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Abstract 
Magnetic Resonance Imaging (MRI) brain tumor identification and classification are 

costly and time-consuming due to tumor complexity and reliance on radiologist expertise. 

To overcome these challenges, automating the process is essential. This thesis leverages the 

power of deep learning for brain tumor analysis, presenting two key contributions. 

In the first contribution, we introduce an efficient model titled "Deep Rule-Based 

Classifier using Bank of Binarized Statistical Image Features (DRB-BBSIF)". This approach 

addresses the limitations of conventional MRI brain tumor diagnosis by offering a model 

that improves classification performance while reducing the complexity of the diagnostic 

process. The model explores the BSIF image descriptor for the feature extraction phase, 

Furthermore, to enhance its performance, we have constructed a Bank-BSIF, which is 

founded by the best parameters of BSIF filters. For the classification phase, we employed a 

deep rule-based (DRB) classifier. The DRB classifier functions through a self-organized set 

of IF-THEN fuzzy rules, guided by prototypes. These fuzzy rules, generated by the DRB 

classifier, serve as the classifier's core decision-making mechanism. The second 

contribution titled “MRI Brain Tumor Identification and Classification using Deep 

Learning Techniques” focuses on the synergistic integration of deep learning and rule-

based classification. We propose a novel, simple, and automatic DRB-based scheme for MRI 

brain tumor classification. This model leverages the power of deep learning for feature 

extraction and combines it with the effectiveness of DRB for classification. The framework 

consists of three stages: preprocessing, feature extraction, and classification. Feature 

extraction utilizes deep learning networks like AlexNet, VGG-16, ResNet-50, and ResNet-

18 to extract features from the MRI images. A DRB classifier then utilizes these deep 

features for classification.  

Both methods are evaluated on publicly available datasets and demonstrate 

significant performance in classifying brain tumors (presence or absence) and even tumor 

types (multiclass). They outperform traditional techniques, highlighting their effectiveness 

in MRI brain tumor analysis. The thesis provides significant advancements in MRI brain 

tumor identification and classification using deep learning techniques, presenting 

promising tools for computer-aided diagnosis. It also contributes to enhancing early disease 

detection and improving the efficiency and outcomes of treatment. 

 

Keywords: MRI; brain tumor; Deep Learning; feature extraction; BSIF descriptor; DRB 

classifier. 



 

ii 

Résumé 
L'identification et la classification des tumeurs cérébrales sur l’Imagerie par 

Résonance Magnétique (IRM) sont des tâches délicates, fortement dépendantes de 
l'expertise des radiologues et souvent coûteuses en temps. Pour alléger leur charge de 
travail et améliorer la précision des diagnostics, cette thèse propose d'automatiser une 
partie de ce processus grâce à l'apprentissage profond. Deux contributions majeures sont 
présentées. 

Dans la première contribution, nous introduisons un modèle efficace intitulé « 
Classificateur Basé sur des Règles profondes utilisant une Banque de Descripteurs d’images 
Statistiques Binarisées (DRB-BBSIF) ». Cette approche permet de remédier aux limites du 
diagnostic conventionnel des tumeurs cérébrales sur IRM en proposant un modèle qui 
améliore les performances de classification tout en réduisant la complexité du processus de 
diagnostic. Le modèle explore le descripteur d'image BSIF pour la phase d’extraction de 
caractéristiques. De plus, pour améliorer ses performances, nous avons construit une 
Banque-BSIF, basée sur les meilleurs paramètres des filtres BSIF. Pour la phase de 
classification, nous avons utilisé un classificateur basé sur des règles profondes (DRB). Le 
classificateur DRB fonctionne à travers un ensemble autoorganisé de règles floues de type 
SI-ALORS, guidé par des prototypes. Ces règles floues, générées par le classificateur DRB, 
constituent le mécanisme central de prise de décision du classificateur. 

 La deuxième contribution, intitulée « Identification et classification des tumeurs 
cérébrales par IRM à l'aide de techniques d’apprentissage profond » se concentre sur 
l'intégration synergique de l'apprentissage profond et de la classification basée sur des 
règles. Nous proposons un schéma novateur, simple et automatique basé sur DRB pour la 
classification des tumeurs cérébrales sur IRM. Ce modèle exploite la puissance de 
l'apprentissage profond pour l'extraction de caractéristiques et la combine avec l'efficacité 
du DRB pour la classification. Le cadre proposé se compose de trois étapes : prétraitement, 
extraction de caractéristiques et classification. L'extraction de caractéristiques utilise des 
réseaux d'apprentissage profond tels qu'AlexNet, VGG-16, ResNet-50 et ResNet-18 pour 
extraire des caractéristiques à partir des images IRM. Un classificateur DRB utilise ensuite 
ces caractéristiques profondes pour la classification.  

Les deux méthodes sont évaluées sur des ensembles de données disponibles 
publiquement et démontrent des performances significatives dans la classification des 
tumeurs cérébrales (présence ou absence) ainsi que des types de tumeurs (multi classe). 
Elles surpassent les techniques traditionnelles, soulignant leur efficacité dans l'analyse des 
tumeurs cérébrales par IRM. La thèse apporte des avancées significatives dans 
l'identification et la classification des tumeurs cérébrales par IRM à l'aide de techniques 
d'apprentissage profond, offrant des outils prometteurs pour le diagnostic assisté par 
ordinateur. Elle contribue également à renforcer la détection précoce des maladies et à 
améliorer l'efficacité et les résultats des traitements.  

Mots-clés : tumeur cérébrale ; IRM ; apprentissage profond ; extraction de 
caractéristiques ; descripteur BSIF ; classificateur DRB. 
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 ملخص
المغناطیسي بالرنین  التصویر  باستخدام  الدماغ  أورام  وتصنیف  تحدید  مكلفة   (MRI) یعد  عملیة 

ً بسبب صعوبة وتعقید  ة بشكل كبیر بخبرة ومعرفة أطباء الأشعة  تتأثر ھذه العملی  .الأوراموتستغرق وقتاً طویلا

لتجاوز ھذه التحدیات. تعتمد ھذه الأطروحة على قوة  ة  أصبحت اوتوماتكیة ھذه العملیة ضروری   لذلك،  .والأعصاب

 .التعلم العمیق لتحلیل أورام الدماغ، وتقدم مساھمتین رئیسیتین

الأولى المساھمة  نموذجًا  في  نقدم  ا  فعالا،  "المُصنّف  باستخدام  بعنوان  القواعد  على  المعتمد  لعمیق 

یھدف ھذا النھج إلى معالجة القیود التي   ".(DRB-BBSIF) مجموعة من المیزات الإحصائیة المُرمّزة للصور

المغناطیسي، من خلال تقدیم نموذج یُحسن أداء   الرنین  باستخدام  الدماغ  التقلیدي لأورام  یواجھھا التشخیص 

،  الخصائصلمرحلة استخراج   BSIF ة التشخیص. یستكشف النموذج موصّف الصورالتصنیف ویقلل من تعقید عملی

في مرحلة  اما    BSIF .فلاتریعتمد على أفضل معاییر   BSIF-وعلاوة على ذلك، لتحسین الأداء، قمنا ببناء بنك

ًا یعتمد على القواعد  مجموعة ذاتیة  من خلال   DRB یعمل المصنف(DRB) العمیقة  التصنیف، استخدمنا مصنف

،  DRB تقودھا النماذج. ھذه القواعد الضبابیة، التي یولدھا مصنف  اذن-التنظیم من القواعد الضبابیة من نوع إذا

التي تحمل عنوان "استخراج المیزات العمیقة   أما المساھمة الثانیة،  .تشكل آلیة اتخاذ القرار الأساسیة للمصنف

ل التآزري بین التعلم العمیق والتصنیف المعتمد على القواعد.  ، فترُكز على التكام"DRB باستخدام مصنف

یعتمد على وآلیاً  وبسیطًا  مبتكرًا  المغناطیسي.  DRB نقترح مخططًا  الرنین  باستخدام  الدماغ  أورام  لتصنیف 

للتصنیف. یتكون   DRB یستفید ھذا النموذج من قوة التعلم العمیق لاستخراج المیزات، ویجمع بینھ وبین فعالیة 

الإطار المقترح من ثلاث مراحل: المعالجة المسبقة، استخراج المیزات، والتصنیف. تستخدم عملیة استخراج  

لاستخراج المیزات   ResNet-18و ResNet-50و  VGG-16و AlexNet المیزات شبكات التعلم العمیق مثل

 .تصنیفھذه المیزات العمیقة لل  DRB من صور الرنین المغناطیسي. بعد ذلك، یستخدم مصنف

بیانات متاحة الطریقتین على مجموعات  تقییم  أورام   تم  أداءً ممیزًا في تصنیف  للجمھور، وأظھرتا 

الدماغ (وجود أو عدم وجود) وحتى أنواع الأورام (متعددة الفئات). تفوقت على التقنیات التقلیدیة، مما أبرز  

 .غناطیسيفعالیتھا في تحلیل أورام الدماغ باستخدام التصویر بالرنین الم 

  ً العمیق، مقدمة التعلم  تقنیات  باستخدام  الدماغ  أورام  تحدید وتصنیف  كبیرًا في  تقدمًا  تقدم الأطروحة 

الحاسوب بمساعدة  للتشخیص  واعدة  الأمراض    .أدوات  المبكر عن  الكشف  على  القدرة  تعزیز  في  تسُھم  كما 

 .ونتائجھ وتحسین فعالیة العلاج

المفتاحیة: موصّف  الدماغ؛ورم    الكلمات  المیزات؛  استخراج  العمیق؛  التعلم  المغناطیسي؛  ؛  BSIF الرنین 

  DRB .المصنف



 

iv 

List of Publications 
 

International Journal 

H. Chellakh, A. Moussaoui, A. Attia, and Z. Akhtar, “MRI Brain Tumor Identification 

and Classification Using Deep Learning Techniques.,” Ingénierie des Systèmes 

d’Information, vol. 28, no. 1, 2023. 

https://www.iieta.org/journals/isi/paper/10.18280/isi.280102 

DOI:  https://doi.org/10.18280/isi.280102 

 

International Conferences 
 

1. H. Chellakh, A. Moussaoui and A. Attia, “Rule Based Classifier for MRI Brain Tumor 

Identification and Classification”, Second International Conference and School on 

Radiation Imaging and Nuclear Medicine (ICSRI-2023), June 11-15, Setif Algeria. 

        https://ocs.univ-setif.dz/ICSRI/ICSRI  

    icsri@univ-setif.dz 

 
2. H. Chellakh, A. Moussaoui and  A. Attia, “Improved Binarized Statistical Image 

Features for MRI Brain Tumor Identification and Classification” 2024 International 

Conference on Information and Communication Technologies for Disaster 

Management (ICT-DM) November 19-21, 2024, Setif Algeria. 

 

https://ieeexplore.ieee.org/document/10798938 

DOI: 10.1109/ICT-DM62768.2024.10798938 

 

https://www.iieta.org/journals/isi/paper/10.18280/isi.280102
https://doi.org/10.18280/isi.280102
https://ocs.univ-setif.dz/ICSRI/ICSRI
mailto:icsri@univ-setif.dz
https://ieeexplore.ieee.org/document/10798938


    

v 

Contents  
ACKNOWLEDGEMENTS ..................................................................................................................I 

ABSTRACT ......................................................................................................................................I 

RESUME ........................................................................................................................................II 

 III .......................................................................................................................................... ملخص 

LIST OF PUBLICATIONS ................................................................................................................ IV 

CONTENTS .................................................................................................................................... V 

LIST OF TABLES ............................................................................................................................. X 

LIST OF FIGURES .......................................................................................................................... XI 

LIST OF ABBREVIATIONS............................................................................................................ XIII 

GENERAL INTRODUCTION ............................................................................................................. 1 

1. CONTEXT AND MOTIVATION .................................................................................................... 1 

2. PROBLEM STATEMENT............................................................................................................ 1 

3. THESIS OBJECTIVES ................................................................................................................ 3 

4. THESIS CONTRIBUTIONS .......................................................................................................... 3 

5. THESIS ORGANIZATION ........................................................................................................... 5 

I CHAPTER I   MRI FOR BRAIN TUMOR DIAGNOSIS .................................................................. 6 

I.1 INTRODUCTION ..................................................................................................................... 6 

I.2 BRAIN TUMORS .................................................................................................................... 6 

I.2.1 WHAT IS BRAIN TUMOR? ............................................................................................... 6 
I.2.2 TYPES OF BRAIN TUMORS ............................................................................................... 6 
I.2.3 IMPACT OF BRAIN TUMOR ON THE HEALTH ......................................................................... 8 



Contents 
 

vi 

I.2.3.1 Benign Tumors ..................................................................................... 8 
I.2.3.2 Malignant Tumors ................................................................................ 8 
I.2.3.3 Metastatic Tumors ............................................................................... 9 

I.3 MAGNETIC RESONANCE IMAGING – MRI – AN OVERVIEW .......................................................... 10 

I.3.1 INTRODUCTION.......................................................................................................... 10 
I.3.2 OVERVIEW OF VARIOUS IMAGING METHODS .................................................................... 10 

I.3.2.1 X-ray .................................................................................................. 11 
I.3.2.2 Tomographic Imaging......................................................................... 11 

I.3.3 MAGNETIC RESONANCE IMAGING (MRI) ........................................................................ 13 
I.3.3.1 Advantages of MRI ............................................................................. 14 
I.3.3.2 Disadvantages of MRI......................................................................... 14 
I.3.3.3 Basic Principles of MRI ....................................................................... 15 

I.4 CONCLUSION ...................................................................................................................... 18 

II. CHAPTER II  MATERIALS AND METHODS .............................................................................. 19 

II.1 INTRODUCTION ................................................................................................................... 19 

II.2 ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP LEARNING PARADIGM .............................. 19 

II.3 MACHINE LEARNING (ML): ................................................................................................... 20 

II.3.1 DEFINITION .............................................................................................................. 20 
II.3.2 TYPES OF MACHINE LEARNING ...................................................................................... 20 

II.3.2.1 Supervised Learning: .......................................................................... 20 
II.3.2.2 Unsupervised Learning ....................................................................... 20 
II.3.2.3 Reinforcement Learning ..................................................................... 21 

II.3.3 CONCEPTS OF MACHINE LEARNING MODELS .................................................................... 21 

II.4 DEEP LEARNING (DL) ........................................................................................................... 22 

II.4.1 DEFINITION .............................................................................................................. 22 
II.4.2 HISTORY OF DEEP LEARNING ........................................................................................ 22 
II.4.3 CONCEPTS OF DEEP LEARNING MODELS .......................................................................... 24 

II.4.3.1 Neurons ............................................................................................. 24 
II.4.3.2 Activation Functions: The Decision Maker .......................................... 25 
II.4.3.3 Artificial Neural Network .................................................................... 29 

II.4.4 TYPES OF ARTIFICIAL NEURAL NETWORK .......................................................................... 30 
II.4.4.1 Perceptron ......................................................................................... 30 
II.4.4.2 Multilayer Perceptron (MLP) .............................................................. 30 
II.4.4.3 Convolutional Neural Network (CNN) ................................................. 30 
II.4.4.4 Recurrent Neural Network (RNN) ....................................................... 31 
II.4.4.5 Long Short-Term Memory (LSTM) ...................................................... 32 
II.4.4.6 Generative Adversarial Networks (GANs) ........................................... 32 



Contents 
 

vii 

II.4.4.7 Sequence to Sequence Models (Seq2Seq) .......................................... 33 

II.5 DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: .......................................................................... 34 

II.5.1 THE IMPACT OF DEEP LEARNING ON MEDICAL IMAGE ANALYSIS ........................................... 34 
II.5.2 APPLICATIONS IN MEDICAL IMAGING.............................................................................. 34 
II.5.3 DL TECHNIQUES FOR MEDICAL IMAGE ANALYSIS .............................................................. 35 
II.5.4 ADVANTAGES OF DEEP LEARNING IN MEDICAL IMAGING .................................................... 37 
II.5.5 CHALLENGES AND LIMITATIONS ..................................................................................... 37 
II.5.6 FUTURE DIRECTIONS ................................................................................................... 37 
II.5.7 CNNS FOR MRI BRAIN TUMOR CLASSIFICATION ............................................................... 38 

II.5.7.1 Input layer ......................................................................................... 39 
II.5.7.2 Convolutional Layer ........................................................................... 39 
II.5.7.3 Pooling Layer ..................................................................................... 40 
II.5.7.4 Fully Connected Layer ........................................................................ 41 
II.5.7.5 Logistic or Softmax Layer (LOSS) ......................................................... 41 
II.5.7.6 Output Layer: The Final Decision Maker ............................................. 41 

II.6 PERFORMANCE EVALUATION MEASUREMENTS ......................................................................... 42 

II.6.1 CONFUSION MATRIX................................................................................................... 42 
II.6.2 ACCURACY................................................................................................................ 42 
II.6.3 SENSITIVITY .............................................................................................................. 42 
II.6.4 SPECIFICITY ............................................................................................................... 43 
II.6.5 F1-SCORE................................................................................................................. 43 
II.6.6 ROC CURVE .............................................................................................................. 43 

II.7 CONCLUSION ...................................................................................................................... 44 

III. CHAPTER III  BRAIN TUMOR CLASSIFICATION ...................................................................... 45 

III.1 INTRODUCTION ................................................................................................................... 45 

III.2 TAXONOMY OF MRI BRAIN IMAGE CLASSIFICATION ALGORITHMS ................................................ 45 

III.3 CLASSIFICATION PROCESS ..................................................................................................... 48 

III.3.1 PRE-PROCESSING STEP ................................................................................................ 49 
III.3.2 FEATURE EXTRACTION STEP .......................................................................................... 49 

III.3.2.1 Binarized Statistical Image Features (BSIF) ......................................... 50 
III.3.2.2 Histogram of Oriented Gradients (HOG) ............................................. 51 
III.3.2.3 GIST Descriptor: A Low-Dimensional Image Representation ............... 51 
III.3.2.4 AlexNet .............................................................................................. 52 
III.3.2.5 VGG-16 .............................................................................................. 52 
III.3.2.6 Residual Network (ResNet-50 and ResNet-18) ................................ 53 

III.3.3 CLASSIFICATION STEP: ................................................................................................. 53 
III.3.3.1 Naive Bayes ....................................................................................... 54 



Contents 
 

viii 

III.3.3.2 K-Nearest Neighbor............................................................................ 54 
III.3.3.3 Support Vector Machine (SVM) .......................................................... 55 
III.3.3.4 Decision Trees .................................................................................... 57 

III.4 OVERVIEW OF BRAIN TUMOR CLASSIFICATION .......................................................................... 58 

III.4.1 MACHINE LEARNING TECHNIQUES ................................................................................. 58 
III.4.2 DEEP LEARNING TECHNIQUES ....................................................................................... 59 

III.5 DEEP RULE BASED CLASSIFIER FOR MRI BRAIN TUMOR CLASSIFICATION ........................................ 60 

III.5.1 GENERAL ARCHITECTURE OF THE DRB CLASSIFIER ............................................................. 60 
III.5.2 MASSIVELY PARALLEL FRB ........................................................................................... 62 

III.5.2.1 Training process of the DRB system.................................................... 63 
III.5.2.2 Validation process of the DRB system ................................................ 65 
III.5.2.3 Decision Maker .................................................................................. 65 

III.6 CONCLUSION ...................................................................................................................... 67 

IV. CHAPTER IV: DRB-BBSIF FOR BRAIN TUMOR CLASSIFICATION ............................................. 68 

IV.1 INTRODUCTION ................................................................................................................... 68 

IV.2 THE ARCHITECTURE OF PROPOSED DRB-BBSIF CLASSIFIER ......................................................... 68 

IV.2.1 EXTRACTION OF THE REGION OF INTEREST (ROI) .............................................................. 69 
IV.2.2 EXPLORING BINARIZED STATISTICAL IMAGE FEATURES (BSIF) .............................................. 69 
IV.2.3 DEEP RULE-BASED CLASSIFIER FOR MRI BRAIN TUMOR CLASSIFICATION ................................ 71 

IV.3 EXPERIMENTS AND RESULTS .................................................................................................. 72 

IV.3.1 DATABASE ................................................................................................................ 72 
IV.3.2 EXPERIMENT 1 – CONSTRUCTION OF BANK OF BSIF FILTERS ............................................... 73 

IV.3.2.1 Objectives and Methodology ............................................................. 73 
IV.3.2.2 Analysis of Results.............................................................................. 74 
IV.3.2.3 Interpretation of Results .................................................................... 76 
IV.3.2.4 Key findings ....................................................................................... 78 

IV.3.3 EXPERIMENT 2: IMPACT OF FEATURE EXTRACTOR METHODS ............................................... 78 
IV.3.3.1 Objective of Experiment 2 .................................................................. 78 
IV.3.3.2 Analysis of results .............................................................................. 78 
IV.3.3.3 Interpretation of results ..................................................................... 79 
IV.3.3.4 Key findings ....................................................................................... 80 

IV.3.4 EXPERIMENT 3: EVALUATION OF THE DRB-BBSIF MODEL .................................................. 80 
IV.3.4.1 Objective of Experiment 3 .................................................................. 80 
IV.3.4.2 Analysis of Results.............................................................................. 80 
IV.3.4.3 Interpretation of Results .................................................................... 82 
IV.3.4.4 Key Finding ........................................................................................ 83 

IV.4 CONCLUSION ...................................................................................................................... 83 



Contents 
 

ix 

V. CHAPTER V: DRB WITH DEEP FEATURE EXTRACTION ........................................................... 85 

V.1 INTRODUCTION ................................................................................................................... 85 

V.2 PROPOSED METHODOLOGY ................................................................................................... 85 

V.2.1 PRE-PROCESSING STEP ................................................................................................ 86 
V.2.2 FEATURE EXTRACTION STEP .......................................................................................... 86 
V.2.3 CLASSIFICATION STEP .................................................................................................. 86 

V.3 DATABASE ......................................................................................................................... 86 

V.4 EXPERIMENTS AND RESULTS .................................................................................................. 87 

V.4.1 EXPERIMENT 1: ALEXNET WITH 4 DIFFERENT CLASSIFIERS ................................................... 88 
V.4.1.1 Analysis of Results.............................................................................. 89 
V.4.1.2 Key Finding ........................................................................................ 91 

V.4.2 EXPERIMENT 2: VGG-16 WITH 4 DIFFERENT CLASSIFIERS.................................................... 92 
V.4.2.1 Analysis of results .............................................................................. 93 
V.4.2.2 Key Findings ....................................................................................... 94 

V.4.3 EXPERIMENT 3: RESNET-50 WITH 4 DIFFERENT CLASSIFIERS ................................................ 96 
V.4.3.1 Analysis of Results.............................................................................. 97 
V.4.3.2 Key Findings ....................................................................................... 98 

V.4.4 EXPERIMENT 4: RESNET-18 WITH 4 DIFFERENT CLASSIFIERS .............................................. 100 
V.4.4.1 Analysis of Results............................................................................ 100 
V.4.4.2 Key findings ..................................................................................... 103 

V.4.5 COMPREHENSIVE ANALYSIS OF RESULTS ........................................................................ 103 
V.4.5.1 Classifiers: Strengths and Challenges ................................................ 104 
V.4.5.2 Deep Learning Features ................................................................... 105 

V.5 COMPARISON BETWEEN THE TWO CONTRIBUTIONS .................................................................. 108 

V.6 HIGH PERFORMANCE OF THE DRB CLASSIFIER......................................................................... 109 

V.6.1 CHARACTERISTICS OF DRB CLASSIFIER .......................................................................... 109 
V.6.2 PERFORMANCE METRICS OF THE DRB CLASSIFIER ........................................................... 110 
V.6.3 COMPARISON WITH OTHER CLASSIFIERS........................................................................ 110 

V.7 CONCLUSION .................................................................................................................... 111 

CONCLUSION AND PERSPECTIVES ............................................................................................. 112 

VI. REFERENCES ....................................................................................................................... 114 



   

x 

List of Tables   
Table I.1    : Types of Brain Tumors [14][15][16] ............................................................................ 7 
Table I.2    : Comparison of different imaging techniques [22] ...................................................... 11 
Table II.1   : Timeline of the main contributions in the field of ANN [36] ....................................... 23 
Table II.2   : Confusion matrix ...................................................................................................... 42 
Table III.1  : MRI Brain Tumor Classification Techniques ............................................................... 47 
Table III.2  : Summary of prior works on MRI brain tumor and classification system ..................... 58 
Table III.3  : Key Notation Descriptions of the DRB Classifier ........................................................ 62 
Table III.4  : Samples of AnYa-type fuzzy rules derived from the brain tumor dataset ................... 65 
Table IV.1  : All parameters of BSIF applied on the MRI brain tumor ............................................ 74 
Table IV.2  : Best BSIF filters ......................................................................................................... 75 
Table IV.3  : Comparison between BSIF descriptor and Bank BSIF................................................. 76 
Table IV.4  : Performance of feature descriptor methods with the DRB classifier ......................... 78 
Table IV.5  : Performance of the DRB-BBSIF for each class ........................................................... 81 
Table IV.6  : Comparison of the DRB-BSIF with KNN ..................................................................... 81 
Table IV.7  : Fuzzy rules generated through the training process .................................................. 82 
Table V.1   : Summary of CNN’s models ....................................................................................... 86 
Table V.2   : Datasets descriptions ............................................................................................... 87 
Table V.3   : Details of AlexNet layers ........................................................................................... 88 
Table V.4   : Comparative performance of AlexNet with 4 different classifiers .............................. 89 
Table V.5    : Architecture of VGG-16 layers.................................................................................. 92 
Table V.6    : Comparative performance of VGG-16 with 4 different classifiers ............................. 93 
Table V.7    : Architecture of ResNet-50 ....................................................................................... 96 
Table V.8    : Comparative performance of ResNet 50 with 4 different classifiers ......................... 97 
Table V.9    : Details of ResNet-18 layers .................................................................................... 100 
Table V.10  : Comparative performance of ResNet18 with 4 different classifiers ........................ 101 
Table V.11  : Comparison of different classifiers ......................................................................... 105 
Table V.12  : Performance Comparison of DRB with Different Deep Features............................. 107 
Table V.13  : Comparison of Feature Extractors ......................................................................... 108 
 

