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Abstract 

Nowadays, STLSs (Smart Traffic Light Systems) are widely adopted by smart cities to 

control traffic lights. They often rely on dedicated equipment like camera and sensors to 

collect traffic data. However, STLSs in urban areas are not flexible enough to efficiently 

manage traffic tricky problems such congestions, emergencies, etc. Therefore, the increasing 

need of automatic synchronized STLS system of various traffic controllers at different 

intersections which performed with reduced occupancy and waiting time benefits becomes 

a major concern. This is crucial for meeting the optimized traffic parameters of multiple 

intersections and driver's needs. Our objective is to develop a new system, called ADSTLS 

(Adaptive and Dynamic Smart Traffic Light System) to address traffic management at an 

intersection, solving the challenging problem of traffic congestion while prioritizing 

emergency vehicles. Therefore, we have proposed a system with new hybrid traffic flow 

model that combines a cycle model and a phase model for optimizing and efficiently 

managing traffic light planning, along with a decision-making approach focused on reducing 

congestion and average vehicle waiting time. By collecting traffic data, the system 

automatically extracts useful traffic information using computer vision and computing 

standard traffic metrics.  Moreover, we proposed two-traffic modes for regular and 

emergency vehicles to achieve an optimal decision-making process. The first mode, the 

dynamic mode, select the best phase using the Weight Chicken Swarm Optimization 

(WCSO) algorithm to ensure an optimal vehicle waiting time and queue occupancy at 

the city’s intersection. The second mode, the adaptive mode, determines the priority 

direction based on the distance of emergency vehicles and their priority levels. We have also 

proposed extending ADSTLS system using the multi-agent paradigm to improve the 

system’s performance in terms of execution time. To demonstrate our approach, we have 

presented a simulator applied to a real case study of EL‐Hidhab Setif city intersection. The 

experimental results showed a decrease in the average vehicle waiting time (31 s) and queue 

occupation rate (33.82%) across all simulated traffic scenarios. Furthermore, compared to 

other car types, emergency vehicles usually had much shorter wait times. 

Keywords: Smart cities, Traffic Controllers, Congestion, ADSTLS, Optimization, WCSO, 

Priority, Chronological Coordination. 
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General Introduction  

Smart cities represent an emerging paradigm in which advanced technologies, particularly 

Information and Communication Technologies (ICT), are harnessed to improve the quality 

of life in urban areas. One of the significant challenges facing modern cities is urban traffic 

congestion, leading to longer journey times and increased pollution levels. Synchronizing 

traffic lights is crucial for managing vehicle flow and reducing delays, playing a key role in 

addressing these challenges. As cities become smarter, traditional traffic management 

systems are evolving towards more efficient intelligent traffic systems, enabling for the 

dynamic adjustment of traffic lights based on real-time traffic conditions. This advance 

empowers cities to respond proactively to shifting traffic patterns. Smart cities aim to 

enhance the sustainability of urban mobility by optimizing existing infrastructure, reducing 

both travel times and greenhouse gas emissions, as well as reducing driver stress at peak 

traffic times. 

Traffic light synchronization is one of the critical issues in traffic management in 

urban environments. Well-synchronized traffic signals can improve traffic flow, reduce 

waiting times at intersections and minimize fuel consumption. However, coordinating these 

signals across an entire city presents a complex problem, particularly in cities with varying 

traffic patterns. 

Traditional traffic lights systems operate according to fixed cycles and predefined 

schedules, which do not adapt to real-time traffic conditions. Although still widely used, 

these systems lack efficiency, especially in urban areas where traffic volumes fluctuate 

significantly. In traditional systems, traffic lights switch after a fixed interval, regardless of 

the number of vehicles waiting at a junction. This can lead to unnecessary delays for vehicles 

and contribute to congestion. The main limitation of traditional traffic lights is their inability 

to respond to real-time traffic conditions. For example, during low-traffic periods, vehicles 

may be forced to wait unnecessarily at red lights, wasting time and fuel. Similarly, at peak 

times, traditional traffic lights often fail to reduce congestion, as their fixed timetables are 

unable to cope with sudden traffic surges. 

Traffic light synchronization aims to optimize the flow of vehicles in urban areas by 

minimizing unnecessary stops and reducing journey times. Traditionally, traffic light 

systems operated on fixed cycles, often ignoring real-time traffic variations. However, with 

the advent of intelligent sensors, connected vehicles and advanced communication 

infrastructures, it is now possible to design dynamic systems, capable of adjusting to current 
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conditions. These systems, known as Smart Traffic Lights System (STLS), are at the heart 

of initiatives to improve traffic efficiency in smart cities. 

STLS are designed to respond to traffic data in real-time by using sensors, cameras 

and communication modules to dynamically adjust signal timings according to actual traffic 

conditions. By optimizing traffic flow at intersections, these intelligent traffic lights can 

reduce vehicle idling time, shorten overall journey times, and reduce the environmental 

impact of vehicle emissions. STLSs are vital components in smart city infrastructure. They 

are connected to a centralized or distributed control system that collects data from various 

sources across the city. This data is processed with advanced algorithms, which then adjust 

signal timings at different intersections to create a more efficient traffic flow. Additionally, 

smart traffic lights can communicate with connected vehicles, providing drivers with real-

time updates on upcoming signal changes, further optimizing traffic flow and reducing fuel 

consumption. 

Several approaches have been developed for synchronizing traffic lights in smart 

cities. These approaches utilize different optimization techniques aimed at improving traffic 

flow while minimizing delays and reducing vehicle emissions. These techniques include 

Genetic Algorithms (GAs) [1], Fuzzy logic control [2], Reinforcement Learning (RL) [3], 

Multi-Agent Systems (MAS) [4] and Artificial Neural Networks (ANN) [5]. These 

techniques highlight how STLS leverages technology to improve urban mobility while 

addressing environmental and safety concerns. Each method offers different advantages 

depending on the size and complexity of the traffic network. However, despite technological 

advances, implementing these systems raises several challenges. The integration of real-time 

data from a variety of sources such as vehicle sensors, and surveillance cameras, and making 

rapid decisions in complex urban environments, requires robust, high-performance systems. 

Additionally, when synchronizing traffic lights, it is primordial to consider the conflicting 

needs of different road users, including motorized vehicles, cyclists, pedestrians, and public 

transport. Moreover, optimizing traffic lights in an urban setting poses problems of 

computational complexity, requiring scalable solutions to handle complexity effectively [6]. 

1. Problematic 

Traditional urban traffic management methods based on fixed green light times often prove 

inefficient for effective traffic management and cannot be applied to high-traffic flow 

density scenarios. As a result, large smart cities have adopted STLSs to find appropriate and 

enduring ways to overcome the increasing demand for effective traffic management. STLS 
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has been proposed to minimize the average waiting time of vehicles and queue length while 

maximizing overall traffic flow using advanced optimization methods to achieve good 

performance in real-world environment. These optimization methods include dynamic 

algorithm [7], artificial neural networks [8], gaussian mixture model [9], bee colony 

optimization [10], multi-objective diversity-based evolutionary genetic algorithms [11], 

multi-agent [12], fuzzy logic [13], reinforcement learning [14], game theory [15], and Petri 

nets [16]. Sometimes, a combination of two techniques such as multi-agent and deep learning 

[17], is also used. 

Other complementary methods provide significant benefits when collecting traffic 

data using cameras and sensors. Few solutions have benefited from the vast data available 

from modern wireless sensors. In this context, some STLS systems have used either 

optimization approaches [14,16,18,19] or sensor-based decision [7,20-22] while others have 

adopted a hybrid approach combining sensors and optimization techniques [8,23-26].  For 

instance, Hosur et al. [20] proposed a system based on sensors with a defined threshold 

distance using Internet of Things (IoT) technology. Joo et al. [14] introduced a traffic signal 

control system at an isolated intersection to maximize traffic flow and minimize queue size 

with a standard deviation. Some works in [7,8,14,19,20,22-24,26] used the phase model for 

moving traffic instead of the cycle model, which requires high computation time. In contrast, 

other works [16, 18, 21, 25] used the cycle model for dense traffic situations instead of the 

phase model, which reduces system efficiency.  In addition, current research lacks a suitable 

approach for determining the next phase while balancing solution quality. However, this 

problem can be solved within an acceptable time by utilizing a hybrid dynamic traffic 

lighting controller that combines cycle and phase models. The hybrid model switches from 

a cycle model to a phase model when the average queue occupancy rate is higher and vice 

versa. 

Currently, most traffic management research has focused on improving vehicle 

waiting times and reducing problems at intersections. Promising solutions have been 

proposed to satisfy drivers' requirements without considering the evolution of incoming 

vehicles, advanced information, and communication technologies. Prioritizing certain 

vehicles is essential for effective traffic management. The most striking case is high traffic 

volume, where the movement of emergency vehicles can cause a delay in finding optimal 

solutions. A few studies, such as [24-26] have shown that the adaptive traffic management 

model achieves an optimal waiting time for emergency vehicles. The focus should also be 

on high-priority vehicles, such as ambulances and firemen, avoiding long waiting times to 
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respect their emergency status. Automatic detection of emergency vehicles by traffic signals 

to ensure fast intervention. This objective can be achieved if the traffic signal management 

system receives the traffic data necessary to process it appropriately and optimally. 

To reduce traffic congestion during weather fluctuations and various scenarios, the 

traffic light system uses STLS, which is equipped with cameras and sensors to collect real-

time traffic data. This enables the system to regulate traffic flow by adjusting signal timing 

and providing drivers with accurate information about traffic conditions [27].  However, a 

significant issue with STLS is that the time interval is not adapted to dynamically changing 

traffic data during bad weather, or when the presence of emergency vehicles increases traffic 

flow. As a result, intersection controllers must target short-term goal and manage the most 

congested path to maximize benefits. 

Although current agent-based STLS systems are reliable [28], they are still time-

consuming and often require extensive message exchanges which could affect the traffic 

flow dynamics at intersections and negatively affect the expected traffic performance of the 

system. By providing decentralized decision-making through the STLS approach, our 

system addresses these challenges by dynamically controlling traffic flow at multiple 

intersections. 

2. Motivating Case Study  

The decision to use a large city intersection as a real-life case study for an STLS is motivated 

by several key factors. Firstly, these intersections are critical points where traffic jams are 

frequent, and implementing an intelligent system would improve traffic flow by dynamically 

adjusting traffic lights in real time, thereby reducing waiting times and congestion. 

Furthermore, reducing frequent stops and fuel consumption and greenhouse gas emissions 

should contribute to a cleaner and more sustainable urban environment. Additionally, the 

system could improve road safety by predicting risk behavior and preventing accidents 

through optimal management of vehicle flows. Moreover, a suitable urban intersection is an 

ideal testing environment for collecting valuable data to support intelligent algorithms, 

enabling continuous improvement of the system. Finally, our work can serve as a model for 

wider implementations across other areas of the city or different cities, paving the way for 

seamless integration into a broader smart city strategy. Therefore, we have selected a 

crossroads in El-Hidhab, Setif city, as a real-world traffic case study. 

Setif is a town in northeastern Algeria, that is one of its largest cities. As the 

population of the city increases, the Setif authorities will rely on a novel extension of the 
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urban perimeter for quality assurance. Therefore, a new city of El-Hidhab was created in the 

northeast of Setif Town. A city that has a simple intersection, as shown in Figure 1, is used 

to demonstrate the proposed approach. El-Hidhab’s intersection was considered to have 

heavy traffic. It includes four directions, each equipped with a traffic light. 

Figure 1 Map of the intersection for EL-Hidhab, Setif city case study. 

3. Objectives and Contributions  

The central aim of this thesis is to explore the power and immense benefits of smart sensor 

technology and intelligent decision-making processes to build a robust and efficient hybrid 

traffic signal management model. Our goal is to design and develop a new intelligent, 

dynamic, and adaptive traffic management system that optimizes various traffic parameters 

while remaining flexible to prioritize emergency vehicles. Indeed, the intersections in the 

city are experiencing a rise in vehicle numbers at different times, leading to traffic 

congestion. The system should be dynamic to adapt quickly to these evolutions. For this 

reason, we have adopted an intelligent traffic control system called ADSTLS (Adaptive and 

Dynamic Smart Traffic Light System) based on video sensors to collect and process traffic 

data, enabling us to calculate standard traffic metrics (e.g., average occupancy rate, output 

flow rate, and average waiting time of vehicles). This system aims to reduce traffic 

congestion and management of emergency vehicles.  

The traffic controller automatically generates an intersection management plan with 

an optimal green time for the phases based on a combination of system metrics. The traffic 

controller operates in two modes, dynamic and adaptive. The dynamic mode consists of three 
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models for traffic signal management: cycle, phase, and hybrid models.  The adaptive 

emergency mode enables effective management of emergency vehicles with an optimal 

waiting time for priority information. The system recognizes any priority vehicle using 

sensory identification, such as intelligent cameras, and can adjust to integrate new priority 

types. By integrating the collective intelligence of chicken behavior, we can create a more 

dynamic, adaptive, and efficient traffic management system to meet the evolving needs of 

modern cities. To the best of our knowledge, this is the first study that combines cycle and 

phase models for traffic signal planning. This is expected to leverage the additional 

optimization of parameters at a single traffic intersection and associated weights, such as 

vehicle waiting time and queue occupancy rate, using a novel Weight-based Chicken Swarm 

Optimization (WCSO) algorithm. 

An extended version of the ADSTLS system, known as CCADSTLS (Chronological 

Coordination of ADSTLS), aims to minimize congestion at multiple intersections. It enables 

traffic control agents to autonomously identify the source of congestion early, allowing for 

efficient and cost-effective decisions to keep traffic flow smoothly. The system prioritizes 

the safety and effectiveness of intersections, especially during severe weather fluctuations. 

Moreover, ADSTLS is based on cycle and phase models, fault tolerance, bio-inspired 

optimization, and potential traffic metrics, which are more useful and efficient in case of 

unexpected events. The key contributions of this study are summarized as follows. 

 Fault tolerance: Existing works do not propose a fault tolerance strategy. ADSTLS 

uses a heartbeat mechanism to ensure reliability without losing data or functionality. 

 Hybrid optimal WCSO-based traffic flow management: None of the existing 

works combine cycle and phase models to optimize traffic flow. We use WCSO to 

select the best phase or cycle that optimizes traffic parameters by finding optimal 

weights that could be achieved by processing possible traffic data.   

 Flexibility: Despite the regular and emergency vehicles, existing approaches have 

adopted only one strategy. To solve this issue, we use sensors to detect emergency 

vehicles and automatically switch between dynamic intelligent mode and adaptive 

emergency mode depending on the situation. 

 Vehicle density and scalability: Most existing approaches lack the support to 

efficiently deal with high traffic density. Moreover, they are strongly bounded by 

normal vehicle density, such as [7,14,20,22]. We opt for a bio-inspired optimization 

approach to deal with low, medium, and high vehicle density.  
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 Priority-based emergency vehicles: Existing approaches do not cover all criteria 

relevant to the management of emergency vehicles including, the vehicle trust, 

priority levels and vehicle location. 

 Real case study: We investigated the usefulness of leveraging traffic information in 

controlling traffic lights in a real case study of EL-Hidhab Setif city intersection, and 

in optimizing queue occupancy rate, average waiting time, and average output flow 

in adaptive and dynamic modes. 

 Coordination for multi-intersection: Introducing CCADSTLS, a novel 

chronological coordination of ADSTLS for multi-intersection system to reduce 

congestion and improve traffic flow during disasters and weather fluctuations. Based 

on a multi-agent approach and WCSO algorithm, CCADSTLS determines the 

congested path by asynchronously transmitting traffic flow messages between 

neighboring intersections. 

4. Organization of Thesis 

This thesis is organized into four chapters. The first two chapters are devoted to 

the background of the domain and a literature review relevant to our research, while chapters 

3 and 4 detail our contributions. An overview of each chapter is provided below: 

 Chapter One gives an overview of smart traffic light systems, covering their 

evolution, architecture, and components. It also explores the role of computer vision 

in STLS, as well as the applications of swarm optimization and artificial intelligence 

within these systems. Additionally, it discusses the main types of traffic control 

management systems, highlighting their advantages and disadvantages, and 

concludes with existing AI approaches in STLS. 

 Chapter Two presents a comprehensive survey that examines different STLS 

models and approaches.  It reviews key works in the STLS domain, compares the 

different approaches for managing both a single intersection and a set of 

intersections, and offers a synthesis of these approaches. The chapter also gives an 

overview of the role of the Internet of Things (IoT) in STLS and ends with a 

discussion of different simulation methods used to validate these approaches. 

 Chapter Three details our contribution, the Adaptive Dynamic Traffic Signal 

System (ADSTLS) for both single and multiple intersections. It presents the system's 

architecture, models, and standard traffic metrics. The chapter also presents the 
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control system for managing a single intersection and details the chronological 

coordination of ADSTLS across multiple intersections. 

 Chapter Four presents the developed simulator, which is based on the weight 

sensor-based collective intelligence model and various implemented ADSTLS 

models. It includes the demonstration of the simulator using a real-world case study 

EL-Hidhab Intersection in Setif city. This chapter also examines the performance 

evaluation and experimental results for both single and multiple intersections. 

This thesis concludes with a summary of the research, highlighting its contributions, 

and limitations, and offering suggestions, along with potential directions for future studies.  
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1. Introduction 

The congestion of urban traffic is becoming one of the crucial issues with increasing 

population and number of vehicles. Traffic jams not only cause stress and delays for the 

drivers but also increase transportation costs and incidents. There can be different causes of 

congestion in traffic such as manual control lights, red light delays, and increased demands. 

Thus, the conventional management of traffic lights is one of the critical factors affecting 

poor traffic flow. To this end, transport organizations shift out to Smart Traffic Light System 

(STLS) as a solution that could make a significant contribution to manage a wide range of 

events. Besides, it could occur frequently at intersections and dynamically control them to 

guarantee optimal congestion.  

In this chapter, we present some background and preliminaries necessary to 

understanding the related works and our contributions detailed in the rest of this thesis in the 

domain of STLS. It is important to underline that our thesis is located at the intersection of 

three main areas of research which are: Smart Traffic Light System, Computer Vision, 

Swarm Optimization, Traffic flow Management using Wireless Sensors Networks (WSN) and 

Artificial Intelligence (AI) approaches. Figure 1.1 shows the STLS research domains. First, 

we provide the fundamental preliminary definitions of concepts related to STLS and give an 

overview of different challenges in this research area. After that, we present the use of 

computer vision domain in STLS. Then, we present some standard approaches of STLS systems 

and their drawbacks related to traffic flow management systems. Finally, we conclude this chapter 

and present some lessons learned.   

Figure 1.1 Smart traffic light system research domains. 
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2. Smart Traffic Light System in Smart Cities   

2.1 Evolution of Traffic Light Control System: From Manual to Smart Control 

Over the past few decades, the control of vehicle traffic has been one of the success keys 

factors in the development of a country. The vehicle traffic system being used first manual 

controlling as and even suggests require manpower to control the traffic flow. Policemen are 

allotted to a required area to control traffic using signboards, sign lights, and whistles. The 

second one is current automatic traffic light is controlled by timers and sensors. In traffic 

light, a fixed value is loaded in the timer. The lights are automatically switched to red and 

green based on the timer value. The last one is almost an intelligent traffic light system. 

In the last decade, Wireless Sensors Networks became mandatory support to link 

different vehicles and witnessed a fast development process in various areas of daily live. 

Smart and modern cities target this technology to achieve full control of vehicular traffic. 

However, intelligent strategies have become indispensable to ensure city advances and 

quality of life. This involves the provision of appropriate road structures and efficient 

management of intersections. Therefore, vehicular traffic congestion at road intersections is 

a serious obstacle to the expected development of smart cities. With proper integration of 

STLS, most congestion problems can be solved. Indeed, multiple solutions have been 

proposed in the STLS specialized literature, either for a single intersection [7, 8, 14, 16,23] 

or for a set of intersections [ 9, 11, 17] and that according to different approaches [7-17].   

2.2 Architecture of Smart Traffic Light System 

Smart Traffic Light System (STLS) is a modern system, involving multimedia sensors, data 

processing, communication infrastructure, remote control, and interactive human-machine 

interfaces to monitor, analyze and efficiently improve traffic flow management. This is 

expected to reduce congestion and contribute to the appropriate development of more 

intelligent and resource-efficient cities. These technologies could include surveillance 

cameras and sensors to measure vehicle flow, and driver guide system. We show an example 

of STLS in Figure 1.2. Generally, the system STLS consists of the following components to 

ensure its effectiveness in aiding traffic management:  

 Sensors and data collection: STLS uses technologies such as video cameras, 

infrared sensors, and radar systems for real-time traffic data collection. Besides, IoT 
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devices gather information about the current traffic density, vehicle types and 

pedestrian movements [29]. 

Figure 1.2 Smart traffic light system architecture. 

 Communication infrastructure: consists of high-speed communication networks 

(5G, Wi-Fi) to ensure seamless traffic data transfer. It is also defined as dedicated 

communication protocols which provide secure and reliable information exchange. 

It also leverages the existing Intelligent Transportation Systems (ITS) networks [30]. 

 Data processing and analysis: operated by edge computing nodes to process data 

in real-time. It uses artificial intelligent algorithms that enable data analysis in real-

time and dynamically adjust traffic signal timings based on current traffic conditions. 

It refers also to Cloud-based analytics for historical data analysis [31]. 

 Control Unit: can either be centralized, decentralized or distributed for real-time 

decision-making. It is based on adaptive control algorithms to dynamically adjust 

signal timings based on traffic conditions. Such control unit is the main part of traffic 

management systems that ensures citywide control centers [32]. 

 Security and data privacy: are parts of STLS systems that encrypt traffic data and 

ensure secure communication protocols. It is based on anonymization techniques for 

protecting personal traffic data privacy. Regular security audits and updates to 

safeguard against cyber threats [33]. 
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 Human-Machine Interface (HMI): there are two types of HMIs, namely, User 

Interface for operators and Mobile Apps and public displays defined as follows:  

 User Interface for operators: a graphical interface for traffic management 

operators to monitor the system, manually intervene if necessary, and analyze 

historical data [34]. 

 Mobile apps and public displays: information about the current traffic 

conditions and current suggested routes which can be communicated to 

drivers through mobile apps or electronic displays [34]. 

2.3 Components of Smart Traffic Light System 

2.3.1 Roads and Intersection 

An intersection is a place where two or more roadways meet or cross, managed by several 

traffic lights located on the different lanes entering the intersection [35]. In other words, an 

intersection can be defined as a junction where two or more ways intersect. There are several 

categories of intersections: controlled, signaled, and uncontrolled. Controlled intersections 

are equipped with a stop sign, marking, or managed by authorized personnel. Signalized 

intersections are provided with automatic traffic lights. Finally, uncontrolled intersections, 

where priorities and traffic flow are left to the appreciation of the users.  

For the STLS domain, the focus is on signalized intersections. Figure 1.3 shows an 

example of a four-way signalized intersection. 

Figure 1.3 Model of a four-way signaled intersection [35]. 
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2.3.2 Traffic Lights  

Traffic lights are devices installed at intersections or other road junctions to control the flow 

of vehicular and pedestrian traffic. In STLS, these traditional traffic lights are equipped with 

intelligent capabilities, such as real-time monitoring, adaptive control algorithms and 

connectivity to a centralized control system [36]. 

Several types of traffic lights in a STLS, such as [36]: 

 Standard traffic lights: are traditional traffic lights with intelligent capabilities. 

They generally consist of red, yellow and green lights to control vehicle traffic. 

 Pedestrian lights: are traffic signals designed specifically to regulate pedestrian 

movements at intersections. In STLS, pedestrian signals can include functions such 

as countdowns and audible signals. 

 Bicycle signals: In areas with high bicycling levels, dedicated bicycle signals can be 

installed to provide safe and efficient passage for cyclists. These signals can be 

integrated with STLS to coordinate vehicle and pedestrian movements. 

 Priority signals: are used to give priority to specific modes of transport, such as 

buses, emergency vehicles, or pedestrians. In STLS, priority signals can be 

dynamically activated according to traffic conditions and real-time demand. 

2.3.3 Cycle and Phase 

 Phase: a phase of a traffic light is a period during which one or more coherent flows 

area allowed into the intersection [35]. 

 Cycle: a cycle of a traffic light represents the time between two identical phases of 

the intersection. It is defined by a sequence of phases [35]. Figure 1.4 illustrates two 

traffic light cycles composed of four phases.  

Figure 1.4 Two-cycle models with four phases. 

2.4 Sensors and Detectors 

The use of sensors in the field of road traffic occurred a century ago, around the 1920s in the 

United States of America, when traffic light controllers replaced manual signals at fixed 

intervals. In the same period, two engineers pioneered traffic monitoring, the first, Charles 
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Adler, Jr. designed a sensor-activated traffic control system that modified steering based on 

the presence of a vehicle horn, and the second, Henry A. Haugh, developed a pressure-

sensitive sensor on the roadway, using two metal plates that functioned as electricity 

connections. For recognizing the presence of cars on the road, the latter design was more 

successful than the horn sensor and became the main sensor for decades [37]. 

2.4.1 Sensors Technology 

For vehicle monitoring in the domain of traffic flow management, two sensor technologies 

are used: 

 Intrusive sensors are introduced on the road, such as inductive loop sensors Figure 

1.5, magnetic sensors, pneumatic sensors and moving weight sensors. Some of the 

advantages of this sensor model are surveillance of traffic flow for a regular period, 

and insensitivity to weather conditions such as rain, fog, and snow. Among their 

disadvantages are high installation and maintenance costs, due to the difficulty of 

installation which requires the removal of existing road surfaces and the closure of 

the road [38]. 

 Non-intrusive sensors, which can be installed out of the road and demand little 

upkeep, include radar microwave system, video and image process system, ultrasonic 

passive control and infrared passive control system Figure 1.5. The advantages of 

this model are easy installation and maintenance, and low-cost technology except for 

the video camera system. The major disadvantage of these sensors is the sensitivity 

to metrological conditions, such as weather variation and wind conditions, which can 

influence their functioning [38]. 

Figure 1.5 Intrusive and non-intrusive sensor models [38]. 

2.4.2 Motivation for Using Wireless Sensors 

The convergence of technological advances in the wireless communication domain and the 

miniaturization of electronic components have given rise to devices of remarkable interest 
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whose use has affected many industrial and socio-economic fields. These tiny wireless 

devices or sensors, often grouped to form wireless sensor networks, provide important 

services via distributed applications that can be integrated into almost all areas of everyday 

life. 

The main reasons for introducing wireless sensors in the field of road traffic are the 

following: 

 Flexibility, maintainability, manageability, and inexpensive components. 

 Analysis, improvement and evolution of STLS. 

 Facilitating the use of transport modes by users. 

 Real-time detection and evaluation of expected events: incidents, accidents, etc. 

 Automating access management to parking areas. 

 Etc. 

It should be noted that wireless sensors play a fundamental role in the conception of 

digital platforms for autonomous and connected vehicles. Whether for reasons of safety of 

vehicle movements and passengers or comfort needs on board vehicles. Sensors and more 

precisely the network that includes them, is an essential element within a vehicle and in 

general within an intelligent transport system. 

2.5 Smart Traffic Light Management Process  

The smart traffic light management process includes several key steps to effectively monitor, 

analyze and control traffic flow at intersections. Here, we describe these steps as follows: 

2.5.1 Traffic Data Collection 

Various types of sensors such as video cameras, radar sensors, and inductive loops, are 

deployed at intersections to collect data about the current traffic volume, vehicle speed, and 

queue length. These sensors constantly monitor traffic conditions and provide real-time data 

to the traffic management system [39]. 

2.5.2 Traffic Data Processing 

The collected data is pre-processed and analyzed using computer vision and intelligent 

algorithms to extract significant and useful information about traffic patterns, and congestion 

rates at different times of the day. Machine learning and artificial intelligence techniques can 

be used to predict traffic behavior and optimize traffic light timings [39]. 
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2.5.3 Decision-Making  

The smart traffic management system dynamically adjusts signal times to improve traffic 

flow and reduce congestion based on real-time traffic analysis. This system uses adaptive 

control algorithms to adjust green time in real-time based on current traffic conditions 

including bad weather, emergencies and incidents [39]. 

2.6 Emergency Vehicles Signal Management Scenarios  

Emergency vehicle signal management involves giving priority to emergency vehicles such 

as ambulances, fire engines and police cars at intersections to ensure their timely passage 

through traffic as well as improving traffic performance. The adaptive signal control real-

time data based on current traffic conditions to adjust signal timings and traffic flow 

optimization. In the presence of an approaching emergency vehicle, the system can 

dynamically modify signal timings to allow the emergency vehicle to proceed on green while 

minimizing disruption to other traffic [40]. 

3. Computer Vision in Smart Traffic Light Systems 

Computer vision plays a vital role in helping STLS collect real-time traffic data effectively 

and accurately to detect vehicle and pedestrian movement. Modern traffic flow management 

extracts all the significant traffic information from images and exploits computer processing 

capabilities with the ultimate goal of improving traffic flow control and lowering the overall 

cost.        

3.1 Introduction to Computer Vision 

Computer vision is an Interdisciplinary domain that enables computers to interpret, process, 

and analyze visual data from the real world. It includes a wide range of methods and 

algorithms intended to extract meaningful information from images or videos. With 

computer vision, it recognizes objects, detects patterns and understands the content of visual 

data by imitating the human visual system. Numerous applications including autonomous 

vehicles, medical imaging, surveillance and security, augmented reality, robotics, industrial 

automation and e-commerce can benefit from computer vision [41]. 

Computer vision algorithms are often comprised of several tasks, image pre-

processing, feature extraction, object detection, segmentation, classification, and scene 
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understanding. These algorithms have evolved from traditional image processing techniques 

to advanced machine and deep learning models [41]. 

3.2 Traffic Video Images Processing Methodology   

The traffic image processing methodology involves the application of computer vision 

techniques. It analyses and extracts valuable traffic information from different images or 

videos captured at traffic intersections or roadsides, computes traffic flow metrics, and then 

integrates them into the traffic management system. Figure 1.6 shows a typical methodology 

for processing traffic images. 

Figure 1.6 Traffic image processing methodology. 

3.2.1 Video Images Traffic Acquisition and Pre-Processing  

Video images are captured by traffic surveillance cameras installed at various intersections 

on roadside poles. These cameras capture clear and detailed objects of the traffic landscape 

including vehicles, pedestrians, and road markings. Pre-processing techniques are applied to 

images or video traffic for quality improvement and traffic flow analytics. They applied 

multiple image treatment methods including noise reduction, image stabilization, color 

correction, and image resizing [42]. 

3.2.2 Object Detection and Traffic Feature Extraction 

Computer vision algorithms are essential for efficient smart traffic management systems.  

Through computer vision algorithms, the smart traffic management system can detect and 

track objects (i.e., vehicles, peoples) in the traffic scene. Generally, the Haar cascades, HOG 

(Histogram of Oriented Gradients), or deep learning-based approaches such as YOLO (You 

Only Look Once), are targeted for this particular purpose. Visual features such as edges, 

corners, textures and shapes are extracted from detected objects to characterize their 

appearance and properties, enabling further traffic analysis [42]. 
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3.2.3 Traffic Flow Metrics Calculation  

There are many different traffic flow metrics in today's smart traffic management system. 

Traffic metrics can evaluate the number of vehicles, speed of vehicles, density of vehicles 

and vehicle occupancy rates based on detected objects and their trajectories. These metrics 

provide information about traffic jams, travel patterns, and general traffic conditions. To 

evaluate such metrics, several computer vision techniques are widely used. These techniques 

are summarized as follows [43]: 

 Vehicle detection: computer vision techniques perform vehicle detection and 

localization based on traffic camera images or videos. These techniques include 

background subtraction, followed by object detection and accurate vehicle detection 

using deep learning approaches. 

 Vehicle tracking: once vehicles have been detected, computer vision techniques 

also track the vehicle trajectories over time, which alerts the flow traffic controller 

about the vehicle movement changes and interactions with other vehicles to improve 

the traffic flow management. Tracking algorithms detect and identify the vehicles 

from one image to another, and predict the vehicle's travel time from its origin to its 

destination based on the vehicle's current speed and directions. 

 Traffic density: is calculated based on the number of vehicles available in a 

particular area or lane of urban road. It can be measured by the number of vehicles 

per unit area, or by other metrics such as occupancy rate, which represents an interval 

of time that vehicles are taken in a particular area. 

 Traffic speed: is calculated based on the analysis of movement of vehicles between 

two consecutive video images. By tracking the movement of vehicles over time, their 

mean speed can be estimated over different traffic segments or lanes. 

 Traffic flow: represents the speed at which vehicles pass a given point or segment 

of urban road. It is calculated as the product of traffic density and speed. It is often 

expressed as the number of vehicles per unit of time (e.g. vehicles per hour). 

 Queue length: This is calculated based on the number of waiting vehicles in queues 

at intersections. Computer vision algorithms analyze the spatial distribution of 

vehicles and identify the vehicle queues waiting. 

Traffic flow measurements are usually integrated with traffic management systems 

to ensure easy real-time decision-making by optimizing signal timings and implementing 

adaptive traffic control strategies to reduce congestion and improve traffic flow efficiency. 
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Figure 1.7 shows examples of vehicle detection using computer vision techniques.  

Figure 1.7 Computer vision for vehicles detection [44]. 

4. Swarm Optimization Metaheuristics in Smart Traffic Light Systems 

Swarm optimization in STLS is an emerging technique that has gained significant attention 

in the field of traffic flow control and optimization. It refers to the collective behavior 

exhibited by a set of agents, each following simple rules, which collectively result in 

complex and intelligent global patterns. The phenomenon takes inspiration from the 

behavior of ant colonies, flocks of birds or schools of fish, where individual agents interact 

with their environment and each other to achieve common goals without any central control 

or coordination. In the context of traffic light systems, swarm optimization algorithms, such 

as Particle Swarm Optimization (PSO) [45] or Ant Colony Optimization (ACO) [46], are 

used to adaptively control traffic lights based on real-time conditions, improving traffic flow 

and reducing congestion.  

4.1 Concepts of Swarm Optimization 

Swarm optimization is a nature-based optimization model that simulates the natural features 

and collective behavior of different animals such as birds, ants or fish. To detail the concepts 

of swarm intelligence, let's explore some key concepts [47, 48]: 

 Swarm Intelligence: Is based on the collective behavior of decentralized, self-

organizing systems where individual agents (or particles) interact locally with their 

environment and other agents to achieve global goals. The key idea behind swarm 
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intelligence is that simple agents adhering simple rules can lead to sophisticated, 

intelligent global behaviors without central oversight. Examples include bird flocks, 

fish schools and foraging ants.  

 Population-Based Search: Swarm optimization algorithms use a population of 

agents (solutions) to simultaneously explore the solution space. Each agent 

represents a potential solution to the problem, and the collective aim to improve these 

solutions over time. This approach helps prevent premature convergence towards 

local optima, allowing different agents to explore the search space concurrently. 

 Exploration and Exploitation Balance: Exploration is the process of searching 

different parts of the search space to discover new solutions. It prevents agents from 

getting stuck in sub-optimal locations. Exploitation refines solutions for further 

optimization by improving the best solutions found so far. Swarm algorithms balance 

exploration and exploitation to achieve global optimization, ensuring don’t settle 

agents in local optima while prioritizing the improvement of promising solutions. 

 Decentralized Decision-Making: Swarm intelligence enables collective decision 

making by pooling the knowledge and preferences of individual agents. By 

leveraging the wisdom of the crowd, swarm systems can often achieve better 

outcomes than relying on a single decision making. For example, an agent discovers 

a new solution based on local information and simple rules, then communicate 

information about potential solution, and when a certain number of agents agree on 

a solution, the swarm collectively decides to consider that solution. Thus, the absence 

of central control enables the creation of flexible, scalable systems. This 

decentralized decision making allows the swarm to adapt to changing conditions and 

make optimal decisions. 

