
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Ferhat Abbas University of Setif-1
Faculty of Sciences

Department of Computer Science

Ph.D Dissertation
Presented by :

Maroua LOUAIL

Submitted in the fulfillment of the requirement for the degree of
Ph.D in computer science

Option: Smart Systems and Machine Learning

Dimensionality Reduction in Machine
Learning for Arabic Text Classification

Ph.D defense board :

Pr. Zibouda ALIOUAT Univ. of Ferhat Abbas Setif 1 President
Pr. Chafia KARA-MOHAMED Univ. of Ferhat Abbas Setif 1 Supervisor
Pr. Ahmed GUESSOUM ENSIA Examiner
Pr. Mohamed BENMOHAMMED Univ. of Abdelhamid MEHRI Constantine 2 Examiner
Dr. Sadik BESSOU Univ. of Ferhat Abbas Setif 1 Examiner
Dr. Ahlem DRIF Univ. of Ferhat Abbas Setif 1 Examiner

Publicly defended on: 14/05/2025

Abstract

Text classification is the automated process of assigning predefined labels or categories to

text based on its content. This process helps organize vast amounts of textual data, simplifies

management, enables efficient searches, and extracts valuable knowledge. The computa-

tional analysis of the Arabic language plays a crucial role in addressing its growing global

significance. As the fourth most widely used language online, Arabic has driven the emer-

gence of Arabic Text Classification (ATC) as a key research area. However, the field of ATC

faces considerable challenges, primarily due to the linguistic complexity of the language and

the high computational demands of its processing, which can impact the performance of real-

time systems. This dissertation aims to bridge the gap between effectiveness and efficiency

in ATC, particularly in resource-constrained environments.

The first objective of this research is to review existing ATC techniques, including pre-

processing methods, vectorization strategies, dimensionality reduction techniques, and both

classical machine learning and deep learning models, in order to provide a comprehensive

understanding of current approaches. The second objective is to propose three innovative

methods to enhance computational efficiency through dimensionality reduction while im-

proving or at least maintaining high classification effectiveness. These methods are specif-

ically designed for Modern Standard Arabic (MSA) text classification and are evaluated

against state-of-the-art methods.

The dissertation presents the use of Principal Component Analysis (PCA), Distance-

Based Meta-Features (DBMFs) for feature extraction, and the development of a new hybrid

approach called "Tasneef ", which addresses computational challenges in Arabic text pro-

cessing and outperforms state-of-the-art deep learning models and dimensionality reduction

techniques. Through these contributions, this dissertation advances the state of the art in

ATC by focusing on dimensionality reduction, which improves classification accuracy and

reduces memory usage and runtime.

Keywords: Natural language processing, Arabic text classification, Dimensionality reduc-

tion, feature extraction, Meta-features, Word embeddings.

�
	
jÊÓ

úÎ«
�
ZA
	
JK. �

	
JÊË A

��
®J.�Ó

�
èXYm×

�
HA

J
	
¯ ð

@

�
HAJ
Ò�

�
�

	á�
J
ª
�
K úÍ@

	
¬Yî

�
E
�
éJ
Ë
�
@
�
éJ
ÊÔ

« ñë �ñ�
	
JË @

	
J

	
��

�
�

	á
�
ºÖ

�
ßð , Aî

�
EP@X@

¡��.

�
Kð ,

�
éJ
�

	
JË @

�
HA

	
KAJ
J. Ë @

	áÓ
�
éÊ

KAë

�
HAJ
Ò» Õæ

	
¢
	
J
�
K ú

	
¯

�
éJ
ÊÒªË@ è

	
Yë Y«A�

�
� . è @ñ

�
Jm×

�
é
	
ªÊË

�
éJ
K. A�mÌ'@

�
HCJ
Êj

�
JË @ I. ªÊ

�
K .

�
éÒJ

�
®Ë @

�
é
	
Q̄ªÖÏ @ h. @Q

	
j
�
J�@ ú

	
¯ ÑëA�

�
� AÒ» ,

�
éËAª

	
¯

�
Im�'.

�
HAJ
ÊÔ

« 	áÓ

�
é
	
ªË Q��»

@ ©K. @P ù

ë

�
éJ
K. QªË@

	
à

@ AÖß.ð .

�
èYK
@

	Q��ÖÏ @
�
éJ
ÖÏ AªË @ Aî

�
DJ
Òë

@ ©Ó ÉÓAª

�
JË @ ú

	
¯ A

�
ÖÞ�Ag @ �PðX

�
éJ
K. QªË@

©Óð .
�
éJ
��

KQË @

�
IjJ. Ë @

�
HBAm.

× Yg

A¿

�
éJ
K. QªË@ �ñ�

	
JË @

	
J

	
��

�
� 	PQK. Y

�
®
	
¯ ,

�
I

	
KQ
�
�
	
KB

@ úÎ«

�
éÓY

	
j
�
J�Ó

YJ

�
®ª

�
JË @ úÍ@

A
�
�A�

@ ½Ë

	
X XñªK
ð ,

�
èQ�
J.»

�
HAK
Ym

�
�
' �

éJ
K. QªË@ �ñ�
	
JË @

	
J

	
��

�
� ÈAm.

× ék. @ñK
 , ½Ë
	
X

Z @X

@ úÎ« Q

�
K

ñK

	
à

@ 	áºÖß
 AÜØ , Aî

�
Dm.
Ì'AªÓ ú

	
¯

�
éJ
K. A�mÌ'@ XP@ñÖÏ @ úÎ« ú

ÍAªË@ I. Ê¢Ë@ð

�
é
	
ªÊË ø

ñ
	
ªÊË @

	
J

	
��

�
� ú

	
¯

�
èZA

	
®ºË@ð

�
éJ
ËAª

	
®Ë @

	á�
K.
�
èñj.

	
®Ë @ Y� úÍ@

�
éËA�QË@ è

	
Yë

	
¬Yî

�
E . ù

�
®J

�
®mÌ'@ 	áÓ 	QË @

�
éÒ

	
¢
	
�

@

.
�
èXðYjÖÏ @ XP@ñÖÏ @

�
H@

	
X

�
HA

J�
J. Ë @ ú

	
¯ A

�
�ñ�

	
k ,

�
éJ
K. QªË@ �ñ�

	
JË @

ú

	
¯ AÖß. ,

�
éJ
ËAm

Ì'@
�
éJ
K. QªË@ �ñ�

	
JË @

	
J

	
��

�
�

�
HAJ

	
J
�
®
�
K

	
�@Qª

�
J�@ ñë

�
IjJ. Ë @ @

	
Yë 	áÓ Èð

B@

	
¬YêË@

ú

Í
�
B@ ÕÎª

�
JË @ h.

	
XAÖ

	
ßð , XAªK.

B@ ÉJ
Ê

�
®
�
K

�
HAJ

	
J
�
®
�
K , ÉJ

�
JÒ
�
JË @

�
HAJ
j. �

�
K @Q
�
��@ ,

�
é
�
®J.�ÖÏ @

�
ém.
Ì'AªÖÏ @

�
�Q£ ½Ë

	
X

�
HC

�
K h@Q

�
�
�
¯@ ñë ú

	
GA
�
JË @

	
¬YêË@ .

�
éJ
ËAm

Ì'@ i. î
	
DÊË ÉÓA

�
� Ñê

	
¯ Õç'
Y

�
®
�
K Ég.

@ 	áÓ ,

�
é
�
®J
ÒªË@ð

�
éK
YJ
Ê

�
®
�
JË @

úÎ« ð

@

	á�
�m�
�
' ©Ó , XAªK.

B@ ÉJ
Ê

�
®
�
K ÈC

	
g 	áÓ

�
éJ
K. A�mÌ'@

�
èZA

	
®ºË@ 	QK

	Qª
�
K úÎ«

	Q»Q
�
K

�
èQº

�
JJ.Ó

�
�Q£

�
é
	
ªÊË @ �ñ�

	
�

	
J

	
��

�
JË A

�
�J
�

	
k

�
�Q¢Ë@ è

	
Yë Õæ

Ò�

�
� Õç

�
' .

�
éJ
ËA«

	
J

	
��

�
�
�
éJ
ËAª

	
¯ úÎ«

	
 A

	
®mÌ'@ É

�
¯

B@

.
�
èPñ¢

�
JÖÏ @

�
�Q¢Ë@ ÉK. A

�
®Ó AêÒJ
J

�
®
�
Kð új�

	
®Ë@

�
éJ
K. QªË@

�
é
	
¯A�ÖÏ @ úÎ«

�
èYÒ

�
JªÖÏ @

�
éJ

�
¯ñ

	
®Ë @

�
H@

	Q�
ÖÏ @ð ,
�
éJ
��

KQË @

�
HA

	
KñºÖÏ @ ÉJ
Êm

�
�
' Ð@Y

	
j
�
J�@

�
éËA�QË@

	
�Qª

�
J�

�
�

�
HAK
Yj

�
JË @ l .

Ì'AªK
 ø

	
YË@ð ,"

	
J

	
��

�
�\ ùÒ��
 YK
Yg.

	á�
j. ë i. î
	
E QK
ñ¢

�
�ð ,

�
HAÒ�Ë@ h. @Q

	
j
�
J�B

ÉJ
Ê
�
®
�
K

�
HAJ

	
J
�
®
�
Kð

�
�J
ÒªË@ ÕÎ

ª
�
JÊË

�
é
�
JK
Ym

Ì'@ h.
	
XAÒ

	
JË @ úÎ«

�
�ñ

	
®
�
JK
ð

�
éJ
K. QªË@ �ñ�

	
JË @

�
ém.
Ì'AªÓ ú

	
¯
�
éJ
K. A�mÌ'@

	áÓ
�
éJ
K. QªË@ �ñ�

	
JË @

	
J

	
��

�
� ú

	
¯ A

�
ÓY

�
®
�
K

�
éËA�QË@ è

	
Yë 	PQm�

��
' ,

�
HAÒëA�ÖÏ @ è

	
Yë ÈC

	
g 	áÓ . XAªK.

B@

�
èQ» @

	
YË @ ¼Cî

�
D�@ 	áÓ ÉÊ

�
®K
 ð

	
J

	
��

�
JË @

�
é
�
¯X 	áÓ 	á�m�'
 AÜØ XAªK.

B@ �J
Ê

�
®
�
K úÎ«

	Q�
»
Q��Ë @ ÈC

	
g

.
	
YJ

	
®
	
J
�
JË @

�
I

�
¯ðð

h. @Q
	
j
�
J�@ , XAªK.

B@ �J
Ê

�
®
�
K ,

�
éJ
K. QªË@ �ñ�

	
JË @

	
J

	
��

�
� ,

�
éJ
ªJ
J.¢Ë@

�
é
	
ªÊË @

�
ém.
Ì'AªÓ :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

.
�
HAÒÊ¾Ë@

�
HCJ

�
JÖ
�
ß ,

�
éJ

�
¯ñ

	
®Ë @

�
H@

	Q�
ÖÏ @ ,
�
HAÒ�Ë@

Résumé

La classification de texte est le processus automatisé d’attribution d’étiquettes ou de caté-
gories prédéfinies à un texte en fonction de son contenu. Ce processus aide à organiser de
vastes quantités de données textuelles, simplifie leur gestion, permet des recherches efficaces
et extrait des connaissances précieuses. L’analyse computationnelle de la langue arabe joue
un rôle crucial dans la prise en compte de son importance croissante à l’échelle mondiale. En
tant que quatrième langue la plus utilisée en ligne, l’arabe a favorisé l’émergence de la classi-
fication de texte arabe en tant que domaine de recherche clé, malgré les défis substantiels liés
à sa complexité linguistique et aux besoins computationnels intenses nécessairesà son traite-
ment, lesquels compromettent souvent les performances des systèmes en temps réel. Cette
thèse se propose de pallier ces limitations en optimisant à la fois l’efficacité et la performance
de la classification, notamment dans des environnements à ressources limitées.

Le premier objectif de cette recherche consiste en une analyse critique et systématique
des méthodes actuelles, couvrant les techniques de prétraitement, les stratégies de vectorisa-
tion, les approches de réduction de dimensionnalité, ainsi que les modèles d’apprentissage
automatique et d’apprentissage profond. Ce travail de synthèse vise à dresser un état de l’art
détaillé, indispensable pour une compréhension approfondie des approches existantes. Le
second objectif est l’introduction de trois méthodologies inédites axées sur l’amélioration de
l’efficacité computationnelle par la réduction de dimensionnalité, tout en améliorant ou en
maintenant au moins une haute efficacité de classification. Conçues spécifiquement pour la
classification de texte en arabe standard, ces méthodologies sont rigoureusement évaluées en
comparaison avec les techniques de pointe actuelles.

Les contributions de cette thèse incluent l’application de l’analyse par composantes prin-
cipales (ACP) et l’utilisation des méta-caractéristiques basées sur les distances pour l’extraction
de caractéristiques, ainsi que le développement d’une nouvelle approche hybride, nommée
"Tasneef ". Cette dernière, spécialement conçue pour surmonter les défis computationnels
inhérents au traitement du texte en arabe, démontre une supériorité par rapport aux modèles
d’apprentissage profond et aux techniques de réduction de dimensionnalité les plus avancés.
Grâce à ces contributions, cette thèse fait progresser l’état de l’art dans la classification de
texte arabe en se concentrant sur la réduction de dimensionnalité, ce qui améliore la préci-
sion de la classification, réduit l’utilisation de la mémoire et diminue le temps d’exécution.
Mots-clés: Traitement automatique du langage naturel, Classification des textes arabes, Ré-
duction de dimension, Extraction de caractéristiques, Méta-caractéristiques, Représentations
vectorielles de mots.

Declaration of Authorship
I, MAROUA LOUAIL, declare that this thesis, titled "Dimensionality Reduction in Machine
Learning for Arabic Text Classification," is entirely my original work. I certify that:

• The research was conducted primarily during my time as a candidate for a degree at
this University.

• Published works consulted are properly credited.

• All quotations are accurately sourced, and apart from these, the work is exclusively
mine.

• Significant sources of support are duly acknowledged.

Signed: Maroua LOUAIL

Date: 16/11/2024

�	á�
Ö�

�
Ï A
�
ª
�
Ë @

��
H.

�P é�

��
<Ë�

�
Y
�
Ò
�
m

�
Ì'@

�
ð

[182: �
éK

�
B@

�
HA

	
¯A�Ë@]

Acknowledgements
I would like to express my heartfelt gratitude to God for His unwavering guidance and
strength throughout my PhD journey.

My deepest gratitude go to my advisor, Pr. Chafia Kara-Mohamed, whose steadfast
support and invaluable guidance have been crucial to the success of my research. Your
encouragement has been a pillar of my achievements.

I am also profoundly grateful to Pr. Aboubekeur Hamdi-Cherif for your insightful
advice and significant contributions, which have greatly enriched my work.

I would like to extend my sincere gratitude to the panel of examiners for their time, in-
sightful feedback, and invaluable contributions to this work. Their expertise and constructive
critiques have significantly enriched this research, helping to shape it into its final form. I
am deeply appreciative of their guidance and support throughout the examination process.

A special thanks goes to my parents for their boundless love and support throughout these
years. Your belief in me has been the cornerstone of my success.

Lastly, I want to express my deep appreciation to my sister, brother, nephew, and niece.
Your constant support and understanding have been a source of immense joy and motivation.

Contents

Abstract ii

Declaration of Authorship v

Acknowledgements vi

Contents x

List of Figures xii

List of Tables xiv

List of Abbreviations xvi

Introduction 1

1 Background and Related Works 5
1.1 Introduction . 5
1.2 Text Classification : Key Concepts and General Pipeline 5

1.2.1 Text Classification Levels . 5
1.2.2 Types of Text Classification . 6
1.2.3 Arabic Text Classification General Pipeline 7

1.3 Arabic Language Properties and TC Challenges 9
1.3.1 Importance of the Arabic Language 9
1.3.2 Arabic Varieties . 10
1.3.3 Arabic Script . 11
1.3.4 Arabic Morphology . 14
1.3.5 Arabic Syntax . 17

1.4 Text Vectorization Techniques . 18
1.4.1 One-Hot Encoding . 18
1.4.2 Bag-of-Words (BoW) . 19
1.4.3 Term Frequency-Inverse Document Frequency (TF-IDF) 20

1.4.4 Word Embedding . 21
1.4.4.1 Static Word Embeddings 21
1.4.4.2 Contextual Word Embeddings: 23

1.5 Dimensionality Reduction Techniques . 24
1.5.1 Feature Extraction . 24

1.5.1.1 Principal Component Analysis (PCA) 24
1.5.1.2 Linear Discriminant Analysis (LDA) 25

1.5.2 Feature Selection . 26
1.5.2.1 Chi-Square (χ2) Test . 27
1.5.2.2 Mutual Information (MI) 27
1.5.2.3 Information Gain (IG) 28

1.6 Classical Machine Learning-Based Approach 29
1.6.1 Logistic Regression (LR) . 29
1.6.2 k-Nearest Neighbors (kNN) . 30
1.6.3 Decision Trees (DT) . 30
1.6.4 Support Vector Machine (SVM) 30

1.7 Deep Learning-Based Approach . 32
1.7.1 Convolutional Neural Network (CNN) 32
1.7.2 Recurrent Neural Network (RNN) 34
1.7.3 Attention Mechanism . 37
1.7.4 Transformers . 37

1.8 Related Works . 38
1.8.1 Datasets . 38
1.8.2 Text Preprocessing . 41
1.8.3 Text Vectorization . 42
1.8.4 Text Dimensionality Reduction 42
1.8.5 Classical Machine Learning and Deep Learning Models 44
1.8.6 Evaluation . 46

1.9 Conclusion . 51

2 Arabic Text Classification Using Principal Component Analysis With Different
Supervised Classifiers 52
2.1 Introduction . 52
2.2 Materials and methods . 53

2.2.1 Proposed system architecture . 53
2.2.2 Datasets . 54
2.2.3 Document text preprocessing . 55

2.2.4 Document text representation . 57
2.2.5 Dimentionality reduction using PCA 57
2.2.6 Classifiers used and hyperparameter tuning 57
2.2.7 Implementation . 59

2.3 Results and Discussions . 59
2.4 Conclusion . 68

3 Distance-Based Meta-Features for Arabic Text Classification 69
3.1 Introduction . 69
3.2 Related works . 70
3.3 Proposed Methodology . 71

3.3.1 Preprocessing . 72
3.3.2 Meta-features generation . 72

3.4 Experimental Setup . 74
3.4.1 Dataset . 74
3.4.2 Hyperparameter tuning . 74

3.5 Results and discussions . 75
3.5.1 Dimensionality reduction using Meta-Features 75
3.5.2 Classifiers’ accuracy . 76
3.5.3 Training time . 77
3.5.4 Time gain . 78
3.5.5 Comparing DBMFs with PCA . 79
3.5.6 Statistical evaluation . 80

3.6 Conclusion . 81

4 Tasneef : A Fast and Effective Hybrid Representation Approach for Arabic Text
Classification 82
4.1 Introduction . 82
4.2 Methodology . 83

4.2.1 Overall architecture . 83
4.2.2 Tasneef Text preprocessing . 84
4.2.3 Statistical property and DBMFs construction in Tasneef 85

4.2.3.1 DBMFs distance calculation 85
4.2.3.2 Local DBMFs obtainment 85
4.2.3.3 Global DBMFs obtainment 86
4.2.3.4 Resulting DBMFs . 86

4.2.4 Embedding property in Tasneef and concatenation procedure 89

4.2.4.1 Pre-trained word embeddings usage 89
4.2.4.2 Concatenation of DBMFs and fasText embeddings 90

4.3 Experimental setup . 92
4.3.1 Overall architecture . 92
4.3.2 Evaluation tools . 92

4.3.2.1 Metrics used . 92
4.3.2.2 Datasets used . 93
4.3.2.3 Benchmarks . 94
4.3.2.4 Hardware used . 95

4.3.3 Overall experimental steps . 95
4.4 Results and discussions . 97

4.4.1 Initial experiment . 97
4.4.1.1 SVM classifier usage 97
4.4.1.2 Hyperparameters tuning 97
4.4.1.3 Results of preprocessing 98

4.4.2 Selection of the best DBMFs groups 98
4.4.2.1 DBMFs baslines choice 98
4.4.2.2 DBMFs ranking results 100

4.4.3 First series of experiments: baselines performance 101
4.4.3.1 MicroF1 and MacroF1 results 101
4.4.3.2 Dimentionality reduction in Tasneef 102
4.4.3.3 Runtime analyses . 103

4.4.4 Second series of experiments: comparison with SOTA methods . . 106
4.4.4.1 Tasneef_var2 accuracy improvement ratio (AIR) 106
4.4.4.2 Tasneef_var2 F-measure improvement 114

4.4.5 Summary of Tasneef main improvements 115
4.5 Conclusion . 118

Conclusion 119

Appendix A: Paired t-tests with Bonferroni correction, applied in Chapter 4 121

Bibliography 123

List of Figures

1.1 Text classification general pipeline . 9
1.2 Word2Vec Models. 22
1.3 Decision tree example for rain forecasting. 31
1.4 Example showing the support vectors and the margin. 31
1.5 Example illustrating poor and good margins. 32
1.6 Example of a CNN architecture for Arabic text classification (Alhawarat and

Aseeri, 2020). 33
1.7 Basic architecture of RNN . 34
1.8 The GRU cell is on the left and the LSTM cell is on the right. 36
1.9 Bi-directional Recurrent Neural Network. 36
1.10 The Transformer architecture, with the encoder on the left and the decoder

on the right (Vaswani et al., 2017). 38

2.1 Proposed system architecture. 54
2.2 CEV as a function of components number for AlArabiya. 60
2.3 CEV as a function of components number for NADA. 61
2.4 PCA Scatter Plot of AlArabiya Training Documents. 64
2.5 PCA Scatter Plot of NADA Training Documents. 65
2.6 Accuracy comparison of the five classifiers under both settings (with PCA

vs. without PCA) . 66
2.7 Training time of classifiers with and without PCA for both datasets. 67
2.8 Gain in training time achieved with PCA. 67

3.1 The proposed Arabic text classification pipeline. 71
3.2 Example of kNN meta-features generation. 73
3.3 Example of centroid meta-features generation. 73
3.4 Classifiers’ Accuracy Comparison with TF-IDF and DBMFs Groups. . . . 77
3.5 Time Gain with DBMFs Across Different Classifiers. 78
3.6 Comparison of Classifiers’ Accuracy Using Meta-Features vs. PCA.. 80

4.1 Tasneef architecture. 83

4.2 The feature concatenation procedure in Tasneef. 92
4.3 Tasneef dimension reduction ratios w.r.t. TF-IDF 103
4.4 Speedup ratio of total runtime of the fastest Tasneef variant (i.e., Tasneef_var2)104
4.5 Ratio of training runtime to total runtime of all chosen baselines. 105
4.6 Tasneef speedup ratio of testing phase runtime w.r.t. TF-IDF. 106
4.7 Tasneef accuracy improvement ratio (in %) w.r.t. deep learning models on

Al Arabiya, Al Khaleej, Akhbarona and KALIMAT datasets. 112
4.8 The accuracy of Tasneef compared to deep learning benchmarks. 113
4.9 Tasneef accuracy improvement ratio (in %) w.r.t. dimentionality reduction

methods on Khaleej-2004 and Watan-2004 datasets. 113
4.10 Tasneef F-measure improvement ratio (in %) compared to SOTA reduction

methods, on the CNN dataset. 115

List of Tables

1.1 Forms of Arabic letters. 13
1.2 Inflection of the verb ‘Éª 	¯’ (to do). 15
1.3 Arabic clitics. 17
1.4 MSA document datasets. 40
1.5 A summary of a related works in Arabic document Classification. 47

2.1 Description of the Datasets . 55
2.2 Classifiers’ hyperparameters. 59
2.3 Classifiers’ Accuracy Depending on CEV for Alarabiya. 62
2.4 Classifiers’ Accuracy Depending on CEV for NADA. 63
2.5 Accuracy of classifiers on Arabiya and NADA datasets with and without PCA 65
2.6 Training Time of Classifiers on Alarabiya and NADA Datasets with and

without PCA. 66

3.1 Distance-Based Meta-Features . 74
3.2 Tuning hyperparameters for classifiers. 75
3.3 Representation Methods and Their Number of Dimensions 75
3.4 Classifiers’ Accuracy Comparison with TF-IDF and DBMFs Groups. . . . 76
3.5 Classifiers’ Training Times (s) with TF-IDF and DBMFs Groups. 78
3.6 Training Time Gain with DBMFs. 78
3.7 Comparison of Classifiers’ Accuracy Using Meta-Features vs. PCA. 79
3.8 P-Values of the Paired T-Test. 80

4.1 DBMFs Groups Description . 89
4.2 Characteristics of datasets used. 94
4.3 Hyperparameter search grid. 98
4.4 Impact of preprocessing on number of words in dataset. 98
4.5 Meta-features groups performance based on MicroF1 and MacroF1 metrics

using paired t-Test with Bonferroni correction. 100
4.6 Tasneef comparison with other benchmarks using paired t-test with Bonfer-

roni correction. 100

4.7 Tasneef dimensionality reduction as compared to TF-IDF. 102
4.8 Tasneef runtime results. 103
4.9 Tasneef accuracy improvement ratio w.r.t. deep learning models and reduc-

tion methods. 108
4.10 Tasneef F-measure w.r.t. other reduction methods. 114
12 Tie/Loss evaluation between ‘All’ DBMFs group and other DBMFs groups

for AL Arabiya dataset. 122

List of Abbreviations

AIR Accuracy Improvement Ratio
ATC Arabic Texe Classification
BERT Bidirectional Encoder Representations from Transformers
BiRNN Bidirectional Recurrent Neural Network
BoW Bag Of Words
CBOW Continuous BagOf Words
CFS Correlation Feature Selection
CNN Convolutional Neural Network
CEV Cumulative Explained Variance
DBMFs Distance-Based Meta-Features
DT Decision Trees
GloVe Global Vectors for Word Representation
GPU Gated Recurrent Unit
IDF Inverse Document Frequency
IG Information Gain
LDA Linear Discriminant Analysis
LSA Latent Semantic Analysis
LSI Latent Semantic Indexing
LSTM Long Short-Term Memory
ML Machine Learning
MI Mutual Information
MSA Modern Standard Arabic
MLP Multi-Laye Perceptron
NLP Natural Language Processing
NER Named Entity Recognition
NB Naive Bayes
NMF Non-Negative Matrix Factorization
OOV Out-Of-Vocabulary
PCA Principal Component Analysis
PCs Principal Components

RF Random Forest
SOTA State Of The Art
SVD Singular Value Decomposition
SVM Support Vector Machine
TC Text Classification
TF Term Frequency
TF-IDF Term Frequency-Inverse Document Frequency
Word2Vec Word to Vector
kNN k-Nearest Neighbor
GPT Generative Pre-trained Transformer
w.r.t with respect to
XGB Extreme Gradient Boosting

1

Introduction
The computational analysis of the Arabic language is critically important given its signifi-
cant global presence. Arabic ranks as the fourth most widely used language online, following
English, Chinese, and Spanish, with Arab users comprising 5.2% of the global internet pop-
ulation and being the fastest-growing language over the past five years. Notably, 53% of
the Arab population has internet access1. Arabic is the official language of all Arab League
member states and a primary language in most countries of the Organization of Islamic Co-
operation (OIC), making it a key global language. It serves as a gateway to the rich cultural
and historical heritage of the Arab and Islamic world, spanning over fourteen centuries. A
grasp of the language is essential for apprehending regional perspectives on geopolitical
events and for effective communication within the Arab world. Moreover, Arabic-speaking
nations assume important roles in global affairs owing to their geopolitical, economic, and
strategic position, particularly as key contributors to the global energy market. As such, the
Arabic language becomes crucial for diplomatic and economic relations, negotiation of trade
agreements, and for understanding economic local policies.

Arabic is currently widely used in regional media, including news outlets, television, and
online platforms. Additionally, Arabic-speaking communities are dispersed globally due to
migration and diaspora, making the language relevant in multicultural societies outside the
Arab world, influencing social dynamics, politics, and international relations (Redkin and
Bernikova, 2016). These arguments underscore the importance of Arabic language compu-
tational processing, especially given the significant time investment required to master it.
Among the various computational tasks, Arabic text classification (ATC) emerges as one of
the most critical areas of research. ATC has broad applications across various domains. In
social media, it aids content management, enhances safety by supporting incident monitor-
ing, and detects cyber threats on platforms like Twitter and Instagram. It also helps in author
profiling and sentiment analysis. In healthcare, ATC categorizes health-related information,
revealing that half of medical tweets from professionals are false (Alnemer et al., 2015). In
the legal sector, ATC classifies Arabic legal documents to improve access and data protec-
tion. It is also applied in recommendation systems and fatwā classification in socio-religious
contexts. ATC is widely used for topical classification in news, as well as in tasks like dialect
identification and web page clustering.

The major challenge faced by any text classification system is the "Curse of Dimen-
sionality". This term introduced in (Bellman, 1957), describes the challenges of analyzing
high-dimensional data. Text documents, with numerous unique words as features, often lead

1www.internetworldstats.com/stats7.htm

www.internetworldstats.com/stats7.htm

2

to high-dimensional data, causing increased storage needs, higher computational complex-
ity, and a higher risk of overfitting. Dimensionality reduction techniques, including feature
selection and extraction, help mitigate these challenges by reducing the number of features,
improving computational efficiency, enhancing model accuracy, and making complex data
more interpretable and easier to visualize. The amount of research conducted on ATC is
relatively limited compared to the extensive work done on English text classification. One
of the main reasons for this gap is the significant challenges ATC faces, including linguistic
complexity and limited resources. Recently, deep learning techniques have shown promis-
ing results in ATC (Elnagar, Al-Debsi, and Einea, 2020), though they often involve high
computational costs, particularly in terms of runtime, which can impact the performance of
real-time, stream-based applications. Additionally, achieving accurate and robust ATC with
minimal computational resources is essential, especially for mid-sized companies or research
groups with limited resources. Most research in the ATC field prioritizes effectiveness, often
overlooking efficiency considerations. To address these challenges, this doctoral disserta-
tion sets a two-fold objective: Firstly, we delve into ATC-related works by identifying the
strengths and limitations of datasets, preprocessing methods, vectorization, dimensionality
reduction techniques, as well as classical machine learning and deep learning models com-
monly used in the field, thereby providing a comprehensive understanding of the research
landscape. Secondly, based on the conclusions drawn from ATC-related works , we propose
three approaches for ATC, with a particular focus on Arabic topical classification. The pro-
posed approaches aim to address the computational challenges (memory consumption and
runtime) associated with ATC through dimensionality reduction methods, while maintain-
ing a high level of effectiveness. These approaches will be compared with state-of-the-art
methods in ATC to evaluate their performance.

Dissertation outline

The dissertation is organized into four chapters. The first chapter provides a comprehensive
overview of foundational concepts and prior research related to Arabic document classifica-
tion, with a specific emphasis on dimensionality reduction techniques. The remaining three
chapters present the main contributions to Arabic Text Classification (ATC) using dimen-
sionality reduction. These chapters are primarily based on our published papers during the
PhD period, with minor modifications and removal of overlapping content where necessary.

Chapter 1: This chapter thoroughly examines the core concepts and existing research on

3

Arabic document classification, covering text classification basics, Arabic linguistic com-
plexities, vectorization, dimensionality reduction, machine learning, and deep learning ap-
proaches. It also reviews datasets, preprocessing, vectorization, dimensionality reduction,
machine learning, deep learning, and evaluation methods used in Arabic topical text classi-
fication, laying the groundwork for the following chapters.

Chapter 2: This chapter presents our first contribution, in which we proposed the use of
Principal Component Analysis (PCA) as a feature extraction method for Arabic text classi-
fication. We assessed its impact on both the effectiveness and efficiency of several promi-
nent classifiers, including support vector machines, random forests, decision trees, k-nearest
neighbors, and logistic regression. By incorporating PCA, we aimed to address the chal-
lenges posed by high-dimensional data in Arabic text processing, thereby improving both
computational efficiency and model performance. To the best of our knowledge, this was the
first application of PCA to Arabic text classification. This chapter is based on our conference
paper, originally presented in (Louail, Kara-Mohamed Hamdi-Cherif, and Hamdi-Cherif,
2021)

Chapter 3: This chapter presents our second contribution, where we introduced an addi-
tional preprocessing step to the classification pipeline by generating distance-based meta-
features derived from the original TF-IDF representations. Specifically, we focus on four
types of distance-based meta-features: CosKNN, L2KNN, CosCent, and L2Cent, and eval-
uate their effectiveness and efficiency as dimensionality reduction techniques for ATC. The
impact of these features is assessed using four widely used classifiers: k-Nearest Neighbors,
Logistic Regression, Random Forest, and Support Vector Machine. This work highlights the
significance of emphasizing the pre-processing phase over the classifier algorithm to achieve
better text classification performance while minimizing time-related costs. To the best of our
knowledge, this represents the first application of distance-based meta-features in the context
of Arabic text classification. This chapter is based on our research publication (Louail and
Kara-Mohamed, 2023)

Chapter 4: In this chapter, we proposed Tasneef, a novel hybrid approach to tackle compu-
tational challenges by reducing memory usage and runtime overhead for actual Arabic text
classification.The main contributions of chapter can be described as follows:

• Design DBMFs that combine both local information, achieved through k-nearest
neighbor (kNN) DBMFs, and global information through centroid DBMFs, as they
have been demonstrated to yield significant results when applied to classify English
text (Canuto et al., 2018).

4

• Develop a hybrid representation through the integration of DBMFs with pretrained
fastText embeddings integrating both statistical and semantic properties.

