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Introduction

In mathematics, fractional calculus is a branch of analysis, which studies the gener-
alization of derivation and integration from integer order (ordinary) to non-integer order
(fractional). Fractional derivation theory is a subject almost as old as classical calculus
as we know it today, its origins dating back to the late 17"" century, the time when Isaac
Newton and Gottfried Wihelm Leibniz developed the foundations of differential and integral

mn
to denote the n'" derivative of

calculus. In particular, Leibniz introduced the symbol o

a function f when he announced in a letter to Guillaume de L’Hopital dated September 30,

d
1695, with the implicit assumption that n € N, L’Ho6pital replied: What does W’Jj mean

if n = %?. Leibniz replied: "This would lead to a paradox from which one day we will be
able to draw useful consequences" [51]. This letter from L’Hopital is today accepted as the
first incident of what we call fractional derivation, and the fact that L’Hopital specifically
requested for n = %, i.e. a fraction (rational number), actually gave rise to the name of this
field of mathematics.

Systems described by fractional order models using fractional differential equations based
on the non-integer derivative have attracted the interest of the scientific community. En-
gineers have only realized the importance of non-integer order differential equations in the
last three decades, especially when they observed that the description of some systems is
more exact than when the fractional derivative is used.

The credit for the first conference is given to B. Ross who organized this conference at
the University of New Haven in June 1974 under the title "Fractional Calculus and Its Ap-
plications". For the first study, another credit is given to K. B. Oldham and J. Spanier [51]
who published a book in 1974 after a joint collaboration, started in 1968 and devoted to the

v



Introduction

presentation of methods and applications of fractional calculus in physics and engineering.
Since then, fractional calculus has gained popularity and significant consideration mainly
due to the numerous applications in various fields of applied sciences and engineering where
it has been noticed that the behavior of a large number of physical systems can be described
using the fractional derivative which provides an excellent instrument for the description of
many properties of materials and processes [9],[10],[21],[45],[46],[53].

In recent years, nonlinear fractional differential equations have attracted the attention of
many researchers due to a wide range of applications in many fields of physics, fluid mechan-
ics, electrochemistry, viscoelasticity, nonlinear control theory, nonlinear biological systems,
hydrodynamics and other fields of science and engineering [2],[7],[23],[24],[39],[41],[42],[50].
In all these scientific fields, it is important to find exact or approximate solutions to these
problems. There is therefore a strong interest in developing methods for solving problems
related to nonlinear fractional differential equations. The exact solutions of these problems
are sometimes too complicated to achieve by classical techniques due to the complexity of
the nonlinear parts involving them.

The main objective of this thesis is to present new analytical and numerical methods for
solving nonlinear fractional differential equations where the fractional derivative is in the
sense of Caputo.

This thesis is divided into five chapters as follows:

In the first chapter, we present some examples of applications of the theory of fractional
calculus in certain scientific fields, then we recall the basic notions related to the theory of
fractional calculus that will be needed in the rest of this work such as the gamma function
and the Mittag-Leffler function which plays an important role in the theory of fractional
differential equations as well as the fixed point theorem. Two approaches (Riemann-Liouville
and Caputo) to the generalization of the notions of derivation will then be considered.

In the second chapter, we will address the question of the existence and uniqueness of the
solution for a Cauchy problem of a frational differential equation with fractional derivative

in the sense of Caputo of the form

“Dy(t) = f(t,yt),t € Q=[0,T],n—1<a<n,
y®0)=b,€R, k=0,1,...,n—1,n=/[a]+1.
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The existence and uniqueness of a continuous solution is established by transforming
this problem to an equivalent integral equation, whose solution is identified with a fixed
point of a contracting operator (under certain sufficient assumptions on the function f) in a
suitably chosen functional space. We conclude this chapter with two illustrative examples.

In the third chapter, we describe some semi-analytical methods: the Adomian decompo-
sition method (ADM), the homotopy perturbation method (HPM), the variational iteration
method (VIM), the new iterative method (NIM), then we study the convergence of each of
these methods. These methods are applied to classical nonlinear differential equations (of
integer order).

In the fourth chapter, we study the ADM, HPM, VIM and NIM for applications on
nonlinear fractional differential equations. Furthermore, we present different numerical ex-
amples to illustrate the efficiency and accuracy of these methods.

In the fifth chapter, we propose a new hybrid method called Khalouta differential trans-
form method which is a combination of two powerful methods: Khalouta transform method
and differential transform method to solve a certain class of nonlinear fractional differential

equations namely nonlinear fractional Liénard equation of the form
“Dy(t) + ay(t) + by’ (t) + cy®(t),t > 0,

with the initial conditions

y(0) = 40, 9'(0) = 1,
where ¢ D is the fractional derivative operator in the sense of the Caputo of order o with
1< a<2,and a,b,c,yg, and y, are constants.

Furthermore, we prove the convergence theorem of this method under appropriate con-
ditions. Then we provide two numerical examples to show the efficiency and precision of
the proposed method.

Finally, we end our work with a general conclusion, where the validity and reliability of

such research is highlighted, also we propose some perspectives on the subject.

vi



Chapter 1

Basic concepts of fractional calculus

This chapter will be devoted to the basic definitions and concepts related to fractional
calculus such as specific functions for fractional integration, fractional derivation, and other
concepts that we will need in the rest of our work. We will begin by presenting some

examples of applications of the theory of fractional calculus in certain scientific fields.

1.1 Applications of fractional systems

Fractional systems are increasingly appearing in various fields of research. However, the pro-
gressive interest in these systems is their applications in fundamental and applied sciences.
It can be noted that for the majority of the fields presented below, fractional operators are
used to take into account memory effects. Let us mention the works [36],[60] which group

together various applications of fractional calculus.

1.1.1 Automatic

In automatic, a few authors have used control laws introducing fractional derivatives. Pod-
lubny [57] showed that the best method to ensure efficient control of fractional systems
is the use of fractional controllers. He proposes a generalization of traditional controllers
PID. The CRONE group, founded by Oustaloup in the 70s, applies these methods to many
industrial systems: spectroscope, car suspension [54], robot-picker,electro-hydraulic plow,

car battery, etc...



1.1. Applications of fractional systems

1.1.2 Physics

One of the most remarkable applications of fractional calculus in physics was in the context of
classical mechanics. Fred Riewe [59] showed that the Lagrangian containing time derivatives
of fractional orders leads to an equation of motion with nonconservative forces such as
friction. This result is remarkable since frictional forces and nonconservative forces are
essential in the usual macroscopic variational treatment, and therefore, in the most advanced
methods of classical mechanics. Fred Riewe generalized the usual calculus of variations
to the Lagrangian that depends on fractional derivatives [58] in order to deal with the
usual nonconservative forces. On the other hand, several approaches have been developed
to generalize the principle of least action and the Euler-Lagrange equation to the case of

fractional derivatives [5],[6].

1.1.3 Mechanics of continuous media

The deformation of continuous media (solid or liquid) is often described using two ten-
sors,that of the deformations noted ¢;; and that of the constraints o;;. Some materials,
such as polymers (erasers, rubber,...), exhibit an intermediate behavior between viscous and
elastic characteristics, called viscoelastic. Such systems can be modeled using the following

relation between the two tensors
Oij = Egzj(t) + T]Da€ij(t>,o < o<l

This law is justified by Bagley and Torvik in [9],[10] (for a@ = %) In [55], the in-
troduction of fractional derivatives in the case of polymers is motivated by the following
analysis: due to the length of the fibers, the applied deformations take time to be com-
municated from step by step (the length of the wound fibers being much greater than the
geometric distance). They are progressively damped and induce memory effects (the state

(1+e) it can

at time t will depend on previous states). If the constraint decreases as ¢~
induce a fractional derivative of order a. This operator thus makes it possible to give a
simple macroscopic description (requiring only a few parameters) of complex microscopic

phenomena. A presentation of viscoelasticity via fractional derivation is given in [22].



1.2. Functional spaces

1.1.4 Acoustic

For some wind musical instruments visco-thermal losses can be modeled effectively using

time fractional derivatives [35].

1.2 Functional spaces

In this part, we present a preliminary in which we recall fundamental notions and results of
the theory of functional analysis which represent an essential tool in the theory of fractional

calculus.

1.2.1 Spaces of integrable functions

Definition 1.2.1 [13] Let 2 = [0,7] (0 < T' < 4+00) a finite interval of R and1 < p < oo.

1) For1 < p < oo, the space LP()) is the space of real functions y on §2 such that y is

measurable and
T

/|y(t)|p dt < oo.

0
2) For p = oo, the space L>®(Q2) is the space of measurable functions y bounded almost

everywhere (a.e) on €.
Theorem 1.2.1 [13] Let Q@ =[0,T] (0 < T < +00) a finite interval of R.

1) For1 <p < oo, the space LP(Q2) is Banach space with the norm
1/p

T
lyll, = /Iy(t)|pdt < 0o.
0

2) The space L>*(2) is Banach space with the norm

|yl =inf {M >0:|y(t)] < M a.e onQ}.



1.2. Functional spaces

1.2.2 Spaces of continuous and absolutely continuous functions

Definition 1.2.2 [43] Let Q@ = [0,7] (0 < T < +00) a finite interval of R and n € N.
We denote by C™(Q) the space of functions y which have their derivatives of order less

than or equal to n continues on ), equipped with the norm

Iyl a) = Z Hy(k)HC’(Q) = 2 A v ()], neN,
k=0

In particular if n = 0,C°(Q) = C(Q) the space of continuous functions y on Q equipped
with the norm

19lle) = max[y(®)]

Definition 1.2.3 [43] Let Q@ =[0,7] (0 < T < +00) a finite interval of R.
We denote by AC(QQ) the space of primitive functions of integrable functions i.e.

t

AC(R) = Ju/Ze € L) sylt) = e+ [ pls)ds o

0

and we call AC(Q2) the space of absolutely continuous functions on €.

Definition 1.2.4 [43] For n € N* we denote by C};(2) the space of functions y which have

continuous derivatives on  up to order (n — 1) and such that y"~1) € AC(Q) i.e.
AC") ={y:Q—C, y® e C(Q),k € {0,1,2.n =1}, 4™V e AC(Q)}.
In particular if AC*(Q) = AC(Q).
A characterization of the functions of this space is given by the following lemma.

Lemma 1.2.1 [43] A function f € AC™(Q),n € N*, if and only if it is represented in the

form




1.2. Functional spaces

1.2.3 Spaces of continuous functions with weight

Definition 1.2.5 [43] Let Q = [0,7] (0 < T < +00) a finite interval of R and pn € C
(0 < Re(p) <1).
We denote by C,,(Q2) the space of functions y defined on 2 such that the function thy(t) €
C(Q) i.e.
Cu(@) ={y: 2 —C, ()'y() € C()},
equipped with the norm

— | _ ©
Wl @ = 1Y)l o) = max [ty (t)] -
The space C,,(Q) is called the space of continuous functions with weight.

In particular, Co(Q2) = C(£2).

Definition 1.2.6 [48] For n € N* we denote by C1(82) the space of functions y which have

continuous derivatives on  up to order (n — 1), such that y™ € C,(Q2), i.e.
—1

on(@) — Z Hy(k)HC(Q) + Hy(n)HC‘L(Q)}'
k=0

3

Cr() ={y : [y

In particular C7(Q) = C,(Q).

1.2.4 Banach fixed point theorem

Definition 1.2.7 Let X be a Banach space,and T : X — X a continuous map, we say

that T is contracting if T is Lipschitzian with ratio K < 1, i.e.
dk<1:VYuve X :||T(u) —Tw)| < Kl|u-—2|.

Theorem 1.2.2 (Banach) [27] Let X be a Banach space and T : X — X a contracting
operator, then T admits a unique fixed point, i.e. y* € X such that

Ty =y".
Furthermore, if T*, k € N is a sequence of operators defined by
T"'=T and T" =TTk e N\ {1},
then for all yo € X the sequence {Tkyo}zozo converges to the fized point u* and we have

=0.

Jim [0



1.3. Specific functions for fractional derivation

1.3 Specific functions for fractional derivation

In this part, we present the Gamma, Beta and Mittag-Leffler functions. These functions

play a very important role in the theory of fractional calculus and its applications.

1.3.1 Gamma function

One of the basic functions of fractional calculus is Euler’s Gamma function I'(z) which
naturally extends the factorial to positive real numbers (and even to complex numbers with

positive real parts).

Definition 1.3.1 [56] For z € C such that Re(z) > 0. The Gamma function I'(z) is defined

by the following integral
+oo

[(z) = / e~ dt, (1.3.1)

with T'(1) = 1, T'(0") = +o0, ['(2) is a monotonic and strictly decreasing function for

0<z<1.

An important property of the Gamma function I'(z) is the following recurrence relation
['(z+1) =2I'(2), Re(z) >0, (1.3.2)

that it can be demonstrated by integration by parts

“+oo “+00
L'(z+1) = /ettzdt = [—e*ttﬂ:"" + 2 / e 'ttt = 2T(2).
0 0

Euler’s Gamma function generalizes the factorial because I'(n+ 1) = n!, ¥n € N, indeed

I'(1) = 1 and using (1.3.2) we obtain



1.3. Specific functions for fractional derivation

1.3.2 Beta function

It is one of the basic functions of fractional calculus. This function plays an important role

when combined with the Gamma function.

Definition 1.3.2 [56] The Beta function is a type of Euler integral defined for complex
numbers z and w by

B(z,w) = /tz_l(l —t)“"'dt, Re(z) > 0, Re(w) > 0. (1.3.3)

0

The Beta function is related to the Gamma function by the following relation
B(z,w) = —), Re(z) > 0, Re(w) > 0, (1.3.4)
it follows from (1.3.4) that

B(z,w) = B(w, z), Re(z) > 0, Re(w) > 0.

1.3.3 Mittag-Leffler function

The Mittag-Leffler function plays a very important role in the theory of differential equations
of integer order. It is also widely used in the search for solutions of differential equations of

fractional order, this function was introduced by G.M. Mittag-Leffler [47],[48].
Definition 1.3.3 [56] For z € C, the Mittag-Leffiler function E,(z) is defined as follows

Eo(z) = % m a> 0. (1.3.5)

In particular

Ei(z) = €, Ey(2) = cosh(y/2).

This function can be generalized for two parameters to give

k

z
m,a >0, g>0. (136)

Eop(z) =

NE

e
Il

0



1.4. Fractional integrals and derivatives

1.4 Fractional integrals and derivatives

The aim of this part is to introduce the two most important approaches to fractional calculus:
in the Riemann-Liouville sense and in the Caputo sense, including some of their properties

as well as the relationship between these two approaches.

1.4.1 Fractional integral in the Riemann-Liouville sense

The notion of fractional integral of order & € C (Re(«) > 0), according to the Riemann-
Liouville approach, generalizes the famous formula (attributed to Cauchy) of integral re-
peated n—times.

Let y a continuous function on the interval [0,7],7 > 0. A primitive of y is given by the

expression
Iy(o) = [ u(ryd.

For a second primitive and according to Fubini’s theorem we will have

t t u t t

y() = / y(u)du = / / y(r)dr | du = / / du | y(r)dr

0 0 0 0 T
t

- / (t — 1) y(r)dr.

