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Introduction  
 

Sequences, defined as ordered collections of elements, are used to model sequential 

phenomena and discrete processes. Series, which are infinite sums of elements in a sequence, 

are used to explore concepts such as convergence, divergence and summation. These notions 

are particularly relevant to the study of functions, where Taylor and Fourier series are used to 

represent and analyze complex functions. 

They are fundamental concepts in mathematics, playing a crucial role in various branches such 

as analysis, number theory and differential equations. Sequences and series play a crucial role 

in many scientific and technical disciplines. Here are a few notable applications in various 

fields 

Their study goes back centuries, with significant contributions from famous mathematicians 

such as Isaac Newton, Gottfried Wilhelm Leibniz and Augustin-Louis Cauchy. Not only are 

sequences and series essential theoretical tools, they also have practical applications in fields 

such as physics Quantum mechanics: Fourier series are used to solve the Schrödinger equation 

in quantum systems. Eigen function series help to represent quantum states of particles in 

potentials. Electromagnetism: Laurent and Taylor series are used to solve Maxwell's equations 

in complex media. Fourier series are also used in the analysis of electrical circuits and signals. 

Engineering:  Signal Processing: Fourier series and wavelet transforms are essential for signal 

processing, particularly in data compression, noise reduction and frequency analysis. 

Structural Analysis: In civil and mechanical engineering, series are used to analyze structural 

vibrations and model deformations under various loads. Economics and Finance: Time Series 

Models: Sequences and series are fundamental in time series models for the analysis of 

financial data. For example ARIMA (Auto Regressive Integrated Moving Average) models use 

sequence concepts to predict market movements. Compound interest calculation: Geometric 

series are used to calculate compound interest and investment returns over extended periods. 

Computer science: Algorithms : Recurrent sequences, such as Fibonacci sequences, are used in 

the design of efficient, optimized algorithms for a variety of problems, including sorting and 

searching. Data Compression: Fourier series and wavelets play a key role in image and video 

compression techniques, such as JPEG and MPEG.  

Number Theory: Zeta functions: Infinite series are essential for the study of Riemann zeta 

functions, which have profound implications in number theory, particularly in relation to the 

distribution of prime numbers. Dirichlet series: used in the proofs of many number theorems, 

these series help to analyze the properties of arithmetic functions. 

Numerical Analysis: Approximation Methods: Taylor polynomials and Fourier series are used 

to approximate complex functions, facilitating the numerical calculation of solutions for 

differential and integral equations. Solving Differential Equations: Series methods are 

commonly used to find analytical and numerical solutions to ordinary differential equations 

and partial differential equations. 

Many authors can be found in the literature among others Bartle gives a classic text covering 

the fundamental concepts of real analysis, including sequences and series, Knopp has given a 

thorough reference on infinite series, exploring both theory and practical applications. Apostol 

in his book, covers many aspects of analysis, including Fourier series and Taylor series, In his 

reference in mathematical analysis, Rudin, offers a solid grounding in the theory of sequences 
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and series. Zygmund, has studied trigonometric series in depth, with applications to Fourier 

analysis, and as research articles in his work Hardy has given an important background dealing 

with the convergence of multiple series, Dym in his article explores the properties of Fourier 

series and their applications. A reference on function theory, including discussions of Laurent 

and Taylor series is due to Titchmarsh. We can add to this bibliography, online resources Khan 

Academy - Sequences and Series. A series of educational videos covering the basic concepts of 

sequences and series, available on Khan Academy and MIT Open Course Ware - Single 

Variable Calculus, a free online course including material on Taylor and Fourier series, 

available on MIT Open Course Ware. In his thesis, Smith explored the applications of series in 

various engineering problems. A technical report discussing the convergence properties of 

special series used in mathematical physics was prepared by Brown. Finally, we end with 

review articles by Stein, featuring interesting book and related articles on complex analysis, 

including in-depth discussions of Laurent series. Gasquet, provides a comprehensive text 

combining Fourier analysis with practical applications, including the use of series for filtering 

and numerical computation. 

This work, entitled "Studies in Sequences and Series", aims to offer an in-depth exploration of 

these topics. We'll start with a review of basic concepts and fundamental theorems, before 

delving into more advanced developments and their modern applications. 

The aim is to provide readers not only with a solid understanding of the underlying principles, 

but also to familiarize them with the latest advances in this dynamic field. Whether you're a 

student, a researcher, or a practitioner, this document will serve as a comprehensive guide to 

navigating the rich landscape of sequences and series, and to applying these concepts to real 

and theoretical problems. 

At the end we give a bibliography which offers a diverse set of resources for deepening 

understanding of sequences and series, covering both theoretical and practical aspects. The 

books, articles and online resources listed here provide a solid foundation for any advanced 

study of the subject. 
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Chapter 01 
Sequences and Series 

This chapter introduces sequences and series, important mathematical constructions that 

are useful when solving a large variety of mathematical problems, the content of this chapter is 

considerably different from the content of the chapters before it, while the material we learn 

here definitely, falls under the scope of “calculus”, we will make very little use of derivatives or 

integrals. limits are extremely important , though , especially limits that involve infinity . 

 

 

1. Sequences 

2. Infinite Series  

3. Integral and comparison Tests  

4. Ratio and Root Tests  

5. Alternating Series and Absolute Convergence  

6. Power Series  
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 Sequences-1 
 

We commonly refer to a set of events that occur one after the other as a sequence of events. In 

mathematics, we use word sequence to refer to an ordered set of numbers, i.e., a set of 

numbers that “occur one after the other.”  

 

For instance, the numbers 2, 4, 6, 8, ... , from a sequence . The order is important; the first 

number is 2, the second is 4, etc . It seems natural to seek a formula that describes a given 

sequence, and often this can be done. for instance , the sequence above could be described by 

the function  𝒂(𝒏) = 𝟐 𝒏  , for the values of 𝒏 = 𝟏 , 𝟐 , …  To find the  𝟏𝟎𝒕𝒉 term in the sequence 

 we would compute  𝒂(𝟏𝟎) . This leads us to the following  formal definition of a sequence  

 

 

 

 

 

 

 

 , ... , 3 , 2 1to describe the set of natural numbers, that is, the integers   ℕ  : We use Notation 

 

 

 

 

 

 

 

 

Example 01: Listing terms of a sequence  

 

List the first four terms of the following sequences.  
 

1. {𝒂𝒏} = {
𝟑𝒏

𝒏 !
} 

 

2. {𝒂𝒏} = {𝟒 +  (−𝟏 )𝒏 }  
 

3.  {𝒂𝒏} = {
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏𝟐 }   

 

Solution  
 

1. {𝒂𝒏} = {
𝟑𝒏

𝒏 !
}  

 

n = 1              𝐚𝟏 =   
𝟑𝟏

𝟏 !
= 𝟑                                                      

 Sequences , range and terms :01Definition  

*  A sequence is a function 𝒂(𝒏) whose domain is ℕ 

* The range of a sequence is the set of all distinct values of  𝒂(𝒏) 

*  The terms of a sequence are the values  𝒂(𝟏) , 𝒂(𝟐) , ... , which are usually denoted with 

subscripts as  𝒂𝟏 , 𝒂𝟐   , … . 

 A sequence 𝒂(𝒏) is often denoted as {𝒂𝒏 } 

 Factorial :02Definition  

the expression 𝟑 ! refers to the number 3. 2. 1 = 6 In general,  

 

𝒏 ! = 𝒏 . ( 𝒏 − 𝟏 ). ( 𝒏 − 𝟐 ) … 𝟐 . 𝟏                                                                                    
 

where 𝒏  is a natural number. We define 𝟎 ! = 𝟏 .  while this does not immediately make sense; 

it makes many mathematical formulas work properly. 
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n = 2           𝐚𝟐 =   
𝟑𝟐

𝟐 !
=  

𝟗

𝟐×𝟏
 = 

𝟗

𝟐
  = 4,5     

 

n = 3       𝐚𝟑 =   
𝟑𝟑

𝟑 !
=  

𝟐𝟕

𝟑×𝟐×𝟏
 = 

𝟗

𝟐
  = 4,5                                                  

 

n = 4        𝐚𝟒 =   
𝟑𝟒

𝟒 !
=  

𝟑𝟒

𝟒×𝟑×𝟐×𝟏
 = 

𝟑𝟑×𝟑

𝟒×𝟑×𝟐×𝟏
  =  

𝟑𝟑

𝟖
= 

𝟐𝟕

𝟖
 = 3, 38  

 

n = 5           𝐚𝟓 =   
𝟑𝟓

𝟓 !
=

𝟐𝟒𝟑

𝟓×𝟒×𝟑×𝟐×𝟏
=  

𝟖𝟏

𝟒𝟎
= 𝟐, 𝟎𝟐𝟓 

 

n = 6            𝐚𝟔 =   
𝟑𝟔

𝟔 !
=

𝟕𝟐𝟗

𝟔×𝟓×𝟒×𝟑×𝟐×𝟏
=  

𝟖𝟏

𝟖𝟎
= 𝟏, 𝟎𝟏𝟐 

 

n = 7            𝐚𝟕 =   
𝟑𝟕

𝟕 !
=

𝟐𝟏𝟖𝟕

𝟕×𝟔×𝟓×𝟒×𝟑×𝟐×𝟏
=  

𝟐𝟒𝟑

𝟓𝟔𝟎
= 𝟎, 𝟒𝟑                  

 

Analytical  
 

Using d'Alempart's rule:  𝐥𝐢𝐦
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝑳 

1. {𝒂𝒏} =  {
𝟑𝒏

𝒏!
} 

 𝒍𝒊𝒎
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
=  𝒍𝒊𝒎

𝒏→∞

𝟑𝒏+𝟏

        (𝒏+𝟏)!       

    𝟑𝒏  

𝒏!

 

= 𝐥𝐢𝐦
𝒏→∞

 
𝟑𝒏+𝟏

(𝒏+𝟏)!
×

𝒏!

    𝟑𝒏 

= 𝐥𝐢𝐦
𝒏→∞

𝟑𝒏∙ 𝟑𝟏

(𝒏+𝟏)∙𝒏!
×

𝒏!

    𝟑𝒏 

= 𝐥𝐢𝐦
𝒏→∞

𝟑𝟏

(𝒏+𝟏)
             

= 𝐥𝐢𝐦
𝒏→∞

𝟑

(𝒏+𝟏)
            

= 
𝟑

∞
                                                

                                            = 0 < 𝟏 

                            

{𝒂𝒏} =  {
𝟑𝒏

𝒏!
} (so sequence is convergent)   
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Figure  A 

 

We can plot the terms of a sequence with a scatter plot. The " 𝒙 ''-axis is used for the values of, and the values 

of the terms are plotted on the " 𝐲 "-axis. To visualize this sequence, see Figure A 

 
 

2. {𝒂𝒏} = {𝟒 +  (−𝟏 )𝒏 }   

 

n = 1      𝒂𝟏   =  𝟒 +  (−𝟏 )𝟏  = 3                   

n = 2      𝒂𝟐   =  𝟒 +  (−𝟏 )𝟐  = 5                   

n = 3      𝒂𝟑   =  𝟒 +  (−𝟏 )𝟑  = 3                  
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n = 4      𝒂𝟒  =  𝟒 +  (−𝟏 )𝟒  = 5         

n = 5      𝒂𝟓  =  𝟒 +  (−𝟏 )𝟓  = 3         

    n = 6      𝒂𝟔  =  𝟒 + (−𝟏 )𝟔  = 5            

         n = 7      𝒂𝟕  =  𝟒 + (−𝟏 )𝟕  = 3                

 

 

 

 

 

 

Figure B               

 

 

 

Note that the range of this sequence is finite, consisting of only the values 3 ans 5. This 

sequence is plotted in figure B 
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3.  {𝒂𝒏} = {
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏𝟐 }   

 

   n = 1              𝐚𝟏 =   
(−𝟏)

𝟏(𝟐)
𝟐

𝟏𝟐 =  
(−𝟏)𝟏

𝟏
=  −𝟏          

 

   n = 2              𝐚𝟐 =   
(−𝟏)

𝟐(𝟑)
𝟐

𝟐𝟐 =  
(−𝟏)𝟑

𝟒
=  

− 𝟏

𝟒
            

 

   n = 3              𝐚𝟑 =   
(−𝟏)

𝟑(𝟒)
𝟐

𝟑𝟐 =  
(−𝟏)𝟔

𝟗
=  

 𝟏

𝟗
= 𝟎, 𝟏𝟏  

 

   n = 4              𝐚𝟒 =   
(−𝟏)

𝟒(𝟓)
𝟐

𝟒𝟐 =  
(−𝟏)𝟏𝟎

𝟏𝟔
=  

 𝟏

𝟏𝟔
= 𝟎, 𝟎𝟔 

 

   n = 5              𝐚𝟓 =   
(−𝟏)

𝟓(𝟔)
𝟐

𝟓𝟐 =  
(−𝟏)𝟏𝟓

𝟐𝟓
=  −

 𝟏

𝟏𝟔
=  −𝟎, 𝟎𝟔   

                                                    

   n = 6              𝐚𝟔 =   
(−𝟏)

𝟔(𝟕)
𝟐

𝟔𝟐 =  
(−𝟏)𝟐𝟏

𝟑𝟔
=  −

 𝟏

𝟑𝟔
=  −𝟎, 𝟎𝟑   

 

   n = 7              𝐚𝟕 =   
(−𝟏)

𝟕(𝟖)
𝟐

𝟕𝟐 =  
(−𝟏)𝟐𝟖

𝟒𝟗
=  

 𝟏

𝟒𝟗
= 𝟎, 𝟎𝟐   

 

Analytical 
 

Using d'Alempart's rule:  𝐥𝐢𝐦
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝑳 

3.  {𝒂𝒏} = {
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏𝟐 }   

𝐥𝐢𝐦
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝐥𝐢𝐦

𝒏→∞

(−𝟏)(𝒏+𝟏)∙((𝒏+𝟏)+𝟏)/𝟐

(𝒏+𝟏)𝟐

(−𝟏)𝒏∙(𝒏+𝟏)/𝟐

𝒏𝟐

 

= 𝐥𝐢𝐦
𝒏→∞

(−𝟏)(𝒏+𝟏)∙(𝒏+𝟐)/𝟐

(𝒏+𝟏)𝟐

(−𝟏)𝒏∙(𝒏+𝟏)/𝟐

𝒏𝟐

        

= 𝐥𝐢𝐦
𝒏→∞

 (−𝟏)
(𝒏+𝟏)∙

𝒏+𝟐
𝟐

(𝒏+𝟏)𝟐   × 
𝒏𝟐

(−𝟏)𝒏∙
𝒏+𝟏

𝟐

  

= 𝐥𝐢𝐦
𝒏→∞

 (−𝟏)(𝒏+𝟐)/𝟐

(𝒏+𝟏)𝟐   ×  
𝒏𝟐

(−𝟏)𝒏/𝟐 

= 𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝒏/𝟐∙(−𝟏)𝟏

(𝒏+𝟏)𝟐   ×  
𝒏𝟐

(−𝟏)𝒏/𝟐 
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= 𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝟏∙𝒏𝟐

(𝒏+𝟏)𝟐   

    

= 𝐥𝐢𝐦
𝒏→∞

−𝒏𝟐

𝒏𝟐+𝟐𝒏+𝟏
 

= 𝐥𝐢𝐦
𝒏→∞

−𝒏𝟐

𝒏𝟐      

   = -1< 1.      (so sequence is convergent)               

 

 

 

 

 

Figure C       

   
 

We gave one extra term to begin to show the pattern of signs is  − , − , + , + , − , − , …    ,  due to the fact that the  

exponent of –  𝟏 is a special quadratic. This sequence is plotted in Figure C      
 



  

 

14 

Example 02: Determining a formula for a sequence  

 

 Find the 𝒏𝒕𝒉 term of the following sequences, i.e., find a function that describes each of the 

given sequences.. 

1. 𝟐 , 𝟓 , 𝟖 , 𝟏𝟏 , 𝟏𝟒 , . ..  

2. 𝟐, −𝟓 , 𝟏𝟎 , −𝟏𝟕 , 𝟐𝟔 , −𝟑𝟕, . .. 

3.  𝟏 , 𝟏 , 𝟐 , 𝟔 , 𝟐𝟒 , 𝟏𝟐𝟎 , 𝟕𝟐𝟎 , . .. 

4.   
𝟓

𝟐 
  ,

𝟓

𝟐
  ,

𝟏𝟓

𝟖
 ,

𝟓

𝟒
  ,

𝟐𝟓

𝟑𝟐
 , . ..  

 
Solution  
 
we should first note that there is never exactly one function that describes a finite set of 
numbers as a sequence. There are many sequences that start with 2, then 5, as our first 
example does. We are looking for a simple formula that describes the terms given, knowing 
there is possibly more than one answer. 
 
1. Note how each term is 3 more than the previous one. This implies a linear function would be 
appropriate: 𝒂(𝒏) =  𝒂𝒏 = 𝟑𝒏 + 𝒃 for some appropriate value of b. As we want 𝒂𝟏 = 𝟐  we set 
𝒃 =  −𝟏 thus 𝒂𝒏 = 𝟑𝒏 − 𝟏 , see Figure a (1) 

 

nalyticalA 

 

using d'Alempart's rule:  𝐥𝐢𝐦
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝑳 

{𝒂𝒏} = {𝟑𝒏 − 𝟏} 

𝐥𝐢𝐦
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝐥𝐢𝐦

𝒏→∞

𝟑(𝒏 + 𝟏) − 𝟏

𝟑𝒏 − 𝟏
 

                               

                                                                            =  𝐥𝐢𝐦
𝒏→∞

𝟑𝒏+𝟑−𝟏

𝟑𝒏−𝟏
 

          

         =  𝐥𝐢𝐦
𝒏→∞

𝟑𝒏 + 𝟐

𝟑𝒏 − 𝟏
 

 

                                                                                    =  𝐥𝐢𝐦
𝒏→∞

𝟑𝒏

𝟑𝒏
 

                                                                          = 𝟏 

The sequence is inconclusive 
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  Figure a (1) 
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2. First notice how the sign changes from term to term. This is most commonly accomplished 

by multiplying the terms by either (−𝟏)𝒏 or (−𝟏)𝒏+𝟏. Using (−𝟏)𝒏  multiplies the odd terms 

by (−𝟏) ; using (−𝟏)𝒏+𝟏 multiplies the even terms by (−𝟏) . As this sequence has negative 

even terms, we will multiply by (−𝟏)𝒏+𝟏 .  

 

After this, we might feel a bit stuck as to how to proceed. At this point, we are just looking for 

a pattern of some sort: what do the numbers 𝟐 , 𝟓 , 𝟏𝟎 , 𝟏𝟕,  etc, have in common? There are 

many correct answers, but the one that we'll use here is that each is one more than a perfect 

square. That is, 𝟐 =  𝟏𝟏 + 𝟏 , 𝟓 = 𝟐𝟐 + 𝟏 , 𝟏𝟎 = 𝟑𝟐 + 𝟏 , etc . Thus our formula is 

 𝒂𝒏 =    (−𝟏)𝒏+𝟏 ∙ (𝒏𝟐 + 𝟏) , see Figure b (1).  

 

 

 

 

                                                                        Figure b (1) 
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3. One who is familiar with the factorial function will readily recognize these numbers. They 

are 𝟎! , 𝟏! , 𝟐! , 𝟑! , etc. Since our sequences start with 𝒏 = 𝟏  , we cannot write 𝒂𝒏 = 𝒏!  , for this 

misses the 𝟎!  term. Instead, we shift by 𝟏 , and write   𝒂𝒏 = (𝒏 − 𝟏)!  , see Figure c (1)  

 

 

 

                                                                      Figure c (1)   
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4. This one may appear difficult, especially as the first two terms are the same, but 

a little ``sleuthing'' will help. Notice how the terms in the numerator are always 

multiples of  𝟓 , and the terms in the denominator are always powers of 𝟐 . Does 

something as simple as  

𝒂𝒏 =
𝟓𝒏

𝟐𝒏  work? 

 

When 𝒏 = 𝟏   , we see that we indeed get  𝒂𝟏 =
𝟓

𝟐
  as desired.  When  𝒏 = 𝟐 we get 

 𝒂𝟐 =
𝟏𝟎

𝟒
=

𝟓

𝟐
 Further checking shows that this formula indeed matches the other 

terms of the sequence, see  

Figure d ( 1 )   

 

nalyticalA 

 

using d'Alempart's rule:  𝐥𝐢𝐦
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝑳 

 𝒍𝒊𝒎
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝒍𝒊𝒎

𝒏→∞

     
𝟓(𝒏+𝟏)

𝟐(𝒏+𝟏)    

    𝟓𝒏   

   𝟐𝒏

 

  = 𝐥𝐢𝐦
𝒏→∞

𝟓(𝒏+𝟏)

𝟐(𝒏+𝟏)  ×  
𝟐𝒏

𝟓𝒏 
  

=  𝐥𝐢𝐦
𝒏→∞

𝟓(𝒏+𝟏)

𝟐𝒏 ∙𝟐𝟏  ×  
𝟐𝒏

𝟓𝒏 
 

= 𝐥𝐢𝐦
𝒏→∞

𝟓𝒏+𝟏

𝟐𝟏  × 
𝟏

 𝟓𝒏 
       

= 𝐥𝐢𝐦
𝒏→∞

𝟓𝒏+𝟏

𝟐𝟏∙𝟓𝒏                   

= 𝐥𝐢𝐦
𝒏→∞

𝟓𝒏+𝟏

𝟏𝟎𝒏                   

= 𝐥𝐢𝐦
𝒏→∞

𝟓𝒏

𝟏𝟎𝒏                     

= 
𝟏

𝟐
 < 1 .                             

(So sequence is convergent)     
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                                                                 Figure d (1)      
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eetermining convergence / divergence of a sequencD :03 Example 
 

determine the convergence or divergence of the following sequences.  

1. {𝒂𝒏} = {
𝟑𝒏𝟐−𝟐𝒏+𝟏

𝒏𝟐−𝟏𝟎𝟎𝟎
}                                                               

2.  {𝒂𝒏} = {𝐜𝐨𝐬 𝒏} 

 

3. {𝒂𝒏} = {
(−𝟏)𝒏

𝒏
} 

 

 Solution 

1.We can state that 𝐥𝐢𝐦
𝒙→∞

𝟑𝒙𝟐−𝟐𝒙+𝟏

𝒙𝟐−𝟏𝟎𝟎𝟎
= 3 (We could have also directly applied l'H\^opital’s Rule. 

thus the sequence {𝒂𝒏} converges, and its limit is 3. A scatter plot of every 5 values of  𝒂𝒏 is 

Limita of a sequence, convergent, divergent :03Definition  

 

Let  {𝒂𝒏}  be a sequence and let 𝑳 be a real number. given any 𝜺 > 0 , if an 𝒎 can be found such that 

  |𝒂𝒏 − 𝑳| < 𝜺  for  all 𝒏 > 𝒎  ,  then we say the limit of {𝒂𝒏}  , as  𝒏 approaches infinity , is  𝑳 , denoted  

 

                                                                                𝐥𝐢𝐦
𝐧→∞

𝐚𝐧 = 𝐋 

 

If  𝐥𝐢𝐦
𝐧→∞

𝒂𝒏  𝑒𝑥𝑖𝑠𝑡𝑠 , 𝑤𝑒 𝑠𝑎𝑦 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒔 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒔 

 

this definition states , informally , that if the limit of a sequence is  𝑳 ,  then if you go far enough out along the 

sequence , all subsequent terms will be really close to  𝑳 . of  course , the terms “far enough“ and “really close” 

are subjective terms , but hopefully the intent is clear  

 

 Limit of a sequence :01Theorem  

 

Let {𝒂𝒏} be a sequence and let  𝒇(𝒙)  be a function whose domain contains the positive real numbers where  

𝒇(𝒏) = 𝒂𝒏   for all 𝒏 in  ℕ . 

1. If 𝐥𝐢𝐦
𝒙→∞

𝒇(𝒙)  does not exist, we can not conclude that 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏   does not exist. It may, or may not, exist. For 

instance, we can define a sequence {𝒂𝒏} = {𝐜𝐨𝐬(𝟐𝝅𝒏)} .  

Let 𝒇(𝒙) =  𝐜𝐨𝐬(𝟐𝝅𝒏) . Since the cosine function oscillates over the real numbers, the limit 𝐥𝐢𝐦
𝒙→∞

𝒇(𝒙)  does not 

exist.  

 

However, for every positive integer 𝒏 , 𝒄𝒐𝒔 (𝟐𝝅𝒏) = 𝟏 , 𝒔𝒐  𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 = 𝟏  

 

2. If we can not find a function 𝒇(𝒙)  whose domain contains the positive real numbers where 

 𝒇(𝒏) = 𝒂𝒏   for all 𝒏 in  ℕ , we can not conclude 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏  does not exist.   It may, or may not, exist. 
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given in Figure D  

 
                                                                Figure D  

 

 

 

2. The limit 𝐥𝐢𝐦
𝒏→∞

𝐜𝐨𝐬 𝒙  does not exist, as 𝐜𝐨𝐬 𝒙 oscillates (and takes on every value in   

[−𝟏 , 𝟏] infinitely many times). Thus we cannot apply Theorem 01. 

The fact that the cosine function oscillates strongly hints that 𝐜𝐨𝐬 𝒏 , when 𝑛 is restricted to  

ℕ , will also oscillate. Figure E, where the sequence is plotted, shows that this is true. Because 

only discrete values of cosine are plotted, it does not bear strong resemblance to the familiar 

cosine wave. 
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                                                                    Figure E 

 

We conclude that 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 does not exist. 

 

3. We cannot actually apply Theorem 01 here, as the function 𝒇(𝒙) =
(−𝟏)𝒙

𝒙
  is not well defined. 

(What does (−𝟏)√𝟐 mean? In actuality, there is an answer, but it involves complex analysis, 
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beyond the scope of this text.) So for now we say that we cannot determine the limit. (But we 
will be able to very soon.) By looking at the plot in Figure F, we would like to conclude that 
the sequence converges to 0. That is true, but at this point we are unable to decisively say so. 
 
 

 
 

 
                                                                      Figure F 

 

 

It seems that  
(−𝟏)𝒏

𝒏
  converges to 0 but we lack the formal tool to prove it. The following 

theorem gives us that tool.  

 

 

 
 

Absolute value theorem :02Theorem  
 

let  𝒂𝒏 be a sequence. 𝐥𝐢𝐦
𝒏→∞

|𝒂𝒏| = 𝟎 , 𝑡ℎ𝑒𝑛 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 = 𝟎   



  

 

24 

sequenceetermining the convergence / divergence of a D :04Example  

 
determine the convergence or divergence of the following sequences.  

