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Abstract
Infectious diseases present complex diagnostic challenges due to the overlapping clini-
cal manifestations caused by diverse pathogens. Meningitis, in particular, remains a sig-
nificant global health concern due to its high morbidity and mortality, especially when
diagnosis and treatment are delayed. Traditional diagnostic methods often involve in-
vasive procedures and extensive laboratory testing, which can be time-consuming and
resource-intensive. This Ph.D. research investigates the integration of artificial intelli-
gence (AI) into the diagnostic process, aiming to enhance accuracy, speed, and inter-
pretability through the use of explainable AI (XAI) techniques.

The first phase of this study examines cerebrospinal fluid (CSF) biomarker vari-
ations across different age groups—children, adults, and the elderly—within various
types of meningitis. By analyzing these patterns, we aim to improve the understand-
ing of diagnostic and clinical variations and their implications for treatment strategies.
This analysis establishes a foundational understanding of how biomarkers behave in
different populations and infection contexts.

Our next contribution focuses on diagnosingmultiplemeningitis types using ensem-
ble models and SHapley Additive exPlanations (SHAP) to interpret feature importance.
Using data from Setif Hospital (Algeria) and Brazil’s SINAN database, we validated
our findings across diverse populations. Extreme Gradient Boosting achieved strong
performance (accuracy: 0.90, AUROC: 0.94, F1-score: 0.98). SHAP revealed distinct
biomarker profiles such as elevated neutrophils in meningococcal, high lymphocytes
in tuberculous, and neutrophil dominance in H. influenzae meningitis, along with clin-
ically relevant diagnostic patterns. These results highlight the model’s ability to distin-
guish bacterial, viral, and pathogen-specific meningitis, increasing trust in AI-driven
diagnostics.

Our third contribution develops specialized models for meningococcal meningitis,
emphasizing local explainability for precise diagnosis. We tested several models on
934 cases, with gradient boosting performing best (accuracy: 0.88, AUROC: 0.93, F1-
score: 0.87). Using XAI tools like ELI5 and LIME, we provided local explanations
that highlighted key diagnostic factors, including Neisseria meningitidis presence, CSF
WBC count, patient age, and neutrophil levels. These insights support clinical trust by
aligning model predictions with medical reasoning.

To enhance AI transparency, we introduced a novel explainable approach that in-
tegrates medical expertise into the interpretation of black-box models. Using concept
vector analysis, we assessed the contribution of symptoms and biomarkers in identi-
fying pneumococcal meningitis. Our deep learning model showed strong performance
(accuracy: 92.23%, F1-score: 92.98%, AUROC: 92.36%) and remained robust in real-
world validation, correctly identifyingmost caseswith high agreement (Cohen’sKappa:
0.75). Bio-TCAV revealed clinical signs (0.92), medical history (0.79), and CSF aspect
(0.88) as key influences on predictions, while biomarkers had a moderate effect (0.56).
Tests like PCR, culture, LATEX, and bacterioscopy were most influential (TCAV =
1) aligning with their critical role in real-world meningitis diagnosis. Welch’s t-test
confirmed that these differences in TCAV scores were statistically significant.

Keywords: Black box model, Infectious Diseases, Meningitis diagnosis, Artificial
Intelligence (AI) in Clinical Diagnostics, Explainable AI (XAI), Interpretable Diagno-
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sis, Trustworthy AI in Healthcare.

Résumé
Les maladies infectieuses posent des défis diagnostiques complexes en raison des man-
ifestations cliniques qui se chevauchent et de la diversité des agents pathogènes. La
méningite, en particulier, demeure un problème de santé publique majeur à l’échelle
mondiale en raison de sa forte morbidité et mortalité, notamment lorsque le diagnostic
et le traitement sont retardés. Les méthodes de diagnostic traditionnelles reposent sou-
vent sur des procédures invasives et des analyses biologiques approfondies, ce qui peut
être long et coûteux. Cette recherche doctorale explore l’intégration de l’intelligence
artificielle (IA) dans le processus diagnostique, avec pour objectif d’améliorer la pre-
cision, la rapidité et l’interprétabilité grâce aux techniques d’Explainable AI (XAI).

La première phase de l’étude s’intéresse aux variations des biomarqueurs dans le
liquide céphalorachidien (LCR) selon les tranches d’âge — enfants, adultes et person-
nes âgées — pour différents types de méningite. En analysant ces profils, nous visons
à mieux comprendre les variations diagnostiques et cliniques et leurs implications pour
les stratégies de traitement. Cette analyse pose les bases d’une compréhension appro-
fondie du comportement des biomarqueurs en fonction des populations et des contextes
infectieux.

Notre contribution suivante porte sur le diagnostic de plusieurs types de méningite
à l’aide de modèles ensemblistes et de SHapley Additive exPlanations (SHAP) pour
interpréter l’importance des variables. À partir de données issues de l’hôpital de Sétif
(Algérie) et de la base SINAN (Brésil), nous avons validé nos résultats sur des pop-
ulations diversifiées. Le modèle Extreme Gradient Boosting a obtenu de très bonnes
performances (accuracy : 0.90, AUROC : 0.94, F1-score : 0.98). L’analyse SHAP
a mis en évidence des profils distincts de biomarqueurs : neutrophiles élevés dans la
méningite à méningocoque, lymphocytes élevés dans la méningite tuberculeuse, et pré-
dominance des neutrophiles dans la méningite à H. influenzae, ainsi que des motifs
diagnostiques cliniquement pertinents. Ces résultats soulignent la capacité du modèle
à différencier les méningites bactériennes, virales et spécifiques à un agent pathogène,
renforçant la confiance dans les diagnostics pilotés par l’IA.

Notre troisième contribution développe des modèles spécialisés pour la méningite
à méningocoque, mettant l’accent sur l’explicabilité locale pour un diagnostic plus pré-
cis. Plusieurs modèles ont été testés sur un ensemble de 934 cas, le modèle gradient
boosting offrant les meilleurs résultats (accuracy : 0.88, AUROC : 0.93, F1-score :
0.87). En utilisant des outils XAI tels que ELI5 et LIME, nous avons fourni des expli-
cations locales révélant les facteurs clés du diagnostic, comme la présence de Neisseria
meningitidis, le taux de globules blancs dans le LCR, l’âge du patient, et les niveaux
de neutrophiles dans le LCR. Ces éléments renforcent la confiance clinique en alignant
les prédictions de l’IA avec le raisonnement médical.

Pour améliorer la transparence de l’IA, nous avons proposé une approche expli-
cable innovante intégrant l’expertise médicale dans l’interprétation des modèles boîte
noire. À l’aide de l’analyse des vecteurs de concepts, nous avons évalué la contribu-
tion des symptômes et biomarqueurs dans l’identification de la méningite à pneumo-
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coque. Notre modèle de deep learning a montré d’excellentes performances (accuracy
: 92.23%, F1-score : 92.98%, AUROC : 92.36%) et a conservé sa robustesse lors de
la validation en conditions réelles, identifiant correctement la majorité des cas avec
une forte concordance (Cohen’s Kappa : 0.75). L’approche Bio-TCAV a révélé que les
signes cliniques (0.92), les antécédents médicaux (0.79) et l’aspect du LCR (0.88) influ-
ençaient fortement les prédictions, tandis que les biomarqueurs avaient un impact plus
modéré (0.56). Les tests comme le PCR, les cultures, le LATEX et la bactérioscopie
se sont avérés les plus influents (TCAV = 1), en accord avec leur rôle critique dans le
diagnostic réel de la méningite. Un test t de Welch a confirmé que ces différences de
scores TCAV étaient statistiquement significatives.

Mots-clés: Modele boîte noire, Maladies infectieuses, Diagnostic de la méningite,
IA appliquée au diagnostic clinique, IA transparente (XAI), Diagnostics intelligibles,
fiabilité de l'IA en milieu clinique.

ڲڪٌۘ
اܳأިا݁ܭ ಾިعّ ݆ ۰ູ؇اܳٷ ل۰ اཏܳߌߵ اਵاض ࣁࣖا༠ܭ ૭ྟص ݁أگڎة ૰ۛ٭ݱ٭۰ ොູڎل؇ت اৎأڎل۰ اਵਦاض ႟ၽّ૰ُ
واܳިڣ٭؇ت، اৎݠاݪ۰ ݁أڎت ارّڰ؇ع ૭ྟص ۊޚଫଃة ৎ؇༟٭۰ ොේ٭۰ ᄭႍၽ݁ލ ༠؇ص ႟ၽ૰ اܳފ༲؇ل؇ اዛውܳ؇ب وّأُڎّ اৎ݄ݠݪ۰.
وොູ؇ܳ٭ܭ රජاۋ٭۰ إරජاءات আॻ༟ اܳٺگܹ٭ڎل۰ اܳྥލۛ٭ݧ ޗݠق ّأٺ݄ڎ ؇݁ ༚؇ܳٴً؇ واܳأఈఃج. اܳྥލۛ٭ݧ රඝ؊ّ ٷڎ ༠؇ݬ۰
اႤ၍ᄳᄟء ༇ံد دراݿ۰ ሌᇿإ ۰༡ޗݠوا ۱ڍه ዛኤڎف ܋ٴଫଃة. ݁ިارد ًوਐಾޚܹص ఈఃل ޗި وڢٺً؇ ૭ٺ؞ݠق ຬأ۳ܹ؇ ؇ᆙᆘ ݁أگّڎة، ل۰ ଫଊෛ
ً؇ݿٺ༱ڎام ଫଃاܳٺڰފ وڢ؇ًܹ٭۰ ۰༟ཏܳوا accuracy ඔ൹ފොູ আॻ༟ ଃ܋ଫଐܳا ؕ݁ اܳྥލۛ٭ݧ، ᆇᅦܹ٭۰ ሒᇭ (AI) ሒᇼ؇ݬޚٷا

. Explainable AI (XAI) ّگٷ٭؇ت
ሒᆞި اܳލ ሒᇷ؇݁ᄴᄟا اܳފ؇فܭ ሒᇭ ل۰ اࠍ٭ި اৎޝཇات اۊٺఈఃڣ؇ت ࢻࣖراݿ۰ ᆇᅪٷ؇ اܳٴۜت، ۱ڍا ݆݁ ሌᇿوا ᄭᄥ༡ݠৎا ሒᇭ
اܳފ༲؇ل؇. اዛውܳ؇ب ݆݁ ݁ٺأڎدة َިاع — اܳފ݆ و؇ر ،ඔ൹اܳٴ؇ܳ؞ اޗڰ؇ل، — ا௰௯௫ٺܹڰ۰ ل۰ اܳأ݄ݠ اܳڰ٪؇ت ଫଊ༟ (CSF)
আॻ༟ آٔ؇ر۱؇ وොູڎࢴࣖ أڣݯܭ ႟ၽ૰ ل۰ واཏܳߌߵ اܳྥލۛ٭ݱ٭۰ اܳڰݠوڢ؇ت ܳڰ۳ܾ ਤ૭ اஓ؇ط، ۱ڍه ොູܹ٭ܭ ఈః༠ل و݆݁

اܳأఈఃج. ۊޚޔ
learning ensemble ஓ؇ذج ً؇ݿٺ༱ڎام اܳފ༲؇ل؇ اዛውܳ؇ب ݆݁ ݁ٺأڎدة أَިاع ૰ۛ٭ݧ আॻ༟ ۰ਃ؇اܳټ ݁ފ؇ᆇᆅٺٷ؇ ߵணߙ
݁ފྥލࠕࠥ ݆݁ ਃಸ؇َ؇ت اݿٺ༱ُڎ݁ب ଃ݁ة. ႟၍ أᆇᆅ٭۰ ଫଃܳٺڰފ SHapley Additive exPlanations (SHAP) وّگٷ٭۰
؇ً࿌ިڢ ً أداء Boosting Extreme Gradient ஓިذج ۋگݑ لܭ). (اଫଊܳاز SINAN وڢ؇༟ڎة (اࠍݞا߉ߵ) ݿޚ٭ژ
గጻዧޝཇات ଃᆙᆘة أஓ؇ط ݆ SHAP ܋ލڰب .(98 .0 :F1-score ,94 .0 :AUROC ,90 .0 :accuracy)
،ঌॻاܳފ اܳފ༲؇ل؇ اዛውܳ؇ب ሒᇭ ل۰ اగጻዧڰ؇و اࠍఈఃل؇ وارّڰ؇ع ،۰ਃಮ؇༲اܳފ اညܝިرات ؇༡ت ሒᇭ اܳأڎت ارّڰ؇ع ݁ټܭ ل۰ اࠍ٭ި

influenzae. H. ؇༡ت ሒᇭ اܳأڎت و۱٭݄ٷ۰
ঌॻ௱௯௫ا ଫଃاܳٺڰފ আॻ༟ ଃ܋ଫଐܳا ؕ݁ ،۰ਃಮ؇༲اܳފ ً؇ညܝިرات اܳފ༲؇ل؇ اዛውܳ؇ب ܳྥލۛ٭ݧ ஓ؇ذج ޗިرَ؇ اܳټ؇ܳټ۰، ᄭᄥ༡ݠৎا ሒᇭ
boosting أداء وႤ၍ن ،ᄭᄟ؇༡ 934 আॻ༟ ஓ؇ذج ༟ڎة اۊٺଫଊُت .আॻ༟أ دڢ۰ আॻ༟ ࠵࠺ݱިل ( local explainability )
XAI أدوات ً؇ݿٺ༱ڎام .(87 .0 :F1-score ,93 .0 :AUROC ,88 .0 :accuracy) اڣݯܭ ި۱ gradient

اࡺࢦިذج. ܳٺྡྷٴޝات ොܹ٭۰ ّڰފଫଃات وڣݠَ؇ ،LIMEو ELI5 ݁ټܭ
ڢݠارات ଫଃّڰފ ሒᇭ اޗٴ؇ء ଫଊ༠ة ༇ံࣖࢴ ༥ڎࢴࣖاً ؇ً࿌ଫଃّڰފ ؇ً༶ዛዊ݁ اڢଫଐۋٷ؇ ،ሒᇼ؇ݬޚٷا اႤ၍ᄳᄟء ނڰ؇ڣ٭۰ وܳٺޚިߌߵ
ሒᇭ ل۰ اࠍ٭ި واৎޝཇات اਵاض ۰ᆇᆅ؇݁ފ ਐಸگ٭ࡗࡲ ᆇᅪٷ؇ concept، vectors ොູܹ٭ܭ ً؇ݿٺ༱ڎام black-box. ஓ؇ذج
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:accuracy) ᆙᆘٺ؇زاً ً أداء learning deep ஓިذج أޖ۳ݠ ل۰. اෂීفި ً؇ညܝިرات اܳފ༲؇ل؇ اዛውܳ؇ب ؇༡ت আॻ༟ اܳٺأݠف
Kappa ) ۋگ٭گ٭۰ ਃಸ؇َ؇ت আॻ༟ ڣأ؇ܳ٭ٺ۬ وأཿྟب ،(36% .92 :AUROC ,98% .92 :F1-score ,23% .92
و݁ޙ۳ݠ ،(79 .0) มاܳޚ ༂واܳٺ؇ر ،(92 .0) ل۰ اཏܳߌߵ اܳأఈః݁؇ت أن Bio-TCAV أޖ۳ݠ .(75 .0 :Cohen’s
.(56 .0) ݁ٺިݿޚ۰ ل۰ اࠍ٭ި اৎޝཇات ۰ᆇᆅ؇݁ފ Ⴄ၍ ྲྀٷ݄؇ ّ؊ଫଃٔاً، ଫ܋ا اܳأިا݁ܭ Ⴄ၍ (88 .0) ሒᆞި اܳލ اܳފ؇فܭ
،( TCAV = 1) ّ؊ଫଃٔاً ଫ܋ا ݆݁ ۰ਃಸިلިݿܝ ଫଐواܳٴܝ LATEX، culture، PCR، ݁ټܭ اۊٺٴ؇رات Ⴄ၍و
TCAV در༥؇ت ሒᇭ اܳڰݠوڢ؇ت أن t-test Welch’s اۊٺٴ؇ر ᄕცوأ .มاܳޚ اܳྥލۛ٭ݧ ሒᇭ دور۱؇ ؕ݁ ཇ؇റണ೭ ؇ஓ

.۰ਃಮ؇إۋݱ ᄭᄟد ذات Ⴄ၍
ሒᇼ؇ݬޚٷا اႤ၍ᄳᄟء اܳފ༲؇ل؇، اዛውܳ؇ب ૰ۛ٭ݧ اৎأڎل۰، اਵਦاض اݿިد، اܳݱٷڎوق ஓިذج اिऻءոؼמ١: اڤոஈت
ሒᇼ؇ݬޚٷا اႤ၍ᄳᄟء ،ଫଃٺڰފይዧ ᄭᄥً؇اܳگ اܳྥލۛ٭ݱ؇ت ،ଫଃٺڰފይዧ اܳگ؇ًܭ ሒᇼ؇ݬޚٷا اႤ၍ᄳᄟء اཏܳߌߵي، اܳྥލۛ٭ݧ ሒᇭ

اܳݱۜ٭۰. ا༟ීෂ؇ل۰ ሒᇭ ً؇ܳټگ۰ اࠍڎߌߵ
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Introduction
*****

The global threat of infectious diseases, intensified by climate change, urbanization, and
frequent international travel, highlights the urgent need for innovative healthcare solutions.
Despite significant achievements such as the eradication of smallpox and near-elimination of
polio, new diseases continue to spread quickly and claim millions of lives each year. Health
professionals in infectious disease, microbiology, public health, and front-line care must
address current health threats while preparing for emerging challenges. The ease of global
travel has facilitated the rapid spread of infections across borders, as seen in the SARS, H1N1
flu, and COVID-19 outbreaks [1].

In this context, artificial intelligence (AI) has transformative potential, supporting key
objectives of precision medicine [2, 3] such as early detection, targeted interventions, and
personalized treatments for diverse populations. The capacity of AI to analyze vast health
data can significantly improve healthcare decision-making, from identifying infection risk
factors to recommending timely interventions and reducing misdiagnoses or unnecessary
procedures. Eric Topol’s concept of ”Deep Medicine” [4] illustrates how AI can integrate
complex patient data, improving clinical understanding and outcomes. However, for AI to be
effective in managing infectious diseases, it must be designed to be ethical and interpretable.
Transparent, accountable, and human-centered AI models enable healthcare providers to
confidently use these tools and communicate clear ethical explanations to patients, an essential
aspect in today’s interconnected world [5].

Additionally, integrating AI into healthcare brings ethical considerations to the forefront,
particularly around transparency and accountability in automated diagnostics. Since AI
influences life-critical decisions, its predictions must be understandable and justifiable to
clinicians and patients. This research aims to improve diagnostic accuracy and foster trust in
AI tools by providing interpretable models that help medical teams make informed, ethical
decisions in managing meningitis.

By exploring state-of-the-art Explainable AI (XAI) methods, this study builds an AI model
that delivers clear, case-specific explanations, making AI-driven diagnoses more practical and
trustworthy for clinicians. Through detailed analysis of cerebrospinal fluid (CSF) data, lab
results, and patient symptoms, this work offers a pathway to more interpretable and actionable
AI diagnostics—especially valuable in complex meningitis cases where accurate differential

1
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diagnosis is challenging.
In medical diagnostics, especially concerning infectious diseases like meningitis, several

significant issues, and research objectives arise due to the complexity of diagnosing diseases
with overlapping symptoms. Below, we outline the main challenges and the specific research
goals intended to address these issues.

Main issues:

1. Diagnostic complexity:
Meningitis and other infectious diseases often present with non-specific symptoms
such as fever, headache, and neck stiffness, which can overlap with other conditions.
This makes differential diagnosis challenging, especially in cases involving multiple
pathogens.
Traditional diagnostic methods, such as cultures, PCR, and imaging, can be time-
consuming and may not always be available in resource-limited settings.

2. Limited accuracy and speed of conventional methods:
Current diagnostic approaches often require significant time for laboratory results (such
as blood culture or cerebrospinal fluid analysis), leading to delays in treatment. This
can increase the risk of complications, especially in conditions like meningitis, where
timely intervention is crucial.

3. Transparency and trust in AI models:
As Artificial Intelligence technologies, particularly machine learning models, are in-
creasingly applied to clinical diagnostics, one of the major challenges is ensuring that
these models are transparent and interpretable. Many AI systems, such as deep learning
models, are often described as ”black boxes,” making it difficult for clinicians to trust
or fully understand the rationale behind AI-driven recommendations. Following the
recommendation of the World Health Organization (WHO), healthcare professionals
and patients need to understand how AI systems make decisions. Promoting trans-
parency in AI algorithms and ensuring that developers and providers are accountable
for their decisions is essential to building trust in AI systems.

Research Objectives:

1. Enhancing diagnostic accuracy using AI:
The primary goal of this research is to explore how AI can improve diagnostic accuracy
in identifying meningitis and other infectious diseases. AI models can potentially
identify diseases accurately and faster by analyzing complex patterns in clinical signs,
laboratory data, and medical histories.
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2. AI for rapid diagnosis:
One key objective is to reduce diagnostic time using AI. By developing algorithms
that can quickly analyze patient data, the research aims to accelerate decision-making
processes and reduce the time it takes to diagnose, thereby improving patient outcomes.

3. Development of interpretable and transparent AI models:
Ensuring that AI models are interpretable is critical for their acceptance and use in
clinical settings. The research will focus on explainable AI approaches, such as SHAP
(SHapley Additive explanations), which provide insights into how different features
(clinical signs, laboratory results, etc.) contribute to the AI model’s predictions. This
can help clinicians understand and trust AI-assisted decisions.

4. Investigating biomarker patterns for accurate diagnosis:
A key objective is to examine the role of biomarkers (e.g., cerebrospinal fluid analysis)
in distinguishing between different types of meningitis and other infections. The
research will focus on identifying specific biomarkers and their patterns, which can
serve as valuable indicators for AI models in improving diagnostic precision.

5. Cross-population validation:
The research also aims to validate the AI models across diverse patient populations,
including different age groups and regions, to ensure that the models are generalizable
and can be applied universally. This will include validating the model using datasets
from different geographical locations and healthcare systems to confirm its robustness.

6. AI in low-resource settings:
One of the research objectives is to explore how AI-based diagnostic tools can be
adapted for use in resource-limited settings where access to advanced diagnostic tech-
nologies may be restricted.

Thesis outline
The research work consists of several chapters, namely:
Chapter 1: In this chapter, we introduce Explainable Artificial Intelligence (XAI) by explor-
ing its various facets and providing a comprehensive definition. We present a taxonomy of
XAI methods, categorizing them based on key dimensions such as scope, stage, and model
specificity. In addition, we discuss the applications of XAI in the context of infectious dis-
eases, emphasizing how these methods improve diagnostic accuracy and trustworthiness in
healthcare. Furthermore, we examine several applications of XAI in various medical settings,
illustrating how these approaches improve the transparency, reliability, and practical utility
of AI systems in clinical practice. These contributions highlight the pivotal role of XAI in
bridging the gap between complex machine-learning models and their adoption in real-world
medical applications.
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Chapter 2: This chapter comprehensively reviews meningitis and other infectious diseases,
highlighting their diagnostic challenges. It begins with an introduction to infectious causes
and explores the temporal trends of these diseases. The chapter delves into central nervous
system infections, particularly meningitis. It presents an in-depth analysis of cerebrospinal
fluid laboratory test results across various types of meningitis and age categories. Addi-
tionally, it examines the role of XAI in the healthcare domain. This chapter constitutes a
background of our contributions to chapters 4, 5, and 6. Our academic paper related to this
topic is:
1. MESSAI, A., DRIF, A., OUYAHIA, A., RAIS, M., GUECHI, M., KADERALI, L., &
CHERIFI, H. ”A comprehensive investigation into the ranges of laboratory tests present
in cerebrospinal fluid across various types of meningitis within different age categories.”
BATNA JOURNAL OF MEDICAL SCIENCES 2024, VOL. 11, NO. 3, 347–356 DOI:
10.48087/BJMSoa.2024.11310

Chapter 3: This chapter presents our main contribution, which introduces a new ap-
proach to make AI models more understandable when diagnosing meningitis. Unlike tra-
ditional ”black-box” AI models, which offer results without clear explanations, this chapter
outlines a method that enhances the transparency of AI systems, making them easier for
doctors to trust and use in clinical decision-making. We started the process by acquiring
domain knowledge to define the rules for this research study, establishing the etiological diag-
noses for Meningococcaemia, Meningococcal Meningitis, Tuberculous Meningitis, Aseptic
Meningitis, Haemophilus influenzae Meningitis, and Pneumococcal Meningitis. The follow-
ing is the preprocessing step of the SINAN dataset, comprising 6,729 patients aged over 18
years, obtained from the Brazilian Government’s Health Information System on Notifiable
Diseases, which was used for training the models, while additional data was collected from
Setif Hospital in Algeria for further testing. Tree-based ensemble methods were then applied
to assess the model’s performance. Finally, an XAI-agnostic explainability approach was ap-
plied using the SHapley Additive exPlanations (SHAP) method to determine the contribution
of each feature to the model’s predictions. The academic publication of this work is:
2. Messai, A., Drif, A., Ouyahia, A., Guechi, M., Rais, M., Kaderali, L., & Cher-
ifi, H. (2024). Toward XAI agnostic explainability to assess differential diagnosis for
Meningitis diseases. Machine Learning: Science and Technology, 5(2), 025052, DOI:
https://doi.org/10.1088/2632-2153/ad4a1f

Chapter 4: This chapter uses local explainability to improve how AI diagnoses meningo-
coccal meningitis. Local explainability means providing case-by-case insights into how an
AI model makes each specific prediction. Doctors can see why the AI model thinks a pa-
tient might have meningococcal meningitis based on their unique symptoms and test results.
We addressed relevant research questions, such as: - How can AI provide more tailored,
understandable explanations for individual diagnoses of meningococcal meningitis? - What

10.48087/BJMSoa.2024.11310
https://doi.org/10.1088/2632-2153/ad4a1f
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specific features does the AI consider most important for each case? and - How can these de-
tailed explanations improve doctors’ trust in AI tools and support their decision-making?. We
train and test various Machine learning (ML) models, including logistic regression, K-nearest
neighbors, support vector machine, decision tree, gradient boosting, AdaBoost, random for-
est, and LightGBM classifier, on a dataset comprising 460 cases of Meningococcal meningitis
and 474 cases of other types of meningitis. Subsequently, we employ XAI tools (ELI5 and
LIME) to elucidate the importance of features in the ML models. Our contribution has been
published in:
3- Messai, A., Drif, A., Ouyahia, A., Guechi, M., Rais, M., Kaderali, L., & Cherifi,
H. (2024, August). Transparent AI Models for Meningococcal Meningitis Diagnosis:
Evaluating Interpretability and Performance Metrics. In 2024 IEEE 12th Interna-
tional Conference on Intelligent Systems (IS) Varna, Bulgaria, 2024, pp. 1-8. doi:
10.1109/IS61756.2024.10705255 , URL=https://ieeexplore.ieee.org/document/
10705255

Chapter 5: In this chapter, we developed a Deep Neural Network (DNN) for diagnosing
pneumococcal meningitis, integrating key medical concepts such as clinical signs, biomark-
ers, medical history, and laboratory test results. The model achieved strong performance
metrics, including an accuracy of 92.23%, precision of 94.64%, recall of 91.38%, and an
F1-score of 92.98%, demonstrating its high diagnostic accuracy. When tested on real-world
clinical data from Algeria, the model correctly identified all pneumococcal meningitis cases
and most cases of other types of meningitis, with a Cohen’s Kappa score of 0.75, indicating
substantial agreement between the model’s predictions and actual clinical diagnoses. This
result highlights the robustness and reliability of the model. To improve the interpretability
of the model, we applied Bio-TCAV, a technique that links model predictions to clinically
relevant concepts, offering valuable insight into how factors like clinical symptoms and CSF
analysis influence the diagnosis. Including real-world medical concepts that align with clin-
ical practice, is crucial for building trust in AI-driven diagnostics. Medical professionals
rely on well-established indicators like clinical signs and laboratory results to make informed
decisions. By aligning our model’s decision-making process with these trusted medical con-
cepts, we improve its credibility and transparency. This trust is vital for widespread clinical
adoption, as healthcare professionals need to understand the reasoning behind model predic-
tions to incorporate them into their practice effectively. Our contribution has been submitted
in IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (J-BHI).

In the context of disseminating our research and fostering collaboration, our work was
showcased in two notable scientific events. First, it was presented at a scientific day held
at the University of Bouira under the theme Developing Research Skills Using Artificial
Intelligence Techniques. This event provided a platform for researchers and students to
explore the integration of AI technologies in advancing scientific inquiry. Notably, our

https://ieeexplore.ieee.org/document/10705255
https://ieeexplore.ieee.org/document/10705255
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contribution was recognized with the award for the best poster, underscoring the significance
and quality of our work.

Additionally, our research was featured in the Medical Physics Study Day, organized by
the Department of Physics at the University of Ferhat Abbas, Setif 1. These events focused
on the intersection of medical physics, artificial intelligence, and advanced instrumentation,
offering a unique opportunity to discuss and demonstrate the application of Explainable AI
(XAI) in these fields. Presenting our work in such interdisciplinary and cutting-edge forums
underscores its relevance and potential impact in advancing AI methodologies and their med-
ical applications.

Finally, we conclude the thesis and introduce possible future directions.
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1.1 Introduction

Machine learning models are widely applied across various fields, each with distinct method-
ologies and objectives. Data analysts and scientists use these models for clustering and data
visualization, while economists rely on them for predictive tasks, such as forecasting market
trends or stock prices. In the medical field, machine learning plays a crucial role in diagnos-
ing and analyzing medical data. In many of these applications, understanding how a model
functions and why it produces specific results is essential. However, as machine learning
models become increasingly complex, they often cross a threshold where the relationship
between inputs and predictions is no longer easily interpretable. Such models are commonly
referred to as ”black box” models. This chapter will explore key concepts and definitions
related to the need for explainability in AI, focusing on methods to make machine learning
models more transparent and understandable.

7
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1.2 Explainable Artificial Intelligence (XAI)

Explainable AI (XAI) is a field of research focused on making AI system outputs more
comprehensible to humans. The term ’explainable AI’ was first introduced by Van Lent et al.
in 2004 to describe the capability of their system to elucidate the actions of AI-driven entities
in simulation games [6]. However, the need for AI explainability dates back to the mid-
1970s, when researchers initially studied ways to clarify decisions in expert systems. Despite
the early interest, progress in explainability research slowed as machine learning advanced
rapidly, shifting the focus toward optimizing predictive accuracy over interpretability. As
a result, recent AI research has often prioritized models and algorithms for their predictive
power, leaving the ability to explain their decision-making processes as a secondary concern.

Figure 1.1: Analysis of Explainable Artificial Intelligence’s research interest using Google Trends

The field of Explainable AI has recently regained significant attention from researchers
and industry professionals. As illustrated in Figure 1.1, there has been a notable resurgence in
research interest surrounding the term ”XAI” [7]. This renewed focus is driven by the rapid
advancements in artificial intelligence, particularly through sophisticated machine learning
techniques and deep neural networks (DNNs). While these techniques often achieve high-
performance levels, they are frequently criticized for their lack of interpretability. Notably,
methods with the highest predictive accuracy, such as DNNs, are typically the most opaque.
In contrast, more interpretable approaches like decision trees generally offer lower predictive
performance. This trade-off between accuracy and explainability underscores the critical
need for research in XAI, aiming to bridge the gap between performance and interpretability
in machine learning models [8], Figure 1.2 illustrates the trade-off between explainability and
learning performance across various machine learning models.

1.2.1 Making AI understandable to end users

Humans struggle to process large volumes of data, whereas computational programs excel in
this domain, constructing complex models that often defy human understanding. Figure 1.3
illustrates this concept. The term “interpretability methods” refers to techniques designed to
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Figure 1.2: The trade-off between explainability and learning performance in different learning
models. [9]

bridge the gap between opaque (”black box model”) machine learning models and human
cognition. These methods operate at multiple levels, translating raw data into increasingly
abstract representations that are meaningful and understandable to humans.

Interpretability methods serve as a critical link between the predictions and decisions
made by machine learning models and human understanding, fostering trust in these systems.
However, establishing a universal standard for the type and depth of explanations required
in AI is inherently challenging. This difficulty arises from the diversity of machine learning
models and the end users’ wide-ranging backgrounds, knowledge, and experiences. There-
fore, effective explanations must be adaptable to the specific context and tailored to the needs
of the target audience [10].

In many cases, creating a model involves a human domain expert who provides domain
knowledge to guide the model’s development. In return, the model generates predictions and
explanations. This model type is called a ”human-in-the-loop model,” as it is designed to
integrate human input throughout its operation.