0

By repeating n—times, we arrive at the n'" primitive of the function v in the form

t

1
' / (t— )" y(r)dr.t > 0,m € N* (1.4.1)

I"y(t) = =1

This formula is called Cauchy’s formula, and since the generalization of the factorial by
the Gamma function I'(n) = (n — 1)!, Riemann realized that the right-hand side of (1.4.1)
could make sense even when n takes a non-integer value, he defined the fractional integral

as follows



1.4. Fractional integrals and derivatives

Definition 1.4.1 [43],[566] Let y € L'([0,T]),T > 0. The Riemann-Liouville fractional
integral of the function y of order a € C (Re(a) > 0) denoted I* is defined by

t

Iy(t) = =— / (t —7)* Ly(r)dr, t >0, (1.4.2)

0

where I'(«) is the Gamma function given by (1.3.1).

Theorem 1.4.1 [43],[66] If y € L'([0,T]),T > 0, then [®y exists for almost all t € [0, T)
and moreover I*y € L*([0,T)).

Proof. By introducing (1.4.2) and then using Fubini’s theorem, we find

t
1
Iatdt<—
[irvola <
0
1

<t [ ) / (t )yt | dr
1 r o
< i [ O =

Ta T
S / y(r)\ dr.

Since y € L'([0,T1]), the last quantity is finite, which establishes the result. m
Example 1.4.1. The integral of y(t) = t° in the Riemann-Liouville sense.
Let a > 0,5 > —1, then we have

1 X
=—— [ t—-7)""7%d 1.4.3
m/ ), (1.43)
0

By performing the variable change



1.4. Fractional integrals and derivatives

where s =0 when 7 =0 and s =1 when T =t and dr = tds, then (1.4.3) becomes
1

"0 = Fe / (t —ts)° " (t5)” tds

1

= —/[t(l—s)]altﬁ“sﬁds
0
1

= o) /(1 — 5)*'sPds

0
totB '
= /(1 — 5) LBy
0

Using the definition of the Beta function (1.3.3) then the relation (1.5.4), we arrive at

ta+5
I"y(t) = mB(%ﬁ +1)
te B T (a)T(B + 1)
I(a) T(a+p+1)
_ F(ﬂ—i_l) tOH-ﬁ
Fa+5+1) '

So the fractional integral in the Rieman-Liouville sense of the function y(t) = t° is given

by
app _ LBHT) arg
1= st (1.4.4)

In particular, relation (1.4.4) shows that the fractional integral in the Riemann-Liouville

sense of order « of a constant ¢ € R is given by

C
[e=— 5 4o
“TTar+1)

Proposition 1.4.1 [43],[56] Let o, € C (Re(a) > 0, Re(8) > 0), for any function
y € LY([0,T]),T > 0 we have

1 (IPy(t)) = I°*Py(t) = 17 (I°y(t))

for almost all t € [0,T]. If in addition y € C([0,T1]), then this identity is true ¥Vt € [0,T].

10



1.4. Fractional integrals and derivatives

Proof. Let us first assume that y € L'([0,T]) we have

I (IPy(t)) = ﬁ/(t—ﬂal Py(r)dr
— ; t — 7T a—1 / - -1 -
- T(B) (@) /“ ) /< Q)7 y(Q)dCdr.

0 0
According to Theorem 1.4.1, the integrals appearing in the previous equality exist for
almost all ¢t € [0,7], and thus Fubini’s theorem allows us to establish

t t

e e =0 | woac

IO = pr)
0 ¢

By making the variable change

TIC+(t—<)S,

where s = 0 when 7 = ( and s = 1 when 7 =t and dr = (t — ()ds, we obtain

t 1

I (0) = e [ €07 | fa- o o

0 0
Finally, taking into account the definition of the Beta function (1.3.3) then the relation
(1.3.4), we obtain

t
1

I* (IPy(t) = Tat5) / (t = O y(Q)d¢ = (1) (1).

0
Now suppose that y € C([0,T7]), then (by the theorems on integrals depending on para-
meters) [%y € C([0,T]), and consequently

1Py 1°1Py € C([0,T7).

Thus, from the above, the two continuous functions 1¢%y, I*I?y coincide almost every-
where on [0, 7], so they must coincide everywhere on [0,7]. m
The following theorem provides a result concerning the inversion of the limit and the

fractional integral.
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1.4. Fractional integrals and derivatives

Theorem 1.4.2 [43],[56] Let o € C (Re(a) > 0) and (yi),=5 be a sequence of continuous
and simply convergent functions on [0, T]. Then we can invert the fractional integral in the

Riemann-Liouville sense and the limit sign as follows

[Ia( lim yk)] (t) = M I%y(t).

k—s+00 k—s+00

Proof. Let y, — y simply converge and

1
O / (t =) () = () dr
0
lve — vl |
Y — Y a—1
< 2E T t— d
< (o) /( T) T
0
o o=yl 1 o
- MNa) «
< L -yl
< aF( ) Yk — Yllso
TO(
< - — 0.

Hence the desired result. =

1.4.2 Fractional derivative in the Riemann-Liouville sense

Definition 1.4.2 [43],[566] Let y € L*([0,T]),T > 0 be an integrable function on [0,T],

the fractional derivative in the Riemann-Liouville sense of the function y of order a € C

(Re(a) > 0) denoted D™y is defined by

D%(t) = D"I" (1)

t

_ ﬁ (%)n/<t—7)n—“—ly(7)d7,t > 0. (1.4.5)

0

where n — 1 < [Re(a)] < n and [Re(a)] is the integer part of Re(«).

In particular, if @ = 0, then
1 d
D%(t) = — | — dr = y(t).
y(t) ) (dt) /y(T) T=y(t)

12



1.4. Fractional integrals and derivatives

If « =n €N, then

n ]. dn+1 (n)
0

Consequently the fractional derivative in the Riemann-Liouville sense coincides with the
classical derivative for o € N.

If furthermore 0 < a < 1, then n = 1, hence

t
1 d

— / (t—71) “y(r)dr, t > 0.

DY) = s aya

Example 1.4.2. The derivative of y(t) =t in the Riemann-Liouville sense.

Let o« > 0 such that n — 1 < a < n and 5 > —1, according to (1.4.5) and the relation
(1.4.4), (See Example 1.4.1) we have

_ L(B+1) _
DotP = Do = Drptn—e, 1.4.6
F'G+n—a+1) ( )

Taking into account

Dt = (B4n—a)f+n—a—1)...(B—a+1)t7
FB+n—a+1) 5
= 7 1.4.7
I'(B—a+1) ( )
We substitute the result (1.4.7) into formula (1.4.6) to get

I'(B+1) F(6+n—a+1)tﬁ_

Dt =
'+n—a+1) I'(F—a+1)
I'(f—a+1) '
So the fractional derivative in the Riemann-Liouville sense of the function y(t) = t° is
given by
r+1) 4

DotP = L¢P 1.4.8
Fpg—a+1) ( )

In particular, if 5 = 0 and o > 0, the Riemann-Liouville fractional derivative of a
constant function y(¢) = ¢ € R is non-zero, its value is

c
Dle= 1
¢ I'l—a«)

It is easy to establish the following result.
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1.4. Fractional integrals and derivatives

Lemma 1.4.1 Letn— 1< a <n,n=[a]+1 and y be a function that satisfies

D%y(t) =0,
then )
e F(j+1) o
t) = E ; ey o Cno1 €ER.
y() jzocjr(j+1+04_n> , VCp, C1, Cp—1

In particular, if 0 < a < 1, then

. c a—1
y(t) = —F(a)t ,Ve e R.

Proof. Let D%y(t) = 0, according to (1.4.5) we have

D%y(t) = D" 1" *y(t) = 0.

And consequently
n—1
I"y(t) = chtj. (1.4.9)
=0

Now, applying operator [ to equation (1.4.9) gives

n—1

I"y(t) = Z c; 1t

=0
Using relation (1.4.4) (See Example 1.4.1), we obtain
-1

1 )
Z LD e (1.4.10)

— j+a+1)

Applying the operator D" to equation (1.4.10) gives
—~  TU+1Y) i

Finally, the classical derivation and use of the formula

Dnta —
MNa—n+1) ’

gives
n—1

s j+1 F(]+a+1) tj+a—n
JF]—{—O&—F NIr(j+a—n+1) '

“M

14



1.4. Fractional integrals and derivatives

Finally we get

n—1

y(t) = Z - (j+1) yitan

j+1l+a—n)

This completes the proof of the Lemma. m
The following proposition establishes a sufficient condition for the existence of the frac-

tional derivative.

Proposition 1.4.2 [43] Let « > 0 and n = [a] + 1. If y € AC™([0,T]),T > 0, then the
fractional derivative Dy exists almost everywhere on [0, T] moreover, it is represented in

the form

n—1 (k)

a Y (0) k— / n a—1 (n)

D%y(t) = — dr. 1.4.11

y(t) ['(k—a+1) I'(n— «) (r)dr ( )
0

1.4.3 Some properties of fractional derivation in the sense of Riemann-

Liouville

The Riemann-Liouville derivation operator has the properties summarized in the following

propositions.

Proposition 1.4.3 [43/,[56] Forn—1<a<n,m—1< [ <m we have

1) The Riemann-Liowville operator is linear
D* (A\y+ 2) (t) = A (D%y) (t) + (D%2) (t), A € R.

2) In general
D*(DPy(t)) # D*(Dy(t)).

Proof. 1) Let y,z € L' ([0,7]), A € R, we have

DAy +2)(t) = DI (\y(t) + 2(t))
— ADMMC ((y +2) (1)

15



1.4. Fractional integrals and derivatives

Since the n'* derivative and the integral are linear, then

DOy +2) () = AD"I"Cy(t) + D"I" ()
= A(D%) (t) + (D"2) (D).

2) We have
a( B atp (S B~k tmot
D*(Dy(t)) = D™ y(t) — 2 DO s ==y
and . Bk
DP(Dy(t)) = D*Fy(t) = Y D“*ky(o)m'
k=0

Hence, the two fractional derivative operators commute only if o = 3 and D> *y(0) = 0,
for all k =1,2,...,n and D?~*y(0) =0, for all k = 1,2,...,m.
This completes the proof. m

Proposition 1.4.4 [43],[56] Let a, 3 > 0 such thatn —1 < a <n,m—1< < m with
n,m € N*.
1) Fory € L'([0,T]),T > 0, the equality

D (I*y(t)) = y(t),

is true for almost all t € [0,T).
2) If a > B3>0, then for y € L'([0,T]), T > 0, the relation

DP(Iy(t)) = I*Py(t),

is true almost everywhere on t € [0,T).

In particular, when 8 =k € N and o > k, then
DH(I*y(t) = I**y (1),

3) If B> a > 0 and the fractional derivative D~y exists, then we have
D(I*y(t)) = D~y t).

4) For a > 0, k € N*. If the fractional derivatives Dy and D*t®y exist, then

D*(Dy(t)) = D" y(1).

16



1.4. Fractional integrals and derivatives

Proof. 1) Using (1.4.5) and Proposition (1.4.1), we have for n = [a] + 1

De(I%y(t)) = D"I"“I%y(t) = y(t), a.e on [0,T].

2) From (1.4.5) and Proposition (1.4.1) we obtain
For o« > 3 > 0, then n > m, we have
Do(Iy(t)) = D I"P(I°y)(t)
= D" (1" Py) (1)
= D"I" (I*y) (t)
= (I"‘_’By) (t).
3) For > o > 0, we have
DP(I%y(t)) = D™I™P(I°y)(t)
= D™ Fmy(t)
= (Dﬁfay) (1),
exists fori — 1 < g —a <iand i <m.
4) We have for a > 0, k € N*
DMDy(t)) = D*D"I""y(t)
— Dk+n[n7a+k7ky(t)
_ Dk+n1k+n7(k+o¢)y(t)

= (D"y)().

This completes the proof. m

1.4.4 Fractional derivative in the sense of Caputo

Although the fractional derivation in the sense of Riemann-Liouville has played an important
role in the development of fractional calculus, several authors including Caputo (1967-1969)

have reported that this definition needs to be revised [14], because the problems applied

17



1.4. Fractional integrals and derivatives

in viscoelasticity, solid mechanics and rheology, require initial conditions physically inter-
pretable by classical derivatives such as y(0), 3/(0), etc..., which is not the case in modeling
by the Riemann-Liouville approach which requires knowledge of the initial conditions of the
fractional derivatives.

Despite the fact that initial value problems with such initial conditions can be solved
mathematically, the solution of this problem was proposed by M. Caputo in his definition
which he adapted with F. Mainardi in the structure of the theory of viscoelasticity [15].

In this part we give the definition of the fractional derivative in the sense of Caputo as
well as some essential properties.

Let [0,7] be a finite interval of R and let I* and D® be the fractional integration and

derivation operators given by (1.4.2) and (1.4.5) respectively.

Definition 1.4.3 [48] The Caputo fractional derivative © D*y(t) of order a € C (Re(ar) >

0) on the interval [0,T), is defined via the Riemann-Liouville fractional derivative by

CDey(t) = D (y(t) - ni yUZ!(O) tk> , (1.4.12)

k=0
where

n = [Re(a)] + 1 for a ¢ N and n = «a for a € N. (1.4.13)

If « =0, then
“D%y(t) = y(t).
In particular, when 0 < Re(a) < 1, the relation (1.4.12) takes the form:

“Dy(t) = D [y(t) — y(0)].

The Caputo fractional derivative (1.4.12) is defined for functions y(¢) for which the
Riemann-Liouville fractional integral (1.4.2) exists, in particular it is defined for functions

y € AC™([0,T]). We have the following theorem.

Theorem 1.4.3 [43] Let Re(a) > 0 and let n be given by (1.4.13). If y € AC™([0,T7),

then the Caputo fractional derivative © D*y(t) exists almost everywhere on [0,T).
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1.4. Fractional integrals and derivatives

1) If « ¢ N, then ©Dy(t) is given by

“DY%(t) = —I‘(nl— o) /(t — T)"_O‘_l y(")(T)dT,t >0
= I""D"y(t) (1.4.14)

In particular, when 0 < Re(a) < 1 and y € AC([0,T1), then

t
1

Cpoy(t) = m/(t—r)_ay'(ﬂdﬂt>0

= I' /(1. (1.4.15)

2) If o € N, then
CDry(t) =y (1),

Proof. According to Definition 1.4.3, we have

Do) = D° <y<t> > y(’zf%)

k=0
o ® (o
nirn—« y
= D"I ((t)—z kf) )
k=0
By
D%(t) = D"I"%y(t)
t
1 d " n—a—1
= Thi—a) (E) /(t T) y(T)dr,t >0,
0
we put

According to (1.4.2), we have

R = y(0)
Y(t) = T —a) 0/ (t—1) (y(r) - x Tk> dr.
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1.4. Fractional integrals and derivatives

By integration by part we get

_ 1 n—a—1 — y(k)(o)
Y(t) = —F(n — o) /(t —7) <y(7’) — o Tk) dr

0 k=0

T=t
1 (t—7)"" <« ¥ M)

T Th—a))] n—a (y(T>_k0 Ko »

[ SYRI

D — Mld
—l—/ p— <y(7') 2 x 7) T
) -

1 / n—a+1-1 \ (*) 0
= m/(t—ﬂ D(y(T)—Zyk!( )Tk)dT

— [t <y(t) - nzl y(k;!(())tk) .

k=0

By repeating this process n—times, we find

Y(t) = ["etmpn (y(t) — S y(k)(o)t’“>

k!
k=0
2 y®)
— Jrrapn <y(t) . Y k'(O)tk) ’
k=0 )

where :Z_: %tk is a polynomial of degree n — 1, therefore
Y(t)=1"1""*D"y(t).
So
“Dy(t) = DY (t)
= D" DMy(t)
= D)

t
1

= — — )ty () dr
o =T

0

This completes the proof. m

Theorem 1.4.4 [43] Let Re(a) > 0 and let n be given by (1.4.13) and y € C™ ([0,T1]).

