
    ﷽ 

 الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire 

Ministère de L'Enseignement Supérieur et de la Recherche Scientifique 

 

UNIVERSITÉ FERHAT ABBAS - SETIF1 

INSTITUT D’OPTIQUE ET MÉCANIQUE DE PRÉCISION 

 

SEÈTH 

Présentée Au Département D’Optique Pour L’Obtention Du Diplôme De 

DOCTORAT  

Domaine : Sciences et Technologie 

 

Filière : Optique et Mécanique  

de Précision 
 Option : Optique et Photonique 

Appliquée  

Par  

BENDADA Hana 

MEÈTH 

Exploitation Du Formalisme De Stokes-Mueller Pour La 

Caractérisation Des Propriétés Optiques Et Structurales Des 

Matériaux  

 

Soutenue le 19/02/2025 devant le Jury : 

MANALLAH Aissa       Professeur Univ. Ferhat Abbas Sétif 1 Président 

BAKHOUCHE Belkacem Professeur Univ. Ferhat Abbas Sétif 1 Directeur de thèse 

BENCHEIKH Abdelhalim Professeur Univ. Mohamed El Bachir El-
Ibrahim Bordj Bou Arréridj 

Examinateur 

NOURI Abdelhak M.C.A. Univ. Ferhat Abbas Sétif 1 Examinateur 

 









Contents

table of contents iii

Acknowledgments v

Introduction 1

I Background:
History and Basics 5

state-of-the-art 7

1 Polarization Brief Theory 21

1.1 Introduction to Light Polarization . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Understanding Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 The Polarization Ellipse . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.2 Stokes, Jones, and Mueller Polarimetric Calculi . . . . . . . . . . . 32

1.2.3 Poincaré Sphere and Relative Geometric Phase concept . . . . . . . 43

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Contribution 47

2 Mueller Polarimeter Based On Modified Vacuum Matrix 49

2.1 Mueller polarimeter with dual rotating quarter-wave plates . . . . . . . . . 51

2.2 Mueller Polarimeter based on Modifying Vacuum Matrix (MPMVM) . . . . 53

2.2.1 Description of the proposed set-up . . . . . . . . . . . . . . . . . . 53

2.2.2 Output Intensity of the Modified Polarimeter . . . . . . . . . . . . 53

2.2.3 Calculus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.4 Modified Vacuum Mueller Matrix . . . . . . . . . . . . . . . . . . . 56

2.2.5 Properties Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Application to the Characterization of Poly(lactic acid) Polymer Properties 60

i



2.3.1 Material Choice and Preparation . . . . . . . . . . . . . . . . . . . 60

2.3.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.3 Discussion: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Polarimetric Evaluation Of Geometric Phase Elements 65

3.1 General principles about Geometric Phase Optical Elements . . . . . . . . 67

3.1.1 Geometric Phase: a universal principle . . . . . . . . . . . . . . . . 67

3.1.2 Fabrication Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Working Principle of GP elements . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Not Necessarily Closed Path! . . . . . . . . . . . . . . . . . . . . . 69

3.3 Geometric Phase optics in terms of general retarder . . . . . . . . . . . . . 70

3.4 Mathimatical Phase Profiles’s expressions of the GP optics . . . . . . . . . 73

3.5 Experimental Methods and Techniques . . . . . . . . . . . . . . . . . . . . 74

3.5.1 Princicple of Mesearement . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.1 Linear and Circular Retardances . . . . . . . . . . . . . . . . . . . . 80

3.6.2 Evaluation of the Primary and Conjugate Waves Through Polari-

metric Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.3 Effenciency in Terms of Leakage Wave . . . . . . . . . . . . . . . . 83

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Spectrally Modulated Polarimetry 87

4.1 Spectral-Domain Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Time-Domain Vs. Spectral-Domain Polarimetry . . . . . . . . . . . 89

4.1.2 Spectrally Modulated Polarimetry Applications . . . . . . . . . . . 89

4.1.3 Spectral Resolution Importance . . . . . . . . . . . . . . . . . . . . 91

4.1.4 Insights into Complex Optical Properties . . . . . . . . . . . . . . . 91

4.2 Channeled Spectrum vs. Wavelength Domain Analysis . . . . . . . . . . . 92

4.3 Theoretical Basing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Material and Experimental Conditions . . . . . . . . . . . . . . . . . . . . 96

4.5 Calibration configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



4.6 Application to the Measurement of Optical Rotation . . . . . . . . . . . . . 99

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

General Conclusion 103

Appendix 107

Bibliography 117





Acknowledgments

In the Name of " é<Ë @", the Most Gracious, the Most Merciful.

I would like to express my deepest gratitude to **Pr. Belkacem Bakhouche**, my super-

visor, mentor, and guide throughout this journey. From the moment he accepted me as

his student, he welcomed me with open arms, not just as a scholar but as a daughter. His

high morals, kindness, and unwavering support have been a source of inspiration to me.

Whenever I faced difficulties, his door was always open, offering not only guidance but

also comfort in my darkest moments. Pr. Bakhouche’s constant encouragement gave me

the strength to persevere, and his profound wisdom shaped me as both a researcher and a

person. It is impossible to overstate how much I have learned from him—not just academi-

cally but in the ways of patience, humility, and generosity. His gentle and corrective nature

made this journey a meaningful one, and I consider myself incredibly fortunate to have

had such a mentor. As we reach the end of this beautiful chapter, I find myself saddened by

the thought of no longer walking this path together. Pr. Bakhouche has been more than a

supervisor; he has been a father figure who guided me with care and compassion. Though

this partnership comes to a close, the lessons I have learned and the respect I hold for him

will remain with me always.

I owe my deepest gratitude to Dr. Oriol Arteaga, whose guidance and support have been in-

valuable throughout this journey. The nine months I spent in his lab were, without a doubt,

the most fruitful and enriching period of my work on this thesis. I am incredibly grateful

for the warm welcome he extended, the freedom he allowed me to explore and experiment

with his equipment, and the patience he showed through all the mistakes I made along the

way. I also can’t forget to thank him for all the lunches he so generously treated me to.

Above all, I cherish the wealth of knowledge I gained during my time in his lab, which has

been an inspiration throughout this thesis.

v



As this journey draws to a close with my PhD defence approaching, I wish to express

my deepest gratitude to the esteemed jury members: Professor MANALLAH Aissa as the

Jury president, Professor BENCHEIKH Abdelhalim, Professor BOUCHERIT Sebti and Doc-

tor NOURI Abdelhak. I am truly indebted to them for graciously offering their valuable

time to evaluate my work. Their insightful feedback and guidance will not only help refine

my research but also provide me with the professional direction I need as I move forward

into the next chapter of my life.

My acknowledgement, though never enough, to my beloved mother; she is the sun that has

illuminated every shadowed corner of my life. Her endless love is the softness that has filled

my soul, even in moments of doubt. Her whispered prayers have beenmy compass, guiding

me through the stormiest seas. Every success of mine reflects her unyielding strength; ev-

ery step forward is a tribute to her gentle hands that carried me when I could not stand. In

the quiet strength of her sacrifice and the warmth of her embrace, I have found the courage

to dream. To the one whose heart beats in harmony with mine, I owe everything.

To my dear father, the rock upon which I have built the foundation of my dreams. His

wisdom has been the steady wind beneath my wings, and his quiet endurance, my shield

against the trials of life. With every word of encouragement, you have sown seeds of belief

within me, and through your unwavering support, those seeds have blossomed into the

heights I now reach. Your silent strength has been the silent roar that has driven me for-

ward, and for that, I am eternally grateful.

I am profoundly grateful to my sister Soundous, who stood by my side through every mo-

ment. She wiped away my tears, took on all the responsibilities of the home, and gifted

me the precious time I needed to complete this journey. She spoke words of kindness and

encouragement that no one else ever has, uplifting me when I needed it most. For all the

moments of selflessness, for the endless support she gave, and for making me strong simply

by being there, I owe her my deepest thanks. My gratitude extends to my dear brothers,

Sifeddine, Rahim and Raouf, who have been unwavering pillars of support throughout this

journey. Their constant presence has been a source of strength, and they have always made

me feel the immense pride they carry for me. For being the shield that protects me through

every challenge.



During my journey, I found myself in a foreign land, but I was fortunate never to be alone.

Two remarkable and extraordinary women, Khalti Fatima and Fadella, were there for me,

offering unwavering financial and emotional support. They spared no effort in helping me,

becoming like second mothers, and for that, I am deeply grateful.

This work is a culmination of 7 years of study, and an acknowledgement must be addressed

to all the colleagues who saved no effort to help me, and to give me the impetus to carry

on my studies; Among many Subiao, Huihui, Sarrah, Dale, Islam, the kindest persons ever:

Imane Mayouf, Tahar Aouissi and Bekis Hocine. In addition to Slimi Younes, a dear friend

who gave me the opportunity to have been to Germany and offered me to join him as a

colleague.

I extend my heartfelt thanks to everyone who supported me, whether from near or afar,

throughout my PhD journey. Your encouragement, guidance, and belief in me—whether

through words, actions, or simply your presence—have been invaluable, and for that, I am

deeply grateful.





Introduction

Polarimetry, the study of the polarization of light and its interaction with matter, has a rich

history spanning over two centuries. Its roots can be traced back to the early 19th century

when French astronomer François Arago employed a prismatic device with a birefringent

crystal to observe celestial objects [1]. This primitive polariscope is regarded as one of the

first polarimeters used for scientific purposes. Shortly after, Jean-Baptiste Biot built upon

Arago’s work by applying polarimetric methods to the study of optical rotation, most no-

tably in sugary solutions. Biot’s findings laid the groundwork for the development of the

polarimetric saccharimeter, a device that remains essential in determining the concentra-

tion of optically active substances [2, 3].

Around the mid-19th century, Sir George Gabriel Stokes made a significant advance-

ment in the understanding of polarization. His empirical work resulted in the definition

of four measurable quantities now known as Stokes parameters, which provide a compre-

hensive description of the polarization state of light [4]. While these parameters marked a

major milestone in polarization optics, Stokes’ work was underappreciated for nearly a cen-

tury. It was not until the mid-20th century that his contributions gained the recognition

they deserved, thanks to the coupling of his empirical approach with the then-maturing

mathematical matrix calculus developed by R.C. Jones in 1941 and Hans Mueller in 1948[5,

6]. This synthesis of ideas culminated in the Stokes-Mueller formalism, a robust mathemat-

ical framework that provides a complete description of light polarization states and allows

for the detailed characterization of materials’ optical properties.

Interferometry, a technique historically intertwined with the study of light polarization,

has also played a critical role in advancing polarimetric methods. In 1817, the interfer-

omitrist Thomas Young proposed the transverse nature of light waves as an interpretation

of the work’s result of the polarimetrists Arago and Augustin-Jean Fresnel while studying

the interference of polarized light [7]. This discovery laid the foundation for understanding

the wave nature of light and its interaction with materials. More than a century later, in

1956, Indian physicist S. Pancharatnam, again, while studying the interference of polarized
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Introduction

light, identified the geometric phase—an additional phase shift that depends on the path

traversed by polarization on the Poincaré sphere[8]. This concept of the geometric phase,

later expanded by M.V. Berry in the context of quantum mechanics [9], revolutionized the

design of optical devices, leading to the creation of advanced photonic devices with unpar-

alleled precision and performance.

In the last three decades, the rapid advancement of technology has led to the develop-

ment of new optical materials and devices, expanding the scope of polarimetric techniques.

Polarimetry has kept pace with these developments, emerging as a powerful tool for the

fast and precise characterization of materials with diverse properties. In fields ranging from

biology and chemistry to material science and physics, polarimetry has proven to be indis-

pensable, offering unique insights into the optical properties of substances.

Building on this historical foundation, polarimetry continues to evolve with new meth-

ods and techniques. The introduction of structured light, which involves controlling the

spatial, phase, and polarization properties of light, has opened up new avenues for research.

Geometric phase optical elements, for example, can manipulate the wavefront structure of

light inways that were previously unattainable. This control, achieved through birefringent

effects, offers potential applications in areas such as microscopy, imaging, and telecommu-

nications.

Another significant area of advancement is spectral domain polarimetry, where po-

larization information is stored in the spectral domain. The development of techniques

like channeled polarimetry allows for the extraction of polarization information from the

Fourier transform of light’s intensity as a function of wavenumber, offering a novel ap-

proach to analyzing polarization [10]. While traditional time-modulated systems remain

dominant, spectral domain analysis presents a compact, fast, and cost-effective alternative

for specific applications. For instance, measuring optical rotation in highly diluted solutions

or investigating birefringence in complex materials are areas where this method shows par-

ticular promise.
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Introduction

The combination of historical achievements, technological advancements, and the de-

velopment of new analytical methods underscores the enduring significance of polarime-

try. It remains a cornerstone of optical characterization, offering unparalleled precision and

versatility in the analysis of materials. As researchers continue to explore the boundaries

of light-matter interactions, polarimetric techniques will undoubtedly play a central role

in uncovering new phenomena and enabling the development of next-generation optical

devices.

Organization

The present manuscript has been structured to cover the work undertaken to address the

Stokes-Mueller formalism’s utility for the optical and structural characterization of mate-

rials of various natures. As traditionally has been the case, it contains two major parts:

Theory and Contribution.

Part I: divided into two theoretical segments. the first one delves, as an opening text,

into the historical evolution of light polarization and polarimetry. A story that might

seem long and boring, but it gives a deep conscience of the importance of patience while

conducting scientific research and evokes a strong sense of duty as the young new gen-

eration of researchers. The second segment has been considered as Chapter 1. It takes

a complete account of the bifurcated theory of Stokes-Mueller Polarimetry that has been,

to some extent, adapted to encompass the ad hoc studies undertaken along the rest of the

manuscript.

Part II: comprises three chapters. Chapter 2 is dedicated to establishing a novel pro-

posed method to extract optical properties from the modified calculated Mueller matrix.

The principles and calculations of this method are extendedly detailed. Chapter 3 focuses

on the polarimetric evaluation of the Geometric Phase optics without resorting to inter-

ferometry. Principles of working, experiments, and interpretations of results are included.

As a subject of scientific publication, Chapter 4 describes the spectral polarimetry with

wavelength domain analysis without resorting to Fourier transform. The methodology of

investigation, the offered features, and the development of this new method, all along with

its application to small optical rotation measurements, are detailed within this last chapter.
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Conclusions and Future Perspectives were the concluding text writing of this PhD the-

sis entitled: Exploitation of Stokes-Mueller Formalism for the Characterization of

Optical and Structural Properties of Materials.

4



Part I

Background:

History and Basics
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State of the art:

landmarks in the woven history of
polarized light

The study of polarization is deeply intertwined with the development of the wave theory

of light. This theory presents a cornerstone of modern optics, and it has successfully in-

terpreted and explained various optical phenomena that captivated scientists for centuries.

While a comprehensive review of the entire history is beyond the scope of this thesis, this

section will examine the key milestones and contributions that shaped our current under-

standing of light’s wave nature and, therefore, our understanding of the light polarization

phenomenon.

To establish a foundation for our own research contribution, this brief history delves into

some discoveries and scientific theories related to light polarization’s explanation, geomet-

rical presentations, and mathematical calculations; we will provide a more detailed analysis

of these pivotal advancements. A concise overview of other relevant developments will be

presented. For clarity and coherence, this section is divided into two distinct periods, de-

lineated by Fresnel’s establishment of the wave theory of light in 1821.

• Corpuscular or Wave, Longitudinal or Transverse: Polarization
Battles

Pinpointing the exact date of "light polarization" manifestation as an optical concept

for the first time is a bit challenging. The scientific understanding of the phenomenon

itself developed gradually over time. Through inspection of various research materials

reviewing light polarization and\or polarimetry, it was clear that the first documented

physical observation related to this optical phenomenon was in:

1669 by Erasmus Bartholinus, the Danish physician who published an accurate

description of the double refraction of a ray of light by Iceland spar (calcite), in which he

7
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used for the first time an everlasting utilized terms in optical physics: the ordinary and

extraordinary refraction [11].

although he could not find the true cause of birefringence, his observations allowed it to

be discovered in:

1677 by Christiaan Huygens, Dutch physicist and astronomer, He presented

one of the strongest arguments supporting the wave theory of light in his "Treatise on

Light," through his construction of propagating wavefronts. Huygens’ law asserts that

at any point within a crystal, the light disturbance generates two wavefronts: a spherical

one for the ordinary ray and a spheroidal one for the extraordinary ray, with every point

on a wavefront acting as a source of tiny wavelets. The original French title of Huygens’s

first publication on the properties of light, completed in 1678 and published in 1960, is

"Traité de la Lumière: Où sont expliquées les causes de ce qui luy arrive dans la reflexion

et dans la refraction. Et particulièrement dans l’étrange refraction du cristal d’Islande."

Additionally, he made a significant experimental observation that doubly diffracted rays

behaved differently from regular light when entering a second crystal. Unfortunately,

this experiment lacked a satisfactory interpretation, leading to Huygens’s work being

discredited for over a century. [7, 12].

Based on an alternate description of atomism, in:

1704 Isaac Newton, an English polymath, published "Newton’s Opticks" which

was considered the definitive text on the subject throughout the 18th century. In it,

Newton set out his corpuscular or emission theory, whereby light consists of molecules

emitted by luminous bodies. This idea explained rays of light insofar as these corpuscles

were said to travel in straight lines. He favored this paradigm to explain the phenomenon

of Newton’s rings, which are colored rings observed when a curved surface touches a flat

surface very closely. He used a concept called the "method of fits". This theory suggested

light particles cycled between states that were more likely to reflect or be transmitted

when encountering a surface. Thicker air gaps caused the light to be in a state prone to

reflection, while thinner parts allowed transmission. According to Newton’s theory, color

8
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was generated uniquely at the second reflecting surface of the thin films. This treatise also

contained many of the basic principles of the wave theory of light; therefore, we can see

that Newton embraced simultaneously features of two opposite theories [3, 13, 14].

by the turn of the century, the wave theory was revived in:

1801 by Thomas Young, an English former physician. He conducted the now-

famous double-slit experiment with light. This experiment provided strong evidence

for the wave theory of light and demonstrated the phenomenon of light wave interference.

Young’s work on wave theory provided a framework for understanding double refraction,

so that, In 1802, following Young’s proposal, William Hyde Wollaston conducted experi-

mental investigations into the validity of Huygens’ construction for the extraordinary ray.

His findings showed remarkable consistency, despite the fact that the phenomenon of two

rays emerging from a single material was not yet fully comprehended. [7].

The early nineteenth century was a pivotal period in the history of optics, marked

by intense debate between the Newtonian corpuscular theory and the Huygenian un-

dulatory theory. While the corpuscular theory initially held more sway, this era also

saw significant advancements in optical science due to a concerted effort to integrate

mathematics with experimental physics. In France, a flourishing research environment

emerged as the scientific society initiated a program to mathematize experimental physics.

This program was driven by a new generation of highly trained physicists in laboratory

techniques and mathematical theory. This dual emphasis on theory and practice laid the

groundwork for several groundbreaking discoveries in optical science.

In the decade before Fresnel’s work, the corpuscular theory of light was actively used in

the interpretation of new data, and from which the corpuscular theory of polarization

derived in:

1808 by Étienne Louis Malus , the French engineer who has conducted a study

that had two significant implications for the history of polarization. First, he confirmed

and expanded Huygens’s seventeenth-century Law regarding the direction of the extraor-

9
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dinary ray in Iceland spar, extending its applicability to other doubly refracting crystals.

Second, one evening, Malus observed variations in the intensities of double-refracted

images when a calcite crystal was rotated, leading to the formulation of Malus’s Law. This

law asserts that the transmitted light intensity through a polarizer is proportional to the

cosine squared of the angle between the polarizer’s transmission axis and the polarization

direction of the incident light.(I = I0 cos2(θ)). Malus’s discovery of light polarization

by reflection supported the corpuscular theory of light, hypothesizing that just like

magnetic poles cause magnetic materials to align in a particular direction, the reflection

process causes the light corpuscles to align in a specific way, and based on that he coined,

inaugurally, the term "Polarization" and suggested that a completely polarized beam

being formed of molecules with identically oriented poles [1, 7, 15–17].

Malus observed that natural light reflected by a transparent glass surface at an an-

gle close to 57°could be completely extinguished when viewed through a crystal. He

suggested that natural light consists of mutually perpendicular s- and p-polarizations but

did not establish the relationship between material properties and polarizing angles. it was

with more persistence that in:

1811 David Brewster , the Scottish physicist, He discovered the law that bears

his name, which relates to polarization caused by reflection. Which he revealed in a

paper form 1815. He measured the polarizing angle for various materials and unravelled

that maximum light polarization occurs at a specific angle of incidence, now known as

Brewster’s angle, where the reflected and refracted rays are perpendicular. Brewster’s

Law states that the tangent of this angle equals the material’s refractive index, resulting in

complete polarization of the reflected light [18].

Several physicists worked extensively on polarization in the years immediately fol-

lowing Malus’s discovery of light polarization by reflection. Notably, the subsequent era

was marked by a productive scientific rivalry between two distinguished physicists, viz.,

Arago and Biot. Both possessed exceptional intellectual insight and experimental skills.

As we will demonstrate later, their competitive pursuit of light polarization-related study

10
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significantly contributed to establishing the wave theory of light. To start in

1811 Dominique-François-Jean Arago, the physicist, mathematician, and as-

tronomer, better known simply as François Arago, discovered a series of polarization

phenomena, collectively termed "Polarisation Colorée", best translated as “chromatic

polarization”, which he detailed in his notable paper delivered on August 11, 1811. While

verifying telescope components, Arago investigated the effects of fully polarized light on

Newton’s rings and the potential for improving objective lens design through polarized

light properties.

