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Abstract

This thesis tackles the challenge of estimating sensor faults in a specific class of
nonlinear systems. These systems operate continuously over time and can switch be-
tween different modes. We model them using Takagi-Sugeno (T-S) models, which can
handle nonlinearities in the system’s behavior. Additionally, the model accounts for
external disturbances that are limited in size. This approach avoids the issue of having
unmeasured premise variables, which can complicate estimation tasks. The core con-
tribution of this research lies in proposing robust observers. These observers operate
asynchronously with the system’s switching mechanism and can simultaneously esti-
mate state and sensor faults. The design of these observers is formulated using Linear
Matrix Inequalities (LMIs), which are mathematical conditions that simplify analysis.
Our approach offers several advantages compared to previous studies. First, the LMI
conditions are independent of a specific dwell time, making them more flexible. Second,
by applying relaxation techniques and specific constraints, we achieve less conservative
results compared to prior work, especially when dealing with the unmeasured nonlin-
earities in the system. Furthermore, this thesis includes an optimization procedure to
estimate the region within which the estimation error is guaranteed to remain. The
effectiveness of the proposed design is demonstrated through several simulation exam-
ples. One example showcases the reduction in conservatism achieved by our approach.
Another example illustrates the performance of the observers even when the system’s
switching mechanism doesn’t perfectly match the observer’s assumptions.

Keywords: Takagi-Sugeno fuzzy systems, switched systems, observer design, fault
diagnosis, fault estimation, Lyapunov fuction, Linear Matrix Inequalities (LMIs).
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Résumé

Cette thèse aborde le problème d’estimation des défauts de capteur pour une classe
de systèmes à commutation non linéaires en temps continu. Ces systèmes sont modélisés
par des modèles de Takagi-Sugeno (T-S) avec des parties conséquentes non linéaires et
soumis à des perturbations bornées. Cette approche de modélisation permet d’éviter
le problème des variables de prémisse non mesurées (UPVs). La contribution princi-
pale de cette étude consiste à proposer des observateurs à commutation asynchrones
robustes pour estimer simultanément les défauts de capteur et l’état du système sous
une commutation dépendante de l’état. Basée sur une fonction de Lyapunov multiple
candidate, la conception de l’observateur proposé est formulée en termes d’inégalités
matricielles linéaires (LMI). Ces conditions sont indépendantes du temps de séjour
et moins conservatrices par rapport à des études antérieures similaires, grâce à des
techniques de relaxation courantes et à des contraintes quadratiques incrémentielles
appliquées aux parties conséquentes non linéaires non mesurées. Une autre contribu-
tion consiste à effectuer l’estimation du domaine d’attraction de l’erreur d’estimation à
l’aide d’une procédure d’optimisation. Afin d’illustrer l’efficacité de l’approche de con-
ception proposée, plusieurs exemples de simulation sont considérés. Le premier exemple
concerne la réduction du conservatisme apporté par notre proposition par rapport aux
études précédentes, tandis que le second vise à montrer, à travers un exemple illus-
tratif, les performances des observateurs T-S à commutation proposés sous des lois de
commutation inadaptées.

Mots-clés : Systèmes flous de type Takagi-Sugeno, systèmes à commutations,
synthèse d’observateurs, diagnostic des défauts, estimation des défauts, fonction de
Lyapunov, Inégalité Matricielles Linéaires (IML).
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Chapter 1

General introduction

1.1 Introduction

Switched systems constitute a fundamental class within the realm of hybrid dynami-
cal systems. Their inherent strength lies in the ability to effectively model systems

exhibiting switching phenomena. This ubiquitous phenomenon manifests as transitions
between distinct operational modes, a characteristic observed across diverse engineering
domains. For instance, switched systems find application in power electronics, where
they describe the transitions between various power conversion modes. Similarly, air
traffic control systems leverage switched systems to model the movement of aircraft
between different flight sectors. Robotics, with its diverse gaits, and chemical processes,
with their multi-stage reactions, further exemplify the applicability of switched systems.
The core concept underlying switched systems lies in the synergistic combination of
continuous dynamic subsystems and discrete events. These continuous subsystems rep-
resent the ongoing behavior within each operational mode, while the discrete events
orchestrate the switching between them. This elegant framework offers a powerful and
versatile tool for the analysis and design of complex systems exhibiting switching be-
havior.

Many real-world systems exhibit complex, nonlinear behavior that can be challeng-
ing to capture with traditional linear models. Takagi-Sugeno (T-S) fuzzy models
offer a powerful approach to tackle this problem by representing a nonlinear system as
a collection of interconnected linear models. A T-S fuzzy model decomposes the non-
linear system into multiple operating regions. Each region is described by a set of fuzzy
rules that link input conditions to linear system dynamics. The overall system behavior
is then obtained by blending the outputs of these individual linear models based on
the degree of fulfillment (activation level) of the corresponding fuzzy rules.T-S models
provide an intuitive and human-readable representation of the nonlinear system. The
fuzzy rules explicitly capture the relationship between operating conditions and system
behavior. The framework can accommodate a wide range of nonlinearity by adjusting
the number and complexity of fuzzy rules. This allows for a tailored model that closely

1



General introduction

reflects the specific characteristics of the system.
Within the domain of automatic control systems, fault diagnosis constitutes an in-

dispensable facet for guaranteeing robust and reliable performance. Automatic control
systems depend on intricate interplay between sensors and actuators to gather informa-
tion and exert influence on the physical world. When malfunctions, such as sensor drift
or actuator degradation, occur, they disrupt this delicate equilibrium, potentially lead-
ing to subpar performance or even safety risks. Fault diagnosis techniques act as a vital
safeguard, enabling the prompt and precise identification of these anomalies. Through
meticulous analysis of sensor data and system behavior, these techniques pinpoint the
nature and location of the fault. This early detection empowers the implementation of
corrective measures, such as targeted maintenance or control system reconfiguration.
The ramifications extend beyond safeguarding the system itself and its environment;
by minimizing downtime and ensuring continued optimal operation, fault diagnosis
techniques ultimately contribute to enhanced system efficiency and cost-effectiveness.

Sensors are crucial devices used to detect and measure physical quantities such as
temperature, motion speed, and pressure. They are integral to control systems, ensuring
accuracy, stability, and reliability of control strategies. However, sensors, often deployed
in harsh environments like industrial settings and aerospace, are prone to various issues
like fouling, bias, drift, and damage. When sensor faults occur, they can compromise
system performance and, in severe cases, lead to accidents if not promptly diagnosed.
Estimating the magnitude and shape of faults is a challenging task and critical for
initiating fault accommodation procedures, which are also essential for adapting control
laws and maintaining system performance and reliability.

State observer is a mathematical model used to estimate the internal states of a
dynamic system based on available input and output measurements. In many practical
applications, not all system states can be directly measured due to physical constraints
or sensor limitations. The operating principle of a state observer relies on reconstruct-
ing these unmeasured states by using a mathematical representation of the system,
typically in the form of differential or difference equations. By comparing the esti-
mated output with the actual system output, the observer adjusts its internal states
through a correction mechanism, often incorporating feedback to minimize estimation
errors. In the context of fault diagnosis, state observers play a crucial role in detecting,
isolating, and estimating faults by analyzing discrepancies between expected and ac-
tual system behavior. Specifically, they can be designed to track deviations caused by
faults in sensors, actuators, or system components, thereby enabling fault estimation
and enhancing the system’s reliability, safety, and performance.

The primary objective of this dissertation is to develop an effective approach
for sensor fault estimation for a class of switched nonlinear systems. To achieve this,
we propose the design of a switched robust observer capable of accurately estimat-
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ing sensor faults while ensuring system reliability and performance. Additionally, we
aim to mitigate the impact of fast-varying and even unbounded sensor faults, mak-
ing the proposed approach highly adaptable to challenging fault scenarios. Another
key objective of this thsesis is to eliminate the need for prior knowledge of the exact
bounds or derivatives of sensor faults, thereby enhancing the practical applicability of
the method. This is particularly crucial for real-world switched systems, where faults
often exhibit unpredictable dynamics and are inherently difficult to characterize with
precision.

In the following section, we present a literature review on fault estimation to po-
sition our contributions within the existing body of research.

1.2 Literature review

Broadly speaking, there are two categories of fault estimation methods, namely
estimator-based fault estimation (Kamal and Aitouche, 2020, Li et al., 2020, Zhu et al.,
2015, Chen and Liu, 2017) and observer-based fault estimation (Yang et al., 2015, Sun
et al., 2020, Haouari et al., 2015, Li and Yang, 2019, Zhu et al., 2021). For example,
the design of a fault estimator has been performed in (Kamal and Aitouche, 2020,
Li et al., 2020). The main idea consists to use the output injection concept for fault
estimation. The proposal seems complicated due to introducing of a first-order filter in
the system model in order to eliminate noise. An extended Kalman filter-based fault
estimation for satellite attitude control systems has been proposed in (Chen and Liu,
2017). The authors did not give any rigorous convergence analysis of the estimation
error. In addition, this approach requires some knowledge on the noise disturbance
signals.

Furthermore, fault estimation is predominantly achieved through observer-based
techniques, crucial for determining fault characteristics (Habibi et al., 2023, Aouaouda
et al., 2016, Zhang and Zhu, 2018, Yang and Wilde, 1988,Zhang et al., 2018, Mu et al.,
2021). In nonlinear systems, a successful approach involves constructing an augmented
fuzzy T-S descriptor observer, as proposed in (Aouaouda et al., 2016) for electric vehicle
induction motor drives, exhibiting satisfactory performance. (Du and Cocquempot,
2017) investigates the H∞ performance of such observers for discrete-time dynamic
systems, particularly addressing sensor fault estimation, albeit with a slight matrix
rank precondition (Zhang and Zhu, 2018).

Another avenue explores the Unknown Input Observer (UIO) principle (Yang and
Wilde, 1988), treating fault signals as system unknowns. For instance, (Zhang et al.,
2018) designs a full-order UIO for fault estimation in discrete-time T-S fuzzy systems
amidst disturbances, while (Mu et al., 2021) delves into fuzzy T-S UIO design for esti-
mating state and fault vectors in a class of nonlinear systems, under the assumption of
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constant faults. It’s crucial to note that most UIO methods rely on matrix rank precon-
ditions, termed Observer Matching Conditions (OMC), aimed at decoupling unknown
inputs. However, satisfying OMC can be challenging for many practical systems.

Sliding Mode Observers (SMO) have seen widespread use in addressing fault esti-
mation (Yang et al., 2015, Sun et al., 2020, Haouari et al., 2015, Li and Yang, 2019,
Zhu et al., 2021). In (Yang et al., 2015), SMO design for a category of nonlinear sys-
tems was outlined, relying on fulfilling challenging conditions such as the OMCs and
the minimum phase condition. Similarly, in (Haouari et al., 2015), a high-order SMO
was developed for a set of T-S fuzzy models. However, despite yielding satisfactory
simulation results, this method is limited by its assumption of a piecewise constant
sensor fault vector. More recently, in (Li and Yang, 2019), the design of an SMO for a
subset of T-S descriptor systems was addressed, aiming to bypass the need for a norm-
bounded condition on the derivative of faults. Nonetheless, this approach necessitates
prior knowledge of fault bounds.

Additionally, Adaptive Observer (AO) is another type of observer extensively uti-
lized for fault estimation (Fu et al., 2018, Chen et al., 2019, Fu et al., 2020, Han et al.,
2022). For example, (Zhang et al., 2009) introduced a fast adaptive fault estimation ob-
server, enhancing both the speed and accuracy of fault estimation. However, the design
approach is rather conservative due to its reliance on the strict positive real assump-
tion. In (Liu et al., 2018), a modified AO was proposed to concurrently estimate states
and faults, under the assumption of a known fault model and fulfillment of the persis-
tent excitation condition, along with known bounds of external disturbances. Similarly,
(Han et al., 2022) developed an adaptive dynamic proportional-integral observer-based
fault estimation method for a subset of nonlinear systems. This observer leverages both
the output and its derivative to reconstruct process faults, particularly advantageous
for time-varying process faults. Nevertheless, certain matrix rank preconditions are
necessary when the nonlinear component is considered unknown.

Another intriguing approach involves leveraging robust H∞ estimation performance
to mitigate the impact of disturbances and alleviate the conservatism associated with
matrix rank preconditions aimed at unknown input decoupling. Several investigations
have explored robust H∞ fuzzy T-S observers in this regard (Han et al., 2016, Chen
et al., 2021). Typically, such observers do not impose constraints on fault signals;
instead, they require only boundedness of external disturbances.

In the realm of switched nonlinear systems, observers exhibit distinctive charac-
teristics, being either synchronous or asynchronous with the system’s switching be-
havior. Synchronous observers align their mode switches precisely with those of the
system, ensuring simultaneous transitions between modes. However, practical imple-
mentation often poses challenges as obtaining real-time system switching signals for
the observer can be impractical (Sun et al., 2020, Chen et al., 2023, Sun et al., 2020,
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Zhang et al., 2018). Asynchronous observers, on the other hand, feature non-aligned
switching instants with the system, arising from delays in detecting active modes or
mismatches in switching laws (Pettersson, 2005, Ren et al., 2018, Xiang et al., 2012,
Hong et al., 2018,Chekakta et al., 2021,Chekakta et al., 2022). In the context of fault
estimation, limited studies have explored switched nonlinear systems (Sun et al., 2020,
Chen et al., 2023, Sun et al., 2020, Zhang et al., 2018). For instance, (Sun et al., 2020)
investigated a descriptor SMO for switched T-S fuzzy stochastic systems, introducing
dwell-time dependent conditions ensuring estimation error convergence, under known
premise variables. However, this approach entails conservatism due to stringent de-
tectability conditions (Zhang and Zhu, 2018), and requires prior knowledge of fault
bounds, posing challenges for practical implementation. Similarly, fault estimation in
switched fuzzy stochastic systems has been addressed in various scenarios (Han et al.,
2019, Han et al., 2018, Priyanka et al., 2022, Sun et al., 2023, Yu et al., 2023), each
imposing its own constraints and assumptions.

Furthermore, (Zhang et al., 2018) tackled sensor fault estimation for switched fuzzy
systems using an UIO, employing mode-dependent average dwell time techniques and
piecewise Lyapunov functions. However, this study only considered synchronous switch-
ing between the system and the observer, assuming measurable premise variables and
verifying OMCs to decouple unknown inputs from estimation errors. Similarly, fault es-
timation issues for diverse systems, including those with an unknown smooth nonlinear
function or continuous-time nonlinear Markovian jump systems, have been addressed
in literature, relying on the verification of detectability conditions and OMCs (Fu et al.,
2018, Chen et al., 2019, Fu et al., 2020, Yan et al., 2022,Chen et al., 2023).

In a recent study (Han et al., 2022), sensor fault estimation for switched fuzzy sys-
tems with UPVs was investigated using an AO. The Lipschitz condition was employed
to address the UPVs issue. Convergence analysis of estimation error was formulated
using a common Lyapunov matrix for different switching subsystems, under arbitrary
switching sequences and synchronous switching modes. However, the design’s main lim-
itation lies in the conservatism of the proposed conditions based on LMIs, which rely
on the availability of a common Lyapunov matrix. Additionally, certain matrix rank
preconditions, impacting the practicality of the method, were assumed to be met. A
comparison study between this approach and previous work (Zhang et al., 2018) will
be presented in Section (5.4), with a critical analysis of the results obtained.

In a related field, (Han et al., 2023) delved into the development of a reduced-order
observer, aiming to concurrently estimate system states and fault signals. The objec-
tive was to integrate this observer into a fault-tolerant control strategy. This innovative
approach sidesteps common assumptions regarding fault bounds and their derivatives,
thus extending its applicability to a broad spectrum of systems characterized by fast
time-varying and unbounded faults. The formulation of sufficient conditions for the
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existence and design of the switched fuzzy observer involved utilizing a common Lya-
punov function across all subsystems. These conditions were expressed in terms of
LMIs, under both arbitrary switching sequences and synchronous switching modes.

In a recent study (Liu and Wang, 2021), an intriguing fault estimation methodol-
ogy utilizing a robust H∞ observer with measurable premise variables was introduced
for a subset of nonlinear discrete-time switched T-S fuzzy systems. Leveraging average
dwell time techniques and a common Lyapunov function, conditions ensuring the con-
vergence of estimation errors were formulated in terms of LMIs. Despite the somewhat
conservative nature of the proposed design method, attributed to the use of a common
Lyapunov matrix, it is noteworthy that this approach obviates the need for verifying
detectability conditions or strong OMCs. Similarly, (Ladel et al., 2021) tackled the
issue of system state and fault estimation for a subset of switched T-S fuzzy systems
under constrained switching sequences. Sufficient conditions, ensuring favorable perfor-
mance in terms of fault estimation and H∞ disturbance attenuation, were formulated
as LMI conditions. These conditions assumed that premise variables were measurable
and synchronous switching modes were employed.

1.3 Contributions of the thesis

A critical examination of the aforementioned bibliography (section 1.2) highlights
several noteworthy limitations inherent to existing design approaches. These limitations
provide a springboard for the present study. We now delineate the core contributions
our research endeavors to make (Tabbi et al., ? :

• Most observer-based fault estimation methods rely on OMCs and/or detectability
conditions, which are often overly strict for many physical systems (Sun et al.,
2020, Zhang and Zhu, 2018, Zhang et al., 2018, Chen et al., 2019, Fu et al., 2020,
Yan et al., 2022, Chen et al., 2023). Among these methods, robust observers are
a notable exception as they are less conservative by employing H∞ disturbance
attenuation instead of unknown input decoupling (Liu and Wang, 2021, Ladel
et al., 2021). Building on this insight, our work introduces a novel observer design
approach based on H∞ disturbance attenuation for a class of switched nonlinear
systems. This approach circumvents the limitations of OMCs and detectability
conditions or any stringent matrix rank preconditions. Furthermore, it does not
necessitate knowledge of sensor fault bounds or their derivatives, making it more
practical for switched systems with with fast time-varying and unbounded faults.

• By employing the sector nonlinearity approach to a system bounded within a
specific sector and containing non-linear elements dependent on unmeasured
state variables, we typically derive an equivalent T-S fuzzy multi-models with
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UPVs. However, the challenge of UPVs in designing fault estimation observers
for switched nonlinear systems remains largely unexplored, except for certain
studies (Han et al., 2022, Fu et al., 2018). Our contribution aims to tackle this
challenge by addressing the UPVs issue. Rather than relying on the Lipschitz
condition-based approach, we propose an alternative method. This method in-
volves separating the measured and unmeasured nonlinearities of the switched
system, then applying T-S modeling techniques only to the measured nonlinear-
ities. This results in T-S multi-models with nonlinear consequent parts (N-TS),
where the membership functions depend solely on measured premise variables.
One significant advantage of T-S modeling with nonlinear consequent parts is the
potential reduction in the number of vertices involved in the conditions based on
LMIs, compared to classical T-S modeling methods. This reduction can lead to
less conservative estimates and lower computational complexity.

• As previously mentioned, the majority of the methods outlined have been con-
ducted under constrained switching sequences, as reported in references (Sun
et al., 2020, Chen et al., 2023, Sun et al., 2020, Zhang et al., 2018), with ex-
ceptions noted in studies by (Han et al., 2022, Han et al., 2019). Dwell-time
dependent conditions have been utilized to address the development of observer-
based fault estimation, where the switched systems are are forced to dwell in
each mode during at least a minimum time. While these conditions suit systems
with controlled switching sequences, many physical systems follow uncontrolled
switched sequences, such as those governed by state-dependent laws (Pettersson,
2005, Xiang et al., 2012). Furthermore, almost all studies in the literature re-
view focused on the straightforward case of synchronous switched observers. Our
third contribution involves establishing dwell-time free conditions for designing
asynchronous switched observers-based fault estimation. Unlike most prior works,
the designed switched observers can handle unknown, arbitrary, or uncontrolled
switching sequences, and address the initialization problem where the observer’s
switching mode may be asynchronous with that of the system.

• When the Takagi-Sugeno (T-S) fuzzy model holds true locally within a confined
region of the state space, and if the state vector ventures beyond the model’s
validity domain, ensuring convergence of the estimation error becomes uncer-
tain, posing a significant limitation for T-S model-based observers. Therefore,
it becomes pertinent to include the estimation of the domain of attraction of
the estimation error dynamics in the observer design approach. To the best of
our knowledge, previous studies on switched observers-based sensor fault estima-
tion have not addressed this issue. Consequently, our fourth contribution involves
proposing an optimization procedure focused on expanding Lyapunov level sets
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to estimate the attraction domain.

• The final contribution aims to alleviate the conservatism inherent in the sug-
gested LMI conditions. By employing quadratic constraints methods to address
the nonlinear consequent parts and employing standard relaxation techniques
(Peaucelle et al., 2000, Tuan et al., 2001), notable enhancements in terms of fea-
sibility domains are achieved and contrasted with previous studies (Han et al.,
2022, Zhang et al., 2018).

1.4 Structure of the thesis

This dissertation is structured into five distinct chapters.
The first Chapter provides a general introduction, a summary of the contributions

made and an overview of the thesis structure.
The second chapter lays the groundwork for the subsequent chapters by estab-

lishing a solid foundation in the core concepts of switched system modeling. It meticu-
lously defines the essential terminology and key notions relevant to this field. Notably,
the chapter presents two distinct classifications of switched systems, each utilizing a
different categorization criterion.

Building upon the foundation laid in the first chapter, the third chapter delves
into a comprehensive analysis of Takagi-Sugeno (T-S) fuzzy multi-model systems. It
explores the core principles governing these systems and examines various methods for
their derivation, with a specific emphasis on the sector nonlinearity approach.

The the fourth chapter tackles the intricacies of fault diagnosis specifically tai-
lored for nonlinear systems. The chapter meticulously defines key fault diagnosis terms
at the outset. This establishes a solid foundation upon which we can delve deeper into
the complexities of fault diagnosis for nonlinear systems, effectively navigating this
intricate landscape.

The fifth chapter confronts the challenge of robust sensor fault estimation in
switched nonlinear systems, particularly those plagued by fast-time varying and un-
bounded faults. These faults present a significant threat due to their rapid fluctuations
and potential to severely disrupt system behavior. To conquer this challenge, we in-
troduce a groundbreaking approach utilizing asynchronous switched observers. These
observers boast remarkable resilience: they can function effectively even when faced
with uncontrolled, arbitrary, or unknown switching sequences between system modes.
Additionally, they gracefully handle situations where the system and observer lack
perfect initial synchronization, allowing for different starting modes. This adaptabil-
ity makes them ideally suited for real-world scenarios where perfect synchronization is
often unrealistic.
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This dissertation culminates in a comprehensive conclusion that encapsulates the
overarching findings and delineates promising avenues for future research.
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Chapter 2

Preliminary notions on switched
systems

2.1 Introduction

This chapter serves as an introductory foundation to the fundamental concepts that
will underpin the subsequent chapters of this thesis. It meticulously delves into

the precise definitions of terminology and specific notions germane to the modeling of
switched systems. Two distinct categorizations of switched systems are presented, each
employing a unique classification criterion.

The first categorization utilizes the switching mechanism as the basis for differentia-
tion, introducing the concepts of state-dependent switched systems and time-dependent
switched systems. The second categorization distinguishes switched systems based on
whether the switching is controlled or autonomous.

Subsequently, the chapter embarks on an in-depth exploration of concepts pertain-
ing to the stability analysis of switched systems, drawing upon the rich foundations of
Lyapunov theory. The intricate concepts of common Lyapunov functions and multiple
Lyapunov functions are meticulously examined. Additionally, the chapter delves into
the nuanced concepts of stability under arbitrary switching and constrained switching,
providing a comprehensive understanding of these critical aspects.

The concluding section of the chapter is dedicated to elucidating the fundamental
notions that underpin the synthesis of switched observers. It meticulously outlines the
major challenges that arise in the context of synthesizing switched observers, encom-
passing both synchronous switched observers and asynchronous switched observers.

In the following, we provide a concise overview of the concept of Lyapunov stability.
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2.2 Lyapunov stability analysis

Lyapunov theory provides a powerful framework for analyzing the stability of
systems without explicitly solving the governing differential equations (Shevitz and
Paden, 1994). It allows us to draw conclusions about the behavior of trajectories,
such as their convergence or divergence from an equilibrium point, without needing to
determine the exact path of the trajectory. This qualitative analysis approach offers
advantages in terms of computational efficiency and applicability to a wider range
of systems, especially nonlinear ones. In the following, we present some key concepts
necessary for what follows (Sastry and Sastry, 1999).

Before we begin, it is important to recall the definition of a positive definite function.
A function V : Rn → R is said positive definite if:

• V (x(t)) ⩾ 0 for all x(t),

• V (x(t)) = 0 if and only if x = 0,

• All sublevel sets of V (x(t)) are bounded, which is equivalent to V (x(t)) → ∞, as
x(t) → ∞.

Example 1 V (x(t)) = x(t)T Px(t) with P = P T is positive definite function if
and only if P > 0.

2.2.1 Lyapunov global asymptotic stability theorem

Consider a continuously differentiable function, V (x(t)), defined on a domain D ⊂
Rn. The Lyapunov global asymptotic stability theorem states that for an autonomous
system described by the ordinary differential equation:

ẋ(t) = f(x(t)) (2.1)

where x(t) ∈ D and f : D → Rn, the equilibrium point x = 0 is globally asymptot-
ically stable if there exists a continuously differentiable function V (x(t)) satisfying the
following conditions (Clarke et al., 1998):

• Positive definiteness: V (x(t)) > 0 for all x(t) ∈ D, x(t) ̸= 0. (V (0) = 0 is
allowed),

• Negative definiteness of derivative: V̇ (x(t)) < 0 for all x(t) ∈ D, x(t) ̸= 0.
(V̇ (0) = 0 is allowed).
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2.2.2 Lyapunov exponential stability theorem

The Lyapunov global exponential stability theorem refines the Lyapunov global
asymptotic stability theorem by providing information about the convergence rate to-
wards the equilibrium point (x = 0). Let us consider a continuously differentiable
function, V (x(t)), defined on a domain D ⊂ Rn, and an autonomous system described
by the ordinary differential equation (2.1). The equilibrium point x = 0 is said to be
globally exponentially stable if there exist a continuously differentiable function V (x(t))
and a positive constant α > 0 satisfying the following conditions (Hafstein, 2004):

• Positive definiteness: V (x(t)) > 0 for all x(t) ∈ D, x(t) ̸= 0. (V (0) = 0 is
allowed),

• Exponential decrement of Lyapunov function derivative: V̇ (x(t)) ⩽ −αV (x(t))
for all x(t) ∈ D.

This implies that there exist a scalar M > 0 such that every trajectory of ẋ(t) =
f(x(t)) satisfies ∥x(t)∥ ⩽ Me

−αt/2 ∥x(0)∥.