Then the Caputo fractional derivative © D%y(t) is continuous on [0,T],T >0 .
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1.4. Fractional integrals and derivatives

1) If a ¢ N, then ©D%y(t) is given by (1.4.14). In particular, it takes the form (1.4.15)

for0<a<1.

2) If « € N, then
CDy(t) = 4 (1),

Example 1.4.3. The derivative of y(¢) =t in the sense of Caputo.

Let n be an integer and 0 < n —1 < a < n with § > n — 1, then according to (1.4.14)

we have
e LB+ 5
and .
C PoyB _ I'(B+1) __yn—a-1_g-n
D>t _F(n—a)F(ﬁ—n+1)/(t T) 7T, (1.4.17)

0

By making the change of variable

T =18,

where s =0 when 7 =0 and s =1 when 7 =t and dr = tds, then (1.4.17) becomes

t

CraB (3 +1) _ _\n—a—1_B-n
D*t” = F(n—a)F(ﬁ—n—i—l)/(t T) TP "dr

0
1
Lp+1) )tﬁ_a 0/ (1—s)" s ds.

Fn—a)l(6—n+1

Using the definition of the Beta function (1.3.83) and then the relation (1.3.4) we arrive

at

r'eg+1)Bn—ao,f—n+ 1)tﬁ_o‘
Fn—a)l'(B—n+1)
FB+)In—a)T(B-n+1) 45,
F'n—a)l'(f—n+1)I(B—-a+1)
— F(ﬁ + 1) tﬁ—a
r'g—a+1) '

CDOét,B —

Therefore the fractional derivative in the Caputo sense of the function y(t) = t* is given
by
L'(B+1)

B—a
6ot (1.4.18)

CDO&tﬁ —
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1.4. Fractional integrals and derivatives

In particular, the use of formula (1.4.12) or (1.4.14) to calculate the fractional derivative
in the Caputo sense of order o > 0 of a constant ¢ € R expresses that this derivative is zero,
i.e.

D% = 0.

1.4.5 Some properties of fractional derivation in the sense of Ca-

puto

Fractional derivatives in the sense of Caputo have the properties summarized in the following

propositions.

Proposition 1.4.5 [43/,[56] Let o € C such that n — 1 < Re(a) < n, n € N*and let
the two functions y(t) and z(t) such that © D®y(t) and “ D*z(t) ewist. Caputo’s fractional

derivative is linear operator
‘D (Ay +2) (1) = A("D%y) (1) + (“D2) (t), A€ R.
Proof. We have from (1.4.14)

°D*(M\y+2z2)(t) = I"“D"((\y+2) (1))
= M"D"((y+2)(t)).

Since the n!" derivative and the integral are linear, then

DMy +2)(t) = X"D"y(t) + I""“D"2(t)
= A(D%) () + ("D"2) (¢).

Hence the result. =

Proposition 1.4.6 [43/,[56] Suppose that n — 1 < Re(a) < n, m,n € N* and let the
function y(t) such that © D*y(t) exists, then

CDaDmy(t) _C Da—l—my(t) 7& Dm CDay(t).
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1.4. Fractional integrals and derivatives

1.4.6 Relation between the Riemann-Liouville approach and that

of Caputo

The following theorem establishes the link between the fractional derivative in the sense of

Caputo and that in the sense of Riemann-Liouville.

Theorem 1.4.5 [43] Let Re(a) > 0 withn —1 < Re(a) < n (n € N*) and let y be a
function that the fractional derivatives © D%y (t) and D%y (t) exist, then

n—1
kfa

CDa( _

OM

F —a+1

Proof. We consider the limited development in Taylor series of the function y in ¢ =0

y/ 0 y// 0 y(nfl) 0 .
y(t) = y(0)+ 1(!)t+ 2(! )t2+...+r§)3t 'Y R,
n—1 (k)
Y (0) 3
= > ———t"+ R,
ZT(k+1)
with t
(n)
:/ Y )" tdr.
(n—
0

Using the properties of n'*—order integration, we have

t

Rt = s / Y ()t — 7)™ Ldr = Iy (1),

a

Using the linearity of the Riemann-Liouville operator and relation (1.4.8), we have

n—1 (k)
Doy(t) = D° (; ry(k—j(uoi)tk + Rn_1>

n—1 (k)
y'"™(0) k
= -2 _D% DR,,_
y W ()T (k + 1)
T(k—a+ D)I(k+1)

7T
|
= O

tk—oz + Da]ny(n) (t)

(]

k=0

n—1 (k)
y™(0) k— —a, (n)

— t 0% ITL (0% n t
2Tk oy TTTWNO
k=0
n-t (k)

y"™(0) k—a |, C

= — " D%y(t).

ZTh—a+1) y(t)
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1.4. Fractional integrals and derivatives

So

nl®
D) = D0 - X i N

Hence the result. m
Remark 1.4.1 If y®(0) =0 for k=0,1,2,...,n — 1, we will have
C Nna _ «
Dy(t) = Dy(t).

Composition with the fractional integration operator
The fractional derivative operator in the Caputo sense is a left inverse of the Riemann-
Liouville fractional integration operator but not a right inverse because

If y is a continuous function on [0, 7, we have

“D* (I*y(t)) = y(t) and I* (“Dy(t)) = y(t) — th. (1.4.19)

The main advantage of the Caputo approach is that the initial conditions of fractional
differential equations with Caputo derivatives accept the same form as for differential equa-

tions of integer order.
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Chapter 2

Fractional differential equations in

the sense of Caputo

In this chapter, we are interested in the question of existence and uniqueness of the solution

for a Cauchy problem of a fractional differential equation in the sense of Caputo.
Definition 2.0.4 [43] Let o« > 0,a ¢ N, n=[a] +1 and f(.,y) : Q@ X R — R, then
“Dey(t) = f(t,y(1), t € Q=1[0,T1, (2.1.1)

1s called a fractional differential equation in the sense of Caputo, and in this case we use

the initial conditions as
y®0)=b, e R,k =0,1,....n — 1, (2.1.2)

where © D%is the Caputo fractional derivative operator of order o withn—1 < a <n, f(.,y) :
QxR — R is a continuous function with respect to t € Q for all y € R and [«a] is the

integer part of o .

2.1 Equivalence result between the Cauchy problem
and the Volterra integral equation

In this part, we prove an equivalence result between the Cauchy problem and a Volterra
integral equation in the space C"1(Q). Based on this result, the existence and uniqueness

of the solution of the Cauchy problem considered are proven.
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2.1. Equivalence result between the Cauchy problem and the Volterra integral equation

Theorem 2.1.1 [43] Let « > 0 witha € N, n=[a]+1 and f(.,y) : 2 xR — R be a
continuous function with respect to t € Q0 for all y € R.
Then y € C"1(Q) is a solution of the Cauchy problem (2.1.1)-(2.1.2) if and only if y is

a solution of the following Volterra integral equation

t

Z /{;_k /(t — 7-)“_1 flr,y(r))dr,0 <t <T. (2.1.3)

Proof. Let a > 0 with o ¢ N, n = [a] + 1.
1) Suppose that y € C"~1(Q) is a solution of problem (2.1.1)-(2.1.2). Since f(.,y) € C(Q)
for all y € R, then by (2.1.1) we have © D%y(t) € C(). Using relation (1.4.19), we obtain

n—1
y™(0)

C Na o
I (°Dy( o

k=0
So, we have

y™*)(0)

o St 4+ 1 (“Dy(1))

2t ﬁ/t—ﬂl (7, y(r))dr.

-1
1y
=

2) Assume that y € C"71() is a solution of the Volterra integral equation (2.1.3). By
differentiating (2.1.3) k—times(k = 1,...,n — 1) and using Proposition (1.4.4), we obtain for
all k=0,1,...n—1,

t

VR . (al_ 5 = gt

Jj=k 0

With the change of variable 7 = ts, we obtain

n—1
bj k1
= I 4 / VT f(ts, y(ts))ds.
—k)! ’
(7 —k) /

L

<

By passing to the limit ¢ — 0 and using the continuity of f, we obtain the relation
(2.1.2). On the other hand, by applying the Riemann-Liouville fractional derivative operator
D® on the Volterra integral equation (2.1.3) and with (2.1.2), we obtain

n—1 (k)
D° (y(t) -y yk—,“”t> = DI f(t,y(1))

k=0
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2.2. Result of existence and uniqueness of the solution

According to Definition 1.4.3 and Proposition 1.4.4, we obtain equation (2.1.1).
This completes the proof of the Theorem. m

Corollaire 2.1.1 Let 0 < a < 1 and f(.,y) : @ X R — R be a continuous function with

respect tot € Q for ally € R. Theny € C(Q) is a solution to the following Cauchy problem

CDy(t) = f(t,y(t))
y(0) =

if and only if y is a solution to the following Volterra integral equation

1 t
y(t) =b+ —— [ (t=7)"" f(7,y(7))dr.
F(a)o/
2.2 Result of existence and uniqueness of the solution

Now, we will show the existence and uniqueness of the solution of the Cauchy problem

(2.1.1)-(2.1.2) in the space of functions C"~1%(Q) defined by
C Q) ={y e C"HQ)," D € C(Q),n = [a] +1}.

To establish the existence and uniqueness of the solution to the Cauchy problem (2.1.1)-

(2.1.2), we need the following lemma.

Lemma 2.2.1 Ifa > 0 with o ¢ N and n = [o] + 1,then the fractional integration operator

I*: C(Q2) — C™"Y(Q) in the sense of Riemann-Liouwville is bounded, i.e.

n—1
o To—k
11 gHon—l(ﬂ) <M ”gHC(Q) , M = Z m. (2.2.1)
k=0

Proof. Let g € C(Q). Using Proposition 1.4.4, we obtain

DE[Yg(t) = I*g(t), for all k = 0,1,....,n — 1.
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2.2. Result of existence and uniqueness of the solution

For all t € 2, we have

n—1 n—1
o . kra o a—k
1l o1y = ZHD I gHC(Q)_ZHI gHC(Q)
k=0 k=0
< 7 lollew / R
- Ia—k)
k=0 4
ST
T Z(a—k)I(a—Fk)
n—1
Ta—k
< -
S z:: T(a—k+1) ||9||0(Q)
We put
n—1
Tafk:
M=2 ta—rr1)y
— (o —k+1)
we obtain

11l on1i0) < M9llcey -

Which proves the lemma. m

Theorem 2.2.1 [43] Let o > 0 with « ¢ N,n = [a]+1 and G an open of R. Assume that
f:QxG— R a function such that

1. For all fizxedy € G, f(.,y) € C(Q).

2. The function f : Q x G — R werifies the Lipschitz condition with respect to vy, i.e.

there exists L > 0 such that

|f(t,yn) = f(ty2)| < Llys — wof, foranyt € Q,y1,92 € G. (2.2.2)
If
n—1 a?
L <1 2.2.
%F (a—k+1) ’ (223)

then, the Cauchy problem (2.1.1)-(2.1.2) admits a unique solution y € C"1%(Q).

Proof. We start by showing the existence of a unique solution y € C"1(Q) of the
problem (2.1.1)-(2.1.2). According to Theorem 2.1.1, it suffices to prove the existence of
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2.2. Result of existence and uniqueness of the solution

a unique solution y € C™"1(Q) of the Volterra integral equation (2.1.3). For this, we use

Theorem 1.2.2 of the Banach fixed point in the space C"~1(Q) with the following norm

>—‘

n—

- - o 2.2.4
Iy = w2llon 10 0Hy1 . (2:2.4)

e
Il

We rewrite the integral equation (2.1.3) in the following form

where
1 a1
(T9) () = ) + s / (t — 1) fr.y(r))dr. (2.2.5)
with o
yo(t) = Z %tj . (2.2.6)

To apply Banach’s Theorem, we must show
1. If y € C"1(Q) then Ty € C"1(Q).
2. for each y;,y2 € C"71(2), we have

Let y € C"1(Q). By differentiating (2.2.5) k—times (k = 1,...,n — 1) and using Propo-

sition 1.4.4, we obtain for all £ =0,1,...,n — 1,

T ) =40 + 7 / P, (229

with
b
(j—Fk)!

For all £ = 0,1,...,n — 1, the first term on the right of (2.2.8) is a continuous function

k P
(1) ik,

ing

J

on [0,7], and by Lemma 2.2.1, the second term is continuous on [0, T]. So, we have

/ a—k—1 Ta—k
A / (t=7)" " f(ry(r))dr < farrn MNEvlow, (229

NG
0 Ccrn=1(Q)

for all k =0,1,...,n — 1. Therefore Ty € C"1(Q).
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2.2. Result of existence and uniqueness of the solution

Using (2.2.4), (2.2.8) and (2.2.9) and the Lipschitz condition (2.2.2), we have

n—1
T = Tollowey = 2 |[@)® = @)™
k=0
n—1 1 ¢
< ——— [t =) () = f(rge(7)]dT
[a—k)
r=0 0 o)
n—1 Toz—k
S e F(Oé k+ 1) ”f(Ta yl(T)) - f(TayQ(T))”C(Q)
n—1 Toe—k;
< L - — .
= p F(CY . k + 1) Hyl(T) y2<T)||C(Q)

Using (2.2.3), we obtain (2.2.7), with
n—1 Tk
w=L kzzo m.

Consequently, according to Banach’s fixed point theorem 1.2.2, there exists a unique
solution y* € C"1(Q) of the Volterra integral equation (2.1.3) on the interval [0, 7.

By Banach’s theorem 1.2.2, the solution y*(¢) is a limit of the convergent sequence
(T"y5)(2)

nh_{{}o IT"y5 =y llgn-1() = 0 (2.2.10)

We take

*

Yo = Yo,
with yo(t) defined by (2.2.6).
According to (2.2.5), the sequence (T"yg) (t) is defined by the recurrence formula

t

! /@—Tflf&xT%w@owdﬂn:Lzm

(T"yy) (t) = wo(t) + ()

Noting v, (t) = T"y§(t), then the previous relation takes the following form

t

1(/@—7f4fﬁy%ﬂﬂMﬂneN

Yn(t) = yo(t) + (o)

and (2.2.10) becomes
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2.2. Result of existence and uniqueness of the solution

nh_{nw [y — yHC”*(Q) =0. (2.2.11)

Then using (2.1.1) and the Lipschitz condition, we have

||CDayn —¢ DayHC(Q) = ||f<t7yn(t)) - f(ta y(t))HC(Q)
< Lllyn = yllew
< L”yn_yHC(Q)'

From (2.2.11), we obtain

lim HCDO‘yn —¢ Do‘yHC(Q) =0.

n—--auoQo

Then “ Dy € C(2) and therefore y € C"~12(Q).
This completes the proof of the Theorem. m
Example 2.2.1. Consider the following Cauchy problem for the fractional differential

equation

CDy(t) =t -1
teQ=10,1], (2.2.12)
=1

y(0)
where © D is the Caputo fractional derivative operator of order o = 1/2.
We search for a continuous function y : [0,1] — R satisfying (2.2.12).
By solving the problem (2.2.12), we get

t

W) = 14 g7 / (¢ =)™t - r(ll/z) /(t -0

I'(1/2)
0
16 2
= 14— 52 T2,
LTV~

Example 2.2.2. Consider the following Cauchy problem for the fractional differential

equation
CDey(t) =12 -2t +1

y(1) =0

where © D® is the Caputo fractional derivative operator of order o =1/3.

e =112, (2.2.13)

We search for a continuous function y : [1,2] — R satisfying (2.2.13).
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2.2. Result of existence and uniqueness of the solution

By solving the problem (2.2.13), we get

t

y(t) = F(11/3) / (t — 7')_2/3 (1 — 1)2 dr
27 7/3
T 14T(1/3) (b=
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Chapter 3

Semi-analytical methods and their

convergerice

In this chapter, we present some semi-analytical methods: the Adomian decomposition
method (ADM), homotopy perturbation method (HPM), variational iteration method (VIM),

and new iterative method (NIM), then we study their convergence.

