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Abstract

In this dissertation, we study the existence and the long-term behavior of certain systems influ-
enced by various dissipation mechanisms, damping effects, and delayed term. By imposing appropriate
assumptions, we establish the well-posedness by the application of semigroup theory or the Faedo-
Galerkin approach. To achieve the desired stability results for the systems, we employ the multiplier
method.

To support the theoretical findings, a numerical analysis is conducted for each problem. Fully dis-
crete approximations are formulated using the finite-element method combined with the implicit Euler
scheme. Numerical simulations, implemented in MATLAB, are provided to illustrate the accuracy of
the approximations and the behavior of the solutions.
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Chapter 1

Introduction

The study of global existence and stability in time of partial-differential-equations has been, a long
time the focus of numerous works. Stabilization aims to attenuate vibrations through feedback mecha-
nisms, ensuring that the energy of the solutions diminishes to zero at a controlled rate, facilitated by a
dissipation process. In this regard, we study various problems and establish exponential, polynomial,
or general decay results for certain thermoelastic evolution problems in one dimension. These include
models such as Shear systems, laminated beams, and elastic solids with voids. Various dissipation

mechanisms are considered, and their influence on the stability of these systems is analyzed.

1.1 Thermoelasticity

The theory of thermoelasticity merges the principles of elasticity and heat conduction. It addresses
the effect of heat on the deformation of an elastic medium and the reciprocal effect of this deformation
on the thermal state of the medium. Thermal stress arises when the time rate of variation of a heat source
in the medium or the time rate of variation of thermal boundary conditions on the medium is compared
with the structural oscillation characteristics. In this scenario, solutions for the temperature and stress

fields must be obtained using the coupled equations of thermoelasticity.

The foundations of thermoelasticity theory were laid in the 19th century by scientists such as Duhamel
[49] and Neumann [115]. The classical theory of thermoelasticity was established in the 1950s by
Biot [27], who formulated the governing equations and constitutive relations. In this theory, the heat
flux ¢ and the temperature gradient 6, are considered to happen simultaneously. Fourier’s law of heat

conduction, in its linear form, is given by
q(z,t) = —kOz(x,t). (1.1)

This implies an instantaneous response and there is no difference between the cause and the effect of
heat flow. As a result, heat propagation has an infinite speed (meaning that any thermal change at some

point has an instantaneous effect elsewhere in the body regardless to its distance). However, experiments



have shown that the speed of thermal wave propagation in some dielectric crystals at low temperatures
is finite. This phenomenon in dielectric crystals is called second sound.

The classical theory has some limitations, particularly in dealing with high-frequency or short-time
phenomena. This led to the development of generalized theories of thermoelasticity, which aim to over-
come these limitations. In the modern theory of thermal propagation, there are several ways to overcome
this physical paradox. The most known is the one proposed replacing Fourier’s law of heat flux with
Cattaneo’s law ( [33],1958) to obtain a heat conduction equation of hyperbolic type that describes the
wave nature of heat propagation at low temperatures. At the turn of the century, Green and Naghdi
introduced three other theories (known as thermoelasticity Type I, Type II, and Type III), based on the
equality of entropy rather than the usual entropy inequality ( [65]- [67],1991-1993). In each theory, the
heat flux is determined by different appropriate assumptions. These three theories give a comprehensive
and logical explanation that embodies the transmission of a thermal pulse and modifies the occurrence
of the infinite un-physical speed of heat propagation induced by the classical theory of heat conduction.
When the theory of type I is linearized, it aligns with the classical system of thermoelasticity. The sys-
tems arising in thermoelasticity of type III exhibit dissipative characteristics, while those in Type II do
not sustain energy dissipation. It is a limiting case of thermoelasticity type III. For more details in this
regard, we refer the reader to [38,39, 110, 128, 154].

The wave theory of heat conduction was formulated by assuming that the heat flux vector and the
temperature gradient occur at different moments in time. In this framework, a natural generalization of
(1.1) can be written as

q(z,t +7) = —KrOy(x, 1), (1.2)

where 7 represents the time delay, known as the “relaxation time” in the wave theory of heat conduction

[149]. The first-order Taylor expansion, which includes the linear effect of 7, results in
q+ 7qt = —K0O,, (1.3)

which refers to the CV wave model (second sound) created by Cattaneo and Vernotte to resolve the para-
dox of infinite heat propagation speed resulted in Fourier’s law [40]. The finite speed of heat propagation
relates to the relaxation time by

(1.4)

where qy is the thermal diffusivity and Cj represents the thermal wave speed [147]. As Cy approaches
infinity, the relaxation time 7 decreases to zero, and the CV wave model (equations (1.2) or (1.3))
reduces to Fourier’s law, as given by equation (1.1). Later on, two types of delay time were introduced.
The first delay time, 7y, is attributed to microstructural interactions, such as small-scale heat transport
mechanisms at the microscale, or small-scale effects of heat transport in space. This includes phenomena
such as phonon-electron interactions or phonon scattering and is referred to as the phase lag of the
temperature gradient. The second delay time, 7, is related to the relaxation time resulting from the

fasttransient effects of thermal inertia (or small-scale effects of heat transport over time), and is called



the phase-lag of the heat flux. Both delays are regarded as inherent thermal or structural features of the
material. The dual-phase-lag model is intended to avoid the precedence assumption in the thermal wave
model. For materials with 79 < 7, the heat flux vector (effect) results from a temperature gradient
(cause). The relationship is reversed when 79 > 7, (see [40, 145, 147]). Mathematically, this can be
represented by

gz, t+719) = —KkOy(z,t + 79), T4, 79 > 0, (1.5)

when 7, = 7y, this law reduces to the classical Fourier’s law (1.1), and the relation (1.2) corresponds to
the particular case when 79 = 0 and 7, = 7 > 0. In [148], Tzou expanded both sides of equation (1.5)
using Taylor’s expansions and retaining terms up to the second order in 7, and only the first order term
in 7. This resulted in the following generalization of the heat conduction law

2

q -+ Teqt + Etht = —k(190xt + 0z). (1.6)

This theory imposes certain constraints on the delay parameters 79 and 7, to ensure the exponential

stability (or at least stability) of the solutions. In [123, 124], exponential stability was proved whenever

.
9 > é’ (L.7)

Tzou’s experimental findings in [146] validate the physical relevance and the practical use of the
dual-phase-lag model. This model plays a crucial role in several fields, particularly in thermal manage-
ment for electronics [4], heat exchanger design [99], and biomedical applications [153].

1.2 Shear beam model

Beams are fundamental structural components in engineering and construction, crucial for support-
ing and distributing loads within various structures. These primarily horizontal members are designed
to withstand vertical loads, shear forces, and bending moments, ensuring the stability and safety of
buildings, bridges, and other infrastructures.

The beam theory proposed by Euler and Bernoulli in the 18th century [18,57] has remarkably with-
stood the test of time and continues to be effectively utilized by contemporary scientists and engineers.
The differential equation that describes the vibrations of a uniform beam in the classical Euler-Bernoulli

theory can be expressed as follows
pASOtt(a77 t) + EISDxacJ:J:(xy t) = 07 (1-8)

where x € (0, L) and ¢ > 0, A is the cross section area, p is the density of the material, E is Young’s
modulus, I is the geometric moment of inertia and ¢ denotes the deflection of the beam. Later advance-
ments were made by Bresse and Rayleigh [28, 131], who incorporated the effect of rotary inertia into

beam theory. This work was significantly furthered by Timoshenko [142, 143] in the early 20th century,



who introduced the additional effect of shear deformation. This development led to what is now known

as the classical Timoshenko beam,

P1PL ($7t) - K (9033 + 1/1):1: (.%‘,t) =0,
p2¢tt (x’t) — by (x,t) +K (pr + TZJ) (l‘,t) =0,

(1.9)

where ¢ represents the transverse displacement and ¢ denotes the rotation of the neutral axis. p; = pA,
K = K'GA, py = pI, b = EI where K’ is the shear correction factor and G is the shear modulus. The
Timoshenko beam formulation is typically utilized to analyze the dynamic behavior of beams at higher
frequencies (higher wave numbers). In this context, two distinct frequency values emerge, leading to
the presence of two wave speeds: \/m and \/% Notably, one of these wave speeds exhibits
an infinite speed (blow-up) for lower wave numbers (see [89]). In order to overcome this physics
drawback, simplified beam models have been proposed, such as the Truncated version introduced by

Elishakoff [51], based on the system of Timoshenko given by

P1Ptt (xvt) - K (QOz + ¢)x (I, t) = 07
—P2Pttx (:E, t) — bga (:E, t) + K (‘Px + Q;Z)) (33, t) =0.

(1.10)

He demonstrated in the presence of a linear dissipation, that energy decays exponentially, regardless of
the wave speed. This contrasts the Timoshenko beam, which is only exponentially stable when the wave
speeds are equal. Another beam theory considered is the Shear beam model, which adds shear distortion
to the Euler-Bernoulli model but omits rotary inertia [74],

pl@tt(l‘v t) - K (3030 + ¢)x (xa t) 07
—b%x(flf,t) + K (9090 + 1/]) (a;,t) =0,

has a single finite wave speed, 1/ K /pj, for all wave numbers. The Timoshenko beam can be effec-
tively analyzed using a single parameter because the rotary inertia and shear deformation parameters are
related [15].

1.3 Laminated beams

Layered composite structures are extensively utilized in structural engineering because of their high
stiffness, strength, and low weight. The mechanical performance of these structures depends not only
on the material properties of the individual beam layers but also on the quality of interfacial bonding.
Perfect interfacial bonding can be achieved if the beam layers are connected with rigid connectors.
However, typical connectors such as studs, nails, and viscoelastic adhesives lack rigidity, which can

lead to some interfacial slip (see [151] and the numerous references therein).



Hansen [75] developed a model for a two-layered plate where a slip can occur along the interface.
The model assumes that an adhesive layer, with negligible thickness and mass, bonds the two adjacent
surfaces, and the restoring force generated by the adhesive is proportional to the amount of slip. Hansen
and Spies [76] focused on the beam analog, with strain-rate damping included, of the described plate
model ( [75], equation (3.16)). In the absence of external forces, this model consists of three coupled
hyperbolic equations. Precisely, the first two equations are based on the assumptions of Timoshenko
beam theory and are coupled with the third equation, which describes the dynamics of slip. This coupled

system is given as follows:

pPwit + G(d) - wx)x = 07
1,(35 — )it — D(35 — )a — Gt — wy) = 0, (111)

4 4
IpStt — Dwa + G(¢ — wz) + g"}/S + §BSt = 0,

where w denotes the transverse displacement, v represents the rotation angle, s is proportional to the
amount of slip along the interface at time ¢ and longitudinal spatial variable x and 3s — v denotes the
effective rotation angle. The positive parameters p, I,, G, D, ~y and (3, represent the density, mass
moment of inertia, shear stiffness, flexural rigidity, adhesive stiffness, and adhesive damping parameter,
respectively. These structures have become widely popular and are known as laminated beams. It is
clear that if s is zero at all points, then the standard Timoshenko system is retrieved.

Up to date, there have been several studies on laminated beam equations, primarily focusing on
the global existence and stability of the associated systems. By incorporating appropriate damping
mechanisms such as internal damping, boundary frictional damping, and viscoelastic damping, it has
been demonstrated that adding linear damping terms to two of the three equations results in exponential
stability of system (1.11) under the “equal wave speeds” condition (p/I, = G /D). However, if linear
damping terms are applied to all three equations, the system exhibits exponential decay even without
the equal-wave-speed condition, as illustrated in references [7,8,12,30,70,73,114,130, 141, 150].

1.4 The porous thermoelastic systems

Continuum mechanics is an established field that has received comprehensive treatment in numerous
treatises. The theory of continuous media builds upon fundamental concepts like stress, motion, and
deformation, as well as principles governing the conservation of mass, linear momentum, moment of
momentum, and energy, in addition to constitutive relations. These constitutive relations define how a
material reacts mechanically and thermally, while the fundamental conservation laws abstract the shared
characteristics of all mechanical phenomena, regardless of the specific constitutive relations involved.

Goodman and Cowin [43,64] introduced a granular materials theory based on formal arguments from
continuum mechanics. The fundamental idea of this theory is to expand the concept of mass distribution

to accommodate granular materials. Specifically, the distribution of mass needs to be related to the



volume distribution of granules. In their setting, the bulk density is written as the product of two fields,
the matrix material density field and the volume fraction field. It is deeply discussed in the book of
Iesan [83]. This representation of the bulk density of the material introduces an additional degree of
kinematic freedom in the theory that was developed by Nunziato and Cowin [117] for the behavior of
porous solids in which the skeletal or matrix material is elastic and the interstices are void of material.
The theory admits both finite deformations and nonlinear constitutive relations. The linearization of this
theory has been established by Cowin and Nunziato [44]. Some applications and results of the linear
and nonlinear theories for elastic materials with voids were presented in [45, 82,84,107,125,127]. The
nonlinear theory of thermoelastic materials with voids has been established by Jari¢ and Golubovi¢ [85]

and Jari¢ and Rankovi¢ [86]. Later, Iesan [81] added the temperature to the linear theory.

Grot [69] advanced a thermodynamics theory concerning elastic materials exhibiting microstruc-
ture. In this theory, the microelements possess not only microdeformations but also microtemperatures.
The foundation of this theory lies in continuum theories incorporating microstructure, wherein the mi-
croelements undergo uniform deformations known as microdeformations. It was widely developed by
Eringen [52-54] and Eringen and Kafadar [55]. The importance of elastic materials with microstructure
has been extensively evidenced by the vast number (thousands) of articles published over the past thirty
years. These articles cover applications across various fields of physics and engineering, including the
petroleum industry, materials science, and biology. Poroelasticity theory should be utilized for solids
with small, distributed pores, such as rocks, soils, wood, ceramics, compressed powders, and biological
materials like bones.

In one space dimension, The basic evolution equations governing porous materials theory with tem-

perature and micro-temperature are given by
pug = Ty, Jouw = Hy + G, pip = G, pEr = Py — Q,

where T is the stress tensor, H is the equilibrated stress vector, G is the equilibrated body force, 7 is the
entropy, ¢ is the heat flux vector, P is the first heat flux moment, () is the mean heat flux and F is the
first moment of energy. The constitutive equations 7', H, G, 7, ¢, F, P, and @ take the following
form )

T = pug + by —~0,

H = 6p; —dw, G = —buy — Ep +mb,

m = yug + c +me, ¢ = kob, — k1w,

pE = —aw — dp,, P=—kow,, Q = —ksw — k10,.

The functions u, ¢, 8, w represent the displacement of the solid elastic material, the volume fraction, the
temperature difference and the microtemperature vector, respectively. The constitutive parameters p, J,

¢ i, b, 0,7, &, m,d, k1, ko, k3, a define the coupling among the different components of the materials.



1.5 Delay differential equations

Considering delays is essential for the accurate analysis of systems in science and engineering. A
time delay occurs because it takes a finite amount of time to sense information and respond to it. Time
delay has been extensively studied in various fields, such as biology [104], population dynamics [93],
neural networks [19], feedback-controlled mechanical systems [80], and lasers [122]. Richard [133]
also highlighted several other intriguing and challenging areas where delays play a significant role.
Based on the causes of delays, they can be roughly classified into the following categories: physically
inherent delays (found in physical or biological systems), technological delays, transmission delays, and

information delays.

Mathematically, a simple delay differential equation for (¢) € R is expressed as

d
%x(t) - f(t’ xt)v

where x(t) = {z(7) : 7 < t} represents the past trajectory of the solution. The functional operator f

o : . d
takes a time input and a continuous function x; and outputs a real number ax(t) An example of such

an equation with a discrete/constant delay is

d
ax(t) = f(t,x(t —1)).

where 7 denotes the time delay.

In recent years, partial differential equations with time delay effects have emerged as a significant
research focus in science and engineering, finding applications in various practical problems. Stabilizing
a hyperbolic system that includes delay terms often requires the addition of control terms (refer to
[116, 119, 134]). Delay terms can potentially lead to instability [46, 116, 152]. For instance, Nicaise
and Pignotti [116] considered the following wave equation with a time-delay in the presence of a delay

parameter (ug > 0),
ug(x,t) — Au(x, t) + prug(x, t) + pou(z, t — 7) = 0, (1.12)

they showed that this equation exhibits either exponential stability when the condition p2 < 4 is met
or instability when 17 < peo. Said-Houari and Laskri [134] examined the Timoshenko system with a
constant time delay in the internal feedback,

P1PL (l’,t) - K (QO:E + w)x (a:,t) =0,
Pt (1) — Dby (2,1) + K (@ + ) (z,t) + pathy (x,t) + potdy (x,t —7) =0,

(1.13)

and they proved that, in the case of equal-wave-speed, the energy decays exponentially if po < pi. To
extend that result to a nonlinear framework, we refer to [60,61].



1.6 About the finite element method

A significant number of natural laws and phenomena are represented through partial differential
equations (PDEs). However, when the computational domains have irregular geometries, or when the
initial conditions, boundary values, or source terms are complicated, it becomes impossible to derive
analytical solutions. In such cases, we rely on numerical methods to obtain approximate solutions.

The origins of the finite-element method (FEM) date back to the early 20th century. During the 1940s
and 1950s, engineers, particularly in the aerospace industry, began developing techniques to break down
continuous structures into smaller, discrete elements to address challenges in structural analysis. This
approach was driven by the need to handle the complexity of real-world engineering problems [144].
Over time, FEM has become a powerful tool for solving partial differential equations, including those of
elliptic, parabolic, hyperbolic types, as well as complex hydrodynamic equations. Since its appearence,
numerous reference books have been dedicated to this method (see [41,62,63, 88, 140]).

The theoretical proof of the existence and uniqueness of the finite-element (FE) solution for the
FE equation is essential. In terms of numerical resolution, the finite-element method has been used in

several research studies concerning control systems (see [14, 16,50]).

1.7 Methodology

In this thesis, the well-posedness of the problems is addressed using the theory of semigroups and
the Faedo—Galerkin method. Specifically, the Faedo—Galerkin approach involves selecting a set of basis
functions in an appropriate Sobolev space and solving approximate problems within a finite-dimensional
subspaces spanned by these basis functions. The local existence of solutions to the approximate problem
is established through the well-known local existence theorem for ordinary differential equations. Com-
pactness estimates are then utilized to extract a convergent subsequence of the approximate solutions,
leading to a solution of the original problem. The uniqueness of the solution for the original problem
requires a separate proof. In the context of semigroup theory, the Lumer—Phillips theorem serves as
a crucial tool. This theorem establishes a relationship between the energy dissipation properties of an
unbounded operator A : D(A) C H — H with the existence, uniqueness, and regularity of solutions to

an evolution equation (Cauchy problem).

U'(t)=AU(t), t >0,
U(0) = Up.
We apply the multiplier method to derive the desired stability results for the systems. This approach

primarily involves constructing an appropriate Lyapunov functional L that is equivalent to the energy E

of the solution. The equivalence L ~ E is expressed as:

a1 E(t) < L{t) < B(t), Yt >0,



To establish exponential stability, we demonstrate that L satisfies the inequality:
L'(t) < —cL(t), Vt > 0,

for some ¢ > 0. By integrating this inequality over the interval (0, ¢) and using the equivalence relation-
ship above, the desired result of exponential stability is obtained (refer to Chapters 3, 4, and 5). More
precisely, the stabilization problem involves determining the asymptotic behavior of the system by esti-
mating the decay rate of the energy to zero. Various types of stabilization exist, including polynomial
decay (see Chapter 4). For general decay, the achieved decay rate depends on the relaxation function ¢
(see Chapter 6).

To compute numerical solutions for boundary value problems, we employ the finite-element method,
a powerful and versatile approach. This method begins by replacing the original system with an equiv-
alent idealized system composed of discrete elements. These elements are connected at specific points,
referred to as nodes. After defining the elements of the system, direct physical reasoning is used to
derive the equations for each individual element based on relevant variables. In the final step, the equa-
tions for the individual elements are assembled to construct the system equations for the entire model,

which are then solved to determine the unknown nodal variables.

1.8 Structure of the thesis

The thesis consists of five chapters in addition to the introduction.

Chapter 2. This chapter summarizes some concepts, definitions and theorems needed in the proof of

our results in the next four chapters.

Chapter 3. In this chapter, we conduct an analysis of a one-dimensional linear problem that describes
the vibrations of a connected suspension bridge. In this model, the single-span roadbed is represented as
a thermoelastic Shear beam without rotary inertia. We incorporate thermal dissipation into the transverse
displacement equation, following Green and Naghdi’s theory. Our work demonstrates the existence of
a global solution by employing classical Faedo—Galerkin approximations and three a priori estimates.
Furthermore, we establish the exponential stability through the application of the energy method. For
numerical study, we propose a spatial discretization using finite elements and a temporal discretization
through an implicit Euler scheme. In doing so, we prove discrete stability properties and a priori error
estimates for the discrete problem. To provide a practical aspect to our theoretical findings, we present

a set of numerical simulations. The results presented in this chapter have been published in [35].

Chapter 4. We focus on a thermoelastic laminated beam from both mathematical and numerical per-
spectives, where the dual-phase-lag heat conduction theory is used to model the heat transfer. In this
theory, two delay parameters 7y and 7, are considered. Under the condition 279 > 7,, we establish
the well-posedness of the system and prove both exponential and polynomial stability depending on

a stability parameter y. For the numerical study, we propose fully discrete approximations using the



finite-element method combined with the implicit Euler scheme. Through this approach, we demon-
strate the discrete stability property and provide a priori error estimates. To showcase the accuracy of
the approximation and illustrate the practical application of our theoretical findings, we present numer-

ical simulations. The results of this chapter have been published in [37].

Chapter 5. This chapter is devoted to the study of a one-dimensional system known as Shear beam
model (no rotary inertia) where the transverse displacement equation is subjected to a delay. Under suit-
able assumptions on the weight of the delay, we first achieve the global well-posedness of the system by
using the classical Faedo-Galerkin approximations along with three a priori estimates. Next, we study
the asymptotic behavior of solution using the energy method. Later we propose a discretization based on
P1-finite element for space and implicit Euler scheme for time, where a discrete stability property and
a priori error estimates of the discrete problem are proved. Finally, numerical simulations are provided.
This work has been published in [34].

Chapter 6. In this chapter, we consider a one-dimensional porous thermoelastic system with microtem-
peratures effects, past history term acting only on the porous equation and a delay term in the internal
feedback. Under an appropriate assumptions on the kernel and between the weight of the delay and the
weight of the damping, we prove the well-posedness of the system. Furthermore, we establish a general
decay rate result for the energy, which allows a wider class of relaxation functions, and thus generalize
some results in the literature. Finally, some numerical experiments are presented. The findings of this

chapter have been published in [36].

Notation. Throughout this thesis, (-,-) denotes the scalar product of L?(0, L), and ||-|| refers to the

usual norm ||-|| z2(o, -
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Chapter 2

Preliminaries and materials needed

In this chapter, we review essential concepts in functional analysis that are necessary for proving our

results in the upcoming chapters.

2.1 Functional spaces

2.1.1 Banach spaces, Inner product spaces, Hilbert spaces

For any normed vector space F, we denote its topological dual as E’, that is, the space of continuous

linear functionals on E. For f € E’ and x € E we introduce the duality bracket

(f.2)pp = f().

A norm on F defines a metric d on E which is given by d(x,y) = ||z — y|| for all z, y € E and is called

the metric induced by the norm.

Definition 2.1.1 ([56]). A Banach space is a normed vector space that is complete, that is, every Cauchy

sequence in the metric induced by the norm of E converges to a limit in E.

Definition 2.1.2 ( [56]). An inner product space (or pre-Hilbert space) is a vector space E with an
inner product defined on /', which is a mapping of E x FE into the scalar field K of E, such that for all

vectors x, Yy, z and scalars o we have
1 (x+y,2) = (2,2) + (y,2),

2. (aw,y) = a(z,y),

3. (2, y) = (y, ),
4. (z,x) 2 0and (z,z) =0z =0.

An inner product on E defines a norm on E given by ||z|| = y/(z,z) and a metric on E given by
d(z,y) = |z —y| = V/(x —y,x —y), forall z, y € E. A Hilbert space is a complete inner product

11



space (complete in the metric defined by the inner product). Hence inner product spaces are normed

spaces, and Hilbert spaces are Banach spaces.

Theorem 2.1.3 (Lax—Milgram, [26]). Let V be a Hilbert space, a : V x V' — R a bilinear form, and
[ :V — R a linear form.

Assume that a and | are continuous and that a is coercive, that is,
Ja > 0, a(u,u) > aljul},Vu €V,

then there exists a unique solution uw € V to the problem

a(u,v) =lI(v), Yo € V. (2.1)
Moreover, this solution satisfies
11y
Jully <
o

2.1.2 Weak topology

Let F be a Banach space and denote by E’ its dual space with norm

[fller="sup |(f, ).

z€E, ||lz| p<1

Definition 2.1.4 ( [29]). The weak topology o(E, E') on E is defined to be the coarsest topology under

which each element of E' remains continuous on E.

If z,, — x in o(E, E’), we shall write x,, — x and say that the sequence (,,) converges weakly to

rin E.

Proposition 2.1.1 ( [29]). Let (x,,) be a sequence in E. Then

Tp — T < (faxn) - (fvx)?vaEl'

2.1.3 Weak* topology

Let E” be the bidual space (the dual of E’) with norm

1€l = sup  |(& )]

fEE Iflp<1

There is a canonical injection J : £ — E”. Indeed any element x € E defines an element J, € E”
by
(Jur f) = (f,2),Vf € E.

12



It is clear that J is linear and that J is an isometry, that is, ||.J;||g» = ||z||g (by Corollary 1.4, page
4, [29]). This will allow us to define a new topology on E’.

Definition 2.1.5 ([29]). The weak* topology o(E', E) on E' is the coarsest topology under which every

element v € E corresponds to a continuous map on E'.

If f, = fino(E', E), we shall write f,, —=* f and say that the sequence (f,,) converges weakly *
to fin F'.

Proposition 2.1.2 ( [29]). Let (f,,) be a sequence in E'. Then

fo =" fe (fu,2) = (f,2),Vz € E.

2.1.4 Reflexive, separable spaces

Definition 2.1.6 ( [29]). E is reflexive, if J(E) = E".

Theorem 2.1.7 ( [29]). Let E be a separable Banach space. Then for any bounded sequence (x,,) in

E, there exists a subsequence (x, ) that converges in o(E, E').
Definition 2.1.8 ( [29]). A metric space is separable if it contains a dense and countable subset.

Theorem 2.1.9 ( [29]). Let E be a separable Banach space. Then for any bounded sequence (f,) in

E', there exists a subsequence ( fy, ) that converges in o(E', E).

2.1.5 Lebesgue spaces

Definition 2.1.10 ( [29]). Let (2, M, p) be a measure space and 1 < p < oco. The space LP(SY) consists

of equivalence classes of measurable functions f : ) — R such that

[ 1P < .

Theorem 2.1.11 (Dominated convergence theorem, Lebesgue, [29]). Let (f,,) be a sequence of func-
tions in L' that satisfy

1. fo(x) — f(x) a.e onQ,
2. there is a function g € L' such that for all n, | fn(x)| < |g(z)| a.e. on Q.

Then
feLYQ) and || fn — fllgr — 0.

13



Theorem 2.1.12 (Fubini, [29]). Assume that F € L'(Q; x Q). Then for a.e. © € Qy, F(x,y) €
L}J(Qg) and fQQ F(z,y)dus € LL(Q). Similarly, fora.e. y € Qa, F(x,y) € LL(Q1) and le F(z,y)du
€ L, (92). Moreover, one has

/dm F@WMZ/dm Fwwmz// F(z,y)dpdps.
Q Qo 92 951 Q1 %0

Definition 2.1.13 ([29]). Letp € Rwith1 < p < oo, we set

LP(Q) = {f : Q = R; f is measurable and |f|’ € L' ()}

1 le = 1l = ( /| |f<x>\f’du)’l’.

with the norm

Definition 2.1.14 ( [29]). We set
L>(Q) ={f:Q —R; fismeasurable and 3C : |f(z)| < C a.e. on 1}

with the norm
IfllLe = || flloo = Inf {C; |f(x)] < C a.e. on Q}.
Notation 1. Let 1 < p < oo, we denote by q the conjugate exponent,

11
S4s=1
P oq

Theorem 2.1.15 ( [29]). LP? is reflexive (separable) forany p, 1 < p < 0o (1 < p < o0). L4 is the dual
space of LP.

Theorem 2.1.16 ( Holder’s inequality, [29]). Assume that f € LP(Q) and g € LI(Q2) with 1 < p < oo.
Then fg € L' () and
1f9llLr) < 1 fllr)llgllLao)-

In the particular case where p = q = 2, we obtain Cauchy-Schwartz inequality :
£l ) < [1fllz2@)llgllz2()-

2.1.6  Sobolev spaces

Definition 2.1.17 ( [106]). Let 2 be an open subset of R™ and m € N. We call Sobolev space of order
m and we denote it by H™ (), the set

H™(Q) = {u e L*(Q)/D* € L*(Q), Ya € N*, |a| <m},

14



olely,

where Dy = —5———— is the derivative of order « in the sense of distributions with o = (au, ...

oz{t...0xy"
eN'and|a| =31 o

Some properties of space H"({):

1. We equip the space H™({2) with the dot product

(u, V) gm(Q) = Z (D%, D*v)2,¥ u,v € H™(Q)

|a|<m
and the associated norm

1
2

[ullgm (@) = /(W W) gmey = | Y [ (Du)’dx| Yue H™(Q).

la|<m Q

It is well known that this space is a Hilbert space.

2. Form = 0, H°(Q) = L?(9) and for any m; > ma, we have
H™ (Q) C H™2(Q)) with continuous embedding.

3. Forany m > 0, H™(2) is a separable space and for 0 < m < +oo, H™() is reflexive.

4. For any m > 0, we denote by H(*(£2) the closure of D(£2) in H™(£2) :
H"(Q) = D(Q) in H™(R),

and by H~""(Q2) the topological dual space of Hy"(€2).

5. Thanks to the applications of trace formula, the spaces H{j"(2) can be defined as follows

HM™(Q) = ), P 0w o 1
)y =<ue (Q) anj—,j—,...,m— .
d . .
where a—n is the outer normal derivative of v at I' = 0f2,
ou ou
— = i,V T.
on (z) oz, (z)ni, Vo €

, On)

Theorem 2.1.18 (Poincaré-Friedrich’s inequality, [132]). If Q2 is bounded, there exists a constant C' =

C(92) > 0, such that
ull 20y < ClIVull 2y, Vu € Hg ().
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2.1.7 Bochner spaces

We introduce some spaces that involve time, consisting of functions that map time into Banach

spaces. These spaces will be essential in constructing weak (strong) solutions in chapters 3 and 5.

Definition 2.1.19 ( [26,58]). Let X be a Banach space and T be a strictly positive real number. For
€ [1,4+o0[, we denote by LP(0,T; X), the set of (classes of) Lebesgue measurable functions defined
on |0, T[ and with values in X, such that t — || f(t)|% is integrable on |0, T|. This is a Banach space

1l = 1 loatozos = (/ (e ||pdt)

Similarly, we define, for p = 400, the Banach space L>°(0,T; X ) equipped by the norm

for the norm

1flloe = lflLec0,7,x) = €ss sup [|f(¢)]x < +oc.
te[0,T7]

We define

C(0,7],X)={f1|f:[0,T] = X continuous} ,

and this is a Banach space for the norm

IfIl = Sup. Hf( )lx-

te[0,T

If f is m-times continuously differentiable, we define

Cc™([0,T), X) = {f | fD e (0,1, X) forall ogigm},

is a Banach space equipped with the norm

m

IF=> Sup}\lf(")(t)Hx-

i—1 t€l0,T
Proposition 2.1.3 ([26,87]). Letp € [1,+o0|.
1. If X is reflexive and 1 < p < oo, then LP(0,T; X) is reflexive.
2. If X is separable, then LP(0,T'; X) is separable as well.
3. The dual of LP(0,T; X) is given by L1(0,T; X').

4. C™([0,T], X) is dense in LP(0,T; X).
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We generalise the concept of time derivatives for functions defined on an interval |0, 7] of R and

with values in a Banach space X

Definition 2.1.20 ( [106]). Ler ]0,T[C R and X be a Banach space, we say that D'(0,T; X) is the
distributions space on |0, T with values in X (i.e. the space of continuous linear maps of D(0,T) in
X).

Definition 2.1.21 ( [106]). Ler f € D'(0,T; X) and m a positive integer, we define the derivative of f

of order m, in the distribution sense, by

L R W P
(dtm’@>_( 1) <f’ dtm)’

Definition 2.1.22 ( [58]). The sobolev space WP (0, T; X) consists of all functions w € LP(0,T; X)

such that ' exists in the distribution sense and belongs to LP(0,T; X). Furthermore, we set

(S u@)P + [/ (@) dt) P, (1< p < o),

|ullwro,rx) = ]
esssupog<r(lu()| + v @)]), (p = ).

We write H'(0,T; X) = Wh2(0,T; X).

2.1.8 Compactness result
The result of compactness in Banach-valued functions spaces is given by the Aubin—Lions—Simon
theorem.

Definition 2.1.23 (Continuous embedding, embedding compact, [58]). Let X and Y be two Banach
spaces. We say that X is compactly embedded in' Y, and write X — Y, if

1. X is continuously embedded in Y, i.e. there is a constant C such that

lzlly < C|lz|x,Vx € X.

2. each bounded sequence in X is precompactin'Y, i.e. every bounded sequence has a subsequence

that is Cauchy in the norm ||.||y.

Theorem 2.1.24 (Aubin-Lions—Simon [26]). Let By C By C B be three Banach spaces. We assume
that the embedding of By in Bs is continuous and that the embedding of By in By is compact. Let p, v
such that 1 < p,r < oo. For T > 0, we define

Wi,y = {x e L(10, T, Bo), % e L7(10,T], BQ)} .

1. If p < oo, the embedding of Wy, in LP(]0, T, B1) is compact.

2. Ifp = oo and if v > 1, the embedding of W, in C ([0, T, B1) is compact.

17



2.2 Green’s formula and some inequalities

Definition 2.2.1 ( [132]). An open set () in R™ is said to be m-regular if Q) is bounded and its boundary

I is a C™ manifold of dimension n — 1.

Theorem 2.2.2 (Green’s formula, [132]). Let ) be a regular open set in R™ (for example, ) of class C'*

with I bounded). Then, we have Green’s formula

ov; Ou;
/Qu(m)(a:)dx = —/Qv(:c) (x)dx + /Fu(a:)v(a:)m(a:)da, Vu,v € HY(Q),

T T
where 1; = 1.e; is the i-th coordonnate of n, the outward unit normal vector to T'.

Based on this theorem, the following result follows:

Corollary 2.2.3 ([132]). For any u € H*(Q) and v € H'(Q), the following formula holds:

Au@)o()dz = — [ Vu@) . Vo@dz+ [ Lo(@)do,
k k |a

ou
8$i

0
where Vu = ( ) is the gradient vector of u, and gu _ Vu.n.
0<i<n on

In the sequel, we will review some lemmas and concepts that are commonly used in the discussion

of the existence, uniqueness, and asymptotic behavior of solutions.

Lemma 2.2.4 (Gronwall’s inequality, [106]). Let y € L>(0,T) and g € L'(0,T) be nonnegative

functions and C a positive constant, such that:

y(t) < C+/O g(s)y(s)ds a.e in [0,T],

then, we have for almost all t € [0, T,

y(t) < C exp /0 o(s)ds).

Lemma 2.2.5 (Discrete Gronwall inequality, [79]). Let (y,,) and (g, ) be nonnegative sequences and C

a nonnegative constant. If

Un <C+ D geyk, for n =0,
0<k<n

then,

yn < Cexp ng , for n>0.
0<k<n
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1 1
Lemma 2.2.6 (Young’s inequality, [6]). Let p et q be strictly positive real numbers such that — + — = 1,
p q

then )
Y(a,b) € R2, Ve > 0, ab < —aP + — b,
qer
In particular, we find the Cauchy inequality if p = q = 2
2 2
a b
V(a,b) €RZ, ab< — + —
(a,b) €RL, ab< o + 5
In practice, we use
1
V(a,b) € R% Ve > 0, ab < ca® + 4—b2.
€

Theorem 2.2.7 (Continuous dependence on initial conditions, [78]). Let F' : U C R* x R — R"
be continuous and Lipschitz continuous with respect to the R"-variable, with Lipschitz constant L. Let
(x0,t0), (z§,to) € U and

Doy Pay ¢ [to — &, t0 +¢] — R”,

be solutions of the differential equation x' = F'(z,t) with initial values ¢y, (to) = w0 and @, (to) = xj.
Then:
9o (to) — Paz (to) < llwo — apl|.eH 10l vt € [to — &, t0 + €.

Theorem 2.2.8 (Leibnitz’s rule (differentiation under the integral sign), [68]). Let f(x,t) be a function

defined on a domain where both f and 8—f are continuous. If a(t) and b(t) are differentiable functions

defining the limits of integration, then the derivative of the integral with respect to t is given by:

d b(t) b(t) 6f((L‘ t)
— :r:,tda::/ ——=dzx+ f(b(¢),t
i [, fene= [ e g0,

db(t)
At

da(t)

flalt), )=

2.3 Basic theory of semigroups associated with dissipative systems

We will cover concepts and results pertaining to strongly continuous semigroups of bounded linear
operators on a Banach space.
2.3.1 Strongly continuous semigroups

Definition 2.3.1 ( [121]). Let X be a Banach space. A family S(t), (0 < t < 00) of bounded linear

operators from X into X is called to form a strongly continuous semigroup (in short, a Cy-semigroup)
if

1. S(0) = I, (1 is the identity operator on X).

2. S(tl + tg) = S(tl)S(tg), Vit,te = 0.

3. limy || S(t)x —z|| =0, Vit > 0.
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Theorem 2.3.2 ( [121]). Let S(t) be a Cy-semigroup. There exist constants w > 0 and M > 1 such
that
1S@®)| < Me™, for 0 <t < oo.