 

 1.   {𝒂𝒏}={
(−𝟏)𝒏

𝒏
} 

 

2.  {𝒂𝒏}={
(−𝟏)𝒏(𝒏+𝟏)

𝒏
}  

 

 Solution 

 
1. This appeared in Example 03 we want to apply Theorem 02, so consider the limit of  {𝒂𝒏} 

 

𝐥𝐢𝐦
𝒏→∞

|𝒂𝒏|    =   𝐥𝐢𝐦
𝒙→∞

|
(−𝟏)𝒏

𝒏
|               

                           =   𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
                                                                                       

                           = 0           
 

since this limit is 0, we can apply Theorem 02 and state that 𝐥𝐢𝐦
𝒏→∞

{𝒂𝒏} = 𝟎 , see Figure F       

Analytical    

  

{𝒂𝒏}= {
(−𝟏)𝒏

𝒏
}   

 𝒍𝒊𝒎
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝒍𝒊𝒎

𝒏→∞

   
(−𝟏)𝒏+𝟏

(𝒏+𝟏)
  

    (−𝟏)𝒏

  𝒏

 

                                                             = 𝐥𝐢𝐦
𝒏→∞

 
(−𝟏)𝒏+𝟏

(𝒏+𝟏)
  × 

𝒏

(−𝟏)𝒏 

                                                             = 𝐥𝐢𝐦
𝒏→∞

 
(−𝟏)𝒏∙(−𝟏)𝟏

(𝒏+𝟏)
  ×

𝒏

(−𝟏)𝒏 

                                                             = 𝐥𝐢𝐦
𝒏→∞

−𝒏  

  𝒏+𝟏 
  

                                                              = 𝐥𝐢𝐦
𝒏→∞

−𝒏 

𝒏
 

= -1< 1 .                                            
(So sequence is convergent) 

 
2. Because of the alternating nature of this sequence (i.e., every other term is multiplied by), 

we cannot simply look at the limit  𝐥𝐢𝐦
𝒙→∞

(−𝟏)𝒙(𝒙+𝟏)

𝒙
 , and we can try to apply the techniques of 

Theorem 02 

𝐥𝐢𝐦
𝒏→∞

|𝒂𝒏| =      𝐥𝐢𝐦
𝒙→∞

|
(−𝟏)𝒏(𝒏+𝟏)

𝒏
|    = 𝐥𝐢𝐦

𝒏→∞

𝒏+𝟏

𝒏
 = 1    
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We have concluded that when we ignore the alternating sign, the sequence approaches 1. This 
means we cannot apply Theorem 02, it states the the limit must be 0 in order to conclude 
anything.  
 

Since we know that the signs of the terms alternate and we know that the limit of |𝒂𝒏|  is 1 , we 
know that as  𝒏 approaches infinity, the terms will alternate between values close to 1 and – 1  , 
meaning the sequence diverges. A plot of this sequence is given in Figure G.  
 

 

 
 

Figure G  

 
 

We continue our study of the limits of sequences by considering some of the properties of 
these limits. 
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 pplying properties of limits of sequencesA :05Example  

Let the following sequence, and their limits, be given: 

 {𝒂𝒏}={
𝒏+𝟏

𝒏
}  ,and 𝒍𝒊𝒎

𝒏→∞
𝒂𝒏 = 𝟎  

 {𝒃𝒏} = {(𝟏 +
𝟏

𝒏
)

𝒏
}  ,and 𝒍𝒊𝒎

𝒏→∞
𝒃𝒏 = 𝒆  

 {𝒄𝒏} ={𝒏 𝒔𝒊𝒏(
𝟓

𝒏
)} , and𝒍𝒊𝒎

𝒏→∞
𝒄𝒏 = 𝟓 

 

Solution  

We will use Theorem to answer each of these. 

1. Since 𝐥𝐢𝐦 
𝒏→∞

𝒂𝒏=0 and  𝐥𝐢𝐦 
𝒏→∞

 𝒃𝒏 = 𝒆  , we conclude that 𝐥𝐢𝐦 (
𝒏→∞

𝒂𝒏 + 𝒃𝒏)=0+ 𝒆= 𝒆.So even though 

we are adding   something to each term of the sequence  𝒃𝒏 , we are adding something so 

small that the final limit is the same as before.  

  

2. Since 𝐥𝐢𝐦
𝒏→∞

𝒃𝒏 = 𝒆 and 𝐥𝐢𝐦
𝒏→∞

𝒄𝒏 = 𝟓 , we conclude that  𝐥𝐢𝐦 (
𝒏→∞

𝒃𝒏 ⋅ 𝒄𝒏)=   𝒆 ⋅5=5 𝒆                       

 

3. Since 𝐥𝐢𝐦 
𝒏→∞

𝒂𝒏=0, we have  𝐥𝐢𝐦 
𝒏→∞

𝟏𝟎𝟎𝟎 ⋅ 𝒂𝒏 = 𝟏𝟎𝟎𝟎 ⋅ 𝟎 = 𝟎 .  It does not matter that we 

multiply each term by 1000; the sequence still approaches 0. (It just takes longer to get 

close to 0.) 

 

There is more to learn about sequences than just their limits. We will also study their 

range and the relationships terms have with the terms that follow. We start with some 

definitions describing properties of the range. 

 

 

 

 
 
       
 

 
 
 
 

 Bounded and unbounded sequences :04Definition  
 

1. A sequence  {𝒂𝒏} is said to be bounded if there exists real numbers  𝒎  and 𝑴 such that  

𝒎 < 𝒂𝒏 < 𝑀 for all 𝒏 in ℕ .  

2. A sequence  {𝒂𝒏} is said to be unbounded if it is not bounded.  

3. A sequence  {𝒂𝒏} is said to be bounded above if there exists an M such that 𝒂𝒏 < 𝑀 for all 𝒏 in 

ℕ  it is bounded below if there exists an 𝒎 such that  𝒎 < 𝒂𝒏  for all 𝒏 in ℕ .  

 

Properties of the limits of sequences  :03Theorem  

 
Let {𝒂𝒏} and {𝒃𝒏}be sequences such that 𝐥𝐢𝐦

𝒏→∞
𝒂𝒏 = 𝑳  , 𝐥𝐢𝐦

𝒏→∞
𝒃𝒏 = 𝑲 , and let c be a real number. 

 
𝟏. 𝐥𝐢𝐦 (

𝒏→∞
𝒂𝒏 ± 𝒃𝒏) =L±K                                           3. 𝐥𝐢𝐦 (

𝒏→∞
𝒂𝒏/𝒃𝒏) =L/K, K≠0      

 2. 𝒍𝒊𝒎 (
𝒏→∞

𝒂𝒏 ⋅ 𝒃𝒏) =L⋅K                                         4. 𝒍𝒊𝒎 (𝒄 ⋅
𝒏→∞

𝒂𝒏) = c ⋅L 
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Example 06: Determining boundedness of sequences 

 

Determine the boundedness of the following sequences.  

 

1. {𝑎𝑛} = {
1

𝑛
} 

2. {𝑎𝑛} = {2𝑛} 

 

Solution  

 

1. The terms of this sequence are always positive but are decreasing, so we have 

 𝟎 < 𝒂𝒏 < 2 for all  𝒏 . Thus this sequence is bounded, Figure H illustrates this.  

 

 

 

 

                                                           Figure H 
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2. The terms of this sequence obviously grow without bound. However, it is also true that these 
terms are all positive, meaning  𝟎 < 𝒂𝒏 . Thus we can say the sequence is unbounded, but also 
bounded below. Figure I illustrates this. 
 
 
 

 
                                                                           Figure I 
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In Example 05 we saw the sequence {𝒃𝒏} = {(𝟏 +
𝟏

𝒏
)𝒏} , where it was stated that 

𝐥𝐢𝐦
𝒏→∞

𝒃𝒏 = 𝒆 . (Note that this is simply restating part of Theorem 05.) Even though it may be 

difficult to intuitively grasp the behaviour of this sequence, we know immediately that it is 
bounded. 
 

Another interesting concept to come out of Example 06 again involves the sequence  
𝟏

𝒏
 . We 

stated, without proof that the terms of the sequence were decreasing. That is, that 𝒂𝒏+𝟏 < 𝒂𝒏 

for all n. (This is easy to show. Clearly n < 𝑛 + 1 . Taking reciprocals flips the inequality: 

 
𝟏

𝒏
 > 

𝟏

(𝒏+𝟏)
 . This is the same as 𝒂𝒏 > 𝒂𝒏+𝟏 . ) Sequences that either steadily increase or decrease 

are important, so we give this property a name. 

 
 
 

 

 

 

 

 

 

 

Example 07: Determining monotonicity 

 

Determine the monotonicity of the following sequences. 

 

 1.  {𝒂𝒏} = {
𝒏+𝟏

𝒏
}                                             3.  {𝒂𝒏} = {

𝒏𝟐−𝟗

𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔
} 

 

 2.  {𝒂𝒏} = {
𝒏𝟐+𝟏

𝒏+𝟏
}                                          4.   {𝒂𝒏} = {

𝒏𝟐

𝒏!
}   

Solution 
 
In each of the following, we will examine 𝒂𝒏+𝟏 − 𝒂𝒏 . If 𝒂𝒏+𝟏 − 𝒂𝒏 > 0 , we conclude that 
 𝒂𝒏 <    𝒂𝒏+𝟏 and hence the sequence is increasing. If 𝒂𝒏+𝟏 − 𝒂𝒏 < 0 , we conclude that 
 𝒂𝒏 >    𝒂𝒏+𝟏 and the sequence is decreasing. Of course, a sequence need not be monotonic and 
perhaps neither of the above will apply. 

 Convergent sequences are bounded :04 Theorem 

 
. is bounded  {𝒂𝒏}. Then be a convergent sequence {𝒂𝒏}  let  

 

Definition 05: monotonic sequences 
 

1.  A sequence  {𝒂𝒏}  is monotonically increasing if  𝒂𝒏 ≤ 𝒂𝒏+𝟏 for all  𝐧 ,  
                                                                                  𝒂𝟏 ≤ 𝒂𝟐 ≤ 𝒂𝟑 ≤ ⋯ 𝒂𝒏 ≤ 𝒂𝒏+𝟏  .... 
 
2.  A sequence {𝒂𝒏}  is monotonically decreasing if  𝒂𝒏 ≥ 𝒂𝒏+𝟏 for all  𝐧 ,  
                                                                                  𝒂𝟏 ≥ 𝒂𝟐 ≥ 𝒂𝟑 ≥ … 𝒂𝒏 ≥ 𝒂𝒏+𝟏  .... 
 
3.  A sequence is monotonic if it is monotonically increasing or monotonically decreasing. 
 
NOTE: It is sometimes useful to call a monotonically increasing sequence strictly increasing if 

𝒂𝒏 <  𝒂𝒏+𝟏  for all  ; i.e , we remove the possibility that subsequent terms are equal . A similar 

statement holds for strictly decreasing 
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We also give a scatter plot of each sequence. These are useful as they suggest a pattern of 
monotonicity, but analytic work should be done to confirm a graphical trend.  
 

1.  {𝒂𝒏} = {
𝒏+𝟏

𝒏
} 

 
Analytical 
 

𝒂𝒏+𝟏 − 𝒂𝒏= 
𝒏+𝟐

𝒏+𝟏
 −

𝒏+𝟏

𝒏
 

    

  

                   = 
(𝒏+𝟐)(𝒏)−(𝒏+𝟏)𝟐

(𝒏+𝟏)𝒏
        

 

                      = 
𝒏𝟐+𝟐𝒏−(𝒏𝟐+𝟐𝒏+𝟏)

𝒏(𝒏+𝟏)
                                                                                                      

                                                     

                       =  
𝒏𝟐+𝟐𝒏−𝒏𝟐−𝟐𝒏−𝟏

𝒏(𝒏+𝟏)
 

 

                         = 
−𝟏

𝒏(𝒏+𝟏)
< 0   

Since  𝒂𝒏+𝟏 − 𝒂𝒏 < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒏 , 𝑤𝑒 𝑐𝑜𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 .    

Graphical  

 

   

  

 

                                                        
                                      
                                                         Figure J 
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2.  {𝒂𝒏} = {
𝒏𝟐+𝟏

𝒏+𝟏
} 

Analytical 

 

𝒂𝒏+𝟏 − 𝒂𝒏=  
(𝒏+𝟏)𝟐+𝟏

𝒏+𝟐
 −

𝒏𝟐+𝟏

𝒏+𝟏
         

                    = 
((𝒏+𝟏)𝟐+𝟏)(𝒏+𝟏)−(𝒏𝟐+𝟏)(𝒏+𝟐)

(𝒏+𝟐)(𝒏+𝟏)
 

                    = 
(𝒏𝟐+𝟏+𝟐𝒏+𝟏)(𝒏+𝟏)−(𝒏𝟐+𝟏)(𝒏+𝟐)

(𝒏+𝟐)(𝒏+𝟏)
 

                    = 
(𝒏𝟐+𝟐+𝟐𝒏)(𝒏+𝟏)−(𝒏𝟑+𝟐𝒏𝟐+𝒏+𝟐)

(𝒏+𝟐)(𝒏+𝟏)
 

                    = 
(𝒏𝟑+𝟐𝒏𝟐+𝟐𝒏+𝒏𝟐+𝟐+𝟐𝒏)−(𝒏𝟑+𝟐𝒏𝟐+𝒏+𝟐)

(𝒏+𝟏)(𝒏+𝟐)
 

                     = 
𝒏𝟑+𝟑𝒏𝟐+𝟒𝒏+𝟐−𝒏𝟑−𝟐𝒏𝟐−𝒏−𝟐

(𝒏+𝟏)(𝒏+𝟐)
 

                     = 
𝒏𝟐+𝟑𝒏

(𝒏+𝟏)(𝒏+𝟐)
> 0  

Since  𝒂𝒏+𝟏 − 𝒂𝒏 > 𝟎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒏 , 𝑤𝑒 𝑐𝑜𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 . 

 

Graphical 

 

              

 

                                                                               Figure K                                                                         
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3.  {𝒂𝒏} = {
𝒏𝟐−𝟗

𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔
} 

Analytical 
 
we can clearly see in Figure L where the sequence is plotted, that it is not monotonic. 
However, it does seem that after the first 4 terms it is decreasing. To understand why, perform 
the same analysis as done before: 

 

 

𝒂𝒏+𝟏 − 𝒂𝒏= 
(𝒏+𝟏)𝟐 −𝟗       

(𝒏+𝟏)𝟐−𝟏𝟎(𝒏+𝟏)+𝟐𝟔
 −

𝒏𝟐−𝟗

𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔
         

                    = 
(𝒏𝟐+𝟏+𝟐𝒏)−𝟗

(𝒏𝟐+𝟏+𝟐𝒏)−𝟏𝟎𝒏−𝟏𝟎+𝟐𝟔
−  

𝒏𝟐−𝟗

𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔
 

                    = 
𝒏𝟐+𝟐𝒏−𝟖

𝒏𝟐−𝟖𝒏+𝟏𝟕
−  

𝒏𝟐−𝟗

𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔
 

                    = 
(𝒏𝟐+𝟐𝒏−𝟖)(𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔)−(𝒏𝟐−𝟗)(𝒏𝟐−𝟖𝒏+𝟏𝟕)

(𝒏𝟐−𝟖𝒏+𝟏𝟕)(𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔)
 

                    = 
𝒏𝟒−𝟏𝟎𝒏𝟑+𝟐𝟔𝒏𝟐+𝟐𝒏𝟑−𝟐𝟎𝒏𝟐+𝟓𝟐𝒏−𝟖𝒏𝟐+𝟖𝟎𝒏−𝟐𝟎𝟖−𝒏𝟒+𝟖𝒏𝟑−𝟏𝟕𝒏𝟐+𝟗𝒏𝟐−𝟕𝟐𝒏−𝟏𝟓𝟑

(𝒏𝟐−𝟖𝒏+𝟏𝟕)(𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔)
 

              

                    = 
−𝟖𝒏𝟑−𝟐𝒏𝟐+𝟏𝟑𝟐𝒏−𝟐𝟎𝟖+𝟖𝒏𝟑−𝟖𝒏𝟐−𝟕𝟐𝒏+𝟏𝟓𝟖

(𝒏𝟐−𝟖𝒏+𝟏𝟕)(𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔)
 

                   = 
−𝟏𝟎𝒏𝟐+𝟔𝟎𝒏−𝟓𝟓

(𝒏𝟐−𝟖𝒏+𝟏𝟕)(𝒏𝟐−𝟏𝟎𝒏+𝟐𝟔)
   

−𝟏𝟎𝒏𝟐 + 𝟔𝟎𝒏 − 𝟓𝟓 = 𝟎                       ∆= (+𝟔𝟎)𝟐 − 𝟒 × (−𝟓𝟓) × (−𝟏𝟎) 

                                                                    ∆= 𝟏𝟒𝟎𝟎 

    √∆= √𝟏𝟒𝟎𝟎 =10√𝟏𝟒   𝒉𝒂𝒔 𝒕𝒘𝒐 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ;  {

𝒏𝟏 =  
−𝟔𝟎+𝟏𝟎√𝟏𝟒

−𝟐×𝟏𝟎
=  

+𝟔−√𝟏𝟒

𝟐
= 𝟏, 𝟏𝟑

   

𝒏𝟐 =
−𝟔𝟎−𝟏𝟎√𝟏𝟒

−𝟐×𝟏𝟎
=  

+𝟔+√𝟏𝟒

𝟐
= 𝟒, 𝟖𝟕

 

We want to know when this is greater than, or less than, 0. The denominator is always positive; 
therefore we are only concerned with the numerator. Using the quadratic formula, we can 

determine that −𝟏𝟎𝒏𝟐 + 𝟔𝟎𝒏 − 𝟓𝟓 = 𝟎 when 𝒏𝟏 , 𝒏𝟐 . So for, 𝒏 <  𝟏, 𝟏𝟑 the sequence is 
decreasing. Since we are only dealing with the natural numbers, this means that  𝒂𝟏 > 𝒂𝟐 . 
 
Between 𝒏𝟏 and 𝒏𝟐 ,   for 𝒏 = 𝟐 , 𝟑  𝑎𝑛𝑑 𝟒 , we have that  𝒂𝒏+𝟏 >  𝒂𝒏 and the sequence is 

increasing. (That is, when = 𝟐 , 𝟑  𝑎𝑛𝑑 𝟒 , the numerator  −𝟏𝟎𝒏𝟐 + 𝟔𝟎𝒏 − 𝟓𝟓 from the fraction 
above is.) 
 

When, 𝒏 > 𝒏𝟐 for ≥ 𝟓 , we have that −𝟏𝟎𝒏𝟐 + 𝟔𝟎𝒏 − 𝟓𝟓 < 0 , hence 𝒂𝒏+𝟏 −  𝒂𝒏 <  𝟎 , so the 
sequence is decreasing. 
 
In short, the sequence is simply not monotonic. However, it is useful to note that for ≥ 𝟓 , the 

sequence is monotonically decreasing. 

Graphical  
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Figure L  

 

𝟒. {𝒂𝒏} = {
𝒏𝟐

𝒏!
}                                                

nalyticalA 

Again, the plot in Figure M shows that the sequence is not monotonic, but it suggests that it is 

monotonically decreasing after the first term. We perform the usual analysis to confirm this. 

 

𝒂𝒏+𝟏 − 𝒂𝒏  =  
(𝒏+𝟏)𝟐

(𝒏+𝟏)!
 −  

𝒏𝟐

𝒏!
                    

                      = 
(𝒏+𝟏)𝟐𝒏!−𝒏𝟐(𝒏+𝟏)!

𝒏!(𝒏+𝟏)!
 

                      = 
(𝒏+𝟏)𝟐𝒏!−𝒏𝟐(𝒏+𝟏)𝒏!

(𝒏+𝟏)!𝒏!
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                           = 
𝒏𝟐+𝟐𝒏+𝟏−𝒏𝟑−𝒏𝟐

(𝒏+𝟏)!
 

                           = 
−𝒏𝟑+𝟐𝒏+𝟏

(𝒏+𝟏)!
 

When 𝒏 = 𝟏 , the above expression is< 𝟎 , for ≥ 𝟐 , the above expression is < 𝟎 . Thus this 
sequence is not monotonic, but it is monotonically decreasing after the first term.  
 

 Graphical  

 

 

 

                                                           Figure M                                                                            
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Infinite Series -2 

 
   {𝟏 𝟐𝒏⁄ } = {𝒂𝒏} Given the sequence 

          𝒏 = 𝟏                𝒂𝟏=  𝟏 𝟐⁄ 

          𝒏 = 𝟐                   𝒂𝟐=  𝟏 𝟒⁄       

          𝒏 = 𝟑                    𝒂𝟑=  𝟏 𝟖⁄       

         𝒏 = 𝟒                   𝒂𝟒=  𝟏 𝟏𝟔⁄   
 

consider the following sums:  

 
                              𝒂𝟏                                =                                   𝟏 𝟐⁄                                                      =       𝟏 𝟐⁄ 

                    𝒂𝟏      +     𝒂𝟐                       =                        𝟏 𝟐⁄         +          𝟏 𝟒⁄                                   =         𝟑 𝟒⁄     

                   𝒂𝟏  +   𝒂𝟐   + 𝒂𝟑                 =               𝟏 𝟐⁄         +          𝟏 𝟒⁄         +            𝟏 𝟖⁄               =         𝟕 𝟖⁄ 

𝒂𝟏   +    𝒂𝟐    +   𝒂𝟑     +      𝒂𝟒             =     𝟏 𝟐⁄       +      𝟏 𝟒⁄      +       𝟏 𝟖⁄       +     𝟏 𝟏𝟔   ⁄          =   𝟏𝟓 𝟏𝟔⁄ 

 In general, we can show that:  

                                                       𝒂𝟏   +    𝒂𝟐    +   𝒂𝟑     +  ......+   𝒂𝒏 = 
𝟐𝒏−𝟏

𝟐𝒏  = 1 −
𝟏

𝟐𝒏  

 
Let 𝑺𝒏 be the sum of the first 𝒏  terms of the sequence {𝟏 𝟐𝒏⁄ } . From the above, we see that 

𝑺𝟏=   𝟏 𝟐⁄  ,  𝑺𝟐=   𝟑 𝟒⁄  , etc. Our formula at the end shows that  𝑺𝒏   =    1 − 𝟏 𝟐𝒏⁄  . 

 

Now consider the following limit:  

 

                                                        𝐥𝐢𝐦
𝒏→∞

𝑺𝒏  =     𝐥𝐢𝐦
𝒏→∞

(𝟏 − 𝟏 𝟐𝒏⁄ )   =   1   

This limit can be interpreted as saying something amazing: the sum of all the terms of the 

sequence {𝟏 𝟐𝒏⁄ } is 1.} This example illustrates some interesting concepts that we explore in 

this section. We begin this exploration with some definitions. 

 

 

 

  

 
 

  Bounded monotonic sequence are convergent  :05Theorem  

 
1. Let  {𝒂𝒏}  be a bounded, monotonic sequence. Then {𝒂𝒏} converges;  𝐥𝐢𝐦

𝒏→∞
𝒂𝒏 exists.  

 

2. Let  {𝒂𝒏}  be a monotonically increasing sequence that is bounded abouve. Then {𝒂𝒏} converges.  

 
3. Let  {𝒂𝒏}  be a monotonically decreasing sequence that is bounded below. Then {𝒂𝒏} converges.  
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Using our new terminology, we can state that the series ∑ 𝟏 𝟐𝒏⁄∞
𝒏=𝟏  converges, and 

∑ 𝟏 𝟐𝒏⁄∞
𝒏=𝟏 = 𝟏  

 

We will explore a variety of series in this section. We start with two series that diverge, 

showing how we might discern divergence. 

 

 

 

 

 

 

 

 

 

 

 

 

howing series divergeS: 08Example  

1. Let {𝒂𝒏}   =  {𝒏𝟐} . Show ∑ 𝒂𝒏
∞
𝒏=𝟏  diverges. 

 

2. Let {𝒃𝒏}   =  {(−𝟏)𝒏+𝟏} . Show ∑ 𝒃𝒏
∞
𝒏=𝟏  diverges.  

Solution 

 

𝟏. {𝒂𝒏}   =  {𝒏𝟐}  

Consider 𝐒𝐧, the  𝒏𝒕𝒉  partial sum. 

    

                                                                       𝑺𝒏  = 𝒂𝟏   +    𝒂𝟐   +   𝒂𝟑     +  ......+   𝒂𝒏 
 

                                                                                       =  𝟏𝟐  +    𝟐𝟐  +    𝟑𝟐  +  .........+  𝒏𝟐 

Definition 06: Infinite series, nth partial sums, convergence, divergence  
 

let {𝒂𝒏} be a sequence. 
 
1. The sum  ∑ 𝒂𝒏

∞
𝒏=𝟏  is an infinite series (or, simply series)  

 
2.  Let 𝑺𝒏 = ∑ 𝒂𝒊

𝒏
𝒊=𝟏  , the sequence {𝑺𝒏} is the sequence of  𝒏𝒕𝒉 partial sums of {𝒂𝒏}  

 
3.  If the sequence {𝑺𝒏} converges to L, we say the series ∑ 𝒂𝒏

∞
𝒏=𝟏  converges to L, and we write 

∑ 𝒂𝒏
∞
𝒏=𝟏  = L 

 
4.  If the sequence {𝑺𝒏} diverges, the series  ∑ 𝒂𝒏

∞
𝒏=𝟏  diverges 

 

Theorem 06: Properties of summations 

 
𝟏.  ∑  𝒄 =  𝒄 ⋅ 𝐧𝒏

𝒊=𝟏   ,where c is a constant. 

𝟐.  ∑  (𝒏
𝒊=𝒎 𝒂𝒊 ± 𝒃𝒊)= ∑ 𝒂𝒊

𝒏
𝒊=𝒎  ±  ∑ 𝒃𝒊

𝒏
𝒊=𝒎    

    𝟑.  ∑ 𝒄 ⋅ 𝒂𝒊 =  𝒄 ⋅𝒏
𝒊=𝒎 ∑ 𝒂𝒊

𝒏
𝒊=𝒎   

    𝟒.  ∑  𝒂𝒊  + ∑  𝒂𝒊     = 𝒏 
𝒊=𝒋+𝟏    

𝒋 
𝒊=𝒎 ∑ 𝒂𝒊

𝒏
𝒊=𝒎   

    𝟓.  ∑  𝒊 =𝒏
𝒊=𝟏  

𝒏(𝒏+𝟏)

𝟐
 

    𝟔.  ∑  𝒊𝟐 =𝒏
𝒊=𝟏  

𝒏(𝒏+𝟏)(𝟐𝒏+𝟏)

𝟔
 

    𝟕.  ∑  𝒊𝟑 =𝒏
𝒊=𝟏 (   

𝒏(𝒏+𝟏)

𝟐
) 𝟐  
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      By Theorem 06, this is                 

                                                                                        = 
𝒏(𝒏+𝟏)(𝟐𝒏+𝟏)

𝟔
 

 
since 𝐥𝐢𝐦

𝒏→∞
𝑺𝒏  =     ∞ , we conclude that the series  ∑ 𝒏𝟐∞

𝒏=𝟏  diverges. It is instructive to write 

∑ 𝒏𝟐∞
𝒏=𝟏 = ∞ for this tells us how the series diverges: it grows without bound. 

