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Introduction

E quilibrium problems, variational inequalities, and optimization problems have emerged
as fundamental pillars of modern applied mathematics. These areas are not only deeply

rooted in theoretical advancements but also serve as essential tools for solving practical prob-
lems in diverse disciplines, including engineering, economics, machine learning, data science,
and imaging. By providing a rigorous mathematical framework for analyzing and modeling
complex systems, these problem classes enable researchers to address challenges related to
decision-making, resource allocation, signal processing, and economic equilibrium analysis.

Among these, equilibrium problems hold a significant place among various problem classes,
as they provide a unified and general framework capable of modeling a wide range of mathe-
matical problems. This includes both optimization problems, where the goal is to find the best
solution according to certain criteria, and variational inequalities, which involve finding a point
that satisfies specific constraints. The equilibrium problem (EP ) [3] is defined as follows:

Find v ∈ S such that B(v, t) ≥ 0, ∀t ∈ S,

where B is a bifunction : S × S → R, and S is a nonempty, closed, and convex subset of a real
Hilbert space H. This formulation, often referred to as the Ky Fan inequality [11], has gained
prominence due to its wide applicability in diverse fields, including game theory, optimization,
saddle point problem, fixed point problem and Nash equilibrium problem [3, 22, 29].

The study of equilibrium problems is motivated both by theoretical and computational con-
siderations. From a theoretical perspective, significant attention has been devoted to investi-
gating the existence and uniqueness of solutions under various conditions (see, e.g., [18]). On
the computational side, numerous iterative methods have been developed to efficiently solve
equilibrium problems, particularly in Hilbert spaces. Classical approaches include the aux-
iliary problem principle [26], gap function-based techniques [27], the proximal point method
( [12, 28]), subgradient extragradient methods [1, 34, 38, 45], inertial methods [14, 15], and other
approaches discussed in [30, 40].

Among these methods, extragradient techniques and their variants play a crucial role in
solving EP in Hilbert spaces, as highlighted by Hieu [17]. These methods have been widely
studied due to their simplicity, convergence properties, and practical efficiency. The extragra-
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dient method involves solving two optimization problems over a closed convex set at each iter-
ation while utilizing a monotonically decreasing step size sequence {%m}. The iterative scheme
is formulated as follows:

tm = arg min
t∈S

(
%mB(vm, t) + 1

2
‖t− vm‖2

)
,

vm+1 = arg min
t∈S

(
%mB(tm, t) + 1

2
‖t− vm‖2

)
,

and

%m+1 =

min

{
ζ(‖vm−tm‖2+‖vm+1−tm‖2)

2M
, %m

}
, if M > 0,

%m otherwise.

Here, M = B(vm, vm+1)−B(vm, tm)−B(tm, vm+1). Under certain conditions, the algorithm has
been shown to weakly converge to a solution of the equilibrium problem in Hilbert spaces.

Despite the flexibility of Hilbert spaces, many real-world problems involve complexities
such as non-linearities, non-smoothness, and high-dimensionality, which exceed their scope.
This has driven researchers to explore Banach spaces, which generalize Hilbert spaces by re-
placing the inner product with a norm. While Banach spaces offer greater flexibility, they in-
troduce new challenges in algorithm design and convergence analysis. To address these chal-
lenges, the Bregman distance has been introduced. This distance, based on convex functions,
adapts to the geometry of Banach spaces. Unlike Euclidean distance in Hilbert spaces, the Breg-
man distance is well-suited for solving equilibrium problems in Banach spaces [35–37].

Building on this, Eskandani et al. [10] further developed the extragradient algorithm by
replacing the Euclidean distance with the Bregman distance and monotonically decreasing step
size sequence {%m} for solving equilibrium problems in Banach spaces. The iterative scheme is
formulated as follows: 

tm = arg min
t∈S

(%mB(vm, t) +Dϕ(t, vm)) ,

vm+1 = arg min
t∈S

(%mB(tm, t) +Dϕ(t, vm)) ,

and

%m+1 =

min
{
ζ(Dϕ(vm,tm)+Dϕ(vm+1,tm))

M
, %m

}
, if M > 0,

%m otherwise,

where M = B(vm, vm+1)−B(vm, tm)−B(tm, vm+1).
Inspired by these studies, a natural question arises:

How can proximal algorithms be developed and applied to solve equilibrium problems in Hilbert and
Banach spaces, and how can they be effectively utilized to address variational inequalities problems?

2



In light of these questions, this thesis aims to address the following objectives:

1. develop proximal algorithms for solving equilibrium problems in Hilbert and Banach
spaces;

2. improve convergence speed and reduce computational costs by using adaptive step size
criteria;

3. incorporate inertial term with proximal algorithms for strong convergence in pseudomono-
tone equilibrium problems;

4. apply Bregman distance and non-monotonic step size to enhance the effectiveness of al-
gorithms in reflexive Banach spaces;

5. establish convergence results under suitable conditions and validate the performance of
the proposed algorithms through numerical experiments.

The thesis is structured into four chapters:

ä Chapter 1 provides the fundamental concepts and mathematical tools that serve as the
foundation of this thesis. The chapter is organized as follows: Section 1.1 introduces
essential definitions and key lemmas. Sections 1.2, 1.3, and 1.4 provide an overview of
optimization problems, equilibrium problems and variational inequalities, respectively,
along with a discussion of classical proximal algorithms. Finally, Section 1.5 discusses the
connection between optimization and equilibrium problems.

ä Chapter 2 introduces a proximal-based algorithm called an enhanced extragradient algo-
rithm for solving EP in Hilbert spaces. The chapter is organized as follows: Section 2.1
introduces the algorithm and the underlying assumptions. In Section 2.2, we analyze its
theoretical properties, including convergence analysis. Section 2.3 discusses the applica-
tion of the proposed method to variational inequalities problems. Finally, in Section 2.4,
we provide numerical experiments that demonstrate the algorithm’s efficiency compared
to classical methods.

ä Chapter 3 Proposes an algorithm that combines subgradient extragradient methods with
inertial terms for pseudomonotone EP in Hilbert spaces. The chapter is organized as fol-
lows: Section 3.1 introduces the proposed algorithm, describing its structure, including
the use of non-monotonic step sizes. In Section 3.2, we establish its strong convergence
under appropriate conditions for the equilibrium bifunction B and the control parame-
ters. Section 3.3 explores the application of the algorithm to variational inequalities prob-
lems. Finally, in Section 3.4, numerical experiments are presented to validate the proposed

3



LIST OF FIGURES 4

algorithm, comparing its performance with existing methods and demonstrating its com-
putational advantages.1

ä Chapter 4 introduces a modified Bregman extragradient algorithm for solving pseudomono-
tone equilibrium problems in a real reflexive Banach space. The chapter is organized as
follows: Section 4.1 discusses Bregman distance, Section 4.2 recall the known results. In
Section 4.3 introduces the proposed algorithm. Section 4.4 covers weak and strong conver-
gence analysis of the proposed algorithm. Finally, in Section 4.5, numerical experiments
are conducted to validate the performance of the proposed algorithm, comparing its ef-
ficiency across different Bregman distances and analyzing its computational advantages
compared to traditional methods.

1This part is published in Journal of Mathematical Modeling [54].
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CHAPTER 1

PRELIMINARIES

I n this chapter, we introduce the fundamental concepts and mathematical tools that form
the foundation of this thesis. This includes essential definitions, key lemmas, an overview

of optimization problems, equilibrium problems and variational inequalities. Additionally, we
analyze some classical proximal algorithms, such as the extragradient algorithm [17] and the
extragradient subgradient algorithm [8], which are designed to solve these problems.

1.1 Basic Definitions and Lemmas

In this section, we recall fundamental definitions and key lemmas that will be used in the fol-
lowing chapters. Let S be a nonempty, closed, and convex subset of a real Hilbert spaceH. The
inner product is denoted by 〈., .〉, and the Euclidean norm by ‖.‖. The weak convergence and
strong convergence of {vm} to v are represented by ⇀ and →, respectively. For every t ∈ H.
The definitions are well-established in the literature (see, e.g., [25, 46]).

Definition 1.1. A sequence {vm} in a normed space is called a Cauchy sequence if for every
ε > 0, there exists an integer N such that for all m,n ≥ N , we have

‖vn − vm‖ < ε. (1.1)

Definition 1.2 (Banach Space). A Banach space is a complete normed vector space, i.e., a vector
space E equipped with a norm ‖ · ‖ such that every Cauchy sequence converges to a limit in E.

Definition 1.3 (Hilbert Space). A Hilbert space is a complete inner product space, i.e., a vector
space H equipped with an inner product 〈·, ·〉 such that every Cauchy sequence converges to a
limit within the space.

Definition 1.4. Let S be a subset ofH

• The subset S is said to be convex if, for any two points v, t ∈ S, the line segment joining v
and t lies entirely within S. Mathematically, this is expressed as:

λv + (1− λ)t ∈ S, ∀v, t ∈ S, ∀λ ∈ [0, 1].

5



1.1. BASIC DEFINITIONS AND LEMMAS 6

• A subset of S at t ∈ S defined by

NS(t) := {t∗ ∈ H : < t∗, s− t >≤ 0, ∀s ∈ S} ,

is called the normal cone.

• The subdifferential of convex function h : S → R at t ∈ S is defined by

∂h(t) := {u ∈ H : h(s)− h(t) ≥< u, s− t >, ∀s ∈ S} ,

an element u ∈ ∂h(t) is called subgradient. In case that the function h is differentiable
then ∂h(t) = {∇h(t)}, which is the gradient of h.

Definition 1.5. Let ϕ : H → R. We say

• ϕ is proper if dom(ϕ) 6= ∅with

dom(ϕ) := {v ∈ E : ϕ(v) < +∞} ;

which is denotes the domain of the function ϕ.

• ϕ is lower semicontinuous at v0 ∈ H if

lim inf
v→v0

ϕ(v) ≥ ϕ(v0);

Equivalently, for any sequence {vn} ⊂ H such that vn → v0, we have

lim inf
n→∞

ϕ(vn) ≥ ϕ(v0);

• ϕ is convex if, for all v, t ∈ H and λ ∈ [0, 1], the following inequality holds:

ϕ(λv + (1− λ)t) ≤ λϕ(v) + (1− λ)ϕ(t);

• ϕ is strongly convex with constant σ > 0, if and only if

ϕ(v)− ϕ(t) ≥ 〈∇ϕ(t), t− v〉+
σ

2
‖v − t‖2 .

Lemma 1.1. [46] Suppose S is a nonempty convex subset of H. Consider h : S → R ∪ {+∞} as a
convex function that is subdifferentiable and lower semicontinuous. Then, t∗ is a solution to the following
convex optimization problem:

min {h(t) : t ∈ S} ,

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



1.2. OPTIMIZATION PROBLEMS 7

if and only if

0 ∈ ∂h(t∗) +NS(t∗),

where ∂h(t∗), NS(t∗) are the subdifferential of h and the normal cone of S at t∗, respectively.

Lemma 1.2. [6] Let {am} , {bm} be two nonnegative real sequences such that

am+1 ≤ am − bm.

Then, lim
m→∞

am ∈ R, and
∑
m≥1

bm <∞.

Lemma 1.3. [31] Let {xm} be a sequence inH and S ⊂ H such that

(i) for each x ∈ S, lim
m→∞

‖xm − x‖ exists;

(ii) all sequentially weak cluster point of {xm} belongs to S.

Then, {xm} converges weakly to a point in S.

Lemma 1.4. [32] Let {am} , {bm} and {cm} be positive sequences such that

am+1 ≤ ambm + cm, ∀m ∈ N.

If {bm} ⊂ [1,∞),
∞∑
m=1

(bm − 1) <∞ and
∞∑
m=1

cm <∞, then lim
m→∞

am exists.

Lemma 1.5. [50] Let {Jm} ⊂ [0,+∞) and {Lm} ⊂ R be sequences satisfying

Jm+1 ≤ (1− δm)Jm + δmLm, ∀m ∈ N,

where { δm} ⊂ (0, 1),
+∞∑
m=1

δm = +∞. If lim sup
m→+∞

Lm ≤ 0 for every subsequence {Jmk} of {Jm} such

that
lim inf
k→∞

(Jmk+1 − Jmk) ≥ 0,

then lim
m→∞

Jm = 0.

With these foundational concepts in consideration, we now turn our attention to optimiza-
tion problems and proximal algorithms.

1.2 Optimization Problems

Optimization problems are mathematical frameworks that aim to find the best possible solution
from a set of feasible solutions. Formally, an optimization problem can be expressed as:

min
v∈S

ϕ(v), (1.2)

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



1.2. OPTIMIZATION PROBLEMS 8

where S ⊆ H is the feasible set and ϕ : H → R is the objective function.
Optimization problems can be broadly classified into differentiable and non-differentiable

categories:
Differentiable optimization is a well-established field where the objective function is as-

sumed to be differentiable. Due to the regularity of these functions, a range of analytical and
geometric tools can be employed to solve optimization problems efficiently.

The most common methods for solving such problems include gradient descent and its
variants, such as the projected gradient method or Newton’s method, which rely on the differ-
entiability of h. These methods are based on the linear approximation of the function around a
current point.

In contrast, for problems where the objective function is not necessarily differentiable, spe-
cialized techniques are required. Non-differentiable optimization problems are common in
many practical applications, such as combinatorial optimization and model regularization.

The tools used for solving such problems differ from those in differentiable optimization.
One common approach is to use subgradients instead of gradients. A subgradient generalizes
the concept of a derivative in the case where the function is not differentiable at certain points.

1.2.1 Proximal algorithm

Let ϕ : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function and S is a
nonempty, closed and convex set. The proximal operator Jϕ of ϕ at t ∈ H is defined as

Jϕ(t) := arg min
s∈S

(
ϕ(s) +

1

2
‖t− s‖2

)
, t ∈ H.

