
People's Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Programming Tools PT 2

(MATLAB)

Tutorial for Second-Year Math Students

Assma Leulmi

University of Ferhat Abbas Setif-1

Faculty of sciences

 DEPARTEMENT OF MATHEMATICS

2024/2025

Table of Contents

Introduction …….. 1

Chapter I: Introduction to the Matlab environment …………………………………………………………………………….….. 3

1. Introduction and Opening a Matlab Session: ... 3

1. General: ... 3

2. MATLAB environnement: .. 4

A. Editor/Debugger: ... 6

B. M-Files: ... 6

D. Help: ... 8

2.1 First interaction with MATLAB: ... 9

2.2 The numbers in MATLAB: .. 11

2.3 The main constants, functions and commands: ... 14

2.4 The priority of operations in an expression: .. 15

 ... 17

Exercice 01: .. 17

Exercice 02: .. 17

Exercice 03: .. 18

Exercice 04: .. 18

Solution TP 1 ……….… 21

Chapter II: Vectors and Matrices ... 21

1. The vectors: ... 21

1.1 Referencing and access to vector elements: .. 23

1.2 Element-by-element operations for vectors: ... 24

1.3 The linspace function: ... 25

2. The matrices: ... 26

2.1 Referencing and access to matrix elements: .. 28

2.2 Automatic generation of matrices: ... 30

Example 1: .. 32

Example 2: .. 32

2.3 Basic operations on the matrices: .. 32

2.4 Useful functions for matrix processing: .. 33

 ... 36

Exercice 01: .. 36

Exercice 02: .. 36

Exercice 03: .. 36

Exercice 04: .. 37

Exercice 05: .. 37

Exercice 06: .. 37

Exercice 07: .. 38

Solution TP 2 ………..…………….… 39

Chapter III: Introduction to programming with Matlab .. 45

1. General: .. 45

1.1 Comments:... 45

1.2 Writing long expressions:... 45

1.3 Reading data in a program (Inputs): .. 46

1.4 Writing data in a program (Outputs): ... 46

2. Logical expressions: ... 47

2.1 Logical operations: ... 47

2.2 Matrix comparison: ... 50

3. Flow control structures: .. 51

3.1 The if statement: .. 52

3.2 The switch statement: ... 54

3.3 The for statement:... 55

3.4 The while statement: ... 56

Example of a for loop in MATLAB: ... 57

Replacing the for loop with a while loop in MATLAB: .. 57

4. Summary the control structures: .. 58

5. Summary exercise: .. 59

6. The functions: .. 60

6.1 Creating a function in an M-Files: ... 60

6.2 Comparison between a program is a function: .. 61

 6.3 Exercices with Solution:.. 64

7. Polynomials: ... 78

7.1 Polynomials in MATLAB: .. 78

7.2 Polynomial zeros: ... 78

7.3 Polynomial operations: .. 78

Chapter V: Graphs and data visualization in Matlab... 80

1. The plot function: .. 81

2. Change the appearance of a curve: .. 83

3. Annotation of a figure: .. 84

4. Draw multiple curves in the same figure: .. 84

4.1 The hold command:... 84

4.2 Use plot with multiple arguments: ... 85

4.3 Using matrices as argument for the plot function: .. 86

4.4 Using the fplot function: ... 86

5. Manipulating the axes of a figure: .. 87

6. Other types of graphs: .. 89

7. Transfer figures to a Word document: .. 92

8. Figure Editor: .. 93

 Exercice: ... 94

9. Symbolic Calculation:………………………….………………………………………………………………………..….….95

9.1 Calling the symbolic toolbox: .. 95

9.2 Expanding and transforming expressions: ... 95

9.3 Derivatives and integrals of a function: ... 95

9.4 Taylor series expansion of a function: .. 95

 ... 96

Exercice 01: .. 96

Exercice 02: .. 94

Exercice 03: .. 96

Exercice 04: .. 95

Exercice 05: .. 97

Exercice 06: .. 97

Exercice 07: .. 98

Solution TP 3 ………..……….…….… 99

Command Catalogue ……… 108

Content of the subject ……………………………………………………………………………………..………..………………….. 114

Bibliography ,,.,,,,,,,,,,,,,,,.,,,,,,..,,,,,,,, 117

1

Introduction

Mathematicians, faced with increasingly complex and large-scale problems,
encounter significant challenges when trying to solve equations or model complex
systems. These problems can be too vast or abstract to solve by hand. That's why
programming tools are essential. They allow for automating calculations, handling
large datasets, and simulating complex phenomena, greatly facilitating mathematical
research and discoveries. These tools enable mathematicians to focus on theoretical
analysis while relying on computational power to solve larger and more difficult
problems.

Programming tools play a crucial role in the evolution of mathematics. In fact,
computational methods and software have significantly transformed the way
mathematicians, scientists, and engineers approach mathematical problems.
Mathematics often deals with complex problems that may be impractical or
impossible to solve by hand. Programming allows for the handling of large data
sets, performing symbolic computations, and simulating complex systems that
would be unmanageable manually. For example:

 Numerical Analysis: Solving equations and optimizing functions in cases
where analytical solutions don't exist.

 Simulation and Modeling: Tools like MATLAB, Scilab and Python (with
NumPy and SciPy), and R are used to simulate real-world phenomena in
physics, biology, economics, etc.

Programming tools (MATLAB, Scilab and Python) are very important for
mathematics students. They help by:

1. Simplifying complex calculations: They solve equations and handle
complex math problems easily.

2. Visualization: They allow students to plot graphs and visualize
mathematical concepts.

3. Practical learning: Students can experiment with numerical methods and
apply them to real-world problems.

In short, MATLAB and Scilab are essential for math students, as they simplify
calculations, siulations, and modeling.

This booklet serves as a support for the Programming Tools (Matlab)
course in the second year of the Bachelor's degree in Mathematics and
Technology (ST), Bachelor's degree in Material Sciences (SM) (Physics and
Chemistry), and engineering training programs (ST, ME, etc.). The objective
of this course is to familiarize students with a set of tools (algorithms) aimed
at efficiently solving various problems.

The chapters are illustrated with application examples, and a series of
exercises is provided at the end of each chapter.

It covers: Introduction to the Matlab environment, Vectors and matrices,

2

Introduction to programming with Matlab, and Graphs and data visualization
in Matlab.

Given the time allocated to this unit (1 lecture + 1 practical session) per
week, the short duration of the third semester (S3), and the fact that the
students are not specialists in computer science, we have chosen not to go
into too much detail. Interested readers may refer to the literature for further
details.

We have focused our efforts on Matlab in order to enable students to

implement it with their instructors on their computers during the practical
sessions (TP).
In preparing this handout, we have wisely used a set of references, presented at
the end of the document, to deepen the topics discussed.
Finally, please let me know if you spot any errors, whether in the content or in
the format of this handout.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

3

MATLAB
Chapter I: Introduction to the Matlab environment

1. Introduction and Opening a Matlab Session:
Matlab is software designed for optimizing scientific calculations. Initially developed for

matrix computation, hence the abbreviation MATrix LABoratory, Matlab enables problem-

solving through algorithms, graphs, simulations, and more.

The following tutorial is a brief introduction to the world of Matlab. It will cover the essential

concepts needed to navigate Matlab.

Note: The examples in this tutorial were created in m-files. This explains why the instructions

are grouped and separated from the results displayed.

1. General:
 MATLAB (MATrix LABoratory) is an interactive programming environment for scientific

computing, programming and data visualization.

It is widely used in the fields of engineering and scientific research, as well as in higher education

institutions. Its popularity is mainly due to its strong and simple interaction with the user but also to the

following points:

 Its functional richness: with MATLAB, it is possible to perform complex mathematical

manipulations by writing few instructions. It can evaluate expressions, draw graphs and run

classic programs. Above all, it allows the direct use of several thousand predefined functions.

 The ability to use toolboxes (toolboxes): which encourages its use in several disciplines

(simulation, signal processing, imaging, artificial intelligence ...etc.).

 The simplicity of its programming language: a program written in MATLAB is easier to write and

read compared to the same program written in C or PASCAL.

 Built-in Functions: It includes thousands of predefined functions for a variety of mathematical

tasks, such as trigonometric functions (like sin and exp), linear algebra, statistics, numerical

analysis and optimization.

 Its way of managing everything as matrices, which frees the user to deal with data typing and

thus avoid the problems of transtyping.

Originally MATLAB was designed to make mainly calculations on vectors and matrices hence its name

‘Matrix Laboratory’, but subsequently it was improved and increased to be able to deal with many more

areas.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

4

MATLAB is not the only scientific computing environment available because there are other competitors,

the most important of which are Maple and Mathematica. There are even free software that are clones

of Matlab like Scilab and Octave.

EXERCISE: Start MATLAB.

2. MATLAB environnement:

Currently MATLAB is at version 7.x and at startup it displays several windows. Depending on the version

you can find the following windows:

 Current Folder: indicates the current directory and existing files.

 Workspace: indicates all existing variables with their types and values.

 Command History: keeps track of all commands entered by the user.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

5

 Command Window: we use to formulate our expressions and interact with MATLAB, and this is

the window we use throughout this chapter.

The MATLAB interface corresponds to this one.

Figure 1 : MATLAB environnement (version 2011b where 7.13)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

6

A. Editor/Debugger:
To work with M-files, you need to use MATLAB's editor/debugger. This window is not part

of the basic MATLAB interface and opens when an M-file is opened or when a new M-file is
created.

On the toolbar, one button is essential: the RUN button compiles the program, i.e., it executes the

commands in the program. It can also be executed with F5.

Another useful feature of the Editor is that if you hover over a variable, its value appears (if the program

has been compiled at least once).

Demonstrations:

 For step-by-step demonstrations on the MATLAB environment, open MATLAB, then type demo in

the command window. Select MATLAB - Desktop Tools and Development Environment. You will

find about half a dozen demonstrations.

B. M-Files:

To avoid retyping a series of commands, you can create a MATLAB program, known as an
"M-file," with the name derived from the ".m" extension of these files. Using the MATLAB
editor, you create a text file that contains a series of MATLAB commands. To create an M-file,
go to the menu File → New → M-File or click on the blank page icon. The file is typically saved
in the current directory. Once the file is saved (e.g., under the name filename.m), you can call
it in MATLAB using the command:
>> filename

The commands stored in the M-file will then be executed, and the results will appear in the
Command Window. If you need to modify your series of commands, simply edit the
corresponding line in the M-file and re-run the M-file by typing the file name in MATLAB
again (try the ↑ key).

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

7

Other ways to execute the M-file include clicking on the Run button, going to the Debug →
Run menu in the Editor/Debugger, or pressing F5.

M-files prevent you from having to repeatedly type the same commands and allow you to
save your instructions, commands, and calculations. This is the recommended procedure for
your practical assignments.

EXERCICE:

Creating an M-File – Procedure:

 Create a file using the button or the menu.

 Write some instructions. For example, write the following instructions:

A=8

B=7

C=A+B

– Save the M-file in the current directory. If you don't, MATLAB will prompt you to save it before

compiling.

– Return to MATLAB: the results should appear in the command window. These results should be:

>> A =

7

B =

9

C =
16

C. The ";" and "..."

The semicolon at the end of a line tells MATLAB not to display the result of the operation on
the screen. A common practice is to place semicolons at the end of all lines and remove some
of them when something isn't working as expected in our program, in order to see what's

going on.
In the editor/debugger as well as in the command window, the use of "..." is useful to continue
the current instruction onto the next line.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

8

D. Help:

1. Help:

In addition to the basic features of MATLAB, a vast library of functions (called
'toolboxes' in MATLAB language) is available to you. To get a list of available function
families, enter the command help. To see the list of functions within a specific family,
you can enter help matfun, for example, to view the list of matrix functions. To get
information on a specific function, simply use the help command followed by the
function name, such as help sin to get information on the sine function. If the function
has not been compiled to improve execution speed, you can view the source code by
entering type arrow, for example.

2. Finding a Function:

The lookfor command allows you to search through the documentation directories for
all functions containing the searched word. For example, to see the list of functions
related to randomness, you can enter lookfor random and it will return 13 functions that
use randomness.

The two instructions are identical except for the semicolon at the end of the second one
2e.

>> B = pi *

3^2 B =

28.274

>> B = pi * 3^2;

>>

The following two instructions give the same result.

>> A = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

+ 9 A =

45

>> A = 1 + 2 + 3 + 4 + 5 ...

+ 6 + 7 + 8 + 9

A =

4

5

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

9

2.1 First interaction with MATLAB:

The easiest way to use MATLAB is to write directly to the command window (Command

Window) right after the cursor (prompt) >>

MATLAB can be seen as an extremely powerful calculator. Simple operations can be entered directly,

and the result is obtained by pressing the "Enter" key.

To calculate a mathematical expression just write it like this:

>> 7+6 Then click on the Enter key to see the result
ans =

 13

If we want an expression to be calculated but without displaying the result, we add a

semicolon ‘;’ at the end of the expression as follows:

>> 7+6 ;

>>

To create a variable we use the simple structure: 'variable = definition' without worrying about

the type of the variable.

For example:
>> a=10 ;

>>u=cos(a) ;

>>v=sin(a) ;

>>u^2+v^2

ans =

 1

>> ans+11

ans =

 12

>>

It is possible to write several expressions in the same line by making them separated by

commas or semicolons. For example:

>> 7+6, 2*4-1, 12-2

ans =

 13

ans =

 7

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

10

ans =

 10

>> 5+6; 2*4-1, 12-2;

ans =

 7

>>

The name of a variable must contain only alphanumeric characters or the symbol ’_’

(underscore) and must start with an alphabet. We must also pay attention to capital letters

because the MATLAB is case-sensitive (A and a are two different identifiers).

The basic operations in an expression are summarized in the following table:

Operation meaning

+ addition

- subtraction

* multiplication

/ division

\ Left division (or reverse division)

^ power

‘ The transposed

(and) Parentheses specify the order of evaluation

To see the list of variables used, either look at the window ‘Workspace’ we use the commands

either ‘whos’ or ‘who’:

whos gives a detailed description (variable name, type and size), but who just give the names

of the variables.

For example, in this course we used 3 variables a, u and v:

>> who

Your variables are:

aans u v

>> whos

 Name Size Bytes ClassAttributes

 a 1x1 8 double

 ans 1x1 8 double

 u 1x1 8 double

 v1x1 8 double

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

11

>> who

Grand total is 126 elements using 1008 bytes

DATAE DATAG DATAI DATAR E I

>> whos

Name

Size

Bytes

Class

DATAE 1x7

56 double array

DATAG 7x7 392 double array

DATAI 1x7 56 double array

DATAR 7x7 392 double array

E 7x1 56 double array

I 7x1 56 double array

Let's see that all the objects created are matrices with components stored as
double-precision real numbers, even those we entered as integers.

The use of these two commands

can be omitted cardes variable

information are visible directly in

the workspace window.

2.2 The numbers in MATLAB:

MATLAB uses conventional decimal notation, with an optional decimal point ‘.’ and the sign

‘+’ ou ‘–‘for signed numbers. Scientific notation uses the letter ‘e’ to specify the power scale

factor of 10. Complex numbers use characters ‘i’ and ‘j’ (indifferently) to design the imaginary

part. The following table gives a summary:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

12

type Exemples
Integer 5 -83

Real in decimal notation 0.0205 3.1415926

Real in scientific notation 1.60210e-20 6.02252e23(1.60210x10-20 et 6.02252x1023)

Complex 5+3i -3.14159j

MATLAB always uses real numbers (double precision) to make the calculations, which allows

obtaining a calculation accuracy of up to 16 significant digits.

 But it should be noted the following points:

 The result of a calculation operation is displayed by default with four digits after the

decimal point.

 To display more numbers use the command format long (14 digits after the decimal point).

 To return to the default view, use the format short.

 To display only 02 digits after the decimal point, use the format bank.

 To display the numbers as a ration, use the format rat.

control meaning

format short displays numbers with 04 digits after the decimal point

format short e Scientific with 04 digits.

format long displays numbers with 14 (or 16) digits after the
decimal point

format long e Scientific with 14 (or 16) digits.

format bank displays numbers with 02 digits after the decimal point

format hex Hexadecimal

format + Use the symbols +, - and space to display positive, negative,
and zero numbers

format rat displays the numbers as a ration (a/b)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

13

Example:
>> 8/3

ans =

 2.6667

>>format long

>> 8/3

ans =

 2.66666666666667

>>format bank

>> 8/3

ans =

 2.67

>>format short

>> 8/3

ans =

 2.6667

>> 7.2*3.1

ans =

 22.3200

>>format rat

>> 7.2*3.1

ans =

 558/25

>> 2.6667

ans =

 26667/10000

vpa function can be used to force the compute to have more significant decimals by specifying

the desired number of decimals.

Example :

>> sqrt(2)

ans =

 1.4142

>> vpa(sqrt(2),50)

ans =

1.4142135623730950488016887242096980785696718753769

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

14

2.3 The main constants, functions and commands:

MATLAB defines the following constants:

Constant its value

Pi =3.1415...

exp(1) e=2.7183...

I = √−1

J = √−1

Inf ∞

NaN Not a Number (Pas un numéro)

Eps ≈ 2 × 10−16.

Frequently used functions include:

For example:

The notation exp(x) represents the exponential function, which is defined as ex, where

e is Euler's number (approximately equal to 2.71828). This function is commonly used

in mathematics to model growth processes, such as compound interest or population

growth. In MATLAB, you can calculate the exponential of xxx using the exp function.