  



   

xi 

List of Figures 
Figure I-1     : Example of Brain Tumor [14] .................................................................................... 8 
Figure I-2     : The Most Common Brain Tumors [16] ...................................................................... 9 
Figure I-3     : Medical Imaging Techniques [19] ............................................................................ 10 
Figure I-4     : Magnetic Resonance Imaging [25] .......................................................................... 13 
Figure I-5     : The spin movement [22] ......................................................................................... 16 
Figure I-6     : Splitting of the magnetic moment M. [22] .............................................................. 16 
Figure I-7     : The FID and signal detection to generate MR images. [27] ...................................... 17 
Figure I-8     : Various MRI images sequences [29] ........................................................................ 18 
Figure II-1    : AI, machine learning and deep learning paradigm [31] ........................................... 19 
Figure II-2    : Types of Machine Learning [33] .............................................................................. 20 
Figure II-3    : The typical process of ML [30] ............................................................................... 21 
Figure II-4    : Difference between ML and DL [30] ....................................................................... 22 
Figure II-5    : Trade of representation power and computation complexity [36] .......................... 24 
Figure II-6    : Structure of a neuron [30] ...................................................................................... 24 
Figure II-7    : Binary Step Function [39] ....................................................................................... 26 
Figure II-8    : Linear Activation Function [38] ............................................................................... 26 
Figure II-9    : Sigmoid Activation Function [38] ............................................................................ 27 
Figure II-10  : Tanh Activation Function [38] ................................................................................. 28 
Figure II-11  : ReLu Activation Function [38] ................................................................................. 28 
Figure II-12  : Deep Neural Network [30] ...................................................................................... 29 
Figure II-13  : Perceptron, Simple Neural Network [43] ................................................................ 30 
Figure II-14  : Convolutional Neural Network Architecture [42] .................................................... 31 
Figure II-15  : RNN Architecture [43] ............................................................................................ 31 
Figure II-16  : LSTM Architecture [46] ........................................................................................... 32 
Figure II-17  : GAN Architecture [47] ............................................................................................ 33 
Figure II-18  : Sequence to Sequence  Model [48] ......................................................................... 33 
Figure II-19  : Representation of Convolutional Networks [54] ..................................................... 38 
Figure II-20  : Convolution Operation [37] .................................................................................... 39 
Figure II-21  : Convolutional Layer [55] ......................................................................................... 40 
Figure II-22  : Example of the Pooling Principle   [56] .................................................................... 40 
Figure II-23  : Fully Connected Layers [30] .................................................................................... 41 
Figure II-24  : Roc Curve [60] ........................................................................................................ 43 
Figure III-1   : Taxonomy of MRI Brain Tumor Classification Techniques ....................................... 46 
Figure III-2   : Classification Process .............................................................................................. 48 
Figure III-3   : Taxonomy of feature extraction used in MRI Brain Tumor Detection ...................... 50 
Figure III-4   : HOG descriptor [64] ............................................................................................... 51 
Figure III-5   : VGG and Alexnet Architecture [71] ......................................................................... 53 
Figure III-6   : VGG-16 CNN Architecture [69] ............................................................................... 53 
Figure III-7   : The Naive Bayes classifier [75] ................................................................................ 54 
Figure III-8   : Example of classification with KNN [77] .................................................................. 55 
Figure III-9   : Hyper plan of SVM classifier [80] ............................................................................ 55 
Figure III-10 : Example of a non-linearly separable problem.[80] .................................................. 56 



List of figures 

xii 

Figure III-11 : Example of Decision Tree [82] ................................................................................ 57 
Figure III-12 : General Architecture of the DRB Classifier .............................................................. 61 
Figure III-13 : Flowchart of the training process of the FRB subsystem ......................................... 66 
Figure IV-1   : DRB-BBSIF Classifier Architecture ........................................................................... 69 
Figure IV-2   : An example of an MRI image processed with BSIF filters ........................................ 71 
Figure IV-3   : Illustrations of three typical brain tumors [5].......................................................... 73 
Figure IV-4   : The model of the B-BSIF descriptor ........................................................................ 73 
Figure V-1    : Block diagram of the proposed method. ................................................................. 85 
Figure V-2    : Experimental evaluation of the proposed system. .................................................. 87 
Figure V-3    : Architecture of experiment1 .................................................................................. 88 
Figure V-4    : Confusion matrix of DRB with data 1 and Data 2. .................................................... 90 
Figure V-5    : ROC curves of dataset 1 and dataset 2. ................................................................... 91 
Figure V-6    : VGG-16 with the classifiers ..................................................................................... 92 
Figure V-7    : Confusion matrix of DRB with data 1 and Data 2. .................................................. 95 
Figure V-8    : ROC curves of dataset 1 and dataset ...................................................................... 95 
Figure V-9    : Confusion matrix of DRB with data 1 and Data 2. .................................................... 99 
Figure V-10  : ROC curves of dataset 1 and dataset 2 ................................................................... 99 
Figure V-11  : Confusion matrix of DRB with data 1 and Data 2. ................................................. 102 
Figure V-12  : ROC curves of dataset 1 and dataset 2. ................................................................ 102 
  



 

xiii 

List of Abbreviations 
AI : Artificial Intelligence 
ANN   : Artificial Neural Network 
AUC   : Area Under Curve 
BSIF   : Binarized Statistical Image Features 
BWT   : Berkeley Wavelet Transformation 
CAD   : Computer Aided Diagnosis 
CNN   : Convolutional Neural Network 
CT   : Computed Tomography 
DCNN  : Deep Convolutional Neural Network 
DL   : Deep Learning 
DRB   : Deep Rule Based 
DWT   : Discrete Wavelet Transformation 
EL-LRF : Extreme Learning Machine Local Receptive Field 
FC   : Fully Connected 
FCM   : Fuzzy Clustering Means 
FID  : Fee Induction Decay 
fMRI  : Functional Magnetic Resonance Imaging 
FN  : False Negative 
FP   : False Positive 
GAN                 : Generative Adversarial Network 
GLCM              : Gray Level Co-occurrence Matrix 
HOG   : Histogram of Oriented Gradients 
KNN  : K Nearest Neighborhood 
KSVM              : Kernel Support Vector Machine 
LBP   : Local Binary Pattern 
LPQ  : Local Phase Quantization 
LSTM  : Long Short-Term Memory 
ML   : Machine Learning 
ML  : Longitudinal Magnetization 
MLP  : Multi-Layer Perceptron 
MRI   : Magnetic Resonance Imaging 
MT   : Transverse Magnetization 
NMR  : Nuclear Magnetic Resonance 
PCA   : Principal Component Analysis 
PBD   : Pathological Brain Detection 
PET  : Positron Emission Tomography 
RF  : Radiofrequency 
RNN  : Recurrent Neural Network 
ROI   : Region of Interest 
ROC   : Receiver Operating Characteristic 
SPECT : Single Photon Emission Computed Tomography 
SVM  : Support Vector Machine 
TN   : True Negative 
TP   : True Positive 
US   : Ultrasound 
WHO   : World Health Organization 
WLD   : Weber Local Descriptor 
WPTE  : Wavelet Packet Tsallis Entropy 



 

1 

General Introduction 
1. Context and Motivation  

 According to the World Health Organization (WHO), cancer is one of the leading 

causes of death worldwide  [1]  [2]. Unlike cancer, a tumor can be either benign or malignant. 

Benign tumors have uniform structures and non-active cancer cells, while malignant tumors 

have non-uniform structures and active cancer cells that can spread to other parts of the 

body. Early and accurate detection of brain tumors are crucial for determining the most 

suitable treatment, such as therapy, radiation, surgery, or chemotherapy, to prevent further 

complications. This can significantly increase the chances of survival for patients with 

tumors [3]. In this context Magnetic Resonance Imaging (MRI) is the most effective 

technique for diagnosing brain tumors due to its high contrast in soft tissues, high spatial 

resolution, and non-invasive nature.  

Today, automatic classification of tissue types in MRI is crucial for computer-aided 

diagnosis, but it remains challenging and time-consuming due to the complexity of brain 

tumors. Manual evaluation of results and images deeply depends on the radiologist's 

experience and knowledge. Additionally, traditional methods are impractical for handling 

large amounts of data, are not reproducible, and are prone to human error. This is why 

computer-aided diagnosis (CAD) systems are essential to overcome these limitations. 

2. Problem Statement 

Over the years, automated machine learning methods have been developed for medical 

image analysis, but traditional approaches face significant limitations when applied to MRI 

images, particularly due to the large volume of data and complex anatomical structures. 

Recent advancements in Artificial Intelligence (AI) and deep learning (DL) have 

demonstrated their ability to efficiently process big data, offering promising solutions in 

various domains, including healthcare, autonomous systems, speech recognition, and image 

classification. In medical diagnosis, deep learning frameworks can automatically extract 

meaningful features from MRI images, surpassing classical approaches that rely on 

manually designed features. This has contributed to improve accuracy in brain tumor 

classification, a critical task for early detection and effective treatment planning.[4] 
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Brain tumor classification is generally categorized into two main types: (i) binary 

classification, which differentiates between normal and abnormal brain tissues, and (ii) 

multi-class classification, which distinguishes between specific tumor types such as 

Glioma, Meningioma, Pituitary, and Metastatic tumors [5]. Despite advances in machine 

learning and deep learning for MRI-based brain tumor classification, several challenges 

persist, impacting performance and clinical adoption: [6] [7] [8] 

1. Data-Related Challenges 

MRI data often contain noise, artifacts, or low resolution, which can hinder the 

extraction of relevant features. Anatomical variability among patients further complicates 

analysis, while the rarity of certain tumor types results in limited training data, increasing 

the risk of biased classification. Additionally, the creation of high-quality, annotated MRI 

datasets is both costly and time-consuming, requiring specialized medical expertise. 

2. Challenges Related to Classification Methods 

Effective classification depends on extracting meaningful features, which is not 

always straightforward. While deep learning models can learn complex patterns, they 

require large amounts of data to generalize well and avoid overfitting. Furthermore, many 

deep learning architectures, particularly convolutional neural networks (CNNs), are often 

considered "black boxes" making it difficult to interpret their decision-making process. 

3. Challenges in Medical Interpretation and Clinical Adoption 

The integration of AI-based tumor classification into clinical practice faces hurdles 

related to interpretability, reliability, and validation. Radiologists and clinicians must be able 

to trust and explain the model’s predictions to ensure patient safety. Misclassifications can 

lead to severe diagnostic consequences, highlighting the need for robust, transparent, and 

clinically validated models before they can be widely adopted in healthcare settings. 

Addressing these challenges is essential for enhancing the accuracy, reliability, and 

interpretability of brain tumor classification models, ultimately improving diagnostic 

support and patient outcomes. 
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3. Thesis Objectives 

This thesis proposes a novel automated MRI brain tumor classification framework 

based on deep learning techniques. The framework aims to address the limitations 

mentioned previously and enhance the accuracy and efficiency of brain tumor classification. 

The specific objectives of this research are: 

 To Improve the classification efficiency through enhanced feature extractors. 

 To develop a deep learning-based framework for automated MRI brain tumor 

classification. 

 To investigate the effectiveness of deep learning for feature extraction in the context 

of brain tumor classification. 

 To integrate explainability into the classification process by leveraging interpretable 

models, thereby supporting clinical decision-making and ensuring transparency in 

medical diagnoses. 

 To explore the use of Deep Rule-Based (DRB) classifiers for brain tumor 

classification with deep features. 

 To evaluate the performance of the proposed framework on publicly available MRI 

brain tumor datasets, including both binary and multi-class classification tasks. 

 To compare the performance of the proposed framework with state-of-the-art 

methods, including traditional machine learning algorithms and other deep learning 

approaches. 

By achieving these objectives, this research seeks to contribute to the development of 

more accurate, efficient, and reliable automated brain tumor classification systems, 

ultimately improving patient care and outcomes. 

4. Thesis Contributions 

The expected contributions of this doctoral thesis are as follows: 

 First contribution: Construction of Bank of BSIF descriptor [9] 

The first contribution presents an innovative model, DRB-BBSIF (Deep Rule-Based 

Classifier using Bank of Binarized Statistical Image Features), designed to overcome the 

limitations of traditional brain tumor classification methods. It focuses on two key 

improvements: 
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1. Enhanced Feature Extraction: BSIF is a valuable tool for extracting texture 

information from images due to its balance of simplicity and effectiveness. However, 

its reliance on hand-crafted features can hinder its ability to capture complex patterns. 

To overcome this limitation, we have developed Bank-BSIF, a refined version of BSIF 

that leverages the optimal parameter settings. 

2. Automated Classification with Deep Rules: The model incorporates a Deep Rule-

Based (DRB) classifier that automates the classification process. This classifier utilizes 

a self-organizing system of fuzzy rules based on data prototypes, enabling an efficient 

and accurate approach to tumor classification. 

Through these enhancements, DRB-BBSIF provides a more robust and effective 

solution for brain tumor identification and classification, addressing key challenges in 

medical image analysis. The model's effectiveness was validated on a large T1-weighted 

CE-MRI brain tumor dataset, highlighting the critical role of advanced feature extraction 

techniques in achieving accurate classification results. 

 Second  Contribution: MRI Brain Tumor Identification and Classification using Deep 
Learning Techniques [10] 

The second contribution emphasizes the powerful combination of deep learning and 

rule-based classification. We introduce an innovative, straightforward, and fully automated 

DRB-based framework for MRI brain tumor classification. This approach utilizes deep 

learning for feature extraction, while leveraging DRB's strength in classification. 

1. Deep Feature Extraction: The framework employs pre-trained deep learning models 

such as AlexNet, VGG-16, ResNet-50, and ResNet-18 to extract deep features from 

MRI images. These features capture intricate patterns and relationships within the data, 

leading to enhanced classification accuracy. 

2. DRB for Classification: As in the first contribution, the model uses DRB for 

classification. DRB processes the deep features to automatically generate fuzzy rules, 

enabling precise tumor detection and classification. 

The framework was evaluated on two MRI brain tumor datasets from Kaggle: a binary 

classification dataset (tumor vs. no tumor) and a multiclass dataset (Meningioma, Glioma, 

and Pituitary tumor). Experimental results demonstrate that this novel DRB-based scheme 

is robust, simple, and effective, achieving high performance across both datasets. By 

automatically generating a set of fuzzy rules from the extracted deep features, the DRB 
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classifier accurately identifies tumors, showcasing its ability to synergize deep learning's 

feature extraction capabilities with rule-based decision-making for reliable MRI brain tumor 

classification. 

By addressing the challenges of traditional methods and utilizing the power of deep 

learning, this research contributes to the development of more accurate, efficient, and 

reliable automated brain tumor classification systems, ultimately improving patient care and 

outcomes. 

5. Thesis Organization 

This thesis is organized to provide a comprehensive understanding of brain tumor 

identification and classification using deep learning techniques applied to MRI data.  

 Chapter 1 establishes the context and background by discussing the challenges of brain 

tumors and the significance of MRI in their diagnosis. 

  Chapter 2 delves into the theoretical foundation, exploring machine learning and deep 

learning concepts relevant to medical image analysis.  

 Chapter 3 presents a critical review of existing literature on deep learning approaches 

for brain tumor classification using MRI.   

 Chapter 4 presents our first contribution called DRB-BBSIF (Deep Rule-Based 

Classifier using Bank of Binarized Statistical Image Features) designed to address the 

shortcomings of conventional methods.  

 Chapter 5 presents  our second contribution, DRB-based scheme for MRI brain tumor 

classification, that leverage deep learning and rule-based techniques for improved 

tumor identification and classification.  

 Finally, Conclusion summarizes the key findings, discusses limitations and future 

directions, and concludes by highlighting the importance of this research while 

outlining promising areas for further investigation and development. 
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Chapter I:  MRI for Brain Tumor Diagnosis 

I.1 Introduction   

Brain tumors are a serious health concern that require precise identification and 

classification for optimal treatment. MRI has become the gold standard in the medical field 

for the diagnosis and evaluation of brain tumors due to its non-invasive nature, superior soft 

tissue contrast, and ability to provide detailed anatomical and functional information. MRI 

offers a comprehensive view of the brain, allowing clinicians to visualize the tumor's 

location, size, and morphology with great precision. These qualities make it an indispensable 

tool for guiding diagnosis.[11][12] 

This chapter provides a comprehensive overview of brain tumors and MRI, laying the 

foundation for subsequent chapters that delve into the application of deep learning 

techniques for brain tumor identification and classification using MRI images. 

I.2  Brain Tumors 

I.2.1 What is brain tumor? 

 A brain tumor is an abnormal growth of mass of cells in the brain or near it, as 

illustrated in Figure I-1. This growing is uncontrolled, unchecked by the mechanisms that 

control normal cells. Brain tumors can be classified as a primary tumors, which originates 

and starts inside the brain, and secondary tumors, also known as a metastatic brain tumor, 

which begin as cancer somewhere else in the body and spread to the brain. Brain tumors can 

be cancerous (malignant), which tend to be fast-growing, or noncancerous (benign), which 

tend to be slow-growing. [11][13] 

I.2.2 Types of brain tumors 

 Understanding the diverse types of brain tumors is crucial for effective diagnosis and 

treatment planning. Brain tumors encompass a wide spectrum of neoplastic growths that 

arise within the brain or its surrounding tissues. Each type varies significantly in terms of 

location, growth pattern, and potential impact on neurological function. Table I.1 aims to 

explore the classification and characteristics of different types of brain tumors. The most 

common brain tumors are presented in Figure I-2. [14][15] 
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Table I.1 Types of Brain Tumors [14][15][16] 

Tumors Location Types Benign or 
Malignant 

 Gliomas And 
related brain 
tumors 

 

The glial cells surround 
and support nerve cells in 
the brain tissue. 

 astrocytoma, 
 glioblastoma,  
oligodendroglioma 
  ependymoma. 

Gliomas can be 
benign, but most 
are malignant. 

 Choroid 
plexus tumors  

 

located in the fluid-filled 
cavities in the brain, 
called the ventricles. 

Choroid plexus 
carcinoma 

Choroid plexus 
tumors can be 
benign or 
malignant.  

 Embryonal 
tumors  

Begin in embryonal cells 
that are left over from 
fetal development.  

medulloblastoma. Embryonal 
tumors are 
malignant brain 
tumors  

 Germ cell 
tumors 

they're often located near 
the pineal gland or the 
pituitary gland. But 
sometimes they're in 
other parts of the body. 

Germ cell tumors  Germ cell tumors 
are mostly 
benign. They're 
more common in 
children. 

 Pineal tumors 
Pineal tumors start in and 
around the brain's pineal 
gland, located in the 
center of the brain. 

Pineoblastoma  Pineal tumors can 
be benign or 
malignant. 

 Meningiomas 
start in the membranes 
around the brain and 
spinal cord. 

 Meningiomas  are usually 
benign, but 
sometimes they 
can be malignant. 

 Nerve tumors 
located on the main 
nerve that connects the 
inner ear to the brain. 

acoustic neuroma, 
also called 
schwannoma. 

Benign 

 Pituitary 
tumors  

begin in and around the 
pituitary gland. This 
small gland is located 
near the base of the 
brain. 

Craniopharyngioma  
 
 

Benign 
 
 
 
 

 Other brain 
tumors  

Tumors can start in the 
muscles, blood vessels 
and connective tissue 
around the brain.  
Tumors can form in the 
bones of the skull. 
Malignant brain tumors 
can start from the germ-
fighting immune system 
cells in the brain.  
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I.2.3 Impact of brain tumor on the health 

Whether a brain tumor is benign, malignant, or metastatic, all are potentially life-

threatening conditions. The seriousness of a brain tumor stems from its ability to interfere 

with the intricate and vital functions of the brain.[12] 

 

Figure I-1: Example of Brain Tumor [14] 

I.2.3.1 Benign Tumors 

While benign tumors are non-cancerous and typically grow slowly, they can still pose 

significant health risks depending on their size and location. Benign tumors may cause 

complications by exerting pressure on surrounding brain tissue, leading to neurological 

symptoms and impairments. In some cases, even a benign tumor can become life-threatening 

if it compresses critical structures or causes increased intracranial pressure.[14] 

I.2.3.2 Malignant Tumors  

Malignant brain tumors, on the other hand, are cancerous and often grow rapidly. They 

can infiltrate and invade surrounding healthy brain tissue, making complete surgical removal 

challenging. The aggressive nature of malignant tumors contributes to their potential to 

spread to other parts of the brain and spinal cord, further complicating treatment and 

prognosis.[14] 
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I.2.3.3 Metastatic Tumors 

Metastatic brain tumors, originating from cancer in other parts of the body, represent 

another life-threatening category. These tumors reach the brain through the bloodstream or 

the lymphatic system, forming secondary tumors. The presence of metastatic tumors in the 

brain indicates advanced cancer elsewhere in the body, and their impact on health can be 

severe. In all cases, the location of the tumor is a critical factor. Tumors in certain areas of 

the brain may affect vital functions such as breathing, heart rate, or consciousness, 

intensifying the potential for life-threatening complications. [14][15] 

Timely and appropriate medical intervention, including surgery, radiation therapy, 

chemotherapy, and other targeted treatments, is essential to manage and potentially mitigate 

the life-threatening aspects of brain tumors. Regular monitoring and follow-up care are 

crucial to assess the effectiveness of treatment and address any recurrence or new 

developments. 

The impact of a brain tumor on an individual's health underscores the importance of 

early detection, accurate diagnosis, and comprehensive treatment planning to maximize the 

chances of a favorable outcome. Additionally, the multidimensional nature of care for 

individuals with brain tumors often includes addressing emotional, psychological, and 

supportive aspects to enhance overall well-being during the treatment and recovery process. 

 

Figure I-2: The Most Common Brain Tumors [16] 
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I.3 Magnetic Resonance Imaging – MRI – an Overview 

I.3.1 Introduction 

Today, there are numerous imaging techniques, as shown in Figure I-3, often 

complementary. They have been developed from major physics discoveries of 20th century: 

X-rays and radio waves, natural and artificial radioactivity and finally the magnetic 

properties of the nuclei and atoms. They are based on the progress of medicine and advances 

in physics, chemistry, applied mathematics and computer science. Medical imaging 

continues to evolve and improve and it is increasingly used for diagnosis, in addition to a 

clinical examination and other investigations, such as biological examinations or 

neuropsychological tests. [17] [18] 

 

Figure I-3: Medical Imaging Techniques [19] 

I.3.2 Overview of various imaging methods 

Before delving into magnetic resonance imaging (MRI), the most widely used 

technique for visualizing brain tumors, this section presents an overview of the various 

imaging methods employed in brain studies.Table I.2 offers a comparative analysis of these 

techniques. [17] [20] [21] 
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Table I.2 : Comparison of different imaging techniques [22] 
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CT 0.2 -1.0  X-Ray Tissue density 
Quick, high-
resolution 3D 
reconstruction 

Low soft tissue 
contrast, radiation 
exposure 

MRI 0.3 -1.0  Radio- 
frequency Multiple 

Soft tissue contrast 
with various 
imaging techniques 

Scan duration, 
sensitivity to 
metal, patient 
comfort 

NUC 
MED 5-10  Gamma  

rays 
Tissue  
biochemistry 

Information on 
tissue function 

Lower resolution, 
radioactive 
substances 

PET 4-7  
Positrons/ 
gamma 
rays 

Tissue  
biochemistry 

Functional 
information of 
tissues 

Lower resolution, 
radioactive 
substances 

SPECT 5-10  Gamma 
rays 

Tissue 
 biochemistry 

Functional 
information of 
tissues 

Lower resolution, 
radioactive 
substances 

US 0.2-0.5  Acoustic 
(sound) 

Tissue 
composition or 
flow 

Quick, affordable, 
portable, real-time 

Low image 
quality, restricted 
field of view 

X-Ray 0.03-0.2 x-ray Tissue density Quick, affordable, 
and high-resolution 

Limited to 2D, 
low soft tissue 
contrast 

I.3.2.1  X-ray  

X-ray imaging, or radiography, was the first and, for many years, the only method to 

visualize the inside of the body. It uses electromagnetic radiation that exposes tissues to 

ionizing radiation, accumulating over a patient's lifetime. Despite this, X-rays are quick, 

inexpensive, portable, and widely used in medicine. Specialized X-ray techniques include 

2D mammography for breast imaging, 3D mammography (digital breast tomosynthesis) for 

breast cancer screening, and fluoroscopy, which produces real-time images. These methods 

show X-ray absorption differences in body tissues. However, X-rays only provide projection 

images, limiting internal organ views, prompting the development of other imaging 

techniques to address these limitations.[23] 

I.3.2.2 Tomographic Imaging  

MRI is one of several noninvasive techniques that generate cross-sectional 

(tomographic) images for radiologists and referring clinicians. Other commonly used 

tomographic modalities include computed tomography (CT), nuclear medicine, single 
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photon emission computed tomography (SPECT), positron emission tomography (PET), 

and ultrasound (US). [23] 

I.3.2.2.1 Computed Tomography  

Among the imaging methods, CT is most often compared to MRI because both 

produce detailed images of the body's anatomy with different shades of gray and can image 

any part of the body. However, the way images are created and how tissues appear in each 

method are very different. 