2.2.3 Stability of autonomous linear systems

Consider an autonomous linear system described by the following differential equa-
tion:

ẋ (t) = Ax (t) (2.2)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is the system matrix, and t represents
time. To analyze the stability of this system, we can employ a quadratic Lyapunov
function of the form:

V (x(t)) = x(t)T Px(t) (2.3)

where P is a positive definite matrix (P = P T > 0). The positive definiteness of P

ensures that V (x(t)) is greater than zero for all non-zero state vectors x(t).
The key lies in analyzing the derivative of the Lyapunov function along the system’s

trajectories. This derivative, denoted by V̇ (x(t)), provides information about how the
function V (x(t)) changes with respect to time as the system evolves. By applying the
product rule and the fact that A is constant, we can obtain the following expression
for the derivative:

V̇ (x(t)) = ẋ(t)T Px(t) + x(t)T Pẋ(t) (2.4)

For the system to be stable, we need the derivative to be negative definite, meaning
it should be strictly less than zero for all non-zero states (V̇ (x(t)) < 0 for all x(t) ̸= 0).
To achieve this negativity, the following linear matrix inequality (LMI) must hold:
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AT P + PA < 0 (2.5)

Theorem 1 The autonomous linear system (2.2) is globally asymptotically sta-
ble, if there exists a symmetric positive matrix P = P T > 0 such that the given
inequality (2.5) is satisfied.

Remark 1 Numerous scientific computing environments and control system de-
sign software packages offer built-in LMI solvers, facilitating the solution of LMI
conditions. This alleviates users from the necessity of developing intricate opti-
mization algorithms. These solvers commonly employ interior-point methods or
other highly efficient algorithms specifically tailored for handling LMIs. Notable
examples encompass MATLAB’s LMI toolbox (Gahinet et al., 1994) and special-
ized software such as YALMIP (Ravat et al., 2021).

In the following, we briefly review some basic concepts of observer design.

2.2.4 Observer design

In control theory, a state observer, or state estimator, is a mathematical model that
estimates the internal state variables of a dynamical system based on available input
and output measurements. This estimate serves as a powerful tool for control design
and system monitoring.

Let us consider the following linear system:
 ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(2.6)

where x ∈ Rn is the state vector, u ∈ Rq is the input vector, y ∈ Rp is the output
vector, and A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n, and D ∈ Rp×q are the system matrices.

Consider the Luenberger observer (Luenberger, 1966), which is a dynamic system
providing a state estimate x̂(t) based on the system’s output. The following equation
describes its behavior:

˙̂x(t) = Ax(t) + Bu(t) + L(y(t) − ŷ(t))

y(t) = Cx̂(t)
(2.7)

where L ∈ Rn×p representing the observer gain to be designed.
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Figure 2.1: Schematic of a state observer for a linear system.

The state estimation error e(t) ∈ Rn can be defined as follows:

e (t) = x (t) − x̂ (t) (2.8)

Thus, the state error dynamic can be written as:

ė (t) = ẋ (t) − ˙̂x (t) (2.9)

By introducing the dynamic of the observer (2.7), the equation (2.9) can be written
as follows:

ė(t) = (A − LC)e(t) (2.10)

To analyze the stability of the state error dynamic (2.10), we can employ a quadratic
Lyapunov function of the form:

V (e(t)) = eT (t)Pe(t) (2.11)

Compute the derivative of the Lyapunov function along the error dynamics:

V̇ (t) = ėT (t)Pe(t) + eT (t)P ė(t) (2.12)
= eT (t)((A − LC)T P + P (A − LC))e(t) (2.13)
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For the estimation error dynamics to be asymptotically stable, the time derivative of
the Lyapunov function (2.13) must be strictly negative definite V̇ (e(t)). This means
V̇ (e(t)) < 0 is always less than zero for any non-zero estimation error. This guarantees
the estimation error converges to zero over time. To achieve this negativity, the following
inequality must hold:

(A − LC)T P + P (A − LC) < 0 (2.14)

The observer design can be effectively summarized by the following theorem.

Theorem 2 Given the linear system (2.6) and observer (2.7), the state error
dynamics (2.10) achieve global asymptotic stability if a symmetric positive matrix
P = P T > 0 and matrix Y exist, satisfying the following LMI:

AT P − CT Y T + PA − Y C < 0 (2.15)

The observer gain matrix can be derived as: L = P −1Y .

With a clear understanding of fundamental stability concepts, we now turn our
attention to a detailed examination of switched systems in the coming sections.

2.3 Fundamentals of switched systems

Switched systems represent a large class of hybrid dynamical systems, which are able
to describe various systems exhibiting switching phenomena. In this context, we can
quote as examples, power electronics, air traffic control, robotics, chemical processes,
as well as other systems in various fields. Switched systems consist of a combination
of continuous dynamic subsystems and discrete events that orchestrate the switching
between different subsystems (Liberzon and Morse, 1999, Zhu and Antsaklis, 2015).
The mathematical representation of a switched system can be expressed as follows:

ẋ (t) = fσj(t) (t, x (t) , u (t)) (2.16)

In this context, the system state x(t), where x(t) ∈ Rn, pertains to time t ⩾ 0. The
input u(t), where u(t) ∈ Rq, and the vector fields fσj(t), for all j ∈ Q, describing the
various modes of the system. σj(t) are switching functions defined, when the lth mode
is activated, as: σj(t) = 1 when j = l.

σj(t) = 0 when j ̸= l.
(2.17)

where obviously ∑m
j=1 σj(t) = 1.

With the aim of fostering a comprehensive grasp of switched system concepts among
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readers, we shall delve into a simplified and pedagogically structured example of a
heating system.

Example 2 (Heating system (Belkhiat, 2011)) A practical example of an
explicit switched system can be found in residential heating systems that regulate
room temperature (see Figure 2.2). The key component is the thermostat. This
system comprises two essential elements:

• Heating unit: Generates heat (e.g., furnace, boiler).

• Temperature sensor: Continuously monitors the room temperature.

Figure 2.2: Schematic of an heating system. (Belkhiat, 2011).

The thermostat functions as a discrete controller using pre-programmed temper-
ature thresholds:

• Lower threshold (Tlow): When the room temperature falls below Tlow

(e.g., 18◦C), the thermostat acts as a closed switch, triggering the heating
unit’s activation.

• Upper threshold (Thigh): When the room temperature reaches Thigh (e.g.,
22◦C), the thermostat acts as an open switch, deactivating the heating unit.
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This switching behavior regulates the room temperature. The heating system is
"ON" when the temperature is below Tlow and "OFF" when it reaches Thigh. The
system remains in this "judgment" state until:

• Temperature drops below Tlow: This triggers the heating system to turn
back ON.

• Optional time-based switching: Some thermostats might cycle the
heating system ON and OFF even within the acceptable temperature range
based on a preset timer.

The interplay between the room temperature and the thermostat’s switching be-
havior exemplifies an explicit switched system:

• Continuous evolution: Represented by the gradual rise or fall of the
room temperature.

• Discrete evolution: Characterized by the abrupt transitions between the
heating system’s "ON" and "OFF" states, triggered by the thermostat based
on temperature thresholds.

In the sequel, while subsystems can exhibit both linear and nonlinear dynamics, and
operate autonomously (u(t) = 0 for all t ⩾ 0) or under external control, for the sake of
analytical tractability and a foundational understanding, the remainder of this section
will restrict its focus to autonomous switched linear systems. This choice simplifies the
analysis and enhances the pedagogical value of the content.

Switched systems can be categorized according to the characteristics of their switch-
ing events. Two primary distinctions exist:

2.3.1 Switching mechanism-based categorization

This subsection outlines two common switching mechanisms:

2.3.1.1 State-dependent switching

In this case, a continuous system is divided into regions by switching surfaces (which
can be finite or infinite). These regions represent different operating conditions, each
governed by its own set of differential equations (Wu et al., 2013).

The system’s behavior is determined by its current state. When the state trajectory
crosses a switching boundary, a switch occurs. A new subsystem is activated, and the
system’s evolution follows a different set of differential equations (as depicted in Figure
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2.3). This switching process is directly influenced by the continuous state itself (as
described by Liberzon, 2003).

Region J Region J+

Switching Boundary

      1 , ,x t f t x t u t

      2 , ,x t f t x t u t

Figure 2.3: A visual representation of state-dependent switching.

A classic example is a thermostat. The internal state is the room temperature,
constantly monitored by a sensor. The threshold is a specific temperature setting.
When the room temperature dips below this threshold (the boundary), the thermo-
stat "switches gears" and activates the heating system. This demonstrates how state-
dependent switching allows a system to react intelligently to changes in its internal
environment.

2.3.1.2 Time-dependent switching

In contrast to state-dependent switching, which relies on the system’s internal
state to trigger transitions, time-dependent switching utilizes a predetermined schedule.
This approach is analogous to a traffic light system, where phase changes occur at set
intervals irrespective of the current traffic volume. In this case, the switching signal is
solely governed by time (Zhang et al., 2016).

One can conceptualize the switching signal q(t) as a control mechanism dictating the
system’s operational mode. Between consecutive switching points, the signal maintains
a constant value, signifying the currently active subsystem or mode. Figure 2.4 depicts
a typical example of a time-dependent switching signal. This methodology offers a
predictable and reliable means of managing system behavior, making it particularly
well-suited for applications where precise timing is paramount.
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Figure 2.4: A visual representation of time-dependent switching signal.

2.3.2 Switching control-based categorization

In switched systems, the transitions between different subsystems can be triggered
by various factors.This subsection outlines two common switching control.

2.3.2.1 Arbitrary (Autonomous) switching

Let explore the concept of arbitrary (autonomous) switching, wherein the switching
mechanism operates independently without external influence. In this kind of systems,
the switching signal responsible for transitioning between subsystems is not governed
by any external input or feedback. Instead, the system autonomously determines when
to switch based on its internal states or predefined rules. Consequently, the timing
and sequence of switching events are often unpredictable. This unpredictability adds
a layer of complexity when analyzing the behavior of the overall system, compared
to situations where switching is controlled externally. Moreover, analyzing stability,
performance, and reachability properties under arbitrary switching conditions can be
challenging due to the inherent unpredictability (Fainshil et al., 2009).

2.3.2.2 Constrained (Controlled) switching

In contrast to autonomous switching, constrained (controlled) switching relies on
an external factor to dictate the switching behavior between subsystems. This external
factor can be:

• Human operator: A human operator actively monitors the system state and
makes informed decisions on when to switch based on experience, pre-defined
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protocols, or real-time analysis. For instance, manual transmission in the context
of automobiles corresponds to switching being controlled by the driver.

• Supervisory control program: A pre-programmed control system monitors
system variables and triggers switching based on predefined conditions or algo-
rithms. This allows for automated control with more complex decision-making
capabilities compared to human operators. As examples, we can mention the
following cases:

– Flight control systems: Autopilots in airplanes use control algorithms to
switch between flight modes (e.g., takeoff, climb, cruise) based on flight
parameters.

– Process control systems: Industrial processes often utilize control algorithms
to switch between operating modes based on process variables (e.g., tem-
perature, pressure) to maintain desired product quality and efficiency.

In summary, constrained switching allows for optimization of system performance by
strategically selecting the most suitable subsystem for the current operating conditions.
In addition, predictable switching sequences simplify analysis of the overall system’s
behavior compared to autonomous switching (Philippe et al., 2016).

Remark 2 The categorization of switching control in switched dynamical sys-
tems, while useful, doesn’t always present a clear-cut picture. Many real-world
systems exhibit characteristics of both autonomous and constrained (controlled)
switching, depending on their design and operational needs. Here is how automatic
gearboxes illustrate this concept: In automatic transmissions, gear changes pri-
marily occur autonomously based on internal factors like engine speed and vehicle
load. The Transmission Control Unit (TCU) acts as the internal decision-maker,
utilizing pre-programmed algorithms to determine the optimal gear ratio. How-
ever, drivers can introduce an element of constrained switching through features
like:

• Gear shift modes: Many automatics offer options like "Sport" or "Man-
ual" modes that alter the TCU’s shifting strategy to prioritize performance
or driver control over pure fuel efficiency.

• Paddle shifters: Some automatics provide paddle shifters on the steering
wheel that allow the driver to manually trigger gear changes for a more en-
gaging driving experience. In these instances, the driver acts as an external
factor influencing the switching behavior, albeit within a limited scope.
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Having laid the groundwork with a concise introduction to switched systems, the
following section delves into the crucial issue of their stability analysis.

2.3.3 Stability analysis of switched systems

In this section, we review some notions related to the stability analysis of switched
systems. Indeed, the stability problem of switching systems is both delicate and intrigu-
ing. To illustrate the complexity of this issue, we examine the classic example of two
asymptotically stable subsystems that, when switched between each other, result in
either unstable or stable overall behavior depending on the switching signal (Branicky,
1998).

Example 3 Let us consider the autonomous linear switched system S, consisting
of two subsystems, S1 : ẋ (t) = A1x (t) and S2 : ẋ (t) = A2x (t), where A1 = −0.5 −0.4

3 −0.5

 and A2 =
 −0.5 −3

0.4 −0.5

. Since the eigenvalues of both A1 and

A2 have negative real parts, each individual subsystem exhibits asymptotically
stable behavior as shown by the phase trajectories in Figure 2.5. This implies
that, when left alone (without switching), any initial state of the system will
eventually converge to the equilibrium point (origin) over time.

Figure 2.5: Phase trajectories for multiple initial states: subsystem 1 (Left) and sub-
system 2 (Right).
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Let us analyze the effects of two distinct switching laws:

σ1 (t) =
 1 if x1x2 ⩾ 0

2 if x1x2 < 0
(2.18)

and

σ2 (t) =
 1 if x1x2 ⩽ 0

2 if x1x2 > 0
(2.19)

As depicted in Figure 2.6, the overall stability of the switched system is contingent
upon the selected switching law. Evidently, trajectories produced under the influ-
ence of switching law (2.18) exhibit an unstable behavior for the entire system, as
illustrated in Figure 2.6 (left). Conversely, trajectories governed by switching law
(2.19) demonstrate a stable behavior of the overall system, as depicted in Figure
2.6 (right). Similarly, other remarkable examples illustrate the case of unstable
linear systems which, thanks to a particular switching law, would lead to a stable
behavior (Branicky, 1998).

Figure 2.6: Phase trajectories for an unstable switched system (Left) and a stable
switched system (Right) (x1(0) = −1, x2(0) = 0)

From the previous example, it can be observed that the asymptotic stability of each
subsystem is not sufficient to guarantee the asymptotic stability of a switched system.
The choice of the switching law has a significant influence on the stability of switched
systems.

Motivated by these observations, our primary objective now becomes the identifi-
cation of a general stability condition applicable to switched systems. This condition
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should hold true irrespective of the nature of the switching signal, whether it be arbi-
trary or constrained. The subsequent sections will explore these two scenarios in detail:
stability under arbitrary switching and stability under constrained switching.

2.3.3.1 Stability under arbitrary switching

This section explores the stability of switched systems when no constraints are
imposed on the switching law. In other words, switching occurs arbitrarily and with-
out any dwell-time restrictions (Liberzon, 2003). This implies that the overall system
can be viewed as a dynamical system whose dynamics change over time due to the
switching behavior. Consequently, stability analysis must consider all possible switch-
ing sequences.

Early investigations into the Lyapunov stability of switched systems adopted a
methodology akin to that employed for linear systems (Liberzon, 2005). This approach
hinges on the construction of a common quadratic Lyapunov function candidate appli-
cable to all subsystems within the switched system. This strategy offers a significant
advantage: it guarantees the asymptotic stability of the entire interconnected system,
irrespective of the specific switching law governing the transitions between subsystems.

In essence, the existence of a common Lyapunov function that satisfies specific
properties for each subsystem constitutes a sufficient condition for establishing the
system’s stability. To delve deeper into this concept, let us consider a linear switched
system governed by the following state equation in open-loop mode:

ẋ (t) =
m∑

j=1
σj(t)Ajx (t) (2.20)

where x(t) ∈ Rn is the state vector, Aj ∈ Rn×n are constant coefficient matrices
representing the dynamics of each mode, for j ∈ Q = 1, 2, ..., m represent the jth sub-
system, where m denotes the total number of subsystems. σj(t) are switching functions
defined above (5.2).

Let us consider a quadratic Lyapunov candidate function (common to all subsys-
tems) described by:

V (x (t) , t) = xT (t) Px (t) (2.21)

The switched linear system (2.20) is globally asymptotically stable if there exist
matrices P = P T > 0 and satisfy ∀x(t) ̸= 0:
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V̇ (x (t)) = ẋT (t) Px (t) + xT (t) Pẋ (t) < 0 (2.22)

= xT (t)
 m∑

j=1
σj (t)

(
AT

j P + PAj

)x (t) < 0 (2.23)

The inequality (2.23) is satisfied for all x(t) ̸= 0 if the following set of LMI hold,
for j = 1, ..., m:

AT
j P + PAj < 0 (2.24)

The stability of the switched linear system (2.20) can be effectively analyzed using
the following theorem.

Theorem 3 The switched linear system (2.20) is globally asymptotically stable,
if there exists a symmetric positive matrix P = P T > 0 such that the given
inequalities (2.24) are satisfied for j = 1, ..., m.

Remark 3 It’s important to note that finding a common Lyapunov function is
a sufficient condition to guarantee the stability of switched systems (Branicky,
1998). However, this approach tends to lead to conservative results, especially
when dealing with a large number of subsystems. This is because it requires finding
a single Lyapunov matrix, P , that satisfies a set of LMI constraints. Additionally,
it can be analytically shown that there exist stable switched systems for which no
common quadratic Lyapunov function exists (Dayawansa and Martin, 1999).

To illustrate these points, Figure 2.7 depicts the shape of a common quadratic
Lyapunov function in the case of a linear switched system with two modes. In this sce-
nario, the Lyapunov function decreases continuously regardless of the system’s operat-
ing modes, including at the switching instants tci

, meaning V
(
x (tci

)−
)

= V
(
x (tci

)+
)
.

In the context of switched systems, a prevailing challenge lies in mitigating conservatism
during stability analysis. To address this, the employment of a multiple quadratic Lya-
punov function (MQLF) approach offers a promising avenue (Lin and Antsaklis, 2009).
The MQLF approach leverages a collection of local Lyapunov functions Vj (x (t)), each
associated with a specific subsystem. These local functions are then combined to con-
struct a "global Lyapunov function" V (x (t)) =

m∑
j=1

σj (t) Vj (x (t)), encompassing the
entire system’s state. However, due to the inherent switching behavior between sub-
systems, the global Lyapunov function might exhibit discontinuities at these switching
instances. Consequently, it transforms into a pseudo-Lyapunov function, necessitating
the introduction of supplementary conditions at switching instants for stability anal-
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Figure 2.7: Trajectory of the common quadratic Lyapunov function.

ysis (DeCarlo et al., 2000). Fortunately, for stability analysis purposes, continuity of
the global Lyapunov function is not an absolute requirement. This opens the door to
exploring various possibilities for defining these additional conditions:

• A first alternative requires that the level of each local Lyapunov function Vj de-
creases when they are activated. Stability theorems developed in this context are
based on the decrease of the Lyapunov function Vj at successive activations tcl

and
tck

of the same subsystem according to the equation (2.25) (, stabilityswitched00).
Figure 2.8 illustrates the behavior of a global Lyapunov function for the case of
a two-mode linear switched system.

Vj (x (tcl
)) − Vj (x (tck

)) ⩽ −γ ∥x (tck
)∥2 (2.25)

• Another alternative was proposed in (Jabri, 2011, Belkhiat, 2011). Let us con-
sider two local Lyapunov functions, Vj+(x(t)) and Vj(x(t)), associated with two
successor modes: j+ is the successor mode of j. Let us also assume that there
exists a scalar µj+,ĵ ⩽ 1. The global Lyapunov function decreases at the switch-
ing instant tci

if the two Lyapunov functions Vj(x(t)) and Vj+(x(t)) satisfy the
condition 2.26.

Vj+ (x (tci
)) ⩽ µj+,jVj (x (tci

)) (2.26)
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Figure 2.9 illustrates the behavior of a global Lyapunov function for the case of
a two-mode linear switched system.
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Figure 2.8: Trajectory of the multiple quadratic Lyapunov function (First method)
(DeCarlo et al., 2000).

Remark 4 While this chapter provides specific conditions for multiple Lyapunov
functions, it is well-documented that alternative conditions exist in the literature.
The degree of restrictiveness in these conditions varies. We will provide a more
comprehensive discussion in the contribution chapter of the thesis.

2.3.3.2 Stability under constrained switching

Another established method for guaranteeing the stability of switched systems
involves imposing restrictions on the switching sequence. This constrained switching
can be implemented during the design of the switching law or when enforcing a time-
based switching strategy. Intuitively, if all individual subsystems are stable and the
switching occurs slowly enough to allow transient effects from each switch to dissipate,
then the overall switched system remains stable. Control theory for switched systems
utilizes various dwell time concepts to quantify the "slowness" of switching. The dwell
time τd > 0 satisfies this inequality tcl

− t+
cl

⩾ τd with tcl
and t+

cl
are consecutive
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Figure 2.9: Trajectory of the multiple quadratic Lyapunov function (Second
method)(Belkhiat, 2011).

switching times. In this subsection, we focus on two key metrics: minimum dwell time
(MDT) and average dwell time (ADT) (Allerhand and Shaked, 2010).

• Minimum Dwell Time (τMDT ): This refers to the shortest allowable time
interval between consecutive switchings. A switching sequence that satisfies the
MDT constraint ensures stability, but it can be overly restrictive in practice.

• Average Dwell Time (τADT ): This concept captures the average time spent in
each system mode over a longer switching period. A switching sequence with an
ADT exceeding a specific threshold guarantees stability, offering more flexibility
compared to MDT.

The choice between these dwell time concepts depends on the specific system and
desired level of control over the switching behavior. While MDT offers a more robust
guarantee of stability, it may lead to unnecessary limitations on switching frequency.
Conversely, ADT allows for more frequent switching while still ensuring stability on
average, but requires careful design of the switching law to avoid excessively rapid
switching.

Given the critical role of stability analysis, the following section explores the design
of switched observer.
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2.3.4 Challenges in observer design for switched systems

A switched observer departs from conventional observers by employing a collection
of mode-specific observers. Each observer within this collection is meticulously tailored
to excel at estimating the state of the system within a particular operating mode.
By leveraging the unique dynamics associated with each mode, switched observers
can generate accurate state estimates even amidst the system’s switching phenomena
(Figure 2.10, Chen and Mehrdad, 2004). A critical aspect of switched observer design
and application is their synchronization with the system’s switching dynamics. Two
primary categories emerge:

Subsystem 1

Subsystem 2

Subsystem m

Observer 1

Observer 2

Observer m

+
-

y

ŷ

u

u

u

u

u

u

u

u

u

ye

j

ˆ j

Switched system

Switched observer

Figure 2.10: Schematic of a state observer for switched systems.

• Synchronous observers: These observers exhibit perfect concordance with the
system’s switching behavior. The active mode of the observer aligns precisely with
the system’s mode at every instant. However, this ideal scenario often necessi-
tates unrealistic assumptions. Real-time access to the system’s switching signals,
without measurement limitations or delays, can be quite challenging to achieve
in practice (Yang et al., 2015).

• Asynchronous observers: This represents a more pragmatic scenario where
the observer’s switching behavior deviates from that of the system (Han et al.,
2019, Huang et al., 2020). The observer’s switching signals may exhibit lags or
discrepancies compared to the system’s. This asynchronicity can manifest due to:
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– Detection delays: In multi-mode systems, identifying the active mode can
incur time delays, causing the observer’s switching to lag behind the sys-
tem’s.

– Mismatched switching laws: When switching is governed by the system’s
state, inconsistencies between the observer’s internal switching logic and
the system’s actual switching rules can lead to asynchronicity.

let us consider a switched linear systems described as follows:
ẋ(t) =

m∑
j=1

σj (t) (Ajx(t) + Bju(t))

y(t) = Cx(t)
(2.27)

where x(t) ∈ Rn, u(t) ∈ Rq and y(t) ∈ Rp are respectively the state vector (non-
measurable or partially measurable), the input vector and the output vector. For all
j ∈ Q, Aj, Bj and Cj are known matrices of appropriate dimensions. All state-output
pairs (Aj, Cj) are assumed observable. σj(t) are switching functions of the switched
systems defined by 5.2.

Consider the switched observers given by:
˙̂x (t) =

m∑
j=1

σ̂j (t) (Ajx̂ (t) + Bju (t) + Lj (y (t) − ŷ (t)))

ŷ (t) = Cx̂ (t)
(2.28)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rp are the estimated state and output vectors, respec-
tively, and Lj are the gain matrices to be determined. σ̂j(t) are switching functions
associated with the switched observer.

Let us assume that state-dependent switching between different subsystems occurs
according to a switching signal defined by linear hyperplanes:

Gj,j+ =
{

x ∈ Rn| gj,j+ (x) = a1
j,j+x1 + a2

j,j+x2 + . . . + an
j,j+xn = 0

}
(2.29)

With: (j, j+) ∈ Ig and
(
a1

j,j+ , a2
j,j+ , . . . , an

j,j+

)
∈ Rn. We define Ig as the set of tuples

gathering the different possible transitions, between two modes, that can occur in a
switched systems.

As mentioned below, two cases regarding the evolution of the switched observer are
possible.

2.3.4.1 Synchronous observers

In this scenario, we assume perfect mode synchronization between the switched
observers and the underlying switched system. This implies that the active mode for
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both the observer (denoted by σ̂j(t)) and the system itself (denoted by σj(t)) are
identical at every instant in time (i.e., σ̂j(t) = σj(t)). Under this assumption of perfect
synchronization, the estimation error between the system’s true state, x(t), and the
state reconstructed by the observer, x̂(t), can be expressed as:

e (t) = x (t) − x̂ (t) (2.30)

Thus, the state error dynamic can be written as:

ė (t) =
m∑

j=1
σj (t)(Aj − LjC)e (t) (2.31)

Indeed, under the aforementioned assumption of perfect synchronization, the design
of the switched observers Lj consists to analyzing the stability of the estimation error
dynamics (2.31). Two main approaches can be considered for this purpose as indicted
in sections 2.3.3.1 and 2.3.3.2: stability under arbitrary switching and stability under
constrained switching.

For the state error dynamics (Eq. (2.31)), a common quadratic Lyapunov function
facilitates stability analysis under arbitrary switching. This function offers a unified
framework for all subsystems within the switched system, simplifying the analysis.

V (e(t)) = eT (t)Pe(t) (2.32)

Compute the derivative of the Lyapunov function along the error dynamics:

V̇ (t) = ėT (t)Pe(t) + eT (t)P ė(t) (2.33)
= eT (t)((Aj − LjC)T P + P (Aj − LjC))e(t) (2.34)

For the estimation error dynamics to be asymptotically stable, the time derivative of
the Lyapunov function (2.34) must be strictly negative definite. This means V̇ (e(t)) is
always less than zero for any non-zero estimation error (V̇ (e(t)) < 0). This guarantees
the estimation error converges to zero over time. To achieve this negativity, the following
inequalities must hold, for j = 1, ..., m:

(Aj − LjC)T P + P (Aj − LjC) < 0 (2.35)

The following theorem provides a foundation for switched observer design.
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Theorem 4 Given the switched linear system (2.27) and the switched observer
(2.28), the state error dynamics (2.31) achieve global asymptotic stability, if a
symmetric positive matrix P = P T > 0 and matrices Yj exist, satisfying the
following LMIs, for j = 1, ..., m:

AT
j P − CT Y T

j + PAj − YjC < 0 (2.36)

The observer gain matrix can be derived as: Lj = P −1Yj.

