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Abstract

Magnetic Resonance Imaging (MRI) brain tumor identification and classification are

costly and time-consuming due to tumor complexity and reliance on radiologist expertise.
To overcome these challenges, automating the process is essential. This thesis leverages the
power of deep learning for brain tumor analysis, presenting two key contributions.

In the first contribution, we introduce an efficient model titled "Deep Rule-Based
Classifier using Bank of Binarized Statistical Image Features (DRB-BBSIF)". This approach
addresses the limitations of conventional MRI brain tumor diagnosis by offering a model
that improves classification performance while reducing the complexity of the diagnostic
process. The model explores the BSIF image descriptor for the feature extraction phase,
Furthermore, to enhance its performance, we have constructed a Bank-BSIF, which is
founded by the best parameters of BSIF filters. For the classification phase, we employed a
deep rule-based (DRB) classifier. The DRB classifier functions through a self-organized set
of IF-THEN fuzzy rules, guided by prototypes. These fuzzy rules, generated by the DRB
classifier, serve as the classifier's core decision-making mechanism. The second
contribution titled “MRI Brain Tumor Identification and Classification using Deep
Learning Techniques” focuses on the synergistic integration of deep learning and rule-
based classification. We propose a novel, simple, and automatic DRB-based scheme for MRI
brain tumor classification. This model leverages the power of deep learning for feature
extraction and combines it with the effectiveness of DRB for classification. The framework
consists of three stages: preprocessing, feature extraction, and classification. Feature
extraction utilizes deep learning networks like AlexNet, VGG-16, ResNet-50, and ResNet-
18 to extract features from the MRI images. A DRB classifier then utilizes these deep
features for classification.

Both methods are evaluated on publicly available datasets and demonstrate
significant performance in classifying brain tumors (presence or absence) and even tumor
types (multiclass). They outperform traditional techniques, highlighting their effectiveness
in MRI brain tumor analysis. The thesis provides significant advancements in MRI brain
tumor identification and classification using deep learning techniques, presenting
promising tools for computer-aided diagnosis. It also contributes to enhancing early disease

detection and improving the efficiency and outcomes of treatment.

Keywords: MRI; brain tumor; Deep Learning; feature extraction; BSIF descriptor; DRB

classifier.




Résume

L'identification et la classification des tumeurs cérébrales sur I'lmagerie par
Résonance Magnétique (IRM) sont des taches délicates, fortement dépendantes de
I'expertise des radiologues et souvent coQteuses en temps. Pour alléger leur charge de
travail et améliorer la précision des diagnostics, cette these propose d'automatiser une
partie de ce processus grace a l'apprentissage profond. Deux contributions majeures sont
présentées.

Dans la premiére contribution, nous introduisons un modéle efficace intitulé «
Classificateur Basé sur des Regles profondes utilisant une Banque de Descripteurs d’images
Statistiques Binarisées (DRB-BBSIF) ». Cette approche permet de remédier aux limites du
diagnostic conventionnel des tumeurs cérébrales sur IRM en proposant un modéle qui
améliore les performances de classification tout en réduisant la complexité du processus de
diagnostic. Le modele explore le descripteur d'image BSIF pour la phase d’extraction de
caractéristiques. De plus, pour améliorer ses performances, nous avons construit une
Banque-BSIF, basée sur les meilleurs paramétres des filtres BSIF. Pour la phase de
classification, nous avons utilisé un classificateur basé sur des régles profondes (DRB). Le
classificateur DRB fonctionne a travers un ensemble autoorganisé de regles floues de type
SI-ALORS, guidé par des prototypes. Ces regles floues, générées par le classificateur DRB,
constituent le mécanisme central de prise de décision du classificateur.

La deuxiéme contribution, intitulée « Identification et classification des tumeurs
cérébrales par IRM a l'aide de techniques d’apprentissage profond » se concentre sur
I'intégration synergique de I'apprentissage profond et de la classification basée sur des
regles. Nous proposons un schéma novateur, simple et automatique basé sur DRB pour la
classification des tumeurs cérébrales sur IRM. Ce modele exploite la puissance de
I'apprentissage profond pour I'extraction de caractéristiques et la combine avec I'efficacité
du DRB pour la classification. Le cadre proposé se compose de trois étapes : prétraitement,
extraction de caractéristiques et classification. L'extraction de caractéristiques utilise des
réseaux d'apprentissage profond tels qu'AlexNet, VGG-16, ResNet-50 et ResNet-18 pour
extraire des caractéristiques a partir des images IRM. Un classificateur DRB utilise ensuite
ces caractéristiques profondes pour la classification.

Les deux méthodes sont évaluées sur des ensembles de données disponibles
publiquement et démontrent des performances significatives dans la classification des
tumeurs cérébrales (présence ou absence) ainsi que des types de tumeurs (multi classe).
Elles surpassent les techniques traditionnelles, soulignant leur efficacité dans I'analyse des
tumeurs cérébrales par IRM. La thése apporte des avancées significatives dans
I'identification et la classification des tumeurs cérébrales par IRM a l'aide de techniques
d'apprentissage profond, offrant des outils prometteurs pour le diagnostic assisté par
ordinateur. Elle contribue également a renforcer la détection précoce des maladies et a
ameliorer I'efficacité et les résultats des traitements.

Mots-clés : tumeur cérébrale; IRM ; apprentissage profond ; extraction de
caractéristiques ; descripteur BSIF ; classificateur DRB.
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General Introduction

1. Context and Motivation

According to the World Health Organization (WHO), cancer is one of the leading
causes of death worldwide [1] [2]. Unlike cancer, a tumor can be either benign or malignant.
Benign tumors have uniform structures and non-active cancer cells, while malignant tumors
have non-uniform structures and active cancer cells that can spread to other parts of the
body. Early and accurate detection of brain tumors are crucial for determining the most
suitable treatment, such as therapy, radiation, surgery, or chemotherapy, to prevent further
complications. This can significantly increase the chances of survival for patients with
tumors [3]. In this context Magnetic Resonance Imaging (MRI) is the most effective
technique for diagnosing brain tumors due to its high contrast in soft tissues, high spatial
resolution, and non-invasive nature.

Today, automatic classification of tissue types in MRI is crucial for computer-aided
diagnosis, but it remains challenging and time-consuming due to the complexity of brain
tumors. Manual evaluation of results and images deeply depends on the radiologist's
experience and knowledge. Additionally, traditional methods are impractical for handling
large amounts of data, are not reproducible, and are prone to human error. This is why
computer-aided diagnosis (CAD) systems are essential to overcome these limitations.

2. Problem Statement

Over the years, automated machine learning methods have been developed for medical
image analysis, but traditional approaches face significant limitations when applied to MRI
images, particularly due to the large volume of data and complex anatomical structures.
Recent advancements in Artificial Intelligence (Al) and deep learning (DL) have
demonstrated their ability to efficiently process big data, offering promising solutions in
various domains, including healthcare, autonomous systems, speech recognition, and image
classification. In medical diagnosis, deep learning frameworks can automatically extract
meaningful features from MRI images, surpassing classical approaches that rely on
manually designed features. This has contributed to improve accuracy in brain tumor
classification, a critical task for early detection and effective treatment planning.[4]
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Brain tumor classification is generally categorized into two main types: (i) binary
classification, which differentiates between normal and abnormal brain tissues, and (ii)
multi-class classification, which distinguishes between specific tumor types such as
Glioma, Meningioma, Pituitary, and Metastatic tumors [5]. Despite advances in machine
learning and deep learning for MRI-based brain tumor classification, several challenges

persist, impacting performance and clinical adoption: [6] [7] [8]

1. Data-Related Challenges

MRI data often contain noise, artifacts, or low resolution, which can hinder the
extraction of relevant features. Anatomical variability among patients further complicates
analysis, while the rarity of certain tumor types results in limited training data, increasing
the risk of biased classification. Additionally, the creation of high-quality, annotated MRI

datasets is both costly and time-consuming, requiring specialized medical expertise.

2. Challenges Related to Classification Methods

Effective classification depends on extracting meaningful features, which is not
always straightforward. While deep learning models can learn complex patterns, they
require large amounts of data to generalize well and avoid overfitting. Furthermore, many
deep learning architectures, particularly convolutional neural networks (CNNs), are often

considered "black boxes™ making it difficult to interpret their decision-making process.

3. Challenges in Medical Interpretation and Clinical Adoption

The integration of Al-based tumor classification into clinical practice faces hurdles
related to interpretability, reliability, and validation. Radiologists and clinicians must be able
to trust and explain the model’s predictions to ensure patient safety. Misclassifications can
lead to severe diagnostic consequences, highlighting the need for robust, transparent, and

clinically validated models before they can be widely adopted in healthcare settings.

Addressing these challenges is essential for enhancing the accuracy, reliability, and
interpretability of brain tumor classification models, ultimately improving diagnostic

support and patient outcomes.
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3. Thesis Objectives

This thesis proposes a novel automated MRI brain tumor classification framework
based on deep learning techniques. The framework aims to address the limitations
mentioned previously and enhance the accuracy and efficiency of brain tumor classification.

The specific objectives of this research are:

e To Improve the classification efficiency through enhanced feature extractors.

e To develop a deep learning-based framework for automated MRI brain tumor
classification.

o To investigate the effectiveness of deep learning for feature extraction in the context
of brain tumor classification.

« Tointegrate explainability into the classification process by leveraging interpretable
models, thereby supporting clinical decision-making and ensuring transparency in
medical diagnoses.

e To explore the use of Deep Rule-Based (DRB) classifiers for brain tumor
classification with deep features.

e To evaluate the performance of the proposed framework on publicly available MRI
brain tumor datasets, including both binary and multi-class classification tasks.

e To compare the performance of the proposed framework with state-of-the-art
methods, including traditional machine learning algorithms and other deep learning
approaches.

By achieving these objectives, this research seeks to contribute to the development of
more accurate, efficient, and reliable automated brain tumor classification systems,

ultimately improving patient care and outcomes.

4. Thesis Contributions

The expected contributions of this doctoral thesis are as follows:

e First contribution: Construction of Bank of BSIF descriptor [9]

The first contribution presents an innovative model, DRB-BBSIF (Deep Rule-Based
Classifier using Bank of Binarized Statistical Image Features), designed to overcome the
limitations of traditional brain tumor classification methods. It focuses on two key

improvements:
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1. Enhanced Feature Extraction: BSIF is a valuable tool for extracting texture
information from images due to its balance of simplicity and effectiveness. However,
its reliance on hand-crafted features can hinder its ability to capture complex patterns.
To overcome this limitation, we have developed Bank-BSIF, a refined version of BSIF
that leverages the optimal parameter settings.

2. Automated Classification with Deep Rules: The model incorporates a Deep Rule-
Based (DRB) classifier that automates the classification process. This classifier utilizes
a self-organizing system of fuzzy rules based on data prototypes, enabling an efficient
and accurate approach to tumor classification.

Through these enhancements, DRB-BBSIF provides a more robust and effective
solution for brain tumor identification and classification, addressing key challenges in
medical image analysis. The model's effectiveness was validated on a large T1-weighted
CE-MRI brain tumor dataset, highlighting the critical role of advanced feature extraction

techniques in achieving accurate classification results.

e Second Contribution: MRI Brain Tumor Identification and Classification using Deep
Learning Techniques [10]

The second contribution emphasizes the powerful combination of deep learning and
rule-based classification. We introduce an innovative, straightforward, and fully automated
DRB-based framework for MRI brain tumor classification. This approach utilizes deep

learning for feature extraction, while leveraging DRB's strength in classification.

1. Deep Feature Extraction: The framework employs pre-trained deep learning models
such as AlexNet, VGG-16, ResNet-50, and ResNet-18 to extract deep features from
MRI images. These features capture intricate patterns and relationships within the data,
leading to enhanced classification accuracy.

2. DRB for Classification: As in the first contribution, the model uses DRB for
classification. DRB processes the deep features to automatically generate fuzzy rules,
enabling precise tumor detection and classification.

The framework was evaluated on two MRI brain tumor datasets from Kaggle: a binary
classification dataset (tumor vs. no tumor) and a multiclass dataset (Meningioma, Glioma,
and Pituitary tumor). Experimental results demonstrate that this novel DRB-based scheme
is robust, simple, and effective, achieving high performance across both datasets. By
automatically generating a set of fuzzy rules from the extracted deep features, the DRB
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classifier accurately identifies tumors, showcasing its ability to synergize deep learning's

feature extraction capabilities with rule-based decision-making for reliable MRI brain tumor

classification.

By addressing the challenges of traditional methods and utilizing the power of deep

learning, this research contributes to the development of more accurate, efficient, and

reliable automated brain tumor classification systems, ultimately improving patient care and

outcomes.

5. Thesis Organization

This thesis is organized to provide a comprehensive understanding of brain tumor

identification and classification using deep learning techniques applied to MRI data.

Chapter 1 establishes the context and background by discussing the challenges of brain
tumors and the significance of MRI in their diagnosis.

Chapter 2 delves into the theoretical foundation, exploring machine learning and deep
learning concepts relevant to medical image analysis.

Chapter 3 presents a critical review of existing literature on deep learning approaches
for brain tumor classification using MRI.

Chapter 4 presents our first contribution called DRB-BBSIF (Deep Rule-Based
Classifier using Bank of Binarized Statistical Image Features) designed to address the
shortcomings of conventional methods.

Chapter 5 presents our second contribution, DRB-based scheme for MRI brain tumor
classification, that leverage deep learning and rule-based techniques for improved
tumor identification and classification.

Finally, Conclusion summarizes the key findings, discusses limitations and future
directions, and concludes by highlighting the importance of this research while

outlining promising areas for further investigation and development.
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Chapter I: MRI for Brain Tumor Diagnosis

.1 Introduction

Brain tumors are a serious health concern that require precise identification and
classification for optimal treatment. MRI has become the gold standard in the medical field
for the diagnosis and evaluation of brain tumors due to its non-invasive nature, superior soft
tissue contrast, and ability to provide detailed anatomical and functional information. MRI
offers a comprehensive view of the brain, allowing clinicians to visualize the tumor's
location, size, and morphology with great precision. These qualities make it an indispensable
tool for guiding diagnosis.[11][12]

This chapter provides a comprehensive overview of brain tumors and MR, laying the
foundation for subsequent chapters that delve into the application of deep learning

techniques for brain tumor identification and classification using MRI images.

1.2 Brain Tumors

1.2.1 Whatis brain tumor?

A brain tumor is an abnormal growth of mass of cells in the brain or near it, as
illustrated in Figure 1-1. This growing is uncontrolled, unchecked by the mechanisms that
control normal cells. Brain tumors can be classified as a primary tumors, which originates
and starts inside the brain, and secondary tumors, also known as a metastatic brain tumor,
which begin as cancer somewhere else in the body and spread to the brain. Brain tumors can
be cancerous (malignant), which tend to be fast-growing, or noncancerous (benign), which

tend to be slow-growing. [11][13]

I.2.2 Types of brain tumors

Understanding the diverse types of brain tumors is crucial for effective diagnosis and
treatment planning. Brain tumors encompass a wide spectrum of neoplastic growths that
arise within the brain or its surrounding tissues. Each type varies significantly in terms of
location, growth pattern, and potential impact on neurological function. Table 1.1 aims to
explore the classification and characteristics of different types of brain tumors. The most
common brain tumors are presented in Figure 1-2. [14][15]
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Table 1.1 Types of Brain Tumors [14][15][16]
Tumors Location Types Benign or
Malignant
_ The glial cells surround astrocytoma, Gliomas can be
e Gliomas Ar_ld and support nerve cells in | glioblastoma, benign, but most
related brain | the brain tissue. oligodendroglioma | are malignant.
tumors ependymoma.
e Choroid located in the fluid-filled | Choroid plexus Choroid plexus

plexus tumors

cavities in the brain,

carcinoma

tumors can be

sometimes they're in
other parts of the body.

called the ventricles. benign or
malignant.
Begin in embryonal cells | medulloblastoma. Embryonal
« Embryonal that are left over from tumors are
tumors fetal development. malignant brain
tumors
they're often located near | Germ cell tumors Germ cell tumors
o Germ cell the pineal gland or the are mostly
tumors pituitary gland. But benign. They're

more common in
children.

Pineal tumors start in and

Pineoblastoma

Pineal tumors can

spinal cord.

o Pineal tumors | around the brain's pineal be benign or
gland, located in the malignant.
center of the brain.
start in the membranes —— are usually

L . Meningiomas .
e Meningiomas | around the brain and g benign, but

sometimes they
can be malignant.

¢ Nerve tumors

located on the main
nerve that connects the
inner ear to the brain.

acoustic neuroma,
also called
schwannoma.

Benign

e Pituitary
tumors

begin in and around the
pituitary gland. This
small gland is located
near the base of the
brain.

Craniopharyngioma

Benign

e Other brain
tumors

Tumors can start in the
muscles, blood vessels
and connective tissue
around the brain.
Tumors can form in the
bones of the skull.
Malignant brain tumors
can start from the germ-
fighting immune system
cells in the brain.
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1.2.3 Impact of brain tumor on the health

Whether a brain tumor is benign, malignant, or metastatic, all are potentially life-
threatening conditions. The seriousness of a brain tumor stems from its ability to interfere
with the intricate and vital functions of the brain.[12]

A Ol

Figure 1-1: Example of Brain Tumor [14]

1.2.3.1 Benign Tumors

While benign tumors are non-cancerous and typically grow slowly, they can still pose
significant health risks depending on their size and location. Benign tumors may cause
complications by exerting pressure on surrounding brain tissue, leading to neurological
symptoms and impairments. In some cases, even a benign tumor can become life-threatening
if it compresses critical structures or causes increased intracranial pressure.[14]

1.2.3.2 Malignant Tumors

Malignant brain tumors, on the other hand, are cancerous and often grow rapidly. They
can infiltrate and invade surrounding healthy brain tissue, making complete surgical removal
challenging. The aggressive nature of malignant tumors contributes to their potential to
spread to other parts of the brain and spinal cord, further complicating treatment and

prognosis.[14]
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1.2.3.3 Metastatic Tumors

Metastatic brain tumors, originating from cancer in other parts of the body, represent
another life-threatening category. These tumors reach the brain through the bloodstream or
the lymphatic system, forming secondary tumors. The presence of metastatic tumors in the
brain indicates advanced cancer elsewhere in the body, and their impact on health can be
severe. In all cases, the location of the tumor is a critical factor. Tumors in certain areas of
the brain may affect vital functions such as breathing, heart rate, or consciousness,
intensifying the potential for life-threatening complications. [14][15]

Timely and appropriate medical intervention, including surgery, radiation therapy,
chemotherapy, and other targeted treatments, is essential to manage and potentially mitigate
the life-threatening aspects of brain tumors. Regular monitoring and follow-up care are
crucial to assess the effectiveness of treatment and address any recurrence or new
developments.

The impact of a brain tumor on an individual's health underscores the importance of
early detection, accurate diagnosis, and comprehensive treatment planning to maximize the
chances of a favorable outcome. Additionally, the multidimensional nature of care for
individuals with brain tumors often includes addressing emotional, psychological, and
supportive aspects to enhance overall well-being during the treatment and recovery process.

Meningioma Pituitary Schwannomas
Tumors Adenomas (Acoustic Neuromas)

Medulloblastomas Primitive Neuroectodermal Germ Cell Craniopharyngiomas
Tumors Tumors

Figure 1-2: The Most Common Brain Tumors [16]
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.3 Magnetic Resonance Imaging — MRI —an Overview

1.3.1 Introduction

Today, there are numerous imaging techniques, as shown in Figure 1-3, often
complementary. They have been developed from major physics discoveries of 20th century:
X-rays and radio waves, natural and artificial radioactivity and finally the magnetic
properties of the nuclei and atoms. They are based on the progress of medicine and advances
in physics, chemistry, applied mathematics and computer science. Medical imaging
continues to evolve and improve and it is increasingly used for diagnosis, in addition to a
clinical examination and other investigations, such as biological examinations or

neuropsychological tests. [17] [18]

Computed Tomography

Magnetic Resonance
Imaging

Microscopy

XN-ray Radiographyw

Medical Imaging 7 i
Techniques .