Definition 2.3.3 ( [121]). Let S(t) be a strongly continuous semigroup of bounded linear operators.
The linear operator A defined by

S(t)x —

D(A) ={z e X: lim ‘ exists }

t—0

and S(t
():tc—337 for © € D(A)

Az = lim
t—0
is called the infinitesimal generator of the semigroup S(t).
Notation 2. We also denote S(t) by e\,
Theorem 2.3.4 ([121]). Let S(t) be a Cy-semigroup and let A be its infinitesimal generator. Then

l. Forz € X, fot S(t)xdr € D(A) and

A < /0 t S(T)xdT) — S(t)r— .

2. Forz € D(A), S(t)x € D(A) and

d
£S(t)x = AS(t)r = S(t)Ax.

2.3.2 The Lumer Phillips Theorem
Definition 2.3.5 ( [121]). S(t) is called a Cy-semigroup of contractions if
S(t) <1, Vt > 0.

Definition 2.3.6 ( [102]). Let H be a real or complex Hilbert space equipped with the inner product (, )
and the induced norm ||.||. Let A be a densely defined linear operator on H, i.e. A: D(A) C H — H.
We say that A is dissipative if for any x € D(A),

Re(Az,z) < 0.

Theorem 2.3.7 (Lumer-Phillips, [102]). Let A be a linear operator with dense domain D(A) in a
Hilbert space H. If A is dissipative and there is a N\ > 0 such that the range R(A\oI — A) is H, then A

is the infinitesimal generator of a Cy- semigroup of contractions on H.
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2.3.3 Wellposedness and regularity

Definition 2.3.8 ([121]). Let X be a Banach space and let A : D(A) C X — X be a linear operator:
Given ug € X, the abstract Cauchy problem for A with initial data u consists of finding a solution

u(t) to the initial value problem
u'(t) = Au(t), t > 0,
u(0) = up,

(2.2)

where by a solution we mean that u(t) continuous for t > 0, continuously differentiable and u(t) €
D(A) fort > 0 and (2.2) is satisfied.

Note that since u(t) € D(.A) for ¢ > 0 and u is continuous at ¢ = 0, (2.2) cannot have a solution for

Theorem 2.3.9 ([118,121]). Let A generates a Cy-semigroup on X. Then the function u(t) = S(t)ug
solves (2.2) for any given ug € D(A).

2.4 The Standard finite-element method in R

Although the existence, uniqueness, and stability of generalized solutions for partial differential
equations (PDEs) can be demonstrated theoretically, analytical solutions are often unattainable for cases
involving complex data and domains. As a result, numerical solutions become essential. These solutions
are derived by substituting the generalized solution spaces with finite-element (FE) spaces constructed
by piecewise interpolating polynomials. Consequently, it is crucial to first address the subdivision of the

computational domain, the properties of interpolating polynomials, and their associated error estimates.

2.4.1 (Ritz-)Galerkin method

The weak form of the problem (2.1) is defined within a vector space V' comprising admissible func-
tions. The finite element method fundamentally relies on incorporating this variational structure (the
weak form) into the discretization process. To achieve this, the infinite-dimensional vector space V' is
approximated by a finite-dimensional space V},. The objective is to construct V}, such that the solution
uyp, computed by the computer, is sufficiently close to the actual continuous solution .

At this point, assume that (u;);<j<n(n) represents a basis for Vj,. Then, any u, € Vj can be

decomposed as
N(h)
up = Z Uj(pj (23)
j=1

and we can rewrite the problem as follows:

N(h)
find wp, € Vj, such that Z uja(pj, u;) = Uu;), i =1,..., N(h).
j=1
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Setting Ay, = a;; with a;; = a(p;, ;) and Fj, = (f;) with f; = [(v;), forall i = 1,..., N(h), we solve
the linear system
AU = F,.

2.4.2 Lagrange P, elements

In order to establish the FE space, it is necessary to divide the computational domain I = [0, L] C R
into some FEs. For the spatial approximation, we introduce a uniform partition (I}); of the interval
[0, L] into M subintervals, such that 0 = z¢p < z1 < --- < xp = L, with a uniform length h =
riy1 — x; = 1/M. Then, to approximate the variational space H'(0, L), we construct the finite-

dimensional space S”, defined as
Sy = {Uh S HI(I) Y [:I,‘i,ajiJrl] € Iy, vh|[xi773i+1] S Pl([l‘i,l’i+1])}

and its subspaces
Sk =Sy HL(I), Sp = S, Hy(I).

Here, h is the spatial discretization parameter, and P ([x;, z;11]) represents the space of polynomials of
degree < 1 in the subinterval [z;, z;1+1]. In other words, the finite element space consists of continuous
and piecewise affine functions (the vector space of the lowest order Lagrange finite elements). In this

special case, the decomposition (2.3) for u;, € S} can be rewritten as

= Zuh(xj)SDj(ﬂf), Vo € [0, L],

where zg, ..., s represent the mesh nodes, which correspond to the vertices of the simplices. The
coefficients to be determined, also known as the degrees of freedom, are directly associated with the
values of the function wj, at each node. The basis functions y, ..., ops are defined as hat functions,

which take a value of one at their corresponding node and zero at all other nodes in the mesh.

2.4.3 Convergence of the method

Definition 2.4.1 (Interpolation, [17,63]). The linear mapping Pj, : H'(0, L) — S}, defined for every
u € HY0,L) as

M
(Ppu)(z Zu (zj)pj(x), Yz €0, L]
and
Yoy, € Sh, ((Phu - U)x; Uh:p) =0,

is called Py interpolation (projection) operator. The P1-interpolate of a function u is the unique piece-

wise affine function that coincides with u at the mesh vertices x; . Furthermore, for every u € H Lo, L),
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the interpolation operator is such that
lim ||u — Ppul| g1 =0.
i oH | b (0,L)

Lemma 2.4.2 (Interpolation error, [17,63]). The operator Py, preserves the values at all end points of
the elements in T}, and satisfies the following estimate for all u € H'(0, L):

[Phu = ul| < Chllug|| (2.4)
and for more regular functions u,
1Phu = ull + Al (Pru — w)al| < Ch?||ugs), (2.5)

where C'is a constant independent of h.
Now, we can establish the convergence of the finite-element method.

Theorem 2.4.3 (Convergence, [17,63]). Suppose that u € H}(0,L) and uy, € V). The Lagrange Py

finite-element method converges, i.e. we have:

}Liﬂ%”“ —unll g0,y = 0

The operators
P):H}(0,L) — S, P;: H(0,L) — S}

have similar properties.

2.4.4 Non-stationary PDEs

For non-stationary partial differential equations, time discretization involves more than just ensuring
accuracy (method order). It also requires careful consideration of stability, dissipation, and dispersion
(including spectral resolution and phase deviation, which are crucial for wave propagation) and all the
computational aspects such as runing time, memory usage, scalability, and, increasingly, the energy cost
of performing the simulation play a significant role.

In the next chapters, to discretize the time derivatives for a given final time 7' > 0 and a given
positive integer N, we define the time step At = T'/N and the nodes ¢, = nAt,n =0,...,N.

2.4.5 Numerical errors

The finite-element discretization (the discrete problem) can be applied to practical problems and
reformulated as a linear system (see [62]). At this stage, a computer can be used to solve it. The resulting
vector of nodal unknowns, U may slightly deviate from the theoretical (exact) vector U mentioned above

and that serves to reconstruct uy,. The difference between U and U is called the numerical error.
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2.4.6 Numerical illustration

Numerical simulations can be performed using MATLAB. The MATLAB scripts outlined in [92]
provide a comprehensive understanding of all implementation aspects while minimizing technical com-

plexities and keeping close to the mathematical theory.
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Chapter 3

Analysis of a Shear beam model with suspenders in thermoelasticity of
type III

3.1 Introduction

A cable-suspended beam is a structural design comprising a beam that is upheld by one or more
cables. These cables have the dual role of bearing the beam weight and preserving its shape to en-
hance stability and provide additional support. Cable-suspended beams find applications in a range of

engineering contexts, including cable-stayed bridges and suspension bridges [113].

In this chapter, we address a thermomechanical problem associated with a cable-suspended beam
structure, exemplified by the suspension bridge. The key characteristic of this structure is that the
roadbed sectional dimensions are significantly smaller than its length (span of the bridge). Suspension
bridges with large span lengths exhibit higher flexibility in comparison to alternative bridge structures.
This increased flexibility renders them vulnerable to various dynamic loads, including wind, earth-
quakes, and the movement of vehicles. The distinctive structural features of suspension bridges elevate
the significance of understanding their dynamic response to oscillations, presenting a crucial engineer-
ing challenge. Therefore, we model the roadbed as an extensible thermoelastic Shear-type beam. The
primary suspension cable is represented as an elastic string, and it is linked to the roadbed through a dis-

tributed network of elastic springs. Our model aligns with the configuration of a Shear-suspended-beam
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system within thermoelasticity of type III, as described in the following problem:

¢

put — QUgy — A (@ —u) + pug = 0, in (0, L) x (0, 00),
proe — K (0r + 1), + A —u) + v
+802 = 0, in (0, L) x (0, 00),
—bze + K (2 + 1) =0, in (0, L) x (0, 00),
p30tt — 00z + Bpatt — Kbzze = 0, in (0, L) x (0, 00),

(3.1)
u(0,t) = u(L,t) = (0,t) = p(L,t) = 0, t >0,
¥(0,t) = ¥(L,t) = 6(0,t) = 6(L,t) =0, t >0,
u(z,0) = uo(x), u(z,0) = ui(z), x € (0, L),
e(x,0) = po(x), ¢i(x,0) =p1(z), x € (0,L),
0(x,0) = bp(z), 0¢(x,0) = 61(z), z € (0,L).

Here, the symbol ¢ represents the time variable, while x denotes the distance along the centerline of
the beam in its equilibrium configuration. Both L and the beam length coincide with the cable length.
Within this framework, we use the following notations: u represents the vertical displacement of the
vibrating spring in the primary cable; ¢ is the transverse displacement or vertical deflection of the beam
cross-section; ¢ denotes the angle of rotation of a cross-section; while 6 is employed to represent the
thermal moment of the beam. We consider the suspender cables (ties) as linear elastic springs with a
shared stiffness parameter A > 0, and the constant & > 0 defines the elastic modulus of the string that
connects the cable to the deck. The constants p, i, p1, p3, K, ¥, 9, K, §, and 3 # 0 are positive. The

initial data, denoted as (ug, u1, @0, ¥1, 0o, 01), belong to an appropriate functional space.

For many years, there has been substantial research interest in the dynamic behavior and nonlinear
vibrations of suspension bridges [2,3,5,48]. Suspension bridges are complex structures with distinctive
dynamic characteristics and they can display nonlinear responses to various external forces and loads.
This nonlinearity may stem from factors such as large-amplitude vibrations, material properties, and
environmental conditions. The appearance of string-beam systems that model a nonlinear coupling of
a beam (the roadbed) and main cable (the string) were came out of the pioneering works of Lazer and
McKenna [95,96]. Elimination of nonlinear coupling terms in the equations of motion governing vertical
and torsional vibrations of suspension bridges is achieved by linearization, as indicated in reference [1].
Previous approaches have often employed models where the roadbed was based on the Euler-Bernoulli
beam theory [21-24]. The Timoshenko beam theory also has demonstrated superior performance in
anticipating the vibrational response of a beam compared to a model grounded in the classical Euler-

Bernoulli beam theory [77].

It’s worth noting that the Euler-Bernoulli beam theory and the Timoshenko beam theory are two
different approaches to modeling the behavior of beams. The Euler-Bernoulli beam theory assumes

that the beam is slender and that the cross-section remains plane and perpendicular to the longitudinal
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axis of the beam during deformation. This theory is suitable for modeling long and slender beams that
are subjected to bending loads. On the other hand, the Timoshenko beam theory takes into account
the effects of shear deformation and rotational bending, which makes this theory more accurate for

analyzing short and thick beams.

The Euler-Bernoulli beam theory, used to represent the single-span roadbed, neglects the effects of
shear deformation and rotary inertia. These effects can be taken into account by using more accurate
models, such as the Timoshenko beam theory to have a deeper range of applicability and to be physically
more realistic [13,94]. Bochicchio et al. examined a linear problem that characterizes the vibrations
of a coupled suspension bridge [20]. In their analysis, the single-span roadbed is represented as an
extensible thermoelastic beam following the Timoshenko model, with heat governed by Fourier’s law.
They demonstrated the existence and uniqueness of solutions by using the semigroup-theory and the
exponential decay property by employing the energy method. Additionally, they conducted several
numerical experiments to further support their findings. Mukiawa et al. utilized the same methods to
establish the existence and uniqueness of a weak global solution and to demonstrate exponential stability
in a thermal-Timoshenko-beam system [112]. This system incorporated suspenders and Kelvin—Voigt

damping and was founded on the principles of thermoelasticity, as described by Cattaneo’s law.

Almeida Junior et al. [89] and Ramos et al. [129] were pioneers in investigating the well-posedness
and stability characteristics of the Shear beam model. This model constitutes an improvement over the
Euler-Bernoulli beam model by adding the shear distortion effect but without rotary inertia. Conse-
quently, one can analyze long-span bridges, unlike the Timoshenko beam theory, which is better suited
for modeling beams with relatively short spans. This is precisely our focus here — the examination of

the Shear model (3.1) with suspenders and thermal dissipation, given by thermoelasticity of Type III.

The structure of this chapter is outlined as follows. In Section 3.2, we provide some preliminary
information. To demonstrate the global existence and uniqueness of solutions, in Section 3.3, we use the
Faedo—Galerkin method, along with three estimates, previously discussed in references such as [47,97].
In Section 3.4, we employ the energy method to construct several Lyapunov functionals, establishing
the property of exponential decay. In Section 3.5, we propose a finite-element-discretization approach
to solve the problem at hand. We obtain discrete stability results and a priori error estimates. Finally, in

Section 3.6, we present some numerical simulations using MATLAB.

Throughout the chapter, C is used to represent a generic positive constant.

3.2 Preliminaries

In order to exhibit the dissipative nature of system (3.1), we introduce the new variable (heat dis-

placement)

t
w(z,t) = /0 0(z,s)ds + n(x), (3.2)
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where 7)(z) solves
AN = p3by — KAy + BV - o1,

1(0) = n(L) = 0.

Performing an integration of (3.1), with respect to ¢, we get

t t t t
o3 / Ouds — & / Orads + / onds — & / Orardls = 0,
0 0 0 0

taking into account (3.2), we arrive at

(3.3)

P3Wtt — p301 — (5wm — (SAT]) + /BQOH — ,BV *P1 — RWgat + HAGO =0.

Then (3.3) gives
p3wi — (0Wgy — OAN) + Bt — KWyyr — AN = 0.

The last equation leads to
P3Wt — Wz + Bzt — KWeat = 0,

and problem (3.1) takes the form

pup — Qgy — A (@ —u) + pug = 0, in (0, L) x (0, 00),

prow — K (pz + 1), + A (0 = u) + v + Bwge = 0, in (0, L) x (0, 00),

gz + K (02 +9) =0, in (0, L) x (0, 00),

P3Wit — OWgy + BPat — KWepe = 0, in (0, L) x (0, 00),

u(0,t) = u(L,t) = p(0,t) = p(L,t) =0, t >0, (3.4

)
¥(0,t) = Y(L,t) = w(0,t) = w(L,t) =0, t >0,
u(z,0) = uo(z), w(z,0) =wi(z), z € (0,L),
p(,0) = po(z), ¢i(z,0) = @i(x), = € (0, L),
w(z,0) = wo(z), wi(x,0) =wi(z), z € (0,L).

Lemma 3.2.1. Let (u, ¢, 1, w) be the solution of (3.4). Then the energy functional E, defined by

1 L
Et) = / {pu? +aul + Ap —w) + prg} + K(pa + 9) + b3 + pswi + 6w§}dw (3.5)
0
satisfies
1> L L L
d(t):—,u/ ufdx—y/ cp?dx—/{/ wgtdxg(),‘v’t20. (3.6)
dt 0 0 0
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Proof. We multiply the equations in (3.4) by wu, ¢, ¥4, wy, respectively, and integrate by parts to get

L L L L L
p/ U dx + a/ Uy Ugt AT — )\/ pudx + )\/ uurdr = —u/ u?d:c,
0 0 0 0 0

L L L L
p1 / prprdr + K / Prpatdr + K / Yogrdr + A / pprdr
0 0 0 0

L L L
— )\/ uprdx + B/ Watprdr = —’Y/ ‘P?d‘fa
0 0 0

L L L L
pg/ W dr + (5/ Wap Wi dT + 5/ Priwidr = —H/ w?gtdx-
0 0 0 0

From the above four equations, we conclude

1d L 1d L
Sd (p/o u?dm) + > d <a/0 uidm)
1d L L L
+ = (x\/ u2dm> — )\/ purdr = —u/ ufdm,

3.7

(3.8)

1d b/sz?dx +1i K/L¢2dm +K/L Ypdr =0 (3.9)
2dt \" ), ¥* 2dt \"* J, , et =1 '

1d L ) L 1d L ) L )
2 <p3/0 wtdw> —i—ﬂ/o goxtwtdac—i—i% (5/0 wxd:v) = —/i/o wyde. (3.10)

Adding (3.7)—(3.10), we obtain

1d [t
th/ {p“? +au + M —u)? + prg? + K(pp +0)% + 002 + pswi + 6w§}da:
0

L L L
= —,u/ ulde — ’y/ o2dr — Fd/ w?,de,
0 0 0

then (3.6) holds. These calculations are done for any regular solution. Nonetheless, the same result

holds valid for weak solutions by using density arguments. O
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3.3 Global well-posedness

In this section we prove the existence and uniqueness of regular and weak solutions for system (3.4)

by using the Faedo-Galerkin method.

Theorem 3.3.1. 1. If the initial data ug, po, 0, wo € HZ(0,L) and uy,p1,w; € L?(0, L), then

problem (3.4) has a unique weak solution satisfying

u, o, w € C([0,T], H (0, L)) n C([0, T, L*(0, L)), v € C([0,T], H} (0, L)). (3.11)

2. If the initial data ug, po, o, wo € H2(0,L) N HE(0, L) and uy,p1,w; € HL(0, L), then the
weak solution (3.11) has higher regularity:

u,,w € C([0,T], H*(0, L) N Hy(0, L)) N C*([0, T], Hg (0, L)) N C*([0, T1, L*(0, L)),
v € C([0,T], H*(0, L) N Hy (0, L)).
Proof. We prove the result in six steps.

Step 1: approximated problem. Suppose that ug, ©o, %o, wo € H2(0, L) N HE(0, L), u1, ¢1, w1
€ HJ(0,L). Let {v;};y be a smooth orthonormal basis of L?(0, L), which is also orthogonal in
H?(0,L) N H}(0, L), given by the eigenfunctions of —v,, = cv with boundary condition v(0) =
v(1) = 0, such that

—Vigz = SiVj. (3.12)

Here g; is the eigenvalue corresponding to v;. For any m € N, denote by V,,, the finite-dimensional
subspace

Vi = span {vy,va, ..., v} C H*(0, L) N H(0, L).

To construct the Galerkin approximation (u, ™, ¥, w™) of the solution, let us denote

u™(t) = gim(E)vi, @7 (1) =D Gim(t)vi,
=1 =1

) =Y fim(Evi, w(E) =D fim(t)vi,
=1 =1
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where functions g;;m, Gim, fim, fzm are given by the solution of the approximated system

[ p(ufp (£), 03) + o (1), vie) = A@™ (£) — w™(£), ) + p(uf” (), 03) = O,
pr(eif (1), vi) + K (@' () + ¢ (1), via) + Mp™ (£) — w™ (1), vi)
+ (et (8) , vi) + Bwgi(t), vi) =0, (3.13)
by (), viz) + K (93 () +9™(t),vi) = 0,
p3(wit (1), vi) + 0 (wi (t), vie) + B3 (1), vi) + K(wgi(t), vie) = 0,

with the initial conditions

u™(0) = ug =Y (g, vi)vi “—>ug in H*(0,L) N Hy(0, L), (3.14)
=1
©™(0) = @f" =Y (0, vi)vi "= g in H*(0,L) N Hy(0, L), (3.15)
=1
P™(0) = v =) (o, vi)vi > g in H2(0, L) N Hy (0, L), (3.16)
=1
m
w™(0) = wi’ =Y (wo, v:)v; “—> wo in H*(0, L) N Hy (0, L), (3.17)
=1
ui*(0) = uf* = Z(ul,vi)vi D% wy in HY(0, L), (3.18)
=1
P(0) = @7 = (1, v:)vs “==5 1 in Hy(0, L), (3.19)
=1
wi(0) = wi" =Y (wi, vi)v; == wy in Hy(0, L). (3.20)
=1

The system (3.13) can be rewritten as

ggm + (i + A)Gim — AGim =0,
PGim + 10181 + (K G + N)Jim — Agim

+ B8 (Wjarvi) fym = K (vja, v3) fjm,

i=1 ” i=1 (3.21)
(bsi + K) fim + KZ(sz,vi)Qjm =0,
Jj=1
. R R m
p3fim + ki fim + 051 fim + B> (Vjas 03)§m = 0.
j=1
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The third equation of (3.21) gives

K & .
fim = — — ;(vﬂ, V) jm, (3.22)

then, we have

(
PGirn + 1G5 + (0 + X) gim — Agz-m =0

P15+ (S + N)gim — Agim + B Z Vi > Vi) Fjm,

7j=1
" K? (030, 0) (010, 073 (3.23)
= - g ] Jxs Vi kx> Vj)9km;
oy bej + K

m
ps fim + 66l + 06 fim + B (Vs v3)m = 0.
=1
Using the theory of ODEs, the problem (3.23) has a unique solution (gim, Gim, fim) € (C2[0,T)))3.
Then, from (3.22) we deduce that fi,,, € C%[0,T;,). As aresult, system (3.13)—(3.20) has a unique local

solution (u™(t), ™ (t), "™ (t),w™(t)) defined on [0, T},) with 0 < T;,, < T'. Our next step is to show
that the local solution is extended to [0, 7’| for any given 7" > 0.

Step 2: first a priori estimate. Multiplying (3.13);, (3.13),, (3.13); and (3.13)4 by ¢/,.,, G f1, and

m

2
! - respectively, and taking the L inner product to get

p(uy (1), Gim (E)vi) + (Ui (), Gim (E)viz) = M@™ () = U™ (1), G, (t) i)
+ p(ug® (t), gim (t)vi) = 0,

pL(tt (8), Gim (£)0i) + K (D7 (1) + 9™ (1), Gimn ()via) + A" (£) = u™(t), Gl (t)v5)
+ (" (), Gim (D)vi) + B(wit(t), Gign ()vi) =0,
b(why" () s fim (D)via) + K (7' (t) + 9™ (1), fim (t)vi) =0,

p3(Wif (1), fl ()01) + S (Wi (8), fim (E)via) + BILE(E), fiim (E)03)
+ KW (), fim ()iz) = 0.

Next, summing up over ¢ from 1 to m, to obtain
utt Z gzm Ul + Oé ;n Z gzm UZI‘ - ((70 (t) - um(t)’ ggm(t)vi)

t) ,Zgém(t)vi) =0,
i=1
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pr(ppy (¢ Zgzm (H)vi) + K (£ (8) + ™ (1) Zg@m Jviz)
=1

+ )‘(me(t) —u™ Zgzm vl) + ’V (pt Zgzm Ul + ﬁ zt Zgzm vl - 7

=1
) f, sz + K ( ( ) + d}m )
=1
,03(“4?@),2]6 ( )vl)+5 Zfzm UW +5 @xt 7Zf,
i=1 =1 =1

W0, 3 Fon(t)via) = 0.
=1

Then, we have

(

p(ufp (), af" (1)) + alul (£), wlh(1)) — Ap™ (£) — u™(t), uf"(1))
+ " (1) (1) = 0,
PLEE (), @7 (1)) + K (97 (8) + 0™ (1), €13 (6) + A (1) — u™ (1), ¢ (1))
A (1), 97 (8) + B (D), ¢ () = 0,
b (8) ) + K (¢ (2) + $™(8), 0") = 0,
P (Wi (), Wi (1)) + S(wi (£), wih(8)) + B(em(£), wi (£)) + w(wh(t), wih(t)) = 0.

(3.24)

Taking the sum of the resulting equations in (3.24) and using integration by parts, with a similar way to

the proof of lemma 3.2.1, we obtain

d(p, m 2, Oy oy 2 Al m m 2, Pl m 2
— | = — — — t -
= (Ll @1 + S I + Slle™ @) = w1 + Sl @)

K b o
+ Slem® + @1 + SIE O + 2l @I + Sler@l?) G2
+ulla" O+l (O + wllugy )] = 0.

Integrating (3.25) over (0, ¢), we find

t t t
(1) + /0 g (s)|Pds + /0 lom (s)|%ds + /0 lum(s)2ds = E70),  (3.26)
where

E(t) = %(ﬂll%”(t)ll2 +allug () + Alle™ () = «™ @)1 + pulleo (0)]

+ Kl (1) + ™ O + 0l 01 + psllwi (0] + 5IIwZ‘(t)II2>-
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From (3.26), we deduce that there exists C, independent of m, such that
EM() < EM0) < C, t>0. (3.27)
Consequently, we have

g (17 + g @)1 + ™ (t) = u™ @) + [l ()

(3.28)
+ 9 (6) + 0™ O + [ O + [[w* O + wg @)l < C, t >0

The estimate (3.28) implies that the solution (u", ¢, "™, w™) exists globally in [0, o) and, for any
m € N,
u™, @™, Y™, w™ are bounded in L>(0,T; H}(0, L)), (3.29)

ul®, o, w are bounded in L>(0,T; L*(0, L)). (3.30)

Step 3: second a priori estimate. Taking the derivative of the approximate equations in (3.13) with
respect to ¢, we get

[ (i (), vi) + a(ulh(t), vie) — A (E) — ™ (£), 05) + p(uff (1), vi) = 0,
p1(p(t), vi) + K(ogi(t) + ¢7" (1), via) + M@y (t) — i (1), vi)
+(pi (t),vi) + Blwgiy, vi) =0, (3.31)
b(Yg (1), via) + K (33(t) + 97" (1), vi) = 0,
L p3(wiz(t),vi) + 0(wiii(t), via) + Bl (1), vi) + (Wi, via) = 0.

Multiplying (3.31);, (3.31),, (3.31); and (3.31), by g . ¢/, f and f

im respectively, and summing

zm’

up over ¢ from 1 to m, it follows that

,

pluty (1), uhy (1) + o(ugi(t), wit, (£)) — M@ () — wi (), uii (t))
+ plugf (8) , ugi (1)) = 0,
pi(eii(t), et (1) + K (@pi(t) + 07" (1), @it () + Ao (1) — wi" (), ot (2))
+ (it (), 17 (1) + Blwgye, ¢t (1) = 0,
bz (), i (1) + K (@i () + 41" (8), ¥ (1) = 0,
p3(wig (1), wiit (1) + 6 (wii(t), wig (1) + Bleyu(t), wit (1) + k(wiy, wii(t)) = 0.

(3.32)

From (3.32), we infer that

(3.33)
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li m 2 L m m m T m 2
5 dt (Plu% @)l >+K/0 (@t (t) + 7" () e (B)dz + ][0 (D)

>

L L
+ /O (07" () — " (1)) i () dw + ﬁ/ Wyt () () dz = 0,

2dt (le/}‘”t( H +K/ Oy (t) + " () )y (t)dx = 0,

2dt 2dt

Adding up (3.33)—(3.36) and using integration by parts, we obtain that

d

P 9 9 A 2, Pl 2
g(gHU’{?(t)H + 5wz (@)l +§H<P§”(t)—UT(t)H + 5 et @]

K b 5
+ 5 1€ + 9 O + Sl @) +2 || I+ §Hw2’i(t)||2)
+ ullug (D17 + Al (O + %mett(t)llz = 0.

Now, integrating (3.37) over (0, t), yields

t t t
EP (1) + 1 /0 gz ()] 2ds + /0 o (s)|%ds + /0 ()] ds = £§°(0),
where

m 1 m m m m m
&) =5 <pHutt O + allugy (O + Al (8) = u O + prllegr (]

+ Kl () + e (O + bl ()17 + psllwif (0% + 5Hw2’i(t)ll2)-

Thus, there exists C' independent of m such that
EN) KEM0)KC,t=0
and, consequently,

gy (D17 + Ny (O + i (8) — wi O + [l (D]
+ i () + 9 O + [ @O + w61 + [wgi ()] < ©

and, for any m € N, we have
wl, o, ™, wi™ bounded in L>(0,T; HE (0, L)),

wlr, oM wi bounded in L>(0,T; L*(0,L)).
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22 (sl @17) + 3 5 (slumml?) + 8 / (i (da + kw0 = 0.

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)



Step 4: third a priori estimate. Replacing v; by —v;z, in (3.13) and multiplying the resulting equa-

tions by ¢/, Gt fi, and fZ , respectively, summing over ¢ from 1 to m, we obtain that

;

—pugg (8), wiy (1) — a(ug (1), use (1)) + Ale™ () — u™

—p1(it (1), e (1)) — K (@' () + ™ (1), Pl (1)

= (" () 5 P (1) = Blwii(E), P (1)) = 0,
—=b(Y5" (), irzae (1) — K (03" (8) + ¢ (2), iz (1)) = 0,
—p3(wiy (t), Wiy (1)) — 0wy (£),wiizer (1) — Bt (1), wirze (1))
\ — r(wyy(t), Wi (1) = 0,

using integration by parts with the fact (3.12), gives

1d m 2 m, m1L 1d m 2
5 (P ®1?) + as ] + 5 2 (allu(0)]?)

L
A / (G (8) — u™ (1)) u™ (s + ™ (D)2 = 0,
0

1d
2dt

L
Al ]2 4 A /O (P () — u™ (1) () — B / D (£)di = 0,

L
(Pl OIF) + Kl + 0™l + K [ (G0 + 02 (0)¢he(t)da

1d
dt

b [y + 5 (BlemIP) - K /0 (2 (1) + 0™ (6) iy (D) dz =,

T3
;jt (psllwm( )H2) b [l + L 57 (5” W (t )H2>

+8 /0 e (i (t)d -+ s [wiufIE + (1) = 0.
Taking the sum of (3.44)—(3.47), one has

m d 2 anm 2 é m _.m 2 & m 2
&3'(t) = dt( luzt D" + 5 lluza O + 5 llea"(t) = wa* O + S llem @)l

m m 2 b 2P3 9 O m 2
+5me(t)+ww O + S lvaa O 5 llwat (@) +5llwm(t)ll)
+ ulluZt (17 + yllem @1 + mllw, ()11,

a simple integrating over (0, ¢), leads to

t t t
EP(t) + 1 /0 i (s)]1%ds + /O I (s)12ds + /0 [ (5)|%ds = £§°(0),
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(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)



where

m 1 m m m m m
&' (1) = *(Pl!uxt(t)HQ +allugy (O + Al (8) = ug O + prllegi (O]

2
+ K[| (8) + L5 (0N + bl (O] + pallwii (D)1 + 5||w236(t)|!2>-
Then, there exists C, independent of m, such that
E(t) <&M0)<C,t =0,

which entails that

2 2 2 2
luze N + luze DN + ez () — w1 + em @

m m 2 m 2 m 2 m 2 (350)
+ llpze®) + 2 O + 1Y@ + w1 + [lwze@)]” < C.
Therefore, for all m € N, (3.50) implies that
u™, @™, ™, w™ are bounded in L>(0,T; H*(0, L) N H(0,L)). (3.51)

Step 5: passage to the limit. Thanks to (3.41), (3.42) and (3.51), and up to a subsequence, we have

;

u™ —*u in L®°(0,T; H*(0,L) N HL(0, L)),
u® —~* uy in L>(0,T; HL(0, L)), (3.52)
\ug —* g in L>(0,7T; L?(0, L)),

©™ =% in L>®(0,T; H(0,L) N H}(0, L)),
e —* ¢, in L*>(0,T; H}(0,L)), (3.53)
\%? —* pu in L>(0,T; LQ(O,L))7

Y™ —*4p in L°°(0,T; H?*(0,L) N H(0, L)),
Pt ="y in L=(0,T5 Hg (0, L)),

(3.54)

w™ —*w in L*°(0,T; H?*(0,L) N H(0,L)),
w® —*w;, in L=(0,T; HL(0, L)), (3.55)
wi —=* wy in L>(0,T; L2(0, L)).

The embedding H?(0, L) N H (0, L) in H}(0, L) is compact. Note that if we let By = By = H{ (0, L)
and By = H?(0, L)NHZ (0, L) in Aubin-Lions—Simon Theorem 2.1.24, then we get that the embedding
of Woo 0o in C(]0, T[, HL(0, L)) is compact, where

Woo o = {u™: u™ € L*(|0,T[, H*(0, L) N H{(0, L)), uj® € L>=(10,T[, Hy(0,L))} .
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Now, from (3.52), we deduce that u'" is bounded in W « and, therefore, we can extract a subsequence
(u”) of (u™) such that
u’ — u in C([0,T], H3(0,L)). (3.56)

Similarly, we obtain
W — ¢ in C([0,T], Hy(0, L)),

p” — ¢ in C([0,T], Hy(0, L)),

w” — w in C([0,T], Hj(0,L)).
Since the embedding Hi (0, L) < L?*(0, L) is compact, going back again to the compactness Theo-
rem 2.1.24 with By = H}(0,L), By = By = L?(0, L) and x = u}", gives

uy — u; in C([0,T), L*(0, L)), (3.57)
where here (u}) is a subsequence of (u;"). Similarly, we find

thy — Pt in C([O¢T]aL2(O7L))7

w! — w; in C([0,T), L*(0, L)).

On the other hand, note that, by using
—uY, = cu” and C([0,T],H}(0,L)) c C([0,T],L*(0, L)),

then (3.56) yields
u’ — u in C([0,T], H*(0,L) N Hy(0,L)).

Now, making use of (3.56) and (3.57), respectively, with the dominated convergence theorem, we arrive

at
V—00

lu” = ulleqom,mi0,L) — 0

and
V—00

lwf — wtllcom,22(0,0)) — 0.
Differentiating under the integral sign (Leibnitz’s rule) gives

||utV—UtHc([o,T],H(}(O,L)) 20

and

v V—00 0
lwie — utelloo,m,L20,0)) — 0s

which implies that
uf — uy in C([0,T), Hy (0, L)),
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u¥, — ug in C([0,T), L*(0, L)).

The same arguments are applied to ¢”, ¢y, ¢}, ¥Y, w”, wy and wy,. With these limits, we can pass to

the limit of the terms of the approximate equations in (3.13) to get

(g (8), 0i) — (uee(t),00), (ug(t), viw) — (ua(t), via),

(@7 () = u”(8),v) —> (p(t) — u(t), vi), (ug (£),0i) — (ur (), vi),

(1 (2), vi) — (pu(t),vi), (o(t) + 97 (1), vie) — (0a(t) + (1), via),
(0" (t) — w’(t),v:) — (p(t) —ult),vi), (@] (), vi) — (e (t) ,vi),
(th(t)’Ui) — (wzt(t)vvi)v

(V7 (8) s vie) — (Y (1), viz), (95 (8) + 97 (1), 05) — (pa(t) + (1), vi)

and

(wip(8), vi) — (Wi (t), vi), (W (1), vie) — (wa(t), Vi),

(e (), 0i) — (Par(t), vi), (wy(t), via) — (Wt (1), via)-

From the above limits, we conclude that

[ p(uas(t), v:) + a(ua(t), via) — Ao (£) — u(t), v3) + (g (1) ,05) = 0,
pr(pu(t), vi) + K(@z(t) + (1), via) + Ao (t) — u(t), v:)
+ (et (), vi) + Blwae(t), vi) =0,
b(th (1), via) + K (2(t) + ¥(t),v:) = 0,
L3 (wie (), vi) + 0w (t), vie) + Bt (t), vi) + K(wae(t), vig) = 0.

Using the density of {v;},. in H(0, L) N H{ (0, L), we obtain

[ (), v1) + (1), v10) — Ap(t) = u(t), v1) + (g (£) ,01) = 0,
p1(pr(t), v1) + K(@x(t) + ¥ (1), vie) + Ae(t) — u(t),v1)
+ (e (1), v1) + Blwae(t),v1) = 0,
(s (1), v12) + K (02(t) +9(t),v1) = 0,
p3(wir(t),v1) + 0(wz(t), viz) + B(pat(t), v1) + K(we (1), v12) = 0,

for any vy € H%(0,L) N HZ (0, L). Therefore (u, ut, ©, ¢, ¥, w, wy) is a strong solution of (3.4).