Like MRI and other imaging techniques, CT creates an image by sending energy into 

the body and measuring how that energy is absorbed or changed by the body's tissues. In 

CT, x-ray beams are used. These beams pass through the body, and detectors on the opposite 

side measure how much energy gets through. This measurement shows how much energy 

was absorbed by the tissues. The x-ray beam is sent through the body at many different 

angles, and a computer processes these measurements to produce a cross-sectional image. 

[23] 

I.3.2.2.2  Nuclear Medicine, SPECT, PET, and US  

Nuclear medicine and SPECT use radioactive tracers introduced into the body to form 

images by measuring the decay of these tracers. The injected tracers emit gamma rays, which 

are similar to x-rays but have higher energy. A gamma camera detects these rays to create 

the final image. These methods are often used to measure blood flow and distribution in the 

heart and other organs. Compared to MRI, they produce lower resolution images but are 

specialized for assessing organ function. 

PET also uses a radioactive tracer, but it detects tiny particles called positrons 

produced during decay. This allows PET to provide unique information about tissue 

metabolism. For example, a tracer can be attached to glucose to show how much glucose 

different tissues use, helping to distinguish normal from cancerous tissue. PET images have 

lower resolution than MRI but offer valuable insights into organ function. Hybrid systems 

like PET/CT and PET/MRI combine high-resolution anatomical images with metabolic 

images, allowing precise correlation between metabolic activity and anatomical structures, 

which is useful in tumor ablation. 

Ultrasound is another tomographic imaging method and is the most widely available. 

It's relatively inexpensive, and the machines are small and portable. Ultrasound is commonly 
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used for fetal assessment during pregnancy and for scanning the heart, major arteries, liver, 

and kidneys. Unlike MRI and other methods, ultrasound doesn't use ionizing radiation but 

measures sound wave energy. However, because sound waves don't travel well through air 

or bone, ultrasound isn't optimal for imaging the lungs or skeleton. [23] 

I.3.3 Magnetic Resonance Imaging (MRI)  

MRI, as shown in Figure I-4, is undeniably fundamental in imaging brain tumors, 

significantly impacting every aspect of patient care, from diagnosis and treatment planning 

to monitoring treatment response and detecting recurrence. Presently, neuroimaging can 

detail both morphological and non-morphological (such as functional, hemodynamic, 

metabolic, cellular, microstructural, and occasionally genetic) features of brain tumors, 

substantially aiding in diagnosis and ongoing assessment [24]. MRI is a prominent medical 

imaging technique recognized for its ability to provide highly detailed visualizations of the 

human body. Its advanced technology is essential for the diagnosis and monitoring of a wide 

range of medical conditions. However, like any diagnostic method, MRI has both strengths 

and limitations. [23] 

 

Figure I-4: Magnetic Resonance Imaging [25]  

This section outlines the benefits of MRI, highlighting its safety, flexibility, and 

exceptional imaging quality, which make it a preferred tool in various clinical settings. It 

also addresses its drawbacks, including challenges related to cost, patient comfort, and 

accessibility, providing a balanced view of this critical imaging technology . 
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I.3.3.1 Advantages of MRI 

MRI is a non-invasive imaging technique with numerous advantages, making it safe 

for repeated use and a valuable tool in medical diagnostics and neuroscience. Some of its 

key benefits include : [25] 

 Non-invasive and free of ionizing radiation: MRI is a non-invasive imaging 

technique that, unlike X-rays and CT scans, does not require the use of ionizing 

radiation or invasive procedures like surgery, making it generally safe, reducing the 

risk of radiation exposure, and suitable for repeated examinations. 

 Excellent Soft Tissue Contrast: MRI provides excellent contrast between different 

soft tissues, making it particularly useful for imaging the brain, muscles, joints, and 

organs like the liver and kidneys. 

 Multiplanar Imaging: MRI allows imaging in multiple planes (axial, sagittal, and 

coronal), providing comprehensive views of the anatomy and facilitating the 

diagnosis of various conditions. 

 Functional Imaging: Functional MRI (fMRI) can be used to assess brain activity 

by measuring changes in blood flow. This is valuable in neuroscience and can help 

identify areas of the brain associated with specific functions. 

I.3.3.2 Disadvantages of MRI 

Although MRI offers many advantages, it also has some drawbacks, including : [25] 

 Contrast Agents: Some MRI scans may require the use of contrast agents (usually 

gadolinium-based) to enhance visibility of certain structures. While these agents are 

generally safe, there have been concerns about their long-term effects, especially in 

patients with kidney problems. 

 Noise and Claustrophobia: The loud knocking and thumping noises produced 

during an MRI scan can be unsettling for some patients. Additionally, the enclosed 

space of the MRI machine can cause feelings of claustrophobia in some individuals. 

 Metallic Implant Interference: Metal objects, such as pacemakers, artificial joints, 

and some dental implants, can interfere with the magnetic fields in an MRI machine, 

limiting its use in certain patients. 
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 Cost: MRI machines are expensive to purchase and maintain, making the cost of an 

MRI scan higher than some other imaging modalities. 

 Time-consuming: MRI scans can be time-consuming, especially for certain types 

of studies. Patients may need to remain still for extended periods, which can be 

challenging for some individuals, such as young children or those with certain 

medical conditions. 

I.3.3.3 Basic Principles of MRI  

Magnetic Resonance Imaging is based on the principles of nuclear magnetic resonance 

(NMR) spectroscopy, which was initially developed for chemical analysis. In the context of 

medical imaging, MRI exploits the magnetic properties of certain atomic nuclei to produce 

detailed images of the human body. The basic principles of MRI involve the application of 

a strong magnetic field, radiofrequency (RF) pulses, and gradient magnetic fields to generate 

signals from the body that are used to construct images. Bellow a brief overview of these 

principles: [22] [26] [27][28]  

1. Nuclear Magnetic Resonance (NMR): The human body being made up on average of 

70% water, we are in practice interested in the water molecule and in particular the 

hydrogen nucleus (proton). The hydrogen nucleus behaves like a charge rotating around 

its axis: this is the spin movement presented in Error! Reference source not found.. Protons 

can then be compared to magnetic dipoles. In the absence of any magnetic field, these 

will orient themselves in space in a random way. This movement gives the nucleus an 

angular momentum which depends on its mass and a magnetic moment which depends 

on its charge. In a magnetic field B0, the protons are then oriented relative to B0 and 

describe around this field a precession movement, of constant angular speed.    

2. Magnetic Field: MRI machines generate a strong, uniform magnetic field that aligns 

the magnetic moments of hydrogen nuclei (protons) in the body. The main magnetic 

field, denoted as B0, is typically several thousand times stronger than the Earth's 

magnetic field. 

3. RF Pulse and Resonance: When a short burst of RF energy is applied at the resonant 

frequency of the protons (the Larmor frequency), it causes the protons to absorb energy 

and process (or wobble) out of alignment with the main magnetic field. This process is 

known as excitation or resonance. 
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Figure I-5: The spin movement [22] 

4. Relaxation Processes: After the RF pulse is turned off, the protons gradually return to 

their equilibrium alignment with the main magnetic field. As presented in Figure I-6, 

There are two relaxation processes involved:    

a. Longitudinal Relaxation (T1): Protons realign with the magnetic field, releasing 

energy in the form of RF signals. T1 relaxation affects the longitudinal 

magnetization (ML), which is the component of the magnetization along the 

direction of the main magnetic field. 

b. Transverse Relaxation (T2): Protons lose phase coherence and dephase, leading 

to a loss of transverse magnetization (MT). T2 relaxation is the process by which 

the transverse magnetization decays back to its equilibrium state. 

 

 

Figure I-6: Splitting of the magnetic moment M. [22] 
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5- Gradient Fields: Gradient magnetic fields are applied in different directions, allowing 

spatial encoding of the signals. By varying the strength and timing of these gradients, 

different regions of the body can be selectively imaged. 

6- Signal Detection: To generate an MRI image, the patient is subjected to a magnetic field 

(B0) and a radiofrequency wave (B1) with a frequency matching the precession 

frequency of protons. This wave causes the protons to tilt at an angle (θ), typically 90 or 

180 degrees relative to their initial state (M0). When the radiofrequency pulse ends, the 

protons return to their equilibrium state, leading to a rapid decrease in the transverse 

moment (MT) and a recovery of the longitudinal moment (ML). During this return to 

equilibrium, the protons continue to precess, producing a Free Induction Decay (FID) 

magnetic field as shown in Figure I-7.This signal is captured by the receiving coils and 

converted into an electrical signal, which is then used to create the MRI image. 

 

 

Figure I-7: The FID and signal detection to generate MR images. [27] 

7- Image Reconstruction: The signals detected by the receiving coils are processed by a 

computer to generate detailed images of the body. Various imaging sequences are 

presented in Figure I-8, such as T1-weighted, T2-weighted, and gradient-echo 

sequences, can be used to emphasize different tissue properties and provide different 

types of contrast in the images. 

By manipulating these basic principles, MRI can produce detailed images of 

anatomical structures and physiological processes in the body with high spatial resolution 

and excellent soft tissue contrast, making it a versatile and powerful imaging modality in 

clinical practice. 
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Figure I-8:  Various MRI images sequences [29] 

I.4 Conclusion 

Brain tumors represent a complex and challenging medical condition, demanding 

accurate diagnosis and effective treatment strategies. MRI has emerged as an indispensable 

tool for brain tumor assessment, providing detailed insights into tumor characteristics and 

guiding clinical decision-making. Deep learning techniques have revolutionized the field of 

medical imaging, offering promising avenues for further enhancing brain tumor 

identification and classification using MRI data. 
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Chapter II   Materials and methods 

II.1 Introduction 

The integration of machine learning in MRI brain tumor detection promises to 

revolutionize clinical workflows by providing radiologists with powerful tools for early and 

accurate diagnosis. This chapter aims to provide a solid foundation and clear understanding 

of the tools and techniques employed in this research. We explore the domain of machine 

learning (ML), specifically focusing on deep learning (DL) techniques, and their 

transformative impact on medical image analysis. To ensure the robustness and reliability of 

the proposed models, the performance evaluation metrics used in this study are described.  

II.2 Artificial intelligence, machine learning and deep learning paradigm  

In the data sciences field, artificial intelligence (AI) aims to provide computers 

human-level intelligence. For this reason, Machine learning and deep learning, which are 

subfields of artificial intelligence, focus on developing algorithms and models that enable 

computers to learn from and make predictions or decisions based on data, without human 

intervention. They represent a powerful toolkit in achieving the ultimate goal of AI: 

intelligent machines [30]. Figure II-1 visually represents this hierarchical relationship, with 

AI at the top level, followed by ML, and then DL as a specialized subset of ML. 

 

Figure II-1: AI, machine learning and deep learning paradigm [31] 
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II.3 Machine Learning (ML): 

II.3.1 Definition  

Machine learning is the study of computer algorithms that improve automatically 

through experience. It is a branch of artificial intelligence based on the idea that systems can 

learn from data, identify patterns, and make decisions with minimal human intervention. 

[32] 

II.3.2 Types of Machine Learning 

The effectiveness of machine learning models relies on the quality and quantity of data 

they are trained on. Depending on the nature of the data and the desired outcome, machine 

learning algorithms can be broadly classified into three main categories as illustrated in 

Figure II-2: supervised, unsupervised, and reinforcement learning.[30] [32] 

 

Figure II-2: Types of Machine Learning [33] 

II.3.2.1 Supervised Learning:  

The algorithm learns from labeled training data, making predictions or decisions based 

on input-output pairs. Common applications include classification and regression tasks. 

II.3.2.2 Unsupervised Learning 

 The algorithm learns from unlabeled data, finding hidden patterns or intrinsic 

structures. Common applications include clustering and dimensionality reduction.  
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II.3.2.3 Reinforcement Learning 

 The algorithm learns through trial and error by interacting with an environment and 

receiving feedback in the form of rewards or penalties. It aims to maximize the cumulative 

reward over time. 

II.3.3 Concepts of Machine Learning Models 

The success of machine learning models hinges on a solid understanding of key 

concepts such as features, labels, model training, evaluation, and application areas. The 

typical process of ML is illustrated in Figure II-3. [34] 

 Features and Labels: Features are input variables used to make predictions, while 

labels are the output variables to be predicted. 

 Model Training: The process of fitting a model to training data by adjusting its 

parameters to minimize a loss function. 

 Model Evaluation: Assessing the performance of a trained model on unseen data 

using evaluation metrics such as accuracy, precision, recall, F1-score, etc. 

 Applications: Machine learning is widely used in various fields, including 

healthcare (diagnosis, prognosis), finance (fraud detection, risk assessment), and 

natural language processing (speech recognition, machine translation). 

 

Figure II-3: The typical process of ML [30] 
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II.4 Deep Learning (DL)  

II.4.1 Definition 

  Deep learning is a subset of machine learning that uses artificial neural networks to 

model and solve complex problems. It is characterized by the use of deep neural networks 

with multiple layers (deep architectures) as shown in Figure II-4. [35] 

 

Figure II-4: Difference between ML and DL [30] 

Machine learning encompasses a broader range of algorithms and techniques for 

learning from data, while deep learning focuses specifically on neural networks with 

multiple layers for solving complex problems. Deep learning has shown remarkable success 

in various applications, particularly in domains with large datasets. 

II.4.2 History of Deep Learning 

The history of Deep Learning goes back several decades, marked by the contributions 

of researchers and scientists in the field of neural networks and artificial intelligence. Figure 

II-5 and Table II.1  present a timeline of the main contributors and their contributions: 
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Table II.1: Timeline of the main contributions in the field of ANN [36] 

Year Contributer Contribution 

300 BC  Aristotle Introduced Associationism, marking the beginning 
of humanity's effort to understand the brain. 

1873   Alexander Bain Introduced Neural Groupings as the first models 
of neural networks. 

1943  McCulloch & Pitts The McCulloch-Pitts (MCP) model was 
introduced and is considered as the ancestor of 
artificial neural networks. 

1949  Donald Hebb 
 

Regarded as the father of neural networks, he 
introduced the Hebbian Learning Rule, which 
forms the foundation of modern neural networks. 

1958 
 

 Frank Rosenblatt Introduced the first perceptron. 

1974  Paul Werbos Introduced Backpropagation 
 

 
1980 

 Teuvo Kohonen 
 

Introduced Self Organizing Map 

  Kunihiko Fukushima Introduced Neocogitron, which inspired 
Convolutional Neural Network 

1982  John Hopfield Introduced Hopfield Network 

1985  Hilton & Sejnowski Introduced Boltzmann Machine 
 
1986 

 Paul Smolensky Introduced Harmonium, which is later known as 
Restricted Boltzmann Machine 

 Michael I. Jordan Defined and introduced Recurrent Neural Network 
 

1990  Yann LeCun Introduced LeNet, showed the possibility of deep 
neural networks in practice 

 
 
1997 

 Schuster & Paliwal Introduced Bidirectional Recurrent Neural 
Network 

 Hochreiter & 
Schmidhuber 

Introduced LSTM, solved the problem of 
vanishing gradient in recurrent neural networks  

2006  Geoffrey Hinton 
 

Introduced Deep Belief Networks, also introduced 
layer-wise pretraining technique, opened current 
deep learning era. 

2009  Salakhutdinov & 
Hinton 

Introduced Deep Boltzmann Machines 
 

2012  Geoffrey Hinton Introduced Dropout, an efficient method for 
training neural networks 
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Figure II-5:  Trade of representation power and computation complexity [36] 

II.4.3 Concepts of Deep Learning Models 

Artificial neural networks (ANNs) are inspired by the structure and function of the 

human brain. They consist of interconnected processing units called neurons, arranged in 

layers. This section presents the key components of an ANN architecture: [30]  

II.4.3.1 Neurons 

 Neurons in a neural network act as information processors. They receive inputs from 

other neurons or the initial input layer. These inputs are then scaled by weights, which 

represent the strength of the connection between neurons. An optional bias term can be added 

to adjust the activation threshold of the neuron.  

 

 

Figure II-6: Structure of a neuron [30] 
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 Finally, the weighted sum is passed through an activation function. This function 

introduces non-linearity, allowing the network to learn complex patterns from data. The 

output of the activation function becomes the activation of the neuron, which is then sent 

onward to other neurons in the next layer, continuing the information processing chain. 

As presented in Figure II-6, a neuron has three parameters: [37] 

 Weight: When a signal (value) arrives, a neuron gets multiplied by a weight value. 

If a neuron has three inputs, it has three weight values which can be adjusted during 

training time. 

 Bias: An additional input to neurons that is always set to 1, with its own connection 

weight. This ensures that even when all other inputs are absent (all 0s), there will still be 

activation in the neuron. 

 Activation Functions: The primary role of any activation function in a neural network is 

to map the input to the output. This input is obtained by calculating the weighted sum of 

a neuron's inputs and adding a bias, if present. The activation function determines whether 

a neuron will fire for a given input by producing the corresponding output. 

II.4.3.2 Activation Functions: The Decision Maker   

An activation function in neural networks is a mathematical function that determines 

a neuron's output based on its input. It plays a key role in deciding how the network processes 

information, similar to how biological neurons function. Acting as a transfer function, it 

converts input values into corresponding outputs. 

Neural network activation functions are categorized as binary step, linear, or non-

linear. Linear functions produce outputs proportional to inputs. Binary step functions are 

threshold-based and simple. Non-linear functions, the most common and complex, enable 

diverse data processing. [38]  

II.4.3.2.1 Binary Step Function 

The binary step function, as shown in Figure II-7, determines neuron activation based 

on a threshold value. If the input exceeds the threshold, the neuron activates; otherwise, it 

remains inactive, preventing its output from being passed to the next hidden layer. [39] 
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Figure II-7: Binary Step Function [39] 

II.4.3.2.2 Linear Activation Function  

A Linear Activation Function, as shown in Figure II-8, is represented by the equation y 

= x , forming a straight line. Regardless of the number of layers in a neural network, if all 

layers utilize linear activation functions, the final output remains a linear combination of the 

input. Linear activation functions are beneficial for certain tasks but need to be paired with 

non-linear functions to improve a neural network’s learning ability and predictive 

performance. 

 

Figure II-8: Linear Activation Function [38] 
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II.4.3.2.3 Non-Linear Activation Functions 

The success of artificial neural networks is largely attributed to their ability to model 

complex, non-linear functions in real-world data. Without non-linearity, even deep networks 

would be limited to solving only basic, linearly separable problems. Activation functions 

play a crucial role by introducing non-linearity, enabling neural networks to capture intricate 

data distributions and tackle advanced deep learning challenges. This flexibility allows the 

network to learn more abstract patterns and better fit input data, making activation functions 

essential for the effectiveness of neural networks. [38] [40] 

 Sigmoid Function : The sigmoid activation function, also known as the logistic 

activation function, is a widely used non-linear function that maps input values to an 

output range between 0 and 1 as presented in Figure II-9. Unlike the binary step function, 

it produces continuous values within this range rather than just 0 or 1. [38] [40] 

 

Figure II-9: Sigmoid Activation Function [38] 

 Tanh Activation Function : The tanh activation function, as presented in Figure 

II-10, offers several advantages over sigmoid: it handles negative values better, is zero-

centered for faster learning, and has stronger gradients that mitigate vanishing gradients 

somewhat. However, like sigmoid, it still suffers from the vanishing gradient problem, 

especially in deep networks. Tanh is commonly used in hidden layers, particularly when 

input data is zero-centered, for more efficient training. [38] [40] 
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Figure II-10: Tanh Activation Function [38] 

 ReLU (Rectified Linear Unit) Function  

ReLUs are popular activation functions that are known for their effectiveness and 

simplicity. It prevents gradient vanishing problems and speeds up computation by 

substituting 0 for negative values while keeping positive values unchanged, as shown in 

Figure II-11. Compared to neural networks that use sigmoid or tanh, those that use ReLU 

usually converge six times faster.[38] [40] 

 

Figure II-11: ReLu Activation Function [38] 
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II.4.3.3 Artificial Neural Network  

Artificial Neural networks (ANN) are a type of AI inspired by the structure and 

function of the brain. They are composed of interconnected nodes (or artificial neurons) that 

process information by passing signals to each other. These networks can learn and improve 

their performance over time by adjusting the weights of the connections between nodes. 

There are typically three layers in an artificial neural network. Nodes that are 

connected to each other make up layers. The following provides a description of the three 

layers of ANN as illustrated in Figure II-12. [30] 

 Input layer: This layer serves as the entry point, receiving raw data from the external 

world. This data can be anything from images and sounds to numerical values, 

depending on the network's purpose. 

 Hidden layers: These layers, often consisting of multiple layers stacked upon each 

other, perform the core computations and information processing. They extract features 

and patterns from the raw data received from the input layer. The number of hidden 

layers and the number of neurons within each layer are crucial hyperparameters, 

influencing the network's complexity and its ability to learn and generalize from data. 

 Output layer: The final layer of the network, the output layer, produces the network's 

final outcome. This output can take various forms, depending on the network's task. For 

example, it could be a classification decision (e.g., identifying a handwritten digit), a 

predicted value (e.g., stock price prediction), or even a generated image. 

 

 

Figure II-12: Deep Neural Network [30] 
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II.4.4 Types of artificial neural network 

There are many different types of neural networks, each with its own strengths and 

weaknesses. This section presents some of the most common types.[41][42] 

II.4.4.1 Perceptron 

The perceptron, as shown in Figure II-13, is the simplest type of neural network. It 

consists of a single layer of nodes and can only perform linear separations of data. 

Perceptrons are not very powerful on their own, but they are the building block of more 

complex neural networks. [43] 

 

 

Figure II-13: Perceptron, Simple Neural Network [43] 

II.4.4.2 Multilayer Perceptron (MLP) 

MLPs are a type of feedforward neural network that consists of multiple layers of 

perceptron. The additional layers allow MLPs to learn more complex relationships between 

data. MLPs are a general-purpose type of neural network that can be used for a wide variety 

of tasks, such as image recognition and classification. [43] 

II.4.4.3 Convolutional Neural Network (CNN) 

CNNs are a type of neural network that is specifically designed for image recognition. 

CNNs, as shown in Figure II-14 , use a special type of layer called a convolutional layer that 

is able to extract features from images. CNNs are very successful at image recognition tasks, 

such as face detection and object classification. [44] [45] 
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Figure II-14: Convolutional Neural Network Architecture [42] 

II.4.4.4 Recurrent Neural Network (RNN) 

RNNs are a specialized type of neural network designed for processing sequential data. 

Unlike traditional neural networks, they incorporate a feedback loop, as illustrated in Figure 

II-15, enabling them to retain information from previous inputs and use it to influence current 

processing. This memory-like capability makes RNNs particularly well-suited for tasks such 

as speech recognition, language translation, and time series prediction, including sales 

forecasting and stock market analysis. A key strength of RNNs is their ability to capture 

temporal dependencies, allowing them to learn from past data and make informed 

predictions about future events.[43] [44] 

 

Figure II-15: RNN Architecture [43] 
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II.4.4.5 Long Short-Term Memory (LSTM) 

LSTMs are a type of RNN that is specifically designed to address the problem of 

vanishing gradients. Vanishing gradients can occur in RNNs when processing long 

sequences of data. LSTMs have a special internal structure, as illustrated in Figure II-16, that 

allows them to store information for longer periods of time. LSTMs are very successful at 

tasks such as speech recognition and machine translation. [44] [46] 

 

Figure II-16: LSTM Architecture [46] 

II.4.4.6 Generative Adversarial Networks (GANs) 

  Generative adversarial networks are a type of artificial intelligence model developed 

by Ian Goodfellow and his colleagues in 2014. They are based on an adversarial training 

framework, where two neural networks, the generator and the discriminator, compete to 

generate highly realistic synthetic data. The generator is responsible for producing synthetic 

data, while the discriminator evaluates whether the data is real or artificially generated. 