Arago used a lunette prismatic with a double-refracting prism, likely a Rochon prism,

to observe celestial objects. This device also served as a double-refracting analyzer in a

modified Newton rings setup. By inserting a thin mica sheet, he observed that polarized

light produced complementary colors in the images formed by the analyzer, a phenomenon

he termed chromatic polarization. He incorporated this principle into a polarimeter,

discovering that moonlight was polarized. Additionally, Arago noted that the intensity

of the complementary colors varied with the rotation of the mica sheet or the analyzer,

identifying this modification as "depolarization". He found similar effects with other

birefringent materials like gypsum but not with quartz plates cut perpendicular to their

axis. In quartz, polarized light showed no birefringence along the axis but exhibited color

and polarization effects after analysis, indicating circular polarization.

Arago’s experiments led to the first observations of optical rotation and optical

rotatory dispersion, though he did not fully distinguish between rotatory and chromatic

polarization. This distinction was later clarified by Biot, who conducted a comprehensive

study of these phenomena [1–3, 19, 20].

A rift over this discovery was placed between colleagues, co-workers, and even close

friends, Arago and Biot; this latter tried to claim credit for himself as a priority. However,

Arago protested that Biot pre-empted his discovery and proved it by citing his own

prior observations documented in laboratory notebooks. A feud began because of this

incident. Historians and contemporaries have seen Biot’s quick and possibly heavy-handed
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approach to the field Arago had opened as an improper takeover of a novel-uncovered

subject. Arago’s discovery was developed starting from:

1812 Jean-Baptiste Biot, Arago’s fiercest competitor, significantly advanced the

field of optics with his discovery of rotatory polarization during a series of presentations

to the Académie des Sciences between November 30, 1812, and May 31, 1813, later

published in 1814. Biot observed that quartz plates cut perpendicular to the axis induced

a wavelength-dependent rotation of the plane of polarized light. He distinguished

between chromatic polarization, which manifested as color changes, and rotary

polarization, which resulted in a varying rotation angle, with shorter wavelengths

experiencing larger rotations. Biot further demonstrated that by using a calibrating

factor and Newton’s table, he could estimate the tint of the observed ray. He applied

a modified version of Malus’s sine-squared formalism to rotary polarization, deriving

formulas for the intensities of the colored images. His experiments revealed that quartz

plates could produce either dextro-rotation or levo-rotation (the plane of polarization

rotated in respectively clockwise or counterclockwise direction), with the rotation’s

magnitude directly proportional to the plate’s thickness, and that an equally thick plate

could cancel out the effects of one rotational direction with the opposite direction. Biot,

a proponent of the corpuscular theory, explained these polarization effects through the

hypothesis of oscillating light molecules, known as the theory of "mobile polarization"

[1–3, 21–23].

Also, an entirely new field of research was opened up in:

1815 by Biot, when he made the significant discovery of the rotatory power of

certain liquids such as turpentines or solutions of natural occurring solids such as

camphor. Cane sugar (sucrose) was recorded to be among the list, all along with other

sugary liquids, later in 1818 [20].

A significant shift in the debate over wave theory occurred when Arago, previously

a supporter of corpuscular theory, changed his stance. The results of a series of exper-
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iments that he had conducted refuted his earlier corpuscular conclusions on gaseous

refraction with Biot. By 1815, Arago became a proponent of wave theory, aligning himself

with Augustin Jean Fresnel, whom he strongly supported at the Institut de France. So that,

in:

1816 Augustin Jean Fresnel, A french civil engineer with remarkable mathematical

prowess and practical ingenuity, together with Arago, investigated the interference of

polarized rays of light and found that, in every case, While two rays polarized in the

same direction can interfere if they come from the same polarized source, two beams with

perpendicular polarizations do not exhibit interference, and their total intensity remains

constant when reunited, regardless of path differences. This finding forms one of the

Arago-Fresnel laws of polarization.

During a visit to Young in 1816, Arago shared with him the new discovery he had

with Fresnel, which provided crucial evidence supporting the wave theory of light. In:

1817 Thomas Young, through a letter to Arago and an article for the Encyclopaedia

Britannica, he discovered the missing piece of the puzzle and initially suggested the crucial

link between the undulatory theory of light and polarization phenomena: "the
transversality of light vibrations."

By that time, Fresnel was devoting his time to work on diffraction; he made an ex-

perimental and theoretical study of it, which he was emboldened enough to present to the

French Academy of Sciences in:

1818 Fresnel described light as consisting of waves and introduced the concept

of wavelength as a fundamental characteristic of these waves.

Next year, Arago conveyed Young’s ideas to Fresnel, who quickly recognized them

as the primary explanation for their experimental results and all known polarization

phenomena at that time. Working on this brilliant, controversial idea, Fresnel turned

13
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his attention to the study of birefringent crystals, focusing on double refraction and

polarization. In

1821 Fresnel developed the theory of double refraction in uniaxial and biaxial

crystals, culminating in what is considered his crowning achievement, published in a

memoir and supplements between November 1821 and March 1822. Fresnel quickly

interpreted natural light as a superposition of waves polarized in all possible

directions, viewing polarization as a manifestation of wave transversality. He

considered direct light to be a rapid succession of waves polarized in various directions.

In this context, polarization involves decomposing the transverse motions into

fixed directions and separating the components, allowing the oscillatory motions

in each component to occur in the same plane. This transversality allowed him to

demonstrate how a transverse wave striking an isotropic medium divides into a

reflected and a refracted beam, with each beam being partially polarized.. By early

1822, Fresnel’s wave theory of light, based on simple principles such as transversality,

interference, wavelength dependence, and the conservation of energy, provided a compre-

hensive explanation for a wide range of optical phenomena, namely, reflection, refraction,

double refraction, polarization, diffraction, and interference [1, 3, 7, 24–26].

The foundation of the wave theory in France is indebted to Arago’s encouragement

as much as it is to Fresnel’s experimental insight. This foundation marked a turning point

in investigating light polarization-related phenomena, especially in the mathematical

realm, which succeeded greatly, as we detail in what follows.

• Mathematical framing of polarization and polarimetry

Based on the wave nature of light, as understood from the earlier work of Thomas Young

and Augustin-Jean Fresnel, dating in:

1852 Sir George Gabriel Stokes, British mathematician and physicist, published a

paper in which he established a mathematical formalism ideal for describing the state of

14
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polarization of any light beam. He stated that "the optical properties of any mixture

of independent polarized light streams are entirely determined by four constants.

These constants are functions of the intensities, azimuths, and eccentricities of

the ellipses characterizing the individual streams.". Stokes studied the behavior of

polarized light, particularly how it interacted with different materials and surfaces. His

work was purposefully empirical and resulted in the development of observable quantities

of phenomenological polarization optics [4, 25].

The significance of this work remained obscure and underappreciated, failing to re-

ceive the recognition it deserved for more than seventy years. Stokes’s paper was

rediscovered by the Nobel laureate Subrahmanyan Chandrasekhar in 1947 while writ-

ing his fundamental papers on radiative transfer [27]. Chandrasekhar had a prestigious

and well-established position in the scientific community, and thereby Stokes’s work

became well-known. Soon after Chandrasekhar’s publications on radiative transfer, Ugo

Fano demonstrated that the Stokes parameters serve as an excellent analytical method for

addressing polarization issues in both classical optics and quantum mechanics [25].

By bringing together the work that had been done by brilliant physicists, in particular,

Faraday’s law of induction. In:

1861 James Clerk Maxwell the Scottish theoretical physicist and mathematician

formulated the theory of electromagnetism, culminating in Maxwell’s equations, which

describe the interactions and propagation of electric and magnetic fields. He demonstrated

that electromagnetic waves travel at a speed shown to be the known speed of light,

concluding that light is an electromagnetic wave. Maxwell’s work confirmed the

transverse nature of light waves, as only transverse components arise in free space. He

explained that Light waves are composed of oscillating electric and magnetic fields

that are mutually perpendicular and also perpendicular to the direction of wave

propagation. By concentrating on the electric field—given that varying electric

fields generate comparatively weaker magnetic fields Maxwell’s theory could

successfully explain the properties and behavior of polarized light.
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Maxwell’s theory was verified by direct experiments in 1888 by the German physicist

Heinrich Hertz [7, 25, 28].

Not clear whether building upon Stokes parameters or not being aware of them, in

a text from:

1892 Jules Henri Poincaré mapped all polarization states onto the surface of a

sphere, which is now known as the Poincaré sphere. This mapping allowed for a com-

prehensive understanding of various polarization states, including elliptical polarization.

The center of the sphere corresponds to natural light, whereas the surface corresponds to

totally polarized light, and within it lies the partially polarized light. Poincaré represented

changes in polarization as rotations on the sphere [25].

Before the iconic work of R. S. Chandrasekhar, the Stokes parameters reappeared

through their re-introduction, application, and further development by other two promi-

nent scientists: P. Soleillet and F. Perrin. In:

1929 Paul Soleillet, a French physicist, was the first to revive the Stokes parame-

ters theory in his PhD dissertation entitled: "SUR LES PARAMETRES CARACTERISANT

LA POLARISATION PARTIELLE DE LA LUMIERE DANS LES PHENOMENES DE FLU-

ORESCENCE". He highlighted that the relationship between the Stokes parameters

of an incident light beam (Si) and those of the transmitted or scattered beam

(S ′
i) must be linear. He observed that the intensity and polarization state of the

emergent beam depend on those of the incident beam. In the case of two independent

incident beams, if the process is linear, the emergent beam will be the superposition of the

two emergent beams corresponding to the individual incident beams, without interference

[25, 29, 30].

1936 Ramanathan Sivaramakrishnan Krishnan, an Indian physicist, published his

work on the depolarization of scattered light. His research provided critical insights

into how the polarization of light changes when scattered by different materials, which was
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instrumental in furthering the understanding of molecular and crystal structures. In 1938,

He identified the reciprocity relation concerning the intensity of horizontally polarized

incident light that is scattered with vertical polarization and vice versa, irrespective of the

nature of the colloidal particles. This became known as the Krishnan reciprocity Effect

[31, 32].

It is worthwhile to note that leveraging the contributions of Soleillet and Krishnan

that in:

1942 Francis Perrin, a French physicist and mathematician who was a friend of

Soleillet; he first noted Soleillet’s observations and expanded upon the reciprocity theory

of Krishnan in his later work, which led him to the radical understanding that the trans-

formation of polarization states through optical systems could be represented

by a set of linear equations characterized by 16 coefficients. These coefficients

essentially describe the optical system’s effect on the light’s polarization state. Perrin

subsequently quantified the number of nonzero (independent) coefficients for various

media, demonstrating that the linear relationships could be expressed in a 4 × 4 matrix

format. It is noteworthy that he addressed the Stokes polarization parameters and their

connection to the Poincaré sphere without any preliminary introduction or background.

[25, 29, 33].

Extrapolating from Stokes work in addition to Soleillet and Perrin’s contributions to

it, in:

1943 Hens Mueller , a professor of physics at the Massachusetts Institute of Tech-

nology (MIT), advanced the integration of Stokes vectors with 4x4 matrix representations.

He recognized that the state of polarization of light, described by Stokes parameters,

could be systematically transformed as light passed through different optical elements,

which led him To formalise this process by associating each optical element with an

individual 4x4 matrix. This matrix describes how the Stokes parameters of the incident

light are altered by the optical system. The Mueller formalism comes from experimental

17



State-of-the-art

considerations of the intensity measurements of polarized light. Mueller kept improving

his formalism in the subsequent years, which appeared in a now declassified report and

course notes of lectures at MIT (to refer M-26, M-27, and M-28 in the reference material

[34]) [25, 34, 35].

Around the same time, another description of the state of polarization of a light

beam in a standard manner, through an elementary process of matrix algebra, was

developed and appeared in:

1941 by Robert Clark Jones, an American physicist who had recently completed

his PhD at Harvard University, published the first of eight articles in his renowned series

titled "A New Calculus for the Treatment of Optical Systems." Like Mueller’s approach,

Jones described the incident light beam with a vector and the optical system with a matrix,

enabling the determination of the outgoing light beam through matrix-vector multiplica-

tion. The key differences in Jones’s calculus lie in its derivation from electromagnetic wave

theory, which retains information about the absolute phase. Additionally, it utilizes a

smaller 2 × 2 matrix with complex elements, and it is specifically applicable to optical

systems that do not exhibit depolarization. In essence, Jones introduced his formalism for

characterizing completely polarized light and the transformations that occur between any

two completely polarized light beams. [5, 25, 34].

It is to Professor Mueller’s successors that we owe the final, brilliant synthesis—integrating

Mueller and Jones’s diverse insights into a cohesive and powerful theoretical toolset that

has significantly advanced our current grasp of light polarization and polarimetry. Back

in:

1948 Nathan Grier Parke III, a student of Mueller’s, made significant contribu-

tions, particularly through his PhD thesis titled "Matrix Optics", suggested and guided

by Mueller himself, completed in 1948 at MIT. Parke explored the applicability of the

Mueller calculus to unpolarized light and succeeded in relating it rigorously to the

electromagnetic theory. He was the first to name the Mueller and Jones calculi after
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their inventors’ names and the first to set the algebraic process to relating the Jones

matrices and Maxwell vectors to the corresponding complex Mueller matrices

and Stokes vectors [25, 34, 35].

To our understanding, that was the first public appearance of the Stokes-Mueller

formalism applied to matter characterization with a polarimetric method. This

excerpt from centuries of unstoppable ingenious scientific advancement is what

this thesis revolves around.

19





Chapter 1

Polarization Brief Theory
"In the theoretical part of science, those

who are most active can make the most

progress in the shortest time."

– Henri Poincaré
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Main Objectif

The preceding historical section has illuminated many intricate concepts surrounding light

polarization and its interaction with matter. Additionally, a wealth of information on the

subject is readily available in both digital and print sources. Consequently, this concise

theoretical section will lay the foundational principles essential for the forthcoming contri-

butions. We will focus on specific concepts and the associated Stokes-Mueller mathematics

that will be pivotal in the detailed analysis and developments presented in the contribution

part.
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1.1 Introduction to Light Polarization

Q: What is light polarization?

A: Light polarization arises when the vibration vectors of the electric field in an electro-

magnetic wave (light) become aligned in a specific direction, rather than oscillating in all

directions perpendicular to the wave’s propagation. The process of converting unpolarized

light into polarized light is referred to as polarization. [25, 36].

Figure 1.1: Unpolarized light vs. Polarized light

Figure 1.2: Ways of light polarization occurring [37]

Q: How does it occur?

A: Light can become po-

larized in several ways.

In each process, the light

waves become oriented

in a specific manner,

either fully or partially

polarized, depending on

the conditions and the

medium involved, as

listed and illustrated in

Figure (1.2).
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Q: Why is it important?

A: The polarization of light plays a critical role in a wide array of scientific and tech-

nological applications. It directly influences the focusing characteristics of laser beams,

determining beam shape and intensity, which is crucial in high-precision tasks such as

material processing and medical surgery. Additionally, polarization affects the cut-off

wavelengths of optical filters, enabling precise control over the spectral properties of light

in imaging systems and optical communication.

Moreover, controlling polarization is vital to minimizing unwanted back reflections in op-

tical systems, a key consideration in the design of sensitive instruments like telescopes and

interferometers. In metrology, polarization-based techniques are indispensable for stress

analysis in transparent materials such as glass or plastic, where they help detect internal

stresses that could lead to structural failures. In the pharmaceutical industry, polarization

analysis is employed to identify and quantify ingredients, ensuring the consistency and

safety of drugs. In biological microscopy, polarized light enhances contrast and reveals

structural details that are otherwise invisible, enabling deeper insights into cellular and

tissue structures.

Beyond these applications, the differential absorption of light polarization by materials is

fundamental to technologies such as LCD screens, where it controls the display of images

and the creation of immersive experiences in 3D movies. Polarization is also harnessed in

the design of glare-reducing sunglasses, which selectively block polarized light reflected

from surfaces like water or roads, enhancing visual comfort and safety. Additionally,

geometric phase elements, which manipulate the phase of light through its polarization,

are increasingly used in advanced optical systems to achieve novel functionalities like

beam shaping and light steering [38].

These diverse applications underscore the importance of understanding and controlling

light polarization, which has become a cornerstone in fields ranging from material science

and pharmaceuticals to optics, consumer electronics, and beyond.
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Figure 1.3: Representation of an electromagnetic wave propagating in the Z-direction. Extracted

from [39].

1.2 Understanding Polarimetry

The two era-maker works concerning the light-wave nature established by Fresnel (theory

of transversality in 1821) and Maxwell (theory of electromagnetism in 1861) were pivotal in

elucidating the complex and initially mysterious behaviour of light polarization. However,

the application of polarization for measurement purposes predates these seminal theories.

One of the earliest known uses of polarization for measurement, and perhaps the first, was

conducted by Arago, as discussed in the preceding historical section. Arago employed a

rudimentary polarimetric setup involving a polarizer and analyzer, akin to modern polari-

metric techniques, to investigate the polarization of moonlight. By measuring the changes

in light intensity as he rotated the analyzer, Arago captured a key aspect of polarimetric

analysis, marking a significant early contribution to the Polarimetric field.

Polarimetry, as the term suggests, encompasses the various techniques and methodolo-

gies for measuring and analyzing the physical properties associated with light polarization

and its alteration by material media. This involves examining the orientation, amplitude,

and phase of the electric field vector in a light wave after its interaction with matter [40].

A comprehensive understanding of polarimetry requires familiarity with three fundamen-

tal concepts: the polarization ellipse, Stokes-Mueller and Jones calculi, and the Poincaré

Sphere. These concepts form the basis for analyzing and interpreting polarization-related

phenomena.
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1.2.1 The Polarization Ellipse

Generally, the microscopic forces exerted by the electric field of a wave on matter are sig-

nificantly stronger than those produced by the magnetic field. Consequently, the temporal

behavior of the electric field is taken as the primary representation of the characteristic

known as polarization. For waves of arbitrary shape, the polarization state is defined in

relation to a local Cartesian coordinate system XYZ. Consider the temporal evolution of

the endpoint of the electric field vector E⃗(z, t) of a monochromatic electromagnetic wave,

characterized by an angular frequency ω and wavelength λ, propagating along the Z-axis

(the direction of propagation). The wave vector k aligns with the propagation direction,

and its magnitude is given by k = 2π
λ
. This vector can be decomposed in the wave plane

into the sum of two components along two arbitrarily selected perpendicular directions,X

and Y , situated within a local planeΠ known as the polarization plane, as illustrated below.

Figure 1.4: The electric field progresses within a fixed plane Π, with the direction of propagation

aligned along the Z-axis, which is perpendicular to the polarization plane. The polarization state is

defined concerning the local coordinate system, comprising the Z-axis and a pair of XY axes

situated on the local polarization plane Π, tangent to the wavefront [40].

The real components of the vector E⃗(z, t) are expressed as:

Ex(z, t) = E0x cos(kz − ωt+ δx) , (1.1a)

Ey(z, t) = E0y cos(kz − ωt+ δy) , (1.1b)

where E0x and E0y are respectively the amplitudes of the electric field components in the
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x and y directions, while δx and δy are the phases of these components at the origin. The

term kz − ωt is called the propagator; by its elimination, we remove the time and spatial

dependence, allowing us to focus on the relative phases and amplitudes of the electric field

components. Thus, we obtain the following relationship [25]:
(
Ex

E0x

)2

+

(
Ey

E0y

)2

− 2
Ex

E0x

Ey

E0y

cos δ = sin2 δ , (1.2)

where δ = δy − δx ( 0 ≤ δ < 2π ) corresponds to the phase shift between the two compo-

nents Ex and Ey. Conventionally, this phase shift is included in the interval [−π,+π]. The
equation (1.2) is identified as the equation of an ellipse and demonstrates that, at any given

moment, the electric field’s locus of points as it travels takes the shape of an ellipse.

1.2.1.1 Instantaneous Polarization Ellipse and Quasi-monochromaticity condi-
tion

A significant factor affecting the polarization ellipse is the spectral width of the light wave.

Light, represented as a strictly monochromatic wave with zero spectral width, serves as an

ideal theoretical scenario. In this case, the coherence time τ is infinite, resulting in com-

plete polarization. Thus, for a monochromatic light wave, the endpoint of the electric field

vector traces a fixed elliptical shape within a stable plane (polarization plane) as it prop-

agates. However, in practical scenarios, light waves are typically quasi-monochromatic,

which can be viewed as a combination of mutually incoherent monochromatic light beams

with frequencies distributed within a narrow bandwidth δω around a central frequency

ω0. This variation leads to gradual fluctuations in the amplitudes and phases of the elec-

tric fields. These fluctuations account for why the ellipse described by Equation (1.2) is

commonly referred to as the instantaneous polarization ellipse; conventionally, for a quasi-

monochromatic wave, Equation (1.2) is expressed as:

⟨E2
x⟩

E2
0x

+
⟨E2

y⟩
E2

0y

− 2
⟨ExEy⟩
E0xE0y

cos δ = sin2 δ , (1.3)

The angle brackets ⟨...⟩ denote a time average and are introduced to account for the previ-

ously discussed fluctuations of a quasi-monochromatic light. In this instance, for evaluat-

ing the polarization of quasi-monochromatic light waves, three temporal scales need to be

taken into consideration:
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• Measurement time T, defined as the response time of the detector, typically takes

values in the optical range of T > 10−4 s.

• Mean natural period T0 =
1
ω0
, which represents the time needed for the endpoint of

the electric field vector to complete one full ellipse. This period is generally on the

order of 10−15 s, leading to the designation of waves as "instantaneous".

• Polarization time τp, the average duration during which the polarization ellipse re-

mains stable. Its lower limit is given by τ = 1
δω
.

Accordingly, the following cases are distinguished:

• Totally polarized states: For a measurement time T, the field variables of a quasi-

monochromatic wave exhibit slow fluctuations relative to themean natural period T0.

Thus, the shape of the polarization ellipse remains constant during the polarization

time τp, which encompasses many natural cycles (i.e., τp > T , case a) in Figure 1.5).

