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General introduction 

The preservation of the environment and the resolution of ecological problems are essential 

issues for sustainably improving the quality of life and ensuring sustainable development [1]. 

Water plays a fundamental role in various human activities, such as domestic, agricultural, and 

industrial uses. Globally, agriculture consumes about 70% of water resources, while 11% is 

allocated for urban needs and 19% for industry [2]. Faced with the rapid increase in the global 

population and the intensification of agricultural and industrial activities, the demand for 

freshwater continues to grow [3]. Thus, the preservation of natural water resources and 

innovation in water and wastewater treatment technologies have emerged as major 

environmental priorities of the 21st century [4]. 

The pollution of water resources is largely due to the presence of toxic substances of chemical 

and biological origin, resulting from various human activities such as industry, agriculture, and 

domestic uses [5]. Among these pollutants, organic dyes hold a significant place. Massively used 

in industries such as textiles, leather, and cosmetics [6] these compounds are particularly 

resistant to natural degradation processes, which contribute to their persistence in aquatic 

environments [7]. In addition to their low biodegradability, dyes can affect water quality by 

disrupting light transmission, which harms photosynthetic processes and disrupts aquatic 

ecosystems. 

Despite significant efforts for wastewater treatment, only 60% of polluted water is treated, while 

the rest is discharged directly into nature [8]. This leads to an accumulation of recalcitrant 

substances which are difficult to biodegrade, exacerbated by the inefficiency of current treatment 

systems to reduce the concentration of toxins [9]. This poor treatment of wastewater contributes 

to the degradation of water resources, thereby impacting on the quality of drinking water which 

is already insufficient in many countries. 

Conventional wastewater treatment methods, whether physical, chemical, or biological, have a 

major drawback [10,11], they often transfer pollutants from one phase to another rather than 

completely eliminating them [12]. In practice, these processes transfer contaminants from water 

to by-products such as concentrated sludge resulting in the accumulation of secondary waste. 

This transfer does not truly solve the environmental problem but rather shifts it while requiring 
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additional solutions to manage these residues, which are often difficult and costly to treat [13]. 

These constraints highlight the urgency of designing more innovative and sustainable depollution 

solutions, capable not only of effectively eliminating contaminants from wastewater but also of 

minimizing the production of secondary waste and reducing the overall environmental impact of 

treatment processes. 

The most recent advances in the field of water treatment have been made in the oxidation of 

"biologically recalcitrant" organic compounds that are highly present in textile effluent 

discharges [14,15]. These methods rely on the formation of highly reactive chemical entities that 

will decompose the most recalcitrant molecules into biologically degradable molecules [16] or 

mineral compounds such as CO2 and H2O these are the Advanced Oxidation Processes (POA) 

[17]. Among these, we can mention: ozonation, photolysis, sonolysis, Fenton, photo-Fenton, and 

photocatalysis [18].  Particularly, photocatalysis is a light-induced catalytic process that oxidizes 

or reduces organic molecules through reactions occurring on the surface of semiconductors under 

light irradiation [19] . During the process, free radicals (●OH, O2
●-) are generated which will 

react with the pollutants, leading to their degradation and mineralization [20].  

The creation of effective catalysts that satisfy crucial requirements is the main goal of current 

catalytic materials research. They must have strong catalytic activity to effectively speed up 

chemical reactions and be stable over time to retain their efficacy without deteriorating. Since the 

catalyst must maximize the production of the target molecule while reducing unwanted 

byproducts, selectivity is also essential. Reproducible performances are also crucial since they 

guarantee consistent outcomes every time they are used. Furthermore, two essential elements to 

guarantee practical use are the catalyst's regeneration capability and ease of application. 

The search for new, effective, and suitable materials for the photocatalytic degradation of 

existing organic pollutants in water remains an important issue.  

In this study, we focused on the synthesis of hybrid nanomaterials for the degradation of two 

pollutants: methylene blue and Biebrich scarlet.  

This research aims to achieve the following objectives: 



 

 
 3 

 General introduction 
 

✓ Develop innovative photocatalysts based on zinc and bismuth, followed by an in-depth 

characterization to evaluate their effectiveness in degrading specific dyes under UV 

irradiation. 

✓ Optimize the photocatalytic properties of g-C3N4 by doping with two elements, with the 

aim of improving its efficiency under visible irradiation. 

✓ Implement eco-friendly approaches for the synthesis of photocatalysts, prioritizing the 

use of plant extracts and physical methods to minimize the environmental impact 

associated with conventional chemicals. 

Manuscript structure 

This thesis is divided into five chapters structured as follows: 

The first chapter provides a general overview of water pollution: the sources of water pollution, 

the main pollutants, we are interested in pollution caused by dyes as well as the different 

treatment processes, advanced oxidation processes (AOPs) in particular heterogeneous 

photocatalysis.  

The second chapter groups the experimental techniques used. The methods for synthesizing 

photocatalysts, the different physico-chemical characterization methods (XRD, FTIR, UV-vis 

DRS, SEM-EDX, and TEM), and the reactor used during the photocatalytic application.  

The third chapter focuses on a green approach for the synthesis of ZnO nanoparticles and 

ZnO/rGO nanocomposites, using Algerian date syrup extract as a reducing agent. The detailed 

characterization of the physical and chemical properties of the synthesized materials is followed 

by an in-depth evaluation of their photocatalytic efficiency, particularly in the degradation of 

methylene blue. 

In the fourth, it discusses the first green synthesis of bismuth-based compounds, notably 

Bi12ZnO20 and Bi2O3, as well as their composite Bi12ZnO20/Bi2O3. These materials are then 

characterized to evaluate their structural and morphological properties.  The chapter also 

explores their photocatalytic activity, particularly in the context of the degradation of organic 

pollutants. 

The fifth chapter presents a simplified synthesis method for the production of P-g-C3N4 e@Ti-

g-C3N4 composites, recognized for their potential as high-performance photocatalysts. The 
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described approach is both simple and effective, offering a pathway to the design of promising 

photocatalysts. The chapter focuses on optimizing the photocatalytic properties of the obtained 

materials, highlighting the synergies between the two materials to improve light capture and the 

mechanisms of pollutant degradation. 
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 Chapter I. Bibliographic review  

I.1. Introduction  

This chapter aims to provide a comprehensive overview of various aspects addressed in this 

thesis before delving into the experimental sections and results. We will begin with an in-depth 

discussion on water pollution caused by synthetic organic dyes, clarifying the environmental 

challenges and impacts on human health. The chapter will cover the different classifications of 

dyes and their toxicity, focusing on model dyes such as Biebrich Scarlet (BS) and Methylene 

Blue. We will then evaluate the conventional methods for treating organic dyes, examining the 

available techniques and their limitations. Specifically, we will focus on advanced oxidation 

processes (AOPs), with a particular emphasis on photocatalysis. This process utilizes 

semiconductor materials to generate free radicals capable of degrading organic pollutants into 

simple mineral products. A summary table of process parameters, optimal conditions, used 

photocatalysts, and their removal efficiencies will be provided to illustrate advancements in this 

field. The chapter will further explore photocatalytically active semiconductors, including metal 

oxides, bismuth-based oxides, sillenite-type materials, and chalcogenides. Organic 

semiconductors will also be discussed for their photocatalytic potential. The chapter will detail 

the principles of photocatalysis, the parameters influencing the process, and the kinetics of 

photocatalytic reactions. 

I.2. Context of Water Pollution 

In the context of rapid economic growth and population expansion, the preservation of water 

resources has become an essential priority. [1]. The growing demand for water, exacerbated by 

rapid urbanization and industrialization, is placing considerable pressure on available resources. 

[2]. Every day, approximately 2 million tons of pollutants from various industrial, agricultural, 

and domestic sources are discharged into water reserves [3]. These uncontrolled discharges 

include toxic chemicals, organic waste[4], heavy metals [5] and other contaminants that severely 

compromise water quality. This degradation of drinking water leads to disastrous consequences for 

human health, with waterborne diseases causing thousands of deaths daily, primarily in the most 

vulnerable regions of the world. [6]. The situation is particularly alarming in developing 
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countries, where water treatment infrastructure is often insufficient to handle the growing 

pollution. However, developed countries are not exempt; intensive industrial and agricultural 

practices also contribute to the contamination of both groundwater and surface water. [7]. In 

response to this reality, it is urgent to revise and strengthen water resource management policies, 

with an emphasis on pollution prevention, wastewater treatment, and the protection of aquatic 

ecosystems. These policies must be comprehensive and integrated, involving not only 

governments but also industries, local communities, and international organizations. Among the 

numerous sources of water pollution, organic dyes [8] used in the textile industry and other 

manufacturing processes pose a particularly insidious threat. These dyes, often non-

biodegradable, persist in the environment for extended periods [9], altering the color of water 

bodies and obstructing sunlight penetration essential for aquatic photosynthetic processes[10]. 

Their presence in water can also be toxic to aquatic wildlife, disrupting ecosystems and allowing 

dangerous substances to accumulate within the food chain [11]. Organic dyes may contain 

carcinogenic and mutagenic compounds, thereby increasing health risks for humans when they 

contaminate drinking water. Managing this form of pollution requires advanced treatment 

technologies, along with stringent regulations on the use and discharge of these substances into 

the environment. 

I.3. Synthetic Organic Dyes in Water 

Despite being present in low concentrations, synthetic organic dyes are ubiquitous due to large-

scale production and diverse applications [12]. The first synthetic organic dye, mauveine, was 

discovered by William Perkin in 1865 [13], parking a revolution in the dye industry. Today, the 

major producers of dyes are China and India [14], which also dominate global textile production 

[15]. Synthetic organic dyes represent the largest group of coloring substances, with over 

100,000 dyes commercially available and global production exceeding one million tons annually 

[16,17]. These dyes are widely used in the textile [18], tanning, printing [19], paper, 

pharmaceutical, cosmetic, and food industries[20]. The massive production of these dyes and 

their varied uses generate significant volumes of colored wastewater and post-production waste. 

The textile industry is a major source of dye pollution in aquatic environments, with up to 50% 

of dyes being lost during dyeing processes [21]. Furthermore, some synthetic organic dyes are 

poorly biodegradable or non-biodegradable, making their treatment in wastewater plants more 

complex [22]. Studies have confirmed the toxic properties of certain dyes, including 
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carcinogenic, allergic, and dermatological effects, highlighting the risks associated with their 

production and use[23,24]. Recently, several reports have been published on the presence of 

synthetic organic dyes in water [25], sediments, and wild fish, confirming their environmental 

impact. Although their full effect on aquatic ecosystems is not yet fully assessed, monitoring 

their presence in the environment is essential. 

I.3.1. Classification of Dyes 

Synthetic dyes are artificial colorants produced through chemical processes and are widely used 

in various industries [26], such as textiles, cosmetics, and food. They are often distinguished by 

their superior brightness and stability compared to natural dyes. Synthetic dyes are classified into 

ionic and non-ionic compounds based on their chemical properties and application method [27].  

Ionic dyes contain charged ions, which can be either positively charged (cationic) [28] or 

negatively charged (anionic) [29]. Cationic dyes, which carry a positive charge, are commonly 

used to color materials with negatively charged surfaces, such as acrylic fibers and certain types 

of paper [30]. They establish electrostatic attractions with the negatively charged groups on the 

substrate, leading to strong binding. These dyes interact with the substrate through ionic 

interactions, forming strong bonds with materials having opposite charges [31]. Anionic dyes, 

which carry a negative charge, are often employed to color materials with positively charged 

surfaces, such as natural fibers like cotton and wool. They form bonds with positively charged 

groups on the substrate through electrostatic interactions [32] . 

In contrast, non-ionic dyes do not possess a net charge on their molecules [33]. They rely on 

weaker forces, such as Van der Waals forces, hydrogen bonds, and hydrophobic interactions, to 

adhere to the substrate [34]. Non-ionic dyes are frequently used to dye materials with neutral 

surfaces or surfaces that do not interact easily with charged molecules. They offer significant 

versatility in terms of compatibility with various substrates and can be used across a wide range 

of materials [35]. 
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Figure I.1. Classification of dyes. 

I.3.2. Toxicity of Synthetic Dyes 

Toxicity is defined as the ability of a substance to cause harmful effects on living organisms [36], 

, including humans, bacteria, plants, or even specific structures within these organisms, such as 

the liver. Research on approximately 3,000 commercial dyes has revealed that basic dyes are the 

most toxic to algae [37]. This finding was confirmed by mortality tests on fish, which showed 

that basic dyes, particularly those belonging to the triphenylmethane family, exhibit high toxicity 

[38]. Additionally, fish also appear to display significant sensitivity to acidic dyes. The likelihood 

of human mortality caused by the acute toxicity of dyes is generally considered low [39]. While 

some dyes may induce allergic or dermatological reactions, these effects are relatively rare. 

However, the toxicity of aromatic amines is closely related to their molecular structure, 

especially the position of the amine groups [40]. For example, 2-naphthylamine is recognized as 

a carcinogen, while 1-naphthylamine exhibits significantly lower toxicity. Similarly, for azo 
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dyes, toxicity varies depending on the nature and position of substituents on the aromatic ring 

[41]. The presence of nitro (-NO2) groups and halogens, particularly chlorine, tends to increase 

toxicity. Conversely, the introduction of carboxyl or sulfonate groups into the dye structure can 

reduce their toxicity [42]. 

Given the harmful effects of dyes, especially azo dyes, it is crucial to prevent their accumulation 

in the environment. Therefore, it is essential to implement wastewater treatment processes that 

achieve the complete degradation of these dyes, ensuring their total mineralization and 

minimizing their environmental impact. 

I.3.3. Presentation of Model Dyes  

Biebrich Scarlet (BS) 

Biebrich Scarlet (BS) is an anionic azo dye widely used across various industries, particularly in 

textiles and papermaking. This dye is also classified as an acid dye due to its ability to dissolve 

in acidic solutions. It is known by several names, including Acid Red 66, Ponceau BS, and the 

sodium salt of Biebrich Scarlet. Its IUPAC name is 2-[(2-hydroxy-1-naphthyl) azo]-5-[(4-

sulfophenyl)azo]benzenesulfonic acid disodium salt, with the chemical formula 

C22H14N4Na2O7S2. With a molar mass of 556 g/mol, it is characterized by good solubility in 

water as well as in alcoholic solvents [43]. 

This dye is identified by the CI number 26905 and exhibits a maximum absorption peak (λmax) 

at 506 nm, making it particularly effective for producing bright and intense shades. Biebrich 

Scarlet is primarily used for dyeing natural fibers such as cotton, wool, and silk, as well as paper. 

It is valued for its ability to produce a vibrant and brilliant hue with a distinctive fluorescent 

effect [44], making it a popular choice in applications that require vivid and long-lasting colors. 
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Figure I.2. Molecular structure of the Biebrich Scarlet.  

Methylene Blue  

Methylene blue is an organic dye from the thiazine class, widely used across 

various scientific and industrial fields. Its IUPAC name is 3,7-

bis(dimethylamino)phenothiazin-5-ium chloride, with the chemical formula 

C16H18ClN3S and a molar mass of 319.85 g/mol. This dye is water-soluble, 

forming a distinctive blue solution, and can also dissolve in certain organic 

solvents [45]. Methylene blue is primarily used in microbiology for staining 

tissue samples and cells, aiding in their observation under a microscope. In 

chemistry and biology, it acts as a redox agent, participating in reduction 

reactions and oxygen detection. Furthermore, it is used in medicine as an 

antidote for certain chemical poisonings and in the textile industry to produce 

bright, durable blue hues [46]. The dye has a maximum absorption peak 

around 665 nm, corresponding to its intense blue color in solution. Its 

versatility and distinctive properties make it a valuable tool in numerous 

scientific and industrial applications [47]. 
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Figure I.3. Molecular structure of the Methylene blue.  

I.4. Conventional Methods for Treating Organic Dyes  

The treatment of organic dyes in wastewater is a major concern due to their environmental 

impact. These dyes can be eliminated through various conventional methods, classified into two 

main categories: physical methods and chemical methods. Each category encompasses different 

techniques, each with its own mechanisms of action, advantages, and limitations. 

I.4.1. Physical Methods 

Physical methods rely on physical processes to separate or concentrate dyes without altering 

their chemical structure. Here are some common examples:  

• Coagulation-Flocculation: This method involves the addition of coagulants to neutralize 

the charges of colloidal particles, causing them to precipitate as flocs. These flocs can 

then be separated by sedimentation or filtration [48]. 

• Adsorption: Adsorption involves binding dye molecules to the surface of an adsorbent, 

such as activated carbon. This technique is particularly effective in removing dissolved 

dyes at low concentrations [49]. 

• Membrane Filtration (Ultrafiltration, Nanofiltration, Reverse Osmosis): These 

techniques use semi-permeable membranes to separate dye molecules from water. 

Ultrafiltration is effective in removing macromolecules and colloids, while nanofiltration 

and reverse osmosis are used to retain small molecules, including dyes. Reverse osmosis, 
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in particular, can remove almost all dissolved particles, including ions and organic 

molecules [50]. 

I.4.2. Chemical Methods 

Chemical methods involve chemical reactions that transform dyes into other compounds, 

often less harmful or easier to remove. These methods include: 

• Chemical Oxidation: This method uses powerful oxidants such as chlorine, ozone, or 

hydrogen peroxide to break down dyes into simpler compounds. While effective for 

degrading persistent dyes, it may generate potentially toxic by-products [51]. 

• Electrochemical Processes: Electrochemical processes use the application of an electric 

current to induce oxidation or reduction reactions that degrade dyes. These processes can 

be highly effective for the degradation of complex dyes, but they require specialized 

infrastructure and can be energy-intensive [52]. 

I.4.3. Biological Methods  

Although not purely physical or chemical, biological methods are worth mentioning for their 

ability to treat organic dyes. These methods use microorganisms to break down dyes into less 

toxic substances. Biological processes are generally eco-friendly and cost-effective, but they can 

be limited by the non-biodegradable nature of certain dyes [53]. 

Table I.1: Conventional Dye Treatment Methods: Advantages and Disadvantages.  

Method Advantages Disadvantages 

Coagulation-

Flocculation 

Simple to implement, relatively low 

cost. 

Generates secondary sludge, 

variable effectiveness depending 

on dyes. 

Adsorption Effective for a wide range of dyes, 

reusable adsorbents. 

High cost of adsorbents, rapid 

saturation. 

Membrane 

Filtration 

Highly effective at removing small 

molecules and particles. 

High installation and maintenance 

cost, membrane fouling. 

Nanofiltration Retains small molecules, reduces 

energy needs compared to reverse 

osmosis. 

Less effective for very small 

molecules, membrane costs. 
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Reverse Osmosis Almost complete removal of 

impurities, highly effective for a 

wide range of dyes. 

High cost and energy consumption, 

potential membrane fouling. 

Chemical 

Oxidation 

Fast, effective for persistent dyes. High cost of reagents, possible 

production of toxic by-products. 

Electrochemical 

Processes 

Effective for complete dye 

degradation, minimal chemical 

residues. 

High energy consumption, 

expensive infrastructure. 

Biological 

Treatment 

Eco-friendly, low operational cost. Long treatment time, limited 

effectiveness for non-

biodegradable dyes. 

 

These conventional methods, while widely used, have limitations that necessitate the exploration 

of more advanced processes, such as advanced oxidation techniques, for more complete and 

environmentally friendly degradation of organic dyes. 

I.5. Advanced Oxidation Processes (AOPs) 

Advanced Oxidation Processes (AOPs) are treatment technologies particularly effective for 

degrading persistent organic pollutants, including dyes [54]. These processes are distinguished 

by their ability to generate highly reactive radical species, such as hydroxyl radicals (•OH), 

which oxidize contaminants by converting them into less harmful substances or mineralizing 

them into carbon dioxide and water [55]. Among AOPs, photocatalysis is a commonly used 

method that employs a semiconductor catalyst activated by a light source to produce hydroxyl 

radicals, enabling the degradation of various organic pollutants [56]. Advanced ozonation, which 

combines ozone with agents such as hydrogen peroxide or UV light, is also effective at 

generating radicals and enhancing the degradation of contaminants [57]. Fenton and Photo-

Fenton processes exploit the reaction between hydrogen peroxide and ferrous ions to produce 

hydroxyl radicals, with Photo-Fenton additionally using a light source to enhance the reaction 

efficiency [58]. Hydrogen peroxide oxidation, often combined with UV light or metallic ions, 

also generates radicals for treating industrial wastewater (Mukherjee et al., 2023). Advanced 

electrochemical processes use electricity to generate oxidizing agents in situ or to directly 
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decompose organic pollutants [59]. Advanced electrochemical processes use electricity to 

generate oxidizing agents in situ or to directly decompose organic pollutants [60]. Cold plasma, 

an emerging technique, generates free radicals in a gas through electrical discharges, which then 

react with pollutants in water [61]. Finally, catalytic wet oxidation combines heat, pressure, and a 

catalyst to oxidize organic matter present in effluents, offering an effective solution for 

concentrated organic pollutant streams [62]. These methods, often used in combination, allow for 

the adaptation of treatment to specific needs based on the nature of the contaminants and 

treatment conditions. 

I.6. Technology Used  

Photocatalysis is an advanced oxidation process that facilitates chemical reactions by utilizing 

electronically excited species generated through the absorption of photons [63]. This process 

relies on the use of semiconductor materials, which, when exposed to light radiation, produce 

free radicals such as OH•, HO2•, and O2•- [64]. These radicals are capable of degrading even the 

most resistant organic compounds into simple mineral products, such as carbon dioxide (CO2) 

and water (H2O) [65]. Photocatalysis is a clean process, free from excessive energy production 

and the need for additives, and is characterized by the absence of residues, making it an entirely 

eco-friendly method [66]. Additionally, photocatalysis operates under normal temperature and 

humidity conditions, without requiring specific parameters [67]. 

I.7. Photocatalytically Active Semiconductors 

Semiconductors, discovered in the 19th century, began to find practical applications from 1947 

onward [68]. These solid materials are primarily used for electrical conduction. A semiconductor 

exhibits electrical properties intermediate between those of a metal and an insulator [69], 

characterized by two specific energy bands: the valence band (lower energy level) and the 

conduction band (higher energy level). These two bands are separated by an energy gap, also 

known as the bandgap, defined by an energy barrier measured in electron volts [70]. The larger 

the bandgap (Eg), the greater the energy required to excite electrons from the valence band to the 

conduction band [71]. This energy gap represents the energy needed for an electron to transition 

from the valence band to the conduction band. Once in the conduction band, the electron is free 

to move through the material, no longer bound to a specific atom. 
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Figure I.4: Energy band diagram of a conductor, semiconductor, and Insulator. 

Unlike semiconductors, conductors have overlapping valence and conduction bands, allowing for 

easy electrical conduction. Metals such as copper, silver, gold, and aluminum are among the best 

conductors due to this configuration [72]. Insulators, on the other hand, have a valence band 

completely filled with electrons and an empty conduction band [73]. In semiconductors, although 

there is an energy gap between the valence band and the conduction band, some valence 

electrons can be excited into the conduction band under the influence of sufficient energy, 

whether thermal, magnetic, or light. Once excited, these electrons become charge carriers, 

enabling conduction. 

Semiconductors can be classified into two categories: intrinsic, where the electrical properties 

are determined solely by the pure material [74], and extrinsic, where impurities are added to 

modify their conductive properties [75]. In photocatalytic reactions, semiconductors act as 

catalysts, facilitating the chemical reaction without being consumed in the overall process. These 

materials are thus referred to as photocatalysts, and their ability to generate free radicals under 

the influence of light makes them key players in advanced oxidation processes. 

To be effective, a catalyst must exhibit several essential characteristics: 

• Photoactivity: Capable of accelerating targeted reactions, allowing for a reduction in the 

amount of catalysts needed as activity increases. 