When ϕ is the indicator function IS

IS(v) =

0 v ∈ S

+∞ v /∈ S,
(1.3)

the proximal operator of ϕ reduces to the Euclidean projection onto S, which defined by

PS(t) = arg min
s∈S

‖t− s‖ .

For τ > 0, the proximal operator corresponding to the scaled function τϕ can be written as

Jτϕ(t) := arg min
s∈S

(
τϕ(s) +

1

2
‖s− t‖2

)
, t ∈ H.

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



1.3. EQUILIBRIUM PROBLEM 9

Lemma 1.6. [2] For all t ∈ H, s ∈ S and τ > 0, the following inequality holds:

τ {ϕ(s)− ϕ(Jτh(t))} ≥ 〈t− Jτϕ(t), s− Jτϕ(t)〉 .

Remark 1.1. From Lemma 1.6, it is easy to show that if t = Jτϕ(t), then

t ∈ Argmin {ϕ(s) : s ∈ S} :=

{
t ∈ S : ϕ(t) = min

s∈S
ϕ(s)

}
.

A proximal algorithm is an algorithm for solving a convex optimization problem that uses
the proximal operators of the objective terms. For example, the proximal point algorithm min-
imizes a convex function ϕ by repeatedly applying Jϕ to some initial point t0,i.e.,

tm+1 = Jτϕ(tm).

If ϕ has a minimum, then {tm} converges to the set of minimizes of ϕ and ϕ(tm) converges to
its optimal value ( see [2]). Now, we shift our focus to a related class of problems: equilibrium
problems.

1.3 Equilibrium Problem

In this section, we will present the notion of equilibrium problems, with some properties of the
equilibrium bifunction B, and discuss two fundamental proximal-based methods for solving
equilibrium problems.

An equilibrium problem (EP ) in the sense of Blum and Oettli [3] consists of finding a point
v ∈ H such that:

B(v, t) ≥ 0, ∀t ∈ S, (1.4)

where B is the equilibrium bifunction : S × S → R, and S is a nonempty, closed, and convex
subset of a real Hilbert spaceH.

1.3.1 Equilibrium bifunction properties

First we recall some well-known definitions that we need in the sequel (see [3]) for more details.

Definition 1.6. A bifunction B: E × E → R is said

(A) γ−strongly monotone on S if there exists a constant γ such that if,

B(v, t) +B(t, v) ≤ −γ ‖v − t‖2 , ∀v, t ∈ S;
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(B) monotone on S, if
B(v, t) +B(t, v) ≤ 0, ∀v, t ∈ S;

(C) pseudomonotone on S, if

B(v, t) ≥ 0⇒ B(t, v) ≤ 0, ∀v, t ∈ S;

(D) γ−strongly pseudomonotone on S if there exists a constant γ such that

B(v, t) ≥ 0⇒ B(t, v) ≤ −γ ‖v − t‖2 , ∀v, t ∈ S;

(E) Lipschitz type continuous onH with two positive constants L1 and L2 if

B(v, t) +B(t, w) ≥ B(v, w)− L1 ‖v − t‖2 − L2 ‖t− w‖2 , ∀t, v, w ∈ S;

(F) subdifferentiable on H in the second argument if, for each fixed s ∈ S, there exists at least
one subgradient on w ∈ ∂B(v, .) such that,

B(v, t)−B(v, s) ≥ 〈w, t− s〉 , ∀ t ∈ S;

(G) jointly weakly continuous on S × S if for any sequences {vm}, {tm} ⊂ H such that vm ⇀ v

and tm ⇀ t (weak convergence), it holds that

B(vm, tm)→ B(v, t).

From the concepts described above, the following consequences holds

(A) =⇒ (B) =⇒ (D) and (A) =⇒ (C) =⇒ (D)

1.3.2 Proximal type algorithms for EP

EP provide a unifying framework for various mathematical models, including optimization
problems, variational inequalities, and Nash equilibrium problems. Due to their wide appli-
cability in numerous fields, developing efficient algorithms to solve EP has become an active
area of research. Among the proposed methods, proximal-like algorithms have attracted signif-
icant interest from researchers due to their convergence properties and adaptability to various
problem structures, leading to numerous improvements and refinements.

In the following, we present two key proximal-like algorithms proposed in the literature for
solving EP :
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1.3. EQUILIBRIUM PROBLEM 11

Extragradient algorithm for EP

The extragradient algorithm for solving (EP ) in real Hilbert spaces was introduced and thor-
oughly studied by Hieu et al. in [17]. The extragradient algorithm is outlined below:

Algorithm 1 Extragradient Algorithm for EP inH [17]
Initialization: Given x0 ∈ S, %0 > 0, ζ ∈ (0, 1).
Step 1: Compute

tm = arg min
t∈S

(
%mB(vm, t) +

1

2
‖t− vm‖2

)
= J%mB(vm,·)(vm).

If vm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 2: Compute

vm+1 = arg min
t∈S

(
%mB(tm, t) +

1

2
‖t− vm‖2

)
= J%mB(tm,·)(vm),

where

%m+1 =

 min

{
ζ(‖vm−tm‖2+‖vm+1−tm‖2)

2M
, %m

}
if M > 0,

%m otherwise,
(1.5)

and M = B(vm, vm+1)−B(vm, tm)−B(tm, vm+1).

The authors proved that the sequence {vk} generated by Algorithm 1 converges weakly to
a solution of the EP under the following conditions:

• B is pseudomonotone on S and B(v, v) = 0 for all v ∈ S;

• B is Lipschitz type continuous onH;

• B(v, ·) is convex and subdifferentiable on H for each fixed v ∈ S;

• lim sup
m→∞

B(vm, t) ≤ B(v, t), for every weakly convergent {vm} ⊂ S to v ∈ H and t ∈ S,

Extragradient subgradient algorithm for EP

Combining the strengths of the extragradient and subgradient methods, the extragradient sub-
gradient algorithm is a hybrid approach designed to solve EP by Dadashi et al. in [8] . They re-
placed the second minimization problem onto a closed convex set in the extragradient method,
with a subgradient projection onto a half-space Tm. The extragradient subgradient algorithm
proposed in [8] is outlined below:
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Algorithm 2 Subgradient Extragradient Algorithm for EP inH [8]

Initialization: Given v0, v1 ∈ S, %0 > 0, γ > 0, ζ ≤ min
{

1, 1
2L1

, 1
2L2

}
and µ ∈ (0, ζ).

Step 1: Compute

tm = arg min
t∈S

(
%mB(vm, t) +

1

2
‖t− vm‖2

)
= J%mB(vm,·)(vm).

If vm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 2:

vm+1 = arg min
t∈Tm

(
µ%mB(tm, t) +

1

2
‖t− vm‖2

)
= Jµ%mB(tm,·)(vm),

where the half-space Tm is given by

Tm = {t ∈ H : 〈vm − %mum − tm, t− tm〉 ≤ 0} , um ∈ ∂B(vm, tm),

and

%m+1 = min

{
ζ,

µB(tm, vm+1)

B(vm, vm+1)−B(vm, tm)− L1 ‖vm − tm‖2 − L2 ‖tm − vm+1‖2 + 1

}
. (1.6)

In [8], the authors proved the weak convergence of the extragradient subgradient algorithm
under the conditions that B is pseudomonotone on S, Lipschitz type continuous, convex, sub-
differentiable in the second argument and jointly weakly continuous.

Remark 1.2. Tm is a half-space and so Tm is a closed and convex set inH.

The extragradient algorithm [17] and the extragradient subgradient method [8] have been
extensively studied and applied to solve EP . However, these algorithms exhibit certain limita-
tions. Notably, they often require stringent assumptions, such as using monotonically decreas-
ing step size {%m} and the need to know Lipschitz constants (L1, L2), which can restrict their
applicability. These limitations inspired us to develop and refine new algorithms that overcome
these challenges and improve their convergence properties and broaden their applicability to
variational inequalities.

1.4 Variational Inequalities Problems

In this section, we consider the classical variational inequality problem (VIP ) formulated as
follows [20, 39]: Find v ∈ S such that

〈Ψ(v), t− v〉 ≥ 0, ∀t ∈ S.
(1.7)

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



1.4. VARIATIONAL INEQUALITIES PROBLEMS 13

where Ψ : S → S is an operator. We assume that the solution set of (1.7), denoted by V I(Ψ,S),
is nonempty.

VIP are a fundamental tool for analyzing a wide range of problems in physics, engineer-
ing, economics, and optimization theory. Notably, they can be regarded as a special case of
equilibrium problems by setting B(v, t) = 〈Ψ(v), t− v〉.

In the following, we explore key properties of the operator Ψ, followed by an analysis of
proximal-like algorithms used to solve VIP efficiently.

1.4.1 Basic Properties of Ψ

Definition 1.7. A mapping Ψ: E × E → R is said to be

(A) γ−strongly monotone on S, i.e., there exists a constant γ such that,

〈Ψ(v), t− v〉+ 〈Ψ(t), v − t〉 ≤ −γ ‖v − t‖2 , ∀v, t ∈ S;

(B) monotone on S, i.e.,

〈Ψ(v), t− v〉+ 〈Ψ(t), v − t〉 ≤ 0, ∀v, t ∈ S;

(C) pseudomonotone on S, i.e.,

〈Ψ(v), t− v〉 ≥ 0⇒ 〈Ψ(t), v − t〉 ≤ 0, ∀v, t ∈ S,

(D) γ-strongly pseudomonotone on S , i.e., there exists a constant γ such that

〈Ψ(v), t− v〉 ≥ 0⇒ 〈Ψ(t), v − t〉 ≤ −γ ‖v − t‖2 , ∀v, t ∈ S;

(E) Lipschitz continuous on H with L > 0, i.e.,

‖Ψ(v)−Ψ(t)‖ ≤ L ‖v − t‖ , ∀v, t ∈ S,

1.4.2 Proximal type algorithms for VIP

The following two proximal type algorithms are designed to solve the VIP :

Extragradient algorithm for VIP

Yang et al. in [52] introduced a modified extragradient algorithm for solving VIP in H. The
algorithm is formulated as follows:
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Algorithm 3 Extragradient Algorithm for VIP inH [52]
Initialization: Given x0 ∈ S, %0 > 0, ζ ∈ (0, 1).
Step 1: Compute

tm = PS (vm − %mΨ(vm)) .

If vm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 2: Compute

vm+1 = PS (vm − %mΨ(tm)) ,

where

%m+1 =

 min

{
ζ(‖vm−tm‖2+‖vm+1−tm‖2)
2〈Ψ(vm)−Ψ(tm),vm+1−vm〉 , %m

}
if M > 0,

%m otherwise,
(1.8)

Set m := m+ 1 and return to Step 1.

To establish the weak convergence of the sequence {xk} generated by Algorithm 3, the au-
thors imposed the following assumptions:

• Ψ is monotone on S;

• Ψ is Lipschitz type continuous onH;

Remark 1.3. Algorithm 3 and the convergence results established in [52] for solving the VIP

can be regarded as a special case of Algorithm 1 and the results in [17] for solving EP .

Extragradient subgradient algorithm for VIP

The extragradient subgradient algorithm has also been applied to VIP . In [8], the algorithm
was initially adapted to solve EP , thereby extending its applicability to VIP .

Below is the description of the extragradient subgradient algorithm for VIP , as outlined
in [8]
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Algorithm 4 Subgradient Extragradient Algorithm for VIP inH [8]
Initialization: Given v0 ∈ S, %0 > 0, γ > 0, ζ ≤ min

{
1, 1

2L

}
and µ ∈ (0, ζ).

Step 1: Compute
tm = PS (vm − %mΨ(vm)) .

If vm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 2: Compute

vm+1 = PTm (vm − µ%mΨ(tm)) .,

where the half-space Tm is given by

Tm = {t ∈ H : 〈vm − %mΨ(vm)− tm, t− tm〉 ≤ 0} ,

and

%m+1 = min

{
ζ,

µ 〈Ψ(tm), vm+1 − tm〉
〈Ψ(vm), vm+1 − vm〉 − 1

L
‖vm − tm‖2 − 1

L
‖tm − vm+1‖2 + 1

}
. (1.9)

Set m := m+ 1 and return to Step 1.

Dadashi et al. in [8] proved that the sequence {vm} generated by Algorithm 4 converges
weakly to a solution of the VIP under the following conditions

• Ψ is pseudomonotone on S;

• Ψ is Lipschitz type continuous onH;

• Ψ is weak to strong continuous on S that is Ψ(vm) → Ψ(v) for each sequence {vm} ⊂ H
converging weakly to v.

1.5 The Connection between Optimization Problems and Equi-

librium Problems

Optimization problems and equilibrium problems are two fundamental mathematical frame-
works that play a crucial role in various applications. Optimization focuses on minimizing
or maximizing an objective function, while equilibrium problems determine a balanced state
where certain conditions are satisfied. Interestingly, many optimization problems can be rewrit-
ten as equilibrium problems, offering new ways to analyze and solve them.

The connection between these two classes of problems can be observed through variational
inequalities and fixed-point formulations. In particular, equilibrium problems can be expressed
in terms of a bifunction B satisfying certain properties. One such formulation is given by:

B(v, t) = ϕ(t)− ϕ(v). (1.10)
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This formulation reveals a direct link between optimization and equilibrium problems. Specif-
ically, consider the optimization problem (1.2). A necessary optimality condition for problem
(1.2) states that at the optimal solution v∗, we must have

ϕ(t)− ϕ(v∗) ≥ 0, ∀t ∈ S. (1.11)

This condition is precisely the definition of an equilibrium problem, meaning that problem
(1.2) can be equivalently rewritten as finding v∗ ∈ S such that:

〈∇ϕ(v∗), t− v∗〉 ≥ 0, ∀t ∈ S. (1.12)

This last expression corresponds to a VIP , which generalizes optimization problems and
provides a bridge between these two mathematical frameworks. Hence, EP not only encom-
pass classical optimization formulations but also allow for broader problem modeling, includ-
ing cases where traditional differentiability assumptions may not hold.