As illustrated in Figure 1.4, humans are actively involved in every stage of developing a
model that delivers predictions and explanations. Building such a model requires meeting two
key criteria: first, the machine must be able to interpret the information provided by humans
(e.g., data, labels, or domain knowledge), though this does not imply that the machine
processes or represents the information in the same way as humans. Second, humans must
understand the machine’s predictions, explanations, and decisions; this ensures that the
system is transparent, trustworthy, and actionable for human users. Providing knowledge
to the machine involves organizing and structuring data meaningfully, transforming it from
appearing unstructured to being more interpretable and useful [11]. This principle serves as
a foundational example of a human-in-the-loop model.

Two principles have been proposed to assess the interaction between human knowledge
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Figure 1.3: Bridging the real world and humans with Machine Learning [10].

and machine learning models. The first principle states that providing domain knowledge,
such as expert insights or structured data, improves a model’s performance, indicating that
the machine can understand the knowledge. However, the reverse is not necessarily true, if
performance does not improve, it does not imply that the knowledge is not understandable.
This principle highlights that improved performance is sufficient evidence of understanding
but is not a mandatory condition. The second principle focuses on machine-generated
explanations, suggesting that it must be understandable if an explanation can be refuted or
proven wrong. This is because the ability to critique or challenge an explanation inherently
requires understanding. These principles emphasize the importance of mutual intelligibility
between humans and machines in human-in-the-loop models.

1.2.2 Where is XAI crucial?

As AI grows more sophisticated and complex, it becomes increasingly challenging for hu-
mans to understand and trace the steps by which algorithms reach their results. This entire
computational process is often called a ”black box,” an essentially opaque and difficult-to-
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Figure 1.4: The role of humans in guiding the model’s development. [11]

interpret model. Such black box models are constructed directly from data, meaning that
even the engineers or data scientists behind the algorithms may struggle to explain precisely
how they function or why they generate certain outcomes. Understanding how an AI system
produces specific outputs offers numerous benefits, especially in critical domains [12].
in some cases, it wouldn’t be fair to be satisfied with predictions without answering the
”why”; that is, the understanding of how a certain model got a prediction or why it led us
to some results, so getting a high accuracy or high confidence prediction is not enough.
Consider an AI system employed for predictive tasks, such as forecasting market trends or
stock prices, or models applied in the medical field for analyzing patient data or predicting
disease outcomes. Alternatively, envision an autonomous vehicle that drives unpredictably,
causing a fatal accident even under normal road conditions. Understanding models’ behavior
and decision-making processes is essential in such critical cases.

AI has emerged as a transformative tool in the medical field, offering numerous benefits in
diagnosis, treatment planning, and patient care [13]. One of the most prominent applications
of AI in medicine is in medical imaging. AI-powered computer vision algorithms are
increasingly used to analyze medical images, such as X-rays, MRIs, and CT scans [14].
These algorithms can assist in detecting and diagnosing conditions such as tumors, fractures,
or other abnormalities with high accuracy, often at earlier stages than human clinicians might
detect [15]. For example, AI-based systems have been shown high performance in tumor
recognition, supporting oncologists in identifying malignant growths and enabling timely
intervention.

However, adopting AI in medical practice raises significant trust, accountability, and
transparency challenges, where explainable AI becomes crucial [16]. As AI systems make
increasingly complex decisions, clinicians and patients must understand the rationale behind
these decisions. For example, in medical imaging, while AI can accurately identify anomalies
like tumors [17], understanding the specific features that led to the detection is vital. Clinicians
must be able to interpret the model’s reasoning to ensure that it aligns with medical knowledge
and the patient’s context. Without transparency, even the most accurate AI-driven predictions
might be met with skepticism, particularly when decisions could impact patient health.
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Another significant application of AI in healthcare is using robotics [18]. AI-driven
robotics, particularly in the form of reinforcement learning, is being leveraged for surgical
purposes. These systems learn and adapt to complex tasks through trial and error, allowing
robotic systems to assist surgeons in performing highly precise and minimally invasive
procedures [13]. While these systems may outperform human surgeons in some aspects,
their lack of interpretability can raise concerns, particularly in critical situations where
understanding the machine’s decision-making process is necessary to ensure patient safety.

Additionally, AI is being applied to diagnosis by analyzing large datasets of patient infor-
mation. Machine learning algorithms can recognize patterns in patient records, laboratory
results, genetic data, and clinical notes, helping doctors make more accurate diagnoses and
recommend personalized treatment plans [13]. In these scenarios, XAI methods are needed
to ensure that the model’s reasoning is clear and its conclusions are consistent with clinical
best practices. The integration of explainable AI (XAI) into medical systems is crucial for fos-
tering trust between healthcare providers and patients. By offering transparency, traceability,
and interpretability, XAI ensures that AI complements human expertise rather than replacing
it. This approach not only enhances confidence in AI applications but also promotes their
responsible use, making them more reliable and effective in supporting healthcare decisions
while prioritizing patient well-being.

1.2.3 What is “Easily Interpretable”?

Defining interpretability in machine learning is inherently challenging due to its subjective
and context-dependent nature. Miller et al. [19] offers a widely appreciated non-mathematical
definition: “Interpretability is the degree to which a human can understand the cause of a
decision.” Another perspective defines interpretability as “the degree to which a human can
consistently predict the model’s result.” These definitions emphasize that interpretability
centers on a model’s ability to provide insights into how and why decisions or predictions are
made.

A model is considered more interpretable if its decisions are easier for a human to
comprehend compared to another model. For example, a linear regression model, which
provides clear relationships between features and outcomes through coefficients, is often more
interpretable than a deep neural network with millions of parameters [20,21]. However, even
simple models can become complex when involving large numbers of features, underscoring
that interpretability is not solely tied to a model’s complexity.

Interpretable machine learning involves extracting meaningful insights from models about
the relationships in the data or those learned by the model. For example, decision trees are
inherently interpretable, as their structure mirrors human reasoning, enabling users to trace the
decision-making process step by step. Tools like SHAP (SHapley Additive exPlanations) and
LIME (Local Interpretable Model-agnostic Explanations) further enhance the interpretability
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of complex models, such as neural networks or gradient boosting machines, by attributing
feature importance to specific predictions.

1.2.4 Performance and interpretability trade-off

The trade-off between performance and interpretability in machine learning is often confus-
ing, especially regarding the role of explainable AI. Implementing XAI does not inherently
reduce accuracy, the trade-off occurs when choosing models. Simpler models like decision
trees are inherently interpretable but may lack predictive power, while complex models like
deep neural networks (DNNs) offer high accuracy but are harder to explain. The goal is
not to sacrifice performance but to enhance both explainability and accuracy, shifting the
performance-explainability curve upward [10, 21] (See Figure 1.5).

Figure 1.5: Accuracy explainability trade off myth [10]

In high-stakes applications like healthcare, interpretability is critical for understanding
model predictions, such as diagnoses or treatment recommendations, especially when lives
are at risk. For instance, DNNs can provide highly accurate predictions for patient outcomes
but require explainability to ensure trust and adoption in clinical practice. In contrast, low-risk
environments prioritize accuracy over interpretability, like movie recommendation systems.
The challenge lies in balancing completeness and interpretability, as interpretable models
often lack comprehensive explanations, while complex models are harder for humans to
understand [20, 21]. XAI aims to address this by bridging the gap and ensuring reliable
predictions and actionable insights.

1.2.5 Interpretability metrics

It is challenging to define interpretability in purely mathematical terms. Interpretability refers
to the extent to which a human can comprehend the reasoning behind a decision made by
a model [19]. It can also be understood as the degree to which a human can consistently
predict the model’s outputs [22]. In machine learning, interpretability is generally defined
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as the ability to explain or present the model’s decision-making process in terms that are
understandable to humans [23]. Thus, interpretability lacks a universal quantitative metric
and is inherently subjective, depending on an individual’s understanding and context.

In their work, [23] proposed three approaches to evaluate interpretability:

1. Application-level evaluation (real task): This approach involves testing experts’
explanations in real-world applications. For instance, in the case of fracture detection
software that uses machine learning to identify fractures in X-rays, radiologists would
directly evaluate the software’s predictions and compare them with their own clinical
decisions. This method assesses how well the explanations align with expert knowledge
and whether the system’s reasoning is understandable and useful in practice.

2. Human-level evaluation (simple task): In this approach, the explanations are tested by
non-experts or regular users, allowing for a larger pool of testers. For example, different
explanations would be presented to users, who would select the most understandable or
convincing. This method evaluates the clarity and comprehensibility of explanations
from the general public’s perspective without requiring specialized knowledge.

3. Function-level evaluation (proxy task): This evaluation method does not involve
human testers. It is typically used when the model class has already been assessed in a
human-level evaluation. For instance, if it is known that end users understand decision
trees, the proxy for explanation quality could be the tree’s depth. Shorter trees would
score better in explainability as they are simpler and easier to interpret. However,
this evaluation should also ensure that the model’s predictive performance does not
significantly degrade when the tree is pruned to improve explainability. The goal is to
balance simplicity with performance.

1.2.6 Explainability vs. Inerpretability

While often used interchangeably, interpretability and explainability are distinct concepts in
machine learning, each addressing different aspects of understanding a model. Although
no universally accepted quantitative definitions exist, the distinction between these terms is
critical for clarifying their roles in explainable AI [10].

Interpretability refers to the ability to understand the internal mechanics of a model
and how inputs are transformed into outputs without necessarily explaining why a specific
decision was made. It focuses on making the model’s behavior more transparent, often by
simplifying its structure or visualizing its processes.

Explainability, in contrast, extends beyond transparency by addressing ”why” a model
produces certain predictions. It encompasses reasoning about how changes in input features
influence the outputs, including counterfactual scenarios, such as ”What would happen if
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feature X were different?” or ”How would the prediction change if value Y were removed?”
Explainability thus aims to provide a more comprehensive understanding of the model’s
decision-making process.

In a medical context, a diagnostic model predicting heart disease is considered. Inter-
pretability would involve understanding that the model prioritizes factors like cholesterol
levels, age, and smoking history. This information helps medical professionals understand
which attributes influence the model’s predictions. Explainability, on the other hand, focuses
on specific cases. For instance, if the model predicts a high risk of heart disease for a particu-
lar patient, explainability might reveal that this decision was primarily driven by the patient’s
elevated cholesterol level and smoking history. This case-specific rationale offers actionable
insights for the individual scenario.

Interpretability is inherently broader, facilitating understanding a model’s overall behav-
ior, while explainability provides localized insights into individual predictions. Together, they
form complementary tools for improving trust, usability, and adoption of machine learning
models, particularly in high-stakes domains like healthcare [10].

1.2.7 Model transparency: White Box vs. Black Box

This section introduces the concepts of white-box and black-box models, focusing on their
differing degrees of transparency and interpretability. The discussion will explore how these
models impact understanding and trust in machine learning systems.

• White Box Models (Transparent): White-box models, including decision trees,
rule-based systems, linear regression, and naive Bayes, are characterized by their
transparency and interpretability. These models are easily understood because their
decision-making processes are straightforward and resemble human reasoning [24].
For example, decision trees break down decisions into simple if-then rules, allowing
practitioners to trace the logic behind any given output. As illustrated in Figure 1.6, the
decision-making process is transparent, and the rules leading to a particular classifica-
tion can be identified. While models like decision trees can be more interpretable, they
are often pruned for simplicity, which may affect the accuracy of their decision-making
process. Other white-box models, such as generalized linear models (GLMs), logistic
regression, k-nearest neighbors (K-NN), and rule-based systems, provide insights into
how features contribute to predictions. For instance, GLMs and logistic regression offer
coefficients that quantify feature contributions, enhancing interpretability, while K-NN
relies on feature similarity, making its predictions intuitively understandable [20, 25].

• Black Box models (Opaque Models): The term ’black box’ refers to machine learning
models that are inherently difficult to interpret or explain, especially from a mathemati-
cal or practical perspective [24]. Examples include Support Vector Machines (SVMs),
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Deep Neural Networks (DNNs), ensemble methods like random forests and gradient
boosting, kernel methods, and unsupervised k-means clustering and Gaussian mix-
ture models. DNNs, in particular, epitomize black-box models due to their intricate
architectures and vast number of parameters. Similarly, ensemble methods combine
multiple models to improve accuracy but often obscure the individual contributions
of each component. While these models are highly effective and can approximate
complex functions, their internal structures provide little to no insight into how specific
predictions are made, presenting challenges for interpretability and transparency in
critical applications.

Figure 1.6: Decision tree constraint to three levels deep for classification of diabetes disease [20]

1.3 Explainable Artificial Intelligence (XAI): taxonomy and methods

1.3.1 Introduction

Explainable AI methods have proliferated significantly recently, driven by the increasing
complexity of machine learning models and the demand for transparency in AI decision-
making. Figure 1.7 presents a taxonomy of XAI methods, organized by their approach and
characteristics, to provide a structured overview of this rapidly evolving field.

Given the diversity and continuous growth of XAI techniques, this taxonomy is not
exhaustive and will likely expand as new methods are developed. For this thesis, we have
focused on three key dimensions of classification: scope (global versus local explanations),
stage (ante-hoc versus post-hoc methods), and model specificity (agnostic versus specific
methods).

1.3.2 Ante-Hoc vs. Post-Hoc Interpretability

• Ante-Hoc: Ante hoc interpretability, also known as intrinsic interpretability, focuses
on models designed with simplicity and transparency, often referred to as ”glass-box” or
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Figure 1.7: Explainable AI methods taxonomy.

”white box” methods. These approaches inherently provide explanations by maintain-
ing a straightforward structure, such as linear relationships or rule-based logic, which
directly links features to predictions [26]. Techniques like linear and logistic regres-
sion, decision trees, rule-based learners, and fuzzy systems prioritize interpretability.
However, these models are generally less effective in capturing complex relationships
in data compared to black-box approaches. Despite their transparency, they often face
a trade-off between accuracy and interpretability, highlighting the need for post-hoc
explainability methods in scenarios requiring both trust and precision [27].

• Post-Hoc: Post-hoc interpretability techniques address the black-box nature of complex
models by offering insights into their decision-making without altering the model
structure. These methods are particularly advantageous because they work across
diverse algorithms, provide flexibility in internal representations, and allow multiple
types of explanations for the same model. However, a trade-off exists between fidelity
(how well the explanation represents the model) and comprehensibility (how easily
humans can understand it). Post-hoc methods can be categorized into three main
types:

1. Visual Explanations: Visual explanations use graphical representations to relate
features to predictions in a human-readable manner. One common example is the
Partial Dependence Plot (PDP).

- Partial Dependence Plots (PDP) are global methods for visualizing feature
effects in predictive models. They show how input features influence model
output by marginalizing over all other features. For a model 𝑓 (𝑥1, 𝑥2), the
PDP function for 𝑥1 is defined as:

PDP(𝑥1) = E𝑥2 [ 𝑓 (𝑥1, 𝑥2)] =
∫

𝑝(𝑥2) 𝑓 (𝑥1, 𝑥2)𝑑𝑥2 (1.1)

where p (x2) represents the marginal distribution of feature x2, and approxi-
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mated using 𝑛 samples:

PDP(𝑥1) =
1
𝑛

𝑛∑︁
𝑗=1

𝑓 (𝑥1, 𝑥2, 𝑗 ) (1.2)

PDP plots can extend to multiple features. For a subset 𝐶 of features, the
PDP function becomes:

PDP(𝐶) = 1
𝑛

𝑛∑︁
𝑗=1

𝑓 (𝐶,𝐶 𝑗 ), (1.3)

where 𝐶 𝑗 represents the values of the complementary set of features (not
included in 𝐶) for the 𝑗-th sample, and 𝐶 denotes the subset of features of
interest. Two-dimensional plots are used for pairs of features, while higher-
dimensional plots are harder to interpret.
PDP plots are efficient and offer insight into how features affect predictions,
including interactions between features. However, they assume feature inde-
pendence, leading to bias when features are correlated, and they may smooth
out heterogeneous effects in the data [20].

2. Feature Importance Methods: Feature importance methods quantify the im-
pact of features on predictions, either globally or for specific instances. Examples
include:

- Permutation Feature Importance (PFI): This method evaluates feature
significance by measuring the change in model performance when a feature’s
values are randomly shuffled. While effective, PFI can lead to unrealistic
data instances when features are permuted. Computing PFI on test data is
recommended to avoid overfitting, but this can increase variance. Cross-
validation can reduce variance but limits the use of the full dataset. PFI
also accounts for feature interactions, which can dilute the importance of
correlated features, leading to underestimation of their contributions [20].

𝑃𝐹𝐼 (𝑥 𝑗 ) = E[𝑀 ( 𝑓 (𝑋), 𝑦)] − E[𝑀 ( 𝑓 (𝑋permuted, 𝑗 ), 𝑦)] (1.4)

where 𝑀 is a performance metric such as accuracy or error, andE[𝑀 ( 𝑓 (𝑋), 𝑦)]
is the expected performance metric of the model 𝑓 , with original data 𝑋 and
true labels 𝑦, and E[𝑀 ( 𝑓 (𝑋permuted, 𝑗 ), 𝑦)] is the expected performance met-
ric of the model 𝑓 with feature 𝑥 𝑗 permuted (i.e., its values shuffled), and
true labels 𝑦.
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- Shapley Additive Explanations (SHAP): Shapley values, derived from
cooperative game theory, are used to fairly distribute the importance of
features in a model’s predictions. Each feature is treated as a ”player” in
a game, and its importance is determined based on its average contribution
across all possible subsets of features (coalitions). For a model 𝑓 with 𝑑

features 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑑}, the Shapley value for feature 𝑥 𝑗 is given by:

𝜙 𝑗 ( 𝑓 ) =
∑︁

𝑆⊆𝑋\{𝑥 𝑗 }

|𝑆 |!(𝑑 − |𝑆 | − 1)!
𝑑!

[
𝑓 (𝑆 ∪ {𝑥 𝑗 }) − 𝑓 (𝑆)

]
(1.5)

where 𝑆 is a subset of features excluding 𝑥 𝑗 , 𝑓 (𝑆) is the model’s prediction
using only features in 𝑆, and 𝑓 (𝑆 ∪ {𝑥 𝑗 }) includes 𝑥 𝑗 . The Shapley value
represents the average marginal contribution of a feature across all coalitions.
Shapley values ensure a fair and interpretable distribution of importance,
adhering to key properties:

∗ Local accuracy: The sum of feature contributions equals the model’s
prediction for instance.

∗ Missingness: Features not affecting the prediction have a Shapley value
of zero.

∗ Consistency: If a feature’s contribution increases in a model, its Shapley
value will not decrease.

However, computing Shapley values is resource-intensive due to the expo-
nential number of possible feature coalitions. To address this, SHAP (Shap-
ley Additive Explanations) offers an efficient approximation by estimating
Shapley values using a background dataset. SHAP relies on the conditional
expectation of the model’s predictions:

𝑓 (𝑋) = E[ 𝑓 (𝑋) |𝑆], (1.6)

where 𝑆 is a subset of features, the expectation is taken over all other features.
SHAP provides additive and visually interpretable feature importance for
individual predictions, making it suitable for large-scale models [21, 28].
Despite its advantages, Shapley values and SHAP can struggle with strongly
correlated features, and their computational cost remains a challenge for
high-dimensional datasets [20].

- Local Surrogate Models: Local surrogate models are designed to explain
the behavior of black-box machine learning models at the level of individ-
ual predictions rather than the entire model. These models prioritize local
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fidelity, ensuring that they closely approximate how the black-box model
behaves near a specific data instance. A prominent example of this approach
is Local Interpretable Model-Agnostic Explanations (LIME), introduced
in 2016 [29], which provides interpretable explanations for predictions by
approximating the local behavior of a black-box model using a simpler, in-
terpretable model. LIME operates through the following key steps:

(a) Interpretable Representations: LIME maps the data instance of inter-
est into a human-understandable representation, such as binary vectors
representing the presence or absence of features.

(b) Neighborhood Approximation: It approximates the behavior of the black-
box model in the local neighborhood of the instance with an interpretable
model (e.g., linear regression, logistic regression, or decision trees).

(c) Data Perturbation and Weighting: The data instance is perturbed to gen-
erate new samples. These samples are weighted using a kernel function
that considers the proximity of each sample to the original instance.

(d) Fitting the Surrogate Model: The interpretable model is then trained on
the perturbed samples, with weights applied to ensure it focuses on the
local behavior of the black-box model.

Formally, LIME seeks to minimize the following objectives:

𝜁 (𝑥) = arg min
ℎ∈𝐻

𝐿 ( 𝑓 , ℎ, 𝜋𝑥 (𝑧)) +Ω(ℎ) (1.7)

Where 𝑓 is the Black-box model, 𝑥 is the instance of interest, ℎ represents
an interpretable explanation model chosen from a class 𝐻, 𝜋𝑥 (𝑧) represents
a Kernel function that weights the samples 𝑧 based on their distance to 𝑥,
𝐿 represents the loss function quantifying how poorly ℎ approximates 𝑓 in
the locality of 𝑥, and Ω(ℎ) represents the complexity penalty ensuring the
interpretability of ℎ.
A critical aspect of LIME is the mapping to interpretable representations.
For instance, binary vectors can indicate the presence or absence of specific
features, values, or data patches. While this transformation facilitates human
interpretability, it may introduce limitations such as loss of information or
reduced representation power, particularly for high-dimensional data.
LIME offers several advantages, including flexibility, simplicity, and the abil-
ity to generate easy explanations for humans to understand. However, it has
limitations. For highly non-linear models, LIME may fail to capture the full
complexity of the black-box model’s behavior around the instance of interest.
Additionally, random perturbations used to sample the local neighborhood
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may not adequately capture the diversity of the surrounding data, particularly
in high-dimensional spaces, where defining meaningful distances between
data points becomes difficult. Defining the kernel weighting function and
ensuring it works effectively across dimensions requires careful consider-
ation, and similar data instances may lead to significantly different expla-
nations, which reduces interpretability. Moreover, studies [30] have shown
that perturbation-based methods like LIME and SHAP can be exploited to
generate misleading explanations for biased models.

3. Example-Based Explanations Example-based explanations are a valuable ap-
proach to understanding machine learning models by selecting specific instances
from the dataset to illustrate model behavior or the underlying data distribution.
Unlike other interpretability methods that summarize features, such as feature
importance or partial dependence plots, example-based methods provide insight
by directly referencing representative examples. These methods are typically
model-agnostic, meaning they can be applied to any machine learning model, and
are particularly effective for structured data, like images or text, where humans
can easily interpret individual examples. For example, an image can be viewed
directly, or a text can be read to understand its context. However, applying these
methods to tabular data is more challenging due to the unstructured nature of
such data and the potentially large number of features. Listing all feature val-
ues of a single instance often lacks meaning unless the data can be presented
in a summarized and interpretable manner. Despite this challenge, example-
based explanations remain an effective tool for helping users construct a mental
model of how the machine learning system operates and the data on which it was
trained. They can be particularly useful for understanding complex data distribu-
tions and offering relatable and intuitive explanations. For instance, a physician
recalling a past case with similar symptoms to diagnose a current patient exem-
plifies how example-based reasoning aids decision-making, illustrating the power
of this method in both human reasoning and machine learning interpretability.
Molnar [21] cited several prominent Example-based techniques:

- Counterfactual explanations: This type of explanation shows how an in-
stance must change to produce a significantly different prediction. For exam-
ple, in a loan approval system, a counterfactual explanation might identify
that increasing an applicant’s income by a specific amount would result in
loan approval. These explanations help us understand the boundaries of the
model’s decision-making by highlighting the minimal changes required to
alter the prediction. They are particularly useful for explaining individual
predictions and for users seeking actionable insights.
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- Adversarial examples: Adversarial examples are intentionally crafted coun-
terfactuals designed to fool machine learning models. Unlike counterfactual
explanations, their primary focus is not on interpretability but on exposing
weaknesses in the model. For example, an adversarial example might in-
volve subtle changes to an image that causes a model to misclassify it, even
though the changes are imperceptible to humans. While adversarial exam-
ples are primarily used in the context of model robustness, they also reveal
vulnerabilities in the model’s decision-making process.

- Prototypes and criticisms: Prototypes are representative examples that
summarize the dataset by capturing the central patterns or characteristics of
the data. Criticisms, in contrast, are instances that are poorly represented
by these prototypes and highlight outliers or regions of the dataset that the
prototypes fail to capture. Together, prototypes and criticisms provide a
balanced perspective on the dataset, offering insights into its structure and
diversity. For example, in a medical dataset, a prototype might represent a
typical case of a disease, while a criticism might highlight a rare or atypical
presentation.

- Influential instances: Influential instances are the training data points that
impact the model’s parameters or predictions most. Identifying such in-
stances can help debug the model, uncover biases in the training data, and
understand the relationship between the data and the model’s behavior. For
example, suppose a specific data point disproportionately influences the pre-
diction for a test instance. In that case, understanding this relationship can
reveal whether the model is over-reliant on certain patterns in the data.

- k-Nearest Neighbors (k-NN): The k-NN algorithm is an interpretable ma-
chine learning model that relies entirely on examples. It makes predictions
based on the k most similar instances in the dataset, using a defined distance
metric. The simplicity of k-NN lies in its reliance on actual data points,
making it intuitive for users to understand how a prediction is derived. For
instance, in a classification problem, the label of a test instance is determined
by the majority label of its nearest neighbors, providing a clear rationale for
the decision.

1.3.3 Global vs. Local Explainability

• Global methods: Global explainability methods focus on interpreting the overall be-
havior of a model, providing insights into how features influence predictions across all
cases. For instance, in a model predicting tuberculosis (TB), a global explanation could
highlight how features such as persistent cough, abnormal chest X-ray findings, and
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positive sputum test results collectively contribute to predictions across the dataset. By
examining the importance of these features, clinicians can assess whether the model
aligns with established diagnostic guidelines. Common techniques for global explain-
ability include feature importance measures (e.g., permutation feature importance) and
Partial Dependence Plots (PDPs), which illustrate how changes in a specific feature
influence the model’s predictions. Additionally, SHAP (SHapley Additive exPlana-
tions) provides global insights by aggregating Shapley values for each feature across
all predictions. For example, a SHAP summary plot could reveal that positive sputum
test results have the highest overall influence on TB risk predictions. In contrast, ab-
normal chest X-ray findings have a more variable impact depending on other clinical
features. Using these methods, clinicians comprehensively understand how features
interact and contribute to the model’s overall behavior, enhancing trust and ensuring
alignment with diagnostic expectations. Another method, Testing with Concept Ac-
tivation Vectors (TCAV), offers a unique approach by quantifying the influence of
high-level, human-interpretable concepts on model predictions [31]. Unlike feature-
based methods, TCAV evaluates how concepts affect predictions. By providing insights
into how models leverage domain-specific concepts, TCAV facilitates trustworthiness
and ensures the model’s reasoning aligns with clinical understanding.

• Local Methods: Local methods explain individual predictions by identifying the
specific factors that influenced the model’s decision for a single patient. For example,
in the case of a patient being assessed for COVID-19 severity, a local explanation
might reveal that the model’s prediction was driven primarily by the patient’s oxygen
saturation level, elevated D-dimer, and the presence of ground-glass opacities on a
CT scan. Local methods such as SHAP values or counterfactual explanations can
pinpoint the contribution of these features, providing clinicians with a clear rationale
for the model’s recommendation, such as prioritizing the patient for intensive care.
Popular local interpretability methods include SHAP (SHapley Additive exPlanations)
and LIME (Local Interpretable Model-Agnostic Explanations). In this case, SHAP
values could quantify how much each feature—like oxygen saturation—contributed to
the severity score. At the same time, LIME might approximate the model’s behavior
for the patient by generating a simpler, interpretable local surrogate model. These
methods provide clinicians with actionable insights into why a specific decision was
made, fostering trust and facilitating personalized care.

1.3.4 Model-Agnostic vs. Model-Specific Methods

In explainable machine learning, methods can broadly be classified into two categories based
on their applicability: model-agnostic and model-specific.
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• Model-Agnostic explanation methods: Model-agnostic methods are designed to be
applicable across a wide range of machine learning models, regardless of their underly-
ing architecture. These methods do not rely on the internal specifics of a model and can
be used to explain the predictions of any model, from decision trees to deep neural net-
works. They focus on the model’s behavior as a whole and generate explanations that
humans can interpret, regardless of the model’s internal structure. Popular examples
include feature importance measures, surrogate models, and explanation techniques
such as LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (Shapley
Additive Explanations) [28,29]. The primary advantage of model-agnostic methods is
their versatility, as they can be applied to any machine-learning model without needing
model-specific modifications. However, model-agnostic techniques often make certain
trade-offs regarding accuracy or fidelity to the model. Since they work independently
of the model’s internals, they may not fully capture the intricate relationships between
inputs and predictions, especially in complex models like deep neural networks. Con-
sequently, the explanations provided by these methods might not always reflect the true
underlying mechanisms of the model’s decision-making process.

• Model-Specific explanation methods: Model-specific explanation methods are de-
signed for particular model types, leveraging their architecture to provide detailed and
context-aware insights. For instance, in convolutional neural networks (CNNs), they
may visualize neuron activations, while in recurrent neural networks (RNNs), attention
mechanisms can highlight influential input sequences [32, 33]. These methods offer
precise explanations by utilizing the model’s internal characteristics, but their limita-
tion lies in being specific to certain models, making them less generalizable across
different frameworks.

The choice between model-agnostic and model-specific methods depends on the appli-
cation’s needs. Model-agnostic methods are suited for flexible scenarios involving multiple
or undefined models. In contrast, model-specific methods are ideal for cases requiring
high-fidelity explanations, offering more accurate insights tailored to a particular model’s
architecture.

1.4 Properties of explanation

The rapid development of interpretable and explainable machine learning techniques in recent
years has led to a growing need for formalizing the evaluation of these explanations. While
significant progress has been made in defining the quality of explanations, challenges persist
regarding the formalism, the assessment, and the effective measurement of these explanations.
To evaluate the quality of an explanation, it is essential to establish its core attributes and
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map various explanation techniques to these properties [34]. In the context of explainable
machine learning, several key properties have been identified as essential for the effectiveness
of explanations. These properties include clarity, parsimony, broadness, completeness, and
soundness [35].

• Clarity: Refers to the ability of an explanation to provide a single, unambiguous reason
for a decision or outcome. It ensures that the explanation is easily understandable and
transparent.

• Parsimony: Implies that the explanation should be simple and compact, avoiding
unnecessary complexity while conveying the necessary information.

• Broadness: Indicates that the explanation should be generalizable, meaning that the
same explanation can be applied to a wide range of observations and instances within
the system.

• Completeness: Refers to the extent to which the explanation provides sufficient infor-
mation to fully understand the decision-making process and to compute the outcome
for a given input.

• Soundness: This is an indicator of the correctness and truthfulness of the explanation,
ensuring that the reasoning is accurate and reflects the true factors contributing to the
decision.

When assessed collectively, these properties provide a comprehensive framework for
understanding the effectiveness of explanations in machine learning systems [34].

1.5 Categories of explanation

In addition to the identification of key properties, explanations in machine learning can be
classified into several categories, each serving distinct purposes and addressing different
aspects of the decision-making process. Based on the work of the Information Commis-
sioner’s Office (ICO) and Webb et al., the following six categories of explanations have been
proposed [20, 36, 37]:

1. Rationale explanation: This category addresses the “why” behind the decision made
by the machine learning system. A rationale explanation explains why a particular
decision was made, thereby allowing users to understand the justification behind the
outcome. This type of explanation enables users to critique or validate the decision by
identifying potential flaws or confirming the correctness of the reasoning.
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2. Responsibility explanation: Responsibility explanations answer the “who” in the
decision-making process. This category clarifies the roles and contributions of different
stakeholders in the data processing, modeling, and decision-making steps. It ensures
accountability by making the participants and their responsibilities traceable throughout
the ML pipeline.

3. Data explanation: Data is fundamental to machine learning systems, as it drives the
training, validation, and testing processes. Data explanations focus on the types of data
used to train the model, the sources of the data, and how data preprocessing impacts
the decisions made by the model. This explanation helps users understand the input
factors influencing the model’s behavior by providing insights into the data used.

4. Fairness explanation: Fairness explanations ensure that the machine learning model
operates without bias or discrimination. These explanations focus on identifying and
addressing disparities in the treatment of different groups or individuals within the
system’s decision-making process. They are critical for building trust in ML systems,
as fairness is central to ethical decision-making and regulatory compliance.

5. Safety and performance explanation: This category of explanations emphasizes the
model’s decisions’ reliability, robustness, and accuracy. Safety and performance ex-
planations assess the model’s performance in terms of its ability to produce consistent,
reliable outcomes and to handle unexpected or extreme conditions without compro-
mising its effectiveness. These explanations are crucial for understanding the model’s
operational limits and ensuring that it can perform under diverse scenarios.

6. Impact explanation: Impact explanations describe the broader consequences of the
machine learning system’s decisions. These explanations focus on the effects of the
system’s outputs on individuals, organizations, and society. By articulating the potential
consequences, impact explanations help stakeholders understand the implications of
deploying such systems.