3.1 Adomian decomposition method (ADM)

The Adomian decomposition is a semi-analytical method developed by the American math-
ematician George Adomian [3] during the second part of the 20" century. It is used for
solving a wide range of problems including the mathematical models involved, namely al-
gebraic, differential, integral, integro-differential, ordinary differential equations of higher
order and partial differential equations. The advantage of this method is that it allows to
solve the problem considered by a direct scheme and gives the solution in the form of an

infinite series, which converges rapidly to the exact solution if it exists [17].

3.1.1 Description of the method

To illustrate the basic ideas of this method, consider the following functional equation

Fy=y, (3.1.1)
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3.1. Adomian decomposition method (ADM)

where F' represents a nonlinear ordinary or partial differential operator comprising linear
and nonlinear terms and g is a known function. The linear part is generally decomposed into
L + R, where L is an easily invertible differential operator and R represents the remainder
of the linear operator. Under these conditions, the previous equation can be written in the

following form

Ly+ Ry+ Ny =g, (3.1.2)

with /N a nonlinear operator.

We can write equation (3.1.2) as follows
Ly=g— Ry — Ny. (3.1.3)
Multiplying equation (3.1.3) by L™!, we obtain
L™ Ly) =L7'g— L' (Ry) — L' (Ny), (3.1.4)

where L' = [ [ ... [(.) (dt)" is the inverse of the operator L.

Since
Lil(Ly) =Yy - ¢7
and ¢ is the constant of integration.

Therefore, equation (3.1.4) becomes
y=¢+ L g— L (Ry)— L (Ny). (3.1.5)

The ADM consists of finding the solution in the form of a series

Y= Yn, (3.1.6)
n=0

then to decompose the nonlinear term Ny in the form of a series
Ny=> A, (3.1.7)
n=0

The terms A, are called Adomian polynomials and are obtained using the following

relation

1 dr =
An(Yo, Y1, oY) = — o [N (ZA y)] n=0,1,2, .., (3.1.8)
) i=0 A=0
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3.1. Adomian decomposition method (ADM)

where ) is a real parameter introduced for convenience.

Substituting equations (3.1.6) and (3.1.7) in (3.1.5), we obtain

S =t L IR (iy) g (fj An> , 519
n=0 n=0 n=0

from which we deduce

Yo=¢+ L g,
y1 =L 'R (yo) — L7 (Ag),

yo = L7'R(y1) — L7 (4y), (3.1.10)

( Yn1 = L7 R (yn) — L1 (An).

It should be noted that this identification is not unique but it is the only one which
allows to explicitly define the y,,. The relation (3.1.10) makes it possible to calculate all the
terms of the series without ambiguity because the A,, depend only on yg, y1, ---, Yn.-

In practice, it is almost impossible to calculate the sum of the series io Y (except for

very special cases). We are therefore generally satisfied with an approximate solution ¢,,,

in the form of a truncated series

n—1
Op, = Zyi,n > 1.
i=0

The question that can be asked is how to determine the (A4,),>¢ and under what condi-

tions the method converges.

3.1.2 Adomian polynomials

Definition 3.1.1 Adomian polynomials are defined by the formula

Ao(yo) = N(yo)
1 d"

x . (3.1.11)
An(Yo, Y1y ooy Yn) = G {N (ZO/\ yﬂ
: i= A=0

The formula proposed by George Adomian for the calculation of Adomian polynomials

(An)n>o is as follows [4]
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3.1. Adomian decomposition method (ADM)

Ao(yo) = N(wo),

0
Ai(yo, 1) = ylf)_yN<y0)’

) 1, 0
As(Yo, 1, y2) = y2a_yN(yO)+§yla_ygN<y0)a

0 0? 03
As(Yo,y1,Y2,,y3) = ysa—yN(yo)+y1y2a—y2N(?/o)+ayi’a—ygN(yo)y

This formula is written in the form

n

A, = Zc(y, n)N (yg),n > 1,

v=0
where ¢(v, n) represents the sum of all the products (divided by m!) of the v terms y; whose
sum of indices 7 is equal to n;m being the number of repetitions of the same terms in the

product.

3.1.3 Convergence of the ADM

Important theorems have been given involving sufficient conditions for convergence. All
these conditions relate to the nonlinear operator V.

Indeed, from the relation (3.1.10) we deduce

Theorem 3.1.1
If Y A, < 400 then Yy, < 400, (3.1.12)

n>0 n>0

and vice versa.

The first proofs of convergence were cited by Yves Cherruault. They are based on the
fixed point method.

Let us give the broad outlines of the demonstration (see [16] for more details).

Let us first note that the decompositional method applied to (3.1.1) reduces to the search
for a sequence

Sp =11 +Y2+ ... +Yn,
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3.1. Adomian decomposition method (ADM)

with Sy = 0 and verifying the following recurring relation
Spt1=N(yo+ Sn), 5% =0,y =9,n=0,1,2, ... (3.1.13)
We deduce the following convergence result.

Theorem 3.1.2 If the operator N is a contraction (i.e. wverifies|N|| < § < 1) then the
sequence (Sp),>o satisfying the recurrence relation Spi1 = N(yo + Sn) with Sp = 0,n > 0
converges to S solution of S = N(yo+ S).

Proof. From the relation (3.1.13), we have

190 =S| = [IN(yo + Sn) = N(yo + 5)|
< INIHISh = S < 6[1Sn = S|
< §*[[S =5

Hence the convergence of the sequence (S,),~, to S. =

In addition, we have:

D A=) v

n>0 n>0

and since ) y, is convergent according to Theorem 3.1.1, then we have the following result.
n>0

Corollaire 3.1.1 If N is a contraction then the series of y, and A, are convergent. More-

over, Y y, is solution of the equation
n>0

Fy=g.
Example 3.1.1. Consider the following nonlinear differential equation

"+4*=0,t>0
vy =7 (3.1.14)
y(0) =1

We have
Ly=1vy,Ry=0and Ny =y>,

ith L= —(.).
with dt()
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3.1. Adomian decomposition method (ADM)

L~ represents a simple integration from 0 to t. We find

y= ya=y(0) L <Z An> . (3.1.15)

Adomian polynomials are

AO - ?/87
A = 2Yo0y1,
Ay = 2yoys + 3,

As = 2y0ys + 21192,

Therefore, we have

Yo = 1,

y = —L7H(A) =,
yo = —L7H(A) =1t
ys = —L7Y(Ay) = —t°,
ys = —L7'(A) =1t

By (8.1.15), we have the solution of (3.1.14) given by

y o= > ygp=l—t+t -4t~
n=0

Example 3.1.2. Consider the following nonlinear differential equation

Yy —e¥=0,t>0

J0) 0 (3.1.16)

We have
Ly=19y ,Ry=0and Ny = ¢€",
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3.2. Homotopy perturbation method (HPM)

d
ith L = —(.).
wi dt<)

L™t represents a simple integration from 0 to t. We find

Y= Zyn =y(0)+ L (ZA”) .

Adomian polynomials are

Therefore, we have

Yo

n

Y2

Y3

Ya

(3.1.17)

evo
y17

1,
Yo + 5917

1 4
Ys + 1y2 + gyp

Lil(AO) = ta
t2
L_l(Al> - Ea
t3
L7'(A4y) = 3
t4
L_I(A?:) = Z’

By (3.1.17), we have the solution of (3.1.16) in the form of an infinite series given by

Y= Un
n=0

2

=i+ -+ -+ +..

2 3 4

3.2 Homotopy perturbation method (HPM)

The homotopy perturbation method was proposed and developed by Chinese mathematician

Ji-Haun-He in 1999 [29],[30],[31]. This method has been widely used to solve nonlinear

and initial-value boundary problems. The homotopy perturbation method is a powerful
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3.2. Homotopy perturbation method (HPM)

mathematical tool for studying a wide variety of problems appearing in different domains.
It is successfully obtained by combining the theory of homotopy in topology with the theory
of perturbation. The important feature of the homotopy perturbation method is that it
provides an almost exact solution to a wide range of linear and nonlinear problems, without
the need for unrealistic assumptions, linearization, discretization and the calculation of

Adomian polynomials [37].

3.2.1 Description of the method

To illustrate the basic concept of this method, we consider the following nonlinear differential

equation
Aly) — f(r) =0,r € Q, (3.2.1)
with boundary conditions
dy
B — =0 r 3.2.2
() =orer (3:2.2)

where A is a general differential operator, B is an operator defining the boundary conditions,
f(r) is a known analytic function, y is the unknown function and I' is the boundary of the
domain ().

In general, the operator A can be decomposed into two operators L and N, where L is
a linear operator and N is a nonlinear operator. So equation (3.2.1) can be rewritten as

follows
L(y) + N(y) — f(r) = 0.

We construct a homotopy z(r,p) :  x [0,1] — R, which satisfies

H(z,p) = (1 —p)[L(2) = L(yo)] + p[A(2) = f(r)] = 0,p € [0,1] ,7 € Q, (3.2.3)

where

H(z,p) = L(z) — L(yo) + pL(yo) + p[N(2) — f(r)] = 0, (3.2.4)

where p € [0, 1] is the homotopy parameter and 7, is an initial approximation of equation

(3.2.1) that satisfies the boundary conditions (3.2.2).
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3.2. Homotopy perturbation method (HPM)

From equations (3.2.3) and (3.2.4) we have

H(z,0) = L(z)— L(yo) = 0,

H(z1) = A(z)— f(r) = 0.
Changing p from zero to unity transforms yo(r) into y(r). In topology with this last
property, the function z(r,p) is called homotopy. According to the HPM, we can use the

parameter p as a small parameter, and assume that the solutions of equations (3.2.3) and

(3.2.4) can be written as a power series of p

Z=zy+pzx+ p222 +p323 + .= szzl (325)
=0

For p = 1, the approximate solution of equation (3.2.1) becomes

o0

y:pligllz:zo+z1+22+23+... :;zi. (3.2.6)
3.2.2 Convergence analysis
In this part, we study the convergence of the HPM [8],[12].
We can rewrite the relation (3.2.4) as follows
L(z) = L(yo) = p[f(r) = L(yo) — N(2)]. (3.2.7)

By replacing (3.2.5) in (3.2.7), we get

L (iﬂ%) — L(yo) =p [f(r) — L(y) — N (ZP%)] : (3.2.8)

So

i L(z) = L(yo) = p [f(?“) — L(yo) = N (Z pizz-)] : (3.2.9)

According to the Maclaurin development of N (Z pizi) with respect to p, we have
i=0

t=n=

= i - Lo - i i
N (2;9 z) = ZO <Ea_pnN <Zop z>) Op . (3.2.10)
i= = p=
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3.2. Homotopy perturbation method (HPM)

According to [26], we have

N (&
(a—pﬂN@M)) :(a—MZM)) |
=0 p=0 =0 p=0

(B (e 50
1= p=0

n=0 1=0

Then

Let’s put

10" —~
Hn(20,2117 ,Zn) = ma—pn [N (szzz>] ,n=0,1,2,..
X p=0

where H,, are called He polynomials [26].
Then

i=0
By replacing (3.2.12) in (3.2.9), we obtain

Z L (Zz> — L(yo) =p [f(?“) — L(yo) — ZHZPZ '

By identifying the terms with those of the same power of p, we find

P’ L(z0) = L(y) =0,

p' o L(z) = f(r) = L(yo) — Ho,
p* o L(»)=—H,

P’ L(z)=—H,,

pn+1 : L(Zn-‘rl) = _Hm
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3.2. Homotopy perturbation method (HPM)

So, we conclude that

p 20 = Yo,

pt s =L (f(r) —yo— L7 (Hy),

p* i zm=—L""(Hy),

p* =L (H,), (3.2.15)

pn+1 o Zn41 = —L! (Hn)a

Theorem 3.2.1 The solution of equation (3.2.1) obtained by the homotopy perturbation

method is equivalent to the determination of S, given by
S, =21+ 29+ ... + 2, with Sp =0, (3.2.16)
using the iterative scheme
Snt1=—L7'N (S, +20) —yo+ L7 (f(r)), (3.2.17)

where

N (ioz> :im,n:o,m,... (3.2.18)

Proof. For n = 0, according to (3.2.17), we have

Sy = —L'N(So+2)—yo+ L (f(r))
= —L ' (Hp) —yo+ L7 (f(r)).

Then
2 =—L""(Ho) —yo+ L' (f(r)).
For
Sy = —L7'N(Si+20) —yo+ L7 (f(r))
= —L7'(Hy+ Ho) —yo+ L7 (f(r))
= —L'(H)+ 2.
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3.2. Homotopy perturbation method (HPM)

According to Sy = 21 + 23, we obtain
Z9 = —Lil (Hl) .

The proof of this theorem will be done by induction.
Suppose that
Zop1 = —L7H(Hy) for k=1,2,...,n—1,

S0
SnJrl = _LilN (Sn + ZO) — Yo + Lil (f(’l“))
= L (Z H@) —yo+ L7 (f(r)
i=0
= =) L'(H) —yo+ L' (f(r)
i=0
= 21+22—|—...+Zn—L71(Hn>.
Then from (3.2.16), we can find
Zny1 = — L7 (H,).
This result is identical to that of (3.2.15) obtained by the HPM. m
Theorem 3.2.2 Let B be a Banach space.

1) 3" 2 converges to S € B, if
i=0

N0 <A< 1 such asVn € N= ||z, < A||lzn-1]| -
2) S = izz verifies
S=—L'N(S+z)—y+L"(f(r).
Proof. 1) we have

1841 = Sull = sl < Mlzall < A znall < o <X l20]]
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3.2. Homotopy perturbation method (HPM)

For n,m € N with n > m, we have

”Sn - Sm” = ||Sn - Sn—l + Sn—l - Sn—? + ...+ Sm—l—l - Sm”
18n = Sn—all + [1Sn-1 = Sa—2ll + . + |Smt1 = Sl

IN

< A [lzoll + A" ol 4+ AT 20

< (WA N 20

< (WM LA+ L) [l

< AL+ A+ A+ L) 20
)\m—i-l

< Tl

Thus
lim ||S, — S| =0.

n,m—-

(Sn),>0 is a Cauchy sequence in the Banach space and it is convergent, i.e.

S € B, with lim S, => "z, = 5.

n—-:aoo

n=1
2) From (3.2.17), we have
lim S,.; = —L7'lim N (S, +2) —vo+ L (f(r))
= —L_l Iim N <Z Zz) — Yo + L_l (f(’l“))
=0
S = —L7'lim Y Hi—yo+L " (f(r))
i=0

= L Z Hi—yo+ L7 (f(r)).