The interplay between optimization and equilibrium problems provides a rich ground for
algorithmic development. Proximal point methods, gradient-based algorithms, and fixed-point
techniques originally designed for optimization have been successfully adapted to solve equi-
librium problems.
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CHAPTER 2

AN ENHANCED EXTRAGRADIENT

ALGORITHM FOR EP IN REAL HILBERT

SPACES

I n this chapter, we propose an enhanced extragradient algorithm to solve EP (1.4) in Hilbert
spaces. The algorithm improves convergence speed and reduces computational costs by uti-

lizing two parameters, µ and τ , along with a monotonically decreasing step size sequence {%m}
that is independent of the Lipschitz constants or line-search techniques. Furthermore applica-
tion of the main result to variational inequalities problems is given. Additionally, numerical
results confirm that the algorithm performs better than standard methods in terms of iterations
and execution time. The proposed method extends and generalizes classical algorithms.
Let B be a bifunction: H × H → R and EQ(B, S) denotes the solution set of an equilibrium
problem over the set S.

2.1 The Proposed Algorithm

In this section, we propose an enhanced extragradient algorithm for solving EPb (1.4) with the
following conditions:

(H1) the bifunction B is pseudomonotone on S;

(H2) B is Lipschitz type continuous onH;

(H3) B(v, ·) is convex and subdifferentiable on H for each fixed v ∈ S,

(H4) lim sup
m→∞

B(vm, t) ≤ B(v, t), for every weakly convergent {vm} ⊂ S to v ∈ H and t ∈ S;

Remark 2.1.

• Note that, from (H1) and (H2), we have B(v, v) = 0, ∀v ∈ S (see [47]).

• The solution set EQ(B, S) of the EP (1.4) is convex and closed under the conditions (H1)-
(H4) ( [45]).

17
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Algorithm 5 Enhanced Extragradient Algorithm for EP inH

Initialization: Given v0 ∈ S, %0 > 0, ζ ∈ (0, 1), µ ∈
[
τ, 1

(2−
√

2−θ)ζ

)
,

τ ∈
(

0, 1

2(2−
√

2−θ)ζ

)
and θ ∈

(
0, 2−

√
2
)
.

Step 1: Compute

tm = arg min
t∈S

(
µ%mB(vm, t) +

1

2
‖t− vm‖2

)
= Jµ%mB(vm,·)(vm).

If vm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 2: Compute

vm+1 = arg min
t∈S

(
τ%mB(tm, t) +

1

2
‖t− vm‖2

)
= Jτ%mB(tm,·)(vm),

where

%m+1 =

 min

{
ζ(2−

√
2−θ)(‖sm−tm‖2+‖vm+1−tm‖2)

2M
, %m

}
if M > 0,

%m otherwise,
(2.1)

and M = B(sm, vm+1)−B(sm, tm)−B(tm, vm+1).

Remark 2.2. If ( µ = 1, τ = 1), the algorithm becomes the extragradient method from [17].
Additionally, when θ = 1−

√
2, Algorithm 5 extends Algorithm 2 in [48].

Lemma 2.1. [48] The sequence {%m} created by (2.1) is well defined and lim
m→+∞

%m exists.

2.2 Convergence Analysis

To establish the weak convergence of Algorithm 5, our initial steps involve proving the follow-
ing fundamental results.

Lemma 2.2. Let {tm} and {vm} be the sequences generated by Algorithm 5. Then

(i) 〈vm − tm, vm+1 − tm〉 ≤ µ%m (B(vm, vm+1)−B(vm, tm)),

(ii) < vm − vm+1, t− vm+1 >≤ τ%m (B(tm, t)−B(tm, vm+1)) ,∀t ∈ S.

Proof. (i) According to Lemma 1.1 and tm = Jµ%mB(vm,.)(vm), we have

0 ∈ ∂
(
µ%mB(vm, t) +

1

2
‖t− vm‖2

)
(tm) +NS(tm).
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Then, there exists um ∈ ∂B(vm, tm) and ϑ ∈ NS(tm), such that

µ%mum + tm − vm + ϑ = 0.

By the definition of NS , we get

< vm − tm, t− tm >= µ%m < um, t− tm > + < ϑ, t− tm >≤ µ%m < um, t− tm >, ∀t ∈ S.

Since um ∈ ∂B(vm, tm), we have

< um, t− tm >≤ B(vm, t)−B(vm, tm), ∀t ∈ S.

From the last two inequalities, we obtain

< vm − tm, t− tm >≤ µ%m (B(tm, t)−B(vm, tm)) , ∀t ∈ S. (2.2)

In particular, substituting t = vm+1 in (2.2), we get

〈vm − tm, vm+1 − tm〉 ≤ µ%m (B(vm, vm+1)−B(vm, tm)) .

(ii) We have vm+1 = Jτ%mB(tm,.)(vm), as similar arguments to the proof of (i), we obtain

< vm − vm+1, t− vm+1 >≤ τ%m (B(tm, t)−B(tm, vm+1)) ,∀t ∈ S.

Lemma 2.3. For all r ∈ EQ(B, S), the following inequality holds:

‖vm+1 − r‖2 ≤ ‖vm − r‖2 − τ

(
1

µ
−
ζ
(
2−
√

2− θ
)
%m

%m+1

)(
‖vm+1 − tm‖2 + ‖vm − tm‖2) . (2.3)

Proof. By substituting t = r in Lemma 2.2 (ii), we get

< vm − vm+1, r − vm+1 >≤ τ%m (B(tm, r)−B(tm, vm+1))

So, from the pseudo monotonicity of B, we have B(r, tm) ≥ 0. Thus B(tm, r) ≤ 0. Then

< vm − vm+1, r − vm+1 >≤ −τ%mB(tm, vm+1)
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2µτ%m (B(vm, vm+1)−B(vm, tm)−B(tm, vm+1)) ≥ 2τ < vm − tm, vm+1 − tm >

+ 2µ < vm − vm+1, r − vm+1 >

≥ τ
(
‖vm − tm‖2 + ‖vm+1 − tm‖2 − ‖vm+1 − vm‖2)

+ µ
(
‖vm+1 − vm‖2 + ‖vm+1 − r‖2 − ‖vm − r‖2) .

Therefore,

‖vm+1 − r‖2 ≤ ‖vm − r‖2 − ‖vm+1 − vm‖2 − τ

µ

(
‖vm − tm‖2 + ‖vm+1 − tm‖2 − ‖vm+1 − vm‖2)

+ 2τ%m (B(sm, vm+1)−B(sm, tm)−B(tm, vm+1)) .

(2.4)
From the definition of %m, we have

2τ%m (B(sm, vm+1)−B(sm, tm)−B(tm, vm+1)) ≤
τ
(
2−
√

2− θ
)
ζ%m

%m+1

(
‖sm − tm‖2 + ‖vm+1 − tm‖2) .

(2.5)
Substituting (2.5) into (2.4), we obtain

‖vm+1 − r‖2 ≤ ‖vm − r‖2 − ‖vm+1 − vm‖2 − τ

µ

(
‖vm − tm‖2 + ‖vm+1 − tm‖2 − ‖vm+1 − vm‖2)

+
τ
(
2−
√

2− θ
)
ζ%m

%m+1

(
‖vm − tm‖2 + ‖vm+1 − tm‖2)

≤ ‖vm − r‖2 − (1− τ

µ
) ‖vm+1 − vm‖2 − τ

µ

(
‖vm − tm‖2 + ‖vm+1 − tm‖2)

+

(
τ
(
2−
√

2− θ
)
ζ%m

%m+1

)(
‖vm − tm‖2 + ‖vm+1 − tm‖2) . (2.6)

Then, by using the chosen values for the parameters τ and µ (noting that τ
µ
∈ (0, 1]), we obtain

‖vm+1 − r‖2 ≤ ‖vm − r‖2 − τ

(
1

µ
−
(
2−
√

2− θ
)
ζ%m

%m+1

)(
‖vm+1 − tm‖2 + ‖vm − tm‖2) . (2.7)

This completes the proof.

Theorem 2.1. Suppose that the conditions (H1)-(H4) hold andEQ(B, S) 6= ∅. Then the sequence {vm}
generated by Algorithm 5 converges weakly to a point r ∈ EQ(B, S).

Proof. To prove the result, we will show that the sequence {vm} satisfies the two conditions of
the Lemma 1.3. Let ε ∈

(
0, τ

µ
−
(
2−
√

2− θ
)
τζ
)

be some fixed number. Since lim
n→∞

%m
%m+1

= 1 and

using the assumptions on the parameters µ ∈
[
τ, 1

(2−
√

2−θ)ζ

)
, τ ∈

(
0, 1

2(2−
√

2−θ)ζ

)
and ζ ∈ (0, 1),
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yields that

lim
m→∞

τ

(
1

µ
−
(
2−
√

2− θ
)
ζ%m

%m+1

)
= τ

(
1

µ
−
(

2−
√

2− θ
)
ζ

)
> ε > 0.

Thus, there exists m1 ∈ N such that

τ

(
1

µ
−
(
2−
√

2− θ
)
ζ%m

%m+1

)
> ε, ∀m ≥ m1.

From the relations (2.7) and the above fact, we have

am+1 ≤ am − bm,

where {
am = ‖vm − r‖2 ,

bm = ε
(
‖vm+1 − tm‖2 + ‖vm − tm‖2) .

Applying Lemma 1.2, we deduce that the limit of {am} exists and lim
n→∞

bm = 0. This implies that
the sequence {vm} is bounded and

lim
m→∞

‖vm+1 − tm‖2 = ‖vm − tm‖2 = 0. (2.8)

Based on the above facts, it follows that

lim
m→∞

‖vm+1 − vm‖ = 0.

Now, we prove that each weak cluster point of {vm} is in EQ(B, S). Let q denote a weak
limit point of {vm} and {vmk} be a subsequence of {vm} such that vmk ⇀ q as k →∞. By using
(2.8) we also have {tmk}⇀ q as k →∞. Since S is closed and convex set, so S is weakly closed,
therefore we can confirm that q ∈ S. By Lemma 2.2 with expression (2.1) yields the following

τ%mkB(tmk , t) ≥ τ%mkB(tmk , vmk+1)+ < vmk − vmk+1, t− vmk+1 >

≥ τ%mk (B(vmk , vmk+1)−B(vmk , tmk))

−
τ
(
2−
√

2− θ
)
ζ%mk

2%mk+1

(
‖vmk − tmk‖

2 + ‖vmk+1 − tmk‖
2)

+ < vmk − vmk+1, t− vmk+1 >

≥ τ

µ
〈vmk − tm, vm+1 − tm〉 −

τ
(
2−
√

2− θ
)
ζ%mk

2%mk+1

(
‖vmk − tmk‖

2 + ‖vmk+1 − tmk‖
2)

+ < vmk − vmk+1, t− vmk+1 >, for t ∈ S.
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Given τ , µ, %mk > 0, condition (H4), vmk ⇀ q, tmk ⇀ q and (2.8), it follows that

B(q, t) ≥ lim sup
k→∞

B(tmk , t) ≥ 0, ∀t ∈ S.

Since B(q, t) ≥ 0, ∀t ∈ S, then q ∈ EQ(B, S). Consequently, Lemma 1.5 confirms that {vm}
and {tm} converges weakly to an element r ∈ EQ(B, S).

Remark 2.3. We can establish the same convergence results for the following iterative process
tm = arg min

t∈S

(
µ%mB(vm, t) + 1

2
‖t− vm‖2) ,

vm+1 = arg min
t∈Tm

(
τ%mB(tm, t) + 1

2
‖t− vm‖2) ,

where Tm = {y ∈ H : 〈vm − %mum − tm, y − tm〉 ≤ 0}, um ∈ ∂B(vm, tm) and %m+1 is defined in
(2.1).

2.3 Application to Variational Inequality Problem

In this section, we apply the main results (Theorem 2.1 ) to solve variational inequality problem
(1.7) in Hilbert spaces.

Assume that the solution set of (1.7) (denoted by V I(Ψ, S)) is nonempty and the operator Ψ

satisfies the following:

(H′
1) Ψ is pseudomonotone on S ;

(H′
2) Ψ is Lipschitz continuous on H with L > 0;

(H′
3) lim sup

m→∞
〈Ψ(vm), t− vm〉 ≤ 〈Ψ(v), t− v〉 for every weakly convergent {vm} ⊂ S to v ∈ H

and t ∈ S.

The sequence tm rewritten as

tm = arg min
t∈S

(
µ%mB(vm, t) +

1

2
‖t− vm‖2

)
= arg min

t∈S

(
µ%m 〈Ψ(vm), t− vm〉+

1

2
‖t− vm‖2

)
= arg min

t∈S

(
1

2
‖t− (vm − µ%mΨ(vm))‖2

)
− 1

2
‖µ%mΨ(vm)‖2

= PS (vm − µ%mΨ(vm)) .

Similarly, vm+1 = PTm (vm − τ%mΨ(tm)) .
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Corollary 2.1. Assume that the conditions(H ′1) − (H
′
3) hold. Let {vm} and {tm} be two sequences

created in the following way:

(i) Given v0, v1 ∈ S, %1 > 0, γ > 0 , µ ∈
[
τ, 1

(2−
√

2−θ)ζ

)
, τ ∈

(
0, 1

2(2−
√

2−θ)ζ

)
and ζ ∈ (0, 1).