• Partially polarized quasi-monochromatic states: In this scenario, the shape of the po-

larization ellipse changes over the measurement timeT, while the planeΠ containing

it remains stable (case b) in Figure 1.5).

• Unpolarized states: This situation arises when the shape of the polarization pattern

evolves randomly, even though it remains within a stable plane Π.

A quasi-monochromatic wave behaves like a monochromatic wave for times much shorter

than the coherence time of the wave. Within this limit, the description of the polarization

states of the quasi-monochromatic wave remains valid, similar to that of a monochromatic

one [40, 41].
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Figure 1.5: Quasi-monochromatic wave’s polarization ellipse’s slow fluctuations in time: a) totally

polarized state, b) partially polarized state [40].

1.2.1.2 Degenerated Forms Of The Polarization Ellipse

While light is generally elliptically polarized, the polarization can be simplified under cer-

tain conditions intomore specific forms. These specific degenerate forms of the polarization

ellipse are frequently encountered in the study of polarized light. Due to their significance,

these special degenerate forms and the special conditions of their appearance will be pre-

sented hereafter.

Figure 1.6: Sectional drawing of the polarization ellipse for an elliptically polarized wave. The

ellipse is depicted inscribed within a rectangle, with the sides of the rectangle aligned parallel to

the coordinate axes and having lengths of 2E0x and 2E0y . The original axes are denoted by x and

y, while the rotated axes are represented by x’ and y’ [40].
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The overall cross-sectional shape (the most familiar), for an observer looking at an

oncoming optical quasi-monochromatic beam, its polarization ellipse can be characterized

using two different sets of parameters: (i) the terms defined in Figure (1.6), which determine

the area of the ellipse and describe its specific forms under particular conditions, and (ii)

the angular parameters outlined in Figure (1.7). Both sets of parameters will be considered

in the following discussion.

(i) According to Dennis H. Goldstein [25], the polarization ellipse is of an area of:

A = πE0xE0ysinδ . (1.4)

The area of the polarization ellipse is defined by the magnitudes of the semi-axes denoted as

E0x and E0y, along with the phase shift δ between the orthogonal transverse components.

Depending on specific values of these magnitudes and the phase shift δ, the equation (1.4)

may describe:
• A linearly polarized light ( vertically, horizontally, +45◦, -45◦ )

• A circularly polarized light (right-handed (clockwise), left-handed (counterclock-

wise))

• An elliptically polarized light (standard ellipse, right-handed, left-handed )

All potential degenerate forms are illustrated in Figure (1.8), along with the special condi-

tions of their appearance.

(ii) It is worthwhile to note that the sheer scope of polarimetry is grounded in the concept

of "Elliptical parameters of the polarization ellipse", which is detailed below.

Recall that the equation (1.2):
(
Ex

E0x

)2

+

(
Ey

E0y

)2

− 2
Ex

E0x

Ey

E0y

cos δ = sin2 δ, (1.2)

stands for an equation of an ellipse, including the cross term (ExEy) in this equation indi-

cates that the polarisation ellipse is generally rotated. This characteristic is illustrated in

Figure (1.7), where the ellipse is depicted to be rotated by an angle ϕ.

Thus, a completely polarized state can be fully characterized by the parameters of the po-

larization ellipse, which include the azimuth ϕ and the ellipticity angle χ, along with an
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Figure 1.7: The rotated polarization ellipse characterized by the semi-axes a and b, together with

the rotation angle ϕ and the ellipticity angle χ [40, 42].

auxiliary angle α, whereby:

tanα =
E0y

E0x

, 0 ≤ α ≤ π

2
, (1.5)

tanχ =
±b
a
, −π

4
≤ χ ≤ π

4
. (1.6)

In addition, since the two sets of parameters, i.e., (i) E0x, E0y and δ, and (ii) the rotation

angle ϕ and the ellipticity angle χ, are describing the same ellipse, conventionally, they are

connected by the following equations [25]:

tan2ϕ =
2E0xE0y

E2
0x − E2

0y

cosδ

= tan2α cosδ ,

(1.7)

where: 0 ≤ ϕ ≤ π

sin2χ =
2E0xE0y

E2
0x + E2

0y

sinδ

= sin2α sinδ .

(1.8)

A common concept in describing the shape of the polarization ellipse is the ellipticity,

denoted by ϵ. While closely related to the ellipticity angle, these two are distinct. Elliptic-

ity, defined as the ratio a
b
of the semi-major to the semi-minor axes, quantifies the shape of
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Figure 1.8: Appearance of different polarization states as determined by specific values of the

angular parameters of the polarization ellipse [40].

the ellipse. The ellipticity angle, on the other hand, is an angular measure whose tangent

corresponds to the ellipticity (as given by equation (1.5)). Although both convey the same

information, the ellipticity angle is often more convenient for mathematical descriptions

and analyses. Again, All potential degenerate forms are illustrated in Figure (1.8).

In addition to naturally emerging as special cases of the polarization ellipse, these degener-

ate states hold significant importance due to their relative ease of generation in an optical

laboratory. These states can be utilized to establish ’null-intensity’ conditions, which are

critical for operating polarization instruments. Often designed around null-intensity prin-

ciples, such instruments allow for highly precise measurements [40].

Figure 1.9: Controlling polarization states from unpolarized light to linearly then circularly

polarized light, image copied from [43].
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1.2.2 Stokes, Jones, and Mueller Polarimetric Calculi

These individually or combined calculi provide a comprehensive Analysis of Polarization

Descriptions.

1.2.2.1 Stokes parameters

In his famous article, George Stokes developed a formalism to describe not only totally po-

larized light but also partially polarized and completely depolarized light. Instead of using a

description based on the amplitude and phase of the light wave, he developed a description

based on light intensity, a quantity that is easily measurable and observable. The electric

field vector describes the polarization ellipse within a time interval on the order of 10−15

seconds. However, there is no detector with a response time T short enough to follow the

trace of the polarization ellipse. Only the light intensity I , which is proportional to the

time-averaged square of the magnitude of the electric field E⃗, is detectable. Stokes demon-

strated that any state of polarization can be described using four measurable quantities

corresponding to light intensities. These parameters, known as the Stokes parameters, can

be obtained from the time average of the equation (1.3). Thus, the time-averaged transverse

components of the electric field yield [4, 25, 44]:

⟨Ex⟩ =
1

2
E2

0x , (1.9)

⟨Ey⟩ =
1

2
E2

0y , (1.10)

⟨ExEy⟩ =
1

2
E0xEoy cos δ . (1.11)

Using equations (1.9, 1.10, and 1.11), equation (1.3) can be rewritten in the following form:

(E2
0x + E2

0y)
2 − (E2

0x − E2
0y)

2 − (2E0xE0y cos δ)
2 = (2E0xE0y sin δ)

2 . (1.12)
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The quantities within parentheses are light intensities corresponding to the Stokes param-

eters denoted as Si (0 ≤ i ≤ 3):

S0 =E
2
0x + E2

0y , (1.13)

S1 =E
2
0x − E2

0y , (1.14)

S2 =2E0xE0y cos δ , (1.15)

S3 =2E0xE0y sin δ . (1.16)

Thus, equation (1.12) can simply be written as follows:

S2
0 = S2

1 + S2
2 + S2

3 . (1.17)

The first parameter S0 corresponds to the total intensity of the light, while the other three

parameters S1, S2, and S3 characterize the state of polarization. When the light is partially

polarized or completely depolarized, equation (1.17) becomes an inequality:

S2
0 ≥ S2

1 + S2
2 + S2

3 . (1.18)

A handy property of the Stokes parameters is that they allow the evaluation of the Degree

of Polarization (DOP) of a light wave [4, 25, 44]:

DOP =

√
S2
1 + S2

2 + S2
3

S0

, 0 ≤ DOP ≤ 1 . (1.19)

For fully polarized light, the DOP is equal to 1. It is less than 1 for partially polarized light

and equal to 0 for completely depolarized light.

The four Stokes parameters can be combined into a column vector called the "Stokes vector,"

which characterizes the state of polarization such as:

S⃗ =




S0

S1

S2

S3



=




E2
0x + E2

0y

E2
0x − E2

0y

2E0xE0y cos δ

2E0xE0y sin δ



. (1.20)

They can also be obtained from multiple intensity measurements such as:

S⃗ =




S0

S1

S2

S3



=




IH + IV

IH − IV

I45 + I−45

IR + IL



, (1.21)
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where IH , IV , I+45, and I−45 are the intensities corresponding to the contributions to the

linearly polarized wave in the horizontal, vertical, +45◦, and−45◦ directions, respectively.

IR and IL are the intensities corresponding to the contributions to the circularly polarized

wave in the right and left directions, respectively. The parameter S1 describes the electric

field portion with horizontal or vertical linear polarization. The parameter S2 describes the

electric field part with linear polarization oriented at +45◦ or −45◦. Finally, the parameter

S3 characterizes the part of the electric field with right or left circular polarization.

Giving that IH + IV = I45 + I−45 = IR + IL, the Stokes vector can be obtained with only

four intensity measurements [4, 25, 41]:

S⃗ =




IH + IV

IH − IV

2I45 − (IH + IV )

2IR − (IH + IV )



. (1.22)

In general, the Stokes vector is normalized with respect to the S0 parameter, which corre-

sponds to the total intensity:

S⃗ =




1

S1

S0

S2

S0

S3

S0



. (1.23)

Finally, it is pertinent to highlight that the angular parameters of the polarization ellipse

discussed in the previous section can be derived from the Stokes parameters. The expres-

sions for these angular parameters are given as follows [45]:

χ =
1

2
arctan

(
S2

S1

)
, (1.24)

ϕ =
1

2
arcsin

(
S3

S0

)
, (1.25)

α =
1

2
arctan

(
S3√

S2
1 + S2

2

)
. (1.26)

Having established a foundational understanding of Stokes parameters and their role in

describing the state of polarization, we now turn our attention to more advanced mathe-

matical frameworks—namely the Jones and Mueller calculi, and the Poincaré sphere. These
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tools not only build upon the principles introduced by Stokes parameters but also provide

more comprehensive methods for analyzing and manipulating polarized light [4, 25, 41].

1.2.2.2 Jones mathematical representation of totally polarized light

The Jones formalism offers a straightforward approach for describing polarized light and its

alterations. Introduced by American physicist R. Clark Jones in 1941 [5], the Jones vector is

formulated by recognizing that the equation of a plane wave can be expressed as a column

vector, such as:

E(z, t) =


E0x exp[i(ωt− kz + δx)]

E0y exp[i(ωt− kz + δy)]


 = exp[i(ωt− kz)]


E0xe

iδx

E0ye
iδy


 . (1.27)

In practice, the term exp[i(ωt− kz)] as explained in the section (1.2.1) is typically omitted,

leading to a simplified expression:

E(z, t) =


Ex

Ey


 , (1.28)

where Ex and Ey are complex amplitudes:

Ex = E0xe
iδx , (1.29a)

Ey = E0ye
iδy . (1.29b)

The Jones vector represents a monochromatic, uniform, and transverse-electric plane wave,

encapsulating the complete information about the field’s amplitudes and phases and, hence,

thewave’s polarization. However, in reality, light is often quasi-monochromatic (see section

1.2.1.1); nevertheless, for time intervals shorter than the coherence time, the Jones vector

remains a valid description of polarization states in quasi-monochromatic light.

The intensity of the light can be calculated by multiplying the Jones vector E with its

Hermitian adjoint E† (The Hermitian adjoint of a matrix is the complex conjugate of the

transpose of the matrix, thus E† is a row vector) [5, 25, 40, 44]:

I = E†E = E∗
xEx + E∗

yEy . (1.30)
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The interaction of light with a medium or optical system can be characterized by a 2 × 2

complex matrix denoted as the Jones matrix:


E

′
x

E ′
y


 = J


Ex

Ey


 , (1.31)

with Ex,y, E ′
x,y referring to the incident and outgoing electric field components, respec-

tively.

The Jones matrix J consists of four generally complex elements, requiring eight indepen-

dent real parameters to be completely defined. A collection of Jones matrices for standard

optical components is readily available in resources like Wikipedia or, more specifically,

scholarly sources like [34].

The Jones matrix describing a sequence of optical elements is obtained by multiplying the

individual Jones matrices of each component. If we consider the incident and emergent

plane waves, the cumulative effect of a cascade of N optical elements can be represented

as:

E0 = JNJN−1 . . .JIIJIEi = JcombEi . (1.32)

It is worth noting that the incident plane wave interacts with I optical element first, then

element II, et cetera.

In cases where the polarization element rotates by an angle θ while maintaining a constant

angle of incidence, the resulting Jones matrix is:

Jθ = R(θ)JR(−θ) , where R(θ) =


 cos θ sin θ

− sin θ cos θ


 . (1.33)

Here, θ is positive for counter-clockwise rotation as viewed against the direction of propa-

gation.

Quasi-monochromatic radiation is not always fully polarized and can be partially polarized

or unpolarized. In practical situations, partially polarized light is commonly encountered.

The Jones formalism is limited to completely polarized light. For partially polarized or un-

polarized radiation, a different approach, which will be introduced in the following section,

is required [5, 25, 40, 44].
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1.2.2.3 Stokes-Mueller Formalism

A Mueller matrixM is a 4× 4 matrix comprising 16 real elements, which relates the input

and output Stokes vectors following the interaction of electromagnetic radiation with an

optical medium [6, 29]:

Sout = MSin . (1.34)

TheMueller matrix of an optical system composed of elements in series is the product of the

Mueller matrices of these elements, arranged in the reverse order of how the incident beam

encounters them. Analogy to Jones calculus interpreted by equation (1.32), the cumulative

effect of a series of N optical elements is translated into:

E0 = MNMN−1 . . .MIIMIEi = McombEi . (1.35)

A comprehensive list of Mueller matrices corresponding to standard optical components is

available on Wikipedia and for more mathematical details see Chapter 06 in reference [25]

.

Suppose the polarization element described by the Mueller matrix undergoes rotation by

an angle θ (positive for counter-clockwise rotation when viewed against the propagation

direction). In that case, the resulting matrix can be expressed as[6, 29, 34]:

M′ = R(−θ)MR(θ) , where R(θ) =




1 0 0 0

0 cos 2θ sin 2θ 0

0 − sin 2θ cos 2θ 0

0 0 0 1



. (1.36)

This is analogous to the rotation of Jones matrices described in equation (1.33)

The inequality in equation (1.18) plays a significant role because it enables the classification

of the nature of light-medium interaction. For fully polarized incident light, if the Stokes

vector of the output light satisfies Equation (1.18) as equality, the medium is termed non-

depolarizing, meaning the emerging beam remains completely polarized.

Every Jones matrix has a corresponding Mueller matrix. To highlight this connection, such

Mueller matrices derived from Jones matrices are called "Mueller-Jones" matrices. The

Mueller-Jones matrix corresponding to any given Jones matrix can be calculated using the
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following expression[35, 40, 44]:

M = A(J⊗ J∗)A−1 , (1.37)

where ⊗ denotes the Kronecker product andA is given by:

A =
1√
2




1 0 0 0

1 0 0 −1

0 1 1 0

0 i −i 0



. (1.38)

A general Jones matrix comprises 8 independent parameters. However, during the tran-

sition to a Mueller-Jones matrix, absolute phase information is forfeited, resulting in only

7 independent elements within the Mueller-Jones matrix. In essence, this conversion di-

minishes the independent parameters from 8 to 7. Thus, while the Jones matrix delivers a

more comprehensive depiction (including phase), the Mueller matrix provides a wider yet

somewhat less detailed account of the light’s polarization state [29, 40]. The capacity of

a medium to transform depolarized light into polarized light is referred to as polarizance.

When the incoming light is entirely depolarized, the polarization state of the emitted light

is completely characterized by the first column of the Mueller matrix. [46]:



M00

M10

M20

M30



=




M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33







1

0

0

0



. (1.39)

The polarizance P corresponds to the degree of polarization (DOP) of the emerging beam,

and the equation gives it:

P =
1

M00

√
M2

10 +M2
20 +M2

30 , 0 ≤ P ≤ 1 . (1.40)

Having explored how Jones and Mueller matrices individually account for the various el-

ements contributing to polarization, we now shift our focus to the polarization effects in-

duced by these elements. This transition will enable us to complete our understanding of

the Stokes-Mueller formalism, solidifying its role as a widely utilized mathematical frame-

work in the study of light polarization.
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1.2.2.4 Polarization effects of Polarimetric elements

Polarization effects refer to the modifications in the polarization state of light as it interacts

with various materials or optical elements. These changes can be categorized into different

types vis.

Dichroism

It refers to the differential absorption of light depending on its polarization state, the rea-

son why it is referred to as Selective absorption.In anisotropic materials exhibiting dichro-

ism, different polarization components of light are absorbed to different extents, leading

to variations in the transmitted intensity. Thus, the intensity transmission coefficient T is

intrinsically linked to dichroism, reflecting how the material’s differential absorption alters

the overall transmitted light intensity. Dichroism can be further classified into:

• Linear Dichroism: it occurs when a material absorbs different amounts of light de-

pending on the linear polarization direction of the incident light.

An example of a linear dichroic element is a polarizer that absorbs light differently for

two orthogonal linear polarization directions. case a) in the Figure (1.10). For linear

polarizer with Axis of Transmission at Angle θ, the Jones matrix can be expressed as:

JLPθ
=


 cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)


 . (1.41)

• Circular Dichroism: involves the differential absorption of right- and left-circularly

polarized light. cases b) and c) in the Figure (1.10). The responsible polarization ele-

ment is a circular polarizer or optical material with differential absorption properties

for right- and left-circularly polarized light. For circular polarizers, the Jones matrices

are[44, 47]:

For Right Circular Polarizer: JRCP =
1

2


 1 i

−i 1


 , (1.42)

For Left Circular Polarizer: JLCP =
1

2


1 −i
i 1


 . (1.43)
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Figure 1.10: The concept of dichroism. The small arrows indicate the varying absorption based on

the polarization direction. a) Linear dichroism: a horizontally polarized wave traverses the

medium, while the vertically polarized wave is significantly diminished and nearly entirely

absorbed. b) A medium exhibiting right-handed dichroism absorbs a right-handed circularly

polarized wave. c) A left-handed circularly polarized wave moves through the medium with

minimal absorption [47].

Retardance

Birefringence is a property of anisotropic materials (anisotropy describes the variation of

properties in different directions within a material) where the refractive index varies with

the polarization and propagation direction of light. This leads to a phase difference between

the ordinary and extraordinary rays traveling through the material. The phase difference

induced by birefringence is referred to as retardance. Although the terms "double refrac-

tion" and "birefringence" are often used interchangeably to describe the capability of an

anisotropic crystal to split incident light into ordinary and extraordinary rays, these terms

actually denote different aspects of the same phenomenon. The process of double refrac-

tion involves the splitting of a light beam into two distinct rays, each bending at a unique
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angle. On the other hand, birefringence pertains to the underlying cause of this splitting,

which is a directional variation in the refractive index within a structurally ordered ma-

terial. The disparity in the refractive indices between the extraordinary and ordinary rays

passing through an anisotropic crystal is quantifiable and can be represented as an absolute

value using the following formula [37, 44, 48]:

Birefringence (B) = |ne − no| , (1.44)

the phase retardance δ, which is the phase difference introduced between the ordinary and

extraordinary rays due to birefringence, depends on both the birefringence and the physical

thickness d of the material through which the light travels.

δ =
2πBd

λ
(1.45)

. Just like the dichroism, Birefringence can be further classified into:

• Linear Birefringence: Media characterized by two refractive indices associated with

two orthogonal polarization directions are known as linear birefringent materials.

Only linear polarizations parallel to these two directions, referred to as "eigen axes,"

can propagate without alteration. The lower and higher indices are respectively

called the fast index nfast and the slow index nslow because the phase velocity vϕ
is inversely proportional to the refractive index seen by the wave (vϕ = c

n
, where c is

the speed of light in a vacuum and n is the refractive index). The two linear polariza-

tion states corresponding to the eigenaxes are called the "eigenstates of polarization"

of the medium. The index anisotropy, characterized by the linear birefringence of the

medium BL = nslow −nfast, leads to a phase shift δL between the eigenstates during

light propagation through a medium of thickness d [37, 44, 48]:

δL =
2π

λ
BLd (1.46)

.

Materials exhibiting linear birefringence are called linear retarders or phase

shifters. Among anisotropic materials, crystals known as "uniaxial" have two dif-

ferent refractive indices. Calcite and quartz are examples of such crystals. There
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Figure 1.11: Linear Birefringence: scientific illustration and live manifestation

are also biaxial crystals like mica, which have three different refractive indices [37,

48]. Using these materials, elements called wave plates or phase plates are made,

whose function is to create a well-defined linear phase retardation. The two most

commonly used types of wave plates are the half-wave plate (δL = π) and the

quarter-wave plate (δL = π
2
).

• Circular birefringence: causes a change in the azimuthal angle of the polarization el-

lipse, which corresponds to a rotation of the incident polarization state. The rotation

angle, also known as optical rotation, is proportional to the value of the circular bire-

fringence, the thickness of the medium traversed, and inversely proportional to the

wavelength [44, 48]:

ϕ =
π

λ
Bcd =

δc
2

with: δc =
2π

λ
Bcd (1.47)

.

For a general retarder with overall retardance T =
√
L2 + C2, where L and C represent the

linear and circular retardancies, respectively, its associated Jones matrix is [44]:

JgR =


cos T

2
− iL

T
sin T

2
C
T
sin T

2

−C
T
sin T

2
cos T

2
+ iL

T
sin T

2


 . (1.48)
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Figure 1.12: Circular Birefringence: scientific illustration and live manifestation [44, 49].

