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It is my conviction that pure mathematical construction enables us
to discover the concepts and the laws connecting them,

which gives us the key to the understanding of nature ...
In a certain sense, therefore,

I hold it true that pure thought can grasp reality,
as the ancients dreamed.

Albert Einstein.
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ᗫد ظواهر  :  العنوان ᢔᣂشار -تفاعلوأنظمة  التᙬاء والطب  انᘭعلم الأح ᢝ
ᡧᣚ .  

ᢝ علم الأحᘭاء والطب والهندسة الحيᗫᖔة. وᗫتكون من   انᙬشار   -تفاعلᘻستكشف هذه الأطروحة موضᖔع أنظمة    :   ملخص
ᡧᣚ قاتهاᘭوتطب

ᢝ تم    ᘻسعة ᡨᣎا المحددة الᘌع والقضاᖔجوهر الموض ᣢمقدمة عامة تؤكد عᗷ دأ الأطروحةᘘع. تᖔجوانب مختلفة من الموض ᢝᣗفصول تغ
ᢝ الᘘحث. ᘌقدم الفصل الأول نظرة عامة حول أنظمة  

ᡧᣚ شار   -تفاعلاستكشافهاᙬركز    انᗫة المختلفة. وᘭالتخصصات العلم ᢝ
ᡧᣚ قاتهاᘭوتطب

ᢝ علم الأحᘭاء والطب والهندسة الحيᗫᖔة. وᗫقدم الفصل الثالث أنظمة  
ᡧᣚ قاتهᘭد" وتطبᗫ ᢔᣂمفهوم "الت ᣢع ᢝ

ᡧᣍشار    -تفاعلالفصل الثاᙬمع  ان
  .ᣠة من الدرجة الأوᘭه الخطᘘة شᘭة الجزئᘭناقش الفصل الرابع المعادلات التفاضلᗫة. وᘭوط أول ᡫᣃالخامس والسادس  ولتعمق الفصت 

ᢝ أنظمة    والسابع
ᡧᣚشار    -تفاعلᙬناول الفصل  الشاذة  انᙬᗫد. وᗫ ᢔᣂشار    -تفاعلنظام    الثامن وظاهرة التᙬذي  ان ᢝᣗه خᘘةشᘘرت  ᘭفᘭركز  ةكᗫو .
النظᗫᖁة   الأخᢕᣂ الفصل   الأطر  الأطروحة  تقدم   .ᣠالأو الدرجة  من  الخطᘭة  شᘘه  الجزئᘭة  التفاضلᘭة  المعادلات  من  محددة  فئة   ᣢع

ᢝ أنظمة  
ᡧᣚ التقدم ᢝ

ᡧᣚ ساهمᛒ ة، مماᘭقات العملᘭة والتطبᘭاضᗫᖁب الᘭشار  -تفاعلوالأسالᙬان .  

ᗫد، وجود شامل، حلول موجᘘة، معادلات تفاضلᘭة جزئᘭة    - أنظمة تفاعل    :   مفتاحᘭةمات  ـ᛿ل ᢔᣂشار، معادلات مᜓافئة شاذة، ظاهرة التᙬان
 .ᣠة من الدرجة الأوᘭه خطᘘش  

 

Title : QUENCHING PHENOMENA AND REACTION-DIFFUSION SYSTEMS IN BIOLOGY AND MEDICINE. 

Abstract : This thesis explores the topic of reaction-diffusion systems (RDSs) and their applications in biology, 
medicine, and bioengineering. It consists of nine chapters that cover various aspects of the subject. The thesis 
begins with a general introduction that emphasizes the essence of the subject and the specific issues explored in 
the research. The first chapter provides an overview of RDSs and their applications in different scientific 
disciplines. The second chapter focuses on the concept of "Quenching" and its applications in biology, medicine, 
and bioengineering. The third chapter introduces RDSs with initial conditions. The fourth chapter discusses first 
order quasilinear PDEs. Chapters five, six and seven delve into singular RDSs and the quenching phenomenon. The 
eighth chapter examines a quasilinear RDS of arbitrary order. The last chapter focuses on a specific class of first 
order quasilinear PDEs. The thesis presents theoretical frameworks, mathematical methods, and practical 
applications, contributing to advancements in RDSs. 

Keywords : Reaction-diffusion systems, singular parabolic equations, quenching phenomenon, global existence, 
positive solutions, quasilinear first order PDE. 

 

Titre : PHÉNOMÈNES DE TREMPE ET SYSTÈMES DE RÉACTION-DIFFUSION EN BIOLOGIE ET MÉDECINE. 

Résumé : Cette thèse explore le thème des systèmes de réaction-diffusion (SRDs) et leurs applications en biologie, 
médecine et bio-ingénierie. Il se compose de neuf chapitres qui couvrent divers aspects du sujet. La thèse 
commence par une introduction générale qui met l’accent sur l’essence du sujet et les enjeux spécifiques explorés 
dans la recherche. Le premier chapitre donne un aperçu des SRDs et de leurs applications dans différentes 
disciplines scientifiques. Le deuxième chapitre se concentre sur le concept de "Quenching" et ses applications en 
biologie, médecine et bio-ingénierie. Le troisième chapitre présente les SRDs avec conditions initiales. Le 
quatrième chapitre traite des EDPs quasi-linéaires du premier ordre. Les chapitres cinq, six et sept se penchent 
sur les SRDs singuliers et sur le phénomène de trempe. Le huitième chapitre examine un SRD quasi-linéaire d'ordre 
arbitraire. Le dernier chapitre se concentre sur une classe spécifique d’EDPs quasi-linéaires du premier ordre. La 
thèse présente des cadres théoriques, des méthodes mathématiques et des applications pratiques, contribuant 
aux progrès des SRDs.  

Mots-clés : Systèmes de réaction-diffusion, équations paraboliques singulières, phénomène de quenching, 
existence globale, solutions positives, EDP quasi-linéaire du premier ordre. 
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GENERAL INTRODUCTION

Introduction

Reaction-diffusion systems are mathematical models used to describe the dynamics
of chemical reactions and the diffusion of substances in space and time. These
systems have been widely applied in various fields, including biology and medicine,

to understand complex biological phenomena and help explain patterns and processes
observed in living organisms.

The concept of reaction-diffusion systems dates back to the early 20th century when
the Belgian mathematician Paul Langevin and the Russian Adolf Fick independently
formulated the mathematical equations describing the diffusion of substances. Later, in
the 1950s and 1960s, the British mathematician Alan Turing made significant contri-
butions to the field by proposing reaction-diffusion models to explain biological pattern
formation.

Turing’s seminal work introduced the idea that complex patterns and structures, such
as the formation of animal coat patterns or the development of organs during embryoge-
nesis, could arise from simple chemical reactions combined with diffusion processes. He
demonstrated that the interaction between two or more chemical substances (referred to
as morphogens) with different diffusion rates and reaction kinetics could give rise to spa-
tial patterns. This concept, known as Turing patterns, provided a theoretical framework
for understanding how intricate structures could emerge from local interactions.

Since Turing’s groundbreaking work, reaction-diffusion systems have found numerous
applications in biology, ecology, and medicine. Here are a few notable examples:

(i) Biology:
- Embryonic Development: Reaction-diffusion systems, such as the famous Turing

model, help explain how spatial patterns and cellular differentiation emerge during
embryonic development. They provide insights into the formation of structures like
fingers, feathers, and organs.

- Cell Signaling: Reaction-diffusion processes regulate cell signaling, allowing cells to
communicate and coordinate their activities. Signaling molecules, such as morphogens,
diffuse through tissues and establish concentration gradients that guide cell fate deter-
mination and tissue patterning.

- Neuronal Activity: Reaction-diffusion dynamics are vital for generating and prop-
agating electrical signals in neurons. They underlie phenomena like action potential
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propagation, synaptic activity, and the establishment of spatial patterns in neuronal
circuits.

(ii) Ecology:
- Population Dynamics: Reaction-diffusion models are used to study the spatial spread

and interactions of species in ecological systems. They help understand the formation of
species distributions, population dynamics, and the effects of spatial heterogeneity on
ecological communities.

- Pattern Formation in Ecosystems: Reaction-diffusion mechanisms contribute to
the formation of spatial patterns in ecosystems, such as vegetation patterns in arid
landscapes or the zonation of species in intertidal zones. These patterns arise due to the
interplay of biological processes and diffusive interactions.

(iii) Medicine:
- Morphogenesis and Tissue Engineering: Reaction-diffusion models aid in under-

standing tissue morphogenesis and guiding tissue engineering approaches. They help
design strategies to control cell behavior, tissue growth, and pattern formation, with
applications in regenerative medicine and organ development.

- Cancer Biology: Reaction-diffusion processes are relevant to tumor growth and
invasion. Models incorporating reaction-diffusion dynamics contribute to understanding
tumor heterogeneity, the formation of tumor boundaries, and the spread of cancer cells.

- Drug Delivery: Reaction-diffusion models inform drug delivery strategies by pre-
dicting how drugs diffuse and distribute within tissues. They help optimize drug release
systems, such as implants or nanoparticles, to achieve desired therapeutic concentra-
tions.

These examples highlight the broad importance of reaction-diffusion systems in
elucidating biological phenomena, ecological patterns, and disease processes. They pro-
vide valuable insights into the dynamics and organization of complex systems, guiding
experimental design, and aid in the development of therapeutic interventions.