 Fitness Function and Objective Optimization: The fitness function (or objective) 

evaluates the quality of a solution. Each agent in a swarm optimization algorithm 

uses this function to evaluate its position or solution. The aim is to either minimize 

or maximize the fitness function, guiding the agents towards the optimal solution 

iteratively. 

 Collective Behavior: Agents work together by sharing information or exerting 

influence (e.g., the position or solution of a neighboring agent) to achieve a common 

goal. No single agent has complete knowledge or control over the entire system. 

Instead, collective behavior arises from simple interactions of agent with their 
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neighbors that enable them to converge on a high-quality solution. An excellent 

example is how a group of ants can find the best solutions and exhibit coordinated 

movements without any central leader. 

 Emergent Behavior: When groups of individuals interact with each other, they can 

exhibit behaviors not found in any single individual. This emergent behavior arises 

from complex interactions and coordination among agents, leading to the emergence 

of new patterns or behaviors at a higher level of organization. For example, in ACO, 

each ant selects paths based on pheromone concentration which ultimately leads the 

colony to collectively discovers the shortest path to a food source. 

 Stochastic and Probabilistic Nature: Swarm optimization incorporates random 

elements into agent behavior to ensure comprehensive exploration of the search 

space. This reduces the risk of agents getting stuck in sub-optimal solutions. In some 

algorithms, agents make decisions based on probabilities (for example, the 

probability of selecting a particular path based on pheromone levels in ACO or the 

relative fitness of solutions in PSO). 

  To summarize, swarm optimization is an adaptive, decentralized, population-based 

approach to solving complex optimization problems. It balances exploration and 

exploitation, enabling individual agents to follow straightforward rules and make 

decentralized decisions. Thanks to collective and emergent behavior, the swarm 

probabilistically converges towards optimal solutions. Figure 1.8 shows the concepts 

of swarm optimization. 

Figure 1.8 Concepts of swarm optimization. 
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4.2 Standard Swarm Optimization Algorithms and Applications 

Swarm optimization algorithms represent a class of bio-inspired computational techniques 

aimed at solving complex optimization issues by simulating the collective behavior of 

decentralized systems. They are defined by the presence of simple agents (or “particles”) 

that collaborate to find optimal solutions without any central control. Below are some of the 

most common swarm optimization algorithms and their applications. 

4.2.1 Particle Swarm Optimization (PSO) Algorithm  

PSO is a population-based optimization algorithm inspired by the social behavior of birds in 

flight or fish in schools. The operational principals of PSO are based on simulating the 

movement and interaction among particles in a search space to find the optimal solution. 

PSO was proposed by J. Kennedy and R. Eberhart [49] in 1995. In PSO, particles move in a 

multi-dimensional search space, where each particle's position represents a candidate 

solution to the optimization problem. Each particle maintains its current position and 

velocity, and continuously update them to find out the optimal solution. The interactions 

between particles for the PSO enables the swarm to solve complex optimization problems 

while maintaining a balance between exploration and exploitation. The pseudo code of PSO 

is shown in Algorithm 1.1. 

Algorithm 1.1 Particle swarm optimization (PSO). 

 

4.2.2 Chicken Swarm Optimization (CSO) Algorithm  

CSO is a nature-inspired metaheuristic algorithm. It is based on the social behavior of 

chickens and hierarchical structure and dynamics within a swarm, particularly within a flock. 

CSO was proposed by X. Meng et al. [50] in 2014. CSO simulates a population of chickens 

that play various roles (roosters, hens and chicks), which interact based on their social status 

to find optimal solutions in a given problem space. Roosters is the best individuals in the 

population and shares their knowledge with hens, but compete with other roosters for food 

(optimal solutions). Hens is the intermediate individuals, who follow roosters to gain 

knowledge but may also attempt to steal food (solutions) and chicks is the least competent 

individuals in the population, relying on their mother hens (parents) for guidance. Each of 

https://fastercapital.com/keyword/search-space.html
https://fastercapital.com/keyword/optimal-solution.html
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these components is associated with specific movement and learning strategies. The 

interaction between these roles reflects competition, cooperation and social hierarchy, 

facilitating the discovery of optimal solutions through collective search behavior. The 

pseudo code of CSO is shown in Algorithm 1.2. 

Algorithm 1.2 Chicken swarm optimization (CSO). 

 

4.2.3 Ant Colony Optimization (ACO) Algorithm  

ACO is a population-based metaheuristic algorithm inspired by the foraging behavior of 

ants. In 1990, M. Dorigo et al. [51] studied the mechanism of ant colony to find the shortest 

path from their colony to food sources. In this study, some ants deposit a pheromone on 

paths they traverse in each iteration. Other ants are attracted to the paths with the highest 

pheromone and, over time, paths that contain more pheromones are reinforced, facilitating 

the discovery of optimal or nearly optimal solutions. ACO has been widely applied to 

combinatorial optimization problems, particularly those related to pathfinding and routing, 

where finding optimal solutions can be computationally difficult. The pseudo code of ACO 

is shown in Algorithm 1.3. 

 Algorithm 1.3 Ant colony optimization (ACO). 
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4.2.4 Artificial Bee Colony (ABC) Algorithm 

ABC is a swarm intelligence-based optimization algorithm inspired by the foraging behavior 

of honeybees. It is recently proposed by D. Karaboga [52] in 2005 to simulate how bees 

search for nectar sources (solutions) and share information with their hive to locate the most 

beneficial food sources (optimal solutions). This algorithm is particularly effective for 

complex, non-linear and multidimensional optimization problems. The algorithm divides the 

bees in a colony into three distinct categories, each performing specific tasks:  

1. Employed bees: These bees exploit the food sources (solutions) assigned to them, 

and convey the quality of these sources to other bees. Each employed bee represents 

a particular solution in the solution space,  

2. Onlooker bees: Onlooker bees evaluate the information shared by employed bees 

and select food sources based on the quality of the solutions. The probability of 

selecting a food source being proportional to its quality and  

3. Scout bees: When a food source is exhausted (i.e. a solution is no longer 

improving), a scout bee is designated to randomly search for new sources 

(solutions), enabling the algorithm to explore new areas of the solution space.  

The pseudo code of ABC is shown in Algorithm 1.4. 

Algorithm 1.4 Artificial bee colony (ABC). 

 

4.2.5 Firefly Algorithm (FA) 

FA is an optimization technique inspired by nature and based on the bioluminescent behavior 

of fireflies. It is developed by X. S. Yang [53], in 2009 to simulate how fireflies attracted to 

each other according to the intensity of their light, which reflects the solutions quality in the 

algorithm. The fundamental concepts include: 1) - attractiveness: fireflies are attracted to 

each other according to their brightness, which represents the solution quality, 2) - attraction 

based on distance between two fireflies decreases as their distance increases and 3) - 

movement: a firefly moves towards a brighter one, enabling the algorithm to efficiently 

explore the solution space. The purpose of FA is to find optimal or near-optimal solutions 
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by balancing exploration (global search) and exploitation (local search) using these natural 

behaviors. The pseudo code of FA is shown in Algorithm 1.5. 

Algorithm 1.5 Firefly algorithm (FA). 

 

4.2.6 Bat Algorithm (BA)  

BA is an optimization algorithm inspired by echolocation behavior of bats, developed by 

X.S. Yang [54] in 2010. Particularly how microbats use sonar to detect prey and avoid 

obstacles. Bats emit high-frequency sound waves, which they use to listen to the echoes and 

adjust their flight path accordingly. This natural behavior is mathematically modeled in the 

bat algorithm to efficiently explore and exploit the solution space. The Bat algorithm is both 

flexible and easy to implement, making it suitable for solving a wide range of optimization 

problems, particularly in complex, non-linear and multimodal search spaces. Each bat emits 

a unique frequency and pulse rate that balances the exploration and exploitation phases. A 

higher frequency with a lower pulse frequency correspond to a more global exploration, 

while a lower frequency and a higher pulse frequency led to a local search around the right 

solutions. The pseudo code of BA is shown in Algorithm 1.6. 

Algorithm 1.6 Bat algorithm (BA) 
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4.2.7 Cuckoo Search (CS) Algorithm 

CS is a meta-heuristic algorithm inspired by some cuckoo species laying in the nest of other 

species birds, developed by X. S. Yang and S. Deb [55] in 2009. In CS, we have two bird's 

species: cuckoos and host birds. Bird, they do not have any nest they lay their eggs in the 

nests of other species, we have a nest for the host bird cuckoo bird will lay the egg in the 

nest of the host bird. If the host bird detects the foreign egg, it can either abandon the nest 

and build completely new egg. The algorithm is also inspired by Lévy flight, a random 

walking process used by animals to explore their environment in search of food. CS 

leverages these natural strategies to perform a global optimization, using a population of 

candidate solutions (cuckoos) and replacing the weakest solutions (the host eggs) with the 

best. The search process is driven by two main mechanisms: (1) Laying eggs in random 

nests: A set of candidate solutions is maintained, and new solutions are created by modifying 

existing ones. Poor solutions are replaced by more promising ones, imitating the cuckoo's 

strategy of laying eggs in host nests and (2) Lévy flight: New solutions are generated using 

Levy flight enabling the algorithm to explore the solution space in large steps, improving 

global exploration and helping the algorithm escape local optima. Cuckoo Search is known 

for its simplicity, efficiency, and ability to handle a wide range of optimization problems, 

particularly those with complex, multimodal landscapes. The pseudo code of BA is shown 

in Algorithm 1.7. 

Algorithm 1.7 Cuckoo search (CS). 

 

4.2.8 Grey Wolf Optimizer (GWO) Algorithm 

The bio-inspired Grey Wolf Optimization (GWO) algorithm is a meta-heuristic approach 

developed by Mirjalili and colleagues [56] in 2014. GWO is inspired by their hunting and 

prey-seeking behavior in nature. In GWO, the population is divided into four categories: 

alpha, beta, delta, and omega. The alpha wolf is the pack leader responsible for decision-
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making. The beta wolf is the second leader, assisting the alpha in decisions and other 

activities. The delta wolf is the third leader of the group, dominating the omega wolves. 

Mathematically, the three fittest solutions in GWO are denoted by the letter’s alpha (𝛼), beta 

(𝛽), and delta (𝛿) respectively. The other individuals are considered omegas (𝜔). In GWO, 

the hunting process is guided by (𝛼), (𝛽), and (𝛿), while (𝜔) follows these three leaders. 

The hunting process of grey wolves consists of three main phases, which are reflected 

in the GWO algorithm: 1) - encircling the prey: Wolves surround the prey and move 

towards it by adjusting their positions relative to the alpha, beta, and delta wolves. In GWO, 

candidate solutions are updated based on their distance to these three best solutions, 2) -

hunting: The wolves attack the prey cooperatively by updating their positions to converge 

toward the best solution and 3) attacking or searching for Prey: Wolves either attack the 

prey if it is close or search for another prey if the current prey escapes. The GWO algorithm 

is recognized for its simplicity, efficient, and suitability for solving continuous optimization 

problems, especially those with complex, multimodal landscapes. The pseudo code of GWO 

is shown in Algorithm 1.8. 

Algorithm 1.8 Grey wolf optimizer (GWO). 

 

4.2.9 Whale Optimization Algorithm (WOA)   

WOA is a metaheuristic algorithm inspired by the social behaviors and hunting strategies of 

humpback whales, especially the bubble-net feeding method, proposed by S. Mirjalili and 

A. Lewis [57] in 2016. Humpback whales form spiral-shaped bubbles around their prey to 

trap them. This hunting technique is mathematically modeled in WOA to address 

optimization problems. WOA emulates several key behaviors: 

 Encircling prey: The whales identify the current best solution (prey) and surround 

it. This is mathematically modeled by updating the positions of potential solutions 

towards the best solution found so far. 
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 Bubble-net feeding: This technique is modeled by two main strategies: 

 Shrinking encircling mechanism: Whales get closer to the prey by 

gradually decreasing the distance between their position and best solution. 

  Spiral updating position: This imitates the bubble-net feeding behavior, 

where whales move in a spiral around the prey, balancing exploration and 

exploitation. 

 Search for Prey: Whales also conduct a random search for prey by updating their 

positions in the search space. This ensures a comprehensive exploration of the search 

space, preventing that the algorithm does not get stuck in local optima too early. 

WOA alternates between these behaviors based on a probability factor, allowing it to 

balance exploration and exploitation effectively. It is designed to solve continuous 

optimization problems but can also be adapted for discrete problems. The pseudo code of 

WOA is shown in Algorithm 1.9. 

Algorithm 1.9 Whale optimization algorithm (WOA). 

 

4.2.10 Genetic Swarm Optimization (GSO) Algorithm  

GSO is a hybrid optimization algorithm that combines the core features of Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) to create a more efficient and 

robust optimization method, developed by Grimaldi and colleagues [58] in 2005. The 

algorithm integrates the exploration capability of GA with the exploitation capability of 

PSO, aiming to improve search performance, solution diversity, and convergence speed. The 

hybrid mechanism in GSO: 

 Selection: GSO applies selection mechanisms from GA to choose the fittest particles 

from the swarm. These particles then proceed to the next generation, ensuring that 

only the best solutions survive. 

 Crossover: A crossover operator is applied to particles, where portions of their 

"genetic material" (solution parameters) are combined, creating new particles with 
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traits from two or more parents. This operation helps create diversity in the search 

space. 

 Mutation: To avoid premature convergence and ensure exploration of the search 

space, GSO applies mutation operators that randomly alter particle positions or 

velocities. 

 PSO Dynamics: GSO retains the velocity and position update rules of PSO, allowing 

particles to move through the search space by considering both their personal and the 

global best positions. 

By combining PSO’s swarm intelligence and GA’s evolutionary operators, GSO 

seeks to find an optimal balance between exploration (searching new areas) and exploitation 

(refining known solutions). The evolutionary operators ensure that the algorithm maintains 

diversity in the population and avoids stagnation in local optima, while PSO's swarm 

behavior enhances convergence toward the best solutions. The pseudo code of GSO is shown 

in Algorithm 1.10. 

Algorithm 1.10 Genetic swarm optimization (GSO). 

 

4.2.11 Swarm Optimization Applications  

Swarm optimization algorithms have been applied in various fields [59]: 

 Networks: Traffic flow management, load balancing and network design. 

 Artificial intelligence and machine learning: Neural network training, feature 

selection, hyperparameter tuning. 

 Engineering design: Structural optimization, control system tuning, electrical 

circuit design. 

 Robotics: Trajectory planning, multi-robot coordination, obstacle avoidance. 

 Finance and economics: Portfolio optimization, algorithmic trading, risk 

management. 

 Bioinformatics: Gene selection, protein structure prediction, sequence alignment. 
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These algorithms are highly versatile, making them applicable to numerous real-

world optimization challenges. Table 1.1 illustrates different application domains of swarm 

optimization algorithms.  

Table 1.1 Swarm optimization algorithm applications 

Application Domains 
Swarm Optimization Algorithm 

PSO CSO ACO ABC FA BA CS GWO WOA GSO 

Bioinformatics            

Biomedical Engineering           

Clustering           

Communication Systems           

Dynamic Optimization            

Engineering Design           

Energy Systems           

Economic Modeling           

Image Processing            

Job Scheduling           

Power System            

Robotics and Path Planning           

Supply Chain Management           

Traffic Signal Optimization           

Traveling Salesman Problem           

Wireless Sensor Networks           

  : Considered 

4.2.12 Main Advantage and Disadvantage of Swarm Optimization Algorithms 

Table 1.2 presents a comparison of swarm optimization algorithms mentioned below. While 

some of these algorithms have applied in various applications, they also come with both 

advantages and disadvantages. In this research study, the CSO are used and improved to 

determine the optimal weights for traffic flow. 

Table 1.2 Majors’ advantages and disadvantages of swarm optimization algorithms  

Algorithms Majors’ Advantages Majors’ Disadvantages 

PSO Easy to implement Risk of premature convergence 

CSO Balanced exploration and exploitation Sensitivity to parameter  

ACO Effective for combinatorial problems High computational cost 

ABC Well-balanced exploration and exploitation Limited search space exploration 

FA Effective for multimodal problems Sensitivity to light absorption coefficients 

BA Fast convergence for continuous and 
multimodal optimization   

Need for parameter tuning 

CS 
Fast and efficient for real-time and high-

dimensional optimization 
Scope of application is limited  

GWO Strong capabilities of exploration  Risk of early convergence 

WOA Flexible exploration techniques Limited parameter control 

GSO Combine advantages of GA and PSO Difficult to implement 
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4.3 Benefits of Swarm Optimization in Smart Traffic Light Systems 

Swarm optimization algorithms including Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Artificial Bee Colony (ABC) and others [46, 60-62], have 

demonstrated significant potential in optimizing STLS. These algorithms leverage collective 

intelligence and decentralized decision-making to solve intricate challenges such as traffic 

light control. Below are some prominent benefits of using swarm optimization in STLS: 

 Real-time adaptation: Swarm optimization algorithms are dynamic and adaptive by 

nature, enabling smart traffic lights to react in real time to adjust quickly to evolving 

conditions. They adjust traffic light schedules according to real-time traffic data, 

reducing delays and congestion at peak times or during unexpected traffic incidents. 

 Decentralized control: Swarm-based approaches can be used in a decentralized 

manner, enabling each traffic light to act as an agent and optimizes its local traffic 

flow while cooperating with neighboring lights. This decentralized control 

minimizes the need for a central management system and makes the traffic network 

more resilient against failures or disruptions at individual intersections. 

 Scalability: Swarm algorithms efficiently handle the complexity of urban traffic 

networks, making them suitable for large cities. Whether a small network of a few 

intersections or a large metropolitan area, swarm optimization can be adapted to 

control multiple traffic lights simultaneously without significant performance loss. 

 Reducing traffic congestion: Swarm algorithms are particularly proficient at 

optimizing multiple objectives at the same time. In intelligent traffic systems, this 

means they can minimize overall vehicle delays, waiting times and queue lengths at 

intersections.  

 Handling complex traffic patterns: Swarm optimization techniques can effectively 

handle complex and dynamic traffic situations, including those triggered by special 

events, weather changes or accidents.  

 Collaboration and coordination between intersections: Swarm optimization 

enables traffic lights at different intersections to work together in a coordinated 

fashion, optimizing traffic flow across multiple intersections. This creates “green 

waves”, where several consecutive traffic lights turn green at the right time, enabling 

vehicles to pass through several intersections without stopping, thereby improving 

overall traffic flow efficiency. 
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 Robustness and fault tolerance: Swarm algorithms promote the robustness and 

fault tolerance of intelligent traffic systems. Due to their decentralized nature, these 

algorithms are less sensitive to failures in the overall system. If an intersection or 

sensor fails, the rest of the system can continue to operate, adjusting traffic lights 

using available data. 

5. Artificial Intelligence in Smart Traffic Light System 

5.1 Introduction to Artificial Intelligence (AI) 

Artificial Intelligence (AI) simulates human intelligence and understands its nature by 

creating computer programs that simulate human behavior and intelligence. AI is no longer 

a marginal part of the era of the cognitive and technological revolution. This is because AI 

has become the most important outcome of the Fourth Industrial Revolution owing to its 

many uses in smart cities, AI is seen in self-driving cars, drones, real traffic flow 

management and other real live applications. It is noteworthy that AI can contribute to a 

sustainable environment and quality of life for humans in Internet age. AI continues to 

develop rapidly, is an essential part of our daily lives and has huge potential to achieve 

effective traffic management. 

5.2 The Role of AI in Smart Traffic Light Systems 

Traffic management can benefit greatly from AI, which continues to develop rapidly in our 

daily lives. To achieve durable and effective traffic flow management goals, AI can be 

properly exploited. Effective traffic flow management optimizes and integrates intelligent 

processes to ensure all aspects of traffic flow control operations. AI seamlessly with the 

ultimate goal of reducing vehicle waiting time, vehicle occupation rate, and lowering costs. 

AI is typically invisible to the end-drivers but it plays a vital role in helping drivers fulfil 

their tasks quickly and accurately to provide great driver's satisfaction. However, the 

increasing number of emergency events and congestions brings with it significant and 

complex challenges, ranging from issues of reducing costs and passing through security risks 

of traffic data, to exacerbating the problems of traffic flow optimization. Addressing these 

challenges may be as difficult as the solutions to achieve the goals of achieving efficient 

traffic flow management. 

 



Chapter 1                            Artificial Intelligence, Swarm Optimization and Computer Vision in STLS 

35 
 

5.3 Types of AI-Powered Traffic Control Management Systems  

There are three main types of traffic control management systems, namely centralized, 

decentralized and distributed. Transport organizations can choose, according to the 

movement of vehicles and people, between centralized, decentralized and distributed AI-

powered traffic control management systems.  Each approach has its characteristics and 

advantages as well as disadvantages. Figure 1.9 presents the different traffic control 

management systems in general. 

Figure 1.9 Evolution of different traffic control management systems, (A) Centralized, (B) 

Decentralized and (C) Distributed. 

5.3.1 AI-Powered Centralized Traffic Control Management System 

A centralized traffic control management system is a single controller that receives traffic 

data from sensors, cameras, and other sources and issues traffic decisions to the whole traffic 

network [63]. A centralized traffic control management system has potential advantages but 

also presents some disadvantages.  

 Advantages 

 It provides unified control serving all components of the network.  

 It relies on global traffic optimization to reduce congestion, waiting, and/or 

travel times. 

 It allocates resources, such as traffic lights or lanes, more efficiently based on 

real-time data, thus improving traffic flow. 

 Suitable for changing traffic conditions, adapts and updates its decision-making 

policies dynamically. 

 Traffic control management costs are low.  
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 Disadvantages 

 It suffers from a single point of failure. Centralized traffic control systems are 

vulnerable to system failures or cyber-attacks, which could disrupt traffic 

management tasks for the whole network. 

 Less scalability when traffic network sizes are high. 

 Lack of privacy concerns raises privacy issues regarding sensitive information 

about individual drivers or vehicles. 

5.3.2 AI-Powered Decentralized Traffic Control Management System  

A decentralized traffic control management system is a type of system that distributes 

controls to several nodes or agents and not to the whole network [64]. Decentralized traffic 

control management may be in many numbers in the transport network, as each interaction 

has its own AI powers.  

 Advantages 

 There is no main traffic control management system, decisions are distributed 

directly to multiple agents or nodes.  

 Suitable for intersections that are producing large volumes of data. 

 Controlled by an intersection traffic flow agent. 

 Fault tolerance and more robust than a centralized traffic control management 

system, reducing the risk of system-wide disruptions. 

 More scalable than centralized AI systems, this is more efficient for large and 

big traffic networks that distribute computations and decisions among multiple 

agents.  

 More privacy-preservation than centralized traffic control systems. It limits the 

sensitive data exchanges between agents while ensuring efficient traffic control 

management. 

 Disadvantages 

 Traffic control management costs are very high.  

 It requires effective coordination between individual agents to achieve overall 

traffic control management objectives, which can be difficult to implement.  

 It is cost-effective resource utilization. costs are optimal when individual agents 

prioritize local objectives over global optimization. 
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5.3.3 AI-Powered Distributed Traffic Control Management System 

A distributed traffic control management system is a sophisticated network of interconnected 

devices controller that work together to optimize traffic flow and manage congestion across 

a transportation network. Unlike traditional centralized traffic control systems, which rely 

on a single central node to manage and optimize all traffic flow, distributed systems rely on 

decentralized nodes to communicate and coordinate over a common traffic optimization 

decision [65]. 

 Advantages 

 It reacts quickly to changes in road and traffic conditions. 

 It reduces congestion and optimizes traffic flow based on real time conditions. 

 It reduces risk of single points of failure. Even if one network node fails, other 

nodes can continue to operate autonomously, reducing the risk of widespread 

disruption. 

 It adapts as traffic volume and complexity increase which enabling new nodes 

to be seamlessly added to the network. 

 Network nodes can adjust, according to local traffic conditions, their 

independent control strategies to ensure more flexibility and efficiency. 

 Disadvantages 

 It requires careful planning and management when coordinating 

communication and decision-making between several controllers. 

 More costly than traditional centralized systems. However, additional 

infrastructure, communication networks and software for development are 

needed which can increase overall costs. 

 Necessity of having secure data transmission and steady storage spaces to 

protect traffic data against potential cyber threats and unauthorized access. 

 Lack of specialized training and practical experiences which are essential to 

ensure performance. It requires maintenance and updates of software bugs, 

hardware failures and changing traffic management needs. 

5.3.4 Centralized, Decentralized and Distributed Traffic Control Management Systems 

Table 1.3 presents a comparison between centralized, decentralized and distributed traffic 

control management systems in terms of (1) – decision-making, (2) adaptability, (3) traffic 

costs, (4) suitability, and (5) fault tolerance. Traffic control management systems must be 
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smart, fast, and robust against different scenarios of equipment failures. In traffic control 

management systems, it is recommended to use decentralized because it is more efficient 

than centralized systems due to its poor scalability and poor fault tolerance. The integration 

of AI algorithms is ensured by efficient traffic data classification.    

Table 1.3 Centralized, decentralized and distributed traffic control management systems 

Centralized Control 

Management 

Decentralized Control 

Management 

Distributed Control 

Management 

There is one big traffic control 

management system serving all 

components of the network 

There is no main traffic control 

management system, decisions are 

distributed directly to multiple agents 

or nodes 

There is collaborative decision-

making among individual traffic 

signals controllers or nodes 

Suitable for changing traffic conditions, 

adapts and updates its decision-making 

policies dynamically 

Suitable for intersections that are 

producing large volumes of data. 

Suitable for real-time adaptation 

through coordinated traffic 

information sharing  

It is highly cost-effective (costs are 

low) 

Traffic management costs are very 

high 

Traffic management costs are reduced 

through decentralized control 

It provides unified control over control 

operations 

Controlled by an intersection traffic 

flow agent. 

Controlled by agents that coordinate 

based on local traffic 

It is vulnerable to system failures or 

cyber-attacks. 

Fault tolerance and more robustness  Redundant and cooperative control 

prevents system failures 

5.4 Coordination and Cooperation of Traffic Control Mechanisms  

The terms "coordination" and "cooperation" are frequently used interchangeably in the 

context of traffic control mechanisms, and their meanings might vary according to particular 

application and environment context. However, in the field of AI and transportation systems, 

they often refer to various approaches for optimizing traffic flows [66]: 

5.4.1 Coordination of Traffic Control Mechanisms 

Coordination involves organizing and synchronizing individual efforts of controllers 

towards the ultimate goal of optimizing traffic flow throughout the whole transport network 

[66]. Coordination of traffic control mechanisms focuses on harmonizing the collection of 

data from several sources (such as sensors, cameras and GPS devices), analyses and 

evaluates them, and then optimizes traffic flows by adjusting signals, routes, or other 

infrastructure elements.  

5.4.2 Cooperation of Traffic Control Mechanisms 

The goal of cooperation between traffic control mechanisms is to improve collaboration and 

coordination among many entities of the transportation system such as vehicles, 

infrastructure and authorities.   To maximize traffic flow, improve safety, and reduce 
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congestion, vehicles interact with each other and with the infrastructure (V2V and V2I 

communication) [67]. 

5.4.3 Coordinative vs. Cooperative Traffic Control Mechanisms 

Table 1.4 presents a comparison between cooperative and coordinative traffic control 

management mechanisms in terms of (1) – context meaning, (2) formal and informal 

relationships, (3) interchangeably, (4) objectives and (5) traffic flow optimization strategy. 

Both coordination and cooperation are essential for the success of traffic control 

mechanisms, and combining both strategies enables controllers to produce more benefits and 

ensure effective traffic light management. 

Table 1.4 Coordinative vs. cooperative traffic control management 

Coordinative Control Management Cooperative Control Management 

It relies on the collective reasoning of 
agents to optimize traffic flow.   

Each agent contributes to traffic flow global 
optimization by helping each other. 

It relies on informal collaboration. It relies on formal relationships. 

It requires collaboration with different 

agents.  

It requires coordinating with different agents or 

groups of agents. 

It relies on flexibility and adaptability.  It relies on efficiency and productivity. 

Traffic flow optimization is achieved via 
hierarchical structures and agents 

Traffic flow optimization is achieved via mutual 
agreement and trust. 

5.5 Existing AI Approaches in Smart Traffic Light System 

Smart traffic light systems use a variety of artificial intelligence approaches to optimize 

traffic flow, reduce congestion, and improve overall efficiency. Here are the main AI 

approaches commonly used in STLS. 

5.5.1 Multi-Agent Based Traffic Flow System   

Multi-Agent System (MAS) enables decentralized control by assigning intelligent agents to 

individual intersections, allowing them to make local decisions and coordinate with 

neighboring agents. Recent research has demonstrated the efficacy of MAS in managing 

traffic flow, particularly through the application of Multi-Agent Reinforcement Learning 

(MARL) [68]. 

5.5.2 Machine Learning Approaches and Optimization Algorithms   

Machine learning techniques, such as Support Vector Machine (SVM) and neural Networks 

(NN), analyze historical traffic data to predict traffic patterns and optimize signal schedules, 
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while optimization algorithms such as Particle Swarm Intelligence (PSO) and Genetic 

Algorithms (GA) fine-tune these timings to reduce congestion [69]. 

5.5.3 Deep Learning Approaches  

Deep learning models, such as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), analyze traffic data to detect vehicles and pedestrians, enabling 

precise control of traffic light timing [70].  

5.5.4 Hybrid Approaches   

Hybrid approaches combine several artificial intelligence techniques, such as integrating 

sensor data with machine learning algorithms or combining reinforcement learning with 

optimization methods. This enables STLS to provide more robust control of traffic lights, 

adapt dynamically to changing traffic conditions, improve safety, reduce travel times and 

minimize environmental impact [71]. 

Table 1.5 summarizes the comparison of current smart traffic management approaches 

in terms of principles, security, flexibility, and reliability.  

Table 1.5 Comparison of AI approaches in STLS.   

Approaches Principals Security Flexibility Reliability 

MA-Based 

Decentralized, 

adaptive and scalable 

traffic management. 

Protects the 

system from 

cyberattacks. 

Adapts to 

different traffic 

conditions. 

smooth traffic 
flow in failures 

ML-Based 

Historical and real-
time data analysis for 

traffic patterns 

recognition.  

Data poisoning 

and hostile 
attacks. 

Adaptable to 

changing traffic 
conditions. 

Performance 

depends heavily 
on data quality. 

DL-Based 

Neural networks for 

traffic prediction and 

optimization. 

Lack of robust 

data protection 

mechanisms. 

Learn complex 

patterns.  

Data intensive 

computing.  

Hybrid  
Combining multiple 
techniques to enhance 

performance. 

Complex safety 

management  

Balancing 
control and 

adaptability  

Depending on 
individual 

components 

6. Combine Swarm Optimization with AI in STLS 

The combination of swarm optimization and AI in STLS represents a significant advance in 

the optimization of traffic flow management. Both techniques provide effective approaches 

for managing complex, dynamic, multi-agent systems such as urban traffic networks. This 

integration is continually advancing, leading to smarter, more adaptive and efficient traffic 

systems for smart cities. 
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6.1 Principles of Combining of Swarm Optimization and AI 

The combination of swarm optimization and artificial intelligence in STLS revolves around 

several key principles. These principles focus on data collection, real-time processing, 

optimization algorithms and intelligent decision-making to create a responsive and efficient 

traffic control environment. 

6.1.1 Integration of Sensors and Cameras for Data Collection  

Sensors (such as inductive loop detectors, infrared sensors and vehicle GPS data) and 

cameras are vital components of STLS system, enabling the collection of real-time traffic 

data such as vehicle numbers, speed, density and incidents [72].  The main aim of sensors is 

to collect continuous, high-quality data for well-informed decision-making. However, AI 

techniques such as computer vision can analyze video streams to detect traffic conditions, 

while swarm optimization leverages this data to make real-time adjustments to traffic lights. 

6.1.2 Integration of Edge Computing for Data Processing 

Edge computing enables data to be processed instantly as its source, such as traffic light 

control systems, which reduces latency compared to cloud-based solutions. With processing 

power at the edge, traffic conditions can be analyzed quickly, leading to necessary 

optimizations [73]. The objective is to minimize decision-making latency and reduce 

dependence on central systems. Sensing devices with edge computing can deploy 

lightweight artificial intelligence while swarm optimization algorithms enable real-time 

adjustments based on changing traffic data. 

6.1.3 Swarm Optimization for Signal Timing 

Swarm optimization algorithms such as Particle Swarm Optimization (PSO) or Ant Colony 

Optimization (ACO) are used to determine optimal traffic light schedules. These algorithms 

simulate the behavior of natural swarms to explore the search space and find optimal or near-

optimal timing configurations based on traffic data [49, 50]. The objective is to reduce traffic 

congestion by optimizing traffic light timings for a set of interconnected intersections. Since 

Swarm optimization performs as a decentralized method for adapting traffic lights in real-

time to increased traffic flows, thereby minimizing waiting times. 
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6.1.4 Machine Learning and Deep Learning for Traffic Flow Prediction 

Machine learning (ML) and Deep Learning (DL) models can forecast traffic flow, detect 

congestion hotspots and assess the impact of specific traffic light schedules by analyzing 

historical and real-time data. These models are capable of predicting future traffic conditions 

at intersections and along specific routes [69, 70]. The purpose of ML and DL models is to 

predict traffic congestion and adapt traffic light schedules accordingly. However, AI 

algorithms trained on large datasets can predict the number of vehicles approaching 

intersections, enabling proactive adjustments to traffic light timing to avoid bottlenecks. 

6.1.5 Swarm Algorithms for Traffic Flow Optimization   

Swarm algorithms are not only work on signal synchronization, but also in optimizing traffic 

flow across a network of intersections. By viewing each traffic light as an agent in a swarm, 

the system finds collective solutions to balance traffic flow, reduce congestion and improve 

vehicle throughput [74]. The goal is to manage traffic flows across multiple intersections, 

coordinating green lights to minimize delays. However, these algorithms dynamically adjust 

the phases and durations of traffic lights, facilitating a more even distribution of traffic across 

available routes. 

6.1.6 Intelligent Agents for Dynamic Routing and Adaptation 

AI-powered intelligent agents operate within the traffic network to dynamically reroute 

vehicles and adapt signal schedules according to current traffic conditions. This multi-agent 

system ensures that each intersection reacts both locally and in coordination with the entire 

network to optimize traffic flow [75]. The goal is to ensure adaptive control of traffic lights, 

ensuring that intersections work together to alleviate congestion. However, intelligent agents 

can learn and adapt autonomously to changing traffic conditions, enabling more efficient 

utilization of road capacity. 

6.1.7 Emergency and Incident Management 

Traffic systems must be able to handle unexpected events like accidents, road closures, or 

emergency vehicle priority. AI can predict the impact of such incidents, and swarm 

optimization can adjust the traffic signal timings in response. Additionally, systems can 

prioritize emergency vehicles, ensuring they can navigate traffic smoothly during critical 

situations [76]. The goal is to ensure fast and efficient routing for emergency vehicles while 

minimizing the impact on normal traffic. However, AI algorithms detect emergencies or 
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incidents in real-time, and swarm optimization algorithms reroute traffic or adjust lights to 

accommodate these events. 

6.2 Benefits of Combining of Swarm Optimization with AI 

By combining swarm optimization and AI, STLS can achieve reduced congestion, 

heightened efficiency, real-time adaptability and scalable solutions for future needs, making 

it well-suited for modern, fast-moving urban cities. The key benefits include: 

 Reduced congestion and improved efficiency: The combination of Swarm optimization 

and AI facilitates smoother traffic flow management by optimizing signal timings at 

intersections. Swarm algorithms adjust signals according to traffic patterns, while AI 

predicts upcoming congestion, enabling timely adjustments. This leads to less vehicle 

idling, fewer stops and starts, and shortened journey times.  

 Adaptive and real-time response: AI-powered traffic systems continuously analyze 

real-time traffic data and adapt to fluctuating conditions such as accidents, traffic peaks 

or road closures. Swarm optimization ensures that each traffic light to make rapid, 

localized decisions, enabling immediate reactions to changing conditions without relying 

on a central controller. 

