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 شكر وتقدير
 

 منحني الذي الحميد،وأحمد الله العظيم   شيء أود أن أشكر كل قبل و أولً 
 .الأطروحة هذه وإتمام لإنجاز والمثابرة الصبر

 لمشرفي، بالمتنان والعميق الصادق شعوري عن أعرب أن كثيرا يسعدني
 وإسهاماته واقتراحاته الحكيمة توجيهاته كانت الذي علي خلوطة الدكتور

 الأطروحة. هذه إعداد في حاسمةلا

 وأيضا للمخطوطة لقراءتهم التحكيم للجنة امتناني عن للتعبير كلمات أجد ل
 .عملي لتقييم المكرسة وجهودهم الثمين لوقتهم

 لجنة رئاسة خلال من إياه منحني الذي الشرف على الرئيس بصدق أشكر
 عملي. بفحص شرفوني الذين اللجنة لأعضاء خاص بشكر أدين التحكيم. كما

 قدمتها، التي والرعاية المعنوي الدعم على لعائلتي الجزيل بالشكر أتقدم
 مساعدتهم قدموا الذين الرياضيات قسم في والزملاء للموظفين خاص وشكر
 دراساتي. سنوات طوال ساعدني من وكل الأطروحة، هذه إعداد أثناء

 
 



 

Acknowledgements 
 

First and foremost, I would like to thanks and praise 
Allah, the Ever-magnificent, the Ever-Thankful, for 

granting me the patience and perseverance to carry 
out and complete this thesis. 

It gives me great pleasure to express my sincere and 
deep sense of gratitude to my supervisor,  

Dr. KHALOUTA Ali whose wise guidance, 
suggestions and contributions were critical to the 

preparation of this thesis.  

I have no words to express all my gratitude to the 
jury for their reading of the thesis and also for their 
precious time and efforts dedicated to evaluating my 
work. I sincerely thank the president for the honor 
that he gave me by chairing the jury. I also owe a 

special thanks to the members of the committee who 
honored me to be examiners of my work. 

My heartfelt thanks to my family for their moral 
support and care they provided, with special thanks 

to staff and colleagues at the department of 
mathematics who provided their assistance during 

the preparation of this thesis, and everyone who 
have helped me throughout the years of my studies. 

 



 

 هداءإ
 

,العمل هذا أهدي  

بعلمه. الآخرين عقول أنار للعلم محب باحث كل إلى  

ريمهم,  بتك أمرنا الله والذين الكون في لهم مثيل لا الذين أولئك إلى
 ذينوال والسعادة، بالدعاء غمرونيأ شجعوني وساعدوني دائما و الذين

العزيزين. وأبي لأمي بالكثير من الامتنان لهم أدين  
 

عمي العزيز وزوجي, أخوي الصعبة أوق اتي في ساندني من إلى  

زوجي. ووالد   
 

النجاح. قيقتح على ساعدتني التي الكلمات صاحبة المقربة إلى صديقتي  

وكل عائلتي الجميلة. أصدق ائي الطيبين كل إلى  
 

 .لمساعدتي جهدا بذل من وكل طريقي نصائحه لي أضاءت شخص كل إلى
 



 

Dedication 
 

I dedicate this work, 

To every researcher who loves science, he 
illuminated the mind of others with his knowledge. 

To those who are unmatched by anybody in the 
universe and to whom God has Instructed us to show 
homage, who have always encouraged, helped and 
lavished me with supplications, and happiness, to 
whom I owe a great debt of gratitude to my dear 

mother and father. 

To those who supported me in my difficult times, my 
brothers and my husband, my dear uncle and my 

father-in-law. 

To my best friend, owner of the words that helped 
me achieve success. 

To all my kind friends and all my beautiful family. 

To every person who his advices have lighted my 
way and all who made an effort to help me. 

 



Table of contents

Introduction ii

1 Basic concepts of fractional calculus 1

1.1 Applications of fractional systems . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Mechanics of continuous media . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Acoustic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Functional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Spaces of integrable functions . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Spaces of continuous and absolutely continuous functions . . . . . . . 4

1.2.3 Spaces of continuous functions with weight . . . . . . . . . . . . . . . 5

1.2.4 Banach �xed point theorem . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Speci�c functions for fractional derivation . . . . . . . . . . . . . . . . . . . 6

1.3.1 Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Beta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Mittag-Le er function . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Fractional integrals and derivatives . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Fractional integral in the Riemann-Liouville sense . . . . . . . . . . . 8

1.4.2 Fractional derivative in the Riemann-Liouville sense . . . . . . . . . 12

1.4.3 Some properties of fractional derivation in the sense of Riemann-

Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

i



TABLE OF CONTENTS

1.4.4 Fractional derivative in the sense of Caputo . . . . . . . . . . . . . . 17

1.4.5 Some properties of fractional derivation in the sense of Caputo . . . . 22

1.4.6 Relation between the Riemann-Liouville approach and that of Caputo 23

2 Fractional di¤erential equations in the sense of Caputo 25

2.1 Equivalence result between the Cauchy problem and the Volterra integral

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Result of existence and uniqueness of the solution . . . . . . . . . . . . . . . 27

3 Semi-analytical methods and their convergence 33

3.1 Adomian decomposition method (ADM) . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Adomian polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Convergence of the ADM . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Homotopy perturbation method (HPM) . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Variational iteration method (VIM) . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Alternative approach to VIM . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 New iterative method (NIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Convergence of NIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 On the solution of nonlinear fractional di¤erential equations 61

4.1 Application of the ADM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Application of the HPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Application of the VIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Application of the NIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ii



Table des matières

5 New combination method for solving nonlinear fractional Lienard equa-

tion 77

5.1 Lienard equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Khalouta transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Di¤erential transform method . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Description of the KHDTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Convergence of the KHDTM . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Conclusion and research perspectives 92

Bibliography 92

iii



Introduction

In mathematics, fractional calculus is a branch of analysis, which studies the gener-

alization of derivation and integration from integer order (ordinary) to non-integer order

(fractional). Fractional derivation theory is a subject almost as old as classical calculus

as we know it today, its origins dating back to the late 17th century, the time when Isaac

Newton and Gottfried Wihelm Leibniz developed the foundations of di¤erential and integral

calculus. In particular, Leibniz introduced the symbol
dnf

dtn
to denote the nth derivative of

a function f when he announced in a letter to Guillaume de L�Hôpital dated September 30,

1695, with the implicit assumption that n 2 N; L�Hôpital replied: What does d
nf

dtn
mean

if n =
1

2
?: Leibniz replied: "This would lead to a paradox from which one day we will be

able to draw useful consequences" [51]. This letter from L�Hôpital is today accepted as the

�rst incident of what we call fractional derivation, and the fact that L�Hôpital speci�cally

requested for n =
1

2
; i.e. a fraction (rational number), actually gave rise to the name of this

�eld of mathematics.

Systems described by fractional order models using fractional di¤erential equations based

on the non-integer derivative have attracted the interest of the scienti�c community. En-

gineers have only realized the importance of non-integer order di¤erential equations in the

last three decades, especially when they observed that the description of some systems is

more exact than when the fractional derivative is used.

The credit for the �rst conference is given to B. Ross who organized this conference at

the University of New Haven in June 1974 under the title "Fractional Calculus and Its Ap-

plications". For the �rst study, another credit is given to K. B. Oldham and J. Spanier [51]

who published a book in 1974 after a joint collaboration, started in 1968 and devoted to the

iv



Introduction

presentation of methods and applications of fractional calculus in physics and engineering.

Since then, fractional calculus has gained popularity and signi�cant consideration mainly

due to the numerous applications in various �elds of applied sciences and engineering where

it has been noticed that the behavior of a large number of physical systems can be described

using the fractional derivative which provides an excellent instrument for the description of

many properties of materials and processes [9],[10],[21],[45],[46],[53].

In recent years, nonlinear fractional di¤erential equations have attracted the attention of

many researchers due to a wide range of applications in many �elds of physics, �uid mechan-

ics, electrochemistry, viscoelasticity, nonlinear control theory, nonlinear biological systems,

hydrodynamics and other �elds of science and engineering [2],[7],[23],[24],[39],[41],[42],[50].

In all these scienti�c �elds, it is important to �nd exact or approximate solutions to these

problems. There is therefore a strong interest in developing methods for solving problems

related to nonlinear fractional di¤erential equations. The exact solutions of these problems

are sometimes too complicated to achieve by classical techniques due to the complexity of

the nonlinear parts involving them.

The main objective of this thesis is to present new analytical and numerical methods for

solving nonlinear fractional di¤erential equations where the fractional derivative is in the

sense of Caputo.

This thesis is divided into �ve chapters as follows:

In the �rst chapter, we present some examples of applications of the theory of fractional

calculus in certain scienti�c �elds, then we recall the basic notions related to the theory of

fractional calculus that will be needed in the rest of this work such as the gamma function

and the Mittag-Le er function which plays an important role in the theory of fractional

di¤erential equations as well as the �xed point theorem. Two approaches (Riemann-Liouville

and Caputo) to the generalization of the notions of derivation will then be considered.

In the second chapter, we will address the question of the existence and uniqueness of the

solution for a Cauchy problem of a frational di¤erential equation with fractional derivative

in the sense of Caputo of the form8<: CD�y(t) = f(t; y(t)); t 2 
 = [0; T ] ; n� 1 < � < n;
y(k)(0) = bk 2 R; k = 0; 1; :::; n� 1; n = [�] + 1:

v



Introduction

The existence and uniqueness of a continuous solution is established by transforming

this problem to an equivalent integral equation, whose solution is identi�ed with a �xed

point of a contracting operator (under certain su¢ cient assumptions on the function f) in a

suitably chosen functional space. We conclude this chapter with two illustrative examples.

In the third chapter, we describe some semi-analytical methods: the Adomian decompo-

sition method (ADM), the homotopy perturbation method (HPM), the variational iteration

method (VIM), the new iterative method (NIM), then we study the convergence of each of

these methods. These methods are applied to classical nonlinear di¤erential equations (of

integer order).

In the fourth chapter, we study the ADM, HPM, VIM and NIM for applications on

nonlinear fractional di¤erential equations. Furthermore, we present di¤erent numerical ex-

amples to illustrate the e¢ ciency and accuracy of these methods.

In the �fth chapter, we propose a new hybrid method called Khalouta di¤erential trans-

form method which is a combination of two powerful methods: Khalouta transform method

and di¤erential transform method to solve a certain class of nonlinear fractional di¤erential

equations namely nonlinear fractional Liénard equation of the form

CD�y(t) + ay(t) + by3(t) + cy5(t); t > 0;

with the initial conditions

y(0) = y0; y
0(0) = y1;

where CD� is the fractional derivative operator in the sense of the Caputo of order � with

1 < � � 2; and a; b; c; y0; and y1 are constants.
Furthermore, we prove the convergence theorem of this method under appropriate con-

ditions. Then we provide two numerical examples to show the e¢ ciency and precision of

the proposed method.

Finally, we end our work with a general conclusion, where the validity and reliability of

such research is highlighted, also we propose some perspectives on the subject.

vi



Chapter 1

Basic concepts of fractional calculus

This chapter will be devoted to the basic de�nitions and concepts related to fractional

calculus such as speci�c functions for fractional integration, fractional derivation, and other

concepts that we will need in the rest of our work. We will begin by presenting some

examples of applications of the theory of fractional calculus in certain scienti�c �elds.

1.1 Applications of fractional systems

Fractional systems are increasingly appearing in various �elds of research. However, the pro-

gressive interest in these systems is their applications in fundamental and applied sciences.

It can be noted that for the majority of the �elds presented below, fractional operators are

used to take into account memory e¤ects. Let us mention the works [36],[60] which group

together various applications of fractional calculus.

1.1.1 Automatic

In automatic, a few authors have used control laws introducing fractional derivatives. Pod-

lubny [57] showed that the best method to ensure e¢ cient control of fractional systems

is the use of fractional controllers. He proposes a generalization of traditional controllers

PID. The CRONE group, founded by Oustaloup in the 70s, applies these methods to many

industrial systems: spectroscope, car suspension [54], robot-picker,electro-hydraulic plow,

car battery, etc...

1



1.1. Applications of fractional systems

1.1.2 Physics

One of the most remarkable applications of fractional calculus in physics was in the context of

classical mechanics. Fred Riewe [59] showed that the Lagrangian containing time derivatives

of fractional orders leads to an equation of motion with nonconservative forces such as

friction. This result is remarkable since frictional forces and nonconservative forces are

essential in the usual macroscopic variational treatment, and therefore, in the most advanced

methods of classical mechanics. Fred Riewe generalized the usual calculus of variations

to the Lagrangian that depends on fractional derivatives [58] in order to deal with the

usual nonconservative forces. On the other hand, several approaches have been developed

to generalize the principle of least action and the Euler-Lagrange equation to the case of

fractional derivatives [5],[6].

1.1.3 Mechanics of continuous media

The deformation of continuous media (solid or liquid) is often described using two ten-

sors,that of the deformations noted "ij and that of the constraints �ij: Some materials,

such as polymers (erasers, rubber,...), exhibit an intermediate behavior between viscous and

elastic characteristics, called viscoelastic. Such systems can be modeled using the following

relation between the two tensors

�ij = E"ij(t) + �D
�"ij(t); 0 < � < 1:

This law is justi�ed by Bagley and Torvik in [9],[10] (for � =
1

2
). In [55], the in-

troduction of fractional derivatives in the case of polymers is motivated by the following

analysis: due to the length of the �bers, the applied deformations take time to be com-

municated from step by step (the length of the wound �bers being much greater than the

geometric distance). They are progressively damped and induce memory e¤ects (the state

at time t will depend on previous states). If the constraint decreases as t�(1+�), it can

induce a fractional derivative of order �. This operator thus makes it possible to give a

simple macroscopic description (requiring only a few parameters) of complex microscopic

phenomena. A presentation of viscoelasticity via fractional derivation is given in [22].

2



1.2. Functional spaces

1.1.4 Acoustic

For some wind musical instruments visco-thermal losses can be modeled e¤ectively using

time fractional derivatives [35].

1.2 Functional spaces

In this part, we present a preliminary in which we recall fundamental notions and results of

the theory of functional analysis which represent an essential tool in the theory of fractional

calculus.

1.2.1 Spaces of integrable functions

De�nition 1.2.1 [13] Let 
 = [0; T ] (0 < T < +1) a �nite interval of R and 1 � p � 1:

1) For 1 � p < 1; the space Lp(
) is the space of real functions y on 
 such that y is
measurable and

TZ
0

jy(t)jp dt <1:

2) For p = 1; the space L1(
) is the space of measurable functions y bounded almost
everywhere (a.e) on 
:

Theorem 1.2.1 [13] Let 
 = [0; T ] (0 < T < +1) a �nite interval of R:

1) For 1 � p <1; the space Lp(
) is Banach space with the norm

kykp =

0@ TZ
0

jy(t)jp dt

1A1=p

<1:

2) The space L1(
) is Banach space with the norm

kyk1 = inf fM � 0 : jy(t)j �M a.e on 
g :

3



1.2. Functional spaces

1.2.2 Spaces of continuous and absolutely continuous functions

De�nition 1.2.2 [43] Let 
 = [0; T ] (0 < T < +1) a �nite interval of R and n 2 N:
We denote by Cn(
) the space of functions y which have their derivatives of order less

than or equal to n continues on 
; equipped with the norm

kykCn(
) =
nX
k=0

y(k)
C(
)

=
nX
k=0

max
t2


��y(k)(t)�� ; n 2 N:
In particular if n = 0; C0(
) = C(
) the space of continuous functions y on 
 equipped

with the norm

kykC(
) = maxt2

jy(t)j :

De�nition 1.2.3 [43] Let 
 = [0; T ] (0 < T < +1) a �nite interval of R:
We denote by AC(
) the space of primitive functions of integrable functions i.e.

AC(
) =

8<:y=9' 2 L1(
) : y(t) = c+
tZ
0

'(s)ds

9=; ;
and we call AC(
) the space of absolutely continuous functions on 
:

De�nition 1.2.4 [43] For n 2 N� we denote by Cn� (
) the space of functions y which have
continuous derivatives on 
 up to order (n� 1) and such that y(n�1) 2 AC(
) i.e.

ACn(
) = fy : 
 �! C; y(k) 2 C(
); k 2 f0; 1; 2:::n� 1g ; y(n�1) 2 AC(
)g:

In particular if AC1(
) = AC(
):

A characterization of the functions of this space is given by the following lemma.

Lemma 1.2.1 [43] A function f 2 ACn(
); n 2 N�; if and only if it is represented in the
form

y(t) =
1

(n� 1)!

tZ
0

(t� �)n�1y(n)(�)d� +
n�1X
k=0

y(k)(0)

k!
tk:

4



1.2. Functional spaces

1.2.3 Spaces of continuous functions with weight

De�nition 1.2.5 [43] Let 
 = [0; T ] (0 < T < +1) a �nite interval of R and � 2 C
(0 � Re(�) < 1) :

We denote by C�(
) the space of functions y de�ned on 
 such that the function t�y(t) 2
C(
) i.e.

C�(
) = fy : 
 �! C; (:)�y(:) 2 C(
)g;

equipped with the norm

kykC�(
) = kt
�y(t)kC(
) = maxt2


jt�y(t)j :

The space C�(
) is called the space of continuous functions with weight.

In particular, C0(
) = C(
):

De�nition 1.2.6 [43] For n 2 N� we denote by Cn� (
) the space of functions y which have
continuous derivatives on 
 up to order (n� 1); such that y(n) 2 C�(
); i.e.

Cn� (
) = fy : kykCn� (
) =
n�1X
k=0

y(k)
C(
)

+
y(n)

C�(
)
g:

In particular C0�(
) = C�(
):

1.2.4 Banach �xed point theorem

De�nition 1.2.7 Let X be a Banach space,and T : X �! X a continuous map, we say

that T is contracting if T is Lipschitzian with ratio K < 1; i.e.

9k < 1 : 8u; v 2 X : kT (u)� T (v)k � K ku� vk :

Theorem 1.2.2 (Banach) [27] Let X be a Banach space and T : X �! X a contracting

operator, then T admits a unique �xed point, i.e. 9!y� 2 X such that

Ty� = y�:

Furthermore, if T k; k 2 N is a sequence of operators de�ned by

T 1 = T and T k = TT k�1; k 2 N n f1g ;

then for all y0 2 X the sequence
�
T ky0

	1
k=0

converges to the �xed point u� and we have

lim
k!1

T ky0 � y� = 0:
5



1.3. Speci�c functions for fractional derivation

1.3 Speci�c functions for fractional derivation

In this part, we present the Gamma, Beta and Mittag-Le er functions. These functions

play a very important role in the theory of fractional calculus and its applications.