• Emphasize the importance of memory consumption and runtime as crucial factors for
analysis, focusing on the performance gains achieved by Tasneef while maintaining
classification effectiveness without significant losses. These conflictual aspects, taken
concurrently, have been largely overlooked in existing ATC literature (Wahdan, Al-
Emran, and Shaalan, 2023)

• Undertake two series of experiments: one for choosing the best DBMFs, the other for
comparing Tasneef with state-of-the-art (SOTA) methods, including advanced deep-
learning models and feature reduction methods.

This work was published as an academic article in (Louail, Kara-Mohamed, and Hamdi-
Cherif, 2024)

5

Chapter 1

Background and Related Works

1.1 Introduction

This chapter provides a detailed overview of the foundational concepts and prior research re-
lated to Arabic document classification, with a particular focus on the use of dimensionality
reduction techniques. The chapter begins with an exploration of text classification funda-
mentals, followed by a detailed discussion of the unique properties of the Arabic language
that make classification tasks more complex. Various text vectorization techniques are then
reviewed, including classical methods like one-hot encoding, bag-of-words, and more ad-
vanced approaches such as word embeddings. Additionally, dimensionality reduction tech-
niques, crucial for handling high-dimensional data in text classification, are examined. The
chapter also covers both classical machine learning and deep learning approaches, providing
insights into how each is applied to Arabic text classification. Finally, the chapter delves
into related works, discussing the datasets, preprocessing techniques, and models commonly
employed in the field, offering a contextual understanding of the research landscape.

1.2 Text Classification : Key Concepts and General
Pipeline

1.2.1 Text Classification Levels

Text classification can be broadly categorized into four levels (Kowsari et al., 2019), depend-
ing on the granularity of the classification task:

1. Document level: At the document level, the entire document is treated as a single
unit and labeled with the relevant class or classes. This is useful for tasks like topic
categorization.

6 Chapter 1. Background and Related Works

2. Paragraph level: At the paragraph level, a portion of the document is considered as
a unit and labeled with the relevant class or classes. This is useful for more detailed
categorization where different paragraphs might belong to different categories.

3. Sentence level: At the sentence level, a single sentence (a portion of a paragraph)
is assigned the relevant class or classes. This can be used for tasks like identifying
sentence-level sentiment or extracting specific information from text.

4. Sub-Sentence level: At the sub-sentence level, a portion of a sentence , such as
phrases or clauses is labeled with the relevant class or classes. This level of granular-
ity is useful for tasks like named entity recognition (NER) or aspect-based sentiment
analysis.

1.2.2 Types of Text Classification

Text classification is a diverse field with various approaches tailored to different tasks. Some
commonly discussed types of text classification in the academic literature include:

• Single-Label Classification:This type involves categorizing texts into one of several
possible classes, where each text is assigned a single label. This can be further divided
into two classes:

1. Binary Classification: A specific case of single-label classification where texts
are categorized into one of two possible classes. For example, in email spam
detection, emails are classified as either "spam" or "not spam" (Raj et al., 2018).

2. Multi-Class Classification: Another form of single-label classification where
texts are categorized into one of several distinct classes. An example is the cat-
egorization of news articles into categories such as "politics," "sports," or "tech-
nology" (Einea, Elnagar, and Debsi, 2019).

• Multi-Label Classification: In this approach, multiple labels are assigned to a single
text (Elnagar, Al-Debsi, and Einea, 2020). For instance, a news article might be tagged
with multiple labels like "politics," "economy," and "international" . This method is
beneficial when a text can belong to more than one category simultaneously.

• Hierarchical Classification: This classification method organizes texts into cate-
gories with a hierarchical structure. For example, a document might first be classified
into a broad category such as "Science" and then into more specific subcategories like
"Physics" or "Chemistry" (Silla and Freitas, 2010). Hierarchical classification is useful
for tasks requiring a structured categorization scheme.

1.2. Text Classification : Key Concepts and General Pipeline 7

1.2.3 Arabic Text Classification General Pipeline

Figure 1.1 illustrates the pipeline for Arabic text classification task using both Classical
Machine Learning and Deep Learning approaches, highlighting the distinct methodologies
employed by each.

1. Preprocessing: Both approaches start with preprocessing the raw text, a crucial step
to clean and prepare the data for further analysis. This process generally includes:

• Tokenization: Tokenization involves dividing a text into smaller linguistic com-
ponents, known as tokens. These tokens can be words, subwords, or characters,
depending on the needs of the task and the specific requirements of the analysis.

• Text cleaning: This step includes eliminating digits, special characters, non-
Arabic words, and Arabic stop-words (e.g., "ð" (and), "ú

	
¯" (in), etc.) that might

not contribute to the classification task.

• Normalization: Normalization involves standardizing text data by reducing vari-
ation and ensuring uniformity. For Arabic text, this typically means replacing
different forms of alif (

c
@, @

,
�
@) with a standard alif (@), converting yā (ø

) to alif

maksoorah (ø), and changing tā marbootah (�è) to hā (è).

• Stemming/Lemmatization: Generally, one method is used, either stemming or
lemmatization. Both methods are used to reduce words to their base or root
forms, but they differ in approach and accuracy. Stemming removes affixes
based on heuristic rules to produce a "stem," which may not always be a valid
word. It is faster but less precise and can result in incorrect forms. Lemmati-
zation, in contrast, reduces words to their canonical form, or "lemma," by con-
sidering context and using dictionary lookups and morphological analysis. This
makes lemmatization more accurate but also more computationally intensive and
resource-dependent.

2. Classical Machine Learning Approach: In the classical machine learning approach
to text classification, the process typically involves two key phases: feature extraction
or feature selection, and classification.

(a) Feature Extraction \Feature Selection: Feature Extraction and Feature Selec-
tion are both techniques used in text processing and machine learning. Fea-
ture Extraction involves creating a new set of features from the original fea-
tures, which often results in a more compact representation with improved qual-
ity. Conversely, Feature Selection entails choosing a subset from the existing

8 Chapter 1. Background and Related Works

features, concentrating on preserving those that are most pertinent and elimi-
nating those that are less useful or redundant. While both techniques work to-
wards reducing the dimensionality of the data, they do so through different pro-
cesses. Feature extraction methods, covering vectorization and transformation
techniques, are discussed in Section 1.4 and Subsection 1.5.1. Feature selection
methods are reviewed in Subsection 1.5.2.

(b) Classifier: Once the raw text has been preprocessed and the most relevant fea-
tures for the classification task have been extracted or selected, these features are
input into a machine learning classifier that has been trained on labeled data. By
learning from patterns and relationships within the training data, the classifier
can make informed predictions on new, unseen examples. This approach ensures
that the classifier utilizes the most relevant information, enhancing both its per-
formance and accuracy. The classifiers employed for text classification task are
thoroughly described in Section 1.6

3. Deep Learning Approach: In this approach, neural network models like Convolu-
tional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs) handle both
feature extraction and classification in a unified process. These models automatically
learn to discover and extract important features from text data through their layered
architecture, eliminating the need for manual feature engineering. This end-to-end
approach enables the models to capture intricate patterns and relationships within
the text, enhancing the effectiveness and accuracy of text classification tasks. Deep
learning-based approach techniques employed for text classification are thoroughly
examined in Section 1.7

4. Evaluation: Experimental evaluation is essential for assessing a classifier’s ability to
generalize to new text and for optimizing the model during training. Key performance
metrics for text classifiers include accuracy, precision, recall, and the F1-score.

1.3. Arabic Language Properties and TC Challenges 9

FIGURE 1.1: Text classification general pipeline .

1.3 Arabic Language Properties and TC Challenges

1.3.1 Importance of the Arabic Language

The Arabic language is one of the six official languages of the United Nations1, alongside
Chinese, English, French, Russian, and Spanish. Geographically, Arabic is an Afro-Asiatic
language and is the most widely spoken within the Semitic branch of the Afro-Asiatic lan-
guage family. It is used by over 473.27 million people 2 across 22 countries in the Arab
world. Additionally, Arabic is considered a sacred language by approximately 2.03 billion
Muslims worldwide3, which represents over 25% of the world’s total population of 8.12 bil-
lion, as the Qur’an and Hadith—central texts of Islam—are written in Arabic. The Qur’an

is the holy book of Islam, and Hadith4 refers to the reports attributed to the Prophet Muham-
mad (peace be upon him), describing his words and actions. The Arabic language has been
profoundly influenced by the Qur’an (Gholitabar and Kamali, 2015), which is regarded as
the highest linguistic achievement in Arabic. Besides, Arabic is recognized as the fourth
most used language on the web5, with 237 million internet users and the fastest-growing
language over the last five years.

1https://www.un.org/en/our-work/official-languages
2https://www.statista.com/statistics/806106/total-population-arab-league/
3https://timesprayer.com/en/muslim-population/
4https://www.oxfordbibliographies.com
5https://www.internetworldstats.com/

https://www.un.org/en/our-work/official-languages
https://www.statista.com/statistics/806106/total-population-arab-league/
https://timesprayer.com/en/muslim-population/
https://www.oxfordbibliographies.com
https://www.internetworldstats.com/

10 Chapter 1. Background and Related Works

1.3.2 Arabic Varieties

Diglossia is a linguistic phenomenon in which two distinct varieties of the same language
coexist within a community (Ferguson, 1972). Typically, one variety is considered "high"
(formal and prestigious), while the other is regarded as "low" (informal and used in everyday
conversation). Arabic is frequently cited by scholars as a leading example of diglossia due
to its use of these distinct high and low varieties. Specifically, Arabic includes three main
classes: Classical Arabic, Modern Standard Arabic (MSA), and Arabic dialects (Habash,
2010; Versteegh, 2014). In the context of diglossia, Classical Arabic and MSA represent the
high varieties, whereas Arabic dialects constitute the low variety.

• Classical Arabic: Classical Arabic is a prestigious language within the Muslim world.
It is the form of Arabic used in the Qur’an, Hadith, and classical literature, including
poetry from before and shortly after the advent of Islam. Classical Arabic is distin-
guished by its complex grammatical and syntactical rules and serves as the foundation
for Modern Standard Arabic.

• Modern Standard Arabic (MSA): Modern Standard Arabic is the official language
used across the Arab world in media, education, and formal writing. However, MSA
is primarily a written language and is not commonly spoken in everyday conversa-
tions. In contrast, the various Arabic dialects are used in daily life as the native spoken
languages.

• Arabic Dialects: Arabic dialects, also known as Colloquial Arabic, are distributed
across the 22 countries in the Arab world. According to Nizar Y. Habash(Habash,
2010), these dialects can be categorized into several groups: Egyptian Arabic (EGY),
Levantine Arabic (LEV), Gulf Arabic (GLF), North African Arabic or Maghrebi
(Mag), Iraqi Arabic (IRQ), and Yemeni Arabic (Yem). Maltese Arabic is considered
a separate language, not an Arabic dialect, and is written in the Latin script. Arabic
dialects are derived from MSA and exhibit many similarities with it. Arabic dialects
are generally used in daily life as spoken languages. However, with the rise of social
media, Arabic dialects are increasingly used in written forms such as comments and
blogs. The authors in (Kathrein et al., 2018) explored the lexical connections between
MSA and various Arabic dialects across different regions using natural language pro-
cessing techniques. Their findings indicated that Levantine dialects are highly similar
to one another, with the Palestinian dialect, which is a subset of the Levantine dialects,
being particularly close MSA. MSA and Arabic dialects are sometimes written using
Latin letters, a form known as Arabizi, Arabish, or Franco-Arab (Darwish, 2013). In
Arabizi, numbers are used to represent phonetic sounds and letters that do not exist in

1.3. Arabic Language Properties and TC Challenges 11

English or French. For example, "3" represents the letter "¨" and "7" represents the

letter "h" .Arabizi is commonly used in informal writing, such as on social media and
in Short Message Service (SMS), and it is often mixed with English or French.

The variation in the Arabic language, combined with the widespread use of Arabizi, sig-
nificantly complicates text classification tasks. Each Arabic dialect can differ in vocabulary,
grammar, and even pronunciation, leading to inconsistencies in the data. When Arabizi is in-
troduced into the mix, the classification becomes even more challenging, as the model must
handle both the Arabic script and the informal Latin-based representation.

1.3.3 Arabic Script

The Arabic script is used for writing Arabic as well as several other languages from both the
Asian and African continents that are not related to Arabic, such as Persian, Kurdish, and

Urdu. It consists of the following 28 letters:
	

� �
�

� � 	P P
	
X X p h h.

�
H

�
H H.

@

ø

ð è

	
à Ð È ¼

�
�

	
¬

	
¨ ¨

	
 . Unlike English and other Latin-based languages, Arabic is

written from right to left and does not have uppercase or lowercase letters. The Arabic script
utilizes two kinds of symbols: letters and diacritics (Habash, 2010):

• Letters: Letters in Arabic script are composed of two parts. The first part is the letter
form, which is essential for each letter. The second part is the letter mark, which can
be divided into three types: dots, the short Kaf, and the Hamza. Letter marks are used
to distinguish different letters because some letters share the same letter form. For
example, these three letters are differentiated by the number of dots: H. (/b/), �H (/t/),

and �
H (/T/). Furthermore, Arabic letters may take four different shapes depending

on their position in a word: at the beginning, in the middle, at the end, and when
standing alone. For example, the letter ¨(/Q/) can appear in the following shapes:

Initial "�«", Medial "�ª�", Final "©�", and Isolated " ¨". Arabic letters are generally

connected in cursive within words, except for certain letters (P ,P ,
	
X , X , @ and ð) that

do not connect to the following letter. Long vowels in Arabic are represented by the
letters: Alif " @", Waw "ð", and Ya "ø

". Their corresponding phonetics are/a:/, /u:/,

and /i:/ respectively.

12 Chapter 1. Background and Related Works

Table 1.1 shows the Arabic alphabet with each letter’s forms at the beginning, mid-
dle, and end of words, along with their pronunciation and the closest Latin equivalent.

• Diacritics: Arabic diacritics are represented by the three short vowels: Fatha (/a/),
Damma (/u/), and Kasra (/i/). Additionally, there is the Sukun, which indicates the ab-
sence of these short vowels; Tanwin, which is pronounced like a short vowel followed
by an /n/ sound at the end of the word; and Shadda, which represents a doubled con-
sonant. Diacritics are optional because proficient speakers can understand a given text
without them. Almost all Arabic texts are written without diacritics, which can lead
to lexical ambiguity and pose challenges for computational systems (Boudad et al.,
2017). For example, the absence of diacritics in the word QK. may refer to ��Q

�
K. (land), ��QK.�

(charity), or ��Q
�
K. (wheat).

1.3. Arabic Language Properties and TC Challenges 13

TABLE 1.1: Forms of Arabic letters.

Arabic
Letter

Beginning
Form

Middle
Form

End
Form

Pronunciation
Closest Latin
Equivalent

@ @ A� A� Palif (a, ā) A

H. �K. ��J. � I. � bāP (b) B

�
H �

�
K ��

�
J�

�
H tāP (t) T

�
H �

�
K ��

�
J�

�
I� thāP (th) TH

h. �k. �j. � i. � jı̄m (j) J

h �k �j� i� h. āP (h.) H (hard H)

p �
	
k �

	
j� q� khāP (kh) KH

X X Y� Y� dāl (d) D

	
X

	
X

	
Y�

	
Y� dhāl (dh) DH

P P Q� Q� rāP (r) R

	P 	P 	Q� 	Q� zāy (z) Z

� �� ��� �� sı̄n (s) S

�
� �

�
� �

�
��

�
�� shı̄n (sh) SH

� �� ��� �� s.ād (s.) S (emphatic)

	
� �

	
� �

	
��

	
�� d. ād (d.) D (emphatic)

 �¢� �¢� t.āP (t.) T (emphatic)

	

	
 �

	
¢�

	
¡� thāP (z.) DH (emphatic)

¨ �« �ª� ©� Payn (Q) P (guttural stop)

	
¨ �

	
« �

	
ª�

	
©� ghayn (gh) GH

	
¬ �

	
¯ �

	
®�

	
� fāP (f) F

�
� �

�
¯ �

�
®�

�
�� qāf (q) Q

�» , ¼ �» �º� �º� ,½� kāf (k) K

È �Ë �Ê� É� lām (l) L

Ð �Ó �Ò� Ñ� mı̄m (m) M

	
à �

	
K �

	
J� 	á� nūn (n) N

�ë �ë �ê� é� hāP (h) H

ð ð ñ� ñ� wāw (w, ū) W

ø

�K
 �J
� ù

�� yāP (y, ı̄) Y

14 Chapter 1. Background and Related Works

1.3.4 Arabic Morphology

In linguistics, morphology is the study of a word’s internal structure and how words are
formed (Aronoff and Fudeman, 2016) . Arabic morphology (ú

G
.
QªË@

	
¬Qå�Ë@ ÕÎ«) is one of

the main branches of Arabic grammar and is known for its richness and complexity, which
makes tokenization and stemming processes more challenging compared to many other lan-
guages. Arabic morphology encompasses three main aspects: derivation, inflection, and
agglutination (Habash, 2010; Boudad et al., 2017).

• Derivation: Derivation is the process of creating new words that are lexically related
to a root. In English, new words are typically derived by adding a prefix or a suffix
to the root. For example, from the English adjective happy, the adjective unhappy and
the noun happiness are derived by adding a prefix and a suffix, respectively. Unlike
English, Arabic morphology is non-concatenative (Farghaly et al., 2009). In Arabic,
new words are not formed by simply adding prefixes or suffixes but by altering the
word pattern. All Arabic words are based on a sequence of two, three, four, or five
consonants known as the root. The arrangement of the root consonants with specific
vowels and other consonants according to a particular pattern produces a variety of
words, each generally conveying different concepts from the root. For example, from

the Arabic root H. -
�
H- ¼ (K-T-B), which means ’write’, several words can be de-

rived:

- The pattern 1a:2i3 produces the word I.
�
KA¿ (ka:tib), meaning ’writer’, where the

numbers indicate the position of the root consonants and the rest of the symbols
indicate vowels and additional non-root consonants.

- The pattern 1i2a:3 gives the word H. A
�
J» (kita:b), meaning ’book’.

- The pattern Ma12a3 results in the word I.
�
JºÓ (maktab), meaning ’desk’.

• Inflection: Inflection is the process that involves a change in the form of a word to
express different inflectional categories such as tense, number, gender, and others. In-
flectional morphology differs from derivational morphology in that inflection produces
different forms of the same word, whereas derivation produces entirely new words.

1.3. Arabic Language Properties and TC Challenges 15

Compared to English, Arabic has a richer inflectional system. In fact, there are eleven
inflectional categories in the Arabic language (Ryding, 2014):

1. Tense/Aspect: Tense (present, past, future); Aspect (imperfect, perfect).

2. Person: First, second, third.

3. Voice: Active, passive.

4. Mood: Indicative, subjunctive, jussive, imperative.

5. Gender: Masculine, feminine

6. Number: Singular, dual, plural.

7. Case: Nominative, genitive, accusative.

8. Definiteness: Definite, indefinite.

9. Comparison: Positive, comparative, superlative.

10. Deixis: Near, far, farther.

11. Humanness: Human/non-human distinction.

Table 1.2 presents the inflection of the verb
�
É
�
ª
�	
¯ (to do) depending on person, number,

gender, and tense.

TABLE 1.2: Inflection of the verb ‘Éª 	¯’ (to do).

Personal
pronouns (Ar.)

Personal
pronouns (En.)

Past tense Transliteration Present tense Transliteration

Single

A
�	
K

@ I (male/female)

��
I

�
Ê
�
ª
�	
¯ faealtu

�
É
�
ª
�	
¯

@ afealu

��
I

�	
K

@ You (male)

��
I

�
Ê
�
ª
�	
¯ faealta

�
É
�
ª
�	
®
��
K tafealu

�
I
�

�	
K

@ You (female) �

I
�

�
Ê
�
ª
�	
¯ faealti

�	á�
Ê�
�
ª
�	
®
��
K tafeali:n

�
ñ
�
ë He

�
É
�
ª
�	
¯ faeala

�
É
�
ª
�	
®
�
K
 yafealu

�ù

ë� She

��
I

�
Ê
�
ª
�	
¯ faealat

�
É
�
ª
�	
®
��
K tafealu

Dual

�	á
�
m�
�	
' We (male/female) A

�	
J
�
Ê
�
ª
�	
¯ faealna:

�
É
�
ª
�	
®
�	
K nafealu

A
�
Ò
��
J
�	
K @ You (male/female) A

�
Ò
��
J
�
Ê
�
ª
�	
¯ faealtuma: 	

à
�
C
�
�
ª
�	
®
��
K tafela:n

A
�
Ò
�
ë They(male) C

�
�
ª
�	
¯ faeala: 	

à
�
C
�
�
ª
�	
®
�
K
 yafeala:n

A
�
Ò
�
ë They(female) A

��
J
�
Ê
�
ª
�	
¯ faealata: 	

à
�
C
�
�
ª
�	
®
��
K tafeala:n

Plural

�	á
�
m�
�	
' We (male/female) A

�	
J
�
Ê
�
ª
�	
¯ faealna:

�
É
�
ª
�	
®
�	
K nafealu

Õ
��
æ
�	
K @ You (male) �Õ

��
æ
�
Ê
�
ª
�	
¯ faealtum

�	
àñ

�
Ê
�
ª
�	
®
��
K tafealu:n

��	á
��
�
	
K @ You (female)

��	á
��
�
�
Ê
�
ª
�	
¯ faealtunna �	á

�
Ê
�
ª
�	
®
��
K tafealnna

Ñ
�
ë They(male) @ñ

�
Ê
�
ª
�	
¯ faealu: 	

àñ
�
Ê
�
ª
�	
®
�
K
 yafealu:n

��	á
�
ë They(female) �	á

�
Ê
�
ª
�	
¯ faealnna �	á

�
Ê
�
ª
�	
®
�
K
 yafealnna

16 Chapter 1. Background and Related Works

• Agglutination: Arabic is an agglutinative language that relies primarily on clitics.
Agglutination or cliticization have the same meaning, referring to the process of com-
bining morphemes into a single word. Clitics have the form of affixes in that they are
morphemes attached to a word, but they differ from affixes in their function. Unlike
affixes, clitics depend phonologically on another word or phrase. For example, the
auxiliary verbs is and will are reduced to the clitics ’s and ’ll in the phrases I’m and
I’ll, respectively. Table 1.3 represents Arabic clitics along with their corresponding
classes, including conjunctions, particle proclitics, determiners, and pronominal encl-
itics. These clitics are attached to the stem in a strict order: CONJ + PART + DET
+ STEM + PRON. For instance, the Arabic word " �

HAJ.
�
JºÒÊËð", which means "and for

the libraries," can be split into four parts (�
HAJ.

�
JºÓ+ È@ + È+ ð): the conjunction "ð"

(and), the particle proclitic "È
�
" (for), the determiner "È@" (the), and the stem " �

HAJ.
�
JºÓ"

(libraries).

The structure of Arabic words can be very complex; a single word in Arabic can
function as an entire sentence in English. For example, the Arabic word " �èñ �Ò

�
» A
�	
J
�
J

��
®
�
�

�
A
�	
¯"

(13 letters) is equivalent to the fourteen-word English sentence “Then, we have made a
provision in order to enable you to drink it” (51 letters). Another example is the word
" A �ëñ �Ò

�
º
�
Ó 	Q
�

�
Ê
�	
K

�
@" (10 letters), which corresponds to the seven-word English sentence “Shall

we compel you to accept it?” (26 letters).

1.3. Arabic Language Properties and TC Challenges 17

TABLE 1.3: Arabic clitics.

Cltics Class Function English
�
@ "a" Conjunction interrogative ÐAê

	
®
�
J�B@

�
è 	QÒë yes/no question

�
ð "wa" Conjunction coordination 	

¢ªË@ð@ð and

connection ¡�. QË @ ð@ð and

circumstantial ÈAmÌ'@ ð@ð while

Particle proclitics oath Õæ�
�
®Ë @ ð@ð by

Accompaniment �
éJ
ªÖÏ @ ð@ð with

�	
¬ "fa" Conjunction coordination 	

¢ªË@ ZA
	
¯ and, so

connection ¡�. QË @ ZA
	
¯ and, so

response conditional Z @ 	Qm.Ì'@ Z A
	
¯ so,then

subordinating conjunction �
éJ
J. �.�Ë@ ZA

	
¯ so, that

H.�
"bi" Particle proclitics Preposition Qk.

	
¬Qk by, with, in

�
¼ "ka" Particle proclitics Preposition Qk.

	
¬Qk such as, like

È
�

"li" Particle proclitics Preposition Qk.
	

¬Qk to, for
�
È "la” EmphasisYJ
»ñ

�
JË @ ÐB will certainly

response conditional Z @ 	Qm.Ì'@ ÐB so, then

�
� "sa" Particle proclitics future particle ÉJ.

�
®
�
J�ÖÏ @

	á�
� will

È@ "al" Determiner definite article 	
K
Qª

�
JË @ È@ the

è "h" Pronominal Enclitics attached pronouns �
éÊ�

�
JÖÏ @ Q

KAÒ

	
�Ë@ His, its, him, it

Aë "ha:" Her, its, it, him

Ñë "hum" Their, Them (Male, Plural more than 2)

AÒë "huma:" Their, Them (Double)
	áë "hunna " Their, Them (Female, Plural more than 2)

¼ "k" Your, you (single)

Õ» "kum" Your, you(Male, Pluralmore than2)

AÒ» "kuma:" Your, you (Double)
	á» "kunna" Your, you (Female, Plural more than 2)

A
	
K "na:" Our, us

ø

"y " My, me

1.3.5 Arabic Syntax

In linguistics, syntax refers to the rules that govern how words are arranged together to form
phrases and sentences (Carnie, 2013). Arabic syntax (ñ �

j

��	
JË @) is the second main branch of

Arabic grammar, alongside morphology. Morphologically rich languages have a complex re-
lationship between morphology and syntax. A prime example of this is the Arabic language,

18 Chapter 1. Background and Related Works

where Arabic cliticization morphology interacts with various syntactic structures (Habash,
2010). There are two types of Arabic sentences: verbal sentences and nominal sentences.A
verbal sentence, " �éJ
Êª

	
®Ë @

�
éÊÒm.

Ì'@," begins with the verb, followed by the subject. The defin-
ing characteristic of a verbal sentence is that the verb precedes the subject. The standard
structure of verbal sentences is Verb-Subject-Object (éK. Èñª

	
®Ó - É«A

	
¯ - Éª

	
¯). For exam-

ple, "H. A
�
JºË@ I. ËA¢Ë@

@Q
�
¯" means "The student read the book." In this sentence, the verb is

"

@Q
�
¯" (read), the subject is "I. ËA¢Ë@" (the student), and the object is "H. A

�
JºË@" (the book). A

nominal sentence, " �éJ
ÖÞ�B@
�
éÊÒm.

Ì'@," begins with a noun and consists of a subject "

@Y
�
JJ.Ó" and a

predicate "Q�.
	
g." The subject is usually a definite noun, pronoun, or demonstrative, while the

predicate can be an indefinite noun, adjective, or verb. For instance, in the nominal sentence
"ÉJ
Ôg. ñm.Ì'@," which means "The weather is beautiful," the definite noun "ñm.Ì'@" (the weather)
represents the subject, and the indefinite adjective "ÉJ
Ôg. " (beautiful) represents the predi-
cate. Arabic syntax can be flexible, leading to various possible interpretations of sentence
structure and meaning, which complicates the classification process.

1.4 Text Vectorization Techniques

Text documents are a form of unstructured data that need to be converted into numerical rep-
resentations to be directly utilized by machine learning algorithms. This conversion process,
known as text vectorization, is a fundamental challenge in text classification. Text vectoriza-
tion techniques enable machine learning models to understand and analyze textual data by
transforming words, phrases, or entire documents into vectors (numerical arrays).

1.4.1 One-Hot Encoding

One-Hot Encoding is a traditional technique used to encode qualitative data, such as textual
words, into a numerical format suitable for machine learning models. In this approach, each
distinct word in a text corpus is represented as a binary vector with a length equal to the num-
ber of unique words in the vocabulary. Within each vector, all positions are set to zero except
for one position, which is marked with a "1" to indicate the presence of that specific word
(Oguike, 2021). This method allows models to distinguish between words by their unique
vector representations. Although one-hot encoding is appreciated for its simplicity, its main
drawback is the creation of high-dimensional, sparse vectors, particularly with extensive vo-
cabularies, which can be computationally costly. Additionally, since one-hot encoding does
not capture semantic relationships between words, machine learning models that utilize these
vectors as input may exhibit poor performance.

Consider a simple Arabic corpus consisting of two sentences:

1.4. Text Vectorization Techniques 19

1. "ÐñJ
Ë @ @
	
Yë ÉJ
Ô

g
.
ñm.
Ì'@ " (The weather is beautiful today)

2. "ÉJ
Ôg. É�
	
¯ ©J
K. QË @ " (Spring is a beautiful season)

This corpus contains six unique words indexed from 0 to 5:

Vocabulary={ "ñm.Ì'@" (weather): 0, "ÉJ
Ôg. " (beautiful): 1," @
	
Yë" (this): 2, "ÐñJ
Ë @" (to-

day): 3, "©J
K. QË @" (spring): 4, "É�	
¯" (season) : 5 }

Each of these words is represented by a binary vector with a length of 6:

"ñm.Ì'@" = [1, 0, 0, 0, 0, 0]

"ÉJ
Ôg. " = [0, 1, 0, 0, 0, 0]

" @
	
Yë" = [0, 0, 1, 0, 0, 0]

"ÐñJ
Ë @" = [0, 0, 0, 1, 0, 0]

"©J
K. QË @" = [0, 0, 0, 0, 1, 0]

"É�	
¯" = [0, 0, 0, 0, 0, 1]

Consequently, the sentence "ÐñJ
Ë @ @
	
Yë ÉJ
Ô

g
.
ñm.
Ì'@ " is represented by the sequence of these

vectors:

"ñm.Ì'@" [[1, 0, 0, 0, 0, 0],

"ÉJ
Ôg. " [0, 1, 0, 0, 0, 0],

" @
	
Yë" [0, 0, 1, 0, 0, 0],

"ÐñJ
Ë @" [0, 0, 0, 1, 0, 0]]

Similarly, the sentence "ÉJ
Ôg. É�
	
¯ ©J
K. QË @ " is represented by:

"©J
K. QË @" [[0, 0, 0, 0, 1, 0],

"É�	
¯" [0, 0, 0, 0, 0, 1],

"ÉJ
Ôg. " [0, 1, 0, 0, 0, 0]]

1.4.2 Bag-of-Words (BoW)

BoW model is a straightforward method for encoding text numerically by focusing on the
frequency of words within a document, using a predefined vocabulary. Instead of treating
the document as a sequence of words, it is considered a collection or "bag" of words (Ju-
rafsky and Martin, 2023). The document is represented by counting how often each word
from the vocabulary appears. For instance, if the vocabulary consists of 1,000,000 words,
the document will be represented by a 1,000,000-dimensional vector, where each dimension

20 Chapter 1. Background and Related Works

corresponds to the frequency of a specific word. Typically, a word that appears frequently in
a document is likely to convey a key idea about that document. This assumption is reason-
able; for example, if the most common words in a document include "president," "voters,"
and "election," it is likely that the document is related to political topics. However, some
words might be common across many documents and not be as specific to any single one.
The term "bag" of words emphasizes that the model disregards the order and structure of
words, focusing solely on the presence and frequency of vocabulary words, rather than their
positions or sequence in the document.

The BoW model faces limitations including the need for careful vocabulary management
to address sparsity and high dimensionality, and it ignores word order, which can hinder
its ability to capture context and nuanced meanings. The N-grams method comes as an
extension of the BoW model and has the ability to capture sequences of words, which helps
in capturing some context and word order. However, using n-grams increases the complexity
of the feature space.

1.4.3 Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is a widely used method for vectorizing Arabic text and other languages. In (Spärck
Jones, 1972), the author introduced the concept of inverse document frequency (IDF) to
measure the specificity of terms in in a collection of documents.This concept later became a
fundamental part of TF-IDF. The main idea behind TF-IDF is to assess the importance of a
word in a document by considering how often it appears in the document (Term Frequency,
TF) and how rare it is across the entire collection of documents (Inverse Document Fre-
quency, IDF). Words that are common across many documents are assigned a lower weight,
while those that appear in fewer documents receive a higher weight. This method highlights
words that are significant to a specific document but less common across all documents.
High dimensionality, sparsity, and lack of semantic understanding are the main drawbacks
of TF-IDF.

The formula used to calculate the TF-IDF for a term t in a document d within a collection
of documents is:

tf-idf(t, d) = tf(t, d)× idf(t) (1.1)

Where tf(t, d) represents the number of occurrences of term t in document d. The Inverse
Document Frequency, idf(t, d), is represented by Equation 1.2, where N is the total number
of documents in the corpus, and df(t) represents the number of documents that contain the
term t. Note that adding a constant of 1 to the denominator is optional and prevents terms
that appear in all training samples from receiving a zero value. The logarithm helps to limit

1.4. Text Vectorization Techniques 21

the weight of terms with very low document frequencies.

idf(t, d) = log

(
N

1 + df(t)

)
(1.2)

1.4.4 Word Embedding

Word embeddings are a sophisticated method for representing text data as low-dimensional,
dense vectors. Predominantly generated by advanced deep learning models, these embed-
dings are learned from extensive text corpora using unsupervised learning techniques, which
do not rely on labeled data. By leveraging large-scale text data, word embeddings capture
intricate semantic and syntactic relationships between words. This allows them to encode nu-
anced meanings, contextual information, and word associations within a continuous vector
space. As a result, these vectors provide a compact and meaningful representation of words,
enhancing the performance of algorithms in various NLP tasks such as text classification,
sentiment analysis, and machine translation.

There are mainly two types of word embeddings: Static Word Embeddings and Contex-
tual Word Embeddings.

