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Notation and Symbols

The symbols and notations used in this thesis are outlined below

Notations

MP: Mathematical programming.

NLP: Nonlinear programming.

IPMs: Interior point methods.

CGMs: Conjugate gradient methods

Symbols

R: The set of real numbers.

R+: The set of positive real numbers.

Rn : The euclidean vector space of dimension n .

Rn
+: The positive orthant in Rn .

(a , b ): The open interval of real numbers from a to b .

[a , b ]: The closed interval of real numbers from a to b .
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Notation and Symbols

D o m(h): The effective domain of h : S →R can be expressed as

Dom(h) = {x ∈ S : h(x )<∞}.

x ≥ 0: Implies that every component xi of the vector x is greater than or equal to zero.

xk : The k t h vector in a sequence of vectors.

xi : The i t h component of x .

x>: The transpose of the vector x .

{e1, . . . , en}: The canonical basis in Rn .

A ∈Rm×n : A matrix consisting of m rows and n columns.

Int(S): The interior of a set S .

m : The number of constraints in the nonlinear optimization problem, which is also the

number of rows in the constraint matrix A.

n : The number of decision variables in the nonlinear optimization problem, corre-

sponding to the number of columns in the constraint matrix A.

‖x‖: The Euclidean norm of the vector x .

〈·, ·〉: The usual scalar product in Rn .
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Introduction

In the modern era, optimization problems have become a cornerstone for addressing nu-

merous scientific, engineering, and economic challenges. These problems focus on finding

the optimal values for objective functions that represent the performance of systems or pro-

cesses, while considering constraints that define the nature of the problem. Nonlinear opti-

mization problems, in particular, are among the most complex types, characterized by non-

linear objective functions or constraints, making their resolution a challenge that requires

advanced tools and techniques.

In recent decades, significant progress has been made in developing innovative methods

to solve nonlinear optimization problems, thanks to advancements in applied mathematics

and computing. Among the most prominent methods, conjugate gradient methods [53, 54,

46, 47] and interior point methods [2, 4, 5, 6, 31, 32].

Conjugate gradient methods (CGMs) have emerged as indispensable tools for solving non-

linear unconstrained optimization problems, particularly those involving large-scale systems.

These methods strike a balance between computational efficiency and low memory require-

ments, making them especially suitable for problems where direct methods, such as Newton’s

method, become impractical. CGMs are particularly appealing due to their iterative nature,

leveraging conjugacy principles to achieve faster convergence compared to traditional gradi-

ent descent methods. The origins of CGMs date back to 1952, when Hestenes and Stiefel [34]

introduced the CG method to solve symmetric positive definite linear equation systems. In

the 1960s, Fletcher and Reeves [27] refined this method, resulting in the Fletcher-Reeves (FR)

method and extending it to address unconstrained nonlinear optimization problems. Vari-

ous conjugate gradient methods are associated with specific choices for the scalar parameter
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βk . In 1969, Polak and Ribière [53] and Polyak [54] independently proposed a conjugate gra-

dient method that later became known as the Polak-Ribière-Polyak (PRP) method. Fletcher

introduced a variant called the Conjugate Descent (CD) method [26], while Liu and Storey

proposed the Liu-Storey (LS) method [45]. Additionally, Dai and Yuan [19] examined and re-

fined the approach, culminating in the Dai-Yuan (DY) method. The most important charac-

teristics of CG methods are their global convergence and numerical performance. According

to [19, 26, 27, 34, 45, 53, 54], the aforementioned methods can be broadly categorized into

two classes. The FR, CD, and DY methods exhibit excellent global convergence properties but

demonstrate relatively weaker practical performance. Conversely, the HS, PRP, and LS meth-

ods exhibit superior numerical performance but may not always guarantee convergence. To

address these limitations, new hybrid conjugate gradient methods have been proposed in

the literature [53, 56, 50, 62, 47, 46]. These hybrid methods aim to combine robust global

convergence properties with improved practical performance, offering a more balanced and

effective approach for solving nonlinear optimization problems.

On the other hand, one of the most advanced and effective approaches for solving non-

linear programming (NLP) problems is the family of Interior Point Methods (IPMs). These

methods have gained widespread recognition for their ability to handle large-scale, highly

constrained optimization problems. By navigating through the interior of the feasible re-

gion, IPMs efficiently converge toward optimal solutions without being overly sensitive to

the problem’s size or condition. Despite their established success, challenges remain in fur-

ther improving computational efficiency, particularly for high-dimensional nonlinear prob-

lems. Interior Point Methods were first introduced in 1955 by K. R. Frisch [28] to solve convex

programming problems, demonstrating polynomial complexity. In 1967, P. Huard [35] pro-

posed the method of centers for solving problems with nonlinear constraints. Subsequently,

in 1968, A. V. Fiacco and G. P. McCormick [25] extended IPMs to address convex nonlinear

programming problems. In 1970, N. Shor [58] introduced the ellipsoid method for linear pro-

gramming, which was further developed in 1979 by L. G. Kachian [39], who established its

polynomial complexity. Many studies have focused on using IPMs to solve linear, quadratic,

semidefinite, and nonlinear programming problems, with significant attention given to loga-

rithmic barrier methods. These methods, initially proposed by Frisch and later developed by

2
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Fiacco and McCormick, reformulate the non-negativity constraints xi ≥ 0 into a penalty term.

As the barrier parameter approaches zero, the convergence of the solution can be mathemat-

ically proven. This concept of transforming constrained problems into unconstrained ones is

rooted in the broader framework of penalization. Penalization serves as a powerful approach

to simplify optimization problems by introducing penalty terms that account for constraints.

When the penalty function is carefully designed, the penalized problem can retain the prop-

erties of the original problem, a concept known as exact penalization. However, when such

direct correspondence is not achievable, inexact penalization employs limiting processes to

recover the desired properties, ensuring that the original problem’s characteristics are ulti-

mately reflected.

This thesis aims to study and analyse nonlinear optimization problems and review various

methods for solving them, with a particular focus on conjugate gradient methods and interior

point methods based on barrier function. The theoretical concepts of these methods will be

highlighted, along with their practical applications and performance evaluation in solving a

variety of problems. This work underscores the importance of nonlinear optimization as a

pivotal tool for improving performance and developing innovative solutions across various

scientific and industrial fields.

This work is composed of four chapters.

In the first chapter, we introduce fundamental concepts in convex analysis, optimiza-

tion, and mathematical programming. We discuss the existence and uniqueness of

optimal solutions and explore various resolution methods for mathematical program-

ming, including conjugate gradient methods and interior point methods. These foun-

dational concepts and techniques serve as a basis for the subsequent chapters, where

they are applied to establish the theoretical results.

In the second chapter, we focus on solving a nonlinear optimization problem (NLP) us-

ing a barrier logarithmic penalty method. To perturb the NLP, we propose using a log-

arithmic barrier function of the form
∑n

i=1ρi ln(ρi )−
∑n

i=1ρi ln(xi ), where ρ ∈ Rn
+.

We then demonstrate the existence and uniqueness of the optimal solution for the per-

turbed problem, as well as analyse the convergence of the perturbed solution to the

original problem. We compute the Newton descent direction and determine the step-

3
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length using a minorant function technique, which is related to a secant method. Fi-

nally, we validate the effectiveness of our method through highly encouraging numeri-

cal simulations.

This study has been accepted for publication in " the Journal of Nonlinear Dynamics

and Systems Theory"

In the third and fourth chapters, we introduce two hybrid conjugate gradient methods.

For each method, we outline the procedure, analyse the sufficient descent property,

prove global convergence, and assess their efficiency and reliability based on numeri-

cal performance. Furthermore, we explore the application of these methods in image

restoration problems.

These studies resulted in articles [60, 61] that were published in "the Journal of Math-

ematical Modeling" and "the Iranian Journal of Numerical Analysis and Optimiza-

tion".
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CHAPTER

1 Preliminaries and Fundamental

Concepts

In this chapter, we will outline several properties and definitions of essential concepts that

are crucial for demonstrating the theoretical results in the subsequent chapters (see [9, 12,

14, 17, 38, 51, 55]).

1.1 Convex Analysis

1.1.1 Affine sets and functions

Definition 1.1.1 (Affine set).

A subset S of Rn is considered affine if

∀x , z ∈ S ,λx +(1−λ)z ∈ S ,∀λ ∈R.

Examples of basic affine sets are the empty set (;), singletons ({x })where x ∈Rn , and all vector

sub-spaces of Rn .

Definition 1.1.2 (Affine function).

We define a function h : Rn →R as affine if, for any vectors x and z in Rn and any scalar

λ ∈R, the following condition holds

h(λx +(1−λ)z ) = λh(x )+(1−λ)h(z ).

5



1.1. Convex Analysis

1.1.2 Convexity concepts

Definition 1.1.3 (Convex set).

A subset S of Rn is considered convex if

∀x , z ∈ S ; λx +(1−λ)z ∈ S , ∀λ ∈ [0, 1].

This definition means that a set S is convex if it contains the line segment connecting any two

points x and z within S, i.e.

[x , z ] = {λx +(1−λ)z : λ ∈ [0, 1]} ⊆ S .

Definition 1.1.4 (Convex cones).

A subset C of Rn is a cone if and only if, for any x ∈C and any λ> 0, we have λx ∈C .

. C is called a pointed (or salient) cone if C ∩ (−C ) = {0}.

. C is called a convex cone if the set C is convex.

Definition 1.1.5 (Cone of recession).

The recession cone of C is the set

C∞=
⋂

a∈C

C∞(a1).

where C∞(a ) = {d ∈ Rn : a +λd ∈ C ,∀λ > 0} is a non-empty convex cone and d ∈ C∞ is

called a direction of recession.

Theorem 1.1.1 If C 6= ; is convex and closed, then C∞(a1) = C∞(b1) for all a1, b1 ∈C .

Theorem 1.1.2 A function h : Rm →R∪{∞} is said to be inf-compact if and only if

C∞(h) = {0}.

Proposition 1.1.0 Let C be a non-empty closed convex set in Rn , then

(C is bounded) ⇐⇒ (C∞= {0}).

6



1.1. Convex Analysis

Definition 1.1.6 (Convex function).

A real function h, defined on a convex set S ⊆Rn , is convex if

∀x , z ∈ S ,∀λ ∈ [0, 1], h(λx +(1−λ)z )≤λh(x )+(1−λ)h(z ).

Definition 1.1.7 (Strictly convex function).

A real function h, defined on a convex set S ⊆Rn , is strictly convex if

∀x , z ∈ S , x 6= z ,∀λ ∈ (0, 1), h(λx +(1−λ)z )<λh(x )+(1−λ)h(z ).

Definition 1.1.8 (Strongly convex function).

A real function h is said to be strongly convex with a coefficient µ > 0 if the following con-

dition holds for all x , z ∈ S and λ ∈ [0, 1]

h(λx +(1−λ)z )≤λh(x )+(1−λ)h(z )−
µ

2
λ‖x − z‖2.

Definition 1.1.9 (Proper function).

A real function h, defined on a set S ⊆Rn , is called a proper function if it satisfies the fol-

lowing conditions

h(x )>−∞, ∀x ∈ S.

dom(h) 6= ;.

where dom(h) denotes the effective domain of h.

Definition 1.1.10 (Convex combination).

A vector z ∈ S ⊆ Rn is a convex combination of the points {x1, x2, ..., xp } if there exist real

coefficients λi ≥ 0, i ∈ {1, ..., p}, such that

z =
p
∑

i=1

λi xi with
p
∑

i=1

λi = 1.

Definition 1.1.11 (Convex hull).

The convex hull of a set S ⊆ Rn is the set of points in Rn that can be written as convex

combinations of points from S. i.e.,

c o n v (S) = {x ∈Rn : x =
p
∑

i=1

λi xi , xi ∈ S ,λi ≥ 0,∀i ∈ {1, ..., p} and
p
∑

i=1

λi = 1}.
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1.1. Convex Analysis

Definition 1.1.12 (Convex polyhedron).

A subset S is defined as a convex polyhedron if it is the intersection of finitely many half-

spaces in Rn . It can be expressed as

S =
n
⋂

i=1

{x ∈Rn : 〈bi , x 〉 ≤ c , bi ∈Rn , c ∈R}.

Definition 1.1.13 (Extreme point).

Let S be a non-empty convex set in Rn . A point x is defined as an extreme point (or vertex)

of S if

∀x1, x2 ∈ S ,λ ∈]0, 1[,(x = λx1 +(1−λ)x2) =⇒ (x = x1 = x2).

Every extreme point of a convex set S lies on its boundary.

Proposition 1.1.0 Let S be a non-empty convex set in Rn . A point x is a vertex of S if and only

if S \{x } is a convex set.

1.1.3 Differentiability and convexity

Definition 1.1.14 The gradient of a continuously differentiable function h : Rn → R, at a

point x ∈Rn , is defined by

∇h(x ) =

�

∂ h(x )

∂ x1
,
∂ h(x )

∂ x2
, ...,
∂ h(x )

∂ xn

�>

.

The elements of the Hessian matrix at the i t h row and j t h column are defined as

∇2h(x )i , j =

�

∂ 2h(x )

∂ xi∂ x j

�

i , j

, i , j = {1, .., n}.

Definition 1.1.15 If a function h ∈C 1 and S is a convex set, the following equivalences hold

1. h is convex if and only if, h(x )−h(z )≥ 〈∇h(z ), x − z 〉, ∀x , z ∈ S .

2. h is convex if and only if, 〈∇h(x )−∇h(z ), x − z 〉 ≥ 0, ∀x , z ∈ S .

Moreover, h is strictly convex if either of the above inequalities holds strictly whenever x 6= z .

Proposition 1.1.0 Let h : Rn →R be a continuously differentiable function defined on a con-

vex domain D .
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1.1. Convex Analysis

1. h is a convex function on D if and only if the Hessian matrix∇2h(x ) is positive semidef-

inite, i.e.,

∀x ∈D : z>∇2h(x )z ≥ 0,∀z ∈Rn ,

or equivalently, all eigenvalues of∇2h(x ) are non-negative.

2. h is a strictly convex function on D if and only if the Hessian matrix ∇2h(x ) is positive

definite, i.e.,

∀x ∈D : z>∇2h(x )z > 0,∀z ∈Rn , z 6= 0,

or equivalently, all eigenvalues of∇2h(x ) are strictly positive.

Lemma 1.1.1 A function h is called concave if −h is convex.

Definition 1.1.16 A function h is called coercive on a convex set S if

lim
‖x‖→+∞

h(x ) =+∞.

Definition 1.1.17 (Admissible direction).

Let S be a non-empty subset of Rn . A vector d 6= 0 in Rn is called a direction of S at c ∈ S if

There exists β0 > 0 such that c +βd ∈ S for all β ∈ [0,β0].

If this property holds for all c ∈ S, d is referred to as an admissible direction for S.

Definition 1.1.18 (Directional derivative).

Let h be a function from Rn to R = R∪{−∞,+∞}, and let x0 be a point in Rn such that

h(x0) takes a finite value. The directional (one-sided) derivative of h at x0 in the direction

d ∈Rn is defined by

h ′d (x0) = lim
τ→0+

h(x0 +τd )−h(x0)

τ

if it exists. (The limit may take values ±∞).

Note that

- −h ′−d (x0) = lim
τ→0−

h(x0 +τd )−h(x0)

τ
.
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1.2. Mathematical Programming

- The directional derivative is called bilateral if h ′d (x0) =−h ′−d (x0).