 Scalability and Flexibility: The combination of swarm optimization and AI offer great 

scalability, allowing the system to grow alongside cities expand. Swarm algorithms 

enable decentralized control, meaning that integrating new intersections or signals can 

occur seamlessly without overhauling the entire system. AI models continue to learn and 

adapt to the growing complexity of traffic, ensuring long-term efficiency. 

7. Conclusion  

This chapter details the fundamental components of smart traffic light systems, which 

collect, process traffic data, and ensure accurate decision-making.  The chapter also 

emphasized the significance of artificial intelligence, swarm optimization and computer 

vision techniques with a focus on four main approaches, which give a solution to properly 

manage huge traffic data and detect congestions. Each approach has its advantages and 

drawbacks.  

In the next chapter, we will review existing traffic flow management techniques, 

mitigating waiting time and occupation rates concerns, and compare existing techniques 

under well-defined criteria and fault tolerance detection. 
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1. Introduction   

Nowadays, we live in an era of smart cities that assist residents with intelligent transport and 

mobility solutions. However, managing high traffic volumes has been challenging, though 

progress in this area is inevitable. Vehicles are becoming safer, but the road environment is 

becoming more complex, mainly due to the rapid increase in the number of vehicles and 

their consequences. As a result, road traffic conditions have become complicated and 

chaotic. An adequate traffic network can offer a large variety of benefits, especially in the 

development of the socio-economic sector, including better traffic flow (With all possible 

resulting advantages) and a more agreeable environment, which in turn can strengthen 

economic performance.  

An evaluative, adaptive and continuous traffic management system is needed to deal 

with this unstable problem and to meet the growing demand for vehicle flows. It is therefore 

a question of how to design a Smart Traffic Light System (STLS) meeting requirements of 

emerging smart cities concept or alleviating the heavy load of traditional large city 

crossroads. All this to take best advantage of the traffic circulation at intersections; knowing 

that many important cities are facing socio-economic problems caused by traffic congestion. 

The most striking case is the capital Algiers where traffic congestion causes citizens to lose 

valuable time in getting to their jobs. 

Research into effective traffic management and situation emergencies in urban roads 

have been widely exhibited. This chapter classifies the STLS approaches according to the 

number of intersections in two models, with a set of intersections or a single intersection, 

with details of the control parameters for an intersection and the different solution 

architectures for a set of intersections. Figure 2.1 classifies different approaches of STLSs. 

Three models of approaches have been distinguished: optimization approach [11, 14, 16, 17] 

or data collected by the sensors [7, 20] while others use hybrid approach combining sensors 

and optimization techniques [8, 9, 23]. Several criteria are considered to summarize the 

principle of each approach, namely type of traffic management system, type of traffic 

parameters, priority, coordination and fault-tolerance. It is our aim to design a dynamic and 

adaptive traffic light system that can reduce congestion and manage emergency situations 

based on priority across multiple vehicles in smart cities and overcome the limitations of 

existing approaches.  

The remainder of this chapter is structured as follows: Section 2 presents related work 

in the STLS domain while Section 3 details the different STLS approaches for a single 
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intersection model. STLS approaches for a set of intersections are presented in Section 4. 

Section 5 describes the use of the Internet of Things particularly in the STLS context. Section 

6 gives an overview of the simulation tools used. Finally, Section 7 concludes the chapter. 

Figure 2.1 STLS models and approaches. 

2. Main Works in the STLS Area 

Much work has been done over the last decade to elaborate plausible approaches to the 

difficult issue of vehicle traffic at intersections. This problem has further attracted the 

attention of researchers with respect to the emergence of the intelligent city model. Although 

the design of STLSs is based on different approaches such as the use of sensors [7, 20] 

optimization methods [11, 14, 16, 17] and the combination of the two previous ones [8, 9, 

23], these STLSs are still subject to improvements to comply with the requirements of smart 

cities. 

The result of some important research studies that have addressed the problem of 

urban traffic at intersections, with respect to their objectives, advantages and disadvantages, 

are presented below. 

Joo et al. proposed in [14] a system for coordinating traffic lights at an isolated 

intersection aiming to maximize the amount of vehicular traffic and minimize the standard 

deviation of queue size. Their system uses the Q-Learning (QL) method to ensure the 

balancing of signals between roads. The main strength of this system is its flexible structure 

and the adaptation of changes in the existing junction network. Their motivation for using 

one of the artificial intelligence techniques, which is reinforcement learning, comes down to 

the high complicity of the mathematical models [77, 78] due to the large amounts of data 

manipulated, and that the traffic environment has stochastic problems. 
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Lamghari et al. [16] developed a modular design approach for an urban signal 

intersection. They used Temporal Synchronized Petri Networks (TSPN) that allow for 

adaptive traffic signal management. This decreases the modelling complexity and can be 

easily adapted to a group of intersections. In addition, the diversity of phases in the 

intersection controller allows the implementation of several traffic signal control strategies. 

Rasheed et al. [17] proposed the advanced technique called Deep Q-network (DQN) 

[79], based on deep learning and reinforcement learning (RL or Q-Learning) [80]. The 

proposed technique controls traffic signals to solve the traffic congestion problem. The 

authors extended traditional single-agent DQN to a multi-agent DQN (MADQN). They 

benefited from the advantages of traditional Q-Learning namely the reduction of the 

representation dimensions of the operating environment [81] with a lower traffic volume. 

Traffic disruption scenarios are used to increase dimensionality. Their study is focused on 

an urban zone in the city of Sunway in Malaysia. 

Omar et al. [8] focused their work on two main aspects: the first one is the traffic 

flow theory, using the flow of arriving vehicles to minimize the waiting time of vehicles 

between traffic light cycles. In the second one, they try to predict the vehicular traffic flow 

level by developing a neural network using traffic information and machine learning 

techniques. Their aim is to design a reduced-scale, least-cost solution for studying, 

controlling and anticipating traffic flows. The combination of unifying parameters, such as 

the number of vehicles in a particular space and the speed or intensity of the cars, which are 

not indicative of real traffic conditions, allows for the correct interpretation of traffic flow. 

The use of modern sensors leads to huge quantities of information and with the help of 

machine learning; the system can create models to predict future traffic. 

Segredo et al. [11] proposed formal traffic signal planning to solve the traffic 

congestion problem of a large urban area. They modeled more realistic and less difficult 

scenarios and suggested advanced and more efficacious methods than those employed in 

previous studies [28, 82]. This study theme concentrates on the problem of establishing a 

traffic signal plan for an urban area by setting the duration of every phase and the phasing 

sequence of all junctions in that area. This formulation is based on the one described in [74, 

83], but it also takes into account the time difference between the intersections. The authors 

use a multi objective evolutionary algorithm (MOEA) built on diversity, which has 

demonstrated promising results for solving single-objective problems [84, 85], taking 

advantage of the main benefits of MOEA, namely the good diversity of individuals and the 

premature convergence [86]. 
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Kumar et al. [7] proposed a dynamic algorithm for traffic signal controller 

synchronization in a simple four-road intersection, takes as input parameters queue length, 

entry rate and exit rate, to estimate the green time allocated to each road. The motivations of 

this work are to ensure efficient distribution of green time based on congestion for traffic 

signals independently of their traffic status. They also proposed experimental comparisons 

between dynamic and static methods based on some efficiency parameters namely, traffic 

flow at the intersection, vehicle waiting time and queue length on roads. 

Frank et al. [23] developed an IoT-based traffic signal control system capable of 

measuring the actual volume of traffic on all lanes of the junction by using real-time image 

and video handling methods. Their system provides the option of user control of the traffic 

light via a software application. Their motivation is to resolve the situation of road 

congestion, which is the primary reason for slow moving vehicles, increased waiting times 

and collisions. 

Hosur et al. [20] proposed a sensor-based system with threshold distance definition 

and using IoT technology. Therefore, when the sensor detects a car at a certain distance and 

other ways are vacant, it turns on the green signal or else turns on the red signal. Their 

objective is to overcome the problem of displaying the green signal even if there are no cars 

on the lane, in order to reduce the waste of energy consumption, especially during off-peak 

hours. 

Lin et al. [9] presented a vehicle registration plate recognition model based on flows 

of streaming data captured from various sensors in real time. For this model, an adaptation 

mechanism based on Gaussian combination is applied on the collected information to 

generate traffic signal plans, rendering the traffic management procedure of Tainan City in 

Taiwan flexible and fast. 

Raj et al. [24] used a completely different approach by aiming to manage priority 

vehicles from video and audio processing. They converted the audio to spectrograms and 

split videos into frames that they processed using multiple neural networks with different 

depths, which are subsequently used for detecting priority vehicles. Thus, they obtained a 

maximum accuracy of 74.6%, which is still much lower than the results obtained using 

computer vision. 

In [25], the authors introduced a new approach for emergency vehicles priority. The 

study was intended to give green time for regular vehicles and clear emergency vehicles. 

The proposed model has reduced the average waiting time of vehicles by 73.23% % 

surpassing many well-known existing systems. 
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In order to control emergency vehicles in the road, the authors in [26] suggested both 

on-demand signal timing and linear programming. Linear programming is used to find the 

shortest time in each phase after passing emergency vehicles.  The study has led to an 

optimization of travel time by 62.85% outperforming the fixed-time control method. 

Oliveira et al. [87] developed a centralized traffic signal control system based on a 

wireless communication network. The system implements direct control routines over 

network traffic lights to control abnormal and emergency events, such as closing roads due 

to accidents or public events. Also, the system implements safety routines to report the 

operating lamps' status of the traffic signal to the central management system. 

Choudhary et al. [88] introduced a novel thread-based virtual traffic light system for 

managing traffic flow. The thread concept is a secure, scalable, and low-power IPv6-based 

network mesh platform for IoT devices. However, this work required vehicles with further 

hardware to build a thread-based mesh network (VANET). 

Younes et al. [89] proposed an efficient traffic light scheduling for a road intersection 

based on traffic and safety parameters. The proposed approach focuses on the priorities and 

time of scheduling by considering more traffic information which significantly increases the 

throughput of the transportation network.  

Zhu et al. [90] proposed an approach for Adaptive Traffic Light Control (ATLC) 

based on Broad Reinforcement Learning (BRL). The main goal of the proposed approach is 

to select relevant state information that will be considered for decision-making by keeping 

them using the Long Short-Term Memory (LSTM) network.  

A federated learning for smart traffic flow management is proposed in [91]. The 

approach is very interesting and consists of achieving minimal performance with 

improvement in terms of communication cost. A federated learning approach was 

implemented to detect lamppost fault detection in smart city. 

Authors in [92] suggest a novel reinforcement Q-learning-based deep learning to 

optimize traffic signal control at an isolated intersection. A new reward function was applied 

to control traffic signals. The use of deep reinforcement Q-learning with reward function 

achieves better performance. 

In [93], an ontology approach has been proposed for traffic light optimization.  An 

ontology-based driving simulation approach was detailed combining evolutionary-based 

optimization algorithms with ontology-based driving behavior simulation. The obtained 

results are significant only on some limited simulation scenarios. 
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Some other works [94, 95] have also applied well-known deep-learning models to 

detect emergency vehicles. For instance, popular frameworks such as CNN was applied in 

[94] giving a precision rate of 91.3 % for the best overall approach which was characterized 

by a YOLOV3 architecture. A similar approach was applied in [95] since context-aware 

reinforcement learning was applied giving a recovering rate of 80%. 

3. STLS Approaches for a Single Intersection Model  

Various approaches have been proposed for STLS. They are generally classified into two 

principal categories: models for a unique intersection and models for a group of 

intersections. For both models, the approaches used were: heuristic approaches [14, 16], 

sensor-based approaches [7, 20- 22] and hybrid approaches [8, 23] that combine the first two 

ones. 

3.1 Heuristics based Approaches 

Joo et al. [14] proposed the use a new QL reinforcement-learning approach to optimize 

traffic light signals, in which the main parameters are the flow rate and the typical difference 

between the waiting line sizes. This algorithm determines the action in driving directions to 

increase the quantity of cars travelling through a junction in a time period and to maintain a 

balance among the road ways and minimize the time delay of the traffic. The parameters of 

this algorithm, such as the length of the green time, are fixed, but the direction with the most 

vehicles will be selected along with another direction to provide maximum vehicle traffic 

flow. Thus, this algorithm can dynamically control eight different phases for a four-way 

intersection. 

The reinforcement learning (Q-Learning) algorithm has been improved with 

temporal learning processes [96], and employs a process of test and failure to investigate the 

stochastic and complex environment and choose the best behavior depending on its 

experimentation [97]. Q-Learning has the principle of states (situation of the environment), 

action (behavior), and recompense (experience), as shown in equation (2.1). 

                                       𝑆𝑡
𝑎𝑡
→𝑆𝑡+1                                                                                         (2.1)  

An action (𝑎𝑡) is carried out in a state (𝑆𝑡), it enables to advance to the next state 

 (𝑆𝑡+1). Q-Learning is a method that uses a table named « Q-table ». The lines are the states 

𝑆𝑡 and the columns are the actions 𝑎𝑡, their elements initialized by 0 will be refreshed with 
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the precedent values of (𝑄 (𝑠𝑡, 𝑎𝑡)) for the actual state (𝑆𝑡), the action (𝑎𝑡), the recompense 

(𝑟𝑡+1) and the highest values (𝑚𝑎𝑥𝑎 𝑄 (𝑠𝑡 +1,  𝑎𝑡 +1))  in the new state (𝑆𝑡+1), also utilizing 

the learning ratio (𝜂) and the actualization factor (𝛾), as shown in equation 2.2. 

𝑄 (𝑠𝑡, 𝑎𝑡) ←  𝑄 (𝑠𝑡, 𝑎𝑡)  +  𝜂 ∙  [𝑟𝑡+1  +  𝛾 ∙  𝑚𝑎𝑥𝑎 𝑄 (𝑠𝑡 +1,  𝑎𝑡 +1) −  𝑄 (𝑠𝑡, 𝑎𝑡)]    (2.2)  

The proposed approach uses a set of three actions to manage eight phases of a four-

way intersection. The direction with the greater number of cars represents the actual state, 

and the action that provides the highest flow of cars will be will be selected from the sets of 

actions that include the direction of the current state. 

The unit of throughput (𝑡𝑝) to be maximized is determined as the number of cars 

traversing a junction each hour. For queue length standard deviation (𝑑𝑞𝑙), it must be lower 

or similar to the threshold specified (𝜑). The green light duration (𝑙𝑠𝑖𝑔𝑛𝑎𝑙) is constant (𝑐), 

the time duration from the termination of the green light in one way to the starting of the 

next green light (𝑡𝑖𝑛𝑡𝑒𝑟) in the identical way is lower than the predefined threshold (𝜑′). 

To calculate the recompense (𝑟𝑡) and minimize the waiting time at the intersection, 

the recompense function as shown in equations (2.3) and (2.4), is established using two 

metrics, the typical deviation (𝑑𝑞𝑙) of waiting line lengths and the throughput (𝑡𝑝). 

𝑓(𝑡)  =  𝛼 ⋅  (𝑑𝑞𝑙) + (1 −  𝛼)  ⋅  (𝜏
𝑡𝑝)                                                        (2.3) 

 𝑟𝑡  =  𝑙𝑜𝑔δ(𝑓(𝑡))                                                                                              (2.4) 

Such as: 

 𝜏𝑡𝑝 is a simple function exponential form, note that the larger the throughput 

value (𝑡𝑝) the smaller the value 𝜏𝑡𝑝. 

 𝛼 is the weight coefficient that relies on the traffic arrived in each hour, 0 ≤

𝛼 ≤ 1 takes a sigmoid function form, the closer it is to 1, the more cars coming 

in. 

 The minimum value (𝑡) leads to a maximum recompense (𝑟𝑡). 

 𝛿 is the base of the log formula and their value is comprised from 0 to 1, for this 

work 𝛿 set to 0.5. 

This approach uses different agents to control traffic flows. The environmental agent 

“Intersection” collects information about the environment and sends it to the “Controller” 

agent to take the best control action depending on the available traffic data. The interaction 

of the “Intersection” environment with the “Controller” agent is as follows: 
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The intersection agent: 

 Sends the lengths of waiting lines (𝑞𝑙) and the flow rate (𝑡𝑝) of all way in a 

traffic junction to the controller agent. 

The controller agent: 

 Calculates the recompense (𝑟𝑡), from equation (2.4) when passing from state 

(𝑆𝑡−1) to state (𝑆𝑡). 

 Update the table Q. 

 Defines the action (𝑎𝑡) with the highest recompense. 

 Transmits to the intersection agent, the lane (𝑑𝑐) indicated in this action. 

To validate this approach in regards of typical deviation and waiting line length, they 

compared the proposed model against two additional QL approaches. The first approach is 

founded on the green light sequence in the way [98], a fixed time enhanced traffic signal, 

called extension traffic signal (E-TS). The other approach controls traffic lights via a 

clustered QL scheme, called clustered traffic signal (C-TS) [99]. Their experimental results 

revealed that the adopted solution shows improvements in relation to the waiting line length 

standard deviation and the reduction of queuing line length and delay time. 

In [14], the objective or recompense function, allows signals to be placed only on 

high traffic sides, which can produce poor performance, as it did, it does not take into account 

the waiting times for car users on the opposite road side. For a possible improvement, the 

waiting time can be integrated into the objective function. 

Lamghari et al. [16] suggested a timed and synchronized Petri net-based approach to 

adaptive traffic light management and the command scheme is divided among two 

interacting system elements. The master (controller) determines and chooses the following 

phase and the duration of their green signal while the slaves (TSPN sub-models) monitor 

signal lights display, transition phases and flowing traffic. To treat and control traffic signals, 

two methods have been used [78]. The first one enables the execution of optimal signal plans 

to improve the functionality of the system related to traffic flow and vehicle delays at the 

intersection [100]. A second method is also used to define the implementation of the signal 

control logic [101]. For this solution, the authors adapt both functionalities to lead to 

adaptive traffic signal timing plans.  

This traffic light system consists of a standardized junction with four lanes (North 

(N), South (S), East (E) and West (W)) and two transitions for each lane; so, eight transitions 



Chapter 2                                                                                 A Survey on Smart Traffic Light Systems 

53 
 

are envisaged (Ns, Nl, Ss, Sl, Es, El, Ws and Wl.) and each transition attached to three 

phases, in total there are transitions in twelve phases. 

Equation (2.5) below expresses the method of calculating the green light time 

required for all vehicles allowed leaving the intersection. This is related to the number of 

cars to be exited during the decision making for selecting the next phase, assuming that the 

duration of the orange signal is included in the duration of the red signal. 

                                        𝐺 = (𝑁 −  1)  ×  ℎ +  𝑡𝑎                                                        (2.5)    

Such as: 

 𝑁 is the cars number, 

 ℎ is the time taken to move a one vehicle, 

 𝑡𝑎 is the duration taken by the first vehicle to exit the line stop. 

A class of the mathematical Petri net model, called Timed Synchronized Petri Net 

(TSPN) and represented by a bipartite graph, is used to implement the vehicle flows and 

traffic signals. 

The timed and synchronized Petri net module consists of eight TSPN sub-models, 

one for each movement. The TSPN Sub-model is shown in Figure 2.2, representing the 

traffic flow and control model for a movement ‹ 𝑖𝑗 ›, (𝑖 ∈ {𝑁, 𝑆, 𝐸, 𝑂} 𝑒𝑡 𝑗 ∈ {𝑠,  𝑙}). Each 

movement consists of five places and five transitions (see Table 2.1.a), ‹ 𝑖𝑗 › denotes the eight 

movements and the outer events specified as the master’s decision are shown in Table 2.1.b. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.2 TSPN sub-model for movement (𝒊𝒋) [16]. 
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Table 2.1 (a) Component definition of the TSPN Sub-model in Figure 2.2.                  

(b) Activation conditions for the decision events in Figure 2.2. [16]. 

a)   

Places Signification  

 𝑃𝑖𝑗1 Entry of the vehicle into the way ‹ 𝑖𝑗 ›. 

 𝑃𝑖𝑗2 Cars to be moved out of the way ‹ 𝑖𝑗 ›. 

 𝑃𝑖𝑗𝑣 Green light. 

 𝑃𝑖𝑗𝑟  Red light. 

 𝑃𝑖𝑗𝑐 Way capacity in movement ‹ 𝑖𝑗 ›. 

Transitions Signification 

 𝑇𝑖𝑗1 Sensing a car in way ‹ 𝑖𝑗 ›. 

 𝑇𝑖𝑗2 Next decision (the previous phase’s green hour has elapsed). 

 𝑇𝑖𝑗3 The leaving of a car from way ‹ 𝑖𝑗 ›. 

 𝑇𝑖𝑗4 Change of light green to red. 

 𝑇𝑖𝑗5 Change of light red to green. 

External events Significant 

 𝐴𝑖𝑗 Sensor detection of car in the direction ‹ 𝑖𝑗 ›. 

 𝐸𝑖𝑗 The decision of the controller for the movement ‹ 𝑖𝑗 ›. 

Time delays Significant 

 𝑡𝑛  Time required a car to depart from the stop line. 

 𝑡𝑣𝑖𝑗  Duration of the green light for the way ‹ 𝑖𝑗 ›. 

 𝑡𝑐 Time for the last vehicle to cross the junction (red security). 

b)  

Events Activation requirements 

CNs E1 ∪ E5 ∪ E11 

CNl E4 ∪ E6 ∪ E11 

CSs E1 ∪ E7 ∪ E12 

CSl E3 ∪ E7 ∪ E10 

CEs E2 ∪ E6 ∪ E10 

CEl E4 ∪ E6 ∪ E11 

CWs E2 ∪ E8 ∪ E9 

CWl E4 ∪ E8 ∪ E12 

The movement way ‹ 𝑖𝑗 › is the space between the sensor (transition  𝑇𝑖𝑗1) and the 

stop line (transition  𝑇𝑖𝑗3), with a capacity 𝑐 (number of tokens at  𝑃𝑖𝑗𝑐 ). The sum of the 

tokens in the two locations  𝑃𝑖𝑗1 and  𝑃𝑖𝑗2 represents the traffic flow. The two locations  𝑃𝑖𝑗𝑣  

(green light) and  𝑃𝑖𝑗𝑟  (red light) represent traffic lights. 

Two functions for controlling movement ‹ 𝑖𝑗 ›  are used: 

First: 

 If the sensor  𝐴𝑖𝑗 recognises the entry of a car, then activates the transition  𝑇𝑖𝑗1 

and a token is moved from  𝑃𝑖𝑗𝑐  to  𝑃𝑖𝑗1. 
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Second: 

 If a decision ( 𝐸𝑖𝑗) is given to movement ‹ 𝑖𝑗 ›  then 

 Activate the timed transition  𝑇𝑖𝑗2 that authorizes vehicles to be evacuated, 

with green temp  𝑡𝑣𝑖𝑗 and the tokens from  𝑃𝑖𝑗1 are moved to  𝑃𝑖𝑗2  . 

 Start the timed transition  𝑇𝑖𝑗3   which allows a vehicle to depart with a time 

 𝑡𝑛 and the tokens from  𝑃𝑖𝑗2 are moved to  𝑃𝑖𝑗𝑣 . 

 Set the value (1) to the external event 𝐶𝑖𝑗. 

 Trigger the timed transition  𝑇𝑖𝑗5 and put a token at  𝑃𝑖𝑗𝑣 , the green time  𝑡𝑣𝑖𝑗 

is the duration needed for the vehicles to exit the line stop (release the place 

 𝑃𝑖𝑗2), a delay  𝑡𝑐 is added to guarantee that the latter car departs the area of 

conflict prior to the new phase. 

 Launch the transition  𝑇𝑖𝑗4  and the traffic lights switch to red. The master 

restarts to decide which movements will take next green light. 

Two types of communication between the master and a TSPN sub model may be 

observed: The first one, depending on the decision and triggering times calculated by the 

master, which transmits a message to the TSPN indicating that a synchronized and/or timed 

transition must be triggered. The second communication function is from the TSPN to the 

master to update its database. This message can contain information from the sensors, the 

arrival time and number of cars at the junction, the triggering of transitions, etc. 

Depending on TSPN state, the master component makes the decision according to 

parameters to be optimized in two steps: firstly, a movement ‹ 𝑖𝑗 ›   is chosen among the eight 

movements, secondly the master chooses the phase between three phases which does not 

conflict with the movement ‹ 𝑖𝑗 ›  . A two-strategy adaptive control algorithm is proposed for 

system performance optimization and green light assignment. The first strategy is based on 

the time of arrival and the number of waiting cars at the line of stop, and the second strategy 

uses only the arrival time of the vehicles. Experiments with the two adaptive control 

strategies showed that the arrival hour and number of cars in queue strategy provides relevant 

and efficient results. 

In this paper [16], the objective function uses the parameters: arrival hour or/and the 

number of waiting cars at the stop line, for the choice of the movement to which the green 

light is not exactly defined. 
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3.2 Sensor-based Approaches 

Kumar et al. [7] modeled a simple four-road traffic intersection: {R1, R2, R3, R4}. Each 

road 𝑅𝑖  has a traffic light 𝑇𝑖 and 2 × 𝑘 lanes: 𝑘 lanes forward and 𝑘 lanes backward (with 

𝑘 =  3). Between the switching of traffic lights from 𝑇𝑖 to 𝑇𝑗, there will be a constant short 

time interval called pause time 𝑝. The time 𝑡𝑖 allocated to a road  𝑅𝑖, when it is selected to 

be green. The goal of this work is to design an optimization approach that allocates the green 

time 𝑡𝑖 to  𝑇𝑖 in order to maximize the traffic flow at the junction and reduce the waiting time 

of vehicles and the length of road queues. In this work, the authors use green time 

management measures allocated to the road, which will be specified by the interval 

[𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥], in order to guarantee the absence of cars in the queue. The road has a minimum 

green time and if there is a long queue (congestion case), the green time allocated does not 

exceed a certain value. Only one cycle model is used, each cycle contains four phases, and 

the phases will be selected alternately. A route is selected at each phase without repetition; 

the order of the phases at each cycle can be changed to be dynamic. 

The traffic signal algorithm proposed in this work consists of three phases which are: 

(1) - The collection of real data from the intersection area. This implies the precise tracking 

of vehicles in each lane. It is realized for a particular range or distance from the intersection. 

(2) - Data collected from all lanes in the first phase will be processed in this phase. This 

processing consists of simplifying and adapting to the various input and output parameters 

needed to make the best use of the dynamic traffic signal algorithm. These parameters 

include queue length, entry rate and exit rate. (3) - A decision-making process consisting of 

selecting which traffic light will be green and how much time will be allocated to it. The 

decision-making system also keeps track of the system performance metrics in order to 

improve its efficiency. 

In order to approve this approach, the results of the dynamic and static approach were 

compared with respect to traffic constraints. For this comparison, the green time is fixed and 

the order of traffic light selection is also fixed. The experimental results show the similarity 

of the efficiency of the dynamic approach and the static one when the traffic is uniformly 

distributed with a small improvement of the dynamic algorithm. The authors find that the 

efficiency of the dynamic approach is greater than the static one when the traffic is unequal. 

In addition, the dynamic algorithm is more flexible to be adapted to changes in traffic influx. 

The delimitation of the green time allocated to a way by 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 can lead to a 

loss of time for a way with zero vehicles. Conversely, it can also lead to insufficient time 
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allocated to a multi-vehicle lane. To solve this delimitation problem, one can set the tmin 

value to zero for an empty lane, and change the tmax value depending on the queue size of 

all lanes. Another disadvantage of this method is that the selection of the green light is based 

on the waiting time, which reflects the interval of the red time and does not take into the 

waiting time of each vehicle in the road. Thus, only one cycle model is used and the selection 

of phases is done per cycle, so it is better to use several cycle models and test the selection 

after each phase.  

Rida et al. [21] proposed an adaptive approach to regulate traffic signals for an 

individual junction that takes into account a variety of circulation factors including volume 

of traffic and duration of delay, giving priority to the shortest queue. Magnetic sensors are 

used to collect the traffic data set and transmit it to the controller responsible for traffic 

management. The controller calculates the size of the lanes in every direction and their 

average waiting time in order to manage the flow of traffic. 

The isolated intersection consists of four ways (N, S, E, W), each of them containing 

two directions (turn left and straight ahead). All cars are permitted right turns at all times 

with no traffic restrictions. Two magnetic captors are installed in each lane: one is situated 

behind the signal light to track vehicle departures and the other is placed at a variable range, 

which is related to the maximum green light time, from the first sensor to check the arrival 

of cars. Each traffic light manager establishes a cycle time which is a series of phases with 

a required green light time for two simultaneous movements. The adaptive control algorithm 

uses information obtained from the various sensors, and determines which phase will be 

executed with the calculation of their green time. 

The authors in [21] introduced an adaptive traffic control system that determines the 

phase sequence and length of the green signal based on delay duration and the size of the 

queue for each road. The disadvantage is the increase in congestion and waiting time in the 

longest queues, which can block the traffic flow as priority is always given to the shortest 

queue. The proposed method does not detail the emergency mode, i.e., the passage of 

emergency vehicles. 

Hosur et al. [20] developed a sensor-based solution from a distance threshold and the 

use of IoT technology to manage the display of green lights and decrease energy 

consumption (e.g., during off-peak hours) if they are higher than what is actually needed. 

Therefore, the system turns on the green light when a sensor detects a car at a certain distance 

and not all other lanes are occupied, else it turns on the red light. The authors use Raspberry 

Pi computing components evaluating traffic density with infrared ultrasonic sensors: these 
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sensors measure distance using ultrasonic waves. Their approach dynamically manages 

traffic at junctions based on vehicle density; the authors used IoT technology where objects 

refer to embedded devices and sensors. The data collected can be treated and evaluated by 

means of internet sharing. 

The traffic control system considers the traffic lights and sensors as physical layers 

related to the Raspberry Pi in the layer data link that acts as a manager device. Internet is in 

the layer network and in the layer application will have a portal web by means which we can 

monitor the IoT devices at distance. The details and operation of the application and 

simulation tests were not reported by the authors, which may induce a weakness in the 

applicability of the proposed system. 

Firdous, et al. [22] proposed a prototype of a functional model for an intelligent 

traffic signal that adjusts its synchrony automatically according to the traffic flow by 

exploiting solar energy from a solar panel. The system manages a four-way intersection 

using four infrared digital captors, one for each way, and eight LEDs to serve as signal lights 

for each way. All the infrared sensors are linked to an Arduino Uno controller that reads 

information from the IR sensors. The system traffic lights are engineered with LEDs and 

every light consists of two LEDs (red, green) for every way. There are two modes of system 

operation, normal and high traffic as follows: 

 Normal traffic means when all lanes have almost the same traffic density; that 

is, four ways named 1, 2, 3 and 4 have to be managed. The control system begins 

to vacate all roadways, starting with way 1, so the green light is on for way 1, 

and a red light on for the other roads. At the end of 2 seconds, the green LED is 

lighted for way 2, to release the flow on way 2, then way 3 and 4. This cycle 

runs continually until one of the roads has significant traffic.  

 The traffic is high if one lane is denser as compared to the others. Assuming that 

route 1 has important traffic, this system tries to release first traffic on Highway 

1. In effect, the green LED of route 1 set to on, and red LED set to off. Other 

routes, the green LED set to off and the red LED set to on. This mode continues 

unless the flow on route 1 has changed from higher to regular flow. 

In [22], if hard objects, e.g., pedestrian crosses over the sensor block, this would 

affect the IR sensors which detects the event and sends erroneous data. In addition, Arduino 

Uno works as a central console (if fails the whole system crashes). 
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3.3 Hybrid Approaches 

Omar et al. [8] provided a hybrid approach using two methods; the first one is related to 

traffic flow theory and the second one is dedicated to traffic flow prediction using a deep 

neural network based on traffic data harvested and learning machines method, to perform 

traffic signal optimization and monitoring. 

In addition, the entry and exit rates of vehicles in each lane of an intersection were 

used to calculate the green time for four phases (North, East, South and West). The remaining 

vehicle exit rate is set to 2.04 vehicles per second for all lanes and measured by manually 

counting the number of vehicles exiting a lane. The input rate was considered an important 

factor calculated by aggregating data such as car density and vehicle frequency, which are 

updated at each light cycle.  

The authors develop a traffic management system with USB cameras to track 

vehicles and collect traffic data (number of cars, frequency and direction), and send it to the 

Raspberry Pi 3 microcontroller [102] which in turn transmits it to the ThingSpeak online 

cloud service for further processing.  

The traffic management system includes three main components: 

 The collecting of traffic data, by a microcontroller, is made according to a three-

state algorithm like wait, track and save. The traffic flow is calculated and 

generated data is uploaded to an open-source Thing Speak cloud solution, for 

future use. 

 The approach designed to optimize traffic phases by exploiting instantaneous 

traffic information adopting two parameters for traffic flow: The frequency, 

considered as the reverse of the elapsed time from last crossing car, which is 

measured in cars per time unit. Traffic volume, measured as the total of cars 

occupying a per-unit road length. This work uses the Least Estimate Square 

(LES) algorithm, based on current data, and determines the green times and 

phases of traffic cycles by minimizing the waiting duration of cars at a junction. 

 In the last step, the approach is using a network of neurons. At peak traffic hours, 

when the flow of traffic is particularly heavy, the data accumulated in memory 

is utilized to anticipate the flow of traffic. 

The number of vehicles was used to calculate the traffic flow. Thus, when vehicles 

are travelling, the proposed solution uses their mobility in area of interest to detect the 

vehicle’s chassis by filtering image algorithms. This algorithm filters the flow of video 
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acquired from the camera and compares the current images with the previous ones. After 

detecting a change, the micro controller tracks the limits of the object in movement and 

records the number of objects and their direction. 

The traffic flow was considered a key factor in calculating the learning models. For 

this purpose, they used a simple traffic representation that depends on the flow intensity and 

the frequency of cars. 

Initially, at  𝑡0 , number of cars in sections W, E, N and S is 𝑊0 , 𝐸0 , 𝑁0  and 𝑆0 , 

respectively and the traffic light is on the point of changing between green to red for the 

Northern and Southern routes and red to green for the Western and Eastern routes. For the 

Western and Eastern directions, the green remains on up to  𝑡1. For time duration 𝛥𝑡 = 𝑡1 − 𝑡0 

in each direction number of automobiles at  𝑡1 is yielded as below:  

𝑊1 =  𝑊0  + (𝑖𝑛𝑊  −  𝑜𝑢𝑡𝑊 ) 𝛥𝑡 
                                              𝐸1  =  𝐸0  +  (𝑖𝑛𝐸  −  𝑜𝑢𝑡 𝐸)  𝛥𝑡                                       (2.6) 

                                         𝑁1 =  𝑁0 + (𝑖𝑛𝑁  −  0) 𝛥𝑡 
                                                    𝑆1  =  𝑆0  +  (𝑖𝑛𝑆 −  0) 𝛥𝑡 

The four traffic directions are represented in matrix form as follows: 

(

𝑊1
𝐸1
𝑁1
𝑆1

) = (

𝑖𝑛𝑤 − 𝑜𝑢𝑡𝑤
𝑖𝑛𝐸− 𝑜𝑢𝑡𝐸

𝑖𝑛𝑁
𝑖𝑛𝑆

)𝛥𝑡 + (

𝑊0
𝐸0
𝑁0
𝑆0

)                                                (2.7) 

The problem can be modeled by the following equation matrix: 

    y =  Ax +  b                                                                                (2.8)  

The application of Least Squares Estimation (LSE) for the above system to minimizing 

 ∥ 𝐴𝑥 −  𝑏 ∥2 is attained by the equation below: 

𝑥𝐿𝑆𝐸 = (𝐴
𝑇𝐴)−1  𝐴𝑇𝑏                                                              (2.9)   

Thus, they defined the equation for the simple traffic cycle duration matrix as follows: 

                     𝛥𝑡 = [(
𝑖𝑛𝑤  − 𝑜𝑢𝑡𝑤
𝑖𝑛𝐸− 𝑜𝑢𝑡𝐸

𝑖𝑛𝑁
𝑖𝑛𝑆

)

𝑇

(
𝑖𝑛𝑤 − 𝑜𝑢𝑡𝑤
𝑖𝑛𝐸− 𝑜𝑢𝑡𝐸

𝑖𝑛𝑁
𝑖𝑛𝑆

)]

−1  

(
𝑖𝑛𝑤 − 𝑜𝑢𝑡𝑤
𝑖𝑛𝐸− 𝑜𝑢𝑡𝐸

𝑖𝑛𝑁
𝑖𝑛𝑆

)

𝑇

(
𝑊0
𝐸0
𝑁0
𝑆0

)    (2.10) 

Simulation results showed that for low-density traffic, where the traffic input 

volumes are less than the output volumes, the algorithm tries to maintain the traffic levels at 

end of all cycles. Moreover, for high traffic density, where there are more cars entering than 

exiting, the traffic conditions are rarely improved. So, the algorithm was able to maintain 

the lowest possible traffic conditions following several cycles, but was not efficient. On the 

contrary, the simulation results obtained with machine learning show that the neural network 
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is able not only to learn traffic patterns, but also to predict with a certain degree of precision 

the traffic flow. 