Throughout training, the generator continuously improves its output to deceive the 

discriminator, while the discriminator enhances its ability to distinguish real from synthetic 

samples. This iterative process continues until the generator produces data that is nearly 

indistinguishable from real data, leading to a balanced state between the two networks. The 

architecture of GAN is illustrated in Figure II-17. [44][47] 
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Figure II-17: GAN Architecture [47] 

II.4.4.7 Sequence to Sequence Models (Seq2Seq) 

 Seq2Seq was first introduced by Google for machine translation, it revolutionized the 

word-by-word method that ignored sentence structure and syntax. Seq2Seq transformed 

translation by utilizing deep learning to take into account both the current input word and its 

context. There are two main parts , as shown in Figure II-18, to this model (Decoder and 

Encoder).  Seq2Seq models are trained on input-output token sequences to predict the most 

likely output, making them effective for natural language processing (NLP) tasks like image 

captioning, text summarization, and machine translation. They often incorporate Attention 

mechanism to enhance performance by focusing on relevant input parts. Today, they are 

widely used in text generation, automated content creation, and conversational AI. [48] 

 

Figure II-18: Sequence to Sequence  Model [48] 
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II.5 Deep Learning in medical image analysis: 

Medical professionals have used imaging methods like CT, MRI, PET, 

mammography, ultrasound, and X-rays for decades in order to identify, diagnose, and treat 

diseases early [31]. Human specialists like radiologists and doctors have historically been in 

charge of interpreting these images. However, there is an increasing reliance on computer-

aided techniques to support medical decision-making due to the complexity of anomalies 

and the possibility of human fatigue. Although image technology has advanced more quickly 

than computer-aided analysis, the use of machine learning has resulted in notable 

advancements. In particular, deep learning (DL) has revolutionized medical image analysis 

by enabling automated, accurate, and efficient interpretation of complex imaging data. 

Unlike traditional machine learning approaches that require handcrafted features and 

extensive domain expertise, deep learning models can autonomously learn hierarchical 

features from raw images. This capability has greatly enhanced diagnostic accuracy, disease 

classification, and treatment planning across various medical fields, including radiology, 

pathology, and oncology.[49] 

II.5.1 The Impact of Deep learning on Medical Image Analysis 

Deep learning, particularly Convolutional Neural Networks (CNNs), has 

fundamentally changed medical image analysis. By automating complex tasks like 

segmentation and disease classification with high accuracy, these algorithms are accelerating 

diagnoses, improving patient outcomes, and streamlining healthcare. Leveraging vast 

amounts of annotated data, deep learning enables earlier disease detection, enhances 

radiologist decision-making, and drives medical research, effectively revolutionizing patient 

care. [4] [44][43] 

II.5.2 Applications in Medical Imaging 

Deep learning has been widely applied to various medical imaging tasks [31][44] 

[45] [49] [50] [51] , including : 

 Tumor Detection and Classification: Because of their strong feature extraction 

capabilities, CNNs are highly effective at accurately detecting and classifying cancers, 

such as brain tumors in MRIs, lung nodules in CT scans, and breast cancer in 

mammograms. 
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 Medical Image Segmentation: Organ and lesion segmentation is a crucial step for 

precise diagnosis and therapy planning, and U-Net and related architectures are 

frequently employed for this purpose.  

 Disease Prediction and Diagnosis: By training on big datasets, deep learning models 

can detect and diagnose diseases such as diabetic retinopathy (based on visual imaging), 

Alzheimer's disease (based on brain MRI), and pneumonia (based on chest X-rays). 

 Image Enhancement and Reconstruction: By reducing noise, enhancing resolution, 

and eliminating artifacts, methods such as GANs improve the quality of medical images, 

leading to better interpretation.  

 Image Registration:  To enhance analysis and treatment planning, image registration 

aligns medical images from several modalities, views, or times. VoxelMorph and other 

deep learning models improve speed and accuracy, which helps with radiation planning 

for accurate diagnosis and treatment, multi-modal fusion (MRI-PET), and disease 

tracking (MRI).  

 Image-Guided Interventions: Deep learning is used in image-guided interventions to 

improve real-time imaging during operations and medical procedures. Robotic-assisted 

surgery benefits from reinforcement learning, while surgical tool tracking is aided by 

methods such as object detection. Applications that enhance accuracy and patient 

outcomes include real-time tissue segmentation, ultrasound-guided biopsies, and tumor 

localization in radiation therapy. 

II.5.3 DL Techniques for Medical Image Analysis 

Deep learning has transformed medical image analysis by improving feature 

extraction, classification, and segmentation. Key techniques include CNNs for object 

detection, RNNs and LSTMs for handling sequential medical data, and GANs for 

generating synthetic images to enhance datasets. Additionally, hybrid approaches combine 

deep learning with traditional methods to address challenges like data scarcity and 

interpretability, leading to more accurate and reliable diagnostic tools. These techniques 

collectively enhance medical decision-making and patient outcomes. [44] 

 Convolutional neural network for medical image analysis 

In the context of deep learning applications for medical image processing, CNNs are 

indispensable. Their capacity for automated feature extraction enables high performance in 
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object localization, segmentation, and classification. The hierarchical architecture of CNNs 

facilitates the identification of intricate patterns, resulting in improved diagnostic precision, 

increased procedural efficiency, and enhanced patient outcomes. [44] [52] 

 Recurrent neural network techniques for medical image analysis 

RNNs play a crucial role in medical image analysis with deep learning due to their 

ability to capture temporal dependencies and contextual information. They are particularly 

effective for tasks involving sequential or time-series data, such as analyzing medical image 

sequences or dynamic imaging modalities. By modeling long-term dependencies and 

leveraging information from previous time steps, RNNs facilitate pattern recognition, 

disease progression prediction, and tumor growth tracking. [44] [43] 

 Generative adversarial network techniques for medical image analysis 

GANs are crucial in medical image analysis because they enable the creation of 

realistic synthetic images, augment datasets, and eventually improve the precision of 

diagnoses and analyses. [44] [47] 

 Long short-term memory techniques for medical image analysis 

In medical image analysis, LSTM networks are essential for deep learning applications 

that require understanding sequential dependencies. Medical images often contain intricate 

spatial and temporal patterns that demand contextual awareness. As a type of RNN, LSTM 

excels at modeling these long-range dependencies and temporal dynamics, proving 

particularly useful for time series analysis, disease progression modeling, and image 

sequence analysis. By leveraging its memory and gating mechanisms, LSTM can effectively 

learn and retain pertinent information over time, resulting in more accurate and robust 

medical image analysis and contributing to better diagnostic outcomes and personalized 

treatment strategies. [44] [47] 

 Hybrid techniques for medical informatics 

Medical image analysis benefits greatly from hybrid approaches that blend deep 

learning with other methods. While deep learning excels at tasks like segmentation and 

classification, it can struggle with limited data or lack of transparency. Hybrid techniques 

address these issues by integrating traditional machine learning, statistical models, or expert 

knowledge. Combining diverse data sources, like images and patient reports, further 
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enhances understanding and improves medical decisions. This leads to more precise and 

dependable tools for healthcare professionals. [10] [44]  [9]  

II.5.4 Advantages of Deep Learning in Medical Imaging 

Deep learning offers several key advantages for medical image analysis: [44]  [53] 

 Automated Feature Extraction: In contrast to traditional methods that require 

handcrafted features, deep learning algorithms learn pertinent features directly from 

data, minimizing human bias and effort.  

 High Accuracy and Robustness: In many medical imaging tasks, deep learning has 

surpassed traditional techniques, sometimes attaining performance that is close to or 

even better than human. 

 Scalability and Generalization: Deep learning models can effectively generalize 

across various imaging datasets and medical situations when given enough training data. 

II.5.5 Challenges and Limitations 

Despite its success, deep learning in medical image analysis faces several challenges: [53] 

 Data Availability and Annotation: Deep learning models need large, well-annotated 

medical datasets for training, however collecting such data is frequently challenging 

because of privacy issues and a lack of expert annotations. 

 Interpretability and Explainability: Since deep learning models operate as "black 

boxes," it is challenging to provide an explanation for their choices. Gaining the trust of 

clinicians in important medical applications requires interpretability. 

 Computing Requirements: Significant computing resources, such as powerful GPUs 

and a lot of storage, are needed to train deep neural networks. 

II.5.6 Future Directions 

Deep learning research for medical image processing is moving forward to more 

efficient and interpretable models. To improve performance and explainability, methods like 

self-supervised learning, hybrid models that combine deep learning and rule-based systems 

(such DRB classifiers) are being investigated. Federated learning, which enables the 

decentralized training of deep learning models without exchanging private patient data, is 

also showing promise as a remedy for privacy issues. Ongoing developments in model 
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architecture and training techniques are overcoming challenges like interpretability, 

computing demands, and data availability. Medical image analysis has been revolutionized 

by deep learning, which makes disease diagnosis quicker, more precise, more automated. Its 

incorporation with medical imaging has enormous potential to enhance clinical reasoning 

and, eventually, improve patient outcomes. 

II.5.7 CNNs for MRI Brain Tumor Classification 

The classification of MRI brain tumors is an intricate task requiring effective 

representation of spatial, structural, and textural features. CNNs have emerged as a powerful 

tool in medical image analysis, and several key advantages make them particularly well-

suited for MRI brain tumor classification. These include their ability to automatically learn 

complex, hierarchical features; capture spatial and structural variations within MRI images; 

outperform traditional methods in classification accuracy; leverage transfer learning to 

improve performance with limited medical data; and integrate deep learning with 

handcrafted features. These strengths make CNNs a robust and dependable choice for this 

task, significantly advancing medical image analysis and enabling more accurate and reliable 

diagnoses.[44] 

A shown in Figure II-19 CNN is made up of several building blocks called layers. In 

this subsection, we will provide a detailed analysis of these layers and their roles in the CNN 

architecture.[42] [52] 

 

Figure II-19: Representation of Convolutional Networks [54] 
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II.5.7.1 Input layer 

The input layer in CNN must contain data describing the image. Image data is 

represented by a three-dimensional matrix which generally needs to be reshaped into a single 

column (vector representation). 

II.5.7.2 Convolutional Layer  

 The convolutional layer is sometimes called a feature extraction layer because image 

features are extracted in this layer as shown in Figure II-20 and Figure II-21. First, a portion 

of the image is connected to the Convolutional layer to perform a convolution operation and 

calculate the dot product between the receptive field (a local region of the input image with 

the same size as the filter). The result of the operation is a single integer of the output 

volume. Then, we slide the filter over the next receptive field of the same input image by a 

stride and repeat the same operation. This operation is repeated by the same process over 

and over until the entire image is traversed. 

 The Convolution layer also contains the ReLU activation so that all negative values are 

set to zero. 

 

Figure II-20: Convolution Operation [37] 

 The convolution layer plays a crucial role in CNNs by extracting relevant features from 

the input image, allowing the network to perform tasks like image recognition and object 

detection. 
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Figure II-21: Convolutional Layer [55] 

II.5.7.3 Pooling Layer 

  Pooling layers are used to down sample the feature maps produced after convolution 

operations. They take large feature maps and shrink them to smaller sizes, preserving the 

most important features in each step. The pooling operation is defined by specifying the 

region size and stride, similar to the convolution operation. It is used between two 

convolutional layers. If we apply a Fully Connected (FC) layer after the Conv layer without 

applying pooling or maximum pooling, the computation will be costly. Thus, Different types 

of pooling techniques are used in various pooling layers, such as max pooling, min pooling, 

average pooling, gated pooling, and tree pooling. Max pooling is the most popular and 

commonly used technique as shown in Figure II-22. 

 

Figure II-22: Example of the Pooling Principle   [56] 
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II.5.7.4 Fully Connected Layer 

  After several convolutional and max-pooling layers, high-level reasoning in the 

neural network is done through fully connected layers. They take the features extracted from 

the convolutional layers and connect them to a single output layer, performing 

classifications or predictions based on the learned features. Fully-connected layers are a 

type of feed-forward artificial neural network (ANN) that follow the principles of traditional 

multi-layer perceptron neural networks (MLP). These layers take input from the final 

convolutional or pooling layer, which is in the form of a set of matrices (feature maps). 

These matrices are flattened into a vector, which is then fed into the fully-connected layer 

to generate the final output of the CNN, as shown in Figure II-23. 

 

Figure II-23: Fully Connected Layers [30] 

II.5.7.5 Logistic or Softmax Layer (LOSS) 

 The last layer of a CNN is the Softmax or Logistic layer, located at the end of the 

fully-connected layer. The Logistic layer is used for binary classification, while the Softmax 

layer is used for multi-class classification. 

II.5.7.6 Output Layer: The Final Decision Maker 

The output layer is the final layer in a Convolutional Neural Network. It receives the 

output from the preceding layers and generates the network's final prediction which is 

typically a classification or regression prediction. 
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II.6 Performance Evaluation Measurements  

Evaluation metrics are crucial in assessing the performance of a deep learning 

algorithm. They provide a quantitative measure of a model’s ability to generalize to new, 

unseen data. For classification tasks, these metrics can reveal the accuracy of predictions and 

the number of correct or incorrect predictions. Common metrics for such tasks include the 

confusion matrix  (which visualizes classification performance and aids in calculating other 

metrics), accuracy, precision, recall (sensitivity), F1-score, specificity, and Receiver 

Operating Characteristic (ROC) curves .[57] [58]  

II.6.1 Confusion Matrix 

The confusion matrix, presented in Table II.2 provides a summary of classification 

results, showing the number of correct and incorrect predictions for each class. The terms 

used in a confusion matrix and other evaluation metrics include true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). True positives are instances 

correctly identified as positive, while false positives are negatives incorrectly identified as 

positive. True negatives are correctly identified as negative, and false negatives are positives 

incorrectly identified as negative.[57] [59] 

Table II.2: Confusion matrix 
 
Expected outcome 

 
Ground truth 

 Positive        Negative 

Positive TP FP 

Negative FN TN 

II.6.2  Accuracy 

Accuracy measures the proportion of instances correctly classified as either positive 
or negative out of the total number of instances. It is calculated by Equation (II.1) 

 Accuracy=  ା
ାାା

  (II.1) 

II.6.3 Sensitivity 

Sensitivity, also known as recall or true positive rate, measures the proportion of 

actual positive instances that are correctly identified by the model. It is calculated by 
Equation (II.2). 
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 Sensitivity= 
ା

 (II.2) 

II.6.4 Specificity  

Specificity, also known as the true negative rate, measures the proportion of actual 

negative instances that are correctly identified by the model. It is calculated by Equation (II.3). 

 Specificity=  
ା

   (II.3) 

II.6.5 F1-score 

F1-score is the harmonic mean of precision and recall and can be calculated by 
Equation (II.4). 

−1ܨ  ݁ݎܿݏ = 2 × ௦×ோ
 ௦ାோ

 (II.4) 

II.6.6 ROC curve 

The Receiver Operating Characteristic (ROC) curve is a graphical tool used to assess 

the performance of a classification model. It plots the True Positive Rate (sensitivity) against 

the False Positive Rate (1 - specificity) at various threshold settings. The ROC curve 

illustrates the balance between sensitivity and specificity for different thresholds. 

The Area Under the ROC Curve (AUC) is a single value that summarizes the model's 

performance. An AUC of 1 indicates perfect classification, while an AUC of 0.5 suggests 

the model performs no better than random guessing. Figure II-24 provides an illustration of 

a ROC curve.[58] [59]    

 

Figure II-24: Roc Curve [60] 
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II.7 Conclusion 

This chapter provided a comprehensive overview of the theoretical foundations and 

methodologies employed in this study. It began by introducing the fundamental concepts of 

Artificial Intelligence, Machine Learning, and Deep Learning, emphasizing their relevance 

in medical image analysis. A detailed discussion of machine learning techniques, including 

supervised, unsupervised, and reinforcement learning, highlighted the different approaches 

to pattern recognition and decision-making.   

The chapter then explored deep learning, covering its historical development, key 

architectures, and essential components, such as neurons, activation functions, and artificial 

neural networks. Various deep learning models, including CNNs, RNNs, LSTMs, and 

GANs, were examined, with a particular focus on CNNs due to their effectiveness in 

processing and analyzing medical images.   

A dedicated section addressed the impact of deep learning in medical image analysis, 

showcasing its applications, advantages, and challenges. In particular, the role of CNNs in 

MRI brain tumor classification was detailed, explaining the functionality of each layer in the 

CNN pipeline.   

Finally, the chapter concluded with an overview of performance evaluation metrics 

used to assess the effectiveness of classification models, including accuracy, sensitivity, 

specificity, F1-score, and the ROC curve. These metrics will be instrumental in analyzing 

and comparing the results obtained in subsequent experiments.   

The insights and methodologies discussed in this chapter serve as a foundation for the 

experimental work that follows, ensuring a systematic approach to MRI brain tumor 

classification using deep learning techniques.   
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Chapter III : Brain Tumor  Classification   

III.1 Introduction    

Magnetic Resonance Imaging is a powerful diagnostic tool widely used in the 

detection and characterization of brain tumors. The complex nature of brain tumor detection 

and classification necessitates the use of advanced computational techniques to assist 

radiologists in achieving accurate and timely diagnoses. Among these techniques, machine 

learning has emerged as a transformative approach, offering significant improvements over 

traditional methods in terms of accuracy, speed, and robustness. 

Recent advancements in machine learning, particularly the rise of deep learning, have 

further enhanced the capabilities of brain tumor detection systems. Deep learning models, 

such as convolutional neural networks, have shown exceptional performance in image 

analysis tasks due to their ability to automatically learn hierarchical features from raw data. 

These models have been applied to MRI brain tumor detection with remarkable accuracy, 

outperforming traditional machine learning methods. 

In this chapter, we delve into the various deep learning methodologies applied to MRI 

brain tumor detection. We explore the evolution of these techniques, their comparative 

performance, and the ongoing challenges that drive future research. We aim to provide a 

comprehensive overview of the state-of-the-art in deep learning applications, highlighting 

their transformative impact on brain tumor diagnostics. 

III.2 Taxonomy of MRI Brain Image Classification Algorithms 

The process of brain tumor detection and classification can be categorized into various 

methodological approaches. These include classical image processing techniques, machine 

learning algorithms, and more recently, deep learning methods. Each category encompasses 

a range of techniques and models designed to improve the accuracy and efficiency of tumor 

detection. The taxonomy presented in Figure III-1 aims to provide a comprehensive 

overview of the various methods used in MRI brain tumor detection and classification. By 

categorizing and comparing classical image processing, machine learning, and deep learning 

techniques, we seek to highlight the evolution of this field and the strengths and limitations 

of each approach as shown in Table III.1. Understanding these methodologies will not only 

aid in selecting the appropriate techniques for specific clinical applications but also pave the 

way for future research and development in automated brain tumor detection systems. 
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Figure III-1:  Taxonomy of MRI Brain Tumor Classification Techniques 

Classical Methods use simple techniques: thresholding isolates high-intensity 

regions, distance-based methods find similar patterns, and region-based methods segment 

structures but depend on good feature selection. 

Supervised Machine Learning methods (e.g., KNN, Naive Bayes, Decision Trees, 

SVM) perform well with labeled data, balancing simplicity, interpretability, and scalability, 

but may face issues like overfitting or computational demands. 

Unsupervised Machine Learning methods (K-means, Fuzzy C-Means, Self-

Organizing Maps (SOM)) cluster data without labels, revealing natural patterns but requiring 

additional steps for interpretation. 

Deep Learning methods, especially Convolutional Neural Networks (CNNs) and 

Deep Neural Networks (DNNs), demonstrate strong performance in MRI brain tumor 

classification by automatically learning spatial and hierarchical features. However, these 

models demand significant computational resources and are often seen as "black boxes" with 

limited interpretability, making them resource-intensive and challenging for clinicians to 

understand without further refinement. 
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Table III.1 serves as a guide to the different classification techniques, providing a basis 

for selecting the most appropriate method for MRI brain tumor analysis depending on 

resource constraints, interpretability needs, and dataset characteristics. 

Table III.1: MRI Brain Tumor Classification Techniques 

Category Algorithm Strengths Weaknesses 

Classical 
Methods 
 

Thresholding Isolates high-intensity 
regions Lacks nuance 

Distance-based Identifies similar patterns 
Might miss subtle 
differences 
 

Region-based Segments brain structures 
Requires good feature 
selection 
 

Machine 
Learning 
(Supervised) 

KNN Easy to implement, good 
for small datasets 

Computationally 
expensive for large 
datasets 
 

Naive Bayes Efficient for large 
datasets 

Struggles with complex 
relationships 
 

Decision Trees 
Handles mixed data, 
interpretable 
 

Prone to overfitting 

SVM Effective for high-
dimensional data 

Complex parameter 
tuning 
 

Machine 
Learning 
(Unsupervised) 

K-means 
Clustering 

Identifies similar brain 
regions 

Requires further 
investigation for class 
labels 
 

Fuzzy C-Means 
Clustering 

More flexibility than K-
means 

Challenging 
interpretation 
 

SOM 

Visualizes relationships, 
good for anomaly 
detection 
 

Doesn't provide class 
labels directly  

Deep Learning 

CNN 
Highly successful, learns 
spatial features 
 

Computationally 
expensive, black box 

DNN 
Powerful for complex 
tasks 
 

Requires significant 
resources and expertise 
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III.3 Classification Process 

Magnetic resonance imaging has become an essential tool for the diagnosis and 

monitoring of brain pathologies. With its ability to produce detailed images of brain 

anatomy, MRI allows for the visualization of a wide range of abnormalities, including 

tumors, strokes, infections, and neurodegenerative diseases. The analysis and classification 

of brain MRI images play a crucial role in interpreting data and establishing accurate 

diagnoses. 

Brain MRI classification involves identifying and categorizing the different structures 

and abnormalities present in the images. This process typically involves several steps as 

shown in Figure III-2. 

 

 

Figure III-2 Classification Process 
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III.3.1 Pre-processing step 

The preprocessing step plays an important role in improving the quality of the image that 

leads to achieving better results in feature extraction and classification steps. It consists of 

fundamental pre-processing techniques such as binarization, normalization, rotation, 

resizing, and removal of undesired parts of MR images. Common preprocessing steps 

include : 

 Intensity Normalization: MRI scans can exhibit variations in intensity due to 

scanner differences or acquisition protocols. Normalization techniques like scaling 

or histogram matching rectify these variations. 

 Skull Stripping: This process removes the non-brain tissue (skull) from the MRI 

image, focusing analysis on the brain region of interest. 

 Noise Reduction: MRI scans can be susceptible to noise caused by various factors. 

Techniques like filtering are employed to minimize noise and enhance image clarity. 

 Co-registration: When using multiple MRI sequences, co-registration ensures their 

spatial alignment, allowing accurate feature extraction across modalities. 

III.3.2 Feature extraction step 

Feature extraction is also a vital step in the classification process. It consists of finding 

the most significant characteristics from the original data in order to improve the overall 

efficiency of the system.  

Feature extractors can be categorized based on the information they capture. Intensity-

based extractors provide basic statistics of pixel values. Textural extractors, like GLCM 

(Gray Level Co-occurrence Matrix), delve deeper to analyze the spatial arrangement of 

intensities, reflecting the tumor's texture. Morphological extractors focus on the tumor's 

shape and size. Finally, advanced techniques like Gabor filters or deep learning can capture 

intricate patterns within the image data. By strategically combining features from different 

categories, a comprehensive tumor representation can be achieved, potentially leading to 

superior classification accuracy [61]. Figure III-3 provides a taxonomy for understanding the 

various types of feature extractors used in MRI brain tumor classification. Selecting the 

appropriate extractors and combining them effectively is crucial for building robust and 

accurate machine learning models for this critical medical application.  

This section explores various feature extraction methods investigated in this research. 
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Figure III-3: Taxonomy of feature extraction used in MRI Brain Tumor Detection 

III.3.2.1  Binarized Statistical Image Features (BSIF) 

BSIF falls under the category of Statistical Feature Extractors but with a twist. 

Traditional statistical features directly analyze intensity values. BSIF, however, takes a more 

elaborate approach [62]: 

 Learns a statistical basis: It utilizes techniques like Independent Component 

Analysis (ICA) to learn a set of basis vectors that capture the statistical properties of 

natural images. 

 Projects image patches: small image regions (patches) around each pixel are 

projected onto this learned basis. 

 Binarizes the projections: The resulting projection values are then thresholded, 

converting them into binary codes (0s and 1s). 

 Histogram representation: Finally, a histogram is constructed to capture the 

frequency of these binary codes across the image. 

Therefore, BSIF leverages statistical learning to create a novel feature representation 

based on intensity variations within local image patches [63]. 
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III.3.2.2  Histogram of Oriented Gradients (HOG) 

The HOG descriptor [64] is one of the most widely used methods for feature extraction 

in localized image regions, leveraging histograms of gradient orientations. The process for 

constructing the HOG feature vector involves several steps:  

1. Calculate the gradients of the image. This can be done using a variety of filters, 

such as the Sobel filter or the Laplacian filter. 

2. Divide the image into cells. The cells are typically 8x8 pixels in size. 

3. Calculate the histogram of oriented gradients for each cell. For each cell, 

calculate the magnitude and orientation of the gradients at each pixel. Then, bin the 

gradients into a certain number of orientation categories. The histogram of oriented 

gradients for a cell is the count of gradients in each orientation category. 

4. Normalize the histograms. This is done to ensure that the histograms are not 

affected by the overall brightness of the image. 

5. Concatenate the histograms together to form the final HOG descriptor. The final 

HOG descriptor is a vector of numbers that represents the distribution of oriented 

gradients in the image. 

HOG descriptors, as shown in Figure III-4 are used in a variety of computer vision 

applications, such as object detection, image classification, and image matching. 