1.4.4.1 Static Word Embeddings

Static word embeddings, also known as non-contextual embeddings, are pre-trained vectors
representing words with fixed values that do not change based on the context in which the
words are used. Prominent methods for static word embeddings include:

• Word2Vec: Word2Vec was introduced for the first time in (Mikolov et al., 2013) by
Google. It utilizes neural networks to learn word representations from extensive text
datasets. The main objective of Word2Vec is to capture the semantic relationships
between words based on the contexts in which they appear. Word2Vec includes two
primary models (see Figure 1.2): Continuous Bag of Words (CBOW) and Skip-gram.
The CBOW model predicts a word based on its surrounding context. By using the
surrounding words, CBOW focuses on predicting the target word and understanding
word meanings by examining how often words co-occur. In contrast to CBOW, the
Skip-gram model predicts the context words given a specific target word. This model
is designed to capture more detailed semantic relationships by observing how words
are used in various contexts. Word2Vec has notable drawbacks, including its inability
to handle out-of-vocabulary (OOV) or rare words that were not seen during training. It
also lacks sensitivity to morphological relationships, treating words with similar roots,
such as "eat" and "eaten," as separate entities without leveraging their shared internal
structure.

22 Chapter 1. Background and Related Works

FIGURE 1.2: Word2Vec Models.

• GloVe: The Global Vectors for Word Representation, commonly known as GloVe, is
a technique for learning word embeddings. it was developed by (Pennington, Socher,
and Manning, 2014) at Stanford University, GloVe extends word2vec by combining
both global and local text statistics. Unlike traditional methods such as Latent Seman-
tic Analysis (LSA), which use matrix factorization for global statistics but lack contex-
tual meaning, GloVe integrates these global statistics with local context-based learn-
ing. Rather than relying on a local window, GloVe constructs a word-co-occurrence
matrix from the entire corpus. This approach not only reduces computational costs
by employing a simpler least squares error function but also results in distinct and po-
tentially improved word embeddings. Similar to Word2Vec, GloVe has limitations in
dealing with out-of-vocabulary (OOV) words and morphological variations. It cannot
produce embeddings for words that were not included in the training data and does not
consider the internal structure of words with related roots.

• fastText: fastText (Mikolov et al., 2017) is an advanced word embedding technique
developed by Facebook AI Research lab (FAIR) that addresses some limitations of
earlier models such as Word2Vec and GloVe. By incorporating subword information,
fastText enhances the handling of rare and out-of-vocabulary (OOV) words. It repre-
sents words as bags of character n-grams, allowing the model to capture morphological
nuances and internal word structures. This approach enables fastText to generate em-
beddings for words not seen during training and to better manage variations in word
forms, such as prefixes, suffixes, and inflections. As a result, fastText offers more
robust and accurate word representations, improving performance on tasks involving

1.4. Text Vectorization Techniques 23

complex word structures and languages with rich morphology. However, similar to
Word2Vec and GloVe, fastText produces only a single vector representation per word,
which does not account for its varying meanings across different contexts.

1.4.4.2 Contextual Word Embeddings:

The Transformer model (Vaswani et al., 2017) revolutionized NLP with self-attention mech-
anisms that capture complex text dependencies and weigh word importance, leading to more
accurate and context-aware representations. Building on this, contextual word embeddings
offer flexible vector representations for words that adapt according to their surrounding text,
allowing the embeddings to adjust based on the specific context in which the words are used.
Notable approaches for contextual word embeddings are:

• BERT: BERT, an acronym for Bidirectional Encoder Representations from Trans-
formers (Devlin et al., 2019), is a language model based on deep learning techniques
developed by Google. It uses transformers to dynamically calculate connections be-
tween input and output elements. Unlike traditional language models that process text
in a single direction, BERT reads text bidirectionally, handling both left-to-right and
right-to-left simultaneously, which enhances its ability to comprehend and process
natural language. This approach significantly improved performance over previous
models and established BERT as a key baseline in NLP. BERT surpasses Word2Vec,
GloVe, and FastText by providing contextualized embeddings that adapt to word usage
in different sentences, capturing nuanced meanings and polysemy that static models
cannot. However, it does come with limitations, including high computational costs, a
fixed input length constraint, and the need for extensive fine-tuning with labeled data
to achieve optimal performance.

• GPT: GPT, which stands for Generative Pre-trained Transformer (Radford and
Narasimhan, 2018), is a deep learning-based language model developed by OpenAI.
It utilizes a Transformer decoder architecture to predict the next word in a sequence,
processing text from left to right. Unlike bidirectional models like BERT, GPT focuses
on generating coherent text by considering only the preceding context, which makes
it particularly effective for text generation tasks. This approach has significantly ad-
vanced capabilities in creating fluent and contextually relevant content. However, GPT
also has limitations, such as high computational requirements, constraints on input
length, and generating text based only on past context without future considerations.

24 Chapter 1. Background and Related Works

1.5 Dimensionality Reduction Techniques

Richard Bellman originally introduced the term "Curse of Dimensionality" while discussing
dynamic programming (Bellman, 1957). This concept highlights the difficulties involved in
analyzing and processing data in high-dimensional spaces. Text documents typically feature
a wide array of unique words, each acting as a separate feature, resulting in high-dimensional
data. This expansion in dimensions brings several challenges: it increases storage needs due
to the larger feature set, intensifies computational complexity as more features require pro-
cessing, and increases the risk of overfitting, where models might learn from noise or non-
essential patterns rather than capturing useful trends. Employing dimensionality reduction
methods, which involve decreasing the number of features, can help address these issues by
improving both computational efficiency and model accuracy. Furthermore, dimensionality
reduction simplifies complex high-dimensional data, making it more interpretable and en-
hancing visualization with clearer, lower-dimensional representations. Feature selection and
feature extraction are the two primary types of dimensionality reduction methods used for
text document.

1.5.1 Feature Extraction

Feature extraction, also known as feature transformation, is a feature reduction technique de-
signed to create a new set of features by combining or transforming the original ones. This
approach involves generating new, composite features that better capture the underlying pat-
terns and relationships within the data compared to the original features. By reducing data
to a lower-dimensional space, feature extraction techniques enhance visualization, thereby
simplifying the analysis and interpretation of complex datasets. Various feature extraction
methods grounded in mathematical and statistical principles, such as Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), and Non-Negative Matrix Factoriza-
tion (NMF), are widely employed in text processing. These techniques aim to compress text
documents while preserving their essential information.

1.5.1.1 Principal Component Analysis (PCA)

PCA, or Principal Component Analysis is a a widely-used unsupervised method for analyz-
ing and visualizing high-dimensional data across various fields such as machine learning,
computer vision, genomics, finance, speech processing, environmental science, and medical
imaging. PCA reduces dimensionality by transforming high-dimensional data into a more
compact, lower-dimensional representation while preserving as much of the original variance
as possible (Jolliffe, 2011).

1.5. Dimensionality Reduction Techniques 25

PCA is applied to text documents as follows: Consider a data matrix X where the rows
correspond to documents and columns correspond to features (words or tokens). The first
step is to standardize the data (by centering and normalizing) using Equation 1.3, where µ is
the mean vector of the features and σ is the standard deviation vector for each feature. This
step ensures that each feature has a mean of zero and a variance of one.

Xstd =
X − µ

σ
(1.3)

The next step is to compute the Covariance Matrix as shown in Equation 1.4 where XT
std is

the transpose of the standardized data matrix. the Covariance Matrix displays the variance
and the correlation among various features.

C =
1

m− 1
XT

stdXstd (1.4)

Now, obtaining eigenvalues and eigenvectors by performing eigen decomposition on the co-
variance matrix C, where eigenvectors(v) represent the principal components, and eigenval-
ues (λ) indicate the variance each principal component captures. The eigenvalue-eigenvector
pairs are solutions to Equation 1.5 :

Cv = λv (1.5)

then, sorting eigenvalues in descending order, selecting the corresponding eigenvectors, and
choosing the top k eigenvectors (principal components) that capture the most variance, where
k is based on the desired level of explained variance.
The final step is to project the original standardized data Xstd onto the new feature space
defined by the selected principal components, using the transformation Equation 1.6, where
W is the matrix containing the top k eigenvectors as columns.

Xpca = XstdW (1.6)

1.5.1.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA), which is sometimes referred to as Normal Discrimi-
nant Analysis or Discriminant Function Analysis is a supervised technique commonly em-
ployed for both classifying data and reducing data dimensionality. The general approach of
LDA is similar to PCA but with an added focus. While PCA focuses on finding axes that
maximize data variance, LDA also seeks axes that maximize the separation between multiple
classes. LDA assesses two types of variance: within-class variance, which indicates how data
points scatter within each class, and between-class variance, which gauges the distinction be-
tween classes (Sugiyama, 2007). Its goal is to reduce within-class variance while increasing

26 Chapter 1. Background and Related Works

between-class variance to improve class separation in the lower-dimensional space. To ap-
ply LDA to text documents, let consider a Matrix X of size n × d, where n is the number
of documents and d is the number of features (terms). Compute the mean vector for each
class Ci as showed by Equation 1.7, where Ni is the number of documents in class Ci, and x

represents a document vector in class Ci.

µi =
1

Ni

∑
x∈Ci

x (1.7)

For each class Ci, compute the Within-Class Scatter Matrix SWi
:

SWi
=

∑
x∈Ci

(x− µi)(x− µi)
T (1.8)

Then, take the sum across all classes, where k is the number of classes:

SW =
k∑

i=1

SWi
(1.9)

Compute the Between-Class Scatter Matrix:

SB =
k∑

i=1

Ni(µi − µ)(µi − µ)T (1.10)

where µ is the overall mean vector of all documents:

µ =
1

n

∑
x∈X

x (1.11)

Solve the eigenvalue problem represented by Equation 1.12. Here, w denotes the eigenvec-
tors and λ represents the eigenvalues:

S−1
W SBw = λw (1.12)

Choose the top k eigenvectors with the largest eigenvalues to form the projection matrix W .
Finally, transform the original data matrix X into a lower-dimensional space as follows:

XLDA = XW (1.13)

1.5.2 Feature Selection

Feature selection refers to the technique of selecting a smaller, more relevant subset of fea-
tures from the original set to effectively represent and classify textual data. This approach is

1.5. Dimensionality Reduction Techniques 27

more frequently examined and implemented in text processing compared to feature extrac-
tion. This approach simplifies the model and enhances its interpretability while maintaining
or even improving the model’s accuracy. While there are numerous feature selection meth-
ods available, some of the most commonly used in text processing include the Chi-Square
(χ2) Test, Mutual Information (MI), and Information Gain (IG).

1.5.2.1 Chi-Square (χ2) Test

The chi-square (χ2) test is a statistical method used to evaluate whether a specific feature,
such as a word, is independent of the class labels (Yang and Pedersen, 1997). It assesses
the difference between the expected frequency of the feature in each class and the observed
frequency to determine if there is a significant relationship between the feature and the class
labels.

The chi-square test can be computed using the formula:

χ2 =
∑
i

∑
j

(Oij − Eij)
2

Eij

(1.14)

where Oij represents the observed frequency of feature j in class i, and Eij is the expected
frequency. The expected frequency Eij is computed as:

Eij =
Total for row i× Total for column j

Grand Total
(1.15)

Although the Chi-Square test is straightforward and effective, it requires a large sample size
to yield reliable results. Additionally, the test does not account for interactions between
features or handle redundancy, which can limit its ability to capture complex patterns in text.

1.5.2.2 Mutual Information (MI)

Mutual Information or (MI) is a statistical measure that quantifies the amount of knowledge
gained about one variable by knowing the value of another variable. It represents the reduc-
tion in uncertainty about one variable when information about another variable is available
(Cover and Thomas, 2006). In the context of feature selection and text classification, MI
helps determine the importance of a feature, such as a word or term, by measuring how
much it reveals about the class labels, indicating its usefulness for distinguishing between
different classes. terms with high MI values are viewed as more valuable and are typically
chosen for inclusion in the model. A Zero MI signifies that the variables are independent, so
knowing the value of one variable gives no information about the other.

28 Chapter 1. Background and Related Works

Mutual Information between two variables X and Y is defined in Equation 1.16 The term
p(x, y) represents the joint probability distribution of X and Y , while p(x) and p(y) denote
the marginal probability distributions of X and Y , respectively. This formula measures the
relative entropy between the joint distribution and the product of the individual distributions
p(x) and p(y).

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1.16)

MI is advantageous because it is non-parametric, meaning it does not rely on any spe-
cific distribution for the variables, and it can capture non-linear relationships. However, it has
limitations, including high computational complexity, especially with large datasets and nu-
merous features, and the difficulty of accurately estimating joint and marginal probabilities,
particularly with sparse data.

1.5.2.3 Information Gain (IG)

In (Quinlan, 1986), the author introduces the concept of Information Gain in the context
of decision tree algorithms discussed later in Subsection 1.6.3. Information Gain is used
to build decision trees by evaluating the information gain for each variable. The variable
with the highest information gain is selected to split the dataset, which minimizes entropy
and enhances the classification effectiveness.In text classification, Information Gain (IG)
is used to assess how well a feature (such as a word) contributes to the classification of
text documents. It assists in feature selection by evaluating the degree to which a feature
distinguishes between different classes. Features with higher Information Gain are typically
selected for inclusion in the classification model, as they contribute the most to reducing
classification uncertainty.

Equation 1.17 calculates IG, which measures how much knowing a feature X reduces
the uncertainty about a target variable Y . It represents the difference between the entropy of
Y without X and the conditional entropy of Y given X . A high Information Gain indicates
that X significantly reduces the uncertainty about Y .

G(Y | X) = H(Y)−H(Y | X) (1.17)

IG is useful for identifying key features and is efficient in terms of computation, which
makes it appropriate for handling extensive datasets. Nevertheless, it tends to favor fre-
quently occurring words, which could result in less relevant features being selected. Addi-
tionally, IG does not consider the interactions between features, which might be important
for contextual understanding, and it might include redundant features that convey similar
information.

1.6. Classical Machine Learning-Based Approach 29

1.6 Classical Machine Learning-Based Approach

Machine Learning (ML), a field within artificial intelligence, is dedicated to allowing com-
puters to learn from data and improve their ability to perform tasks without explicit program-
ming. A specific type of ML, known as supervised learning, involves developing a prediction
function called a "model" from labeled data. When these labels are discrete (qualitative vari-
ables), the process is referred to as classification. ML has revolutionized text classification
by automating and improving the accuracy of textual analysis. Advanced algorithms like
support vector machines and neural networks streamline the process, learning from large
datasets to identify complex patterns. This enables effective handling of tasks such as sen-
timent analysis, spam detection, and topical classification, while reducing the time and cost
associated with manual methods.

Classical machine learning uses traditional algorithms and statistical methods to create
predictive models from data, relying on predefined features and straightforward model struc-
tures. These methods are effective and interpretable for tasks like text classification. Despite
the rise of more complex techniques, classical machine learning continues to provide valu-
able solutions for various problems.

1.6.1 Logistic Regression (LR)

LR is a supervised classification technique used to predict the probability of a categorical out-
come based on a set of independent variables. Unlike linear regression, which is applied to
quantitative outcomes, LR is suited for scenarios where the dependent variable is qualitative.
There are two main types of logistic regression: binary logistic regression and multinomial
logistic regression. Binary logistic regression is employed when the outcome variable has
two categories, whereas multinomial logistic regression is used when the outcome variable
has more than two categories.The Logistic Function, also known as the sigmoid function, is
central to LR and is defined as:

σ(z) =
1

1 + e−z
(1.18)

where z is the linear combination of input features, typically represented by equation 1.19
in the case of multiple independent variables or by equation 1.20 for a single independent
variable.

z = a1x1 + a2x2 + · · ·+ anxn + b (1.19)

z = ax+ b (1.20)

30 Chapter 1. Background and Related Works

1.6.2 k-Nearest Neighbors (kNN)

KNN algorithm is widely regarded as one of the most straightforward machine learning
algorithms (Cover and Hart, 1967). Unlike other algorithms, kNN does not involve a training
phase to learn a discriminative function from the data. Instead, it relies on storing the entire
dataset. The fundamental principle of the kNN method is as follows: when classifying a data
point with an unknown class, the algorithm compares it to all stored data using a distance
metric. The class assigned to the new data point is determined by the majority class among
its k nearest neighbors. The effectiveness of the kNN algorithm is influenced by the choice of
distance metric and the parameter k, which represents the number of neighbors considered.
Typically, the Euclidean distance measure is used to identify the k nearest neighbors of a data
point. In n-dimensional Euclidean space, the Euclidean distance d between two data points
represented by vectors v = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is given by:

d =

√√√√ n∑
i=1

(xi − yi)2 (1.21)

1.6.3 Decision Trees (DT)

A decision tree is a machine learning technique employed for both classification and regres-
sion that splits data based on decision rules, forming a tree-like structure with nodes and
branches. It starts with a root node and divides the dataset through internal nodes based on
feature values, continuing until reaching leaf nodes that provide the final decision. Decision
trees use splitting metrics such as information gain or Gini impurity for classification and
variance reduction for regression. They are known for their simplicity and interpretability
but can suffer from overfitting and instability. Additionally, decision trees serve as the foun-
dation for more advanced methods like Random Forests. Figure 1.3 shows an example of a
decision tree for rain forecasting, with outcomes indicating whether it will rain (Yes) or not
rain (No)

1.6.4 Support Vector Machine (SVM)

SVMs (Vapnik, Golowich, and Smola, 1996) are one of the most powerful supervised ma-
chine learning techniques, widely used for classification problems, including text classifica-
tion. However, it can also be employed to solve regression problems. The core concept of
SVM is to find a hyperplane that optimally separates the data while maximizing the margin
between the data points and the hyperplane.This margin is the distance between the hyper-
plane and the nearest data points from each class, known as support vectors (see Figure 1.4).

1.6. Classical Machine Learning-Based Approach 31

FIGURE 1.3: Decision tree example for rain forecasting.

FIGURE 1.4: Example showing the support vectors and the margin.

By maximizing this margin,the generalization error is minimized for better classification
performance. As Figure 1.5 shows, the right plot demonstrates that with an optimal hyper-
plane, a new sample (data point) remains well-classified even if it falls within the margin. In
the left plot, it is observed that with a smaller margin, the sample is poorly classified.

32 Chapter 1. Background and Related Works

FIGURE 1.5: Example illustrating poor and good margins.

SVMs are highly effective in high-dimensional spaces, making them well-suited for tasks
involving a large number of features, such as text classification. They perform well with lin-
early separable data and are also versatile enough to handle non-linearly separable data by
employing kernel functions, such as the radial basis function (RBF) or polynomial kernels,
which map the data into a higher-dimensional space where a linear separation becomes pos-
sible. Additionally, SVMs include a regularization parameter, denoted as C, which helps
control overfitting by balancing the trade-off between maximizing the margin and minimiz-
ing classification errors.

1.7 Deep Learning-Based Approach

Deep learning is a subfield of machine learning that focuses on algorithms inspired by the
structure and function of the brain, known as artificial neural networks. It involves using
neural networks with multiple layers, referred to as deep neural networks, where the term
"deep" signifies the presence of numerous layers within the network. In contrast to classical
machine learning, deep learning models excel at automatic feature extraction from raw and
large datasets, often requiring substantial computational resources. Deep learning models
have set new benchmarks across various fields, particularly in numerous natural language
processing (NLP) applications. In text and document classification, four primary types of
deep learning models are commonly used, including Convolutional Neural Networks, Re-
current Neural Networks, Attention Mechanisms and Transformers.

1.7.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a type of deep learning architecture that have
been effectively used for text classification. Although they were originally developed for
image processing, specifically for handwritten digit recognition (LeCun et al., 1989). The

1.7. Deep Learning-Based Approach 33

term "convolutional neural network" refers to its use of convolution, which is a specialized
mathematical linear operation. Figure 1.6 illustrates a convolutional neural network (CNN)
architecture designed for classifying Arabic text. The process starts with encoding the Arabic
text into an input matrix, which transforms the text into a numerical format that the network
can process. Subsequently, various filters are applied to this matrix to detect different fea-
tures within the text. This filtering process generates feature maps that represent the presence
of these detected features. To make the model more efficient and robust, max pooling is em-
ployed to reduce the dimensionality of the feature maps, while retaining the most significant
features. Finally, a softmax layer is used to convert the processed features into probabilities
for different classes, allowing for accurate text classification.

FIGURE 1.6: Example of a CNN architecture for Arabic text classification
(Alhawarat and Aseeri, 2020).

34 Chapter 1. Background and Related Works

1.7.2 Recurrent Neural Network (RNN)

FIGURE 1.7: Basic architecture of RNN

Recurrent neural networks , also known as RNNs (Rumelhart, Hinton, and Williams, 1986)
are a type of deep learning architecture designed to handle sequential or time series data,
addressing the limitations of traditional feedforward networks that struggle with retaining
historical information. The core component of an RNN is the "recurrent unit", which main-
tains a hidden state or memory. This hidden state is updated at each time step based on the
current input and the previous hidden state, allowing the network to learn from past inputs
and apply that knowledge to current processing. This capability makes RNNs particularly
well-suited for tasks involving sequences, such as text. Figure 1.7 illustrates a basic RNN
architecture. In this setup, the input layer receives data at each time step (xt) and passes it to
the hidden layer. The hidden layer processes this input along with the previous hidden state
(ht−1), which is maintained by a delay device. This mechanism allows the network to retain
information across time steps. The current hidden state (ht) is then used to generate the out-
put. The relationship between the hidden states and the inputs is described by Equation 1.22
where (h0) is initialized to zero and f can be either a nonlinear function or a feedforward
network. This architecture enables the RNN to capture temporal dependencies in sequential
data.

ht = f(ht−1, xt) (1.22)

Traditional RNNs struggled with the vanishing gradient problem, where gradients used
to update the network’s weights become very small during training. This makes it difficult
for the network to learn and remember information from earlier in the sequence, limiting its
ability to capture long-range dependencies. Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) networks are advanced types of RNNs designed to address this prob-
lem and are often used for text classification tasks.

1.7. Deep Learning-Based Approach 35

• LSTM : Long Short-Term Memory , often abbreviated as LSTM, is a type of RNN
developed in 1997 (Hochreiter and Schmidhuber, 1997) designed to address the limi-
tations of traditional RNNs, particularly the vanishing gradient problem, which affects
their ability to learn long-term dependencies in sequential data. LSTM networks are
built around the cell state, which acts as a memory to retain long-term information
across sequences. This cell state is updated through three types of gates: the forget
gate, which decides which information to discard; the input gate, which determines
what new information to add; and the output gate, which controls what information
from the cell state should be output as the hidden state. These gates work together
to regulate the flow of information, enabling LSTMs to effectively maintain and uti-
lize long-term dependencies. LSTMs act as essential components within RNN layers,
managing data through "weights" to determine whether new information should be
retained, forgotten, or given sufficient importance to impact the output. The LSTM
architecture has demonstrated significant effectiveness in text classification, particu-
larly when used in conjunction with other deep learning methods, such as attention
mechanisms and pre-trained language models. However, LSTMs have limitations, in-
cluding increased computational complexity, difficulties with very long sequences, and
a tendency to overfit, particularly with limited data.

• GPU: Gated Recurrent Units (GRUs) (Chung et al., 2014) is an extension of LSTMs,
introduced seventeen years after LSTMs were first developed. GRUs simplify the
LSTM architecture by eliminating the explicit cell states. Unlike LSTMs, which use
separate forget and output gates to manage the flow of information, GRUs use a single
reset gate and an update gate to achieve a similar effect. This simplification makes
GRUs generally faster and computationally less expensive. Despite these differences,
the fundamental concept of GRUs closely resembles that of LSTMs, particularly in
how they partially reset the hidden states. As Figure 1.8 depicts, a GRU differs from
an LSTM in that it has only two gates and does not include internal memory (e.g.
Ct−1 in Figure 1.8). It also omits the second non-linearity, such as tanh(x) function,
found in LSTMs.

36 Chapter 1. Background and Related Works

FIGURE 1.8: The GRU cell is on the left and the LSTM cell is on the right.

• Bidirectional RNN: Bidirectional Recurrent Neural Networks (BiRNNs) (Schuster
and Paliwal, 1997) are commonly used for text classification tasks, including models
such as Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated
Recurrent Unit (BiGRU). These models process sequential data by analyzing input
sequences in both forward and backward directions, allowing them to leverage con-
textual information from both the past and the future. Traditional Recurrent Neural
Networks (RNNs) process sequences in a single direction, typically forward, which
limits their ability to capture context from the entire sequence. In contrast, a BiRNN
employs two separate recurrent hidden layers: one that processes the sequence in the
forward direction and another that processes it backward (see Figure 1.9). The outputs
of these layers are combined and fed into a final prediction layer. The hidden layers
in BiRNNs can be constructed using various recurrent cells, such as LSTM or GRU.
The forward hidden layer updates its state based on the current input and the previous
state, while the backward hidden layer updates its state based on the current input and
the subsequent state. This bidirectional approach enhances the model’s performance
and provides additional regularization.

FIGURE 1.9: Bi-directional Recurrent Neural Network.

1.7. Deep Learning-Based Approach 37

1.7.3 Attention Mechanism

The concept of attention in machine learning is inspired by biological attention, where hu-
mans selectively focus on relevant information rather than processing all available data. This
principle, observed across various sensory perceptions, is applied in machine learning fields
such as computer vision and natural language processing to enhance performance by con-
centrating on the most pertinent data. The attention mechanism was first introduced in (Bah-
danau, Cho, and Bengio, 2014) and initially applied to machine translation. In text classifi-
cation, attention mechanisms can be incorporated into RNNs to improve model performance
by allowing the model to focus on significant parts of the input text when making predictions.
Instead of treating all words equally, attention assigns different weights to words based on
their relevance to the classification task, helping the model capture context and nuances more
effectively and improving text classification accuracy.

1.7.4 Transformers

The authors of (Vaswani et al., 2017) presents a new deep learning architecture known as
the Transformer. Transformers use self-attention mechanisms to process sequences in par-
allel, allowing them to capture long-range dependencies and relationships between words
efficiently. The architecture consists of an encoder and a decoder (see Figure 1.10) , each
with multiple layers that include multi-head attention and feed-forward networks, text is first
converted into numerical tokens, which are then mapped to vectors using a word embedding
table. At each layer, tokens are contextualized within a context window through a paral-
lel multi-head attention mechanism, enhancing key tokens while diminishing less important
ones.

Transformers offer the advantage of not using recurrent units, which reduces training
time compared to earlier recurrent neural networks (RNNs) like LSTMs. This efficiency has
led to their widespread adoption in training large language models (LLMs) such as BERT
and GPT on extensive datasets.

38 Chapter 1. Background and Related Works

FIGURE 1.10: The Transformer architecture, with the encoder on the left and
the decoder on the right (Vaswani et al., 2017).

1.8 Related Works

Although the majority of document classification research has been focused on the English
language, Arabic language applications have been relatively overlooked. To address this
gap, many studies have tackled Arabic document classification using a variety of datasets,
data preprocessing methods, vectorization techniques, dimensionality reduction methods,
classification approaches, and performance evaluation metrics.

1.8.1 Datasets

Data collection is a critical first step in building a text classifier for NLP applications. While
English document text classification benefits from a range of freely available benchmark
datasets, such as 20 Newsgroups and Reuters 90. In contrast, Arabic document classification

1.8. Related Works 39

datasets are more limited and relatively smaller compared to English datasets. Various Ara-
bic datasets have been used in Arabic Text Classification (ATC) , with most collected from
Arabic news websites. The sizes of these datasets range from 1,000 to 450,000 documents,
classified into 3 to 28 categories. Most Arabic Text Classification (ATC) datasets focus on
single-label classification, with only a few addressing multi-label problems (Alalyani and
Marie-Sainte, 2018). Many datasets lack a standardized classification scheme, although the
NADA dataset (Alalyani and Marie-Sainte, 2018) stands out for using the Dewey Decimal
Classification. Some studies have used imbalanced datasets, which causes classifiers to fo-
cus on the majority classes due to their higher frequency during training, often resulting in
reduced performance when classifying the minority classes.; however, techniques like the
Synthetic Minority Over-Sampling Technique (SMOTE) have been applied in other works
(Al-Azani and El-Alfy, 2017; Alalyani and Marie-Sainte, 2018) to balance dataset classes
and improve accuracy. The study by (Ababneh, 2022) evaluated seven Arabic text clas-
sification datasets using five models. It found that the SVM model, when trained on the
Khaleej and Arabiya datasets (both subsets of the SANAD dataset) (Einea, Elnagar, and
Debsi, 2019), achieved the highest accuracy and shortest training time. This finding pro-
vides valuable guidance for researchers in selecting effective datasets for ATC. Table 1.4
provides a summary of the datasets used in Arabic document classification research.

40 Chapter 1. Background and Related Works

TABLE 1.4: MSA document datasets.

Ref. Dataset
Name

Size Dataset
Type

Num. of
Classes

Class Names Classification
Type

(Wahbeh and Al-Kabi,
2012)

N.A. 1,000 Balanced 4 sports, politics, eco-
nomics, and Hadith

Single-label

(Al khurayji and Sameh,
2017)

N.A. 1,897 Balanced 3 Economic, culture and
sport

Single-label

(Saad and Ashour, 2010) BBC Arabic
corpora

4,763 Imbalanced 7 Middle East News, World
News, Business & Econ-
omy, Sports, International
Press, Science & Technol-
ogy, and Art & Culture

Single-label

(Saad and Ashour, 2010) CNN Arabic
corpora

5,070 Imbalanced 6 Business, Entertainments,
Middle East News, Sci-
ence & Technology,
Sports, and World

Single-label

(Al Qadi et al., 2019) N.A. 89,189 Balanced 4 Business, Sports, Technol-
ogy, and Middle East

Single-label

(Abbas and Smaïli, 2005) Khaleej-
2004

5,690 Imbalanced 4 Economy, International
News, Local News, and
Sport

Single-label

(Saad and Ashour, 2010) OSAC 22,429 Imbalanced 10 Economics, History, En-
tertainments, Education &
Family, Religious & Fat-
was, Sports, Heath, As-
tronomy, Low, Stories,
Cooking Recipes

Single-label

(Einea, Elnagar, and
Debsi, 2019)

SANAD 200,000 Imbalanced 7 Finance, Sports, Culture,
Tech, Politics, Medical,
and Religion

Single-label

(Elnagar, Al-Debsi, and
Einea, 2020)

NADiA 451,230 Imbalanced 30 Leaders, Sports, Ara-
bian Sports, Football
Clubs,Arts, Cancer, Tech-
nology, Religion, Islamic,
Fatawa, Worship, etc.

Multi-label

(Biniz et al., 2018) N.A. 111,728 Imbalanced 5 sport, politic, culture,
economy , and diverse.

Single-label

(Al-Tahrawi and Al-
Khatib, 2015)

Al-Jazeera
News

1,500 Balanced 5 Art, Economic, Politics,
Science, and Sport

Single-label

(Abuaiadah, El-Sana, and
Abusalah, 2014)

DDA 2,700 Balanced 9 Art, Literature, Religion,
Politics, Law, Economy,
Sport, Health, and Tech-
nology.

Single-label

(Alalyani and Marie-
Sainte, 2018)

NADA 13,066 Balanced 10 Social science – economy,
Social science – politics,
Social science – law, Gen-
eral Religions – Islam, Ap-
plied science – computer
science, etc.

Single-label

(Essma and Guessoum,
2015)

TALAA 57,827 Imbalanced 8 Culture, Economics, Pol-
itics, Religion, Society,
Sports,World, Other.

Single-label

1.8. Related Works 41

1.8.2 Text Preprocessing

The goal of data preprocessing in text documents is to eliminate noisy and unnecessary fea-
tures, thereby reducing resource demands and enhancing classification accuracy. There is no
standardized preprocessing method in the field of ATC. Tokenization is a fundamental step
applied across all text classification tasks. Most researchers implement common prepro-
cessing steps, such as removing digits, punctuation marks, non-Arabic text, and stop words
(see 1.5). Some also remove diacritics (Elnagar, Al-Debsi, and Einea, 2020; Mahmoud and
Zrigui, 2019; Alwehaibi and Roy, 2018; Lulu and Elnagar, 2018; Baali and Ghneim, 2019;
Al-Tahrawi and Al-Khatib, 2015) and elongation (Elnagar, Al-Debsi, and Einea, 2020; Lulu
and Elnagar, 2018). In certain cases, punctuation marks are treated as individual words
(Abdullah, Hadzikadic, and Shaikh, 2018). Normalization of specific Arabic letters is of-
ten avoided in many studies (Al khurayji and Sameh, 2017; Alshammari, 2018; Qadi et al.,
2019; Sundus, Al-Haj, and Hammo, 2019; Elnagar, Al-Debsi, and Einea, 2020; Mahmoud
and Zrigui, 2019; Lulu and Elnagar, 2018; Abdullah, Hadzikadic, and Shaikh, 2018; Biniz
et al., 2018) due to the potential risk of altering the contextual meaning of certain words.
However, some researchers have chosen to apply normalization despite this concern (Wah-
beh and Al-Kabi, 2012; Alwehaibi and Roy, 2018; El-Alami and Alaoui, 2016; Baali and
Ghneim, 2019).

Extracting stems (stemming) or lemmas (lemmatization) is a key preprocessing step that
reduces the feature set size. Lemmatization, while more accurate, is harder to implement
for morphologically complex languages like Arabic and is slower, as it requires predefined
dictionaries to identify the lemma. In contrast, stemming involves simply removing affixes
from words, making it faster but less accurate. Despite this, the reduced accuracy is of-
ten acceptable for document classification and other NLP tasks (Elbarougy, Behery, and El
Khatib, 2020). Consequently, stemming is commonly used in ATC research (Duwairi, 2014;
Al khurayji and Sameh, 2017; Alshammari, 2018; Al-Tahrawi and Al-Khatib, 2015; Sun-
dus, Al-Haj, and Hammo, 2019; El-Alami and Alaoui, 2016; Biniz et al., 2018; Baali and
Ghneim, 2019; Ayed, Labidi, and Maraoui, 2017). Despite the trend in recent NLP literature
to overlook preprocessing, a recent study on English text classification (Siino, Tinnirello,
and La Cascia, 2024) explores its effect on both modern pre-trained Transformers and tradi-
tional models. The research applies three leading preprocessing techniques to four datasets
from different text classification tasks and tests nine models, including Transformers. Re-
sults show that while both Transformers and traditional models benefit from preprocessing,
simple models can outperform the top-performing Transformer with the right preprocessing
strategy.