Frank et al. [23] elaborated a control system for traffic lights at an intersection using 

IoT environment and traffic density. They used image processing, as shown in Figure 2.3, 

in which images captured via cameras are saved in a computer server for real time 

comparison with the reference image to identify the traffic density, using Raspberry Pi. 

Figure 2.3 Image processing process [23]. 

To supervise and manage the traffic signal with the higher speed connectivity of the 

internet, the authors in [23] are based on IoT and density utilizing the processing of images, 

in which the images captured by the cameras are stored in a cloud server. These images will 

be compared in real-time to the reference images in order to identify the traffic density. For 

this purpose, a camera captures the image when the associated intersection is empty (zero 

traffic flow) which constitutes the image reference. Following the continuous capture of the 

real-time image of the junction by a USB camera, the Raspberry Pi uses a comparison of the 

reference image with the real-time image to calculate a differential image, then converting 

the difference frame to a grey scale image which in turn is converted to a binary black and 

white image (Figure 2.3). The resulting difference is zero if the two compared images are 

identical. However, if the camera’s field of view includes vehicles, the difference image will 

be translated into white and black; the white pixels indicate different parts of the two images 

and black pixels correspond to similar elements. A comparison of the white and black pixels 

is used to determine the traffic density. Afterward, the intensity data is transferred to the 

M2x IoT platform cloud (the main server), which is accessed by a Java desktop application 

created to control and supervises road signals. The embedded system retrieves the control 

instructions, which are transferred to the platform cloud via an application, and links them 

via a Raspberry Pi to the traffic light unit control. 
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3.4 Synthesis and Comparison 

Existing solutions in the STLS domain focus especially on solving the congestion problem 

in terms of queue size, waiting time. Three types of STLS approaches can be distinguished: 

heuristic-based approaches, sensor-based approaches and hybrid approaches. Table 2.2 

shows a comparative study between these approaches for a single intersection based on the 

criteria: 1- hybrid cycle, 2- dynamic phase, 3- control metrics and 4- the consideration or not 

of priority vehicles. These criteria are chosen for several reasons: the control metrics refer 

to how the existing technique optimizes these metrics, the choice of the selection function 

that determines the next phase and improves the solution quality, the calculation of the green 

time and the efficient mechanisms for managing priority vehicles. 

Most of the existing work neglected the automatic and intelligent management and 

control of priority vehicles at the intersection when scheduling traffic signal phases. For the 

cycle model, existing works [7, 8, 14, 16, 20–23] use either a single cycle model, or combine 

several models in the same solution. The choice of the next phase to be executed is done 

dynamically, i.e., the phase that gives a better reward is chosen first, or the phases are 

executed one after the other according to the order defined in the cycle model. 

It is noted that the use of the control metrics “Waiting time, queue size, input flow 

and output flow” is varied from one solution to another. The sensor-based work [7] uses all 

four metrics; in the hybrid approach [8] three metrics are used. Two metrics have used in the 

work [7, 14, 16, 21] and [20, 22] used a unique metric. 

Table 2.2 Comparison of different STLS approaches for a single intersection. 

Approach 
Hybrid 

Cycle  

Dynamic 

Phases  

Control Metrics 
Vehicle 

Priority 
Waiting 

Time 

Queue 

Size 

Input 

Flow 

Output 

Flow 

H
eu

ri
st

ic
s 

[14]        

[16]        

S
en

so
rs

 

[7]        

[20]        

[21]        

[22]        

H
y
b

ri
d

s [8]        

[23]        

: Considered, : Not considered 
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Moreover, the integration of fault tolerance mechanism and recovery (How to 

maintain the system operating in spite of failed component) is very little considered in most 

traffic light management approaches [7, 8, 14, 16, 20–23]. In addition, security aspect 

considerations, such as external attacks, indisputable and necessary, especially for works 

that use the Internet of Things or Cloud were not taken into account in design of STLSs. 

4. STLS Approaches for a Set of Intersections 

Intersections in cities come in a variety of configurations; however, we will examine the 

most common and general ones that may result in the implementation of an appropriate 

Smart Traffic Light System. Some of these configurations have been managed in STLS 

reported in previous works as heuristic-based approaches [11, 17, 103, 104], sensor-based 

approaches [105] and hybrid approaches [9], a solution that combines the first two 

approaches. 

4.1 Heuristics based Approaches 

Segredo et al. [11] proposed a vector formulation for traffic signal synchronization to solve 

the urban congestion problem. The solution is encoded by an array of integers as an 

individual coding, where every item is the duration of the phase of a given cycle of the signal 

lights implied at a particular junction. The phases of the various junctions are placed in the 

vector solution consecutively, so that the whole plan of traffic signals is modeled as a single 

vector of integers that represents the phase duration. This coding takes into account the time 

offset of each intersection, which increases the realism of the instances. Figure 2.4 shows an 

example of coding two consecutive intersections in the city by phase duration. The solution 

has been validated in a centralized environment, where a simple vector of integers represents 

the phase times of a particular cycle of traffic signals included in the crossroads of a 

metropolitan area. 

The authors developed an extended algorithm based on NSGAII (Non-Dominant 

Sorting Genetic Algorithm II) [106] for the optimization of different traffic parameters. 

NSGA II represents one of the more approved multi-objective evolutionary algorithms 

(MOEA), based on solution diversity. The work benefits from the quick sorting function of 

non-dominations with decreased complexity of calculation. In order to ensure elitism, it 

employs a selection operator that couples the precedent populations with the new ones 

generated. 
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Figure 2.4 Solution coding, phase duration and traffic light offsets for two intersections [11]. 

The algorithm attempts to optimize the four objectives: 

 Maximizing the sum of cars that attain their arrival point  𝑉𝑅 , or similarly 

minimizing the sum of cars that do not attaining their arrival point  𝑉𝑁𝑅 , over a 

simulation period  𝑇𝑠𝑖𝑚. 

 Minimizing the total travel time  𝑇𝑡𝑟𝑖𝑝 from a starting point to the arrival point 

in the study field window, which is equal to the total travelling periods of all 

cars. The period travelled by a car is equal to the period it took to reach the 

arrival point. Cars that do not reach their arrival point consume all of the 

simulation period. 

 Minimizing the sum of the stopping and waiting times of all vehicles  𝑇𝑠𝑤, which 

is the global time consumed by each vehicle at intersections where the light is 

red. 

 Maximizing the green and red colors ratio 𝑃 in every state phase of all crossings, 

is given as below:     

                                           𝑃 = ∑ .𝑖𝑛𝑡𝑟
 𝑖=0 ∑ 𝑑𝑖,𝑗

𝑔𝑖,𝑗

𝑟𝑖,𝑗

𝑝ℎ
 𝑗=0                                               (2.11)        

Such that:  

• 𝑖𝑛𝑡𝑟 is the number of all crossings.  

• 𝑝ℎ is the number of all phases. 

• 𝑔𝑖,𝑗,𝑟𝑖,𝑗 indicate the number of green and red traffic light colors at crossroad 

𝑖 and phase state 𝑗, respectively.  
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Note that the minimum value of 𝑟𝑖,𝑗  is 1 and so as not to have it divided by 

zero. 

• 𝑑𝑖,𝑗 is the duration of the green time at crossroad i and phase state 𝑗.  

Equation (2.11) favors green traffic lights at congested intersections and red lights at 

other low traffic intersections. 

The objective function shown in Equation (2.12) has been proposed and discussed in 

the work reported in [74, 107]: 

                       𝑓 =  
Ttrip+ Tsw+VNRTsim

VR
2+P

                                                     (2.12) 

Note that the 𝑉𝑅  criterion is squared to give it priority above the rest of criteria, as it 

constitutes the most important objective. Furthermore, the non-arriving cars 𝑉𝑁𝑅  is 

multiplied by the duration of simulation  𝑇𝑠𝑖𝑚  to impose a penalty to this undesirable 

situation. 

Multi-objective optimization is performed by adapting the principle of individual 

diversity (ADI, DBI or DCN). Their objective functions, based on diversity maximization, 

have been used since they were applied successfully to solve some other problems in real 

world [108], such as: 

 ADI (Average Distance for every Individuals) [86] is the average distance in 

Euclidean space of the genotype from other population individuals. 

 DBI (Distance from Best Individual) [109] is the distance Euclidean in the space 

for genotypes of the population’s individual best. The individual best is 

identified by its objective initial value. 

 DCN (Distance to our Closest Neighbor) [109] is the distance Euclidean in 

genotype space to the nearest neighbor in the population 

The variants of ADI NSGAII, DBI NSGAII and DCN NSGAII are compared to three 

optimization methods: two single-objective optimization methods by the GA (Genetic 

Algorithms) and PSO (Particle Swarm Optimization) meta-heuristics and one Variable 

Neighborhood Search (VNS) method on four different benchmarks: Berlin, Paris, Stockholm 

and Malaga. Two experiments were carried out to investigate the capabilities of the NSGAII 

variants. The first one consists in comparing the variants of ADI NSGAII, DBI NSGAII and 

DCN NSGAII. The results of the first experiment showed the effectiveness of DCN NSGAII. 

The second experiment compares DCN NSGAII variant with the GA, VNS and PSO meta-

heuristics. The DCN NSGAII variant has performed well for small locations (Stockholm, 
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Berlin and Paris). On other hand, in large locations (Malaga), the GA single-objective 

optimizer provided the best performance. 

In [11], the authors proposed the NSGAII algorithm to improve the time offset 

parameter between intersections, and the NSGAII is one of the most used MOEAs 

nowadays. But it is noted that the diversity principle of the NSGAII algorithm fails when 

analyzing the largest instance. For example, the authors considered a central solution that 

uses a single vector representing the solution of all intersections. So, instead of using a single 

vector for the solution to the large instances, it is preferable to consider a distributed system 

with a single integer vector representing the solution of each intersection. 

Rasheed et al. [17] developed an advanced technique named MADQN (Multi-Agent 

Deep Q-Network) founded on multi-agent aspects to manage and control high volume 

traffic. They also included scenarios of weather disturbances that can aggravate the traffic 

situation. The MADQN technique was adopted for an area located in the city of Sunway, 

Malaysia to demonstrate its effectiveness. Their simulations were realized on a 3×3 traffic 

network with nine intersections, each intersection with four lanes. The proposed technique 

provides stable and optimal solutions, by having one agent collaborate to affect the operating 

environment of neighboring agents as cars move from one junction to next. In addition, the 

agents collaboratively coordinate their actions with the actions of neighboring agents. 

Moreover, the global optimal value 𝑄_𝑣𝑎𝑙𝑢𝑒 summarises all local values 𝑄_𝑣𝑎𝑙𝑢𝑒𝑖 

found by all agent 𝑖 and corresponds the overall objective function that leads to an optimum 

balancing. The local view availability of neighbouring agents for an agent is attributed to the 

convergence, updating the 𝑄𝑖  values of an agent 𝑖 using data from neighbouring agents 𝑗 

(e.g., 𝑄𝑗 values), and the best response to neighbouring agents 𝑗 is the action of an agent 𝑖.  

In DQN system, the neural artificial network contains three convolutional levels. 

During learning phase, data is routed from the entry level to the cache level, and lastly to the 

exit level, which represents 𝑄𝑣𝑎𝑙𝑢𝑒 , 𝑄𝑡 (𝑠𝑡,  𝑎𝑡)  of the possible actions 𝑎𝑡. The DQN system 

has two main characteristics compared to the traditional Q-Learning approach. The first 

characteristic is experience replay, where an agent stores an experience 

𝑒𝑡 (𝑠𝑡,  𝑎𝑡,  𝑟𝑡+1, 𝑠𝑡+1), in a replay memory  𝐷𝑡 =  (𝑒1,  𝑒2, . . . ,  𝑒𝑡), and then trains using the 

randomly chosen experiences from its replay memory  𝐷𝑡. The second characteristic is using 

the weight 𝜃𝑘  to approximate the 𝑄_𝑣𝑎𝑙𝑢𝑒 𝑄𝑡 (𝑠,  𝑎 ; 𝜃𝑘)  at the kth iteration. In their study, 

they used the non-exponential Burr XII type distribution [110], to represent the vehicles’ 
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inter-arrival time, which generalizes the Poisson process in which the vehicles’ inter-arrival 

times are distributed exponentially [111].  

 To model traffic signal controllers, the authors envisage a set of junctions 𝐼 in a 

network traffic where each junction 𝑖 ∈  𝐼  has a set of arrival ways 𝐾𝑖 , and a set of 

neighbouring junctions  𝐽𝑖. The crossroads turns on the phases of traffic in a circular manner 

and regulates the duration of the phases in traffic using DQN. 

The architecture of the standard DQN and applied DQN multi-agent approach is 

presented in Figure 2.5, which shows that the DQN is integrated with the traffic signal 

control at the intersection i. The entry level contains five neural cells, each one corresponding 

to a state, five hidden levels fully connected to 400 neural cells each, and the exit level has 

five neural cells, each r one corresponding to an action possible. A weight is assigned to each 

connection. Each node has a function of linear rectified activation that conducts a descent 

gradient. 

 

 

 

 

 

 

 

Figure 2.5 DQN architecture [17]. 

During learning, the 5 sub-states of the state 𝑠𝑡
𝑖 =  (𝑠1,𝑡

𝑖 ,  𝑠2,𝑘,𝑡
𝑖  , 𝑠3,𝑘,𝑡

𝑖 ,  𝑠4,𝑡
𝑖 ,  𝑠5,𝑡

𝑖 ) are 

introduced to the neural cells of the entry level. The flows data are subsequently transmitted 

to the hidden levels, and ultimately to the exit level which delivers the 𝑄_𝑣𝑎𝑙𝑢𝑒  of 

𝑄𝑡
𝑖 =  (𝑠𝑡

𝑖 ,  𝑎𝑡
𝑖  )  of its probable actions 𝑎𝑖  =  (0,  1,  2,  3,  4), where 𝑎𝑚𝑎𝑥 = 4  at junction 𝑖. 

The delayed reward 𝑟𝑡
𝑖  (𝑠𝑡

𝑖)  is calculated based of the time waiting total. This reward 

is equal to the difference in time waiting total of all cars at a junction i at time 𝑡 « 𝑊𝑡
𝑖
» and 

time 𝑡 + 1 « 𝑊𝑡+1
𝑖
», (I.e., prior to and post performing the action) is defined by the formula 

in Equation (2.13):     

                            𝑟𝑡
𝑖  (𝑠𝑡

𝑖) =  𝑊𝑡
𝑖  −  𝑊𝑡+1

𝑖                                                          (2.13)   

The agent receives a positive deferred reward when  𝑊𝑡
𝑖 > 𝑊𝑡+1

𝑖
, a negative 

deferred reward when  𝑊𝑡
𝑖 < 𝑊𝑡+1

𝑖  and a null deferred reward when 𝑊𝑡
𝑖 = 𝑊𝑡+1

𝑖
. 
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The authors take four approaches for their simulation namely, deterministic (fixed 

phase and period), RL, MARL and MADQN. The three parameters measured are: Queue 

length, waiting time and flow rate which measures number of cars passing through a junction 

during a unique phase of traffic. The simulation results show that MADQN outperforms the 

other approaches by increasing flow rate by 70%, reducing length of queue by 75% and the 

waiting time by 7%. 

Rasheed et al. [17] presented an optimization method based on delayed reward, but 

it is calculated only by the total waiting time difference of all cars at a given junction. This 

method ignores the flow parameters and queue length for the calculation of the reward, 

which are proven in their simulation results. 

Nesmachnow et al. [103] proposed an evolutionary parallel algorithm to synchronize 

and adapt traffic signals to optimize public transport, in particular rapid bus system. This 

algorithm maximizes, for buses and other cars, the average speed. This work applies the 

proposed algorithm to the case study of Garzón Avenue (Montevideo, Uruguay), and 

compares the results obtained from the parallel evolutionary algorithm with the modeling of 

the real non-optimized scenario. Their motivation is to utilize a parallel evolutionary genetic 

algorithm to minimize the execution time compared to a simple sequential model such as 

traditional genetic algorithms. They apply a parallel master-slave model and use a 

multithreaded system, adapted to run on modern multicore computers. The objective 

function used is the following: 

  𝑓 =  𝑊𝐵 × 𝑆𝐵̅̅ ̅ + 𝑊𝑂 × 𝑆𝑂̅̅ ̅                                             (2.14) 

Such as: 

 0 ≤  (𝑊𝐵 ,𝑊𝑂) ≤ 1  and 𝑊𝐵 +𝑊𝑂 = 1, 

 𝑆𝐵 is the medium bus speed,  

 𝑆𝑂 is the medium speed of other cars, 

 𝑊𝐵  denotes the weight of the medium bus speed parameter,  

 𝑊𝑂 is the weight of the medium speed of other cars.  

The optimization of solution allows simultaneous maximization of both speeds  𝑆𝐵 

and 𝑆𝑂 . The objective function used to evaluate solutions of the evolutionary algorithm, 

assigns to public transport a high priority by attributing adequate values to the weight  𝑊𝐵  

and 𝑊𝑂.  

The model of the proposed solution, illustrated in Figure 2.6, shows that their system 

is composed of two components, the first one is the optimization algorithm and the second 
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is the procedure using simulations to evaluate solutions. The master-slave parallel 

evolutionary optimization algorithm aims to find the optimal configuration (solutions) of 

traffic lights at each slave thread, taking into account the objective function. In turn, the 

simulation procedure evaluated the solutions obtained by the parallel algorithm. This 

approach uses two categories of processes: the master and slave processes. A master process 

assigns to the slave processes a solution set to be examined within the threads. The slave 

processes have the objective to assess every traffic light combination and send the evaluation 

findings back to the master process in order to select the optimal configuration. 

 

 

 

 

 

 

 

 

 

Figure 2.6 Optimization model [103]. 

For the synchronization of the traffic lights, the solution was defined as an integer 

vector. The vector indicates the time of each phase for each intersection, as well as the start 

time of the traffic light cycle. The values are expressed in seconds. The phase values are 

limited between 16 and 120 seconds, the cycle time determines the number of light phases 

in each traffic junction. The authors have then presented an interesting parallel evolutionary 

algorithm to resolve the synchronization problem for a set of intersections. However, this 

solution approach may suffer from the fact that it is based on a centralized system since the 

solution is encoded on a single integer vector. The proposed solution, coming from a 

centralized decision system in a distributed environment, risks not adapting to a distributed 

decision evolution involving IoT services for the benefit of junction users. 

Sofronova et al. [104] presented a mathematical method to simulate the flow control 

problem for a set of intersections in an urban area. This work uses an evolutionary genetic 

algorithm for optimal control of the solution. The mathematical system founded on the 

theory of controlled networks describes the control system by differential equations. In 

addition, one arrives at a finite difference recurrent equation system to describe the traffic 

flow at each intersection and at different time intervals. The number of vehicles at every 
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crossroad in the traffic network is defined as a state vector and the number of crossroads 

describes the size of the state space. The model takes into account the traffic evolution 

according to the traffic light signals. The movement of cars between intersections causes the 

state vector to change, so that the control determines the timing of the traffic light phases at 

the intersections, allowing or disallowing certain movements between intersections. 

The connection information between the intersections and the number of directions 

at each intersection are needed to define the mathematical model of control. The length of 

all phases is an integer and the traffic signals are synchronized, so that the count of time is 

done simultaneously at all network traffic signals. The permutation order of the traffic signal 

phases remains the same; the controller defines the permutation times of the phases at an 

intersection. Either this approach keeps the phase unchanged or a switch to the next phase 

is provided. Thus, a single fixed cycle and phase model is applied. 

The authors have effectively introduced a mathematical model with the help of 

genetic algorithms to determine the optimal solution; however, the model lacks of robustness 

since the system is centralized and uses a fixed cycle model. 

4.2 Sensor-based Approaches 

Lah et al. [105] suggested smart traffic control and monitoring architecture for a set of 

intersections. The system includes magnetic detectors using magneto-resistors that are 

highly sensitive to anomalies in the magnetic field of terrestrial environment due to the 

presence of a vehicle. A wide area network with low power ensures that the captured 

information is transmitted to a specific control station. The central server manages the 

operation of the traffic lights and will have complete control, incorporating all the traffic 

signals in the region. 

Each signaled intersection is covered by a LoRA transmitter and receiver, which 

sends and receives instructions to or from the main host. Additionally, a LoRA station at the 

main host sends commands to the traffic lights using local stations at each intersection. For 

measuring traffic flow, sensors are placed strategically along the road. The data collected 

will then be sent to the Control Centre. This will include a server that guides the 

programming of traffic lights at junctions. 

The monitoring and control operation is as follows: 

 At the intersection: 

• Receiving the signal from the magnetic sensor by LORA. 

• Group the signal according to the traffic line from which it comes. 



Chapter 2                                                                                 A Survey on Smart Traffic Light Systems 

71 
 

• Translate the signal into traffic volume. 

• Transmit the data to the central server. 

 At the central server: 

• Analyze the traffic configuration. 

• Identify the line where the traffic is intense. 

• Refer to the database for traffic lights that relate to specific routes. 

• Send a command to the traffic lights to extend the green light or change to 

the red light. 

The authors used magnetic sensors to monitor traffic flow at a regular time and 

insensitivity to weather conditions. Nevertheless, the proposed system from high installation 

and maintenance cost, due to the difficulty of setting up this type of sensor. 

4.3 Hybrid Approaches 

Lin et al. [9] proposed a centralized system for recognizing vehicle license plates in real 

time to manage traffic in Tainan City in Taiwan, based on traffic flow data from sensors. 

They also proposed a mathematical model for combining Gaussians. The system analyses 

information from a network of traffic lights in the central of Tainan City, including 124 

traffic signals with 53 sensors for vehicle license plate identification. 

The primary goal of this work is to generate in a timely way the traffic signal 

schedule for the next 10 minutes. For this purpose, the authors adopt real-time vehicle 

number plate recognition-based flow prediction, with the adaptation of a mathematical 

model. Their solution, illustrated in Figure 2.7, consists of two parts: the prediction of the 

traffic flow transition and the generation of traffic signal schedules.  

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Traffic light control new proposal [9]. 



Chapter 2                                                                                 A Survey on Smart Traffic Light Systems 

72 
 

To predict traffic flow transition, Dijkstra algorithm was initially used to construct a 

search table that lists the shortest paths between intersections. Next, they adopted Markov 

chain discrete time to describe stochastic time matrices that register the transitional 

movement at various monuments among peaks using the license plate recognition historical 

data. The next step, based on the DTMC, is the prediction of the traffic flow.  

For example, in Figure 2.8, given the rates of transition for 𝐴𝐹⃗⃗⃗⃗  ⃗ and 𝐵𝐷⃗⃗⃗⃗⃗⃗  and the traffic 

flows in real time for A and B, the ratio of basic time for junction C is defined as: 

𝑇𝐴𝐶𝐹  :  𝑇𝐵𝐶𝐷  =  (𝐹𝐴 ×  𝑀𝐴𝐶  +  𝐹𝐹  ×  𝑀𝐹𝐶  +  µ) : (𝐹𝐵 ×  𝑀𝐵𝐶  +  𝐹𝐷  ×  𝑀𝐷𝐶 +  µ)         (2.15)  

Such as: 

 𝑇𝐴𝐶𝐹 is the green light time. 

 𝐹𝐴  is the traffic flow in real time registered at junction A. 

 𝑀𝐴𝐶  is the transition predicted from junction A to C from the DTMC technique 

in the given interval time. 

 µ is a fixed value to prevent a lane that contains almost no flow of traffic from 

receiving precisely 0 seconds of green light (µ is fixed to 0.002 in the study). 

 

  

 

 

 

 

 

Figure 2.8 Example of a solution for eight junctions [9]. 

Therefore, the Mixture Gaussian Model (MGM) is adapted to adjust the green light 

time difference for every road in the identical direction, so the modified time ratio for 

junction C is determined as follows: 

              𝑇′𝐴𝐶 𝐹  :  𝑇′𝐵𝐶𝐷  = 𝑇𝐴𝐶 𝐹 +  𝐺𝐹 (𝐶)  ×  𝑇𝐶𝐹𝐻  :  (𝑇𝐵𝐶𝐷 )                               (2.16) 

Where:  

 𝑇′𝐴𝐶𝐹 , Related to the modified green light period. 

 G𝐹 (C) Denotes, at the junction 𝐶, the Gaussian distribution with its centre fixed 

at junction 𝐹 (𝜎 is set to 1). 

Their preliminary evaluations proved that basic methods, such as minimum distance 

and route-based transitions, correctly inferred at least half of the transition destinations. 
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4.4 Synthesis and Comparisons  

We analyzed and compared existing STLS approaches for a set of intersections according to 

three criteria: 1- type of system, centralized/distributed, 2-control parameters (waiting time, 

queue size, vehicle flow, others) and 3- coordination between intersections. The comparative 

study of STLS approaches for a set of intersections is summarized in Table 2.3 We have 

identified common limitations, in particular for coordinating multiple intersections with 

centralized approaches. Most existing works [9, 11, 103- 105] do not consider coordination 

between intersections. They do not provide efficient mechanisms to optimize all control 

parameters (waiting time, queue size, vehicle flow). 

Table 2.3 Comparative study of STLS approaches for an intersection set. 

Related works Type of system 

 Control parameters Coordination 

between 

intersections 
Waiting 

Time 

Queue  

Size 

Vehicle 

Flow 
Others 

H
eu

ri
st

ic
s 

[11] Centralized    
Vehicles 

arriving at 

destination 

 

[17] Distributed      

[104] Centralized      

[103] Centralized    Vehicle 

speed 
 

S
en

so
rs

 

[105] Centralized      

H
y
b

ri
d

s 

[9] Centralized      

: Considered, : Not considered 

5. Global Smart Traffic Light System and Internet of Things 

We are currently witnessing an important shift from the traditional internet to the Internet of 

Things (IoT) [112] or internet of everything. Therefore, all domains are being driven by IoT 

and more and more innovative X-IoT applications are emerging such as: Agriculture IoT 

[113], Smart-cities IoT [114, 115], Vehicles-IoT [116], Healthcare IoT [117, 118], Smart 

Home automation or Domotics IoT [119, 120], Industries IoT [121 -123], Intelligent 

Transportation System IoT [124], Environment IoT [125], Nanonetworks IoT [126], etc. as 

illustrated in Figure 2.9. In our context, any vehicle can be an object connected to this IoT, 

as long as it is equipped with the appropriate equipment. As vehicles are increasingly 

equipped with powerful platforms, which are convenient for a smart city environment, traffic 
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management at intersections would be of great benefit. Therefore, the cooperation and 

coordination of all STLSs of a smart city should result in a Global STLS enabling to provide 

instantly all vehicles with interesting information about traffic status. This valuable service 

can be provided by a robust dedicated server via IoT infrastructure, additionally to other 

services considering a vehicle as part of a more important global domain likely Intelligent 

Transport System which include road security issue, infotainment, etc. 

Figure 2.9 Example of domains influenced by IoT. 

From the perspective of smart city management, citizens must be able to access 

useful information on the status of urban traffic at any time. This can be done via display 

panels, smart phone or directly on vehicle boards. For this purpose, an urban traffic 

information management center must be available to retrieve the status of all intersections 

in the city. Thus, the user will be provided with the least congested route (or guide him by 

voice according to the selected route) allowing him to reach his destination in a smooth way. 

Obviously, this operation and many others (such as the physical status of the roads, etc.) can 

only be efficiently accomplished in Internet of Vehicles supported by Internet of Things 

environment. Figure 2.10 shows an example of IoV sustained by IoT. 

 

Figure 2.10 IoV sustained by IoT. 
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6. STLS Simulation Methods 

Different methods are used to simulate the performance of current STLS field approaches, 

some researchers using already existing simulators, such as: SUMO [127], VISUM [128], 

EMME [129], etc. Other authors developed their own simulators to evaluate their 

approaches. 

The authors in [11, 14, 16, 103] utilized several scenarios in Urban MObility 

(SUMO) software [127], to evaluate the solutions generated by their approaches. In order to 

evaluate performance of their solution, Kumar et al. [7] developed their own simulator using 

Java fx technology. Simulation tests in [17] were performed using combination of SUMO 

traffic simulator and MATLAB. To simulate traffic conditions, the authors in [8] used a 

PYTHON program that was written for this end. In [23], the authors developed a user 

interface application in Java to monitor data in a cloud server, and to check the traffic 

density, an image processing is simulated with MATLAB. For the demonstration of their 

work, the authors in [9] provided an online web page [9]. 

7. Conclusion   

In this chapter, we have presented the state of the art of the various STLS approaches, 

describing their models and algorithms. STLS models are classified into two types: models 

for a set of intersections and models for a single intersection. We have detailed the different 

parameters of STLS models for a particular intersection and the different architectures of 

STLS models for a set of intersections. In particular, we have classified STLS approaches, 

depending on the algorithm applied, into three categories: heuristic-based optimization 

approaches, sensor-based approaches and hybrid approaches that combine the last two 

approaches. In addition, we presented performance evaluation methods for existing STLS 

approaches and discussed their simulation results. Nevertheless, to this day and from all the 

work reviewed dealing with STLS, it seems that the latter have not yet been able to really 

satisfy what is expected from smart city management. 

The following chapter focuses on the contributions we have made, presenting our 

Adaptive and Dynamic Smart Traffic Light System (ADSTLS) for single and multiple 

intersections. 
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1. Introduction   

Currently, traffic flow using different lanes is steadily increasing. Traffic congestion is 

becoming more difficult in different situations due to unpredicted events and accidents, 

requiring effective traffic light management techniques to meet these evolving changes. On 

the other hand, managing traffic based on conflicting traffic metrics like input traffic flows 

and queue occupancies is challenging. This complexity is evident and handled by one or 

more intersections. It is crucial to select the most suitable lane, considering traffic flow 

metrics and performance. Smart Traffic Light System (STLS) plays a significant role in 

efficiently managing traffic flows. However, these systems lack enough flexibility and 

adaptability to effectively handle both regular and urgent vehicles at the city’s intersections.  

This chapter introduces an Adaptive and Dynamic Smart Traffic Light System 

(ADSTLS) designed to coordinate traffic signals at a single intersection, manage emergency 

traffic intelligently and effectively, and coordinate signals at multiple intersections to 

alleviate congestion and enhance traffic flow during emergencies and changing weather 

conditions. The proposed system comprises six stages: ensuring fault tolerance in ADSTLS 

components, collecting and preprocessing traffic data, ensuring privacy and security of 

traffic data, calculating traffic metrics, making decisions in dynamic and adaptive mode, and 

executing traffic light control. 

Two control modes are proposed: Dynamic Intelligent Mode (DIM) and Adaptive 

Emergency Mode (AEM), while adapting the improved optimization method based on 

WCSO (Weight Chicken Swarm Optimization). To keep dynamicity, we have chosen a 

flexible approach that effectively utilizes traffic information and reacts rapidly using three 

traffic light models (cycle, phase, and hybrid) in DIM mode. Additionally, the AEM mode, 

effectively, manage emergency vehicles with varying priority levels to synchronize traffic 

signals in real time. An extension known as CCADSTLS (Chronological Coordination of 

ADSTLS) is introduced for multiple intersections. This extension aims to minimize 

congestion and traffic delays during disasters by facilitating timely coordination among 

ADSTLS agents. 

2. System Architecture 

This section describes the general architecture of the ADSTLS system, presenting the 

composition of the different units of the system for an intersection and the multi-agent model 

for a set of intersections.  
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2.1 Single Intersection 

A sensor video and three signal lights were included in each of the four lanes. Each sensor 

video (i.e., camera) monitored the traffic flow videos in real time and transmitted this 

information to a video processing unit. At this level, the videos were analyzed to extract 

traffic data for each direction and lane. The traffic signal controller processes traffic data and 

strategically manages traffic lights. The architecture is built around two principal units, as 

shown Figure 3.1. 

Figure 3.1 General architecture of ADSTLS. 

2.1.1 Main Video Processing Unit (MVPU) 

It automatically analyzes the collected videos to extract the traffic information and transmits 

it to the traffic signal controller. This unit comprises three components: 

 The Main Video Capture Component (MVCC) consists of a video camera road that 

monitors and captures traffic videos in real time. 

 The Main Telecommunication Component (MTC) transmits videos to the video 

processing component, 

 The Main Video Processing Component (MVPC) extracts the traffic data and 

transmits it to the traffic controller.  

2.1.2 Main Traffic Signal Control Unit (MTSCU) 

It receives and processes traffic data sent by video processing unit as follows:  
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 Calculate traffic metrics used by ADSTLS system, 

 Control traffic lights in each lane, 

 Switch between intelligent mode and emergency mode depending on the situation 

and, 

 Communicate with the second traffic signal control unit of the same intersection. 

To ensure fault tolerance, all ADSTLS components were duplicated, as shown in 

Figure 3.1. Our goal was to enable the system to continue operating efficiently when one or 

more of its components fail. 

2.2 Multiple Intersections 

We assume a traffic network consisting of a set of connected intersections where vehicles 

travel from one intersection to another. Each intersection 𝐼𝑖𝑑 is assigned an identifier (𝑖𝑑). 

An intersection has a maximum of four neighboring intersections on each side of the 

roadway (west, north, east, south), which are recognized by this intersection based on their 

identifiers (𝑊𝐼𝑖𝑑 , 𝑁𝐼𝑖𝑑 , 𝐸𝐼𝑖𝑑 , 𝑆𝐼𝑖𝑑). 

Our system consists of agent controllers 𝐴𝑖𝑑 and their managed intersections (see 

Figure 3.2). The agent controller 𝐴𝑖𝑑 which is deployed in a base station, is responsible for 

controlling all traffic lights and a network of video camera sensors. It monitors the arrival 

and departure of vehicles in the individual lanes in order to record the traffic flow at an 

intersection. The Agent Controller processes this information, and ensure optimal control of 

lights at the intersection. This optimization is performed for all intersections a road network. 

Each agent cooperates with its neighboring agent controllers (𝑊𝐴𝑖𝑑 , 𝑁𝐴𝑖𝑑, 𝐸𝐴𝑖𝑑, 𝑆𝐴𝑖𝑑).  

Figure 3.2 The multi-agent architecture for traffic-light control. 
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3. Assumptions 

We propose a novel sensor-based system that addresses the following assumptions for 

synchronizing and controlling traffic lights at isolated intersection, and enables coordination 

between the set of intersections. 

 All system components (sensors, traffic lights, control units, and video processing 

units) were supplied directly by the power supply. Each part is equipped with an 

emergency battery to ensure functionality when power is unavailable or exhausted. 

In such cases, each component informs the coordinator of the current energy state.  

 We assume that each emergency vehicle and its priority level are identified by its 

lights. 

 Each Main Traffic Signal Control unit (MTSCU) is monitored by another Secondary 

Traffic Signal Control Unit (STSCU), which allows the system to handle its failure 

appropriately. Failure is detected by a heartbeat mechanism that permits the 

replacement of the MTSCU by the STSCU. Therefore, the MTSCU becomes 

secondary after repair. 