 
 A scatter plot of the sequences {𝒂𝒏} and {𝑺𝒏} is given in Figure N. The terms of {𝒂𝒏} are 
growing, so the terms of the partial sums {𝑺𝒏} are growing even faster, illustrating that the 
series diverges.  
 
Graphical 
 

 
 

 
.                                                
                                                                           Figure N  

 

 

2. {𝒃𝒏}   =  {(−𝟏)𝒏+𝟏} 
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The sequence  {𝒃𝒏}  starts with 𝟏 , −𝟏 , 𝟏 , −𝟏  Consider some of the partial sums {𝑺𝒏} of  {𝒃𝒏} :  
  
                                                                            𝑺𝟏 = 𝟏 

𝑺𝟐 = 𝟎 
𝑺𝟑 = 𝟏 
𝑺𝟒 = 𝟎 

 

  This pattern repeats; we find that 𝑺𝒏 = {
𝟏   𝒏 𝒊𝒔 𝒐𝒅𝒅

   𝟎   𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏 
                                            

  
As {𝑺𝒏} oscillates , repeating  𝟏 , 𝟎 , 𝟏 , 𝟎 , … ,  we conclude that 𝐥𝐢𝐦

𝒏→∞
𝑺𝒏 does not exist , hence 

∑  ∞
𝒏=𝟏    (−𝟏)𝒏+𝟏  diverges . 

 
A scatter plot of the sequence {𝒃𝒏} and the partial sums {𝑺𝒏} is given in Figure O. When 𝒏 is 

odd, 𝒃𝒏 =  𝑺𝒏 so the marks for 𝒃𝒏 are drawn oversized to show they coincide. 

 

Graphical 

 

 

 

   

  

 
                                                 Figure O 
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 Geometric Series 1-2 

 

One important type of series is a geometric series. 

 

 

 

 

 

 

 

 

 

 

 

We started this section with a geometric series, although we dropped the first term of 1. One 

reason geometric series are important is that they have nice convergence properties.  

 

 
 

 

 

 

 

 

 

 

Example 09: Exploring geometric series  

 

check the convergence of the following series. If the series converges, find its sum. 

 

1. ∑ (
𝟑

𝟒
)

𝒏
∞
𝒏=𝟐                        𝟐. ∑ 𝟑𝒏∞

𝒏=𝟎   

Solution 
 

1. ∑ (
𝟑

𝟒
)

𝒏
∞
𝒏=𝟐  

 
Since 𝒓 = 𝟑 𝟒⁄ < 𝟏 , this series converges. By Theorem 07, we have that 
 

                                       ∑ (
𝟑

𝟒
)

𝒏
∞
𝒏=𝟎 = 

𝟏

𝟏−𝟑 𝟒⁄
 = 

𝟏
𝟒−𝟑

𝟒

 = 
𝟏
𝟏

𝟒

 =1× 𝟒 = 𝟒 

 

Geometric series : 07 Definition 
 

A geometric series is a series of the form  

 

                                                                         ∑ 𝒓𝒏∞
𝒏=𝟎 = 1+ 𝒓 + 𝒓𝟐 + 𝒓𝟑 + ⋯ + 𝒓𝒏 + ⋯ 

 

Note that the index starts at n=0, not n=1.  

  
 

  Convergence of geometric series  :07 Theorem 

 
consider the geometric series ∑ 𝒓𝒏∞

𝒏=𝟎 . 
  

1.  The 𝒏𝒕𝒉 partial sum is:  𝑺𝒏  = 
𝟏− 𝒓 𝒏+𝟏

𝟏− 𝒓
  

 
2.  The series converges if, and only if 𝟏 . When |𝒓| < 1 ,  

  

                                                      ∑ 𝒓𝒏∞
𝒏=𝟎 = 

𝟏

𝟏−𝒓
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However, note the subscript of the summation in the given series: we are to start with 𝒏 = 𝟐  
Therefore we subtract off the first two terms, giving: 

 

                                                           ∑ (
𝟑

𝟒
)

𝒏
∞
𝒏=𝟐 = 4 −𝟏 −

𝟑

𝟒
=  

𝟗

𝟒
 

Graphical 

 

                    

 
 

 

 

                                                                          Figure P 
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𝟐. ∑ 𝟑𝒏∞
𝒏=𝟎   

 

Since 𝒓 > 1  , the series diverges. (This makes "common sense''; we expect the sum 

 

                                                               𝟏 + 𝟑 + 𝟗 + 𝟐𝟕 + 𝟖𝟏 + 𝟐𝟒𝟑 + ⋯   
 

to diverge.) This is illustrated in Figure R.  

 

Graphical 

 

 

 

                                                                       Figure R
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Series-p 2-2 

 
Another important type of series is the p-series. 

 

 

 

 

 

 

 

 

 

 

 

 

Example 10: Determining convergence of series 
 
Determine the convergence of the following series.  
 

  𝟏. ∑
𝟏

𝒏
∞
𝒏=𝟏                                              𝟑. ∑

𝟏

(
𝟏

𝟐
𝒏−𝟓)𝟑

∞
𝒏=𝟏𝟏  

 𝟐. ∑
𝟏

√𝒏
∞
𝒏=𝟏                                              𝟒. ∑

𝟏

𝟐𝒏
∞
𝒏=𝟏  

 
Solution 
 
𝟏. this is a p-series with 𝒑 = 𝟏 . By Theorem 08 this series diverges. 
This series is a famous series, called the Harmonic Series, so named because of its relationship 

to harmonics in the study of music and sound. 

 

𝟐. This is a p-series with 𝒑 =  
𝟏

𝟐
   the theorem states that it diverges. 

3. This is a general p-series with 𝒑 = 𝟑 , therefore it converges. 
 

4. This is not a p-series, but a geometric series with 𝒓 =  
𝟏

𝟐
   . It converges. 

 

Example 11: Telescoping series  

 

Evaluate the sum  ∑ (
𝟏

𝒏
−

𝟏

𝒏+𝟏
)∞

𝒏=𝟏   

 

Solution 

 

It will help to write down some of the first few partial sums of this series. 

Definition 08: Monotonic sequences  
 

1.  A p-series is a series of the form 

                                                             ∑
𝟏

𝒏𝒑
∞
𝒏=𝟏    , where 𝒑 > 0 .  

2.  A general p-series is a series of the form 

                            ∑
𝟏

(𝒂𝒏+𝒃)𝒑
∞
𝒏=𝟏    , where 𝒑 > 0 and 𝒑 > 𝟎 𝑎𝑛𝑑 𝒂 , 𝒃 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

 
 
  
                           
 

 series-pConvergence of general  :08 Theorem 

 

. 𝒑 > 1. will converge if, and only if∑
𝟏

(𝒂𝒏+𝒃)𝒑
∞
𝒏=𝟏    series-pa general  
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𝒏 = 𝟏                          𝑺𝟏=  
𝟏

𝟏
−

𝟏

𝟐
 

                                          =  𝟏 −  
𝟏

𝟐
         

 𝒏 = 𝟐                         𝑺𝟐= (
𝟏

𝟏
−

𝟏

𝟐
)+ (

𝟏

𝟐
−

𝟏

𝟑
) 

                                            

                                           =  𝟏 − 
𝟏

𝟐
 + 

𝟏

𝟐
 − 

𝟏

𝟑
 

                                          =    1   − 
𝟏

𝟑
   

𝒏 = 𝟑                          𝑺𝟑= (
𝟏

𝟏
−

𝟏

𝟐
)+ (

𝟏

𝟐
−

𝟏

𝟑
) + (

𝟏

𝟑
−

𝟏

𝟒
) 

 

                                         =  𝟏 − 
𝟏

𝟐
 + 

𝟏

𝟐
 − 

𝟏

𝟑
 + 

𝟏

𝟑
−

𝟏

𝟒
 

                                         =  𝟏 −
𝟏

𝟒
 

  𝒏 = 𝟒                           𝑺𝟒= (
𝟏

𝟏
−

𝟏

𝟐
)+ (

𝟏

𝟐
−

𝟏

𝟑
) + (

𝟏

𝟑
−

𝟏

𝟒
) +  (

𝟏

𝟒
−

𝟏

𝟓
) 

                                              =  𝟏 −  
𝟏

𝟐
 + 

𝟏

𝟐
 − 

𝟏

𝟑
 + 

𝟏

𝟑
−

𝟏

𝟒
 + 

𝟏

𝟒
−

𝟏

𝟓
 

                                              =  𝟏 −
𝟏

𝟓
 

𝒏 = 𝟓                            𝑺𝟓= (
𝟏

𝟏
−

𝟏

𝟐
)+ (

𝟏

𝟐
−

𝟏

𝟑
) + (

𝟏

𝟑
−

𝟏

𝟒
) + (

𝟏

𝟒
−

𝟏

𝟓
) + (

𝟏

𝟓
−

𝟏

𝟔
) 

 

                                              =  𝟏 −  
𝟏

𝟐
 + 

𝟏

𝟐
 − 

𝟏

𝟑
 + 

𝟏

𝟑
−

𝟏

𝟒
 + 

𝟏

𝟒
−

𝟏

𝟓
+ 

𝟏

𝟓
−

𝟏

𝟔
  

                                              = 𝟏 −
𝟏

𝟔
               

                     

  𝒏 = 𝟔                          𝑺𝟔= (
𝟏

𝟏
−

𝟏

𝟐
)+ (

𝟏

𝟐
−

𝟏

𝟑
) + (

𝟏

𝟑
−

𝟏

𝟒
) + (

𝟏

𝟒
−

𝟏

𝟓
) + (

𝟏

𝟓
−

𝟏

𝟔
) + (

𝟏

𝟔
−

𝟏

𝟕
) 

= 𝟏 − 
𝟏

𝟐
 + 

𝟏

𝟐
 − 

𝟏

𝟑
 + 

𝟏

𝟑
−

𝟏

𝟒
 + 

𝟏

𝟒
−

𝟏

𝟓
+ 

𝟏

𝟓
−

𝟏

𝟔
 + 

𝟏

𝟔
−

𝟏

𝟕
 

                                        = 𝟏 −
𝟏

𝟕
  

 

Note how most of the terms in each partial sum are cancelled out! In general, we see that  𝑺𝒏 =

𝟏 −  
𝟏

𝒏+𝟏
 . The sequence {𝑺𝒏} converges, as 𝐥𝐢𝐦

𝒏→∞
𝑺𝒏 = 𝐥𝐢𝐦

𝒏→∞
(𝟏 −

𝟏

𝒏+𝟏
) = 𝟏 and so we conclude that 

∑ (
𝟏

𝒏
−  

𝟏

𝒏+𝟏
)∞

𝒏=𝟏 =1. Partial sums of the series are plotted in Figure S  

 

Graphical 
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                                                                 Figure S 

 

Example 12: Evaluating series  

 

evaluate each of the following infinite series. 

 

𝟏. ∑
𝟐

𝒏𝟐+𝟐𝒏
∞
𝒏=𝟏                                  𝟐. ∑ 𝐥𝐧 ( 

𝒏+𝟏

𝒏
)∞

𝒏=𝟏  
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Solution 

      

 𝟏. ∑
𝟐

𝒏𝟐+𝟐𝒏
∞
𝒏=𝟏  

 

1. We can decompose the fraction 𝟐 (𝒏𝟐 + 𝟐𝒏)⁄  as  

 

                                                         
𝟐

𝒏𝟐+𝟐𝒏
 =

𝟐

𝒏(𝒏+𝟐)
 = 

𝑨

𝒏
+

𝑩

𝒏+𝟐
 

                                                                               =  
𝑨(𝒏+𝟐)+𝑩𝒏

𝒏(𝒏+𝟐)
 

                                                                               =  
 𝑨𝒏+𝟐𝑨+𝑩𝒏

𝒏(𝒏+𝟐)
  

                                                                        =  
𝒏(𝑨+𝑩)+𝟐𝑨

𝒏(𝒏+𝟐)
 = 

𝟏

𝒏
−  

𝟏

𝒏+𝟐
   

  

{
𝟐𝐀 = 𝟐 

(𝑨 + 𝑩) = 𝟎
                      {

𝑨 = 𝟏
𝟏 + 𝑩 = 𝟎 , 𝑩 = −𝟏

  

 

Expressing the terms of {𝐒𝐧} is now more instructive: 

 

                                                 𝐧 = 𝟏                       𝐒𝟏 = 𝟏 −
𝟏

𝟑
 

                                                                                   =  𝟏 −
𝟏

𝟑
  

  

   𝐧 = 𝟐                      𝐒𝟐 = (𝟏 −
𝟏

𝟑
) + (

𝟏

𝟐
−

𝟏

𝟒
) 

 

                                                                                  =  𝟏 +
𝟏

𝟐
−

𝟏

𝟑
−

𝟏

𝟒
 

 

                                                   𝐧 = 𝟑                        𝐒𝟑 = (𝟏 −
𝟏

𝟑
) + (

𝟏

𝟐
−

𝟏

𝟒
)+(

𝟏

𝟑
−

𝟏

𝟓
)   

                                                                    

                                                                                            =  𝟏 +
𝟏

𝟐
−

𝟏

𝟑
+

𝟏

𝟑
−

𝟏

𝟒
−

𝟏

𝟓
 

 

                                                           =  𝟏 +
𝟏

𝟐
−

𝟏

𝟒
−

𝟏

𝟓
 

 

                                                   𝐧 = 𝟒                       𝐒𝟒  = (𝟏 −
𝟏

𝟑
) + (

𝟏

𝟐
−

𝟏

𝟒
)+(

𝟏

𝟑
−

𝟏

𝟓
)+(

𝟏

𝟒
−

𝟏

𝟔
) 

 

                                                                                            =  𝟏 +
𝟏

𝟐
−

𝟏

𝟑
+

𝟏

𝟑
−

𝟏

𝟒
+

𝟏

𝟒
−

𝟏

𝟓
−

𝟏

𝟔
   

        

                                                                                            =  𝟏 +
𝟏

𝟐
−

𝟏

𝟓
−

𝟏

𝟔
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𝐧 = 𝟓                                     𝐒𝟓  = (𝟏 −
𝟏

𝟑
) + (

𝟏

𝟐
−

𝟏

𝟒
)+(

𝟏

𝟑
−

𝟏

𝟓
)+(

𝟏

𝟒
−

𝟏

𝟔
)+(

𝟏

𝟓
−

𝟏

𝟕
) 

 

                                                        =   𝟏 +
𝟏

𝟐
−

𝟏

𝟑
+

𝟏

𝟑
−

𝟏

𝟒
+

𝟏

𝟒
−

𝟏

𝟓
+

𝟏

𝟓
−

𝟏

𝟔
−

𝟏

𝟕
 

 

                                                        =  𝟏 +
𝟏

𝟐
−

𝟏

𝟔
−

𝟏

𝟕
 

 

  𝐧 = 𝟔                                   𝐒𝟔 = (𝟏 −
𝟏

𝟑
) + (

𝟏

𝟐
−

𝟏

𝟒
)+(

𝟏

𝟑
−

𝟏

𝟓
)+(

𝟏

𝟒
−

𝟏

𝟔
)+(

𝟏

𝟓
−

𝟏

𝟕
)+(

𝟏

𝟔
−

𝟏

𝟖
) 

 
 

                                                        = 𝟏 +
𝟏

𝟐
−

𝟏

𝟑
+

𝟏

𝟑
−

𝟏

𝟒
+

𝟏

𝟒
−

𝟏

𝟓
+

𝟏

𝟓
−

𝟏

𝟔
+

𝟏

𝟔
−

𝟏

𝟕
−

𝟏

𝟖
 

 

                                            = 𝟏 +
𝟏

𝟐
−

𝟏

𝟕
−

𝟏

𝟖
 

We again have a telescoping series. In each partial sum, most of the terms cancel and we 

obtain the formula {𝐒𝐧}= {𝟏 +
𝟏

𝟐
−

𝟏

𝐧+𝟏
−

𝟏

𝐧+𝟐
} taking limits allows us to determine the 

convergence of the series: 
 

𝐥𝐢𝐦
𝒏→∞

𝑺𝒏 = 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟐
−

𝟏

𝒏+𝟏
−

𝟏

𝒏+𝟐
) = 𝐥𝐢𝐦

𝒏→∞
(𝟏 +

𝟏

𝟐
 −

𝟏

∞
−

𝟏

∞
) 

                                                                                              = 𝟏 +
𝟏

𝟐
 −𝟎 − 𝟎 

                                                                                              = 
𝟏×𝟐

𝟏×𝟐
+

𝟏

𝟐
 

                                                                                              = 
𝟐

𝟐
+

𝟏

𝟐
 

                                                                                                      = 
𝟑

𝟐
  

So, ∑
𝟐

𝒏𝟐+𝟐𝒏
∞  
𝒏=𝟏      =   

𝟑

𝟐
   , This is illustrated in Figure T  

𝟐. ∑ 𝐥𝐧 ( 
𝒏+𝟏

𝒏
)∞

𝒏=𝟏   

2. We begin by writing the first few partial sums of the series: 

 

𝒏 = 𝟏                        𝑺𝟏 = 𝐥𝐧(𝟐)          

𝒏 = 𝟐                        𝑺𝟐 = 𝐥𝐧(𝟐) + 𝐥𝐧 (
𝟑

𝟐
)      

                           =  𝐥𝐧 (𝟐 ∙
𝟑

𝟐
)    

                                          =  𝐥𝐧(𝟑) 

𝒏 = 𝟑                        𝑺𝟑 = 𝐥𝐧(𝟐) + 𝐥𝐧 (
𝟑

𝟐
) +  𝐥𝐧 (

𝟒

𝟑
)                
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                                        =  𝐥𝐧 (𝟐 ∙
𝟑

𝟐
∙

𝟒

𝟑
)               

                                       =  𝐥𝐧(𝟒) 

𝒏 = 𝟒                       𝑺𝟒 = 𝐥𝐧(𝟐) +  𝐥𝐧 (
𝟑

𝟐
) +  𝐥𝐧 (

𝟒

𝟑
) +  𝐥𝐧 (

𝟓

𝟒
)           

                                        =  𝐥𝐧 (𝟐 ∙
𝟑

𝟐
∙

𝟒

𝟑
∙

𝟓

𝟒
)               

                                        =  𝐥𝐧(𝟓) 
 

𝒏 = 𝟓                       𝑺𝟓  = 𝐥𝐧(𝟐) + 𝐥𝐧 (
𝟑

𝟐
) +  𝐥𝐧 (

𝟒

𝟑
) +  𝐥𝐧 (

𝟓

𝟒
) + 𝐥𝐧 (

𝟔

𝟓
)    

                                        =  𝐥𝐧 (𝟐 ∙
𝟑

𝟐
∙

𝟒

𝟑
∙

𝟓

𝟒
∙

𝟔

𝟓
)              

                                        =  𝐥𝐧(𝟔) 
 

    𝒏 = 𝟔                   𝑺𝟔 = 𝐥𝐧(𝟐) +  𝐥𝐧 (
𝟑

𝟐
) +  𝐥𝐧 (

𝟒

𝟑
) +  𝐥𝐧 (

𝟓

𝟒
) + 𝐥𝐧 (

𝟔

𝟓
) +  𝐥𝐧 (

𝟕

𝟔
) 

                                        =  𝐥𝐧 (𝟐 ∙
𝟑

𝟐
∙

𝟒

𝟑
∙

𝟓

𝟒
∙

𝟔

𝟓
∙

𝟕

𝟔
)              

                                        =  𝐥𝐧(𝟕) 

At first, this does not seem helpful, but recall the logarithmic identity: 𝐥𝐧 𝒙 + 𝐥𝐧 𝒚 = 𝐥𝐧(𝒙𝒚). 

Applying this to 𝑺𝟔 gives:  

 

𝑺𝟔 = 𝐥𝐧(𝟐) + 𝐥𝐧 (
𝟑

𝟐
) +  𝐥𝐧 (

𝟒

𝟑
) +  𝐥𝐧 (

𝟓

𝟒
) + 𝐥𝐧 (

𝟔

𝟓
) +  𝐥𝐧 (

𝟕

𝟔
) = 𝐥𝐧(𝟕) 

We can conclude that {𝑺𝒏}= {𝐥𝐧(𝒏 + 𝟏)}. This sequence does not converge, as 

 𝐥𝐢𝐦
𝒏→∞

𝑺𝒏 =  𝐥𝐢𝐦
𝒏→∞

𝐥𝐧(𝒏 + 𝟏)= ∞  . Therefore ∑ 𝐥𝐧 ( 
𝒏+𝟏

𝒏
)∞

𝒏=𝟏 =  ∞ 

The series diverges. Note in Figure U 
 
 

 

 

                                                                             Figure T 
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                                                                     Figure U 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties of infinite series  :09 Theorem 

 
let  ∑ 𝒂𝒏

∞
𝒏=𝟏 = 𝑳  ,  ∑ 𝒃𝒏

∞
𝒏=𝟏 = 𝒌  , and let c be a constant. 

1. Constant Multiple Rule :  ∑ 𝒄 ∙ 𝒂𝒏
∞
𝒏=𝟏 = 𝒄 ∙ ∑ 𝒂𝒏

∞
𝒏=𝟏 = 𝒄 ∙ 𝑳. 

 

2. Sum/Difference Rule : ∑ (𝒂𝒏
∞
𝒏=𝟏 ± 𝒃𝒏) =  ∑ 𝒂𝒏

∞
𝒏=𝟏 ±  ∑ 𝒃𝒏

∞
𝒏=𝟏 = L±𝑲. 

 
 

Key Idea 01: Important series    
 

𝟏. ∑
𝟏

𝒏!

∞
𝒏=𝟎 = 𝒆 (Note that the index starts with 𝒏 = 𝟎) 

2.  ∑
𝟏

𝒏𝟐
∞
𝒏=𝟏 =

𝝅𝟐

𝟔
  

𝟑. ∑
(−𝟏)𝒏+𝟏

𝒏𝟐
∞
𝒏=𝟏 =

𝝅𝟐

𝟏𝟐
  

𝟒. ∑
(−𝟏)𝒏

𝟐𝒏+𝟏

∞
𝒏=𝟎 =

𝝅

𝟒
  

𝟓. ∑
𝟏

𝒏

∞
𝒏=𝟏   Diverges (This is called the Harmonic series) 

𝟔. ∑
(−𝟏)𝒏+𝟏

𝒏

∞
𝒏=𝟏 = 𝐥𝐧(𝟐) (This is called the Alternating Harmonic Series) 
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valuating series E :13Example  

Evaluate the given series. 

𝟏. ∑
(−𝟏)𝒏+𝟏(𝒏𝟐−𝒏)

𝒏𝟑
∞
𝒏=𝟏      2. 

𝟏

𝟏𝟔
+

𝟏

𝟐𝟓
+

𝟏

𝟑𝟔
+

𝟏

𝟒𝟗
+ ⋯      

Solution 

 

1. We start by using algebra to break the series apart: 

   ∑
(−𝟏)𝒏+𝟏(𝒏𝟐−𝒏)

𝒏𝟑
∞
𝒏=𝟏 = ∑ (

(−𝟏)𝒏+𝟏𝒏𝟐−(−𝟏)𝒏+𝟏𝒏

𝒏𝟑 )∞
𝒏=𝟏 

                                      = ∑ (
(−𝟏)𝒏+𝟏𝒏𝟐

𝒏𝟑 −
(−𝟏)𝒏+𝟏𝒏

𝒏𝟑 )∞
𝒏=𝟏 

                                      = ∑ (
(−𝟏)𝒏+𝟏𝒏𝟐

𝒏𝟑 −
(−𝟏)𝒏+𝟏𝒏

𝒏𝟑 )∞
𝒏=𝟏 

= ∑ (
(−𝟏)𝒏+𝟏

𝒏
−

(−𝟏)𝒏+𝟏

𝒏𝟐 )∞
𝒏=𝟏                    

                                      = ∑
(−𝟏)𝒏+𝟏

𝒏

∞
𝒏=𝟏 − ∑

(−𝟏)𝒏+𝟏

𝒏𝟐
∞
𝒏=𝟏 

                                      =  𝐥𝐧(𝟐) − 
𝝅𝟐

𝟏𝟐
 

                                       ≈ −𝟎. 𝟏𝟐𝟗𝟑 

2. The denominators in each term are perfect squares; we are adding ∑
𝟏

𝒏𝟐
∞
𝒏=𝟒  

(note we start with 𝒏 = 𝟒, not = 𝟏 ). This series will converge. Using the 

formula from Key Idea 01, we have the following: 

 

                                                                            ∑
𝟏

𝒏𝟐
∞
𝒏=𝟏 = ∑

𝟏

𝒏𝟐
𝟑
𝒏=𝟏 +  ∑

𝟏

𝒏𝟐
∞
𝒏=𝟒 

                                                         ∑
𝟏

𝒏𝟐
∞
𝒏=𝟏 − ∑

𝟏

𝒏𝟐
𝟑
𝒏=𝟏 =   ∑

𝟏

𝒏𝟐
∞
𝒏=𝟒   

                                                            
𝝅𝟐

𝟔
− (

𝟏

𝟏
+

𝟏

𝟒
+

𝟏

𝟗
) = ∑

𝟏

𝒏𝟐
∞
𝒏=𝟒 

                                            
𝝅𝟐

𝟔
− (

𝟏×𝟒×𝟗

𝟏×𝟒×𝟗
+

𝟏×𝟗

𝟒×𝟗
+

𝟏×𝟒

𝟗×𝟒
) = ∑

𝟏

𝒏𝟐
∞
𝒏=𝟒    

                                                       
𝝅𝟐

𝟔
− (

𝟑𝟔

𝟑𝟔
+

𝟗

𝟑𝟔
+

𝟒

𝟑𝟔
) = ∑

𝟏

𝒏𝟐
∞
𝒏=𝟒 

                                                                              
𝝅𝟐

𝟔
−

𝟒𝟗

𝟑𝟔
= ∑

𝟏

𝒏𝟐
∞
𝒏=𝟒 

                                                                             0, 2838  ≈  ∑
𝟏

𝒏𝟐
∞
𝒏=𝟒 
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Important! This theorem does not state that if 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 = 𝟎 𝑡ℎ𝑒𝑛  ∑ 𝒂𝒏  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠∞
𝒏=𝟏 . The 

standard example of this is the Harmonic Series, as given in Key Idea 01. The Harmonic 

Sequence {
𝟏

𝒏
} converges to 0 the Harmonic Series, ∑

𝟏

𝒏 

∞
𝒏=𝟏  diverges. 