Step 6: continuous dependence and uniqueness. Let (u, uy, ©, @r, ¥, w, wy) and (@, G, @, Gy, 1, W, Wy)
be strong solutions of problem (3.4). Then,

(U, U, A, Ay, X,0,0;) = (u— @, up — g, @ — Py 1 — Pty 0 — U, w — b, wy, — )
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satisfies
pU (x,t) — aUyzy (z,t) = A(A = U) (z,t) + pUs (z,t) = 0, (3.58)

p1lhu (2,1) — K (Mg + X), (2, 8) + MA = U) (2,8) + yAs(2,t) + fOu(z,t) = 0, (3.59)
b Xy (2,8) + K (A + X) (z,1) = 0, (3.60)
p3O0u(z,1) — 6Oz (x,t) + BAL(x, t) — KO gy (,t) = 0, (3.61)
with the initial data
U(0) = u(0) — a(0), U(0) = u(0) — @ (0), A(0) = (0) — &(0), Ae(0) = 1(0) — :(0),
X(0) = 4(0) = ¥(0), ©(0) = w(0) = w(0), ©:(0) = w;(0) — w(0).
Repeating exactly the same arguments used to obtain the estimate (3.6), we get

dE(t)

5 = o2 = A = Rl (3.62)

Integrating (3.62) over (0, ¢), we conclude that

E(t) < CTE(O)a le [OvT]a
for some constant C7 > 0, which proves the continuous dependence of the solutions on the initial data.
In particular, the strong solution is unique.

To demonstrate the existence of weak solutions, Let us consider the initial data ug, g, Yo, wo €

HZ(0,L) and uy, 1, w1 € L?(0, L) in the approximate problem (3.13). Then by density, we have

. 1
U(T)n,SO()nﬂﬁgL»w()n — an@va()?wU m HO (OaL)a

1,¥1 Wy —>u1,<,01,w1 mn ( ) )

Repeating the same steps used in the first estimate, following the same procedure already used in the
uniqueness of strong solutions for (U™, U™, A™ A", X™ 0™, 0}") = (u™ — o™, uj* — a”, ™ —
oM ol — ot Y™ — 1;, w™ — W™ wi* — w;") and taking into account the convergences (3.63), we
deduce that there exists u, ¢, v, and w such that

u™ — u in C([OvTLH&(Ov L))7

Y™ — ¢ in C([0,T], Hy(0, L)),
™ — ¢ in C([0,T], Hy(0, L)),
w™ — w in C([0,T], H}(0, L)),

w® — uy in C([0,T],L3(0, L)),
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(70? — Pt in C([O,T],L2(O,L)),

w — w in C([0,T],L*(0,L)).

The uniqueness is obtained making use of the well-known regularization procedure, as presented in [97,

Chapter 3, Section 8.2].

3.4 Exponential stability

O

The main focus of this section is to prove the following stability theorem for regular solution, since

the same occurs for weak solution using standard density arguments.

Theorem 3.4.1. With the regularity stated in Theorem 3.3.1, the energy E(t) decays exponentially as

time approaches infinity, that is, there exists two positive constants, og and o1, such that

E(t) < ope™ ™ ¥Vt > 0.

(3.64)

We begin by proving some important lemmas that will be essential to establish Theorem 3.4.1.

Lemma 3.4.2. The functional

Li(t) = /OL (putu + %u2> dr + /OL (,Ouptcp + %<p2> dx

satisfies

dIy (t L L K [t
1(t) g—a/ uida:—)\/ (gp—u)Zdw—/ (0 + ) da
dt 0 0 2 0

b L L L L
— = / Vidr + p/ ulde + py / idr + C / w?,da.
2Jo 0 0 0

0
Proof. Multiplying (3.4), by u, using the fact that uyu = a(utu) — u?, we obtain

pupt — Qg — A (@ — u) u + pugu = 0.
That is,

pﬁ(utu) — pu? — gz — (@ —u)u + pugu = 0.

Integrating by parts, we get

dt Jo
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d L L L L L
(putu + §u2) dr — p/ uldx + a/ uldr — )\/ (p — u)udr = 0.
0 0 0

(3.65)

(3.66)



0
Similarly, multiplying (3.4), by ¢, using the fact that pp = E(cptgo) — 2, we have

p1owe — K (pz + 1), 0 + A0 —u) o + yprp + Bwgrp = 0;

ie.
B
P17, (#10) = p19; — K (9o + 1), 0 + A (0 — u) p + vo10 + Bwgp = 0.

Integrating by parts, one obtains

d L ~ L L
o7 (msotso + gw) dx — p1 / pide + K/ (P2 + V) pod
0 0 0 3.67)
L L 3.
—I—A/ (gp—u)god:z:+,6’/ wyppdr = 0.
0 0
Now, multiplying (3.4); by ¢, it results that
L L
b/ Yida + K/ (¢z + )pdx = 0. (3.68)
0 0

Adding (3.66)—(3.68), we arrive at

L

L L
(putu—l- —u )d:c—p/ u?dw—l—a/ uidw—)\/ (p — u)udz
0 0 0

('Ol%(p—i_ SO)Cl:c_pl/ ‘Ptdx‘*‘K/ (pz +P)pudr
0
+>\/ (p—u) goda:—i—ﬁ/ wmtgoda:—kb/ ¢$dx+K/ (¢ + ) da
0
_dt[/o (pum+2u)d:c+/0 (P190t30+ ga)d:c}—p/o utd:z—i—a/o usdr
L L I I
+A/ (w—u)2d:p—p1/ w?dx+K/ (%0x+w)2dx—|—5/ wztgodw—l—b/ V2dz.
0 0 0 0 0

Then, we deduce that

Al (t L L L L
1(t) :p/ ufd:n—oz/ uid:ﬂ—)\/ (go—u)2dx+p1/ @%dfﬂ
dt 0 0 0 0

L L L (369)
— K/ (pz + w)zdx + 5/ wppdr — b/ wgda:.
0 0 0
The fact that ¢, = (¢, + 1) — ¢ leads to
L L L
B/ wpppdr = ﬁ/ wi(pz + V)dr — B/ wghdx (3.70)
0 0 0
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and Young’s and Poincaré’s inequalities yield

5/ wi(pz +)d / P
—ﬂ/OLwtwdx /wxd +5“/0 wlyde,

where ¢, is a Poincaré constant. By plugging (3.71) and (3.72) into (3.69),

dn() _ [ L - -
gp/ uldx — a/ ulde — )\/ (¢ —u)dz + py / i da
dt 0 0 0

2K xtdx

and

K L ) /32 522 b L )
_ = N d stdx — = dx.
2/0(g0+¢) x+<2K+2b /Owtx 2/0 Yodw

2 2C2
Hence, (3.65) is obtained with C; = max { ﬂz Iip’ Bpr }

Lemma 3.4.3. The functional

L K L L
IQ(t) = ,03/ wywdx + 2/ wid:r + ﬁ/ prwdz
0 0 0

satisfies

dI2 5/ w2dr + / ¢wdx+/ (pz + 1) dl‘—|—02/ w?,de.

Proof. Differentiating o, we get

dI-(t L L L
2(t) :pg/ wywdx +p3/ w?daz+ /@/ Wyt W dT
dt 0 0 0

L L
+ B/ prrwdx + 5/ prwidx,
0 0

using (3.4),, integration by parts and recalling the boundary conditions, we obtain

I(t L L g g
d 2( ) = — 5/ wgdx — ,6/ @xtU)d!T - "5/ WyrtWy + PS/ w?dx
dt 0 0 0 0

L L L
+ /-a/ Warwedr + 3 / prrwdr + ﬁ/ prwidz,
0 0 0

then,we conclude that

T L L L
dl>(?) = p3/ w?dw — 5/ widaj + B/ WP dr.
dt 0 0 0
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It follows, by (3.70) and Young’s and Poincaré’s inequalities, that

5/ wi(pz +)d / Pz K / w2 dz, (3.75)
L L 2.2 L
—ﬂ/ wppdxr < b/ Vidx i Cp/ w?,dx (3.76)

L L
p3/ wfda? < ,ogcp/ wgtdaﬁ. 3.77
0 0

By substituting (3.75), (3.76) and (3.77) into (3.74), we arrive at

dIQ (5/ widx + — /wxdx—k/ (¢x + )?
+<ﬁ2b2 ﬁ; >/0 W2

5262 /826
and, hence, obtain (3.73) with Cy, = max 2 Ly Kp . P3Cp ¢ O

and

Let us introduce now the Lyapunov functional
L(t) = NE(t) + Ii(t) + I2(t), (3.78)

where [V is a positive constant to be fixed later.

Lemma 3.4.4. Let (u, p, 1, w) be a solution of (3.4). Then there exist two positive constants, &1 and &a,

such that the functional energy FE is equivalent to functional L; That is,

GE(t) < L(t) < &E(t). (3.79)

Proof. Since
[L(t) = NE(#)| = [1(t) + I2(t)]
L
‘/ puu + u )d:z—i—/o <p130t<,0+ %@2) dx

L L
+ ps3 / wiwdxr + — / widm + B/ prwdzr|,
0 2 Jo 0
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then, we have

L u [r L e
|L(t) — NE(t)] gp/ lugu| do + 2/ u?de + py / lorp| dx + 2/ O’ dx
0 0 0 0

L o L L
+p3/ |wtw|daz+/ wid:n—l—ml/ |opw| dx.
0 2 Jo 0

By using v, = (¢z + ) — ¥, u = —(¢ — u) + ¢, and Poincarés inequality, we get

L L
L) = NEO)| <p [ e~ (o~ w)ldo+ 5 [ utds
0

0

L L
+Plcp/0 !@t(%er)—sOtwlder?vcp/o (92 + )| da
L K L L
o [ fwlde+ 5 [Culdo 18] [ e+ v)e - vulde
0 0 0

Young’s and Poincarés inequalities lead to

L o [T " L
|L(t) — NE(t)] <p/ uldx + 2/ (¢ —u)?dx + 2p/ uldr + plcp/ ©2dx
0 0 0 0

P1Cp g 2 P1Cp L 2 g 2
+T . (%+¢) d$+T ) ¢xd$+(P+7)Cp . (‘Pz+¢) dx

L p3 L p3c L r (T
+(p+ ’Y)C;z,/ Yrdr + 5 widr + =L / wdx + B / w?dx
0 0 0

) 2
L L L
L 18l (sox+¢)2dz+|5|cp/ wgdx+|ﬁ|cp/ Widz;
2 Jo 0 2 Jo

thus,

L e, L o L
|L(t) — NE(t)| gp/ urdx + p/ uldr + / (o —u)dz
0 2 Jo 2 Jo
L 2 P1Cp W‘ 2
+p10p/0 prdr + | —=+(p+7)ep + /O (¢z +¢) dx

2
+<p12p+(p—|—’y) 1Bl ey )/ 2dz + w,?dq;
0
L
P3Cp 2
+< 23 +5\cp)/0 w2dz.

Therefore, we obtain, for some & > 0, that
|L(t) = NE()| < SE(),

which yields
(N = &E(t) < L(t) < (N + ) E(t).
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The estimate (3.79) follows by choosing N large enough.

We are now in position to prove Theorem 3.4.1.

Proof. (of Theorem 3.4.1). Taking the derivative of L(¢) and using Lemmas 3.4.2 and 3.4.3 and the

energy dissipation law (3.6), it follows that

dL(t L L L
()g—Nu/ u%dx—N*y/ (pfdx—N/f/ w2, da
dt 0 0 0
L L K [
—a/ uidm—)\/ ((p—u)zdaﬁ—/ (¢ +¥)da
0 0 2 Jo
b L L L L
— / wid:z—kp/ ufdm—i—pl/ gofd:c—kCl/ w?,da
2 Jo 0 0 0
L b L K L L
- 5/ w2dx + / Yidr + / (po + ) *dz + 02/ w?,de.
0 4 Jo 4 Jo 0
Combining similar terms, we obtain
dL(t L L
()g—a/ u%dm—)\/ (¢ —u)?dz
K L b L 1
—/ (gOa;—i-l/))de—/ 1/1%da:—5/ w?dx
4 Jo 4 Jo 0
L L
—[Nup— p]/O uide — [N~y — Pl]/o i da
1
— [Nk —C1 — (9] / w?,da.
0
Next, we choose N large enough so that (3.79) remains valid and, further,

Np—p>0,
Ny —=p1 >0,
Nk —Cy—Cy > 0.

Thus, for some (; > 0, we have
4L —Q/L{u2+u2 +(p =) + @} + (9 + ) + 97+ wiy +wi} da,
a S . t T t x x xt T
On account of (3.5) and Poincaré’s inequality, we can write that
dL(t)

)« _GEW), Yo,
7 GE(1)
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for some (o > 0. Combining (3.81) with (3.79), we get

dL(t
d§> < —=ML(t), Vt=0. (3.82)

A simple integration of (3.82) over (0, ¢) leads to
L(t) < L(0)e ™!, Vit>0.
Again, recalling (3.79), we easily see that

§E(t) < L(t) < L(0)e ™! < &E(0)e ™ Yt >0,

then
§E(t) < &E0)e ™, vi>0.
Therfore, the theorem is proved with A\g = ?E(O) O
1

3.5 Numerical approximation

Now, we present a numerical analysis of the problem studied theoretically in Sections 3.3 and 3.4.

3.5.1 Description of the discrete problem

We acquire a weak form associated to the continuous problem by multiplying equations (3.4) with
the test functions i, @, 1, w € HJ (0, L), respectively. Let £ = uy, ® = ¢y, U = 1y, and ¥ = wy.
Applying integration by parts and using the boundary conditions, we find that

(66, ) + s, ) — Mp — u,@) + (€, 7) = 0,
o1 (@, @) + K (00 + 1, Ba) + A — 1, 9) + 7(®,8) + B(0as @) = O,
b(trs ) + K (90 + 1,0) = 0,

| 23(Ut, @) + 0(wz, W) + S( P, @) + K(Jz, W) = 0.

(3.83)

In order to define the discrete initial conditions, assuming that they are smooth enough, we set
0 0 0 0 0 0 0 0 0 0 0 0 0 0
uh:Phu07 éh:Phula gph:PhSOO) (bh:Ph(plv wh:Pth)Ov wh:Phw07 ﬁh:Phwl'

When using the backward-Euler scheme in time, the fully finite-element approximation of the variational

47



problem (3.83) consists to find &', ®7, 7, V) € 5’2 such that, forn = 1, ..., N and for all %y, @p, U,
wp, € SO,

n—1

p n = n — n n n
E(fh =&, un) + a(up,, Une) — My — upy, ) + p(&, uan) =0,

(@ — 071, p) + K (@, + U Phe) + A0 — ull, o)
+ (@, @n) + B0, ¢n) =0, (3.84)
bR, ha) + K (0L, + U7, by) = 0,

At

\ At(ﬁm Ot o) + S(wh,, Whe) + B(O,, W) + (O, Why) = 0,

where
up = ul Tt ALER, of = o AL O wi = wi T+ At 9.

By using the well-known Lax—Milgram lemma and the assumptions imposed on the constitutive param-

eters, it is easy to obtain that the fully discrete problem (3.84) has a unique solution.

3.5.2 Study of the discrete energy

The next result is a discrete version of the energy decay property (3.6) satisfied by the continuous

solution.

Theorem 3.5.1. Let the discrete energy be given by

1
E" — 5(pH{g”z—i—a|’uzx”2+)\”¢h uh” +p1||<I> ||2
(3.85)

+ Kl + Uil +bllvh, *+ps | 5] +5H’wthz>

Then, the decay property
En — Enfl
— <
At

/
o

holds forn =1,2,..., N.

Proof Taking u, = &}, ¢n = PF, Uy, = VP, and wy, = 9} in (3.84) with the fact that (@ — b,a) =
3 (Ha — b|[%+||al|*~||b]|?). it results that

14 n n— n n— n n n n oen n
m (th - gh 1”2+H€hH2_H§h 1”2) + a(uhmaghm) - )‘(Qoh - uhagh) + NH&th = O? (386)

[ — @p P+ IP =127 I1%) + K (F, + ¥Ry Ph)
2At( ) " (3.87)

+ A(eh — upt, ) + Y| PR + B(0R,, ©F) =0,
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b(Vhes Wha) + K (he + ¥5, U) =0

and

2At
Summing up equations (3.86)—(3.89) and keeping in mind that

K
K (ho + ¥ o+ O3) = (@ + U0 e + 9% = (Ph + 057 )

7K _
= o (6 + 0 — (ot + 5Pk + R 12 lops

K _

> o (Iefe + 02— llep + v 4%)
A _

Nih — iy B — ) = 15 (68 = il of = wft = (" = up ™)

7>\ - — _
= (o = = (™ = DI+ - wplP— o

> 2 (lef — =g — ),
«
O‘(UZ:U’SZI) = E(u;;ac?uhx ’LLle)
[0 _ _
= SAL (luppy = why P+ llg 1P =l %)

«Q 2 —12
> @(Iluhggll —[lup %)

n n b n n n—
b(Vhes V) = E(d’hwd)hz — P
b . o . .
:ﬁNMf¢WMMWW%W)

> oo (R 1P~ 17)

and

n n 6 n n n—
6 (Why Uhy) = E(%m%x - %x 1)

5

= a7 (lwne = wi P lwa = lwp 1)
0 2 —12

> 57 UlwhalP=lwi " 1%)
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(3.88)
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we find

B (e — P+l len %) + 2At(u N e

A _
+ 57 (k= urlP=lleh ™ —up7'1%) + mt (o5 — @~ 1P+ @RI~ l@p~ "1 )

K 2 —1 —172 1 2 1
n n|2__ n n 19n 19” 19 ,&m

n )
+ g (WP 1) + g (ol 12) + 12+ |44l < 0

n— QP2 |or — 9|2, |1€0)|%, || @RI and |97, |12, we deduce that

By discarding || & — &/ 1||2

p n n—
B GRIP=1ER) + 5 (el %)
A

2 n—1 2 n—1(2
— oF 18
+ 55 ek — il 1?) + mt(H hlP—lep )
K _
¥ o (ke T RPNl + 12 + oz (1= 0 1P)
1)
2 1 2 —172
t oag (R0 ) + 57 (k=g 12) < 0
hence,
171
= |5 (PR IP+allufs [Pk = wiP+ou |97 1P+ ok, + V7140117 |
+ sl P+l 1) — 5 (ol 1P adugs P46l — 2
T pull PRt o Pl el 2l ) | < 0
which proves the intended result. O

3.5.3 Error estimate

We now state and prove some a priori error estimates for the difference between the exact solution

and the numerical solution.

The linear convergence of the numerical method is outlined in the following Theorem.

Theorem 3.5.2. Suppose that the solution to the continuous problem (3.4) is regular enough, that is

u,,w € H*0,T; L*(0,L)) N H*(0,T; H'(0, L)) N W"*(0,T; H*(0, L)),
¢ € HY(0,T; H*(0,L)).
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Then, the following error estimates

leg — ECta)lP+llups — (u(tn))al*+lloh — uh = (9(ta) — ulta))|®
H@h = ()P +lehe + ¥k = (9(t)s + V() PV — @(tn))al®
H[h = I(t) P Hlwhy — (w(tn))ol*< C(A? + (A1)?),

holds, where C'is independent of At and h.

Proof. As a first step, let us set
2" = UZ - P}?u(tn)7 2= 52 - P;?ﬁ(tn),

"= = PRe(tn), € = @) — PYO(t),
= '¢Z - P}(L)w(tn)a Qn = \I’Z - P}?\I’(tn)a

and
o" = wp — P,?w(tn), 0" =1y — P,?z?(tn).

Substituting in the scheme (3.84) and taking uy, = 2", @y = €", Y, = 9", and w = 9", we infer

AL(E”ﬂLP;?E(tn)—(A” L PRE(tn-1)), 2") + alz) + (Plultn))s, 27)
— A"+ PRo(tn) — (2" + Pu(ta)), 2") + p(2" + P& (tn), 2") = 0,

Lo (" + P®(ty) — (&' + PR®(tu-1)), @

+ K (e + (Pro(tn))e +y" + PR (tn ) éz)
+ A" + Plo(tn) — (2" + Plu(tn)), ")
+ (" + PR®(tn), €") + m(a) + (PYY(tn))x, €") = 0,
b(yy + (PR (tn))e, ) + K (e + (PRo(tn))s + " + PRoo(tn), ") = 0,

(0" + PYO(ta) = (6" + PYO(tn 1), 0%) + 3(0% + (Pluw(tn)), 6")

[+ m(El + (PRR(t))a, 0") + k(00 + (PLO(tn))a, 03) = 0,

then, we arrive at

B (1 = 2 P R + L (PRt — PR (1), 27)
(e 3+ P 2) 6" — 7 27
~ A(BRip(tn) = PRu(ta), ") + il 2" P+ PRE(ta), ) = 0,
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P1 A An— A AT — 1 N
AL (le™ = e P+l 1P —lle™I1%) + E(P%P(tn) — P®(tn-1),e")

+ K(el +y" eh) + K(Plo(tn))s + PPvo(tn), e) + A(e" — 2™, &)
+ MPRo(tn) — Plu(ty), ") + || €" P+ (PR ®(tn), €™) + B(o%, ")
+ B((PYI(tn))a, €") = 0,

(3.91)

by, 92) + b((PR(tn))e, 93) + K (ep + 4" §") + K(Pre(tn))e + PRb(tn),5") =0,  (3.92)

1% N AN — N ~N— P AT
aag (12" = P+ P12 1P) + K (BRO(tn) — P9 (), 27)
+08(07, 03) + 0((PRw(tn))s, 87) + B(eg, 0") + BI(P)®(tn)), 0") (3.93)

+ [ 03 1P+ (PR (t))z, 87) = 0.
Letu = 2", ¢ = é", 1/; = g", w = p", in the weak form (3.83). We combine the resulting equations
with (3.90)-(3.93) to obtain
SE (1™ = PP 27 R) + el 22) — Al — 2%, 87 + 27

0 _ p0
=p(&(tn) — P& (tn) A];hg(t”‘l) V2 a(ug(tn) — (Plu(tn))e, 27

= Me(tn) = ultn) = (PRo(tn) — Pyu(tn)), ") + u(€(tn) — PRé(ta), 2"),

£1 A An— A An— «
AL (le™ = e P+l 1P = e I7) + ylle™ )
+ K(ey +y", é3) + Ale" — 2", é") + (07, €")

(@)~ PR~ PR

+ K (pultn) + 6(t) = (PR (b)) + P (1), 2

£ Mp(tn) = ultn) = (PRi(tn) = Plu(ta). &")

(@ (t) = PRO(1),87) + B(0u(tn) = (PRIt "),

b(yr, 9m) + K (el +y™, §") =b(¥a(tn) — (PR(tn))a, 9
+ K (e (tn) + ¥ (tn) — (PRe(tn))z + PRto(tn)), §")

and

p3 B ~ . N .
oag (e = " P+llg" =" M%) + d(es, &) + B(éz, &™) + mllez |

0 _ p0
=p3 (U (tn) — Fy9(tn) Afhﬁ(t“),@”) + 0(we(tn) — (PPw(ty))s, )

+ B(@a(tn) — (P ®(tn))z, &) + £(Va(tn) — (PRO(tn))a, 87).
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We sum up the last four equations, to obtain that

P A an—1 am||2 n—1 2
@(Ilz”— PP =112 1P) + w27

+ 2 (e — e P et ) + e

+ 2 (g7 = ) + R
+ A" =2 et =)+ K(elh +y",en +9")
+ byz, 0z ) + o2y, 27) + 0(ey, 07)

0 _ p0
—p(€i(ta) — RS Afhf( not) gny

+ (€ (tn) = PYE(tn), 2") + a(ua(tn) — (Pultn))a, 27)

o (3.94)
+A(@(tn) = ultn) — (PYo(tn) — Pru(ta)), " — 2")
PY®(t,) — PP°®(t,—1) .
+p1(<bt(tn)_ h ( ) Ath ( 1)7671)
+ (@ (tn) = PYP(tn), €")
+ K (pa(tn) + U (tn) — (PR(tn))a + Pt (tn)), € + ")
+b(ta(tn) = (PR(tn))a, 95
PY(tn) — PPI(tn-1) .,
b pau(tg) - ) Z ) gy
+6(we(tn) — (PRw(tn))e, 07) + £(02(tn) — (PYI(tn))e, 85)-
Now, by using the definitions of 2", ", §"* and 0", we get the following estimates:
(€" — 2" &" = 2") = (" — 2", B — P®(ty) — (& — PRE(tn))
N " en — 6n—l oM Zn—l
sy A )
Plo(tn) — Plo(tn-
b (e o, TP Betst)  pagy,)
POu(t,) — POu(t,—
_ (en _Zn’ hu< ) A hu( 1) _P}(l)é(tn)) (395)
t
1 n n n— n— n n n— n—
= 5z (le"=2" = (e F 2Pl = 2Pl = 2P
PP0y(t,) — POuy(t,
+ (en — " h(p( ) Ath‘*p( 1) _P]gq)(tn))
Pou(t,) — POu(t,_
N (en_zn’ h ( ) Ath ( 1) _P]?g(tn)),
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(eg +y", é;,‘ + ﬁn) = (52 +y", (I)Zx - Pfgq’(tn»w + ‘PZ - P]?\I/(tn))
1

62—6 yn_yn—l)

At T A
(PPo(tn)e — (PPo(tn-1))s
At
P(ty) — PPup(tn-1)
At
1 — n— n n n— n—
= ——(llef +y" — (2 +y" ) |P+ler + v P = et + y" P

2At
(PRo(tn))a — (PRe(tn-1))a (
At
P}?@Zj(tn) B P]gqﬁ(tnfl)
At

(

= (ez +y"

— (PR (tn))z)

+ (e + 9",

+ (e + 9", — PY(t,)) (3.96)

P (tn))z)

+ (ex + 4",

+ (e +y", — PU(tn)),

(=1, 22) = (21 6 — (PRE(t))a)

n

— (o 2z Bl - Buliec e (pogy ),
= B (o, D _ Bl _ o)) o)
= o (I8 = 7 PR 125 72)
¢ g, B0 = Flincte _ o,
(1 52) = 42 W — (PR (2))2)
= (B )~ Bl (pogy),)
= B g, PR~ BRat)e gy
= s (2 = s 2= ™ P)
L, ER L) ~ ipz?w(tn—l))m PPu())
and
(a2 1) = (P — (PRO(E)):)
= (o, B )~ Bhelto e oy, ),
= (o By (g e Bl )y o
= s (e — o Pl Pl )
+ (g, P0ta))e = (PRuttu )

At
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Inserting (3.95)—(3.99) into (3.94), then discarding the positive terms:

s R, e — Y, e

12 z mE =T et — e

—2"— (e
e +y" — (e +y™ D2, vz —ye 2, 116" =" 12 ol — o2 M7, (127117, [1€™]1* and |02/,
we arrive at

p n sNn— n n—
B (I 12) + 5 (12—l R)

A . o
+ =2 (e = 2 P—[le™ ™ = 2 YR) + 2 (jlen)1P— e 1)

2At 2At
K
L (e g1+ ) + o (Il )
o
5 (101210 1P) + o (el 1)
<plenty) — DEOL = PUE) oy ) = (Pt ) 22)
POu(t,))e — (Pou(tn_1))s
~a(ey, Tt “ultncte _ pggy, )

+ Ap(tn) = ultn) — (Pyo(tn) — Prultn)), e" — 2")

Ph(P( n) — PhSD( n—1)
At

POu(t,) — POu(t,_
e i)

D2 + 1 (@y(t) — D)~ TR0 )

n) = (PYo(tn))a + Piy(ta)), &5 + 9"
BR0) “ Povlinct) _ pow(r,)) 4(0(1) — PR (t,).)

At
0 _ 0
B (t) — (B, 32) — g, T e T e pog ) )

0 _ po
+ pa(0n(tn) — NI, ) 1) — (Pt} )

Ow nj))r Ow n— x ~
(o, T ltalle ZOERt ) gy, )),) 4 (0 00) — (PRO(E))e ).

e A — P}?(b(tn))

+ p(E(tn) — PRE

+ K (pz(tn) +

(t
et

- K(eg +yn7

Finally, let

Zn = pllZ" P +all P+ A" = 2" P +pulle P+ K leg + v [IP+blly 1P +psll 0" [ +6ll % 1.
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Using Young’s inequality, we easily find that

7, — 7 1 < 2C’At(Zn n ‘

4

+
+

+

2

0 _ p0
6u(ty) — )~ IO ) — (Bt 2
(PPultn))s — (PPultn-1)) ?

- (Pi?g(tn))z

At

+ [lo(tn) — ultn) — (PRo(tn) — Plu(ts)|?

2

Plo(tn) — PPo(tn-1) o
N — PY®(t,)
2
Pilu(tn) ~ ff?“@n—ﬂ — PPe(t)|| + [l€ttn) - PRE(t)||
 PPO(t,) — PP (1) |

i (tn) At

+ lpa(tn) + ¥ (tn) = (PR(tn))e + PRab(tn))|?

_.|_

+1

As a consequence, we have

2

0 _ 0

(PO (tn)): AiPmtnl))w — (PR (tn))a
0 — po ’

PR (t) Afw(tn—l) — PYU(t,)

(I)(tn) - Pf?(b(tn)HQ + wa(tn) - (Pf?1/}<tn))x|’2
(POY(tn))e — (PO (tn-1))a ?

N ~ (PRU(t))a
0 _ po 2
On(tn) — 2 1,) - (PRuea))e]?
2
(Pi?w<tn))ﬂf _Aipi?w(tN—l))ﬂi _ (P}(L)'lg(tn))x
Dalta) = (PRO(t))ol?)-
Zp — Zn—1 < 2CAU(Z, + Ry), (3.100)

where the residual R, is the sum of the approximation errors. Summing the previous inequality over n,

it follows that

Zn — Zo < 20AtZ(Zj + Rj)
=0

and, making use of Taylor’s expansion in time and (2.5) to estimate the time and the space error, we get

that

20ALY " R; < C(h* + (At)?).
j=0
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Since Zy = 0, we end up with

Zn <2CDLY " Zn+ C(R* + (AL)).
j=1

The result follows by applying a discrete version of Gronwall’s inequality and taking into account that
nAt <T. O

3.6 Simulations

In our simulations, we select the following values:
L=1, h=0.01, At=h/2, a =6, pp =2, K = 365,

taking as initial conditions
up(x) = ui(x) = @o(x) = @1(x) = Yo(z) = wo(x) = wi(x) = sin(wz).

The evolution of u, ¢, ¥ and w are represented in Figures 3.1, 3.2, 3.3 and 3.4, respectively.

1
1 0.5

0 S 10 15 O

Figure 3.1 The evolution in time and space of u.

The results at point x = 0.6 are displayed in Figures 3.5, 3.6 and 3.7.

The decay of energy with respect to time is shown in Figures 3.8, 3.9 and 3.10.
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1.5

Figure 3.2 The evolution in time and space of .

Figure 3.3 The evolution in time and space of 1.
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Figure 3.4 The evolution in time and space of w.

Figure 3.5 The evolution in time of u at x = 0.6.
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0.8
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0.4

0.2

Figure 3.6 The evolution in time of ¢ at z = 0.6.

15

1.5

0.5

-0.5

15 ‘ w

Figure 3.7 The evolution in time of 1) at x = 0.6.
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Figure 3.8 The evolution in time of E.

Figure 3.9 The evolution in time of log(F(t)).
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200

-200 | 1

-400 | 1
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—log(E(1))/t

-800 1

-1000 1

-1200 : :

Figure 3.10 The evolution in time of — log(E(t))/t.

Following this, we carried out a numerical simulation to evaluate the accuracy of the error estimate.

We solved the modified problem

)
Put — QUzy — A (p — u) + puy = F,

prew — K (0r +9), + A0 —u) +vpr + Bwg = Fo,

| P3Wit — OWgy + BPut — KWeat = Fu,

(3.101)

the functions Ji, Fo, F3, F4, and the initial data are derived from the exact solution

u(z,t) = 0.01tz?(z — 1)%, ¢(x,t) = e’ sin(rx),

Y(z,t) = e'wcos(0.5mx), w(z,t) = 2’ sin(rx).

The calculated errors at time 1" = 1.2 are presented in Table 3.1, where the Error is defined as

Error =<H§;’Z = &(tn) [P +Hlupy — ((tn))2l®+leh — uh = (o(ta) = ultn))|I?
+H @) — ()P + ke + ¥k = (9(t))e + D) IP+HUhe — @(tn))al

95 = D) P+ lef, — (witn))all?)

It can be observed that the errors decrease by a factor of approximately 2 when the discretization pa-

rameters are halved. The linear convergence rate is also evident in the curves illustrated in Figure 3.11.
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log(h + At)

Figure 3.11 The evolution of the error depending on h + At.



Table 3.1 Computed errors when 7' = 1.2.

M At Error

40 1.00 x 1073 4.164 x 1071
80 5.00 x 104 1.949 x 1071
160 2.50 x 104 9.567 x 102
320 1.25 x 1074 4.770 x 1072
640 6.25 x 107° 2.402 x 102
1280 3.125 x 107° 1.241 x 1072
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Chapter 4

Analysis of a laminated beam with dual-phase-lag thermoelasticity

4.1 Introduction

Laminated beams play a crucial role in engineering due to their wide-ranging applications in build-
ing and construction of various structures. In recent years, significant attention has been given by re-
searchers to investigating the well-posedness and asymptotic stability of these beams, particularly under
the influence of thermal effects. For instance, Apalara [11] investigated a thermoplastic laminated beam

with structural damping and second sound given by

(pwtt + G — wz)e =0,
I,(3s = )i — D(3s — ¢)ge — G(¢ — wg) + 80, =0,
Lyt — Dsgn + Gt — wy) + %w + gﬁst 0, @.1)
p3bt + gz + 0(3s — P)ar = 0,

TQt+OZQ+9x:07

and proved the well-posedness and established both exponential and polynomial stability results de-
pending on the stability number

v = (1_Tp3G> <D_G> _TG52
! p I, p ply

To extend the previous results, the same author in [10] examined system (1.11) with thermal effects

in the slip rather than frictional damping, without any additional damping (internal or boundary) term,

which has the form

pwir + G — wz)e =0,
I,(3s =)y — D(3s — ) e — G(¢) —wy) =0,

4 4
Ipstt — _DSxa; + G(l/) — wx) + g’)’S + gﬁSt + 691’ = 0,

(4.2)

\,039t — g + 0544 =0,
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and demonstrated that this unique dissipation is sufficiently strong to exponentially stabilize the system,

provided the wave speeds are equal. Feng [59] considered the following system

pwit + G(Y — wy)z + 66, = 0,

Ip(3s =) — D(3s = )az — G(¢Y —wz) =0,

ISt — DSpe + G(Y — wy) + gfys - %Bst =0, (4.3)
P30t + gz + 0wz = 0,

Tq +aqg+0; =0

and established the global well-posedness and showed that, under a new stability number, denoted by

D
X = 762D — (Dp— G1,) <7p3 - 1) ,
Iy
the system is exponentially stable when x = 0 and polynomially stable when x # 0. For further results
on thermal effects, we refer the reader to [101, 111] for the classical and second sound heat effects, and
to [100] for thermoelasticity of type III. In these studies, the authors established both exponential and

polynomial decay results, subject to certain restrictions on the system parameters.

Recently, Bresse system was analyzed within the dual-phase-lag thermoelastic theory from both
mathematical (existence) and numerical points of view in [14]. By using the multiplier method, Bouraoui
et al. [25] considered a Bresse system and proved that the system is dissipative under the condition (1.7)

and exponentially stable by introducing a new stability number.

Considering the observations mentioned above, a natural question arises: Can a laminated beam
system be exponentially stabilized using the dual-phase-lag heat conduction? To provide an answer to
this question, we analyze system (1.11) with the presence of thermal effect as described by the dual-

phase-lag theory (1.6), which has the form

(

-2
pwit + G —wy)y + 0 <2q€tt + 740; + 9) =0,

IP(BS — 1/))” — D(3S — ¢)CEI — G(l/] — wx) = 0,

4 4 “4.4)

Ipstt — Dsgp + GW - wm) + 5'75 + gst = 07
72
<2(19tt + 740 + 0 | — k(1905 + 62)0 + §6%w,; = 0,
t
together with the following boundary conditions

wx(O,t):wx(l,t):w(O,t):¢(1,t):0,tZO, 4.5)
s(0,t) = s(1,£) = 0(0,t) = O(1,£) = 0, t > 0, '
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and initial conditions

w(z,0) =wo (), wi (z,0) =wi (), ¥ (z,0) = o (z),
P (2,0) =1 (z), s(x,0) =sp(x), s¢(x,0) =s1(x), (4.6)
0(z,0) = Op(z), 0:(x,0) = 01(x), Ou(x,0) = b2(z),

where (z,t) € (0,1) x (0,00), § > 0 represents the coupling coefficient depending on the material
properties and #° is a constant reference temperature assumed to be positive.

The chapter structure is outlined as follows. In Section 4.2, we prove the well-posedness of the
system under the assumption (1.7) by using the Lumer—Philips theorem 2.3.7. Section 4.3 contains the
statement and proof of some technical lemmas. In Section 4.4, we introduce a new stability number,

denoted by

2KTy D) ’ @)

=6°0"D+ (Dp—GI,) [ — — —
and show that the system is exponentially stable when y = 0 and polynomially stable when x #
0. The proof of stability results is based on the multiplier method, considering the assumption (1.7).
In section 4.5, we introduce a finite-element-discretization approach to numerically solve the given
problem. Discrete stability results and a priori error estimates are obtained. Finally, in section 4.6, we

present numerical simulations carried out using MATLAB.

4.2 Well-posedness

In this section, we apply the semigroup theory to provide an existence and uniqueness result for the
problem (4.4)—(4.6).

From equation (4.4); and the boundary conditions (4.5), it is straightforward to verify that

d2 1

G 1 5 1 2
p7e] w(z,t)dx = ; / (Y — wy)zdx + ; / (TQtht + 740 + 9) dxr = 0. (4.8)
0 0 0

Solving (4.8) with initial data of w yields

/Olw(m,t)dx:t/olwl(a:)dx—i-/olwo(x)dx.