MATLAB defines the following function:

function its meaning

sin(x) l the sine of x (in radian)

cos(x) l Cosine of x (in radian)

tan(x) The tangent of x (in radian)

asin(x) The arc sine of x (in radian).(the inverse sine function sin^(−1) of x)

acos(x) The arc cosine of x (in radian). (the inverse sine function cos^(−1) of x)

atan(x)
The arc tangent of x (in radian).(the inverse tangent function tan^(−1)
of x)

sqrt(x) The square root of x √𝑥

abs(x) The absolute value of x |x|

exp(x) The exponential function, which is defined as ex

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

15

log(x) Natural ogarithm of x ln(x)=loge(x)

log10(x) Logarithm based on 10 of x log10(x)

imag(x) The imaginary part of the complex number x

real(x) The actual part of the complex number x

round(x) Round a number to the nearest integer

floor(x) round a number to the smallest integer max{n|n≤x, n entire }

ceil(x) round a number to the largest integer min{n|n≥x, n entire}

MATLAB offers many commands for user interaction. For the moment, we are content with a

small set, and we will expose the others as the course progresses.

control its meaning

who Displays the name of the variables used

whos Displays information about the variables used

clear x y Deletes the x and y variables

clear, clear all Deletes all variables

clc Clears the control screen

exit, quit Close the MATLAB environment

format

Sets the output format for numeric values
format long : displays numbers with 14 digits after the
decimal point
format short: displays numbers with 04 digits after the
decimal point
format bank : displays numbers with 02 digits after the
decimal point
format rat : displays the numbers as a ration (a/b)

2.4 The priority of operations in an expression:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

16

The evaluation of an expression runs from left to right considering the priority of the

operations indicated in the following table:

operations priority (1=max, 4=min)
The parentheses ^ (and) 1

Power and the transposed ^and ‘ 2

Multiplication and division * and / 3

Addition and subtraction + and - 4

For example:

5+2*3 = 11 and 2*3^2 = 18

Summary exercise:

 Create an x variable and set it to 2, then write the following expressions:

 3x3-2x2+4x

𝑒1+𝑥

1− √2𝑥

 |sin−1(2𝑥)|

ln(𝑥)

2𝑥3
 -1

 cos(x5)-52

Solution:

>> x=2 ;

>> 3*x^3-2*x^2+4*x ;

>> exp(1+x)/(1-sqrt(2*x)) ;

>> abs(asin(2*x)) ;

>> log(x)/(2*x^4)-1 ;

>> cos(x^5)-52 ;

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

17

Exercice 01:

Guess the answer given by Matlab for each of the following commands:

>> a=5 ; b=a+2 ; c=b-3 ; clear a, who

>> a=-2.5 ; B=a+2, A=B ; B=A*2

>> temp=27.48 ; poids= 15.63 ; floor(temp), ceil(poids) ;

round(poids)

>> var1=7+3^2 ; var2=8\var1 , var1+var2 ; ans/6

>> sqrt(2), format bank, sqrt(2), 3/2

>> format rat, sin(pi/6)

Exercice 02:

Provide Matlab commands to evaluate the following expressions:

𝑎) − 𝑥5 −
7

3
𝑥3 + 𝑥2 + 1, 𝑓𝑜𝑟 𝑥 = 1 e)

𝑥3 sin(
3𝜋

4
)
2

cos(2𝜋−1)
, 𝑓𝑜𝑟 𝑥 = 𝑒3

𝑏)
5+𝑥2

3𝑥−4
, 𝑓𝑜𝑟 𝑥 = 2 f) −2𝑙𝑛(5𝑥) + √4𝑥3 + 1 , 𝑓𝑜𝑟 𝑥 = −3𝑖

𝑐)
2√𝑥+1

𝑒𝑥+3+5
, 𝑓𝑜𝑟 𝑥 = 3.2 g) (0.5 + 12𝑖)3 + 4𝑥, 𝑓𝑜𝑟 𝑥 = 2 − 3𝑗

 𝑑)
(𝑠𝑖𝑛(𝑒𝑥) + 2)√√|𝑥| + 1

𝑡𝑎𝑛−1(𝑥2) + (𝑙𝑛 (√|𝑥| + 1))

3

2

, 𝑓𝑜𝑟 𝑥 = −1.5

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

18

Exercice 03:

1. Propose Matlab commands to generate the following vectors:

 . 𝑉1 = [2,3,4,… ,9,10] . 𝑉4 = [
1

99
,
1

97
, … ,

1

5
,
1

3
, 1]

 . 𝑉2 = [−1.5,0,1.5, … ,4.5,6] . 𝑉5 = [
1

4
,
1

16
,
1

36
,
1

64
,
1

100
]

 . 𝑉3 = [1,
1
4
,
1
9
,
1
16
,
1
25
,… ,

1
81
,
1
100

]

2. Create a row vector U that starts at –𝜋/3 and ends at 7𝜋/3, containing exactly 4

uniformly spaced elements.

3. Create a vector V that contains all the elements of the vectors 𝑽𝟏, 𝑽𝟐 𝒂𝒏𝒅 𝑽𝟑

consecutively.

4. Propose a Matlab command to reverse the elements of the vector U.

5. Propose a Matlab command to display the elements of the vector V from the 5th

 position to the 11th in reverse order.

6. Propose a Matlab command to display the second third of the vector V.

7. Propose a Matlab command to display the last quarter of the vector V.

Exercice 04:

Propose instructions (as simple as possible) to produce the matrix A of size 50×50 with

the following shape:

(

𝜋 0 0
0 𝜋 0
0 0 𝜋

⋯
0
0

−1
0
0

⋮ 0 0 ⋱ ⋮
1 0 0 ⋯ 𝜋)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

19

Solution of TP 01

Exercice 01:

Guess the response given by Matlab for each of the following commands:

>> a=5 ; b=a+2 ; c=b-3 ; clear a, who

Your variables are:

b c

>> a=-2.5 ; B=a+2, A=B ; B=A*2

B =

-0.5000

B =

-1

>> temp=27.48 ; poids=15.63 ; floor(temp), ceil(poids) ; round(poids)

ans =

27

ans =

16

>> var1=7+3^2 ; var2=8\var1 , var1+var2 ; ans/6

var2 =

2

ans =

3

>> sqrt(2) , format bank, sqrt(2), 3/2

ans =

ans =

ans =

1.4142

1.41

1.50

>> format rat, sin(pi/6)

ans =

1/2

Exercice 04 :

 >> A = pi*eye(50); A(50,1)=1; A(1,50)=-1

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°01

Lesson: Programming Tools (PT2) By: A. Leulmi

20

Exercice 02 :

a) >> x=1; -x^5-(7/3)*x^3+x^2+1

b) >> x=2; (5+x^2)/(3*x-4)

c) >> x=3.2; (-2*sqrt(x)+1)/(exp(x+3)+5)

d) >> x=-1.5;

>> ((sin(exp(x))+2)*sqrt(sqrt(abs(x))+1))/(atan(x^2)+log(sqrt(abs(x))+1)^(3/2))

e) >> x=exp(3); (x^3*sin(3*pi/4)^2)/cos(2*pi-1)

f) >> x=3i; -2*log(5*x)+sqrt(4*x^3+1)

g) >> x=2-3j; (0.5+12i)^3+4*x

Exercice 03 :

1. Creation of vectors v1, v2, v3, v4 and v5:

>>

>>

v1

V2

=

=

[2:10]

[-1.5:1.5:6]

>> V3 = (1./[1:10]).^2

>> V4 = 1./[99:-2:1]

>> V5 = 1./([2:2:10].^2)

2. Creation of the vector U:

>> U = linspace(-pi/3 , 7*pi/3 , 4)

3. Creation of the vector V:

>> V = [V1,V2,V3]

4. Invert the vector U:

>> U(end:-1:1)

5. Display the elements of V from the 5th position to the 11th in reverse order:

 >> V(11:-1:5)

6. Display the second third of the vector V:

>> tiersPosition = round(length(V)/3)

>> V(tiersPosition+1 : 2*tiersPosition)

7. Display the last quarter of the vector V:

>> quartPosition = round(length(V)/4)

>> V(3*quartPosition+1 : end)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

21

MATLAB

Chapter II: Vectors and Matrices

Matlab was initially created to provide mathematicians, scientists, and engineers with
a user-friendly way to work with linear algebra. As a result, handling vectors and matrices in
Matlab is both intuitive and efficient.
The name "MATLAB" stands for matrix laboratory, and as the name suggests, the foundation
of the software is matrices and vectors. A matrix allows multiple values to be stored at once,
with each value being accessible by its position. For example, in the following matrix, each
value can be accessed independently.

1. The vectors:

A vector is an ordered list of elements. If the elements are arranged horizontally,
we say that the vector is a vector row, on the other hand if the elements are arranged
vertically we say that it is a vector column.
To create a vector line just write the list of its components in square brackets [and] and
separated by spaces or commas as follows:

>> V = [5, 2, 13,-6] % Create a vector line V

V =
 5 2 13 -6

>> U = [4 -2 1] % % Create a vector line U

U =
 4 -2 1

To create a column vector, you can use one of the following methods:

1. Write the components of the vector in square brackets [and] and semicolons

separated (;) as follows:
>> U = [4;-2;1] % Creating a column vector U

U =
 4
 -2
 1

2. Write vector vertically :
>> U = [
4
-2
1
]

U =

 4
 -2
 1

3. Calculate the transpose of a line vector:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

22

>> U = [4-21]' % Creating a column vector U
U =

 4
 -2
 1

If the components of a vector X are ordered with consecutive values, it can be represented using

the following notation:

(Square brackets are optional in this case)

This generates a vector X that starts from first_element and increments by 1 until it reaches

last_element. For example:

X=1: 5

This will result in the vector:

X=[1 , 2 , 3 , 4 , 5]

For example:
>> X=1:8 % you can also write colomn (1,8)

X =
 1 2 3 4 5 6 7 8
>> X = [1:8]

X =
 1 2 3 4 5 6 7 8

If the components of a vector X are ordered with consecutive values but with a pitch

(increment/decrement) different from 1, the pitch can be specified using the following notation:

(Brackets are optional)

Or: X=start : pitch : end

For example, for a vector with values starting at 1, incrementing by 2, and ending at 9, it

would be written as:

>> X = 1:2:9

The notation X = 1:2:9 in MATLAB defines a vector X that starts at 1, increments by 2, and

ends at 9. The resulting vector will be:

X = [1, 3, 5, 7, 9]

 This syntax is a compact way to generate vectors with a specified start value, step size

(pitch), and end value.

For example:
>> X = [0:2:10] % vector X contains even numbers < 12

X = first_element : last element

X = first_element : step: last element

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

23

X =
 0 2 4 6 8 10

>> X= [-4:2:6] % on can also write colon (-4,2,6)

X =
 -4 -2 0 2 4 6
>> X= 0:0.2:1 % you can also write colon (0,0.2,1)

X =
 0 0.2000 0.4000 0.6000 0.8000 1.0000

You can write more complex expressions like:
>> V = [1:2:5,-2:2:1]

V =
 1 3 5 -2 0
>> A = [1 2 3]

A =
 1 2 3
>> B = [A, 4, 5, 6]

B =
 1 2 3 4 5 6

Example:
>> t = [1 2 0 0 ; 0 2 3 1 ; 0 0 2 1]

t =
 1 2 0 0
 0 2 3 1
 0 0 2 1
>> x = t(2, 3)

x =
 3

1.1 Referencing and access to vector elements:

The elements of a vector can be accessed using the following syntax:

Or ‘’vector(index)’’

Here, vector refers to the name of the vector, and index specifies the position of the element

you want to retrieve. MATLAB uses 1-based indexing, meaning the first element is accessed

with index=1. For example, for the vector:

X=[10,20,30,40]

To access the second element, you would use:

X(2)

which returns 20.

vector name(positions)

Parentheses (and) are used here (for consultation).

Brackets [and] are used only during creation.

position: can be a simple number,

or a list of numbers (a vector of

positions)l

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

24

Examples:

>> V=[5, -1, 13,-6, 7] % creation of vector V which contains 5 elements
V =
5 -1 13 -6 7

>> V(3) % the 3rd position

ans =
 13

>> V(2:4) % from second to fourth position

ans =
 -1 13 -6

>> V(4:-2:1) % from the 4th pos to the 1st with the pitch = -2

ans =
 -6 -1

>> V(3:end) % from the 3rd position to the last

ans =
 13 -6 7

>> V([1,3,4]) % 1st, 3rd and 4th position only
 ans =
 5 13 -6

>> V(1)=8 % set the first element to 8
V =
 8 -1 13 -6 7

>> V(6)=-3 % add a sixth element with the value -3

V =
 8 -1 13 -6 7 -3

>> V(9)=5 % add a ninth element with value 5

V =
 8 -1 13 -6 7 -3 0 0 5

>> V(2)=[] % Remove second item
 V =
 8 13 -6 7 -3 0 0 5

>>V(3:5)=[] % Delete from 3rd to 5th element

V =
 8 13 0 0 5

1.2 Element-by-element operations for vectors:

With two vectors �⃗� and 𝑣 , it is possible to perform element-by-element calculations using the

following operations:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

25

operation Meaning
Exemple with :
>> u= [-2,6,1] ;
>> v= [3,-1, 4] ;

+ Addition of vectors

>> u+2
ans =
0 8 3
>>u+v
ans =
1 5 5

- Vector subtraction

>> u-2
ans =
-4 4 -1
>> u-v
ans =
 -5 7 -3

.* Element-by-element multiplication

>> u*2
ans =
-4 12 2
>> u.*2
ans =
-4 12 2
>> u.*v
ans =
 -6 -6 4

./ Division element by element

>> u/2
ans =
-1.0000 3.0000 0.5000
>> u./2
ans =
-1.0000 3.0000 0.5000
>> u./v
ans =
-0.6667 -6.0000 0.2500

.^ Power item by item

>> u.^2
ans =
4 36 1
>> u.^v
ans =
 -8.0000 0.1667 1.0000

Writing an expression such as: u^2 generates an erreurcar this expression refers to a matrix

multiplication (u*u must be rewritten u*u'or u'*u to be valid).

1.3 The linspace function:

The creation of a vector with components ordered by a regular interval and a specified number

of elements can be achieved using the linspace function in MATLAB.

The syntax is as follows:

X = linspace(start_value, end_value, number_of_elements)

linspace(start, end, number of elements).

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

26

Here, start_value is the first element of the vector, end_value is the last element, and

number_of_elements specifies how many elements should be evenly spaced between the two

values.

Matlab calculates the increment step automatically according to the formula:

step =
𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 − 1

For example:
>> X=linspace(1,10,4) % a vector of four elements from 1 to 10

X =
 1 4 7 10

>> Y = linspace(13,40,4) % a vector of four elements of 13 to 40

Y =
 13 22 31 40

The size of a vector (i.e., the number of its components) can be obtained using the length

function in MATLAB, as follows:

Here, X is the vector for which you want to find the size, and n will hold the number of elements

in the vector.

For example:
>> length(X) % the size of vector X
ans =
 4

2. The matrices:

A matrix is a rectangular array of (two-dimensional) elements. Vectors are matrices with

a single row or column (monodimensional).

To insert a matrix, follow these rules:

 Items should be bracketed [and].

 Spaces or commas are used to separate items in the same row.

 Comma (or enter) is used to separate lines.

To illustrate this, considering the following matrix:

𝐴 = [
1 2 3 4
5 6 7 8
9 10 11 12

]

This matrix can be written in Matlab with the following parameters:

>> A=[1,2,3,4;5,6,7,8;9,10,11,12] ;

>> A=[1 2 3 4;5 6 7 8;9 10 11 12] ;

>> A = [1,2,3,4
5,6,7,8
9,10,11,12] ;
>> A=[[1;5;9] , [2;6;10] , [3;7;11] , [4;8;12]] ;

n = length(X)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

27

The number of elements in each row (number of columns) must be the same in all rows in the

matrix, otherwise an error will be reported by Matlab. For example:

>> X=[1 2 ; 4 5 6]

Error using vertcat
CAT arguments dimensions are not consistent.

A matrix can be generated by vectors as shown in the following examples:

>> x = 1:4 % vector creation x
x =

 1 2 3 4
>> y = 5:5:20 % vector creation y

y =
 5 10 15 20
>> z = 4:4:16 % vector creation z

z =
 4 8 12 16

>> A = [x ; y ; z] % A is formed by line vectors x, y and z

A =
 1 2 3 4
 5 10 15 20
 4 8 12 16

>> B = [x' y' z'] % Best formed by column vectors x, y and z

B =
 1 5 4
 2 10 8
 3 15 12
 4 20 16

>> C = [x ; x] % It is formed by the same vector x2 times

C =
 1 2 3 4
 1 2 3 4

Example 2:
>> t1 = [1 2 ; 2 3]
 t1 =
 1 2
 2 3
>> t1 = [3 4 ; 6 7]
 t2 =
 3 4
 6 7
>> tL = [t1 , t2] % ou [t1 t2]
 tL =

1 2 3 4
2 3 6 7

>> tc = [t1 ; t2]
 tc =

 1 2
2 3
 3 4

 6 7

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

28

Exercice:

MATLAB is particularly well-suited for numerical applications involving matrices. Let’s look at

some methods for manipulating them.

1. Define a matrix M = [1 2 ; 3 4] and then try the following operations in the
interpreter:

>> 2 * M + 3
>> M + M
>> sqrt(M)
>> M * M

>> M .* M

>> ones(4)

>> ones(3, 5)

2. What is the difference between the * and .* operators? What does the ones function
do?

3. How can we easily create a 54 × 42 matrix containing only 7s?

Réponse:

2. L’opérateur * désigne le produit de deux matrices (comme vous l’avez vu en maths), tandis

que .* désigne le résultat du produit terme à terme de deux matrices de mêmes dimensions :

la case (i; j) du résultat est le produit des cases (i; j) de chacune des deux matrices de départ.

La fonction ones crée une matrice ayant les dimensions indiquées ne contenant que des 1.

3. >> M = 7 * ones(54, 42);

2.1 Referencing and access to matrix elements:

The elements of a matrix are accessed using the following general syntax:

Or: matrix(row,column).

It is worth noting the following possibilities:

 Access to an element in row i and column j is done by : A(i,j).

 Access to the whole number i line is via: A(i,:).

 Access to the entire column number j is by: A(:,j).

Examples:
>> A = [1,2,3,4 ; 5,6,7,8 ; 9,10,11,12] % creation of matrix A

A =
 1 2 3 4
 5 6 7 8
 9 10 11 12

>> A(2,3) % element on the 2nd row in the 3rd column

nom_matrice(positions_lignes , positions_colonnes)

Parentheses (and) are used here (for consultation).

Brackets [and] are used only during creation.

positions: can be a simple number,

or a list of numbers (a vector of

positions)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

29

ans =
 7

>> A(1,:) % all 1st line itemsans =
 1 2 3 4

>> A(:,2) % all items in 2nd column

ans =
 2
 6
 10

>> A(2:3,:) % all elements of the 2nd and 3rd line

ans =
 5 6 7 8
 9 10 11 12

>> A(1:2,3:4) % The upper right sub matrix of size 2x2
ans =
 3 4
 7 8

>> A([1,3],[2,4]) % la sub-matrix: rows(1,3) and columns (2,4)

ans =
 2 4
 10 12

>> A(:,3)=[] % Delete the third column

A =
 1 2 4
 5 6 8
 9 10 12

>> A(2,:)=[] % Delete the second line

A =
 1 2 4
 9 10 12

>> A=[A,[0;0]] % add a new column {or A(:,4)=[0;0]}
A =

 1 2 4 0
 9 10 12 0

>> A=[A;[1,1,1,1]] % Add a new line {or A(3,:)=[1,1,1,1]}

A =
 1 2 4 0
 9 10 12 0
 1 1 1 1

The dimensions of a matrix can be obtained using the size function. When applied to a matrix

A of dimension m×n, this function returns a vector with two components: the first component

represents the number of rows mmm, and the second component represents the number of

columns n.