1.3.1 Gamma function

One of the basic functions of fractional calculus is Euler�s Gamma function �(z) which

naturally extends the factorial to positive real numbers (and even to complex numbers with

positive real parts).

De�nition 1.3.1 [56] For z 2 C such that Re(z) > 0: The Gamma function �(z) is de�ned
by the following integral

�(z) =

+1Z
0

e�ttz�1dt; (1.3.1)

with �(1) = 1; �(0+) = +1; �(z) is a monotonic and strictly decreasing function for
0 < z < 1:

An important property of the Gamma function �(z) is the following recurrence relation

�(z + 1) = z�(z); Re(z) > 0; (1.3.2)

that it can be demonstrated by integration by parts

�(z + 1) =

+1Z
0

e�ttzdt =
�
�e�ttz

�+1
0

+ z

+1Z
0

e�ttz�1dt = z�(z):

Euler�s Gamma function generalizes the factorial because �(n+1) = n!; 8n 2 N; indeed
�(1) = 1 and using (1.3.2) we obtain

�(2) = 1�(1) = 1!;

�(3) = 2�(2) = 2:1! = 2!;

�(4) = 3�(3) = 3:2! = 3!;

...

�(n+ 1) = n�(n) = n(n� 1)! = n!:
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1.3. Speci�c functions for fractional derivation

1.3.2 Beta function

It is one of the basic functions of fractional calculus. This function plays an important role

when combined with the Gamma function.

De�nition 1.3.2 [56] The Beta function is a type of Euler integral de�ned for complex

numbers z and w by

B(z; w) =

1Z
0

tz�1(1� t)w�1dt;Re(z) > 0;Re(w) > 0: (1.3.3)

The Beta function is related to the Gamma function by the following relation

B(z; w) =
�(z)�(w)

�(z + w)
;Re(z) > 0;Re(w) > 0; (1.3.4)

it follows from (1.3.4) that

B(z; w) = B(w; z);Re(z) > 0;Re(w) > 0:

1.3.3 Mittag-Le er function

The Mittag-Le er function plays a very important role in the theory of di¤erential equations

of integer order. It is also widely used in the search for solutions of di¤erential equations of

fractional order, this function was introduced by G.M. Mittag-Le er [47],[48].

De�nition 1.3.3 [56] For z 2 C; the Mittag-Le er function E�(z) is de�ned as follows

E�(z) =
1X
k=0

zk

�(�k + 1)
; � > 0: (1.3.5)

In particular

E1(z) = e
z; E2(z) = cosh(

p
z):

This function can be generalized for two parameters to give

E�;�(z) =
1X
k=0

zk

�(�k + �)
; � > 0; � > 0: (1.3.6)
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1.4. Fractional integrals and derivatives

1.4 Fractional integrals and derivatives

The aim of this part is to introduce the two most important approaches to fractional calculus:

in the Riemann-Liouville sense and in the Caputo sense, including some of their properties

as well as the relationship between these two approaches.

1.4.1 Fractional integral in the Riemann-Liouville sense

The notion of fractional integral of order � 2 C (Re(�) > 0); according to the Riemann-

Liouville approach, generalizes the famous formula (attributed to Cauchy) of integral re-

peated n�times.
Let y a continuous function on the interval [0; T ]; T > 0: A primitive of y is given by the

expression

I1y(t) =

tZ
0

y(�)d� :

For a second primitive and according to Fubini�s theorem we will have

I2y(t) =

tZ
0

I1y(u)du =

tZ
0

0@ uZ
0

y(�)d�

1A du = tZ
0

0@ tZ
�

du

1A y(�)d�
=

tZ
0

(t� �) y(�)d� :

By repeating n�times, we arrive at the nth primitive of the function y in the form

Iny(t) =
1

(n� 1)!

tZ
0

(t� �)n�1 y(�)d� ; t > 0; n 2 N�: (1.4.1)

This formula is called Cauchy�s formula, and since the generalization of the factorial by

the Gamma function �(n) = (n � 1)!; Riemann realized that the right-hand side of (1.4.1)
could make sense even when n takes a non-integer value, he de�ned the fractional integral

as follows
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1.4. Fractional integrals and derivatives

De�nition 1.4.1 [43],[56] Let y 2 L1([0; T ]); T > 0: The Riemann-Liouville fractional

integral of the function y of order � 2 C (Re(�) > 0) denoted I� is de�ned by

I�y(t) =
1

�(�)

tZ
0

(t� �)��1 y(�)d� ; t > 0; (1.4.2)

where �(�) is the Gamma function given by (1.3.1).

Theorem 1.4.1 [43],[56] If y 2 L1([0; T ]); T > 0; then I�y exists for almost all t 2 [0; T ]
and moreover I�y 2 L1([0; T ]):

Proof. By introducing (1.4.2) and then using Fubini�s theorem, we �nd

tZ
0

jI�y(t)j dt � 1

�(�)

TZ
0

tZ
0

(t� �)��1 jy(�)j d�dt

� 1

�(�)

TZ
0

jy(�)j

0@ TZ
�

(t� �)��1 dt

1A d�
� 1

��(�)

TZ
0

jy(�)j (T � �)�d�

� T�

�(�+ 1)

TZ
0

jy(�)j d� :

Since y 2 L1([0; T ]), the last quantity is �nite, which establishes the result.
Example 1.4.1. The integral of y(t) = t� in the Riemann-Liouville sense.

Let � > 0; � > �1, then we have

I�y(t) =
1

�(�)

tZ
0

(t� �)��1 ��d� : (1.4.3)

By performing the variable change

� = ts;

9



1.4. Fractional integrals and derivatives

where s = 0 when � = 0 and s = 1 when � = t and d� = tds; then (1.4.3) becomes

I�y(t) =
1

�(�)

1Z
0

(t� ts)��1 (ts)� tds

=
1

�(�)

1Z
0

[t(1� s)]��1 t�+1s�ds

=
t�+�

�(�)

1Z
0

(1� s)��1s�ds

=
t�+�

�(�)

1Z
0

(1� s)��1s(�+1)�1ds:

Using the de�nition of the Beta function (1.3.3) then the relation (1.3.4), we arrive at

I�y(t) =
t�+�

�(�)
B(�; � + 1)

=
t�+�

�(�)

�(�)�(� + 1)

�(�+ � + 1)

=
�(� + 1)

�(�+ � + 1)
t�+�:

So the fractional integral in the Rieman-Liouville sense of the function y(t) = t� is given

by

I�t� =
�(� + 1)

�(�+ � + 1)
t�+�: (1.4.4)

In particular, relation (1.4.4) shows that the fractional integral in the Riemann-Liouville

sense of order � of a constant c 2 R is given by

I�c =
c

�(�+ 1)
t�:

Proposition 1.4.1 [43],[56] Let �; � 2 C (Re(�) > 0; Re(�) > 0); for any function

y 2 L1([0; T ]); T > 0 we have

I�
�
I�y(t)

�
= I�+�y(t) = I� (I�y(t)) ;

for almost all t 2 [0; T ]: If in addition y 2 C([0; T ]); then this identity is true 8t 2 [0; T ]:

10



1.4. Fractional integrals and derivatives

Proof. Let us �rst assume that y 2 L1([0; T ]) we have

I�
�
I�y(t)

�
=

1

�(�)

tZ
0

(t� �)��1 I�y(�)d�

=
1

�(�)�(�)

tZ
0

(t� �)��1
tZ
0

(� � �)��1y(�)d�d� :

According to Theorem 1.4.1, the integrals appearing in the previous equality exist for

almost all t 2 [0; T ]; and thus Fubini�s theorem allows us to establish

I�
�
I�y(t)

�
=

1

�(�)�(�)

tZ
0

0@ tZ
�

(t� �)��1 (� � �)��1d�

1A y(�)d�:
By making the variable change

� = � + (t� �)s;

where s = 0 when � = � and s = 1 when � = t and d� = (t� �)ds; we obtain

I�
�
I�y(t)

�
=

1

�(�)�(�)

tZ
0

(t� �)�+��1
0@ 1Z
0

(1� s)��1s��1ds

1A y(�)d�:
Finally, taking into account the de�nition of the Beta function (1.3.3) then the relation

(1.3.4), we obtain

I�
�
I�y(t)

�
=

1

�(�+ �)

tZ
0

(t� �)�+��1 y(�)d� =
�
I�+�y

�
(t):

Now suppose that y 2 C([0; T ]); then (by the theorems on integrals depending on para-
meters) I�y 2 C([0; T ]); and consequently

I�+�y; I�I�y 2 C([0; T ]):

Thus, from the above, the two continuous functions I�+�y; I�I�y coincide almost every-

where on [0; T ]; so they must coincide everywhere on [0; T ]:

The following theorem provides a result concerning the inversion of the limit and the

fractional integral.
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1.4. Fractional integrals and derivatives

Theorem 1.4.2 [43],[56] Let � 2 C (Re(�) > 0) and (yk)+1k=1 be a sequence of continuous
and simply convergent functions on [0; T ]: Then we can invert the fractional integral in the

Riemann-Liouville sense and the limit sign as follows�
I�( lim

k�!+1
yk)

�
(t) = lim

k�!+1
I�yk(t):

Proof. Let yk �! y simply converge and

jI�yk(t)� I�y(t)j =
1

�(�)

tZ
0

(t� �)��1 jyk(�)� y(�)j d�

� kyk � yk1
�(�)

tZ
0

(t� �)��1 d�

� kyk � yk1
�(�)

1

�
t�

� t�

��(�)
kyk � yk1

� T�

�(�+ 1)
kyk � yk1 �!

k�!+1
0:

Hence the desired result.

1.4.2 Fractional derivative in the Riemann-Liouville sense

De�nition 1.4.2 [43],[56] Let y 2 L1([0; T ]); T > 0 be an integrable function on [0; T ];

the fractional derivative in the Riemann-Liouville sense of the function y of order � 2 C
(Re(�) > 0) denoted D�y is de�ned by

D�y(t) = DnIn��y(t)

=
1

�(n� �)

�
d

dt

�n tZ
0

(t� �)n���1 y(�)d� ; t > 0: (1.4.5)

where n� 1 < [Re(�)] < n and [Re(�)] is the integer part of Re(�):

In particular, if � = 0; then

D0y(t) =
1

�(1)

�
d

dt

� tZ
0

y(�)d� = y(t):
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1.4. Fractional integrals and derivatives

If � = n 2 N, then

Dny(t) =
1

�(1)

�
dn+1

dtn+1

� tZ
0

y(�)d� =
dn

dtn
y(t) = y(n)(t):

Consequently the fractional derivative in the Riemann-Liouville sense coincides with the

classical derivative for � 2 N:
If furthermore 0 < � < 1; then n = 1; hence

D�y(t) =
1

�(1� �)
d

dt

tZ
0

(t� �)�� y(�)d� ; t > 0:

Example 1.4.2. The derivative of y(t) = t� in the Riemann-Liouville sense.

Let � > 0 such that n � 1 < � < n and � > �1; according to (1.4.5) and the relation
(1.4.4), (See Example 1.4.1) we have

D�t� = DnIn��t� =
�(� + 1)

�(� + n� �+ 1)D
nt�+n��: (1.4.6)

Taking into account

Dnt�+n�� = (� + n� �)(� + n� �� 1):::::::(� � �+ 1)t���

=
�(� + n� �+ 1)
�(� � �+ 1) t���: (1.4.7)

We substitute the result (1.4.7) into formula (1.4.6) to get

D�t� =
�(� + 1)

�(� + n� �+ 1)
�(� + n� �+ 1)
�(� � �+ 1) t���

=
�(� + 1)

�(� � �+ 1)t
���:

So the fractional derivative in the Riemann-Liouville sense of the function y(t) = t� is

given by

D�t� =
�(� + 1)

�(� � �+ 1)t
���: (1.4.8)

In particular, if � = 0 and � > 0; the Riemann-Liouville fractional derivative of a

constant function y(t) = c 2 R is non-zero, its value is

D�c =
c

�(1� �)t
��:

It is easy to establish the following result.
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1.4. Fractional integrals and derivatives

Lemma 1.4.1 Let n� 1 < � < n; n = [�] + 1 and y be a function that satis�es

D�y(t) = 0;

then

y(t) =

n�1X
j=0

cj
�(j + 1)

�(j + 1 + �� n)t
j+��n;8c0; c1; :::; cn�1 2 R:

In particular, if 0 < � < 1, then

y(t) =
c

�(�)
t��1;8c 2 R:

Proof. Let D�y(t) = 0; according to (1.4.5) we have

D�y(t) = DnIn��y(t) = 0:

And consequently

In��y(t) =
n�1X
j=0

cjt
j: (1.4.9)

Now, applying operator I� to equation (1.4.9) gives

Iny(t) =
n�1X
j=0

cjI
�tj:

Using relation (1.4.4) (See Example 1.4.1), we obtain

Iny(t) =
n�1X
j=0

cj
�(j + 1)

�(j + �+ 1)
tj+�: (1.4.10)

Applying the operator Dn to equation (1.4.10) gives

y(t) =

n�1X
j=0

cj
�(j + 1)

�(j + �+ 1)
Dntj+�:

Finally, the classical derivation and use of the formula

Dnt� =
�(�+ 1)

�(�� n+ 1)t
��n;

gives

y(t) =
n�1X
j=0

cj
�(j + 1)

�(j + �+ 1)

�(j + �+ 1)

�(j + �� n+ 1)t
j+��n:
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1.4. Fractional integrals and derivatives

Finally we get

y(t) =

n�1X
j=0

cj
�(j + 1)

�(j + 1 + �� n)t
j+��n:

This completes the proof of the Lemma.

The following proposition establishes a su¢ cient condition for the existence of the frac-

tional derivative.

Proposition 1.4.2 [43] Let � � 0 and n = [�] + 1. If y 2 ACn([0; T ]); T > 0; then the
fractional derivative D�y exists almost everywhere on [0; T ] moreover, it is represented in

the form

D�y(t) =
n�1X
k=0

y(k)(0)

�(k � �+ 1)t
k�� +

1

�(n� �)

tZ
0

(t� �)n���1 y(n)(�)d� : (1.4.11)

1.4.3 Some properties of fractional derivation in the sense of Riemann-

Liouville

The Riemann-Liouville derivation operator has the properties summarized in the following

propositions.

Proposition 1.4.3 [43],[56] For n� 1 < � � n; m� 1 < � � m we have

1) The Riemann-Liouville operator is linear

D� (�y + z) (t) = � (D�y) (t) + (D�z) (t); � 2 R:

2) In general

D�(D�y(t)) 6= D�(D�y(t)):

Proof. 1) Let y; z 2 L1 ([0; T ]) ; � 2 R; we have

D� (�y + z) (t) = DnIn�� (�y(t) + z(t))

= �DnIn�� ((y + z) (t)) :
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1.4. Fractional integrals and derivatives

Since the nth derivative and the integral are linear, then

D� (�y + z) (t) = �DnIn��y(t) +DnIn��z(t)

= � (D�y) (t) + (D�z) (t):

2) We have

D�(D�y(t)) = D�+�y(t)�
m�1X
k=0

D��ky(0)
t���k

�(1� �� k) ;

and

D�(D�y(t)) = D�+�y(t)�
n�1X
k=0

D��ky(0)
t���k

�(1� � � k) :

Hence, the two fractional derivative operators commute only if � = � and D��ky(0) = 0;

for all k = 1; 2; :::; n and D��ky(0) = 0; for all k = 1; 2; :::;m:

This completes the proof.

Proposition 1.4.4 [43],[56] Let �; � > 0 such that n� 1 < � � n; m� 1 < � � m with

n;m 2 N�:
1) For y 2 L1([0; T ]); T > 0; the equality

D� (I�y(t)) = y(t);

is true for almost all t 2 [0; T ]:
2) If � > � > 0, then for y 2 L1([0; T ]); T > 0; the relation

D�(I�y(t)) = I���y(t);

is true almost everywhere on t 2 [0; T ]:
In particular, when � = k 2 N and � > k; then

Dk(I�y(t)) = I��ky(t);

3) If � � � > 0 and the fractional derivative D���y exists, then we have

D�(I�y(t)) = D���y(t):

4) For � > 0; k 2 N�: If the fractional derivatives D�y and Dk+�y exist, then

Dk(D�y(t)) = Dk+�y(t):
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1.4. Fractional integrals and derivatives

Proof. 1) Using (1.4.5) and Proposition (1.4.1), we have for n = [�] + 1

D�(I�y(t)) = DnIn��I�y(t) = y(t); a.e on [0; T ]:

2) From (1.4.5) and Proposition (1.4.1) we obtain

For � > � > 0, then n � m; we have

D�(I�y(t)) = DnIn��(I�y)(t)

= Dn
�
In+���y

�
(t)

= DnIn
�
I���y

�
(t)

=
�
I���y

�
(t):

3) For � � � > 0; we have

D�(I�y(t)) = DmIm��(I�y)(t)

= DmIm�(���)y(t)

=
�
D���y

�
(t);

exists for i� 1 � � � � < i and i � m:
4) We have for � > 0; k 2 N�

Dk(D�y(t)) = DkDnIn��y(t)

= Dk+nIn��+k�ky(t)

= Dk+nIk+n�(k+�)y(t)

= (Dk+�y)(t):

This completes the proof.

1.4.4 Fractional derivative in the sense of Caputo

Although the fractional derivation in the sense of Riemann-Liouville has played an important

role in the development of fractional calculus, several authors including Caputo (1967-1969)

have reported that this de�nition needs to be revised [14], because the problems applied
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1.4. Fractional integrals and derivatives

in viscoelasticity, solid mechanics and rheology, require initial conditions physically inter-

pretable by classical derivatives such as y(0), y0(0), etc..., which is not the case in modeling

by the Riemann-Liouville approach which requires knowledge of the initial conditions of the

fractional derivatives.

Despite the fact that initial value problems with such initial conditions can be solved

mathematically, the solution of this problem was proposed by M. Caputo in his de�nition

which he adapted with F. Mainardi in the structure of the theory of viscoelasticity [15].

In this part we give the de�nition of the fractional derivative in the sense of Caputo as

well as some essential properties.

Let [0; T ] be a �nite interval of R and let I� and D� be the fractional integration and

derivation operators given by (1.4.2) and (1.4.5) respectively.