 

 

 
 

 

 

 

 

Consider once more the Harmonic Series ∑
𝟏

𝒏 
 ∞

𝒏=𝟏  which diverges; that is, the sequence of 

partial sums {𝑺𝒏} grows (very, very slowly) without bound. One might think that by removing 
the "large'' terms of the sequence that perhaps the series will converge. 
 
This is simply not the case. For instance, the sum of the first 10 million terms of the Harmonic 
Series is about 16,7. Removing the first 10 million terms from the Harmonic Series changes 

the 𝒏𝒕𝒉 partial sums, effectively subtracting 16,7 from the sum. However, a sequence that is 
growing without bound will still grow without bound when 16,7 is subtracted from it. 
 
The equations below illustrate this. The first line shows the infinite sum of the 

Harmonic Series split into the sum of the first 10 million terms plus the sum of 

"everything else.'' The next equation shows us subtracting these first 10 million 

terms from both sides. The final equation employs a bit of "psuedo--math'': 

subtracting 16,7 from "infinity'' still leaves one with "infinity.'' 

 

                          ∑
𝟏

𝒏

∞
𝒏=𝟏   = ∑

𝟏

𝒏

𝟏𝟎.𝟎𝟎𝟎.𝟎𝟎𝟎
𝒏=𝟏  + ∑

𝟏

𝒏

∞
𝒏=𝟏𝟎.𝟎𝟎𝟎.𝟎𝟎𝟏 

 ∑
𝟏

𝒏

∞
𝒏=𝟏    − ∑

𝟏

𝒏

𝟏𝟎.𝟎𝟎𝟎.𝟎𝟎𝟎
𝒏=𝟏 = ∑

𝟏

𝒏

∞
𝒏=𝟏𝟎.𝟎𝟎𝟎.𝟎𝟎𝟏   

                           ∞ − 𝟏𝟔. 𝟕 =  ∞ 

 
This section introduced us to series and defined a few special types of series whose 
convergence properties are well known: we know when a p-series or a geometric series 
converges or diverges. Most series that we encounter are not one of these types, but we 
are still interested in knowing whether or not they converge. The next three sections introduce 
tests that help us determine whether or not a given series converges. 

Theorem 10: 𝑛𝑡ℎ term test for convergence/divergence  

 
Consider the series ∑ 𝒂𝒏  .

∞
𝒏=𝟏  

1. If  ∑ 𝒂𝒏  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 , 𝑡ℎ𝑒𝑛 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 = 𝟎.∞
𝒏=𝟏  

2. If  𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 ≠ 𝟎, 𝑡ℎ𝑒𝑛 ∑ 𝒂𝒏   𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠∞
𝒏=𝟏  

 
 

Theorem 11: Infinite nature of series   
 
The convergence or divergence remains unchanged by the addition or subtraction of 
any finite number of terms. That is: 
1. A divergent series will remain divergent with the addition or subtraction of any 
finite number of terms. 
2. A convergent series will remain convergent with the addition or subtraction of any 

finite number of terms. (Of course, the sum will likely change.) 
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 ntegral and comparison testsI-3 
 

knowing whether or not a series converges is very important, especially when we discusses 

Power Series. Theorems 07 and 08 give criteria for when Geometric and -series converge, and 

Theorem 10 gives a quick test to determine if a series diverges. There are many important 

series whose convergence cannot be determined by these theorems, though, so we introduce a 

set of tests that allow us to handle a broad range of series. We start with the Integral Test. 

 

Integral test  1-3 

 
We stated in Section (sequences) that a sequence {𝒂𝒏} is a function 𝒂(𝒏) whose domain is ℕ, 
the set of natural numbers. If we can extend 𝒂(𝒏) toℝ, the real numbers, and it is both positive 

and decreasing on [𝟏, ∞) , then the convergence of ∑ 𝒂𝒏
∞
𝒏=𝟏  is the same as ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
.  

 
 
 
 
 
 
 

 

 

We can demonstrate the truth of the Integral Test with two simple graphs. In Figure x  , the 
height of each rectangle is 𝒂𝒏 = 𝒂(𝒏) for 𝒏 = 𝟏, 𝟐, … ., , and clearly the rectangles enclose more 
area than the area under 𝒚 = 𝒂(𝒙)  . Therefore we can conclude that 
 

                                                     ∫ 𝒂(𝒙)𝒅𝒙
∞

𝟏
 <  ∑ 𝒂𝒏

∞
𝒏=𝟏  ………………………… (1) 

 
 
                                  

 

  

                                                                     Figure x      

Theorem 12: Integral test 
 
let a sequence {𝒂𝒏} be defined by𝒂𝒏 = 𝒂(𝒏) , where 𝒂(𝒏) is continuous, positive and 
decreasing on[𝟏, ∞). Then ∑ 𝑎𝑛

∞
𝑛=1  

converges.   ∫ 𝒂(𝒙)𝒅𝒙
∞

𝟏
, converges, if, and only if 
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In Figure x, we draw rectangles under 𝒚 = 𝒂(𝒙) with the Right-Hand rule, starting with 𝒏 = 𝟐 
This time, the area of the rectangles is less than the area under = 𝒂(𝒙) ,  

so ∑ 𝒂𝒏
∞
𝒏=𝟐 <  ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
 . Note how this summation starts with = 𝟐 ; adding 𝒂𝟏 to 

Both sides lets us rewrite the summation starting with = 𝟏 : 
 

                                                      ∑ 𝒂𝒏
∞
𝒏=𝟏 <  𝒂𝟏 + ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
 ……………………………. (2) 

Combining Equations (1) And (2), we have 
 

                                 ∑ 𝒂𝒏
∞
𝒏=𝟏 <  𝒂𝟏 + ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
 <  𝒂𝟏 + ∑ 𝒂𝒏

∞
𝒏=𝟏  …………………………….. (3)  

 

 

 

 

 

 

 

 

 

 
Example 14: Using the integral test  
 

Determine the convergence of ∑
𝐥𝐧 𝒏

𝒏𝟐
∞
𝒏=𝟏  (The terms of the sequence {𝒂𝒏}={𝐥𝐧 𝒏 𝒏𝟐⁄ } and the 

𝒏𝒕𝒉 partial sums are given in Figure Z.  
 
Solution 
 

Figure Z implies that 𝒂(𝒏) = (𝐥𝐧 𝒏) 𝒏𝟐⁄  is positive and decreasing on [𝟐, ∞)  . We can 

determine this analytically, too. We know 𝒂(𝒏) is positive as both 𝐥𝐧 𝒏 and 𝒏𝟐 are positive on 

𝟐, ∞) . To determine that 𝒂(𝒏) is decreasing, consider 𝒂′(𝒏) = (𝟏 − 𝟐 𝐥𝐧 𝒏) 𝒏𝟑⁄ , which is 
negative for ≥ 𝟐 . Since 𝒂′(𝒏) is negative, 𝒂(𝒏)is decreasing. 

 

𝒂(𝒏) = (𝐥𝐧 𝒏) 𝒏𝟐⁄                      𝒂′(𝒏) =
𝟏
𝒏

 ×𝒏𝟐−𝟐𝒏 ×𝐥𝐧 𝒏 

(𝒏𝟐 )𝟐
 

  

                                                                    =  
 𝒏×(𝟏−𝟐 𝐥𝐧 𝒏)

𝒏𝟒
 

                                                                    =  
(𝟏−𝟐 𝐥𝐧 𝒏)

𝒏𝟑
 

                                                          = ( 𝟏 − 𝟐 𝐥𝐧 𝒏) 𝒏𝟑⁄  

:13 Theorem 
 

From Equation 03 we can make the following two statements: 

1. If  ∑ 𝒂𝒏
∞
𝒏=𝟏 diverges , so does  ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
  

( because   ∑ 𝒂𝒏
∞
𝒏=𝟏 < 𝒂𝟏 + ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
 ) 

2. If ∑ 𝒂𝒏
∞
𝒏=𝟏 converges, so does  ∫ 𝒂(𝒙)𝒅𝒙

∞

𝟏
  

(because ∫ 𝒂(𝒙)𝒅𝒙
∞

𝟏
 < ∑ 𝒂𝒏

∞
𝒏=𝟏 . ) 

Therefore the series and integral either both converge or both diverge. 
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Graphical 

 

 
 

 

                                                            Figure Z 

 

Applying the Integral Test, we test the convergence of∫
𝐥𝐧 𝒙

𝒙𝟐

∞

𝟏
 𝒅𝒙. Integrating this improper 

integral requires the use of Integration by Parts. 

𝒖 = 𝐥𝐧 𝒙                                                 𝒗′ =  
𝟏

𝒙𝟐 

𝒖′ =  
𝟏

𝒙  
                                                   𝒗 =  ∫

𝟏

𝒙𝟐  
 𝒅𝒙

𝒃

𝒂
 

= ∫ 𝒙−𝟐 𝒅𝒙
𝒃

𝒂
 

= [
𝒙−𝟐+𝟏

−𝟐+𝟏
]

𝒂

𝒃

    

= [
𝒙−𝟏

−𝟏
]

𝒂

𝒃

       

= [
−𝟏

𝒙
]

𝒂

𝒃
      

Note :        ∫ 𝒖 ∙ 𝒗′ 𝒅𝒙
𝒃

𝒂
=  𝒖 ∙ 𝒗 −  ∫ 𝒗 ∙ 𝒖′ 𝒅𝒙

𝒃

𝒂
 

∫
𝐥𝐧 𝒙

𝒙𝟐

∞

𝟏
 𝒅𝒙  =  𝐥𝐢𝐦

𝒃→∞
[𝐥𝐧 𝒙  ∙ (

−𝟏

𝒙
) − ∫  (

−𝟏

𝒙
) ∙ (

𝟏

𝒙  
  ) 𝒅𝒙

𝒃

𝟏
] 

 

       =  𝐥𝐢𝐦
𝒃→∞

[  (
− 𝐥𝐧 𝒙

𝒙
)

𝟏

𝒃
+ ∫  (

𝟏

 𝒙𝟐 
  ) 𝒅𝒙

𝒃

𝟏
] 

 

                             = 𝐥𝐢𝐦
𝒃→∞

[  (
− 𝐥𝐧 𝒙

𝒙
)

𝟏

𝒃
+ (−

𝟏

𝒙
)

𝒂

𝒃
]                                   
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                                               =  𝐥𝐢𝐦
𝒃→∞

[  (
− 𝐥𝐧 𝒙

𝒙
)

𝟏

𝒃
− (

𝟏

𝒙
)

𝒂

𝒃
] 

 

=  𝐥𝐢𝐦
𝒃→∞

[  (
− 𝐥𝐧 𝒃

𝒃
+  

𝐥𝐧 𝟏

𝟏
) − (

𝟏

𝒃
−  

𝟏

𝟏
)]   

 

=  𝐥𝐢𝐦
𝒃→∞

[  (𝟎 +  𝟎) − (𝟎 −  𝟏)] = 𝟏  

  

   Since ∫
𝐥𝐧 𝒙

𝒙𝟐

∞

𝟏
 𝒅𝒙 converges, so does ∑

𝐥𝐧 𝒏

𝒏𝟐
∞
𝒏=𝟏                                                                     

                       

 

 

 

 

 

 

 08 Using the integral test to establish theorem :15Example  

 

Use the Integral Test to prove that ∑
𝟏

(𝐚𝐧+𝐛)𝐩
∞
𝐧=𝟏   converges if, and only if, > 1 . 

Solution 

 

Consider the integral ∫
𝟏

(𝐚𝐧+𝐛)𝐩

∞

𝟏
 𝐝𝐱 ; assuming 𝐩 ≠ 𝟏 , 

 

                                     ∫
𝟏

(𝐚𝐧+𝐛)𝐩

∞

𝟏
 𝐝𝐱   =  𝐥𝐢𝐦

𝐜→∞
∫

     𝟏       

(𝐚𝐧+𝐛)𝐩

𝐜

𝟏
 𝐝𝐱      

 

                                                                        =  𝐥𝐢𝐦
𝐜→∞

∫ (𝐚𝐧 + 𝐛)−𝐩𝐜

𝟏
 𝐝𝐱       

 

                                                                      =  𝐥𝐢𝐦
𝐜→∞

[
𝟏

𝐚(−𝐩+𝟏)
× (𝐚𝐧 + 𝐛)−𝐩+𝟏 ]

𝟏

𝐜
 

 

                                                                     =  𝐥𝐢𝐦
𝐜→∞

[
𝟏

𝐚(𝟏−𝐩)
× (𝐚𝐧 + 𝐛)𝟏−𝐩 ]

𝟏

𝐜
              

  

                                                                     =  𝐥𝐢𝐦 
𝐜→∞

 
𝟏

𝐚(𝟏−𝐩)
 ×  [(𝐚𝐜 + 𝐛)𝟏−𝐩 − (𝐚 + 𝐛)𝟏−𝐩]   

 
 
 

Key Idea 02: Convergence of improper integrals ∫
1

𝑥𝑝

∞

1
 𝑑𝑥 𝑎𝑛𝑑 ∫

1

𝑥𝑝

1

0
 𝑑𝑥.  

  

1. The improper integral ∫
𝟏

𝐱𝐩

∞

𝟏
 𝒅𝒙 converges when 𝐩 > 1 and diverges when 𝐩 ≤ 𝟏 . 

2. The improper integral ∫
𝟏

𝐱𝐩

𝟏

𝟎
 𝐝𝐱 converges when 𝐩 < 𝟏  and diverges when 𝐩 ≥ 𝟏 . 
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This limit converges if, and only if, > 1 . It is easy to show that the integral also diverges in the 
case of = 𝟏 . (This result is similar to the work preceding Key Idea 02.)  
 

Therefore ∑
𝟏

(𝐚𝐧+𝐛)𝐩
∞
𝐧=𝟏  converges if, and only if, 𝐩 > 𝟏  . 

 
 

3-2 Direct comparison test 
 
 

 
 
 
 
 
 

 

 Applying the direct comparison test 6:1Example  

Determine the convergence of ∑
     𝟏      

𝟑𝐧+𝐧𝟐
∞
𝐧=𝟏 

Solution 

 

This series is neither a geometric or p-series, but seems related. We predict it will converge, so 

we look for a series with larger terms that converges. (Note too that the Integral Test seems 

difficult to apply here.) 

 

Since 𝟑𝐧 <  𝟑𝟐 + 𝐧𝟐 , 
𝟏

𝟑𝐧  >
𝟏

𝟑𝐧+𝐧𝟐 for all 𝐧 ≥ 𝟏 . The series ∑
     𝟏      

𝟑𝐧
∞
𝐧=𝟏  is a convergent geometric 

series; by Theorem 13, ∑
     𝟏      

𝟑𝐧+𝐧𝟐
∞
𝐧=𝟏  converges.  

 

Applying the direct comparison test 7:1Example  

Determine the convergence of ∑
     𝟏      

𝐧−𝐥𝐧 𝐧
∞
𝐧=𝟏  . 

 
Solution 
 

we know the Harmonic Series ∑
𝟏

𝐧 
∞
𝐧=𝟏  diverges, and it seems that the given series is closely 

related to it, hence we predict it will diverge. 
 

Since 𝒏 ≥ 𝒏 − 𝐥𝐧 𝒏 for all ≥ 𝟏 , 
𝟏

𝒏 
 ≤  

     𝟏      

𝒏−𝐥𝐧 𝒏
 for all 𝒏 ≥ 𝟏.     

The Harmonic Series diverges, so we conclude that ∑
     𝟏      

𝐧−𝐥𝐧 𝐧
∞
𝐧=𝟏   diverges as well. 

 
 

 Large limit comparison test 3 -3 

 

 

Theorem 14: Direct comparison test 
 
Let {𝐚𝐧} and {𝐛𝐧} be positive sequences where 𝐚𝐧 ≤ 𝐛𝐧 for all ≥ 𝐍 , for some 𝐍 ≥ 𝟏 . 
1. If  ∑ 𝒃𝒏

∞
𝒏=𝟏  converges, then ∑ 𝒂𝒏

∞
𝒏=𝟏  converges. 

diverges. ∑ 𝒃𝒏
∞
𝒏=𝟏 diverges, then ∑ 𝒂𝒏

∞
𝒏=𝟏 If 2. 
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Applying the limit comparison test  8:1Example  

Determine the convergence of  ∑
     𝟏      

𝒏+𝐥𝐧 𝒏
∞
𝒏=𝟏  using the Limit Comparison Test. 

Solution 

 

we compare the terms of  ∑
     𝟏      

𝒏+𝐥𝐧 𝒏
∞
𝒏=𝟏  to the terms of the Harmonic Sequence ∑

     𝟏      

𝒏
∞
𝒏=𝟏  

𝐥𝐢𝐦
𝒏→∞

𝒂𝒏

𝒃𝒏
  =  𝐥𝐢𝐦

𝒏→∞

    
     𝟏      

𝒏 + 𝐥𝐧 𝒏
    

     𝟏      
𝒏

 

  =  𝐥𝐢𝐦
𝒏→∞

     𝟏      

𝒏+𝐥𝐧 𝒏
 ×   𝒏                  

= 𝐥𝐢𝐦
𝒏→∞

     𝒏      

𝒏+𝐥𝐧 𝒏
                                    

= 𝐥𝐢𝐦
𝒏→∞

  (   𝒏     )′ 

(𝒏+𝐥𝐧 𝒏)′                            

= 𝐥𝐢𝐦
𝒏→∞

  𝟏 

𝟏  +  
  𝟏    

𝒏

                            

Theorem 15: Limit comparison test   
 
Let {𝒂𝒏} and {𝒃𝒏} be positive sequences. 

1. If 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏

𝒃𝒏
= 𝑳 , where 𝑳 is a positive real number, then ∑ 𝒂𝒏  ∞

𝒏=𝟏 and ∑ 𝒃𝒏  ∞
𝒏=𝟏 either both 

converge or both diverge. 

2. If 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏

𝒃𝒏
= 𝟎 , then if ∑ 𝒃𝒏  ∞

𝒏=𝟏  converges, then so does ∑ 𝒂𝒏  ∞
𝒏=𝟏  

3. If 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏

𝒃𝒏
= ∞ , then if ∑ 𝒃𝒏  ∞

𝒏=𝟏  diverges, then so does ∑ 𝒂𝒏  ∞
𝒏=𝟏   

Key Idea 03: L’Hopital’s Rule 
  
1. List the different indeterminate forms described in this section. 
2. T/F: l'Hopital's Rule provides a faster method of computing derivatives. 

3. T/F: l'Hopitals Rule states that  
𝒅

𝒅𝒙
(

𝒇(𝒙)

𝒈(𝒙)
) =  

𝒇′(𝒙)

𝒈′(𝒙)
 . 

 
4. Explain what the indeterminate form "𝟏∞" means. 

5. Fill in the blanks" The Quotient Rule is applied to 
𝒇(𝒙)

𝒈(𝒙)
 when taking l'Hopital's Rule is applied 

when taking 
certain. 

6. Create (but do not evaluate) a limit that returns  "∞𝟎". 

7. Create a function 𝒇(𝒙) such that 𝐥𝐢𝐦
𝒙→𝟏

𝒇(𝒙) returns "𝟎∞". 
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= 𝐥𝐢𝐦
𝒏→∞

  𝟏 

  
   𝒏+𝟏    

𝒏

    

= 𝐥𝐢𝐦
𝒏→∞

𝟏 ×
  𝒏 

𝒏+𝟏
 

= 𝐥𝐢𝐦
𝒏→∞

   𝒏  

 𝒏+𝟏
       

                                = 𝐥𝐢𝐦
𝒏→∞

  𝒏 

𝒏
 

= 1               

( after applying L’Hopital’s Rule ) .             

Since the Harmonic Series diverges, we conclude that ∑
     𝟏      

𝒏+𝐥𝐧 𝒏
∞
𝒏=𝟏  diverges as well. 

Example 19: Applying the limit comparison test  

 

Determine the convergence of ∑
√𝒏 +𝟑

𝒏𝟐−𝒏+𝟏
∞
𝒏=𝟏   

 
Solution 
 
We naively attempt to apply the rule of thumb given above and note that the dominant term 

in the expression of the series is 
𝟏

𝒏𝟐 . Knowing that ∑
𝟏

𝒏𝟐
∞
𝒏=𝟏  converges, we attempt to apply the 

Limit Comparison Test: 
 

𝐥𝐢𝐦
𝐧→∞

𝐚𝐧

𝐛𝐧
=   𝐥𝐢𝐦

𝐧→∞

√𝐧 + 𝟑
𝐧𝟐 − 𝐧 + 𝟏

𝟏
𝐧𝟐

 

 =    𝐥𝐢𝐦
𝐧→∞

 
√𝐧 +𝟑

𝐧𝟐−𝐧+𝟏
  × 𝐧𝟐                          

= 𝐥𝐢𝐦
𝐧→∞

 
(√𝐧 +𝟑)∙𝐧𝟐

𝐧𝟐−𝐧+𝟏
                                     

  = 𝐥𝐢𝐦
𝐧→∞

 
(𝐧𝟐√𝐧 +𝟑∙𝐧𝟐)

′

(𝐧𝟐−𝐧+𝟏)′                                  

= 𝐥𝐢𝐦
𝐧→∞

𝟒𝐧𝟐+𝐧𝟐+𝟏𝟐𝐧√𝐧 

𝟐√𝐧 

𝟐𝐧−𝟏
                                

= 𝐥𝐢𝐦
𝐧→∞

 
𝟓𝐧𝟐+𝟏𝟐𝐧√𝐧 

𝟐√𝐧 
×

𝟏

𝟐𝐧−𝟏
                

= 𝐥𝐢𝐦
𝐧→∞

 
𝟓𝐧𝟐+𝟏𝟐𝐧√𝐧 

𝟐√𝐧 ∙(𝟐𝐧−𝟏)
                              

= 𝐥𝐢𝐦
𝐧→∞

 
(𝟓𝐧𝟐+𝟏𝟐𝐧√𝐧 )

′

(𝟒𝐧√𝐧 − 𝟐√𝐧 )
′                        

= 𝐥𝐢𝐦
𝐧→∞

 
(𝟓𝐧𝟐+𝟏𝟐𝐧√𝐧 )

′

(𝟒𝐧∙(𝐧)
𝟏
𝟐− 𝟐(𝐧)

𝟏
𝟐)

′                   
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= 𝐥𝐢𝐦
𝐧→∞

 
(𝟏𝟎𝐧+𝟏𝟐√𝐧+

𝟔𝐧

√𝐧
)

(𝟔∙(𝐧)
𝟏
𝟐−(𝐧)

−𝟏
𝟐 )

                   

= 𝐥𝐢𝐦
𝐧→∞

 
(𝟏𝟎𝐧+𝟏𝟐√𝐧+

𝟔𝐧

√𝐧
)

′

(𝟔∙(𝐧)
𝟏
𝟐−(𝐧)

−𝟏
𝟐 )

′                  

= 𝐥𝐢𝐦
𝐧→∞

 
(𝟏𝟎+ 𝟔

√𝐧
+

𝟖𝐧

𝟒𝐧∙√𝐧
)

(𝟑∙(𝐧)
−𝟏
𝟐 +(𝐧)

−𝟑
𝟐 )

                   

= 𝐥𝐢𝐦
𝐧→∞

 
(𝟏𝟎+ 𝟖

√𝐧
)

(𝟑∙(𝐧)
−𝟏
𝟐 +𝟏

𝟐
∙(𝐧)

−𝟑
𝟐 )

                

= 𝐥𝐢𝐦
𝐧→∞

 
(𝟏𝟎+ 𝟖

√𝐧
)

( 𝟑

√𝐧
+ 𝟏

𝟐∙ √𝐧𝟐𝟑 )

                          

= 𝐥𝐢𝐦
𝐧→∞

 
𝟏𝟎

𝟎
                                       

= ∞                                                 

(Apply L'Hopital's Rule). 
 

We conclude that ∑
√𝒏 +𝟑

𝒏𝟐−𝒏+𝟏
∞
𝒏=𝟏  diverges as well. 

 

4-Ratio and Root Tests  

 

The 𝒏𝒕𝒉-Term Test of Theorem 15 states that in order for a series ∑ 𝒂𝒏
∞
𝒏=𝟏  to converge, 

𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 = 𝟎 . That is, the terms of  {𝒂𝒏} must get very small. Not only must the terms approach 

0, they must approach 0 "fast enough'': while 𝐥𝐢𝐦
𝒏→∞

𝟏
𝒏

= 𝟎 , the Harmonic 

Series ∑
𝟏

𝒏
= 𝟎∞

𝒏=𝟏  diverges as the terms of {
𝟏

𝒏
} do not approach 0 "fast enough.'' 

 

The comparison tests of the previous section determine convergence by comparing terms of a 
series to terms of another series whose convergence is known. This section introduces the 
Ratio and Root Tests, which determine convergence by analyzing the terms of a series to see if 
they approach 0 "fast enough.''  
 

4-1 Ratio test  
 
 
 
 
 
 
 
 

Theorem 16:Ratio test    
Les  {𝒂𝒏}  be a positive  sequence where 𝐥𝐢𝐦

𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝑳.   

1. If  < 1 , then ∑ 𝒂𝒏
∞
𝒏=𝟏  converges. 

2. If 𝑳 > 1   or 𝑳 = ∞  , then ∑ 𝒂𝒏
∞
𝒏=𝟏  diverges. 

3. If = 𝟏 , the Ratio Test is inconclusive. 
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Example 20: Applying the ratio test  

 

Use the Ratio Test to determine the convergence of the following series: 
 

𝟏 . ∑
𝟐𝒏

𝒏!
∞
𝒏=𝟏                                                  3.  ∑

𝟏

𝒏𝟐+𝟏
∞
𝒏=𝟏   

2. ∑
𝟑𝒏

𝒏𝟑
∞
𝒏=𝟏                                                  4. ∑

𝐧!𝐧!

(𝟐𝐧)!

∞
𝐧=𝟏   

 

Solution 

 

𝟏 . ∑
𝟐𝒏

𝒏!
∞
𝒏=𝟏     

𝐥𝐢𝐦
𝐧→∞

𝐚𝐧+𝟏

𝐚𝐧
=  𝐥𝐢𝐦

𝐧→∞

   
𝟐𝐧+𝟏

(𝐧+𝟏)!
   

𝟐𝐧

𝐧!

  

                         = 𝐥𝐢𝐦
𝐧→∞

 
𝟐𝐧+𝟏

(𝐧+𝟏)!
 ×  

𝐧!

𝟐𝐧   

                         = 𝐥𝐢𝐦
𝐧→∞

𝟐𝐧∙𝟐𝟏

(𝐧+𝟏)!
 × 

𝐧!

𝟐𝐧      

                         = 𝐥𝐢𝐦
𝐧→∞

𝟐𝟏∙𝐧!