 The Main Video Processing Unit (MVPU) is monitored by another secondary unit 

(SVPU). In addition to MVPU components (MVCC, MTC, and MVPC) are 

monitored by other secondary components (SVCC, STC, and SVPC). 

 The system is safe and reliable for traffic-light control and management. Each traffic 

light and video sensor were replicated to ensure resilience. 

4. System Models and Traffic Metrics 

In this section, we detail the intersection model, the cycle model, the phase model, and 

different metrics applied by the ADSTLS. 

4.1 Intersection Model  

ADSTLS is a system based on a standard model of a single intersection that consists of four 

vehicle lanes (north (N), south (S), east (E), and west (W)). Two movements per lane, going 

straight or turning left, from one direction to another. We assume that the right-turn 

movement does not interfere with the other road traffic movements. Therefore, we have eight 

moves, 𝑤𝑚 =  {𝑊𝑒,𝑊𝑛,𝑁𝑠, 𝑁𝑒, 𝐸𝑤, 𝐸𝑠, 𝑆𝑛, 𝑆𝑤}, as shown in Figure 3.3. Each lane had a 

video sensor and three signal lights (one light per movement). The ADSTLS control system 

is deployed at a base station at an intersection and is connected to all system components. 
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Figure 3.3 Intersection model. 

4.2 Cycle and Phase Models 

Our intersection model uses eight vehicle movements, wm = {We, Wn, Ns, Ne, Ew, Es, Sn, 

Sw} each of which competes with other movements to allow vehicles to travel through an 

intersection from one direction to another without conflict between them.  

In traffic signal control systems, a cycle refers to a complete sequence of signal 

indications for all movements at an intersection or along a specific road section. It includes 

green, orange, and red intervals for each traffic direction as well as pedestrian intervals 

where appropriate. The cycle comprises the entire set of signal phases that are regularly used 

at an intersection to control traffic and pedestrian flow. A phase in the traffic light cycle 

denotes a specific period of time during which certain movements are allowed to proceed 

when the signal is green [130]. 

Based on the above standard definitions, ADSTLS uses a set of eight phases, ph = 

{(We, Wn), (Ns, Ne), (Ew, Es), (Sn, Sw), (We, Ew), (Wn, Es), (Ns, Sn), (Ne, Sw)}, where we 

define two split-phase cycle models that allow all intersection movements to pass. Cycle 1 

= {(We, Wn), (Ns, Ne), (Ew, Es), (Sn, Sw)} and Cycle 2 = {(We, Ew), (Wn, Es), (Ns, Sn), 

(Ne, Sw)}. 
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It can be observed from the phase set that each direction belongs to two phases, which 

implies that each direction is coherent with only two other directions. Figure 3.4 shows the 

phase and cycle models used in the ADSTLS system. 

Figure 3.4 Cycle and phase models. 

4.3  ADSTLS’s Traffic Metrics 

We define three types of traffic metrics: 1) vehicle, 2) queue, and 3) intersection. 

4.3.1 Vehicle Metrics  

Vehicle metrics can provide meaningful traffic information when evaluating system 

performance. These are applied to each vehicle 𝑣𝑖 in queue 𝑘 (𝑘 ∈  𝑤𝑚). First, we define 

the current system time at an intersection (𝑡𝑐), which can be used for all vehicle metrics. 

These metrics are defined as follows: 

 𝑑𝑣𝑖
𝑘: Distance of vehicle 𝑣𝑖 from the traffic light. 

 𝑖𝑛_𝑡𝑣𝑖
𝑘: Entering time of vehicle 𝑣𝑖 through particular queue 𝑘 as defined in (3.1). 

𝑖𝑛_𝑡𝑣𝑖
𝑘 = 𝑡𝑐                                            (3.1) 

 𝑜𝑢𝑡_𝑡𝑣𝑖
𝑘: Departure time of vehicle 𝑣𝑖 from a queue 𝑘 defined using equation (3.2). 

𝑜𝑢𝑡_𝑡𝑣𝑖
𝑘 = 𝑡𝑐                                         (3.2) 

 𝑝𝑙𝑣𝑖
𝑘
 : Priority level of vehicle 𝑣𝑖. There are four priority levels (3, high; 2, medium; 

1, low; and 0, no priority) as defined in equation (3.3). 

𝑝𝑙𝑣𝑖
𝑘 =  {0, 1, 2,3}                                (3.3) 

 𝑐_𝑤𝑡𝑣𝑖
𝑘: Current waiting time of vehicle 𝑣𝑖 in a particular queue 𝑘, calculated using 

equation (3.4). 

𝑐_𝑤𝑡𝑣𝑖
𝑘 = 𝑡𝑐 − 𝑖𝑛_𝑡𝑣𝑖

𝑘                         (3.4) 

 𝑤𝑡𝑣𝑖
𝑘: Waiting time of vehicle 𝑣𝑖 spent in a particular queue 𝑘, as defined in equation 

(3.5). 

𝑤𝑡𝑣𝑖
𝑘 = 𝑜𝑢𝑡_𝑡𝑣𝑖

𝑘 −  𝑖𝑛_𝑡𝑣𝑖
𝑘               (3.5) 
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4.3.2 Queue Metrics  

These metrics are used to measure queue length based on the number of stopped vehicles in 

a single lane, vehicle waiting time, and traffic congestion, which are defined for each queue 

𝑘 with 𝑘 ∈  𝑤𝑚 as follows: 

 𝑞_𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑘: Maximum queue size, is the maximum number of vehicles stopped in 

the lane within one cycle or phase light. 

 𝑑𝑙𝑣𝑘: Distance from the latest vehicle stopped in the queue to traffic lights within one 

cycle or phase.  

 𝑖𝑛𝑘: Input queue flow represents the number of vehicles entering a particular queue 

𝑘. It is initialized as zero and increases by one at each arrival of a vehicle in the 

queue, as calculated using equation (3.6). 

𝑖𝑛𝑘 = 𝑖𝑛𝑘 + 1                                      (3.6) 

 𝑜𝑢𝑡𝑘: Output queue flow, where is the number of vehicles departing from queue 𝑘. 

It is initialized as zero and increases by one at each departure of the vehicle from the 

queue, as calculated in equation (3.7). 

𝑜𝑢𝑡𝑘 = 𝑜𝑢𝑡𝑘 + 1                                 (3.7) 

 𝑞_𝑠𝑖𝑧𝑒𝑘:  Queue size in number of vehicles versus time, where  0 ≤ 𝑞_𝑠𝑖𝑧𝑒𝑘 ≤

𝑞_𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑘as defined using equation (3.8). 

𝑞_𝑠𝑖𝑧𝑒𝑘 = 𝑖𝑛𝑘 − 𝑜𝑢𝑡𝑘                       (3.8) 

 𝑜𝑐𝑐𝑢𝑝𝑟𝑘: Queue occupancy rate where 0 ≤ 𝑜𝑐𝑐𝑢𝑝𝑟𝑘 ≤ 1. An occupancy rate close 

to one indicates that the queue has reached its maximum size. This metric was 

calculated using equation (3.9). 

𝑜𝑐𝑐𝑢𝑝𝑟𝑘 =
𝑞_𝑠𝑖𝑧𝑒𝑘

𝑞_𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑘
                      (3.9) 

 𝑎𝑞𝑤𝑡𝑘: Average queue waiting time of all waiting vehicles in queue 𝑘, calculated 

using equation (3.10). 

𝑎𝑞𝑤𝑡𝑘 =

∑ 𝑐_𝑤𝑡𝑣𝑖
𝑘

𝑞_𝑠𝑖𝑧𝑒𝑘

𝑖=1

𝑞_𝑠𝑖𝑧𝑒𝑘
            (3.10) 

 𝑎𝑤𝑡𝑘:  Average waiting time of all outgoing and waiting vehicles in queue 𝑘 , 

calculated using equation (3.11). 

𝑎𝑤𝑡𝑘 =

∑ 𝑐_𝑤𝑡𝑣𝑖
𝑘

𝑞_𝑠𝑖𝑧𝑒𝑘

𝑖=1
+∑ 𝑤𝑡𝑣𝑖

𝑘
𝑜𝑢𝑡𝑘

𝑖=1

𝑞_𝑠𝑖𝑧𝑒𝑘 + 𝑜𝑢𝑡𝑘
    (3.11) 
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 𝑛𝑣𝑝𝑘
𝑝𝑙𝑣 :  Number of emergency vehicles with priority level 𝑝𝑙𝑣  in queue 𝑘 . This 

metric is initialized to zero and increases by one at each arrival of an emergency 

vehicle in the queue, as shown in equation (3.12). 

𝑛𝑣𝑝𝑘
𝑝𝑙𝑣 = 𝑛𝑣𝑝𝑘

𝑝𝑙𝑣 + 1                         (3.12) 

However, when an emergency vehicle leaves, the number of emergency vehicles is 

reduced by one, as shown in equation (3.13). 

𝑛𝑣𝑝𝑘
𝑝𝑙𝑣 = 𝑛𝑣𝑝𝑘

𝑝𝑙𝑣 − 1                         (3.13) 

 𝑛𝑣𝑝𝑘: Number of emergency vehicles in queue 𝑘 calculated using equation (3.14). 

𝑛𝑣𝑝𝑘 =∑  𝑛𝑣𝑝𝑘
𝑝𝑙𝑣

3

𝑝𝑙𝑣=1
                  (3.14) 

4.3.3 Intersection Metrics 

Intersection metrics were used to evaluate the performance of the intersection. An identifier 

(𝑖𝑑) is assigned to each intersection 𝐼𝑖𝑑, which contains 𝑘 queues (𝑘 ∈  𝑤𝑚) defined by the 

following metrics: 

 𝑛𝑣𝑝𝑖𝑑: Number of all emergency vehicles currently at the intersection 𝐼𝑖𝑑 , calculated 

using equation (3.15). 

𝑛𝑣𝑝𝑖𝑑
=∑ 𝑛𝑣𝑝𝑖

𝑘

𝑖=1
                          (3.15) 

 𝑎𝑜𝑟𝑖𝑑: Average occupancy rate of all queues recorded at intersection 𝐼𝑖𝑑 , defined in 

equation (3.16). 

𝑎𝑜𝑟𝑖𝑑 =

∑ 𝑜𝑐𝑐𝑢𝑝𝑟𝑖

𝑘

𝑖=1

𝑘
    𝑎𝑛𝑑  0 ≤ 𝑎𝑜𝑟 ≤ 1    (3.16) 

 𝑜𝑓𝑟𝑖𝑑: Output traffic flow rate in the intersection 𝐼𝑖𝑑 , calculated using (3.17). 

𝑜𝑓𝑟𝑖𝑑 =  
∑ 𝑜𝑢𝑡𝑖
𝑘
𝑖=1

∑ 𝑖𝑛𝑖
𝑘
𝑖=1

    𝑎𝑛𝑑    0 ≤ 𝑜𝑓𝑟 ≤ 1           (3.17) 

 𝑎𝑤𝑡𝑖𝑑: Average waiting time for all outgoing and waiting vehicles at the intersection 

𝐼𝑖𝑑 , defined using equation (3.18). 

𝑎𝑤𝑡𝑖𝑑 =
∑   𝐾
𝑖=1 𝑎𝑤𝑡𝑖
𝑘

                      (3.18) 
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4.3.4 Other Metrics 

Other metrics express the time scale, vehicle speed, hybrid rate and coordination rate of 

ADSTLS, as defined by the following equations: 

 𝑡𝑠: The time scale normalizes the average waiting time (𝑎𝑤𝑡𝑖𝑑) of an intersection and 

average waiting time in each queue k ( 𝑎𝑞𝑤𝑡𝑘). These metrics are normalized using 

equations (3.19) and (3.20). 

𝑎𝑤𝑡𝑖𝑑 =
𝑎𝑤𝑡𝑖𝑑  

𝑡𝑠
      𝑤𝑖𝑡ℎ    0 ≤  𝑎𝑤𝑡𝑖𝑑 ≤ 1     (3.19) 

𝑎𝑞𝑤𝑡
𝑘
=
𝑎𝑞𝑤𝑡𝑘 

𝑡𝑠
    𝑤𝑖𝑡ℎ     0 ≤  𝑎𝑞𝑤𝑡

𝑘
≤ 1   (3.20) 

 𝑠𝑣:  Speed of vehicles during the simulation depending on the simulator 

configuration. 

 ℎ𝑟: Hybrid rate which is used in the dynamic hybrid model. 

 𝑐𝑟 : Coordination rate is the parameter that triggers and control communication 

between intersection agents. 

5. ADSTLS Control System for Single Intersection 

STLS is a system that enables smarter urban traffic management. We anticipate that STLS 

will be affected by both traffic congestion and unpredictable traffic events that may disrupt 

traffic flow. However, guiding vehicles in the correct direction can be achieved using a 

combination of intelligent and flexible strategies. By selecting the optimal directions of the 

cycle, STLS can achieve efficient traffic management. We propose a weight-based 

intelligent traffic flow optimization system based on traffic intersection parameters to 

mitigate congestion and decrease vehicle waiting time. This optimization is based on the 

WCSO (Weight Chicken Swarm Optimization) algorithm to reduce both waiting time and 

occupancy rate and maximize the gain of emergency services, resulting in improved traffic 

management and efficiency.  

To overcome the issues of effective traffic light management and improve quality of 

life, we define a 6-stages process to reduce traffic congestion and waiting times. The 

flowchart in Figure 3.5 shows the stages of the dynamic and adaptive smart traffic light 

control process. The flowchart begins with stage one (section 5.1), the early detection of 

failure components based on the heartbeat mechanism. Stage two (section 5.2) collects 

traffic data using camera sensors for pre-processing and interpretation. Stage three (section 

5.3) ensures the security and privacy of data transmitted from the MVPU to the MTSCU 
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based on asymmetric encryption protocol. In stage four (section 5.4), the decrypted traffic 

data is used to compute traffic metrics. In stage five (section 5.5), the traffic metrics from 

stage four are used to select the optimal phase based on WCSO and to determine the green 

time duration based on the presence or absence of emergency vehicles in adaptive or 

dynamic mode. In the sixth stage (section 5.6), the process ends with executing the traffic 

light control. 

Figure 3.5 Functional model of ADSTLS. 

5.1 Fault Tolerance  

A heartbeat mechanism was used to monitor the ADSTLS primary components. Figure 3.6 

shows the flowchart of this stage.  

  Figure 3.6  ADSTLS fault tolerance process. 
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First, the secondary component sends an (alive?) message to its corresponding 

primary component, and waits for acknowledgment. If, after ∆𝑡 milliseconds, the secondary 

component does not receive a response from the primary component, the last component is 

declared to fail and is replaced. All secondary components in ADSTLS run the same 

algorithm. The algorithm takes the state of the primary component as input and returns a 

repair message to the city's global decision system when the primary component fails. 

5.2 Traffic Data Collection and Preprocessing 

This stage extracts and updates information on different queues and vehicles based on the 

traffic data extracted from the video processing component of the video processing unit. This 

information is sent to the traffic-light controller to make decisions and manage traffic flows. 

The pre-processing and interpretation of intersection signals consist of the following two 

steps.  

 Pre-processing: The traffic input signals are initially subjected to pre-processing, 

where signal filtering occurs.  

 Interpretation: The obtained pre-processed signals are given to extract traffic 

information, including 1) queue inflow, 2) queue outflow, 3) vehicle entry time in 

each queue, 4) vehicle exit time from each queue, 5) vehicle waiting time in queues, 

6) priority level of each vehicle, 7) number of emergency vehicles with different 

priority levels in each queue, and 8) distance of the vehicle from the traffic light. 

Figure 3.7 shows the collection and preprocessing of traffic data. 

Figure 3.7 Traffic data collection and preprocessing process. 
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The ADSTLS system relies on an image processing model implemented using 

OpenCV and Java libraries to detect real-time video streams of a vehicle tracked by a Sahar 

camera plugged in the Raspberry PI. The vehicle detector is applied to every frame of a video 

stream of consecutive green time.  

First, the cameras read all frames between consecutive green times. Then, the system 

converts every pair of RGB frames to grayscale and computes the intensity difference for 

every pair of frames. This sets the threshold for the difference in the output image. Then, the 

system performs a dilation on the thresholding image to detect “Region of Interest” and find 

contours in the output image of dilation. Next, the system detects the vehicle and draws 

contours around it in the detected vehicle in the original frame. After detecting the vehicle, 

the system classifies it as an "emergency vehicle" or "normal vehicle" by matching the shape 

of the detected vehicle with the shape class vehicle and extracting the vehicle number of 

every detected vehicle using Automatic Number Plate Recognition (ANPR) system [131]. 

The system computes the traffic information based on the extracted features of each vehicle 

in all frames and adds contours to all moving vehicles in all frames. Finally, the system saves 

the updated frames along with the computed traffic information and sends them to the 

controller. 

To better control traffic lights during the passage of emergency vehicles, the 

emergency event broadcasting technique [132] is adopted. Based on a Vehicle Message 

Scheduling (VMS) scheme, no two vehicles or more have the same trust value. Thus, the 

selected vehicle that broadcasts emergency events is the vehicle that has the maximum trust 

value, minimum number of interferences, and its location close to the Road Side Unit (RSU). 

In the proposed system, the top selected vehicle on the road collects and broadcasts 

accident/emergency events in real-time. 

5.3 Traffic Data Privacy and Security  

In this section, we develop a robust protocol that ensures secure communication between the 

Main Video Processing Unit (MVPU) and Main Traffic Signal Control Unit (MTSCU). It is 

based on a shared generated key, to secure and protect traffic data, particularly video data 

from cameras to avoid persistent malicious attacks.  

5.3.1 The Proposed Protocol 

In our protocol, the MVPU and MTSCU components generate a shared secure key for 

encrypting traffic data and exchange them implicitly at each iteration to avoid the risk of 
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attacks. To address the vulnerability of video capture and transmission, we exploited the 

GDPR policy with personal information hiding. However, we first detail the key exchange 

and image frame encryption, particularly the video data from cameras between the MVPU 

and the MTSCU, to better understand how the traffic data is encrypted/decrypted by both 

components with low computational complexity.  This protocol consists of two verification 

steps: 1) MVPU checks whether the random value generated by the MTSCU is altered, and 

2) MTSCU checks whether its value computed by the MVPU has been altered. The proposed 

protocol is described as follows.  

 The MVPU generates a random value 𝛼 and sends it to the MTSCU. 

 The MTSCU generates a random key 𝛽, which is the encryption key. 𝛽 is generated 

at each iteration. 

 After receiving 𝛼, the MVPU calculates (𝛽𝛼, 𝛽𝛽). 

 The MVPU computes 𝛽  using 𝛼′  , where 𝛼′ = (𝑝 +  𝑖 ∗ (𝑝 − 1)) 𝛼⁄  and 𝛽𝛽  are 

used to check the value of 𝛽 where 𝑝 is close to 1. 

 The MVPU then sends the computed 𝛽1 using 𝛽 to the MTSCU in the form of 𝛽1
𝛼

 

 Finally, the MTSCU checks if 𝛽1
α

  != 𝛽α or not. 

In our protocol, the MVPU wants to send secure traffic data from video to the 

MTSCU. Equation (3.21) shows how to encrypt image frame 𝑚 from any video content 

using a secret key 𝛽α: 

𝑖𝑚𝑔𝑒 = 𝑖𝑚𝑔 ∙ 𝛽
𝛼                                 (3.21) 

During decryption, the MTSCU receives the encrypted image frame 𝑖𝑚𝑔𝑒 and 

decrypts it using the secret key 𝛽−α as given in equation (3.22). The decryption process must 

take place in reverse order to the encryption process. 

𝑖𝑚𝑔 = 𝑖𝑚𝑔𝑒 ∙ 𝛽
−𝛼                                  (3.22)  

5.3.2 GDPR Policies and Regulations  

We ensure the privacy and security of traffic data based on GDPR policy to protect video 

content. The GDPR has a unique feature related to the compliance check of sensitive and 

personal information vulnerable to illegal users, who may ensure their privacy and copyright.  

The proposed system ensures compliance with the GDPR by providing policy 

reinforcement using Privacy Policy Based Access Control (P2BAC). This reinforcement is 

used by the MVPU and the MTSCU. They use computer-interpretable privacy policies and 

check them for compliance with the GDPR. In addition, privacy policies are used to 
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determine which video content is considered in the authenticity and protection of personal 

data. However, policies can have an underlying policy that focuses on hiding personal 

information to minimize the issues of protection rights, integrity, and authenticity. It helps 

to inform end users or traffic data subjects about the collection and processing of traffic data 

transparently. 

5.4 Computation of the System Metrics  

In this stage, we compute all traffic metrics used in the decision-making process, either by 

vehicle, queue, intersection, or by other metrics. As detailed in Algorithm 3.1, the system 

applies different metrics (Equation (3.1)–Equation (3.20)) to provide the traffic information.  

Algorithm 3.1 Computation of the system metrics. 

Input:  𝑖𝑛𝑘               ∶ Input flow of the queue 𝑘 .  

 𝑜𝑢𝑡𝑘             ∶ Output flow of the queue 𝑘.  

 𝑖𝑛_𝑡𝑣𝑖
𝑘          ∶ Input time of vehicle 𝑣𝑖 in queue 𝑘.  

 𝑛𝑣𝑝𝑘
𝑝𝑙𝑣         ∶ Number of emergency vehicles of priority level 𝑝𝑙𝑣  in queue 𝑘.  

 𝑡𝑐                   ∶ Current time of system. 

 𝑞_𝑠𝑖𝑧𝑒𝑚𝑎𝑥𝑘 ∶ Maximum size of the queue 𝑘, k ∈ wm and wm = {𝑊𝑒,𝑊𝑛,𝑁𝑠,𝑁𝑒, 𝐸𝑤, 𝐸𝑠, 𝑆𝑛, 𝑆𝑤}. 

 𝑡𝑠                   ∶ Time scale. 

Output: 𝑜𝑐𝑐𝑢𝑝𝑟𝑘       ∶ Occupancy rate of the queue 𝑘. k ∈ wm and wm = {𝑊𝑒,𝑊𝑛,𝑁𝑠,𝑁𝑒, 𝐸𝑤, 𝐸𝑠, 𝑆𝑛, 𝑆𝑤}. 

 𝑎𝑞𝑤𝑡
𝑘
           : Normalized average queue waiting time of all vehicles currently in the queue 𝑘. 

 𝑛𝑣𝑝𝑖𝑑                 ∶ Number of vehicles priority in the intersection 𝐼𝑖𝑑. 

 𝑎𝑜𝑟𝑖𝑑                ∶ Average occupancy rate for all queues in the intersection 𝐼𝑖𝑑. 

Begin  

(1)     : Recover the current system time 𝑡𝑐   

(2)     : for each queue k    do 

(3)     :  Compute the current queue size (𝑞_𝑠𝑖𝑧𝑒𝑘), using (3.8) 

(4)     :  Compute the queue occupancy rate (𝑜𝑐𝑐𝑢𝑝𝑟𝑘), according to (3.9)   

(5)     :  for each vehicle 𝑣𝑖 in queue 𝑘 do 

(6)     :   Calculate the current waiting time of vehicle 𝑣𝑖 in queue 𝑘( 𝑐_𝑤𝑡𝑣𝑖
𝑘), based on (3.4) 

(7)     :  end for 

(8)     :  Compute the average waiting time of all waited vehicles in queue 𝑘 (𝑎𝑞𝑤𝑡𝑘), with (3.10) 

(9)     :  Compute the normalized average queue waiting time of all waited vehicles in queue 𝑘 (𝑎𝑞𝑤𝑡
𝑘
), using (3.20)   

(10)     :  Compute the number of all emergency vehicles in lane 𝑘 (𝑛𝑣𝑝𝑘), according to (3.14) 

(11)     : end for 

(12)     : Compute the number of priority or emergency vehicles in the intersection 𝐼𝑖𝑑  (𝑛𝑣𝑝𝑖𝑑), following (3.15) 

(13)     : Compute the average occupancy rate of all queues in the intersection 𝐼𝑖𝑑 (𝑎𝑜𝑟𝑖𝑑), according to (3.16) 

End  
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Algorithm 3.1 clearly demonstrates the computation of most of the traffic metrics. 

It takes the maximum size of each queue, input flow of each queue, output flow of each 

queue, time scale, system time, vehicle entry time in each queue, and number of emergency 

vehicles per priority in each queue as inputs. It returns the occupancy rate of each queue, 

normalized average waiting time of all vehicles waiting in each queue, average occupancy 

rate of all queues in the intersection, and number of vehicles in the intersection as outputs.  

Algorithm 3.1 begins by computing the occupancy rate of each queue (𝑜𝑐𝑐𝑢𝑝𝑟𝑘) and the 

normalized average waiting time of all the vehicles waiting in each queue ( 𝑎𝑞𝑤𝑡
𝑘

). 

Subsequently, it computes the number of emergency vehicles at the intersection (𝑛𝑣𝑝𝑖𝑑) and 

the average occupancy rate of all the intersection lanes (𝑎𝑜𝑟𝑖𝑑). 

5.5 Decision Making in ADSTLS Modes  

The system passes the optimized phase and weights, and calculates the traffic metrics for the 

decision-making process. The process is performed in two modes: dynamic intelligence 

(Stage 5.a) and emergency adaptation (Stage 5.b). Upon congestion and emergency 

detection, the phase or cycle models are dynamically managed. However, the WCSO 

algorithm is employed to dynamically adjust the optimal weights, select the phases of each 

round, and send it to the controller. 

5.5.1 Phase Selection and Weight Optimization  

After calculating all traffic metrics, the ADSTLS system applies two new weight-based 

heuristics to select the best phase and queue to optimize traffic parameters (i.e., output flow 

rate of vehicles, average waiting time, and average occupancy) in dynamic mode, and the 

highest priority queue is used in emergency mode to determine priority and coherent 

directions. The optimization of the weights was based on an enhanced WCSO algorithm. It 

is a metaheuristic bio-inspired algorithm that imitates a chicken swarm hierarchy and 

individual chicken behavior. Our main goal is to select an efficient traffic model, smart up 

decision-making, and decrease the vehicle waiting time for high-traffic data. 

a. Queue and Phase Selection Functions 

Heuristic-based approaches are generally a great way to manage and optimize traffic flow 

[8, 14, 16, 18, 19, 23]. We propose two new selection functions as heuristics for determining 

the best phase in a traffic flow model that optimizes traffic parameters. These parameters are 
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the Average Waiting Time (𝑎𝑤𝑡 ) of vehicles, Average Occupancy Rate (𝑎𝑜𝑟 ) of all 

intersection queues, and vehicle Output Flow Rate (𝑜𝑓𝑟). The controller selects the optimal 

queue using a queue selection function and selects the best phase using a phase selection 

function, which is described as follows: 

 Queue selection function: the queue selection function is defined as a linear 

combination of the queue occupancy rate (𝑜𝑐𝑐𝑢𝑝𝑟𝑘) and average vehicle waiting 

time ( 𝑎𝑞𝑤𝑡𝑘) of queue 𝑘. Furthermore, the queue with the highest queue waiting 

time and occupancy rate should be given a maximum score to be selected. The queue-

selection function 𝑓𝑠_𝑞𝑢𝑒𝑢𝑒 of queue 𝑘 is calculated using equation (3.23). 

 𝑓𝑠_𝑞𝑢𝑒𝑢𝑒𝑘 =  𝑤𝑞 ∗ 𝑜𝑐𝑐𝑢𝑝𝑟𝑘 +𝑤𝑡 ∗ 𝑎𝑞𝑤𝑡𝑘       (3.23) 

Where: 

 𝑘 ∈ 𝑤𝑚, 𝑤𝑚 =  {𝑊𝑒,𝑊𝑛, 𝑁𝑠, 𝑁𝑒, 𝐸𝑤,𝐸𝑠, 𝑆𝑛, 𝑆𝑤}. 

 𝑤𝑞 ∶  is weight value of occupation rate of queue k. 0 ≤ 𝑤𝑞 ≤ 1  

  𝑤𝑡 ∶  is weight value of average vehicles waiting time queue k. 0 ≤ 𝑤𝑡 ≤ 1  

  𝑤𝑞 + 𝑤𝑡 = 1. 

 Phase selection function: the queue selection function is used to choose the phase 

that leads to the optimal management metric values 𝑎𝑤𝑡 , 𝑎𝑜𝑟  and 𝑜𝑓𝑟 . The 

normalized phase selection function 𝑓𝑠_𝑝ℎ𝑎𝑠𝑒  of phase (𝑙, 𝑛)  is calculated using 

equation (3.24). 

𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑙 ,𝑛) = (𝑓𝑠_𝑞𝑢𝑒𝑢𝑒𝑙 + 𝑓𝑠_𝑞𝑢𝑒𝑢𝑒𝑛 )/2        (3.24) 

Where: 

 𝑙, 𝑛 : queue pair of phases 𝑝ℎ  with 𝑝ℎ= {(𝑊𝑒,𝑊𝑛 ), (𝑁𝑠,𝑁𝑒 ), (𝐸𝑤,𝐸𝑠 ), 

(𝑆𝑛, 𝑆𝑤), (𝑊𝑒, 𝐸𝑤), (𝑊𝑛,𝐸𝑠), (𝑁𝑠, 𝑆𝑛), (𝑁𝑒, 𝑆𝑤)}. 

 𝑓𝑠_𝑞𝑢𝑒𝑢𝑒𝑙 : queue selection function for queue l, 

 𝑓𝑠_𝑞𝑢𝑒𝑢𝑒𝑛 : queue selection function of queue n.  

b: Weights Optimization using WCSO Algorithm  

This work aims to optimize the phase weights which are average waiting time and 

occupation rate using WCSO algorithm where CSO (Chicken Swarm Optimization) is the 

base algorithm. The reason for choosing CSO is its speed and performance. It is a bio-

inspired metaheuristic algorithm that simulates a chicken swarm's hierarchy and individual 

chicken behavior. Their hierarchical order plays a critical role in the social lives of chickens. 

Several groups exist in the swarm hierarchy, each with a rooster, several hens, and chicks. 
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A set of chickens has its own movement pattern, with stronger chickens dominating weaker 

ones. Generally, dominant hens stay closest to head roosters, whereas submissive hens and 

roosters form the periphery of the group [133]. 

CSO mathematical formulations were defined based on the hen behavior using the 

following rules:  

 The swarm is composed of several small groups controlled by a dominant rooster, 

followed by hens and chicks.  

 The swarm hierarchy is based on the fitness values of the chickens. Chickens with 

the highest fitness are roosters, whereas those with the lowest fitness are chicks. The 

remaining chickens were hens.  

 The hierarchy of swarm and mother-child relationships remains unchanged, whereas 

the status of the chickens in the swarm is updated at each time step.  

 A chicken swarm composed of 𝑁 virtual chickens was divided into roosters (𝑅𝑁), 

hens (𝐻𝑁), chicks (𝐶𝑁), and mothers (𝑀𝑁). Each individual represents a position in 

a 𝐷- dimensional space 𝑥𝑖,𝑗 (𝑖 ∈ [1. . 𝑁 ], 𝑗 ∈ [1. . 𝐷]). 

This stage provides the optimized phase selection weights defined in equation (3.24) 

using the bio-inspired optimization WCSO algorithm with the new objective function 

defined as follows: 

𝑓 =  𝑚𝑎𝑥  (𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑙,   𝑛))                              (3.25) 

where (𝑙, 𝑛)  ∈ ph, 𝑤𝑞 = 𝑤𝑞𝑜𝑝𝑡𝑖𝑚𝑎𝑙  and  𝑤𝑡 = 𝑤𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . 

 The bio-inspired optimization WCSO algorithm determines the optimal weight 

values for the next phase.  

c: Movements of Chickens 

Initially, position (𝑥𝑖,𝑗
𝑎 ) of chicken 𝑐𝑖,𝑗 at time 𝑎 is replaced by the positions of the weights: 

𝑥𝑖,𝑗
𝑎 = 𝑊𝑖,𝑗

𝑎 = (𝑤𝑞𝑖,𝑗
𝑎 , 𝑤𝑡𝑖,𝑗

𝑎 )                                (3.26) 

Where: 

 𝑥𝑖,𝑗  : designates chicken 𝑐𝑖,𝑗 with index 𝑖 and group 𝑗,  

 𝑥𝑖,𝑗
𝑎 : position of chicken at iteration 𝑎,   

 𝑎 : iteration number. 

The chicken movements are defined as follows: 

 Roosters: Powerful roosters with higher fitness values can search for optimized 

weights in the D-dimensional space, as described in equations (3.27) and (3.28): 
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𝑥𝑖,𝑗
𝑎+1 = 𝑥𝑖,𝑗

𝑎 ∗ (1 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜎2))                       (3.27) 

𝜎2 = {

1,        𝑖𝑓 𝑓𝑖 ≤  𝑓𝑘 , 𝑘 ∈ [1. . 𝑁 ], 𝑘 ≠ 𝑖

𝑒𝑥𝑝 (
𝑓𝑘 − 𝑓𝑖
|𝑓𝑖| + 𝜀

) ,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
      (3.28) 

Where: 

 𝑥𝑖,𝑗: denotes the rooster 𝑐𝑖,𝑗 , 𝑐𝑖,𝑗 ∈ (𝑅𝑁), 

 𝑟𝑎𝑛𝑑𝑛(0, 𝜎2): denotes the Gaussian distribution with mean 0 and standard 

deviation 𝜎2. 

 𝜀 : denotes the minimum constant used to overcome division-by-zero 

problems. 

  𝑘: is a selected index of a rooster and is randomly selected from the group 

of roosters (𝑅𝑁) and 𝑘 ≠ 𝑖, 

  𝑓𝑖: fitness value of the rooster.  

 Hens: The roosters are followed by the hens to search for optimized weights. Hens 

also include a random movement towards the other hens' food (optimized weights), 

even though they would be recalculated by other hens. Dominant hens are more 

advantageous than submissive hens in competition for food, which can be 

mathematically explained by equations (3.29), (3.30), and (3.31): 

𝑥𝑖,𝑗
𝑎+1 = 𝑥𝑖,𝑗

𝑎 +  𝑆1 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟1,𝑗
𝑎 − 𝑥𝑖,𝑗

𝑎 ) + 𝑆2 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟2,𝑗
𝑎 − 𝑥𝑖,𝑗

𝑎 )      (3.29) 

𝑆1 = 𝑒𝑥𝑝(
𝑓𝑖 − 𝑓𝑟1
|𝑓𝑖| + 𝜀

)                              (3.30) 

𝑆2 = 𝑒𝑥𝑝(𝑓𝑟2 − 𝑓𝑖)                                (3.31) 

Where: 

 𝑥𝑖,𝑗  : Denotes the hen 𝑐𝑖,𝑗 , 𝑐𝑖,𝑗 ∈ (𝐻𝑁), 

 𝑅𝑎𝑛𝑑 ∶ random numbers between 0 and 1, 

 𝑟1: Rooster hen index, 𝑟1 ∈ (𝑅𝑁) 

 𝑟2: Index of the chicken (rooster or hen) chosen at random from the swarm, 

𝑟2 ∈ [(𝑅𝑁) ∪ (𝐻𝑁)] 

 𝜀: Minimum constant used to overcome division-by-zero problems. 

 𝑓𝑖: Fitness value of the hens. 