- If h ′d (x0) exists for all d ∈Rn , we state that h is directionally differentiable at x0.

- If there exists a constant vector y0 ∈ Rn such that h ′d (x0) = 〈y0, d 〉 for all d ∈ Rn , we

define h is G-differentiable (or differentiable in the Gateaux sense) at x0, denoted by

h ′(x0) = y0.

1.1.4 Lower and upper semicontinuous functions

Definition 1.1.19 (Lower semicontinuous function).

A function h : Rn →R is called lower semicontinuous at x0 ∈Rn if

for every ε> 0, there exists δ > 0 such that h(x )≥ h(x0)−ε whenever ‖x − x0‖ ≤δ.

Definition 1.1.20 (Upper semicontinuous function).

A function h is called upper semicontinuous at x0 if −h is lower semicontinuous at x0.

Remark 1.1.1 A function h is continuous at x0 if and only if it is both lower and upper semi-

continuous at x0.

1.2 Mathematical Programming

An optimization problem consists of a given set S ⊆Rn (the set of actions or strategies) and a

function h (the criterion or objective function) defined on this set. The goal is to determine

whether there exists an action in S that optimizes h .

From a mathematical perspective, the problem is formulated as

unconstrained optimization problems: min
x∈Rn

h(x ) (P1)

constrained optimization problems: min
x∈S

h(x ) (P2)

10
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1.2.1 Unconstrained optimization problems

A general unconstrained mathematical programming problem can be expressed as follows

min
x∈Rn

h(x ). (P1)

The problem (P1) has a solution if there exists a variable x ∗ ∈Rn such that

∀x ∈Rn , h(x ∗)≤ h(x ).

We say that x ∗ is a minimizer (or a minimum point) of h on Rn and that h(x ∗) is a mini-

mum of h on Rn .

Definition 1.2.1 Let h : Rn →R be a continuously differentiable function.

A point x ∗ ∈Rn is a global minimum of problem (P1) if and only if

∀x ∈Rn , h(x ∗)≤ h(x ).

A point x ∗ ∈Rn is a local minimum of (P1) if and only if there exists an open neighbor-

hood Vε(x ∗) of x ∗ such that

∀x ∈Vε(x ∗), h(x ∗)≤ h(x ).

A point x ∗ ∈Rn is a strict local minimum of (P1) if and only if there exists an open neigh-

borhood Vε(x ∗) of x ∗ such that

∀x ∈Vε(x ∗) where x 6= x ∗, h(x ∗)< h(x ).

Remark 1.2.1 Any global minimum is also a local minimum, but the converse is not necessar-

ily true.
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Existence and uniqueness results

Theorem 1.2.1 ( Weierstrass).

If a subset S ⊂Rn is compact, and h is continuous on S, then h admits at least one mini-

mum on S. i.e.

∃x ∗ ∈ S : h(x ∗) = min
x∈S

h(x ) ⇐⇒ ∃x ∗ ∈ S , h(x ∗)≤ h(x ),∀x ∈ S .

Theorem 1.2.2 (Existence).

If h : Rn → R is continuous and coercive function on Rn , then h admits at least one

minimum x ∗ on Rn .i.e.

∃x ∗ ∈ Rn : h(x ∗)≤ h(x ),∀x ∈ Rn .

Theorem 1.2.3 (Sufficient condition for uniqueness).

If h : Rn → R is strictly convex function, then there exists at most one x ∗ ∈ Rn (global

minimum).

Theorem 1.2.4 (Existence and uniqueness).

Let h : Rn → R be a function. Assume that

1. h is continuous.

2. h is coercive.

3. h is strictly convex.

Then (P1) admits a unique global optimal solution x ∗.

Conditions of optimality

1. Necessary conditions (NC):

Theorem 1.2.5 (First-order NC).

Let h : Rn → R be continuous and differentiable function at x ∗ ∈ Rn . If x ∗ is either a

global or local minimum of h, then∇h(x ∗) = 0.
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Theorem 1.2.6 (Second-order NC).

Let h : Rn →R be continuous and twice differentiable function at x ∗ ∈Rn . If x ∗ is either

a global or local minimum of h, then

∇h(x ∗) = 0,

The Hessian matrix H (x ∗) of h at x ∗ is positive semidefinite, i.e.,

〈H (x ∗)z , z 〉 ≥ 0 ∀z ∈Rn .

Remark 1.2.2 In the one-dimensional case (i.e., h : R→ R), we have

(x ∗ ∈ R minimum of h)⇒

(

h ′(x ∗) = 0

h ′′(x ∗)≥ 0

A point x ∗ ∈Rn which verifies∇h(x ∗) = 0 is a stationary point or critical point of

h(x ) in Rn (a candidate point to be a minimum).

If h is differentiable and∇h(x ∗) 6= 0, then x ∗ cannot be a minimum of h

2. Sufficient conditions (SC):

Theorem 1.2.7 Let h : Rn → R be a function twice differentiable at x ∗ ∈ Rn , if

1. ∇h(x ∗) = 0,

2. H (x ∗) positive definite (H (x ∗) =∇2h(x ∗)).

then, x ∗ is a local minimum of h ,

Remark 1.2.3 In the case of a single variable, we have

h ′(x ∗) = 0

h ′′(x ∗)> 0

)

⇒ x ∗ is a global minimum of h in R.
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1.2.2 Constrained optimization problems

Let S be a non-empty subset of Rn . Consider an optimization problem in the following form

{min h(x ), x ∈ S}. (P2)

Here, the function h : Rn →R is referred to as the cost function, the objective, or the criterion.

The set S = {x ∈ Rn : g j (x ) ≤ 0, ki (x ) = 0, j = 1, m , i = 1, p} is called the constraint set or

the feasible set and g j , ki : Rn →R are given functions.

Any point x ∈Rn satisfying x ∈ S is called an admissible point or feasible point of problem

(P2).

Definition 1.2.2 A feasible solution of (P2) is any point in S that satisfies all the constraints.

A global optimal solution x ∗ of (P2) is a feasible solution that minimizes the objective func-

tion over S. Such a solution is denoted as

x ∗= arg min
x∈S

h(x ).

A local optimal solution x ∗ ∈ S of (P2) is a feasible solution where there exists a neighbor-

hood V of x ∗ such that

h(x ∗)≤ h(x ),∀x ∈ S ∩V .

Existence and uniqueness results

Theorem 1.2.8 (Existence).

If h : Rn →R is a continuous and coercive function on S, then h has at least one minimum

x ∗ on S i.e.,

∃x ∗ ∈ Rn : h(x ∗)≤ h(x ),∀x ∈ S .

Theorem 1.2.9 h : Rn →R has an optimal solution if and only if the recession cone Cd of h

reduces to the origin i.e. C∞(h) = {0}

Theorem 1.2.10 (Uniqueness).

If S is a non-empty convex set and h is a strictly convex function, then (P2) has at most an

optimal solution x ∗ ∈ S.
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Qualification of constraints

Definition 1.2.3 (Feasible point).

A point x ∈Rn is called feasible for problem (P2) if it satisfies all the constraints.

Definition 1.2.4 (Active constraints).

Let g : Rn →R. An inequality constraint g (x ) ≤ 0 is said to be active (or inactive) at x ∗ if

g (x ∗) = 0 (or g (x ∗)< 0, respectively).

An equality constraint ki (x ) = 0 is always active for every feasible point x ∈ S.

Definition 1.2.5 Constraints are considered qualified at any feasible point x ∈ S if the follow-

ing conditions hold

S is convex and the interior of S is non-empty (Slater’s condition (1950)).

S is a convex polyhedron (with ki and g j being affine functions) (Karlin (1959)).

If the gradients of all active constraints at x ∗ ∈ S are linearly independent, then the con-

straints are qualified at x ∗ (Mangasarian-Fromovitz (1967)).

Optimality conditions

The Lagrangian of problem (P2) is defined as follows

L(x ;λ;µ) = h(x )+
m
∑

j=1

λ j k j (x )+
p
∑

i=1

µi g i (x ),

where µi and λ j are the Lagrange multipliers, where µi ∈R+ for all i = 1, . . . , p , and λ j ∈R

for all j = 1, . . . , m . The Karush-Kuhn-Tucker (KKT) theory establishes necessary optimality

conditions for constrained optimization problems with differentiable objective functions.

Theorem 1.2.11 If x ∗ is a local optimal solution of (P2) and satisfies one of the qualification

conditions, then there exist multipliers, λ ∈Rm and µ ∈R
p
+ such that























∇h(x ∗)+
∑m

j=1λ j∇k j (x ∗)+
∑p

i=1µi∇g i (x ∗) = 0 (stationarity condition)

µi g i (x ∗) = 0, i = 1, p , (complementarity condition)

k j (x ∗) = 0, j = 1, m
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Remark 1.2.4 If (P2) is convex, the KKT conditions are necessary and sufficient for x ∗ to

be a global minimum.

If (P2) is convex, every local minimum is a global minimum

If the constraints are not qualified at x ∗, the KKT conditions may not hold, which means

x ∗ could still be optimal without satisfying them.

1.3 Conjugate Gradient Methods

This section focuses on exact and approximate line search methods. It provides definitions,

algorithms, and properties related to these types of line searches. Additionally, it defines the

Newton method, the gradient method, and the two cases of the conjugate gradient method.

1.3.1 Descent direction methods

A general framework for a descent direction method is outlined as follows

Begin with an initial point x0 ∈Rn .

For each k ≥ 0: xk+1 = xk +αk dk ,

where αk ∈R+
∗ represents the step-length. The descent direction dk is chosen such that the

condition

h(xk +αk dk )≤ h(xk ),

holds.

Theorem 1.3.1 Consider a function h that is continuously differentiable in a neighborhood of

xk ∈Rn and let dk ∈Rn be a non-zero vector. If the condition

∇h(xk )
>dk < 0,

is satisfied, then dk is a descent direction for h at xk .

Proof. For the proof, we refer to [49]
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Algorithm 1: Descent direction algorithm

Step 0: Provide x0, ε> 0 and set k = 0.

Step 1: Compute dk

Step 2: Solve min
α∈R∗+

h(xk +αdk ) for the step-length αk , using either an exact or inexact line

search.

Step 3: Set xk+1 = xk +αk dk .

Step 4: Check the stopping criterion: If ‖xk+1− xk‖ ≤ ε , stop the algorithm. Otherwise set

k = k +1 and go to Step 1.

Newton’s method

The core concept of Newton’s method for unconstrained optimization is the iterative appli-

cation of a quadratic approximation, denoted by q (k ) for the objective function h . This ap-

proximation is constructed at the current iteration point xk , with the goal of minimizing q (k ).

Assume that the function h : Rn →R is twice continuously differentiable, with xk ∈Rn , and

that the Hessian matrix ∇2h(xk ) is positive definite. At the current iteration point xk , the

function h is represented using the quadratic approximation q (k ) as

h(xk + s )≈ h(xk )+∇h(xk )
>s +

1

2
s>∇2h(xk )s ,

where s = x − xk . In Newton’s method, the search direction is determined as follows

dk =−
�

∇2h(xk )
�−1∇h(xk ).

Where [∇2h(xk )]
−1

is the inverse of the Hessian. Thus, the Newton method can be defined

by

xk+1 = xk −αk

�

∇2h(xk )
�−1∇h(xk ), k = 0, 1, 2, ... (1.3.1)

In Newton method, dk is a descent direction if and only if the Hessian matrix ∇2h(xk ) is

positive definite.
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Algorithm 2: Newton algorithm

Step 0: Provide x0 and set k = 0.

Step 1: Compute dk =− [∇2h(xk )]
−1∇h(xk ).

Step 3: Set xk+1 = xk +dk .

Step 4: set k = k +1 and and return to Step 1.

Gradient method

In 1847, Cauchy introduced the gradient method, which remains one of the simplest and

most fundamental techniques for unconstrained optimization [15]. The method determines

the descent direction as dk =−∇h(xk ) which makes it a gradient-based descent approach.

At any given point xk , the negative gradient direction is the most effective for locating the

minimum of the objective function h . For this reason, it is often called the steepest descent

method.

Algorithm 3: The gradient algorithm

Step 0: (Initialization)

- Choose an initial point x0, and let ε be the precision.

- Set k = 0.

Step 1: - If ‖∇h(xk )‖ ≤ ε, then STOP. The solution is x ∗= xk .

- Otherwise, let dk =−∇h(xk ) and go to Step 2.

Step 2: - Compute αk using a line search method.

- Compute the new iterate xk+1 = xk +αk dk

- Set k = k +1 and return to Step 1.
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1.3.2 Line search methods

Exact line search Methods

Since the objective is to minimize a function h , it is natural to determine the step-length αk

by addressing the following one-dimensional problem

min
α>0

φk (α) = min
α>0

h(xk +αdk ).

This method is called the Cauchy rule, and the step-length derived from it is termed the

Cauchy step or optimal step. In specific cases, it might be more suitable to identify the small-

est stationary point ofφ

αk = inf
�

α> 0 :φ′(α) = 0, φ(α)<φ(0)
	

.

This is known as Cauchy’s rule, and the corresponding step is called Cauchy’s step. These

methods are often collectively referred to as exact line search methods.

Remark 1.3.1 These rules are generally applied in specific scenarios, such as whenφ is quadratic,

enabling the exact determination of the line search solution within a finite number of itera-

tions.

Advantages and disadvantages of exact line searches:

The main advantage of exact line searches lies in their capability to compute the opti-

mal αk = α∗, where

φ(αk ) =φ(α
∗) = min

α>0
ϕk (α).

In other words, when αk = α∗, the function h achieves the most effective reduction

from the point xk to xk +αk dk = xk +α
∗dk . However, these techniques are time-

intensive, demand substantial memory, and incur high computational costs.

Inexact line search Methods

We analyse a common situation in the application of line search techniques within multidi-

mensional optimization method. At iteration k , the current point is xk ∈Rn and the search
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direction dk ∈Rn , serves as a descent direction for the objective function h : Rn →R, meet-

ing the condition

∇h(xk )
>dk < 0.

The objective is to substantially reduce the function’s value by selecting an appropriate

step-length αk along the direction dk . Prominent researchers, including Armijo, Goldstein,

Wolfe, Al-Baali, and Fletcher, have introduced various rules to achieve this goal. Below, we

present the key tests associated with these rules.

The Armijo rule (1966)

Let h : Rn → R be a differentiable function and let xk ∈ Rn and dk ∈ Rn be a descent

direction, i.e. ∇h(x )>d < 0.

αk > 0 satisfies the Armijo condition, if

h(xk +αk dk )≤ h(xk )+δαk∇h(xk )
>dk , δ ∈ ]0, 1[ .

We can express

φk (α) = h(xk +αdk ).

We then derive

φk (0) = h(xk ),

φ′k (α) =∇h(xk +αdk )
>dk ,

and

φ′k (0) =∇h(xk )
>dk < 0.

Armijo test:

Ifφk (α)≤φk (0)+δαφ′k (0), then α is considered suitable.

Ifφk (α)>φk (0)+δαφ′k (0), then α is too large.

Remark 1.3.2 In general, the Armijo rule ensures that αk is sufficiently large, as a very small

step-length might hinder the algorithm’s progress and lead to premature convergence at a non-

stationary point.
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Algorithm 4: The Armijo rule.

Step 0 : (Initialization) a0 = 0, b0 > a0,α0 > 0, δ ∈ (0, 1), and set k = 0.

Step 1 : -Ifφ(αk )≤φ(0)+δαkφ
′(0) then, Terminate and set α∗= αk .