Electron Paramagnetic

Ultrasound Resonance

Positron Emission
Tomography

Figure 1-3: Medical Imaging Techniques [19]
1.3.2 Overview of various imaging methods

Before delving into magnetic resonance imaging (MRI), the most widely used
technique for visualizing brain tumors, this section presents an overview of the various
imaging methods employed in brain studies.Table 1.2 offers a comparative analysis of these
techniques. [17] [20] [21]

10
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Table 1.2 : Comparison of different imaging techniques [22]
= Y— Y— e, $ (%)
@ o O > o 1] o> <
S =z g B 855 g 2
= SE 5 2 5ES & =
Quick, high- Low soft tissue
CT 0.2-1.0 | X-Ray Tissue density resolution 3D contrast, radiation
reconstruction exposure
Radio- Soft tissue contrast ?:::I t?\L,Jirta“t%n'
MRI 0.3-1.0 Multiple with various y
frequency . . . metal, patient
imaging techniques
comfort
NUC Gamma Tissue Information on Lower rgsolutlon,
MED 5-10 rays biochemistr tissue function radioactive
Y y substances
Positrons/ Tissue Functional Lower resolution,
PET 4-7 gamma . . information of radioactive
biochemistry :
rays tissues substances
Gamma Tissue Functional Lower resolution,
SPECT | 5-10 rays biochemistry mformatlon of radioactive
tissues substances
. Tissue . Low image
Acoustic . Quick, affordable . .
usS 0.2-0.5 composition or ’ Py quality, restricted
(sound) flow portable, real-time field of view
. Limited to 2D
) ) ) . . Quick, affordable, s
X-Ray |0.03-0.2 | x-ray Tissue density and high-resolution low soft tissue
contrast
1.3.2.1 X-ray

X-ray imaging, or radiography, was the first and, for many years, the only method to
visualize the inside of the body. It uses electromagnetic radiation that exposes tissues to
ionizing radiation, accumulating over a patient's lifetime. Despite this, X-rays are quick,
inexpensive, portable, and widely used in medicine. Specialized X-ray techniques include
2D mammography for breast imaging, 3D mammography (digital breast tomosynthesis) for
breast cancer screening, and fluoroscopy, which produces real-time images. These methods
show X-ray absorption differences in body tissues. However, X-rays only provide projection
images, limiting internal organ views, prompting the development of other imaging

techniques to address these limitations.[23]

1.3.2.2 Tomographic Imaging
MRI is one of several noninvasive techniques that generate cross-sectional
(tomographic) images for radiologists and referring clinicians. Other commonly used

tomographic modalities include computed tomography (CT), nuclear medicine, single

11
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photon emission computed tomography (SPECT), positron emission tomography (PET),
and ultrasound (US). [23]

1.3.2.2.1 Computed Tomography

Among the imaging methods, CT is most often compared to MRI because both
produce detailed images of the body's anatomy with different shades of gray and can image
any part of the body. However, the way images are created and how tissues appear in each
method are very different.

Like MRI and other imaging techniques, CT creates an image by sending energy into
the body and measuring how that energy is absorbed or changed by the body's tissues. In
CT, x-ray beams are used. These beams pass through the body, and detectors on the opposite
side measure how much energy gets through. This measurement shows how much energy
was absorbed by the tissues. The x-ray beam is sent through the body at many different
angles, and a computer processes these measurements to produce a cross-sectional image.
[23]

1.3.2.2.2 Nuclear Medicine, SPECT, PET, and US

Nuclear medicine and SPECT use radioactive tracers introduced into the body to form
images by measuring the decay of these tracers. The injected tracers emit gamma rays, which
are similar to x-rays but have higher energy. A gamma camera detects these rays to create
the final image. These methods are often used to measure blood flow and distribution in the
heart and other organs. Compared to MRI, they produce lower resolution images but are

specialized for assessing organ function.

PET also uses a radioactive tracer, but it detects tiny particles called positrons
produced during decay. This allows PET to provide unique information about tissue
metabolism. For example, a tracer can be attached to glucose to show how much glucose
different tissues use, helping to distinguish normal from cancerous tissue. PET images have
lower resolution than MRI but offer valuable insights into organ function. Hybrid systems
like PET/CT and PET/MRI combine high-resolution anatomical images with metabolic
images, allowing precise correlation between metabolic activity and anatomical structures,

which is useful in tumor ablation.

Ultrasound is another tomographic imaging method and is the most widely available.
It's relatively inexpensive, and the machines are small and portable. Ultrasound is commonly

12
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used for fetal assessment during pregnancy and for scanning the heart, major arteries, liver,
and kidneys. Unlike MRI and other methods, ultrasound doesn't use ionizing radiation but
measures sound wave energy. However, because sound waves don't travel well through air
or bone, ultrasound isn't optimal for imaging the lungs or skeleton. [23]

1.3.3 Magnetic Resonance Imaging (MRI)

MRI, as shown in Figure I-4, is undeniably fundamental in imaging brain tumors,
significantly impacting every aspect of patient care, from diagnosis and treatment planning
to monitoring treatment response and detecting recurrence. Presently, neuroimaging can
detail both morphological and non-morphological (such as functional, hemodynamic,
metabolic, cellular, microstructural, and occasionally genetic) features of brain tumors,
substantially aiding in diagnosis and ongoing assessment [24]. MRI is a prominent medical
imaging technique recognized for its ability to provide highly detailed visualizations of the
human body. Its advanced technology is essential for the diagnosis and monitoring of a wide
range of medical conditions. However, like any diagnostic method, MRI has both strengths

and limitations. [23]

Figure 1-4: Magnetic Resonance Imaging [25]

This section outlines the benefits of MRI, highlighting its safety, flexibility, and
exceptional imaging quality, which make it a preferred tool in various clinical settings. It
also addresses its drawbacks, including challenges related to cost, patient comfort, and
accessibility, providing a balanced view of this critical imaging technology .

13
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1.3.3.1 Advantages of MRI

MRI is a non-invasive imaging technique with numerous advantages, making it safe
for repeated use and a valuable tool in medical diagnostics and neuroscience. Some of its
key benefits include : [25]

e Non-invasive and free of ionizing radiation: MRI is a non-invasive imaging
technique that, unlike X-rays and CT scans, does not require the use of ionizing
radiation or invasive procedures like surgery, making it generally safe, reducing the
risk of radiation exposure, and suitable for repeated examinations.

e Excellent Soft Tissue Contrast: MRI provides excellent contrast between different
soft tissues, making it particularly useful for imaging the brain, muscles, joints, and
organs like the liver and kidneys.

e Multiplanar Imaging: MRI allows imaging in multiple planes (axial, sagittal, and
coronal), providing comprehensive views of the anatomy and facilitating the

diagnosis of various conditions.

e Functional Imaging: Functional MRI (fMRI) can be used to assess brain activity
by measuring changes in blood flow. This is valuable in neuroscience and can help
identify areas of the brain associated with specific functions.

1.3.3.2 Disadvantages of MRI

Although MRI offers many advantages, it also has some drawbacks, including : [25]

e Contrast Agents: Some MRI scans may require the use of contrast agents (usually
gadolinium-based) to enhance visibility of certain structures. While these agents are
generally safe, there have been concerns about their long-term effects, especially in
patients with kidney problems.

e Noise and Claustrophobia: The loud knocking and thumping noises produced
during an MRI scan can be unsettling for some patients. Additionally, the enclosed
space of the MRI machine can cause feelings of claustrophobia in some individuals.

e Metallic Implant Interference: Metal objects, such as pacemakers, artificial joints,
and some dental implants, can interfere with the magnetic fields in an MRI machine,

limiting its use in certain patients.

14
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e Cost: MRI machines are expensive to purchase and maintain, making the cost of an

MRI scan higher than some other imaging modalities.

e Time-consuming: MRI scans can be time-consuming, especially for certain types
of studies. Patients may need to remain still for extended periods, which can be
challenging for some individuals, such as young children or those with certain

medical conditions.
1.3.3.3 Basic Principles of MRI

Magnetic Resonance Imaging is based on the principles of nuclear magnetic resonance
(NMR) spectroscopy, which was initially developed for chemical analysis. In the context of
medical imaging, MRI exploits the magnetic properties of certain atomic nuclei to produce
detailed images of the human body. The basic principles of MRI involve the application of
a strong magnetic field, radiofrequency (RF) pulses, and gradient magnetic fields to generate
signals from the body that are used to construct images. Bellow a brief overview of these
principles: [22] [26] [27][28]

1. Nuclear Magnetic Resonance (NMR): The human body being made up on average of
70% water, we are in practice interested in the water molecule and in particular the
hydrogen nucleus (proton). The hydrogen nucleus behaves like a charge rotating around
its axis: this is the spin movement presented in Error! Reference source not found.. Protons
can then be compared to magnetic dipoles. In the absence of any magnetic field, these
will orient themselves in space in a random way. This movement gives the nucleus an
angular momentum which depends on its mass and a magnetic moment which depends
on its charge. In a magnetic field BO, the protons are then oriented relative to BO and
describe around this field a precession movement, of constant angular speed.

2. Magnetic Field: MRI machines generate a strong, uniform magnetic field that aligns
the magnetic moments of hydrogen nuclei (protons) in the body. The main magnetic
field, denoted as Bo, is typically several thousand times stronger than the Earth's
magnetic field.

3. RF Pulse and Resonance: When a short burst of RF energy is applied at the resonant
frequency of the protons (the Larmor frequency), it causes the protons to absorb energy
and process (or wobble) out of alignment with the main magnetic field. This process is

known as excitation or resonance.
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JEITY

Figure 1-5: The spin movement [22]

4. Relaxation Processes: After the RF pulse is turned off, the protons gradually return to
their equilibrium alignment with the main magnetic field. As presented in Figure 1-6,
There are two relaxation processes involved:

a. Longitudinal Relaxation (T1): Protons realign with the magnetic field, releasing
energy in the form of RF signals. T1 relaxation affects the longitudinal
magnetization (M), which is the component of the magnetization along the
direction of the main magnetic field.

b. Transverse Relaxation (T2): Protons lose phase coherence and dephase, leading
to a loss of transverse magnetization (Mt). T2 relaxation is the process by which

the transverse magnetization decays back to its equilibrium state.

Figure 1-6: Splitting of the magnetic moment M. [22]
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5- Gradient Fields: Gradient magnetic fields are applied in different directions, allowing
spatial encoding of the signals. By varying the strength and timing of these gradients,
different regions of the body can be selectively imaged.

6- Signal Detection: To generate an MRI image, the patient is subjected to a magnetic field
(Bo) and a radiofrequency wave (Bi) with a frequency matching the precession
frequency of protons. This wave causes the protons to tilt at an angle (0), typically 90 or
180 degrees relative to their initial state (Mo). When the radiofrequency pulse ends, the
protons return to their equilibrium state, leading to a rapid decrease in the transverse
moment (Mr) and a recovery of the longitudinal moment (M.). During this return to
equilibrium, the protons continue to precess, producing a Free Induction Decay (FID)
magnetic field as shown in Figure 1-7.This signal is captured by the receiving coils and
converted into an electrical signal, which is then used to create the MRI image.

FID
Signal Time
Intensity WMWWWW >
Intensity

) I U W

> e Frequency i

Figure I-7: The FID and signal detection to generate MR images. [27]

7- Image Reconstruction: The signals detected by the receiving coils are processed by a
computer to generate detailed images of the body. Various imaging sequences are
presented in Figure 1-8, such as T1-weighted, T2-weighted, and gradient-echo
sequences, can be used to emphasize different tissue properties and provide different
types of contrast in the images.

By manipulating these basic principles, MRI can produce detailed images of
anatomical structures and physiological processes in the body with high spatial resolution
and excellent soft tissue contrast, making it a versatile and powerful imaging modality in

clinical practice.
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(b) Sagittal view (c) Coronal view

(d) Tl-weighted (e) T2-weighted (f) FLAIR

Figure 1-8: Various MRI images sequences [29]

.4 Conclusion

Brain tumors represent a complex and challenging medical condition, demanding
accurate diagnosis and effective treatment strategies. MRI has emerged as an indispensable
tool for brain tumor assessment, providing detailed insights into tumor characteristics and
guiding clinical decision-making. Deep learning techniques have revolutionized the field of
medical imaging, offering promising avenues for further enhancing brain tumor

identification and classification using MRI data.
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11.1 Introduction

The integration of machine learning in MRI brain tumor detection promises to
revolutionize clinical workflows by providing radiologists with powerful tools for early and
accurate diagnosis. This chapter aims to provide a solid foundation and clear understanding
of the tools and techniques employed in this research. We explore the domain of machine
learning (ML), specifically focusing on deep learning (DL) techniques, and their
transformative impact on medical image analysis. To ensure the robustness and reliability of
the proposed models, the performance evaluation metrics used in this study are described.

I1.2 Artificial intelligence, machine learning and deep learning paradigm

In the data sciences field, artificial intelligence (Al) aims to provide computers
human-level intelligence. For this reason, Machine learning and deep learning, which are
subfields of artificial intelligence, focus on developing algorithms and models that enable
computers to learn from and make predictions or decisions based on data, without human
intervention. They represent a powerful toolkit in achieving the ultimate goal of Al:
intelligent machines [30]. Figure I1-1 visually represents this hierarchical relationship, with
Al at the top level, followed by ML, and then DL as a specialized subset of ML.

Artificial Intelligence

Ability of the machine to imitate
intelligent human behaviour

Machine Learning
Automatically learn and
improve from experience

Deep Learning
Complex algorithms and
deep neural nets to train

a model

Figure 11-1: Al, machine learning and deep learning paradigm [31]
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1.3 Machine Learning (ML):

11.3.1 Definition

Machine learning is the study of computer algorithms that improve automatically
through experience. It is a branch of artificial intelligence based on the idea that systems can
learn from data, identify patterns, and make decisions with minimal human intervention.
[32]

11.3.2 Types of Machine Learning

The effectiveness of machine learning models relies on the quality and quantity of data
they are trained on. Depending on the nature of the data and the desired outcome, machine
learning algorithms can be broadly classified into three main categories as illustrated in
Figure 11-2: supervised, unsupervised, and reinforcement learning.[30] [32]

Meaningful
Compression

Structure Image Customer Retention

Discovery Classification

Big Data
Visualization

Feature Identity Fraud

S | DI i
Elicitation Detection iagnostics

Advertising Popularity
Supemised Prediction

Learning Weather
Forecasting

- :
e Unsupel"VISEd
Learning

Targeted

Marketing Market

Forecasting

Population
Growth
Prediction

Customer

Segmentation Real-Time
Decisions

Estimating

Game Al Life Expectancy

Reinforcement

Learning

Robot

e Skill Acquisition
Navigation

Learning Tasks

Figure 11-2: Types of Machine Learning [33]

11.3.2.1 Supervised Learning:
The algorithm learns from labeled training data, making predictions or decisions based
on input-output pairs. Common applications include classification and regression tasks.

11.3.2.2 Unsupervised Learning
The algorithm learns from unlabeled data, finding hidden patterns or intrinsic

structures. Common applications include clustering and dimensionality reduction.
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11.3.2.3 Reinforcement Learning
The algorithm learns through trial and error by interacting with an environment and
receiving feedback in the form of rewards or penalties. It aims to maximize the cumulative

reward over time.

11.3.3 Concepts of Machine Learning Models

The success of machine learning models hinges on a solid understanding of key
concepts such as features, labels, model training, evaluation, and application areas. The
typical process of ML is illustrated in Figure 11-3. [34]

e Features and Labels: Features are input variables used to make predictions, while
labels are the output variables to be predicted.

e Model Training: The process of fitting a model to training data by adjusting its
parameters to minimize a loss function.

e Model Evaluation: Assessing the performance of a trained model on unseen data
using evaluation metrics such as accuracy, precision, recall, F1-score, etc.

e Applications: Machine learning is widely used in various fields, including
healthcare (diagnosis, prognosis), finance (fraud detection, risk assessment), and
natural language processing (speech recognition, machine translation).

Training model training
Set
Machine
Learning

Raw data & Validation f
I s hyperparameters tuning

model selection

TRAINING

PREDICTING l

—w

Figure 11-3: The typical process of ML [30]
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1.4 Deep Learning (DL)

11.4.1 Definition

Deep learning is a subset of machine learning that uses artificial neural networks to
model and solve complex problems. It is characterized by the use of deep neural networks
with multiple layers (deep architectures) as shown in Figure 11-4. [35]

Machine Learning

& &y 2273 [l

Input Feature extraction Classification Output

Deep Learning

G, — Sy —

Input Feature extraction + Classification Output

Figure 11-4: Difference between ML and DL [30]

Machine learning encompasses a broader range of algorithms and techniques for
learning from data, while deep learning focuses specifically on neural networks with
multiple layers for solving complex problems. Deep learning has shown remarkable success
in various applications, particularly in domains with large datasets.

[1.4.2 History of Deep Learning

The history of Deep Learning goes back several decades, marked by the contributions
of researchers and scientists in the field of neural networks and artificial intelligence. Figure

I1-5and Table 11.1 present a timeline of the main contributors and their contributions:
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Table I1.1: Timeline of the main contributions in the field of ANN [36]

Year Contributer Contribution

300 BC | e Aristotle Introduced Associationism, marking the beginning
of humanity's effort to understand the brain.

1873 e Alexander Bain Introduced Neural Groupings as the first models
of neural networks.

1943 e McCulloch & Pitts The McCulloch-Pitts (MCP) model was
introduced and is considered as the ancestor of
artificial neural networks.

1949 e Donald Hebb Regarded as the father of neural networks, he
introduced the Hebbian Learning Rule, which
forms the foundation of modern neural networks.

1958 e Frank Rosenblatt Introduced the first perceptron.

1974 e Paul Werbos Introduced Backpropagation

e Teuvo Kohonen Introduced Self Organizing Map
1980
e Kunihiko Fukushima Introduced Neocogitron, which inspired
Convolutional Neural Network
1982 « John Hopfield Introduced Hopfield Network
1985 e Hilton & Sejnowski Introduced Boltzmann Machine
e Paul Smolensky Introduced Harmonium, which is later known as
1986 Restricted Boltzmann Machine
e Michael 1. Jordan Defined and introduced Recurrent Neural Network
1990 e Yann LeCun Introduced LeNet, showed the possibility of deep
neural networks in practice
e Schuster & Paliwal Introduced Bidirectional Recurrent Neural
Network
1997 e Hochreiter & Introduced LSTM, solved the problem of
Schmidhuber vanishing gradient in recurrent neural networks

2006 e Geoffrey Hinton Introduced Deep Belief Networks, also introduced
layer-wise pretraining technique, opened current
deep learning era.

2009 e Salakhutdinov & Introduced Deep Boltzmann Machines

Hinton
2012 e Geoffrey Hinton Introduced Dropout, an efficient method for

training neural networks
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Figure 11-5: Trade of representation power and computation complexity [36]
11.4.3 Concepts of Deep Learning Models

Artificial neural networks (ANNSs) are inspired by the structure and function of the
human brain. They consist of interconnected processing units called neurons, arranged in
layers. This section presents the key components of an ANN architecture: [30]

11.4.3.1 Neurons

Neurons in a neural network act as information processors. They receive inputs from
other neurons or the initial input layer. These inputs are then scaled by weights, which
represent the strength of the connection between neurons. An optional bias term can be added

to adjust the activation threshold of the neuron.

Input Weight

r10—»(w " Activation Output
Function

720 >@ >
Sum {J: > Y

Figure 11-6: Structure of a neuron [30]
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Finally, the weighted sum is passed through an activation function. This function
introduces non-linearity, allowing the network to learn complex patterns from data. The
output of the activation function becomes the activation of the neuron, which is then sent
onward to other neurons in the next layer, continuing the information processing chain.

As presented in Figure 11-6, a neuron has three parameters: [37]

e Weight: When a signal (value) arrives, a neuron gets multiplied by a weight value.

If a neuron has three inputs, it has three weight values which can be adjusted during
training time.

e Bias: An additional input to neurons that is always set to 1, with its own connection
weight. This ensures that even when all other inputs are absent (all 0s), there will still be
activation in the neuron.

« Activation Functions: The primary role of any activation function in a neural network is
to map the input to the output. This input is obtained by calculating the weighted sum of
aneuron's inputs and adding a bias, if present. The activation function determines whether

a neuron will fire for a given input by producing the corresponding output.

11.4.3.2 Activation Functions: The Decision Maker

An activation function in neural networks is a mathematical function that determines
aneuron's output based on its input. It plays a key role in deciding how the network processes
information, similar to how biological neurons function. Acting as a transfer function, it

converts input values into corresponding outputs.

Neural network activation functions are categorized as binary step, linear, or non-
linear. Linear functions produce outputs proportional to inputs. Binary step functions are
threshold-based and simple. Non-linear functions, the most common and complex, enable
diverse data processing. [38]

114.3.2.1 Binary Step Function

The binary step function, as shown in Figure 11-7, determines neuron activation based
on a threshold value. If the input exceeds the threshold, the neuron activates; otherwise, it
remains inactive, preventing its output from being passed to the next hidden layer. [39]
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Figure 11-7: Binary Step Function [39]

11.4.3.2.2 Linear Activation Function

A Linear Activation Function, as shown in Figure 11-8, is represented by the equation y
= x, forming a straight line. Regardless of the number of layers in a neural network, if all
layers utilize linear activation functions, the final output remains a linear combination of the
input. Linear activation functions are beneficial for certain tasks but need to be paired with
non-linear functions to improve a neural network’s learning ability and predictive

performance.