Reaction-diffusion systems have emerged as a highly significant research topic, cap-
tivating the attention of researchers across diverse disciplines such as mathematics,
physics, biology, chemistry, and beyond. The wide range of applications of reaction-
diffusion systems in various fields underscores their importance. This multifaceted
nature of these systems served as a compelling motivation for me to select reaction-
diffusion systems as the focal point of my doctoral thesis in mathematics. This choice
not only allows me to delve into captivating mathematical concepts, but also provides an
avenue to explore the intricate interdisciplinary connections that arise in the study of
these systems. By delving into this research area, I will have the opportunity to tackle
challenging problems, unravel the underlying mechanisms of pattern formation and
dynamics, and contribute to both the theoretical understanding and practical applica-
tions of reaction-diffusion systems. This choice offers an intellectually stimulating and
enriching research path that has the potential to shape my expertise and open doors to
various academic fields and professional opportunities.

In our study, we focused on investigating the intriguing phenomenon of quenching
and its wide-ranging applications in the fields of biology, medicine, and bioengineering.
Quenching has emerged as a fundamental diffusion phenomenon with significant practi-
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cal implications and benefits. Exploring this field allowed us to uncover valuable insights
and achieve noteworthy results, which we subsequently documented in two scientific
papers that were published in renowned specialized journals. These publications not
only contribute to the existing body of knowledge but also highlight the significance of
quenching in various disciplines. Moreover, our research endeavors involved presenting
a multitude of applications and models, showcasing the versatility and relevance of
quenching across different domains. By thoroughly studying this phenomenon and its
applications, we have contributed to the advancement of scientific understanding and
opened up avenues for further research and exploration in this exciting and impactful
field.

In addition to studying the phenomenon of quenching, another significant aspect of
our thesis revolved around investigating a distinct class of reaction-diffusion systems
that find diverse and wide-ranging applications in population dynamics, environmental
studies, and related fields. Our research in this area led to a substantial contribution,
which formed the basis of a third scientific papers published in a prestigious mathematics
journal. This publication not only highlights our novel findings but also underscores
the importance of this class of reaction-diffusion systems in various scientific domains.
The scientific paper was strongly supported by numerous applications, showcasing
the practical relevance and real-world impact of our research. By delving into this
aspect of reaction-diffusion systems, we have not only expanded our understanding
of mathematical principles but have also provided valuable insights that can inform
decision-making processes and contribute to the development of sustainable solutions in
areas such as population dynamics.

Furthermore, our research endeavors extended to addressing a significant area of
study, leading to the publication of a fourth scientific paper that focuses on the solution
of first-order quasi-linear partial differential equations. This category of equations holds
immense interest for researchers due to its ability to model various phenomena across
all scientific domains without exception. The published paper sheds light on innovative
techniques and methodologies developed to tackle these equations and provides valuable
insights into their analytical solutions. Through this research, we have contributed
to a wider understanding of mathematical modeling and its applications in diverse
scientific fields. The implications of this research extend beyond mathematics, as these
equations serve as valuable tools for describing and analyzing complex phenomena in
physics, engineering, biology, economics, and numerous other disciplines. Our findings
and methodologies provide researchers with powerful tools and approaches to address
and comprehend the intricate dynamics and behaviors inherent in these systems, thereby
facilitating advancements and breakthroughs across a wide range of scientific endeavors.

Furthermore, our research efforts encompassed the exploration of additional aspects
within the realm of reaction-diffusion systems, specifically focusing on periodic models
that exhibit a recurring pattern. These models hold great significance due to their wide-
ranging applications in the fields of biology and ecology, where periodic phenomena
often play a crucial role. The outcomes of our investigations in this area have yielded
noteworthy results, which have been compiled into two scientific articles that have been
submitted for publication. These articles present novel findings and insights into the
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behavior and dynamics of periodic reaction-diffusion systems, shedding light on their
underlying mechanisms and highlighting their relevance to biological and ecological
processes. By delving into this research domain, we aim to contribute to the existing
body of knowledge, providing researchers and practitioners with valuable tools and
understanding to further unravel the complexities of periodic patterns in natural systems.
The forthcoming publication of these articles will disseminate our findings and stimulate
further scientific discourse in the field, enabling researchers to build upon our work and
explore new avenues of investigation in the context of reaction-diffusion systems with
periodic behavior.

Layout of the thesis

This thesis revolves around the captivating theme of reaction-diffusion systems and
their extensive applications in the fields of biology, medicine, and bioengineering.
Within its pages, the thesis is thoughtfully divided into eight comprehensive

chapters, each of which delves into various aspects of this fascinating subject. Before
embarking on this intellectual journey, the thesis commences with a general introduction
that not only sheds light on the intricate nature of reaction-diffusion systems but also
highlights the fundamental problems that are addressed throughout the research. This
introduction serves as a doorway into the world of the thesis, setting the stage for the
subsequent chapters. Now, let us embark on a brief overview of the content presented in
each chapter.

The first chapter provides a comprehensive overview of reaction-diffusion systems
and their applications in various scientific disciplines. It explains that reaction-diffusion
systems are mathematical models used to describe the dynamic behavior of interacting
substances undergoing diffusion and chemical reactions. The chapter emphasizes key
concepts such as diffusion, reaction, mathematical modeling using partial differential
equations, Turing patterns and instability, and the wide range of applications in chem-
istry, biology, physics, and materials science. It also introduces famous examples of
reaction-diffusion systems and discusses their experimental realizations and computa-
tional simulations. Practical applications of reaction-diffusion systems are highlighted
in fields such as chemical engineering, biophysics, neuroscience, ecological modeling, and
materials science. Furthermore, it introduces fundamental concepts and theories that
lay the foundation for understanding subsequent chapters and topics.

The second chapter serves as an introductory chapter to Chapters Five, Six and
Seven. It provides a detailed exploration of the concept of "quenching" and its diverse
applications, as well as its significance in different areas of science and engineering.
It examines two categories of reaction-diffusion equations that involve singularities in
the reaction term: “blowup” and “quenching”. The chapter also highlights the role of
quenching in biology and medicine, including fluorescence quenching, reactive oxygen
species quenching, and quenching of biological signals and processes. Additionally, the
impact of quenching on cellular processes such as cryopreservation, protein folding,
enzyme inactivation, cellular metabolism, and gene expression analysis is explored. The
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chapter is also concerned with the importance of quenching in bioengineering, such as
the manufacture of contact lenses.

The third chapter serves as an introductory chapter to the eighth chapter, It provides
an introduction to reaction-diffusion systems with initial conditions. It highlights the
significance of potential analysis in understanding parabolic problems and reaction-
diffusion systems. The chapter covers various applications of these systems in biology,
ecology, medicine, and physics, referencing prior studies in the field. It explores the
use of reaction-diffusion systems to study embryonic pattern formation, morphogenesis,
tissue development, population spread, drug diffusion in tissues, chemical reactions,
and pattern formation in physical systems. The chapter also introduces the specific
reaction-diffusion system that will be the focus of the seven chapter.

The fourth chapter delves into the fundamental definitions and concepts related
to first-order linear and quasilinear partial differential equations (PDEs). It provides
a clear exposition of the classical method used for solving these equations, shedding
light on the underlying principles and techniques involved. Additionally, the chapter
introduces the method of finding surfaces orthogonal to a given system of surfaces,
showcasing its relevance and applicability in the context of this class of equations. It also
provides insightful examples and applications that demonstrate the practical significance
of these mathematical concepts in various real-world scenarios. By presenting these
definitions, methods, and applications, the chapter equips readers with a solid foundation
for understanding and working with first-order linear and quasilinear PDEs, thus making
it easier for them to understand the content of Chapter 9.

The fifth chapter of the thesis investigates a singular parabolic reaction-diffusion
system with positive Dirichlet boundary conditions, which are commonly utilized in the
modeling of the quenching phenomenon. The primary objective of this study is to establish
conditions that guarantee both finite-time quenching and the global existence of solutions
for the system under consideration. By addressing this problem, the paper provides a
theoretical framework for analyzing and simulating quenching phenomena, thereby
offering valuable insights into the behavior and properties of the systems involved.
The results obtained through this research are of significant importance and have
been published in a reputable mathematics journal, indicating their academic rigor
and potential impact on the field. These findings contribute to our understanding of
the dynamics of singular parabolic reaction-diffusion systems with positive Dirichlet
boundary conditions, shedding light on the fundamental mechanisms underlying the
quenching phenomenon and paving the way for further advancements in this area of
study.

In this chapter, we are interested in the study of the following reaction-diffusion
system with general singular terms and positive Dirichlet boundary conditions that can
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be applied to the quenching phenomenon:

(u1)t −∆u1 =− f1 (u2) in (0,T)×Ω,
...

...
(um−1)t −∆um−1 =− fm−1 (um) in (0,T)×Ω,

(um)t −∆um =− fm (u1) in (0,T)×Ω,
u1 = u2 = ·· · = um = 1 on (0,T)×∂Ω,
u1 (0, x)= u10 (x) , . . . , um (0, x)= um0 (x) in Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary. The functions f j
(1≤ j ≤ m) are positive on (0,1]. The initial data satisfy

u10, u20, . . . , um0 ∈ C2 (Ω)∩C1
(
Ω

)
,

u j0 = 1, for all 1≤ j ≤ m, on ∂Ω,
0< u j0 ≤ 1, for all 1≤ j ≤ m, in Ω.

