form

1
Zf{;lﬁ ,Wherep > 0.

2. A general p-series is a series of the form

Z;‘{’:lm ,wherep >0andp > 0 and a,b are real numbers.

Theorem 08: Convergence of general p-series

. 1
a general p-series Y4 T

D will converge if, and only if. p > 1.

Determine the convergence of the following series.

o 1 e 1
1'Zn=1; 3. Xn=11 (%n—S)?’

oo 1 0 1
2.5, 435,

1. this is a p-series with p = 1. By Theorem 08 this series diverges.
This series is a famous series, called the Harmonic Series, so named because of its relationship
to harmonics in the study of music and sound.

. L 1 o1
2. This is a p-series with p = - the theorem states that it diverges.

3. This is a general p-series with p = 3, therefore it converges.

. . . L 1
4. This is not a p-series, but a geometric series with r = 5 - It converges.

1 1
Evaluate the sum Y, (1—1 — m)

It will help to write down some of the first few partial sums of this series.




nez — 5i=(-D+G-)
- A
n=3 — 5=(-)+G-D+6)
S
et si=(-#G-9) 63+ G-
n=s s=(i-r (=) + (-9 + -+ ()
- A AANAA
nee > se=(-PrG- G- GD 6D 6)
AN LA HAAA

7

Note how most of the terms in each partial sum are cancelled out! In general, we see that §,, =

1-— ﬁ . The sequence {S,,} converges, as lim S, = lim (1 — ﬁ) = 1 and so we conclude that
n—oo n—oo

Y1 (% - nl:) =]. Partial sums of the series are plotted in Figure S

-




LY
(s)
M
. "F .G 0H ’L *
b *
- *
*
B
e S, =n/n+1
. a, =1/n*(n+1)
05 -
J
¢
K
v 'y . P Q
<& % o & o !
2 4 6 8 10
1
( ) z Sn=n/(n+l)
S
a, = 1/nx(n+1)

Figure S

Example 12: Evaluating series

evaluate each of the following infinite series.

LYo, 2.52,In("2)

nZ+2n

3




o 2
LYo

nZ+2n
1. We can decompose the fraction 2/(n? + 2n) as

2 2 _ A, B

n2+2n ~ n@m+2) n = n+2

_ A(n+2)+Bn
- n(n+2)

__ An+2A+Bn
- n(n+2)

_ n(A+B)+24

=1_
n(n+2) “n

1
n+2

{ 2A=2

A
(A+B)=0 —> {1+B:

=1
0,B=-1

Expressing the terms of {S,} is now more instructive:

1-—

net 5y~ (1- 4 (DG DG

3 2 4 3 5 4 6
1 1 1
—1+5—/§/+/?74Z+/2/—§—3
1 1
=1+3-57%

-



18— s (DG eB-DG-DHe

1 1 1
1+5755555%Z§§tzlz—7
1 1

1
=1+;-2—2

We again have a telescoping series. In each partial sum, most of the terms cancel and we

obtain the formula {S,}= {1 + % - ﬁ — ﬁ} taking limits allows us to determine the

convergence of the series:

lim S, =lim (14— ———) =lim (1+; -2 -2)

n—>oo n—>oo

1
=1+5-0-0
1x2 1
=tz T2
2 1
=373
=3
T2
2 3 .. A
So, Ymeq o = 3 ¢ This is illustrated in Figure T

n+1

2.3 1In ( T)
2. We begin by writing the first few partial sums of the series:
n=1 =—p §;=1In(2)
n=2 = S,=In(2)+ ln(%)
~in(z-3)
=1In(3)

n=3 oy S3=In(2)+ ln(%)+ ln(g)

X



ln/Z })

=1In(4)
N=4 ) S4—ln(2)+ln()+ln()+ln()

-z £

=In(5)

N=5  m—t Ss=ln(2)+ln(E)+ln(§>+ln(;>+ln(g>

=1In(7)

At first, this does not seem helpful, but recall the logarithmic identity: Inx + Iny = In(xy).

Applying this to S gives:

Ss=m@)+ M)+ m(3)+ mE)+ m(E)+ m(3) =)

We can conclude that {S,,}={In(n + 1)}. This sequence does not converge, as
lim S, = llm In(n + 1) =00 . Therefore },,,_; In ( n+1) = o
n—-0oo

The series diverges. Note in Figure U

[v
t)
H = (=]
IS & o
E S o
D (=]
o
c
o
B
(]
S, =1 +~1/2 —1/(n + 1) — 1/(n + 2)
I
@, — 2/(n” + 2n)
J
-
.K
N o
b g - - 2 & -5 )y .
Figure T

47




S, =In(n + 1)
a, =In((n +1)/n)

Figure U

Theorem 09: Properties of infinite series

let Yooqyan, =L, Y7_1b, =k , and let c be a constant.

1. Constant Multiple Rule: Y ;c-a,=c-Yp-1a, =c-L.

2. Sum/Difference Rule : Y;7_(a, £ b,) = Y1 @ £ Ypeq b= LK.

Key Idea 01: Important series

1 . .
1.5, — = e (Note that the index starts withn = 0)

o 1 _nz
2. Zn=1§ — ?

(_ 1)n+1 11.2

n2 12

3.1

D" _m

2n+1 4

4.3 0

5. Z;‘f;l% Diverges (This is called the Harmonic series)

(_1)n+1

6.>0-1 = In(2) (This is called the Alternating Harmonic Series)

E



Evaluate the given series.

(—1)"*1(n2-n) 1 1 1 1
1., 13 2'§+E+§+E+m

1. We start by using algebra to break the series apart:

( 1)n+1(n _n) (_1)n+1n2_(_1)n+1n
T =g )

n3

n3

1)n+ (_ 1)n+&(j

(( 1)n+1 2 (_ )n+1 )
z): ( 1)n+1 ( 1)n+1)

an

n:

1)n+1 ( 1)n+1

_Zn 1 _Zn 1

11'2
=In@2)-
~ —0.1293

. . . 1
2. The denominators in each term are perfect squares; we are adding Y., 4 s

(note we start with n = 4, not = 1 ). This series will converge. Using the
formula from Key Idea 01, we have the following:

anz_znlz Z )

1
2;7:1,1_2_ n=1 2= Yin= 4_2

2

T 1 1 1 o 1
—‘(;+z+a)—2n=4n—z

6
2 (1><4><9+ 1% 9 1><4) g
6 1x4x9 = 4x 9x4 n= 4 n?
2
b4 36 9 4 1
(B at) =T
6 36 36 36 n
2 49 Qo 1
6 36 “n=ipu2

0,2838 ~ Y4

S




Theorem 10: n*" term test for convergence/divergence

Consider the series )., a,, .
1.If ¥-1 @, converges,then lim a,, = 0.

n—ooo

2.If lima, # 0,then Y, _;a, diverges
n—oo

Important! This theorem does not state that if lim a,, = 0 then },_; a, converges. The
n—>oo
standard example of this is the Harmonic Series, as given in Key Idea 01. The Harmonic

1 . . 1 ..
Sequence {;} converges to 0 the Harmonic Series, ,,—1 — diverges.

Theorem 11: Infinite nature of series

The convergence or divergence remains unchanged by the addition or subtraction of
any finite number of terms. That is:

1. A divergent series will remain divergent with the addition or subtraction of any
finite number of terms.

2. A convergent series will remain convergent with the addition or subtraction of any
finite number of terms. (Of course, the sum will likely change.)

. . . 1 . . .
Consider once more the Harmonic Series Y ;-1 — which diverges; that is, the sequence of

partial sums {S,,} grows (very, very slowly) without bound. One might think that by removing
the "large" terms of the sequence that perhaps the series will converge.

This is simply not the case. For instance, the sum of the first 10 million terms of the Harmonic
Series is about 16,7. Removing the first 10 million terms from the Harmonic Series changes
the n'® partial sums, effectively subtracting 16,7 from the sum. However, a sequence that is
growing without bound will still grow without bound when 16,7 is subtracted from it.

The equations below illustrate this. The first line shows the infinite sum of the
Harmonic Series split into the sum of the first 10 million terms plus the sum of
"everything else." The next equation shows us subtracting these first 10 million
terms from both sides. The final equation employs a bit of "psuedo--math":
subtracting 16,7 from "infinity" still leaves one with "infinity."

o 1 _ $10.000.0001 o 1
Yn=1y, = Ln=1 — + Xn=10.000.001,

[

1 1
Z;olo:l; _ 210.000.000 - =

=) st
n=1 n n=10.000.001 ,,

0 —16.7 = o

This section introduced us to series and defined a few special types of series whose
convergence properties are well known: we know when a p-series or a geometric series
converges or diverges. Most series that we encounter are not one of these types, but we

are still interested in knowing whether or not they converge. The next three sections introduce
tests that help us determine whether or not a given series converges.