Linear Activation Function

10.0

7.5

5.0 1

2.5 1

0.0

Output

_2.5 -

-5.0 1

—7.5 1

—10.0 A

T T
-100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
Input

Figure 11-8: Linear Activation Function [38]
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11.4.3.2.3 Non-Linear Activation Functions

The success of artificial neural networks is largely attributed to their ability to model
complex, non-linear functions in real-world data. Without non-linearity, even deep networks
would be limited to solving only basic, linearly separable problems. Activation functions
play a crucial role by introducing non-linearity, enabling neural networks to capture intricate
data distributions and tackle advanced deep learning challenges. This flexibility allows the
network to learn more abstract patterns and better fit input data, making activation functions
essential for the effectiveness of neural networks. [38] [40]

e Sigmoid Function : The sigmoid activation function, also known as the logistic
activation function, is a widely used non-linear function that maps input values to an
output range between 0 and 1 as presented in Figure 11-9. Unlike the binary step function,

it produces continuous values within this range rather than just 0 or 1. [38] [40]

Sigmoid Activation Function
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Figure 11-9: Sigmoid Activation Function [38]

e Tanh Activation Function: The tanh activation function, as presented in Figure

11-10, offers several advantages over sigmoid: it handles negative values better, is zero-
centered for faster learning, and has stronger gradients that mitigate vanishing gradients
somewhat. However, like sigmoid, it still suffers from the vanishing gradient problem,
especially in deep networks. Tanh is commonly used in hidden layers, particularly when

input data is zero-centered, for more efficient training. [38] [40]
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Tanh Activation Function
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Figure 11-10: Tanh Activation Function [38]
e ReLU (Rectified Linear Unit) Function

ReLUs are popular activation functions that are known for their effectiveness and
simplicity. It prevents gradient vanishing problems and speeds up computation by
substituting O for negative values while keeping positive values unchanged, as shown in
Figure 11-11. Compared to neural networks that use sigmoid or tanh, those that use ReLU
usually converge six times faster.[38] [40]

RelLU Activation Function
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Figure 11-11: ReLu Activation Function [38]
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11.4.3.3 Artificial Neural Network

Acrtificial Neural networks (ANN) are a type of Al inspired by the structure and
function of the brain. They are composed of interconnected nodes (or artificial neurons) that
process information by passing signals to each other. These networks can learn and improve
their performance over time by adjusting the weights of the connections between nodes.

There are typically three layers in an artificial neural network. Nodes that are
connected to each other make up layers. The following provides a description of the three
layers of ANN as illustrated in Figure 11-12. [30]

o Input layer: This layer serves as the entry point, receiving raw data from the external
world. This data can be anything from images and sounds to numerical values,
depending on the network's purpose.

o Hidden layers: These layers, often consisting of multiple layers stacked upon each
other, perform the core computations and information processing. They extract features
and patterns from the raw data received from the input layer. The number of hidden
layers and the number of neurons within each layer are crucial hyperparameters,
influencing the network's complexity and its ability to learn and generalize from data.

e Output layer: The final layer of the network, the output layer, produces the network'’s
final outcome. This output can take various forms, depending on the network’s task. For
example, it could be a classification decision (e.g., identifying a handwritten digit), a

predicted value (e.g., stock price prediction), or even a generated image.

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer

Figure 11-12: Deep Neural Network [30]
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11.4.4 Types of artificial neural network

There are many different types of neural networks, each with its own strengths and

weaknesses. This section presents some of the most common types.[41][42]

11.4.4.1 Perceptron
The perceptron, as shown in Figure 11-13, is the simplest type of neural network. It
consists of a single layer of nodes and can only perform linear separations of data.
Perceptrons are not very powerful on their own, but they are the building block of more

complex neural networks. [43]
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Figure 11-13: Perceptron, Simple Neural Network [43]
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11.4.4.2 Multilayer Perceptron (MLP)

MLPs are a type of feedforward neural network that consists of multiple layers of
perceptron. The additional layers allow MLPs to learn more complex relationships between
data. MLPs are a general-purpose type of neural network that can be used for a wide variety

of tasks, such as image recognition and classification. [43]

11.4.4.3 Convolutional Neural Network (CNN)

CNNs are a type of neural network that is specifically designed for image recognition.
CNNs, as shown in Figure 11-14 , use a special type of layer called a convolutional layer that
is able to extract features from images. CNNs are very successful at image recognition tasks,

such as face detection and object classification. [44] [45]
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Convolutional Neural Networks (CNN)
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Figure 11-14: Convolutional Neural Network Architecture [42]

11.4.4.4 Recurrent Neural Network (RNN)

RNNs are a specialized type of neural network designed for processing sequential data.
Unlike traditional neural networks, they incorporate a feedback loop, as illustrated in Figure
11-15, enabling them to retain information from previous inputs and use it to influence current
processing. This memory-like capability makes RNNs particularly well-suited for tasks such
as speech recognition, language translation, and time series prediction, including sales
forecasting and stock market analysis. A key strength of RNNs is their ability to capture
temporal dependencies, allowing them to learn from past data and make informed

predictions about future events.[43] [44]
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Figure 11-15: RNN Architecture [43]
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11.4.4.5 Long Short-Term Memory (LSTM)

LSTMs are a type of RNN that is specifically designed to address the problem of
vanishing gradients. Vanishing gradients can occur in RNNs when processing long
sequences of data. LSTMs have a special internal structure, as illustrated in Figure 11-16, that
allows them to store information for longer periods of time. LSTMs are very successful at

tasks such as speech recognition and machine translation. [44] [46]
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Figure 11-16: LSTM Architecture [46]

11.4.4.6 Generative Adversarial Networks (GANS)

Generative adversarial networks are a type of artificial intelligence model developed
by lan Goodfellow and his colleagues in 2014. They are based on an adversarial training
framework, where two neural networks, the generator and the discriminator, compete to
generate highly realistic synthetic data. The generator is responsible for producing synthetic
data, while the discriminator evaluates whether the data is real or artificially generated.
Throughout training, the generator continuously improves its output to deceive the
discriminator, while the discriminator enhances its ability to distinguish real from synthetic
samples. This iterative process continues until the generator produces data that is nearly
indistinguishable from real data, leading to a balanced state between the two networks. The
architecture of GAN is illustrated in Figure 11-17. [44][47]
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Figure 11-17: GAN Architecture [47]

11.4.4.7 Sequence to Sequence Models (Seq2Seq)

Seq2Seq was first introduced by Google for machine translation, it revolutionized the
word-by-word method that ignored sentence structure and syntax. Seq2Seq transformed
translation by utilizing deep learning to take into account both the current input word and its
context. There are two main parts , as shown in Figure 11-18, to this model (Decoder and
Encoder). Seq2Seq models are trained on input-output token sequences to predict the most
likely output, making them effective for natural language processing (NLP) tasks like image
captioning, text summarization, and machine translation. They often incorporate Attention
mechanism to enhance performance by focusing on relevant input parts. Today, they are
widely used in text generation, automated content creation, and conversational Al. [48]

Er liebte zu essen

NULL Er liebte zu essen

He loved to eat

Figure 11-18: Sequence to Sequence Model [48]
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1.5 Deep Learning in medical image analysis:

Medical professionals have used imaging methods like CT, MRI, PET,
mammography, ultrasound, and X-rays for decades in order to identify, diagnose, and treat
diseases early [31]. Human specialists like radiologists and doctors have historically been in
charge of interpreting these images. However, there is an increasing reliance on computer-
aided techniques to support medical decision-making due to the complexity of anomalies
and the possibility of human fatigue. Although image technology has advanced more quickly
than computer-aided analysis, the use of machine learning has resulted in notable
advancements. In particular, deep learning (DL) has revolutionized medical image analysis
by enabling automated, accurate, and efficient interpretation of complex imaging data.
Unlike traditional machine learning approaches that require handcrafted features and
extensive domain expertise, deep learning models can autonomously learn hierarchical
features from raw images. This capability has greatly enhanced diagnostic accuracy, disease
classification, and treatment planning across various medical fields, including radiology,

pathology, and oncology.[49]

11.5.1 The Impact of Deep learning on Medical Image Analysis

Deep learning, particularly Convolutional Neural Networks (CNNs), has
fundamentally changed medical image analysis. By automating complex tasks like
segmentation and disease classification with high accuracy, these algorithms are accelerating
diagnoses, improving patient outcomes, and streamlining healthcare. Leveraging vast
amounts of annotated data, deep learning enables earlier disease detection, enhances
radiologist decision-making, and drives medical research, effectively revolutionizing patient
care. [4] [44][43]

11.5.2 Applications in Medical Imaging

Deep learning has been widely applied to various medical imaging tasks [31][44]
[45] [49] [50] [51] , including :

e Tumor Detection and Classification: Because of their strong feature extraction
capabilities, CNNs are highly effective at accurately detecting and classifying cancers,
such as brain tumors in MRIs, lung nodules in CT scans, and breast cancer in

mammaograms.
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e Medical Image Segmentation: Organ and lesion segmentation is a crucial step for
precise diagnosis and therapy planning, and U-Net and related architectures are
frequently employed for this purpose.

o Disease Prediction and Diagnosis: By training on big datasets, deep learning models
can detect and diagnose diseases such as diabetic retinopathy (based on visual imaging),
Alzheimer's disease (based on brain MRI), and pneumonia (based on chest X-rays).

e Image Enhancement and Reconstruction: By reducing noise, enhancing resolution,
and eliminating artifacts, methods such as GANs improve the quality of medical images,
leading to better interpretation.

e Image Registration: To enhance analysis and treatment planning, image registration
aligns medical images from several modalities, views, or times. VoxelMorph and other
deep learning models improve speed and accuracy, which helps with radiation planning
for accurate diagnosis and treatment, multi-modal fusion (MRI-PET), and disease
tracking (MRI).

e Image-Guided Interventions: Deep learning is used in image-guided interventions to
improve real-time imaging during operations and medical procedures. Robotic-assisted
surgery benefits from reinforcement learning, while surgical tool tracking is aided by
methods such as object detection. Applications that enhance accuracy and patient
outcomes include real-time tissue segmentation, ultrasound-guided biopsies, and tumor

localization in radiation therapy.

11.5.3 DL Techniques for Medical Image Analysis

Deep learning has transformed medical image analysis by improving feature
extraction, classification, and segmentation. Key techniques include CNNs for object
detection, RNNs and LSTMs for handling sequential medical data, and GANs for
generating synthetic images to enhance datasets. Additionally, hybrid approaches combine
deep learning with traditional methods to address challenges like data scarcity and
interpretability, leading to more accurate and reliable diagnostic tools. These techniques
collectively enhance medical decision-making and patient outcomes. [44]

e Convolutional neural network for medical image analysis

In the context of deep learning applications for medical image processing, CNNs are

indispensable. Their capacity for automated feature extraction enables high performance in
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object localization, segmentation, and classification. The hierarchical architecture of CNNs
facilitates the identification of intricate patterns, resulting in improved diagnostic precision,
increased procedural efficiency, and enhanced patient outcomes. [44] [52]

e Recurrent neural network techniques for medical image analysis

RNNs play a crucial role in medical image analysis with deep learning due to their
ability to capture temporal dependencies and contextual information. They are particularly
effective for tasks involving sequential or time-series data, such as analyzing medical image
sequences or dynamic imaging modalities. By modeling long-term dependencies and
leveraging information from previous time steps, RNNs facilitate pattern recognition,
disease progression prediction, and tumor growth tracking. [44] [43]

o Generative adversarial network techniques for medical image analysis

GANSs are crucial in medical image analysis because they enable the creation of
realistic synthetic images, augment datasets, and eventually improve the precision of
diagnoses and analyses. [44] [47]

e Long short-term memory techniques for medical image analysis

In medical image analysis, LSTM networks are essential for deep learning applications
that require understanding sequential dependencies. Medical images often contain intricate
spatial and temporal patterns that demand contextual awareness. As a type of RNN, LSTM
excels at modeling these long-range dependencies and temporal dynamics, proving
particularly useful for time series analysis, disease progression modeling, and image
sequence analysis. By leveraging its memory and gating mechanisms, LSTM can effectively
learn and retain pertinent information over time, resulting in more accurate and robust
medical image analysis and contributing to better diagnostic outcomes and personalized
treatment strategies. [44] [47]

e Hybrid techniques for medical informatics

Medical image analysis benefits greatly from hybrid approaches that blend deep
learning with other methods. While deep learning excels at tasks like segmentation and
classification, it can struggle with limited data or lack of transparency. Hybrid techniques
address these issues by integrating traditional machine learning, statistical models, or expert

knowledge. Combining diverse data sources, like images and patient reports, further
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enhances understanding and improves medical decisions. This leads to more precise and

dependable tools for healthcare professionals. [10] [44] [9]

11.5.4 Advantages of Deep Learning in Medical Imaging

Deep learning offers several key advantages for medical image analysis: [44] [53]

e Automated Feature Extraction: In contrast to traditional methods that require
handcrafted features, deep learning algorithms learn pertinent features directly from
data, minimizing human bias and effort.

e High Accuracy and Robustness: In many medical imaging tasks, deep learning has
surpassed traditional techniques, sometimes attaining performance that is close to or
even better than human.

e Scalability and Generalization: Deep learning models can effectively generalize

across various imaging datasets and medical situations when given enough training data.

[1.5.5 Challenges and Limitations

Despite its success, deep learning in medical image analysis faces several challenges: [53]

o Data Availability and Annotation: Deep learning models need large, well-annotated
medical datasets for training, however collecting such data is frequently challenging
because of privacy issues and a lack of expert annotations.

e Interpretability and Explainability: Since deep learning models operate as "black
boxes," it is challenging to provide an explanation for their choices. Gaining the trust of
clinicians in important medical applications requires interpretability.

o Computing Requirements: Significant computing resources, such as powerful GPUs
and a lot of storage, are needed to train deep neural networks.

11.5.6 Future Directions

Deep learning research for medical image processing is moving forward to more
efficient and interpretable models. To improve performance and explainability, methods like
self-supervised learning, hybrid models that combine deep learning and rule-based systems
(such DRB classifiers) are being investigated. Federated learning, which enables the
decentralized training of deep learning models without exchanging private patient data, is

also showing promise as a remedy for privacy issues. Ongoing developments in model

37



Chapter 11 Materials and methods

architecture and training techniques are overcoming challenges like interpretability,
computing demands, and data availability. Medical image analysis has been revolutionized
by deep learning, which makes disease diagnosis quicker, more precise, more automated. Its
incorporation with medical imaging has enormous potential to enhance clinical reasoning

and, eventually, improve patient outcomes.

11.5.7 CNNSs for MRI Brain Tumor Classification

The classification of MRI brain tumors is an intricate task requiring effective
representation of spatial, structural, and textural features. CNNs have emerged as a powerful
tool in medical image analysis, and several key advantages make them particularly well-
suited for MRI brain tumor classification. These include their ability to automatically learn
complex, hierarchical features; capture spatial and structural variations within MRI images;
outperform traditional methods in classification accuracy; leverage transfer learning to
improve performance with limited medical data; and integrate deep learning with
handcrafted features. These strengths make CNNs a robust and dependable choice for this
task, significantly advancing medical image analysis and enabling more accurate and reliable
diagnoses.[44]

A shown in Figure 11-19 CNN is made up of several building blocks called layers. In
this subsection, we will provide a detailed analysis of these layers and their roles in the CNN
architecture.[42] [52]
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Figure 11-19: Representation of Convolutional Networks [54]
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11.5.7.1 Input layer
The input layer in CNN must contain data describing the image. Image data is
represented by a three-dimensional matrix which generally needs to be reshaped into a single

column (vector representation).

11.5.7.2 Convolutional Layer

The convolutional layer is sometimes called a feature extraction layer because image
features are extracted in this layer as shown in Figure 11-20 and Figure 11-21. First, a portion
of the image is connected to the Convolutional layer to perform a convolution operation and
calculate the dot product between the receptive field (a local region of the input image with
the same size as the filter). The result of the operation is a single integer of the output
volume. Then, we slide the filter over the next receptive field of the same input image by a
stride and repeat the same operation. This operation is repeated by the same process over

and over until the entire image is traversed.

« The Convolution layer also contains the ReLU activation so that all negative values are

set to zero.
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Figure 11-20: Convolution Operation [37]

o The convolution layer plays a crucial role in CNNs by extracting relevant features from
the input image, allowing the network to perform tasks like image recognition and object
detection.
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Figure 11-21: Convolutional Layer [55]

11.5.7.3 Pooling Layer

Pooling layers are used to down sample the feature maps produced after convolution
operations. They take large feature maps and shrink them to smaller sizes, preserving the
most important features in each step. The pooling operation is defined by specifying the
region size and stride, similar to the convolution operation. It is used between two
convolutional layers. If we apply a Fully Connected (FC) layer after the Conv layer without
applying pooling or maximum pooling, the computation will be costly. Thus, Different types
of pooling techniques are used in various pooling layers, such as max pooling, min pooling,
average pooling, gated pooling, and tree pooling. Max pooling is the most popular and

commonly used technique as shown in Figure 11-22.
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Figure 11-22: Example of the Pooling Principle [56]
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11.5.7.4 Fully Connected Layer

After several convolutional and max-pooling layers, high-level reasoning in the
neural network is done through fully connected layers. They take the features extracted from
the convolutional layers and connect them to a single output layer, performing
classifications or predictions based on the learned features. Fully-connected layers are a
type of feed-forward artificial neural network (ANN) that follow the principles of traditional
multi-layer perceptron neural networks (MLP). These layers take input from the final
convolutional or pooling layer, which is in the form of a set of matrices (feature maps).
These matrices are flattened into a vector, which is then fed into the fully-connected layer

to generate the final output of the CNN, as shown in Figure 11-23.
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Figure 11-23: Fully Connected Layers [30]

11.5.7.5 Logistic or Softmax Layer (LOSS)

The last layer of a CNN is the Softmax or Logistic layer, located at the end of the
fully-connected layer. The Logistic layer is used for binary classification, while the Softmax

layer is used for multi-class classification.

11.5.7.6 Output Layer: The Final Decision Maker

The output layer is the final layer in a Convolutional Neural Network. It receives the
output from the preceding layers and generates the network's final prediction which is
typically a classification or regression prediction.
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11.6 Performance Evaluation Measurements

Evaluation metrics are crucial in assessing the performance of a deep learning
algorithm. They provide a quantitative measure of a model’s ability to generalize to new,
unseen data. For classification tasks, these metrics can reveal the accuracy of predictions and
the number of correct or incorrect predictions. Common metrics for such tasks include the
confusion matrix (which visualizes classification performance and aids in calculating other
metrics), accuracy, precision, recall (sensitivity), Fl-score, specificity, and Receiver
Operating Characteristic (ROC) curves .[57] [58]

11.6.1 Confusion Matrix

The confusion matrix, presented in Table 11.2 provides a summary of classification
results, showing the number of correct and incorrect predictions for each class. The terms
used in a confusion matrix and other evaluation metrics include true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). True positives are instances
correctly identified as positive, while false positives are negatives incorrectly identified as
positive. True negatives are correctly identified as negative, and false negatives are positives
incorrectly identified as negative.[57] [59]

Table 11.2;: Confusion matrix

Expected outcome Ground truth

Positive Negative

Positive TP FP
Negative FN TN

11.6.2 Accuracy
Accuracy measures the proportion of instances correctly classified as either positive
or negative out of the total number of instances. It is calculated by Equation (I1.1)

TP+TN

Accuracy= ——————— (1.1)
TP+TN+FP+FN

11.6.3 Sensitivity

Sensitivity, also known as recall or true positive rate, measures the proportion of
actual positive instances that are correctly identified by the model. It is calculated by
Equation (11.2).
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Sensitivity= ——— (11.2)
11.6.4 Specificity

Specificity, also known as the true negative rate, measures the proportion of actual

negative instances that are correctly identified by the model. It is calculated by Equation (11.3).

Specificity= TI\ITFFP (1.3)

11.6.5 F1l-score

F1-score is the harmonic mean of precision and recall and can be calculated by
Equation (11.4).

Precision*xRecall
F1 — score =2 % (1.4)

Precision+Recall

11.6.6 ROC curve

The Receiver Operating Characteristic (ROC) curve is a graphical tool used to assess
the performance of a classification model. It plots the True Positive Rate (sensitivity) against
the False Positive Rate (1 - specificity) at various threshold settings. The ROC curve
illustrates the balance between sensitivity and specificity for different thresholds.

The Area Under the ROC Curve (AUC) is a single value that summarizes the model's
performance. An AUC of 1 indicates perfect classification, while an AUC of 0.5 suggests
the model performs no better than random guessing. Figure 11-24 provides an illustration of
a ROC curve.[58] [59]
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Figure 11-24: Roc Curve [60]
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I1.7 Conclusion

This chapter provided a comprehensive overview of the theoretical foundations and
methodologies employed in this study. It began by introducing the fundamental concepts of
Artificial Intelligence, Machine Learning, and Deep Learning, emphasizing their relevance
in medical image analysis. A detailed discussion of machine learning techniques, including
supervised, unsupervised, and reinforcement learning, highlighted the different approaches
to pattern recognition and decision-making.

The chapter then explored deep learning, covering its historical development, key
architectures, and essential components, such as neurons, activation functions, and artificial
neural networks. Various deep learning models, including CNNs, RNNs, LSTMs, and
GANSs, were examined, with a particular focus on CNNs due to their effectiveness in
processing and analyzing medical images.

A dedicated section addressed the impact of deep learning in medical image analysis,
showcasing its applications, advantages, and challenges. In particular, the role of CNNs in
MRI brain tumor classification was detailed, explaining the functionality of each layer in the
CNN pipeline.