Remark 5 The utilization of a single Lyapunov function in Theorem 4 leads to
conservative conditions. This can be mitigated by employing separate Lyapunov
functions for each subsystem (multiple quadratic Lyapunov function (MQLF)).
However, to guarantee a decrease in the global Lyapunov function at each switch-
ing instant, additional conditions are necessary.

2.3.4.2 Asynchronous observers

In the case of asynchronous observers, a key distinction lies in the divergence
between the respective modes of the switched observers and the switched systems (i.e.,
σ̂j(t) ̸= σj(t)). Thus, the state error dynamic can be written as:

ė (t) = Āσ̂j
e (t) + ∆Āσj ,σ̂j

x (t) + ∆B̄σj ,σ̂j
u (t) (2.37)

with: Āσ̂j
=

m∑
j=1

σ̂j (t)(Aj −LjC), ∆Āσj ,σ̂j
=

m∑
j=1

σj (t)Aj −
m∑

j=1
σ̂j (t)Aj and ∆B̄σj ,σ̂j

=
m∑

j=1
σj (t)Bj −

m∑
j=1

σ̂j (t)Bj.
Analyzing the estimation error dynamics reveals its dependence on both the state

vector x(t) and the input vector u(t). Consequently, studying the stability of the es-
timation error in the context of asynchronous observers becomes significantly more
challenging compared to the initial case.

Remark 6 Building upon the principles of conventional observers, switched ob-
server design employs LMI conditions to ensure the asymptotic stability (conver-
gence) of the state estimation error. While this chapter presents the fundamentals
of switched observer design, a deeper dive into asynchronous observers, including
advanced techniques for handling the challenges of asynchronicity, is provided in
the contribution chapter.
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2.4 Conclusion

In conclusion, this chapter has established a firm foundation for the analysis and
design of switched systems. We commenced by providing a comprehensive overview
of this class of systems, introducing fundamental modeling concepts and illustrating
them through well-chosen examples. Subsequently, we delved deeper into the subject
by exploring two distinct categorization schemes. The first categorization differenti-
ated switched systems based on their switching mechanism, classifying them as state-
dependent or time-dependent. The second focused on the nature of switching control,
distinguishing between autonomous and controlled switching.

Following the establishment of these categories, the chapter addressed the critical
issue of stability analysis in switched systems. We presented two primary approaches:
stability under arbitrary switching and stability under constrained switching. Finally,
the chapter explored the design of observers for switched systems, introducing two
categories of observers based on their synchronous or asynchronous switching behavior
relative to the system itself.

A critical examination of the provided bibliography has led us to the following key
findings:

• The analysis of stability and observer design presents a significant challenge under
arbitrary switching conditions. This stems from the inherent unpredictability of
both the timing and sequence of switching events. As opposed to scenarios with
externally controlled switching, the lack of control over these events introduces a
substantial layer of complexity in analyzing the overall system’s behavior.

• While the existence of a common Lyapunov function guarantees the stability of
switched systems, this method often yields conservative stability results, espe-
cially for systems with a high number of subsystems. To mitigate this conser-
vatism, the multiple quadratic Lyapunov function approach offers a promising
avenue for analysis. However, due to the inherent switching behavior between
subsystems, additional stability conditions must be introduced at switching in-
stants.

• In contrast to synchronous observers, asynchronous observers present a more
realistic scenario where the observer’s switching behavior deviates from the sys-
tem’s due to inherent detection delays and potentially mismatched switching
laws. This asynchronicity, manifested as lags or discrepancies in the observer’s
switching signals compared to the system’s, introduces significant challenges in
observer design.

The analysis and control of switched systems are often hampered by their inherent
nonlinearities, rendering traditional linear control techniques less effective. To address
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this challenge, the next chapter introduces Takagi-Sugeno (T-S) models as a powerful
modeling approach. These models represent the nonlinear dynamics of each subsystem
within the switched system using a set of linear rules defined in a compact region of
the overall state space. By leveraging T-S models, we can overcome the limitations of
linear control and pave the way for the design of more effective control strategies for
switched systems.
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Chapter 3

Preliminary notions on
Takagi-Sugeno fuzzy modeling

3.1 Introduction

This chapter presents a comprehensive investigation of Takagi-Sugeno (T-S) fuzzy
multi-model systems. It delves into the fundamental concepts underlying these

systems and explores various methodologies for their derivation, with a particular focus
on the sector nonlinearity approach.

Moreover, this chapter analyzes the stability of T-S fuzzy multi-model systems
by employing the robust theoretical framework of Lyapunov function theory. A criti-
cal challenge addressed in this chapter is state observer design for T-S systems. The
intricate issue of unmeasurable premise variables, which are known to significantly in-
fluence observer design, is meticulously examined along with its impact on observer
design methodologies.

Finally, the chapter explores a specialized class of T-S systems, namely switched
T-S fuzzy systems. It provides a detailed exposition of their structural characteristics
and showcases their application through a switched tunnel diode circuit. This section
concludes by highlighting challenges associated with observer design in the context of
switched T-S fuzzy systems.

3.2 Fundamentals of Takagi-Sugeno fuzzy modeling

Takagi-Sugeno (T-S) models have been extensively studied since their introduction in
1985 (Takagi and Sugeno, 1985). They belong to the class of convex polytopic systems
and allow to extend some concepts of linear systems control to the case of nonlinear
systems. Originally based on fuzzy formalism, the most recent methods for obtaining
T-S models, such as nonlinear sector decomposition (Taniguchi et al., 2001), allow
to exactly represent a nonlinear system on a compact space of its state variables. As
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a result, a T-S model can be written as a collection of linear dynamics (polytopes)
interpolated by a set of nonlinear functions (satisfying convex sum properties). Many
research works are interested in this class of systems. For example, they deal with
the stability and stabilization of standard T-S systems (Takagi and Sugeno, 1985,
Yoneyama et al., 2001, Guerra and Vermeiren, 2004), the stabilization of T-S descriptor
systems (Yoneyama, 2020, Taniguchi et al., 2000), or with diagnosis and observation
(Ichalal et al., 2014, Rodríguez et al., 2024).

In this section, we present the structure of T-S multi-models, as well as the most
common methods for their derivation.

3.2.1 Takagi-Sugeno multi-model approach

A T-S multi-model consists of a set of linear models connected by an interpolation
structure represented by nonlinear membership functions. In 1985, based on fuzzy for-
malism, Takagi and Sugeno, 1985 proposed a modeling approach for nonlinear systems
based on a set of fuzzy "If ... Then" rules whose conclusions represent a set of linear
dynamics. Thus, if we denote r as the number of fuzzy rules describing a T-S model,
the ith rule Ri is given by:

Ri : IF z1 is F i
1 (z1 (t)) AND z2 is F i

2 (z2 (t)) . . . zp is F i
p (zp (t))

THEN

ẋi (t) = Aix (t) + Biu (t)
yi (t) = Cix (t)

(3.1)

where, for j = 1, ..., p, F i
j (zj (t)) are fuzzy subsets realizing an exact partition of

the universe of discourse (sometimes called the reference set), zj (t) are the premise
variables dependent on the inputs and/or the state of the system. x (t) ∈ Rη is the
state vector of the system, u (t) ∈ Rϑ is the input vector and y (t) ∈ Rq is the output
vector, Ai, Bi and Ci are the matrices describing the dynamics of the system.

For each fuzzy rule Ri, a weight function wi (zj (t)) can be attributed, determin-
ing the contribution of each of the linear dynamics composing the multi-model in its
entirety. This weight function depends on the degree of membership of the premise
variables zj (t) to the fuzzy subsets F i

j (zj (t)) and the choice of the operator AND,
such as:

wi (z (t)) =
p∏

j=1
F i

j (zj (t)) for i = 1, ..., r (3.2)

Let us consider:
hi (z (t)) = wi (z (t))

r∑
i=1

wi (z (t))
(3.3)

The activation function hi (z (t)) of the ith fuzzy model rule satisfies the following
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convex sum properties: 0 < hi (z (t)) < 1 and
r∑

i=1
hi (z (t)) = 1. These properties ensure

that the overall output of the T-S multi-model is a convex combination of the local
models. This is important because it guarantees that the multi-model will be smooth
and continuous.

Thus, after defuzzification, the state representation of a T-S multi-model can be
written in the form: 

ẋ (t) =
r∑

i=1
hi (z (t)) (Aix (t) + Biu (t))

y (t) =
r∑

i=1
hi (z (t)) Cix (t)

(3.4)

A schematic of the structure of a T-S multi-model system is given in Figure 3.1.

   1 1A x t B u t

   2 2A x t B u t

   r rA x t B u t

 1C x t

 2C x t

 rC x t













 

  1h z t

  2h z t

  rh z t

  1h z t

  2h z t

  rh z t

 y t u t  x t

 x t

 x t

Figure 3.1: Schematic of the structure of a T-S multi-models (Jabri, 2011).

3.2.2 Derivation of Takagi-Sugeno multi-models

Several established techniques exist in the literature for constructing T-S multi-
models. Some techniques are particularly valuable when a non-linear knowledge model
of the controlled system is readily available, such as:
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• Linearization-based approach: This method involves linearizing the non-
linear model at various operating points. The resulting linear models are then
aggregated using fuzzy membership functions (e.g., triangular, trapezoidal) as
described by Ma et al., 1998. This approach offers a computationally efficient
way to obtain a T-S model. However, the resulting model may be an approx-
imation of the original non-linear system as the chosen membership functions
might not accurately capture the non-linear interpolation mechanisms between
the subsystems.

• Convex polytopic transformation approach: This more rigorous approach
utilizes convex polytopic transformations to generate a T-S multi-model that ex-
actly represents the non-linear model within a compact state space. Among the
various convex polytopic transformations, "sector nonlinearity approach" (Taniguchi
et al., 2001, Morère, 2001) is a commonly used method for obtaining T-S mod-
els. This approach offers a more accurate representation of the non-linear system
but may require more complex computations compared to the linearization-based
approach.

T-S model identification becomes a suitable alternative when a control system lacks
a readily available analytical model. The methodology outlined by Gasso et al., 2000
offers a valuable framework for this purpose. This data-driven approach leverages input-
output measurements acquired from the real system. By analyzing these measurements
around pre-defined operating points, both the local models and the activation functions
are identified, thereby constructing the T-S model representation of the system.

This dissertation predominantly employs the Sector Nonlinearity Approach (SNA)
for analysis. SNA capitalizes on the well-established mathematical principle that any
nonlinear function can be guaranteed to have finite upper and lower bounds within its
defined domain. A systematic methodology for SNA is subsequently established based
on the following lemma.

Lemma 1 (Morère, 2001) If ∀x ∈ [−b, a], a, b ∈ R+, the function f (x (t)) :
R → R is bounded on [−b, a], there always exist two functions w1 (x (t)) et
w2 (x (t)) as well as two scalars α and β such that :

f (x (t)) = α × w1 (x (t)) + β × w2 (x (t)) (3.5)

with α = max (f (x (t))), β = min (f (x (t))), w1 (x (t)) = f(x(t))−β
α−β

and
w2 (x (t)) = α−f(x(t))

α−β
.

To elucidate the methodology of obtaining T-S multi-models through nonlinear
sector decomposition, we consider two representative examples.
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Example 4 (Jabri, 2011) Consider a nonlinear autonomous system given by
the following equation:

ẋ (t) = x (t) cos (x (t)) (3.6)

The nonlinear term f (x (t)) = cos (x (t)) is continuous and bounded by[
−1 1

]
. According to Lemma 1, we can write :

cos (x (t)) = cos (x (t)) + 1
2︸ ︷︷ ︸

h1(x(t))

×1 + 1 − cos (x (t))
2︸ ︷︷ ︸

h2(x(t))

× (−1) (3.7)

The nonlinear system (3.6) can be rewritten as a T-S multi-model given by:

ẋ (t) =
2∑

i=1
hi (x (t)) aix (t) (3.8)

where a1 = 1 and a2 = −1.

Example 5 (Coupled inverted pendulums (Jabri et al., 2020)) Let
us consider the modelling problem of balancing two interconnected inverted
pendulums coupled by a spring. Figure 3.2 depicts a schematic representation of
this system, modeled as two nonlinear interconnected subsystems.

Figure 3.2: Schematic of two nonlinear interconnected subsystems (Jabri et al., 2020).
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Equations (3.9)-(3.10) describes the system’s dynamics. DC motors provide in-
dependent torque actuation for each pendulum’s position control.

J1θ̈1 = m1gl1 sin θ1 − ka2 (θ2 − θ1) − d1θ̇1 + u1 + w1 (3.9)

J2θ̈2 = m2gl2 sin θ2 + ka2 (θ2 − θ1) − d2θ̇2 + u2 + w2 (3.10)

where Si denote the ith subsystem, g the acceleration of gravity, k = the spring
constant, li the ith pole length, a the distance between the pendulum hinges, L the
natural length of the connecting spring, Ji the ith moment of inertia, mi the ith

pendulum end masses, θi the ith angular position (rad) with θi ∈
[
−π

3 , π
3

]
, θ̇i the

ith angular velocity (rad/s), d1 the ith friction constant, ui the ith torque input
applied by the ith DC motor (N.m), wi the ith disturbances (N.m). The table 3.1
lists the parameter values for the coupled inverted pendulums.

Table 3.1: Parameters of the coupled inverted pendulums.

Parameter Value Designation
m1 0.25 kg Mass of pendulum 1
m2 0.2 kg Mass of pendulum 2
J1 2 kgm2 Inertia of pendulum 1
J2 2.5 kgm2 Inertia of pendulum 2

l1 = l2 1 m Length of the pendulums
a 0.2 m Distance from pendulum to spring hinges
d1 3.5 Nms/rad Joint friction coefficient of pendulum 1
d2 4.5 Nms/rad Joint friction coefficient of pendulum 2
k 8 Nm−1 Spring stiffness coefficient
g 9.81 ms−2 Acceleration of the gravity
L 1.2 m Natural length of the connecting spring
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To facilitate in-depth analysis, we propose a modeling approach that decomposes
the system (3.9)-(3.10) into a set of two interconnected T-S fuzzy subsystems,
described as follows.



ẋi(t) =
νi∑

ji=1
hji

(zi(t)) (Aji
xi(t) + Bji

ui(t)

+Bw
ji

wi(t) +
n∑

α = 1
α ̸= i

hji
(zi(t))F α

ji
xα(t)

)

yi(t) =
νi∑

ji=1
hji

(zi(t)) Cji
xi(t)

(3.11)

where xi(t) ∈ Rηi, yi(t) ∈ Rρi, ui(t) ∈ Rυi are respectively the ith state, measure-
ment (output) and input vectors. wi(t) ∈ Rµi is a time-varying L2-norm-bounded
external disturbance associated to the ith subsystem (assumed to be uncontrolled).
νi is the number of vertices of the ith T-S subsystem and, for ji = 1, ..., νi,
Aji

∈ Rηi×ηi, Bji
∈ Rηi×υi, Bwi

ji
∈ Rηi×µi and Cji

∈ Rρi×ηi are constant matrices.
The matrices F α

ji
∈ Rηi×ηα express the interconnection between the ith subsys-

tem and the αth subsystem with α = 1, . . . , n and α ̸= i. zi(t) are the premise
variables of the ith TS subsystem. Finally, hji

(z(t)) ≥ 0 are the fuzzy member-
ship functions of the ith TS subsystem, which satisfy the convex sum proprieties∑νi

ji=1 hji
(zji

(t)) = 1.

For the purposes of this investigation, we consider the state vector xi =
x1i

x2i

 =θi

θ̇i

. Hence, the equations (3.9)-(3.10) can be written as following, for i, α = 1, 2

and α ̸= i

Si :


ẋ1i

= x2i

ẋ2i
= migli(sin x1i

/x1i)−ka2
i

Ji
x1i

− di

Ji
x2i

+ 1
Ji

ui + 1
Ji

wi − ka2
i

Ji
x1i

yi = x1i

(3.12)
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Note that, each subsystem contains one nonlinear bounded term:

migli (sin x1i
/x1i

) − ka2
i

Ji

(such sin θi/θi ∈ [−0.217, 1]) Using the sector nonlinearity approach (Taniguchi
et al., 2001, Morère, 2001) to deal with the nonlinear terms, the whole system
can be represented as two interconnected T-S subsystem with:

A11 =
 0 1
−1.97 −1.75

 , A21 =
 0 1
9.97 −1.75

 ,

A12 =
 0 1
−2.00 −1.80

 , A22 =
 0 1
9.94 −1.80

 ,

Bj1 = Bw
j1 =

 0
0.50

 , Bj2 = Bw
j2 =

 0
0.40

 ,

Cji
=
[
1 0

]
, F 2

11 = F 2
21 =

 0 0
−0.16 0

 ,

F 1
12 = F 1

22 =
 0 0
−0.13 0

 ,

h1i
= [9.81 (1 − (sin (x1i

)/x1i
))]/11.94, h1i

= 1 − h2i
.

For simulation purpose, let us consider that the coupled inverted pendulums is
governed by a controller designed according to approach presented in (Jabri et al.,
2020). The results are shown in Figures 3.3 and 3.4. Figure 3.3 exhibits the state
vector trajectories while Figure 3.4 shows the evolution of activation functions,
for each pendulum. We can observe that the sum of the activation functions for
each pendulum is always one 1.

Remark 7 The number of fuzzy rules in a T-S model constructed via a convex
polytopic transformation exhibits a direct dependence on the number of nonlinear
terms nl extracted from the system’s underlying nonlinear representation. This
implies that a more complex system with nl nonlinearities will necessitate a T-
S model with a correspondingly larger number of fuzzy rules (2nl) to accurately
capture its behavior.
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Figure 3.3: State vector trajectories (Jabri et al., 2020).

Figure 3.4: Activation functions trajectories (Jabri et al., 2020).

Remark 8 It’s noteworthy that applying the sector nonlinearity approach
(Taniguchi et al., 2001) can yield an exact T-S model from a nonlinear system.
However, this exact model’s validity is strictly confined to a domain of validity
Dx, defined as follows:

Dx = {x(t) ∈ Rnx : Lx (t) ≤ Q, ζ ∈ Iζ} (3.13)

where L ∈ R2ζ×nx is a given matrix, Q ∈ R2ζ is a given vector, and ζ is the
number of state variable bounds.
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A nonlinear sector is considered local if the the domain of validity Dx is a subset
of the real numbers R. A common example is when Dx is a closed interval between
negative d and positive d, where d is a positive number (Dx = [−d, d] with d > 0).
Otherwise, if Dx is equal to the entire set of real numbers (Dx = R), the nonlinear
sector is considered global (Taniguchi et al., 2001).

3.2.3 Quadratic Lyapunov stability analysis of T-S fuzzy sys-
tems

As we have seen above, T-S systems are composed of linear models interconnected
by nonlinear functions. This particular structure allows us to extend certain concepts
related to linear systems to the case of nonlinear systems, including stability analysis
and stabilization. In order to better understand the contributions presented in the
following chapters, some basic concepts are presented below.

This section establishes fundamental stability conditions for T-S fuzzy autonomous
systems by employing Lyapunov theory.

Consider the following T-S multi-model:

ẋ(t) =
r∑

i=1
hi(z(t))Aix(t) (3.14)

and the following quadratic Lyapunov function candidate:

V (x(t)) = xT (t)Px(t) (3.15)

note that for x(0) = 0, the value of the function V (x(t)) evaluated at the initial state
is equal to zero (V (x(0)) = 0). The function (3.15) is said to be a Lyapunov function
and the system (3.6) is stable if there exists a matrix P such that, ∀x (t) ̸= 0:

V (x (t)) = xT (t) Px (t) > 0 (3.16)

and
V̇ (x (t)) < 0 (3.17)

It is evident that the inequality (3.16) is satisfied if and only if P is a symmetric
positive definite matrix P = P T > 0. Furthermore, by substituting (3.6) in (3.17), The
derivative of the Lyapunov function (3.17) can be written as follows:

V̇ (x (t)) = ẋT (t) Px (t) + xT (t) Pẋ (t) < 0 (3.18)

V̇ (x (t)) = xT (t)
(

r∑
i=1

hi (z (t))
(
AT

i P + PAi

))
x (t) < 0 (3.19)
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The inequality (3.19) holds ∀x (t) ̸= 0 if:

r∑
i=1

hi (z (t))
(
AT

i P + PAi

)
< 0 (3.20)

Assuming the membership functions hi (z (t)) satisfy the convex sum properties and
in particular hi (z (t)) > 0, the inequality (3.20) is satisfied if all the terms of the sum
are negative. Therefore, the stability conditions, based on the quadratic Lyapunov
candidate function, are expressed as a Linear Matrix Inequality (LMI) problem (Boyd
et al., 1994) in the following theorem.

Theorem 5 (Tanaka and Sugeno, 1992) The autonomous T-S fuzzy system
is asymptotically stable if there exists a matrix P = P T > 0, such that the
following LMIs are satisfied for all i = 1, ..., r:

AT
i P + PAi < 0 (3.21)

Remark 9 The established stability conditions (3.21) for fuzzy T-S systems, as
presented in the theorem (5), provide sufficient conditions to ensure stability.
However, these conditions might exhibit a degree of conservatism, potentially ex-
cluding some truly stable systems from satisfying the LMI constraints. This high-
lights the need for further research to refine these conditions and achieve a more
accurate characterization of system stability.

Remark 10 To reduce conservatism in T-S stability analysis, particularly when
the T-S model originates from a nonlinear knowledge model, non-quadratic Lya-
punov candidate functions offer a valuable alternative. This approach has been
explored by various researchers (Jadbabaie, 1999, Tanaka and Sugeno, 1992, Liu
et al., 2024). Notably, some methods utilize a Lyapunov candidate function (3.22)
that mirrors the fuzzy interconnection structure (membership functions) of the T-
S system under study (Tanaka and Sugeno, 1992, Taniguchi et al., 2001). This
can lead to less conservative stability conditions.

V (x (t)) = xT (t)
(

r∑
i=1

hi (z (t)) Pi

)−1

x (t) (3.22)

The figure 3.5 visually demonstrates how non-quadratic approaches expand the
feasible region in the LMI space compared to quadratic approaches, leading to less
conservative stability conditions for T-S fuzzy systems.
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Infeasible domain
Feasible domain

Non-quadratic Case

Quadratic Case

Figure 3.5: Comparison of feasibility domains in quadratic and non-quadratic ap-
proaches Jabri, 2011.

3.2.4 Challenges in observer design for T-S fuzzy systems

This section explores the design of observers for T-S fuzzy systems, examining two
fundamental scenarios distinguished by the measurability of premise variables.

• Measured Premise Variables (MPV): When all premise variables are directly
measurable, both the system and its observer share the same activation functions.
This advantageous feature allows for factoring these functions during the analysis
of state estimation error dynamics (Guelton, 2003, Lendek et al., 2011, Belkhiat
et al.).

• Unmeasured Premise Variables (UPV): In a more realistic setting, premise
variables may not be directly measurable. The broader applicability of T-S models
with unmeasured premise variables lies in the fact that most practical applications
involve system dynamics whose state variables are not fully accessible. Moreover,
the sector nonlinearity approach often results in T-S models with unmeasured
premise variables (Ichalal et al., 2012, Garbouj et al., 2019, Chekakta et al., 2021,
Chekakta et al., 2021). The lack of measurability for these variables introduces
complexity, preventing a simplified representation of the state estimation error
dynamics.
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Let’s analyze a T-S fuzzy multi-models system described as follows:


ẋ (t) =
r∑

i=1
hi (z (t)) (Aix (t) + Biu (t))

y (t) =
r∑

i=1
hi (z (t)) (Cix (t) + Diu(t))

(3.23)

An observer with this structure will be designed to estimate the system’s states:


˙̂x(t) =
r∑

i=1
hi(ẑ(t))(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =
r∑

i=1
hi(ẑ(t))(Cix̂(t) + Diu(t))

(3.24)

x̂(t) ∈ Rn, ŷ(t) ∈ Rp, and ẑ(t) ∈ Rη represent the estimated state, output, and
premise variable vectors, respectively, while Li are the gain matrices to be determined.
The activation function hi(ẑ(t)) of the ith fuzzy model rule adheres to the following
convex sum properties: 0 < hi(ẑ(t)) < 1 and ∑r

i=1 hi(ẑ(t)) = 1.
In the sequel, We consider two cases depending on the availability of the premise

variables z(t) for the observer design.

3.2.4.1 Observer design for T-S fuzzy systems with MPV

In the design of state observers for T-S fuzzy systems, a prevalent assumption
is the accessibility of the system’s premise variables. This enables the observer to
leverage the identical premise variables employed within the system model (z(t) = ẑ(t)).
Consequently, when evaluating the state estimation error dynamics, factorization by
the activation functions becomes feasible. More precisely, the state estimation error
dynamics is written as follows:

ė(t) =
r∑

i=1
hi(z(t))((Ai − LiC)e(t)) (3.25)

To determine the observer gains Li, a simple stability analysis of system (3.25) is re-
quired. This analysis can be performed using a quadratic Lyapunov function of the form
(e(t)T Pe(t)). This approach allows for the derivation of LMI conditions for observer
design.

3.2.4.2 Observer design for T-S fuzzy systems with UPV

A critical assumption in T-S fuzzy multi-models is the measurability of premise
variables. However, in practical applications, these variables may not be directly ob-
tainable. When some or all elements of the premise variable vector are unmeasurable,
the factorization utilized within the state estimation error dynamics becomes infea-
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sible. As a consequence, the state estimation error dynamics must be expressed in a
different form, as shown below:

ė(t) =
r∑

i=1
hi(z(t))(Aix(t) + Biu(t)) −

r∑
i=1

hi(ẑ(t))(Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

(3.26)

Analyzing the structure of the state estimation error dynamics (3.26) unveils a key
limitation. Observer gain design methods for T-S systems with measurable premise
variables (MPV) cannot be directly applied when the premise variables are not mea-
surable (UPV). The UPV case presents a more substantial design challenge. We explore
various techniques from the literature that address this issue in the contribution chapter
to keep this chapter focused.

3.3 Switched Takagi-Seguno fuzzy systems

Many switched systems exhibit inherent nonlinearities within their dynamics. These
nonlinearities can arise from factors like saturation (limits on actuator or sensor out-
puts), friction (varying depending on velocity), or component nonlinearities (e.g., power
converters). These nonlinearities make it challenging to directly apply linear control
design methods, which often rely on the assumption of constant system parameters.
Fortunately, the T-S fuzzy model framework offers a powerful approach to address these
complexities (Chekakta et al., 2021, Wang et al., 2024). This framework enables the
representation of not only nonlinear systems but also, by extension, switched nonlinear
systems. Notably, each individual nonlinear switched mode can be effectively modeled
using a T-S model. These T-S models leverage smoothly weighted combinations of op-
erating points (vertices) that are valid within a well-defined region of the state space.
This key strength is attributed to the inherent polytopic convex structure of the T-S
framework. This structure paves the way for extending established linear control design
concepts to the nonlinear domain.

We consider a class of switched nonlinear systems represented by a collection of T-S
models. 