(ii) Compute tm = PS (vm − µ%mΨ(vm)) ,

vm+1 = PS (vm − τ%mΨ(tm)) ,

where

%m+1 =

min

{
ζ(2−

√
2−θ)(‖vm−tm‖2+‖vm+1−tm‖2)

2〈Ψ(vm)−Ψ(tm),vm+1−tm〉 , %m

}
, if 〈Ψ(vm)−Ψ(tm), vm+1 − tm〉 > 0,

%m, otherwise.

Then, the sequence {vm} converges weakly to r, for each r ∈ V I(Ψ,S) 6= ∅.

2.4 Numerical Illustrations

In this section, we present numerical results to prove the efficiency of our proposed algorithm.
All the programs were implemented in MATLAB (R2023a) on a Intel(R) Core(TM) i5-8265U
CPU @ 1.60 GHz 1.80 GHz with RAM 8.00 GB.

Consider the Nash-Cournot oligopolistic equilibrium model in [45]:

Find v ∈ S such that 〈Pv +Qt+ q, t− v〉 ≥ 0, ∀t ∈ S, (2.9)

where q ∈ Rn and P,Q ∈ Rn×n are two matrices of order n such that Q is symmetric positive
semidefinite and Q− P is is symmetric negative semidefinite with the Lipschitz type constants
L1 = L2 = 1

2
‖Q− P‖ . It can be checked that all the conditions (H1)-(H4) are satisfied (for more

details see [45]). Let S is a polyhedral convex set given by

S := {v ∈ Rn : Av ≤ b} ,

where A is a random matrix of size l × n (l = 10 and n = 200 or m = 300) and b∈ Rn such that
v0 =(1, 1, ..., 1) ∈ S . The two matrices P , Q are generated randomly. We use the same stopping
rule Dm = ‖tm − vm‖ ≤ tol. In the numerical results presented in the following tables, ’Iter.’
represents the number of iterations, while ’CPU(s)’ denotes the execution time in seconds.
We will apply Algorithm 5 to solve the EP (2.9). The performance of Algorithm 5 was initially
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evaluated for different values of µ, τ , with the parameters ρ0 = 2, ζ = 0.3 and θ = 0.05 fixed.
Combinations that do not satisfy the assumption were excluded and marked with - , as shown
in Table 2.1. In view of this Table , we see that the proposed algorithm work better when µ = 0.5

and τ = 4.5.

Table 2.1: Comparison of iterations and CPU time for different µ and τ with (n = 200, tol =
10−3).

Algorithm 5 τ = 1.5 τ = 2.5 τ = 3.5 τ = 4.5

µ Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

0.5 31 0.29 18 0.17 13 0.14 11 0.08
1.5 62 0.48 29 0.24 17 0.16 14 0.13
2 - - 46 0.37 33 0.31 26 0.22

2.5 - - 53 0.42 38 0.32 29 0.25

Finally, the Algorithm 5 was compared with the explicit extragradient Algorithm suggested
by Hieu et al. [17] (shortly, EEA) and the improved extragradient Algorithm introduced by
Wairojjana et al. [48] (shortly, IEA) to assess its efficiency and effectiveness. The control param-
eters of all algorithms are choose as follows:

• Algorithm 5: %0 = 2, ζ = 0.3, θ = 0.05, µ = 0.5 and τ = 4.5.

• IEA : %0 = 2, ζ = 0.3, θ = 0.05.

• EEA : %0 = 2, ζ = 0.3.

The numerical results for all algorithms are presented in Figs. 2.1-2.4 and Table 2.2. It can
be observed that our algorithm (Algorithm 5) outperforms both IEA and EEA in terms of the
number of iterations (Iter.) and execution time in seconds (CPU(s)), while achieving the same
tolerance.
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Figure 2.1: Numerical behavior of all algorithms with (n = 200, tol = 10−3)
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Figure 2.2: Numerical behavior of all algorithms with (n = 300, tol = 10−3)
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Figure 2.3: Numerical behavior of all algorithms with (n = 200, tol = 10−6)
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Figure 2.4: Numerical behavior of all algorithms with (n = 300, tol = 10−6)

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



2.4. NUMERICAL ILLUSTRATIONS 26

Table 2.2: Comparison of iterations and CPU time of all algorithms.

n tol Algorithm 5 IEA EEA
Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

200 10−3 11 0.13 60 0.48 50 0.41

300 10−3 17 0.27 63 0.99 53 0.84

200 10−6 20 0.16 121 0.99 99 1.13

300 10−6 27 0.41 121 1.87 99 1.54

Remark 2.4. From our numerical results, we observe the following:

√
Algorithm 5 is the most efficient in both iteration count and CPU time.

√
IEA requires the most iterations and has the longest CPU time.

√
EEA performs better than IEA but remains slower than Algorithm 5.

√
A smaller tol increases iterations for all algorithms, but Algorithm 5 is least affected.

√
Increasing n raises CPU time and iterations, impacting IEA and EEA more than Algorithm
5.
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CHAPTER 3

AN IMPROVED INERTIAL SUBGRADIENT

EXTRAGRADIENT ALGORITHM FOR EP IN

REAL HILBERT SPACES

I n this chapter, an algorithm with a simple and straightforward structure is presented, com-
bining the subgradient extragradient method with inertial terms to solve pseudomonotone

equilibrium problems in a real Hilbert space. The main advantage of this algorithm is the use
of two non-monotonic step size criteria that can adaptively operate without requiring Lipschitz
constants or a line search technique. Strong convergence is established under appropriate con-
ditions on the equilibrium bifunction B and the control parameters. Furthermore, application
of the main result to variational inequalities problems is provided. Additionally, numerical
examples are presented to demonstrate the efficiency of the proposed algorithm.

3.1 The Proposed Algorithm

In this section, we propose a modified subgradient extragradient algorithm with two non-
monotonic step size criteria for solving EPb (1.4). Assume that the equilibrium bifunction B

satisfies conditions (H1)-(H4) (as in Section 2.1). Moreover, assume that the following condition
(H5) holds

(H5) Let {εm} be a positive sequence such that lim
m→∞

εm
δm

= 0, where {δm} ⊂ (0, 1) satisfies

lim
m→∞

δm = 0 and
∞∑
m=1

δm =∞. Also let {σm} ⊂ [0,∞) and {ωm} ⊂ [1,∞) such that
∞∑
m=1

σm <

∞ and
∞∑
m=1

(ωm − 1) <∞.

27



3.1. THE PROPOSED ALGORITHM 28

Algorithm 6 Improved inertial subgradient extragradient algorithm for EP inH

Initialization: Given v0, v1 ∈ S, %0 > 0, γ > 0, ζ ∈ (0, 1) and µ ∈
(

0,
2

(1 + ζ)

)
. Select the

sequences { δm} , {σm} and {ωm} to satisfy (H5).
Step 1: Compute

sm = (1− δm)(vm + γm(vm − vm−1)),

where 0 ≤ γm ≤ γ̃m such that

γ̃m =

{
min

{
γ, εm
‖vm−vm−1‖

}
if vm 6= vm−1,

γ else,
(3.1)

Step 2: Compute

tm = arg min
t∈S

(
%mB(sm, t) +

1

2
‖t− sm‖2

)
= J%mB(sm,·)(sm).

If sm = tm, then stop, and tm is a solution. Otherwise, go to next step.
Step 3:

vm+1 = arg min
t∈Tm

(
µ%mB(tm, t) +

1

2
‖t− sm‖2

)
= Jµ%mB(tm,·)(sm),

where the half-space Tm is given by

Tm = {t ∈ H : 〈sm − %mum − tm, t− tm〉 ≤ 0} , um ∈ ∂B(sm, tm),

and

%m+1 =

 min

{
ζ(‖sm−tm‖2+‖vm+1−tm‖2)

2M
, ωm%m + σm

}
if M > 0,

ωm%m + σm otherwise,
(3.2)

where M = B(sm, vm+1)−B(sm, tm)−B(tm, vm+1).

Remark 3.1. • If we choose (δm = 0, γ = 2θ, σm = 0) or (δm = 0, γm = 0, %m = %, µ = 1), the
algorithm reduces to the Algorithm 3.4 in [41] and the standard extragradient algorithm
in [45], respectively.

• Notice that, the sequence {%m} defined by (3.2) is non-monotonic step size, independent
to the Lipschitz constants and does not need any Armijo line-search technique.

Remark 3.2. From the expression (3.1), it is apparent that lim
m→+∞

γm
δm
‖vm − vm−1‖ = 0. Indeed,

γm ≤ εm
‖vm−vm−1‖ and lim

m→∞
εm
δm

= 0, implies

lim
m→∞

γm
δm
‖vm − vm−1‖ ≤ lim

m→∞

εm
δm
‖vm − vm−1‖ = 0.
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3.2 Convergence Analysis

In order to establish the strong convergence of Algorithm 6, our initial steps involves proving
the following basic results.

Lemma 3.1. The sequence {%m} created by (3.2) is well defined and lim
m→+∞

%m exists.

Proof. Since B fulfills (H2), it follows that

ζ
(
‖sm − tm‖2 + ‖vm+1 − tm‖2)

2 (B(sm, vm+1)−B(sm, tm)−B(tm, vm+1))
≥

ζ
(
‖sm − tm‖2 + ‖vm+1 − tm‖2)

2
(
L1 ‖sm − tm‖2 + L2 ‖vm+1 − tm‖2)

≥ ζ

2 max {L1, L2}
.

This, in addition to the expression (3.2), gives %m+1 ≥ min
{

ζ
2 max{L1,L2} , %m

}
. Moreover

%m ≥ min
{

ζ
2 max{L1,L2} , %1

}
. In contrast, it becomes clear from expression (3.2) that

%m+1 ≤ ωm%m + σm, ∀m ≥ 1.

It follows from condition (H5) and Lemma 1.4 that lim
m→+∞

%m exists. Since min
{

ζ
2 max{L1,L2} , %1

}
is the lower boundary of {%m}, then lim

m→+∞
%m := % > 0.

Lemma 3.2. Let {sm}, {tm} and {vm} be the sequences generated by Algorithm 6. Then

(i) < sm − tm, t− tm >≤ %m (B(sm, t)−B(sm, tm)) , ∀t ∈ S,

(ii) if tm = sm, then tm ∈ EQ(B, S),

(iii) for all r ∈ EQ(B, S), the following inequality holds:

‖vm+1 − r‖2 ≤ ‖sm − r‖2 − µ∗m
(
‖vm+1 − tm‖2 + ‖sm − tm‖2) , (3.3)

where

µ∗m =


µ
(

1− ζ%m
%m+1

)
if µ ∈ (0, 1),

2− µ− ζµ%m
%m+1

if µ ∈ [1,
2

(1 + ζ)
).

Proof. (i) According to Lemma 1.1 and tm = J%mB(sm,.)(sm), we have

0 ∈ ∂
(
%mB(sm, t) +

1

2
‖t− sm‖2

)
(tm) +NS(tm).
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Then, there exists um ∈ ∂B(sm, tm) and ϑ ∈ NS(tm), such that

%mum + tm − sm + ϑ = 0.

By the definition of NS , we get

< sm − tm, t− tm >= %m < um, t− tm > + < ϑ, t− tm >≤ %m < um, t− tm >, ∀t ∈ S.

Since um ∈ ∂B(sm, tm), we have

< um, t− tm >≤ B(sm, t)−B(sm, tm), ∀t ∈ S.

From the last two inequalities, we obtain

< sm − tm, t− tm >≤ %m (B(tm, t)−B(sm, tm)) , ∀t ∈ S. (3.4)

(ii) If tm = sm, then from inequalities (3.4) and %m > 0, we find B(tm, t) ≥ 0, for all t ∈ S. Thus
tm ∈ EQ(B, S).

(iii) We have vm+1 = Jµ%mB(tm,.)(sm), as similar arguments to the proof of (i), we obtain

< sm − vm+1, t− vm+1 >≤ µ%m (B(tm, t)−B(tm, vm+1)) , ∀t ∈ Tm. (3.5)

In particular, substituting t = vm+1 in (3.4) and t = r in (3.5 ), we get〈sm − tm, vm+1 − tm〉 ≤ %m (B(sm, vm+1)−B(sm, tm)) ,

〈sm − vm+1, r − vm+1〉 ≤ µ%m (B(tm, r)−B(tm, vm+1)) .

So, from the pseudo monotonicity of B, we have B(r, tm) ≥ 0. Thus B(tm, r) ≤ 0. Then

2µ%m (B(sm, vm+1)−B(sm, tm)−B(tm, vm+1)) ≥ 2µ < sm − tm, vm+1 − tm >

+ 2 < sm − vm+1, r − vm+1 >

≥ µ ‖sm − tm‖2 + µ ‖vm+1 − tm‖2

− µ ‖vm+1 − sm‖2 + ‖vm+1 − sm‖2

+ ‖vm+1 − r‖2 − ‖sm − r‖2 .

Therefore,

‖vm+1 − r‖2 ≤ ‖sm − r‖2 − µ ‖sm − tm‖2 − µ ‖vm+1 − tm‖2 − (1− µ) ‖vm+1 − sm‖2

+ 2µ%m (B(sm, vm+1)−B(sm, tm)−B(tm, vm+1)) .
(3.6)
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From the definition of %m, we have

2µ%m (B(sm, vm+1)−B(sm, tm)−B(tm, vm+1)) ≤ µζ%m
%m+1

(
‖sm − tm‖2 + ‖vm+1 − tm‖2) .

(3.7)
Substituting (3.7) into (3.6), we obtain

‖vm+1 − r‖2 ≤ ‖sm − r‖2 − µ ‖sm − tm‖2 − µ ‖vm+1 − tm‖2 − (1− µ) ‖vm+1 − sm‖2

+
µζ%m
%m+1

(
‖sm − tm‖2 + ‖vm+1 − tm‖2)

≤ ‖sm − r‖2 − (1− µ) ‖vm+1 − sm‖2

− µ
(

1− ζ%m
%m+1

)(
‖sm − tm‖2 + ‖vm+1 − tm‖2) . (3.8)

If µ ∈ (0, 1), then

‖vm+1 − r‖2 ≤ ‖sm − r‖2 − µ
(

1− ζ%m
%m+1

)(
‖vm+1 − tm‖2 + ‖sm − tm‖2) .