• Response to UV/Visible Radiation: The catalyst must be activatable by ultraviolet and/or 

visible light. 
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• Selectivity: It should exclusively catalyze the desired reaction, thereby enhancing 

selectivity and reducing the need for subsequent purification. 

• Photostability: The catalyst must resist deactivation during the reaction to ensure long-

term efficiency. 

• Cost and Safety: It should be economically viable and non-toxic to both the environment 

and human health. 

I.7.1. Metal Oxides 

Metal oxides (MO) are compounds formed when metal ions establish coordination bonds with 

oxide ions (O²⁻), resulting in compact and stable crystalline structures They are essential 

semiconductor materials in photocatalysis, thanks to their distinctive properties that make them 

particularly effective for various environmental and energy applications [76]. These materials are 

characterized by remarkable chemical stability and a wide bandgap, which allows them to absorb 

light efficiently. Under light irradiation, MOs generate electron-hole pairs, which initiate 

chemical reactions on their surface crucial for the degradation of organic pollutants and the 

conversion of solar energy [77]. 

Titanium Dioxide (TiO₂) is one of the most extensively studied metal oxides. Its chemical 

stability and ability to generate highly reactive hydroxyl radicals (•OH) under UV irradiation 

make it an excellent candidate for applications such as self-cleaning coatings, air purifiers, and 

the degradation of pollutants in water [78]. 

Iron (III) Oxide (Fe₂O₃), commonly known as hematite, is another example of a metal oxide 

with a bandgap of approximately 2.1 eV, enabling it to absorb part of the visible spectrum. This 

property is utilized in water photoelectrolysis, a process where solar energy is employed to split 

water into oxygen and hydrogen, and in other solar energy conversion applications [79]. It is 

particularly effective for the degradation of organic compounds under visible light and for 

hydrogen production, a clean energy carrier. 

Molybdenum Trioxide (MoO₃), on the other hand, is applied in advanced oxidation reactions 

and catalysis for fine chemistry. It is notably used to degrade complex organic compounds and to 

synthesize high-value chemical products, owing to its unique catalytic properties [80]. 
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Focus on ZnO (Zinc Oxide) 

ZnO is a metal oxide semiconductor particularly effective for photocatalytic applications due to 

its bandgap of approximately 3.37 eV, which allows it to absorb UV light (Bindhu et al., 2020). 

This property endows ZnO with a high capacity to generate free radicals under UV irradiation, 

which are capable of decomposing organic pollutants in water and air. However, ZnO is sensitive 

to photo-corrosion, which limits its prolonged use [81]. To enhance the photocatalytic efficiency 

of ZnO and address this limitation, the incorporation of reduced graphene oxide (rGO) into ZnO-

rGO composites proves to be a promising solution. rGO, with its partially reduced graphene 

structure, improves the electronic conductivity of the composite, facilitating charge transfer 

between ZnO and rGO. This enhancement in charge transfer contributes to more efficient 

separation of the electron-hole pairs generated under UV irradiation, thereby optimizing the 

production of free radicals. 

Moreover, rGO plays a crucial role in reducing the photo-corrosion of ZnO by protecting it from 

oxidative conditions and increasing its stability. Additionally, rGO can extend the absorption 

range of the composite into the visible light spectrum, enabling photocatalytic activation under a 

broader range of light conditions. This combination of ZnO and rGO thus enhances the overall 

efficiency of the photocatalyst for organic pollutant degradation, offering more effective and 

sustainable environmental applications [82]. 

I.7.2. Bismuth-Based Oxide Semiconductors 

Bismuth oxides are highly efficient photocatalytic materials under visible light irradiation due to 

their narrow bandgap, which ranges from 1.6 to 3.1 eV, thereby promoting the absorption of 

visible light [83]. This property arises from the hybridization of the 6s² orbitals of bismuth with 

the 2p⁶ orbitals of oxygen, which increases the energy of the valence band and reduces the 

bandgap width, enhancing hole mobility [84]. In addition to these electronic properties, bismuth 

oxides, such as Bi₂O₃, are stable, chemically inert, and non-toxic, making them attractive for 

industrial applications [85]. Their crystalline structure and small particle size contribute to better 

charge mobility and reduced electron-hole pair recombination, thereby increasing their efficiency 

in processes such as the degradation of organic pollutants and water purification under visible 

light irradiation [86]. 
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Bismuth oxides can be categorized into several families, including simple oxides like Bi₂O₃, 

mixed oxides with alkaline earth metals (such as NaBiO₃), transition metals (such as Bi₄Ti₃O₁₂ 

and Bi₂WO₄), and halogens [87]. Among these families, bismuth oxide Bi₂O₃ has been 

extensively studied for its photocatalytic applications, particularly in the degradation of organic 

pollutants and water purification under visible light, due to its ability to generate reactive free 

radicals. 

I.7.3. Sillenite-Type Materials 

Sillenite-type materials have recently found diverse and innovative applications, ranging from 

optical data processing and storage to fields such as electro-optics, acoustics, piezoelectricity, 

optoelectronics, and electronics. Their use also extends to fiber optic sensors, image 

amplification, real-time and multispectral holographic imaging, metrology, and various 

photocatalytic applications [88]. 

Bismuth oxide crystals with a sillenite structure, represented by the general formula Bi₁₂[M]O₂₀ 

(BMO), where M denotes a tetravalent ion from groups II to VIII of the periodic table, exhibit a 

body-centered cubic structure described by the space group I23. The crystalline structure of the 

ideal Bi₁₂MO₂₀ sillenite is characterized by the local arrangement of atoms around the Bi and M 

sites. Specifically, the BMO structure consists of a bismuth ion (Bi³⁺) surrounded by eight 

oxygen atoms, which share their corners with other similar BiO₈ polyhedra. The tetravalent MO₄ 

ions occupy positions both at the center and corners of the cube, contributing to the stability and 

uniqueness of the crystalline structure [89]. 

I.7.4. Chalcogenides: Beyond Oxides 

In addition to metal oxides, various chalcogenides have been investigated for their photocatalytic 

activity. Among them, metal sulfides are particularly noteworthy due to their low bandgap 

energy, ranging from 1.3 to 2.40 eV, which allows for optimal utilization of solar energy [90]. 

Semiconductor materials based on sulfides, such as CdS (cadmium sulfide), ZnS (zinc sulfide), 

Sb₂S₃ (antimony trisulfide), Bi₂S₃ (bismuth trisulfide), and MoS₂ (molybdenum disulfide), 

exhibit narrow bandgaps suitable for photocatalytic processes [91]. 

Sulfide-based semiconductors possess valence bands primarily composed of S3p orbitals, which 

are positioned at a more negative energy compared to the O2p orbitals found in metal oxides. 
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Despite their ability to respond to visible light, metal sulfides are often prone to photocorrosion, 

limiting their practical application. 

I.7.5. Organic Semiconductors 

Photocatalytic organic semiconductors are innovative materials that combine the properties of 

semiconductors with the advantages of organic compounds, such as flexibility, low production 

cost, and the ability to efficiently absorb visible light [92]. When exposed to light, these materials 

generate electron-hole pairs, enabling chemical reactions on their surface. This capability is essential for 

applications such as the degradation of organic pollutants or hydrogen production. 

Polyaniline (PANI) is a key example of an organic semiconductor used in photocatalysis. This 

conductive polymer, often combined with metal oxides, forms nanocomposites that are highly 

effective in degrading organic pollutants under visible light. PANI helps in charge separation and 

extends the catalyst's response to visible light, thereby enhancing the photocatalytic efficiency. 

Another notable example is poly(3-hexylthiophene) (P3HT), a widely used semiconductor 

polymer in organic photovoltaic cells, which also holds potential for photocatalytic applications 

due to its ability to generate charges under light irradiation [93]. 

Graphitic carbon nitride (g-C₃N₄) is arguably one of the most promising organic semiconductors 

for photocatalysis. Composed of carbon and nitrogen, this material has a graphite-like structure 

and a bandgap of approximately 2.7 eV [94],  allowing for efficient absorption of visible light. g-

C₃N₄ is particularly effective in applications such as organic dye degradation and hydrogen 

production from water under light irradiation. In addition to its chemical stability and low 

toxicity, its low cost makes it an ideal candidate for large-scale environmental applications [95]. 

Moreover, the performance of g-C₃N₄ can be optimized by doping it with non-metallic elements, 

such as phosphorus or sulfur, to tune its bandgap and enhance its reactivity under visible light. 

These characteristics position g-C₃N₄ as a material of choice in the field of organic 

photocatalysis [96]. 

I.8. Principle of Photocatalysis 

Photocatalysis is based on the interaction of light with a semiconductor (SC), where the 

absorption of light with energy equal to or greater than the bandgap (hv ≥ Eg) induces the 

excitation of electrons from the valence band (VB) to the conduction band (CB) [97]. This 

electronic transfer simultaneously generates positive holes in the VB, creating oxidation sites 
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(hole, h+) and reduction sites (electron, e-) on the semiconductor's surface. These electron-hole 

pairs (e-/h+) can either recombine, releasing energy in the form of heat, or interact independently 

with molecules in the surrounding environment. The holes (h+) can oxidize electron donors such 

as water (H₂O), hydroxyl anions (OH⁻), or organic compounds adsorbed on the SC surface, 

thereby producing hydroxyl radicals (OH•) and organic radicals (R•). Conversely, the electrons 

(e-) are captured by acceptors such as molecular oxygen (O₂), forming superoxide radicals (O₂•⁻) 

and, potentially, hydrogen peroxide (H₂O₂). These oxidative species play a crucial role in the 

oxidation of adsorbed molecules, potentially leading to their complete mineralization into carbon 

dioxide (CO₂) and water (H₂O) [98]. 

 

Figure I.5. Photocatalysis mechanism. 

I.9. Parameters Influencing Photocatalysis 

Several parameters significantly impact the efficiency of heterogeneous photocatalysis. Among 

these factors, light intensity plays a crucial role, as adequate illumination of the reactor promotes 

the formation of electron-hole pairs on the catalyst's surface. The rate of the photocatalytic 

reaction is proportional to the light intensity up to a certain threshold, beyond which the rate 

becomes proportional to the square root of the intensity [99]. 
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The pH of the aqueous solution is another key parameter, as it affects the surface charge of the 

catalyst and can lead to particle aggregation when close to the point of zero charge (pHpzc). This 

phenomenon can reduce photocatalytic efficiency, particularly at neutral pH, where the balance 

of positive and negative charges on the catalyst surface may cause aggregation [100]. 

The initial concentration of the pollutant also influences the degradation yield. A high 

concentration can result in a screening effect, limiting photon penetration to the catalyst surface 

and reducing reaction efficiency. Additionally, a high concentration of adsorbed pollutants can 

saturate the catalyst's active sites, thereby decreasing the generation of hydroxyl radicals 

necessary for pollutant degradation [101]. 

The reaction temperature, although often overlooked in photocatalytic systems operating at 

ambient temperature, can also affect efficiency. Lower temperatures enhance pollutant adsorption 

on the catalyst surface, while excessive temperatures beyond 80°C can inhibit this exothermic 

adsorption [102]. 

Finally, the catalyst dose must be optimized according to experimental conditions and the 

geometry of the photoreactor. An excessively high concentration can render the solution opaque 

and create a screening effect, reducing light penetration and, consequently, photocatalytic yield 

[103]. 

I.10. Kinetics of Photocatalytic Reactions 

The kinetics of photocatalytic reactions are often described using the Langmuir-Hinshelwood 

model, one of the most widely used models in this field due to its ability to capture the 

underlying mechanisms of adsorption and chemical reaction on catalyst surfaces. This model is 

based on several fundamental assumptions that make it applicable to a variety of photocatalytic 

systems [104]. 

Assumptions of the Langmuir-Hinshelwood Model 

1. Langmuir-Type Adsorption: The model assumes that substrate adsorption on the 

catalyst surface follows a Langmuir isotherm. This means that the catalyst surface has a 

fixed number of adsorption sites, each capable of adsorbing a single molecule of 

substrate, and these sites are homogeneous in terms of adsorption energy. 
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2. Rate of Adsorption and Desorption: The adsorption and desorption steps are 

considered to be rapid compared to the chemical reaction rate itself. This implies that 

adsorption equilibrium is quickly reached, and the kinetics of the reaction are primarily 

controlled by the chemical transformation of the adsorbed substrate. 

3. Constant Adsorption Energy: It is also assumed that the adsorption energy is the same 

for all adsorption sites and does not vary with the degree of surface coverage. This 

simplifies the analysis by positing that the probability of absorbing a substrate molecule 

does not depend on the presence or absence of other nearby adsorbed molecules. 

4. Non-Saturation of Adsorption Sites: The adsorption sites are not permanently bound to 

the substrate and can be freed after the reaction, allowing for continuous and renewed 

adsorption of the substrate. 

Equations of the Langmuir-Hinshelwood Model 

The Langmuir-Hinshelwood kinetic model is extensively employed to elucidate the kinetics 

governing the photocatalytic oxidation of organic pollutants. This model provides a framework 

for quantifying the rate of degradation of an organic pollutant under varying concentrations.  

The reaction rate can be mathematically represented as: 

                              𝑟0 =  − 
𝑑𝑐

𝑑𝑡
=  

𝑘𝑟.𝐾𝐶

1+𝐾𝐶
                                                                                       (I.1) 

Where: 

• r is the degradation rate of the pollutant (mg/min), 

• kr is the reaction rate constant for the chemical transformation (mg/L·min), 

• K is the adsorption equilibrium constant of the reactant (L/mg), 

• C is the pollutant concentration (mg/L) [105]. 

The inverse of the equation leads to 
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Chapter II. Synthesis and Characterization Methods of materials: 

Theoretical approach 

II.1. Introduction  

This chapter provides a theoretical overview of the methods for synthesizing and characterizing 

nanoparticles, which are crucial for their application in various scientific and industrial fields. 

Nanoparticles are noted for their unique properties, making their understanding essential for 

optimizing their performance. We will first discuss the main synthesis methods, including Sol-

Gel, Chemical Vapor Deposition (CVD), Hydrothermal synthesis, Sonochemical methods, Laser 

Ablation, and Flame Spray Pyrolysis (FSP), highlighting their advantages, disadvantages, and 

typical applications. Next, the chapter will explore green synthesis, which uses biological 

sources to produce nanoparticles, addressing its environmental benefits and limitations. Finally, 

we will cover characterization techniques necessary for analyzing morphological, crystalline, and 

optical properties. 

Overall, this chapter provides a theoretical foundation for understanding nanoparticle synthesis 

and characterization methods, setting the stage for practical applications and future research. 

II.2. Traditional Synthesis Methods for Nanomaterials 

The synthesis of nanomaterials is a continuously evolving field, offering numerous applications 

in various sectors. Many methods have been developed to produce these materials at the 

nanoscale, each with its specific advantages and disadvantages. Let’s take a closer look at the 

most common traditional synthesis methods: 

II.2.1. Sol-Gel Synthesis 

Sol-gel synthesis is a versatile and relatively simple method for producing a wide range of 

nanomaterials [1]. It involves the formation of a gel from liquid precursors, followed by a drying 

and calcination process. Nanomaterials produced via this method have applications in areas such 

as catalysis, biomedicine, and construction materials. Although this method is versatile, it has 

drawbacks related to the use of organic solvents and may require relatively long drying times [2]. 

II.2.2. Chemical Vapor Deposition (CVD) 

CVD is a powerful technique for producing thin films and high-purity nanostructures. It involves 

the reaction of gaseous precursors on a heated surface. CVD is widely used for the fabrication of 
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electronic materials, such as graphene and carbon nanotubes. However, this method requires 

specialized equipment and can be energy intensive [3]. 

II.2.3. Hydrothermal Synthesis 

Hydrothermal synthesis is a gentle and efficient method for producing crystalline nanomaterials. 

It involves heating precursors in an autoclave filled with a solvent, usually water. This method is 

particularly well-suited for the synthesis of porous-structured materials, such as zeolites and 

microporous materials [4]. 

II.2.4. Sonochemical Synthesis 

Sonochemistry harnesses the energy of ultrasound to induce chemical reactions and form 

cavitation bubbles. These bubbles, when they collapse, create extreme temperature conditions 

and pressure, promoting the formation of nanomaterials. This method is fast and simple to 

implement, but it can be limited by difficulties in controlling particle size and distribution [5]. 

II.2.5. Laser Ablation 

Laser ablation is an advanced technique for producing high-purity nanoparticles with controlled 

morphology. It involves irradiating a target material with a pulsed laser, which leads to the 

ablation of material in the form of plasma. This plasma then condenses into nanoparticles. This 

method is used for the production of metallic nanoparticles and composite materials [6]. 

II.2.6. Flame Spray Pyrolysis (FSP) 

FSP is a high-temperature synthesis method that allows the continuous production of large 

quantities of nanoparticles. It involves injecting a liquid precursor into a flame, where it 

decomposes and forms nanoparticles. This method is particularly suitable for producing catalytic 

materials and pigments [7]. 

Table II.1: Overview of Synthesis Methods: Advantages, Disadvantages, and Typical 

Application.  

Method Advantages Disadvantages Typical Applications 

Sol-Gel Versatility, low cost Drying time, use of 

solvents 

Catalysis, biomaterials, 

construction materials 

CVD High purity, precise 

control 

Specialized equipment, 

energy-intensive 

Electronics, 2D 

nanomaterials 
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Hydrothermal Gentle conditions, 

porous materials 

Autoclaves, reaction 

times 

Porous materials, zeolites 

Sonochemical Fast, simple Limited particle size 

control 

Catalysis, composite 

materials 

Laser 

Ablation 

High purity, 

morphology control 

High cost, specialized 

equipment 

Metallic nanoparticles, 

composite materials 

FSP Large-scale 

production, high 

temperature 

Pollutant emissions Catalysis, pigments 

 

II.3. Green synthesis  

Recent advancements have focused on developing cost-effective, fast, efficient, and 

environmentally friendly methods for nanoparticle synthesis, using plant extracts, 

microorganisms (bacteria, fungi, and algae), enzymes, and biomolecules [8]. Green synthesis is 

an eco-friendly biorreduction process where biological molecules, such as proteins, enzymes, 

phenolic compounds, amines, and alkaloids, act as reducing and stabilizing agents, facilitating 

the transformation of metal ions into nanoparticles [9]. 

To address the limitations of traditional methods, green synthesis approaches are gaining 

attention in material science and technology research. These methods emphasize minimizing 

waste, reducing pollution, and utilizing safer, non-toxic solvents and renewable raw materials 

[10]. The core principles of green synthesis aim to prevent the production of harmful byproducts 

by promoting sustainable and environmentally responsible procedures. 

Among the various green synthesis routes, plant extract-mediated synthesis offers a simple, 

scalable method for producing metal oxide nanoparticles compared to bacteria or fungi-mediated 

processes [11]. This approach allows for the large-scale production of biogenic nanoparticles, 

which are synthesized through natural biological processes and contribute to more sustainable 

nanomaterial development. 

II.3.1. Biological Sources for the Green Synthesis of Nanoparticles 

Traditional physical and chemical methods for the synthesis of metallic nanoparticles require 

high energy consumption and the use of highly toxic reducing and stabilizing agents, which have 
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harmful effects on humans and marine life. In contrast, green synthesis offers a low-cost, eco-

friendly, one-step approach that initiates reactions with low energy input. The biological routes 

for synthesizing metallic and metal oxide nanoparticles focus on using reducing agents such as 

bacteria, fungi, yeast, algae, and plant extracts, which are considered biocompatible and suitable 

for large-scale production. 

a. Bacteria-Mediated Nanoparticle Generation 

Bacterial species have been extensively studied in commercial biotechnological applications, 

including bioremediation, bioleaching, and genetic engineering, due to their relatively easy 

manipulation. It has been found that bacteria are good candidates for preparing metallic and 

novel nanoparticles [12]. In particular, prokaryotes and actinomycetes have been widely used to 

synthesize metal and metal oxide nanoparticles. Certain bacteria with specific shapes and sizes, 

such as Bacillus cereus, Lactobacillus casei, Aeromonas species, Pseudomonas proteolytica, 

Escherichia coli, etc., can be used to synthesize silver-based nanomaterials through biological 

reduction. Additionally, other bacterial agents such as Shewanella alga, Bacillus subtilis 168, 

Plectonema boryanum UTEX 485, and Rhodopseudomonas capsulata have been applied for the 

synthesis of gold nanoparticles [13]. 

b. Fungi-Mediated Nanoparticle Generation 

Biosynthesis of metallic and metal oxide nanoparticles using fungal species is considered an 

efficient method for producing monodispersed nanoparticles with appropriate morphologies [14]. 

Compared to other organisms, fungi are better biological agents for synthesizing nanoparticles 

(such as silver and gold) due to their intracellular enzymes, proteins, and reducing components 

on their cell surface. Fungi also have the ability to produce a larger number of nanoparticles 

compared to bacteria. The mechanism of metal nanoparticle formation can be explained by 

enzymatic reduction within fungal cells or their cell walls. The use of fungal extracts for 

nanoparticle synthesis has several advantages over bacterial extracts. They are economically 

viable, enable large-scale production, are easy to extract, eco-friendly, and possess a large 

surface area. Moreover, they serve as a good source of metabolites and enzymes that can reduce 

bulk salts into elemental ions, which are essential for nanoparticle synthesis [15]. 
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c. Yeast-Mediated Nanoparticle Generation 

Yeasts are unicellular microorganisms within eukaryotic cells, with only 1,500 species identified 

so far. Numerous studies have focused on synthesizing nanoparticles and nanostructures using 

various yeast species, which can produce reducing enzymes intracellularly or extracellularly. For 

example, gold and silver nanoparticles have been synthesized using a silver-tolerant yeast strain 

and Saccharomyces cerevisiae broth [16]. 

d. Algae-Mediated Nanoparticle Generation 

Algae are rarely used as biofactories for synthesizing metallic nanoparticles. For the first time, 

extracellular gold nanoparticles with high stability were produced using marine algae 

(Sargassum wightii). Additionally, the green synthesis of palladium and platinum nanoparticles 

has been reported using their salts containing metal chlorides. The green synthesis of three metal 

oxide nanoparticles, namely copper oxide, ferric oxide, and zinc oxide has also been investigated 

using marine algae [17]. 

e. Plant-Mediated Nanoparticle Generation 

Among biological components, plants have attracted significant attention for the synthesis of 

nanoparticles. Their excellent properties include low cost, stability, simplicity, safety in handling, 

low energy consumption, reduced use of toxic chemicals, rapid reaction times, and a wide range 

of biomolecules [18]. Typically, plants have excellent potential to reduce metallic salts into 

nanoparticles due to certain biomolecules such as carbohydrates, proteins, and coenzymes. 

Various parts of plants also have the ability to accumulate heavy metals. Additionally, plant 

extracts can control the synthesis of nanoparticles to obtain well-defined morphologies and sizes 

in just one step with high yield [19]. As a result, great attention has been given to the 

biosynthesis of nanoparticles using various plant parts such as leaves, roots, flowers, and fruits as 

an easy, efficient, cost-effective, and alternative method to traditional production processes [20]. 

Gold and silver were the first biosynthesized nanoparticles using plant extracts. 

II.3.2. Benefits and limitations of green synthesis  

The green synthesis of nanoparticles has become a crucial approach in nanotechnology, relying 

on eco-friendly processes that use biological resources. Below are the benefits and limitations of 

this method. 
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Table II.2. Advantages and Disadvantages of Green Nanomaterial Synthesis.  

Advantages Disadvantages 

Environmental Benefits Polydispersity 

Reduction of pollution and waste Variability in the size and shape of nanoparticles 

produced. 

Cost-Effectiveness Longer Reaction Times 

Utilization of readily available natural 

resources 

Synthesis methods may require more time than 

traditional methods. 