(𝐧+𝟏)!
       

                         = 𝐥𝐢𝐦
𝐧→∞

𝟐∙𝐧!

(𝐧+𝟏)∙𝐧!
    

                         = 𝐥𝐢𝐦
𝐧→∞

𝟐

(𝐧+𝟏)
   

                         = 𝐥𝐢𝐦
𝐧→∞

𝟐

𝐧
    

                         = 0 < 1 

 

Since the limit is 0 < 1 , by the Ratio Test ∑
𝟐𝒏

𝒏!
∞
𝒏=𝟏  converges. 

 

2. ∑
𝟑𝒏

𝒏𝟑
∞
𝒏=𝟏  

𝐥𝐢𝐦
𝐧→∞

𝐚𝐧+𝟏

𝐚𝐧
   =  𝐥𝐢𝐦

𝐧→∞

𝟑𝐧+𝟏

   (𝐧+𝟏)𝟑  

𝟑𝐧

𝐧𝟑

 

                                                           = 𝐥𝐢𝐦
𝐧→∞

𝟑𝐧+𝟏

   (𝐧+𝟏)𝟑  
 ×  

𝐧𝟑

𝟑𝐧  

                                                           = 𝐥𝐢𝐦
𝐧→∞

𝟑𝐧∙𝟑𝟏

   (𝐧+𝟏)𝟑  
 ×  

𝐧𝟑

𝟑𝐧             

                               =  𝐥𝐢𝐦
𝐧→∞

𝟑𝐧𝟑

   (𝐧+𝟏)𝟑  
 

= 𝐥𝐢𝐦
𝐧→∞

𝟑𝐧𝟑

 𝐧𝟑 + 𝟑𝐧𝟐 + 𝟑𝐧 + 𝟏    
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                                                      = 𝐥𝐢𝐦
𝐧→∞

  𝟑𝐧𝟑

    𝐧𝟑  
 

= 𝟑 > 1                                        

Since the limit is > 1 , by the Ratio Test  ∑
𝟑𝒏

𝒏𝟑
∞
𝒏=𝟏  diverges. 

 

3.  ∑
𝟏

𝒏𝟐+𝟏
∞
𝒏=𝟏  

 

𝐥𝐢𝐦
𝐧→∞

𝐚𝐧+𝟏

𝐚𝐧
= 𝐥𝐢𝐦

𝐧→∞

𝟏
((𝐧 + 𝟏)𝟐 + 𝟏)

𝟏
𝐧𝟐 + 𝟏

 

                                                                    =  𝐥𝐢𝐦
𝐧→∞

 
𝟏

((𝐧+𝟏)𝟐+𝟏)
 ×  

(𝐧𝟐+𝟏)

𝟏
 

                                                              = 𝐥𝐢𝐦
𝐧→∞

 
𝐧𝟐+𝟏

((𝐧+𝟏)𝟐+𝟏)
 

                                                                   = 𝐥𝐢𝐦
𝐧→∞

 
𝐧𝟐+𝟏

𝐧𝟐+𝟐𝐧+𝟐
 

                                                                   = 𝐥𝐢𝐦
𝐧→∞

 
𝐧𝟐

𝐧𝟐 

                                                              = 𝟏 
 

Since the limit is 1, the Ratio Test is inconclusive. We can easily show this series converges 

using the Direct or Limit Comparison Tests, with each comparing to the series ∑
𝟏

𝐧𝟐
∞
𝐧=𝟏  . 

 

4. ∑
𝐧!𝐧!

(𝟐𝐧)!

∞
𝐧=𝟏  

 

Before we begin, be sure to note the difference between (𝟐𝒏)! and ! . When, 𝒏 = 𝟒  the former 
is ! = 𝟖 ∙ 𝟕 ∙ 𝟔 ∙ 𝟓 ∙ 𝟒 ∙ 𝟑 ∙ 𝟐 ∙ 𝟏 = 𝟒𝟎𝟑𝟐𝟎 , whereas the latter is 𝟐(𝟒 ∙ 𝟑 ∙ 𝟐 ∙ 𝟏) = 𝟒𝟖. 
Applying the Ratio Test: 
 

𝒍𝒊𝒎
𝒏→∞

𝒂𝒏+𝟏

𝒂𝒏
= 𝒍𝒊𝒎

𝒏→∞

(𝒏 + 𝟏)! (𝒏 + 𝟏)!
(𝟐(𝒏 + 𝟏))!

𝒏! 𝒏!
(𝟐𝒏)!

 

 

 = 𝒍𝒊𝒎
𝒏→∞

 
(𝒏+𝟏)!(𝒏+𝟏)!

(𝟐(𝒏+𝟏))!
 ×  

(𝟐𝒏)!

𝒏!𝒏!
                                                                                  

                                                                      

= 𝒍𝒊𝒎
𝒏→∞

 
(𝒏+𝟏)∙𝒏!(𝒏+𝟏)∙𝒏!

(𝟐𝒏+𝟐)!
 ×  

(𝟐𝒏)!

𝒏!𝒏!
                                                                                 

 

                  = 𝒍𝒊𝒎
𝒏→∞

 
(𝒏+𝟏)∙(𝒏+𝟏)∙(𝟐𝒏)!

(𝟐𝒏+𝟐)!
 

 

                 = 𝒍𝒊𝒎
𝒏→∞

 
(𝒏+𝟏)∙(𝒏+𝟏)∙(𝟐𝒏)!

(𝟐𝒏+𝟐)∙(𝟐𝒏+𝟏)∙(𝟐𝒏)!
 

 

                  = 𝒍𝒊𝒎
𝒏→∞

 
(𝒏+𝟏)∙(𝒏+𝟏)

𝟐(𝒏+𝟏)∙(𝟐𝒏+𝟏)
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= 𝒍𝒊𝒎
𝒏→∞

 
(𝒏 + 𝟏)

𝟐 ∙ (𝟐𝒏 + 𝟏)
 

 

= 𝒍𝒊𝒎
𝒏→∞

 
𝒏 + 𝟏

𝟒𝒏 + 𝟐
 

 

= 𝒍𝒊𝒎
𝒏→∞

 
𝒏

𝟒𝒏
 

=
𝟏

𝟒
< 1 

 

Since the limit is 
𝟏

𝟒
< 1 , by the Ratio Test we conclude ∑

𝐧!𝐧!

(𝟐𝐧)!

∞
𝐧=𝟏   converges. 

oot TestR 2-4 

 

The final test we introduce is the Root Test, which works particularly well on series where each 

term is raised to a power, and does not work well with terms containing factorials. 

 
 

 

 

 

 

 

Applying the root test  21:Example  

Determine the convergence of the following series using the Root Test: 

𝟏. ∑ (
𝟑𝒏+𝟏

𝟓𝒏−𝟐
)

𝒏
∞
𝒏=𝟏                                  𝟐. ∑

𝒏𝟒

(𝒍𝒏 𝒏)𝒏
∞
𝒏=𝟏 

Solution 

   𝟏. ∑ (
𝟑𝒏+𝟏

𝟓𝒏−𝟐
)

𝒏
∞
𝒏=𝟏 

𝐥𝐢𝐦
𝒏→∞

((
𝟑𝒏+𝟏

𝟓𝒏−𝟐
)

𝒏

)
𝟏 𝒏⁄

= 𝐥𝐢𝐦
𝒏→∞

𝟑𝒏+𝟏

𝟓𝒏−𝟐
= 𝐥𝐢𝐦

𝟑𝒏

𝟓𝒏
𝒏→∞

=
𝟑

𝟓
      

 
Since the limit is less than 1, we conclude the series converges. Note: it is difficult to apply 

the Ratio Test to this series. 

 

                                                    𝟐. ∑
𝒏𝟒

(𝒍𝒏 𝒏)𝒏
∞
𝒏=𝟏                                                                                                                                         

                                                                                                     

Theorem 17: Root test    
 
let  {𝒂𝒏}  be a positive sequence. And let 𝐥𝐢𝐦

𝒏→∞
(𝒂𝒏)𝟏 𝒏⁄ = 𝑳   

 

1. If  < 1 , then ∑ 𝒂𝒏
∞
𝒏=𝟏  converges. 

2. If  > 1  or 𝑳 = ∞   , then ∑ 𝒂𝒏
∞
𝒏=𝟏 diverges. 

3. If = 𝟏 , the Root Test is inconclusive. 
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   𝐥𝐢𝐦
𝒏→∞

(
𝒏𝟒

(𝐥𝐧 𝒏)𝒏)
𝟏 𝒏⁄

= 𝐥𝐢𝐦
𝒏→∞

(𝒏𝟏 𝒏⁄ )
𝟒

𝐥𝐧 𝒏
 = 𝐥𝐢𝐦

𝒏→∞

𝒆(𝐥𝐧 𝒏)𝟒 𝒏⁄

𝐥𝐧 𝒏
= 𝐥𝐢𝐦

𝒏→∞

𝒆
𝟒∙𝐥𝐧 𝒏

𝒏

𝐥𝐧 𝒏
=  𝐥𝐢𝐦

𝒏→∞

𝒆
 𝟒∙ 

𝐥𝐧 𝒏
𝒏

𝐥𝐧 𝒏
 

                                         =  𝐥𝐢𝐦
𝒏→∞

𝒆 𝟒×𝟎

𝐥𝐧 𝒏
= 𝐥𝐢𝐦

𝒏→∞

𝒆 𝟎

𝐥𝐧 𝒏
=  𝐥𝐢𝐦

𝒏→∞

𝟏

𝐥𝐧 𝒏
=  

𝟏

∞
= 𝟎 

As grows, the numerator approaches 1 (apply L'Hopital's Rule) and the denominator 

grows to infinity. 

 

 

 

5-Alternating series and absolute convergence  
 
All of the series convergence tests we have used require that the underlying sequence {𝒂𝒏} be a 
positive sequence. (We can relax this with Theorem 11 and state that there must be an 𝑵 > 0 
such that  𝒂𝒏 > 0 for all  > 𝑁 ; that is, {𝒂𝒏} is positive for all but a finite number of values of 𝒏.) 
 
In this section we explore series whose summation includes negative terms. We start with a 

very specific form of series, where the terms of the summation alternate between being 

positive and negative 

 

 

 

 

 

 

Recall the terms of Harmonic Series come from the Harmonic Sequence  {𝒂𝒏}   = {
𝟏

𝒏
} . An 

important alternating series is the Alternating Harmonic Series: 

∑ (−𝟏)𝒏+𝟏 ∙

∞

 𝒏=𝟏

𝟏

𝒏
= 𝟏 −

𝟏

𝟐
+

𝟏

𝟑
−

𝟏

𝟒
+

𝟏

𝟓
−

𝟏

𝟔
+ ⋯ 

 
Geometric Series can also be alternating series when 𝒓 < 0   . For instance, if 𝒓 =  −𝟏/𝟐,  the 

geometric series is 

 

       ∑ (
−𝟏

𝟐
)

𝒏
= ∞

𝒏=𝟎 𝟏 −
𝟏

𝟐
+

𝟏

𝟒
−

𝟏

𝟖
+

𝟏

𝟏𝟔
−

𝟏

𝟑𝟐
+ ⋯ 

Theorem 07 states that geometric series converge when |𝒓| < 1  and gives the sum: 

∑ 𝒓𝒏 = ∞
𝒏=𝟎

𝟏

𝟏−𝒓
  . When 𝒓 =  −𝟏/𝟐 as above, we find 

Because: (𝐥𝐢𝐦
𝒏→∞

𝐥𝐧 𝒏

𝒏
= 𝟎) ; (𝒂𝒃 𝒂⁄ )𝒏 = 𝒂

𝒃∙𝒏
𝒂 =  𝒆(𝐥𝐧 𝒂)𝒃∙𝒏 𝒂⁄

= 𝒆
𝒃∙𝒏

𝒂
 ∙𝐥𝐧 𝒂 

 

Definition 09: Alternating series 
 

let {𝒂𝒏} be a positive sequence. An alternating series is a series of either the form  
 
∑ (−𝟏)𝒏𝒂𝒏  

∞
𝒏=𝟏   or  ∑ (−𝟏)𝒏+𝟏𝒂𝒏 

∞
𝒏=𝟏  
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∑ (
−𝟏

𝟐
)

𝒏
= ∞

𝒏=𝟎
𝟏

𝟏−(−𝟏/𝟐)
 =

𝟏

𝟑/𝟐
=

𝟐

𝟑
 

 
A powerful convergence theorem exists for other alternating series that meet a few conditions. 

 

 

 

   

 

 

 alternating series test  Applying the 22:Example  

Determine if the Alternating Series Test applies to each of the following series. 

1. ∑ (−𝟏)𝒏+𝟏 ∙∞
𝒏=𝟏

𝟏

𝒏
                                    𝟐. ∑ (−𝟏)𝒏 ∙∞

𝒏=𝟏
𝐥𝐧 𝒏

𝒏
 

Solution 

1. This is the Alternating Harmonic Series as seen previously. The underlying sequence is 
{𝒂𝒏}  = {𝟏/𝒏} , which is positive, decreasing, and approaches 0 as 𝒏 → ∞ . Therefore we can 
apply the Alternating Series Test and conclude this series converges. 
 
While the test does not state what the series converges to, we will see later that 

∑ (−𝟏)𝒏+𝟏 ∙∞
𝒏=𝟏

𝟏

𝒏
=  𝐥𝐧 𝟐. 

 
2. The underlying sequence is {𝒂𝒏} =  {𝐥𝐧 𝒏 𝒏⁄ } . This is positive and approaches 0 as 𝒏 → ∞ 
(use L'Hopital's Rule). 
 
However, the sequence is not decreasing for all  . It is straightforward to compute 𝒂𝟏 = 𝟎 , 𝒂𝟐 ≈
𝟎. 𝟑𝟒𝟕  , 𝒂𝟑 ≈ 𝟎. 𝟑𝟔𝟔  , 𝒂𝒏𝒅 𝒂𝟒 ≈ 𝟎. 𝟑𝟒𝟕  : the sequence is increasing for at least the first 3 
terms. 

 
We do not immediately conclude that we cannot apply the Alternating Series Test. Rather, 
consider the long--term behaviour Of {𝒂𝒏} . Treating 𝒂𝒏 = 𝒂(𝒏) as a continuous function of  𝒏 
defined on [𝟏, ∞)  , we can take its derivative: 

 

                                                                    𝒂′(𝒏) =
𝟏−𝐥𝐧 𝒏

𝒏𝟐 

 
The derivative is negative for all 𝒏 ≥ 𝟑  (actually, for all > 𝑒 ), meaning 𝒂𝒏 = 𝒂(𝒏)  is 
decreasing on [𝟑, ∞) . We can apply the Alternating Series Test to the series when we start 

with 𝒏 = 𝟑 and conclude that ∑ (−𝟏)𝒏 ∙∞
𝒏=𝟑

𝐥𝐧 𝒏

𝒏
 converges; adding the terms with 

 𝒏 = 𝟏 𝒂𝒏𝒅 𝒏 = 𝟐 do not change the convergence (we apply Theorem 11). 
 
 

 Alternating series test :18 Theorem 

 
Let  {𝑎𝑛}  be a positive, decreasing sequence where 𝐥𝐢𝐦

𝒏→∞
𝒂𝒏 = 𝟎. Then  

 

∑(−𝟏)𝒏𝒂𝒏   𝒂𝒏𝒅  ∑(−𝟏)𝒏+𝟏𝒂𝒏 

∞

𝒏=𝟏

 

∞

𝒏=𝟏

𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆 . 
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The important lesson here is that as before, if a series fails to meet the criteria of the 

Alternating Series Test on only a finite number of terms, we can still apply the test. 

 

 
 

 

 

 

 

 

 

Part 1 of Theorem 19 states that the partial sum of a convergent alternating series will be within  
𝒂𝒏+𝟏  of its total sum. Consider the alternating series we looked at before the statement of the 

theorem, ∑
(−𝟏)𝒏+𝟏

𝒏𝟐
∞
𝒏=𝟏 . Since, 𝒂𝟏𝟒 =

𝟏

𝟏𝟒𝟐 ≈ 𝟎. 𝟎𝟎𝟓𝟏,we know that  𝑺𝟏𝟑 ≈ 𝟎. 𝟖𝟐𝟓𝟐 is within 𝟎. 𝟎𝟎𝟓𝟏 

of the total sum. 

 

Moreover, Part 2 of the theorem states that since 𝑺𝟏𝟑 ≈ 𝟎. 𝟖𝟐𝟓𝟐 and 𝑺𝟏𝟒 ≈ 𝟎. 𝟖𝟐𝟓𝟐  , we know the 

sum 𝑳 lies between 𝟎. 𝟖𝟐𝟓𝟐 and . 𝟖𝟐𝟓𝟐 . One use of this is the knowledge that 𝑺𝟏𝟒 is accurate to two 

places after the decimal. 

 

Some alternating series converge slowly. In Example 22 we determined the series ∑ (−𝟏)𝒏+𝟏 ∙∞
𝒏=𝟏

𝐥𝐧 𝒏

𝒏
 

converged. With = 𝟏𝟎𝟎𝟏 , we find 
𝐥𝐧 𝒏

𝒏
 ≈ 𝟎. 𝟎𝟎𝟔𝟗 , meaning that 𝑺𝟏𝟎𝟎𝟎 ≈ 𝟎. 𝟏𝟔𝟑𝟑 is accurate to one, 

maybe two, places after the decimal. Since 𝑺𝟏𝟎𝟎𝟏 ≈ 𝟎. 𝟏𝟓𝟔𝟒 , we know the sum 𝑳 is  
𝟎. 𝟏𝟓𝟔𝟒 ≤ 𝑳 ≤ 𝟎. 𝟏𝟔𝟑𝟑. 

 

Approximating the sum of convergent alternating series  23:Example  

 

Approximate the sum of the following series, accurate to within 0,001. 

 ∑  (−𝟏)𝒏+𝟏 𝟏

𝒏𝟑
∞
𝒏=𝟏 

Solution 
 

Using Theorem 19, we want to find 𝒏 where /𝒏𝟑 < 0.001 :  
𝟏

𝒏𝟑
 ≤ 𝟎. 𝟎𝟎𝟏 =

𝟏

𝟏𝟎𝟎𝟎
 

𝒏𝟑 ≥ 𝟏𝟎𝟎𝟎                           

𝒏 ≥ √𝟏𝟎𝟎𝟎
𝟑

      

                                                                 𝒏 ≥ 𝟏𝟎.             
 
Let 𝑳 be the sum of this series. By Part 01 of the theorem, |𝑺𝟗 − 𝑳| < 𝒂𝟏𝟎 = 𝟏/𝟏𝟎𝟎𝟎 . We can 
compute 𝑺𝟗 = 𝟎. 𝟗𝟎𝟐𝟏𝟏𝟔 , which our theorem states is within 𝟎. 𝟎𝟎𝟏 of the total sum. 
 

Theorem 19: The alternating series approximation theorem 
 
let  {𝒂𝒏}  be a sequence that satisfies the hypotheses of the Alternating Series Test, 

and let 𝑺𝒏 and 𝑳 be the 𝒏𝒕𝒉 partial sums and sum, respectively, of either 
∑ (−𝟏)𝒏𝒂𝒏   𝒐𝒓   ∑ (−𝟏)𝒏+𝟏𝒂𝒏 

∞
𝒏=𝟏  ∞

𝒏=𝟏  then  
 
1.  |𝑺𝒏 − 𝑳| < 𝒂𝒏+𝟏 , and 
2.  𝑳 is between 𝑺𝒏  and 𝑺𝒏+𝟏. 

 
 



  

 

65 

We can use Part 02 of the theorem to obtain an even more accurate result. As we know the 

𝟏𝟎𝒕𝒉 term of the series is −𝟏/𝟏𝟎𝟎𝟎 , we can easily compute 𝑺𝟏𝟎 = 𝟎. 𝟗𝟎𝟏𝟏𝟏𝟔  . Part 02  of the 
theorem states that 𝑳 is between 𝑺𝟗 and 𝑺𝟏𝟎 , so 𝟎. 𝟗𝟎𝟏𝟏𝟏𝟔  < 𝐿 < 0.902116 

 

 
 

 

 

 

 

 eDetermining absolute and conditional convergenc :42Example  

Determine if the following series converge absolutely, conditionally, or diverge. 

𝟏. ∑  (−𝟏)𝒏 𝒏+𝟑

𝒏𝟑+𝟐𝒏+𝟓
∞
𝒏=𝟏                                        2. ∑  (−𝟏)𝒏 𝒏𝟐+𝟐𝒏+𝟓

𝟐𝒏
∞
𝒏=𝟏 

Solution 

 

 𝟏. ∑  (−𝟏)𝒏 𝒏+𝟑

𝒏𝟑+𝟐𝒏+𝟓
∞
𝒏=𝟏 

1. We can show the series 

 

 ∑ |(−𝟏)𝒏 𝒏+𝟑

𝒏𝟑+𝟐𝒏+𝟓
|∞

𝒏=𝟏 =  ∑
𝒏+𝟑

𝒏𝟑+𝟐𝒏+𝟓
∞
𝒏=𝟏 

Diverges using the Limit Comparison Test, comparing with 
𝟏

𝒏
 . 

The series ∑  (−𝟏)𝒏 𝒏+𝟑

𝒏𝟑+𝟐𝒏+𝟓
∞
𝒏=𝟏  converges using the Alternating Series Test; we conclude it 

converges conditionally. 

 

2. ∑  (−𝟏)𝒏 𝒏𝟐+𝟐𝒏+𝟓

𝟐𝒏
∞
𝒏=𝟏 

 2. We can show the series 

 

∑ |(−𝟏)𝒏 𝒏𝟐+𝟐𝒏+𝟓

𝟐𝒏 |∞
𝒏=𝟏 = ∑

𝒏𝟐+𝟐𝒏+𝟓

𝟐𝒏
∞
𝒏=𝟏    

 

converges using the Ratio Test. 

 

Therefore we conclude ∑  (−𝟏)𝒏 𝒏𝟐+𝟐𝒏+𝟓

𝟐𝒏
∞
𝒏=𝟏   converges absolutely. 

6-Power series  
 
So far, our study of series has examined the question of "Is the sum of these infinite terms 
finite?,'' , "Does the series converge?'' We now approach series from a different perspective: as a 
function. Given a value of 𝒙, we evaluate 𝒇(𝒙) by finding the sum of a particular series that 
depends on 𝒙 (assuming the series converges). We start this new approach to series with a 

Definition 10: Absolute and conditional convergence 
 

1. A series ∑ 𝒂𝒏 
∞
𝒏=𝟏  converges absolutely if ∑ |𝒂𝒏|∞

𝒏=𝟏    converges. 
 
2. A series ∑ 𝒂𝒏 

∞
𝒏=𝟏  converges conditionally if ∑ 𝒂𝒏 

∞
𝒏=𝟏  converges but ∑ |𝒂𝒏|∞

𝒏=𝟏     diverges. 
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definition. 
 
 
 
 

 

 

 

 

 

 

 

Examples of power series  :25Example  

Write out the first five terms of the following power series: 

 

 𝟏. ∑ 𝒙𝒏∞
𝒏=𝟎                                             𝟐. ∑ (−𝟏)𝒏+𝟏 (𝒙+𝟏)𝒏

𝒏
∞
𝒏=𝟏 

Solution  

 

 Therefore.𝒙 regardless of the value of 𝒙𝟎 = 𝟏 conventions we adopt is thatthe One of 1. 

  

∑ 𝒙𝒏 = 𝟏 +

∞

𝒏=𝟎

𝒙 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 + ⋯ 

.  This is a geometric series in 

2. This series is centered at = −𝟏 . Note how this series starts with = 𝟏 . We could rewrite this 

. 𝟎 , and hence the first term is 𝒂𝟎 = 𝟎 with the understanding that 𝒏 = 𝟎 series starting at 

∑ (−𝟏)𝒏+𝟏 (𝒙+𝟏)𝒏

𝒏
∞
𝒏=𝟏  = (𝒙 + 𝟏) −

(𝒙+𝟏)𝟐

𝟐
+

(𝒙+𝟏)𝟑

𝟑
−

(𝒙+𝟏)𝟒

𝟒
+

(𝒙+𝟏)𝟓

𝟓
− ⋯         

 
 

Definition 11: Power series  
 

let {𝒂𝒏} be a sequence, let be a variable, and let be a real number. 
 
1. The power series in 𝒙 is the series  

∑ 𝒂𝒏𝒙𝒏 = 𝒂𝟎 + 𝒂𝟏𝒙𝟏 + 𝒂𝟐𝒙𝟐 + 𝒂𝟑𝒙𝟑

∞

𝒏=𝟎

+ ⋯ 

2. The power series in 𝒙 centered at 𝒄 is the series                                                                          

                                                                                                     

                                    ∑ 𝒂𝒏(𝒙 − 𝒄)𝒏 =∞
𝒏=𝟎 𝒂𝟎 + 𝒂𝟏(𝒙 − 𝒄)𝟏 + 𝒂𝟐(𝒙 − 𝒄)𝟐 + 𝒂𝟑(𝒙 − 𝒄)𝟑 + ⋯ 

 
 

Theorem 20: Convergence of power series 
 
Let  a power series  ∑ 𝒂𝒏(𝒙 − 𝒄)𝒏∞

𝒏=𝟎  be given, then one of the following is true. 

 
1. The series converges only at 𝒙 = 𝒄. 
 
2. There is an 𝑹 > 0 such that the series converges for all 𝒙 in (𝒄 − 𝑹 , 𝒄 + 𝑹) and 
diverges for all 𝒙 < 𝑐 − 𝑅 and 𝒙 >  𝒄 + 𝑹.  
 
3. The series converges for all 𝒙. 
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The value of 𝑹 is important when understanding a power series, hence it is given a name in the 
following definition. Also, note that part 2 of Theorem 20 makes a statement about the 
interval (𝒄 − 𝑹 , 𝒄 + 𝑹) , but the not the endpoints of that interval. A series may/may not 
converge at these endpoints. 
 

 

 

 

 

 

 

To find the values of 𝒙 for which a given series converges, we will use the convergence tests we 

studied previously (especially the Ratio Test). However, the tests all required that the terms of 

a series be positive. The following theorem gives us a work--around to this problem. 

 
 
 

 

 

 

Theorem 21 allows us to find the radius of convergence 𝑹 of a series by applying the Ratio 

Test (or any applicable test) to the absolute value of the terms of the series. We practice this 

in the following example. 