Zhou et al. [34] further extend the classification by differentiating between ethical and
technical explanations. Responsibility and fairness explanations are categorized as ethical
explanations, focusing on accountability, equity, and justice. On the other hand, rationale,
data, safety, and performance explanations are more directly related to the technical aspects
of the model’s explainability. The impact explanation, while connected to the use of the
system, bridges both ethical and technical dimensions by evaluating the societal implications
of the system’s outcomes [20].

Through these categories, it is possible to map various explanation techniques to the
properties of explainable systems, thus providing a structured framework for designing and
evaluating machine learning explanations.
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1.6 XAI model for infectious diseases diagnosis

The systematic literature review was presented in two focus groups. The first part focuses on
the current state-of-the-art Clinical Decision Support Systems (CDSS) for Meningitis, and
the second part focuses on current explainability approaches for various healthcare domains.

1.6.1 Advancements in clinical decision support systems for diagnosing Meningitis

Clinical Decision Support Systems (CDSS) are intelligent systems that assist medical pro-
fessionals in facilitating decision-making at different stages of the diagnosis and treatment of
diseases using specific recommendations [38].

CDSSs are classified into knowledge-based or non-knowledge-based, with the latter lever-
aging machine learning and artificial intelligence or statistical pattern recognition. However,
non-knowledge-based systems face challenges, such as understanding AI’s logic (black boxes)
and obtaining high-quality data due to fragmentation, inconsistent formats, and privacy con-
cerns [39]. Several studies have been proven effective in diagnosing different pathologies.

Regarding Meningitis diagnosis, the work presented by D’Angelo et al. [40] aims to
improve the discrimination between bacterial and viral Meningitis etiologies through machine
learning-based methodologies. Two cases were considered: one in which both blood and
cerebrospinal parameters were taken into account and another in which only blood data were
used. The results showed that a combination of clinical parameters is necessary to properly
distinguish between the two Meningitis etiologies. The study used four classifiers: Naive
Bayes, Multilayer perceptron (MLP), Decision tree-J48, and genetic programming (GP).
The GP classifier achieved the best performance. It obtained 100% sensitivity in detecting
bacterial Meningitis in nine out of ten folds.

Zaccari et al. [41] focused on developing a quantitative measure to help healthcare profes-
sionals decide whether or not patients need to undergo a CSF exam to diagnose Meningitis.
Their approach involves using machine learning techniques to analyze data from blood and
urine exams and patient chief complaint reports to identify patterns that could indicate the
presence of Meningitis. The study used seven classifiers: Adaptive Boosting (AdaBoost),
Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Ran-
dom Forest and Support Vector Machines (SVM). Their analysis found that the Decision Tree
model performed best, with an accuracy of 96.18%, 100% sensitivity, and 92.36% specificity.
Although the ML model cannot fully substitute for the CSF exam, it can help doctors make
more informed decisions about whether or not to recommend it.

Authors in [42] aimed to develop a system to classify subjects with Meningitis using a
feedforward Artificial Neural Network (ANN). They employed two learning algorithms to
develop the ANN: The Levenberg-Marquardt training algorithm, suitable for pattern recog-
nition and particle swarm optimization (PSO) to adjust the decision threshold. The goal
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was to achieve better performance by optimizing the decision threshold using a database that
included several parameters such as temperature, CSF/blood glucose ratio, proteins, CSF
leukocytes, glucose, lactates, erythrocyte sedimentation rate (ESR), and C-reactive protein
(CRP).

This study [43] aimed to identify the best classification model to assist in diagnosing
Meningitis. The researchers examined the performance of seven classification techniques
applied to nine clinical symptoms of a patient, as well as their age, sex, and geographical
location. They found that all models could predict Meningitis even before the completion
of laboratory tests, indicating the possibility of a non-invasive and early diagnosis. The best
classification technique was determined to be the J48 decision tree.

The researchers expanded their research on Meningitis [44] by creating a computerized
decision support system (CDSS) that can help doctors identify the illness. They developed
three decision models: DM1 determines if a patient has Meningitis based on observable
symptoms, DM2 predicts the probability of meningococcal Meningitis using the same symp-
toms, and DM3 explores the disease’s cause using chemical and cytological test data. The
decision models achieved a high classification accuracy of 94.3% for Meningococcal Disease
Meningitis. Evaluation of the system with real patient data showed that diagnosing Menin-
gitis based solely on observable symptoms is challenging, but the CDSS correctly diagnosed
88% of Meningitis cases from the database.

The same researchers [45] explored data-driven techniques to differentiate between viral
and bacterial Meningitis using a dataset of 26,228 patients and 19 attributes. They ex-
perimented with various sampling, feature selection, and classification models, finding that
combining ensemble methods with decision trees achieved the best performance. The best
classifiers had precision, recall, and f-measure of 89% and an AUC value of 95%. Their
results suggest that this approach outperforms previous work using only decision trees.

Mentis et al. [46] studied the differential diagnosis of bacterial and viral meningitis using
ML algorithms: multiple logistic regression (MLR), Random Forest (RF), and naı̈ve-Bayes
(NB). They analyzed patients of different age groups (0–14 years and >14 years) using both
culture and molecular (PCR) methods. Various biomarkers, including CSF neutrophils, CSF
lymphocytes, neutrophil-to-lymphocyte ratio (NLR), blood albumin, blood C-reactive pro-
tein (CRP), glucose, blood soluble urokinase-type plasminogen activator receptor (suPAR),
and CSF lymphocytes-to-blood CRP ratio (LCR) were used. MLR and RF showed the best
performance, indicating over 95% accuracy for viral meningitis and 78% for bacterial menin-
gitis. The work in [47] used machine learning algorithms, including Logistic Regression
(LR), K Nearest Neighbors (KNN), and Random Forest, to diagnose bacterial meningitis.
These models achieved high accuracy rates: RF (90.6%), LR (90.3%), and KNN (90.1%).
The study identified low education levels and the presence of red blood cells in the CSF
as key predictors of patient mortality, suggesting the possibility of intracranial hemorrhage.



Chapter-1. Explainable AI background 29

In [48], researchers employed Bayes Server to construct the predictive models. These models
demonstrated high accuracy (99.99%) and sensitivity (97.12%) for meningococcal menin-
gitis and its serogroup types (Serogroup type A, Serogroup type B, Serogroup type C, and
Neisseria meningitidis) with 95.42% sensitivity.

1.6.2 Models Explainibility

Despite the promising results of previous studies in accurately predicting diagnosis, the
black-box nature of these models poses a challenge for their adoption in clinical settings [49],
as it can be challenging to comprehend the reasoning behind the model’s predictions. This
transparency is essential as it involves acknowledging AI usage and understanding how
AI arrives at its conclusions or classifications [50]. Ensuring transparency in AI usage is
essential, and it involves both the acknowledgment of AI usage and the understanding of
how AI arrives at its conclusions [50]. Applying rigorous controls and testing from the
medical field to AI deployment in healthcare reinforces this transparency, providing clear
explanations of AI decision-making to ensure safety, accountability, and responsible use in
medical settings [51].

Choi et al. [52] conducted a study on meningitis and encephalitis classification in patients
hospitalized within the initial 24 hours. Various machine learning models were applied,
including XGBoost, Random Forest, Light Gradient Boosting Machine, K-Nearest Neigh-
bour, Gaussian Naive Bayes, and TabNet. An ensemble model (80% XGBoost, 20% TabNet)
achieved the highest performance, with accuracy, precision, recall, and F1 score of 0.89 and
AUROC of 0.91. Classifiers were applied to baseline characteristics, medical history, vital
signs, and diagnostic results (CT, CXR, EEG). Laboratory findings from CSF, blood, and
urine were also considered. Model-agnostic techniques (PIMP, LIME, SHAP) provided ex-
plainability. AI models slightly outperformed human clinicians due to the absence of certain
factors considered in actual clinical practice. However, the researchers highlighted that AI
still performed very well, suggesting it could be helpful for neurologists in making quick
treatment decisions.

Yang et al. [53] conducted an insightful retrospective study on febrile infants aged ≤ 60
days, using a deep neural network to develop a predictive model of invasive bacterial infection
(IBI). The model’s performance was then compared to that of the IBI score. The SHapley
Additive Explanations (SHAP) technique explained the model’s different-level predictions.
Five influential predictive variables (absolute neutrophil count, body temperature, heart rate,
age, and C-reactive protein) were identified using SHapley Additive exPlanations. The study
developed an explainable deep learning model that performs better than previous scoring
systems and provides insight into how it arrives at its predictions through individual features
and cases.

Sial et al. [54] introduced a non-invasive screening method for infant meningitis using
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artificial intelligence and high-resolution ultrasound imaging. The study aim to address the
limitations of lumbar punctures (LP), which are invasive, often yield negative results, and
are not feasible in low-resource settings. The dataset comprised 2194 ultrasound images
from 30 infants suspected of meningitis, collected across three Spanish University Hospitals.
The authors developed a three-stage deep learning framework, with Stage 1 focusing on
quality control and artifact removal, Stage 2 employing a deep learning model to classify
images based on white blood cell count, and Stage 3 incorporating XAI techniques, such as
GradCAM, to enhance model interpretability. The model achieved 96% accuracy in quality
control, 93% precision, 92% accuracy in image-level meningitis detection, and 94% patient-
level accuracy. With a single misclassification, it demonstrated 100% sensitivity and 90%
specificity in identifying meningitis cases.

This study [55] aimed to predict the severity of COVID-19 by using Machine Learning
and Deep Learning algorithms that consider various clinical markers, vital signs, and critical
factors. The researchers evaluated five data-balancing techniques and twelve classifiers to
find the most effective method. They discovered that Random Forest trained on Borderline
SMOTE balanced data was the best-performing method, achieving an 83% recall rate in
predicting COVID-19 severity. To better understand the models, the team deployed Ex-
plainable Artificial Intelligence tools such as Shapley Additive Explanations (SHAP), Local
Interpretable Model-agnostic Explanations (LIME), ELI5, Qlattice, Anchor, and Feature Im-
portance to determine the importance of critical features in predicting COVID-19 severity.
Their findings showed that respiratory rate, blood pressure, lactate, and calcium values were
the primary contributors to the increase in severity of a COVID-19 patient. Ultimately, this
architecture aims to serve as an explainable decision-support triaging system for medical
professionals in countries lacking advanced medical technology and infrastructure to reduce
COVID-19 fatalities.

Latifa et al. [56] investigate the impact of cytokines on the severity of SARS-CoV-2
infection. Plasma levels of 48 cytokines were measured in 87 participants from the COVID-
19 study. Five models (Random Forest, XGBoost, Bagging Classifier, Decision Tree, and
Gradient Boosting Classifier) were trained on synthetic data, with the Gradient Boosting
Classifier showing superior performance. The interpretations of the Gradient Boosting
model by Shapley additive explanation (SHAP) and the LIME (Local Interpretable Model-
agnostic Explanations) provide detailed insights into the cytokine dataset. The results revealed
significant variations in cytokine levels among COVID-19-infected patients, with VEGF-A,
MIP-1b, and IL-17A showing elevated levels in severe cases. At the same time, M-CSF, IL-
27, IL-9, IL-12p40, RANTES, and TNF were associated with non-severe cases and healthy
individuals. These findings suggest the involvement of these cytokines in disease promotion
and offer new possibilities for prevention and treatment.

In contrast, Mercaldo et al. [57] adopted a different approach by utilizing medical images
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to detect coronavirus disease. They introduced a deep learning method that categorized com-
puted tomography (CT) images into healthy patients, patients with pulmonary disease, and
patients affected by Coronavirus 19. To provide explainability in their model, they employed
the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm, which automat-
ically highlighted the symptomatic areas of infection within CT images. This technique
enhanced the diagnostic process by offering visual insights into the regions contributing to
disease detection. Integrating Grad-CAM with deep learning improved the efficiency and ac-
curacy of disease detection, providing valuable information for medical professionals. Shi et
al. [58] employed machine learning techniques to diagnose tuberculous Meningitis, offering
a potential solution to enhance diagnostic accuracy.
Several works have explored the application of the Testing with Concept Activation Vectors
(TCAV) explainability approach in diverse healthcare settings, Kaveri et al [59] utilized TCAV
to infer image concepts used by CNNs in detecting glaucoma. The study compared TCAV
results with eye fixations of clinicians to validate AI predictions in ophthalmology. The
researchers developed CNN architectures that demonstrated robust detection of glaucoma in
optical coherence tomography (OCT) images. They found that the TCAV/eye-fixation com-
parison suggested important sub-images consistent with the areas of interest for clinicians.
Mincu et al. [60] extends the TCAV method to time series data in electronic health records
(EHRs), enabling sequential predictions and providing human-understandable explanations
for adverse outcomes in clinical settings. The researchers applied TCAV to recurrent neural
networks (RNNs) used for modeling adverse outcomes in EHRs, demonstrating increased per-
formance compared to other approaches. This extension allowed for a better understanding of
high-level concepts through the network’s gradients. The approach was evaluated on an open
EHR benchmark from the intensive care unit and synthetic data to isolate individual effects.
Janik et al. [61] applied an extended version of TCAV, known as Discovering and Testing with
Concept Activation Vectors (D-TCAV), to cardiac MRI analysis. The aim was to enhance the
diagnosis of cardiac diseases by extracting important features from MRI data. The method
provided score-based values of qualitative concepts and key performance metrics. D-TCAV
offered a user-independent approach and reduced pre-processing time for clinicians, making
it a valuable tool for clinical applications. The study found that the D-TCAV method provided
meaningful and clinically relevant explanations for cardiac disease classification.

Building on previous works, our current work determines which signs or indicators have
the highest predictive value by analyzing the Meningitis disease, providing valuable insights
for accurate disease diagnosis. Our method derives the underlying factors influencing the IA-
based algorithms’ outcomes, allowing clinicians to trust and effectively incorporate AI-based
recommendations into their clinical practice of Meningitis.
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Table 1.1: Summary of studies on Meningitis diagnosis using AI techniques and the application of explainable AI in infectious disease diagnosis

Authors and Year Objective Dataset Methods Results Limitations
D’Angelo et al. (2019)
[40]

Discrimination between bacterial and vi-
ral Meningitis etiologies

Blood and CSF parameters from patients Machine learning (Naive Bayes, MLP, De-
cision tree-J48, Genetic Programming)

Genetic Programming: 100% sensitivity
in 9/10 folds

Limited to two etiologies (bacterial and
viral)

Zaccari et al. (2019)
[41]

Support meningitis diagnosis, minimizing
invasive procedures

Blood, urine tests, and patient complaints from
a children’s hospital in Sao Paulo, Brazil.

Machine learning classifiers (ML algo-
rithms (AdaBoost, Decision Tree, Gradi-
ent Boosting, KNN, Logistic Regression,
Random Forest, SVM))

Decision Tree achieved 96.18% testing ac-
curacy

Excludes non-structured patient com-
plaints, assumes perfect CSF accuracy, bi-
nary diagnosis (the patient either has the
disease or not), ignores time-dependency
of meningitis.

Šeho, L., et al. (2022)
[42]

Classify subjects with Meningitis 1,000 subjects (800 diseased, 200 healthy) with
features including temperature, CSF/blood glu-
cose ratio, proteins, CSF leukocytes, glucose,
lactates, ESR, and CRP

Feedforward ANN with Levenberg-
Marquardt training and Particle Swarm
Optimization (PSO) for threshold opti-
mization

96.69% accuracy for diagnosis Limited to binary classification (diseased
vs. healthy)

Lelis et al. (2017) [43] Develop a statistical classifier to diagnose
meningococcal meningitis early and non-
invasively

22,602 records from Bahia, Brazil. Features: 9
symptoms, age, sex, and area of residence.

7 classifiers: J48, C4.5 (ID3) Decision
Trees (DTs), SVM, ADTree, Random For-
est (RF), Naive Bayes (NB), Bayesian Net-
work (BN)

J48 classifier: Precision = 0.942, ROC
area ¿ 0.95

Specific to meningococcal meningitis di-
agnosis

Lelis et al. (2020) [44] Develop a Clinical Decision Support Sys-
tem (CDSS) for early Meningitis diagno-
sis

26,228 records from Brazil, data from clinical
symptoms and test results (chemical/cytological
data)

TThree tree-based decision models (DM1,
DM2, DM3) and expert knowledge tech-
niques

94.3% classification accuracy for the class
Meningococcal Disease Meningitis

Classification limited to four meningitis
categories (viral, bacterial, meningococ-
cal, and other)

Guzman et al. (2022)
[45]

Differentiate between viral and bacterial
Meningitis using ensemble methods

26,228 patients, 19 attributes, including infor-
mation related to the person, observable symp-
toms, and laboratory test results

27 classification models (19 ensemble
methods, decision trees, and combinations
of both)

bagging and NBTrees achieved 89% pre-
cision, recall, F-measure, and 95% AUC

Limited to binary classification (Bacterial
vs. viral)

Mentis et al. (2021)
[46]

Different between bacterial vs. viral
Meningitis

Data from patients with meningitis in two age
groups (0–14 and ¿14 years), with predictors
including CSF neutrophils, CSF lymphocytes,
NLR, blood albumin, CRP, glucose, suPAR, and
LCR

Multiple Logistic Regression (MLR),
Random Forest (RF), Naı̈ve-Bayes (NB)

MLR and RF showed over 95% accuracy
for viral Meningitis and 78% for bacterial
Meningitis

Limited to binary classification (Bacterial
vs. viral)

Pinheiro et al. (2022)
[47]

Diagnose bacterial Meningitis using ML
algorithms

Patient data from 2019 to 2021 from Brazil in-
cluding demographics, symptoms, CSF lab re-
sults, and medical history

Machine learning algorithms (Logistic
Regression, KNN, Random Forest)

Random Forest achieved 90.6% accuracy,
with low education levels and the pres-
ence of red blood cells in the CSF as key
predictors for mortality identified

Limited to binary classification

Alile et al. (2020) [48] Construct predictive models for meningo-
coccal Meningitis and serogroup types

Data on Meningococcal Meningitis serogroup
types (A, B, C, Neisseria meningitidis)

Bayesian Belief Network implemented via
Bayes Serve

99.99% accuracy, 97.12% sensitivity for
meningococcal Meningitis, 95.42% sen-
sitivity for serogroup types A, B, C, and
and Neisseria Meningitidis

Focuses on meningococcal Meningitis,
may not generalize to other types of
Meningitis

Choi et al. (2023) [52] Develop and validate an AI model for early
aetiological determination of meningitis
and encephalitis

Retrospective data (patients ¿18 years old)
from two South Korean centers, training/testing
(n=283), external validation (n=220), includes
clinical variables within 24 hours of admission:
vital signs (blood pressure, heart rate, respira-
tory rate, body temperature), diagnostic results
(brain CT, chest X-ray, EEG), and laboratory
findings from CSF, blood, and urine samples

Eight AI models (XGBoost, Random
Forest, LightGBM, Category Boosting,
KNN, Naive Bayes, TabNet), ensemble
models (80% XGBoost, 20% TabNet),
model-agnostic techniques (PIMP, LIME,
SHAP)

Ensemble model (XGBoost + TabNet)
achieved accuracy of 0.89, AUROC of
0.91. ML models slightly outperformed
human clinicians

Classification limited to four categories
(autoimmunity, bacteria, virus, and tuber-
culosis), and Small dataset
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Authors & Year Objective Dataset Methods Results Limitations
Yang et al. (2023) [53] Develop and validate an explainable deep

learning model to predict invasive bacte-
rial infection (IBI) in febrile infants ≤60
days old

Retrospective data of febrile infants (n=1847)
presenting to a Taiwanese emergency depart-
ment (2011–2019), including demographics, vi-
tal signs, and laboratory findings such as blood
counts, CRP, and urinary tests

Deep neural network, SHAP (Shapley Ad-
ditive Explanations) for explainability

Deep learning model outperformed tra-
ditional scoring systems in specificity
(54%), positive predictive value (5%), and
AUROC (0.87). Identified key predic-
tive variables: absolute neutrophil count,
body temperature, heart rate, age, and C-
reactive protein

Limited to binary classification (IBI vs.
non-IBI)

Sial, Hassan, et al.
(2024) [54]

Non-invasive screening of infant menin-
gitis using AI

30 infants from Spanish hospitals, 2194 ultra-
sound images

Deep learning, GradCAM, statistical anal-
ysis

96% accuracy in quality control, 93% pre-
cision and 92% accuracy in image-level
detection, and 94% patient-level accuracy

Small sample size

Khanna et al. (2023)
[55]

Predict COVID-19 severity using ML/DL
algorithms with explainable insights into
key features

Open-source Kaggle data from Sı́rio-Libanês
Hospital, includes 1925 COVID-19 patients
with 231 parameters (demographics, grouped
diseases, blood parameters, vital signs)

12 classifiers: Logistic Regression, Deci-
sion Tree, Random Forest, Support Vec-
tor Machine, K-Nearest Neighbors, Naı̈ve
Bayes, XGBoost, ExtraTrees, AdaBoost,
LightGBM, CatBoost, and 1-D Convolu-
tional Neural NetworkRandom, Explain-
able AI Tools: SHAP, LIME, ELI5, Qlat-
tice, Anchor, and Feature Importance

Random Forest with Borderline SMOTE
data achieved 83% recall in predicting
COVID-19 severity

May not apply to other diseases beyond
COVID-19

Latifa et al. (2023) [56] Investigate the impact of cytokines on
SARS-CoV-2 infection severity and pro-
vide explainability for the model

Plasma levels of 48 cytokines measured in the
blood of COVID-19 patients

Random Forest, XGBoost, Bagging Clas-
sifier, Decision Tree, Gradient Boosting
Classifier and SHAP, LIME for model ex-
plainability

Gradient Boosting Classifier showed su-
perior performance, Elevated VEGF-A,
MIP-1𝛽, IL-17 indicate severity and cy-
tokine storm, Higher RANTES, TNF are
linked to no infection, and IL-27, IL-9, IL-
12p40, MCP-3 are associated with mild
disease

Small sample size, findings may require
validation in larger populations, limited to
COVID-19

Mercaldo et al. (2023)
[57]

Develop a deep learning method for de-
tecting coronavirus disease (COVID-19)
using CT scans medical images

Consists of medical images from CT scans: 20
COVID-19 patients, 9 patients with other pul-
monary diseases, and 16 healthy patients

Deep learning model to classify CT im-
ages into three categories and Gradient-
weighted Class Activation Mapping
(Grad-CAM) used to highlight symp-
tomatic areas in CT scans for better in-
terpretability

The method achieved high accuracy (0.95)
in classifying CT images and could iden-
tify areas symptomatic of COVID-19 in-
fection within 8.9 seconds

Small sample size, findings may require
validation in larger populations, limited to
COVID-19
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1.7 Conclusion

Explainable AI (XAI) is an essential and innovative approach that enhances human under-
standing of the results generated by AI systems. In critical domains, such as healthcare, XAI
plays a vital role in interpreting the outputs of AI and machine learning models. Ethical
explanations play a pivotal role in addressing issues of accountability, fairness, and equity,
ensuring that AI systems operate justly and responsibly within societal frameworks. On the
other hand, technical explanations provide insights into the model’s underlying rationale,
data handling, and performance metrics, enabling a deeper understanding of the system’s
functionality and reliability. By integrating these ethical and technical dimensions, XAI not
only builds trust and transparency but also evaluates the broader societal implications of AI
applications, fostering accountability and aligning these technologies with human values.
This dual approach ensures that AI systems are both robust and socially responsible, paving
the way for their ethical deployment across critical sectors.

In healthcare, where decisions can be life-changing, using XAI is especially important.
XAI makes AI predictions and recommendations easier to understand, which helps build
trust between doctors, patients, and healthcare teams. It also supports better decision-making
and ensures AI tools are used responsibly in diagnosing, planning treatments, and caring
for patients. This clarity helps people trust and use AI more, while also protecting patients,
making XAI a key part of future healthcare advancements.
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2.1 Introduction

Infectious diseases continue to pose major public health challenges worldwide, impacting
individuals, communities, and healthcare systems alike. Among these illnesses, meningitis,
a life-threatening inflammation of the meninges, the protective layers surrounding the brain
and spinal cord, stands out due to its rapid onset, high risk of severe complications, and
considerable mortality if not rapidly diagnosed and treated. Meningitis can arise from a
variety of pathogens, including bacteria, viruses, fungi, and parasites, each presenting distinct
clinical and diagnostic complexities. The evolving understanding of infectious diseases like
meningitis has emphasized the need for rapid, precise diagnostic tools that are essential for
improving patient outcomes and guiding effective treatment strategies.

This chapter provides an in-depth review of infectious diseases, beginning with an
overview of various infectious causes, their reservoirs, transmission, biological character-
istics, and how they are quantified across different populations. It then explores the temporal
patterns of infectious diseases, highlighting their evolving nature and the factors that con-
tribute to these trends. The chapter further investigates central nervous system infections,
with a focused discussion on meningitis, covering both viral and bacterial causes, their epi-
demiology, clinical presentation, and diagnostic challenges. Special attention is given to

35
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differentiating bacterial from viral meningitis and the diagnostic tests used for accurate iden-
tification. Additionally, the chapter includes a comprehensive analysis of laboratory tests
in cerebrospinal fluid across different age categories in the context of meningitis. Finally,
we discuss the integration of artificial intelligence in healthcare, emphasizing its role in
enhancing diagnostic accuracy and the importance of explainability in medical AI systems.

2.2 Infectious causes

Healthcare professionals often classify infectious diseases by the primary clinical symptoms
or by the organ systems predominantly affected. For instance, Table 2.1 illustrates an example
of such a clinical classification. Microbiologists, on the other hand, categorize diseases based
on the properties of the responsible pathogen, as shown in Table 2.2. From an epidemiologic
standpoint, classification typically focuses on transmission patterns or the natural habitat of the
organism. Infectious diseases can be grouped into five categories based on their transmission
method, as outlined in Table 2.3. Additionally, epidemiologists may classify diseases by
the reservoir of the pathogen, whether it is primarily associated with humans, animals, soil,
or water. Table 2.4 provides examples of infectious diseases organized according to their
reservoir.

Table 2.1: Clinical classification of infections [62]

Classification Infection type
Diarrheal diseases Secretory (e.g., cholera, traveler’s diarrhea)

Invasive (e.g., dysentery)
Respiratory diseases Upper respiratory (e.g., sinusitis, pharyngitis)

Lower respiratory (e.g., pneumonia, bronchitis)
Central nervous system in-
fections

Meningitis: Bacterial (e.g., pneumococcal, meningococcal)
vs. Aseptic (often viral)
Encephalitis (e.g., viral encephalitis)
Abscess (e.g., brain abscess)

Cardiovascular infections Endocarditis (infection of heart valves)
Myocarditis (infection or inflammation of heart muscle)
Vasculitis (inflammation of blood vessels)

Sepsis Disseminated infection (e.g., indicated in latex tests)

When a new infectious disease emerges, the microorganism’s characteristics are often
poorly understood, and the complete clinical profile may remain unclear. For example, it
was initially unknown that Borrelia burgdorferi, the bacteria causing Lyme disease, led not
only to erythema chronica migrans (ECM) skin lesions but also to arthritis, cardiovascular
issues, and neurological symptoms such as Bell’s palsy and encephalitis. The complete
spectrum of symptoms caused by B. burgdorferi continues to be investigated. Even with
limited microbiological data, knowing the agent’s reservoir and transmission method can
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Table 2.2: Microbiologic classification of infectious diseases [62]

Classification Organism type
Bacterial Gram-negative

Gram-positive
Viral DNA virus

RNA virus
Enveloped vs. non-enveloped viruses

Fungal Disseminated (biphasic)
Localized

Parasitic Protozoa
Helminths
Trematodes
Cestodes

Prion Protein

Table 2.3: Transmission-based classification of infectious agents [62]

Transmission type Characteristics
Contact Requires direct or indirect contact (indirect: infected fomite,

blood, or body fluid; direct: skin or sexual contact)
Food- or Water-borne Ingestion of contaminated food (outbreaks may be large and

dispersed, depending on distribution of food)
Airborne Inhalation of contaminated air
Vector-borne Dependent on biology of the vector (mosquito, tick, snail,

etc.), as well as the infectivity of the organism
Perinatal Similar to contact infection, however, the contact may occur

in utero during pregnancy or at the time of delivery

help establish strategies to prevent its spread. John Snow’s work during the 1853 cholera
outbreak in London demonstrated that contaminated water was a source, paving the way
for control measures even before Vibrio cholerae was identified by Robert Koch in 1884.
Similarly, Budd’s findings in 1858 linked human carriers to outbreaks of typhoid fever long
before Salmonella typhi was isolated in 1880 by Eberth. Walter Reed’s studies in 1901
showed that yellow fever could be transmitted by Aedes aegypti mosquitoes, while the virus
was only isolated in 1928 by Stokes and his team. Later, the pneumonia outbreak at the
American Legion convention in 1976 was traced to airborne transmission from a hotel
air-conditioning system, suggesting prevention strategies by avoiding exposure, although
Legionella pneumophila was only identified in 1978 by the federal Centers for Disease Control
and Prevention (CDC) researchers McDade and Sheppard. Identifying a disease’s reservoir
is often crucial to developing effective control measures. Before Snow’s demonstration
that contaminated water was the source of cholera in London, the prevailing miasma theory
mistakenly attributed the disease to foul air exposure. Snow’s analysis, showing higher cholera
rates among individuals using water from a particular company, led to effective outbreak
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Table 2.4: Reservoir-Based classification of infectious agents [62]

Reservoir Some typical organisms
Human Treponema pallidum, Neisseria gonorrhoeae, HIV, hepatitis

B and C virus, Shigella, S. typhi
Animals (zoonoses) Rabies, Yersinia pestis, Leptospira, nontyphoid Salmonella,

Brucella
Soil Histoplasma capsulatum (and other systemic fungi),

Clostridium tetani, Clostridium botulinum
Water Legionella, Pseudomonas aeruginosa, Mycobacterium mar-

inum

control by shutting down the implicated water source, providing compelling evidence for the
waterborne transmission route [62].

2.2.1 Biologic Characteristics of the organism

In understanding infectious diseases, the biological characteristics of the causative organisms
are crucial, as they influence both the pathogenicity and the spread of infections [63]. These
characteristics encompass structural features, genetic makeup, and reproductive methods that
distinguish different pathogens and dictate how they interact with hosts, evade immune re-
sponses, and cause disease. Examining these properties provides insight into the mechanisms
of infection and guides the development of targeted treatments and preventive measures.
In [62], the authors provide an in-depth discussion on various biologic characteristics of
pathogens:

• Infectivity: refers to an agent’s capacity to establish an infection in a susceptible host.
This is typically measured by the minimum quantity of infectious particles necessary
to initiate an infection. Infectivity can also be assessed by the secondary attack rate for
diseases transmitted between individuals, representing the proportion of susceptible
people who develop the infection following exposure.

• Pathogenicity: describes the capacity of a microbial agent to cause disease. Cer-
tain illnesses, including rabies, smallpox, measles, chickenpox, and rhinovirus colds,
demonstrate high pathogenicity. In contrast, conditions like Poliomyelitis and arbovirus
infections, transmitted by mosquitoes, exhibit lower levels of pathogenicity. In other
terms, infectivity measures how well a pathogen can invade and reproduce in a host. In
contrast, pathogenicity measures the extent to which that pathogen can cause disease
and the severity of the resulting illness.

• Virulence: Virulence and pathogenicity are often confused, but they refer to different
aspects of infectious agents. Pathogenicity describes an organism’s ability to cause
disease, whereas virulence measures how severe that disease is once it occurs. For
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example, smallpox and the common cold can cause illness, but smallpox is much
more virulent because it can lead to severe complications or death. We can categorize
infectious agents by their ability to spread (infectivity), cause disease (pathogenicity),
and the severity of that disease (virulence). It’s also essential to understand that these
characteristics can change over time; diseases like syphilis and streptococcal infections,
once very virulent, have become much less so.

• Immunogenicity: Immunogenicity refers to an organism’s ability to trigger an immune
response that protects against future infections by the same or similar pathogens. For
example, infections from measles, Poliomyelitis, hepatitis B, and rubella usually lead
to long-lasting immunity. In contrast, some organisms, like Neisseria gonorrhoeae
and Plasmodium falciparum, provoke weaker immune responses, resulting in frequent
reinfections. Research into the antigens responsible for protective immunity has been
instrumental in developing effective vaccines. However, some immune responses can
be harmful. For instance, certain group strains A streptococci can cause conditions like
glomerulonephritis due to antibodies mistakenly targeting the body’s tissues. Moreover,
some infections can produce antibodies indicating past or current infections but not
confer immunity. These are binding antibodies found in diseases like hepatitis C,
HIV, and HSV-2, where individuals may have antibodies but remain susceptible to
reinfection.