The sixth chapter delves into the investigation of the quenching phenomenon in
reaction-diffusion systems and emphasizes its significance in various fields. The central
focus of this chapter revolves around the analysis of a specific type of parabolic singular
reaction-diffusion model that incorporates positive Dirichlet boundary conditions. The
main objective is to establish the sufficiency of certain conditions that lead to quenching
within a finite time frame while also demonstrating the global existence of solutions for
the system. What sets this paper apart is the simplicity of the conditions imposed on
the nonlinearity, which allows for a wide range of possibilities when choosing it. This
simplicity facilitates the application of the model to numerous singular reaction-diffusion
phenomena encountered in practical scenarios. To further strengthen the findings, the
paper presents various real-world applications in the fields of bioengineering and life
sciences, highlighting the practical relevance of quenching phenomena in these domains.
Our findings were published in a specialized and reputable scientific journal.

In this chapter, we will mathematically investigate a problem that aligns with the
previously discussed concept of quenching. Our focus lies on examining a reaction-
diffusion model that incorporates singular nonlinearity and positive Dirichlet boundary
conditions: 

ut −∆u =− f (u) in (0,T)×Ω
u = 1 on (0,T)×∂Ω
u (0, x)= u0 (x) in Ω

with 
u0 ∈ C2 (Ω)∩C1

(
Ω

)
u0 = 1, on ∂Ω,
0< u0 ≤ 1, in Ω
∆u0 − f (u0)< 0, in Ω

where Ω is a smooth and bounded domain in RN (N ≥ 2), and f is a positive function on
(0,1].
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The seventh chapter investigates a singular degenerate reaction-diffusion model
characterized by natural growth concerning the gradient, employing Schauder’s fixed
point theorem. The model is significant for its applications in biology, medicine, and
life sciences, particularly in understanding phenomena such as the spread of infectious
diseases and tumor dynamics. We demonstrate how the singular terms in the model
can represent critical thresholds, influencing population behaviors like extinction or
uncontrolled growth. By analyzing these systems, the research provides insights into eco-
logical interactions and the conditions under which biological processes are suppressed
or enhanced. This mathematical framework not only advances theoretical understand-
ing but also supports practical applications, offering valuable tools for conservation
strategies and medical treatments. Ultimately, the paper emphasizes the interconnected-
ness of mathematics and life sciences, highlighting the potential for improved modeling
techniques to address complex biological and medical challenges.

We are interested in the following nonlinear singular degenerated reaction-diffusion
system having natural growth with respect to the gradient

∂u
∂t

−div (a (t, x)∇u)+d (t, x)
|∇u|p

uγ
= f (t, x) in QT

u (t, x)= 0 on Γ
u (0, x)= u0 (x) in Ω

where Ω is a bounded open subset of RN , N > 2, and Q is the cylinder (0,T)×Ω, T > 0,
Γ = (0,T)× ∂Ω, 2 < p < N, 0 < γ < 1, a (t, x) and d (t, x) are two bounded measurable
functions satisfying

0 < α1 ≤ a (t, x)≤α2

0 < β1 ≤ d (t, x)≤β2

where α1, α2, β1 and β2 are fixed real numbers such that α1 <α2 and β1 < β2. On the
function f , we assume that it is non-negative and not identically zero, and that it belongs
to the Lebesgue space Lm (QT) with m > 1. Moreover, the initial data u0 ∈ L∞ (Ω) satisfies
the following condition of strict positivity

∃Dω > 0,∀ω⊂⊂Ω : u0 ≥ Dω

The eighth chapter presents a study on a quasilinear parabolic reaction-diffusion
system of arbitrary order with initial conditions. The main focus is on establishing
the existence of continuous positive solutions using potential analysis techniques. The
novelty of the research lies in the fact that the system is of arbitrary order, which
extends and generalizes previous findings. The chapter discusses the mathematical
model, provides relevant references and applications in various fields, and outlines the
obstacles and challenges encountered in the analysis. Significant findings, with extensive
applications in fields such as biology, medicine, and bioengineering, have been achieved
and published in a renowned specialized journal.
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We will therefore be interested in studying the existence of positive solutions to the
following reaction-diffusion system:

−∂ui

∂t
+∆ui =λi pi+1(x, t) f i+1(ui+1) , 1≤ i ≤ 2m−1

−∂u2m

∂t
+∆u2m =λ2m p1(x, t) f1(u1)

ui(x,0)=ϕi(x), x ∈Rn , 1≤ i ≤ 2m

where (x, t) ∈Rn × (0,∞), n ≥ 3, and for 1≤ i ≤ 2m, m ∈N∗; the functions ϕi :Rn → [0,∞)
are continuous, the constants λi are nonnegative, the functions f i : (0,∞) → [0,∞) are
continuous and nondecreasing, pi : Rn × (0,∞) → [0,∞) refers to measurable functions
that fulfill a relevant assumption connected to the parabolic Kato class P∞(Rn) introduced
by Zhang. They refer to a class of functions that satisfy certain growth and regularity
conditions in the context of parabolic equations. It is proposed as a natural generalization
of the Kato class in the study of elliptic equations. Specifically, these functions typically
have controlled growth rates and possess sufficient smoothness properties that allow for
the rigorous analysis of parabolic problems.

The ninth chapter focuses on a specific class of first-order quasilinear partial differ-
ential equations with three real variables. We present a solving method inspired by the
Lagrange approach and provide a comprehensive examination of the method through
practical exercises. We have shown that solutions to this class of equations can be ob-
tained by finding the linearly independent first integrals of the associated characteristic
system. The chapter highlights the importance of this class of quasi-linear equations in
understanding real-world phenomena and their applications in various scientific disci-
plines, especially biology and bioengineering. The presented method provides a valuable
solution approach and contributes to ongoing research in this area. The results obtained
were published in a famous mathematics journal, which proves the importance of our
paper.

In this chapter, we restrict our work to a class of first order quasilinear PDEs with
three real variables, whose general form is

P
∂u
∂x

+Q
∂u
∂y

+R
∂u
∂z

= S

where u = u (x, y, z) is a smooth vector field in a domain Ω of R3. The functions P, Q, R,
S are linear of (x, y, z,u), and ak, bk, ck, dk, ek are real numbers for all 1≤ k ≤ 4.

The thesis concludes with a comprehensive summary and provides insights into future
perspectives. Additionally, it includes a well-curated list of bibliographic references that
thoroughly cover the subject matter discussed in the thesis. This ensures that readers
have access to relevant sources for further exploration and research in the field.
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1
GENERALITIES AND BASIC CONCEPTS

In this chapter, a comprehensive overview of reaction-diffusion systems is presented,

along with an explanation of how to model them using partial differential equations.

The chapter emphasizes the diverse applications of reaction-diffusion systems

in fields such as chemistry, biology, physics, and materials science. Furthermore, it

introduces fundamental concepts and theories that lay the foundation for understanding

subsequent chapters and topics.

1.1 Reaction-diffusion systems

In this section, our primary source of reference will be the book written by Mesbahi

[155], which provides comprehensive insights into the subject matter at hand. Mesbahi’s

book offers a detailed analysis and presents a wealth of information that will serve as a

solid foundation for our exploration. However, in order to ensure a more comprehensive

and well-rounded understanding, we also recommend referring to the works of Alaa and

Mesbahi et al. [9]-[14], [140], [141], [27], [28], [61]-[65], [109], [111], [142]-[159], [183],

[182], [190]-[194], Their contributions in the field have been significant and complement

the insights provided by Mesbahi’s book. By consulting multiple sources, including Alaa’s

works, the collective research of Mesbahi et al., Lions [128], Murray [161, 162], Murray

and Oster [163, 164, 170], Pao et al. [171]-[175], Pierre [179], Volpert [213]. we can

gain a broader perspective and delve into various aspects of the topic, enhancing our
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CHAPTER 1. GENERALITIES AND BASIC CONCEPTS

comprehension and enriching our analysis.

Reaction-diffusion systems hold immense importance in modeling diffusion phenom-

ena across various disciplines like biology, medicine, and environmental science. These

systems combine the principles of diffusion, where molecules passively move from high

to low concentration areas, with chemical reactions that transform these molecules.

This allows for a more comprehensive understanding of how molecules interact and

distribute within a space. In biology, reaction-diffusion models can describe processes

like nerve impulse propagation, where ions flow and react across nerve cells. Similarly,

they can depict morphogenesis, the formation of complex shapes in developing organisms,

where signaling molecules diffuse and trigger localized cell differentiation. In medicine,

these models can simulate drug delivery within the body, accounting for the diffusion

of drugs and their interactions with tissues and target cells. This helps optimize drug

design and treatment strategies. Environmental science utilizes reaction-diffusion mod-

els to understand ecological phenomena. For instance, they can depict predator-prey

interactions, where predator and prey populations diffuse and react through encoun-

ters, influencing ecosystem dynamics. By incorporating both diffusion and reactions,

reaction-diffusion systems provide a powerful tool for unraveling the complexities of

diffusion-driven processes in these diverse fields.

The chemical or biological reactions that occur in reaction-diffusion systems can be of

different types, for example:

- Autocatalytic reactions: A substance transforms into itself, which can lead to the

formation of complex structures.

- Inhibition reactions: One substance inhibits the transformation of another sub-

stance.

- Competition reactions: Two substances compete for the same resources.

Reaction-diffusion systems have several advantages over pure diffusion models:

- Better precision: They take into account chemical or biological reactions that can

influence the distribution of substances.

- Understanding interactions: They provide a better understanding of the interactions

between different substances and the biological processes involved.