 

Figure III-4:  HOG descriptor [64] 

III.3.2.3 GIST Descriptor: A Low-Dimensional Image Representation 

The GIST descriptor [65],  is an image descriptor that relies on a low-dimensional 

representation known as the Spatial Envelope. It captures the dominant spatial structure of 

an image through a set of statistical attributes, including naturalness, openness, roughness, 

expansion, and robustness. GIST encapsulates gradient information, such as scales and 

orientations, for different regions of the image, providing a high-level approximation of its 

structure. 
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To extract the GIST features, the input grayscale image is first normalized by adjusting 

its intensity and local contrast. The image is then divided into a grid spanning multiple scales. 

For each cell in the grid, a set of Gabor filters is applied, and the resulting responses are 

combined to form the final feature vector. This process offers a compact and efficient 

summary of the image’s spatial properties. 

III.3.2.4  AlexNet 

AlexNet, introduced by Krizhevsky et al., presented in Figure III-5 [66] , was the first 

CNN to win the ImageNet challenge in 2012, with a top 5 error of 16.4%. The use of rectified 

linear units (ReLUs) was also introduced in AlexNet. It includes five convolutional layers, 

three max pool layers, and three fully connected layers. This architecture uses a [227 × 227 

× 3] image as an input. In AlexNet, a 4096-dimensional feature vector represents the 227 × 

227 image [67], [68]. 

III.3.2.5  VGG-16 

The VGG (Visual Geometry Group) Net presented in Figure III-6, introduced by 

Simonyan and Zisserman [69], is a convolutional neural network (CNN) that gained 

prominence as one of the top-performing models in the ILSVRC-2014 (ImageNet Large 

Scale Visual Recognition Competition) for image classification. VGG Net was trained on 

the ImageNet dataset, which consists of over 14 million images across 1000 classes, with 

1.3 million images for training, 50,000 for validation, and 100,000 for testing. The model 

achieved an impressive accuracy of 92.7% on the ImageNet dataset. 

The input to the VGG Net must be an RGB image of size 224×224. These images are 

passed through multiple convolutional layers, each with a fixed filter size of 3×3 and a stride 

of 1. The VGG-16 architecture, in particular, includes five max-pooling layers integrated 

within a series of convolutional layers, followed by three fully connected layers. The first 

two fully connected layers contain 4096 channels, while the third has 1000 channels, 

corresponding to the number of output classes. The final layer is a softmax layer, used for 

classification. [70] 
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Figure III-5: VGG and Alexnet Architecture [71] 

 

Figure III-6: VGG-16 CNN Architecture [69] 

III.3.2.6 Residual Network (ResNet-50 and ResNet-18) 

ResNet was proposed by He et al. [70], and it revolutionized CNN architecture by 

introducing the concept of residual learning in convolutional neural networks. This 

innovation provided an efficient methodology for training deep networks. ResNet introduced 

a deep CNN with 152 layers, which won the 2015 ILSVRC competition. The ResNet block 

architecture, 20 and 8 times deeper than AlexNet and VGG respectively, was one of the first 

to adopt batch normalization. Despite its depth, ResNet demonstrated lower computational 

complexity compared to previously proposed networks. [70] [72]. 

III.3.3 Classification step: 

There exist several techniques for classification of data such as fuzzy clustering means 

(FCM), support vector machine (SVM), and artificial neural network (ANN).  
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Motivated by the high classification accuracy achieved by the DRB classifier in [73], 

we explore it for the classification of MRI brain tumors.  

III.3.3.1 Naive Bayes 

The Naive Bayes classifier is a probabilistic supervised algorithm that assumes the 

presence of a feature for a class, as showed in Figure III-7, is independent of the presence of 

other features, which is why it is described as "naive". For example, a person may be 

classified as a man based on their weight and height. Even though these characteristics are 

correlated in reality, a naive Bayes classifier treats them independently when making its 

classification. 

Despite its extremely simplistic assumptions, this classifier delivers very good results 

in many complex real-world scenarios. In 2004, a study provided theoretical reasons behind 

this unexpected effectiveness [74]. However, a 2006 study showed that more recent methods 

(such as boosted trees and random forests) produce better results [75]. 

 

Figure III-7: The Naive Bayes classifier [75] 
Naive Bayes algorithm offers good performance, but the predictions become 

inaccurate if the assumption of conditional independence is invalid. 

III.3.3.2 K-Nearest Neighbor 

The K-Nearest Neighbors (KNN) algorithm is a supervised classification algorithm. 

Each observation in the training set is represented by a point in an n-dimensional space, 

where n is the number of predictive variables. To predict the class of a new observation, the 

algorithm identifies the k closest points to this example. The class of the target variable is 

determined by the most represented class among the k nearest neighbors. Variants of the 

algorithm exist where the k observations are weighted based on their distance to the example 

being classified, with more distant observations considered less important. Example of 

classification with KNN is shown in Figure III-8. [76] 
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Figure III-8: Example of classification with KNN [77]  

 Advantages: simple to design.  

 Disadvantages: sensitive to noise, for a large number of predictive variables, the 

distance calculation becomes very costly. 

III.3.3.3 Support Vector Machine (SVM)  

Support Vector Machines  [78] are very powerful non-linear binary classification 

algorithms. The principle of SVMs involves constructing a non-linear separating margin of 

maximum width that separates two sets of observations and using it to make predictions [79]. 

SVMs are classifiers based on two key ideas: 

1. The first idea, in the case where the problem is linearly separable as shown in Figure III-9 

is to find a linear separator with maximum width, which is the concept of the maximum 

margin. The margin is the distance between the separating boundary and the closest samples, 

known as support vectors.  

 

Figure III-9: Hyper plan of SVM classifier [80] 



Chapter III Brain Tumor Classification 

56 

The problem is to find this optimal separating boundary. To solve this problem, there 

is a unique optimal hyperplane, defined as the hyperplane that maximizes the margin 

between the samples and the separating hyperplane. 

2. To handle cases where data are not linearly separable, as shown in the example presented 

in Figure III-10, the second key idea of Support Vector Machines is to transform the input 

data representation space into a higher-dimensional space where a linear separation is more 

likely to exist. This is achieved using a kernel function, which must satisfy Mercer's theorem 

conditions and has the advantage of not requiring explicit knowledge of the transformation 

to be applied for the change of space. Kernel functions allow the transformation of a dot 

product in a high-dimensional space, which is computationally expensive, into a simple 

pointwise evaluation of a function. This technique is known as the kernel trick. 

 

Figure III-10: Example of a non-linearly separable problem.[80] 
Advantages of SVM: 

 SVM can be used for both classification and regression tasks. They can also handle non-

linear data by using kernel functions to transform the input space. 

 SVMs are an alternative to neural networks because they are easier to train. 

Disadvantages: 

 Training an SVM can be computationally intensive, especially with large datasets. The 

algorithm’s complexity and speed during the training process can be quite high. 

 The performance of SVM is heavily dependent on the choice of kernel and the kernel 

parameters. Finding the best combination often requires extensive experimentation and 

cross-validation. 

 SVMs can struggle with datasets where the classes overlap significantly. It’s less 

effective when the classes are not well separated. 
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III.3.3.4 Decision Trees 

Decision trees are supervised ML models that can be used for both classification and 

regression. A decision tree represents a function that takes an attribute vector as input and 

returns a decision, which is a single value. The inputs and outputs can be discrete or 

continuous. A decision tree makes decisions by executing a sequence of tests. Each internal 

node of the tree corresponds to a test of an attribute's value, and the branches coming out of 

the node represent the possible values of the attribute. The class of the target variable is 

determined by the leaf node reached by the observation after the sequence of tests. The 

learning phase consists of finding the right sequence of tests. For this, the right attributes 

must be chosen. A good attribute divides the examples into homogeneous sets, meaning they 

contain only observations belonging to the same class, while a useless attribute leaves the 

examples with almost the same proportion of values for the target variable. An example of 

a decision tree is illustrated in Figure III-11. 

What is needed is a formal measure of "good" and "useless." For this, there are 

standard homogenized metrics to measure the homogeneity of a set. The most well-known 

are the Gini diversity index and entropy [81] [82]. 

 

Figure III-11: Example of Decision Tree [82] 

Advantages: 

 It is a white-box model, simple to understand and interpret. 

Requires little data preparation. 

 The input predictive variables can be both qualitative and quantitative. 

 Performs well on large datasets. 
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Disadvantages: 

 There is a risk of overfitting if the tree becomes very complex. Pruning procedures are 

used to address this issue. 

 Small changes in the data can result in a completely different tree being generated, 

leading to high variance in predictions. 

III.4 Overview of Brain Tumor Classification 

Numerous studies have investigated the classification of MRI brain images using 

machine learning and deep learning techniques. Table III.2 provides a chronological 

summary of significant research works in this domain, highlighting each study’s key 

features, classification methods, and achieved accuracy. 

Table III.2: Summary of prior works on MRI brain tumor and classification system 

III.4.1 Machine Learning Techniques  

In the context of medical imaging, machine learning has demonstrated significant 

potential, particularly in the analysis of MRI brain images. Traditional machine learning 

Year Authors Features Methods Accuracy 

     
2020 Badža et al.  [2] CNN CNN 96.56%. 

2018 Shree et al.  [83] Discrete wavelet Transformation 
(DWT) 

PNN 100% 
 

2015 
 

Cheng et al.  [5] Intensity histogram, Gray Level 
Co-occurrence Matrix (GLCM), 
and Bag-of-Words (BoW) model 

SVM 91.14% 

2015 Zhang et al.  [84] Wavelet Packet Tsallis Entropy 
(WPTE), 

FSVM 99.49% 

2017 Bahadure et al. [85] Berkeley Wavelet Transformation 
(BWT) 

SVM 96.51%. 

2012 Y. Zhang et al. [86] Wavelet transform (WT) followed 
by Principal Component Analysis 
(PCA) 

KSVM 99.38% 

2017 Usman et al.    [87] Wavelet Texture Features  Random 
forest 
classifier 

95.00% 

2018 Ari et al.          [88] Convolutional Neural Network 
(CNN) 

ELM-
LRF 

97.18% 

2018 Byale et al.     [89] Grey Level Co-occurrence Matrix 
GLCM 

ANN 93.33%. 
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techniques such as Fuzzy Clustering Means (FCM), K-Nearest Neighbors (KNN), and 

Support Vector Machines (SVM) have been employed to detect and classify brain tumors, 

offering promising results. Here are some examples of methods utilizing machine learning: 

 Zhang et al. [84] proposed a method using wavelet packet Tsallis entropy (WPTE) for 

feature extraction and fuzzy SVM for brain abnormality detection. 

 Bahadure et al. [85] achieved 96.51% accuracy in classifying healthy and infected 

tissues using SVM with features extracted by Berkeley Wavelet Transformation (BWT). 

 Y. Zhang et al. [86] developed an automatic classification method for MRI brain images 

using a kernel support vector machine (KSVM) and wavelet transform (WT) features, 

with Principal Component Analysis (PCA) to reduce feature size. 

 Usman et al. [87]  investigated the use of wavelet texture features with a random forest 

classifier to predict tumor labels in a multiclass classification scenario. 

 Cheng et al. [5] focused on classifying three specific tumor types using a combination 

of feature extraction methods and bag-of-words for improved accuracy. 

III.4.2 Deep Learning Techniques  

The application of deep learning in MRI brain tumor detection encompasses a variety 

of architectures and techniques. Convolutional Neural Networks (CNNs), for instance, have 

been extensively used for their ability to capture spatial hierarchies in images. Here are some 

examples of methods utilizing deep learning: 

 Ari et al. [88] designed a method using extreme learning machines for classifying 

tumors as benign or malignant, achieving 97.18% accuracy. 

 Shree et al. [83] achieved near-perfect accuracy using discrete wavelet 

transformation for feature extraction and a probabilistic neural network for 

classification. 

 Byale et al. [89] proposed a binary classification system using neural networks with 

features extracted from Gray Level Co-occurrence Matrix (GLCM), achieving 

93.33% accuracy. 

 Badža et al.[2] presented a new convolutional neural network (CNN) architecture 

specifically designed for brain tumor classification from imbalanced datasets, 

achieving 96.56% accuracy. 

Recent advancements in deep learning have facilitated significant improvements in the 

accuracy and robustness of tumor detection models. These models not only assist in 
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distinguishing between tumor and non-tumor regions but also contribute to the classification 

of tumor types, aiding in the development of personalized treatment plans. Moreover, the 

ability of deep learning models to generalize across different datasets and imaging conditions 

underscores their potential for widespread clinical adoption. 

III.5 Deep Rule Based Classifier for MRI Brain Tumor Classification 

Deep learning, particularly deep convolutional neural networks (DCNNs), has gained 

significant popularity due to advances in computational resources.[90][76] DCNNs have 

shown high accuracy in various image processing tasks such as handwritten digit recognition 

[91], object recognition [92], human action recognition, and more [93]. Despite their success, 

DCNNs have limitations: they require large amounts of training data, lack transparency, 

involve complex decisions on structure, have limited parallelization, and struggle with 

uncertainty and unseen classes. 

In contrast, traditional fuzzy rule-based (FRB) systems are efficient at handling 

uncertainties and offer transparent, interpretable structures. Recent data-driven FRB 

classifiers can autonomously learn from data but still lag behind deep learning classifiers in 

performance. 

The Deep Rule-Based (DRB) system is a new approach, combining FRB systems with 

the multi-layer structure of deep learning. The DRB system employs a massively parallel set 

of 0-order fuzzy rules and self-organizes a transparent IF-THEN structure. Its training 

process is fully autonomous, online, non-iterative, and non-parametric, starting classification 

from the first image and self-evolving with new data, making it suitable for real-time 

applications. 

The DRB approach is simpler and entirely data-driven compared to DCNNs, 

performing highly accurate classification without the need for accelerated hardware. It is 

faster, non-parametric, and highly parallelizable. The DRB system can be easily adapted for 

various classification and prediction problems, offering a human-interpretable, self-evolving 

structure. 

III.5.1 General Architecture of the DRB Classifier 

The general architecture of the DRB classifier is illustrated in Figure III-12.  As 

depicted, the DRB approach consists of the following layers:  
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1. Pre-processing block;  

2. Feature extraction layer;  

3. Massively parallel ensemble of highly interpretable IF…THEN… rules;  

4. Decision-maker. 

The preprocessing step is crucial for enhancing image quality, leading to improved 

results in feature extraction and classification. It involves fundamental techniques such as 

binarization, normalization, rotation, resizing, and removing unwanted parts of MRI images. 

For the feature extraction layer, the DRB classifier can utilize various types of 

feature descriptors commonly used in computer vision. 

 

Figure III-12: General Architecture of the DRB Classifier 

The DRB block is composed of two main sections. The first section forms the 

foundation of the DRB classifier during the training phase. It consists of a set of parallel 

IF...THEN rules based on self-developed FRB models, specifically the AnYa type. These 

non-parametric rules do not require the definition of a membership function [94][95]. 

Instead, they are derived from data patterns using the concept of Empirical Data Analytics 

[96]. Each fuzzy rule, as shown in Table III.3, takes the form of a disjunction (logical OR) 

between multiple fuzzy sets, which are determined by several prototypes representing the 

most characteristic data clusters. 
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The second section serves as the decision-maker during the validation phase. This 

process employs a "winner-takes-all" strategy to assign the label of the winning class. The 

final decision is made by a local decision-maker, based on the outcomes [97], [98]. For 

greater clarity, key notations and their definitions are provided in Table III.3. 

Table III.3: Key Notation Descriptions of the DRB Classifier 

Notations Description 
 The number of classes in the dataset ܥ
݀ Dimensionality of the feature vector 
݇ The number of current time instance  
I A single instance image  
 The associated feature vector of I ݔ

࢞    Vector normalization 
ܰ Identified prototypes number of the ܥ௧ class 

 ࣆ
The global mean of feature vectors of the training images of 
the ܥ௧ class 

D Data density 
I,ࢉ The ݇௧ training image of the ܥ௧ class 
,ݔ  The corresponding feature vector of I,  
P , The ݅௧ prototype of theܥ௧ class 

 ,
The mean of feature vectors of the training images associated 
with P , 

ܵ, The number of training images associated with P , 

 ,ݎ
The radius of the area of influence of the ݀ܽݏ݀ݑ݈ܿܽݐ d 
associated with P , 

λ 
The score of confidence given by the local decision-maker of 
the ܥ௧ fuzzy rule 

 segment of the image ۷ or local informationࢎ࢚ The ܁

III.5.2 Massively parallel FRB 

The fuzzy rule-based (FRB) layer consists of a set of highly parallel IF...THEN rules, 

presented by Equation (III.1), based on the AnYa type 0-order fuzzy rules. These non-

parametric rules do not require a predefined membership function. Instead, following the 

Empirical Data Analytics concept, the fuzzy rules naturally emerge from patterns in the data. 

[95] [96] . 

 IF൫I~Pୡ,ଵ൯OR … OR൫I~Pୡ,ౙ൯ THEN (class C) (III.1) 
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Where "~" signifies a resemblance that can be interpreted as a fuzzy degree of satisfaction, 

membership, or typicality; I represents a specific image; c=1,2,...,C; Nc refers to the number 

of prototypes in the C୲୦ class . The identified prototypes are represented by P. 

III.5.2.1 Training process of the DRB system 

This section provides an overview of the primary procedure involved in training a specific 

FRB subsystem as depicted in Figure III-13. Due to the highly parallel structure of the DRB 

system, we focus on the   ܥ௧  fuzzy rule, where c=1, 2, …, C. 

We begin by initializing the ݇௧(݇ ← 1)  training image to verify condition 1 and 

distinguish stage 0 from the other stages. 

Condition1:  

݇)ܨܫ  =  (III.2) (0 ݁݃ܽݐݏ ℎݐ݅ݓ ݐݎܽݐݏ) ܰܧܪܶ (1

If condition 1 is satisfied, it indicates that this is the first image received, and the 

system is initialized by following stage 0. If condition 1 is not met, the system has already 

been initialized, and we proceed directly to stage 1. 

Stage 0: System Initialization.  

We initialize the ܥ௧ fuzzy rule using the first image of the corresponding class, 

denoted as ۷,ଵ with the global feature vector represented by ݔ,ଵ൫ݔ,ଵ =

,,ଵ,ଵݔ]  ,ଵ,ௗ] ൯, where ݀ is the dimensionality. The system's meta-parameters are thenݔ,,ଵ,ଶݔ

initialized following Equation (III.3). 

 ݇ ← 1; ࣆ  ← ;,ଵ࢞ ܰ ← 1;ય ,ே ← ધ,ଵ;,ே ← ;,ଵ࢞ ܵ,ே ← 1; ,ேݎ ←   ;     (III.3)ݎ

Where ݇ represents the current time instance, ࣆ is the global mean of all the observed data 

samples for the ܥ௧ class. ,ே is the mean of feature vectors of the images associated with 

the first data cloud with the visual prototype ۾ ,ே , ܵ,ே  denotes the number of images 

associated with the data cloud. ݎ,ே is the radius of the area of the data cloud, ݎ is a small 

value introduced to stabilize the initial status of the newly formed data clouds. 

Stage 1: System preparation. 

At this stage, we calculate the densities to verify the condition 2. First, we read the 

newly arrived ݇௧(݇ ← ݇ + 1) training image ൫۷,൯ belonging to the ܥ௧ class. Next, we 
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update the global mean ࣆ and compute the data densities of all existing prototypes ۾ , using 

the following Equations (III.4, III.5, III.6):    

ࣆ ←
ିଵ

ࣆ + ଵ


 ,  (III.4)࢞

,൯۾൫ܦ = ଵ

ଵାฮ,ିࣆฮ
మ∕ఙమ

    (III.5)  

൫۷,൯ܦ = ଵ

ଵାฮ௫,ೖିఓฮ
మ∕ఙమ

   (III.6) 

where  ߪଶ = 1 −  ‖ଶࣆ‖

Stage 2: System update. 

In this stage, we check the condition 2, if the ۷, becomes a new prototype or we find 

the nearest prototype to ۷, using the  ܦ൫۾,൯ and ܦ൫۷,൯ calculated in the previous stage. 

Then, we update the system and meta-parameters. 

 : ࢚ࢊ

ܨܫ   ൬ܦ൫۷,൯     > max
ୀଵ,ଶ,ଷ,…,ே

ቀܦ൫۾,൯ቁ ൰ܱܴ  ൬ܦ൫۷,൯ < min
ୀଵ,ଶ,…,ே

ቀܦ൫۾ ,൯ቁ൰ 

 ൯  (III.7)݁ݕݐݐݎ ݓ݁݊ ݏ݅ ,ܫ൫ ܰܧܪܶ                                      

If condition 2 is met, then ۷,is new prototype with new data cloud. 

 ܰ ← ܰ + 1;ય,ே ← ધ,ଵ; ܲ,ே ← ;,ଵ࢞ ܵ,ே ← 1; ,ேݎ ←  ;  (III.8)ݎ

If condition 2 is not satisfied, we find the nearest prototype ય ,୬ to ۷ , following the 
Equation (III.9). 

 Ρୡ,୬ = arg min
୨ୀଵ,ଶ,…,ౙ

൫∥ xୡ,୩ − Pୡ,୨ ∥൯ (III.9) 

Before associating the ۷,  with the data cloud of ય ,୬, we must check the last condition 

3 to determine whether ۷,is located in the area of influence of ય ,୬: 

        :3 ࢚ࢊ 

 IF൫∥ ୡ,୩ܠ − ୡ,୬ܘ ∥≤ rୡ,ౙ൯ THEN൫ધୡ,୩ is assigned to યୡ,୬൯  (III.10) 

If the condition 3 is satisfied, the meta-parameters are updated and ધ, assigned to the 

data cloud of the prototype ય ,୬using (III.11). 

 Sୡ,୬ ← Sୡ,୬ + ୡ,୬ܘ;1 ←
ୗౙ,ିଵ
ୗౙ,

ୡ,୬ܘ + ଵ
ୗౙ,

xୡ,୩;   (III.11) 
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If the ܿ3 ݊݅ݐ݅݀݊ not met, then ધ,is considered outside the influence area of the 

nearest data cloud, and it is treated as a new prototype according to Equation (III.8). 

After completing Stage 2, the DRB system updates the fuzzy rule accordingly following the 

equation (III.12). The value of ܭ is then incremented by 1 (݇ ← ݇ + 1), and the system 

returns to Stage 1 to process the next image, initiating a new cycle. 

Stage 3: Generate Fuzzy rule based (FRB). 

 Once all the training data has been processed, the system generates a fuzzy rule (Rulec) 

based on the identified prototypes. Samples of AnYa type fuzzy rules derived from the brain 

tumor dataset are shown in Table III.4. 

݈݁ݑܴ  ∶  (III.12)  (ܥݏݏ݈ܽܥ)ܰܧܪܶ ,ே൯۾~,ଵ൯ ܱܴ…ܱܴ ൫۷۾~൫۷ ܨܫ

Table III.4: Samples of AnYa-type fuzzy rules derived from the brain tumor dataset 

 

III.5.2.2 Validation process of the DRB system  

At the end of the training process, the DRB system generates ܥ fuzzy rules 

corresponding to the ܥ classes. For each testing image, the system produces c confidence 

score ߣ(۷) by its local (per rule) decision-maker based on the feature vector of  ۷, denoted 

by  ࢞: 

(۷)ߣ  = arg max
ୀଵ,ଶ,…,ே

ቀexp(−ฮݔ − ฮ,ࢉ
ଶ

)ቁ (III.13) 

III.5.2.3 Decision Maker 

  Thus, for each image, we obtain C confidence scores λc(I) = [λ1(I), λ2(I), λ3(I), …, 

λc(I)]. These scores serve as inputs of the overall decision-maker of the DRB classifier (the 

final layer in Figure III-12), which assigns a label to the testing image using the “winner-

takes-all” principle as follows: 

 ݈ܾ݈ܽ݁(۷)=argmaxܿ=1,2,…,ܿ((۷)ܿߣ)  (III.14) 
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Figure III-13:  Flowchart of the training process of the FRB subsystem 

 The pseudo code of the training process is as follows. 
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III.6 Conclusion 

This chapter has provided a comprehensive overview of MRI brain image 

classification. We explored the evolution of classification techniques, ranging from classical 

image processing methods to advanced machine learning and deep learning algorithms. A 

taxonomy of these approaches was introduced to clearly outline their respective strengths 

and limitations in the context of brain tumor detection. Additionally, we detailed the 

classification process, emphasizing key steps such as preprocessing, feature extraction, and 

classification. A significant highlight of this chapter is the introduction of the Deep Rule-

Based classifier, a hybrid approach that combines the transparency and interpretability of 

traditional fuzzy rule-based systems with the powerful hierarchical learning capabilities of 

deep l/earning. By understanding the challenges and comparative strengths of various 

classification techniques, this chapter paves the way for the development of more accurate, 

robust, and reliable tumor detection systems. These insights will contribute to future 

advancements in automated brain tumor diagnosis, improving clinical decision-making and 

patient outcomes. 