ẋ(t) =
m∑

j=1

rj∑
ij=1

σj(t)hij
(zj(t))

(
Aij

x(t) + Bij
u(t)

)
y(t) =

m∑
j=1

rj∑
ij=1

σj(t)hij
(zj(t))(Cij

x(t) + Dij
u(t))

(3.27)

In this context, x(t) ∈ Rn, u(t) ∈ Rq, and y(t) ∈ Rp represent the state vector, input
vector, and output vector, respectively. The total number of switched modes is denoted
by m, and within each mode j, denoted by rj (j = 1, . . . , m), zj(t) represents the vectors
of premise variables. For each j = 1, . . . , m, and ∀i = 1, . . . , rj, hij

(zj(t)) ≥ 0 signifies
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the fuzzy membership functions in each switched mode j, satisfying the convex sum
property ∑rj

ij=1 hij
(zj(t)) = 1. The matrices Aij

∈ Rn×n, Bij
∈ Rn×p, and C ∈ Rv×n

are associated with each T-S subsystem, while σj(t) denotes the switching functions
(switching law). Specifically, when the lth mode is activated, σj(t) is defined as:

σj(t) = 1 when j = l.

σj(t) = 0 when j ̸= l.
(3.28)
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Figure 3.6: Schematic of switched Takagi-Sugeno multi-models (Jabri, 2011).

Figure 3.6 shows a diagram of a switched T-S multi-models system. The capac-
ity of T-S multi- models to capture the nonlinearity present in switched nonlinear
systems is widely acknowledged in literature. This adaptability finds practical utility,
demonstrated by numerous instances where switched T-S multi-models have effectively
represented real-world applications (see Figure 3.7).

• A robotic manipulator with joint saturation: The T-S framework can model
the different dynamics of the manipulator depending on whether the joint torques
are saturated or not.
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• A power converter with switching modes: T-S models can represent the
different operating modes of the converter, such as boost mode, buck mode, and
bypass mode, each with its own linear dynamics.

• A flight control system with different flight regimes: The T-S framework
can capture the varying aerodynamic characteristics of an aircraft during takeoff,
cruise, and landing phases.

A robotic manipulator with joint saturation A power converter with switching modes

A flight control system with different flight regimes

Figure 3.7: Real-world applications of switched T-S multi-models.

To exemplify the capability of T-S fuzzy multi-models in representing switched
nonlinear systems, we will delve into a case study involving a switched tunnel diode
circuit. This exploration will demonstrate the process of constructing a switched T-S
fuzzy system from a real-world physical system.
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Example 6 (Switched Tunnel Diode Circuit) Let us examine the modified
tunnel diode circuit system illustrated in Fig. 3.8, with its state-space represen-
tation provided by Chekakta et al., 2021:

 ẋ1(t) = 0.2
C

x1(t) + 0.01
C

x3
1(t) + 1

C
x2(t)

ẋ2(t) = − 1
L

x1(t) − Rσ(t)
L

x2(t) + 1
L

u(t)
(3.29)

where x1(t) = vD(t) and x2(t) = iD(t) represent respectively the voltage and
current of the tunnel diode (state variables). σ(t) ∈ 1, 2 indicates the switching
modes, while the resistances Rσ(t) switch between two distinct values (R1 = 1Ω
and R2 = 2Ω). C = 0.1F denotes the circuit capacitance, and L = 1H stands
for the circuit inductance.
Let us assume that only x2(t) is measured such that y(t) = Cx(t) with C =

[
0 1

]
.

Moreover, assuming x1(t) ∈ [−3, 3], the state dependent premise variables z1(t) =
z2(t) = x2

1(t) ∈ [0, 9] and x(t) =
[
x1(t) x2(t)

]T
, the switched nonlinear system

(3.29) can be exactly rewritten as a switched T-S system (3.27), by applying

the sector nonlinearity approach, with m = 2, r1 = r2 = 2, A11 =
 2 10
−1 −1

,

A21 =
2.9 10
−1 −1

, A12 =
 2 10
−1 −2

, A22 =
2.9 10
−1 −2

, B11 =B12 =B21 =B22 =
0
1


and the membership functions:

h11(z1(t)) = h12(z2(t)) = 1 − z1(t)
9

h21(z1(t)) = h22(z2(t)) = 1 − h1,1(z1(t))
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R2R1
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Figure 3.8: Switched Tunnel diode circuit (Chekakta et al., 2021).
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By effectively representing the nonlinear behavior of switched systems using T-S
multi-models, we can unlock the power of linear control design methods for a broader
range of real-world applications.

3.3.1 Challenges in observer design for switched Takagi-Seguno
fuzzy systems

The design of observers for switched T-S fuzzy system lies at the intersection of
two complex domains: switched system theory and Takagi-Sugeno fuzzy control. This
thesis delves into the fundamental challenges encountered in this domain and presents
established approaches to bridge this gap. Two primary obstacles hinder the design of
robust observers for switched T-S systems:

• Unmeasurable Premise Variables: In many physical systems, the premise
variables defining the active fuzzy rule in the T-S multi-models are often not
directly measurable. This lack of complete information makes it difficult for the
observer to replicate the system’s behavior accurately. Therefore, exploring design
approaches that address the issue of unmeasurable premise variables would be
valuable.

• Asynchronicity between the observer and the switched T-S system: In
real-world applications, the switching behavior of the observer deviates from that
of the system. The observer’s switching signals may experience delays or discrep-
ancies compared to those of the system. These observers exhibit discrepancies in
their switching behavior compared to the switched T-S system, which poses a
much greater challenge compared to the synchronous switching.

Despite these challenges, researchers have developed various observer design ap-
proaches that address the issues of unmeasurable premise variables and asynchronous
switching. A more in-depth analysis of these dominant approaches will be presented
in the contribution chapter. This will provide a comprehensive framework for under-
standing observer design in the context of switched T-S fuzzy systems. Additionally,
we also present our contribution to addressing these two primary problems.

3.4 Conclusion

This chapter has provided a comprehensive foundation for understanding T-S fuzzy
multi-model systems. We delved into the core concepts, explored various derivation
methodologies with an emphasis on the sector nonlinearity approach, and analyzed
system stability using Lyapunov function theory.
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Furthermore, the chapter tackled the critical challenge of state observer design for
T-S systems. We meticulously examined the impact of unmeasurable premise variables
on observer design methodologies, highlighting the complexities introduced by this
limitation.

Finally, we explored the intricacies of switched T-S fuzzy systems, analyzing their
structural characteristics and demonstrating their application with a switched tunnel
diode circuit example. This section concluded by emphasizing the specific challenges
associated with observer design in the context of switched T-S systems.

Our critical examination of the provided bibliography revealed several key findings
that will shape our research focus:

• Lyapunov stability analysis can be significantly enhanced by constructing a can-
didate function that reflects the specific fuzzy interconnection structure (mem-
bership functions) of the T-S system under investigation. This approach can lead
to less conservative stability conditions compared to generic methods.

• Realistically, premise variables in T-S models may not always be directly mea-
surable. The lack of measurability for these variables introduces complexity and
hinders the development of simplified representations for state estimation error
dynamics.

• Designing observers for switched T-S systems lies at the complex intersection of
switched system theory and Takagi-Sugeno fuzzy control. Two primary obsta-
cles hinder the design of robust observers for switched T-S systems: unmeasured
premise variables and asynchronicity between observer and system

With this comprehensive study, the subsequent chapters will leverage this under-
standing of T-S fuzzy multi-model systems to delve deeper into specific areas of re-
search, such as fault diagnosis, fault estimation and advanced observer techniques that
address the challenges outlined in this conclusion .
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Chapter 4

Fault Diagnosis of Nonlinear
Systems

4.1 Introduction

The present chapter specifically addresses the intricacies of fault diagnosis tailored
for nonlinear systems. To navigate this intricate landscape effectively, the chapter

begins by providing clear and concise definitions of key terms associated with fault
diagnosis. This shared understanding serves as a vital foundation as we delve deeper
into the subject matter.

The chapter then proceeds to meticulously classify faults into distinct categories.
This systematic approach facilitates the identification of the fault’s nature, ultimately
guiding the selection of the most appropriate diagnosis methods. Following the estab-
lishment of a comprehensive fault classification system, we explore diverse methods for
fault diagnosis. These methods are categorized into two primary branches: model-free
and model-based approaches. Model-free methods offer flexibility by not requiring a
detailed system model. Conversely, model-based methods leverage system models to
potentially achieve more precise diagnoses. Each category is further subdivided into
quantitative and qualitative approaches. Quantitative methods rely on the analysis of
numerical data, while qualitative methods focus on non-numerical observations and
reasoning.

4.2 Definitions

A significant challenge in the field of fault diagnosis is the inconsistent use of
terminology. This is evident in the varying definitions assigned to the same word, such
as "diagnosis." For instance:

• In finance: Diagnosis becomes a dynamic analysis tool used to forecast future
financing needs.
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• In medicine: It signifies the process of identifying an infection based on symp-
toms and causes.

• In automation: Diagnosis transforms into a decision support system that pin-
points faulty components and, if possible, their root causes.

This inconsistency can lead to miscommunication and confusion between researchers
and practitioners. To address the ambiguities arising from inconsistent terminology in
fault diagnosis, the SAFEPROCESS technical committee of the International Federa-
tion of Automatic Control (IFAC) has undertaken the task of standardizing key defi-
nitions. In this context, it is crucial to revisit the terminology employed in this report,
which is based on the work of the SAFEPROCESS technical committee (Zwingelstein,
1995, Isermann and Balle, 1997, Isermann and Phalle, 2000).

• Fault: It is an inadmissible deviation in at least one characteristic property,
variable, or behavior of a system from its acceptable standard (usual) behavior.
It does not necessarily lead to a system malfunction but indicates a potential
future failure.

• Failure: It is the realized impairment or cessation of a device’s ability to perform
one or more of its intended functions. It can be a consequence of a fault.

• Breakdown: It is the manifestation of a failure that disrupts the normal opera-
tion of a process. In other words, it is a state of non-functionality or malfunction,
either hardware or software, where a unit is unable to perform a required function
due to a failure. A breakdown can be considered either permanent or intermittent:

– Permanent breakdown: It is a malfunction of a component that needs to be
replaced or repaired. It can be caused by a gradual change in the character-
istics of a component, such as aging, or a sudden change such as hardware
failure.

– Intermittent breakdown: This may allow the process to return to its normal
operating mode. These breakdowns very often lead to permanent break-
downs due to a progressive degradation of the system’s performance.

• Degradation: It is a decline in the performance of one or more functions of a
device.

• Prognostics: It is forecasting the evolution of faults and their consequences.

• Operating mode: This term is used to describe the different operational states
of a process. There are three main operating modes: normal, degraded, and failed:
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– Normal operating mode: The system is functioning correctly and meeting its
intended performance requirements.

– Degraded operating mode: The system is experiencing some level of perfor-
mance degradation or malfunction, but it is still able to operate to some
extent.

– Failed operating mode: The system has ceased to function or has experi-
enced a critical failure and is no longer able to meet any of its intended
requirements.

• Monitoring: It is the process of observing and evaluating the state of a system
or process to detect and identify anomalies or deviations from normal behavior.

• Diagnosis: It is the process of identifying the type, extent, location, and time
of occurrence of a fault using logical reasoning based on the symptoms and ob-
servations of the system.

• Fault detection: It is the process of determining whether a system is operating
normally or if a fault has occurred.

• Fault localization: It is the process of identifying the specific cause or location
of a fault within a system, building upon the anomalies detected during the fault
detection phase.

• Fault identification and estimation: This phase involves determining the
magnitude and probable evolution over time of the detected fault.

• Residual: It is the indicator of the presence or absence of a fault. It is the
difference between the observed system behavior and the expected behavior based
on a reference model.

• Fault tolerance: It is the ability of a system to continue fulfilling its intended
mission(s), or if necessary, to achieve new objectives to avoid catastrophic tra-
jectories, even in the presence of one or more faults. It is based on two main
approaches: configuration and accommodation.

– Reconfiguration: It is the process of dynamically modifying the system’s con-
trol strategy or hardware configuration to maintain acceptable performance
despite faults, utilizing the remaining non-faulty components.

– Accommodation: It is the ability of the system to adapt to faults without
compromising its overall objectives or structure. It involves correcting or
mitigating the effects of a fault through recovery procedures or error com-
pensation.
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4.2.1 Classification of Faults

A fault is defined as an unacceptable deviation between the actual value of a
system characteristic and its nominal value. As shown in Figure 4.1, three types of
faults are distinguished: actuator fault, sensor fault, and process fault (or component
fault) (Methnani, 2012).

Figure 4.1: Classes of faults in physical systems.

• Actuator faults: Generally modeled as additive or multiplicative signals to the
input signals. They act at the level of the operating part and thus deteriorate the
input signal of the system.

• Component or process faults: Generally modeled as additional or multiplica-
tive dynamics with a state matrix. They are identified by modifying the system’s
characteristics.

• Sensor faults: Generally modeled as additive or multiplicative signals to the
output signals. They provide an inaccurate representation of the system’s physical
state.

Another classification of faults based on their time-varying behavior can be consid-
ered (Schwarte and Isermann, 2002).

• Abrupt fault: It is characterized by a sudden and discontinuous change in the
behavior of a system variable. This type of fault is typically caused by a catas-
trophic failure of a system component, such as a sudden breakdown, discon-
nection, or complete or partial stoppage. The fault’s temporal behavior can be
represented mathematically as:

f (t) =
 δ t ⩾ tf

0 t < tf

(4.1)

f (t) represents the fault behavior at time t, tf represents the instant of fault
occurrence and δ represents a constant threshold.
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• Intermittent fault: It is a special type of abrupt fault characterized by the
random return of the affected signal to its normal value. This type of fault is often
associated with loose connections, damaged wires, or faulty components that
intermittently lose or regain their functionality. The mathematical representation
of an intermittent fault can be expressed as:

f (t) =
 δ tf1 ⩽ t ⩽ tf2

0 otherwise
(4.2)

f (t) represents the fault behavior at time t, tf2 − tf1 represent the random time
intervals during which the fault is active and δ represents a constant threshold.

• Gradual fault: It is characterized by a slow and continuous change in the be-
havior of a system variable. This type of fault is often caused by wear and tear,
degradation of components, or gradual changes in system parameters. The math-
ematical representation of a gradual fault can be expressed as:

f (t) =
 δ

(
1 − e−α(t)

)
t ⩾ tf

0 t < tf

(4.3)

where α and δ are positive constants. This type of fault is very difficult to detect
because its temporal evolution has the same signature as a slow parametric change
representing a non-stationarity of the process. This type of fault is characteristic
of fouling or wear of a part.

Faults can also be classified based on their effects on system performance (Figure
4.2).

• Additive faults: They are characterized by the addition of an extraneous signal
to the system’s variable at a specific point. These faults are often caused by
external disturbances, sensor biases, or actuator malfunctions. Additive faults
can be modeled as a summation between the normal system variable and the
fault signal.

• Multiplicative faults: In contrast, cause a scaling or gain change in the system’s
variable. These faults are often associated with component failures, such as gain
loss in an amplifier or loss of sensitivity in a sensor. Multiplicative faults can be
modeled as a multiplication between the normal system variable and the fault
factor:

Actuator and sensor faults are generally modeled as additive faults, whereas component
faults are modeled as multiplicative faults. The latter induce changes in the correlation
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of the system’s output signal, as well as changes in the system’s spectral characteristics
and dynamics.

Figure 4.2: Additive and multiplicative fault.

4.3 Classification of fault diagnosis methods

In the context of automatic control, fault diagnosis methods can be broadly classified
into two main categories (Figure 4.3, Ding, 2021):

• Model-free methods: These methods do not require a mathematical model of
the system and do not rely on extensive knowledge of the physical system. They
are often based on data-driven approaches and pattern recognition techniques.

• Model-based methods: These methods utilize a mathematical model of the
system to predict its expected behavior and compare it to actual observations.
Deviations between the predicted and observed behavior indicate potential faults.

4.3.1 Model-free fault diagnosis methods

In certain industrial applications, developing a mathematical model can be chal-
lenging or even impossible due to the dynamic nature of the production process or
the complexity of the phenomena involved. In such cases, model-free fault diagnosis
methods are employed, which do not require in-depth knowledge of the process. Two
main categories of model-free approaches can be distinguished (Ding, 2021):

• Quantitative methods (Knowledge-based Methods): These methods uti-
lize expert knowledge or historical data to establish relationships between system
variables and potential faults. They often employ rule-based systems, statistical
analysis, or machine learning techniques.

• Qualitative methods (Data-driven methods): These methods directly ana-
lyze sensor data or process signals to identify patterns indicative of faults. They
often employ signal processing techniques, pattern recognition algorithms, and
anomaly detection approaches.
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Diagnostic methods

Model-based methods

Quantitative

State 
estimation

Parity space

Parameter 
estimation

Qualitative

Influence 
diagrams

Causal 
models

Model-free methods

Quantitative

PCA

Neural networks

Spectral analysis

Adaptive quality 
time (AQT)

Pattern 
recognition

Qualitative

FMEA

Fault tree 
analysis (FTA)

Expert 
systems

Figure 4.3: Non-exhaustive classification of fault diagnosis methods.

4.3.1.1 Quantitative methods

Quantitative methods, also known as knowledge-based methods, are used in auto-
matic control when most of the measurements are unavailable and when it is difficult
to build a model of the system. They can be used to identify the causes of failures in
an industrial process. These methods involve functional and structural analyses that
are based on the operator’s experience and knowledge.

• Fault tree analysis (FTA): It is a top-down method for identifying the root causes
of failures in a system (Figure 4.4). It is a graphical tool that is used to represent
the various combinations of events that can lead to an undesirable event.

• Expert systems: They are computer systems that are designed to solve a specific
problem by emulating the decision-making ability of a human expert. They are
typically used in domains where the rules and heuristics for solving problems
are not well-defined or are difficult to formalize.Expert systems can be used to
diagnose faults in complex systems by identifying the likely causes of symptoms.

4.3.1.2 Qualitative methods

Qualitative methods in automatic control rely on processing a symbolic knowledge
base and require a vast amount of historical data representing the various operational
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Figure 4.4: Fault tree analysis: Identifying root causes of motor overheating.

Figure 4.5: Schematic of an expert system.

modes of the system. These methods offer advantages in situations where detailed
mathematical models are unavailable (Methnani, 2012):

• Qualitative methods can operate effectively when a complete or accurate math-
ematical model is not feasible due to system complexity or dynamic behavior.

• These methods can incorporate valuable insights from human experts and his-
torical operational data to identify and diagnose faults.

• They can handle complex systems with numerous interacting variables by an-
alyzing relationships between variables and their behavior under different fault
conditions.

However, there are also drawbacks associated with qualitative methods:
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• Their effectiveness heavily relies on the quality and completeness of the knowledge
base and historical data. Biases or errors within this data can negatively impact
fault diagnosis accuracy.

• Building and maintaining a comprehensive knowledge base can be a significant
investment of time and effort.

• The methods are inherently susceptible to biases and errors that might exist in
the expert knowledge or historical data used.

In this context, quantitative methods for fault diagnosis encompass a diverse range of
techniques:

• Principal Component Analysis (PCA): it is a multivariate statistical technique
that can be used to compress data and reduce its dimensionality. PCA can be
used to detect and isolate faults in a system by monitoring the residuals of the
system’s output when it is projected onto the principal components. This method
has been successfully used in diagnostic studies (Jolliffe, 2002).

• Pattern recognition: It is a branch of machine learning that deals with the clas-
sification of objects based on their similarity to reference objects. In the context
of fault diagnosis, pattern recognition can be used to diagnose faults in a system
by identifying patterns in sensor data that are indicative of specific faults.

• Spectral analysis: It is a technique that is used to study the frequency content of
a signal. Spectral analysis can be used to detect faults in a system by identifying
changes in the frequency content of sensor data.

4.3.2 Model-based fault diagnosis methods

Model-based methods are a type of fault diagnosis technique that uses a model of
the system to identify faults. The model is used to predict the system’s behavior under
normal conditions, and any deviations between the predicted and actual behavior are
used to identify faults. Model-based methods have a number of benefits over other fault
diagnosis techniques, including:

• They can be used to diagnose faults in a wider range of systems.

• They are more sensitive to faults than other techniques.

• They can provide more information about the nature of the fault.

Similar to model-free diagnosis techniques, model-based approaches can be categorized
into two main groups: quantitative and qualitative methods.
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4.3.2.1 Quantitative methods

Quantitative model-based diagnosis methods rely on the mathematical relation-
ships between system variables to identify faults. These models are developed using
fundamental physical laws (mass balance, energy balance, momentum balance, etc.) or
input-output relationships. According to Marcu and Frank, 1998, quantitative model-
based diagnosis methods can be classified into three main groups:

• Parity space approach: It is a model-based fault diagnosis technique that utilizes
parity equations to verify the consistency between process models and sensor
measurements. It is particularly useful in identifying additive faults in linear
systems. The parity space approach establishes analytical redundancy (either in
the time or frequency domain) between system inputs and outputs, independent
of the system’s states. The parity matrix, derived from the observability matrix,
eliminates the influence of states on the residuals, making it easier to detect
faults.

• Parameter estimation: It is a fault diagnosis technique that uses real-time pa-
rameter estimation to identify faults in a system. The principle is to continuously
estimate the parameters of the system using input and output measurements.
The residual, which is the difference between the estimated parameter values and
the reference values for normal operation, is then used to detect faults. Early ap-
plications of parameter estimation for fault diagnosis were conducted by 49. The
technique has been successfully applied to fault detection in nonlinear systems.

• State estimation: It is a fault diagnosis technique that uses an observer to estimate
the state of the system and identify faults. The observer is a mathematical model
that can be used to predict the system’s output based on its input and the
current state of the system. The residual, which is the difference between the
estimated output and the measured output, is then used to detect faults. State
estimation is a powerful tool for fault diagnosis because it can provide information
about the internal state of the system, which is often not directly measurable.
This information can be used to identify faults that are not easily detectable by
other techniques, such as sensor faults or actuator faults. Several state estimation
techniques have been applied to fault diagnosis:

– Filter-based fault Diagnosis: This method was pioneered by Beard, 1971
and later formalized by Massoumnia, 1986. The approach aims to construct
detection spaces for each potential fault.

– Observer-based fault Diagnosis: Observers are computational algorithms de-
signed to estimate unmeasured state variables, either due to the absence of
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suitable measuring devices or to replace expensive sensors in a plant. The
core idea of observer-based residual generation is to compare process mea-
surements with their estimates generated by observers. The weighted esti-
mation error serves as a residual for fault detection and diagnosis (FDD).
Ideally, this residual should be zero or near zero when no fault is present
and significantly different from zero when a fault occurs. However, due to
disturbances, noise, and model uncertainties, the residual may also become
nonzero. Thus, the optimal scenario is for the residual to be insensitive to
noise, disturbances, and model uncertainties while being sensitive to faults.
To isolate and identify faults, a bank of state estimators is typically used,
where each estimator is sensitive to a specific fault and insensitive to oth-
ers. One of the most challenging tasks in fault diagnosis is estimating the
magnitude and shape of faults to facilitate fault accommodation procedures.
Observer-based fault estimation is the primary technique used for this pur-
pose. In the context of nonlinear systems, observer-based methods have gar-
nered significant attention. Over the past few decades, numerous results for
observer design aimed at fault estimation have been presented, as detailed
in Section 1.2.

4.3.2.2 Qualitative methods

The Artificial Intelligence (AI) community has proposed qualitative (or semi-
qualitative) reasoning based on the establishment of cause-and-effect relationships. In-
deed, diagnosis is typically a causal system since it involves making hypotheses about
the faulty components that are the origin of the observed malfunction. Qualitative
reasoning expresses the link between a component and the formulas describing its be-
havior. Among the most widely used methods, we can cite:

• Causal Graphs (or Influence Graphs): Causal graphs (or influence graphs) are
used to identify the faulty components that can explain the observed abnormal
behavior. Causal graph-based diagnosis involves searching for the source vari-
able whose deviation is sufficient to explain all the deviations detected on other
variables (Travé-Massuyès and Milne, 1997). Two main types of causal structure
are proposed: the first type links causality to the equations describing the sys-
tem (global analysis) while the second axis links causality to the structure of the
system (local analysis).

• Fuzzy logic: Fuzzy logic is a mathematical theory introduced by (Zadeh, 1965)
that allows for the consideration of uncertainties and the fusion of information.
The idea behind the fuzzy approach is to construct a device, called a fuzzy in-
ference system, capable of imitating the decision-making of a human operator
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based on verbal rules translating their knowledge of a given process.Establishing
a mathematical relationship between a fault and its symptoms can often be chal-
lenging. However, drawing upon their experience, human operators can determine
the faulty element that is causing the observed symptoms. This type of knowl-
edge can be expressed using rules of the form: IF condition THEN conclusion.
Where the condition part contains the observed symptoms and the conclusion
part the faulty element. Thus, the diagnostic problem is considered a classifica-
tion problem. The symptom vector of the classifier, developed from the measured
quantities on the system, can be seen as a shape that needs to be classified among
the set of shapes corresponding to normal or abnormal operation.

4.4 Conclusion

This chapter has embarked on a comprehensive exploration of fault diagnosis within
the intricate world of nonlinear systems. We established a clear foundation with fault
definitions and a meticulous classification system, paving the way for effective diagnosis
strategies. We then delved into the diverse approaches utilized for fault diagnosis,
encompassing both model-free and model-based methods, with their quantitative and
qualitative subcategories.

Building upon the knowledge gleaned in this chapter, the next chapter takes center
stage. It delves into our original contribution in the realm of observer-based fault
estimation for nonlinear systems. We present a novel approach to observer design that
addresses the limitations discussed earlier. This novel approach aims to improve the
robustness and efficiency of fault estimation, paving the way for more reliable and
practical applications in complex systems.
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Chapter 5

Asynchronous observer design for
robust sensor fault estimation in
switched nonlinear systems with

fast time-varying and unbounded
faults

5.1 Introduction

Switched nonlinear systems are a prevalent class of models used to represent a
wide range of dynamic processes in engineering and control applications. These

systems exhibit complex behavior due to their ability to switch between different sub-
systems based on specific operating conditions. However, the presence of sensor faults
can significantly degrade system performance and compromise safety. Reliable and ro-
bust sensor fault estimation techniques are therefore crucial for ensuring the reliable
operation of such systems.

This chapter delves into the challenge of robust sensor fault estimation in switched
nonlinear systems with a particular focus on fast time-varying and unbounded faults.
These types of faults pose a significant challenge due to their rapid changes and po-
tentially severe impact on system behavior. To address this challenge, we propose a
novel approach utilizing asynchronous switched observers. These observers offer sev-
eral advantages: They can function effectively even under uncontrolled, arbitrary, or
unknown switching sequences among system modes. In addition, they can handle sit-
uations where the system and observer are not perfectly synchronized at the start,
allowing for different initial modes. The design of these observers leverages a powerful
mathematical framework and incorporates techniques for handling fast time-varying
and unbounded faults. This chapter details the design process, analyzes the conver-
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gence properties of the proposed observer, and demonstrates its effectiveness through
rigorous simulations.

5.2 Preliminaries and Problem Statement

Let us consider the following class of switched nonlinear systems with m switching
modes:  ẋ(t) = gσj(t)(x(t), u(t), d(t))

y(t) = Cx(t)
(5.1)

where x(t) ∈Rnx is the state vector, y(t) ∈Rny is the measured output vector, u(t) ∈
Rnu is the input vector and d(t) ∈ Rnd is a L2 norm bounded disturbance vector.
gσj(t)(x(t), u(t), d(t)) ∈ Rnx is the nonlinear vector that describes the dynamics of the
considered system, C ∈ Rny×nx is the output matrix which is common and linear for
all the switched modes. σj(t) are switching functions defined, when the lth mode is
activated, as: σj(t) = 1 when j = l.