.



3-Integral and comparison tests

knowing whether or not a series converges is very important, especially when we discusses
Power Series. Theorems 07 and 08 give criteria for when Geometric and -series converge, and
Theorem 10 gives a quick test to determine if a series diverges. There are many important
series whose convergence cannot be determined by these theorems, though, so we introduce a
set of tests that allow us to handle a broad range of series. We start with the Integral Test.

We stated in Section (sequences) that a sequence {a,} is a function a(n) whose domain is N,
the set of natural numbers. If we can extend a(n) toR, the real numbers, and it is both positive

and decreasing on [1, ©) , then the convergence of Y5, a,, is the same as |. 100 a(x)dx.

Theorem 12: Integral test

let a sequence {a,} be defined bya,, = a(n) , where a(n) is continuous, positive and
decreasing on[1, ). Then },7_; a,
converges, if, and only if , flm a(x)dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs. In Figure x , the
height of each rectangle is a,, = a(n) forn = 1,2, ....,, and clearly the rectangles enclose more
area than the area under y = a(x) . Therefore we can conclude that

[ IC L. ) Yy S — 169
v
2
y = o(x)
14
— ;h__
¥ = a & » i z 3 @& s
Figure x




In Figure x, we draw rectangles under y = a(x) with the Right-Hand rule, starting with n = 2
This time, the area of the rectangles is less than the area under = a(x) ,

SO Yopen Ay < floo a(x)dx . Note how this summation starts with = 2 ; adding a, to

Both sides lets us rewrite the summation starting with = 1 :

Y1y < ay+ [ a(x)dx )
Combining Equations (1) And (2), we have

Y1 @n < @1+ [] A(0)dX < @1+ Do Gy covvvsseesssssssssssssssssessns 3)

Theorem 13:

From Equation 03 we can make the following two statements:
1 If Yy aydiverges, so does | 100 a(x)dx
(because Yo 1@, < a; + floo a(x)dx)

2. IfY 54 a, converges, so does |. 100 a(x)dx
(because flm a(x)dx <Y, ia,.)

Therefore the series and integral either both converge or both diverge.

Inn

Determine the convergence of Y4 o (The terms of the sequence {an}={ln n/ nz} and the

n® partial sums are given in Figure Z.

Figure Z implies that a(n) = (Inn)/n? is positive and decreasing on [2, ) . We can
determine this analytically, too. We know a(n) is positive as both Inn and n? are positive on
2,) . To determine that a(n) is decreasing, consider a’(n) = (1 — 2 Inn)/n3, which is
negative for > 2 . Since a’(n) is negative, a(n)is decreasing.

1:>y{z—2n Xlnn

(n? )2

— ;z_§(1—2 Inn)
s

__ (1-2Inn)
= 3

=(1-2Ilnn)/n3

a(n) = (Inn)/N? —p a’'(n) =

-




Graphical

08
06 4 "
04t o

02+
e

N U 4.1 1 T P PP,

2 4 5 3 1012 14 156 13 U

@ 0 s,

Figure Z

Applying the Integral Test, we test the convergence of floo l:—zx dx. Integrating this improper
integral requires the use of Integration by Parts.

u=Inx — v = x—lz
u = xi . v = f:x% dx
=f:x‘2 dx
_2419b
==,
_1qb
-[=,
-1,
Note : f:u-v’dx= u-v-— f:v-u’dx
7% dx = fm[mx ()00 () () ax]

=Jim[ () + 7 (G ) o

RN b
=tim | (55, +(-3),]




= jim| (222)° - (4]
— jim (Fl2y 1) _ (1 1]
=l}i33[ O0O+0—-0-1]=1

Inn

. o Inx
Since [, —z dx converges, so does Y;7_1 —-

1. The improper integral |. 100 le dx converges when p > 1 and diverges whenp < 1.

2. The improper integral folxlp dx converges when p < 1 and diverges whenp > 1.

Use the Integral Test to prove that };;” m converges if, and only if, > 1.

Consider the integral [~ ——— dx ;assuming p # 1,
g 1 (an+b)P gp

%) 1 . [
fl (an+b)P dx = cllro? fl (an+b)P

= lim [ (an + b)7P dx
Cc—0o

C
= 1i -p+1
cll}g [a(—p+1) X (an + b) ]1
= i 1 1-p ¢
- clllg [a(l—p) x (an+b) ]1
. 1 _ _
= lim - x [(ac+b)17P — (a+ b)1"P]

g



This limit converges if, and only if, > 1 . It is easy to show that the integral also diverges in the
case of = 1. (This result is similar to the work preceding Key Idea 02.)

Therefore Yo 1 converges if, and only if, p > 1 .

n=1 an+b)P

Theorem 14: Direct comparison test

Let {a,} and {b,} be positive sequences where a, < b,, forall > N, forsome N> 1.

1. If Y p-1 b, converges, then )., a, converges.
2. If Yy a,, diverges, then Y,.” 4 b,, diverges.

] 1
Determine the convergence of Y., 3nnZ

This series is neither a geometric or p-series, but seems related. We predict it will converge, so
we look for a series with larger terms that converges. (Note too that the Integral Test seems
difficult to apply here.)

. n 2 2 1 1
Since3" < 3“+n 13m0 > g

series; by Theorem 13, Y17 4

forallm > 1. The series Y5

1 . .
3n 1S a convergent geometrlc
1
3“+—nz converges.

1
n-Inn’

Determine the convergence of ;4

we know the Harmonic Series },_¢ — diverges, and it seems that the given series is closely
related to it, hence we predict it will diverge.

1

foralln > 1.
n-Ilnn

SincenZn—lnnforallanl <

The Harmonic Series diverges, so we conclude that }';> 4 diverges as well.

n—-Inn




Theorem 15: Limit comparison test

Let {a,} and {b, } be positive sequences.
1. If lim = = L , where L is a positive real number, then ¥*_, a,, and ¥%_, b, either both

n—oo Up

converge or both diverge.

2. If lim % =0, thenif},_, b, converges, then so does Y,,_; a,
n—oo Un

3. If lim % = oo, thenif ), b, diverges, then so does Y, a,

n—oo Un

1. List the different indeterminate forms described in this section.
2. T/F:1'Hopital's Rule provides a faster method of computing derivatives.
d (f®)_ ff®

3. T/F: I'Hopitals Rule states that o (E) = 7w

4. Explain what the indeterminate form "1*" means.
5. Fill in the blanks" The Quotient Rule is applied to % when taking I'Hopital's Rule is applied

when taking

certain.

6. Create (but do not evaluate) a limit that returns "o0°".
7. Create a function f(x) such that 561_1)1} f(x) returns "0*".

Determine the convergence of Y4 using the Limit Comparison Test.

n+lnn

1 1

to the terms of the Harmonic Sequence },;7_4

we compare the terms of Y4

n+lnn n
1
. QAn .
lim < = lim _ttlnn
n—-oo n n—oo 1
n

= lim X n

n—oco n+lnn

=lim
n—oo n+lnn

(n )

n—oo (n+lnn)’

. 1
=lim i
n-o1 + T

.



(after applying L'Hopital’s Rule ) .

1

n+lnn

Since the Harmonic Series diverges, we conclude that Y} 4 diverges as well.

Vn+3

Determine the convergence of Y2
g Zn—l n2-n+1

We naively attempt to apply the rule of thumb given above and note that the dominant term
. . | . 1

in the expression of the series is — - Knowing that Y774 —; converges, we attempt to apply the
Limit Comparison Test:

vn +3

- al'l - 2 —_
lim = = lim n“-—-n+1

n

. vn'+3
= lim = X n?
n—-oo n“—n+1

lim (30’
n-ooco NnZ-n+1

. (n2vn+3n2)’
= lim s
n-oo (ll —ll+1)
4n?+n2+12nvn
= lim 2n

n-oo 2n-1

5nZ+12nvn 1
Vi X

= lim
n—oco 2vVn 2n—-1
. 5n%+12nVn
= lim

n—w 2Vn-(2n-1)

. (5n2+12nvin)’
=lim ————%
n-w (4nVi - 2vn)

. (5n%+12nvm)’
= lim T 1y
<4n-(n)2— 2(n)2>

-



10n+12«/_ +on )
lim

e (6 (n)2 (n)2>

(10n+12\/ﬁ+%),

— lim (10+%+%)
—L—l

n=00 (3 (n)Z +(n) 23>

8
i (10+ J_)

T, 3
n=eo (3 ()2 +3(n) 2)

8
= lim —(10+‘/ﬁ)

n—oco i_'_ 1
(PRI

.10
=lim —

n—->oo

(Apply L'Hopital's Rule).
\/ﬁ
We conclude that Y, 4 .y dlverges as well.