 

Determining the radius and interval of convergence :26Example  

Find the radius and interval of convergence for each of the following series: 

 𝟏. ∑
𝒙𝒏

𝒏!
∞
𝒏=𝟎                                 𝟐. ∑ 𝟐𝒏∞

𝒏=𝟎 (𝒙 − 𝟑)𝒏 

 
Solution 

 

 𝟏. ∑
𝒙𝒏

𝒏!
∞
𝒏=𝟎 

 

𝟏.We apply the Ratio Test to the series ∑ |
𝒙𝒏

𝒏!
|∞

𝒏=𝟎   

 

                                                                        𝐥𝐢𝐦
𝒏→𝒏

|𝒙𝒏+𝟏 (𝒏+𝟏)!⁄ |

|𝒙𝒏 𝒏!⁄ |
=  𝐥𝐢𝐦

𝒏→𝒏
|

𝒙𝒏+𝟏

𝒙𝒏  ∙  
𝒏!

(𝒏+𝟏)!
|  

                                                                                                           = 𝐥𝐢𝐦
𝒏→𝒏

|
𝒙𝒏∙𝒙

𝒙𝒏  ∙  
𝒏!

(𝒏+𝟏)𝒏!
| 

Definition 12: Radius and interval of convergence  
 

1. The number 𝑹 given in Theorem 20 is the radius of convergence of a given series. When a 
series converges for only = 𝒄 , we say the radius of convergence is 0, 𝑹 = 𝟎 . When a series 
converges for all  , we say the series has an infinite radius of convergence, 𝑹 = ∞ 
 
2. The interval of convergence is the set of all values of for which the series converges. 
 

The radius of convergence of a series and absolute  :21 Theorem

convergence 

 
The series ∑ 𝒂𝒏𝒙𝒏∞

𝒏=𝟎  and ∑ |𝒂𝒏𝒙𝒏|  ,∞
𝒏=𝟎   have the same radius of convergence  . 
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                                                                                                           =  𝐥𝐢𝐦
𝒏→𝒏

|
𝒙

𝒏+𝟏
| 

                                                                                                           = 𝟎 

The Ratio Test shows us that regardless of the choice of  , the series converges. Therefore the 

radius of convergence is = ∞ , and the interval of convergence is (−∞, +∞) . 

 

 𝟐. ∑ 𝟐𝒏∞
𝒏=𝟎 (𝒙 − 𝟑)𝒏 

2. We apply the Ratio Test to the series ∑ |𝟐𝒏(𝒙 − 𝟑)𝒏|∞
𝒏=𝟎 

 

                                                                    𝐥𝐢𝐦
𝒏→∞

|𝟐𝒏+𝟏(𝒙−𝟑)𝒏+𝟏|

|𝟐𝒏(𝒙−𝟑)𝒏|
= 𝐥𝐢𝐦

𝒏→∞
|

𝟐𝒏+𝟏(𝒙−𝟑)𝒏+𝟏

𝟐𝒏(𝒙−𝟑)𝒏 | 

                                                                                                             =  𝐥𝐢𝐦
𝒏→∞

|
𝟐𝒏+𝟏

𝟐𝒏  ∙  
(𝒙−𝟑)𝒏+𝟏

(𝒙−𝟑)𝒏 | 

                                                                                                             = 𝐥𝐢𝐦
𝒏→∞

|
𝟐𝒏∙𝟐

𝟐𝒏  ∙  
(𝒙−𝟑)𝒏∙(𝒙−𝟑)

(𝒙−𝟑)𝒏 | 

                                                                                                             = 𝐥𝐢𝐦
𝒏→∞

|𝟐(𝒙 − 𝟑)| 

According to the Ratio Test, the series converges when |𝟐(𝒙 − 𝟑)| < 1 ⟹  |𝒙 − 𝟑| <
𝟏

𝟐
. the 

series is centered at 3, and 𝒙 must be within 
𝟏

𝟐
 of 3 in order for the series to converge. Therefore 

the radius of convergence is 𝑹 = 𝟏/𝟐, and we know that the series converges absolutely for all 
𝒙 in  (𝟑 − 𝟏 𝟐⁄ , 𝟑 +  𝟏 𝟐)⁄ = (𝟐. 𝟓 , 𝟑. 𝟓) . 
 
We check for convergence at the endpoints to find the interval of convergence. When 

𝒙 = 𝟐. 𝟓  we have: 

 

                               ∑ 𝟐𝒏∞
𝒏=𝟎 (𝟐. 𝟓 − 𝟑)𝒏 =  ∑ 𝟐𝒏∞

𝒏=𝟎 (− 𝟏 𝟐⁄ )𝒏 =  ∑ (−𝟏)𝒏∞
𝒏=𝟎 

 
which diverges. A similar process shows that the series also diverges at = 𝟑. 𝟓 . Therefore the 
interval of convergence is (𝟐. 𝟓 , 𝟑. 𝟓). 
 

 

 

 
 
  

Theorem 22: Derivatives and indefinite integrals of power series 
functions  
 
let 𝒇(𝒙) = ∑ 𝒂𝒏

∞
𝒏=𝟎 (𝒙 − 𝒄)𝒏  be a function defined by a power series, with radius of 

convergence  𝑹.  
 
1. 𝒇(𝒙) is continuous and differentiable on (𝒄 − 𝑹 , 𝒄 − 𝑹 ). 
 

2. 𝒇′(𝒙) =  ∑ 𝒂𝒏 ∙ 𝒏 ∙∞
𝒏=𝟏 (𝒙 − 𝒄)𝒏−𝟏 , with radius of convergence 𝑹. 

3.∫ 𝒇(𝒙)𝒅𝒙 = 𝑪 + ∑ 𝒂𝒏
∞
𝒏=𝟎

(𝒙−𝒄)𝒏+𝟏

𝒏+𝟏
 , with radius of convergence 𝑹. 
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Derivatives and indefinite integrals of power series 27:Example  

Let (𝒙) = ∑ 𝒙𝒏∞
𝒏=𝟎  . Find 𝒇′(𝒙)  and (𝒙) = ∫ 𝒇(𝒙)𝒅𝒙 , along with their respective intervals of 

convergence. 
 
Solution 
 
We find the derivative and indefinite integral of (𝒙) , following Theorem 22. 
 

1. 𝒇′(𝒙) = ∑ 𝒏 ∙ 𝒙𝒏−𝟏∞
𝒏=𝟏 = 𝟏 + 𝟐𝒙 + 𝟑𝒙𝟐 + 𝟒𝒙𝟑 + ⋯ 

In Example 25, we recognized that ∑ 𝒙𝒏∞
𝒏=𝟎  is a geometric series in  . We know that such a 

geometric series converges when |𝒙| < 1  ; that is, the interval of convergence is (−𝟏, 𝟏) . 
 
To determine the interval of convergence of 𝒇′(𝒙)  , we consider the endpoints of 

(−𝟏, 𝟏) : 

                                                𝒇′(−𝟏) = 𝟏 − 𝟐 + 𝟑 − 𝟒 + ⋯ , 𝒘𝒉𝒊𝒄𝒉 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒔    

𝒇′(𝟏) = 𝟏 + 𝟐 + 𝟑 + 𝟒 + ⋯ , 𝒘𝒉𝒊𝒄𝒉 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒔 
 
Therefore, the interval of convergence of 𝒇′(𝒙)  is (−𝟏, 𝟏)  . 
 

2. 𝑭(𝒙) = ∫ 𝒇(𝒙)𝒅𝒙 = 𝑪 + ∑
𝒙𝒏+𝟏

𝒏+𝟏
∞
𝒏=𝟎 = 𝑪 + 𝒙 +

𝒙𝟐

𝟐
+

𝒙𝟑

𝟑
+ ⋯  

To find the interval of convergence of, we again consider the endpoints of (−𝟏, 𝟏) : 
 

𝑭(−𝟏) = 𝑪 − 𝟏 + 𝟏 𝟐 − 𝟏 𝟑 + 𝟏 𝟒 + ⋯⁄⁄⁄  
 
The value of 𝑪 is irrelevant; notice that the rest of the series is an Alternating Series that whose 
terms converge to 0. By the Alternating Series Test, this series converges. (In fact, we can 
recognize that the terms of the series after 𝑪 are the opposite of the Alternating Harmonic 
Series. We can thus say that 𝑭(−𝟏) = 𝑪 − 𝐥𝐧 𝟐.) 
 

𝑭(𝟏) = 𝑪 + 𝟏 + 𝟏 𝟐 + 𝟏 𝟑 + 𝟏 𝟒 + ⋯⁄⁄⁄  
 
Notice that this summation is 𝑪 +, the Harmonic Series, which diverges. Since 𝑭 converges for 
𝒙 = −𝟏 and diverges for = 𝟏 , the interval of convergence of 𝑭(𝒙) is [−𝟏, 𝟏).  
 
the previous example showed how to take the derivative and indefinite integral of a power 
series without motivation for why we care about such operations. We may care for the sheer 
mathematical enjoyment "that we can'', which is motivation enough for many. However, we 
would be remiss to not recognize that we can learn a great deal from taking derivatives and 
indefinite integrals. 
 
Recall that 𝒇(𝒙) = ∑ 𝒙𝒏∞

𝒏=𝟎  in Example 27 is a geometric series. According to Theorem 

07, this series converges to 𝟏 (𝟏 − 𝒙)  ,⁄  when |𝒙| < 1 . Thus we can say 

 

                                             𝒇(𝒙) = ∑ 𝒙𝒏∞
𝒏=𝟎 =  

𝟏

𝟏−𝒙
  , 𝒐𝒏 ( −𝟏, 𝟏). 

Integrating the power series, (as done in Example 27,) we find  
 



  

 

71 

                                              𝑭(𝒙) = 𝑪𝟏 +  ∑
𝒙𝒏+𝟏

𝒏+𝟏
∞
𝒏=𝟎  …………………………. (01) 

 
While integrating the function 𝒇(𝒙) = 𝟏 (𝟏 − 𝒙)  ⁄ gives  

 

                                             𝑭(𝒙) =  − 𝐥𝐧|𝟏 − 𝒙| + 𝑪𝟐………………………… (02)  

Equating Equations (1) and (2), we have 

 

                                               𝑭(𝒙) = 𝑪𝟏 +  ∑
𝒙𝒏+𝟏

𝒏+𝟏
∞
𝒏=𝟎  =  − 𝐥𝐧|𝟏 − 𝒙| + 𝑪𝟐      

Letting 𝒙 = 𝟎, we have 𝑭(𝟎) =  𝑪𝟏 = 𝑪𝟐 . This implies that we can drop the constants 

and conclude  

 

                                                                 ∑
𝒙𝒏+𝟏

𝒏+𝟏
∞
𝒏=𝟎  =  −𝐥𝐧|𝟏 − 𝒙|   

 
We established in Example 27 that the series on the left converges at = −𝟏 ; 

substituting 𝒙 = −𝟏 on both sides of the above equality gives 

 

−𝟏 +
𝟏

𝟐
−

𝟏

𝟑
+

𝟏

𝟒
−

𝟏

𝟓
+ ⋯ = − 𝐥𝐧 𝟐 

On the left we have the opposite of the Alternating Harmonic Series; on the right, we 

have − 𝐥𝐧 𝟐 . We conclude that  

 

                                                        𝟏 −
𝟏

𝟐
+

𝟏

𝟑
−

𝟏

𝟒
+ ⋯ = 𝐥𝐧 𝟐  

 
  Analyzing power series functions  28:Example  

Let 𝒇(𝒙) = ∑
𝒙𝒏

𝒏!
∞
𝒏=𝟎  .Find 𝒇′(𝒙) and ∫ 𝒇(𝒙)𝒅𝒙 , and use these to analyze the behavior of 𝒇(𝒙) . 

 

Solution 

 

we start by making two notes: first, in Example 26, we found the interval of  

convergence of this power series is (−∞, ∞) . Second, we will find it useful later to have 

a few terms of the series written out:  

 

                                          ∑
𝒙𝒏

𝒏!
∞
𝒏=𝟎 = 𝟏 + 𝒙 +

 𝒙𝟐

𝟐
+

𝒙𝟑

𝟔
+

𝒙𝟒

𝟐𝟒
+ ⋯ ……………………………….. (03)      

 

We now find the derivative: 

 

𝒇′(𝒙) = ∑ 𝒏 ∙
𝒙𝒏−𝟏

𝒏!

∞

𝒏=𝟏

 

 

                                                                      = ∑ 𝒏 ∙
𝒙𝒏−𝟏

𝒏(𝒏−𝟏)!
∞
𝒏=𝟏 = ∑

𝒙𝒏−𝟏

(𝒏−𝟏)!
∞
𝒏=𝟏 = 𝟏 + 𝒙 +

 𝒙𝟐

𝟐
+ ⋯ 
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since the series starts at 𝒏 = 𝟏 and each term refers to (𝒏 − 𝟏), we can re-index the 

series starting with  𝒏 = 𝟎 

 

                                                           = ∑
𝒙𝒏

𝒏!
∞
𝒏=𝟎 

                                                           = 𝒇(𝒙) 

We found the derivative of 𝒇(𝒙) is (𝒙) . The only functions for which this is true are of the 
form 𝒚 = 𝒄𝒆𝒙 for some constant  . 
As 𝒇(𝟎) = 𝟏 (see Equation 03 ), 𝒄 must be 1. Therefore we conclude that 

 

𝒇(𝒙) = ∑
𝒙𝒏

𝒏!

∞

𝒏=𝟎

= 𝒆𝒙 

 

for all 𝒙 . 
We can also find ∫ 𝒇(𝒙)𝒅𝒙 : 

∫ 𝒇(𝒙)𝒅𝒙 = 𝑪 + ∑
𝒙𝒏+𝟏

𝒏! (𝒏 + 𝟏)

∞

𝒏=𝟎

 

= 𝑪 + ∑
𝒙𝒏+𝟏

(𝒏 + 𝟏)!

∞

𝒏=𝟎

 

 

We write out a few terms of this last series: 
 

                                         𝑪 + ∑
𝒙𝒏+𝟏

(𝒏+𝟏)!
∞
𝒏=𝟎 = 𝑪 + 𝒙 +

 𝒙𝟐

𝟐
+

𝒙𝟑

𝟔
+

𝒙𝟒

𝟐𝟒
+ ⋯   

 
 
The integral of 𝒇(𝒙) differs from 𝒇(𝒙) only by a constant, again indicating that 𝒇(𝒙) =

𝒆𝒙. 

 

 Solving a differential equation with a power series  29:Example  

Give the first 4 terms of the power series solution to  𝒚′ = 𝟐𝒚  , where 𝒚(𝟎) = 𝟏  . 
 
Solution 
 
The differential equation 𝒚′ = 𝟐𝒚  describes a function 𝒚 = 𝒇(𝒙) where the derivative of 𝒚 is 
twice 𝒚 and 𝒚(𝟎) = 𝟏  . This is a rather simple differential equation; with a bit of thought one 

should realize that if 𝒚 = 𝑪𝒆𝟐𝒙 , then 𝒚′ = 𝟐 ∙  𝑪𝒆𝟐𝒙 , and hence 𝒚′ = 𝟐𝒚  . By letting 𝑪 = 𝟏 we 
satisfy the initial condition of 𝒚(𝟎) = 𝟏  .  
 
Let's ignore the fact that we already know the solution and find a power series function that 
satisfies the equation. The solution we seek will have the form 
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𝒇(𝒙) = ∑ 𝒂𝒏𝒙𝒏 = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙𝟐

∞

𝒏=𝟎

+ 𝒂𝟑𝒙𝟑 + ⋯ 

for unknown coefficients 𝒂𝒏 . We can find 𝒇′(𝒙) using Theorem 22: 

 

𝒇′(𝒙) = ∑ 𝒂𝒏 ∙ 𝒏 ∙ 𝒙𝒏 = 𝒂𝟏𝒙 + 𝟐𝒂𝟐𝒙𝟐

∞

𝒏=𝟎

+ 𝟑𝒂𝟑𝒙𝟑 + 𝟒𝒂𝟒𝒙𝟒 + ⋯ 

 
Since 𝒇′(𝒙) = 𝟐𝒇(𝒙) , we have 
 

𝒂𝟏𝒙 + 𝟐𝒂𝟐𝒙𝟐 + 𝟑𝒂𝟑𝒙𝟑 + 𝟒𝒂𝟒𝒙𝟒 + ⋯ = 𝟐(𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒙𝟐 + 𝒂𝟑𝒙𝟑 + ⋯ ) 
 = 𝟐𝒂𝟎 + 𝟐𝒂𝟏𝒙 + 𝟐𝒂𝟐𝒙𝟐 + 𝟐𝒂𝟑𝒙𝟑 + ⋯ 

The coefficients of like powers of 𝒙 must be equal, so we find that 
 

𝒂𝟏 = 𝟐𝒂𝟎 ,   𝟐𝒂𝟐 = 𝟐𝒂𝟏 ,  𝟑𝒂𝟑 =   𝟐𝒂𝟐 , 𝟒𝒂𝟒 = 𝟐𝒂𝟑 ,           𝒆𝒕𝒄  
 
The initial condition 𝒚(𝟎) = 𝒇(𝟎) = 𝟏 indicates that 𝒂𝟎 = 𝟏 ; with this, we can find the 

values of the other coefficients: 

 

                                              𝒂𝟎 = 𝟏 𝒂𝒏𝒅    𝒂𝟏 = 𝟐𝒂𝟎   ⟹   𝒂𝟏 = 𝟐 ; 

𝒂𝟏 = 𝟐 𝒂𝒏𝒅   𝟐𝒂𝟐 = 𝟐𝒂𝟏     ⟹  𝒂𝟐 = 𝟒 𝟐 = 𝟐; ⁄  

𝒂𝟐 = 𝟐 𝒂𝒏𝒅   𝟑𝒂𝟑 =   𝟐𝒂𝟐    ⟹    𝒂𝟑 = 𝟖 (𝟐 ∙ 𝟑) = 𝟒 𝟑⁄⁄ ; 

𝒂𝟑 = 𝟒 𝟑⁄  𝒂𝒏𝒅   𝟒𝒂𝟒 = 𝟐𝒂𝟑      ⟹  𝒂𝟒 = 𝟏𝟔 (𝟐 ∙ 𝟑 ∙ 𝟒) =⁄ 𝟐 𝟑 .⁄ 
 

Thus the first 5 terms of the power series solution to the differential equation 𝒚′ = 𝟐𝒚 

is 

𝒇(𝒙) = 𝟏 + 𝟐𝒙 + 𝟐𝒙𝟐 +
𝟒

𝟑
𝒙𝟑 +

𝟐

𝟑
𝒙𝟒 + ⋯ 

𝒚 = 𝒆𝟐𝒙 
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Chapter 02 

 
Taylor Polynomials and Taylor Series  
 

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of 
terms that are expressed in terms of the function's derivatives at a single point. For most 
common functions, the function and the sum of its Taylor series are equal near this point. 
Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is 
also called a Maclaurin series when 0 is the point where the derivatives are considered, 
after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th 
century. 

The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of 
degree n that is called the nth Taylor polynomial of the function. Taylor polynomials are 
approximations of a function, which become generally more accurate as n increases. Taylor's 
theorem gives quantitative estimates on the error introduced by the use of such 
approximations. If the Taylor series of a function is convergent, its sum is the limit of 
the infinite sequence of the Taylor polynomials. A function may differ from the sum of its 
Taylor series, even if its Taylor series is convergent. A function is analytic at a point x if it is 
equal to the sum of its Taylor series in some open interval containing x. This implies that the 
function is analytic at every point of the interval  

 
 
1.Taylor Polynomials  
2. Taylor Series  
 
 
 
  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Brook_Taylor
https://en.wikipedia.org/wiki/Colin_Maclaurin
https://en.wikipedia.org/wiki/Partial_sum
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Taylor%27s_theorem
https://en.wikipedia.org/wiki/Taylor%27s_theorem
https://en.wikipedia.org/wiki/Convergence_(mathematics)
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1-Taylor Polynomials  
 

Consider a function 𝒚 = 𝒇(𝒙) and a point   (𝒄 , 𝒇(𝒄)) . The derivative, 𝒇′(𝒄)   , gives the 

instantaneous rate of change of 𝒇 at  𝒙 = 𝒄  . Of all lines that pass through the point (𝒄 , 𝒇(𝒄))  , 

the line that best approximates 𝒇 at this point is the tangent line; that is, the line whose slope 
(rate of change) is 𝒇′(𝒄) . 
In Figure Z , we see a function 𝒚 = 𝒇(𝒙) graphed. The table below the graph shows that 
𝒇(𝟎) = 𝟐 𝒂𝒏𝒅 𝒇′(𝟎) = 𝟏; therefore, the tangent line to 𝒇 at 𝒙 = 𝟎 is  
 𝒑𝟏(𝒙) = 𝟏(𝒙 − 𝟎) + 𝟐 = 𝒙 + 𝟐 . The tangent line is also given in the figure. Note that "near'' =
𝟎 , 𝒑𝟏(𝒙) ≈ 𝒇(𝒙) ; that is, the tangent line approximates 𝒇 well. 
 
 

 
 

 Figure 𝒁′ : plotting 𝒚 = 𝒇(𝒙) ( 𝒃𝒍𝒖𝒆) 𝒂𝒏𝒅   𝒚 =  𝒑𝟏(𝒙) ( 𝒓𝒆𝒅).   

 

   

 𝒇(𝟎) = 𝟐                   𝒇′′′(𝟎) = −𝟏 

𝒇′(𝟎) = 𝟏                  𝒇𝟒(𝟎) = −𝟏𝟐 

𝒇′′(𝟎) = 𝟐                𝒇𝟓(𝟎) = −𝟏𝟗 
 

    One shortcoming of this approximation is that the tangent line only matches the slope of  ; it 
does not, for instance, match the concavity of 𝒇 . We can find a polynomial , 𝒑𝟐(𝒙) , that does 
match the concavity without much difficulty, though. The table gives the following 
information: 
 
𝒇(𝟎) = 𝟐             𝒇′(𝟎) = 𝟏            𝒇′′(𝟎) = 𝟐 
 
Therefore, we want our polynomial 𝒑𝟐(𝒙) to have these same properties. That is, we need 
 

𝒑𝟐(𝟎) = 𝟐                   𝒑𝟐
′ (𝟎) = 𝟏                 𝒑𝟐

′′ (𝟎) = 𝟐    
 
This is simply an initial-value problem. We can solve this using the techniques first described 
in Section 5.1. To keep 𝒑𝟐(𝒙) as simple as possible, we'll assume that   𝒑𝟐

′ (𝟎) = 𝟏 not only 
  𝒑𝟐

′′ (𝟎) = 𝟐 , but that   𝒑𝟐
′′ (𝒙) = 𝟐 . That is, the second derivative 𝒑𝟐 of is constant.  

If   𝒑𝟐
′′ (𝒙) = 𝟐 , then   𝒑𝟐

′ (𝒙) =  𝟐𝒙 + 𝑪 for some constant 𝑪 . Since we have determined that 
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 𝒑𝟐
′ (𝟎) = 𝟏  , we find that 𝑪 = 𝟏 and so  𝒑𝟐

′ (𝒙) =  𝟐𝒙 + 𝟏 . Finally, we can compute 𝒑𝟐(𝒙) =

 𝒙𝟐 + 𝒙 + 𝑪 . Using our initial values, we know 𝒑𝟐(𝟎) = 𝟐  𝒔𝒐 𝑪 = 𝟐 so We conclude that 

𝒑𝟐(𝒙) =  𝒙𝟐 +   𝒙 + 𝟐. This function is plotted with in Figure 𝑨′ . 
 
 

 
 

 

       Figure 𝑨′ : plotting 𝒇 (𝒃𝒍𝒖𝒆) ,  𝒑𝟐( 𝒓𝒆𝒅 ) 𝒂𝒏𝒅 𝒑𝟒 ( light red ) .  
 
  
We can repeat this approximation process by creating polynomials of higher degree that match 
more of the derivatives of 𝒇 at = 𝟎 . In general, a polynomial of degree 𝒏 can be created to 

match the first 𝒏 derivatives of  . Figure 𝑨′  also shows 𝒑𝟒(𝒙) = − 𝒙𝟒 𝟐 −  𝒙𝟑 𝟔 + 𝒙𝟐 + 𝒙 + 𝟐⁄⁄   
whose first four derivatives at 0 match those of  . (Using the table in Figure Z , start with 

𝒑𝟒
𝟒 (𝒙) = −𝟏𝟐 and solve the related initial-value problem.) 

 
As we use more and more derivatives, our polynomial approximation to 𝒇 gets better and 
better. In this example, the interval on which the approximation is "good'' gets bigger and 
bigger. Figure 𝑩′ shows 𝒑𝟏𝟑(𝒙) ; we can visually affirm that this polynomial approximates 𝒇 
very well on [−𝟐, 𝟑]  
 
The polynomial 𝒑𝟏𝟑(𝒙) is not particularly "nice''. It is 

 

𝒑𝟏𝟑(𝒙) =  
𝟏𝟔𝟗𝟎𝟏𝒙𝟏𝟑

𝟔𝟐𝟐𝟕𝟎𝟐𝟎𝟖𝟎𝟎
+

𝟏𝟑𝒙𝟏𝟐

𝟏𝟐𝟎𝟗𝟔𝟎𝟎
−

𝟏𝟑𝟐𝟏𝒙𝟏𝟏

𝟑𝟗𝟗𝟏𝟔𝟖𝟎𝟎
−

𝟕𝟕𝟗𝒙𝟏𝟎

𝟏𝟖𝟏𝟒𝟒𝟎𝟎
−

𝟑𝟓𝟗𝒙𝟗

𝟑𝟔𝟐𝟖𝟖𝟎
+

𝒙𝟖

𝟐𝟒𝟎
+

𝟏𝟑𝟗𝒙𝟕

𝟓𝟎𝟒𝟎
+

𝟏𝟏𝒙𝟔

𝟑𝟔𝟎
−

𝟏𝟗𝒙𝟓

𝟏𝟐𝟎
−

𝒙𝟒

𝟐
−

𝒙𝟑

𝟔
+ 𝒙𝟐 + 𝒙 + 𝟐 

 
 The polynomials we have created are examples of Taylor polynomials, named after the 

British mathematician Brook Taylor who made important discoveries about such functions. 

While we created the above Taylor polynomials by solving initial-value problems, it can be 

shown that Taylor polynomials follow a general pattern that make their formation much more 

direct. This is described in the following definition. 
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Figure 𝑪′ ∶ 𝒑𝒍𝒐𝒕𝒕𝒊𝒏𝒈 𝒇 ( 𝒃𝒍𝒖𝒆 ) 𝒂𝒏𝒅 𝒑𝟏𝟑 ( 𝒓𝒆𝒅 )   

 

 

 

 

 

 

 

 

 

 

 

Example 30: Finding and using maclaurin polynomials 

 

1. Find 𝒏𝒕𝒉 the Maclaurin polynomial for (𝒙) = 𝒆𝒙 . 
2. Use  𝒑𝟓(𝒙) to approximate the value of  . 

 

𝒙 = 𝟎evaluated at  𝒇(𝒙) = 𝒆𝒙the derivatives of   Solution 
 

𝒇(𝒙) = 𝒆𝒙         ⇒             𝒇(𝟎) = 𝟏 

𝒇′(𝒙) = 𝒆𝒙        ⇒            𝒇′(𝟎) = 𝟏 

𝒇′′(𝒙) = 𝒆𝒙       ⇒            𝒇′′(𝟎) = 𝟏 

.                                         .    