By (3.2.18) and (3.2.12), for p = 1, it comes

Thus : :
S = —L7'N (Z Zz) —yo+ L7 (f(r))
= —LIN(S+ ) —yo+ L (f(r))
[]
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3.2. Homotopy perturbation method (HPM)

Lemma 3.2.1 Equation (3.2.20) is equivalent to
L(y) + N(y) = f(r) = 0. (3.2.21)
Proof. We write the equation (3.2.20) as follows
Sty = ~L7N (54 20) + L7 (7).
By applying the operator L to the previous equation, we obtain

L(S+1y0) =—N(S+2)+ f(r).
As yg = zg,we get

Let y =S+ 2 = Z z;, equation (3.2.21) becomes the original equation. The solution
of equation (3.2.20) is the same as that of the solution of A(y) — f(r) =0. =

Definition 3.2.1 For all 1 € N, we define

llzitall )
A = ||Zzl-|\ ) szH 7é 0

0, ||zi]| = 0.

In Theorem 3.2.2, Z z; converges to the exact solution when 0 < \; < 1.

If z; and z are obtamed by two dzﬁer@nt homotopies, and \; < X for each i € N, the

convergence rate of Z z; 18 greater than Z 2L
i=0 =0

Example 3.2.1. We consider the following nonlinear differential equation

Y +1y2=0,t>0,tcQ

SO 1 (3.2.22)

According to the HPM, we can construct the following homotopy: y: 2 x [0,1] — R
(1=p)(z' —yo) +p(z' +2%) =0,p€[0,1],t €9, (3.2.23)
with

Yo = L.
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3.2. Homotopy perturbation method (HPM)

The solution of equation (3.2.22), can be written in the form of a series
2 =29+ pz +pPea+ ... (3.2.24)

Replacing (3.2.24) in (3.2.23) and identifying the terms with those of the same powers

of p, we obtain

Therefore, the first terms of the solution are given by

0

p 1ok = 17
pl 21 = —t,
P o=t

So, the solution of equation (3.2.22) is

y = limlz:z0+z1+z2+...:1—t+t2—...
p—)
> 1
S ICTE
o 1+t

Example 3.2.2. We consider the following nonlinear differential equation
v =2y—1y>+1,t>0,t e
y(0) = 0.

We search the solution with the HPM, we can construct the following homotopy: vy :
Qx[0,1] —R

(3.2.25)

(1 _p) (Z/—yé)) —|—p(z'—22—}—z2 - 1) = 0,]? € [Oa l]at S Q7
The solution of equation (3.2.25), can be written in the form of a series

2 =2zy+ pz1 +p222—|—...
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3.3. Variational iteration method (VIM)

By identifying the terms with those of the same powers of p, we obtain

Vo gy —1=0,

p
p

2 _
p D&y + 22021 = 0,
PP 242+ 2202 =0,
p

o 22+ 2223 + 22120 = 0,

Therefore, the first terms of the solution are given by

pO 20 = ta
1

pl : lezl(—1+€t—2t+2t2),
1

p? 29 = 1 (t2 — el + 2t3) )

Taking p = 1, the approzimate solution of equation (3.2.25) is given by
Y=zt 21+ 22+ ...
which means that

y:t+i(—1+et—2t+2t2)+i(t2—tzet+2t3)+...

On the other hand, after using the Taylor expansion of e' in the vicinity of zero, the
solution of equation (3.2.25) is given by
7 7 71

1, 1 53
= t+ P+t -t - P - O T 84
Y Ut T T e e

1 V2 -1
= 1++2tanh (\/§t+§log (\/§+1)>

3.3 Variational iteration method (VIM)

The variational iteration method (VIM) was proposed and developed by Chinese mathemati-

cian Je-Haun-He in the early 1990s [32],[33],[34], it was first proposed to solve problems
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3.3. Variational iteration method (VIM)

in mechanics. This method has been used to solve a wide variety of linear and nonlinear
problems with successive approximations that rapidly converge to the exact solution if it
exists. The method is based on the optimal determination of the Lagrange multiplier by

variational theory.

3.3.1 Description of the method

To illustrate the basic ideas of this method, we consider the following nonlinear differential
equation

L(y) + N(y) = g(t), (3.3.1)

where L is a linear differential operator, N is a nonlinear operator and g is a known function.
We can construct a functional correction according to the following variational iteration

method .

Yn+1(t) = yn(t) +//\(7) [L (yn(7)) + N (Yn(T)) — g(7)] dT,n = 0, (3.3.2)

where ) is a general Lagrange multiplier. The index n represents the n* approximation and
Un(7) is considered as a restricted variation, i.e. dy,(7) = 0. To solve equation (3.3.1) by
VIM, we must first determine the Lagrange multiplier A which will be identified optimally
via integration by parts. Then the successive approximations y, of the solution y(t) will
be obtained by using the Lagrange multiplier and a well-chosen function y, (which must at

least satisfy the initial conditions), consequently, the exact solution will be the limit

lim y,(t) = y(t).

n—-:uo0o

3.3.2 Alternative approach to VIM

In this part, we present an alternative approach to VIM. This approach can be performed

reliably and efficiently to solve the following nonlinear differential equation

Ly(t) + Ny(t) = g(t),t > 0, (3.3.3)
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3.3. Variational iteration method (VIM)

with the initial conditions

y®0) = cp, k=0,1,....,m — 1, (3.3.4)

m
where L is a linear differential operator defined by L = pretiil € N, N is a nonlinear
operator, g a known function and ¢, are real numbers.
According to the variational iteration method, one can construct a functional correction

formula for (3.3.3) as follows

t

Yoor(t) = elt) + / ) (Le(r) + NGi(r) — g(r))] dr, (3.3.5)

where A is a general Lagrange multiplier, which can be optimally identified by variational
theory. Here, we apply restricted variations to the term nonlinear Ny, in this case we can
easily determine the multiplier.

Then make the functional correction (3.3.5) stationary by noting that dyx(7) = 0, the

equation
t

Sues(t) = Sun(t) + & | (M) (Lan(r) = glr)) . (330
0
gives the following Lagrange multipliers

A = —1lform=1,

A = 7—tform=2,

and in general

o (_1)m m—1
Therefore, substituting (3.3.7) in the functional (3.3.5), we obtain the following iteration
formula
o (_1)m m—1
Yrr1(t) = ye(t) + m (1 —1) (Lyn(T) + Nyx(1) — 9(7)) | dr, (3.3.8)

0

Now, we define the operator A (y) as

a0 = [ |25 =0 e+ Nty - g ar (339
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3.3. Variational iteration method (VIM)

and we define the components z,, k = 0,1, 2, ..., as follows

p
20 = Yo,

2= A(2),
Z9 = A (ZO + 21) s (3310)

(21 = Ao+ 21+ ).

So we have

y(t) = lim ye(t) =Y z(t).

k— o0
k=0

Finally, the solution of problem (3.3.3) can be deduced using (3.3.9) and (3.3.10), in the

form of a series
o

y(t) = zl(t). (3.3.11)

k=0

The initial approximation zy = gy can be chosen freely if it satisfies the initial conditions
of the problem. The success of the method depends on the correct choice of the initial
approximation zg. In this alternative approach, we choose the initial approximation as

follows

m—1
Ck,
0= Htk. (3.3.12)
k=0

3.3.3 Convergence analysis

In this part, we study the convergence of the variational iteration method, according to the

alternative approach of VIM presented in the previous part [52],[61].

Theorem 3.3.1 Let H be a Hilbert space and A : H — H, an operator defined by (3.3.9).

The series solution y(t) = > zx(t) converges if 30 < v < 1 such as
k=0

||A<ZO +2z1+ ...+ Zk+1)|| < Y ||A(Zo +z1+ ...+ Zk)” s

1.€.

lzeall < vzl , VR € NU{0}.
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3.3. Variational iteration method (VIM)

Proof. Let (S,),>, be a sequence defined as follows

.
So = 2o,

S1 =2+ 21,
SQZZU+21+22,

[ Sn =20+ 21+ 22... + 2.

We show that (S,),,-, is a Cauchy sequence in Hilbert space H.

For this, we have
181 = Sall = znsall < 7 llzall <9 lznall < oo <A™ 20

For n,m € N,n > m, we have

|Sn — Sl = 1Sn — Sn1+ Sn1— Sn2+ . + Szt — Sial|
< |[Sn = Sp—1ll + |Sn=1 — Sn=z|| + .. + [|Sm+1 — Sma |
< A" 2ol + 4" zoll + s ™ 20|
< (AT ™) (20
< (’merl + .o+ ) I 20l
< AT 14y 4+ ) (|20l
m—+1
< 1—~ [EN

and since 0 < v < 1, we obtain

lim ||S, — S| =0.

Therefore, (Sn>nzo is a Cauchy sequence in the Hilbert space H, and this implies that

the series solution y(t) = > z(t) converges. =
k=0

Theorem 3.3.2 If the series solution y(t) = > zx(t) converges, then it is an exact solution
k=0

of the nonlinear problem (3.3.3).
Proof. Suppose the series solution y(t) = > zx(t) converges, then we have
k=0

lim 2L = O,

k— o0
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3.3. Variational iteration method (VIM)

(Zk+1 - Zk;) = Zn+1 — 20,

k=0
So o
Z (2p41 — 21) = klim (Znt1 — 20) = —20. (3.3.13)
k=0 %
. am : :
By applying the operator L = ™ € N, on both sides of equation (3.3.13) then the
relation (3.3.12), we obtain
> L(zkh1— ) = —L(z) =0. (3.3.14)

il

0

On the other hand, from relation (3.3.10), we have
L(ZkJrl — Zk) = L(A(Zg +z1+ ... —|—Zk) —A(Z0+Zl + ... —|—Zk,1)),]{ Z 1.

Using the definition of the operator A(y) defined by (3.3.9), we obtain

L(zg1—2z) = L /[(T(n_—i);!(T—t)m_l(L(zU—l—zl—l—...—i—zk)

0
—L(zo+2z14+...+2k-1) + N(20+ 21+ ... +21)

—N(z0+ 21+ ... +2-1))]d7) k> 1. (3.3.15)

Now, the operator A(y) defined by (3.3.9), gives the integral of the m' times of Ly(t) +

Ny(t) — g(t). Since the differential operator L = 4= of order m is the inverse of the integral

operator m!" times, then equation (3.3.15) becomes
L(Zk+1 —Zk) :L(Zk)+N(ZQ+Zl++Zk) —N(ZQ+Z1+...+Zk_1),]€ Z 1.

Therefore, we have

S Lo —5) = L(z0)+ N (20) — glt)
: FL(21) + N (20 + 1) — N (20)

+L (22) +N<ZO—|—21 +22) — N(Zo+21)

+L(z,)+ N(zo+21+...+2,) —N(z0+21+ ...+ 20-1).
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3.3. Variational iteration method (VIM)

E:L@M1—%):L<§:%)+JV<§:%)—g@. (3.3.16)

k=0
From (3.3.13) and (3.3.16), we can observe that y(f) = >_ zx(t) is an exact solution of
k=0
the problem (3.3.3). m

Example 3.3.1. Consider the following nonlinear differential equation
y) =y () +1,0<t <1,

(3.3.17)
y(0) = 0.
The functional correction of equation (3.3.17) according to the VIM, is given by:
¢
sslt) = () + [ MO ) = (@) (7) = i
0
From (3.3.7), the Lagrange multiplier \(T) can be identified as (1) = —1, hence the

iteration formula can be obtained as follows

t

i) = a(8) = [ () = () (7) = V) (3:319)
0
According to formula (3.58.18), we obtain the first terms of the approximate solution

yO(t) = 07

yl(t) = 1,
1

y(t) = t+ 5153,
1 2 1

t) = t4+ P+ —t0+ 7

And as

y(t) = Tim g ().

n

we can express the solution of equation (3.3.17) as a convergent series to the exact solution

given by
1 2 1
) = t+ -3+ —t5+ —t7T 4 ...
y(t) Tttt et T
= tan(t).
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3.3. Variational iteration method (VIM)

Example 3.3.2. Consider the following linear differential equation

") +y(t) =0,0 <t <1,
yiO) +yd) (3.3.19)

y(0) = 1,4(0) = 0.

The functional correction of equation (3.53.19) according to the VIM, is given by

t

Yn+1(t) = yn(t) + /)\(7') (y;;(T) + yn(7))dT.

From (3.3.7), the Lagrange multiplier \(7) can be identified as \(T) = T —t, hence the
iteration formula can be obtained as follows

t

Y () = ya(t) + / (r = O)(W(7) + ya(r))dr. (3.3.20)

0

According to formula (3.8.20), we obtain the first terms of the approximate solution

y0<t) = 17
1 2
_ 1 2 1 4
_ 1 2 1 4 1 6
yg(t) = 1- gt + Et — at s

And as
y(t) = lim y,(t),

we can express the solution of equation (3.5.19) as a convergent series to the exact solution
given by

_ 12 14 ]‘6

] n t2k
= nhian(—l)kZ—M = cos(t).
k=0
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3.4. New iterative method (NIM)

3.4 New iterative method (NIM)

Recently, Daftardar-Gejji and Jafari [20] proposed a new technique for solving linear /nonlinear
functional equations called new iterative method (NIM) or (DJM). The new iterative method
has been widely used by many researchers for the treatment of linear and nonlinear ordinary
and partial differential equations of integer and fractional order. The method converges to
the exact solution if it exists by successive approximations. The advantage of this method
is that it is easy to understand and apply, it provides best results and does not require any

restrictive assumptions for nonlinear terms, unlike some existing techniques.

3.4.1 Description of the method
To illustrate the basic ideas of NIM, consider the following general functional equation

y=N@)+/ (3.4.1)

where NN is a nonlinear operator of a Banach space B — B and f is a known function.

We search for a solution y of equation (3.4.1) in the form of a series

y=> v (3.4.2)
=0

The nonlinear operator N can be decomposed as follows

N (i y> - ¥+ {N (Z yj) N (Z y) } O Gay

From equations (3.4.2) and (3.4.3), equation (3.4.1) can be represented in the following

form

f:yi =f+N(yo)+§:{N (i:yj) - N (lz_:%)} (3.4.4)

i=1 j=0

We define the recurrence relation

Y = f7

yi = N(%), (3.4.5)
n n—1
7=0 7=0



3.4. New iterative method (NIM)

Then
Attty =N+ +...+yn),n=12 .,

and . .
yzZyz:erN(Zyi)-
1=0 =1

If N is a contraction, i.e.
IN(z) = Nl < kllz —yll,0 <k <1,

then, from (3.4.5), we have

Yo = f’
Iyl = 1INV (mo) || < Ellwoll,
lw2ll = 1IN (yo+v1) — N (o) || < kllwnll < E|lyoll
lysll = IN (yo+ 1+ v2) — N (yo + 1) | < kllyell < E|yoll
a1l = IN(o+31+ -+ un) = N@o+y1+ o+ yn) ||

< Elyall < K" yoll,n =0,1,2, ...,

and the series i y; converges absolutely and uniformly to a solution of equation (3.4.1),
which is uniqueZ:fOrOIn the point of view of Banach’s fixed point theorem (1.3.8). For more
details, you can see [11]

The n—term approximate solution of equation (3.4.1) is given by

n—1
y= Zyi =Y t Y1+ ..+ Yn-1.
=0

3.4.2 Convergence of NIM

Now, we analyze the convergence of the NIM to solve the general functional equation (3.4.1).
Let e = y—y*, where y is the exact solution, y* the approximate solution and e the error

in the solution of (3.4.1), obviously e satisfies (3.4.1), i.e.

e=N(e)+ f,
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3.4. New iterative method (NIM)

and the recurrence relation (3.4.5) becomes

€h = f7
€1 = N(60)7

n n—1
Cntl = N(Z€j>_N< ej>,n=1,2,...
j=0 j=0

IE|N(z) = N(y)|l < kllz —y[[,0 <k <1, then

€y = f7
ledl = [IN (eo) || < Klleoll,
leall = [IN (eo+e1) — N (eo) || < kllex]] < kleol]
lesll = |IN (eo+e1 4 e2) — N (eo + e1) || < kllea]| < K |leol]
llensill = [[N(eo+er+...+e)— N(eg+er+...+en )|l

< Kllen|l < K" eoll,n =0,1,2, ...,

So e,+1 — 0 when n — oo, which proves the convergence of the NIM to solve the general
functional equation (3.4.1).