The syntax is as follows:

For example:
>> d = size(A)

dims = size(A)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

30

d =
 3 4

Here, the variable d contains the dimensions of the matrix A as a vector. To obtain the

separechin dimensions can use the syntax:
>> d1=size (A, 1) % d1 contains the number of rows (m)

d1 =
 3

>> d2=size (A, 2) % d2 contient le nombre de colonne (n)

d2 =
 4

2.2 Automatic generation of matrices:

In Matlab, there are functions that automatically generate particular matrices. In the following

table we have the most used :

La fonction Signification

zeros(n) Generates an n× n matrix with all elements = 0

zeros(m,n) Generates a matrix m ×n with all elements = 0

ones(n) Generates an n ×n matrix with all elements = 1

ones(m,n) Generates a m× n matrix with all elements = 1

eye(n) Generates a n × n dimension identity matrix

magic(n) Generates a n × n dimension magic matrix

rand(m,n) Generates a matrix of dimension m× n de random values

For example:

>> ones(2)
ans =

 1 1
 1 1

>> ones(3,6)
ans =

 1 1 1 1 1 1
 1 1 1 1 1 1
 1 1 1 1 1 1

>> zeros(3)
ans =

 0 0 0
0 0 0

 0 0 0

>> zeros(2,7)
ans =

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

31

 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

>> eye(4)
ans =

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

In MATLAB, the magic(n) function generates an n x n magic square, which is a square

matrix where the sum of every row, column, and diagonal is the same. This number is known

as the magic constant.

M = magic(n)

Input:

 n: The size of the magic square. It must be a positive integer.

Output:

 M: An n x n matrix where the sum of every row, column, and diagonal is equal.

Example:

>> n = 3;
>> M = magic(n);
>> disp(M);

ans =
 8 1 6
 3 5 7
 4 9 2

In this 3×3 magic square, the sum of each row, column, and diagonal is 15, which is the

magic constant for a 3×3 square.

Magic Constant Formula:

The magic constant C for an n×n magic square is given by:

C =
n(𝑛2 + 1)

2

For example, for a 3×3 square, C =
3(9+1)

2
= 15.

Properties of Magic Squares:

 The elements of a magic square are distinct integers from 1 to 𝑛2.

 The magic square is symmetric with respect to its center.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

32

In MATLAB, the rand(m, n) function generates an m × n matrix of random numbers that

are uniformly distributed between 0 and 1.

A = rand(m, n)

Input:

 m: The number of rows in the output matrix.

 n: The number of columns in the output matrix.

Output:

 A: An m x n matrix where each element is a random number between 0 and 1, drawn

from a uniform distribution.

Example 1:

Generate a 3×2 matrix of random numbers:

>> A = rand(3, 2);
>> disp(A);

d1 =
 0.2761 0.5439

 0.8059 0.9021
 0.4923 0.6242

Example 2:

Generate a 4 x 4 matrix of random numbers:

>> B = rand(4, 4);
>> disp(B);

d1 =
 0.9397 0.1261 0.0142 0.6077

 0.6175 0.5161 0.7350 0.8002
 0.9601 0.3401 0.4602 0.0503
 0.3833 0.9069 0.5592 0.7212

2.3 Basic operations on the matrices:

L’opération Signification

+ Addition

- Subtraction

.* The multiplication element by element (Element-wise multiplication)

./ The division element by element (Element-wise division)

.\
The division inverse element by element (Element-wise inverse

division)

.^ The power element by element

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

33

* Matrix multiplication (La multiplication matricielle)

/ Matrix division (A/B) = (A*B-1) (La division matricielle)

The element-by-element operations on matrices are the same as those for vectors

(the only condition necessary to make an element-by-element operation is that both

matrices have the same dimensions). However, the multiplication or division of matrices

requires some constraints (see a course on matrix algebra for more details).

Example:
>> A=ones(2,3)

A =

 1 1 1

 1 1 1

>> B=zeros(3,2)

B =

 0 0

 0 0

 0 0

>> B=B+3

B =

 3 3

 3 3

 3 3

>> A*B

ans =

 9 9

 9 9

>> B=[B , [3 3 3]'] % ou bien B(:,3)=[3 3 3]’

B =

 3 3 3

 3 3 3

 3 3 3

>> B=B(1:2,:) % ou bien B(3,:)=[]

B =

 3 3 3

 3 3 3

>> A=A*2

A =

 2 2 2

 2 2 2

>> A.*B

ans =

 6 6 6

 6 6 6

>> A*eye(3)

ans =

 2 2 2

 2 2 2

2.4 Useful functions for matrix processing:

Here are some of the most used functions regarding matrices:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

34

fonction usefulness Example of use

Det Determinant calculation of a matrix

>> A=[1,2;3,4] ;
>>det(A)
ans =
 -2

Inv Calculates the inverse of a matrix

>> inv(A)
ans =
 -2.0000 1.0000
 1.5000 -0.5000

rank Calculates the rank of a matrix
>> rank(A)
ans =
 2

trace Calculates the trace of a matrix
>> trace(A)
ans =
 5

eig Calculates the eigenvalues

>> eig(A)
ans =
 -0.3723
 5.3723

dot Calculates the scalar product of 2 vectors

>> v=[-1,5,3];
>> u=[2,-2,1];
>> dot(u,v)
ans =
 -9

norm Calculates the standard of a vector
>> norm(u)
ans =
 3

cross Calculates the vector product of 2 vectors
>> cross(u,v)
ans =
 -11 -7 8

diag Returns the diagonal of a matrix

>> diag(A)
ans =
 1
 4

diag(V)
Creates a matrix with vector V in the

diagonal and 0 elsewhere.

>> V=[-5,1,3]
>> diag(V)
ans =
 -5 0 0
 0 1 0

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

35

 0 0 3

tril Returns the lower triangular part

>> B=[1,2,3;4,5,6;7,8,9]
B =
 1 2 3
 4 5 6
 7 8 9
>> tril(B)
ans =
 1 0 0
 4 5 0
 7 8 9
>> tril(B,-1)
ans =
 0 0 0
 4 0 0
 7 8 0

>> tril(B,-2)
ans =
 0 0 0
 0 0 0
 7 0 0

triu Returns the upper triangular part

>> triu(B)
ans =
 1 2 3
 0 5 6
 0 0 9
>> triu(B,-1)
ans =
 1 2 3
 4 5 6
 0 8 9
>> triu(B,1)
ans =
 0 2 3
 0 0 6
 0 0 0

36

Module: Programming Tools (PT 2)

Exercice 01:
 N°02

University of Ferhat Abbas Setif-1, Departement of Mathematics

 Level : 2nd year LMD Mathematics

 Create the following vectors in two different ways.

𝑉1 = (5 2 3 7 9), 𝑉2 =

(

−1
 3
 6
−5
 8)

 Exercice 02:

Execute and understand the following commands:

 Exercice 03:

Let the three matrices A, B, and C be:

𝑨 = (𝟏 𝟐
𝟕 𝟐

) ,𝑩 = (
𝟑 −𝟐
𝟎 𝟏

) 𝐚𝐧𝐝 𝑪 = (

−𝟏 𝟑
𝟎 𝟏
−𝟏
𝟒

−𝟏
𝟖

)

 1) Calculate the following expressions:

 A*B-3

 A.*B-3

 A^2-ones(2)

 C*B+1+zeros(4,2)

 A'.^B/2

 C*eye(2)

 C(1:2,:)^2

 C(2:3,:).^2

 C(end:-1:1,2).\24

2) Create the matrix M which contains matrices A and B stacked on top of each other to define the 1st

and 2nd columns, and matrix C to define the 3rd and 4th columns.

3) Provide the Matlab result for each of the following commands:
 M(3,2) = 3

 M(3,[2 4])

 M(1:3,[2 4])'

 M(2,:)-7*M(1,:)

 M(2,:) = M(2,:)-7*M(1,:)
 M([1 3],[1 3]) = 10*ones(2)

 M([1,3],:) = []

37

 M(:,1) = [] size(M)*M

 M(end:-1:1,end:-2:1)

 M = [[M;M] ones(4,1)]

 tril(M,-1)+triu(M,2)

Exercice 04:

Execute and understand the following commands:

 U=ones(2,2)

 N=zeros(2,3)

 Y=eye(4,4)

 diag(A)

 diag(A,1)

 diag(A,-1)

 diag([2,4,6,8])

help floor

 floor(B)

 help rand

 C=B.*B-4*A

 Note: B.*B does not have the same meaning
as B*B (test it).

 D=B*B // or D=B^2

 M=floor(10*rand(3,3));

 A=floor(10*rand(3,3))

 C=[A(:,2),B(:,3)]

 D=[B(1:2,:);A(2:3,:)]

 B=2*ones(4,4);

 M1=floor(10*rand(3,2))

 help find

 find(M1==3)

 find(M1>=3)

 find(M1>5)

 S=(M+M’)/2;

 A=(M-M’)/2;

 (M*M’)’-M*M’

 A+S;

Exercice 05:

 Consider the following three vectors:

X = (X1, X2, X3, …, Xn-1, Xn), Y = (Y1, Y2, Y3, …, Yn-1), Z = (Z1, Z2, Z3, …, Zn-1)
 Propose Matlab instructions to design the matrices A, B, and C for n=30:

Exercice 06:

For a matrix A, propose two general expressions for each of the following operations:

38

1. Delete the entire i-th row

2. Delete the entire j-th column

3. Add a row at the end of the matrix (a row vector x with length(x) = size(A,2))

4. Add a column at the end of the matrix (a column vector y with length(y) = size(A,1))

Exercice 07:

a) The matrices A, B, C by enumeration and D, C by description (i is written as %i in Matlab)

b) Provide the defined matrices as arguments to the functions length and size.

c) Conclude regarding the difference between these two functions.

d) Execute and understand the following commands:

>> C(2,2)=pi

>> C(:,3)=[1 :3]’

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

39

Solution TP TD N°02

Exercice 01:

1) Calculate the expressions:

>> A = [1 2 ; 7 2];

>> B = [3 ‐2 ; 0 1];

>> C = [‐1 3 ; 0 1 ; ‐1 ‐1 ; 4 8];

>> A*B‐3

ans = A B A*B A*B‐3
0

18

‐3

‐15
 1 2

7 2 3 —2
0 1 3 0

21 —12 0 —3
18 —15

>> A.*B‐3

ans = A B A.*B A.*B‐3
0

‐3

‐7

‐1

 1 2
7 2 3

0
 —2

1 3 —4
0 2 0 —7

—3 —1

>> A^2‐ones(2)

ans = A A^2 ones(2) A^2‐ones(2)
14 5

20 17 1
7

2
2

 15

21

6

18

 1 1

1 1
 14

20
5

17

>> C*B+1+zeros(4,2)

ans = C B C*B zeros(4,2) C*B+1+zeros(4,2)
‐2 6

1 2

‐2 2

13 1

—1 3

 0 1
—1 —1

4 8

 3 —2
0 1

—3 5

 0 1
—3 —1
12 0

0 0

 0 0
0 0
0 0

—2

 1
—2
13

6
2
2
1

>> A'.^B/2

ans =

0.5000 0.0102

0.5000 1.0000

A A' B A'.^B A.^B/2

 1 2
7 2

 1 7
2 2

3 —2
0 1

1 1/49
1 2

0.5 1/98
0.5 1

>> C*eye(2)

ans = C eye(2) C*eye(2)
‐1

0

‐1

4

3

1

‐1

8

—1

 0
—1

4

3
1

—1
8

 1
0

0
1

—1

 0
—1

4

3
1

—1
8

>> C(1:2,:)^2

ans = C C(1:2,:) C(1:2,:)^2
1

0

0

1
—1

 0
3
1

 -1

3

 -1

3 -1
 *

3
 =

1 0

—1

4
—1

8
0 1 0 1 0 1 0 1

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

40

3

0 -12 7 -20

3 -1

>> C(end:‐1:1,2).\24

ans =

0 1

1 1

ans =

3

‐24

24

8

2) Creation of the matrix M:
 >> M = [[A ; B] C]

M =

0 1 4 8

3) The Matlab results for the expressions:
 >> M(3,2) = 3

M =

1 2 ‐1 3

7 2 0 1

3 3 ‐1 ‐1

0 1 4 8

>> M(3,[2 4])
ans =

3 ‐1

1 2 -1 3

7 2 0 1

3 3 -1 -1

0 1 4 8

>> M(1:3,[2 4])'
ans =

2 2 3

3 1 ‐1

M(1:3,[2 4]) M(1:3,[2 4])'

2 3
 2 1

3 —1

 2 2 3
3 1 —1

 >> M(2,:)‐7*M(1,:)

ans =

0 ‐12 7 ‐20

 >> M(2,:) = M(2,:)‐7*M(1,:)
M =

1 2 ‐1 3

>> C(2:3,:).^2

 -

C C(2:3,:) C(1:2,:).^2

—1

 0
3
1

 0

1

(
(0)2 (1)2

0

 1

—1
4

—1
8

—1 —1 (—1)2 (—)12
= 1 1

C C(end:‐1:1,2) C(end:‐1:1,2).\24

—1 3 8
24/8

24/-1
 24/1

24/3 l

=

3
—24
24
8

 0 1 -1
—1 —1 1

4 8 3

M(2,:) M(1,:) 7* M(1,:)

7 2 0 1 1 2 ‐1 3 7 14 ‐7 21

1 2 ‐1 3 1 2 -1 3

7 2 0 1 7 2 0 1

3 ‐2 ‐1 ‐1 3 -2 -1 -1

0 ‐12 7 ‐20 0 -12 7 -20

3 3 ‐1 ‐1 3 3 -1 -1

0 1 4 8 0 1 4 8

1 2 -1 3

7 2 0 1

3 3 -1 -1

0 1 4 8

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

41

10 10

10 10

M =

 ‐12 7 ‐20 1
 1 4 8 1
 ‐12 7 ‐20 1
 1 4 8 1

-12 7 -20 1

1 4 8 1

-12 7 -20 1

1 4 8 1

 >> M([1 3],[1 3]) = 10*ones(2)

M =

10 2 10 3

0 ‐12 7 ‐20

10 3 10 ‐1

0 1 4 8

 >> M([1,3],:) = []

M =

0 ‐12 7 ‐20

0 1 4 8

 >> M(:,1) = []

M =

‐12 7 ‐20

1 4 8

>> size(M)*M

ans =

‐21

26

‐16

M size(M) size(M)*M
-12

1

7
4

-20

8
(2 3) (—21 26 —16)

 >> M(end:‐1:1,end:‐2:1)

ans =

8 1

‐20 ‐12

 >> M = [[M;M] ones(4,1)]

 >> tril(M,‐1)+triu(M,2)

ans =

0 0 ‐20 1

1 0 0 1

‐12 7 0 0

1 4 8 0

Exercice 02:

>> n=10 ;

>> mat1 = diag(x);

>> mat2 = diag(y,‐1);

>> mat3 = diag(z,1);

>> A = mat1 + mat2 +

>> B = A(:, end:‐1:1) ;

x1 0 0 ⋯ 0 0

0 x2 0 ⋱ 0 0

ۊ

0 0 x3 ⋱ 0 0

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ xn–1 0

 0 0 0 ⋯ 0 xn

0 0 0 ⋯ 0 0
y 0 0 ⋱ 0 0

0 y2 0 ⋱ 0 0

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ 0 0

 0 0 0 ⋯ yn–1 0

0 z1 0 ⋯ 0 0
0 0 z2 ⋱ 0 0
0 0 0 ⋱ 0 0

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ 0 zn–1

mat3 ;

-12 7 -20

1 4 8

0 -12 7 -20

0 1 4 8

tril(M,‐1) triu(M,2)
0 0 0 0 0 0 —20 1

0 0 0 0 0 0 0 1

—12 7 0 0 0 0 0 0

1 4 0 0 0 0 0 0

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

42

To create the vector: 1/22 (position 1) above
the diagonal, we do:
V1 = diag((ones(1,N‐1)/2^2) , 1);

To create the vector: 1/32 (position 2) above
the diagonal, we do:
V2 = diag((ones(1,N‐2)/3^2) , 2);

To create the vector: 1/42 (position 3) above
the diagonal, we do:
V3 = diag((ones(1,N‐3)/4^2) , 3);

...

To create the vector: 1/n² (position n-1)
above the diagonal, we do:
Vn = diag((ones(1,1))/N^2) , N‐1);

To create the vector: ‐1/22 (position -1) below the
diagonal, we do:
U1 = diag(‐(ones(1,N‐1)/2^2) , ‐1);

To create the vector: ‐1/32 (position -2)
below the diagonal, we do:
U2 = diag(‐(ones(1,N‐2)/3^2) , ‐2);

To create the vector: ‐1/42 (position -3)
below the diagonal, we do:
U3 = diag(‐(ones(1,N‐3)/4^2) , ‐3);

...

To create the vector: -1/n² (position - (n-1))
below the diagonal, we do:
Un = diag(‐(ones(1,1))/N^2) , ‐(N‐1));

Creation of the matrix C (this part of the exercise is optional):

1 1
1

22 32
....

1 1

(n — 1)2 n2

Position

n‐1

—1

22
1

1 1

22 32
...

1

(n — 1)2

Position

n‐2

—1 —1

32 22
1

1 1

22 32
...

...
—1 —1

32 22
1

1 1

22 32

Position

‐(n‐2)

—1

(n — 1)2
...

—1 —1 1

32 22
1

22

Position

–(n‐1)

—1 —1

n2 (n — 1)2
...

—1 —1

32 22
1

To create the diagonal, we do:
N = 30

C = diag(ones(1,N));

% We can observe that C = diag((ones(1,N)/1^2) , 0);

To create the other elements, we do:

Above the diagonal Below the diagonal

Position 0
Position ‐1

Position ‐2

Position 1

Position 2

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

43

format rat
N = 30;
C = ones(N,N);

for i = 1:N

C(i,i+1:N)= 1./[2:N‐i+1].^2;
C(i+1:N,i)= ‐(1./[2:N‐i+1].^2)';

end

C

format rat
N = 30;
C = diag(ones(1,N));

for i=1:N‐1

V = (ones(1,N‐i)/(i+1)^2);
C = C + diag(V,i) + diag(‐V,‐i);

end

C

So, to create the vector Vi from the i-th position above the diagonal, we write:

Vi = diag((ones(1,N‐i)) / (i+1)^2) , i);

And to create the vector Ui from the i-th position below the diagonal, we write:

Ui = diag(‐(ones(1,N‐i)) / (i+1)^2) , ‐i));

The final matrix is the sum of all these matrices, so we can use a for loop as follows:

for i = 1:N‐1
V = (ones(1,N‐i)/(i+1)^2);
C = C + diag(V,i) + diag(‐V,‐i);

end

So the complete commands to generate this matrix are:

Second method:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°02

Lesson: Programming Tools (PT2) By: A. Leulmi

44

Exercice 03:

1. Delete the entire i -th row

The 1st method:

 A(i,:) = []
The 2nd method:

 A = [A(1:i‐1,:) ; A(i+1:end,:)]

The 3rd method:

A = A([1:i‐1, i+1:size(A,1)], :)

2. Delete the entire j -th column

The 1st method:

 The 2nd method:

The 3rd method:

A(:,j) = []

A = [A(:,1:j‐1) , A(:,j+1:end)]

A = A(:, [1:j‐1, j+1:size(A,2)])

3. Add a row at the end of the matrix (a row vector x)

The 1st method:

 The 2nd method:

The 3rd method:

A = [A ; x]

A(end+1,:) = x

A(size(A,1)+1, :) = x

4. Add a column at the end of the matrix (a column vector y)

 The 1st method:

 The 2nd method:

The 3rd method:

A = [A y]

A(:,end+1) = y

A(:,size(A,2)+1) = y

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

45

MATLAB

Chapter III: Introduction to programming with Matlab

We have seen so far how to use Matlab to perform commands or to evaluate

expressions by writing them in the command line (After prompt >>), so the commands

used are usually written as a single statement (possibly on a single line).