42 Chapter 1. Background and Related Works

1.8.3 Text Vectorization

Text documents, being unstructured data, must be transformed into numerical representa-
tions to be effectively used by machine learning algorithms. In the last decade, many works
in ATC have utilized high-dimensional vectorization techniques, including TF-IDF, which
is the most commonly used method (Wahbeh and Al-Kabi, 2012; Al khurayji and Sameh,
2017; Al Qadi et al., 2019; Sundus, Al-Haj, and Hammo, 2019; Biniz et al., 2018), as well as
the Boolean model (Alshammari, 2018), Bag of Words (BoW) (El-Alami and Alaoui, 2016),
and N-grams (Al-thubaity, Alhoshan, and Hazzaa, 2015; Ayed, Labidi, and Maraoui, 2017).
These models struggle with large and complex datasets due to their inability to capture se-
mantic relationships, and they produce inefficient, sparse, and high-dimensional representa-
tions. Recent research focuses on low-dimensional, dense textual data vectorization using
word embeddings, including word2Vec (Elnagar, Al-Debsi, and Einea, 2020; Mahmoud and
Zrigui, 2019; Baali and Ghneim, 2019), AraVec (Mohammed and Kora, 2019; Sagheer and
Sukkar, 2018; Alwehaibi and Roy, 2018) which is introduced in (Soliman, Eissa, and El-
Beltagy, 2017), an open-source project that provides free, pretrained word embeddings for
Arabic NLP research, implemented using the Word2vec model. AraVec includes various
iterations based on skip-gram and continuous bag of words (CBoW) methodologies, GloVe
(Mahmoud and Zrigui, 2019), and Arabic FastText(Alwehaibi and Roy, 2018; Alghamdi and
Assiri, 2019). Other studies have employed contextual word embeddings, such as the Arabic
BERT (AraBERT) model (El-Alami, Alaoui, and En-Nahnahi, 2021), for Arabic text multi-
class classification, utilizing it both as a transfer learning model and as a feature extractor
with different classifiers. The findings reveal that fine-tuned AraBERT achieves state-of-the-
art performance.

1.8.4 Text Dimensionality Reduction

For effective and efficient Arabic text classification, dimensionality reduction is vital be-
cause of the language’s complex morphology and large feature space. A range of methods
has been suggested to boost classification performance while addressing the challenges asso-
ciated with high-dimensional data. Many Feature selection techniques are used in the ATC.
(Abu-Arqoub, Issa, and Hadi, 2019) explored the impact of Chi-square (χ2), Information
Gain (IG), and Correlation-based Feature Selection (CFS) on classifiers such as SVM, NB,
kNN, and DT using Arabic datasets from the Saudi Press Agency (SPA). The results showed
that feature selection generally improves classification accuracy by eliminating irrelevant
features. Another paper (Elhassan and Ali, 2019) examined the impact of Information IG
and Chi-square on Arabic text classifiers using NB and Sequential Minimal Optimization

1.8. Related Works 43

(SMO) models. It found that feature selection generally improves classifier performance,
with IG outperforming Chi-square for the NB classifier and showing similar results with
the SMO classifier. (Bahassine et al., 2020) presented an improved Chi-square feature se-
lection method (ImpCHI) for ATC. It compared ImpCHI with traditional metrics (mutual
information, information gain, and standard Chi-square) and evaluates its performance using
an SVM classifier on a dataset of 5,070 Arabic documents. The results showed that Im-
pCHI combined with SVM significantly enhances classification accuracy, achieving a best
F-measure of 90.50% with 900 features.(Alshaer, Otair, Abualigah, et al., 2021) confirmed
the effectiveness of ImpCHI over Chi-square across six classifiers, including Random For-
est, Decision Tree, Naïve Bayes, Naïve Bayes Multinomial, Bayes Net, and Artificial Neural
Networks—using a dataset of 9,055 Arabic documents and various evaluation measures.
(Chantar et al., 2019) presented a feature selection method for ATC using the Hybrid Bi-
nary Gray Wolf Optimizer (HBGWO). Combining Binary Gray Wolf Optimizer (BGWO),
Particle Swarm Optimization (PSO), and Salp Chain Algorithm (SCA), HBGWO improved
classification accuracy to 88.08% on a dataset of Hadith books, outperforming other meth-
ods and BGWO-PSO alone. The author (Atef Mosa, 2022) combines a Knowledge-Graph
with Ant Colony Optimization (ACO) to predict semantic categories in Arabic Hadith texts.
The KG links features to categories based on their co-occurrence, and ACO selects the most
relevant features. Using over 30,000 Hadith from six books and nearly 120 categories, the
approach improved classification accuracy by 3% when integrated with machine learning
classifiers. (Hadni and Hjiaj, 2023) addressed the challenge of ATC by proposing a chaotic
sine cosine-based Firefly Algorithm (FA), which combines chaos theory with FA for feature
selection. Using the Kalimat dataset and SVM classifiers, the model improved classification
performance by 2% compared to the standard FA.

Other research works have utilized feature extraction techniques in Arabic document
classification to transform the original features into a more compact set in order to enhance
classification effectiveness. (Al-Anzi and AbuZeina, 2017) used Singular Value Decomposi-
tion (SVD) to extract Latent Semantic Indexing (LSI) features from TF-IDF. A comparison
of classification methods, including Naïve Bayes, k-Nearest Neighbors, Neural Networks,
Random Forest, Support Vector Machines, and Classification Trees, was conducted using
a corpus of 4,000 documents across ten topics. The results show that classification meth-
ods leveraging LSI features significantly outperformed those based on TF-IDF. (Al-Taani
and Al-Sayadi, 2020) introduced an approach for ATC using singular value decomposition
(SVD) and fuzzy c-means. The effectiveness of the method is evaluated on Al Jazeera and
CNN Arabic news datasets. The results are compared with four supervised classification
techniques including support vector machine, naive Bayes, decision tree, and polynomial

44 Chapter 1. Background and Related Works

networks—previously applied to the same datasets. The findings demonstrate that the pro-
posed approach outperforms recent methods in Arabic text classification. Similarly, Singular
Value Decomposition (SVD) is proposed in (Harrag and Al-Qawasmah, 2010) to reduce the
dimensionality of the input data and enhance the effectiveness and efficiency of the neural
network. Experiments on an Arabic corpus of Hadith show that the NN model with SVD
performs better than the basic NN model, achieving higher precision, recall, and F-measure.
(El-Alami and Alaoui, 2016) presented a deep learning method for Arabic Text Catego-
rization (ATC) using deep stacked autoencoders to improve text representation and reduce
dimensionality. Experiments on a CNN Arabic news dataset with Light and Khoja stemmers
showed that the method, combined with Decision Tree, Naïve Bayes, and Support Vector
Machine techniques, achieved strong performance in categorizing Arabic text.

Upon reviewing previous research on incorporating dimensionality reduction steps after
text vectorization in the Arabic text classification (ATC) pipeline, and despite the limited
number of such studies compared to those on English language text, we observed that most
dimensionality reduction methods applied to ATC primarily use selection methods and over-
look transformation methods. Additionally, the majority of these studies focus solely on
effectiveness while neglecting efficiency, which is a key advantage of dimensionality re-
duction techniques. The performance of these studies indicates potential for improvement.
Moreover, many rely on only one small dataset or, at most, two datasets, which risks over-
fitting and limits the evaluation of how well the approach generalizes to other data types or
scenarios.

1.8.5 Classical Machine Learning and Deep Learning Models

In the last decade, research in Arabic text classification has predominantly focused on ap-
plying machine learning algorithms such as Support Vector Machines (SVM), Naive Bayes
(NB), k-Nearest Neighbors (kNN), Decision Trees, and Logistic Regression. (Wahbeh and
Al-Kabi, 2012) compared the performance of three classifiers: Support Vector Machine
(SVM), Naïve Bayes (NB), and decision tree based on C4.5 algorithms for for Arabic text
classification. The study found that Naïve Bayes achieves the highest accuracy, while SVM
is the quickest to build the model, followed by Naïve Bayes and C4.5. (Al khurayji and
Sameh, 2017) propose a Kernel Naive Bayes (KNB) classifier to address the non-linearity
issue in textual data and compare it with baseline classifiers such as Naïve Bayes (NB), Hid-
den Markov Model (HMM), Support Vector Machines (SVM), k-Nearest Neighbors (kNN),
and J48. Experimental results show that the KNB classifier outperforms the other baseline
classifiers on an Arabic topic mining corpus. (Alshammari, 2018) emphasized the impor-
tance of preprocessing techniques for preparing datasets for machine learning algorithms.

1.8. Related Works 45

The study also introduced DMNBtext, a new variant of Naïve Bayes for text classification.
When compared with traditional Naïve Bayes and the C4.5-based decision tree, DMNBtext
outperforms the other classifiers on two Arabic datasets, achieving 99% accuracy on the
BBC dataset and over 93% accuracy on the CNN dataset. The authors (Al Qadi et al., 2019)
developed a new dataset consisting of 89,189 Arabic news articles, categorized into four
classes: Business, Sports, Technology, and Middle East. This dataset was evaluated us-
ing ten supervised machine learning classifiers, including LR, Nearest Centroid, DT, SVM,
KNN, XGB, RF, Multinomial NB, Ada-Boost, and MLP. Among these, SVM achieved the
highest performance with an F1-score of 97.9%.

The breakthrough of deep learning in the fields of computer vision and natural language
processing (NLP) for English motivated researchers in ATC to follow this trend. Inspired by
the significant improvements in accuracy and performance achieved by deep learning mod-
els like convolutional neural networks (CNNs) and transformers, ATC researchers began
exploring similar techniques to overcome the unique challenges posed by Arabic language
processing. (Sundus, Al-Haj, and Hammo, 2019) presented a feed-forward deep learning
neural network for Arabic text classification. The model’s first layer uses TF-IDF vectors
based on the most frequent words in the document collection, which serve as input to the
second layer. To minimize classification errors, Adam’s optimizer was applied. Experiments
were conducted on two multi-class Arabic datasets, evaluating the model using metrics like
precision, recall, F-measure, support, accuracy, and model building time. Results showed
that the deep learning approach outperformed logistic regression in Arabic text classification
tasks. (Elnagar, Al-Debsi, and Einea, 2020) introduced two new datasets for Arabic text cat-
egorization: SANAD for single-label tasks and NADiA for multi-label tasks, both of which
were made freely available to researchers. The study compared several deep learning mod-
els without requiring pre-processing, including BIGRU, BILSTM, CGRU, CLSTM, CNN,
GRU, HANGRU, HANLSTM, and LSTM, while also exploring the use of word2vec embed-
dings. Attention-GRU achieved the highest performance on both the SANAD and NADiA
datasets. CNN models was design in (Sagheer and Sukkar, 2018) to classify Arabic sen-
tences into three categories using the Essex Arabic Summaries Corpus (EASC). The CNN
models utilized a word embedding layer, either pre-trained or learned during training, and
incorporated dropout and L2 weight regularization to combat overfitting. They achieved high
accuracy in classifying Arabic sentences. (Biniz et al., 2018) introduced a novel approach
to Arabic text classification. It starts by using an Arabic stemming algorithm to extract, se-
lect, and reduce relevant features. Term Frequency-Inverse Document Frequency (TF-IDF)
is then applied for feature weighting. For the classification step, the study employs Convolu-
tional Neural Networks (CNNs), a powerful algorithm commonly used in image processing

46 Chapter 1. Background and Related Works

and pattern recognition but less explored in text mining. By combining these techniques
and fine-tuning CNN hyperparameters, the method achieves outstanding results on various
benchmarks.

1.8.6 Evaluation

Experimental evaluation is a crucial step in the testing phase, used to measure the general-
ization ability of a trained classifier, i.e., how accurately the model can predict outcomes on
new, unseen text. It is also employed during the training phase to optimize the classifier.
Several performance metrics can assess the quality of text classifiers, including accuracy,
precision, recall, and the F1-score. In ATC research, accuracy is the most commonly used
metric (Wahbeh and Al-Kabi, 2012; Al khurayji and Sameh, 2017; Alshammari, 2018; Al
Qadi et al., 2019; Sundus, Al-Haj, and Hammo, 2019; Elnagar, Al-Debsi, and Einea, 2020;
Sagheer and Sukkar, 2018; Mahmoud and Zrigui, 2019; Alwehaibi and Roy, 2018; Lulu and
Elnagar, 2018; El-Alami and Alaoui, 2016; Biniz et al., 2018; Baali and Ghneim, 2019; Mo-
hammed and Kora, 2019), while precision, recall (Duwairi, 2014) and F1-score (Bahassine
et al., 2020) are used less frequently. A major limitation of accuracy is that it fails to capture
information about false negatives and false positives. On the other hand, precision overlooks
true negatives and false negatives, whereas recall does not account for true negatives and
false positives (Kowsari et al., 2019). Choosing the appropriate evaluation metric is essential
for optimizing the classifier and improving text classification performance. Some studies do
not specify which evaluation metric was used to assess their models (Abdullah, Hadzikadic,
and Shaikh, 2018; Al-Tahrawi and Al-Khatib, 2015). To the best of our knowledge, no study
has specifically examined evaluation metrics for ATC.

Table 1.5 provides an overview of these studies by detailing key aspects for each re-
search work. It includes information on the dataset used, the Data Preprocessing techniques
applied, the Vectorization methods and Dimensionality Reduction techniques utilized, the
model employed, how the dataset was divided into training and testing sets, and the perfor-
mance achieved.(Note: N.A. indicates "Not Available").

1.8. Related Works 47

TA
B

L
E

1.
5:

A
su

m
m

ar
y

of
a

re
la

te
d

w
or

ks
in

A
ra

bi
c

do
cu

m
en

tC
la

ss
ifi

ca
tio

n.

R
ef

.
D

at
as

et
Pr

ep
ro

ce
ss

in
g

Ve
ct

or
iz

at
io

n
D

im
en

si
on

al
ity

R
ed

uc
tio

n
M

od
el

Tr
ai

n
\T

es
t(

%
)

B
es

tM
od

el
E

va
lu

at
io

n

(W
ah

be
h

an
d

A
l-

K
ab

i,
20

12
)

N
ew

s
ar

tic
le

s
(1

,0
00

do
cu

m
en

t)

-R
em

ov
in

g
di

g-
its

,
pu

nc
tu

at
io

n
m

ar
ks

,
no

n-
A

ra
bi

c
te

xt
,

an
d

st
op

w
or

ds
-N

or
m

al
iz

at
io

n
-T

ok
en

iz
at

io
n

.
T

F-
ID

F
N

o
-S

V
M

-N
B

-C
4.

5

-6
0\

40
-1

0-
fo

ld
s

C
V

N
B

A
cc

ur
ac

y
(8

5.
25

%
)

(A
lk

hu
ra

yj
ia

nd
Sa

m
eh

,2
01

7)
N

ew
s

ar
tic

le
s

(1
,8

97
do

cu
m

en
t)

-R
em

ov
in

g
st

op
w

or
ds

-T
ok

en
iz

at
io

n
-S

te
m

m
in

g
(l

ig
ht

st
em

m
er

)

.
T

F-
ID

F
N

o

-K
er

ne
l

N
aï

ve
B

ay
es

(K
N

B
)

-N
B

-H
M

M
-S

V
M

-K
N

N
-J

48

70
\3

0
K

N
B

A
cc

ur
ac

y
(9

1.
20

%
)

(A
ls

ha
m

m
ar

i,
20

18
)

-B
B

C
-C

N
N

-D
oc

um
en

t
co

n-
ve

rs
io

n
-R

em
ov

in
g

st
op

w
or

ds
To

ke
ni

za
tio

n
-S

te
m

m
in

g:
-l

ig
ht

st
em

m
er

-K
ho

ja
st

em
m

er
-n

o
st

em
m

in
g

-b
oo

le
an

-i
df

,tf
,tfi

df
-t

fid
f-

no
rm

m
in

Fr
eq

3
-t

fid
f-

no
rm

-m
in

Fr
eq

5
-w

c
-w

c-
m

in
Fr

eq
3

-w
c-

m
in

Fr
eq

5
-w

c-
no

rm
-w

c-
no

rm
-m

in
Fr

eq
3

-w
c-

no
rm

-m
in

Fr
eq

5

N
o

-N
B

-D
is

cr
im

in
at

iv
e

M
ul

tin
om

in
al

N
ai

ve
B

ay
es

fo
r

te
xt

(D
M

N
B

te
xt

)
-C

4.
5

10
-f

ol
ds

C
V

D
M

N
B

te
xt

A
cc

ur
ac

y
99

%
on

B
B

C
93

%
on

C
N

N

(A
lQ

ad
ie

ta
l.,

20
19

)
N

ew
s

ar
tic

le
s

(8
9,

18
9

do
cu

m
en

t)

-R
em

ov
in

g
st

op
w

or
ds

,
L

at
in

ch
ar

ac
te

rs
,

nu
m

be
rs

,
an

d
pu

nc
tu

at
io

n

T
F-

ID
F

N
o

-L
R

-N
ea

re
st

C
en

tr
oi

d
-D

T
-S

V
M

-K
N

N
-X

G
B

-R
F

-M
ul

tin
om

ia
lN

B
-A

da
-B

oo
st

-M
L

P.

80
\2

0
SV

M
A

cc
ur

ac
y

(9
4.

4%
)

48 Chapter 1. Background and Related Works

R
ef.

D
ataset

Preprocessing
Vectorization

D
im

ensionality
R

eduction
M

odel
Train

\Test(%
)

B
estM

odel
E

valuation

(E
lnagar,

A
l-D

ebsi,and
E

inea,2020)

-SA
N

A
D

-N
A

D
iA

-R
em

oving
non-A

rabic
con-

tent,
diacritics,

elongation,
punc-

tuation
m

arks,
extra

spaces

w
ord2vec

N
o

-C
N

N
-L

ST
M

,
B

IL
-

ST
M

,
C

L
ST

M
,

H
A

N
L

ST
M

-G
R

U
,

B
I-

G
R

U
,

C
G

R
U

,
H

A
N

G
R

U

80\10
and

10
for

validation
H

A
N

G
R

U

A
ccuracy

(96.94
%

on
SA

N
A

D
88.68

%
on

N
A

-
D

iA

(E
l-A

lam
iand

A
laoui,2016)

C
N

N

-R
em

oving
stop

w
ord,

punctuation
m

arks,num
bers,non-

A
rabic

content
-N

orm
alization

-Tokenization
-Stem

m
ing:L

ight
stem

m
erand

K
hoja

stem
m

er

B
oW

deep
stacked

autoencoder

-D
T

-N
B

-SV
M

N
.A

.
SV

M
A

ccuracy
(75.10

%

(B
iniz

etal.,
2018)

N
ew

s
articles(111,728

docum
ent)

-R
em

oving
stop

w
ords,

foreign
characters,

punc-
tuation,

and
num

bers
-Stem

m
ing

T
F-ID

F
E

lim
inate

term
s

w
ith

very
low

scores

-C
N

N
-L

R
-SV

M
70\30

C
N

N
A

ccuracy
(92.94

%
)

(A
l-Taaniand

A
l-Sayadi,2020)

-C
N

N
-A

l-Jazeera
N

ew
s

-R
em

oving
stop

w
ords,

non-A
rabic

char-
acters,

num
bers,

specialcharacters
-Tokenization
stop-w

ords
rem

oval,
elim

-
ination

of
non-

A
rabic

E
ntropy-B

ased
D

ocum
ent-Term

M
atrix

SV
D

-FC
M

N
.A

.
FC

M

F-m
easure:

61.11%
on

C
N

N
76%

on
A

l-
Jazeera

N
ew

s

1.8. Related Works 49

R
ef

.
D

at
as

et
Pr

ep
ro

ce
ss

in
g

Ve
ct

or
iz

at
io

n
D

im
en

si
on

al
ity

R
ed

uc
tio

n
M

od
el

Tr
ai

n
\T

es
t(

%
)

B
es

tM
od

el
E

va
lu

at
io

n

(S
un

du
s,

A
l-

H
aj

,
an

d
H

am
m

o,
20

19
)

-K
ha

le
ej

-2
00

4
-N

ew
s

ar
tic

le
s

(1
,4

45
do

cu
m

en
t)

-R
em

ov
in

g
st

op
w

or
ds

-T
ok

en
iz

at
io

n
-S

te
m

m
in

g

T
F-

ID
F

N
o

-f
ee

d
fo

rw
ar

d
su

-
pe

rv
is

ed
D

L
-L

R
80

\2
0

fe
ed

fo
rw

ar
d

su
pe

rv
is

ed
D

L

A
cc

ur
ac

y
93

.8
0

%
on

K
ha

le
ej

-2
00

4
94

.1
2

%
on

N
ew

s
ar

tic
le

s

(A
l-

Ta
hr

aw
ia

nd
A

l-
K

ha
tib

,2
01

5)
A

l-
Ja

ze
er

a
N

ew
s

-T
ok

en
iz

at
io

n
-R

em
ov

in
g

st
op

w
or

ds
,

no
n-

A
ra

bi
c

co
nt

en
t,

nu
m

be
rs

,
di

a-
cr

iti
cs

,
pe

ci
al

ch
ar

ac
te

rs
an

d
pu

nc
tu

at
io

ns
-S

te
m

m
in

g
(K

ho
ja

st
em

m
er

)

N
.A

.
C

hi
Sq

ua
re

-P
N

-S
V

M
-N

B
-K

N
N

-D
T

(J
48

)

80
\2

0
SV

M
W

ei
gh

te
d

A
ve

r-
ag

e
(9

3.
70

%
)

(S
ag

he
er

an
d

Su
kk

ar
,2

01
8)

E
A

SC
To

ke
ni

za
tio

n
A

ra
V

ec
N

o
-C

N
N

75
\2

5
50

\5
0

C
N

N
A

cc
ur

ac
y

(7
5%

)

(B
ah

as
si

ne
et

al
.,

20
20

)
C

N
N

-T
ok

en
iz

at
io

n
-R

em
ov

in
g

st
op

w
or

ds
,

no
n-

A
ra

bi
c

ch
ar

-
ac

te
rs

,
nu

m
be

rs
,

sp
ec

ia
lc

ha
ra

ct
er

s
an

d
pu

nc
tu

at
io

ns
-S

te
m

m
in

g
-N

or
m

al
iz

at
io

n

T
F-

ID
F

-I
m

pC
H

I
-C

hi
-s

qu
ar

e
-M

I
-G

I

-S
V

M
-D

T
80

\2
0

Im
pC

H
I+

SV
M

F-
m

ea
su

re
(9

0.
50

%
)

(A
l-

A
nz

ia
nd

A
bu

Z
ei

na
,2

01
7)

N
ew

s
ar

tic
le

s
(4

00
0

do
cu

m
en

t)

-T
ok

en
iz

at
io

n
-R

em
ov

in
g

st
op

w
or

ds
,

no
n-

A
ra

bi
c

ch
ar

-
ac

te
rs

,
nu

m
be

rs
,

sp
ec

ia
lc

ha
ra

ct
er

s
-N

or
m

al
iz

at
io

n

T
F-

ID
F

L
SI

-S
V

M
-D

T
-k

N
N

-S
V

M
-R

F
L

R

90
\1

0
SV

M
A

cc
ur

ac
y

(8
4.

75
%

)

50 Chapter 1. Background and Related Works

R
ef.

D
ataset

Preprocessing
Vectorization

D
im

ensionality
R

eduction
M

odel
Train

\Test(%
)

B
estM

odel
E

valuation

(A
bu-A

rqoub,
Issa,and

H
adi,

2019)

N
ew

s
articles

(1,526
docum

ent)
N

.A
.

N
.A

.
-C

FS
-IG
-C

hi-Square

-SV
M

-kN
N

-D
T

-N
B

N
.A

.
SV

M
A

ccuracy
(73

%
)

(E
lhassan

and
A

li,2019)

N
ew

s
articles

(1,000
docum

ent)

-R
em

oving
stop

w
ords,

non-A
rabic

char-
acters,

num
bers,

specialcharacters
and

punctuations
-Stem

m
ing

N
.A

.
-IG
-C

hi-Square
-SM

O
-N

B
10-fold

C
V

C
hi-Square

+
N

B
N

.A
.

1.9. Conclusion 51

1.9 Conclusion

In conclusion, this chapter has laid a solid foundation for the research by presenting key
concepts and challenges in Arabic document classification, with a specific focus on dimen-
sionality reduction. The examination of the unique characteristics of the Arabic language
and their impact on classification has provided valuable insights into the complexities of this
task. Furthermore, the review of both classical and deep learning models, alongside dimen-
sionality reduction techniques, highlights the significance of simplifying and optimizing data
to enhance classification performance. This chapter sets the stage for the following chapters,
where the contributions of dimensionality reduction to Arabic document classification will
be further elaborated and analyzed in detail.

52

Chapter 2

Arabic Text Classification Using
Principal Component Analysis With
Different Supervised Classifiers

2.1 Introduction

Various traditional machine learning approaches have been employed for text classification
tasks (Kowsari et al., 2019). To prepare textual data for classifiers, it is often converted into
high-dimensional numerical feature vectors. One of the most established methods for this
numerical representation is term frequency-inverse document frequency (TF-IDF), which
quantifies the importance of each word in the context of a given document relative to a
corpus. However, a high dimensionality of features can lead to increased computational
complexity and memory requirements, and may also result in overfitting, thereby reducing
the effectiveness of many classifiers (Skillicorn, 2012). To address these challenges, tech-
niques such as feature selection and feature extraction are frequently employed to enhance
model performance and efficiency. In feature selection, a subset of the most significant fea-
tures is selected from the original set to represent the data effectively. An extensive review
of various feature selection methods can be found in (Abdallah and La Iglesia, 2015). In
contrast, feature extraction, also known as feature transformation, involves creating a new
set of features by combining or transforming the original ones (Ghojogh et al., 2019). One
of the most recognized feature extraction methods is Principal Component Analysis (PCA),
which has been widely utilized across different fields for dimensionality reduction and data
analysis (Jolliffe, 2002). PCA demonstrated improvements in both accuracy and processing
time for clustering Arabic and English documents (Abozied, 2019) and also enhanced the
classification of Persian texts (Zahedi and Sorkhi, 2013).

In this chapter, we present a revised version of our conference paper presented in (Louail,

2.2. Materials and methods 53

Kara-Mohamed Hamdi-Cherif, and Hamdi-Cherif, 2021), where we utilize Principal Com-
ponent Analysis for feature extraction in Arabic text classification and evaluate its influence
on the effectiveness and efficiency of several prominent classifiers, such as support vector
machines, random forests, decision trees, k-nearest neighbors, and logistic regression. By
incorporating PCA, we aim to address the challenges associated with high-dimensional data
in Arabic text processing, which enhances both computational efficiency and model perfor-
mance. To the extent of our knowledge, this is the first instance of PCA being applied to
Arabic text classification. The remainder of the chapter is structured as follows: Section 2.2
details the materials and methods employed, along with the implementation of the proposed
approach. Section 2.3 presents the results and provides a discussion of the findings. Finally,
Section 2.4 offers a conclusion.

2.2 Materials and methods

2.2.1 Proposed system architecture

As Figure 2.1 shows, our system architecture begins by preprocessing the dataset, which
includes cleaning the text and converting it into numerical features using the TF-IDF rep-
resentation. The preprocessed dataset is then split into training and testing sets. Principal
Component Analysis (PCA) is fitted on the training set to reduce dimensionality. The fitted
PCA is subsequently used to transform both the training and testing sets. The transformed
training set is used to train a machine learning classifier, resulting in a model. This trained
model is then applied to the transformed testing set to generate predictions and evaluate
performance.

54
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

FIGURE 2.1: Proposed system architecture.

2.2.2 Datasets

To evaluate the performance of Principal Component Analysis (PCA) in conjunction with
various classifiers, we employed two publicly available Arabic text datasets: a subset of the
SANAD dataset (also known as the AlArabiya dataset) and the NADA dataset.

1. AlArabiya: The AlArabiya corpus is a central dataset within the SANAD collection
(Einea, Elnagar, and Debsi, 2019) and is highly applicable for ATC as well as a range
of other NLP applications. For our experiments, we used 1,500 documents from the
AlArabiya dataset. These documents were evenly distributed across five categories:
finance, sports, medicine, politics, and technology.

2. NADA: the NADA dataset (Alalyani and Marie-Sainte, 2018) was created by improv-
ing two previously existing datasets, OSAC (Saad and Ashour, 2010) and Diab Dataset

2.2. Materials and methods 55

(DAA). The enhancements involved several preprocessing steps, reorganizing the data
using the Dewey Decimal Classification system, and applying a synthetic minority
over-sampling technique to address class imbalances. The NADA dataset comprises
7,310 documents classified into ten categories, such as computer science, economics,
health sciences, Islam, law, literature, politics, sports, art, and astronomy. For our
study, we utilized a subset of 1,500 raw documents from this dataset.

• Dataset Splitting The dataset was split into two subsets: a training set and a testing
set. The training set was used to train the machine learning models, while the testing
set was used to evaluate their performance. A common split ratio of 80/20 was applied,
where 80% of the data was allocated to the training set and 20% to the testing set. This
split ensured that the model was trained on a substantial amount of data while retaining
enough data for a robust evaluation.

Table 2.1 provides a summary of the datasets and their specifics as utilized in our study.

TABLE 2.1: Description of the Datasets

Dataset No.
Classes

Classes No. Docs. No. Docs./
Class

AlArabiya 5 Finance,
Medicine,
Politics,

Sports and
Technol-

ogy.

1,500 300

NADA 10 Arabic
Literature,

Islam,
Economy,
Politics,

Law,
Computers,
Health, As-

tronomy,
Art and
Sport.

1,500 150

2.2.3 Document text preprocessing

Text preprocessing is a crucial step in preparing documents for effective analysis by clean-
ing them of unnecessary data before encoding. This phase involves a series of traditional

56
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

preprocessing operations that are essential for improving the quality of the data and the per-
formance of subsequent models. After testing various approaches, we determined that the
preprocessing pipeline outlined below greatly boosted the effectiveness of training for the
machine learning classifiers and increased the accuracy of the outcomes, while simultane-
ously reducing the size of the vocabulary:

• Data cleaning: This step involved removing digits, special symbols, and non-Arabic
characters to ensure that the text data consisted solely of relevant Arabic text, thus
avoiding confusion and inaccuracies in subsequent processing. Additionally, stop-
words—common words that do not contribute significant meaning, such as conjunc-

tions 	
¢ªË@

	
¬ðQk and prepositions—were eliminated. Arabic conjunctions, which

link words, phrases, or clauses, and prepositions Q m.
Ì'@

	
¬ðQk , which indicate rela-

tionships between nouns or pronouns and other words, were among those removed.

Examples of Arabic conjunctions include ð (and), ð

@ (or), and 	á º Ë (but), while

common prepositions include ú

	
¯ (in), úÎ« (on), and 	áÓ (from). We utilized a com-

prehensive Arabic stop-words (Zerrouki, 2010) list containing 13,629 entries, which
enabled us to effectively filter out a wide range of uninformative words. Examples of

removed stop-words include AÓ
	
X @

(if),and 	

à
	
X@

(then).

• tokenization: The Camel_tools tokenizer 1 was utilized for splitting the texts into
individual words and separating certain punctuation marks or symbolic characters. The
Camel_tools tokenizer is part of the CAMeL Tools suite, developed by the CAMeL
Lab at New York University Abu Dhabi. This suite provides a comprehensive range of
Arabic natural language processing (NLP) tools designed to support various linguistic
tasks.

• stemming:We used the ISRI Arabic stemmer from the Natural Language Toolkit
(NLTK) library 2 to reduce words to their root forms, standardizing the text and en-
hancing data consistency. This preprocessing step is crucial in morphologically rich

1https://camel-tools.readthedocs.io/en/latest/api/tokenizers/word.html
2https://www.nltk.org/api/nltk.stem.html

2.2. Materials and methods 57

languages like Arabic, as it simplifies words by removing affixes, helping to handle
various word forms effectively.

2.2.4 Document text representation

After preprocessing, the documents are converted into numerical vectors using TF-IDF. This
technique quantifies the importance of words in text classification. Term Frequency (TF)
measures how often a term appears in a document, while Inverse Document Frequency (IDF)
evaluates the term’s uniqueness across the dataset. By multiplying TF and IDF, the TF-IDF
score highlights terms that are significant within a document but less common across the
entire corpus. This transformation results in each document being represented as a vector of
TF-IDF scores, facilitating further analysis and enabling text classification.

2.2.5 Dimentionality reduction using PCA

Principal Component Analysis is used to reduce the dimensionality of the TF-IDF vectors,
transforming the data into a more manageable form while preserving its essential informa-
tion. The process begins by fitting the PCA model to the training set. This involves cal-
culating the principal components from the features of the training data. Specifically, PCA
analyzes the variance-covariance matrix of the training data to identify the principal compo-
nents—directions in which the data exhibits the greatest variance. By projecting the data
onto these principal components, PCA effectively reduces the dimensionality while pre-
serving as much of the original variance as possible. Once the principal components are
determined, they are used to transform both the training and testing datasets into a lower-
dimensional space. This transformation ensures that both datasets are aligned in the same
reduced-dimensional space.