Depolarization

A depolarizing element has the ability to reduce the degree of polarization (DOP) of a light

wave. For completely depolarized light, the measured intensities IH , IV , I45, I−45, IR, and

IL are equal. The Stokes parameters S1, S2, and S3, each corresponding to the difference

between two of these intensities, are therefore zero. The Stokes vector can thus be written

as follows: S⃗ =
[
1 0 0 0

]T
.

scattering elements are depolarizers and biological tissues are also another example of de-

polarizing elements [44].

1.2.3 Poincaré Sphere and Relative Geometric Phase concept

The physicist and mathematician Henri Poincaré introduced a three-dimensional model for

representing polarization states. Each state is represented by a point P on or inside a unit

sphere known as the "Poincaré sphere." The angular coordinates of point P correspond to

two parameters of the polarization ellipse: the ellipticity angle χ, which defines the ellipse’s

shape, and the azimuth ϕ, which determines its orientation. Additionally, the position of

point P can be expressed using the Stokes parameters. The triad OS1S2S3, illustrated in
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Figure (1.13), forms a Cartesian coordinate system with the origin at point O. The coor-

dinates of point P (depicted as a yellow ball) are the Stokes parameters S1, S2, and S3,

normalized by S0, where S0 (with 0 ≤ S0 ≤ 1) represents the distance from point P to the

sphere’s center. The Stokes parameters are linked to the ellipticity angle χ and azimuth ϕ

of the polarization ellipse through the following equations: [48, 50]:

S1 = cos 2χ cos 2ϕ , (1.49)

S2 = cos 2χ sin 2ϕ , (1.50)

S3 = sin 2χ . (1.51)

Specific polarization states are represented by various positions on the Poincaré sphere:

• The equator (2χ = 0) signifies linear polarization states;

• The south pole (2χ = −π/2) and north pole (2χ = +π/2) indicate left and right

circular polarization, respectively;

• Points along the same parallel correspond to ellipses with identical ellipticity but

varying azimuths, reflecting different orientations;

• Points along the same meridian represent polarization states with a consistent az-

imuth but differing ellipticities [48, 50].

The distance OP indicates the degree of polarization of the light. Partially polarized

light is represented by a point P situated within the sphere. When point P aligns with the

center O, the light is entirely depolarized.

The Poincaré sphere connects any two polarization states via an arc, facilitating the calcu-

lation of their differences in azimuth and ellipticity through spherical trigonometry. This

method streamlines the prediction of a light beam’s polarization after it interacts with a po-

larizing element, as well as the determination of the necessary parameters of that element

to achieve a desired polarization state.
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Figure 1.13: Poincare Sphere pictorial: left) all potential polarization states visualization on the

sphere, right) polarization states are mapped to the sphere using azimuthal and ellipticity angles

[50].

Optical Geometric phase

An optical geometric phase, commonly known as the Pancharatnam-Berry phase (or Berry

phase in polarization contexts), represents an extra phase shift that occurs when the polar-

ization state of light experiences a cyclic and adiabatic (slow) change. Unlike the dynamic

phase, which depends on the physical path length and refractive index, the geometric phase

arises solely from the geometry of the trajectory in the polarization state space, such as on

the Poincaré sphere. As demonstrated by Pancharatnam, this additional phase shift corre-

sponds to half the solid angle enclosed by the path. An illustrative figure (1.14) provides a

clear visual representation and geometrical explanation of this concept.[51].
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Figure 1.14: The geometric phase ϕ1 is equivalent to half the solid angle Ω subtended by the loop.

The left sphere illustrates the total phase twist ϕtwist resulting from a parallel displacement along

the surface of the sphere, returning to the original point [51].

1.3 Conclusion

The first part of this thesis was opened with an extended historical tracing of light polariza-

tion over 300 past years; from the initial observations in 1669 to significant advancements by

1948, the field of light polarization has undergone extensive scientific development. Early

studies laid the groundwork for understanding polarization phenomena, which gradually

led to the establishment of the mathematical frameworks that are fundamental to modern

optics. This historical progression can be likened to assembling a complex puzzle, where

each scientific discovery contributed a vital piece, ultimately creating a comprehensive un-

derstanding of polarization. The brief theory was subsequently established and concisely

focused on the fundamental scientific notions and mathematical background that frames

the contribution part. In the last 70 years, technological advancements have shifted the

focus of polarization studies from theoretical foundations to data-driven practical applica-

tions, opening a new chapter in classical polarization research that we have witnessed and

had the opportunity to contribute to.
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Measurement is a cornerstone of scientific practice, particularly in optics, where po-

larimetric methods have proven highly effective across various applications. Notably, the

Stokes-Mueller formalism has significantly advanced the characterization of polarization

since the mid-19th century.

Following this tradition, while current methods have proven effective and reliable, explor-

ing new approaches can uncover additional features and open up new areas of investigation.

This chapter introduces a novel method that advances polarimetric techniques by offering

unique features not previously explored.

Main objectif

The primary aim is to establish the principles and calculations of this new approach and

prove its effectiveness.
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2.1 Mueller polarimeter with dual rotating quarter-wave plates

This classical Polarimeter consists of a polarization state generating system (PSG) and po-

larization state analyzing system (PSA), which together allow the obtaining of the optical

system’s Mueller matrix. The PSG, see (Fig. 2.1), is composed of a fixed linear polarizer,

followed by a rotating quarter wave plate, while the PSA comprises the same elements but

in reverse order. The input polarizer is oriented vertically (system’s reference), while the

output polarizer is oriented horizontally. The orientations of the quarter-wave plates are

identified respectively by the angles θ and θ′, which the fast axes make to the vertical. Thus,

Figure 2.1: the functioning principle of the Mueller polarimeter with two rotating quarter wave

plates labeled as λ/4

at the output of this assembly, the out-coming Stokes vector
−→
S ′ is obtained by means of the

Stokes-Mueller calculus, which is presented as:

−→
S ′ = [P2] · [L2(θ

′)] · [M ] · [L1(θ)] · [P1] ·
−→
S , (2.1)

where [P1], [P2], [L1(θ)], [L2(θ
′)], and−→S are respectively the well-known Mueller matrices

of the crossed input and output polarizers, first and second quarter-wave plates, and lastly,

the input Stokes vector.
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Also, [M] denotes the Mueller matrix of the medium under investigation, such as:

[M ] =




M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33



, (2.2)

For improved clarity and flow in the subsequent mathematical development, the Mueller

matrix of the quarter-wave plate, with its fast axis oriented at an angle (θ) to the system’s

vertical, is:

[L(θ)] =




1 0 0 0

0 C2 CS −S
0 CS S2 C

0 S −C 0



, (2.3)

viz. C = cos(2θ), S = sin(2θ), and the same equation for the second quarter-wave plate, but

in a different orientation with C’= cos(2θ′) and S’= sin(2θ′).

The luminous intensity I arriving at the detector is entirely contained in the term S ′
0 of the

Stokes vector leaving the system
−→
S ′ , the development of Eq.(2.1) pursuant to S ′

0 gives:

S ′
0(θ, θ

′) = I(θ, θ′) =M00 +M01C
2 +M02CS +M03S

+ (M10 +M11C
2 +M12CS +M13S)(−C ′2)

+ (M20 +M21C
2 +M22CS +M23S)(−C ′S ′)

+ (M30 +M31C
2 +M32CS +M33S)(S

′) .

(2.4)

While the Mueller matrix is inherently a 4 × 4 matrix, it can be represented as a 16 × 1

vector for specific mathematical manipulations. In this case, it can be reshaped into:

Mvec = [M00;M01;M02;M03;M10;M11;M12;M13;M20;M21;M22;M23;M30;M31;M32;M33].

All elements Mij of the vacuum matrix to be determined arise in the output intensity

expression I, which can then be written as:

I(θ, θ′) =
15∑

N=0

MNAN(θ, θ
′) , (2.5)

where AN are coefficients depending on θ and θ′. To solve for the sixteen Mueller ma-

trix elements, sixteen equations of this form with sixteen combinations (θ, θ′) are required,
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assuming the coefficients are known. The set of sixteen measurements can be written as

follows: 


I0
...

I15


 =




A0,0 . . . A0,15

... . . . ...

A15,0 . . . A15,15







M00

...

M33


 . (2.6)

By choosing sixteen combinations (θ, θ′), to prevent that the matrix [Am,n] would be sin-

gular (non-invertible), theMij terms are immediately recovered by:

[Mij] = [AN
m,n]

−1[IN ] . (2.7)

Worth noting is that the Mueller matrix of vacuum [Mv] is theoretically the identity matrix

(a square matrix with all diagonal elements equal to 1 and off-diagonal ones equal to 0).

2.2 Mueller Polarimeter based on Modifying Vacuum Matrix (MP-

MVM)

2.2.1 Description of the proposed set-up

In this study, a polarimeter with a modifying vacuum matrix is utilized to concurrently

determine the phase shift (δ) and the ellipticities (ϵ, -ϵ) of eigenstates, along with the ori-

entation of the fast and slow axes of a birefringent medium. For this purpose, the method

described in Section (2.1), which allows the determination of the vacuum Mueller matrix,

is applied. However, in this instance, the second quarter-wave plate is replaced by the

medium under study, as illustrated in Figure (2.2). Consequently, the alterations observed

in the vacuum matrix reveal the sought-after information.

2.2.2 Output Intensity of the Modified Polarimeter

The measurement principle of this method focuses on determining the 16 elements of the

modified Mueller matrix of the vacuum [Mvmod], achieved by substituting the quarter-wave

plate with the birefringent medium. A critical factor enabling this process is the output

light intensity, which contains the information necessary to extract the targeted properties.

In this regard, the output Stokes vector
−→
S ′ is related to the input vector −→S through the
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Figure 2.2: schematic of the proposed experimental set-up of an MPMVM

following matrix relationship:

−→
S ′ = [P2] · [Lb(θ

′)] · [Mv] · [L1(θ)] · [P1] ·
−→
S , (2.8)

where: [P1], [P2], [L1], [Lb], are respectively, the Mueller matrices of the input and output

polarizers, the quarter-wave plate and the birefringent plate under investigation. Regarding

this latter, its Mueller matrix is characterized by a phase shift (δ), the ellipticity (ϵ), and the

orientation angle (θ′). It is expressed as comes [52]:

[Lb(δ, ϵ, θ
′)] =




1 0 0 0

0 b21 − b22 − b23 + b24 2(b1b2 + b3b4) −2(b1b3 + b2b4)

0 2(b1b2 − b3b4) −b21 + b22 − b23 + b24 2(b1b4 − b2b3)

0 −2(b1b3 − b2b4) −2(b1b4 + b2b3) −b21 − b22 + b23 + b24



, (2.9a)

with:

b1 = cos(2ϵ) cos(2θ′) sin(δ/2), (2.9b)

b2 = cos(2ϵ) sin(2θ′) sin(δ/2), (2.9c)

b3 = sin(2ϵ) sin(δ/2), (2.9d)

b4 = cos(δ/2), (2.9e)

Within the scope of this work, the first element of the output Stokes vector, S ′
0, representing

the detected light intensity I, is measured. By developing the expression for this intensity
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as a function of the orientations θ and θ′, the following relationship is obtained:

S ′
0(θ, θ

′) = I(θ, θ′) =M00 −M01C
2
2θ −M02C2θS2θ +M03S2θ

+ (M10 −M11C
2
2θ −M12C2θS2θ +M13S2θ)(b

2
1 − b22 − b23 + b24)

+ (M20 −M21C
2
2θ −M22C2θS2θ +M23S2θ)(b1b2 − b3b4)

+ (M30 −M31C
2
2θ −M32C2θS2θ +M33S2θ)(b2b4 − b1b3) .

(2.10)

Utilizing the matrix system previously presented in Eq.(2.6), and referencing Eq.(2.10), with

taking into consideration [Mv]=[Midentity], the elements of the 16 × 16 calculation matrix

[A] are functions of the rotation angles θ and θ′ (corresponding to the quarter-wave plate

and the birefringent plate, respectively), as well as the phase shift (δ) and the ellipticity (ϵ)

of the latter. The intensity 16×1 vector of the (MPMVM) is then expressed as follows:

[IN ] = [AN
m,n][Mv] =




1 + A0,5 + A0,10 + A0,15

...

1 + A15,5 + A15,10 + A15,15


 . (2.11)




I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15




=




S2
(
δ
2

)
· (S2(2ϵ) + 1)

(S(δ)+C(δ)−1)S(2ϵ)+8C3(ϵ)S2( δ
2)S(ϵ)+C(2ϵ)S(δ)+(2−C(δ))

2

C(2ϵ)S(δ) + 1

(−S(δ)−C(δ)+1)S(2ϵ)+(4C(δ)−4)C3(ϵ)S(ϵ)+C(2ϵ)S(δ)+2−C(δ)
2

(1 + C(δ))S2(2ϵ)
√
2S2( δ

2)S(4ϵ)+(C2(2ϵ)S2( δ
2)+C2( δ

2)−(S2( δ
2)S2(2ϵ)+S(δ)S(2ϵ)))

2
+ 1

−
(√

2C(2ϵ)S2
(
δ
2

)
S(2ϵ)

)
+
√
2C

(
δ
2

)
C(2ϵ)S

(
δ
2

)
+ 1

(−S(δ)−C(δ)+1)S(2ϵ)+(4C(δ)−4)C3(ϵ)S(ϵ)+C(2ϵ)S(δ)+2−C(δ)
2

−C(δ) + 1
S(δ)S(2ϵ)+(

√
2C(2ϵ)S(δ)−C(δ))
2

+ 1

C(2ϵ) (1− C(δ))S(2ϵ) + 1

S(δ)+(1−C(δ))S(2ϵ)+C(2ϵ)S(δ)+C(δ)
2

+ 4C3(ϵ)S2
(
δ
2

)
S(ϵ) + 1

−C(δ) + 1
(S(δ)+1−C(δ))S(2ϵ)+(−C(2ϵ)S(δ)+(2−C(δ))−8C3(ϵ)S2( δ

2)S(ϵ))
2

S(4ϵ)(C(δ)−1)
2

+ 1
(−S(δ)+(C(δ)−1))S(2ϵ)+8C2(ϵ)S2( δ

2)S(ϵ)+C(2ϵ)S(δ)+(4C(δ)−4)C4(ϵ)+(4−4C(δ))C2(ϵ)+1

2




(2.12)

55



Chapter 2: Mueller Polarimeter Based On Modified Vacuum Matrix

Using sixteen angular combinations (θ, θ′) and incorporating Eq.(2.12) into the calculus

model, it is feasible to determine all elements of the [Mvmod], as demonstrated in the sub-

sequent analysis.

2.2.3 Calculus Model

To obtain the [MV mod] and thereby ascertain the various characteristics of the birefringent

sample, a calculus model was developed according to the procedures previously described.

The angular positions of the birefringent medium and the quarter-wave plate were selected

as multiples of 22.5°, with subindices (idt) referring to identity and (Vmod) to vacuummod-

ified. The following steps were undertaken:

[Iv] = [Aidt][Midt] when the birefringent medium is a quarter-wave plate (ϵ = 0 and

δ = 90◦). However, when the quarter-wave plate is substituted with another birefringent

medium (ϵ and δ being unknown and differing values), alterations in the detected intensity

may occur either in the 16 × 16 matrix [A] or the 16 × 1 vector [M], as detailed in the

subsequent calculations:

[IV mod] = [Aidt][MV mod] , (2.13a)

[IV mod] = [AV mod][Midt] , (2.13b)

[Aidt][MV mod] = [AV mod][Midt] , (2.14)

[MV mod] = [Aidt]
−1[AV mod][Midt] , (2.15)

[MV mod] = [Aidt]
−1[IN ] . (2.16)

2.2.4 Modified Vacuum Mueller Matrix

The calculus model represented by Equation (2.16) yields sixteen explicit expressions mij

for the Mueller matrix of the birefringent medium under investigation. These expressions

are functions of the phase shift δ and ellipticity ϵ. Each expression includes two terms, D
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and E, and for simplification, the term B is also considered.

D = (cos(δ)− 1) , (2.17a)

E = sin(4ϵ) , (2.17b)

B = DE . (2.17c)

These expressions have been normalised to Mij by being divided by the first element of

the Mueller matrix [m00] that holds the maximum value in the hole matrix, as indicated

next:
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Original expressions

m00 = (4− 3
√
2) B + 1 (2.18)

m01 = (4− 3
√
2) B + cos(δ) (2.19)

m02 = (4− 3
√
2) B − sin(δ) sin(2ϵ) (2.20)

m03 =
−
√
2 + 1

2
B (2.21)

m10 = (3
√
2− 4) B (2.22)

m11 = (3
√
2− 4)B − 1

2
(cos(4ϵ) + 1)D (2.23)

m12 = (3
√
2− 4) B (2.24)

m13 =

√
2− 2

2
B (2.25)

m20 =

√
2

2
B (2.26)

m21 =

√
2

2
B (2.27)

m22 = (
5
√
2− 6

2
) B − 1

2
(cos(4ϵ) + 1)D (2.28)

m23 = (3− 2
√
2) B (2.29)

m30 =
4
√
2− 5

2
B (2.30)

m31 =
4
√
2− 5

2
B (2.31)

m32 = −−
√
2 + 1

2
B (2.32)

m33 =
3
√
2− 4

2
B + cos(2ϵ) sin(δ) (2.33)

Normalised expressions

M00 = 1 (2.34)

M01 =
D

m00

+ 1 (2.35)

M02 = −sin(δ) sin(2ϵ) + 1

m00

+ 1 (2.36)

M03 =
m00 −B − 1

6m00

(2.37)

M10 =
1

m00

− 1 (2.38)

M11 = −(cos(4ϵ) + 1)D − 2

2m00

− 1 (2.39)

M12 =
1

m00

− 1 (2.40)

M13 =
−m00 − 2B + 1

6m00

(2.41)

M20 =

√
2B

2m00

(2.42)

M21 =

√
2B

2m00

(2.43)

M22 =
−3D(cos(4ϵ) + 1) + 2B − 5m00 − 3

6m00

(2.44)

M23 =
B − 2

3m00

+
2

3
(2.45)

M30 =
B + 4

6m00

− 2

3
(2.46)

M31 =
B + 4

6m00

− 2

3
(2.47)

M32 =
−m00 +B + 1

6m00

(2.48)

M33 =
2cos(2ϵ) sin(δ) + 1

2m00

− 1

2
(2.49)
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2.2.5 Properties Recovery

The resulting Mueller matrix indicates that for a perfect linear birefringent medium, char-

acterized by an ellipticity of the eigenstates ϵ=0, the first element m00 will turn to equal

1. Consequently, the matrix elements are normalized, with the diagonal elements m11,

m22, and m33, as well as the element m01 of the matrix MV mod, undergoing correspond-

ing changes. All other elements of the matrix are zero. The expressions for the varying

elements are given as follows:

M01 = cos(δ) , (2.50)

M11 = −cos(δ) + 1 , (2.51)

M22 = −cos(δ) + 1 , (2.52)

M33 = sin(δ) . (2.53)

In this work, the Mueller matrix of the birefringent medium is considered at an azimuthal

angle of the fast axis θ′ = 0◦ relative to the system’s vertical axis. Therefore, a positive

value ofM01 indicates that the presumed axis is the fast one; otherwise, it is the slow one.

This approach allows for explicitly identifying the rapid and slow axes of the linear bire-

fringent medium.

Also, through the resulting modified vacuum Mueller matrix, the obtainment of other tar-

geted properties δ and ϵ (for a linear birefringent material, in general, ϵ ≈ 0) is now a

matter of solving a system of two equations with two unknowns, any equation coupled

withM01,M11,M22 or M33 from the calculated Mueller matrix will serve the purpose, for

example but not limited to:




M01 =
(cos(δ)− 1)

(4− 3
√
2) (cos(δ)− 1)sin(4ϵ) + 1

+ 1

M10 =
1

(4− 3
√
2) (cos(δ)− 1)sin(4ϵ) + 1

− 1

(2.54)

The solutions to this system of equations correspond to the desired properties consequently:

cos(δ) =
M01 +M10

M10 + 1
, (2.55)

sin(4ϵ) =
−M10

(3
√
2− 4)(M01 − 1)

. (2.56)
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2.3 Application to the Characterization of Poly(lactic acid) Polymer

Properties

2.3.1 Material Choice and Preparation

The Stokes-Mueller formalism is employed in this study to extract the optical properties

of birefringent materials, which are crucial for various applications [53, 54], especially in

polarimetry. Recent advances in optical technology demandmaterials that are widely avail-

able, easy to process, cost-effective, and versatile. Polymers [55–61], particularly poly(lactic

acid) (PLA), meet these criteria and address environmental concerns due to their biodegrad-

able nature [60, 62]. PLA, a semicrystalline polymer, exhibits linear birefringence due to its

ordered and anisotropic crystalline regions [63], making it an ideal candidate for our study.

This research investigates, in the scope of experimental validation, the changes in PLA’s op-

tical properties across a wide temperature range, leveraging its thermoplastic nature, which

undergoes compositional, structural, and functional modifications at specific temperatures

[64, 65]. Differential Scanning Calorimetry (DSC) is widely recognized for its accuracy and

reliability in assessing thermal transitions and phase changes in polymers [66]. Juxtapos-

ing the findings from the newly proposed method with those obtained from Differential

Scanning Calorimetry (DSC) ensures a robust evaluation of its effectiveness and accuracy.

The comprehensive validation process highlights the potential of this approach to serve as

a reliable alternative for characterizing the optical properties of birefringent media, paving

the way for broader applications in material science and optical engineering.

Given the inherent complexities in material storage conditions and sample preparation

methods, certain approximations are necessary to ensure reliable experimental outcomes.

Nonetheless, the reliability of the experimental results is substantially enhanced through

the use of multiple samples and a broad range of thermal intervals.