4-Ratio and Root Tests

The n**-Term Test of Theorem 15 states that in order for a series Yo, @, to converge,
lim a,, = 0 . That is, the terms of {a,} must get very small. Not only must the terms approach

n—oo

0, they must approach 0 "fast enough": while lim 1 = 0, the Harmonic

nooom

Series Z"=1% = 0 diverges as the terms of {Z} do not approach 0 "fast enough."

The comparison tests of the previous section determine convergence by comparing terms of a
series to terms of another series whose convergence is known. This section introduces the
Ratio and Root Tests, which determine convergence by analyzing the terms of a series to see if
they approach 0 "fast enough."”

Theorem 16:Ratio test
Les {a,} be a positive sequence where lim 22 = [,

n-ooco an

1.1f < 1, then };_; a,, converges.
2.IfL >1 orL = oo ,then},_;a, diverges.
3.If = 1, the Ratio Test is inconclusive.




Use the Ratio Test to determine the convergence of the following series:

1.3, 2 ER g
'Zn=lz - Zn=1n2+1
3n cw hin!
2.3 1= 4. -
Zn—l n3 Zn—l (Zn)'
21].
oo
1'211:1;
on+1
- a . 1)!
lim 2 = lim &2
n—oo ap n—oo =
n:
2n+1 n!

m _—
n-oo (n+ 1)' 2n

li 21 n!

=lim—— X —

n-oo (n+1)! /P‘/
21.n!

nl—>rg> (n+1)!
n—nn(n+1;n(

im
n—-oo (n+1)
. 2
= lim -

n—oo

=0<1

n

. o . 2
Since the limit is 0 < 1, by the Ratio Test },,;_4 — converges.

o 3"
2211:15
gn+1
lim 241 = Jjm —&D
n—oo ap n—oo g
n3
n+1 3
= lim — X
n—oo (l’l+1)3 3n

y 3n3
= lim
nsco n3+3n2+3n+1




3n3

= lim

n—oo n

=3>1
Since the limit is > 1, by the Ratio Test 21?212—3 diverges.

o 1
3. En=1 n%+1
1
a 2
lim 2 = Jim (n+1)7+1)

n—oo an n—oo 1

nZ+1

1 nZ+1
1m 7 X ( )
noo ((n+1)“+1) 1
lim nZ+1
n—oo ((n+1)2+1)
- n—o ;1;+2n+2
n—oo

=1

Since the limit is 1, the Ratio Test is inconclusive. We can easily show this series converges
1

using the Direct or Limit Comparison Tests, with each comparing to the series },;_ =-

n!'n!

4-&:1@

Before we begin, be sure to note the difference between (2n)! and ! . When, n = 4 the former
is!=8-7-6:-5-4-3-2-1=40320, whereas the latteris 2(4-3-2-1) = 48.
Applying the Ratio Test:

n+1D!(n+1)!

a 2 1))!
lim"—+1 =lim ( (n'+| )
n-o a, n—oo nn

(2n)!

,  (n+1)!(n+1)! % (2n)!

(n+1)fl(n+1) 4! . @n)!

- #_)Tg, (2n+2)!
— lim (n+1):(n+1)-(2n)!

n—oo (Zn+2)!

_ (n+1)-(n+1)- 2!

h nl—>oo (2n+2)-(2n+1)-(24)!

s (n+1)-
- ,’L’Z.% 2(p1)-(2n+1)

-




1 (n+1)
T e 2-2n+ 1)

i n+1
_nirg4n+2

. N | . In!
Since the limit is 7 < 1, by the Ratio Test we conclude Yne1 % converges.

The final test we introduce is the Root Test, which works particularly well on series where each
term is raised to a power, and does not work well with terms containing factorials.

Theorem 17: Root test

let {a,} be a positive sequence. And let lim(a,)V/" = L
n—->0oo

1.If < 1, then ), @, converges.
2.1f >1 orL = oo ,then),,_; a,diverges.
3.If= 1, the Root Test is inconclusive.

Determine the convergence of the following series using the Root Test:

co 3n+1\" oo n*
1. X0 (5n—2) 2. ¥n=1 (Inn)n

155 (G)

. st \M\Y® L 3ae1 . 3 4
lim = lim =lim— =
5n-2 5n-2 5n

n—-oo n—oo /g

n—>oo

Since the limit is less than 1, we conclude the series converges. Note: it is difficult to apply
the Ratio Test to this series.

o n
2. anlw

<



1 1
. at " . (nl/")4 . enm*/m . e4 e et m
llm( ) = lim = lim ——— = lim = lim
n-o \(Inn)" n-oo Inn n-oo Inn n—ooo Inn n-ooo Inn
. e*x0 . e? . 1 1
= lim =lim—=1lim—=—=0
n-oo Inn n—-oo Inn n—-oo Inn o

As grows, the numerator approaches 1 (apply L'Hopital's Rule) and the denominator
grows to infinity.

. _Inn bn bn/ bm,
Because: (llm— = 0); (@ = ga = ena)’™ = g7g Ina
n—-oco N

5-Alternating series and absolute convergence

All of the series convergence tests we have used require that the underlying sequence {a,} be a
positive sequence. (We can relax this with Theorem 11 and state that there must be an N > 0
such that a,, > 0 for all > N ; that is, {a,} is positive for all but a finite number of values of n.)

In this section we explore series whose summation includes negative terms. We start with a

very specific form of series, where the terms of the summation alternate between being
positive and negative

let {a,} be a positive sequence. An alternating series is a series of either the form

a1 (-D"a, or X7 (-1D)"*a,

Recall the terms of Harmonic Series come from the Harmonic Sequence {a,} = {%} .An

important alternating series is the Alternating Harmonic Series:

o]

Z( gt 1oy 11111,
n = 2 3 4 5 6
n=1
Geometric Series can also be alternating series when r < 0 . For instance, if r = —1/2, the

geometric series is

_a\M
Y RIP RS S S S S

Theorem 07 states that geometric series converge when |r| < 1 and gives the sum:
1
Yo" = - When r = —1/2 as above, we find

N



s (2) = —L =12
n=01\ , 1-(-1/2) ~ 3/2 3
A powerful convergence theorem exists for other alternating series that meet a few conditions.

Theorem 18: Alternating series test.

Let {a,} be a positive, decreasing sequence where lim a,, = 0. Then

n—-oo

Z(—l)"an and Z(—l)"”an converge .
n=1 n=1

Determine if the Alternating Series Test applies to each of the following series.

oo 1 e 1
LI (-t~ 2.3 (D" ==

1. This is the Alternating Harmonic Series as seen previously. The underlying sequence is
{a,} ={1/n}, which is positive, decreasing, and approaches 0 as n — o« . Therefore we can
apply the Alternating Series Test and conclude this series converges.

While the test does not state what the series converges to, we will see later that
o _qyn+1,1 _
Zn:l( 1) n ln 2'

2. The underlying sequence is {a,,} = {Inn/n}. This is positive and approaches 0 asn — o
(use L'Hopital's Rule).

However, the sequence is not decreasing for all . It is straightforward to compute a; = 0,a,; =
0.347 ,a3 = 0.366 , and ay ~ 0.347 : the sequence is increasing for at least the first 3
terms.

We do not immediately conclude that we cannot apply the Alternating Series Test. Rather,
consider the long--term behaviour Of {a,,} . Treating a,, = a(n) as a continuous function of n
defined on [1, ©) , we can take its derivative:

1-Inn

a'(n) =2,

The derivative is negative for all n > 3 (actually, for all > e ), meaning a,, = a(n) is
decreasing on [3, ) . We can apply the Alternating Series Test to the series when we start

with n = 3 and conclude that Y}, 3(—1)" lnTn converges; adding the terms with
n =1 and n = 2 do not change the convergence (we apply Theorem 11).