Thus, if we let ) .
(D(m,t)—w(x,t)—t/ w1 (x)dx—/ wo (z) dz,
0 0

we arrive at )
/ w(z,t)dx =0, YVt > 0.
0
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Consequently, applying Poincaré’s inequality for @ is justified, and a simple substitution reveals that
(w, 1, s, 0) satisfies the system (4.4) and the boundary conditions (4.5). For convenience, from now on,

we will work with @ but write w.

We first introduce the vector function
U= (w,1,35 — ¢, (3p — u),s,9,0,9,6)",

where v = wy, u = Yy, 0 = 8¢, 9 = 0 and £ = Oy then the system (4.4)—(4.6) can be written as an

evolutionary equation

U= AU, t >0,

4.9)
U(0) = Uy = (wo, 0, 350 — %o, 30 — uo, S0, o, 0o, Yo, o)™

where A : D(A) C ‘H — H is a linear operator defined by

14
A 2
_Q(sz - W:E)x - igx - %ﬂx - éax
p 2p p p
3p—u
12(35 "p):m: + T (w - w:r)
AU = © ,
4 41
TSz — T (@Z)x_wx)_gﬁs_gn@
¥
5 0
2 2 2 2 2
_75 - 7219 + /{;_0 Vga 71;‘93032 55 Vy
q q Tq Tq q

with domain

3p —u,p,0,9,¢ € Hy(0,1);0 + 79 € H*(0,1)

D(A):{UEH/wGHEOH,};Bs—w,sGHQOH&;VGHj; }’

where

L2(0,1) ={¢ € L*(0,1) / / 1 ¢(x)dx = 0}, H}(0,1) = H'(0,1) N L2(0,1),
0
HE(O, 1) = {d) € H2(07 1) / ¢x(1) = ¢x<0) = 0}‘

The energy space H is given by

H = H}! x L2(0,1) x H} x L?(0,1) x H} x L*(0,1) x H} x H} x L*(0,1).
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It is a Hilbert space equipped with the inner product

~ 1 1
(U, U)x :p@o/ vodr + IPGO/ (Bp —u)(3¢ — u)dx
0 0
1 N 1
+Go° / (¢ — w) (¢ — g )da + 31,0° / ppda
0 0
1 . 1
+ D¢’ / (35 — )2(35 — 1) dx + 4790/ sidx
0 0

1 22l ~ ~ (4.10)
+ 3D¢° / 5p8.dT + m?q / (0,0, + 09,0, )dx
0 0

L [r2 72 I
+/ 5q£+rqq9+9 Eq§+rq19+9 dz
0
1 B 2 1 B
+/1(79+Tq)/ 0x9xdﬂc+/£792q/ 90, dx,
0 0
for any
U= (CU,V,3S—¢,3§0—’U;,S,g@,g,ﬂ,g)T, (7 = (@75735_&73(/3_&75)()5)571975)71 € H

We can now state the following well-posedness result.

Theorem 4.2.1. Let Uy € H and assume that (1.7) holds. Then, there exists a unique solution U €
C(Ry,H), of problem (4.9). Moreover, if Uy € D(A), then

UcCRy,DA))NCHR,,H).

Proof. First, we show that A is dissipative. Using the inner product given in (4.10), for any U € D(A),

we obtain
1 ) 2 1
o | P 2p P p 0

1 D 1
+31,0° / [1(38 — )z + Ig(@b — wz)] (3p —u)dx + 3D90/ OpSpdr
o Lp p 0

1 1
D8 [ (3~ )a(35 = 0)ade +G° [ (= v)(6— o

72 10 9 2 2 2%k 2669 T2
+2q/ |:_§_ 219+;019xw+29mm_21/m] 7q€+7—f1?9+0 dx
0 Tq Tq Tq Tq Tq 2

1 72 1 2
+Tq/0£ ?qﬁ—l—Tq??—i-H d$+/0 9 ?q£+7q0+0 dx

1 2 1 2 1 2 1
Tq Tq 2 Tq
+ k(19 + 74) Vp0,.dx + KTp— Ep0zdr + K— Vidr + K—- 0, . dx.
0 2 Jo 2 Jo 2 Jo
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Integrating by parts, we infer

1 1 2
<.AU,U>'H:—490/ (dex—HTg/ Va (7-2(]54-7'(119-1-9) dx
0 0

1 2 1
_ ”/o 0, (7;5 g+ 9) de + k(g + 1) /0 9alpd

xT

22l 22 1 22
—i-/qu/ §x19xd:v—|—/<aq/ ﬁidm—l—nq/ 0,&dx

:—490/ de—/wg/ &0z dl‘—HTgTq/ 19 dx
—m'g/ V.0, dx — n/ ewfxda}—HTq/ 0.9,dx

- /1/ 02dx + k(7o +Tq)/ V0, dx + /17'92‘1/ Ep0da
0 0 0

7_2 1 7_2 1
+mq/ ﬁﬁdaz+nq/ 0,&dx
2 Jo 2 Jo
1 1
:—490/ ¢2d:1:—f1/9d$—/€7q<79—;>/192dx 0.
0 0

Therefore, the operator A is dissipative. Given that A is dissipative, it is enough to demonstrate that
A is maximal. In other words, we need to prove that (Id — A) is surjective. That is, for any F' =

(f1, f2, f3, fa, f5, fo, [, f3, fo)T € H, we have to find V = (v1,v2,v3, 04, V5, V6, U7, Vs, V9) L € D(A)
such that

(Id— AV =
which implies
p
vy —v2 = [,
72
pvo — Guigy — Gusy + 3GUs, + 5?(171% + 07qUse + OV = pfa,
v3 — U4 = f3,

Ipv4 — Dvszy — 3Gvs + Guz + Gui, = Ipf4a

v5 — v = f5, (4.11)
(I, + %)7}6 — Dusgy — Gug — Guig + (3G + %7)”5 = I, fe,

vr —vg = f7,

vy — vy = [fg,

2 2
Tq 0 Tq
? + Tq | Vo9 + V8 — KTgU8zx — KU7zz + 00%v2, = — fo.

2
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From (4.11), it follows

vy =v1 — f1, va=v3— f3, v6 =v5 — f5, vg =7 — fr, Vg =1vg — fg. 4.12)

Plugging (4.12) into (4.11), (4.11)4, (4.11)¢ and (4.11)g, we end up with

r 2
p(Ul - fl) - lemc - Gvi’m + 3GUB:{: + 5?(1(”71’ - f71‘ - fo)

+ 5Tq(v7x - f?x) + 5U7x = sz,
Ip(v?) - f3) - Dv3xz - BG'US + GUS + Gle = Ipf47

(Ip + 3)(vs — f5) — Dvsea — Gug — Guiz + (3G + 37)vs = I, s, (4.13)
2
(7—2(1 + Tq) (U7 - f? - f8) + (U7 - f7) - HTG(“?mm - f?m:)

2
0 Tq
— KUz + 00 (Ulac - flx) = ?ff)a

\

2

.
and then, multiplying (4.13)1, (4.13)2, (4.13)3 by 6" and (4.13)4 by <2q + 74 + 1) , respectively, we

obtain

(

where

2
p0%; — GO vy — G003, + 3GO vs, + 660° (2‘1 +74+ 1| v = ha,

Ip90U3 — D90U3mz — 3G90U5 + G90U3 + Geole = ho,
(31, + 9G + 47y + 4)0%5 — 3D0 s, — 3GO v — 3G vy, = hs,

2 2 2
Tq Tq
(2+Tq+1> vy — k(19 + 1) <2+Tq+1> V7

2
+590<Tq+7' +1>v =h
2 q le — 14,

(4.14)

g
2
hy = 1,0°(fs + f1) € L*(0,1),
hs = (31, + 4)6° f5 + 31,6 fs € L2(0,1),

7_2 7_2
hy = ?‘1+rq+1 6 fro+ | L +1,+1) f7

2
7_2
|5 FTtl

0 0 T 074 2
hy = pf (f1 + fQ) + 66 Tq + frz + 06 ?fo S L*(O, 1),

2

7_2 ,7_2
(" + Tq> fi+ 2"f9] e H1(0,1).
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To solve (4.14), we consider the following variational formulation
B((v1,v3,vs5,v7), (V1, 03, V5, 07)) = T'(v1, 3, U5, 07), (4.15)

where
B: (HL0,1) x H}(0,1) x H}(0,1) x H}(0,1))> - R

is the bilinear form defined by
1 72 1
B((’l)l,’l)g,’l}5,1}7),(51,53,55,57)) —p@o/ ’U151d.%'+(590 ?q +Tq+ 1 / v7r51dx
0 0
1 1
+ IPQO/ v303dT + DQO/ V3,035dT
0 0
1 72 1
+ (31, + 4~ + 4)6° /0 v5UsdT + Eq +74+1 /0 vrUrdT
7.2 1 1
+ 56° ?q + 7+ 1 / V12 07dx + 3D90/ V55 U5 dT
0 0

2 1
+ k(9 + 1) <2q +74+1 /0 V7, U7dT
1
+ GGO/ (—le — vz + 32}5)(—5133 — 53 + 355)d$,
0
and T : (H1(0,1) x H}(0,1) x H}(0,1) x H}(0,1)) — R is the linear functional given by
1 1 1
F(Hl, U3, Us, 57) = / hivdx + / hovsdx + / hsvsdx + <h4757>H—1><H6'
0 0 0
Now, for V = H}(0,1) x H}(0,1) x H}(0,1) x HZ(0,1), equipped with the norm

(w1, 03, 05, 07) % = [|v1ll3 + [[(=vie —v3 + 30s) |13 + 07|13 + 03213 + llvsell + [[oz:]l3,
and through integration by parts, we have
1 1 1
B((’l}l,vg,’l)5,’l)7),(vl,vg,v5,’l}8))—p90/ v%d:):—l—IpHO/ v%dw—l—DQO/ v3 da
0 0 0
1 -2 2
+ (3Ip—|—4'y+4)90/0 vidz + Eq +7,+1 /0 vidx

o [1 7 Ly
+ 3D v dr + k(19 + 1) 5 +7,+1 V7 dx
0 0

1
+ G@O / (—le — V3 + 3'05)2d.%',
0
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then

1 1
B((v1,vs3,vs5,v7), (v1,v3,v5,08)) = ,090/ U%da: + GQO/ (—v1g —v3 + 3v5)2d:1:
0 0

-2 2 1
+ ?q+7q+1 /0 v?da:—l—D@O/o v3 dx
1 2 1
+ 3D90/0 v2, dx + r(Tg + 1) ?q +75+1 /0 v2, dx

= MOH (Ub U3, Us, U7)||\2)7
for some My > 0. Thus B is coercive. Moreover, applying Cauchy-Schwarz inequality we find for a
positive costant M that
|B((v1,v3, v5,v7), (01,03, U5, 07))|* < M12(HU1|||Wl|| + [[vzalll[on]l + [lvs|[[[vs]|

+ llvse 1103zl + llos |l [0s ]} + floz | [o7]

+ vz lll[ozll + s |05z || + 1ozl 07

2
+ ll=v1z = vs + Bus |l ~F1s — T + 31

consequently, we have

|B((v1,v3, 05, v7), (U1, U3, U5, 07)) > < 2Mf(\|01||2||171||2 + [Joza|P[o1I® + [lvs |||
+ [vse 1?1032 1> + [[vs||* 551> + oz ||* (|07
+ o1 P[0711? + llvsal* Tsal|® + lo7a]? 0722

[l =v1z = v + Bus |2~ — T + 357
In the light of (|Jv1||> < [|(v1,v3, vs, v7)||3, [|[01]]* < ||(01, U3, U5, 07) |13, -..), we arrive at
| B((v1,v3, 05, 07), (01, T3, s, 07))|* < 20M || (01, v3, 05, 07) [ 5] (01, T3, Bs, 07) |35
and then, we deduce that
|B((v1,v3,v5,v7), (01,3, U5, 07))| < C1ll(v1, 03, v5,07) [V | (01,03, 05, 07) v,
where (1 = 2v/5Mj. Similarly, we can find

2
|0 (01,73, 05, 07)|* < (IIhllHlvlll + h2llllosll + llAsl[os]| + Hh4\|||v7H) :
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then, there exists a positive constant My such that
[T (@, T, 5, 52) 7 < 2( I 20512 + A2l T2 + s 2055112 + 1Rall?15712)
with the same previous arguments, it follows that
IT(v1, 03, U5, 07)|* < 8Ma||(T1, T3, Us, 07) |35, Ma > 0.

Therefore, we have
(01,73, 05, 07) < G|(V1, 73, U5, 07) v,
where (o = 2+/2M5. Hence, both B and I" are bounded. As a result, by applying the Lax-Milgram
theorem, problem (4.15) has a unique solution
(Ula V3, Vs, ’07) € Hi (07 1) X H(% (Ov 1) X H(%(O? 1) X H&(Oa 1)
The above result, together with (4.12) leads to

V2 € Hi(o, 1) and vy, vg, Vg, Vg € H&(O, 1).

Now, if (v1, v3, v5, v7) = (01,0, 0, 0) then (4.15) reduces to

1 1 1 1
Go° / Vigligde = — p@° / v10d + GO° / v3, 01 dx — 3GH° / Vs U1 dT
0 7 ‘ : (4.16)

2 1 1
_ (590 <T2q + Tq + 1) / U7x51d$ +/ hﬁld:z, V,Q\)/l S H,}(O, 1)
0 0

The regularity theory cannot be applied directly here because 77 € H1(0,1). Therefore, let 7y €
H}(0,1) and take

1
61 = /271(.%) — / @\1(8)618, (4.17)
0

which implies v; € H}(0, 1). Substituting (4.17) into (4.16) results in

1 1
Go° / V12 01zdT = / hy01dz,
0 0

where

7_2

hy = — p0%v; + G6%v3, — 3G s, — 66° <§ + 75+ 1)

7.2

2
.
+p0°(f1 + f2) + 36" (m + ;) fra+ 00" fra € L2(0,1).
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Thus
V1 € H2(0, 1)

and

2
—G0%14 = — 601 + GO 3, — 3G0 05, — 66° (2‘1 + 74+ 1>

72 72
+ p0°(fr+ f2) + 00" | 7y + < | fro + 00" fe

In view of f1 = v1 — v9, f7 = v7 — vg and fg = vg — vg, we obtain

2
-
pv2 — Guige — Guzg + 3Gus, + 53(1119,@ + 07qUse + OV = pfa,
which solves (4.11),. Furthermore, since —G0%v14, = 7L1, it follows that
1 1
—Geo/ V1ge Pdr = / hi®dz, ¥® € H'(0,1)
0 0
and by using integration by parts, we get
1 1
GO%v1,(1)®(1) — G801, (0)D(0) + Geo/ V1, Ppdr = / hi®dz, Y& € H'(0,1).
0 0

Given that H! C H', we arrive at
1 1
G001, (1)01 (1) — GO%v1,(0)71(0) 4+ G° / V1,01 pdx = / hividx, Vo, € HL(0,1).
0 0

In light of (4.16), we have

G6%1,(1)01(1) — GO%1,(0)71(0) = 0.
As 7 is arbitrary, v1,(0) = v1,(1) = 0. Hence,

vy € H2(0,1).
Next, by taking (v, v3, v5, v7) as (0, v3,0,0) or (0,0, vs,0) in (4.15), we find

1 1
D" / V3 U35 dT = / hovzdax, V3 € H(0,1),
0 0

or
1 1
3Dg° / Vs Vs d = / hsvsdx, Vs € H(0,1),
0 0
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where
/EQ = —Ip90v3 + GO (—v1z — v3 + 3vs) + Ipao(ffi + f1) € L*(0,1),

hy = —(31, + 47 + 4)0%v5 — 3G0° (—v1, — v3 + 3us) + (3, + 4)0°f5 + 31,0°fs € L*(0,1).
Therefore, the theory of elliptic regularity implies that

V3, U5 € HQ(O, 1)

and
_DGOUSM = _Ipaov?; + Geo(_le —v3 + 3”5) + Ipao(f?) + f4)a

—3D6 %5, = — (31, + 4y + 4)0°v5 — 3GO° (—v1x — v3 + 3vs) + (31, + 4)6° f5 + 31,0° fs.
Since f3 = v3 — vy and f5 = v5 — vg, we end up with
Iyvy — Dvuzgy — 3Gvs + Guz + Guig = Iy fa,

4 4
(I, + g)UG — Dvsge — Gus — Guig + (3G + 5’7)1’5 = I, fe.

These give (4.11)4 and (4.11)g.

Finally, if (91, 03, U5, v7) = (0,0, 0, ¥7) in (4.15), then for any o7 € H{ (0, 1), we obtain

2
7'(12 1 - 0 Tq2 1 ~
> +75+1 / vrvrdx + 66 5 +714+1 / V12 U7dT
0 0

7_2 ! !
+ K(Tg + ].) <2q + 79+ 1 / V7 VU7 dT = / havrd.
0 0

This, in turn, yields
1 1
’i/ (7o + V) v7e — T fra)Uredr = / hyv7dz,
0 0

where
~ 72
2 2 2
T T, T
+ (2‘1 + 7+ 1) fr+ (2(1 +Tq> fs+ ?qu € L*(0,1).
Hence

[(To + 1)vr — mo.f7) € H?*(0,1).
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Given that fi = v1 — v9, f;r = v; — vg and fs = vg — vy, then
Tvs +vr € H*(0,1)
and we have

2 2
Tq 0 Tq
5 + 74 | V9 + U8 — KTgURzs — KUTze + 00 Vo = ?fg,

wich solves (4.11)g.

As a consequence V' € D(A) and A is a maximal dissipative operator. Hence by Lumer-Philips’
theorem 2.3.7, we deduce that .A generates a Cp-semigroup of contractions S(t) = e** on H. According
to semi-group theory, the unique solution of (4.9) is U(t) = eAUy, satisfying the conditions of the
Theorem 4.2.1. [

4.3 Technical lemmas

In this section, we state and prove some essential lemmas needed to construct a suitable Lyapunov

functional, which is used to establish our stability results for the system (4.4)—(4.6).

Lemma 4.3.1. Let (w,3s — 1, s, 0) be the solution of (4.4)—(4.6) and assume that (1.7) holds. Then the
energy functional E, defined by

/ {p0°w} + 1,0°((3s — ¥);]* + 31,057 + 3DO°s2 + 440" s>
7’2 2
+ DO[(3s — )2)* + GO'(Y — wy)® + <2‘10ﬁ + 7,0; + 9> (4.18)

2
-
+ k(19 + Tq)é??c + /Wg?ngt + KTqQQmﬁmt}dx,

satisfies

= 1
d dt<t) = —490/ 2dx — /qu Tp — = / 602,dx — /@/ 62dx < 0. (4.19)
0

Proof. Multiplying the equations of system (4.4) by 0°w;, 0°(3s—1)); and 6°s,, respectively, integrating

by parts, using the boundary conditions (4.5), we arrive at

1 1 1 2
p0° / wywedr + G@O/ (Y — wy)pwide — 56° / (7-2(]9“ + 740: + 9) werdr =0,
0 0 0

. 1
Ipeo/o (35—1)u(3s — ¢)dx + D90/ (35 = 4)a(3s = ¢)ueda

0

1
— G90/0 (Y —wy)(83s —Y)dz =0
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and
1 1 1
31,6° / susedr + 3DO° / SpSprdx + 3GHY / (Y — wy)sede
0 0 0
1 1
+ 4790/ sspdx + 490/ s?daz =0,
0 0

then, we have

1d !
2dt J,

e (4.20)
= 06 / ?gtt + qut + 0 thdl’,
0

1
p@owfdx — GQO/ (Y — Wy )wyrdx
0

1d (!
57 1,0°[(3s — )y]* + DO°[(35 — )3 pdw
2dt /0 { t } 42

1
— GGO/ (Y — wy)(3s —)dx =0
0
and
1d [
2dt J,

1 1
+ BGHO/O (Y — wg)sedx = —400/0 s2dz.

{3@9%3 +3Ds2 + 479052}@5
(4.22)

Note that
. 1
/0{3(1/1 wi)st — (Y — wy)war — (Y — wy)(3s w)t}m

1 1
:3G90/ (Y — wy)sidx — G@O/ (Y — wy)wgdx
0 0 (4.23)

1 1
—3G6° / (Y — wy)sidx + GGO/ (Y — wy)rdx
0 0

1d (!

_10 2
e (Y — wy)“dx.

1
ey /0 (W — wi)(® — wy)eda

Taking the sum of the resulting equations (4.20)—(4.22) with (4.23), we get

1d !

> dt {090%2 + 1,0%((3s — )¢)* + 31,6°s7 + 3D¢"s2
0

+ 4~6°s% + DO[(3s — )] + GOO(3) — wx)2}dx 4.24)
1 1 2
= —490/ s?dw + (590/ (7-2(10“ + 740; + 9) ward.
0 0
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2
-
Next, multiplying the last equation in (4.4) by (;

1 T2 7_2 7_2 1
/ igtt + qut +6 iett + qut +6 | dx + K;Tei / 021011 dx
0 2 . 2 2 Jo

1 1 22l 1
+ KTpTy / 9§td:13 + KTy / 0,10, dx — /@?q / 0220 dx + KT, / 0.0.:dx
0 0 0 0

1 1/ 2
/1/ 9923dx + 690/ ?‘19# + 740 + 0 | wypdx =0,
0 0

therefore, we arrive at

O + 740 + 9) and integrating by parts we obtain

2 2
-
2 p / { ( O + 740 + 9) + k(Tp + 74)0% + mm;q@f}t}dx

1 2
= —(590/ ( O + 740 + 9) werdx — /WgTq/ thdx (4.25)
/ O Opdr — K / 02dz.
Note that
[ 2 4.26
/12/0 00 = — th/ Gﬁxtdx—i—/ﬂ/ 05.dx. (4.26)

Plugging (4.26) into (4.25) gives
(4.27)

coupled with the estimate (4.24), we deduce (4.18) and (4.19). ]

In the sequel, we use ¢; to denote a generic positive constant.

Lemma 4.3.2. Let (w,3s — 1, s,0) be the solution of (4.4)—(4.6). Then the functional

Fi(t) = Ip/;(:as — )35 — ¥)ydo - p/lwt (/0738 - ¢><y>dy> dx

0
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satisfies, for any €1 > 0,

1
dzlt(t) <- 12) ; [(3s = ¥)o]?dz + 1 <1+511>/0 (35 = ¥)iJ*dx

1 L2 2 (4.28)
+ €1 / w,?dx +c / <2q€tt + 740 + 9) dz.
0 0
Proof. Differentiating F and using integration by parts, we have
dFy (t)
o =I, [(35 —))Pdx -6 0,5,5 + 740 + 0 | (35 —)dx
(4.29)
- D/ [(3s — ), 2dx — / Wi (/ (3s — w)t(y)dy> dzx.
0 0
Applying Young’s and poincaré’s inequalities, we find
8¢, (L[ 72 ?
—(5/ ett + qut + 0 (38 - ”(ﬂ)dx ST_DP ?q@tt + qut + 0 dx
0 (4.30)
D 1
+ 2 / (35 — ), 2.
2 Jo
Young’s and Cauchy-Schwarz inequalities yield
1 T 1 p2 1
—p/ Wy (/ (3s — w)t(y)dy> dr < 51/ widr + — = [(33 — b)) da. (4.31)
0 0 0
Estimate (4.28) follows by substituting (4.30) and (4.31) into (4.29). ]
Lemma 4.3.3. Let (w,3s — 1, s,0) be the solution of (4.4)—(4.6). Then the functional
1 T
R =p [ @-w) ([ @)
satisfies, for any 9 > 0,
dFQ 2 ! 2
- — — wp)?dx + &9 [(35 —))*dr +co | spdx
0
(4.32)

1 1 1 7-2 2
+ (1 + )/ wfdx—i—cQ/ igtt‘f”l’qet-i-@ dx.
€2 Jo 0 2
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Proof. We take the derivative of F3, to find

Oy [ ([t} o= [ @ -
o[t [ ) (Fou s an

Young’s inequality leads to

2
_5/ (Y —wy)0dx < 4G/< 9tt+7'q9t+9) dx—i—/ (v — wx)dx.

Using the fact that ¢, = 3s; — (3s — 1);, we obtain

p/olwt </0x wt(y)dy) dx =3p/01 St (/OI wt(y)dy) dx
o [ @ ([ tiw) as

and then, Young’s and Cauchy-Schwarz inequalities yield

1 x 3p [ [ 1
3p/ St (/ wt(y)dy> dr < — (/ stdx +/ w?dw) ,
0 0 2 \Jo 0

—p/01(33 — ) </OI wt(y)dy> dx < ey /01[(3.9 — )] 2z + 4f22 1 w?dz.

Plugging (4.34)—(4.36) into (4.33), we conclude (4.32).

Lemma 4.3.4. Let (w,3s — 1, s,0) be the solution of (4.4)—(4.6). Then the functional

= (;e b+ o) ([ i) ao

satisfies, for any €3 > 0,

2
dFs(t 560 1 1, [t (72
3(t) <— p / w?da:—i—c;g(l—i-)/ T—qﬁtt—i-Tth—i-H dx
dt 2 0 €3 0 2

1 1
+ &5 / (Y — wy)?dz + 03/ (62, + 62)da.
0 0
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Proof. We differentiate F3 and integrate by parts to achieve

dF:
Ci;t() __p(;@o/ dx—i—G/ ( ett+7q9t+9> (¢ — wy)dx

2

1
+ PF&/ (7'003:15 + ) )wtdx + 1) ( Htt + qut =+ 9) dzx.
0

Using Young’s inequality, we obtain

1 2 500
pn/ (10t + 01)wrdr < pr T9 / thd:c+ 300 / 92d + L thx
0

560

and

1/ 2 Q2 2 2
G/ ?qett+Tq(9t+0 (1/1—wx)dx <4— ?qett+Tq0t+0 dx
0 0

€3
1
+ 53/ (Y — wy)?dx
0

By substituting (4.39) and (4.40) into (4.38), we get (4.37).

Lemma 4.3.5. Let (w,3s — 1, s,0) be the solution of (4.4)—(4.6). Then the functional

1 1
Fy(t) = 3Ip/ sspdx + 2/ sdzx
0 0

satisfies

dFy(t ! ! '
;t( ) « _ 37/ s2dx — 3D/ s2dx + C4/ (7 + (¢ — w,)?] da.
0 0 0

Proof. Direct computations, using integration by parts, yield

dFu(t 1 1 1 1
1) = BIp/ sidx — 3D/ sidx — 47/ sdx — 3G/ s(p — wg)dx
dt 0 0 0 0

Exploiting Young’s inequality, we have

—3G/ (Y — wy)d \9G2/(¢ wy) d:):—l—’y/olstx.

The substitution of (4.43) into (4.42) gives (4.41).

82

(4.38)

(4.39)

(4.40)

4.41)

(4.42)

(4.43)



Lemma 4.3.6. Let (w,3s — 1, s,0) be the solution of (4.4)—(4.6). Then the functional

L[ 2 72 T 1
F5(t) = —/ ?qett + qut qut + qu dr — Eq / 02dl‘
0 0

satisfies, for any €4 > 0,
dFs(t) 1 [t ’ L
5 < _ 2/ (;9tt+7'q¢9t+0> dﬂf+254/ Wtzdx
0 0 (4.44)

dt
1 1
+cs (1 + ) / [th + Gg] dx.
€4 0

Proof. Differentiation of F5, together with integration by parts, shows that

dFs(t) L (72 ’ 72 1 72 1
7 :_/0 <§9tt+7q9t> dm—&—;/o Gthx—i-/Wgzq/o 62, dx
1 1
2 Tq
+m'q/ 0rdx + 4K (KT@+2)/ 0,:0,.dx
0 0
2 1 1
07q 0
— 06 2/ wiOedx — 60 Tq/ wilpdx.
0 0
Using Young’s inequality, we infer
22 1 22 1 1
—590?‘1 / wibyrdr < 52928i / 02,dx + &4 / wldz, (4.45)
0 €4 Jo 0
1 7_2 1 1
—56°7, / wibpdr < 620° L / 02dx + ¢4 / widz, (4.46)
0 dey Jo 0
(4.47)

Tq

Tq ' K Tq b 2
Tyl (m’g + 5) / 0.:40,dx < -1—7 <HT9 + 5) / (07, + 0;)dx.
0 0

Clearly, we have

1 /2 2 1 /2 2 1
/ —qﬁtt+Tq9t—|—9 dr < 2/ iQtt+Tq9t d;v—|—2/ 0%da:
0o \ 2 0o \ 2 0

and along with Poincaré’s inequality, we arrive at

2 2
1 ,7_2 1 1 ,7_2 1
- / L6, + Tebt | dx < —2 / 20, + Tq0: +0 | dx + cp/ H?Cdx. (4.48)
o \ 2 2Jo \ 2 0

Previous inequalities lead to (4.44).
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Lemma 4.3.7. Let (w,3s — 1, s,0) be the solution of (4.4)—(4.6). Then the functional

1 1
Fs (t) =56°G1, / (35 — )(¢ — we)dx — 560°Dp / wi(3s — 1) dx
0 0

1 7_2
+ (Dp - G_[p)/o <2q(9tt + qut + 0) (38 - w)tdl‘

1
+ k(Dp — GI,) /0 (60t + 03)(3s — )z dx

satisfies, for any €5 > 0,

dF(t 00°G1, [ 1
c?t( ) S- . /0 [(3s — )] *dz + 265/0 (35 — ¥)a]*dx

1 72 2
+ c6/ !sf + () —wg)? + <2q€tt + 70 + 0) } dx (4.49)
0

6 1 o 2 &
+ — (ezvt + Qz)dl‘ + X 7(9” + Tth + (9 (38 — w)xdl‘,
€5 J0 0 2 .

where

2/€T9 D
x = 6%60°D + (Dp — GI,) <Tq2 - Ip) :

Proof. Differentiating Fg followed by integrating by parts, we arrive at

dFs(t)
dt

1 1
=60°G? / (1 — wy)?dx + 660°G1I, / (3s — ) hydx
0 0
27y 1
+rl1- 2 pp—ar) / 0s(35 — )odar
(STq 0

2/437'9 !
572 (Dp — G1,) /O 0:(35 — )zdz (4.50)

G L (72
+ I—(Dp - Gl,) / Eq@tt + 70 +0 | (Y —wy)dx
0

p

1 7-2
+ X/o (2‘]9” + 740 + 9) (3s — ) dz.
x

Then, by using 1y = 3s; — (3s — 1)), and Young’s inequality, we get (4.49). O

4.4 Asymptotic behavior

Now, we state and prove our stability results by leveraging the lemmas from Section 4.3.
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4.4.1 Exponential stability

In this subsection, we consider the case x = 0 and establish the exponential stability.

Theorem 4.4.1. Assume that (1.7) holds, then, there exist positive constants A1 and Ao such the energy
functional, given by (4.18), satisfies

E(t) < de™™M Vi >0. (4.51)

Proof. Let N, N;, 7 = 1, ..., 6, be positive constants to be chosen later. We define the Lyapunov

functional by
L(t) = NE(t) + Fl(t) + NgFg(t) + N3F3(t) + F4(t) -+ N5F5(t) + NﬁFﬁ(t). vVt > 0, (4.52)
then, we have

dzx

o ([ s = wiwa)

1
dx + 3Ip/ |ss¢|dx
0

1 1
L) = NE@| <1, [ |85 0)(3s = wlda+p [

1 x
+pN2/O (Y — wa) </O wt(y)dy>
1 1 2 T
+ 2/0 s2dx + pNg/O (;qett + 740 + 9) (/0 wt(y)dy>

1 ,7_2 7_2
q q
+ N5 / (29,5,5 + Tq0t> (20,5 + Tq0>
0

1 1
4+ 60°GI, N / (35 — ), (4 — w,)|da + 50" DpNg / (35 — 1)lda
0 0

dx

- 1
dxr + qN5/ 0%dx
2 0

1
+ ]Dp—GIp\Nﬁ/ da
0

7_2
<2q€tt + qut + 9) (38 — w)t

1
+ K|Dp — GL|Ng / (7002t + 0,) (35 — 1), da.
0

By exploiting Young’s, Cauchy—Schwarz, and Poincaré’s inequalities, it easy to deduce that for some
a >0,
|L(t) — NE(t)| < aE(t).

Consequently,
(N—-a)E(t) < L(t) < (N +a)E(t) (4.53)

and by choosing N sufficiently large, there exist positive constants oy and asg such that the estimate
(4.53) yields the relation
OqE(t) g L(t) g OQE(t), Vi 2 0. (4.54)
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On the other hand, by differentiating (4.52) and using (4.19), (4.28), (4.32), (4.37), (4.41), (4.44) and
(4.49), we have

dL(t) D ! )
NS @ — —
FT 3 255N6]/0 [(8s — )] dx
500GI

1
s — oy — ea(1+ 11)}/0 (35 — )] 2dx

G 1
— fNQ - €3N3 — Cq4 — 66N6:| / (w - wx)2d:1c
0

590 1
— P2 N3—€1—CQ(1—|- )N2—264N5:| /0 wtzdx

2
1 1 L(rs
— |=N5 —c1 — caNy — 63(1 + 7)N3 — 06N6:| / (qett + qut + 9) dzr
_2 €3 0 2
1 1 1
— 37/ s?dx — SD/ sidm + [490]\[ — 9Ny — c4 — CGNG} / sfdx
0 0 0
1
- [mq(w— TN — 5Ny — es(1+ —)N5 — NG] / 02, da
&4 0

1
- [EN — 3Ny — c5(1+ —)N5 — CGNG] / 02da.
0

€q €5
By setting
c . 66°G1,Ng oo GV 1 D
= 1 = T A = a7 :776277
! 2 AN, STUN; T YT NS TP T 8N
we obtain
56°GI 1
dLt) oD / O e A R
0

1
— ZNQ —cq — 66N6:| / (v — wx)2daz
0

[ p56° 4Ny /1 9
—|=N3-3-c(1+—"— | N d
B cQ( TGN, ) 2y

2

(1 4N. L (72

- §N5 —c1—ca2Ng —c3 (1 + G]\73> N3 — CGN6:| / (2(107% + 740: + 9) dx (4.55)
2 0

1 1 1
— 37/ s?dx — 3D/ sidaj + [490N — 9Ny — ¢4 — CGNG] / sfd:n
0 0 0
Tq 806 2 1 2
— |KkTy(T9 — 5)]\7 —c3N3 — ¢5(1 + N5)Ns — — N 0%, dx
0

8 1
_ |:I€N—03N3 —05(1—|—N5)N5 — 56N6:| / 0%dz.
0
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At this point, we choose g large enough such that

§6°G1,
P Ng — 2¢1 > 0,
4
then, we pick Ny large enough so that
G
ZNQ — ¢4 — cgNg > 0.

Fixing N, and Ng allows us to select N3 sufficiently large such that

p66° AN,
PNy —3—er (14— 2 N
g Nad 02( TN, ) Y

then, we take N5 large enough such that

1 4N:
§N5—Cl—CQN2—03 (1+G]\732>N3_C6N6>0-

Finally, we choose IV large enough so that (4.53) remains valid and

400N — colNo — cq4 — cgNg > 0,

8
K79 — %)N — ¢3N3 — c5(1 + N5) N5 — —EGN()? >0,
8
kN — 3Nz — ¢5(1 + N5)Nj — %Ng > 0.

By taking into consideration (4.18), we infer that there exists a positive constant a3, such that

which, together with (4.54), gives
——= < ——L(t),Vt=0. (4.56)

A simple integration of (4.56) over (0, t) yields

_ 93y

L(t) < L(0)e 22", V¢ > 0. (4.57)

Consequently, again from the relation (4.54), we have

a2

E(t) < 2E(0)e =", Vi >0, (4.58)

a1
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. .. o «
then, we deduce that there exist two positive constants A\; = —3, Ay = =FE (0) such that the energy

e)) o1
estimate (4.51) follows. L]

4.4.2 Polynomial stability

In this subsection we consider the case x # 0 and establish a polynomial stability result.