 Chicks: The movement of chicks is limited to the following mother hens in their 

search for food, as represented by equation (3.32) 

𝑥𝑖,𝑗
𝑎+1 = 𝑥𝑖,𝑗

𝑎 +  𝐿 ∗ (𝑥𝑚,𝑗
𝑎 − 𝑥𝑖,𝑗

𝑎 )                           (3.32) 
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Where: 

 𝑥𝑚,𝑗
𝑎 : Position of the chick's mother and m ∈ (𝑀𝑁), 

 𝐿 ∶ Chick speed parameter to track mothers, and the differences between 

chicks were calculated by choosing L randomly in the interval [0,2]. 

d: WCSO based Phase Selection Algorithm 

Although the original CSO algorithms are the best for global solutions, they consume 

considerable time in some cases, thereby affecting the convergence performance. This 

problem is solved by adding a new parameter, inertia weight (𝑊 ), when updating the 

positions of roosters, hens, and chicks. A new velocity update equation was iteratively used 

by the swarm optimization algorithm. This study introduced an inertia weight parameter in 

the updated equations (3.29) by (3.33) and (3.32) by (3.34), as shown below: 

𝑥𝑖,𝑗
𝑎+1 = 𝑥𝑖,𝑗

𝑎 +𝑊(𝑆1 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟1,𝑗
𝑎 − 𝑥𝑖,𝑗

𝑎 ) + 𝑆2 ∗ 𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟2,𝑗
𝑎 − 𝑥𝑖,𝑗

𝑎 ))     (3.33) 

𝑥𝑖,𝑗
𝑎+1 = 𝑥𝑖,𝑗

𝑎 +𝑊 ∗  𝐿 ∗ (𝑥𝑚,𝑗
𝑎 − 𝑥𝑖,𝑗

𝑎 )                      (3.34) 

And: 

𝑊 = 𝑊𝑖,𝑗
0  𝑒−𝛽𝑎                                                           (3.35) 

Where: 

 𝑊𝑖,𝑗
0 : initial position of the chicken 𝑐𝑖,𝑗 , 

 𝛽: Positive constant, 

 𝑎 : Iteration number. 

Figure 3.8 clearly shows the phase selection and optimization of weights based on 

the WCSO. It takes the occupancy rate of each queue, the normalized average waiting time 

of all vehicles currently in each queue, the set of 𝑁 chicken, and the fixed values of the 

algorithm parameters, and returns the selected phase and associated weights. First, the 

system initializes 𝑁 detailed weights of the phase selection function and defines the related 

parameters. The system then evaluates the weights of 𝑁 chickens and the iteration equal 

zero. Furthermore, we determined the best global chickens with optimal weights. In this 

round, the system evaluates 𝑁 weights and updates the best solution for the chicken and best 

global solution for the swarm. Subsequently, the weight fitness values are ranked and 

established in hierarchical order in the swarm. 

The chickens were then divided into different groups and the relationship between 

the chicks and mother hens in each group was determined. The positions of all chickens are 
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dynamically updated in the current iteration if the new position is better than the previous 

iteration. Finally, the selected phase and the associated optimal weights are returned.  

Figure 3.8 Flowchart of WCSO-based phase selection. 

The proposed WCSO algorithm attempts to find the phase with the highest possible 

average waiting time of the vehicles and average occupancy rate of queues, which leads to 

finding the maximum value of the phase selection function. The optimal weights of the queue 
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selection function 𝑤𝑡 and 𝑤𝑞 are also determined, so that we have an optimization problem 

with three variables (dimensions); that is, we work in a three-dimensional space. We further 

demonstrated the importance of optimal phase selection in stage 5.a (section 5.5.2) and stage 

5.b (section 5.5.3). 

5.5.2 WCSO based Dynamic and Intelligent Mode 

The decision-making process is based on heuristics that consider traffic information (e.g., 

number of vehicles in each direction, their entry and exit times, and their coordinates) and 

select the phase and cycle in optimal and dynamic ways. The system estimates the traffic 

density and controls the green light based on traffic density. Thus, we suggest using the 

highest occupancy rate and the longest waiting time. 

Figure 3.9 shows the ADSTLS decision making in dynamic and intelligent mode. 

 

Figure 3.9 ADSTLS decision making in dynamic mode process. 
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To ensure greater dynamicity, we defined three decision-making models in the 

WCSO Dynamic and Intelligent Mode. 

a. WCSO Dynamic and Intelligent Phase Model  

This model aims to select the phase that will be executed next time based on two traffic 

metrics of each queue: waiting time and occupancy rate. The phase (𝑝, 𝑞) is selected from 

eight existing models 𝑝ℎ ((𝑝, 𝑞)  ∈  𝑝ℎ), based on the phase selection function defined by 

(3.24) and the objective function defined in (3.25). The duration of the green time of the 

traffic light in the selected phase was determined based on the speed of the vehicle and the 

distance of the last vehicle in this phase. After the green time, the positive constant duration 

of the orange times lights up at both traffic lights in queues 𝑝 and 𝑞. The duration of the 

traffic light red time for the other queues 𝑘 ∈  {𝑤𝑚 − (𝑝, 𝑞)} was also calculated.  

The distance (𝑑𝑙𝑣(𝑝,𝑞) ) is calculated as follows: 

𝑑𝑙𝑣(𝑝,𝑞) = 𝑚𝑎𝑥 (𝑑𝑣𝑖
𝑝, 𝑑𝑣𝑗

𝑞)  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑣𝑖  ∈ p and  𝑣𝑗 ∈ q   (3.36) 

where 𝑑𝑙𝑣𝑝 and  𝑑𝑙𝑣𝑞  are the distances of the last vehicle 𝑙𝑣  in queues 𝑝  and 𝑞 , 

respectively. 

The green time of the traffic lights of queues 𝑝 and 𝑞 (𝑡𝑔(𝑝,𝑞)  ) is given by equation 

(3.37). 

𝑡𝑔(𝑝,𝑞) = 
𝑑𝑙𝑣(𝑝,𝑞)

𝑠𝑣
+ 𝑐𝑔                                      (3.37) 

Where 𝑑𝑙𝑣(𝑝,𝑞) 𝑎𝑛𝑑  𝑠𝑣  are the distances of the last vehicle 𝑙𝑣 in the selected phase 

(𝑝, 𝑞) and the speed of vehicle 𝑣, respectively, and 𝑐𝑔 is a positive constant that refers to the 

start-up time of the first vehicle in the queue. 

The orange time for both traffic lights of queues 𝑝 and 𝑞 ( 𝑡𝑜(𝑝,𝑞)  ) is defined by 

equation (3.38). 

𝑡𝑜(𝑝,𝑞)  = 𝑐𝑜                                                 (3.38) 

Where 𝑐𝑜 is a positive constant. 

The duration of the traffic light red time (𝑡𝑟𝑘 ) for the other queues 𝑘 ∈  {𝑤𝑚 −

 (𝑝, 𝑞)} is calculated using equation (3.39). 

𝑡𝑟𝑘 = 𝑡𝑔(𝑝,𝑞)  + 𝑡𝑜(𝑝,𝑞)                            (3.39) 

In this model, signal planning is organized into phases, that is, after the green time 

and during the orange time, and the next phase is determined and activated directly after the 
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orange time. Figure 3.10 shows an example of signal planning in the WCSO's dynamic and 

intelligent phase model, which also illustrates that the green time depends on the distance to 

the last vehicle in the selected phase and that there are no overlaps between the phases.  

A maximum value of green time means that one or both of the selected queues have 

a maximum size, and in pure cases where all queues are empty, we assign a constant positive 

value 𝑐𝑔 as the green time in the last selected phase. 

Figure 3.10 Signal planning in WCSO dynamic intelligent phase model. 

b. WCSO Dynamic and Intelligent Cycle Model  

This model aims to select during the orange time ( 𝑡𝑜) of the fourth phase in the current cycle 

by calculating the duration of the cycle time for each queue, which includes a first red time, 

then a green time, followed by an orange time and ending with a second red time, after which 

the phases are triggered. This is based on each direction of the average waiting time of the 

vehicle and the queue occupancy rate. The green time duration for each phase is estimated 

based on the ratio between the distance of the last vehicle and the average speed of the 

vehicle at the intersection. The orange time is a positive constant value, and the first and 

second red times of a phase are calculated according to the execution order and green time 

of the other phases. 

The WCSO selection function returns the selected phase (𝑝, q) (called (𝑝1,  𝑞1))  

and the optimal values 𝑤𝑞, 𝑤𝑡. We determined the cycle model "𝑐𝑦𝑐𝑙𝑒𝑗" (cycle1 or cycle2). 

If (𝑝1, 𝑞1) ∈  cycle1 then cycle1  is determined; otherwise, cycle2  is determined as the 

execution cycle. Next, we calculate the value of the selection function of the other phases 

according to equation (3.24) and arrange the execution order of the phases in descending 
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order according to the value of the selection function, starting with phase (𝑝1,  𝑞1), then 

(𝑝2, 𝑞2) to (𝑝3, 𝑞3) and ending with (𝑝4, 𝑞4). 

The green time of the traffic lights of the two queues 𝑝i,  and 𝑞i  (𝑡𝑔(𝑝𝑖,  𝑞𝑖)  
)   is 

calculated according to equation (3.37). 

The orange time for each of the two traffic lights of queues 𝑝i, and 𝑞i ( 𝑡𝑜(𝑝𝑖,  𝑞𝑖)  
) is 

equal to a positive constant 𝑐𝑜, defined by equation (3.38). 

The cycle time ( 𝑡𝑐𝑦𝑐𝑙𝑒𝑗 (𝑝𝑖,  𝑞𝑖)
) for a phase (𝑝𝑖,  𝑞𝑖)  of the 𝑐𝑦𝑐𝑙𝑒𝑗  is calculated 

according to equation (3.40). 

𝑡𝑐𝑦𝑐𝑙𝑒𝑗  (𝑝𝑖,  𝑞𝑖)
= 𝑡𝑟1(𝑝𝑖,  𝑞𝑖)

+ 𝑡𝑔(𝑝𝑖,  𝑞𝑖)
+ 𝑡𝑜(𝑝𝑖,  𝑞𝑖)  

+ 𝑡𝑟2(𝑝𝑖,  𝑞𝑖) 
      (3.40) 

Where 𝑡𝑟1(𝑝𝑖,  𝑞𝑖)  
 is the first red time and 𝑡𝑟2(𝑝𝑖,  𝑞𝑖)  

 is the second red time for each 

of the two queues 𝑝𝑖 and 𝑞𝑖. With the signal planning of a 𝑐𝑦𝑐𝑙𝑒𝑗 we define these times as 

follows (3.41): 

(

 
 
 
 

{𝑡𝑟1(𝑝1,  𝑞1)
= 0 | 𝑡𝑟2(𝑝1,  𝑞1)

= 𝑡𝑔(𝑝2,  𝑞2)
+ 𝑡𝑔(𝑝3,  𝑞3)

+ 𝑡𝑔(𝑝4,  𝑞4)
+ 𝑐𝑜 ∗ 3 }

{𝑡𝑟1(𝑝2,  𝑞2) = 𝑡𝑔(𝑝1,  𝑞1)
+ 𝑐𝑜  | 𝑡𝑟2(𝑝2,  𝑞2) = 𝑡𝑔(𝑝3,  𝑞3)

+ 𝑡𝑔(𝑝4,  𝑞4)
+ 𝑐𝑜 ∗ 2}

{𝑡𝑟1(𝑝3,  𝑞3) = 𝑡𝑔(𝑝1,  𝑞1)
+ 𝑡𝑔(𝑝2,  𝑞2) 

+ 𝑐𝑜 ∗ 2 | 𝑡𝑟2(𝑝3,  𝑞3) = 𝑡𝑔(𝑝4,  𝑞4)
+ 𝑐𝑜}

{𝑡𝑟1(𝑝4,  𝑞4) = 𝑡𝑔(𝑝1,  𝑞1)
+ 𝑡𝑔(𝑝2,  𝑞2)

+ 𝑡𝑔(𝑝3,  𝑞3)
+ 𝑐𝑜 ∗ 3| 𝑡𝑟2(𝑝4,  𝑞4) = 0} )

 
 
 
 

         (3.41) 

In this model, signal planning is organized in cycles. After each green phase, a fixed 

orange time period begins. During the green and orange periods of the current phase, the 

other phases are highlighted in red. Figure 3.11 shows examples of several successive cycles. 

Figure 3.11 Signal planning in WCSO dynamic intelligent cycle model. 
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c. WCSO Dynamic and Intelligent Hybrid Model 

This model combines two previous models: the WCSO Cycle model and WCSO Phase 

model. It aims to improve system performance and reduce computation costs when traffic is 

fluid. Thus, we included the average queue occupancy rate in the decision-making process 

(𝑎𝑜𝑟). This will help the system to measure intersection traffic density. Hence, in the 

decision-making process, if the average queue occupancy rate is higher than the hybrid rate 

ℎ𝑟  (i.e., dense traffic), the WCSO Phase model is applied. Otherwise, the WCSO Cycle 

model is used, as shown in Figure 3.9. 

 In this model, signal planning is hybrid, it is organized in phases when traffic is 

dense (𝑎𝑜𝑟𝑖𝑑 ≥ ℎ𝑟), otherwise in cycles (𝑎𝑜𝑟𝑖𝑑 < ℎ𝑟). Figure 3.12 shows examples of the 

successive phases and cycles. 

Figure 3.12 Signal planning in WCSO dynamic intelligent hybrid model. 

Algorithm 3.2 clearly demonstrates how the proposed ADSTLS controller works in 

both the dynamic and intelligent modes. After receiving the optimal weights (𝑤𝑞, 𝑤𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙  

and the selected phase (𝑝, 𝑞) returned by WCSO phase selection function, the controller 

calculates the green and orange times (𝑡𝑔(𝑝 ,𝑞),  𝑡𝑜(𝑝 ,𝑞)) of the selected phase (𝑝, 𝑞), and the 

red time of the other queues 𝑘 (𝑘 ∈  {𝑤𝑚 − (𝑝, 𝑞)}), for two models: phase or hybrid when 

𝑎𝑜𝑟𝑖𝑑 ≥ ℎ𝑟 . For other models, cycle or hybrid, when 𝑎𝑜𝑟𝑖𝑑 < ℎ𝑟 , the controller first 

identifies and aggregates the phases in 𝐶𝑦𝑐𝑙𝑒𝑗 that are included in the selected phase (𝑝, 𝑞). 

Furthermore, the cycle phases (𝑝𝑖 , 𝑞𝑖) with the highest score were chosen by the controller. 

In this round, the controller sorts the phases of each cycle in the ascending order using a 

selection function. Finally, the cycle time is computed to schedule the next cycle.  
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Algorithm 3.2 Decision-making in dynamic intelligent mode based WCSO. 

Input:  𝑚𝑜𝑑𝑒𝑙          ∶ Dynamic and intelligent mode model, model = {cycle, phase, hybrid}. 

 (p, q)           ∶  Selected phase returned by the WCSO Phase Selection Function.  

 𝑤𝑞𝑜𝑝𝑡𝑖𝑚𝑎𝑙     ∶ Optimal weight of queue occupation rate for selected phase.  

 𝑤𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙     ∶ Optimal weight of waiting time for selected phase.  

 𝑑𝑣𝑖
𝑘               ∶  Distance of vehicle 𝑣𝑖 in queue 𝑘. k ∈ wm and wm =  {𝑊𝑒,𝑊𝑛,𝑁𝑠,𝑁𝑒, 𝐸𝑤, 𝐸𝑠, 𝑆𝑛, 𝑆𝑤}.  

 𝑎𝑜𝑟𝑖𝑑            ∶ Average occupancy rate of all queues in the intersection 𝐼𝑖𝑑.  

 𝑠𝑣                   ∶ Speed of the vehicles. 

 ℎ𝑟                  ∶ Hybrid rate. 

 𝑐𝑔 , 𝑐𝑜             ∶Two different positive constants. 

Output:  (p, q)     : Next phase to be executed. 

  𝑡𝑔(𝑝 ,𝑞) 
  : Green time of the selected phase. 

  𝑡𝑜(𝑝 ,𝑞)   : Orange time of the selected phase. 

  𝑡𝑟𝑘 : Red time for the other queues 𝑘 ∈  {𝑤𝑚− (𝑝, 𝑞)}. 

 Or 

 
 
𝑐𝑦𝑐𝑙𝑒𝑗 ∶ Next cycle to be executed contains the phases  𝑝ℎ𝑐𝑦𝑐𝑙𝑒𝑗 ,   

              Such as: (p, q) ∈ 𝐶𝑦𝑐𝑙𝑒𝑗  and  𝑗 = 1 𝑜𝑢 2. 

  𝑡𝑐𝑦𝑐𝑙𝑒𝑗 (𝑝𝑖,  𝑞𝑖)
: Cycle time for all phases (𝑝𝑖,  𝑞𝑖) of the selected cycle  𝐶𝑗. 

Begin  

(1)     : Call WCSO Phase Selection Function. 

(2)     : if  ( 𝑚𝑜𝑑𝑒𝑙 = 𝑝ℎ𝑎𝑠𝑒 ) 𝑜𝑟 ( (𝑚𝑜𝑑𝑒𝑙 = ℎ𝑦𝑏𝑟𝑖𝑑)𝒂𝒏𝒅 (𝑎𝑜𝑟𝑖𝑑  ≥  ℎ𝑟) ) then 

(3)     :  Finds the distance (𝑑𝑙𝑣(𝑝,𝑞)) of the last vehicle in two queues p and q using equation (3.36). 

(4)     : 
 

Calculates the green time (𝑡𝑔(𝑝 ,𝑞)
) of the phase (𝑝, 𝑞) based on equation (3.37), and the orange time 

(𝑡𝑜(𝑝 ,𝑞)) using equation (3.38). 

(5)     :  Calculates the red time for the other queues 𝑘 ∈  {𝑤𝑚− (𝑝, 𝑞)}, according to equation (3.39). 

(6)     : endif 

(7)     : if  [ 𝑚𝑜𝑑𝑒𝑙 = 𝑐𝑦𝑐𝑙𝑒 ]𝑜𝑟 [ (𝑚𝑜𝑑𝑒𝑙 = ℎ𝑦𝑏𝑟𝑖𝑑)𝒂𝒏𝒅 (𝑎𝑜𝑟𝑖𝑑 < ℎ𝑟) ] then 

(8)     :  if  (𝑝 & 𝑞) ∈  𝑝ℎ𝑐𝑦𝑐𝑙𝑒1then // cycle model identification 

(9)     :   𝐶𝑦𝑐𝑙𝑒1: 𝑝ℎ𝑐𝑦𝑐𝑙𝑒1 = {(We & Wn), (Ns & Ne), (Ew & Es), (Sn & Sw)}   // cycle 1 model 

(10)     :  else  

(11)     :   𝐶𝑦𝑐𝑙𝑒2: 𝑝ℎ𝑐𝑦𝑐𝑙𝑒2 = {(We & Ew), (Wn & Es), (Ns & Sn), (Ne & Sw)}   // cycle 2 model 

(12)     :  endif 

(13)     : 
 

Computes 𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑝𝑖,  𝑞𝑖) where ( 𝑝𝑖,  𝑞𝑖) ∈ 𝑝ℎ𝑐𝑦𝑐𝑙𝑒𝑗 using equation (3.24) and optimized weights 

(𝑤𝑞,𝑤𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙; 

(14)     :  Sorts the phases ( 𝑝𝑖,  𝑞𝑖)  ∈ 𝑝ℎ𝑐𝑦𝑐𝑙𝑒𝑗    of the 𝐶𝑦𝑐𝑙𝑒𝑗 in descending order by  𝑓𝑠_𝑝ℎ𝑎𝑠𝑒( 𝑝𝑖,  𝑞𝑖) 
; 

(15)     :  for each phase ( 𝑝𝑖,  𝑞𝑖)  ∈ 𝑝ℎ𝑐𝑦𝑐𝑙𝑒𝑗 of the 𝐶𝑦𝑐𝑙𝑒𝑗   do 

(16)     :   Finds the distance 𝑑𝑙𝑣 ( 𝑝𝑖,  𝑞𝑖)  
 of the last vehicle in the two queues 𝑝𝑖 and 𝑞𝑖 according to (3.36);   

(17)     :   Calculates the cycle time 𝑡𝑐𝑦𝑐𝑙𝑒𝑗 (𝑝𝑖,  𝑞𝑖)
of the phase, based on equations (3.40) and (3.41);   

(18)     :  end for 

(19)     : endif 

End  
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5.5.3 WCSO based Adaptive Emergency Mode 

For managing emergency vehicles, we extend the WCSO DIM Phase model with different 

values of priority levels: ‘3’: High, ‘2’: Medium and ‘1’: Low. When emergency vehicles 

(e.g., ambulances, firefighters, and police) automatically enter an intersection, the system 

switches to adaptive emergency mode. If the green light is already in a certain direction, the 

signal remains until the emergency vehicle passes. Otherwise, the green light switches to 

emergency vehicle direction.  

Figure 3.13 shows the ADSTLS decision making in adaptive emergency mode.  

 

Figure 3.13 ADSTLS decision making in adaptive mode process. 
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Our intelligent adaptive strategy consists of selecting two coherent directions, as 

described below. 

a. Priority Direction Selection  

The system selects the priority direction based on emergency vehicle distance and priority 

levels. When there are many emergency vehicles in the same direction with the same priority 

level, the system selects the direction with the closest emergency vehicles. Otherwise, it 

selects the vehicle with the closest and higher-level vehicles.  

b. Coherent Direction Selection  

The system selects the second consistent direction as the first among two possible directions. 

If one or both directions contain emergency vehicles, the system determines the direction 

that includes the closer and higher-level vehicle. Otherwise, the system selects the direction 

that maximizes the selection function. 

c. Green Urgency Time 

To ensure a prompt response before the arrival of another priority vehicle at the intersection, 

the green urgency time ( 𝑡𝑔𝑢𝑟𝑔𝑒𝑛𝑐𝑦 (𝑝,𝑞) ) was computed based on the distance of the 

emergency vehicle ( 𝑑𝑣𝑢𝑟𝑔𝑒𝑛𝑐𝑦 ) from the priority direction to the traffic light. After 

emergency vehicles have passed, the dynamic intelligent mode is automatically switched. 

Algorithm 3.3 clearly shows the ADSTLS controller algorithm designed in adaptive 

emergency mode. In this algorithm, the controller selects the optimal emergency phase and 

its green time based on the WCSO algorithm. First, the controller selects the highest priority 

direction 𝑝 that is closest to the urgent vehicle. In addition, it selects direction 𝑞 with the 

nearest higher-priority vehicle from two coherent directions 𝑞1, 𝑞2 with 𝑝 if one of them 

contains an emergency vehicle. Otherwise, it calls WCSO Phase Selection Function to return 

optimal weights (𝑤𝑞, 𝑤𝑡)𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . After receiving the optimal weights, the controller selects 

direction 𝑞 from the two coherent directions 𝑞1, 𝑞2 with 𝑝 which maximizes the score based 

on the phase selection function 𝑓𝑠𝑝ℎ𝑎𝑠𝑒 . Finally, the green emergence and orange times of 

the nearest higher-priority vehicle in the priority direction (𝑝, 𝑞) are computed and assigned 

to the next round, as is the red time of the other queues 𝑘 (𝑘 ∈  {𝑤𝑚 − (𝑝, 𝑞)}). 
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Algorithm 3.3 Decision-making in adaptive emergency mode based WCSO. 

Input:  𝑑𝑣𝑖
𝑘                      ∶  Distance of vehicle 𝑣𝑖 in queue 𝑘. k ∈ wm . 

 𝑝𝑙𝑣𝑖
𝑘                     ∶  Priority level of vehicle𝑣𝑖 in queue 𝑘. 𝑝𝑙𝑣  =  {0, 1, 2, 𝑜𝑢 3}.  

 𝑛𝑣𝑝𝑘
𝑝𝑙𝑣                           : Number of emergency vehicles with priority level 𝑝𝑙𝑣 in queue 𝑘. 𝑝𝑙𝑣  =  { 1, 2, 𝑒𝑡 3}.  

 𝑤𝑞𝑜𝑝𝑡𝑖𝑚𝑎𝑙            ∶ Optimal weight of queue occupation rate for selected phase.  

 𝑤𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙             ∶ Optimal weight of waiting time for selected phase.  

 𝑠𝑣                          ∶ Speed of the vehicles. 

 𝑐𝑔 , 𝑐𝑜                    ∶ Two different positive constants. 

Output: urgency (p & q) : The priority phase selected by the controller.  (p & q)  ∈ 𝑝ℎ   

 𝑡𝑔𝑢𝑟𝑔𝑒𝑛𝑐𝑦 (𝑝 & 𝑞)
, 𝑡𝑜(𝑝 & 𝑞)   : Green and orange time of the priority phase selected. 

 𝑡𝑟𝑘                                  : Red time for the other queues 𝑘 ∈  {𝑤𝑚− (𝑝, 𝑞)}. 

Begin  

(1)     : for each queue 𝑘 ∈  𝑤𝑚   do      // Select priority direction p      

(2)     :  Computes number of all emergency vehicles 𝑛𝑣𝑝𝑘  in the queue 𝑘 using equation (3.14); 

(3)     :  if   (𝑛𝑣𝑝𝑘 > 0 ) 𝑎𝑛𝑑 ( 𝑘  contains the highest priority (𝑝𝑙𝑣𝑖
𝑘) and closest vehicle (𝑑𝑣𝑖

𝑘)) then  

(4)     :   𝑝 = 𝑘;                      

(5)     :    𝑑𝑣𝑢𝑟𝑔𝑒𝑛𝑐𝑦 = 𝑑𝑣𝑖
𝑘; 

(6)     :  endif 

(7)     : end for 

(8)     : for tow coherent queues n = {𝑞1 , 𝑞2} do    // Select coherent direction q, if it contains a priority vehicle.    

(9)     :  Computes number of all emergency vehicles 𝑛𝑣𝑝𝑛 in the queue 𝑛 equation (3.14); 

(10)     :  if   (𝑛𝑣𝑝𝑛 > 0 ) 𝑎𝑛𝑑 (𝑛  contains the highest priority (𝑝𝑙𝑣𝑖
𝑛) and closest vehicle (𝑑𝑣𝑖

𝑛)) then 

(11)     :   𝑞 = 𝑛   

(12)     :  endif 

(13)     : end for 

(14)     : if   (𝑛𝑣𝑝𝑞1
= 0) 𝑎𝑛𝑑(𝑛𝑣𝑝𝑞2

= 0)  then // Select coherent direction q, if it does not contain a priority vehicle.    

(15)     :  Call WCSO Phase Selection Function. 

(16)     : 
 

Computes the tow selection functions 𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑝 & 𝑞1) , 𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑝 & 𝑞2),  

using Eq. (3.24) and 𝑤𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙, 𝑤𝑞𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

(17)     :  if (𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑝 & 𝑞1) >  𝑓𝑠_𝑝ℎ𝑎𝑠𝑒(𝑝 & 𝑞2)) then  

(18)     :   𝑞 = 𝑞1 

(19)     :  else   

(20)     :   𝑞 = 𝑞2 

(21)     :  end if 

(22)     : end if 

(23)     : Computes green time 𝑡𝑔𝑢𝑟𝑔𝑒𝑛𝑐𝑦 (𝑝 & 𝑞) 
 of the urgency phase (p & q), based on equation (3.37) ; and the 

orange time (𝑡𝑜(𝑝 ,𝑞)) using equation (3.38). 

(24)     : Computes the red time for the other queues 𝑘 ∈  {𝑤𝑚− (𝑝, 𝑞)}, according to equation (3.39). 

End  
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5.6 Traffic Light Control Execution 

By defining the phase or cycle selected in the previous section with green, orange and red 

times, the traffic signal lights can be switched from one state to another in a specific 

sequence. Each state is designed to control traffic flow safely and efficiently. Below, we will 

find a detailed explanation of the transition process from one state to another:  

 Green traffic light status: Allows vehicles to pass through the intersection. It is 

triggered at the end of the green light phase.     

 Orange traffic light status: Warns drivers that the traffic light will soon turn red. 

Vehicles should prepare to stop. It is triggered at the end of the green light phase. 

 Red traffic light status: All vehicles stop in the corresponding direction so that cross 

traffic can proceed. It is triggered at the end of the orange light phase. 

6. Chronological Coordination of ADSTLS at Multiple Intersections   

In this section, we propose an extension of our control system called CCADSTLS 

(chronological coordination of ADSTLS) for reducing congestions at multiple intersections. 

It involves the ability of traffic control agents to autonomously identify the source of 

congestion early so that optimal, cost-effective decisions can be made to keep traffic flow 

smoothly. The system ensures the safety and efficiency of the intersections under severe 

weather fluctuations. 

6.1 WCSO-Based Agent Intersection Controller  

Each traffic-light controller is an agent consisting of Modules: Traffic Data Collector (TDC), 

Local Database (LDB), Decision Making (DM), and Traffic Communication (TCM), as 

shown in Figure 3.14. The TDC module processes the traffic data collected by cameras and 

sensors and stores it in a local database. The DM module relies on the collected data and 

operates in four modes: regular, emergency, congested, and weather disaster. The DM 

module in regular mode optimizes traffic flow in the intersection based on two main metrics, 

the queue occupancy rate (𝑜𝑐𝑐𝑢𝑝𝑟𝑘) and average vehicle waiting time ( 𝑎𝑞𝑤𝑡𝑘) of queue 𝑘. 

The DM uses a phase model to make decisions after each executed phase using real-time 

traffic data provided by video cameras. The traffic measurements are estimated and the 

signal is set to green based on the bio-inspired optimization WCSO algorithm with the 

objective function 𝑓, defined by equation (3.25). 
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Figure 3.14 Modules of WCSO based agent intersection controller. 

6.2 Chronological Coordination of WCSO Agent Controllers  

The traffic consists of some control parameters being passed to the traffic simulator to 

control some traffic lights, or the agent communicates some traffic information to another 

agent for coordination control using the TCM module. These control agents operate in a 

traffic flow system that involves continuous interactions between them via request and 

response messages. The TCM module of the agent controller 𝐴𝑖𝑑  uses six types of messages 

to manage congestion and weather disasters ( 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑜𝑛 , 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑠𝑒𝑎𝑟𝑐ℎ , 

𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑜𝑙𝑣𝑖𝑛𝑔, 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 and 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑠𝑒𝑟𝑣𝑖𝑐𝑒).  

In general, agent controllers are mainly designed to optimize average waiting time 

(𝑎𝑤𝑡) and average occupancy rate (𝑎𝑜𝑟) during congestion and weather disaster modes 

taking into account the potential safety risks. The coordination of agent controllers consists 

of two main processes: 

6.2.1 Coordination Process in Congestion Mode 

Figure 3.15 shows the flowchart of chronological coordination process in congestion mode, 

which runs before the selected phase is switched to green by an agent 𝐴𝑖𝑑 using the following 

steps: 

a. Call WCSO selection function which returns the selected phase (𝑝, 𝑞) ∈ 𝑝ℎ𝐶𝑦𝑐𝑙𝑒 1 

that should be green.  
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b. Compute average occupancy rate ( 𝑎𝑜𝑟𝐼𝑖𝑑) of all roadways recorded at the 

intersection 𝐼𝑖𝑑, using equation (3.16).   

c. The agent 𝐴𝑖𝑑  broadcasts a coordination message (𝑚𝑠𝑔Coord ) with the current 

average occupancy rate (𝑎𝑜𝑟𝐼𝑖𝑑) at time 𝑡𝑒𝑐 to all neighboring intersections. It then 

receives coordination messages (𝑚𝑠𝑔Coord)  at 𝑡𝑟𝑐  from its neighbors containing 

occupation rates (𝑎𝑜𝑟𝐽𝐼𝑖𝑑) and updates this information in its local database. 

d. Depending on the average occupancy rate 𝑎𝑜𝑟𝐼𝑖𝑑 of intersection 𝐼 and the reception 

of congested messages from its neighboring intersections, we study the following 

two cases: 

 Case 1: (𝑎𝑜𝑟𝐼𝑖𝑑  > 𝑐𝑟  and  𝑎𝑜𝑟𝐼𝑖𝑑  > max  ( 𝑎𝑜𝑟𝐽𝐼𝑖𝑑) and mode = 𝑟𝑒𝑔𝑢𝑙𝑎𝑟) 

when the occupation rate is greater (𝑎𝑜𝑟𝐼𝑖𝑑) than coordinate rate (𝑐𝑟) and the 

intersection has a higher occupation rate to manage more traffic flow, the 

incoming traffic flow would be controlled carefully. 

 Case 2: the agent 𝐴𝑖𝑑  receives a congested message from its neighbors 

(𝑚𝑠𝑔Cong = 𝐶𝑃𝐽𝐼𝑖𝑑 ,  𝑡𝑟𝑠𝑐 )   

In both cases, the intersection control agent switches to congestion mode, updates 

the congested path (𝐶𝑃), sets the selected phase to green, and sends a congestion 

message (𝑚𝑠𝑔Cong  = 𝐶𝑃𝐼𝑖𝑑 ,  𝑡𝑒𝑠𝑐 ) to neighbors on the side of optimal phase of 

intersection control agent (𝑁𝑖𝑑).   

e. Forward iteratively congested path to next intersection control agent  𝑁𝑖𝑑 . Repeat 

steps ‘d’ and ‘e’ until a city entrance/exit is reached. Otherwise, Goto Step ‘f’. 

f. Penalize and set the selected phase of exit/entry intersection to red and select the 

second phase as green. 

g. Release the intersections from the last and start nodes in the opposite directions of 

the congested path. It sends congestion-solving messages (𝑚𝑠𝑔solv𝑒  = 𝐶𝑃𝐼𝑖𝑑 ,  𝑡𝑒𝑐𝑟), 

to its predecessor agent which is specified in the congested path and returns to regular 

mode.  

To avoid blocking the CCADSTLS system, it does not consider crossed congested 

paths, i.e. a crossing is displayed when a single path is resolved, and if a second message is 

received to search for another congested path, it is answered by a blocking search message 

(𝑚𝑠𝑔block  =  𝐶𝑃𝐽𝐼𝑖𝑑 , 𝑡𝑒𝑏𝑐).    
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Figure 3.15 Chronological coordination process in congestion mode. 
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6.2.2 Coordination Process in Weather Disasters 

The pseudo-code of the chronological coordination process in weather disasters is shown in 

Figure 3.16, which runs before the detection of weather disasters by an agent 𝐴𝑖𝑑  and before 

the initiation of the coordination process for the detection of congested paths, is described in 

the following steps: 

a. The agent 𝐴𝑖𝑑 processes data about weather situations. 

b. When weather disaster is detected, agent 𝐴𝑖𝑑  sends an out-of-service message 

(𝑚𝑠𝑔out = 𝐼𝑖𝑑 , 𝑡𝑒𝑜𝑠 ) to neighboring intersections to inform them of the out-of-

service status. 

c. The neighboring intersections take measures to block the roads leading to them.  

d. When weather conditions improve, the traffic flow service is resumed at the 

intersection 𝐼𝑖𝑑 , so that another return service message (𝑚𝑠𝑔return =  𝐼𝑖𝑑 , 𝑡𝑒𝑟𝑠 ) is 

sent to the neighbors. 

e. The roads are unblocked by the neighbors.  

f. Call the above chronological coordination process in congestion mode. 

Figure 3.16 Chronological coordination process in weather disasters mode. 
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7. Conclusion 

In this chapter, we introduced a new system known as ADSTLS (Adaptive and Dynamic 

Smart Traffic Light System). It is based on smart traffic data collection and collective 

intelligence algorithms. After presenting the general architecture and functional model of 

our system, we detailed the steps for managing the traffic lights. ADSTLS aims to efficiently 

manage traffic flow at a single intersection within specific assumptions using three traffic 

light models: phase; cycle, and hybrid. Indeed, the system provides an automatic decision-

making process for regular and emergency scenarios based on two control modes: Dynamic 

Intelligent Mode (DIM) and Adaptive Emergency Mode (AEM). In the first mode, an 

optimal phase is selected that meets the criteria for the average waiting time and lane 

occupancy constraints based on the WCSO algorithm. This algorithm enables the 

optimization of weights of average waiting time and lane occupancy. A second mode selects 

an optimal phase in the best mode obtained from the first mode by integrating the priority of 

urgent vehicles.  

Furthermore, we proposed an extension of ADSTLS, called CCADSTLS which is 

based on a multi-agent approach. This extension enables the effective management of 

multiple intersections through different ADSTLS autonomous agent controllers. These 

agents are coordinated chronologically to alleviate traffic congestion and manage weather 

fluctuations at several intersections. CCADSTLS involves the strategic collection of real-

time traffic data from various intersections from multiple cameras and sensors, the 

integration of various exchanged messages among autonomous controllers, the identification 

of optimal congestion paths using traffic flow statistics and incremental forward control, and 

the development of robust traffic flow management models. 