The study utilized Ingeo biopolymer 2003D PLA granules from NatureWorks, characterized

by a glass transition temperature (Tg) of approximately 60°C, a cold crystallization temper-

ature (Tcc) within the range of 110-130°C, and a typical melt temperature (Tm) spanning

130-160°C [67]. Samples of neat PLA plates, circular in shape with a diameter of 3 mm

and a thickness of 1 mm, were prepared by melting the granules and allowing them to
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cool at room temperature. Subsequently, each sample was subjected to different tempera-

ture conditions within the range of 45-190°C. Post-annealing, quenching was performed at

temperatures below zero to preserve the structural and physical properties at the specified

temperature. The evolution of optical properties was then systematically studied.

2.3.2 Experiment

The proposed polarimeter, depicted in Figure 2.2, is utilized to determine the polarimetric

properties of PLA samples. The experimental setup is mounted on a precisely adjusted ta-

ble. The light source is a monochromatic, linearly polarized He-Ne laser with a λ = 543.5

nm wavelength. The polarization of the emerging light is then measured in terms of inten-

sities to determine the modified vacuum Mueller matrix. This allows for the extraction of

the modifications induced by the sample on the various elements of the matrix, facilitating

the calculation of its optical properties.

For the initial startup of the setup, the target properties were extracted from a reference

medium, a quarter wave plate (λ/4). The phase shift exhibited an angle value of 89.38°,

and the ellipticity had an angle value of 0.2°. These satisfactory results provided sufficient

confidence to proceed to the next step. In evaluating the findings, a comparison was made

with the DSC results obtained from the same PLA granules used in the study.

DSC, a widely used thermal technique, allows for determining heat flow and the tem-

peratures associated with calorimetric transitions as a function of temperature and time

[66]. The primary interest lies in the physical and chemical changes during thermal transi-

tions, such as phase changes, cold crystallization, and melting, which are directly related to

the optical properties under investigation. The data collected by the differential scanning

calorimeter (Q20, TA) are depicted in a graph alongside the phase shift results obtained

using the proposed polarimeter, as shown in Figure 2.3.
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2.3.3 Discussion:

The DSC curve of semicrystalline PLA typically exhibits three distinct temperatures, rep-

resented by sequential peaks and dips, each corresponding to specific thermal transitions

experienced by the material during heating [68]. The phase shift changes as the polymer’s

molecular chains orient in response to these thermal transitions. This is demonstrated by

the similarity in the data patterns observed in both curves, as detailed below:

Figure 2.3: Phase shift curve of heated pure PLA plates (blue) compared to DSC heating curve of

pure PLA granules at 10°C\min (orange)

1. The glass transition temperature (Tg) is indicated by a slight shift in the baseline of

both graphs at 61°C. The phase shift (δ) at this temperature is 32.74°. The phase shift

changes from a steady angle of approximately 11° to a higher value of approximately

30° as the heating temperature increases to 100°C. This increase is attributed to the

significant mobility gained by some of the amorphous chains or segments at Tg [69],

which allows these molecular chains to become oriented, leading to a higher phase

shift induced by the material.
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2. The cold crystallization temperature (Tcc) is reflected as a dip (heat release) in the

DSC graph and a peak in the phase shift graph, both observed at 115°C. This phe-

nomenon occurs due to the semicrystalline nature of PLA, indicating that the samples

are primarily composed of amorphous, yet crystallizable, material. Cold crystalliza-

tion takes place because, at a specific heating temperature above Tg, the amorphous

molecular chains gain sufficient mobility to arrange into an ordered anisotropic struc-

ture, forming crystals through chain folding [63, 70]. This results in the formation of

a linear anisotropic medium, exhibiting an ellipticity (ϵ) of 4.58° and a phase shift (δ)

of 50.94°.

3. The melting temperature (Tm) is characterized by a peak in the DSC graph and a

return to the initial steady behaviour of approximately 11° in the phase shift graph,

both occurring at 150°C. At this temperature, both the initial crystalline fraction and

the newly developed crystalline segments are melted. The discrepancy between the

two curves at the melting point is attributed to the use of plates made from pre-

melted moulded granules for phase shift measurements. Consequently, after being

melted and cooled for the second time, the sample regains its initial semicrystalline

molecular structure, causing the phase shift curve to revert to its original behaviour.
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2.4 conclusion

A noovel method based on the Stokes-Mueller formalism was proposed to extract the opti-

cal properties of linear birefringent media, specifically their fast and slow axes. This study

provided a comprehensive description of the Mueller polarimeter, which utilizes a modi-

fied vacuummatrix. The mathematical model and the resulting Mueller matrix expressions

were detailed. Experimental validation was conducted using PLA samples, with phase shift

and ellipticity measurements confirming the method’s validity. These results underscore

themethod’s potential as a powerful tool for optical characterization, materials science, and

the study of molecular structures. However, this method has limitations. While it is highly

effective in determining the phase shift for materials with low anisotropy, it is less effec-

tive for determining the ellipticity of their eigenstates unless the anisotropy is significant.

This constraint highlights the need for further refinement. Future research should focus

on enhancing the polarimeter’s performance and exploring additional optical properties.

Addressing the current method’s limitations will contribute to its broader applicability and

effectiveness in the field of optical characterization.
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Polarimetric Evaluation Of Geometric
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La volonté trouve, la liberté choisit.

Trouver et choisir, c’est penser

– Victor Hugo
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In recent years, the paradigm of structured light—light defined by a complex spatial

arrangement—has garnered significant scholarly interest [71]. In traditional optical

imaging, spatial configuration primarily impacts the spread of light intensity. However,

an expanding array of studies has concentrated on the control of phase and polarization

distributions. The characteristics of light wavefronts, which dictate its propagation

behavior, can be modified through phase modulation introduced by optical components.

This encompasses not only conventional instruments such as refractive lenses but also

contemporary engineered devices, including holograms, spatial light modulators, and

metasurfaces [72–74]. This investigation prioritizes the evaluation of optical elements

possessing geometric phase (GP) structures, wherein wavefront modification is accom-

plished through phase retardation phenomena (birefringence), independent of propagation

distance. The inaugural identification of the distinctive optical behavior associated with

geometric phase was conducted by S. Pancharatnam during his analysis of interference

patterns formed by polarized light interacting with crystal plates [8]. It was identified that

a phase shift manifests when polarization undergoes a cyclic transformation, equating

to half of the solid angle defined by the polarization trajectory on the Poincaré sphere.

The Poincaré sphere proved essential to Pancharatnam’s comprehension of the geometric

characteristics of this phase. Although his research initially attracted minimal focus, it was

later revitalized and extensively recognized when M.V. Berry delineated the relationship

between Pancharatnam’s geometric phase in polarization optics and the more general

phenomenon of phase accumulation occurring during the adiabatic evolution of quantum

states [9, 75].

Main Objectif

Employing the Mueller matrix polarimetric microscopy and spectroscopy techniques to

phase determination and evaluation of the functionality of commercial Geometric Phase

(GP) lens and grating.
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3.1 General principles about Geometric Phase Optical Elements

3.1.1 Geometric Phase: a universal principle

Geometric phase and holonomy in physics, along with the Foucault pendulum in the real

world, all share the same underlying principle: the accumulation of a global change due

to transport along a closed path in a curved space. This principle, fundamental to both

classical and quantum systems, manifests as the geometric phase in optical and quantum

systems, where a phase shift is acquired solely from the path taken in parameter space,

independent of the dynamic evolution. Holonomy, in the context of differential geometry,

describes the orientation change after parallel transport around a loop in a curved space,

which is mathematically and conceptually similar to the geometric phase in physics . The

Foucault pendulum, as a real-world example, demonstrates this concept through the grad-

ual rotation of its oscillation plane due to Earth’s curvature, analogously exhibiting a form

of holonomy. In both cases, whether in abstract parameter spaces or real-world curved

surfaces, the path-dependent change reflects the same geometric principle, bridging opti-

cal and physical phenomena.

Figure 3.1: Otical geometric phase, Holonomy and Foucault pendulum: same underlying principle.

3.1.2 Fabrication Principle

The optical components exhibiting geometric phase (GP) are fabricated utilizing liquid

crystal polymers, which, in conjunction with a photo-alignment layer and various chiral
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dopants, are organized into intricate three-dimensional configurations that can be incor-

porated within a thin film. The manufacturing process is notably complex and has been

comprehensively documented in several prior investigations [76–78]. Essentially, these

liquid crystal-based Pancharatnam-Berry (PB) optical elements comprise multiple twisted

birefringent layers, a configuration that, as will be elaborated upon later and illustrated

in Figure (3.2), affects the resultant optical activity. Furthermore, alternative fabrication

methods for GP optical components are currently under exploration, including a novel ap-

proach involving ultrafast laser inscription within silica glass [79]. The geometric phase

is contingent upon the polarization state of the incident light and can be regulated by the

alignment of liquid crystals within the optical component, which is accomplished through

Linear Photopolymerization (LPP) techniques.

Figure 3.2: Geometric phase elements basic geometry: a) top view, b)side view. The orientation of

local linear birefringence is shown as small twisted bars from c) top view and d) side view. image

extracted from [80].

3.2 Working Principle of GP elements

To begin, we will examine a half-wave plate’s representative Jones matrix (aligning its fast

axis horizontally) as a simple and direct approach to explaining the operating principle

behind geometric phase (GP) optical elements [81]:

J = e−iπ/2


1 0

0 −1


 . (3.1)
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Recall equation (1.33) considering a rotation of the half-wave by an angle ϕ, its Jones matrix

is:

J ′ = R(−ϕ)JR(ϕ) = e−iπ/2


cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ


 , (3.2)

with R(ϕ) indicates the 2 × 2 matrix of rotation expressed earlier by equation (1.33). For

an arriving beam of light with circular polarization, it is represented by the Jones vector :

E± =


 1

±i


 . (3.3)

The emerging Jones vector is computed as:

J ′E± = e−πi/2


cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ




 1

±i


 = e−πi/2e±2ϕi


 1

±i


 . (3.4)

In this context, the phase factor consists of two components: one is solely determined by

the degree of phase delay, while the newly revealed one depends on two times the angle

of orientation, ϕ. Now, if the rotation angle ϕ is spatially varying, i.e., ϕ(x, y), the result-

ing light wave experiences a transverse inhomogeneous polarization transformation. This

spatial variation leads to a reshaping of the wavefront, which is influenced by the light’s

state of polarization, thereby allowing the development of what are known as Pancharat-

nam–Berry phase optical elements. These components were originally introduced by Bha-

randi[82], with further contributions made by Bomzon et al. [83]. However, experimental

implementations of such elements did not emerge until several years later [84, 85].

3.2.1 Not Necessarily Closed Path!

The phase term ±2ϕi presented in Equation (3.4) is commonly Designated as the Pan-

charatnam–Berry geometric phase. However, the transformation of the vector-matrix de-

scribed by this equation does not form a closed circuit on the Poincaré sphere, as ini-

tially characterized by Pancharatnam [8], since the initial and final polarization states differ

(i.e.,perpendicular to each other). Rather, this transformation represents a path connecting

the north and south poles (or vice versa) of the Poincaré sphere, traversing a geodesic arc

or simply stated a meridian with an azimuth of 2ϕ, as it is shown in Figure (3.3). To com-

plete this path, the transformation defined by the Jones matrix J ′ could be applied twice,
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Figure 3.3: The Poincaré sphere pictorial for the transformations J ′E− (Open path) and only

J ′J ′E− whose panel represents a closed trajectory [81].

yielding [81]:

J ′J ′E± = e−πiE± , (3.5)

(Open path), along with only J ′J ′E−, whose panel depicts a closed trajectory. The closed

trajectory formed bymatching the input and output polarization states divides the Poincaré

sphere into two hemispheres. In this scenario, the Pancharatnam–Berry phase equals π,

while the angular area enclosed by the loop measures 2π, as illustrated in Figure (3.3)

(Closed path case). Bhandari’s [82] and Roux’s [84] seminal work on GP lenses utilized

an experimental setup designed to trace a closed loop on the Poincaré sphere, varying with

ϕ. In their setup, linearly polarized light at 45◦ is first converted into right-handed cir-

cular polarization using a quarter-wave plate, then into left-handed circular polarization

through a half-wave plate (the GP lens). Finally, the light is returned to linear polarization

via another quarter-wave plate, completing the loop. While additional wave plates are part

of their experimental configuration, the effect of GP optical elements can still be observed

outside of closed loops. Aharonov and Jeeva Anandan later redefined the geometric phase

for non-adiabatic processes [86], with Equation (3.4) demonstrating that two transforma-

tions with identical start and end states produce optical phases of opposite signs, depending

on the polarization handedness [81].

3.3 Geometric Phase optics in terms of general retarder

In real-world applications, GP optical elements often deviate from the ideal half-wave plate

model described in Equation (3.1). Formore general cases, Equation (1.48)—the Jonesmatrix
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for a generic retarder—is more appropriate. Therefore, the following section investigates

the impact of a general retarder characterized by linear retardance L (with the fast axis

horizontal) and circular retardance C [44, 87].

JgR =


cos T

2
− iL

T
sin T

2
C
T
sin T

2

−C
T
sin T

2
cos T

2
+ iL

T
sin T

2


 .

Replicating the steps outlined in equation (3.2), the rotated retarder is expressed as:

J ′
gR = R(−ϕ)JgRR(ϕ) =


 cos T

2
C
T
sin T

2

−C
T
sin T

2
cos T

2


− iL

T
sin

T

2


cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ


 . (3.6)

The rotated Jones matrix can be expressed as the product of two distinct components. No-

tably, the first component remains unaffected by the rotation angle ϕ, while all the angular

dependence is contained within the second component. The effect of this general rotated

retarder on transmitted circularly polarized light can be determined using the following

expression:

J ′
gRE± =


 cos T

2
± iC

T
sin T

2

−C
T
sin T

2
± i cos T

2


− e±2ϕiL

T
sin

T

2

(
1 ±i

)
. (3.7)

The first term does not induce any phase alteration and, therefore, does not affect the

wavefront. This term is typically identified as the zero-order leakage wave. On the other

hand, the second term, which carries the opposite handedness to the input, is the only

contributor to wavefront modulation due to its association with a Pancharatnam–Berry

(PB) phase of ±2ϕ. If C = 0 and L = π, the first term in Equations (3.6) and (3.7) vanishes,

leading to the "ideal" scenario described in Equation (3.4), where no leakage wave is

present. When C = 0 and L ̸= π, a leakage wave still persists; however, it maintains

the same polarization as the incident wave. This occurs because the first matrix term in

Equation (3.6) reduces to the identity matrix, indicating no change in polarization. This

situation is elaborated upon in Ref. [88]. A third case arises when C ̸= 0 and L = π.

Although similar to the general case, in this instance, a leakage wave is present, and the

polarization shifts relative to the incident wave. Further exploration of this case will be

presented later.
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Next, attention is given to the second term in Equation (3.6), which can be reformulated

as:

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ


 =

e−2iϕ

2


1 −i
i 1




1 0

0 −1


+

e2iϕ

2


 1 i

−i 1




1 0

0 −1


 . (3.8)

The original matrix has been decomposed into two separate components, each correspond-

ing to a geometric phase shift of ±2ϕ. Importantly, both terms involve the product of the

Jones matrix for either a right-handed circular polarizer, 1
2


 1 i

−i 1


, or a left-handed

circular polarizer, 1
2


1 −i
i 1


, along with the Jones matrix representing a half-wave re-

tarder (as given in Equation (3.1)). The presence of these circular polarizer matrices in-

dicates that, regardless of the initial polarization state, the waves undergoing a geometric

phase shift of±2ϕwill always be circularly polarized. Therefore, the transformation of any

general input wave can be mathematically expressed as follows [76, 89]:

Ein → AleakEleak + A+e
2ϕiE+ + A−e

−2ϕiE− . (3.9)

The amplitude coefficients Ai determine the distribution of incoming energy among the

three resulting waves: the leakage wave, the primary wave (typically corresponding to

right-handed circular polarization), and the conjugate wave (typically corresponding to

left-handed circular polarization). A distinctive feature of geometric phase (GP) optical el-

ements is the absence of higher-order parasitic diffraction waves. When the GP element

operates purely as a lossless retarder, the amplitudes satisfy the relationA2
leak+A

2
++A

2
− = 1.

Additionally, the circular polarizations associated with E+ and E− remain invariant, inde-

pendent of the input polarization and the retarding characteristics of the optical element.

However, the polarization of the leakage wave, Eleak, depends on the input polarization Ein

as well as the parameters C and L. **Equation (3.9) highlights that GP optical elements

serve as effective circular polarization beam splitters, separating any incident beam into

two circularly polarized beams with opposite handedness**, as depicted schematically in

Figure (3.4).
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Figure 3.4: A schematic illustration depicting the influence of the GP lens and grating (prism) on

an incident wavefront is presented. The labels R-CPL and L-CPL refer to right-circularly polarized

light and left-circularly polarized light, respectively [81]. An additional illustration in 3D for both

elements is included [90].

3.4 Mathimatical Phase Profiles’s expressions of the GP optics

The variation in phase across the plane orthogonal to the propagation axis defines the

wavefront or phase profile, which dictates the propagation behavior of the beam. A basic

example of an inhomogeneous phase profile is found in polarization gratings, characterized

by a linear phase shift described as:

ϕgrating(x) =
πx

Λ
, (3.10)

in this context, Λ denotes the grating period. Conversely, polarization lenses are charac-

terized by a quadratic phase function [88]:

ϕlens(r) =
π

λ

(√
f 2 + r2 − f

)
, (3.11)

here, r represents the radial coordinate, f is the focal length of the lens, and λ is the wave-

length. A distinctive property of a GP lens is its behavior with circular polarization: light

with one circular polarization converges through the lens (positive focal length), while the

opposite polarization causes the light to diverge (negative focal length), as shown in Figure

(3.4).
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3.5 Experimental Methods and Techniques

The GP optical components analyzed consist of a polarization lens and a polarization grat-

ing, both manufactured by ImagineOptix and distributed by Edmund Optics. The polariza-

tion lens has a 50 mm focal length, with dimensions of 25 × 25 mm and a thickness of 0.45

mm. The polarization grating shares the same physical size as the lens, featuring a groove

density of 286 grooves/mm (Λ = 3.2µm), resulting in a diffraction angle of around 10° for

light at a wavelength of 550 nm.

3.5.1 Princicple of Mesearement

The method employed to assess the performance of the GP elements is Mueller matrix

polarimetry, requiring a reevaluation of Equation (1.34).

Sout = MSin .

The matrix M is referred to as the 4 × 4 Mueller matrix, consisting of 16 real elements

mij . Typically, Mueller matrices are normalized to the m00 element as discussed at great

length in chapter 1, ensuring that the matrix elements lie within the range of −1 to 1. The

Stokes–Mueller formalism is highly effective for analyzing light interactions with media,

particularly in scenarios where the degree of polarization of the output beam may be re-

duced. However, when depolarization is absent, a direct correspondence exists between

Jones and Mueller matrices, allowing the parameters within Jones matrices, as described

in Section (3.3), to be extracted from the Mueller matrix [87]. Various decomposition tech-

niques have been developed to analyze experimental Mueller matrices [40], enabling the

straightforward extraction of physical properties, such as birefringence, from the data. In

practice, Mueller matrix polarimetry can be implemented by incorporating a polarization

state generator (PSG) and analyzer (PSA) into the optical paths of existing systems, such as

microscopes, allowing for a comprehensive analysis of sample structures.
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3.5.1.1 Measurement Techniques

Mueller Matrix Microscope

The polarimetric measurements presented here were performed using two custom-built

Mueller matrix polarimeters. The first is a Mueller matrix microscope that uses two rotat-

ing compensators in conjunction with a camera for Mueller matrix imaging at micrometric

resolution [91, 92]. The Mueller matrix (MM) microscope operates based on the Stokes-

Mueller formalism, which provides a systematic approach for describing how light’s po-

larization changes as it passes through various optical elements. In this system (see Figure

3.5), light first enters the Polarization State Generator (PSG), which consists of a polarizer

and a rotating compensator. The light is then transmitted through the sample, where its

polarization state is altered. After passing through the sample, the light reaches the Polar-

ization State Analyzer (PSA), also made up of a rotating compensator and a polarizer. Both

compensators rotate at different speeds, introducing time-dependent changes to the light’s

polarization [91].

The polarization state of the light after passing through the system is described by a

series of matrix multiplications as indicated in equation 1.35:

Sout(t) = P1MC1(t)MSMC0(t)P0Sinput ,

where the output Stokes vector is a result of the interactions between the polarization

elements and the sample. The final Mueller matrix of the sample contains 16 elements, each

corresponding to different optical properties. Specific elements are linked to phenomena

such as linear and circular dichroism, as well as linear and circular birefringence. Through

careful calibration and analysis, the MMmicroscope can extract detailed information about

the sample’s optical properties, making it a powerful tool for characterizing materials with

complex anisotropic behaviors. The retrieval of the Mueller matrix microscope elements

(MM) allows the identification of the sample’s different optical properties. Interestingly,

for our study, m12 and m21 are due to circular birefringence, while linear birefringence

is translated by the elements m13,m23,m31, and m32 [91]. Similar to the study made in

chapter2, the calibration is made in the absence of the sample and therefore none of the

polarimetric effects is present and theMuellermatrixMS coincideswith the identitymatrix.
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Figure 3.5: scheme of the Mueller Matrix microscope, technical drawing at left, its photos in the

middle and the intime GP sample measuring at right [91].

Figures 3.9, 3.10,3.12,3.13 are given by this polarimetric microscope.

This microscope operates in two modes: in the standard or orthoscopic mode, the front

focal plane of the objective is focused on the camera sensor, where each point on the sensor

corresponds to a point on the sample. In the diffractometer mode, the back focal plane of

the objective is imaged onto the camera sensor, where each point corresponds to a direction

of light diffraction [93].

Mueller Matrix Spectroscope

The second polarimeter is a spectroscopic device capable of measuring the complete

Mueller matrix without any moving components, as it relies on four photoelastic modu-

lators, each operating at distinct frequencies.