<



The important lesson here is that as before, if a series fails to meet the criteria of the
Alternating Series Test on only a finite number of terms, we can still apply the test.

Theorem 19: The alternating series approximation theorem

let {a,} be a sequence that satisfies the hypotheses of the Alternating Series Test,
and let S,, and L be the n** partial sums and sum, respectively, of either
101021(_1)nan or 2101021(_ 1)n+1an then

1. |S,—L| <a,;i,and
2. Lis between S,, and S,,,1.-

Part 1 of Theorem 19 states that the partial sum of a convergent alternating series will be within
a, .1 of its total sum. Consider the alternating series we looked at before the statement of the

_1\n+1
CU since, aq4 = - ~ 0.0051,we know that S;3 ~ 0.8252 is within 0.0051

n2

theorem, Y774
of the total sum.

Moreover, Part 2 of the theorem states that since S13 ~ 0.8252 and S14 = 0.8252 , we know the
sum L lies between 0.8252 and . 8252 . One use of this is the knowledge that S, is accurate to two
places after the decimal.

Some alternating series converge slowly. In Example 22 we determined the series Yo, (—1)™+1 '"T"

converged. With = 1001 , we find an ~ 0.0069 , meaning that S;1400 = 0.1633 is accurate to one,

maybe two, places after the decimal. Since S19o1 = 0.1564 , we know the sum L is
0.1564 <L <0.1633.

Approximate the sum of the following series, accurate to within 0,001.

., 1
Zn=1 (_1)n+1 E

Using Theorem 19, we want to find n where /n® < 0.001 :

1
— <. -
nd ~ 0.001 1000

n3 > 1000
n > /1000

n = 10.

Let L be the sum of this series. By Part 01 of the theorem, |Sg — L| < a1y = 1/1000 . We can
compute Sg = 0.902116 , which our theorem states is within 0. 001 of the total sum.

<



We can use Part 02 of the theorem to obtain an even more accurate result. As we know the
10" term of the series is —1/1000 , we can easily compute S;5 = 0.901116 . Part 02 of the
theorem states that L is between S¢ and S, s0 0.901116 < L < 0.902116

1. A series ), a, converges absolutely if ),;"_;|a,| converges.

2. A series ),,_; a, converges conditionally if )} ; a,, converges but ),;"_;|a,| diverges.

Determine if the following series converge absolutely, conditionally, or diverge.

o 242n+5
LY, (-1 230, (-ne

n3+2n+5

1LY0t (D" =

n3+2n+5

1. We can show the series

+3
n3+2n+5

an(_) an

n3+2n+5

Diverges using the Limit Comparison Test, comparing with -

The series Y (=)™ m converges using the Alternating Series Test; we conclude it

converges conditionally.

n%+2n+5
2. ¥ (D) T m
2. We can show the series

212n+5 w N2+2n+5

n
Zn 1 ( 1)" 2n n=1 2n
converges using the Ratio Test.

2
nn°+2n+5

Therefore we conclude Y, (—1) o

converges absolutely.

6-Power series

So far, our study of series has examined the question of "Is the sum of these infinite terms
finite?," , "Does the series converge?" We now approach series from a different perspective: as a
function. Given a value of x, we evaluate f(x) by finding the sum of a particular series that
depends on x (assuming the series converges). We start this new approach to series with a

-



definition.

let {a,,} be a sequence, let be a variable, and let be a real number.

1. The power series in x is the series

(0]
n _ 1 2 3, ...
a,x" =ag+aix +ax°+azx’ +

n=0
2. The power series in x centered at c is the series

Y oan(x—c)"=agt+ta;(x— o) +a(x —c)® +az(x—c)3 + -

Write out the first five terms of the following power series:

1.5 x" 2.5 (—mH &

1. One of the conventions we adopt is that x? = 1 regardless of the value of x.Therefore
(00}
Zx"= 14+x+x%+x3+xt+ -
n=0

This is a geometric series in .

2. This series is centered at = —1 . Note how this series starts with = 1 . We could rewrite this
series starting at n = 0 with the understanding that ag = 0, and hence the first term is 0 .

(x+)"
— =

(x+1)?%  (x+1)3 _ (x+1D)*  (x+1)° .
2 3 4 5

DNETCS Y (x+1) -

Theorem 20: Convergence of power series

Let a power series Y, —o@,(x — c)™ be given, then one of the following is true.

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in (c — R, ¢ + R) and
diverges forallx <c—Rand x > c¢ +R.

3. The series converges for all x.




The value of R is important when understanding a power series, hence it is given a name in the
following definition. Also, note that part 2 of Theorem 20 makes a statement about the
interval (c — R, c + R) , but the not the endpoints of that interval. A series may/may not
converge at these endpoints.

1. The number R given in Theorem 20 is the radius of convergence of a given series. When a
series converges for only = ¢, we say the radius of convergence is 0, R = 0 . When a series
converges for all , we say the series has an infinite radius of convergence, R = o

2. The interval of convergence is the set of all values of for which the series converges.

To find the values of x for which a given series converges, we will use the convergence tests we
studied previously (especially the Ratio Test). However, the tests all required that the terms of
a series be positive. The following theorem gives us a work--around to this problem.

Theorem 21: The radius of convergence of a series and absolute

convergence

The series },;—o @,x™ and Y, _o|a,x™| , have the same radius of convergence .

Theorem 21 allows us to find the radius of convergence R of a series by applying the Ratio
Test (or any applicable test) to the absolute value of the terms of the series. We practice this
in the following example.

Find the radius and interval of convergence for each of the following series:

LY o> 2.37.02" (x — 3)"
o X"
1.0
1.We apply the Ratio Test to the series Y5 %|
.| ()| ﬂ . nl
Ll_r)l}l [x™/n!| nonl xm (n+1)!|

x”-x/ n!
= lim [—" -
n-nl x" (n+1)n! /




. X
= lim |—
n-n In+1

=0

The Ratio Test shows us that regardless of the choice of , the series converges. Therefore the
radius of convergence is = oo, and the interval of convergence is (—o0, +) .

2.5%02" (x— 3)"
2. We apply the Ratio Test to the series Y7 | 2™ (x — 3)"|

. 2n+1 x—3 n+1 .
lim i Gt lim
n-ooo [2%(x-3)"| n-oo

2n+1(x_3)n+1
2n(x—3)"

2n+1 (x_3)n+1
2 (x-3)n

= lim

n—oo

_ nmf‘;‘_; L)

n—»oo

= lim|2(x — 3)|
n—oo

According to the Ratio Test, the series converges when [2(x —3)| <1 = |x—-3| < % the

_ | . .
series is centered at 3, and x must be within 2 of 3 in order for the series to converge. Therefore

the radius of convergence is R = 1/2, and we know that the series converges absolutely for all
xin (3—1/2,3+ 1/2) =(2.5,3.5).

We check for convergence at the endpoints to find the interval of convergence. When
x = 2.5 we have:

Ynmo 2" (2.5 =3)" = Xaso2" (- 1/2)" = Ynto(-D"

which diverges. A similar process shows that the series also diverges at = 3.5 . Therefore the
interval of convergence is (2.5, 3.5).

Theorem 22: Derivatives and indefinite integrals of power series
functions

let f(x) = Yo @n (x — )™ be a function defined by a power series, with radius of
convergence R.

1. f(x) is continuous and differentiable on (c — R,c — R).

2.f'(x)= ¥ ja,-n-(x—c)™ !, with radius of convergence R.

(x_ n+1

3ff(dx=C+¥roa, nc—+)1 , with radius of convergence R.




Let (x) = Yo x™ . Find f'(x) and (x) = [ f(x)dx, along with their respective intervals of
convergence.

We find the derivative and indefinite integral of (x) , following Theorem 22.
L) =Y n-x"1=1+2x+3x2+4x3+ -

In Example 25, we recognized that },;_, x™ is a geometric series in . We know that such a
geometric series converges when |x| < 1 ; that is, the interval of convergence is (—1,1) .

To determine the interval of convergence of f'(x) , we consider the endpoints of
(-1,1):
f'(<1)=1-2+4+3—-4+-,whichdiverges

ff1)=1+2+3+4+ -, whichdiverges

Therefore, the interval of convergence of f'(x) is (—1,1) .

[ee) K1 x?% x3

2.F(x) = [ f(x)dx = C+Zn=0m: C+x+?+?+...