De�nition 1.4.3 [43] The Caputo fractional derivative CD�y(t) of order � 2 C (Re(�) �
0) on the interval [0; T ]; is de�ned via the Riemann-Liouville fractional derivative by

CD�y(t) = D�

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!
; (1.4.12)

where

n = [Re(�)] + 1 for � =2 N and n = � for � 2 N: (1.4.13)

If � = 0, then
CD0y(t) = y(t):

In particular, when 0 < Re(�) < 1, the relation (1.4.12) takes the form:

CD�y(t) = D� [y(t)� y(0)] :

The Caputo fractional derivative (1.4.12) is de�ned for functions y(t) for which the

Riemann-Liouville fractional integral (1.4.2) exists, in particular it is de�ned for functions

y 2 ACn([0; T ]). We have the following theorem.

Theorem 1.4.3 [43] Let Re(�) � 0 and let n be given by (1.4.13). If y 2 ACn([0; T ]);
then the Caputo fractional derivative CD�y(t) exists almost everywhere on [0; T ]:
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1.4. Fractional integrals and derivatives

1) If � =2 N; then CD�y(t) is given by

CD�y(t) =
1

�(n� �)

tZ
0

(t� �)n���1 y(n)(�)d� ; t > 0

= In��Dny(t) (1.4.14)

In particular, when 0 < Re(�) < 1 and y 2 AC([0; T ]); then

CD�y(t) =
1

�(1� �)

tZ
0

(t� �)�� y0(�)d� ; t > 0

= I1��y0(t): (1.4.15)

2) If � 2 N; then
CD�y(t) = y(n)(t):

Proof. According to De�nition 1.4.3, we have

CD�y(t) = D�

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!

= DnIn��

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!
:

By

D�y(t) = DnIn��y(t)

=
1

�(n� �)

�
d

dt

�n tZ
0

(t� �)n���1 y(�)d� ; t > 0;

we put

Y (t) = In��

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!
:

According to (1.4.2), we have

Y (t) =
1

�(n� �)

tZ
0

(t� �)n���1
 
y(�)�

n�1X
k=0

y(k)(0)

k!
� k

!
d� :
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1.4. Fractional integrals and derivatives

By integration by part we get

Y (t) =
1

�(n� �)

tZ
0

(t� �)n���1
 
y(�)�

n�1X
k=0

y(k)(0)

k!
� k

!
d�

=
1

�(n� �)

8<:�(t� �)n��n� �

 
y(�)�

n�1X
k=0

y(k)(0)

k!
� k

!�����
�=t

�=0

+

tZ
0

(t� �)n��

n� � D

 
y(�)�

n�1X
k=0

y(k)(0)

k!
� k

!
d�

9=;
=

1

�(n� �+ 1)

tZ
0

(t� �)n��+1�1D
 
y(�)�

n�1X
k=0

y(k)(0)

k!
� k

!
d�

= In��+1D

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!
:

By repeating this process n�times, we �nd

Y (t) = In��+nDn

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!

= InIn��Dn

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!
;

where
n�1P
k=0

y(k)(0)
k!
tk is a polynomial of degree n� 1; therefore

Y (t) = InIn��Dny(t):

So

CD�y(t) = DnY (t)

= DnInIn��Dny(t)

= In��Dny(t)

=
1

�(n� �)

tZ
0

(t� �)n���1 y(n)(�)d� :

This completes the proof.

Theorem 1.4.4 [43] Let Re(�) � 0 and let n be given by (1.4.13) and y 2 Cn ([0; T ]) :
Then the Caputo fractional derivative CD�y(t) is continuous on [0; T ]; T > 0 .
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1.4. Fractional integrals and derivatives

1) If � =2 N; then CD�y(t) is given by (1.4.14). In particular, it takes the form (1.4.15)

for 0 < � < 1:

2) If � 2 N, then
CD�y(t) = y(n)(t):

Example 1.4.3. The derivative of y(t) = t� in the sense of Caputo.

Let n be an integer and 0 � n� 1 < � < n with � > n� 1, then according to (1.4.14)
we have

y(n)(�) =
�(� + 1)

�(� � n+ 1)�
��n; (1.4.16)

and

CD�t� =
�(� + 1)

�(n� �)�(� � n+ 1)

tZ
0

(t� �)n���1 ���nd� : (1.4.17)

By making the change of variable

� = ts;

where s = 0 when � = 0 and s = 1 when � = t and d� = tds; then (1.4.17) becomes

CD�t� =
�(� + 1)

�(n� �)�(� � n+ 1)

tZ
0

(t� �)n���1 ���nd�

=
�(� + 1)

�(n� �)�(� � n+ 1)t
���

1Z
0

(1� s)n���1 s��nds:

Using the de�nition of the Beta function (1.3.3) and then the relation (1.3.4) we arrive

at

CD�t� =
�(� + 1)B(n� �; � � n+ 1)
�(n� �)�(� � n+ 1) t���

=
�(� + 1)�(n� �)�(� � n+ 1)

�(n� �)�(� � n+ 1)�(� � �+ 1)t
���

=
�(� + 1)

�(� � �+ 1)t
���:

Therefore the fractional derivative in the Caputo sense of the function y(t) = t� is given

by
CD�t� =

�(� + 1)

�(� � �+ 1)t
���: (1.4.18)
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1.4. Fractional integrals and derivatives

In particular, the use of formula (1.4.12) or (1.4.14) to calculate the fractional derivative

in the Caputo sense of order � > 0 of a constant c 2 R expresses that this derivative is zero,
i.e.

CD�c = 0:

1.4.5 Some properties of fractional derivation in the sense of Ca-

puto

Fractional derivatives in the sense of Caputo have the properties summarized in the following

propositions.

Proposition 1.4.5 [43],[56] Let � 2 C such that n � 1 < Re(�) < n; n 2 N�and let
the two functions y(t) and z(t) such that CD�y(t) and CD�z(t) exist. Caputo�s fractional

derivative is linear operator

cD� (�y + z) (t) = � (cD�y) (t) + (cD�z) (t); � 2 R:

Proof. We have from (1.4.14)

CD� (�y + z) (t) = In��Dn ((�y + z) (t))

= �In��Dn ((y + z) (t)) :

Since the nth derivative and the integral are linear, then

CD� (�y + z) (t) = �In��Dny(t) + In��Dnz(t)

= � (cD�y) (t) + (cD�z) (t):

Hence the result.

Proposition 1.4.6 [43],[56] Suppose that n � 1 < Re(�) < n; m; n 2 N� and let the

function y(t) such that CD�y(t) exists, then

CD�Dmy(t) =C D�+my(t) 6= Dm CD�y(t):
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1.4. Fractional integrals and derivatives

1.4.6 Relation between the Riemann-Liouville approach and that

of Caputo

The following theorem establishes the link between the fractional derivative in the sense of

Caputo and that in the sense of Riemann-Liouville.

Theorem 1.4.5 [43] Let Re(�) > 0 with n � 1 < Re(�) < n (n 2 N�) and let y be a
function that the fractional derivatives CD�y (t) and D�y (t) exist, then

CD�y(t) = D�y(t)�
n�1X
k=0

y(k)(0)

�(k � �+ 1)t
k��:

Proof. We consider the limited development in Taylor series of the function y in t = 0

y(t) = y(0) +
y0(0)

1!
t+

y00(0)

2!
t2 + :::+

y(n�1)(0)

(n� 1)! t
n�1 +Rn�1

=
n�1X
k=0

y(k)(0)

�(k + 1)
tk +Rn�1;

with

Rn�1 =

tZ
0

y(n)(�)

(n� 1)!(t� �)
n�1d� :

Using the properties of nth�order integration, we have

Rn�1 =
1

�(n)

tZ
a

y(n)(�)(t� �)n�1d� = Iny(n)(t):

Using the linearity of the Riemann-Liouville operator and relation (1.4.8), we have

D�y(t) = D�

 
n�1X
k=0

y(k)(0)

�(k + 1)
tk +Rn�1

!

=

n�1X
k=0

y(k)(0)

�(k + 1)
D�tk +D�Rn�1

=
n�1X
k=0

y(k)(0)�(k + 1)

�(k � �+ 1)�(k + 1)t
k�� +D�Iny(n)(t)

=
n�1X
k=0

y(k)(0)

�(k � �+ 1)t
k�� + In��y(n)(t)

=

n�1X
k=0

y(k)(0)

�(k � �+ 1)t
k�� +C D�y(t):
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1.4. Fractional integrals and derivatives

So

CD�y(t) = D�y(t)�
n�1X
k=0

y(k)(0)

�(k � �+ 1)t
k��:

Hence the result.

Remark 1.4.1 If y(k)(0) = 0 for k = 0; 1; 2; :::; n� 1; we will have

CD�y(t) = D�y(t):

Composition with the fractional integration operator

The fractional derivative operator in the Caputo sense is a left inverse of the Riemann-

Liouville fractional integration operator but not a right inverse because

If y is a continuous function on [0; T ] ; we have

CD� (I�y(t)) = y(t) and I�
�
CD�y(t)

�
= y(t)�

n�1X
k=0

y(k)(0)

k!
tk: (1.4.19)

The main advantage of the Caputo approach is that the initial conditions of fractional

di¤erential equations with Caputo derivatives accept the same form as for di¤erential equa-

tions of integer order.
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Chapter 2

Fractional di¤erential equations in

the sense of Caputo

In this chapter, we are interested in the question of existence and uniqueness of the solution

for a Cauchy problem of a fractional di¤erential equation in the sense of Caputo.

De�nition 2.0.4 [43] Let � > 0; � =2 N; n = [�] + 1 and f(:; y) : 
� R �! R; then

CD�y(t) = f(t; y(t)); t 2 
 = [0; T ] ; (2.1.1)

is called a fractional di¤erential equation in the sense of Caputo, and in this case we use

the initial conditions as

y(k)(0) = bk 2 R; k = 0; 1; :::; n� 1; (2.1.2)

where CD�is the Caputo fractional derivative operator of order � with n�1 < � < n; f(:; y) :

 � R �! R is a continuous function with respect to t 2 
 for all y 2 R and [�] is the

integer part of � .

2.1 Equivalence result between the Cauchy problem

and the Volterra integral equation

In this part, we prove an equivalence result between the Cauchy problem and a Volterra

integral equation in the space Cn�1(
): Based on this result, the existence and uniqueness

of the solution of the Cauchy problem considered are proven.

25



2.1. Equivalence result between the Cauchy problem and the Volterra integral equation

Theorem 2.1.1 [43] Let � > 0 with � 2 N; n = [�] + 1 and f(:; y) : 
 � R �! R be a

continuous function with respect to t 2 
 for all y 2 R:
Then y 2 Cn�1(
) is a solution of the Cauchy problem (2.1.1)-(2.1.2) if and only if y is

a solution of the following Volterra integral equation

y(t) =

n�1X
k=0

bk
k!
tk +

1

�(�)

tZ
0

(t� �)��1 f(� ; y(�))d� ; 0 � t � T: (2.1.3)

Proof. Let � > 0 with � =2 N, n = [�] + 1:
1) Suppose that y 2 Cn�1(
) is a solution of problem (2.1.1)-(2.1.2). Since f(:; y) 2 C(
)

for all y 2 R, then by (2.1.1) we have CD�y(t) 2 C(
): Using relation (1.4.19), we obtain

I�
�
CD�y(t)

�
= y(t)�

n�1X
k=0

y(k)(0)

k!
tk:

So, we have

y(t) =
n�1X
k=0

y(k)(0)

k!
tk + I�

�
CD�y(t)

�
=

n�1X
k=0

bk
k!
tk +

1

�(�)

tZ
0

(t� �)��1 f(� ; y(�))d� :

2) Assume that y 2 Cn�1(
) is a solution of the Volterra integral equation (2.1.3). By
di¤erentiating (2.1.3) k�times(k = 1; :::; n� 1) and using Proposition (1.4.4), we obtain for
all k = 0; 1; :::; n� 1;

y(k)(t) =

n�1X
j=k

bj
(j � k)!t

j�k +
1

�(�� k)

tZ
0

(t� �)��k�1 f(� ; y(�))d� :

With the change of variable � = ts, we obtain

y(k)(t) =

n�1X
j=k

bj
(j � k)!t

j�k +
t��k

�(�� k)

1Z
0

(1� s)��k�1 f(ts; y(ts))ds:

By passing to the limit t �! 0 and using the continuity of f; we obtain the relation

(2.1.2). On the other hand, by applying the Riemann-Liouville fractional derivative operator

D� on the Volterra integral equation (2.1.3) and with (2.1.2), we obtain

D�

 
y(t)�

n�1X
k=0

y(k)(0)

k!
tk

!
= D�I�f(t; y(t)):
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2.2. Result of existence and uniqueness of the solution

According to De�nition 1.4.3 and Proposition 1.4.4, we obtain equation (2.1.1).

This completes the proof of the Theorem.

Corollaire 2.1.1 Let 0 < � < 1 and f(:; y) : 
 � R �! R be a continuous function with

respect to t 2 
 for all y 2 R: Then y 2 C(
) is a solution to the following Cauchy problem8<: CD�y(t) = f(t; y(t))

y(0) = b
;

if and only if y is a solution to the following Volterra integral equation

y(t) = b+
1

�(�)

tZ
0

(t� �)��1 f(� ; y(�))d� :

2.2 Result of existence and uniqueness of the solution

Now, we will show the existence and uniqueness of the solution of the Cauchy problem

(2.1.1)-(2.1.2) in the space of functions Cn�1;�(
) de�ned by

Cn�1;�(
) =
�
y 2 Cn�1(
);C D�y 2 C(
); n = [�] + 1

	
:

To establish the existence and uniqueness of the solution to the Cauchy problem (2.1.1)-

(2.1.2), we need the following lemma.

Lemma 2.2.1 If � > 0 with � =2 N and n = [�] + 1,then the fractional integration operator
I� : C(
) �! Cn�1(
) in the sense of Riemann-Liouville is bounded, i.e.

kI�gkCn�1(
) �M kgkC(
) ;M =
n�1X
k=0

T��k

�(�� k + 1) : (2.2.1)

Proof. Let g 2 C(
): Using Proposition 1.4.4, we obtain

DkI�g(t) = I��kg(t); for all k = 0; 1; :::; n� 1:
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2.2. Result of existence and uniqueness of the solution

For all t 2 
; we have

kI�gkCn�1(
) =
n�1X
k=0

DkI�g

C(
)

=

n�1X
k=0

I��kg
C(
)

�
n�1X
k=0

kgkC(
)
�(�� k)

tZ
0

(t� �)��k�1 d�

�
n�1X
k=0

kgkC(
)
(�� k) �(�� k)t

��k

�
n�1X
k=0

T��k

�(�� k + 1) kgkC(
) :

We put

M =

n�1X
k=0

T��k

�(�� k + 1) ;

we obtain

kI�gkCn�1(
) �M kgkC(
) :

Which proves the lemma.

Theorem 2.2.1 [43] Let � > 0 with � =2 N; n = [�] + 1 and G an open of R: Assume that
f : 
�G �! R a function such that

1. For all �xed y 2 G; f(:; y) 2 C(
).

2. The function f : 
 � G �! R veri�es the Lipschitz condition with respect to y; i.e.

there exists L > 0 such that

jf(t; y1)� f(t; y2)j � L jy1 � y2j ; for any t 2 
; y1; y2 2 G: (2.2.2)

If

L

n�1X
k=0

T��k

�(�� k + 1) < 1; (2.2.3)

then, the Cauchy problem (2.1.1)-(2.1.2) admits a unique solution y 2 Cn�1;�(
).

Proof. We start by showing the existence of a unique solution y 2 Cn�1(
) of the

problem (2.1.1)-(2.1.2). According to Theorem 2.1.1, it su¢ ces to prove the existence of
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2.2. Result of existence and uniqueness of the solution

a unique solution y 2 Cn�1(
) of the Volterra integral equation (2.1.3). For this, we use
Theorem 1.2.2 of the Banach �xed point in the space Cn�1(
) with the following norm

ky1 � y2kCn�1(
) =
n�1X
k=0

y(k)1 � y(k)2

C(
)

: (2.2.4)

We rewrite the integral equation (2.1.3) in the following form

y(t) = (Ty) (t);

where

(Ty) (t) = y0(t) +
1

�(�)

tZ
0

(t� �)��1 f(� ; y(�))d� ; (2.2.5)

with

y0(t) =
n�1X
j=0

bj
j!
tj: (2.2.6)

To apply Banach�s Theorem, we must show

1. If y 2 Cn�1(
) then Ty 2 Cn�1(
).
2. for each y1; y2 2 Cn�1(
); we have

kTy1 � Ty2kCn�1(
) � w ky1 � y2kC(
) ; with 0 < w < 1: (2.2.7)

Let y 2 Cn�1(
). By di¤erentiating (2.2.5) k�times (k = 1; :::; n� 1) and using Propo-
sition 1.4.4, we obtain for all k = 0; 1; :::; n� 1;

(Ty)(k) (t) = y
(k)
0 (t) +

1

�(�� k)

tZ
0

(t� �)��k�1 f(� ; y(�))d� ; (2.2.8)

with

y
(k)
0 (t) =

n�1X
j=k

bj
(j � k)!t

j�k:

For all k = 0; 1; :::; n � 1, the �rst term on the right of (2.2.8) is a continuous function

on [0; T ], and by Lemma 2.2.1, the second term is continuous on [0; T ]: So, we have 1

�(�� k)

tZ
0

(t� �)��k�1 f(� ; y(�))d�


Cn�1(
)

� T��k

�(�� k + 1) kf(� ; y(�))kC(
) ; (2.2.9)

for all k = 0; 1; :::; n� 1. Therefore Ty 2 Cn�1(
).
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2.2. Result of existence and uniqueness of the solution

Using (2.2.4), (2.2.8) and (2.2.9) and the Lipschitz condition (2.2.2), we have

kTy1 � Ty2kCn�1(
) =

n�1X
k=0

(Ty1)(k) � (Ty2)(k)
C(
)

�
n�1X
k=0

 1

�(�� k)

tZ
0

(t� �)��k�1 [f(� ; y1(�))� f(� ; y2(�))] d�


C(
)

�
n�1X
k=0

T��k

�(�� k + 1) kf(� ; y1(�))� f(� ; y2(�))kC(
)

� L
n�1X
k=0

T��k

�(�� k + 1) ky1(�)� y2(�)kC(
) :

Using (2.2.3), we obtain (2.2.7), with

w = L
n�1X
k=0

T��k

�(�� k + 1) :

Consequently, according to Banach�s �xed point theorem 1.2.2, there exists a unique

solution y� 2 Cn�1(
) of the Volterra integral equation (2.1.3) on the interval [0; T ]:
By Banach�s theorem 1.2.2, the solution y�(t) is a limit of the convergent sequence

(T ny�0)(t)

lim
n!1

kT ny�0 � y�kCn�1(
) = 0: (2.2.10)

We take

y�0 = y0;

with y0(t) de�ned by (2.2.6).