This design, as shown in Figure 3.6, enables the simultaneous measurement of all 15 in-

dependent components of the normalized Mueller matrix. Using this method, it becomes

possible to capture both the optical characteristics of the sample and its depolarization ef-

fects in real time. Figure 3.13 is an example of the given images. The working principle

of the device follows a mathematical framework similar to previously established methods

[94].
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Figure 3.6: A photo and technical depiction of the Mueller Matrix Spectrometer with four

photoelastic modulators [94].

3.6 Evaluation and Results

As a first observation made by the naked eye, the GP elements exhibit a high inherent

chromatic aberration, clearly present in Figure (3.7). The light spots are the intensity of

light emerging from the GP lens under microscopic vision with a green, blue, and red light

source. As a result of the chromatic aberration, the distance of the spectral separation is rel-

atively dependent on the wavelength. Color-selective geometric-phase lenses for imaging

purposes have recently been reported [95]. The geometric phase profiles are most effec-

tively analyzed through the use of a Mueller matrix microscope. This method is essential

because only a polarimeter with exceptionally high spatial resolution can reveal the point-

to-point variation in retardation orientation. Figure (3.8) displays the normalized Mueller

matrix images taken at the central region of the lens and the polarization grating. For these

measurements, a 10× microscope objective was used for the lens, while a 50× objective was

applied to the grating, both utilizing green light at 540 nm.

The measured Mueller matrices allow for the determination of the linear retardance orien-

tation (denoted as ϕ) at each pixel, using the analytic inversion technique [87]. The in-plane
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Figure 3.7: live observation from GP lens showing a high spectral dependence of response

translated by the different spatial separation distance between the primary and conjugate waves

for the microscope’s blue, green, and red light source.

orientation angle ϕ is described by:

ϕ =
1

2
atan2(L′

B, LB) , (3.12)

where L′
B and LB are parameters derived from the analytic inversion, and atan2 represents

the two-argument arctangent function. The results of this computation are depicted in Fig-

ure (3.9). As anticipated, the ϕ phase distribution shows concentric rings of constant phase

for the lens, while in the case of the grating, it forms straight lines. The phase values range

between −90◦ and 90◦, and since ±90◦ represent the same physical orientation, the phase

plots in Figure (3.9) display discontinuities at these points. If required, these "wrapped"

phase profiles can be unwrapped by extending the orientation angles beyond 90◦, which is

also demonstrated in Figure (3.9). Additionally, the figure compares the experimentally ob-

tained unwrapped phases with the theoretical predictions based on Equations (3.10)(3.11)

for the lens and the grating, respectively [81]. Overall, there is a strong correlation between

the experimental data and the theoretical models. Minor discrepancies may arise due to de-

viations in the manufacturing process of the GP optical elements from their specified val-

ues or from distortions introduced by the microscope objective in our Mueller matrix setup.

When compared to other techniques for examining the geometrical phase, such as polar-

ization microscopy [96] or optical interferometry [76], Mueller matrix microscopy offers

the benefit of maintaining the simplicity of polarization microscopy while also providing

fully quantitative and precise measurements [81].
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Figure 3.8: Normalized Mueller matrix images are shown for both the lens in panel (a) and the

grating in panel (b). The scale bar is provided in theM00 element of each image.

Figure 3.9: Phase profiles, ϕ, are presented for the lens in (a) and the grating in (b). The images on

the left display the spatially resolved phase, while the central plots show vertical cross-sections of

the phase profiles. The graphs on the right illustrate the comparison between the unwrapped

experimental phases and the simulated ones.
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3.6.1 Linear and Circular Retardances

The Mueller matrix microscopy data presented earlier not only enable the calculation of

phase profiles but also offer insight into the linear and circular retardances of the films.

Figure (3.10) illustrates these findings for the GP lens. The linear retardance exhibited a

fairly uniform value around 2.85 rad, which is slightly lower than the "ideal" value of π,

corresponding to perfect half-wave retardation. At this wavelength, the circular retardance

was approximately−0.3 rad and appeared to be somewhat less spatially uniform compared

to the linear retardance. Additionally, while the linear retardance remained nearly constant

across the visible spectrum, the circular retardance was more dependent on wavelength,

even changing sign when comparing blue and red wavelengths. This characteristic, likely

associated with the twisted structure of the liquid crystal layers, will be further explored in

the following sections [81].

Figure 3.10: Values for both linear and circular retardance magnitudes in the central region of the

lens are shown, with an imaged area of 620 µm by 620µm. The scales are presented in radians.

3.6.2 Evaluation of the Primary and ConjugateWaves Through Polarimet-

ric Patterns

A straightforward method for analyzing the polarization behavior of the three waves into

which the light incident on a GP optical element is redistributed involves using a Mueller

matrix microscope in diffractometer mode. Figure (3.12) depicts the (unnormalized)Mueller
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matrix measurements obtained for both the lens and the grating in this mode. Notably, for

the lens measurement, the light was directed through a side spot rather than its centre.

This approach was chosen because when light is centred, the lens focuses or defocuses it,

preventing a clear spatial separation of the waves. However, with a side-incident beam, the

separation effect becomes more similar to that of a grating. An illustrative figure is given

below, it shows the Mueller matrices obtained by the polarimetric spectroscope for a light

spot that passed through the center of the GP lens exhibiting no spatial separation of the

light wave components and the second case for a light spot passed through the left side of

the GP lens with a resulted in clear spatial separation.

Figure 3.11: Spectroscopic Mueller matrices of the light spot passing through the centre and the

left side of the GP sample lens.

In Figure (3.12), the primary and conjugate waves can be distinctly observed as sepa-

rated spots, while the leakage wave, which lies between the two, is hardly visible due to

its significantly weaker intensity. From these images, the Mueller matrices corresponding

to the primary and conjugate waves can be approximated as follows:
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


1 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 −1




=




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1







1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



, (3.13)




1 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 −1




=




1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1







1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



. (3.14)

In the equations above, we demonstrated that the measured Mueller matrix on the left

can be expressed as the product of a right- or left-circular polarizer matrix with a half-wave

retarder matrix. This corresponds to the result that was previously introduced in Equation

(3.8), though now it is represented in terms of Mueller matrices instead of Jones matrices.

Moreover, using the spectroscopic polarimeter, we confirmed that these polarization char-

acteristics of the primary and conjugate waves remained consistent across a broad spectral

range, extending well beyond the advertised range of 450–650 nm [81].

Figure 3.12: Unnormalized Mueller matrix images in diffractometer mode for the lens (a) and the

grating (b).
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3.6.3 Effenciency in Terms of Leakage Wave

Both the lens and the grating produced a weak yet detectable leakage wave across the

entire spectral range that was examined using our polarimeters. This result aligns with the

expectation, as indicated by Equation (3.9), since when L ̸= π and C ̸= 0 (as observed in

our samples, confirmed by Figure (3.10), a leakage wave emerges. The leakage waves for

both the grating and the lens were measured in the range from 400 nm to 800 nm using the

spectroscopic Mueller matrix polarimeter, and the results are shown in Figure (3.13). (For

the lens, measurements were taken near its edge to avoid the superposition of the three

waves, which would occur if the light passed through the center.)

As seen in (3.13), the Mueller matrix is not diagonal, suggesting that the leakage wave does

not preserve the polarization of the incident beam. The complex optical behavior displayed

in the figure is due to the presence of both circular and linear anisotropies. Given the

liquid crystal’s twisted structure, circular anisotropies dominate, appearing as both circular

retardance and circular diattenuation. This latter effect is visible from the non-zero values

of the m03 and m30 elements of the Mueller matrix. We attribute this phenomenon to the

differing efficiencies of the primary and conjugate modes (implying thatA+ differs slightly

from A− in Equation (3.9)), which is a topic for future exploration, as this study does not

assess the efficiency of the emergent waves. It is worth noting that the relatively small

circular retardance observed at the microscopic level (Figure 3.12) is amplified significantly

when focusing on the leakagewave alone, as shown in Figure (3.14). This figure presents the

circular retardances derived from the analytic inversion of the Mueller matrices in Figure

(3.13).

The large circular retardance observed in Figure (3.14) can be understood by further

decomposing the first Jones matrix from Equation (3.9) (associated with the leakage wave)

into two terms:
 cos T

2
C
T
sin T

2

−C
T
sin T

2
cos T

2


 =

C

T


 cos T

2
sin T

2

− sin T
2

cos T
2


+

(
T − C

T
T − C cos

T

2

)
I , (3.15)

where I is the 2 × 2 identity matrix. The first term is a pure rotator Jones matrix, while the

second term corresponds to an identity matrix. In the presence of circular retardance (C ̸=
0), the leakage wave results from the combination of two waves: one with a polarization
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rotated by T
2
relative to the input, and the other maintaining the input polarization. Given

that, in GP optical components, T is typically close to π (with L ≈ π and C being small),

the second term of Equation (3.15) becomes negligible, leaving the first rotator term as the

main contributor to the leakage wave, even when C is of small values [81].

The presence of linear anisotropies in the leakage wave (i.e., changes in the polarization

of the leakage wave upon azimuthal rotation of the GP optical element) was not expected

from Equation (3.15), which only accounted for circular anisotropies in the Jones matrix of

the leakage wave. The reasons for this behavior remain unclear, though we hypothesize it

may be due to slight spatial inhomogeneities in the magnitude of L across the illuminated

area, as suggested earlier in Figure (3.12).

From the above analysis, it is evident that polarimetric measurements of the leakage

wave provide a highly sensitive and effective method to assess the "ideal" nature of GP

optical elements. This approach should be considered in future evaluations of GP optical

components, as it involves a simple, non-invasive measurement.
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Figure 3.13: The spectroscopic Mueller matrices for the leakage waves of both the lens and the

grating were measured. In these matrices, all elements have been normalized with respect to the

m00 element. The results, displayed herein, provide insights into the polarization characteristics of

the leakage waves across the analyzed spectral range. Normalization tom00 ensures a consistent

comparison of the Mueller matrix elements, emphasizing the relative polarization effects.

Figure 3.14: The circular retardance derived from the leakage waves of both the lens and the

grating was analyzed and presented.
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3.7 Conclusion

We have shown that the characteristics of GP optical elements can be effectively analyzed

through polarimetric methods, eliminating the need for interferometric techniques typi-

cally required to measure dynamic phases. The phase profiles can be extracted directly

fromMueller matrix measurements with micrometer-scale spatial resolution. Additionally,

our theoretical and experimental results demonstrate that deviations from the half-wave

linear retardance and the presence of circular retardance contribute to a significant leakage

wave, which in turn affects the optical element’s overall efficiency. Despite these effects,

the primary and conjugate waves remain fully circularly polarized, independent of the in-

put polarization, due to the space-variant linear retardance functioning as a polarization

beam-splitter.

Furthermore, our findings suggest that measuring the Mueller matrix associated with

the leakage wave (which is technically straightforward since it does not require wavefront

redirection) offers valuable insights into various properties of the optical element. These

include the presence of circular retardance, linear and circular diattenuation, and potential

disparities in efficiency between the primary and conjugate waves.

With advancements in the manufacturing of GP optical components, enabling the de-

velopment of physically thin elements with minimal losses, we believe polarimetry is the

optimal technique for studying and evaluating these next-generation components.
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Polarimetry is an effective technique for optical characterization and remote sensing,

relying on the analysis of the polarization state of light. While it has broad utility, certain ap-

plications require overcoming technical challenges to meet specific demands for accuracy,

resolution, speed, and sensitivity. Many contemporary polarimeters encode polarization

information in the temporal domain, using time-dependent compensators such as rotating

waveplates, photoelastic modulators, and electrically tunable liquid crystals. Polarization

data can also be encoded spatially, through methods like splitting the beam or employing

polarization-sensitive cameras. Additionally, polarization measurements can be performed

in the spectral domain, as initially described in independent works by Oka and Kato [10],

Iannarilli et al. [97], and Nordsieck [98]. Over the past few years, spectral modulation in

Stokes or Mueller polarimetry has been widely explored by researchers [99–103].

Main objectif

This chapter’s main purpose is to develop the wavelength-domain analysis technique

based on Stokes polarimeter. This technique addresses some of the limitations associated

with channeled polarimetry with Fourier transform-based analysis.
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4.1 Spectral-Domain Polarimetry

In polarimetric measurements, the spectral domain offers a powerful approach for captur-

ing the wavelength-dependent behavior of light’s polarization state as it interacts with a

sample. Unlike traditional time-domain polarimetry, which measures the polarization of

light at a fixed wavelength or over time, spectral-domain polarimetry utilizes the varia-

tion of light across a range of wavelengths to provide a richer, more detailed picture of the

sample’s optical properties.

4.1.1 Time-Domain Vs. Spectral-Domain Polarimetry

Time-Domain Polarimetry typically measures the polarization state at a fixed wave-

length or over discrete intervals in time. This approach is useful for capturing dynamic

changes in the sample’s polarization response, but it often lacks the spectral information

needed to fully characterize materials with wavelength-dependent properties. The focus

is generally on the time evolution of polarization, as explained in the theoretical chapter,

which can limit insights into how different wavelengths interact with the sample. Spectral-

Domain Polarimetry, on the other hand, collects polarization data across a continuous

range of wavelengths. This provides a much broader understanding of how the sample

behaves across the spectrum, revealing wavelength-specific effects such as birefringence,

dichroism, or circular birefringence, which are essential for understanding materials that

exhibit complex optical responses.

4.1.2 Spectrally Modulated Polarimetry Applications

Spectrally modulated polarimetry has several real-world applications for which it offers

distinct advantages over time-domain polarimetry, depending on the functional role of the

measured material. Among others, we site:

• Material characterization in manufacturing because of its High resolution, which

allows for high spectral resolution measurements, which can identify subtle
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wavelength-dependent effects that time-domain systems may miss. This aspect is

what this chapter explores at a great length. [104].

• Biomedical Imaging and Diagnostics such as ophthalmology and cancer detection,

precise imaging of tissue optical properties is essential for diagnosis and treatment

planning. In this field specifically, Spectrally Modulated Polarimetry offers two fea-

tures over time-domain analysis. The first is the enhanced contrast images by mea-

suring how light’s polarization changes across different wavelengths and improving

the detection of specific tissue characteristics. While the second feature relies on the

fact that it enables depth profiling and differentiation of tissue layers based on their

spectral polarization response, which is crucial for identifying and characterizing dif-

ferent tissue types [105].

• Remote sensing and environmental monitoring: Spectral-domain polarimetry can

capture how the polarization state of light changes across the entire visible and near-

infrared spectrum, which is essential for assessing various environmental parameters.

• Optical coatings and thin films Spectral-domain polarimetry provides a complete pic-

ture of how the coating’s optical properties vary with wavelength [106].

Figure 4.1: Spectrally modulated polarimetry for medical imaging and remote sensing applications.

Adapted from [105, 106]
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4.1.3 Spectral Resolution Importance

The spectral resolution of the system plays a critical role in the accuracy of polarimetric

measurements. Spectral resolution refers to the ability of the spectrometer to distinguish

between closely spaced wavelengths. Higher spectral resolution allows for more precise

measurements of wavelength-dependent changes in the polarization state, enabling the

detection of fine optical features. For example, in the study of birefringent materials, high

spectral resolution can reveal subtle shifts in polarization due to small variations in the

material’s refractive index at different wavelengths. In contrast, low-resolution systems

may miss these details, leading to incomplete or less accurate characterizations.

4.1.4 Insights into Complex Optical Properties

Spectral-domain polarimetry provides valuable insights into complex optical properties of

materials that are not easily captured by time-domain techniques. Some examples include:

• Birefringence: By analyzing how the polarization state changes across wavelengths,

researchers can determine the wavelength-dependent birefringence of a material,

which is crucial in fields like optical communication and material science.

• Circular Dichroism: Spectral-domain measurements allow for the precise char-

acterization of circular dichroism in chiral molecules, providing insights into their

molecular structure and interactions.

• Depolarization Effects: Spectral-domain polarimetry can also detect how light de-

polarizes across different wavelengths, which is important for studyingmaterials that

scatter light or cause multiple reflections within a medium.

Overall, polarimetric measurements in the spectral domain offer a detailed, wavelength-

dependent understanding of the optical properties of materials. This approach is particu-

larly useful for studying samples with intricate optical behaviors, where the interaction

of light varies significantly across the spectrum. By leveraging the spectral domain, re-
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searchers can gain deeper insights into phenomena like birefringence, dichroism, and de-

polarization.

4.2 Channeled Spectrum vs. Wavelength Domain Analysis

The spectral modulation technique, pioneered by Oka and Kato, is now commonly known

as channeled polarimetry. This method is not limited to the spectral domain but can be

applied to any systemwith periodic signal modulation. In the channeledmethod, the Stokes

parameters are retrieved by performing a Fourier transform on the intensity as a function

of the wavenumber, isolating each parameter into its respective frequency channel [10, 101,

107]. The resulting amplitude and phase of these frequency channels are used to determine

the Stokes parameters, drawing upon concepts rooted in telecommunications and signal

processing.

In this work, we propose a spectrally modulated Stokes polarimeter that does not rely

on the channeled spectrum approach, as it bypasses periodic modulation and avoids Fourier

transform-based analysis. Instead, our method utilizes an algebraic matrix inversion tech-

nique. This approach addresses some of the limitations associated with channeled po-

larimetry. For instance, channeled analysis requires evenly sampled signals inwavenumber,

which is often not the case when using dispersive spectrometers that measure intensity as

a function of wavelength I(λ). While resampling methods can be applied, our algebraic

method eliminates this necessity. Additionally, the wavelength-dependent birefringence of

the retarding crystal, which is typically overlooked in channeled polarimetry [108–110],

can be easily accounted for with our method. A related approach using a linear operator

was previously proposed by Sabatke et al. [111, 112], though theirmethodwas implemented

in the wavenumber domain.

Polarimeters are used in a wide range of scientific and industrial applications across

fields such as chemistry, biology, physics, astronomy, and materials science. As a result,

the diverse range of measurement environments and needs cannot be met by a single type

of polarimeter. The spectral polarimeter developed in this work offers advantages over

time-modulated systems, such as compactness, no moving components, fast acquisition
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times, and low manufacturing cost. However, it does have the drawback of limited spec-

tral resolution, restricting its application to studying properties with gradual wavelength

variation.

4.3 Theoretical Basing

A Stokes polarimeter utilizing spectral modulation can be constructed using two retarders

with differing thicknesses, arranged such that the fast axis of the second retarder is rotated

by 45◦ relative to the first, followed by a polarizer whose transmission axis aligns with the

fast axis of the first retarder. In the context of Stokes-Mueller formalism, this configuration

is described by the equation:

Sout = MPMR2MR1Sin, (4.1)

where Sin represents the unknown input Stokes vector (S0, S1, S2, S3)
T , MR1 and MR2

are the Mueller matrices for the two retarders, which are oriented 45◦ apart, andMP is the

Mueller matrix of the polarizer.

A polychromatic light source is employed, with a spectrometer capturing the intensity

as a function of wavelength (λ). The polarimeter does not cause time-dependent variations

in intensity; any such fluctuations would likely be from the light source itself. Nevertheless,

these variations typically have minimal impact on the polarimetric measurement as it is not

dependent on time-domain analysis. From equation (4.1), substituting the known Mueller

matrices for the polarizer and retarders, the detected intensity as a function of wavelength

is given by [10]:

(λ) = S0 + S1 cos(δ2λ) + S2 sin(δ1λ) sin(δ2λ)− S3 cos(δ1λ) sin(δ2λ), (4.2)

where δ1λ and δ2λ are the wavelength-dependent retardances of the first and second re-

tarders, respectively. It is assumed here that the polarizer has negligible wavelength de-

pendence, which is reasonable given the availability of high-quality achromatic polarizers.

According to this model, the detected spectral intensity is influenced by δ1λ and δ2λ, as well

as the emission spectrum of the light source and the detector’s spectral response, although

these effects can be calibrated.
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The retardance for each retarder is expressed as:

δiλ =
2π∆nλdi

λ
, (4.3)

where∆nλ denotes the birefringence of the retarders, defined as the difference between the

extraordinary and ordinary refractive indices (∆n = ne−no), and di is the thickness of the

crystal. The subscript λ emphasizes that birefringence is wavelength-dependent, although

this dependence is typically smaller than the explicit 1/λ relationship seen in equation (4.3),

and is often neglected in channeled spectral polarimetry.

Assuming the Stokes parameters in equation (4.2) are wavelength-independent, the

equation can be recast as a scalar product between a vector containing the spectral modu-

lation, B, and the input Stokes vector Sin:

I(λ) =




1

cos(δ2λ)

sin(δ1λ) sin(δ2λ)

− cos(δ1λ) sin(δ2λ)




T 


S0

S1

S2

S3



= BTSin. (4.4)

As the spectrometer provides a series of N intensity measurements, this equation can

be generalized as:

Iλ = B
T
Sin, (4.5)

where Iλ is a vector containing theN intensity values, andB is a 4×N matrix. By applying

the Moore-Penrose pseudoinverse of B, the input Stokes vector Sin can be retrieved:

Sin = (BB
T
)−1BIλ, (4.6)

where BB
T is a 4 × 4 matrix. A similar approach is used in time-modulated polarimeters

[91, 94, 113, 114], where the system is overdetermined, and the pseudoinverse minimizes

error. This method recovers the Stokes vector without decomposing the intensities into

separate channels based on carrier frequencies, as done in channeled polarimetry. The

ability of the spectral modulation technique to accurately determine Sin depends on how

well-conditioned the system is, particularly in relation to the calculation in Equation((4.6)).

Specifically, the performance degrades when BB
T approaches singularity. Numerous au-

thors have examined the optimization of this process, particularly in the context of time-

modulated systems. For spectrally modulated systems, the success of the matrix inversion
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Figure 4.2: Determinant values |BB
T | as a function of the number of sections n [104].

in Equation (4.6) hinges on the retardance characteristics of the crystals, as given by Equa-

tion (4.3), as well as the spectral range and resolution provided by the detecting spectrom-

eter [104].