To find the interval of convergence of, we again consider the endpoints of (—1,1) :
F(-1)=C-1+1/2-1/3+1/4+ -

The value of C is irrelevant; notice that the rest of the series is an Alternating Series that whose
terms converge to 0. By the Alternating Series Test, this series converges. (In fact, we can
recognize that the terms of the series after C are the opposite of the Alternating Harmonic
Series. We can thus say that F(—1) = C —In 2.)

FO)=C+1+1/2+1/3+1/4+ -

Notice that this summation is € +, the Harmonic Series, which diverges. Since F converges for
x = —1 and diverges for = 1, the interval of convergence of F(x) is [-1, 1).

the previous example showed how to take the derivative and indefinite integral of a power
series without motivation for why we care about such operations. We may care for the sheer
mathematical enjoyment "that we can", which is motivation enough for many. However, we
would be remiss to not recognize that we can learn a great deal from taking derivatives and
indefinite integrals.

Recall that f(x) = X,;,_ox™ in Example 27 is a geometric series. According to Theorem
07, this series converges to 1/(1 — x) , when |x| < 1. Thus we can say

f(x) =Y ox" = é ,on(—1,1).

Integrating the power series, (as done in Example 27,) we find

-



xn+1

n+1

F(x) = €1+ Xnlo (01)

While integrating the function f(x) = 1/(1 — x) gives

F(x) = —In|1 — x|+ C, (02)

Equating Equations (1) and (2), we have

n+1
o X

F(x)=C{+ ZFOm: —In|1 — x|+ C,

Letting x = 0, we have F(0) = C; = C, . This implies that we can drop the constants
and conclude

. xn+1 l 1
anom— —In|1 — x|

We established in Example 27 that the series on the left converges at = —1 ;

substituting x = —1 on both sides of the above equality gives
1 1 1 1 1 In2
“itzTztyTstooT o

On the left we have the opposite of the Alternating Harmonic Series; on the right, we
have —In 2 . We conclude that

1 1 1
1—5+§—Z+---—ln2

Let f(x) = Zf;o’;—r: .Find f’(x) and [ f(x)dx, and use these to analyze the behavior of f(x) .

we start by making two notes: first, in Example 26, we found the interval of
convergence of this power series is (—o0, ) . Second, we will find it useful later to have
a few terms of the series written out:

4

xn x2 ¥  x
ZZ)=OE=1+X+7+Z+ﬁ+“' .(03)

We now find the derivative:

had n—-1

f,(x)zzn'xn!

n=1

n—1 n—1
o0 x x

: _ g - L
n=1M" S Z"=1(n—1)! =l+x+5+

-



since the series starts at n = 1 and each term refers to (n — 1), we can re-index the
series starting with n =0

= Yoo
=fx)
We found the derivative of f(x) is (x) . The only functions for which this is true are of the

form y = ce* for some constant .
As f(0) = 1 (see Equation 03 ), ¢ must be 1. Therefore we conclude that

fo =y =er
n=0
for all x .
We can also find [ f(x)dx :
had xn+1
ff(x)dx= C+Zon!(n+1)
had xn+1
=C+ Z (n+ 1)!
n=0

We write out a few terms of this last series:

+1 4

o) x" _ x_Z ﬂ X4
C+Emoimm=Ctxtytoti+

The integral of f(x) differs from f(x) only by a constant, again indicating that f(x) =
e*.

Give the first 4 terms of the power series solution to y' = 2y , where y(0) =1 .

The differential equation y’ = 2y describes a function y = f(x) where the derivative of y is
twice y and y(0) = 1 . This is a rather simple differential equation; with a bit of thought one
should realize that if y = Ce?* , then y’ = 2- Ce?* , and hence y’ = 2y . By letting C = 1 we
satisfy the initial condition of y(0) =1 .

Let's ignore the fact that we already know the solution and find a power series function that
satisfies the equation. The solution we seek will have the form

-



f(x) = Z a,x" = ay + a;x + azx* + azx3 + -

n=0

for unknown coefficients a,, . We can find f’(x) using Theorem 22:

o]
f(x) = Z a, n-x"=ax+ 2a,x* + 3azx® + 4axt + -
n=0

Since f'(x) = 2f(x) , we have

ayx + 2a,x% + 3azx3 + daxt + - = 2(ag + a1x + ax® + azx3 + )
=2ay + 2a,x + 2a;x* + 2a3x3 + -

The coefficients of like powers of x must be equal, so we find that
a, =2ay, 2a; =2a,, 3az3 = 2a,,4a,4 = 2a3, etc

The initial condition y(0) = f(0) = 1 indicates that ay = 1 ; with this, we can find the
values of the other coefficients:
a=1and a,=2ay = a,=2;
a;=2and 2a,=2a; = a,=4/2=2;
a,=2and 3a3= 2a, = a3=8/(2:-3)=4/3;

az=4/3 and 4a,=2a; = a,=16/(2-3-4)=2/3.

Thus the first 5 terms of the power series solution to the differential equation y' = 2y
is

4 2
f(x)=1+2x+2x2+§x3+§x4+---

y:er

-



Chapter 02

Taylor Polynomials and Taylor Series

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of
terms that are expressed in terms of the function's derivatives at a single point. For most
common functions, the function and the sum of its Taylor series are equal near this point.
Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is
also called a Maclaurin series when 0 is the point where the derivatives are considered,
after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th
century.

The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of

degree n that is called the nth Taylor polynomial of the function. Taylor polynomials are
approximations of a function, which become generally more accurate as n increases. Taylor's
theorem gives quantitative estimates on the error introduced by the use of such
approximations. If the Taylor series of a function is convergent, its sum is the limit of

the infinite sequence of the Taylor polynomials. A function may differ from the sum of its
Taylor series, even if its Taylor series is convergent. A function is analytic at a point x if it is
equal to the sum of its Taylor series in some open interval containing x. This implies that the
function is analytic at every point of the interval
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1-Taylor Polynomials

Consider a function y = f(x) and a point (c f (c)) . The derivative, f'(c) , gives the
instantaneous rate of change of f at x = ¢ . Of all lines that pass through the point (c, f(c)) ,
the line that best approximates f at this point is the tangent line; that is, the line whose slope
(rate of change) is f'(c) .

In Figure Z , we see a function y = f(x) graphed. The table below the graph shows that

f(0) =2 and f'(0) = 1; therefore, the tangent line to f at x = 0 is

p1(x) =1(x — 0) + 2 = x + 2 . The tangent line is also given in the figure. Note that "near" =
0,p1(x) = f(x) ; that is, the tangent line approximates f well.

A
——

Figure Z' : plotting y = f(x) ( blue) and y = p,(x) (red).

f(0)=2 f"(0)=-1
=1 F4(0) = 12
') =2 f7(0) =-19
One shortcoming of this approximation is that the tangent line only matches the slope of ; it
does not, for instance, match the concavity of f . We can find a polynomial , p,(x) , that does

match the concavity without much difficulty, though. The table gives the following
information:

f(0)=2 fl=1 ') =2
Therefore, we want our polynomial p,(x) to have these same properties. That is, we need
p2(0) =2 p2' (0)=1 p2" (0) =2

This is simply an initial-value problem. We can solve this using the techniques first described

in Section 5.1. To keep p,(x) as simple as possible, we'll assume that p,’ (0) = 1 not only
p2" (0) = 2, but that p," (x) = 2. That is, the second derivative p, of is constant.

If p,”" (x) =2,then p,' (x) = 2x + C for some constant C . Since we have determined that

.



p2' (0) =1 , we find that € = 1 and so p,’ (x) = 2x + 1. Finally, we can compute p,(x) =
x? + x + C . Using our initial values, we know p,(0) = 2 so C = 2 so We conclude that
p2(x) = x% + x + 2. This function is plotted with in Figure A’ .

v
&
s 4
Yy = p2(x)
'-,—-_-d
' i 4 > X
—a —2
¥ = palx)/!
|
] -5 -Jv- '

Figure A’ : plotting f (blue), p,(red) and p, (light red ) .

We can repeat this approximation process by creating polynomials of higher degree that match
more of the derivatives of f at = 0 . In general, a polynomial of degree n can be created to
match the first n derivatives of . Figure A’ also shows p4(x) = —x*/2 — x3/6 + x* + x + 2
whose first four derivatives at 0 match those of . (Using the table in Figure Z , start with

p4* (x) = —12 and solve the related initial-value problem.)