Finally, the chapter concluded with an overview of performance evaluation metrics
used to assess the effectiveness of classification models, including accuracy, sensitivity,
specificity, F1-score, and the ROC curve. These metrics will be instrumental in analyzing
and comparing the results obtained in subsequent experiments.

The insights and methodologies discussed in this chapter serve as a foundation for the
experimental work that follows, ensuring a systematic approach to MRI brain tumor
classification using deep learning techniques.
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Chapter 111 : Brain Tumor Classification

I11.1 Introduction

Magnetic Resonance Imaging is a powerful diagnostic tool widely used in the
detection and characterization of brain tumors. The complex nature of brain tumor detection
and classification necessitates the use of advanced computational techniques to assist
radiologists in achieving accurate and timely diagnoses. Among these techniques, machine
learning has emerged as a transformative approach, offering significant improvements over

traditional methods in terms of accuracy, speed, and robustness.

Recent advancements in machine learning, particularly the rise of deep learning, have
further enhanced the capabilities of brain tumor detection systems. Deep learning models,
such as convolutional neural networks, have shown exceptional performance in image
analysis tasks due to their ability to automatically learn hierarchical features from raw data.
These models have been applied to MRI brain tumor detection with remarkable accuracy,

outperforming traditional machine learning methods.

In this chapter, we delve into the various deep learning methodologies applied to MRI
brain tumor detection. We explore the evolution of these techniques, their comparative
performance, and the ongoing challenges that drive future research. We aim to provide a
comprehensive overview of the state-of-the-art in deep learning applications, highlighting

their transformative impact on brain tumor diagnostics.

I11.2 Taxonomy of MRI Brain Image Classification Algorithms

The process of brain tumor detection and classification can be categorized into various
methodological approaches. These include classical image processing techniques, machine
learning algorithms, and more recently, deep learning methods. Each category encompasses
a range of techniques and models designed to improve the accuracy and efficiency of tumor
detection. The taxonomy presented in Figure I11-1 aims to provide a comprehensive
overview of the various methods used in MRI brain tumor detection and classification. By
categorizing and comparing classical image processing, machine learning, and deep learning
techniques, we seek to highlight the evolution of this field and the strengths and limitations
of each approach as shown in Table 111.1. Understanding these methodologies will not only
aid in selecting the appropriate techniques for specific clinical applications but also pave the

way for future research and development in automated brain tumor detection systems.
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Classification Techniques for MRI Brain
Tumor Detection

|

Classical Methods Machine Learning De:l;elt-::crig ing
Methods

Strengths:High Accuracy,

Strengths: Easy to implement .
W kg : F{ mp ) Strengths: Inl"lproved Accuracy Automated Feature Leaming
€aKnesses: Requires goo Weaknesses: Data Dependency, ‘ -
feature selection Overfitting Risk Weaknesses: Data requirements,
9 Black Box Nature
Supervised Learning Unsupervised
Learning
Strengths. High accuracy with Strengths: : Useful for
well-labeled data exploring unlabeled data
Weaknesses: Requires Weaknesses: requires
significant labeled data additional analysis.

» KNN + CNNs: Comvolutional

» Thresholding: » K-Means Clustering

. i » Naive Bayes . . Neural Networks
° Dlst.ance-base.d. » Decision Trees e Clustt.anng + DNNs Deep Neural
» Region-based: . SVM « Self-Organizing Maps: SOM Networks

Figure 111-1: Taxonomy of MRI Brain Tumor Classification Techniques

Classical Methods use simple techniques: thresholding isolates high-intensity
regions, distance-based methods find similar patterns, and region-based methods segment
structures but depend on good feature selection.

Supervised Machine Learning methods (e.g., KNN, Naive Bayes, Decision Trees,
SVM) perform well with labeled data, balancing simplicity, interpretability, and scalability,
but may face issues like overfitting or computational demands.

Unsupervised Machine Learning methods (K-means, Fuzzy C-Means, Self-
Organizing Maps (SOM)) cluster data without labels, revealing natural patterns but requiring
additional steps for interpretation.

Deep Learning methods, especially Convolutional Neural Networks (CNNs) and
Deep Neural Networks (DNNs), demonstrate strong performance in MRI brain tumor
classification by automatically learning spatial and hierarchical features. However, these
models demand significant computational resources and are often seen as "black boxes™ with
limited interpretability, making them resource-intensive and challenging for clinicians to

understand without further refinement.
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Table 111.1 serves as a guide to the different classification techniques, providing a basis

for selecting the most appropriate method for MRI brain tumor analysis depending on

resource constraints, interpretability needs, and dataset characteristics.

Table 111.1: MRI Brain Tumor Classification Techniques

Category Algorithm Strengths Weaknesses
Thresholding Isolates high-intensity Lacks nuance
regions
. Might miss subtle
Classical . e .
Methods Distance-based | Identifies similar patterns | differences
Requires good feature
Region-based Segments brain structures | selection
Computationally
KNN Easy to implement, good | expensive for large
for small datasets datasets
. . Efficient for large Struggles .W'th complex
Machine Naive Bayes relationships
. datasets
Learning
(Supervised) Handles mixed data,
Decision Trees | interpretable Prone to overfitting
SuM Effective for high- Complex parameter
dimensional data g
Requires further
K-means Identifies similar brain investigation for class
Clustering regions labels
I\/Iachl_ne Fuzzy C-Means | More flexibility than K- _Challenglr!g
Learning Clustering means Interpretation
(Unsupervised)
Visualizes relationships,
SOM good for anomaly Doesn't provide class
detection labels directly
Highly successful, learns .
. ' Computationally
CNN spatial features expensive, black box
Deep Learning Powerful for complex Requires significant
DNN tasks a g

resources and expertise

47




Chapter 111 Brain Tumor Classification

I11.3 Classification Process

Magnetic resonance imaging has become an essential tool for the diagnosis and
monitoring of brain pathologies. With its ability to produce detailed images of brain
anatomy, MRI allows for the visualization of a wide range of abnormalities, including
tumors, strokes, infections, and neurodegenerative diseases. The analysis and classification
of brain MRI images play a crucial role in interpreting data and establishing accurate

diagnoses.

Brain MRI classification involves identifying and categorizing the different structures
and abnormalities present in the images. This process typically involves several steps as

shown in Figure 111-2.

INPUT

J

Pre-Processing Step

J

Feature Extraction Step

L

Classification Step

l

| Classification Label I

QuUTPUT

Figure 111-2 Classification Process
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I11.3.1 Pre-processing step

The preprocessing step plays an important role in improving the quality of the image that
leads to achieving better results in feature extraction and classification steps. It consists of
fundamental pre-processing techniques such as binarization, normalization, rotation,
resizing, and removal of undesired parts of MR images. Common preprocessing steps
include :

e Intensity Normalization: MRI scans can exhibit variations in intensity due to
scanner differences or acquisition protocols. Normalization techniques like scaling
or histogram matching rectify these variations.

e Skull Stripping: This process removes the non-brain tissue (skull) from the MRI
image, focusing analysis on the brain region of interest.

e Noise Reduction: MRI scans can be susceptible to noise caused by various factors.
Techniques like filtering are employed to minimize noise and enhance image clarity.

o Co-registration: When using multiple MRI sequences, co-registration ensures their

spatial alignment, allowing accurate feature extraction across modalities.

I11.3.2 Feature extraction step

Feature extraction is also a vital step in the classification process. It consists of finding
the most significant characteristics from the original data in order to improve the overall
efficiency of the system.

Feature extractors can be categorized based on the information they capture. Intensity-
based extractors provide basic statistics of pixel values. Textural extractors, like GLCM
(Gray Level Co-occurrence Matrix), delve deeper to analyze the spatial arrangement of
intensities, reflecting the tumor's texture. Morphological extractors focus on the tumor's
shape and size. Finally, advanced techniques like Gabor filters or deep learning can capture
intricate patterns within the image data. By strategically combining features from different
categories, a comprehensive tumor representation can be achieved, potentially leading to
superior classification accuracy [61]. Figure 111-3 provides a taxonomy for understanding the
various types of feature extractors used in MRI brain tumor classification. Selecting the
appropriate extractors and combining them effectively is crucial for building robust and
accurate machine learning models for this critical medical application.

This section explores various feature extraction methods investigated in this research.
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El'axonomy of Feature Extractionj
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Figure 111-3: Taxonomy of feature extraction used in MRI Brain Tumor Detection

I11.3.2.1 Binarized Statistical Image Features (BSIF)

BSIF falls under the category of Statistical Feature Extractors but with a twist.
Traditional statistical features directly analyze intensity values. BSIF, however, takes a more
elaborate approach [62]:

e Learns a statistical basis: It utilizes techniques like Independent Component
Analysis (ICA) to learn a set of basis vectors that capture the statistical properties of
natural images.

e Projects image patches: small image regions (patches) around each pixel are
projected onto this learned basis.

e Binarizes the projections: The resulting projection values are then thresholded,
converting them into binary codes (0s and 1s).

e Histogram representation: Finally, a histogram is constructed to capture the
frequency of these binary codes across the image.

Therefore, BSIF leverages statistical learning to create a novel feature representation

based on intensity variations within local image patches [63].
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I11.3.2.2 Histogram of Oriented Gradients (HOG)

The HOG descriptor [64] is one of the most widely used methods for feature extraction
in localized image regions, leveraging histograms of gradient orientations. The process for
constructing the HOG feature vector involves several steps:

1. Calculate the gradients of the image. This can be done using a variety of filters,
such as the Sobel filter or the Laplacian filter.

2. Divide the image into cells. The cells are typically 8x8 pixels in size.

3. Calculate the histogram of oriented gradients for each cell. For each cell,
calculate the magnitude and orientation of the gradients at each pixel. Then, bin the
gradients into a certain number of orientation categories. The histogram of oriented
gradients for a cell is the count of gradients in each orientation category.

4. Normalize the histograms. This is done to ensure that the histograms are not
affected by the overall brightness of the image.

5. Concatenate the histograms together to form the final HOG descriptor. The final
HOG descriptor is a vector of numbers that represents the distribution of oriented
gradients in the image.

HOG descriptors, as shown in Figure I11-4 are used in a variety of computer vision

applications, such as object detection, image classification, and image matching.
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Figure 111-4: HOG descriptor [64]

111.3.2.3GIST Descriptor: A Low-Dimensional Image Representation

The GIST descriptor [65], is an image descriptor that relies on a low-dimensional
representation known as the Spatial Envelope. It captures the dominant spatial structure of
an image through a set of statistical attributes, including naturalness, openness, roughness,
expansion, and robustness. GIST encapsulates gradient information, such as scales and
orientations, for different regions of the image, providing a high-level approximation of its
structure.
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To extract the GIST features, the input grayscale image is first normalized by adjusting
its intensity and local contrast. The image is then divided into a grid spanning multiple scales.
For each cell in the grid, a set of Gabor filters is applied, and the resulting responses are
combined to form the final feature vector. This process offers a compact and efficient
summary of the image’s spatial properties.

111.3.2.4 AlexNet

AlexNet, introduced by Krizhevsky et al., presented in Figure 111-5 [66] , was the first
CNN to win the ImageNet challenge in 2012, with atop 5 error of 16.4%. The use of rectified
linear units (ReLUs) was also introduced in AlexNet. It includes five convolutional layers,
three max pool layers, and three fully connected layers. This architecture uses a [227 x 227
x 3] image as an input. In AlexNet, a 4096-dimensional feature vector represents the 227 x
227 image [67], [68].

111.3.2.5 VGG-16

The VGG (Visual Geometry Group) Net presented in Figure 111-6, introduced by
Simonyan and Zisserman [69], is a convolutional neural network (CNN) that gained
prominence as one of the top-performing models in the ILSVRC-2014 (ImageNet Large
Scale Visual Recognition Competition) for image classification. VGG Net was trained on
the ImageNet dataset, which consists of over 14 million images across 1000 classes, with
1.3 million images for training, 50,000 for validation, and 100,000 for testing. The model
achieved an impressive accuracy of 92.7% on the ImageNet dataset.

The input to the VGG Net must be an RGB image of size 224x224. These images are
passed through multiple convolutional layers, each with a fixed filter size of 3x3 and a stride
of 1. The VGG-16 architecture, in particular, includes five max-pooling layers integrated
within a series of convolutional layers, followed by three fully connected layers. The first
two fully connected layers contain 4096 channels, while the third has 1000 channels,
corresponding to the number of output classes. The final layer is a softmax layer, used for
classification. [70]
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Figure 111-6: VGG-16 CNN Architecture [69]

I11.3.2.6Residual Network (ResNet-50 and ResNet-18)
ResNet was proposed by He et al. [70], and it revolutionized CNN architecture by

introducing the concept of residual learning in convolutional neural networks. This

innovation provided an efficient methodology for training deep networks. ResNet introduced
a deep CNN with 152 layers, which won the 2015 ILSVRC competition. The ResNet block
architecture, 20 and 8 times deeper than AlexNet and VGG respectively, was one of the first

to adopt batch normalization. Despite its depth, ResNet demonstrated lower computational

complexity compared to previously proposed networks. [70] [72].

111.3.3 Classification step:

There exist several techniques for classification of data such as fuzzy clustering means

(FCM), support vector machine (SVM), and artificial neural network (ANN).
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Motivated by the high classification accuracy achieved by the DRB classifier in [73],

we explore it for the classification of MRI brain tumors.

I11.3.3.1Naive Bayes

The Naive Bayes classifier is a probabilistic supervised algorithm that assumes the
presence of a feature for a class, as showed in Figure 111-7, is independent of the presence of
other features, which is why it is described as "naive". For example, a person may be
classified as a man based on their weight and height. Even though these characteristics are
correlated in reality, a naive Bayes classifier treats them independently when making its
classification.

Despite its extremely simplistic assumptions, this classifier delivers very good results
in many complex real-world scenarios. In 2004, a study provided theoretical reasons behind
this unexpected effectiveness [74]. However, a 2006 study showed that more recent methods
(such as boosted trees and random forests) produce better results [75].

Figure 111-7: The Naive Bayes classifier [75]
Naive Bayes algorithm offers good performance, but the predictions become

inaccurate if the assumption of conditional independence is invalid.

I11.3.3.2K-Nearest Neighbor

The K-Nearest Neighbors (KNN) algorithm is a supervised classification algorithm.
Each observation in the training set is represented by a point in an n-dimensional space,
where n is the number of predictive variables. To predict the class of a new observation, the
algorithm identifies the k closest points to this example. The class of the target variable is
determined by the most represented class among the k nearest neighbors. Variants of the
algorithm exist where the k observations are weighted based on their distance to the example
being classified, with more distant observations considered less important. Example of
classification with KNN is shown in Figure I11-8. [76]
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Figure 111-8: Example of classification with KNN [77]

e Advantages: simple to design.
e Disadvantages: sensitive to noise, for a large number of predictive variables, the

distance calculation becomes very costly.

111.3.3.3Support Vector Machine (SVM)

Support Vector Machines [78] are very powerful non-linear binary classification
algorithms. The principle of SVMs involves constructing a non-linear separating margin of
maximum width that separates two sets of observations and using it to make predictions [79].
SVMs are classifiers based on two key ideas:

1. The first idea, in the case where the problem is linearly separable as shown in Figure 111-9
is to find a linear separator with maximum width, which is the concept of the maximum
margin. The margin is the distance between the separating boundary and the closest samples,

known as support vectors.

“s @ margin
L N ,

O
‘ 7
I:] Maximum.
O

b L
T *

Figure 111-9: Hyper plan of SVM classifier [80]
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The problem is to find this optimal separating boundary. To solve this problem, there
is a unique optimal hyperplane, defined as the hyperplane that maximizes the margin
between the samples and the separating hyperplane.

2. To handle cases where data are not linearly separable, as shown in the example presented
in Figure 111-10, the second key idea of Support Vector Machines is to transform the input
data representation space into a higher-dimensional space where a linear separation is more
likely to exist. This is achieved using a kernel function, which must satisfy Mercer's theorem
conditions and has the advantage of not requiring explicit knowledge of the transformation
to be applied for the change of space. Kernel functions allow the transformation of a dot
product in a high-dimensional space, which is computationally expensive, into a simple
pointwise evaluation of a function. This technique is known as the kernel trick.

Input Space Feature Space

Figure 111-10: Example of a non-linearly separable problem.[80]
Advantages of SVM:

e SVM can be used for both classification and regression tasks. They can also handle non-
linear data by using kernel functions to transform the input space.

e SVMs are an alternative to neural networks because they are easier to train.

Disadvantages:

e Training an SVM can be computationally intensive, especially with large datasets. The
algorithm’s complexity and speed during the training process can be quite high.

e The performance of SVM is heavily dependent on the choice of kernel and the kernel
parameters. Finding the best combination often requires extensive experimentation and
cross-validation.

e SVMs can struggle with datasets where the classes overlap significantly. It’s less
effective when the classes are not well separated.
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111.3.3.4Decision Trees

Decision trees are supervised ML models that can be used for both classification and
regression. A decision tree represents a function that takes an attribute vector as input and
returns a decision, which is a single value. The inputs and outputs can be discrete or
continuous. A decision tree makes decisions by executing a sequence of tests. Each internal
node of the tree corresponds to a test of an attribute's value, and the branches coming out of
the node represent the possible values of the attribute. The class of the target variable is
determined by the leaf node reached by the observation after the sequence of tests. The
learning phase consists of finding the right sequence of tests. For this, the right attributes
must be chosen. A good attribute divides the examples into homogeneous sets, meaning they
contain only observations belonging to the same class, while a useless attribute leaves the
examples with almost the same proportion of values for the target variable. An example of
a decision tree is illustrated in Figure 111-11.

What is needed is a formal measure of "good” and "useless.” For this, there are
standard homogenized metrics to measure the homogeneity of a set. The most well-known

are the Gini diversity index and entropy [81] [82].

Loy,

Figure 111-11: Example of Decision Tree [82]
Advantages:

e |t is awhite-box model, simple to understand and interpret.
Requires little data preparation.
e The input predictive variables can be both qualitative and quantitative.

e Performs well on large datasets.
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Disadvantages:

e There is a risk of overfitting if the tree becomes very complex. Pruning procedures are
used to address this issue.

e Small changes in the data can result in a completely different tree being generated,
leading to high variance in predictions.

I11.4 Overview of Brain Tumor Classification

Numerous studies have investigated the classification of MRI brain images using
machine learning and deep learning techniques. Table I11.2 provides a chronological
summary of significant research works in this domain, highlighting each study’s key
features, classification methods, and achieved accuracy.

Table 111.2: Summary of prior works on MRI brain tumor and classification system

Year Authors Features Methods Accuracy

2020 BadZa et al. [2] CNN CNN 96.56%.

2018 Shree etal. [83]  Discrete wavelet Transformation ~ PNN 100%
(DWT)

2015 Cheng et al. [5] Intensity histogram, Gray Level SVM 91.14%

Co-occurrence Matrix (GLCM),
and Bag-of-Words (BoW) model

2015 Zhang etal. [84]  Wavelet Packet Tsallis Entropy FSVM 99.49%
(WPTE),
2017 Bahadure et al. [85] Berkeley Wavelet Transformation SVM 96.51%.
(BWT)
2012 Y. Zhang et al. [86] Wavelet transform (WT) followed KSVM 99.38%
by Principal Component Analysis
(PCA)
2017 Usmanetal. [87] Wavelet Texture Features Random 95.00%
forest
classifier
2018 Avi et al. [88] Convolutional Neural Network ELM- 97.18%
(CNN) LRF
2018 Byaleetal. [89] Grey Level Co-occurrence Matrix ANN 93.33%.
GLCM

I11.4.1 Machine Learning Techniques

In the context of medical imaging, machine learning has demonstrated significant

potential, particularly in the analysis of MRI brain images. Traditional machine learning
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techniques such as Fuzzy Clustering Means (FCM), K-Nearest Neighbors (KNN), and
Support Vector Machines (SVM) have been employed to detect and classify brain tumors,

offering promising results. Here are some examples of methods utilizing machine learning:

e Zhang et al. [84] proposed a method using wavelet packet Tsallis entropy (WPTE) for
feature extraction and fuzzy SVM for brain abnormality detection.

e Bahadure et al. [85] achieved 96.51% accuracy in classifying healthy and infected
tissues using SVM with features extracted by Berkeley Wavelet Transformation (BWT).

e Y. Zhang et al. [86] developed an automatic classification method for MRI brain images
using a kernel support vector machine (KSVM) and wavelet transform (WT) features,
with Principal Component Analysis (PCA) to reduce feature size.

e Usman et al. [87] investigated the use of wavelet texture features with a random forest
classifier to predict tumor labels in a multiclass classification scenario.

e Cheng et al. [5] focused on classifying three specific tumor types using a combination

of feature extraction methods and bag-of-words for improved accuracy.