.                                         . 

.                                         . 

Definition 13: Taylor polynomials and maclaurin polynomials   
 

Let 𝒇 be a function whose first 𝒏 derivatives exist at 𝒙 = 𝒄 . 
 
1. The Taylor polynomial of degree of at 𝒙 = 𝒄 is  
 

                            𝒑𝒏(𝒙) = 𝒇(𝒄) + 𝒇′(𝒄)(𝒙 − 𝒄) +
𝒇′′(𝒄)

𝟐!
(𝒙 − 𝒄)𝟐 +

𝒇′′′(𝒄)

𝟑!
(𝒙 − 𝒄)𝟑 + ⋯ +

𝒇𝒏(𝒄)

𝒏!
(𝒙 − 𝒄)𝒏 

 
2. A special case of the Taylor polynomial is the Maclaurin polynomial, where = 𝟎 . That is, the 
Maclaurin polynomial of degree 𝒏 of 𝒇 is  

 

𝒑𝒏(𝒙) = 𝒇(𝟎) + 𝒇′(𝟎)𝒙 +
𝒇′′(𝟎)

𝟐!
𝒙𝟐 +

𝒇′′′(𝟎)

𝟑!
𝒙𝟑 + ⋯ +

𝒇𝒏(𝟎)

𝒏!
𝒙𝒏 
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𝒇𝒏(𝒙) = 𝒆𝒙                        𝒇𝒏(𝟎) = 𝟏 

1. We start with creating a table of the derivatives of 𝒆𝒙  evaluated at = 𝟎 . In this particular 
case, this is relatively simple.  
 
By the definition of the Maclaurin series, we have 

 

𝒑𝒏(𝒙) = 𝒇(𝟎) + 𝒇′(𝟎)𝒙 +
𝒇′′(𝟎)

𝟐!
𝒙𝟐 +

𝒇′′′(𝟎)

𝟑!
𝒙𝟑 + ⋯ +

𝒇𝒏(𝟎)

𝒏!
𝒙𝒏 

 

                                    = 𝟏 + 𝒙 +
𝟏

𝟐!
𝒙𝟐 +

𝟏

𝟑!
𝒙𝟑 +

𝟏

𝟒!
𝒙𝟒 + ⋯ +

𝟏

𝒏!
𝒙𝒏 

2.Using our answer from part 1, we have 

                                                                        

𝒑𝟓 = 𝟏 + 𝒙 +
𝟏

𝟐
𝒙𝟐 +

𝟏

𝟔
𝒙𝟑 +

𝟏

𝟐𝟒
𝒙𝟒 +

𝟏

𝟏𝟐𝟎
𝒙𝟓 

 

To approximate the value of  , note that 𝒆 = 𝒆𝟏 = 𝒇(𝟏) ≈ 𝒑𝟓(𝟏).  It is very straightforward to 

evaluate 𝒑𝟓(𝟏) : 

 

𝒑𝟓(𝟏) = 𝟏 + 𝟏 +
𝟏

𝟐
+

𝟏

𝟔
+

𝟏

𝟐𝟒
+

𝟏

𝟏𝟐𝟎
=  

𝟏𝟔𝟑

𝟔𝟎
≈ 𝟐. 𝟕𝟏𝟔𝟔𝟕. ………………………………(1) 

 

A plot of 𝒇(𝒙) = 𝒆𝒙 and 𝒑𝟓(𝒙) is given in Figure 𝑫′.  

 

 

  
 

                                                                       Figure 𝑫′  

 

Example 31: Finding and using taylor polynomials 

 

1. Find 𝒏𝒕𝒉  the Taylor polynomial of 𝒚 = 𝐥𝐧 𝒙   at = 𝟏 . 
2. Use 𝒑𝟔(𝒙)    to approximate the value of 𝐥𝐧 𝟏. 𝟓   . 
3. Use 𝒑𝟔(𝒙)    to approximate the value of 𝐥𝐧 𝟐   . 

 

Solution 
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𝒇(𝒙) = 𝐥𝐧 𝒙               ⇒                  𝒇(𝟏) = 𝟎    

 𝒇′(𝒙) =
𝟏

𝒙
                   ⇒                𝒇′(𝟏) = 𝟏   

      𝒇′′(𝒙) =
−𝟏

𝒙𝟐           ⇒                𝒇′′(𝟏) = −𝟏 

         𝒇′′′(𝒙) =
𝟐

𝒙𝟑        ⇒              𝒇′′′(𝟏) = 𝟐 

       𝒇𝟒(𝒙) =
−𝟔

𝒙𝟒           ⇒                𝒇𝟒(𝟏) = −𝟔 

                 .                                            . 

                 .                                            . 

                 .                                            .     

     𝒇𝒏(𝒙) =
(−𝟏)𝒏+𝟏(𝒏−𝟏)!

𝒙𝒏    ⇒       𝒇𝒏(𝒙) = (−𝟏)𝒏+𝟏(𝒏 − 𝟏)! 

Derivatives of  𝐥𝐧 𝒙  evaluated at 𝒙 = 𝟏     
 
We begin by creating a table of derivatives of 𝐥𝐧 𝒙   evaluated at 𝒙 = 𝟏 . While this is not as 
straightforward as it was in the previous example, a pattern does emerge. 
Using Definition 13, we have  

 

              𝒑𝒏(𝒙) = 𝒇(𝒄) + 𝒇′(𝒄)(𝒙 − 𝒄) +
𝒇′′(𝒄)

𝟐!
(𝒙 − 𝒄)𝟐 +

𝒇′′′(𝒄)

𝟑!
(𝒙 − 𝒄)𝟑 + ⋯ +

𝒇𝒏(𝒄)

𝒏!
(𝒙 − 𝒄)𝒏 

                         = 𝟎 + (𝒙 − 𝟏) −
𝟏

𝟐
(𝒙 − 𝟏)𝟐 +

𝟏

𝟑
(𝒙 − 𝟏)𝟑 −

𝟏

𝟒
(𝒙 − 𝟏)𝟒 … +

(−𝟏)𝒏+𝟏

𝒏
(𝒙 − 𝟏)𝒏 

 

Note how the coefficients of the (𝒙 − 𝟏) terms turn out to be "nice.'' 

2. We can compute 𝒑𝟔(𝒙)  using our work above: 

        𝒑𝟔(𝒙) = (𝒙 − 𝟏) −
𝟏

𝟐
(𝒙 − 𝟏)𝟐 +

𝟏

𝟑
(𝒙 − 𝟏)𝟑 −

𝟏

𝟒
(𝒙 − 𝟏)𝟒 +

𝟏

𝟓
(𝒙 − 𝟏)𝟓 −

𝟏

𝟔
(𝒙 − 𝟏)𝟔 … … … … … . (𝟐) 

 

Since 𝒑𝟔(𝒙) approximates 𝐥𝐧 𝒙  well near = 𝟏 , we approximate 𝐥𝐧 𝟏. 𝟓 ≈  𝒑𝟔(𝟏. 𝟓)  : 

 

𝒑𝟔(𝟏. 𝟓) = (𝟏. 𝟓 − 𝟏) −
𝟏

𝟐
(𝟏. 𝟓 − 𝟏)𝟐 +

𝟏

𝟑
(𝟏. 𝟓 − 𝟏)𝟑 −

𝟏

𝟒
(𝟏. 𝟓 − 𝟏)𝟒 +

𝟏

𝟓
(𝟏. 𝟓 − 𝟏)𝟓 −

𝟏

𝟔
(𝟏. 𝟓 − 𝟏)𝟔. 

                     =  
𝟐𝟓𝟗

𝟔𝟒𝟎
           

                     ≈ 𝟎. 𝟒𝟎𝟒𝟔𝟖𝟖 

 
This is a good approximation as a calculator shows that 𝐥𝐧 𝟏, 𝟓 ≈ 𝟎, 𝟒𝟎𝟓𝟓 Figure 01 plots 𝒚 =
𝐥𝐧 𝒙 with = 𝒑𝟔(𝒙) . We can see that 𝐥𝐧 𝟏, 𝟓 ≈ 𝒑𝟔(𝟏. 𝟓) .  
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Figure 𝑬′             

 

 

3. We approximate 𝐥𝐧 𝟐 with 𝒑𝟔(𝟐) : 

 

𝒑𝟔(𝟐) = (𝟐 − 𝟏) −
𝟏

𝟐
(𝟐 − 𝟏)𝟐 +

𝟏

𝟑
(𝟐 − 𝟏)𝟑 −

𝟏

𝟒
(𝟐 − 𝟏)𝟒 +

𝟏

𝟓
(𝟐 − 𝟏)𝟓 −

𝟏

𝟔
(𝟐 − 𝟏)𝟔. 

                                  = 𝟏 −  
𝟏

𝟐
+ 

𝟏

𝟑
 −

𝟏

𝟒
+ 

𝟏

𝟓
− 

𝟏

𝟔
  

                         =  
𝟑𝟕

𝟔𝟎
 

                         ≈ 𝟎. 𝟔𝟏𝟔𝟔𝟔 
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This approximation is not terribly impressive: a hand held calculator shows that 
 𝐥𝐧 𝟐 ≈   𝟎. 𝟔𝟗𝟑𝟏𝟒𝟕       
 

Surprisingly enough, even the 𝟐𝟎𝒕𝒉 degree Taylor polynomial fails to approximate 𝐥𝐧 𝒙    for > 2 

, as shown in Figure 𝑭′. We'll soon discuss why this is. 

 

 
 

 
 
 
 
 

Figure 𝑭′                                                                                                                 
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       The first part of Taylor's Theorem states that , where is the order Taylor polynomial and is the 
remainder, or error, in the Taylor approximation. The second part gives bounds on how big that error can be. If 
the derivative is 
large, the error may be large; if is far from , the error may also be large. However, the term in the denominator 
tends to ensure 
that the error gets smaller as increases. 
The following example computes error estimates for the approximations of and made in Example 8.7.2. The first 
part of Taylor's Theorem states that , where is the order Taylor polynomial and is the 
remainder, or error, in the Taylor approximation. The second part gives bounds on how big that error can be. If 
the derivative is 
 
 
 
 
 
 

 
 

The first part of Taylor's Theorem states that 𝒇(𝒙) = 𝒑𝒏(𝒙) +𝑹𝒏(𝒙) , where 𝒑𝒏(𝒙) is the 𝒏𝒕𝒉 
order Taylor polynomial and 𝑹𝒏(𝒙) is the remainder, or error, in the Taylor approximation. 

The second part gives bounds on how big that error can be. If the (𝒏 + 𝟏)𝒕𝒉 derivative is large, 
the error may be large; if 𝒙 is far from 𝒄 , the error may also be large. However, the (𝒏 + 𝟏)! 
term in the denominator tends to ensure that the error gets smaller as 𝒏 increases.  
 
The following example computes error estimates for the approximations of and made in 
Example 31  
 
Example 32: Finding error bounds of a taylor polynomial 

 

Use Theorem 23 to find error bounds when approximating 𝐥𝐧 𝟏, 𝟓 and 𝐥𝐧 𝟐  with 𝒑𝟔(𝒙) , the 
Taylor polynomial of degree 6 of 𝒇(𝒙) =  𝐥𝐧 𝒙 at 𝒙 = 𝟏 , as calculated in Example 31 

 

Solution  

1. We start with the approximation of 𝐥𝐧 𝟏, 𝟓 with 𝒑𝟔(𝟏, 𝟓) . The theorem references an open 
interval 𝑰 that contains both 𝒙 and  . The smaller the interval we use the better; it will give us a 
more accurate (and smaller!) approximation of the error. We let = (𝟎. 𝟗 , 𝟏. 𝟔) , as this interval 
contains both 𝒄 = 𝟏 and 𝒙 = 𝟏, 𝟓 . 
 

The theorem references |𝒇(𝒏+𝟏)(𝒛)| . In our situation, this is asking "How big can the 𝟕𝒕𝒉 

derivative of  𝒚 = 𝐥𝐧 𝒙  be on the interval (𝟎. 𝟗, 𝟏. 𝟔) ?'' The seventh derivative is =
−𝟔!

𝒙𝟕  . The 

largest value it attains on 𝐈 is about 1506. Thus we can bound the error as: 
 

            |𝑹𝟔(𝟏. 𝟓)| ≤
𝒎𝒂𝒙|𝒇(𝟕)(𝒛)|

𝟕!
 ∙ |(𝟏. 𝟓 − 𝟏)(𝟕)| 

 ≤
𝟏𝟓𝟎𝟔

𝟓𝟎𝟒𝟎 
 ∙

𝟏

𝟐𝟕 

≈ 𝟎. 𝟎𝟎𝟐𝟑. 

We computed 𝒑𝟔(𝟏. 𝟓) = 𝟎. 𝟒𝟎𝟒𝟔𝟖𝟖  ; using a calculator, we find 𝐥𝐧 𝟏. 𝟓 ≈ 𝟎. 𝟒𝟓𝟒𝟔𝟓 , so the 
actual error is about 𝟎. 𝟎𝟎𝟎𝟕𝟕𝟖 , which is less than our bound of 𝟎. 𝟎𝟎𝟐𝟑 . This affirms Taylor's 
Theorem; the theorem states that our approximation would be within about 2 thousandths of 
the actual value, whereas the approximation was actually closer. 
 
 

Theorem 23: Taylor theorem  
 
1. Let 𝒇 be a function whose 𝒏 + 𝟏𝒕𝒉 derivative exists on an interval 𝑰 and let 𝒄 be in 𝑰 Then, 
for each 𝒙 in 𝑰 , there exists 𝒛𝒙 between 𝒙 and 𝒄 such  that 

 

𝒑𝒏(𝒙) = 𝒇(𝒄) + 𝒇′(𝒄)(𝒙 − 𝒄) +
𝒇′′(𝒄)

𝟐!
(𝒙 − 𝒄)𝟐 +

𝒇′′′(𝒄)

𝟑!
(𝒙 − 𝒄)𝟑 + ⋯ +

𝒇𝒏(𝒄)

𝒏!
(𝒙 − 𝒄)𝒏 + 𝑹𝒏(𝒙) 

Where   𝑹𝒏(𝒙) =  
𝒇(𝒏+𝟏)(𝒛𝒙)

(𝒏+𝟏)!
 ∙ (𝒙 − 𝒄)(𝒏+𝟏) 

 

2.  |𝑹𝒏(𝒙)| ≤  
𝒎𝒂𝒙|𝒇(𝒏+𝟏)(𝒛𝒙)|

(𝒏+𝟏)!
 ∙ |(𝒙 − 𝒄)(𝒏+𝟏)| 

 

 

 

 
The first part of Taylor's Theorem states that , where is the order Taylor polynomial and is the 
remainder, or error, in the Taylor approximation. The second part gives bounds on how big that error can be. If 
the derivative is 
large, the error may be large; if is far from , the error may also be large. However, the term in the denominator 
tends to ensure 
that the error gets smaller as increases. 
The following example computes error estimates for the approximations of and made in Example 8.7.2. 
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2. We again find an interval 𝑰 that contains both = 𝟏 𝒂𝒏𝒅 𝒙 = 𝟐 ; we choose 𝑰 = (𝟎. 𝟗, 𝟐. 𝟏)   . 
The maximum value of the seventh derivative of 𝒇 on this interval is again about 1506 (as the 
largest values come near = 𝟎. 𝟗 ). Thus 

 

  |𝑹𝟔(𝟐)| ≤
𝒎𝒂𝒙|𝒇(𝟕)(𝒛)|

𝟕!
 ∙ |(𝟐 − 𝟏)(𝟕)|      

 ≤
𝟏𝟓𝟎𝟔

𝟓𝟎𝟒𝟎 
 ∙ 𝟏𝟕             

    ≈ 𝟎. 𝟑𝟎                      

 
This bound is not as nearly as good as before. Using the degree 6 Taylor polynomial at 𝒙 = 𝟏 
will bring us within 0,3 of the correct answer. As 𝒑𝟔(𝟐) ≈ 𝟎. 𝟔𝟏𝟔𝟔𝟕 , our error estimate 
guarantees that the actual value of  𝐥𝐧 𝟐 is somewhere between 𝟎. 𝟑𝟏𝟔𝟔𝟕 and 𝟎. 𝟗𝟏𝟔𝟔𝟕. 
These bounds are not particularly useful. 
 
 In reality, our approximation was only off by about 0,07. However, we are approximating 
ostensibly because we do not know the real answer. In order to be assured that we have a good 
approximation, we would have to resort to using a polynomial of higher degree. 
 
Example 33: Finding sufficiently accurate taylor  polynomials 
 

Find  𝒏 such that the 𝒏𝒕𝒉Taylor polynomial of 𝒇(𝒙) = 𝐜𝐨𝐬 𝒙 𝒂𝒕  𝒙 = 𝟎 approximates  𝐜𝐨𝐬 𝟐 to 
within 𝟎. 𝟎𝟎𝟏 of the actual answer. What is 𝐩𝐧(𝟐)? 

 

Solution 
 
Following Taylor's theorem, we need bounds on the size of the derivatives of (𝒙) = 𝐜𝐨𝐬 𝒙   . In 
the case of this trigonometric function, this is easy. All derivatives of cosine are  
± 𝐬𝐢𝐧 𝒙  𝒐𝒓  ± 𝐜𝐨𝐬 𝒙  . In all cases, these functions are never greater than 1 in absolute value. 
We want the error to be less than 𝟎. 𝟎𝟎𝟏 . To find the appropriate 𝒏 , consider the following 
inequalities: 
 

𝒎𝒂𝒙|𝒇(𝒏+𝟏)(𝒛)|

(𝒏 + 𝟏)!
 ∙ |(𝟐 − 𝟎)(𝒏+𝟏)| ≤ 𝟎. 𝟎𝟏 

                                      
𝟏

(𝒏+𝟏)!
 ∙ 𝟐(𝒏+𝟏) ≤  𝟎. 𝟎𝟎𝟏 

We find an 𝒏 that satisfies this last inequality with trial-and-error. When 𝐧 = 𝟖 , we have 
𝟐𝟖+𝟏

(𝟖+𝟏)!
≈ 𝟎. 𝟎𝟎𝟏𝟒  ; when 𝒏 = 𝟗 , we have 

𝟐𝟗+𝟏

(𝟗+𝟏)!
≈ 𝟎. 𝟎𝟎𝟎𝟐𝟖𝟐 < 0.001. Thus we want to 

approximate 𝐜𝐨𝐬 𝟐  , with 𝒑𝟗(𝟐) . 
 
We now set out to compute𝒑𝟗(𝒙) . We again need a table of the derivatives of 𝒇(𝒙) = 𝐜𝐨𝐬 𝒙      
evaluated at 𝒙 = 𝟎 .  

 
𝒇(𝒙) = 𝐜𝐨𝐬 𝒙              ⇒   𝒇(𝟎) = 𝟏 

𝒇′(𝒙) = − 𝐬𝐢𝐧 𝒙           ⇒   𝒇′(𝟎) = 𝟎 

𝒇′′(𝒙) = − 𝐜𝐨𝐬 𝒙             ⇒  𝒇′′(𝟎) = −𝟏 



  

 

83 

𝒇′′′(𝒙) = 𝐬𝐢𝐧 𝒙                ⇒              𝒇′′′(𝟎) = 𝟎 

𝒇𝟒(𝒙) = 𝐜𝐨𝐬 𝒙                ⇒           𝒇𝟒(𝟎) = 𝟏 

𝒇𝟓(𝒙) = − 𝐬𝐢𝐧 𝒙             ⇒          𝒇𝟓(𝟎) = 𝟎 

𝒇𝟔(𝒙) = − 𝐜𝐨𝐬 𝒙              ⇒             𝒇𝟔(𝟎) = −𝟏 

𝒇𝟕(𝒙) = 𝐬𝐢𝐧 𝒙               ⇒        𝒇𝟕(𝟎) = 𝟎 

𝒇𝟖(𝒙) = 𝐜𝐨𝐬 𝒙                ⇒         𝒇𝟖(𝟎) = 𝟏 

𝒇𝟗(𝒙) = − 𝐬𝐢𝐧 𝒙             ⇒         𝒇𝟗(𝟎) = 𝟎 

Notice how the derivatives, evaluated at 𝒙 = 𝟎 , follow a certain pattern. All the odd powers of 
𝒙 in the Taylor polynomial will disappear as their coefficient is 0. While our error bounds state 
that we need 𝒑𝟗(𝒙)  , our work shows that this will be the same as 𝒑𝟖(𝒙). 
 
Since we are forming our polynomial at 𝒙 = 𝟎, we are creating a Maclaurin polynomial, and: 
 

𝒑𝟖(𝒙) =    𝒇(𝟎) + 𝒇′(𝟎)𝒙 +
𝒇′′(𝟎)

𝟐!
𝒙𝟐 +

𝒇′′′(𝟎)

𝟑!
𝒙𝟑 + ⋯ +

𝒇𝟖(𝟎)

𝟖!
𝒙𝒏 

 

 = 𝟏 −
𝟏

𝟐!
𝒙𝟐 +

𝟏

𝟒!
𝒙𝟒 −

𝟏

𝟔!
𝒙𝟔 +

𝟏

𝟖!
𝒙𝟖                            

We finally approximate 𝐜𝐨𝐬 𝟐 : 

  𝐜𝐨𝐬 𝟐 ≈ 𝒑𝟖(𝟐) =  
𝟏𝟑𝟏

𝟑𝟏𝟓
≈ −𝟎. 𝟒𝟏𝟓𝟖𝟕 

Our error bound guarantee that this approximation is within 𝟎. 𝟎𝟎𝟏 of the correct answer. 
Technology shows us that our approximation is actually within about 𝟎. 𝟎𝟎𝟎𝟑 of the correct 
answer. 
Figure 𝑮′shows a graph of 𝒚 = 𝒑𝟖(𝒙)  𝒂𝒏𝒅  𝒚 =  𝐜𝐨𝐬 𝒙. Note how well the two functions agree 
on about (−𝝅 , +𝝅). 
 

 
 

Figure 𝑮′ 
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Example 34: Finding and using Taylor polynomials 

 

1. Find the degree 4 Taylor polynomial, 𝒑𝟒(𝒙), for   𝒇(𝒙) = √𝒙  , at 𝒙 = 𝟒 

2. Use  𝒑𝟒(𝒙)to approximate √𝟑  . 

3. Find bounds on the error when approximating √𝟑  with 𝒑𝟒(𝟑) . 
 

𝒇(𝒙) = √𝒙                                ⇒                             𝒇(𝟒) = 𝟐 

  𝒇′(𝒙) =
𝟏

𝟐√𝒙
                             ⇒                           𝒇′(𝟒) =

𝟏

𝟒 
    

𝒇′′(𝒙) =
−𝟏

𝟒𝒙𝟑 𝟐⁄
                          ⇒                           𝒇′′(𝟒) =

−𝟏

𝟑𝟐
 

𝒇′′′(𝒙) =
𝟑

𝟖𝒙𝟓 𝟐⁄                            ⇒                          𝒇′′′(𝟒) =
𝟑

𝟐𝟓𝟔
 

𝒇𝟒(𝒙) =
−𝟏𝟓

𝟏𝟔𝒙𝟕 𝟐⁄                             ⇒                          𝒇𝟒(𝟒) =
−𝟏𝟓

𝟐𝟎𝟒𝟖
 

 
1. We begin by evaluating the derivatives  of 𝒇  at 𝒙 = 𝟒 . These values allow us to form the  
Taylor polynomial 𝒑𝟒(𝒙): 
 

𝒑𝟒(𝒙) = 𝟐 +
𝟏

𝟒
(𝒙 − 𝟒) +

− 𝟏 𝟑𝟐⁄

𝟐!
(𝒙 − 𝟒)𝟐 +

𝟑 𝟐𝟓𝟔⁄

𝟑!
(𝒙 − 𝟒)𝟑 +

− 𝟏𝟓 𝟐𝟎𝟒𝟖⁄

𝟒!
(𝒙 − 𝟒)𝟒. 

2. As 𝒑𝟒(𝒙) ≈ √𝒙   , near  𝒙 = 𝟒 , we approximate √𝟑  with 𝒑𝟒(𝟑) = 𝟏. 𝟕𝟑𝟐𝟏𝟐 . 
3. To find a bound on the error, we need an open interval that contains 𝒙 = 𝟑 and 𝒙 = 𝟒. We 

set = (𝟐. 𝟗 , 𝟒. 𝟏) . The largest value the fifth derivative of 𝒇(𝒙) = √𝒙 takes on this interval is 

near 𝒙 = 𝟐. 𝟗  , at about . 𝟎𝟐𝟕𝟑 . Thus 

|𝑹𝟒(𝟑)| ≤
𝟎.𝟎𝟐𝟕𝟑

𝟓!
|(𝟑 − 𝟒)𝟓| ≈ 𝟎. 𝟎𝟎𝟎𝟐𝟑 . 

This shows our approximation is accurate to at least the first 2 places after the decimal. (It 

turns out that our approximation is actually accurate to 4 places after the decimal.) A graph of  

 𝒇(𝒙) = √𝒙  𝒂𝒏𝒅   𝒑𝟒(𝒙) is given in   Figure 𝑯′ . Note how the two functions are nearly 

indistinguishable on (𝟐, 𝟕) .  
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Figure 𝑯′ 
                                                                                                                                                                            

                           

Approximating an unknown function  35:Example  

A function 𝒚 = 𝒇(𝒙) is unknown save for the following two facts. 
1. 𝒚(𝟎) = 𝒇(𝟎) = 𝟏 , and 

2. 𝒚′ =  𝒚𝟐 

(This second fact says that amazingly, the derivative of the function is actually the function 
squared!) 
 
Find the degree 3 Maclaurin polynomial  𝒑𝟑(𝒙) of = 𝒇(𝒙) . 

 Solution 

One might initially think that not enough information is given to find  𝒑𝟑(𝒙) . However, note 

how the second fact above actually lets us know what 𝒚′(𝟎) is: 

𝒚′ =  𝒚𝟐   ⇒   𝒚′(𝟎) =  𝒚𝟐(𝟎) 

Since  𝒚(𝟎) = 𝟏  , we conclude that𝒚′(𝟎) = 𝟏 . 

Now we find information about 𝒚′′ . Starting with  𝒚′ = 𝒚𝟐 , take derivatives of both sides, with 

respect to 𝒙 . That means we must use implicit differentiation. 