- Behavior prediction: They allow predicting the behavior of substances under differ-

ent conditions.
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1.1.1 Key points about reaction-diffusion systems

(i) Diffusion: Diffusion refers to the process by which particles or substances move from

an area of higher concentration to an area of lower concentration, driven by the random

motion of molecules. It is a fundamental mechanism in various natural and artificial

systems, including chemistry, physics, biology, and engineering.

(ii) Reaction: Reactions refer to chemical processes or interactions between different

species that occur concurrently with diffusion. These reactions can have a significant

impact on the behavior and dynamics of the system.

(iii) Mathematical Modeling: Reaction-diffusion systems are typically described

using partial differential equations (PDEs). The PDEs incorporate terms for diffusion

and reaction, representing the rates at which substances spread and interact with each

other.

(iv) Turing Patterns: One of the remarkable features of reaction-diffusion systems is

their ability to generate spatial patterns. The interplay between diffusion and chemical

reactions can lead to the spontaneous formation of complex patterns, such as spots,

stripes, spirals, and labyrinthine structures. These patterns often emerge through a

process known as a Turing instability, where small perturbations in a homogeneous state

amplify and give rise to spatially organized structures.

(v) Turing Instability: The stability analysis of reaction-diffusion systems plays a

crucial role in understanding the behavior of the system. Stability conditions determine

whether the system’s patterns will persist or undergo changes over time. Certain param-

eter regimes can lead to instability, resulting in pattern formation or the formation of

localized structures such as waves or fronts.

(vi) Applications: Reaction-diffusion systems have broad applications in various

fields. In chemistry, they help explain chemical reactions and diffusion processes. In

biology, they are used to model developmental processes, morphogenesis, and spatially

structured populations. Reaction-diffusion models are also applied in physics to study

phenomena like wave propagation, self-organization, and nonlinear dynamics.

(vii) Famous Examples: The most well-known example of a reaction-diffusion sys-

tem is the Gray-Scott model, which exhibits the formation of intricate patterns re-

sembling spots and stripes. Other notable examples include the Belousov-Zhabotinsky

reaction, which displays traveling waves of chemical activity, and the Fisher-Kolmogorov

equation, which describes the spread of populations in ecological systems.

(viii) Mathematical Formulation: Reaction-diffusion systems are typically de-

scribed using systems of partial differential equations (PDEs). The most common form of
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these PDEs is the reaction-diffusion equation, which combines terms for diffusion and

reaction. The general form of these systems is

∂u
∂t

=div (D (t, x,u,∇u) .∇u)+ f (t, x,u,∇u) , x ∈Ω, t ≥ 0

where u = u (t, x)= (u1, . . . ,um) :R+×Ω→Rm is a vector of variables. f is a linear or nonlin-

ear vector function, which is called the reaction terms, it is a regular application (at least

locally Lipschitzian). D :R+×Ω×Rm×RmN →Rm is a regular function. When D = (
D i j

)
is

a square matrix it is called the diffusion matrix, in this case div (D (t, x,u,∇u) .∇u)= D∆u
are the broadcast terms. D i j characterize the diffusion of ui in u j. In this case we have

what is called diffusion crossing between the densities ui (cross diffusion).

It should be noted here that:

• Diffusion coefficients can represent molecular diffusions or a few random move-

ments of individuals in a population and they are not always positive. The positivity

of these coefficients means that the flow of matter is from the more concentrated

media to the less concentrated. It is possible that the organisms attract themselves

towards their species and the movement is then in the direction of the concentra-

tion gradient, that is to say from the least concentrated to the most concentrated;

and in this case, the diffusion coefficient is negative.

• The reaction terms are the result of any interaction between the components of

u; u can be a vector of chemical concentrations, and f is the effect of chemical

reactions of these concentrations, or the components of u can be densities of plant

or animal populations, and f represents the effect of relationships (of competition

or symbiosis) between predators and prey. If the reaction term f i > 0, there is a

source or mass production for the i-th species. Otherwise f i < 0, there is mass

annihilation.

• The diffusion coefficient D either constant if the regionΩ is a homogeneous medium,

and be regionalized (depends on the position x) if the region Ω is a heterogeneous

medium.

The equation is placed on an open domain Ω⊂RN , with some appropriate boundary

conditions and initial conditions. may be bounded or unbounded.

(ix) Experimental Realizations: Reaction-diffusion systems have been observed

and studied in various experimental setups. One classic example is the Belousov-

Zhabotinsky reaction, which involves the oscillatory reaction of chemicals and exhibits
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traveling waves of chemical activity. Other experimental realizations include the use of

chemical reactions on gel surfaces or in microfluidic devices to observe pattern formation

and wave propagation.

(x) Computational Simulations: Due to the complexity of reaction-diffusion sys-

tems, computational simulations play a crucial role in studying their behavior. Numerical

methods, such as finite difference methods, finite element methods, or lattice-based ap-

proaches, are commonly employed to solve the reaction-diffusion equations and simulate

the evolution of the system over time.

(xi) Multicomponent and Multiscale Systems: Reaction-diffusion systems can be

extended to involve multiple interacting substances or components, giving rise to mul-

ticomponent reaction-diffusion systems. Additionally, reaction-diffusion models can be

coupled with other physical processes, such as advection or other transport mechanisms,

to study systems with multiple scales or complex dynamics.

1.1.2 Diffusion and its significance in reaction-diffusion

systems

In the context of reaction-diffusion systems, diffusion plays a crucial role in the spatial

distribution and temporal dynamics of chemical species. Reaction-diffusion systems

are characterized by the interplay between chemical reactions and the diffusion of

reactants and products. The diffusion of molecules allows for the spread of chemical

species throughout a medium, influencing the rates and patterns of reaction.

Here are some key points that highlight the significance of diffusion in reaction-

diffusion systems:

(i) Homogenization of concentration: Diffusion tends to equalize concentration

gradients over time. In a reaction-diffusion system, molecules move from regions of

higher concentration to regions of lower concentration, leading to the homogenization of

the chemical species. This process helps establish a uniform distribution of reactants

and products, which is important for the overall dynamics of the system.

(ii) Spatial patterning: Diffusion can give rise to spatial patterns in reaction-

diffusion systems. When there are spatial variations in the initial distribution of re-

actants, diffusion can amplify these differences and generate complex patterns. This

phenomenon is exemplified by the famous Turing patterns, where diffusing substances

interact through chemical reactions to produce stable spatial patterns.
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(iii) Reaction kinetics: Diffusion influences the rates of chemical reactions. The

rate at which reactants encounter each other depends on their diffusion coefficients,

which determine how quickly they diffuse through the medium. Diffusion can either

promote or hinder the reaction rates depending on the specific system and the properties

of the reactants.

(iv) Oscillations and waves: Diffusion can facilitate the propagation of oscillatory

behavior and waves in reaction-diffusion systems. Oscillatory chemical reactions, such

as the Belousov-Zhabotinsky reaction, rely on the diffusion of reactants to spread the

oscillations throughout the medium. Waves in reaction-diffusion systems, such as the

traveling fronts in combustion processes, are also governed by diffusion.

(v) Spatiotemporal control: By manipulating the diffusion properties of molecules,

it is possible to control the spatiotemporal dynamics of a reaction-diffusion system.

Modulating the diffusion coefficients or introducing diffusion barriers can influence the

formation and stability of patterns, alter reaction rates, and enable precise control over

the system’s behavior.

1.1.3 Reaction and its significance in reaction-diffusion systems

Reactions in reaction-diffusion systems play a crucial role in pattern formation, nonlinear

dynamics, spatially localized structures, controlling reaction rates, and enabling self-

organization. Understanding the interplay between diffusion and reactions is essential

for comprehending the behavior and emergent properties of complex systems, and it

has implications in various scientific disciplines and practical applications. Here’s a

discussion on the significance of reactions in reaction-diffusion systems:

(i) Pattern formation: Reactions are essential for the emergence of patterns in

reaction-diffusion systems. When there are spatial variations in the concentration of

reactants, the reactions can amplify these differences, leading to the formation of com-

plex spatial patterns. This phenomenon is exemplified by the reaction-diffusion model

proposed by Alan Turing, which demonstrated how a simple system of reacting and

diffusing chemicals can give rise to intricate patterns.

(ii) Nonlinear dynamics: Reactions introduce nonlinearity into the system, which

can lead to a rich variety of dynamic behaviors. Nonlinear reaction kinetics can give rise

to oscillations, bifurcations, and chaotic dynamics in reaction-diffusion systems. These

dynamic behaviors can have important implications for the stability, robustness, and

self-organization of the system.
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(iii) Spatially localized structures: Reactions can lead to the formation of spatially

localized structures, such as fronts, interfaces, or localized concentrations known as

solitons. These structures can arise due to the interplay between diffusion and reaction

rates, resulting in stable boundaries or interfaces that separate different regions of the

system. Spatially localized structures are relevant in various fields, including chemical

waves, combustion fronts, and biological morphogenesis.

(iv) Reaction rates and kinetics: The rates of reactions can strongly influence

the overall dynamics of the system. The reaction rates determine the speed at which

reactants are consumed or produced, which affects the temporal evolution of the concen-

trations. The kinetics of the reactions, including factors such as reaction orders and rate

constants, determine the relationship between reactant concentrations and the reaction

rate. Understanding the kinetics is crucial for predicting and controlling the behavior of

reaction-diffusion systems.

(v) Feedback and self-organization: Reactions in reaction-diffusion systems can

create feedback loops, where the concentrations of reactants influence the reaction

rates, and in turn, the reaction rates affect the concentrations. This feedback can give

rise to self-organization phenomena, where local interactions between molecules at

the microscopic level lead to the emergence of ordered structures or patterns at the

macroscopic level. Self-organization is a fundamental concept in the study of complex

systems and is relevant in fields such as developmental biology, chemical engineering,

and materials science.