Theorem 4.4.2. Assume that (1.7) holds. Then, there exists a positive constant C' such the energy
functional given by (4.18), satisfies
C

B(t)< . Vt>0. (4.59)

Proof. We introduce the second-order energy functional by

S(t) = E(wt, Py, ¢, 9t)

1 1
= / { 0wy, + 1,0°((35 — 1)) + 31,07, + 3D0°s2, + 476" s7

2 0
72 2 (4.60)
?Qtt + 7,0, + 0
t
2

+ k(19 + Tq)ﬁxt + KTg— 91,“ + KT, taﬁztt}dﬂc

+ D[(3s — )] + Gthy — war)® +

As established in Lemma 4.3.1, similar computations show that £(t) is non-increasing and satisfies

dé(t) 1 T4
= —400/0 s2dx — KTq (Tg - 5) / 02, dx — K,/ 62,dz < 0. (4.61)

Taking the last term of (4.49),

1 7_2 7'2 1
Sttt r0) @5 )ado =Tox [ s - w)ada
v 1
+ 1 / Opt(35 — )oda
0
1
+y / 0,(35 — 1)adz,
0

and using Young’s inequality, we obtain, for any €5 > 0, that

1 7-2 1
N /0 SOt 0] (o= W)ade <TG+ 0+ D)

T
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Therefore, the derivative of Fy satisfies

560°GI, [ '
di?t(t) < 2G o /0 [(35 — )] dx + 5es /0 (35 — )z ] de

1 -2 2
+ 06/ sf + (¢ — wx)2 + (59# + 740 + 9) dr (4.62)
0
Co ! 2 2 2
+ — (el‘tt + eafjt + ex)dl'
€5 Jo

Now, we define a new Lyapunov functional as follows
L(t) = N(E(t)+£&(t)) + Fi(t) + NoFa(t) + N3F3(t) + Fy(t) + N5 F5(t) + Ne Fs(t), Vt > 0. (4.63)

By differentiating (4.63) and using (4.19), (4.28), (4.32), (4.37), (4.41), (4.61), (4.44) and (4.62), we

arrive at

dL(t

r 1
dt) < - g — 555N6} /0 (35 — ), )%dx

[66°G1,

1
Ng — eoNgy — 61(1 + 611):| /0 [(38 - @Z))t]2dx

G 1
_ 5]\72 — €3N3 — C4 — CGN6:| / (¢ — wx)Qda:
0

[ 956" 1 !
_ %Ng — &1 — 02(1 + ;)NQ — 2€4N5] / w?dm
2 0

2

2
(1 1 oy
— |=N5 —c1 — ca Ny — 63(1 + 7)N3 — 06N6:| / <q9tt + qut + 9) dzx
2 €3 0 2

1 1 1
— 3’y/ s?dx — SD/ sidx + [490N — Ny — ¢4 — CGN(;] / sfdx
0 0 0

1 1
— | KTg(T0 — %)N —c3N3 —c5(1 + a)]\% — EENG} / Qitdx
0

- ' )
— | kN — 3N — e5(1+ —)Ns — CGNG} 02 da
€4 €5 0

: Tq Co ! 2
— | kTy(TH — 5)N — —Ns / 07, dx.
0
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D
By taking €1, €9, €3, €4 as in above and €5 = 207]\7 we get

LW D / (8~ ol [Py ) [ (35— 0P

1
- —NQ —c4 — 66]\4 / (Y — wy)?dx
0

p590 < 4N, > } /1 )
| N3 (14 sar e | M| | wida
K 500GI,Ng ) 2| J,

2
(1 4AN. L2
— |=Ns —c1 —calNy — c3 (1+ 3>N366N6:|/ <2qett+7'q9t+0> dx
0

2 G Ny

1 1 1
- 37/ s?dr — SD/ sgd:c —+ [490N —caNg — g — 06N6] / sfdm
0 0

2
— |F7q(76 — g)N - ODCGNﬁ} / 02y de
i Tq 20cq
— | K7q(79 — g)N —c3N3 — ¢5(1 + N5) N5 — 71\76 Gmdw

20
— HN—63N3—C5(1+N5) C6N6:| / 92d.%'
Again, with similar choices of constants Ns, N3, N5, Ng, coupled with a suitable selection of /V so that

490]\7 —cogNy — ¢y — CGN@ > 0,
20
ki7g (g — —)N - C6N6 >0,

20 (4.64)
Ry - %)N — 5Ny — es(1+ N3)Ns — 2O N2 >0,

D
20
HN—63N3—05(1+N5)N5 — %N(j 0,

\

and comparing with (4.18), we have for some o > 0,

dfh(f) < —cE(t), Vit>0. (4.65)

Furthermore, by using Young’s, Cauchy-Schwarz, Poincaré’s inequalties, we have

[£(t) = N(E(t) +£(1))] < BE(1),

wich implies

(N = B)(E(t) + (1) < L(t) < (N + B)(E() + E(1))- (4.66)
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Now, by taking N large enough with respect of (4.64). The inequality (4.66) gives for some positive
constants 31 and o,
BLE() + (1)) < L) < Bo(B() + (1)) (4.67)

and
L(t) ~ E(t)+ £(1).

Integrating (4.65) over (0, ¢) and applying (4.67) yield

L) - 2] < 2£0) < 2B 0) + £0)).

t
/ E(s)ds <

0
Since FE is non-increasing and using the fact that

dCEW) _IBG) | gy < B,

dt dt
we obtain 5
tE(t) < f(E(O) + £(0)).
Finally, for C' = @(E(O) + £(0)), the estimate (4.59) follows. O
o

4.5 Numerical approximation

Now, we provide a numerical analysis of the problem discussed theoretically in Sections 4.2, 4.3 and
4.4.

4.5.1 Description of the discrete problem

First, to streamline the notation, let us denote v = wy, ¢ = s¢, u = Yy, ¥ = O, and £ = 0. We
obtain a weak form associated to the continuous problem by multiplying the evolution equations (4.4)
by the test functions @ € H!(0,1), v, 5, § € HE(0,1), respectively. Through integration by parts and

the use of boundary conditions (4.5), we get

2
(v, @) — G — wy, @) — 5(%’5 b+ 0,8,) =0,
Iﬂ(3gpt — Uy, QL) + D(3Sx - 1/]90)7/7%) - G(d’ - Wmﬂ[’) = 07

3Ip(<)0ta 5) + 3D(Sxa gx) + 3G(w — Wy, 5) + 47(37 §) + 4(@a 5) =0,
2

T, _ _ _
(?q& + 7€ +9,0) + k(1992 + 0z, 05) + 00° (v, 0) = 0.

(4.68)

Furthermore, assuming that the discrete initial conditions are sufficiently smooth, we set

0 * 0 * 0 0 0 0
wp, = Pywo, vy, = Pywi, ¥, = Pytbo, uy = Py,
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s = PPso, ¢0) = PPsy, 0 = PPy, 9% = P20y, &) = P0s.

Using the backward-Euler scheme in time, the complete finite-element approximation of the vari-
ational problem (4.68) is to find v;' € S;, uy,pp, & € 52 such that, forn = 1,..., N and for all
wn € S5y Uns 5n. O € Sy,

p 1 7,
E(Vg - V]T;i aa}h> - G(d}]r; - w}?ggva)hiv) - 6(5(16}? + Tqﬁz + gnghx) = 07
I

Kpt(?)@z - UZ - (390271 - uzil)a ’&h) + D(Sszx - /(/}]le7 &h.ﬁ) - G(sz - w;llx) sz)h) = 07
31, . el _ n no - _ _ 4.69
Sk = 91 8) + BD(s] 5he) + B3GR — i, 5) + 41(s], 51) + Al 5n) =0, HO
i(f” — N 0y) L (O — 9 0) + i(9” — 07", 0,)
2At h h ? At h h ? At h h )
—+ KT@(ﬁZW é}m) + K;(Qg’x, éhac) + 500(11;?3“ G_h) =0,
where

wi = wh T ALV, O = T At g, s = st AL g,

=00 ALY, 9 =0T AL

The well-known Lax—Milgram lemma, along with the assumptions on the constitutive parameters, guar-

antees that the fully discrete problem (4.69) has a unique solution.

4.5.2 Study of the discrete energy

The following result is a discrete version of the energy decay property (4.19) that the continuous
solution satisfies.

Theorem 4.5.1. Let the discrete energy be given by
1
E" =g (p90\|y,7|12+1p60||3¢,; — up|*+3L,0°|| 011> +3D6°|sh, || *+476°| |57 1
2
D003n_n2G00 n__ ,.n |2 Tin n 9n2 (470)
+ 13sha — Uha "+ GO |[Y0, — whp |7+l 5 & + 740 + 5l :
2
on 2 qu 97 2 2 on n
o 157y + Tl P70 | P72 G V) )
Then, the decay property
En — Enfl
. —— ]

At =
holds forn =1,2,..., N.
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2

_ _ T
Proof. Taking &y, = v}, ¥y, = 3¢} — up, 5, = ¢, and ), = ?qu + 7497 + 05 in (4.69), it follows

that
D= i o =) = GO — o)
IAL h h h h h hx Yhx
2
— 590( gh + Tqﬁh + 0h7 th) O,
I 90 n—1 n—1\112 2 n—1
oay Bk =i = Bep™ =i DIP+13¢h — uh P —l13¢;
+ Deo(?’shx - whwv 3302Lz - U;LL:L‘) - G00(¢Z - wl?ac’ 3<PZ - UZ) = 07
3L (i — o 2 b Pl i ) + 3D6%(sf s o)
N Pn — Ph Ph n has Pha
+3GO0 (PR — Wiy, o) + 4v8°(sT, o) + 460 (¢l ) = 0
and

1 2 2

2At 2

72

2 2

T, T,
+ KTQ(ﬁZW ?qggcc + Tq 7;1:1‘ + eiTLLz) + K(QZW qu}?z + Tq Z:c

2
-
+660° (v, 5‘152 + 7,07 +0) = 0.

By adding equations (4.71)—(4.74) and taking into account that

0/, 1n n n n Geo n n n n
GO” (Yl — Why Up — Vi) = E(% — Whs Yl — why — (

Go°

_
(1L + mp+ 6 — (CLgg™ gty + 0|2

2
Tq en—1 -1 -1
1L + gl + ORI L g+ 0 ?)

n—1

+ Ohz)

—up )

n—1

— Whe

> o (7 = wha 2= = i 1?),

DY

D90(3SZI - wﬁx? 3()02:E - U’Zm) = At (3Shw wgmv 33%32 - wgm - (

D" -
> — SAL (||3th Q;Z)ZxHQ_H?)Sle -
3D#°
3D90(Szx, (pr) = F(Sz‘r: sh:): SZ:E 1)
3D0° 2 1
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n—1 n—
3Sha: - wha:

%),

n71|
T

")

4.71)

(4.72)

(4.73)

(4.74)



4~0°
N6 (sf h) = — (s sf — i)

4790 2 —1y2
> oz (IsEP=llsi=1P),

qu n n KTo qu n n n—1
TG?(ﬂhz’ghx) = E?( hzs Vhe — Uy )
KJTQ 2
> Y _
> S00TL (g, - 1)
K(T9 + 74) _
"/”'(7-9 + Tq)( za:’ Zﬂc) = Tq(eham hx — 92$ 1)
k(7o + 74) 2 —1)2
> LT (o, 2~ o)
and
T‘IQ 112 n n TQ n—1 qn—1 2
?(ehzvfhx) = ’fﬂ( h> Vha) — H@(th 779 )—H*Hﬁ P
we find
W= PP + C8 (i — g — )
2At h h 2At T h hx
1,6° _ _ _ _
+ 20 (130 = — (3~ — ) P+I3¢h — a2 I3 — )
Do 2 71 2 3I 0 —12 2 —12
toAL (I13sh — ¥ IP=113sy " — vt II%) + AL (ler — e 1P+l =ller=H1%)
3DG° 479 _
S (sl = lsi 1) + S (s IP=llsi12) + 4% |

]. 2 7-2 7_2
2At<” gt R+ O = (e T+ O P+ i+ 67

_ i n—1 ne1 , gn-12) , (78 +74) 2 ﬂi 2_
1T 4 my ™+ 0 02) + ST (g 1) + T (g -y )
2

HTq n

n n—1 gqn—1 T n |12 n |12
o 5r (O Vi) = O 05 ) + ey (70— 20 ) [0 21107 1< 0

By eliminating the positive terms

Ivit = vp I, sz—uz—(s@z*—u;;*l)u?, ek — @i R,

2 2

T, ’T _

Ik 4+t + 0 = (LG i 4 DIy (70— ) IR and 67 ),
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we conclude that

pd° _ Go° _ -
g R IP=lHP) + S (k= whal®=llvn ™ = wi ')
2At 2At
1,0° _ _ De° -
+oag Bk —wRlP=l13en ™" — g™ %) + 557 (13sh = vl =113sh ™" — i)
31, 6° 2 3D¢° n |2 46" n2 n—1/2
+ S8 (lerlP=lleh R + 2y (el 1e] P + ez (IshI=Nsi %)
1 72
e g 4t I gy
k(7o + 7q) 2 q 2
+=oar - (61 =116511%) + 7§(H79 P =10511%)
5T (g 0p) — OO <0
AL hx> Y hx hx ’
which proves the desired result. O

4.5.3 Error estimate

We now present and demonstrate a priori error estimates that characterize the difference between the
exact solution and the corresponding numerical solution.

The following theorem outlines the linear convergence of the numerical method.

Theorem 4.5.2. Suppose that the solution to the continuous problem (4.4)-(4.6) is regular enough, that
is
w,p,s € H2(0,T; L*(0, L)) N H(0, T3 H'(0, L)) N WH>(0, T; H?(0, L)),
0 € HY0,T; L*(0, L)) N H3(0,T; H*(0, L)) n H*(0,T; H*(0, L)).

Then, the following error estimates hold:

vk = vt P05 = wity = () — walta)) 1P+ 1130k — uly — Bp(tn) — ulta))[|?

3y — Vi — (Bs2(tn) — Yu(tn)) P+l 0k — (tn)\|2+|!82x = sa(ta) I+ = s(tn)|?

HIEE + 95 + O — (§(tn) + I (tn) + 0(tn)) P +165, + Oh, — (O (tn) + Iz (tn)[*

HO7e — 02 (tn) < C(h* + (A1)?),
where C' is independent of At and h.

Remark 4.5.3. Note that regular solutions can be obtained by taking regular enough initial data.

Proof. To begin, we define
e =wy — Prw(ty), €" =vy — Pru(ty), ™ = — P,?¢(tn),

™= up — P,?u(tn), Yyt =sp — P,?s(tn), gt =) — P,?go(tn),



and
2" =00 — PRO(ty,), 2" = 0% — PPO(t,), 0" = £} — PPE(tn).

Substituting in the scheme (4.69) and selecting w;, = €%, Y, = 39" — ", 5, = ", and § =

T¢2" + 2", we obtain

Si (e = & PlemP=lle™ %) + - (Piv(ta) — Biv(ta-1), &")
2
_
— G = €,e5) = GP(t) = (Ppeo(ta))as &) = 8(28" + 742" + 2", )

_ qu 0 0 0 N

I
oy (139" =" = (3g"H =T [P4]3g" — 77— [I3g" " — " 7H)
2At
I n_ am
+ K’;(3P;?¢(tn) — Pu(tn) — (3P o(tn—1) — PRu(tn-1)), 39" — ")

+ D3y — ", 308 — #3) + DB(PYs(tn))e — (PR (tn))e: 305 — 7))
— G = e, 35" — ") — G(PYY(tn) — (Prw(tn))e, 35™ — #™) = 0,

3L, n one ) - 31 A
ang (197 =" P+ 1P = 115" ) + <5 (Phe(tn) = Pio(tn-1),5")

+3D(y2, %) + 3D((PPs(tn))z, 07) + 3G(ry — e, 4™)
+3G(P(tn) — (Prw(tn))e, §™) + 4v(y™, §")
+ Ay (PRs(tn), §") + 49" 1P +A(PRe(tn), §™) = 0

and

1 T(I2 ~n s n T‘12 ~n—1 sn—1 n—1\(12
TN(H?Q + 72" 4 2" — (EQ + 12N+ 2T
2 2

T, T,
—|—H?q@n+Tq2n+an2—H?qén_l +Tq2n—1 +zn—1H2>

i (Pi?é(tn)fPf?s(tn,o i
2 At © 2

PO (tn) — PPO(tn 1) T2

+ 74( Az ,
N PPO(t,) — PPO(t,_1) 72

( At )
-2 -2
+ kry (22, ?‘1@2 + 12 + 2y) + KT@((P;?ﬁ(tn))x, ?q@ﬁ + 120 + 2y)

7_2 7.2
+ k(2 5@2 + 7a2n 4 25) + K((PRO(tn))a %éﬁ + Te2y + 2y)
7_2 7_2
+66°(en, 5"@" + 78" 4 2") + 60° ((Prv(tn))s, ?q@” + 12"+ 2") = 0.
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2
_ _ T
Taking w = é",v¢ = 39" —#",5 = ", 0 = Lo + 742" + 2" in the weak form (4.68), and combining

the resulting equations with (4.75)—(4.78), we obtain
72
PP =" ?) = G — e ép) — O(5 0" + 742" + 2", 83)

P ian
SAL (lle™ -
7_2 7_2
= 0CLet) + (1) + 00t) — (L ERE() + 7 PRO(E) + BROE). 22)
— G(¥(tn) — wa(tn) — (P(tn) — (PRw(tn))z), €5) + plvi(tn) — Fivtta) _Af;:y(tn_l) &%),

IP N n ~n—1 n—1\(12 ~n An||2 ~n—1 n—12
L (3" — 7 — (3" — P — 3 — )
+ D(?)yg - Tﬂzlv 3@2 - TA'Z) - G(rn - 6;, 3:&” - fjn)

3PYp(t,) — Plu(ty) — (3PPo(tn_1) — Plu(t,_ o
:Ip(?’@t(tn) _ ut(tn) _ h(p( ) h ( ) (Ath(p( 1) h ( 1)),33/” _ T_n)
+ D(Bsx(tn) - wx(tn) - (3(Pi95(tn))x - (P£¢(tn))x)a 3@; - fg)

— G((tn) — waltn) = (PYY(ta) — (Pw(tn))), 39" — ),

3I AT AT — AT ATV — n n ~n n ~n n ~An ~M
onr (5" =g P 1P = 115" %) + 3G (rk — e, 5™) + 3D(uS 55) + 4y (y™, ™) + 4llg" |
Poy(t,) — POo(t,_1) . .
=31, (pu(t) — D) RPN oy 5D 1) — (PRs(t)) 32

+BG((tn) — wetn) — (PR(En) — (Po(tn))e), )

+4y(s(tn) — Ps(tn), §") + 4(p(tn) — Plo(ta), ),

2

1 T(IZ N sn n 7-112 ~n—1 sn—1 n—1y(2 Tq T sn n|2
o (1" + 7y + 2" — (™ 47 TP 4 7+ 2
2 2
T, T,
o 2 ) (2, e+ T+ )
2 2
n TlAn sn n 0(sn TiAn sn n
+ k(zY, 2gx—i—7'qzz—i—zm)+59 (er, 5 0 + 12"+ 2")
2 0 0 2
7 Py&(tn) — Pg(tn-1) 74 . .
=T (g (1) - T = B nm)) T gy oy o
PY9(t,) — POO(t,_1) T2
by y(t) - DA = FOn1) T gy oy
PO9(t,) — POO(t,_1) T2 R
+ (By(t,) - 200 AL (& 1),§g”+fqz”+z”>
2
.
+ w19 (92 (tn) — (PRO(tn))e, Eqéﬁ + 798 + 2;)
2

2
T, T,
o On + Tady + 2) + 00" (Vi (tn) — (Prv(tn))as o 8" + 742" + 7).

+ k(0 (tn) — (P}?O(tn)):m 9
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We add the last four equations to get

pe(] N en— 1 AT (|2 sn—1 0/,.n n an N
oag (E" =Pl =llen= %) + GO (™ — e, i — &7)

2At v
1,0° . o o el e
+27At(ll3y =" = (39" = AT P3P 3y = )
0 AN 3‘[ 90 ~n—1)2 2 ~n—1 O/, mn »~n
+ DO 3y} — v, 307 — )+ S (1" = 8 PP =5 ) + 3D6° (4 47)
2 2
T,
+4y0°(y", 5") + 46° "] +2At(ll SO T = (T T )
2 N n|2 qu n—1 sn—1 n—1)2 N Tq2 n N n
I+ 2+ Pl g2 ) (B, R+ 2
2
T, Prv(ty,) — Prv(tn—
(e g g2t ) = p((t) — DA )

+ GO (Y (t) — waltn) — (PL(tn) — (Pw(tn))s), 7 — &7)
7_2
— 8002 (E(tn) — PLE(tn), &%) — 8607, (9(tn) — PLO(tn), &) — 56°(O(tn) — PLO(tn), E7)

2
L Bu(t) — () — SR ) = OFRRn ) Bl t)) gy
+ DE (B (t) — altn) — (B(Ps(tn))e — (PRY(n))e), 305 — 72)

Pi?‘P( n) — PhPh@( n—1) .

+ 31,00y (1) — N ,§") + 3DO° (50 (tn) — (Ps(tn))a, )
+490°(s(tn) — Pys(tn), §7) + 46°(p(tn) — Pro(tn), §")

N 22 (&t — TREE) ~ f;?f(tm)jf R

+ 7 (94 (t) — o (tn) _Af’?ﬁ(t”l) , 72‘12@” + 78" + 27

+ (0e(tn) — Fi(t) —Af;%(tnﬁ ) Tj@n + 12"+ 2")

2
-
+ 1579 (I (tn) = (PRO(tn) ) = 05 + a2 + 27)
2

2

Tq N, sn n
, o0 TR+ 2")

+ 60 (v (tn) = (Pv(tn))as =

and notice that for some positive constant ¢, we have

2 2

72
Qz—l-qu +22) + k(22

KTy (2D -

le—I_T(]Z +Z) (Z +Zx7x+ga:)

"9 (4.80)

+ k1(2], 20) + k|20
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Referring to the definitions of €”, 7", ¢, 2" and ¢", we arrive at the following estimates:

n n sn AN 1 n n n— n— n n n— n—
(" — g, = &p) =g (I = el = " = e DI = e =l — e )
POy%(t,) — PPh(t,—
+ (r" —el, wt (tn) Athw( D Plu(t,)) (4.81)
— (" —en (Prw(tn))a — (Ppw(tn-1))a

At - (P;ka(tn))df)a

n 1 _ _
(3yir — v, 395 — %) =5 (18w — 7 = By ™ — r2 )P

e A o B o

0 _ 0 (4.82)
+ (3t — o, B Z Sy o)) )
0 _p0
~ (3 — g, LD = B0l (i), ),
1
05" =g (" =5 P4 Pl )
B ) Psitor) (4.83)
(", I Bl(t)),

1
(7 + 25, 25 + 0) =57 (1 + 25 = (71 + 7 0IP =g + 21PNl + 22707)

en gz, BRO0))a = (P6(En-1))a

At — (PY9(tn))z) (4.84)
PP (tn))z — (PPO(tn-1))a
+(Z;L+23’( U (tn)) A(t WV (tn-1)) _(P/?f(tn))x)
and
1
(2. 20) =547 (lap = 2 P+l P~ P)
(P20(tn))z — (POO(tn—1))s (4.85)

Substituting (4.80)—(4.85) into (4.79), then eliminating the positive terms:

e — e M|, 139" — 7" — (39" = O 19t — gL 197 N2,
Ty 7y 1 1 1 1 1 1
II?qé" + 7"+ 2" — (gq@”_ + 12" 2" I =y = " = e ) Ny — v s
I35 — 1 — Buz " L I — " 42— () and 2 — 2.
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we have

Leo An||2__ || sn—1 Gf&o n_ _n)2_|l.n—1 _ _n—1}2 K70 i _nj2_ | n—1)2
2 (I P=1em 1) + o (I = emP= = = en"2) + 220 (2=l 1)?)
I 00 N N 2 ~n—1 An—l 2 90 nj2 n—12
+ o (135" = 72~ 33 I12) + 5a7 (1362 = r2lP= I3y~ = 2 )?)

3[ g° RYDLE 470

e (I PP +
2

2
(1L 4 7" P L 7 R

o (2=l 1) + S (1=l 1?)

saglen + 22 1Pl =" + 27117

2At 2At
< (vt — AL ZBOL) Gy | G0 (1) g b) — (PR (1) — (Pis(t))a). 7 — é2)
_ oo — e, Db () _Af’?w(t”‘l) — PPu(t,))
(e, Bt~ Focis

7.2
= 007 (€(tn) = PRé(tn), €) — 66°74(9(tn) — Py0(tn), €7) = 667 (0(tn) — PR0(tn), €7)

3Pf?90(t") - Pf?“(tn) - (3P;?80(tn—1) — P}?u(tn_l))
At
+ D% (354 (tn) — Vu(tn) — (B(PYs(tn))e — (P2 (tn))e), 397 — 7#7)

- DA o, AN S

4 DQO(SyQ _ T;L) (Pf?¢(tn))x _Aiplgdj(tnl))x . (P,?u(tn))x)

Plg(p(tn) — Pl[z)()p(tn—l) yn)
At ’

4 3D0(5,(t) — (PRs(ta))s i) — 30002, Lr2n))e ~ <tP£s<tn_1>>x

+470°(s(tn) — Pys(tn), §°) + 46°((tn) — Plo(tn), 9") — 496°(y"

7y PYE(tn) — Prné(tn—1) T4 . | .
q(ét(tn)_ hé( ) Athé( 1) qu +qun+zn)

PY9(t,) — PO (tp_1) T2
+ Tq(ﬁt (tn) —_h At h 2q

PRO(tn) — PO(tn1) Ta
At T2

+ L0 (3pi(tn) — up(tn) — ;39" — ")

+31,0°(pe(tn) —

— (Pe(tn))s)

POs(t,) — Pos(tn_l)

0" + 12"+ 27)

+ (0¢(tn) — O+ 12"+ 2"

7—CIQ ~n n n 0 P09 T<12 N n n
?Qaz + TqZg + Z:E) + K’( l‘(tn) - ( h (tn))Iv ?Qx + TqZg + Z:r)
n n (Poﬁ(tn))w - (Poﬁ(tn—l))m

— ofp + 7, L)) _A(tp}? W)z (poy(t,)),)

(RO = RO _ (p09(4,)),) + 86%(us(t) — (Pt 28" + 7" + 7).

+ £79(Ve (tn) — (PFO(tn))e,

n

v At

— k1y(2
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Finally, let

Zy =pf° [P+ GO° ™ — e |2+ L,0°185™ — 7" |*+D6°|3y; — ri|*+3L,6° 15"
2
-
+3D0° gz [P+ ly" P+l 5 0" + 72" + 2P ell g + 2 P2z |1
Applying Young’s inequality, we obtain
Pru(ty) — Prv(ta_1) |
At
+ 19 (tn) — wa(tn) — (Pi?@b(tn) - (Pi?w(tn))x)”2
PR (tn) = PRv(tn1) ’
At
(Prw(tn))e — (Ppw(tn-1))s *
b Al b — (Pyv(tn))s
+1€(tn) = PREE)I? + 19(tn) — PRO(tn)* + 10(tn) — PRO(t) [
3P ¢(tn) — Ppu(ty) — (3P¢(tn—1) — PRu(tn-1))
At

+ 1382 (tn) — Ya(tn) — (3(P}?3<tn)):c - (Plgw(tn))z)HQ

Zny — Zn <20At<Zn +a(tn) —

+ — P;?u(tn)

2
+

2

+ ||3t(tn) — we(tn) —

n 3(P}?S(tn))x _A?(P,gS(tn—l))m _ 3(P;?50(tn))x
2
L || PRt - iPz?Wnl))f — (Pfulta))a
2
+ [rtan - Fiiettn) _Af’%(t"‘” 152 (tn) = (PEs(tn)al
OS — OS n—1))z i
| it = Bstuoe _ o,

2
PPs(tn) — PPs(tn-1) POyt

+ls(tn) = Pis(ta)ll” + lo(tn) — PRe(ta) | + ’

At
2 2
+ e, — TRE) ~ f;?&(tnl) + |9t - EROE) - zta,gg(tnl)
0 _ po 2
+owe - PYo(ty,) AtPhg(tn—l) () — (BP9l

(PYV(tn))s — (P2I(tn-1))a ?

At

100 (tn) — (PO + H

(Pog(tn))x - (Poe(tn—l))x
e

- (Pigg(tn))x

2

(P}?ﬁ(tn)):v + [[va(tn) — (Pljy(tn))zng)
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Hence, we get
Zy — Zn—1 < 2C0AHZy, + Ry),

where the residual R, is the sum of the approximation errors. By summing this inequality over n, we

end up with

Zn — Zo <20ALY (Z;j + Ry).
j=1

Then, using Taylor’s expansion in time and (2.5) to estimate both the time and space errors, we find

20ALY " R; < C(h* + (At)?),
j=1

Since Zy = 0, it follows that

Zn <20AtY  Zj+ C(h* + (At)?).
j=1

The result is derived by using a discrete version of Gronwall’s inequality and considering that nAt <
T. O

4.6 Simulations

In this section, we conduct two tests and evaluate the error estimate numerically. The first test is
performed when the stability is exponential, while the second test is carried out when the stability is

polynomial. For both tests, we use the following data:
h=001, At=h/2, [,=v=19=1, D=6, 7,=05
and initial conditions
wo(z) = wi(z) = cos(2mx), o(z) = Yy (x) = 2°(1 — z)?,

so(x) = s1(x) = sin(27z), Oy(x) = 01(x) = O2(x) = sin(7z).

First test (y = 0). The first experiment was considered with the following values:
p=1/6,8=1, G=05, k=025 6°=1/3.

The 3D evolution of w, ¥, s, and @ is illustrated in Figure 4.1.
Figure 4.2 presents the results at z = 0.7.

The decay of energy over time is depicted in Figure 4.3.
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(@) w(z,t) (b) ¥(x,1)

0 5 10 15 0 0 5 10 15 0

©) s(z,t) @) (z, 1)

Figure 4.1 The evolution in time and space of w, 1, s and 6.
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w(0.7,t)

$(0.7,t)

Energy E(t)
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0.3

0.2 7

0.1

0.8
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0.2

-0.4

-0.6
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Figure 4.2 The evolution in time of w, ¥, s and § at x = 0.7.
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Figure 4.3 The evolution in time of the energy.
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Second test (x # 0). We select the following entries:
p=06=0.01, G=r=0.1, 6°=0.001.

The solutions w, v, s and 6 are graphed in 3D (see Figure 4.4).
The long time behavior of w, v, s and § at = 0.7 are shown in Figure 4.5.

In Figure 4.6, a polynomial decay is achieved after time ¢ = 5.

©) s(z,t) ) (z, 1)

Figure 4.4 The evolution in time and space of w, 9, s and 6.
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w(0.7,t)

5(0.7,¢)

Figure 4.6 The evolution in time of the energy.
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Figure 4.5 The evolution in time of w, ¥, s and § at x = 0.7.
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Numerical convergence. To illustrate the accuracy of the approximations, we examine the following

academic problem

7_2
,O(JJtt +G(w_w1‘)x+5 (Sett—i—’rqet—{—e) :‘Fla

Ip(BS — ¢)tt — D(3S — w);m; — G(Qb — wx) = .FQ,

4 4
3Ip8tt —3Dszp + 3G(1/J — wm) + g’}’s + gst = Fg,

2
(;qett + 740 + 9) — K(190gt + 62) 0 + 500w, = Fa,
t

(4.86)

with the same entries of second test. The functions F7, Fo, F3, F4, and the initial data are calculated

from the exact solution
w(z,t) = 6elcos(mx), P(x,t) = tz®(x — 1), s(z,t) = e'z®(x — 1)2, §(z,t) = 0.0le'z(x — 1).
The computed errors at time 7' = 1 are presented in Table 4.1, where the Error is defined as

Error :(Hu{; = v(t) P +[9] = whe — (V(ta) — walta)) P+ 13¢5 — ujy — (3p(ta) — ulta))|

+13shy — Yy — (35 (tn) — Ya(ta)) P +lleh — o(t) P +Ishy — so(ta) >+ sk — s(t)]?
HE + I + 0 — (E(tn) + I(tn) + 0(tn) |1 2+05, + Iy — (02(tn) + Du(tn)) |2

1
107, = 0:(tn)I7) .

Observing the results, one can notice that the errors decrease when the discretization parameters are
halved, achieving the linear convergence stated in Theorem 4.5.2. This behavior is also apparent in the

curve shown in Figure 4.7.

Table 4.1 Computed errors when 7' = 1.

M At Error

20 1.00 x 1073 1.649

40 5.00 x 1074 8.243 x 107!
80 2.50 x 10~ 4.132 x 1071
161 1.25 x 1074 2.091 x 1071
320 6.25 x 107° 1.095 x 10~ L
640 3.125 x 107° 6.371 x 102
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FError
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Figure 4.7 The evolution of the error depending on h + At.
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Chapter 5

Long time behavior and numerical treatment of shear beam model

subject to a delay

5.1 Introduction

As previously mentioned, Almeida Junior et al. [89] and Ramos et al. [129] were among the first to
study the well-posedness and stability properties of the Shear beam model. For the damped shear beam
model shown below, the authors in [89] proved that the energy undergoes exponential decay no matter
the wave speed is,

prew (z,t) — K (9o + 1), (2, 1) + peor (x,8) = 0,
—btpae (,1) + K (po + ) (2,1) = 0.

While the authors in [129] examined how feedback damping affected the rotational angle using semi-

(5.1)

group techniques and proved that the system exhibits non-exponential stability. Aouragh et al. [9]

applied the multiplier method to establish exponential stability for a nonlinear Shear beam system.

This chapter extends the findings from [89] to a Shear beam model with a delay, where we establish
an exponential stability result. To be more specific, we consider the following Shear model system,

which includes a damping term and an internal constant delay term in the transverse displacement:

prou (2, 1) — K (9o + 1), (2,1) + papr (2, 1)

+popy (z,t —7) =0, (x,t) € (0,L) x (0,00),
—bihea (z,t) + K (@ +¢) (z,8) = 0, (2,1) € (0, L) x (0,00),
©(0,t) = (L, t) = ¢(0,t) = ¢(L,t) =0, £t >0,
p(,0) = po(z), ¢i(z,0) = pi(z), = € (0, L),
or(xz, t —7) = folz,t — 1), (x,t) € (0,L) x (0,7),

(5.2)

where 7 > 0 1is a time delay, y; is a positive constant, z9 is a real number, and the initial data (¢o, @1, fo)

belong to a suitable functional space.
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The structure of this chapter is as follows: Section 2 presents preliminary considerations and our
main results in Theorem 5.2.1. Sections 3 and 4 are dedicated of the main results. To demonstrate
the global existence and uniqueness of the solution to problem (5.2), we employ the Faedo-Galerkin
method combined with various estimates. Under the condition |ua| < p; , we use the energy method
to construct a Lyapunov functional and establish an exponential decay. In Section 5, we propose a
finite-element discretization of this problem. Discrete stability results and a priori error estimates are
obtained. Finally, we present some numerical examples using MATLAB to demonstrate the accuracy of

the algorithm and the behavior of the solution.

Through out this chapter we use the symbols C, C}, to denote several positive constants.

5.2 Preliminaries and main results

In order to deal with the delay feedback term, we introduce as in [116, 136] the following new
dependent variable

z(x,p,t) = pe(x,t —71p), x € (0,L), p€ (0,1), t >0,
then, we have
Tze(x, p, t) + 2p(z, p,t) = 0, (z,p,t) € (0,L) x (0,1) x (0, 00).

Therefore, problem (5.2) can be rewritten as

(o1t (@,1) — K (00 + ), (2, 8) + pape (2, )

+poz(z,1,t) =0, (z,t) € (0,L) x (0,00),

—btag (2,1) + K (9o + ) (2,1) = 0, (2,t) € (0, L) x (0, 00),

Tzi(x, p, t) + 2p(z, p,t) =0, (x,p,t) € (0,L) x (0,1) x (0, 00), (5.3)
©(0,1) = (L, t) = (0,t) = ¢(L,t) = 0, ¢t >0,

p(2,0) = po(2), ¢i(,0) = p1(z), = € (0, L),

z(x,p,0) = 20(z, p) = folx, =7p), (x,p) € (0, L) x (0,1).

In order to define the functional energy associated with the solution of the problem (5.3). We multiply

the first equation in (5.3) by (¢, the second equation by v; and integrate by parts to get

Ld /L 2d +11 K/L 2d +K/L¢ d

I I 5.4
:_Nl/ Sngx_,UZ/ gOtZ(l',]_,t)dl',
0 0
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and

Ld b/L 2d Ld K/L 2d K/L dr =0 5.5
5 7 0%3«“ +2d 0¢$+ Osﬁwtx—- (5.5)

Adding (5.4) and (5.5), we have

~

1d L L L

S dt <Pl%0? + K(pz + 1) + bwi) dr = — j1q / ©ldx — ,uz/ orz(z,1,t)dz. (5.6)
0 0 0

Now, let £ be a positive constant satisfying

7—’/,1/2‘ <§<T(2u1—\,u2|). 5.7)

Multiplying the last equation in (5.3) by (£/7)z and integrating the result over (0, L) x (0, 1), we obtain

2dt// (x,p,t d,od:c——// acp, )dp dz

¢ (5.8)
2 2
=5 [z (2,0,t) — 2%(x,1,1)] da.
From (5.6) and (5.8), it follows that
li L{ 2_|_K( +¢)2+b¢ dg;+/ / (x,p,t)dp dx
L L
:—,ul/ gp?dx—ug/ gotz(x,l,td:c—l—/ thde‘—/ (x,1,t)d
0 0
then,
1 rr 2 2 2 EE o,
E(t) =5 [msot + K(pz +1)" + b%} dz + 3 z*(z, p,t)dp dzx (5.9)
0 0 Jo
and
dE(t L L
d”-—(ul—é)/ w?dx—ug/ vrz(x, 1,t) dw—/ (z,1,t)d (5.10)
t 27_ 0 0

Exploiting Young’s inequality, (5.10) can be rewritten as

dE(t L L
di ) < - (Ml - % - “L22|> /0 @%daz— <2£7_ — |'u22|> /0 22(x,1,t)d:1:, (5.11)

therefore, there exists C' > 0 such that

L L
dEdf) < -C (/ ga%dm—{—/ 22(x,1,t)d:1;), Vit>0. (5.12)
0 0
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Our main results is the following.
Theorem 5.2.1. Assume that |p2| < p holds.

1. If the initial data ©g,0 € HE(0,L), o1 € L*(0,L) and fo € L*((0,L) x (0,1)). Then the

problem (5.3) has a unique weak solution satisfying

v € C([0,T], Hy(0, L)) n CH([0,T], L*(0, L)),

(5.13)
1/} € C([O,T],H&(O,L)), S C([O,T],Lz(O,L)).

2. If the initial data ¢g, o € H?(0, L) N H(0, L), p1 € HE(0,L) and fo € HE((0,L) x (0,1)).
Then the problem (5.3) has a unique strong solution satisfying

@, ¥ € L>=([0,T], H*(0, L) N H} (0, L)), ¢; € L>(]0,T], H} (0, L)). (5.14)

3. In both cases, with |us| < p1, the energy E(t) satisfies the following decay rate
E(t) < Moe ™M Vi >0, (5.15)

where Ay and \1 are positive constants.