σj(t) = 0 when j ̸= l.
(5.2)

where obviously ∑m
j=1 σj(t) = 1.

Remark 11 Without loss of generality, let us consider that the switches occur
according to switching sets defined by linear hyper-planes as follows:

Sjj+ = {x(t) ∈ Rnx : sjj+x(t) = 0},
(
j, j+

)
∈ Is (5.3)

where sjj+ are real vectors with appropriate dimensions, j and j+ respectively the
active mode at time t and its successor. Is is the set of admissible switches.

In addition, the following assumption is considered for the purpose of transforming
the switched nonlinear system (5.1) into a switched T-S fuzzy system by applying the
sector nonlinearity approach using the convex polytopic transformation. (Tanaka and
Wang, 2001)

Assumption 1 ∀j ∈ {1, ..., m}, let us assume that the nonlinear vector-valued
functions gσj(t)(x(t), u(t), d(t)) involves p sector-bounded scalar state-dependent
nonlinearities ηρ(x(t)) ∈ [ηρ, η̄ρ], ρ ∈ {1, . . . , p}.

Based on the Assumption 1, an exact Takagi-Sugeno model (see e.g., Takagi and
Sugeno, 1985) for each mode j of the switched nonlinear system (5.1) can be achieved
using the well-known sector nonlinearity approach (see e.g., Tanaka and Wang, 2001)
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on each nonlinearities ηρ(x(t)) ∈ [ηρ, η̄ρ]. Nevertheless, if some state variables involved
in the nonlinearities ηρ(x(t)) are unmeasurable, the obtained Takagi-Sugeno models
would be in this case with UPVs (see e.g., Ichalal et al., 2010, Moodi and Farrokhi,
2014, Moodi and Bustan, 2018, Xie et al., 2019, Chekakta et al., 2021). For the reasons
previously explained in this dissertation and to overcome the UPVs problem, it would
need to rewrite the considered system (5.1) as a switched Takagi-Sugeno (T-S) model
with nonlinear consequent parts (see e.g., Chekakta et al., 2023)


ẋ(t)=

m∑
j=1

rj∑
ij=1

σj(t)hij
(Mx(t))

(
A0

ij
x(t) + H0

ij
Φ(N0x(t)) + B0

ij
u(t) + E0

ij
d(t)

)
y(t)=Cx(t)

(5.4)

where M ∈ Rnm×nx and N0 ∈ Rnum×nx are known matrices selecting respectively
the measured and unmeasured state variables. A0

ij
∈ Rnx×nx , B0

ij
∈ Rnx×nu , H0

ij
∈

Rnx×nΦ , E0
ij

∈ Rnx×nd are the associated matrices to each T-S subsystems. ∀i = 1, . . . , rj,
hij

(Mx(t)) ≥ 0 are fuzzy membership functions in each switched modes j, which sat-
isfy the convex sum property ∑rj

ij=1 hij
(Mx(t)) = 1 and depend only on measured

state variables. However, the unmeasured nonlinear terms are placed in the vector
valued sector-bounded nonlinear function Φ(N0(x(t)) ∈ co{0, Ux(t)} ∈ RnΦ , where
U ∈ RnΦ×nx . As a reminder, the proposed N-TS modelling approach finds its appli-
cation only when the considered system involves both unmeasurable and measurable
state-dependent nonlinearities.

For design purpose, we consider that the following property holds.

Property 1 (Dong et al., 2009) The vector of nonlinearities Φ(N0x(t)) ∈
RnΦ satisfies the following sector-boundedness condition:

Φ(N0x(t))T Υ(Φ(N0x(t)) − Ux(t)) ≤ 0 (5.5)

where Υ ∈ RnΦ×nΦ is any positive-definite diagonal matrix.

In order to cope with nonlinear consequent parts, let us introduce the following
assumption which is a general form of the Lipschitz condition.
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Assumption 2 Let us assume that the characterisation of the nonlinear term
Φ(N0x(t)) can be made based on a set M of symmetric matrices Ξhσ =
diag(Ξ11

hσ
, Ξ22

hσ
), with Ξ11T

hσ
> 0 and Ξ22

hσ
= Ξ22T

hσ
< 0. Hence, following the work

of Açıkmeşe and Corless, 2011, all Ξhσ ∈ M satisfies the Incremental Quadratic
Constraint (δQC) given by:

 q1 − q2

Φ(q1, t) − Φ(q2, t)

T

Ξhσ

 q1 − q2

Φ(q1, t) − Φ(q2, t)

 ≥ 0 (5.6)

where q1 = N0x(t), q2 = N0x̂(t) and x̂(t) ∈ Rnx×nx is the estimation of the state
vector.

Indeed, compared with the Lipschitz condition, the unknown nonlinearities Φ(N0(x(t))
satisfying incremental quadratic constraints can be characterized as a set of multiplier
matrices (5.6), which may provide a significant advantage in terms of the relaxation of
the conservatism of the proposed LMI-based design conditions.

Moreover, the switched N-TS model (5.4) is valid inside a domain of validity Dx

defined as follows:
Dx = {x(t) ∈ Rnx : ζx (t) ≤ Q, v ∈ Iv} (5.7)

where ζ ∈ R2v×nx is a given matrix, Q ∈ R2v is a given vector, and v is the number of
state variable bounds.

Notations 1 A transpose quantity in a matrix is represented by a star (∗). T −

denotes the Moore-Penrose inverse of the matrix T . In addition, convex combi-
nations of matrices K(.) with appropriate dimensions are denoted as:

Khσ =
m∑

j=1

rj∑
ij=1

σj(t)hij
(Mx(t))Kij

and Khσ̂
=

m∑
ĵ=1

rĵ∑
iĵ=1

σ̂ĵ(t)hiĵ
(Mx(t))Kiĵ

Furthermore, let us consider that the studied system is subject to sensor fault. Thus,
the class of switched N-TS systems can be described as:

 ẋ (t) = A0
hσ

x (t) + H0
hσ

Φ (N0x (t)) + B0
hσ

u (t) + E0
hσ

d (t)

y (t) = Cx (t) + F 0
s fs (t)

(5.8)

where fs(t) ∈ Rnfs is the sensor fault vector which can be some unwanted variation
of the output vector y(t). For design purpose, F 0

s ∈ Rny×nfs is assumed a full column
rank matrix, which is a common assumption in sensor fault estimation method (see
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e.g., Han et al., 2022, Zhang et al., 2018). This assumption is needed to construct the
proposed observer.

5.2.1 Observer construction

Let x̄(t) =
[

xT (t) fT
s (t)

]T
. Then, the extended system can be written as:

G0 ˙̄x (t) = A1
hσ

x̄ (t) + H1
hσ

Φ (N1 x̄ (t)) + B1
hσ

u (t) + F 2
s fs (t) + E1

hσ
d (t)

y (t) = C1x̄ (t) = C0x̄ (t) + F 0
s fs (t)

(5.9)

with G0 =
 Inx×nx 0nx×nfs

0ny×nfs
0ny×nfs

, A1
hσ

=
 A0

hσ
0nx×nfs

0ny×nx −F 0
s

, H1
hσ

=
 H1

hσ

0ny×nΦ

,

B1
hσ

=
 B0

hσ

0ny×nu

, F 2
s =

 0nx×ny

F 0
s

, N1 =
[

N0 0nΦ×nfs

]
, E1

hσ
=

 E0
hσ

0ny×nd

,

C1 =
[

C F 0
s

]
, C0 =

[
C 0ny×nfs

]
.

From the equation (5.9), the sensor fault fs(t) can be written as follows:

fs (t) = F 1
s

(
y (t) − C0x̄ (t)

)
(5.10)

where F 1
s = (F 0

s )− is the left inverse of F 0
s , such that F 1

s F 0
s =

((
F 0

s

)T
F 0

s

)−1 (
F 0

s

)T

︸ ︷︷ ︸
F 1

s

F 0
s =

Infs
.

Then, the equation (5.10) is introduced in the equation (5.9). This leads:

G0 ˙̄x (t) =
(
A1

hσ
− F 2

s F 1
s C0

)
x̄ (t) + H1

hσ
Φ
(
N1 x̄ (t)

)
+ B1

hσ
u (t) + F 2

s F 1
s y (t) + E1

hσ
d (t)

(5.11)
Adding the term L1

σC1 ˙̄x (t) in the both side, the equation (5.11) become:

G1
σ

˙̄x (t) =
(
A1

hσ
− F 2

s F 1
s C0

)
x̄ (t)+H1

hσ
Φ
(
N1 x̄ (t)

)
+B1

hσ
u (t)+F 2

s F 1
s y (t)+E1

hσ
d (t)+L1

σC1 ˙̄x (t)
(5.12)

with G1
σ = G0 + L1

σC1 and L1
σ =

 L11
σ

L12
σ

. We suppose that L11
σ = 0nx×ny , L12

σ ∈ Rny×ny

are arbitrary nonsingular matrices. Hence, G1
σ =

 Inx 0
L12

σ C L12
σ F 0

s

. Noting that the

matrices G1
σ are full column rank, because F 0

s is a full column rank matrix and L12
σ are

arbitrary nonsingular matrices.

Let define G2
σ =

 Inx 0nx×ny

−F 1
s C F 1

s (L12
σ )−1

 is the left inverse of G1
σ, such that G2

σG1
σ =
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Inx+ny . Thus, the equation (5.12) can be written as:

˙̄x (t) = A2
hσ

x̄ (t)+H2
hσ

Φ
(
N1 x̄ (t)

)
+B2

hσ
u (t)+F 3

sσ
y (t)+E2

hσ
d (t)+G2

σL1
σC1 ˙̄x (t) (5.13)

where A2
hσ

= G2
σ

(
A1

hσ
− F 2

s F 1
s C0

)
, H2

hσ
= G2

σH1
hσ

, B2
hσ

= G2
σB1

hσ
, F 3

sσ
= G2

σF 2
s F 1

s and
E2

hσ
= G2

σE1
hσ

.

Let us consider S = G2
σL1

σ =
 0nx×ny

F 1
s

. Then, we can write:

G2
σL1

σC1 ˙̄x (t) = S C1 ˙̄x (t) = S ẏ (t) (5.14)

According to (5.14) and (5.13), the extended switched N-TS systems can be rewrit-
ten as:

˙̄x (t) = A2
hσ

x̄ (t) + H2
hσ

Φ (N1 x̄ (t)) + B2
hσ

u (t) + F 3
sσ

y (t) + E2
hσ

d (t) + S ẏ (t)

y (t) = C1x̄ (t) = C0x̄ (t) + F 0
s fs (t)

(5.15)

Thus, the domain of validity Dx̄, defined in (5.7), can be reformulated as follows:

Dx̄ =
{
x̄(t) ∈ Rnx+nfs : ζ̄ x̄ (t) ≤ Q, v ∈ Iv

}
(5.16)

In order to simultaneously estimate state and sensor fault vectors, the following
asynchronous switched N-TS observers are proposed:


ż (t) = A2

hσ̂
z (t) + H2

hσ̂
Φ
(
N1 ˆ̄x (t)

)
+ B2

hσ̂
u (t) + (F 3

sσ
+ A2

hσ̂
S)y (t) + Khσ̂

(y (t) − ŷ (t))
ˆ̄x (t) = z (t) + S y (t)

ŷ (t) = C1 ˆ̄x (t)
(5.17)

Where z (t) ∈ Rnx+nfs is an intermediate variable, ˆ̄x(t) ∈ Rnx+nfs is the estimation
of x̄(t). Khσ̂

∈ Rnx+nfs×ny are the observer gain matrices to be designed.

5.2.2 Estimation error dynamic

Let’s define Φe (t) = Φ (N1x̄ (t)) − Φ
(
N1 ˆ̄x (t)

)
∈ RnΦ as the estimation error of

the nonlinear consequent part vector. In addition, the extended state estimation error
e(t) ∈ Rnx+nfs can be defined as follows:

e (t) = x̄ (t) − ˆ̄x (t) (5.18)
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Thus, the extended state error dynamic can be written as:

ė (t) = ˙̄x (t) − ˙̄̂x (t) (5.19)

According to (5.17) and (5.19), the equation (5.19) can be reformulated as follows:

ė (t) = ˙̄x (t) − ż (t) − S ẏ (t) (5.20)

By introducing the dynamic of the observer (5.17), the equation (5.20) can be
written as follows:

ė (t) = A2
hσ

x̄ (t) + H2
hσ

Φ
(
N1 x̄ (t)

)
+ B2

hσ
u (t) + F 3

sσ
y (t) + E2

hσ
d (t) + Sẏ (t)

− A2
hσ̂

z (t) − H2
hσ̂

Φ
(
N1 ˆ̄x (t)

)
− B2

hσ̂
u (t) −

(
F 3

sσ
+ A2

hσ̂
S
)

y (t) − Khσ̂
(y (t) − ŷ (t)) − Sẏ (t)

= A2
hσ

x̄ (t) − A2
hσ̂

ˆ̄x (t) + H2
hσ

Φ
(
N1 x̄ (t)

)
− H2

hσ̂
Φ
(
N1 ˆ̄x (t)

)
+
(
B2

hσ
− B2

hσ̂

)
u (t)

+ E2
hσ

d (t) − Khσ̂
(y (t) − ŷ (t))

(5.21)
Adding and subtracting A2

hσ
ˆ̄x (t) and H2

hσ
Φ
(
N1 ˆ̄x (t)

)
, we obtain:

ė (t) = A2
hσ

x̄ (t) − A2
hσ

ˆ̄x (t) + A2
hσ

ˆ̄x (t) − A2
hσ̂

ˆ̄x (t) + H2
hσ

Φ
(
N1 x̄ (t)

)
− H2

hσ
Φ
(
N1 ˆ̄x (t)

)
+ H2

hσ
Φ
(
N1 ˆ̄x (t)

)
− H2

hσ̂
Φ
(
N1 ˆ̄x (t)

)
+
(
B2

hσ
− B2

hσ̂

)
u (t)

+ E2
hσ

d (t) − Khσ̂
C1

(
x̄ (t) − ˆ̄x (t)

)
=
(
A2

hσ
− Khσ̂

C1
)

e (t) +
(
A2

hσ
− A2

hσ̂

)
ˆ̄x (t) + H2

hσ
Φe (t)

+
(
H2

hσ
− H2

hσ̂

)
Φ
(
N1 ˆ̄x (t)

)
+
(
B2

hσ
− B2

hσ̂

)
u (t) + E2

hσ
d (t)

(5.22)
The dynamic of the estimation error can be described as:

ė (t) = A3
hσhσ̂

e (t) + H3
hσhσ̂

Φa (t) + B3
hσhσ̂

d̄ (t) (5.23)

where d̄ (t) =
[

ˆ̄xT (t) uT (t) dT (t)
]T

, Φa (t) =
[

ΦT
e (t) ΦT

(
N1 ˆ̄x (t)

) ]T
, A3

hσhσ̂
=

A2
hσ

−Khσ̂
C1, H3

hσhσ̂
=
[

H2
hσ

H2
hσ

− H2
hσ̂

]
and B3

hσhσ̂
=
[

A2
hσ

− A2
hσ̂

B2
hσ

− B2
hσ̂

E2
hσ

]
.

Moreover, the domain of validity of Dˆ̄x is similar to the one in (5.16) ((i.e. using
the same nonlinear sectors). Hence, the domain of validity of the estimation error De

is defined as follows:

De =
{
e(t) ∈ Rnx+nfs : ζ̄e (t) ≤ 2Q, v ∈ Iv

}
(5.24)
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Problem 1 The design objective considered in this study is to determine the
gain matrices Khσ of the N-TS observer-based sensor fault estimation (5.17) such
that the following requirements are fulfilled, while maximizing the estimate of the
attraction domain Da ⊆ De of the estimation error.

i. Convergence: ∀e(t) ∈ Da ⊆ De, the estimation error e (t) is convergent to
the origin, i.e. lim

t→+∞
e (t) = 0, when d̄ (t) ≡ 0.

ii. Robustness: For all non-zero d̄ (t) ∈ L2 [0, ∞) , the estimation error dy-
namics (5.23) has a prescribed disturbance attenuation level γ, such that

∥e (t)∥2
W∥∥∥d̄ (t)
∥∥∥2

Ω

≤ γ2 (5.25)

In other words, the following H∞ criterion is verified:
∫ ∞

0
eT (t)We(t)dt ≤ γ2

∫ ∞

0
d̄T (t)Ωd̄(t)dt (5.26)

where W and Ω are known positive diagonal matrices.

To conclude these preliminaries, let us recall some useful lemmas to be employed
to obtain the main results developed in the next section.

Lemma 2 (Peaucelle et al., 2000) For any matrices N, R, L, P and Q with ap-
propriate dimensions, the following inequalities are equivalent.

NT P + P T N + Q < 0 ⇐⇒ ∃ R, L :
NT LT + LN + Q (∗)

P − LT + RT N −RT − R

 < 0

(5.27)

Lemma 3 (Tuan et al., 2001) Let i = 1, ..., r and αi(.) > 0 being scalar functions
satisfying the convex sum property ∑r

i=1 αi(.) = 1. For same sized symmetric
matrices Mik, the inequality ∑r

i=1
∑r

k=1 αi(.)αk(.)Mik < 0 is verified if, ∀(i, k) =
{1, ..., r}2:

1
r − 1Mii + 1

2(Mki + Mik) < 0 1 ≤ i ̸= k ≤ r (5.28)

5.3 Main Results

In this section, the design problem of switched fuzzy observers to simultaneously
estimate the state and sensor fault vector is considered for a class of switched N-TS
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systems (5.4) under arbitrary switching sequences (without dwell-time constraint). For
this purpose, sufficient LMI-based conditions with incremental quadratic constraint
are given to design the gain matrices Khσ of the considered observer (5.17) so that the
requirements defined above in the problem statement are satisfied.

Theorem 1 Consider the switched N-TS system (5.4) and the switched N-TS
observers (5.17). ∀(j, ĵ) ∈ {1, ..., m}2, ∀(ij, kj) ∈ {1, ..., rj}2 and ∀qĵ ∈ {1, ..., rĵ},
if there exist a scalar γ > 0, diagonal matrices Υij

≥ 0 and real matrices Γĵ,
Pĵ = P T

ĵ
> 0, Yqĵ

verifying the following optimization problem:

min γ2, min trace(Pĵ)

s.t. (5.35), (5.36), (5.37) and Pĵ > 0
(5.29)

and the state vector of switched N-TS observers is updated at the switching times
according to

ˆ̄x+ (t) =
(

Inx+nfs
− L−1

ĵ

(
C1L−1

ĵ

)−
)

ˆ̄x (t) + L−1
ĵ

(
C1L−1

ĵ

)−
y (5.30)

1
rj − 1Zijijqĵ

+ 1
2
(
Zijkjqĵ

+ Zkjijqĵ

)
< 0, ∀(ij, kj) ∈ I2

rj
, (5.31)

Pĵ+ = Pĵ + ΓT
ĵ (C1)T + (C1)T Γĵ, ∀(ĵ, ĵ+) ∈ I2

m, (5.32)

 Pĵ (∗)
ζ̄(v) 4Q2

(v)

 ≥ 0, ∀v ∈ Iv, ∀ĵ ∈ Im, (5.33)

Thus, the requirements defined in the problem (1) are fulfilled. In addition, the
intersection of Lyapunov level sets L(1),

L(1) =
⋂

ĵ∈Im

{
e ∈ Rnx+nfs : eT (0)Pĵe(0) ≤ 1

}
(5.34)
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gives an estimate of the attraction domain Da of the estimation error e(t).
where:

1
rj − 1Zijijqĵ

+ 1
2
(
Zijkjqĵ

+ Zkjijqĵ

)
< 0, ∀(ij, kj) ∈ I2

rj
, (5.35)

Pĵ+ = Pĵ + ΓT
ĵ (C1)T + (C1)T Γĵ, ∀(ĵ, ĵ+) ∈ I2

m, (5.36)

 Pĵ (∗)
ζ̄(v) 4Q2

(v)

 ≥ 0, ∀v ∈ Iv, ∀ĵ ∈ Im, (5.37)

Zijkjqĵ
=



℘ijkjqĵ
(∗) (∗) (∗) (∗) (∗)

(B3
ijqĵ

)T Pĵ −γ2Ω (∗) (∗) (∗) (∗)(
H2

ij

)T
Pĵ 0 Ξ22

ij
(∗) (∗) (∗)(

H2
ij

− H2
qĵ

)T
Pĵ Υij

UΨ̄ 0 −2Υij
(∗) (∗)

Ψ 0 0 0 −Inx+nfs
(∗)

N1 0 0 0 0 −Ξ̄11
ij


,

℘ijkjqĵ
=

 He
((

A2
ij

)T
LT

kj
− (C1)T

Y T
qĵ

)
(∗)

P
ĵ

− LT
kj

+ RT
kj

A2
ij

−RT
kj

− Rkj

 ,

B3
ijqĵ

=
[

A2
ij

− A2
qĵ

B2
ij

− B2
qĵ

E2
ij

]
, Ψ = W1/2, Ψ̄ =[

Inx+nfs
0nx+nfs×nu 0nx+nfs×nd

]
, Ξ̄11

hσ
=

(
Ξ11

hσ

)−1
, Γĵ ∈ Rny×nx+nfs and

Y T
qĵ

= KT
qĵ

Pĵ.

with: Lĵ = Θĵ

√
ΛĵΘT

ĵ
, where Θĵ ∈ Rnx+nfs×nx+nfs are composed of the orthonor-

mal eigenvectors of Pĵ, and where Λĵ ∈ Rnx+nfs×nx+nfs are diagonal matrices, in
which are placed the eigenvalues of Pĵ.
with:

Zijkjqĵ
=



℘ijkjqĵ
(∗) (∗) (∗) (∗) (∗)

(B3
ijqĵ

)T Pĵ −γ2Ω (∗) (∗) (∗) (∗)(
H2

ij

)T
Pĵ 0 Ξ22

ij
(∗) (∗) (∗)(

H2
ij

− H2
qĵ

)T
Pĵ Υij

UΨ̄ 0 −2Υij
(∗) (∗)

Ψ 0 0 0 −Inx+nfs
(∗)

N1 0 0 0 0 −Ξ̄11
ij


,
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℘ijkjqĵ
=

 He
((

A2
ij

)T
LT

kj
− (C1)T

Y T
qĵ

)
(∗)

P
ĵ

− LT
kj

+ RT
kj

A2
ij

−RT
kj

− Rkj

 ,

B3
ijqĵ

=
[

A2
ij

− A2
qĵ

B2
ij

− B2
qĵ

E2
ij

]
, Ψ = W1/2, Ψ̄ =[

Inx+nfs
0nx+nfs×nu 0nx+nfs×nd

]
, Ξ̄11

hσ
=

(
Ξ11

hσ

)−1
, Γĵ ∈ Rny×nx+nfs and

Y T
qĵ

= KT
qĵ

Pĵ.

with: Lĵ = Θĵ

√
ΛĵΘT

ĵ
, where Θĵ ∈ Rnx+nfs×nx+nfs are composed of the

orthonormal eigenvectors of Pĵ, and where Λĵ ∈ Rnx+nfs×nx+nfs are diagonal
matrices, in which are placed the eigenvalues of Pĵ.

Proof. Let us consider the following multiple quadratic Lyapunov candidate func-
tion:

V (t, e (t)) = eT (t) Pσ̂e (t) (5.38)

where Pσ̂ are symmetric positive definite matrices Pσ̂ = (Pσ̂)T > 0. From (5.15), the
time derivative of (5.38) can be formulated as:

V̇ (t, e (t)) = ėT (t) Pσ̂e (t) + eT (t) Pσ̂ė (t)

=
(

eT (t)
(
A3

hσhσ̂

)T
+ ΦT

a (t)
(
H3

hσhσ̂

)T
+ d̄T (t)

(
B3

hσhσ̂

)T
)

Pσ̂e (t)

+ eT (t) Pσ̂

(
A3

hσhσ̂
e (t) + H3

hσhσ̂
Φa (t) + B3

hσhσ̂
d̄ (t)

) (5.39)

Hence, both requirements i. and ii. formulated in the problem (1) are fulfilled if there
exists γ > 0 such that the following inequality holds:

V̇ (t) + eT (t) We (t) − γ2 d̄T (t) Ωd̄ (t) ≤ 0 (5.40)

where Ω = diag
(
ε1Inx+nfs

, ε2Inu , Ind

)
, W = diag

(
ξ1Inx , ξ2Infs

)
, ε1, ε2, ξ1, ξ2 are

positive scalars.
The inequality (5.40) is equivalent to:


e (t)
d̄ (t)

Φe (t)
Φ
(
N1 ˆ̄x (t)

)



T


He
((

A3
hσhσ̂

)T
Pσ̂

)
+ ΨT Ψ (∗) (∗) (∗)(

B3
hσhσ̂

)T
Pσ̂ −γ2Ω 0 0(

H2
hσ

)T
Pσ̂ 0 0nΦ×nΦ 0(

H2
hσ

− H2
hσ̂

)T
Pσ̂ 0 0 0nΦ×nΦ




e (t)
d̄ (t)

Φe (t)
Φ
(
N1 ˆ̄x (t)

)

 ≤ 0

(5.41)
where Ψ = W1/2.
Based on the property (1), the vector of the nonlinear consequent part Φ

(
N1 ˆ̄x (t)

)
∈
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RenΦ×1 verifies the following sector-boundedness condition:

Φ
(
N1 ˆ̄x (t)

)T
Υhσ

(
Φ
(
N1 ˆ̄x (t)

)
− U ˆ̄x (t)

)
≤ 0 (5.42)

For design purpose, the inequality (5.42) can be developed as:

2
(

Φ
(
N1 ˆ̄x (t)

)T
ΥhσU ˆ̄x (t) − Φ

(
N1 ˆ̄x (t)

)T
ΥhσΦ

(
N1 ˆ̄x (t)

))
≥ 0 (5.43)

On the other hand, the incremental quadratic constraint δQC, formulated in the
assumption (2) is equivalent to:

 e (t)
Φe (t)

T  (N1)T Ξ11
hσ

N1 0
0 Ξ22

hσ

 e (t)
Φe (t)

 ≥ 0 (5.44)

where
(
Ξ11

hσ

)T
= Ξ11

hσ
> 0 and

(
Ξ22

hσ

)T
= Ξ22

hσ
< 0.

By introducing the inequalities (5.43) and (5.44), the inequality (5.41) holds, ∀
[

eT (t) d̄T (t) ΦT
e (t) ΦT

(
N1 ˆ̄x (t)

) ]
̸=

0, if:


He
((

A3
hσhσ̂

)T
Pσ̂

)
+ ΨT Ψ + (N1)T Ξ11

hσ
N1 (∗) (∗) (∗)(

B3
hσhσ̂

)T
Pσ̂ −γ2Ω (∗) (∗)(

H2
hσ

)T
Pσ̂ 0 Ξ22

hσ
(∗)(

H2
hσ

− H2
hσ̂

)T
Pσ̂ ΥhσUΨ̄ 0 −2Υhσ


≤ 0 (5.45)

with Ψ̄ =
[

Inx+nfs
0nx+nfs×nu 0nx+nfs×nd

]
.