-elseφ(αk )>φ(0)+δαkφ
′(0) then, set ak+1 = ak , bk+1 = αk .

Step 2: -If bk+1 = 0 determine αk+1 ∈]ak+1,+∞[. Otherwise determine

αk+1 ∈]ak+1, bk+1[.

- Set k = k +1 and return to Step 1.

Theorem 1.3.2 Let φ : R∗+→R, be a function defined by φk (α) = h(xk +αdk ). Assume that

φk is bounded and continuous below, dk is a descent direction at xk , andδ ∈]0, 1[. Under these

conditions, there exists a non-empty set of steps that satisfy the Armijo rule.

Proof. see [30]

The Goldstein-Price rule (1969)

By introducing a second inequality to the Armijo rule, we derive the Goldstein-Price rule.

Here, δ and µ are two constants satisfying 0<δ <µ< 1. The Goldstein-Price rule consists of

the following two inequalities

h(xk +αk dk )≤ h(xk )+δαk∇h(xk )
>dk , δ ∈ ]0, 1[ ,

h(xk +αk dk )≥ h(xk )+µαk∇h(xk )
>dk , µ ∈ ]δ, 1[ .

These conditions can be rewritten as

φk (α)≤φk (0)+δαφ′k (0),

φk (α)≥φk (0)+µαφ′k (0).

The test of Goldstein-Price:

-Ifφk (0)+µαφ′k (0)≤φk (α)≤φk (0)+δαφ′k (0), the step-length α is appropriate.

-Ifφk (α)>φk (0)+δαφ′k (0), the step-length α is excessively large.

-Ifφk (α)<φk (0)+µαφ′k (0), the step-length α is insufficiently large.
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Algorithm 5: Goldstein-Price’s rule

Step 0 :(Initialization)

a0 = 0, b0 > 0, select α0 ∈ [a0, b0] ,δ ∈ ]0, 1[, µ ∈ ]δ, 1[ and set k = 0.

Step 1 : -Ifφ(αk )≤φ(0)+δαkφ
′(0), then go to Step 2.

- Otherwise, put ak+1 = ak , bk+1 = αk and proceed to Step 3.

Step 2 :

-Ifφ(αk )≥φ(0)+µαkφ
′(0) then, Stop and put α∗= αk .

-Else, set ak+1 = αk , bk+1 = bk .

Step 3 :

-If bk+1 = 0 determine αk+1 ∈]ak+1,+∞[. Otherwise determine αk+1 ∈]ak+1, bk+1[.

- Set k = k +1 and return to Step 2.

Theorem 1.3.3 Letφ : R∗+→R, be a function defined byφk (α) = h(xk +αdk ). ifφk is lower

bounded and continuous, dk is a descent direction at xk , δ ∈ (0, 1) and µ ∈ (δ, 1). Under these

conditions, there exists a non-empty set of steps that satisfy the Goldstein-Price rule.

Proof. See [30] for a detailed proof.

Wolfe’s rule

In Wolfe rule, the step-length αk is determined to satisfy the following two inequalities, re-

ferred to as the Wolfe conditions, where δ,σ ∈R such that 0<δ<σ< 1:

h(xk +αk dk )≤ h(xk )+δαk∇h(xk )
>dk , (W1)

∇h(xk +αk dk )
>dk ≥σ∇h(xk )

>dk , (W2)

These conditions can be reformulated as

φk (α)≤φk (0)+δαφ′k (0),

φ′k (α)≥σφ
′
k (0).
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Wolfe test:

-Ifφk (α)≤φk (0)+δαφ′k (0) andφ′k (α)≥σφ
′
k (0), the step-length α is appropriate.

-Ifφk (α)>φk (0)+δαφ′k (0), the step-length α is too large.

-Ifφ′k (α)<σφ
′
k (0), the step-length α is too small.

Algorithm 6: Wolfe’s rule

Step 0 : (Initialization) - α0 > 0,δ ∈ (0, 1),σ ∈ (ρ, 1), a0 = 0, b0 > a0, and set k = 0.

Step 1 :

-Ifφ(αk )≤φ(0)+δαkφ
′(0), proceed to Step 2.

-Else, set bk+1 = αk , ak+1 = ak , proceed to Step 3.

Step 2 :

-Ifφ′(αk )≥σφ′(0) then, Stop and put α∗= αk .

- Otherwise, set ak+1 = αk , bk+1 = bk .

Step 3 :

-If bk+1 = 0 determine αk+1 ∈]ak+1,+∞[. Otherwise determine αk+1 ∈]ak+1, bk+1[.

- Set k = k +1 and return to. Step 2.

The strong Wolfe rule (1971)

As the name implies, the strong Wolfe conditions are stronger than the standard Wolfe con-

ditions. They are commonly used in theoretical contexts and play a crucial role in significant

convergence results. The step-length αk satisfies the strong Wolfe conditions, which means

that αk meets the following

h(xk +αk dk )≤ h(xk )+δαk∇h(xk )
>dk , (SW1)

�

�∇h(xk +αk dk )
>dk

�

�≤−σ∇h(xk )
>dk , (SW2)
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1.3. Conjugate Gradient Methods

Equivalently,

φk (α)≤φk (0)+δαϕ′k (0),
�

�φ′k (α)
�

�≤−σφ′k (0).

Where 0<δ<σ< 1.

Remark 1.3.3 - The strong Wolfe conditions imply the weak Wolfe conditions

-(W1) and (SW1) represent the same condition, and similarly, (W2) and (SW2) are equivalent

because

�

�∇h(xk +αk dk )
>dk

�

�≤−σ∇h(xk )
>dk

⇔σ∇h(xk )
>dk ≤∇h(xk +αk dk )

>dk ≤−σ∇h(xk )
>dk

⇒σ∇h(xk )
>dk ≤∇h(xk +αk dk )

>dk

Theorem 1.3.4 Let φ : R∗+ → R, be a differentiable and bounded-below function, defined as

φk (α) = h(xk +αdk ). Assume that φk is bounded and continuous below, dk is a descent di-

rection at xk , and δ ∈]0, 1[. Under these conditions, the set of steps satisfying the strong Wolfe

criterion is non-empty.

Proof. See [30] for a detailed proof.
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1.3. Conjugate Gradient Methods

Algorithm 7: The strong Wolfe rule

Step 0 : (Initialization) α0 > 0,δ ∈ (0, 1),σ ∈ (δ, 1), a0 = 0, b0 > a0 and set k = 0.

Step 1 :

-Ifφ(αk )≤φ(0)+δαkφ
′(0), and proceed to Step 2.

-Else, set bk+1 = αk , ak+1 = ak , and proceed to Step 3.

Step 2 :

-If
�

�φ′(αk )
�

�≤σφ′(0) then, Stop and put α∗= αk .

- Otherwise, set ak+1 = αk , bk+1 = bk .

Step 3 :

-If bk+1 = 0 determine αk+1 ∈]ak+1,+∞[. Otherwise determine αk+1 ∈]ak+1, bk+1[.

- Set k = k +1 and return to Step 2.

1.3.3 The linear conjugate gradient methods

The main idea of this method is to construct a sequence of descent directions that are mutu-

ally conjugate with respect to the quadratic function, in order to solve the following uncon-

strained optimization problem

{min q (x ), x ∈Rn}

where q (x ) = 1
2 x>Ax −b>x + c , is a strictly convex quadratic function.

A ∈Mn×n is a symmetric positive definite matrix.

b is a vector in Rn .

c ∈R is a constant.

The conjugate gradient method is an iterative method that generates a sequence {xk }, start-

ing with an initial point x0 following the procedure

xk+1 = xk +αk dk .
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1.3. Conjugate Gradient Methods

where {d0, d1, . . . , dn} is a set of descent directions that have the property of being A-conjugate.

The descent direction dk is given by the following recurrence formula

dk =







−∇q (x0), if k = 0,

−∇q (xk )+βk dk−1, if k ≥ 1.

Here, the gradient of q at point xk is denoted by gk =∇q (xk ).

The step-lengthαk ∈R+ is determined via a line search technique. The coefficientβk ∈R

is chosen such that the directions dk are A-conjugate. The algorithm below summarizes the

main steps of the linear conjugate gradient methods.

Algorithm 8: The linear conjugate gradient algorithm

Step 0: (Initialization) Let x0 be the starting point, g0 =∇q (x0) = Ax0−b ,d0 =−g0 and let ε

be the termination criterion. Set k = 0.

Step 1: If ‖gk‖= 0: STOP (x ∗= xk ). Otherwise, go to Step 2.

Step 2: Compute αk =
−d>k gk

d>k Adk
, set xk+1 = xk +αk dk and, set k = k +1.

Step 2: Determine dk =−gk +βk dk−1, where βk =
g >k Adk−1

d>k−1Adk−1
.

- Go back to Step 1.

1.3.4 The nonlinear conjugate gradient methods

The conjugate gradient method was extended to nonlinear cases by Fletcher and Reeves in

1964 to minimize general smooth functions h : Rn → R and was further developed by Po-

lak, Ribiére, and Polyak in 1969. More recently, new nonlinear conjugate gradient methods

have been developed for unconstrained optimization problems. These methods generate a

sequence of points {xk }, where the next point is computed as

xk+1 = xk +αk dk , (1.3.2)
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1.3. Conjugate Gradient Methods

where the step-length αk is determined via a line search. The search direction dk is given by

dk =







−gk if k = 0,

−gk +βk dk−1 if k ≥ 1,
(1.3.3)

where gk = ∇h(xk ) is the gradient of h at xk and βk is a scalar. The primary distinction

between different conjugate gradient methods lies in the choice of the parameter βk , which

will be discussed in detail in the next subsection.

Algorithm 9: The nonlinear conjugate gradient algorithm

Step 0: (Initialization) Select x0 ∈Rn and let ε be the termination criterion , compute h(x0)

and g (x0). Let d0 =−g0.

Step 1: If ‖gk‖∞ ≤ ε, then stop. Otherwise, go to the next step.

Step 2: Determine the step-length αk using a line search process.

- Set xk+1 = xk +αk dk and k = k +1 .

Step 3: Compute βk .

Step 4: dk =−gk +βk dk−1 and go to the Step 1

Standard conjugate gradient methods

In the previous decades, different CG methods have been suggested including: HS (Hestenes

and Stiefel, 1952 [34]), FR (Fletcher and Reeves, 1964[27]), PRP (Polyak, 1969; Polak and Ribière,

1969[53]), CD (conjugate descent, Fletcher, 1987[26]), LS (Liu and Storey, 1992 [45]), and DY

(Dai and Yuan, 2000 [19]), whose formulas are given as

βH S
k =

g >k yk−1

d>k−1 yk−1
, β F R

k =
‖gk‖2

‖gk−1‖2
, βP R P

k =
g >k yk−1

‖gk−1‖2
,

βC D
k =−

‖gk‖2

g >k−1dk−1
, β LS

k =−
g >k yk−1

g >k−1dk−1
, βDY

k =
‖gk‖2

d>k−1 yk−1
,
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1.3. Conjugate Gradient Methods

where ‖.‖ is the Euclidean norm in Rn and yk = gk −gk−1. In the case of a strictly convex func-

tion with an exact line search all the variants mentioned above are equivalent. However, they

respond differently when applied to nonlinear objective functions with inexact line searches.

Convergence of nonlinear conjugate gradient methods

Nonlinear conjugate gradient methods are widely studied for their convergence properties.

The first convergence result for the nonlinear conjugate gradient method with inexact line

searches was established by Al-Baali [7]. In general, the convergence analysis of conjugate

gradient algorithms relies on the CG assumptions and certain standard hypotheses regarding

the line search.

Assumption 1 The level set S = {x ∈Rn : h(x ) ≤ h(x0)} is bounded, i.e. there exists a con-

stant K > 0 such that ‖x‖ ≤ K , ∀x ∈S .

Assumption 2 In a close neighbourhoodN ofS , the objective function h is continuously dif-

ferentiable and its gradient g is Lipschitz continuous, i.e. there exists a positive constant L such

that

‖g (x )−g (y )‖ ≤ L‖x − y ‖,∀x , y ∈N .

Note that Assumptions 1 and 2 imply that there exists a positive constant r such that

‖g (x )‖ ≤ r ,∀x ∈N . (1.3.4)

The following theorem ensures the convergence of all variants of the nonlinear conjugate

gradient method with Wolfe inexact line searches for arbitrary functions.

Theorem 1.3.5 Assume that Assumptions 1 and 2 hold and consider any CG method that fol-

lows the form (1.3.2) where dk is a descent direction andαk satisfies the strong Wolfe line search.

If the Zoutendijk condition
∑

k≥0

(g >k dk )
2

‖dk‖2
<+∞, (1.3.5)

holds, then

lim inf
k→∞

‖gk‖= 0,
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1.4. Interior Point Methods

Proof. For the proof, see [68]

Remark 1.3.4 In the fourth and fifth chapters, Theorem 1.3.5, Assumption 1, and 2 will be

utilized to prove the global convergence of the new conjugate gradient methods.

1.4 Interior Point Methods

As the name implies, interior point methods carefully avoid the boundary of the feasible set,

thereby bypassing the combinatorial complexity. These methods were originally developed

in the 1960s to address nonlinear constrained optimization problems. However, their use

in linear programming initially received little attention due to the near-total dominance of

the simplex method at the time. The situation changed with the introduction of Karmarkar’s

algorithm for linear programming in 1984 [37], sparking a revolution in optimization theory.

Interior point methods became competitive with the simplex method [22], particularly for

large-scale problems involving tens of thousands of variables or constraints. These methods

can be classified into three main categories, described below, in all these methods, the non-

negativity constraint x ≥ 0 is replaced with either an ellipsoid or a barrier function.

1.4.1 Potential reduction methods

Linear programming models are widely used in operations research to solve various real-

world problems, such as agriculture, telecommunications, transportation, profit maximiza-

tion, and cost reduction. These models are also used by military forces globally. Solving

large linear programming problems was difficult until Karmarkar’s [37]efficient interior-point

method was developed. This breakthrough allowed the solution of problems with millions of

variables and equations. Karmarkar’s algorithm introduced a potential function that ensures

convergence and polynomial complexity, making it the first interior-point method to suc-

cessfully compete with the simplex method, especially for large-scale problems.

1.4.2 Central path methods

These methods emerged alongside potential reduction methods and were developed in the

early 1990s. They possess strong theoretical properties, such as polynomial complexity and
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1.4. Interior Point Methods

rapid superlinear convergence. Trajectory central (TC) methods confine the iterates to a

neighborhood around the central path, which consists of an arc of perfectly feasible points.

1.4.3 Barrier methods

Barrier methods address the original problem (P2) by solving a sequence of unconstrained

optimization subproblems. The core concept is to choose a penalty function B (x ) and a

constant ρ so that the optimal solution x (ρ) of the modified problem eventually serves as

an optimal solution to the original problem. Penalty methods often assume the absence of

equality constraints or that any equality constraints have been transformed into inequality

constraints, although this may unnecessarily complicate the problem and potentially violate

the linear independence condition. In barrier methods, the initial point x0 is required to lie

within the interior of the feasible set of (P2).

Numerous interior point methods of the logarithmic barrier type have been proposed in

the literature. Crouzeix and Merikhi [18] were the first to develop a logarithmic barrier al-

gorithm based on majorant functions specifically designed for semidefinite programming.

Fellahi and Merikhi [24] introduced novel majorant functions for nonlinear programming.