Biocompatibility Limited Control Over Synthesis Parameters 

Suitable for medical and pharmaceutical 

applications. 

Difficult to achieve precise control over the size, 

shape, and crystallinity of nanoparticles. 

Simplicity and Efficiency Raw Material Availability 

Processes are often one-step, facilitating 

production. 

Availability of certain biological resources may be 

limited. 

Diverse Applications Scalability Issues 

Utilization in medicine, agriculture, and 

environmental applications. 

Scaling up processes for industrial applications can 

present challenges. 

 

II.4. Characterization techniques 

II.4.1. Fourier Transform Infrared (FTIR) 

Fourier Transform Infrared (FTIR) spectroscopy is a technique employed to study the structure 

and composition of materials. A typical FTIR system consists of two distinct beams originating 

from the IR source, passing through both the sample and reference chambers. In the optical 

chopper, the reference and sample channels are combined [21]. 

To perform an analytical comparison of the transmitted photon beam data, one beam passes 

through the sample, while the other passes through a specific reference sample. After interaction 

with the sample, the radiation passes through, and the wavefront is dispersed across the 

instrument's frequencies using gratings and slits. The slit size influences the system’s 

performance: narrower slits enhance resolution and frequency discrimination, while wider slits 

allow lighter to reach the detector, thereby increasing the system's sensitivity. 
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The detector receives an electrical signal emitted by the wavefront, which is subsequently 

processed by a computer using a mathematical algorithm to generate the final spectrum. An 

Agilent Technologies Fourier Transform Infrared (FTIR) spectrophotometer was used for 

recording the infrared spectra, operated by a microcomputer. Spectral data were collected in the 

range of 4500 to 400 cm⁻¹ [22, 23]. 

II.4.2. X-Ray Diffraction (XRD) 

X-ray diffraction (XRD) is employed to identify the crystalline phases present in a solid. Several 

successive crystal lattices are necessary to form visible diffraction peaks [24]. The analysis is 

based on Bragg’s Law: 

                        𝑛. 𝜆 = 2𝑑 𝑠𝑖𝑛θ …………………………………………………..(II.1)                                                                                                       

where: 

• n is the diffraction order, 

• λ is the wavelength of the X-ray radiation used (1.5418 Å), 

• d is the interplanar spacing (Å), 

• θ is the diffraction angle. 

X-rays are produced when electrons, emitted from a heated cathode and accelerated by an 

electric field, strike a metal anode (anticathode). The resulting data is presented as 

diffractograms, which plot the intensity of diffracted photons as a function of 2θ [25]. This 

method allows the identification of the crystal structure and phase of materials using ASTM 

(American Society for Testing Materials) tables or JCPDS (Joint Committee on Powder 

Diffraction Standards) files. It can also provide information on grain size and orientation, with 

each crystalline phase corresponding to a characteristic set of diffraction peaks [26]. X-ray 

powder diffraction is further useful for verifying the purity of prepared phases and determining 

structural characteristics such as dimensionality, disorder, and lattice parameters. The crystallite 

size, D, can be calculated using the Scherrer equation: 

                 𝐷 =
𝐾𝜆

𝛽 𝐶𝑂𝑆(𝜃)
  ………………………………………………..(II.2)
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where: 

• D is the particle size (nm), 

• λ is the X-ray wavelength, 

• β is the full width at half maximum (FWHM) of the diffraction peak. 

This technique provides a comprehensive analysis of crystalline materials, crucial for 

understanding their structural properties [27].  

II.4.3. Scanning Electron Microscopy (SEM)  

The mechanism of Scanning Electron Microscopy (SEM) involves directing a primary electron 

beam onto the surface of a sample for analysis. The SEM technique enables the observation of 

the microscopic texture of materials by scanning the surface with a focused beam of accelerated 

electrons. As the electron beam interacts with the sample surface, secondary electrons are 

emitted and collected by detectors. The data is then transmitted to a cathode-ray screen, where 

the scan pattern matches that of the incident electron beam, allowing for the visualization of the 

sample's surface[28]. 

In solid phases, SEM reveals the presence of voids, as well as variations in shape and size. This 

technique is particularly useful in the analysis of monophase catalysts, where it helps monitor the 

consistency of preparation methods and assess the distribution and frequency of various elements 

[29]. 

The interaction of electrons within the material forms a so-called "interaction volume" or "pear-

shaped region," which generates various signals. These signals can be used to create high-

resolution images or to perform quantitative analysis of the sample's composition. Additionally, 

the electron beam penetrates the crystalline structure depending on the angle of incidence, 

providing detailed information on different families of crystalline planes [30]. 

SEM thus plays a crucial role in the morphological analysis and characterization of materials, 

especially in the field of catalyst study and preparation [31]. 
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II.4.4. Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) utilizes a beam of electrons to produce high-

resolution images, allowing for the observation of the internal structure of materials at the 

nanometric scale. Unlike Scanning Electron Microscopy (SEM), where electrons primarily 

interact with the surface of the sample, TEM enables the electron beam to pass through the 

sample, providing detailed information about its internal structure [32]. 

In TEM, a beam of electrons is transmitted through an extremely thin sample (typically on the 

order of a few nanometers). The electrons that pass through the sample interact with the atoms, 

experiencing scattering or absorption depending on the density and thickness of the material. The 

transmitted electrons are then projected onto a fluorescent screen or detector, generating an 

enlarged image of the sample [33]. 

II.4.5. Energy Dispersive X-ray Spectroscopy (EDX) 

Energy Dispersive X-ray Spectroscopy (EDX) is an analytical technique used for both qualitative 

and quantitative analysis of materials. Commonly integrated with Scanning Electron Microscopy 

(SEM) and Transmission Electron Microscopy (TEM), EDX allows for the identification and 

measurement of the elemental composition of a sample’s surface. When the sample is bombarded 

with a focused beam of electrons, it emits characteristic X-rays from the atoms present, which 

are detected and analyzed to determine the elements within the material. This method provides 

valuable insights into the distribution and concentration of elements across the sample, making it 

a key tool in material science for compositional analysis [34]. 

II.4.6. Elemental Mapping 

Elemental Mapping is an advanced analytical technique used to visualize the spatial distribution 

of elements across the surface of a material. Often performed in conjunction with Scanning 

Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM), this method allows 

for a detailed analysis of the elemental composition at specific locations [35]. By scanning the 

sample with a focused electron beam, characteristic X-rays emitted from the material are 

detected and mapped. This produces images that display the concentration and distribution of 

elements in different regions, providing valuable information on the material’s homogeneity, 

phase distribution, and potential impurities. Elemental Mapping is widely used in material 
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science, metallurgy, and nanotechnology to study complex systems and improve material design 

[36]. 

II.4.7. UV-Visible (UV-Vis) 

UV-Visible (UV-Vis) spectrophotometry is a widely used analytical technique to investigate the 

optical properties of solid materials, particularly semiconductors. It is crucial for determining 

parameters such as the band gap and the absorption coefficient [37]. The method involves 

illuminating a sample with monochromatic light, which generates both reflected and diffusely 

scattered rays [38]. The scattered rays are captured by an integrating sphere and directed 

unidirectionally to a detector, while the reflected rays are canceled out. The diffuse reflectance 

theory, developed by Kubelka and Munk in 1931, relates diffuse reflectance to absorption via the 

following equation [39]:  

                                                       
𝑘

𝑆
=  

(1−𝑅)2

2𝑅
 ………………………………………………..(II.3) 

where k is the absorption coefficient, S is the scattering coefficient, and R is the diffuse 

reflectance. This approach also allows for the calculation of the band gap energy (Eg) using the 

relation: 

                                                 (𝛼ℎ𝑣)𝑛 = 𝐴(ℎ𝑣 − 𝐸𝑔)………………………………………..(II.4) 

where h is Planck’s constant, ν is the frequency (c/λ), Eg is the band gap energy, and n indicates 

the nature of the optical transition (n = 2 for a direct transition and n = 1/2 for an indirect 

transition). In a UV-Vis spectrophotometer, light typically within the 200–1000 nm range passes 

through a sample, and the absorption depends on factors such as sample concentration, path 

length, and the sample's absorption efficiency at a specific wavelength. This absorption 

phenomenon induces electronic transitions from ground to excited states, making UV-Vis 

spectroscopy a powerful tool for both qualitative and quantitative chemical analysis, as well as 

for studying the electronic structure and optical properties of materials [40]. 

II.4.8. The photoluminescence (PL) 

The photoluminescence (PL) characterization technique allows for the analysis of the optical and 

electronic properties of photocatalysts. It involves the excitation of a material by a light source, 

typically in the ultraviolet or visible range, causing the migration of electrons from the valence 
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band to the conduction band. When these electrons recombine with holes in the valence band, the 

material emits light, a phenomenon known as photoluminescence. By studying PL, one can gain 

a deeper understanding of the charge carrier recombination mechanisms in photocatalysts [41]. 

Low-intensity photoluminescence indicates good separation of electrons and holes, which is 

advantageous for photocatalytic applications, as it implies greater availability of electrons for 

photocatalytic reactions. Conversely, high-intensity PL suggests rapid electron-hole 

recombination, which can limit the efficiency of the photocatalyst. Therefore, PL plays a crucial 

role in evaluating the efficiency of photocatalysts and optimizing their performance for 

applications such as pollutant degradation and hydrogen production [42]. 

II.5. Protocol for Photocatalytic Degradation Experiments in a Batch 

Reactor 

Photocatalytic degradation experiments were conducted at room temperature using a batch 

reactor. The reactor was equipped with two types of lamps, positioned horizontally on either side 

of the reactor box: 

• UV Lamps: Philips UV PL-L 24W lamps emitting a peak wavelength at 253.7 nm. 

• Visible Lamps: 300 W LED visible light lamps. 

The lamps were placed 5 cm above a graduated cylinder containing the solution to be treated. 

The aqueous solution contained a model dye, either Methylene Blue (MB) or the industrial dye 

BS. Before irradiation, the suspension of the photocatalyst in the solution was stirred in the dark 

for 40 minutes to achieve adsorption-desorption equilibrium. 

Once the equilibrium was reached, the lamps were switched on, and 1 mL of the suspension was 

sampled every 20 minutes, diluted (×3), and immediately centrifuged to separate the 

photocatalyst from the solution. The remaining solution was then analyzed using UV-Vis 

spectroscopy to determine the residual concentration of the dye. 

All experiments were conducted in duplicate to ensure photocatalyst stability and reproducibility. 

The color removal efficiency was calculated using the following formula: 

                       Color removal efficiency (%) = 
𝐶0−𝐶𝑒

𝐶0
 × 100…………………………………(II.5) 
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where C0 is the initial dye concentration and Ce is the residual concentration at time t 

The reaction kinetics of photocatalytic degradation were investigated using the Langmuir-

Hinshelwood model: 

                                               -Ln (C/C0) = kt ……………………………………………….. (II.6) 

where C0 is the initial concentration, C is the concentration at time t, and k is the apparent kinetic 

constant. 

The reactor was enclosed in a black box to prevent interference from external light sources, 

ensuring controlled irradiation conditions. 

Figure II.1: Batch photocatalytic reactor for Dye degradation. 

 

II.6. Determining the Role of Reactive Species in Photocatalytic Degradation 

through Scavenger Trapping Experiments 

 

To assess the role of reactive species in photocatalytic degradation, trapping experiments are 

typically conducted using various scavengers. These scavengers help identify the key reactive 
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species involved in the degradation process. Hydroxyl radicals (OH) are often targeted using 

ethanol [43], which effectively neutralizes them, providing insights into their contribution. 

Electrons (e⁻) are captured using potassium dichromate (K₂Cr₂O₇) [44], allowing for the 

determination of their role in the photocatalytic reaction. Disodium ethylenediaminetetraacetate 

(Na₂-EDTA) is commonly used to scavenge holes (h⁺) [45], revealing the importance of these 

positively charged species in the degradation mechanism. 
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Chapter III. Green Fabrication of ZnO Nanoparticles and 

ZnO/rGO Nanocomposites from Algerian Date Syrup Extract: 

Synthesis, Characterization, and Augmented Photocatalytic 

Efficiency in Methylene Blue Degradation 

III.1.  Introduction 

The field of photocatalysis research and development has seen substantial growth in recent years 

as illustrated by the increasing number of publications on this subject matter, mainly due to its 

potential applications in environmental technologies such as hydrogen production [1], organic 

synthesis, medicinal chemistry, and water treatment [2].  

The emergence of nanotechnology could have a major impact on the field of photocatalysis for 

the production of new materials, typically semiconductors. One of the most advantages of 

nanostructures is their ability to exhibit exceptional properties, which can be used to create new 

photocatalysts or improve existing ones [3]. Furthermore, nanotechnologies enable the 

development of more efficient and energy-saving photocatalytic systems to address current 

environmental and energy challenges [4]. 

It is undoubted that the advancements in nanomaterials synthesis techniques are resulting in the 

emergence of new materials with desired chemical and physical properties [5]. Nanoparticles can 

be synthesized using different techniques, which are generally classified into two primary 

methods. The first approach, known as the bottom-up technique, employs chemical processes 

such as hydrothermal, co-precipitation, electrochemical, pyrolysis, sonochemical, 

photochemical, microemulsion, microwave, redox, and sol-gel. These methods involve the 

combination of individual atoms or molecules to produce nanoparticles [6]. The second method 

is characterized by a top-down approach, which requires the use of physical techniques, such as 

laser ablation, inert gas condensation, sonication, electric arc discharge, lithography and the 

radiofrequency (RF) plasma method. These physical techniques consume a lot of energy and 

raise the temperature of the surrounding air around the source material since it takes so long for 

them to achieve thermal stability. Additionally, these methods occupy a large amount of space, 

especially in the case of furnaces [7]. The chemical processes have undesirable effects on the 
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environment and are environmentally unfriendly [8] due to the use of harsh reducing agents such 

as sodium citrate, sodium borohydride, and organic solvents.  

Generally, the concept of "Green Synthesis" refers to the application of ecological principles of 

"green chemistry" such as extract of plants and microorganisms such as fungal, bacteria, and 

algae to the biosynthesis of nanoparticle oxides, allowing pure and safe nanoparticles to be 

obtained from different organisms such as fungi, plants, bacteria, and actinomycetes [9]. "Green 

synthesis" using biomaterials comprises a diverse array of compounds, including proteins, 

flavonoids and polyphenols, which have the potential to substitute hazardous chemical products 

as reducing agents, in order to lower the valence state of metal ions. Consequently, it offers many 

benefits, including biocompatibility, low toxicity, simplified production, improved profitability, 

and the possibility of regulating the synthesis process [10]. 

Metallic nanoparticles can be fabricated using extracts from various biological sources, both 

cellular and cell-free, as illustrated in Figure 1. It is essential to ensure that the nanoparticle 

synthesis process aligns with the principles of green chemistry [11]. This involves meticulous 

consideration of factors such as the choice of environmentally friendly solvents, the use of eco-

friendly reducing agents, and the selection of non-toxic materials for nanoparticle stabilization. 

Furthermore, it has been established that compounds like peptides, polyphenolics, sugars, 

vitamins, and aqueous components derived from plant extracts demonstrate compatibility and 

efficacy in the synthesis of nanoparticles [12]. 
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Figure III.1. The precursors used for green synthesis. 

Date syrup, also known as date molasses or date honey, is a thick, sweet syrup made from boiled 

and reduced dates. This substance is a natural source rich in sugars, vitamins, antioxidants, and 

minerals [13]. Recently, interest in the use of natural products such as date molasses in the "green 

synthesis" of nanoparticles and other materials has increased significantly. Date molasses 

contains natural reducing agents, such as sugars (fructose and glucose), alkaloids, terpenoids and 

polyphenols, which seem to be a prominent solution to reduce easily metal ions and form 

nanoparticle catalysts [14].  

In particular, nanoparticles ZnO have become a very interesting topic due to their ease of 

preparation, low production cost and safety[15]. Due to its high catalytic activity ZnO is a 

significant semiconductor photocatalyst. It can effectively destroy organic material when 

exposed to ultraviolet radiation, making it useful in a variety of environmental applications like 

the treatment of wastewater and air purification [15]. 

In previous studies, Graphene oxide (GO), reduced graphene oxide (rGO), and their derivatives 

have found extensive application in wastewater treatment for the removal and degradation of 

organic pollutants [16].  
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This widespread use in many fields is attributed to their exceptional adsorption, oxidation, and 

catalytic properties, as well as their large pore volume, huge specific surface area, high electrical 

conductivity, diverse surface chemical composition, and impressive length-to-diameter ratio [17]. 

It has been reported that the combination of materials boosts the photocatalytic actively, in this 

context to elaborate, graphene serves a thermodynamic role in crafting heterojunction 

photocatalysts capable of responding to a wide spectrum of light or in the doping of 

semiconductors possessing wide bandgaps [18].  

Additionally, graphene's kinetic utilization enhances photocatalytic efficiency by capitalizing on 

its remarkable adsorption capacity for both organic and inorganic contaminants [19]. Given these 

factors, the integration of graphene with diverse semiconductors has emerged as a promising 

avenue for advancing research in this field [18]. 

In this chapter, ZnO/rGOx nanocomposites were manufactured and subjected to comprehensive 

characterization using various techniques, including X-ray diffraction (XRD), Fourier-transform 

infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Additionally, the 

analysis of the optical properties of these nanocomposites was conducted using UV-Visible 

spectrophotometry to assess their UV absorption capacity and determine the width of the band 

gap. Concurrently, the study examined the impact of parameters such as calcination temperature, 

catalyst dosage, and solution pH on the degradation efficiency of the compounds. Cycling tests 

were performed to confirm the stability of the ZnO/rGOx nanocomposite, and a degradation 

mechanism was proposed, based on the generation of electron-hole pairs and the attack of the 

dye by hydroxyl and superoxide radicals. This research highlights the remarkable potential of 

ZnO/rGOx nanocomposites in water treatment for the removal of organic pollutants. However, it 

is essential to note that future research efforts will be needed to adapt these nanocomposites for 

practical wastewater treatment applications. 

This study significantly enriches our understanding of advanced photocatalytic materials and 

their potential applications in environmental remediation. A primary contribution lies in the 

innovative use of ZnO/rGOx nanocomposites, a unique combination of ZnO and rGOx, which 

introduces a fresh perspective on enhancing photocatalytic performance, particularly in the 

degradation of methylene blue. The research achieves a notable level of depth and sophistication 

through its comprehensive materials characterization, encompassing crystallographic verification 
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via XRD, the identification of functional groups using FTIR, and the detailed examination of 

material morphology through SEM. The most remarkable breakthrough, however, is the 

compelling evidence of a substantial enhancement in the photocatalytic efficiency of ZnO/rGOx 

nanocomposites in comparison to pure ZnO. This carries profound implications for water 

treatment, as it addresses the challenge of organic pollutant removal with unprecedented 

effectiveness. Moreover, the study goes beyond material synthesis and characterization by 

systematically exploring the influence of various reaction parameters and underlining the 

stability of these nanocomposites, reinforcing their potential for practical and sustainable 

applications in real-world wastewater treatment scenarios. In sum, this research represents a 

significant enrichment of our knowledge in the field, setting the stage for promising 

advancements in the quest for improved water quality and the mitigation of environmental 

pollution. 

III.2.  Experiment    

III.2.1.  Algerian Date Syrup (Molasses) extract preparation 

for this preparation, industrial date molasses from the SALAMA brand, originating from the 

Biskra region in the southeast of Algeria, was utilized.  

To make the extract, 20 g of date molasses were dispersed in 200 mL of distilled water. The 

mixture was then heated to 60 ℃ for 20 min under stirring until all the date molasses was evenly 

mixed. After heating, the solution was allowed to cool and filtered using Whatman filter paper, 

and the filtrate was collected. Subsequently, the resulting filtrate was used as a stock solution for 

the synthesis of ZnO nanoparticles as shown in figure III.1. 

 

 

 

 

 

Figure III.2.  Algerian Date Syrup (Molasses) extract preparation. 



 

 
 58 

 Chapter III: ZnO/rGO  
 

III.2.2.  Synthesis of ZnO NPs 

The synthesis of ZnO nanoparticles was meticulously initiated by the gradual addition of 20 mL 

of the extract, into an 80 mL solution of 0.1 M zinc acetate. The reaction vessel was maintained 

at a precise temperature of 90 ℃, and the mixture was subjected to stirring at 700 rpm to ensure 

homogeneity. Upon achieving the designated temperature, a NaOH solution was delicately 

introduced dropwise into the reaction mixture. This marked the commencement of a carefully 

monitored 4-hour aging process, during which a remarkable transformation occurred—the 

solution's initial brown hue evolved into a pristine white, indicative of the formation of the 

desired precipitate. 

Following this intriguing phase, ultrasonic treatment was meticulously applied for 60 minutes. 

This step was crucial for further enhancing the homogeneity and structural integrity of the 

synthesized ZnO nanoparticles. The resulting solution, now rich in well-formed nanoparticles, 

underwent a precision-controlled centrifugation process at 3600 rpm for 30 minutes. This step 

was imperative for efficiently collecting the synthesized ZnO nanoparticles, as the centrifugal 

force facilitated the separation of the nanoparticles from the remaining solution. 

To ensure the purity of the synthesized nanoparticles, they were subjected to a meticulous 

purification process. The collected ZnO NPs were suspended in a carefully crafted mixture of 

ethanol and distilled water. This purification step aimed to eliminate any impurities or unreacted 

substances that might have been present in the solution. The suspension was then subjected to 

controlled conditions, allowing for the removal of solvent through air-drying at 60 °C in a 

vacuum oven overnight. The resulting dried powder, rich in synthesized ZnO nanoparticles, was 

delicately collected for further characterization. 

In the subsequent phase, the collected sample underwent a thermal treatment process known as 

calcination. This involved subjecting the sample to varying temperatures, specifically 450 °C, 

550 °C, and 600 °C. The selection of these temperatures was based on a comprehensive 

understanding of the desired structural and chemical properties of the ZnO nanoparticles. The 

thermal treatment was meticulously illustrated in Figure 16, providing a visual representation of 

the temperature-dependent transformations and the resultant characteristics of the synthesized 

nanoparticles. 
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The incorporation of molasses in our synthesis process holds paramount importance, its richness 

in diverse compounds offers various possibilities in ZnO synthesis. Natural sugars present, such 

as glucose, fructose, and sucrose, can act as reducing agents. Phenolic compounds contribute to 

reducing and stabilizing properties, while natural antioxidants help maintain the stability of 

nanoparticles. Minerals and trace elements 

in date molasses could also influence the growth and properties of ZnO nanoparticles. In the 

absence of molasses, the reduction process could face impediments, potentially compromising 

the efficiency of ZnO nanoparticle synthesis. Molasses, with its organic diversity, emerges as an 

environmentally friendly alternative, offering a sustainable approach that replaces traditional 

chemical reducing agents with notable advantages in terms of both efficiency and ecological 

impact. The incorporation of molasses aligns with a green synthesis approach, emphasizing the 

eco-friendly nature of our methodology. 

 

 

Figure III.3. Schematic presentation of ZnO green synthesis. 

III.2.3.  Preparation of ZnO/rGOx photocatalysts  

ZnO/rGOx photocatalysts were synthesized using a hydrothermal method through varying the 

weight ratios of rGO to ZnO at 5%, 10%, and 15% by weight of rGO to ZnO. In this process 1 

gram of ZnO powder and an appropriate mass percent of Graphene were dispersed in a solution 
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of double distilled water and ethanol, the obtained mixture was treated for 1 h in an ultrasonic 

bath and stirred for another 2 h to obtain homogeneous suspension. The resulting suspension was 

then placed in a Teflon-sealed autoclave and kept for 12 h at 120 °C. The resulting product was 

washed four times using a combination of distilled water and ethanol using a centrifuge and 

dried in an oven at 65 °C for 24 h in the manner indicated by the diagram (figure III.3). 