By applying the Schur complement, the inequality (5.45) can be formulated as
follows:

He
((

A3
hσhσ̂

)T
Pσ̂

)
(∗) (∗) (∗) (∗) (∗)(

B3
hσhσ̂

)T
Pσ̂ −γ2Ω (∗) (∗) (∗) (∗)(

H2
hσ

)T
Pσ̂ 0 Ξ22

hσ
(∗) (∗) (∗)(

H2
hσ

− H2
hσ̂

)T
Pσ̂ ΥhσUΨ̄ 0 −2Υhσ (∗) (∗)

Ψ 0 0 0 −Inx+nfs
(∗)

N1 0 0 0 0 −Ξ̄11
hσ


≤ 0 (5.46)

where Ξ̄11
hσ

=
(
Ξ11

hσ

)−1
.

Then, by applying Peaucelle lemma (lemma 2), the inequality (5.46) holds if ∃(Lhσ , Rhσ)
such that:
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He
((

A2
hσ

)T
LT

σ̂ − (C1)T
Y T

hσ̂

)
(∗) (∗) (∗) (∗) (∗) (∗)

Pσ̂ − LT
hσ

+ RT
hσ

A2
hσ

−Rhσ − RT
hσ

(∗) (∗) (∗) (∗) (∗)(
B3

hσhσ̂

)T
Pσ̂ 0 −γ2Ω (∗) (∗) (∗) (∗)(

H2
hσ

)T
Pσ̂ 0 0 Ξ22

hσ
(∗) (∗) (∗)(

H2
hσ

− H2
hσ̂

)T
Pσ̂ 0 ΥhσUΨ̄ 0 −2Υhσ (∗) (∗)

Ψ 0 0 0 0 −Inx+nfs
(∗)

N1 0 0 0 0 0 −Ξ̄11
hσ



≤ 0

(5.47)
After the application of the Tuan lemma (Lemma 3), the inequality (5.47) can be ex-
pressed as LMIs conditions (5.35) given in the theorem (1).

Furthermore, to ensure the decreasing of the Lyapunov function at the switching
instants of the observer, the following inequality must be verified:

V
(
t+, e+(t)

)
≤ V (t, e(t)) (5.48)

where e+(t) is the updated error of the switched N-TS observers in the forthcoming
mode ĵ+.
Then, it can be deduced that the inequality (5.48) is fulfilled if:

(
x̄ (t) − ˆ̄x+ (t)

)T
Pĵ+

(
x̄ (t) − ˆ̄x+ (t)

)
≤
(
x̄ (t) − ˆ̄x (t)

)T
Pĵ

(
x̄ (t) − ˆ̄x (t)

)
(5.49)

Giving that x̄+(t) is an arbitrary estimated state vector satisfying y = C1 ˆ̄x+(t). Since
also y = C1x̄(t), it can lead to C1

(
x̄(t) − ˆ̄x+(t)

)
= y(t) − y(t) = 0, implying also that

(
x̄ (t) − ˆ̄x+ (t)

)T
(

ΓT
ĵ
C1 +

(
C1
)T

Γĵ

) (
x̄ (t) − ˆ̄x+ (t)

)
= 0 (5.50)

Based on the relation Pĵ+ = Pĵ + ΓT
ĵ
(C1)T + (C1)T Γĵ given in the theorem (1), the

inequality (5.49) becomes:

(
x̄ (t) − ˆ̄x+ (t)

)T
Pĵ

(
x̄ (t) − ˆ̄x+ (t)

)
≤
(
x̄ (t) − ˆ̄x (t)

)T
Pĵ

(
x̄ (t) − ˆ̄x (t)

)
(5.51)

The aim now is to choose ˆ̄x+(t) ∈ ˆ̄Sĵ,ĵ+ ( ˆ̄Sĵ,ĵ+ =
{

ˆ̄x(t) ∈ Renx×nfs

∣∣∣ ˆ̄sĵ,ĵ+ ˆ̄x(t) = 0
}
),

that the inequality (5.51) is fulfilled. In order to do so, we follow the reasoning of [80].
Since Pĵ can be factorized (spectral decomposition) as Pĵ = LT

ĵ
Lĵ, with Lĵ =

Vĵ

√
ΛĵV

T
ĵ

∈ Renx+nfs×nx+nfs [21], the inequality (5.51) is satisfied if:

∥∥∥Lĵ

(
x̄ (t) − ˆ̄x+ (t)

)∥∥∥ ≤
∥∥∥Lĵ

(
x̄ (t) − ˆ̄x (t)

)∥∥∥ (5.52)
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To obtain the updated value of the estimation of the state vector ˆ̄x+(t), ling on the
hyper plane y(t) = C1 ˆ̄x+(t) and minimizing the distance

∥∥∥Lĵ

(
ˆ̄x+ (t) − ˆ̄x (t)

)∥∥∥, we con-
sider the following optimization problem:

min
ˆ̄x+

∥∥∥Lĵ

(
ˆ̄x+ (t) − ˆ̄x (t)

)∥∥∥
subject to :C1 ˆ̄x+(t) = y(t)

(5.53)

By introducing a scalar αĵ = Lĵ

(
ˆ̄x+ (t) − ˆ̄x (t)

)
, we can write Lĵ

ˆ̄x+ (t) = αĵ + Lĵ
ˆ̄x (t).

The optimization problem (5.53) can be reformulated as follows:

min
ˆ̄x+

∥∥∥αĵ

∥∥∥
Subject to C1L−1

ĵ
αĵ = y − C1 ˆ̄x (t)

(5.54)

Which admits for solution the minimum least square length y(t) − C1 ˆ̄x (t):

αĵ =
(
C1L−1

ĵ

)− (
y − C1 ˆ̄x (t)

)
(5.55)

and so:
Lĵ

ˆ̄x+ (t) = Lĵ
ˆ̄x (t) +

(
C1L−1

ĵ

)− (
y − C1 ˆ̄x (t)

)
(5.56)

At last, left multiplying (5.56) by L−1
ĵ

, the updated value ˆ̄x+(t) can be computed as
indicated in (5.30).

To complete the proof, we still need to provide an estimate of the attraction domain
Da ⊆ De (see the first item in the problem (1)). Hence, let us consider the Lyapunov
level set L(1) defined, at t = 0, by (5.34). Applying the Schur Complement on (5.37),
we obtain:

Pĵ −
ζ̄T

(v)ζ̄(v)

4Q2
(v)

≥ 0, ∀v ∈ Iv, ∀ĵ ∈ {1, . . . , m}. (5.57)

Pre and post multiplying (5.57) by eT (0) and its transpose leads:

eT (0)Pĵe(0) −
eT (0)ζ̄T

(v)ζ̄(v)e(0)
4Q2

(v)
≥ 0, ∀ĵ ∈ {1, . . . , m}. (5.58)

Therefore, for any e(0) ∈ L(1), the inequality eT (0)ζ̄T
(v)ζ̄(v)e(0) ≤ 4Q2

(v) holds and,
based on the definition (5.24) of the error domain De, one can conclude that L(1) ⊆
De. At last, a simple method for enlarging L(1) is to minimize the trace of Pĵ with
ĵ ∈ {1, . . . , m}, as proposed in the optimization problem (5.29).
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Remark 12 It should be emphasized that by replacing the index ĵ with j in the
LMI-based conditions of Theorem 1, we can obtain the synchronous switched N-
TS observers design conditions.

In order to implement the proposed design approach, the following algorithm can
be employed.

Algorithm 1 1. Write the original switched nonlinear systems (5.1) as a
switched N-TS systems (5.4) and construct the parameter matrices of the
system (5.8), i.e. A0

hσ
, H0

hσ
, B0

hσ
, E0

hσ
, C and F 0

s .

2. Extend the switched N-TS systems (5.8) to obtain the extended switched
N-TS systems and construct their parameter matrices, (5.9), i.e. G0, A1

hσ
,

H1
hσ

, B1
hσ

, E1
hσ

, C1, C0 and F 1
s .

3. Select L12
σ ∈ Rny×ny such that L12

σ are arbitrary nonsingular matrices.

4. Construct the parameter matrices of the switched N-TS observers, i.e. A2
hσ

,
H2

hσ
, B2

hσ
and F 3

sσ
.

5. Solve the optimization problem (5.29). Gain matrices of the observer can
be obtained as Kqĵ

= P −1
ĵ

Yqĵ
.

In the following section, the effectiveness of the proposed design approach will be
illustrated over numerical simulations and some comparisons with related recent results
from the literature.

5.4 Simulation Results

In this section, two simulation examples, demonstrating the effectiveness and the
performances of the proposed asynchronous switched N-TS observers, are presented.
The first one is an academic example dedicated to compare the conservatism of the
proposed LMI-based conditions with regards to previous results by checking the fea-
sibility field of each method. The second example aims to illustrate the effectiveness
of our design methodology through an illustrative example (Zhang et al., 2015, Ren
et al., 2018, Khalil, 2002).
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5.4.1 Numerical example

Let us consider a switched nonlinear system with three modes (m = 3) defined by:

Mode 1 :


ẋ1 (t) = κ1

11x1 (t) + x2 (t) + 4η(x1(t))x2 (t) + β1
11u (t) + δ1

11d (t)
ẋ2 (t) = −8.5x2 (t) + sin (x2 (t)) + 1.21u (t) + 0.5d (t)
ẋ3 (t) = 0.8x1 (t) − 12x3 (t) + u (t) + 0.1d (t)

(5.59)

Mode 2 :


ẋ1 (t) = −11x1 (t) + 2x2 (t) + 5η(x1(t))x2 (t) + κ2

13x3 (t) + u (t) + 0.35d (t)
ẋ2 (t) = −13x2 (t) + sin (x2 (t)) + β2

21u (t) + δ2
21d (t)

ẋ3 (t) = 0.5x1 (t) + 0.1x2 (t) − 10x3 (t) + 1.2u (t) + 0.5d (t)
(5.60)

Mode 3 :


ẋ1 (t) = −12x1 (t) + 2x2 (t) + η(x1(t))x2 (t) + 1.5x3 (t) + 0.95u (t) + 0.3d (t)
ẋ2 (t) = 0.5x1 (t) − 10.2x2 (t) + 0.3x3 (t) + sin (x2 (t)) + u (t) + 0.8d (t)
ẋ3 (t) = 0.8x1 (t) + κ3

32x2(t) − 9x3 (t) + β3
31u (t) + δ3

31d (t)
(5.61)

The outputs are common and linear for all the switched modes. They are defined as:
 y1 (t) = x1 (t) + fs1 (t) + ω (t)

y2 (t) = c21x1 (t) + c23x3 (t) + fs2 (t) + ω (t)
(5.62)

where η (x1 (t)) = x2
1 (t), κ1

11 = −20 (a − b), β1
11 = 1 +

(
a
2

)
, δ1

11 = 0.25 +
(

a
10

)
,

κ2
13 = 0.5 +

(
a−b

2

)
, β2

21 = 1.22 +
(

b
2

)
and δ2

21 = 0.7 +
(

b
10

)
, κ3

32 = a+b
3 , β3

31 = 1.5 + b
2 ,

δ3
31 = 0.6 +

(
a−b
10

)
, c21 = a

10 , c23 = 1 + (b/10).

Moreover, a and b are two scalars devoted to study the feasibility fields of the LMI-
based conditions formulated in Theorem 1, then to compare their conservatism with
the following related works:

• Theorem 1 in Zhang et al., 2018, which provides the design of dynamic unknown
input switched TS observers to estimate the sensor fault and the system state
for a class of switched T-S systems with average dwell time consideration and
measured premise variables.

• The first optimization problem

min γ2

s.t. (31) and (41)
presented in Han et al.,

2022, which proposed dwell-time free conditions to design an adaptive adjustable
dimension observer to estimate the sensor fault and the system state for a class
of switched T-S systems with UPVs .
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• The second optimization problem

min γ2

s.t. (31), (38) and (41)
presented in Han

et al., 2022. In addition to the above conditions presented in the first optimization
problem, regional pole constraints are considered in the design of an adaptive
adjustable dimension observer.

Follow the first step of the Algorithm (1), let us write the original switched nonlin-
ear system (5.59)-(5.61) as a switched N-TS systems.
Noting that, the switched nonlinear systems considered in this example switches ac-
cording to the following switching sequence B = (V , E), where V = {1, 2, 3} is the sets
of switched modes and E = {(1, 2), (2, 3), (3, 1)} is the set of the admissible switches
between modes.

Remark 13 Two concepts can be applied in this example. The first one leads to a
classical switched T-S representation of the original system (5.59)-(5.61) by con-
sidering two premise variables ξ1 (t) = x2

1 (t) , ξ2 (t) = sin (x2 (t)), and so 4 rules
in each switched modes. Since the second state variables x2 (t) is unmeasured,
this would make ξ2 (t) unavailable, leading to T-S model with UPVs. However,
the second concept consists to apply the sector nonlinearity approach only to the
nonlinear terms depending on the measured state variables ξ1 (t) = x2

1 (t), lead-
ing to a N-TS model containing only measured premises variables. Furthermore,
the unmeasured nonlinear terms are kept as nonlinear consequent parts. In this
case, the number of fuzzy rules can be reduced to 2 rules in each modes, thereby
decreasing the number of vertices involved in LMI-based conditions.

Hence, let us consider the N-TS modeling approach to address the issue of unmea-
sured premise variables. To achieve this, let us assume that x (t) =

[
x1 (t) x2 (t) x3 (t)

]T
,

y (t) =
[

y1 (t) y2 (t)
]T

and fs (t) =
[

fs1 (t) fs2 (t)
]T

are the augmented vector.
x2 (t) ∈ [−π/2 π/2] is a bounded state vector which is unavailable from the measured
output y (t). Thus, sin(x2(t)) is an unmeasured nonlinear terms that can be placed
in the vector valued sector-bounded nonlinear function Φ (N0x (t)) = sin (N0x (t)) ∈
co {0, Ux (t)} with U =

[
0 1 0

]
and N0 =

[
0 1 0

]
. As a consequence, the

switched nonlinear system (5.59)-(5.61) can be formulated as follows:

Mode 1:

ẋ(t) =

 κ1
11 1 + 4η (x1 (t)) 0
0 −8.5 0

0.8 0 −12

x(t) +

 0
1
0

 sin (x2 (t))︸ ︷︷ ︸
Φ(N0x(t))

+

 β1
11

1.21
1

u (t) +

 δ1
11

0.5
0.1

 d (t) (5.63)
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Mode 2:

ẋ (t) =

 −11 2 + 5η (x1 (t)) κ2
13

0 −13 0
0.5 0.1 −10

x (t) +

 0
1
0

 sin (x2 (t))︸ ︷︷ ︸
Φ(N0x(t))

+

 1
β2

21

1.2

u (t) +

 0.35
δ2

21

0.5

 d (t) (5.64)

Mode 3:

ẋ (t) =

 −12 2 + η (x1 (t)) 1.5
0.5 −10.2 0.3
0.8 κ3

32 −9

x (t) +

 0
1
0

 sin (x2 (t))︸ ︷︷ ︸
Φ(N0x(t))

+

 0.95
1

β3
31

u (t) +

 0.3
0.8
δ3

31

 d (t) (5.65)

and the outputs are given as:

y (t) =
 1 0 0

c21 0 c23

x(t) +
 1 0

0 1

 fs (t) (5.66)

So, let us apply the sector nonlinearity approach for x2
1 ∈ [0 2.25] (x1 (t) ∈ [−1.5 1.5]),

the switched nonlinear system (5.63)-(5.65) can be rewritten as a N-TS system, ac-
cording to the model (5.4), with rj = 2 fuzzy rules in each of its m = 3 modes
(j = {1, 2, 3}). The nonlinear term η(x1(t)) can be expressed as follows:

η(x1(t)) = h1j
(x1(t)) × 0 + h2j

(x1(t)) × 2.25 (5.67)

where the membership functions are:

h1j
(x1(t)) = 2.25 − x2

1 (t)
2.25 and h2j

(x1(t)) = 1 − h1j
(x1 (t)) = x2

1 (t)
2.25 (5.68)

So, the vertices defined by the matrices:

A0
21 =


κ1

11 1 0
0 −8.5 0

0.8 0 −12

, A0
11 =


κ1

11 10 0
0 −8.5 0

0.8 0 −12

, A0
22 =


−11 2 κ2

13

0 −13 0
0.5 0.1 −10

,

A0
12 =


−11 13.25 κ2

13

0 −13 0
0.5 0.1 −10

, A0
23 =


−12 2 1.5
0.5 −10.2 0.3
0.8 κ3

32 −9

, A0
13 =


−12 4.25 1.5
0.5 −10.2 0.3
0.8 κ3

32 −9

,

B0
i1 =


β1

11

1.21
1

, B0
i2 =


1

β2
21

1.2

, B0
i3 =


0.95

1
β3

31

, E0
i1 =


δ1

11

0.5
0.1

, E0
i2 =


0.35
δ2

21

0.5

,

E0
i3 =


0.3
0.8
δ3

31

, C =
 1 0 0

c21 0 c23

, F 0
s =

 1 0
0 1

 and H0
i1 = H0

i2 = H0
i3 =


0
1
0

.

According to steps 2, 3 and 4 of the Algorithm (1), let us select the matrices L12
σ
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(arbitrary nonsingular matrices) as follows:

L12
1 =

 0.1 0
0 0.1

 , L12
2 =

 1 0
0 1

 and L12
3 =

 2 0
0 2

 (5.69)

So, the parameter matrices of the switched N-TS observers can be constructed as:

A2
21

=



κ1
11 1 0 0 0

hy; 0 −8.5 0 0 0
0.8 0 −12 0 0

−κ1
11 − 10 −1 0 −10 0

−10c21 − 0.8c23 − c21κ1
11 −c21 2c23 0 −10


, B2

i1
=


β1

11

1.21
1

−β1
11

−c23 − c21β1
11

 ,

H2
i1

= H2
i2

= H2
i3

=


0
1
0
0
0

,
A2

11
=



κ1
11 10 0 0 0

0 −8.5 0 0 0
0.8 0 −12 0 0

−κ1
11 − 10 −10 0 −10 0

−10c21 − 0.8c23 − c21κ1
11 −10c21 2c23 0 −10

 ,

B2
i2

=


1

β2
21

1.2
−1

−c21 − 1.2c23

, F 3
s1

=


0 0
0 0
0 0
10 0
0 10

,

A2
22

=



−11 2 κ2
13 0 0

0 −13 0 0 0
0.5 0.1 −10 0 0
10 −2 −κ2

13 −1 0
10c21 − 0.5c23 −2c21 − 0.1c23 9c23 − c21κ2

13 0 −1

 , B2
i3

=


0.95

1
β3

31

−0.95
−0.95c21 − c23β3

31

,

F 3
s2

=


0 0
0 0
0 0
1 0
0 1

, A2
12

=



−11 13.25 κ2
13 0 0

0 −13 0 0 0
0.5 0.1 −10 0 0
10 −13.25 −κ2

13 −1 0
10c21 − 0.5c23 −13.25c21 − 0.1c23 9c23 − c21κ2

13 0 −1


,

A2
23

=



−12 2 1.5 0 0

0.5 −10.2 0.3 0 0
0.8 κ3

32 −9 0 0
11.5 −2 −1.5 −0.5 0

11.5c21 − 0.8c23 −2c21 − c23κ3
32 8.5c23 − 1.5c21 0 −0.5


,
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A2
13

=



−12 4.25 1.5 0 0

0.5 −10.2 0.3 0 0
0.8 κ3

32 −9 0 0
11.5 −4.25 −1.5 −0.5 0

11.5c21 − 0.8c23 −4.25c21 − c23κ3
32 8.5c23 − 1.5c21 0 −0.5


, F 3

s3
=


0 0
0 0
0 0

0.5 0
0 0.5

.

Moreover, by considering that x1 (t) ∈ [−1.5 1.5] and x2 (t) ∈ [−π/2 π/2] , the
switched N-TS systems (5.4) represents exactly the switched nonlinear system (5.1) on
a validity domain Dx, which is a subset of the state space defined by the equation (5.7)
with:

ζ =


1 0 0

−1 0 0
0 1 0
0 −1 0

 , Q =


1.5
1.5
π/2
π/2

 (5.70)

So, the validity domain Dx̄ of the extended switched N-TS systems is defined in

(5.16) with ζ̄ =


1 0 0 0 0

−1 0 0 0 0
0 1 0 0 0
0 −1 0 0 0

 .

It now remains to determine gain matrices Kqĵ
of the switched N-TS observers. To

do so, the last step of Algorithm (1) is to solve Problem (1) defined in Theorem (1).
In what follows, our main objective is to compare the conservatism of the proposed

LMI-based conditions described in Theorem (1) with respect to some previous related
results (Zhang et al., 2018) and (Han et al., 2022). For several values of a ∈ [−35, 21]
and b ∈ [−7, 35] with a step of 1 between two consecutive values of a and b, the
feasibility regions, obtained by using YALMIP and SeduMi in MATLAB (Lofberg,
2004), are compared. The results of this study are shown in Fig.(5.1).

Figure 5.1: Feasibility fields obtained by Theorem (1) and the related studies.
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Indeed, each LMI-based conditions considered in this study were tested 2451 times.
The parameters used to perform this study are presented in Table (5.1).

Table 5.1: Parameters used in the considered studies.

Method Parameters

Theorem. 1 in Zhang et al., 2018 K1
0 =

[
0.1 0
0 0.1

]
, K2

0 =
[

1 0
0 1

]
, K3

0 =
[

2 0
0 2

]
,

T̄ 1 = T̄ 2 = T̄ 3 =

 1 0 0 0 0
0 1 0 0 0
0 0 1 1 1

, ν = 3

Problem. 1 in Han et al., 2022 G1
j =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

, G2
j =


0 0
1 0
0 0
0 1
0 0

, T̄j =

 50 0 0 0 0
0 50 0 0 0
0 0 50 0 0

,

s = 0.0025, ρ = 0.04
Problem. 2 in Han et al., 2022 same parameters as Problem. 1, αij

= 5, βij
= 50

Theorem. 1 in this paper L12
1 =

[
0.1 0
0 0.1

]
, L12

2 =
[

1 0
0 1

]
, L12

3 =
[

2 0
0 2

]
ε1 = 10, ε2 = 1, ξ1 = 1, ξ2 = 1

Remark 14 It would be relevant to mention that the parameters of each consid-
ered method are selected according to the suggestions of the authors. Nevertheless,
in the problems 1 and 2 in Han et al., 2022, the authors have omitted to mention
the values of the parameters s and ρ. Some suggestions regarding the parameter
s have been proposed in Zhang et al., 2018. This latter recommends to choose s

equal to 10−5 to approximate correctly an equality constraint, which led to a very
conservative condition and an empty feasibility field. For the purposes of com-
paring the conservatism of our approach, we have selected s as small as possible
(s = 0.0025) so that the feasibility field is not empty. As regards the value of the
parameter ρ, it was selected equal to 0.04 after several tests.

Remark 15 By looking at equations (5.21), the matrices L12
1 , L12

2 and L12
3 are of

great importance for the design of the proposed observer. They could be used to
set the dynamic of the estimation error. For design purpose, these matrices Lσ

are preferably selected diagonal to easily adjust their eigenvalues. Their practical
impact can be observed by decreasing their eigenvalues, in this case, the conver-
gence rate of the estimation error could be increased, and vice versa when their
eigenvalues are increased. In addition, the parameter matrices K1

0, K2
0 and K3

0 in
Zhang et al., 2018 are similar to the matrices L12

1 , L12
2 and L12

3 . In order to ensure
a fair comparison between methods, the same values for these matrices are used
as shown in Table (5.1).

By looking at Figure (5.1) and Table (5.2), the feasibility fields achieved by Problem
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1 (172 solutions, 07.02%) and Problem 2 (203 solutions, 08.28%) in Han et al., 2022
are fully included in the one provided by the proposed Theorem (1) (2451 solutions,
97.35%), which in turn includes the one obtained by Theorem 1 in Zhang et al., 2018
(984 solutions, 40.15%), except for six points.

Indeed, although the LMI conditions in Zhang et al., 2018 were developed thanks
to multiple Lyapunov function, it remains that the condition proposed in this paper
(Pj+ < µPj ) to satisfy an average dwell time constraint and to ensure the decreas-
ing of the Lyapunov function at the switching instants of the observer is very con-
servative, especially when we have a looped switching sequence. Another potential
source of conservatism is the matrix rank preconditions that have been formulated in
Zhang et al., 2018. The matrix C is assumed of full row rank. Similarly, the matrices

E0
ij

, F 0
s ,

 T̄ j

C

 , CE0
ij

are assumed to be of full column rank.

Furthermore, the conservatism of LMI-based conditions proposed in Han et al., 2022
lies in using a common Lyapunov function for every switching modes, especially when
the switched nonlinear systems involves several subsystems with different dynamics.
To this should be added the conservatism caused by the condition (41) in Han et al.,
2022, which is introduced to approximate the equality constraint (32). As indicated in
remark (14), several tests we carried out on the scalar s have demonstrated its effect on
the conservatism of the approaches proposed in this paper. In a manner similar to that
proposed in Zhang et al., 2018, the design method presented in Han et al., 2022 set
out a number of assumptions, namely the matrices G1

σ, G2
σ, F 0

s and CG1
σ are assumed

to be of full column rank.
In against part, it is clear that our proposal is much less conservative because the

proposed LMI-based conditions are developed thanks to multiple Lyapunov function
and requires a limited number of assumptions, namely the matrix F 0

s should be of full
column rank. Likewise, the proposed approach is performed on the basis of some re-
laxation techniques such as, Peaucelle’s lemma (Peaucelle et al., 2000), Tuan’s lemma
(Tuan et al., 2001) and quadratic constraints approach (Açıkmeşe and Corless, 2011)
to cope with the conservatism. Indeed, our relaxed LMI conditions involve more free
decision variables in order to provide a greater degree of freedom for convex optimiza-
tion algorithms (solvers). However, this leads to more computational complexity. Table
(5.2) compares the computational complexity of the proposed LMI conditions and the
ones formulated in (Zhang et al., 2018, Han et al., 2022), and provides the number Nd

of decision variables, the number Nc of conditions, and the size of the LMI rows. As
can be observed in the Table (5.2), the computational complexity of our method are
higher than of the Problem. 1 and Problem. 2 in Han et al., 2022, and are less than
that of Theorem. 1 in Zhang et al., 2018 , especially for Nd. Consequently, although
the application of several relaxation techniques, the computational complexity of our
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design approach remains reasonable due to the N-TS modeling approach that has pre-
vented from the explosion in the number Nc of LMI conditions by reducing the number
of vertices involved in these conditions. Moreover, the computational complexity of our
proposal does not represent a great disadvantage since this computation is done off-line.

Table 5.2: Computational complexity of the different studies.