Note that

‖vm+1 − sm‖2 ≤ (‖vm+1 − tm‖+ ‖sm − tm‖)2 ≤ 2
(
‖vm+1 − tm‖2 + ‖sm − tm‖2) ,

which yields that

−(1− µ) ‖vm+1 − sm‖2 ≤ −2(1− µ)
(
‖vm+1 − tm‖2 + ‖sm − tm‖2) , ∀µ ≥ 1.

From expression (3.8), we get

‖vm+1 − r‖2 ≤ ‖sm − r‖2 −
(

2− µ− ζµ%m
%m+1

)(
‖vm+1 − tm‖2 + ‖sm − tm‖2) , ∀µ ≥ 1.

This completes the proof.

Remark 3.3. It easy to cheek that lim
m→∞

µ∗m > 0. Using Lemma 3.1, we have

lim
m→∞

µ∗m =


µ (1− ζ) if µ ∈ (0, 1),

2− µ (1 + ζ) if µ ∈ [1,
2

(1 + ζ)
).

Moreover, there exists m0 ≥ 0 such that µ∗m > 0 for all m ≥ m0.

Lemma 3.3. The sequence {vm} generated by Algorithm 6 is bounded. Consequently, {sm} and {tm}
are bounded.
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Proof. From the definition of sm, we have

‖sm − r‖ = ‖(1− δm)(vm + γm(vm − vm−1))− r‖

= ‖(1− δm)(vm − r) + (1− δm)γm(vm − vm−1)− δmr‖

≤ (1− δm) ‖vm − r‖+ (1− δm)γm ‖vm − vm−1‖+ δm ‖r‖

≤ (1− δm) ‖vm − r‖+ δmI1, (3.9)

where
(1− δm)

γm
δm
‖vm − vm−1‖+ ‖r‖ ≤ I1.

From (3.3), we obtain
‖vm+1 − r‖2 ≤ ‖sm − r‖2 ,∀m ∈ N (3.10)

Using (3.9), then

‖vm+1 − r‖ ≤ (1− δm) ‖vm − r‖+ δmI1

≤ max {‖vm − r‖ , I1} , ∀m ≥ m0

≤ ... ≤ max {‖v0 − r‖ , I1} .

Thus, we conclude that {‖vm − r‖} is bounded sequence which implies that {vm} is bounded.
Therefor {sm} and {tm} are also bounded.

Theorem 3.1. Suppose that the conditions (H1)-(H5) hold and EQ(B, S) 6= ∅. Then the sequence
{vm} generated by Algorithm 6 converges in norm to r, where ‖r‖ = min {‖q‖ : q ∈ EQ(B, S)}, i.e.,
r = PEQ(B, S)(0).

Proof. First, we show that the sequence {vm} and {sm} generated by Algorithm 6 achieves the
following: Jm+1 ≤ (1− δm)Jm + δmLm,∀m ≥ m0,

lim sup
m→∞

Lm ≤ 0,

where 
Jm = ‖vm − r‖2 ,

Lm = γm ‖vm − vm−1‖ γm
δm
‖vm − vm−1‖+ 2(1− δm) ‖vm − r‖ γm

δm
‖vm − vm−1‖

+ 2 ‖r‖ ‖sm − vm+1‖+ 2 〈r, r − vm+1〉 .
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Indeed, according to the inequality (3.10) and the definition of {sm}, we have

‖vm+1 − r‖2 ≤ ‖(1− δm)(vm − r) + (1− δm)γm(vm − vm−1)− δmr‖2

= ‖(1− δm)(vm − r) + (1− δm)γm(vm − vm−1)‖2 + ‖ δmr‖2

+ 2 δm 〈−r, sm + r〉+ 2δm ‖r‖2

≤ (1− δm)2 ‖vm − r‖2 + (1− δm)2γ2
m ‖vm − vm−1‖2

+ 2γm(1− δm)2 ‖vm − r‖ ‖vm − vm−1‖

+ 2 δm 〈−r, sm − vm+1〉+ 2 δm 〈−r, vm+1 + r〉 .

Since δm ⊂ (0, 1), for all m ≥ m0, the above expression yields that

‖vm+1 − r‖2 ≤(1− δm) ‖vm − r‖2 + δm[γm ‖vm − vm−1‖
γm
δm
‖vm − vm−1‖

+ 2(1− δm) ‖vm − r‖
γm
δm
‖vm − vm−1‖+ 2 ‖r‖ ‖sm − vm+1‖

+ 2 〈r, r − vm+1〉].

(3.11)

The last inequality can be written as

Jm+1 ≤ (1− δm)Jm + δmLm,∀m ≥ m0.

Due to Lemma 1.5, suppose that {Jmk} is a subsequence of {Jm} satisfies

lim inf
k→∞

(
Jmk+1

− Jmk
)
> 0.

Now, we prove that lim sup
m→∞

Lm ≤ 0. From (3.9), we have

‖sm − r‖2 ≤ ‖(1− δm) ‖vm − r‖+ δmI1‖2

≤ (1− δm)2 ‖vm − r‖2 + δ2
mI

2
1 + 2I1(1− δm) δm ‖vm − r‖

≤ ‖vm − r‖2 + δm
(
δmI

2
1 + 2I1(1− δm) ‖vm − r‖

)
≤ ‖vm − r‖2 + δmI2, for all m ≥ 1 (3.12)

where I2 = sup
m∈
{(δmI2

1 + 2I1(1− δm) ‖vm − r‖)}.

It follows from (3.3) and (3.12) that

µ∗m
(
‖vm+1 − tm‖2 + ‖sm − tm‖2) ≤ ‖vm − r‖2 − ‖vm+1 − r‖2 + δmI2,∀m ≥ m0. (3.13)
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From (3.13), lim
m→∞

δm = 0 and Remark 3.3, we get

µ∗mk
(
‖vmk+1 − tmk‖

2 + ‖smk − tmk‖
2) ≤ lim sup

k→∞

(
Jmk − Jmk+1

)
+ lim sup

k→∞
δmkI2,

≤ −lim inf
k→∞

(
Jmk+1

− Jmk
)

≤ 0.

Then
lim
k→∞
‖vmk+1 − tmk‖ = 0 and ‖smk − tmk‖ = 0. (3.14)

Consequently,

lim
k→∞
‖vmk+1 − smk‖ = 0 and lim

k→∞
‖vmk+1 − smk‖ ‖r‖ = 0. (3.15)

Furthermore,

‖vmk − smk‖ = ‖(1− δmk)γmk(vmk − vmk−1)− δmvmk‖

≤ ‖(1− δmk)γmk(vmk − vmk−1)‖+ ‖ δmvmk‖

= δmk

[
(1− δmk)

γmk
δmk
‖vmk − vmk−1‖+ ‖vmk‖

]
,

then, we deduce that
lim
k→∞
‖vmk − smk‖ = 0. (3.16)

Consequently
lim
k→∞
‖vmk+1 − vmk‖ = 0. (3.17)

Next we show that lim sup
k→∞

〈r, r − vmk+1〉 = 0. Due to the reflexive property of the Hilbert space

H, the boundedness of {vmk} guarantee the existence of a subsequence
{
vmkj

}
of {vmk} con-

verges weakly to q as j →∞. Moreover

lim sup
k→∞

〈r, r − vmk〉 = lim
j→∞

〈
r, r − vmkj

〉
= 〈r, r − q〉 . (3.18)

It follows from (3.14) and (3.16) that tmk ⇀ q and smk ⇀ q. By means of tmk = J%mkB(smk ,·)(smk),
we have

µ%mkB(tmk , vmk+1)+ < smk − vmk+1, t− vmk+1 >≤ µ%mkB(tmk , t), for t ∈ Tm. (3.19)
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From (3.2), we get

2µ%mkB(tmk , vmk+1) ≥ 2µ%mk (B(smk , vmk+1)−B(smk , tmk))

− µζ%mk
%mk+1

(
‖smk − tmk‖

2 + ‖vmk+1 − tmk‖
2) , (3.20)

Substituting (3.20) into (3.19), we obtain

µ%mkB(tmk , t) ≥ µ%mk (B(smk , vmk+1)−B(smk , tmk))−
µζ%mk
2%mk+1

(
‖smk − tmk‖

2 + ‖vmk+1 − tmk‖
2)

+ < smk − vmk+1, t− vmk+1 >, for t ∈ Tm.

Due to µ, %mk > 0, condition (H4) vmk ⇀ q and (3.14), we have

0 ≤ lim sup
k→∞

B(tmk , t) ≤ B(q, t), ∀t ∈ Tm.

Since S ⊂ Tm,B(q, t) ≥ 0, ∀t ∈ S and hence q ∈ EQ(B, S). By using (3.18) and the definition
of r, we obtain

lim
k→∞
〈r, r − vmk〉 = 〈r, r − q〉 ≤ 0.

This with (3.17) gives,

lim sup
k→∞

〈r, r − vmk+1〉 ≤ lim sup
k→∞

〈r, r − vmk〉+ lim sup
k→∞

〈r, vmk+1 − vmk〉 ≤ 0. (3.21)

Moreover, from (3.15), (3.21) and lim
m→∞

γm
δm
‖vm − vm−1‖ = 0, we concludes that

lim sup
k→∞

Lmk ≤ 0.

Applying Lemma 1.5, we obtain lim
m→∞

‖vm − r‖ = 0, as desired.

3.3 Application to variational inequality problem

In this section, we apply the main results (Theorem 3.1 ) to solve VIP (1.7) in real Hilbert spaces.
Let B(v, t) = 〈Ψ(v), t− v〉 , with Ψ : S → S be an operator then the EPb (1.4) turn to VIP

(1.7). Assume that the solution set of (1.7) (denoted by V I(Ψ, S)) is nonempty and the operator
Ψ satisfies conditions (H′

1)-(H′
3) ( as in Section 2.3 ).

It easy to cheek that the sequence {tm} can be written as

tm = PS (sm − %mΨ(sm)) .
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Similarly, vm+1 = PTm (sm − µ%mΨ(tm)) .

Corollary 3.1. Assume that the conditions(H ′1) − (H
′
3) hold. Let {vm} and {tm} be two sequences

created in the following way:

(i) Given v0, v1 ∈ S, %1 > 0, γ > 0 , ζ ∈ (0, 1) and µ ∈
(

0,
2

(1 + ζ)

)
. Select the sequences { δm} ,

{ωm} and {σm} to satisfy (H5) .

(ii) Compute sm = (1− δm)(vm + γm(vm − vm−1)), where γm is defined in (3.1).

(iii) Compute tm = PS (sm − %mΨ(sm)) ,

vm+1 = PTm (sm − µ%mΨ(sm)) ,

where Tm = {t ∈ H : 〈sm − %mΨ(sm)− tm, t− tm〉 ≤ 0} , and

%m+1 =

min

{
ζ(‖sm−tm‖2+‖vm+1−tm‖2)
2〈Ψ(sm)−Ψ(tm),vm+1−tm〉 , ωm%m + σm

}
, if 〈Ψ(sm)−Ψ(tm), vm+1 − tm〉 > 0,

ωm%m + σm, otherwise.

Then, the sequence {vm} converges in norm to r, for each r ∈ V I(Ψ,S) 6= ∅.

3.4 Numerical Illustrations

In this section, we give numerical example to prove the computational efficiency of the pro-
posed algorithm compared to some related results. All the programs are implemented in MAT-
LAB.

Consider the equilibrium bifunction B : R5 × R5 → R in [45]:

B(v, t) = 〈Mv + Ft+ g, t− v〉 ,

where g ∈ R5 and M,Q ∈ R5×5 are two matrices of order 5 given by

M =


1.6 1 0 0 0

1 1.6 0 0 0

0 0 1.5 1 0

0 0 1 1.5 0

0 0 0 0 2

, F =


3.1 2 0 0 0

2 3.6 0 0 0

0 0 3.5 2 0

0 0 2 3.3 0

0 0 0 0 3

 ,
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Figure 3.1: Numerical behavior of the proposed algorithm with different δm

with g = (1,−2,−1, 2,−1)t, and S given by

S := {v ∈ Rn : −5 ≤ vi ≤ 5, i = 1, ..., 5} ,

It can be checked that all the conditions (H1)-(H4) are satisfied (for more details see [45]).
The initial values v0 and v1 are randomly generated by MATLAB function rand(5, 1). We use
the maximum number of iterations 50 as a common stopping criterion for all algorithms and
Dm = ‖vm+1 − vm‖2 is used to measure the error of the m − th iteration step. We compare the
proposed Algorithm (Algorithm 6) with the Algorithm 3.1 suggested by Tan et al. [41] (shortly,
BSJ Alg. 3.1) and the Algorithm 1 introduced by Panyanak et al. [33] (shortly, BCNN Alg. 1).
The control parameters of all algorithms are choose as follows:

1. (Algorithm 6 ): εm = 100
(m+1)2

, δm = 1
20(m+1)2

, σm = 1
(m+100)3

, ωm = 1 + 1
20(m+1)1.1

.

2. (BCNN Alg. 1) in [33]: εm = 100
(m+1)2

, ωm = 1 + 1
20(m+1)1.1

, αm = (1−α)
10

, βm = 1
5m+2

, T (x) = x
5
.

3. (BSJ Alg. 3.1) in [41]: εm = 100
(m+1)2

, αm = 1/(4m+ 1), βm = 0.5, S(x) = x, ϕ(x) = 0.5x.