1.1.4 Advection and Convection reaction-diffusion systems

An advection-reaction-diffusion system and a convection-reaction-diffusion system are

both powerful tools for modeling how a quantity, like a chemical or heat, changes within

a system due to three main processes: movement, reactions, and random spreading.

However, there’s a subtle but important difference in how they handle the movement

aspect.

Advection Reaction-Diffusion System:
- Advection refers to the transportation of a substance by bulk motion of the fluid/medium

it is contained in.

- In an advection reaction-diffusion system, the movement of the substance occurs

only due to diffusion and reaction kinetics. Diffusion is the random movement of particles

from a region of higher concentration to one of lower concentration.

7



CHAPTER 1. GENERALITIES AND BASIC CONCEPTS

- There is no bulk fluid flow term present. The concentration of the substance changes

only due to diffusion and local reactions.

- Examples include chemical reactions where reactants diffuse through a static

medium and react upon contact.

Convection Reaction-Diffusion System:
- Convection refers to the transportation of a substance by bulk fluid motion in

addition to diffusion.

- In a convection reaction-diffusion system, the movement occurs due to diffusion,

reaction kinetics, and an additional convection/advection term due to bulk fluid flow.

- The bulk flow of the fluid transports the substance in addition to diffusion.

- Examples include chemical reactions in stirred tanks, where reactants are mixed by

mechanical stirring in addition to diffusion.

Key Difference:
- In an advection reaction-diffusion system, movement is purely due to diffusion and

reactions.

- In a convection reaction-diffusion system, movement occurs due to diffusion, reac-

tions, AND an additional convection/advection term accounting for bulk fluid transport.

- The presence of a convection term to account for bulk fluid motion is what dis-

tinguishes a convection reaction-diffusion system from an advection reaction-diffusion

system.

1.1.5 Fick’s laws of diffusion

Fick’s laws of diffusion describe the fundamental principles governing the process of

diffusion. They were formulated by Adolf Fick in the mid-19th century and provide a

mathematical framework for understanding how particles or substances move through a

medium.

1.1.5.1 Fick’s first law of diffusion

Fick’s first law states that the rate of diffusion of a substance is directly proportional to

the concentration gradient.

Mathematically, Fick’s first law can be expressed as

J =−d∇%
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where J is the diffusion flux, which represents the amount of substance that flows

across a unit area per unit time, d is the diffusion coefficient or diffusion constant,

which represents the ability of the substance to diffuse through the medium, ∇% is the

concentration gradient, which represents the spatial variation in the concentration of

the substance. The negative sign indicates that diffusion occurs from regions of higher

concentration to regions of lower concentration, in accordance with the second law of

thermodynamics.

1.1.5.2 Fick’s second law of diffusion

Fick’s second law describes how the concentration of a diffusing substance changes over

time.

Mathematically, Fick’s second law can be expressed as
∂%

∂t
= d∆%

where
∂%

∂t
is the rate of change of concentration with respect to time, ∆% is the Laplacian

of the concentration, which represents the spatial variation of the concentration.

Fick’s second law states that the rate of change of concentration is proportional to the

second derivative of the concentration with respect to position. This equation describes

how diffusion spreads the substance and leads to the equalization of concentration

gradients over time.

It’s important to note that Fick’s laws assume that the diffusion process is driven by

concentration gradients and that the medium is homogeneous and isotropic. In more

complex scenarios, such as with varying diffusion coefficients or heterogeneous media,

modified forms of Fick’s laws or additional terms may be required to accurately describe

the diffusion process.

Fick’s laws of diffusion have widespread applications in various fields, including

physics, chemistry, biology, and engineering. They provide a foundation for understand-

ing and modeling diffusion processes, enabling predictions and analysis of transport

phenomena in diverse systems. We find more details Coirier [51], Duvaut [69], Royis

[188] and Salençon [195].

1.1.6 Reaction-diffusion systems in practical applications

Reaction-diffusion systems have practical applications in various fields. We mention here

some of them.
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(i) Chemical Engineering: Reaction-diffusion models are employed in chemical

engineering to optimize reaction conditions and understand the behavior of chemical

reactors. By simulating the diffusion and reaction processes, engineers can determine

the optimal design parameters, such as reactor size, catalyst distribution, and operating

conditions, to achieve desired reaction rates and product yields.

(ii) Biophysics and Biological Systems: Reaction-diffusion systems are exten-

sively used in modeling biological systems. They help explain various biological phenom-

ena, including embryonic development, morphogenesis, pattern formation in tissues and

organs, and the formation of spatially organized structures in biological systems. By

simulating reaction-diffusion processes, researchers gain insights into the underlying

mechanisms of biological processes.

(iii) Neuroscience: In neuroscience, reaction-diffusion models are employed to study

the dynamics of neural networks and the propagation of signals in the brain. They provide

insights into the formation of spatial patterns in neural activity, such as the formation

of cortical maps or the generation of traveling waves in neural circuits. Understanding

these patterns is crucial for unraveling the mechanisms of brain function.

(iv) Ecological Modeling: Reaction-diffusion systems find applications in ecological

modeling and population dynamics. They help understand the spread of species, the

formation of spatial patterns in populations, and the interaction between different species

in ecosystems. By incorporating diffusion and reaction processes, researchers can study

the dynamics of species interactions, the formation of ecological patterns, and the effects

of spatial heterogeneity on biodiversity.

(v) Materials Science: Reaction-diffusion models are valuable in materials science

and engineering. They are used to study the growth of thin films, the formation of crystal

patterns, and the self-assembly of nanostructures. By understanding the diffusion and

reaction processes during material synthesis, researchers can design and control the

formation of specific patterns and structures with desired properties.

(vi) Chemical Pattern Generation: Reaction-diffusion systems have practical ap-

plications in generating chemical patterns for various purposes, such as in microfluidic

devices or lab-on-a-chip technologies. By carefully designing the reaction kinetics and

diffusion properties, researchers can create precise spatial patterns of chemical concen-

trations, which are useful for applications like controlled drug release, chemical sensing,

and microscale patterning.

(vii) Computer Graphics and Animation: Reaction-diffusion systems are utilized

in computer graphics and animation to generate realistic and visually appealing patterns
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and textures. By simulating reaction-diffusion processes, computer graphics artists can

create intricate and natural-looking patterns, such as fire, smoke, or natural textures

like skin or fur.

1.1.7 Derivation of reaction-diffusion systems

The derivation of reaction-diffusion systems involves formulating mathematical equa-

tions that describe the diffusion and chemical reactions occurring in a system. The

specific derivation process depends on the nature of the system being modeled and the

assumptions made. The below steps provide a general framework for deriving reaction-

diffusion systems, but the details can differ based on the specific context and system

under consideration..

(i) Identify the Components: First, we need to identify the components or sub-

stances involved in the system. These can be chemical species, biological entities, or any

other relevant entities. Assign variables to represent the concentrations or densities of

these components.

(ii) Diffusion: Diffusion describes the spreading and transport of substances due to

random molecular motion. Assume that each component diffuses independently and at a

rate determined by a diffusion coefficient. Introduce the diffusion term into the equations

to account for this process. The diffusion term is typically proportional to the Laplacian

of the concentration variable.

(iii) Chemical Reactions: Introduce the chemical reactions that occur between the

components. The reaction terms describe how the concentrations of the components

change due to these reactions. The form of the reaction terms depends on the specific

reaction kinetics. Common reaction terms involve linear or nonlinear functions of the

concentrations, representing different reaction rates or mechanisms.

(iv) Combine Diffusion and Reactions: Combine the diffusion and reaction terms

to obtain the final equations. The resulting equations are typically partial differential

equations (PDEs) that describe the spatiotemporal evolution of the concentrations.

(v) Boundary and Initial Conditions: Specify the boundary and initial conditions

for the system. These conditions define the concentrations or other relevant properties of

the components at the system boundaries and the initial time. The specific conditions

depend on the system being modeled and the experimental or theoretical context.

(vi) Analysis and Numerical Methods: Analyze the derived reaction-diffusion

equations to gain insights into the system’s behavior. Depending on the complexity of the
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equations, analytical solutions may be challenging to obtain. In such cases, numerical

methods, such as finite difference methods, finite element methods, or other computa-

tional techniques, can be used to simulate and solve the equations numerically. These

simulations provide a way to study the spatiotemporal dynamics and patterns that

emerge from the reaction-diffusion system.

1.1.8 Boundary and initial conditions

Boundary and initial conditions play a crucial role in determining the behavior and

outcomes of a reaction-diffusion system. These conditions provide essential information

about the initial state of the system and its interaction with the surrounding environment.

Here’s how boundary and initial conditions affect the behavior of a reaction-diffusion

system:

(i) Initial Conditions: The initial conditions specify the concentrations or other

relevant properties of the components at the starting time (t = 0). They define the initial

distribution of the substances within the system. The choice of initial conditions can

significantly impact the subsequent evolution of the system. Different initial conditions

can lead to different patterns, stability, and dynamics. For example, starting with a

homogeneous distribution of substances may result in a uniform state, while introducing

small perturbations or concentration gradients can lead to the formation of spatial

patterns.