If Sin varies with the wavelength, the analysis in equation (4.6) can be applied to smaller

spectral segments instead of the entire set of N intensities recorded by the spectrometer.

Typically, the intensity spectrum is divided into n sections (n≪ N ), each containing N/n

intensities. This enables constructing aBmatrix with dimensions 4×(N/n), which is then

used in equation (4.6) to calculate the Stokes vector for each spectral section. Increasing n

enhances the spectral resolution of the Stokes vector measurements but negatively impacts

the conditioning of the computation in (4.6).

Figure 4.2 presents the determinant values |BB
T | as a function of the increasing num-

ber of sections for our spectral polarimeter. The polarimeter’s specific configuration is dis-

cussed in the next section. The figure illustrates how well-conditioned the measurements

are and helps assess noise tolerance and error susceptibility. The data is based on a spectral

range from 420 nm to 820 nm, with intensity samples every 0.5 nm (N = 800). As n in-

creases to 1, 2, 4, 8, and 16, the determinant values decrease, especially in the infrared region

for n = 16, where smaller sections (with around 50 intensities) are less well-conditioned
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Figure 4.3: a. Photograph of the spectral polarimeter setup. R1 and R2 denote the first and second

retarders, respectively, mounted on rotation stages to establish a 45◦ misalignment. A is the

analyzer, whileM is a parabolic mirror focusing light into the optical fiber connected to the

spectrometer. b. Schematic diagram of the polarimeter. c. Measured spectra for different input

Stokes vectors. The normalized spectra are obtained by normalizing each spectrum to that

corresponding to the Stokes vector (1, 0, 0, 0)T [104] .

due to fewer modulation cycles caused by the reduced retardance of the crystals at longer

wavelengths. The results in Figure 4.2 imply a trade-off between spectral resolution and

signal-to-noise ratio for spectrallymodulated polarimeters. Consequently, applications that

require both high spectral resolution and a high signal-to-noise ratio would benefit from

employing a spectrometer with very high resolution paired with thick retarders to enable

the use of narrow spectral sections [104].

4.4 Material and Experimental Conditions

A key advantage of spectrally modulated polarimeters over traditional time-modulated sys-

tems is their potential for compact designs without the need for any moving components.

This also makes them more affordable, with the primary expense stemming from the spec-

trometer. When designing a spectral polarimeter, careful consideration must be given to

the material and thickness of the retarders, which should be aligned with the spectral res-
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olution of the chosen spectrometer.

Our polarimeter, depicted in Figure 4.3, utilizes Y-cut sapphire crystal retarders (Photon-

Export), where the optical axis runs parallel to the plane of the crystal. Synthetic sapphire

is known for its excellent transparency over a wide wavelength range, spanning from 150

nm (ultraviolet) to 5500 nm (mid-infrared), and its hardness allows it to be polished with

high precision. Additionally, sapphire has strong thermal stability. In the visible region, the

birefringence of sapphire is approximately |ne − no| ≃ 0.008 [115], but small wavelength-

dependent variations in birefringence must be accounted for, as will be detailed in the cal-

ibration section. We experimented with sapphire crystals of nominal thicknesses of 1 mm,

2 mm, and 3 mm, with different combinations of these retarders available for use in the

polarimeter. In the results reported here, we used the 3 mm retarder as the first element

and the 2 mm retarder as the second. A Glan-Taylor calcite polarizer served as the analyzer,

and a parabolic mirror was used to focus the light into an optical fiber that guides it to the

spectrometer.

The spectrometer employed in this setup is the Ocean Optics USB2000+XR, equipped

with a 2048-element CCD array detector. This spectrometer covers a range from 200 nm

to 1100 nm and achieves a resolution up to 1.5 nm at full width at half maximum. The

spectral resolution of the spectrometer effectively dictates the allowable thickness of the

retarders, as it must be able to clearly resolve the modulation introduced by the crystals.

Hence, the retarder thickness should ideally be chosen based on the spectrometer’s resolu-

tion. However, due to the wavelength-dependent nature of retardance, following an inverse

relationship with wavelength as shown in equation (4.3), higher spectral resolution is re-

quired for shorter wavelengths. Without access to a high-resolution spectrometer, it may

be difficult to identify retarders that can function effectively over a wide spectral range. For

instance, retarders that are well-suited for the visible range may lead to suboptimal modu-

lation in the near-infrared, while introducing excessive high-frequency modulation in the

ultraviolet that exceeds the spectrometer’s resolution. These effects are visible in Figure

4.3c, where fewer modulation cycles can be observed around 800 nm, and at wavelengths

shorter than ∼ 450 nm, the spectrometer struggles to resolve the rapid oscillations.

The light source’s emission spectrum is also a significant factor in spectral polarimetry.
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Typically, broadband light sources impose additional modulation on the detected spectra,

as shown in Figure 4.3c. It is often advantageous to normalize the measured spectrum with

respect to the emission spectrum of unpolarized light, i.e., when the retarders introduce

no polarization modulation, and the spectrum is purely a reflection of the light source’s

emission profile. This normalization has been applied to the data in the second column of

Figure 4.3c [104].

4.5 Calibration configuration

The primary goal of the calibration is to identify the characteristics of the spectral modula-

tion, which relies on the retardance of the crystals as expressed by (4.3). This process allows

us to determine the values of d and ∆nλ for each retarder. The birefringence ∆nλ varies

with wavelength and can be described using the following Sellmeier dispersion relation:

∆nλ = A+
Bλ2

λ2 − C
+

Eλ2

λ2 − F 2
. (4.7)

The calibration of this full dispersion relation, which includes five parameters in total, is

most effectively carried out over the broadest spectral range available based on the com-

bined capabilities of the spectrometer and the light source. However, when focusing on a

narrower spectral range, such as 100 nm, one can truncate equation (4.7) and use just the

first three parameters. In extreme cases where a very narrow spectral band is of interest

(likely requiring thicker retarders), ∆nλ can be treated as a constant with only a single

parameter.

In our system, the calibration is completed by acquiring two sets of normalized intensity

spectra [104]:

• First, an achromatic polarizer is aligned to set a Stokes vector (1, 1, 0, 0)T , generating

an intensity I(λ) = 1 + cos(δ2λ), which depends solely on the second retarder. The

parameters of this retarder, including d2, A2, B2, C2, D2, E2, and F2, are then deter-

mined using an iterative optimization algorithm, specifically the differential evolution

method.

• Next, the polarizer is rotated by 45◦ to produce a Stokes vector (1, 0, 1, 0)T , resulting
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in an intensity I(λ) = 1 + sin(δ1λ) sin(δ2λ). With the parameters for the second

retarder fixed from the previous step, another optimization algorithm is applied to

find the calibration parameters for the first retarder, which includes d1, A1, B1, C1,

D1, E1, and F1.

Figure 4.4 shows the birefringence values obtained for both retarders during the cal-

ibration process. Since both retarders are constructed from the same material (sapphire),

their birefringence would be expected to be identical in theory. However, calibrating the

polarimeter is more robust when the birefringence values for the retarders are treated as in-

dependent parameters, which results in slightly different values for each retarder, as shown

in Figure 4.4. These minor discrepancies may arise due to small misalignments or stresses

introduced during the cutting and polishing of the crystals. The thickness values obtained

were close to their nominal values, with d2 = 2.00 ± 0.01 mm and d1 = 3.02 ± 0.01 mm

[104].

Figure 4.4: Wavelength dependence of the birefringence of sapphire, determined during the

calibration of the first and second retarders [104].

4.6 Application to the Measurement of Optical Rotation

In this part of thework, we demonstrate the use of the spectral polarimeter inmeasuring the

optical rotation of chiral substances, a classic application of polarimetry dating back to the

19th century. Despite its historical origins, optical rotation remains highly relevant today

with key applications across industries such as pharmaceuticals, food, cosmetics, chemistry,
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and forensics. Commercial optical rotation polarimeters typically rely on time-modulated

techniques, using either high-precision rotary encoders or Faraday rotators, and perform

measurements at specific wavelengths. Due to its historical importance, the sodium D line

at 589 nm is still commonly used. While our spectral polarimeter does not measure at

exact wavelengths, it is well-suited for optical rotation experiments because the optical

rotatory dispersion of most transparent materials in the visible range (above 450 nm) is

small and varies smoothly. As previously mentioned, increasing the spectral resolution of

our systemwould require thicker retarders and a higher-resolution spectrometer [104]. One

Figure 4.5: Optical rotation of a sucrose solution at varying concentrations: linear scales (a) and

logarithmic scales (b)[104].

of the primary challenges in optical rotation measurements is the detection of very small

polarization rotations, which occur in solutions with low concentrations of chiral solutes.

Specialized polarimeters are designed for measuring small rotation angles, with the best

commercial devices achieving accuracies of approximately ±0.002◦, often using precision

mechanical components [116]. To measure optical rotation using the spectral polarimeter

described in Fig. 4.3, linearly polarized light with a known azimuthal angle, ψ, is directed

through the system. The azimuth is calculated from the Stokes vector components using

the following equation:

ψ =
1

2
(atan2(S2, S1)), (4.8)

where atan2 represents the four-quadrant inverse tangent function. When a cuvette con-

taining an optically active solution is placed in the light path, it induces a small rotation
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in the polarization angle. The optical rotation of the chiral solution is then determined by

measuring the change in the azimuthal angle.

For this experiment, we selected a spectral range from 420 nm to 700 nm, divided into

three sections, providing a spectral resolution of around 100 nm. The optical rotation val-

ues measured in each section were associated with the central wavelength of that section.

Although this approximation averages the rotation over the entire section, it is reasonable

given the minimal dispersion of optical rotation in the visible spectrum.

An initial sucrose solution was prepared by dissolving 40 grams of table sugar in 100

ml of water. Measurements were carried out in a quartz cuvette with a 10 mm pathlength.

At the highest concentration, the measured optical rotation exceeded 3◦ for the section

centered at 467 nm. The main goal of this experiment was to determine the lowest optical

rotation detectable by the polarimeter. The solution was diluted stepwise by 1:1 with water

in each subsequent step, and the optical rotation was measured after each dilution. After

eight dilutions, the lowest concentration tested was approximately 0.0015 g/cm3. Figure

4.5 displays the results of the optical rotation measurements for the three spectral regions

with central wavelengths at 467 nm, 562 nm, and 655 nm. The expected linear relationship

between optical rotation and concentration was observed. The low-concentration results

are best visualized using the logarithmic scale in Figure 4.5b. At 562 nm, the polarime-

ter reliably resolved rotations below 0.01◦ at the lowest tested concentration. However,

for the regions at 467 nm and 655 nm, reliable measurements were obtained only down to

the second-to-last concentration. For the shortest wavelengths, the limited resolution of

the spectrometer was likely unable to fully capture the high-frequency spectral oscillations

caused by the retarders, as seen earlier in Figure 4.3c. For longer wavelengths, the poorer

performance is likely due to the suboptimal conditioning of equation (4.6) in that spectral

range, where fewer modulation cycles are available. When using more spectral sections

to increase resolution, the inversion process became noisier, as expected from Figure 4.2.

For example, with six sections (a resolution of around 50 nm), accurate measurements were

only obtained for concentrations above 0.03 g/cm3. In contrast, with three sections, con-

centrations as low as 0.003 g/cm3 were successfully measured, as seen in Figure 4.5 [104].
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4.7 Conclusions

This work demonstrates that spectral modulation in polarimetry can be effectively ana-

lyzed without the need for a channeled approach, such as Fourier transform techniques.

We introduced a novel method that enables spectral domain analysis to be performed di-

rectly in the wavelength domain, eliminating the need for conversion to wavenumber. This

approach, commonly applied in time-domain analysis, relies purely on linear algebra, uti-

lizing a least-squares estimator through the pseudoinverse to achieve the optimal fit to the

experimental data. The method’s implementation is straightforward, making it particu-

larly suitable for use with dispersive spectrometers that record intensity as a function of

wavelength.

We illustrated this approach with a compact, cost-effective Stokes polarimeter, which is

an excellent choice for applications requiring both high sensitivity and precision, but not

necessarily high spectral resolution. The instrument was successfully applied to measure

the small polarization rotations induced by highly diluted solutions of chiral molecules,

showcasing its capabilities in sensitive optical measurements.
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General Conclusion

and Future Perspectives

Final Conclusion

The general conclusion of this dissertation reflects the culmination of extensive research

and development in the field of light polarization, particularly in its application to material

characterization. From its origins in the 17th century, the study of light polarization has

evolved significantly, laying the groundwork for modern optical sciences. This dissertation

not only traces the historical progression of polarization but also advances its practical

applications through innovative polarimetric techniques. By bridging the gap between

theory and application, the work presented here makes meaningful contributions to both

the understanding and practical use of polarization in contemporary optics and materials

science.

The research presented in this thesis began with a comprehensive historical review of

light polarization, documenting the evolution of the field from its early discoveries to the

development of modern theoretical frameworks. This historical exploration highlighted

how each scientific advancement contributed to a greater understanding of polarization,

likening the process to assembling the intricate pieces of a puzzle. Over the past 70 years, a

significant shift from theoretical studies to practical, data-driven applications has occurred,

setting the stage for the contributions made in this work.

In the core of this thesis, a novel method based on the Stokes-Mueller formalism was

proposed and validated for characterizing linear birefringent media. By focusing on the

extraction of optical properties such as fast and slow axes, the study provided a robust

description of the Mueller polarimeter and its modified vacuum matrix. Experimental

validation using PLA samples confirmed the effectiveness of this approach, particularly in

phase shift measurements. However, limitations were identified in the method’s ability

to determine ellipticity in media with low anisotropy, highlighting an avenue for future

improvements. Addressing these limitations would broaden the applicability of the
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technique, making it an even more powerful tool for material characterization.

Further research explored the utility of polarimetric methods in studying geometric

phase (GP) optical elements. Through both theoretical and experimental work, it was

demonstrated that the Mueller matrix can be effectively employed to assess the phase

profiles of these elements, providing micrometric spatial resolution without the need

for traditional interferometric techniques. The study also shed light on the effects of

circular and linear retardance deviations, particularly in generating leakage waves that

influence optical element efficiency. Despite these challenges, the study confirmed that

space-variant linear retardation could still function as a highly efficient polarization

beam-splitter, with potential applications in the development of next-generation GP

optical elements, including gratings and lenses with minimal losses.

Additionally, this thesis introduced a new method for performing spectral domain

polarimetric analysis without resorting to the typical channeled approach or Fourier

transforms. Instead, a linear algebra-based approach using a least-squares estimator was

employed, simplifying the analysis of spectrally modulated polarimetry. This innovative

approach proved particularly effective in measuring polarization effects in solutions

of chiral molecules, demonstrating the potential for compact, low-cost polarimetric

instruments in high-sensitivity applications.

In conclusion, this dissertation contributes significantly to the fields of optics and mate-

rials science by advancing polarimetric techniques and showcasing their potential across a

range of applications. From the historical study of polarization to the development of novel

methodologies for optical characterization, the work presented here not only enhances our

understanding of light-matter interactions but also sets the stage for future innovations

in both fundamental and applied optics. The findings underscore the importance of po-

larimetry as a versatile and precise tool, with far-reaching implications for material science,

molecular studies, and the development of advanced optical components.
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Potential Perspectives

Perspectives The work presented in this dissertation opens several avenues for future re-

search and development in the field of polarimetry and optical characterization. One of

the immediate goals is to refine the proposed Stokes-Mueller method to overcome its cur-

rent limitations in analyzing materials with low anisotropy. By enhancing the method’s

sensitivity, particularly in measuring ellipticity, it could become a more versatile tool for

characterizing a broader range of materials, from biological tissues to advanced metamate-

rials.

Another promising direction involves the continued exploration of geometric phase

(GP) optical elements. The insights gained from this study on leakage waves and phase pro-

files can be extended to optimize the design and fabrication of next-generation GP compo-

nents, such as highly efficient and compact optical gratings and lenses. Further, integrating

these elements into emerging optical systems may provide new applications in telecommu-

nications, imaging, and quantum optics.

The development of new polarimetric techniques, such as the direct spectral analysis

approach introduced in this thesis, also offers great potential for future work. By applying

these methods to more complex media, such as chiral molecules in biological systems, re-

searchers can gain deeper insights into the molecular structure and dynamics that govern

various optical properties. The continued miniaturization and cost-efficiency of polarime-

ters will also drive their adoption in fields where high precision and sensitivity are critical,

including biomedical diagnostics and material science.

Finally, as technology advances, interdisciplinary applications of polarimetry are likely

to expand. By integrating polarimetric methods with computational approaches and ma-

chine learning, future research can further unlock the potential for real-time, automated

analysis of material properties, enhancing both the accuracy and efficiency of optical char-

acterization techniques.
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Spectrally modulated Stokes polarimeters use a pair of high order crystal retarders to generate a spectrally-
depending modulation of the polarization of light. In these systems, the detected intensity vs wavenumber
spectrum is usually referred to as a channeled spectrum and the Fourier inversion of this spectrum allows
the determination of Stokes parameters of light without needing any other mechanical or active device
for polarization control. This work proposes a spectrally modulated polarimeter beyond the concept of
a channeled wavenumber spectrum, so effectively detaching the spectral modulation from the Fourier
analysis technique. The wavelength domain analysis we use is best suited for dispersive spectrometers
offering intensity vs wavelength measurements. The technique is illustrated with the measurement of
very small optical rotations produced by sucrose solutions. The proposed technique is easily extendable to
spectrally modulated Mueller polarimeters. © 2024 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Polarimetry is a powerful optical characterization technique and
remote-sensing method that is based on measuring the polariza-
tion characteristics of light. For some applications, its implemen-
tation can be technically challenging to achieve a desired level of
accuracy, resolution, speed and sensitivity. Most usual modern
polarimeters store the polarization information in the temporal
domain by using time-varying compensators such as rotating
retarders, photoelastic modulators, electrically controlled liquid
crystals, etc. The polarization information can also be stored in
the spatial domain by, for example splitting light into different
beams or using polarization sensitive cameras. Lastly, it is also
possible to obtain the polarization information from analysis in
the spectral domain, as was reported independently by Oka and
Kato [1], Iannarilli et al. [2] and Nordsieck [3]. In recent years,
the application of the spectral modulation in Stokes or Mueller
polarimeters has been considered by many authors [4–8].

The method of spectral modulation, as presented and devel-
oped by Oka and Kato is usually referred today as channeled
polarimetry, although a channeled treatment is applicable not
only in the spectral domain, but to any system involving a peri-
odic modulation of the signal. In the channeled approach, the
measurement algorithm uses the Fourier transform of the in-

tensity as a function of the wavenumber to recover the Stokes
parameters by separating them into channels based on their car-
rier frequencies [1, 6, 9]. The values of the Stokes parameters
are obtained from the amplitude and phase of the carrier fre-
quency, using concepts and strategies developed in the fields of
telecommunications and signal processing.

In this work, we will introduce a spectrally modulated Stokes
polarimeter not using a channeled spectrum approach, i.e., with-
out requiring a periodic modulation because the algebraic anal-
ysis we propose is not based on the Fourier transform. As we
shall show, this new method can address some of the problems
associated with a channeled treatment. One example is that
to apply Fourier transform analysis of the channeled approach
one needs to consider an evenly sampled signal in wavenum-
ber, but systems using dispersive spectrometers do not fulfil
this condition as they measure the intensity as a function of the
wavelength I(λ), although resampling strategies can be used.
Another example, is that the dispersion of birefringence of the
retarding crystal, often not accounted for in the channeled ap-
proach [10–12], can be effortlessly taken into account in our
algebraic matrix inversion method. The new method to perform
the spectral domain analysis is the main result of this work. A
similar method, also based on a linear operator, was proposed
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by Sabatke and coauthors [13, 14], although their method was
implemented in the wave-number domain.

Polarimeters are applied both for scientific research and in-
dustrial metrology in many different fields such as chemistry,
biology, physics, astronomy, material science, etc. This gives a
large number of measurement environments and requirements
that cannot possibly be covered with a single type of polarimeter.
The spectral polarimeter presented in this work has advantages
with respect to the more common time-modulated systems, such
as having compact size, no moving parts, fast measurement
time, and low fabrication cost. However, the main disadvan-
tage is that the spectral resolution of the final measurements is
low, which limits the application to the study of properties that
do not vary sharply with wavelength. As an illustration of a
possible application of this system, we show how this spectral
polarimeter can be used to measure the optical rotation in very
diluted sucrose solutions.

2. THEORY

A spectral Stokes polarimeter can be realized by a pair of re-
tarders of different thickness with the fast axis of the second
retarder making a relative angle of 45◦ and a polarizer with the
transmission axis aligned with the fast axis of the first retarder.
In the Stokes-Mueller calculus this is presented as:

Sout = MPMR2MR1Sin (1)

Where Sin is the unknown incoming Stokes vector
(S0, S1, S2, S3)

T , MR1 and MR2 are the Mueller matrices
of the retarders that are misaligned by 45◦ and MP is the
Mueller matrix of a polarizer.

A polychromatic light source is used and a spectrometer de-
tects the intensity as a function of the wavelength (λ). This
polarimeter will not introduce variations of the detected inten-
sity with time and, if they were present, they would most likely
come from fluctuations of the light source. However, in general
these variations will not substantially affect the result of the
polarimetry measurement as no time-domain analysis is done.
From Eq. (1), substituting the well-known Mueller matrices for
retarders and polarizers, the intensity detected as a function of
wavelength is [1]:

I(λ) = S0 + S1 cos(δ2λ) + S2 sin(δ1λ) sin(δ2λ)

− S3 cos(δ1λ) sin(δ2λ),
(2)

where δ1λ and δ2λ are respectively the retardances of the first
and second retarders, which are a function of λ. Note this cal-
culation assumes that the polarizer has no dependence in λ, as
good achromatic polarizers are widely available. According to
this result, the spectrally detected intensity will depend on the
values of δ1λ and δ2λ, but it will be also affected by the emission
spectrum of the light source and the spectral response of the
detector, although these effects can be calibrated. The retardance
can be written as

δiλ =
2π∆nλdi

λ
, (3)

where ∆nλ is the birefringence of the retarders, defined as the
difference between the extraordinary and ordinary refractive
indices (∆n = ne − no) and d is the crystal thickness. We in-
clude the subscript λ in ∆nλ to emphasize that the birefringence
of a crystal is unavoidably a function of the wavelength. This
dependence is generally small if compared with the 1/λ depen-
dence that is explicit in Eq. (3), and it has been often neglected
in spectral polarimetry using the channeled spectrum approach.