However, there are problems whose description of their solutions requires several

instructions, which require the use of several lines. For example, searching for the roots

of a second-degree equation (taking into account all possible cases).

A collection of well-structured instructions for solving a given problem is called a

program. In this part of the course, we will present the mechanisms of writing and

executing programs in Matlab.

1. General:

1.1 Comments:

Comments are explanatory sentences ignored by Matlab and intended for the user to help

him understand the part of the commented code.

In Matlab a comment starts with the % symbol and occupies the rest of the line.

For example:

>> A=B+C ; % Give A the value of B+C

1.2 Writing long expressions:

If a long expression cannot be written in a single line, it can be divided into several lines

by putting at the end of each line at least three points.

Example:

>> (sin(pi/3)^2/cos(pi/3)^2)-(1-2*(5+sqrt(x)^5/(-2*x^3-x^2)^1+3*x)) ;

 This expression can be rewritten as follows:

>> (sin(pi/3)^2/cos(pi/3)^2)- ...

>> (1-2*(5+sqrt(x)^5

>> /(-2*x^3-x^2)^1+3*x)) ;

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

46

1.3 Reading data in a program (Inputs):

To read a value given by the user, it is possible to use the input command, which has the

following syntax:

variable = input (‘une phrase indicative’)

When Matlab executes such an instruction, the indicative phrase will be displayed to the

user waiting for the latter to enter a value.

for example:

>> A = input ('Enter a whole number : ')

Enter a whole number : 5

A =

 5

>>

>> A = input (' Enter a whole number : ');

Enter a whole number : 5

>>

>> B = input ('Enter a vector line : ')

Enter a vector line : [1:2:8,3:-1:0]

B =

 1 3 5 7 3 2 1 0

1.4 Writing data in a program (Outputs):

We have already seen that Matlab can display the value of a variable by typing only the

name of this last. For example :
>> A = 5 ;

>> A % Ask Matlab to display the value of A

A =

 5

With this method, Matlab writes the name of the variable (A) then the sign (=) followed

by the desired value. However, there are cases where only the value of the variable is

displayed (without the name and without the sign =).

To do this, we can use the disp function, which has the following syntax:disp(object)

The value of the object can be a number, a vector, a matrix, a string or an expression.

The value deposited by the user will

be put in this variable

A sentence to help the user

know what to enter

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

47

It is reported that with an empty vector or matrix, disp displays nothing.

Example:
>> disp(A) % Display the value of A without ‘A = ‘

 5

>> disp(A); % Semicolon has no effect

 5

>> B % Display vector B by the classical method

B =

 1 3 5 7 3 2 1 0

>> disp(B) % Display the vector B without ‘B = ‘

 1 3 5 7 3 2 1 0

>> C = 3 :1 :0 % Creating an empty C vector

C =

 Empty matrix: 1-by-0

>> disp(C) % disp displays nothing if vector is empty

2. Logical expressions:

2.1 Logical operations:

Logical operations in MATLAB are used to compare values and return logical values

(true/false or 1/0). These operations are essential for conditional statements, loops, and

decision-making in your programs. Below are the common logical operations:

1. Relational Operators

These compare two values and return true (1) or false (0).

 Equal to (==):

result = (x == y); % Returns true if x is equal to y

 Not equal to (~=):

result = (x ~= y); % Returns true if x is not equal to y

 Less than (<):

result = (x < y); % Returns true if x is less than y

 Greater than (>):

result = (x > y); % Returns true if x is greater than y

 Less than or equal to (<=):

result = (x <= y); % Returns true if x is less than or equal to y

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

48

 Greater than or equal to (>=):

result = (x >= y); % Returns true if x is greater than or equal to y.

2. Logical Operators

These operators allow you to perform logical operations on arrays or scalar values.

 AND (&):

result = (x > 0) & (y > 0); % Returns true if both conditions are

true

 OR (|):

result = (x > 0) | (y > 0); % Returns true if either condition is

true

 NOT (~):

result = ~(x > 0); % Returns true if x is not greater than 0.

3. Logical Arrays

In MATLAB, logical operations can be performed on arrays. The result is an array of logical

values.

 Example:

A = [1, 2, 3, 4];

B = [4, 3, 2, 1];

result = (A > B); % Compares element-wise, returns [false, false,

true, true]

4. Short-circuit Operators

These operators are used to perform logical operations but stop evaluating as soon as the

result is determined.

 Short-circuit AND (&&):

result = (x > 0) && (y > 0); % Stops if the first condition is false

 Short-circuit OR (||):

result = (x > 0) || (y > 0); % Stops if the first condition is true

5. Logical Functions

MATLAB also provides built-in logical functions for more complex operations:

 all(): Returns true if all elements are true.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

49

result = all(A > 0); % Returns true if all elements in A are greater

than 0

 any(): Returns true if any element is true.

result = any(A > 0); % Returns true if any element in A is greater

than 0

 find(): Returns the indices of non-zero elements (true values).

indices = find(A > 2); % Finds the indices where A is greater than 2

Summary

Logical operations in MATLAB are essential for comparing values, making decisions, and

controlling program flow. These operations are widely used in conditional statements, loops,

and filtering data.

The basic logical operations in an expression are summarized in the following table:

The comparison operation its meaning

== equality

~= inequality

> greater than

< less than

>= greater than or equal to

<= less than or equal to

logical operations its meaning

& the logical and

| the logical OR

~ the logical negation
In Matlab a logical variable can take the values 1(true) or 0(false) with a small rule that

assumes that:

1) Any value equal to 0 will be considered false (= 0 false)

2) Any value other than 0 will be considered true (0 true).

The following table summarizes the operation of logical operations:

a b a & b a | b ~a

1 (true) 1(true) 1 1 0

1 (true) 0 (false) 0 1 0

0(false) 1 (true) 0 1 1

0 (false) 0 (false) 0 0 1

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

50

For example:
>> x=10;

>> y=20;

>> x < y % displays 1 (true)

ans =

 1

>> x <= 10 % displays 1 (true)

ans =

 1

>> x == y % displays 0 (false)
ans =

 0

>> (0 < x) & (y < 30) % displays 1 (true)

ans =

 1

>> (x > 10) | (y > 100) % displays 0 (false)
ans =

 0

>> ~(x > 10) % displays 1 (true)

ans =

 1

>> 10 & 1 % 10 is considered true therefore 1 & 1 = 1

ans =

 1

>> 10 & 0 % 1 & 0 = 1

ans =

 0

Example:

>> (3 == 5) & (3 == (2 + 1))

ans =

 0

>> (3 == 5) | (3 == (2 + 1))

ans =

 1

2.2 Matrix comparison:

In MATLAB, matrix comparison involves element-wise operations where matrices are compared to

each other or to scalar values. The result of these comparisons is a matrix of logical values (true or

false), where each element corresponds to the result of comparing the elements of the matrices at

the same position.

The comparison of vectors and matrices differs somewhat from scalars, hence the usefulness

of the two functions ‘isequal’ and ‘isempty’ (which allow to give a concise answer for

comparison).

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

51

Function Description

Isequal
tests whether two (or more) matrices are equal (having the same
elements everywhere). Returns 1 if so, and 0 otherwise.

Isempty
tests if a matrix is empty (contains no elements). Returns 1 if it is, and 0
otherwise.

To better perceive the impact of these functions follow the following example:

>> A=[5,2;-1,3] % create the matrix A

A =

 5 2

 -1 3

>> B=[5,1;0,3] % create the matrix B

B =

 5 1

 0 3

>> A==B % test whether A=B ? (1 or 0 depending on the position)

ans =

 1 0

 0 1

>> isequal(A,B) % Test if A and B are equal (the same)

ans =

 0

>> C=[] ; % Create the empty matrix C

>> isempty(C) % Test if C is empty (true = 1)

ans =

 1

>> isempty(A) % Test if A is empty (displays false = 0)

ans =

 0

3. Flow control structures

Flow control structures are instructions for defining and manipulating the order of execution

of tasks in a program. They offer the possibility to perform different treatments depending on

the state of the program data, or to perform repetitive loops for a given process.

Matlab has eight flow control structures, namely:

 if

 switch

 for

 while

 continue

 break

 try - catch

 return

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

52

We expose the first four : (if, switch, for and while)

3.1 The if statement:

The if statement is the simplest and most widely used flow control structure. It guides

the execution of the program according to the logical value of a condition.Its general syntax is

as follows:

if(condition) if (condition)

instruction_1 instruction set 1

instruction_2 or else

 . . . instruction set 2

Instruction_N end

end

If the condition is evaluated to true, the instructions between the if and the end will

be executed; otherwise, they will not be (or if an else exists, the instructions between the else

and the end will be executed). If it is necessary to check multiple conditions instead of just

one, you can use else if clauses for each new condition, and at the end, you can put an else in

case no condition has been evaluated as true. Here is the general syntax:

For example, the following program defines you according to your age:

>> age = input('Enter your age : '); ...

 if (age <2)

 disp('You are a fool')

 elseif (age <13)

 disp('You are a child')

 elseif (age < 18)

 disp ('You are an adolescent')

 elseif (age <60)

 disp ('You are unadulterated)

if (expression _1)

set of instructions 1
else if (expression_2)

set of instructions 2
....

else if (expression_n)

set of instructions n
else

set of instructions if all expressions were false
end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

53

 else

 disp ('You are an old man)

 end

As you can see, writing a Matlab program directly after the command prompt (the prompt >>)

is a bit unpleasant and annoying.

A more convenient method is to write the program to a separate file, and call that program (if

necessary) by typing the file name in the command prompt.

This approach is defined in Matlab by M-Files, which are files that can contain data, programs

(scripts) or functions that we develop.

To create an M-Files simply type the command edit, or simply go to the menu: File New M-

Files (or click on the icon).

 In any case an editing window like this will appear:

All you have to do is write your program in this window and save it with a name (for example:

‘Premier_Programme.m’). It is reported that the extension of the M-Files files is always ‘.m’.

Now, if we want to run our program, just go to the usual command prompt (>>) and then type

the name of our file (without the ‘.m’) like this:

>> Premier_Programme

And the program will start running immediately.

To return to the editing window (after closing it) simply enter the command :

>> edit Premier_Programme

Example:

Let’s create a program that finds the roots of a second-degree equation designated by:

ax2+bx+c=0. Here is the M-File that contains the program (it is saved with the name

'Equation2deg.m').

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

54

If we want to run the program, just type the name of the program:

>> Equation 2 of g

Enter the value of a : -2

Enter the value of b : 1

Enter the value of c : 3

Two solutions:

x1 =

 -1

x2 =

 1.5000

Thus, the program will be executed following the instructions written in its M-File. If an

instruction is terminated by a semicolon, then the value of the variable concerned will not be

displayed, but if it ends with a comma or a line break, then the results will be displayed.

Note: There is the predefined solve function in Matlab to find the roots of an equation (and

much more). If we want to apply it to our example, just write:

>> solve('-2*x^2+x+3=0','x')
years =

 -1

 3/2

3.2 The switch statement:

The switch statement executes groups of statements based on the value of a variable or

expression. Each group is associated with a case clause that defines whether or not this group

should be executed according to the equality of the value of this box with the evaluation result

of the switch expression. If not all cases have been accepted, it is possible to add an otherwise

clause that will be executed only if no box is executed.

% Programme de résolution de l’équation a*x^2+b*x+c=0

a = input ('Entrez la valeur de a : '); % lire a
b = input ('Entrez la valeur de b : '); % lire b
c = input ('Entrez la valeur de c : '); % lire c

delta = b^2-4*a*c ; % Calculer delta
if delta<0
disp('Pas de solution') % Pas de solution
elseif delta==0
 disp('Solution double : ') % Solution double
 x=-b/(2*a)
else
 disp('Deux solutions distinctes: ') % Deux solutions
x1=(-b+sqrt(delta))/(2*a)
 x2=(-b-sqrt(delta))/(2*a)
end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

55

Therefore, the general form of this instruction is:

Example:

x = input ('Enter a number: ') ;

switch(x)

 case 0

 par ('x = 0 ')

 case 10

 par('x = 10 ')

 case 100

 par('x = 100 ')

 otherwise

 par('x n'' is not s 0 or 10 or 100')
end

The execution will give:

Enter a number : 50

x is not 0 or 10 or 100

3.3 The for statement:

The for statement repeats the execution of a group of instructions a specified number of

times. It has the following general form:

vecteur The expression_vector corresponds to the definition of a vector: start: not: end or

start: end

The variable will go through all the elements of the vector defined by the expression, and for

each it will execute the group of instructions.

switch (expression)

case value_1

Instruction group 1

case value_2

Instruction group 2

. . .

case value_n

Instruction group n

otherwise

Package instructionswhere the boxes have failed

end

for variable = expression_vector

 instruction group

end

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

56

Example:

In the following table, we know three forms of the for statement with the Matlab result:

The

instruction for

 for i = 1 : 4
 j=i*2 ;
 disp(j)
end

for i = 1 : 2 :
4
 j=i*2 ;
 disp(j)
end

for i = [1,4,7]
 j=i*2 ;
 disp(j)
end

The resultat

of the

execution

 2
 4
 6
 8

 2
 6

 2
 8
 14

3.4 The while statement:

The while statement repeats the execution of a group of statements an indeterminate number

of times depending on the value of a logical condition. It has the following general form:

As long as the expression of while is evaluated to true, the instructions set will run in a loop.

Example:
1. a=1 ;

 while (a~=0)

 a = input ('Enter unnombre (0 to finish) : ') ;

 end

This program asks the user to enter a number. If this number is not equal to 0 then the loop

repeats, otherwise (if the given value is 0) then the program stops.

2. count = 1;

while count <= 5

disp(['Count is: ', num2str(count)]);

count = count + 1;

 end

 This program repeatedly displays the current value of the variable count while incrementing
it by 1 in each iteration, until count reaches 5. Specifically, it prints "Count is: " followed by
the current value of count.

while (condition)

 set of instructions

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

57

However, in its current form, the program does not interact with the user directly (e.g., it
doesn't ask for any input). If the intent is for the program to ask the user something, you
would need to modify it to include a prompt for user input, such as using input().

For example, if you want the program to ask the user for confirmation before incrementing
the counter:

count = 1;
while count <= 5
 disp(['Count is: ', num2str(count)]);
 input('Press Enter to continue...');
 count = count + 1;
end

In this modified version, the user is asked to press Enter to continue each time before the
counter increments.

Remark:

In MATLAB, you can easily replace a for loop with a while loop by handling the

initialization, condition, and increment manually. Here's an example to illustrate how this can

be done.

Example of a for loop in MATLAB:

a = 16; % Example value
x = a;
for i = 1:10 % Perform 10 iterations
 x = 0.5 * (x + a / x);
end
disp(x)

This is an implementation of Newton's method for finding the square root with 10 iterations
using a for loop.

Replacing the for loop with a while loop in MATLAB:

a = 16; % Example value
x = a;
i = 1; % Initialization of iteration counter
while i <= 10 % Perform 10 iterations
 x = 0.5 * (x + a / x);
 i = i + 1; % Increment the counter manually
end
disp(x)

Explanation:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

58

 Initialization: i = 1 initializes the counter.
 Condition: while i <= 10 runs the loop as long as the counter i is less than or equal to

10.
 Increment: i = i + 1 manually increments the counter at the end of each iteration.

This while loop will perform exactly the same task as the for loop, preserving the

functionality of the program.

 4. Summary the control structures:

MATLAB offers several flow control structures to manage the execution of code based on
conditions or for repetitive tasks. These include conditional statements (if, else, elseif), loops
(for, while), as well as error handling using try and catch. These structures are essential for
creating flexible, robust, and efficient programs.

We gives now a glimpse of:

1. break and continue Statements

 break: Exits the loop completely, even if the loop condition is still true.
 continue: Skips the current iteration and moves to the next iteration of the loop.
 Example (using break):

for i = 1:10
 if i == 5
 break; % Exit the loop when i equals 5
 end
 disp(i);
end

 Example (using continue):

for i = 1:10
 if mod(i, 2) == 0
 continue; % Skip the rest of the loop for even numbers
 end
 disp(i); % Display only odd numbers end

2. try and catch Statements

The try and catch block is used for error handling. If an error occurs in the try block, control is
passed to the catch block, allowing you to handle the error gracefully.

 Syntax:

try
 % Code that may cause an error

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

59

catch exception
 % Code to handle the error
end

 Example:

try
 A = [1, 2, 3];
 disp(A(4)); % This will cause an error because there is no 4th
element
catch exception
 disp('An error occurred:');
 disp(exception.message);
end

5. Summary exercise:

There are predefined functions in Matlab given in the table below. Let’s try to program them

(for a given vector V).

 function Description The program that simulates it

sum (V)
The sum of the elements of a
vector V

n = length(V);

sum = 0 ;

for i = 1 : n

sum=sum+V(i) ;

end

disp(sum)

prod (V)
The product of elements of a
vector V

n = length(V);

product = 1 ;

for i = 1 : n

product=product*V(i) ;

end

disp(product)

mean (V)
The average of the elements of a
vector V

n = length(V);

moyenne = 0 ;

for i = 1 : n

moyenne = moyenne+V(i) ;

end

moyenne = moyenne / n

diag (V)
Create a matrix with vector V in
the diagonal, and 0

n = length(V);

A = zeros(n) ;

for i = 1 : n

 A(i,i)=V(i) ;

end

disp(A)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

60

sort(V)
Order elements of vector V in
ascending order

n = length(V);

for i = 1 : n-1

 for j = i+1 : n

 if V(i) > V(j)

 tmp = V(i) ;

 V(i) = V(j) ;

 V(j) = tmp ;

 end

 end

end

disp(V)

6. The functions:

There is a difference in concept between functions in computer science or mathematics:

1. In computer science, a function is a routine (a sub-program) that accepts arguments

(parameters) and returns a result.

2. In mathematics a function f is a relationship that assigns to each value x no more than

one value f(x).

6.1 Creating a function in an M-Files:

Matlab contains a large number of predefined functions such as sin, cos, sqrt, sum, … etc. and
it is possible to create our own functions by writing their source codes in M-Files (with the
same function name) respecting the following syntax:

the

function

.

.

.

.

.

.

The arguments or the parametres

(entries)

 results

(entries)

r1
r2

rn

arg1
arg2

argn

function [r1, r2, …, rn] = nom_fonction (arg1, arg2, …, argn)

 % The body of the function
 . . .
 r1 = . . . % the value returned for r1
 r2 = . . . % The value returned for r2
 . . .
 rn = . . . % the value returned for rn

end % The end is optional

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

61

Or: r1...rn are the values returned, and arg1...argn are the arguments.