(ii) Boundary Conditions: Boundary conditions specify the behavior of the system

at its boundaries, defining how the components interact with the external environment

or other regions of the system. The choice of boundary conditions influences the flow of

substances into or out of the system and can significantly impact the spatial and temporal

behavior of the reaction-diffusion system. Different types of boundary conditions include

Dirichlet boundary conditions (specifying the concentrations or values at the boundaries),

Neumann boundary conditions (specifying the flux or derivative at the boundaries), or

periodic boundary conditions (imposing periodicity in the system).

(iii) Stability and Pattern Formation: The choice of boundary and initial condi-

tions can affect the stability and pattern formation in a reaction-diffusion system. For

example, certain combinations of conditions can lead to the formation of stable spatial

patterns, such as spots, stripes, or labyrinthine structures. The stability and characteris-

tics of these patterns depend on the interplay between diffusion, reaction kinetics, and

the boundary conditions. Small changes in the boundary or initial conditions can result

12



1.1. REACTION-DIFFUSION SYSTEMS

in different patterns or even destabilize existing patterns.

(iv) Spatial and Temporal Dynamics: Boundary and initial conditions influence

the spatial and temporal dynamics of a reaction-diffusion system. They determine how

the concentrations of the components evolve over time and how they propagate or spread

within the system. Different combinations of conditions can lead to phenomena such as

wave propagation, wavefront interactions, spiral waves, or the emergence of stationary

or oscillatory patterns. The choice of conditions can also affect the speed, direction, and

stability of these dynamics.

(v) Model Validation and Comparison: The choice of appropriate boundary and

initial conditions is crucial for validating and comparing reaction-diffusion models with

experimental observations or real-world systems. By carefully selecting conditions that

mimic the experimental setup or the natural environment, researchers can assess the

model’s ability to capture the observed behavior. Matching the boundary and initial

conditions to experimental conditions helps validate and refine the model, improving its

predictive power and relevance.

1.1.9 Common types of initial conditions

In reaction-diffusion systems, the choice of initial conditions determines the starting

state of the system at time t = 0. The specific type of initial conditions used depends on

the nature of the system being modeled and the research question at hand. Here are

some common types of initial conditions employed in reaction-diffusion systems:

(i) Homogeneous Initial Conditions: Homogeneous initial conditions assume that

the concentrations of the components are uniformly distributed throughout the system

at the beginning. In this case, all spatial points have the same initial concentration

values. Homogeneous initial conditions are often used as a baseline to study the system’s

behavior and its evolution from a uniform state.

(ii) Perturbed or Spatially Varying Initial Conditions: Perturbed initial con-

ditions introduce small deviations or variations from the homogeneous state. These

perturbations can be random or designed to create specific patterns or concentration

gradients. Perturbed initial conditions are frequently used to study the formation and

evolution of spatial patterns in reaction-diffusion systems.

(iii) Concentration Gradients: Concentration gradients involve setting up initial

conditions where the concentrations of the components vary across space. These gradients

can be linear, exponential, or any other desired profile. Concentration gradients are useful
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for investigating phenomena such as chemotaxis, cell migration, or the establishment of

morphogenic gradients during embryonic development.

(iv) Multiple Concentration Peaks or Clusters: In some cases, researchers may

want to simulate a system with multiple distinct concentration peaks or clusters at the

initial time. These initial conditions represent situations where there are pre-existing

localized concentrations of the components. Such conditions can be relevant for modeling

cell aggregates, colonies, or the presence of specific chemical sources within the system.

(v) Experimental Data-Based Initial Conditions: In certain cases, initial condi-

tions can be derived from experimental measurements or data. For example, if concentra-

tion profiles are available from experimental observations, these profiles can be used as

initial conditions to simulate and compare the model’s behavior with the experimental

data.

1.1.10 Solving reaction-diffusion systems

Solving reaction-diffusion systems involves finding solutions to the PDEs that describe

the spatiotemporal evolution of the concentrations or densities of the components. De-

pending on the complexity of the system and the desired level of detail, different solution

methods can be employed. Here are some common approaches for solving reaction-

diffusion systems:

(i) Analytical Solutions: Analytical solutions provide exact mathematical expres-

sions for the concentrations or densities of the components as functions of space and time.

Obtaining analytical solutions is challenging and often limited to simplified reaction-

diffusion systems with specific assumptions and boundary conditions. Simple linear

systems or systems with specific reaction kinetics may allow for analytical solutions.

However, analytical solutions are not always feasible for complex, nonlinear systems.

(ii) Numerical Methods: Numerical methods are widely used for solving reaction-

diffusion systems. These methods discretize the continuous PDEs into a set of discrete

equations that can be solved iteratively. Common numerical methods include:

(ii.a) Finite Difference Methods: Finite difference methods approximate the deriva-

tives in the PDEs using finite difference approximations. The spatial domain is divided

into a grid, and the concentrations are computed at each grid point using difference

equations. The system of difference equations is solved iteratively in time.

(ii.b) Finite Element Methods: Finite element methods discretize the spatial domain

into a set of finite elements. The concentrations are approximated within each element
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using basis functions, and the PDEs are transformed into a system of algebraic equations.

This system is then solved numerically.

(ii.c) Spectral Methods: Spectral methods use basis functions, such as Fourier series or

orthogonal polynomials, to represent the concentrations. The PDEs are transformed into

a system of ordinary differential equations (ODEs), which can be solved using numerical

ODE solvers.

(iii) Computational Modeling Software: There are various computational model-

ing software packages available that offer built-in solvers for reaction-diffusion systems.

These software tools provide user-friendly interfaces, pre-defined templates for reaction-

diffusion equations, and efficient numerical solvers.

(iv) Simulation and Visualization: Once the numerical solutions are obtained,

simulations can be performed to visualize the spatiotemporal dynamics of the reaction-

diffusion system. Visualization techniques, such as contour plots, color maps, or 3D

representations, can help understand the patterns, wave propagation, and stability of

the concentrations.

For the mathematical analysis of RDS, see, for example, the works of Alaa and

Mesbahi et al. [9]-[14], [140], [141], [27], [28], [61]-[65], [109], [111], [142]-[159], [183],

[182], [190]-[194], Lions [128], Pao et al. [171]-[175], Pierre [179], where we find also

many models studied by different techniques.

1.1.11 Experimental techniques used to study

reaction-diffusion systems

Experimental techniques play a crucial role in the study of reaction-diffusion systems,

enabling researchers to observe and characterize the dynamics and patterns that emerge

from these complex systems. Here are some commonly used experimental techniques:

(i) Microscopy: Microscopy techniques, such as optical microscopy, confocal mi-

croscopy, and fluorescence microscopy, are widely used to visualize and track the spa-

tial and temporal behavior of chemical species in reaction-diffusion systems. These

techniques provide high-resolution imaging, allowing researchers to directly observe

concentration profiles, pattern formation, and the evolution of structures over time.

(ii) Chemical imaging: Chemical imaging techniques, such as fluorescence imag-

ing, Raman spectroscopy, and mass spectrometry imaging, provide spatially resolved

information about the distribution and concentration of chemical species in reaction-

diffusion systems. These techniques allow for the mapping of concentration gradients,
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identification of reaction products, and the analysis of chemical composition within the

system.

(iii) Microfluidics: Microfluidics involves the manipulation of small volumes of fluids

in microscale channels or devices. Microfluidic platforms can be used to create controlled

environments for studying reaction-diffusion systems. They enable precise control of flow

rates, gradients, and mixing, facilitating the observation and manipulation of diffusion

and reaction processes. Microfluidic devices also allow for the generation of spatially

varying conditions, such as concentration gradients or chemical patterning.

(iv) Time-lapse imaging: Time-lapse imaging involves capturing consecutive images

or videos of reaction-diffusion systems at regular time intervals. This technique enables

the observation of dynamic processes, such as the propagation of waves, the formation

of patterns, or the growth and evolution of structures over time. Time-lapse imaging

provides valuable insights into the temporal behavior and kinetics of reaction-diffusion

systems.

(v) Fluorescence resonance energy transfer (FRET): FRET is a technique used

to study molecular interactions and diffusion in reaction-diffusion systems. It involves

the transfer of energy between two fluorophores—one acting as a donor and the other as

an acceptor—when they are in close proximity. FRET can be used to measure distances,

diffusion rates, and molecular interactions, providing information about the spatial

organization and dynamics of chemical species.

(vi) Electrochemical techniques: Electrochemical techniques, such as cyclic voltam-

metry and chronoamperometry, can be employed to study reaction-diffusion systems

involving electroactive species. These techniques involve applying controlled electrical

potentials and measuring the resulting current or potential changes. Electrochemical

methods allow for the investigation of diffusion coefficients, reaction rates, and electro-

chemical processes in reaction-diffusion systems.

(vii) Pattern analysis and quantification: In addition to direct observation, image

analysis and quantification methods are used to analyze and characterize patterns and

structures in reaction-diffusion systems. These techniques involve extracting relevant

information from experimental images, such as pattern wavelengths, spatial correlations,

and morphological properties. Image analysis tools, statistical methods, and pattern

recognition algorithms can aid in the quantitative analysis of experimental data.

By combining these experimental techniques with mathematical modeling and simu-

lation, researchers can gain a comprehensive understanding of the dynamics, patterns,

and underlying mechanisms in reaction-diffusion systems. This interdisciplinary ap-
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proach allows for the validation and refinement of theoretical models and provides

insights into the complex behavior of these systems in real-world settings.

1.2 Functional spaces

Functional spaces are mathematical spaces that consist of functions with certain proper-

ties or characteristics. These spaces are defined by specifying a set of functions and a

set of operations or properties that the functions must satisfy. Functional spaces play a

crucial role in various branches of mathematics and mathematical analysis, providing a

framework for studying and analyzing functions with specific properties. We can find

more specific details in Brezis [35], Kavian [112], Lions [128] and Pao [174].