𝒚′  =  𝒚𝟐 

𝒅

𝒅𝒙
( 𝒚′) =

𝒅

𝒅𝒙
( 𝒚𝟐) 

𝒚′′      = 𝟐𝒚 ∙ 𝒚′ 

 Now evaluate both sides at    𝒙 = 𝟎:                                                      
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                  𝒚′′(𝟎) = 𝟐𝒚(𝟎) ∙ 𝒚′(𝟎) 

   𝒚′′(𝟎) = 𝟐 

We repeat this once more to find 𝒚′′′(𝟎) . We again use implicit differentiation; this time 

the Product Rule is also required. 

𝒅

𝒅𝒙
(𝒚′′) =

𝒅

𝒅𝒙
(𝟐𝒚𝒚′) 

                          𝒚′′′ = 𝟐𝒚′ ∙ 𝒚′ + 𝟐𝒚 ∙ 𝒚′′ 

Now evaluate both sides at    𝒙 = 𝟎: 

 
                            𝒚′′′(𝟎) = 𝟐𝒚′(𝟎)𝟐 + 𝟐𝒚(𝟎) ∙ 𝒚′′(𝟎) 

𝒚′′′(𝟎) = 𝟐 + 𝟒 = 𝟔 

In summary, we have: 
 

𝒚(𝟎) = 𝟏     𝒚′(𝟎) = 𝟏    𝒚′′(𝟎) = 𝟐    𝒚′′′(𝟎) = 𝟔 
 

We can now form 𝒑𝟑(𝒙) : 

𝒑𝟑(𝒙) = 𝟏 + 𝒙 +
𝟐

𝟐!
𝒙𝟐 +

𝟔

𝟑!
𝒙𝟑 

    = 𝟏 + 𝒙 + 𝒙𝟐 + 𝒙𝟑 
 

 

 

 

Figure 𝑰′        
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It turns out that the differential equation we started with, 𝒚′ = 𝒚𝟐 , where 𝒚(𝟎) = 𝟏 , can be 

solved without too much difficulty: 𝒚 =  
𝟏

𝟏−𝒙
  . Figure 𝑰′shows this function plotted with 𝒑𝟑(𝒙).  

 Note how similar they are near = 𝟎. . 

eries Taylor S-2 

In Section 6, we showed how certain functions can be represented by a power series function. 
In 7, we showed how we can approximate functions with polynomials, given that enough 
derivative information is available. In this section we combine these concepts: if a function 
𝒇(𝒙) is infinitely differentiable, we show how to represent it with a power series function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The difference between a Taylor polynomial and a Taylor series is the former is a polynomial, 

containing only a finite number of terms, whereas the latter is a series, a summation of an 

infinite set of terms. When creating the Taylor polynomial of degree 𝒏 for a function 𝒇(𝒙) at 

𝒙 = 𝒄 ,we needed to evaluate 𝒇,and the first 𝒏 derivatives of 𝒇 ,at 𝒙 = 𝒄 .When creating the 

Taylor series of 𝒇 , it helps to find a pattern that describes the 𝒏𝒕𝒉 derivative of 𝒇 at 𝒙 = 𝒄 .We 

demonstrate this in the next two examples.  

 

𝒇(𝒙) = 𝐜𝐨𝐬 𝒙 The maclaurin series of  :63Example  

 Find the Maclaurin series of (𝒙) = 𝐜𝐨𝐬 𝒙  . 

Solution 
 
In Example 33 we found the degree Maclaurin polynomial of 𝐜𝐨𝐬 𝒙  . 

 

𝒇(𝒙) = 𝐜𝐨𝐬 𝒙          ⇒    𝒇(𝟎) = 𝟏 

𝒇′(𝒙) = − 𝐬𝐢𝐧 𝒙      ⇒  𝒇′(𝟎) = 𝟎 

𝒇′′(𝒙) = − 𝐜𝐨𝐬 𝒙            ⇒    𝒇′′(𝟎) = −𝟏 

𝒇′′′(𝒙) = 𝐬𝐢𝐧 𝒙              ⇒     𝒇′′′(𝟎) = 𝟎 

𝒇𝟒(𝒙) = 𝐜𝐨𝐬 𝒙               ⇒      𝒇𝟒(𝟎) = 𝟏 

Definition 14: Taylor and maclaurin series  
 

Let 𝒇(𝒙)  have derivatives of all orders at = 𝒄 . 
 
1. The Taylor Series of (𝒙) , centered at 𝒄 is 
 

                                                                      ∑
𝒇(𝒏)(𝒄)

𝒏!

∞
𝒏=𝟎 (𝒙 − 𝒄)𝒏

 

 
2. Setting 𝒄 = 𝟎 gives the Maclaurin Series of 𝒇(𝒙)  : 
 

  ∑
𝒇(𝒏)(𝟎)

𝒏!

∞

𝒏=𝟎

𝒙𝒏 
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𝒇𝟓(𝒙) = − 𝐬𝐢𝐧 𝒙           ⇒       𝒇𝟓(𝟎) = 𝟎 

𝒇𝟔(𝒙) = − 𝐜𝐨𝐬 𝒙              ⇒       𝒇𝟔(𝟎) = −𝟏 

𝒇𝟕(𝒙) = 𝐬𝐢𝐧 𝒙             ⇒     𝒇𝟕(𝟎) = 𝟎 

𝒇𝟖(𝒙) = 𝐜𝐨𝐬 𝒙             ⇒    𝒇𝟖(𝟎) = 𝟏 

𝒇𝟗(𝒙) = − 𝐬𝐢𝐧 𝒙          ⇒     𝒇𝟗(𝟎) = 𝟎 
 
 

Notice how 𝒇(𝒏)(𝟎) = 𝟎 when 𝒏 is odd, 𝒇(𝒏)(𝟎) = 𝟏 when 𝒏 is divisible by 4, and 

 𝒇(𝒏)(𝟎) = −𝟏 when 𝒏 is even but not divisible by 4. Thus the Maclaurin series of 𝐜𝐨𝐬 𝒙 is  

 

𝟏 −
𝟏

𝟐!
𝒙𝟐 +

𝟏

𝟒!
𝒙𝟒 −

𝟏

𝟔!
𝒙𝟔 +

𝟏

𝟖!
𝒙𝟖 − ⋯ 

 

We can go further and write this as a summation. Since we only need the terms where the 

power of is even, we write the power series in terms of 𝒙𝟐𝒏: 

 

∑(−𝟏)𝒏
𝒙𝟐𝒏

(𝟐𝒏)!

∞

𝒏=𝟎

 

 𝑓(𝑥) = ln 𝑥  at  𝑥 = 1 s of The taylor serie 37:Example  

Find the Taylor series of 𝒇(𝒙) = 𝐥𝐧 𝒙  centered at 𝒙 = 𝟏 . 
 
Solution 
 

Figure 1 shows the 𝒏𝒕𝒉 derivative of  𝐥𝐧 𝒙  evaluated at 𝒙 = 𝟏 for 𝒏 = 𝟎, … … , 𝟓,along with an 

expression for the 𝒏𝒕𝒉 term: 
 

𝒇(𝒏)(𝟏) = (−𝟏)𝒏+𝟏(𝒏 + 𝟏)! , 𝒏 ≥ 𝟏 
 
Remember that this is what distinguishes Taylor series from Taylor polynomials; we are very 

interested in finding a pattern for the 𝒏𝒕𝒉 term, not just finding a finite set of coefficients for a 
polynomial. 

 
𝒇(𝒙) = 𝐥𝐧 𝒙               ⇒          𝒇(𝟏) = 𝟎 

𝒇′(𝒙) =
𝟏

𝒙
                     ⇒           𝒇′(𝟏) = 𝟏 

𝒇′′(𝒙) =
−𝟏

𝒙𝟐                  ⇒           𝒇′′(𝟏) = −𝟏 

𝒇′′′(𝒙) =
𝟐

𝒙𝟑             ⇒                𝒇′′′(𝟏) = 𝟐       

𝒇𝟒(𝒙) =
−𝟔

𝒙𝟒              ⇒                   𝒇𝟒(𝟏) = −𝟔 

𝒇𝟓(𝒙) =
𝟐𝟒

𝒙𝟓            ⇒                    𝒇𝟓(𝟏) = 𝟐 
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𝒇𝒏(𝒙) =
(−𝟏)𝒏+𝟏(𝒏−𝟏)!

𝒙𝒏     ⇒  𝒇𝒏(𝒙) = (−𝟏)𝒏+𝟏(𝒏 − 𝟏)! … … … 𝑭𝒊𝒈𝒖𝒓𝒆 (𝟏) 

 Since 𝒇(𝟏) = 𝐥𝐧 𝟏 = 𝟎 ,we skip the first term and start the summation with 𝒏 = 𝟏 ,giving the 

Taylor series for  𝐥𝐧 𝒙   ,centered at 𝒙 = 𝟏 ,as 

∑(−𝟏)𝒏+𝟏(𝒏 − 𝟏)! ∙
𝟏

𝒏!

∞

𝒏=𝟏

∙ (𝒙 − 𝟏)𝒏 = ∑(−𝟏)𝒏+𝟏
(𝒙 − 𝟏)𝒏

𝒏

∞

𝒏=𝟏

 

It is important to note that Definition 14 defines a Taylor series given a function (𝒙) ; 
however, we cannot yet state that 𝒇(𝒙) is equal to its Taylor series. We will find that "most of 
the time'' they are equal, but we need to consider the conditions that allow us to conclude this. 
 
 

Theorem 23 states that the error between a function  𝒇(𝒙)and its  𝒏𝒕𝒉 --degree Taylor 
polynomial 𝒑𝒏(𝒙) is 𝑹𝒏(𝒙) ,where 
 

                                         |𝑹𝒏(𝒙)| ≤
𝒎𝒂𝒙|𝒇(𝒏+𝟏)(𝒛)|

(𝒏+𝟏)!
|(𝒙 − 𝒄)(𝒏+𝟏)| 

 
If 𝑹𝒏(𝒙) goes to 0 for each 𝒙  in an interval 𝑰 as 𝒏 approaches infinity, we conclude that the 
function is equal to its Taylor series expansion. 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

Establishing equality of a function and its taylor series  :38Example  

Show that 𝒇(𝒙) = 𝐜𝐨𝐬 𝒙     is equal to its Maclaurin series, as found in Example 36, for all  . 

 

Solution 

 

Given a value 𝒙 ,the magnitude of the error term 𝑹𝒏(𝒙) is bounded by 

 

|𝑹𝒏(𝒙)| ≤
𝒎𝒂𝒙|𝒇(𝒏+𝟏)(𝒛)|

(𝒏 + 𝟏)!
|𝒙(𝒏+𝟏)| 

 

Since all derivatives of  𝐜𝐨𝐬 𝒙  are  ± 𝐬𝐢𝐧 𝒙  or ± 𝐜𝐨𝐬 𝒙  ,whose magnitudes are bounded by 1 ,we 

can state 

 

|𝑹𝒏(𝒙)| ≤
𝟏

(𝒏 + 𝟏)!
|𝒙(𝒏+𝟏)| 

Theorem 24: Function and taylor series equality  
 
Let 𝒇(𝒙)   have derivatives of all orders at 𝒙 = 𝒄 ,let 𝑹𝒏(𝒙) be as stated in Theorem 23, 
and let 𝑰 be an interval on which the Taylor series of 𝒇(𝒙)    converges. 
 
If 𝐥𝐢𝐦

𝒏→∞
𝑹𝒏(𝒙) = 𝟎    for all 𝒙 in 𝑰 ,then 

 

                                     𝒇(𝒙) = ∑
𝒇(𝒏)(𝒄)

𝒏!
∞
𝒏=𝟎 ∙ (𝒙 − 𝒄)𝒏  on  𝑰 
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which implies                                                                                                                                 

 
− |𝒙(𝒏+𝟏)| 

(𝒏+𝟏)!
≤ |𝑹𝒏(𝒙)| ≤

|𝒙(𝒏+𝟏)|

(𝒏+𝟏)!
 ……………………. (*)     

For any  , 𝐥𝐢𝐦
𝒏→∞

𝒙𝒏+𝟏

(𝒏+𝟏)!
= 𝟎 . Applying the Squeeze Theorem to Equation (*) , we conclude that 

 𝐥𝐢𝐦
𝒏→∞

𝑹𝒏(𝒙) = 𝟎 for all 𝒙 ,and hence 

 

𝐜𝐨𝐬 𝒙 = ∑ (−𝟏)𝒏 𝒙𝟐𝒏

(𝟐𝒏)!
∞
𝒏=𝟎         for all 𝒙.    

 

 The binomial series                                                                                                     39:Example  

Find the Maclaurin series of 𝒇(𝒙) = (𝟏 + 𝒙)𝒌   , 𝒌 ≠ 𝟎  . 
 
Solution 
 
When 𝒌is a positive integer, the Maclaurin series is finite. For instance, when 𝒌 = 𝟒 ,we have 
 

𝒇(𝒙) = (𝟏 + 𝒙)𝟒  = 𝟏 + 𝟒𝒙 + 𝟔𝒙𝟐 + 𝟒𝒙𝟑 + 𝒙𝟒 
 
The coefficients of 𝒙 when 𝒌 is a positive integer are known as the binomial coefficients, 
giving the series we are developing its name. When  

𝒌 = 𝟏 𝟐⁄     𝒘𝒆 𝒉𝒂𝒗𝒆 𝒇(𝒙) = √𝟏 + 𝒙 .Knowing a series representation of this function would 

give a useful way of approximating √𝟏, 𝟑  ,for instance.  
 

To develop the Maclaurin series for    𝒇(𝒙) = (𝟏 + 𝒙)𝒌 for , 𝒌 ≠ 𝟎   any value of 𝒇 ,we consider 
the derivatives of evaluated at 𝒙 = 𝟎  : 

 

 𝒇(𝒙) = (𝟏 + 𝒙)𝒌                                                         ⇒     𝒇(𝟎) = 𝟏 

𝒇′(𝒙) = 𝒌(𝟏 + 𝒙)𝒌−𝟏                                                      ⇒    𝒇′(𝟎) = 𝒌 

𝒇′′(𝒙) = 𝒌(𝒌 − 𝟏) ∙ (𝟏 + 𝒙)𝒌−𝟐                                 ⇒   𝒇′′𝟎 = 𝒌(𝒌 − 𝟏) 

𝒇′′′(𝒙) = 𝒌(𝒌 − 𝟏) ∙ (𝒌 − 𝟐) ∙ (𝟏 + 𝒙)𝒌−𝟑                ⇒  𝒇′′′(𝟎) =  𝒌(𝒌 − 𝟏) ∙ (𝒌 − 𝟐) 

                          .                                                                                   . 

                          .                                                                                   . 

                          .                                                                                   . 

𝒇𝒏(𝒙) = 𝒌(𝒌 − 𝟏) ∙ ∙ ∙ (𝒌 − (𝒌 − 𝟐)) ∙ (𝟏 + 𝒙)𝒌−𝒏     ⇒  𝒇𝒏(𝒙) = 𝒌(𝒌 − 𝟏) ∙ ∙ ∙ (𝒌 − (𝒌 − 𝟏)) 

Thus the Maclaurin series for 𝒇(𝒙) = (𝟏 + 𝒙)𝒌 is 
 

𝟏 + 𝒌 +
𝒌(𝒌 − 𝟏)

𝟐!
+

𝒌(𝒌 − 𝟏) ∙ (𝒌 − 𝟐)

𝟑!
+ ⋯ +

𝒌(𝒌 − 𝟏) ∙ ∙ ∙ (𝒌 − (𝒏 − 𝟏))

𝒏!
+ ⋯ 

 

It is important to determine the interval of convergence of this series. With 

 

𝒂𝒏 =
𝒌(𝒌 − 𝟏) ∙ ∙ ∙ (𝒌 − (𝒏 − 𝟏))

𝒏!
𝒙𝒏 
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we apply the Ratio Test: 

 

𝐥𝐢𝐦
𝒏→∞

|𝒂𝒏+𝟏|

|𝒂𝒏|
=  𝐥𝐢𝐦

𝒏→∞
|
𝒌(𝒌 − 𝟏) ∙ ∙ ∙ (𝒌 − 𝒏)

(𝒏 + 𝟏)!
𝒙𝒏+𝟏| |

𝒌(𝒌 − 𝟏) ∙ ∙ ∙ (𝒌 − (𝒏 − 𝟏))

𝒏!
𝒙𝒏|⁄  

 = 𝐥𝐢𝐦
𝒏→∞

|
𝒌−𝒏

𝒏
𝒙|                                                                                                            

 = |𝒙|                                                                                                                    

 

The series converges absolutely when the limit of the Ratio Test is less than 1; therefore, we 
have absolute convergence when |𝒙| < 1 .  
 
While outside the scope of this text, the interval of convergence depends on the value of 𝒌. 
When 𝒌 > 0 ,the interval of convergence is [−𝟏, +𝟏] .When −𝟏 < 𝑘 < 0 ,the interval of  
convergence is [−𝟏 , +𝟏)  .If 𝒌 ≤ −𝟏  ,the interval of convergence is (−𝟏, +𝟏) . 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key Idea 04: Important taylor series expasions  
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Example 40: Combining taylor series  

Write out the first 3 terms of the Taylor Series for 𝒇(𝒙) = 𝒆𝒙  𝐜𝐨𝐬 𝒙 using Key Idea 04 and 

Theorem 25.  

 

Solution 

Key Idea 04 informs us that  

𝒆𝒙 = 𝟏 + 𝒙 +
𝒙𝟐

𝟐!
+

𝒙𝟑

𝟑!
+ ⋯    and 𝐜𝐨𝐬 𝒙 = 𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ 

 

Applying Theorem 25, we find that 

 

𝒆𝒙 𝐜𝐨𝐬 𝒙 = (𝟏 + 𝒙 +
𝒙𝟐

𝟐!
+

𝒙𝟑

𝟑!
+ ⋯ ) (𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ ) 

 

Distribute the right hand expression across the left :  

 

= 𝟏 (𝟏 −
𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ ) + 𝒙 (𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ ) +

𝒙𝟐

𝟐!
(𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ ) +

𝒙𝟑

𝟑!
(𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ ) +

𝒙𝟒

𝟒!
(𝟏 −

𝒙𝟐

𝟐!
+

𝒙𝟒

𝟒!
+ ⋯ ) + ⋯ 

Distribute again and collect like terms 

 

                    = 𝟏 + 𝒙 −
𝒙𝟑

𝟑
−

𝒙𝟒

𝟔
−

𝒙𝟓

𝟑𝟎
+

𝒙𝟕

𝟔𝟑𝟎
+ ⋯      

 

While this process is a bit tedious, it is much faster than evaluating all the necessary 

derivatives of 𝒆𝒙 𝐜𝐨𝐬 𝒙 and computing the Taylor series directly. 

 

Because the series for 𝒆𝒙 and 𝐜𝐨𝐬 𝒙 both converge on   (-∞, +∞),so does the series expansion 

for 𝒆𝒙 𝐜𝐨𝐬 𝒙 . 

 

Creating new taylor series   41: Example 

Use Theorem 25 to create series for 𝒚 = 𝐬𝐢𝐧(𝒙𝟐) 𝑎𝑛𝑑 𝒚 = 𝐥𝐧(√𝒙). 

Solution 

 

Given that  

 

𝐒𝐢𝐧 𝒙 = ∑(−𝟏)𝒏
𝒙𝟐𝒏+𝟏

(𝟐𝒏 + 𝟏)!

∞

𝒏=𝟎

= 𝒙 −
𝒙𝟑

𝟑!
+

𝒙𝟓

𝟓!
−

𝒙𝟕

𝟕!
+ ⋯ 

Theorem 25: Algebra of power series  
 
 𝒍𝒆𝒕 𝒇(𝒙) = ∑ 𝒂𝒏

∞
𝒏=𝟎 𝒙𝒏  𝑎𝑛𝑑 𝒈(𝒙) = ∑ 𝒃𝒏

∞
𝒏=𝟎 𝒙𝒏 converge absolutely for |𝒙| <

𝑅  𝑎𝑛𝑑 𝑙𝑒𝑡 𝒉(𝒙) 𝑏𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 
 
1. 𝒇(𝒙) ±  𝒈(𝒙) =  ∑ (𝒂𝒏 ± 𝒃𝒏)∞

𝒏=𝟎 𝒙𝒏 \quad for  , |𝒙| < 𝑅. 
 
2. 𝒇(𝒙) ∙  𝒈(𝒙) =(∑ 𝒂𝒏

∞
𝒏=𝟎 𝒙𝒏) ∙ (∑ 𝒃𝒏

∞
𝒏=𝟎 𝒙𝒏) =  ∑ (𝒂𝟎𝒃𝒏 + 𝒂𝟏𝒃𝒏−𝟏 + ⋯ + 𝒂𝒏𝒃𝟎)∞

𝒏=𝟎 𝒙𝒏  for  |𝒙| < 𝑅.  

3. 𝒇(𝒉(𝒙)) =  ∑ 𝒂𝒏
∞
𝒏=𝟎 (𝒉(𝒙))𝒏 for |𝒉(𝒙)| < 𝑹. 

 

 

 

 

 

 

 

 

 

Combining taylor series   40: Example 
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we simply substitute 𝒙𝟐 for 𝒙 in the series, giving 

 

                                          𝐒𝐢𝐧(𝒙𝟐) = ∑ (−𝟏)𝒏 (𝒙𝟐)𝟐𝒏+𝟏

(𝟐𝒏+𝟏)!
∞
𝒏=𝟎 = 𝒙𝟐 −

𝒙𝟔

𝟑!
+

𝒙𝟏𝟎

𝟓!
−

𝒙𝟏𝟒

𝟕!
+ ⋯ 

 
Since the Taylor series for 𝐬𝐢𝐧 𝒙 has an infinite radius of convergence, so does the Taylor series 

for 𝐒𝐢𝐧(𝒙𝟐). 

The Taylor expansion for 𝐥𝐧 𝒙 given in Key Idea 04 is centered at 𝒙 = 𝟏 ,so we will center the 

series for 𝐥𝐧 √𝒙 at 𝒙 = 𝟏 as well. 
With 

𝐥𝐧 𝒙 = ∑(−𝟏)𝒏+𝟏
(𝒙 − 𝟏)𝒏

𝒏

∞

𝒏=𝟏

= (𝒙 − 𝟏) −
(𝒙 − 𝟏)𝟐

𝟐
+

(𝒙 − 𝟏)𝟑

𝟑
− ⋯ 

 

we substitute  √𝒙  for 𝒙 to obtain 

 

𝐥𝐧(√𝒙) = ∑(−𝟏)𝒏+𝟏
(√𝒙 − 𝟏)𝒏

𝒏

∞

𝒏=𝟏

= (√𝒙 − 𝟏) −
(√𝒙 − 𝟏)

𝟐

𝟐
+

(√𝒙 − 𝟏)
𝟑

𝟑
− ⋯ 

 
 

While this is not strictly a power series, it is a series that allows us to study the function 𝐥𝐧(√𝒙)  

Since the interval of convergence of 𝐥𝐧 𝒙 is (𝟎, 𝟐] ,and the range of √𝒙 on (𝟎, 𝟒] is (𝟎, 𝟐] ,the 

interval of convergence of this series expansion of 𝐥𝐧(√𝒙) is (𝟎, 𝟒] . 
 

Using taylor series to evaluate definite integrals  42: Example 

Use the Taylor series of  𝒆−𝒙𝟐
 to evaluate ∫ 𝒆−𝒙𝟐

𝒅𝒙
𝟏

𝟎
.  

 
Solution 
 

We learned, when studying Numerical Integration, that 𝒆−𝒙𝟐
 does not have an antiderivative 

expressible in terms of elementary functions. This means any definite integral of this function 
must have its value approximated, and not computed exactly.  
 

We can quickly write out the Taylor series for 𝒆−𝒙𝟐
 using the Taylor series of 𝒆𝒙 : 

 

𝒆𝒙 =  ∑
𝒙𝒏

𝒏!

∞

𝒏=𝟎

= 𝟏 + 𝒙 +
𝒙𝟐

𝟐!
+

𝒙𝟑

𝟑!
+ ⋯ 

  

                                                 and so    

 

 𝒆−𝒙𝟐
=  ∑

(−𝒙𝟐)𝒏

𝒏!
∞
𝒏=𝟎                              

                      

 = ∑ (−𝟏)𝒏 𝒙𝟐𝒏

𝒏!
∞
𝒏=𝟎               
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         = 𝟏 − 𝒙𝟐 +
𝒙𝟒

𝟐!
−

𝒙𝟔

𝟑!
+ ⋯ 

We use Theorem 23 to integrate: 
 

∫ 𝒆−𝒙𝟐
𝒅𝒙 = 𝑪 + 𝒙 −

𝒙𝟑

𝟑

𝟏

𝟎

+
𝒙𝟓

𝟓 ∙ 𝟐!
−

𝒙𝟕

𝟕 ∙ 𝟑!
+ ⋯ + (−𝟏)𝒏

𝒙𝟐𝒏+𝟏

(𝟐𝒏 + 𝟏)𝒏!
+ ⋯ 

 

This is the antiderivative of 𝒆−𝒙𝟐
;while we can write it out as a series, we cannot write it out in 

terms of elementary functions. We can evaluate the definite integral ∫ 𝒆−𝒙𝟐
𝒅𝒙

𝟏

𝟎
 using this 

antiderivative; substituting 1 and 0 for 𝒙 and subtracting gives  

 

∫ 𝒆−𝒙𝟐
𝒅𝒙 = 𝟏 −

𝟏

𝟑

𝟏

𝟎

+
𝟏

𝟓 ∙ 𝟐!
−

𝟏

𝟕 ∙ 𝟑!
+

𝟏

𝟗 ∙ 𝟒!
+ ⋯ 

 
Summing the 5 terms shown above give the approximation of 𝟎. 𝟕𝟒𝟕𝟒𝟗 Since this is an 
alternating series, we can use the Alternating Series Approximation Theorem, (Theorem19), 
to determine how accurate this approximation is. The next term of the series is 
𝟏 (𝟏𝟏 ∙ 𝟓!) ≈ 𝟎. 𝟎𝟎𝟎𝟕𝟓𝟕𝟓𝟖⁄  .Thus we know our approximation is within 𝟎. 𝟎𝟎𝟎𝟕𝟓𝟕𝟓𝟖 of the 
actual value of the integral. This is arguably much less work than using Simpson's Rule to 
approximate the value of the integral. 
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Conclusion 

 

Sequences and series are powerful and versatile mathematical tools that play a central role in 

many scientific and technical fields. Their ability to model, analyze and solve complex 

problems makes them indispensable for theoretical research and practical applications. They  

play a crucial role in many scientific and technical disciplines. Here are a few notable 

applications in various fields: 

This dissertation explores not only the theoretical underpinnings of these concepts, but also 

recent developments and their implications in a variety of fields, providing a comprehensive 

and integrated overview of the importance of sequences and series in today's scientific and 

technological landscape. 

Here is a list of key references covering theoretical aspects, applications and recent 

developments in sequences and series. 
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