More recently, Leulmi et al. focused on constructing minorant functions for semidefinite pro-

gramming [42], while [41] and [43] investigated the use of a logarithmic barrier algorithm via

minorant functions in linear and nonlinear programming, respectively.

Definition 1.4.1 (Barrier function).

Let D ⊂Rn be a domain . A function B defined on the interior of D , denoted as int(D ), is called

a barrier function associated with D if

B is continuous,

B (x )≥ 0 for all x ∈ int(D ),

lim
x→x ∗

B (x ) =+∞ as x → x ∗, x ∗ ∈ Fr(D ),

where Fr(D ) denotes the boundary of D .

The most commonly used barrier functions are the logarithmic and inverse functions.
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CHAPTER

2 Theoretical and Numerical Results

for Nonlinear Optimization

Problems

This chapter focuses on the theoretical and numerical analysis of a nonlinear convex opti-

mization problem constrained by equality conditions. Our aim is to introduce a novel ap-

proach for solving a broad class of nonlinear optimization problems using a logarithmic bar-

rier interior point method, incorporating a vectorρ ∈Rn
+ as a penalty term that utilizes newly

defined minorant functions. First, we calculate the search direction using Newton’s method.

Then, we propose a new alternative for determining the step-length, which simplifies and

accelerates the computation. Finally, through numerical experiments on various test prob-

lems, we illustrate the enhanced performance of our minorant functions compared to wolfe

line search method.

2.1 Preliminary

We introduce the following inequality pertaining to a statistical series {u1, u2, ..., un} consist-

ing of n real numbers. Wolkowicz et al.[63] demonstrate that

ū −σu
p

n −1 ≤ min
i

ui ≤ ū −
σup
n −1

,

ū +
σup
n −1

≤ max
i

ui ≤ ū +σu
p

n −1. (2.1.1)

where the mean ū and the standard deviation are defined respectively by

ū =
1

n

n
∑

i=1

ui and σ2
u =

1

n

n
∑

i=1

u 2
i − ū 2 =

1

n

n
∑

i=1

(ui − ū)2,
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Furthermore, Crouzeix and Merikhi [18] presented the following useful inequalities concern-

ing a statistical series where ui > 0 for all i = 1, n

n ln
�

ū −σu
p

n −1
�

≤ A ≤
n
∑

i=1

ln(ui )≤ B ≤ n ln(ū), (2.1.2)

where

A = (n −1) ln
�

ū +
σup
n −1

�

+ ln
�

ū −σu
p

n −1
�

,

B = ln
�

ū +σu
p

n −1
�

+(n −1) ln
�

ū −
σup
n −1

�

.

2.2 Original Problem Formulation and its Perturbed Version

Consider the following nonlinear optimization problem with constraints

{min h(x ) : x ∈S }, (P )

where h is twice continuously differentiable and convex onS . The sets of feasible and strictly

feasible solutions to (P ) are defined as follows

S ={x ∈Rn : x ≥ 0, Ax = c }, (2.2.3)

S0 ={x ∈Rn : x > 0, Ax = c }, (2.2.4)

such that c ∈Rm and A ∈Rm×n matrix.

Prior to presenting the perturbed version of (P ), we state the following mild assumptions

1. A ∈M m×n is a full-rank matrix, c ∈Rm (m < n).

2. The set of optimal solutions for problem (P ) is both nonempty and bounded.

3. There exists x0 > 0 satisfying Ax0 = c .

According to the optimality conditions, x ∗ is an optimal solution of (P ) if and only if there

exists u∗ ∈Rm and v ∗ ∈Rn
+

∇h(x ∗)+At u∗− v ∗= 0, Ax ∗= c , 〈v ∗, x ∗〉= 0. (2.2.5)
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2.2.1 The perturbed associated problem

In what follows, we reformulate the nonlinear problem (P ) as a perturbed problem using a

barrier function, where the penalty term ρ is defined as a vector in Rn and each ρi is strictly

positive for i = 1, n .

We introduce the function ϕ : Rn
+×Rn →Rn ∪{+∞} as follows

ϕ(ρ, x ) =







h(x )+ϑ(ρ, x ) if x ,ρ ≥ 0 and Ax = c .

+∞ otherwise,

where ϑ : Rn
+×Rn →Rn ∪{+∞} is a function, given by

ϑ(ρ, x ) =























∑n
i=1ρi ln(ρi )−

∑n
i=1ρi ln(xi ) if x ,ρ > 0,

0 if x ≥ 0 and ρ= 0,

+∞ otherwise.

Both functions are convex, lower semicontinuous, and proper. We now define the convex

function Ω as

Ω(ρ) = inf
x
{ϕρ(x ) =ϕ(ρ, x ) : x ∈Rn}. (Pρ)

Remark 2.2.1 We observe that the two problems (P ) and (Pρ) coincide as ‖ρ‖ → 0, which in-

dicates that the optimal solution of problem (Pρ) is an approximated solution of problem (P )

when ‖ρ‖→ 0.

2.3 Theoretical Concepts

The lemma below establishes the existence and uniqueness of the optimal solution for the

perturbed problem (Pρ).

Lemma 2.3.1 The problem (Pρ) admits an optimal solution if and only if the recession cone

Cd of ϕρ is reduced to the origin. i.e.

Cd (ϕρ) = {d ∈Rn : (ϕρ)∞(d )≤ 0, Ad = 0, d ≥ 0}= {0}. (2.3.6)
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where (ϕρ)∞(d ) is the asymptotic function of ϕρ , represented as

(ϕρ)∞(d ) = lim
α→∞

ϕρ(x +αd )−ϕρ(x )

α
.

Proof.

Under Assumption 4, the problem (P ) has an optimal solution, implying that the recession

cone Cd of the function h is reduced to the origin i.e. Cd (h) = {0}.

(ϕρ)∞(d ) = lim
α→∞

ϕρ(x +αd )−ϕρ(x )

α
,

= lim
α→∞

h(x +αd )−h(x )

α
− lim
α→∞

∑n
i=1ρi (ln(xi +αdi )− ln(xi ))

α
,

= lim
α→∞

h(x +αd )−h(x )

α
,

hence,

(ϕρ)∞(d ) =







(h)∞(d ) if Ax = c , d ≥ 0,

+∞ otherwise.

which means that Cd (ϕρ) = Cd (h) = {0}.

Considering that ϕρ is strictly convex, we conclude that the perturbed problem (Pρ) has

a unique optimal solution x (ρ) within its feasible setS0.

Lemma 2.3.2 We suppose that x (ρ) is the optimal solutions of the perturbed problem (Pρ),

while x ∗ is the optimal solution of the original problem (P ).

As ‖ρ‖→ 0, we have x (ρ)→ x ∗

Proof.

Based on the necessary and sufficient optimality conditions, ∃ λ(ρ) ∈Rm such that

∇h(x (ρ))−X −1
ρ ρ+A>λ(ρ) = 0, Ax (ρ) = c , (2.3.7)

where X is a diagonal matrix with X i i = xi , i = 1, ..., n .

Remark 2.3.1 In the rest of the paper we take x (ρ) = xρ and λ(ρ) = λρ
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The functions xρ and λρ are differentiable on Rn
+. Moreover, the pair (xρ ,λρ) must satisfy

the following equation.

F (xρ ,λρ) =

 

∇h(xρ)−X −1
ρ ρ+A>λρ

Axρ − c

!

=

 

0

0

!

. (2.3.8)

Applying the implicit function theorem, we obtain

 

∇2h(xρ)+P X −2
ρ A>

A 0

! 

∇xρ

∇λρ

!

=

 

X −1
ρ

0

!

, (2.3.9)

with P is a diagonal matrix, Pi i =ρi , for every i = 1, ..., n , and

∇xρ =















∂ x1
∂ ρ1

∂ x1
∂ ρ2

· · · ∂ x1
∂ ρn

∂ x2
∂ ρ1

∂ x2
∂ ρ2

· · · ∂ x2
∂ ρn

...
...

...
...

∂ xn
∂ ρ1

∂ xn
∂ ρ2

· · · ∂ xn
∂ ρn















, ∇λρ =















∂ λ1
∂ ρ1

∂ λ1
∂ ρ2

· · · ∂ λ1
∂ ρn

∂ λ2
∂ ρ1

∂ λ2
∂ ρ2

· · · ∂ λ2
∂ ρn

...
...

...
...

∂ λn
∂ ρ1

∂ λn
∂ ρ2

· · · ∂ λn
∂ ρn















.

From (Pρ), the gradient of the differentiable function Ω, defined as

∇Ω(ρ) = (∇xρ)
>(∇h(xρ)−X −1

ρ ρ)+(e + l1− l2)

where e = (1, 1, ..., 1)>, l1 = (ln(ρ1), ln(ρ2), ..., ln(ρn ))
> and l2 = (ln(x1), ln(x2), ..., ln(xn ))

>.

Using (2.3.7) and (2.3.9), we find

∇Ω(ρ) =−(∇xρ)
>A>λρ+(e + l1− l2)

=−(A∇xρ)
>λρ+(e + l1− l2)

= e + l1− l2.

With Ω being convex and for xρ ∈S , we get

h∗=Ω(0) = min
x

h(x ∗).

This leads to

h∗ ≤ h(xρ)≤ h∗+
n
∑

i=1

ρi ,
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indeed, we have the following steps

Ω(0)≥Ω(ρ)−ρ>∇Ω(ρ)

≥ h(xρ)+
n
∑

i=1

ρi ln(ρi )−
n
∑

i=1

ρi ln((xi )ρ)−ρ>(e + l1− l2)

≥ h(xρ)+
n
∑

i=1

ρi ln(ρi )−
n
∑

i=1

ρi ln((xi )ρ)

−
n
∑

i=1

ρi −
n
∑

i=1

ρi ln(ρi )+
n
∑

i=1

ρi ln((xi )ρ)

≥ h(xρ)−
n
∑

i=1

ρi .

Consequently, we have

h∗ ≤ h(xρ)≤ h∗+
n
∑

i=1

ρi .

The trajectory of xρ when ‖ρ‖ approaches 0:

(i) h is merely convex: Let ‖ρ‖∞ ≤ 1. The following is bounded, non-empty and convex

set

xρ ∈ {x : Ax − c = 0, x > 0, h(x )≤ n +h∗}.

The recession cone of this set is reduced to the origin. Furthermore, each accumulation

point of xρ becomes an optimal solution to (P ) only as ‖ρ‖ approaches to zero.

(ii) h is strongly convex with a strictly positive parameter δ: the convergence of xρ to-

wards x ∗ is of order 1
2 , in fact

n
∑

i=1

ρi ≥ h(xρ)−h(x ∗)≥ 〈∇h(x ∗), xρ − x ∗〉+
δ

2
‖xρ − x ∗‖2,

utilizing (2.2.5), we arrive at

n
∑

i=1

ρi ≥ 〈v ∗, xρ〉+
δ

2
‖xρ − x ∗‖2 ≥ 0.

Then we can conclude that

‖xρ − x ∗‖ ≤

�

2

δ

n
∑

i=1

ρi

�
1
2

.
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2.4 Solution of the Perturbed Problem (Pρ)

This section is dedicated to finding the numerical solution of our perturbed problem, which

is defined as

{min
x
ϕρ(x ) : x ∈Rn} (Pρ)

We begin by calculating the descent direction and utilize a novel minorant function technique

to determine the step-length.

2.4.1 The descent direction

In this study, we apply Newton’s method, which leads to d being determined by solving the

following quadratic convex minimization problem










min
d

§

1

2
〈∇2ϕρ(x )d , d 〉+ 〈∇ϕρ(x ), d 〉

ª

,

Ad = 0.

Based on the necessary and sufficient conditions for optimality, there exists a vector v ∈Rm

such that






∇2ϕρ(x )d +∇ϕρ(x )+A>v = 0,

Ad = 0,

which corresponds to
 

∇2h(x )+P X −2 A>

A 0

! 

d

v

!

=

 

X −1ρ−∇h(x )

0

!

.

Then, we achieve

�

d> 0
�

 

∇2h(x )+P X −2 A>

A 0

! 

d

v

!

=
�

d> 0
�

 

X −1ρ−∇h(x )

0

!

,

As a result, we obtain the following relationship

〈∇2h(x )d , d 〉+ 〈∇h(x ), d 〉= 〈ρ, X −1d 〉−〈P X −1d , X −1d 〉, (2.4.10)

equivalent to
 

X∇2h(x )X +P X A>

AX 0

! 

X −1d

v

!

=

 

ρ−X∇h(x )

0

!

.

This linear system can be solved efficiently using Cholesky decomposition.
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2.4.2 Step-length determination

Once the direction is computed, we determineα to ensure a significant decrease in the search

line function. The next iteration is then updated as x +αd . In this part, our goal is to deter-

mine the step-length α. To achieve this, we employ a straightforward and effective method

that is more efficient than traditional line search methods (e.g., Armijo, Goldstein, Wolfe, Fi-

bonacci, etc.). This approach involves utilizing a minorant function of the line search func-

tion.

Consider the following function

Gg (α) =ϕρ(x +αd )−ϕρ(x ) = h(x +αd )−h(x )−
n
∑

i=1

ρi ln(1+αyi ),

where y = X −1d and α ∈]0, bα0[, such that bα0 = max{α : 1+αyi > 0}.

By using the inequality in (2.1.1), we have

ρi ≤max
i
ρi ≤ ρ̄+σρ

p
n −1, ∀i = 1, ..., n .

Setting τ= ρ̄+σρ
p

n −1. For every α ∈]0, bα0[, we achieve

G (α)≥G0(α) =
1

τ
(h(x +αd )−h(x ))−

n
∑

i=1

ln(1+αyi ). (2.4.11)

with G (α) =
Gg (α)
τ . It is straightforward to prove that

G ′(α) =
1

τ

�

〈∇h(x +αd ), d 〉−
n
∑

i=1

ρi
yi

1+αyi

�

,

G ′′(α) =
1

τ

�

〈∇2h(x +αd )d , d 〉+
n
∑

i=1

ρi
y 2

i

(1+αyi )2

�

,

and

G ′0(α) =
1

τ

�

〈∇h(x +αd ), d 〉−
n
∑

i=1

yi

1+αyi

�

,

G ′′0 (α) =
1

τ

�

〈∇2h(x +αd )d , d 〉+
n
∑

i=1

y 2
i

(1+αyi )2

�

.

G and G0 meet the requirement for significant decrease, since:

From (2.4.10), we have
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2.4. Solution of the Perturbed Problem (Pρ)

(i) G ′(0)+G ′′(0) = 0 and G ′′(0)≥ 0, it follows that G ′(0)≤ 0.

(ii) if yi ≥ 0, It is evident that G ′0(0)≤ 0.

(iii) if yi < 0, we have G ′0(0)+G ′′0 (0)≤ 0 and G ′′0 (0)≥ 0. Thus G ′0(0)≤ 0.

2.4.3 The new approximating minorant function

In this part, we propose finding an approximation function G1 for G to address the numerical

difficulties in calculating G ′(α) = 0. In our case, this requires that

G (0) =G0(0) =G1(0) = 0, G ′0(0) =G ′1(0)< 0, G ′′0 (0) =G ′′1 (0)> 0. (2.4.12)

To find G1 we need to set xi = 1+αyi , x̄i = 1+α ȳi , andσx = ασy .