Example: Write a function that calculates the square root of a number by the Newton method

(view in the TP).

Solution:
>> edit

Execution:
>> x = root (9)

x =
 3

>> x = root (196)
x =
 14.0000

>> x = root ([16,144,9,5])
x =

 4.0000 12.0000 3.0000 2.2361

Remark:

Unlike a program (a script), a function can be used in an expression for example:

2* root (9)-1.

6.2 Comparison between a program is a function:

 program fonction

a = input('Enter a positive number: ');
x = a/2;
Precision = 6;
for i = 1:precision
 x = (x + a ./ x) / 2;
end
disp(x)

function r =root(number)
r = number /2;
Precision = 6;
for i = 1: Precision
 r = (r + number ./ r) / 2;
end

execution:
>> root
Enter a positive number: 16
 4

execution:
>> root (16)
 ans =
 4

one cannot write expressions such as:

>> 2* root + 4

you can write phrases like:

>> 2* root (x) + 4

function r =racine(numbre)

r = numbre/2;

precision = 6;

for i = 1:precision

 r = (r + numbre ./ r) / 2;

end

The root file. m

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

62

Exercice: As long as there are sums

We have already seen how to use a for loop to repeat several instructions. However, it was
necessary to know in advance how many times we wanted to repeat the loop. The keyword
while is used to execute a sequence of instructions until a condition is met.

1. Run the following script.

x = 1;
while x < 1000
x
x = 2*x;

end

What does it do? Did you understand the meaning of the keyword while?

Answer:

This program calculates the smallest power of two greater than one thousand.

2. Write a function cube(n) that returns the largest cube less than or equal to n.

Answer:

function r=cube(n)

i=0;

while i^3<=n

i=i+1;

end

r=(i-1)^3;

3. Write a function somme_carres(n) that returns the largest integer k satisfying

∑𝑖2 ≤ 𝑛

𝑘

𝑖=1

Answer:
function r=somme_carres(n)
i=0; S=0;
while S<=n
i=i+1;
S=S+i^2;
end

r=i-1;

Exercise: Sum of the first n natural numbers

Task:

Write two MATLAB scripts that calculate the sum of the first n

natural numbers (1, 2, 3, ..., n):

1. Using a for loop.

2. Using a while loop.

Formula:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

63

The sum of the first n natural numbers is:

Sum=1+2+3+⋯+n=n(n+1)2\text{Sum} = 1 + 2 + 3 + \cdots + n =

\frac{n(n+1)}{2}Sum=1+2+3+⋯+n=2n(n+1)

But for this exercise, you will calculate the sum manually using

loops.

1. Using a for loop

% Input: n is the number of terms

n = input('Enter a positive integer: ');

% Initialize the sum

sum_for = 0;

% For loop to calculate the sum

for i = 1:n

 sum_for = sum_for + i;

end

% Display the result

fprintf('Sum of the first %d natural numbers using for loop:

%d\n', n, sum_for);

2. Using a while loop

% Input: n is the number of terms

n = input('Enter a positive integer: ');

% Initialize the sum and the counter

sum_while = 0;

i = 1;

% While loop to calculate the sum

while i <= n

 sum_while = sum_while + i;

 i = i + 1;

end

% Display the result

fprintf('Sum of the first %d natural numbers using while loop:

%d\n', n, sum_while);

Steps for Students:

1. Run the code for different values of n (e.g., n = 5, n = 10, n

= 100).

2. Verify the results for both the for loop and the while loop.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

64

3. Compare the outputs from both programs to the theoretical formula

n(n+1)2\frac{n(n+1)}{2}2n(n+1).

This exercise helps you understand:

 How for and while loops work.

 How to control loop execution.

 How to use counters to manage loop conditions.

Exercices with Solution

Exercise 1:

Write a script in Matlab, that asks the user for a number, and then informs them whether

the number is positive or negative (ignore the case where the number is zero).

Solution of Exercise 1: Script to check if the number is positive or negative.

MATLAB Script:

% Ask the user for input

num = input('Please enter a number: ');

% Check if the number is positive or negative

if num > 0

 disp('The number is positive.');

elseif num < 0

 disp('The number is negative.');

end

Explanation:

 input('Please enter a number: ') prompts the user to input a number. The input is

stored in the variable num.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

65

 The if statement checks if num is greater than 0, and if so, it displays "The

number is positive."

 The elseif statement checks if num is less than 0, and if so, it displays "The

number is negative."

 We do not need to check for zero, as per the instructions.

Exercise 2:

Write a script in Matlab, that asks the user for two numbers and then informs them

whether their product is negative or positive (ignore the case where the product is

zero).

However, note: do not calculate the product of the two numbers.

Solution of Exercise 2: Script to check if the product of two numbers is positive or

negative.

MATLAB Script:

% Ask the user for two numbers

num1 = input('Please enter the first number: ');

num2 = input('Please enter the second number: ');

% Check the signs of the numbers and determine the product sign

if (num1 > 0 && num2 > 0) || (num1 < 0 && num2 < 0)

 disp('The product is positive.');

elseif (num1 > 0 && num2 < 0) || (num1 < 0 && num2 > 0)

 disp('The product is negative.');

end

Explanation:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

66

1. Input the numbers: The script prompts the user to enter two numbers using the

input function.

2. Check the signs:

o If both numbers are positive (num1 > 0 && num2 > 0) or both are negative

(num1 < 0 && num2 < 0), then their product will be positive.

o If one number is positive and the other is negative (num1 > 0 && num2 < 0 or

num1 < 0 && num2 > 0), then the product will be negative.

3. Avoid calculating the product: We don't explicitly compute the product; instead,

we use the signs of the individual numbers to determine the result.

This way, we follow the instruction to not calculate the product while still determining if

the product is positive or negative.

Exercise 3:

Write a script in Matlab, that asks the user for a number and then informs them whether

the number is positive or negative (this time include the case where the number is zero).

Solution of Exercise 3: Script to check if the number is positive, negative, or zero

MATLAB Script:

% Ask the user for a number

num = input('Please enter a number: ');

% Check if the number is positive, negative, or zero

if num > 0

 disp('The number is positive.');

elseif num < 0

 disp('The number is negative.');

else
disp('The number is zero.');

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

67

end

Explanation:

1. Input the number: The script prompts the user to enter a number using the

input function.

2. Check conditions:

o If the number is greater than zero (num > 0), it will display "The number is

positive."

o If the number is less than zero (num < 0), it will display "The number is

negative."

o If the number is exactly zero (else case), it will display "The number is

zero."

This script now correctly handles all three cases (positive, negative, and zero), as

required by the exercise.

Exercise 4:

Write a script in Matlab, that asks the user for two numbers and then informs them

whether the product is negative or positive (this time include the case where the

product could be zero).

However, note: do not calculate the product.

Note: To solve Exercise 4 in MATLAB, where you need to determine whether the

product of two numbers is positive, negative, or zero without actually calculating the

product, we can use the signs of the two numbers:

1. If both numbers are positive or both are negative, the product is positive.

2. If one number is positive and the other is negative, the product is negative.

3. If either number is zero, the product is zero.

Here’s the solution:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

68

Solution of Exercise 4: Script to check if the product of two numbers is positive,

negative, or zero.

MATLAB Script:

% Ask the user for two numbers

num1 = input('Please enter the first number: ');

num2 = input('Please enter the second number: ');

% Check the signs of the numbers to determine the product sign

if num1 == 0 || num2 == 0

 disp('The product is zero.');

elseif (num1 > 0 && num2 > 0) || (num1 < 0 && num2 < 0) disp('The

product is positive.');

elseif (num1 > 0 && num2 < 0) || (num1 < 0 && num2 > 0)

 disp('The product is negative.');

end

Explanation:

1. Input: The script prompts the user to input two numbers using the input function.

2. Check for zero: If either num1 or num2 is zero (num1 == 0 || num2 == 0), the

script immediately informs the user that the product is zero.

3. Check for positive or negative product:

o If both numbers are either positive or both negative ((num1 > 0 && num2

> 0) || (num1 < 0 && num2 < 0)), the product is positive.

o If one number is positive and the other is negative ((num1 > 0 && num2

< 0) || (num1 < 0 && num2 > 0)), the product is negative.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

69

This way, we do not calculate the product but deduce its sign based on the values of the

numbers.

Exercise 5

Write a script in Matlab, that asks the user for a child's age. Then, inform them of the

child's category:

 "Poussin" for 6 to 7 years old

 "Pupille" for 8 to 9 years old

 "Minime" for 10 to 11 years old

 "Cadet" for 12 years old and older

Can multiple equivalent scripts be created to achieve this result?

Solution to Exercise 5: In MATLAB, where we classify a child's age into categories:

MATLAB Script:

% Ask the user for the child's age

age = input('Please enter the child''s age: ');

% Check the age range and categorize the child

if age >= 6 && age <= 7

 disp('Category: Poussin');

elseif age >= 8 && age <= 9

 disp('Category: Pupille');

elseif age >= 10 && age <= 11

 disp('Category: Minime');

elseif age >= 12

 disp('Category: Cadet');

else

 disp('The age entered is outside the valid range.');

end

Explanation:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

70

1. Input: The script prompts the user to enter the child's age using input.

2. Age Categorization:

o If the age is between 6 and 7 (inclusive), the script categorizes the child as "Poussin".

o If the age is between 8 and 9 (inclusive), the child is categorized as "Pupille".

o If the age is between 10 and 11 (inclusive), the child is categorized as "Minime".

o If the age is 12 or older, the child is categorized as "Cadet".

3. Error Handling: If the age entered is less than 6, the script will inform the user that the

entered age is outside the valid range.

Can Multiple Equivalent Scripts Be Created?

Yes, you can create multiple equivalent scripts to achieve the same result, in different ways.

Here are a few variations:

1. Using switch statement (alternative approach):

MATLAB Script:

% Exercise 5: Alternative using switch-case

% Ask the user for the child's age

age = input('Please enter the child''s age: ');

% Using a switch-case structure with ranges

switch true

 case (age >= 6 && age <= 7)

 disp('Category: Poussin');

 case (age >= 8 && age <= 9)

 disp('Category: Pupille');

 case (age >= 10 && age <= 11)

 disp('Category: Minime');

 case (age >= 12) disp('Category: Cadet');

 otherwise

 disp('The age entered is outside the valid range.');

end

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

71

2. Using logical indexing (another variation):

MATLAB Script:

% Ask the user for the child's age

age = input('Please enter the child''s age: ');

% Define the age categories

categories = {'Poussin', 'Pupille', 'Minime', 'Cadet'};

age_limits = [6 8 10 12]; % Corresponding lower limits for categories

% Check which category the age falls into

if age >= 6 && age <= 7

 disp(['Category: ', categories{1}]);

elseif age >= 8 && age <= 9

 disp(['Category: ', categories{2}]);

elseif age >= 10 && age <= 11

 disp(['Category: ', categories{3}]);

elseif age >= 12

 disp(['Category: ', categories{4}]);

else

 disp('The age entered is outside the valid range.');

end

Conclusion:

 The solution using if-elseif is the simplest and most direct way.

 Using switch-case or logical indexing are valid alternatives and may suit different

coding styles or use cases.

 These alternative scripts can achieve the same result, but the choice of which one

to use depends on personal preference or specific coding requirements.

Exercise 6:

Test the following script in Matlab, for different values of the variable a. What does it do?

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

72

a=-25

if a>=0 then

disp(a)
else

disp(-a)

 end

Solution of Exercise 6: The MATLAB script you've provided for Exercise 6 is as follows:

MATLAB Script:

a = -25; % Set the value of a

if a >= 0

 disp(a) % If a is greater than or equal to zero, display a

else

 disp(-a) % If a is negative, display the positive value of a

end

What does this script do?

1. Assigns a value to a:

The value of a is set to -25 in this case.

2. Checks if a is greater than or equal to zero:

The script checks whether a is a non-negative number (a >= 0).

3. Branches based on the condition:

o If a is greater than or equal to zero (a >= 0), the script will display the

value of a using the disp(a) command.

o If a is less than zero (a < 0), the script will display the positive version of a

using disp(-a).

For a = -25:

 Since a is negative (a = -25), the else block will be executed, and the script will display

the positive value of a (i.e., 25).

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

73

Output:

Testing with Different Values of a:

Let’s test the script for different values of a.

1. If a = 10:

MATLAB Script:

a = 10; % Positive value of a

if a >= 0

 disp(a)

else

 disp(-a)

end

 Since a is positive (a = 10), the script will display 10.

Output:

3. If a = 0:

MATLAB Script:

a = 0; % Zero value of a

if a >= 0

 disp(a)

else

 disp(-a)

end

 Since a is zero (a = 0), the condition a >= 0 is true, so the script will display 0.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

74

Output:

3. If a = -100:

MATLAB Script:

a = -100; % Negative value of a

if a >= 0

 disp(a)

else

 disp(-a)

end

 Since a is negative (a = -100), the script will display 100 (the positive version of

a).

Output:

What does the script do in summary?

 The script displays the absolute value of a.

o If a is positive or zero, it displays a as is.

o If a is negative, it displays the positive version of a (i.e., it takes the

absolute value).

Key takeaway:

The script effectively outputs the absolute value of a, regardless of whether a is positive

or negative.

Exercise 7:

We demonstrate that the partial sum series

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

75

tends to +∞. The problem consists of finding the number of terms of this series, called

the harmonic series, needed to exceed a given arbitrary value:

1. Write a function function [s] = harmonic(n) that, for an integer n passed as a

parameter, calculates the sum:

2. Write a MATLAB script that:

o Asks the user for a value strictly greater than 1 and less than or equal to 8

(and keeps asking until the input satisfies the condition).

o Displays the number of terms needed to exceed this value and the result of

the sum (you can use the harmonic function defined above).

Solution of exercice 7:

1) Function harmonic(n):

The first task is to create a function that calculates the harmonic sum up to a given

integer n.

function [s] = harmonic(n)

 % Function to compute the harmonic sum up to n

 s = 0; % Initialize sum to zero

 for i = 1:n

 s = s + 1/i; % Add the reciprocal of i to the sum

 end

end

Explanation of the harmonic function:

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

76

 The function takes an integer n as input.

 It initializes the sum s to zero.

 It uses a for loop to iterate through all integers from 1 to n, adding 1i\frac{1}{i}i1 to the sum

for each iteration.

 Finally, it returns the sum s.

2) MATLAB Script to Find the Number of Terms:

Now, we will write a MATLAB script that repeatedly asks the user for a value between 1 and

8, and calculates the number of terms needed for the harmonic series to exceed that value.

% Script to find the number of terms needed to exceed a specified value

% Ask the user for a value strictly greater than 1 and less than or equal

to 8

while true

 value = input('Enter a value strictly greater than 1 and less than or

equal to 8: ');

 if value > 1 && value <= 8

 break; % Exit the loop if the value is valid

 else

 disp('The value must be greater than 1 and less than or equal to 8.

Please try again.');

 end

end

% Initialize variables

n = 1; % Start from the first term

sum = 0; % Initialize the harmonic sum

% Find the number of terms needed to exceed the value

while sum <= value

 sum = harmonic(n); % Compute the harmonic sum for the current n

 n = n + 1; % Increment the number of terms

end

% Display the result

fprintf('Number of terms required: %d\n', n - 1);

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

77

fprintf('Harmonic sum for %d terms: %.4f\n', n - 1, sum);

Explanation of the MATLAB Script:

1. Input Validation: The while true loop asks the user to input a value greater than 1

and less than or equal to 8. If the user enters a value that doesn't satisfy this

condition, it will keep asking for a valid input.

2. Initialization:

o n is initialized to 1 (starting from the first term).

o sum is initialized to 0 to begin summing the harmonic terms.

3. Loop to Find the Number of Terms:

o The while sum <= value loop keeps adding terms from the harmonic

series (sum = harmonic(n)) until the sum exceeds the input value.

o The number of terms n is incremented until the sum exceeds the given

threshold.

4. Displaying the Results: Once the sum exceeds the given value, the script prints the

number of terms and the corresponding harmonic sum.

Example Run:

If the user enters 3.5 as the target value:

Enter a value strictly greater than 1 and less than or equal to 8:

3.5

Number of terms required: 6

Harmonic sum for 6 terms: 2.45

This indicates that 6 terms are required for the harmonic sum to exceed 3.5.

Conclusion:

This solution allows the user to interactively find out how many terms of the

harmonic series are needed to exceed a given value between 1 and 8. The

function harmonic(n) computes the sum, and the script uses it to determine how

many terms exceed the specified value.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

78

7. Polynomials in MATLAB

 MATLAB provides powerful tools for working with polynomials, including the ability

to define polynomials, find their roots (zeros), and perform various operations like

addition, multiplication, and division.

7.1 Polynomials:

In MATLAB, polynomials can be represented using vectors, where each element

corresponds to a coefficient of the polynomial. The vector elements are ordered in

descending powers of the variable.

For example, the polynomial p(x)=2x3+3x2−x+5 can be represented as:

>> p = [2 3 -1 5]; % Polynomial 2x^3 + 3x^2 - x + 5

Here, the vector [2 3 -1 5] represents the polynomial 2x3+3x2−x+5 or 2x^3 + 3x^2 -

x + 5, with the first element being the coefficient of x3, the second element being the

coefficient of x2, and so on.

7.2 Polynomial Zeros:

You can find the roots (zeros) of a polynomial using the roots() function, which

calculates the values of xxx for which the polynomial equals zero.

For example, to find the zeros of the polynomial p(x)=2x3+3x2−x+5:

>> zeros_p = roots(p); % Finds the roots of the polynomial p.

This will return the values of xxx that satisfy p(x)= 0.

7.3 Polynomial Operations:

MATLAB allows you to perform several operations on polynomials, such as addition,

subtraction, multiplication, and division.

 Polynomial Addition and Subtraction: Polynomials can be added or subtracted

directly by adding or subtracting their coefficient vectors.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03

Lesson: Programming Tools (PT2) By: A. Leulmi

79

>> p1 = [2 3 -1 5]; % First polynomial.

>> p2 = [1 -4 2]; % Second polynomial.

>> sum_p = p1 + p2; % Polynomial addition.

>> diff_p = p1 - p2; % Polynomial subtraction.

 Polynomial Multiplication: Polynomials can be multiplied using the conv()

function, which performs the convolution of two polynomials.

>> prod_p = conv(p1, p2); % Multiplies p1 and p2,

 Polynomial Division: To divide one polynomial by another, use the deconv()

function, which returns both the quotient and the remainder.

>> [quotient, remainder] = deconv(p1, p2); % Divides p1 by p2.

Summary

In MATLAB, you can:

 Represent polynomials using coefficient vectors.

 Find the zeros (roots) of a polynomial using roots().

 Perform various polynomial operations like addition,

subtraction, multiplication (conv()), and division (deconv()).

These tools make MATLAB a powerful environment for working with

polynomials in numerical and symbolic computations.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

80

MATLAB
Chapter V: Graphs and data visualization in Matlab

Based on the principle that an image is better than a long speech, Matlab offers a
powerful visualization system that allows the presentation and graphical display of data
in an efficient and easy way.