• Inapparent infections: refers to an infection where an organism can be detected
through culture, polymerase chain reaction (PCR) testing, or specific immune re-
sponses, yet the individual shows no symptoms. The prevalence of such asymptomatic
infections can provide insight into the organism’s pathogenicity. Inapparent infections
are common with many pathogens and can significantly contribute to the spread of
epidemics. For instance, most Poliomyelitis cases are asymptomatic, and many indi-
viduals can carry Neisseria meningitidis in their nasopharynx without showing signs
of illness, especially during outbreaks. Identifying and treating carriers of bacteria
like meningococci or Staphylococcus aureus is crucial for controlling transmission, as
asymptomatic individuals can be key transmitters. In the U.S., individuals who test
positive for Mycobacterium tuberculosis but remain asymptomatic are often treated to
prevent the development of active tuberculosis and reduce the risk of spreading the
infection to others. In contrast, some diseases, such as measles, varicella, smallpox,
and hantavirus infections, usually present with symptoms. Understanding the ratio of
symptomatic to asymptomatic infections is vital for managing disease transmission and
developing effective control strategies during epidemics.

• The carrier state Asymptomatic carriers, or healthy individuals who carry infectious
agents without showing symptoms, are essential to understanding disease spread. A
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classic example is ”Typhoid Mary,” an Irish cook in early 1900s New York City.
Although healthy, she spread typhoid fever to over 250 people while working in various
homes and hospitals. She unknowingly carried Salmonella typhi in her gallbladder [62,
64], shedding the bacteria in her stool, which contaminated the food she prepared. Her
case highlighted the risk asymptomatic carriers pose, particularly for diseases spread
through person-to-person contact. Asymptomatic carriers play a role in spreading
many infections. They can harbor bacteria or viruses in various body parts, such as the
respiratory or genital tracts, stool, or blood.

• Transfusion-transmitted infection: Infection transmission through blood transfusion
has become a growing concern over the past 20 years. While hepatitis B virus (HBV)
transmission was recognized early, the introduction of blood donor screening for HBsAg
in 1973 significantly lowered the risk. However, even after this screening, cases of
post-transfusion hepatitis continued, pointing to other causes. When hepatitis C virus
(HCV) was identified, screening for it began in 1990, further reducing risk. The
spread of HIV/AIDS through transfusions among hemophiliacs and other recipients
underscored the importance of screening. Today, blood donors are carefully questioned
about potential infection risks and screened for multiple pathogens. Pooled plasma
products are also treated to inactivate viruses, including heat treatments. Despite
these precautions, new infectious agents with the potential to be transmitted by blood
transfusion are still being discovered.

2.2.2 Quantification of infectious diseases

Epidemiologists employ various metrics to assess disease occurrence, aiming to estimate
either the overall disease burden in a population or the rate of new cases (incidence) [62,65].

• Prevalence: Epidemiologists calculate prevalence to measure the proportion of a
population affected by a disease. This is determined by dividing the number of infected
individuals by the total population. The numerator may represent those who are
symptomatic, exhibit specific symptoms, or show microbiologic evidence of infection
without symptoms, depending on the study focus. Each approach offers a valid view of
prevalence as long as infection criteria are defined. The denominator may include the
entire population or just those exposed to the disease. Measuring prevalence in the full
population indicates the overall disease burden, while focusing on exposed individuals
reveals prevalence within that group. Age-specific prevalence is used when exposures
are common, while rates by exposure group are used for rare exposures.

• Incidence: This measure reflects the rate at which new cases arise in a population
or the transmission rate of the infectious agent. Unlike prevalence, incidence always



Chapter-2. Comprehensive review of infectious diseases 41

includes a time factor, quantifying the number of cases occurring within a specific
period, such as annually, monthly, or weekly.

2.3 Temporal patterns of infectious diseases

The incidence of many infectious diseases fluctuates over time. This variability can often be
attributed to changes in exposure to the infectious agent, which may differ across seasons or
between years.

• Seasonal variation: Vector-transmitted diseases, such as malaria, dengue, and St.
Louis encephalitis (SLE), rely on contact with infected mosquito vectors for trans-
mission [66]. In temperate climates, these diseases appear only during the warmer
months when mosquitoes are active. For example, a study by Teshager Zerihun Ni-
gussie et al. [67] on malaria transmission in northwest Ethiopia reveals seasonal trends
influenced by climate and environmental factors. The researchers found that malaria
transmission was seasonal, with a higher number of cases occurring from September
to November, with notable spatial effects in areas near the Abay gorge and the Sudan
border. The long-term trend of malaria incidence decreased between 2012 and 2018 but
increased since 2019, with notable spatial effects in areas near the Abay gorge and the
Sudan border. The study highlighted how climate and environmental predictors have
nonlinear effects on malaria incidence, with spatial, temporal, and space-time interac-
tion effects playing more significant roles in explaining transmission patterns. These
findings emphasize the challenges in predicting malaria outbreaks, as they depend on
various factors such as rainfall, temperature, and ecological features.

• Annual variation: Before effective vaccines were developed for common childhood
infections like measles, mumps, rubella, and varicella, these diseases showed distinct,
repetitive cycles. These cycles largely depended on each epidemic depleting the popu-
lation of susceptible individuals, with new birth cohorts gradually restoring this group.
For example, in urban areas of the United States, measles epidemics typically occurred
every two years, with case numbers roughly doubling compared to surrounding years.
However, with the widespread adoption of the measles vaccine, incidence has dramat-
ically decreased, and this cyclical pattern has been disrupted. In contrast, pertussis
(whooping cough) continued to show a persistent 3- to 4-year cycle in reported cases
between 1967 and 1997, despite the availability and use of a vaccine. This ongoing
pattern suggests that pertussis transmission still occurs frequently, possibly due to wan-
ing immunity from the whole-cell pertussis vaccine, transmission by older children
and adults, and the steady replenishment of susceptible individuals. Most childhood
infections also tend to peak in winter and early spring, likely due to higher transmission



Chapter-2. Comprehensive review of infectious diseases 42

rates when people spend more time indoors. Additionally, the low humidity of in-
door air and the presence of other respiratory infections, which promote coughing and
sneezing, are thought to play a role in promoting the transmission during the winter.

• Herd immunity: Before the epidemiological theories proposed by Kermack and McK-
endrick, as well as Reed and Frost from Johns Hopkins, the prevailing belief was that
epidemics were primarily caused by variations in the infectivity of pathogens. How-
ever, the research conducted by these scientists revealed that epidemic patterns could be
better understood by examining the proportion and distribution of susceptible individ-
uals within a population. In diseases that spread from person to person, the immunity
level within the population is crucial for determining the likelihood of an epidemic
and the associated risk of infection for susceptible individuals. Transmission relies on
interactions between infected and susceptible individuals, so if a sufficient number of
individuals are immune, it becomes unlikely for a susceptible person to encounter an
infected one. This phenomenon is known as herd immunity. While some suscepti-
ble individuals may still exist in the population, epidemics cannot sustain themselves
because the daily interactions do not facilitate contact between contagious infected
persons and those who remain susceptible. The specific level of immunity required to
achieve herd immunity varies depending on the characteristics of the infectious disease.
Diseases with higher transmissibility necessitate a greater level of population immu-
nity than those that spread less easily. The dynamics of herd immunity and individual
susceptibility are key epidemiological factors influencing the periodicity and long-term
trends observed in diseases such as measles, rubella, varicella, and Poliomyelitis.

2.4 Central Nervous System infections

Infections of the central nervous system (CNS) are fortunately infrequent but can have severe
consequences. The brain and spinal cord are encased within the rigid structures of the
skull and spinal canal, which limits the space for inflammation and swelling. As a result,
any edema can lead to significant tissue damage, including infarction, with the potential for
permanent neurological impairments or fatality. The brain and spinal cord are surrounded by
cerebrospinal fluid (CSF), which is produced by the choroid plexus in the cerebral ventricles
and absorbed by the arachnoid villi, draining into the superior sagittal sinus. These neural
structures are covered by three layers of protective membranes called the meninges. The
innermost two layers, the pia mater and the arachnoid, together form the leptomeninges.
The outermost layer, the dura mater, provides additional structural protection. The CSF
circulates through the subarachnoid space between the pia mater and the arachnoid, serving
as a cushioning fluid that helps protect the CNS from mechanical injury (Figure 2.1).

CNS infections are categorized based on their location. Infection of the brain tissue is
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Figure 2.1: Representation of the subgaleal, epidural, subdural, and subarachnoid spaces within the
central nervous system. [68]

known as encephalitis, while infection of the meninges is called meningitis. Abscesses can
form in three main areas of the CNS: within the brain itself (brain abscess), between the dura
and arachnoid layers (subdural abscess), or outside the dura (epidural abscess). The blood
vessels of the brain and spinal cord have unique tight junctions, forming a blood-brain barrier
that limits permeability, protecting the CNS from pathogens and toxins. However, this barrier
also restricts the entry of immune defenses like immunoglobulins, complement, and many
antibiotics. When pathogens cross the blood-brain barrier, the CNS’s defense mechanisms
are compromised, contributing to CNS infections’ rapid and severe nature. Treating these
infections requires drugs that can cross the barrier effectively, often at high doses (referred to
as ”meningeal doses”) to ensure therapeutic levels within the CNS [68].

2.4.1 Meningitis

Meningitis is a significant health condition that needs appropriate treatment, and preventative
strategies. It can be caused by viruses, bacteria, parasites, and fungus. Viral meningitis can be
caused by enterovirus, parechovirus, herpes simplex virus, influenza virus, cytomegalovirus,
varicella-zoster virus, mumps virus, measles virus, coronavirus, adenovirus, and human
immunodeficiency virus. The most common bacteria isolated are Haemophilus influenzae,
Streptococcus pneumoniae, Neisseria meningitidis, and Listeria monocytogenes . Aseptic
meningitis can refer to inflammation of the meninges caused by other than pus-producing
bacteria , such ”atypical” bacteria (e.g., Borrelia burgdorferi, Leptospira spp., Mycobac-
teria, Brucella, Treponema pallidum), fungi (e.g., Cryptococcus neoformans Candida and
Aspergillus species), parasites (e.g.Plasmodium falciparum, Naegleria fowlerie).

2.4.2 Viral Meningitis

2.4.2.1 Enteroviruses/parechoviruses:

Enteroviruses (EV) and parechoviruses (HPeV), are members of Picornavirus family. Numer-
ous human infections, such as poliovirus, coxsackie A and B viruses, echoviruses, numbered
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enteroviruses (such as EV-A71 and EV-D68), and rhinoviruses, are members of the genus
Enterovirus. There are six species in the genus Parechovirus, ranging from Parechovirus A
to Parechovirus F, and each species has a variety of genotypes. HPeV was categorized as
Parechovirus A, which has 19 genotypes ranging from HPeV-1 to -19 and is only found in
humans.

EV and HPeV, have a worldwide distribution and are seasonal in temperate regions,
often peaking in summer and fall [69–72]. Transmission primarily occurs via the fecal-
oral route and, less frequently, through respiratory droplets [71, 73]. Infants and young
children are most vulnerable, with risk factors for severe illness, including the absence of oral
lesions, seizures, and lethargy [74, 75]. In adults, EV and HPeV infections mostly present as
aseptic meningitis with generally good outcomes [70]. Neonates are particularly susceptible,
and severe infections can lead to meningoencephalitis or sepsis-like syndromes involving
multiple organs, disseminated intravascular coagulation, seizures, focal neurological signs,
and cardiovascular collapse may develop [71, 76]. A multiplex real time PCR (Fast Track
Diagnostic FTD viral meningitis) assay has been used since 2015 for assessing CSF as
virological diagnostic testing.

2.4.2.2 Herpes Viruses

Herpes viruses encompass several types, including varicella-zoster virus, human herpesviruses
6, 7, and 8, Epstein-Barr virus, cytomegalovirus, and herpes simplex virus (HSV) types 1
and 2 [69]. One of the main causes of meningitis and encephalitis is the herpes simplex virus
(HSV). About 90% of HSV encephalitis is caused by HSV type 1 (HSV-1) and can affect
people of any age [77]. Oral contact is the primary way that HSV-1 transmits and is known to
result in oral sores. Usually, a virus from an earlier infection reactivates to cause meningitis
and encephalitis. Herpetic meningoencephalitis commonly presents with symptoms such as
headache, fever, stiff neck, hallucinations, and confusion [78]. Diagnosis typically involves
polymerase chain reaction (PCR) testing of cerebrospinal fluid (CSF), and without timely
and appropriate therapy, mortality rates can rise to 70% [79]. Varicella-zoster virus (VZV) is
also linked to aseptic meningitis, sometimes presenting without typical skin lesions (a form
known as zoster sine herpete) [80]. VZV may be underdiagnosed, as only 1.2% of aseptic
meningitis cases receive CSF VZV PCR testing [70].

2.4.2.3 Arboviruses

Arboviruses (arthropod-borne viruses), transmitted by mosquitoes, ticks, or sandflies, include
several virus families responsible for aseptic meningitis [81]. West Nile virus (WNV) is a
virus that belongs to the flavivirus family and develops after an infected mosquito bites
especially Culex species [82]. The virus circulates in a cycle between mosquitoes and birds.
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WNV has been expanding geographically becoming the most cited arbovirus worldwide in
regions that include the American, Europe, and Mediterranean coastal countries. In Algeria,
cases of West Nile Virus (WNV) meningoencephalitis have been reported as early as 1994
in Tinerkouk, located in the southwestern Sahara region. Additionally, a neurotropic WNV
infection was identified in the eastern coastal region during the fall of 2012 [83, 84]. West
Nile fever (WNF) has been reported as a mild clinical but can progress to episodes of
meningoencephalitis or even flaccid paralysis [85]

Other arboviruses causing aseptic meningitis in the USA include mosquito-borne St.
Louis encephalitis and the California encephalitis group of viruses, along with tick-borne
Powassan virus in northern central and eastern USA, and coltivirus in the mountainous
and western regions of the USA and Canada [81]. Other less common arboviruses in the
USA that can cause aseptic meningitis are the two mosquito-borne illnesses, St. Louis
encephalitis and the California encephalitis group of viruses, and two tick-borne illnesses,
Powassan virus in northern central and eastern USA and coltivirus (agent of Colorado tick
fever) in the mountainous and western regions of the USA and Canada [81]. Toscana virus
has emerged as one of the most common causes of meningitis or encephalitis during the
summer in the Mediterranean countries [86]. It is transmitted by sandflies and is caused
by a bunyavirus. In Europe, tick-borne encephalitis can be associated with a complex
syndrome of meningoencephaloradiculitis (MER), which carries a relatively high risk of
severe disease, including the need for intensive care and mechanical ventilation. Age, male
sex, and preexisting diabetes mellitus were predictive of the more severe MER [87].

2.4.2.4 Other Viruses

Lymphocytic choriomeningitis virus (LCMV), though now rarely reported, can cause aseptic
meningitis [69]. LCMV is primarily transmitted to humans via contact with rodents or their
excreta [69, 88], posing a risk to laboratory workers, pet owners, and those in poor living
conditions. No human-to-human transmission has been reported. Mumps, in unimmunized
populations, is another cause of aseptic meningitis [69]. However, since the measles-mumps-
rubella (MMR) vaccine was introduced, mumps-related meningitis has dropped to < 1% of all
meningitis cases in the US and UK [89,90]. Human immunodeficiency virus (HIV) can also
lead to aseptic meningitis, often during seroconversion, presenting with mononucleosis-like
symptoms [69]. Vaccine-preventable Japanese encephalitis continues to cause meningitis
and encephalitis where vaccination is unavailable [91]. Dengue, chikungunya, and Zika
viruses are emerging as causes of meningitis and encephalitis globally [92,93]. Additionally,
the Ebola epidemic in West Africa revealed that Ebola can lead to viral relapse with acute
meningitis, treatable with experimental antiviral therapy and corticosteroids [94].
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2.4.3 Bacterial Meningitis

Bacterial meningitis may present with a negative Gram stain [95]. Typical symptoms include
fever, headache, neck stiffness, and altered mental status, though presentation can vary by age,
health status, and bacterial pathogen [96]. CSF findings generally show >1000 WBC/𝑚𝑚3

with neutrophil predominance, protein >100 mg/dl, and glucose <40 mg/dl, however, similar
findings may occasionally appear in viral meningitis as well [97, 98]. Patients with infective
endocarditis caused by Staphylococcus aureus or Streptococcus pneumoniae may develop
meningitis [69], and infections near the meninges, such as epidural or subdural empyemas
from sinusitis, otitis, or mastoiditis, can also lead to meningitis [69].

2.4.3.1 Epidemiology

According to the National Guidelines for the Management of Community-Acquired Bacterial
Meningitis and Invasive Meningococcal Infections by the General Directorate for Prevention
and Health Promotion in Algeria in 2022, the frequency of bacterial meningitis remains
relatively low compared to clear-fluid meningitis, primarily in children under 5. It fluctuates
from year to year, with a minimum rate of 11.2% in 2014 and a maximum rate of 29.8%
in 2009 among all meningitis cases. The proportion of meningitis cases caused by undeter-
mined pathogens constitutes a significant share of all reported cases. Annual incidences of
meningococcal meningitis have declined, from 0.30 cases per 100,000 inhabitants in 2008 to
0.04 cases per 100,000 in 2020. However, a peak was recorded in 2013, with an incidence
of 0.23 per 100,000 inhabitants. Haemophilus influenzae type B (Hib) and Streptococcus
pneumoniae (S. pneumonia) are included in the Expanded Program on Immunization, which
aims to prevent infections caused by these pathogens. In October 2008, vaccination against
Haemophilus influenzae type B was introduced in Algeria. Within a very short time, the
number of infections caused by Hib, including meningitis, decreased significantly. The in-
troduction of pneumococcal vaccination in April 2016 also contributed to a decrease in the
burden of pneumococcal infections.

The primary pathogens responsible for community-acquired bacterial meningitis in chil-
dren and adults are defined in [68] as four major organisms:

• Streptococcus pneumoniae: S. pneumoniae is the leading cause of community-
acquired meningitis in the United States. The infection typically begins in the ear,
sinuses, or lungs before spreading to the bloodstream, where it reaches the meninges.
S. pneumoniae is also the most common cause of recurrent meningitis in patients with
a CSF leak following head trauma.

• Neisseria meningitidis: This organism can cause both isolated cases and epidemics.
It typically infects the nasopharynx, causing a sore throat, and in individuals without



Chapter-2. Comprehensive review of infectious diseases 47

antimeningococcal antibodies, it can enter the bloodstream and infect the meninges.
Crowded settings like college dormitories or military facilities increase the risk of
N. meningitidis transmission, particularly in winter, when respiratory spread is more
frequent.

• Listeria monocytogenes: L. monocytogenes primarily affects people with compro-
mised cell-mediated immunity, such as pregnant women, newborns, immunosup-
pressed patients, HIV-positive individuals, and those over 60. This meningitis is
typically contracted through ingesting contaminated food, as L. monocytogenes can
grow in refrigerated conditions (4°C). Foods at risk include unpasteurized soft cheeses
and improperly processed hot dogs and fish. Upon entry through the gastrointestinal
tract, Listeria can invade the lining, enter the bloodstream, and infect the meninges.

• Haemophilus influenzae: Prior to widespread use of the Hib vaccine, H. influenzae
was the most common cause of meningitis in children. However, cases of meningitis
from this pathogen have become rare.

2.4.4 Differentiation between bacterial and viral Meningitis

Although viral infections are the most common causes of meningitis and encephalitis, most
patients are admitted and receive empirical antibiotic treatment due to the challenges in
differentiating bacterial from viral causes based solely on initial clinical presentation [90,95].
To aid in this distinction, various clinical models have been experimented with. For instance,
in a study of 422 immunocompetent patients older than one month with acute bacterial (ABM)
or viral meningitis, specific CSF markers—including a CSF glucose level below 34 mg/dl,
a CSF-to-blood glucose ratio under 0.23, a CSF protein concentration exceeding 220 mg/dl,
over 2000 leukocytes/𝑚𝑚3 of CSF, and more than 1180 neutrophils/𝑚𝑚3 of CSF—were
identified as predictors of bacterial meningitis with high certainty (99% or greater) [99]. The
Bacterial Meningitis score, derived and validated in 4896 patients, helps identify children
with CSF pleocytosis at low risk for bacterial meningitis. Low-risk features include a
negative CSF Gram stain, CSF absolute neutrophil count under 1000 cells/𝑚𝑚3, CSF protein
under 80 mg/dl, and peripheral absolute neutrophil count below 10,000 cells/𝑚𝑚3 [100].
Notably, a positive Gram stain is among the most critical predictors in this scoring system.
For adults, a recent study involving 960 patients developed a risk score for those with
meningitis and a negative Gram stain, identifying a “zero risk” subgroup for any urgent
treatable cause (e.g., bacterial meningitis, herpes simplex encephalitis, fungal encephalitis),
with 100% sensitivity [95]. Despite the availability of these clinical models, empirical
treatment for bacterial meningitis remains common [90]. Biomarkers, such as CSF lactate,
can further support differentiation between bacterial and viral meningitis in patients without
prior antimicrobial therapy [101, 102]. One meta-analysis includes 25 studies with 1692
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patients (adults and children) [101]. The other, including 31 studies with 1885 patients [102],
concluded that the diagnostic accuracy of CSF lactate is better than that of the CSF white
blood cell count, glucose concentration, and protein level in the differentiation of bacterial
from aseptic meningitis, sensitivities of 93% and 97% and specificities of 96% and 94%,
respectively, were seen. Additionally, serum and CSF C-reactive protein (CRP) levels and
serum procalcitonin concentrations have been shown to elevate bacterial meningitis, aiding
in the distinction from viral cases. One study reported that serum CRP could differentiate
Gram stain-negative bacteria from viral meningitis at admission with 96% sensitivity, 93%
specificity, and a negative predictive value of 99% [103]. Serum procalcitonin, when above
0.2 ng/ml, achieved sensitivities and specificities up to 100% in bacterial meningitis diagnosis,
though occasional false negatives have been documented [104, 105].

2.4.5 Clinical presentation

Acute bacterial meningitis is a rapidly progressing condition that can lead to rapid deteriora-
tion in patients before or shortly after hospital admission. Typical symptoms include fever,
headache, neck stiffness, and altered mental status. Notably, two of these symptoms appear
in 90–95% of cases, though all four occur together in only 30–40%, making the clinical
presentation atypical for many patients [106]. Other frequent symptoms include nausea,
vomiting, photophobia, and hypersensitivity to sound. While Kernig’s and Brudzinski’s
signs may in some cases be observed. Early symptoms often suggest respiratory infections,
such as earache, rhinorrhea, or cough for pneumococcal meningitis, and sore throat for
meningococcal disease. A petechial rash commonly appears in meningococcal meningitis,
potentially indicating severe sepsis and septic shock with multiorgan failure. In elderly pa-
tients, these typical symptoms may be absent, complicating diagnosis based solely on clinical
findings [107]. Convulsions, as new-onset seizures, occur in 10–15% of cases (especially in
children), and focal neurological deficits, typically cranial nerve palsies, are seen in around
5% of cases. Psychomotor agitation, signaling elevated intracranial pressure, can indicate a
risk of rapid deterioration into coma or cerebral herniation. Signs of herniation include coma
with dilated pupils, irregular breathing, increasing blood pressure alongside bradycardia,
opisthotonus, or lack of responsiveness [96].

The defining characteristic of acute bacterial meningitis is a rapid progression of cerebral
symptoms, typically over hours, prompting most patients to seek hospital care within 12–24
hours [106]. This progression contrasts with cerebral mass lesions, where symptoms evolve
gradually over several days, and subarachnoid hemorrhage, where a sudden severe headache
emerges momentarily in seconds. Viral meningitis, a common differential diagnosis, shares
symptoms such as fever, headache, and neck stiffness but typically lacks altered mental status
and generally has a longer symptom duration [86].

In infants, fever and altered mental status should raise suspicion for acute bacterial
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meningitis, though symptoms may be less specific, irritability, lethargy, or weakness being
common [108]. A bulging fontanelle may be observed, while neck stiffness is usually absent.
Some infants exhibit seizures or temperature and skin color changes, indicating a circulatory
impairment associated with severe sepsis and septic shock [96].

2.4.6 Diagnostic tests

For diagnosing acute bacterial meningitis (ABM), initial testing should include blood cul-
tures, routine chemical and hematologic analyses, and arterial blood gas with lactate mea-
surement upon hospital admission. Lumbar puncture and cerebrospinal fluid (CSF) analysis
are essential for diagnosis, as they are the only methods capable of confirming or exclud-
ing ABM [109, 110]. In cases where the CSF is cloudy and the spinal opening pressure
is elevated (>300 mmH2O), a preliminary diagnosis can be made at the bedside. Within
1–2 hours of CSF analysis, markers such as leukocyte count (>500–1000 × 109/L with a
predominance of polymorphonuclear cells), a low CSF/serum glucose ratio (<0.4), elevated
lactate (>4–5 mmol/L), and protein levels (>1 g/L) can further support the diagnosis. Bac-
teria may be detected in CSF through microscopy or antigen tests, typically within a few
hours. Definitive diagnosis is achieved through culture and/or polymerase chain reaction
(PCR) testing on CSF or blood samples, with newer PCR methods often providing results
within 24 hours [111, 112]. Culture also facilitates antibiotic susceptibility testing, allowing
targeted treatment adjustments.

Prompt lumbar puncture is critical for early diagnosis and treatment, though the decision to
proceed immediately or after a computerized tomography (CT) scan remains controversial.
Some guidelines recommend pre-lumbar puncture CT if elevated intracranial pressure or
cerebral mass lesions are suspected due to concerns about potential herniation following
lumbar puncture [109,110]. However, evidence linking lumbar puncture directly to herniation
is limited, and the natural progression of ABM or a brain lesion may independently lead to
herniation [113, 114]. Studies show that CT is unreliable in predicting herniation risk in
ABM cases and rarely provides helpful information in suspected bacterial meningitis cases
[115, 116]. Given these findings, immediate empiric antibiotic treatment is recommended
if lumbar puncture is delayed, as delays in lumbar puncture and neuroimaging are linked
to higher mortality and unfavorable outcomes [117–119]. CT is generally advised before
lumbar puncture only when a mass lesion is more likely than ABM, indicated by focal
neurological deficits (other than cranial nerve palsy) or symptoms lasting over four days.
Some guidelines also recommend CT in cases with altered mental status, recent seizures,
immunocompromised status, or papilledema [109,110]. However, these signs can also occur
in ABM, making timely clinical evaluation challenging in the emergency setting. In adults,
especially the elderly, ABM is often among several differential diagnoses considered in
emergency departments. Early intensive care is frequently necessary, with some patients
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requiring neuro-intensive care to manage intracranial pressure [120]. Starting antibiotics
before CT and lumbar puncture carries risks, such as CSF sterilization leading to negative
culture results, complicating further treatment choices and decisions regarding treatment
duration [121, 122]. Although blood cultures can identify the causative organism, only
50–70% of ABM cases yield positive results [106, 117]. Delays in lumbar puncture also
disrupt the diagnosis of conditions similar to ABM, such as viral or tuberculous meningitis,
herpes simplex encephalitis, and various non-infectious neurologic disorders. This concern
is especially relevant in adults, where differential diagnoses are more complex and symptoms
less distinct than in children.

2.5 A comprehensive investigation into the ranges of laboratory tests
present in cerebrospinal fluid across various types of meningitis
within different age categories

Meningitis is an inflammation of the membranes surrounding the brain and spinal cord, of-
ten caused by bacterial, viral, fungal, or parasitic infections [123]. Among these, bacterial
meningitis is particularly concerning due to its high mortality rate and the severity of its com-
plications. According to the World Health Organization (WHO), bacterial meningitis has the
highest fatality rate among the different types, estimated at approximately 10%. However,
this varies depending on the causative agent, age, and demographics of the patients [124]. It
is reported that roughly 20% of individuals diagnosed with bacterial meningitis experience
severe complications, resulting in mortality for 1 in 6 cases and serious complications for 1
in 5 survivors [125]. Prompt and accurate diagnosis of meningitis is crucial for initiating
appropriate treatment and improving survival rates. Tests on cerebrospinal fluid (CSF), such
as culture, Gram stain, molecular analyses, and blood tests, are essential for identifying the
causative agent and guiding prompt treatment [126]. Cerebrospinal fluid biomarkers play a
significant role in diagnosing different types of meningitis, helping to differentiate between
bacterial, viral, fungal, or other forms, each with distinct profiles [127]. Biomarker analysis
assists clinicians in choosing appropriate antibiotics, antivirals, or antifungals tailored to the
identified pathogen. Specific biomarkers also offer insights into infection severity and po-
tential complications while monitoring treatment response over time. Meningitis outbreaks,
such as the recent one observed in Niger, highlight the importance of a comprehensive under-
standing and accurate diagnosis of the various forms of meningitis. From 1 November 2022
to 27 January 2023, Niger reported 559 meningitis cases, including 111 confirmed cases and
18 deaths, compared to 231 cases during the same period in 2021-2022. Most laboratory-
confirmed cases were caused by Neisseria meningitidis. The outbreak in Niger is severe
and spreading rapidly, posing a high risk of transmission across West Africa, particularly to
neighboring countries due to shared borders and concurrent outbreaks. The WHO has clas-
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sified the outbreak in Niger as high-risk, indicating potential spread throughout Africa [128].
This study aims to comprehensively investigate the ranges of laboratory tests present in CSF
across various types of meningitis over different populations. Different populations can dis-
play diverse responses in infection biomarkers, influenced by factors like age, genetics, health
status, and environmental conditions. Studying these differences helps improve diagnostic
accuracy tailored to specific demographics or geographical regions. By comparing CSF lab-
oratory test results across diverse populations and types of meningitis, this research seeks to
enhance our understanding of diagnostic variations and improve treatment strategies globally.
Ultimately, these insights will contribute to more effective public health interventions and
tailored medical responses in managing meningitis outbreaks.

2.5.1 Materials and methods

This study used data on patients diagnosed with meningitis cases reported to SINAN, the
Information System on Notifiable Diseases of the Brazilian Government’s Health Department
1, from 2003 to 2022. To assess age-related differences, the full cohort was divided into
three major age groups: Children [0-12 years] with 6,408 cases; Adults [13-64 years] with
4,319 cases; and the Elderly [ages ≥ 65 years] with 499 cases. Table 2.5 presents the
distribution of reported cases of meningitis is based on the affected individuals’ age groups
and the causative agents. Statistical analyses are conducted to uncover nuanced insights

Table 2.5: Distribution of reported cases of meningitis based on age groups (children, adults and
elderly).

Type of causative agent Children (0-
12 years)

Adults (13-
64 years)

Elderly
(≥ 65 years)

Meningococcaemia 47 31 2
Meningococcal meningitis 68 64 2
Tuberculous meningitis 20 121 7
Haemophilus influenzae meningitis 39 12 1
Pneumococcal meningitis 110 182 25
Aseptic meningitis 5195 2659 257
Meningitis by other bacteria 890 826 172
Meningitis due to other aetiology 39 424 33

within the dataset. This analysis aims to discern patterns, trends, and statistically significant
differences in meningitis cases across the specified age groups. The proposed methodology
for this study is illustrated in figure 2.2. A series of statistical analyses are conducted.

1The SINAN database can be accessed at https://datasus.saude.gov.br/

transferencia-de-arquivos# [129].

https://datasus.saude.gov.br/transferencia-de-arquivos#
https://datasus.saude.gov.br/transferencia-de-arquivos#
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Descriptive statistics provide a detailed summary of the distribution and central tendencies of
various cerebrospinal fluid biomarkers across different types of meningitis. This allows for
a comprehensive understanding of the variations in biomarker levels within each meningitis
type. The Welch ANOVA test is performed to explore potential differences in biomarker
levels across different meningitis sub-types. Subsequently, the Games-Howell. Post hoc
test is employed to discern which specific types of meningitis exhibit significantly different
levels of the examined biomarkers. This post hoc test is well-suited for datasets with unequal
variances and sample sizes, providing robust comparisons between groups. The statistical

Figure 2.2: Flowchart illustrating the proposed methodology.

analyses were implemented using Python programming language, which uses scipy.stats
module from the SciPy2 library and the Pingouin3 library. These libraries collectively
provide a comprehensive and reliable toolkit for executing descriptive statistics, the Welch
ANOVA test, and the Games-Howell post hoc test.