I11.4.2 Deep Learning Techniques

The application of deep learning in MRI brain tumor detection encompasses a variety
of architectures and techniques. Convolutional Neural Networks (CNNs), for instance, have
been extensively used for their ability to capture spatial hierarchies in images. Here are some
examples of methods utilizing deep learning:

e Ari et al. [88] designed a method using extreme learning machines for classifying
tumors as benign or malignant, achieving 97.18% accuracy.

e Shree et al. [83] achieved near-perfect accuracy using discrete wavelet
transformation for feature extraction and a probabilistic neural network for
classification.

e Byale et al. [89] proposed a binary classification system using neural networks with
features extracted from Gray Level Co-occurrence Matrix (GLCM), achieving
93.33% accuracy.

e BadzZa et al.[2] presented a new convolutional neural network (CNN) architecture
specifically designed for brain tumor classification from imbalanced datasets,
achieving 96.56% accuracy.

Recent advancements in deep learning have facilitated significant improvements in the

accuracy and robustness of tumor detection models. These models not only assist in
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distinguishing between tumor and non-tumor regions but also contribute to the classification
of tumor types, aiding in the development of personalized treatment plans. Moreover, the
ability of deep learning models to generalize across different datasets and imaging conditions
underscores their potential for widespread clinical adoption.

I11.5 Deep Rule Based Classifier for MRI Brain Tumor Classification

Deep learning, particularly deep convolutional neural networks (DCNNs), has gained
significant popularity due to advances in computational resources.[90][76] DCNNs have
shown high accuracy in various image processing tasks such as handwritten digit recognition
[91], object recognition [92], human action recognition, and more [93]. Despite their success,
DCNNSs have limitations: they require large amounts of training data, lack transparency,
involve complex decisions on structure, have limited parallelization, and struggle with
uncertainty and unseen classes.

In contrast, traditional fuzzy rule-based (FRB) systems are efficient at handling
uncertainties and offer transparent, interpretable structures. Recent data-driven FRB
classifiers can autonomously learn from data but still lag behind deep learning classifiers in
performance.

The Deep Rule-Based (DRB) system is a new approach, combining FRB systems with
the multi-layer structure of deep learning. The DRB system employs a massively parallel set
of 0-order fuzzy rules and self-organizes a transparent IF-THEN structure. Its training
process is fully autonomous, online, non-iterative, and non-parametric, starting classification
from the first image and self-evolving with new data, making it suitable for real-time
applications.

The DRB approach is simpler and entirely data-driven compared to DCNNS,
performing highly accurate classification without the need for accelerated hardware. It is
faster, non-parametric, and highly parallelizable. The DRB system can be easily adapted for
various classification and prediction problems, offering a human-interpretable, self-evolving

structure.

111.5.1 General Architecture of the DRB Classifier

The general architecture of the DRB classifier is illustrated in Figure 111-12. As
depicted, the DRB approach consists of the following layers:
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1. Pre-processing block;

2. Feature extraction layer;

3. Massively parallel ensemble of highly interpretable IF... THEN... rules;
4. Decision-maker.

The preprocessing step is crucial for enhancing image quality, leading to improved
results in feature extraction and classification. It involves fundamental techniques such as
binarization, normalization, rotation, resizing, and removing unwanted parts of MRI images.

For the feature extraction layer, the DRB classifier can utilize various types of

feature descriptors commonly used in computer vision.
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Figure 111-12: General Architecture of the DRB Classifier

The DRB block is composed of two main sections. The first section forms the
foundation of the DRB classifier during the training phase. It consists of a set of parallel
IF...THEN rules based on self-developed FRB models, specifically the AnYa type. These
non-parametric rules do not require the definition of a membership function [94][95].
Instead, they are derived from data patterns using the concept of Empirical Data Analytics
[96]. Each fuzzy rule, as shown in Table I11.3, takes the form of a disjunction (logical OR)
between multiple fuzzy sets, which are determined by several prototypes representing the
most characteristic data clusters.
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The second section serves as the decision-maker during the validation phase. This
process employs a "winner-takes-all" strategy to assign the label of the winning class. The
final decision is made by a local decision-maker, based on the outcomes [97], [98]. For
greater clarity, key notations and their definitions are provided in Table I11.3.

Table 111.3: Key Notation Descriptions of the DRB Classifier

Notations Description

C The number of classes in the dataset
d Dimensionality of the feature vector
k The number of current time instance
|

A single instance image

The associated feature vector of |

Vector normalization

N, Identified prototypes number of the Ct"* class

The global mean of feature vectors of the training images of

He the Ct" class
D Data density
e The k" training image of the Ct" class
Xck The corresponding feature vector of I
P The it" prototype of theC*" class
The mean of feature vectors of the training images associated
Pei with P, ;
Seci The number of training images associated with P, ;
. The radius of the area of influence of the dataclouds d
o associated with P, ;
A The score of confidence given by the local decision-maker of
¢ the Ct" fuzzy rule
Sg; The it"segment of the image I or local information

[11.5.2 Massively parallel FRB

The fuzzy rule-based (FRB) layer consists of a set of highly parallel IF... THEN rules,
presented by Equation (111.1), based on the AnYa type 0-order fuzzy rules. These non-
parametric rules do not require a predefined membership function. Instead, following the
Empirical Data Analytics concept, the fuzzy rules naturally emerge from patterns in the data.
[95] [96] .

IF(I~P.1)OR.... OR(1~P.y,) THEN (class C) (111.1)
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Where "~" signifies a resemblance that can be interpreted as a fuzzy degree of satisfaction,
membership, or typicality; | represents a specific image; c=1,2,...,C; Nc refers to the number

of prototypes in the Ct class . The identified prototypes are represented by P.

[11.5.2.1Training process of the DRB system

This section provides an overview of the primary procedure involved in training a specific
FRB subsystem as depicted in Figure 111-13. Due to the highly parallel structure of the DRB
system, we focus on the C®* fuzzy rule, where c=1, 2, ..., C.

We begin by initializing the k™ (k « 1) training image to verify condition 1 and
distinguish stage 0 from the other stages.

Conditionl:

IF(k = 1) THEN (start with stage 0) (111.2)

If condition 1 is satisfied, it indicates that this is the first image received, and the
system is initialized by following stage 0. If condition 1 is not met, the system has already

been initialized, and we proceed directly to stage 1.

Stage 0: System Initialization.

We initialize the C*™" fuzzy rule using the first image of the corresponding class,
denoted as 1I.; with the global feature vector represented by x,:vl(x,:,1 =
[Xc11:%c12:Xc1al ) where d is the dimensionality. The system's meta-parameters are then

initialized following Equation (111.3).
k «1; He < ic,l; Nc <1 PC,NC < lc,l;pc,Nc < Ec,l;SC,Nc < 1;TCvNc < To (|“3)

Where k represents the current time instance, u.. is the global mean of all the observed data

samples for the C*" class. Pcn, IS the mean of feature vectors of the images associated with
the first data cloud with the visual prototype P.y_, Scy, denotes the number of images
associated with the data cloud. r y_is the radius of the area of the data cloud, , is a small

value introduced to stabilize the initial status of the newly formed data clouds.

Stage 1: System preparation.

At this stage, we calculate the densities to verify the condition 2. First, we read the

newly arrived k" (k « k + 1) training image (I, ) belonging to the C*" class. Next, we
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update the global mean u, and compute the data densities of all existing prototypes P, ; using

the following Equations (111.4, 111.5, 111.6):

k-1 1—
”C(_T”C-szcyk (|“4)

1

1+Hpc¢—ucH2/03

D(lep) = ————— (111.6)

1+”§ak_ﬂc”2/ag

D(P.;) = (111.5)

where o2 =1 — ||u.||?

Stage 2: System update.

In this stage, we check the condition 2, if the I , becomes a new prototype or we find
the nearest prototype to I, using the D(P,;) and D(I,, ) calculated in the previous stage.
Then, we update the system and meta-parameters.

Condition 2:

IF (D(lcvk) > max  (D(P.)) )OR (D(lc,k) <,min (o (Pcvi)))

i=1,2,3,...,.N¢
THEN (I, is new prototype) (111.7)
If condition 2 is met, then I, . is new prototype with new data cloud.
Ne < Ne+ 1Py, < Leqi Pen, < Xc1iSen, < Liten, < 16 (111.8)

If condition 2 is not satisfied, we find the nearest prototype P, , to I, following the
Equation (111.9).

Pon =arg,_ flif',Nc(" Koy — Pej ) (111.9)

Before associating the I, with the data cloud of P, ,,, we must check the last condition
3 to determine whether I, ;is located in the area of influence of P, ;:

Condition 3:
IF(ll Xcx — Pen II< ren, ) THEN(I is assigned to P, ) (111.10)

If the condition 3 is satisfied, the meta-parameters are updated and I, , assigned to the

data cloud of the prototype P, using (111.11).

Secn—1

1 —
Sc,n < Sc,n +1; Pcn < Pcn + Sc_nxc'k; (“l-ll)

Scn
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If the condition 3 not met, then I. is considered outside the influence area of the
nearest data cloud, and it is treated as a new prototype according to Equation (I11.8).
After completing Stage 2, the DRB system updates the fuzzy rule accordingly following the
equation (111.12). The value of K is then incremented by 1 (k « k + 1), and the system

returns to Stage 1 to process the next image, initiating a new cycle.

Stage 3: Generate Fuzzy rule based (FRB).

Once all the training data has been processed, the system generates a fuzzy rule (Rulec)
based on the identified prototypes. Samples of AnYa type fuzzy rules derived from the brain

tumor dataset are shown in Table 111.4.

Rule, : IF (I~P.,) OR ... OR (1~P.y_) THEN(ClassC) (111.12)

Table 111.4: Samples of AnYa-type fuzzy rules derived from the brain tumor dataset

fuzzy rule

THEN no tumor

THEN tumor

I11.5.2.2Validation process of the DRB system

At the end of the training process, the DRB system generates C fuzzy rules
corresponding to the C classes. For each testing image, the system produces ¢ confidence
score A.(I) by its local (per rule) decision-maker based on the feature vector of 1, denoted

by x:

1.() = arg_max (exp(—||x — pc']-||2)) (111.13)

I11.5.2.3Decision Maker

Thus, for each image, we obtain C confidence scores Ac(I) = [A(1), A2(1), A3(1), ...,
Ac(D)]. These scores serve as inputs of the overall decision-maker of the DRB classifier (the
final layer in Figure 111-12), which assigns a label to the testing image using the “winner-

takes-all” principle as follows:

label(I)=argmaxc=1,2,...,c(A(1)) (111.14)
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Figure 111-13: Flowchart of the training process of the FRB subsystem

The pseudo code of the training process is as follows.
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Algorithm 1 training process of the deep rule-based classifier
K=1,
While the new feature vector x,, of the k*® image I ,0f the C*'class is
available Do
IF (K=1) THEN

1. Initialization using Eq. (111.3);

2. Generate the Anya type fuzzy rule Eq. (111.12);
ELSE

1. Update u, using Eq. (111.4);

2. Calculate D(P,;) and D(I,) using Eq. (1115, 111.6);

If (condition 2 is met) then

e Initialize a new data cloud using Eq. (111.8);

Else
e Find P, using Eq. (111.9);
If (condition 3 is met) then

= Update the existing data cloud using Eq. (111.11);
Else

= [|nitialize a new data cloud using Eq. (I11.8);
End if

End if
Update the Anya type fuzzy rule using Eq. (111.12);
End if
K=k+1;
End while

I111.6 Conclusion

This chapter has provided a comprehensive overview of MRI brain image
classification. We explored the evolution of classification techniques, ranging from classical
image processing methods to advanced machine learning and deep learning algorithms. A
taxonomy of these approaches was introduced to clearly outline their respective strengths
and limitations in the context of brain tumor detection. Additionally, we detailed the
classification process, emphasizing key steps such as preprocessing, feature extraction, and
classification. A significant highlight of this chapter is the introduction of the Deep Rule-
Based classifier, a hybrid approach that combines the transparency and interpretability of
traditional fuzzy rule-based systems with the powerful hierarchical learning capabilities of
deep l/earning. By understanding the challenges and comparative strengths of various
classification techniques, this chapter paves the way for the development of more accurate,
robust, and reliable tumor detection systems. These insights will contribute to future
advancements in automated brain tumor diagnosis, improving clinical decision-making and

patient outcomes.
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Chapter 1V: DRB-BBSIF for Brain Tumor Classification

IV.1 Introduction

Brain tumor identification and classification using MRI play a crucial role in medical

diagnosis but remain a challenging task due to the inherent complexity of tumor analysis.

Traditional approaches heavily depend on the expertise of radiologists, which can introduce

subjectivity and variability in interpretation. Additionally, the process is often time-

consuming and costly, limiting its efficiency in clinical practice. This chapter presents our

first contribution, which aims to automate and improve brain tumor classification using MRI

data. To this end, we propose a novel model called DRB-BBSIF (Deep Rule-Based Classifier

using Bank of Binarized Statistical Image Features), designed to address the shortcomings

of conventional methods by focusing on two key aspects:

Enhanced Feature Extraction: BSIF effectively extracts texture information from
images, offering a good balance of simplicity and performance. However, its
dependence on hand-crafted features can limit its ability to capture complex patterns.
To address this, we introduced Bank-BSIF, an improved version of BSIF that utilizes
optimized parameter settings for enhanced performance.

Automated Classification with Deep Rules: The model employs a Deep Rule-
Based Classifier for automated classification. DRB leverages a self-organizing set of
fuzzy rules guided by prototypes, providing a robust and efficient approach for tumor

classification.

IV.2 The Architecture of Proposed DRB-BBSIF Classifier

The flowchart of DRB-BBSIF classifier is presented in Figure 1V-1.The framework

contains four steps:

Step 1: It consists of the extraction of the ROI in the medical image, which is very
important to improve the classification performance.

Step 2: The features are extracted from the ROI using BSIF descriptor.

Step 3: The DRB classifier is applied to classify the given ROI of MRI brain tumor
into different pathological types.

Step 4: The final step consists of the decision maker, which decides the class label

that tested image belongs to.
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Figure 1V-1: DRB-BBSIF Classifier Architecture

IV.2.1 Extraction of the Region of Interest (ROI)

For medical images, the region of interest is the lesion area for doctors, which contains
the main disease information. In this work, the procedure employed for the extraction of the
ROI is same as used in [5]. The ROI extraction technique is as follows: first, the tumor
region is augmented by image dilation and used as the ROI rather than the initial tumor
region, because tumor-neighboring tissues can provide significant indications for the
identification of tumor types. Second, the augmented tumor region is fragmented to
progressively fine ring-form sub regions. Finally, we can apply a local feature descriptor to

extract the features from the extracted ROI.

IV.2.2 Exploring Binarized Statistical Image Features (BSIF)

Good feature descriptor is important to produce satisfactory classification results [99].
Several local image descriptors are proposed in the literature, e.g., WLD (Weber Local
Descriptor) [100] [101], PHOG (Pyramid of Histogram of Oriented Gradients) [102], LBP
(Local Binary Pattern) [103], LPQ (Local Phase Quantization) [104] and BSIF (Binarized
Statistical Image Features) [63]. Motivated by the success of BSIF technique in natural
images classification and iris recognition [63] [105] [106], we have explored this technique
in this work of MRI brain tumor classification.

BSIF is a local image descriptor based on the LBP and LPQ techniques. Unlike these

methods, BSIF does not rely on predefined set of filters but instead learns the filters from

natural images. These learned filters are then applied to describe each pixel of the ROI as a

69



Chapter IV DRB-BBSIF for Brain Tumor Classification

binary string, representing the binarized responses of learned convolutional filters. Further,
the histogram of the binary string values for each pixel generates BSIF features, which
efficiently describe the texture proprieties of the image sub regions. A set of filters with
patch size | x | are learned from input images using independent component analysis (ICA)
[63][62]. Patch size | is given as:

I=(2*n+1) (IvV-1)

Where n € {1, 2...8}. The pre-learned filters from natural images are used to extract
texture features from the images. Suppose an image be represented as 1(x,y) and the filter
be denoted by h;(u, v), where i indicates the basis of filter, the linear response of filter s; can

be expressed as:
Si = Xxy 1w, v)h;(u, v) (IV-2)

Where x and y stand for the dimension of image and filter, respectively. Hence, the
response is binarized based on the obtained response value. Specifically, if the linear filter
response exceeds the threshold, a value of 1 is assigned; otherwise, a value of 0 is given.
This process is defined as follows:

b= 0 otherwise v

The responses obtained from different bases are used to create a new gray code for the
pixel values. Since the descriptors are built using filters learned from a set of natural images,
the responses of these filters are maximally independent in terms of statistical significance.
Because the descriptor is derived from the statistical properties of the image, the resulting
feature set is known as Binarized Statistical Image Features [62] [63]. The BSIF features are
represented as a histogram of pixel binary codes, which effectively captures the texture
components of the MRI image. The BSIF descriptor relies on two key factors: the filter size
and the length of the filter. Single filters with a fixed length may not effectively generalize
brain tumor patterns with varying intensities, scales, and orientations. Therefore, we propose
using a bank of high-performing filters with different scales, referred to as B-BSIF, to
capture significant features, as detailed in the experimental section. Figure IV-2 illustrates
an example of an MRI image processed with BSIF filters. (a) shows the input ROl MRI
image. (b) displays a learned BSIF filter with a size of 17 x 17 and a length of 11 bits. (c)
shows the results of convolving the ROl MRI image with the respective BSIF filters. (d)
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presents the final BSIF-encoded feature/image.

(b)
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Figure IV-2: An example of an MRI image processed with BSIF filters

IV.2.3 Deep Rule-Based Classifier for MRI Brain Tumor Classification

Various techniques have been proposed for data classification. Inspired by the
high classification accuracy achieved by the DRB classifier in [73], we investigate its
application for classifying MRI brain tumors. To the best of our knowledge, this is the
first study to employ this technique for MRI brain tumor classification. The advantage
of the DRB classifier approach lies in its combination of two powerful and proven
techniques that have demonstrated efficiency and high accuracy in various image
processing tasks [94][96]. However, both techniques have certain limitations, which the
DRB system addresses. The first technique is Deep Convolutional Neural Networks
(DCNNSs), known for their ability to achieve very high classification accuracy. The
major drawback of DCNNSs is that they require a large amount of training data and need
to be fully retrained when new classes of images are introduced. They also perform well
only when the test images share similarities with the training data and struggle with
handling uncertainties. Additionally, their parameters are often opaque and not easily
interpretable [98]. In contrast, the second technique, the traditional Fuzzy Rule-Based
(FRB) system, is effective at managing uncertainties by providing a clear and
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interpretable structure. However, it doesn't perform at the same high level as DCNNs
due to its relatively small internal structure [98][96][95]. The DRB classifier addresses
these limitations by merging the strengths of the FRB system with deep learning,
incorporating a multi-layer fuzzy structure for image classification.

In this study, we explored the FRB layer, which functions as the "engine" of the
DRB classifier and is built on the autonomously self-developing fuzzy rule-based
models of the AnYa type [96]. The AnYa model employs a set of IF...THEN... fuzzy
rules that are non-parametric, meaning they do not require predefined membership
functions. Instead, these rules are derived automatically from data patterns, following
the concept of Empirical Data Analytics. This layer involves two key processes: training
and the generation of fuzzy rules. The process involves three stages: system
initialization, preparation, and updating. A large dataset is uti/lized to train the DRB
system, and after training is complete, each subsystem generates a fuzzy rule for its
respective class based on the identified prototypes. The fuzzy rules produced by our
proposed BRB-BSIF system are shown in Table IV.7.

IV.3 Experiments and results

This section presents the experimental evaluation of the proposed DRB-BBSIF
classifier, which is based on the Bank of BSIF (BBSIF) filters. The experiments are
designed to assess the classifier's performance and explore the effectiveness of different
feature descriptors. Three distinct experiments are conducted: Experiment 1 involves
the creation of a BSIF filter bank and a comparison between standard BSIF and B-BSIF;
Experiment 2 examines the impact of various feature descriptors when used with the
DRB classifier; and Experiment 3 focuses on evaluating the DRB-BBSIF model
specifically for MRI brain tumor classification.

1V.3.1 Database

The proposed model is evaluated on the publicly available brain T1-weighed CE-
MRI dataset. This database was collected by Cheng et al [5] from Nanfang Hospital,
Guangzhou, China, and General Hospital, Tianjing Medical University, China, from 2005
to 2010. Where, 3064 slices were collected from 233 patients, having 708 slices infected
by Meningiomas, 1426 slices infected by Gliomas, and 930 slices infected by Pituitary
tumors. The images contained an original size of 512 x512 in pixels. Three examples are
illustrated in Figure 1V-3.
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(b)
Figure 1V-3: lllustrations of three typical brain tumors [5]

(a) meningioma; (b) glioma; and (c) pituitary tumor. Red lines indicate the tumor border.
IV.3.2 Experiment 1 — Construction of Bank of BSIF Filters

IV.3.2.1 Objectives and Methodology

The objective of this experiment is to enhance the system's accuracy by constructing
a bank of BSIF filters. To identify the optimal BSIF parameters and corresponding filters,
several sub-experiments were conducted, with the results summarized in Table IV.1. We
tested various filters with different parameters, such as filter size (k) and filter length (n).
The parameters achieving the highest performance were selected and used to build the
BSIF filter bank (BBSIF).