In mathematics, consider a function 𝑓: ℝ → ℝ defined on ℝ. The graph of such a
function, denoted Gf, is defined as the set:

𝐺𝑓 = {(𝑥, 𝑓(𝑥)) ∣ 𝑥 ∈ ℝ}

The graph of a function is therefore the set of pairs (𝑥, 𝑦) ∈ ℝ × ℝ that satisfy the
equation:

𝑦 = 𝑓(𝑥)
Formally, the curve of f corresponds to the plot of this infinite set of points. In

practice, it is not possible to plot each of these points by hand. Therefore, we typically
obtain an approximation of the curve through graphical analysis, such as studying the
function’s growth, calculating tangents at points of interest, and determining
asymptotes.

Translation in Matlab:
The MATLAB approach is different from the mathematical approach used to

obtain the shape of the curve. In fact, the "point-by-point" approach is used. Even though
only a finite number of points can be represented, the computational power allows this
number to be large enough to provide a very good approximation of the desired curve.
The cloud of points obtained is then completed by connecting successive point pairs,
which results in a continuous plot.

Two functions are available to create such plots: plot2d and plot. While the plot
function can be used instead of plot2d, it is a version adapted from MATLAB (the paid
software, with MATLAB being the free version). The plot function is more limited: it does
not allow multiple curves to be plotted simultaneously. Therefore, it is better to use
plot2d, which is a function specific to MATLAB.

Explanation:
In MATLAB, the graphical representation of a function is achieved through the

"point-by-point" method. Although only a finite number of points can be computed, the
large number of points can provide an excellent approximation of the curve. When the
points are plotted, they are typically connected in a continuous manner, resulting in a
smooth curve.

 The plot2d function is a more flexible function for plotting in MATLAB, which
allows for multiple curves to be plotted on the same graph.

 The plot function, while available in many other software environments, is more
limited in MATLAB in terms of functionality compared to plot2d, specifically
when it comes to plotting multiple curves simultaneously.
4o mini

In this part of the course, we will present the basic principles necessary to draw
curves in Matlab.

Graphic Windows:
In addition to the main window and the editor, there is a third type of window:

graphic windows. These windows are named Figure followed by a number that
corresponds to their creation order.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

81

Multiple graphic windows can be opened simultaneously. Additionally, within the
same window, multiple plots can be overlaid by drawing them one after the other.

The Edit tab of a graphic window allows you to modify the title, add a legend, etc.
This tab also allows you to clear the figure (without closing the window).

To clear the content of all graphic windows simultaneously, the clf command is
executed in the console.

1. The plot function:
The plot function can be used with vectors or matrices. It draws lines recording definite

coordinate points in its arguments, and it has several forms:

 If it contains two vectors of the same size as arguments: it considers the values of the

first vector as the elements of the X-axis (the abscissas), and the values of the second

vector as the elements of the Y-axis (the ordinates).

Example:
>> A = [2, 5, 3,-2,0]

 A =
 2 5 3 -2 0

>> B = [-4, 0, 3, 1,4]
 B =
 -4 0 3 1 4

>> plot(A,B)

 If it contains a single vector as an argument, it considers the values of the vector as

the elements of the Y-axis (the ordinates), and their relative positions will define the

X-axis (the abscissas).

Example:
>> V =[2, 1, 6, 8,-3, 0,5]
V =
 2 1 6 8 -3 0 5

>> plot(V)

 If it contains a singl matrice as argument: it considers the values of each column as

the elements of the Y axis, and their relative positions (the row number) as the values

of the X axis. Therefore, it will give several columns (one for each column).

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

82

Example:
>> M = [0 -2 1;2 0 3;-3 3 -2;1 1 4]

 M =
 0 -2 1
 2 0 3
 -3 3 -2
 1 1 4

>> plot(M)

 If it contains two matrices as arguments:
it considers the values of each column of the first matrix as the elements of the X axis,

and the values of each column of the second matrix as the values of the Y axis.

Example:
>> K = [1 1 1;2 2 2;3 3 3;4 4 4]
K =
 1 1 1
 2 2 2
 3 3 3
 4 4 4

>> M = [0 -2 1;2 0 3;-3 3 -2;1 1 4]

 M =
 0 -2 1
 2 0 3
 -3 3 -2
 1 1 4

>> plot(K,M)

It is obvious that the higher the number of coordinates the more precise the curve

becomes. For example to draw the curve of the function y=sin(x) on [0, 2π] we can write:

The first figure
>> x=0:pi/3:2*pi;
>> y=sin(x);
>> plot(x,y)

The second figure
>> x=0:pi/12:2*pi;
>> y=sin(x);
>> plot(x,y)

Pas =𝜋
3⁄

Pas =𝜋
12⁄

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

83

2. Change the appearance of a curve:
 It is possible to manipulate the appearance of a curve by changing the color of the curve, the

shape of the coordinate points and the type of line connecting the points.

To do this, we add a new argument (which we can call a marker) of type string to the plot

function like this:

plot (x, y, ’marke’)
The content of the marker is a combination of a set of special characters collected in the

following table:

Example:

Let’s try to draw the function y = sin(x) for x = [0 ...2] with a pitch = /6.
 >> x=0:pi/6:2*pi;
 >> y=sin(x);

 Changing the marker produces different results, and here are some examples:

Curve color Point representation

 character its effect character its effect

b or blue blue curve . A point .

g or green green curve o A circle

r or red red curve x The symbole x

c or cyan between green and blue + The symbole +

m or magenta bright purplish red * A star *

y or yellow yellow curve s A square

k or black black curve d A diamond

curve Style v lower triangle

character its effect ^ Upper triangle

- online full < Left triangle

: dotted > triangle

-. A point dashed p Pentagram

-- dash h Hexagram

Color red, dotted and with

stars

Color black, dashed and

with rectangles sup

Blue color, full line and

with pentagrams

plot(x, y,'r:*')

plot(x, y,'black-.^')

plot(x, y,'pb-')

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

84

3. Annotation of a figure:
In a figure, it is better to put a textual description helping the user to understand the meaning

of the axes and to know the purpose or interest of the visualization concerned.

It is also very important to be able to point out locations or significant points in a figure by a

comment indicating their importance.

 To give a title to a figure containing a curve we use the function title like this:
>>title('titre of the figure')

 To give a title for the vertical axis of y-ordinates, we use the ylabel function like this:
>> ylabel('This is the Y-axis')

 To give a title for the horizontal x-axis, we use the xlabel function like this:
>> xlabel('This is the X-axis')

 To write a text (a message) on the graphic window at a positionindicated by the x and

y coordinates, we use the text function like this:
>> text(x, y, 'this point is important')

 To put a text on a position chosen manually by the mouse, we use the gtext function,

which has the following syntax:
>> gtext('This point is selected manually')

 To put a grid (grid), use the grid (or grid on) command. To remove it reuse the same

grid (or grid off) command.

Example:

Let’s draw the function: y=-2x3+x2-2x+4 for x varies from -4 to 4, with a pitch=0.5.

>> x=-4:0.5:4;

>> y=-2*x.^3+x.^2-2*x+4;

>> plot(x,y)

>> grid

>> title('Dessiner une courbe')

>> xlabel('l''axe des abscisses')

>> ylabel('l''axe des ordonnées')

4. Draw multiple curves in the same figure:
By default in Matlab, each new drawing with the plot command erases the previous one.

To force a newcurve to coexist with the previous curves, there are at least three methods:

4.1 The hold command:

The hold (or holdon) command activates the 'preserve old curves' mode which allows the

display of several curves in the same figure. To cancel its effect just rewrite hold (or hold

off).

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

85

For example, to draw the curve of the two functions cos(x) and sin(x) in the same figure,

we can write:

>> x=0:pi/12:2*pi;

>> y1=cos(x);

>> y2=sin(x);

>> plot(x,y1,'b-o')

>> hold on

>> plot(x,y2,'r-s')

4.2 Use plot with multiple arguments:

One can use plot with several couples (x,y) or triples (x ,y, ‘marker’) as arguments. For

example to draw the same previous functions one writes:

>> x=0:pi/12:2*pi;

>> y1=cos(x);

>> y2=sin(x);

>> plot(x,y1,'b:+',x,y2,'k:o')

To obtain several superimposed plots, simply enter them in the plot(x1,y1,x2,y2, ...)

function. You can also use the hold on function to overlay graphics.

Example:

The following two sets of instructions produce the same graph:
 >> x=0:.05:2*pi;
 >> y1=sin(3*x);
 >> y2=3*cos(3*x);

1- Using the function plot(x1,y1,x2,y2,...)

>> plot(x,y1,x,y2)

>> legend(’f(x)’,’derived from f(x)’)

>> grid on

2- Using the hold function

 >> plot(x,y1)

 >> grid on

 >> hold on

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

86

 >> plot(x,y2)

 >> legend(’f(x)’,’derived from f(x)’)

 >> hold off

4.3 Using matrices as argument for the plot function:

In this case several curves are obtained automatically for each column (or sometimes the

rows) of the matrix. This case has been presented earlier.

It is possible to distinguish them by putting a legend indicating the names of the curves.

 To do this, we use the legend function, as illustrated by the following example which

draws the curves of the two functions sin(x) and cos(x):

>> x=0:pi/12:2*pi;

>> y1=sin(x);

>> y2=cos(x);

>> plot(x,y1,'b--',x,y2,'-r')

>>legend('sinus','cosinus')

It is possible to move the legend (which is by default in the upper right corner) using the

mouse with a drag and drop.

4.4 Using the fplot function

As for the fplot function, it is written as follows: fplot(fon,lim) where fon indicates

the name of the function to be plotted in the form of a string (in quotes), and lim defines

the axis limits. For the limits, they must be written in square brackets with the following

syntax: lim = [Xmin Xmax Ymin Ymax]. To do this, we use the fplot function, as

illustrated by the following example, which draws the curves of the two functions sin(x):

>> f=’sin’;

>> fplot(f,[-2*pi 4*pi])

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

87

5. Manipulating the axes of a figure:

Matlab calculates by default the limits (minimum and maximum) of the X and Y axes and

automatically chooses the appropriate partitioning. But it is possible to control the aspect of

the axes via the axis command.

To define the axis limits it is possible to use this command with the following syntax:

 axis ([xmin xmax ymin ymax]) Or axis ([xmin,xmax,ymin,ymax])

With: xmin and xmax set the minimum and maximum for the x-axis.

 ymain andymaxdéfinize the minimum and maximum for the y-axis.

To return to the default display mode, we write the command: axis auto

Example:

f(x) =x3-2

>> x=-2:0.5:2;

>> y=x.^3-2;

>> plot(x,y)

 >> axis auto >> axis([0,2,-3,5])

Other options in the axis command include:

 To make the size of the two axes identical (the size and not the partitioning), we use

the axis square command. It is named as such because it adjusts the appearance of

the axes to be square-shaped.

 To make the partitioning of the two axes identical we use the axis equal command.

 To return to the default display and undo the changes we use the axis auto command.

 To make the axes invisible we use the axis off command. To make them visible again

we use the axis on command.

Remark:
For superimposed functions plotted using the fplot function, this involves creating a
matrix with the names of the desired functions.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

88

>> f=’[tan(x),sin(x),cos(x)]’;

>> fplot(f,2*pi*[-1 1 -1 1])

To obtain multiple graphs side by side, simply use the function subplot(m,n,p), which

divides the figure into an m by n grid of rectangular tiles. p indicates the position in the grid

that the following plot function will occupy in the instructions.

If you want to create a 2x2 grid for the graphs, the subplot function to write before each

function to be displayed is defined as follows:

>> t = 0:0.3:2*pi;

>> x = cos(t);

>> y = sin(t);

>> figure

>> subplot(2,1,1);

>> plot(t,x)

>> subplot(2,1,2);

>> plot(t,y)

Note: Several functions for plotting graphs are available for different scales.

plot(x,y) linear x-y polar(theta,r) polar

loglog(x,y) logarithmic x-y bar(x,y) bars

semilogx(x,y) logarithmic x, linear y stairs(x,y) staircase

semilogy(x,y) linear x, logarithmic y

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

89

Example:

>> x=-10:.5:10;

>> y=x.^2+x.*2+3;

>> subplot(2,2,1), polar(x,y), grid on

>> subplot(2,2,2), loglog(x,y),grid on

>> subplot(2,2,3), semilogx(x,y), grid on

>> subplot(2,2,4), semilogy(x,y), grid on

6. Other types of graphs:

The Matlab language not only allows the display of points to draw curves, but it also

offers the possibility of drawing bar graphs and histograms.

To draw a bar graph we use the bar function which has the same working principle as the plot

function.

Example:

1-

>> X=[2,3,5,4,6];

>> Y=[1,4,5,2,1];

>> bar(X,Y)

2-

>> subplot(3,1,1), bar(rand(7,8),’stacked’)

>> subplot(3,1,2), bar(-1:.5:1,rand(5),1)

>> subplot(3,1,3), bar(rand(4,2),.75)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

90

3-

>> x=-10:.5:10;
>> y=x.^2+x.*2+3;
>> stairs(x,y)

It is possible to change the appearance of the sticks, and there is the barh function that draws

the sticks horizontally, and the bar3 function that adds a 3D effect.

Among the very interesting drawing functions presented (lack of space) we can find: hist,

stairs, stem, pie, pie3, ...etc. (that we encourage you to study them).

We also point out that Matlab allows the use of a coordinate system other than the Cartesian

system such as the polar coordinate system (for more details look for functions compass,

polar and rose).

We summarise all this chapter in:

1. Basic Plotting

 Line Plot: This fundamental type of plot is ideal for visualizing data trends over a

continuous variable. For example:

x = 0:0.1:2*pi; % Generate a vector from 0 to 2π

y = sin(x); % Calculate the sine of each element in x

plot(x, y); % Plot y against x

title('Sine Function'); % Title for the plot

xlabel('x'); % X-axis label

ylabel('sin(x)'); % Y-axis label

grid on; % Enable grid lines

 Scatter Plot: Useful for displaying the relationship between two variables. For

example:

x = rand(1, 100); % Generate random x values

y = rand(1, 100); % Generate random y values

scatter(x, y); % Create a scatter plot

title('Scatter Plot Example');

xlabel('X Values');

ylabel('Y Values');

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

91

2. Multiple Plots

 Subplots: This feature allows you to display multiple plots in a single figure window.

For example:

subplot(2, 1, 1); % 2 rows, 1 column, first subplot

plot(x, y);

title('Sine Function');

subplot(2, 1, 2); % 2 rows, 1 column, second subplot

plot(x, cos(x));

title('Cosine Function');

3. Bar and Pie Charts

 Bar Graphs: Effective for comparing categorical data. For example:

categories = {'A', 'B', 'C', 'D'};

values = [10, 15, 7, 20];

bar(values); % Create a bar graph

set(gca, 'xticklabel', categories); % Set x-tick labels

title('Bar Graph Example');

 Pie Charts: Useful for showing proportions of a whole. For example:

data = [1, 2, 3, 4];

pie(data); % Create a pie chart

title('Pie Chart Example');

4. 3D Plots

 3D Surface Plot: Ideal for visualizing data in three dimensions. For example:

[X, Y] = meshgrid(-5:0.5:5, -5:0.5:5); % Create a grid of values

Z = sin(sqrt(X.^2 + Y.^2)); % Compute Z values

surf(X, Y, Z); % Create a 3D surface plot

title('3D Surface Plot');

xlabel('X-axis');

ylabel('Y-axis');

zlabel('Z-axis');

5. Customizing Plots

MATLAB provides extensive options for customizing plots, including:

 Adding Legends:

legend('sin(x)', 'cos(x)'); % Add a legend to identify plots

 Changing Colors and Markers:

plot(x, y, 'r--o'); % Red dashed line with circular markers

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

92

 Setting Axes Limits:

axis([0 2*pi -1 1]); % Set limits for the x and y axes

6. Exporting Figures

You can save your figures in various formats (e.g., PNG, JPEG, PDF) using the saveas

function:

saveas(gcf, 'myPlot.png'); % Save the current figure as a PNG file

7. Transfer figures to a Word document:
The print statement without options sends the figure to the default printer on the
computer.
The print function includes a wide range of options. To see all of them, enter the
command help print. Here are the most useful commands:

Option Explication Example

<nameofFile>

Save the figure under the defined name in the current

directory.
The default save format is Postscript. It is possible to add an

extension to the file name, which will determine the format in

which it is saved.

print exp3

-f<nameofFigure>

Specifies the name of the figure to be processed (prints if no

other option is specified).

print -f2

-dbitmap

Copies the open figure to the clipboard in bitmap format.
The bitmap format creates a photographic copy of the graphic in

question.

print -dbitmap

-dsetup

Let me know if you need further help!

print -dsetup

-dmeta

Copies the open figure to the clipboard in metafile format.
The metafile format creates a copy of the graphic, which, once

pasted into Word (see procedure following the table), can be

edited (layout, text, etc.).

print -dmeta

-djpeg<nn>

Saves in JPEG format with a quality of nn. print -djpeg90

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

93

To copy a metafile graphic into Word, go to the Edit menu → Paste Special.

A window will appear. If you have a metafile image in your clipboard, simply click on

Picture (Enhanced Metafile) and then click OK for the file to appear. Once the image is in

the Word document, right-click on the image and select Edit Picture to modify it.

To use more than one option at a time, follow this order:

print -tool -options filename.

8. Figure Editor:
options. Sometimes, it’s also necessary to try several options to determine which one

produces the best chart. This is why all the options covered in this section have a second way

to be applied to the chart: they can be selected through the menus and buttons on the figure

itself.

This allows us to modify them and see the results at our convenience without having to create

a new figure each time.

Simply save the figure at the end to keep these options. By default, the figure is saved in the

.fig format, which is Matlab’s figure format, but it’s also possible to save it in another format,

such as bitmap (.bmp).

It is also possible to copy the figure once it’s open without needing to use the commands.

Simply go to the Edit menu → Copy Figure. To choose the format in which the figure will

be saved, go to the Edit menu → Copy Options. In this preferences window, select the

desired format. See the table in the previous section for the properties of each format and

instructions on how to paste the copy into Word.

Using the buttons, you can create a new figure, open a figure, save the current figure, or print

it.