Based on (2.1.2), we have
n
∑

i=1

ln(xi )≤ B ,

After a straightforward calculation, we get G1(α)≤G0(α), where

G1(α) =
1

τ
(h(x +αd )−h(x ))− (n −1) ln(1+αγ)− ln(1+αβ), α ∈]0, bα[

with






















γ = ȳ − σyp
n−1

,

β = ȳ +σy
p

n −1,

bα = min{bα0, max{α : 1+αγ> 0}}.

It is evident that

G ′1(α) =
1

τ
〈∇h(x +αd ), d 〉− (n −1)

γ

1+αγ
−

β

1+αβ
,

G ′′1 (α) =
1

τ
〈∇2h(x +αd )d , d 〉+(n −1)

γ2

(1+αγ)2
+

β2

(1+αβ)2
.

It is clear that G1satisfies the conditions in (2.4.12), making the strictly convex function G1 a

good approximation of G0 in a neighborhood of 0. Furthermore, the unique minimum α∗ of

G1 satisfies the following inequality

G1(α
∗)≤G0(α

∗)≤G (α∗).
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2.4. Solution of the Perturbed Problem (Pρ)

2.4.4 The auxiliary function ζ1 of G1

Lemma 2.4.1 Let the auxiliary function ζ1, written as

ζ1(α) = nηα− (n −1) ln(1+αγ)− ln(1+αβ), (2.4.13)

where γ= ȳ − σyp
n−1

, and β = ȳ +σy
p

n −1.

If the objective function is linear

η=
c >d

nτ
.

If the objective function is only convex

η=
(h(x + ᾱd )−h(x ))

nτᾱ

the auxiliary function ζ1 exhibits the same properties as G1

Proof.

If h is linear, then, h(x ) = 〈c , x 〉where c , x ∈Rn . The auxiliary function can be defined

by

ζ1(α) =
〈c , x 〉
τ
α− (n −1) ln(1+αγ)− ln(1+αβ),

we can take η= c >d
nτ , which gives (2.4.13).

The functions ζ1 and G1 coincide. The unique solution to ζ′1(α) = 0 is the same as the

unique root of G ′1(α) = 0 that ensures a significant reduction in the function ϕρ along

the direction d .

If h only convex, in this case, the equation G ′1(α) = 0 no longer reduces to a quadratic

equation. We considered exploring another function than G1, for which we applied the

secant method. Let ᾱ ∈]0, bα[ for all α ∈]ᾱ, bα[, then, we have

α

τᾱ
(h(x + ᾱd )−h(x ))≤

1

τ
(h(x +αd )−h(x )).

Thus, the auxiliary function is defined by

ζ1(α) =
(h(x + ᾱd )−h(x ))

τᾱ
α− (n −1) ln(1+αγ)− ln(1+αβ),

we can take η=
(h(x+ᾱd )−h(x ))

nτᾱ , which gives (2.4.13).

After calculating the solution of ζ′1(α) = 0, we have
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2.4. Solution of the Perturbed Problem (Pρ)

(ii) α∗ ≤ ᾱ we must take another ᾱ. The computation of ᾱ is carried out using a di-

chotomous (see Remark 2.4.1)

(iii) α∗ ≥ ᾱ, then ζ1(α
∗)≤G1(α

∗)≤G0(α
∗)≤G (α∗).

The auxiliary function ζ1 satisfies the following points

ζ1 shares the same properties as G1.

The unique solution to the equation ζ′1(α) = 0 defines the minimum α∗ of G1.

The value α∗ ensures a significant reduction of the function ϕρ along the direction d .

The minimization of the auxiliary function

Let

ζ1(α) = nηα− (n −1) ln(1+αγ)− ln(1+αβ).

we have

ζ′1(α) = nη− (n −1)
γ

1+αγ
−

β

1+αβ
,

ζ′′1 (α) = (n −1)
γ2

(1+αγ)2
−

β2

(1+αβ)2
.

It is worth noting that






















ζ1(0) = 0,

ζ′1(0) = n(η− ȳ ),

ζ′′1 (0) = n( ȳ 2 +σ2
y ) = ‖y ‖2.

We impose that ζ′1(0)≤ 0 and ζ′′1 (0)≥ 0.

To minimize ζ1(α), we need to calculate ζ′1(α) = 0. It is similar to

ηγβα2 +(η(α+β)−γβ)α+η− ȳ = 0.

As a result, we find

α∗=























− ȳ
γβ if η= 0,

ȳ−η
ηβ if γ= 0,

ȳ−η
ηγ if β = 0.

(2.4.14)
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2.5. The Algorithm

In the case of ηγβ 6= 0 we find

α∗1 =
1

2

�

1

η
−

1

γ
−

1

β
−
p
∆

�

, α∗2 =
1

2

�

1

η
−

1

γ
−

1

β
+
p
∆

�

,

where

∆=
1

η2
+

1

γ2
+

1

β2
−

2

γβ
−
�

2n −4

nη

��

1

γ
−

1

β

�

.

we choose only the root α∗ that belongs to the domain of ζ1, we take α∗ ∈]0, bα−ε[, where

ε> 0.

Remark 2.4.1 The computation of α∗ is performed utilizing a dichotomous method under the

conditions that α∗ is not in the interval ]0, bα−ε[ and G ′(α∗)> 0.

Take a = 0, b = bα−ε.

While |b −a |>ε do

- c = a+b
2 .

- If G ′(c )< 0, then b = c else a = c .

This method provides a refined approximation of the solution of G ′(α) while ensuring compli-

ance with the domain of G .

2.5 The Algorithm

The primary steps of the algorithm for obtaining an optimal solution, x ∗ , to problem (P ) are

detailed in the algorithm below.
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2.5. The Algorithm

Algorithm 10: Algorithm of line search function

1 Step 0: (Initialization) Select x0 ∈S0, X i i = (x0)i and the parameters ρs > 0, ρ ∈Rn
+,

b ∈ [0, 1]n a nd ε> 0.

Step 1: Compute d and y = X −1d .

Step 2:

- If ‖y ‖ ≤ ε, then Ω(ρ) is well approximated. So

* if ‖ρ‖ ≤ρs , then stop (we obtain an accurate approximation of the optimal solution).

* Otherwise, put ρ= b ×ρ where b ×ρ= (b1×ρ1, ..., bn ×ρn ), and go to the Step 1.

- If ‖y ‖ ≥ ε, then

* compute η,τ,γ and β .

* calculate α∗ > 0 using the equation ζ′1(α) = 0.

* compute x = x +α∗d and return to the Step 1
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2.6. Numerical Experiments

2.6 Numerical Experiments

In this section, we present comparative numerical tests based on several examples drawn

from [52, 57]. To evaluate the enhanced performance and accuracy of our algorithm, which

leverages minorant function, we conduct these tests to compare our new approach with Wolfe

line search method. All code was written and executed in MATLAB on a PC with an Intel(R)

Core i7-7700HQ (2.80 GHz) and 16 GB of RAM.

In the following tables, we take ε≤ 10−4, and

* (itr) represent the iteration numbers.

* (ts) denotes the computational time in seconds.

* (Stm) denotes the strategy of minorant function presented in this paper.

* (LS) refers to the Wolfe line search method .

Example 1: (Erikson’s problem [57]).

We examine the following nonlinear problem, where n = 2m :























min h (x ) = min
n
∑

i=1
xi ln

�

xi
ai

�

xi + xi+m = b ,

x ≥ 0,

where ai > 0 and b ∈Rm are given constants.

The table below summarizes the results obtained for the case ai = 2,∀i = 1, n and bi =

4,∀i = 1, m

Example 2. Quadratic case [52]

We focus on the following quadratic problem, where n = m +2






















min h(x ) = min 1
2〈x ,Q x 〉

Ax = c ,

x ≥ 0
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2.6. Numerical Experiments

(m , n) Stm LS

itr ts itr ts

(30, 60) 1 0.0009 3 0.023

(150, 300) 1 0.0035 4 0.0645

(300, 600) 2 0.0035 5 3.199

(500, 1000) 2 0.1112 5 5.324

Table 2.1: Erikson’s problem with ai = 2,∀i = 1, n and bi = 4,∀i = 1, m

Q [i , j ] =



































2 if i = j = 1 or i = j = m

4 if i = j and i 6= {1, m}

2 if i = j −1 or i = j +1

0 otherwise,

and

A[i , j ] =



































1 if i = j

2 if i = j −1

3 if i = j −2

0 otherwise.

fi = 1,∀i , j = 1, .., n . We evaluate this example with varying values of n .

(m , n) Stm LS

itr ts itr ts

30 5 0.0041 26 18.3244

400 3 0.0985 35 60.1003

600 3 9.6544 23 79.0024

1000 5 11.9912 33 91.3358

Table 2.2: Example of Quadratic case (with variable size)
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2.6. Numerical Experiments

2.6.1 Comments

Table 2.1 presents the performance of the proposed minorant function strategy (Stm) com-

pared to the Wolfe line search (LS) on nonlinear Erikson’s minimization problem. The results

demonstrate the significant advantage of the proposed approach in terms of both iteration

count and computational time. Specifically:

The Stm method consistently requires fewer iterations (1–2) across all problem sizes,

while LS needs 3–5 iterations.

The computational time using Stm remains extremely low and nearly constant even

as the problem size increases, while LS exhibits a sharp increase in time, especially for

larger dimensions (e.g., 5.324 seconds vs. 0.1112 for (500, 1000)).

Table 2.2 evaluates the same comparison for a structured quadratic optimization problem

with equality constraints. The trends observed are similar:

The Stm method converges within 3 to 5 iterations regardless of the problem size, while

LS requires significantly more iterations (23–35).

Computational time using Stm is orders of magnitude lower for all sizes. For instance,

at n = 1000, Stm completes in 12 seconds, whereas LS takes over 91 seconds.

These tests clearly highlight the effectiveness of our approach compared to the Wolfe line

search method.
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CHAPTER

3 A Hybrid CG Algorithm for

Nonlinear Unconstrained

Optimization with Application in

Image Restoration

The conjugate gradient (CG) method is an optimization technique known for its rapid con-

vergence, and has led to significant developments and applications. Numerous variations

of CG methods have emerged to enhance computational efficiency in solving unconstrained

optimization problems while addressing real-world challenges. In this work, we consider the

following unconstrained problem

min
x∈Rn

h(x ), (3.0.1)

where h : Rn −→R is a continuously differentiable function. The problem (3.0.1) is of interest

in many real-world applications involving objective functions which are continuously differ-

entiable [66]. To mention just a few, these are applied to molecular physics [65, 67], statistical

modeling [62, 48] and image processing [36]. CG methods are among the most effective meth-

ods for solving the problems of type (3.0.1) due to their simplicity and low storage. They take

up several forms; their principle is to generate a sequence of points {xk }k≥0 ⊂ Rn starting

from an initial point x0 ∈Rn following the procedure

xk+1 = xk +αk dk , (3.0.2)

where dk is a descent direction for h at xk and αk ∈R+ is a step-length which ensures that

xk+1 is a feasible point with h(xk+1) ≤ h(xk ). The step-length αk in (3.0.2) is determined

by using a line search procedure which ensures that the sufficient decrease conditions are
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3.1. The Proposed Method

satisfied at the new point xk+1; typically, it is chosen in such a way that it satisfies the weak

Wolfe conditions

h(xk +αk dk )−h(xk )≤δαk g >k dk , (3.0.3)

∇h(xk +αk dk )
>dk ≥σg >k dk ,

or the strong Wolfe conditions

h(xk +αk dk )−h(xk )≤δαk g >k dk ,

|∇h(xk +αk dk )
>dk | ≤ −σg >k dk , (3.0.4)

where δ ∈ (0, 1/2),σ ∈ (δ, 1) and gk =∇h(xk ). The search direction dk is usually defined as

dk =







−gk if k = 0,

−gk +βk dk−1 if k ≥ 1,

where the parameter βk is a scalar which determines the different conjugate gradient meth-

ods.

This chapter introduces a hybrid conjugate gradient method, referred to as the CR method.

The parameter βk in this method is carefully designed based on the structure of conjugate

gradient parameters utilized in certain existing methods. The proposed algorithm satisfies

the sufficient descent condition without relying on any line search. Furthermore, it is glob-

ally convergent under the usual and strong Wolfe line search assumptions. The method’s effi-

ciency is validated through numerical experiments conducted on 100 test problems from [8],

as well as image restoration problems. A comparative analysis with existing methods high-

lights the algorithm’s potential and effectiveness.

3.1 The Proposed Method

In this section, a new parameterβk is introduced, based on a combination of the RMIL (Rivaie-

Mustafa-Ismail-Leong) [56] and hSM (hybrid Sulaiman-Mohammed) [62]methods. The new

conjugate gradient parameter βC R
k is defined as

βC R
k = (1−θk )β

R M I L
k +θkβ

hSM
k , (3.1.5)
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3.1. The Proposed Method

where

βR M I L
k =

g >k+1(gk+1−gk )

‖dk‖2
,

and

βhSM
k =

g >k+1(gk+1 +gk )

‖dk‖2
.

Here θk ∈ [0, 1]. To ensure our method generate descent directions which enhance computa-

tional efficiency and robustness, we compute the search direction dk as

dk =







−gk if k = 0,

−gk +β
C R
k (dk−1−ρk gk ) if k ≥ 1,

(3.1.6)

where ρk =
g >k dk−1

‖gk ‖2 . Therefore, for k ≥ 1

dk =−gk +β
C R
k (dk−1−ρk gk ),

=−gk +(βR M I L
k +θk (β

hSM
k −βR M I L

k ))(dk−1−ρk gk ),

that is,

dk =−gk +(βR M I L
k +θk

2g >k gk−1

‖dk−1‖2
)(dk−1−ρk gk ). (3.1.7)

Now, we need to consider the parameter θk . It is selected such that the search direction

dk satisfies also the following conjugacy condition

y >k−1dk = 0. (3.1.8)

From (3.1.7) and (3.1.8), we get

0 =−y >k−1gk +(βR M I L
k +θk

2g >k gk−1

‖dk−1‖2
)(y >k−1dk−1−ρk y >k−1gk ),

then

θk =
y >k−1gk −βR M I L

k (y >k−1dk−1−ρk y >k−1gk )

2
g >k gk−1

‖dk−1‖2 (y >k−1dk−1−ρk y >k−1gk )
,

=
ζk −βR M I L

k λk

ηkλk
, (3.1.9)

where ζk = y >k−1gk , λk = y >k−1dk−1−ρk y >k−1gk and ηk = 2
g >k gk−1

‖dk−1‖2 .

During the search process, we set θk = 1 if θk > 1; otherwise, we set θk = 0 if for such an

iteration we have θk < 0 or ηkλk = 0. Algorithm 11 below summarizes the main steps of the

proposed method.
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3.1. The Proposed Method

Algorithm 11: The CR algorithm.

Step 0: (Initialization) Select x0 ∈Rn and the parameters 0<δ<σ< 1 , ε> 0. Compute

h(x0), g0 =∇h(x0) and d0 =−g0. Set k = 0.

Step 1: If ‖gk‖ ≤ ε, then stop; otherwise:

- Compute the step-length αk > 0 along the direction dk using the strong Wolfe line

search technique (3.0.4).

- Put xk+1 = xk +αk dk and set k = k +1.

Step 2: Compute the parameter θk : if ηkλk = 0 put θk = 0, otherwise compute θk following

the equation (3.1.9).

Step 3: βk computation: βk is computed following the equation (3.1.5) for θk ∈ (0, 1);

otherwise set βk = βR M I L
k if θk ≤ 0 and, if θk ≥ 1, set βk = βhSM

k .