These selected parameters, listed in Table 1V.2, are fixed and will be used as the
estimated parameters for subsequent experiments. Figure 1V-4 illustrates the B-BSIF
descriptor model, showing an example using B-BSIF. As seen, the bank comprises
different BSIF descriptor sizes, namely 17 x 17, 15 x 15, 13 x 13, and 11 x 11, with a
length of 11 bits. This filter bank serves as an input to the DRB classifier.

(©
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the best featers
histograms

AN

Figure 1V-4: The model of the B-BSIF descriptor:
(a) input ROI of MR, (b) results of applying the different BSIF descriptor (BSIF code images), and (c) the
histograms of the BSIF code images.
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Table IV.1: All parameters of BSIF applied on the MRI brain tumor

Parameters Accuracy (%) | Sensitivity (%) | Specificity (%)

K N
17 x 17 12 81.79 85.88 80.56
17 x 17 11 84.30 86.44 83.66
17 x 17 10 83.39 85.88 82.64
15x 15 12 82.08 84.89 81.24
15x 15 11 83.71 85.59 83.15
15x 15 10 83.26 88.42 81.71
13x 13 12 81.89 84.04 81.24
13x 13 11 82.70 86.86 81.45
13 x13 10 82.25 86.86 80.86
11 x11 12 80.97 83.05 80.35
11 x11 11 82.60 85.03 81.88
11x11 10 83.62 85.03 83.19

IV.3.2.2 Analysis of Results

The results of applying various BSIF filters reveal several key trends in terms of

accuracy, sensitivity, and specificity:

1. Filter Size and Performance :

e Larger filter sizes (17x17) tend to deliver higher accuracy compared to smaller sizes
(11x11). For example, the 17x17 filter with a length of 11 bits achieves the highest

accuracy (84.30%), whereas the smallest filter (11x11) with the same bit length reaches

an accuracy of 82.60%.

e However, the performance gap between different filter sizes is not drastic. For instance,

the 15x15 filter with 11 bits still performs comparably, with 83.71% accuracy.
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w

Sensitivity and Specificity:

Sensitivity remains relatively high across all filters, with the best sensitivity (88.42%)
being observed with the 15x15 filter at 10 bits, indicating that this configuration is
particularly effective in detecting true positives.

Specificity also stays within a narrow range, generally between 80% and 83%,
indicating a consistent ability to correctly identify true negatives. The highest specificity
(83.66%) occurs with the 17x17 filter at 11 bits.

. Bit Length Influence :

Shorter bit lengths (10 or 11 bits) tend to provide slightly better overall performance
than longer bit lengths (12 bits). For example, the 17x17 filter at 11 bits outperforms
the same filter at 12 bits in accuracy, sensitivity, and specificity.

Best Configuration :

The optimal performance in terms of accuracy (84.30%) is achieved with the 17x17
filter at 11 bits, offering a balanced performance across all metrics.

The 15x15 filter at 10 bits stands out for sensitivity, making it a strong candidate if
detecting positive cases is prioritized.

In summary, the BSIF filters perform consistently across different configurations,

with the 17x17 filter at 11 bits being the most optimal in terms of accuracy and specificity.
Sensitivity, on the other hand, peaks with a 15x15 filter at 10 bits, highlighting that different
configurations may be preferable depending on the specific performance metric emphasized
in the analysis.

Table 1V.2: Best BSIF filters

Parameters

k n
17x17 | 11
15x15 | 11
13x13 | 11
11x11 | 11
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The experiment comparing the BSIF and B-BSIF descriptors demonstrates a clear
improvement in performance when using the B-BSIF (Bank BSIF) approach. The results in
Table IV.3 indicate that the B-BSIF consistently outperforms the standard BSIF in terms of
accuracy, sensitivity, and specificity.

Table 1VV.3: Comparison between BSIF descriptor and Bank BSIF

Feature Accuracy Sensitivity Specificity
descriptor (%) (%) (%)
BSIF 84.30 86.44 83.66
BBSIF 84.73 87.57 83.87

1. Accuracy: The accuracy of the B-BSIF (84.73%) slightly surpasses that of the BSIF
(84.30%). Although the difference is small, it highlights the enhanced capacity of the
B-BSIF filter bank to capture more discriminative features.

2. Sensitivity: A more notable improvement is seen in sensitivity, where the B-BSIF
reaches 87.57%, compared to 86.44% for the BSIF. This suggests that the B-BSIF is
more effective at detecting true positive cases, which is particularly important in medical
image analysis for identifying brain tumors.

3. Specificity: The specificity of the B-BSIF (83.87%) is also marginally higher than that
of the BSIF (83.66%), indicating a slight improvement in identifying true negative
cases.

These results demonstrate that the construction of a filter bank (B-BSIF) improves
classification performance over the individual BSIF descriptor. The enhancements in
sensitivity are especially valuable, as they indicate the model’s improved ability to detect
positive cases more reliably. Therefore, the B-BSIF descriptor can be considered a more

robust and effective feature extraction method for MRI brain tumor classification.

IV.3.2.3 Interpretation of Results
The superior performance of the B-BSIF (Bank BSIF) descriptor compared to the
standard BSIF can be justified based on several factors related to feature extraction and the
flexibility of the filter bank approach:

76



Chapter IV DRB-BBSIF for Brain Tumor Classification

1. Increased Diversity in Feature Representation

The B-BSIF approach involves using a bank of BSIF filters with varying sizes and
parameters. This diversity allows the model to capture a broader range of texture and spatial
features in the MRI images. Different filter sizes respond to different scales of detail,
enabling the model to extract both detailed and general features. The standard BSIF, with

a single set of filters, is limited in its ability to capture such multi-level information.

2. Adaptability to Image Variability

MRI brain images exhibit significant variation in tumor size, shape, texture, and
intensity patterns. The B-BSIF bank, with its varied filters, adapts more effectively to this
variability compared to a single BSIF descriptor. The flexibility of the filter bank ensures
that features are captured across different resolutions and orientations, contributing to

improved sensitivity and accuracy.

3. Improved Generalization

By combining multiple filters, the B-BSIF bank can generalize better across different
datasets or image conditions. In medical imaging, such robustness is crucial, as the same
type of tumor can manifest differently in different patients. The B-BSIF’s ability to integrate
information from multiple descriptors improves the model’s ability to generalize and detect

true positives (tumors) more reliably, which is reflected in the higher sensitivity.

4. Enhanced Discriminative Power

The combination of different filters in B-BSIF increases the discriminative power of
the features used by the classifier. The subtle differences in texture and intensity patterns,
which might not be captured by a single filter set, are more likely to be detected by the varied
filters in the bank. This is likely why B-BSIF achieves better specificity, as it reduces false

positives by distinguishing between normal and abnormal tissue more accurately.

5. Reduction in Overfitting

A single BSIF filter set may be prone to overfitting, particularly if the parameters are
not well-suited to the full variability present in the images. The B-BSIF, by incorporating
multiple filter sets, reduces the likelihood of overfitting to specific patterns, thus offering

a more balanced performance across accuracy, sensitivity, and specificity.
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IV.3.2.4Key findings

In summary, the B-BSIF’s ability to capture a wider range of image features, its
adaptability to MRI image variability, and its improved generalization contribute to its better
performance in accuracy, sensitivity, and specificity compared to the standard BSIF.

IV.3.3 Experiment 2: Impact of Feature Extractor Methods

IV.3.3.10bjective of Experiment 2

The goal of this experiment is to evaluate the impact of various feature descriptor
methods (LBP, LPQ, WLD, PHOG, BSIF, and B-BSIF) on the performance of the DRB
classifier for MRI brain tumor classification. The experiment compares the accuracy,
sensitivity, and specificity of the DRB classifier when paired with each feature descriptor,

to determine which combination yields the best results. Table 1V.4 presents the findings.

Table 1V.4: Performance of feature descriptor methods with the DRB classifier

DRB with LBP LPQ WLD PHOG BSIF B-BSIF

Accuracy (%) 73.99 7715 7578 7931 8430 8473

Sensitivity (%) 57.77 7472 6497 7429 8644  87.57

Specificity (%) 78.86 77.89 79.03 80.81 8366  83.87

IV.3.3.2 Analysis of results
The results of Experiment 2, illustrate the performance of different feature
descriptor methods used with the DRB classifier, highlighting the effectiveness of the B-
BSIF descriptor. From this experiment, we can make several key observations:
1. Accuracy:
Among the feature extractors tested, the B-BSIF achieves the highest accuracy
(84.73%), followed closely by the BSIF (84.30%). These outperform other methods
such as PHOG (79.31%), LPQ (77.15%), and LBP (73.99%). This indicates that the
BSIF-based methods, particularly B-BSIF, provide superior feature extraction
capabilities for use with the DRB classifier.
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2. Sensitivity:
B-BSIF also leads in sensitivity (87.57%), indicating that it is more effective at
correctly identifying positive cases (e.g., true tumor cases). This is significantly
higher than LBP (57.77%) and even better than PHOG (74.29%). The high
sensitivity makes B-BSIF particularly useful for medical image analysis where
detecting true positives is crucial.

3. Specificity:
In terms of specificity, the B-BSIF (83.87%) and BSIF (83.66%) show the highest
values, indicating better performance in correctly identifying negative cases (e.g.,
healthy tissue). This suggests that the B-BSIF descriptor reduces the number of false
positives more effectively compared to other methods like LPQ (77.89%) and WLD
(79.03%).

IV.3.3.3 Interpretation of results

The following interpretation of results provides insights into the performance of
various feature descriptor methods utilized with the DRB classifier, focusing on their
strengths and limitations in capturing local features essential for effective MRI brain tumor
classification.

o Nature of Local Features: While all the methods tested represent images as histograms
of local features, the differences in performance stem from the types of local features
each descriptor captures. The B-BSIF method is more robust because it uses a diverse
bank of filters that capture multi-scale and multi-orientation texture features, resulting
in more comprehensive feature representation.

« BSIF and B-BSIF Advantages: BSIF-based methods (particularly B-BSIF) excel in
medical image classification because they are particularly good at capturing fine-grained
textural information in MRI images, which is essential for distinguishing between
healthy and abnormal tissues. B-BSIF’s improved performance over BSIF is likely due
to the added flexibility of using a bank of filters, which enhances its ability to capture
subtle variations in tumor texture and structure.

o LBP and LPQ Limitations: Descriptors like LBP and LPQ perform worse in sensitivity
and accuracy, as they may not capture the complex texture patterns present in medical
images as effectively as the BSIF-based methods. LBP, for example, is a simple

descriptor that may miss finer details, leading to its relatively low sensitivity.
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IV.3.3.4Key findings

In summary, The B-BSIF descriptor clearly outperforms other feature extraction
methods when paired with the DRB classifier, achieving the best balance of accuracy,
sensitivity, and specificity. This makes B-BSIF the most suitable choice for MRI brain tumor
classification in this context. The results demonstrate that using a more sophisticated filter
bank, like B-BSIF, significantly enhances the classification performance compared to more
traditional descriptors like LBP or PHOG.

IV.3.4 Experiment 3: Evaluation of the DRB-BBSIF Model

IV.3.4.1Objective of Experiment 3

The objective of experiment 3 is to evaluate the performance of the proposed DRB-
BBSIF model for MRI brain tumor classification, specifically focusing on its effectiveness
in accurately distinguishing between three tumor types: meningioma, glioma, and pituitary
tumors. This experiment aims to conduct a comparative analysis between the DRB-BBSIF
model and the KNN classifier, while also generating fuzzy rules, as presented in Table IV.7,

to enhance interpretability and improve decision-making within the classification process.

IV.3.4.2 Analysis of Results

In this section, we delve into the performance of the DRB-BBSIF model for MRI brain
tumor classification based on the results obtained in Experiment 3. The analysis covers three
key areas: Per-class performance, a comparison with the K-Nearest Neighbors (KNN)

classifier, and the contribution of fuzzy rules to the classification process.

1. Performance by Class:

e Table IV.5 shows the system’s accuracy for each class. The highest accuracy is observed
for gliomas (88.71%), followed closely by meningiomas (87.57%). However, the
system shows lower performance in classifying pituitary tumors, with an accuracy of
76.45%. This suggests that the DRB-BBSIF model is highly effective for glioma and
meningioma classification, but further improvements may be needed for pituitary tumor
detection.

e Misclassification is evident, particularly between glioma and pituitary tumors. For
instance, 115 out of 930 pituitary tumors were misclassified as meningiomas, indicating
a possible overlap in feature representation or limitations in distinguishing these specific
classes.
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Table IV.5: Performance of the DRB-BBSIF for each class
Meningioma Glioma Pituitary
Meningioma 620/708 33/708 55/708
Glioma 95/1426 1265/1426 66/1426
Pituitary 115/930 104/930 711/930
Accuracy 87.57 88.71 76.45

2. Comparison with K-Nearest Neighbors (KNN):

e Table IV.6 presents a comparison between the proposed DRB-BBSIF system and
various configurations of the KNN classifier (with different k values). The DRB-
BBSIF consistently outperforms KNN, achieving an accuracy of 84.73%, while the
KNN variants range from 80.01% (1NN) to 83.37% (15NN).

e The superiority of DRB-BBSIF over KNN suggests that the feature extraction
process using the BSIF descriptor, coupled with the DRB classifier, provides a more
robust approach for capturing tumor-specific features in MRI images compared to
the KNN classifier, which relies on proximity-based decision-making and may not

capture the complex textures of tumors as effectively.

Table 1V.6: Comparison of the DRB-BSIF with KNN

Method | DRB-BBSIF | INN | 3NN | 7NN | 15NN | 45NN
Accuracy 84.73 80.01 | 81.69 | 83.14 | 83.37 | 83.09
(%)

3. Fuzzy Rules:

Table 1V.7 outlines the fuzzy rules generated during the training process, which are
used to classify the MRI images into different tumor categories. These rules, constructed
from the feature descriptors, help the system make more nuanced decisions by
considering various combinations of MRI features that are indicative of each tumor type.
This further supports the flexibility and adaptability of the DRB-BBSIF model

compared to more rigid classifiers like KNN.
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Table IV.7: Fuzzy rules generated through the training process

Fuzzy rules

; ) OR(MRI ~ lr ) OR (MRI ~ téJ)THEN

) OR(MRI ~ . ) THEN

- o
iﬂ ) OR (MRI ~?& ) OR (MRI ~

’ ‘

o]

(IF MRI ~
(Meningioma)

3
(IFMRI ~ 6\) ) OR (MRI ~ \*a’ ) OR(MRI ~

(Glioma)

(IFMRI ~ ' ) OR (MRI ~

(Pituitary )

) OR (MRI ~

)
K |

g

K

d ) THEN

IV.3.4.3 Interpretation of Results

To justify the choice of the BSIF (Binarized Statistical Image Features) filter among

other feature extractors, we can highlight several key aspects:
1. Theoretical Strengths of BSIF:

o Texture Representation: BSIF excels at capturing rich texture information, which is
crucial for distinguishing fine details in MRI brain tumor images. Tumors often exhibit
subtle texture differences, making BSIF particularly effective in capturing these
variations.

o Data-Driven Filter Design: Unlike other feature extractors like LBP or LPQ, BSIF uses
filters learned from natural image statistics, leading to more discriminative features
tailored to the data. This makes it well-suited for complex medical images where the
statistical structure is crucial for classification.

2. Robustness to Noise :

e Performance in Noisy Environments: MRI images often suffer from noise due to
acquisition methods. BSIF's ability to binarize features and leverage learned filters
provides robustness against such noise, potentially offering more stable performance
compared to other methods like LPQ, which may be more sensitive to variations in
lighting or noise.
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3. Comparison with Other Feature Extractors:

e BSIF vs. LBP/LPQ/WLD: While methods like LBP and LPQ capture local texture and
phase information, BSIF can extract more complex, high-level patterns, leading to better
feature abstraction. LBP and LPQ are based on predefined filters, while BSIF adapts its
filters from data, making it more flexible and potentially more powerful for
classification tasks where fine details matter, such as in brain tumor classification.

o BSIF vs. Deep Features: While deep learning architectures like AlexNet or ResNet
extract hierarchical features, BSIF is computationally less demanding and can work well
when the dataset is smaller, which is common in medical imaging. It offers a good
balance between simplicity and performance without requiring large-scale training data.

IV.3.4.4Key Finding

The experiment demonstrates that the DRB-BBSIF model outperforms KNN for MRI
brain tumor classification, particularly for meningiomas and gliomas. However, the lower
accuracy for pituitary tumors highlights an area for further optimization. The use of fuzzy
rules in the DRB-BBSIF model also adds to its strength by allowing for more precise
classification through complex feature combinations. In summary, the results confirm the
effectiveness of the proposed system in tumor classification, while highlighting areas where

further improvements are needed in certain cases.

IV.4 Conclusion

The first contribution of this thesis presents the DRB-BSIF (Deep Rule-Based
Classifier using Binarized Statistical Image Features) model, a significant advancement in
the automated classification of MRI brain tumors. This model effectively addresses the
limitations of traditional classification methods through two core innovations: enhanced
feature extraction and automated classification utilizing deep rules.

The results from the three experiments conducted under this contribution demonstrate
the efficacy of the DRB-BSIF model. Experiment 1 established the optimal parameters for
the BSIF filter bank, Experiment 2 highlighted the comparative performance of various
feature extraction methods with the DRB classifier, and Experiment 3 validated the superior
classification performance of the DRB-BBSIF model compared to traditional classifiers like
KNN. The findings indicate that the DRB-BBSIF model excels in accurately distinguishing
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between meningioma, glioma, and pituitary tumors, showcasing its potential as a reliable
tool for automated MRI brain tumor diagnosis.

In conclusion, the DRB-BBSIF model represents a significant contribution to the field
of medical image analysis, offering a robust and interpretable framework for brain tumor
classification. This work not only advances existing methodologies but also sets the stage
for future research focused on refining automated classification techniques in medical

imaging.
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Chapter V: DRB with Deep Feature Extraction

V.1 Introduction

The second contribution focuses on the synergistic integration of deep learning and
rule-based classification. We propose a novel, simple, and automatic DRB-based scheme for
MRI brain tumor classification. This model leverages the power of deep learning for feature

extraction and combines it with the effectiveness of DRB for classification.

o Deep Feature Extraction: The model utilizes pre-trained deep learning architectures
like AlexNet, VGG-16, ResNet-50, and ResNet-18 to extract deep features from MRI
images. These deep features capture complex patterns and relationships within the data,
leading to improved classification performance.

o DRB for Classification: Similar to the first contribution, the model employs DRB for
classification. DRB utilizes the extracted deep features to automatically generate a set

of fuzzy rules, enabling accurate tumor identification.

V.2 Proposed methodology

The primary objective of this study is to develop a method for MRI brain tumor
classification utilizing deep learning techniques. The proposed approach, outlined in Figure
V-1, consists of three stages: preprocessing, feature extraction, and classification. Both the

feature extraction and classification stages rely on deep learning methods.
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Figure V-1: Block diagram of the proposed method.
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V.2.1 Pre-processing step

The preprocessing step is crucial for enhancing the image quality, which leads to
achieve better performance in the feature extraction and classification stages. This process
involves essential techniques such as binarization, normalization, rotation, resizing, and the

removal of irrelevant parts from the MR images.

V.2.2 Feature extraction step

Feature extraction is a crucial part of the classification process, as it focuses on identifying the
most important characteristics from the original data to enhance the system’s efficiency. In this study,
we employ deep learning-based feature descriptors to achieve this goal. Specifically, we used four
pre-trained convolutional neural networks (CNNs): AlexNet, VGG-16, ResNet-18, and ResNet-50.
These pre-trained models were applied to extract relevant features from MRI images. A summary of
the CNN models used is provided in Table V.1.

Table V.1: Summary of CNN’s models

Network depth Pargnjeters Imagfa input
(millions) size
AlexNet 8 60 [227 x 227]
VGG-16 16 138 [224 x 224]
ResNet-18 18 11.7 [224 x 224]
ResNet-50 50 25.6 [224 x 224]

V.2.3 Classification step

Various techniques exist for data classification, including fuzzy clustering means
(FCM), support vector machines (SVM) [5] [85], and artificial neural networks (ANN) [89].
Inspired by the high classification accuracy demonstrated by the DRB classifier in [73], we

investigate its use for MRI brain tumor classification.

V.3 Database

In this study, we utilized two publicly available datasets from the Kaggle website. As
outlined in Table V.2, the first dataset consists of 253 images categorized into 2 classes (no
tumor, pathological), while the second dataset includes 3264 images classified into 4 classes
(Glioma tumor, Meningioma tumor, Pituitary tumor, No tumor). The "no tumor"” data were

obtained from the Novoneel Chakraborty Kaggle data set. (available at:

https://www.kaqgqgle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection).
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Table V.2: Datasets descriptions

Number of
Dataset Classes j Images type
images
Tumor 155
p

Dataset1 NG tUmor 08 JPG
Glioma tumor 926
Meningioma tumor 937

Dataset?2 No tumor 500 JPG
Pituitary tumor 901

V.4 Experiments and results

The objective of this section is to provide a comprehensive evaluation of the proposed
deep features-based MRI brain tumor classification system using a series of experiments.
Each experiment assesses the performance of different classifiers (DRB, SVM, KNN, and
Decision Tree) in combination with features extracted from pre-trained CNN models
(AlexNet, VGG-16, ResNet-50, and ResNet-18).

feature extraction

I
| | | DRB |
| I I
| .
| [N | Classified image
| ResNet-50 KNN | > with class label
| | | |
I I
ImageInput I v |
| Pre-trained CNN as : | Classifiers :

Figure V-2: Experimental evaluation of the proposed system.