2.5.2 Results

The investigation delved into descriptive statistics for various types of meningitis, includ-
ing Meningococcaemia, Meningococcal meningitis, Tuberculous meningitis, Haemophilus
influenzae meningitis, Pneumococcal meningitis, Aseptic meningitis, Meningitis by other
bacteria, and Meningitis due to other etiology. The analysis was stratified across distinct
age groups: Children (ages 0-12 years), Adults (ages 13-64 years), and the Elderly (ages ≥
65 years). Tables 2.7, 2.8, and 2.9 provide detailed overviews of the descriptive statistics
for children, adults, and elderly populations, respectively. These tables offer insights into
the central tendency and distribution of key variables, including Neutrophils, Lymphocytes,
CSF WCC (Cerebrospinal Fluid White Blood Cell Count), CSF/serum Glucose ratio, and
CSF/serum Protein ratio among different group ages. The table includes various statistical
measures: median, mean ± standard deviation (SD), minimum (min), maximum (max), 25%

2https://scipy.org
3https://pingouin-stats.org/build/html/index.html
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(First Quartile, Q1), 75% (Third Quartile, Q3), interquartile range (IQR), and 95% confi-
dence intervals (CI). Figure 2.3 depicts box plots illustrating the distribution of cerebrospinal
fluid biomarkers across different meningitis cases within three populations: children, adults,
and elderly individuals. The plots reveal the variability in CSF WCC, neutrophil and lym-
phocyte levels, Glucose ratios, and Protein ratios among different causative agents, aiding
in understanding the diagnostic profiles of meningitis Each plot helps illustrate statistical
differences in these biomarkers depending on the causative agent type and age, offering
insights into diagnostic profiles and potential disease severity. WCC varies significantly
across different types of meningitis. Meningococcal meningitis and Haemophilus influenza
meningitis show higher median values in both populations of children and adults, indicat-
ing more severe inflammatory responses compared to other types like Meningicoccaemia
and aseptic meningitis, which shows lower WCC across all age groups. Neutrophil levels
are notably higher in bacterial types of meningitis such as meningococcal, Haemophilus
influenzae, pneumococcal meningitis, and meningitis by other bacteria, reflecting a typical
acute bacterial response. Lymphocyte levels are more variable across different types. Higher
lymphocyte counts in conditions like tuberculous meningitis and viral meningitis (as seen in
cases labeled as ”aseptic meningitis”) align with their profiles as predominantly lymphocyte-
driven responses. Children tend to show a wider range of lymphocyte counts, particularly in
bacterial meningitis such as meningococcemia, meningococcal, and Pneumococcal menin-
gitis, as well as Aseptic meningitis, which may indicate a more robust immune response
in younger individuals. The Glucose ratio is significantly lower in bacterial meningitis, in-
cluding meningococcal, tuberculous, Haemophilus influenzae meningitis, and pneumococcal
meningitis, consistent with bacterial consumption of Glucose. Elevated Protein ratios are
seen in bacteria, indicating a breach in blood-CSF barrier integrity typically associated with
these infections [130]. Adults often show higher Protein ratios, possibly due to more severe
disease manifestations or comorbidities that affect Protein levels in CSF.
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Figure 2.3: Box plots illustrating the distribution of cerebrospinal fluid biomarkers across different
meningitis cases in three distinct age groups.

Normality test

Shapiro-Wilk test was employed to assess the normality of the laboratory biomarkers variables
in our study. This statistical test evaluates whether the observed data significantly deviates
from a normal distribution. The null hypothesis (𝐻0) states that the data follows a normal
distribution, while the alternative hypothesis (𝐻1) asserts that the data does not follow a
normal distribution. A low p-value (< 0.05) indicates a significant departure from normality,
leading to the rejection of the null hypothesis. Additionally, skewness was computed for each
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variable to measure the asymmetry of the distributions. Kurtosis was analyzed to determine
the shape of the distribution, with positive kurtosis indicating heavier tails than a normal
distribution and negative kurtosis suggesting lighter tails. The results of normality tests for
various features across different types of meningitis, as detailed in Table 5, reveal significant
deviations from normal distribution for most variables in pediatric patients. Specifically,
neutrophil and lymphocyte levels and CSF WCC do not follow a normal distribution, as
indicated by the rejection of the null hypothesis (𝐻0). In contrast, the Glucose ratio CSF/serum
is normally distributed for Meningococcaemia, Haemophilus influenzae meningitis, and
Meningitis due to other etiology, with the null hypothesis not rejected. The Protein ratio
CSF/serum also follows a normal distribution for Tuberculous meningitis and Haemophilus
influenzae meningitis. In the adult population, Neutrophils, Lymphocytes, Glucose ratio
CSF/serum, CSF WCC, and Protein ratio across all causative agents reject the null hypothesis
(𝐻0), indicating non-normal distribution. However, for Haemophilus influenzae meningitis,
the Glucose ratio, CSF WCC, and Protein ratio data fail to reject the null hypothesis (𝐻0),
suggesting a normal distribution. Yet, interpretation may be limited due to the low Shapiro-
Wilk test power for small sample sizes [131]. Samples with a size of fewer than 7 were
excluded from the study involving the elderly population. Table 2.10 indicates deviations
from normality across various features for different causative agents, except for the Protein
ratio in Pneumococcal meningitis and the Glucose ratio in Meningitis due to other aetiologies
within the elderly population.

Table 2.10: Statistical features of various causative agents in meningitis by population, including
sample size, kurtosis, skewness, and shapiro-wilk test results for normality. Each row represents
a specific causative agent and population group, with columns detailing the associated statistical
attributes.

Type of causative agent Population Sample Size Feature Kurtosis Skewness Shapiro-
Wilk Test
Statistic

P-Value

Meningococcaemia Children 47 Glucose ratio CSF/serum -0.33 -0.39 0.98 0.45
Tuberculous meningitis Children 20 Protein ratio CSF/serum -1.14 0.43 0.93 0.14

Haemophilus influenzae meningitis

Children 39 Protein ratio CSF/serum -0.78 -0.15 0.96 0.26

Adults 12
Glucose ratio CSF/serum -1.23 0.46 0.90 0.16
CSF WCC -1.66 0.22 0.88 0.08
Protein ratio CSF/serum 0.05 0.80 0.91 0.22

Pneumococcal meningitis Elderly 25 Protein ratio CSF/serum 0.19 0.67 0.95 0.22

Meningitis due to other aetiology Children 39 Glucose ratio CSF/serum -0.12 0.21 0.96 0.19
Elderly 33 Glucose ratio CSF/serum -0.76 0.34 0.96 0.20

Analysis of variance

In consideration of the potential non-homogeneity of variances assumption (see Figure 2.3),
Welch ANOVA (Analysis of Variance) was employed as an alternative due to its capability to
generate reliable results in situations characterized by unequal variances across the studied
groups [132]. This test explored potential differences in biomarker levels among various
types of meningitis across different age groups. Table 2.11 presents a detailed summary of
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the Welch ANOVA analysis results, including the statistical significance of differences in
dependent variables across different types of meningitis considered in this study. Each row
corresponds to a specific variable, displaying the F-statistic, p-value, and effect size (𝜂2

𝑝). The
significance is determined by whether the p-value is less than 0.05, suggesting a statistically
significant difference between groups and supporting rejecting the null hypothesis (𝐻0: No
difference among groups). If the means show significant differences (p-value > 0.05), this
supports the alternative hypothesis (𝐻1: There are differences among groups). Significant
differences were observed in various biomarkers (CSF WCC, Neutrophils, Lymphocytes,
Glucose ratio CSF/serum, and Protein ratio CSF/serum) across different causative agent
groups within children and adults. For an elderly population, significant differences were
observed only in Neutrophil levels. This suggests that the impact of causative agents on these
biomarkers may be different or negligible in the elderly compared to children and adults.
The partial eta-squared (𝜂2

𝑝) values indicate the proportion of variance explained by causative
agent groups in biomarker levels [133]. Higher values suggest stronger effects, aiding in
understanding the impact of causative agents across populations. Effect sizes for certain
biomarkers vary across age groups. For example, Neutrophils exhibit higher effect sizes in
adults and the elderly than in children. This indicates that the impact of causative agents on
Neutrophil levels is more pronounced in older age groups.

Table 2.11: Welch’s ANOVA results for different biomarkers across populations

Dependent
Variable

Population F-statistic4 p-value 𝜂2
𝑝 Significance

CSF WCC Children 44.73 0.00 0.008 The means of CSF WCC vary significantly across different types of
meningitis in both populations.

Adults 58.72 0.00 0.10
Elderly 0.00 1.00 0.11 Means of CSF WCC are likely equal between meningitis types in elderly

population.
Neutrophils Children 188.56 0.00 0.19 The means of Neutrophils levels vary significantly across different types

of meningitis in all three populations.
Adults 305.53 0.00 0.38 Elderly population shows a higher amount of variance (40%).
Elderly 170.58 0.00 0.40

Lymphocytes Children 260.61 0.00 0.26 The means of Lymphocytes levels vary significantly across different
types of meningitis in both populations.

Adults 144.37 0.00 0.11 Pediatric patients explain a higher amount of variance (26%) compared
to adults (11%).

Elderly 0.00 1.00 0.31 Means of Lymphocyte levels are likely to equal between meningitis types
in the elderly population.

Glucose
ratio
CSF/serum

Children 134.48 0.00 0.20 The means of Glucose ratio vary significantly across different types of
meningitis in both populations.

Adults 73.43 0.00 0.14 Pediatric patients explain a higher amount of variance (20%) compared
to adults (14%).

Elderly 0.00 1.00 0.18 Means of Glucose ratio are likely equal between meningitis types in the
elderly population.

Protein
ratio
CSF/serum

Children 59.51 0.00 0.12 The means of Protein ratio vary significantly across different types of
meningitis in both populations.

Adults 78.29 0.00 0.18 Adult patients explain a slightly higher amount of variance (18%) than
in pediatric population (12%).

Elderly 0.00 1.00 0.09 Means of Protein ratio are likely to equal between meningitis types in
the elderly population.
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Post hoc test

Games-Howell post hoc test is employed to identify specific pairs of meningitis types that
exhibited statistically significant differences in biomarker levels. This post hoc analysis is
well-suited for data with unequal variances and sample sizes [134], facilitated a nuanced
understanding of the variations in biomarker concentrations among different meningitis cate-
gories. Notably, the Games-Howell test revealed distinct patterns of significance, specifying
which pairs of meningitis types demonstrated significant differences in biomarker levels.
These findings contribute valuable insights into key variables’ central tendencies and distri-
butions and provide a better understanding of the heterogeneity within the studied meningitis
subtypes across different age groups. This study involves comparing mean differences in
different biomarker levels among all types of meningitis of this study. Multiple comparisons
are made among means of groups with unequal variances and sample size; another group
is compared against it. The zero-difference line indicates no difference between groups.
Points to the right suggest the first group has higher means; points to the left indicate the
second group has higher means. In the examination of white cell count parameters in the
pediatric population (Figure 2.4a), Meningococcal meningitis (group 2) significantly differs
from Aseptic meningitis (group 6), displaying a mean difference of 217.62 (95% CI: 147.68,
158.14). Similarly, Haemophilus influenzae meningitis (group 4) exhibits a substantial differ-
ence in white cell count from Aseptic meningitis (group 6), with a mean difference of 256.07
(95% CI: 146.45, 157.61). Significant mean differences are observed between Meningococ-
caemia (group 1) and Haemophilus influenza meningitis (group 4) -351.20 (95% CI: 137.86;
288.34). In our analysis, the confidence intervals very close to the zero reference line on the
forest plot are not considered, as these values may suggest a potential lack of statistical signif-
icance or effect. In the analysis of the adult population, Pneumococcal meningitis (group 5)
demonstrates a significant mean difference of 226.95 (95% CI: 201.7, 219.80) from Aseptic
meningitis (group 6). Furthermore, Meningococcal meningitis (group 2) versus Meningitis
due to other etiology (group 8) reveals a mean difference of 242.29 (95% CI: 145.02, 187.05),
emphasizing notable distinctions. Pneumococcal meningitis (group 5) versus Meningitis due
to other etiology (group 8) shows a substantial mean difference of 288.47 (95% CI: 198.55,
245.06).
Based on the results of the Games-Howell test (Figure 2.4b), significant mean differences
and their associated confidence intervals suggest that neutrophil levels in Meningococcal
meningitis (group 2) and Haemophilus influenzae meningitis (group 4) are statistically dif-
ferent from those in Meningitis due to other etiologies (group 8) in the children’s population.
In the adult population, distinct neutrophil responses were observed across various types of
meningitis. Aseptic meningitis (group 6) showed a significant mean decrease of -42.12 in
neutrophil levels compared to meningitis by other bacteria (group 7). Neutrophil levels in
Haemophilus influenzae meningitis (group 4) differ significantly from both Meningitis due
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to other etiology (group 8) 43.68 (95% CI: 18.78, 23.71) and Aseptic meningitis (group 6)
45.44 (95% CI: 17.69, 19.31). Meningococcal meningitis (group 2) also shows significant
differences in neutrophil levels compared to Meningitis due to other etiology (group 8) 48.52
(95% CI: 23.71, 29.27) and Aseptic meningitis (group 6) 50.29 (95% CI: 18.61, 20.39).
Pneumococcal meningitis (group 5) demonstrates significant differences in neutrophil levels
compared to Meningitis due to other etiology (group 8) 50.38 (95% CI: 32.39, 37.94) and
Aseptic meningitis (group 6) 52.14 (95% CI: 20.72, 22.58). In the elderly population, the
results indicate neutrophil responses when affected by Pneumococcal meningitis (group 5)
compared to other etiologies (group 8), and Aseptic meningitis (group 6). The test results
indicate significant mean differences in Lymphocytes levels only in adults (See figure 3(C))
between Tuberculous meningitis (group 3) and Pneumococcal meningitis (group 5) with a
mean difference of 37.59 (95% CI: 33.18, 40.46).
The Glucose ratio in cerebrospinal fluid/serum was examined in pediatric and adult popula-
tions (Figure 2.4d). In children, the comparison between Meningococcaemia (group 1) and
Pneumococcal meningitis (group 5) revealed a mean difference of 0.40 (95% CI: 0.30, 0.39).
Similarly, the corresponding mean difference in adults was 0.31 (95% CI: 0.23, 0.30). These
findings suggest notable differences in the Glucose ratio between the two specified meningitis
types across age groups.
The analysis of Protein ratios in cerebrospinal fluid/serum among pediatric subjects revealed
distinct patterns across diverse cases of meningitis (Figure 2.4e). Meningococcal meningitis
(group 2), Tuberculous meningitis (group 3), Haemophilus influenza meningitis (group 4) and
Pneumococcal meningitis (group 5), demonstrated a mean difference of 0.80 (95% CI: 0.47,
0.50), 1.13 (95% CI: 0.47, 0.49), 1.14 (95% CI: 0.47, 0.50) and 1.18 (95% CI: 0.49, 0.51) rel-
ative to Aseptic meningitis (group 6) respectively. Comparisons involving Meningoccaemia
(group 1) unveiled inverse Protein ratios of -1.23 (95% CI: 0.55, 0.95) and -1.24 (95% CI:
0.75, 1.13) with Tuberculous meningitis (group 3) and Haemophilus influenzae meningitis
(group 4), respectively. Negative values suggest a lower Protein ratio in Meningococcemia
compared to the other types of meningitis being compared. In adults, the specific comparison
of Tuberculous meningitis with Aseptic meningitis demonstrated a mean difference of 0.99
(95% CI: 0.85, 0.90), illustrating distinct Protein ratio patterns in this age group.

2.5.3 Discussion

This study aims to compare the neutrophils and lymphocyte counts, CSF WCC, Glucose
and Protein ratio (CSF/serum) among patients with different types of meningitis, stratified
by age groups. The findings provide insights into the immune response profiles and bio-
chemical characteristics associated with various types of meningitis. There was a marked
increase in neutrophil levels across all age groups in cases of bacterial meningitis (including
Meningococcal, Tuberculous, Haemophilus influenzae, Pneumococcal, and other bacterial
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(a) Forest plot comparing CSF WCC across different age groups

(b) Forest plot comparing Neutrophils level across different age groups

(c) Forest plot comparing lymphocyte level across different age groups

(d) Forest plot comparing Glucose ratio across different age groups

(e) Forest plot comparing Protein ratio across different age groups

Figure 2.4: Forest plot comparing different attributes across different age groups with 95% confidence
interval
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etiologies). This aligns with the established understanding that bacterial infections elicit a
robust neutrophilic response. Neutrophil levels were generally higher in adults compared to
children in conditions like Meningococcal meningitis. For instance, adults with Meningo-
coccal meningitis had a median neutrophil level of 78.5% [60%, 90%], compared to 57%
[24.5%, 85.25%] in children. This could reflect differences in immune system maturity and
response mechanisms. Viral meningitis cases showed higher lymphocyte levels, consistent
with viral infections typically inducing a lymphocytic response. The median lymphocyte
level was notably higher among children 69% [34%, 87%], adults 82% [61%, 93%], and el-
derly 77% [55%, 90%] with aseptic meningitis compared to those with bacterial meningitis.
While lymphocyte levels were generally higher in adults than in children for viral infections,
the differences were less pronounced compared to bacterial infections. CSF WCC was signif-
icantly elevated in bacterial meningitis cases, particularly in adults. For instance, the median
CSF WCC in children with Meningococcal meningitis was 224 cells/mm3, compared to 339
cells/mm3 in adults. This elevation is indicative of the intense inflammatory response to
bacterial pathogens. CSF WCC was elevated in viral meningitis but generally lower than in
bacterial cases. This reflects the typically less intense inflammatory response seen in viral
infections. The CSF WCC in patients with meningococcemia tends to be relatively low in
children and adults. For children with meningococcemia, the median CSF WCC was five
cells/mm3, with a mean ± SD of 54.87 ± 163.64 cells/mm3. The range was from 0 to 840
cells/mm3. Despite some extreme values, the central tendency (median) remained low. For
adults aged 13-64, the median CSF WCC was also five cells/mm3, with a mean ± SD of
35.55 ± 89.01 cells/mm3. The range extended from 0 to 400 cells/mm3. Meningococcemia
is primarily a bloodstream infection. The bacteria can cause sepsis without necessarily lead-
ing to meningitis, where CSF WCC would be expected to rise significantly, resulting in a
lower CSF WCC. This highlights the importance of considering other clinical factors and
diagnostic tools when evaluating and managing patients with suspected meningococcemia.
The Glucose ratio was notably lower in bacterial meningitis, including Meningococcal, Tu-
berculosis, Haemophilus influenzae, and Pneumococcal meningitis, with values often below
0.3, reflecting the consumption of Glucose by bacteria in the CSF. In viral meningitis, the
Glucose ratio was higher, often above 0.5. The Protein ratio was higher in bacterial menin-
gitis, including Meningococcal, Tuberculosis, Haemophilus influenzae, and Pneumococcal
meningitis, reflecting increased permeability of the blood-brain barrier and Protein leakage
into the CSF. Building on the scoring tool established by Pascal Chavanet et al. for pedi-
atric and adult meningitis, where a CSF WCC >1700 cells/mm3, CSF neutrophil percentage
>80%, CSF Protein >2.3 g/L, and Glucose CSF/blood ratio <0.33 are identified as key
indicators of bacterial etiology in adults, and a CSF WCC >1800 cells/mm3, CSF neutrophil
percentage >80%, CSF Protein >1.2 g/L, and Glucose CSF/blood ratio <0.3 in children, our
findings align closely with these thresholds. We observed significantly elevated CSF WCC
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and Protein ratios and low Glucose ratios in bacterial meningitis cases, thus reinforcing these
diagnostic criteria [135]. Sérgio Monteiro de Almeida et al. compared the effectiveness
of lactate and Glucose (GL) in CSF, as well as the CSF/blood GL ratio, in distinguishing
between acute bacterial meningitis (BM) and viral meningitis (VM) with typical and atyp-
ical CSF characteristics. They observed that the median WCC was significantly higher in
bacterial meningitis (560 × 106/L) than in viral meningitis (36 × 106/L). Additionally, the
median neutrophil percentage was markedly higher in bacterial meningitis (83%) than in viral
meningitis (10%). The Glucose ratio was also different, with a median of 0.30 in bacterial
meningitis and 0.56 in viral meningitis [127]. Despite the valuable insights gained from our
data, its specific regional focus may limit the generalizability of our findings to broader popu-
lations. Additionally, the interpretation of CSF parameters can be influenced by factors such
as the timing of lumbar puncture, prior antibiotic therapy, and other infections. These factors
highlight the need for careful consideration in diverse clinical settings and underscore the
importance of future research to further validate and expand upon our findings. Furthermore,
it is necessary to compare other biomarkers, such as CSF lactate, as it has demonstrated supe-
rior operational characteristics compared to CSF Glucose in differentiating between bacterial
and viral meningitis [127].

2.6 AI in Healthcare

From an epistemological perspective, AI systems, particularly those based on machine learn-
ing, operate by detecting patterns and correlations within large datasets, unlike human rea-
soning, which often emphasizes causal relationships. While AI’s strength lies in its ability to
uncover complex patterns that surpass human capabilities, this also introduces the challenge
of ’explicability’ [136]. Explicability, or the capacity to explain how an AI system arrives
at a particular conclusion, is often limited in AI, particularly with complex models like deep
learning. This phenomenon is known as “epistemic opacity,” meaning that even AI develop-
ers may not fully understand the step-by-step computational processes that lead to a specific
result [137]. This lack of transparency leads to the so-called “black box” problem, where
the AI’s inner workings are unclear. This is especially concerning because trust in AI often
depends on transparency and explainability [138]. A key question arises: how can people
trust AI systems if they don’t understand how these systems reach their decisions? Authors
argue that for humans to confidently rely on AI, the processes behind AI decisions must
be transparent and comprehensible [139]. This is particularly crucial in medicine, where
informed consent is foundational. Physicians must provide patients with the best available
information to allow them to agree to or decline treatments. This includes explaining why
a specific medical action is recommended. However, the issue of explicability leads to fur-
ther questions: What exactly needs to be understood about AI processes, and what kind of
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explanations are required to ensure trust and informed consent? [13, 140].

2.6.1 Justifying decisions

Making clinical decisions, such as selecting a treatment option or reaching a medical diagno-
sis, requires a solid evidence base, as intuition or reliance solely on professional experience
no longer suffices in the era of Evidence-Based Medicine (EBM). In a Medical AI (MAI)
setting, physicians must be able to evaluate and understand the mechanisms driving an al-
gorithm’s outcome [141]. This is crucial for justifying decisions like choosing a particular
medication or therapy. Durán and Jongsma refer to this as an ’epistemic warrant’, which
obligates physicians to base their choices on reliable knowledge [142]. Physicians must be
able to assess whether a recommended treatment will truly benefit the patient. However,
the complexity and opacity of algorithms may prevent them from fully understanding or
verifying the underlying evidence, raising concerns about their ability to trust the outcomes
of algorithmic decision-making.

The lack of transparency in algorithmic decisions conflicts with the ethical duty of
clinicians to provide clear justifications for their medical decisions [143]. Like other experts,
clinicians are expected to justify their actions with causal explanations, especially within
Evidence-Based Medicine (EBM) [144]. When such explanations are absent, clinicians
may rely on algorithmic outcomes they cannot evaluate, which could limit their ability to
identify or prevent errors in these decisions. Machine learning algorithms detect patterns and
make predictions based on statistical correlations, not causation, which can lead to unique
errors. Without interpretability, clinicians may miss potential confounding errors or biases,
as they cannot fully verify whether a causal inference is valid or if a confounding factor is at
play [145]. For instance, overfitting, where an algorithm performs well during testing but fails
in real-world applications, can lead to severe misdiagnoses [146]. Due to such risks, some
argue that opaque, non-interpretable algorithms should be avoided in high-stakes fields like
medicine, with only fully explainable algorithms permissible [147]. Some argue that patients
have a right to understand algorithm-supported decisions, making explainability crucial for
trust and legal standards [139, 146].

Some argue that in real-world medicine, not all clinical decisions can be explained strictly
through science, as intuition and experience also play roles [143,146]. With the demonstrated
capabilities of MAI technologies, particularly deep learning in areas like tumor recognition,
prioritizing explainability over accuracy may be impractical and could risk depriving patients
of beneficial advancements.

To understand the problems caused by the lack of explainability in MAI, we first need
to break down what ’opacity’ means. Burrell [148] identifies different types of opacity.
One type is intentional secrecy, where companies hide the workings of their algorithms to
protect their interests and maintain a competitive edge. While this might make sense in
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commercial areas like online shopping, it becomes an issue in healthcare. Sharing data,
models, and algorithms in healthcare is key to making MAI technologies work effectively.
Intentional secrecy could block progress toward a learning healthcare system (LHR) and
might even be used to avoid regulations or manipulate users. Opacity can also come from the
complexity of AI systems, where multiple teams build different components. A programmer
working on one part may not know how others function. Similarly, making the algorithm
available to healthcare professionals doesn’t mean they can interpret it. Additionally, machine
learning algorithms handle large amounts of data, which can make them too complex to fully
understand. Deep learning algorithms, in particular, are used for tasks where linear logic
doesn’t work, making it hard to explain all the steps needed to produce a result. This raises
the question of how much we can expect AI to be explainable [13].

2.6.2 Explainability

Explainability is essential in developing machine learning systems, beyond just ethical con-
cerns, for several key reasons [149]. First, it helps justify the results, especially when AI
produces new or unexpected findings. Second, understanding system behavior aids in pre-
venting and identifying errors, an important part of debugging. Third, explainability is
crucial for improving the system, as refinement requires ongoing insight into its mechanisms.
Fourth, explainability supports scientific discovery, delivering only results isn’t enough, un-
derstanding how those results are produced is necessary for building knowledge. Beisbart and
Räz [140], however, argue that explainability itself is complex. On the one hand, we need to
define what exactly requires explanation. On the other hand, understanding and explanation
don’t always align. There’s a difference between explanatory understanding, which clarifies
why something occurs, and objective understanding, which provides general knowledge of a
domain based on theories or models without necessarily explaining the ”why.” Thus, explain-
ability in medical AI (MAI) needs careful consideration to clarify what “explaining” truly
requires and if it’s essential for understanding. Explainability also involves interpretability,
that is presenting a system’s operations in simple, understandable terms and completeness
or fully detailing how a system functions. Yet, achieving both can be challenging, a detailed
mathematical description may satisfy completeness but lack interpretability for users [150].

Not all experts prioritize explainability, with some stressing the importance of accuracy
in algorithmic decision-making. While some view the trade-off between accuracy and
explainability as problematic [151], others argue that accuracy should take precedence [143].
Some even suggest forgoing explainability entirely, instead focusing on system reliability. As
Durán and Formanek argue, reliability, which means ensuring consistent and verified results,
is more critical than understanding every detail [138]. This view, known as computational
reliabilism, implies that trust in algorithms should be based on proven performance rather than
transparency. Physicians and patients can trust algorithmic decisions based on demonstrated
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accuracy and validity rather than explainability alone. Ferrario et al. describe this trust
as growing with each validated use [152], and only using machine learning systems for
empirically proven tasks can further ensure autonomy and accountability [143].

Beyond ethical concerns, explainability may also be legally required, as laws on liability
and individual rights may demand it [153]. Solutions combine technical fixes, social practices,
and regulations to address ethical issues around AI opacity. A common approach is to treat
explainability in machine learning as essential for healthcare AI, making it a core design goal.
Explainable AI (XAI) aims to answer three basic questions: Why did the algorithm do this?
Can I trust the results? How can I fix an error? [154].

2.7 Conclusion

This chapter offers a detailed examination of meningitis and its associated infectious causes.
It analyzes trends and prevalence across different populations to underscore the evolving
nature of infectious diseases and the necessity for adaptive, accurate diagnostic approaches.
Furthermore, we highlighted the crucial role of analyzing CSF in enhancing the diagnosis and
management of meningitis. We found significant variations in biomarker levels associated
with different causative agents among children and adults. At the same time, the elderly
displayed less variability in certain biomarkers, suggesting age-related distinctions in how
meningitis manifests. Understanding these unique immune responses and biochemical pro-
files across age groups enables clinicians to enhance diagnostic accuracy and tailor treatment
plans to better meet patient needs. Additionally, we defined several explainability aspects
of AI models in medical diagnostics, emphasizing the need for transparent algorithms to
support clinician decision-making and enhance patient trust. Explainability fosters trust in
AI-driven tools by helping healthcare providers and patients understand the rationale behind
diagnostic insights. This study explored XAI’s ethical and practical implications, underlining
its importance in maintaining patient autonomy and informed consent.
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3.1 Introduction

Meningitis diseases pose a significant threat to public health, and their rapid transmission
can lead to widespread outbreaks if not managed effectively. Early detection and interven-
tions are critical to reducing the morbidity and mortality associated with these diseases.
Delayed diagnosis and treatment can result in severe complications such as brain damage,
hearing loss, and even death [155]. According to the World Health Organization (WHO),
approximately 1 in 10 people with bacterial Meningitis die, and 1 in 5 suffer from long-term
severe complications [156]. Rapid and accurate diagnosis allows for promptly initiating
appropriate treatment and isolation measures to prevent further transmission. Therefore,
developing and implementing fast and accurate diagnostic tools are crucial for preventing the
spread of Meningitis diseases and reducing associated morbidity and mortality. Although
culture and smear microscopy are commonly used for meningitis diagnosis, low sensitivity
limits their effectiveness. One can miss up to 30% of cases [157], especially when patients
have received antibiotics before testing. Additionally, traditional diagnostic methods can be
time-consuming, invasive, and costly, leading to delays in treatment and increased healthcare
expenditures. This limitation highlights the pressing need for more reliable diagnostic meth-
ods to improve the early detection of Meningitis and enhance patient outcomes.

66
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Machine Learning (ML) models have shown great potential in diagnosing various medi-
cal conditions, including infectious diseases [2]. A recent study implements and validates
an artificial AI model for early aetiological determination of patients with encephalitis and
Meningitis. Considering four categories (autoimmune, bacterial, tuberculosis, and viral),
based on the initial 24-h data, it identifies essential factors among these aetiologies in the
classification process [52]. Furthermore, Artificial intelligence (AI) played a significant role
in the healthcare and medical field, particularly during the COVID-19 pandemic, assisting
with vaccination and improving human decision-making. AI has been employed to analyze
large datasets related to COVID-19, encompassing infection rates, transmission patterns, and
demographic information. This analysis enables targeted interventions, diagnosis, and pre-
ventive measures to reduce human-to-human infectivity of COVID-19. The employment of
AI has also shown great potential in advancing COVID-19 vaccine development by predict-
ing potential epitopes with antigenic characteristics and detecting virus mutations through
Deep Convolutional Neural Networks (CNN) [158, 159]. Similarly, applying deep learn-
ing approaches has yielded promising results in identifying Acute Lymphoblastic Leukemia
(ALL). A novel approach leveraging ensemble CNN models was introduced to overcome
the limitations of traditional methods, such as Peripheral Blood Smear (PBS) examination,
which is laborious, time-consuming, and heavily reliant on specialists’ expertise to detect
ALL. These models have demonstrated promising results for feature extraction from images
and the classification of B-ALL lymphoblast and normal cells [160]. Moreover, recent stud-
ies employing CNN models have shown promising outcomes in diagnosing different types
of malaria using blood smear images comprising various strains, specifically Falciparum,
Vivax, and Ovale, and samples from healthy individuals [161]. These models can analyze
vast amounts of data, offering accurate predictions that can improve diagnostic accuracy
and reduce the time required for diagnosis. However, the lack of interpretability in these
models poses challenges in clinical practice. Indeed, clinicians struggle to understand and
trust what they perceive as black boxes. This work deals with ML interpretability for di-
agnosing meningitis disease. Indeed, interpreting machine learning models for diagnosing
Meningitis is critical and challenging, given the diverse clinical presentations and the im-
portance of understanding the model’s decisions in medical applications. Recognizing the
need for effective resolution of medical problems, we are focusing on a clinical decision
support system (CDSS) to aid medical teams in making automated decisions for diagnosing
different types of meningitis cases, including Meningococcaemia, Meningococcal Menin-
gitis, Tuberculous Meningitis, Aseptic Meningitis, Haemophilus influenzae meningitis, and
Pneumococcal Meningitis.
In this chapter, we propose an innovative approach to improve meningitis diagnosis using
SHapley Additive explanations (SHAP) model-agnostic techniques applied to the outcome
predictions of an XGBoost classifier. Our study addresses a significant gap in the exist-
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ing literature by examining the clinical presentations of meningitis across various classes,
including Meningococcaemia, Meningococcal Meningitis, Tuberculous Meningitis, Aseptic
Meningitis, Haemophilus influenzae meningitis, and Pneumococcal Meningitis. We employ
SHAP values to identify influential factors in the model’s predictions, highlighting essen-
tial biomarkers and attributes such as Neutrophils and lymphocyte levels, White Cell Count
(WCC), Protein and Glucose ratios, and clinical signs. Notably, our analysis reveals variations
in the impact of these features across different meningitis types, aligning with established clin-
ical associations. These insights lay the groundwork for an automated meningitis diagnosis
tool and suggest avenues for further investigation. Furthermore, our experiments, conducted
on both the SINAN database and a real dataset from Setif’s hospital in Algeria, demonstrate
the efficacy of our methodology in balancing model accuracy and interpretability, offering a
promising approach to enhance meningitis diagnosis and improve patient outcomes.