5.3 Global well-posedness

In this section, we employ the Faedo-Galerkin method to construct a regular solution to the problem

(5.3). The result extends to the weak solution, using a density argument.
Approximate problem
Let {v;},cy be the basis introduced in Chapter 3, Section 3.3. We define the function ¢;(x, p) by
i(z,0) = vi(), (5.16)
then we can extend ¢;(z,0) by ¢;(z, p) over H}((0, L) x (0, 1)) and for m € N, we denote

Wm = {¢17 ¢27 ceey ¢m}

Given initial data @, 1o € H?(0, L) N H} (0, L), p1 € H}(0,L) and fo € H}((0, L) x (0,1)), we

define the functions

() =D gim(B)vi, () =D Gim(B)vi, 2™, pit) = Y fim(t)dil, p),
=1 i=1 =1
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wich satisfy the following approximate problem

pl(tpz?(t), Ui) + K((pgn(t) + wm(t)v Uiﬂﬂ) + Ml(@;n (t) ’Ui) + //’Q(Zm(x7 L, t)v Ui) =0,
b(hg" (t) , via) + K (@7 (1) + ¢™ (£),vi) = 0
T(Zgn(iﬁ,p,t),qbi) + (Z,Zl(x’p,t)a(bi) =0,

with initial conditions

©™(0) = it = i(apo,vi)vi I oo in H?*(0,L) N H(0,L),
=1

$™(0) = g = iwo, vi)v; 7= 4 in H?(0, L) N Hy (0, L),
=1

@' (0) = 1" = i(w, vi)vi “==5 oy in H(0, L),
=1
2M(0) = 2 = i(zo,@)@ 7% fo in HE((0, L) x (0,1)).

=1

Substituting (¢, 9™, z™) into (5.17), we obtain

( m m
J=1 j=1
m
j=1
m
Tf'L/m + Z((bjpa ¢i)fjm =0.
7=1

Note that (5.22), leads to

m

K
(ija 'Ui)gjma

bs; + K “—
7j=1

gim:_

then, (5.22) yields

m
P19 + P Gin + KiGim + 112 Y _(0(x5,1),v3) fjm
j=1
m
K2
= - Z = (Vja, Vi) (Vka» V5) Gl
=LA
m
Tfim+ > (o 6i) fim = 0.
\ j=1
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By standard ordinary differential equations theory, the problem (5.24) has a unique solution (gi, fim) €
C2[0,T,) x C1[0,Tyy,). Then, from (5.23), we infer that g, € C?[0, T};,). Therefore, the approximate
problem (5.17)-(5.21) has a unique local solution (¢™(t),¢™(t), 2™ (t)) in a maximal interval [0, T},)
with 0 < T,,, < T'. The estimate below will allow us to extend local solution (¢"™(t),¥"™(t), 2™ (t)) to
the interval [0, 7], for any given 7" > 0.

A priori estimate 1

Multiplying the first equation of (5.17) by ¢.,., the second by ¢.,. and the third by (§/7) fim, sum-
ming up over ¢ from 1 to m and taking the sum of the resulting equations, we obtain

d K b
ﬁ<2W%WmF+QH%H0+WWmF+|W?@W>+uw%WmF

L
—|—,u2/ Mz, 1,t) e (t daz+< / / (z,p,t)dp d:c) (5.25)

Sl n+5/ (a1, t)da =

Integrating (5.25) over (0, ¢), we find

Em(t) + (ul—f) /tw(s)n?dH / / (2,1, 5)dz ds

(5.26)
+m// (2,1, 8)p (5)do ds = En(0),
where
1 2 m Mg (|2 gy (|2
Em(t) =5 (prllet" O + Kllga"(®) + 9™ @7 + bllv" @)
f (5.27)
/ / (z, p,t)dp dz.
Using Young’s inequality, we have
1 Iﬂz\
2 ™z, 1,8)"(s)dx ds > — (z,1,s)dzx ds
(5.28)
—W/WW@Wa
2 Jo
which, together with (5.26), yields
§ 2\ [ m
e+ (-5 =2 [leroPas
(5.29)

+(5_’“2>// (2,1, 8)dx ds < En(0).
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The fact that ¢ 2 ¢ 2
U2 K2

-~ ) s d (> -1221) >

<“1 or 2>—0 an <27 2>—0’

En(t) < Em(0). (5.30)

gives

In the case j11 = |ps2|, for & = 71, we also have (5.30). Hence, in both cases, there exists C' independent

of m such that
En(t) <C,t>0.

Thus

L 1
I (112 + (@) + DO + [ (012 + / / (™22, p,t)dp da < C, £ >0, (531)

therefore, T,,, = T, for all T' > 0. The estimate (5.31) implies that, for any m € N,

©™, ™ are bounded in L>([0,T], Hg(0, L)), (5.32)
@ is bounded in L>([0, T}, L*(0, L)), (5.33)
2™ is bounded in L*>([0, T, L*((0, L) x (0,1))). (5.34)

A priori estimate 2

Differentiating the equations in (5.17) with respect to ¢, we get

p1(pi (), vi) + K (7 (t) + i (1), via)
+ua gy (8),vi) + po(2"(z,1,),v;) =0,
b(¥zi (1), via) + K (@3i(t) + ¥7"(t),vi) =0,
(27 (2, p,t), i) + (2t (2, p, 1), 0i) = 0.

(5.35)

Multiplying the equations in (5.35) by g/, (t), gir..(t) and (§/7) f! ., respectively, and summing up over

> Gim im>

1 from 1 to m, it follows that

1d L
5 (PIeROI) + K /0 (@ (t) + P (1))l () dx -

L
+ )2 + oo /0 (1, )P () = 0,
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i m 2 L m m m =
& (IzOI) + K [ + v o eds =0

N |

and

1d Lot L
Sdt <f/0 /0 (2")(x, p, t)dp dﬂf) - %H@ZZ(UHZ + 257/0 (2™ (2,1, t)dz = 0.

Taking the sum of (5.36)—(5.38), we obtain

1d
YT (m\lwtt( tI° + K@ () + o O + bl ()1

+,5// V20 t)dp da +<u1 = Il
+u2/ P, LR (de + = | (2 (2,1,t)da = 0.
0

Integrating the last equality over (0, ¢), we get

nt)+ (- ) [P+ [ [ U1 s)d ds
+M2/ / (1, 8)ep (s)dx ds = G (0),

where

Gn(t) =3 (P11 O + K0 + 070 + bl o))

+§/0 /0 (2)(z, p, t)dp de.

Similarly to the first a priori estimate, we infer that there exists C' independent of m such that
Gm(t) <C, t >0,
which implies
2 2 2 Lot 2
I @1 + 150 + o O + O + [ [ G2 s dpds < 0
and for any m € N, we have
@™, ™ are bounded in L>([0, 7], H:(0, L)),

@ is bounded in L>([0,T], L*(0, L)),
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(5.42)

(5.43)

(5.44)



2™ is bounded in L*>([0, T, L*((0, L) x (0,1))). (5.45)

A priori estimate 3

Replacing v; by —v;,, in the first and second equations, and ¢; by —¢;,, in the last equation of
(5.17), then multiplying the resulting equations by g, .(t), §.,,(t) and (§/7) fim(t), respectively, and

summing over ¢ from 1 to m, we find

s (o) + 5 [ + vt

2dt 5 (5.46)
+ o ()] +u2/0 2z, 1,8) ™M (t)dx = 0,

1d o L . - -

51 (P O17) = K [ (@20 +0m @) =0 (5.47)

and

5 m 2 5 L mh2 B
2dt( / / (z, p,t dpda:) = 5ol +2T/0 (2)*(z,1,t)dz = 0. (5.48)

Applying Young’s inequality, the last term in (5.46) gives

L
mAz<auwmm:>“m/ @10 - P jnr Ga9)

Taking into acount (5.49), summing (5.46)-(5.48) and integrating over (0, t), we arrive at

%wu(m—j Wﬁ/u 9)|Pds

£ Il (5.50)
+ <27’ — ,u22>/0 /0 (2" (2,1, 8)dx ds < Hum(0),
where
1
Hon1) = (pm¢ﬁ<>n—%Kﬂ@m<>+¢£%wu2+bwmzaﬂﬁ)
(5.51)
£/ / (z,p,t)dp dx,
then,

Hun(t) < Him(0).

Therefore, there exists C independent of m such that

Him(t) <C, t>0
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and, consequently,

L 1
IO + e (® + o2 1 + 0+ [ [ e tdpda < C.
For all m € N, this estimate implies that
@™, ™ are bounded in L>°([0,T], H*(0, L) N H}(0, L)), (5.52)

2™ is bounded in L°°([0,T], HL((0, L) x (0,1))). (5.53)

Passage to the limit

In light of (5.32), (5.33), (5.34), (5.43), (5.44), (5.45), (5.52) and (5.53), and up to a subsequence,

we have
™ —* ¢ in L*([0,T], H*(0, L) N Hy(0, L)),

90175” — Pt in LZ([OvT]>H6(O7L>)a
(P;? —* Pt in L2([0,T],L2(0,L)),

Y™ —* 1) in L2([0,T], H*(0, L) N H(0, L)), (5.54)
@W —F wt in L2([O)T]7H&(07L))>

2™ —* z in L2([0,T], H:((0, L) x (0,1))),

2" —* 2z in L2([0,T],L3((0,L) x (0,1))).

\

From the above limits we conclude that (¢, ¢, 1, z) has the following regularity

. € L=([0,T), H*(0, L) N Hy (0, L)), ¢r € L2([0,T], Hy(0, L)),
z € L*([0,T], H3 ((0, L) x (0,1))).

Using the compact embedding (H& < L?and H? N H& — H&) and Lions [98] (Chapter 1, Theorem
5.1), we get

™ — @ in L*([0,T], Hy(0, L)),

@i —> ¢ in L*([0,T],L*(0, L)),

(5.55)
Y™ —1p in L2([0,T], H}(0, L)),

2™ — z in L%([0,T],L3((0,L) x (0,1))).
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With these limits, we arrive at

/(‘P;n(t)+wm(t)vvim)ds—>/ (pz(t) +(t), viz)ds,
0 0
e ®.mas — [ o0 mpas,
/0(zm(x,l,t),vi)ds—>/0(z(x,l,t),vi)ds,

¢ ¢
[ @ s — [ @) 0)ds,
0 0
¢ t
| @@+ vmo.m s — [ (o) + 00,00 ds,
0 0
¢ t
| oo — [ (wp0).00ds
0 0
and for any t € [0, 7]
(Sozn(t)avi) — (Sogn(t)avi)a (Zm(xapvt)a¢i) — (Z(fl:,p,t),¢i)-
Integrating the equations of (5.17) over (0, t), we obtain
t
P00 = 1)+ K [ (20 + 670, )ds
b [ G @) v+ [ (a0 =0,

b /0 (0 (1) vie)ds + K /0 (I (t) + (1), vi) ds = 0,

t
T(Zm(x7p7 t)?éi) - T<Z6n7 ¢Z) +/O (Z;n(xvpv t)7¢i)d8 = 07

\

then, from the above limits, (5.20) and (5.21), we have

or(e(t), v0) — pr (1, 00) + K /O () + (1), viz)ds
I /O (e (t) ,vi)ds + o /0 (2(x,1,1), v5)ds = 0,

b/o o (t),vm)ds—i—K/O (0u(t) + (), v05) ds = 0,

7(z(z, p,t), ¢i) — (20, Pi) +/0 (2p(z, p,y t), ¢;)ds = 0.
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Using the density of {v; };cy in H2(0, L) N H}(0, L) and in {¢;},c in H((0, L) x (0,1)), we get

p1(pe(t),v1) — p1(p1,v1) + K/O (pz(t) +9(t), v1g)ds
o /0 (o () on)ds + oo /0 (2(2,1,8), 01)ds = 0,

t t (5.56)
b/o o (t),vm)dHK/o (0a(t) + (t), v1) ds = 0,

T(Z(l‘,p, t)7¢1) - 7-(2075251) +/0 (Zp(IL‘,,O,t),gbl)dS =

forany (v, ¢1) € (H*(0, L)NHJ (0, L)) x H}((0, L)% (0, 1)). Now, the differentiation of the equations

in (5.56) leads to

pi(pu(t), vi) + K(ex(t) + ¢(t), v1a)
(e (1), v1) + pa(z(2, 1,8),v1) = 0,

b(the (), v1e) + K (0 (t) + (1), v ) 0,

(1@, 8),61) + (2l 1), 61) =

for any (v1, ¢1) € (H?(0,L) N HY(0,L)) x H}((0,L) x (0,1)). Therefore (¢, ¢1,, 2) is a strong
solution of (5.3).

(5.57)

It remains to show that the strong solution satisfies the initial conditions in (5.3). By using (5.55)1,
(5.55)2 and Aubins-Lions-Simon Theorem 2.1.24, we deduce that we can extract a subsequence still
denoted by (™) such that

¢™ — ¢(0) in C([0,T],L*(0, L)),

together with (5.57) lead to
(0) = go.

Now, integrating (5.57); over (0,7') and taking v1 = ((t)v(z) where v € H?(0,L) N HZ(0, L) and
¢ € C*(]0,T]) with ¢(0) = 1 and ¢(T") = 0, we find

T T
o /0 (u(t), C(t)o(@))dt + K /0 (a(t) + (1), C(t)va(a))dt
T T
o / (e (£), C(E)o(@))dt + iz / (2(2, 1,8), C(t)ola))dt = 0,
0 0

the integration by parts of the first term gives

T T
p1(t(0),v(z)) = — Pl/ (¢t(t)7<t(t)v(x))dt+K/ (pz(t) + (1), C(t)vz(z))dt
0 0 (5.58)

T T
1 /0 (e (1), (0 ())dt + /0 (2(z, 1,1), C(t)o(x))dt.
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On the other hand, multiplying (5.17); by the function ((¢), and integrate over (0,7"), we get

T T
POl 0) = — py / (G (1), G (twi)dt + K / (I(t) + 0™ (), C(t)via)dt
OT ‘ T
+ /0 (" (8), CE)ui)dt + o /0 (2™ (2, 1,1), C(tyos)dt,

passing to the limit and keeping in mind (5.20) and (5.55), we infer

T T
pr(p1, o) = — 1 / (u(t), G (ty)dt + K / (a(t) + (1), C(t)vis)dt
0 0 (5.59)

T T
+ / (e (1), C(Byvs)t + o / (2,1, ), C(H)vy)dt,

wich remains valid for all v € H?(0, L) N H}(0, L) by density argument. Comparing equations (5.58)
and (5.59), we deduce that

©1(0) = 1.
Next, selecting ¢1 = ((t)$(z) in the last equation of (5.57), where ¢ € H}((0, L) x (0,1)) and ¢

chosen as previously introduced, and applying the same procedure as above, we obtain

2(0) = z0 = fo.

Continuous dependence and uniqueness

Let (¢, 1,9, z) and (P, @1, 1), Z) be the strong solutions of the problem (5.3) with respect to initial

data (()007 @1, w()v ZO) and ((1501 9517 1;07 20)’ respectively. Then’ (A7 Atv X7 Z) = (90 - 957 Pt — @h w -
1[), z — Z) verifies (5.3) and we have the following equations

plAtt (.%',t) - K (Aﬂf + X)x (.Z',t) + l’LlAt ([E,t) + M?Z(mv lvt) = 07 (560)
—b Xy (2,t) + K (A + X) (2,8) =0, (5.61)
TZt(.%’, pvt) + Zp(ajnga t) =0, (5.62)

with the initial data

A(0) = ¢(0) = $(0), A(0) = @u(0) — @:(0), X(0) =(0) —(0), Z(0) = 2(0) — Z(0).

Multiplying (5.60) by A4, (5.61) by X; and (5.62) by ({/7)Z, and then integrating the resulting expres-
sions over (0, L). Applying the same arguments used to derive the estimate (5.11) give

d~(t) £ |12 b 2 § || r 2
TR < - <,LL1 o 2> /0 Aidx — <27_ — 2) /0 Z%(x,1,t)dx. (5.63)
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where
- 1

L L 1
E(t)=2/0 [mA?+K(Ax+X)2+bX§} da:+§/0 /O Z%(x, p, t)dp dz.

Integrating (5.63) over (0, t) to get

B < 50) + (5 + %) [ IniGoias

this implies that for some constant C' > 0
~ ~ t ~
Blt) < BE(0)+ C / Bt)ds
0

and by Gronwall inequality, we conclude that there exists a positive constant Cp = ¢“T such that for
any t € [0,7]
B(t) < CrE(0),

this shows that the strong solution of the problem (5.3) depends continuously on the initial data. As a
result, this solution is unique.

For weak solutions, the application of a regularization method, as in [97, Chapter 3, Section 8.2],
enables the proof of the continuous dependence and uniqueness .

The proof of items (i) and (ii) of Theorem 5.2.1 is now complete.

5.4 Exponential stability

In this section, we establish the decay property, in the case |u2| < w1, of the solution for the sys-
tem (5.3) with the regularity stated in Theorem 5.2.1. The same holds for weak solution through the

application of standard density arguments.

Using the energy method, we construct a Lyapunov functional L that is equivalent to E. For this, we

define several functionals that allow us to obtain the required estimates.

Lemma 5.4.1. The functional

L I L
Li(t) = Pl/ prpdr + / ¢ dx
0 2 Jo

satisfies, for any €1,

dIl(t) L 2 L 2 L 2
g—b/ wxd:z—K/ (pz + ) dx+01/ pidx
dt 0 0 0
; o (5.64)
+e1 / 2dx + =1 22(x,1,t)dz.
0 €1 Jo
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3}
Proof. Multiplying (5.3); by ¢ and using the fact that ¢ = ﬁ(gotcp) — 2, we end up with

d [* M1 9 L 2
i )y (prpep + @7 )dz — p1 ; pydx
I i (5.65)
+ K/ (P2 + ¢)padr + Mg/ z(z, 1, t)pdx = 0.
0 0
Similarly, multiplying (5.3)2 by ¥, we get
L L
b/ Vide + K/ (0o + V)dx = 0. (5.66)
0 0
Adding up (5.65) and (5.66), we arrive at
dI,(t) b r 2 by t
e b Yrder — K [ (o +9)°dx + p1 prdr — g z(x,1,t)pdx. (5.67)
0 0 0 0
Application of Young’s and Poincaré’s inequalities yields
L W2e, [* L
—ug/ z(z, 1, t)pdx < ”/ 22(x,1,t)dx + &, / 2 dx. (5.68)
0 der Jo 0
By substituting (5.68) into (5.67), we obtain (5.64). ]
Lemma 5.4.2. The functional
L
Ix(t) Zpl/ prod
0
satisfies
dI(t K [F L
20 <5 [ e e [ 02+ 2 ) (5.69)
Proof. Differentiating I, we get
dI(t L L
cQZ( ) =p1/ Sott(de+p1/ prde,
t 0 0
then, by using (5.3); and integrating by parts, we find
dl(1 L L L
fhf ) Z—K/ so;idx—K/ wsoxdar—m/ prpd
0 0 0 (5.70)

L L
— ,uQ/ z(x, 1,t)pdx + p1 / dr.
0 0

123



Young’s and Poincaré’s inequalities lead to

L L L
3K K
—K/ bopds < Cp/ wid:c+/ Y2dz, (5.71)
0 2 Jo 6 Jo
L 2 L L
3picp 2 K/ 2
— dxr < d — d 5.72
ul/osowﬂ:_ZKO@tHGO%ax (5.72)
L 2 L L
3 K
—pg/ z(x, 1,t)pdx < Fa% 22(x,1,t)dx—|—/ 2 dx. (5.73)
0 2K Jo 6 Jo
Plugging (5.71)-(5.73) into (5.70) gives (5.69). ]

Lemma 5.4.3. The functional

L rl
I3(t) = / / e 222 (x, p,t)dp dx
0 0

satisfies

L 1 L
< —21I3(t) — / 22(x, 1, t)dx + T/ pida. (5.74)
0 0

Proof. Differentiating I3 and using (5.3)3, we have

d L 1 9 I 1
dt (/0 /0 ¢ t)dp dx) T T/o /0 e ¥ Pzz,(x, p,t)dp dz
L 1
= — 2/ / €—2sz2(x7 p’ t)dp d:p
0 0

—1/L/18(6_2”)22(1‘ p,t)) dp dz.
T Jo Jo Op T

This latter estimate implies the existence of a constant C'3 for which inequality (5.74) is fulfilled. ]

Now, we consider the following Lyapunov functional defined by
L(t) = NE(t) + N1 () + Io(t) + I3(t),

where N and NV are positive constants to be fixed later. Then taking into account the energy dissipation
(5.12), it follows that

I L
dL) _ _ KNl/ (o +9)?dx — [bN1 — 02]/ Ypda
0 0

dt
K L 1] [t
— |: — €1N1:| / QD?CdSL' — |:NC — ClNl — 02 — :| / gD%dl‘
2 0 71 Jo
1
—2I5(t) — [NC' + G gNl - C’g} / 22(z,1,t)dz.
T €1 0
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. . K
We begin by setting €; = N, to get

dL(t)

L K L
Tl < KN [ oo wpde o [ e

L 1 L
—[le—Cg]/ wgda:— |:NC—01N1—CQ—T] / gpfda:
0 0

Cy  4C L
—2I5(t) — [NC e 02] / 22(x,1,t)dw.
T K 0
Next, we choose N; large enough such that
bNy — 02 > 0,

then, we pick N large enough so that

1
NC —CiN1 —Cy — — >0,

Cs 4C
NC+=2—-22N2_-(Cy>0
+7‘ K 1! 2> U

As a result, we infer that a constant 77; > 0 exists such that

dL(t)

L L rl
< —m/o (97 + (P +9)? + 93] da _’71/0 /D (@, p, t)dp da.

Comparing with (5.9), we have for some 72 > 0,

dL(t
di) < —mpE(t), Vit > 0.

On the other hand, it is easy to see there exist two positive constants 31 and B2 such that
BLE(t) < L(t) < B1E(t), YVt > 0.

Combining (5.76) and (5.77), we conclude for some A; > 0,

L
ddit) < —ML(t), V>0,

a simple integration over (0, ¢) leads to

L(t) < L(0)e ™! ¥ ¢ > 0.

(5.75)

(5.76)

(5.77)

Consequently, the equivalence of L and FE, yields the estimate (5.15), and then the proof of Theorem

5.2.1 is now complete.
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5.5 Numerical approximation

In this section, we propose a numerical approximation to the solution of the continuous problem
(5.3), where we study the stability of the scheme and analysis of the error. After that, some numerical

simulations are performed.

5.5.1 Stability of the scheme

To acquire the weak formulation, we multiply the equations in (5.3) by the test functions ¢, 1) and Z,
respectively, then integrate by parts, where ® = ¢, to obtain

p1( @1, @) + K (0 + 1, @z) + p1(®, @) + po(®(t — 7),0) =0,
(Vs V) + K (0 +1,10) =0, (5.78)
T(2t,2) + (25, 2) = 0.

Here, (., .) is the inner product in L?(Q2) where Q = (0, L) for ¢ and 1, and Q = (0, L) x (0, 1) for z.

The mesh of a given delay 7 = MAtist, = nAt, n=-M,—-M +1,...,0, 0 < M < N. We
define the discrete space

S;‘; = {O’h S H&(I X (0, 1)) 1V [afi,l‘i+1] e Iy, O'h|[cci,mi+1] € Pl([$i,xi+1])} .

By using the implicit Euler scheme, the finite element approximation of the variational problem (5.78)

is written as follows:
Forn =1,..., N, find (@}, 97, 27) € S x SY x S}, such that for all @y, ¥, and Z,, we obtain

P1 1 - _

(R, @) + (@M, ) =0,

(s — 23" 2n) + (2f, 20) = 0,

(5.79)

-
At
where

oh =+ AL
Here cp%, <I>?L, ¢2 and fg are approximations to g, 1, Yo and fo, respectively.

We introduce the following discrete energy

E" = o (il @R 1P+ K |y + RllP+bllp P +€ll2311%) - (5.80)

N | =
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Theorem 5.5.1. Assuming (5.7) holds, the discrete energy (5.80) satisfies

En_Enfl
T =

Proof. Taking @), = @7, b, = W7 (where U = ¢ and zj, = (£/7)2! in the scheme, and considering
the fact that
1 2 2 2
(a=b,a) =5 (la—bl*+llal”—[1Bl) (5.81)

we arrive at

( P1 12 2 1®n—12
(I>" (I)” + <I> @

+ K(¢py + U, @) + pa |07+ pa ()M, &7) = 0,

(5.82)
b(Vher Viy) + K (ep, + 95, V7)) =0,
£ - - §
S (lep = 2 PPz 2) + 2 (2 = 0.
Young’s inequality gives the following estimate
ol ) > 2l gz el gy (5.83)
Thanks to (5.81), we observe that
n n n n K n n o n n n—1 n—1
K(@hy +Up, @y + V) = K((phx + Uk Phe VR — (Phe + U )
K , . (5.84)
> = (ks + Rl + w7 1%)
and
n n b n n n—1
b(whxv hx) = 7(1/}hx’1/}h1’ - ,QD )
(5.85)
> o (R Pl 7).
Clearly we have
£ §
S et o) = o BN IP— g (586)

Now, adding up the equations in (5.82) together with (5.83), (5 .84), (5.85) and (5.86), we find

oy — rl 72— [ pn—1 |2 & pe Pn2

2 g 1) + (- 5~ 2 o
§ |“2| M K 2 -1 —1)12

+ (27 12512 +toA; (lehe + DRl =llehs " +vr= %)

¥ g (WA P93 1) + o (12F — 2 IPHIR P 17) <0
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Next, by discarding the positive terms

_ _ £ |pel _ £ |uel
R e [ L [ <— @M, (= == = = ) |77,

2T 2 2T 2
we get
L (IR 1) + s (ke + vRIP— i + 93 17)
+ 2%15 (Ihall®=llwhs %) + % (+ll=rlP=lz~11%) <0
and, thus, the proof is complete. O

5.5.2 A priori error estimate

We now state and prove a priori error estimate for the numerical approximation, in which we find the

convergence of the error.

Theorem 5.5.2. Suppose that the solution (p,, z) of (5.3) is regular enough and (5.7) holds, then the

following a priori estimate

197 — @(ta) P +llhs + ¢ — (p(ta))z + ¥ (ta))?
Hlvhe = (W(ta))al*Hll2 — 2(tn) [ < C(AE + h?),

is achieved, where C' is independent of At and h.

Proof. First, we introduce the projection operator
P HJ(I x (0,1)) — Sj.

The operator P, exhibits similar properties as defined previously in Chapter 2. To define the approxi-

mation of the initial data, we suppose that they are smooth enough and set
0 _ 0 _ 0 _ 0 _ px*
en = Prpos @, = Pripr, ¢y, = Pribo, 2, = Py fo.
Next, let us define

e" = Ph—Pye(tn), €" = Bh — PR®(tn), y" = vfy — PR (tn),
§" =Wy — PJU(t,), 7" =z} — Pra(ty).

Several steps are required for the proof of this theorem
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Step 1: Substitute in the scheme (5.79) and taking @;, = é", ¥y, = 9", 2, = (£/7)r"™, we find

L@+ PR®(t,) = ("1 + PR®(ta-)), ") + K (e} + (Bp(ta))o +y" + PR (ta). )

+ 1 (6" + PPO(ty,), ") + pa(é™™M + PI®(t, ), é") = 0,

by + (PP (tn))a, 9) + K(ell + (Po(tn))z + 4" + PR (ta), ™) = 0,

Agt g(r;} + (P z(tn))p, ™) = 0.

(" + Pya(tn) — (171 + Pra(tn-1)), ") +
Applying (5.81), we obtain

P1 X An— A An— «
Lo (e — e Pl P —llem M IP) + LS (PR (tn) — PRD(tn-1), €")

2At At
+ K (ep +y", &) + K((Po(tn))e + PRu(tn), €7) + palle"]?

+ 1 (PR®(tn), €°) + pa(€" M, €") + pa (P @ (tn-ar), €") = 0,

bl 62) + D(PY(ta) o T2) + K (€ + 47, 57) 587
FR (P (tn))e + P(tn). 57) = 0

oacg (I = P P2 2) S (Ba(t) = Pia(tn 1))

+§(rp,r )+ g((P;{z(tn))p,r”) =0.

Step 2: Now, let ¢ = é", ¢ = ¢, Z = (£/7)r" in the week problem (5.78) and combine it with (5.87),

L (e — e PPl )

+ K (el +y™,ep) + palle" | +pa(e" M, )
Pf?‘b(tn) _Pf?q)(tnfl) N
At €")
+ K(pz +1p — (PRo(tn))e + PRoo(tn)), é2)
+ (P — PP®(tn), €") + pa(®(t — 7) — PR®(tn_n1), &),

=p1(P¢ —

(5.88)
b(yys Uz ) + K(ep +y",9")
=b(1y — (PP (tn)a, 92) + K (00 + 0 — (PRo(tn))e + Pb(t)), 9™,

oo (= P P ) + S )
Pra(tn) — Pzt . i
(e TRA) Athz(t 1)7rn)+f(zp—(th(tn))p,r )
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Step 3: Adding up the three equations of (5.88),
P1 A An— o n— . .
oag (€7 =P lem P =1e" %) + K (ep + ™, &3 +3™)
§ - - §
g (I =PI P =1 H2) + 2 (™)

+ || €| P pa (e M €™ + by, )

P@(t,) — P2®(tn—1) .,
—p1 (D — X LE™) (5.89)

+ K(QOC,; + 1/1 - ((Pl?(p(tn))w + Pi?w(tn))7 é;)
+ 1 (B — PP®(tn), €") + pa(®(t — 7) — PY®(tn—nr),€")
+ b(thz — (P (tn))z: 57) + K (pa + 1 — (PRo(tn))z + Prap(tn)), §7)

n g(zt B P];kz(tn) _Atpﬁz(tnl)7rn) + g(zp . (P]tz(tn))pa Tn).

Step 4: In this step let v = (e} + y", €2 4+ ™) and by the definition of €™ and 3", we end up with

v=(ef +y" Py — (PY®(tn))s + Uf, — PLU(ty))
1 n—1

(
ey —€ey Y —y )

At At

0 o 0

(PRe(tn)) A(tPW(tn—l))x (PP (t))a)
0 _ p0

POy (t,) Afhwn—l) — PO(t,)),

= (ex +y",

+ (e + 9"

+ (e +y",
then

1
v=oo (lleg +y" = (e +y T DIPHleR +yt P lle ™t + 5P

2At

0 _ 0
(e 4y, TP 2 Bttt gy ) (5.90)
+ (ez + yn7 P£¢(tn) _A];]?w(tnl) o P}?\I/(tn))

Similarly, we consider

n _ ,n—1 0 _ 0
0= (i) = i o Tl U n=t)e  (ppyy,)).),
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then

1 _ _
= o (o = g P+l )

(5.91)
Pyt — (P2(t,—
Young’s inequality leads to
pafen M &) > 2 anar Wl oy 5.9
By direct computations, we have the following equality
Sy = e M P2 e (593

2T

Inserting (5.90)-(5.93) into (5.89), then by taking into account that
" — e M, el + ™ — (et TP vy — w2 b =R,
(5 - Ll erip. ana (s = = L penpe
are positive terms, we arrive at

L (e P17 12) + o (e + g™ 2= ller™ + 5™ 1)1%)

2At 2At
b n— 5 n n—
o (=2 0) + 5 (=)

Pi?q)(tn) - P}?(I)(tnfl) N
At &%)
+ K (pz + ¢ — (BRo(tn))x + PY(tn)), €F + ")

<p1(®; —

0 _ 0

(e g, (PR R )
0 0

gy, B ppa)

+p1(® = PR®(tn), ") + pa(®(t = 7) = Py ®(tn—nr), €")
n (P (tn))s — (P (tn-1))

+ b(¢x - (P;gib(tn))x,?ﬁ) - b(ya:a At —= — (Pi?qj(tn))x)
v - DAL B ) oy S (B,
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Step 5: let
Zn = prl @ P+ Klleq + y" 1P +bllyz ] +€[|" 1

and by applying Young’s inequality, we have

Pp®(tn) — P)®(tn—1) |2
7z — 7. 1 §20At(Zn i H@t _ N H
+[(pz + ¥ — (PPo(tn))z + PP (tn))]?

(Pf?@(tn)):v - (Pf?‘:o(tnfl))w 2

N | — (Pt

|| PRe(t) _Affgw(tn—l) — Prue) | @ — P (k)2
Bt — 7) = PDB (1 a0) P4 — (PRt

L | Bt - in?%b(tnl))r —Powt). |

i, - Tzt —A?;‘z(tn_l) HQHW _ (p;z(tn))pH?).

Collecting all these estimates, we observe that
Iy — Zn—1 < 2C0AHZy, + Ry), (5.94)

where the residual R,, is the sum of the approximation errors. Summing (5.94) over n, it follows that
n
Zn — Zo <20AtY (Z; + Ry),
j=1

we then combine time error, which is estimated by using Taylor’s expansion in time, and space error,

which can be bounded from (2.5) to obtain
2CALY Rj < C(AL +1?)
j=1
and since Zy = 0, we deduce
Zy <2CALY | Z;j+ C(A + 7).
j=1

Finally, using a discrete version of Gronwall’s inequality with the fact that nAt < T to get the desired
result. 0
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5.6 Simulations

This section describes the procedure used to find the numerical solution as well as the results of some
numerical simulations.
Like in [16, 50], to solve the system (5.2) we use an iterative algorithm. Assuming that CIJZ_I is

known and setting
n,0 _ -1 n,0 _ -1 n,0 _ -1
Soh _QOZ 7(bh _(I)Z 7¢h —1/1;? ’
the system is solved iteratively:

Pl ~ni 1 1 1
E(@Z — &P on) + K(ep + U5, Pha)

(O Bn) + pa (@7 M 5p) = 0, (5.95)
b7 D) + K (gt + i ) = 0,

where, forl =1, 2, ...,

ot = At o),
Problem (5.95) consists of two, uncoupled, linear systems of algebraic equations, that have a unique
solution. First, we compute ¢Z’l, then @Z’l. A tolerance tol = 1077 is used to stop the iterative

procedure.

For our simulations, we choose the following entries:
L=1, h=0.01, At=h/2, 7=01T, p =2, K =365, b=1.

The initial values are
eo(z) = p1(z) = tho(x) = z(1 — z),

and the delay condition is
folz,t —7) = 2(1 — x) cos(t — 7).

Test 1. In the first experiment, we choose 113 = 1 and pg = 0.1.

Test 2. We run an experiment with u; = 2 and pg = —1.

The evolution of ¢ and v are represented in 3D (see Figures 5.1, 5.2, 5.8 and 5.9 respectively).
Figures 5.3, 5.4, 5.10 and 5.11 show the displacement and the angular rotation at the point z = 0.5.
The decay of the energy with respect to time is shown in Figures 5.5, 5.6, 5.7, 5.12, 5.13 and 5.14.
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' 1
-0.3 ~ 0.5

Figure 5.1 Test 1: The evolution in time and space of .

Figure 5.2 Test 1: The evolution in time and space of 1.
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0.25

0.15 J

0.05 1

(0.5, 1)
o

-0.05 1

-0.1 1

-0.15 | U 1

oall |

-0.25 1 1 1 1

Figure 5.3 Test 1: The evolution in time of ¢ at x = 0.5.

0.5

0.4 1

0.2 1

0.1 1

$(0.5,1)

Figure 5.4 Test 1: The evolution in time of ¢ at x = 0.5.
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log(E(t))

14

12

10 |

Figure 5.5 Test 1: The evolution in time of F.

Figure 5.6 Test 1: The evolution in time of log( E(t)).
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—log(E(t))/t

100

-100 | 1

-200 1

-300 1

-400 | 1

-500 1

-600

Figure 5.7 Test 1: The evolution in time of — log(E(t))/t.

L _A

' 1
-0.3 - 0.5

Figure 5.8 Test 2: The evolution in time and space of ¢.
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©(0.5,¢)

-0.8 ~

Figure 5.9 Test 2: The evolution in time and space of .

0.25

0.2

0.15

0.1

0.05 i

-0.15

-0.2 1

-0.25

10

Figure 5.10 Test 2: The evolution in time of ¢ at z = 0.5.
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0.1F 1

0.2 1

-0.4 1 1 1 1

0.5

0.4 1

0.3 J

0.1 1

Figure 5.11 Test 2: The evolution in time of ¢ at x = 0.5.

15

10 1

Figure 5.12 Test 2: The evolution in time of F.
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—log(E(t))/t

-20

Figure 5.13 Test 2: The evolution in time of log(F(t)).

100

-100

-200

-300

-400 |

-500

-600

10

10

Figure 5.14 Test 2: The evolution in time of — log(E(t))/t.
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Chapter 6

A memory-type porous thermoelastic system with microtemperatures
effects and delay term in the internal feedback: Well-Posedness, Stability
and Numerical Results

6.1 Introduction

This chapter addresses the system

PUt = gy — s — pote(x,t — T) + by — vy,

J it = 00y — by — Ep — dwy + mb — / 9(8)pza(t — s)ds,
0 (6.1)

By = kobOpz — YUty — Mpr — k1w,

aw; = kowgy — k3w — k10, — dpyy,

where (z,t) € (0,1) x (0,00). The functions u, ¢, 6, w represent the displacement of the solid elastic
material, the volume fraction, the temperature difference and the microtemperature vector, respectively.
The relaxation function g is positive and decreasing. The parameters p and J , which are strictly positive
constants, denote the mass density and the product of the mass density with the equilibrated inertia,
respectively, while 7 > 0 indicates the time delay. The constants ¢, u, u1, g2, 6, v, & m, d, k1, ks,
ks, « are positive, and b is a non-zero real number. This system is subjected to the following boundary
condition

uz(0,t) = ug(1,t) = ©(0,t) = p(1,t) =0, t >0,

0(0,t) = 0(1,t) = wy(0,t) = wy(1,t) =0, t >0,

(6.2)

and initial conditions

u(z,0) = up(x), ue(z,0) = ui (z), (x, —t) = @o(x,t), v € (0,1), t >0,
ot(x,0) = p1(x),0(x,0) = Og(z), w(z,0) = wo(zx), x € (0,1), (6.3)
u(z,t — 7) = folx,t —7), (z,t) € (0,1) x (0,7).