It’s also possible to modify the chart using the arrow icon. Once this button is pressed, simply

double-click on an item in the chart to open the Property Editor window. With this editor,

it’s possible to modify the selected object using the various options available. Here are some

examples of interesting properties of objects that we can modify through this editor.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

94

Exercice:

% experimental data
>> X=[3 5.6 7.2 9.9 11.22];
>> Y=[8 -4 -2 0 5.67];
>> plot(X,Y)

 % function

 >> X1=-20:3:20;

 >> Y1=X1.^3+2*X1.^2-8*X1+1;

 >> plot(X1,Y1)

>> f=’sin’;
>> fplot(f,[-2*pi 4*pi])

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°04

Lesson: Programming Tools (PT2) By: A. Leulmi

95

9. Symbolic Calculation in Matlab:
 Matlab provides a Symbolic Math Toolbox for performing symbolic
calculations. It allows you to perform algebraic manipulations, such as expanding,
simplifying, and solving expressions symbolically. This toolbox is essential for
handling exact mathematical expressions and solving problems analytically.
9.1 Calling the Symbolic Toolbox:

 To use symbolic capabilities in Matlab, first, you need to create symbolic
variables and expressions. You do this by using the syms command.
E.xample:
>> syms x y
>> f = x^2 + y^2;
Here, x and y are symbolic variables, and f is a symbolic expression.
9.2 Expanding and Transforming Expressions:

Matlab allows you to expand and simplify expressions using functions like expand()

and simplify(). These functions help manipulate symbolic expressions to a more
convenient form.

 Expanding an Expression:
>> g = (x + y)^2;
>> expanded_g = expand(g); % Expands (x + y)^2 to x^2 + 2xy + y^2

 Simplifying an Expression:

>> simplified_g = simplify(expanded_g); % Simplifies the expression
if possible.
9.3 Derivatives and Integrals of a Function:

Matlab can calculate symbolic derivatives and integrals using the diff() and int()
functions.

 Derivative of a Function:
>> f_prime = diff(f, x); % Derivative of f with respect to x.

 Integral of a Function:
>> integral_f = int(f, x); % Integral of f with respect to x.
9.4 Taylor Series Expansion of a Function:

The Taylor series expansion is a powerful tool for approximating a function around a
specific point (usually 0). In Matlab, this can be done using the taylor() function.

 Taylor Series Expansion:
>> taylor_expansion = taylor(f, x); % Expands f(x) around x = 0
To specify a different point for the expansion, you can add a second argument:
>> taylor_expansion_at_a = taylor(f, x, 'Order', 6, 'Point', 1); %
Expands around x = 1 up to the 6th order

Summary
Using Matlab's Symbolic Toolbox, you can:

 Define symbolic variables and expressions with syms.
 Perform algebraic manipulations, including expansion and

simplification.
 Calculate derivatives and integrals symbolically.
 Find the Taylor series expansion of functions.

These tools are essential for solving complex mathematical
problems analytically in Matlab.

Ferhat Abbas Setif-1 University, Department of Mathematics

 Level: 2nd year Maths

 TP N°03
Module : Programming Tools (OPM2)

96

Exercice N° 01 :

Let A = 10 and B = 12. Give the results of the following expressions:

>> C = (A>B) | ~(A==B) , D = A == B

>> ~((A-B > A) & (A+B == 22)) , ans & B, ans | 0 ; ans & 0

>> [4,2,-2:2:3] ~= 2*[2,1,-1,0,1]

>> [-1 2 ; 4 6 ; 3 -7] >= [2 2 ; -1 8 ; 4 -2]

>> isequal(2*ones(3),2+zeros(3))

>> isempty([4:1;-3:-1:-1;[]]) % cette matrice est-elle vide ?

Exercice N° 02 :

This program calculates the square root of a number using Newton's method.

1. Manually execute the program for a=16, a=5, a=169.

1) Remplacer l’instruction for par

l’instruction while en préservant la

fonctionnalité du programme.

2) Modify the program so that it applies to a vector

and not just a single number.

3) What is the impact on the program's result if

a value that is too small is chosen for the

variable precision (for example, precision =

3)?

Exercice N° 03 :

Here is a MATLAB program that finds the name of

the day of the week for a valid date.

1) Using this program, find the name of

the day for one of the following dates:
01/11/1954 05/07/1962

11/09/2001 01/03/2012

2) Find the day of your birthday.

3) Replace the switch statement with an if
statement while keeping the functionality.

4) Write a program that verifies the validity

of a date (day/month/year); for example,

the date 29/02/2009 is incorrect because

the year 2009 is not a leap year.

The function mod(a, b) calculates the remainder

of the integer division of a by b. For example:

mod(12, 3) = 0, mod(27, 4) = 3, mod(54, 4) = 2.

(If a = xb + y, then mod(a, b) = y.)

day = input('Enter the day : ');

month = input('Enter the month : ');
year = input('Enter the year : ');

if mod(year,4) == 0
DurationMonth =
[0,3,4,0,2,5,0,3,6,1,4,6];

else
DurationMonth =
[0,3,3,6,1,4,6,2,5,0,3,5];

end

nbrDay = year - 1900;
daynbr = daynbr + floor((daynbr -1)/4);
daynbr = daynbr + DurationMonth (month) + Day;
daynbr = mod(daynbr,7);

switch(daynbr)
 case 0 , disp('Sunday')
 case 1 , disp('Monday')
 case 2 , disp('Tuesday')
 case 3 , disp('Wednesday')
 case 4 , disp('Thursday')
 case 5 , disp('Friday')
 case 6 , disp('Saturday')
end

a = input('Enter a positive number: ');

x = a/2;

precision = 6;

for i = 1:precision

x = (x + a / x) / 2;

end

disp(x)

Ferhat Abbas Setif-1 University, Department of Mathematics

 Level: 2nd year Maths

 TP N°03
Module : Programming Tools (OPM2)

96

Exercice N° 04 :

The Collatz conjecture is the mathematical hypothesis that

assumes the sequence (to the right) always converges to the

value 1 (or more precisely the sequence: 4, 2, 1), even

though there is currently no proof for it.

 1) Find the Collatz sequence for the numbers: 5 and 3.
 2) Write a program that generates the Collatz sequence for a given number NNN.
 3) Transform this program into a function.

Exercice N° 05 :

1) Write a program that calculates the factorial of an integer n (n!).
2) Write a program that calculates the following two sums:

𝑛 > 0 (n is an integer.)
3) Using the mod function, which calculates the modulo (the remainder of the integer division),

write a function that can determine whether an integer a is prime or not.

(En utilisant la fonction mod qui calcule le modulo (le reste de la division entière), écrivez une

fonction qui peut indiquer si un nombre entier a est premier ou pas.)

Exercice N° 06 :

Let the following two functions be: (𝑥) = sin(𝑥 − 2) + 4

𝑔(𝑥) = −2𝑥3 + 𝑥2 − 3

1. Provide the necessary MATLAB instructions to plot the curve of the function f(x) with a

variation of x from 0 to 2π, and a step size of π/12. (Donnez les instructions Matlab nécessaires
pour tracer la courbe de la fonction f(x) avec une variation de x de 0 jusqu’à 2, et un pas =
/12.)

2. Provide the necessary MATLAB instructions to plot the curve of the function g(x) with a

variation of x from -5 to 5, and a step size of 0.2. (Donnez les instructions Matlab nécessaires

pour tracer la courbe de la fonction g(x) avec une variation de x de -5 jusqu’à 5, et un pas =

0.2.)

3. Suggest two methods to draw the curves of these functions on the same figure. (Proposez deux
méthodes pour dessiner les courbes de ces fonctions dans la même figure.)

4. How can you add a title to the figure and titles to both axes? (Comment faire pour donner un
titre pour la figure et un titre pour les deux axes ?)

5. How can you plot the curve of f(x) as a green dashed line with diamond-shaped markers? And

how can you plot the curve of g(x) as a blue dashed line with square-shaped markers?

(Comment faire pour dessiner la courbe de f(x) en pointillé vert avec des points en forme de
losanges ? et Comment faire pour dessiner la courbe de g(x) en tirets bleus avec des points en
forme de carrés ?)

The Collatz sequence
For a positive integer N (N>0) :

U0 = N

𝑈𝑛+1 =

3𝑈𝑛 + 1

if is even (𝑝𝑎𝑖𝑟)

𝑖f 𝑈𝑛 is odd (𝑖𝑚𝑝𝑎𝑖𝑟)

Ferhat Abbas Setif-1 University, Department of Mathematics

 Level: 2nd year Maths

 TP N°03
Module : Programming Tools (OPM2)

96

Exercice N° 07 : (optional exercise)

1) Create the function defined by:
2) Then plot its curve in the interval:

[−4,4]

Exercice N° 08 : (optional exercise.)

Write a MATLAB program in the form of a function called determinant, which calculates the

determinant of a matrix using Cramer's method, defined by the recursive formula:

∆𝑖,= (−1)𝑖+𝑗det(𝐴𝑖,𝑗) where Ai,j is the matrix obtained by eliminating the i-th row and the j-th column of

matrix A.

(Ecrivez un programme Matlab sous forme d’une fonction appelée déterminant, et qui calcule

le déterminant d’une matrice par la méthode de Cramer

définie par la formule récursive :

𝑜𝑢 ∆𝑖,𝑗= (−1)𝑖+𝑗det(𝐴𝑖,𝑗) et Ai,j est la matrice obtenue en

éliminant la i-ème ligne et la j-ème colonne de la matrice A.)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

99

>> C = (A>B) | ~(A==B) , D = A == B

>> ~((A-B > A) & (A+B == 22)) , ans & B, ans | 0 ; ans & 0

>> isempty([4:1;-3:-1:-1;[]])

Solution of TP N°03

Exercice 01:

C =

1

D =

0

ans =

1

ans =

1

ans =

0

>> [4,2,-2:2:3] ~= 2*[2,1,-1,0,1]

ans =

0 0 0 0 0

[4, 2, -2 :2 :3] = [4,2,-2,0,2]

2*[2 , 1, -1,0,1] = [4,2,-2,0,2]

ans =

0 1

1 0

0 0

>> isequal(2*ones(3),2+zeros(3)) 2*ones(3) 2+zeros(3) =

ans =

1

1
2* 1

1

1
1
1

1
1
1

0
2+ 0

0

0
0
0

0
0
0

2
2
2

2
2
2

2
2
2

ans =

1

>> [-1 2 ; 4 6 ; 3 -7] >= [2 2 ; -1 8 ; 4 -2]

A B (A>B) (A==B) ~(A==B) C

10 12 0 0 1 1

A==B D

0 0

(A-B > A) (A+B == 22) ((A-B > A) & (A+B == 22)) ~((A-B > A) & (A+B == 22))

0 1 0 1

ans B ans & B

1 12 1

ans ans | 0

1 1

ans ans & 0

1 0

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

100

Exercice 02:

1) Execution of the program:

For a = 16

For a = 5 For a = 169

a = 16 a = 5 a = 169

x = 8 x = 2.5000 x = 84.5000

precision = 6 precision = 6 precision = 6

i=1 x=(x+a/x)/2 i=1 x=(x+a/x)/2 i=1 x=(x+a/x)/2

 x=(8+16/8)/2

x=5

 x=(2.5000+5/2.5000)/2

x=2.2500

 x=(84.5000+169/84.5000)/2

x=43.2500

i=2 x=(x+a/x)/2 i=2 x=(x+a/x)/2 i=2 x=(x+a/x)/2

 x=(5+16/5)/2

x=4.1000

 x=(2.2500+5/2.2500)/2

x=2.2361

 x=(43.2500+169/43.2500)/2

x=23.5788

i=3 x=(x+a/x)/2 i=3 x=(x+a/x)/2 i=3 x=(x+a/x)/2

 x=(4.1000+16/4.1000)/2

x=4.0012

 x=(2.2361+5/2.2361)/2

x=2.2361

 x=(23.5788+169/23.5788)/2

x=15.3731

i=4 x=(x+a/x)/2 i=4 x=(x+a/x)/2 i=4 x=(x+a/x)/2

 x=(4.0012+16/4.0012)/2

x=4.0000

 x=(2.2361+5/2.2361)/2

x=2.2361

 x=(15.3731+169/15.3731)/2

x=13.1832

i=5 x=(x+a/x)/2 i=5 x=(x+a/x)/2 i=5 x=(x+a/x)/2

 x=(4.0000+16/4.0000)/2

x=4.0000

 x=(2.2361+5/2.2361)/2

x=2.2361

 x=(13.1832+169/13.1832)/2

x=13.0013

i=6 x=(x+a/x)/2 i=6 x=(x+a/x)/2 i=6 x=(x+a/x)/2

 x=(4.0000+16/4.0000)/2

x=4.0000

 x=(2.2361+5/2.2361)/2 x=(13.0013+169/13.0013)/2

x=13.0000 x=2.2361

disp(4.0000) disp(2.2361) disp(13.0000)

2) Replace the if statement with the while statement:

a = input('Entrez un nombre positif: ');

x = a/2;

precision=6;

i=1 ;

while i <= precision

x = (x + a / x) / 2;

i=i+1 ;

end

disp(x)

O We need to create the variable i

and ensure it is incremented in each

iteration, because, unlike the if

statement, the while statement does

not automatically increment i.

We set the condition i <= precision

to indicate the stopping criterion

for the loop.

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

101

3) Modify the program so that it is applicable to vectors:

a = input('Entrez un vecteur de nombres positifs: ');

x = a / 2;

precision = 6;

for i = 1:precision

x = (x + a ./ x)/ 2;

end

disp(x)

The only thing to modify is the addition of
element-wise operations instead of regular
operations.
Instead of using val1 / val2, you use val1 ./ val2.

4) The variable precision, as its name suggests, determines the precision of the calculation. If

we choose a value that is too small, the program may return a value for the square root that

is close to the real root, but not close enough.

We can observe this in the example where a=169, because if we stop after 3 iterations

(precision=3), we get x = 15.3731, which is not exactly the true value. (Therefore, we need to

allow enough iterations for the program to approach the root sufficiently).

So, the larger the value of precision, the closer the result will be to the actual square root.

102

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

Exercice 03 :

1) Using this program, find the day of the week for one of the following dates:

01/11/1954 05/07/1962

11/09/2001 01/03/2012

The Matlab program 01 /11 /1954 05 /07 /1962 11 /09 /2001 01 /03 /2012

day = input('Enter the day : '); day = 01 day = 05 day = 11 day = 01

month = input('Enter the
month

: '); month = 11 month = 07 month = 09 month = 03

year = input('Enter the year: '); year = 1954 year = 1962 year = 2001 year = 2012

if mod(year,4) == 0
DurationMonth=[0,3,4,0,2,5,0,3,6,1,4,6];
else
DurationMonth=[0,3,3,6,1,4,6,2,5,0,3,5];
end

1954 = 488*4+2
mod(1954,4) = 2 ≠ 0
Then: DurationMonth =

0,3,3,6,1,4,6,2,5,0,3,5

1962 = 490*4+2
mod(1962,4) = 2 ≠ 0
Then: DurationMonth =

0,3,3,6,1,4,6,2,5,0,3,5

2001 = 500*4+1
mod(2001,4) = 1 ≠ 0
Then: DurationMonth =

0,3,3,6,1,4,6,2,5,0,3,5

2012 = 503*4
mod(2012,4) = 0

Then: DurationMonth =
0,3,4,0,2,5,0,3,6,1,4,6

daynbr = year - 1900; daynbr = 1954-1900 = 54 daynbr = 1962-1900 = 62 daynbr = 2001-1900= 101 daynbr = 2012-1900= 112

daynbr = daynbr +
floor((daynbr -1)/4);

54 + floor((54-1)/4) =
54 + floor(53/4) =

54 + 13 = 67

62 + floor((62-1)/4) =
62 + floor(61/4) =

62 + 15 = 77

101 + floor((101-1)/4) =
101 + floor(100/4) =

101 + 25 = 126

112 + floor((112-1)/4) =
112 + floor(111/4) =

112 + 27 = 139

daynbr = daynbr + DurationMonth(month)
+ day;

67 + DurationMonth (11)

+ 1 = 67 + 3 + 1 = 71
77 + DurationMonth (7)

+ 5 = 77 + 6 + 5 = 88
126 + DurationMonth (9)
+ 11 = 126 + 5 + 11 =

142

139 + DurationMonth (3)

+ 1 = 139 + 4 + 1 = 144

daynbr = mod(daynbr,7);

71 = 7*10+1 then:
daynbr = mod(71,7)

daynbr = 1

88 = 7*12+4 then:
daynbr = mod(88,7)

daynbr = 4

142 = 7*20+2 then:
daynbr = mod(142,7)

daynbr = 2

144 = 7*20+4 then:
daynbr = mod(144,7)

daynbr = 4
switch(daynbr)

case 0 , disp('Sunday')
case 1 , disp('Monday')
case 2 , disp('Tuesday')
case 3 , disp('Wednesday')
case 4 , disp('Thursday')
case 5 , disp('Friday')
case 6 , disp('Saturday')

end

Monday

Thursday

Tuesday

Thursday

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

103

if (daynbr == 0)
disp(' Sunday ')

elseif (daynbr == 1)
disp(' Monday ')

elseif (daynbr == 2)
disp(' Tuesday ')

elseif (daynbr == 3)
disp('Wednesday')

elseif (daynbr == 4)
disp('Thursday')

elseif (daynbr == 5)
disp(' Friday ')

else
disp('Saturday')

end

switch(daynbr)
case 0 , disp('Sunday')
case 1 , disp('Monday')
case 2 , disp('Tuesday')
case 3 , disp('Wednesday')
case 4 , disp('Thursday')
case 5 , disp('Friday')
case 6 , disp('Saturday')
end

day = input('Enter the day : ');
month = input('Enter the month : ');
year = input('Enter the year : ');

limitMonth = [31,28,31,30,31,30,31,31,30,31,30,31];

if mod(year,4)==0

limitMonth(2)=29;
end

Check if a date is a leap year. If so, then

month 2 (February) will have 29 days.

Validyear = year > 0;
Validmonth = (month > 0) & (month <= 12);
Validay = (day > 0) & (day <= limitMonth(month));

if (Validay & Validmonth & Validyear)

disp(' Valid Date ')
else

disp(' Incorrect Date ')
end

the months of the year The limites

2) Find the day of your birthday. (Depends on the student's choice)

3) Replace the switch statement with the if statement while keeping the functionality.

4) Writing a program that checks the accuracy of a date (day/month/year):

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

104

% Conjecture de Collatz

n = input('Enter a positive integer: ');

while n ~= 1

if ceil(n/2) == n/2 % Test if n is even

n = n/2;

else

n = 3*n+1;

end

disp(n)

end

Exercice 04:

1) Find the Collatz sequence for the numbers: 5 and 3.

For N = 5

U0=N=5 U1=3*5+1 U2=16/2 U3=8/2 U4=4/2 U5=2/2 … … … U∞

5 16 8 4 2 1 … 4 2 1

For N=3

Convergence of the sequence to

the sequence 4,2,1, so we stop

here after 5 iterations.

U0=N=3 U1=3*3+1 U2=10/2 U3=3*5+1 U4=16/2 U5=8/2 U6=4/2 U7=2/2

3 10 5 16 8 4 2 1

2) Write a program that generates the Collatz sequence for a given number N:

4) Transform the program into a function:
 This function takes a number N as input and returns a vector V containing the Collatz
sequence as output.