In the next chapter, we will present a Java simulator that illustrates our approach in 

practice. We will also present some evaluations and comparisons with other existing 

methods in the literature. 
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1. Introduction   

Our challenge is to propose a system that can be deployed as a smart traffic light system that 

can manage regular traffic flows and congestions, and also a sensors-based environment to 

improve traffic flow management. Our approach considers priority vehicles and 

environmental conditions to provide drivers with traffic paths suited to various situations. 

In this chapter, we present a simulator designed to facilitate dynamic and adaptive 

management of regular traffic flow and traffic congestion. First, we will give an overview 

of this simulator and showcase its application at the El-Hidhab Setif city intersection. Next, 

we present the evaluation criteria and metrics to validate our proposals. Finally, we will 

conduct a comparative analysis of the proposed methods and the existing methods available 

in the literature. 

2. Simulator Presentation 

Our simulator STLS (Smart Traffic Light System) Our simulator, STLS, was implemented 

on Java using Eclipse. The STLS simulator includes dynamic and adaptive control models 

of an isolated intersection with four directions (north (𝑁), south (𝑆), east (𝐸), and west 

(𝑊)). Each of these consists of two movements or queues. Thus, there are eight movements 

(𝑊𝑒,𝑊𝑛, 𝑁𝑠, 𝑁𝑒, 𝐸𝑤,𝐸𝑠, 𝑆𝑛, 𝑆𝑤). Two cycle-based models were used, as shown in Figure 

3.3. 

Each vehicle with a driver was modeled as an agent interacting with another agent 

in synchronous mode using ACL messages, and a linear dynamic model was used for 

vehicle-following behavior based on speed and acceleration parameters. 

The STLS is sufficiently smart to efficiently manage traffic flow and emergency 

vehicles using four different control models with the same configuration. Thus, it allows 

viewing and comparison of the simulation results. 

For multiple intersections, the JADE multi-agent framework is used to develop a 

CCADSTLS-based traffic simulator. Each controller manages its intersection as an 

autonomous agent and coordinates with other controllers. First, we can use the simulator to 

simulate different traffic scenarios to test our agent approach. Second, the simulator provides 

the necessary traffic data in real-time so that for agents can analyze traffic metrics relating 

to congestion and weather disasters. This traffic data is continuously monitored by the 

agents. In addition, the agents control the traffic lights by sending commands to the simulator 

in the form of control parameters to set the duration of green or red. 
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Figure 4.1 shows the main user interface of the STLS simulator.  

Figure 4.1 Main user interface of STLS simulator.  

The main functionalities of the STLS are as follows: 

 Selecting configuration to be simulated by the user. 

 Launching successively and independently simulations of four control models. 

 Displaying phases during green, orange and red times. 

 Visualizing partial simulation results by model and final evaluation results. 

 Display evaluation reports per model in terms of the vehicle waiting time, queue 

occupancy rate, and output flow.  

The simulation settings of an intersection are: 

 There are nine vehicles per queue. 

 The safety distance and typical vehicle length are 26 simulated pixels (i.e., 18 pixels 

of vehicle length plus 8 pixels of safety distance), equivalent to an average real length 

of 4.5 meters (4 m vehicle and safety distance of 0.5 m). 

 234 simulated pixels, or 40.5 m, constitute the queue length. 

 The user specifies the simulation time in minutes and vehicle speed. The speed of 

the vehicle 𝑠𝑣 during the simulation is one of three modes: 1) - Fast corresponds to a 

value of 143.55 pixel/s, 2) Medium corresponds to a value of 71.78 pixel/s and 3) - 



Chapter 4                                                           Smart Traffic Flow Simulation System and Evaluation 

116 
 

Long corresponds to a value of 47.85 pixel/s. We assumed that these values are 

equivalent to 15 km/h in the real average speed (e.g., adapted to real tests) equal to 

4.16 m/s. The simulation time needed to traverse a queue is 1.63s, 3.26s, and 4.89s 

in fast, medium and long modes respectively, equivalent to 9.74s in real-time. This 

means that the margin of the simulation time to real-time 𝑠𝑟 is defined as follows: 

one second simulated equals 6 s (fast mode), 3 s (medium), and 2 s (long) in real time. 

 Furthermore, a user specifies their preferences to select the next green phase or cycle. 

The user preferences reflect the weights of the phase or cycle selection function 

parameters for normalized average queue waiting time of all vehicles currently in the 

queue (𝑎𝑞𝑤𝑡
𝑘
), and queue occupancy rate (𝑜𝑐𝑐𝑢𝑝𝑟𝑘). 

 Finally, a user specifies the start time interval (𝑡𝑠𝑡𝑖 =  [𝑏𝑒𝑔𝑖𝑛 𝑡𝑖𝑚𝑒, 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒]) is 

the delay between the arrival of two successive vehicles in each queue. The vehicles 

were introduced randomly, and the time interval was configured with a random 

simulation step 𝑥 of 100 ms. If 𝑡𝑠𝑡𝑖  = [1000, 4000], the delay between the arrival 

of two successive vehicles is 1000 + 𝑥 ∗ 100 and 0 ≤  𝑥 ≤ 30, that is, the possible 

values of 𝑥 are 31. 

3. Simulator Demonstration 

The STLS simulator is mainly demonstrated through a real traffic case study at the El-

Hidhab Setif city intersection. Therefore, in this section, we present the selected case study 

and illustrate the relevant fundamental services. 

3.1 Presenting the Case Study 

The proposed system was evaluated at El-Hidhab Setif city intersection using three control 

models (cycle, phase, and hybrid) as well as available smart sensors to improve the 

performance of our system. Our goal is to collect traffic data using multimedia sensors such 

as cameras so that vehicles and intersections can be efficiently controlled. 

In this case study, the cycle 2 model was used to synchronize the traffic signals, as 

shown in Figure 4.2, with a fixed green light duration for all phases, as follows: Phases 1-2 

and 3-2 30 seconds, phases 2-2 and 4-2 24 seconds. The duration of the orange light was 5 

seconds. These durations were converted to simulated values using the simulation time rate 

𝑠𝑟 such that the green light duration was 30 s, which is equivalent to 10 s simulated for the 

medium speed mode. 
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Figure 4.2 Description of cycle, green and orange time. 

3.2 Case Study Simulation 

During the phase and cycle selection, the user selects their preferences, such as the average 

vehicle wait time and queue occupancy rate. The weights of the selection function 

parameters are either fixed by the user or automatically optimized using the proposed swarm 

intelligence dynamic approach, as shown in Figure 4.3.A. 

Figure 4.3 Model configuration parameters and simulation results, (A) Specification of 

user's preference, (B) Specification of start time intervals, (C) Graph of average queue 

occupancy rate, (D) Displaying evaluation results. 
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The user specifies the start time intervals between the two vehicles in each queue. 

This is illustrated in Figure 4.3.B. The user determines two interval bounds, 1 and 4 seconds, 

for the west-to-east queue. The performance results of the four models (cycle, phase, hybrid, 

and fixed light green time) are visualized graphically, as shown in Figure 4.3.C Average 

queue occupancy rate graph for a simulation time of 10 minutes. Detailed evaluation results 

of the configuration for several simulations are shown in Figure 4.3.D. 

3.3 Implementation and Deployment Challenge 

ADSTLS is implemented using different manufacturers' technologies (IoT sensors, cameras, 

and communication protocols) to ensure real-time traffic data collection, reduce congestion, 

and improve emergency response time. Despite the benefits, the diverse technologies present 

significant challenges, including incompatibility, scalability, regulatory and policy 

compliance, and traffic data security concerns. Incompatibility issues require standards and 

protocols for interoperability, necessitating continuous testing of video content delivery and 

metric calculations before deployment. Scalability, driven by increased traffic volume, also 

requires strong data privacy measures to protect traffic video content from potential attacks. 

However, a cost-benefit analysis is essential to assess the economic feasibility and justify 

implementing ADSTLS systems, which contribute positively to urban traffic management 

and quality of life.  The economic analysis of ADSTLS deployment is defined as follows:  

 Cost: The cost includes infrastructure, labor, and maintenance costs. Infrastructure 

costs encompass the installation of cameras, IoT devices, software, and 

communication networks. Labor costs involve various uses of the company's 

personal time and training processes. Maintenance costs include the continuous 

provision of monitoring systems, communications system maintenance, and software 

updates. The total infrastructure costs are amortized over ten years, ensuring the 

sustainability of this investment. 

 Benefit: The benefits include public and organizational advantages. Public benefits 

encompass the optimization of travel time (i.e., waiting time and occupancy rate) and 

a reduced number of congestions (i.e., fuel saving, which will significantly impact 

daily operations. Organizational benefits include the avoidance of manual data 

collection and unnecessary maintenance activities.  

We can define the cost-benefit (𝐵_𝐶) function as the ratio of all benefits (𝐵) to that 

of costs ( 𝐶 ) to deploy ADSTLS. The total cost includes infrastructure, labor, and 

maintenance costs defined by 𝐶1, 𝐶2 and 𝐶3 respectively. The total benefits include reduced 
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travel time, improved safety, and fuel saving benefits defined by 𝐵1 , 𝐵2  and 𝐵3  

respectively. The cost-benefit is formulated as follows equation (4.1):  

𝐵_𝐶 =
∑ 𝐵𝑖
3
𝑖=1

∑ 𝐶𝑖
3
𝑖=1

                                              (4.1)                                         

Table 4.1 provides assessment of economic costs-benefits of implementing ADSTLS 

system. The value of 𝐵_𝐶 is 1.02, so that the total annual benifice is greater than the total 

costs. 

Table 4.1 Economic cost-benefit analysis for ADSTLS system implementation. 

Category Description Name Calculation/Estimation ($) 

Cost 

Infrastructure 

installation  

Installation of cameras, IoT devices, 

software and communication networks 
5500 $ 

Labor  Personal time and training effort 4000 $ 

Maintenance Monitoring, communications maintenance 

and software updates 

3500 $ 

Benefit 

Reduced travel time  Reduced travel time including occupation 

rate and waiting times.  

5000 $ 

Improved safety  Improved safety by reducing congestions and 

accidents.  

3800 $ 

Fuel saving  Fuel saving by optimizing   4500 $ 

Cost-Benefit
 1.02 

4. ADSTLS Performance Evaluation for a Single Intersection 

We conducted several experiments on various traffic scenarios at intersection lanes to 

evaluate the effectiveness of ADSTLS using the proposed traffic flow models (Fixed-time, 

Phase, Cycle, Hybrid) and selection functions. Our goal is to evaluate the efficiency of 

ADSTLS in dynamic mode and efficiently manage prioritized vehicles in adaptive mode. 

We carried out two types of experiments: an optimization performance comparison and a 

traffic model performance comparison.  

The optimization performance comparison involves swarm intelligence algorithm 

(WCSO, CSO, WPSO, PSO) testing to determine which algorithms quickly converge to the 

optimal solution for selection function weights. These results were compared with those of 

the fixed weights approach.  

The performance traffic model comparison consisted of two modes: dynamic and 

emergency. In dynamic mode, we performed experiments to evaluate the effectiveness of 

our system on three signal flow management models: phase, cycle, and hybrid, in terms of 

output flow rate, average waiting time, and average occupancy rate. In the intelligent 
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emergency mode, we conducted experiments on various emergencies to observe the 

responsiveness and effectiveness of the proposed situation model in terms of waiting time 

for emergency vehicles.  

All experiments were performed using an HP ProBook PC with an Intel(R) Core 

(TM) i5-6200U CPU @ 2.30GHz 2.40GHz, and 8GB RAM. The vehicle speed ( 𝑠𝑣) during 

simulation on medium mode is 71.78 pixels/s, the value of the constant 𝑐𝑔 is 1000 ms and 

the simulated orange time (𝑡𝑜) is 1700 ms. 

4.1 Evaluation Metrics 

To evaluate the performance and effectiveness of the proposed ADSTLS on the simulation 

dataset under different vehicle densities, several criteria and metrics were suggested and 

compared with fixed weight-based approaches commonly used as baseline models in traffic 

light control systems. Three different traffic metrics, including average waiting time, 

average occupancy rate, and output flow rate for each simulated model, were used to 

evaluate ADSTLS. Furthermore, we defined two other metrics during the traffic control 

process, namely best fitness and convergence speed, to evaluate the weight-based swarm 

intelligence approach. 

 Best Fitness (𝒃𝒇𝒎): this is the average fitness value, computed for each model 𝑚 

after 𝑁𝑠  simulations, either by a fixed-weight model or weight-based swarm 

intelligence optimization model, as defined by equation (4.2).  

𝑏𝑓𝑚 =  

∑   𝑓𝑗
𝑚

𝑁𝑠

𝑗=1

𝑁𝑠
                                       (4.2) 

where 𝑓𝑗
𝑚 is the average fitness value of model 𝑚 for a given simulation 𝑗 after 𝑁𝑐 

calls of the selection function, calculated using equation (4.3). 

𝑓𝑗
𝑚 = 

∑  
𝑁𝑐
𝑖=1 𝑓𝑖

𝑚

𝑁𝑐
                                             (4.3) 

𝑓𝑖 is the fitness value 𝑓 returned for each call 𝑖 to the phase selection function defined 

using equation (3.25). 

 Convergence Speed (𝒄𝒔𝒎): is the average number of iterations needed to achieve 

optimal weights computed for each model 𝑚 after 𝑁𝑠  simulations using equation 

(4.4): 

𝑐𝑠𝑚 = 

∑   𝑐𝑠𝑗
𝑚

𝑁𝑠

𝑗=1

𝑁𝑠
                                      (4.4) 
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Where  𝑐𝑠𝑗
𝑚   is the average iteration number of model 𝑚 for a given simulation 𝑗 

after 𝑁𝑐 calls of the phase selection function, calculated using equation (4.5). 

 𝑐𝑠𝑗
𝑚 =  

∑  
𝑁𝑐
𝑖=1  𝑐𝑠𝑖

𝑚

𝑁𝑐
                                        (4.5) 

𝑐𝑠𝑖
𝑚 is the average iteration number for each call 𝑖 in the phase selection function. 

 Accuracy (𝒂𝒄𝒄𝒎): is the ratio between the obtained results and the number of calls 

(𝑁𝑐) to the selection function, as computed by equation (4.6). 

𝑎𝑐𝑐𝑚 =  
 𝑎𝑐𝑐𝑗

𝑚

𝑁𝑐
                                               (4.6) 

Where  𝑎𝑐𝑐𝑗
𝑚  is a number initialized by zero and increased by one if the phase 

selected by the fixed-weight type is the same as that found by the swarm intelligence 

algorithms, calculated using equation (4.7). 

 𝑎𝑐𝑐𝑗
𝑚 =  𝑎𝑐𝑐𝑗

𝑚 + 1                                       (4.7) 

On the other hand, we compared three proposed traffic control models (phase, cycle, 

and hybrid) and fixed-time models that represent our case study. Therefore, five metrics 

were used to evaluate and compare the performance of these models: total number of 

simulated vehicles, average waiting time, output flow rate, average occupancy rate, and 

model utility. 

 Number of Simulated Vehicles (𝒏𝒗
𝒎): is the number of simulated vehicles for 

model 𝑚 after 𝑁𝑠 simulations, computed by equation (4.8): 

𝑛𝑣
𝑚 =∑ 𝑛𝑣𝑗

𝑚
𝑁𝑠

𝑗=1
                                        (4.8) 

Where 𝑛𝑣𝑗
𝑚 is the number of simulated vehicles in all queues for a given simulation 

𝑗, defined using equation (4.9). 

𝑛𝑣𝑗
𝑚 = ∑ 𝑖𝑛𝑖

𝑚𝑘

𝑖=1
,  k ∈ 𝑤𝑚                         (4.9)  

and 𝑖𝑛𝑖
𝑚 is the input flow for queue k calculated using equation (3.6), with 𝑤𝑚 =

 {𝑊𝑒,𝑊𝑛, 𝑁𝑠,𝑁𝑒, 𝐸𝑤, 𝐸𝑠, 𝑆𝑛, 𝑆𝑤}. 

 Average Waiting Time (𝒂𝒘𝒕
𝒎

): is the value of the normalized average waiting time 

for model 𝑚 after 𝑁𝑠 simulations, we use equation (4.10): 

𝑎𝑤𝑡
𝑚
= 

∑   𝑎𝑤𝑡𝑗
𝑚

𝑁𝑠

𝑗=1

𝑁𝑠
                             (4.10) 
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where  𝑎𝑤𝑡𝑗
𝑚
  is the normalized average waiting time of all outgoing and waiting 

vehicles at the intersection of model 𝑚 for a given simulation 𝑗, calculated using 

equation (3.19). 

 Output Flow Rate (𝒐𝒇𝒓𝒎): is the value of the output flow rate for model 𝑚 after 𝑁𝑠 

simulations, computed by equation (4.11): 

𝑜𝑓𝑟𝑚 = 

∑   𝑜𝑓𝑟𝑗
𝑚

𝑁𝑠

𝑗=1

𝑁𝑠
                          (4.11) 

Where  𝑜𝑓𝑟𝑗
𝑚  is the output flow rate of model 𝑚 for a given simulation 𝑗, as defined 

in equation (3.17). 

 Average Occupancy Rate (𝒂𝒐𝒓𝒎): is the average occupancy rate of the queues for 

model 𝑚 after 𝑁𝑠 simulations, calculated using equation (4.12): 

𝑎𝑜𝑟𝑚 = 

∑   𝑎𝑜𝑟𝑗
𝑚

𝑁𝑠

𝑗=1

𝑁𝑠
                          (4.12) 

Where  𝑎𝑜𝑟𝑗
𝑚 is the average occupancy rate in all queues for a given simulation 𝑗, 

defined using equation (4.13). We divided the simulation time into 𝑝 intervals, as 

follows: 

 𝑎𝑜𝑟𝑗
𝑚 =  

∑  𝑎𝑜𝑟𝑖
𝑚𝑝

𝑖=1

𝑝
         

𝑎𝑛𝑑   𝑝 = 10    (4.13) 

and  𝑎𝑜𝑟𝑖
𝑚 is defined in equation (3.16). 

 Model's Utility (𝑭𝒖
𝒎

): is the ratio of the utility value of a model m to the total utility 

of all models. The best model had the highest utility rate.  This is calculated using 

equation (4.14). 

𝐹𝑢
𝑚 =

�̅�𝑚

∑ �̅�𝑚𝑚
𝑖=1

                                         (4.14) 

where 𝑈𝑚 is the utility weighting of the model 𝑚 computed by equation (4.15): 

�̅�𝑚 = 𝑈𝑚  ∗  𝑅𝑚                                       (4.15) 

𝑈𝑚 is the utility of the model 𝑚 calculated by equation (4.16): 

𝑈𝑚 =
 𝑜𝑓𝑟𝑚 

 𝑎𝑤𝑡
𝑚
+ 𝑎𝑜𝑟𝑚

                             (4.16) 

and 𝑅𝑚  is the weight function of the model 𝑚 computed by equation (4.17): 

𝑅𝑚 = 
𝑛𝑣
𝑚

𝑚𝑎𝑥 ( 𝑛𝑣𝐹𝑖𝑥−𝑡𝑖𝑚𝑒 , 𝑛𝑣𝑃ℎ𝑎𝑠𝑒 , 𝑛𝑣𝐶𝑦𝑐𝑙𝑒 , 𝑛𝑣𝐻𝑦𝑏𝑟𝑖𝑑𝑒) 
     (4.17) 
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R𝑚 is used to determine the best model with more simulated vehicles. The best value 

is equal to 1, where 0 < R𝑚 ≤ 1.   

4.2 Optimization Performance Comparison  

We performed optimization comparisons of four swarm intelligence optimization 

algorithms, including WCSO, CSO, WPSO, and PSO, which converged to an optimal 

solution with different numbers of iterations and different accuracy results. We attempt to 

determine the best algorithm that converges quickly to the optimal weights of the selection 

function. Furthermore, three fixed-weight selection function algorithms with different 

preferred criteria were evaluated with the best weight-based swarm intelligence to observe 

their fitness optimality and result accuracy in the selection process. Fixed-1 is a fixed-weight 

algorithm that prefers waiting time weight to queuing time weight (𝑤𝑞 ≫ 𝑤𝑡). Fixed-2 is a 

fixed-weight algorithm with any preference between waiting time weight and waiting time 

weight (𝑤𝑞 = 𝑤𝑡). Fixed-3 is a fixed-weight algorithm that prefers a queuing time weight 

versus waiting time weight (𝑤𝑞 ≪ 𝑤𝑡). Their fixed weights were (0.7, 0.3), (0.5, 0.5), and 

(0.3, 0.7), respectively.  

Convergence speed, best fitness, and result accuracy are evaluation metrics that 

determine the best algorithm. We observed the performance in the optimization of the four 

algorithms with different specifications for start time interval (𝑡𝑠𝑡𝑖), which defines the time 

interval between the arrival of two successive vehicles: 1) Large Start Time Interval (LSTI) 

with 𝑡𝑠𝑡𝑖 = [1000ms, 5000ms], 2) Medium Start Time Interval (MSTI) with 𝑡𝑠𝑡𝑖 = [1000ms, 

4000ms], and 3) Small Start Time Interval (SSTI) with 𝑡𝑠𝑡𝑖 = [1000ms, 3000ms]. We 

observed the optimization of the four swarm intelligence algorithms with varied numbers of 

particles in the case of WPSO and PSO or varied numbers of chickens in the case of WCSO 

and CSO: 30, 50, 70, and 90. More simulation parameters are provided in Table 4.2, with a 

total simulation time of 1710 minutes. 

As shown in Table 4.3, the WCSO convergence speed continues to increase as the 

number of vehicle arrivals increases. The other three algorithms, CSO, WPSO, and PSO, are 

all stabilized in their convergence speed; thus, the convergence speed value of WCSO is 8 

iterations, outperforming CSO by 19 iterations, WPSO by 29 iterations, and PSO by 46 

iterations. We also note that WPSO recorded the best fitness value, surpassing CSO by 

0.03%, PSO by 0.15%, and WCSO by 0.40%. The best optimization algorithms are those 

with the lowest iteration values and highest fitness values. 
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Table 4.2 Simulation parameters in optimization performance. 

Parameter Value 

Duration of simulations 10 minutes 

Number of simulations for each traffic situation, 𝑁𝑠 3  

Maximum iteration, 𝑚𝑎𝑥𝑖𝑡 100 

Number of particles, 𝑃 30-50-70-90 

Number of chickens, 𝑁 30-50-70-90 

Value of constant β in WCSO and WPSO 0.5 

Value of constant 𝑐1in WPSO and PSO 0.3 

Value of constant 𝑐2 in WPSO and PSO 0.7 

Value of constant 𝜔 in PSO algorithm 0.5 

Minimum constant ε in WCSO and CSO 10-16 

Table 4.3 Comparison of best fitness values and convergence speed. 

Methods  

       #Particles 

WCSO CSO WPSO PSO 

cs(U) bf(%) cs(U) bf(%) cs(U) bf(%) cs(U) bf(%) 

L
S

T
I 

90 5 0,9170 26 0,9225 36 0,9229 55 0,9208 

50 5 0,9170 26 0,9225 36 0,9229 55 0,9208 

70 5 0,9169 26 0,9224 36 0,9228 55 0,9207 

30 5 0,9168 26 0,9224 36 0,9228 55 0,9207 

M
S

T
I 

90 7 0,9308 27 0,9340 37 0,9342 54 0,9329 

50 7 0,9307 27 0,9339 37 0,9341 54 0,9328 

70 7 0,9305 27 0,9338 37 0,9340 54 0,9327 

30 7 0,9304 27 0,9336 37 0,9339 54 0,9326 

S
S

T
I 

90 12 0,9739 27 0,9757 38 0,9759 55 0,9751 

50 12 0,9738 27 0,9756 38 0,9758 55 0,9750 

70 12 0,9737 27 0,9755 38 0,9757 55 0,9749 

30 12 0,9736 27 0,9754 38 0,9756 55 0,9748 

A
v
g
 R

es
u

lt
s 90 8 0,9406 27 0,9441 37 0,9443 54 0,9429 

50 8 0,9405 27 0,9440 37 0,9442 54 0,9428 

70 8 0,9404 27 0,9439 37 0,9442 54 0,9428 

30 8 0,9403 27 0,9438 37 0,9441 54 0,9427 
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WCSO demonstrated a small number of iterations and optimal weight values. Thus, 

we consider WCSO for decision making during the selection process. 

We also compared the performance of the WCSO algorithm with three fixed-weight 

algorithms (Fixed-1, Fixed-2, and Fixed-3) using different vehicle arrival times (small, 

medium, and large) in terms of accuracy, best fitness, number of simulated vehicles, and 

number of calls to the selection function.  As shown in Table 4.4, the accuracy score for the 

fixed-weight approach increases with an increase in the number of vehicles arriving at the 

intersection. However, the performance of the WCSO algorithm showed a significant 

improvement of 3.84% compared with the Fixed-3 algorithm, 5.46% compared with the 

Fixed-2 algorithm, and 8.95% compared with the Fixed-1 algorithm. Similar to the best 

fitness, the WCSO algorithm promptly showed a significant improvement of 7.41% over the 

Fixed-3 algorithm, 11.64% over the Fixed-2 algorithm, and 15.97% over the Fixed-1 

algorithm.  

Finally, the WCSO has a better and more stable optimization performance when 

increasing the number of arriving vehicles. With an increasing number of vehicles, we also 

obtained an optimized performance of the selection function within a certain boost of 

weights, which is more conducive to system quality and stability. 

Table 4.4  Accuracy comparison of fixed weight vs optimized weight approaches using 

WCSO.  

STI 

𝑛𝑣 (u) 𝑁𝑐(u) 

WCSO 

Approach 

Fixed Weight Approach 

Fixed-1 

𝒘𝒒 ≫ 𝒘𝒕 

Fixed-2 

𝒘𝒒 = 𝒘𝒕 

Fixed-3 

𝒘𝒒 ≪ 𝒘𝒕 

bf(%) bf(%) acc(%) bf(%) acc(%) bf(%) acc(%) 

LSTI 4749 408 0.9170 0.7043 0.8725 0.7647 0.9216 0.8269 0.9510 

MSTI 5623 391 0.9308 0.8094 0.9105 0.8411 0.9540 0.8747 0.9719 

SSTI 6342 374 0.9739 0.9194 0.9519 0.9218 0.9626 0.9255 0.9626 

Final 

Result 

16714 1173 0.9406 0.8110 0.9105 0.8425 0.9454 0.8757 0.9616 
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4.3 Performance Comparison of ADSTLS Models in Dynamic Mode 

We employed the evaluation metrics described in Section 4.1 to compare the proposed 

WCSO-based dynamic intelligent models (phase, cycle, and hybrid) with a fixed-time 

model. Three classes of experiments were conducted to ensure a comprehensive assessment. 

 Normal Density of Vehicles (NDV): consists of three start time intervals: 1) Large 

Start Time Interval (NDV-LSTI) with 𝑡𝑠𝑡𝑖 = [3000ms, 6000ms], 2) Medium Start 

Time Interval (NDV-MSTI) with 𝑡𝑠𝑡𝑖 = [3000ms, 5000ms] and 3) Small Start Time 

Interval (NDV-SSTI) with 𝑡𝑠𝑡𝑖 = [3000ms, 4000ms].  

 Medium Density of Vehicles (MDV): consists of three start time intervals: 1) Large 

Start Time Interval (MDV-LSTI) with 𝑡𝑠𝑡𝑖 = [2000ms, 6000ms], 2) Medium Start 

Time Interval (MDV-MSTI) with 𝑡𝑠𝑡𝑖 = [2000ms, 5000ms] and 3) Small Start Time 

Interval (MDV-SSTI) with 𝑡𝑠𝑡𝑖 = [2000ms, 4000ms].   

 High Density of Vehicles (HDV): consists of three start time intervals: 1) Large 

Start Time Interval (HDV-LSTI) with 𝑡𝑠𝑡𝑖 = [1000ms, 6000ms], 2) Medium Start 

Time Interval (HDV-MSTI) with 𝑡𝑠𝑡𝑖 = [1000ms, 5000ms] and 3) Small Start Time 

Interval (HDV-SSTI) with 𝑡𝑠𝑡𝑖 = [1000ms, 4000ms]. 

For the WCSO-based dynamic intelligent and fixed-weight models, the total number 

of simulated vehicles, average waiting time, average output flow rate, average occupancy 

rate, and utility of the model over 10 independent simulations of 180 minutes are reported. 

Each traffic model was run with three vehicle densities (NDV, MDV, and HDV). We used 

the final results as the output flow rate of vehicles (𝑜𝑓𝑟), average waiting time (𝑎𝑤𝑡), and 

average occupancy rate (𝑎𝑜𝑟) obtained from each category of the experiment to compute the 

utility function 𝐹𝑢  for the four models according to the time between the arrival of two 

successive vehicles in each queue. The values of the simulation parameters are listed in 

Table 4.5.  

Table 4.5 Simulation parameters in dynamic mode.  

Parameter  Value 

Duration of simulations  10 minutes 

Number of simulations for each traffic situation, 𝑁𝑠  5 

Value of constant β in WCSO  0.5 

Minimum constant ε in WCSO  10-16 

Maximum iteration, 𝑚𝑎𝑥𝑖𝑡 50 

Number of chickens, 𝑁 30 

Hybrid rate, ℎ𝑟 0.5 

Time scale, 𝑡𝑠 20000 ms 
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Table 4.6 shows the performance of the four control models (fixed-time, WCSO 

phase, WCSO cycle, and WCSO hybrid) at different start time intervals when the system 

generates normal, medium and high vehicles density. When the vehicle density is normal, a 

vehicle reaches each queue at the intersection every 3.98 seconds in the simulation, which 

corresponds to 11.94 seconds in reality.  

With a medium density of vehicles, one vehicle reaches each queue at the 

intersection every 3.48 seconds in the simulation, while it takes 10.43 seconds in reality. In 

the case of the high density of vehicles, one vehicle reaches each queue at the intersection 

every 2.99 seconds in the simulation, while it takes 8.99 seconds in reality. 

We further demonstrate the performance of the dynamic ADSTLS models in the 

SETIF city case study. When a normal, medium and high vehicles density of vehicles is 

generated, the dynamic ADSTLS models perform better than the fixed-time model because 

the WCSO algorithm is considered. However, the performances of the different models 

(WCSO cycle, WCSO phase, and WCSO hybrid) exhibited improvements of 56.17%, 

56.75% and 56.82%, respectively in normal vehicles density and improvements of 60.13%, 

60.40% and 60.63% in medium vehicles density, respectively. At high vehicle density, the 

different models (WCSO cycle, WCSO hybrid, and WCSO phase) exhibited improvements 

of 61.00%, 61.99%, and 68.26%, respectively. 

 When comparing the different dynamic models under normal and medium vehicle 

density, we found that the WCSO hybrid model achieves significantly higher utility and 

provides better results for the average waiting time in the system. 

At high vehicle density, the simulation results show the predominance of the WCSO 

phase model, which performs the best in terms of vehicle output flow, average waiting time, 

and average occupancy rate in the LSTI, MSTI and SSTI start time intervals. 

Figure 4.4 shows the output flow rate of vehicles (𝑜𝑓𝑟), the average waiting time for 

vehicles (𝑎𝑤𝑡), the average occupancy rate of queues (𝑎𝑜𝑟) and the utility model (𝐹𝑢) for 

configurations with normal, medium and high vehicle density. It is important to note that 

different configurations lead to different simulation results. When we look at the utility, we 

find that simulation results show the dominance of the hybrid model, which outperforms the 

WCSO phase and cycle models by 0.04% and 0.42%, respectively, at normal vehicle 

density, and by 0.15% and 0.32% respectively at medium vehicle density. At high vehicle 

density, the WCSO phase model outperforms the WCSO hybrid models by 3.87% and the 

WCSO cycle model by 4.51%. 
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Table 4.6 Comparison of model’s utility under different vehicles started time in dynamic 

mode.  
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Figure 4.4 Comparison of model’s performance under different vehicles started time in 

dynamic mode (A) Output flow rate, (B) Average waiting time, (C) Average occupancy 

rate and (D) Model utility. 

4.4 Performance Comparison of ADSTLS Models in Adaptive Mode 

The above results indicate that the dynamic WCSO phase model performs better in high 

density of vehicles than the dynamic WCSO cycle and dynamic WCSO hybrid models. 

Therefore, we consider this model in the adaptive emergency mode of ADSTLS to optimize 

the waiting time of both the emergency and regular modes. However, we used the WCSO 

algorithm to select a coherent queue that does not contain vehicle emergencies. Simulation 

parameter values are provided in Table 4.7.  
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Table 4.7 Simulation parameters in adaptive mode.  

Parameter  Value 

Duration of simulations  10 minutes  

Number of simulations for each traffic situation, 𝑁𝑠  5 

Value of constant β in WCSO  0.5 

Minimum constant ε in WCSO  10-16 

Maximum iteration, 𝑚𝑎𝑥𝑖𝑡 50 

Number of chickens, 𝑁 30 

We conducted a simulation of five carefully selected situations to perform a 

comprehensive evaluation using automatic metrics. In this assessment, four priority values 

(0-No priority, 1-Low priority, 2-Medium priority, 3-High priority) and three start time 

intervals (Large Start Time Interval (LSTI) with tsti = [1000ms, 6000ms], Medium Start 

Time Interval (MSTI) with tsti = [1000ms, 5000ms] and Small Start Time Interval (SSTI) 

with tsti = [1000ms, 4000ms]) were employed to evaluate the dynamic WCSO phase model 

in emergency mode. The WCSO phase model is assessed in emergency mode based on the 

following two metrics: the number of emergencies and regular vehicles (𝑛𝑣) and the average 

waiting time of both emergency and regular vehicles (𝑎𝑤𝑡). The results obtained at different 

start time intervals for high-density vehicles with different priority level values in adaptive 

mode are presented in Table 4.8. Similar to automatic evaluation of ADSTLS models in 

dynamic mode, the WCSO phase model that manages regular and emergency vehicles 

provides acceptable average waiting time for high-priority, medium-priority, and low-

priority emergency vehicles are 5.037, 6.423, and 8.017 seconds respectively in simulated 

time. 

Table 4.8 Simulation of different start time intervals for emergency vehicles.  

Start Time Intervals 

Emergency Vehicles  
Regular  

Vehicles 

(𝒑𝒍𝒗 = 𝟎) 

High  

priority 

(𝒑𝒍𝒗 = 𝟑) 

Medium  

priority 

(𝒑𝒍𝒗 = 𝟐) 

Low  

priority 

(𝒑𝒍𝒗 = 𝟏) 

nv(u) awt (s) nv(u) awt (s) nv(u) awt (s) nv (u) awt (s) 

HDV-LSTI 306 4806.93 160 5693.93 106 6619.03 6162 12871.80 

HDV-MSTI 348 5007.20 182 6269.26 120 7885.55 6957 14373.68 

HDV-SSTI 382 5295.46 199 7304.99 132 9544.97 7618 16187.14 

Avg Results 1036 5036.53 541 6422.73 358 8016.52 20737 14477.54 
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4.5 Comparison of Traffic Signal Plan and Performance Optimization 

In this section, the three proposed WCSO models (cycle, phase, and hybrid) in the dynamic 

intelligent mode are quantitatively compared with the fixed-time model, which is our case 

study, and with two other related studies [14, 21]. The comparison was based on the optimal 

traffic signal plan of traffic control models. The green and orange signal sequences are 

extracted from these models for the selected phases or cycles with the duration of the green 

time of each phase to show the difference between them. For the optimization comparison, 

three metrics were selected based on the experimental findings of the optimized traffic 

densities. The values of the vehicle output flow rate, average waiting time, and queue 

occupancy rate between these models were compared to determine the model with the best 

optimized performance. 

For this purpose, we used the cycle and phase models already defined in Figure 3. 4, 

such as the two cycles: Cycle 1 = {(We, Wn), (Ns, Ne), (Ew, Es), (Sn, Sw)} and  Cycle 2 = 

{(We, Ew), (Wn, Es), (Ns, Sn), (Ne, Sw)}, and the eight phases: ph1 = (We, Wn), ph2 = 

(Ns, Ne), ph3 = (Ew, Es), ph4 = (Sn, Sw), ph5 = (We, Ew), ph6 = (Wn, Es), ph7 = (Ns, Sn) 

and ph8 = (Ne, Sw). 