 

 

Figure III.4.  Schematic diagram for preparing the ZnO/rGOx nanocomposite 
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IV.  Results  

IV.1.1.  Characterization 

IV.1.1.1.  X-Ray diffraction  
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Figure III.5. XRD patterns of pure ZnO and ZnO-rGOx. 

In Figure III.5, the XRD patterns of both pure ZnO and the ZnO/rGO nanohybrid photocatalysts 

are presented. The observed diffraction peaks in the XRD pattern of the synthesized 

photocatalysts closely match the characteristic pattern of the hexagonal wurtzite phase of ZnO, 

as indicated by its reference in the JCPDS database under No. 36-1451 [20]. Specifically, the 

XRD pattern displays distinct peaks at various 2θ angles, namely 31.6°, 34.28°, 36.11°, 47.4°, 

56.5°, 62.5°, 67.8°, 68.9° and 76.8°. These peaks correspond to the 100, 002, 101, 102, 110, 103, 

112, 201 and 004 crystalline planes of ZnO [21]. The presence of distinct diffraction peaks at 

26.2° (002) for rGO strongly indicates the effective anchoring of ZnO nanoparticles onto the 

rGO [22]. This alignment of observed peaks with the standard wurtzite phase of ZnO confirms 
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the crystalline structure of the synthesized photocatalysts and suggests the successful formation 

of ZnO/rGO nanohybrids. The crystallite sizes were calculated by using the Scherrer formula. 

Table III.1. The crystallite size of the different samples.  

Samples Crystallite Size (nm) 

ZnO non calcined 13.99 

ZnO calcined at 550 °C 14.18 

ZnO/rGO 5% 21.42 

ZnO/rGO 10% 20.06 

ZnO/rGO 15% 17.31 

 

ZnO/rGO nanohybrids were observed to have bigger crystallite sizes when compared to pure 

ZnO. When ZnO is combined with rGO, the interactions between ZnO nanoparticles and rGO 

lead to a restructuring of ZnO particles. This particular process promotes the growth of pre-

existing crystallites, leading to a subsequent increase in their size dimension. This result shows 

that larger crystal sizes can be associated with improved photocatalytic activity or enhanced 

performance in specific applications. However, it is essential to understand the underlying 

mechanisms to design and optimize nanomaterials, according to the specific requirements of 

each application [23]. 

IV.1.1.2.  Fourier-transform infrared spectroscopy  

The absorption bands in the FTIR spectrum of the ZnO-rGO composite presented in figure II.6 

reveal crucial insights. The absorption band in the range of 3600-3200 cm⁻¹ corresponds to the 

stretching vibrations of (OH) groups, either from water or hydroxyl groups linked to the 

composite's surface from moisture, polyphenols and some N-H of amine overlapping [24], 

bearing significance for surface chemistry [25]. The band at 2340 cm⁻¹ is associated with the 

absorption of atmospheric carbon dioxide (CO2), originating from the natural CO2 content in the 

air during the analysis, contributing to specific spectral features [26] or aldehyde peak due to 

C=O stretching vibration [27]. The 1700-1600 cm-1 region is associated with the angular 
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deformation vibration (OH) groups of adsorbed water groups [28], while the range of 1600-1500 

cm-1 is linked to vibrations of carbonyl groups or other bands (C=C), (−CO) and (C=O) from 

organic residue of the extract (the phenolic and flavonoids) absorbed on the surface of ZnO [29]. 

The 1500-1400 cm-1 region may be attributed to vibrations involving hydroxyl groups (O-H) or 

carboxylate of zinc groups [30]. Lastly, the band around 500-400 cm⁻¹ is the fingerprint region 

which represents the bending and deformation vibrations of Zn-O of the crystalline lattice of 

nanoparticle metal oxide ZnO [31], consistent with previous findings in the literature [32], The 

decrease in infrared peak intensity upon adding reduced graphene oxide (rGO) to zinc oxide 

(ZnO) can be attributed to various factors associated with composite formation. rGO's strong 

adsorption capacity may lead to the adsorption of ZnO particles onto rGO sheets, reducing ZnO 

availability for infrared signals. Interactions between rGO and ZnO induce changes in crystal 

structure, affecting vibrational modes and peak characteristics. The incorporation of rGO into the 

ZnO matrix forms a composite with unique properties, influencing infrared peak intensities. 

Additionally, rGO's conductive nature affects electronic properties, altering ZnO's interaction 

with infrared radiation and contributing to changes in peak intensity. Moreover, the difficulty in 

distinct between ZnO and ZnO/rGO may be due to the reduction of graphene during the 

preparation of the process. 
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Figure III.6.  FT-IR spectra of ZnO and ZnO/rGOx nanocomposite. 
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IV.1.1.3.  Scanning electron microscopy images 

The morphology of ZnO/rGO was assessed using scanning electron microscopy (SEM). In 

Figure 7.a, it is evident that the ZnO nanoparticles exhibit diverse shapes. This phenomenon can 

be attributed to the interaction with organic components from the molasses extract. Additionally, 

Figure.b clearly shows that the ZnO nanocrystals are evenly spread out on the graphene sheets 

(marked with a red circle). This confirms the formation of the ZnO/rGOx heterojunction [33]. 
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Figure III.7. SEM images of (a) Pure ZnO, (b) ZnO/rGO10%. 

IV.1.1.4.  UV-visible diffuse reflectance spectroscopy  

The optical characteristics of the ZnO and ZnO/rGO samples were assessed via UV-visible 

diffuse reflectance spectroscopy (DRS). As depicted in Figure 5, the DRS spectra of the ZnO 

samples demonstrated pronounced light absorption in the ultraviolet region [34]. This absorption 

phenomenon originates from electron transitions occurring between the valence and conduction 

bands of ZnO when subjected to UV light irradiation.  

The initial band gap value for as-synthesized ZnO nanoparticles is 3.19 eV. However, after 

undergoing calcination at different temperatures (450°C, 550°C, and 600°C), the band gap 

decreases to 3.18 eV, 3.17 eV, and 3.15 eV, respectively. This decrease is linked to changes in the 

crystallite size of the nanoparticles, which tends to increase with higher calcination temperatures. 

Essentially, as the calcination temperature rises, the nanoparticles grow larger, leading to a 

smaller band gap [35].  

b 
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When rGO is added to ZnO, the value of ZnO's bandgap energy decreases from 3.15 to 2.93 eV 

and this reduction is due to several factors. rGO acts as a dopant, introducing additional charges 

into the material's structure, which shifts energy levels and reduces the bandgap energy [36]. 

Additionally, as a good conductor of electricity, rGO can interact with ZnO, causing a 

redistribution of electronic energy levels and potentially altering the crystalline structure of the 

composite material [37]. This reduction in the bandgap energy makes the composite material 

more conductive, which can be advantageous in various applications.  
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Figure III.8.  Band gap energies and UV-vis diffuse reflectance spectra of ZnO at different 

calcination temperatures and ZnO/rGO 10%. 

IV.1.2.  Photocatalytic results  

IV.1.2.1.  Effect of calcination temperature on the photocatalytic activity of 

ZnO NPs   

To investigate the effect of calcination temperature on the photocatalytic activity of the ZnO 

semiconductor, a series of ZnO samples were prepared by the green method at different 

calcination temperatures. The photocatalytic activity was examined by the photodegradation of 
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MB. The photocatalytic performance of calcined ZnO (98% for ZnO calcined at 550°C) 

significantly increases compared to that of non-calcined ZnO (73.6%). The activity of the ZnO 

NPs increased when the calcination temperature increased from 450 to 550°C but slightly 

decreased when the calcination temperature increased to 600 °C. Further, the rate constant “k” 

value for ZnO calcined at 550 °C is 0.01565 min-1 against 0.00393 min-1 for non-calcined ZnO 

indicating higher photocatalytic activity for catalyst calcined at 550 °C (Figure III.9). The “k” 

values are shown in Table 2. The influence of calcination temperature on the photocatalytic 

activity of ZnO is related to the morphological, optical, and surface properties of the ZnO NPs 

[38,39].  

Table III.2 The rate constant ‘k’ of MB degradation with ZnO calcined at different temperatures. 

Samples No calcined 600°C 550 °C 450 °C 

K (min-1) 0.0039 0.0106 0.0156 0.0103 

R2 0.94113 0.99285 0.99026 0.99124 
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Figure III.9. Effect of calcination temperature on the photocatalytic activity of ZnO for the 

photocatalytic degradation of MB (Neutral pH, catalyst 1g/L, [MB] = 10 mg/L). 
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IV.1.2.2.  Photocatalytic activity of ZnO/rGOx 

The photocatalytic effectiveness of both ZnO (calcined at 550°C) and ZnO/rGO nanohybrid 

photocatalysts was assessed through the degradation of MB under UV light irradiation, as 

illustrated in figure III.10. In comparison, pure ZnO achieved a degradation of only 85.4% for 

MB after 140 minutes of irradiation. In contrast, the ZnO/rGO nanohybrids exhibited 

significantly enhanced photocatalytic performance, with degradation efficiencies of 96%, 100%, 

and 88.6% for ZnO/rGO5, ZnO/rGO10, and ZnO/rGO15, respectively, after 140 minutes of 

irradiation. Therefore, the incorporation of rGO resulted in a notable reduction in the time 

required for the complete degradation of MB, decreasing it from 240 minutes to 140 minutes. 

Table 3 shows that the reaction rate constant "k" exhibits an ascending trend with values of 

0.0156, 0.0106, 0.0272, and 0.0103 for ZnO, ZnO/rGO 5%, ZnO/rGO 10%, and ZnO/rGO 15%, 

respectively.  

The deliberate selection of ZnO calcined at 550°C as the reference for the entire study, including 

compounds coupled with rGO, was based on preliminary photodegradation tests at varying 

calcination temperatures. Notably, the optimal result of 86.6% degradation was consistently 

achieved at 550°C (ZnO calcined at 550°C without coupling with rGO). 

It is crucial to note that rGO acts as an electron trapper, thereby preventing their recombination 

within the semiconductor material. This characteristic of rGO is pivotal as it promotes a faster 

and more efficient degradation of the dye. By averting electron recombination, rGO enables the 

excited electrons to interact with the dye, thus facilitating chemical degradation reactions [40]. 

Furthermore, rGO possesses a large specific surface area and a two-dimensional sheet-like 

structure, allowing for increased adsorption of organic pollutants on its surface. This creates 

more active sites for photocatalytic reactions to occur [41]. 

Table III.3. The rate constant ‘k’ of MB with ZnO/rGOx. 

 

 

Samples ZnO ZnO/rGO5% ZnO/rGO10% ZnO/rGO15% 

K (min-1) 0.0156 0.0106 0.0272 0.0103 

R2 0.99026 0.99628 0.99944 0.98212 
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Figure III.10 Photodegradation of MB dye by ZnO/rGOx (x= 5, 10 and 15 %) (Neutral pH, 

catalyst 1g/L, [MB] = 10 mg/L). 

IV.1.2.3.  Effect of catalyst dosage 

The quantity of catalysts is a crucial factor in the production of active radicals in photocatalytic 

degradation reactions. However, an excessive amount of catalyst can impede the penetration of 

incident light, hence potentially reducing the degradation process. Therefore, the influence of 

catalyst dosage on the degradation of MB ([MB] = 10 mg/L) was systematically investigated by 

varying the quantity of ZnO/rGO nanocomposite within the range from 0.25 g/L to 2 g/L, while 

maintaining neutral pH conditions and subjecting the reaction to 140 minutes of irradiation. As 

the catalyst dosage was incrementally increased from 0.25 to 1 g/L, the degradation efficiency 

experienced a corresponding rise, progressing from 62.3% to reach a complete degradation of 

100%. However, when the catalyst dosage was further elevated to 2 g/L, the degradation 

efficiency exhibited a decrease to 67.4% (figure III.11). This observed enhancement in 

degradation with the initial increase in catalyst dosage, from 0.25 to 1 g/L, can be attributed to 

the greater available catalyst surface area. This increased surface area facilitated the enhanced 
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absorption of photons, thus promoting the photocatalytic process through the greater number of 

(e-, h+) pairs resulting in the generation of more active radicals [42]. The reduction in the 

degradation rate beyond a catalyst dosage of 1 g/L can be attributed to the increasing solution 

turbidity and the adverse effects associated with surpassing the optimal photocatalyst dose. This 

finding is supported by the First-order rate constants shown in Table 4, for various catalysts 

which give trend values of 0.0156, 0.0106, 0.0272, and 0.0103 for ZnO, ZnO/rGO 5%, ZnO/rGO 

10%, and ZnO/rGO 15%, respectively. 

These effects encompass particle agglomeration, diminished UV light penetration, restricted 

mobility of reactants, increased recombination of electron-hole pairs, saturation of active surface 

sites, and the emergence of undesired side reactions. Consequently, precise control of 

photocatalyst dosage is imperative to mitigate these issues and fine-tune the photocatalytic 

process for applications [43].  

Regarding the evolution of K values, a notable observation was the increase in the kinetic 

constant only for doses from 0.25 to 1 g/L, followed by a decrease at the 2 g/L dose. The 

correlation between methylene blue degradation and the kinetic constant derived from linear 

regression takes on particular significance. It sheds light on the relationship between the 

efficiency of the degradation process and the speed of that degradation. The kinetic constant, 

representing the reaction rate in the degradation process, holds central importance. A higher 

kinetic constant has been indicative of a rapid reaction, signaling increased efficiency in 

methylene blue degradation. Conversely, a lower kinetic constant may suggest a slower reaction, 

potentially linked to a decrease in efficiency in the degradation process. This nuanced 

interpretation underscores the crucial importance of kinetic constant in a comprehensive 

understanding of the kinetics of methylene blue degradation. 

Examining the K values for each dose from Table 4 (0.25 g/L, 0.5 g/L, 1 g/L, 2 g/L) revealed a 

significant variation. K values increased from 0.0115 to 0.0272 for doses from 0.25 to 1 g/L, 

suggesting a positive correlation between the substance concentration and the degradation rate. 

However, the K value then decreased to 0.0082 for the 2 g/L dose. This fluctuation highlights the 

specific influence of concentration on the degradation kinetics, reinforcing the importance of the 

kinetic constant in evaluating the efficiency of the methylene blue degradation process. 

Table III.4. Rate constant K of degradation of MB with different dosages of ZnO/rGO. 
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Figure III.11 Effect of catalyst dose on photodegradation of MB by ZnO/rGO10% (Neutral pH, 

[MB] = 10 mg/L). 

IV.1.2.4.  Effect of reaction pH 

In previous studies, researchers have highlighted the significant effect of the initial pH value in 

the reaction mixture, emphasizing its substantial influence on the photocatalytic performance 

[45]. The impact of solution pH on the photocatalytic degradation of MB was investigated at 

initial pH levels of 4, neutral (approximately 7), 8, and 10. Figure III.12 shows that the 

decomposition rate of MB with ZnO/rGO10% catalysis is significantly influenced by the pH of 

the dye solution, with the catalyst exhibiting greater efficiency in a neutral environment. With a 

Dosage(g/L) 0.25 0.5 1 2 

K (min-1) 0.0115 0.0188 0.0272 0.0082 

R2 0.99219 0.99801 0.99944 0.99401 
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degradation rate of 100% at neutral pH, this value decreases to 75% at pH 4. Subsequently, an 

increase in the rates is observed, with 90% and 94% corresponding to pH 9 and 10, respectively. 

The photocatalytic activity of ZnO/rGO10% is typically higher under neutral to slightly basic pH 

values for several reasons. For the most precise assessment, the kinetic degradation constant for 

MB has been computed at various pH values, and these values are delineated in Table 5. First, 

ZnO/rGO10% exhibits greater stability at neutral pH levels, as extremes in acidity or alkalinity 

can lead to rapid dissolution or corrosion, shortening the material's lifespan [46]. Second, at 

neutral pH, the recombination of charge carriers (electrons and holes) is generally reduced, 

allowing photoexcited electrons a better chance to react with other reactive species before 

recombining, thus enhancing photocatalytic efficiency [11]. Third, the balance between surface 

protonation and deprotonation at neutral pH creates a surface conducive to photocatalytic 

reactions by enabling the formation of hydroxyl radicals (•OH) and the generation of electron-

hole pairs (e-/h+) [47]. Lastly, neutral pH conditions are well-suited for degrading a wide range 

of organic pollutants, making them the preferred choice for photocatalytic applications due to the 

equilibrium they strike between material stability and effectiveness in degrading diverse 

pollutants. 

Regarding the evolution of K values (Table 5), The K values for MB degradation exhibit notable 

variations at different pH levels. At pH 4, the observed K value of 0.0079 min⁻¹ indicates a 

relatively slow degradation rate, pointing to reduced efficiency under acidic conditions. This 

could be attributed to the inhibitory effect of excess protons on the degradation process. 

Conversely, at neutral pH, the substantial increase in the K value to 0.0278 min⁻¹ signifies a 

significantly faster reaction rate. This suggests that neutral pH is optimal for methylene blue 

degradation, reflecting higher efficiency compared to acidic conditions. 

Moving to pH 8, the K value of 0.0177 min⁻¹, while lower than at neutral pH, still indicates a 

reasonably efficient degradation process under slightly alkaline conditions. The moderate 

reaction rate at pH 8 suggests effective degradation, though not as rapid as observed at neutral 

pH. 

At pH 10, the K value of 0.0223 min⁻¹ falls between the rates observed at neutral and pH 8. This 

indicates a moderate reaction rate and efficiency in the degradation process under more alkaline 
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conditions. Degradation at pH 10 occurs faster than under acidic conditions but not as rapid as at 

neutral pH. 

The nuanced variations in K values across different pH levels underscore the sensitivity of 

methylene blue degradation kinetics to changes in acidity and alkalinity. The optimal efficiency 

observed at neutral pH highlights the importance of considering environmental conditions in 

understanding and optimizing the degradation process. 

Table III.5. Rate constant K of degradation of MB with ZnO/rGO in different pH. 
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Figure III.12 Effect of reaction pH on photodegradation of MB by ZnO/rGO10% (Catalyst 1g/L, 

[MB] = 10 mg/L). 

pH 4 neutral 8 10 

K (min-1) 0.0079 0.0278 0.0177 0.0223 

R2 0.97781 0.99944 0.97807 0.9538 
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IV.1.2.5.  Cycling test of the photocatalytic degradation of methylene blue 

under UV light 

Photostability stands as a pivotal factor in determining the practical viability of a photocatalyst. 

In a bid to comprehensively evaluate the structural integrity and catalytic endurance of the 

ZnO/rGO10% nanocomposite, a sequence of five successive tests centered around the 

photocatalytic degradation of MB was meticulously executed. The recycling protocol post-UV 

light-assisted MB degradation encompasses several crucial steps. 

Initiating the process, the composite is meticulously recovered through a precision-centric 

centrifugation process following each photocatalytic test. Subsequently, a thorough four-cycle 

washing procedure is set in motion, employing a thoughtfully concocted mixture of distilled 

water and ethanol, culminating in the final cycle using double-distilled water. The material 

undergoes a five-hour UV light treatment in double-distilled water, ensuring the comprehensive 

elimination of any lingering MB residues post-photocatalytic decomposition. Post-UV treatment, 

the ZnO/rGO material is delicately recovered and subjected to a drying regimen at 60 °C for 24 

hours, a crucial step ensuring its preservation for subsequent cycles. This meticulous and 

comprehensive approach serves as a robust framework for assessing the longevity and reusability 

of the ZnO/rGO composite within the realm of photocatalytic applications. Figure III.13 visually 

encapsulates the outcomes of five consecutive cycles of MB photodecomposition, revealing a 

steadfast maintenance of photocatalytic efficiency. This noteworthy finding underscores the 

inherent stability of the ZnO/rGO nanocomposite, emphasizing its resilience and reliability over 

successive photocatalytic test cycles. 
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Figure III.13 Comparative performance of reused ZnO/rGO photocatalyst. 

IV.1.2.6.  Effect of Scavengers  

The resulting impact of these scavengers on the photodegradation of MB using ZnO and 

ZnO/rGO catalysts is visually presented in Figure III.14. Using ethanol as a scavenger to 

sequester •OH radicals give a degradation rate of 31% for ZnO and 31.4% for ZnO/rGO. These 

degradation rates are less than the 100% degradation rate observed in the absence of scavengers 

as displayed in Figure 11. This experiment highlights the principal role of •OH radicals in the 

degradation of MB dye. 

Moreover, the use of ethylenediaminetetraacetic acid (EDTA) as a scavenger for hydrogen ions 

(h+) led to a degradation rate of 33% for ZnO and 38% for ZnO/ rGO, demonstrating the 

substantial contribution of h+ ions in the MB photodegradation process. In addition, the use of 

K2Cr2O7 as a scavenger gives a degradation rate of 59.2% for ZnO, suggesting a significant 

contribution of electron (e-) species in the degradation mechanism. Moreover, it was observed 

that the degradation rate of ZnO/rGO was 11%, indicating that the participation of electrons is 

the primary factor in the degradation of MB when ZnO/rGO is involved in the process. 

The significant difference in response in the presence of e-scavengers between the two systems is 

attributable to distinct degradation mechanisms between ZnO and the ZnO/rGO composite. ZnO, 

as an efficient photocatalyst exposed to UV light, generates electron-hole pairs, producing 
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reactive oxygen species such as hydroxyl radicals (•OH) and superoxides (O2•−). However, ZnO 

can also produce free electrons that react with oxygen species, generating reducing radicals that 

act as scavengers, neutralizing undesirable reactive species. In contrast, the ZnO/rGO composite 

integrates the photocatalytic properties of ZnO with the conductivity of reduced graphene oxide 

(rGO). The rGO acts as an electron acceptor, promoting the effective separation of electron-hole 

pairs generated during photocatalysis. In the presence of rGO, the recombination of electrons and 

holes is reduced, thereby enhancing the overall efficiency of the photocatalytic process. 
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Figure III.14. Effect of scavengers on the photocatalytic activity of ZnO (a) and ZnO/rGO (b) 

(Neutral pH, catalyst 1g/L, [MB] = 10 mg/L). 

 

 

IV.1.2.7.  Degradation kinetic modeling 

To investigate the kinetics of chemical pollutant degradation, it is essential to monitor how 

concentration changes over time in the outlet of a reactor. This involves conducting experiments 

with various initial concentrations of the pollutant. The apparent kinetic constants, denoted as 

kapp, are achieved by analyzing the plot depicting the natural logarithm of the ratio of the 

current concentration to the initial concentration (Ln(C/Co)) as a function of time (figure III.15) 

[44]. 
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Figure III.15. Pseudo-first order apparent constant values for the different initial concentrations 

of MB. 
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Figure III.16. Langmuir-Hinshelwood kinetic plot for the photocatalytic decolorization of 

methyl blue. 

The calculated constants from the Langmuir Hinshelwood model are kr = 0.9162 mg/L and K= 

0.04257 L/mg. It is observed that kr is greater than K indicating the differences between the 

photoabsorption and photodegradation reactions. According to the findings of the kinetic study, 

the Langmuir Hinshelwood model is confirmed in the MB photodegradation. 

IV.1.2.8.  Proposed photodegradation mechanism 

The photodegradation mechanism of MB using a ZnO/rGO nanocomposite under UV light 

involves a series of intricate steps. When exposed to UV light, ZnO nanoparticles absorb 

photons, leading to the generation of electron-hole pairs (e⁻-h⁺) due to bandgap excitation [45]. 

These excited electrons migrate to the nearby rGO sheets, preventing recombination with holes 

and enhancing their mobility. Simultaneously, MB ionic molecules in the solution are adsorbed 

onto the ZnO/rGO composite surface through electrostatic interactions [46]. 