The primary aim is to determine which combination of feature extractor and classifier
yields the best classification results across two MRI brain tumor datasets. The evaluation is
based on several key performance metrics, including accuracy, sensitivity, specificity,
precision, and F-measure, allowing for a detailed comparison of the system's effectiveness
in both binary and multi-class classification tasks.
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V.4.1 Experiment 1: AlexNet with 4 different classifiers

In this experiment, we investigated the performance of different classifiers on pre-
extracted features from a pre-trained convolutional neural network (CNN) called AlexNet
(as illustrated in Figure V-3).

> —> — —
111 3x3 5x5 3x3 DRB
s=4 s=2 same s=2
55 x 55 x 96

27 x27%x96 27 %27 x 256 13x 13 x 256
.

FC6
13x13x 384 13x13x 384 13X 13x 256 6X6X256 Decision Tree

Feature Extraction Classification

Input image

227 x227 %3

Output

Figure V-3: Architecture of experimentl

Table V.3 outlines the architecture of AlexNet, showing key layers such as

convolutional layers, max pooling, and fully connected layers.

Table V.3: Details of AlexNet layers

Layer Nig?g:f Kernel size  Stride padding  Output size
Input [227 x 227 x 3]
Convl 96 11x11x3 4 - [55 x 55 x 96]
Maxpooll 3x3 2 - [27 x 27 x 96]
Norm1l - [27 x 27 x 96]
Conv2 256 5x5x48 1 2 [27 x 27 x 256]
Maxpool2 3x%x3 2 - [13 x 13 x 256]
Norm2 [13 x 13 x 256]
Conv3 384 3 x 3 x 256 1 1 [13 x 13 x 384]
Conv4 384 3x3x192 1 1 [13 x 13 x 384]
Conv5 256 3x3x192 1 1 [13 x 13 x 256]
Max pool3 3x%x3 2 - [6 % 6 x 256]
FC6 ReLu Dropout (0.5) 1 4096
FC7 ReLu Dropout (0.5) 1 4096
FC8 Softmax 1 1000
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By extracting features from AlexNet and using them with different classifiers, we can
evaluate how well each classifier performs with deep features. This process allows us to
compare traditional machine learning classifiers (SVM, KNN, Decision Tree) with the DRB
classifier and assess which approach yields the best performance in MRI brain tumor
classification.

V.4.1.1 Analysis of Results

Table V.4 below highlights the comparative performance of each classifier on both
datasets. The analysis explores how the classifiers performed in distinguishing between
tumor and non-tumor cases, offering insights into which models are most effective for this
classification task.

Following this table, a detailed breakdown of the results will be provided for each
dataset, followed by key observations regarding classifier performance and dataset
complexity.

Table V.4: Comparative performance of AlexNet with 4 different classifiers

AlexNet with 4 different classifiers

Data  Architecture  Accuracy  Sensitivity  Specificity  Precision F-
set measure
DRB 85.23% 0.9375 0.8036 0.7317 0.8219
Data SVM 79.55% 0.8438 0.7679 0.6750 0.7500
setl KNN 89.77% 0.8750 0.9107 0.8485 0.8615
Decision Tree  69.32% 0.6563 0.7143 0.5676 0.6087
DRB 79.19% 0.3500 0.9422 0.6131 0.4605
Data SVM 75.63% 0.2000 0.9456 0.5556 0.2941
set2 KNN 60.66% 0.3700 0.6871 0.2868 0.3231
Decision Tree 71.32% 0.4000 0.8197 0.4301 0.4145

1. Performance on Dataset 1 :
e The K-Nearest Neighbors (KNN) classifier performs best in terms of accuracy,
achieving 89.77%, which is significantly higher than the other classifiers.
e DRB and SVM also demonstrate solid results with 85.23% and 79.55% accuracy,
respectively.
e Decision Tree performs the worst, with an accuracy of 69.32%.
e In terms of sensitivity (true positive rate), DRB achieves the highest value (93.75%),

which suggests that it is most effective in identifying positive cases (tumors).
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e Specificity (true negative rate) is highest for KNN at 91.07%, indicating that KNN is
better at correctly identifying negative cases (non-tumors).
e Precision (the ratio of true positives to all predicted positives) is also strongest for KNN

at 84.85%, meaning it is more reliable in predicting the positive class.

2. Performance on Dataset 2 :

e The performance of all classifiers drops on Dataset 2, which may suggest that this
dataset is more complex or challenging.

e DRB achieves the best accuracy on this dataset with 79.19%, followed by SVM at
75.63%. Both KNN and Decision Tree show significantly lower accuracies, with
60.66% and 71.32%, respectively.

e DRB again shows strong specificity (94.22%), indicating that it effectively identifies
negative cases, while Decision Tree shows a slightly lower value (81.97%).

e In terms of sensitivity, DRB shows a notable drop, achieving only 35%, indicating
that it struggles with detecting positive cases in Dataset 2.

e Precision and F-measure are also higher for DRB and SVM, reinforcing that these

classifiers are more consistent in performance across both datasets.

2| =25 0 0
a0 11 3 50% 0.0% 0.0% 15%
5 1% 2.5 i
El =4 114 0 7
& Ta% 189% 0.0% 18%
E
0 45 g E| a0 105 3
- 23 B1.1% 23| T 3 ¥ | 03
g a
E 4 0 0 58
= 1.0% 0.0% 0.0% 147T%
B0, 45 B5.2%
e 1485 35.0% 95.1% 100% TEA% 79.2%
BE.0" iy 20.3%
mor Tumer a2 hama pl-glpriey’. ed Sumor
TargetClags Targst Class
Dataset 1 Dataset 2

Figure V-4: Confusion matrix of DRB with data 1 and Data 2.
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Figure V-5: ROC curves of dataset 1 and dataset 2.

V.4.1.2 Key Finding

The key findings of Experiment 1 reveal important insights into the performance of

various classifiers when used with features extracted by the AlexNet deep learning model

on two different MRI brain tumor datasets:

o KNN achieves the highest performance on Dataset 1, while DRB outperforms other

classifiers on Dataset 2, but with a trade-off in sensitivity.

e SVM provides relatively balanced performance across both datasets but doesn't

outperform DRB or KNN in accuracy or sensitivity.

o Decision Tree generally performs the worst, especially in terms of sensitivity and

F-measure, indicating it is less suited for this classification task.

e The difference in performance between datasets suggests that the second dataset

might be more difficult to classify, potentially due to increased complexity or

variations in the images.

The ROC curves for both datasets in Figure V-5 illustrate these variations in classifier

performance, showing how the models balance sensitivity and specificity across different

thresholds.

The results show that the choice of classifier can significantly impact the

performance depending on the dataset, with DRB being the most balanced classifier.
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V.4.2 Experiment 2: VGG-16 with 4 different classifiers

VGG-16 is a popular convolutional neural network model, as presented in Figure V-6,
known for its deep structure and efficient use of small convolutional filters. These 3x3 filters
help capture spatial patterns effectively across different scales. The architecture of VGG-16,
as shown in Table V.5, is designed to progressively reduce the spatial resolution while
increasing the depth, ultimately producing a high-dimensional feature representation that can
be fed into fully connected layers for classification.

Input image VGG-16 3
2|5 2 (Al 2 (Al ale( 2 S92 (B8] 2 SVM .
§§§§§§
(S Q0 QOO QOO QOO0 O
I | | |
Feature Extraction Classification
Figure V-6: VGG-16 with the classifiers
Table V.5: Architecture of VGG-16 layers
Layer Feature Size Kernel size  Stride
map
Input 1 [224 x 224 x 3] - -
Conv 64 [224 x 224 x 64] 3x3 1
Max-pooling 64 [112 x 112 x 64] 3x%x3 2
Conv2 128 [112 x 112 x 128] 3x3 1
Max-pooling 128 [56 x 56 x 128] 3x3 2
Conv3 256 [56 x 56 x 256] 3x3 1
Max-pooling 256 [28 x 28 x 256] 3x%x3 2
Conv4 512 [28 x 28 x 512] 3x3 1
Max-pooling 512 [14 x 14 x 512] 3x%x3 2
Convs 512 [14 x 14 x 512] 3x3 1
Max-pooling 512 [7 x 7 % 512] 3x%x3 2
Fully connected 25088
Fully connected 4096
Fully connected 4096
Fully connected 1000
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V.4.2.1 Analysis of results

Table V.6 compares the performance of the four classifiers using the VGG16 feature

extractor on two datasets (Datasetl and Dataset2). With this approach, an accuracy of

86.36% was achieved with KNN on Dataset1, while an accuracy of 81.73% was obtained
with DRB on Dataset2.

Table V.6: Comparative performance of VGG-16 with 4 different classifiers

VGG-16 with 4 different classifiers

Data  Architecture ~ Accuracy Sensitivity Specificity Precision F-
set measure
DRB 79.55% 0.8125 0.7857 0.6842 0.7429
Data SVM 84.09% 0.7500 1 0.6957 0.8205
setl KNN 86.36% 0.9063 0.8393 0.7632 0.8286

Decision Tree 75.00% 0.7500 0.7500 0.6316 0.6857

DRB 81.73% 0.4800 0.9422 0.7059 0.5714
Data SVM 77.16% 0.2900 0.9456 0.6042 0.3919
set2 KNN 61.93% 0.4400 0.6871 0.3188 0.3697

Decision Tree 72.84% 0.3800 0.8197 0.4578 0.4153

From Table V.6 , we can draw the following observations:

1- Performance on Dataset 1 :

DRB: Achieved an accuracy of 79.55%, showing relatively balanced performance
across the metrics. Sensitivity and precision were moderate, with a solid F-measure of
0.7429, indicating it handles both positive and negative predictions effectively.

SVM: Outperformed other classifiers with the highest sensitivity (0.8125) and perfect
specificity (1), leading to a high accuracy of 84.09% and an F-measure of 0.8205. This
indicates SVM's strong capability to detect positive cases, though its precision and
sensitivity could be better balanced.

KNN: Showed the highest accuracy (86.36%) and strong sensitivity (0.9063),
indicating high effectiveness in identifying true positives. Its F-measure of 0.8286
suggests that KNN was the best overall classifier on Dataset 1.

Decision Tree: Had the lowest accuracy (75.00%0) and the weakest performance across
all metrics. Its F-measure of 0.6857 reflects a struggle to maintain a balance between

precision and sensitivity, suggesting that it was less effective on this dataset.
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2- Performance on Dataset 2 :

o DRB: Provided the best results on this dataset with an accuracy of 81.73%. Its F-
measure of 0.5714 reflects good performance despite having a lower sensitivity
(0.4800), meaning it was effective at distinguishing different classes but less sensitive
in detecting positives.

e SVM: Performed worse than on Dataset 1, achieving 77.16% accuracy. With a lower
sensitivity (0.2900), SVM struggled with false negatives on Dataset 2, but it maintained
high specificity (0.9456), indicating it was good at identifying negatives.

e KNN: Showed a drop in performance compared to Dataset 1, with 61.93% accuracy
and a low F-measure (0.3697), indicating that KNN was less effective in this multi-class
scenario.

e Decision Tree: Slightly outperformed KNN but still underperformed with 72.84%
accuracy and an F-measure of 0.4153, showing it was not very effective on this dataset
either.

V.4.2.2 Key Findings

The key findings of Experiment 2 reveal important insights into the performance of
various classifiers when used with features extracted by the VGG-16 deep learning model
on two different MRI brain tumor datasets:

e« KNN and SVM performed better on Dataset 1 (binary classification), with KNN
achieving the highest accuracy.

o DRB outperformed all classifiers on Dataset 2 (multi-class classification) with the
best accuracy.

o Decision Tree consistently underperformed across both datasets, particularly in terms
of precision and F-measure.

e Overall, DRB and KNN were the most effective classifiers depending on the dataset,

while Decision Tree lagged behind.

These findings highlight the idea that the performance of classifiers is highly
dependent on the nature of the dataset and the complexity of the classification task. KNN
and SVM excel in simpler, binary classification tasks like Dataset 1, while DRB is more
robust in multi-class scenarios like Dataset 2. Decision Tree underperforms due to its

overfitting tendencies and difficulty handling complex, high-dimensional features. The
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combination of high-dimensional features extracted by VGG-16 and the intricacies of MRI

brain tumor classification means that DRB's rule-based approach is more effective for

handling complex tasks, while traditional classifiers like KNN and SVM excel in simpler

cases.
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V.4.3 Experiment 3: ResNet-50 with 4 different classifiers

In Experiment 3, ResNet-50, a deep convolutional neural network, was used in
conjunction with four different classifiers. ResNet-50 is designed to process RGB images of
224x224 pixels, so as part of the experimental setup, all grayscale images were resized and
converted to RGB format to meet this requirement.

The architecture of ResNet-50, detailed in Table V.7, highlights the different layers
of ResNet-50, including the feature maps, kernel sizes, strides, and padding. A key strength
of ResNet-50 lies in its residual blocks, which facilitate the efficient training of deep
networks by mitigating the vanishing gradient problem. By leveraging its ability to extract
high-level features, ResNet-50 serves as a powerful feature extractor for training and
evaluating four classifiers: SVM, KNN, Decision Tree, and DRB.

Table V.7: Architecture of ResNet-50

Layer Feature map stride Padding Size
Input 1 [224 x 224 x 3]
Convl 7Tx7x%x3 2 3 [112 x 112 x 96]
Maxpooll 3x%x3 2 - [56 x 56]
[1x1conv,64],[3 x 3conv,64],1 x 1conv,256] 2 -
Conv2 [1x1conv,64],[3 x 3conv,64],1 x 1conv,256] 1 - [56 x 56]
[1x1conv,64],[3 x 3conv,64],1 x 1conv,256] 1 -
[1x1conv,128],[3 x 3conv,128],[1 x 1conv,512] 2 -
Conv3 [1x1conv,128],[3 x 3conv,128],[1 x 1conv,512] 1 - [28 x 28]
[1x1conv,128],[3 x 3conv,128],[1 x 1conv,512] 1 -
[1x1conv,128],[3 x 3conv,128],[1 x 1conv,512] 1 -
[1x1conv,256],[3 x 3conv,256],[1 x 1conv,1024] 2 -
[1x1conv,256],[3 x 3conv,256],[1 x 1conv,1024] 1 -
[1x1conv,256],[3 x 3conv,256],[1 x 1conv,1024] 1 -
Conv4 [1x1conv,256],[3 x 3conv,256],[1 x 1conv,1024] 1 - [14 > 14]
[1x1conv,256],[3 x 3conv,256],[1 x 1conv,1024] 1 -
[1x1conv,256],[3 x 3conv,256],[1 x 1conv,1024] 1 -
[1x1conv,512],[3 x 3conv,512],[1 x 1conv,2048] 2 -
Conv5 [1x1conv,512],[3 x 3conv,512],[1 x 1conv,2048] 1 - [7 x7]
[1x1conv,512],[3 x 3conv,512],[1 x 1conv,2048] 1 -
Average 7% 7 7 i [1x 1]
pool
Fc1000 1000
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V.4.3.1 Analysis of Results

The results in Table V.8 compare the performance of ResNet-50 for feature extraction
with four different classifiers (DRB, SVM, KNN, and Decision Tree) across two datasets.
The performance is evaluated in terms of accuracy, sensitivity, specificity, precision, and

F-measure.

Table V.8: Comparative performance of ResNet 50 with 4 different classifiers

ResNet-50 with 4 different classifiers
Data  Architecture Accuracy Sensitivity Specificity Precision F-measure
set

DRB 82.95% 0.8125 0.8393 0.7429 0.7761
SVM 78.41% 0.8125 0.7679 0.6667 0.7324
Data KNN 79.55% 0.8750 0.7500 0.6667 0.7568

setl Decision Tree 72.73% 0.7188 0.7321 0.6053 0.6571

DRB 78.17% 0.2900 0.9490 0.6591 0.4028
Data SVM 77.16 % 0.3000 0.9320 0.6000 0.4000
set2 KNN 62.18 % 0.4100 0.6939 0.3130 0.3550

Decision Tree 68.78 % 0.2800 0.8265 0.3544 0.3128

From this Table V.8, we can draw the following observations:

1- Performance on Dataset 1

o DRB (82.95% accuracy) provides the best overall performance, showcasing a balanced
trade-off between precision (0.7429) and sensitivity (0.8125). The F-measure of 0.7761
reflects a good balance between precision and recall, making DRB the most effective
classifier for this dataset.

e SVM (78.41% accuracy) follows DRB closely, performing well in terms of sensitivity
(0.8125) but showing a lower precision (0.6667). The F-measure is lower than DRB at
0.7324, indicating that SVM struggles slightly in maintaining a balance between correct
classifications and false positives.

e KNN (79.55% accuracy) performs reasonably well with decent sensitivity (0.8750) but
has a lower precision (0.6667). Its F-measure of 0.7568 indicates a better balance

compared to SVM.
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Decision Tree (72.73% accuracy) shows the lowest performance across all metrics for
Dataset 1, with the lowest precision (0.6053) and F-measure (0.6571), indicating it is
less reliable for this dataset.
Performance on Dataset 2

DRB (78.17% accuracy) again performs the best in terms of accuracy but shows a
significant drop in sensitivity (0.2900) compared to Dataset 1. The precision (0.6591) is
relatively high, but the F-measure (0.4028) suggests a weak balance between precision
and recall, indicating DRB’s classification is less consistent in Dataset 2.

SVM (77.16% accuracy) performs similarly to DRB, with a slightly higher sensitivity
(0.3000) but comparable precision (0.6000). Its F-measure (0.4000) reflects that it also
struggles with maintaining balance in this dataset.

KNN (62.18% accuracy) exhibits the lowest accuracy in Dataset 2. With a lower
sensitivity (0.4100) and precision (0.3130), KNN seems to perform poorly in extracting
meaningful features from this dataset.

Decision Tree (68.78% accuracy) performs slightly better than KNN but still lags in
precision (0.3544) and F-measure (0.3128), making it less effective for this dataset as

well.

V.4.3.2 Key Findings

The key findings from Experiment 3 provide critical insights into the effectiveness of

the ResNet-50 architecture when paired with various classifiers (SVM, KNN, Decision Tree,

and DRB) in the context of MRI brain tumor classification. This analysis highlights how

these classifiers utilize the high-dimensional features extracted from ResNet-50, revealing

their performance differences across two distinct datasets.

DRB outperforms the other classifiers in terms of accuracy in both datasets, but its
sensitivity drops significantly in Dataset 2, indicating a reduced ability to correctly
classify positive samples in this dataset.

SVM and KNN generally perform reasonably well, but their precision and F-measure
fluctuate between datasets, showing they are less consistent than DRB.

Decision Tree consistently underperforms compared to the other classifiers, particularly
in Dataset 1, where it exhibits the lowest precision and F-measure.
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Figure V-10: ROC curves of dataset 1 and dataset 2

The results indicate that DRB consistently outperforms the other classifiers in terms
of accuracy for both datasets, although it experiences a noticeable decline in sensitivity when
transitioning from Dataset 1 to Dataset 2. This suggests that while DRB excels in overall
classification performance, it may struggle to correctly identify positive samples in more
complex scenarios. In contrast, SVM and KNN demonstrate reasonably competitive
performance but exhibit variability in precision and F-measure across datasets, indicating a
lack of consistency in their classification abilities. Meanwhile, the Decision Tree classifier
consistently underperformed relative to the others, particularly in Dataset 1, where it

recorded the lowes3t precision and F-measure.
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V.4.4 Experiment 4: ResNet-18 with 4 different classifiers

In Experiment 4, the pre-trained ResNet-18 model is used to extract feature vectors
from images for classification tasks. The features are taken from the "pool5" layer, the last
layer before the classification head. Since ResNet-18 requires input images of size 224x224
pixels in RGB format, all images are resized and converted as needed. After extracting the
features, four different classifiers are used to perform the classification, with each classifier
fine-tuned for optimal performance. This approach leverages the power of deep feature
extraction from ResNet-18 alongside traditional classifiers. a breakdown of the ResNet-18
layers is shown in Table V.9.