Example 3.4.1. Consider the following nonlinear differential equation
Y (t) +y*(t) = 1,t >0, (3.4.6)

with initial condition

y(0) = 0. (3.4.7)

By integrating equation (8.4.6) from 0 to t and using the initial condition (3.4.7), we
get
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3.4. New iterative method (NIM)

where
f) =t
t
Nu®) = - [
0
Applying NIM, we have the following first approximations
yO(t) = t,

n(t) = Nyo(t) =—%

y2(t) = N(u(t) +yo(t) — N(yo(t)) = —t° —

and so on.

And since

we can express the solution of equation (3.4.6) in the form of an infinite series which con-

verges rapidly to the exact solution as

32 1
) = t— — 4+ —t°— —t"+ ...
y(t) 57150 T3t T
et — 1
- et +1°

Example 3.4.2. Consider the following nonlinear differential equation

y'(t) + 2y (1) + y(t) + 8y (t) = 1 — 3¢, (3.4.8)

with initial conditions

(3.4.9)
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3.4. New iterative method (NIM)

By integrating both sides of equation (8.4.8) twice from 0 to t and using the initial
conditions (3.4.9), we get

(t)—1+f+ﬁ—ﬁ—2/ d—// ) + 8y*(7)) drd
YW = 5757573 ’ y'(r)) drdr

= %—l—%—kg—2—2/y(7)d7—/(t—7)(y(T)—i-SyB(T))dT

= f{O) + N(y@),

where

1 2 3

ft) = 5+

*3 3

t
>
N®) = -2 [yrdr !/t—f o)+ 8°(r)) dr.

0

Applying NIM, we have the following first approximations
) = Lt o
P T Ty Ty
52 112 Tt TP
= N - - - -
(D) = Nu(t) =—t— 20— = — -+ T,

19¢* 315 37148
) = Ny (t 1)) — N(yo(t)) = 2 + 2t3 —
Y2 (t) (y1(t) +yo(t)) (yo(t)) 20+~ + o 20"

and so on.

And since

y(t) = Zyz-(t),

we can express the solution of equation (3.4.8) in the form of an infinite series which con-

verges rapidly to the exact solution as

W = L1t E 1
B\ =5 276 24
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Chapter 4

On the solution of nonlinear

fractional differential equations

In this chapter, we demonstrate the applicability and efficiency of ADM, HPM, VIM, and
NIM for solving nonlinear fractional differential equations where the fractional derivative is
in the Caputo sense. To achieve our goal, we present some different illustrative examples.

Consider a general nonlinear fractional differential equation

“Dy(t) = Ly(t) + Ny(t) + g(t),t > 0, (4.1.1)

with the initial conditions

y®0) =y, k=0,1,2,....,n — 1, (4.1.2)

where D is the Caputo fractional derivative of order a withn —1 < o < n,n € N*, L
and N respectively are the linear and nonlinear differential operator, and ¢(¢) is the source

term.

4.1 Application of the ADM

To verify the application of the ADM, first we apply the Riemann-Liouville fractional integral

operator I to both sides of equation (4.1.1), we obtain

I° [“Dy(t)] = I [Ly(t) + Ny(t) + g(t)] -
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4.1. Application of the ADM

Using the relation (1.4.19) and the initial conditions (4.1.2), we get

n—1 (k)
ot) = 3 O (o] + 17 [Ly(e) + Ny (413)

Now we represent the solution as an infinite series

y(t) = ya(t). (4.1.4)
n=0
and the nonlinear term can be decomposed as
Ny(t)=> Ay, (4.1.5)
n=0

where A, are the Adomian polynomials of yq, y1,¥s, .., Yn, Which represents the nonlinear
term Ny(t) and it can be calculated by the formula (3.1.11).
Using equations (4.1.4) and (4.1.5), we can rewrite equation (4.1.3) as

L Z yn(t) + Z A,
n=0 n=0

By comparing both sides of equation (4.1.6), we obtain

(4.1.6)

?

00 n—1

tk (0% (0%
D vt =D upy + I l(0] + 1
n=0 k=0

W) = Sl 1),
W) = 1" [Lyn(t) + A,
y2(t) = I%[Lya(t) + Adl,
ys(t) = I%[Lya(t) + Ao,

and so on.

Similarly, we can obtain the recursive relation in general form for n > 1 and defined as

n—1 k
wolt) = 3wy + 1 lg()]
Bualt) = I°[Lon(t) + A,

Finally, the approximate solution is defined as follows

y(t) = yald).
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Example 4.1.1. We consider the following nonlinear fractional logistic equation

1
“Dy(t) = Sy(H) (1 - y(1)), (4.1.7)
with the initial condition
1
y(0) = 5. (4.1.8)

where “ D* is the Caputo fractional derivative of order o with 0 < av < 1.

Following the description of the ADM presented in part 4.1, gives

D tn(t) = %fa (Z Yn(t) — ZAn) , (4.1.9)

where A, are the Adomian polynomials which represents the nonlinear term y?(t).

According to formula (3.1.11), the first terms of the Adomian polynomials are given by

Ay = yS,

A1 = 2y,

Ay = 2yoy + i,
As = 2yoys + 2y192,

Ay = 2yoys + 2y1y3 + 3,

and so on.

Comparing both sides of equation (4.1.9), we have

wH) = 3
1 1

n(t) = oul (yo(t) — Ao) = gmta,
plt) = 1) - A) =0,
W) = S (n(t) = Aa) = — oot e
n(t) = SI(slt) — A3) =0,

1, 1 IF'2a+ 1DHI'4a+1) 5o
wslt) = 31" s = Au) = 1 Tlat DBat DTGa 1)
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4.1. Application of the ADM

and so on.

Hence, the approximate solution of equations (4.1.7)-(4.1.8) is given by

1 1 1 ., 1TC2a+1),, 1 (20 + 1)I'(4a + 1)
Y(t) = > 4+ st — o gl
2 " 8L(a+1)  128T(3a+1) 1024 T(a + DI (3a + DI (5 + 1)

P+ .
(4.1.10)

By substituting o = 1 into equation (4.1.10), we have

1 1
y(t) ==+ -t — —t° +

1
= —— "+
578 T3sa’ T Imse0

The closed form solution will be as follows

exp (%t)
y(t) = 1.\ °
1+ exp (31)
which is the exact solution of the nonlinear Logistic equation in the classical case.

Example 4.1.2. We consider the following nonlinear fractional Bratu equation

“Dy(t) — 2exp (y(t)) =0, (4.1.11)
with the initial conditions

y(0) =y'(0) = 0. (4.1.12)

where ©D* is the Caputo fractional derivative of order o with 1 < a < 2.

Following the description of the ADM presented in part 4.1, gives

iyn(t) =2I¢ (i An) , (4.1.13)

where A, are the Adomian polynomials which represents the nonlinear term exp (y(t)) .

According to formula (3.1.11), the first terms of the Adomian polynomials are given by

Ay = exp(yo),
A = ylexp(yo),

y?
Ay = (92 + 2—1,> exp (vo) ,

3

Yy
As = (ys + 11ys + 3—1,> exp (%) ,
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4.2. Application of the HPM

and so on.

Comparing both sides of equation (4.1.13), we have

Yo(t) = 0,
w(t) = 21° (A@zﬁt“,
p(t) = 21° (Al):mﬂa,

42T+ 1) + T2a + 1)] 3,
I'Ba+ 1)I?(a+1) ’

ys(t) = 217 (Ap) =

and so on.

Hence, the approzimate solution of equations (4.1.11)-(4.1.12) is given by

- 9 X 4 oo A2T%a+ 1)+ T(2a + 1)]
Y= far ) T TRa ) PBa+ )P (a+1)

3+ . (4.1.14)
By substituting o = 2 into equation (4.1.14), we have
1 2
t) =124+ —t* + =5 4 .
y(t) ="+ o0+ 0+

The closed form solution will be as follows

y(t) = —21n(cost).

which is the exact solution of the nonlinear Bratu equation in the classical case.

4.2 Application of the HPM

To illustrate the application of HPM, consider the general nonlinear fractional differential
equation (4.1.1) with initial conditions (4.1.2).

Following the same steps as above, see part 4.1, we have

2 y®
y(t) = Z Y k!(o)tk + I%[g(t)] + I¢ [Ly(t) + Ny(t)]. (4.2.1)
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4.2. Application of the HPM

Now, applying the HPM, we can assume that the solution can be expressed as a power

series in p as given below

— an’yn@)’ (422)

where the homotopy parameter p is considered as a small parameter p € [0, 1].

The nonlinear terms can be decomposed as
= Zp”Hn(y)’ (423)
n=0

where H,(y) are He’s polynomials, and it can be calculated by the relation (3.2.11).
Substituting (4.2.2) and (4.2.3) into (4.2.1), we get

00 n—1 00 00

n tk (0% (8% n n
> P yn(t) =) Yoy H 1% (O] +1 LY phyn(t)+ > p'Ha(y) |, (4.2.4)
n=0 k=0 n=0 n=0

Comparing the coefficient of like powers of p, on both sides in equation (4.2.4), the

following approximations are obtained

P () = S+ 1 [o(0)].
Pt () = I [Lyo(t) + Ho(y)],
PP ye(t) = I Ly (1) + Hi(y)]
p* o ya(t) = I [Lya(t) + Ha(y)]

p" o yn(t) = I% [Lyn—1(t) + Hoa(y)] -
Then, the solution of equations (4.1.1) and (4.1.2) can be defined as follows
= p1£n12p Yn(t) = gyn(t)
Example 4.2.1. We consider the following nonlinear fractional Riccati equation
CD(t) + (1) = 1, (4.2.5)
with the initial condition

y(0) = 0. (4.2.6)
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where © D* is the Caputo fractional derivative of order o with 0 < av < 1.

According to the description of the HPM presented in part 4.2, we have

Zp ya(t) = 191 [Zp”H ] (4.2.7)

where H,(y) are He’s polynomials of the nonlinear term y(t).

From the relation (3.2.11), the first terms of the He’s polynomials are given by

HO = y(2)7
Hy = 2y,
Hy = 2yoyz + 47, (4.2.8)

Hs = 2yoyz + 29190,

and so on.

Comparing the coefficient of like powers of p, on both sides in equation (4.2.7) and using
(4.2.8), gives
1

P’ oplt) =11 = mta,

P ) =~ ) =~
‘ N 16T (2a)T(4x) .
pe c wp(t) = 1% [Hi(y)] = TBat DMGat D)

- o _[320’T?20)T(4a)T' (B + 1) + (20 + 1)I'(5a + 1)] T'(6a 4 1) 4,
P’ ys(t) = —I%[Hy(y)] = — aiT2(3a + ) (5a + )T (Ta + 1) "

and so on.
Therefore, the approximate solution of equations (4.2.5)-(4.2.6) is given by

B 1 o T@Ra+1) 4, 16T (20)I"(4x) o
uit) = T(a+ 1)t T (3a + 1)75 T aTBa + D a + 1)t (42.9)
 [320°T%(20)T(40)T (3 + 1) + T?(2a + DT (5a + 1)] T'(6a + 1)t7

aT2Ba+ DI'(Ga+ DI (Ta+ 1)

Setting o = 1 in equation (4.2.9), then we have

1 2 17
yt) =t — >+ —t° —

— T+
3 15 3150
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The closed form of the solution can be easily written as

_exp(2t) — 1
y(t) = oxp(2) 17

which is the exact solution of the nonlinear Riccati equation in the classical case.

Example 4.2.2. We consider the following nonlinear fractional differential equation
CDy(t) = 1+ 2y(t) + 2y%(¢), (4.2.10)

with the initial conditions
y(0) =4/(0) = 0. (4.2.11)
where © D® is the Caputo fractional derivative of order o with 1 < o < 2.

According to the description of the HPM presented in part 4.2, we have
D P yat) =T[4 21" [ p ya(t) + ) p"Ha(y)| (4.2.12)
n=0 n=0 n=0

where H,(y) are He’s polynomials of the nonlinear term 132(t).

From the relation (3.2.11), the first terms of the He’s polynomials are given by

HO = y8>
Hy = 2yoy,
Hy = 2yoys + 17, (4.2.13)

Hs = 2yoys + 2y192,

and so on.
Comparing the coefficient of like powers of p, on both sides in equation (4.2.12) and

using (4.2.13), gives

P’ oplt) =101 = ﬁta,

Pt (t) =21 [yo(t) + Ho(y)] = ﬁtm + F2(a25_(f)0;—(i_3;)+ 1) *
4 50 AP2F(a+1DIBa+ 1)+ T 2a+1)] 4,
I'(Ba+1) 2(a+ 1)I'(2a+ 1)I(4a + 1)
8'(2a+ 1)I'(4a + 1) 5o
PBla+DI'Ba+ I'(a+1)

p? o wa(t) = 2I% [y (t) + Hi(y)] =

+
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4.3. Application of the VIM

and so on.

Therefore, the approximate solution of equations (4.2.10)-(4.2.11) is given by

1 2 90 2 (a+ 1)+ T2a+ 1)\ 3,
Ma+1) ' Teatn 7 ( (o + DD (3a + 1) ) ! (4.2.14)
4 < Pla+ )F(3a +1) + (20 + 1)) o SI(2a+ 1)D(da + 1)
(a+1)I'(2a+ 1)I(4a+1) MBa+ 1)I'Ba+ DHI'(ba+ 1)

yit) =

P 4+ .

Setting o = 2 in equation (4.2.14), then we have

1 1
H=t>+—t*+ —t5+ .
y(t) =7+ 0+ 0+

The closed form of the solution can be easily written as

y(t) = In(sect),

which is the exact solution of the nonlinear differential equation (4.2.10) in the classical

case.

4.3 Application of the VIM

To verify the application of VIM, consider the general nonlinear fractional differential equa-
tion (4.1.1) with initial conditions (4.1.2).

Following the same steps mentioned in part 4.1, we get

nL
o) = SOy o) 4 10 Lyte) + Ny (o)

— G(t) + I [Ly(t) + Ny(t)] . (4.3.1)

where
y(k)

Vi 1 g0 [9(t)],

Z

is a term arising from the source term and the prescribed initial conditions.

d
Applying pr to both sides of equation (4.3.1), we get

WO gLy (o1) + Ny(a)] - 290 —
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4.3. Application of the VIM

According to the VIM (see Chapter 3), a functional correction can be constructed as

follows

Yna1(t) = yn(t / {dyn IO‘ [Lyn(T) + Nyn(1)] — deE_T) dr. (4.3.2)

0

Or alternatively

Yni1(t) = G(t) + 1% [Lyn(t) + Nya(t)] -
Let us remember that

y(t) = lim ya(t).

n—-maoo
According to the previous limit, we can obtain the exact solution if it exists or obtain
an approximate solution for the equation considered (4.1.1).