ZnO + UV light → ZnO* (excited) + e⁻ + h⁺                                   (a) 
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e⁻ (on ZnO*) → e⁻ (on rGO)                                                            (b) 

The photocatalytic degradation process begins as the excited electrons on the rGO sheets 

participate in redox reactions with adsorbed oxygen species (O₂) or hydroxyl ions (OH⁻) present 

in water, yielding superoxide radicals (•O₂⁻) and hydroxyl radicals (•OH) [47]. These reactive 

radicals are highly oxidative and initiate attacks on the adsorbed MB molecules, breaking them 

down into smaller, less colored fragments. 

e⁻ (on rGO) + O₂ → •O₂⁻                                                                 (c) 

e⁻ (on rGO) + H₂O → •OH                                                              (d)  

As this degradation process continues, MB molecules are progressively transformed into non-

toxic byproducts, such as carbon dioxide and water.  

a) Oxidation by Superoxide Radicals: •O₂⁻ attacks MB, causing its breakdown: 

 •O₂⁻ + MB (on ZnO/rGO) → Degraded Products                          (e)                                     

b) Oxidation by Hydroxyl Radicals: •OH radicals also attack MB, further breaking it down: •OH 

+ MB (on ZnO/rGO) → Degraded Products.                                 (g) 

Throughout this cycle, electrons back to the ZnO nanoparticles to fill the electron vacancies 

(holes) created during the initial excitation, facilitating the sustained photocatalytic activity of 

the composite [48]. 

⁺ + e⁻ (on rGO) → ZnO                                                                  (h) 

This detailed mechanism underscores the synergistic actions of ZnO and rGO in harnessing UV 

light for the efficient degradation of MB, with ZnO serving as the photocatalyst and rGO 

enhancing electron transfer and minimizing electron-hole recombination, resulting in the 

effective removal of organic pollutants from the solution. Figure 14 summarizes the degradation 

mechanism. 
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Figure III.17. The photodegradation mechanism of methylene blue. 

 

IV.2.  Comparison of the photocatalytic efficacy of commercial TiO2 P25 

and ZnO nanoparticles synthetized by deferent methods 

 A thorough comparative analysis was conducted to assess the photodegradation efficiency of 

ZnO-NPs) relative to TiO2 P25. The detailed results, outlined in Table 6, cover a comprehensive 

examination of ZnO-NPs prepared through various alternative methods. Notably, previously 

documented ZnO-NP catalysts employed diverse synthesis approaches, with a particular focus on 

biological methods. The evaluation of their photocatalytic activity involved the use of MB as the 

selected dye, contributing a valuable dimension to the multifaceted exploration of catalyst 

performance. 
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Table III.6. Comparison of the photocatalytic efficacy of commercial TiO2 P25 and ZnO 

nanoparticles 

Catalyst Preparatio

n Method/ 

Plant 

Dye Irradiatio

n 

 Particle 

Size (nm) 

Irradiatio

n 

Time/ 

min 

Catalyst 

Dose/ 

g L−1 

Dye 

Conc./ 

mg 

L−1 

Degradatio

n 

Efficiency/

% 

Ref. 

P25 

Degussa 

 MB UV lamp <21 60 1 10 41 [49] 

ZnO@O

FE 

Biosynthesi

s 

O. europaea 

MB Sunlight 24.3 180 1 10 75 [50] 

ZnO Sol gel MB UV (Hg 

lamp 

365nm) 

25 120 0.33 10 37 [51] 

ZnO Biosynthesi

s/ 

Syzygium 

cumini 

MB UV (365 

nm) 

25-30 60 2 1-2 84 [52] 

ZnO-

Bi2O3 

Co-

precipitation 

RO1

6 

UV lamp 29.6 100 0.2 100 28 [53] 

ZnO Biosynthesi

s/ Date 

Syrup 

MB UV lamp 14 140 1 10 86.6 present 

work 

ZnO/rGO Hydrotherm

al 

MB UV lamp 20 140 1 10 100 This 

work 

 

Table 6 unfolds a comprehensive panorama of catalysts sourced from diverse studies, providing 

nuanced insights into their unique photodegradation efficiencies. Amidst this varied array, our 

ZnO nanoparticles, intricately synthesized through a distinctive biological process involving 

Date Syrup, emerge as beacons of excellence. Their extraordinary efficacy is accentuated when 

juxtaposed with other materials scrutinized in separate investigations. 
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A meticulous exploration of the entries reveals intriguing dynamics. For example, the initial 

catalyst, P25 Degussa, showcased a 41% degradation efficiency under UV lamp irradiation. In 

stark contrast, ZnO@OFE, synthesized via biosynthesis from Olea europaea, demonstrated a 

significantly higher efficiency of 75% under sunlight exposure, underscoring the inherent 

advantages of employing biologically synthesized ZnO nanoparticles, especially in harnessing 

solar energy for effective photocatalysis. 

Delving deeper into the entries, which include ZnO synthesized through sol-gel and various 

biosynthetic methods, such as those incorporating Syzygium cumini and Date Syrup, reveals a 

captivating spectrum of particle sizes, irradiation times, and degradation efficiencies. For 

instance, ZnO synthesized through sol-gel methods showcased a degradation efficiency of 37%, 

employing UV (Hg lamp 365nm) irradiation. Additionally, ZnO synthesized via biosynthesis 

from Syzygium cumini exhibited a particle size range of 25-30 nm, an irradiation time of 60 

minutes, and achieved a degradation efficiency of 84% (The initial concentration of MB is 2 

mg/L) under UV (365 nm) irradiation. Furthermore, the table includes entries like ZnO-Bi2O3, 

synthesized through co-precipitation using RO16 as the dye, with a particle size of 29.6 nm, an 

irradiation time of 100 minutes, and a remarkable degradation efficiency of 28%. It is essential to 

note that despite ZnO-Bi2O3 degrading 28 mg/L of RO16, this does not necessarily imply 

superiority to our material. This is because MB is often considered relatively stable and 

persistent, potentially making its degradation more challenging compared to RO16.  

The standout contribution of our study becomes evident when scrutinizing the ZnO nanoparticles 

synthesized with Date Syrup. Boasting an impressive degradation efficiency of 86.6% under UV 

lamp irradiation for 140 minutes, our catalyst surpasses its ZnO counterparts in the table. 

Furthermore, the hydrothermally synthesized ZnO/rGO composite in our study emerges as a 

pinnacle of photocatalytic capability, achieving a complete degradation efficiency of 100%. 

In essence, our comparative analysis not only underscores the superior photodegradation 

efficiency of our ZnO nanoparticles, particularly those synthesized with Date Syrup, but also 

positions them as promising candidates for diverse applications in photocatalysis. Beyond the 

numerical outcomes, the richness of this exploration lies in the diverse synthesis methods 

employed, offering broader implications for the potential utilization of ZnO nanoparticles in 

various environmental and industrial contexts. 
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Chapter IV. First-Time Green Synthesis, Characterization, and 

Photocatalytic Activity of Bi12ZnO20, Bi2O3 and Bi12ZnO20/Bi2O3 

IV.1.  Introduction  

Photocatalysis has emerged as a highly effective technology for the degradation of organic 

pollutants, providing sustainable solutions for water purification and wastewater treatment [1]. 

By harnessing light energy to produce reactive radicals capable of decomposing contaminants, 

this approach demonstrates significant environmental potential [2]. However, current 

photocatalysts face limitations, particularly low efficiency under visible light and rapid charge 

carrier recombination, which hinder their performance [3]. Therefore, ongoing research is 

essential to address these challenges. The development of new advanced semiconductors with 

enhanced light absorption properties and improved charge separation kinetics is crucial to 

optimizing photocatalytic efficiency and enabling widespread industrial application. 

Bismuth oxide (Bi₂O₃) is a material of considerable versatility, existing in several distinct 

polymorphic forms, each exhibiting unique characteristics [4]. At lower temperatures, Bi₂O₃ 

adopts a monoclinic phase (α-Bi₂O₃) [5]. As the temperature increases to 730 °C, α-Bi₂O₃ 

transitions to a cubic phase (δ-Bi₂O₃) [6], which remains stable up to its melting point at 825 °C. 

Upon cooling, δ-Bi₂O₃ can transform into two metastable phases: the tetrahedral phase (β-Bi₂O₃) 

or the face-centered cubic phase (γ-Bi₂O₃) [7]. The γ-Bi₂O₃ phase, also known as sillenite, is 

stabilized by a small amount of various impurities and forms a compound with a structure of the 

type Bi₁₂MxO₂₀±d [8], where M represents elements from groups II–V of the periodic table (e.g., 

Zn, Pb, Al, Si, Ge) [9]. The oxidation states of the cation M range from +2 to +5, and the sillenite 

structure maintains charge balance through local distortions within the bismuth-oxygen 

framework [10]. 

These bismuth sillenites, especially Bi₁₂ZnO₂₀, are highly valued for their diverse optical 

properties, including photorefractive, electro-optical, photochromic, and photocatalytic 

characteristics [11]. Their efficacy as photocatalysts under visible light is particularly 

noteworthy, making them significant for environmental applications aimed at pollutant 

degradation [12]. Bismuth oxide's advantageous optical and electronic properties, such as its 

ability to absorb visible light and generate free radicals, are crucial for effective photocatalysis. 
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The growing interest in nanomaterials further amplifies the potential of bismuth oxide in 

enhancing photocatalytic processes [13]. 

Recent advancements in semiconductor coupling technology have proven to be a highly effective 

approach for improving the separation of photo-generated electron-hole pairs, thereby enhancing 

photocatalytic performance [14]. This strategy has been shown to significantly boost the 

efficiency of photocatalysts by facilitating better charge carrier separation, which is crucial for 

achieving higher photocatalytic activity [15]. By integrating different semiconductor materials, it 

is possible to exploit synergies between their distinct properties, leading to superior 

photocatalytic capabilities compared to individual semiconductors [16]. 

The synthesis of Bi₂O₃ and Bi₁₂ZnO₂₀ nanoparticles has been extensively explored through a 

variety of methods, including sol-gel combustion, co-precipitation, combustion, solvothermal, 

thermal decomposition, seed growth, hydrothermal techniques. With increasing environmental 

concerns, there is a rising interest in eco-friendly synthesis approaches for inorganic materials. 

These green synthesis methods typically involve using natural extracts as stabilizing agents and 

water as a solvent, offering a more sustainable and environmentally conscious alternative to 

traditional preparation techniques.  

This chapter presents an innovative study on the green synthesis of Bi12ZnO20-type selenite, with 

in-depth characterization by XRD, FTIR, SEM, and energy gap analysis. The initial results 

obtained revealed promising photocatalytic activity in the degradation of the Beibrich Scarlet 

dye. To optimize the catalytic efficiency of Bi12ZnO20, the addition of Bi2O3 was carried out, 

maintaining the same synthesis method and varying the percentages of Bi2O3. This approach 

achieved complete degradation of BS in 80 minutes, demonstrating a significant improvement in 

photocatalytic performance. 

IV.2.  Experiment  

IV.2.1.  Prickly pear peel extract preparation  

The preparation of the prickly pear peel extract was carried out through the following steps: 

Initially, the peel was thoroughly washed three times with distilled water. The washed peel was 

then air-dried until completely dehydrated. Once fully dried, it was subjected to double grinding 

to obtain a very fine powder. A quantity of 10 g of this powder was dispersed in 200 mL of 
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distilled water, followed by stirring for 10 minutes. The mixture was then exposed to ultrasonic 

treatment for 15 minutes at 40°C. After sonication, the solution was filtered and subsequently 

centrifuged for 10 minutes at a speed of 10,000 rpm. A portion of 20 mL of the supernatant was 

used for material synthesis, while the remainder was dried in an oven at 40°C to produce a paste 

for further characterization of the extract. 

IV.2.2.  Synthesis of Bi12ZnO20 and Bi2O3 

The synthesis of Bi12ZnO20 begins with the dissolution of 0.12 mol of bismuth nitrate in 50 mL 

of a 5% nitric acid solution. Simultaneously, 0.01 mol of zinc acetate is dissolved in 30 mL of 

distilled water. After complete dissolution of both salts, the zinc solution is added dropwise to the 

bismuth solution under continuous stirring. Following this, the previously prepared prickly pear 

peel extract is also added dropwise to the mixture, while maintaining strong agitation and heating 

at 50°C for 60 minutes. The mixture is then left under stirring at room temperature for 12 hours, 

during which a white precipitate forms. The precipitate is transferred to a 100 mL autoclave and 

heated in an oven at 120°C for 12 hours to promote the formation of the sillenite phase with 

enhanced crystallinity. After the thermal treatment, the material is washed three times with a 

50/50 water-ethanol mixture, followed by a fourth wash using distilled water alone. The product 

is then dried in an oven at 60°C for 24 hours. The first calcination is carried out at 200°C in 12 

hours. Subsequently, the material is divided into three portions, each subjected to a second 

calcination at 400, 500, and 600°C, respectively, in order to investigate the influence of 

temperature on the material's final properties. 

The synthesis of bismuth oxide Bi2O3 follows the same steps as for Bi12ZnO20, except that zinc 

acetate is omitted. After drying, the material undergoes a single calcination step at 600°C. 

The Bi12ZnO20/ Bi2O3 composite was prepared by mechanical mixing of Bi12ZnO20 and Bi2O3in 

different weight proportions to optimize photocatalytic performance. Four distinct compositions 

were formulated, namely 95% Bi12ZnO20/5% Bi2O3, 90% Bi12ZnO20/10% Bi2O3, 85% 

Bi12ZnO20/15% Bi2O3, and 80% Bi12ZnO20/20% Bi2O3. The two components were precisely 

weighed according to the desired proportions, then mixed using a mortar. This grinding allows 

for a homogeneous dispersion of Bi2O3 particles in the Bi12ZnO20 matrix, promoting optimal 

interaction between the phases to enhance the photocatalytic reactivity of the final composite. 
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IV.3.  Characterization Results  

IV.3.1.  FTIR  

The FTIR results reveal distinct features for each compound studied. For Bi₂O₃, the peak 

observed at 678.24 cm-1 corresponds to the typical Bi-O bond vibrations which are commonly 

found in the 400-800 cm-1 range in infrared spectroscopy [17]. This sharp band suggests a well-

defined crystalline structure with uniform Bi-O bonds, indicative of a stable and ordered 

arrangement [18]. In the case of Bi₁₂ZnO₂₀, a broad peak at 725.85 cm-1 is attributed to both Zn-

O and Bi-O bond vibrations, typically located between 400-700 cm-1 and 400-800 cm-1, 

respectively. This suggests a more complex crystalline structure, possibly reflecting the 

interaction between these two types of bonds [19]. Additionally, the peak at 1089.46 cm-1 could 

be associated with phonon vibrations, secondary vibrational modes, or specific structural defects 

within the Bi₁₂ZnO₂₀ compound, hinting at deviations from perfect crystallinity [20]. 

In the mixed compound Bi₁₂ZnO₂₀/Bi₂O₃, the peak at 706.97 cm-1 likely represents hybrid 

vibrational modes arising from the interaction between Bi₁₂ZnO₂₀ and Bi₂O₃. This suggests that 

the coupling of these two compounds leads to new vibrational characteristics that differ from 

those of the individual components. The small peak observed at 1079 cm-1, while similar to the 

peak in Bi₁₂ZnO₂₀, indicates subtle changes in the vibrational modes of Bi₁₂ZnO₂₀ due to its 

interaction with Bi₂O₃. These findings highlight the complex interactions between the 

compounds and suggest possible structural modifications resulting from these interactions, 

contributing to the unique properties of the composite material. 
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Figure IV.1. FTIR spectra of Bi₁₂ZnO₂₀, Bi₂O₃ and Bi₁₂ZnO₂₀/ Bi₂O₃. 

IV.3.2.  The X-ray diffraction XRD 

The XRD data for Bi₂O₃ reveal a series of well-defined peaks, primarily observed at 2θ angles of 

26°, 27°, 27.5°, 27.7°, 28.1°, 33.3°, 35.2°, 37.66°, 46.5°, 48.7°, 52.6°, 58°, and 94.5°, with the 

most intense peak occurring at 27.5°. These diffraction peaks are characteristic of the α-Bi₂O₃ 

phase [6], a monoclinic structure that is commonly stable at room temperature. The sharpness 

and distinct nature of the peaks suggest a high degree of crystallinity in the sample, with the α 

phase being the predominant form under the experimental conditions [21]. Although other 

polymorphs of Bi₂O₃, such as β (tetragonal), γ (cubic), and δ (cubic), may exhibit similar 

diffraction patterns, the dominance of the α-phase is strongly supported by the matching peak 

intensities and positions [22]. 

In the case of Bi₁₂ZnO₂₀, the XRD pattern reveals characteristic diffraction peaks at 2θ angles of 

27.7°, 26°, 27°, 27.5°, 28.1°, 29.3°, and 30.6°, along with additional peaks at 33.3°, 35.2°, 

37.66°, 46.5°, 48.7°, 52.6°, 58°, and 94.5°. These peaks align closely with standard diffraction 

data for Bi₁₂ZnO₂₀, confirming the presence of a well-ordered crystalline phase [23]. The slightly 
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broader peak profiles in comparison to Bi₂O₃ may indicate the presence of structural complexity 

or slight variations in the lattice due to the incorporation of zinc atoms, which can modify the 

bond lengths and lattice parameters in the crystal structure [24]. 

When the two materials, Bi₁₂ZnO₂₀ and Bi₂O₃, are combined, the resulting XRD pattern closely 

resembles that of Bi₁₂ZnO₂₀ alone, with diffraction peaks appearing at nearly identical 2θ 

positions. The peaks corresponding to the mixed sample primarily reflect the crystalline structure 

of Bi₁₂ZnO₂₀, which constitutes 90% of the mixture. The minor presence of Bi₂O₃ (10%) does not 

significantly alter the dominant crystalline phase, as evidenced by the persistence of Bi₁₂ZnO₂₀’s 

characteristic peaks. The lack of significant shifts or additional peaks suggests that the Bi₂O₃ 

phase remains relatively amorphous or poorly crystalline in the mixture, while Bi₁₂ZnO₂₀ retains 

its structural integrity as the primary component. This finding underscores the dominant role of 

Bi₁₂ZnO₂₀ in the mixed sample, with minimal disruption from the small proportion of 

Bi₂O₃.These observations confirm the high degree of crystallinity and stability of Bi₁₂ZnO₂₀ in 

the mixture, while the presence of Bi₂O₃, though detectable, does not substantially impact the 

overall diffraction pattern or the structural characteristics of the composite. 
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Figure IV.2. XRD patterns of  Bi₁₂ZnO₂₀, Bi₂O₃, and the composite Bi₁₂ZnO₂₀/Bi₂O₃.  

Table IV.1. The average crystallize size and lattice parameter of Bi₁₂ZnO₂₀, Bi₂O₃ and Bi₁₂ZnO₂₀/ 

Bi₂O₃. 

2 Theta intesty FWHM  d (hkl) a  c D D moy (nm) 

27.61745 22.84437 0.3083 0.322732 0.372658   26.53496   

33.30744 19.5979 0.50571 0.268784   0.537568 16.39696 17.6638755 

52.32021 14.03597 0.87984 0.174718     10.0597   

27.54745 19.04628 0.27414 0.323536 0.373587   29.83695   

33.3144 22.5479 0.36205 0.26873   0.537459 22.90363 19.7672036 

52.60021 11.83597 1.35064 0.173854     6.561031   

                

27.56971 23.22683 0.27456 0.32328 0.373291   29.79273   

33.31119 22.64648 0.35425 0.268755   0.53751 23.40773 25.8696506 

46.50773 10.09773 0.35425 0.195109     24.40849   
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The crystallite sizes for Bi₁₂ZnO₂₀ (17.66 nm), Bi₂O₃ (19.77 nm), and their physical mixture 

(25.86 nm) are presented in Table IV.1. In a physical mixture, the crystallites of both compounds 

can interact in a complex manner, especially when the materials are well-dispersed and mixed at 

the nanometric scale. The crystallite size in the mixture may increase compared to the individual 

components due to partial agglomeration or particle reorganization, driven by the interaction 

between the two phases. Additionally, contact zones between crystallites may form through 

mixing, resulting in stronger interactions that can alter the overall morphology and the observed 

particle size. 

IV.3.3.  Scanning electron microscopy images (SEM)  

SEM images presented in Figures a, b, and c illustrate the surface morphology of the samples 

Bi₁₂ZnO₂₀, Bi₂O₃, and the composite Bi₁₂ZnO₂₀/Bi₂O₃, respectively, with magnifications of 20, 

10, 3, and 2 micrometers. The image of Bi₁₂ZnO₂₀ highlights well-defined cubic crystals 

characteristic of the sillenite phase, confirming the expected crystalline structure for this 

compound. These cubic crystals exhibit clear and regular features, typical of sillenite, reflecting 

the high quality of crystallization. 

In contrast, the image of Bi₂O₃ reveals a heterogeneous morphology with structures resembling 

worm-like formations, indicative of a semi-amorphous structure. For the Bi₁₂ZnO₂₀/Bi₂O₃ 

composite, the cubic shape of Bi₁₂ZnO₂₀ is maintained, with visible surface irregularities 

suggesting that Bi₂O₃ is deposited on the surface of the Bi₁₂ZnO₂₀ crystals. This observation 

confirms the formation of the composite and the interaction between the two distinct phases. 
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Figure IV.3. MEB image of (a) Bi₁₂ZnO₂₀, (b) Bi2O3 and (c) Bi₁₂ZnO₂₀/Bi₂O₃.  

IV.3.4.  The bandgap energies 

The bandgap energies obtained for Bi₂O₃ (2.95 eV), Bi₁₂ZnO₂₀ (3.06 eV), and the 

Bi₁₂ZnO₂₀/Bi₂O₃ composite (3.01 eV) indicate that these materials absorb light in different 

regions of the spectrum. The composite’s intermediate bandgap value of 3.01 eV confirms the 

successful formation of the composite material. Bi₂O₃, with a bandgap of 2.95 eV, is primarily 

activated by visible light, while Bi₁₂ZnO₂₀ (3.06 eV) is more suitable for UV irradiation. 

These results align with the literature, where Bi₂O₃ is often recognized for its performance under 

visible light, and Bi₁₂ZnO₂₀, with its slightly higher bandgap, is typically used under UV light. 

The composite combines the advantages of both materials, enhancing its efficiency across a 

broader spectrum, making it a promising candidate for photocatalytic applications under UV-

visible irradiation. 

c 



 

100 
 

 Chapter IV: Bi12ZnO20/Bi2O3  
 

2.0 2.5 3.0 3.5 4.0

(a
h

v
)

Energy (ev)

 Bi12ZnO20 /Bi2O3

  Bi12ZnO20 

 Bi2O3   

 

Figure IV.4. Band Gap Energy for Various Samples. 

IV.4.  Photocatalytic results  

IV.4.1.  Effect of calcination temperature on the photocatalytic activity of 

Bi12ZnO20  

The results indicate that the calcination temperature significantly impacts the photocatalytic 

activity of Bi₁₂ZnO₂₀. After an initial calcination at 200 °C, a second calcination was performed 

at three different temperatures: 400 °C, 500 °C, and 600 °C. The observed photocatalytic 

degradation rates under UV irradiation were 70% (k = 0.0297 min-1) at 400 °C, 84% (k = 0.0337 

min-1) at 500 °C, and 79% (k = 0.0299 min-1) at 600 °C after 100 minutes. At 400 °C, the 

degradation rate is 70%, suggesting that the sillenite phase is not fully developed at this 

temperature [25], limiting the photocatalytic efficiency. At 500 °C, the degradation rate improves 

to 84%, indicating that the formation of the sillenite phase is optimized at this temperature [23]. 