141



The initial data ug, u1, @o(.,0), ¢1, 0, wo and fo(x,t — 7) belongs to a suitable functional space.

The evolution of the porous material is governed by a linear damped wave equation. This naturally
led to the exploration of multiple couplings. Quintanilla [126] made the first contribution in this research
direction. Since then, numerous articles have been published examining how various mechanisms influ-
ence the entire system to either exponential or slow decay. To clarify this, Casas and Quintanilla [31,32]
demonstrated that when porous dissipation is combined with temperatures (or microtemperatures), the
system decays exponentially. Magana and Quintanilla [105] showed that viscoelastic damping and tem-
perature resulted in slow decay over time, but when coupled with porous damping or microtemperatures,

the system decays exponentially.

Recently, problem (6.1) has been studied in [135] and proved that, in absence of the infinite mem-
ory and the delay terms, the dissipation given only with the microtemperatures is sufficient to get an

exponential stability in the case when x; = 0, where

Khochemane in [90] for 13 = pg = 0, proved a general decay estimate for the solutions of system (6.1).

The main goal of this chapter is is to extend the results in [90, 135] to the case where g # 0 and
u; 7 0,4 =1,2. Under the the condition
pE > b, (6.4)

we prove the well-posedness and establish a general energy decay result from which the usual exponen-
tial and polynomial types of decay are only special cases. More specifically, we discuss the two cases
separately: the case o < p; and the case o = 1. Furthermore, our result is dependent on the kernel

of the infinite memory term where the relaxation function g satisfies the following assumptions:

(H1) g:R, — R, isa C! function satisfying

g(0) >0, 06— /OO g(s)ds=1>0, /00 g(s)ds = go. (6.5)
0 0

(H2) There exists a non-increasing differential function ((t) : Ry — R satisfying

d(6) < —C(H) g(t), £ >0 and /0w<<t>dt:+oo, 6.6)

which allows us with the construction of an appropriate Lyapunov functional to estimate the energy of

the system.
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Remark 6.1.1. There are many functions satisfying (HI) and (H2). Here are three examples of such
functions, assuming that a,b > 0 and a < b

91(t) = ae™", gi(t) = —C(t)g1(t), where ((t) = b.

92(t) = (e 98(0) = —C(0ga(0), where ((t) = .

a , 1 b+1
(e g 950 = SO0, where €0 = 4+ ey

g3(t) = (

It is worth noting that in the past decades, there has been a significant interest among scientists
in problems related to viscoelastic damping with a memory or past history term. The decay results
obtained depend on the rate of decay of the relaxation function, which is exponential for g that satisfies:
g'(t) < —&g(t) forall t > 0 and some positive constant . However, it has been proved that only

a polynomial decay result occurs for relaxation functions that satisfy ¢'(¢) < —&gP(t), Vt > 0 and

3
1<p< 3 (see [72,91,120,137-139]). Considerable effort has been dedicated to broadening the range
of admissible relaxation functions that lead to either strong or slow decay. Messaoudi and Mustafa [109]
proposed that the relaxation function g satisfies the inequality ¢’ (¢) < —&(t)g(t), Vt > 0 and established

a more general decay result, with exponential and polynomial decay rates as special cases.

The chapter is organized as follows. In Section 2, we introduce some transformations needed in our
work. In Section 3, we use the semigroup method to prove the well-posedness of problem (1). In Section
4, under the condition that 2 < p1, we prove a general stability. Finally, some numerical simulations
are obtained using MATLAB

6.2 Preliminaries

In this section, we present the materials necessary for proving our results.

In order to simplify calculations, as proposed in [72] we define, for all w € L?(0,1),

1 [e’s)
o)) = [ [ als)w(t) — it - 9)Pds de

gOw= /0 1 ( /0 " gs)(w(t) — wit - s))ds>2 da.

Lemma 6.2.1. If assumption (HI) holds, then there is a positive constant k such that

gOw<kgow, forall we H}0,1).

143



Proof. Note that

gOw= / 1 ( / " g(s)(w(t) —wlt s>>ds)2dx

By using Cauchy Schwarz, we get

yous [ (( [ whes) ([ (g%<s><w<t>—w(t—s)))st)é)zdx o
< [Tatonts [ [ 61000 - ot - o)as a

Then, Poincaré’s inequality leads to

1 [e'e)
goOw< gocp/ / 9(8)(wy(t) — wy(t — s))2ds dr =k gowy,
0 0

where k = gocp. O

Applying Lemma 6.2.1, we obtain the following inequalities

/01 </OOO 9(s)(p(t) — p(t — s))ds>2dm < di(gopy)(t), (6.8)

/01 </OOO g (s)(p(t) — (t — s))ds) 2da; < —da(g’ o ) (t), (6.9)

where d; = gocp and d2 = g(0)c,,. Now the use of (6.7) with ¢, ¢, instead of g, ¢ gives

1 [e’) 2
/0 ( / g'(s)(w(t)—mt—s))ds) dz < —9(0)(g' 0 0a)(t). (6.10)

Similarly, the inequality (6.7) yields

/01 </Ooo 9(8)(pz(t) — @u(t — s))ds>2da; < go(g o p2)(0). (6.11)

To demonstrate the dissipative nature of system (6.1)-(6.3), it is useful to introduce, as in [103, 120],

the relative history of ¢
n' = p(x,t) — p(x,t —s), (x,t,5) € (0,1) x Ry x Ry. (6.12)

144



Taking the derivative of (6.12), we find

77t +773 O) (3}‘ 2 8) (07 1) X ]R-‘r X ]R-i-a
0,s ,t 0,t—s)=0, t,s >0,
0.9 = 0.9~ 005 .
nt(1,5) = o(1,t) —(1,t —s) =0, t,s > 0,
ﬂt( ) 7 770(51375) - 770(5'3 S) (II?,t, 8) € (07 1) X R-‘r X R-i-'
Next as in [116, 136], we introduce another new dependent variable
a simple differentiation shows that z satisfies
th($7pa t) + Zp(xvpa t) = 07 (x,p,t) € (07 1) X (07 1) X R+'
Therefore, problem (6.1)-(6.3) can be rewritten as
PU = Mgy — ity — poz(x, 1,t) + by — v0,, in (0,1) x (0, 00),
o0
JSOtt = 6§0xx - bum - 590 - dwx + ml — / g(s)@xl‘(t - S)dS, in (07 1) X (07 00)7
0
cOy = kobOrpzx — yury — mepy — kywy, in (0,1) x (0, 00), (6.14)

awy = kowWgy — ksw — k160, — dpys, in (0,1) x (0, 00),
n+ b =i, x€(0,1),5, >0,
T2t (x,p,t) + 2p(x,p,t) =0, in (0,1) x (0,1) x (0, 00),

with the following initial data

u(z,0) = up(z),ur(z,0) = ur(z), p(x, —t) = @o(z,t), v € (0,1),

o(z,0) = p1(x),0(x,0) = Op(x), w(z,0) = wo(x), = € (0,1),

nt(z,0) = 0,7%(z, s) = no(z,s), z € (0,1), t >0, (6.15)
2(x,0,t) = w(z,t), z € (0,1), t >0,

2(z,1,t) = fo(z,t — 1), (x,t) € (0,1) x (0,7),

\

and boundray conditions

uz(0,8) = ug(1,t) = @(0,t) = (1,t) =0, t > 0,
0(0,t) = 0(1,t) = w,(0,t) = wy(1,¢) =0, t > 0, (6.16)
1'(0,s) =n'(1,5) =0, t,s > 0.
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To apply Poincaré’s inequality to v and w, we need the following transformations:

Integrating the first and fourth equations in (6.14) over (0, 1) and using the boundary conditions, we get

2 1 1 1
d/ u(z, t)dx + &di u(z,t)dx + M2/ z(x,1,t)dr =0, V£t > 0
0 P Jo

dt2 P t 0
and
d 1 1
oa— wdx—i—kg/ wdxr =0, Vt > 0.
dt o
If we take X (¢ fo x,t)dz and V (¢ fo (x,t)dx, we have the initial value problems
Xtt( ) + Xt = fo l’, 1at
(6.17)
X(0) = f01 uo(z)dz, X;(0) = [ ui(z)da.
aVi(t) + ksV(t) =0,
i (t) + sV (t) 6.18)

V(0) = fol wo(z)dz.

Solving these ODEs yields

1
/ (a:t)dx—a1+a2expt—t/ folx,t —71)d
0

[ itz =exo-50) [ ug(arae

o [? p !
= / uo(x)dr + [/ x)dx + — / folx, —7 dl‘] ,
p—p Jo p— i

ag = —L [/Oluo(a:)dx—/olul(m)dx—lj 0 fo(az,t—T)dx].

pP—H1

where

ay

After this, we use the following change of variables

M1 2 !
u=u— <a1 + ag exp(—t) — t/ folx,t — T)dx> )
p M1 Jo

k 1
W=w— (exp(—gt)/ wo(:zc)dm> ,
@ Jo
1 1
/ﬁdm—/u‘;dm—O,W}O
0 0

to get
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A simple substitution reveals that (, @, 0, w0, n', 2) satisfies (6.14), with initial data for % and w0 specified

as:

tg(x) = ug(w) — (a1 + az), u1(x) = ui(r) — <a1 + az%) 7
1 1
wo(x) = wo(x) —/0 wo(z)dz, 0 (x) = wy(z) + ];3/0 wo(z)da.

For convenience, we will use u and w to refer to & and w. We also introduce the following spaces,

L(0,1) = {¢ e L*(0,1) : /1 o(z)dx = o} , H10,1) = HY(0,1) N L?(0,1)
0

and
Hf(o’ 1)={¢¢€ H2(Ov 1) ¢2(0) = ¢(1) = 0}

It is well known that Poincaré’s inequality can be applied to elements of H (0, 1), which means that:

1 1
J¢, >0 such that / vide < cp/ vide Vv e HL(0,1).
0 0

6.3 Well-posedness of the problem

This section presents the existence and uniqueness results for the system (6.14)-(6.16) using the

semigroup theory.

By using the notation (6.12), the second equation of (6.14) becomes

J@tt - 690:(::1: + buyg +§§0+dwx —mb

> > (6.19)
- / 9(s)n (x, 5)ds +/ 9(8) @z (z, t)ds = 0.
0 0

The last term of the above equation gives

/0 g(s)cpm(:z:,t)ds = @xr(f,t) /0 g(S)dS.

According to (H1), the equation (6.19) can be formulated as

Jou — lpgy + bug + Ep + dw, — ml — / g(s)nix(x, s)ds = 0.
0

We consider the energy space ‘H given by
H}0,1) x L2(0,1) x H§(0,1) x L?(0,1) x L*(0,1) x L2(0,1) x L, x L?(0,1),
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such that

Lg:{f:R+—%HaQ1LAI(Amm@ﬁmﬁdx<u},

is provided with the following inner product

(fi, fo)p, = /01 (/OOO 9(3)(f1)x(f2)xd8> dx

We equip H with the inner product

1 1 1 1
(U, U)y :p/ vodr + u/ Uglgdr + J | YPpdr + b/ (upd + Upp)dx
0 0 0 0

1 1 1 1
+ f/ podr + 1 / YrPrdr + a/ wwdx +c¢ | 00dx (6.20)
0 0 0

+7777 +f@// z(x,p)Z(x,p)dp dx,

for U = (u,v, p,,0,w,nt, z)T, U = (a7, G0, 0,0, 1t E)T € H, It is easy to check that H, with
respect to (6.20), forms a Hilbert space. Note that x is a positive constant satisfying

The < Kk < T7(2p1 — p2), if  p2 < pr. (6.21)

With the vector function U = (u, v, ¢, %, 0, w, 0, z)T, where v = u; and ¢ = ¢y, system (6.14)—
(6.16) can be rewritten as follows:

U =AU, t >0,
U(Iao) = U[)(I‘) = (UO,ul,QD[)(.,0),(,01,90,’(00,770,]%(1’, _T>)Tv

where the operator A : D(A) C H — H is defined by

v
Btge — v — 22(2,1,t) + %g&x — 79
(G
%‘Pm - %uz - %‘P sz mg +37 fo 771733(1" s)ds

AU =

koex:r - *Vx - %U) -

ﬁwzz - %w - %9$ - ng
—1e + 1
iy
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with domain

D(A) = {U €H: ue H20,1) N HN0,1);v € H(0,1); ¢ € H2(0,1) N HE(0, 1);
Y € Hy(0,1);0 € H*(0,1) N Hy(0,1);w € H2(0,1) N H(0,1);n" € Ly;
e HY(0, 1)}.

Now, we state the following well-posedness result.

Theorem 6.3.1. Assume that py < py and (6.4) holds, then for any Uy € H there exists a unique
solution U € C(Ry,H) of problem (6.14)-(6.16). Moreover, if Uy € D(A), then

UeCRy, D(A))NCHRL,H).
Proof. We employ the semigroup technique to prove Theorem 6.3.1. Specifically, we prove that the
operator A generates a Cy-semigroup on H.

We first show that the operator A is dissipative. Using the inner product (6.20), for any U € D(A),

we get

1 b 1
(AU,U)y, :p/ <’uum _B, @z(x, 1)+ —py — 7%) vdx + u/ Vgl do
0 \P P P P P 0

L7 b £ d m 1 [
J F¥zxx — FUWUx T - T Wz 70 * ! d d
+ /0 <J‘P Jle T e T gt 0t J/O 9(5)za S>w v
1 1 1
+ b/ (Ve + ugth)dx + f/ Wodx + l/ Yy prda
0 0 0
1
+ a/ (I{:me - @w - ﬁem - dq,bm) wdx
0 \«a o o
1
+ c/ <k09m - lum - m@/} - klwx> Odx
0 c c c c
. . W (11
o)y, =2 [ e n)te iy da

1 1 1/ oo
=— m/ vidx — ,ug/ 2(x, )vdx + / (/ g(s)n;imds> Ydx
0 0 0o \Jo

1 1 1
+ k‘Q/ Wep WAL — k‘g/ w?dz + k:g/ 0.-0dx + <—77§ + 1, 77t>Lg
0 0

0
K 1 1
—/ / 2(x,p)zp(x, p)dp dz.
TJo Jo
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Take into consideration that
1 00
ks, = [ ([ a9k + vantas) do
0 0

- /01 (/OOO g(S)nimid8> dz + /01 (/OOO g(s)nidS) Yzda
5 [z [ ([ asmtaas) i

then,
(=ne+v.n'), :;/0 9'(s) (pal(e,t) = pu(w,t — ))* ds
— ' - S t S) XT
/ </0 gs)ntuds ) d
1 00
5@ op) = [ ([~ oteitads) v
hence,

1 1
(AU U)y = — Ml/ Vidx — ,u,g/ z(z, Vvdx + %(g’ 0 ¢, (t)
0 0

1 1
— ks / wldz — ke / w2dx — ko / 62 dx (6.22)
—// (x,p)zp(x, p)dp du.

Considering the last term of (6.22), we obtain

// xpszpdpdm—//z (z,p)dp dx

_2/0 2(2,1) — 22(x,0))da,

hence, (6.22) simplifies to

1 1
1
(MUY == [ oo [ st da + 5o 0 02)(0)
1 1 1
— k3 / wdx — ks / w2dx — ko / 02da (6.23)

0 0

1 1
K K
— 1 — 2dz.
27_/0 22 (z,1)dz + s vadx

150



Applying Young’s inequality to (6.23), we find

1 1 1
(AU, U)y < — 1 / Ve + 2 22(x,1)dx + R
0 2 Jo 2 Jo

K 1

1
2 K 2 .,
- — 1)d — d — ) (T
a7 J, 2 (, )x+27/0 v $+2(90<p)()

1 1 1
—kg/ dex—kz/ wﬁdm—ko/ 62dz,
0 0 0

then

1 1
p2 | K 2 pe K 2
< | = = — =
<AU,U)H\( pt +2T)/0 Vda:+(2 27_)/0 z%(x,1)dx

1

) ) . (6.24)
+=(¢ o pe)(t) — ]{73/ wdz — /@/ widr — ko/ 02dz,
2 0 0 0

After taking condition (6.21) into account, we can see that

M2 H) (,uz H)
o+ P2 Y <o oand (22 <o
(’“+2+27 an 2 27

As aresult, the operator A is dissipative.

Next, we show that the operator A is maximal. It is sufficient to prove that (I — A) is surjective. To

this end, we take F' = (f1, fa, f3, f4, [5, f6, f7, fs) € H, and prove that there exists a unique U € D(.A)
such that

(I— AU =F,
that is,
u—v=fi,
PV — Wlay + 1V + p22(x, 1) — by + 90, = pfa,
o= = fs,
JY = lpuz + bug + E + dwy —mb — [ g(s)nt,(x, )ds = J fa,

(6.25)

ch — koexr + vz + mw + kiw, = Cf57

(a + kg)w — kgwm + klﬂx + d’l/)x = Ozf(;,

n' +ni == fr,

€ + %zp = f3.
From (6.25), and (6.13) we obtain the following initial value problem
ns+nt =¥+ fr,

(6.26)

n'(0) =0,
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solving (6.26), gives
n' = e_s/ e (Y + f7(1))dr.
0

The first and the third equations in (6.25) give

V:u_fla

Y =p—fs

Following the same approach as in [116], the last equation in (6.25) is a first order ODE

%zp +2z=fs,
subject to the initial condition
2(x,0) = u(z,t) = v(z), z € (0,1),
then, we get
z2(z,p) =v(x)e P + 1P /Op fs(z,0)e" do.

From (6.28), we see that
p
z(z,p) = u(x)e™ ™ — fre” P + Te_Tp/ fs(xz,0)e™ do
0

and that
2(a, 1) = u(@)e™ + zo(2),

where .
2o(z) = —fie” T + TC_T/ fs(z,0)e™ do.
0

Inserting (6.27), (6.28), (6.31) in (6.25),, (6.25),, (6.25)s, (6.25)s, we get

-7

(pu— pfi — ptgg + pru + i f1 + po(u(z)e
+ 20(2)) — bz + 70 = pfa,
J(p — f3) = lpga + bug + Ep + dwy, — mb
=I5 9(s)e™ (fy €7 (fr = f3)gpdr) ds = T fu,
cl — kobzw + Yz — v frz + mp — mfs + krw, = cfs,
(@ + k3)w — kowgy + k10x + d(pe — f32) = afe,
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and hence
pIU — gy — by + 70, = by € L2(0,1),
Jio— (I + [y 9(s)(1 — e *)ds) Qoo + bug
+dw, —mb = hy € L*(0,1), (6.33)
el — kobzz + Yuz +me + kiw, = hg € L?(0,1),

Q1w — koWeg + k10, + do, = hy € L2(0,1),
where
hi = p(fi + f2) + paf1 — pezo(z),
ha = J(f3+ f1) + /000 g(s)e™® (/OS e’ (fr — fs)md7> ds,

hs = cfs + v fiz + mfs3,
h4 - afG +df3xa
pr=p+p+pe ", J1=J+E ar=a+ks.

LetV = H}(0,1) x H}(0,1) x H}(0,1) x HL(0,1). To solve (6.33), we consider
B((u, ¢,0,w), (@, $,0,)) = F(a,§,0,0), ¥(a,$,0,0) €V, (6.34)

where B : V x V — R is the bilinear form defined by

1 1 1
B((u, ¢, 0,w), (a,p,0,w)) =p1 / wudx + u/ Ul dr + Jy / ppdx
0 0 0

% 1 1
+ (l +/ g(s)(1 — e_s)ds> / PrPzdr + c/ 00dx
0 0 0

1 1 1
+ k:o/ 0,:0,dx + oy / wwdx + ko / WyWedr
0 0 0

1 1
+ 7/ (el + @0, )dx + b/ (e + i) d
0 0
1 1
+ d/ (e + By )dz + k1 / (wef + 06,)d
0 0
1 ~
+ m/ (pf — @b)dzx.
0

F :V — Riis the linear function given by

1 1 1 1
]::/ hlﬂdm—l—/ hg@dﬂ:—l—/ h39dm—|—/ hadzx.
0 0 0 0
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Recall that € > b2, it follows that
2 2 2 2
puy, + 2bugp + Jie® > liug, + lap”, (6.35)

by means of the substitution
1 b \? bo\?
g+ 2bupp + Jip? =5 |\ up + —¢ ) + {0+ —ug
2 I J1
1 v\ b?
- - J— — ) o2
|(-F)e e (n-0) )
where [} = % <p — f}—j) >0, = % <J1 - %) > (. Now, we equip V with the following norm:
(s 0,0, 0)[15 = lll® + lluall* + [2l* + lall® + 1017 + 116211 + w]|* + [|wz >,
Then, for any (u, ¢, 6, w) € V, we find that
2 2 2 >~ 2
B0} o 0. 000) =l + s+ il + (14 [ 9610 = 7))
0
! 2 2 2 2
+2b/ uad + eI + kollOall? + o flw]2 + Falluws .
0
Apply (6.35), we conclude that
2 2 > 2
(w6, 0), a0y Bl + sl 4 ol + (1 [ )1 = ) ) e

+el01* + Kol | + cullw ]| + kel w1

Hence, there exists a constant My = min{p1, (1, l2, 9, ¢, ko, a1, ko } > 0 such that

’B<(u7 90797w)7 (uv()o:H?w)) > MOH(”? @,H,w)]@,

which means that B is coercive.

By using Cauchy-Schwarz inequality with M = max{p1, u, J1, 9, ¢, ko, a1, k2, v, b, d, k1, m}, we get

1B((u, 0,6, w), (@, 3,0,9)) < Mf(IIUIIHﬂH + lluzllllaz] + Nl + el @e|l
+ 161101+ 1182118 | + e ll1o]] + lws |l @q |
+ lluall161] + 16zl + sG] + el
+ llwalll@l -+ leallllo] + lws 161l + 116z 2|

~ ~\2
+ U]+ el
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Consequently, we obtain

1B((u, 0,0, w), (@, 3,0,0))| < 2Mf(IIUIIQIIﬂIIQ + lual Pl + lel? 18l
+ llpalPl@all + 1012181 + 116212116
+ ol 1)1 + llws @0 1 + sl 1161
+ 101l + lua 21212 + ol a1
+llwal?l6l® + Nl + [lws| 1161
+ 10110 ]1* + 101%[12]1* + !!@\\2!!5\!2),

taking into consideratin that (||u|* < ||(u, @,G,w)H%), |a)? < H(N,QE,HN,QI))H]Q,, ...), leads to
R s 2
B((u, 0,0, w), (@, . 8,0))|* < 36M7 | (u, 0. 8, w)[3|( 3,6, @)l

Therefore,
1B((us p, 0, w), (1, @, 0,0))| < Cil|(us , 0, w)[|,][(@; @, 0,0))]],

where (; = 6 M. Similarly, applying Cauchy-Schwarz inequality, we find

Rl + h2 161+ IslI6N + [Ihallll@])?

\F (i, @,0,9))|* < (
2(|halP|@lf® + [|R2)* 18112 + [ RslIP 112011 + |hall*][@]]),

NN

thus, there exists a positive constant M5 such that

|F (@ ¢,6,0))1” < 2Ma(llal® + 311 + 116]> + [[@]).

Using again the fact that (||a][2 < || (@, &, 0, @))[3). 512 < [1(@, 3,8,@))[5 -..), we have

hence, we have

where ( = 2+/2M>,. As a result, the Lax-Milgram Theorem guarantees the existence of a unique
(u, p,0,w) €V satistying, (6.34). Then from (6.28), we deduce that

(v,¢) € HY0,1) x Hy(0,1). (6.36)
By setting (a, @, 0, w)) to (u,0,0,0) then to (0,0,0,w) in (6.34), we obtain

1 1 1 1 1
pl/ u&d:v+,u/ uxaxdm+7/ zwmd:m—b/ cpﬂxdx:/ hiadz, Vi € HY(0,1)  (6.37)
0 0 0 0 0
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and

1 1 1
a1 / wwdx + ko / WpWedr + d/ Wpzdz
0 0 0 (6.38)

1 1
+/<;1/ WOydx :/ hywdz, Vi € H(0,1).
0 0

The regularity theory cannot be applied directly in this context because u,w € H}(0, 1). Therefore, let
i, € HE(0,1) and define

=41

1
= ﬂ—/ u(s)ds, (6.39)
0

£
Il
S

1
- / w(s)ds, (6.40)
0

which implies @, w € Hi((), 1). Substituting (6.39) into (6.37) and (6.40) into (6.38), we arrive at

1 1
M/ UgpUypdr = / gradz, Vi € H}(0,1)
0 0

and . .
kz/ Wypdr :/ gotbda, Vi € HY(0,1),
0 0

where

g1 = —pru — Y0, + bo, + hy € L2(0,1),
and

g2 = —Q\jw — dgox — k10, + hy € Lf(O, 1).
Consequently

u,w € H*(0,1),

and, we have

— gy = —p1u — Y0z + by + p(f1 + f2) + 1 f1 — p2zo(2)

and
—kowzy = —aqw — d(px — k16, + afﬁ + df?)x

Considering that f| = u — p, f3 = ¢ — 1 and zp(z) = z(z,1) — u(z)e™ ", we obtain

— Mgy = — P11t — Y0y + by + p(u —v) + pfo
+p1(u—v) — po(z(z, 1) —u(z)e™)

and
—kowzy = —0qw — d@x — k10, + afﬁ + d(@ - w)x
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Then,
PV — [z + paV + p22(x, 1) — by + 0, = pfa,

(Oé + kS)w - k2w:1:x + kleaj + d¢x = af6-

These solve (6.25)- and (6.25)g, respectively. Moreover, since — iz, = g1 and —ksw,, = g2, we have

1 1
,u/ Upe Vdr = / g1 Vdz, VU € HI(O, 1)
0 0

and . .
l@/ Wy Pd :/ g2®dz, V& € HY(0,1).
0 0

So, by applying integration by parts, we get
1 1
pug (D)W (1) — pug (0)T(0) — ,u/ up Uopdr = / g ¥dz, VO € H'(0,1)
0 0
and

1 1
kowg (1)®(1) — pw,(0)®(0) — kg/ Wy Pypdr = / g2®dx, VO € H'(0,1).
0 0

The fact that H! C H'! leads to

1 1
pug(1)a(l) — pug(0)a(0) — u/ Up Uz dr = / qradr, Vi € HL(0,1),
0 0

kow, (1) (1) — paw, (0)w(0) — ko /01 Wby dr = /01 gotdz, Y € HL(0,1).
Thanks to (6.37) and (6.38) , we find
prug (1)a(1) — pug (0)a(0) = 0, kawy(1)w(1) — pawg(0)w(0) = 0.
Since @ and w are arbitrary, it follows that
uz(0) = (1) = we(0) = wa(1) = 0.

Therefore
u,w e H2(0,1).

Next, by taking (@, @, 0, @) as (0, 3,0, 0) then as (0,0, 6, 0) in (6.34), we find

1 oo 1 1
Jl/ ppdx + <l + / g(s)(1 — e_s)ds> / YrPrdr + b/ Ugpdx
0 0 0 0

1 1 1
+ d/ wypdx — m/ Opdr = / ho@dz, Y§ € HE(0,1),
0 0 0
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and

1 1 1 1
c/ 90da:+ko/ 9x0xda:+’y/ uﬁdm—i—kl/ wg0dx
0 0 0 0

1 B 1 _ B
+m/ oldx :/ h3fdz, VY6 € H}(0,1).
0 0

Thus, ) .
<l+/ g(s)(1 — e_s)ds)/ O Prdr :/ g3pdx, Yo € H&(O,l)7

0 0 0

and
1 1 _
ko/ 0,0,dz :/ g4fdzx, ¥ € H(0,1),
0 0
where
g3 = —J1p — buy + dwy + mb + hg € LQ(O, 1),

and

gs = —cl — yu, — kiw, — me + hs € LQ(O, 1).

Then, the elliptic regularity implies that
.0 € H*(0,1)

and, consequently, we get

_ (l + /Oo g(s)(1 — 6—8)d3> Ve = — J1p — bug + dwg +mb + J(f3 + fa)
0

+ /OOO g(s)e </0 ¢ (fr — f3)md7-> ds

_koexx = —ct — YUz — klwx - me =+ Cf5 + ’Yflx + me-

and

Given that fi = u — v, f3 = ¢ — 1, we end up with

JU = lpge + buy + Ep + dwy — mb =J fy + @mx/ g(s)(1 —e %)ds
0

; /0 ~ gs)e ( /0 (- so>mdf) ds

=Jf1+ Oz /000 g(s)(1 —e%)ds

+ /OOO o(s) [e—s /0 (4 + f7(7'))d7'Lxds
_ /0 T () [es /0 ’ erT] ds Qo
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and

—koOpz = —cl — YUz — k1w, — me + Cf5 —{—’)/(’LL - V)x + m(SO - ¢)

Thus, (6.27) gives

JY — lpge + bug + o + dwy — mb — / g(s)nt (x,8)ds = J f4,
0

and
el — koOpy + Yz + M + k1w, = cfs.
wich solve (6.25)4 and (6.25)5.
As aresult, U € D(A) and A is a maximal monotone operator, it follows from the Lumer-Phillip

Theorem 2.3.7, that A is the infinitesimal generator of Cy-semigroup of contractions on # and Theorm

2.3.9 provides the well-posedness. O

6.4 General stability result for o < g

In this section, we prove the decay result stated in Theorem 6.4.2 under the assumption po < pp by

constructing an appropriate Lyapunov functional which is equivalent to the solution energy.

As a first step, we define the following energy functional

Lemma 6.4.1. Let (u, ¢, 0,w,n', 2) be a solution of the problem (6.14)—(6.16) and (6.21) holds. Then
the energy functional is defined by
1 1
E(t) —/ (pui + Jof + pu2 + 12 + cf? + £p* + aw? + 2bpu,) dx
0
(6.41)

1 K 1 1
+=(gows)(t) + = / / ZQ(x,p,t)dp dz
2 2 Jo Jo

and satisfies

dE(t) ke 1o oy [N,
il SV _ v (e
. (’“ or 2)/0 upde (2T 2 )/0 Zla 1, t)de

1 1 1
1
—ko/ egdx—l@/ wgdm—kg/ w2dx+§(g'o<px)(t) < 0.
0 0 0
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Proof. Multiplying ( 6.14);, (6.14),, (6.14)3, (6.14)4 by uy, @4, 0, w, respectively, using (6.12) and
integrate by parts, we obtain

1 1 1 1
P/ Ugurdx :M/ Uxazutdl“—ul/ @?d$—ﬂ2/ z(x,1,t)prdx
0 0 0 0
1 1
+ b/ prurdr — fy/ O urdx
0 0

1 1 1
=— u/ Ug U dT — p11 / oidr — ,ug/ z(x, 1,t)prdx
0 0 0

1 1
— b/ Utz odx + 'y/ U 0dr,
0 0

1 1 1 1
J/ prprdr 25/ somwtdx—b/ uxsotd:c—f/ pprd
0
—d/ wxgotdx+m/ Hcptdx—/ gpt/ $)Pza(t — s)dsdx
:—(5/ (pxgotxdx—b/ uxtptdx—f/ gocptdx—i—d/ Prpwdz
0
+m/ Hgotd:c—/ @t/ $) Pz (t — s)dsdz,
1 1
c/ 0.0dx —kO/ Gmﬁdx—’y/ U 0dxr — m gotedx— kl/ wz0dx
0 0 0
1 1
=— kg/ 92dac - / U 0dxr — m gat@d:c — kl/ wg0dx,
0

1 1
a/ wrwdzr =ko / Weawdr — ks wwdz — k1 / 0, wdz — d/ Prgwdx
0 0 0

1
|
1 1 1
=— kzg/ widm — kg/ w?dz — kl/ 0 wdx — d/ Przwdr.
0 0 0 0
/1

From the above equalities, we deduce

d 1
2dt/ (pu? 4+ pu2)dr +b | wppde
0

1 1 1 (6.42)
=—m / pide — uz/ z(@, 1, t)prdx + v/ utzbdz,
0 0 0
d 1 1
2dt J, (Jo} + 003 + £p%)dw + b/ ugprdr
(6.43)
= d/ Orzwdx +m/ Opidx —/ @t/ 8) Pz (t — s)dsdz,
0
d 2 2 !
00 dr = — ko 9 dx — umedx —-m <pt9dx + Kk wb,dz, (6.44)
2dt 0 0
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d ! 1 1 1 1
— aw?dr = — k:g/ wgdaj — kg/ widx — ky / 0, wdx — d/ prpwdr. (6.45)
2dt Jo 0 0 0 0

Summing up (6.42)—(6.45), we end up with

d 1

1 1
o (pui + pu?)de + b/ Utppdr + — (Jgof + 0¢2 + £p?)dx
0 0

2dt

1 d ) d 1 )

1 1 1 1
=— / "o 2dx — ug/ z(x,1,t)prdz + ’y/ u0dz + d/ Yrgpwdx
0 0

+m/ Oprdx —/ gpt/ 8)Qa(t — 8)dsdx — ko/ 62dx

1 1
— ’y/ u0dr — m Lptﬁda: + Kk / wlydx — ko / wg,dx
0 0

1
—kg/ dex—kl/ szdx—d/ Yrgwdx,
0 0 0

which simplies to

d 1
o0 / (pui + Jof + pul + 692 + ¢ + £0° + aw® + 2bpuy) dx
0

1 1 1 1
= —/ / ulde — ,LLQ/ 2(x, 1, t)Yupdr — ko | 02dx — k:g/ w2 da (6.46)
0 0 0 0

1 1 o0
— k:g/ w?dz —/ 1 (/ 9(8)pza(t — s)ds) dx.
0 0 0
The last term in (6.46) is handled as follows:
1 o)
—/ n (/ 9(8)az(t — 3)ds> dzx
0 0
1 o)
— [ ([ st pernt) o sids) o
1 o) 1 o)
——/ Pt (/ g(S)som(aat)dS) dw+/ Pt (/ g(S)Wix(w,S)dS) dx
0 0 0 0
00 1 1 oo
g(s ds/ gptcpm(ac,t)dx—i-/ Ot (/ g(s)nfm(x,s)ds> dx
0 0 0
1
g(s

1 00
ds/ @tx@m(%t)dw +/ Pt (/ Q(S)Uix(l’as)dt’?) dx
0 0 0

[ee} 1 1 00
g(s)ds 5— @idx —i—/ o (/ g(s)nim(x,s)ds) dz.
0 0

0 th

(6.47)

_l’_

]
f

)
)
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Now, by using (6.14)5 and integrating by part, we have

[ o ([ stotate i) o
= [t ([ stoitato. o) ae
—/0009(8) </01 nfﬁix(x,S)dx> ds +/ (/Olnsnxx (z,s dw) ds
> ! t ot 1
= —/0 9(s) (/0 ntxnx(wvs)da:) ds — (/0 Nt (z, s dac) ds
__ /01 (/OOO OURACH ds) dac— </O°og St (a S)ds> b
(

= [ ([ o1 eas) aa - [ (; st?]y =5 [ s
then,
[ o ([ atoitate i) ao
- 01 ([T owatyas)ass g [ 1 ([ oeoas)a
__ % 01 (/OOO 9(5) (Pa(@, ) — (.t — 5))2d5> dz
w5 [ ([T o6 enten - pute.t o)) o
=~ 5 (000)(0) + 5(g 0 @)
Combining (6.46), (6.47) and (6.48), with the fact that § — fo = [, we find

1

S J,

d 1 1 1
+ —(gow)(t) = —,u1/ urdr — ,ug/ z(z, 1, t)updx — ko/ 02dx

(pu? + J@? + pu2 + 102 + cb? + €0 + aw? + 2bpuy, ) dx

1 1
1
— k‘g/ wdx — kg/ w?dx + 5(9’ ° ©z)(1).
0 0

Moreover, by multiplying the last equation in (6.14) by (k/7)z, we have

T2z, p,t)(K/T)2(x, p,t) — 2p(x, p,t)(K/T)2(x, p, t)

K
=——z%(z,p,t) — ;zp(x,p,t)z(x,p,t) =0.
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Integrating the result, we obtain

2dt// (z,p,t)dp dx = —

(z, p, t)dpdz

/ / 22,(, p, t)dpdx
/ | o
=5 ( (,0,t) — 2*(v,1,t)) dz.