According to (2.2.5), the sequence (T ny�0) (t) is de�ned by the recurrence formula

(T ny�0) (t) = y0(t) +
1

�(�)

tZ
0

(t� �)��1 f
�
� ;
�
T n�1y�0

�
(�)
�
d� ; n = 1; 2; :::

Noting yn(t) = T ny�0(t); then the previous relation takes the following form

yn(t) = y0(t) +
1

�(�)

tZ
0

(t� �)��1 f(� ; yn�1(�))d� ; n 2 N;

and (2.2.10) becomes
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2.2. Result of existence and uniqueness of the solution

lim
n�!1

kyn � ykCn�1(
) = 0: (2.2.11)

Then using (2.1.1) and the Lipschitz condition, we have

CD�yn �C D�y

C(
)

= kf(t; yn(t))� f(t; y(t))kC(
)
� L kyn � ykC(
)
� L kyn � ykC(
) :

From (2.2.11), we obtain

lim
n�!1

CD�yn �C D�y

C(
)

= 0:

Then CD�y 2 C(
) and therefore y 2 Cn�1;�(
):
This completes the proof of the Theorem.

Example 2.2.1. Consider the following Cauchy problem for the fractional di¤erential

equation 8<: CD�y(t) = t2 � 1
y(0) = 1

; t 2 
 = [0; 1] ; (2.2.12)

where CD� is the Caputo fractional derivative operator of order � = 1=2:

We search for a continuous function y : [0; 1] �! R satisfying (2.2.12).

By solving the problem (2.2.12), we get

y(t) = 1 +
1

�(1=2)

tZ
0

(t� �)�1=2 � 2d� � 1

�(1=2)

tZ
0

(t� �)�1=2 d�

= 1 +
16

15
p
�
t5=2 � 2p

�
t1=2:

Example 2.2.2. Consider the following Cauchy problem for the fractional di¤erential

equation 8<: CD�y(t) = t2 � 2t+ 1
y(1) = 0

; t 2 
 = [1; 2] ; (2.2.13)

where CD� is the Caputo fractional derivative operator of order � = 1=3:

We search for a continuous function y : [1; 2] �! R satisfying (2.2.13).
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2.2. Result of existence and uniqueness of the solution

By solving the problem (2.2.13), we get

y(t) =
1

�(1=3)

tZ
1

(t� �)�2=3 (� � 1)2 d�

=
27

14�(1=3)
(t� 1)7=3 :
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Chapter 3

Semi-analytical methods and their

convergence

In this chapter, we present some semi-analytical methods: the Adomian decomposition

method (ADM), homotopy perturbation method (HPM), variational iteration method (VIM),

and new iterative method (NIM), then we study their convergence.

3.1 Adomian decomposition method (ADM)

The Adomian decomposition is a semi-analytical method developed by the American math-

ematician George Adomian [3] during the second part of the 20th century. It is used for

solving a wide range of problems including the mathematical models involved, namely al-

gebraic, di¤erential, integral, integro-di¤erential, ordinary di¤erential equations of higher

order and partial di¤erential equations. The advantage of this method is that it allows to

solve the problem considered by a direct scheme and gives the solution in the form of an

in�nite series, which converges rapidly to the exact solution if it exists [17].

3.1.1 Description of the method

To illustrate the basic ideas of this method, consider the following functional equation

Fy = g; (3.1.1)
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3.1. Adomian decomposition method (ADM)

where F represents a nonlinear ordinary or partial di¤erential operator comprising linear

and nonlinear terms and g is a known function. The linear part is generally decomposed into

L+ R, where L is an easily invertible di¤erential operator and R represents the remainder

of the linear operator. Under these conditions, the previous equation can be written in the

following form

Ly +Ry +Ny = g; (3.1.2)

with N a nonlinear operator.

We can write equation (3.1.2) as follows

Ly = g �Ry �Ny: (3.1.3)

Multiplying equation (3.1.3) by L�1; we obtain

L�1(Ly) = L�1g � L�1 (Ry)� L�1 (Ny) ; (3.1.4)

where L�1 =
R R

:::
R
(:) (dt)n is the inverse of the operator L:

Since

L�1(Ly) = y � �;

and � is the constant of integration.

Therefore, equation (3.1.4) becomes

y = �+ L�1g � L�1 (Ry)� L�1 (Ny) : (3.1.5)

The ADM consists of �nding the solution in the form of a series

y =
1X
n=0

yn; (3.1.6)

then to decompose the nonlinear term Ny in the form of a series

Ny =
1X
n=0

An: (3.1.7)

The terms An are called Adomian polynomials and are obtained using the following

relation

An(y0; y1; :::; yn) =
1

n!

dn

d�n

"
N

 1X
i=0

�iyi

!#
�=0

; n = 0; 1; 2; :::; (3.1.8)
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3.1. Adomian decomposition method (ADM)

where � is a real parameter introduced for convenience.

Substituting equations (3.1.6) and (3.1.7) in (3.1.5), we obtain

1X
n=0

yn = �+ L
�1g � L�1R

 1X
n=0

yn

!
� L�1

 1X
n=0

An

!
; (3.1.9)

from which we deduce

8>>>>>>>><>>>>>>>>:

y0 = �+ L
�1g;

y1 = L
�1R (y0)� L�1 (A0) ;

y2 = L
�1R (y1)� L�1 (A1) ;

...

yn+1 = L
�1R (yn)� L�1 (An) :

(3.1.10)

It should be noted that this identi�cation is not unique but it is the only one which

allows to explicitly de�ne the yn. The relation (3.1.10) makes it possible to calculate all the

terms of the series without ambiguity because the An depend only on y0; y1; :::; yn:.

In practice, it is almost impossible to calculate the sum of the series
1P
n=0

yn (except for

very special cases). We are therefore generally satis�ed with an approximate solution 'n;

in the form of a truncated series

'n =
n�1X
i=0

yi; n � 1:

The question that can be asked is how to determine the (An)n�0 and under what condi-

tions the method converges.

3.1.2 Adomian polynomials

De�nition 3.1.1 Adomian polynomials are de�ned by the formula8><>:
A0(y0) = N(y0)

An(y0; y1; :::; yn) =
1

n!

dn

d�n

�
N

� 1P
i=0

�iyi

��
�=0

: (3.1.11)

The formula proposed by George Adomian for the calculation of Adomian polynomials

(An)n�0 is as follows [4]
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3.1. Adomian decomposition method (ADM)

A0(y0) = N(y0);

A1(y0; y1) = y1
@

@y
N(y0);

A2(y0; y1; y2) = y2
@

@y
N(y0) +

1

2!
y21
@2

@y2
N(y0);

A3(y0; y1; y2; ; y3) = y3
@

@y
N(y0) + y1y2

@2

@y2
N(y0) +

1

3!
y31
@3

@y3
N(y0);

...

This formula is written in the form

An =

nX
�=0

c(�; n)N (�)(y0); n � 1;

where c(�; n) represents the sum of all the products (divided by m!) of the � terms yi whose

sum of indices i is equal to n;m being the number of repetitions of the same terms in the

product.

3.1.3 Convergence of the ADM

Important theorems have been given involving su¢ cient conditions for convergence. All

these conditions relate to the nonlinear operator N:

Indeed, from the relation (3.1.10) we deduce

Theorem 3.1.1

If
X
n�0

An < +1 then
X
n�0

yn < +1; (3.1.12)

and vice versa.

The �rst proofs of convergence were cited by Yves Cherruault. They are based on the

�xed point method.

Let us give the broad outlines of the demonstration (see [16] for more details).

Let us �rst note that the decompositional method applied to (3.1.1) reduces to the search

for a sequence

Sn = y1 + y2 + :::+ yn;
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3.1. Adomian decomposition method (ADM)

with S0 = 0 and verifying the following recurring relation

Sn+1 = N(y0 + Sn); S0 = 0; y0 = g; n = 0; 1; 2; ::: (3.1.13)

We deduce the following convergence result.

Theorem 3.1.2 If the operator N is a contraction (i.e. veri�eskNk < � < 1) then the

sequence (Sn)n�0 satisfying the recurrence relation Sn+1 = N(y0 + Sn) with S0 = 0; n � 0

converges to S solution of S = N(y0 + S):

Proof. From the relation (3.1.13), we have

kSn � Sk = kN(y0 + Sn)�N(y0 + S)k

� kNk kSn � Sk � � kSn � Sk

� �n kS1 � Sk :

Hence the convergence of the sequence (Sn)n�0 to S:

In addition, we have: X
n�0

An =
X
n�0

yn;

and since
P
n�0

yn is convergent according to Theorem 3.1.1, then we have the following result.

Corollaire 3.1.1 If N is a contraction then the series of yn and An are convergent. More-

over,
P
n�0

yn is solution of the equation

Fy = g:

Example 3.1.1. Consider the following nonlinear di¤erential equation8<: y0 + y2 = 0; t � 0
y(0) = 1

: (3.1.14)

We have

Ly = y0; Ry = 0 and Ny = y2;

with L =
d

dt
(:):
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3.1. Adomian decomposition method (ADM)

L�1 represents a simple integration from 0 to t: We �nd

y =
1X
n=0

yn = y(0)� L�1
 1X
n=0

An

!
: (3.1.15)

Adomian polynomials are

A0 = y20;

A1 = 2y0y1;

A2 = 2y0y2 + y
2
1;

A3 = 2y0y3 + 2y1y2;

...

Therefore, we have

y0 = 1;

y1 = �L�1(A0) = �t;

y2 = �L�1(A1) = t2;

y3 = �L�1(A2) = �t3;

y4 = �L�1(A3) = t4;
...

By (3.1.15), we have the solution of (3.1.14) given by

y =
1X
n=0

yn = 1� t+ t2 � t3 + t4 � ::::

=
1X
n=0

(�t)n = 1

1 + t
:

Example 3.1.2. Consider the following nonlinear di¤erential equation8<: y0 � ey = 0; t � 0
y(0) = 0

: (3.1.16)

We have

Ly = y0; Ry = 0 and Ny = ey;
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3.2. Homotopy perturbation method (HPM)

with L =
d

dt
(:):

L�1 represents a simple integration from 0 to t: We �nd

y =

1X
n=0

yn = y(0) + L
�1

 1X
n=0

An

!
: (3.1.17)

Adomian polynomials are

A0 = ey0 ;

A1 = y1;

A2 = y2 +
1

2!
y21;

A3 = y3 + y1y2 +
1

3!
y31;

...

Therefore, we have

y0 = 0;

y1 = L�1(A0) = t;

y2 = L�1(A1) =
t2

2
;

y3 = L�1(A2) =
t3

3
;

y4 = L�1(A3) =
t4

4
;

...

By (3.1.17), we have the solution of (3.1.16) in the form of an in�nite series given by

y =
1X
n=0

yn = t+
t2

2
+
t3

3
+
t4

4
+ :::

3.2 Homotopy perturbation method (HPM)

The homotopy perturbation method was proposed and developed by Chinese mathematician

Ji-Haun-He in 1999 [29],[30],[31]. This method has been widely used to solve nonlinear

and initial-value boundary problems. The homotopy perturbation method is a powerful
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3.2. Homotopy perturbation method (HPM)

mathematical tool for studying a wide variety of problems appearing in di¤erent domains.

It is successfully obtained by combining the theory of homotopy in topology with the theory

of perturbation. The important feature of the homotopy perturbation method is that it

provides an almost exact solution to a wide range of linear and nonlinear problems, without

the need for unrealistic assumptions, linearization, discretization and the calculation of

Adomian polynomials [37].

3.2.1 Description of the method

To illustrate the basic concept of this method, we consider the following nonlinear di¤erential

equation

A(y)� f(r) = 0; r 2 
; (3.2.1)

with boundary conditions

B

�
y;
@y

@�

�
= 0; r 2 �; (3.2.2)

where A is a general di¤erential operator, B is an operator de�ning the boundary conditions,

f(r) is a known analytic function, y is the unknown function and � is the boundary of the

domain 
.

In general, the operator A can be decomposed into two operators L and N , where L is

a linear operator and N is a nonlinear operator. So equation (3.2.1) can be rewritten as

follows

L(y) +N(y)� f(r) = 0:

We construct a homotopy z(r; p) : 
� [0; 1] �! R; which satis�es

H(z; p) = (1� p) [L(z)� L(y0)] + p [A(z)� f(r)] = 0; p 2 [0; 1] ; r 2 
; (3.2.3)

where

H(z; p) = L(z)� L(y0) + pL(y0) + p [N(z)� f(r)] = 0; (3.2.4)

where p 2 [0; 1] is the homotopy parameter and y0 is an initial approximation of equation
(3.2.1) that satis�es the boundary conditions (3.2.2).
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3.2. Homotopy perturbation method (HPM)

From equations (3.2.3) and (3.2.4) we have

H(z; 0) = L(z)� L(y0) = 0;

H(z; 1) = A(z)� f(r) = 0:

Changing p from zero to unity transforms y0(r) into y(r). In topology with this last

property, the function z(r; p) is called homotopy. According to the HPM, we can use the

parameter p as a small parameter, and assume that the solutions of equations (3.2.3) and

(3.2.4) can be written as a power series of p

z = z0 + pz1 + p
2z2 + p

3z3 + ::: =
1X
i=0

pizi: (3.2.5)

For p = 1, the approximate solution of equation (3.2.1) becomes

y = lim
p�!1

z = z0 + z1 + z2 + z3 + ::: =
1X
i=0

zi: (3.2.6)

3.2.2 Convergence analysis

In this part, we study the convergence of the HPM [8],[12].

We can rewrite the relation (3.2.4) as follows

L(z)� L(y0) = p [f(r)� L(y0)�N(z)] : (3.2.7)

By replacing (3.2.5) in (3.2.7), we get

L

 1X
i=0

pizi

!
� L(y0) = p

"
f(r)� L(y0)�N

 1X
i=0

pizi

!#
: (3.2.8)

So

1X
i=0

L (zi)� L(y0) = p
"
f(r)� L(y0)�N

 1X
i=0

pizi

!#
: (3.2.9)

According to the Maclaurin development of N
� 1P
i=0

pizi

�
with respect to p; we have

N

 1X
i=0

pizi

!
=

1X
i=n=0

 
1

n!

@n

@pn
N

 1X
i=0

pizi

!!
p=0

pi: (3.2.10)
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3.2. Homotopy perturbation method (HPM)

According to [26], we have 
@n

@pn
N

 1X
i=0

pizi

!!
p=0

=

 
@n

@pn
N

 
nX
i=0

pizi

!!
p=0

:

Then

N

 1X
i=0

pizi

!
=

1X
n=0

 
1

n!

@n

@pn
N

 
nX
i=0

pizi

!!
p=0

pi:

Let�s put

Hn(z0; z1; :::; zn) =
1

n!

@n

@pn

"
N

 
nX
i=0

pizi

!#
p=0

; n = 0; 1; 2; :::; (3.2.11)

where Hn are called He polynomials [26].

Then

N

 1X
i=0

pizi

!
=

1X
i=0

Hip
i: (3.2.12)

By replacing (3.2.12) in (3.2.9), we obtain

1X
i=0

L (zi)� L(y0) = p
"
f(r)� L(y0)�

1X
i=0

Hip
i

#
: (3.2.13)

By identifying the terms with those of the same power of p; we �nd

p0 : L (z0)� L(y0) = 0;

p1 : L (z1) = f(r)� L(y0)�H0;

p2 : L (z2) = �H1;

p3 : L (z3) = �H2; (3.2.14)
...

pn+1 : L (zn+1) = �Hn;
...
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3.2. Homotopy perturbation method (HPM)

So, we conclude that

p0 : z0 = y0;

p1 : z1 = L
�1 (f(r))� y0 � L�1 (H0) ;

p2 : z2 = �L�1 (H1) ;

p3 : z3 = �L�1 (H2) ; (3.2.15)
...

pn+1 : zn+1 = �L�1 (Hn) ;
...

Theorem 3.2.1 The solution of equation (3.2.1) obtained by the homotopy perturbation

method is equivalent to the determination of Sn given by

Sn = z1 + z2 + :::+ zn with S0 = 0; (3.2.16)

using the iterative scheme

Sn+1 = �L�1N (Sn + z0)� y0 + L�1 (f(r)) ; (3.2.17)

where

N

 
nX
i=0

zi

!
=

nX
i=0

Hi; n = 0; 1; 2; ::: (3.2.18)

Proof. For n = 0; according to (3.2.17), we have

S1 = �L�1N (S0 + z0)� y0 + L�1 (f(r))

= �L�1 (H0)� y0 + L�1 (f(r)) :

Then

z1 = �L�1 (H0)� y0 + L�1 (f(r)) :

For

S2 = �L�1N (S1 + z0)� y0 + L�1 (f(r))

= �L�1 (H1 +H0)� y0 + L�1 (f(r))

= �L�1 (H1) + z1:
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3.2. Homotopy perturbation method (HPM)

According to S2 = z1 + z2; we obtain

z2 = �L�1 (H1) :

The proof of this theorem will be done by induction.

Suppose that

zk+1 = �L�1 (Hk) for k = 1; 2; :::; n� 1;

so

Sn+1 = �L�1N (Sn + z0)� y0 + L�1 (f(r))

= �L�1
 

nX
i=0

Hi

!
� y0 + L�1 (f(r))

= �
nX
i=0

L�1 (Hi)� y0 + L�1 (f(r))

= z1 + z2 + :::+ zn � L�1 (Hn) :

Then from (3.2.16), we can �nd

zn+1 = �L�1 (Hn) :

This result is identical to that of (3.2.15) obtained by the HPM.

Theorem 3.2.2 Let B be a Banach space.

1)
1P
i=0

zi converges to S 2 B; if

�
9� : 0 < � < 1 such as 8n 2 N =) kznk � � kzn�1k : (3.2.19)

2) S =
1P
i=1

zi veri�es

S = �L�1N (S + z0)� y0 + L�1 (f(r)) : (3.2.20)

Proof. 1) we have

kSn+1 � Snk = kzn+1k � � kznk � �2 kzn�1k � ::: � �n+1 kz0k :

44



3.2. Homotopy perturbation method (HPM)

For n;m 2 N with n � m; we have

kSn � Smk = kSn � Sn�1 + Sn�1 � Sn�2 + :::+ Sm+1 � Smk

� kSn � Sn�1k+ kSn�1 � Sn�2k+ :::+ kSm+1 � Smk

� �n kz0k+ �n�1 kz0k+ :::+ �m+1 kz0k

�
�
�n + �n�1 + :::+ �m+1

�
kz0k

�
�
�m+1 + :::+ �n + :::

�
kz0k

� �m+1 (1 + �+ :::+ �n + :::) kz0k

� �m+1

1� � kz0k :

Thus

lim
n;m�!1

kSn � Smk = 0:

(Sn)n�0 is a Cauchy sequence in the Banach space and it is convergent, i.e.