Step 4: Search direction computation: if the restart criterion of Powell |g >k gk−1| ≥ 0.2‖gk‖2

holds, set dk =−gk ; otherwise dk is computed as in (3.1.6) and repeat Step 1.
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3.1. The Proposed Method

3.1.1 The sufficient descent condition

It is well known that the sufficient descent property is crucial for the global convergence to

hold. The next lemma deals with this issue, moreover it shows it is independent of any line

search.

Lemma 3.1.1 Let the sequences {gk }k∈N and {dk }k∈N be given by CR algorithm, then

g >k dk =−‖gk‖2, (3.1.10)

i.e. the direction dk satisfies the sufficient descent condition.

Proof. It is clear that for k = 0, the equation (3.1.10) is satisfied, that is g >0 d0 = −‖g0‖2. Now

for k ≥ 1, we have

dk =−gk +β
C R
k (dk−1−ρk gk ),

taking the inner product with g >k we get

g >k dk =−‖gk‖2−βC R
k g >k gk

g >k dk−1

‖gk‖2
+βC R

k g >k dk−1,

=−‖gk‖2−βC R
k g >k dk−1 +β

C R
k g >k dk−1,

=−‖gk‖2,

which finishes the proof.

3.1.2 The global convergence

In order to prove the global convergence of the CR method, we need the following Lemma.

Lemma 3.1.2 Assume that Assumptions 1 and 2 hold. If the step-length αk satisfies the strong

Wolfe conditions (3.0.4) and dk is a descent direction, then

αk ≥
(σ−1)

L

d>k gk

‖dk‖2
. (3.1.11)

Proof. From the computation

(σ−1)d>k gk ≤ d>k (gk+1−gk ),

≤ Lαk‖dk‖2,
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3.1. The Proposed Method

it follows that,

αk ≥
(σ−1)

L

d>k gk

‖dk‖2
.

Note that from (3.0.4), (3.1.10) and (3.1.11), it is clear that αk 6= 0. Hence, a constant γ> 0

must exist such that α≥ γ> 0, for all k ≥ 0.

Now, we are in the position to deal with the global convergence result

Theorem 3.1.1 Suppose that Assumptions 1 and 2 hold. Let {gk }k∈N and {dk }k∈N be the se-

quences generated by CR algorithm; then

lim inf
k→∞

‖gk‖= 0. (3.1.12)

Proof. Assume that (3.1.12) is false, then a constant C > 0 exists such that

‖gk‖ ≥C , k ∈N. (3.1.13)

Let D = max{‖x − y ‖ : x , y ∈ N } be the diameter of the level set S . By the Lipschitz conti-

nuity of g we have

‖gk −gk−1‖ ≤ L‖xk − xk−1‖ ≤ LD .

From (3.1.5), we have

|βC R
k |=|(1−θk )β

R M I L
k +θkβ

hSM
k |,

≤|βR M I L
k |+ |βhSM

k |.

On the other hand, from [56] and [62]we have

|βR M I L
k | ≤

‖gk‖‖yk−1‖
‖dk−1‖2

≤
r LD

B 2
=G 1,

|βhSM
k | ≤

‖gk‖‖gk +gk−1‖
‖dk−1‖2

≤
r A

B 2
=G 2,

so that

|βC R
k | ≤G 1+G 2 =G . (3.1.14)
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Thus, since ∀k ∈N,α≥ γ> 0, then from (3.1.6), (3.1.14) and (1.3.4) it follows that,

‖dk‖ ≤ ‖gk‖+ |βC R
k |(‖dk−1‖+ ‖ρk‖‖gk‖)

= ‖gk‖+2G ‖dk−1‖

≤ r +2G
‖xk − xk−1‖
|αk−1|

≤ r +
2G D

γ
= E .

Therefore,
∑

k≥0

1

‖dk‖2
≥

1

E 2

∑

k≥0

1 =+∞. (3.1.15)

From equations (3.1.10) and (3.1.13), and Theorem 1.3.5, we have

C 4
∑

k≥0

1

‖dk‖2
≤
∑

k≥0

‖gk‖4

‖dk‖2
=
∑

k≥0

(g >k dk )
2

‖dk‖2
<+∞,

which is a contradiction, so the assertion (3.1.12) is true.

3.2 Numerical Experiments

We present here a series of numerical results concerning the CR method applied on a collec-

tion of 34 functions with 100 test problems chosen from [8], as specified in Table 3.1, using

dimensions ranging from 2 to 60000, Image Restoration problems are also considered. All

numerical experiments are implemented in the scientific software MATLAB version R2015a,

and run on PC with Intel(R) Core i3-4005U CPU 1.70 GHz and 4.00 RAM.

In the first part of this section we compare the performance of the proposed method with

seven conjugate gradient methods that are

The PRP method proposed by Polyak-Polak-Ribière [53].

The EPF method proposed by Mtagulwa and Kaelo [50].

The RMIL method proposed by Rivaie et al. [56].

The hSM∗ method proposed by Sulaiman et al [62].

The THCG+method proposed by Lotfi and Hosseini [47].
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3.2. Numerical Experiments

Table 3.1: List of test problems.

Function Dimension n Function Dimension n

Extended White and Holst 4000 Extended Maratos 500

Extended White and Holst 5000 Extended Maratos 700

Extended White and Holst 6000 Extended Maratos 1000

Extended Rosenbrock 1200 Extended Maratos 1500

Extended Rosenbrock 3000 POWER 2

Extended Rosenbrock 4000 Extended Quadratic Penalty QP1 50

Extended Rosenbrock 5000 Extended Quadratic Penalty QP1 100

Extended Freudenstein and Roth 9000 Extended Quadratic Penalty QP1 700

Extended Freudenstein and Roth 10000 Extended Quadratic Penalty QP1 1000

Extended Freudenstein and Roth 20000 Extended Quadratic Penalty QP1 1500

Extended Freudenstein and Roth 50000 Quadratic QF2 5000

Raydan 2 1000 Quadratic QF2 7000

Raydan 2 1500 Quadratic QF2 9000

Extended Tridiagonal 1 80 Extended Quadratic Penalty QP2 40

Extended Tridiagonal 1 90 Extended Quadratic Penalty QP2 60

Generalized Tridiagonal 1 10 Extended Quadratic Penalty QP2 70

Generalized Tridiagonal 1 20 ENGVAL1 1500

Generalized Tridiagonal 1 30 ENGVAL1 1600

Diagonal 3 6 ENGVAL1 1800

Diagonal 4 30000 Quartic 5000

Diagonal 4 40000 Quartic 8000

Diagonal 4 50000 Quartic 9000

Diagonal 4 60000 Quartic 10000

Diagonal 5 1000 HIMMELBH 2000

Diagonal 5 1500 HIMMELBH 2500

Diagonal 5 2000 HIMMELBH 2700

Diagonal 5 2500 HIMMELBH 3000

Diagonal 7 700 Extended BD1 2000

Diagonal 7 1500 Extended BD1 3000

Diagonal 7 2000 Extended BD1 5000

Diagonal 7 7000 Extended PSC1 2

Diagonal 8 1000 Extended PSC1 4

Diagonal 8 1500 Extended PSC1 6

Diagonal 8 2000 Extended DENSCHNF 1500

Diagonal 8 2500 Extended DENSCHNF 2000

Extended Himmelblau 9000 Extended DENSCHNF 2500

Extended Himmelblau 10000 Extended DENSCHNF 3000

FLETCHCR 2 Arwhead 50

FLETCHCR 4 Arwhead 70

NONSCOMP 2 Arwhead 150

Extended DENSCHNB 2000 Arwhead 200

Extended DENSCHNB 3000 HIMMELBG 50000

Extended DENSCHNB 5000 HIMMELBG 60000

Extended DENSCHNB 6000 LIARWHD 4000

Generalized Rosenbrok 2 LIARWHD 5000

Extended Hiebert 70 LIARWHD 5500

Extended Hiebert 500 LIARWHD 20000

Extended Hiebert 700 Hager 2

Extended Hiebert 1000 Hager 10

Almost Perturbed Quadratic 2 DIXON3DQ 2
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3.2. Numerical Experiments

The ADHCG1 and ADHCG2 methods proposed by Livieris et al.[46].

The methods PRP, EPF, RMIL, hSM∗ and THCG+ are implemented using the strong Wolfe

conditions, whereas ADHCG1 and ADHCG2 are implemented using the weak Wolfe condi-

tions, by setting δ= 10−4 andσ= 10−3. In this comparison, for each test function, the same

initial point is chosen for these methods and every computation is terminated when a point

xk satisfying ‖gk‖∞ ≤ 10−6 is found within 2000 iterations and whose calculation time does

not exceed 500 seconds; otherwise, the computation is considered as a failure.

Throughout the numerical results, in Figures 3.1-3.4 we compare the performance of CR

method with PRP, EPF, RMIL, hSM∗, THCG+, ADHCG1 and ADHCG2 methods using the log-

arithmic performance profile of Dolan and Moré [23], relative to the number of iterations,

function evaluations, gradient evaluations and CPU-time. For a solver s we define the ratio

rP,s =
NP,s

min{NP,s : s ∈ S}
,

where NP,s denotes either the number of iterations, number of function (gradient) evalua-

tions, or CPU-time required by the solver s to solve a problem P. If a solver s does not solve

the problem P, the ratio rP,s is assigned a large number. The logarithmic performance profile

for each solver s is defined as follows

ρs (τ) =
number of problems where log2(rP,s )≤τ

total number of problems
,

For each method, we plot the fractionρs (τ) of problems for which the method has a number

of iterations (resp. number of function (gradient) evaluations and CPU-time) that is within a

factor τ and the top curve in the plot corresponds to the method that solves most problems

within a factor τ, for more details see [23].
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Figure 3.1: CPU Time performance profile.

 τ 
0 20 40 60 80 100 120 140 160

ρ
s
(τ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PRP

CR

EPF

 hSM *

RMIL

ADHCG1

ADHCG2

THCG+

Figure 3.2: Iterations performance profile.
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Figure 3.3: Function evaluations performance

profile.
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Figure 3.4: Gradient evaluations performance

profile.

Figures 3.1-3.4 show that the curves of the methods CR, ADHCG1 and ADHCG2 domi-

nate the other curves by solving 94% of the test problems successfully, with superiority to the

CR method since it is faster then ADHCG1 and ADHCG2 on 78% of the test problems. The

PRP and EPF methods have respectively the fourth and fifth best performances with 92% and

91% of test problems, followed by hSM∗ with 90% of the test problems, whereas RMIL and

THCG+ score about 89%. These outcomes demonstrate that the CR method is competitive

and converges quickly in the majority of the test problems.

3.2.1 Image restoration problems

Image restoration is of interest in optimization fields, it aims to recover the original image

from an image damaged by impulse noises; its mathematical formulation can be found in

[36]. In this subsection, we compare the performance of CR algorithm with the variants stud-
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3.2. Numerical Experiments

ied in the above subsection to solve image restoration problems. In this study, the images of

Man.png (512×512), Lena.jpg (512×512), Boat.png (512×512) and Bridge.bmp (512×512)

are selected as test images. The image quality is measured by the parameters: Iter (number

of iterations), CPU-time, PSNR (Peak Signal-to-Noise Ratio) and Err (relative error) given by

the following formulas:

P SN R = 10 log10
M ×N ×2552

∑

i , j (x r
i , j − x ∗i , j )

2
, E r r =

‖x r − x ∗‖
‖x ∗‖

,

where x r
i , j and x ∗i , j denote respectively the pixel values of the restored image and of the orig-

inal one, M and N are the sizes of the image. The algorithm that has a large PSNR with small

CPU-time and Err is chosen as the best one. The setting parameters are similarly chosen as

in the above subsection, and each algorithm will stop as one of the following conditions is

fulfilled

I t e r > 300 or
|h(xk+1−h(xk )|

|h(xk )|
< 10−4.

The detailed performances for the Man, Lena, Boat and Bridge with 30 % and 70 % of salt-

and-pepper noise are illustrated respectively in Figures 3.5 and 3.6. The obtained numerical

results for the number of iterations, CPU-time, PSNR and the corresponding relative error are

displayed in Tables 3.3 and 3.2 where the best results are styled in bold.

Inspect on of Figures 3.5 and 3.6 and the results obtained from Tables 3.3 and 3.2 shows a

satisfactory performance of the CR algorithm. Indeed, it can be seen from the bold values in

Table 3.3 that the proposed algorithm succeeds in restoring the majority of test images with

higher PSNR values and overall needs less CPU time.

57



3.2. Numerical Experiments

Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise

EPF EPF EPF EPF

RMIL RMIL RMIL RMIL

PRP PRP PRP PRP

hSM hSM hSM hSM

CR CR CR CR

THCGP THCGP THCGP THCGP

ADHCG1 ADHCG1 ADHCG1 ADHCG1

ADHCG2 ADHCG2 ADHCG2 ADHCG2

Figure 3.5: The noisy images with 30% salt-and-pepper (first row) and the restored images by

EPF (second row), RMIL (third row), PRP (forth row), hSM* (fifth row), CR (sixth row), THCGP

(seventh row), ADHCG1 (eighth row) and ADHCG2 (last row).
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Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise

EPF EPF EPF EPF

RMIL RMIL RMIL RMIL

PRP PRP PRP PRP

hSM hSM hSM hSM

CR CR CR CR

THCGP THCGP THCGP THCGP

ADHCG1 ADHCG1 ADHCG1 ADHCG1

ADHCG2 ADHCG2 ADHCG2 ADHCG2

Figure 3.6: The noisy images with 70% salt-and-pepper (first row) and the restored images by

EPF (second row), RMIL (third row), PRP (forth row), hSM* (fifth row), CR (sixth row), THCGP

(seventh row), ADHCG1 (eighth row) and ADHCG2 (last row).
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Methods/Images Man Lena Boat Bridge

Iter 18 19 18 29

EPF CPU 17.7664 17.9430 17.6929 15.5511

PSNR 31.5369 37.7279 33.6354 28.5928

Err 0.0551 0.0286 0.0385 0.0751

Iter 15 15 9 17

RMIL CPU 21.8868 21.2731 16.6706 21.1122

PSNR 31.4990 37.5832 32.6893 28.5734

Err 0.055368 0.029076 0.042920 0.075255

Iter 11 15 11 14

PRP CPU 19.5940 17.6209 19.3073 16.3226

PSNR 31.3375 37.7638 33.1674 28.5131

Err 0.056408 0.028477 0.040622 0.075779

Iter 15 17 16 15

hSM* CPU 17.6889 18.1050 17.5557 15.3714

PSNR 31.5501 37.7225 33.6823 28.5813

Err 0.055043 0.028613 0.038284 0.075186

Iter 17 15 17 17

CR CPU 13.8810 14.2103 13.5648 13.5886

PSNR 31.5597 37.7533 33.6639 28.5931

Err 0.054983 0.028512 0.038365 0.075084

Iter 46 43 44 44

ADHCG1 CPU 16.6226 16.9791 17.3495 16.4667

PSNR 31.5332 37.5717 33.6280 28.6268

Err 0.055151 0.029114 0.038524 0.074794

Iter 46 43 44 44

ADHCG2 CPU 16.5253 16.9898 17.5813 16.4783

PSNR 31.5332 37.5717 33.6280 28.6268

Err 0.055151 0.029114 0.038524 0.074794

Iter 29 21 22 25

THCG+ CPU 14.5561 12.7482 13.1498 13.7842

PSNR 31.5542 37.7427 33.6844 28.4667

Err 0.055017 0.028547 0.038275 0.076185

Table 3.2: Numerical results for image restoration problems with 30% salt-and-pepper.
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Methods/Images Man Lena Boat Bridge