2.2.6 Classifiers used and hyperparameter tuning

To evaluate the effect of reducing the features using PCA method, we have trained five
well-known classifiers, namely LR, kNN, DT, RF and SVM. All these algorithms with their
implementations, are available via the scikit-learn3 online free platform. Hyperparameter
tuning involves adjusting pre-set parameters of a machine learning model to enhance its
performance. Unlike model parameters, which are learned during training, hyperparameters
are configured before training begins and influence the learning process. We employed grid
search, which exhaustively explores a specified set of hyperparameter values, combined with

3https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

58
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

a 5-fold cross-validation strategy to evaluate the performance of various hyperparameter
settings for kNN, DT, RF and SVM classifiers, as shown in Table 2.2.

• kNN: The hyperparameter n_neighbors controls the number of neighbors considered
in classification, with values ranging from 17 to 35 to be tested (odd values are pre-
ferred to avoid ties). We adopted the common rule of thumb k =

√
N , where N is the

number of training samples. This approach helps balance the risks of overfitting (when
k is too small) and underfitting (when k is too large). For smaller datasets, dividing by
2 is often recommended for further refinement. With our training set of 1,200 samples,
this suggests a k value of approximately 17, consistent with the lower end of the range.
The weights parameter defines the influence of neighbors on the classification: ’uni-
form’ means all neighbors contribute equally, while ’distance’ means closer neighbors
have a stronger influence, with their contribution weighted by distance.

• DT: DT Hyperparameters include the criterion parameter, which determines how the
quality of a split is measured. It can be set to ’gini’, which uses Gini impurity to assess
the likelihood of incorrect labels, or ’entropy’, which uses information gain to evaluate
the randomness or uncertainty in the dataset.

• RF: RF classifier is optimized using two hyperparameters: n_estimators,which indi-
cates the number of decision trees in the forest, tested at values of 50 and 100. Gen-
erally, a greater number of trees tends to improve model performance by averaging
errors and minimizing overfitting; however, it also leads to increased computational
costs, and criterion, which measures split quality using either Gini impurity or entropy.

• SVM: we shoose a linear SVM classifier (kernel = ’linear’), which means no transfor-
mation of the data, and the model will seek a linear decision boundary. The parameter
C ranges from [0.001, 0.01, 0.1, 1, 10, 100] and controls the regularization strength.
Smaller C values lead to a wider margin and more regularization, potentially increas-
ing misclassifications, while larger C values reduce regularization and fit the training
data more closely.

• LR: Default hyperparameters are used for LR, with an ’l2’ penalty (Ridge regulariza-
tion) is applied to prevent overfitting by adding the square of the coefficients to the loss
function, encouraging smaller coefficients. The regularization strength is controlled by
the parameter C, with C = 1 balancing bias and variance; smaller values of C increase
regularization, while larger values reduce it.

2.3. Results and Discussions 59

TABLE 2.2: Classifiers’ hyperparameters.

Classifier Hyperparameter

LR Penalty=l2
C=1

KNN
n_neighbors=[17,19,21,23,25,27,29,31,33,35]
weights=[’uniform’,’distance’]

DT criterion=[’gini’, ’entropy’]

RF
n_estimators=[50,100]
criterion=[’gini’,’entropy’]

SVM
kernal=’linear’
C=[0.001,0.01,0.1,1,10,100]

2.2.7 Implementation

Our system was implemented in a Python 3 environment using Google Colab, which of-
fered a flexible and scalable platform for development and experimentation. We used the
Scikit-learn library for a range of tasks, including text preprocessing, representation, fea-
ture extraction through Principal Component Analysis, and for training and evaluating the
performance of five different classifiers.

2.3 Results and Discussions

1. Cumulative explained variance (CEV):

• Use of AlArabiya dataset: Figures 2.2 presents the cumulative explained vari-
ance percentage as a function of the number of components for the AlArabiya
dataset. The cumulative explained variance increases steadily and gradually,
indicating that the dataset has a more evenly distributed variance across a large
number of components. Notably, it requires around 1000 components to account
for nearly 100% of the variance, suggesting that the dataset possesses a complex
structure with numerous dimensions contributing to its overall variance.

• Use of NADA dataset: Figure 2.3 illustrates the cumulative explained variance
for the NADA dataset, where the variance rises sharply at first and then flattens
more quickly, indicating that a significant portion of the variance is captured by
the first few hundred components. Fewer components, around 800, are needed
to explain nearly 100% of the variance in this case, suggesting that the NADA
dataset has a few dominant principal components and a more compact structure
in terms of variance distribution.

60
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

• Comparative Analysis on both datasets: The comparative analysis reveals key
differences between the AlArabiya and NADA datasets. In terms of complexity,
the AlArabiya dataset exhibits greater complexity with a more evenly distributed
variance, requiring more components to capture the same amount of variance
compared to the NADA dataset. On the other hand, the NADA dataset demon-
strates greater efficiency in dimensionality reduction, as fewer components are
needed to capture the majority of the variance, suggesting more pronounced
principal components or a more structured form.

These differences have implications for tasks like feature selection, dimensional-
ity reduction, or data visualization. The NADA dataset may allow for a more sig-
nificant reduction in dimensionality without significant information loss, while
the AlArabiya dataset might require more careful handling to avoid losing im-
portant variance during dimensionality reduction.

FIGURE 2.2: CEV as a function of components number for AlArabiya.

2.3. Results and Discussions 61

FIGURE 2.3: CEV as a function of components number for NADA.

2. Classifiers performance based on CEV:

• Use of Alarabiya Dataset: Table 2.3 presents the classifiers’ accuracy on
AlArabiya dataset, corresponding to various CEV percentage values and the as-
sociated number of principal components (PCs), with the best performance for
each classifier highlighted in bold. Based on the table, LR achieves the best ac-
curacy of 99% when using 20% of the Cumulative Explained Variance (CEV).
As the CEV increases, LR’s accuracy decreases slightly, losing only 2% for
larger CEV values. classifiers like LR, RF, and SVM maintain consistently high
performance, with accuracy equal to or exceeding 97% across various CEV per-
centages.. In contrast, kNN experiences significant accuracy drops, performing
well at 20% CEV (89.66%) but declining sharply with higher PCs. DT also
fluctuates but stabilizes above 90% after 40% CEV. Overall, kNN is the most
sensitive to the number of PCs, while LR, RF, and SVM are more robust across
different CEV levels.

It is important to note that all classifiers achieve their highest accuracy with a
relatively small number of PCs (129 PCs or less). This is because the first PCs,
which correspond to higher eigenvalues, capture the most general and significant
features of the dataset. Conversely, a higher number of PCs, which have lower
eigenvalues, tend to represent finer details rather than the general properties of
a class, resulting in a decline in accuracy for all classifiers as more PCs are
included.

62
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

TABLE 2.3: Classifiers’ Accuracy Depending on CEV for Alarabiya.

Number
of PCs

CEV
(%)

LR kNN DT RF SVM

21 10 98.00 92.33 93.66 97.33 97.33

65 20 99.00 89.66 94.00 97.33 97.66

129 30 98.33 77.66 94.66 98.33 98,33

209 40 98.00 80.00 94.66 98.00 97.33

306 50 98.66 52.33 94.66 97.66 97.33

420 60 97.66 35.33 93.66 97.33 97.66

554 70 97.66 30.00 94.33 97.66 97.66

713 80 97.66 35.33 94.33 97.33 97.00

911 90 97.00 38.33 94.00 97.66 97.33

1156 99 97.33 20.00 93.00 97.66 97.00

• Use of NADA Dataset: Table 2.4 illustrates the classifiers’ accuracy on AlAra-
biya dataset, corresponding to various CEV percentage values and the associ-
ated number of PCs, with the best performance for each classifier highlighted
in bold. The table shows that LR, DT, RF, and SVM exhibit consistent per-
formance across various levels of Cumulative Explained Variance (CEV), with
LR achieving the highest accuracy of 99.00% at 60% CEV, although its per-
formance slightly declines with higher CEV values. In contrast, kNN shows
significant variability, performing worst with accuracy dropping to as low as
53.33% when 90% CEV is reached; it achieves better accuracy with fewer prin-
cipal components (low CEV) but suffers when too many components are used.
All classifiers require between 50 and 206 principal components to attain their
optimal accuracy levels.

2.3. Results and Discussions 63

TABLE 2.4: Classifiers’ Accuracy Depending on CEV for NADA.

Number
of PCs

CEV
(%)

LR kNN DT RF SVM

5 10 63.00 83.66 83.00 84.66 73.33

21 20 96.66 96.66 95.66 98.33 97.33

50 30 98.33 97.00 97.33 98.33 98.33

89 40 98.33 95.66 96.66 98.33 97.33

141 50 98.66 89.33 96.33 98.33 98.66

206 60 99.00 81.33 96.00 98.66 95.33

295 70 98.00 65.33 96.00 98.33 96.33

414 80 98.33 54.66 97.00 98.33 97.66

569 90 98.33 53.33 96.00 98.33 97.33

787 99 98.00 56.00 97.00 97.66 97.66

• Overall Interpretation: Overall, LR and RF demonstrate consistently high
accuracy across different datasets and Cumulative Explained Variance (CEV)
levels, highlighting their robustness and reliability. kNN shows variable perfor-
mance, excelling at lower CEV levels but experiencing significant declines as
CEV increases, indicating potential challenges with high-dimensional data. DT
and SVM generally perform well, with SVM maintaining high accuracy across
both datasets. Optimal performance for most classifiers typically occurs at lower
to mid-range CEV levels (20%-60%). We can conclude that the number of prin-
cipal components (PCs) required depends on both the underlying dataset and the
specific classifier used.

3. Projection onto the first two principal components (2D): PCA reduces high-
dimensional data to a lower-dimensional space for easier visualization. Projecting
data onto the first two principal components (PCs) creates a 2D visualization, helping
to reveal patterns, clusters, and relationships that may be obscured in higher dimen-
sions. The projection of the AlArabiya and NADA datasets onto the first two PCs
is shown in Figures 2.4 and 2.5, respectively. For the AlArabiya dataset, despite the
complexity revealed by the Cumulative Explained Variance plot (Figure 2.2) , the PCA
scatter plot demonstrates clear separation between the 5 classes in the first two PCs.
This indicates that the first two components capture enough important information

64
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

for visual class separation, although more components are needed to fully capture the
dataset’s variance and underlying features. In contrast, the NADA dataset requires
fewer components to explain most of the variance, as shown in the Cumulative Ex-
plained Variance plot (Figure 2.3). However, the PCA scatter plot shows that the first
two components do not clearly separate the 10 classes. The overlap suggests that while
fewer components capture the overall variance, they do not necessarily highlight the
most class-distinguishing features, indicating that additional components are required
for better class separation.

FIGURE 2.4: PCA Scatter Plot of AlArabiya Training Documents.

2.3. Results and Discussions 65

FIGURE 2.5: PCA Scatter Plot of NADA Training Documents.

4. Effect of PCA usage on accuracy:

TABLE 2.5: Accuracy of classifiers on Arabiya and NADA datasets with and
without PCA

AlArabiya dataset NADA dataset

Classifier
Accuracy
Without

PCA

Accuracy
With PCA

Accuracy
Without

PCA

Accuracy
With PCA

LR 97.33 99.00 97.33 99.00

KNN 98.66 92.33 97.33 97.00

DT 91.00 94.66 92.66 97.33

RF 98.33 98.33 99.00 98.66

SVM 98.00 98.33 96.33 98.66

Table 2.5 presents the accuracy of classifiers for both settings (with and without PCA)
across both datasets, with the highest accuracy for each classifier highlighted in bold.
The plot from Table is shown in Figure 2.6. The analysis shows that LR, DT, and
SVM achieved their best results with PCA on the NADA corpus, while RF performed
well on the NADA corpus without PCA. KNN uniquely achieved its best accuracy
on the AlArabiya dataset without PCA. The lowest overall accuracy (91.00%) was
recorded without PCA for DT on the AlArabiya corpus. Irrespective of the dataset,

66
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

PCA improved accuracy in 60% of cases, decreased it in 30%, and maintained it in
10%. The plot from Table 2.5 is shown in Figure 2.6 below.

FIGURE 2.6: Accuracy comparison of the five classifiers under both settings
(with PCA vs. without PCA)

5. Effect of PCA usage on training time:

TABLE 2.6: Training Time of Classifiers on Alarabiya and NADA Datasets
with and without PCA.

Arabiya dataset NADA dataset

Classifier

Training
time(s)

Without
PCA

Training
time With

PCA

Training
time

Without
PCA

Training
time With

PCA

LR 16.337 0.001 20.283 0.006

KNN 1655.972 2.059 1989.242 3.190

DT 25.078 1.392 31.489 0.692

RF 4.625 0.960 4.352 1.139

SVM 1690.165 4.562 1932.731 5.235

Table 2.6 shows the training times of classifiers in seconds for both scenarios (with and
without PCA) across the two datasets, with the optimal training time for each classifier
emphasized in bold. Given that both datasets consist of 1,200 training samples each,
the minimum training times are achieved with PCA for LR, KNN, RF, and SVM on
the AlArabiya dataset, while DT reaches its minimum training time with PCA on the

2.3. Results and Discussions 67

NADA dataset. Maximum training times are observed for various classifiers without
PCA. Overall, PCA reduces training times for all classifiers across both datasets. The
results from Table 2.6 are further illustrated in Figure 2.7 for clarity. Note that some
training times for the non-PCA cases, such as 1690 seconds for LR, are beyond the
range shown in Figure 2.7

FIGURE 2.7: Training time of classifiers with and without PCA for both
datasets.

6. Time gain: To summarize, we evaluate the time gain achieved by using PCA. As il-
lustrated in Figure 2.8, the time gain ranges from 4 seconds (achieved by RF on the
NADA dataset) to 804 seconds (achieved by KNN on the AlArabiya dataset), indicat-
ing that PCA accelerates classification between these two extremes.

FIGURE 2.8: Gain in training time achieved with PCA.

68
Chapter 2. Arabic Text Classification Using Principal Component Analysis With Different

Supervised Classifiers

2.4 Conclusion

In this chapter, we introduced a straightforward yet effective approach to address the chal-
lenge of high-dimensional feature spaces in text classification by applying PCA for feature
extraction in Arabic text classification. We evaluated PCA’s impact on five popular classi-
fiers, including LR, KNN, DT, RF, and SVM. The results showed significant improvements
in classification accuracy for most classifiers, with enhancements observed in 60% of the
cases. Additionally, PCA notably reduced training time, achieving reductions of up to 800-
fold.

The next chapter presents the second contribution to Arabic text classification, which
involves a distance-based meta-features approach. This method differs from the first contri-
bution in several aspects, requiring fewer dimensions and lower computational requirements.

69

Chapter 3

Distance-Based Meta-Features for Arabic
Text Classification

3.1 Introduction

The TF-IDF method faces challenges such as high dimensionality and data sparsity, which
result in large storage demands, increased computational costs, and a heightened risk of over-
fitting, ultimately degrading the performance of classification systems. To overcome these
issues, various studies have utilized meta-features derived from clustering methods (Kyri-
akopoulou and Kalamboukis, 2007), the kNN method (Canuto, Gonçalves, and Benevenuto,
2016), and category centroids (Pang, Jin, and Jiang, 2015). Furthermore, distance-based
meta-features have demonstrated considerable effectiveness in text classification, as shown
in (Canuto et al., 2018; Cunha et al., 2020). In this chapter, we introduce an additional
preprocessing step to the classification pipeline by generating distance-based meta-features
derived from the original TF-IDF representations. Specifically, we focus on four types of
distance-based meta-features: CosKNN, L2KNN, CosCent, and L2Cent, and evaluate their
their effectiveness and efficiency as a dimensionality reduction technique for Arabic text
classification. The impact of these features is assessed using four widely-used classifiers:
k-Nearest Neighbors, Logistic Regression, Random Forest , and Support Vector Machine.
To the best of our knowledge, this represents the first application of distance-based meta-
features in the context of Arabic text classification.

The rest of the chapter is organized as follows: Section 3.2 offers an overview of the
related works. Section 3.3 outlines the proposed methodology utilized in this study. Section
3.4 details the experimental setup, while Section 3.5 presents and discusses the obtained
results. Lastly, Section 3.6 concludes the chapter.

70 Chapter 3. Distance-Based Meta-Features for Arabic Text Classification

3.2 Related works

In the literature, numerous feature extraction and representation methods based on meta-
features have been proposed for classifying textual data (Kyriakopoulou and Kalamboukis,
2007; Canuto, Gonçalves, and Benevenuto, 2016; Pang, Jin, and Jiang, 2015; Canuto et al.,
2018; Cunha et al., 2020) and images (Tsai et al., 2011).

In the work presented in (Canuto, Gonçalves, and Benevenuto, 2016), the authors in-
troduced new meta-level features for sentiment analysis, specifically targeting short mes-
sages. They conducted experiments comparing these features to the original bag-of-words
approach, previously proposed state-of-the-art meta-features in the literature, lexicon-based
sentiment analysis methods, and supervised ensembles of lexicon-based techniques. The
proposed feature set has the potential to transform the original feature space into a smaller,
yet more informative space. Experiments conducted with these new meta-features on nine-
teen benchmark datasets demonstrated significant improvements in effectiveness across most
datasets compared to all baselines. In fact, the proposed approach outperformed all others in
every tested dataset and scenario.

The authors in (Cunha et al., 2020) proposed three additional preprocessing steps in
the text classification system to enhance effectiveness while minimizing associated costs,
addressing the effectiveness versus efficiency trade-off. The first step, distance-based meta-
features generation, aims to reduce the feature space size while potentially creating a more
informative representation. The second step, sparsification, seeks to increase data sparsity,
and the third step, selective sampling, focuses on reducing the number of instances. Ex-
periments were conducted on four textual datasets: the WebKB dataset, which consists of
8,199 documents organized into 7 classes; the 20NewsGroup dataset, containing 18,846 doc-
uments divided into 20 newsgroups; the ACM dataset, with 24,897 articles categorized into
11 classes; and the classical Reuters dataset, comprising 13,327 news articles organized into
90 categories. The results indicated that these three proposed preprocessing steps led to
substantial improvements in effectiveness compared to TF-IDF and embedding-based repre-
sentations, along with reductions in execution time.

In the study described in (Gopal and Yang, 2010), the authors proposed a novel approach
for multi-label text classification by introducing meta-level features that effectively repre-
sent the relationships between each instance and multiple classes. This method transforms
the classical representation of instances (TF-IDF) and categories into a meta-level feature
space. Experiments were conducted on six benchmark datasets, including Emotion, Scene,
Yeast, Citeseer, Reuters21578, and Vowel, using eight performance metrics. The results
demonstrated significant performance improvements over previous state-of-the-art methods,
including Rank-SVM (Elisseeff and Weston, 2001), ML-KNN (Zhang and Zhou, 2007), and

3.3. Proposed Methodology 71

IBLR-ML (Cheng and Hüllermeier, 2009).
To the best of our knowledge, distance-based meta-features have not yet been applied

to Arabic text classification. This gap presents a unique research opportunity, as integrating
these meta-features could enhance the understanding of relationships within the data and
improve both the effectiveness and efficiency of classification.

3.3 Proposed Methodology

This section outlines the methodology for implementing Distance-Based Meta-Feature in
Arabic text classification. The approach encompasses several critical phases, as illustrated
in Figure 3.1. It begins with several preprocessing steps, including tokenization, cleaning,
and stemming, followed by encoding the text into numerical representations. The documents
are then transformed using dimensionality reduction techniques through meta-feature gener-
ation. These reduced features are subsequently fed into the classifier to generate predictions.

FIGURE 3.1: The proposed Arabic text classification pipeline.

72 Chapter 3. Distance-Based Meta-Features for Arabic Text Classification

3.3.1 Preprocessing

Effective preprocessing is vital for the success of any text classification task, especially when
dealing with the Arabic language, which has unique characteristics. However, there is cur-
rently no standardized preprocessing method specifically for Arabic text classification. In
this study, we applied the same traditional preprocessing steps outlined in Chapter 2, Sub-
section Subsection 2.2.3, before generating Meta-Features. These steps included text clean-
ing, which involved removing digits, special characters, non-Arabic words, and Arabic stop
words; tokenization, where the texts were split into words using the Camel_tools tokenizer;
stemming, performed with the ISRI stemmer ; and text representation, for which TF IDF
was chosen as the encoding method.

3.3.2 Meta-features generation

Meta-features are attributes that capture relationships between textual documents in a dataset.
Unlike traditional features that represent isolated words or phrases, meta-features provide
deeper insights by summarizing interactions between documents. These additional attributes
can significantly enhance the performance of machine learning algorithms in text classifica-
tion, especially in high-dimensional spaces where conventional text features, such as word
counts or TF-IDF, may be sparse or inadequate. Feeding meta-features into classifiers al-
lows them to focus more effectively on key patterns and relationships between documents,
potentially enhancing classification performence.

In this study, we focus on distance-based meta-features (DBMFs), as they have been
shown to produce significant results (e.g., as demonstrated in (Canuto et al., 2018). Generat-
ing DBMFs is an additional step in the preprocessing phase aimed at reducing the dimension-
ality and sparsity of the TF-IDF representation. Instead of representing the entire document,
DBMFs capture only the distances between a document and other labeled documents or the
class centers. We consider two types of DBMFs: kNN meta-features and centroid meta-
features. kNN meta-features are derived by selecting the k nearest documents from each
class relative to a given document, while centroid meta-features are generated by calculating
the distance between a document and the center of each class. Distances for both kNN and
centroid meta-features are computed using either Euclidean distance (L2KNN, L2Cent) or
cosine similarity (CosKNN, CosCent). Figures 3.2 and 3.3 illustrate the process of gener-
ating kNN and centroid meta-features using Euclidean distance. In these examples, colored
circles represent documents and their corresponding three classes, while colored triangles
represent the class centroids. To generate kNN meta-features for a specific document (d1),
the k nearest documents from the green class are selected (in this case, k=2), yielding two

3.3. Proposed Methodology 73

meta-features (0.5 and 0.7). This process is repeated for the red and blue classes, resulting
in a vector assigned to d1: (0.5, 0.7, 3.0, 3.3, 2.5, 2.8), where each value represents a kNN
meta-feature. This procedure is then repeated for all remaining documents in both the train-
ing and test sets. For centroid meta-features, the distance between a document (d1) and each
class center is calculated. The resulting vector for d1 is represented as (1.2, 4.1, 3.3), where
each value corresponds to a centroid meta-feature. Similar to the kNN meta-features, this
calculation is performed for all documents in the training and test sets.

FIGURE 3.2: Example of kNN meta-features generation.

FIGURE 3.3: Example of centroid meta-features generation.

74 Chapter 3. Distance-Based Meta-Features for Arabic Text Classification

Table 3.1 summarizes the distance-based meta-features utilized in this study, along with
their dimensionality and corresponding references. Here, C denotes the number of classes
and k the number of neighbors.

TABLE 3.1: Distance-Based Meta-Features

Meta-Feature Dimensions Reference

CosKNN C × K (Cunha et al., 2020; Gopal and Yang, 2010)

L2KNN C × K (Cunha et al., 2020; Gopal and Yang, 2010)

CosCent C
(Cunha et al., 2020; Gopal and Yang, 2010;

Pang, Jin, and Jiang, 2015)

L2Cent C (Cunha et al., 2020; Gopal and Yang, 2010)

3.4 Experimental Setup

3.4.1 Dataset

In our experiments, we used the same dataset as in (Louail, Kara-Mohamed Hamdi-Cherif,
and Hamdi-Cherif, 2021), a balanced collection of 1,500 Arabic text documents suitable for
Arabic text classification tasks. The documents are categorized into five domains: medicine,
sports, politics, technology, and finance. The dataset was split into 80% for training and 20%
for testing.

3.4.2 Hyperparameter tuning

The optimal parameters were identified through a grid search, where a predefined set of
parameters was evaluated using 5-fold cross-validation. This process aimed to determine the
optimal number of neighbors k and the best weight function for the kNN algorithm, the the
best regularization parameter C for the SVM with a linear kernel, and the ideal number of
trees and split quality criterion for the Random Forest classifier.

The number of neighbors k used for generating the kNN meta-features was chosen from
a set of five values: {5, 9, 13, 17, 21}. Through this process, the optimal value was identified
as k = 9. Table 3.2 summarizes the hyperparameters used for tuning various classifiers. For
Logistic Regression, the penalty is set to l2 with a regularization strength C of 1. The K-
Nearest Neighbors (kNN) classifier tests different numbers of neighbors (ranging from 17
to 35) and uses either uniform or distance-based weighting. The Random Forest classifier
evaluates two configurations, using either 50 or 100 trees, with the Gini impurity or entropy

3.5. Results and discussions 75

criterion to assess split quality. The Support Vector Machine classifier employs a linear
kernel and tests various regularization strengths C from 0.001 to 100.

TABLE 3.2: Tuning hyperparameters for classifiers.

Classifier Hyperparameter

LR Penalty=l2
C=1

KNN
n_neighbors=[17,19,21,23,25,27,29,31,33,35]
weights=[’uniform’,’distance’]

RF
n_estimators=[50,100]
criterion=[’gini’,’entropy’]

SVM
kernal=’linear’
C=[0.001,0.01,0.1,1,10,100]

3.5 Results and discussions

3.5.1 Dimensionality reduction using Meta-Features

Table 3.3 illustrates a substantial reduction in the number of dimensions when transitioning
from the original TF-IDF representation. In this context, 5 represents the number of classes,
while 9 is the optimal number of neighbors for both CosKNN and L2KNN. Specifically, there
is a decrease of 99.85% from 29,300 dimensions to 45 dimensions for both CosKNN and
L2KNN. Furthermore, the dimensionality is reduced by 99.98% for CosCent and L2Cent,
which drop to only 5 dimensions. This indicates that CosKNN and L2KNN retain a higher
number of dimensions due to their dependence on both the number of classes and the value of
k. In contrast, the dimensionality of CosCent and L2Cent is solely influenced by the number
of classes, resulting in a much more compact representation.

TABLE 3.3: Representation Methods and Their Number of Dimensions

Representation
Method

Dimensions

TF-IDF 29,300

CosKNN 5× 9 = 45

L2KNN 5× 9 = 45

CosCent 5

L2Cent 5

76 Chapter 3. Distance-Based Meta-Features for Arabic Text Classification

3.5.2 Classifiers’ accuracy

After training our classifiers on the TF-IDF baseline representation and the different DBMFs
groups using the optimal hyperparameters, we evaluated the impact of DBMFs groups on
classifiers’ accuracy, expressed as percentages, as shown in Table 3.4. The best values for
each classifier are highlighted in bold. Several key observations can be made from this table:

• LR and SVM achieved their highest accuracy using meta-features, showcasing their
strength in leveraging such feature sets.

• KNN and RF performed best with TF-IDF, but they also showed strong results with
meta-features. Notably, there is only a 0.33% decrease in accuracy for both classifiers
when using meta-features.

• SVM is the most consistent and high-performing classifier, with its performance peak-
ing at 99.00% when using the CosCent method.

• SVM emerged as the best classifier with the DBMFs groups, demonstrating its ro-
bustness in handling both local information (through KNN-based features) and global
information (via centroid-based features). Notably, the highest accuracy, 99.00%, was
achieved by SVM using the CosCent method.

• The L2Cent method achieved the highest overall accuracy average across all classi-
fiers.

In conclusion, accuracy improved in 50% of the cases, while in the remaining cases, the
decrease in accuracy was minimal, with only a 0.33% drop.

TABLE 3.4: Classifiers’ Accuracy Comparison with TF-IDF and DBMFs
Groups.

Classifier TF-IDF L2KNN CosKNN L2Cent CosCent

LR 97.33 98.33 98.33 98.33 97.66

KNN 98.66 98.00 98.33 98.33 98.33

RF 98.33 98.00 97.00 97.66 97.33

SVM 98.00 98.33 98.33 98.66 99.00

Average 98.08 98.17 97.99 98.25 98.08

Figure 3.4 below presents a visual representation of the data from Table 3.4, providing a
clearer comparison of the classifiers’ performance across different feature sets.

3.5. Results and discussions 77

FIGURE 3.4: Classifiers’ Accuracy Comparison with TF-IDF and DBMFs
Groups.

3.5.3 Training time

Table 3.5 shows the training times (in seconds) for different classifiers across the various
distance-based meta-feature representations and the TF-IDF baseline.The best training times
are highlighted in bold. Based on Table 3.5, it is evident that:

• The highest training times were recorded for different classifiers when using the TF-
IDF representation, as the classifiers are fed with a large number of dimensions.

• The lowest training times were observed when using meta-features, due to the smaller
number of dimensions in the meta-feature space.

• The minimum training time for all classifiers was achieved with L2Cent.

• The best average training time was obtained with centroid meta-features (i.e., L2Cent
and CosCent), as they have the smallest number of features.

78 Chapter 3. Distance-Based Meta-Features for Arabic Text Classification

TABLE 3.5: Classifiers’ Training Times (s) with TF-IDF and DBMFs Groups.

Classifier TF-IDF L2KNN CosKNN L2Cent CosCent

LR 16.33 2.01 0.29 0.07 0.67

KNN 1655.97 4.60 4.67 1.28 2.62

RF 4.62 0.43 0.49 0.25 0.28

SVM 1690.16 1.04 2.54 0.52 0.95

Average 841.77 2.03 2.00 0.53 1.14

3.5.4 Time gain

Table 3.6 illustrates the effect of distance-based meta-features on the speed of the Arabic text
classification process. For better clarity, Figure 4 presents a graphical representation of the
data from Table 3.6.

TABLE 3.6: Training Time Gain with DBMFs.

Classifier L2KNN CosKNN L2Cent CosCent

LR 8 56 224 24

KNN 359 354 1287 630

RF 11 9 18 16

SVM 1613 664 3244 1764

FIGURE 3.5: Time Gain with DBMFs Across Different Classifiers.

3.5. Results and discussions 79

From Figure 3.5 , we can observe the following:

• The use of meta-features led to significant speedup gains, with improvements ranging
from a minimum of 8 times (achieved by LR with L2KNN) to a maximum of 3244
times (achieved by SVM with L2Cent).

• SVM achieved the highest time gain across all meta-features, followed by the kNN
classifier.

3.5.5 Comparing DBMFs with PCA

In this study, we employed Principal Component Analysis (PCA) to reduce the dimension-
ality of the TF-IDF representation. We chose to retain principal components that accounted
for 95% of the cumulative variance, reducing the dimensionality from the original 29,298
dimensions to a more compact 911 dimensions. Table 3.7 provides an overview of the accu-
racy performance achieved by applying PCA and meta-features to reduce the dimensionality
of the data. Based on this table, all classifiers demonstrated improved performance with the
integration of meta-features. Notably, the kNN classifier combined with PCA yielded the
lowest accuracy among the classifiers. For enhanced clarity and visualization, Figure 3.6
illustrates the data presented in Table 3.7.

TABLE 3.7: Comparison of Classifiers’ Accuracy Using Meta-Features vs.
PCA.

Classifier TF-IDF L2KNN CosKNN L2Cent CosCent PCA

LR 97.33 98.33 98.33 98.33 97.66 97.33

KNN 98.66 98.00 98.33 98.33 98.33 39.33

RF 98.33 98.00 97.00 97.66 97.33 97.33

SVM 98.00 98.33 98.33 98.66 99.00 97.00

80 Chapter 3. Distance-Based Meta-Features for Arabic Text Classification

FIGURE 3.6: Comparison of Classifiers’ Accuracy Using Meta-Features vs.
PCA..

3.5.6 Statistical evaluation

We conducted a paired t-test to evaluate the significance of the accuracy improvements
achieved with our proposed method. The paired t-test is a statistical tool used to compare
the means of paired observations within each group. This test was performed to determine
whether there was a significant difference between the means of the paired observations. The
null hypothesis assumes no significant difference between the means. If the resulting p-value
is below a predetermined significance level (e.g., 0.05), the null hypothesis is rejected, indi-
cating that the observed performance difference is statistically significant. To generate the
population for a paired t-test in the context of text classification, we created five randomiza-
tions of the training set, resulting in multiple pairs of model performance measurements for
each realization. Each pair comprised the accuracy obtained using the distance-based meta-
features representation and the accuracy obtained using the TF-IDF representation. Both
representations were evaluated on the same shuffled training set using the same classifier
(SVM). Table 3.8 presents the results of the paired t-test, comparing the performance of the
best meta-features with lower time costs (L2Cent, CosCent) against the TF-IDF representa-
tion.

TABLE 3.8: P-Values of the Paired T-Test.

Method CentL2 CosCent

TF-IDF 0.01 0.03

3.6. Conclusion 81

From Table 3.8, we observe that all obtained p-values are below 0.05 within a 95%
confidence interval, clearly indicating the rejection of the null hypothesis in each case. This
signifies a significant improvement in accuracy achieved by L2Cent and CosCent, suggesting
that the observed results are not due to random chance.

3.6 Conclusion

This chapter emphasizes the importance of prioritizing the pre-processing phase over classi-
fier algorithms to improve text classification performance while reducing time-related costs.
We introduced a new pre-processing step for Arabic texts to tackle the issues of high dimen-
sionality and sparsity associated with TF-IDF representation, which can negatively affect
classification performance. We used four distance-based meta-features , namely CosKNN,
L2KNN, CosCent, and L2Cent as dimensionality reduction methods and evaluated their im-
pact on KNN, SVM, RF, and LR classifiers. Results showed improved classification accuracy
in 50% of cases, along with a significant reduction in training time, up to 3244 times faster
for all classifiers. This marks the first use of distance-based meta-features for Arabic text
classification.

The next chapter will focus on testing our approach with larger datasets and examin-
ing the benefits of integrating local and global information by combining KNN-based and
centroid-based meta-features with word embeddings to further enhance performance.