This temperature allows for more complete crystallization of the material, thereby significantly 

enhancing its photocatalytic performance [26]. 
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However, at 600 °C, the photocatalytic degradation decreases slightly to 79%. Although this 

temperature promotes further crystallization, excessive heating may cause crystal agglomeration 

or structural modifications that could reduce the available active surface area for photocatalysis 

[27]. In summary, a calcination temperature of 500 °C appears to be most favorable for 

maximizing photocatalytic activity due to optimal sillenite phase formation and increased active 

surface area. Higher temperatures, while enhancing crystallization, may lead to negative effects 

on photocatalytic efficiency. 
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Figure IV.5.  Influence of Calcination Temperature on Bi12ZnO20's Photocatalytic Efficiency for 

BS Degradation under Neutral pH Conditions (1 g/L Catalyst, 20 mg/L MB).  

IV.4.2.  Photocatalytic activity of Bi12ZnO20/Bi2O3 (X/Y) 

The experimental results of the photocatalytic degradation of Beibrich Scarlet (BS) using various 

photocatalysts revealed distinct performances for the materials studied. Bi2O3 alone 

demonstrated a degradation efficiency of 66% (k= 0.02262 min-1))for BS in 100 minutes, 

suggesting moderate photocatalytic activity, potentially limited by the high recombination rate of 

photogenerated charge carriers [28]. In contrast, Bi12ZnO20 alone exhibited better performance 
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with an 84% (k = 0.0337 min-1) degradation in 100 minutes, indicating an enhanced ability to 

separate and transfer charges, thus reducing carrier recombination. 

For the composites, the Bi12ZnO20/Bi2O3 mixture with a 95% Bi12ZnO20 and 5% Bi2O3 ratio 

achieved a degradation of 93% in 100 minutes. This result illustrates that even a small 

concentration of Bi2O3 improves the photocatalytic activity of Bi12ZnO20, possibly by reducing 

recombination sites or increasing adsorption. The optimal ratio of 90% Bi12ZnO20 and 10% 

Bi2O3 enabled a complete 100% (0.6314 min-1) degradation of BS in just 80 minutes. This 

finding demonstrates that 10% Bi2O3 maximizes photocatalytic efficiency by minimizing carrier 

recombination while maintaining the high performance [15] of Bi12ZnO20. 

In comparison, the Bi12ZnO20/Bi2O3 ratio of 85%/15% resulted in an 89% degradation in 100 

minutes, showing a slight decrease in efficiency relative to the optimal ratio, possibly due to the 

introduction of additional recombination centers or unfavorable interactions between the 

components. Similarly, the ratio of 80% Bi12ZnO20 and 20% Bi12ZnO20/Bi2O3 produced an 86% 

degradation in 100 minutes, indicating that higher proportions of Bi2O3 may reduce efficiency, 

probably by increasing recombination centers or disrupting component interactions. 

Regarding the physical mixing technology, the use of Bi12ZnO20 and Bi2O3 in a physical blend 

achieved complete 100% degradation of BS in 80 minutes. This result suggests that the physical 

combination of the two photocatalysts is effective, likely due to a synergistic interaction that 

optimizes charge separation. However, physical mixing technology may not guarantee optimal 

interfacial contact, which could limit efficiency in some cases [29]. Nonetheless, in this context, 

the physical mixture demonstrated remarkable performance. 

The addition of Bi2O3 to Bi12ZnO20 significantly enhances photocatalytic activity compared to 

individual photocatalysts. The 90% Bi12ZnO20 and 10% Bi2O3 ratio is identified as optimal, 

providing complete degradation of BS in 80 minutes, underscoring the importance of balancing 

components to maximize photocatalytic efficiency. 
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Figure IV.6. Photocatalytic degradation of BS dye by Bi12ZnO20/Bi2O3 (X/Y) (neutral pH, [BS] 

= 20mg/L, catalyst dose = 1g/L).  

IV.4.3.  Catalyst dosage effect  

The study of the effect of catalyst dosage of Bi12ZnO20/Bi2O3 (90/10) on the degradation of BS 

reveals a direct relationship between catalyst concentration and photocatalytic efficiency. For a 

dose of 0.5 g/L, a degradation of 77.5% (0.03654 min-1) of BS is observed after 100 minutes of 

UV irradiation. Increasing the dose to 1 g/L results in 100% (0.06314 min-1) degradation within 

80 minutes. A further increase in the dose to 1.5 g/L and 2 g/L reduces the degradation time to 60 

and 40 minutes with constant rate 0.08509 min-1 and 0.14785 min-1, respectively, while 

maintaining a complete degradation rate. This improvement with increasing catalyst dose is 

attributed to a greater availability of active sites on the catalyst surface, which promotes the 

increased generation of hydroxyl radicals (•OH) and superoxide radicals (•O₂⁻) [30]. These 

radicals are essential for attacking BS molecules, accelerating their degradation. However, it is 
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important to note that the reduction in degradation time becomes less significant beyond a certain 

concentration. For instance, between 1.5 g/L and 2 g/L, the gain in efficiency is only 20 minutes, 

compared to the 20 minutes gained between 1 g/L and 1.5 g/L. For economic and practical 

reasons, a dose of 1 g/L has been chosen for further experiments. This concentration achieves 

complete degradation of BS while minimizing the required amount of catalyst. Increasing the 

dose beyond this value does not provide a sufficiently significant advantage to justify the 

additional use of photocatalytic material, especially since higher doses may lead to saturation of 

active sites, thereby limiting overall efficiency. At higher concentrations, catalyst agglomeration 

can reduce the specific surface area, thus diminishing photo-absorption efficiency and increasing 

treatment costs. Therefore, a dose of 1 g/L represents an optimal compromise between 

photocatalytic performance and economic feasibility.   
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Figure IV.7. Catalyst dose effect on the degradation of BS (neutral pH, [BS] = 20mg/L , catalyst 

dose = 1g/L). 



 

105 
 

 Chapter IV: Bi12ZnO20/Bi2O3  
 

IV.4.3.1.  pH effect  

The effect of pH on the photodegradation of BS by the Bi12ZnO20/Bi2O3 (90/10) composite 

shows significant variations in efficiency depending on the medium conditions. At neutral pH 

(pH 7), degradation reaches 100% in 80 minutes, indicating that this pH is optimal for 

photocatalytic degradation. This suggests that the surface of the composite is in an ideal state for 

interaction with BS [31], and the production of hydroxyl radicals (⋅OH) is favorable [32]. In 

basic conditions (pH 10), the photodegradation efficiency decreases, with only 74.1% 

degradation after 100 minutes (k= 0.03377 min-1). This reduction can be attributed to a decrease 

in the formation of hydroxyl radicals, which are essential for the photocatalytic reaction, and to a 

negatively charged photocatalyst surface that may limit interaction with BS molecules [33]. At 

pH 8, 83.2% (k= 0.04497 min-1) degradation is observed after 100 minutes, reflecting better 

efficiency compared to pH 10, but still lower than at neutral pH. In acidic conditions (pH 4), 

significant initial adsorption of 51.3% is observed, followed by complete photodegradation (k= 

0.08898 min-1) in just 40 minutes. This high adsorption in an acidic medium can be explained by 

a more positively charged surface of the photocatalyst, facilitating interaction with negatively 

charged BS molecules. Additionally, the high concentration of H⁺ ions favor the formation of 

⋅OH radicals, accelerating the degradation of the dye [34]. In conclusion, neutral pH appears to 

be optimal for BS photodegradation, but acidic conditions allow for faster degradation due to 

prior adsorption. On the other hand, basic conditions, especially at pH 10, reduce photocatalytic 

efficiency. 

 

 



 

106 
 

 Chapter IV: Bi12ZnO20/Bi2O3  
 

-40 -20 0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-L
n

 C
/C

0

Time (min)

C
/C

0

Time (min) 

 pH 4

 Neutral pH

 pH 8

 pH 10

LightDark

 

Figure IV.8. Effect of reaction pH on BS degradation (Catalyst dose = 1g/L, [BS] = 20mg/L).  

IV.4.4.  Initial concentration effect  

The effect of the initial concentration of BS on its photodegradation by the Bi12ZnO20/Bi2O3 

(90/10) composite shows that as the concentration of BS increases, the degradation efficiency 

decreases. At a concentration of 10 mg/L, the degradation is complete (100%) within 40 minutes, 

as the lower amount of BS molecules allows for optimal interaction with the available active 

sites on the photocatalyst. When the concentration increases to 20 mg/L, the degradation still 

reaches 100%, but the time required doubles to 80 minutes, indicating increased competition 

among BS molecules for the photocatalyst’s active sites. At 30 mg/L, the degradation rate 

slightly drops to 96% in 100 minutes, showing that the system is nearing its capacity, with the 

active sites becoming saturated and the generation of ⋅OH radicals no longer sufficient to 

degrade all the BS molecules in the given time. At 40 mg/L, the degradation efficiency decreases 

further to 87% in 100 minutes, likely due not only to catalyst saturation but also to reduced UV 

light penetration into the solution, limiting excitation of the photocatalyst and the generation of 

reactive species needed for degradation. In summary, higher initial concentrations of BS 
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negatively impact the photocatalytic performance, slowing down the reaction and reducing the 

overall degradation rate. 
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Figure IV.9. Influence of the initial concentration of BS dye on photodegradation reaction 

(neutral pH, catalyst dose = 1g/L).  

IV.4.5.  Recycling test of Bi12ZnO20/Bi2O3 for BS degradation  

After the completion of the dye degradation reaction, the colloidal suspension containing the 

catalyst was recovered by centrifugation. The solid catalyst was then carefully washed several 

times with a mixture of distilled water and ethanol (in equal proportions) to remove any residual 

impurities. The washed catalyst was subsequently exposed to UV irradiation for 2 hours to 

ensure the complete removal of any remaining organic residues. Following this purification step, 

the catalyst was dehydrated by drying it at 80°C for 12 hours in an oven. Once dried, the catalyst 

was reused in a new dye degradation reaction, following the same experimental procedure. The 

process of recovery, purification, and reuse of the catalyst was repeated for a total of six 

successive photodegradation cycles, while maintaining the same experimental conditions. At 
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each cycle, the photocatalytic efficiency of the material was evaluated to assess its stability and 

ability to sustain good performance over repeated uses. 

The results show that the Bi12ZnO20/Bi2O3 material maintains excellent photocatalytic stability 

after six successive degradation cycles. As illustrated in the figure IV.10, the dye degradation rate 

slightly decreases, from 100% in the first cycle to 97.7% after the sixth cycle. This minor 

decrease in efficiency, by only 2.3%, indicates that the material experiences very little loss of 

activity during repeated photodegradation cycles. These findings confirm the robustness and 

stability of the Bi12ZnO20/Bi2O3 catalyst, even after multiple uses, which is crucial for long-term 

practical applications. The slight reduction in efficiency can be attributed to factors such as the 

accumulation of by-products or the gradual loss of active sites on the catalyst surface. However, 

this reduction remains negligible, demonstrating that the material retains its capacity to 

effectively degrade the dye over time. 
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Figure IV.10. Six recycling runs of photocatalytic degradation of BS with Bi12ZnO20/Bi2O3 

(Neutral pH, 1 g/L Catalyst, and 20 mg/L MB). 
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IV.4.6.  Scavengers effect  

The results (figure IV.11) of the analysis of the effects of scavengers on the photocatalytic 

degradation of BS in the presence of the Bi12ZnO20/Bi2O3 composite highlights that holes (h⁺) are 

the main reactive species involved in the process. Indeed, the addition of Na2-EDTA, a specific 

hole scavenger, reduces the degradation efficiency to 12%, indicating that charge transfer via 

holes represents a dominant mechanism in photocatalytic degradation. The use of ethanol, a 

hydroxyl radical (•OH) trap, leads to a decrease in degradation efficiency to 44%, highlighting 

the secondary but significant contribution of •OH in the reaction. Furthermore, the addition of 

(K2Cr2O7), which traps electrons (e⁻), reduces the degradation rate to 31%, showing that 

electrons also participate in the mechanism, albeit to a lesser extent. In conclusion, 

photocatalysis by Bi12ZnO20/Bi2O3 is predominantly governed by holes (h⁺), with a 

complementary contribution from hydroxyl radicals and electrons in the overall dye degradation 

process. 
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Figure IV.11. Effects of different scavengers on BS degradation with Bi12ZnO20/Bi2O3. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FEffects-of-different-scavengers-on-MG-degradation-with-12h-4-Br-Bi2O3-composite_fig4_327587926&psig=AOvVaw0kjDMNkcWt564VcAuVqxav&ust=1729157078084000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCNiy2p_KkokDFQAAAAAdAAAAABAE
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IV.4.7.   Degradation kinetic modeling 

The fitting of the Langmuir-Hinshelwood (L-H) model to the photocatalytic degradation of the 

BS dye by the Bi₁₂ZnO₂₀/Bi₂O₃ composite reveals crucial aspects of the reaction kinetics and 

adsorption mechanisms. The reaction rate (kr= 1.4142 mg. L-1) indicates a rapid degradation of 

BS on the surface of the photocatalyst, highlighting the effectiveness of the composite in 

accelerating this decomposition under light irradiation. Simultaneously, the adsorption constant 

(K=0.1396 L.mg-1) indicates a moderate affinity of the dye for the surface of the photocatalyst. 

This value suggests an optimal balance between adsorption and degradation, allowing the 

pollutant to be effectively adsorbed before being degraded, which is essential in photocatalytic 

processes. Moreover, the coefficient of determination (R² = 0.94) demonstrates an excellent 

match between the L-H model and the experimental data, confirming that the degradation of BS 

indeed follows Langmuir-Hinshelwood type kinetics. This highlights the importance of the 

adsorption step in the overall photocatalytic efficiency. In summary, these results highlight the 

remarkable performance of the Bi₁₂ZnO₂₀/Bi₂O₃ composite for photocatalysis, with promising 

potential for various applications in the degradation of organic pollutants under light irradiation. 
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Figure IV.12. representation of Langmuir-Hinshelwood equation for photocatalytic removal of 

BS by Bi12ZnO20/Bi2O3. 
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IV.4.8.  Proposed photodegradation mechanism 

 

Based on the previous analysis, a potential degradation mechanism is proposed. As illustrated in 

Figure IV.13, when the photocatalyst Bi12ZnO20/Bi2O3 is illuminated by UV light, the 

photogenerated electrons (e⁻) are activated and transferred from the conduction band (CB) of 

Bi12ZnO20 to the CB of Bi2O3via the interface of the Bi12ZnO20/Bi2O3 composite. Meanwhile, the 

holes (h⁺) are transferred from the valence band (VB) of Bi2O3 to the VB of Bi12ZnO20. Thus, the 

photogenerated holes accumulate at the heterojunction interface, which promotes the separation 

of the photogenerated electrons and holes. The photogenerated electrons and holes can then react 

as follows: 

On one hand, the electrons react with dissolved oxygen (O₂) in the solution to produce 

superoxide anions (•O₂⁻). On the other hand, the holes (h+) present in the valence band of 

Bi12ZnO20 oxidize water (H2O) or hydroxide ions (OH-) to form hydroxyl radicals (•OH) that 

participate in the degradation of the BS dye. Thus, the Bi12ZnO20/Bi2O3 composite exhibits high 

photocatalytic activity, thanks to the efficient separation of photogenerated charges and the 

production of reactive radicals responsible for the degradation of the dye. 

 

Figure IV.13. Photocatalytic degradation mechanism of BS over Bi12ZnO20/Bi2O3. 

 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FPhotocatalytic-degradation-mechanism-over-TiO2-Bi2O3-composite_fig5_339947683&psig=AOvVaw1jr_dQFpb6OY-AzAs7FoBT&ust=1729587597813000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCOCwz4WOn4kDFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FPhotocatalytic-degradation-mechanism-over-TiO2-Bi2O3-composite_fig5_339947683&psig=AOvVaw1jr_dQFpb6OY-AzAs7FoBT&ust=1729587597813000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCOCwz4WOn4kDFQAAAAAdAAAAABAE
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IV.5.  Comparative Performance of Bi12ZnO20-Based Photocatalysts for 

Pollutant photocatalytic Degradation 

Table IV.2. Photocatalytic performances of various Bi12ZnO20 based materials in the degradation 

of different pollutants.  

Photocatalyst  pollutant Initial 

Concentration  

Light  Degradation rate  Ref  

Bi12ZnO20 RhB 5 mg/L Visible 300 w 98.5 % 70 min [23] 

Bi12ZnO20/Bi2WO6 RhB 10 mg/L Visible 240 w 91 % 90 min [26] 

Bi12ZnO20 CFRM 5 mg/L UV 24 W 80 % 240 min [24] 

Bi12ZnO20/Bi2O3 BS  20 mg/L UV 24 w  100 % 80 min  This work  

 

Table IV.2 compares the performance of different photocatalysts based on Bi12ZnO20 for the 

degradation of various pollutants. Pure Bi12ZnO20 proves effective for moderate concentrations 

of RhB (5 mg/L), with a rapid degradation time of 70 minutes. However, for the CFRM, it only 

reaches 80% degradation in 240 minutes under low UV light. The composite Bi12ZnO20/Bi2WO6 

shows good performance for higher concentrations of RhB (10 mg/L), although the degradation 

time increases to 90 minutes. This reflects its ability to adapt to more rigorous conditions, such 

as increased concentrations, while using slightly lower light power. The composite 

Bi12ZnO20/Bi2O3 is the most efficient among the materials studied, completely degrading the BS 

pollutant (20 mg/L) in just 80 minutes under low UV light. This photocatalyst outperforms the 

others in terms of efficiency, particularly for high concentrations and under moderate light 

conditions. To effectively address high initial concentrations of pollutants, Bi12ZnO20/Bi2O3 

emerges as the most efficient photocatalyst. 
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Chapter V. Streamlined Synthesis of P-g-C3N4@Ti-g-C3N4 

Composite: A Simple Approach to High-Efficiency Photocatalysts 

V.1.  Introduction  

In recent years, there has been a surge in the popularity of photodegradation as a method for 

pollutant remediation [8]. This process involves heterogeneous catalysis, where a semiconductor 

photocatalyst utilizes light energy to break down various environmental contaminants, including 

organic pollutants present in water and air [9]. Photodegradation offers distinct advantages over 

With the progression of socio-economic development, the escalating predicament of environmental 

pollution, particularly attributed to organic wastewater pollutants, has garnered heightened 

attention. The presence of these organic contaminants not only compromises the integrity of aquatic 

ecosystems but also engenders substantial risks to human health [1] . In wastewater treatment, 

various methodologies are employed broadly categorized into physical, chemical, and biological 

techniques. Physical treatment encompasses procedures such as membrane separation, 

sedimentation, and adsorption, each serving to address specific aspects of pollutant removal [2]. 

Removing organics from water through conventional physical treatment methods poses challenges 

[3] , these challenges can be overcome through the implementation of biological treatment 

approaches. Among these, activated sludge and biofilm methods stand out as widely utilized 

solutions [4].   

While the biological treatment process grapples with challenges like steep investment and 

operational expenses, vulnerability to sludge swelling, and protracted pre-preparation periods[5], 

chemical techniques emerge as a potent solution. Chemical methods exhibit the ability to swiftly 

oxidize and thoroughly degrade organic pollutants, presenting an efficient avenue for water 

treatment [6]. Among these methods, advanced oxidation processes (AOPs) stand out as the 

premier choice for addressing organic wastewater. AOPs offer notable advantages including 

superior mineralization efficiency, rapid rates of oxidation reactions, and the absence of secondary 

pollution [2]. Advanced oxidation processes (AOPs), such as Fenton reactions, photocatalytic 

oxidation, electrochemical oxidation reactions and sonochemical oxidation, have the capability to 

completely degrade organic pollutants by generating highly reactive radicals [7].  
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traditional wastewater treatment techniques. For instance, active photocatalysts can completely 

degrade organic pollutants within a short timeframe, typically a few hours, and at ambient 

temperature [10]. Moreover, unlike conventional methods, photodegradation does not lead to the 

formation of secondary toxic byproducts, as organic pollutants are mineralized into harmless 

substances such as water and CO2 [11]. To enhance the efficiency of photodegradation, 

nanomaterials are often surface functionalized for improved degradation of hazardous pollutants 

[12]. 

The inherent properties of pure g-C3N4 lead to a rapid recombination of photogenerated electron-

hole pairs, which significantly restricts their overall photocatalytic efficiency. To address this 

limitation and enhance photocatalytic activity, various strategies have been explored. Metal doping 

[18], including transition metals (Fe, Cu, Ti, and W) and alkali metals (K, Li, Na) , has been shown 

to introduce favorable functionalities to g-C3N4, such as narrowing the band gap, enhancing light  

During the past forty years, a diverse range of semiconductor materials, such as TiO2, ZnO, 

SrTiO3, CdS, BiVO4, Ta3N5, TaON, g-C3N4, Ag3PO4, and their nanostructured counterparts, have 

been widely employed as photocatalysts to harness solar energy for different redox reactions 

[13], Developing a novel photocatalytic material that combines efficiency, abundance, stability, 

and ease of synthesis poses a significant challenge. Recently, considerable attention has been 

directed towards utilizing certain 2D materials with exceptional properties for various 

applications, spanning energy storage and generation [14], chemical sensing, electronics, optics, 

and environmental cleanup. Among these materials, graphitic carbon nitride (g-C3N4) has 

garnered significant interest due to its remarkable photocatalytic capabilities as a metal-free 

polymer [15].  

The heptazine ring structure and high degree of condensation grant metal-free g-C3N4 several 

benefits, including excellent physicochemical stability and an attractive electronic structure with 

a moderate band gap. (2.7 eV) [15]. These distinctive properties position g-C3N4 as a highly 

promising material for photocatalytic applications under visible and UV-visible light. [16].  

Moreover, g-C3N4 is readily available and can be easily synthesized through a one-step 

polymerization process using inexpensive precursors such as dicyanamide, cyanamide, 

melamine, and urea. [17]. 
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V.2.  Experiment    

V.2.1.  Preparation of P-g-C3N4@Ti-g-C3N4  

V.2.1.1.  g-C3N4 preparation  

The fabrication of g-C3N4 powder involved the following detailed procedure: Firstly, virgin g-C3N4 

powders were synthesized through direct thermal treatment of melamine in a muffle furnace. 

During a standard synthesis procedure, an alumina crucible containing 5 grams of melamine was 

heated to 550°C for 4 hours with a heating rate of 10°C/min in the muffle furnace. After cooling to 

absorption, and improving catalytic performance [19]. Typically, metal incorporation involves 

mixing a soluble metal salt solution with the precursor followed by heat treatment to embed the 

metal within g-C3N4 structure [20]. Nonmetal doping, on the other hand, represents another 

avenue to enhance the performance of g-C3N4. As a n-type nonmetal semiconductor, doping with 

nonmetal elements maintains the metal-free nature of g-C3N4 while introducing beneficial effects 

[21]. Nonmetals, characterized by high ionization energies and electronegativities, readily form 

covalent bonds with other compounds by gaining electrons during reaction processes [22]. 

Introduction of nonmetal dopants, such as oxygen, phosphorus, sulfur, carbon, halogen, nitrogen, 

and boron, disrupts the symmetry of g-C3N4 and promotes faster separation of electron-hole 

pairs, thereby enhancing photocatalytic efficiency [23]. Additional strategies, including doping, 

protonation, preparation of mesoporous structures, and design of heterojunction composites, 

have also been proposed to further improve the performance of g-C3N4-based photocatalysts 

[24]. 