Example 4.3.1. Consider the following nonlinear fractional Riccati differential equation
“Dey =2y(t) — () + 1, (4.3.3)

with the initial conditions
y(0) = 0. (4.3.4)

where €D is the Caputo fractional derivative of order o with 0 < av < 1.

According to the VIM, we can construct a functional correction as follows

o) =nl0) ~ [ [0 Lpe o) -2 ) [ar. @35)

Or alternatively

Yna1 () = I°(1) + I [2y.(t) — y2(1)] - (4.3.6)
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4.3. Application of the VIM

Using the iteration formula (4.3.5) or (4.3.6), the first terms are given by

— 1 a
wl) = porpt
B 1 N 2 e AT?*(a+1) —TQ2a+1) 4,
nlt) = T'(a+ 1)t Tt 1)t I'2(a+ 1) (3 + 1) "
B 1, 2 e A2 4+1) =T (2o +1) 4,
wlt) = Do+ 1)t + (20 + 1)t * (e +1)I'(B3a+1) "
<8F2(a +1) -2l 20 +1) AT (3a + 1) > 1o
Mo+ 1)I'(4a+1) Fa+1DI'Qa+ 1)I'(4a+ 1) ’

and so on.

So, the approximate solution of equations (4.3.3)-(4.8.4) is given by

B 1 N 2 oo AT (a+1) —T(2a+1) 4,
W = Tard" TTRasD) T Pla+UMBatD) |
ST% (o + 1) — 2I'(2a + 1) AP(Ba+1) 4o
( M(a+ DIda+1)  T(a+1)02a+ DI (4o + 1)) T 487)

Taking a = 1 in equation (4.3.7), then we have
1 1
t)y=t+t*+ -2 — ~tt+ ..
y(t) +i"+ 3 3 +

Therefore, the solution in closed form is as follows

y(t) =1+ v/2tanh (\/it + %log <%)> ,

which 1s the exact solution of the nonlinear Riccati equation in the classical case.

Example 4.3.2. Consider the following nonlinear fractional logistic differential equation

1
“Dy(t) = 7y (1 - y(1)), (4.3.8)
with the initial condition
1
y(0) = 3. (4.3.9)

where “ D® is the Caputo fractional derivative of order o with 0 < o < 1.
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4.4. Application of the NIM

According to the VIM, we can construct a functional correction as follows

t

o) =onte) = [ |20 - L r ) - 2] ar. @10)
Or alternatively
ran(t) = 317 [palt) — 5200)] (4.3.11)

Using the iteration formula (4.3.10) or (4.8.11), the first terms are given by

1
Yo(t) = 3’
0 - L S S
Y= 3T 8T (a+ 1)
(t)_1+1 L ey, 1 1 o
LA = 3T 8T (a+ 1)’ T 216T (2a+1)
11 1 o 1 1 o THa+1)—2I'(2a+1) 4,
yt) = S+ om At st ( ) (2 >37
3 18T (a+1) ' 216T (2a+1) 25920 (3 + 1)I'2 (o + 1)
and so on.

So, the approximate solution of equations (4.3.8)-(4.5.9) is given by
111 1 L o, e+ 1) 20 (a1 1)

- . «

t) = - - _—
Y =3+ BT s T 26T @ax1) | 25920 Ba £ a1 1)

3 4. (4.3.12)

Taking o = 1 in equation (4.3.12), then we have

11 1 1
y(t) = = + <t + —t* —

T
3 18 432 5184t T

Therefore, the solution in closed form is as follows

exp (}lt)

y(t) = w,

which is the exact solution of the nonlinear logistic equation in the classical case.

4.4 Application of the NIM

To demonstrate the applicability of the NIM,consider the general nonlinear fractional dif-

ferential equation (4.1.1) with initial conditions (4.1.2).
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4.4. Application of the NIM

Following the same steps mentioned in part 4.3, we get
y(t) = G(t) + 1 [Ly(t) + Ny(t)] . (4.4.1)

where G(t) is a term arising from the source term and the prescribed initial conditions.

Suppose that
f@t) = G(),
R(y(t)) = I*[Ly(t)],
M(y(t)) = I%[Ny(1)].
Thus, equation (4.4.1) can be written in the following form
y(t) = f(t) + R(y(t)) + M(y(1)), (4.4.2)

where f is a known function, R and M are respectively the linear and nonlinear operator
of y.

The solution of equation (4.4.2) can be written in the form of a series

y(t) = Zyi<t>.

The nonlinear operator M is decomposed into (see Chapter 3)

(S e S (5n) - (50))

and since R is linear, then we have

R (i%) = iR(?Jz)

Therefore, equation (4.4.2) can be represented in the following form
00 00 00 % i—1
S =0+ 3o rn 3 () -ar (S
=0 i=0 i=1 =0 =0

We define the recurrence relation as follows

Y = f7

yi = R(yo)+M(y), (4.4.3)
n n—1
=0 J=0



4.4. Application of the NIM

we have
Ayt .oty =RW+y+..+y)+Myo+ump+...+y,),n=12 ..

and . . .
yzzyi:f+R (Zyz> + M (Z%) .
i=0 i=0 i=1

Example 4.4.1. Consider the following nonlinear fractional Riccati equation
“Dy(t) + () = 1, (4.4.4)

with the initial condition

y(0) = 0. (4.4.5)

where €D is the Caputo fractional derivative of order o with 0 < av < 1.
By applying the technique described in part 4.4, the equation (4.4.4) is equivalent to the
integral equation
tOt
t) = — — I°[i2(1)] .
Let M(y(t)) = —1*[y*(t)].

In view of recurrence relation (4.4.3), we have the following first approximations

tOL
oo = Ma+1)
B B T'(2a +1) 2o
yo= M) = 2(a+1DIBa+1)
- _ Qa+ DT(da+1) (20 + 1)I'(6a + 1) Ta
v2 = Mlyo+ 1) = Mlyo) = 3o+ DIBa+1)I(Ga+1)  THa+ DI2Ba+ )I(Ta+1)

Therefore, the approximate solution of equations (4.4.4)-(4.4.5) is given by

1) = e I'2a+1) 30 2I'(2a + 1)IM(4a + 1) 5ol
A= Ta+1) T2a+)IBa+1) ' Dla+ DIBa+ DI(Ga+ 1)
?(2a + 1)T'(6a + 1) 7ol
TTa+ )2@a+ Ol(Tat D)’ (4.4.6)

For o =1, the solution (4.4.6) becomes

1 2 17
yt) =t — >+ —t° — —

T+
P) 15 3150
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4.4. Application of the NIM

The closed form of the solution can be easily written as

_exp(2t) — 1
~exp(2t) + 1

y(t)

which is the exact solution of the nonlinear Riccati equation in the classical case.

Example 4.4.2. Consider the following nonlinear fractional differential equation
2

CDy(t) =7+ wy(t) + F (1), (44.7)

with the initial condition

y(0) =0,4(0) = . (4.4.8)

where © D* is the Caputo fractional derivative of order o with 1 < av < 2.
By applying the technique described in part 4.4, the equation (4.4.7) is equivalent to the

integral equation

2 2

y@:m+ﬁ£ﬁ¢+ﬂpmm+%ﬂbmﬂ

Let R(y(t)) = I [y(t)] and M(y(t)) = I* [y*(t)].
In view of recurrence relation (4.4.3), we have the following first approximations

2

™
= mt4+—t"
o= My
3 m ! T (o +2)
_ R __ " ety P 20, T at2 2a+1
Y W) + M) =t " *Teat D)’ Tt 3 " Tla+)I2a+2)

N T (2a+ 1) 30
22 (a+ DI'Ba+1)

and so on.

Therefore, the approximate solution of equations (4.4.7)-(4.4.8) is given by

72 ™ 1 m 9 mt 9

t) = wt+—t®+ — et > tt
v = " e et TTar ) Tt

(o + 2) 201, T (2c + 1)

['(o+ 1) (20 + 2) 22(ov + )T (3 + 1)

£ 4 . (4.4.9)

For o =2, the solution (4.4.9) becomes
2 3 4 5 6

T T v T T
D=mt+ —t2+ -3+ 4+ 5+ 54+ .
ylt) =mt+ S0+ o St gt gt

[6)



4.4. Application of the NIM

The closed form of the solution can be easily written as
y(t) = —In(1 — sinnt),

which is the exact solution of the nonlinear differential equation (4.4.7) in the classical case.
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Chapter 5

New combination method for solving

nonlinear fractional Lienard equation

In this chapter, we propose a new method for solving a particular class of nonlinear fractional
differential equations, namely nonlinear fractional Lienard equation where the fractional
derivative is in the sense of Caputo. This method is called Khalouta differential transform
method (KHDTM) and is a combination of two powerful methods: Khalouta transform
method and differential transform method.

We will begin by providing an overview of the proposed equation, then give the definition
and some basic results on the properties of the Khalouta transform and the differential
transform method, and then present the basic principles of this method as well as some

applications to the nonlinear fractional Lienard equation.

5.1 Lienard equation

The Lienard equation is a nonlinear second order differential equation proposed by Alfred-

Marie Lienard [44] and is given by

y'(t) + f()y'(t) + g(y) = h(t), (5.1.1)

where f(y)y/'(t) is the damping force, g(y) is the restoring force, and h(t) is the external

force.
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5.2. Khalouta transform

The Lienard equation (5.1.1) is a generalization of the damped pendulum equation or
spring—mass system. Since this equation can be applied to describe the oscillating circuits,
therefore it is used in the development of radio and vacuum-tube technology. For different
choices of the variable coefficients f(y), g(y), and h(t), the Lienard equation is used in several
phenomena. For example, the choices f(y) = e(y2 — 1), g(y) = y, and h(t) = 0 this equation
becomes the Van der Pol equation as a nonlinear model of electronic oscillation, see [28],[62]

Several researchers have studied the exact solution of particular cases of Lienard equa-

tion. For example, Zhaosheng Feng [25] investigated the exact solution of

y'(t) +ay (t) + by (t) + cy®(t) = 0, (5.1.2)

He found that one of the solutions of equation (5.1.2), is given by

y(t) = \/—2?&(1 + tanh(y/—at)),

when b?/4 — 4ac/3 = 0,b > 0, and a < 0.
The objective of the present chapter is to propose a hybrid numerical method using
Khalouta transform method and differential transform method in order to solve the nonlinear

fractional Lienard equation in the form

“Dy(t) + ay'(t) + by*(t) + cy’(t) = 0, (5.1.3)

with the initial conditions

y(0) = yo,9'(0) = 1, (5.1.4)
where © D is the fractional derivative operator in the sense of the Caputo of order a with

1 <a<2anda,b,c,yy, and y; are real constants.

5.2 Khalouta transform

Integral transform methods have their origins dating back to the X7X¢ century with the
work of Joseph Fourier and Oliver Heaviside. The fundamental idea is to represent a function

f(t) in terms of the transformation F'(z)
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5.2. Khalouta transform

+00
F(z) = / K(z,8)f(t)dt, (5.2.1)

where the functions K (z,t) are called kernel of the transform, z is a real (complex) number

independent of ¢. Note that when K (z,t) is e **, t.J,(zt), and t*~*(z2t), then equation (5.2.1)

gives respectively, the Laplace transform, the Hankel transform and the Mellin transform.
Now, we introduce the definition and properties of the Khalouta transform that we will

need in this chapter.

Definition 5.2.1 [/0] The Khalouta transform of the function y : [0,00) — R of exponen-

tial order is defined over the set of functions
8 = {y(t) : 3K, 01,05 > 0, |y(1)] < Kexp (9 |1]), if t € (~1) x [0,00) } .

by the following integral

o0

KEL[y(0)) = (s, 70m) = 5 [ exp (=st) (). (5.22)
This is equivalent to
KH[y(t)] = K(s,v,n) = %/exp (—%) y(t)dt (5.2.3)

where s,v,n > 0 are the Khalouta transform variables, o is a real number and the integral

18 taken along the linet = o.

Theorem 5.2.1 The inverse Khalouta transform of the function y(t) is given by
KH™ [KC(s,n,7)] = y(t), fort>0.

This is equivalent to

211 s
©—100

y(t) = KH " [K(s,m,7)] = ! lexp (j—;) K(s,m,7)ds,

where ¢ is a real constant and the integral is taken along s = ¢ n the complex plane

s =u-+ .
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5.2. Khalouta transform

Proof. To prove this Theorem, see [40]. =

Theorem 5.2.2 If the function y(t) is a piecewise continuous in each finite interval t €
[0, A] and is of exponential order B fort > A, then the Khalouta transform K(s,n,~) of the
function y(t) defined by (5.2.2) or (5.2.3) exists.

Proof. To prove this Theorem, see [40]. =
Some basic properties of the Khalouta transform are given as follows [40]
Property 1: Let Ki(s,v,n) and Ka(s,v,7n) be the Khalouta transforms of y;(¢) and

y2(t) respectively. For all constants of ¢; and cg, then

KH [e1y1(f) + c292(t)] = aKH [y1(¢)] + coKH [y2(?)]

et Cllcl(s, ’y, 77) +02K2(877’T})

Property 2: Let K(s,7,n) be the Khalouta transform of y(t), then

n n—1 n—k
s 5
KH [y™ (¢)] = K(s,v,n) — (—) y®(0),n > 1.
™ ()] gy ( ) kz:; o (0)

Property 3: Let Ki(s,7v,n) and Ky(s,v,n) be the Khalouta transforms of () and
yo(t) respectively, then the Khalouta transform of the convolution of y;(¢) and y,(t) is given
by

KE (1% 32) (0] = [ sa(Oha(t = ) = 22K (5, 1)l 7).

Property 4: the Khalouta transforms for some basic functions.

KH(1) = 1,
KH(t) = 2,
S
KH(t—> - X =012, ..
n! sn
KH|—— | = > -1
{F(ajtl)} sa @ !

Now, we present our results regarding the Khalouta transform of the Riemann-Liouville

fractional integral and the Caputo fractional derivative [18].
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5.2. Khalouta transform

Theorem 5.2.3 IfK(s,v,n) is the Khalouta transform of the function y(t), then the Khalouta
transform of Riemann-Liouville fractional integral of order a > 0, is given by

KH [I°y(t)] = 1

SOC

K(s,v,m).

Proof. Applying the Khalouta transform to both sides of equation (1.4.2), we get

t

KH [[%y(t)] = KH ﬁ/(zﬁ—r)a_ly(T)dT
R
= KH _mt *y(t)] .

Then, using Properties (3) and (4), we get

ta—l

()

a—1, a—1
/|
= UL T g
sy MCRR)
yn®
= K(s,v,m).

Sa

KH [I°y(t)] = ?KH{ }KH{y(t)]

The theorem is proved. m

Theorem 5.2.4 IfK(s,v,n) is the Khaoluta transform of the function y(t), then the Khalouta

transform of the Caputo fractional derivative of order n —1 < o < mn,n € Z*, is given by

@ n—1 a—k
KH [¢ Dy(t)] = i K(s,v,n) — (i) y®)(0).
[ (t)] g ( ) 2.5y (0)

Proof. First, we take

u(t) = y™(t). (5.2.4)

Thus, equation (1.4.14), can be written as follows

t

D) = g [ =T
L o
= m(}/(t—ﬂ o(T)dr
— (), (5.2.5)
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5.3. Differential transform method

Applying the Khaoluta transform on both sides of equation (5.2.3) and using Theorem
5.2.3, we get

@ [ yt)] = e (1] = T

a V(s,v,1n), (5.2.6)
where V(s,v,n) is the Khaloua transform of the function v(x).
Applying the Khaoluta transform on both sides of equation (5.2.5) and using Property

2, we get

KH[o(t)] = KH[y"(1)],

S

n n—1 n—k
S
V(s,7,m) = Wnnnic(s,%n)— (—) y®(0). (5.2.7)
k=0

o] = T (ke - (2) o)

80&

n—1 a—k

S

- « a’C(Sv’%T/) - (_) y(k)(o)
7N o \7

The theorem is proved. m

5.3 Differential transform method

In this part, we introduce the basic definitions and fundamental theorems of differential

transform method are defined and proved in [19],[49].