9S 2 B; with lim
n�!1

Sn =
1X
n=1

zn = S:

2) From (3.2.17), we have

lim
n�!1

Sn+1 = �L�1 lim
n�!1

N (Sn + z0)� y0 + L�1 (f(r))

= �L�1 lim
n�!1

N

 
nX
i=0

zi

!
� y0 + L�1 (f(r))

S = �L�1 lim
n�!1

nX
i=0

Hi � y0 + L�1 (f(r))

= �L�1
1X
i=0

Hi � y0 + L�1 (f(r)) :

By (3.2.18) and (3.2.12), for p = 1; it comes
1X
i=0

Hi = N

 1X
i=0

zi

!
:

Thus

S = �L�1N
 1X
i=0

zi

!
� y0 + L�1 (f(r))

= �L�1N (S + z0)� y0 + L�1 (f(r)) :
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Lemma 3.2.1 Equation (3.2.20) is equivalent to

L(y) +N(y)� f(r) = 0: (3.2.21)

Proof. We write the equation (3.2.20) as follows

S + y0 = �L�1N (S + z0) + L�1 (f(r)) :

By applying the operator L to the previous equation, we obtain

L (S + y0) = �N (S + z0) + f(r):

As y0 = z0;we get

L (S + z0) = �N (S + z0) + f(r):

Let y = S + z0 =
1P
i=0

zi; equation (3.2.21) becomes the original equation. The solution

of equation (3.2.20) is the same as that of the solution of A(y)� f(r) = 0:

De�nition 3.2.1 For all i 2 N; we de�ne

�i =

8<:
kzi+1k
kzik ; kzik 6= 0
0; kzik = 0:

:

In Theorem 3.2.2,
1P
i=0

zi converges to the exact solution when 0 < �i < 1:

If zi and z0i are obtained by two di¤erent homotopies, and �i < �0i for each i 2 N; the
convergence rate of

1P
i=0

zi is greater than
1P
i=0

z0i:

Example 3.2.1. We consider the following nonlinear di¤erential equation8<: y0 + y2 = 0; t � 0; t 2 

y(0) = 1

: (3.2.22)

According to the HPM, we can construct the following homotopy: y : 
� [0; 1] �! R

(1� p) (z0 � y00) + p(z0 + z2) = 0; p 2 [0; 1] ; t 2 
; (3.2.23)

with

y0 = 1:
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The solution of equation (3.2.22), can be written in the form of a series

z = z0 + pz1 + p
2z2 + ::: (3.2.24)

Replacing (3.2.24) in (3.2.23) and identifying the terms with those of the same powers

of p; we obtain

p0 : z00 = y
0
0;

p1 : z01 = �y0 � z20 ; z1(0) = 0;

p2 : z02 = �2z0z1; z2(0) = 0;
...

Therefore, the �rst terms of the solution are given by

p0 : z0 = 1;

p1 : z1 = �t;

p2 : z2 = t
2;

...

So, the solution of equation (3.2.22) is

y = lim
p�!1

z = z0 + z1 + z2 + ::: = 1� t+ t2 � :::

=
1X
n=0

(�t)n = 1

1 + t
:

Example 3.2.2. We consider the following nonlinear di¤erential equation8<: y0 = 2y � y2 + 1; t � 0; t 2 

y(0) = 0:

: (3.2.25)

We search the solution with the HPM, we can construct the following homotopy: y :


� [0; 1] �! R

(1� p) (z0 � y00) + p(z0 � 2z + z2 � 1) = 0; p 2 [0; 1] ; t 2 
;

The solution of equation (3.2.25), can be written in the form of a series

z = z0 + pz1 + p
2z2 + :::
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3.3. Variational iteration method (VIM)

By identifying the terms with those of the same powers of p; we obtain

p0 : z00 = y
0
0;

p1 : z01 + y
0
0 + y

2
0 � 1 = 0;

p2 : z02 + 2z0z1 = 0;

p3 : z03 + z
0
1 + 2z0z1 = 0;

p4 : z04 + z
0
1 + 2z0z3 + 2z1z2 = 0;

...

Therefore, the �rst terms of the solution are given by

p0 : z0 = t;

p1 : z1 =
1

4

�
�1 + et � 2t+ 2t2

�
;

p2 : z2 =
1

4

�
t2 � t2et + 2t3

�
;

...

Taking p = 1; the approximate solution of equation (3.2.25) is given by

y = z0 + z1 + z2 + :::

which means that

y = t+
1

4

�
�1 + et � 2t+ 2t2

�
+
1

4

�
t2 � t2et + 2t3

�
+ :::

On the other hand, after using the Taylor expansion of et in the vicinity of zero, the

solution of equation (3.2.25) is given by

y = t+ t2 +
1

3
t3 � 1

3
t4 � 7

15
t5 � 7

45
t6 +

53

315
t7 +

71

315
t8 + :::

= 1 +
p
2 tanh

 
p
2t+

1

2
log

 p
2� 1p
2 + 1

!!
:

3.3 Variational iteration method (VIM)

The variational iteration method (VIM) was proposed and developed by Chinese mathemati-

cian Je-Haun-He in the early 1990s [32],[33],[34], it was �rst proposed to solve problems
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3.3. Variational iteration method (VIM)

in mechanics. This method has been used to solve a wide variety of linear and nonlinear

problems with successive approximations that rapidly converge to the exact solution if it

exists. The method is based on the optimal determination of the Lagrange multiplier by

variational theory.

3.3.1 Description of the method

To illustrate the basic ideas of this method, we consider the following nonlinear di¤erential

equation

L(y) +N(y) = g(t); (3.3.1)

where L is a linear di¤erential operator, N is a nonlinear operator and g is a known function.

We can construct a functional correction according to the following variational iteration

method

yn+1(t) = yn(t) +

tZ
0

�(�) [L (yn(�)) +N( eyn(�))� g(�)] d� ; n � 0; (3.3.2)

where � is a general Lagrange multiplier. The index n represents the nth approximation andeyn(�) is considered as a restricted variation, i.e. � eyn(�) = 0: To solve equation (3.3.1) by

VIM, we must �rst determine the Lagrange multiplier � which will be identi�ed optimally

via integration by parts. Then the successive approximations yn of the solution y(t) will

be obtained by using the Lagrange multiplier and a well-chosen function y0 (which must at

least satisfy the initial conditions), consequently, the exact solution will be the limit

lim
n�!1

yn(t) = y(t):

3.3.2 Alternative approach to VIM

In this part, we present an alternative approach to VIM. This approach can be performed

reliably and e¢ ciently to solve the following nonlinear di¤erential equation

Ly(t) +Ny(t) = g(t); t > 0; (3.3.3)
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3.3. Variational iteration method (VIM)

with the initial conditions

y(k)(0) = ck; k = 0; 1; :::;m� 1; (3.3.4)

where L is a linear di¤erential operator de�ned by L =
dm

dtm
;m 2 N; N is a nonlinear

operator, g a known function and ck are real numbers.

According to the variational iteration method, one can construct a functional correction

formula for (3.3.3) as follows

yk+1(t) = yk(t) +

tZ
0

[�(�) (Lyk(�) +N eyk(�)� g(�))] d� ; (3.3.5)

where � is a general Lagrange multiplier, which can be optimally identi�ed by variational

theory. Here, we apply restricted variations to the term nonlinear Ny, in this case we can

easily determine the multiplier.

Then make the functional correction (3.3.5) stationary by noting that � eyk(�) = 0; the

equation

�yk+1(t) = �yk(t) + �

tZ
0

[�(�) (Lyk(�)� g(�))] d� ; (3.3.6)

gives the following Lagrange multipliers

� = �1 for m = 1;

� = � � t for m = 2;

and in general

� =
(�1)m

(m� 1)! (� � t)
m�1 for m � 1: (3.3.7)

Therefore, substituting (3.3.7) in the functional (3.3.5), we obtain the following iteration

formula

yk+1(t) = yk(t) +

tZ
0

�
(�1)m

(m� 1)! (� � t)
m�1 (Lyk(�) +Nyk(�)� g(�))

�
d� ; (3.3.8)

Now, we de�ne the operator A (y) as

A (y) =

tZ
0

�
(�1)m

(m� 1)! (� � t)
m�1 (Lyk(�) +Nyk(�)� g(�))

�
d� ; (3.3.9)

50



3.3. Variational iteration method (VIM)

and we de�ne the components zk; k = 0; 1; 2; :::; as follows8>>>>>>>><>>>>>>>>:

z0 = y0;

z1 = A (z0) ;

z2 = A (z0 + z1) ;
...

zk+1 = A (z0 + z1 + :::+ zk) :

(3.3.10)

So we have

y(t) = lim
k�!1

yk(t) =
1X
k=0

zk(t):

Finally, the solution of problem (3.3.3) can be deduced using (3.3.9) and (3.3.10), in the

form of a series

y(t) =
1X
k=0

zk(t): (3.3.11)

The initial approximation z0 = y0 can be chosen freely if it satis�es the initial conditions

of the problem. The success of the method depends on the correct choice of the initial

approximation z0. In this alternative approach, we choose the initial approximation as

follows

z0 =
m�1X
k=0

ck
k!
tk: (3.3.12)

3.3.3 Convergence analysis

In this part, we study the convergence of the variational iteration method, according to the

alternative approach of VIM presented in the previous part [52],[61].

Theorem 3.3.1 Let H be a Hilbert space and A : H �! H; an operator de�ned by (3.3.9).

The series solution y(t) =
1P
k=0

zk(t) converges if 90 <  < 1 such as

kA (z0 + z1 + :::+ zk+1)k �  kA (z0 + z1 + :::+ zk)k ;

i.e.

kzk+1k �  kzkk ;8k 2 N[f0g :
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3.3. Variational iteration method (VIM)

Proof. Let (Sn)n�0 be a sequence de�ned as follows8>>>>>>>><>>>>>>>>:

S0 = z0;

S1 = z0 + z1;

S2 = z0 + z1 + z2;
...

Sn = z0 + z1 + z2:::+ zn:

:

We show that (Sn)n�0 is a Cauchy sequence in Hilbert space H:

For this, we have

kSn+1 � Snk = kzn+1k �  kznk � 2 kzn�1k � ::: � n+1 kz0k :

For n;m 2 N; n � m; we have

kSn � Smk = kSn � Sn�1 + Sn�1 � Sn�2 + :::+ Sm+1 � Smk

� kSn � Sn�1k+ kSn�1 � Sn�2k+ :::+ kSm+1 � Smk

� n kz0k+ n�1 kz0k+ :::+ m+1 kz0k

�
�
n + n�1 + :::+ m+1

�
kz0k

�
�
m+1 + :::+ n + :::

�
kz0k

� m+1 (1 +  + :::+ n + :::) kz0k

� m+1

1�  kz0k ;

and since 0 <  < 1, we obtain

lim
n;m�!1

kSn � Smk = 0:

Therefore, (Sn)n�0 is a Cauchy sequence in the Hilbert space H; and this implies that

the series solution y(t) =
1P
k=0

zk(t) converges.

Theorem 3.3.2 If the series solution y(t) =
1P
k=0

zk(t) converges, then it is an exact solution

of the nonlinear problem (3.3.3).

Proof. Suppose the series solution y(t) =
1P
k=0

zk(t) converges, then we have

lim
k�!1

zk = 0;
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3.3. Variational iteration method (VIM)

nX
k=0

(zk+1 � zk) = zn+1 � z0;

So
1X
k=0

(zk+1 � zk) = lim
k�!1

(zn+1 � z0) = �z0: (3.3.13)

By applying the operator L =
dm

dtm
;m 2 N; on both sides of equation (3.3.13) then the

relation (3.3.12), we obtain

1X
k=0

L (zk+1 � zk) = �L (z0) = 0: (3.3.14)

On the other hand, from relation (3.3.10), we have

L (zk+1 � zk) = L (A (z0 + z1 + :::+ zk)� A (z0 + z1 + :::+ zk�1)) ; k � 1:

Using the de�nition of the operator A(y) de�ned by (3.3.9), we obtain

L (zk+1 � zk) = L

0@ tZ
0

�
(�1)m

(m� 1)! (� � t)
m�1 (L (z0 + z1 + :::+ zk)

�L (z0 + z1 + :::+ zk�1) +N (z0 + z1 + :::+ zk)

�N (z0 + z1 + :::+ zk�1))] d�) ; k � 1: (3.3.15)

Now, the operator A(y) de�ned by (3.3.9), gives the integral of the mth times of Ly(t)+

Ny(t)� g(t): Since the di¤erential operator L = dm

dtm
of order m is the inverse of the integral

operator mth times, then equation (3.3.15) becomes

L (zk+1 � zk) = L (zk) +N (z0 + z1 + :::+ zk)�N (z0 + z1 + :::+ zk�1) ; k � 1:

Therefore, we have

nX
k=0

L (zk+1 � zk) = L (z0) +N (z0)� g(t)

+L (z1) +N (z0 + z1)�N (z0)

+L (z2) +N (z0 + z1 + z2)�N (z0 + z1)
...

+L (zn) +N (z0 + z1 + :::+ zn)�N (z0 + z1 + :::+ zn�1) :
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3.3. Variational iteration method (VIM)

So
1X
k=0

L (zk+1 � zk) = L
 1X
k=0

zk

!
+N

 1X
k=0

zk

!
� g(t): (3.3.16)

From (3.3.13) and (3.3.16), we can observe that y(t) =
1P
k=0

zk(t) is an exact solution of

the problem (3.3.3).

Example 3.3.1. Consider the following nonlinear di¤erential equation8<: y0(t) = y2(t) + 1; 0 < t � 1;
y(0) = 0:

(3.3.17)

The functional correction of equation (3.3.17) according to the VIM, is given by:

yn+1(t) = yn(t) +

tZ
0

�(�)(y0n(�)� ( eyn)2 (�)� 1)d� :
From (3.3.7), the Lagrange multiplier �(�) can be identi�ed as �(�) = �1; hence the

iteration formula can be obtained as follows

yn+1(t) = yn(t)�
tZ
0

(y0n(�)� (yn)
2 (�)� 1)d� : (3.3.18)

According to formula (3.3.18), we obtain the �rst terms of the approximate solution

y0(t) = 0;

y1(t) = t;

y2(t) = t+
1

3
t3;

y3(t) = t+
1

3
t3 +

2

15
t6 +

1

63
t7;

...

And as

y(t) = lim
n�!1

yn(t);

we can express the solution of equation (3.3.17) as a convergent series to the exact solution

given by

y(t) = t+
1

3
t3 +

2

15
t6 +

1

63
t7 + :::

= tan(t):
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3.3. Variational iteration method (VIM)

Example 3.3.2. Consider the following linear di¤erential equation8<: y00(t) + y(t) = 0; 0 < t � 1;
y(0) = 1; y0(0) = 0:

(3.3.19)

The functional correction of equation (3.3.19) according to the VIM, is given by

yn+1(t) = yn(t) +

tZ
0

�(�)(y
00

n(�) + yn(�))d� :

From (3.3.7), the Lagrange multiplier �(�) can be identi�ed as �(�) = � � t; hence the
iteration formula can be obtained as follows

yn+1(t) = yn(t) +

tZ
0

(� � t)(y00n(�) + yn(�))d� : (3.3.20)

According to formula (3.3.20), we obtain the �rst terms of the approximate solution

y0(t) = 1;

y1(t) = 1� 1

2!
t2;

y2(t) = 1� 1

2!
t2 +

1

4!
t4;

y3(t) = 1� 1

2!
t2 +

1

4!
t4 � 1

6!
t6;

...

And as

y(t) = lim
n�!1

yn(t);

we can express the solution of equation (3.3.19) as a convergent series to the exact solution

given by

y(t) = 1� 1

2!
t2 +

1

4!
t4 � 1

6!
t6 + :::

= lim
n�!1

nX
k=0

(�1)k t
2k

2k!
= cos(t):

55



3.4. New iterative method (NIM)

3.4 New iterative method (NIM)

Recently, Daftardar-Gejji and Jafari [20] proposed a new technique for solving linear/nonlinear

functional equations called new iterative method (NIM) or (DJM). The new iterative method

has been widely used by many researchers for the treatment of linear and nonlinear ordinary

and partial di¤erential equations of integer and fractional order. The method converges to

the exact solution if it exists by successive approximations. The advantage of this method

is that it is easy to understand and apply, it provides best results and does not require any

restrictive assumptions for nonlinear terms, unlike some existing techniques.

3.4.1 Description of the method

To illustrate the basic ideas of NIM, consider the following general functional equation

y = N(y) + f; (3.4.1)

where N is a nonlinear operator of a Banach space B ! B and f is a known function.

We search for a solution y of equation (3.4.1) in the form of a series

y =
1X
i=0

yi: (3.4.2)

The nonlinear operator N can be decomposed as follows

N

 1X
i=0

yi

!
= N (y0) +

1X
i=1

(
N

 
iX
j=0

yj

!
�N

 
i�1X
j=0

yj

!)
: (3.4.3)

From equations (3.4.2) and (3.4.3), equation (3.4.1) can be represented in the following

form

1X
i=0

yi = f +N (y0) +

1X
i=1

(
N

 
iX
j=0

yj

!
�N

 
i�1X
j=0

yj

!)
: (3.4.4)

We de�ne the recurrence relation

y0 = f;

y1 = N (y0) ; (3.4.5)

yn+1 = N

 
nX
j=0

yj

!
�N

 
n�1X
j=0

yj

!
; n = 1; 2; :::
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3.4. New iterative method (NIM)

Then

y1 + y2 + :::+ yn+1 = N (y0 + y1 + :::+ yn) ; n = 1; 2; :::;

and

y =
1X
i=0

yi = f +N

 1X
i=1

yi

!
:

If N is a contraction, i.e.

kN(x)�N(y)k � kkx� yk; 0 < k < 1;

then, from (3.4.5), we have

y0 = f;

ky1k = kN (y0) k � kky0k;

ky2k = kN (y0 + y1)�N (y0) k � kky1k � k2ky0k

ky3k = kN (y0 + y1 + y2)�N (y0 + y1) k � kky2k � k3ky0k
...

kyn+1k = kN (y0 + y1 + :::+ yn)�N (y0 + y1 + :::+ yn�1) k

� kkynk � kn+1ky0k; n = 0; 1; 2; :::;

and the series
1P
i=0

yi converges absolutely and uniformly to a solution of equation (3.4.1),

which is unique from the point of view of Banach�s �xed point theorem (1.3.8). For more

details, you can see [11]

The n�term approximate solution of equation (3.4.1) is given by

y =
n�1X
i=0

yi = y0 + y1 + :::+ yn�1:

3.4.2 Convergence of NIM

Now, we analyze the convergence of the NIM to solve the general functional equation (3.4.1).