3.2 Method

AI-driven techniques, powered by machine learning algorithms and data analysis, have the
potential to analyze vast amounts of patient data, recognize patterns, and identify subtle
indicators that might escape human observation [162–165]. For this purpose, our proposed
methodology to diagnose the Meningitis cases and discover the differential diagnosis is
illustrated in Figure 3.1. In the first phase, the data processing techniques were applied,
and synthetic data was generated using the SMOTENC (Synthetic Minority Over-sampling
Technique for Nominal and Continuous technique) to address the class imbalance issue.
Secondly, multiple classifiers were trained using 70% of the overall dataset. We evaluate
their performance using the remaining 30% for testing. Subsequently, the fitting performances
of the models were compared, and the best-performing model was selected. In the third phase,
we investigated the SHAP analyses (Shapley Additive exPlanations) to study and visualize
the impact of different features across the various diagnosis cases. The explanation provides
valuable insights into the contribution of each feature to the model’s predictions and aids in
understanding the importance of different factors in diagnosing Meningitis diseases. Finally,
the interpretation phase was performed in collaboration with the medical experts to discover
the AI-powered diagnostic indicators that can assist in early detection and swift identification
of Meningitis cases. Furthermore, early detection often translates to timely intervention and
treatment, potentially preventing disease progression and improving prognosis.

3.2.1 Data preparation: Study case

We conducted the experiments on 6729 notified Meningitis cases of individuals over 18,
retrieved from SINAN, the Information System on Notifiable Diseases of the Brazilian Gov-
ernment’s Health Department from 2003 to 2022. SINAN is a database that encompasses
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Figure 3.1: Illustration of the proposed Meningitis diagnostic workflow, based on an XAI-agnostic
explainability framework. Preprocessing involves data augmentation via SMOTENC. Multiple ma-
chine learning classifiers are trained and evaluated, with SHAP analyses identifying feature relevance
in diagnosis. The interpretation phase, supported by medical professionals, extracts meaningful ex-
planations for the AI’s decision-making, ensuring transparency without focusing on internal model
mechanics.

compulsory disease notifications throughout Brazil. Notifications and investigations are
stored in the SINAN NET database, with dedicated tables for each specific disease, including
meningitis.
Initially, the dataset consists of 123 attributes. In our work, we focused on 34 specific at-
tributes that are centered around clinical signs and biological examinations. These attributes
were carefully chosen in consultation with the infectious disease experts at Setif Hospital in
Algeria, as they are the most informative and relevant for Meningitis diagnosis. Table 3.1
and 3.2 summarizes the description and the possible values of the selected attributes from
the dataset.
We collected a dataset from Setif’s Hospital in Algeria, comprising cases notified as Menin-
gitis. Notable disparities were observed compared to the dataset sourced from the Brazilian
SINAN database. This dataset diversification aims to enhance our evaluation samples and
offer a broader perspective on the performance and generalizability of our explainable AI
model. Within Setif’s hospital dataset, we identified cases suitable for testing our model.
However, these cases only encompass two types of Meningitis, constituting a subset of the
classes found in the training dataset of the SINAN database.
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Table 3.1: Key prognostic factors in Meningitis diagnosis, including demographics, medical history,
pre-existing illnesses, and clinical signs.

Diagnostic
evaluation

Attributes Categories Description

D
em

og
ra

ph
ic

in
fo

rm
at

io
n Age Numerical Informs the patient’s

age

Sex
Categorical
M - Male
F - Female

Informs the patient’s
sex

M
ed

ic
al

H
ist

or
y

Pr
e-

ex
ist

in
g

ill
ne

ss
es

Pre-Existing Diseases -
AIDS/HIV

Categorical
1 - Yes
2 - No
9 - Ignored

Provide information
about the presence
of pre-existing diseases or illnesses in
an individual’s medical history

Pre-Existing Illnesses - ARI
Pre-Existing Diseases - Tu-
berculosis
Pre-Existing Illnesses -
Trauma
Pre-Existing Illnesses - Hos-
pital Infection
Pre-Existing Illnesses -
Other
Vaccination - Meningococ-
cal C Conjugate Indicate whether the person has

received specific vaccinations to
protect against certain diseases
or infections

Vaccination - BCG
Vaccination - Triple Viral
Vaccination - Hemophile –
Tetravalent or Hib
Vaccination - Pneumococcus

C
lin

ic
al

Si
gn

s/
Sy

m
pt

om
s

Headache

Categorical
1 - Yes
2 - No
9 - Ignored

Informs if this clinical
manifestation has occurred
in the patient

Fever
Vomiting
Seizures
Neck stiffness
Petechiae / haemorrhagic
suffusion
Kernig/Brudzinski
Coma
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Table 3.2: Key prognostic factors in meningitis diagnosis from biological test results

Diagnostic
evaluation

Attributes Categories Description

B
io

lo
gi

ca
lt

es
ts

Lymphocytes

Numerical Chemocytological examination
Neutrophils
CSF White Cell Count
(WCC)
Protein ratio CSF/serum
Glucose ratio CSF/serum

CSF aspect

Categorical
1 - Clear
2 - Purulent
3 - Haemorrhagic
4 - Cloudy
5 - Xanthochromic
6 - Other
7 - Ignored

Appearance of the cerebrospinal
fluid (CSF) obtained through
the puncture

PCR Blood/serum

Categorical
62 - Ignored
37 - Mumps
38 - Measles
39 - Herpes Simplex
40 - Chickenpox/Herpes Zoster
41 - Rubella
55 - Influenza
72 - Dengue
61 - Unrealized
75 - Not identified
70 - Adenovirus
56 - Echovirus
63 - Coxsackie Virus
59 - Other Enteroviruses
71 - West Nile Virus
73 - Other Arboviruses
74 - Other viruses
01 - Neisseria meningitidis
06 - Haemophilus influenzae
07 - Streptococcus pneumoniae
28 - Other bacteria
43 - Cryptococcus/Torula
42 - Other fungi
48 - Toxoplasma
52 - Other Parasites
51 - No agent

List of causative agents for
meningitis identified through
PCR testing
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CSF Bacterioscopy

Categorical
61 - Unrealized
62 - ignored
32 - Gram negative bacilli
31 - Gram positive bacilli
36 - Coccobacilli
34 - Gram negative cocci
33 - Gram positive cocci
35 - Gram negative diplobacilli
03 - Gram negative diplococci
08 - Gram positive diplococci
28 - Other Bacteria
51 - no agent

Etiological agent identified in the
examination

CSF Culture
Categorical
61 - Unrealized
62 - Ignored
01 - Neisseria meningitidis
06 - Haemophilus influenzae
07 - Streptococcus pneumoniae
28 - Other bacteria
51 - No agent

Etiological agent identified in the
examination

Blood/serum culture

LATEX CSF

Categorical
61 - Unrealized
62 - Ignored
01 - Neisseria meningitidis
06 - Haemophilus influenzae
07 - Streptococcus pneumoniae
14 - Streptococci (sp, piogens,
alpha, hemolytic, faecalis,
agalactiae)
28 - Other bacteria
43 - Cryptococci
51 - No agent

Etiological agent identified in the
examination

LATEX Blood/serum

D
ia

gn
os

is

Type of causative agent

0 - Meningococcaemia
1 - Meningococcal meningitis
2 - Tuberculous meningitis
3 - Meningitis by other bacteria
4 - Unspecified meningitis
5 - Aseptic meningitis
6 - Meningitis due to other aetiology
7 - Haemophilus influenzae meningitis
8 - Pneumococcal meningitis

Confirmed diagnosis
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3.2.2 Data preprocessing

In this phase, a series of data preparation steps have been performed on the data set, including
addressing duplicate data and missing values and handling outliers. Additionally, a crucial
step involved balancing the data to mitigate any biases and enhance the overall learning of the
model. These rigorous data preparation steps have been undertaken to minimize distortions
and improve the accuracy of predictions:

- The data type transformation: We converted the data type on selected features to ensure
compatibility with the model’s requirements and enhance prediction accuracy.

- The missing Data: To preserve the integrity of the analysis and consider the substantial
volume of data available, all observations with missing values were omitted from the
analysis.

- The structural errors: Fixing structural errors in the preprocessing step, including
eliminating typos and inaccurate information, ensures consistent features. This step
enhances accuracy, reduces biases, and improves subsequent analysis and modeling.

- The categorical features encoding: We identified several categorical attributes pre-
encoded from the original data in the dataset. We selectively converted the necessary
attributes into integer form for model compatibility and prediction generation, en-
abling their effective utilization within our analysis. It is worth noting that certain
machine learning algorithms, such as decision trees and rule-induction methods (e.g.,
CART, C5.0, etc.), possess inherent capabilities to handle high-cardinality categorical
attributes without the need for external preprocessing steps [166].

- The outliers: In medical research, outliers hold valuable insights into rare or atypical
cases, contributing to a comprehensive analysis. These extreme values may or may
not represent aspects of data intrinsic variability and may have a legitimate place
in the dataset [167]. We applied the Interquartile Range (IQR) method to handle
outliers specifically to numerical attributes, including laboratory biomarkers. The IQR
method is a statistical technique employed to detect and manage outliers within the
dataset. Using the IQR method, we systematically deal with outliers, leading to a more
comprehensive data variability. Following this process, the dataset size was reduced to
5072 samples.

- The data balancing: we employed the SMOTE-NC (Synthetic Minority Over-sampling
Technique for Nominal and Continuous) method to deal with the class imbalance.
SMOTE-NC extends SMOTE to handle categorical and numerical features, generating
synthetic samples. Choosing SMOTE-NC over SMOTE allows us to balance the dataset
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(a) Original dataset class distribution before
SMOTE-NC.

(b) Dataset class distribution after applying
SMOTE-NC.

Figure 3.2: Comparison of class distribution before and after applying SMOTE-NC. Subfigure (a)
shows the class distribution before using SMOTE-NC, revealing a significant imbalance, with ’aseptic
Meningitis’ as the majority class at 49%. Subfigure (b) demonstrates the post-SMOTE-NC class
distribution, which effectively balances the classes, resulting in an equal number of instances for each
class, totaling 2460 instances.

while maintaining feature integrity, which ensures fair representation and reduces bias
towards the majority class [168]. Figure 3.2 shows the class distribution pre-application
and post-application of SMOTE-NC.

3.2.3 Models investigation

In this section, we justify the choice of three tree-based decision models: the decision tree
classifier, random forest classifier, and XGBoost classifier. Among the several attractive
properties of tree-based methods is their ability to capture complex interactions between
predictors [169]. Moreover, they are considered less prone to outliers, require no distributional
assumptions or data transformations, and are intuitive [170].
Various metrics assess distinct characteristics of the classifier generated by the classification
algorithm [171]. This study utilized diverse performance metrics to evaluate the developed
classifiers. The chosen metrics encompass accuracy, recall, precision, F1-score, and area
under the receiver operating characteristic curve (AUROC). The dataset was divided into two
subsets to evaluate the classifiers’ performance appropriately: 70% for training the models
and 30% for testing their generalization capabilities. This division allowed us to effectively
train the classifiers on a significant portion of the data while reserving a separate portion
for independent assessment, serving as a benchmark to evaluate the classifier’s predictive
accuracy on unseen instances.
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3.2.4 Model agnostic explainibility

The SHAP (Shapley Additive exPlanations) method is a model-agnostic interpretation tech-
nique used to interpret the results of a predictive model. It employs the Shapley value,
a cooperative game theory concept, to quantify each feature’s contribution to the model’s
prediction. The Shapley value formula (𝜙 𝑗 (𝑣𝑎𝑙)) considers all possible feature combinations
and calculates the marginal contribution of each feature. It satisfies desirable properties like
efficiency, symmetry, dummy, and additivity.

The formula for the Shapley value (𝜙 𝑗 (𝑣𝑎𝑙)) is:

𝜙 𝑗 (𝑣𝑎𝑙) =
∑︁

𝑆⊆{1,...,𝑝}\{ 𝑗}

|𝑆 |!(𝑝 − |𝑆 | − 1)!
𝑝!

(𝑣𝑎𝑙 (𝑆 ∪ { 𝑗}) − 𝑣𝑎𝑙 (𝑆)) (3.1)

In the formula 3.1, 𝑆 represents a subset of features used in the model, 𝑥 is the vector of feature
values for the instance being explained, and 𝑝 is the total number of features. The function
𝑣𝑎𝑙 (𝑥) represents the prediction for the feature values 𝑥, marginalized over the features not
included in the set 𝑆. It is obtained by integrating the model’s predictions over the ranges
of the excluded features, weighted by their respective probabilities. The Shapley value for
feature 𝑗 is calculated by summing the contributions of all subsets 𝑆 that do not contain
feature 𝑗 and weighing each contribution by the number of possible orderings of the features
in the subset [21, 28].
The Shapley value satisfies several desirable properties, such as:

1. Completeness/Efficiency: The sum of the Shapley values for all features equals the
difference between the model’s prediction for the instance 𝑥 and the average prediction
for all possible instances:

𝑝∑︁
𝑖=1

𝜙 𝑗 = 𝑓 (𝑥) − 𝐸𝑋 ( 𝑓 (𝑋)) (3.2)

2. Symmetry: If two features values 𝑗 and 𝑘 contribute equally to all possible coalitions,
their Shapley values should be the same:

if 𝑣𝑎𝑙 (𝑆 ∪ { 𝑗}) = 𝑣𝑎𝑙 (𝑆 ∪ {𝑘})
for all 𝑆 ⊆ {1, . . . , 𝑝}\{ 𝑗 , 𝑘}

then 𝜙 𝑗 (𝑣𝑎𝑙) = 𝜙𝑘 (𝑣𝑎𝑙) (3.3)

3. Dummy: If a feature 𝑗 has no impact on the model’s prediction, regardless of its
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inclusion in coalitions, its Shapley value should be zero:

if 𝑣𝑎𝑙 (𝑆 ∪ { 𝑗}) = 𝑣𝑎𝑙 (𝑆)
for all 𝑆 ⊆ {1, . . . , 𝑝}

then 𝜙 𝑗 (𝑣𝑎𝑙) = 0 (3.4)

4. Linearity: When combining two models, represented by 𝑣𝑎𝑙 and 𝑣𝑎𝑙′ , the overall
prediction should correspond to the sum of the contributions from each model.

𝜙 𝑗 (𝑣𝑎𝑙 + 𝑣𝑎𝑙′) = 𝜙 𝑗 (𝑣𝑎𝑙) + 𝜙 𝑗 (𝑣𝑎𝑙′) (3.5)

The linearity property is beneficial when using ensemble models like XGBoost with Tree-
SHAP. It enables the computation of the Shapley Value for a feature by averaging the con-
tributions of each tree in the ensemble. This simplifies the calculation process and enhances
the interpretation of individual feature contributions.
In our study, we employed the TreeSHAP method to interpret the results of the XGBoost
model. We chose SHAP due to its model-agnostic nature, theoretical grounding, and abil-
ity to provide local and global interpretations. This approach improves the transparency,
interpretability, and identification of potential issues or biases in the model.

3.3 Results

3.3.1 Model validation

The performances of the classifiers are provided in Table 3.3. It includes key metrics such as
precision, recall, F1-score, and support for each Meningitis class within the dataset.
Precision represents the proportion of correctly predicted positive instances out of all in-
stances predicted as positive, indicating the model’s ability to avoid false positives. Recall,
also known as sensitivity, measures the proportion of correctly predicted positive instances
out of all actual positive instances, indicating the model’s ability to capture all relevant pos-
itives. The F1-score is the harmonic mean of precision and recall, providing a balanced
evaluation of the classifier’s performance by considering both metrics. Lastly, the support
column in the classification report indicates the number of instances belonging to each class,
providing context and understanding of the distribution and representation of classes in the
dataset.
Table 3.3 provides valuable insights into the model’s ability to classify different Meningitis
classes accurately. Random Forest (RF) and XGBoost (XGB) achieved consistently high
precision scores, ranging from 0.83 to 1.00 and 0.78 to 1.00, respectively, indicating their
effectiveness in minimizing false positives. The Decision Tree (DT) classifier also performed
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Table 3.3: Performance Metrics by Meningitis class

Meningitis cases Precision Recall F1-Score Support

DT RF XGB DT RF XGB DT RF XGB

Meningoccaemia 0.99 1.00 1.00 0.99 0.99 1.00 0.99 1.00 1.00 738
Meningoccal Meningitis 0.97 1.00 0.99 0.90 0.95 0.98 0.93 0.97 0.98 738
Tuberculous Meningitis 0.83 0.94 0.92 0.71 0.86 0.94 0.76 0.90 0.93 738
Meningitis by other bacteria 0.71 0.84 0.78 0.49 0.53 0.80 0.58 0.65 0.79 738
Unspecified Meningitis 0.50 0.88 0.79 0.42 0.42 0.73 0.45 0.57 0.76 738
Aseptic Meningitis 0.73 0.83 0.78 0.51 0.57 0.80 0.60 0.68 0.79 738
Meningitis due to other aeti-
ology

0.83 0.96 0.92 0.64 0.77 0.90 0.72 0.85 0.91 738

Haemophilus influenzae
Meningitis

0.91 0.95 0.94 0.94 0.98 0.99 0.92 0.96 0.97 738

Pneumococcal Meningitis 0.97 0.99 0.99 0.94 0.94 0.97 0.96 0.97 0.98 738

well, although slightly lower than RF and XGB, with precision scores ranging from 0.50 to
0.99.
Regarding recall, XGB demonstrated superior performance, consistently achieving scores
above 0.73 for all classes, indicating its capability to capture the most positive instances.
Decision Tree and Random Forest classifiers also exhibited lower recall scores, ranging from
0.42 to 0.99.
The F1 score combines precision and recall, evaluating the model’s overall performance for
each class. XGB achieved the highest F1 scores across all classes, ranging from 0.76 to 1.00,
followed closely by RF with scores ranging from 0.57 to 1.00. DT showed slightly lower F1
scores, ranging from 0.45 to 0.99, indicating a trade-off between precision and recall.
The support metric ensures a fair evaluation and comparison of the classifiers’ performance
across classes. The findings demonstrate that XGBoost and Random Forest consistently
perform strongly across all metrics. These classifiers are reliable for accurate Meningitis
classification, providing high precision in identifying positive cases and effectively capturing
the most positive instances. Their ensemble nature, robustness to overfitting, and ability
to capture complex relationships contribute to their superior performance compared to the
Decision Tree classifier.

Table 3.4 summarizes the results to provide an overview of the classifiers’ outcomes.
It can be concluded that the XGBoost model outperformed the other classifiers. With the
highest accuracy, precision (Macro Avg), recall (Macro Avg), F1-Score (Macro Avg) scores,
and One-vs-Rest AUROC (Area Under the Receiver Operating Characteristic), the XGBoost
model demonstrated superior performance in accurately classifying the data and capturing
the overall patterns in the dataset.
Furthermore, an in-depth analysis of the distinct test set originating from Setif’s Hospital,
comprising instances of pneumococcal Meningitis and tuberculous Meningitis, revealed sig-
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nificant performance metrics for the XGBoost model: (Accuracy: 0.7143, Precision: 1.0,
Recall: 0.7143, F1-Score: 0.7857). These results underscore the efficacy of the XGBoost
model in precisely categorizing cases within this subset, further affirming its robust perfor-
mance across specific meningitis types.
Figure 3.3 shows ROC curves and AUC calculations for meningitis classes to compare the

Figure 3.3: Area under the receiver operating characteristic curve (AUROC) of our multi-Class
XGBoost model on validation data.

classification performance for each class. Therefore, we selected the XGBoost model as the
optimal choice for our classification task due to its superior performance. To provide an in-
depth understanding of the XGBoost model and the factors driving its excellent performance,
we further delve into its interpretability in section 3.2.4. By utilizing Shapley values, we
explore the contributions of individual features towards the model’s predictions, unraveling
the key insights and highlighting the factors that significantly influence the classification
outcomes. This interpretability analysis enhances our understanding of the inner workings
of the XGBoost model, shedding light on its decision-making process and reinforcing our
confidence in selecting it as the optimal choice for our classification task.

3.3.2 XGBoost Global interpretability

In our study, we primarily focused on specific classes of Meningitis, namely meningococ-
caemia, meningococcal Meningitis, Tuberculous Meningitis, Aseptic Meningitis, Haemophilus
influenzae Meningitis, and Pneumococcal Meningitis. To gain insights into the predictive
performance of our XGBoost model, we generated a summary variable importance plot
(Figure 3.4).
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Table 3.4: Comparison of classifier performance metrics across various models.

Classifier Metrics (Macro Avg)

Accuracy Precision Recall F1-Score AUROC One-vs-Rest

Decision Tree 0.725 0.826 0.725 0.7691 0.854
Random Forest 0.778 0.932 0.778 0.838 0.886
XGBoost 0.900 0.900 0.90 0.899 0.944

Figure 3.4: Variable importance plot for the XGBoost classifier. This figure shows the average
contribution of each feature to the model’s predictions, determined by the mean absolute SHAP value
across all samples. Features are ranked according to the sum of SHAP value magnitudes across all
samples.

Our analysis reveals that several features, including Neutrophils and Lymphocytes level,
White Cell Count (WCC), Protein and Glucose ratio, the presence of Petechiae/Haemorrhagic
suffusion, along with signs of vomiting and neck stiffness, as well as the identification
of Gram-negative diplococci in cerebrospinal fluid (CSF) bacterioscopy and Streptococcus
pneumoniae in CSF culture, are among the most influential factors affecting the model’s
predictions.
Furthermore, we observed that the level of Neutrophils hardly influences the classification of
Haemophilus influenzae meningitis, Aseptic Meningitis, and Meningitis by other bacteria.
WCC has the most significant influence on Meningococcal and Tuberculosis meningitis.
We found that the presence of Petechiae/Haemorrhagic suffusion signs hardly influences the
classification of Meningococcaemia. These findings align with the existing literature, which
recognizes petechial purpuric exanthema as a classic sign of meningococcemia, present in
approximately 40% to 80% of cases [172].
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Glucose ratio substantially impacts Aseptic Meningitis, while Protein ratio has a greater
influence on Tuberculosis meningitis. Lymphocytes have a more significant impact on
Pneumococcal and Aseptic meningitis cases. The figure shows that Neisseria meningitidis and
Gram-negative diplococcus in CSF are associated with invasive meningococcal disease [173]
along with neck stiffness.
The Murky aspect of the CSF has the most impact on Haemophilus influenzae meningitis
and Pneumococcal cases. Additionally, the presence of Streptococcus pneumoniae in CSF
culture has the most impact on Pneumococcal meningitis cases. Furthermore, vomiting has a
more pronounced effect on Haemophilus influenzae Meningitis than other meningitis types.

3.3.3 Features impact on the Meningitis diagnosis outcome

The Global Interpretability results (Section 3.3.2) demonstrate that our diagnosis outcomes
typically align with expert knowledge. We provide additional diagrams constructed to depict
the feature’s importance and effect on each diagnosis outcome of Meningitis type.As shown
in Figure 3.5, our findings emphasize the significance of petechiae/hemorrhagic suffusion
as the most influential feature, increasing the likelihood of meningococcemia. This obser-
vation aligns with clinical reports, where this symptom is detected in approximately 50%
to 60% of patients, strongly associating it with the disease. In cases of meningococcemia,
confirmation of the diagnosis involves detecting the presence of Neisseria meningitidis in
blood cultures [174]. The strong positive impact of finding this organism in blood cultures
significantly increases the probability of meningococcemia for our model.
Moreover, our analysis reveals that clear cerebrospinal fluid appearance has a comparatively
modest yet positive influence on the model’s predictions. We also find that a low white cell
count (WCC), low protein ratio, low neutrophil level, and elevated glucose ratio positively
impact the diagnosis of meningococcemia. However, these results deviate from the typical
diagnostic characteristics of the condition, characterized by an elevated WCC count in cere-
brospinal fluid, increased protein levels, low glucose levels, and gram-negative diplococcus.
Further research is essential to reconcile these disparities and gain a comprehensive under-
standing of the diagnostic indicators for meningococcemia.
The cerebrospinal fluid (CSF) analysis is instrumental in diagnosing meningococcal Menin-
gitis, encompassing vital parameters like Gram stain, culture, glucose and protein levels, and
cell count. Notably, CSF findings indicative of bacterial Meningitis frequently include low
glucose and elevated protein levels. In some instances, Gram stains may reveal the presence
of Gram-negative diplococci [175]. The presence of neutrophils in cerebrospinal fluid is a
crucial indicator of a bacterial origin of the Meningitis.
Our analysis, represented in the beeswarm plot for Meningococcal Meningitis (Figure 3.6),
highlights noteworthy patterns. Specifically, higher values of Gram-negative diplococci,
signifying their presence, result in positive SHAP values. This implies that the absence of
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this bacterial type in CSF bacterioscopy corresponds to a lower predicted Meningococcal
meningitis class. Detecting these bacteria in CSF bacterioscopy is a robust indicator of
a meningococcal meningitis diagnosis [175]. A similar trend is observed when Neisseria
meningitidis is detected in blood culture. Furthermore, ’no agent’ in the PCR test aligns with
the absence of viral agents as the causative factor in meningococcal Meningitis. Addition-
ally, our findings demonstrate that higher Glucose ratio values yield negative SHAP values,
while lower values correspond to positive SHAP values. This pattern also extends to the age
attribute. In contrast, the protein ratio and Neutrophil level exhibit the opposite effect.
Our findings are consistent with these clinical observations and diagnostic standards. Com-
mon symptoms of meningococcal Meningitis often involve a stiff neck, reduced cognitive
function, and other signs of meningeal inflammation.
Protein ratio, white cell count, and Neutrophil levels significantly influence the diagnosis of
tuberculous Meningitis. Elevated WCC, Neutrophils, and glucose levels negatively impact
the prediction of this class. In contrast, high lymphocyte levels and protein ratios contribute
positively to diagnosing tuberculous meningitis. Shap values also indicate that the presence
of the BCG vaccine feature affects the model’s predictions for tuberculosis meningitis. This
vaccine consistently protects against the most severe forms of TB, including TB meningitis
in children [176]. However, its effectiveness in preventing tuberculosis in adults is compara-
tively lower.
Figure 3.7 demonstrates that vomiting and neck stiffness signs negatively affect the diagnosis
of tuberculous Meningitis. Tuberculous Meningitis is frequently observed in patients with
tuberculosis and/or HIV/AIDS, either as a new occurrence of the disease or as a consequence
of a prior tuberculosis infection. In cases of co-occurring tuberculosis and HIV, patients
may currently have tuberculosis, indicating a co-infection, or have a history of tuberculosis.
Although our dataset lacks specific information on the causative agent, these observations
align with the well-established understanding that tuberculous Meningitis is primarily caused
by Mycobacterium tuberculosis. It is essential to consider these factors when diagnosing
patients with suspected tuberculous Meningitis.
Aseptic Meningitis is a condition characterized by negative bacterial cultures of CSF and
can be caused by various aetiologies [177]. It is commonly, associated with viral Menin-
gitis or prior antibiotic usage. Our analysis (Figure 3.8) has revealed factors that positively
correlate with diagnosing aseptic Meningitis. These include elevated levels of glucose and
lymphocytes in the CSF, along with negative results in culture and latex tests for bacterial
agents. Conversely, a diagnosis of aseptic Meningitis has been associated with lower levels of
neutrophils and reduced protein levels in the CSF. The presence of seizures and neck stiffness
positively predicts this particular outcome.
The diagnosis of Haemophilus influenzae meningitis relies on a combination of clinical
manifestations and specific diagnostic investigations, including laboratory testing and cere-
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brospinal fluid analysis. In cases of Haemophilus influenzae meningitis, the cerebrospinal
fluid often appears cloudy or turbid (murky) and contains an increased number of white blood
cells, primarily neutrophils. Our Shapley value analysis (Figure 3.9) reinforces these findings,
highlighting that high neutrophil values, relatively elevated white cell count (WCC), and a
cloudy CSF appearance positively influence the prediction of the target class. Confirmation
of the presence of Haemophilus influenzae type b (Hib), the most common causative organ-
ism, can be achieved through Gram staining and bacterial culture of the CSF. Haemophilus
influenzae infections are most prevalent at the extremes of age, affecting infants, young chil-
dren, and older adults. However, due to specific vaccines, the incidence of Haemophilus
influenzae infections has significantly decreased in the general population. Nevertheless, it
is still observed in patients aged 65 and older with underlying conditions. The dataset used
for this analysis consists of medical records and clinical data from individuals aged 18 years
and older. This age range was chosen to focus on the adult population and provide insights
into cerebrospinal fluid profiles in cases of Haemophilus meningitis. Our analysis further
confirms that the presence of Haemophilus influenzae, as indicated by culture results, is a
positive factor in diagnosing Haemophilus meningitis.
Pneumococcal Meningitis is often marked by a cloudy appearance of the CSF, elevated white
blood cell count with a predominance of neutrophils, a substantial reduction in glucose lev-
els, occasionally reaching near zero, and high protein levels within the CSF. Moreover, CSF
bacterioscopy and LATEX tests can confirm the presence of Streptococcus pneumoniae, the
bacteria responsible for pneumococcal Meningitis. Our analysis (Figure 3.10) reaffirms the
typical diagnostic indicators of pneumococcal Meningitis. This includes the positive influ-
ence of cloudy/Murky appearance of the CSF and decreased glucose levels on predicting the
disease. Furthermore, the presence of Gram-positive cocci and Gram-positive diplococci in
CSF bacterioscopy strongly contributes to diagnosing pneumococcal Meningitis. Consistent
with these findings, identifying Streptococcus pneumoniae through culture and LATEX tests
further supports the diagnosis of Pneumococcal Meningitis.
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Figure 3.5: SHAP summary plot for Meningococcaemia Meningitis.

Figure 3.6: SHAP summary plot for Meningococcal Meningitis.
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Figure 3.7: SHAP summary plot for Tuberculous Meningitis.

Figure 3.8: SHAP summary plot for Aseptic Meningitis.
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Figure 3.9: SHAP summary plot for Haemophilus influenzae Meningitis.

Figure 3.10: SHAP summary plot for Pneumococcal Meningitis.

3.3.4 Influence of Neutrophil and Lymphocyte Levels on Meningitis Predictions

Figure 3.11 illustrates the SHAP (SHapley Additive exPlanations) dependence plot, offering
insights into the impact of Neutrophil and Lymphocyte levels on the model’s predictions. It
provides a clear visualization of how changes in these specific biomarkers impact the predic-
tive outcome of the model. We focused our analysis on cases of meningococcal Meningitis,
tuberculosis meningitis, aseptic Meningitis, and Haemophilus influenzae meningitis, as these
categories displayed distinct interaction patterns with these features.

Analysis shows a common trend in the dependence plots, characterized by a monotonically
increasing curve for meningococcal and Haemophilus influenzae Meningitis. This suggests
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Figure 3.11: Dependence plot illustrating the impact of Neutrophil and Lymphocyte levels on pre-
dicting outcomes for meningococcal Meningitis, tuberculosis meningitis, aseptic Meningitis, and
Haemophilus influenzae meningitis.

that changes in these features significantly affect the model’s predictions, as evidenced by the
positive Shapley values. We further identified specific ranges where variations in neutrophil
and lymphocyte levels substantially impacted the predictions. This range typically falls within
the ¿40% neutrophils and 40-60% lymphocytes range for meningococcal Meningitis. Within
this range, these feature variations notably influence the model’s predictions. Similarly, for
Haemophilus influenzae meningitis, we observed a monotonic increasing pattern, particularly
with a strong predominance of neutrophils. However, a significant threshold effect becomes
evident when neutrophil levels reach approximately 80%, resulting in a noticeable and sub-
stantial increase in Shapley values. This highlights the impact of neutrophils on the model’s
predictions for both types of Meningitis. Conversely, Tuberculous and Aseptic meningitis
exhibited a typical pattern characterized by a monotonically decreasing curve. Positive Shap-
ley values in Tuberculous Meningitis were associated with neutrophil levels below 60% and
high lymphocyte levels above 60%, signifying their influence on the model’s predictions. In
contrast, Shapley values consistently remained below 0 for Aseptic Meningitis, primarily for
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neutrophil levels around 40% and lymphocyte levels below 50-60%. This suggests a pre-
dominance of lymphocytes influencing the model’s predictions for Tuberculous and Aseptic
meningitis.