We first test the numerical behavior of the proposed algorithm with different parameter δm,
as shown in Fig 3.1. and Table 3.1. Finally, the numerical results of all algorithms with different
parameters are shown in Fig. 3.2-3.5 and Table 3.2.
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Table 3.1: Numerical results of the proposed algorithm with different δm

Algorithm 6 Dn CPU

δm =
1

(m+ 1)2
3.5E − 9 1.78

δm =
1

(m+ 1)1.5
5.91E − 8 1.80

δm =
1

(m+ 1)1.1
6.24E − 7 1.59

δm =
1

m+ 1
1.04E − 6 1.62
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Figure 3.2: Numerical behavior of all algorithms with (γ = 0.4, ζ = 0.5, µ = 1.25, ρ0 = 0.1)
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Figure 3.3: Numerical behavior of all algorithms with (γ = 0.2, ζ = 0.264, µ = 0.5, ρ0 = 0.36 )

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



3.4. NUMERICAL ILLUSTRATIONS 39

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Elapsed time [sec]

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

D
m

Algorithm 6

BCNN Alg. 1

BSJ Alg. 3.1

0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

D
m

 Algorithm 6

BCNN Alg. 1

BSJ Alg. 3.1

Figure 3.4: Numerical behavior of all algorithms with (γ = 0.2, ζ = 0.5, µ = 0.5, ρ0 = 0.5 )
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Figure 3.5: Numerical behavior of all algorithms with (γ = 0.4, ζ = 0.5, µ = 0.5, ρ0 = 0.3 )

Table 3.2: Numerical results of all algorithms with different parameters

Algorithms
Algorithm 6 BCNN Algo. 1 BSJ Algo 3.1

Dn CPU Dn CPU Dn CPU

γ = 0.4, ζ = 0.5, µ = 1.25, ρ0 = 0.1 2.95E − 11 0.28 8.05E − 7 0.31 1.42E − 7 0.31

γ = 0.2, ζ = 0.264, µ = 0.5, ρ0 = 0.36 2.28E − 11 0.31 1.23E − 7 0.35 1.15E − 7 0.38

γ = 0.2, ζ = 0.5, µ = 0.5, ρ0 = 0.5 1.27E − 11 0.26 8.90E − 8 0.27 7.57E − 8 0.34

γ = 0.4, ζ = 0.5, µ = 0.5, ρ0 = 0.3 2.85E − 11 0.37 1.47E − 7 0.55 1.38E − 7 0.61

Remark 3.4. Based on our numerical experiments, we have the following observation:

√
Algorithm 6 shows clear superiority on the other algorithms in terms of convergence
speed and accuracy.
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√
Algorithm 6 converges faster to lower error levels even as the number of iterations in-
creases, reaching an error tolerance of 10−11 which is reached after a few iterations, while
the BCNN Alg. 1 and BSJ Alg. 3.1 require significantly more iterations to achieve compa-
rable results.

√
Compared to BCNN Alg. 1 and BSJ Alg. 3.1, Algorithm 6 performs consistently well
across with different parameters. It achieves the highest precision with a reasonable com-
putation time, making it more efficient for large-scale problems.

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



CHAPTER 4

BREGMAN EXTRAGRADIENT ALGORITHM

FOR EP IN REAL BANACH SPACES

T his chapter introduces a modified Bregman extragradient algorithm designed to solve
pseudomonotone equilibrium problems in a real reflexive Banach space. The algorithm

guarantees weak convergence under mild assumptions and establishes strong convergence un-
der additional conditions. In the proposed algorithm, we utilize two parameters along with the
Bregman distance and a non-monotonic step size, which is independent of the Bregman Lips-
chitz constant, to enhance its effectiveness. Furthermore, numerical experiments are conducted
to validate the performance of the proposed algorithm, demonstrating significant improve-
ments in efficiency compared to traditional algorithms in similar settings.

4.1 Bregman Distance

Definition 4.1. ( [4]) Assume that ϕ : E → R ∪ {+∞} is a differentiable convex function. The
Bregman distance with respect to ϕ is the bifunction

Dϕ : dom(ϕ)× int(dom(ϕ))→ [0,+∞) ,

defined by

Dϕ(v, t) := ϕ(v)− ϕ(t)− < ∇ϕ(t), v − t >, ∀ v ∈ dom(B), t ∈ int(dom(B)).

Unlike standard metrics, the Bregman distance neither exhibits symmetry nor satisfies the
triangle inequality. However, it generalizes certain well-known distances. It satisfies the three-
point identity:

Dϕ(v, t) +Dϕ(t, s)−Dϕ(v, s) =< ∇ϕ(s)−∇ϕ(t), v − t >, (4.1)

and the four-point identity

Dϕ(v, t) +Dϕ(w, s)−Dϕ(v, s)−Dϕ(w, t) =< ∇ϕ(s)−∇ϕ(t), v − w >, (4.2)
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for any v, w ∈ dom ϕ and t, s ∈ int(dom ϕ).
The Bregman projection ( [4]) with respect to ϕ of v ∈ int(dom ϕ) onto S is characterized as the
unique vector πϕS fulfilling

πϕS(v) := inf
t∈S

(Dϕ(t, v)).

Now, we present several examples of convex functions ϕ and the corresponding Bregman dis-
tances Dϕ.

Example 4.1. The function ϕ(v) :=
n∑
i=1

vi log(vi), which is called Shannon entropy. The corre-

sponding Bregman distance is the Kullback-Leibler Divergence (KLD) defined as:

Dϕ(v, t) :=
n∑
i=1

(
vi log

(
vi
ti

)
+ ti − vi

)
.

Example 4.2. The function ϕ(v) := 1
2
‖v‖2, which is the quadratic function. This is a typical

choice in convex optimization problems where the goal is to minimize a quadratic cost function.
The corresponding Bregman distance is the squared Euclidean distance (SED), defined as:

Dϕ(v, t) :=
1

2
‖v − t‖2

The squared Euclidean distance is often used in optimization algorithms.

Example 4.3. The function ϕ(v) := −
n∑
i=1

log(vi), which is another convex function called Burg

entropy. The corresponding Bregman distance is the Itakura-Saito Distance (ISD) defined as:

Dϕ(v, t) :=
n∑
i=1

(
log

(
vi
ti

)
+
vi
ti
− 1

)
.

The examples presented above show the flexibility of Bregman distances and their various
applications in fields such as information theory, signal processing, and optimization. Each
Bregman distance is associated with a specific convex function, and its properties make it a
useful tool for a wide range of mathematical and applied problems.

4.2 Known Results

This section presents key definitions and some important results in Banach spaces, which pro-
vide the mathematical foundation for analyzing algorithms used in solving equilibrium prob-
lems. Let S be a nonempty, closed, and convex subset of a reflexive real Banach space E, with
its dual space denoted by E∗. The duality pairing between E and E∗ is represented by 〈., .〉,
while the norm is denoted by ‖.‖ (not necessarily Euclidean). Denote by ⇀ and → the weak
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convergence and strong convergence, respectively. Let B be a bifunction : E × E → R and
ϕ : E → R at v ∈ S is defined by

∂ϕ(v) := {v∗ ∈ E∗ : h(t)− h(v) ≥< v∗, t− v >, ∀t ∈ E} .

The function ϕ is called a Legendre function if it fulfills the following two conditions

• int (dom ϕ)6= ∅ and ∂ϕ is single-valued on its domain;

• int(dom ϕ∗) 6= ∅ and ∂ϕ∗ is single-valued on its domain.

Where ϕ∗ : E∗ → R ∪ {+∞} is the Fenchel conjugate function of ϕ given by

ϕ∗(v∗) = sup {〈v, v∗〉 − ϕ(v) : v ∈ E} .

Definition 4.2. Let ϕ : E → R ∪ {+∞} be a function.

1. The function ϕ is called Gâteaux differentiable at a point v ∈ int(dom ϕ) if the limit

ϕ◦(v, t) := lim
h→0+

ϕ(v + ht)− ϕ(v)

h
, (4.3)

exists for any t ∈ E.

2. ϕ is Gâteaux differentiable if it is Gâteaux differentiable for every v ∈ int(dom ϕ).

3. We say that ϕ is Fréchet differentiable at v ∈ int(dom ϕ) if the limit in (4.3) is attained
uniformly in ‖t‖ = 1.

4. ϕ is Fréchet differentiable on a subset S of E if the limit in (4.3) is attained uniformly for
v ∈ S and ‖t‖ = 1.

5. The function ϕ is supercoercive if lim
‖v‖→∞

ϕ(v)

‖v‖
;

6. ϕ is weakly sequentially continuous if vm ⇀ v implies ϕ(vm) ⇀ ϕ(v) as m→∞.

Definition 4.3. ( [7]) The modulus of total convexity at a point v ∈ int(dom ϕ) is defined as a
function νϕ(v, .) : [0,+∞)→ [0,∞], given by:

νϕ(v, d) = inf{Dϕ(t, v) : y ∈ dom g, ‖ t− v ‖= d}.

If νϕ(v, d) is strictly positive for all d > 0, the function ϕ is said to be totally convex at v.
For a non-empty set S ⊆ E, the modulus of total convexity of ϕ on S is expressed as:

νϕ(S, d) = inf{νϕ(v, d) : v ∈ S ∩ int(dom ϕ)}.
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The function ϕ is referred to as totally convex on bounded subsets if νg(S, d) remains positive
for all d > 0 and for any bounded, non-empty subset S.

Lemma 4.1. ( [35]) A uniformly Fréchet differentiable function ϕ : E → R that is bounded on bounded
subsets of E ensures that∇ϕ is uniformly continuous on bounded subsets of E from the strong topology
of E to the strong topology of E∗.

Lemma 4.2. [6] The function ϕ : E → R∪{+∞} is totally convex on bounded subsets of E iff for any
two sequences {vm} and {tm} in int(dom ϕ) and dom ϕ, respectively, such that the first one is bounded,

lim
m→∞

Dϕ(tm, vm) = 0⇒ lim
m→∞

‖tm − vm‖ = 0.

Lemma 4.3. [37] Let the function ϕ : E → R be Gâteaux differentiable such that ∇ϕ∗ is bounded on
bounded subsets of dom ϕ∗. Let v0 ∈ E and {vm} ⊂ dom ϕ. If Dϕ(v0, vm) is bounded, then the sequence
{vm} is also bounded.

Theorem 4.1. [53] Let ϕ : E → R be a convex function which is bounded on bounded subsets of E.
Then, the following are equivalent:

(i) ϕ is supercoercive and uniformly convex on bounded subsets of X ;

(ii) domϕ∗ = E∗, E∗ is bounded on bounded subsets and uniformly smooth on bounded subsets of
E∗;

(iii) dom, ϕ∗ = E∗, ϕ∗ is Fréchet differentiable and ∇ϕ∗ is uniformly norm-to-norm continuous on
bounded subsets of E∗.

Theorem 4.2. [7] Suppose that ϕ : E → R∪{+∞} is a Legendre function. The function ϕ is uniformly
convex on bounded subsets of E if and only if ϕ is totally convex on bounded subsets of E.

4.3 The proposed Algorithm

In this section, by using tow parameters, the Bregman distance and non-monotonic adaptive
step size criterion, we propose modified extragradient algorithm (Algorithm 7) for solving the
EP (1.4) in E. Assume that the solution set of EP (1.4), represented by EQ(B,S), is nonempty.

Remark 4.1. From Algorithm 7, we have

• If τ = µ = ωm = 1 and σm = 0, Algorithm 1 reduces to the Bregman extragradient
algorithm introduced in [10]. The inclusion of the new parameters (τ, µ, ωm, σm) sig-
nificantly improves the numerical performance, yielding better results than the original
formulation.
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Algorithm 7 Bregman extragradient algorithm for EP in E

Initialization: Given v0 ∈ S, %0 > 0, ζ ∈ (0, 1), µ ∈
(

0,
1

2ζ

)
and τ ∈

[
µ, 1

ζ

)
. Select the sequences

{σm} ⊂ [0,∞) and {ωm} ⊂ [1,∞) such that
∞∑
m=1

σm <∞ and
∞∑
m=1

(ωm − 1) <∞.

Step 1: Compute

tm = arg min
t∈S

(τ%mB(vm, t) +Dϕ(t, vm)) = Jϕτ%mB(vm,.)
(vm) .

If tm = vm, then stop, and tm is a solution. Otherwise, go to next step.
Step 2: Compute

vm+1 = arg min
t∈S

(µ%mB(tm, t) +Dϕ(t, vm)) = Jϕµ%mB(tm,.)
(vm) ,

where

%m+1 =

{
min

{
ζ(Dϕ(tm,vm)+Dϕ(vm+1,tm))

M
, ωm%m + σm

}
if M > 0,

ωm%m + σm otherwise,
(4.4)

and M = B(vm, vm+1)−B(vm, tm)−B(tm, vm+1). Set m := m+ 1 and go to Step 1.

• Furthermore, by setting ϕ(.) = 1
2
‖.‖2

2, where ‖.‖2 denotes the Euclidean norm, and assum-
ing E is a real Hilbert space, Algorithm 7 can be viewed as an extension and enhancement
of the method in [17].

• Although similar extragradient algorithms have been studied in Hadamard spaces, such
as in [43], our work focuses on Banach spaces and employs Bregman distance with two
parameters τ and µ, leading to different approaches in terms of convergence analysis and
numerical behavior.

4.4 Convergence Analysis

In this section, we focus on the convergence analysis of the proposed algorithm, presenting
both weak and strong convergence results.

4.4.1 Weak convergence

For the weak convergence theorem, consider the following assumptions.

Assumption 4.1. (C1) ϕ is a supercoercive and Legendre function which is bounded;

(C2) ϕ is uniformly Frechet differentiable;

(C3) ϕ is totally convex on bounded subsets of E;
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(C4) ∇ϕ is weakly sequentially continuous.