Let e = y�y�; where y is the exact solution, y� the approximate solution and e the error
in the solution of (3.4.1), obviously e satis�es (3.4.1), i.e.

e = N(e) + f;
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3.4. New iterative method (NIM)

and the recurrence relation (3.4.5) becomes

e0 = f;

e1 = N (e0) ;

en+1 = N

 
nX
j=0

ej

!
�N

 
n�1X
j=0

ej

!
; n = 1; 2; :::

If kN(x)�N(y)k � kkx� yk; 0 < k < 1, then

e0 = f;

ke1k = kN (e0) k � kke0k;

ke2k = kN (e0 + e1)�N (e0) k � kke1k � k2ke0k

ke3k = kN (e0 + e1 + e2)�N (e0 + e1) k � kke2k � k3ke0k
...

ken+1k = kN (e0 + e1 + :::+ en)�N (e0 + e1 + :::+ en�1) k

� kkenk � kn+1ke0k; n = 0; 1; 2; :::;

So en+1 �! 0 when n �!1, which proves the convergence of the NIM to solve the general

functional equation (3.4.1).

Example 3.4.1. Consider the following nonlinear di¤erential equation

y0(t) + y2(t) = 1; t > 0; (3.4.6)

with initial condition

y(0) = 0: (3.4.7)

By integrating equation (3.4.6) from 0 to t and using the initial condition (3.4.7), we

get

y(t) = t�
tZ
0

y2(�)d�

= f(t) +N(y(t));
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3.4. New iterative method (NIM)

where

f(t) = t;

N(y(t)) = �
tZ
0

y2(�)d� :

Applying NIM, we have the following �rst approximations

y0(t) = t;

y1(t) = N(y0(t)) = �
t3

3
;

y2(t) = N(y1(t) + y0(t))�N(y0(t)) =
2

15
t5 � 1

63
t7;

...

and so on.

And since

y(t) =

1X
i=0

yi(t);

we can express the solution of equation (3.4.6) in the form of an in�nite series which con-

verges rapidly to the exact solution as

y(t) = t� t
3

3
+
2

15
t5 � 1

63
t7 + :::

=
e2t � 1
e2t + 1

:

Example 3.4.2. Consider the following nonlinear di¤erential equation

y00(t) + 2y0(t) + y(t) + 8y3(t) = 1� 3t; (3.4.8)

with initial conditions

y(0) =
1

2
; y0(0) =

1

2
: (3.4.9)
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3.4. New iterative method (NIM)

By integrating both sides of equation (3.4.8) twice from 0 to t and using the initial

conditions (3.4.9), we get

y(t) =
1

2
+
t

2
+
t2

2
� t

3

3
� 2

tZ
0

y(�)d� �
tZ
0

tZ
0

�
y(�) + 8y3(�)

�
d�d�

=
1

2
+
t

2
+
t2

2
� t

3

3
� 2

tZ
0

y(�)d� �
tZ
0

(t� �)
�
y(�) + 8y3(�)

�
d�

= f(t) +N(y(t));

where

f(t) =
1

2
+
t

2
+
t2

2
� t

3

3
;

N(y(t)) = �2
tZ
0

y(�)d� �
tZ
0

(t� �)
�
y(�) + 8y3(�)

�
d� :

Applying NIM, we have the following �rst approximations

y0(t) =
1

2
+
t

2
+
t2

2
� t

3

3
;

y1(t) = N(u0(t)) = �t�
5t2

4
� 11t

3

12
� 7t

4

24
+
7t5

40
;

y2(t) = N(y1(t) + y0(t))�N(y0(t)) = t2 + 2t3 +
19t4

16
+
31t5

80
� 371t

6

720
;

...

and so on.

And since

y(t) =
1X
i=0

yi(t);

we can express the solution of equation (3.4.8) in the form of an in�nite series which con-

verges rapidly to the exact solution as

y(t) =
1

2

�
1� t+ t

2

2
� t

3

6
+
t4

24
� :::

�
=

1

2
e�t:
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Chapter 4

On the solution of nonlinear

fractional di¤erential equations

In this chapter, we demonstrate the applicability and e¢ ciency of ADM, HPM, VIM, and

NIM for solving nonlinear fractional di¤erential equations where the fractional derivative is

in the Caputo sense. To achieve our goal, we present some di¤erent illustrative examples.

Consider a general nonlinear fractional di¤erential equation

CD�y(t) = Ly(t) +Ny(t) + g(t); t > 0; (4.1.1)

with the initial conditions

y(k)(0) = yk; k = 0; 1; 2; :::; n� 1; (4.1.2)

where CD� is the Caputo fractional derivative of order � with n � 1 < � � n; n 2 N�; L
and N respectively are the linear and nonlinear di¤erential operator, and g(t) is the source

term.

4.1 Application of the ADM

To verify the application of the ADM, �rst we apply the Riemann-Liouville fractional integral

operator I� to both sides of equation (4.1.1), we obtain

I�
�
CD�y(t)

�
= I� [Ly(t) +Ny(t) + g(t)] :
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4.1. Application of the ADM

Using the relation (1.4.19) and the initial conditions (4.1.2), we get

y(t) =
n�1X
k=0

y(k)(0)

k!
tk + I� [g(t)] + I� [Ly(t) +Ny(t)] : (4.1.3)

Now we represent the solution as an in�nite series

y(t) =
1X
n=0

yn(t): (4.1.4)

and the nonlinear term can be decomposed as

Ny(t) =
1X
n=0

An; (4.1.5)

where An are the Adomian polynomials of y0; y1; y2; ::; yn; which represents the nonlinear

term Ny(t) and it can be calculated by the formula (3.1.11).

Using equations (4.1.4) and (4.1.5), we can rewrite equation (4.1.3) as

1X
n=0

yn(t) =
n�1X
k=0

yk
tk

k!
+ I� [g(t)] + I�

"
L

1X
n=0

yn(t) +
1X
n=0

An

#
; (4.1.6)

By comparing both sides of equation (4.1.6), we obtain

y0(t) =
n�1X
k=0

yk
tk

k!
+ I� [g(t)] ;

y1(t) = I� [Ly0(t) + A0] ;

y2(t) = I� [Ly1(t) + A1] ;

y3(t) = I� [Ly2(t) + A2] ;

...

and so on.

Similarly, we can obtain the recursive relation in general form for n � 1 and de�ned as

y0(t) =
n�1X
k=0

yk
tk

k!
+ I� [g(t)] ;

yn+1(t) = I� [Lyn(t) + An] :

Finally, the approximate solution is de�ned as follows

y(t) =

1X
n=0

yn(t):
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4.1. Application of the ADM

Example 4.1.1. We consider the following nonlinear fractional logistic equation

CD�y(t) =
1

2
y(t)(1� y(t)); (4.1.7)

with the initial condition

y(0) =
1

2
: (4.1.8)

where CD� is the Caputo fractional derivative of order � with 0 < � � 1:
Following the description of the ADM presented in part 4.1, gives

1X
n=0

yn(t) =
1

2
I�

 1X
n=0

yn(t)�
1X
n=0

An

!
; (4.1.9)

where An are the Adomian polynomials which represents the nonlinear term y2(t):

According to formula (3.1.11), the �rst terms of the Adomian polynomials are given by

A0 = y20;

A1 = 2y0y1;

A2 = 2y0y2 + y
2
1;

A3 = 2y0y3 + 2y1y2;

A4 = 2y0y4 + 2y1y3 + y
2
2;

...

and so on.

Comparing both sides of equation (4.1.9), we have

y0(t) =
1

2
;

y1(t) =
1

2
I� (y0(t)� A0) =

1

8

1

�(�+ 1)
t�;

y2(t) =
1

2
I� (y1(t)� A1) = 0;

y3(t) =
1

2
I� (y2(t)� A2) = �

1

128

�(2�+ 1)

�(3�+ 1)
t3�;

y4(t) =
1

2
I� (y3(t)� A3) = 0;

y5(t) =
1

2
I� (y4(t)� A4) =

1

1024

�(2�+ 1)�(4�+ 1)

�(�+ 1)�(3�+ 1)�(5�+ 1)
t5�;

...
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4.1. Application of the ADM

and so on.

Hence, the approximate solution of equations (4.1.7)-(4.1.8) is given by

y(t) =
1

2
+
1

8

1

�(�+ 1)
t� � 1

128

�(2�+ 1)

�(3�+ 1)
t3� +

1

1024

�(2�+ 1)�(4�+ 1)

�(�+ 1)�(3�+ 1)�(5�+ 1)
t5� + :::

(4.1.10)

By substituting � = 1 into equation (4.1.10), we have

y(t) =
1

2
+
1

8
t� 1

384
t3 +

1

15360
t5 + :::

The closed form solution will be as follows

y(t) =
exp

�
1
2
t
�

1 + exp
�
1
2
t
� :

which is the exact solution of the nonlinear Logistic equation in the classical case.

Example 4.1.2. We consider the following nonlinear fractional Bratu equation

CD�y(t)� 2 exp (y(t)) = 0; (4.1.11)

with the initial conditions

y(0) = y0(0) = 0: (4.1.12)

where CD� is the Caputo fractional derivative of order � with 1 < � � 2:
Following the description of the ADM presented in part 4.1, gives

1X
n=0

yn(t) = 2I
�

 1X
n=0

An

!
; (4.1.13)

where An are the Adomian polynomials which represents the nonlinear term exp (y(t)) :

According to formula (3.1.11), the �rst terms of the Adomian polynomials are given by

A0 = exp (y0) ;

A1 = y1 exp (y0) ;

A2 =

�
y2 +

y21
2!

�
exp (y0) ;

A3 =

�
y3 + y1y3 +

y31
3!

�
exp (y0) ;

...
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4.2. Application of the HPM

and so on.

Comparing both sides of equation (4.1.13), we have

y0(t) = 0;

y1(t) = 2I� (A0) =
2

�(�+ 1)
t�;

y2(t) = 2I� (A1) =
4

�(2�+ 1)
t2�;

y3(t) = 2I� (A2) =
4 [2�2(�+ 1) + �(2�+ 1)]

�(3�+ 1)�2(�+ 1)
t3�;

...

and so on.

Hence, the approximate solution of equations (4.1.11)-(4.1.12) is given by

y(t) =
2

�(�+ 1)
t� +

4

�(2�+ 1)
t2� +

4 [2�2(�+ 1) + �(2�+ 1)]

�(3�+ 1)�2(�+ 1)
t3� + ::: (4.1.14)

By substituting � = 2 into equation (4.1.14), we have

y(t) = t2 +
1

6
t4 +

2

45
t6 + :::

The closed form solution will be as follows

y(t) = �2 ln(cos t):

which is the exact solution of the nonlinear Bratu equation in the classical case.

4.2 Application of the HPM

To illustrate the application of HPM, consider the general nonlinear fractional di¤erential

equation (4.1.1) with initial conditions (4.1.2).

Following the same steps as above, see part 4.1, we have

y(t) =

n�1X
k=0

y(k)(0)

k!
tk + I� [g(t)] + I� [Ly(t) +Ny(t)] : (4.2.1)
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4.2. Application of the HPM

Now, applying the HPM, we can assume that the solution can be expressed as a power

series in p as given below

y(t) =

1X
n=0

pnyn(t); (4.2.2)

where the homotopy parameter p is considered as a small parameter p 2 [0; 1]:
The nonlinear terms can be decomposed as

Ny(t) =
1X
n=0

pnHn(y); (4.2.3)

where Hn(y) are He�s polynomials, and it can be calculated by the relation (3.2.11).

Substituting (4.2.2) and (4.2.3) into (4.2.1), we get

1X
n=0

pnyn(t) =
n�1X
k=0

yk
tk

k!
+ I� [g(t)] + I�

"
L

1X
n=0

pnyn(t) +
1X
n=0

pnHn(y)

#
; (4.2.4)

Comparing the coe¢ cient of like powers of p; on both sides in equation (4.2.4), the

following approximations are obtained

p0 : y0(t) =
n�1X
k=0

yk
tk

k!
+ I� [g(t)] ;

p1 : y1(t) = I
� [Ly0(t) +H0(y)] ;

p2 : y2(t) = I
� [Ly1(t) +H1(y)] ;

p3 : y2(t) = I
� [Ly2(t) +H2(y)] ;

...

pn : yn(t) = I
� [Lyn�1(t) +Hn�1(y)] :

Then, the solution of equations (4.1.1) and (4.1.2) can be de�ned as follows

y(t) = lim
p�!1

1X
n=0

pnyn(t) =

1X
n=0

yn(t):

Example 4.2.1. We consider the following nonlinear fractional Riccati equation

CD�y(t) + y2(t) = 1; (4.2.5)

with the initial condition

y(0) = 0: (4.2.6)

66



4.2. Application of the HPM

where CD� is the Caputo fractional derivative of order � with 0 < � � 1:
According to the description of the HPM presented in part 4.2, we have

1X
n=0

pnyn(t) = I
� [1]� I�

" 1X
n=0

pnHn(y)

#
; (4.2.7)

where Hn(y) are He�s polynomials of the nonlinear term y2(t):

From the relation (3.2.11), the �rst terms of the He�s polynomials are given by

H0 = y20;

H1 = 2y0y1;

H2 = 2y0y2 + y
2
1; (4.2.8)

H3 = 2y0y3 + 2y1y2;

...

and so on.

Comparing the coe¢ cient of like powers of p; on both sides in equation (4.2.7) and using

(4.2.8), gives

p0 : y0(t) = I
� [1] =

1

�(�+ 1)
t�;

p1 : y1(t) = �I� [H0(y)] = �
�(2�+ 1)

�2�(3�+ 1)
t3�;

p2 : y2(t) = �I� [H1(y)] =
16�(2�)�(4�)

��(3�+ 1)�(5�+ 1)
t5�;

p3 : y3(t) = �I� [H2(y)] = �
[32�2�2(2�)�(4�)�(3�+ 1) + �2(2�+ 1)�(5�+ 1)] �(6�+ 1)

�4�2(3�+ 1)�(5�+ 1)�(7�+ 1)
t7�;

...

and so on.

Therefore, the approximate solution of equations (4.2.5)-(4.2.6) is given by

y(t) =
1

�(�+ 1)
t� � �(2�+ 1)

�2�(3�+ 1)
t3� +

16�(2�)�(4�)

��(3�+ 1)�(5�+ 1)
t5� (4.2.9)

� [32�
2�2(2�)�(4�)�(3�+ 1) + �2(2�+ 1)�(5�+ 1)] �(6�+ 1)

�4�2(3�+ 1)�(5�+ 1)�(7�+ 1)
t7� + :::

Setting � = 1 in equation (4.2.9), then we have

y(t) = t� 1
3
t3 +

2

15
t5 � 17

315
t7 + :::
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4.2. Application of the HPM

The closed form of the solution can be easily written as

y(t) =
exp(2t)� 1
exp(2t) + 1

;

which is the exact solution of the nonlinear Riccati equation in the classical case.

Example 4.2.2. We consider the following nonlinear fractional di¤erential equation

CD�y(t) = 1 + 2y(t) + 2y2(t); (4.2.10)

with the initial conditions

y(0) = y0(0) = 0: (4.2.11)

where CD� is the Caputo fractional derivative of order � with 1 < � � 2:
According to the description of the HPM presented in part 4.2, we have

1X
n=0

pnyn(t) = I
� [1] + 2I�

" 1X
n=0

pnyn(t) +

1X
n=0

pnHn(y)

#
; (4.2.12)

where Hn(y) are He�s polynomials of the nonlinear term y2(t):

From the relation (3.2.11), the �rst terms of the He�s polynomials are given by

H0 = y20;

H1 = 2y0y1;

H2 = 2y0y2 + y
2
1; (4.2.13)

H3 = 2y0y3 + 2y1y2;

...

and so on.

Comparing the coe¢ cient of like powers of p; on both sides in equation (4.2.12) and

using (4.2.13), gives

p0 : y0(t) = I
� [1] =

1

�(�+ 1)
t�;

p1 : y1(t) = 2I
� [y0(t) +H0(y)] =

2

�(2�+ 1)
t2� +

2�(2�+ 1)

�2(�+ 1)�(3�+ 1)
t3�;

p2 : y2(t) = 2I
� [y1(t) +H1(y)] =

4

�(3�+ 1)
t3� +

4 [2�(�+ 1)�(3�+ 1) + �2(2�+ 1)]

�2(�+ 1)�(2�+ 1)�(4�+ 1)
t4�

+
8�(2�+ 1)�(4�+ 1)

�3(�+ 1)�(3�+ 1)�(5�+ 1)
t5�;

...
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4.3. Application of the VIM

and so on.

Therefore, the approximate solution of equations (4.2.10)-(4.2.11) is given by

y(t) =
1

�(�+ 1)
t� +

2

�(2�+ 1)
t2� + 2

�
2�2(�+ 1) + �(2�+ 1)

�2(�+ 1)�(3�+ 1)

�
t3� (4.2.14)

+4

�
2�(�+ 1)�(3�+ 1) + �2(2�+ 1)

�2(�+ 1)�(2�+ 1)�(4�+ 1)

�
t4� +

8�(2�+ 1)�(4�+ 1)

�3(�+ 1)�(3�+ 1)�(5�+ 1)
t5� + :::

Setting � = 2 in equation (4.2.14), then we have

y(t) = t2 +
1

12
t4 +

1

45
t6 + :::

The closed form of the solution can be easily written as

y(t) = ln(sec t);

which is the exact solution of the nonlinear di¤erential equation (4.2.10) in the classical

case.

4.3 Application of the VIM

To verify the application of VIM, consider the general nonlinear fractional di¤erential equa-

tion (4.1.1) with initial conditions (4.1.2).

Following the same steps mentioned in part 4.1, we get

y(t) =

n�1X
k=0

y(k)(0)

k!
tk + I� [g(t)] + I� [Ly(t) +Ny(t)]

= G(t) + I� [Ly(t) +Ny(t)] : (4.3.1)

where

G(t) =
n�1X
k=0

y(k)(0)

k!
tk + I� [g(t)] ;

is a term arising from the source term and the prescribed initial conditions.