We consider now that the Stokes parameters in Eq. (2) do
not depend on the wavelength; later we will discuss how their
possible dependency in λ can be treated. Eq. (2) can be then
written as the scalar product of a vector containing the spectral
modulation, B, and the incoming Stokes vector Sin:

I(λ) =




1

cos(δ2λ)

sin(δ1λ) sin(δ2λ)

− cos(δ1λ) sin(δ2λ)




T 


S0

S1

S2

S3



= BTSin (4)

As the measurement obtained by the spectrometer consists
of a collection of N intensity measurements this equation can be
rewritten as:

Iλ = BTSin (5)

where I is a vector that includes the N intensities and B is a
matrix with dimension 4 × N. This equation can be inverted
using the Moore–Penrose pseudo inverse of B allowing to obtain
Sin as

Sin = (BBT
)−1BIλ, (6)

where BBT is a matrix of dimension 4× 4. An equation analog to
this one is widely used to analyze intensities of time-modulated
polarimeters [15–18], as to reduce noise the data acquisition is
usually adjusted to produce overdetermined systems and the
pseudoinverse solves the system in the least-square error per-
spective: it finds the solution that minimizes the error. Note that
this equation allows the recovery of the Stokes vector without
specifically separating each parameter into channels with differ-
ent carrier frequencies, as is done in channeled polarimeters.

Fig. 1. Values of the determinant |BBT | as a function of the
number of sections n considered.

The ability of the spectral modulation method to measure Sin
will depend on how well conditioned the calculus is in Eq. (6);
in particular one needs to avoid situations where BBT is close to
a singular matrix. The optimization of the calculus based on the
pseudoinverse has been discussed by many authors, particularly
for time-modulated systems. For spectrally modulated systems
the performance of the matrix inversion in Eq. (6) will depend on
the retarding properties of the crystals, as obtained from Eq. (3),
and the resolution and spectral range offered by the detecting
spectrometer.
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Fig. 2. a. Photo of the spectral polarimeter. R1 and R2 are respectively the first and second retarders mounted on rotation stages
to set a misalignment of 45◦. A is the analyzer and M is a parabolic mirror that focuses light on the core of the optical fiber that
connects to the spectrometer. b. Schematic representation of the polarimer. c. Measured spectra for several different input Stokes
vectors. The normalized spectra are generated by normalizing each acquired spectra by the spectrum corresponding to the Stokes
vector (1, 0, 0, 0)T .

If Sin is a function of the wavelength, the analysis given in
Eq. (6) can be performed in reduced spectral sections instead
of considering all N intensities provided by the spectrometer.
Usually we cut up the intensity spectrum in n sections (n ≪ N)
so that the intensity vector for each section contains N/n in-
tensities. Therefore, a matrix B with dimension 4 × (N/n) can
be built to find, with the help of Eq. (6) the Stokes vector for
each spectral section. Increasing n will enhance the spectral
resolution in the measurement of the Stokes vector, but it will
be detrimental for the conditioning of the calculus in Eq. (6).
Fig. 1 shows the values of the determinant |BBT | for an increas-
ing number of sections in our spectral polarimeter (the specific
characteristics of this polarimeter will be discussed in the next
section), which can serve to evaluate how well conditioned the
measurement is, to determine the resilience towards noise and
errors. In this figure, we considered a usable spectral range
from 420 nm to 820 nm with intensities obtained every 0.5 nm
(N = 800) and it can be seen how the determinant decreases
with increasing values of n = 1, 2, 4, 8, 16. Note also that for a
small number of sections the whole spectral range is analyzed
with similar values of the determinant, but for n = 16 there is
a substantial decrease of conditioning in the IR, indicating that,
in this region, the small sections (that have ∼ 50 intensities) are
not very well conditioned as they do not include enough mod-
ulation cycles due to the decreasing retardance of the crystals
at these longer wavelengths. Fig. 1 suggests that for spectrally
modulated polarimeters there is a trade-off between spectral
resolution and the signal-to-noise of the polarimetric measure-
ment. Therefore, for applications demanding both high spectral

resolution and high signal-to-noise, it would be essential to have
a very high-resolution spectrometer to equip the polarimeter
with thick retarders that would permit using spectrally narrow
sections.

3. EXPERIMENT

One of the main advantages of spectrally modulated polarime-
ters with respect to the more common time-modulated systems
is that they can have a very compact design and without any
moving part. The overall cost of the instrument is low and it is
mainly determined by the cost of the spectrometer. The most
relevant aspect to consider when designing a polarimeter with
spectral modulation is the material and thickness of the retarders
in relation to the spectral resolution of the spectrometer that is
going to be used.

In our polarimeter, shown in Fig. 2, we use sapphire crystal
retarders with a Y-cut (PhotonExport), meaning that the optical
axis of the material is parallel to the plane of the crystal. Syn-
thetic sapphire is highly transparent to wavelengths of light
between 150 nm (ultraviolet) and 5500 nm (mid-infrared) and,
because of its hardness, it can be polished to a high standard.
Sapphire also has a good thermal stability. In the visible range
sapphire has a birefringence |ne − no| ≃ 0.008 [19], but the sub-
tle variation of the birefringence with wavelength needs to be
taken into account, as will be discussed in the calibration section.
For our implementation, we have tried crystals with nominal
thicknesses of 1 mm, 2 mm and 3 mm. Any combination of two
of these retarders can be used for the polarimeter. The results
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that we report in this work use the 3 mm crystal as first retarder
and the 2 mm crystal as second retarder. As analyzing polarizer
we use a Glan-Taylor calcite polarizer and a parabolic mirror
focuses the light beam into an optical fiber that guides light to
the spectrometer.

The spectrometer used is an Ocean Optics USB2000+XR that
disperses light on a 2048-element CCD array detector. This spec-
trometer is responsive from 200 to 1100 nm and can reach a
resolution up to 1.5 nm with full width at half maximum. Gen-
erally speaking, the resolution of the spectrometer is what limits
the thickness of the retarders that can be used in the polarimeter,
as the spectrometer needs to clearly resolve the spectral mod-
ulation created by the crystals. This means that, in principle,
one should chose the thickness of the retarders depending on
the spectral resolution of the spectrometer. However, as the
retardance of crystals is heavily dependent on the wavelength
and with a dependence ∼ 1/λ (Eq. (3)), higher spectral resolu-
tions will be needed for measurements at shorter wavelengths.
Unless a very high resolution spectrometer is available, it can be
difficult to find retarders able to cover a large spectral range: for
example, a set of retarders giving a “suitable” modulation in re-
tardance in the VIS range, will typically introduce a sub-optimal
modulation in the near IR, while in the UV they will most likely
introduce a high frequency modulation that exceeds the spectral
resolution of the spectrometer. These effects can be qualitatively
seen in Fig. 2c as one can observe the low number of modulation
cycles around 800 nm, while below ∼ 450 nm the spectrometer
cannot resolve well the narrow oscillations.

The emission spectrum of the light source is also important
for spectral polarimeters, as the usual emission spectra of broad-
band light sources further modulate the measured spectra as
shown in Fig. 2c. If possible, it is beneficial for measurements to
normalize the acquired spectrum by the raw spectrum measured
for unpolarized light, i.e. when the retarders cannot introduce
any polarization modulation and the measured spectrum only
corresponds to the emission spectrum. This normalization has
been applied to the graphs in the second column of Fig. 2c.

4. CALIBRATION

The objective of the calibration is to determine the characteristics
of the spectral modulation, which depends on the retardance
of the crystals as given by Eq. (3). Therefore, the calibration
is used to determine d and ∆nλ for each of the retarders, ∆nλ

is a function of the wavelength that we parameterize with the
following Sellmeier dispersion relation:

∆nλ = A +
Bλ2

λ2 − C
+

Eλ2

λ2 − F2 . (7)

The calibration of this complete dispersion relation (a total of 5
parameters) is best performed using the largest spectral range
offered by the combination of the spectrometer and light source.
However, if one is interested in a narrower spectral range, e.g.
100 nm, one can safely truncate Eq. (7) and use only the first 3
parameters. In the limit case where one is interested in a very
narrow spectral band (in which case very thick retarders would
be most likely needed) one can treat ∆nλ as a constant with only
one parameter.

In our system, the calibration in completed with two succes-
sive spectrum acquisitions, using normalized light intensities:

• An achromatic polarizer is used to set a Stokes vector
(1, 1, 0, 0)T producing an intensity I(λ) = 1 + cos(δ2λ)

that depends only on the properties of the second retarder.
An iterative optimization algorithm (differential evolution
method) is then used to determine the calibration parame-
ters of the second retarder (d2, A2, B2, C2, D2, E2 and F2).

• The polarizer is rotated by 45◦ to set a Stokes vector
(1, 0, 1, 0)T producing, for this orientation, an intensity
I(λ) = 1 + sin(δ1λ) sin(δ2λ). The parameters of the sec-
ond retarder are fixed to those determined in the previous
step and an optimization algorithm is used again to deter-
mine the calibration parameters of the first retarder (d1, A1,
B1, C1, D1, E1 and F1).

Fig. 3 shows the birefringence obtained for the first and sec-
ond retarders during calibration. As both retarders are made
from the same material (sapphire), in principle the same values
would be expected for both retarders. However, the calibration
of our polarimeter is more robust when the birefringence val-
ues of the retarders are treated independently, so that slightly
different birefringence values are obtained for each retarder, as
shown in Fig. 3. These small differences are likely justifiable by
small misaligments or stresses that can be introduced during
the cut and polish of the crystals. The thickness values obtained
were close to the nominal values, with d2 = 2.00 ± 0.01 mm and
d1 = 3.02 ± 0.01 mm.

Fig. 3. Wavelength dispersion of the birefringence of Sapphire
obtained from the calibration of the first and second retarders.

5. APPLICATION TO THE MEASUREMENT OF OPTICAL
ROTATION

We will illustrate the utilization of the spectral polarimeter in
the measurements of the optical rotation of chiral solutions. This
is one of the earliest applications of polarimetry (dating back
to the XIX century) and still remains popular as it has impor-
tant applications in the pharmaceutical industry, food industry,
the cosmetics industry, chemical science, forensic science, etc.
Commercial polarimeters used in the measurements of opti-
cal rotation typically use a time-dependent approach by either
using high-resolution rotary encoders or Faraday rotators and
offer measurements on some selected wavelengths. For histori-
cal reasons, 589 nm light (the sodium D line) is the most-used
wavelength for optical rotation measurements. Our spectral
polarimeter cannot offer measurements at sharply defined wave-
lengths, but it is well-suited for this type of measurements as
for most transparent substances or materials optical rotatory
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Fig. 4. Optical rotation of a sucrose solution at varying concentrations: linear scales (a) and logarithmic scales (b).

dispersion in the visible range (above 450 nm) is relatively small
and smoothly varying. As discussed above, if we wanted to
increase the spectral resolution of our polarimeter we should
use thicker retarders and a higher-resolution spectrometer.

The main challenge for optical rotation measurements is be-
ing able to detect the small optical rotations generated by so-
lutions with low concentrations of chiral solutes. Therefore,
polarimeters working in this field specialize in small angles of
polarization rotation. The best commercial instruments report a
measurement accuracy around ±0.002◦ and, in most cases, the
measurement involves moving optical components with very
high-quality motors [20].

To measure optical rotation with the spectral polarimeter
shown in Fig. 2, one can simply send linearly polarized light
with a certain known azimuth, ψ, to the device. The azimuth
can be obtained from the Stokes components as:

ψ =
1
2
(atan2(S2, S1)), (8)

where atan2 is the four-quadrant inverse tangent that uses two
arguments. Then, when a cell or a cuvette with an optically
active solution is introduced in the beam path there will be
a small rotation of the polarization direction. By measuring
the change in the azimuth direction, the spectral polarizer will
determine the optical rotation produced by the chiral solution.

The spectral range was chosen between 420 nm and 700 nm
and it was divided into three sections so that the spectral reso-
lutions of the final measurements were ∼ 100 nm. We associate
the measured optical rotation in each section with the central
wavelength of the section. This association is an approximation
since what we are effectively measuring is the averaged optical
rotation for the whole section but, given the relatively small
dispersion of optical rotation in the visible range, we consider
this association to be reasonable enough for this illustrative ex-
periment. We prepared an initial sucrose solution by dissolving
40 gr of table sugar (sucrose) in 100 ml of water. Measurements
were done in a quartz cuvette of 10 mm pathlength. At this
initial concentration, the measured optical rotation was more
than 3◦ for the section with lowest wavelength (central value
of 467 nm). The main objective of this prospective experiment
was to search for the smallest amount of optical rotation that the
polarimeter could detect. Next, we started to dilute the solution

in several successive steps, making in each step a 1:1 dilution in
water with the solution resulting from the previous step. For the
solutions obtained at each, step we measured the new optical
rotation. After 8 dilutions, the lowest concentration we tested
was around 0.0015 g/cm3.

Fig. 4 shows the results of the optical rotation experiment for
the three wavelength regions examined (that had central wave-
lengths of 467 nm, 562 nm and 655 nm). The plots of optical
rotation vs concentration show the expected linear trend. The
results for the low-concentration solutions are better visualized
with the logarithmic scales shown in Fig. 4b. In the region with
central wavelength 562 nm, the method was able to properly
resolve optical rotations below 0.01◦, for the solution with the
lowest concentration. However, for the regions with central
wavelengths 467 nm and 655 nm, the polarimeter could only
offer reliable measurements until the concentration second to
last. For the section with shortest wavelengths this is probably
due to the limited spectral resolution of our spectrometer, that
cannot fully resolve the high-frequency spectral oscillations in-
troduced by the retarders, as was already visible in Fig. 2c. For
the section corresponding to longer wavelengths, the reduced
resolution in optical rotation detection is probably produced by
the non-optimal conditioning of Eq. (6) in this spectral range,
as less modulation cycles are analyzed. We also performed the
same measurements using a higher number of sections, which
resulted in a better spectral resolution of the optical rotation
values. However, as suggested by Fig. 1, this was detrimental
for the matrix inversion process, leading to more noise and er-
rors. For example, when using 6 sections (spectral resolution of
∼ 50 nm) we only obtained physically consistent results in all 6
sections for concentrations above 0.03 g/cm3, while when using
3 sections we could still measure well concentrations around
0.003 g/cm3, as it is shown in Fig. 4.

6. CONCLUSIONS

In this work, we have shown that spectrally modulated po-
larimetry can be easily analyzed without necessarily using a
channeled approach, i.e., without doing any Fourier transform.
We have presented a new method to perform the spectral do-
main analysis directly in the wavelength domain without the
need to do any conversion to wavenumber. This method, which
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is also of common application in the time-domain, only uses
linear algebra with a least-squares estimator, the pseudoinverse,
to find the best match to the data. The implementation of this
approach is very simple and it is particularly well suited for
dispersive spectrometers that measure the intensity as function
of wavelength. This method has been illustrated with a compact
and low-cost Stokes polarimeter that is an ideal instrument for
applications that require a high sensitivity and accuracy but that
do not demand a high spectral resolution. We have used this
instrument to measure the small polarization rotation generated
by very diluted solutions of chiral molecules.
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Responding to the Reviewer’s comments

As the work presented in this chapter has been published as a scientific paper, it led to

a productive discussion with a specialist in the field of polarimetry. This exchange, which

included insightful questions and comments, addressed key points of the study. We deemed

it valuable to include this discussion here to address potential common inquiries and further

clarify important aspects of the work.

The reviewer’s comments are put first (R), followed by our answers (A).

R: The authors divide the spectrum into three sections whose central wavelengths are

467nm, 562nm, and 655nm. The authors consider the Stokes vector in each section to be

constant and obtain the optical rotation for a certain wavelength region. The optical ro-

tation is wavelength-depended, but in Fig.4.4, the authors use the central wavelength to

describe the optical rotation for a certain wavelength region, does the experimental result

actually reflect the optical rotation of the central wavelength? Or there may be a relation

or approximation between them, please give the explanation. Please explain the physics

meaning of the optical rotation for a wavelength region to make this process more con-

vincing.

A: In our demonstration experiment, we split the visible spectrum into three sections,

and we associate the measured optical rotation with the central wavelength of each section.

As suggested by the reviewer, this association is an approximation, but we think it is rea-

sonable enough for this application. What we are effectively measuring is the “averaged”

optical rotation in the whole section that, for example, would coincide with the optical ro-

tation of the central wavelength if the variation of optical rotation with wavelength within

the section was a linear function, but not necessarily for other line shapes. However, as the

dispersion of optical rotation for transparent materials in the visible range is rather small

and the sections relatively narrow, we consider that this approximation is sufficient. For

applications demanding a higher spectral resolution it would be advisable to use a higher

number of sections combined with thicker retarders.



R: The spectral resolution of the experimental result might be too low, the reconstruc-

tion method in Ref. [8] can obtain the Stokes spectra and may improve the spectral resolu-

tion.

A: We agree that the reconstruction method in Ref [8] may improve the spectral res-

olution. We also think, as it is shown in Fig. 1, that for a given system there is always a

trade-off between spectral resolution and signal-to-noise of the polarimetry measurement.

Therefore, for applications demanding both high spectral resolution and high signal-to-

noise it would be essential to have a very high-resolution spectrometer what would permit

the use of thick retarders. We have added a sentence right before section 3 to explain this

point.

R: Equation (2) may lose 1/2 and there is minus not plus sign before S3, please check

Ref.[1]

Equation (4) loses minus sign before the fourth component.

A: We thank reviewer for pointing the sign errors. We have corrected the signs in equa-

tion (2) and in equation (4). The overall 1/2 multiplying factor coming from the polarizer

is just a scale factor that has no influence in the results and analysis shown, therefore we

have opted to omit it for simplicity.

R: The ’minimization algorithm’ mentioned in the third paragraph section.4, may cause

confusion, and a specific explanation might be required.

A: We thank reviewer 1 for this remark, we have changed the expression of minimiza-

tion algorithm in section 4 by “optimization algorithm” and we have given more details on

the specific algorithm used (differential evolution method.)
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 ملخص:

التي يسمح لومات للمع نظرا أمر بالغ الأهمية هويائية الفيز ة مع الماد تقائهعند ال م تفاعلات الضوءفهان 

المواد ، و بخاصة الخصائص البصرية والهيكلية للمواد و تطوير لتعزيز تؤسس، و التي ن تلك المادةعباستخلاصها 

د عليها التي تعتمالتقنيات  والضوء استقطاب خاصية فان و من هذا المنطلق   .سةوظيفية حسامهمات لالمخصصة 

لدراسة  ضي الريا مولر-ستوكس مبدأنهجًا فريداً ومفصلًا لهذ التحدي. تركز هذه الأطروحة على تطبيق  توفر

ف الخصائص البصرية لأنواع مختلفة من المواد. يوصتكأداة دقيقة ل ءستقطاب الضووسائط مختلفة، بهدف استخدام ا

  كأداة  القطبيفي القياس من خلال تطوير وتأكيد منهجيات مبتكرة، تسلط هذه الدراسة الضوء على إمكانيات التنوع 

  ندسيةاله البصرية راطوالأ ذات الوسائط ، لا سيما في دراسة الوسائط مزدوجة الانكسار،ظيفيةالو تقدم علم الموادل

أجزاء  3تحتوي هذه الأطروحة على جزء نظري غني بالمعلومات المتعلقة بالموضوع و  .الجزيئات اللولبية أيضاو

منفصلة: الأول حول تقديم طريقة جديدة وتأسيس مبادئها الرياضية، والثاني حول استخدام أدوات الاستقطاب لتقييم 

و  النظر في طريقة استقطاب موجودة بمبدأ علمي مختلف.أداء مواد تم تطويرها مؤخرًا؛ بينما يقدم الجزء الثالث 

أثبتت قد و ناجعامولر تمثل حلاً -خلصنا إلى أن هذه الطريقة الاستقطابية المبنية على صيغة ستوكسفي النهاية 

 ختلفة.ميادين مفي  فعاليتها وفائدتها العالية

 

Résumé: 

La compréhension des interactions lumière-matière est essentielle pour améliorer les 

propriétés optiques et structurelles des matériaux, et les techniques polarimétriques 

offrent une approche unique et détaillée de ce défi. Cette thèse se concentre sur 

l'application du formalisme de Stokes-Mueller pour étudier divers milieux, dans le but 

d'utiliser la polarimétrie comme un outil précis pour caractériser les propriétés optiques 

de différents types de matériaux. Grâce au développement et à la validation de 

méthodologies innovantes, le travail met en évidence le potentiel de la diversité 

polarimétrique pour faire progresser la science des matériaux, en particulier dans l'étude 

des milieux biréfringents, des éléments optiques de phase géométrique (la phase de 

Pancharatnam-Berry) et des molécules chirales. 

 

Abstract: 

Understanding light-matter interactions is critical to enhancing the optical and structural 

properties of materials, and polarimetric techniques offer a unique and detailed 

approach to this challenge. This thesis focuses on the application of Stokes-Mueller 

formalism to investigate various media, with the goal of using polarimetry as a precise 

tool for characterizing optical properties across different material types. Through the 

development and validation of innovative methodologies, the work highlights the 

potential of polarimetric diversity in advancing material science, particularly in the 

study of birefringent media, Pancharatnam–Berry phase optical elements, and chiral 

molecules. 
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