Here are some commonly encountered functional spaces:

1.2.1 Lp spaces

Lp spaces are a family of function spaces that are defined based on the integrability

properties of functions. They play a fundamental role in measure theory, functional

analysis, and various areas of mathematics. Lp spaces provide a framework for studying

the size, convergence, and properties of functions with respect to a measure.

Here are key points about Lp spaces:

(i) Definition: Let
(
Ω,Σ,µ

)
be a measure space, whereΩ is a set, Σ is a sigma-algebra

of subsets of Ω, and µ is a measure defined on Σ. For 1 ≤ p <∞ the Lp space, denoted

as Lp (
Ω,Σ,µ

)
or simply Lp (Ω), consists of functions f :Ω→R (or C) such that the p-th

power of the absolute value (or modulus) of f is measurable and has a finite integral, i.e.,

Lp (Ω)=
{

f :Ω→R (or C) measurable with
∫
Ω
| f |p dµ<∞

}
(ii) Norm: The Lp norm of a function f in Lp (Ω) is defined as

‖ f ‖LP (Ω) =
(∫
Ω
| f |p dµ

) 1
p

The norm measures the size or magnitude of a function in the Lp space. It satisfies the

properties of a norm, such as non-negativity, homogeneity, and the triangle inequality.

(iii) Special Cases: Some specific Lp spaces are commonly encountered:

• L1 (Ω) consists of functions with integrable absolute value, i.e.,
∫
Ω | f |dµ < ∞,

equipped with the norm
‖ f ‖L1(Ω) =

∫
Ω
| f |dµ
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• L2 (Ω) is the space of square integrable functions, i.e., functions for which the

integral of the square of the absolute value is finite,
∫
Ω | f |2 dµ<∞, equipped with the

norm

‖ f ‖L2(Ω) =
(∫
Ω
| f |2 dµ

) 1
2

L2 (Ω) is a Hilbert space endowed with the scalar product

( f , g)=
∫
Ω

f (x) g (x)dx

• L∞(Ω) consists of essentially bounded functions, i.e., functions for which there

exists a constant M such that | f (x)| ≤ M almost everywhere on Ω, i.e.,

L∞ (Ω)= { f :Ω−→R measurable, ∃M > 0, | f | ≤ M a.e. on Ω} ,

it is a complete vector space for the norm

‖ f ‖L∞(Ω) = sup
x∈Ω

ess | f (x)| = inf {M > 0 , | f | ≤ M a.e. on Ω}

• We define the spaces Lp(0,T,Ω), 1≤ p <∞, and L∞(0,T,Ω) as follows:

Lp(0,T,Ω)=
{

f : [0,T]−→Ω measurable,
∫ T

0
‖ f ‖p

Ω
dt <∞

}
equipped with the norm

‖ f ‖p
Lp(0,T,Ω) =

∫ T

0
‖ f ‖p

Ω
dt

L∞(0,T,Ω)= { f : [0,T]−→Ω measurable, sup
t∈(0,T)

ess‖ f ‖Ω <∞}

equipped with the norm

‖ f ‖L∞(0,T,Ω) = sup
t∈(0,T)

ess‖ f ‖Ω

Of course, we have

Lp(0,T,Lp(Ω))≡ Lp((0,T)×Ω), 1≤ p ≤∞

(iv) Inclusion Relations: Lp spaces exhibit inclusion relations. Specifically, for

1≤ p ≤ q ≤∞, if Ω is a finite measure space or a σ-finite measure space, then Lq (Ω) is a

subset of Lp (Ω).

(v) Completeness: Lp (Ω) are Banach spaces, which means they are complete with

respect to the Lp norm. This completeness property is crucial for the study of convergence

and the existence of solutions to certain equations and problems.
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(vi) Duality: Lp spaces are dual to each other in certain cases. For 1 < p <∞, the

dual space of Lp (Ω) is Lq (Ω), where 1
p + 1

q = 1. This duality relationship allows for the

study of functionals and operators defined on Lp spaces.

(vii) Applications: Lp spaces have widespread applications in various fields of math-

ematics, including analysis, probability theory, harmonic analysis, functional analysis,

and PDEs. They provide a mathematical framework for studying convergence, approxi-

mation, interpolation, and the behavior of functions with respect to a measure.

1.2.2 Harmonic functions

In mathematics, a harmonic function is a real-valued function that satisfies the Laplace’s

equation. Harmonic functions are widely studied in various branches of mathematics,

including complex analysis, partial differential equations, and potential theory. They

have many important properties and applications in physics, engineering, and other

fields. Let’s explore the definitions and main properties of harmonic functions:

Definition 1.1. The functions, harmonic in domain V , are the functions u satisfying the

Laplace equation in this domain, i.e., ∆u = 0.

These are some of the key definitions and properties of harmonic functions u. They

provide a foundation for studying and understanding various aspects of these functions

and their applications in mathematics and science.

(i) ∫
S

∂u
∂υ

dS = 0

i.e., the integral of the normal derivative of the harmonic function on the surface of the

domain is equal to zero.

(ii) The value of the harmonic function u at any point inside the domain is expressed

through the values of this function and its normal derivative on the surface of the domain

by the formula

u (A)= 1
4π

∫
S

[
1
r
∂u
∂υ

−u
∂

∂υ

(
1
r

)]
dS

(iii) The value of the harmonic function u in the centre A of the sphere SR with radius

R is equal to the mean arithmetic value of the function on the surface of sphere

u (A)= 1
4πR2

∫
SR

udS
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(iv) From (iii) we obtain the maximum principle: a function, harmonic inside the

domain and continuous up to its boundary, reaches its highest and smallest values at

the boundary of the domain.

i.e., A harmonic function cannot have a local maximum or minimum in the interior

of its domain unless it is constant. This property is a consequence of the mean value

property and has important implications for the behavior of solutions to certain physical

problems.

(v) Uniqueness: Given certain boundary conditions, a harmonic function is uniquely

determined within its domain. This property is crucial in solving boundary value prob-

lems involving Laplace’s equation.

To delve deeper into the subject of harmonic functions and explore their applications,

you may refer to relevant sources such as Agoshkov et al. [6] for comprehensive details

and additional information.

1.3 Fundamental theorems

In this section, we introduce a selection of crucial theorems that played a significant

role in deriving our results. We will rely mainly on Apostol [19], Brezis [34, 35], Lions

[128], Pucci [180]. These references have been carefully chosen due to their relevance,

credibility, and extensive coverage of the topic.

1.3.1 Dini’s Theorem

The Dini’s theorem, also known as the Dini’s test or Dini’s criterion, is a fundamental

result in real analysis that relates the pointwise convergence of a sequence of functions

to its uniform convergence on a compact set. It is named after the Italian mathematician

Ulisse Dini, who first stated and proved the theorem in the late 19th century.

Dini’s theorem is as follows.

Theorem 1.1. Suppose K is a compact subset of a metric space (X ,d), and fn : K →R is

a decreasing sequence of continuous functions which converges pointwise to a continuous

real valued function f on K . Then, fn converges uniformly to f .

Dini’s Theorem has many applications, including the following.
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(i) Approximation Theory: Dini’s theorem provides a powerful tool for approxi-

mating functions. It guarantees that if a sequence of functions converges pointwise

to a function and the convergence is accompanied by a certain type of monotonicity

and uniform convergence, then the convergence is uniform. This result is often used to

establish the uniform convergence of various approximation methods, such as polynomial

interpolation and Fourier series approximation.

(ii) Existence of Solutions: Dini’s theorem is used in the study of partial differential

equations and integral equations to establish the existence of solutions. By constructing

appropriate sequences of functions that satisfy the conditions of Dini’s theorem, one can

show the existence of a solution to certain classes of equations.

(iii) Asymptotic Analysis: Dini’s theorem is also employed in asymptotic analysis,

which deals with the behavior of functions as certain parameters tend to infinity or

some other limiting values. It can be applied to prove the uniform convergence of certain

sequences of functions, which is essential for establishing the validity of asymptotic

expansions.

(iv) Optimization and Control Theory: Dini’s theorem has applications in opti-

mization and control theory, particularly in the study of optimal control problems. It

is used to prove the existence of optimal solutions and to establish the convergence of

optimization algorithms.

1.3.2 Contraction mapping theorem

Definition 1.2. Let (X ,d) be a metric space. A mapping T : X → X is a contraction

mapping, or contraction, if there exists a constant c, with 0≤ c < 1, such that

(1.1) d (T (x) ,T (y))≤ cd (x, y)

for all x, y ∈ X .

Thus, a contraction maps points closer together. In particular, for every x ∈ X and

r > 0, all points y in the ball Br (x) are mapped into a ball Bs (Tx), with s < r. It follows

from (1.1) that a contraction mapping is uniformly continuous.

If T : X → X , then a point x ∈ X such that

(1.2) T (x)= x
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is called a fixed point of T. The contraction mapping theorem states that a strict con-

traction on a complete metric space has a unique fixed point. The contraction mapping

theorem is only one example of what are more generally called fixed point theorems.

For example, the Schauder fixed point theorem states that a continuous mapping on a

convex, compact subset of a Banach space has a fixed point.

In general, the condition that c is strictly less than one is needed for the uniqueness

and the existence of a fixed point. For example, if X = {0,1} is the discrete metric space

with metric determined by d (0,1) = 1. then the map T defined by T (0) = 1 , T (1) = 0

satisfies (1.1) with c = 1. but T does not have any fixed points. On the other hand, the

identity map on any metric space satisfies (1.1) with c = 1 and every point is a fixed

point.