Applying
d

dt
to both sides of equation (4.3.1), we get

dy(t)

dt
� d

dt
I� [Ly(x; t) +Ny(x; t)]� dG(t)

dt
= 0:
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4.3. Application of the VIM

According to the VIM (see Chapter 3), a functional correction can be constructed as

follows

yn+1(t) = yn(t)�
tZ
0

�
dyn(�)

d�
� d

d�
I� [Lyn(�) +Nyn(�)]�

dG(�)

d�

�
d� : (4.3.2)

Or alternatively

yn+1(t) = G(t) + I
� [Lyn(t) +Nyn(t)] :

Let us remember that

y(t) = lim
n�!1

yn(t):

According to the previous limit, we can obtain the exact solution if it exists or obtain

an approximate solution for the equation considered (4.1.1).

Example 4.3.1. Consider the following nonlinear fractional Riccati di¤erential equation

CD�y = 2y(t)� y2(t) + 1; (4.3.3)

with the initial conditions

y(0) = 0: (4.3.4)

where CD� is the Caputo fractional derivative of order � with 0 < � � 1:
According to the VIM, we can construct a functional correction as follows

yn+1(t) = yn(t)�
tZ
0

�
dyn(�)

d�
� d

d�
I�
�
2yn(�)� y2n(�) + 1

��
d� : (4.3.5)

Or alternatively

yn+1(t) = I
�(1) + I�

�
2yn(t)� y2n(t)

�
: (4.3.6)
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4.3. Application of the VIM

Using the iteration formula (4.3.5) or (4.3.6), the �rst terms are given by

y0(t) =
1

�(�+ 1)
t�;

y1(t) =
1

�(�+ 1)
t� +

2

�(2�+ 1)
t2� +

4�2(�+ 1)� �(2�+ 1)
�2(�+ 1)�(3�+ 1)

t3�;

y2(t) =
1

�(�+ 1)
t� +

2

�(2�+ 1)
t2� +

4�2(�+ 1)� �(2�+ 1)
�2(�+ 1)�(3�+ 1)

t3�;

+

�
8�2(�+ 1)� 2�(2�+ 1)
�2(�+ 1)�(4�+ 1)

� 4�(3�+ 1)

�(�+ 1)�(2�+ 1)�(4�+ 1)

�
t4�;

...

and so on.

So, the approximate solution of equations (4.3.3)-(4.3.4) is given by

y(t) =
1

�(�+ 1)
t� +

2

�(2�+ 1)
t2� +

4�2(�+ 1)� �(2�+ 1)
�2(�+ 1)�(3�+ 1)

t3�

+

�
8�2(�+ 1)� 2�(2�+ 1)
�2(�+ 1)�(4�+ 1)

� 4�(3�+ 1)

�(�+ 1)�(2�+ 1)�(4�+ 1)

�
t4� + :::(4.3.7)

Taking � = 1 in equation (4.3.7), then we have

y(t) = t+ t2 +
1

3
t3 � 1

3
t4 + :::

Therefore, the solution in closed form is as follows

y(t) = 1 +
p
2 tanh

 
p
2t+

1

2
log

 p
2� 1p
2 + 1

!!
;

which is the exact solution of the nonlinear Riccati equation in the classical case.

Example 4.3.2. Consider the following nonlinear fractional logistic di¤erential equation

CD�y(t) =
1

4
y(t)(1� y(t)); (4.3.8)

with the initial condition

y(0) =
1

3
: (4.3.9)

where CD� is the Caputo fractional derivative of order � with 0 < � � 1:
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4.4. Application of the NIM

According to the VIM, we can construct a functional correction as follows

yn+1(t) = yn(t)�
tZ
0

�
dyn(�)

d�
� 1
4

d

d�
I�
�
yn(�)� y2n(�)

��
d� : (4.3.10)

Or alternatively

yn+1(t) =
1

4
I�
�
yn(t)� y2n(t)

�
: (4.3.11)

Using the iteration formula (4.3.10) or (4.3.11), the �rst terms are given by

y0(t) =
1

3
;

y1(t) =
1

3
+
1

18

1

� (�+ 1)
t�;

y2(t) =
1

3
+
1

18

1

� (�+ 1)
t� +

1

216

1

� (2�+ 1)
t2�;

y3(t) =
1

3
+
1

18

1

� (�+ 1)
t� +

1

216

1

� (2�+ 1)
t2� +

�2(�+ 1)� 2� (2�+ 1)
2592�(3�+ 1)�2(�+ 1)

t3�;

...

and so on.

So, the approximate solution of equations (4.3.8)-(4.3.9) is given by

y(t) =
1

3
+
1

18

1

� (�+ 1)
t� +

1

216

1

� (2�+ 1)
t2� +

�2(�+ 1)� 2� (2�+ 1)
2592�(3�+ 1)�2(�+ 1)

t3� + ::: (4.3.12)

Taking � = 1 in equation (4.3.12), then we have

y(t) =
1

3
+
1

18
t+

1

432
t2 � 1

5184
t3 + :::

Therefore, the solution in closed form is as follows

y(t) =
exp

�
1
4
t
�

1 + exp
�
1
4
t
� ;

which is the exact solution of the nonlinear logistic equation in the classical case.

4.4 Application of the NIM

To demonstrate the applicability of the NIM,consider the general nonlinear fractional dif-

ferential equation (4.1.1) with initial conditions (4.1.2).
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4.4. Application of the NIM

Following the same steps mentioned in part 4.3, we get

y(t) = G(t) + I� [Ly(t) +Ny(t)] : (4.4.1)

where G(t) is a term arising from the source term and the prescribed initial conditions.

Suppose that

f(t) = G(t);

R(y(t)) = I� [Ly(t)] ;

M(y(t)) = I� [Ny(t)] :

Thus, equation (4.4.1) can be written in the following form

y(t) = f(t) +R(y(t)) +M(y(t)); (4.4.2)

where f is a known function, R and M are respectively the linear and nonlinear operator

of y.

The solution of equation (4.4.2) can be written in the form of a series

y(t) =
1X
i=0

yi(t):

The nonlinear operator M is decomposed into (see Chapter 3)

M

 1X
i=0

yi

!
=M (y0) +

1X
i=1

(
M

 
iX
j=0

yj

!
�M

 
i�1X
j=0

yj

!)
;

and since R is linear, then we have

R

 1X
i=0

yi

!
=

1X
i=0

R (yi) :

Therefore, equation (4.4.2) can be represented in the following form
1X
i=0

yi = f(t) +
1X
i=0

R (yi) +
1X
i=1

(
M

 
iX
j=0

yj

!
�M

 
i�1X
j=0

yj

!)
:

We de�ne the recurrence relation as follows

y0 = f;

y1 = R (y0) +M (y0) ; (4.4.3)

yn+1 = R (yn) +M

 
nX
j=0

yj

!
�M

 
n�1X
j=0

yj

!
; n = 1; 2; :::
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4.4. Application of the NIM

we have

y1 + y2 + :::+ yn+1 = R (y0 + y1 + :::+ yn) +M (y0 + y1 + :::+ yn) ; n = 1; 2; :::;

and

y =

1X
i=0

yi = f +R

 1X
i=0

yi

!
+M

 1X
i=1

yi

!
:

Example 4.4.1. Consider the following nonlinear fractional Riccati equation

CD�y(t) + y2(t) = 1; (4.4.4)

with the initial condition

y(0) = 0: (4.4.5)

where CD� is the Caputo fractional derivative of order � with 0 < � � 1:
By applying the technique described in part 4.4, the equation (4.4.4) is equivalent to the

integral equation

y(t) =
t�

�(�+ 1)
� I�

�
y2(t)

�
:

Let M(y(t)) = �I� [y2(t)].
In view of recurrence relation (4.4.3), we have the following �rst approximations

y0 =
t�

�(�+ 1)
;

y1 = M(y0) = �
�(2�+ 1)

�2(�+ 1)�(3�+ 1)
t3�;

y2 = M(y0 + y1)�M(y0) =
2�(2�+ 1)�(4�+ 1)

�3(�+ 1)�(3�+ 1)�(5�+ 1)
t5� � �2(2�+ 1)�(6�+ 1)

�4(�+ 1)�2(3�+ 1)�(7�+ 1)
t7�;

...

Therefore, the approximate solution of equations (4.4.4)-(4.4.5) is given by

y(t) =
t�

�(�+ 1)
� �(2�+ 1)

�2(�+ 1)�(3�+ 1)
t3� +

2�(2�+ 1)�(4�+ 1)

�3(�+ 1)�(3�+ 1)�(5�+ 1)
t5�

� �2(2�+ 1)�(6�+ 1)

�4(�+ 1)�2(3�+ 1)�(7�+ 1)
t7� + ::: (4.4.6)

For � = 1; the solution (4.4.6) becomes

y(t) = t� 1
2
t3 +

2

15
t5 � 17

315
t7 + :::
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4.4. Application of the NIM

The closed form of the solution can be easily written as

y(t) =
exp(2t)� 1
exp(2t) + 1

;

which is the exact solution of the nonlinear Riccati equation in the classical case.

Example 4.4.2. Consider the following nonlinear fractional di¤erential equation

CD�y(t) = �2 + �2y(t) +
�2

2
y2(t); (4.4.7)

with the initial condition

y(0) = 0; y0(0) = �: (4.4.8)

where CD� is the Caputo fractional derivative of order � with 1 < � � 2:
By applying the technique described in part 4.4, the equation (4.4.7) is equivalent to the

integral equation

y(t) = �t+
�2

�(�+ 1)
t� + �2I� [y(t)] +

�2

2
I�
�
y2(t)

�
:

Let R(y(t)) = I� [y(t)] and M(y(t)) = I� [y2(t)].

In view of recurrence relation (4.4.3), we have the following �rst approximations

y0 = �t+
�2

�(�+ 1)
t�;

y1 = R (y0) +M (y0) =
�3

�(�+ 2)
t�+1 +

�4

�(2�+ 1)
t2� +

�4

�(�+ 3)
t�+2 +

�5�(�+ 2)

�(�+ 1)�(2�+ 2)
t2�+1

+
�6�(2�+ 1)

2�2(�+ 1)�(3�+ 1)
t3�;

...

and so on.

Therefore, the approximate solution of equations (4.4.7)-(4.4.8) is given by

y(t) = �t+
�2

�(�+ 1)
t� +

�3

�(�+ 2)
t�+1 +

�4

�(2�+ 1)
t2� +

�4

�(�+ 3)
t�+2

+
�5�(�+ 2)

�(�+ 1)�(2�+ 2)
t2�+1 +

�6�(2�+ 1)

2�2(�+ 1)�(3�+ 1)
t3� + ::: (4.4.9)

For � = 2; the solution (4.4.9) becomes

y(t) = �t+
�2

2
t2 +

�3

6
t3 +

�4

12
t4 +

�5

40
t5 +

�6

240
t6 + :::
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4.4. Application of the NIM

The closed form of the solution can be easily written as

y(t) = � ln(1� sin �t);

which is the exact solution of the nonlinear di¤erential equation (4.4.7) in the classical case.
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Chapter 5

New combination method for solving

nonlinear fractional Lienard equation

In this chapter, we propose a new method for solving a particular class of nonlinear fractional

di¤erential equations, namely nonlinear fractional Lienard equation where the fractional

derivative is in the sense of Caputo. This method is called Khalouta di¤erential transform

method (KHDTM) and is a combination of two powerful methods: Khalouta transform

method and di¤erential transform method.

We will begin by providing an overview of the proposed equation, then give the de�nition

and some basic results on the properties of the Khalouta transform and the di¤erential

transform method, and then present the basic principles of this method as well as some

applications to the nonlinear fractional Lienard equation.

5.1 Lienard equation

The Lienard equation is a nonlinear second order di¤erential equation proposed by Alfred-

Marie Lienard [44] and is given by

y00(t) + f(y)y0(t) + g(y) = h(t); (5.1.1)

where f(y)y0(t) is the damping force, g(y) is the restoring force, and h(t) is the external

force.
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5.2. Khalouta transform

The Lienard equation (5.1.1) is a generalization of the damped pendulum equation or

spring�mass system. Since this equation can be applied to describe the oscillating circuits,

therefore it is used in the development of radio and vacuum-tube technology. For di¤erent

choices of the variable coe¢ cients f(y); g(y); and h(t); the Lienard equation is used in several

phenomena. For example, the choices f(y) = "(y2� 1); g(y) = y; and h(t) = 0 this equation
becomes the Van der Pol equation as a nonlinear model of electronic oscillation, see [28],[62]

Several researchers have studied the exact solution of particular cases of Lienard equa-

tion. For example, Zhaosheng Feng [25] investigated the exact solution of

y00(t) + ay0(t) + by3(t) + cy5(t) = 0; (5.1.2)

He found that one of the solutions of equation (5.1.2), is given by

y(t) =

r
�2a
b
(1 + tanh(

p
�at));

when b2=4� 4ac=3 = 0; b > 0; and a < 0:
The objective of the present chapter is to propose a hybrid numerical method using

Khalouta transformmethod and di¤erential transformmethod in order to solve the nonlinear

fractional Lienard equation in the form

CD�y(t) + ay0(t) + by3(t) + cy5(t) = 0; (5.1.3)

with the initial conditions

y(0) = y0; y
0(0) = y1; (5.1.4)

where CD� is the fractional derivative operator in the sense of the Caputo of order � with

1 < � � 2 and a; b; c; y0; and y1 are real constants.

5.2 Khalouta transform

Integral transform methods have their origins dating back to the XIXe century with the

work of Joseph Fourier and Oliver Heaviside. The fundamental idea is to represent a function

f(t) in terms of the transformation F (z)
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5.2. Khalouta transform

F (z) =

+1Z
�1

K(z; t)f(t)dt; (5.2.1)

where the functions K(z; t) are called kernel of the transform, z is a real (complex) number

independent of t. Note that when K(z; t) is e�zt; tJn(zt); and tz�1(zt); then equation (5.2.1)

gives respectively, the Laplace transform, the Hankel transform and the Mellin transform.

Now, we introduce the de�nition and properties of the Khalouta transform that we will

need in this chapter.

De�nition 5.2.1 [40] The Khalouta transform of the function y : [0;1)! R of exponen-

tial order is de�ned over the set of functions

S =
n
y(t) : 9K;#1; #2 > 0; jy(t)j < K exp (#j jtj) ; if t 2 (�1)j � [0;1)

o
;

by the following integral

KH [y(t)] = K(s; ; �) = s
1Z
0

exp (�st) y(�t)dt: (5.2.2)

This is equivalent to

KH [y(t)] = K(s; ; �) = s

�

1Z
0

exp

�
� st
�

�
y(t)dt (5.2.3)

= lim
�!1

s

�

�Z
0

exp

�
� st
�

�
y(t)dt;

where s; ; � > 0 are the Khalouta transform variables, � is a real number and the integral

is taken along the line t = �:

Theorem 5.2.1 The inverse Khalouta transform of the function y(t) is given by

KH�1 [K(s; �; )] = y(t); for t � 0:

This is equivalent to

y(t) = KH�1 [K(s; �; )] = 1

2�i

'+i1Z
'�i1

1

s
exp

�
st

�

�
K(s; �; )ds;

where ' is a real constant and the integral is taken along s = ' in the complex plane

s = u+ iv:
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5.2. Khalouta transform

Proof. To prove this Theorem, see [40].

Theorem 5.2.2 If the function y(t) is a piecewise continuous in each �nite interval t 2
[0; A] and is of exponential order B for t > A; then the Khalouta transform K(s; �; ) of the
function y(t) de�ned by (5.2.2) or (5.2.3) exists.

Proof. To prove this Theorem, see [40].

Some basic properties of the Khalouta transform are given as follows [40]

Property 1: Let K1(s; ; �) and K2(s; ; �) be the Khalouta transforms of y1(t) and
y2(t) respectively. For all constants of c1 and c2, then

KH [c1y1(t) + c2y2(t)] = c1KH [y1(t)] + c2KH [y2(t)]

= c1K1(s; ; �) + c2K2(s; ; �):

Property 2: Let K(s; ; �) be the Khalouta transform of y(t), then

KH
�
y(n)(t)

�
=

sn

n�n
K(s; ; �)�

n�1X
k=0

�
s

�

�n�k
y(k)(0); n � 1:

Property 3: Let K1(s; ; �) and K2(s; ; �) be the Khalouta transforms of y1(t) and
y2(t) respectively, then the Khalouta transform of the convolution of y1(t) and y2(t) is given

by

KH [(y1 � y2) (t)] =
1Z
0

y1(t)y2(t� �)d� =
�

s
K1(s; ; �)K2(s; ; �):

Property 4: the Khalouta transforms for some basic functions.

KH(1) = 1;

KH(t) =
�

s
;

KH
�
tn

n!

�
=

n�n

sn
; n = 0; 1; 2; :::

KH
�

t�

� (�+ 1)

�
=

���

s�
; � > �1;

Now, we present our results regarding the Khalouta transform of the Riemann-Liouville

fractional integral and the Caputo fractional derivative [18].

80



5.2. Khalouta transform

Theorem 5.2.3 If K(s; ; �) is the Khalouta transform of the function y(t), then the Khalouta
transform of Riemann-Liouville fractional integral of order � > 0; is given by

KH [I�y(t)] =
���

s�
K(s; ; �):

Proof. Applying the Khalouta transform to both sides of equation (1.4.2), we get

KH [I�y(t)] = KH

24 1

�(�)

tZ
0

(t� �)��1 y(�)d�

35
= KH

�
1

�(�)
t��1 � y(t)

�
:

Then, using Properties (3) and (4), we get

KH [I�y(t)] =
�

s
KH

�
t��1

�(�)

�
KH [y(t)]

=
�

s

��1���1

s��1
K(s; ; �)

=
���

s�
K(s; ; �):

The theorem is proved.