Assumption 4.2. (H1) The bifunction B is pseudomonotone on S;

(H2) B is Bregman Lipschitz type continuous on Hwith two positive constants L1 and L2, i.e.,

B(v, t) +B(t, w) ≥ B(v, w)− L1Dϕ(t, v)− L2Dϕ(w, t), ∀t, v, w ∈ S;

(H3) B(v, .) is convex and subdifferentiable onH for each fixed v ∈ S;

(H4) for every sequence {vm} ⊂ S and v ∈ H such that vm ⇀ v and lim sup
m→∞

B(vm, t) ≥ 0, for all

t ∈ S, then B(v, t) ≥ 0.

Example 4.4. [19] Let E = `p := {z = (z1, z2, . . . ) :

(
∞∑
i=1

|zi|p <∞}
) 1

p

for 1 < p < ∞ and

ϕ : E → R defined by ϕ(x) = ‖x‖p. Let

S = {z = (z1, z2, . . . ) ∈ `p : zi ≥ 0 and ‖z‖ ≤ p, ∀i ∈ N}

and B : S × S → R defined by

B(v, t) = (p− ‖v‖) 〈v, t− v〉 for all v, t ∈ S.

Clearly, EQ(B,S) 6= ∅, and B satisfies Lipschitz condition (H2), pseudomonotonicity. Indeed,
let v, t ∈ S be such that

B(v, t) = (p− ‖v‖) 〈v, t− v〉 ≥ 0,

implies that 〈v, t− v〉 ≥ 0. Then

B(t, v) = (p− ‖t‖) 〈t, v − t〉

≤ (p− ‖t‖) 〈t, v − t〉+ (p− ‖t‖) 〈v, t− v〉

≤ (p− ‖t‖) 〈t, v − t〉 − (p− ‖t‖) 〈v, v − t〉

≤ (‖t‖ − p)‖v − t‖2 ≤ 0.
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Thus, B is pseudomonotone on S. Also, by the Cauchy-Schwartz inequality, we have

B(v, s)− g(v, t)− g(t, s) =(p− ‖v‖) 〈v, s− v〉 − (p− ‖v‖) 〈v, t− v〉 − (p− ‖t‖) 〈t, s− t〉

=(p− ‖v‖) 〈v, s− t〉 − (p− ‖t‖) 〈t, s− t〉

= 〈(p− ‖v‖)v − (p− ‖t‖)t, s− t〉

≤ ‖(p− ‖v‖)v − (p− ‖t‖)t‖ ‖s− t‖

= ‖p(v − t)− ‖v‖(v − t)− (‖v‖ − ‖t‖)t‖ ‖s− t‖

≤ [p ‖v − t‖+ ‖v‖ ‖v − t‖+ |‖v‖ − ‖t‖| ‖t‖]‖ ‖s− t‖

≤ [p ‖v − t‖+ p ‖v − t‖+ p ‖v − t‖] ‖s− t‖

=3p ‖v − t‖ ‖s− t‖

≤3p

2
‖v − t‖+

3p

2
‖s− t‖

Thus, B satisfies (H2) with L1 = L2 = 3p
2

.

We begin by proving the following necessary results:

Lemma 4.4. The sequence {%m} created by (4.4) is well defined and lim
m→+∞

%m exists.

Proof. Since B fulfills (H2), it follows that

ζ (Dϕ(tm, vm) +Dϕ(vm+1, tm))

(B(vm, vm+1)−B(vm, tm)−B(tm, vm+1))
≥ ζ (Dϕ(tm, vm) +Dϕ(vm+1, tm))

(L1Dϕ(tm, vm) + L2Dϕ(vm+1, tm))

≥ ζ

max {L1, L2}
.

Thus, in addition to the expression (4.4), gives %m+1 ≥ min
{

ζ
max{L1,L2} , %m

}
. Moreover %m ≥

min
{

ζ
max{L1,L2} , %1

}
. In contrast, it becomes clear from expression (4.4) that

%m+1 ≤ ωm%m + σm,∀m ≥ 1.

It follows from conditions on {ωm}, {σm} and Lemma 1.4 that lim
m→+∞

%m exists.

Since min
{

ζ
max{L1,L2} , %1

}
is the lower boundary of {%m}, then lim

m→+∞
%m := % > 0.

Remark 4.2. From the definition of {tm} and Lemma 1.1, we have

0 ∈ ∂ (τ%mB(vm, t) +Dϕ(t, vm)) (tm) +NS(tm).

This implies that there exists w ∈ ∂B(vm, tm) and η ∈ NS(tm), such that

τ%mw +∇ϕ(tm)−∇ϕ(vm) + η = 0.
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Thus, we have from the definition of NS

< ∇ϕ(vm)−∇ϕ(tm), t− tm >= τ%m < w, t− tm > + < η, t− tm >,

≤ τ%m < w, t− tm >, ∀t ∈ S.

Since, w ∈ ∂B(vm, tm), we have

< w, t− tm >≤ B(vm, t)−B(vm, tm), ∀t ∈ S.

From the last two inequalities, we get

< ∇ϕ(vm)−∇ϕ(tm), t− tm >≤ τ%m (B(vm, t)−B(vm, tm)) , ∀t ∈ S. (4.5)

If vm = tm, then from (4.5) and τ, %m > 0, we obtain B(tm, t) ≥ 0, for all t ∈ S. Thus
tm ∈ EQ(B,S).

Lemma 4.5. Let {vm} and {tm} be the two sequences generated by Algorithm 7. Fix v∗ ∈ EQ(B,S).

Then

Dϕ(v∗, vm+1) ≤ Dϕ(v∗, vm)− µ
(

1

τ
− ζ%m
%m+1

)
Dϕ(tm, vm)− µ

(
1

τ
− ζ%m
%m+1

)
Dϕ(vm+1, tm).

Proof. According to the definition of {vm+1} and Remark 4.2, one has

< ∇ϕ(vm)−∇ϕ(vm+1), t− vm+1 >≤ µ%m (B(tm, t)−B(tm, vm+1)) , ∀t ∈ S. (4.6)

In particular, substituting t = vm+1 in (4.5), we get

< ∇ϕ(vm)−∇ϕ(tm), vm+1 − tm >≤ τ%m (B(vm, vm+1)−B(vm, tm)) , (4.7)

Addining (4.6) with (4.7)

τµ%m (B(vm, vm+1)−B(vm, tm)−B(tm, vm+1)) ≥ µ (< ∇ϕ(vm)−∇ϕ(tm), vm+1 − tm >)

+τ (< ∇ϕ(vm)−∇ϕ(vm+1), t− vm+1 >)

+τµ%mB(tm, t) (∀t ∈ S) . (4.8)

From the definition of %m, we have

(B(vm, vm+1)−B(vm, tm)−B(tm, vm+1)) ≤ ζ

%m+1

(Dϕ(tm, vm) +Dϕ(vm+1, tm)) . (4.9)
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By Bregman three point identity (4.1), it follows that

< ∇ϕ(vm)−∇ϕ(tm), vm+1 − tm >= Dϕ(vm+1, tm) +Dϕ(tm, vm)−Dϕ(vm+1, vm), (4.10)

and

< ∇ϕ(vm)−∇ϕ(vm+1), t− vm+1 >= Dϕ(t, vm+1) +Dϕ(vm+1, vm)−Dϕ(t, vm). (4.11)

Appling (4.9), (4.10) and (4.11) into (4.8), we obtain

τµζ%m
%m+1

(Dϕ(tm, vm) +Dϕ(vm+1, tm)) ≥ µ (Dϕ(vm+1, tm) +Dϕ(tm, vm)−Dϕ(vm+1, vm))

+τ (Dϕ(t, vm+1) +Dϕ(vm+1, vm)−Dϕ(t, vm))

+τµ%mB(tm, t) (∀t ∈ S) .

Then

Dϕ(t, vm+1) ≤ Dϕ(t, vm)−Dϕ(vm+1, vm) +
µζ%m
%m+1

(Dϕ(tm, vm) +Dϕ(vm+1, tm))

−µ
τ

(Dϕ(vm+1, tm) +Dϕ(tm, vm)−Dϕ(vm+1, vm))

+µ%mB(tm, t) (∀t ∈ S) . (4.12)

Therefore, it follows from relation (4.12) that

Dϕ(t, vm+1) ≤ Dϕ(t, vm)−
(
µ

τ
− µζ%m
%m+1

)
Dϕ(tm, vm)−

(
µ

τ
− µζ%m
%m+1

)
Dϕ(vm+1, tm)

−
(

1− µ

τ

)
Dϕ(vm+1, vm) + µ%mB(tm, t) (∀t ∈ S) .

Noting that µ
τ
∈ (0, 1] then, we have

Dϕ(t, vm+1) ≤ Dϕ(t, vm)−
(
µ

τ
− µζ%m
%m+1

)
Dϕ(tm, vm)

−
(
µ

τ
− µζ%m
%m+1

)
Dϕ(vm+1, tm) + µ%mB(tm, t) (∀t ∈ S) . (4.13)

Let t = v∗ ∈ EQ(B,S). Therefore, from the pseudo monotonicity of B, we have B(v∗, tm) ≥
0. Thus, B(tm, v

∗) ≤ 0. Hence from (4.13), we get

Dϕ(v∗, vm+1) ≤ Dϕ(v∗, vm)− µ
(

1

τ
− ζ%m
%m+1

)
Dϕ(tm, vm)

−µ
(

1

τ
− ζ%m
%m+1

)
Dϕ(vm+1, tm). (4.14)
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Lemma 4.6. The sequences {vm} and {tm} generated by Algorithm 7 are bounded.

Proof. From Lemma 4.4, one knows that lim
m→+∞

%m
%m+1

= 1. This together with the assumptions

on the parameters ζ ∈ (0, 1), µ ∈
(

0,
1

2ζ

)
and τ ∈

[
µ, 1

ζ

)
yields that

lim
m→∞

(
µ

τ
− µζ%m
%m+1

)
= µ

(
1

τ
− ζ
)
> 0.

Let ε ∈
(
0, µ

(
1
τ
− ζ
))

. Consequently, there exists m0 ∈ N satisfying(
µ

τ
− µζ%m
%m+1

)
> ε > 0, ∀m ≥ m0. (4.15)

From Lemma 4.5, we have

Dϕ(v∗, vm+1) ≤ Dϕ(v∗, vm)− ε (Dϕ(tm, vm) +Dϕ(vm+1, tm)) , (4.16)

which take the form
am+1 ≤ am − bm, (4.17)

where {
am = Dϕ(v∗, vm),

bm = ε (Dϕ(tm, vm) +Dϕ(vm+1, tm)) .

Thus, from Lemma 1.2, it follows that the limit of am and lim
m→∞

bm = 0 for all m ≥ 0. Hence,
from the definition of bm, we have

lim
m→∞

Dϕ(tm, vm) = lim
m→∞

Dϕ(vm+1, tm) = 0. (4.18)

From Lemma 4.2 , we conclude that

lim
m→+∞

‖tm − vm‖ = lim
m→+∞

‖vm+1 − tm‖ = 0. (4.19)

Consequntly,
lim

m→+∞
‖vm+1 − vm‖ = 0.

Therefore, from Lemma 4.3 we have

lim
m→+∞

‖∇ϕ(vm+1)−∇ϕ(vm)‖ = 0. (4.20)

From Theorems 4.1 and 4.2, ϕ∗ is bounded on bounded subsets of E∗ and hence ∇ϕ∗ is also
bounded on bounded subsets of E∗. From this, (4.16) and Lemma 4.3, the sequence {vn} is
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bounded. As a result, {tm} is also bounded.

Now, we prove that the sequences {vm} and {tm} generated by Algorithm 7 converge weakly
to an element v∗ ∈ EQ(B,S).

Theorem 4.3. Let Assumptions 4.1–4.2 be satisfied. Then for each v∗ ∈ EQ(B,S) 6= ∅, the sequences
{vm} and {tm} generated by Algorithm 7, converge weakly to v∗.

Proof. To show that {vm} converges to a solution of EP (1.4), it is left to prove that any cluster
point of {vn} belongs to EQ(B,S). Let

−
v be a cluster point of {vm} . Hence {vm} is bounded,

there exists a subsequence {vmk} of {vm} such that vmk ⇀
−
v as k →∞. From (4.19), we also have

tmk ⇀
−
v. Next, we show that

−
v ∈ EQ(B,S). Letting m = mk in (4.13) and using

(
µ
τ
− µζ%mk

%mk+1

)
>

0, we have
τµ%mkB(tmk , t) ≥ Dϕ(t, vmk+1)−Dϕ(t, vmk). (4.21)

Passing to the limit in (4.21), we obtain

lim sup
k→∞

τµ%mkB(tmk , t) ≥ lim sup
k→∞

(Dϕ(t, vmk+1)−Dϕ(t, vmk)) ,

≥ lim sup
k→∞

(Dϕ(t, vmk+1)−Dϕ(t, vmk)−Dϕ(vmk , vmk+1)) ,

= lim sup
k→∞

< ∇ϕ(vmk)−∇ϕ(vmk+1), t− vmk > .

It follows from (4.20), boundedness of {vm}, the parameters τ, µ, %mk ≥ 0 and Condition (H4)

that
0 ≤ lim sup

k→∞
B(tmk , t) ≤ B(

−
v, t), (∀t ∈ S) . (4.22)

Then
−
v ∈ EQ(B,S). By utilizing equations (4.4) and (4.15), it follows that vm is Bregman mono-

tone with respect to EQ(B,S). Consequently, the desired result is obtained by applying [10,
Lemmas 10-12].

4.4.2 Strong convergence

Next, we examine the strong convergence of the Algorithm 7, which guarantees that the iterates
converge in a stronger sense than weak convergence. The specific assumption required for
strong convergence will be outlined in the following.