3.4 Discussion

Our research focused on applying machine learning techniques to diagnose various types of
acute Meningitis. Machine learning algorithms analyze large volumes of biomedical labo-
ratory testing, clinical symptoms, or clinical records, enabling the identification of intricate
disease patterns [178]. We have applied three tree-based decision models, and the XGBoost
classifier outperformed the others, achieving 90% accuracy and a 94% AUROC. Through
a comprehensive analysis using the SHapley Additive exPlanations technique, we identified
key diagnostic indicators for different meningitis types, shedding light on the significance of
specific clinical signs and laboratory biomarkers.
The results of the Global Interpretability (see Section 3.3.2) demonstrate that our diagno-
sis outcomes typically align with expert knowledge. The identified diagnostic indicators
can aid healthcare professionals in making more precise and timely diagnoses and reinforce
confidence and effectiveness in integrating AI-driven techniques into clinical practice. This
can improve patient outcomes and reduce misdiagnoses, as early intervention for Meningitis
diagnosis is crucial. Furthermore, we provide additional diagrams to depict the features’
importance and effect on each diagnosis outcome of Meningitis type.
Our analysis identifies vital diagnostic indicators for various forms of Meningitis. Notably,
petechiae/hemorrhagic suffusion is a significant predictor for meningococcemia (see Figure
3.5), while other factors exhibit distinctive patterns involving clear cerebrospinal fluid appear-
ance and specific biomarkers. Also, the presence of Gram-negative diplococci and Neisseria
meningitidis, as shown Figure 3.6, strongly supports the diagnosis of meningococcal menin-
gitis [175], with specific biomarkers exhibiting contrasting effects. Tuberculous Meningitis
is significantly influenced by attributes such as protein ratio, white cell count, Neutrophils,
Lymphocytes, and the presence of the BCG vaccine. Aseptic meningitis diagnosis (see Figure
3.8) correlates with elevated glucose and lymphocyte levels, negative culture and latex tests,
low neutrophil levels, and reduced protein levels, with seizures and neck stiffness contributing
positively. Haemophilus influenzae meningitis diagnosis is associated with high neutrophil
values, elevated white cell count, and a cloudy cerebrospinal fluid appearance, with the pres-
ence of Haemophilus influenzae in culture positively influencing the diagnosis (see Figure
3.9). Pneumococcal meningitis diagnosis is characterized by a cloudy cerebrospinal fluid
appearance, low glucose levels, the presence of Gram-positive cocci in CSF bacterioscopy,
and the identification of Streptococcus pneumoniae (Figure 3.10).

To gain deeper insights into the influence of specific biomarkers on the predictive out-



Chapter-3. Towards XAI agnostic explainability to assess differential diagnosis for Meningitis diseases 88

comes of our model, we focused on studying the impact of Neutrophil and Lymphocyte levels.
We identified distinct ranges where variations in these biomarkers significantly affected the
model’s predictions. For meningococcal Meningitis, Neutrophil levels above 40% and Lym-
phocyte levels between 40% to 60% notably influenced the model’s outcomes. Similarly,
in the case of Haemophilus influenzae meningitis, Neutrophil predominance is observed
with a significant threshold effect when it reaches 80%. This highlighted the critical role
of Neutrophils in predicting both types of Meningitis. The case of Tuberculous and Aseptic
meningitis showed a common decreasing pattern of Shapley values. For Tuberculous Menin-
gitis, Neutrophil levels below 60% , and high Lymphocyte levels above 60% were associated
with positive Shapley values. Conversely, Aseptic Meningitis consistently had Shapley values
below 0, primarily when Neutrophil levels were around 40%, and Lymphocyte levels were
below 50-60%.
While our study draws on a substantial dataset and has undergone rigorous validation, several
limitations must be acknowledged. First, interpretability lacks standard evaluation metrics,
making quantifying and comparing different models challenging.

3.5 Conclusion

One crucial aspect of clinical reasoning is differential diagnosis, where a list of potential
problems causing a patient’s signs and symptoms is developed. This process allows for a
thorough investigation to rule out possibilities and confirm an accurate diagnosis. However,
losing follow-up on investigations and patients leads to diagnostic delays or misdiagnoses. In
this work, we developed an explainable AI automatic medical decision approach to highlight
the importance of specific features in accurately diagnosing different types of Meningitis. The
XGBoost model demonstrates a vital accuracy of 0.90 and AUROC of 0.944. We performed
an evaluation test using collected data from Setif’s hospital in Algeria to assess the model’s
efficiency in handling diverse and unseen real-world instances. The test set includes instances
of pneumococcal Meningitis and tuberculous Meningitis and reveals notable performance
metrics for the XGBoost model: (Accuracy: 0.7143, Precision: 1.0, Recall: 0.7143, F1-
Score: 0.7857). To enhance our model’s trustworthiness, we delve deeper into its workings
using Shapley Additive Explanations. SHAP helps us break down the model’s output by
assessing the impact of each feature. This allows us to comprehend the significance of
each feature, facilitating clear explanations to medical practitioners, aiding in their decision-
making process, and ensuring consistent and reliable results. Our study identified critical
biomarker ranges for meningitis diagnosis. For meningococcal Meningitis, Neutrophil levels
> 40% and Lymphocyte levels 40−60% were influential. Haemophilus influenzae meningitis
was associated with Neutrophil predominance, specifically when reaching 80%, highlighting
Neutrophils’ significance. Positive Shapley values were associated with Neutrophil levels
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approximately < 60% and Lymphocyte levels ≥ 60% in Tuberculous Meningitis. Conversely,
Aseptic Meningitis consistently had Shapley values below 0 when Neutrophil levels were
around 40% and Lymphocyte levels were < 50 − 60%.
Understanding the relative influence of these factors can help healthcare professionals improve
diagnostic accuracy and optimize treatment strategies. Our model utilizes accurate and
relevant attributes that closely resemble clinical standards. While most attributes align with
these standards, we’ve also uncovered some disparities that highlight the need for further
investigation to understand the diagnostic indicators of meningitis classes and reconcile the
differences between our findings and the expected characteristics.

3.6 Future directions

Although our study benefits from a significant dataset and rigorous external validation, it
must recognize several limitations. Notably, the absence of standardized evaluation metrics
for interpretability poses challenges in quantifying and comparing interpretability across
different models. Furthermore, our training set solely originates from a single country,
focusing exclusively on the adult population. This limitation may restrict the generalizability
of our models, as meningitis diagnosis and characteristics can vary significantly across diverse
geographical regions and populations. To address this issue, we plan to expand the dataset
collection globally, collaborate internationally for diverse data, and ensure adaptability to
different healthcare systems and diagnostic practices. Furthermore, we aim to leverage
external expertise through expert evaluation to validate the explanations provided by the
model, ensuring alignment with domain-specific knowledge and expectations. Moreover, we
plan to conduct validation studies across different populations to enhance model applicability
on a broader spectrum of cases and diagnostic patterns and practices.
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4.1 Introduction

Meningococcal meningitis is a severe bacterial infection that affects the meninges, caused by
Neisseria meningitidis or meningococcus. Neisseria meningitidis accounts for approximately
11% of bacterial meningitis cases in individuals over 16 [179]. Criteria for suspicion of
meningococcal meningitis include elevated serum leukocytes, relatively elevated granulo-
cytes, and CSF leukocyte counts >800 cells/mm3. CSF protein levels tend to be elevated,
while glucose levels are reduced, and the presence of fever and meningeal signs such as
sensitivity to light, nausea, vomiting, altered mental status, and a characteristic rash in some
cases [180]. Although a positive result on a Gram stain for bacteria confirms the presence
of bacterial meningitis, its sensitivity in accurately detecting the infection can range between
50% and 90% [179]. Without prompt antibiotic treatment, approximately 11% to 19% of
cases result in severe complications and permanent sequelae, such as brain damage, ampu-
tation, hearing or vision loss, skin scarring, and neurological impairments [181]. Despite
treatment, meningococcal infections have a high mortality rate (10%) and a strong epidemic
potential [182].
Several studies have been proven effective in diagnosing different pathologies using ML and
Deep Learning (DL) techniques. These techniques leverage advanced algorithms and com-

90
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putational models to analyze complex datasets and extract meaningful patterns or features
relevant to disease diagnosis. Nevertheless, ethical and legal considerations surround the
use of AI in healthcare, particularly concerning issues related to the lack of transparency
in decision-making processes and interpretability [183]. This challenges clinicians in un-
derstanding the process behind a diagnosis and trusting the results. The degree to which
a physician can predict the outcome of a model or understand the reasons for its deci-
sions is called interpretability. Local interpretability helps clinicians understand individual
predictions, helps in final diagnosis decisions, and helps in initiating treatment. Global in-
terpretability evaluates overall model behavior, enhancing trust and identifying biases. For
this purpose, we assess ML models’ local and global interpretability and explain how they
perform the Meningococcal meningitis diagnosis.

The main contribution of this paper is as follows:
We propose an Explainable AI classification model for detecting Meningococcal menin-

gitis among various types of meningitis. Our work assesses the model’s reliability in distin-
guishing between cases. It calculates an importance value for each feature to reflect the extent
to which the ML model relies on that particular feature using ELI5 [184] and LIME [29]
techniques.

We conducted our experiments on the SINAN dataset for meningitis, and in consulta-
tion with infectious disease experts, we selected 34 features based on their informativeness
and relevance to meningitis diagnosis. We compare the model transparency with clinicians’
assessments, identifying key variables influencing the automatic diagnosis process. Our
analysis reveals that explanations from ELI5 and LIME align closely with physicians’ inter-
pretations, particularly concerning bacterioscopy, culture results, and CSF biomarker levels
in Meningococcal meningitis. Clinicians exhibit substantial trust and reliance on these AI-
driven explanations, enhancing diagnostic precision and clinical decision-making. The rest
of the chapter is organized as follows. Section 4.2 describes in detail the proposed method.
Section 4.3 illustrates the experimental results. Section 4.4 summarizes the findings.

4.2 Methodology

Meningococcal meningitis is a severe bacterial infection predominantly caused by Neisseria
meningitidis. This bacterium often resides harmlessly in the human nasopharynx but can,
under certain conditions, invade the bloodstream and central nervous system, leading to
either meningitis, septicemia, or both. Meningococcal meningitis can present as a fulminant
condition where patients may rapidly deteriorate, displaying classic symptoms like fever,
headache, neck stiffness, and altered mental status. However, these symptoms can vary
significantly; for instance, only 30-40% of cases show all four classic symptoms, with
additional symptoms such as nausea, vomiting, photophobia, and hypersensitivity to sound
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commonly observed [96].
The illness can manifest differently across age groups, making diagnosis complex, par-

ticularly in the elderly where typical symptoms might be less pronounced [107]. In contrast,
children and young adults often present more overt signs, including a distinctive petechial
rash, which may indicate septicemia and severe systemic involvement, such as septic shock
and multiorgan failure—a characteristic more common in meningococcal disease than other
forms of bacterial meningitis [96]. Meningococcal meningitis exhibits different epidemio-
logical patterns globally. While serogroups B and C are prevalent in developed regions like
Europe and North America, serogroup A has historically dominated Africa’s ”Meningitis
Belt,” spanning from Nigeria to Somalia. Outbreaks have been documented periodically, of-
ten reaching epidemic levels, underscoring the disease’s public health significance. Various
meningococcal strains have exhibited resilience to antibiotic treatment over decades, with
only minimal resistance, likely due to the bacteria’s adaptability in gene exchange with other
nasopharyngeal microbes [185].

Our AI approach aims to improve the diagnosis and management of meningococcal
meningitis through an explainable AI framework designed to enhance transparency and
support clinical decision-making. We conducted our experiments using the SINAN database,
obtained from the Brazilian Government’s Health Information System on Notifiable Diseases,
which comprises data from 15,275 patients diagnosed with meningitis cases. Specifically, we
focused on cases notified with Meningococcal meningitis (N = 460) to study how our model
can predict the disease compared to other types of meningitis. To ensure unbiased learning,
we balanced the dataset by randomly sampling an equal number of rows as ’Meningococcal
meningitis’ for the ’Other’ category, including various meningitis types. This step is vital
as imbalanced data can lead to difficulty modeling minority classes and subsequently lower
model precision [186]. We incorporated 34 features, including demographic details, medical
history, pre-existing conditions, and clinical signs, selected in consultation with infectious
disease experts for their relevance to meningitis diagnosis. Table 4.1 provides a detailed
description of the diagnostic variables used in the study, along with their respective values.
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Table 4.1: Description of predictive indicators for the diagnosis

Diagnostic ex-
amination

Features and values

Demographic In-
formations

Age and Sex: Numerical, Male or Female: True or False

Medical History AIDS/HIV, Tuberculosis, ARI, Trauma, Hospital Infection,
Other Diseases/Illnesses: True or False

Vaccination His-
tory

Meningococcal C Conjugate, BCG, Triple Viral,
Hemophilus Influenzae Type B (Hib), Pneumococcus: True
or False

Symptoms and
Signs

Headache, Fever, Vomiting, Seizures, Neck stiffness, Pe-
techiae/haemorrhagic suffusion, Kernig/Brudzinski, Coma:
True or False

CSF Chemocyto-
logical examina-
tion

Lymphocytes, CSF white blood cell (WBC), Neutrophils,
Protein ratio CSF/serum, Glucose ratio CSF/serum: Nu-
merical

CSF Aspects CSF aspect: Clear, Purulent, Haemorrhagic, Cloudy, Xan-
thochromic, Other, Ignored

CSF Microbio-
logical Examina-
tion

CSF Bacterioscopy: Gram negative diplococci, Gram posi-
tive diplococci, Gram positive bacilli, Gram negative bacilli,
Gram positive cocci, Gram negative cocci, Gram negative
diplobacilli, Cocobacilli, Other Bacteria, No agent, Unreal-
ized, Ignored

Microbiological
culture CSF and
Blood

CSF culture and Blood/serum culture: Neisseria meningi-
tidis, Haemophilus influenzae, Streptococcus pneumoniae,
Other bacteria, No agent, Unrealized, Ignored

Latex agglutina-
tion tests

LATEX CSF and LATEX Blood/serum: Neisseria meningi-
tidis, Haemophilus influenzae, Streptococcus pneumoniae,
Streptococci(sp, pigeons, alpha, hemolytic, faecalis, agalac-
tia), Cryptococci, Other Bacteria, No agent, Unrealized,
Ignored

Polymerase
Chain Reaction
test

PCR Blood/serum: Neisseria meningitidis, Haemophilus
influenzae, Streptococcus pneumoniae, Other viruses, No
agent, Unrealized, Ignored, Not identified

We conducted data cleaning and typo elimination to ensure data consistency and accuracy,
which could otherwise affect the analysis or interpretation. Collaboration with a medical team
facilitated feature selection, ensuring the chosen features were relevant and meaningful for
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the medical diagnosis task, specifically infectious diseases. One-hot encoding was then
applied to categorical variables to prepare them for further analysis. This encoding allowed
us to assess the impact of each category within categorical variables on the diagnostic
outcome. In the current work, we compared eight machine learning models, including logistic
regression, K-nearest neighbors, Support Vector Machine (SVM), decision tree, gradient
boosting, AdaBoost, random forest, and LightGBM classifier. Boosting ensemble techniques,
such as Gradient Boosting and AdaBoost, were particularly effective because they combined
multiple weak learners into a strong predictive model. In these techniques, each subsequent
classifier prioritizes instances previously misclassified by earlier ones, thereby enhancing
classification accuracy [169]. Sensitivity (recall) metrics were prioritized to ensure the
model’s effectiveness in identifying true positive cases and minimizing the risk of undetected
infections. False negatives, where the model incorrectly predicts a negative result for a positive
case, can have severe consequences in medical diagnosis, potentially leading to delayed or
missed treatments for patients with meningitis. AUROC (Area Under the Receiver Operating
Characteristic Curve) measures the model’s ability to correctly distinguish between patients
with Meningococcal meningitis (positive cases) and those with other types of meningitis
(negative cases). A higher AUROC value, closer to 1, indicates a better-performing model
with higher sensitivity and specificity. The Receiver Operating Characteristic (ROC) curve
is used to evaluate the performance of our classifiers. It offers a graphical representation of
the trade-off between sensitivity (true positive rate (TPR)) represented on the y-axis and 1-
specificity (false positive rate (FPR)) depicted on the x-axis across various threshold values for
class assignment. Sensitivity measures the proportion of true positive predictions correctly
identified by the model, while specificity measures the proportion of true negatives correctly
identified [187].
Explainability aims to bridge the gap between the complex inner workings of machine
learning models and human understanding. Gradient Boosting models are typically black-
box models as they involve complex feature interactions. Various explainability techniques
are employed to assess the transparency of our model. These techniques help clinicians
understand not only what decision the model made but also why it made that decision.
Global explainability methods offer insights into the overall behavior of the model across the
dataset. Techniques such as feature importance scores or ELI5 (Explain Like I’m 5) provide
a comprehensive overview of how various features contribute to the model’s predictions on
average. The ELI5 aids healthcare professionals in identifying the most influential factors
guiding the model’s diagnostic decisions. However, ELI5 is particularly effective for linear or
tree-based models, such as Gradient Boosting, which made it valuable for our analysis [188].
The permutation importance technique is also applied to gain insights into the model’s
behavior across the dataset. It involves shuffling the values of individual features in the
unseen dataset and observing the impact on the model’s performance. It evaluates feature
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importance based on how much the model’s performance deteriorates when the feature
values are randomly permuted [21]. Local explainability methods, on the other hand, provide
insights into individual predictions. For instance, techniques like LIME (Local Interpretable
Model-agnostic Explanations) generate locally faithful explanations by approximating the
decision boundary around a specific instance. This model-agnostic approach is advantageous
as it allows healthcare professionals to gain insights into the underlying reasons behind
one particular diagnostic prediction for a given medical case, irrespective of the model’s
complexity or architecture [21].

4.3 Experiment and Results

This work was conducted on the Kaggle platform using Python’s scikit-learn1 library for ma-
chine learning model development and optimization. The model interpretation was performed
using ELI52 and LIME3 libraries to analyze feature importances and individual prediction
explanations.

Exploratory data analysis serves as a preliminary step in understanding the characteristics
of a dataset, revealing key features and potential relationships for further study. Figure 4.1
shows a balanced class distribution, ensuring fair predictions in all classes and enhancing the
reliability of the model.

Figure 4.1: Bar plot displaying class distribution between Meningococcal meningitis and other types.

Figure 4.2 illustrates the relationships between numerical features extracted from cere-
brospinal fluid samples in cases of Meningococcal meningitis and other types of meningitis.
Kernel density estimates (KDE) are plotted in the lower triangle and marginal plots for nu-
merical characteristics, including age, neutrophils, glucose ratio CSF / serum, CSF WBC,
protein ratio CSF / serum and lymphocytes. These plots display the probability density
of each numerical feature with Meningoccal meningitis and other types of meningitis, re-

1Scikit-learn library: https://scikit-learn.org/stable/
2ELI5 library: https://eli5.readthedocs.io/en/latest/overview.html
3LIME library: https://lime-ml.readthedocs.io/en/latest/

https://scikit-learn.org/stable/
https://eli5.readthedocs.io/en/latest/overview.html
https://lime-ml.readthedocs.io/en/latest/
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vealing insights into their distribution and spread. Peaks in density indicate regions with
higher data concentration, while multiple peaks suggest the presence of distinct subpopula-
tions. This observation is particularly evident in the ”other” category, which encompasses
various meningitis types and immune responses. Pearson correlation coefficients are also dis-
played to indicate the strength of the relationships between these features. Higher neutrophil
percentages align with lower lymphocyte percentages in meningococcal meningitis cases,
suggesting an inverse relationship. The strong negative linear correlation of (𝑟 = −0.68)
supports this observation. This helps understand the underlying data distribution and identify
potential patterns or differences between Meningococcal meningitis cases and other types of
meningitis.
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Figure 4.2: Pair plot showing numerical features from cerebrospinal fluid samples in Meningoccal
meningitis vs. other types. Includes KDE plots and Pearson correlations, offering insights into data
distribution and patterns.

This study assesses machine learning models’ reliability, accuracy, and effectiveness in
detecting meningococcal meningitis. Eight different machine learning models were trained
on a subset of data comprising 70% of the dataset and tested using the remaining 30%.
GridSearch cross-validation is utilized for hyperparameter tuning to identify the optimal
model configuration. This technique involves applying cross-validation within the grid
search process, utilizing 6 folds to assess the model’s performance across various data
subsets. Table 4.2 summarizes the performance metrics and hyperparameters of different
classifiers used in this study. It provides information on hyperparameters, best parameters,
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Figure 4.3: Receiver operating characteristic curves of different classifiers

and various evaluation metrics, including training and validation accuracy, precision, recall,
AUROC, and F1 Score. The gradient Boosting model demonstrated superior performance in
accurately identifying meningococcal meningitis cases compared to other classifiers (Recall
= 0.826, AUROC = 0.930). Figure 4.3 displays Receiver Operating Characteristic curves for
different classifiers used in this study, along with their corresponding Area Under the Curve
(AUC) values to evaluate the performance of the classifiers. It plots the TPR against the FPR
at various threshold settings.

Table 4.2: Performance metrics and hyperparameters for different classifiers

Classifier Hyperparameters Best Parameters Training
Accuracy

Training
Precision

Training
Recall

Training
AUROC

Training
F1 Score

Validation
Accuracy

Validation
Precision

Validation
Recall

Validation
AUROC

Validation
F1 Score

Logistic
Regression

C: [0.001, 0.01, 0.1, 1, 10, 100]
penalty: [’l1’, ’l2’, ’elasticnet’]

C: 1
penalty: ’l2’

0.904 0.936 0.863 0.968 0.898 0.872 0.918 0.812 0.924 0.862

KNN
n neighbors: [5, 10, 15, 20]
weights: [’uniform’, ’distance’]
p: [1, 2]

n neighbors: 20
p: 1
weights: ’distance’

1.000 1.000 1.000 1.000 1.000 0.823 0.828 0.804 0.907 0.816

SVC
C: [0.001, 0.01, 0.1, 1, 10]
kernel: [’linear’, ’rbf’]
gamma: [’scale’, ’auto’]

C: 0.1
gamma: ’auto’
kernel: ’rbf’

0.912 0.965 0.851 0.970 0.904 0.872 0.932 0.797 0.925 0.859

Decision
Tree

criterion: [’gini’, ’entropy’]
max depth: [None, 4, 5, 10, 15]
min samples split: [2, 5, 10, 15]
min samples leaf: [1, 2, 4]

criterion: ’gini’
max depth: 10
min samples leaf: 2
min samples split: 15

0.930 0.957 0.898 0.982 0.926 0.826 0.845 0.790 0.888 0.816

Gradient
Boosting

number of estimators: [50, 100, 120]
learning rate: [0.01, 0.1, 0.2]
max depth: [3, 4, 5]
subsample: [0.8, 0.9, 1.0]

learning rate: 0.1
max depth: 4
number of estimators: 120
subsample: 0.8

0.996 0.996 0.996 0.996 0.996 0.879 0.919 0.826 0.930 0.870

AdaBoost
number of estimators: [50, 100]
learning rate: [0.01, 0.1, 0.2, 0.5, 1]
base estimator max depth: [1, 2, 3, 4]

base estimator max depth: 3
learning rate: 0.01
number of estimators: 80

0.904 0.939 0.860 0.976 0.898 0.840 0.855 0.812 0.911 0.833

Random
Forest

number of estimators: [50, 80, 100]
max depth: [None, 5]
min samples split: [5, 10]
min samples leaf: [2, 4]
bootstrap: [True, False]
max features: [’sqrt’, ’log2’]
min impurity decrease: [0.0, 0.1, 0.2]

bootstrap: True
max depth: 3
max features: ’sqrt’
min impurity decrease: 0.1
min samples leaf: 2
min samples split : 5
number of estimators: 120

0.788 0.798 0.761 0.882 0.779 0.791 0.816 0.739 0.855 0.776

LightGBM
C: [0.001, 0.01, 0.1, 1, 10]
kernel: [’linear’, ’rbf’]
gamma: [’scale’, ’auto’]

learning rate: 0.1
max depth: 10
number of estimators: 100
subsample: 0.8

1.00 1.00 1.00 1.00 1.00 0.865 0.903 0.812 0.919 0.855

To enhance the understanding of the Gradient Boosting model’s output, explainability
techniques such as Eli5 and LIME are employed. These techniques provide insights into the
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model’s predictions, facilitating model debugging, validation, and assessment of trustwor-
thiness. Figure 4.4 showcases permutation importance analysis using ELI5, explaining the
gradient boosting model’s output globally. It presents feature weights, highlighting the most
influential features with the highest weights. These values indicate each feature’s average
impact on predictions, with higher weights signifying greater importance as changes in these
features lead to larger decreases in model performance. Identifying Neisseria meningitidis
and gram-negative diplococci through culture and smear examination of CSF has the most
significant impact on the model’s ability to predict Meningococcal meningitis, alongside the
detection of Neisseria meningitidis bacteria in the latex agglutination test of the CSF. Con-
versely, detecting other bacteria like Streptococcus pneumoniae or Haemophilus influenzae
in CSF cultures is relevant for distinguishing Meningococcal meningitis from other types of
meningitis. White cell counts in CSF and age also provide valuable insights to our model.
These findings align with real-world observations, as Neisseria meningitidis typically presents
as gram-negative diplococci under microscopy [189].

Figure 4.4: Permutation Importance Analysis: Importance of Features in Gradient Boosting Model
Predictions using ELI5

Further analysis evaluates the role of non-laboratory features in diagnosing meningo-
coccal meningitis, aiming to determine their diagnostic reliability. Figure 4.5 illustrates
the results of permutation importance analysis using the ELI5 library, excluding microbi-
ological bacterioscopy examinations, CSF and blood culture, latex agglutination and PCR
tests. The CSF Chemocytological examination tests are identified as paramount features in
detecting meningococcal meningitis, along with the potential impact of vaccination status
and certain symptoms like neck stiffness, petechiae/hemorrhagic suffusion, vomiting, and
Kernig/Brudzinski signs. Conversely, features related to CSF aspect (Xanthochromic, Puru-
lent) and pre-existing illnesses (AIDS/HIV, Trauma, Tuberculosis) exhibit lower importance
scores but remain informative for detecting the meningococcal meningitis.

While global explanation offers insights into the overall model behavior based on feature
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Figure 4.5: Permutation Importance Analysis: Permutation Importance Analysis Results Excluding
Non-Laboratory Tests using ELI5

importance, local explanation in the other hand, delves into individual predictions, showcasing
the specific contributions of features for two instances—one categorized as Meningococcal
meningitis (Fig. 4.6b) and the other as ’Other’ type (Fig. 4.6a). The model predicted the
specific instance as Meningococcal meningitis with a likelihood of 0.986. Important features
contributing to this prediction include the presence of Neisseria meningitidis and gram-
negative diplococci in the CSF culture and smear examination. Additionally, the absence of
other bacteria, such as Streptococcus pneumoniae or Haemophilus influenzae, along with low
lymphocyte percentage (13%) and Glucose ratio in CSF (0.010) and high levels of Neutrophils
(71%) and WBC (10000 cells/mm3) significantly influenced the model’s decision, indicating
typical characteristics of Meningococcal meningitis.

(a) ELI5 explanation for an instance classified as
’Other’ type

(b) ELI5 explanation for an instance classified as
Meningococcal meningitis

Figure 4.6: Comparison of ELI5 explanations for two instances

Similarly, the likelihood of predicting the instance as having another type of meningitis is
0.974. The top features include PCR Blood/serum indicating identification of an infectious
agent (negative value), along with a high level of Lymphocytes (90%), high CSF Protein
ratio (0.7 g/L, which is above the normal range [0.15 g/l - 0.4 g/l] [190], low CSF WBC
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(3 cells/mm3), low neutrophils (0%), absence of Neisseria meningitidis in the PCR test,
and the presence of Petechiae/hemorrhagic suffusions strongly support the classification as
another type of meningitis. The presence of petechiae and hemorrhagic suffusions, along
with the absence of Neisseria meningitidis in the PCR test, could indicate other conditions or
infections that share similar clinical presentations with meningococcal meningitis. Therefore,
the model’s prediction may reflect the presence of these symptoms alongside other clinical
or laboratory findings that support a diagnosis of non-meningococcal meningitis.
We extended our analysis by employing LIME explanations to interpret individual instances.
Figure 4.7 and 4.8 display the individual feature contributions for the same instances as in
the ELI5 comparison.

Figure 4.7: LIME explanation for an instance classified as ’Other’ type

Figure 4.8: LIME explanation for an instance classified as Meningococcal meningitis

The model predicted the instance as diagnosed with Meningococcal meningitis (Fig. 4.8)
with a high confidence probability of 0.99. Similar to ELI5 explanations, the detection
of Neisseria meningitidis and gram-negative diplococci (value 1 indicates a positive test
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result) through culture and smear examination of CSF, and the absence of other bacterial
agents such as Streptococcus pneumoniae or Haemophilus influenzae in the CSF culture and
LATEX agglutination test, along with a high percentage of Neutrophils (77 < Neutrophils
≤ 91), are strongly associated with Meningococcal Meningitis causes and have a significant
positive impact. The model predicted the instance as being diagnosed with another type of
meningitis with a probability of 0.94 (Figure 4.7). The top feature contributing the most
to the discrimination of meningococcal meningitis is the absence of the causative pathogen
of this disease, which includes negative tests for the presence of Neisseria meningitidis and
gram-negative diplococci. Additionally, a PCR Blood/serum indicating the identification of
an infectious agent and low Neutrophil levels (<= 23%) suggest that a different pathogen may
cause the infection.

Figure 4.9: Permutation importance plot showing key predictors of Meningococcal Meningitis.

The permutation importance figure 4.9 reveals key features contributing significantly to
the model’s predictive performance. CSF WBC, neutrophil levels, detection of Neisseria
meningitidis by CSF culture and latex agglutination test, and gram-negative diplococci de-
tected by CSF bacterioscopy stand out as the most influential features. Among these, the
detection of gram-negative diplococci appears to have the most significant impact on the
model’s predictions. This observation is consistent with findings from both ELI5 and LIME
explanations. Understanding the prominent role of these features enhances our comprehen-
sion of the model’s behavior and decision-making process.

4.4 Discussion and conclusion

The primary objective of this study is to develop a reliable AI model capable of accurately
identifying cases of Meningococcal meningitis among various types of meningitis. Our re-
sults indicate that the Gradient Boosting model exhibits promising potential in distinguishing
Meningococcal cases, achieving notable performance metrics: accuracy (0.88), precision
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(0.92), recall (0.83), AUROC (0.93), and f1-score (0.87). The model’s success in identifying
Meningococcal meningitis is attributed to several key factors. The presence of the causative
pathogen, Neisseria meningitidis, identified through CSF culture and latex agglutination,
along with the detection of gram-negative diplococci in smear examination of CSF, emerged
as significant contributors to the model’s predictive capability. These pathogens are known
to be responsible for Meningococcal meningitis, thereby validating the model’s focus on this
specific etiology [189]. Additionally, white cell counts in CSF and patient age further influ-
ence the model’s performance. However, the reliance on invasive laboratory tests is evident
in diagnosing meningococcal meningitis. By excluding these tests and focusing on clinical
indicators, the significance of features such as CSF Chemocytological examination tests,
particularly WBC count, vaccination status, and specific symptoms like neck stiffness and
petechiae, are effective in identifying cases of meningococcal meningitis within the model.
Local explanation highlights a high percentage of neutrophils in CSF as a characteristic fea-
ture of Meningococcal meningitis. Moreover, LIME analysis revealed that low lymphocyte
percentages and elevated white blood cell counts are associated with accurate predictions of
Meningococcal meningitis, providing further insight into the disease’s diagnostic biomarkers.
The consistency between our findings and prior research underscores the importance of the
Neutrophil-to-Lymphocyte Ratio as a predictor in distinguishing between viral and bacterial
meningitis within machine learning algorithms [46]. Our study targets explicitly Meningo-
coccal meningitis, providing a focused analysis compared to broader studies encompassing
various meningitis etiologies. This underscores the need for trustworthy AI models in clinical
decision-making. As AI’s role in healthcare grows, ensuring model reliability, transparency,
and interpretability becomes increasingly crucial. Further research could explore additional
biomarkers to enhance the model’s accuracy and robustness.
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5.1 Introduction

Pneumococcal meningitis, majorly caused by Streptococcus pneumoniae, is a leading cause
of acute bacterial meningitis in adults, responsible for 75–80% of all cases globally [191,192].
With a high mortality rate of up to 15% overall, and 33% among critically ill patients [193,
194], the case fatality rate varies by region, ranging from 17–30% globally [195], 20–37% in
high-income countries, and up to 51% in low-income countries [196]. Additionally, 38% of
survivors experience neurological aftereffects, such as mental retardation, seizures, hearing
loss, and cerebral palsy in children, while older individuals may develop hydrocephalus,
cerebellar dysfunction, and paresis. These neurological complications are primarily driven
by excessive inflammation, and a CSF glucose level below 25 mg/dL is linked to a worse
prognosis in pneumococcal meningitis [68].

Despite medical advancements, diagnosing pneumococcal meningitis remains challeng-
ing due to its symptom overlap with other types of meningitis. This study uses deep learning
models for diagnosing pneumococcal meningitis, integrating biological tests, clinical symp-
toms, and patient medical history through the Testing Concept Activation Vectors (TCAV)
method. Deep learning models have shown promise in disease diagnosis by processing large
datasets with high accuracy. However, they often operate as ”black boxes,” making it difficult
to understand the factors influencing their predictions [39, 197]. This lack of interpretability
raises concerns in clinical settings, where transparency is crucial for gaining healthcare pro-

104
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fessionals’ trust [198]. To address this, we propose Bio-TCAV (Biological Testing Concept
Activation Vectors) , a concept-based model explanation tailored for infectious disease diag-
nosis. Bio-TCAV interprets deep learning predictions by linking them to clinically relevant
concepts, enhancing diagnostic transparency. Our contribution is summarized as follows:

• Unlike many explanation tools (e.g., SHAP, LIME) based on approximations, it may
not fully capture the model’s decision-making process. We collaborate with domain
experts to introduce an explanation method that evaluates whether the model’s expla-
nations align with clinical knowledge. The proposed methodology defines medical
concept vectors based on the clinician’s knowledge to enhance clinical interpretability,
as medical practitioners often need feature-level explanations to trust and act on model
outputs.