Theorem 5.2.4 If K(s; ; �) is the Khaoluta transform of the function y(t); then the Khalouta
transform of the Caputo fractional derivative of order n� 1 < � � n; n 2 Z+; is given by

KH
�
CD�y(t)

�
=

s�

���
K(s; ; �)�

n�1X
k=0

�
s

�

���k
y(k)(0):

Proof. First, we take

v(t) = y(n)(t): (5.2.4)

Thus, equation (1.4.14), can be written as follows

CD�y(t) =
1

�(n� �)

tZ
0

(t� �)n���1y(n)(�)d� ;

=
1

�(n� �)

tZ
0

(t� �)n���1v(�)d�

= In��v(t): (5.2.5)
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5.3. Di¤erential transform method

Applying the Khaoluta transform on both sides of equation (5.2.3) and using Theorem

5.2.3, we get

KH
�
CD�y(t)

�
= KH

�
In��v(t)

�
=
n���n��

sn��
V(s; ; �); (5.2.6)

where V(s; ; �) is the Khaloua transform of the function v(x):

Applying the Khaoluta transform on both sides of equation (5.2.5) and using Property

2, we get

KH [v(t)] = KH
�
y(n)(t)

�
;

V(s; ; �) =
sn

n�n
K(s; ; �)�

n�1X
k=0

�
s

�

�n�k
y(k)(0): (5.2.7)

Substituting equation (5.2.7) into equation (5.2.6), we get

KH
�
CD�y(t)

�
=

n���n��

sn��

 
sn

n�n
K(s; ; �)�

n�1X
k=0

�
s

�

�n�k
y(k)(0)

!

=
s�

���
K(s; ; �)�

n�1X
k=0

�
s

�

���k
y(k)(0):

The theorem is proved.

5.3 Di¤erential transform method

In this part, we introduce the basic de�nitions and fundamental theorems of di¤erential

transform method are de�ned and proved in [19],[49].

De�nition 5.3.1 The di¤erential transform of the function y(t) is de�ned as

Y (k) =
1X
k=0

1

k!

�
dk

dtk
y(t)

�
t=t0

; (5.3.1)

where y(t) is the original function and Y (k) the transformed function

De�nition 5.3.2 The inverse di¤erential transform of Y (k) is de�ned as

y(t) =
1X
k=0

Y (k)(t� t0)k: (5.3.2)
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5.3. Di¤erential transform method

Combining equations (5.3.1) and (5.3.2), we get

y(t) =
1X
k=0

1

k!

�
dk

dxk
y(t)

�
t=t0

(t� t0)k: (5.3.3)

In particular, for t0 = 0; equation (5.3.3) becomes

y(t) =
1

k!

�
dk

dtk
y(t)

�
t=0

tk:

From the above de�nitions, the fundamental operations of the di¤erential transform

method are given by the following theorems.

Theorem 5.3.1 Let Y (k); Z(k) and W (k) be the di¤erential transforms of the functions

y(t); z(t) and w(t) respectively, then

(1) if

w(t) = �y(t) + �z(t);

then

W (k) = �Y (k) + �Z(k); �; � 2 R:

(2) if

w(t) = y(t)z(t);

then

W (k) =

kX
r=0

Y (r)Z(k � r):

(3) if

w(t) = y1(t)y2(t):::yn�1(t)yn(t);

then

W (k) =
kX

kn�1=0

kn�1X
kn�2=0

:::

k3X
k2=0

k2X
k1=0

Y1(k1)Y2(k2�k1)� :::�Yn�1(kn�1�kn�2)Yn(k�kn�1):
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5.4. Description of the KHDTM

5.4 Description of the KHDTM

Theorem 5.4.1 [18] Consider the following nonlinear fractional Lienard equation (5.1.3)

with the initial conditions (5.1.4). The KHDTM gives the solution of (5.1.3)-(5.1.4) in the

form of in�nite series that rapidly converge to the exact solution as follows

y(t) =
1X
k=0

Y (k);

where Y (k) is the di¤erential transformed function of y(t):

Proof. Consider the nonlinear fractional Lienard equation (5.1.3) with the initial con-

ditions (5.1.4).

Computing the Khalouta transform to equation (5.1.3) and the use of the linearity

property of Khalouta transform, we get

KH
�
CD�y(t)

�
+ aKH [y(t)] + bKH

�
y3(t)

�
+ cKH

�
y5(t)

�
= 0:

Using Theorem 5.2.4, this gives

KH [y(t)] = y(0) +
��
s

�
y0(0)� 

���

s�
KH

�
ay(t) + by3(t) + cy5(t)

�
: (5.4.1)

Substituting the initial conditions of equation (5.1.4) into equation (5.4.1), we get

KH [y(t)] = y0 +
��
s

�
y1 �

���

s�
KH

�
ay(t) + by3(t) + cy5(t)

�
: (5.4.2)

Taking the inverse Khalouta transform on both sides of equation (5.4.2), we obtain

y(t) = y0 + y1t�KH�1
�
���

s�
KH

�
ay(t) + by3(t) + cy5(t)

��
: (5.4.3)

Now, by applying the di¤erential transform method to equation (5.4.3), we get

Y (0) = y0;

Y (1) = y1t;

Y (k + 2) = �KH�1
�
���

s�
KH [(aY (k) + bA(k) + cB(k))]

�
; k � 0 (5.4.4)

where A(k) and B(k) are the di¤erential transform of the nonlinear terms y3(t) and y5(t);

respectively.
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5.5. Convergence of the KHDTM

The �rst few nonlinear terms are given by

A(0) = Y 3(0);

A(1) = 3Y 2(0)Y (1);

A(2) = 3Y 2(0)Y (2) + 3Y (0)Y 2(1);

and

B(0) = Y 5(0);

B(1) = 5Y 4(0)Y (1);

B(2) = 5Y 4(0)Y (2) + 10Y 3(0)Y 2(1):

Note that the recurrence formula (5.4.4) to the iterative terms of equations (5.1.3) and

(5.1.4) is denoted KHDTM, and the kth order solution for equations (5.1.3) and (5.1.4) is

given as

Sk =
kX
r=0

Y (r):

Thus, in the following theorem, we prove that the series solution (5.4.4) of equations

(5.1.3) and (5.1.4) converges to the exact solution if k !1, that is

y(t) = lim
k!1

Sk =
1X
r=0

Y (r): (5.4.5)

5.5 Convergence of the KHDTM

Suppose that B = (C (R+) ; k:k) is the Banach space of all continuous functions on R+ with
the norm

ky(t)kB = sup
t2R+

jy(t)j :

Theorem 5.5.1 [18] Let Y (r) and y(t) be de�ned in Banach space B, then the series
solution

+1P
r=0

Y (r) stated in equation (5.4.5) converges uniquely to the exact solution y(t)

of the nonlinear fractional Lienard equation (5.1.3), if there exists 0 < � < 1 such that

kY (r)k � � kY (r � 1)k ;8r 2 N[f0g :
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5.5. Convergence of the KHDTM

Proof. Let Sk be the sequence of partial sums of the series given by the recurrence

formula (5.4.4), as

Sk =
kX
r=0

Y (r):

We need to show that fSkg1k=0 is a Cauchy sequence in Banach space B:
For this purpose, we consider

kSk+1 � Skk � kY (r + 1)k � � kY (r)k

� �2 kY (r � 1)k � ::: � �n+1 kY (0)k : (5.4.6)

For every, n;m 2 N; n � m; by using (5.4.6) and triangle inequality successively, we

have

kSn � Smk = kSn � Sn�1 + Sn�1 � Sn�2 + :::+ Sm+1 � Smk

� kSn � Sn�1k+ kSn�1 � Sn�2k+ :::+ kSm+1 � Smk

� �n kY (0)k+ �n�1 kY (0)k+ :::+ �m+1 kY (0)k

= �m+1
�
1 + � + :::+ �n�m�1

�
kY (0)k

� �m+1
�
1� �n�m

1� �

�
kY (0)k :

Since 0 < � < 1, we have 1� �n�m < 1; then

kSn(X; t)� Sm(X; t)k �
�m+1

1� � kY (0)k : (5.4.7)

So kSn � Smk ! 0 as n;m!1 as Y (0) is bounded.

Thus fSkg1k=0 is a Cauchy sequence in Banach space and consequently it is converges to
y(t) 2 B such that

lim
k!1

Sk =

1X
r=0

Y (r) = y(t):

Now, suppose that the sequence fSkgk�0 converges to two functions of y1(t); y2(t) 2 B,
that is,

lim
k!1

Sk = y1(t) and lim
k!1

Sk = y2(t): (5.4.8)

Using the triangle inequality with (5.4.8), we get

ky1(t)� y2(t)k � ky1(t)� Skk+ kSk � y2(t)k = 0 as k !1:
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5.6. Illustrative examples

Hence we conclude that y1(t) = y2(t):

The theorem is proved.

Theorem 5.5.2 [18] The maximum absolute truncation error of the series solution given

by the recurrence formula (5.4.4), is estimated to bey(t)�
NX
l=0

Y (l)

 � �N+1

1� � kY (0)k :

Proof. From Theorem 5.5.1 and (5.4.7), we have

kSk � SNk �
�N+1

1� � kY (0)k : (5.4.9)

But we assume that Sk =
kP
l=0

Y (l) and since k ! +1; we obtain Sk ! y(t), so (5.4.9)

can be rewritten as

ky(t)� SNk =
y(t)�

NX
l=0

Y (l)

 � �N+1

1� � kY (0)k :

The theorem is proved.

Corollaire 5.5.1 If the series
1X
r=0

Y (r) converges then it is an exact solution of the non-

linear fractional Lienard equation (5.1.3) with initiales conditions (5.1.4).

5.6 Illustrative examples

In this part, we provide two numerical examples of nonlinear fractional Lienard equations

to evaluate the applicability, accuracy, and e¢ ciency of the KHDTM.

Example 5.6.1. Consider the nonlinear fractional Lienard equation

CD�y(t)� y(t) + 4y3(t)� 3y5(t) = 0; t > 0; (5.6.1)

with the initial conditions

y(0) =
1p
2
; y0(0) =

1p
8
; (5.6.2)

87



5.6. Illustrative examples

where CD� is the fractional derivative operator in the sense of the Caputo of order � with

1 < � � 2:
If � = 2; equation (5.6.1) becomes the classical Lienard equation and its exact solution

is of the form

y(t) =

r
1 + tanh(t)

2
:

According the description of the KHDTM presented in part 5.4, we have

y(t) =
1X
r=0

Y (r);

and

Y (0) =
1p
2
;

Y (1) =
1p
8
t;

Y (2) = � 1

4
p
2

t�

�(�+ 1)
;

Y (3) = � 5

4
p
8

t�+1

�(�+ 2)
;

...

and so on.

Hence, the approximate series solution of equations (5.6.1) and (5.6.2), is given as

y(t) = Y (0) + Y (1) + Y (2) + Y (3) + :::

=
1p
2

�
1 +

1

2
t� 1

4

t�

�(�+ 1)
� 5
8

t�+1

�(�+ 2)
+ :::

�
: (5.6.3)

When � = 2; the equation (5.6.3), becomes

u(x) =
1p
2

�
1 +

1

2
t� 1

8
t2 � 5

48
t3 + :::

�
=

r
1 + tanh(t)

2
;

which is the same exact solution as obtained using the modi�ed fractional Taylor series

method (MFTSM) [38].

Figure 1 shows the behavior of the exact solution and the KHDTM-solution for di¤erent

values of �: Table 1 shows the numerical values of the KHDTM-solution, the exact solution,

and the absolute error for di¤erent fractional values of �:
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5.6. Illustrative examples

0 0.05 0.1 0.15 0.2 0.25
t

0

0.05

0.1

0.15

0.2

0.25
y(

t)
Exact solution

=2
=1.9
=1.8
=1.7

Figure 1 : The behavior of the approximate solutions using KHDTM

and exact solution for equation (5.6.1)

t � = 1:7 � = 1:8 � = 1:9 � = 2 Exact solution jyexact � yKHDTM j

0:00 0:70711 0:70711 0:70711 0:70711 0:70711 0

0:02 0:71403 0:71408 0:71412 0:71414 0:71414 5:0793� 10�9

0:04 0:72075 0:72092 0:72103 0:72110 0:72110 8:2374� 10�8

0:06 0:72731 0:72762 0:72783 0:72799 0:72799 4:2249� 10�7

0:08 0:73371 0:73419 0:73454 0:73479 0:73479 1:3522� 10�6

0:1 0:73997 0:74064 0:74114 0:74151 0:74151 3:3415� 10�6
Table 1 : Numerical values of the approximate solutions using KHDTM and exact solution

for equation (5.6.1)

Example 5.6.2. Consider the nonlinear fractional Lienard equation

CD�y(t)� y(t) + 4y5(t) + 3y5(t) = 0; t > 0; (5.6.4)
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5.6. Illustrative examples

with the initial conditions

y(0) =
1p

1 +
p
2
; y0(0) = 0; (5.6.5)

where CD� is the fractional derivative operator in the sense of the Caputo of order � with

1 < � � 2:
If � = 2; equation (5.6.4) becomes the classical Lienard equation and its exact solution

is of the form

y(t) =

s
sech2(t)

2
p
2 +

�
1�

p
2
�
sech2(t)

:

According the description of the KHDTM presented in part 5.4, we have

y(t) =
1X
r=0

Y (r);

and

Y (0) =
1p

1 +
p
2
;

Y (1) = 0;

Y (2) = �
 

4 + 2
p
2�

3 + 2
p
2
�p

1 +
p
2

!
t�

�(�+ 1)
;

Y (3) = 0;

...

and so on.

Hence, the approximate series solution of equations (5.6.4)and (5.6.5), is given as

y(t) = Y (0) + Y (1) + Y (2) + Y (3) + :::

=
1p

1 +
p
2

 
1�

 
4 + 2

p
2

3 + 2
p
2

!
t�

�(�+ 1)
+ :::

!
: (5.6.6)

When � = 2; the equation (5.6.6), becomes

y(t) =
1p

1 +
p
2

 
1�

 
2 +

p
2

3 + 2
p
2

!
t2 + :::

!

=

s
sech2(t)

2
p
2 +

�
1�

p
2
�
sech2(t)

;
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5.6. Illustrative examples

which is the same exact solution as obtained using the modi�ed fractional Taylor series

method (MFTSM) [38].

Figure 2 shows the behavior of the exact solution and the KHDTM-solution for di¤erent

values of �: Table 2 shows the numerical values of the KHDTM-solution, the exact solution,

and the absolute error for di¤erent fractional values of �:

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t

0.632

0.634

0.636

0.638

0.64

0.642

0.644

y(
t)

Exact solution
=2
=1.9
=1.8
=1.7

Figure 2 : The behavior of the approximate solutions using KHDTM and exact solution

for equation (5.6.4)

t � = 1:7 � = 1:8 � = 1:9 � = 2 Exact solution jyexact � yKHDTM j

0:00 0:64359 0:64359 0:64359 0:64359 0:64359 0:0

0:02 0:64296 0:64320 0:64335 0:64344 0:64344 3:2888� 10�8

0:04 0:64154 0:64222 0:64268 0:64299 0:64299 5:2585� 10�7

0:06 0:63951 0:64075 0:64163 0:64224 0:64224 2:6590� 10�6

0:08 0:63693 0:63882 0:64019 0:64118 0:64118 8:3902� 10�6

0:1 0:63385 0:63647 0:63840 0:63982 0:63982 2:0441� 10�5
Table 2 : Numerical values of the approximate solutions using KHDTM and exact solution

for equation (5.6.4)

91



Conclusion and research perspectives

In this thesis, the approximate and analytical solutions of nonlinear fractional di¤erential

equations in the sense of Caputo are studied by proposing a new method called the Khalouta

di¤erential transform method (KHDTM). To demonstrate the applicability and e¢ ciency

of the proposed method, it was applied to a special class of nonlinear fractional di¤erential

equations called nonlinear fractional Lienard equation, and the results showed that the

approximate solutions obtained using this method agree excellently with the exact solutions.

The main advantage of KHDTM is that it gives the solution in the form of an in�nite series,

which rapidly converges to the exact solution if it exists.

It can be concluded that the proposed method is very powerful and e¤ective for �nding

approximate and analytical solutions of nonlinear fractional di¤erential equations.

This �eld of research in the case of fractional di¤erential equations is very interesting,

therefore, the future prospects are:

1- Search for numerical and analytical methods for solving fractional di¤erential equa-

tions, less expensive and more accurate than the proposed method in this thesis.

2- Apply the Khalouta di¤erential transform method to solve fractional di¤erential equa-

tions, but with other fractional derivative operators (in the sense of Riemann-Liouville,

Grunwald-Letnikov, Caputo-Fabrizio, and in the sense of Hadamard).
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 ملخص:

الرياضيات التطبيقية والفيزياء. من  في مهمًا الخطية دورًا لعب المعادلات التفاضلية الكسرية غير ت

الصعب الحصول على الحل الدقيق لهذه المشكلات بسبب تعقيد المصطلحات غير الخطية المتضمنة. في 

معادلات التفاضلية الكسرية غير العقود الأخيرة، كان هناك تطور كبير في التحليل العددي والحل الدقيق لل

هو دراسة حلول المعادلات التفاضلية الكسرية غير الخطية  من هذه الأطروحةالرئيسي  . الهدفالخطية

، ةجديدة. لإثبات صحة وموثوقية هذه التقني ةالتي تنطوي على عامل كابوتو الكسري من خلال اقتراح تقني

 .ةيتم تطبيقها على العديد من الأمثلة العددي

 .الحل التحليلي ،التقريبي لكابوتو، الحلالمشتقة الكسرية  ،الكسرية المعادلات التفاضلية  ة:يكلمات مفتاح

:Résumé 

Les équations différentielles fractionnaires non-linéaires jouent un 

rôle important en mathématiques appliquées et en physique. Il est 

difficile d'obtenir la solution exacte de ces problèmes en raison de la 

complexité des termes non-linéaires inclus. Au cours des dernières 

décennies, il y a eu un grand développement dans l'analyse 

numérique et la solution exacte des équations différentielles 

fractionnaires non-linéaires. L'objectif principal de cette thèse est 

d'étudier les solutions d'équations différentielles fractionnaires non-

linéaires impliquant l'opérateur fractionnaire de Caputo en proposant 

une nouvelle technique. Pour démontrer la validité et la fiabilité de 

cette technique, elle est appliquée à plusieurs exemples numériques. 

Mots clés: Équations différentielles fractionnaires, Dérivée 

fractionnaire de Caputo, Solution approximative, Solution analytique. 

Abstract : 

Nonlinear fractional differential equations play an important role in 

applied mathematics and physics. It is difficult to obtain the exact 

solution for these problems due to the complexity of the nonlinear 

terms included. In recent decades, there has been great development 

in the numerical analysis and exact solution for nonlinear fractional 

differential equations. The main objective of this thesis is to study the 

solutions of nonlinear fractional differential equations involving 

Caputo fractional operator by proposing new technique. To 

demonstrate the validity and reliability of this technique, it is applied 

to several numerical examples. 

 
Key words: Fractional differential equations, Caputo fractional 

derivative, Approximate solution, Analytical solution. 