This chapter explores the design and optimization of photocatalytic materials based on the 

organic semiconductor g-C3N4. In particular, he is interested in the incorporation of dopants, 

phosphorus and titanium, into the structure of g-C3N4 in order to improve its photocatalytic 

efficiency. Preliminary studies show that the individual doping of these elements significantly 

increases the photocatalytic activity of g-C3N4, raising interest in combining these two elements 

to create a high-performance composite. Thus, this chapter details the preparation methods of the 

composite P- g-C3N4@Ti- g-C3N4, as well as the characterization techniques used to verify the 

structure and optical properties of the material, with the ultimate goal of optimizing the 

degradation of organic pollutants under visible light. 
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room temperature, the resulting yellow product was ground to obtain a fine g-C3N4 powder. This 

process ensured the formation of g-C3N4 powder through controlled thermal decomposition of 

melamine, yielding a high-quality product suitable for further characterization and application 

purposes. 

V.2.1.2.  Phosphorus-Doped g-C3N4 synthesis  

 

V.2.1.3.  Titanium-doped g-C3N4 synthesis  

 

V.2.1.4.  The P-g-C3N4@Ti-g-C3N4 preparation  

The P- g-C3N4@Ti-g-C3N4 composites were prepared by mechanical mixing of different quantities 

of P- g-C3N4@Ti-g-C3N4 in ratios of 75%/25%, 50%/50%, and 25%/75% (figure 2). Initially, 

precise amounts of Ti-g-C3N4 and P-g-C3N4 were weighed according to the targeted composition 

ratios. Subsequently, the components were homogenized using a mortar until a uniform mixture 

The phosphorus-doped g-C3N4 was synthesized using a two-step treatment method. Initially, 5 

grams of melamine were dissolved in 50 mL of deionized water with agitation, followed by the 

gradual addition of a phosphoric acid (H3PO4) solution to reach concentrations equivalent to 

0.5%, 1%, 2%, and 3%. The reaction was allowed to proceed for 12 hours under agitation to 

ensure homogeneous distribution of phosphorus within the g-C3N4 matrix. Subsequently, the 

resulting solution was heated to 100°C until complete evaporation of the liquids, promoting the 

formation of a solid precipitate. In the second step, the precipitate was recovered and ground to 

obtain a fine powder. This powder was then placed in a crucible and subjected to thermal 

treatment at 500°C for 4 hours in a high-temperature furnace under controlled atmosphere. This 

annealing process facilitated the polymerization reaction of g-C3N4 and the incorporation of the 

phosphorus dopant.  

The Ti-doped C3N4 materials were synthesized as follows: Initially, a specified quantity of 

titanium butoxide was dissolved in 50 mL of ethanol. Subsequently, 5 grams of melamine were 

dispersed in this solution and stirred together for 12 hours to achieve homogeneous dispersion. 

Following this, the mixture was heated until the complete evaporation of the ethanol. After this 

step, the resulting powders were collected and placed in an alumina crucible with a lid. This 

crucible was then heated to 500°C for 4 hours in a muffle furnace under controlled atmosphere 

conditions. Finally, the obtained product was ground into powder and labeled as xTi/g-C3N4, 

where x represents the percentage of titanium dopant, ranging from 0.5% to 3%. This synthesis 

method facilitated the incorporation of titanium into the g-C3N4 matrix. 
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was achieved. This method offers the advantage of simplicity and ease of implementation, as it 

does not require stringent reaction conditions such as high temperatures or specific pressures, 

making it an economical and accessible approach. Additionally, mechanical mixing typically 

promotes homogeneous dispersion of the constituents, potentially leading to enhanced properties 

of the final composite material. 

Figure V.1.  Synthesis Scheme of P-g-C3N4, Ti- g-C3N4, and Ti- g-C3N4@P- g-C3N4. 

V.3.  Results  

V.3.1.  Characterization 

V.3.1.1.  The Fourier transform infrared (FTIR) 

FTIR spectra of different samples are shown in figure 4, the prominent absorption peak at 782 cm−1 

observed in g-C3N4 corresponds to the bending vibration of the tri-s-triazine units, indicating that 

triazine is the basic synthetic unit of g-C3N4 [25]. This observation suggests that the fundamental 

structure of g-C3N4 relies on these tri-s-triazine units, playing a crucial role in its physicochemical 

properties [26]. Furthermore, the series of characteristic absorption peaks in the range of 1200–

1650 cm−1 corresponds to the stretching vibrations of the C–N bonds within the heterocycles, 

highlighting the presence and distribution of carbon-nitrogen bonds in the structure of g-C3N4  [27]. 

These vibrations provide insights into the molecular configuration and connectivity within the 

material. Additionally, the broad band observed in the range of 3000–3300 cm−1 is attributed to the 

stretching vibrations of the N–H bonds in the aromatic ring cycles of the layered structure of g-
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C3N4 [28].This observation underscores the presence of specific functional groups, contributing to 
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Figure V.2.  FTIR spectra of g-C3N4, P- g-C3N4, Ti- g-C3N4, and the P-g-C3N4@ Ti-g-C3N4. 

V.3.1.2.  X ray Diffraction  

Figure V.4 exhibited the XRD analysis pattern of g-C3N4, P- g-C3N4, Ti- g-C3N4, and the P-g-

C3N4@ Ti-g-C3N4 mixture. XRD shows two characteristic peaks at 2θ = 27.5° and 2θ = 13.1°. 

the stabilization of the material's three-dimensional structure as well as its potential interactions 

with other molecular entities. The characteristic absorption peak observed in the Ti-g-C3N4 

spectrum is largely similar to that of g-C3N4, suggesting the preservation of the original graphitic 

structure of the C-N network. However, the absorption peak attributed to the titanium bond is not 

discernible, likely due to the low concentration of titanium doping or overlapping with 

characteristic absorption peaks of C-N heterocycles in the spectrum. In the absorption spectra of 

P- g-C3N4 and the composite P- g-C3N4@Ti- g-C3N4, no significant changes are observed 

compared to the characteristic peaks of g-C3N4. However, a relatively weak intensity peak at 453 

cm-1 is detected, typically attributed to the symmetric bending vibration of the P-N group [29]. 
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These peaks correspond to the typical crystalline structures of graphitic carbon nitride (g-C3N4) 

[30], as referenced in the Joint Committee on Powder Diffraction Standards (JCPDS) files. The 

peak at 2θ = 27.5° is generally attributed to the diffraction from the (002) planes of g-C3N4, 

indicating the stacking of graphitic layers in the material's structure [31]. The peak at 2θ = 13.1° is  

 

attributed to the diffraction from the (100) planes of g-C3N4, representing the in-plane 

organization of tri-s-triazine motifs [32] . For pure g-C3N4, the peaks at 27.5° and 13.1° are 

intense and sharp, indicating good crystallinity of the base material. When doped with 

phosphorus (P-g-C3N4 at 3% P), the peaks at 27.5° and 13.1° are still present but with slightly 

reduced intensity compared to undoped g-C3N4. This suggests that phosphorus partially 

substitutes nitrogen sites in the g-C3N4 structure, creating defects or distortions in the crystal 

lattice, thus reducing the overall crystallinity and peak intensity [33]. In contrast, doping with 

titanium (Ti- g-C3N4 at 1% Ti) leads to a more significant reduction in peak intensity compared 

to both undoped g-C3N4 and P- g-C3N4. Titanium, being a larger element and significantly 

different in terms of valence and electronic structure, causes more disruptions in the crystal 

lattice, thereby further reducing the crystallinity and XRD peak intensity [5]. For the P- g-C3N4 

(75%) @ Ti- g-C3N4 (25%) mixture, the peaks at 27.5° and 13.1° show intermediate intensity 

between those of P- g-C3N4 and Ti-g-C3N4. This indicates that the crystalline perturbation is a 

combination of the effects of both dopants. The majority presence of P-g-C3N4 (75%) moderates 

the stronger perturbative effect of Ti- g-C3N4 (25%), resulting in intermediate peak intensity. 
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Figure V.3. XRD patterns of pure g-C3N4, P- g-C3N4, Ti- g-C3N4, and the P-g-C3N4@ Ti-g-C3N4. 

V.3.1.3.  SEM, Elemental mapping, and EDX spectroscopy  

 

The SEM images of Ti-g-C3N4 (fig5.c) show varied morphologies of g-C3N4 blocks and plate-like 

crystals associated with titanium. Elemental mapping displayed the presence and the homogeneous 

dispersion of titanium atoms within the g- C3N4 matrix, thus, the EDX microanalysis revealed a 

The Scanning electron microscopy (SEM), elemental mapping, and Energy-dispersive X-ray 

(EDX) spectroscopy analyses of the P-g-C3N4, Ti-g- C3N4, and P-g- C3N4@Ti-g- C3N4 samples 

provide crucial details about their morphology, structure, and elemental chemical composition, 

the obtained results are illustrated in Figures 5 (a, b,c and d). The SEM images depicted that the 

morphology of pure g-C3N4 (fig 5.a) primarily consists of large, irregular block structures, likely 

resulting from the thermal polymerization of melamine and consisting of sheet-like layered 

structures [34]. For the P-g- C3N4 sample, well-defined circular particles are observed on the 

surface of the g- C3N4 blocks, indicating the presence of phosphorus. Elemental mapping 

confirms a homogeneous phosphorus distribution, their association with EDX yields an 

elemental chemical composition of 36.38 wt% carbon, 42.55 wt% nitrogen, 14.01 wt% oxygen, 

and 1.65 wt% phosphorus (fig 5.b). 
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composition of 36.27 wt% carbon, 40.94 wt% nitrogen, 14.57 wt% oxygen, and 1.84 wt% titanium. 

Therefore, this uniform titanium incorporation is crucial for optimizing the photocatalytic 

properties of the material. 

Additionally, the incorporation of phosphorus and titanium in g-C3N4 modifies the morphology 

and enhances the material’s photocatalytic properties, which makes it promising for achieving 

advanced applications due to its optimized structural and photocatalytic properties to overcome 

wastewater treatment. 

The SEM images of the P-g- C3N4 @Ti-g-C3N4 sample (fig 5.d) show block structures, crystals, 

and circular particles, characteristic of the incorporated elements. Elemental mapping reveals the 

homogeneous presence of carbon, nitrogen, oxygen, phosphorus, and titanium within the 

composite matrix. The EDX analysis of this sample provides an elemental composition of 37.65 

wt% carbon, 39.83 wt% nitrogen, 12.94 wt% oxygen, 1.66 wt% phosphorus, and 0.62 wt% 

titanium. It was observed that the C/N atomic ratio close to 1 in all samples confirms that the 

basic structure of g-C3N4 is preserved after the addition of phosphorus and titanium. However, 

the notable presence of oxygen can be attributed to air adsorption or partial oxidation of the 

material. At the same time, the quantities of phosphorus and titanium indicate successful 

incorporation, sufficient to positively modify the photocatalytic properties without excessively 

altering the basic structure of g-C3N4. 
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Figure V.4.  The Scanning electron microscopy (SEM), elemental mapping, and Energy-

dispersive X-ray (EDX) spectroscopy analyses of the (a) g-C3N4, (b) P-g-C3N4, (c) Ti-g- C3N4, 

and (d) P-g- C3N4@Ti-g- C3N4. 

V.3.1.4.  Transmission Electron Microscopy (TEM) 

from 13.44 to 6.52 nm. The increase in particle size compared to pure g-C3N4 may be due to the 

introduction of phosphorus, which modifies the structure and may promote particle aggregation or 

growth. In addition, the wrinkled and rough surfaces further increase the specific surface area, 

which can improve the adsorption of reactive molecules, guarantee efficient charge carrier transfer 

and thus enhance photocatalytic efficiency. Finally, in the case of the g-C3N4 sample TEM images 

also show wrinkled nanosheets, with spots corresponding to areas containing titanium. The particle 

sizes range from 10.46 to 5.87 nm. Moreover, the presence of titanium seems to slightly affect 

morphology and reduce the particle size compared to phosphorus doping, which can be attributed 

to a more uniform and well distribution, and better incorporation of titanium into the g-C3N4 matrix. 

In this configuration, the wrinkled nanosheets with homogeneous titanium distribution can improve 

the photocatalytic properties by facilitating the overall charge separation and increasing light 

absorption efficiency. The TEM analysis indicates a strong binding between P, Ti, and g-C3N4. This 
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experiment showcases a productive and strong interaction between titanium, phosphorus, and g-

C3N4, validating the successful creation of a hetero-system material. 

 

Figure V.5. TEM images of different samples g-C3N4 (a) and (b), P- g-C3N4 (c) and (d), Ti- g-

C3N4 (e) and (f). 

V.3.1.5.  UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS) 

UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS) is a crucial technique for studying the 

absorption properties of materials, particularly in the UV and visible regions. UV-DRS spectra 

measure absorption at different wavelengths, providing critical information about electronic 

transitions in materials. The position of absorption bands obtained from UV-DRS spectra can be 

used to calculate the material's band gap energy. To determine the band gap energy (Eg), the Tauc 

method is commonly employed. This method involves converting diffuse reflectance data as a 

function of the square root of the photon energy for direct band gap materials or the square root of 

the photon energy for indirect band gap materials.  
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Figure V.6. Band gap energies and UV-vis diffuse reflectance spectra of pure g-C3N4, P- g-C3N4, 

Ti- g-C3N4, and the P-g-C3N4@ Ti-g-C3N4. 

 

The results regarding the absorption bands and bandgap energies for the different dopings of 

graphitic carbon nitride (g-C3N4) and the P- g-C3N4@Ti- g-C3N4 composite reveal presented in 

figure 8 significant effects of doping on the optical and electronic properties of the material. 

For undoped g-C3N4, the absorption band at 371.88 nm corresponds to a bandgap energy of 2.68 

eV. This value aligns with the literature, which generally reports bandgap energies around 2.7 eV 

for pure g-C3N4. This indicates that pure g-C3N4 has a relatively large bandgap, making it 

suitable for UV light absorption but limiting its photocatalytic efficiency under visible light [35].  

Doping g-C3N4 with titanium (Ti) shifts the absorption band to 374.49 nm and reduces the 

bandgap energy to 2.61 eV. This reduction in bandgap energy allows for better absorption of 

visible light. Titanium introduces new electronic states within the bandgap of g-C3N4, facilitating 

electron excitation under lower energy (closer to visible light) [36]. 
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V.3.1.6.  Fluorescence spectra (PL) 

The photoluminescence (PL) results for pure g-C3N4, phosphorus-doped P-g-C3N4, titanium-doped 

Ti-g-C3N4 and their composite (P- g-C3N4@Ti- g-C3N4) (figure 9) reveal significant differences in 

the intensity of the peak around 460 nm, providing key insights into charge separation efficiency 

and photocatalysis. For pure g-C3N4, the intense PL peak at 460 nm indicates a high recombination 

rate of electron-hole pairs [38], which may limit photocatalytic efficiency by reducing the 

availability of charge carriers for dye degradation reactions [39]. In contrast, Ti-g-C3N4exhibits a 

notable decrease in PL intensity, suggesting improved charge separation. The titanium doping 

appears to enhance charge carrier separation, thereby reducing recombination and potentially 

increasing photocatalytic efficiency. P- g-C3N4 also shows a reduction in PL intensity compared to 

the pure material, indicating improved charge separation. However, this improvement is more 

pronounced than that observed with titanium doping. Finally, the P- g-C3N4@Ti- g-C3N4 composite 

demonstrates an even lower PL intensity, suggesting optimal charge separation due to the 

Doping g-C3N4 with phosphorus (P) shifts the absorption band to 261.76 nm and reduces the 

bandgap energy to 2.51 eV. Phosphorus has an even more pronounced effect on reducing the 

bandgap energy, suggesting the introduction of lower energy levels within the bandgap of g-

C3N4. However, the absorption band at 261.76 nm is in the UV range, which might indicate 

electronic transitions specific to the dopant states introduced by phosphorus [37]. 

The P-g-C3N4@Ti-g-C3N4 composite exhibits an absorption band at 271.13 nm and a bandgap 

energy of 2.56 eV. This absorption band results from the interaction between the doping effects 

of phosphorus and titanium. The shift of the absorption band to shorter wavelengths can be 

attributed to synergies between the two dopants, while the reduced bandgap energy of 2.56 eV 

suggests improved visible light absorption compared to pure g-C3N4. The composite thus 

optimizes the beneficial effects of both dopants, potentially enhancing photocatalytic 

performance under visible light. Doping g-C3N4 with titanium and phosphorus significantly 

alters the optical and electronic properties of the material. Both Ti and P introduce new states 

within the bandgap, reducing the bandgap energy and improving visible light absorption. The P- 

g-C3N4@Ti- g-C3N4 composite combines the advantages of both dopants, optimizing properties 

for photocatalytic applications. 
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synergistic effects of both phosphorus and titanium doping. This indicates that the composite may 

offer the best photocatalytic performance for dye degradation by minimizing charge recombination. 
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Figure V.7. Photoluminescence spectra pure g-C3N4, P- g-C3N4, Ti- g-C3N4, and the P-g-C3N4@ 

Ti-g-C3N4. 

V.3.2.  Photocatalytic results  

V.3.2.1.  Titanium- g-C3N4 doped 

The results of our current study demonstrate that the introduction of titanium (Ti) atoms into the 

structure of g-C3N4 leads to a reduction in the band gap width and a decrease in the recombination 

rate of photo-induced charge carriers, resulting in an enhancement of photocatalytic performance. 

To validate this hypothesis, we evaluated the photocatalytic activities of pure and Ti-doped g-C3N4 

samples for the degradation of (BS) under light, monitoring the variation of the C/C0 ratio and 

observing the characteristic emission intensity of BS. To minimize errors attributed to physical 

adsorption during photocatalytic processes, we established the absorption-desorption equilibrium 
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behavior of the catalyst in darkness for 40 minutes prior to light irradiation. Our observations 
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clearly demonstrate that approximately 54.4% of BS was degraded on the undoped g-C3N4, 

while nearly 89% of the dye (BS) was degraded on the Ti- g-C3N4 after 120 minutes of 

irradiation, confirming a significant enhancement in photocatalytic capacity following Ti doping. 

Among the different doped compounds, g-C3N4 doped with 1% Ti exhibited the best 

performance during the photocatalytic process, with a degradation of 89.1% of BS, compared to 

degradation rates of 68.4% and 62.1% for samples doped with 2% and 3% Ti, respectively. 

The photocatalytic degradation rate constants (K) further support this trend. Without the catalyst, 

the rate constant was measured as 2.15 × 10⁻⁵ min⁻¹. The undoped g-C3N4 displayed a rate 

constant of 0.00754 min⁻¹, whereas the Ti-doped g-C3N4 samples showed the following values: 

0.01679 min⁻¹ for 1% Ti, 0.00993 min⁻¹ for 2% Ti, and 0.00857 min⁻¹ for 3% Ti. These results 

highlight that the 1% Ti-doped g-C3N4 sample exhibited the highest rate constant, further 

underscoring the efficacy of low-level Ti doping in improving the photocatalytic performance of 

g-C3N4. This improvement is attributed to the efficient reduction of charge carrier recombination 

and enhanced light sensitivity induced by doping [40]. 
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Figure V.8. Photodegradation behaviors of BS on pure and Ti-doped g-C3N4 under visible light 

irradiation. (neutral pH, catalyst 1 g/L, [BS] = 30 mg/L). 

V.3.2.2.  Phosphorus-g-C3N4 doped 

The photocatalytic activities of the prepared samples were studied for the decomposition of (BS) 

under simulated light. The concentration ratio C/C0, depicted in the figure, reflects the 

concentration of BS at a certain reaction time using g-C3N4 and P-g-C3N4 photocatalysts. When 

phosphorus doping is performed, the photocatalytic activity of g-C3N4 is enhanced to some extent. 

Specifically, the results show that the degradation percentages of (BS) for samples doped with 1% 

P- g-C3N4, 2% P- g-C3N4, 3% P- g-C3N4, and 5% P- g-C3N4 were 81.7%, 85.4%, 90%, and 90%, 

respectively. These degradation percentages were significantly higher compared to undoped g-

C3N4, which exhibited a degradation of 54.4%. The enhancement in photocatalytic activity with 

increasing phosphorus doping levels indicates that the introduction of phosphorus into the g-C3N4 

structure plays a crucial role in enhancing its photocatalytic performance. The observed increase 

in degradation percentages attributed to various factors, including the modification of electronic 

properties [41], changes in surface morphology, adjustment of the band gap width, and the creation 

of active sites for photocatalytic reactions [42]. The photocatalytic degradation rate constants (K) 

reveal a similar pattern. The undoped g-C3N4 had a rate constant of 0.00754 min⁻¹, while P-doped 
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samples exhibited higher values: 0.01415 min⁻¹ for 1% P, 0.01586 min⁻¹ for 2% P, 0.01877 min⁻¹ 

for 3% P, and 0.01848 min⁻¹ for 5% P. Although 5% phosphorus doping also achieved a 90% 

degradation rate, the 3% P-doped g-C3N4 was chosen due to its comparable performance and better 

cost-efficiency, making it the optimal choice in terms of both efficiency and economic viability. 
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Figure V.9.  Photodegradation behaviors of BS on pure and P-doped g-C3N4 under visible light 

irradiation. (neutral pH, catalyst 1 g/L, [BS] = 30 mg/L). 

V.3.2.3.  P-C3N4 @ Ti-C3N4 (x/y) Composite  

The results obtained from the photocatalytic degradation of (BS) using phosphorus carbon nitride 

(P-g-C3N4) and titanium carbon nitride (Ti-g-C3N4) compounds have been promising. Following 

these encouraging observations, a strategy of physically mixing these two materials was pursued 

in different proportions, namely (25%/75%), (50%/50%), and (75%/25%) for P- g- C3N4 and Ti- 

g-C3N4, respectively. The photocatalytic results of these composites were evaluated and presented 

graphically. Significantly, the composite containing 75% P- g-C3N4 and 25% Ti- g-C3N4 

demonstrated the best performance, achieving a 100% degradation efficiency of BS over a 100-

minute period. This observation starkly contrasts with the performances of the other composites, 

which contained different proportions of P-g-C3N4 and Ti- g-C3N4. The enhanced photocatalytic 

performance in this case can be attributed to increased synergy between the two compounds, 

thereby more effectively harnessing pollutant degradation mechanisms. Furthermore, this study 

revealed that the composite resulting from the mixture of the two materials surpassed the 

degradation performances observed for each of the materials used individually. Indeed, compared 

to the use of P-g-C3N4 or Ti-g-C3N4 alone, the total degradation time was reduced by approximately 
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40 minutes. This result underscores the importance of the composite design approach for enhancing 
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photocatalytic performances, thus offering promising prospects for the development of more 

efficient and sustainable wastewater treatment technologies. 

The photocatalytic degradation rate constants (K) offer additional insight into the performance of 

the composites. The mixture containing 25% P-g-C3N4 and 75% Ti-g-C3N4 showed a rate 

constant of 0.0112 min⁻¹, while the 50%/50% blend exhibited a slightly higher rate constant of 

0.01464 min⁻¹. The most effective composite, consisting of 75% P-g-C3N4 and 25% Ti-g-C3N4, 

achieved a significantly higher rate constant of 0.02045 min⁻¹, highlighting its superior efficiency 

in degrading the pollutant. 
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Figure V.10. Photodegradation of BS dye P-C3N4 @ Ti-C3N4 (x/y) (x = 25, 50 and 75%) (y = 75, 

50 and 25%) (neutral pH, catalyst 1 g/L, [BS] = 30 mg/L). 