Table V.9: Details of ResNet-18 layers

Layer Kernel size Stride Output size
Input [224 x 224 x 3]

Convl 11x11x3 2 [112 x 112 x 64]
Max-pool 3x%x3 2 [56 x 56 x 64]
3x3x64 - [56 x 56 x 64]
Conv2 3 x 3 x 64 i [56 x 56 x 64]
Conv3 3x3x128 - [28 x 28 x 128]
3x3x128 - [28 x 28 x 128]
3 x 3 x 256 - [14 x 14 x 256]
Convd 3 x 3 x 256 i [14 x 14 x 256]
3x3x512 - [7 x 7 % 512]
convs 3x 3x512 i [7 x 7 x 512]
Average pool %7 - [1x1x512]
Fully connected 1000
Softmax 1000

Table V.10 compares the performance of the ResNet-18 feature extractor combined
with four different classifiers SVM, KNN, Decision Tree, and DRB across two datasets,
Datasetl and Dataset2. The performance metrics include Accuracy, Sensitivity, Specificity,

Precision, and F-measure.

V.4.4.1 Analysis of Results

The analysis is focused on key performance metrics such as accuracy, sensitivity,
specificity, precision, and F-measure. These metrics provide insights into how well each
classifier handles different aspects of classification, including the ability to correctly identify
positive and negative instances and maintain a balance between precision and recall. By

comparing the results across Datasetl and Dataset2, this analysis aims to determine the

100



Chapter V DRB with Deep Feature Extraction

strengths and weaknesses of each classifier in handling the high-dimensional features
extracted by ResNet-18.

Table V.10: Comparative performance of ResNet18 with 4 different classifiers

ResNet18 with 4 different classifiers

Dataset Architecture ~ Accuracy  Sensitivity Specificity Precision F-measure

DRB 85.22% 0.9063 0.8214 0.7436 0.8169
Datasetl SVM 77.27% 0.6250 0.8571 0.7143 0.6667
KNN 81.82% 0.7813 0.8393 0.7353 0.7576
Decision 69.32% 0.9063 0.7514 0.5472 0.6824
Tree
DRB 80.46% 0.3200 0.9694 0.7805 0.4539
Dataset2 SVM 75.89% 0.2900 0.9184 0.5472 0.3791
KNN 65.74% 0.3900 0.7483 0.3451 0.3662
Decision 73.35% 0.3200 0.8741 0.4638 0.3787
Tree

1. Datasetl Performance :

Accuracy: DRB achieves the highest accuracy at 85.22%, followed by SVM at
77.27%, KNN at 81.82%, and Decision Tree at 69.32%. This indicates that DRB is the
most effective classifier for this dataset.

Sensitivity (Recall): DRB has the highest sensitivity (0.9063), suggesting it is most
effective at correctly identifying positive instances. The Decision Tree shows the lowest
sensitivity (0.6250).

Specificity: SVM performs best in terms of specificity (0.8571), which means it is most
accurate at identifying negative instances, while Decision Tree has the lowest specificity
(0.5472).

Precision: DRB also leads in precision (0.8169), meaning it has the highest rate of
correct positive predictions among the classifiers. Decision Tree has the lowest
precision (0.6824).

F-measure: DRB achieves the highest F-measure (0.7576), reflecting a good balance
between precision and recall. The Decision Tree has the lowest F-measure (0.6824).
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Figure V-12: ROC curves of dataset 1 and dataset 2.

Dataset2 Performance :
e Accuracy: DRB leads with 80.46%, followed by Decision Tree (73.35%), SVM
(75.89%), and KNN (65.74%0). This indicates DRB is the most accurate classifier for

Dataset2 as well.

o Sensitivity (Recall): All classifiers have relatively low sensitivity on Dataset2, with

DRB and Decision Tree both at 0.3200, which indicates a poorer ability to identify

positive instances.
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Specificity: DRB shows the highest specificity (0.9694), indicating it is the most
effective at identifying negative instances, while KNN has the lowest specificity
(0.7483).

Precision: DRB also leads in precision (0.4539), showing it is better at positive
prediction accuracy compared to others. KNN has the lowest precision (0.3662).
F-measure: DRB again performs best with an F-measure of 0.3787, suggesting the most
balanced performance. KNN has the lowest F-measure (0.3662).

V.4.4.2 Key findings

The key findings from Experiment 4 highlight the comparative performance of

ResNet-18 features with different classifiers (DRB, SVM, KNN, and Decision Tree) on two
MRI brain tumor datasets:

DRB consistently performs best across both datasets, excelling in accuracy,
sensitivity, precision, and F-measure. Its performance indicates that DRB is well-suited
for utilizing ResNet-18 features effectively, making it the most robust classifier for this
task.

SVM exhibits strong specificity in Datasetl but shows weaker performance in other
metrics, suggesting that while it is reliable at identifying negative instances, it is less
effective overall.

KNN generally underperforms across both datasets, particularly in sensitivity and
precision, indicating that it struggles with this classification task and may not be suitable
for the problem at hand.

Decision Tree shows inconsistent performance, with lower scores in various metrics,

making it less reliable compared to DRB and SVM in these experiments.

DRB is generally the most reliable and robust classifier, although performance can

vary depending on the dataset and classification task.

V.45 Comprehensive Analysis of Results

To comprehensively evaluate the classifiers (DRB, SVM, KNN, Decision Tree) and

deep learning features (AlexNet, VGG-16, ResNet-50, ResNet-18) used in our experiments

on MRI brain tumor classification, we compare their performance metrics, highlight their

strengths and limitations, and provide insights into their behavior across various conditions.
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This section discusses the results in terms of both the classifiers and the deep feature

extractors to offer an in-depth interpretation.

V.4.5.1 Classifiers: Strengths and Challenges

Classifier selection is a critical step in any machine learning project, particularly in
classification tasks. The choice of classifier can significantly impact the accuracy, efficiency,
and interpretability of the model. A well-chosen classifier can lead to highly accurate
predictions, while a poorly chosen one can result in suboptimal performance. Table V.11
provides a comparative analysis of various machine learning classifiers (DRB, SVM, KNN
and Decision tree) used in this research, highlighting their strengths and weaknesses.

By understanding the strengths and limitations of each classifier, we can make

informed decisions when selecting the most suitable algorithm for a specific task.

e Deep Rule-Based

The DRB classifier excels with consistently high performance, demonstrating strong
accuracy, sensitivity, specificity, and precision across various datasets and deep learning
features. It effectively integrates the strengths of deep learning feature extraction with rule-
based logic, enhancing its ability to classify complex patterns, such as those found in MRI
brain tumor images. This combination also contributes to its robustness in detecting tumors
while minimizing false positives and negatives. However, DRB’s complexity can be a
drawback, as its implementation and tuning require more effort due to the intricate
integration of deep learning and rule-based components.

e Support Vector Machine
SVM offers strong sensitivity and specificity, effectively distinguishing between
classes, especially with a clear margin, making it a reliable choice in some cases. It also
demonstrates good generalization when a suitable kernel and parameters are selected,
particularly in complex datasets. However, its performance is highly sensitive to the choice
of kernel and parameter tuning, which can be challenging. Additionally, SVM may face
scalability issues, performing less effectively with very large datasets or high-dimensional

feature spaces unless properly optimized.

e K-Nearest Neighbors
KNN is a simple and intuitive algorithm that is easy to understand and implement,

with no training phase required. Its flexibility allows it to handle various types of data and
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feature distributions effectively. However, KNN struggles with high-dimensional data due
to the curse of dimensionality, which can significantly degrade its performance.
Additionally, its effectiveness is highly sensitive to the choice of K and the distance metric,

requiring careful tuning for optimal results.

e Decision Tree
Decision Tree algorithms are highly interpretable, providing clear decision rules that
are easy to understand. They can effectively model non-linear relationships and feature
interactions. However, they are prone to overfitting, especially when dealing with complex
datasets or deep trees. Additionally, Decision Trees can be unstable, as small changes in the
data can significantly alter the structure of the tree, impacting its performance.

Table V.11: Comparison of different classifiers

Classifier Strenghts Weaknesses

DRB e High Performance e Complexity

e Combines the power of deep learning
features with rule-based logic

e Robustness in detecting tumors and
avoiding false positives/negatives.

SVM e High Sensitivity and Specificity e Parameter
e Performs well with a well-chosen Sensitivity
kernel and parameters e less effective with
very large datasets
KNN e Simple and Intuitive e Struggles with high-
e Flexibility: Can handle various types of dimensions
data e Parameter
Sensitivity
DecisionTree |e Interpretability e Overfitting
e Handles Non-linearity e Less Stability

V.4.5.2 Deep Learning Features

Feature extraction is a fundamental step in many machine learning and computer
vision tasks, including image classification. It involves transforming raw data into
meaningful features that can be used to train a classifier. The choice of feature extractor can
significantly impact the performance of a classification model.
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Table V.13 provides a comparative analysis of several popular feature extraction
architectures used in this research (AlexNet, VGG-16, ResNet-50, and ResNet-18). These
architectures have been instrumental in advancing the field of computer vision, particularly
in image classification tasks. The table delves into the strengths and weaknesses of each
architecture, considering factors such as:

e Architectural Depth: The number of layers in the network.

o [Feature Extraction Capability: The ability to extract relevant and discriminative
features from images.

o Computational Cost: The computational resources required to train and deploy the
model.

e Overfitting Potential: The tendency of the model to overfit the training data.

By understanding the trade-offs between these factors, we can make informed
decisions when selecting the most suitable feature extractor.

e AlexNet
AlexNet is well-known for pioneering deep learning in image classification and
provides effective feature extraction, making it a good choice for initial experiments and
simpler datasets. Its relatively shallow architecture results in lower computational costs
compared to deeper models. However, this limited depth also restricts its ability to extract
complex features, which can be a disadvantage when working with more intricate or

challenging datasets.

e VGG-16
VGG-16 features a deep architecture with more layers than AlexNet, enabling it to
capture more complex features and generally achieve better feature representations and
classification performance. However, this deeper architecture comes with higher
computational costs due to the increased number of parameters. Additionally, VGG-16 is
more prone to overfitting, particularly on smaller datasets, unless regularization techniques

are applied effectively.

e ResNet-50
ResNet, through its use of residual learning, effectively addresses the problem of
vanishing or exploding gradients, allowing for the successful training of very deep networks.
This architecture excels at extracting complex features, resulting in strong performance
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across a wide range of tasks. However, the depth and use of residual connections make

ResNet more complex and computationally intensive compared to simpler models.

e ResNet-18

ResNet-18 leverages residual connections to enhance training and performance in deep
networks, benefiting from residual learning. It strikes a good balance between depth and
complexity, being shallower than ResNet-50, which makes it less computationally
demanding while still maintaining the advantages of residual learning. However, its
shallower architecture may limit its ability to capture as complex features as ResNet-50,
though it remains effective for many applications.

The analysis highlights that deeper architectures like VGG-16 and ResNet generally
perform better in extracting features compared to older, shallower models like AlexNet.
ResNet-50, in particular, excels at feature extraction due to its deeper layers, though it can
be computationally intensive. Classifiers like SVM perform well with deep features, offering
high sensitivity, but models like KNN and Decision Trees can struggle with high-
dimensional or complex data, leading to inconsistent results. Performance also varies
depending on the dataset, with simpler datasets benefiting more from deeper models, while
complex or imbalanced datasets present greater challenges. In conclusion, choosing the right

combination of architecture and classifier is crucial for achieving optimal results.

Table V.12: Performance Comparison of DRB with Different Deep Features

DRB with 4 different deep features

Dataset Architecture ~ Accuracy  Sensitivity Specificity Precision F-measure

AlexNet 85.23% 0.9375 0.8036 0.7317 0.8219
Datasetl  VGG-16 79.55% 0.8125 0.7857 0.6842 0.7429
ResNet50 82.95% 0.8125 0.8393 0.7429 0.7761
ResNet18 85.22% 0.9063 0.8214 0.7436 0.8169

AlexNet 79.19% 0.3500 0.9422 0.6131 0.4605
Dataset2 ~ VGG-16 81.73% 0.4800 0.9422 0.7059 0.5714
ResNet50 78.17% 0.2900 0.9490 0.6591 0.4028
ResNet18 80.46% 0.3200 0.9694 0.7805 0.4539
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Table V.13: Comparison of Feature Extractors

Feature Strenghts Weaknesses
Extractor
AlexNet e Effective Feature Extraction e Limited Depth, which limit
for simpler datasets. its capabilities for complex
e Lower Computational Cost datasets
VGG-16 e Deep Architecture e Computational Cost

e capture more complex features |e Overfitting Risk
e Improved Performance
ResNet-50 e Residual Learning e Complexity due to the
e Effective Feature Extraction depth and residual
connections.

ResNet-18 e Residual Connections which e Less Deep: Might not
improve training and capture as complex features
performance as ResNet-50

e Balancing Depth and
Complexity

V.5 Comparison between the two contributions

Our contributions focus on improving brain tumor classification using the DRB
classifier with two distinct approaches: texture-based descriptors (BSIF/B-BSIF) and deep
feature extraction.

Contribution 1 (DRB with BSIF/B-BSIF) achieves strong classification performance,
with accuracy reaching 84.30% and 84.73%, sensitivity at 86.44% and 87.57%, and
specificity at 83.66% and 83.87%. These results demonstrate the effectiveness of BSIF/B-
BSIF compared to traditional feature descriptors like LBP and LPQ. However, while
impressive for texture-based methods, the accuracy and sensitivity are slightly lower than
deep learning-based approaches, particularly with deeper architectures like ResNet.

Contribution 2 (DRB with deep features) leverages feature extraction from deep
networks, resulting in improved classification performance. On Dataset 1, DRB with
ResNet18 and AlexNet achieves accuracy of 85.22% and 85.23%, with significantly higher
sensitivity (93.75% for AlexNet and 90.63% for ResNet18) and strong specificity (83.93%
for ResNet50). On Dataset 2, while accuracy ranges from 79.19% to 81.73%, deep features
maintain excellent specificity, especially with ResNet (up to 96.94%), highlighting their
robustness in handling complex or imbalanced datasets. The higher sensitivity and precision
of deep features make this approach more effective in detecting subtle tumor characteristics.
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Based on the performance results achieved in the two contributions, Contribution 2
(DRB with deep features) appears to be more effective, especially when considering both
datasets.

V.6 High Performance of the DRB Classifier

The high performance of the DRB classifier in our MRI brain tumor classification
experiments can be explained and justified by several key factors related to its methodology

and how it interacts with deep learning features. The following is a comprehensive analysis:

V.6.1 Characteristics of DRB Classifier

DRB classifier combines deep learning features with a rule-based system to enhance
classification performance. It leverages both learned features from deep neural networks and
predefined rules to make predictions. The key characteristics that contribute to its high

performance include:

1. Feature Extraction from Deep Learning

DRB often integrates with deep learning models (like AlexNet, VGG-16, ResNet, etc.)
to extract high-level features from MRI images. The deep learning component handles the
complex feature extraction process, capturing intricate patterns and relationships within the

images.

2. Rule-Based Classification

The DRB classifier utilizes learned rules tailored to the specific characteristics of brain
tumors, which allows for more accurate classification. By incorporating rules that reflect
domain knowledge and tumor-specific patterns, DRB enhances the discriminative power of
the classification process.

3. Combining Strengths

The DRB classifier leverages robust feature representations from deep learning models
and refines them with rule-based logic, resulting in improved performance. This combination
effectively balances generalization from deep learning with precision from rule-based
decisions, leading to robust classification outcomes.
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V.6.2 Performance Metrics of the DRB Classifier

High Accuracy: DRB’s integration with deep learning models allows it to benefit
from high-quality feature extraction, leading to accurate tumor classification. For
example, in experiments with different datasets, DRB achieved high accuracy (e.g.,
85.23% with AlexNet) due to its ability to leverage the deep features effectively.
High Sensitivity: DRB's high sensitivity indicates its effectiveness in detecting
tumors. This is crucial for medical diagnosis, where detecting all possible positive
cases is essential. The rule-based component helps in refining the detection process by
applying specific rules to the extracted features, thus enhancing sensitivity.

High Specificity: DRB’s high specificity reflects its capability to correctly identify
non-tumor regions. The rule-based system contributes to this by applying logical rules
that minimize false positives, ensuring accurate identification of non-tumor cases.
High Precision: DRB’s precision in classification indicates that when it predicts a
tumor, it is usually correct. This is achieved through the combination of learned deep

features and rule-based refinement, reducing the likelihood of false positives.

V.6.3 Comparison with Other Classifiers

SVM: While SVM performs well, DRB's ability to incorporate domain-specific rules
on top of deep features often results in better performance in complex scenarios like
tumor detection.

KNN: DRB outperforms KNN, especially in high-dimensional feature spaces, due to
its rule-based approach that complements the feature extraction process.

Decision Trees: DRB’s performance is generally superior to decision trees because it
avoids issues like overfitting and handles complex feature interactions more

effectively through its rule-based system.

In summary, the high performance of the DRB classifier in MRI brain tumor

classification can be attributed to its unique combination of deep learning feature extraction

and rule-based logic. The deep learning models (e.g., AlexNet, VGG-16, ResNet) provide

robust, high-level features from MRI images, capturing intricate patterns. The rule-based

system then applies specific rules to these features, enhancing the discriminative power and

precision of the classification. This synergy allows DRB to achieve high accuracy and

sensitivity, crucial for detecting tumors, and high specificity, minimizing false positives by
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accurately identifying non-tumor regions. Compared to classifiers like SVM, KNN, and
Decision Trees, DRB excels by combining deep feature learning with domain-specific rules,
offering superior performance in complex, high-dimensional data.

V.7 Conclusion

In this chapter, we introduced and validated our second contribution, which focused
on leveraging the DRB classifier with deep feature extraction. Various deep learning
architectures, including AlexNet, VGG-16, ResNet-50, and ResNet-18, were utilized to
extract meaningful features, which were subsequently classified using the DRB approach.
Experimental results demonstrated the superior performance of the DRB classifier when
integrated with deep learning, achieving high accuracy, sensitivity, and specificity across
multiple datasets.

In conclusion, both contributions presented innovative methodologies that
significantly enhanced the accuracy and robustness of brain tumor classification. The
findings confirm that integrating rule-based systems with deep learning features provides a
powerful and effective approach for medical image analysis.
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Conclusion and Perspectives

The central goal of this thesis was to improve the classification of brain tumors using

MRI images by leveraging both hand-crafted feature extraction and deep feature-based
approaches. The study began with an overview of MRI imaging and its crucial role in brain
tumor diagnosis, followed by an extensive discussion of machine learning (ML) and deep
learning (DL) paradigms. The fundamental principles of deep learning, its architectures, and
its impact on medical image analysis were reviewed to establish the theoretical foundation
of the research. The classification of brain tumors was examined in detail, highlighting the
taxonomy of MRI classification algorithms, the classification process, and the importance
of explainability in medical Al models.

The research introduced two key contributions aimed at improving MRI-based brain
tumor classification. The first was the development and evaluation of the DRB-BSIF
classifier, which integrates Binarized Statistical Image Features (BSIF) with the Deep Rule-
Based (DRB) model. This hybrid approach enhanced interpretability, an essential aspect of
medical Al models, ensuring transparency in decision-making. The experimental results
demonstrated significant improvements in classification accuracy, but the performance
remained somewhat constrained by the limitations of hand-crafted features, which may not
fully capture high-level data representations.

To address this limitation, the second contribution extended the use of DRB
classification with deep feature extraction. Deep learning architectures, such as AlexNet,
VGG-16, ResNet-50, and ResNet-18, were explored to extract robust feature
representations. A comparative analysis between the two approaches confirmed that deep
features combined with DRB outperformed traditional hand-crafted feature-based methods,
achieving a strong balance between interpretability, computational efficiency, and predictive
performance.

Despite these advancements, certain challenges remain. The combination of deep
learning and rule-based systems introduces increased computational complexity and
implementation challenges. The risk of overfitting, especially on smaller datasets,
necessitates the adoption of more effective regularization techniques. Additionally, the
generalizability of the DRB classifier to larger and more diverse datasets requires further
validation to ensure broader applicability in real-world clinical settings.
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Conclusion and Perspectives

Future research directions include:

e Enhancing Model Explainability: Given the critical nature of medical diagnosis,
integrating explainable Al (XAI) techniques into the DRB classifier could further
improve trust and adoption in clinical environments.

e Dataset Expansion and Augmentation: Training the DRB classifier on larger and
more diverse multi-modal datasets can improve its robustness and generalization.

e Optimizing Computational Efficiency: Reducing the computational cost of DRB-
based classification while maintaining high accuracy remains an important challenge.

e Optimized Feature Selection and Dimensionality Reduction: Given the complexity
of deep learning models, especially when dealing with high-dimensional deep features,
selecting the most relevant features becomes crucial. Future work could explore feature
selection or dimensionality reduction techniques to identify the most discriminative
features for classification. This could reduce the computational burden and improve the
efficiency of the system.

e Hybrid and Transformer-Based Models: Exploring hybrid models that combine DRB
with transformer architectures or self-supervised learning techniques could further
improve classification performance.

e Clinical Deployment: Developing a real-time, deployable system based on the DRB

classifier will be essential for practical integration into healthcare workflows.

In conclusion, this thesis contributes to the advancement of Al-driven medical
imaging, demonstrating that the combination of rule-based classification and deep learning
offers a promising approach to MRI brain tumor classification. By bridging the gap between
accuracy, interpretability, and clinical applicability, this research paves the way for future
innovations in computer-aided diagnosis (CAD) systems and Al-assisted medical decision-

making.
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