Assumption 4.3. Assume the following conditions

(H’1) The bifunction B is γ−strongly pseudomonotone on S;

(H2) B is Bregman Lipschitz type continuous on H;

(H3) B(v, .) is convex and subdifferentiable on H for each fixed v ∈ S;
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(H4) for all bounded sequences vm and tm in S ,

‖vm − tm‖ → 0⇒ B(vm, tm)→ 0.

Theorem 4.4. Let Assumption 4.3 and (C1, C2, C3) in Assumptions 4.1 be satisfied. Then. for each
v∗ ∈ EQ(B,S) 6= ∅, the sequences {vm} and {tm} generated by Algorithm 7, converges strongly to v∗.

The proof of strong convergence for Algorithm 7 is based on the same reasoning as in [10].

Proof. As shown in Theorem 4.3, all cluster points of the sequence {vm} are elements ofEQ(B,S).
Now, consider arbitrary subsequences {vmk} and {vmn} of {vm} that converge strongly to p and
q, respectively. From (4.2), it follows that

< p− q,∇ϕ(vmk)−∇ϕ(vmn) >= Dϕ(p, vmk)−Dϕ(q, vmn)−Dϕ(p, vmn)−Dϕ(q, vmk).

According to (4.16), lim
m→∞

Dϕ(p, vm) and lim
m→∞

Dϕ(q, vm) exist. By utilizing this fact, Lemma
4.1, and letting m → ∞, it follows that p = q. Hence, the sequence {vm} converges strongly to
a point in EQ(B,S). Next, we show that if vmk ⇀

−
v, then vmk →

−
v. Assume that vmk ⇀

−
v.

Therefore, by (4.19), tmk ⇀
−
v. Substituting t =

−
v into (4.6), we get

0 ≤ µ%mk

(
B(tmk ,

−
v)−B(tmk , vmk)

)
− 〈∇ϕ(vmk)−∇ϕ(vmk+1), vmk+1 −

−
v〉,

= µ%mk

(
B(tmk ,

−
v)−B(tmk , vmk+1)

)
+ 〈∇ϕ(vmk)−∇ϕ(vmk+1), vmk+1 −

−
v〉,

≤ µ%mk

(
B(tmk ,

−
v)−B(tmk , vmk+1)

)
+ ‖∇ϕ(vmk)−∇ϕ(vmk+1)‖ ‖vmk+1 −

−
v‖.

Using (4.19), (4.20), Lemma 4.4, condition H4, and the boundedness of {vm}, it follows that

lim inf
k→∞

B(tmk ,
−
v) ≥ 0.

Given that B(tmk ,
−
v) ≥ 0, there exists a constant γ such that B(tmk ,

−
v) ≤ −γ‖tmk −

−
v‖2.

Combining this with (18), we conclude that

0 ≤ lim inf
k→∞

B(tmk ,
−
v) ≤ lim inf

k→∞

(
−γ‖tmk −

−
v‖2
)
≤ −γ

(
lim sup
k→∞

‖tmk − v‖
2

)
≤ 0.

Consequently, tmk →
−
v, and therefore, vmk →

−
v.

4.5 Numerical Illustrations

The numerical results are presented in this section to prove the performance of our proposed
algorithm. All the programs were implemented in MATLAB (R2023a) on a Intel(R) Core(TM)
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i5-8265U CPU @ 1.60 GHz 1.80 GHz with RAM 8.00 GB.

Example 4.5. Consider the bifunctionB : S×S → R defined in the context of the Nash-Cournot
equilibrium model as follows:

B(v, t) = 〈Pv +Qt+ q, t− v〉, ∀ v, t ∈ S,

where S ⊂ Rn is the feasible set, q ∈ Rn is a given vector, P and Q ∈ Rn×n are matrices, where
Q is symmetric positive semidefinite, and Q − P is symmetric negative semidefinite, ensuring
that f is monotone. The two matrices P , Q are generated randomly (Generate two random
orthogonal matrices O1 and O2 using the RandOrthMat function. Create diagonal matrices
A1 and A2 with values within [0, 2] and [−2, 0], respectively. Define B1 = O1A1O

T
1 (positive

semi-definite) and B2 = O2A2O
T
2 (negative semi-definite). Set Q = B1 + BT

1 , T = B2 + BT
2 , and

P = Q−T . Randomly generate the vector q with elements in the range [−1, 1]). We use the same
stopping rule Dm = ‖tm − vm‖2 ≤ 10−6. In the numerical results presented in the following
tables, ’Iter.’ represents the number of iterations, while ’CPU(s)’ denotes the execution time in
seconds. The set S is given by:

S = {v ∈ Rn : −5 ≤ vi ≤ 5, i = 1, 2, . . . , n}.

In all experiments, we selected the parameters for Algorithm 7 as follows: %0 = 0.1, ζ = 0.1 ,

µ = 4.75, τ = 4.75, ωm =
1

20 (m+ 1)1.1 and σm =
1

(m+ 1)3 . The performance of Algorithm 7 was

initially evaluated for different Bregman distances and different values n (n = 60, 120, 180, 240).
Let ϕ : Rn → R be defined by

i ϕ(v) :=
n∑
i=1

vi log (vi) .

ii ϕ(v) :=
1

2
‖v‖2 .

iii ϕ(v) := −
n∑
i=1

log (vi).

Additionally, we establish that the corresponding Bregman distances can be expressed as

i Dϕ(v, t) :=
n∑
i=1

(
vi log

(
vi
ti

)
+ ti − vi

)
, which is called the Kullback-Leibler distance(shortly de-

noted by KLD);

ii Dϕ(v, t) := 1
2
‖v − t‖2, which is called the squared Euclidean distance(denoted by SED);

iii Dϕ(v, t) :=
n∑
i=1

(
log
(
vi
ti

)
+ vi

ti
− 1
)

, which is called Itakura-Saito distance (ISD).

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



4.5. NUMERICAL ILLUSTRATIONS 54

The numerical results shown in Fig. 4.1 and Table 4.1 indicate that the proposed algorithm
achieves superior performance when the Bregman distance is chosen as the Kullback-Leibler
distance (KLD).
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Figure 4.1: Example 4.5, Top Left: n = 60; Top Right: n= 120, Bottom Left: n = 180 ; Bottom
Right: n = 240.

Table 4.1: Comparison of iterations and CPU time for different dimensions.

n KLD SED ISD
Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

60 12 3.78 31 1.79 82 28.01
120 10 2.77 29 2.13 98 29.02
180 9 3.01 31 4.36 113 45.79
240 11 4.87 33 7.73 128 70.71

Finally, the Algorithm 7, was compared with Algorithm 6, the explicit extragradient Algo-
rithm suggested by Hieu et al. [17] (shortly, EEG Alg) and the Bregman explicit extragradient
Algorithm proposed by Eskandani et al. [10] (shortly, BEEG Alg) to assess its efficiency and
effectiveness. The control parameters of all algorithms are choose as follows:
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• Algorithm 7: Similar parameters as mentioned above with ϕ(v) = −
n∑
i=1

vi log (vi).

• Algorithm 6 : %0 = 0.1, ζ = 0.1, µ = 0.99, γ = 0.2, εm = 2, ωm =
1

20 (m+ 1)1.1 , σm =

1

(m+ 1)3 .

• EEG Alg : %0 = 0.1, ζ = 0.1.

• BEEG Alg : %0 = 0.1, ζ = 0.1 and ϕ(v) = −
n∑
i=1

vi log (vi).

We test the algorithms for different values of n (n = 50, 100, 150, 200). The numerical results
for all algorithms are presented in Fig. 4.2 and Table 4.2. It can be observed that our algorithm
(Algorithm 7) outperforms then (Algorithm 6), EEG Alg and BEEG Alg in terms of the number
of iterations (Iter.) and execution time in seconds (CPU(s)), while achieving the same tolerance.
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Figure 4.2: Example 4.5 , Top Left: n = 50; Top Right: n= 100, Bottom Left: n = 150; Bottom
Right: n = 200.

c©2025, Setif 1 University Ferhat Abbas Bochra Zeghad



4.5. NUMERICAL ILLUSTRATIONS 56

Table 4.2: Comparison of iterations and CPU time for different dim.

n Algorithm 7 Algorithm 6 EEG Alg BEEG Alg
Iter. CPU(s) Iter. CPU(s) Iter. CPU(s) Iter. CPU(s)

50 11 2.45 21 0.42 33 0.57 75 13 .92
100 9 2.74 33 1.66 41 1.80 85 26.09
150 8 3.13 36 3.60 50 4.57 80 31.83
200 7 3.19 33 6.77 43 7.03 91 43.72

Remark 4.3. Based on our numerical experiments, we have the following observation:

√
Algorithm 7 shows the fastest convergence, requiring fewer iterations to reach the desired
accuracy.

√
Algorithm 6 performs well but is slightly slower than Algorithm 7.

√
EEG Alg converges more slowly compared to Algorithm 6 and Algorithm 7.

√
BEEG Alg proves the slowest convergence, requiring significantly more iterations.

√
As n increases, all algorithms exhibit similar behavior, but the number of iterations re-
quired increases.

√
The proposed Algorithm 7 proves to be the most efficient in terms of iteration count and
execution time.
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Conclusion

This thesis presents a comprehensive study on the development, analysis, and implemen-
tation of advanced proximal-type algorithms for solving equilibrium problems in both Hilbert
and Banach spaces. The proposed algorithms integrate key techniques such as subgradient and
extragradient methods, enhanced with inertial terms to accelerate convergence, and incorpo-
rate Bregman distances to improve adaptability in non-Euclidean geometries.

The primary contribution of this research lies in the formulation of new iterative schemes
that significantly improve upon existing methods in terms of convergence speed and compu-
tational efficiency. By establishing both weak and strong convergence results under relatively
mild conditions, the thesis provides rigorous theoretical guarantees that support the reliability
and robustness of the proposed algorithms. These results not only strengthen the mathematical
foundation of equilibrium problem but also extend the applicability of these algorithms to a
broader class of variational inequality problem.

Furthermore, extensive numerical experiments were conducted to verify the practical effec-
tiveness of the proposed methods. These experiments demonstrate that the new algorithms
consistently outperform classical techniques in terms of iteration count, execution time, and
solution accuracy. In particular, the incorporation of Bregman distance allows for better adap-
tation to the underlying geometry of the problem space, especially in Banach spaces, where
traditional Euclidean-based methods are often less effective. In summary, the thesis offers sev-
eral key contributions:

• The design of novel, efficient algorithms that generalize and improve upon existing meth-
ods in equilibrium problem solving.

• Theoretical analysis ensuring strong and weak convergence under mild assumptions.

• Demonstrated computational advantages through rigorous numerical simulations.

• A unified approach that enhances the understanding of the relationship between equilib-
rium problems and broader classes of optimization models.

These contributions collectively advance the current state of research in this field and open new
directions for further investigation, such as extending these algorithms to large-scale equilib-
rium problems, as well as exploring applications in other fields
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التوازن شبه    ل مسائلحل    النوع التقريبي من    تركز هذه الأطروحة على تطوير وتحليل خوارزميات   ملخّص:
عتبر حالة خاصة من  تة، حيث  يغايرتالمتباينات ال ل مسائالرتيبة في فضائي هيلبرت وباناخ، مع تطبيقات على 

على طرق التدرج الفرعي والتدرج الإضافي مع  خوارزميات محسّنة، تعتمد    ثلاث تم اقتراح  مشاكل التوازن.  
، إلى جانب تحسينات تستند إلى مسافة برَِغمان. يتم إثبات التقارب الضعيف والقوي  حجام خطوات غير رتيبةأ

لهذه الخوارزميات تحت فرضيات مناسبة. وتظُهر الطرق المقترحة تفوقًا ملحوظًا في الأداء، من حيث سرعة  
 التقليدية.  خوارزميات تقليل زمن الحساب، كما تؤكد ذلك التجارب العددية مقارنة بالالتقارب، ودقة الحل، و 

 

; مشاكل توازن; متباينات   ; التقارب ; خوارزميات التدرج الفرعي  الخوارزميات القريبة   الكلمات المفتاحية:
 المغايرة. 

 
 

Abstract : This thesis focuses on the development and analysis of proximal-
type algorithms for solving pseudomonotone equilibrium problems in Hilbert 
and Banach spaces, with application to variational inequalities problems,  
which is special case of equilibrium problems. Three enhanced algorithms 
are proposed, incorporating subgradient and extragradient methods with 
non-monotonic step sizes, along with improvements based on Bregman 
distance. Weak and strong convergence of these algorithms are established 
under suitable assumptions. The proposed methods demonstrate significant 
improvements in performance, including faster convergence, higher 
accuracy, and reduced computational time, as confirmed by numerical 
experiments compared to traditional algorithms. 
 

Keywords: Proximal algorithms; Convergence; Extragradient Algorithm; 
Equilibrium Problem ; Variational Inequalities. 
 

 
Résumé : Cette thèse porte sur le développement et l'analyse d'algorithmes 
de type proximal pour résoudre des problèmes d'équilibre pseudo-
monotones dans les espaces de Hilbert et de Banach, avec des applications 
aux problèmes d'inégalités variationnelles, qui constituent un cas particulier 
des problèmes d’équilibre. Trois algorithmes améliorés sont proposés, 
intégrant les méthodes du sous-gradient et de l’extragradient avec des tailles 
de pas non monotones, ainsi que des améliorations basées sur la distance 
de Bregman. La convergence faible et forte de ces algorithmes est établie 
sous des hypothèses appropriées. Les méthodes proposées montrent des 
améliorations significatives en termes de performance, notamment une 
convergence plus rapide, une meilleure précision, et un temps de calcul 
réduit, comme le confirment les expériences numériques comparées aux 
algorithmes classiques 
 
Mots-clés : Algorithmes proximaux ; Convergence ; extragradient 
Algorithmes ; Problème d'équilibre ; Inégalités variationnelles. 
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