Adding up (6.49), (6.50) to get

2

1
+2(g @z )( // (z,p,t)dp dx

1 /1
E(t) :/ (pu? + J? 4 pu? + 192 + cb? + £0* + aw® + 2bpug) d
0

and

dE(t L ! ! !
dE(t) =—1 / ulde — ug/ 2(x, 1, t)updr — ko | 02dx — kg/ w?dz
dt 0 0 0 0

1 1 1
- kg/ w?dr + i(g’ o py)(t) + ;_/ (z%(2,0,t) — 2%(z, 1,1)) dx.
0

0

Thus, we arrive at

dE(t)

1
K 2 K 2
—_— = - - 1
n (,ul ) /O Uy dx 5 . z (l’, ,t)dx

1 1 1
- ,ug/ wpz(z, 1, t)dr — ko Oidw - kg/ wgdx
0 0 0

1
1
—k‘g/ w2d1'+§(g/ogpm)(t).
0

Young’s inequality yields

1 u !
/ uldr + = / 22(x,1,t)dx.
0 2 Jo

1
—ug/ uz(z, 1, t)de <
0

=

A combination of (6.51) and (6.52) leads to

dE(t) _ ooy 1o koopay 1o
ot S (“1‘27‘2>/0 upde - (27_2>/0 Zla 1, t)de

1 1
1
—ko/ egdx—kg/ wgdm—kgf dex—l—i(g/ocpz)(t) <O0.
0 0 0

In light of (6.21), the last inequality implies that the energie E is a non-increasing function.
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The general decay result reads as follows:

Theorem 6.4.2. Assume that uo < 1, (6.4) holds and g satisfies (HI) and (H2) and for any Uy € H

satisfying, for some kg = 0

1
/ oz (z, 8)dx < Ko, Vs > 0, (6.53)
0

then, there exist constants Ao , 7o > 0 such that for all t € Ry and for all Ay €]0, 7o,

t " [e%s}
E(t) < Xo <1+ / (g(s))l_’\lds> e M Jo Cle)ds L\ / g(s)ds. (6.54)
t

0
Remark 6.4.3 ([71]). We observe that the exponential and polynomial decay estimates are only partic-
ular cases of (6.54). Specifically, exponential decay is achieved when ((t) = a, and polynomial decay
occurs when ((t) = a(1 +t)~1, where a is a constant.

6.4.1 The case 15> < iy

There exists C' > 0 such that the energy function, given by (6.41), satisfies

dE(t) <-C (/ uldz —i—/ 22(z, 1,t)d:1:) - ko/ 02dx
dt 0 0 0

N L . (6.55)
— kg/ w2dx — k:3/ w’dz + = (9" 0 ¢z)(t).
0 0 2
To prove Theorem 6.4.2, we need the following lemmas.
Lemma 6.4.4. Let (u, p,0,w,n', z) be a solution of (6.14)—(6.16), then the functional
1 [
L(t) = p/ wpudx + / w’dx, t >0,
0 2 Jo
satisfies,
dl (¢ 1 1 1
;t( ) < —g/ uidx + p/ ulde + Co/ (zQ(x, 1,t) 4+ @2 + 9925) dx. (6.56)
0 0 0

Proof. By taking the derivative of I; and integrating by part, we conclude that

dIl(t) 1 1 1 1 1
=— M/ uldr + p/ ulde — ,ug/ z(x, 1, t)udz — b/ puzdr + ’y/ Ouzdx. (6.57)
dt 0 0 0 0 0

Applying Young’s inequality, we get

1 3b2 1 U 1
—b /0 pugdr < o /O ¢2d$+g /0 uldz. (6.58)
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Young’s and Poincaré’s inequalities lead to

1 2 1 1
3
,ug/ z(x, 1, t)udx < 'MQCP/ zz(ac,l,t)d:er'u/ ulde,
0 2pJo 6 Jo

1 2 1 1
3
7/ Ouydr < W/ Hidaﬂ— M/ uidw.
0 2p - Jo 6 Jo

By substituting (6.58)—(6.60) into (6.57),

dI (t 1 1 3 2 1
1(t) < — ,u/ ugdq:-i-p/ u?dx—l—%/ 22(x,1,t)dx
dt 2 Jo 0 2 Jo
3b2 1 3 2 1
+ 2 @2d:z+w/ 02dz,
2u Jo 2u Jo

SRS } Thus, we obtain (6.56).

3udc, 3b% 342
where Cy = max{ Hatp %

As stated in [108], let x represent the solution of

—Xzz = @z With  x(0) = x(1) =

0,
then we get

x(@,t) = — /Om o(y, t)dy + = (/01 @(yvt)dy> :

We have the following inequalities.

Lemma 6.4.5. The solution of (6.61) satisfies
1 1
/ xadz < / Yrdz,
0 0
1 1
/ Xida < / pida.
0 0

Proof. We multiply equation (6.61) by x and integrate by part, we find

1 1
/ X?Cdx = / YXdx.
0 0

Using Cauchy Schwarz inequality, we obtain

and

1 1
IxalP<llollxell=> /0 Cda < /0 Fdz.
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Next, we differentiate (6.61) and multiply the result by x; to have

1 1
/ thXtd$=/ %ctXtde;
0 0

hence, by similar calculations, we get

1 1
It 2< el xatl= / iz < / o2z,
0 0

the best possible estimate for the Poincaré constant gives

1 1 1
/x?dwéf xitdw</ pidz.
0 0 0

Lemma 6.4.6. Let (u, p,0,w,n', z) be a solution of (6.14)—(6.16), then the functional

1 bp 1
I(t) = J/ wrpdx + / ugxdzx, t = 0,
0 " Jo

satisfies, for any €1 > 0,

dI5(t) 1/1 ) v? /1 5
<-= de — (& — = d
It 3 ), Pade 3 0 ) ) e
1 1 1
+(J+61)/ gofdachCl (H—)/ ufd:c
0 €1/ Jo

1
3
+Cy / (2(2,1,) + 62 + w2) dz + "2 (g 0 ,) (t).
0

l

Proof. By differentiating Io, integrating by part with (6.61), we get

dt

1 1 1
b b
+ J/ gp?da: _m ugxder — 2H2 z(x,1,t)xdx
0 moJo moJo
2 1 b 1 b 1
+ b/ g02dm — 7/ 0. xdx + '0/ urx¢dr
K Jo moJo K Jo

e ([T 60t - e 0105 )

Using Young’s inequality and (6.63), we observe that

bp /1 b2p2 /1 ) /1 )
— wpxrder < —— u;ydr + &1 dx.
w o tXt 4o )y t ) Pt
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0 0 0
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Applying Young’s and Poincaré’s inequalities, we have

1 d2
d/ wypds < ° lcp/ 2d$+/ (6.67)
0

Young’s and Poincaré’s inequalities with (6.62) give the following estimations

1 l 1
m / Opdz < / 62dx + ey 2 dz, (6.68)
1 392262 1 1

b e < / 2do+ [ 2da, (6.69)

©Jo lp 0 12 Jo

1 30232 1 1
— bZ2 z(x,1,t)xdr < l,u22 / 2(x,1,t)dz + L cpidx, (6.70)
3b2 22
/ Opxdr < = / 02dz + / p2dz. 6.71)
Young’s inequality and (6.11) leads to
1 00 l 1 2 3
[ ([ a0ent - puta = pis) do < [ e Bigopn. 67
0 0 0

By substituting ( 6.66)—(6.72) into (6.65),

dlo(t 1t b2 1 1
2()<_/ gpgdx—(§—>/ 902d33+(<]+€1)/ cp?dx
dt 0 ) Jo 0
3b2,u%c§ b2 p? r, 362u§c§ v,
1
+< 2 +451M2 /0 uidr + 2 /0 z%(x,1,t)dx

3m2c2 32422 1 3d? 1 3
Py 72 P / 93dm+cp/ wﬁdm+ﬂ(go%)()
l l/.L 0 l 0 l

[\)

,LL%CQ b2 p? 3b2u%c% <3m2012) +3b272612)> 3d%c,
Y 2 9

3b?
in view of C = max{ 2 e l m ] }, we obtain (6.64).

Lemma 6.4.7. Let (u, ,0,w,nt, 2) be a solution of (6.14)—(6.16), then the functional

1,1
= / / e 222 (x,p,t)dp dz, t >0
0o Jo

d[g(t) e 2m [l 1 1
T —2I3(t) — . /0 zQ(x,l,t)dx+T/0 uldz. (6.73)

satisfies
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Proof. Differentiating /3 and using the last equation in (6.14), we have

d 1,1 1,1
— </ / e 222 (x, p,t)dp d:v) :2/ / e 2P 2z (x, p,t)dp dx
dt \Jo Jo o Jo
9 (1 f1
= / / e 2P 2z, (x, p, t)dp dx
T Jo Jo
1,1
=— 2/ / e 2P22(x, p,t)dp dx
0 JO

1 a L
- — P22(x,p,t)) dp dx
//0 7y € ,p,t)) dp

—27’ 1 1
=—21[3(t) — . /0 22(z,1,t)dx + = /0 utde.

Lemma 6.4.8. Let (u, p,0,w,nt, 2) be a solution of (6.14)—(6.16), then the functional

Li(t) = ca /019 </Omw(y)dy> dz, t >0,

1
dl;it) _Ckl/ 02d:c+02/ (uf + 67 + w?) do

1 1 1
+ (Ca + 82) / go?dm + Cs <1 + > / w?dz.
0 €2 0

Proof. Direct computations, with integration by parts, give

d[4(t) 1 1 1 1
=— ck:l/ 0%dx + akl/ w?dz + ck:Q/ Ow dx — cd/ Opydx
dt 0 0 0 0

1 1 x 1
— ak:o/ O, wdx — ck:g/ 0 (/ w(y)dy) dz + a’y/ wudx
0 0 0
—am/ Ot </ dy)dx.

Applying Young’s inequality, we get

satisfies, for any €5 > 0,

1 k’2 1 ke
Ckz/ fw,dr < 3¢ 2/ widm—i— ¢ 1/ 0%dz,
0 2k1 Jo 6 Jo
1 2
3ed ck1
—cd | Oppdr < T | pida 92d
& /0 praxr le + — 6 0 X,
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1 1
—akO/ 0, wdx < ¢ (/ (02 + w2)dx> , (6.78)
0 0

1 1
ory/ wurdr < co (/ (u? + w2)dx> . (6.79)
0 0
Using Young’s and Cauchy Schwarz inequalities, we obtain
1 z 2 rl 1
—cks / 0 < / wl(y )dy> dz < Scks / widz + L chy / 0%dx, (6.80)
0 2k1 0 6 0
a?m2 [l 1
—am/ oy </ dy> dx < wdz + 62/ cp?dx. (6.81)
462 0 0

Substituting (6.76)—(6.81) into (6.75), we arrive at

T 1 1 2 1
dilt) Ckl/ «92dx+62/ u?dx+cl/ egdx+30k2/ w2dz
0 0 0 0

dt 2 2k
3cd L, 3ck?  a’m? 1
o d 3 2d
+<2k‘1 —i—EQ)/Ogot $+<01+02+2k1+ 4€2>/0w x,
3ck? 3cd? 3ck? a’m?
taking C'y = max {cl, ca, 20712, ;—kl, c1+co+ 20k13 , a ;n } we obtain (6.74). O

Lemma 6.4.9. Let (u, p,0,w,n', z) be a solution of (6.14)—(6.16), then the functional

B =7 [ o ([ ats2tot0) — ot = s)yis ) . ¢ >0

satisfies, for any €3, €4 > 0,

T t J 1 1 1 1
L—— T €3 T + &4 uLdx 3 w*)dx
dIs(t) 90 2 2 2 2 2
dt 2 Jo 0 0 0
(6.82)
Jdg

B2 (g 0 eal(®)+ Ca (14 2 + =) (o)

Proof. First we note that

5 ([ a0 ot -snas) = " - 9)(elt) - (s

—00
t

— / ¢t — 5)((t) — p(s))ds + / o(t - s)pu(t)ds

-/ ") (lt) — ot — $)ds + i) / " g(s)ds
0 0
—goi(t) + /0 §'(5)((t) — (i — 5))ds.

169



Then, by differentiating I, we find

B0 g [ ([ sto16t0) — ot~ st )

— [ (et + [ 6100~ ot - sy )

making use of (6.14), and integrating by parts, we get

B0 s [ e ([ o6 at) ~ pult — s o
1

7 [ ([T - e sas) o

I
ve [ o ([ ato)ete) — ottt ) o (683
|

,_.
S
Y
c\

8
Q
—
® N
—
S
)
—~
Na
|
S
—~
-
|
»
=
QU
o
~_
QU
8

1 e 1 2

5[ o ([T a0 en) - pute—snis) r < e [ o+ GR0G0p. 630
1 00 1

I [ ([T e e snas) o < T [ tin - SR 000, 689

1 00 1 ) % .
b/o Uy </0 g(s)(p(t) — p(t — s))ds) dx < 54/0 uzdr + 1o (g0 pz)(1), (6.86)
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af L ( | ats)eatt) = gate - s))ds) I < e ( / W+ (go m(t)) ,

/01 </OOO 9(8)(pa(t) — @ult — 3))ds>2dx

oo [ et ([ 6)0ult) =t~ 1))

1 1
< ey <1 + > (goy)(t) + 63/ goidx.
€3 0

By using Young’s and Poincaré’s inequalities and (6.8), we have

¢f ' ( / () lt) - lt - s))ds) do<e | e+ £ oo 0),

463

i [ Ky ([ stere = ot sas) v <es [ it (go b))

Substituting (6.84)—(6.90) into (6.83), we conclude

dI5(t) _ _ Jgo !
a =2 J

1 1 Jdo
oo [wtds e [ 2o - 220 0 )0
0 0

290
) (90 @)(t),

1 1
O2dx + 383/ 2dr + 64/ uldx
0 0

290 ey &dy b
P (estestoss T g, S, b
483 £3 483 454

52 2d, b*d
setting C's = max {03 + ¢4 + c5, % + ¢4 + %, Tl }, we obtain (6.82).

(6.87)

(6.88)

(6.89)

(6.90)

Next, we define a Lyapunov functional L and prove that it is equivalent to the energy functional E.

Lemma 6.4.10. The Lyabunov functional defined by
L(t) = NE(t) + I (t) + Nala(t) + I3(t) + 14(t) + NsI5(t),
where N, No and Ny are positive real numbers to be chosen appropriately later, satisfies
k1E(t) < L(t) < ke E(t), Vt > 0.
for two positive constants k1 and kKo.
Proof. From (6.91) we have

[L(t) = NE@)| = [[1(t) + Noo(t) + I3(t) + La(t) + NsI(2)],
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then, with the fact that e =27 < 1, we infer

|L(t) — NE(t \<p/ |uru|dx + 2/ 2d1’+JN2/ ](ptgo]da?—&—’ |pN2/ |ug x|dx

// (z,p, t)dp dz + ca G(Axw(y)dy>‘dm

+JN;A o ([ sttt - wu—@wﬁ\wu

By using Young’s and Poincaré’s inequalities and (6.62), we get

2 1 l 1 2N2 1
\L(t)—NE(t)ygpcp/ ufdx+1/ ugdx#“p/ 2da + 7 / p2dz
2l]_ 0 2 0 2l2 0

Iy 2 b2p2]2) 1 1t 1 )
d N. d d 0-d.
+ T+ 8,21 2/ x+2/0 :E+2/0 T

2
// (z,p,t dpdaz—t—/ </ > dx
JN; JN. 2
+ 5/ 2dx + 5/ </ g(s)(e(t) — et — s))ds) dx.
2 Jo 2 Jo \Jo
Cauchy Schwarz inequality, (6.8) and (6.35) give
2 1 1
piepy 0P 2 Ko, HCp 2
L(t) — NE(t N. -+ —
L(t) - U|<%{+M%2)AWW+Q+2)Auﬂm
2N N, 1
+ / 2+Q / dx—l—b/ uxgodx—#—f
2l 2 0

/ d:v—l—// (z,p,t dpda:+/ 0%dx
0

JN:
+CO‘/ widx + 5d L(gowa)(t).
2 J 2

Thus the above inequality becomes, for some positive constant /3,
|L(t) — NE(t)| < BE(1),

wich yields
(N = B)E(t) < L(t) < (N + B)E(?).

At this point, by choosing N sufficiently large, (6.92) occurs.
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By differentiating L and inserting (6.55), (6.56), (6.64), (6.73), (6.74), (6.82), we easily verify that

T < (-5 veas) /01 ugds

1 1 1
- [NC—p—C’l (1+)N2——02]/ ulda
€1 T 0

—27 1
—Cy— C]_NQ:| / 22(1:, 1,t)dx
0

—
b ' l 1
[(g — ) Na — Co} / p*dr — [21\72 - 3€3N5] / prdx

0 0

Jgo 'y
N5—(J+€1)N2—CQ—€2 / (ptd:L’
0

_oL(t) — [NC + £

Ckl / 92d$ - [Nk() - CO - ClNQ - CQ - CgN5 / 92d£€

1
— |:Nk3 — (4 <1 + 1) - 03N5:| / w?dz
£9 0

[1N - Jd?Ng.] (¢ 0 02)(t)

1
— [Nky — C1 Ny — 2
[ k?g Cl 2 CQ]/ wxd:c—i— 5 29

0

3 1 1
|: 'lgoN2+03 <1++> N5:| (gogpx)(t).
€3 &4

_ J9oNs o — JgoNs [Ny

4N2 9 2* 8 ’ E :L’Weget

4N5

4N. 1 !

_[NC—p—C’1<1—|— 2>N2——02]/u%dx

T 0
6727' 1

— 2]3(t) — [NC + — Co — 01N2:| / 22($, 1,7f)dl'

T 0

b2 L Jg0 !
[l Do) o [

1
— [Nko — Cy — C1 Ny — Cy — C3Ni) / 62dx
0

8 1
— | Nk3 — 1 — O3N. 2d
[ 3 CQ( +JgoN5> Cs 5}/0 wdz

1 d
-k = G = o [ udo [ GN = 52N (0 ot
0
390 12N5 4 N5
N N; .
# B (14 52+ ) ] (oo
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Following that, we select N» large enough so that

b2
(f—>N2—00>0.
I
When Ns is fixed, we choose N5 large enough to ensure that

J
%]\% — JNy—Cy > 0.

After fixing all the above constants, we select N to be sufficiently large such that (6.92) stays valid and,

4Ny 1
NC—-p—-C1 |1 No———Cy>0
P21<+J90N5>2 - 2 )
NC-i—e — Cy— C1Ny > 0,

T
Nk()—Co—ClNQ—CQ—CgN5>O,
Nks—Cy (1 — C3N5 >0

3 2( +JggN5> 34Vs ;
Nky — C1Ny — Cy > 0,
1 Jdo
—N — —=N, 0.
2 T 2g 07

As a result, there exist two positive constants 1, 2 such that (6.93) takes the form

dL(t) _

1
T \—71/0 (U2 +u? + p? + 0% + 2 + p? + w?)dx

Lo (6.94)
-M /0 /0 22z, p,t)dp dz + v2(g 0 ©z) ().

On the other hand, from equation (6.41), we have
1
E(t) <6, / (ug +uf +¢* + 0° + ¢ + ¢} +w?)dz
0
1 rl
+ 01 / / 2*(z,p, t)dp dx + 51(g 0 @2 (1),
o Jo

by means of Young’s inequality, wich implies that

1
—/ (u2 +uf + ¢* + 0% + Q2 + ¢ +w?)dx
o (6.95)
— / / 22(z,p,t)dp dz — (g o @) (t) < —02E(t),
0 JO
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where d9 < 6 . The combination of (6.94) and (6.95) gives
1

T < —51B0) + Balg o 0)(0), V€ By (6.96)

Using (Hy), the fact that ( is nonincreasing and (6.55), we obtain, for all t € R

/ / )(pz(2,t) — (pulz,t — 8))*dsdx

/ / ((9)9(8)(@a(m,t) — (palz,t — s))*dsda

/ / )(pz(2,t) — (@u(z,t — 5))*dsdx

—27.
dt

(6.97)

On the other hand, the definition of E alongside its nonincreasing nature leads to

1
2
/ 02 (z,t)dx < TE(t) < -E(0), Vit eR,.
0

Hence, in view of (6.53), we get
1

1 1
| (ealat) = palat=9)Pde <2 [ Gatidn sz [ ot s)do
0 0 0

< 7E(0) + 2Ko, Vit,s € Ry.

W

Then, we deduce that

/ / Npn(x,t) — (polz,t — s5))?dsdz
. (6.98)
S(ZE(O)—FQ/{()) C()/ g(s)ds, Vt e R;.
t
Now multiplying (6.96) by ((¢) and combning with (6.97) and (6.98), we obtain
dE(t
™0 < gcwme - 55D 1 in), vie ks, (6.99

4 o0 . .
where 33 = 2032, 54 = (B2 jE(O) + 2f€0> and h(t) = ¢(t) [, g(s)ds, which can be rewritten as

(COL() + B3EW®)Y — (L) < —BICHE®) + Bah(t), ¥t € R
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Using the fact that ¢'(¢) < 0 and L(t) > 0, we have
(COL(t) + B3E(t)) < —Bi1C(H)E(t) + Bah(t), ¥t € Ry.
By exploiting (6.92), it can easily be shown that
R(t) = C(t)L(t) + B3E(t) ~ E(t),
hence, there exist two positive constants k3 and x4 such that
ksE(t) < R(t) < kaE(t), Vit € Ry, (6.100)
Conseqently, for some positive constant \;, we obtain
R(t) < =MC(0)R(E) + Bah(t), ¥t € Ry

Then /
(eAl fffC(S)dsR(t)) < paeM B <OEn(r) vt e Ry

Therefore, by integrating over [0, 7], with T > 0, we arrive at

T
R(T) < e~ Jo ¢()ds (R(O) + B4 / = fJC(S”Sh(t)dt) :
0
which implies, thanks to (6.100), that

T
E(T) < L en f s <H4E(0) + B4 / eM f5<<8>d5h(t)dt) : (6.101)
K3 0

Note that

/ o
M€ (g) = L (N o) / g(s)ds, Yt € Ry,
1 t

then, by integrating by parts, we get
T . 1 T 00 00 T .
/ Mo CEMsp () = — (e)‘l Jo C(S)ds/ g(s)ds —/ g(s)ds —I—/ Mo C(S)ng(t)dt> ,
0 AL T 0 0
thus, combining with (6.101), yields
1 x T cwas | B [T
E(T) <— | kaE(0)e "o + / g(s)ds
K3 At Jr

Ba [T ¢(s)ds g A1 [T ¢(s)ds
+ e 0 e Jo g(t)dt.
K3A1 0

(6.102)
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Moreover, (Ho) entails that

(X<t (gap) <0, vie Ry

and, then
MO (g() M < (g0, ¥t € R

Therefore

T . T
| Mg < ) [ (o) (6.103)

0 0
Finally, (6.54) is established by combining (6.102) and (6.103), where

1
Ao = ;Smax {R4E(0)7 fj’ %(9(0))/\1} :

6.4.2 The case ;o = 11y

Now, we prove the general energy decay result for problem (6.14)-(6.16) in the case p = 1. From,
(6.21) we can choose x = Tuq, then the energy functional satisfies

dE(t 1 1 1 1
di) < —ko | 0%dx — kz/ widz — ks/ widr + 5(9’ 0 pg)(t) < 0. (6.104)
0 0 0

In this case, we need some additional negative term of fol u?dx. For this purpose we introduce the

Is(t) = c/ol 0 (/0 ut(y)dy> dz, t >0,

then, the following result holds.

functional

Lemma 6.4.11. Let (u, p,0,w,nt, z) be a solution of (6.14)-(6.16), then, for any €5, €¢ , €7 > 0,

dIs(t) b Lo o o
<—= [ widr+es | uidr+eg | 2°(x, 1, t)de +e7 | rdx
dt 0 0 0 0

! 1
+C4/ (gp?+w2)dx+6’4< _’_7_’_74_ )/ 02da.
0 6 E7

)

[\

(6.105)

Proof. A simple differentiation leads to

djflt(t) = —c/ol 6, (/Ox ut(y)dy> dx — c/ol 0 </Ox utt(y)dy> dz. (6.106)
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By using (6.14);, (6.14); and integrating by part, we get

1 1 1 p
dlslgt) :ko/ Gxutdm—'y/ ufdx+m/ N </ ut(y)dy> dx
0
1 x
—k:l/ wutd:r—/ Oupdz + L 9(/ ()dy>d (6.107)
0
—i-% 9(/ (m,l,tdy)dx—/@dx—/ 0%dz.
P Jo 0

Applying Young’s, Cauchy Schwarz and Poincaré’s inequalities to find

1 o2 [1 1
ko/ Ooundr < ko/ 93dm+7/ wldz, (6.108)
0 v Jo 8 Jo
1 1
m/ Ot </ utdy> dx < / dx—l— / ?dm, (6.109)
0
1 9 1
kl/ wurdr < ﬁ w2dx+7/ u?dx, (6.110)
0 v Jo 8 Jo
1 . 9022 1 1
atl 9</ utdy> dz < C’;lcp/ 93daz+7/ wlds, 6.111)
p Jo 0 p*y Jo 8 Jo
22 1 1
L R 0“20?/ 92da;+£5/ u2dz, (6.112)
P Jo p7Es 0
1 T
ck2 9(/ (m,l,t)dy) “QCP/ 02da:+56/ 2(2,1,t)da, (6.113)
P Jo 0 pag
b 1
—C/ Opdr < / 02dx—|—57/ cpl,dx (6.114)
P Jo dpPeq 0
9 / 02dz < co / 02dz. (6.115)
P Jo 0

Substituting (6.108)—(6.115) into (6.107), we arrive at
T 1 1 1
dls (t) < - 7/ ufdx+55/ uid:c+56/ 2(x,1,t)dx
dt 0 0

1 2 1
2
+57/ (pid:ﬂ—i—m/ daz+/
0 Y

2k2  2c%u%c Aue Auie 2b? 1
y(H8 | 200 | Sty | Chacy | S /egdx.
Y Py dp%es  4p’eg  4p’er 0

\)

o2m? 2k 2k%  2c43 220 2,20 2p2
By letting C = max{m7170+ c étlcp e M2cp c ,u220p’ c :
vy iyl oy 17 0 4p? T dp

)

}, we obtain (6.105).
O
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Now, we define the following Lyapunov functional

G(t) = NE(t) + I1(t) + Naola(t) + N3lIs(t) + I4(t) + N5I5(t) + Nelg(t), (6.116)

where N, Na, N3, N5 and Ng are positive constants to be chosen appropriately later. For large N, we
can verify that, for some mj, mg > 0,

mlE(t) < G(t) § ng(t), Vit 2 0.

(6.117)

Then, using (6.56), (6.64), (6.73), (6.74), (6.82), (6.104) and (6.105), we get for 5 N €6
6

6_27—]\73 {Ny

s 57 — oAT
27'N6 8N6

1 1 1
@ g—“/ UidI—lNg/ cpidx—dﬁ/ 62dx
dt 8 Jo 8 0 2 Jo

v 4N, 1 /1 )
—INg—p-0Cy (1 Ny — =N3 — d
[2 6= P Cl( +J90N5) 2= —Ns 02} | e
—27 1
— 2N3I5(t) — [62 Ng—CQ—ClNQ]/ 22(z,1,t)dz
T 0

[l )] o[

1
3 N5—JN2—C2—C4N6:|/ go?da;
0

. [(Nko — Cy— C1Ny — Cy — O3 N5

6.118)
8N, 27N, 8N, 1 (
—Cy(1+ =2 6)}/ 02z

0

] e 2™N3 [Ny

1
— [ng — Oy <1 + 8 > — C5N5 — 041\4 / w?dx
JgoNs 0

1
— [Nk — C1 N3 — (9] / w2 dx
0

3 12N, 4N,
+ [?ONQ +Cs (1 e >

v, Tt u) N5] (90 @a)(t)
N

3V = s | (¢ 0 )0

Similarly to the proof of the case s < w1, by carefully selecting the constants, (6.118) takes the form

dett) < —B3E(t) + Ba(g o @z)(1),

where B3 and (4 are positive constants. The remainder of the proof goes exactly as in the case of
o < 1, and thus we complete the proof of Theorem 6.4.2.
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6.5 Numerical approximation

In this section, we introduce a scheme for the problem based on P1-finite element method in space
and implicit Euler scheme for time discretization. Then, we show the evolution in time of the discrete

energy and the approximation of the solutions u, ¢, # and w at point x = 0.5.

6.5.1 Description of the discrete problem

To obtain the week formulation, we multiply (6.1) by the test functions 1, @, § and @, then integrate

by part, where @ = u;, p = ; to obtain

pliig, @) + p(ue, Ua) + p1 (@, @) + po(@(z, t — 7),1) = b(pe, 4) + 7(0z, @) =0,
J(@t, @) + 0(pa, Pa) + b(ua, @) + £, @) + d(wa, @) — m(0,¢)
- [T st - 90015 =0, (6.119)
c(04,0) + ko(0z, 02) + (s, 0) +m(,0) + k1 (ws,0) = 0,
[ a(wi, @) + ko (wa, Wy) + k3 (w, @) + k1 (02, @) + d(py, w) = 0.

The mesh of a given delay 7 = M Atist, =nAt, n=-M,—-M +1,...,0, 0 < M < N. By using
implicit Euler scheme, the finite element approximation to the variational problem (6.119) is written as

follows:

Forn =1,..., N, find (4}, o}, 07, wy) € Sp x 52 X 52 x S}, such that for all iy, @y, 65, and w;, we

obtain,

P . A — _ _ ~m — o _
(A — A = ) + (Ul ) + (A, @) + pe(a) M, ap)

- b((pzx7 ?Tbh) =+ 7(9;11:1:7 ’l_Lh) = Oa
E(@Z - ¢2_17 @h) + 5(()0;LL:B7 @hx) + b(“’%w? @h) + 5(9027 @h) + d(wzw7 @h)

n

—m(0}, &n) — A D gltn—no) (£} Pra) = 0,

no=1

c = _ R _ o _
E(QZ — 071 0h) + ko (07, Ona) + v (@, O0) + m(@}, 6n) + k1 (w]l,, 6n) =0,
a o _ _ _ o
| Az (Wh —wh Lwn) + ka(Why, One) + ka(wh, n) + ki (0, @) + d(h,, @) = 0,

where
up = ul " At A) and @ = Ul 4+ At @l
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and we introduce the discrete energy by

E" = (plluhll + TSI+l | + Uehall* + cllR1 + €llen ) +a|!wh|!)

w0 [ atan s 5[5 gttu b e+ 5 [ [ @ apae
0 2 Jo =

Here u, 49, ¢9, @9, 09 and w) are approximations to ug, u1, ©o, 1, 6o and wy, respectively.

6.5.2 An iterative algorithm

We use a fixed-point algorithm that we now describe. Assuming that (a"~ !, "1 67~ w" 1) is
known, we first set:

n,0 n—1 ~n,0 __ an—1 n0 _ n—-1 ~n0 _ ~n—1 n,0 n—1 nO n—1
=y, Wy =y =y, By =@y s 0 =0, =w, .

Next, we solve iteratively the problem:

Find (ﬂzl, @ZZ,HZZ,UJZI) € S; x SY x S x S satisfying

Yy, € S;;,

p An,l An—l n—1 - At An,l -

At(uh _uh h)+lu(uhx 7Uhx)+ﬂ (uhmvuhx)

(@ ap) 4+ pa (@M ) — b an) + (0 an) =0,
Vo € SY,

T gl _ g1 5(o" 1 SALP™. 5

At(soh — @y @n) +0(ppy s Pha) + OAL(Py s Pha)

-1 _ and -
+ byt o)+ E(e Tt on) + EAL(RY, )
nl - nd - . m o =
+d(wpy, on) — m(6", @n) — ALY gtn—m) (Phes Pha) = 0, (6.120)
m=1

\V@h S 52,

= 08+ koG B + (i B

+m(gp~ Loy + kl(whm ,0,) =0,
Yy, € S,
(= ™ ) + ke (wp e
At
+ ks (wp! @p) + k1 (0], @) + (@)t w@n) = 0,
where

ult = u Tt Ar A and ot = w4 AR (6.121)
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We now prove the well-posedness of (6.120).

Proposition 6.5.1. For any data (ug,u1, o, p1,00,wo) € H} x H} x H& X H(% X H& x HY, for

n =1, ..., N and any positive integer l, problem (6.120) has a unique solution when At is small enough.

Proof. The initial conditions are given, we proceed by induction on n and [. At each step (n, ), problem
(6.120) results into a square finite-dimensional linear system. So, assume that all data (112_1, @Z‘l, 02_1,
w1 and also (u 1, @71 are zero. Note from (6.121) u"' = Ata)" and ¢ = At@}". Tt can thus

be re-written

— * 4 n,l - n,l m1 o, nil M2 M-
Yy, € Sy, @(uh L Up) + (), Une) + E(uh ,Up) + E(uh ,Up,)
- b(SOZ;Cla ’L_Lh) + ’7(‘92;5 ah) =0,
_ J n — n — n — n —
Von € Sy, @(@h’l, Bn) + 0Ll Bha) + E(op @) + d(wi, )
- m(e;z’la ()bh) — At Z g(tn—m)(‘Pme @hx) = 07
m=1
7 0 C nl p n,l p
veh € Sh7 E(eh 70h) + kO(ehxaeh.T) = 07
). * a n _ n _ n _
VO € S5, (s + ka) (Wt wn) + ka(wih wpg) + ki (87 wp) =0,

At

by taking ), = GZ’Z in the the third equation, we immediately derive that 92’1 is zero. In the last line,
taking wy, = wZ’l, thus yields that wZ’l is zero. On the other hand, taking @), = goZ’l in the second
equation implies that cpZ’l is zero. Finally, taking @, = uZ’l in the first equation gives that uZ’l is zero.

As a consequence, problem (6.120) has at most a solution, hence has a unique solution. O

It follows from the previous proof that problem (6.120) results into four uncoupled equations: Solve
first the equation on HZ’I, next the equation on wZ’l, next the equation on @Z’l and finally the equation on
a;“l until a finite number of times or the smaller [ such that the difference between (QZ’I, @Z’l, HZ’I, wZ’l)

~n,l—1 an,l—1 pn,l—1 n,—1y . . .
and (4, ~,¢," ,0, ",w,” ") in an appropriate norm becomes smaller than a given tolerance tol.
We finally set:

ap=apt, or=¢pt, =00 wi=w) (6.122)

6.5.3 Numerical experiments

For the numerical experiments, we make 2 tests to illustrate the energy decay results. The first test is
done when the case po < p1, the second test is done when the case s = pp. For both tests, we consider
the following data:

p=J=p=a=1,¢c=10"% 6§=3, gt)=e ¥ 1 =6—(1/4),

b:y:m:l/?,§=d=/€1=k2=k‘3=1,7‘=0.1T.
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The discretization parameters are fixed equal to h = 1072, At = 10~*. A tolerance tol = 10~ 7 is used
to stop the iterative procedure.

We work with the initial values
uo(x) = wo(z) = ui(x) = cos(2mzx), po(x) =pi(x) =2(1 —x), 6Op(z)=sin(27x)

and the delay condition
folz,t — 1) = cos(2mz) cos(t — 7).

Test 1. For the first numerical test, we select the following entries:

H1 = 1/2, Mo = 0.1, k‘o =0.1.

0.25

0.197

= 0.13;
= 0.07)

0.01

-0.05 ‘ ‘ ‘ ‘
0 02 04 06 038 1

(a) (b)

0 02 04 06 0.8 1 0 02 04 06 08 1
T x

©) )

Figure 6.1 Test 1: The evolution in time of u, ¢, # and w.

Test 2. For the second numerical test, we choose the following entries:
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0.4

0.08 ¢

S-0.24

=
S -0.56
-0.88

-1.2

8 12 16 20 0 4 8 12
t t
(@) (b)

Figure 6.2 Test 1: The evolution in time of v and ¢ at x = 0.5.

16

12

Figure 6.3 Test 1: The evolution in time of E.

184

16

20



0.25

0.19

= 0.13;
I 0.07)

0.01

-0.05

(a) (b)

0.8

0.48¢

= 016+
T -0.16}

-0.48 |

-0.8

0 02 04 06 038 1 0 02 04 06 0.8 1
x T

(c) (@

Figure 6.4 Test 2: The evolution in time of u, ¢, # and w.

/L1:,u,2:0.1, ]{70:1/3.

For each numerical test, the evolution in different values of time is shown in Figure 6.1 and 6.4
for the approximate solution (u, ¢, 6, w). Figures 6.2 and 6.5 illustrate the cross section cuts for the
numerical solution u and ¢ at the point z = 0.5, where we can see the effect of the damping term on
the delay in the displacement. Notably, our simulations indicate that, « when s < p; vanished faster
than when the condition s = g is met.

Regarding the energy, we have two cases based on the condition po < 1. If uo < 1, the discrete
energy is presented in Figure 6.3, showcasing rapid decay to zero after time ¢ = 2. If uo = pq,

exponential decay is shown in Figure 6.6 where we see that, at time ¢ = 4.
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u(0.5,t)

0.8

0.4/

-0.4

-0.8

-1.2

-0.17¢

‘ ‘ ‘ 0.2 ‘ ‘ ‘

8 12 16 20 o 4 8 12
t t

(a) (b)

Figure 6.5 Test 2: The evolution in time of u and ¢ at x = 0.5.

16

12

Figure 6.6 Test 2: The evolution in time of E.
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Conclusion

This thesis has addressed key challenges in the study of thermoelastic systems, focusing on global
existence and stability in time for various partial-differential-equation models. By leveraging rigorous
mathematical methods and numerical analysis, this work has provided meaningful insights into the role
of dissipation mechanisms in stabilizing mechanical systems.

We established well-posedness and stability results—ranging from exponential to polynomial and
general decay rates—for systems such as thermoelastic Shear beams, laminated beams, and porous
thermoelastic models. Complementing these findings, numerical simulations validated the theoretical
results, by demonstrating the accuracy and effectiveness of the proposed methods.

Looking ahead, this study opens the door to several promising research directions, including the ex-
ploration of multi-dimensional systems, nonlinear dynamics, and more intricate feedback mechanisms.
These avenues hold a potential for advancing both the theoretical understanding and practical applica-
tions of stabilization techniques in mechanical systems.

In summary, this thesis represents a step forward in the theoretical and numerical analysis of ther-
moelastic systems, contributing to the broader goal of developing stable, efficient, and reliable models

for real-world applications.
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