Algorithm 1 training process of the deep rule-based classifier  
K=1; 
While the new feature vector ,ࢉ࢞ of the ࢎ࢚ image ધ,ࢉof the ࢎ࢚class is 
available Do 
IF (K=1) THEN 

1. Initialization using Eq.  (III.3); 
2. Generate the Anya type fuzzy rule Eq. (III.12); 

ELSE 
1. Update ࢉࣆ using Eq. (III.4); 
2. Calculate ࡰ൫,ࢉ۾൯ and ࡰ൫۷,ࢉ൯ using          Eq. (III.5, III.6); 
If (condition 2 is met) then 

 Initialize a new data cloud using Eq. (III.8); 
Else 

 Find ય,ࢉ using Eq. (III.9); 
If (condition 3 is met) then 
 Update the existing data cloud using Eq. (III.11); 

Else 
 Initialize a new data cloud using Eq. (III.8); 

End if  
End if  
      Update the Anya type fuzzy rule using Eq. (III.12); 
End if  
K=k+1; 
End while  
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Chapter IV: DRB-BBSIF for Brain Tumor Classification   

IV.1  Introduction 

Brain tumor identification and classification using MRI play a crucial role in medical 

diagnosis but remain a challenging task due to the inherent complexity of tumor analysis. 

Traditional approaches heavily depend on the expertise of radiologists, which can introduce 

subjectivity and variability in interpretation. Additionally, the process is often time-

consuming and costly, limiting its efficiency in clinical practice. This chapter presents our 

first contribution, which aims to automate and improve brain tumor classification using MRI 

data. To this end, we propose a novel model called DRB-BBSIF (Deep Rule-Based Classifier 

using Bank of Binarized Statistical Image Features), designed to address the shortcomings 

of conventional methods by focusing on two key aspects: 

 Enhanced Feature Extraction: BSIF effectively extracts texture information from 

images, offering a good balance of simplicity and performance. However, its 

dependence on hand-crafted features can limit its ability to capture complex patterns. 

To address this, we introduced Bank-BSIF, an improved version of BSIF that utilizes 

optimized parameter settings for enhanced performance. 

 Automated Classification with Deep Rules: The model employs a Deep Rule-

Based Classifier for automated classification. DRB leverages a self-organizing set of 

fuzzy rules guided by prototypes, providing a robust and efficient approach for tumor 

classification. 

IV.2 The Architecture of Proposed DRB-BBSIF Classifier  

The flowchart of DRB-BBSIF classifier is presented in Figure IV-1.The framework 

contains four steps:  

 Step 1: It consists of the extraction of the ROI in the medical image, which is very 

important to improve the classification performance.  

 Step 2: The features are extracted from the ROI using BSIF descriptor. 

 Step 3: The DRB classifier is applied to classify the given ROI of MRI brain tumor 

into different pathological types.  

 Step 4: The final step consists of the decision maker, which decides the class label 

that tested image belongs to.    
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Figure IV-1: DRB-BBSIF Classifier Architecture 

IV.2.1 Extraction of the Region of Interest (ROI) 

For medical images, the region of interest is the lesion area for doctors, which contains 

the main disease information. In this work, the procedure employed for the extraction of  the 

ROI  is same as used in [5]. The ROI extraction technique is as follows: first, the tumor 

region is augmented by image dilation and used as the ROI rather than the initial tumor 

region, because tumor-neighboring tissues can provide significant indications for the 

identification of tumor types. Second, the augmented tumor region is fragmented to 

progressively fine ring-form sub regions. Finally, we can apply a local feature descriptor to 

extract the features from the extracted ROI.  

IV.2.2  Exploring Binarized Statistical Image Features (BSIF) 

Good feature descriptor is important to produce satisfactory classification results [99]. 

Several local image descriptors are proposed in the literature, e.g., WLD (Weber Local 

Descriptor) [100] [101], PHOG (Pyramid of Histogram of Oriented Gradients) [102], LBP 

(Local Binary Pattern) [103], LPQ (Local Phase Quantization) [104] and BSIF (Binarized 

Statistical Image Features) [63]. Motivated by the success of BSIF technique in natural 

images classification and iris recognition [63] [105] [106], we have explored this technique 

in this work of MRI brain tumor classification. 

BSIF is a local image descriptor based on the LBP and LPQ techniques. Unlike these 

methods, BSIF does not rely on predefined set of filters but instead learns the filters from 

natural images. These learned filters are then applied to describe each pixel of the ROI as a 
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binary string, representing the binarized responses of learned convolutional filters. Further, 

the histogram of the binary string values for each pixel generates BSIF features, which 

efficiently describe the texture proprieties of the image sub regions. A set  of filters with 

patch size l × l are learned from input images using independent component analysis (ICA)  

[63][62]. Patch size l is given as:      

l = (2 * n + 1)                                        (IV-1) 

Where n ∈ {1, 2...8}. The pre-learned filters from natural images are used to extract 

texture features from the images. Suppose an image be represented as I(x, y)  and the filter 

be denoted by h୧(u, v), where i indicates the basis of filter, the linear response of filter s୧ can 

be expressed as: 

ݏ = ∑ ,ݑ)ܫ ,ݑ)ℎ(ݒ ௫,௬(ݒ                                    (IV-2) 

Where x and y stand for the dimension of image and filter, respectively.  Hence, the 

response is binarized based on the obtained response value. Specifically, if the linear filter 

response exceeds the threshold, a value of 1 is assigned; otherwise, a value of 0 is given. 

This process is defined as follows: 

 ܾ = ቄ ݏ ݂݅     1 > 0
݁ݏ݅ݓݎℎ݁ݐ     0   

                                      (IV-3) 

The responses obtained from different bases are used to create a new gray code for the 

pixel values. Since the descriptors are built using filters learned from a set of natural images, 

the responses of these filters are maximally independent in terms of statistical significance. 

Because the descriptor is derived from the statistical properties of the image, the resulting 

feature set is known as Binarized Statistical Image Features [62] [63]. The BSIF features are 

represented as a histogram of pixel binary codes, which effectively captures the texture 

components of the MRI image. The BSIF descriptor relies on two key factors: the filter size 

and the length of the filter. Single filters with a fixed length may not effectively generalize 

brain tumor patterns with varying intensities, scales, and orientations. Therefore, we propose 

using a bank of high-performing filters with different scales, referred to as B-BSIF, to 

capture significant features, as detailed in the experimental section. Figure IV-2 illustrates 

an example of an MRI image processed with BSIF filters. (a) shows the input ROI MRI 

image. (b) displays a learned BSIF filter with a size of 17 × 17 and a length of 11 bits. (c) 

shows the results of convolving the ROI MRI image with the respective BSIF filters. (d) 
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presents the final BSIF-encoded feature/image. 

 

Figure IV-2: An example of an MRI image processed with BSIF filters  

IV.2.3 Deep Rule-Based Classifier for MRI Brain Tumor Classification 

Various techniques have been proposed for data classification. Inspired by the 

high classification accuracy achieved by the DRB classifier in [73], we investigate its 

application for classifying MRI brain tumors. To the best of our knowledge, this is the 

first study to employ this technique for MRI brain tumor classification. The advantage 

of the DRB classifier approach lies in its combination of two powerful and proven 

techniques that have demonstrated efficiency and high accuracy in various image 

processing tasks [94][96]. However, both techniques have certain limitations, which the 

DRB system addresses. The first technique is Deep Convolutional Neural Networks 

(DCNNs), known for their ability to achieve very high classification accuracy. The 

major drawback of DCNNs is that they require a large amount of training data and need 

to be fully retrained when new classes of images are introduced. They also perform well 

only when the test images share similarities with the training data and struggle with 

handling uncertainties. Additionally, their parameters are often opaque and not easily 

interpretable [98]. In contrast, the second technique, the traditional Fuzzy Rule-Based 

(FRB) system, is effective at managing uncertainties by providing a clear and 
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interpretable structure. However, it doesn't perform at the same high level as DCNNs 

due to its relatively small internal structure [98][96][95]. The DRB classifier addresses 

these limitations by merging the strengths of the FRB system with deep learning, 

incorporating a multi-layer fuzzy structure for image classification. 

In this study, we explored the FRB layer, which functions as the "engine" of the 

DRB classifier and is built on the autonomously self-developing fuzzy rule-based 

models of the AnYa type [96]. The AnYa model employs a set of IF...THEN... fuzzy 

rules that are non-parametric, meaning they do not require predefined membership 

functions. Instead, these rules are derived automatically from data patterns, following 

the concept of Empirical Data Analytics. This layer involves two key processes: training 

and the generation of fuzzy rules. The process involves three stages: system 

initialization, preparation, and updating. A large dataset is uti/lized to train the DRB 

system, and after training is complete, each subsystem generates a fuzzy rule for its 

respective class based on the identified prototypes. The fuzzy rules produced by our 

proposed BRB-BSIF system are shown in Table IV.7.  

IV.3  Experiments and results 

This section presents the experimental evaluation of the proposed DRB-BBSIF 

classifier, which is based on the Bank of BSIF (BBSIF) filters. The experiments are 

designed to assess the classifier's performance and explore the effectiveness of different 

feature descriptors. Three distinct experiments are conducted: Experiment 1 involves 

the creation of a BSIF filter bank and a comparison between standard BSIF and B-BSIF; 

Experiment 2 examines the impact of various feature descriptors when used with the 

DRB classifier; and Experiment 3 focuses on evaluating the DRB-BBSIF model 

specifically for MRI brain tumor classification. 

IV.3.1 Database 

The proposed model is evaluated on the publicly available brain T1-weighed CE-

MRI dataset. This database was collected by Cheng et al [5] from Nanfang Hospital, 

Guangzhou, China, and General Hospital, Tianjing Medical University, China, from 2005 

to 2010. Where, 3064 slices were collected from 233 patients, having 708 slices infected 

by Meningiomas, 1426 slices infected by Gliomas, and 930 slices infected by Pituitary 

tumors. The images contained an original size of 512 x512 in pixels. Three examples are 

illustrated in  Figure IV-3. 
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Figure IV-3: Illustrations of three typical brain tumors [5] 

(a) meningioma; (b) glioma; and (c) pituitary tumor. Red lines indicate the tumor border. 

IV.3.2 Experiment 1 – Construction of Bank of BSIF Filters 

IV.3.2.1 Objectives and Methodology  

The objective of this experiment is to enhance the system's accuracy by constructing 

a bank of BSIF filters. To identify the optimal BSIF parameters and corresponding filters, 

several sub-experiments were conducted, with the results summarized in Table IV.1. We 

tested various filters with different parameters, such as filter size (k) and filter length (n). 

The parameters achieving the highest performance were selected and used to build the 

BSIF filter bank (BBSIF). 

These selected parameters, listed in Table IV.2, are fixed and will be used as the 

estimated parameters for subsequent experiments. Figure IV-4 illustrates the B-BSIF 

descriptor model, showing an example using B-BSIF. As seen, the bank comprises 

different BSIF descriptor sizes, namely 17 × 17, 15 × 15, 13 × 13, and 11 × 11, with a 

length of 11 bits. This filter bank serves as an input to the DRB classifier. 

 

Figure IV-4: The model of the B-BSIF descriptor:  
(a) input ROI of MRI, (b) results of applying the different BSIF descriptor (BSIF code images), and (c) the 

histograms of the BSIF code images. 

(a) 

(b) (c) 
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Table IV.1: All parameters of BSIF applied on the MRI brain tumor 

IV.3.2.2 Analysis of Results 

The results of applying various BSIF filters reveal several key trends in terms of 

accuracy, sensitivity, and specificity: 

1. Filter Size and Performance : 

 Larger filter sizes (17×17) tend to deliver higher accuracy compared to smaller sizes 

(11×11). For example, the 17×17 filter with a length of 11 bits achieves the highest 

accuracy (84.30%), whereas the smallest filter (11×11) with the same bit length reaches 

an accuracy of 82.60%. 

 However, the performance gap between different filter sizes is not drastic. For instance, 

the 15×15 filter with 11 bits still performs comparably, with 83.71% accuracy. 

 

Parameters Accuracy (%) Sensitivity (%) Specificity (%) 

 

K N    

17 × 17 12 81.79 85.88 80.56 

17 × 17 11 84.30 86.44 83.66 

17 × 17 10 83.39 85.88 82.64 

15 × 15 12 82.08 84.89 81.24 

15 × 15 11 83.71 85.59 83.15 

15 × 15 10 83.26 88.42 81.71 

13 × 13 12 81.89 84.04 81.24 

13 × 13 11 82.70 86.86 81.45 

13 × 13 10 82.25 86.86 80.86 

11 × 11 12 80.97 83.05 80.35 

11 × 11 11 82.60 85.03 81.88 

11 × 11 10 83.62 85.03 83.19 
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2. Sensitivity and Specificity:  

 Sensitivity remains relatively high across all filters, with the best sensitivity (88.42%) 

being observed with the 15×15 filter at 10 bits, indicating that this configuration is 

particularly effective in detecting true positives. 

 Specificity also stays within a narrow range, generally between 80% and 83%, 

indicating a consistent ability to correctly identify true negatives. The highest specificity 

(83.66%) occurs with the 17×17 filter at 11 bits. 

3. Bit Length Influence : 

 Shorter bit lengths (10 or 11 bits) tend to provide slightly better overall performance 

than longer bit lengths (12 bits). For example, the 17×17 filter at 11 bits outperforms 

the same filter at 12 bits in accuracy, sensitivity, and specificity. 

4. Best Configuration : 

 The optimal performance in terms of accuracy (84.30%) is achieved with the 17×17 

filter at 11 bits, offering a balanced performance across all metrics. 

 The 15×15 filter at 10 bits stands out for sensitivity, making it a strong candidate if 

detecting positive cases is prioritized. 

In summary, the BSIF filters perform consistently across different configurations, 

with the 17×17 filter at 11 bits being the most optimal in terms of accuracy and specificity. 

Sensitivity, on the other hand, peaks with a 15×15 filter at 10 bits, highlighting that different 

configurations may be preferable depending on the specific performance metric emphasized 

in the analysis. 

Table IV.2: Best BSIF filters 
 

 

 

 

 

 

 

Parameters 

  ܓ

17 × 17 11 

15 × 15 11 

13 × 13 11 

11 × 11 11 
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The experiment comparing the BSIF and B-BSIF descriptors demonstrates a clear 

improvement in performance when using the B-BSIF (Bank BSIF) approach. The results in    

Table IV.3 indicate that the B-BSIF consistently outperforms the standard BSIF in terms of 

accuracy, sensitivity, and specificity. 

Table IV.3: Comparison between BSIF descriptor and Bank BSIF 
 
 
 
 
 
 
 

 

1. Accuracy: The accuracy of the B-BSIF (84.73%) slightly surpasses that of the BSIF 

(84.30%). Although the difference is small, it highlights the enhanced capacity of the 

B-BSIF filter bank to capture more discriminative features. 

2. Sensitivity: A more notable improvement is seen in sensitivity, where the B-BSIF 

reaches 87.57%, compared to 86.44% for the BSIF. This suggests that the B-BSIF is 

more effective at detecting true positive cases, which is particularly important in medical 

image analysis for identifying brain tumors. 

3. Specificity: The specificity of the B-BSIF (83.87%) is also marginally higher than that 

of the BSIF (83.66%), indicating a slight improvement in identifying true negative 

cases. 

These results demonstrate that the construction of a filter bank (B-BSIF) improves 

classification performance over the individual BSIF descriptor. The enhancements in 

sensitivity are especially valuable, as they indicate the model’s improved ability to detect 

positive cases more reliably. Therefore, the B-BSIF descriptor can be considered a more 

robust and effective feature extraction method for MRI brain tumor classification. 

IV.3.2.3 Interpretation of Results 

The superior performance of the B-BSIF (Bank BSIF) descriptor compared to the 

standard BSIF can be justified based on several factors related to feature extraction and the 

flexibility of the filter bank approach: 

 

 

Feature 
descriptor 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

BSIF 84.30 86.44 83.66 

BBSIF 84.73 87.57 83.87 
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1. Increased Diversity in Feature Representation 

The B-BSIF approach involves using a bank of BSIF filters with varying sizes and 

parameters. This diversity allows the model to capture a broader range of texture and spatial 

features in the MRI images. Different filter sizes respond to different scales of detail, 

enabling the model to extract both detailed and general features. The standard BSIF, with 

a single set of filters, is limited in its ability to capture such multi-level information. 

2. Adaptability to Image Variability 

MRI brain images exhibit significant variation in tumor size, shape, texture, and 

intensity patterns. The B-BSIF bank, with its varied filters, adapts more effectively to this 

variability compared to a single BSIF descriptor. The flexibility of the filter bank ensures 

that features are captured across different resolutions and orientations, contributing to 

improved sensitivity and accuracy. 

3. Improved Generalization 

 By combining multiple filters, the B-BSIF bank can generalize better across different 

datasets or image conditions. In medical imaging, such robustness is crucial, as the same 

type of tumor can manifest differently in different patients. The B-BSIF’s ability to integrate 

information from multiple descriptors improves the model’s ability to generalize and detect 

true positives (tumors) more reliably, which is reflected in the higher sensitivity. 

4. Enhanced Discriminative Power 

 The combination of different filters in B-BSIF increases the discriminative power of 

the features used by the classifier. The subtle differences in texture and intensity patterns, 

which might not be captured by a single filter set, are more likely to be detected by the varied 

filters in the bank. This is likely why B-BSIF achieves better specificity, as it reduces false 

positives by distinguishing between normal and abnormal tissue more accurately. 

5. Reduction in Overfitting 

 A single BSIF filter set may be prone to overfitting, particularly if the parameters are 

not well-suited to the full variability present in the images. The B-BSIF, by incorporating 

multiple filter sets, reduces the likelihood of overfitting to specific patterns, thus offering 

a more balanced performance across accuracy, sensitivity, and specificity. 
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IV.3.2.4 Key findings 

 In summary, the B-BSIF’s ability to capture a wider range of image features, its 

adaptability to MRI image variability, and its improved generalization contribute to its better 

performance in accuracy, sensitivity, and specificity compared to the standard BSIF. 

IV.3.3 Experiment 2: Impact of Feature Extractor Methods  

IV.3.3.1 Objective of Experiment 2  

 The goal of this experiment is to evaluate the impact of various feature descriptor 

methods (LBP, LPQ, WLD, PHOG, BSIF, and B-BSIF) on the performance of the DRB 

classifier for MRI brain tumor classification. The experiment compares the accuracy, 

sensitivity, and specificity of the DRB classifier when paired with each feature descriptor, 

to determine which combination yields the best results. Table IV.4 presents the findings. 

Table IV.4: Performance of feature descriptor methods with the DRB classifier 

DRB with LBP LPQ WLD PHOG BSIF B-BSIF 

Accuracy   (%) 73.99 77.15 75.78 79.31 84.30 84.73 

Sensitivity  (%) 57.77 74.72 64.97 74.29 86.44 87.57 

Specificity  (%) 78.86 77.89 79.03 80.81 83.66 83.87 

IV.3.3.2 Analysis of results 

The results of Experiment 2, illustrate the performance of different feature 

descriptor methods used with the DRB classifier, highlighting the effectiveness of the B-

BSIF descriptor. From this experiment, we can make several key observations: 

1. Accuracy: 

Among the feature extractors tested, the B-BSIF achieves the highest accuracy 

(84.73%), followed closely by the BSIF (84.30%). These outperform other methods 

such as PHOG (79.31%), LPQ (77.15%), and LBP (73.99%). This indicates that the 

BSIF-based methods, particularly B-BSIF, provide superior feature extraction 

capabilities for use with the DRB classifier. 
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2. Sensitivity: 

B-BSIF also leads in sensitivity (87.57%), indicating that it is more effective at 

correctly identifying positive cases (e.g., true tumor cases). This is significantly 

higher than LBP (57.77%) and even better than PHOG (74.29%). The high 

sensitivity makes B-BSIF particularly useful for medical image analysis where 

detecting true positives is crucial. 

3. Specificity: 

In terms of specificity, the B-BSIF (83.87%) and BSIF (83.66%) show the highest 

values, indicating better performance in correctly identifying negative cases (e.g., 

healthy tissue). This suggests that the B-BSIF descriptor reduces the number of false 

positives more effectively compared to other methods like LPQ (77.89%) and WLD 

(79.03%). 

IV.3.3.3 Interpretation of results 

The following interpretation of results provides insights into the performance of 

various feature descriptor methods utilized with the DRB classifier, focusing on their 

strengths and limitations in capturing local features essential for effective MRI brain tumor 

classification. 

 Nature of Local Features: While all the methods tested represent images as histograms 

of local features, the differences in performance stem from the types of local features 

each descriptor captures. The B-BSIF method is more robust because it uses a diverse 

bank of filters that capture multi-scale and multi-orientation texture features, resulting 

in more comprehensive feature representation. 

 BSIF and B-BSIF Advantages: BSIF-based methods (particularly B-BSIF) excel in 

medical image classification because they are particularly good at capturing fine-grained 

textural information in MRI images, which is essential for distinguishing between 

healthy and abnormal tissues. B-BSIF’s improved performance over BSIF is likely due 

to the added flexibility of using a bank of filters, which enhances its ability to capture 

subtle variations in tumor texture and structure. 

 LBP and LPQ Limitations: Descriptors like LBP and LPQ perform worse in sensitivity 

and accuracy, as they may not capture the complex texture patterns present in medical 

images as effectively as the BSIF-based methods. LBP, for example, is a simple 

descriptor that may miss finer details, leading to its relatively low sensitivity. 

 



Chapter IV  DRB-BBSIF for Brain Tumor Classification   

80 

IV.3.3.4 Key findings 

In summary, The B-BSIF descriptor clearly outperforms other feature extraction 

methods when paired with the DRB classifier, achieving the best balance of accuracy, 

sensitivity, and specificity. This makes B-BSIF the most suitable choice for MRI brain tumor 

classification in this context. The results demonstrate that using a more sophisticated filter 

bank, like B-BSIF, significantly enhances the classification performance compared to more 

traditional descriptors like LBP or PHOG. 

IV.3.4 Experiment 3: Evaluation of the DRB-BBSIF Model  

IV.3.4.1 Objective of Experiment 3  

The objective of experiment 3 is to evaluate the performance of the proposed DRB-

BBSIF model for MRI brain tumor classification, specifically focusing on its effectiveness 

in accurately distinguishing between three tumor types: meningioma, glioma, and pituitary 

tumors. This experiment aims to conduct a comparative analysis between the DRB-BBSIF 

model and the KNN classifier, while also generating fuzzy rules, as presented in Table IV.7, 

to enhance interpretability and improve decision-making within the classification process. 

IV.3.4.2 Analysis of Results 

In this section, we delve into the performance of the DRB-BBSIF model for MRI brain 

tumor classification based on the results obtained in Experiment 3. The analysis covers three 

key areas: Per-class performance, a comparison with the K-Nearest Neighbors (KNN) 

classifier, and the contribution of fuzzy rules to the classification process. 

1. Performance by Class: 

 Table IV.5 shows the system’s accuracy for each class. The highest accuracy is observed 

for gliomas (88.71%), followed closely by meningiomas (87.57%). However, the 

system shows lower performance in classifying pituitary tumors, with an accuracy of 

76.45%. This suggests that the DRB-BBSIF model is highly effective for glioma and 

meningioma classification, but further improvements may be needed for pituitary tumor 

detection. 

 Misclassification is evident, particularly between glioma and pituitary tumors. For 

instance, 115 out of 930 pituitary tumors were misclassified as meningiomas, indicating 

a possible overlap in feature representation or limitations in distinguishing these specific 

classes. 
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Table IV.5: Performance of the DRB-BBSIF for each class 

 Meningioma Glioma Pituitary 

Meningioma 620/708 33/708 55/708 

Glioma 95/1426 1265/1426 66/1426 

Pituitary 115/930 104/930 711/930 

Accuracy 87.57 88.71 76.45 

2. Comparison with K-Nearest Neighbors (KNN): 

 Table IV.6 presents a comparison between the proposed DRB-BBSIF system and 

various configurations of the KNN classifier (with different k values). The DRB-

BBSIF consistently outperforms KNN, achieving an accuracy of 84.73%, while the 

KNN variants range from 80.01% (1NN) to 83.37% (15NN). 

 The superiority of DRB-BBSIF over KNN suggests that the feature extraction 

process using the BSIF descriptor, coupled with the DRB classifier, provides a more 

robust approach for capturing tumor-specific features in MRI images compared to 

the KNN classifier, which relies on proximity-based decision-making and may not 

capture the complex textures of tumors as effectively. 

Table IV.6: Comparison of the DRB-BSIF with KNN 

Method DRB-BBSIF 1NN 3NN 7NN 15NN 45NN 

Accuracy 
(%) 

84.73    80.01 81.69 83.14 83.37 83.09 

3. Fuzzy Rules: 

Table IV.7 outlines the fuzzy rules generated during the training process, which are 

used to classify the MRI images into different tumor categories. These rules, constructed 

from the feature descriptors, help the system make more nuanced decisions by 

considering various combinations of MRI features that are indicative of each tumor type. 

This further supports the flexibility and adaptability of the DRB-BBSIF model 

compared to more rigid classifiers like KNN. 
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Table IV.7: Fuzzy rules generated through the training process 

Fuzzy rules 

(IF MRI  ~      ) OR ( MRI ~  ) OR ( MRI  ~   ) OR ( MRI  ~   ) THEN 
(Meningioma) 

(IF MRI  ~      ) OR ( MRI ~   ) OR( MRI  ~   ) OR( MRI  ~    ) THEN 
(Glioma) 

(IF MRI  ~      ) OR ( MRI ~   ) OR ( MRI  ~   ) OR ( MRI  ~   ) THEN 
(Pituitary ) 

IV.3.4.3 Interpretation of Results 

To justify the choice of the BSIF (Binarized Statistical Image Features) filter among 

other feature extractors, we can highlight several key aspects: 

1. Theoretical Strengths of BSIF: 

 Texture Representation: BSIF excels at capturing rich texture information, which is 

crucial for distinguishing fine details in MRI brain tumor images. Tumors often exhibit 

subtle texture differences, making BSIF particularly effective in capturing these 

variations. 