For a positive integer N (N>0) :
U0 = N

𝑈𝑛+1 =
𝑈𝑛

3𝑈𝑛 + 1
2 if 𝑈𝑛 is even

𝑖f 𝑈𝑛 is odd

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

105

𝑘=1

n = input('Enter a positive integer: ');

 fact = 1 ;

for i = 1:n

fact = fact*i ;

end

fact % write the value of fact

function P = isOdd(a)

P = 1;

i=2;

while i<=sqrt(a) & P

if mod(a,i) == 0

P = 0;

end

i=i+1;

end

The expression

(while i<=sqrt(a) & P)

Can be replaced by:

(while i < a & P)

It becomes more readable but less efficient.

Exercice 05 :

1) The program that calculates the factorial of n:

2) The program that calculates the sum ∑𝑛 1 :

𝑘=1 𝑘

n = input('Enter

 H = 0 ;

for k = 1:n

H = H+1/k ;

 a positif integer : ');

We could have written

H = sum(1./[1:n]) ;

end

disp(H)

3) The program that calculates the sum ∑𝑛

(−1)𝑘

𝑘2 :

4) The program that indicates whether a number is prime or not:

The program consists of dividing the number n by all numbers smaller than it (or by its square root for
efficiency). If it finds a divisor (remainder of the division = 0), then the number is not prime, and the loop is
stopped.
Otherwise, if no divisor is found for n, it will be considered prime.

n = input('Enter a positive integer:'); H = 0

;

for k = 1:n

H = H+(-1)^k/k^2 ;

end

disp(H)

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

106

Exercice 06:

1) Plot the graph of the function f(x):
>> x = 0:pi/12:2*pi;

>> f = sin(x-2)+4;

>> plot(x,f)

2) Plot the graph of the function g(x):
>> x = -5:0.2:5;

>> g = -2*x.^3+x.^2-3;

>> plot(x,g)

3) To plot both curves at the same time, you can do:

 Use the command hold on as follows:
>> x1 = 0:pi/12:2*pi;

>> f = sin(x1-2)+4;

>> plot(x1,f)

>> hold on

>> x2 = -5:0.2:5;

>> g = -2*x2.^3+x2.^2-3;

>> plot(x2,g)

>> hold off

 Use four arguments with the plot function as follows:
>> x1 = 0:pi/12:2*pi;

>> f = sin(x1-2)+4;

>> x2 = -5:0.2:5;

>> g = -2*x2.^3+x2.^2-3;

>> plot(x1,f,x2,g)

4) To add titles, simply write:
>> title(' The title of the figure ')

>> xlabel(' The title of the x-axis ')

>> ylabel(' The title of the y-axis ')

5) Pour dessiner la courbe de f(x) en pointillé vert avec des points en forme de losanges on écrit :
>> x = 0:pi/12:2*pi;

>> f = sin(x-2)+4;

>> plot(x, f, ':gd')

6) Pour dessiner la courbe de g(x) en tirets bleus avec des points en forme de carrés on écrit :
>> x = -5:0.2:5;

>> g = -2*x.^3+x.^2-3;

>> plot(x, g, 'b--s')

Ferhat Abbas Setif-1 University, Department of Mathematics

Level: 2nd year Maths Chapter N°03 and 04

Lesson: Programming Tools (PT2) By: A. Leulmi

107

Création des abscisses

Calc

dete

ulate the determinant

sub matrix sousMat
Calc

du so

sousMat is the matrix

A without the i-th row

and la j-th colomn

sous

sans

colo

ulate (-1)i+j Calc

=1, then the determinant is a1,1 If n

Exercice 07 :

−𝑥2 − 4𝑥 − 2 , 𝑠𝑖 𝑥 < −1

1) Creation of the function defined by: 𝑦 = |𝑥| , 𝑠𝑖 |𝑥| ≤ 1

2 − 𝑒√𝑥−1 , 𝑠𝑖 𝑥 > 1

1) Plot its curve in the interval:]-4, 4[
>> x = -4:0.2:4;

>> N = length(x);

>> for i=1:N

y(i)=f(x(i));

end

>> plot(x,y)

Exercice 07 :
 The function that calculates the determinant using Cramer's recursive method is:

function d = determinant(A)

n = size(A,1); % The nombre of line/colomns

if n == 1

d = A(1,1);

else

i = 1;

d = 0;

for j=1:n

c=(-1)^(i+j);

sousMat=A;

sousMat(i,:)=[];

sousMat(:,j)=[];

sousDet=determinant(sousMat);

d=d+A(i,j)*c*sousDet;

end

end

ulate the sum of the
rminants of the
submatrices according to the formula

Creation of the ordinates

Plot the function

function y = f(x)

if (x < -1)

y = -x^2-4*x-2;
elseif (x > 1)

y = 2-exp(sqrt(x-1));
else

y = abs(x);
end

Command Catalogue:

106

Nom Fonction Description ou Commentaire

General Functions

(Fonctions générales)

Aide Help Matlab Help (Aide de Matlab)
Démonstrations demo List of demonstrations available in Matlab regarding its

functionality.
(Liste des démonstrations disponible dans Matlab quant à son
fonctionnement)

Variables who

whos

Name the variables and provide the size of the memory space
occupied.
(Nomme les variables ainsi que donne la grandeur de l’espace
mémoire occupé)

Recherche lookfor Find all functions containing the searched word.
(Trouver toutes les fonctions contenant le mot recherché)

Dimensions matrices size Dimensions of the matrix. (Dimensions de la matrice)

Clear clear Clear the current workspace.
 (Efface l’espace de travail courant)

Quitter quit, exit Exit Matlab. (Met fin à Matlab)

Simple calculations

(Calculs simples)

Addition - Addition

Subtraction + Soustraction

Multiplication * Multiplication

Division / Division

Powers ∧ Puissance

Powers of e exp(x) Puissance de e

Natural Logarithm log(x) Logarithme naturel (ln)

Logarithm to base 2 log2(x) Logarithme en base 2

Logarithm to base 10 log10(x) Logarithme en base 10 (commun)

Square root sqrt(x) Racine carrée

Roots roots(x) Produit une matrice contenant les racines de x

Sinus sin(x) Sinus

 Inverse of sinus asin(x) Inverse du sinus

Secant sec(x) Sécante

Hyperbolic sine sinh(x) Sinus hyperbolique

Inverse of hyperbolic Sine asinh(x) Inverse du sinus hyperbolique

Cosinus cos(x) Cosinus

Inverse of cosinus acos(x) Inverse du cosinus

Cosecant csc(x) Cosécante

Hyperbolic cosine cosh(x) cosinus hyperbolique

Inverse of hyperbolic
cosine

acosh(x) Inverse du cosinus hyperbolique

Tangent tan(x) Tangente

Cotangent cot(x) Cotangente

Command Catalogue:

107

Hyperbolic Tangent tanh(x) Tangente hyperbolique

Inverse tangent atan(x) Inverse de tangente

Inverse of tangent atan2(x) Inverse tangent in the 4th quadrant.

 (Inverse de tangente dans le 4e quadrant)

(-pi ≤ ATAN2(Y,X) ≤<= pi)

π pi The number pi

(le nombre pi)

Infinit inf Infinit

Command Catalogue:

108

Nom Fonction Description ou Commentaire

Matrices

(Matrices)

Addition a + b Element-wise addition

(Addition élément par élément)

Soustraction a - b Element-wise division

(Division élément par élément)

Multiplication matricielle a * b Standard matrix multiplication where:

(Multiplication matricielle standard où)

c(i, j) = ∑n a(i, k)b(k, j)
 k=1

Multiplication de tableau a .* b Element-wise multiplication

(Multiplication élément par élément)

Division matricielle de

droite

a / b Right matrix division defined by a * inv(b) where

inv(b) is the inverse of b.

(Division matricielle de droite définie par a * inv(b) où

inv(b) est l’inverse de b)

Division de tableau de

droite

a ./ b Element-wise division of a by b.
(Division de a par b élément par élément)

Division de matricielle de

gauche

a \ b Left matrix division defined by inv(a) * b where inv(a) is

the inverse of a.
(Division matricielle de gauche définie par inv(a) * b où

inv(a) est l’inverse de a)

Division de tableau de

gauche

a .\ b Element-wise division of b by a.
(Division de b par a élément par élément)

Puissance a .∧ b Element-wise exponential of a to the power of b.

(a exponentiel de b, élément par élément)

Identité eye(m) Produce an identity matrix of size m × m.
 (Produit une matrice identitée m × m)

Zeros zeros(m,n) Produce an m × n matrix where all the entries are 0.

(Produit une matrice m × n où toutes les données sont 0)

Un ones(m,n) Produce an m × n matrix where all the entries are 1.

(Produit une matrice m × n où toutes les données sont 1)

Hasard rand(m,n) Produce an m × n matrix where all the entries are randomly

selected.

(Produit une matrice m × n où toutes les données sont

choisies au hasard)

Déterminant det(A) Give the determinant of the matrix.

(Donne le déterminant de la matrice)

Transposé A’ Transpose the matrix. (Transposé la matrice)

Réduction rref(A) Reduce the matrix using the Gauss-Jordan method (Be

careful with singular matrices).

(Réduit la matrice par la méthode de Gauss-Jodan (Attention

aux matrices singulières))

Inverse int(A) Inverse of matrix A (Be careful with singular matrices).
(Inverse de la matrice A (Attention aux matrices singulières))

Command Catalogue:

109

Somme sum(A) Sum of the columns of matrix A.
(Somme des colonnes de la matrice A)

Rang rank(A) Evaluate the number of linearly independent rows and

columns.

(Évalue le nombre de rangée et de colonnes linéairement

indépendantes)

Norme norm(A) Calculate the norm of the matrix.

(Produit la norme de la matrice)

Diagonalisation diag(A) Diagonalize the matrix.
(Diagonalise la matrice)

Matrice triagulaire infé-

rieure

tril(A) Allows obtaining the lower triangular part of a matrix.

(Permet d’obtenir la partie triangulaire inférieure d’une

matrice)

Matrice triagulaire supé-

rieure

triu(A) Allows obtaining the upper triangular part of a matrix.

(Permet d’obtenir la partie triangulaire supérieure d’une ma-

Trice)

Logarithme d’une matrice logm(A) Calculate the logarithm of matrix A.
(Effectue le logarithme de la matrice A)

Exponentiel d’une ma-

trice

expm(A) Express the matrix as a power of the constant e.

(Met la matrice comme puissance de la constante e)

Racine carrée d’une ma-

trice

sqrtm(A) Calculate the square root of the matrix.
(Effectue la racine carrée de la matrice)

Fonction d’une matrice funm(A, fonc-

tion)

Apply the function to the matrix.

(Effectue la fonction de la matrice)

Valeurs propres eig(A) Return the eigenvalues of the square matrix A.

(Renvoie les valeurs propres (eigenvalues) de la matrice

carrée A)

Coefficient polynome ca-

ractéristique

poly(A) Return the coefficients of the characteristic polynomial

associated with matrix A.
(Renvoie les coefficients du polynôme caractéristique associé

à la matrice A)

Command Catalogue:

110

Nom Fonction Description ou Commentaire

Graphics

(Graphiques)

Tracé d’une courbe plot(x,y) Allows plotting a curve according to the matrix X by Y.

(Permet de tracer une courbe selon la matrice X par Y)

Tracé d’une courbe fplot(fon, lim) Allows plotting a curve according to the function fon with

axis limits lim.

(Permet de tracer une courbe selon la fonction fon avec les

limites d’axes lim)

Identification axe X xlabel(texte) Create a label for the X-axis. (Produit une étiquette de l’axe

des X)

Identification axe Y ylabel(texte) Create a label for the Y-axis.

(Produit une étiquette de l’axe des Y)

Titre title(texte) Create a title for the graph.

(Produit un titre au graphique)

Légende legend

(fon1,fon2,pos)
Add a legend where fon1, fon2, etc., represent the

functions and specify the position where the legend

is placed in the graph. (Met une légende où fon1,

fon2, . . .représentes les fonctions et pos la position où

la légende se place dans le graphique)
Grille grid Grid the graph according to the chosen scale.

(Quadrille le graphique selon l’échelle choisie)

Texte positionné

d’avance

text(x,y,’mots’) Position the text 'mots' at coordinates x and y.

(Positionne en x et y le texte ’mots’)

Texte positionné manuel-

lement

gtext(’mots’) Manually position the text 'mots' while the graph is being

executed.

(Positionne le texte ’mots’ manuellement lors de

l’exécution du graphique)

Axes axis Several axis options are available.

(Plusieurs options d’axes sont offertes)
Tracés superposés hold on ;

hold off
Allows overlaying graphs with hold on, and then

stops the overlay with hold off.

(Permet de superposer les graphiques avec hold on,

puis arrête la superposition avec hold off)
Tracés côte à côte subplot(m,n,p) Place multiple graphs on the same figure.

(Place sur une même figure plusieurs graphiques)

Échelle logarithmique loglog(x,y) Plot a graph with a logarithmic scale.

(Trace un graphique avec une échelle logarithmique)

Échelle

semi-logarithmique en X

semilogx(x,y) Plot a graph with a semi-logarithmic scale on the x-

axis.

(Trace un graphique avec une échelle semi-

logarithmique en x)
Échelle

semi-logarithmique en Y

semilogy(x,y) Plot a graph with a semi-logarithmic scale on the y-axis.

(Trace un graphique avec une échelle semi-logarithmique

en y)

Command Catalogue:

111

Échelle polaire polar(theta,r) Plot a graph with a polar scale.

(Trace un graphique avec une échelle polaire)

Barres bar(x,y) Plot a graph with bars.

(Trace un graphique avec des barres)
Escalier stairs(x,y) Plot a stair-step graph.

(Trace un graphique en escalier)

Complex numbers

(Nombres complexes)

Nombre complexe a+bi

a+b*j
Define a complex number a + bi.

(Définit un nombre complexe a+bi)
Fonction complexe complex(a,b) Produce a complex number a + bi.

(Produit un nombre complexe a+bi)

Partie réelle real(x) Return the real part of a number.

(Renvoie la partie réelle d’un nombre)

Partie imaginaire imag(x) Give the imaginary part of the number x.

(Donne la partie imaginaire du nombre x)

Semestre : 03

Unité d'enseignement: Méthodologique

Matière : Outils de Programmation 2

Crédits : 3

Coefficient : 1

Objectifs de l'enseignement : Donner aux étudiants les éléments fondamentaux pour lá

maitrise d'outils de programmation en s'appuyant sur des langages à usage scientifique et

technique.

Connaissances préalables recommandées : Algorithmique, structures de données et

langages de programmation.

Contenu de la matière :

Chapitre 1: Prise en Main

Démarrage et aide variable - Variables - Répertoire de travail - Sauvegarde de

l'environnement du travail - Fonctions et commandes.

Chapitre 2: Les nombre en Matlab avec licence ou Scilab

Entiers naturels - Représentation des réelles - Nombres complexe.

Chapitre 3: Vecteurs et Matrices

Opérations sur les vecteurs et les Matrices - Fonctions mathématiques élémentaires.

Chapitre 4: Eléments de programmation

Script - Fonction - Boucle de contrôle - Instruction conditionnelle.

Chapitre 5: Polynômes

Polynômes en Matlab avec licence ou Scilab - Zéros d'un polynôme - Opérations sur les

polynômes.

Chapitre 6: Graphisme en Matlab avec licence ou Scilab

Affichage des courbes en dimension deux et dimension trois - Graphe d'une fonction –

Surface Analytique.

Chapitre 7 : Calcul symbolique

Appel de la toolbox symbolique - Développement et mise en fonction d'une expression -

Dérivée et primitive d'une fonction - Calcul du développement limité d'une fonction.

Mode d'évaluation : Examen (60%), contrôle continu (40%)

Références
o Calcul scientifique avec Matlab, Jonas-Koko, Ellipses.

o Introduction au Matlab, J. T. Lapresté, Ellipses.

Semester: 03

Teaching Unit: Methodological

Course: Programming Tools 2

Credits: 3

Coefficient: 1

Course Objectives:
To provide students with the fundamental elements for mastering programming tools, focusing

on languages used for scientific and technical purposes.

Recommended Prerequisites:
Algorithmics, data structures, and programming languages.

Course Content:

Chapter 1: Getting Started

 Startup and variable help

 Variables

 Working directory

 Saving the work environment

 Functions and commands

Chapter 2: Numbers in MATLAB or Scilab

 Natural integers

 Real number representation

 Complex numbers

Chapter 3: Vectors and Matrices

 Operations on vectors and matrices

 Basic mathematical functions

Chapter 4: Programming Elements

 Script

 Function

 Control loops

 Conditional statements

Chapter 5: Polynomials

 Polynomials in MATLAB or Scilab

 Polynomial zeros

 Polynomial operations

Chapter 6: Graphics in MATLAB or Scilab

 2D and 3D curve plotting

 Graph of a function

 Analytical surfaces

Chapter 7: Symbolic Calculation

 Calling the symbolic toolbox

 Expanding and transforming expressions

 Derivatives and integrals of a function

 Taylor series expansion of a function

Evaluation Method:

 Exam (60%)

 Continuous assessment (40%)

References:

 Calcul scientifique avec MATLAB, Jonas-Koko, Ellipses.

 Introduction to MATLAB, J. T. Lapresté, Ellipses.

117

Bibliography

English Books:

1. "MATLAB for Engineers" by Holly Moore
o A practical approach for learning MATLAB, focused on applications relevant to

engineering and mathematicians.

2. "MATLAB: A Practical Introduction to Programming and Problem Solving" by

Stormy Attaway
o A beginner-friendly book that introduces MATLAB programming along with problem-

solving techniques.

3. "MATLAB for Data Analysis" by Victor Cheng
o Focuses on using MATLAB for data analysis, visualization, and numerical computing for

mathematicians.

4. "MATLAB for Dummies" by Jim Sizemore and John Paul Mueller
o An accessible, beginner-friendly guide to learning MATLAB, covering everything from

the basics to advanced topics.

5. "MATLAB: An Introduction with Applications" by Amos Gilat
o This book offers a comprehensive introduction to MATLAB, with applications in

engineering, science, mathematicians and economics.

6. "MATLAB for Engineers and Scientists" by R. S. S. P. Vishnu
o A practical guide for engineers and scientists with MATLAB-based solutions for real-

world problems.

7. "MATLAB for Machine Learning" by Jason Boyd
o A specialized book that uses MATLAB to apply machine learning algorithms and

concepts.

French Books:

1. "MATLAB: Guide de l’utilisateur" by Brian Hahn and Daniel T. Valentine
o A comprehensive user guide that covers the basics and advanced features of MATLAB in

French.

2. "Introduction à MATLAB" by Eric Lefebvre and Alain Gosselin
o This book provides an introduction to MATLAB, with practical exercises and

applications.

3. "MATLAB pour les sciences et ingénierie" by Jean-Pierre Bourguet
o A practical book focusing on MATLAB for solving problems in science and engineering.

4. "Programmation MATLAB pour les ingénieurs et scientifiques" by Olivier Sauter
o A French book aimed at engineers and scientists who want to learn how to use MATLAB

for their computations and simulations.

5. "Applications MATLAB pour les sciences et l'ingénierie" by R. I. Finkel
o This book offers practical applications and examples using MATLAB in various

scientific and engineering contexts.