82

Chapter 4

Tasneef : A Fast and Effective Hybrid
Representation Approach for Arabic Text
Classification

4.1 Introduction

Many works in ATC rely on a single text representation method, such as TF-IDF, which
simplifies the modeling process but may fail to capture the diverse linguistic aspects of Ara-
bic. This approach often leads to incomplete semantic understanding and can result in high
time and memory consumption, as demonstrated by experiments. While deep learning-based
representations can be effective, they also come with high computational costs, particularly
affecting real-time applications. To address these challenges, this chapter presents Tasneef
1, a novel hybrid approach aimed at tackling computational challenges in ATC by specif-
ically reducing memory consumption and runtime overhead. Two key issues are tackled:
first, analyzing the statistical properties of text using TF-IDF, enhanced through dimension-
ality reduction with Distance-Based Meta Features (DBMFs), which mitigate the high di-
mensionality and sparsity issues of TF-IDF. Second, semantic features are captured using
fastText word embeddings. The chapter emphasizes that relying on a single representation
method, such as TF-IDF, often results in high computational costs and may fail to capture
critical information, particularly in complex languages like Arabic. By integrating multiple
representations, the goal is to optimize ATC performance while minimizing computational
resources, making the approach suitable for mid-sized environments or resource-constrained
research groups.

The chapter is organized as follows: Section 4.2 details the architecture of the proposed
method, explaining the various modules and their interactions. Section 4.3 describes the
experimental setup and the main tools used. Section 4.4 discusses the results, highlighting

1Tasneef is the Arabic word for classification.

4.2. Methodology 83

the strengths and weaknesses of the proposed method. Finally, Section 4.5 concludes the
chapter and suggests potential future developments to address its limitations.

4.2 Methodology

4.2.1 Overall architecture

• Proposed Pipeline: The structure of Tasneef is depicted in Figure 4.1. The pipeline
involves several key steps. Starting with a raw dataset, a preprocessing procedure
is applied on the text to clean and structure it. On the statistical level, we employ
the TF-IDF for encoding the text, as a sparse vector. Afterward, we reducethe TF-
IDF feature space by generating DBMFs, resulting in a dense vector. We consider two
types of reduction: local, using kNNL2 and kNNCos; and global, based on CentL2 and
CentCos. The resulting hybrid dense representation is then obtained by concatenating
the DBMFs with the fastText embeddings. Finally, the concatenated features are fed
into the SVM for final classification.

FIGURE 4.1: Tasneef architecture.

84
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

• Main algorithm: Algorithm 1 outlines the phases proposed by Tasneef, further ex-
panded in the following subsections.

4.2.2 Tasneef Text preprocessing

For all datasets, we conducted preprocessing operations that align with widely adopted prac-
tices in the field ofATC, which have consistently yielded the most reliable results. Traditional
practices include:

• Data cleaning: We start with a raw benchmark dataset and pre-process the text by
removing numbers, special characters, non-Arabic words, and Arabic stop-words.
We employed the most extensive Arabic stop-words list available 2, which comprises
13,629 stop-words.

• Tokenization: After conducting multiple trials, we chose the PyArabic 3 tokenizer
(Zerrouki, 2023) over the Camel_tools 4 tokenizer (Obeid et al., 2020) because of its
faster performance, particularly with large datasets, while retaining an equivalent level
of effectiveness.

• Stemming: Although lemmatization is more accurate in reducing words to their base
or root forms, it is computationally more expensive and requires advanced linguistic
resources. In contrast, stemming is faster and simpler, making it more suitable for tasks
where speed is essential. Despite its reduced accuracy, stemming is often sufficient for
document classification and other NLP tasks. In this case, the ISRI Arabic stemmer
from the NLTK library was chosen for its versatility and popularity.

• Normalization: In our study, we opted not to normalize Arabic letters to prevent al-
tering the contextual meaning of particular words, diverging from certain alternative
methodologies. For example, the word (

�	
à

A
�
�, matter, affair, position) can be confused

with (
�	
àA

�
�, to tarnish), the word (

�
ÈAÓ

@, to curve, to bend) with (

�
ÈAÓ

�
@, hopes), and the

word (�éêË
�
@, divinities) with (éêË

@, distracted him, or distract him!). These simple exam-

ples demonstrate how normalization can have a significant negative impact on word
meaning.

2https://www.nltk.org/
3https://pyarabic.readthedocs.io/ar/latest/features.html
4https://camel-tools.readthedocs.io/en/latest/

https://www.nltk.org/
https://pyarabic.readthedocs.io/ar/latest/features.html
https://camel-tools.readthedocs.io/en/latest/

4.2. Methodology 85

4.2.3 Statistical property and DBMFs construction in Tasneef

Dimension reduction enhances computational efficiency by decreasing the feature space.
After vectorization with TF-IDF, DBMFs are used to reduce vector dimensions. We describe
how DMBFs are calculated.

4.2.3.1 DBMFs distance calculation

In Tasneef, we designed DBMFs that combine both local information, achieved through
kNN, and global information, handled through centroid (Cunha et al., 2020). Distances are
calculated for both kNN and centroid DBMFs by using Euclidean distance or cosine distance,
as explained in Equations 4.1, 4.2, and 4.3 below:

- Euclidean distance (L2): in n dimensional Euclidean space, the Euclidean distance d

between two points p and q is given by:

d =

√√√√ n∑
i=1

(pi − qi)2 (4.1)

where pi (or qi) is the i-th coordinate of p (or q).

- The cosine similarity cos(θ) between two vectors a and b is the result of their dot
product divided by the product of their respective lengths, and is calculated as:

cos(θ) =
a · b

||a|| · ||b||
=

∑n
i=1 aibi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

(4.2)

where ai (or bi) is the i-th coordinate of a (or b).

- The cosine distance is then defined as:

cosine_distance(a,b) = 1− cos(θ) (4.3)

As a result, the cosine distance metric measures the angle between two vectors and
ranges from 0 (if the vectors are identical) to 1 (if the vectors are orthogonal).

4.2.3.2 Local DBMFs obtainment

In the phase of local processing, we rely on kNN DBMFs, which involve selecting the k
nearest documents from each class (e.g., Politics, Culture, etc.) to a specific document.
In this context, our method incorporates two key DBMFs. Firstly, kNNL2 utilizes the L2

86
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

(or Euclidean) distance to identify the k nearest documents from each class based on their
Euclidean distances, described by Equation 4.1. Additionally, kNNCos employs the cosine
similarity metric to compute the kNN DBMFs, selecting the k nearest documents from each
class to a given document based on their cosine similarity scores, based on Equation 4.3.
Algorithm 2 describes the steps involved in local DBMFs generation.

4.2.3.3 Global DBMFs obtainment

In the global feature processing phase, we employ centroid DBMFs to assess the relation-
ship between documents and the center of each class. This involves two distinct approaches:
CentL2 and CentCos. CentL2 computes the centroid DBMFs using the L2 (Euclidean) dis-
tance metric, quantifying the distance between a document and the centroid (mean vector) of
each class based on their Euclidean distances. On the other hand, CentCos utilizes the cosine
similarity metric to compute the centroid DBMFs, measuring the similarity between a doc-
ument and the centroid of each class based on their cosine similarity scores. Equations 4.1,
4.2, and 4.3 still hold here, with the centroid considered as a point. Algorithm 3 describes
the steps involved in global DBMFs generation.

4.2.3.4 Resulting DBMFs

The steps outlined above allow us to generate the DBMFs as presented in Table 4.1. A brief
description of each DBMFs group is given along with its number of dimensions, where C

represents the number of classes and k represents the number of neighbors used to generate
kNN DBMFs. In terms of notation, ‘Cent’ means the combination of both the CentL2 and
CentCos as centroid-based DBMFs groups.

4.2. Methodology 87

Algorithm 2 Local DBMFs - kNN DBMFs Generation From TF-IDF Feature Matrix
Input:

X_train: TF-IDF feature matrix for the training set
X_test: TF-IDF feature matrix for the test set
Y_train: Training set class labels
k: Number of nearest neighbors

Output:
kNN_MFs_train: kNN-based MFs for the training set
kNN_MFs_test: kNN-based MFs for the test set

Begin:
// Function to generate kNN MFs//
// Refer to Equ. 4.1, 4.2 & 4.3 for distance calculation//
1. Function Generate_kNN_MetaFeatures(X, X_train, Y_train, k):

a. Initialize Meta_Features as an empty matrix with dimensions
[length(X), length(unique(Y_train))× k]

b. For i = 1 to length(X):
Initialize MFs_vec as an empty list
i. For c = 1 to length (unique(Y_train)) do:

- Docs_c ={documents in X_train where Y_train == c}
If X[i] belongs to X_train:

- Docs_c = Docs_c excluding X[i]
EndIf
- Distances = Calculate_distances (X[i], Docs_c)
-Nearest_neighbors=Select_k_nearest_neighbors(Distances,k)
-Append Distances of Nearest_neighbors to MFs_vec

EndFor
ii. Store MFs_vec in Meta_Features for document i

- Meta_Features[i] = MFs_vec
EndFor
c. Return Meta_Features

End Function
// Generate kNNbased MFs for the training set//
2.kNN_MFs_train=Generate_kNN_ MetaFeatures(X_train, X_train, Y_train, k)
//Generate kNNbased MFs for the test set //
3.kNN_MFs_test=Generate_kNN_MetaFeatures(X_test, X_train, Y_train, k)

End

88
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

Algorithm 3 Global DBMFs - Centroid DBMFs Generation From TF-IDF Feature Matrix
Input:

X_train: TF-IDF feature matrix for the training set
X_test: TF-IDF feature matrix for the test set
Y_train: Training set class labels

Output:
Centroid_MFs_train: Centroid-based MFs for the training set
Centroid_MFs_test: Centroid-based MFs for the test set

Begin
// Step 1: Centroid calculation //
1. For each class c in unique (Y_train):

a. Compute the centroid of class c in X_train
- Centroid_c = mean(TF-IDF vectors of all training documents in class c)

b. Store Centroid_c in Centroids
EndFor
// Step 2: Function for generating centroid MFs //
// Refer to Equ. 4.1, 4.2 & 4.3 for distance calculation //
2. Function GenerateMetaFeatures (X, Centroids):

a. Initialize an empty matrix Meta_Features with dimensions
[length(X) x length (Centroids)]
b. For i = 1 to length(X):

i. For c = 1 to length (Centroids):
- Compute the distance between X[i] and Centroids[c]
- Store the distance in Meta_Features[i, c]

EndFor
EndFor
c. Return Meta_Features

End Function
// Step 3: Generate meta-features for training set //
3. Centroid_MFs_train = GenerateMetaFeatures (X_train, Centroids)
// Step 4: Generate MetaFeatures for Test Set //
4. Centroid_MFs_test = GenerateMetaFeatures(X_test, Centroids)

End

4.2. Methodology 89

TABLE 4.1: DBMFs Groups Description

Group Name Description
Number of
Dimensions

CentL2
Centroid meta-features generated

using Euclidean distance.
C

CentCos
Centroid meta-features generated

using cosine similarity.
C

kNNL2
kNN meta-features generated using

Euclidean distance.
C × k

kNNCos
kNN meta-features generated using

cosine similarity.
C × k

Cent 5 Concatenation of CentL2 and
CentCos.

2× C

CentkNNCos Concatenation of Cent and kNNCos. C × (k + 2)

All
Concatenation of Cent, kNNCos, and

kNNL2.
(2× C)× (k + 1)

4.2.4 Embedding property in Tasneef and concatenation procedure

4.2.4.1 Pre-trained word embeddings usage

Pre-trained word embeddings allow for quick integration, eliminating the need for resource-
intensive training and reducing initial costs. As a result, we chose to work with a set of
pretrained fastText version word vectors from fastText library6 trained on Command Crawl7

and Wikipedia8. This model was trained using CBoW with position-weights, in dimension
300, with character n-grams of length 5, a window of size 5 and 10 negatives. After loading
the pretrained word vectors from the fastText library, we obtain the corresponding pretrained
word vector for each word in the input text by looking up the vectors associated with each
word in the pretrained word vector set. Subsequently, we create a dense vectorization for
the entire text by combining these word vectors, typically by averaging them. Algorithm

5In all our experiments, we consistently use the two groups ‘CentL2’ and ‘CentCos’ as a combined group
named ‘Cent’ due to their minimal feature count and lower computational cost.

6https://fasttext.cc/docs/en/support.html
7https:https://commoncrawl.org/
8https://www.wikipedia.org/

https://fasttext.cc/docs/en/support.html
https:https://commoncrawl.org/
https://www.wikipedia.org/

90
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

4 describes the document representation using pretrained fast- Text model from fastText
library.

4.2.4.2 Concatenation of DBMFs and fasText embeddings

Upon the derivation of DBMFs, we proceed to concatenate them with fastText results in an
end-to-end fashion. The feature concatenation process, shown in Figure 4.2, captures docu-
ment distance relationships via document labels and statistical features, resulting in an initial
concatenation between centroid and kNN meta-features (MFs). Subsequently, semantic text
attributes are integrated using fastText embeddings. Ultimately, the combined concatenation
yields a more concise data representation. Note that DBMFs are considered dense even if
they are generated from sparse vectors (such as TF-IDF). Therefore, the final concatenation
is being done between two dense vectors.

4.2. Methodology 91

Algorithm 4 Document Representation Using Pre-trained fastText Model from fasttext Li-
brary

Input:
text: document in textual form

Output:
text_vector: numerical representation of text

Begin
1. Load FastText library
2. model = load pre-trained fastText model for Arabic language
3. Preprocess the text (e.g., tokenization, removing special characters)

- words = preprocess(text)
4. Initialize an empty vector for the text representation

- text_vector = Initialize vector with zeros of appropriate size
5. Initialize a counter for the number of words

- word_count = 0
6. For each word in words:

a. Get word vector from FastText model
- word_vector = model.get_word_vector(word)

b. Add the word vector to the text vector
- text_vector = text_vector + word_vector

c. Increment the word counter
- word_count = word_count + 1

EndFor
// Calculate the average vector for the entire text document//
7. If word_count > 0:

- text_vector = text_vector / word_count
Else:

- Set the text_vector to a zero vector of appropriate size
EndIf

End

92
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

FIGURE 4.2: The feature concatenation procedure in Tasneef.

4.3 Experimental setup

4.3.1 Overall architecture

In this Section, we describe the experimental setup involving the evaluation tools and the
overall experimental steps. We highlight the main tools used for subsequent comparison:
datasets, metrics and Tasneef SOTA benchmarks.

4.3.2 Evaluation tools

4.3.2.1 Metrics used

The evaluation of classification methods involves a comprehensive analysis using appropriate
performance metrics usually derived from the confusion matrix, such as accuracy, precision,
recall, specificity, and F1-score. Additionally, to ensure the reliability and applicability of
selected features across diverse datasets or classification models, crossvalidation techniques
are implemented. Throughout our First Series of Experiments, we employed two metrics
suitable for multi-class classification: Micro-averaged F1 (MicroF1) and Macro-averaged
F1 (MacroF1). MicroF1 evaluates classification effectiveness across all decisions, whereas

4.3. Experimental setup 93

MacroF1 assesses classification effectiveness for each individual class and computes their
average. Both MicroF1 and MacroF1 were utilized in our analysis to provide a comprehen-
sive understanding of classification performance (Sokolova and Lapalme, 2009). In addition,
we also used cross-validation methods, dimensionality reduction and runtime evaluations. In
the Second Series of Experiments, we employed accuracy and F-Measure metrics, consistent
with those used in the chosen benchmarks’ works, to ensure a fair and consistent comparison.

4.3.2.2 Datasets used

The proposed method starts with the input of raw text data, provided by online datasets. We
rely on seven openly accessible, extensive, single-labelled news documents datasets written
in modern standard Arabic: SANAD dataset incorporating Al Arabiya, Al Khaleej, and
Akhbarona news portals, in addition to KALIMAT, CNN, Khaleej-2004, and Watan-2004
datasets; all briefly described below.

• SANAD resource: The SANAD resource includes three datasets: Al Arabiya, Al
Khaleej, and Akhbarona, covering categories such as Culture, Finance, Medicine, Pol-
itics, Sports, Religion, and Technology. Al Arabiya omits Culture and Religion. 116
documents were removed from Akhbarona due to lack of textual content or damage.
The initial dataset contains 46,900 documents (Einea, Elnagar, and Debsi, 2019).

• KALIMAT dataset: KALIMAT dataset, as detailed in (El-Haj and Koulali, 2013) rep-
resents a multipurpose Arabic corpus, sourced fromWatan-2004 Arabic corpus. The
actual number of articles in KALIMAT is 18,256.13 9 This corpus is categorized into
six distinct sections, covering Culture, Economy, Local News, International News,
Religion, and Sports.

• CNN corpus: The CNN corpus encompasses 5,070 textual documents. These docu-
ments are classified into six categories: Business, Entertainment, Middle East News,
Science Technology, Sports, and World News (Saad and Ashour, 2010).

• Khaleej-2004: Khaleej-2004 dataset comprises 5,690 documents categorized into four
classes: Economy, International News, Local News, and Sports (Sabri, El Beggar, and
Kissi, 2024).

• Watan-2004: The Watan-2004 Arabic corpus (a)contains 20,291 documents, tagged
with one of six categories: Culture, Economy, International News, Local News, Reli-
gion, and Sports (Abbas, Smaili, and Berkani, 2011).

9The authors of the KALIMAT dataset originally reported that it consisted of 20,291 articles, but the actual
size we found incorporates 18,256 articles.

94
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

Table 4.2 provides an overview of the characteristics of these seven datasets. All were
partitioned into training (80%) and testing (20%) sets, for subsequent experimentations.

TABLE 4.2: Characteristics of datasets used.

Dataset No. of docs
No. of
classes

Avg. no. of words
per doc.

Vocabulary
size

Al Arabiya 18,500 5 273 96,247

Al Khaleej 45,500 7 419 239,721

Akhbarona 46,784 7 321 225,901

KALIMAT 18,256 6 978 150,966

CNN Corpus 5,070 6 526 65,752

Khaleej-2004 5,690 4 435 73,368

Watan-2004 20,291 6 528 159,015

4.3.2.3 Benchmarks

For the Second Series of experiments, we carefully selected SOTA methods as described
below:

1. Deep learning models: We selected ten SOTA deep learning; seven of them are
sourced from (Elnagar, Al-Debsi, and Einea, 2020) and include:

• CNN-based method (Alsaleh and Larabi Marie-Sainte, 2021): CNN.

• RNN-based method (Goldberg, 2017), including:

– LSTM-based: CLSTM.

– Gated-based: GRU, CGRU, BiGRU.

• HAN-based: HANGRU, HANLSTM.

Additionally, three transformer-based language-modeling methods are sourced from
(Azroumahli, Elyounoussi, and Badir, 2023):

• BERT-based model.

• MSA model.

4.3. Experimental setup 95

• Arabic dialect model.

2. Feature reduction methods: The seven SOTA reduction methods, sourced from (Sabri,
El Beggar, and Kissi, 2024) and (Bahassine et al., 2020), include:

• Feature extraction conventional methods: PCA, LDA.

• Feature selection methods, including:

– Information-theoretic-based methods: IG and MI.

– Statistics-based: chi-square and ImpCHI.

– Combining statistical and semantic modeling methods: RARF.

4.3.2.4 Hardware used

The experiments were conducted using a Kaggle 10 CPU infrastructure, utilizing a specif-
ically configured Intel® Xeon CPU operating at 2.20 GHz with a total of 30 GB of RAM
available. We outline here the overall experimental steps.

4.3.3 Overall experimental steps

In the Initial Experiment, we identify the optimal pair of DBMF groups, based on their
average MicroF1 and MacroF1 results. These chosen groups are then combined with fastText
to produce the two most effective Tasneef variants. Once these variants are determined,
we conduct two distinct types of experiments. The First Series of Experiments focuses on
comprehensive assessments of accuracy, dimension reduction, and runtime analyses. These
analyses are applied to three datasets: Al Arabiya, Al Khaleej, and Akhbarona. The Second
Series of experiments compares Tasneef variants with SOTA reduction methods and deep
learning models using the same datasets and evaluation metrics, including accuracy and F-
measure, as employed by those benchmarks. The detailed Experimental Setup is delineated
below.

10www.kaggle.com

www.kaggle.com

96
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

Experimental Setup: Initial Experiment, First Series Experiments, and Second Series Ex-
periments

Start
Initial Experiment:

- Undertake initial hyperparameter tuning.
- Choose MicroF1 and MacroF1 as metrics.
- Based on these metrics, select the top two DBMFs from the pool of five,
listed in Table 4.1.
- Generate the two most optimal variants of Tasneef by concatenating

each DBMFs with fastText.
First Series Experiments:

- Choose three benchmarks: the two Tasneef variants obtained
above and the top performer among fastText, AraVec, and TF-IDF.
- For these benchmarks, evaluate:

•Accuracy:
▷ Evaluate Tasneef’s accuracy improvement ratio.

•Dimensionality Reduction:
▷ Evaluate Tasneef’s reduction ratio.

•Runtime Analyses:
▷ Evaluate total runtime to testing runtime ratio.
▷ Evaluate training runtime

✓Evaluate Tasneef’s training speedup ratio.
▷ Evaluate testing runtime

✓Evaluate Tasneef’s testing speedup ratio.
▷ Evaluate total runtime

✓Evaluate Tasneef’s total speedup ratio.
Second Series Experiments:

- Choose SOTA reduction methods and deep learning models.
- Use ad-hoc datasets.
- Undertake comparisons, considering:

•Accuracy:
▷ Evaluate Tasneef’s accuracy improvement ratio.

•F-Measure:
▷ Evaluate Tasneef’s F-measure improvement ratio.

Finish

4.4. Results and discussions 97

4.4 Results and discussions

4.4.1 Initial experiment

The overall results evaluate the quality of texts classification drawn from various datasets. At
the initiation of the classification phase, following the acquisition of concatenated vectors, an
SVM classifier is utilized. An initial hyperparameter tuning process is conducted to optimize
the classifier’s performance and ensure robust and accurate classification results.

4.4.1.1 SVM classifier usage

SVM is a powerful classification technique that has been proven effective in Arabic text
classification, especially when using the linear SVM as shown in (Abd, Sadiq, and Abbas,
2020). SVM can handle both high-dimensional and low-dimensional feature spaces and is
known for its robustness against overfitting. We utilized LinearSVC from the scikit-learn 11

library as an SVM classifier with a linear kernel. It is similar to the SVC function with the
parameter kernel = ’linear’, but implemented in terms of LIBLINEAR rather than LIBSVM.
Note that LIBLINEAR is highly efficient on large datasets, as demonstrated in (Fan et al.,
2008).

4.4.1.2 Hyperparameters tuning

The kNN-based DBMFs and the linear SVM classifier have hyperparameters that are set
prior to training and are not learned from the data. Typically, hyperparameters have the po-
tential to influence the model’s performance and its runtime. When tuning hyperparameters,
it is common to use grid search and cross-validation. To achieve this, we employed grid
search with 5-fold cross-validation to determine the optimal number k of neighbors for gen-
erating kNN DBMFs and to find the best value of the SVM regularization parameter C to
prevent overfitting. The best k values found experimentally were as follows: k = 60 for the
Al Arabiya and Akhbarona datasets, while k = 50 for the Al Khaleej. Due to the variety of
methods and datasets, each method paired with a distinct dataset requires a unique optimal
parameter C. On the other hand, each dataset typically has only one optimal parameter C.
Table 4.3 displays the hyperparameter search grid utilized in Tasneef.

11https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

98
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

TABLE 4.3: Hyperparameter search grid.

Hyperparameter Value ranges

k 10, 20, 30,40, 50, 60

C 0.01, 0.1, 1, 10, 100

4.4.1.3 Results of preprocessing

The preprocessing phase follows the insertion of raw text into the pipeline. The raw text cor-
responds to the datasets outlined in Table 4.2, above. The data preprocessing phase aims to
enhance data quality by eliminating noise and unnecessary information, thereby improving
the effectiveness of text classification through a reduced vocabulary size. Table 4.4 presents
the dataset sizes utilized for subsequent feature processing in each dataset; showing the num-
ber of words after preprocessing. The table clearly shows the influence of preprocessing on
the reduction in the number of words. As shown, the reduced size ratio varies from 38.50%
to 39.92%.

TABLE 4.4: Impact of preprocessing on number of words in dataset.

Dataset
of Words Before

Preprocessing
of Words After

Preprocessing
Reduced

Size Ratio

Al Arabiya 5,049,549 3,105,128 38.50%

Al Khaleej 19,073,077 11,614,869 39.12%

Akhbarona 15,033,981 9,032,615 39.92%

4.4.2 Selection of the best DBMFs groups

4.4.2.1 DBMFs baslines choice

A baseline is selected to define the minimum level of performance that any new model must
surpass to be considered beneficial. To evaluate the performance of the resulting concate-
nated DBMFs (kNN-based DBMFs + Centroid-based DBMFs), each DBMFs group is ini-
tially selected independently as a candidate. A comprehensive description of all DBMFs
groups is provided in Table 4.1. We use MicroF1 and MacroF1, described above, as metrics
for ranking these baselines.

a) Statistical significance
We performed five multiple random test-train comparisons.The reported results of all

4.4. Results and discussions 99

our subsequent experiments (in Table 4.5 and 4.6) are based on the average perfor-
mance MicroF1 and MacroF1 metrics applied to the test set. This approach helps to
assess model stability and provides a more reliable estimate of the model’s generaliza-
tion performance. Furthermore, we applied a paired t-test to assess the significance of
the results obtained in our experiments using a 95% confidence level. To address the
issue of conducting multiple tests simultaneously, we apply the Bonferroni correction,
detailed in the Appendix of the thesis. This correction is employed to control the fam-
ilywise error rate and maintain the overall significance level when making multiple
comparisons (Haynes, 2013).

b) Ranking procedure
We require a ranking procedure to select the two most optimal DBMFs to be concate-
nated with fastText, thereby creating two Tasneef variants. The ranking results, re-
ported in Table 4.5, show DBMFs groups performance based on MicroF1 and MacroF1
metrics using paired t-test with Bonferroni correction. The ranking procedure, used in
Table 4.5 is based on the following steps:

1. Evaluate all DBMFs using MicroF1 and MacroF1.

2. Choose the best DBMF group as a reference; here, the DBMF ‘All’ is taken
as a reference because it exhibits the best results across all datasets. Put this
reference DBMF group at the top of the table.

3. For each dataset, rank the remaining DBMFs with respect to this reference, from
closest to the farthest.

a. Use paired t-tests with Bonferroni correction (See Appendix of the thesis
for more details).

i. Indicate statistical ties with bidirectional arrows.

ii. Indicate statistically significant losses with downward arrows.

b. Remove from competition all values with losses because the results must
include statistically significant ties only.

4. For each column, highlight the three best values, at most.

5. Keep only the best DBMF, in addition to the reference.

100
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

TABLE 4.5: Meta-features groups performance based on MicroF1 and
MacroF1 metrics using paired t-Test with Bonferroni correction.

Al Arabiya Al Khaleej Akhbarona

MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1

All
Ref. DBMF * 97.610 97.609 96.920 96.918 94.243 94.235

CentkNNCos 97.481 ⇔ 97.479 ⇔ 96.837 ⇔ 96.834 ⇔ 94.192 ⇔ 94.183⇔

Cent 97.162 ⇔ 97.159 ⇔ 95.490 ⇓ 95.483 ⇓ 91.980 ⇓ 91.968 ⇓

kNNL2 97.059 ⇓ 97.056 ⇓ 96.098 ⇓ 96.093 ⇓ 93.602 ⇓ 93.589 ⇓

kNNCos 97.059 ⇓ 97.057 ⇓ 96.230 ⇓ 96.224 ⇓ 93.649 ⇓ 93.636 ⇓

TABLE 4.6: Tasneef comparison with other benchmarks using paired t-test
with Bonferroni correction.

Al Arabiya Al Khaleej Akhbarona

MicroF1 MacroF1 MicroF1 MacroF1 MicroF1 MacroF1

Ref. * TF-IDF 98.243 98.242 97.841 97.840 95.051 95.046

Tasneef

variants
Tasneef_var2 98.054 ⇔ 98.053 ⇔ 97.714 ⇔ 97.713⇔ 94.910⇔ 94.904⇔

Tasneef_var1 97.935⇔ 97.934⇔ 97.705⇔ 97.704⇔ 94.972 ⇔ 94.965⇔

Other
benchmarks

fastText 97.848⇔ 97.846⇔ 96.934⇓ 96.933⇓ 93.760⇓ 93.755⇓

AraVec 97.310⇓ 97.310⇓ 96.140⇓ 96.141⇓ 92.606⇓ 92.609⇓

* In both Table 4.5 and Table 4.6, note that the first line is taken as a reference; conse-
quently, no arrows are used. For more details regarding the threshold calculation between
ties and losses, refer to the Appendix 4.5.

4.4.2.2 DBMFs ranking results

a) Best DBMFs groups
According to the results outlined in Table 4.5, it is clear that ‘All’ DBMFs and ‘Cen-
tkNNCos’ DBMFs emerge as the best two groups across all datasets. Furthermore,
Al Arabiya dataset demonstrates the highest performance, closely followed by the Al
Khaleej dataset, with the Akhbarona dataset exhibiting slightly lower performance. It

4.4. Results and discussions 101

is also worth mentioning that MicroF1 and MacroF1 values are remarkably similar: a
characteristic attributed to the relative balance of the datasets used.

b) Tasneef variants obtainment
Now, all we need is the concatenation of these two best DBMFs with fastText. We
will consequently use the two variants ofTasnef, i.e., ‘All+fastText’, referred to as Tas-

nef _var1, and ‘CentkNNCos+fastText’, and referred to as Tasnef _var2. Note that the
symbol ‘+’ here denotes concatenation. We are now ready for the First Series of Ex-
periments.

4.4.3 First series of experiments: baselines performance

Upon selecting the two optimal Tasneef variants, we conduct a comparative analysis with
TF-IDF, AraVec, and fastText, utilizing the same ranking procedure employed for the deriva-
tion of the Tasneef variants, as detailed in Table 4.6. Note that for a fair comparison, we
applied the same preprocessing procedure and used SVM as the default classifier for all
methods.

4.4.3.1 MicroF1 and MacroF1 results

a) Retained benchmarks
Table 4.6 presents the performances of Tasneef variants, TFIDF, AraVec, and fastText.
We observe that the two Tasneef variants achieve the best results, similar to TF-IDF,
across all datasets based on statistical significance comparisons. Excluding TF-IDF, it
is evident that Tasneef_var2 surpasses the second-best benchmark method (fastText)
by 0.21%, 0.78%, 1.12% on the Al Arabiya, Al Khaleej, and Akhbarona datasets,
respectively. TF-IDF will be retained as the sole competitor of Tasneef variants for
further comparisons.

b) Comparison at dataset level
At the dataset level, consistent with the previously mentioned findings, Al Arabiya
dataset displays the highest performance, closely followed by Al Khaleej dataset.
However, the results for Akhbarona dataset indicate a somewhat lower level of per-
formance. Another noteworthy observation is that fastText, on its own, outperforms
AraVec across all datasets. This can be attributed to fastText’s capability to work with
subword information by considering character n-grams. This feature renders fastText
highly effective, particularly in handling morphologically rich languages like Arabic.

102
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

c) TF-IDF vs. Tasneef
Our two variants closely approximate TF-IDF, within a maximum loss of 0.189%,
compared to TF-IDF for both MicroF1 and MacroF1 metrics on the Al Arabiya dataset,
0.127% on the Al Khaleej dataset, and 0.08% on the Akhbarona dataset. However, as
Table 6 shows, the paired t-test with Bonferroni correction indicates that this loss is not
statistically significant, meaning the performance difference between our two variants
and TF-IDF could be due to random variation rather than a true effect.
TF-IDF combined with a finely tuned SVM serves as a robust vectorization benchmark
for our datasets, making it challenging to surpass using Tasneef, at least for our spe-
cific datasets. However, Tasneef offers substantial improvements in terms of memory
efficiency and runtime performance.

4.4.3.2 Dimentionality reduction in Tasneef

Table 4.7 reports the dimensionality reduction results for the two Tasneef variants and TF-
IDF, specifying the number of dimensions (labeled as ’Dim.’ in the table) and reduction
ratios (’Reduc.’) compared to TF-IDF across all datasets. The dimension reduction ratio
is calculated between the original dimension given by TF-IDF (for instance 96,247 for the
Al Arabiya dataset) and the dimension generated by any Tasneef variant (such as 910 for
Tasneef_var1), yielding a reduction ratio of 106(=96,247/910). It is shown that Tasneef_var2

achieves substantial dimensionality reduction, with dimension reduction ratios of 158x, 361x
and 308x, compared to TF-IDF, across Al Arabiya, Al Khaleej, Akhbarona, respectively.
Similarly, the other variant of Tasneef, (i.e., Tasneef_var1),reduces TF-IDF dimension by
factors of 106x, 236x, and 196x, with respect to the same datasets. As an overall result, the
dimension reduction of Tasneef is a two-order magnitude, and ranges from 158x to 361x,
across all three datasets, compared to TF-IDF. As shown in Figure 4.3, Tasneef achieves
a substantial two-order of magnitude dimension reduction compared to TF-IDF across all
three datasets, with reduction ratios ranging from 158x to 361x.

TABLE 4.7: Tasneef dimensionality reduction as compared to TF-IDF.

Al Arabiya Al Khaleej Akhbarona

Dim. Reduc. Dim. Reduc. Dim. Reduc.

Tasneef

variants
Tasneef_var1 910 106x 1014 236x 1154 196x

Tasneef_var2 610 158x 664 361x 734 308x

Benchmark TF-IDF 96,247 - 239,721 - 225,901 -

4.4. Results and discussions 103

FIGURE 4.3: Tasneef dimension reduction ratios w.r.t. TF-IDF

4.4.3.3 Runtime analyses

Table 4.8 describes the runtime analyses. The values mentioned in the three columns un-
der each dataset represents respectively,the total time (Total), the SVM learning time(SVM
Lean.), both in minutes, and SVM testing time(SVM Test.), in milliseconds (ms). The total
time includes preprocessing, DBMFs generation, concatenation with word embeddings, and
classification runtimes, including hyperparameter tuning with cross-validation, training, and
testing.