Iter 24 30 28 31

EPF CPU 27.6617 38.0655 34.3126 36.7456

PSNR 26.2376 31.7051 28.2103 24.5522

Err 0.1015 0.0572 0.0719 0.1196

Iter 23 22 26 15

RMIL CPU 51.9098 55.7232 62.9898 51.2787

PSNR 26.1395 31.1952 28.2408 22.4305

Err 0.102621 0.060664 0.071630 0.152643

Iter 20 5 15 15

PRP CPU 49.1265 28.6989 37.0087 54.1025

PSNR 26.1119 15.5820 27.5034 22.0518

Err 0.102948 0.366091 0.077976 0.159447

Iter 23 23 18 19

hSM* CPU 34.1524 34.3400 32.1868 31.0612

PSNR 26.2949 31.6644 28.2232 24.4001

Err 0.100802 0.057473 0.071775 0.121674

Iter 20 30 23 16

CR CPU 31.6035 32.9323 36.8002 15.9113

PSNR 26.2393 31.7190 28.2483 28.5640

Err 0.101449 0.057114 0.071567 0.075337

Iter 70 59 65 67

ADHCG1 CPU 40.8277 35.0237 37.0822 36.0258

PSNR 26.1809 31.4986 28.1806 24.3848

Err 0.102132 0.058581 0.072128 0.121889

Iter 70 59 65 67

ADHCG2 CPU 40.0976 34.8940 37.0464 36.1044

PSNR 26.1809 31.4986 28.1806 24.3848

Err 0.102132 0.058581 0.072128 0.121889

Iter 29 27 31 26

THCG+ CPU 26.1769 25.4340 26.0725 24.0349

PSNR 26.3218 31.6147 28.3121 24.4231

Err 0.100490 0.057803 0.071044 0.121352

Table 3.3: Numerical results for image restoration problems with 70% salt-and-pepper.
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CHAPTER

4 An Efficient Hybrid Conjugate

Gradient Method for Unconstrained

Optimization and Image

Restoration Problems

Conjugate gradient (CG) methods stand out as popular and efficient techniques extensively

employed for solving unconstrained optimization problems, particularly for large-scale cases,

due to their convergence properties and low computation cost. In this study, we address the

following nonlinear unconstrained problem

min
x∈Rn

h(x ), (4.0.1)

where the function h : Rn −→ R is differentiable continuous with gradient g (x ) = ∇h(x ).

The common denominator of all CG methods is to generate a sequence of points {xk }k∈N ⊂

Rn starting from an initial point x0 ∈Rn following the scheme

xk+1 = xk +αk dk , (4.0.2)

where dk is a descent direction for h at xk and αk > 0 is a step-length which is determined

through a one-dimensional search procedure known as the ‘line search’ where

αk = argminα≥0h(xk +αdk ).

Here, the step-length is computed using strong Wolfe line search, i.e αk satisfies

h(xk +αk dk )−h(xk )≤δαk g >k dk ,

|∇h(xk +αk dk )
>dk | ≤ −σg >k dk , (4.0.3)
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where 0<δ< 1
2 ,δ <σ< 1. The search direction dk is usually defined by the following formula

d0 =−g0,

dk+1 =−gk+1 +βk dk k ≥ 0, (4.0.4)

where the parameter βk is a scalar which determines the different conjugate gradient meth-

ods.

In this chapter, a novel conjugate gradient method is introduced to solve nonlinear un-

constrained optimization problems. Based on the combination of PRP (Polak-Ribière-Polyak),

HRM (Hamoda-Rivaie-Mamat), and NMFR (New modified Fletcher-Reeves) methods, this

method produces a descent direction without depending on any line search. Moreover, it

enjoys global convergence under mild assumptions and is applied on various standard test

problems as well as image processing. The numerical results indicate that the proposed

method outperforms several existing methods in terms of efficiency. Furthermore, the pro-

posed approach has been successfully applied for image restoration.

4.1 The Proposed Algorithm

In this section, Our aim is to elaborate on an efficient hybrid conjugate gradient method,

based on the combination of PRP (Polak-Ribière-Polyak)[53], HRM (Hamoda-Rivaie-Mamat)[33]

and NMFR (New modified Fletcher-Reeves)[1]. The new hybrid choice for the parameter βk

is as follows

β c P H N
k =







βP R P
k if 0≤βP R P

k ≤β F R
k ,

(1−φk )β
H R M
k +φkβ

N M F R
k otherwise,

(4.1.5)

where

βP R P
k =

g >k+1 yk

‖gk‖2
,

βH R M
k =

g >k+1

�

gk+1−
‖gk+1‖
‖gk ‖ gk

�

µ1‖gk‖2 +(1−µ1)‖dk‖2
,

and

βN M F R
k =

‖gk+1‖2

µ2‖gk‖2 +(1−µ2)‖dk‖2
,
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here, 0≤µ1,µ2,φk ≤ 1. The search direction dk is computed as follows







d0 =−g0,

dk+1 =−gk+1 +β
c P H N
k (dk −ρk gk+1) k ≥ 0,

(4.1.6)

where ρk =
d>k gk+1

‖gk+1‖2 . The parameter ρk allows to generate a search direction that satisfies the

sufficient descent condition independently of any line search and makes the next search di-

rection to approach the steepest direction, which is crucial to achieve the global convergence.

Our incentive for choosing the parameterφk is that the search direction dk+1 should fulfill

the famous D-L conjugacy condition [21]

d>k+1 yk =−t s>k gk+1, t > 0, (4.1.7)

where sk = xk+1− xk and yk = gk+1−gk .

If β c P H N
k = (1−φk )β

H R M
k +φkβ

N M F R
k , it follows from (4.1.6) that the search direction

dk+1 can be written as follows

dk+1 =−gk+1 +
�

βH R M
k +φk (β

N M F R
k −βH R M

k )
�

(dk −ρk gk+1) ;

then by equation (4.1.7) we get

−t s>k gk+1 =−g >k+1 yk +
�

βH R M
k +φk (β

N M F R
k −βH R M

k )
� �

d>k yk −ρk g >k+1 yk

�

,

hence,

φk =
τk −βH R M

k ζk

λkζk
, (4.1.8)

where τk =−t s>k gk+1 +g >k+1 yk , ζk = d>k yk −ρk g >k+1 yk and λk = βN M F R
k −βH R M

k .

During the search process, if for such an iteration we have λkζk = 0 or φk < 0 we set

φk = 0 and in the case where φk > 1 we set φk = 1. The main steps of the proposed method

are outlined in the algorithm 12 below.

4.1.1 The sufficient descent condition

The next lemma shows that the search direction produced by cPHN method is independent

of any line search.
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Algorithm 12: The cPHN algorithm

Step 0: (Initialization) Select x0 ∈Rn and the parameters 0<δ<σ< 1 , ε> 0. Compute

h(x0), g0 =∇h(x0) and d0 =−g0. Set k = 0.

Step 1: If ‖gk‖ ≤ ε, then stop; otherwise:

- Compute the step-length αk using the strong Wolfe technique (4.0.3).

- Put xk+1 = xk +αk dk .

Step 2: Compute the parameterφk : if λkζk = 0 putφk = 0, otherwise computeφk following

the equation (4.1.8).

Step 3: βk computation: βk is computed following the equation(4.1.5).

Step 4: Search direction computation: if the restart criterion of Powell |g >k+1gk | ≥ 0.2‖gk+1‖2

holds, then set dk+1 =−gk+1; otherwise dk+1 is computed as in (4.1.6) and repeat

Step 1.

Lemma 4.1.1 Suppose that the cPHN algorithm generates the sequences {gk }k∈N and {dk }k∈N,

then the direction dk satisfies the sufficient descent condition, i.e.

g T
k+1dk+1 =−‖gk+1‖2 (4.1.9)

Proof. It is clear that the relation (4.1.9) holds when d0 =−g0. Now for k ≥ 0, we have

dk+1 =−gk+1 +β
c P H N
k (dk −ρk gk+1),

by multiplying both sides of the equation by g >k+1, we get

g >k+1dk+1 =−‖gk+1‖2−β c P H N
k g >k+1dk +β

c P H N
k g >k+1dk

=−‖gk+1‖2,

which completes the proof.
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4.1.2 The convergence analysis

Lemma 4.1.2 Assume that Assumptions 1 and 2 hold. If the step-length αk satisfies the strong

Wolfe conditions (4.0.3) and dk is a descent direction, then

αk ≥
(σ−1)d>k gk

L‖dk‖2
∀k ∈N. (4.1.10)

Proof. Refer to the proof of Lemma 3.1.2

According to the strong Wolfe conditions (4.0.3) and Lemma 4.1.2, it follows that our αk

is strictly positive for all k ∈N, hence ∃γ> 0 such that αk ≥ γ> 0 for all k ∈N.

To prove the global convergence of the proposed method, we use the following lemma

due to Dai et al. [20]. It applies to any conjugate gradient method that relies on the strong

Wolfe conditions.

Lemma 4.1.3 Let Assumptions 1 and 2 hold. Consider an iterative method in the form (4.0.2)

and (4.0.4), where dk is a descent direction and αk satisfies the strong Wolfe conditions (4.0.3).

If
∑

k≥1

1

‖dk‖2
=+∞,

then

lim inf
k→∞

‖gk‖= 0.

Now, we are in the position to state our result.

Theorem 4.1.1 Let {gk }k∈N and {dk }k∈N be the sequences produced by the cPHN method,

where the step-lengthαk is computed using the strong Wolfe conditions. Suppose that Assump-

tions 1 and 2 hold, then

lim inf
k→∞

‖gk‖= 0. (4.1.11)

Proof. Suppose that the assertion (4.1.11) is false, then there exists a constant C > 0 such that

‖gk‖ ≥C , ∀k ∈N. (4.1.12)

Let D = max{‖x − y ‖ : x , y ∈ N } be the diameter of the level set S . From [33] and [1] we

have

0≤βH R M
k ≤

2‖gk+1‖2

µ1‖gk‖2
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and

0≤βN M F R
k ≤

‖gk+1‖2

µ2‖gk‖2
,

where 0≤µ1,µ2 ≤ 1, it follows from equation (4.1.5) that

0≤β c P H N
k ≤βP R P

k +(1−φk )β
H R M
k +φkβ

N M F R
k ≤β F R

k +βH R M
k +βN M F R

k ,

then

β c P H N
k ≤

‖gk+1‖2

‖gk‖2
+

2‖gk+1‖2

µ1‖gk‖2
+
‖gk+1‖2

µ2‖gk‖2
=
�

1+
2

µ1
+

1

µ2

� ‖gk+1‖2

‖gk‖2
.

By setting ξ= 1+ 2
µ1
+ 1
µ2

, we get

0≤β c P H N
k ≤ ξ

‖gk+1‖2

‖gk‖2
≤ ξ

r 2

C 2
. (4.1.13)

Therefore, from (4.1.6) and (1.3.4) it follows that

‖dk+1‖ ≤ ‖gk+1‖+ |β c P H N
k |(‖dk‖+ ‖ρk‖‖gk+1‖)

≤ ‖gk+1‖+2ξ
r 2

C 2
‖dk‖

≤ r +2ξ
r 2

C 2

‖xk+1− xk‖
αk

≤ r +2ξ
r 2

C 2

D

γ
.

Hence,
∑

k≥0

1

‖dk+1‖2
=+∞,

according to Lemma 4.1.3 lim
k→∞

inf‖gk‖ = 0, which contradicts the claim (4.1.12), so the as-

sertion (4.1.11) is true.

4.2 Numerical Experiments

In this section, we present a series of computational performances concerning the cPHN

method applied on 130 problems taken from [8], as outlined in Table 4.1, using an increasing

number of dimensions n = 2, 4, .., 80000; Image processing problems are also presented. All

codes are written and implemented in Matlab version R2015a, and run on PC with Intel(R)

Core i3-4005U CPU 1.70 GHz and 4.00 RAM.

67



4.2. Numerical Experiments

Table 4.1: List of test problems.

Function Dimension n

Extended White and Holst 1000, 3000, 4000, 6000

Extended Rosenbrock 10, 20, 30, 100

Extended Freudenstein and Roth 1000, 4000, 9000, 50000, 80000

Extended DENSCHNF 10, 100, 10000, 50000, 70000

Extended Tridiagonal 1 300, 500, 700, 1000

Extended Himmelblau 4, 6, 8, 10

Extended DENSCHNB 5000, 6000, 7000, 9000

Extended quadratic exponential

EP1

40000, 50000, 60000, 70000

Extended BD1 20000, 40000, 60000, 70000, 80000

Extended quadratic penalty QP1 4, 6, 8, 10

Extended quadratic penalty QP2 200

Extended PSC1 2, 6, 8, 100

Extended Maratos 9000, 9500, 10000, 15000

Generalized Rosenbrock 2

FLETCHCR 2

NONSCOMP 4

Almost Perturbed Quadratic 2,4, 6

Diagonal 1 2, 4, 10

Diagonal 2 2, 4, 10

Diagonal 3 2, 4

Diagonal 4 20000, 40000, 60000, 70000

Diagonal 5 2000, 2200, 2500

Diagonal 7 500, 700, 1000, 1500, 2000

Diagonal 8 100, 200, 300, 400, 500

Raydan 1 2

Raydan 2 1000, 4000, 50000,80000

Arwhead 70, 80, 100, 150

ENGVAL1 600, 700, 800

HIMMELLH 10, 50, 300, 500

HIMMELBG 3000, 6000, 30000, 50000, 80000

Generalized Tridiagonal 1 2

Perturbed quadratic diagonal 2

Perturbed Quadratic 2

POWER 2

QUARTC 2

DIXON3DQ 2, 4

LIARWHD 10, 20, 40, 50

Hager 50, 80, 150, 300

Quadratic QF1 9000, 20000, 50000, 70000, 80000

Quadratic QF2 100, 200
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4.2. Numerical Experiments

We begin by comparing the performance of the proposed method against

The PRP+ method introduced by Gilbert et al. [29],

The HRM method with µ1 = 0.4 introduced by Hamoda et al. [33].

The NPRP and NHS methods introduced by Zhang [64],

The FR method introduced by Fletcher and Reeves. [27].

The NMFR method with µ2 = 0.4 introduced by Abdelrahman et al [1].

The CR method introduced by Souli et al. [60]

In this study, for each test problem, the same starting point is chosen for these methods, and

every computation is stopped when a point xk satisfying ‖gk‖∞ ≤ 10−6 is found within 2000

iterations and whose CPU time is less than 500 seconds; otherwise, the computation is as-

signed as a failure. The step-lengths of all tested algorithms are determined using the strong

Wolfe line search technique(4.0.3) withσ= 10−3 and δ= 10−4.

Throughout the numerical results, in Figures 4.1-4.4 the global performances of the four

methods are compared with cPHN (using their respective performance profiles relative to

the number of iterations, function evaluations, gradient evaluations and CPU-time needed to

reach the stopping criterion) under the logarithmic performance profile of Dolan and Moré.

For a solver s we define the ratio

rP,s =
NP,s

min{NP,s : s ∈ S}

where NP,s denotes either the number of iterations (resp. CPU-time or number of function

(gradient) evaluations) requested by the solver s to solve a problem P. If a solver s does not

solve the problem P, the ratio rP,s is assigned a large number rM . The logarithmic perfor-

mance profile for each solver s is defined as follows

ρs (τ) =
number of problems where log2(rP,s )≤τ

total number of problems
.