V.3.2.4.  The effects of operational parameters on photocatalytic degradation of 

biebrich scarlet  

The investigation of operational parameters for the photodegradation of the dye Beibrich Scarlet 

using the P- g-C3N4 4@Ti- g-C3N4 composite was conducted to optimize pH, catalyst dosage, and 

initial dye concentration. The results are presented in the figure.  The photocatalytic tests of the P- 

g-C3N4 4@Ti- g-C3N4 composite revealed a significant response to different pH values and various 

catalyst doses. At pH 6, the composite demonstrated its best performance, achieving a degradation 

rate of 100%. At pH 4, although slightly less effective, a respectable degradation rate of 80.4% was 

recorded. However, at higher pH levels of 8 and 10, the performances decreased, with degradation 

rates of 60.9% and 46.5%, respectively. This decrease in efficiency in alkaline environments could 

be attributed to potential catalyst deactivation or secondary reactions limiting the effectiveness of 

the photocatalytic process at higher pH levels [43]. Regarding catalyst doses, progressive 

improvements in efficiency were observed with increasing concentration. At a concentration of 

0.25 g/L, the degradation rate was 57%, increasing to 78% at 0.5 g/L. A dose of 1 g/L resulted in a 

maximum efficiency of 100%, as did a dose of 2 g/L. This suggests that the process efficiency is 

directly proportional to the catalyst dose up to a saturation threshold of 1 g/L. These results indicate 
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that the composite exhibits photocatalytic activity over a range of pH values from slightly acidic 

to neutral, with an optimal pH of 6. However, lower performance is observed in more acidic or 

alkaline environments. Finaly the influence of the initial concentration of the BS dye on 

photocatalysis was investigated, yielding remarkable results. At an initial concentration of 10 mg/L, 

complete degradation of the dye was achieved in just 20 minutes, indicating a rapid and efficient 

photocatalytic process, with a kinetic constant (k) of 0.05229 min-1. When the initial concentration 

was increased to 20 mg/L, complete degradation still occurred, albeit in a longer period of 80 

minutes, with a kinetic constant of 0.0188 min-1. This suggests that although the photocatalyst 

remains effective, higher dye concentrations require more time for complete degradation. Similarly, 

at an initial concentration of 30 mg/L, complete degradation was achieved in 100 minutes, with a 

kinetic constant of 0.01269 min-1. However, at an initial concentration of 40 mg/L, although the 

degradation rate was high, complete degradation was not achieved within the same timeframe. The 

corresponding kinetic constant was 0.00588 min-1. These results indicate that the photocatalyst is 

capable of efficiently treating higher dye concentrations, although slightly longer reaction times 

are necessary. 
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Figure V.11. The effects of operational parameters on photocatalytic degradation of BS Where 

(a) dose effect, (b) pH effect, (c) initial concentration effect. 

V.3.2.5.  Normalized intensities of absorption bands 

Figure 14 shows the normalized intensities of the absorption bands for BS at 228 nm (benzene ring)  

(Ilan et al., 1976), 325 nm (naphthalene ring) [44], and 506 nm (azo bond) [45], plotted as a function 

of irradiation time and represented as the ratio of absorbance at a given time to its initial value. 

For Ti-C3N4, it is observed that the intensity of the band corresponding to the azo bond (visible 

light chromophore) decreases over time, while the intensities of the bands due to the benzene and 

naphthalene rings increase. This increase in intensities can be explained by the formation of by-

products containing benzene and naphthalene structures resulting from ring opening. In other 

words, the azo bond breaks earlier and more rapidly, releasing aromatic fragments. For P-C3N4, the 

intensity of the band due to the azo linkage (visible light chromophore) decreases more rapidly 

than that of the benzene and naphthalene ring chromophores. This suggests a faster degradation of 

the azo bond compared to the aromatic structures, indicating different rupture kinetics. Finally, for 

P-g-C3N4@Ti-g-C3N4, the intensity of all bands decreases at almost the same rate, with the azo 

bond decreasing slightly faster. This indicates that the issue of marked by-products during 

degradation by Ti-C3N4 is mitigated by the mixture. In other words, the mixture P-g-C3N4@Ti-g-

C3N4 is able to degrade both the BS molecule and its degradation by-products simultaneously 

within the same irradiation time. This interaction between the two materials not only reduces the 

degradation time of BS but also ensures a complete degradation of the by-products. This suggests 
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a synergy between P-g-C3N4 and Ti-g-C3N4 that optimizes the degradation process, making it more 

efficient and complete. 

 

 

 

 

 

 

 

 

 

Figure V.12. The normalized intensities of the absorption bands for BS 
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V.3.2.6.  Systematic Evaluation of Photostability and Reusability of P-g-

C3N4@Ti-g-C3N4 Composite 

Photostability is a crucial factor in determining the practical viability of a photocatalyst. To 

thoroughly evaluate the structural integrity and catalytic endurance of the P-g-C3N4@Ti-g-C3N4 

composite, a series of four successive tests focused on the photocatalytic degradation of BS were 

conducted. The recycling process after each Visible-light-assisted BS degradation involved several 

critical steps. First, the composite was carefully recovered through precision centrifugation 

following each photocatalytic test. Then, it underwent a thorough washing protocol consisting of 

four cycles using a mixture of distilled water and ethanol, with the final cycle employing double-

distilled water. After washing, the material was subjected to a five-hour UV light treatment in 

double-distilled water to ensure the complete removal of any residual BS from the photocatalytic 

process. Following the UV treatment, the P-g-C3N4@Ti-g-C3N4 composite was gently recovered 

and dried at 60 °C for 24 hours. This drying step was essential to preserve the material for 

subsequent cycles. This meticulous and comprehensive approach provides a robust framework for 

assessing the longevity and reusability of the P-g-C3N4@Ti-g-C3N4 composite in photocatalytic 

applications. 

 

 

Figure V.13. The cycling degradation curves of BS using P-g-C3N4@Ti-g-C3N4 composite 

photocatalyst (a); XRD patterns of the fresh and the used catalysts after 4 recycling runs (b). 
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V.3.2.7.  Scavengers effect  

The scavenger test results present in figure V.15 revealed that different reactive species contribute 

variably to the degradation of the dye BS in the presence of the p-g-C3N4@Ti-g-C3N4 catalyst. The 

addition of ethanol, a scavenger for hydroxyl radicals (OH), led to a degradation rate of 21%, 

indicating that hydroxyl radicals are the most dominant reactive species in the degradation process. 

In contrast, the use of EDTA, a scavenger for holes (h+), reduced the degradation rate to 34%, 

suggesting that holes also play an important role, although less dominant than hydroxyl radicals. 

Finally, the addition of K2Cr2O7, a scavenger for electrons (e−), decreased the degradation rate to 

37%, indicating that electrons have a notable influence but are the least dominant among the three 

reactive species studied. In summary, these results show that hydroxyl radicals (•OH) are the most 

important reactive species in the degradation of the dye BS, followed by holes (h+) and electrons 

(e−), highlighting the significant role of hydroxyl radicals in the photocatalytic degradation 

mechanism. 

 

Figure V.15.a demonstrates the high initial efficiency and robust performance of the P-g-

C3N4@Ti-g-C3N4 composite over multiple cycles. The composite achieves complete degradation 

in the first cycle and maintains significant degradation efficiencies of 93%, 87%, and 79% over 

the second, third, and fourth cycles, respectively. This highlights the composite's strong 

photocatalytic activity and durability, even after repeated use. The slight decrease in efficiency 

across the cycles is expected and underscores the material's resilience and capability to perform 

effectively over extended periods. The carefully designed washing and UV treatment protocols 

play a crucial role in maintaining the composite's performance, ensuring it remains a viable and 

efficient photocatalyst. Additionally, the XRD analysis of the materials before and after the 

degradation process (figure 15.b) shows no difference in the peaks, with only a very slight 

decrease in the intensity of the main peaks. Overall, these results showcase the P-g-C3N4@Ti-g-

C3N4 composite as a promising and durable material for photocatalytic applications, with 

excellent potential for long-term use. The composite's ability to sustain high degradation rates 

over multiple cycles attests to its robustness and reliability, making it a valuable addition to the 

field of photocatalysis. 
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Figure V.14. The degradation rates of BS using P-g-C3N4@Ti-g-C3N4 photocatalyst when adding 

different scavengers. 

V.3.3.  The plausible photodegradation mechanism 

The detailed mechanism of dye BS degradation by the p-g-C3N4@Ti-g-C3N4 composite presented 

in figure 17 begins with the excitation of the catalyst under visible light irradiation, generating 

electron-hole pairs (e−/h+) [46]. The combination of P-C3N4 and Ti-C3N4 forms a heterojunction 

that allows for better charge separation, with electrons generated in P-C3N4 migrating to Ti-C3N4, 

thereby reducing the recombination of electron-hole pairs. The holes (h+) react with water adsorbed 

on the surface of the composite to form hydroxyl radicals (•OH) [47], while the electrons (e-) reduce 

dissolved oxygen to form superoxide anions (O2
•−) [48]. The dye BS is adsorbed onto the surface 

of the composite, which is essential for its interaction with the reactive species [49]. The hydroxyl 

radicals (•OH) and superoxide anions (O2
•−) then attack the dye BS molecules, leading to their 

degradation into intermediates. These intermediates are subsequently mineralized into harmless 

final products such as water (H2O) and carbon dioxide (CO2). This process highlights the 

importance of the formation of hydroxyl radicals and superoxide anions, as well as the crucial role 
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of the heterojunction structure of the composite in achieving efficient charge separation and 

reducing recombination. 

Here are the chemical reactions corresponding to the mechanism of BS dye degradation using the 

P-g-C3N4@Ti-g-C3N4composite: 

1. Excitation of the photocatalyst: 

P-g-C3N4@Ti-g-C3N4 + hv (visible light) →    e− + h+                       (a) 

(Electron-hole pair generation under light irradiation) 

2. Electron transfer between P-g- C3N4 and Ti-g- C3N4 (heterojunction formation): 

eP-g- C3N4
−  →  Ti-g-C3N4 (b) 

(Electrons migrate from P-g- C3N4 to Ti-g- C3N4) 

3. Hole transfer from Ti-g-C3N4 to P-g-C3N4: 

hTi-g- C3N4
+  →  P-g- C3N4       (c) 

(Holes migrate from Ti-g-C3N4 to P-g- C3N4) 

4. Hydroxyl radical formation from surface water: 

hP-g- C3N4
+  + H2O → ⋅OH + H+ (d) 

(Holes oxidize water on the P-g-C3N4side to produce hydroxyl radicals) 

5. Reduction of oxygen by electrons to form superoxide anions: 

eTi-g- C3N4
−  + O2 + ⋅O2

−  (e) 

(Electrons reduce oxygen to form superoxide anions) 
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6. Dye degradation by reactive species: 

BS + ⋅OH → intermediates (f) 

BS + ⋅O2
− → intermediates (g) 

(Hydroxyl radicals and superoxide anions attack the dye BS molecules) 

7. Mineralization of intermediates: 

Intermediates → CO2 + H2O (h) 

Intermediates are mineralized into carbon dioxide and water 

 

Figure V.15. The photodegradation mechanism of BS.  
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V.4.  Comparison of the Photocatalytic Efficacy of various g- C3N4-

based composites in degrading different organic dyes 

Table V.1. Photocatalytic Efficiency of g-C3N4-Based Composites in the Degradation of Various 

Organic Dyes.  

Catalyst  Dye Concentration 

(mg/L) 

Irradiation 

Time (min) 

degradation 

Efficiency 

(%) 

References  

ZnO/g-C3N4 MB 5 120 92 [50] 

WO3@g-gC3N4 RhB 10 140 90 [51] 

g-C3N4/V2O5  RhB 10 100 100 [52] 

ZnFe2O4/S-g-C3N4  MB 10 120 92 [53] 

P-g-c3n4@Ti-g- 

C3N4  

BS 30 100 100 Present work  

 

For example, ZnO/ g-C3N4 degraded 92% of Methylene Blue (MB) in 120 minutes, but at a lower 

concentration of 5 mg/L. Similarly, the WO3@g- g-C3N4 composite achieved 90% degradation of 

Rhodamine B (RhB) in 140 minutes with a dye concentration of 10 mg/L, indicating less effective 

photocatalytic activity compared to P- g-C3N4 @Ti- g-C3N4 The g- g-C3N4 /V2O5 composite also 

showed complete degradation of RhB but at a lower concentration of 10 mg/L in 100 minutes, 

which, although comparable in terms of time, is inferior in terms of the dye load treated. 

Finally, ZnFe2O4/S-g-C3N4 achieved 92% degradation of MB at a concentration of 10 mg/L in 120 

minutes, which is also less effective than P- g-C3N4 @Ti- g-C3N4. The ability of P- g-C3N4 @Ti- 

Table V.1 compares the photocatalytic efficiency of various g- C3N4-based composites in 

degrading different organic dyes under light irradiation. A detailed comparative analysis 

highlights the superiority of the P-g-C3N4@Ti-g-C3N4 composite, which demonstrated complete 

degradation of BS at a concentration of 30 mg/L in 100 minutes. This performance is particularly 

noteworthy compared to the other materials tested, which required more time or were tested at 

lower dye concentrations. 
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g-C3N4 to maintain maximum degradation efficiency with a higher dye concentration and in a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shorter time suggests that the structural modifications introduced by phosphorus and titanium 

doping significantly optimize the photocatalytic activity. In conclusion, P-g-C3N4@Ti- g-C3N4 

emerges as the most promising candidate for photocatalytic degradation applications among the 

materials studied. 
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General conclusions 

This thesis focuses on the design and study of advanced hybrid composites applied to the 

treatment of urban and industrial wastewater. Titled “Synthesis of New Hybrid Materials 

Incorporated into Photocatalytic Semiconductors: Application in the Treatment of Urban and 

Industrial Wastewater”, this thesis is based on experimental work conducted at the Laboratory of 

Chemical Process Engineering (LGPC) of the University of Sétif 1. The main objective of this 

research was to design innovative hybrid materials capable of improving the efficiency of 

photocatalytic semiconductors in the degradation of organic pollutants present in effluents. By 

adopting green synthesis approaches, we have not only targeted photocatalytic performance but 

also sought to minimize the environmental impact of the manufacturing process of these 

materials. 

In the first part of our research, we studied the biosynthesis and photocatalytic applications of 

zinc oxide nanoparticles. (ZnO-NPs).  

✓ We successfully synthesized these nanoparticles from an aqueous extract of Algerian date 

syrup, followed by thorough characterization using various techniques, including SEM, 

UV DRS, FTIR, and XRD.  

✓ The results obtained revealed that the ZnO/rGO nanocomposites exhibit remarkable 

photocatalytic efficiency, achieving a complete degradation of 100% of methylene blue 

(MB) in just 140 minutes under UV irradiation. The optimization of experimental 

conditions showed that the ZnO/rGO photocatalyst achieves its best performance at a 

neutral pH and a concentration of 1 g/L.  

✓ Furthermore, we have demonstrated the recyclability of ZnO/rGO10% over five 

degradation cycles, which attests to its stability and potential for practical applications. 

Finally, trapping experiments have identified hydroxyl radicals (•OH) and electrons (e-) 

as the main species involved in the photodegradation mechanism, highlighting the 

synergy between ZnO and rGO that helps reduce electron-hole recombination. 

Secondly, we successfully synthesized bismuth oxide (Bi₂O₃) as well as the Bi₁₂ZnO₂₀ type 

selenite, both obtained through a green method.  
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✓ The selenite Bi₁₂ZnO₂₀ was produced for the first time using a natural extract derived 

from prickly pear skin waste as a reducing agent. The identification of the phases of the 

synthesized materials was confirmed by X-ray diffraction (XRD) and other 

characterization techniques, thus ensuring the integrity and purity of the compounds. 

✓ We then evaluated the photocatalytic performance of the Bi₁₂ZnO₂₀/Bi₂O₃ composite by 

varying the proportions of the materials. The optimal ratio of 90% Bi₁₂ZnO₂₀ and 10% 

Bi₂O₃ achieved a 100% degradation rate of Beibrich scarlet in just 80 minutes, starting 

from an initial concentration of 20 mg/L. 

✓ Moreover, the composite demonstrated excellent stability, maintaining a degradation rate 

of 97.7% after six cycles of use. These results highlight the promising potential of 

synthesized materials for practical applications in wastewater treatment. 

At the end of our studies, we synthesized hybrid compounds based on an organic semiconductor, 

g-C₃N₄, by integrating two elements into its structure, phosphorus and titanium. The individual 

doping of these elements revealed a significant improvement in the photocatalytic activity of g-

C₃N₄. Encouraged by these promising results, we have chosen to combine the properties of 

titanium and phosphorus in order to modify the material's characteristics and optimize its 

photocatalytic performance. This strategy has led to achieving remarkable degradation rates, 

exceeding our initial expectations. The obtained results validate the effectiveness of this 

combination in enhancing the photocatalytic activity of g-C₃N₄.  

We can summarize our results as follows:  

✓ The success of the preparation of the composite P-g-C₃N₄@Ti-g-C₃N₄ was validated by 

various characterization methods, including EDX and mapping, which provide an 

accurate analysis of the composition of our material. 

✓ The improvement in the optical properties of g-C₃N₄ was corroborated by the UV DRS 

results, showing a decrease in the band gap energy, as well as by photoluminescence 

analyses, suggesting an efficient charge separation due to the synergistic effects of 

phosphorus and titanium doping. 
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✓ A degradation rate of 100% of Beibrich Scarlet (BS) was achieved in 100 minutes with 

an initial concentration of 30 mg/L under visible light, demonstrating the success of our 

work in creating a composite with exceptional photocatalytic performance. 

Outlooks 

• Test the composites on a wide range of pollutants to evaluate their effectiveness under 

various conditions.  

• Adapting photocatalysts to sunlight for a more ecological and economical application.  

Exploring other natural extracts such as precursors or reducing agents could lead to 

more sustainable synthesis methods.  

• Introduce artificial intelligence to optimize synthesis and reaction parameters, thereby 

enabling continuous improvement of photocatalytic efficiency and precise prediction of 

performance under various processing conditions.  

• Study, using COD and TOC, the mineralization of pollutants as well as the by-products 

generated during the reactions to better understand the degradation pathways and ensure 

the safety and efficiency of the photocatalytic process in contaminant reduction.  

• tudy the feasibility of scaling up the synthesis of hybrid composites to an industrial level, 

by evaluating their economic viability for wastewater treatment applications.  

 



Abstract 

The preservation of the environment and the resolution of ecological problems are essential for 

sustainably improving the quality of life and promoting sustainable development. Photocatalysis 

assisted by semiconductors is garnering increasing interest due to its immense potential to 

address global energy and environmental challenges. This thesis explores the design and 

evaluation of advanced hybrid nanomaterials for the photocatalytic degradation of organic 

pollutants in wastewater, specifically targeting recalcitrant dyes such as methylene blue and 

Biebrich scarlet. The main objective is to develop innovative photocatalysts based on zinc, 

bismuth, and graphitic carbon nitride (g-C₃N₄), by integrating green synthesis methods to 

minimize the environmental impact of manufacturing processes. The results demonstrate a 

notable photocatalytic efficiency of ZnO/rGO nanocomposites, ensuring complete degradation of 

methylene blue in 140 minutes under UV irradiation. Moreover, the Bi₁₂ZnO₂₀/Bi₂O₃ composite 

demonstrated exceptional performance in the degradation of Biebrich scarlet, achieving a 

degradation rate of 100% in just 80 minutes. Moreover, doping g-C₃N₄ with phosphorus and 

titanium has significantly improved its photocatalytic activity under visible light, allowing for 

the complete degradation of Biebrich scarlet in 100 minutes. These studies highlight the potential 

of hybrid materials developed for practical applications in wastewater treatment, while 

emphasizing the importance of eco-friendly synthesis strategies for sustainable water resource 

management. 

Keywords: Photocatalysis, hybrid materials, green synthesis, degradation of organic dyes, 

ZnO/rGO, Bi₁₂ZnO₂₀/Bi₂O₃, P-g-C₃N₄@Ti-g-C₃N₄.  

 

 

 

 

 

 

 



Résumé 

 La préservation de l’environnement et la résolution des problèmes écologiques sont essentielles 

pour améliorer durablement la qualité de vie et promouvoir un développement durable. La 

photocatalyse assistée par des semi-conducteurs suscite un intérêt croissant en raison de son 

potentiel immense pour répondre aux défis énergétiques et environnementaux mondiaux. Cette 

thèse, explore la conception et l’évaluation de nanomatériaux hybrides avancés pour la 

dégradation photocatalytique de polluants organiques dans les eaux usées, ciblant spécifiquement 

les colorants récalcitrants, tels que le bleu de méthylène et le Biebrich scarlet. L'objectif principal 

est de développer des photocatalyseurs innovants à base de zinc, de bismuth et de graphitic 

carbon nitride (g-C₃N₄), en intégrant des méthodes de synthèse verte afin de minimiser l’impact 

environnemental des procédés de fabrication. Les résultats démontrent une efficacité 

photocatalytique notable des nanocomposites ZnO/rGO, assurant une dégradation complète du 

bleu de méthylène en 140 minutes sous irradiation UV. Par ailleurs, le composite 

Bi₁₂ZnO₂₀/Bi₂O₃ a montré des performances exceptionnelles dans la dégradation du Biebrich 

scarlet, atteignant un taux de dégradation de 100 % en seulement 80 minutes. De plus, le dopage 

du g-C₃N₄ avec du phosphore et du titane a significativement amélioré son activité 

photocatalytique sous lumière visible, permettant une dégradation totale du Biebrich scarlet en 

100 minutes. Ces travaux mettent en évidence le potentiel des matériaux hybrides développés 

pour des applications concrètes dans le traitement des eaux usées, tout en soulignant 

l’importance de stratégies de synthèse écologiques pour une gestion durable des ressources 

hydriques. 

Mots clés : Photocatalyse, matériaux hybrides, Synthèse verte, Dégradation des colorants 

organiques, ZnO/rGO, Bi₁₂ZnO₂₀/Bi₂O₃, P-g-C₃N₄@Ti-g-C₃N₄. 

 

 

 

 

 



   ملخصال

تعُد حماية البيئة وحلّ المشاكل البيئية من الضرورات الأساسية لتحسين جودة الحياة بشكل مستدام وتعزيز التنمية المستدامة. 

تحظى تقنية التحفيز الضوئي بمساعدة أشباه الموصلات باهتمام متزايد نظرًا لإمكاناتها الهائلة في مواجهة التحديات العالمية  

المرتبطة بالطاقة والبيئة. تستكشف هذه الأطروحة تصميم وتقييم مواد نانوية هجينة متقدمة لتحفيز التحلل الضوئي للملوثات 

العضوية في مياه الصرف، مع التركيز بشكل خاص على الأصباغ المستعصية مثل الميثيلين الأزرق وبيبرتش سكارليت.  

زنك والبزموت ونترات الكربون الغرافيتيالهدف الرئيسي يتمثل في تطوير محفزات ضوئية مبتكرة تعتمد على ال  (g-C₃N₄)  ،

 مع اعتماد طرق تخليق خضراء لتقليل الأثر البيئي لعمليات التحضير. وقد أظهرت النتائج فعالية ملحوظة للمواد النانوية

ZnO/rGO  دقيقة تحت إشعاع فوق بنفسجي. من جهة أخرى، أظهر المركب 140في التحلل الكامل للميثيلين الأزرق خلال  

Bi₁₂ZnO₂₀/Bi₂O₃   دقيقة   80% في غضون 100أداءً استثنائيًا في تفكيك صبغة بيبرتش سكارليت، حيث بلغ معدل التحلل

بالفوسفور والتيتانيوم في تعزيز نشاطه التحفيزي الضوئي تحت الضوء المرئي،  g-C₃N₄ فقط. علاوة على ذلك، ساهم تطعيم

دقيقة. تبُرز هذه الأعمال الإمكانات الكبيرة للمواد الهجينة المطورة في    100يت خلال مما مكّن من تحلل كامل لبيبرتش سكارل

التطبيقات العملية لمعالجة مياه الصرف، كما تؤكد على أهمية اعتماد استراتيجيات تخليق صديقة للبيئة من أجل إدارة مستدامة  
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