TABLE 4.8: Tasneef runtime results.

Al Arabiya Al Khaleej Akhbarona

Total
(min)

SVM
Learn.
(min)

SVM
test.
(ms)

Total
(min)

SVM
Learn.
(min)

SVM
test.
(ms)

Total
(min)

SVM
Learn.
(min)

SVM
test.
(ms)

Tasneef_var1 6.87 3.13 7 29.75 17.10 18 36.28 24.35 13

Tasneef_var2 3.64 1.3 6 20.67 7.65 11 24.56 11.98 11

TF-IDF 4.50 3.76 837 28.44 25.62 5765 30.17 27.85 5361

a) Total runtime
As indicated in Table 4.6, the analysis revealed that Tasneef_var1, Tasneef_var2 and
TF-IDF, yielded the most favorable accuracy results. However, when examining run-
time, a clear preference emerged for one Tasneef variant, namely Tasneef_var2, as the
fastest among the three benchmarks.

104
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

b) Speedup ratio of Tasneef variants
For a specified dataset (like Al Arabiya, for instance), the speedup ratio of any runtime
(such as total runtime, testing runtime, or learning runtime) of the Tasneef variant,
relative to a specified method (for instance, TF-IDF), is computed as the ratio between
the runtime of the specified method (in this case, TF-IDF) and the corresponding run-
time of the Tasneef variant. For example, for Al Arabiya dataset, the total runtime, in
minutes, of TF-IDF is 4.50 and the corresponding total runtime of the Tasneef_var2

is 3.64. In this case, the speedup ratio of the total runtime of Tasneef_var2 would be
4.50/3.64 (=1.24). This means that the total runtime of Tasneef_var2 is shorter than
TF-IDF by 24%. Moreover, this Tasneef variant demonstrates a significantly enhanced
speed in total runtime compared to the alternative, resulting in a speedup ratio of 1.38
(a 38% enhancement) for the Al Khaleej dataset and 1.23 (a 23% improvement) for the
Akhbarona dataset, when compared to the TF-IDF method. These findings emphasize
the efficiency of Tasneef_var2 in terms of total runtime across all datasets. Further-
more, the alternative Tasneef_var1, which exhibits lower performance, is enhanced by
Tasneef_var2 with speedup ratios of 1.89, 1.44, and 1.48 for the same datasets, listed
in the same order as previously. Figure 4.4 illustrates the speedup ratio in total runtime
enhancement of the Tasneef_var2 in comparison to TF-IDF and Tasneef_var1, across
all datasets. Tasneef_var2 improves TF-IDF total runtime by 24%, 38%, 23%, on Al
Arabiya, Al Khaleej, Akhbarona, respectively. Furthermore, Tasneef_var2 enhances
Tasneef_var1 by 89%, 44%, and 48% for the same datasets, listed in the same order as
above.

FIGURE 4.4: Speedup ratio of total runtime of the fastest Tasneef variant (i.e.,
Tasneef_var2)

4.4. Results and discussions 105

c) Training runtime

• For TF-IDF: The training runtime spent by the SVM classifier, including hyper-
parameter tuning and actual learning, consumes 84%, 90%, and 92%, of the total
time when using TF-IDF, for Al Arabiya, Al Khaleej, and Akhbarona datasets,
respectively.

• For Tasneef_var1: The training runtime represents 46%, 57%, and 67% of the
total time, for Al Arabiya, Al Khaleej, and Akhbarona datasets, respectively.

• For Tasneef_var2: The training runtime is 36%, 37%, and 49% of the total time,
for Al Arabiya, Al Khaleej, and Akhbarona datasets, respectively. Once again,
Tasneef_ var2 produces the best ratios.

From Figure 4.5, it is evident that both variants of Tasneef give the least ratio of train-
ing runtime to total runtime, meaning that they are the fastest in learning.

FIGURE 4.5: Ratio of training runtime to total runtime of all chosen baselines.

d) Runtime of testing phase
During the testing phase, the runtime is measured in milliseconds rather than minutes.
From Table 4.8, we can easily note that the runtime required to test the SVM model
using Tasneef_var1 improves the runtime performance of TF-IDF by factors of 120x,
320x, and 412x, for Al Arabiya, Al Khaleej, and Akhbarona datasets, respectively,
compared to TF-IDF. Similarly, Tasneef_var2 improves the runtime performance of
TF-IDF by factors of 140x, 524x, and 487x times faster, on the same datasets above,

106
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

respectively. These results suggest that Tasneef improves the runtime of the testing
phase of TF-IDF by a two orders of magnitude, ranging from 120x to 524x. Figure
6 shows Tasneef speedup ratio of testing phase runtime of both Tasneef variants with
respect to TFIDF. Tasneef improves TF-IDF’s testing phase runtime by two orders of
magnitude, ranging from 120x to 524x. These promising results are due to dimension
reduction.

FIGURE 4.6: Tasneef speedup ratio of testing phase runtime w.r.t. TF-IDF.

4.4.4 Second series of experiments: comparison with SOTA methods

Utilizing the Experimental Setup outlined in Subsection 4.4.1 above, we proceed to compare
Tasneef_var2, identified as the optimal variant of Tasneef, with SOTA reduction methods
and deep learning models. Our evaluation includes two standard metrics directly taken from
existing literature: accuracy and F-measure. The datasets outlined in Table 4.2 serve as the
basis for this comparison. It is important to mention that, for all subsequent experiments,
we have selected only the top four performing deep learning models from the initial pool of
nine. This selection process was carried out independently for each of the three datasets (Al
Arabiya, Al Khaleej, and Akhbarona) proposed in the study reported in (Elnagar, Al-Debsi,
and Einea, 2020) and shown on Table 4.9 As explained in Section 4.3.2.3, above, the overall
number of all benchmarks is seventeen: ten from deep learning methods and seven from
dimension reduction methods.

4.4.4.1 Tasneef_var2 accuracy improvement ratio (AIR)

Table 4.9 shows the accuracy results of all benchmarks. We assess the improvement yielded
by Tasneef_var2 using the accuracy improvement ratio (AIR), for each dataset. The AIR is

4.4. Results and discussions 107

defined as the percentage by which Tasneef_var2 enhances the accuracy of a specific method,
for a given dataset. The AIR given by the following formula:

AIR =

(
Tasneef_Accuracy

Competitor_Accuracy
− 1

)
× 100 (4.4)

For instance, considering the Akhbarona dataset and the CLSTM method from Table 4.9,
Tasneef_var2 achieves an accuracy of 95.43% while CLSTM attains 92.66%. This yields a
Tasneef_var2 AIR of 3.0% [(= 95.43/92.66) − 1) × 100], indicating a 3.0% enhancement
in CLSTM accuracy. Alternatively, by considering the CLSTM accuracy, we can determine
the Tasneef_var2 accuracy as follows: (92.66 + (92.66 × 3.0%)) = 95.43. As a whole, for
Tasneef_var2, the AIR ranges from a minimum of 0.3% with respect to (RARF+SVM) on the
Al Khaleej-2004 dataset, to a maximum of 39.6% with respect to LDA+SVM on the Watan-
2004 dataset. Furthermore, on the KALIMAT dataset, our method demonstrates significant
AIR, achieving a notable 14.9% enhancement over the best-pretrained BERT model (BERT-
based MSA model).

Note that the Tasneef’s accuracy values, found in this Second Series of Experiments are
slightly different from those of the First Series of Experiments, reported above. The ac-
curacies in percentage are now 98.43 (instead of 98.05, above), 97.49 (instead of 97.71),
and 95.43 (instead of 94.91) for Al Arabiya, Al Khaleej, and Akhbarona, respectively. The
key difference lies in our approach to training Tasneef_var2. Here, we utilized the same
training and testing sets as the deep learning models referenced in (Elnagar, Al-Debsi, and
Einea, 2020), ensuring a fair comparison of results between our model and theirs. In the First
Series Experiments, the reported results of all our experiments are based on the average Mi-
croF1 performance of multiple random test-train splits (five splits). The results are therefore
slightly different. The overall results highlight Tasneef_var2’s AIR across all six datasets, as
shown on Table 4.9 and highlighted on Figure 4.7 and Figure 4.9.

108
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

TABLE 4.9: Tasneef accuracy improvement ratio w.r.t. deep learning models
and reduction methods.

D
ataset

R
ef.

M
ethod

A
cronym

m
eaning

A
ccuracy

Tasneef
A

cc.
Im

provem
ent

R
atio

(%
)

A
lA

rabiya

(E
lnagar,A

l-D
ebsi,and

E
inea,2020)

BiGRU
bidirectional

gated recurrent
units

97.41 1.0

CGRU

convolutional
gated

recurrent
units

97.19 1.3

CLSTM

contextual
long

short-term
memory

96.97 1.5

GRU
gated recurrent

units
96.76 1.7

Tasneef_var2 - 98.43 -

Continued on next page

4.4. Results and discussions 109

A
lK

haleej

(E
lnagar,A

l-D
ebsi,and

E
inea,2020)

CGRU

convolutional
gated

recurrent
units

96.86 0.7

HANGRU

hierarchical
attention network
gated recurrent

units

96.66 0.9

CLSTM
contextual long

short-term
memory

96.59 0.9

HANLSTM

hierarchical
attention network
long short-term

memory

96.55 1.0

Tasneef_var2 - 97.49 -

A
khbarona

(E
lnagar,A

l-D
ebsi,and

E
inea,2020)

CGRU
convolutional

gated recurrent
units

94.00 1.5

HANGRU

hierarchical
attention
network

gated recurrent
units

92.95 3.0

CNN
convolutional

neural network
92.72 3.0

CLSTM
contextual long

short-term
memory

92.66 3.0

Tasneef_var2 - 95.43 -

Continued on next page

110
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

K
haleej-2004

(Sabri,E
lB

eggar,and
K

issi,2024)

PCA+SVM

principal
component
analysis +

support vector
machine

93.66 1.5

LDA+SVM

linear
discriminant
analysis +

support vector
machine

74.52 27.5

Chi-square
+

SVM

chi-square
+

support vector
machine

94.20 0.9

MI+SVM

mutual
information +
support vector

machine

93.94 1.2

RARF+SVM

removal of Arabic
redundant
features +

support vector
machine

94.75 0.3

Tasneef_var2 - 95.07 -

Continued on next page

4.4. Results and discussions 111

W
atan-2004

(Sabri,E
lB

eggar,and
K

issi,2024)

PCA+SVM

principal
component
analysis +

support vector
machine

92.15 2.9

LDA+SVM

linear
discriminant
analysis +

support vector
machine

67.90 39.6

Chi-square
+

SVM

chi-square
+

support vector
machine

92.89 2.1

MI+SVM

mutual
information +
support vector

machine

93.94 1.2

RARF+SVM

removal of Arabic
redundant
features +

support vector
machine

94.75 0.3

Tasneef_var2 - 95.07 -

Continued on next page

112
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

K
A

L
IM

A
T

(A
zroum

ahli,E
lyounoussi,and

B
adir,2023)

BERT-based
Model

bidirectional
encoder

representations
from

transformers-
based Model

82.60 14.9

MSA
Model

modern standard
Arabic model

85.40 11.1

Arabic
Dialect
Model

- 77.20 22.9

Tasneef_var2 - 94.90 -

FIGURE 4.7: Tasneef accuracy improvement ratio (in %) w.r.t. deep learning
models on Al Arabiya, Al Khaleej, Akhbarona and KALIMAT datasets.

4.4. Results and discussions 113

FIGURE 4.8: The accuracy of Tasneef compared to deep learning benchmarks.

Figure 4.7 shows the Tasneef AIR (in %) with respect to all deep learning models, on Al Ara-
biya, Al Khaleej, Akhbarona and KALIMAT datasets. Tasneef outperforms deep learning models’
accuracy by a ratio ranging between 0.7% (w.r.t. CGRU) and 22.9.0% (w.r.t. Arabic dialect model).
Figure 4.8 shows the accuracy of Tasneef compared to deep learning benchmarks.

FIGURE 4.9: Tasneef accuracy improvement ratio (in %) w.r.t. dimentionality
reduction methods on Khaleej-2004 and Watan-2004 datasets.

Figure 4.9 shows the Tasneef AIR across Khaleej-2004, Watan-2004 datasets with respect to all
chosen reduction methods. The results on Khaleej-2004 and Watan-2004 are based on (Sabri, El

114
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

Beggar, and Kissi, 2024). Tasneef improves benchmarks’ accuracy with a ratio ranging from 0.30%
(w.r.t. RARF+SVM) to 39.6% (w.r.t. LDA+SVM).

4.4.4.2 Tasneef_var2 F-measure improvement

Table 4.10 shows the F-Measure results of the best variant of Tasneef and the SOTA reduction meth-
ods. The comparisons are based on CNN dataset and the results provided in (Bahassine et al., 2020).
We note that Tasneef improves the F-Measure of SOTA reduction methods by factor ranging from
4.6% (w.r.t.ImpCHI+SVM) to 26.8% (w.r.t. MI+SVM).

TABLE 4.10: Tasneef F-measure w.r.t. other reduction methods.

D
ataset

R
ef.

M
ethod

A
cronym

m
eaning

F-m
easure

Tasneef
F-m

easure
Im

provem
ent

R
atio

(%
)

C
N

N

(B
ahassine

etal.,2020)

Chi-square
+

SVM

chi-square
+

support vector
machine

88.10 7.5

IG+SVM

information gain
+

support vector
machine

88.60 6.9

ImpCHI
+

SVM

improved
chi-square +

support vector
machine

90.50 4.6

MI+SVM

mutual
information +
support vector

machine

74.70 26.8

Tasneef_var2 - 94.69 -

Figure 4.10 shows the improvements of Tasneef in F-Measure (in %) with respect to all bench-
marks. Tasneef enhances benchmarks’ F-measure by ratios ranging from 4.6% (w.r.t. ImpCHI+SVM)
to 26.8% (w.r.t. MI+SVM).

4.4. Results and discussions 115

FIGURE 4.10: Tasneef F-measure improvement ratio (in %) compared to
SOTA reduction methods, on the CNN dataset.

4.4.5 Summary of Tasneef main improvements

We now summarize the main results. Table 4.4.5 shows the main contributions of Tasneef. The
minimum and maximum gains are reported. We also highlight the losses of the method, solely with
respect to TF-IDF.

116
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

Algorithm 1 Tasneef method for Arabic Text Classification
Input: Raw document D
Output: Classification of D into one class
Begin

// Raw data //
1. Load raw data D

// Preprocessing //
2. Clean document D

a. Remove stop-words
b. Remove special symbols, numerals, etc.

3. Apply tokenization on D: call PyArabic tokenizer
4. Apply stemming algorithm on D: call ISRI stemmer from the NLTK library
5. Obtain cleaned document Dc

// Statistical Property //
6. Vectorization and reduction of Dc

a. TF-IDF: Transform Dc into sparse feature vector (VF)
b. Dimension reduction of VF : use DBMFs

i. Local reduction: use kNNL2 and kNNCos
ii. Global reduction: use CentL2 and CentCos

c. Obtain reduced dense feature vector (VFreduced
)

// Embeddings Property //
7. Use pre-trained fastText embedding
8. Generate fastText embeddings and obtain feature vector (VFfastText

)

// Concatenation & Results //
9. Concatenate results obtained in steps 6c and 8

i. Obtain (VFconcatenated
)

ii. Input (VFconcatenated
) into SVM

10. Classify D
End

4.4. Results and discussions 117

Metric Tasneef Losses vs. Improvements

MicroF1 / MacroF1

Minimum loss for Tasneef : Tasneef_var2 lags
TF-IDF by 0.079%, on Akhbarona dataset.

Maximum loss for Tasneef : Tasneef_var2 lags
TF-IDF by 0.189%, on Al Arabiya dataset.

Minimum gain with respect to fastText:
Tasneef_var2 surpasses it by 0.21%, 0.78%,
1.12% on the Al Arabiya, Al Khaleej, and

Akhbarona datasets, respectively.

Maximum gain with respect to fastText:
Tasneef_var2 surpasses it by 0.21%, 1.08%,

1.15% on the same datasets, respectively.

Minimum gain with respect to AraVec:
Tasneef_var2 surpasses it by 0.74%, 1.57%,

2.36% on same datasets, respectively.

Maximum gain with respect to AraVec:
Tasneef_var2 surpasses it by 0.75%, 1.58%,

2.37% on the same datasets, respectively.

Runtime of Testing
Phase

Minimum: Tasneef_var1 improves TF-IDF by
120x, on Al Arabiya dataset.

Maximum: Tasneef_var2 improves TF-IDF by
524x, on Al Khaleej dataset.

Training Runtime

Minimum: Tasneef_var2 improves TF-IDF by
23%, on Akhbarona dataset.

Maximum: Tasneef_var2 improves TF-IDF by
38%, on Al Khaleej dataset.

Training Runtime
to Total Time Ratio

Minimum: Tasneef_var2 consumes 36% of Total
Time for training, on Al Arabiya dataset;

compared with 84% for TF-IDF.

Maximum:Tasneef_var1 consumes 67 of Total
Time for training, on Akhbarona dataset;

compared with 92% for TF-IDF.

Continued on next page

118
Chapter 4. Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text

Classification

Dimension Reduction
(Memory conciseness)

Minimum: Tasneef_var1 improves TF-IDF by
106x, on Al Arabiya dataset.

Maximum: Tasneef_var2 improves TF-IDF by
361x, on Al Khaleej dataset.

Accuracy

Minimum: Tasneef_var2 improves RARF+SVM
method by 0.3%, on Al Khaleej-2004 dataset.

Maximum: Tasneef_var2 improves LDA+SVM
method by 39.6%, on Watan-2004 dataset.

F-measure

Minimum: Tasneef_var2 improves
ImpCHI+SVM method by 4.6%, on CNN dataset.

Maximum: Tasneef_var2 improves MI+SVM
method by 26.8%, on CNN dataset.

4.5 Conclusion
In this chapter, we presented a simple yet effective hybrid approach, Tasneef, designed to overcome
the computational challenges associated with Arabic Text Classification (ATC). By merging DBMFs
with fastText embeddings, this approach significantly enhances both memory efficiency and runtime
performance without compromising classification accuracy. Tasneef’s innovative design incorpo-
rates both local and global information through kNN and centroid-based DBMFs, respectively. This
combination shows a comprehensive representation of text, capturing statistical relationships while
integrating semantic properties via word embeddings. The empirical evaluation across seven promi-
nent Arabic datasets highlights Tasneef’s ability to reduce memory usage by up to 361 times and
runtime by up to 524 times compared to traditional methods. Moreover, Tasneef maintains compara-
ble MicroF1 and MacroF1 values, achieving an accuracy improvement ranging from 0.3% to 39.6%
and an F-Measure enhancement from 4.6% to 26.8% across various datasets. These results highlights
Tasneef’s potential as a robust and efficient solution for ATC, capable of handling large-scale data
with reduced computational costs. Furthermore, Tasneef’s superior performance against ten SOTA
deep learning models and seven dimensionality reduction methods demonstrates its effectiveness and
efficiency in real-world applications.

Conclusion
Text classification, the task of assigning a document to a predefined class, is fundamental in natural
language processing. While machine learning offers effective frameworks for this task, deep learning
achieves high accuracy but often incurs significantly higher computational costs. Although numerous
algorithms exist for English text classification, research on Arabic remains limited due to its linguis-
tic complexity and the substantial computational resources required. The research objectives aimed
to bridge the "digital gap" in ATC by enhancing computational efficiency through dimensionality
reduction methods, striving to improve or at least maintain classification effectiveness.

In this dissertation, we reviewed existing ATC approaches, including preprocessing methods,
vectorization strategies, dimensionality reduction techniques, and both classical machine learning
and deep learning models. This analysis of strengths and limitations served as the foundation for
proposing three primary methods: The first proposed method was PCA, which serves as a feature
extraction technique for reducing the feature space size. To assess the impact of this method on
the classification process, we evaluated it using five popular classifiers: logistic regression, k-nearest
neighbors, decision trees, random forest, and support vector machines. The results demonstrate that
the proposed method significantly improves classification accuracy for most classifiers, while also
reducing execution time. The second proposed approach sought to address two issues associated
with the TF-IDF text representation: high dimensionality and sparsity. These challenges lead to large
storage requirements, high computational costs, and the potential for overfitting. To mitigate these
issues, four distance-based meta-features (CosKNN, L2KNN, CosCent, and L2Cent) were derived
from the TF-IDF representations and used as a dimensionality reduction method for ATC. The impact
of these meta-features on the performance of various classification algorithms, including K-Nearest
Neighbors, Logistic Regression, Support Vector Machines, and Random Forest, was evaluated. The
results demonstrate that the proposed method enhanced classification accuracy in 50% of the cases,
while also achieving a substantial reduction in training time—up to 3244 times faster—across all
classifiers. Additionally, it outperformed PCA in terms of both accuracy and efficiency. The last
proposed method Tasneef, a novel hybrid approach developed to address the computational challenges
in ATC. By combining DBMFs with fastText embeddings, it improves memory efficiency and runtime
performance without sacrificing classification accuracy. Tasneef integrates both local and global
information through kNN and centroid-based DBMFs, capturing statistical relationships and semantic
properties via word embeddings. Empirical evaluations on seven Arabic datasets show that Tasneef

reduces memory usage by up to 361 times and runtime by up to 524 times compared to traditional
methods. Additionally, it maintains comparable MicroF1 and MacroF1 scores, achieving accuracy
improvements of up to 39.6% and F-Measure gains from 4.6% to 26.8%. Tasneef outperforms ten
SOTA deep learning models and seven dimensionality reduction methods, demonstrating its potential
as an efficient and robust solution for ATC in large-scale data processing.

In future work, the following points should be considered:

• Using Incremental PCA, which is well-suited for streaming data, or Randomized PCA, which

offers faster approximations, could enhance both processing efficiency and scalability, espe-
cially for large-scale ATC applications.

• Investigation of the effectiveness of DBMFs on short texts such as social media posts, search
queries, and text messages, which are often challenging in text classification due to their limited
context and lack of rich semantic information compared to longer texts.

• Introduction of two additional steps after DBMFs generation:the first step involves sparsifi-
cation to reduce the density of DBMFs representation, minimizing training costs and noise.
The second step is selective sampling, which removes certain documents from the matrix by
carefully selecting the most relevant ones for the learning phase.

• Exploration of the generalizability and scalability of Tasneef, especially for other languages
and low-resource settings, across datasets with diverse class distributions, to evaluate its adapt-
ability in different contexts.

121

Appendix A

Paired t-tests with Bonferroni correction,
applied in Chapter 4

In this appendix, we present a detailed explanation of the results from the paired t-tests with Bonfer-
roni correction, as reported in Tables 4.5 and 4.6 of Chapter 4. The method is employed to control the
familywise error rate when conducting multiple statistical comparisons, ensuring that the probability
of committing at least one type I error (false positive) remains within the desired significance level.
The implementation of the Bonferroni correction is predicated on the null hypothesis, which posits
no significant difference between the compared groups.

• Null hypothesis H0: For each of the m statistical comparisons (tests), assume there is no
significant difference between performance scores. This implies, in our case, that for each test,
the mean performance score (MicroF1 or MacroF1) of the ‘All’ group is equal to that of the
other group.

• p-values evaluation: The p-value is the probability that the observed differences between pairs
happened by chance.

1. In the trivial case of only one test:
If the p-value is less than the original significance level α (commonly α = 0.05), the null
hypothesis is rejected and we conclude that there is a statistically significant difference between
the ‘All’ group and the other group.

2. In the case of multiple tests:
we use the correction by adjusting either the significance level α or the p-value.

a. Adjust α:
Divide the significance level by the number of tests αadj = α/m. If the p-value is less
than αadj, then we reject the null hypothesis (loss); otherwise, we accept it (tie).

b. Adjust p-value:
Multiply the p-value by m. If the p-value is less than α, we reject the null hypothesis
(loss); otherwise, we accept it (tie). We used this method in all our calculations.

To compare five groups (All, CentKNNCos, Cent, kNNCos, and kNNL2), we performed ten pair-
wise comparisons and adjusted the significance level using the Bonferroni correction. The adjusted
significance level was set to αadj = 0.05/10 = 0.005. Only p-values below this threshold were
considered statistically significant. Table 12 illustrates part of the results of paired t-tests with Bon-
ferroni correction comparing the ‘All’ group with other groups (CentKNNCos, Cent, kNNCos, and
kNNL2) on the Al Arabiya dataset. From Table A.1, we can easily conclude ties and losses, in line
with results of Table V. Similar calculations are done for all datasets. In addition, for Table VI, the
comparison is made in a similar fashion between the top-performing method “TF-IDF” and our two
Tasneef variants, fastText, and AraVec baselines.

TABLE 12: Tie/Loss evaluation between ‘All’ DBMFs group and other
DBMFs groups for AL Arabiya dataset.

Reference
group

Other
DBMFs
groups

p-value Reject null
hypothesis

Decision

All CentKNNCos 0.150703 False Tie ⇔

All Cent 0.028436 False Tie ⇔

All KNNCos 0.001092 True Loss ⇓

All KNNL2 0.000008 True Loss ⇓

123

Bibliography

Ababneh, Ahmad Hussein (2022). “Investigating the relevance of Arabic text classification
datasets based on supervised learning”. In: Journal of Electronic Science and Technol-

ogy 20.2, p. 100160. ISSN: 1674-862X. DOI: https://doi.org/10.1016/
j.jnlest.2022.100160. URL: https://www.sciencedirect.com/
science/article/pii/S1674862X22000131.

Abbas, Mourad and Kamel Smaïli (Sept. 2005). “Comparison of Topic Identification meth-
ods for Arabic Language”. In: International Conference on Recent Advances in Nat-

ural Language Processing - RANLP 2005. 14-17. Borovets, Bulgaria. URL: https:
//inria.hal.science/inria-00000448.

Abbas, Mourad, Kamel Smaili, and Daoud Berkani (Oct. 2011). “Evaluation of Topic Iden-
tification Methods on Arabic Corpora”. In: Journal of Digital Information Management

9, pp. 185–192.
Abd, Dhafar, Ahmed Sadiq, and Ayad Abbas (Jan. 2020). “Classifying Political Arabic Ar-

ticles Using Support Vector Machine with Different Feature Extraction”. In: pp. 79–94.
ISBN: 978-3-030-38751-8. DOI: 10.1007/978-3-030-38752-5_7.

Abdallah, Tarek Amr and Beatriz de La Iglesia (2015). Survey on Feature Selection. arXiv:
1510.02892 [cs.LG]. URL: https://arxiv.org/abs/1510.02892.

Abdullah, Malak, Mirsad Hadzikadic, and Samira Shaikh (Dec. 2018). “SEDAT: Sentiment
and Emotion Detection in Arabic Text Using CNN-LSTM Deep Learning”. In: pp. 835–
840. DOI: 10.1109/ICMLA.2018.00134.

Abozied, Ashraf (May 2019). “An effective dimension reduction algorithm for clustering
Arabic text”. In: Egyptian Informatics Journal 21. DOI: 10.1016/j.eij.2019.
05.002.

Abu-Arqoub, Mohammad, Ghassan F. Issa, and Wael M. Hadi (2019). “The Impact of Fea-
ture Selection Methods for Classifying Arabic Textual Data”. In: International Journal

of Recent Technology and Engineering (IJRTE) 8.4, pp. 1062–1069. ISSN: 2277-3878.
Abuaiadah, Diab, Jihad El-Sana, and Walid Abusalah (Sept. 2014). “On the Impact of

Dataset Characteristics on Arabic Document Classification”. In: International Journal

of Computer Applications 101, pp. 31–38. DOI: 10.5120/17701-8680.

https://doi.org/https://doi.org/10.1016/j.jnlest.2022.100160
https://doi.org/https://doi.org/10.1016/j.jnlest.2022.100160
https://www.sciencedirect.com/science/article/pii/S1674862X22000131
https://www.sciencedirect.com/science/article/pii/S1674862X22000131
https://inria.hal.science/inria-00000448
https://inria.hal.science/inria-00000448
https://doi.org/10.1007/978-3-030-38752-5_7
https://arxiv.org/abs/1510.02892
https://arxiv.org/abs/1510.02892
https://doi.org/10.1109/ICMLA.2018.00134
https://doi.org/10.1016/j.eij.2019.05.002
https://doi.org/10.1016/j.eij.2019.05.002
https://doi.org/10.5120/17701-8680

Al-Anzi, Fawaz S. and Dia AbuZeina (2017). “Toward an enhanced Arabic text classifi-
cation using cosine similarity and Latent Semantic Indexing”. In: J. King Saud Univ.

Comput. Inf. Sci. 29, pp. 189–195. URL: https://api.semanticscholar.org/
CorpusID:62377425.

Al-Azani, Sadam and El-Sayed M. El-Alfy (2017). “Using Word Embedding and Ensem-
ble Learning for Highly Imbalanced Data Sentiment Analysis in Short Arabic Text”.
In: Procedia Computer Science 109. 8th International Conference on Ambient Systems,
Networks and Technologies, ANT-2017 and the 7th International Conference on Sustain-
able Energy Information Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal,
pp. 359–366. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.
2017 . 05 . 365. URL: https : / / www . sciencedirect . com / science /
article/pii/S1877050917310347.

Al khurayji, Raed and Ahmed Sameh (Nov. 2017). “An Effective Arabic Text Classification
Approach Based on Kernel Naive Bayes Classifier”. In: International Journal of Artificial

Intelligence Applications 8, pp. 01–10. DOI: 10.5121/ijaia.2017.8601.
Al Qadi, Leen et al. (Oct. 2019). “Arabic Text Classification of News Articles Using Classi-

cal Supervised Classifiers”. In: pp. 1–6. DOI: 10.1109/ICTCS.2019.8923073.
Al-Taani, A. T. and S. H. Al-Sayadi (2020). “Classification of Arabic Text Using Singu-

lar Value Decomposition and Fuzzy C-Means Algorithms”. In: Applications of Machine

Learning. Ed. by P. Johri, J. K. Verma, and S. Paul. Singapore: Springer Singapore,
pp. 111–123. DOI: 10.1007/978-981-15-3357-0_8.

Al-Tahrawi, Mayy M. and Sumaya N. Al-Khatib (2015). “Arabic text classification using
Polynomial Networks”. In: Journal of King Saud University - Computer and Information

Sciences 27.4, pp. 437–449. ISSN: 1319-1578. DOI: https://doi.org/10.1016/
j.jksuci.2015.02.003. URL: https://www.sciencedirect.com/
science/article/pii/S131915781500066X.

Al-thubaity, Abdulmohsen, Muneera Alhoshan, and Itisam Hazzaa (Jan. 2015). “Using Word
N-Grams as Features in Arabic Text Classification”. In: vol. 569, pp. 35–43. ISBN: 978-
3-319-10389-1. DOI: 10.1007/978-3-319-10389-1_3.

Alalyani, Nada and Souad Larabi Marie-Sainte (2018). “NADA: New Arabic Dataset for
Text Classification”. In: International Journal of Advanced Computer Science and Ap-

plications 9.9. DOI: 10.14569/IJACSA.2018.090928. URL: http://dx.doi.
org/10.14569/IJACSA.2018.090928.

Alghamdi, Nuha and F. Assiri (2019). “A Comparison of fastText Implementations Using
Arabic Text Classification”. In: pp. 306–311. DOI: 10.1007/978-3-030-29513-
4_21.

https://api.semanticscholar.org/CorpusID:62377425
https://api.semanticscholar.org/CorpusID:62377425
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.365
https://doi.org/https://doi.org/10.1016/j.procs.2017.05.365
https://www.sciencedirect.com/science/article/pii/S1877050917310347
https://www.sciencedirect.com/science/article/pii/S1877050917310347
https://doi.org/10.5121/ijaia.2017.8601
https://doi.org/10.1109/ICTCS.2019.8923073
https://doi.org/10.1007/978-981-15-3357-0_8
https://doi.org/https://doi.org/10.1016/j.jksuci.2015.02.003
https://doi.org/https://doi.org/10.1016/j.jksuci.2015.02.003
https://www.sciencedirect.com/science/article/pii/S131915781500066X
https://www.sciencedirect.com/science/article/pii/S131915781500066X
https://doi.org/10.1007/978-3-319-10389-1_3
https://doi.org/10.14569/IJACSA.2018.090928
http://dx.doi.org/10.14569/IJACSA.2018.090928
http://dx.doi.org/10.14569/IJACSA.2018.090928
https://doi.org/10.1007/978-3-030-29513-4_21
https://doi.org/10.1007/978-3-030-29513-4_21

Alhawarat, Mohammad and Ahmad O. Aseeri (2020). “A Superior Arabic Text Categoriza-
tion Deep Model (SATCDM)”. In: IEEE Access 8, pp. 24653–24661. URL: https:
//api.semanticscholar.org/CorpusID:211118148.

Alnemer, Khalid A. et al. (2015). “Are health-related tweets evidence based? Review and
analysis of health-related tweets on Twitter”. In: J. Med. Internet Res. 17.10, e246.

Alsaleh, Deem and Souad Larabi Marie-Sainte (June 2021). “Arabic Text Classification Us-
ing Convolutional Neural Network and Genetic Algorithms”. In: IEEE Access PP, pp. 1–
1. DOI: 10.1109/ACCESS.2021.3091376.

Alshaer, H. N., M. A. Otair, L. Abualigah, et al. (2021). “Feature selection method using
improved CHI Square on Arabic text classifiers: analysis and application”. In: Multime-

dia Tools and Applications 80, pp. 10373–10390. DOI: 10.1007/s11042-020-
10074-6. URL: https://doi.org/10.1007/s11042-020-10074-6.