For each method, we plot the fractionρs (τ) of problems for which the method has a number

of iterations (resp. number of function (gradient) evaluations and CPU-time) that is within a
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4.2. Numerical Experiments

factor τ. The highest curve in the plot corresponds to the method that solves most problems

within a factor τ, for more details see [23]

Figures 4.1-4.4 illustrate the fact that the cPHN outperforms the others, notably it is fastest

for about 50% of the test problems and successfully solves about 97% of them, followed by

PRP∗ with 95%. The methods FR and NMFR have respectively the third and the fourth best

performance by solving about 95% and 94% of the test problems, NMFR has the fifth best

performance by solving about 93%, whereas NPRP and NHS score respectively about 92%

and 73%. These results demonstrate the competitiveness and rapid convergence of the cPHN

method in the majority of testing problems.
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Figure 4.1: CPU Time performance profile.
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Figure 4.2: Iterations performance profile.
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Figure 4.3: Function evaluations performance

profile.
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Figure 4.4: Gradient evaluations performance

profile.
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4.2. Numerical Experiments

4.2.1 Image restoration problems

Image restoration problems are considered among the most difficult problems in optimiza-

tion fields, they aim to restore the original image from an image corrupted by impulse noise.

The mathematical formulation can be found in [36]. In this study, the images of Man.png

(512×512), Boat.png (512×512), Lena.jpg (512×512) and Bridge.bmp (512×512) are selected

as test images for evaluating the effectiveness of the cPHN algorithm against the same vari-

ants used in the previous test comparison. The image quality is assessed by several pa-

rameters: CPU-time, Iter (number of iterations), PSNR (Peak Signal-to-Noise Ratio) and Err

(relative error) using the following formulas:

P SN R = 10 log10
M ×N ×2552

∑

i , j (x r
i , j − x ∗i , j )

2
, E r r =

‖x r − x ∗‖
‖x ∗‖

where M and N are the sizes of the image, x r
i , j represents the pixel values of the restored

image and x ∗i , j denotes the pixel values of the original one. The parameters of the proponent

algorithms are set similarly to the previous test, and each computation will stop if one of the

following criteria holds

I t e r > 300 or
|h(xk+1−h(xk )|

|h(xk )|
< 10−4.

The performances for the Man, Boat, Lena and Bridge with 30 %, 50% and 70 % of salt-and-

pepper noise are depicted respectively in Figures 4.5, 4.6 and 4.7. The numerical outcomes

encompassing the number of iterations, CPU time, PSNR and corresponding relative error

(err) are presented in Tables 4.2, 4.3, and 4.4, where the best results are highlighted in bold

font. The algorithm that has a large PSNR with small CPU-time and Err is chosen as the best

one.

Upon examining Figures 4.5 - 4.7 we see that the quality of the images restored by cPHN,

FR, PRP+, NMFR, HRM and CR is very similar while the images restored by NHS and NPRP is

not good restored . The detailed numerical results are reported in Tables 4.2 - 4.4.

From the numerical results it becomes evident that the cPHN algorithm delivers good per-

formance. Notably, the bold values in Tables 4.2 - 4.4 highlight the efficiency of the proposed

algorithm as it achieves higher PSNR values and requires comparatively less CPU time for

restoring the majority of the test images
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4.2. Numerical Experiments

Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise Original with 30% salt-and-pepper noise

FR FR FR FR

HRM HRM HRM HRM

NHS NHS NHS NHS

NMFR NMFR NMFR NMFR

NPRP NPRP NPRP NPRP

PRP+ PRP+ PRP+ PRP+

CR CR CR CR

cPHN cPHN cPHN cPHN

Figure 4.5: The noisy images with 30% salt-and-pepper (first row) and the restored images

by FR (second row), HRM (third row), NHS (fourth row), NMFR (fifth row), NPRP (sixth

row),PRP+ (seventh row), CR (eighth row) and cPHN (last row).
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4.2. Numerical Experiments

Original with 50% salt-and-pepper noise Original with 50% salt-and-pepper noise Original with 50% salt-and-pepper noise Original with 50% salt-and-pepper noise

FR FR FR FR

HRM HRM HRM HRM

NHS NHS NHS NHS

NMFR NMFR NMFR NMFR

NPRP NPRP NPRP NPRP

PRP+ PRP+ PRP+ PRP+

CR CR CR CR

cPHN cPHN cPHN cPHN

Figure 4.6: The noisy images with 50% salt-and-pepper (first row) and the restored images

by FR (second row), HRM (third row), NHS (fourth row), NMFR (fifth row), NPRP (sixth

row),PRP+ (seventh row), CR (eighth row) and cPHN (last row).
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4.2. Numerical Experiments

Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise Original with 70% salt-and-pepper noise

FR FR FR FR

HRM HRM HRM HRM

NHS NHS NHS NHS

NMFR NMFR NMFR NMFR

NPRP NPRP NPRP NPRP

PRP+ PRP+ PRP+ PRP+

CR CR CR CR

cPHN cPHN cPHN cPHN

Figure 4.7: The noisy images with 70% salt-and-pepper (first row) and the restored images

by FR (second row), HRM (third row), NHS (fourth row), NMFR (fifth row), NPRP (sixth

row),PRP+ (seventh row), CR (eighth row) and cPHN (last row).
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4.2. Numerical Experiments

Methods/Images Man Boat Lena Bridge

Iter 152 112 118 180

FR CPU 59.2035 48.1470 46.7314 64.7920

PSNR 28.9909 30.8528 30.7913 27.7053

Err 0.073904 0.053026 0.063551 0.083165

Iter 26 26 25 23

NHS CPU 15.7869 14.9272 14.5193 14.4291

PSNR 15.7231 17.5183 17.3303 16.2491

Err 0.3405 0.2462 0.2993 0.3110

Iter 32 25 32 35

cPHN CPU 15.8053 15.2852 16.0294 16.5909

PSNR 31.5613 33.7160 37.7570 28.4505

Err 0.054973 0.038136 0.028499 0.076327

Iter 9 14 11 13

PRP+ CPU 11.7255 17.2765 12.4417 12.5381

PSNR 29.8526 32.7850 36.7924 28.3708

Err 0.066923 0.042450 0.031847 0.077031

Iter 18 16 15 35

NMFR CPU 13.5430 12.8837 13.1202 16.5120

PSNR 31.5222 33.6216 37.6712 28.4505

Err 0.055220 0.038552 0.028783 0.076327

Iter 13 14 16 19

HRM CPU 14.4333 16.1088 15.9510 18.3902

PSNR 31.4316 33.5530 37.7937 28.5705

Err 0.055800 0.038858 0.028379 0.075280

Iter 6 6 6 6

NPRP CPU 12.4714 12.5510 11.1241 12.1049

PSNR 15.7089 17.5182 17.3155 16.2439

Err 0.341010 0.246162 0.299857 0.311179

Iter 17 17 15 17

CR CPU 13.8810 13.5648 14.2103 13.5886

PSNR 31.5597 33.6639 37.7533 28.5931

Err 0.054983 0.038365 0.028512 0.075084

Table 4.2: Numerical results for image restoration problems with 30% salt-and-pepper.
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4.2. Numerical Experiments

Methods/Images Man Boat Lena Bridge

Iter 114 166 119 36

FR CPU 74.2768 95.7872 77.3813 29.8402

PSNR 25.5428 27.9388 27.8919 21.9921

Err 0.109918 0.074164 0.088735 0.160546

Iter 31 34 33 30

NHS CPU 24.3502 24.8263 24.8593 23.0874

PSNR 13.4363 15.2070 14.7535 14.1568

Err 0.4430 0.3212 0.4027 0.3957

Iter 35 33 32 32

cPHN CPU 23.0232 22.1550 22.8474 22.4948

PSNR 29.1641 31.1930 35.1330 26.6833

Err 0.072445 0.050990 0.038551 0.093549

Iter 5 17 17 16

PRP+ CPU 16.5329 22.4427 31.0590 21.0229

PSNR 15.3421 30.9165 34.0432 26.5201

Err 0.355716 0.052639 0.043705 0.095324

Iter 22 17 17 18

NMFR CPU 20.1598 18.0440 18.1020 17.7847

PSNR 29.1302 31.0974 35.0066 26.5072

Err 0.072728 0.051554 0.039116 0.095465

Iter 19 14 26 14

HRM CPU 31.6329 22.9351 33.0992 21.4267

PSNR 29.0482 30.0439 35.0633 26.2812

Err 0.073418 0.058202 0.038862 0.097982

Iter 8 10 8 8

NPRP CPU 16.0684 18.4926 16.6391 16.2163

PSNR 13.4675 15.1712 14.7757 14.1672

Err 0.441405 0.322532 0.401702 0.395223

Iter 18 19 20 19

CR CPU 25.0892 22.2550 20.8171 17.6200

PSNR 29.1528 31.1018 35.0045 26.7484

Err 0.072539 0.051527 0.039126 0.092850

Table 4.3: Numerical results for image restoration problems with 50% salt-and-pepper.
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4.2. Numerical Experiments

Methods/Images Man Boat Lena Bridge

Iter 128 124 151 215

FR CPU 85.8010 86.0845 108.1340 133.9843

PSNR 23.9667 25.0664 27.6667 24.0103

Err 0.131788 0.103230 0.091065 0.127260

Iter 34 37 34 31

NHS CPU 29.7937 30.6846 27.8669 22.3260

PSNR 11.3935 12.9901 12.5870 12.1899

Err 0.5604 0.4146 0.5168 0.4963

Iter 33 32 27 34

cPHN CPU 27.3060 25.3865 24.5562 26.9649

PSNR 26.3186 28.2960 31.7486 24.5198

Err 0.100527 0.071175 0.056919 0.120009

Iter 29 24 24 18

PRP+ CPU 50.3015 35.5985 42.2219 35.9517

PSNR 26.1898 28.2480 31.5568 24.1335

Err 0.102028 0.071570 0.058190 0.125468

Iter 24 23 20 25

NMFR CPU 24.9760 23.0873 13.6592 25.6359

PSNR 26.2295 28.1877 28.5882 24.4006

Err 0.101563 0.072068 0.075126 0.121667

Iter 10 26 20 25

HRM CPU 28.8301 49.0126 40.3861 48.7749

PSNR 22.3136 28.1401 30.0993 24.2470

Err 0.159416 0.072465 0.068821 0.123838

Iter 8 6 7 6

NPRP CPU 22.5660 20.0892 20.4119 19.4860

PSNR 11.3863 13.0485 12.5869 12.1776

Err 0.560914 0.411816 0.516821 0.496963

Iter 20 23 30 16

CR CPU 31.6035 36.8002 32.9323 15.9113

PSNR 26.2393 28.2483 31.7190 28.5640

Err 0.101449 0.071567 0.057114 0.075337

Table 4.4: Numerical results for image restoration problems with 70% salt-and-pepper.
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Conclusion

In this work, we explored various innovative methodologies for tackling non linear optimiza-

tion problems across different contexts. Each proposed approach contributes to the field by

enhancing computational efficiency, theoretical robustness, and practical applicability.

In the first work, a logarithmic barrier interior point method incorporating a vector penalty

term was developed. This method leverages minorant function which is related to a secant

method to improve step-length computation, enhancing simplicity and efficiency. Numeri-

cal experiments confirmed its ability to outperform conventional line search methods in solv-

ing nonlinear convex problems.

In the second and final publications, novel CR and cPHN conjugate gradient methods

were proposed. These methods generate descent directions independently of line search and

ensure global convergence under mild assumptions. Extensive numerical results and appli-

cations to image restoration demonstrated their effectiveness and superiority over existing

methods.
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 ملخص:

نقطة الداخلية وطريقة التدرج المرافق في هذه الأطروحة، نركز على التحليل النظري والتحقيق العددي لبعض طرق ال

.غير الخطية الأمثلةلحل مسائل   

مع عامل الحاجز  حيث يتم التعامل ،مع قيود محدبة غير خطيةالأمثلة  لمسألةالحاجز اللوغاريتمي  أساليبقترح ن، أولا

حد السفلي. تظهر النتائج العددية أن ذلك دراسات تحليلية يتم فيها تحديد طول الخطوة باستخدام تقنية دالة ال ليي كشعاع.

  الطرق المقترحة تتميز بالكفاءة والصلابة.

الطرق اتجاهات هذه تولد . دون قيود ةغير الخطي الأمثلة جديدة لحل مسائل رافقمج تدر نطور طرق بالإضافة إلى ذلك،

. معتدلة فرضياتتحت  شاملاتقارباً  الطرق تظهر هذه  ،علاوة على ذلك خطي،البحث ال لحاجة إلى تقنياتدون ا ارانحد

غير المقيدة  ةغير الخطي الأمثلةلف مسائل مخت معالجةفي  رنةأن الطرق المقترحة فعّالة وم إلى النتائج العددية تشير

.واستعادة الصور  

، طريقة حد السفليال الةغير الخطية، طريقة النقطة الداخلية، الحاجز اللوغاريتمي، د الأمثلة مسألة :مفتاحيهكلمات 

 .انحدار اتجاه، شاملج المرافق، التقارب الالتدر

:Résumé 

Dans cette thèse, nous nous concentrons sur l'analyse théorique et l'investigation numérique de certaines 

méthodes de points intérieurs et de gradient conjugué pour résoudre des problèmes d'optimisation non 

linéaire. 

 

Tout d'abord, nous proposons des approches de barrière logarithmique pour les problèmes d'optimisation 

non linéaires convexe avec contraintes, où le paramètre de barrière est traité comme un vecteur. Cela est 

suivi par des études analytiques dans lesquelles le pas de déplacement est déterminé à l'aide de la 

technique de la fonction minorante. Les résultats numériques révèlent que les méthodes proposées 

démontrent à la fois efficacité et robustesse. 

 

De plus, nous développons de nouvelles méthodes de gradient conjugué pour résoudre des problèmes 

d'optimisation sans contraints. Ces méthodes génèrent des directions de descente sans nécessiter de 

techniques de recherche linéaire. En outre, elles présentent une convergence globale sous des hypothèses. 

Les résultats numériques montrent que les méthodes proposées sont efficaces et robustes pour résoudre 

divers problèmes d'optimisation sans contraintes et de restauration d'images. 

Mots clés: Un Problème d'optimisation  non linéaire, Méthode de point intérieur, Barrière 

logarithmique, Fonction minorante, Méthode du gradient conjugué, Convergence globale, Direction de 

descente. 

Abstract : 

In this thesis, we focus on the theoretical analysis and numerical investigation of specific interior point 

and conjugate gradient methods for solving nonlinear optimization problems. 

 

First, we propose logarithmic barrier approaches for constrained convex nonlinear optimization 

problems, where the barrier parameter is treated as a vector. This is followed by analytical studies in 

which the step-length is determined using the minorant function technique. The numerical findings reveal 

that the proposed methods exhibit both effectiveness and robustness. 

 

In addition, we develop new conjugate gradient methods for solving unconstrained optimization problems. 

These methods generate descent directions without requiring line search techniques. Moreover, they 

exhibit global convergence under mild assumptions. Numerical results indicate that the proposed methods 

are both effective and robust in addressing various unconstrained optimization and image restoration 

problems. 

Key words: Nonlinear optimization problem, Interior point method, Logarithmic barrier, Minorant 

function, Conjugate gradient method, Global convergence, Descent direction. 
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