Method Feasibility SZ. of LMI Nc Nd

Theorem. 1 in Zhang et al., 2018 40.15% sz.(40)=6 × 6, sz.(41)=10 × 10 and 4 × 4 75 685
Problem. 1 in Han et al., 2022 07.02% sz.(31)=4 × 4 and sz.(41)=8 × 8 25 238
Problem. 2 in Han et al., 2022 08.28% sz.(31)=4 × 4, sz.(38)=6 × 6 and sz.(41)=8 × 8 37 238
The. 1 in this paper 97.47% sz.(5.35)=25 × 25, sz.(5.37)=6 × 6 88 484

For the purpose of testing the performance of the proposed design approach, let us
consider the specific case of a = 0 and b = 0. Let the δQC constraints (see Assumption
5.5) be set as Ξ11

ij
= 0.2, Ξ22

ij
= −1. Using YALMIP and SeDuMi in Matlab (Labit

et al., 2002) to solve the optimization problem (5.29) defined in Theorem 1, we obtain
a minimized H∞ performance index of γ =2.6771 and the switched N-TS observer gain
matrices given by:

K11 =


115.2 −2.4
264.9 −0.6
−40.2 8.2
1463.0 −5.8
39.6 7.5

 , K12 =


115.7 −2.4
264.7 −0.6
−40.9 7.3
1473.9 −7.6
39.3 4.6

 , K13 =


115.4 −2.3
265.4 −0.4
−41.3 8.0
1467.1 −8.6
38.3 5.2

 ,

K21 =


115.2 −2.4
265.0 −0.6
−40.2 8.2
1463.2 −5.8
39.7 7.5

 , K22 =


115.5 −2.3
265.0 −0.6
−40.9 7.3
1475.0 −7.5
39.3 4.6

 , K23 =


115.3 −2.3
265.4 −0.4
−41.3 8.0
1467.2 −8.6
38.3 5.2

 .

and the Lyapunov matrices are given as:

P1 =


0.1111 0.0001 0 0 0
0.0001 0.1585 0.0031 −0.0284 −0.0016

0 0.0031 1.4360 0.0183 0.7346
0 −0.0284 0.0183 0.0155 −0.0102
0 −0.0016 0.7346 −0.0102 1.1177

 ,

P2 =


0.1111 0.0012 0 0 0
0.0012 0.1585 0.0005 −0.0282 −0.0043

0 0.0005 1.7254 0.0193 1.0431
0 −0.0282 0.0193 0.0154 −0.0093
0 −0.0043 1.0431 −0.0093 1.4453

 ,

P3 =


0.1111 0.0010 0 0 0
0.0010 0.1585 −0.0024 −0.0284 −0.0072

0 −0.0024 1.5930 0.0205 0.9209
0 −0.0284 0.0205 0.0155 −0.0080
0 −0.0072 0.9209 −0.0080 1.3332

 .

As already assumed above, the nonlinear switched systems are switching according
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System's mode Observer's Mode

Figure 5.2: Progression of the switched modes of the nonlinear system and the designed
observer (numerical example).

Measured output Estimated output

Measured output Estimated output

Figure 5.3: Evolution of the output estimation (numerical example).

to state-dependent hyper-planes Sjj+ , while the N-TS observers are switching according
to the estimated hyper-planes Ŝĵĵ+ , depending on the estimated states. For simulation
purpose, the considered hyper-planes (5.3) are given as: S12 =

[
−1 2 −2

]
, S23 =[

−1.5 6 −1
]

and S31 =
[
−2 5 −1

]
. Moreover, given that all the aforementioned

bibliography have considered the synchronous initialization between the systems and
the observers, we aims in the sequel to illustrate the effectiveness of our switched
observers to deal with asynchronous initialization of the switching modes. For this
purpose, the switching modes of the system and the observer have been initialized
as follows: (jt=0 = 2 and ĵt=0 = 1) with their respective initial conditions x(0) =[
1.5 0 −0.5

]T
and z(0) =

[
−1.2 0 0 0 0

]T
.
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Figure 5.4: Evolution of the state vector estimation (numerical example).

Figure 5.5: Evolution of the sensor faults estimation (numerical example).

To perform the simulation, assume that the input vector, the disturbance and the
sensor faults are defined as:

u (t) = 10 cos (5πt) e−0.01t 0 ≤ t ≤ 6 (5.71)
 d (t) = 0.5 3.6 < t ≤ 4.2

d (t) = 0 otherwise
(5.72)

 fs1 (t) = 0.2 sin (1.6πt − 20) + 0.25 sin (6πt − 20) 1.5 < t ≤ 3
fs1 (t) = 0 otherwise

(5.73)
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Figure 5.6: Evolution of the δQC constraint (numerical example).

Figure 5.7: The estimate of the state error domain of attraction L(1) (green line), the
state error domain of attraction De (red dashed-lines), state error trajectories (blue
line) (numerical example).

 fs2 (t) = −0.25 sin (1.6πt − 20) − 0.25 sin (6πt − 20) 1.5 < t ≤ 3
fs2 (t) = 0 otherwise

(5.74)

As a reminder, the proposed design approach do not require any bounds concerning
the sensor faults and their derivatives, which enlarges its practicability for the case of
systems with fast time varying and unbounded faults.

By looking at Figure (5.2), the asynchronous switching behavior can be easily ob-
served between the switched observers and the switched nonlinear systems. Moreover,
the asynchronous switched N-TS observer is properly estimating the states vector and
the sensor fault vector as illustrated in Figures (5.3)-(5.4) and 5.5. To conclude this
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example, a verification post-simulation is necessary to know that the gamma-level at-
tenuation is fulfilled. Hence, an approximation of the effective disturbance attenuation
level can be calculated as: √√√√∫ tf

0 eT (t)We(t)dt∫ tf

0 d̄T (t)Ωd̄(t)dt
= 0.0385 (5.75)

which is lower than γ = 2.6771 obtained from Theorem (1). Once again, this con-
firms the effectiveness of the proposed design approach. Moreover, the evolution of the
δQC function, formulated in (5.44), is positive as illustrated in Figure (5.6), which
demonstrates that the δQC constraint is verified.

At last, Figure 5.7 presents the estimate L(1) of the state error domain of attraction
De. It is easy to observe that the state error trajectory remain in L(1).

5.4.2 Illustrative example

Consider the switched mass-spring system presented in Figure 5.8, drawn inspiration
from (Zhang et al., 2015, Ren et al., 2018, Chekakta et al., 2023), where x1(t) and x2(t)
denotes the position of the masses m1 = 6 kg and m2 = 1 kg, respectively; c is the
viscous friction coefficient between the masses and the horizontal surface; u(t) is input
vector and d(t) is L2-norm bounded exogenous disturbance input; The stiffness of the
left spring kc is constant, while the spring stiffness kσ(t) is assumed to automatically
switch between two values k1 and k2 according to switching hyper-planes. Similar to
Chekakta et al., 2023.

For σ(t) = {1, 2} :

m1ẍ1(t) + cẋ1(t) − kσ(t)x2(t) + (kc + kσ(t))x1(t) = u(t) + d(t)

m2ẍ2(t) + cẋ2(t) − kσ(t)x1(t) + kσ(t)x2(t) = d(t)
(5.76)

Assume that the hardening springs in the considered system are modelled as in
Khalil, 2002:

kc = κc

(
1 + a2

cx
2
1(t)

)
and kσ(t) = κσ(t)

(
1 + a2

σ(t)x
2
2(t)

)
, for σ(t) ∈ {1, 2}. (5.77)

where κc = 10 N/m, κ1 = 10 N/m and κ2 = 20 N/m are the nominal springs’ stiffness;
ac = 0.4, a1 = 0.1 and a2 = 0.2 are the spring’s hardening coefficients.

Assuming that x2(t) is unmeasured variable, and x1(t) ∈ [−2, 2] and x2(t) ∈ [−1, 1],
the switched nonlinear mass-spring system can be formulated as N-TS switched sys-
tems according to the equation(5.8) with σ(t) ∈ {1, 2}. So, the vertices defined by the
matrices:
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Figure 5.8: Switched mass-spring system.

Figure 5.9: Progression of the switched modes of the nonlinear system and the designed
observer (illustrative example).

A0
1j

=


0 0 1 0
0 0 0 1

− κc

m1

(
1 + 4a2

c

)
+ κj

m1

(
a2

j − 1
) κj

m1

(
1 − a2

j

)
− c

m1
0

κj

m2

(
1 − a2

j

) κj

m2

(
a2

j − 1
)

0 − c
m2

 , B0
1j

= B0
2j

=


0
0
1

m1

0

 ,

E0
1j

= E0
2j

=


0
0
1

m1
1

m2

 , A0
2j

=


0 0 1 0
0 0 0 1

− κc

m1
+ κj

m1

(
a2

j − 1
) κj

m1

(
1 − a2

j

)
− c

m1
0

κj

m2

(
1 − a2

j

) κj

m2

(
a2

j − 1
)

0 − c
m2

 , H0
1j

= H0
2j

=


0
0

κj

m1
a2

j

− κj

m2
a2

j

 ,

C =
[

1 0 0 0
0 0 1 0

]
, F 0

s =
[

1 0
0 1

]
.

The nonlinear consequent part Φ(x(t) = Φ̄(x(t)) + Ux(t) ∈ co {0, 2Ux(t)}, where

Φ̄(x(t)) = x3
2(t) − x2

2(t)x1(t) =
[
−x2

2(t) x2
2(t)

] x1(t)
x2(t)

 ∈ co {−Ux(t), Ux(t)} with
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Measured output Estimated output

Measured output Estimated output

Figure 5.10: Evolution of the output estimation (illustrative example).

Figure 5.11: Evolution of the state vector estimation (illustrative example).

U =
[
−1 1 0 0

]
.

Moreover, the membership functions are:

h1j
(x1(t) = x2

1(t)
4 and h2j

(x1(t) = 4 − x2
1(t)

4 where h1j
(x1(t))+h2j

(x1(t)) = 1, ∀j ∈ {1, 2}
(5.78)

The validity domain Dx in (5.7) can be defined with:

ζ =


1 0 0 0

−1 0 0 0
0 1 0 0
0 −1 0 0

 and Q =


2
2
1
1

 . (5.79)
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0 10 20 30 40
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40
-1.5

-1

-0.5

0

0.5

1

1.5
Sensor fault
Estimated sensor fault

Figure 5.12: Evolution of the sensor faults estimation (illustrative example).

Figure 5.13: Evolution of the δQC constraint (illustrative example).

So, the validity domain Dx̄ of the extended switched N-TS systems defined in (5.9)

with ζ̄ =


1 0 0 0 0 0

−1 0 0 0 0 0
0 1 0 0 0 0
0 −1 0 0 0 0

.

Following the steps 2, 3 and 4 of the Algorithm (1), let us consider the matrices
L12

j (arbitrary nonsingular matrices) as follows:

L12
j =

 0.3 0
0 0.3

with j ∈ {1, 2} (5.80)

So, the parameter matrices of the switched N-TS observers can be constructed as:
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Figure 5.14: The estimate of the state error domain of attraction L(1) (green line), the
state error domain of attraction De (red dashed-lines), state error trajectories (blue
line) (illustrative example).

A2
21

=



0 0 1 0 0 0
0 0 0 1 0 0

−3.32 1.65 −0.83 0 0 0
9.90 −9.90 0 −5 0 0

−3.33 0 −1 0 −3.33 0
3.32 −1.65 −2.50 0 0 −3.33


, H2

i1
=



0
0

0.0167
−0.1000

0
−0.0167


, H2

i2
=



0
0

0.1333
−0.8000

0
−0.1333



B2
ij

=



0
0

0.1667
0
0

−0.1667



,

A2
11

=



0 0 1 0 0 0
0 0 0 1 0 0

−4.38 1.65 −0.83 0 0 0
9.90 −9.90 0 −5 0 0

−3.33 0 −1 0 −3.33 0
4.38 −1.65 −2.50 0 0 −3.33



F 3
s1

= F 3
s2

=



0 0
0 0
0 0
0 0

3.3333 0
0 3.3333


,

A2
22

=



0 0 1 0 0 0
0 0 0 1 0 0

−4.87 3.20 −0.83 0 0 0
19.20 −19.20 0 −5 0 0
−3.33 0 −1 0 −3.33 0
4.87 −3.20 −2.50 0 0 −3.33
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A2
12

=



0 0 1 0 0 0
0 0 0 1 0 0

−5.93 3.20 −0.83 0 0 0
19.20 −19.20 0 −5 0 0
−3.33 0 −1 0 −3.33 0
5.93 −3.20 −2.50 0 0 −3.33

 .

For simulation purpose, let the δQC constraints (see Assumption 5.5) be set as
Ξ11

ij
= 0.9, Ξ22

ij
= −1. Using YALMIP and SeDuMi in Matlab Labit et al., 2002 to

solve the optimization problem (5.29) defined in Theorem 1, we obtain a minimized
H∞ performance index of γ = 9.0676 and the switched N-TS observer gain matrices

given by: K11 =



9845.0 70.5
−88.5 −0.6
50.1 4.0
71.5 1.5
96.2 0.2

−50.1 0.8


, K12 =



9845.2 211.7
−88.7 −1.8
49.9 4.8
71.8 2.3
96.2 1.7

−50.1 0


, K21 =



9845.7 70.6
−88.5 −0.6
50.1 4.0
71.5 1.5
96.2 0.2

−50.1 0.8


,

K22 =



9844.9 70.4
−88.7 −0.6
50.0 4.0
71.8 1.5
96.2 0.2

−50.0 0.8


.

and the Lyapunov matrices are given as:

P1 =



0.0628 −0.0001 0 0 0.0006 0
−0.0001 4.3923 0.5608 0.3930 3.0004 −0.6400

0 0.5608 76.7176 0.0352 −0.1655 75.5481
0 0.3930 0.0352 0.2058 0.1680 −0.0825

0.0006 3.0004 −0.1655 0.1680 8.8234 0.1235
0 −0.6400 75.5481 −0.0825 0.1235 76.7278


,

P2 =



0.0628 0 0 0 0.0007 0
0 4.3923 0.5586 0.3930 3.0005 −0.6422
0 0.5586 76.7179 0.0351 −0.1646 75.5472
0 0.3930 0.0351 0.2058 0.1680 −0.0825

0.0007 3.0005 −0.1646 0.1680 8.8235 0.1243
0 −0.6422 75.5472 −0.0825 0.1243 76.7256


.

Furthermore, let us assume that the switched mass-spring system switches accord-
ing to the hyper-planes (5.3) with S12 =

[
1 0 0.1 0

]
and S21 =

[
1 0 −0.1 0

]
.

So, to shed light on the asynchronous behavior caused by mismatching switching
hyper-planes, the observer switches according to different hyper-planes (5.3) with Ŝ12 =[
2.1 0 0.35 0

]
and Ŝ21 =

[
2.8 0 −0.3 0

]
. Moreover, the case of asynchronous ini-

tialization is also considered in this example. For this purpose, the initial conditions are
tuned as: x(0) =

[
0.5 0.25 0.25 15

]T
and z(0) =

[
1.5 −0.15 0.3 0.25 0 0

]T
, so

that the system and the observer are respectively initialized in different modes, i.e.
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jt=0 = 1 and ĵt=0 = 2. To perform the simulation, assume that the input vector, the
disturbance and the sensor faults are defined as:

u(t) = 10 0 ≤ t ≤ 3.25 and 4.5 < t ≤ 6.75
u(t) = −10 2.25 < t ≤ 4.5 and 6.75 < t ≤ 15.75
u(t) = −10 cos(0.5πt)e−0.01t 15.75 < t ≤ 45

(5.81)

 d(t) = 0.25 0 ≤ t ≤ 7.5
d(t) = 0 7.5 < t ≤ 45

(5.82)

 fs1 (t) = 0.6 sin(0.16πt) + 0.55 sin(0.6πt − 10) 15 < t ≤ 30
fs1 (t) = 0 otherwise

(5.83)

 fs2 (t) = −0.65 sin(0.16πt) − 0.55 sin(0.6πt − 10) 15 < t ≤ 30
fs2 (t) = 0 otherwise

(5.84)

The simulation results are depicted in Figures 5.9-5.14. Figure 5.9 exhibits the
progression of asynchronous switched modes of the system and the observer where
the asynchronous behaviour can be clearly visualized. Figure 5.10 shows the measured
outputs subject to faults and the estimated outputs. The trajectories of both states of
the system and the observer are shown in Figure 5.11. The evolution of the sensor fault
vector and its estimated are presented in Figure 5.12. As illustrated, the asynchronous
switched N-TS observer is properly estimating the states vector and the sensor fault
vector. Figure 5.13 confirms that the δQC constraints (5.44) is always fulfilled since
it remains positive. The estimation of the domain of attraction De are illustrated in
Figure 5.14, where it is easy to observe that the state error trajectory remain in L(1).
Moreover, based on simulation results, for t ∈ [0, tf ] with tf = 45s, the estimation of
the achieved disturbance attenuation level as:√√√√∫ tf

0 eT (t)We(t)dt∫ tf

0 d̄T (t)Ωd̄(t)dt
= 0.0146 (5.85)

which is lower than the obtained γ =9.0676 obtained by solving Theorem 1.
In a nutshell, these simulations have demonstrated that the designed switched N-

TS observer simultaneously estimate the sensor faults’ and state’s vector despite the
switched asynchronous phenomena.
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5.5 Conclusion

This chapter investigated the challenge of robust state and sensor fault estimation
within a specific class of switched nonlinear Takagi-Sugeno (T-S) systems. These sys-
tems were characterized by inherent nonlinearities and subject to disturbances with
bounded L2 norms and mismatched switching laws.

To address this challenge, an asynchronous switched T-S fuzzy observers was pro-
posed. These observers boast several key advantages. First, they exhibit robustness
against uncontrolled switching sequences. This translates to reliable operation even
when the switching between system modes is uncontrolled, follows an arbitrary pattern,
or remains entirely unknown. Second, they can handle asynchronous initialization. In
simpler terms, perfect synchronization between the system and observer at the outset
is not required. They can begin in different modes, and the observer will still effec-
tively estimate the state and sensor faults. Finally, these observers achieve enhanced
estimation accuracy by utilizing an extended state vector and specific mathematical
transformations.

The design process for these observers leveraged a candidate multiple Lyapunov
function and incorporated H∞ disturbance attenuation for enhanced robustness. This
formulation translates into LMI conditions, offering significant advantages. Addition-
ally, the approach eliminates dwell-time restrictions often present in prior works, pro-
viding greater flexibility in system design. Finally, the LMI conditions exhibit relaxed
matrix rank preconditions compared to older methods, broadening the applicability of
the observer design.

The effectiveness of the proposed observer design was rigorously evaluated through
two comprehensive simulations. The first simulation focused on demonstrating the
superiority of the proposed LMI-based conditions in reducing conservatism compared
to existing methods, highlighting the efficiency of the proposed approach. The second
simulation adopted a more practical approach, showcasing the observer’s ability to
accurately estimate state and sensor faults even in the face of external disturbances
and mismatched switching sequences. This emphasizes the observer’s robustness in
real-world scenarios.

In conclusion, this chapter presented a novel and effective solution for robust state
and sensor fault estimation in switched nonlinear T-S systems. The asynchronous
switched T-S fuzzy observers offer several advantages, including the ability to han-
dle uncontrolled switching sequences, asynchronous initialization, and external distur-
bances. These features make them a valuable tool for a wide range of applications.

98



Chapter 6

Conclusion and Future Outlook

This dissertation investigated the design of an observer-based fault estimation scheme
for a class of switched nonlinear systems. The work is presented in five chapters.

The first chapter provided a general introduction to the thesis, outlining its fun-
damental objectives, context, and significance. It also presented a summary of the
key contributions made, highlighting their impact and relevance within the research
domain. Additionally, this chapter offered a comprehensive overview of the thesis struc-
ture, detailing the organization of the subsequent chapters to guide the reader through
the study’s logical progression.

The second chapter established a firm foundation for the analysis and design of
switched systems. It began with a comprehensive overview, introducing fundamental
modeling concepts and illustrating them with well-chosen examples. Next, the chap-
ter explored two key categorization schemes: switching mechanism (state-dependent or
time-dependent) and control nature (autonomous or controlled). Following these clas-
sifications, the chapter addressed the crucial issue of stability analysis, presenting two
primary approaches: arbitrary switching and constrained switching. Finally, it intro-
duced observer design for switched systems, differentiating between synchronous and
asynchronous observers relative to the system dynamics.

The third chapter provided a comprehensive foundation for T-S fuzzy multi-model
systems. Core concepts were explored, along with various derivation methodologies, em-
phasizing the sector nonlinearity approach. Lyapunov function theory was employed to
analyze system stability. This chapter addressed the critical challenge of state observer
design for T-S systems. The impact of unmeasurable premise variables on observer de-
sign methodologies was meticulously examined, highlighting the resulting complexities.
Finally, the chapter ventured into switched T-S fuzzy systems. Their structural charac-
teristics were analyzed, and their application was demonstrated using a switched tunnel
diode circuit example. The chapter concluded by emphasizing the specific challenges
faced in observer design for switched T-S systems.

The fourth chapter embarked on a comprehensive exploration of fault diagno-
sis for nonlinear systems. It established a foundation with clear fault definitions and
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a meticulous classification system, facilitating the development of effective diagnosis
strategies. Subsequently, the chapter examined various approaches used for fault di-
agnosis, encompassing both model-free and model-based methods, along with their
quantitative and qualitative subcategories.

The fifth chapter culminated in the introduction of a novel and effective solu-
tion for robust state and sensor fault estimation in switched nonlinear T-S systems.
Asynchronous switched T-S fuzzy observers offer significant advantages, including the
ability to handle uncontrolled switching sequences, asynchronous initialization, and ex-
ternal disturbances. These capabilities render them a valuable tool for a wide range of
real-world applications.

The main contributions of this thesis were as follows:

• This work introduced a novel observer design approach based on H∞ disturbance
attenuation for a class of switched nonlinear systems. This approach overcame the
limitations of observer matching conditions (OMCs), detectability constraints,
and stringent matrix rank preconditions. Furthermore, it did not require prior
knowledge of sensor fault bounds or their derivatives, making it more practical
for switched systems subject to fast time-varying and unbounded faults.

• This research addressed the challenge of UPVs by proposing an alternative method
to the traditional Lipschitz condition-based approach. The proposed method sep-
arated the measured and unmeasured nonlinearities of the switched system and
applied Takagi-Sugeno (T-S) modeling techniques exclusively to the measured
nonlinearities. This led to T-S multi-models with nonlinear consequent parts
(N-TS), where the membership functions depended solely on measured premise
variables. A key advantage of this approach was the reduction in the number
of vertices involved in LMI-based conditions compared to classical T-S model-
ing methods, resulting in less conservative estimates and lower computational
complexity.

• The third contribution established dwell-time-free conditions for the design of
asynchronous switched observer-based fault estimation. Unlike most existing works,
the proposed switched observers could handle unknown, arbitrary, or uncontrolled
switching sequences while addressing the initialization problem, where the ob-
server’s switching mode might be asynchronous with that of the system.

• This work proposed an optimization procedure aimed at expanding Lyapunov
level sets to estimate the domain of attraction more effectively.

• The final contribution focused on reducing the conservatism inherent in the pro-
posed LMI conditions. By employing quadratic constraint methods to handle
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nonlinear consequent parts and utilizing standard relaxation techniques, signif-
icant improvements in feasibility domains were achieved. These enhancements
were compared with prior studies, demonstrating notable performance gains.

As future work, this dissertation paves the way for further exploration in several
exciting directions:

• Adapting the observer design approach to address fault-tolerant control based on
the reconstructed faults offers a promising avenue for future research. This would
allow the system to maintain stable operation even in the presence of faults.

• Developing robust observer design methods that can handle modeling uncer-
tainties and state/input constraints in switched nonlinear systems is crucial for
practical applications. Real-world systems often experience these limitations.

• Extending the current work to deal with multiple time-varying delayed T-S fuzzy
switched systems represents a significant advancement. This type of system is
highly relevant for real-world applications where delays and multiple interacting
subsystems are common.

• Implementing the proposed observer in a real experimental setup would provide
valuable insights into its practical performance and limitations. This would bridge
the gap between theoretical development and real-world application.

101



Bibliography

[1] Behçet Açıkmeşe and Martin Corless. Observers for systems with nonlinearities
satisfying incremental quadratic constraints. Automatica, 47(7):1339–1348, 2011.

[2] Liron I Allerhand and Uri Shaked. Robust stability and stabilization of linear
switched systems with dwell time. IEEE Transactions on Automatic Control, 56
(2):381–386, 2010.

[3] Sabrina Aouaouda, Mohammed Chadli, and Moussa Boukhnifer. Speed sensor
fault tolerant controller design for induction motor drive in ev. Neurocomputing,
214:32–43, 2016.

[4] RV Beard. Fault accommodation in linear systems through self-reorganization.
Rep. Man-Vehicle Laboratory MVT-71, 1, 1971.

[5] Djamel Eddine Chouaib Belkhiat. Diagnostic d’une classe de systèmes linéaires
à commutations: Approche à base d’observateurs robustes. PhD thesis, 2011.
Université de Reims Champagne-Ardennes, France.

[6] Djamel Eddine Chouaib Belkhiat, Dalel Jabri, Kevin Guelton, Noureddine Man-
amanni, and Issam Chekakta. Asynchronous switched observers design for
switched takagi-sugeno systems subject to output disturbances. 2019.

[7] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrish-
nan. Linear matrix inequalities in system and control theory. SIAM, 1994.

[8] Michael S Branicky. Multiple lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Transactions on automatic control, 43(4):
475–482, 1998.

[9] Issam Chekakta, Djamel EC Belkhiat, Kevin Guelton, Dalel Jabri, and Noured-
dine Manamanni. Asynchronous observer design for switched t-s systems with
unmeasurable premises and switching mismatches. Engineering Applications of
Artificial Intelligence, 104:104371, 2021.

[10] Issam Chekakta, Djamel EC Belkhiat, Koffi Motchon, Kevin Guelton, and Dalel
Jabri. Synthèse de filtres h de type takagi-sugeno avec commutations asynchrones
pour les systèmes non linéaires à commutations. In Rencontres Francophones

102



BIBLIOGRAPHY

sur la Logique Floue et ses Applications (LFA 2021), pages 103–110. Cépaduès-
éditions, 2021.

[11] Issam Chekakta, Djamel EC Belkhiat, Kevin Guelton, Koffi MD Motchon, and
Dalel Jabri. Asynchronous switched takagi-sugeno h∞ filters design for switched
nonlinear systems. IFAC-PapersOnLine, 55(1):351–356, 2022.

[12] Issam Chekakta, Dalel Jabri, KM Motchon, Kevin Guelton, and Djamel EC
Belkhiat. Design of asynchronous switched ts model-based H∞ filters with non-
linear consequent parts for switched nonlinear systems. International Journal of
Adaptive Control and Signal Processing, 2023.

[13] Bor-Sen Chen, Min-Yen Lee, Tzu-Han Lin, and Weihai Zhang. Robust state/fault
estimation and fault-tolerant control in discrete-time t–s fuzzy systems: An em-
bedded smoothing signal model approach. IEEE Transactions on Cybernetics,
52(7):6886–6900, 2021.

[14] Liheng Chen, Shasha Fu, Yuxin Zhao, Ming Liu, and Jianbin Qiu. State and
fault observer design for switched systems via an adaptive fuzzy approach. IEEE
Transactions on Fuzzy Systems, 28(9):2107–2118, 2019.

[15] Liheng Chen, Yongjie Tan, Yanzheng Zhu, and Hak-Keung Lam. Fault recon-
struction for continuous-time switched nonlinear systems via adaptive fuzzy ob-
server design. IEEE Transactions on Fuzzy Systems, 2023.

[16] Weitian Chen and S Mehrdad. Observer design for linear switched control sys-
tems. In Proceedings of the 2004 American Control Conference, volume 6, pages
5796–5801. IEEE, 2004.