Alshammari, Riyad (2018). “Arabic Text Categorization using Machine Learning Ap-
proaches”. In: International Journal of Advanced Computer Science and Applications

9.3. DOI: 10.14569/IJACSA.2018.090332. URL: http://dx.doi.org/
10.14569/IJACSA.2018.090332.

Alwehaibi, Ali and Kaushik Roy (2018). “Comparison of Pre-Trained Word Vectors for
Arabic Text Classification Using Deep Learning Approach”. In: 2018 17th IEEE Inter-

national Conference on Machine Learning and Applications (ICMLA), pp. 1471–1474.
URL: https://api.semanticscholar.org/CorpusID:58674228.

Aronoff, Mark and Kirsten Fudeman (2016). Morphology and Morphological Analysis.
2nd ed. Blackwell Publishing. URL: https://books-library.net/files/
books-library.online-12181715Je9T4.pdf.

Atef Mosa, Mohamed (Sept. 2022). “Feature selection based on ACO and knowledge graph
for Arabic text classification”. In: Journal of Experimental Theoretical Artificial Intelli-

gence. DOI: 10.1080/0952813X.2022.2125588.
Ayed, Rabii, M. Labidi, and M. Maraoui (2017). “Arabic text classification: New study”.

In: 2017 International Conference on Engineering MIS (ICEMIS), pp. 1–7. DOI: 10.
1109/ICEMIS.2017.8273037.

Azroumahli, Chaimae, Yacine Elyounoussi, and Hassan Badir (Nov. 2023). “BERT for Ara-
bic NLP Applications: Pretraining and Finetuning MSA and Arabic Dialects”. In: pp. 60–
72. ISBN: 978-3-031-47365-4. DOI: 10.1007/978-3-031-47366-1_5.

Baali, Massa and Nada Ghneim (Oct. 2019). “Emotion analysis of Arabic tweets using deep
learning approach”. In: Journal of Big Data 6. DOI: 10.1186/s40537-019-0252-
x.

https://api.semanticscholar.org/CorpusID:211118148
https://api.semanticscholar.org/CorpusID:211118148
https://doi.org/10.1109/ACCESS.2021.3091376
https://doi.org/10.1007/s11042-020-10074-6
https://doi.org/10.1007/s11042-020-10074-6
https://doi.org/10.1007/s11042-020-10074-6
https://doi.org/10.14569/IJACSA.2018.090332
http://dx.doi.org/10.14569/IJACSA.2018.090332
http://dx.doi.org/10.14569/IJACSA.2018.090332
https://api.semanticscholar.org/CorpusID:58674228
https://books-library.net/files/books-library.online-12181715Je9T4.pdf
https://books-library.net/files/books-library.online-12181715Je9T4.pdf
https://doi.org/10.1080/0952813X.2022.2125588
https://doi.org/10.1109/ICEMIS.2017.8273037
https://doi.org/10.1109/ICEMIS.2017.8273037
https://doi.org/10.1007/978-3-031-47366-1_5
https://doi.org/10.1186/s40537-019-0252-x
https://doi.org/10.1186/s40537-019-0252-x

Bahassine, Said et al. (2020). “Feature selection using an improved Chi-square for Arabic
text classification”. In: Journal of King Saud University - Computer and Information

Sciences 32.2, pp. 225–231. ISSN: 1319-1578. DOI: https://doi.org/10.1016/
j.jksuci.2018.05.010. URL: https://www.sciencedirect.com/
science/article/pii/S131915781730544X.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473. URL:
https://api.semanticscholar.org/CorpusID:11212020.

Bellman, Richard (1957). Dynamic Programming. Princeton University Press.
Biniz, Mohamed et al. (Sept. 2018). “Arabic Text Classification Using Deep Learning Tech-

nics”. In: International Journal of Grid and Distributed Computing 11, pp. 103–114.
DOI: 10.14257/ijgdc.2018.11.9.09.

Boudad, Naaima et al. (July 2017). “Sentiment analysis in Arabic: A review of the literature”.
In: Ain Shams Engineering Journal 9. DOI: 10.1016/j.asej.2017.04.007.

Canuto, Sérgio, Marcos André Gonçalves, and Fabrício Benevenuto (2016). “Exploiting
New Sentiment-Based Meta-level Features for Effective Sentiment Analysis”. In: Pro-

ceedings of the Ninth ACM International Conference on Web Search and Data Mining.
WSDM ’16. San Francisco, California, USA: Association for Computing Machinery,
53–62. ISBN: 9781450337168. DOI: 10.1145/2835776.2835821. URL: https:
//doi.org/10.1145/2835776.2835821.

Canuto, Sérgio et al. (2018). “A Thorough Evaluation of Distance-Based Meta-Features for
Automated Text Classification”. In: IEEE Transactions on Knowledge and Data Engi-

neering 30.12, pp. 2242–2256. DOI: 10.1109/TKDE.2018.2820051.
Carnie, Andrew (2013). Syntax: A Generative Introduction. 3rd. Oxford, UK: Wiley-

Blackwell.
Chantar, H. et al. (2019). “Feature selection using binary grey wolf optimizer with elite-

based crossover for Arabic text classification”. In: Neural Computing and Applications

32, pp. 12201 –12220. DOI: 10.1007/s00521-019-04368-6.
Cheng, Weiwei and Eyke Hüllermeier (Sept. 2009). “Combining Instance-Based Learn-

ing and Logistic Regression for Multilabel Classification”. In: Machine Learning 76,
pp. 211–225. DOI: 10.1007/s10994-009-5127-5.

Chung, Junyoung et al. (2014). “Empirical Evaluation of Gated Recurrent Neural Net-
works on Sequence Modeling”. In: ArXiv abs/1412.3555. URL: https : / / api .
semanticscholar.org/CorpusID:5201925.

Cover, T. and P. Hart (1967). “Nearest neighbor pattern classification”. In: IEEE Transactions

on Information Theory 13.1, pp. 21–27. DOI: 10.1109/TIT.1967.1053964.

https://doi.org/https://doi.org/10.1016/j.jksuci.2018.05.010
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.05.010
https://www.sciencedirect.com/science/article/pii/S131915781730544X
https://www.sciencedirect.com/science/article/pii/S131915781730544X
https://api.semanticscholar.org/CorpusID:11212020
https://doi.org/10.14257/ijgdc.2018.11.9.09
https://doi.org/10.1016/j.asej.2017.04.007
https://doi.org/10.1145/2835776.2835821
https://doi.org/10.1145/2835776.2835821
https://doi.org/10.1145/2835776.2835821
https://doi.org/10.1109/TKDE.2018.2820051
https://doi.org/10.1007/s00521-019-04368-6
https://doi.org/10.1007/s10994-009-5127-5
https://api.semanticscholar.org/CorpusID:5201925
https://api.semanticscholar.org/CorpusID:5201925
https://doi.org/10.1109/TIT.1967.1053964

Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory. 2nd ed. John
Wiley & Sons, Inc. ISBN: 9780471241959. DOI: 10.1002/047174882X.

Cunha, Washington et al. (2020). “Extended pre-processing pipeline for text classification:
On the role of meta-feature representations, sparsification and selective sampling”. In:
Information Processing Management 57.4, p. 102263. ISSN: 0306-4573. DOI: https:
/ / doi . org / 10 . 1016 / j . ipm . 2020 . 102263. URL: https : / / www .
sciencedirect.com/science/article/pii/S030645731931461X.

Darwish, Kareem (June 2013). “Arabizi Detection and Conversion to Arabic”. In: Proceed-

ings of the 2014 Workshop on Language Technologies for the Arab World. DOI: 10.
3115/v1/W14-3629.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: North American Chapter of the Association for Compu-

tational Linguistics. URL: https://api.semanticscholar.org/CorpusID:
52967399.

Duwairi, Rehab (Aug. 2014). “Arabic Sentiment Analysis Using Supervised Classification”.
In: DOI: 10.1109/FiCloud.2014.100.

Einea, Omar, Ashraf Elnagar, and Ridhwan Debsi (June 2019). “SANAD: Single-Label Ara-
bic News Articles Dataset for Automatic Text Categorization”. In: Data in Brief 25,
p. 104076. DOI: 10.1016/j.dib.2019.104076.

El-Alami, Fatima-Zahra and Said Ouatik El Alaoui (2016). “An Efficient Method based on
Deep Learning Approach for Arabic Text Categorization”. In: URL: https://api.
semanticscholar.org/CorpusID:149450447.

El-Alami, Fatima-Zahra, Said Ouatik El Alaoui, and Noureddine En-Nahnahi (2021). “Con-
textual semantic embeddings based on fine-tuned AraBERT model for Arabic text multi-
class categorization”. In: J. King Saud Univ. Comput. Inf. Sci. 34, pp. 8422–8428. DOI:
10.1016/J.JKSUCI.2021.02.005.

El-Haj, Mo and Rim Koulali (Jan. 2013). “El-Haj, M., Koulali, R. "KALIMAT a Multipur-
pose Arabic Corpus" at the Second Workshop on Arabic Corpus Linguistics (WACL-2)
2013”. In.

Elbarougy, Reda, G.M. Behery, and Dr-Akram El Khatib (Jan. 2020). “A Proposed Natu-
ral Language Processing Preprocessing Procedures for Enhancing Arabic Text Summa-
rization”. In: pp. 39–57. ISBN: 978-3-030-34613-3. DOI: 10.1007/978-3-030-
34614-0_3.

https://doi.org/10.1002/047174882X
https://doi.org/https://doi.org/10.1016/j.ipm.2020.102263
https://doi.org/https://doi.org/10.1016/j.ipm.2020.102263
https://www.sciencedirect.com/science/article/pii/S030645731931461X
https://www.sciencedirect.com/science/article/pii/S030645731931461X
https://doi.org/10.3115/v1/W14-3629
https://doi.org/10.3115/v1/W14-3629
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.1109/FiCloud.2014.100
https://doi.org/10.1016/j.dib.2019.104076
https://api.semanticscholar.org/CorpusID:149450447
https://api.semanticscholar.org/CorpusID:149450447
https://doi.org/10.1016/J.JKSUCI.2021.02.005
https://doi.org/10.1007/978-3-030-34614-0_3
https://doi.org/10.1007/978-3-030-34614-0_3

Elhassan, Rasha Mamoun and Mahmoud Ali (2019). “The Impact of Feature Selection
Methods for Classifying Arabic Texts”. In: 2019 2nd International Conference on Com-

puter Applications & Information Security (ICCAIS), pp. 1–6. URL: https://api.
semanticscholar.org/CorpusID:198931835.

Elisseeff, André and Jason Weston (2001). “A kernel method for multi-labelled clas-
sification”. In: Advances in Neural Information Processing Systems. Ed. by T. Di-
etterich, S. Becker, and Z. Ghahramani. Vol. 14. MIT Press. URL: https : / /

proceedings . neurips . cc / paper _ files / paper / 2001 / file /

39dcaf7a053dc372fbc391d4e6b5d693-Paper.pdf.
Elnagar, Ashraf, Ridhwan Al-Debsi, and Omar Einea (2020). “Arabic text classification us-

ing deep learning models”. In: Information Processing Management 57.1, p. 102121.
ISSN: 0306-4573. DOI: https://doi.org/10.1016/j.ipm.2019.102121.
URL: https : / / www . sciencedirect . com / science / article / pii /
S0306457319303413.

Essma, Selab and Ahmed Guessoum (Jan. 2015). “Building TALAA, a Free General and
Categorized Arabic Corpus”. In: vol. 1. DOI: 10.5220/0005352102840291.

Fan, Rong-En et al. (Aug. 2008). “LIBLINEAR: a library for large linear classification”. In:
Journal of Machine Learning Research 9, pp. 1871–1874. DOI: 10.1145/1390681.
1442794.

Farghaly, Ali et al. (Jan. 2009). “Arabic Natural Language Processing: Challenges and Solu-
tions”. In: ACM Transactions on Asian Language Information Processing (TALIP) 8.

Ferguson, Charles A. (1972). “Diglossia”. In: Language and Social Context. Ed. by Pier
Paolo Gigliolo. Originally published in 1959, pp. 232–251.

Ghojogh, Benyamin et al. (2019). Feature Selection and Feature Extraction in Pattern Anal-

ysis: A Literature Review. arXiv: 1905.02845 [cs.LG]. URL: https://arxiv.
org/abs/1905.02845.

Gholitabar, Marzieh and Atiyeh Damavandi Kamali (2015). “The Quran and the Develop-
ment of Arabic Linguistics”. In: URL: https://api.semanticscholar.org/
CorpusID:197616773.

Goldberg, Yoav (2017). Neural Network Methods for Natural Language Processing. Syn-
thesis Lectures on Human Language Technologies. Cham, Switzerland: Springer. DOI:
10.1007/978-3-031-02165-7.

Gopal, Siddharth and Yiming Yang (2010). “Multilabel classification with meta-level fea-
tures”. In: Proceedings of the 33rd International ACM SIGIR Conference on Research

and Development in Information Retrieval. SIGIR ’10. Geneva, Switzerland: Associ-
ation for Computing Machinery, 315–322. ISBN: 9781450301534. DOI: 10.1145/

https://api.semanticscholar.org/CorpusID:198931835
https://api.semanticscholar.org/CorpusID:198931835
https://proceedings.neurips.cc/paper_files/paper/2001/file/39dcaf7a053dc372fbc391d4e6b5d693-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/39dcaf7a053dc372fbc391d4e6b5d693-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/39dcaf7a053dc372fbc391d4e6b5d693-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.ipm.2019.102121
https://www.sciencedirect.com/science/article/pii/S0306457319303413
https://www.sciencedirect.com/science/article/pii/S0306457319303413
https://doi.org/10.5220/0005352102840291
https://doi.org/10.1145/1390681.1442794
https://doi.org/10.1145/1390681.1442794
https://arxiv.org/abs/1905.02845
https://arxiv.org/abs/1905.02845
https://arxiv.org/abs/1905.02845
https://api.semanticscholar.org/CorpusID:197616773
https://api.semanticscholar.org/CorpusID:197616773
https://doi.org/10.1007/978-3-031-02165-7
https://doi.org/10.1145/1835449.1835503
https://doi.org/10.1145/1835449.1835503

1835449 . 1835503. URL: https : / / doi . org / 10 . 1145 / 1835449 .
1835503.

Habash, Nizar Y. (2010). Introduction to Arabic Natural Language Processing. 1st ed.
Springer Cham. DOI: 10.1007/978-3-031-02139-8.

Hadni, Meryeme and Hassane Hjiaj (2023). “An Improved Chaotic Sine Cosine Firefly Al-
gorithm for Arabic Feature Selection”. In: Proceedings of the 6th International Confer-

ence on Big Data and Internet of Things. Ed. by Mohamed Lazaar et al. Cham: Springer
International Publishing, pp. 84–94.

Harrag, Fouzi and Eyas Al-Qawasmah (Aug. 2010). “Improving Arabic Text Categorization
Using Neural Network with SVD.” In: JDIM 8, pp. 233–239.

Haynes, Winston (2013). “Bonferroni Correction”. In: Encyclopedia of Systems Biology. Ed.
by Werner Dubitzky et al. New York, NY: Springer New York, pp. 154–154. ISBN: 978-
1-4419-9863-7. DOI: 10.1007/978-1-4419-9863-7_1213. URL: https:
//doi.org/10.1007/978-1-4419-9863-7_1213.

Hochreiter, Sepp and Jürgen Schmidhuber (Dec. 1997). “Long Short-term Memory”. In:
Neural computation 9, pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.

Jolliffe, I. T. (2011). Principal Component Analysis. 2nd. Springer.
Jolliffe, Ian (Jan. 2002). “Principal Component Analysis Springer Verlag”. In.
Jurafsky, Daniel and James H. Martin (2023). Speech and Language Processing: An Intro-

duction to Natural Language Processing, Computational Linguistics, and Speech Recog-

nition. 3rd. Comments and typos welcome! Draft of January 7, 2023.
Kathrein, Abu Kwaik et al. (Nov. 2018). “A Lexical Distance Study of Arabic Dialects”. In:

Procedia Computer Science 142, pp. 2–13. DOI: 10.1016/j.procs.2018.10.
456.

Kowsari, Kamran et al. (Apr. 2019). “Text Classification Algorithms: A Survey”. In: Infor-

mation (Switzerland) 10. DOI: 10.3390/info10040150.
Kyriakopoulou, Tonia and Theodore Kalamboukis (July 2007). “Using clustering to enhance

text classification”. In: pp. 805–806. DOI: 10.1145/1277741.1277918.
LeCun, Yann et al. (1989). “Handwritten Digit Recognition with a Back-Propagation

Network”. In: Neural Information Processing Systems. URL: https : / / api .

semanticscholar.org/CorpusID:2542741.
Louail, Maroua and Chafia Kara-Mohamed (2023). “Distance-Based Meta-Features for Ara-

bic Text Classification”. In: 2023 Intelligent Methods, Systems, and Applications (IMSA),
pp. 257–262. URL: https : / / api . semanticscholar . org / CorpusID :
261127120.

https://doi.org/10.1145/1835449.1835503
https://doi.org/10.1145/1835449.1835503
https://doi.org/10.1145/1835449.1835503
https://doi.org/10.1145/1835449.1835503
https://doi.org/10.1007/978-3-031-02139-8
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1007/978-1-4419-9863-7_1213
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.procs.2018.10.456
https://doi.org/10.1016/j.procs.2018.10.456
https://doi.org/10.3390/info10040150
https://doi.org/10.1145/1277741.1277918
https://api.semanticscholar.org/CorpusID:2542741
https://api.semanticscholar.org/CorpusID:2542741
https://api.semanticscholar.org/CorpusID:261127120
https://api.semanticscholar.org/CorpusID:261127120

Louail, Maroua, Chafia Kara-Mohamed, and Aboubekeur Hamdi-Cherif (2024). “Tasneef:
A Fast and Effective Hybrid Representation Approach for Arabic Text Classification”.
In: IEEE Access 12, pp. 120804–120826. DOI: 10.1109/ACCESS.2024.3450507.

Louail, Maroua, Chafia Kara-Mohamed Hamdi-Cherif, and Aboubekeur Hamdi-Cherif
(2021). “Arabic text classification using principal component analysis with different su-
pervised classifiers”. In: 2021 International Conference on Electrical, Computer and

Energy Technologies (ICECET), pp. 1–6. DOI: 10.1109/ICECET52533.2021.
9698799.

Lulu, Leena and Ashraf Elnagar (2018). “Automatic Arabic Dialect Classification Using
Deep Learning Models”. In: Procedia Computer Science 142. Arabic Computational
Linguistics, pp. 262–269. ISSN: 1877-0509. DOI: https://doi.org/10.1016/
j.procs.2018.10.489. URL: https://www.sciencedirect.com/
science/article/pii/S1877050918321938.

Mahmoud, Adnen and Mounir Zrigui (2019). “Deep Neural Network Models for Para-
phrased Text Classification in the Arabic Language”. In: International Conference

on Applications of Natural Language to Data Bases. URL: https : / / api .

semanticscholar.org/CorpusID:195353278.
Mikolov, Tomas et al. (2013). “Efficient Estimation of Word Representations in Vector

Space”. In: International Conference on Learning Representations. URL: https://
api.semanticscholar.org/CorpusID:5959482.

Mikolov, Tomas et al. (Dec. 2017). “Advances in Pre-Training Distributed Word Represen-
tations”. In.

Mohammed, Ammar and Rania Kora (Sept. 2019). “Deep learning approaches for Ara-
bic sentiment analysis”. In: Social Network Analysis and Mining 9. DOI: 10.1007/
s13278-019-0596-4.

Obeid, Ossama et al. (2020). “CAMeL Tools: An Open Source Python Toolkit for Ara-
bic Natural Language Processing”. In: International Conference on Language Resources

and Evaluation. URL: https://api.semanticscholar.org/CorpusID:
218973981.

Oguike, Osondu (2021). A First Course in Artificial Intelligence. Western Binding. Bentham
Science Publishers, p. 340. ISBN: 9781681088549, 1681088541.

Pang, Guansong, Huidong Jin, and Shengyi Jiang (2015). “CenKNN: A scalable and effec-
tive text classifier”. English. In: Data Mining and Knowledge Discovery 29.3, pp. 593
–625. ISSN: 1384-5810. DOI: 10.1007/s10618-014-0358-x.

https://doi.org/10.1109/ACCESS.2024.3450507
https://doi.org/10.1109/ICECET52533.2021.9698799
https://doi.org/10.1109/ICECET52533.2021.9698799
https://doi.org/https://doi.org/10.1016/j.procs.2018.10.489
https://doi.org/https://doi.org/10.1016/j.procs.2018.10.489
https://www.sciencedirect.com/science/article/pii/S1877050918321938
https://www.sciencedirect.com/science/article/pii/S1877050918321938
https://api.semanticscholar.org/CorpusID:195353278
https://api.semanticscholar.org/CorpusID:195353278
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://doi.org/10.1007/s13278-019-0596-4
https://doi.org/10.1007/s13278-019-0596-4
https://api.semanticscholar.org/CorpusID:218973981
https://api.semanticscholar.org/CorpusID:218973981
https://doi.org/10.1007/s10618-014-0358-x

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe: Global
Vectors for Word Representation”. In: Conference on Empirical Methods in Natural Lan-

guage Processing. URL: https://api.semanticscholar.org/CorpusID:
1957433.

Qadi, Leen Al et al. (2019). “Arabic Text Classification of News Articles Using Classical
Supervised Classifiers”. In: 2019 2nd International Conference on new Trends in Com-

puting Sciences (ICTCS), pp. 1–6. DOI: 10.1109/ICTCS.2019.8923073.
Quinlan, J. R. (1986). “Induction of Decision Trees”. In: Machine Learning 1, pp. 81–106.

DOI: 10.1007/BF00116251.
Radford, Alec and Karthik Narasimhan (2018). Improving Language Understand-

ing by Generative Pre-Training. Tech. rep. OpenAI. URL: https : / / api .

semanticscholar.org/CorpusID:49313245.
Raj, Hans et al. (2018). “LSTM Based Short Message Service (SMS) Modeling for Spam

Classification”. In: Proceedings of the 2018 International Conference on Machine Learn-

ing Technologies. ICMLT ’18. Jinan, China: Association for Computing Machinery.
ISBN: 9781450364324. DOI: 10.1145/3231884.3231895. URL: https://doi-
org.sndl1.arn.dz/10.1145/3231884.3231895.

Redkin, Oleg and Olga Bernikova (2016). “Globalization and the Arabic language acquisi-
tion”. In: Proceedings of The 20th World Multi-Conference on Systemics, Cybernetics

and Informatics (WMSCI), pp. 196–199.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning rep-

resentations by back-propagating errors”. In: Nature 323, pp. 533–536. URL: https:
//api.semanticscholar.org/CorpusID:205001834.

Ryding, Karin C. (2014). “Arabic inflectional morphology”. In: Arabic: A Linguistic Intro-

duction. Cambridge University Press, 89–106.
Saad, Motaz and Wesam Ashour (Nov. 2010). “OSAC: Open Source Arabic Corpora”. In:

DOI: 10.13140/2.1.4664.9288.
Sabri, Tarik, Omar El Beggar, and Mohamed Kissi (Feb. 2024). “An improved Arabic text

classification method using word embedding”. In: International Journal of Electrical and

Computer Engineering (IJECE) 14, pp. 721–731. DOI: 10.11591/ijece.v14i1.
pp721-731.

Sagheer, Dania and Fadel Sukkar (July 2018). “Arabic Sentences Classification via Deep
Learning”. In: International Journal of Computer Applications 182, pp. 40–46. DOI: 10.
5120/ijca2018917555.

https://api.semanticscholar.org/CorpusID:1957433
https://api.semanticscholar.org/CorpusID:1957433
https://doi.org/10.1109/ICTCS.2019.8923073
https://doi.org/10.1007/BF00116251
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://doi.org/10.1145/3231884.3231895
https://doi-org.sndl1.arn.dz/10.1145/3231884.3231895
https://doi-org.sndl1.arn.dz/10.1145/3231884.3231895
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
https://doi.org/10.13140/2.1.4664.9288
https://doi.org/10.11591/ijece.v14i1.pp721-731
https://doi.org/10.11591/ijece.v14i1.pp721-731
https://doi.org/10.5120/ijca2018917555
https://doi.org/10.5120/ijca2018917555

Schuster, Mike and Kuldip K. Paliwal (1997). “Bidirectional recurrent neural networks”.
In: IEEE Trans. Signal Process. 45, pp. 2673–2681. URL: https : / / api .

semanticscholar.org/CorpusID:18375389.
Siino, Marco, Ilenia Tinnirello, and Marco La Cascia (2024). “Is text preprocessing still

worth the time? A comparative survey on the influence of popular preprocessing meth-
ods on Transformers and traditional classifiers”. In: Information Systems 121, p. 102342.
ISSN: 0306-4379. DOI: https://doi.org/10.1016/j.is.2023.102342.
URL: https : / / www . sciencedirect . com / science / article / pii /
S0306437923001783.

Silla, Carlos Nascimento and Alex Alves Freitas (2010). “A survey of hierarchical classifi-
cation across different application domains”. In: Data Mining and Knowledge Discovery

22, pp. 31–72. URL: https://api.semanticscholar.org/CorpusID:
207113055.

Skillicorn, David (Jan. 2012). Understanding High-Dimensional Spaces. ISBN: 978-3-642-
33397-2. DOI: 10.1007/978-3-642-33398-9.

Sokolova, Marina and Guy Lapalme (July 2009). “A systematic analysis of performance
measures for classification tasks”. In: Information Processing & Management 45.4,
pp. 427–437. DOI: 10.1016/j.ipm.2009.03.002.

Soliman, Abu Bakr, Kareem Eissa, and Samhaa R. El-Beltagy (2017). “AraVec: A set of
Arabic Word Embedding Models for use in Arabic NLP”. In: Procedia Computer Science

117. Arabic Computational Linguistics, pp. 256–265. ISSN: 1877-0509. DOI: https:
//doi.org/10.1016/j.procs.2017.10.117. URL: https://www.
sciencedirect.com/science/article/pii/S1877050917321749.

Spärck Jones, Karen (Dec. 1972). “Jones, K.S.: A Statistical Interpretation of Term Speci-
ficity and its Application in Retrieval. Journal of Documentation 28(1), 11-21”. In: Jour-

nal of Documentation 28, pp. 11–21. DOI: 10.1108/eb026526.
Sugiyama, M. (2007). “Dimensionality Reduction of Multimodal Labeled Data by Local

Fisher Discriminant Analysis”. In: Journal of Machine Learning Research 8, pp. 1027–
1061.

Sundus, Katrina, Fatima Al-Haj, and Bassam Hammo (2019). “A Deep Learning Approach
for Arabic Text Classification”. In: 2019 2nd International Conference on new Trends in

Computing Sciences (ICTCS), pp. 1–7. DOI: 10.1109/ICTCS.2019.8923083.
Tsai, C. F. et al. (2011). “Distance-based features in pattern classification”. In: EURASIP

Journal on Advances in Signal Processing 2011.62, pp. 1–12.
Vapnik, Vladimir, Steven E. Golowich, and Alex Smola (1996). “Support vector method for

function approximation, regression estimation and signal processing”. In: Proceedings of

https://api.semanticscholar.org/CorpusID:18375389
https://api.semanticscholar.org/CorpusID:18375389
https://doi.org/https://doi.org/10.1016/j.is.2023.102342
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://www.sciencedirect.com/science/article/pii/S0306437923001783
https://api.semanticscholar.org/CorpusID:207113055
https://api.semanticscholar.org/CorpusID:207113055
https://doi.org/10.1007/978-3-642-33398-9
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/https://doi.org/10.1016/j.procs.2017.10.117
https://doi.org/https://doi.org/10.1016/j.procs.2017.10.117
https://www.sciencedirect.com/science/article/pii/S1877050917321749
https://www.sciencedirect.com/science/article/pii/S1877050917321749
https://doi.org/10.1108/eb026526
https://doi.org/10.1109/ICTCS.2019.8923083

the 9th International Conference on Neural Information Processing Systems. NIPS’96.
Denver, Colorado: MIT Press, 281–287.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Neural Information Pro-

cessing Systems. URL: https://api.semanticscholar.org/CorpusID:
13756489.

Versteegh, Kees (2014). The Arabic Language. 2nd ed. Edinburgh University Press.
Wahbeh, Abdullah and Mohammed Al-Kabi (Jan. 2012). “Comparative Assessment of the

Performance of Three WEKA Text Classifiers Applied to Arabic Text”. In: ABHATH

AL-YARMOUK: Basic Science Engineering 21, pp. 15–28.
Wahdan, Ahlam, Mostafa Al-Emran, and Khaled Shaalan (May 2023). “A systematic review

of Arabic text classification: areas, applications, and future directions”. In: Soft Comput-

ing 28, pp. 1–22. DOI: 10.1007/s00500-023-08384-6.
Yang, Yiming and Jan O. Pedersen (1997). “A Comparative Study on Feature Selection in

Text Categorization”. In: International Conference on Machine Learning. URL: https:
//api.semanticscholar.org/CorpusID:5083193.

Zahedi, M and A Ghanbari Sorkhi (2013). “Improving text classification performance using
PCA and recall-precision criteria”. In: Arabian Journal for Science and Engineering 38,
pp. 2095–2102.

Zerrouki, Taha (2010). Arabic Stop Words. URL: https : / / github . com /

linuxscout/arabicstopwords.
— (2023). “PyArabic: A Python package for Arabic text”. In: Journal of Open Source Soft-

ware 8.84, p. 4886. DOI: 10.21105/joss.04886.
Zhang, Min-Ling and Zhi-Hua Zhou (July 2007). “ML-KNN: A lazy learning approach to

multi-label learning”. In: Pattern Recogn. 40.7, 2038–2048. ISSN: 0031-3203. DOI: 10.
1016/j.patcog.2006.12.019. URL: https://doi.org/10.1016/j.
patcog.2006.12.019.

https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://doi.org/10.1007/s00500-023-08384-6
https://api.semanticscholar.org/CorpusID:5083193
https://api.semanticscholar.org/CorpusID:5083193
https://github.com/linuxscout/arabicstopwords
https://github.com/linuxscout/arabicstopwords
https://doi.org/10.21105/joss.04886
https://doi.org/10.1016/j.patcog.2006.12.019
https://doi.org/10.1016/j.patcog.2006.12.019
https://doi.org/10.1016/j.patcog.2006.12.019
https://doi.org/10.1016/j.patcog.2006.12.019

	Abstract
	Declaration of Authorship
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Related Works
	Introduction
	Text Classification : Key Concepts and General Pipeline
	Text Classification Levels
	Types of Text Classification
	Arabic Text Classification General Pipeline

	Arabic Language Properties and TC Challenges
	Importance of the Arabic Language
	Arabic Varieties
	Arabic Script
	Arabic Morphology
	Arabic Syntax

	Text Vectorization Techniques
	One-Hot Encoding
	Bag-of-Words (BoW)
	Term Frequency-Inverse Document Frequency (TF-IDF)
	Word Embedding
	Static Word Embeddings
	Contextual Word Embeddings:

	Dimensionality Reduction Techniques
	Feature Extraction
	Principal Component Analysis (PCA)
	Linear Discriminant Analysis (LDA)

	Feature Selection
	Chi-Square (2) Test
	Mutual Information (MI)
	Information Gain (IG)

	Classical Machine Learning-Based Approach
	Logistic Regression (LR)
	k-Nearest Neighbors (kNN)
	Decision Trees (DT)
	Support Vector Machine (SVM)

	Deep Learning-Based Approach
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Attention Mechanism
	Transformers

	Related Works
	Datasets
	Text Preprocessing
	Text Vectorization
	Text Dimensionality Reduction
	Classical Machine Learning and Deep Learning Models
	Evaluation

	Conclusion

	Arabic Text Classification Using Principal Component Analysis With Different Supervised Classifiers
	Introduction
	Materials and methods
	Proposed system architecture
	Datasets
	Document text preprocessing
	Document text representation
	Dimentionality reduction using PCA
	Classifiers used and hyperparameter tuning
	Implementation

	Results and Discussions
	Conclusion

	Distance-Based Meta-Features for Arabic Text Classification
	Introduction
	Related works
	Proposed Methodology
	Preprocessing
	Meta-features generation

	Experimental Setup
	Dataset
	Hyperparameter tuning

	Results and discussions
	Dimensionality reduction using Meta-Features
	Classifiers' accuracy
	Training time
	Time gain
	Comparing DBMFs with PCA
	Statistical evaluation

	Conclusion

	Tasneef: A Fast and Effective Hybrid Representation Approach for Arabic Text Classification
	Introduction
	Methodology
	Overall architecture
	Tasneef Text preprocessing
	 Statistical property and DBMFs construction in Tasneef
	DBMFs distance calculation
	Local DBMFs obtainment
	Global DBMFs obtainment
	Resulting DBMFs

	Embedding property in Tasneef and concatenation procedure
	Pre-trained word embeddings usage
	Concatenation of DBMFs and fasText embeddings

	Experimental setup
	Overall architecture
	Evaluation tools
	Metrics used
	Datasets used
	Benchmarks
	Hardware used

	Overall experimental steps

	Results and discussions
	Initial experiment
	SVM classifier usage
	Hyperparameters tuning
	Results of preprocessing

	Selection of the best DBMFs groups
	DBMFs baslines choice
	DBMFs ranking results

	First series of experiments: baselines performance
	MicroF1 and MacroF1 results
	Dimentionality reduction in Tasneef
	Runtime analyses

	Second series of experiments: comparison with SOTA methods
	Tasneef_var2 accuracy improvement ratio (AIR)
	Tasneef_var2 F-measure improvement

	Summary of Tasneef main improvements

	Conclusion

	Conclusion
	Appendix A: Paired t-tests with Bonferroni correction, applied in Chapter 4
	Bibliography