Definition 5.3.1 The differential transform of the function y(t) is defined as

Y (k) = Z% {%y(t)} - (5.3.1)

k=0

where y(t) is the original function and Y (k) the transformed function

Definition 5.3.2 The inverse differential transform of Y (k) is defined as

y(t) =D Y (E)(t—to)". (5.3.2)
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5.3. Differential transform method

Combining equations (5.3.1) and (5.3.2), we get

:i; [ddkky Lto (t —to)". (5.3.3)

In particular, for ¢y = 0, equation (5.3.3) becomes

0 = 1 | a0 e

From the above definitions, the fundamental operations of the differential transform

method are given by the following theorems.

Theorem 5.3.1 Let Y (k), Z(k) and W (k) be the differential transforms of the functions
y(t), z(t) and w(t) respectively, then

(1) if
w(t) = Ay(t) + pz(t),
then
W (k) = \Y (k) + pZ(k), A\, € R.
(2) if
w(t) = y(t)z(1),
then )
W(k) = Z; Y(r)Z(k —r)
(3) if
w(t) = y1()y2(t)--Yn-1(8)yn(t)
then

k k3

=2 Z >3 Z Vi (k1) Ya(ko = k1) X oo X Yoot (et — Ko2) Yo (k= Kas).

kp—1=0ky—2=0 k2=0Fk1=0
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5.4. Description of the KHDTM

5.4 Description of the KHDTM

Theorem 5.4.1 [18] Consider the following nonlinear fractional Lienard equation (5.1.3)
with the initial conditions (5.1.4). The KHDTM gives the solution of (5.1.83)-(5.1.4) in the

form of infinite series that rapidly converge to the exact solution as follows

y(t) =Y Y(k),

k=0

where Y (k) is the differential transformed function of y(t).

Proof. Consider the nonlinear fractional Lienard equation (5.1.3) with the initial con-
ditions (5.1.4).
Computing the Khalouta transform to equation (5.1.3) and the use of the linearity

property of Khalouta transform, we get
KH [“Dy(t)] + oKH [y(t)] 4+ bKH [°(t)] + ¢KH [°(t)] = 0.

Using Theorem 5.2.4, this gives

KH[y(t)] = 5(0) + (22) y/(0) ~ T KE [ay(s) + (1) + (1) (5.4.1

s s
Substituting the initial conditions of equation (5.1.4) into equation (5.4.1), we get

e
Sa

KH [ay(t) + by*(t) + cy’(¢)] - (5.4.2)
Taking the inverse Khalouta transform on both sides of equation (5.4.2), we obtain
y(t) = yo + it — KH! {%KH [ay(t) + by (t) + cgf(t)]] . (5.4.3)

Now, by applying the differential transform method to equation (5.4.3), we get

Y(0) = o,
Y(1) = wt,
Y(k+2) = _KH! {i—ZQKH [(aY (k) + bA(k) + cB(k))]] k>0 (5.4.4)

where A(k) and B(k) are the differential transform of the nonlinear terms y3(¢) and 1°(t),

respectively.
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5.5. Convergence of the KHDTM

The first few nonlinear terms are given by

A(0) = Y¥0),
A(l) = 3Y30)Y (1),
A(2) = 3Y*0)Y(2) +3Y(0)Y?(1),

and

B(0) = Y?*(0),
B(1) = 5Y40)Y (1),
B(2) = 5Y*0)Y(2)+ 10Y3(0)Y%(1).

Note that the recurrence formula (5.4.4) to the iterative terms of equations (5.1.3) and
(5.1.4) is denoted KHDTM, and the k' order solution for equations (5.1.3) and (5.1.4) is

given as

Sp=>»_Y(r)

Thus, in the following theorem, we prove that the series solution (5.4.4) of equations

(5.1.3) and (5.1.4) converges to the exact solution if k& — oo, that is

y(t) —hm Sk = ZY (5.4.5)

5.5 Convergence of the KHDTM

Suppose that B = (C (RT), ||.]|) is the Banach space of all continuous functions on R™ with

the norm

ly()ll 5 = sup [y(t)] .

teR+
Theorem 5.5.1 [18] Let Y(r) and y(t) be defined in Banach space B, then the series
solution Jrf:oY(r) stated in equation (5.4.5) converges uniquely to the exact solution y(t)
of the nrozﬁlinear fractional Lienard equation (5.1.3), if there exists 0 < 0 < 1 such that
Y ()l <01y (r =1, vr € NU{0}.
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5.5. Convergence of the KHDTM

Proof. Let Sy be the sequence of partial sums of the series given by the recurrence

formula (5.4.4), as

We need to show that {Sj}72, is a Cauchy sequence in Banach space 5.
For this purpose, we consider

[Skr1 = Sell < Y (r+ 1) <0V (r)]
O2||Y (r — 1)|| < ... < 60" Y(0)]]. (5.4.6)

IN

For every, n,m € N,n > m, by using (5.4.6) and triangle inequality successively, we

have

|Sn — Smll = 19w — Sn-1+ Sn—1— Sn—2+ . + Sis1 — S|

150 = Sn1ll + [1Sh—1 = Snall + .. + [|Sms1 = Sl
0" 1Y ()] + 0" [[Y ()] + .. + 0™ [V (0)]

0" (1 + 04 ..+ 0" ) Y (0)]]

(1=
o (L5 ) o

Since 0 < # < 1, we have 1 — §"7"™ < 1, then

IN TN

IN

m+1

— <
180X, 1) = S (X, 0 < T—

1Y (0)]l . (5.4.7)

So ||Sy, — S| — 0 as n,m — oo as Y(0) is bounded.
Thus {Sk}2, is a Cauchy sequence in Banach space and consequently it is converges to

y(t) € B such that

lim 5y = Z;Y (r) = y(®).
Now, suppose that the sequence {Sk}r>0 converges to two functions of y(t),y=(t) € B,
that is,

klim Sk = y1(t) and klirn Sk = ya(t). (5.4.8)

Using the triangle inequality with (5.4.8), we get

() — 2Ol < lyr(t) — Skll + [|Sk — ya(t)|| = 0 as k& — oo.
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5.6. Illustrative examples

Hence we conclude that y;(t) = ya(t).

The theorem is proved. m

Theorem 5.5.2 [18] The mazimum absolute truncation error of the series solution given

by the recurrence formula (5.4.4), is estimated to be

0N+1
<ol

y(t) =Y Y (1)

=0

Proof. From Theorem 5.5.1 and (5.4.7), we have

9N+1
16— Sl < S5 O] (549

k
But we assume that Sy = > Y(I) and since k — +o00, we obtain S, — y(t), so (5.4.9)
=0

can be rewritten as

N

y(t) = > YD)

=0

0N+1

<

ly(t) = Snll = =1-9¢

Y] -

The theorem is proved. m

Corollaire 5.5.1 If the series ZY(T) converges then it is an exact solution of the non-
r=0
linear fractional Lienard equation (5.1.3) with initiales conditions (5.1.4).

5.6 Illustrative examples

In this part, we provide two numerical examples of nonlinear fractional Lienard equations
to evaluate the applicability, accuracy, and efficiency of the KHDTM.

Example 5.6.1. Consider the nonlinear fractional Lienard equation
CDy(t) — y(t) + 4y>(t) — 3y°(t) = 0,¢ > 0, (5.6.1)

with the initial conditions
1

90 = =/ (0) = =, (5:62)
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5.6. Illustrative examples

where D% is the fractional derivative operator in the sense of the Caputo of order o with
l<a<2.

If a =2, equation (5.6.1) becomes the classical Lienard equation and its exact solution

1s of the form
y(t) [1+ tznh(t).

According the description of the KHDTM presented in part 5.4, we have

y(t) = Y(r),

and
1
1
R B
42T (a + 1)’
V(3 B 5 7504-5—1
R )
and so on.

Hence, the approximate series solution of equations (5.6.1) and (5.6.2), is given as

yit) = YO0O)+Y(1)+Y(2)+Y(3)+..
S N S
VG 2 A4T(a+1) 8T(a+2) /)
When o = 2, the equation (5.6.3), becomes

(5.6.3)

1 1. 1, 5
= —(14+zt—=t*— =3+ ..
u(a) \/§<+2 8 48+>
1 + tanh(t)

5 )
which is the same exact solution as obtained using the modified fractional Taylor series
method (MFTSM) [38].

Figure 1 shows the behavior of the exact solution and the KHDTM-solution for different
values of a.. Table 1 shows the numerical values of the KHDTM-solution, the exact solution,

and the absolute error for different fractional values of a.
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5.6. Illustrative examples

0.25 T T T T
Exactsolution /
LR L B O[:2 '
a=1.9 /
L U
0.2 a=1.8 7/
— =17 U4

0.15

y(®)

0.1

0.05

0 0.05 0.1 0.15 0.2 0.25

Figure 1 : The behavior of the approximate solutions using KHDTM

and exact solution for equation (5.6.1)

t a=17 a=18 a=19 «a=2 FEzact solution |Yepact — YxHDTM]

0.00 0.70711 0.70711 0.70711 0.70711 0.70711 0

0.02 0.71403 0.71408 0.71412 0.71414 0.71414 5.0793 x 107
0.04 0.72075 0.72092 0.72103 0.72110 0.72110 8.2374 x 1078
0.06 0.72731 0.72762 0.72783 0.72799 0.72799 4.2249 x 1077
0.08 0.73371 0.73419 0.73454 0.73479 0.73479 1.3522 x 107¢
0.1 0.73997 0.74064 0.74114 0.74151 0.74151 3.3415 x 1076

Table 1 : Numerical values of the approximate solutions using KHDTM and exact solution

for equation (5.6.1)

Example 5.6.2. Consider the nonlinear fractional Lienard equation

DY (t) — y(t) +4y°(t) + 3y°(t) = 0, > 0, (5.6.4)
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5.6. Illustrative examples

with the initial conditions
1

y(0) = T\/ﬁ,y'(O) =0, (5.6.5)
where ¢ D is the fractional derivative operator in the sense of the Caputo of order o with
l<a<?2.

If o =2, equation (5.6.4) becomes the classical Lienard equation and its exact solution

is of the form

() = sec h%(t)
Y 2v2+ (1 — v/2) sec h2(t)’

According the description of the KHDTM presented in part 5.4, we have

y(t) = Y(r),

and
1
Y(0) = T
Y(1) = 0,
v = — 4422 to
(3+2v2) V1++v2) la+1)
Y(3) = 0,
and so on.

Hence, the approzimate series solution of equations (5.6.4)and (5.6.5), is given as

yit) = YO +Y(1)+Y(2)+Y(3)+..

B 1 C(4+2v2 to
- —1+\/§<1 (3”\@) F(@+1)+...>. (5.6.6)

When « = 2, the equation (5.6.6), becomes

oo (22 e
y(t) = 1+ﬁ<1 <3+2\/§)t+...>

B sec h(t)
B 2v2 + (1= v/2) sech2(t)’
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5.6. Illustrative examples

which is the same exact solution as obtained using the modified fractional Taylor series
method (MFTSM) [38].

Figure 2 shows the behavior of the exact solution and the KHDTM-solution for different
values of a.. Table 2 shows the numerical values of the KHDTM-solution, the exact solution,

and the absolute error for different fractional values of a.

0.644 T T T T T T T T T

0.642

0.64

y(t)

0.638

0.636

== Exactsolution ‘\

LB L B a:Z s
0.634 | a=1.9 \

a=1.8

—— =17

0.632 1 1 1 1 1 1 1 1 1
0 0.01 002 003 004 005 0.06 007 008 009 0.1

t

Figure 2 : The behavior of the approximate solutions using KHDTM and exact solution

for equation (5.6.4)

t a=17 a=18 a=19 «a=2 FEzact solution |Yepact — YxHDTM]

0.00 0.64359 0.64359 0.64359 0.64359 0.64359 0.0

0.02 0.64296 0.64320 0.64335 0.64344 0.64344 3.2888 x 107
0.04 0.64154 0.64222 0.64268 0.64299 0.64299 5.2585 x 1077
0.06 0.63951 0.64075 0.64163 0.64224 0.64224 2.6590 x 1076
0.08 0.63693 0.63882 0.64019 0.64118 0.64118 8.3902 x 1076
0.1 0.63385 0.63647 0.63840 0.63982 0.63982 2.0441 x 107°

Table 2 : Numerical values of the approximate solutions using KHDTM and exact solution

for equation (5.6.4)
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Conclusion and research perspectives

In this thesis, the approximate and analytical solutions of nonlinear fractional differential
equations in the sense of Caputo are studied by proposing a new method called the Khalouta
differential transform method (KHDTM). To demonstrate the applicability and efficiency
of the proposed method, it was applied to a special class of nonlinear fractional differential
equations called nonlinear fractional Lienard equation, and the results showed that the
approximate solutions obtained using this method agree excellently with the exact solutions.
The main advantage of KHDTM is that it gives the solution in the form of an infinite series,
which rapidly converges to the exact solution if it exists.

It can be concluded that the proposed method is very powerful and effective for finding
approximate and analytical solutions of nonlinear fractional differential equations.

This field of research in the case of fractional differential equations is very interesting,
therefore, the future prospects are:

1- Search for numerical and analytical methods for solving fractional differential equa-
tions, less expensive and more accurate than the proposed method in this thesis.

2- Apply the Khalouta differential transform method to solve fractional differential equa-
tions, but with other fractional derivative operators (in the sense of Riemann-Liouville,

Grunwald-Letnikov, Caputo-Fabrizio, and in the sense of Hadamard).
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Résumeé:

Les équations différentielles fractionnaires non-linéaires jouent un
rOle important en mathématiques appliquées et en physique. Il est
difficile d'obtenir la solution exacte de ces problémes en raison de la
complexité des termes non-linéaires inclus. Au cours des derniéres
décennies, il y a eu un grand développement dans l'analyse
numeérique et la solution exacte des équations différentielles
fractionnaires non-linéaires. L'objectif principal de cette thése est
d'étudier les solutions d'équations différentielles fractionnaires non-
linéaires impliquant 'opérateur fractionnaire de Caputo en proposant
une nouvelle technique. Pour démontrer la validité et la fiabilité de
cette technique, elle est appliquée a plusieurs exemples numériques.

Mots clés: Equations différentielles fractionnaires, Dérivée
fractionnaire de Caputo, Solution approximative, Solution analytique.

Abstract :

Nonlinear fractional differential equations play an important role in
applied mathematics and physics. It is difficult to obtain the exact
solution for these problems due to the complexity of the nonlinear
terms included. In recent decades, there has been great development
in the numerical analysis and exact solution for nonlinear fractional
differential equations. The main objective of this thesis is to study the
solutions of nonlinear fractional differential equations involving
Caputo fractional operator by proposing new technique. To
demonstrate the validity and reliability of this technique, it is applied
to several numerical examples.

Key words: Fractional differential equations, Caputo fractional
derivative, Approximate solution, Analytical solution.
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