As we use more and more derivatives, our polynomial approximation to f gets better and
better. In this example, the interval on which the approximation is "good" gets bigger and
bigger. Figure B’ shows p13(x) ; we can visually affirm that this polynomial approximates f
very well on [-2, 3]

The polynomial pq3(x) is not particularly "nice". It is

16901x!3 13x12 1321x!1 779x1° 359x% | a® 13927 | 11x®  19x5  xt AP 2
p13(x) = - - - P ————>—=+x"+x+2
6227020800 = 1209600 39916800 1814400 362880 240 5040 360 120 2 6

The polynomials we have created are examples of Taylor polynomials, named after the
British mathematician Brook Taylor who made important discoveries about such functions.
While we created the above Taylor polynomials by solving initial-value problems, it can be
shown that Taylor polynomials follow a general pattern that make their formation much more
direct. This is described in the following definition.

.



X

Figure C' : plotting f ( blue ) and p,3 (red)

Definition 13: Taylor polynomials and maclaurin polynomials

Let f be a function whose first n derivatives exist at x = c .

1. The Taylor polynomial of degree of at x = c is
P = f© +f Q-+ 5L -2 + L@ (x— ) + - + LD (-

2. A special case of the Taylor polynomial is the Maclaurin polynomial, where = 0 . That is, the
Maclaurin polynomial of degree n of f is

f”(O) erf”;(|0) B +f"1£0) n

Pa(x) = f(0) + f'(0)x +

om

Example 30: Finding and using maclaurin polynomials

1. Find n*® the Maclaurin polynomial for (x) = e* .
2. Use ps(x) to approximate the value of .

Solution the derivatives of f(x) = e* evaluated at x = 0

f=¢ = foO)=1
fx)=e" = ) =1
ffx)y=e" = fr) =1

E



frx) =e* =1

1. We start with creating a table of the derivatives of e* evaluated at = 0 . In this particular
case, this is relatively simple.

By the definition of the Maclaurin series, we have

pa = O+ F@x+ P2 SO SO

_ 1 2 1 3 1 4 1
—1+x+5x +5x +zx +---+Ex"

2.Using our answer from part 1, we have

PR P PP FUE IV I
Ps = AT XT X T X To2* T1207

To approximate the value of , note that e = e! = f(1) = pg(1). It is very straightforward to
evaluate p5(1) :

Ps(D) =1+ 142+ 24—t o= 22 2 71667, sosrsmnsrsssnssriens )

A plot of f(x) = e* and p5(x) is given in Figure D'.

y=ps(z)
y=e

Figure D’

Example 31: Finding and using taylor polynomials
1. Find n** the Taylor polynomial of y =Inx at=1.
2. Use pg(x) to approximate the value of In1.5 .

3. Use pg(x) to approximate the value of In2 .

Solution

71



f(x)=Inx = fa)=o0

1

flx) =~ = ff=1

X

fro=3 = Fr)=-1
frfao =% = F"(1) = 2

X

floo=23 = fH1) = -6

_qyn+l,.,._
(-1 n(n LR
X

") = ff0) =(D™in-1)!

Derivatives of Inx evaluated at x = 1
We begin by creating a table of derivatives of Inx evaluated at x = 1. While this is not as

straightforward as it was in the previous example, a pattern does emerge.
Using Definition 13, we have

Pa() = O+ O -+ 2@ - 2+ 0w - 03 + -+ O x — o
=0+ x-D - D2+ - -t ey

Note how the coefficients of the (x — 1) terms turn out to be "nice.”

2. We can compute pg(x) using our work above:
Ps() = (x—1D)— (X - 12+ @ -1 -1 G- D+ (- 15— (x — 1D (2)

Since pg(x) approximates In x well near = 1, we approximate In1.5 = pg(1.5) :

1 1 1 1 1
pe(1.5) =(1.5-1) —5(1.5— 1)?2 +§(1.5— 1)3 —1(1.5 - 1)4+§(1.5— 1)° —3(1.5— 1)S.

259
640

~ 0.404688

This is a good approximation as a calculator shows that In1,5 = 0,4055 Figure 01 plots y =
In x with = pg(x) . We can see thatIn1,5 = pg(1.5) .

.



Ps(w) =

T
fex) =

@ —T)— T/ 2Zx(w— 1) 13 (e — 1) — T4 (e — 1)F 15w — 1) — 1 /6 % (& — 1)°
[
Lo () /
=~
~
~
~
Y
.
A
Ay
Ay
Y
Ay
A
AY
l' A
’ A
2|, .
’ \
4
7
’
r
’
’
’
’
I
)
I
J' ’
I
I
FBI
1

zf(L) =lin(z)

Figure E’

P m(x-1)-1/2%(x-1)+1/3%(x-1) *3-1/4*(x-1) "4+1/5*(x-1) "5-1/6%(x-1) "6

3. We approximate In 2 with pg(2) :

W=
TS

_ 37

1
+§—
60

=

1 1 1 1 1
Pe@=2-D-52-D2+32-1 - @-D*+-2-D° -2~ D"
=1-+

~ 0.61666

:Ej



This approximation is not terribly impressive: a hand held calculator shows that
In2 =~ 0.693147

Surprisingly enough, even the 20" degree Taylor polynomial fails to approximate Inx for > 2
, as shown in Figure F'. We'll soon discuss why this is.

y = Pao(x,
y = Iln(x)

A

1l
Pad

2 Z,f'(:f:) =lin(x)

Y = Pzo

Figure F'




Theorem 23: Taylor theorem

1. Let f be a function whose n + 1% derivative exists on an interval I and let ¢ be in I Then,
for each x in I, there exists z, between x and ¢ such that

Pn(x) =f@O+f(©Ox—0)+ f”z(!C) (x—o)?+ f”;;(!C) (x—c)P++ ftl(f) (x — )" + Ry (x)
— f(n+1)(zx) . n
Where R, (x) = T (x — ¢)@D
2. |R,(x)| < max|f®V(zy)| |(x — &)@+

(n+1)!

The first part of Taylor's Theorem states that f(x) = p,(x) +R,(x) , where p,,(x) is the nt"
order Taylor polynomial and R,,(x) is the remainder, or error, in the Taylor approximation.
The second part gives bounds on how big that error can be. If the (n + 1)** derivative is large,
the error may be large; if x is far from c, the error may also be large. However, the (n + 1)!
term in the denominator tends to ensure that the error gets smaller as n increases.

The following example computes error estimates for the approximations of and made in
Example 31

Use Theorem 23 to find error bounds when approximating In1, 5 and In 2 with pg(x) , the
Taylor polynomial of degree 6 of f(x) = Inx at x = 1, as calculated in Example 31

1. We start with the approximation of In 1, 5 with pg(1,5) . The theorem references an open
interval I that contains both x and . The smaller the interval we use the better; it will give us a
more accurate (and smaller!) approximation of the error. We let = (0.9, 1.6), as this interval
contains bothc=1andx=1,5.

The theorem references | ikasy (z)| . In our situation, this is asking "How big can the 7"
derivative of y = Inx be on the interval (0.9, 1.6) ?" The seventh derivative is = ;—67'! . The
largest value it attains on I is about 1506. Thus we can bound the error as:

7
IRg(1.5)] < w 1.5 - 1)@

1506 1
— 5040 27
~ 0.0023

We computed pg(1.5) = 0.404688 ; using a calculator, we findIn1.5 = 0.45465, so the
actual error is about 0.000778 , which is less than our bound of 0.0023 . This affirms Taylor's
Theorem; the theorem states that our approximation would be within about 2 thousandths of
the actual value, whereas the approximation was actually closer.

-



2. We again find an interval I that contains both = 1 and x = 2 ; we choose I = (0.9,2.1) .
The maximum value of the seventh derivative of f on this interval is again about 1506 (as the
largest values come near = 0.9 ). Thus

max| FD(2) |
7!

|R6(2)| < |2 -1

This bound is not as nearly as good as before. Using the degree 6 Taylor polynomial at x = 1
will bring us within 0,3 of the correct answer. As pg(2) = 0.61667 , our error estimate
guarantees that the actual value of In 2 is somewhere between 0.31667 and 0.91667.
These bounds are not particularly useful.

In reality, our approximation was only off by about 0,07. However, we are approximating
ostensibly because we do not know the real answer. In order to be assured that we have a good
approximation, we would have to resort to using a polynomial of higher degree.