Three categories of experiments are also used for these comparisons to ensure a 

complete evaluation: normal density of vehicles, medium density of vehicles, and high 

density of vehicles. The simulation parameters are described in Table 4.3 in Section 4.3 

4.5.1 Comparison of Traffic Signal Plans 

Signal planning is the organization and coordination of traffic signals to efficiently, safely, 

and smoothly control vehicular and pedestrian traffic. Recall that the fixed-time model uses 

a cycle 2 signal plan with fixed values for the green, orange, and red times; the WCSO cycle 

model uses a cycle 1 or cycle 2 plan; the WCSO phase model uses a phase plan; and the 

WCSO hybrid model uses a mixture of the aforementioned two WCSO cycle and phase 

models. Rida et al. [21] used a cycle signal plan to optimize vehicle waiting times and queue 

sizes, favoring the phase with the lowest number of vehicles at the beginning of the cycle. 

Joo et al. [14] used a phase signal plan to optimize queue size and vehicle output, selecting 

the optimal phase with a fixed green time to cover the entire queue. For all models, it should 

be noted that when the two traffic lights of the selected phase are green or orange, the other 

six are red. Figure 4. 5 show extracts from real 3-minute simulations (180 seconds) in the 

three test categories: 
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Figure 4.5 Comparison of traffic signal plans (A) Normal density of vehicles, (B) Medium 

density of vehicles and (C) High density of vehicles. 
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 Traffic signal plan for normal density of vehicles:  Figure 4.5. (A) shows the 

average green times for the six models as follow: 27.00 seconds for the fixed-time 

model, 11.09 seconds for the WCSO cycle model, 11.18 seconds for the WCSO 

phase model, 10.73 seconds for the WCSO hybrid model, 11.80 seconds for the cycle 

model [21], and 14.00 seconds for the phase model [14]. 

 Traffic signal plan for medium density of vehicles: Figure 4.5. (B) shows the 

average green times for the six models as follow: 27.00 seconds for the fixed-time 

model, 11.27 seconds for the WCSO cycle model, 11.36 seconds for the WCSO 

phase model, 10.82 seconds for the hybrid-WCSO model, 12.10 seconds for the cycle 

model, and 14.00 seconds for the phase model. 

 Traffic signal plan for high density of vehicles: Figure 4.5. (C) shows the average 

green times for the six models as follow: 27.00 seconds for the fixed-time model, 

11.55 seconds for the WCSO cycle model, 11.90 seconds for the WCSO phase 

model, 11.64 seconds for the WCSO hybrid model, 12.33 seconds for the cycle 

model, and 14.00 seconds for the phase model.  

According to the fixed-time model and phase model [14], a fixed green time is 

recorded in relation to their signal plan. For the signal plans of the WCSO cycle, phase, 

hybrid, and cycle models [21], we found that the average green time of the phase increased 

when the density of arriving vehicles also increased. However, the WCSO hybrid model 

always has a minimum average green time, which is due to the flexibility of switching 

between the phase and cycle models depending on the instantaneous traffic density. 

4.5.2 Comparison of Performance Optimization with Relative Models 

The aim of determining the best signal plans for the intelligent traffic signal control model 

is to maximize vehicle output rate at the intersection and minimize queue size and vehicle 

waiting time. In Section 4.3, we compare the three proposed WCSO DIM models (cycle, 

phase, and hybrid) and the fixed-time model, and we extend our comparison with two more 

models from the literature [ 14, 21]. The cycle model [14] is compared with the proposed 

WCSO cycle model, and the phase model [21] with the proposed WCSO phase model. These 

comparisons are based on the strategy of prioritizing the shortest queue in the cycle model 

[21], and in the phase model [14], the choice of a fixed green time that primarily influences 

traffic optimization. Figure 4.6 displays an optimization comparison of the six traffic models 

in terms of the Output Flow Rate (𝑜𝑓𝑟 ), Average Waiting Time (𝑎𝑤𝑡 ), and Average 

Occupancy Rate (𝑎𝑜𝑟).  
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Figure 4.6 Comparison of performance optimization (A) Output flow rate, (B) Average 

waiting time and (C) Average occupancy rate. 
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Figure 4.6 (A) shows that the WCSO cycle model provides the best optimal 𝑜𝑓𝑟 

scores in NDV, whereas in MDV and HDV, the WCSO phase model provides the best 

optimal 𝑜𝑓𝑟 scores. The WCSO cycle model achieved an average improvement of 0.07% 

over the cycle model [21] and the WCSO phase model achieved an average improvement of 

0.59% over the phase model [14]. Figure 4.6 (B) illustrates that the WCSO hybrid model 

achieves the best 𝑎𝑤𝑡  values in the NDV and MDV, whereas the WCSO phase model 

achieves the best 𝑎𝑤𝑡  value in the HDV. The WCSO cycle model gives an average 

improvement of 0.51 seconds over the cycle model [21], and the WCSO phase model gives 

an average improvement of 3.71 seconds over the phase model [14]. Figure 4.6. (C) shows 

that the WCSO phase model achieves the best optimal 𝑎𝑜𝑟 values for the NDV, MDV, and 

HDV. The WCSO cycle model showed an average improvement of 1.10% compared to the 

cycle model [21], and the WCSO phase model showed an average improvement of 5.39% 

compared to the phase model [14]. 

From the above experimental results, we can conclude that our proposed WCSO 

DIM models (cycle, phase, and hybrid) yield an optimal average performance of 98.50% in 

terms of 𝑜𝑓𝑟 , 31 seconds in terms of 𝑎𝑤𝑡 , and 33.82% in terms of 𝑎𝑜𝑟  for the three 

categories of vehicle arrival density. Moreover, the traffic signal plan of the proposed model 

is optimal. 

4.6 Results Analysis and Key Observations  

This section discusses and analyzes the impact of weight-based swarm intelligence 

algorithms in terms of the optimization and effectiveness of different dynamic traffic 

management and control models. 

4.6.1 Optimization Performance Comparison of Different Swarm Intelligence 

Algorithms    

The results obtained (Table 4.3) by WCSO outperformed all evaluated optimization 

algorithms in terms of convergence speed (e.g., eight iterations). In addition, WPSO 

achieves a better fitness function value (e.g., 0.9443) but requires more iterations than 

WCSO. This is because of the crucial role of particles or chickens in quickly converging 

optimal weights based on the new inertia weight formula. 
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4.6.2 Fixed-weights Approach vs Weight-based Chicken Swarm Optimization 

Approach  

The above results from Table 4.4 show that dynamic traffic management models designed 

by WCSO swarm intelligence algorithm effectively improve the phase selection with an 

enhancement of 8.95% over fixed-weight approach because the weights of the selection 

function are calculated in each iteration until the performance of the traffic model converges 

to optimal values. 

4.6.3  Dynamic intelligent vs fixed-time traffic control models 

We also analyzed the model performance using three ADSTLS dynamic intelligent models 

and the fixed-time traffic control model in a case study of El-Hidhab Setif city intersection 

in Figure 4.4 and Table 4.6 to determine the best light green times. The obtained results 

show the superiority of the ADSTLS dynamic models compared with the fixed-time traffic 

light control model in terms of utility, which achieved a value of 0.1755. We also observed 

that the performance results of all dynamic intelligent models were promising. Therefore, 

this analysis demonstrates that making adequate intelligent decisions greatly improves 

traffic flow control results. 

4.6.4  DIM Models Performance Comparison: WCSO Phase vs WCSO Cycle vs 

WCSO Hybrid 

The time flow utility obtained by the ADSTLS models in dynamic intelligent mode is 

satisfactory and demonstrates the effectiveness of the proposed system (Table 4.6). 

Nonetheless, we classify the proposed dynamic traffic models according to vehicle density 

into three cases. In the normal or medium density of vehicles, the WCSO hybrid model was 

set first, followed by the WCSO phase model, and then the WCSO cycle model. For high 

density of vehicles, the WCSO phase model was set first, followed by the WCSO hybrid 

model, and then the WCSO cycle model.  

Based on the experiments, we report that the WCSO hybrid and phase models yield 

favorable results in terms of system effectiveness and optimization performance. The phase 

model outperformed the hybrid and cycle models by reducing the queue average occupancy 

rate by 33.82% in all simulated traffic scenarios. However, the hybrid model is the superior 

traffic model as it reduces the average waiting time to 29.89 seconds and 31.03 seconds for 

normal and medium density vehicles respectively. Similarly, the phase model outperforms 
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the other models for high-density vehicles, achieving an average waiting time of 32.09 

seconds. 

The utilities obtained by the El-Hidhab Setif city intersection case study are shown 

in Figure 4.7, which illustrates that the proposed hybrid model with WCSO manages control 

lights with the highest utility (e.g., 0.2764), followed by the WCSO phase and WCSO cycle 

models. We also observed that in normal- and medium-density vehicles, the proposed 

WCSO hybrid model reacts quickly to queue occupancy decisions because it uses a cycle or 

phase model. In cases where vehicle density is high, the WCSO phase model has superior 

utility (e.g., 0.2846) and greater reactiveness to green light when the next phase turns on. 

These results are interesting and reflect the model's performance during traffic congestion, 

greatly reducing the detected incident issues and driver claims. 

    Figure 4.7 Comparison of utilities between WCSO dynamic models. 

4.6.5 Comparison of Average Waiting Time of Emergency Vehicles vs Regular 

Vehicles in Adaptive Phase Model 

From Table 4.8, we can see that the average waiting time of emergency vehicles with all 

priority levels is better than that of regular vehicles. This is due to the suitable pre-decision 

awareness that considers vehicles' priority levels. 

5. CCADSTLS Performance Evaluation for a Set of Intersections 

This section demonstrates the application and effectiveness of the proposed CCADSTLS. A 

4×4 traffic network with sixteen intersections (see Figure 4.8) is used to evaluate the two 
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scenarios, the first being the management of the most congested uncrossed paths, and the 

second also considering weather fluctuations. 

All experiments were performed in our LRSD laboratory using a workstation 

equipped with a 13th generation Intel(R) Core (TM) i9 -13900K processor with 3.00GHz 

and 128 GB RAM. 

Figure 4.8 CCADSTLS based 4×4 traffic network with sixteen intersections. 
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5.1 Traffic Congestion Scenario 

CCADSTLS enables the smart system to manage traffic congestion in real time, illustrated 

in Figure 4.8, as follows:  

 The initial congested path is empty (𝐶𝑃𝐼𝐵2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∅),  a comparison between 𝑎𝑜𝑟 values 

(𝑎𝑜𝑟𝐼𝐵2 >  𝑎𝑜𝑟𝑊𝐼𝐵2 , 𝑎𝑜𝑟𝐼𝐵2 >  𝑎𝑜𝑟𝑁𝐼𝐵2 , 𝑎𝑜𝑟𝐼𝐵2 > 𝑎𝑜𝑟𝐸𝐼𝐵2 ,  and 𝑎𝑜𝑟𝐼𝐵2 >  𝑎𝑜𝑟𝑆𝐼𝐵2  ) 

determines.  

 The intersection 𝐼𝐵2has a high average occupancy rate threshold (𝑎𝑜𝑟𝐼𝐵2 ≥ 𝑐𝑟), a 

coordination message (𝑚𝑠𝑔coord= 𝑎𝑜𝑟𝐼𝐵2 )  is sent to neighbors (𝑊𝐼𝐵2 = 𝐵1 , 

𝑁𝐼𝐵2 =  𝐴2 , 𝐸𝐼𝐵2 = 𝐵3 , 𝑆𝐼𝐵2 =  𝐶2 ), which can also receive the same type of 

message from these neighbors ( 𝑎𝑜𝑟𝐼𝐵1 , 𝑎𝑜𝑟𝐼𝐴2 , 𝑎𝑜𝑟𝐼𝐵3 ,  and 𝑎𝑜𝑟𝐼𝐶2 ). that the 

intersection 𝐼𝐵2  triggers the search for a more congested path (𝐶𝑃𝐼𝐵2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐵2⃗⃗ ⃗⃗  and 

𝑠𝑡𝑎𝑡𝑒𝐼𝐵2  = 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑).  

 The congested path is determined (𝐶𝑃𝐼𝐵2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐵2 ⃗⃗ ⃗⃗  ⃗after 𝐶𝑃𝐼𝐵2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐵2 𝐵3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and at the end 

𝐶𝑃𝐼𝐵2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐵2 𝐵3 𝐵4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ), ( 𝑠𝑡𝑎𝑡𝑒𝐼𝐵2  = 𝑠𝑡𝑎𝑡𝑒𝐼𝐵3 =  𝑠𝑡𝑎𝑡𝑒𝐼𝐵4 =  𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 ) and the 

selected phase (𝐸𝑤, 𝐸𝑠)𝐼𝐵4  lights up red. 

 The value of the congested path increases against 𝐶𝑃𝐼𝐵2
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐵2 𝐵3 𝐵4⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , then 𝐶𝑃𝐼𝐵2

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

𝐵2 𝐵3⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , after 𝐶𝑃𝐼𝐵2
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐵2⃖⃗ ⃗⃗⃗  and finally 𝐶𝑃𝐼𝐵2

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = ∅ , Thus, 𝑠𝑡𝑎𝑡𝑒𝐼𝐵2  = 𝑠𝑡𝑎𝑡𝑒𝐼𝐵3 =

 𝑠𝑡𝑎𝑡𝑒𝐼𝐵4 = 𝑟𝑒𝑔𝑢𝑙𝑎𝑟. 

 Intersection 𝐼𝐵4 received a second call to participate in the search of congested path 

by intersection 𝐼𝐶4  ( 𝑚𝑠𝑔cong  =  𝐶𝑃𝐼𝐶4
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐶4 ⃗⃗⃗⃗  ⃗), 𝐼𝐵4 responded with a blocked search 

message ( 𝑚𝑠𝑔block = 𝐶𝑃𝐼𝐶4
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝐶4⃖⃗ ⃗⃗⃗). 

5.2 Weather Disaster Scenario  

Weather fluctuations can significantly affect road conditions and traffic behavior. The 

proposed system integrates weather conditions.  As shown in Figure 4.8, the intersection 𝐼𝐷1 

sends an out-of-service message (𝑚𝑠𝑔out) to the north neighbor (𝑁𝐼𝐷1 = 𝐶1) and the eastern 

neighbor (𝐸𝐼𝐷1 =  𝐷2) when the weather fluctuates, it, (𝑠𝑡𝑎𝑡𝑒𝐼𝐷1  = 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠 ), 

𝐼𝐷1 also blocks the city entrances on the west and south sides. The reception of messages 𝐼𝐶1  

and 𝐼𝐷2 leads the blocked paths to 𝐼𝐷1 . After 𝐼𝐷1 is operational again, a second reopening 

message (𝑚𝑠𝑔return) is sent to the neighbor, and all blocked roads are reopened. 
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5.3 Performance Evaluation Metrics 

Four metrics were used to evaluate and compare the performance of CCADSTLS: global 

number of simulated vehicles, global average waiting time, global average occupancy rate, 

and global utility. 

 Global Number of Simulated Vehicles (𝑮𝒏𝒗
𝒄𝒓): is the global average number of 

simulated vehicles computed by equation (4.18) for all intersections set I of a test 

value 𝑐𝑟,  

𝐺𝑛𝑣
𝑐𝑟 =

∑ 𝑛𝑣𝑖𝑑
𝑐𝑟𝑁𝐼

𝑖𝑑=1

𝑁𝐼
                         (4.18) 

Where 𝑛𝑣𝑖𝑑
𝑐𝑟  is the number of simulated vehicles in all queues for an intersection 

𝑖𝑑 after 𝑁𝑠 simulations defined by equation (4.8). 

 Global Average Waiting Time (𝑮𝒂𝒘𝒕̅̅ ̅̅ ̅̅ 𝒄𝒓 ): is the global average value of the 

normalized average waiting time for all intersections set I, of a test value 𝑐𝑟, we use 

equation (4.19). 

𝐺𝑎𝑤𝑡̅̅ ̅̅ ̅𝑐𝑟 =  
∑  𝑎𝑤𝑡̅̅ ̅̅ ̅𝑖𝑑

𝑐𝑟𝑁𝐼

𝑖𝑑=1

𝑁𝐼
               (4.19) 

Where 𝑎𝑤𝑡̅̅ ̅̅ ̅𝑖𝑑
𝑐𝑟  is the normalized average waiting time for intersection 𝑖𝑑, after 𝑁𝑠 

simulations, calculated by equation (4.10). 

 Global Average Occupancy rate (𝑮𝒂𝒐𝒓𝒄𝒓): is the global average value of average 

occupancy rate of all intersections set I, of a test value 𝑐𝑟, calculated by equation 

(4.20): 

𝐺𝑎𝑜𝑟𝑐𝑟 = 
∑ 𝑎𝑜𝑟𝑖𝑑

𝑐𝑟𝑁𝐼
𝑖𝑑=1

𝑁𝐼
                    (4.20) 

Where 𝑎𝑜𝑟𝑖𝑑
𝑐𝑟  is the average occupancy rate for a given intersection 𝑖𝑑, after 𝑁𝑠 

simulations, defined using equation (4.12). 

 Global Utility (𝑮𝑭𝒖
𝒄𝒓): is a ratio of utility value of a test value 𝑐𝑟 to total utility of 

all test’s values. The best test value has the highest utility rate.  It is calculated by 

equation (4.21): 

𝐺𝐹𝑢
𝑐𝑟 =

𝐺�̅�𝑐𝑟

∑ 𝐺�̅�𝑐𝑟
𝑐𝑟
𝑖=1

                              (4.21) 

Where 𝐺�̅�𝑐𝑟  is the utility weighting of the test value 𝑐𝑟  computed by equation (4.22):  

𝐺�̅�𝑐𝑟 = 𝐺𝑈𝑐𝑟 ∗  𝐺𝑁𝑐𝑟                           (4.22) 
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𝐺𝑈𝑐𝑟  is the utility of test value 𝑐𝑟  calculated by equation (4.23): 

𝐺𝑈𝑐𝑟 =
 1 

 𝐺𝑎𝑤𝑡
𝑐𝑟
+ 𝐺𝑎𝑜𝑟𝑐𝑟

                 (4.23) 

𝐺𝑁𝑐𝑟 is the weight function of 𝑐𝑟 computed by equation (4.24): 

𝐺𝑁𝑐𝑟 =  
𝐺𝑛𝑣

𝑐𝑟

𝑚𝑎𝑥 ( 𝐺𝑛𝑣
𝑐𝑟
1
, 𝐺𝑛𝑣

𝑐𝑟
2
) 
        (4.24) 

5.4 Simulation Results and Discussion 

We test the multi-agent CCADSTLS WCSO with two coordinate rates 𝑐𝑟  (𝑐𝑟
1 =  0.50, 

𝑐𝑟
2 =  0.65), considering the High Vehicle Density (HVD) arrival scenario with three 

random time intervals with a time step of 500 ms: 1) Large Time Interval (HVD-LTI) = 

[1000ms, 9000ms], 2) Medium Time Interval (HVD-MTI) = [1000ms, 8000ms] and 3) 

Small Time Interval (HVD-STI) = [1000ms, 7000ms]. 

With a time scale (𝑡𝑠 = 40s) and a total simulation time of 24h. Figure 4.9 shows that 

Weather Disaster Scenario (WDS) records more congested paths than the Congestion 

Scenario (CS), which is due to the random out-of-service of two intersections in each 

simulation configuration. Moreover, Table 4.9 shows that WDS-𝑐𝑟
2 achieves the best utility 

value and outperforms WDS -𝑐𝑟
1 by 0.46%, CS-𝑐𝑟

2 by 7.29% and CS-𝑐𝑟
1 by 8.22%, so 

better coordination in case of a weather disaster doesn't affect system performance but 

improves it in contrast to the congestion scenario. Table 4.9 also shows that WDS-𝑐𝑟
2 has 

the best waiting time and CS-𝑐𝑟
1 has the best average occupancy. 

Figure 4.9 Number of congested paths detected and resolved using CCADSTLS. 
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Table 4.9 Comparison of CCADSTLS utility under different vehicles arrival time and 

coordinate rate value in high vehicles density. 

Start 

Time 

Interval 

Evaluation 

Metrics 

Congestion Scenario Weather Disaster Scenario 

𝒄𝒓
𝟏 𝒄𝒓

𝟐 𝒄𝒓
𝟏 𝒄𝒓

𝟐 

H
V

D
- 

L
T

I 

𝐺𝑎𝑤𝑡̅̅ ̅̅ ̅ (%) 0.6137 0.6171 0.6155 0.6116 

𝐺𝑎𝑜𝑟 (%) 0.3868 0.3972 0.4293 0.4238 

𝐺𝑛𝑣 (unit) 8083 8119 8835 8830 

𝐺𝐹𝑢 0.2443 0.2421 0.2557 0.2579 

H
V

D
 -

M
T

I 

𝐺𝑎𝑤𝑡̅̅ ̅̅ ̅ (%) 0.7820 0.7727 0.7499 0.7445 

𝐺𝑎𝑜𝑟 (%) 0.5519 0.5316 0.5656 0.5684 

𝐺𝑛𝑣 (unit) 9026 9053 9793 9800 

𝐺𝐹𝑢 0.2365 0.2426 0.2601 0.2608 

H
V

D
 -

 S
T

I 

𝐺𝑎𝑤𝑡̅̅ ̅̅ ̅ (%) 0.7700 0.7677 0.7394 0.7363 

𝐺𝑎𝑜𝑟 (%) 0.5358 0.5462 0.5491 0.5542 

𝐺𝑛𝑣 (unit) 9062 9202 9823 9868 

𝐺𝐹𝑢 0.2376 0.2397 0.2610 0.2617 

A
v
er

a
g
e 

R
es

u
lt

s 

𝑮𝒂𝒘𝒕̅̅ ̅̅ ̅̅  (%) 0.7219 0.7192 0.7016 0.6975 

𝑮𝒂𝒐𝒓 (%) 0.4915 0.4917 0.5147 0.5155 

𝑮𝒏𝒗 (unit) 8724 8791 9484 9499 

𝑮𝑭𝒖 0.2390 0.2414 0.2592 0.2604 

6. Conclusion 

In this chapter, we have presented a Java-based simulator for dynamic and adaptive 

management of smart traffic light systems, with their various GUIs, and the obtained results 

achieved through its application at the El-Hidhab Setif city intersection as a case study. 

Furthermore, we situated our proposals to existing works by comparing the obtained 

results with a baseline fixed-time model and other recent methods using specific evaluation 

criteria and metrics. Indeed, we evaluated and compared the effectiveness of the proposed 

ADSTLS-WCSO algorithm of a single intersection on normal, medium, and high-density 

vehicles. Then, we compared the results obtained from the optimal phase of ADSTLS-

WCSO which allows to reduce the vehicle waiting time and occupation rates in emergencies. 

The effectiveness and optimality of the ADSTLS-WCSO algorithm for a single intersection 
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have been experimentally proven to be superior to other algorithms, particularly in 

minimizing waiting time. We have also demonstrated through experiments that the multi-

agent extension of ADSTLS, demonstrated outstanding performance in managing multiple 

intersections with high vehicle density, resulting in an average vehicle waiting time of 28.4 

seconds and an average lane occupancy rate of 50%. By integrating the chronological 

coordination of ADSTLS agents, we were able to overcome the main drawbacks of 

traditional agent methods and previous studies on congested paths, leading to enhanced and 

valuable traffic performance improvements. 
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General Conclusion 

The global objective of this work is to develop a new STLS system, called ADSTLS 

(Adaptive and Dynamic Smart Traffic Light System), that enables robust, intelligent, 

dynamic, and adaptive management of regular and emergency vehicles to minimize the total 

travel time at an intersection for all drivers. As a result, the system must adapt to different 

contextual changes. For this reason, we need to control the traffic flow according to traffic 

congestion, road accidents, and weather conditions. Our objective is to efficiently manage a 

set of intersections to enhance flexibility and intelligent traffic light control in an optimal 

way, while also being able to respond to emergencies, reduce waiting times, and maximize 

the effectiveness of emergency services. 

First, we have proposed a new hybrid traffic flow model that combines a cycle model 

and a phase model for optimizing traffic light planning based on traffic density. The aim is 

to minimize vehicle waiting time and queue occupancy at the city’s intersections. This 

model offers adaptability and flexibility in managing traffic flow. It also enables the 

automatic switch from a cycle model to a phase model when the average queue occupancy 

rate is higher and vice versa. 

Our research proposed a reliable ADSTLS system based on a heartbeat mechanism 

to manage fault tolerance in the real world. Furthermore, ADSTLS performs in two modes: 

dynamic intelligence and emergency adaptation. When congestion or emergency is detected, 

the phase or cycle models are dynamically managed.  A Weighted Chicken Optimization 

Algorithm (WCSO) in the dynamic intelligence mode is used to find the best traffic flow 

model (i.e. the phase or cycle model) that can optimize traffic parameters by determining 

the best weights to optimize traffic light planning. The mono-objective algorithm for bio-

inspired optimization is used to determine the most suitable phase based on the optimal 

weights of a single intersection using WCSO and two new objective functions as heuristics. 

These heuristics are based on a novel weighted function in terms of the average waiting time 

and occupation rate of all intersection queues to select the best phase while adhering to the 

constraints of traffic parameter optimization. For adaptive mode vehicles, the WCSO 

dynamic phase model is extended to include various priority levels for emergency vehicles. 

A new technique based on the distance of emergency vehicles and their priority levels is 

proposed for determining the priority direction 
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A new system, CCADSTLS, is proposed as an extension of ADSTLS. It is based on 

autonomous agents collaborating and coordinating together to enhance system performance 

by reducing execution time and identifying safe routes to address congestion at intersections. 

To validate our method, we developed a JAVA simulator. This simulator was applied 

to a real case study of the EL-Hidhab Setif city intersection to effectively manage a single 

intersection, adapting to various changes such as traffic congestion through dynamic and 

adaptive traffic parameters management using three traffic lights models (cycle, phase, and 

hybrid). Furthermore, different vehicle densities (i.e. normal, medium, and high) were 

generated to extension the efficiency of the proposed method in terms of average waiting 

time, occupancy rate, and model utility. Indeed, the evaluation of this approach provides 

improved performance and an optimal choice of the best phase, considering the traffic flow 

parameters such as average waiting time, occupancy rate, the number of emergency vehicles 

at the intersection, and the model utility. 

Our comparative study of the proposed approach to other current traffic flow 

management models showed the effectiveness of the ADSTLS system. Additionally, it 

indicated that considering the distance of emergency and their priority levels yields 

enhanced flexibility and effective results that resolve the congestion problems. 

In order to enhance the performance of the proposed system, a coordinative system 

is utilized for managing multiple intersections using a multi-agent approach. A comparison 

of the performance results of CCADSTLS with agents has been carried out in two different 

scenarios, congestion and weather disaster. Experimental results revealed that intelligent 

coordination of agents combined with a sophisticated WCSO can achieve good results in 

multiple intersections even in weather environmental conditions. 

Finally, we recognize that various aspects within the realm of traffic management 

systems could enhance our work. The simulator we developed holds promise for further 

improvement and real-world deployment. To achieve this, we need to consider several 

perspectives that we consider crucial for both short and long-term, and for the 

comprehensive development of the ADSTLS system. 

 Integration of non-functional requirements: This study focuses only on functional 

metrics, such as the output flow rate of vehicles, average waiting time, and average 

occupancy rate. In certain cases, the number of requests made to the server is relevant 

to selecting the next phase or cycle. This metric will be considered in future research. 

We need to improve our system so that it can predict future traffic flow along with 

identifying the current traffic flow and the user requests. 
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 Advanced Security of traffic data flow:  The proposed system must prioritize the 

security and privacy of traffic data by implementing new secure and lightweight 

protocols to control data exchange messages. Advanced security techniques need to 

be integrated to guarantee the data's privacy and confidentiality. 

 Integration of Deep learning with social media networks: It is important that 

an intelligent traffic light model combined with a sophisticated deep learning 

approach associated with social media integration can improve decision-making 

based on large traffic datasets.  
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Abstract . Nowadays, STLS (Smart Traffic Light System) is widely adopted by smart cities to control traffic lights. They 
often rely on camera and sensors to collect traffic data. However, STLS in urban areas is not flexible enough to efficiently 

manage traffic congestions and emergencies. Therefore, the increasing need of automatic synchronized STLS system of 
various traffic controllers at different intersections which performed with reduced occupancy and waiting time benefits 

becomes a major concern. This is crucial for meeting the optimized traffic parameters of multiple intersections and driver's 
needs. Our objective is to develop a new system, called ADSTLS (Adaptive and Dynamic Smart Traffic Light System) to 

address traffic management at an intersection, solving the challenging problem of traffic congestion while prioritizing 
emergency vehicles. Therefore, we have proposed a system with new hybrid traffic flow model that combines a cycle model 

and a phase model for optimizing and efficiently managing traffic light planning, along with a decision-making approach 
focused on reducing congestion and average vehicle waiting time. By collecting traffic data, the system automatically extracts 

useful traffic information using computer vision and computing standard traffic metrics.  Moreover, we propose two-traffic 
modes for regular and emergency vehicles to achieve an optimal decision-making process. The first mode, the dynamic mode, 

select the best phase using the Weight Chicken Swarm Optimization (WCSO) algorithm to ensure an optimal vehicle waiting 
time and queue occupancy at the city’s intersection. The second mode, the adaptive mode, determines the priority direction 

based on the distance of emergency vehicles and their priority levels. We have also proposed extending ADSTLS system using 
the multi-agent aspect to improve the system’s performance in terms of execution time. To demonstrate our approach, we have 

presented a simulator applied to a real case study of EL‐Hidhab Setif city intersection. The experimental results show a 
decrease in the average vehicle waiting time (31 s) and queue occupation rate (33.82%) across all simulated traffic scenarios. 

Furthermore, compared to other car types, emergency vehicles usually had much shorter wait times. 
 

Résumé. De nos jours, les systèmes de feux de circulation intelligents (STLS) sont largement adoptés dans les villes 

intelligentes pour contrôler les feux de circulation. Ils s'appuient souvent sur des équipements dédiés tels que : les caméras, les 

capteurs, etc. pour collecter des données sur le trafic. Cependant, les STLSs dans les zones urbaines ne sont pas assez flexibles 
pour gérer efficacement les embouteillages et les véhicules d’urgences. Par conséquent, le besoin croissant d'un système STLS 

automatique et synchronisé de divers contrôleurs de trafic à différentes intersections, qui fonctionne avec une occupation 
réduite et des avantages en termes de temps d'attente, devient une préoccupation majeure. Ceci est crucial pour répondre aux 

paramètres de trafic optimisés de plusieurs intersections et aux besoins des conducteurs. Notre objectif est de développer un 

nouveau système, appelé ADSTLS (Système adaptatif et dynamique de feux de circulation intelligents) pour gérer le trafic à 
une intersection, en résolvant le problème difficile des embouteillages tout en donnant la priorité aux véhicules d'urgence. . 

Nous avons donc proposé un système avec un nouveau modèle hybride de flux de trafic qui combine, un modèle de cycle et 
un modèle de phases pour optimiser et gérer efficacement la planification des feux de circulation, ainsi qu'une approche 

décisionnelle axée sur la réduction des embouteillages et du temps d'attente moyen des véhicules. En collectant des données 
sur le trafic, le système extrait automatiquement des informations utiles sur le trafic en utilisant la vision par ordinateur et en 

calculant des métriques standard du trafic.  En outre, nous proposons deux modes de circulation pour les véhicules ordinaires 
et les véhicules d'urgence afin de parvenir à un processus décisionnel optimal. Le premier mode : le mode dynamique, 

sélectionne la meilleure phase à l'aide de l'algorithme d’optimisation « Weight Chicken Swarm Optimization  (WCSO) » afin 
de garantir un temps d'attente optimal pour les véhicules et l'occupation des files d'attente aux intersections de la ville. Le 

second mode, le mode adaptatif, détermine la direction prioritaire en fonction de la distance des véhicules d'urgence et de leurs 
niveaux de priorité. Nous avons également proposé d'étendre le système ADSTLS en utilisant le paradigme multi-agents pour 

améliorer la performance du système en termes de temps d'exécution. Pour montrer la faisabilité de notre approche, nous avons 
réalisé un simulateur que nous avons appliqué à une étude de cas réelle de l'intersection de la cité EL-Hidhab, ville de Sétif. 

Les résultats expérimentaux ont montré une diminution du temps d'attente moyen des véhicules (31 s) et un taux d'occupation 
des files d'attente (33,82 %) dans tous les scénarios de trafic simulés. En outre, par rapport aux autres types de véhicules, les 

véhicules d'urgence ont également des temps d'attente beaucoup plus courts. 
 

. وغالباً ما تعتمد هاعلى نطاق واسع في المدن الذكية للتحكم في (STLS) الذكيةفي الوقت الحاضر، يتم اعتماد نظام إشارات المرور  .ملخص

في المناطق الحضرية بالمرونة الكافية لإدارة  STLS وأجهزة الاستشعار لجمع بيانات حركة المرور. ومع ذلك، لا يتسم نظام تعلى الكاميرا
متزامن وآلي  STLS ولذلك، تصبح الحاجة المتزايدة إلى نظاممصدر قلق كبير  حيث يؤدي إلى المروري وحالات الطوارئ بكفاءة. الازدحام

. خفض معدل امتلاء طوابير الوقوف وتقلل من وقت الانتظار إلىلمختلف وحدات التحكم في حركة المرور في التقاطعات المختلفة التي تؤدي 

 ت المتعددة واحتياجات السائقين. ويتمثل هدفنا في تطوير نظام جديد يسمىوهذا أمر بالغ الأهمية لتلبية معايير حركة المرور المثلى للتقاطعا

ADSTLS  نظام إشارات المرور الضوئية الذكي المتكيف والديناميكي( لمعالجة إدارة حركة المرور عند التقاطع، وحل المشكلة الصعبة(
، اقترحنا نظامًا بنموذج هجين جديد لتدفق حركة المرور يجمع بين المتمثلة في الازدحام المروري مع إعطاء الأولوية لسيارات الطوارئ. لذلك

م نموذج الدورة ونموذج المرحلة لتحسين تخطيط إشارات المرور وإدارتها بكفاءة، إلى جانب نهج اتخاذ القرار الذي يركز على تقليل الازدحا

لنظام تلقائياً معلومات مفيدة عن حركة المرور باستخدام الرؤية ومتوسط وقت انتظار المركبات. من خلال جمع بيانات حركة المرور، يستخرج ا
علاوة على ذلك، نقترح وضعين لحركة المرور للمركبات العادية ومركبات الطوارئ لتحقيق عملية . الحاسوبية وحساب مقاييس حركة المرور

( WCSOستخدام خوارزمية تحسين سرب الدجاجة الموزونة )اتخاذ القرار الأمثل. يحدد الوضع الأول، وهو الوضع الديناميكي، أفضل مرحلة با

على  لضمان أفضل وقت انتظار للمركبات وإشغال طابور الانتظار في تقاطع المدينة. يحدد الوضع الثاني، الوضع التكيفي، اتجاه الأولوية بناءً 
خدام جانب تعدد العملاء لتحسين أداء النظام من حيث باست ADSTLSمسافة مركبات الطوارئ ومستويات أولويتها. اقترحنا أيضًا توسيع نظام 

مدينة سطيف. تظُهر النتائج التجريبية انخفاضًا  الهضاب بحيوقت التنفيذ. ولإثبات نهجنا، قدمنا محاكاة تم تطبيقها على دراسة حالة حقيقية لتقاطع 

( في جميع سيناريوهات حركة المرور التي تمت %33.82)ثانية( ومعدل إشغال طابور الانتظار  31في متوسط وقت انتظار المركبات )

 .محاكاتها. علاوة على ذلك، بالمقارنة مع أنواع السيارات الأخرى، يكون لمركبات الطوارئ أوقات انتظار أقصر بكثير
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