 Data-Driven Filter Design: Unlike other feature extractors like LBP or LPQ, BSIF uses 

filters learned from natural image statistics, leading to more discriminative features 

tailored to the data. This makes it well-suited for complex medical images where the 

statistical structure is crucial for classification. 

2. Robustness to Noise : 

 Performance in Noisy Environments: MRI images often suffer from noise due to 

acquisition methods. BSIF's ability to binarize features and leverage learned filters 

provides robustness against such noise, potentially offering more stable performance 

compared to other methods like LPQ, which may be more sensitive to variations in 

lighting or noise. 
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3. Comparison with Other Feature Extractors: 

 BSIF vs. LBP/LPQ/WLD: While methods like LBP and LPQ capture local texture and 

phase information, BSIF can extract more complex, high-level patterns, leading to better 

feature abstraction. LBP and LPQ are based on predefined filters, while BSIF adapts its 

filters from data, making it more flexible and potentially more powerful for 

classification tasks where fine details matter, such as in brain tumor classification. 

 BSIF vs. Deep Features: While deep learning architectures like AlexNet or ResNet 

extract hierarchical features, BSIF is computationally less demanding and can work well 

when the dataset is smaller, which is common in medical imaging. It offers a good 

balance between simplicity and performance without requiring large-scale training data. 

IV.3.4.4 Key Finding 

The experiment demonstrates that the DRB-BBSIF model outperforms KNN for MRI 

brain tumor classification, particularly for meningiomas and gliomas. However, the lower 

accuracy for pituitary tumors highlights an area for further optimization. The use of fuzzy 

rules in the DRB-BBSIF model also adds to its strength by allowing for more precise 

classification through complex feature combinations. In summary, the results confirm the 

effectiveness of the proposed system in tumor classification, while highlighting areas where 

further improvements are needed in certain cases. 

IV.4  Conclusion 

The first contribution of this thesis presents the DRB-BSIF (Deep Rule-Based 

Classifier using Binarized Statistical Image Features) model, a significant advancement in 

the automated classification of MRI brain tumors. This model effectively addresses the 

limitations of traditional classification methods through two core innovations: enhanced 

feature extraction and automated classification utilizing deep rules. 

The results from the three experiments conducted under this contribution demonstrate 

the efficacy of the DRB-BSIF model. Experiment 1 established the optimal parameters for 

the BSIF filter bank, Experiment 2 highlighted the comparative performance of various 

feature extraction methods with the DRB classifier, and Experiment 3 validated the superior 

classification performance of the DRB-BBSIF model compared to traditional classifiers like 

KNN. The findings indicate that the DRB-BBSIF model excels in accurately distinguishing 
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between meningioma, glioma, and pituitary tumors, showcasing its potential as a reliable 

tool for automated MRI brain tumor diagnosis. 

In conclusion, the DRB-BBSIF model represents a significant contribution to the field 

of medical image analysis, offering a robust and interpretable framework for brain tumor 

classification. This work not only advances existing methodologies but also sets the stage 

for future research focused on refining automated classification techniques in medical 

imaging. 
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Chapter V: DRB with Deep Feature Extraction 

V.1 Introduction 

The second contribution focuses on the synergistic integration of deep learning and 

rule-based classification. We propose a novel, simple, and automatic DRB-based scheme for 

MRI brain tumor classification. This model leverages the power of deep learning for feature 

extraction and combines it with the effectiveness of DRB for classification. 

 Deep Feature Extraction: The model utilizes pre-trained deep learning architectures 

like AlexNet, VGG-16, ResNet-50, and ResNet-18 to extract deep features from MRI 

images. These deep features capture complex patterns and relationships within the data, 

leading to improved classification performance. 

 DRB for Classification: Similar to the first contribution, the model employs DRB for 

classification. DRB utilizes the extracted deep features to automatically generate a set 

of fuzzy rules, enabling accurate tumor identification. 

V.2 Proposed methodology  

The primary objective of this study is to develop a method for MRI brain tumor 

classification utilizing deep learning techniques. The proposed approach, outlined in Figure 

V-1, consists of three stages: preprocessing, feature extraction, and classification. Both the 

feature extraction and classification stages rely on deep learning methods. 

 

Figure V-1: Block diagram of the proposed method. 
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V.2.1 Pre-processing step 

The preprocessing step is crucial for enhancing the image quality, which leads to 

achieve better performance in the feature extraction and classification stages. This process  

involves essential techniques such as binarization, normalization, rotation, resizing, and the 

removal of irrelevant parts from the MR images. 

V.2.2 Feature extraction step 

Feature extraction is a crucial part of the classification process, as it focuses on identifying the 

most important characteristics from the original data to enhance the system’s efficiency. In this study, 

we employ deep learning-based feature descriptors to achieve this goal. Specifically, we used four 

pre-trained convolutional neural networks (CNNs): AlexNet, VGG-16, ResNet-18, and ResNet-50. 

These pre-trained models were applied to extract relevant features from MRI images. A summary of 

the CNN models used is provided in Table V.1. 

Table V.1: Summary of CNN’s models 

Network depth Parameters 
(millions) 

Image input 
size 

AlexNet 8 60 [227 × 227] 
VGG-16 16 138 [224 × 224] 

ResNet-18 18 11.7 [224 × 224] 
ResNet-50 50 25.6 [224 × 224] 

V.2.3 Classification step 

Various techniques exist for data classification, including fuzzy clustering means 

(FCM), support vector machines (SVM) [5] [85], and artificial neural networks (ANN) [89]. 

Inspired by the high classification accuracy demonstrated by the DRB classifier in [73], we 

investigate its use for MRI brain tumor classification. 

V.3 Database 

In this study, we utilized two publicly available datasets from the Kaggle website. As 

outlined in Table V.2, the first dataset consists of 253 images categorized into 2 classes (no 

tumor, pathological), while the second dataset includes 3264 images classified into 4 classes 

(Glioma tumor, Meningioma tumor, Pituitary tumor, No tumor). The "no tumor" data were 

obtained from the Novoneel Chakraborty Kaggle data set. (available at:  

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection). 

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection).
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Table V.2: Datasets descriptions 

Dataset Classes Number of 
images Images type 

Dataset1 Tumor 155 JPG No tumor 98 

Dataset2 

Glioma tumor 926 

JPG 
Meningioma tumor 937 

No tumor 500 
Pituitary tumor 901 

V.4 Experiments and results 

The objective of this section is to provide a comprehensive evaluation of the proposed 

deep features-based MRI brain tumor classification system using a series of experiments. 

Each experiment assesses the performance of different classifiers (DRB, SVM, KNN, and 

Decision Tree) in combination with features extracted from pre-trained CNN models 

(AlexNet, VGG-16, ResNet-50, and ResNet-18).  

 

Figure V-2: Experimental evaluation of the proposed system. 

The primary aim is to determine which combination of feature extractor and classifier 

yields the best classification results across two MRI brain tumor datasets. The evaluation is 

based on several key performance metrics, including accuracy, sensitivity, specificity, 

precision, and F-measure, allowing for a detailed comparison of the system's effectiveness 

in both binary and multi-class classification tasks. 
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V.4.1 Experiment 1: AlexNet with 4 different classifiers 

In this experiment, we investigated the performance of different classifiers on pre-

extracted features from a pre-trained convolutional neural network (CNN) called AlexNet 

(as illustrated in Figure V-3). 

 

Figure V-3: Architecture of experiment1 

Table V.3 outlines the architecture of AlexNet, showing key layers such as 

convolutional layers, max pooling, and fully connected layers. 

Table V.3: Details of AlexNet layers 

Layer Number of 
kernels Kernel size Stride padding Output size 

Input     [227 × 227 × 3] 
Conv1 96 11 × 11 × 3 4 - [55 × 55 × 96] 

Maxpool1  3 × 3 2 - [27 × 27 × 96] 
Norm1    - [27 × 27 × 96] 
Conv2 256 5 × 5 × 48 1 2 [27 × 27 × 256] 

Maxpool2  3 × 3 2 - [13 × 13 × 256] 
Norm2     [13 × 13 × 256] 
Conv3 384 3 × 3 × 256 1 1 [13 × 13 × 384] 
Conv4 384 3 × 3 × 192 1 1 [13 × 13 × 384] 
Conv5 256 3 × 3 × 192 1 1 [13 × 13 × 256] 

Max pool3  3 × 3 2 - [6 × 6 × 256] 
FC6 ReLu Dropout (0.5) 1    4096 
FC7 ReLu Dropout (0.5) 1    4096 

FC8 Softmax 
 

1    1000 
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By extracting features from AlexNet and using them with different classifiers, we can 

evaluate how well each classifier performs with deep features. This process allows us to 

compare traditional machine learning classifiers (SVM, KNN, Decision Tree) with the DRB 

classifier and assess which approach yields the best performance in MRI brain tumor 

classification. 

V.4.1.1 Analysis of Results 

Table V.4 below highlights the comparative performance of each classifier on both 

datasets. The analysis explores how the classifiers performed in distinguishing between 

tumor and non-tumor cases, offering insights into which models are most effective for this 

classification task. 

Following this table, a detailed breakdown of the results will be provided for each 

dataset, followed by key observations regarding classifier performance and dataset 

complexity. 

Table V.4: Comparative performance of AlexNet with 4 different classifiers 

AlexNet with 4 different classifiers 
Data 
set 

Architecture Accuracy Sensitivity Specificity Precision F-
measure 

 
 

Data 
set1 

 

 
DRB 
SVM 
KNN 

Decision Tree 
 

 
85.23% 
79.55% 
89.77% 
69.32% 

 
0.9375 
0.8438 
0.8750 
0.6563 

 
0.8036 
0.7679 
0.9107 
0.7143 

 
0.7317 
0.6750 
0.8485 
0.5676 

 
0.8219 
0.7500 
0.8615 
0.6087 

 
 

Data 
set2 

 
DRB 
SVM 
KNN 

Decision Tree 
 

 
79.19% 
75.63% 
60.66% 
71.32% 

 

 
0.3500 
0.2000 
0.3700 
0.4000 

 
0.9422 
0.9456 
0.6871 
0.8197 

 
0.6131 
0.5556 
0.2868 
0.4301 

 
0.4605 
0.2941 
0.3231 
0.4145 

1. Performance on Dataset 1 : 

 The K-Nearest Neighbors (KNN) classifier performs best in terms of accuracy, 

achieving 89.77%, which is significantly higher than the other classifiers. 

 DRB and SVM also demonstrate solid results with 85.23% and 79.55% accuracy, 

respectively. 

 Decision Tree performs the worst, with an accuracy of 69.32%. 

 In terms of sensitivity (true positive rate), DRB achieves the highest value (93.75%), 

which suggests that it is most effective in identifying positive cases (tumors). 
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 Specificity (true negative rate) is highest for KNN at 91.07%, indicating that KNN is 

better at correctly identifying negative cases (non-tumors). 

 Precision (the ratio of true positives to all predicted positives) is also strongest for KNN 

at 84.85%, meaning it is more reliable in predicting the positive class. 

2. Performance on Dataset 2 : 

 The performance of all classifiers drops on Dataset 2, which may suggest that this 

dataset is more complex or challenging. 

 DRB achieves the best accuracy on this dataset with 79.19%, followed by SVM at 

75.63%. Both KNN and Decision Tree show significantly lower accuracies, with 

60.66% and 71.32%, respectively. 

 DRB again shows strong specificity (94.22%), indicating that it effectively identifies 

negative cases, while Decision Tree shows a slightly lower value (81.97%). 

 In terms of sensitivity, DRB shows a notable drop, achieving only 35%, indicating 

that it struggles with detecting positive cases in Dataset 2. 

 Precision and F-measure are also higher for DRB and SVM, reinforcing that these 

classifiers are more consistent in performance across both datasets. 

 
Figure V-4: Confusion matrix of DRB with data 1 and Data 2. 
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Figure V-5: ROC curves of dataset 1 and dataset 2. 

V.4.1.2 Key Finding 

The key findings of Experiment 1 reveal important insights into the performance of 

various classifiers when used with features extracted by the AlexNet deep learning model 

on two different MRI brain tumor datasets: 

 KNN achieves the highest performance on Dataset 1, while DRB outperforms other 

classifiers on Dataset 2, but with a trade-off in sensitivity. 

 SVM provides relatively balanced performance across both datasets but doesn't 

outperform DRB or KNN in accuracy or sensitivity. 

 Decision Tree generally performs the worst, especially in terms of sensitivity and 

F-measure, indicating it is less suited for this classification task. 

 The difference in performance between datasets suggests that the second dataset 

might be more difficult to classify, potentially due to increased complexity or 

variations in the images. 

The ROC curves for both datasets in Figure V-5  illustrate these variations in classifier 

performance, showing how the models balance sensitivity and specificity across different 

thresholds. 

The results show that the choice of classifier can significantly impact the 

performance depending on the dataset, with DRB being the most balanced classifier. 
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V.4.2 Experiment 2: VGG-16 with 4 different classifiers 

VGG-16 is a popular convolutional neural network model, as presented in Figure V-6, 

known for its deep structure and efficient use of small convolutional filters. These 3x3 filters 

help capture spatial patterns effectively across different scales. The architecture of VGG-16, 

as shown in Table V.5, is designed to progressively reduce the spatial resolution while 

increasing the depth, ultimately producing a high-dimensional feature representation that can 

be fed into fully connected layers for classification. 

 

 

Figure V-6: VGG-16 with the classifiers 

Table V.5: Architecture of VGG-16 layers 

Layer 
Feature 

map Size Kernel size Stride 

Input 1 [224 × 224 × 3] - - 
Conv 64 [224 × 224 × 64] 3 × 3 1 

Max-pooling 64 [112 × 112 × 64] 3 × 3 2 
Conv2 128 [112 × 112 × 128] 3 × 3 1 

Max-pooling 128 [56 × 56 × 128] 3 × 3 2 
Conv3 256 [56 × 56 × 256] 3 × 3 1 

Max-pooling 256 [28 × 28 × 256] 3 × 3 2 
Conv4 512 [28 × 28 × 512] 3 × 3 1 

Max-pooling 512 [14 × 14 × 512] 3 × 3 2 
Conv5 512 [14 × 14 × 512] 3 × 3 1 

Max-pooling 512 [7 × 7 × 512] 3 × 3 2 
Fully connected  25088   
Fully connected  4096   
Fully connected  4096   
Fully connected  1000   
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V.4.2.1 Analysis of results 

Table V.6 compares the performance of the four classifiers using the VGG16 feature 

extractor on two datasets (Dataset1 and Dataset2). With this approach, an accuracy of 

86.36% was achieved with KNN on Dataset1, while an accuracy of 81.73% was obtained 

with DRB on Dataset2. 

Table V.6: Comparative performance of VGG-16 with 4 different classifiers 

VGG-16 with 4 different classifiers 
Data
set 

Architecture Accuracy Sensitivity Specificity Precision F-
measure 

 
 

Data
set1 

 
DRB 
SVM 
KNN 

Decision Tree 
 

 
79.55% 
84.09% 
86.36% 
75.00% 

 
0.8125 
0.7500 
0.9063 
0.7500 

 
0.7857 

1 
0.8393 
0.7500 

 
0.6842 
0.6957 
0.7632 
0.6316 

 
0.7429 
0.8205 
0.8286 
0.6857 

 
 

Data
set2 

 
DRB 
SVM 
KNN 

Decision Tree 

 
81.73% 
77.16% 
61.93% 
72.84% 

 

 
0.4800 
0.2900 
0.4400 
0.3800 

 
0.9422 
0.9456 
0.6871 
0.8197 

 
0.7059 
0.6042 
0.3188 
0.4578 

 
0.5714 
0.3919 
0.3697 
0.4153 

From Table V.6 , we can draw the following observations: 

1- Performance on Dataset 1 : 

 DRB: Achieved an accuracy of 79.55%, showing relatively balanced performance 

across the metrics. Sensitivity and precision were moderate, with a solid F-measure of 

0.7429, indicating it handles both positive and negative predictions effectively. 

 SVM: Outperformed other classifiers with the highest sensitivity (0.8125) and perfect 

specificity (1), leading to a high accuracy of 84.09% and an F-measure of 0.8205. This 

indicates SVM's strong capability to detect positive cases, though its precision and 

sensitivity could be better balanced. 

 KNN: Showed the highest accuracy (86.36%) and strong sensitivity (0.9063), 

indicating high effectiveness in identifying true positives. Its F-measure of 0.8286 

suggests that KNN was the best overall classifier on Dataset 1. 

 Decision Tree: Had the lowest accuracy (75.00%) and the weakest performance across 

all metrics. Its F-measure of 0.6857 reflects a struggle to maintain a balance between 

precision and sensitivity, suggesting that it was less effective on this dataset. 
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2- Performance on Dataset 2 : 

 DRB: Provided the best results on this dataset with an accuracy of 81.73%. Its F-

measure of 0.5714 reflects good performance despite having a lower sensitivity 

(0.4800), meaning it was effective at distinguishing different classes but less sensitive 

in detecting positives. 

 SVM: Performed worse than on Dataset 1, achieving 77.16% accuracy. With a lower 

sensitivity (0.2900), SVM struggled with false negatives on Dataset 2, but it maintained 

high specificity (0.9456), indicating it was good at identifying negatives. 

 KNN: Showed a drop in performance compared to Dataset 1, with 61.93% accuracy 

and a low F-measure (0.3697), indicating that KNN was less effective in this multi-class 

scenario. 

 Decision Tree: Slightly outperformed KNN but still underperformed with 72.84% 

accuracy and an F-measure of 0.4153, showing it was not very effective on this dataset 

either. 

V.4.2.2 Key Findings 

The key findings of Experiment 2 reveal important insights into the performance of 

various classifiers when used with features extracted by the VGG-16 deep learning model 

on two different MRI brain tumor datasets: 

 KNN and SVM performed better on Dataset 1 (binary classification), with KNN 

achieving the highest accuracy. 

 DRB outperformed all classifiers on Dataset 2 (multi-class classification) with the 

best accuracy. 

 Decision Tree consistently underperformed across both datasets, particularly in terms 

of precision and F-measure. 

 Overall, DRB and KNN were the most effective classifiers depending on the dataset, 

while Decision Tree lagged behind. 

These findings highlight the idea that the performance of classifiers is highly 

dependent on the nature of the dataset and the complexity of the classification task. KNN 

and SVM excel in simpler, binary classification tasks like Dataset 1, while DRB is more 

robust in multi-class scenarios like Dataset 2. Decision Tree underperforms due to its 

overfitting tendencies and difficulty handling complex, high-dimensional features. The 
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combination of high-dimensional features extracted by VGG-16 and the intricacies of MRI 

brain tumor classification means that DRB's rule-based approach is more effective for 

handling complex tasks, while traditional classifiers like KNN and SVM excel in simpler 

cases. 

 
Figure V-7: Confusion matrix of DRB with data 1 and Data 2. 

 

 
Figure V-8: ROC curves of dataset 1 and dataset 
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V.4.3 Experiment 3: ResNet-50 with 4 different classifiers 

In Experiment 3, ResNet-50, a deep convolutional neural network, was used in 

conjunction with four different classifiers. ResNet-50 is designed to process RGB images of 

224x224 pixels, so as part of the experimental setup, all grayscale images were resized and 

converted to RGB format to meet this requirement. 

The architecture of ResNet-50, detailed in  Table V.7, highlights the different layers 

of ResNet-50, including the feature maps, kernel sizes, strides, and padding. A key strength 

of ResNet-50 lies in its residual blocks, which facilitate the efficient training of deep 

networks by mitigating the vanishing gradient problem. By leveraging its ability to extract 

high-level features, ResNet-50 serves as a powerful feature extractor for training and 

evaluating four classifiers: SVM, KNN, Decision Tree, and DRB. 

Table V.7: Architecture of ResNet-50 

Layer Feature map stride Padding Size 

Input 1   [224 × 224 × 3] 
Conv1 7 × 7 × 3 2 3 [112 × 112 × 96] 

Maxpool1 3 × 3 2 - [56 × 56] 

Conv2 
[1×1conv,64],[3 × 3conv,64],1 × 1conv,256] 2 - 

[56 × 56] [1×1conv,64],[3 × 3conv,64],1 × 1conv,256] 1 - 
[1×1conv,64],[3 × 3conv,64],1 × 1conv,256] 1 - 

Conv3 
 

[1×1conv,128],[3 × 3conv,128],[1 × 1conv,512] 2 - 
[28 × 28] 

 
[1×1conv,128],[3 × 3conv,128],[1 × 1conv,512] 1 - 
[1×1conv,128],[3 × 3conv,128],[1 × 1conv,512] 1 - 
[1×1conv,128],[3 × 3conv,128],[1 × 1conv,512] 1 - 

Conv4 

[1×1conv,256],[3 × 3conv,256],[1 × 1conv,1024] 2 - 

[14 × 14] 

[1×1conv,256],[3 × 3conv,256],[1 × 1conv,1024] 1 - 
[1×1conv,256],[3 × 3conv,256],[1 × 1conv,1024] 1 - 
[1×1conv,256],[3 × 3conv,256],[1 × 1conv,1024] 1 - 
[1×1conv,256],[3 × 3conv,256],[1 × 1conv,1024] 1 - 
[1×1conv,256],[3 × 3conv,256],[1 × 1conv,1024] 1 - 

Conv5 
[1×1conv,512],[3 × 3conv,512],[1 × 1conv,2048] 2 - 

[7 × 7] [1×1conv,512],[3 × 3conv,512],[1 × 1conv,2048] 1 - 
[1×1conv,512],[3 × 3conv,512],[1 × 1conv,2048] 1 - 

Average 
pool 7 × 7 7 - [1 × 1] 

Fc1000    1000 
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V.4.3.1 Analysis of Results 

The results in Table V.8 compare the performance of ResNet-50 for feature extraction 

with four different classifiers (DRB, SVM, KNN, and Decision Tree) across two datasets. 

The performance is evaluated in terms of accuracy, sensitivity, specificity, precision, and 

F-measure. 

Table V.8: Comparative performance of ResNet 50 with 4 different classifiers 

From this Table V.8, we can draw the following observations: 

1- Performance on Dataset 1  

 DRB (82.95% accuracy) provides the best overall performance, showcasing a balanced 

trade-off between precision (0.7429) and sensitivity (0.8125). The F-measure of 0.7761 

reflects a good balance between precision and recall, making DRB the most effective 

classifier for this dataset. 

 SVM (78.41% accuracy) follows DRB closely, performing well in terms of sensitivity 

(0.8125) but showing a lower precision (0.6667). The F-measure is lower than DRB at 

0.7324, indicating that SVM struggles slightly in maintaining a balance between correct 

classifications and false positives. 

 KNN (79.55% accuracy) performs reasonably well with decent sensitivity (0.8750) but 

has a lower precision (0.6667). Its F-measure of 0.7568 indicates a better balance 

compared to SVM. 

ResNet-50 with 4 different classifiers 
Data
set 

Architecture Accuracy Sensitivity Specificity Precision F-measure 

 
 
 

Data
set1 

 
DRB 
SVM 
KNN 

Decision Tree 

 
82.95% 
78.41% 
79.55% 
72.73% 

 
0.8125 
0.8125 
0.8750 
0.7188 

 
0.8393 
0.7679 
0.7500 
0.7321 

 
0.7429 
0.6667 
0.6667 
0.6053 

 
0.7761 
0.7324 
0.7568 
0.6571 

 
 
 

Data
set2 

 
DRB 
SVM 
KNN 

Decision Tree 

 
78.17% 
77.16 % 
62.18 % 
68.78 % 

 
0.2900 
0.3000 
0.4100 
0.2800 

 
0.9490 
0.9320 
0.6939 
0.8265 

 
0.6591 
0.6000 
0.3130 
0.3544 

 
0.4028 
0.4000 
0.3550 
0.3128 
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 Decision Tree (72.73% accuracy) shows the lowest performance across all metrics for 

Dataset 1, with the lowest precision (0.6053) and F-measure (0.6571), indicating it is 

less reliable for this dataset. 

2- Performance on Dataset 2 

 DRB (78.17% accuracy) again performs the best in terms of accuracy but shows a 

significant drop in sensitivity (0.2900) compared to Dataset 1. The precision (0.6591) is 

relatively high, but the F-measure (0.4028) suggests a weak balance between precision 

and recall, indicating DRB’s classification is less consistent in Dataset 2. 

 SVM (77.16% accuracy) performs similarly to DRB, with a slightly higher sensitivity 

(0.3000) but comparable precision (0.6000). Its F-measure (0.4000) reflects that it also 

struggles with maintaining balance in this dataset. 

 KNN (62.18% accuracy) exhibits the lowest accuracy in Dataset 2. With a lower 

sensitivity (0.4100) and precision (0.3130), KNN seems to perform poorly in extracting 

meaningful features from this dataset. 

 Decision Tree (68.78% accuracy) performs slightly better than KNN but still lags in 

precision (0.3544) and F-measure (0.3128), making it less effective for this dataset as 

well. 