Find n such that the n®*Taylor polynomial of f(x) = cosx at x = 0 approximates cos 2 to
within 0.001 of the actual answer. What is p,(2)?

Following Taylor's theorem, we need bounds on the size of the derivatives of (x) = cosx .In
the case of this trigonometric function, this is easy. All derivatives of cosine are

+sinx or + cosx .In all cases, these functions are never greater than 1 in absolute value.
We want the error to be less than 0.001 . To find the appropriate n , consider the following
inequalities:

max|f™+(z)|
(n+1)!

|2-0)™D]| <0.01

1 1

We find an n that satisfies this last inequality with trial-and-error. When n = 8 , we have

28+1 29+1
~ 0.0014 ; whenn =9, we have ~ 0.000282 < 0.001. Thus we want to

(8+1)! (9+1)!
approximate cos 2 , with po(2) .

We now set out to computepg(x) . We again need a table of the derivatives of f(x) = cosx
evaluatedatx =0 .

f(x) = cosx = f(0)=1
f'(x) = —sinx = f'(0)=0

f'(x) = —cosx = f'(0)=-1

-



f'"'(x) = sinx = f(0)=0

f*(x) = cosx > fH0)=1
f3(x) = —sinx = f(0)=0
fé(x) = —cosx = f6(0) = -1
f7(x) = sinx = f7(0)=0
f3(x) = cosx = f{o)=1
f°(x) = —sinx =  f70)=0

Notice how the derivatives, evaluated at x = 0, follow a certain pattern. All the odd powers of
x in the Taylor polynomial will disappear as their coefficient is 0. While our error bounds state
that we need po(x) , our work shows that this will be the same as pg(x).

Since we are forming our polynomial at x = 0, we are creating a Maclaurin polynomial, and:

III(O)
3!

1" 8
ps(x) — f(O) _l_fl(o)x_l_fz(!o)xz _I_f x3 + ..._|_f8_(!0)xn

_ 2 4_1 6,18
—1—;x +Zx —ax +§x
We finally approximate cos 2 :
cos2 ~ pg(2) = %z —0.41587

Our error bound guarantee that this approximation is within 0. 001 of the correct answer.
Technology shows us that our approximation is actually within about 0.0003 of the correct
answer.
Figure G'shows a graph of y = pg(x) and y = cos x. Note how well the two functions agree
on about (—m, +m).
PPy
y = Ps()
‘ ‘I'. y = cos(x)

Figure G’




1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =+vx ,atx =4
2. Use p4(x)to approximate V3 .
3. Find bounds on the error when approximating v/3 with p,(3) .

fx) =x = f@ =2

f@ =57 > f@=7
f”(x)=m = f”(4)=§
f'®) = =5 = OB
Fr ) = = fra=_

1. We begin by evaluating the derivatives of f atx = 4 . These values allow us to form the
Taylor polynomial p4(x):

~1/32
2!

3/256
3!

—15/2048
4!

1
p4(x):2+z(x—4)+ (x—4)?% + (x —4)3 + (x —d*.
2. Asps(x) = vx ,near x = 4, we approximate V3 with p4(3) = 1.73212.
3. To find a bound on the error, we need an open interval that contains x = 3 and x = 4. We
set = (2.9,4.1) . The largest value the fifth derivative of f(x) = vx takes on this interval is

nearx = 2.9 , at about .0273 . Thus

0.0273
5!

IR,(3)| < |3 —4)5| ~ 0.00023 .

This shows our approximation is accurate to at least the first 2 places after the decimal. (It
turns out that our approximation is actually accurate to 4 places after the decimal.) A graph of
f(x) =+x and p4(x)is givenin Figure H' . Note how the two functions are nearly
indistinguishable on (2,7) .

-



Figure H'

Example 35: Approximating an unknown function

A function y = f(x) is unknown save for the following two facts.
1.y(0)=f(0)=1,and

2.y = y?
(This second fact says that amazingly, the derivative of the function is actually the function
squared!)

Find the degree 3 Maclaurin polynomial p3(x) of = f(x) .
Solution

One might initially think that not enough information is given to find p3(x) . However, note
how the second fact above actually lets us know what y'(0) is:

y = y* = y'(0)= y*(0)

Since y(0) =1 , we conclude thaty'(0) = 1.
Now we find information about y’’ . Starting with y’ = y? , take derivatives of both sides, with
respect to x . That means we must use implicit differentiation.

y =y

d d
N — 2
dx(y) dx(y)

y'o=2yy

Now evaluate both sidesat x = 0:




y'(0) =2y(0)-y'(0)
y'(0)=2

""(0) . We again use implicit differentiation; this time

We repeat this once more to find y

the Product Rule is also required.
d ") = d (2yy")
dx Y ) T ax Y

ym — zyr . yl + zy . yu

Now evaluate both sidesat x = 0:

y"'(0) = 2y'(0)* + 2y(0) - y"' (0)
y"(0)=2+4=6

In summary, we have:

y0=1 y©@=1 y"(0)=2 y"(0)=6
We can now form p3(x) :

2 6
p3(x) = 1+x+§x2+§x3

=1+x+x*+x3

Yy = pa(x)

Figure I’




It turns out that the differential equation we started with, y' = y? , where y(0) = 1, can be
solved without too much difficulty: y = . Figure I'shows this function plotted with p3(x).

Note how similar they are near = 0. .

2-Taylor Series

In Section 6, we showed how certain functions can be represented by a power series function.
In 7, we showed how we can approximate functions with polynomials, given that enough
derivative information is available. In this section we combine these concepts: if a function
f(x) is infinitely differentiable, we show how to represent it with a power series function.

Let f(x) have derivatives of all orders at = c .

1. The Taylor Series of (x) , centered at c is

g f< >(c) (x — o)

2. Setting ¢ = 0 gives the Maclaurin Series of f(x) :

RO
Z n! x

n=0

The difference between a Taylor polynomial and a Taylor series is the former is a polynomial,
containing only a finite number of terms, whereas the latter is a series, a summation of an
infinite set of terms. When creating the Taylor polynomial of degree n for a function f(x) at
x = ¢ ,we needed to evaluate f,and the first n derivatives of f ,at x = ¢ .When creating the
Taylor series of f , it helps to find a pattern that describes the n‘" derivative of f at x = ¢ .\We
demonstrate this in the next two examples.

Find the Maclaurin series of (x) = cosx .

In Example 33 we found the degree Maclaurin polynomial of cos x .
f(x) = cosx = f(0)=1
f/(x)=—sinx = f'(0)=0

f'(x) =—cosx = f"(0)=-
f""(x) = sinx = f"0)=0

f*(x) = cosx = f4H0)=1

-



f3(x) = —sinx = f50)=0

fé(x) = —cosx = f%0)=-1
f7(x) = sinx = f7(0)=0
f8(x) = cosx = ffo)=1

f°(x) = —sinx = f20)=0

Notice how f™(0) = 0 when n is odd, f™(0) = 1 when n is divisible by 4, and

f™(0) = —1 when n is even but not divisible by 4. Thus the Maclaurin series of cos x is
1 1
a2 A .6 .8 .
e TR TR TR T

We can go further and write this as a summation. Since we only need the terms where the
power of is even, we write the power series in terms of x2™:

© xZn
1"
Z( ) (2n)!
n=0
Find the Taylor series of f(x) = Inx centeredatx = 1.

Figure 1 shows the nth derivative of Inx evaluatedatx =1forn =0, ...... , 5,along with an
expression for the nt* term:

fO1)) =D m+1)!,n>1

Remember that this is what distinguishes Taylor series from Taylor polynomials; we are very

interested in finding a pattern for the n®® term, not just finding a finite set of coefficients for a
polynomial.

f(x) =Inx = fA)=0
fix =1 > f=1
=3 > ) =-1
@) =2 = =2
frx =2 > fH1) = -6
ffo=% = £51) =2

-



o) = O o rix) = (—1) (- D). .. Figure (1)

Since f(1) = In1 = 0 ,we skip the first term and start the summation with n = 1 ,giving the
Taylor series for Inx ,centered at x =1 ,as
1 - D"
Z( D™= (x - D" = Z( S
It is important to note that Definition 14 defines a Taylor series given a function (x) ;

however, we cannot yet state that f(x) is equal to its Taylor series. We will find that "most of
the time" they are equal, but we need to consider the conditions that allow us to conclude this.

th

Theorem 23 states that the error between a function f(x)and its n'* --degree Taylor

polynomial p,,(x) is R, (x) ,where

max|f )(z)| 1
|Rp(0)| < TKA‘ )|

If R,(x) goes to O for each x in an interval I as n approaches infinity, we conclude that the
function is equal to its Taylor series expansion.