• We defined concept vectors by analyzing the core indicators for the diagnostic assess-
ment such as demographics, medical history, vaccination records, clinical symptoms,
CSF chemo-cytological analysis (analyzed in Section 2.5), CSF appearance, CSF bac-
terioscopy, cultures, latex agglutination, and PCR testing are considered. This approach
allows the concept to become more nuanced, reflecting real-world meningitis presen-
tations.

• We introduced Bio-TCAV, which interprets the model’s decision-making process by
evaluating the influence of high-level medical concepts, such as biomarkers, clinical
symptoms, and patient history, on the model’s predictions. The method involves
extracting activations from the deep learning model and training concept classifiers for
each medical concept. By comparing the activation of these concepts with random
baseline concepts, Bio-TCAV generates concept importance scores. Welch’s t-test is
then applied to confirm the statistical significance of these differences, ensuring that
the identified concepts are critical in distinguishing between pneumococcal meningitis
and control cases.

• Our experiments, which leverage both the SINAN database and real-world data from
Setif’s hospital in Algeria, show the model’s diagnostic performance while providing
infectious disease experts with transparent insights into the factors driving the diagnosis
of pneumococcal meningitis.

5.2 The proposed methodology

While highly effective, deep neural networks are often criticized for their complexity and lack
of interpretability. To address this, our proposed methodology for diagnosing pneumococcal
meningitis cases is outlined in Figure 5.1.
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Figure 5.1: Flowchart showcasing the methodology for pneumococcal meningitis diagnosis, employ-
ing Bio-TCAV to elucidate model understanding.

5.2.1 Domain knowledge-based feature selection

Feature selection for this study was conducted in collaboration with infectious disease experts
at Setif Hospital, Algeria. Leveraging their clinical expertise and practical experience in
meningitis diagnosis, we identified a targeted set of variables with high diagnostic relevance
for distinguishing pneumococcal meningitis from other types. Our previous study validated
the selected features through clinical practice and statistical evaluation (Section 2.5). Table
5.1 summarizes the selected features of the dataset.

5.2.2 Features engineering and concept definition

In the following phase, we defined clinically meaningful medical concepts based on the
diagnostic approaches applied by infectious disease practitioners. In collaboration with
infectious disease practitioners, we defined clinically meaningful medical concepts based
on diagnostic criteria and pathways used to differentiate meningitis types. A prior study
analyzed cerebrospinal fluid biomarkers, including glucose and protein levels, white blood
cell count, and neutrophil/lymphocyte percentages (Section 2.5), revealing distinct biological
patterns associated with underlying pathology and patient age. Discussions with medical
experts contextualized these findings within diagnostic workflows, highlighting their practical
relevance. Building on this, we integrated additional diagnostic inputs, such as patient history,
clinical signs, and pathogen detection methods such as Gram staining, culture, and PCR, to
refine the concepts for enhanced specificity in diagnosing pneumococcal meningitis and
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Table 5.1: Predictive indicators for diagnostic assessment

Examination Type Features
Demographics Age, Sex
Medical History Presence of conditions like AIDS/HIV, Tuberculosis, Acute Respiratory Infec-

tion (ARI), Trauma, Hospital Infections, and Other Illnesses
Vaccination Records Indicate if the the patient has received specific vaccinations for Meningococcal

C Conjugate, BCG, Triple Viral, Hemophile Tetravalent or Hib, Pneumococcus
Clinical Symptoms Informs if this clinical manifestation has occurred: Headache, Fever, Vomiting,

Seizures, Neck Stiffness, Petechiae/Hemorrhagic Suffusion, Kernig/Brudzinski
Signs, Coma

CSF Chemocytological
Analysis

Includes CSF White Blood Cells (WBC), Neutrophils and Lymphocytes levels,
Glucose and Protein ratio

CSF Appearance Appearance of the CSF obtained through the puncture: Clear, Purulent, Haem-
orrhagic, Cloudy, Xanthochromic, Other, and Ignored

CSF Bacterioscopy Etiological agents identified in the examination: Gram-negative bacilli, Gram-
positive bacilli, Coccobacilli, Gram-negative cocci, Gram-positive cocci,
Gram-negative diplobacilli, Gram-negative diplococci, Gram-positive diplo-
cocci, Other Bacteria, including No Agent, Unrealized, or Ignored

Cultures (CSF & Blood) The etiological agent identified in the examination: Neisseria meningitidis,
Haemophilus influenzae, Streptococcus pneumoniae, and Other Bacteria (cat-
egorized as Agent Present), No Agent, Unrealized, or Ignored

Latex Agglutination LATEX Tests for CSF and Blood/Serum: Detecting Neisseria meningitidis,
Haemophilus influenzae, Streptococcus pneumoniae, various Streptococci
species, Cryptococci, Other bacteria, No Agent, Unrealized, or Ignored

PCR Testing PCR Analysis of Blood/Serum: Mumps, Measles, Herpes Simplex, Chick-
enpox/Herpes Zoster, Rubella, Influenza, Dengue, Adenovirus, Echovirus,
Coxsackie Virus, Other Enteroviruses, West Nile Virus, Other Arboviruses,
Other viruses, Neisseria meningitidis, H. influenzae, Streptococcus pneumo-
niae, Other bacteria, Cryptococcus/Torula, Other fungi, Toxoplasma, Other
Parasites, with possible outcomes as No Agent, Unrealized, Ignored, or Not
Identified

distinguishing it from other etiologies. Table 5.2 summarizes the conditions defining each
concept in the dataset.

Table 5.2: Defined medical concepts related to Pneumococcal meningitis condition

Defined Concept Medical condition
Biomarkers Concept Neutrophils > 50% AND Lymphocytes < 50% AND CSF WBC

> 500 cells/mm3 AND Glucose ratio < 0.4 AND (1 < Protein
ratio < 4)

Clinical Signs Concept Seizures OR Coma reported
Medical History Concept Prior Trauma-Related Health Issues OR Pneumococcus vaccine

status = not received
CSF Aspect Concept CSF aspect = Purulent OR Cloudy
PCR Concept Positive PCR for Streptococcus pneumoniae in Blood/Serum
Culture Concept Positive Culture for Streptococcus pneumoniae in Blood/Serum

OR CSF
LATEX Concept LATEX Test Positive for Streptococcus pneumoniae in

Blood/Serum OR CSF
Bacterioscopy Concept CSF Bacterioscopy Results Indicate Gram Positive Cocci
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5.2.3 Model implementation

We developed a deep neural network for binary classification to diagnose pneumococcal
meningitis. The model architecture consists of a feedforward structure with four hidden layers
containing 512, 256, 128, and 64 densely connected neurons. To introduce non-linearity
and mitigate the risk of overfitting, Leaky Rectified Linear Unit (Leaky ReLU) activation
functions were employed, which allow a small gradient in the negative section instead of
being completely zero [199]. Batch normalization was applied to enhance generalization and
stabilize the learning process.

The output layer consists of a single neuron with a sigmoid activation function, yielding
a probability score between 0 and 1 to indicate the likelihood of the input belonging to the
pneumococcal meningitis class. The model leverages the interplay of its hidden layers to
perform complex, non-linear transformations on high-dimensional data. However, the model
leverages the sequential processing of its hidden layers, combining linear operations, weights,
biases, and non-linear activations to transform high-dimensional input data into a feature
space suitable for binary classification. These transformations capture complex patterns and
interactions within the data that traditional methods often miss. Yet, this complexity results in
a ’black-box’ model where the relationship between inputs and predictions remains opaque.

This lack of transparency challenges clinical applicability, as medical professionals re-
quire clear, feature-level explanations to trust and act on predictions [200]. Understanding
which features and how contribute to the classification outcome can help bridge the gap
between computational efficacy and clinical applicability, ensuring that decisions made with
the assistance of the model align with medical reasoning and standards. To address inter-
pretability challenges in deep learning, we propose the Bio-TCAV explanation model tailored
for pneumococcal meningitis diagnosis.

5.2.4 Bio-TCAV explanation approach for diagnosis

To improve the interpretability of our deep neural network (DNN) model, we implemented the
Bio-TCAV method, which incorporates domain-specific knowledge to align model behavior
with clinically relevant concepts defined in Table 5.2. This approach allows us to link model
predictions with medically meaningful features, enhancing transparency and understanding
of the decision-making process. The detailed steps of this method are described in Algorithm
1.

5.2.4.1 Activation extraction

For each predefined concept, we computed activations from various layers of the DNN. This
process involved forwarding input samples associated with each concept through the network
and capturing the output activations from neurons in the specified layers. These activations
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represent the model’s learned encoding of the input data, reflecting how features associated
with each concept are processed and represented at different hierarchical levels of the net-
work. By examining these activations, we gain insight into how the DNN processes and
identifies concept-specific patterns.

5.2.4.2 Concept classifier training

To differentiate activations associated with relevant medical concepts from unrelated or spu-
rious patterns, we trained logistic regression models as concept classifiers. These classifiers
were trained using two sets of activations:

• Positive Set: Activations from input samples corresponding to a predefined medical
concept (Table 5.2.).

• Negative Set: Activations from input samples associated with random concepts de-
signed to be unrelated to pneumococcal meningitis.

The random concepts represent noise or non-specific patterns and serve as a baseline for
comparison. The logistic regression model learns a hyperplane in the activation space that
separates the positive and negative sets. The normal vector to this hyperplane is defined
as the Concept Activation Vector (CAV), which points toward the direction of activations
corresponding to the predefined medical concept.

5.2.4.3 Concept Activation Vectors (CAVs)

CAVs quantitatively capture the influence of medical concepts on the model’s decision-
making process by identifying the direction in which concept-specific activations deviate
from random noise. By analyzing these CAVs, we assess the sensitivity of the model to
each concept, enabling an understanding of the network’s internal mechanisms in terms of
medically significant features.

5.2.4.4 Reliability and statistical significance

To ensure robust and reliable results, we performed 39 independent training runs for each
CAV. This iterative approach minimizes variability and provides averaged results that are
less sensitive to random fluctuations [198]. To validate the significance of the resulting
TCAV scores, we applied Welch’s t-test, a statistical method suited for comparing groups
with unequal variances and sample sizes [132]. A p-value threshold of < 0.01 was used
to ensure statistical significance and minimize the likelihood of Type I errors [31]. This
rigorous statistical testing confirmed that the observed effects were unlikely to result from
random chance, thereby strengthening the reliability of our findings.
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Algorithm 1: Bio-TCAV pseudo algorithm
Input: 𝐷: Full dataset for all classes
𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑘 }: Set of medical/biological concepts, where 𝐶𝑖 ⊆ 𝐷

𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑛}: Set of random concepts, where 𝑅𝑘 ⊆ 𝐷

𝑀: Pre-trained AI model
𝐷𝑡 : Dataset for the studied class 𝑡
Output: TCAV Scores for each concept 𝐶𝑖

Step 1: Extract Layer Activations for the Studied Class and Concepts
foreach layer 𝐿 𝑗 ∈ 𝑀 do

𝐴𝑡, 𝑗 ← Activations(𝐷𝑡 , 𝐿 𝑗 ) // Extract activations for the studied class
dataset 𝐷𝑡 from 𝐿 𝑗 ;

foreach concept 𝐶𝑖 ∈ 𝐶 do
𝐴𝐶𝑖 , 𝑗 ← Activations(𝐶𝑖, 𝐿 𝑗 ) // Extract activations for subset 𝐶𝑖 from
𝐿 𝑗 ;

end
foreach random concept 𝑅𝑘 ∈ 𝑅 do

𝐴𝑅𝑘 , 𝑗 ← Activations(𝑅𝑘 , 𝐿 𝑗 ) // Extract activations for subset 𝑅𝑘 from
𝐿 𝑗 ;

end
end
Step 2: Train Concept Activation Vectors (CAVs)
foreach layer 𝐿 𝑗 ∈ 𝑀 do

foreach concept 𝐶𝑖 ∈ 𝐶 and do
// Perform 𝑁 runs of logistic regression to train CAVs:
for 𝑛 = 1 to 𝑁 do

𝐴𝑅𝑘 , 𝑗 ← Select random activations from pre-extracted random
activations list from layer𝐿 𝑗 ;

𝐶𝐴𝑉
(𝑛)
𝐶𝑖 , 𝑗
← BinaryClassifier𝑛 (𝐴𝐶𝑖 , 𝑗 , 𝐴𝑅𝑘 , 𝑗 );

// 𝐴𝑅𝑘 , 𝑗 is from pre-extracted random activations. All trained CAVs are
stored: {𝐶𝐴𝑉

(1)
𝐶𝑖 , 𝑗

, 𝐶𝐴𝑉
(2)
𝐶𝑖 , 𝑗

, . . . , 𝐶𝐴𝑉
(𝑁)
𝐶𝑖 , 𝑗
};

end
end

end
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Algorithm 1: Bio-TCAV Pseudo algorithm (Continued)
Step 3: Compute TCAV Scores
foreach layer 𝐿 𝑗 ∈ 𝑀 do

Compute the gradient of the model’s output logit 𝑓𝑡 for the target class 𝑡 of each
layer 𝐿 𝑗 :

∇𝐴𝑡 , 𝑗
𝑓𝑡 =

𝜕 𝑓𝑡

𝜕𝐴𝑡, 𝑗

foreach concept 𝐶𝑖 ∈ 𝐶 do
for 𝑛 = 1 to 𝑁 do

Compute the directional derivative along each 𝐶𝐴𝑉
(𝑛)
𝐶𝑖 , 𝑗

𝑆
(𝑛)
𝐶𝑖 ,𝑡, 𝑗

= ∇𝐴𝑡, 𝑗 𝑓𝑡 · 𝐶𝐴𝑉
(𝑛)
𝐶𝑖 , 𝑗

Calculate the TCAV score for each run:

TCAV(𝑛)
𝐶𝑖 ,𝑡, 𝑗

=

���{𝑥 ∈ 𝐷𝑡 : 𝑆(𝑛)
𝐶𝑖 ,𝑡, 𝑗
(𝑥) > 0}

���
|𝐷𝑡 |

end
end

end
Step 4: Statistical significance testing
foreach layer 𝐿 𝑗 ∈ 𝑀 do

foreach concept 𝐶𝑖 ∈ 𝐶 do
// Perform Welch’s 𝑡-test to compare the means:

𝐻0 : 𝜇𝐶𝑖
= 𝜇𝑅𝑘

, 𝐻1 : 𝜇𝐶𝑖
> 𝜇𝑅𝑘

// where 𝜇𝐶𝑖
and 𝜇𝑅𝑘

are the mean TCAV scores for 𝐶𝑖 and 𝑅𝑘 , respectively;
if p-value < 0.01 then

Reject 𝐻0; // Concept 𝐶𝑖 is considered meaningful;
else

Fail to reject 𝐻0; // No significant difference observed, concept 𝐶𝑖 is
not considered meaningful;

end
end

end

5.3 Experimental setting and results

This study was conducted on the Kaggle platform. We used PyTorch1 for building and
training neural network model, Scikit-learn2 for implementing metrics and scoring tasks, and

1PyTorch library: https://pytorch.org
2Scikit-learn library: https://scikit-learn.org/stable/

https://pytorch.org
https://scikit-learn.org/stable/


Chapter-5. Does AI model resonate like a medical expert? 112

the ttest ind3 function from scipy.stats for conducting statistical analysis. This study evalu-
ates the reliability, accuracy, and effectiveness of DNN models in detecting Pneumococcal
meningitis. The data is divided into three distinct sets: a training set (70%), a validation set
(15%), and a test set (15%), which are used for training, tuning, and evaluating the model,
respectively.

5.3.1 Data analysis exploration

We conducted our experiments using the SINAN database from the Brazilian Government’s
Health Information System on Notifiable Diseases. Our analysis focused on 340 cases of
Pneumococcal meningitis to evaluate the model’s predictive performance for this specific
disease. To ensure a fair comparison, we also included 344 cases of various other types of
meningitis. To avoid bias, we balanced the dataset by randomly sampling an equal number
of rows from the ’Other’ category to match the number of Pneumococcal meningitis cases.
Additionally, we collected a set of data containing 17 cases from Setif Hospital in Algeria,
consisting of 10 cases of pneumococcal meningitis and 7 cases of other meningitis condi-
tions. This addition aims to diversify our samples and provide a broader perspective on the
performance and generalizability of our model, particularly when evaluating its effectiveness
on unseen data. We performed a series of data preparation steps on the datasets, including
removing duplicates, addressing missing values, handling outliers, and encoding categorical
features to enhance representation and facilitate further interpretability.

Figure 5.2 presents a pair plot illustrating the relationships between several clinical fea-
tures: Age, Neutrophils, Glucose ratio CSF/serum, CSF WBC, Protein ratio CSF/serum, and
Lymphocytes. The diagonal plots show the distribution of each feature. Notably, Neutrophils
and Lymphocytes exhibit differences between the two groups, with higher concentrations
observed in certain pneumococcal meningitis cases. Low Glucose levels are particularly
pronounced in pneumococcal cases. Bimodality is observed in the age distribution, with two
peaks indicating notably higher rates of pneumococcal meningitis in very young children and
elderly individuals (>50 years).

The off-diagonal scatter plots display pairwise feature relationships, with Pearson cor-
relation coefficients (r) indicated at the top of each plot. A strong negative correlation (r
= -0.75) is observed between Neutrophils and Lymphocytes, suggesting that as neutrophil
levels rise, lymphocyte levels decrease, especially in pneumococcal meningitis. Additionally,
the Glucose ratio CSF/serum tends to be lower in pneumococcal meningitis, and it shows
a moderate negative correlation (r = -0.33) with the Protein ratio CSF/serum, indicating an
inverse relationship between these features.

3T-test (Welch’s t-test): https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.ttest_ind.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
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Figure 5.2: Bivariate plot of clinical CSF parameters distinguishing pneumococcal meningitis (blue)
from other causes (orange), showing feature distributions in the diagonal and Pearson correlations for
pairwise relationships (r).

5.3.2 Results and discussion

We employed multiple performance metrics to evaluate the model’s effectiveness in the bi-
nary classification task. Accuracy measures the overall percentage of correctly classified
instances. Precision measures the proportion of correctly identified pneumococcal meningi-
tis cases out of all predicted positive cases, reflecting the model’s reliability in confirming
true positives. Recall or sensitivity determines how well the model detected actual pneumo-
coccal meningitis cases, highlighting its ability to identify true positives among all existing
cases. The F1 score provides a balanced view of precision and recall, offering an aggregate
measure that considers false positives and false negatives. We also used the ROC-AUC
(Receiver Operating Characteristic - Area Under the Curve) to evaluate the model’s ability
to distinguish pneumococcal meningitis from other conditions, with higher values indicating
better discriminatory power. Table 5.3 summarizes the model’s performance metrics for
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Figure 5.3: (a) ROC curve illustrating the model’s true positive rate versus false positive rate. (b) The
precision-recall curve showing precision versus recall.

diagnosing pneumococcal meningitis. The model demonstrates high accuracy (0.9223), with
precision (0.9464) and recall (0.9138), f1-score (0.9298), and AUROC (0.9236). Figure
5.3 presents the ROC curves, AUC calculations for the pneumococcal meningitis class, and
precision-recall curves, demonstrating the model’s discriminative power and reliability.

Table 5.3: Model’s performance metrics

Metrics Accuracy Precision Recall F1 Score AUROC

Other - 0.89 0.93 0.91 -
Pneumococcal meningitis - 0.95 0.91 0.93 -
Overall performance 0.9223 0.9464 0.9138 0.9298 0.9236

Additional unseen data collected from Setif Hospital in Algeria was used to ensure the
model’s reliability, robustness, and applicability to real-world tasks. The model was tested on
data from 10 patients diagnosed with pneumococcal meningitis and 7 patients with other types
of meningitis, correctly identifying all 10 cases of pneumococcal meningitis and 5 cases out
of 7 of other conditions. The evaluation metrics reflect an accuracy (0.88), precision (0.83),
indicates a low rate of false positives, ensuring high reliability in predicting pneumococcal
meningitis cases. The recall of (1) highlights the model’s effectiveness in identifying true
positive cases, minimizing the likelihood of missing actual pneumococcal meningitis patients,
and F1 score (0.87), indicating high performance in predicting Pneumococcal meningitis on
this dataset. Cohen’s Kappa score was calculated to provide a more nuanced understanding
of the agreement between the model’s predictions and the true diagnoses. A score of 0.75,
which indicates substantial agreement, reinforces the model’s reliability in clinical settings
where diagnostic accuracy is critical. To enhance the understanding of the inner workings
of the DNN model, we employed Bio-TCAV, a biologically informed extension of the TCAV
technique, to interpret and explain deep neural network models. Bio-TCAV reveals the
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influence of specific medical concepts, such as clinical signs, biomarkers, and patient history,
on the model’s predictions. This interpretability transforms the deep neural network from a
black box into a more transparent tool for medical professionals. By analyzing the activations
corresponding to defined medical concepts and randomly generated concepts, we captured the
internal representations of the input data as they propagated through the model’s four hidden
layers. These activations provided valuable insights into how the model associates medical
concepts with its predictions, highlighting the relevance and impact of clinically significant
features in diagnosing pneumococcal meningitis. The TCAV score indicates the strength of
each concept’s influence on the model’s predictions for pneumococcal meningitis, offering a
clear measure of concept significance. Figure 5.4 shows the variation in concept importance
across different layers. We exclude the final layer of the DNN from TCAV analysis due to
its lack of non-linearities. In this layer, the gradient of the logit is determined solely by the
model weights, independent of the activations. As a result, the directional derivatives for all
inputs become identical, producing TCAV scores that are always either 0 or 1 for individual
CAVs. Since TCAV relies on analyzing the distribution of these directional derivatives
across different data points, this uniformity eliminates meaningful variation. Therefore,
TCAV is only performed on non-linear layers, as these ensure a diverse and informative range
of directional derivatives [31]. Therefore, TCAV is only applied to layers with non-linear
transformations. The plot highlights differences in TCAV scores between layers, providing
insights into how concepts influence the model’s behavior at different depths. PCR, CSF,
blood culture tests, and LATEX and bacterioscopy results emerged as the most influential
concepts with a score of 1. This aligns with real-world medical practices, where these tests
are critical for confirming the presence of Streptococcus pneumoniae, the causative agent
of pneumococcal meningitis, and establishing a definitive diagnosis. Unsurprisingly, these
concepts yield the highest scores, representing conclusive evidence in the medical field and
the model’s decision-making process. Clinical signs also achieved a high TCAV score of
0.92 in layers 2 and 3, increasing from 0.72 in layer 1. This increase in TCAV scores over
the layers indicates that the model progressively relies on these concepts at deeper layers.
They become more relevant as the model refines its decision-making process. The CSF
aspect demonstrated a notable influence, attaining a TCAV score of 0.88. Similarly, Medical
History showed significant contributions, with scores of 0.79 in layer 3, 0.54 in layer 2, and
0.74 in layer 1. This fluctuation in TCAV scores across layers suggests its influence grows as
the model processes deeper layers. The biomarkers showed the lowest TCAV score of 0.56
in layer 3, a decrease from 0.79 in layer 1. This suggests that biomarkers contribute less to
the model’s decision-making process in diagnosing pneumococcal meningitis as the layers
deepen. This lower score likely reflects that these biomarkers are common across various
types of meningitis, reducing their specificity for pneumococcal meningitis and making them
less reliable for differentiation. However, this concept may still be meaningful, as it passes the
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statistical significance test with a p-value (< 0.01), indicating that it is meaningfully different
from random concepts, regardless of the magnitude of the TCAV score.

Figure 5.4: Comparison of mean TCAV scores across three neural network layers (Layer 1, Layer 2,
and Layer 3) for medical concepts. Bars represent the mean TCAV score for each concept, with error
bars showing the standard deviation. Dashed lines indicate the mean random TCAV baselines for each
layer.

We performed a Welch’s t-test to evaluate the statistical significance of the differences
between the TCAV scores for concept CAVs and random CAVs. This test helps determine
whether the observed differences in TCAV scores are statistically significant. Table 5.4
presents the results of Welch’s t-test for various medical concepts across different model
layers. All medical concepts show statistically significant differences from random concepts,
implying their relevance in the model’s decision-making.

Table 5.4: Welch’s t-test p-values for different medical concepts across model layers. Lower p-values
(<0.01) indicate a statistically significant difference from random concepts.

Medical Concepts Welch’s t-test p-value
Layer 1 Layer 2 Layer 3

Clinical Signs Concept 4.76e-11 1.14e-20 8.53e-18
Medical History Concept 4.46e-10 7.64e-06 9.16e-11
Biomarkers Concept 7.57e-14 8.81e-09 7.56e-08
CSF Aspect Concept 1.03e-21 4.46e-17 1.38e-14
PCR Concept 9.84e-20 1.48e-19 1.74e-17
Culture Concept 9.84e-20 1.48e-19 1.74e-17
LATEX Concept 9.84e-20 1.48e-19 1.74e-17
Bacterioscopy Concept 7.49e-20 1.48e-19 1.74e-17
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5.4 Conclusion

This study demonstrates the effectiveness of deep learning models, with the model showing
strong performance across multiple evaluation metrics, achieving high accuracy (92.23%),
precision (94.64%), recall (91.38%), F1-score (92.98%), and AUROC (92.36%). Testing the
model on real-world clinical data from Algeria confirmed its robustness and reliability. The
model was tested on data from 10 patients diagnosed with pneumococcal meningitis and 7
patients with other types of meningitis, successfully identifying all 10 cases of pneumococ-
cal meningitis and 5 cases of other types of meningitis. The model achieved an accuracy
of 0.88, precision of 0.83, recall of 1, and an F1 score of 0.87, demonstrating strong per-
formance in predicting pneumococcal meningitis. Additionally, a Cohen’s Kappa score of
0.75 indicates substantial agreement between the model’s predictions and the actual clinical
diagnoses, confirming the robustness of the model. To improve the model’s interpretabil-
ity, we employed Bio-TCAV, which offered valuable insights into the influence of specific
medical concepts on the model’s predictions. Key concepts such as clinical signs, medical
history, and CSF aspects significantly impacted the model’s decisions, while biomarkers
played a more limited role. The model finds it challenging to rely heavily on biomarkers
for differentiation, as their presence may not be as specific or distinctive in pneumococcal
meningitis cases compared to other types of meningitis. Statistical tests further validated the
significance of these concepts in the model’s decision-making process. Our findings suggest
that integrating deep learning models with interpretability techniques like TCAV holds great
potential for improving diagnostic accuracy in clinical settings. This approach enhances
diagnostic models’ performance and gives clinicians meaningful insights into the underlying
factors influencing predictions, enabling more informed clinical decisions. By highlighting
how relevant medical concepts affect model outcomes, Bio-TCAV can foster trust among
medical practitioners and stakeholders by demonstrating that the model considers clinically
meaningful factors. However, validating these findings on larger and more diverse datasets
is important to ensure generalizability and confirm its clinical applicability across various
patient populations and conditions.
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The findings of this thesis offer significant insights into the immunological and biochemical
profiles associated with different types of meningitis, analyzed through both traditional
laboratory parameters and advanced machine learning techniques. By examining neutrophil
and lymphocyte counts, CSF white cell counts, glucose and protein ratios, and stratifying
these data across age groups, this study highlights critical diagnostic differences among
bacterial, viral, and specific meningitis pathogens. Key observations, such as the marked
increase in neutrophil levels in bacterial meningitis cases and elevated lymphocyte levels
in viral infections, underscore the distinct immune responses each infection type elicits.
These patterns support and refine existing diagnostic benchmarks, especially within bacterial
etiologies, aligning with diagnostic criteria established in previous research.

The analysis of variance of cerebrospinal fluid biomarkers revealed significant differences
in CSF WCC (cells/mm3), Neutrophils (%), Lymphocytes (%), CSF/blood Glucose and
Protein ratios in children and adults (p <0.05). However, differences were observed solely in
neutrophil levels among elderly subjects. In bacterial meningitis, neutrophil levels increased
across all ages, with adults showing higher levels. For meningococcal meningitis, adults
had a median neutrophil level of 78.5% [60%, 90%] compared to 57% [24.5%, 85.25%] in
children. The CSF white cell count (WCC) median was also higher in adults (339 cells/mm3)
compared to children (224 cells/mm3). Viral meningitis cases exhibited higher lymphocyte
levels across all age groups, with medians of 69% [34%, 87%] in children, 82% [61%, 93%]
in adults, and 77% [55%, 90%] in the elderly. The glucose ratio was lower in bacterial
meningitis (<0.3) and higher in viral cases (>0.5). Protein ratios were elevated in bacterial
meningitis, indicating increased blood-brain barrier permeability. These results demonstrate
a distinct biological profile for different causative agents, modulated by patient age.

Further, this thesis bridges clinical understanding with innovative AI-driven diagnostic
tools by developing and applying an explainable AI model with notable accuracy and predic-
tive metrics. The XGBoost and Gradient Boosting models, alongside interpretability tools
like SHAP, ELI5 and LIME, reveal the underlying mechanisms by which clinical features
influence diagnostic outcomes. The AI model’s performance demonstrates potential in di-
agnosing different meningitis types and meningococcal meningitis. It shows adaptability to
diverse, real-world cases, as evidenced by model testing on data from Setif’s hospital. Identi-
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fying essential biomarkers and the role of CSF findings like neutrophil levels and white blood
cell counts enhance the robustness of the model. At the same time, the local explanations
provide transparency, which is critical for clinical decision-making.

In the second part of the study, the Extreme Gradient Boosting model was chosen for
its superior performance metrics (Accuracy: 0.90, AUROC: 0.94, and F1-score: 0.98).
Setif’s hospital data revealed notable performance metrics (Accuracy: 0.7143, F1-Score:
0.7857). This study’s findings showcase each feature’s contribution to the model’s predictions
and diagnosis. It also reveals critical biomarker ranges associated with distinct types of
Meningitis. Significant diagnostic effect was found for Meningococcal Meningitis with
elevated neutrophil levels (40%) and balanced lymphocyte levels (40%–60%). Tuberculous
Meningitis demonstrated low neutrophil levels (60%) and elevated lymphocyte levels (60%).
H. influenzae meningitis exhibited a predominance of neutrophils (80%), while Aseptic
meningitis showed lower neutrophil levels (40%) and lymphocyte levels within the range of
50%–60%.

In the third contribution, the gradient-boosting model exhibits superior performance
metrics, including accuracy (0.88), precision (0.92), recall (0.83), AUROC (0.93), and f1-
score (0.87). Using ELI5 and LIME, we elucidated the importance of key features in
the model’s predictions. Our results highlight key factors contributing to model success,
such as Neisseria meningitidis identified through cerebrospinal fluid (CSF) culture and latex
agglutination, gram-negative diplococci in CSF smear examination, white cell counts in CSF,
and patient age in the identification of meningococcal meningitis. Local explanations reveal
the presence of neutrophils in CSF as a characteristic feature of Meningococcal meningitis.
LIME analysis indicates the significance of low lymphocyte percentages and elevated white
blood cell counts in predicting this condition.

The final contribution focused on developing a novel explainable approach for the black
box model for the infectious disease diagnosis. our deep learning model achieved strong
predictive performance in identifying Pneumococcal meningitis cases, with high accuracy
(92.23%), precision (94.64%), recall (91.38%), F1-score (92.98%), and AUROC (92.36%).
Its robustness was confirmed through validation on real-world clinical data from Algeria,
correctly identifying all 10 pneumococcal meningitis cases and 5 out of 7 other meningitis
cases, resulting in an accuracy of 0.88, precision of 0.83, recall of 1, F1-score of 0.87,
and a Cohen’s Kappa of 0.75—indicating substantial agreement with clinical diagnoses.
To enhance interpretability, we applied Bio-TCAV, which highlighted the importance of
clinical signs (TCAV score: 0.92), medical history (0.79), and CSF aspect (0.88) in driving
model predictions. Biomarkers had a comparatively limited influence (0.56). Diagnostic
tests such as PCR, CSF and blood cultures, LATEX, and bacterioscopy showed maximal
influence (TCAV score = 1), consistent with their established clinical relevance. Statistical
validation using Welch’s t-test confirmed these findings were significant. This biologically
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informed interpretability approach aligns model behavior with medical reasoning, enhancing
transparency and trust in AI-assisted diagnostic tools.

Overall, this thesis illustrates the promising role of AI in refining meningitis diagnostics,
complementing traditional lab-based methods with improved precision and explainability. It
underscores the importance of integrating machine learning in clinical settings to support
timely, accurate diagnoses, especially in resource-limited regions. Future research could
explore additional biomarkers, such as CSF lactate, enhancing the model’s accuracy and
generalizability across various demographic and clinical environments, ultimately advancing
the management of meningitis on a broader scale.
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