V.4.3.2 Key Findings  

The key findings from Experiment 3 provide critical insights into the effectiveness of 

the ResNet-50 architecture when paired with various classifiers (SVM, KNN, Decision Tree, 

and DRB) in the context of MRI brain tumor classification. This analysis highlights how 

these classifiers utilize the high-dimensional features extracted from ResNet-50, revealing 

their performance differences across two distinct datasets. 

 DRB outperforms the other classifiers in terms of accuracy in both datasets, but its 

sensitivity drops significantly in Dataset 2, indicating a reduced ability to correctly 

classify positive samples in this dataset. 

 SVM and KNN generally perform reasonably well, but their precision and F-measure 

fluctuate between datasets, showing they are less consistent than DRB. 

 Decision Tree consistently underperforms compared to the other classifiers, particularly 

in Dataset 1, where it exhibits the lowest precision and F-measure. 
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Figure V-9 : Confusion matrix of DRB with data 1 and Data 2. 

 

Figure V-10: ROC curves of dataset 1 and dataset 2 

The results indicate that DRB consistently outperforms the other classifiers in terms 

of accuracy for both datasets, although it experiences a noticeable decline in sensitivity when 

transitioning from Dataset 1 to Dataset 2. This suggests that while DRB excels in overall 

classification performance, it may struggle to correctly identify positive samples in more 

complex scenarios. In contrast, SVM and KNN demonstrate reasonably competitive 

performance but exhibit variability in precision and F-measure across datasets, indicating a 

lack of consistency in their classification abilities. Meanwhile, the Decision Tree classifier 

consistently underperformed relative to the others, particularly in Dataset 1, where it 

recorded the lowes3t precision and F-measure. 
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V.4.4 Experiment 4: ResNet-18 with 4 different classifiers 

In Experiment 4, the pre-trained ResNet-18 model is used to extract feature vectors 

from images for classification tasks. The features are taken from the "pool5" layer, the last 

layer before the classification head. Since ResNet-18 requires input images of size 224x224 

pixels in RGB format, all images are resized and converted as needed. After extracting the 

features, four different classifiers are used to perform the classification, with each classifier 

fine-tuned for optimal performance. This approach leverages the power of deep feature 

extraction from ResNet-18 alongside traditional classifiers. a breakdown of the ResNet-18 

layers is shown in Table V.9. 

Table V.9: Details of ResNet-18 layers 

Layer Kernel size Stride Output size 
Input  - [224 × 224 × 3] 

Conv1 11 × 11 × 3 2 [112 × 112 × 64] 
Max-pool 3 × 3 2 [56 × 56 × 64] 

Conv2 
3 × 3 × 64 - [56 × 56 × 64] 
3 × 3 × 64 - [56 × 56 × 64] 

Conv3 3 × 3 × 128 - [28 × 28 × 128] 
3 × 3 × 128 - [28 × 28 × 128] 

Conv4 3 × 3 × 256 - [14 × 14 × 256] 
3 × 3 × 256 - [14 × 14 × 256] 

Conv5 3 × 3 × 512 - [7 × 7 × 512] 
3 × 3 × 512 - [7 × 7 × 512] 

Average pool 7 × 7 - [1 × 1 × 512] 
Fully connected   1000 

Softmax   1000 

Table V.10 compares the performance of the ResNet-18 feature extractor combined 

with four different classifiers SVM, KNN, Decision Tree, and DRB across two datasets, 

Dataset1 and Dataset2. The performance metrics include Accuracy, Sensitivity, Specificity, 

Precision, and F-measure. 

V.4.4.1 Analysis of Results 

The analysis is focused on key performance metrics such as accuracy, sensitivity, 

specificity, precision, and F-measure. These metrics provide insights into how well each 

classifier handles different aspects of classification, including the ability to correctly identify 

positive and negative instances and maintain a balance between precision and recall. By 

comparing the results across Dataset1 and Dataset2, this analysis aims to determine the 
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strengths and weaknesses of each classifier in handling the high-dimensional features 

extracted by ResNet-18. 

Table V.10: Comparative performance of ResNet18 with 4 different classifiers 

 

1. Dataset1 Performance : 

 Accuracy: DRB achieves the highest accuracy at 85.22%, followed by SVM at 

77.27%, KNN at 81.82%, and Decision Tree at 69.32%. This indicates that DRB is the 

most effective classifier for this dataset. 

 Sensitivity (Recall): DRB has the highest sensitivity (0.9063), suggesting it is most 

effective at correctly identifying positive instances. The Decision Tree shows the lowest 

sensitivity (0.6250). 

 Specificity: SVM performs best in terms of specificity (0.8571), which means it is most 

accurate at identifying negative instances, while Decision Tree has the lowest specificity 

(0.5472). 

 Precision: DRB also leads in precision (0.8169), meaning it has the highest rate of 

correct positive predictions among the classifiers. Decision Tree has the lowest 

precision (0.6824). 

 F-measure: DRB achieves the highest F-measure (0.7576), reflecting a good balance 

between precision and recall. The Decision Tree has the lowest F-measure (0.6824). 

ResNet18 with 4 different classifiers 

Dataset Architecture Accuracy Sensitivity Specificity Precision F-measure 
 
 

Dataset1 

 
DRB 
SVM 
KNN 

Decision 
Tree 

 

 
85.22% 
77.27% 
81.82% 
69.32% 

 
0.9063 
0.6250 
0.7813 
0.9063 

 
0.8214 
0.8571 
0.8393 
0.7514 

 
0.7436 
0.7143 
0.7353 
0.5472 

 
0.8169 
0.6667 
0.7576 
0.6824 

 
 

Dataset2 

 
DRB 
SVM 
KNN 

Decision 
Tree 

 

 
80.46% 
75.89% 
65.74% 
73.35% 

 

 
0.3200 
0.2900 
0.3900 
0.3200 

 
0.9694 
0.9184 
0.7483 
0.8741 

 
0.7805 
0.5472 
0.3451 
0.4638 

 
0.4539 
0.3791 
0.3662 
0.3787 
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Figure V-11: Confusion matrix of DRB with data 1 and Data 2. 

 

 
Figure V-12: ROC curves of dataset 1 and dataset 2. 

Dataset2 Performance : 

 Accuracy: DRB leads with 80.46%, followed by Decision Tree (73.35%), SVM 

(75.89%), and KNN (65.74%). This indicates DRB is the most accurate classifier for 

Dataset2 as well. 

 Sensitivity (Recall): All classifiers have relatively low sensitivity on Dataset2, with 

DRB and Decision Tree both at 0.3200, which indicates a poorer ability to identify 

positive instances. 
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 Specificity: DRB shows the highest specificity (0.9694), indicating it is the most 

effective at identifying negative instances, while KNN has the lowest specificity 

(0.7483). 

 Precision: DRB also leads in precision (0.4539), showing it is better at positive 

prediction accuracy compared to others. KNN has the lowest precision (0.3662). 

 F-measure: DRB again performs best with an F-measure of 0.3787, suggesting the most 

balanced performance. KNN has the lowest F-measure (0.3662). 

V.4.4.2 Key findings 

The key findings from Experiment 4 highlight the comparative performance of 

ResNet-18 features with different classifiers (DRB, SVM, KNN, and Decision Tree) on two 

MRI brain tumor datasets: 

 DRB consistently performs best across both datasets, excelling in accuracy, 

sensitivity, precision, and F-measure. Its performance indicates that DRB is well-suited 

for utilizing ResNet-18 features effectively, making it the most robust classifier for this 

task. 

 SVM exhibits strong specificity in Dataset1 but shows weaker performance in other 

metrics, suggesting that while it is reliable at identifying negative instances, it is less 

effective overall. 

 KNN generally underperforms across both datasets, particularly in sensitivity and 

precision, indicating that it struggles with this classification task and may not be suitable 

for the problem at hand. 

 Decision Tree shows inconsistent performance, with lower scores in various metrics, 

making it less reliable compared to DRB and SVM in these experiments. 

DRB is generally the most reliable and robust classifier, although performance can 

vary depending on the dataset and classification task.     

V.4.5 Comprehensive Analysis of Results  

To comprehensively evaluate the classifiers (DRB, SVM, KNN, Decision Tree) and 

deep learning features (AlexNet, VGG-16, ResNet-50, ResNet-18) used in our experiments 

on MRI brain tumor classification, we compare their performance metrics, highlight their 

strengths and limitations, and provide insights into their behavior across various conditions. 
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This section discusses the results in terms of both the classifiers and the deep feature 

extractors to offer an in-depth interpretation. 

V.4.5.1 Classifiers: Strengths and Challenges 

Classifier selection is a critical step in any machine learning project, particularly in 

classification tasks. The choice of classifier can significantly impact the accuracy, efficiency, 

and interpretability of the model. A well-chosen classifier can lead to highly accurate 

predictions, while a poorly chosen one can result in suboptimal performance. Table V.11 

provides a comparative analysis of various machine learning classifiers (DRB, SVM, KNN 

and Decision tree) used in this research, highlighting their strengths and weaknesses. 

By understanding the strengths and limitations of each classifier, we can make 

informed decisions when selecting the most suitable algorithm for a specific task. 

 Deep Rule-Based 

The DRB classifier excels with consistently high performance, demonstrating strong 

accuracy, sensitivity, specificity, and precision across various datasets and deep learning 

features. It effectively integrates the strengths of deep learning feature extraction with rule-

based logic, enhancing its ability to classify complex patterns, such as those found in MRI 

brain tumor images. This combination also contributes to its robustness in detecting tumors 

while minimizing false positives and negatives. However, DRB’s complexity can be a 

drawback, as its implementation and tuning require more effort due to the intricate 

integration of deep learning and rule-based components. 

 Support Vector Machine  

SVM offers strong sensitivity and specificity, effectively distinguishing between 

classes, especially with a clear margin, making it a reliable choice in some cases. It also 

demonstrates good generalization when a suitable kernel and parameters are selected, 

particularly in complex datasets. However, its performance is highly sensitive to the choice 

of kernel and parameter tuning, which can be challenging. Additionally, SVM may face 

scalability issues, performing less effectively with very large datasets or high-dimensional 

feature spaces unless properly optimized. 

 K-Nearest Neighbors  

KNN  is a simple and intuitive algorithm that is easy to understand and implement, 

with no training phase required. Its flexibility allows it to handle various types of data and 
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feature distributions effectively. However, KNN struggles with high-dimensional data due 

to the curse of dimensionality, which can significantly degrade its performance. 

Additionally, its effectiveness is highly sensitive to the choice of K and the distance metric, 

requiring careful tuning for optimal results. 

  Decision Tree 

Decision Tree algorithms are highly interpretable, providing clear decision rules that 

are easy to understand. They can effectively model non-linear relationships and feature 

interactions. However, they are prone to overfitting, especially when dealing with complex 

datasets or deep trees. Additionally, Decision Trees can be unstable, as small changes in the 

data can significantly alter the structure of the tree, impacting its performance. 

Table V.11: Comparison of different classifiers 

Classifier Strenghts Weaknesses 
 
DRB 

 
 High Performance  
 Combines the power of deep learning 

features with rule-based logic  
 Robustness in detecting tumors and 

avoiding false positives/negatives. 
 

 
 Complexity 

SVM  High Sensitivity and Specificity  
 Performs well with a well-chosen 

kernel and parameters 

 Parameter 
Sensitivity  

 less effective with 
very large datasets 

KNN  Simple and Intuitive  
 Flexibility: Can handle various types of 

data 

 Struggles with high-
dimensions 

 Parameter 
Sensitivity 

 
DecisionTree 

 
 Interpretability  
 Handles Non-linearity 

 
 Overfitting 
 Less Stability 

 

V.4.5.2  Deep Learning Features 

Feature extraction is a fundamental step in many machine learning and computer 

vision tasks, including image classification. It involves transforming raw data into 

meaningful features that can be used to train a classifier. The choice of feature extractor can 

significantly impact the performance of a classification model. 
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Table V.13 provides a comparative analysis of several popular feature extraction 

architectures used in this research (AlexNet, VGG-16, ResNet-50, and ResNet-18). These 

architectures have been instrumental in advancing the field of computer vision, particularly 

in image classification tasks. The table delves into the strengths and weaknesses of each 

architecture, considering factors such as: 

 Architectural Depth: The number of layers in the network. 

 Feature Extraction Capability: The ability to extract relevant and discriminative 

features from images. 

 Computational Cost: The computational resources required to train and deploy the 

model. 

 Overfitting Potential: The tendency of the model to overfit the training data. 

By understanding the trade-offs between these factors, we can make informed 

decisions when selecting the most suitable feature extractor.  

 AlexNet 

AlexNet is well-known for pioneering deep learning in image classification and 

provides effective feature extraction, making it a good choice for initial experiments and 

simpler datasets. Its relatively shallow architecture results in lower computational costs 

compared to deeper models. However, this limited depth also restricts its ability to extract 

complex features, which can be a disadvantage when working with more intricate or 

challenging datasets. 

 VGG-16 

VGG-16 features a deep architecture with more layers than AlexNet, enabling it to 

capture more complex features and generally achieve better feature representations and 

classification performance. However, this deeper architecture comes with higher 

computational costs due to the increased number of parameters. Additionally, VGG-16 is 

more prone to overfitting, particularly on smaller datasets, unless regularization techniques 

are applied effectively. 

 ResNet-50 

ResNet, through its use of residual learning, effectively addresses the problem of 

vanishing or exploding gradients, allowing for the successful training of very deep networks. 

This architecture excels at extracting complex features, resulting in strong performance 
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across a wide range of tasks. However, the depth and use of residual connections make 

ResNet more complex and computationally intensive compared to simpler models. 

 ResNet-18 

ResNet-18 leverages residual connections to enhance training and performance in deep 

networks, benefiting from residual learning. It strikes a good balance between depth and 

complexity, being shallower than ResNet-50, which makes it less computationally 

demanding while still maintaining the advantages of residual learning. However, its 

shallower architecture may limit its ability to capture as complex features as ResNet-50, 

though it remains effective for many applications. 

The analysis highlights that deeper architectures like VGG-16 and ResNet generally 

perform better in extracting features compared to older, shallower models like AlexNet. 

ResNet-50, in particular, excels at feature extraction due to its deeper layers, though it can 

be computationally intensive. Classifiers like SVM perform well with deep features, offering 

high sensitivity, but models like KNN and Decision Trees can struggle with high-

dimensional or complex data, leading to inconsistent results. Performance also varies 

depending on the dataset, with simpler datasets benefiting more from deeper models, while 

complex or imbalanced datasets present greater challenges. In conclusion, choosing the right 

combination of architecture and classifier is crucial for achieving optimal results. 

Table V.12: Performance Comparison of DRB with Different Deep Features 

 
 

 

DRB with 4 different deep features 
Dataset Architecture Accuracy Sensitivity Specificity Precision F-measure 

 
 
 

Dataset1 

 
AlexNet 
VGG-16 
ResNet50 
 ResNet18 

 

 
85.23% 
79.55% 
82.95% 
85.22% 

 

 
0.9375 
0.8125 
0.8125 
0.9063 

 

 
0.8036 
0.7857 
0.8393 
0.8214 

 

 
0.7317 
0.6842 
0.7429 
0.7436 

 

 
0.8219 
0.7429 
0.7761 
0.8169 

 
 

Dataset2 

 
AlexNet 
VGG-16 
ResNet50 
 ResNet18 

 
79.19% 
81.73% 
78.17% 
80.46% 

 
0.3500 
0.4800 
0.2900 
0.3200 

 
0.9422 
0.9422 
0.9490 
0.9694 

 
0.6131 
0.7059 
0.6591 
0.7805 

 
0.4605 
0.5714 
0.4028 
0.4539 
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Table V.13: Comparison of Feature Extractors 

Feature 
Extractor 

Strenghts Weaknesses 
 

AlexNet  Effective Feature Extraction 
for simpler datasets. 

 Lower Computational Cost 
 

 Limited Depth, which limit 
its capabilities for complex 
datasets 

VGG-16  Deep Architecture 
 capture more complex features 
 Improved Performance 

 Computational Cost 
 Overfitting Risk 

ResNet-50  Residual Learning 
 Effective Feature Extraction 

 Complexity due to the 
depth and residual 
connections. 

ResNet-18  Residual Connections which 
improve training and 
performance 

 Balancing Depth and 
Complexity 

 Less Deep: Might not 
capture as complex features 
as ResNet-50 

V.5 Comparison between the two contributions 

Our contributions focus on improving brain tumor classification using the DRB 

classifier with two distinct approaches: texture-based descriptors (BSIF/B-BSIF) and deep 

feature extraction.   

Contribution 1 (DRB with BSIF/B-BSIF) achieves strong classification performance, 

with accuracy reaching 84.30% and 84.73%, sensitivity at 86.44% and 87.57%, and 

specificity at 83.66% and 83.87%. These results demonstrate the effectiveness of BSIF/B-

BSIF compared to traditional feature descriptors like LBP and LPQ. However, while 

impressive for texture-based methods, the accuracy and sensitivity are slightly lower than 

deep learning-based approaches, particularly with deeper architectures like ResNet.   

Contribution 2 (DRB with deep features) leverages feature extraction from deep 

networks, resulting in improved classification performance. On Dataset 1, DRB with 

ResNet18 and AlexNet achieves accuracy of 85.22% and 85.23%, with significantly higher 

sensitivity (93.75% for AlexNet and 90.63% for ResNet18) and strong specificity (83.93% 

for ResNet50). On Dataset 2, while accuracy ranges from 79.19% to 81.73%, deep features 

maintain excellent specificity, especially with ResNet (up to 96.94%), highlighting their 

robustness in handling complex or imbalanced datasets. The higher sensitivity and precision 

of deep features make this approach more effective in detecting subtle tumor characteristics.   
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Based on the performance results achieved in the two contributions, Contribution 2 

(DRB with deep features) appears to be more effective, especially when considering both 

datasets. 

V.6 High Performance of the DRB Classifier  

The high performance of the DRB classifier in our MRI brain tumor classification 

experiments can be explained and justified by several key factors related to its methodology 

and how it interacts with deep learning features. The following is a comprehensive analysis: 

V.6.1 Characteristics of DRB Classifier 

DRB classifier combines deep learning features with a rule-based system to enhance 

classification performance. It leverages both learned features from deep neural networks and 

predefined rules to make predictions. The key characteristics that contribute to its high 

performance include: 

1. Feature Extraction from Deep Learning 

DRB often integrates with deep learning models (like AlexNet, VGG-16, ResNet, etc.) 

to extract high-level features from MRI images. The deep learning component handles the 

complex feature extraction process, capturing intricate patterns and relationships within the 

images. 

2. Rule-Based Classification 

The DRB classifier utilizes learned rules tailored to the specific characteristics of brain 

tumors, which allows for more accurate classification. By incorporating rules that reflect 

domain knowledge and tumor-specific patterns, DRB enhances the discriminative power of 

the classification process. 

3. Combining Strengths 

The DRB classifier leverages robust feature representations from deep learning models 

and refines them with rule-based logic, resulting in improved performance. This combination 

effectively balances generalization from deep learning with precision from rule-based 

decisions, leading to robust classification outcomes. 
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V.6.2 Performance Metrics of the DRB Classifier  

 High Accuracy: DRB’s integration with deep learning models allows it to benefit 

from high-quality feature extraction, leading to accurate tumor classification. For 

example, in experiments with different datasets, DRB achieved high accuracy (e.g., 

85.23% with AlexNet) due to its ability to leverage the deep features effectively. 

 High Sensitivity: DRB's high sensitivity indicates its effectiveness in detecting 

tumors. This is crucial for medical diagnosis, where detecting all possible positive 

cases is essential. The rule-based component helps in refining the detection process by 

applying specific rules to the extracted features, thus enhancing sensitivity. 

 High Specificity: DRB’s high specificity reflects its capability to correctly identify 

non-tumor regions. The rule-based system contributes to this by applying logical rules 

that minimize false positives, ensuring accurate identification of non-tumor cases. 

 High Precision: DRB’s precision in classification indicates that when it predicts a 

tumor, it is usually correct. This is achieved through the combination of learned deep 

features and rule-based refinement, reducing the likelihood of false positives. 

V.6.3 Comparison with Other Classifiers 

 SVM: While SVM performs well, DRB's ability to incorporate domain-specific rules 

on top of deep features often results in better performance in complex scenarios like 

tumor detection. 

 KNN: DRB outperforms KNN, especially in high-dimensional feature spaces, due to 

its rule-based approach that complements the feature extraction process. 

 Decision Trees: DRB’s performance is generally superior to decision trees because it 

avoids issues like overfitting and handles complex feature interactions more 

effectively through its rule-based system. 

In summary, the high performance of the DRB classifier in MRI brain tumor 

classification can be attributed to its unique combination of deep learning feature extraction 

and rule-based logic. The deep learning models (e.g., AlexNet, VGG-16, ResNet) provide 

robust, high-level features from MRI images, capturing intricate patterns. The rule-based 

system then applies specific rules to these features, enhancing the discriminative power and 

precision of the classification. This synergy allows DRB to achieve high accuracy and 

sensitivity, crucial for detecting tumors, and high specificity, minimizing false positives by 
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accurately identifying non-tumor regions. Compared to classifiers like SVM, KNN, and 

Decision Trees, DRB excels by combining deep feature learning with domain-specific rules, 

offering superior performance in complex, high-dimensional data. 

V.7 Conclusion 

In this chapter, we introduced and validated our second contribution, which focused 

on leveraging the DRB classifier with deep feature extraction. Various deep learning 

architectures, including AlexNet, VGG-16, ResNet-50, and ResNet-18, were utilized to 

extract meaningful features, which were subsequently classified using the DRB approach. 

Experimental results demonstrated the superior performance of the DRB classifier when 

integrated with deep learning, achieving high accuracy, sensitivity, and specificity across 

multiple datasets.   

In conclusion, both contributions presented innovative methodologies that 

significantly enhanced the accuracy and robustness of brain tumor classification. The 

findings confirm that integrating rule-based systems with deep learning features provides a 

powerful and effective approach for medical image analysis. 
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Conclusion and Perspectives 
The central goal of this thesis was to improve the classification of brain tumors using 

MRI images by leveraging both hand-crafted feature extraction and deep feature-based 

approaches. The study began with an overview of MRI imaging and its crucial role in brain 

tumor diagnosis, followed by an extensive discussion of machine learning (ML) and deep 

learning (DL) paradigms. The fundamental principles of deep learning, its architectures, and 

its impact on medical image analysis were reviewed to establish the theoretical foundation 

of the research. The classification of brain tumors was examined in detail, highlighting the 

taxonomy of MRI classification algorithms, the classification process, and the importance 

of explainability in medical AI models. 

The research introduced two key contributions aimed at improving MRI-based brain 

tumor classification. The first was the development and evaluation of the DRB-BSIF 

classifier, which integrates Binarized Statistical Image Features (BSIF) with the Deep Rule-

Based (DRB) model. This hybrid approach enhanced interpretability, an essential aspect of 

medical AI models, ensuring transparency in decision-making. The experimental results 

demonstrated significant improvements in classification accuracy, but the performance 

remained somewhat constrained by the limitations of hand-crafted features, which may not 

fully capture high-level data representations.   

To address this limitation, the second contribution extended the use of DRB 

classification with deep feature extraction. Deep learning architectures, such as AlexNet, 

VGG-16, ResNet-50, and ResNet-18, were explored to extract robust feature 

representations. A comparative analysis between the two approaches confirmed that deep 

features combined with DRB outperformed traditional hand-crafted feature-based methods, 

achieving a strong balance between interpretability, computational efficiency, and predictive 

performance.   

Despite these advancements, certain challenges remain. The combination of deep 

learning and rule-based systems introduces increased computational complexity and 

implementation challenges. The risk of overfitting, especially on smaller datasets, 

necessitates the adoption of more effective regularization techniques. Additionally, the 

generalizability of the DRB classifier to larger and more diverse datasets requires further 

validation to ensure broader applicability in real-world clinical settings. 
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Future research directions include:   
 
 Enhancing Model Explainability: Given the critical nature of medical diagnosis, 

integrating explainable AI (XAI) techniques into the DRB classifier could further 

improve trust and adoption in clinical environments.   

 Dataset Expansion and Augmentation: Training the DRB classifier on larger and 

more diverse multi-modal datasets can improve its robustness and generalization.   

 Optimizing Computational Efficiency: Reducing the computational cost of DRB-

based classification while maintaining high accuracy remains an important challenge.  

 Optimized Feature Selection and Dimensionality Reduction: Given the complexity 

of deep learning models, especially when dealing with high-dimensional deep features, 

selecting the most relevant features becomes crucial. Future work could explore feature 

selection or dimensionality reduction techniques to identify the most discriminative 

features for classification. This could reduce the computational burden and improve the 

efficiency of the system. 

 Hybrid and Transformer-Based Models: Exploring hybrid models that combine DRB 

with transformer architectures or self-supervised learning techniques could further 

improve classification performance.   

 Clinical Deployment: Developing a real-time, deployable system based on the DRB 

classifier will be essential for practical integration into healthcare workflows.   

 
In conclusion, this thesis contributes to the advancement of AI-driven medical 

imaging, demonstrating that the combination of rule-based classification and deep learning 

offers a promising approach to MRI brain tumor classification. By bridging the gap between 

accuracy, interpretability, and clinical applicability, this research paves the way for future 

innovations in computer-aided diagnosis (CAD) systems and AI-assisted medical decision-

making. 
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