Theorem 24: Function and taylor series equality

Let f(x) have derivatives of all orders at x = ¢ ,let R,,(x) be as stated in Theorem 23,
and let I be an interval on which the Taylor series of f(x) converges.

If lim R,,(x) =0 forall xin I ,then
n—oo

foo) =32,k @ ‘(x—¢)" on I

Show that f(x) = cosx is equal to its Maclaurin series, as found in Example 36, for all .

Given a value x ,the magnitude of the error term R,,(x) is bounded by

ax|f(n+1)(z)|
IR (0)] < —7 5 12|

Since all derivatives of cosx are *sinx or + cosx ,whose magnitudes are bounded by 1 ,we
can state

1
—— |xm+D)
IRn ()] < ooy [

S




which implies

— |x@+ D)

(n+1)!

D] *
< |R,(%)| < T T *)

xn+1

Forany , 1111_{?0 (n+1)!

lim R, (x) = 0 for all x ,and hence
n—-oo

= 0. Applying the Squeeze Theorem to Equation (*) , we conclude that

. x2n
cosx =) o(=D" i for all x.

Find the Maclaurin series of f(x) = (1 + x)¥ ,k#0 .

When kis a positive integer, the Maclaurin series is finite. For instance, when k = 4 ,we have
fO=1A+x)* =1+4x+ 6x% +4x3 + x*

The coefficients of x when k is a positive integer are known as the binomial coefficients,
giving the series we are developing its name. When

k=1/2 we have f(x) = V1 + x .Knowing a series representation of this function would
give a useful way of approximating v/1,3 ,for instance.

To develop the Maclaurin series for f(x) = (1 + x)* for,k # 0 any value of f ,we consider
the derivatives of evaluated at x = 0 :

fx) =@ +xk = fO)=1

f(x) = k(1 +x)k 1 = f'(0)=k

f'(x) =k(k—1)-(1+x)k? = f'0=k(k-1)

f'a) =k(k—1)-(k—2)- (1 +x)*3 = f"(0) = k(k—1)-(k—2)

1@ =kk =1 (k= (k=2) A +05" > 1) = k(k— 1) (k= (k- 1)

Thus the Maclaurin series for f(x) = (1 + x)¥ is

+k(k—1)+k(k—1)'(k—2)_l_m_l_k(k—1)"'(k_("_1))+...

1+k 2! 3! n!

It is important to determine the interval of convergence of this series. With

=k(k—1)---(k—(n—1))xn
n!

n

.



we apply the Ratio Test:

k(k—1)---(k—n)
(n+1)!

lim |an+1| — xn+1

/‘k(k—l)---(k—(n—l))xn

n—oo |an| n—oo ‘n'

. k—n
=lim |—x
n-oocol N

= |x|

The series converges absolutely when the limit of the Ratio Test is less than 1; therefore, we
have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends on the value of k.
When k > 0 ,the interval of convergence is [-1,4+1] .When —1 < k < 0 ,the interval of
convergence is [-1,+1) .If k < —1 ,the interval of convergence is (-1, +1) .

Function and Series First Few Terms ot
"'?25 1+.+;-’!+§+... P—
mefers aheh-he i
mx-g;(-l)‘-(% "%*5'%*"' (~00, )
m-i(-x)"'@ (x—1) - ("2‘)' + "‘3"' —— (0,2)
ﬁ-.}:r 142+ R 4P 4 (-1,1)
(1-')._gm-x)...g-(--x)){ ”h+t_(k_£_1){+___ (-1,1)°
m*‘x-g:‘(—x)’:;; .-‘;*’;'-‘;w. -1,1]




Theorem 25: Algebra of power series

let f(x) =Y, _oa,x" and g(x) = Y7o b, x™ converge absolutely for |x| <
R and let h(x) be continuous

1.f(x)+ glx) = Yo-o(a, = b,) x™ \quad for , |x| <R.

2.f(x) g(x) =(21010:0 a, x") - (Z:;O:O b, x™) = ;?:O(aobn + aib,_1 + -+ a,bg) x™ for |x| <R.

3. f(h(x) = T30 @n (R())" for [h(x)] < R.

Write out the first 3 terms of the Taylor Series for f(x) = e* cos x using Key Idea 04 and
Theorem 25.

Key Idea 04 informs us that
xz x3 xz x4
e*=1+x++5 4+ andcosx=1-"++ -

Applying Theorem 25, we find that

X2 3 2 xt
e*cosx = 1+x+—+§+ 1——4+ 4.

Distribute the right hand expression across the left :

x? xt x* xt x? x* xt x3 x? xt x* x? xt
=1(1-2-+2- 1-— i 1. 1 (1=
( TR )+x( ata >+2'< TR >+3!< TV >+4!< TRV >+

Distribute again and collect like terms

3 4 5 7
X X
=l+x-F-T-mhta T

While this process is a bit tedious, it is much faster than evaluating all the necessary
derivatives of e* cos x and computing the Taylor series directly.

Because the series for e* and cos x both converge on (-0, +0),s0 does the series expansion
fore*cosx.

Use Theorem 25 to create series for y = sin(x?) and y = In(vx).

Given that

oo

x2n+1 PO B
i = _ n—: —_—
Sinx Z}( 1) Znt 1! x— 31 + T +-

n=

N



we simply substitute x? for x in the series, giving

. 2N _ . (x )2n+1 2
Sin(x*) = Yo o(—D" e =X —gtg oot

Since the Taylor series for sin x has an infinite radius of convergence, so does the Taylor series
for Sin(x?).

The Taylor expansion for In x given in Key Idea 04 is centered at x = 1 ,so we will center the

series for Invx at x = 1 as well.
With

oo 3 n ~ ) ~ \
lnx:;(_l)nﬂ(x nl) =(x—1)—(x 21) +(x 31) _

we substitute vx for x to obtain

= (Va-

i S SOV (ol Y el

In(vx) =;(—1 -

While this is not strictly a power series, it is a series that allows us to study the function In(v/x)
Since the interval of convergence of In x is (0, 2] ,and the range of vx on (0, 4] is (0, 2] ,the
interval of convergence of this series expansion of In(v/x) is (0, 4] .

. —x2 1 _,2
Use the Taylor series of e™" to evaluate [, e™* dx.

. . . _x2 .
We learned, when studying Numerical Integration, that e™ does not have an antiderivative
expressible in terms of elementary functions. This means any definite integral of this function
must have its value approximated, and not computed exactly.

—x2

We can quickly write out the Taylor series for e™ using the Taylor series of e* :

x™ 3

Z l—1+x+§+§+

n=0

and so

_Zno

_vo _qyn*"
—ano( 1) n!

-



4 6
— 1 _x2 X
=1 x+2! 3!+

We use Theorem 23 to integrate:

e'xzdx=C+x—?+ ——t e (-

fl x3 x5 x7 x2n+1 N
0 5-20 7-3! (2n + Dn!

x ;Whlle we can write 1t out as a series, we cannot write 1t out 1n

This is the antiderivative of e~
. o 1 _,2 . .
terms of elementary functions. We can evaluate the definite integral fo e * dx using this

antiderivative; substituting 1 and 0 for x and subtracting gives

fl—xzd—11+1 t 1y
A R T B TR R

Summing the 5 terms shown above give the approximation of 0. 74749 Since this is an
alternating series, we can use the Alternating Series Approximation Theorem, (Theorem19),
to determine how accurate this approximation is. The next term of the series is

1/(11-5!) = 0.00075758 .Thus we know our approximation is within 0.00075758 of the
actual value of the integral. This is arguably much less work than using Simpson's Rule to
approximate the value of the integral.

-



Conclusion

Sequences and series are powerful and versatile mathematical tools that play a central role in
many scientific and technical fields. Their ability to model, analyze and solve complex
problems makes them indispensable for theoretical research and practical applications. They
play a crucial role in many scientific and technical disciplines. Here are a few notable
applications in various fields:

This dissertation explores not only the theoretical underpinnings of these concepts, but also
recent developments and their implications in a variety of fields, providing a comprehensive
and integrated overview of the importance of sequences and series in today's scientific and
technological landscape.

Here is a list of key references covering theoretical aspects, applications and recent
developments in sequences and series.

-
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