[17] Xueqin Chen and Ming Liu. A two-stage extended kalman filter method for fault
estimation of satellite attitude control systems. Journal of the Franklin Institute,
354(2):872–886, 2017.

[18] Francis H Clarke, Yu S Ledyaev, and Ronald J Stern. Asymptotic stability and
smooth lyapunov functions. Journal of differential Equations, 149(1):69–114,
1998.

[19] Wijesuriya P Dayawansa and Clyde F Martin. A converse lyapunov theorem for
a class of dynamical systems which undergo switching. IEEE Transactions on
Automatic control, 44(4):751–760, 1999.

[20] Raymond A DeCarlo, Michael S Branicky, Stefan Pettersson, and Bengt Lennart-
son. Perspectives and results on the stability and stabilizability of hybrid systems.
Proceedings of the IEEE, 88(7):1069–1082, 2000.

103



BIBLIOGRAPHY

[21] Kürşad Derinkuyu and Mustafa Ç Pinar. On the S-procedure and some variants.
Mathematical Methods of Operations Research, 64(1):55–77, 2006.

[22] Steven X Ding. Advanced methods for fault diagnosis and fault-tolerant control.
Springer, 2021.

[23] Jiuxiang Dong, Youyi Wang, and Guang-Hong Yang. Control synthesis of
continuous-time ts fuzzy systems with local nonlinear models. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(5):1245–1258,
2009.

[24] Dongsheng Du and Vincent Cocquempot. Fault diagnosis and fault tolerant
control for discrete-time linear systems with sensor fault. IFAC-PapersOnLine,
50(1):15754–15759, 2017.

[25] Lior Fainshil, Michael Margaliot, and Pavel Chigansky. On the stability of posi-
tive linear switched systems under arbitrary switching laws. IEEE Transactions
on Automatic Control, 54(4):897–899, 2009.

[26] Shasha Fu, Jianbin Qiu, Liheng Chen, and Shaoshuai Mou. Adaptive fuzzy ob-
server design for a class of switched nonlinear systems with actuator and sensor
faults. IEEE Transactions on Fuzzy Systems, 26(6):3730–3742, 2018.

[27] Shasha Fu, Jianbin Qiu, Liheng Chen, and Mohammed Chadli. Adaptive fuzzy
observer-based fault estimation for a class of nonlinear stochastic hybrid systems.
IEEE Transactions on Fuzzy Systems, 30(1):39–51, 2020.

[28] Pascal Gahinet, Arkadii Nemirovskii, Alan J Laub, and Mahmoud Chilali. The
lmi control toolbox. In Proceedings of 1994 33rd IEEE conference on decision
and control, volume 3, pages 2038–2041. IEEE, 1994.

[29] Yosr Garbouj, Thach Ngoc Dinh, Talel Zouari, Moufida Ksouri, and Tarek Raïssi.
Interval estimation of switched takagi-sugeno systems with unmeasurable premise
variables. IFAC-PapersOnLine, 52(11):73–78, 2019.

[30] Komi Gasso, Gilles Mourot, and José Ragot. Identification of an output error
takagi-sugeno model. In Smc 2000 conference proceedings. 2000 ieee international
conference on systems, man and cybernetics.’cybernetics evolving to systems, hu-
mans, organizations, and their complex interactions’(cat. no. 0, volume 1, pages
14–19. IEEE, 2000.

[31] Kevin Guelton. Estimation des caractéristiques du mouvement humain en station
debout. Mise en œuvre d’observateurs flous sous forme descripteur. PhD thesis,
Université de Valenciennes et du Hainaut-Cambresis, 2003.

104



BIBLIOGRAPHY

[32] Thierry Marie Guerra and Laurent Vermeiren. Lmi-based relaxed nonquadratic
stabilization conditions for nonlinear systems in the takagi–sugeno’s form. Au-
tomatica, 40(5):823–829, 2004.

[33] Hamed Habibi, Amirmehdi Yazdani, Mohamed Darouach, Hai Wang, Tyrone
Fernando, and Ian Howard. Observer-based sensor fault tolerant control with
prescribed tracking performance for a class of nonlinear systems. IEEE Transac-
tions on Automatic Control, pages 1–8, 2023. doi: 10.1109/TAC.2023.3296494.

[34] Sigurdur Freyr Hafstein. A constructive converse lyapunov theorem on expo-
nential stability. Discrete and Continuous Dynamical Systems, 10(3):657–678,
2004.

[35] Jian Han, Huaguang Zhang, Yingchun Wang, and Xiuhua Liu. Robust state/fault
estimation and fault tolerant control for t–s fuzzy systems with sensor and actu-
ator faults. Journal of the Franklin Institute, 353(2):615–641, 2016.

[36] Jian Han, Huaguang Zhang, Yingchun Wang, and Kun Zhang. Fault estimation
and fault-tolerant control for switched fuzzy stochastic systems. IEEE Trans-
actions on Fuzzy Systems, 26(5):2993–3003, 2018. doi: 10.1109/TFUZZ.2018.
2799171.

[37] Jian Han, Xiuhua Liu, Xinjiang Wei, Xin Hu, and Huifeng Zhang. Reduced-order
observer based fault estimation and fault-tolerant control for switched stochastic
systems with actuator and sensor faults. ISA Transactions, 88:91–101, 2019.
ISSN 0019-0578. doi: https://doi.org/10.1016/j.isatra.2018.11.045. URL https:
//www.sciencedirect.com/science/article/pii/S0019057818304890.

[38] Jian Han, Xiuhua Liu, Xinjiang Wei, and Xin Hu. Adaptive adjustable di-
mension observer based fault estimation for switched fuzzy systems with un-
measurable premise variables. Fuzzy Sets and Systems, 452:149–167, 2022.
ISSN 0165-0114. doi: https://doi.org/10.1016/j.fss.2022.06.017. URL https:
//www.sciencedirect.com/science/article/pii/S0165011422002962.

[39] Jian Han, Xiuhua Liu, Xinjiang Wei, and Shaoxin Sun. A dynamic proportional-
integral observer-based nonlinear fault-tolerant controller design for nonlinear
system with partially unknown dynamic. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 52(8):5092–5104, 2022. doi: 10.1109/TSMC.2021.
3114326.

[40] Jian Han, Xiuhua Liu, Xiangpeng Xie, and Xinjiang Wei. Dynamic output feed-
back fault tolerant control for switched fuzzy systems with fast time varying and
unbounded faults. IEEE Transactions on Fuzzy Systems, 2023.

105

https://www.sciencedirect.com/science/article/pii/S0019057818304890
https://www.sciencedirect.com/science/article/pii/S0019057818304890
https://www.sciencedirect.com/science/article/pii/S0165011422002962
https://www.sciencedirect.com/science/article/pii/S0165011422002962


BIBLIOGRAPHY

[41] Minghao Han, Ruixian Zhang, Lixian Zhang, Ye Zhao, and Wei Pan. Asyn-
chronous observer design for switched linear systems: A tube-based approach.
IEEE/CAA Journal of Automatica Sinica, 7(1):70–81, 2019.

[42] FA Haouari, Mohamed Djemai, and Brahim Cherki. Sliding mode observers for
ts fuzzy systems with application to sensor fault estimation. In 2015 3rd Inter-
national Conference on Control, Engineering & Information Technology (CEIT),
pages 1–5. IEEE, 2015.

[43] Yingzheng Hong, Hongbin Zhang, and Qunxian Zheng. Asynchronous H∞ Fil-
tering for Switched T–S Fuzzy Systems and Its Application to the Continuous
Stirred Tank Reactor. International Journal of Fuzzy Systems, 20(5):1470–1482,
2018.

[44] Jun Huang, Xiang Ma, Xudong Zhao, Haochi Che, and Liang Chen. Interval
observer design method for asynchronous switched systems. IET Control Theory
& Applications, 14(8):1082–1090, 2020.

[45] D. Ichalal, B. Marx, J. Ragot, and D. Maquin. State estimation of Takagi-
Sugeno systems with unmeasurable premise variables. IET Control Theory and
Applications, 4(5):897–908, 2010.

[46] Dalil Ichalal, Benoît Marx, José Ragot, and Didier Maquin. Advances in observer
design for takagi-sugeno systems with unmeasurable premise variables. In 2012
20th Mediterranean Conference on Control & Automation (MED), pages 848–
853. IEEE, 2012.

[47] Dalil Ichalal, Benoît Marx, José Ragot, and Didier Maquin. Fault detection,
isolation and estimation for takagi–sugeno nonlinear systems. Journal of the
Franklin Institute, 351(7):3651–3676, 2014.

[48] R Isermann and P Phalle. Applied terminology of fault detection, supervision and
safety for technical processes. In IFAC Symposium on Fault Detection Supervision
and Safety for Technical Process, volume 41, 2000.

[49] Rolf Isermann. Process fault detection based on modeling and estimation meth-
ods—a survey. automatica, 20(4):387–404, 1984.

[50] Rolf Isermann and Peter Balle. Trends in the application of model-based fault
detection and diagnosis of technical processes. Control engineering practice, 5
(5):709–719, 1997.

[51] Dalel Jabri. Contribution à la synthèse de lois de commande pour les systèmes
de type Takagi-Sugeno et/ou hybrides interconnectés. PhD thesis, 2011. URL

106



BIBLIOGRAPHY

http://www.theses.fr/2011REIMS028/document. Université de Reims Cha-
pagne Ardenne, France.

[52] Dalel Jabri, Kevin Guelton, Djamel EC Belkhiat, and Noureddine Manamanni.
Decentralized static output tracking control of interconnected and disturbed
takagi–sugeno systems. International Journal of Applied Mathematics and Com-
puter Science, 30(2):225–238, 2020.

[53] Ali Jadbabaie. A reduction in conservatism in stability and 52 gain analysis
of takagi-sugeno fuzzy systems via linear matrix inequalities. IFAC Proceedings
Volumes, 32(2):5451–5455, 1999.

[54] Ian T Jolliffe. Principal component analysis for special types of data. Springer,
2002.

[55] Elkhatib Kamal and Abdel Aitouche. Fuzzy observer-based fault tolerant control
against sensor faults for proton exchange membrane fuel cells. International
Journal of Hydrogen Energy, 45(19):11220–11232, 2020.

[56] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River,
NJ, 2002.

[57] Yann Labit, Dimitri Peaucelle, and Didier Henrion. Sedumi interface 1.02: a
tool for solving lmi problems with sedumi. In IEEE International Symposium on
Computer Aided Control System Design, pages 272–277. IEEE, 2002.

[58] Ayyoub Ait Ladel, Abdellah Benzaouia, Rachid Outbib, and Mustapha Oulad-
sine. Integrated state/fault estimation and fault-tolerant control design for
switched t–s fuzzy systems with sensor and actuator faults. IEEE Transactions
on Fuzzy Systems, 30(8):3211–3223, 2021.

[59] Zsófia Lendek, Thierry Marie Guerra, Robert Babuska, and Bart De Schutter.
Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy mod-
els, volume 262. Springer, 2011.

[60] Rongchang Li and Ying Yang. Sliding-mode observer-based fault reconstruc-
tion for ts fuzzy descriptor systems. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 51(8):5046–5055, 2019.

[61] Shanzhi Li, Abdel Aitouche, Haoping Wang, and Nicolai Christov. Sensor fault
estimation of pem fuel cells using takagi sugeno fuzzy model. International jour-
nal of hydrogen energy, 45(19):11267–11275, 2020.

[62] Daniel Liberzon. Switching in systems and control, volume 190. Springer, 2003.

107

http://www.theses.fr/2011REIMS028/document


BIBLIOGRAPHY

[63] Daniel Liberzon. Switched systems. In Handbook of networked and embedded
control systems, pages 559–574. Springer, 2005.

[64] Daniel Liberzon and A Stephen Morse. Basic problems in stability and design of
switched systems. IEEE control systems magazine, 19(5):59–70, 1999.

[65] Hai Lin and Panos J Antsaklis. Stability and stabilizability of switched linear
systems: a survey of recent results. IEEE Transactions on Automatic control, 54
(2):308–322, 2009.

[66] Shaokun Liu, Xiaojian Li, Heng Wang, and Jingjing Yan. Adaptive fault esti-
mation for ts fuzzy systems with unmeasurable premise variables. Advances in
Difference Equations, 2018:1–13, 2018.

[67] Ying Liu and Youqing Wang. Actuator and sensor fault estimation for discrete-
time switched t–s fuzzy systems with time delay. Journal of the Franklin Institute,
358(2):1619–1634, 2021.

[68] Zhou-Zhou Liu, Yong He, Li Jin, and Wen-Hu Chen. Stability analysis of delayed
takagi–sugeno fuzzy systems via a membership-dependent reciprocally convex
inequality. Journal of the Franklin Institute, 361(7):106776, 2024.

[69] J. Lofberg. YALMIP : a toolbox for modeling and optimization in MATLAB. In
2004 IEEE International Conference on Robotics and Automation (IEEE Cat.
No.04CH37508), 2004 IEEE International Conference on Robotics and Automa-
tion (IEEE Cat. No.04CH37508), pages 284–289, 2004.

[70] David Luenberger. Observers for multivariable systems. IEEE transactions on
automatic control, 11(2):190–197, 1966.

[71] Xiao-Jun Ma, Zeng-Qi Sun, and Yan-Yan He. Analysis and design of fuzzy
controller and fuzzy observer. IEEE Transactions on fuzzy systems, 6(1):41–51,
1998.

[72] Teodor Marcu and Paul M Frank. Parallel evolutionary approach to system
identification for process fault diagnosis. IFAC Proceedings Volumes, 31(10):113–
118, 1998.

[73] Mohammad-Ali Massoumnia. A geometric approach to failure detection and iden-
tification in linear systems. PhD thesis, Massachusetts Institute of Technology,
1986.

[74] Salowa Methnani. Diagnostic, reconstruction et identification des défauts cap-
teurs et actionneurs: application aux station d’épurations des eaux usées. PhD
thesis, Université de Toulon; École nationale d’ingénieurs de Sfax (Tunisie), 2012.

108



BIBLIOGRAPHY

[75] Hoda Moodi and Danyal Bustan. Unmeasurable premise avoidance in T-S fuzzy
observers. 2017 5th International Conference on Control, Instrumentation, and
Automation (ICCIA), pages 144–149, Nov 2018.

[76] Hoda Moodi and Mohammad Farrokhi. On observer-based controller design for
Sugeno systems with unmeasurable premise variables. ISA Transactions, 53(2):
305–316, 2014.

[77] Yann Morère. Mise en oeuvre de lois de commande pour les modèles flous de type
Takagi-Sugeno. PhD thesis, Université de Valenciennes et du Hainaut Cambrésis,
2001.

[78] Yunfei Mu, Huaguang Zhang, Ruipeng Xi, and Zhiyun Gao. State and fault
estimations for discrete-time ts fuzzy systems with sensor and actuator faults.
IEEE Transactions on Circuits and Systems II: Express Briefs, 68(10):3326–3330,
2021.

[79] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou. A new robust script
D sign-stability condition for real convex polytopic uncertainty. Systems and
Control Letters, 40(1):21–30, 2000.

[80] Stefan Pettersson. Switched state jump observers for switched systems. IFAC
Proceedings Volumes (IFAC-PapersOnline), 38:127–132, 2005.

[81] Matthew Philippe, Ray Essick, Geir E Dullerud, and Raphaël M Jungers. Sta-
bility of discrete-time switching systems with constrained switching sequences.
Automatica, 72:242–250, 2016.

[82] S. Priyanka, R. Sakthivel, S. Mohanapriya, Fanchao Kong, and S. Saat. Com-
posite fault-tolerant and anti-disturbance control for switched fuzzy stochastic
systems. ISA Transactions, 125:99–109, 2022. ISSN 0019-0578. doi: https://
doi.org/10.1016/j.isatra.2021.06.022. URL https://www.sciencedirect.com/
science/article/pii/S0019057821003384.

[83] Akhilesh Kumar Ravat, Amit Dhawan, and Manish Tiwari. Lmi and yalmip:
Modeling and optimization toolbox in matlab. In Advances in VLSI, Communi-
cation, and Signal Processing: Select Proceedings of VCAS 2019, pages 507–515.
Springer, 2021.

[84] Hangli Ren, Guangdeng Zong, and Hamid Reza Karimi. Asynchronous finite-
time filtering of networked switched systems and its application: An event-driven
method. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(1):
391–402, 2018.

109

https://www.sciencedirect.com/science/article/pii/S0019057821003384
https://www.sciencedirect.com/science/article/pii/S0019057821003384


BIBLIOGRAPHY

[85] Jorge Iván Bermúdez Rodríguez, Héctor Ricardo Hernández-De-León,
Juan Anzurez Marín, Alejandro Medina Santiago, Elías Neftalí Escobar
Gómez, Betty Yolanda López Zapata, and Julio Alberto Guzmán-Rabasa. Fault
diagnosis for takagi-sugeno model wind turbine pitch system. IEEE Access,
2024.

[86] Shankar Sastry and Shankar Sastry. Lyapunov stability theory. Nonlinear Sys-
tems: Analysis, Stability, and Control, pages 182–234, 1999.

[87] A Schwarte and Rolf Isermann. Neural network applications for model based
fault detection with parity equations. IFAC Proceedings Volumes, 35(1):205–210,
2002.

[88] Daniel Shevitz and Brad Paden. Lyapunov stability theory of nonsmooth systems.
IEEE Transactions on automatic control, 39(9):1910–1914, 1994.

[89] Jiayue Sun, Huaguang Zhang, Yingchun Wang, and Shaoxin Sun. Fault-tolerant
control for stochastic switched it2 fuzzy uncertain time-delayed nonlinear sys-
tems. IEEE Transactions on Cybernetics, 52(2):1335–1346, 2020.

[90] Shaoxin Sun, Yingchun Wang, Huaguang Zhang, and Jiayue Sun. Multiple in-
termittent fault estimation and tolerant control for switched ts fuzzy stochastic
systems with multiple time-varying delays. Applied Mathematics and Computa-
tion, 377:125114, 2020.

[91] Shaoxin Sun, Huaguang Zhang, Xiaojie Su, and Jinyu Zhu. Fault estimation
and tolerant control for multiple time delayed switched fuzzy stochastic systems
with sensor faults and intermittent actuator faults. In Fault-Tolerant Control for
Time-Varying Delayed TS Fuzzy Systems, pages 85–122. Springer, 2023.

[92] Ibtissam Tabbi, Dalel Jabri, Issam Chekakta, and Djamel EC Belkhiat. Robust
state and sensor fault estimation for switched nonlinear systems based on asyn-
chronous switched fuzzy observers. International Journal of Adaptive Control
and Signal Processing, 38(1):90–120, 2024.

[93] Tomohiro Takagi and Michio Sugeno. Fuzzy identification of systems and its
applications to modeling and control. IEEE transactions on systems, man, and
cybernetics, (1):116–132, 1985.

[94] Kazuo Tanaka and Michio Sugeno. Stability analysis and design of fuzzy control
systems. Fuzzy sets and systems, 45(2):135–156, 1992.

110



BIBLIOGRAPHY

[95] Kazuo Tanaka and Hua O. Wang. Fuzzy Control Systems Design and Analysis:
A Linear Matrix Inequality Approach. John Wiley & Sons, Inc., sep 2001. ISBN
0471323241.

[96] Tadanari Taniguchi, Kazuo Tanaka, and Hua O Wang. Fuzzy descriptor systems
and nonlinear model following control. IEEE transactions on Fuzzy Systems, 8
(4):442–452, 2000.

[97] Tadanari Taniguchi, Kazuo Tanaka, Hiroshi Ohtake, and Hua O Wang. Model
construction, rule reduction, and robust compensation for generalized form of
takagi-sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems, 9(4):525–
538, 2001.

[98] Louise Travé-Massuyès and Robert Milne. Gas-turbine condition monitoring
using qualitative model-based diagnosis. Ieee Expert, 12(3):22–31, 1997.

[99] H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto. Parameterized linear
matrix inequality techniques in fuzzy control system design. IEEE Transactions
on Fuzzy Systems, 9(2):324–332, 2001. doi: 10.1109/91.919253.

[100] Hoang D. Tuan, Pierre Apkarian, and Truong Q. Nguyen. Robust and reduced-
order filtering: New LMI-based characterizations and methods. IEEE Transac-
tions on Signal Processing, 49(12):2975–2984, 2001.

[101] Weihua Wang, Likui Wang, Xiangpeng Xie, and Hak-Keung Lam. A switching
control approach for stability analysis of constrained t–s fuzzy systems. Nonlinear
Dynamics, pages 1–11, 2024.

[102] Zhaojing Wu, Mingyue Cui, Peng Shi, and Hamid Reza Karimi. Stability of
stochastic nonlinear systems with state-dependent switching. IEEE transactions
on automatic control, 58(8):1904–1918, 2013.

[103] Weiming Xiang, Jian Xiao, and Muhammad Naveed Iqbal. Robust observer
design for nonlinear uncertain switched systems under asynchronous switching.
Nonlinear Analysis: Hybrid Systems, 6(1):754–773, 2012.

[104] Wen-Bo Xie, He Li, Zhen-Hua Wang, and Jian Zhang. Observer-based controller
design for a ts fuzzy system with unknown premise variables. International Jour-
nal of Control, Automation and Systems, 17(4):907–915, 2019.

[105] Yuqing Yan, Huaguang Zhang, Jiayue Sun, and Yingchun Wang. Adaptive
fuzzy observer-based mismatched faults and disturbance design for singular
stochastic ts fuzzy switched systems. Journal of Vibration and Control, page
10775463221076195, 2022.

111



BIBLIOGRAPHY

[106] Fuyu Yang and Richard W Wilde. Observers for linear systems with unknown
inputs. IEEE transactions on automatic control, 33(7):677–681, 1988.

[107] Junqi Yang, Yantao Chen, Fanglai Zhu, Kaijiang Yu, and Xuhui Bu. Synchronous
switching observer for nonlinear switched systems with minimum dwell time con-
straint. Journal of the Franklin Institute, 352(11):4665–4681, 2015.

[108] Junqi Yang, Fanglai Zhu, Xin Wang, and Xuhui Bu. Robust sliding-mode
observer-based sensor fault estimation, actuator fault detection and isolation for
uncertain nonlinear systems. International journal of control, automation and
systems, 13(5):1037–1046, 2015.

[109] Jun Yoneyama. New conditions for admissibility and control design of takagi-
sugeno fuzzy descriptor systems. In 2020 IEEE 16th International Conference
on Control & Automation (ICCA), pages 1630–1635. IEEE, 2020.

[110] Jun Yoneyama, Masahiro Nishikawa, Hitoshi Katayama, and Akira Ichikawa.
Design of output feedback controllers for takagi–sugeno fuzzy systems. Fuzzy
sets and systems, 121(1):127–148, 2001.

[111] Ping Yu, Jian Han, and Xiuhua Liu. Observer based finite-time fault-tolerant
control for switched stochastic systems. In 2022 First International Conference
on Cyber-Energy Systems and Intelligent Energy (ICCSIE), pages 1–5, 2023. doi:
10.1109/ICCSIE55183.2023.10175309.

[112] LA Zadeh. Zadeh, fzzy sets. Fuzzy sets, fuzzy logic, and fuzzy systems, pages
19–34, 1965.

[113] Huaguang Zhang, Jian Han, Yingchun Wang, and Xiuhua Liu. Sensor fault
estimation of switched fuzzy systems with unknown input. IEEE Transactions
on Fuzzy Systems, 26(3):1114–1124, 2018. doi: 10.1109/TFUZZ.2017.2704543.

[114] Jiancheng Zhang and Fanglai Zhu. On the observer matching condition and
unknown input observer design based on the system left-invertibility concept.
Transactions of the Institute of Measurement and Control, 40(9):2887–2900, 2018.

[115] Ke Zhang, Bin Jiang, and Peng Shi. Fast fault estimation and accommodation
for dynamical systems. IET Control Theory & Applications, 3(2):189–199, 2009.

[116] Ke Zhang, Bin Jiang, Peng Shi, and Vincent Cocquempot. Observer-based fault
estimation techniques, volume 127. Springer, 2018.

[117] Lixian Zhang, Songlin Zhuang, and Peng Shi. Non-weighted quasi-time-
dependent h∞ filtering for switched linear systems with persistent dwell-time.
Automatica, 54:201–209, 2015.

112



BIBLIOGRAPHY

[118] Lixian Zhang, Yanzheng Zhu, Peng Shi, and Qiugang Lu. Time-dependent
switched discrete-time linear systems: control and filtering, volume 53. Springer,
2016.

[119] Fanglai Zhu, Yu Shan, and Yuyan Tang. Actuator and sensor fault detection
and isolation for uncertain switched nonlinear system based on sliding mode
observers. International Journal of Control, Automation and Systems, 19(9):
3075–3086, 2021.

[120] Feng Zhu and Panos J Antsaklis. Optimal control of hybrid switched systems: A
brief survey. Discrete Event Dynamic Systems, 25:345–364, 2015.

[121] Jun-Wei Zhu, Guang-Hong Yang, Hong Wang, and Fuli Wang. Fault estima-
tion for a class of nonlinear systems based on intermediate estimator. IEEE
Transactions on Automatic Control, 61(9):2518–2524, 2015.

[122] G Zwingelstein. failures diagnosis. theory and practice for industrial systems.
1995.

113


	List of Figures
	List of Tables
	General introduction
	Introduction
	Literature review
	Contributions of the thesis
	Structure of the thesis

	Preliminary notions on switched systems
	Introduction
	Lyapunov stability analysis
	Lyapunov global asymptotic stability theorem
	Lyapunov exponential stability theorem
	Stability of autonomous linear systems
	Observer design

	Fundamentals of switched systems
	Switching mechanism-based categorization
	State-dependent switching
	Time-dependent switching

	Switching control-based categorization
	Arbitrary (Autonomous) switching
	Constrained (Controlled) switching

	Stability analysis of switched systems
	Stability under arbitrary switching
	Stability under constrained switching

	Challenges in observer design for switched systems
	Synchronous observers
	Asynchronous observers


	Conclusion

	Preliminary notions on Takagi-Sugeno fuzzy modeling
	Introduction
	Fundamentals of Takagi-Sugeno fuzzy modeling
	Takagi-Sugeno multi-model approach
	Derivation of Takagi-Sugeno multi-models
	Quadratic Lyapunov stability analysis of T-S fuzzy systems
	Challenges in observer design for T-S fuzzy systems
	Observer design for T-S fuzzy systems with MPV
	Observer design for T-S fuzzy systems with UPV


	Switched Takagi-Seguno fuzzy systems
	Challenges in observer design for switched Takagi-Seguno fuzzy systems

	Conclusion

	Fault Diagnosis of Nonlinear Systems
	Introduction
	Definitions
	Classification of Faults

	Classification of fault diagnosis methods
	Model-free fault diagnosis methods
	Quantitative methods
	Qualitative methods

	Model-based fault diagnosis methods
	Quantitative methods
	Qualitative methods


	Conclusion

	Asynchronous observer design for robust sensor fault estimation in switched nonlinear systems with fast time-varying and unbounded faults
	Introduction
	Preliminaries and Problem Statement
	Observer construction
	Estimation error dynamic

	Main Results
	Simulation Results
	Numerical example
	Illustrative example

	Conclusion

	Conclusion and Future Outlook
	Bibliography