It is worth noting that (1.2), and hence its solutions, do not depend on the metric d.

Thus, if we can find any metric on X such that X is complete and T is a contraction on

X , then we obtain the existence and uniqueness of a fixed point. It may happen that X is

not complete in any of the metrics for which one can prove that T is a contraction. This

can be an indication that the solution of the fixed point problem does not belong to X ,

but to a larger space, namely the completion of X with respect to a suitable metric d.

Theorem 1.2. If T : X → X is a contraction mapping on a complete metric space (X ,d),

then there is exactly one solution r ∈ X of (1.2).

Proof. The proof is constructive, meaning that we will explicitly construct a sequence

converging to the fixed point. Let x0 be any point in X . We define a sequence (xn) in X by

xn+1 = Txn for n ≥ 0

To simplify the notation, we often omit the parentheses around the argument of a map.

We denote the n-th iterate of T by Tn, so that xn = Tnx0.

First, we show that (xn) is a Cauchy sequence. If n ≥ m ≥ 1 , then from (1.1) and the
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triangle inequality, we have

d (xn, xm) = d
(
Tnx0,Tmx0

)
≤ cmd

(
Tn−mx0, x0

)
≤ cm [

d
(
Tn−mx0,Tn−m−1x0

)+d
(
Tn−m−1x0,Tn−m−2x0

)+·· ·+d (Tx0, x0)
]

≤ cm

[
n−m−1∑

k=0
ck

]
d (x1, x0)

≤ cm

[ ∞∑
k=0

ck

]
d (x1, x0)

≤
(

cm

1− c

)
d (x1, x0) ,

implies that (xn) is Cauchy. Since X is complete, (xn) converges to a limit x ∈ X . The fact

that the limit x is a fixed point of T follows from the continuity of T :

Tx = T lim
n→∞xn = lim

n→∞Txn = lim
n→∞xn+1 = x.

Finally, if x and y are two fixed points, then

0≤ d (x, y)= d (Tx,T y)≤ cd (x, y) .

Since c < 1 we have d (x, y)= 0 so x = y and the fixed point is unique. �

1.3.3 Maximum principles for parabolic equation

The maximum principle is a fundamental concept in the study of partial differential

equations (PDEs) and plays a crucial role in several areas of analysis. Its importance

stems from the fact that it provides valuable information about the behavior and prop-

erties of solutions to PDEs. Here are some key reasons why the maximum principle is

significant in the study of PDEs:

(i) Uniqueness of Solutions: The maximum principle is often used to establish

uniqueness results for solutions of PDEs. It states that if a solution attains its maximum

(or minimum) at an interior point of the domain, then the solution must be constant

throughout the domain. This property is essential in proving that a PDE has a unique

solution, which is a fundamental requirement in many mathematical models.
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(ii) Boundedness: The maximum principle allows us to establish bounds on solutions

to PDEs. If a solution is bounded from above (or below) at an initial time or on the

boundary of the domain, then the solution remains bounded throughout the domain and

at all subsequent times. This property is crucial for ensuring the well-posedness of PDEs

and for understanding the qualitative behavior of solutions.

(iii) Stability and Convergence: The maximum principle is closely related to sta-

bility and convergence results for numerical methods and approximation schemes used

to solve PDEs. By establishing maximum principles for discrete approximations of PDEs,

one can ensure that the numerical solution remains bounded and converges to the true

solution as the grid size or time step approaches zero. This is essential for reliable and

accurate numerical simulations.

(iv) Existence of Solutions: In certain cases, the maximum principle can be used

to prove the existence of solutions to PDEs. By constructing suitable super/sub-solutions

and utilizing the comparison principle, one can establish the existence of solutions that

satisfy certain properties or boundary conditions. This is particularly useful when dealing

with nonlinear and nonlocal PDEs, where direct methods may not be applicable.

(v) Qualitative Behavior: The maximum principle provides insights into the quali-

tative behavior of solutions. For example, it can reveal information about the spreading

or decay rates of solutions, the location of maximum or minimum points, and the overall

shape of the solution profile. Understanding these qualitative properties is crucial for

interpreting and analyzing solutions in various scientific and engineering applications.

In general, the maximum principle serves as a potent tool in PDE analysis, allowing

researchers to establish properties such as uniqueness, boundedness, stability, existence,

and qualitative behavior of solutions. It plays a fundamental role in comprehending and

analyzing PDEs and has broad implications across diverse fields including mathematics,

physics, and engineering.

There are different versions of the maximum principle depending on the specific

context, but I’ll provide a general overview. We consider parabolic operators of the form

(1.3) Lu =−∂u
∂t

+
N∑

i, j=0
ai, j (t, x)

∂2u
∂xi∂x j

+
N∑

i=0
bi (t, x)

∂u
∂xi

+ c (t, x)u

for (t, x) ∈ (0,T)×Ω where Ω is an open, path-wise connected subset of RN . We set

D = (0,T]×Ω
Q = (0,T]×Ω
Σ = (0,T]×∂Ω∪ {0}×Ω
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We shall always assume ai j , bi, c bounded on D, ai j = a ji and we call L in (1.3) uniformly

parabolic if
N∑

i, j=0
ai, j (t, x)ξiξ j ≥λ0 ‖ξ‖2

with λ0 > 0 uniformly for all ξ ∈RN and (t, x) ∈ D.

Theorem 1.3 (Weak maximum principle). Let L be uniformly parabolic. Assume that Ω

is bounded, u ∈ C2 (D)∩C0
(
D

)
with Lu ≥ 0, let c (t, x)= 0 in D. Then

max
D

u =max
Σ

u

Theorem 1.4 (Strong maximum principle). Let Ω be an open, path-wise connected subset

of RN . Let L be uniformly parabolic. Assume u ∈ C2 (D)∩C0
(
D

)
with Lu ≥ 0, let M = sup

D
u.

Assume u = M at a point (t0, x0) ∈ D and that one of the following conditions holds: (i)

c = 0 and M ∈ R, (ii) c ≤ 0 and M ≥ 0, (iii) M = 0 and c is arbitrary. Then u = M on

[0, t0]×Ω.

Remark 1.1. By considering −u, we can show corresponding results about M = inf
D

u. The

only assumptions changing are Lu ≤ 0 and M ≤ 0 in (ii).

1.3.4 Comparison principle for semi-linear equations

The comparison principle is used to establish comparison results between two solutions

of a semi-linear equation. It states that if one solution is greater than or equal to another

solution at some initial time or on the boundary of the domain, and the equation satisfies

certain conditions (such as monotonicity or concavity), then the same inequality holds at

all subsequent times or throughout the domain. The comparison principle is a powerful

tool for establishing various properties of solutions, including existence, uniqueness, and

qualitative behavior.

Definition 1.3. The semilinear operator

(1.4) Lu =−∂u
∂t

+
N∑

i, j=0
ai, j (t, x)

∂2u
∂xi∂x j

+F
(
t, x,u,

∂u
∂x1

, . . . ,
∂u
∂xN

)

25



CHAPTER 1. GENERALITIES AND BASIC CONCEPTS

is called uniformly parabolic, if

N∑
i, j=0

ai, j (t, x)ξiξ j ≥λ0 ‖ξ‖2

with λ0 > 0 uniformly for all ξ ∈ RN and (t, x) ∈ D. In (1.4), we shall assume that F is

continuously differentiable and that ai j = a ji are bounded on D.

Theorem 1.5. Let L be uniformly parabolic. Let u,v ∈ C2 (D)∩C0
(
D

)
with Ω open,

path-wise connected and bounded such that
Lv ≥ Lu in D

v (0, x)≥ u (0, x) in Ω

v (t, x)≥ u (t, x ) on (0,T]×∂Ω.

Then v ≥ u in D. If u (t, x )= v (t, x) for some (t, x ) ∈ (0,T]×Ω then u ≡ v in [0, t]×Ω.

Remark 1.2. (i) The result can be extended to certain fully nonlinear problems.

(ii) We can replace the boundary condition on [0,T]×∂Ω with isolating Neumann data

∂v
∂n

≥ ∂u
∂n

for ∂Ω of class C2 and u,v ∈ C2 (D)∩C1
(
D

)
.

1.4 Green’s function

The Green’s function is a concept in mathematics and physics that plays a fundamen-

tal role in solving certain types of differential equations. It provides a mathematical

representation of the response of a system to an impulse or localized source term. The

history of the Green’s function dates back to 1828 , when George Green published work

in which he sought solutions of Poisson’s equation ∆u = f for the electric potential u
defined inside a bounded volume with specified boundary conditions on the surface of

the volume. He introduced a function now identified as what Riemann later coined the

“Green’s function”.

In a region Ω with boundary ∂Ω, let

(1.5) Lu = f (x) in Ω
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(1.6) Bu = 0 in ∂Ω

represent, respectively, a linear second order PDE and linear boundary initial conditions,

such that for each continuous f , problem (1.5)− (1.6) has a unique solution. Then G (x,ξ)
is the Green’s function for the problem if this unique solution is given by

u (x)=
∫
Ω

G (x,ξ) f (ξ)dξΩ

We attach a subscript to the volume element to emphasize that the integration is with

respect to the ξ-variables.

Example 1.1. The initial value problem for the heat equation vt (x, t)−vxx (x, t)= 0 , x ∈R, t > 0

v (x,0)= f (x) , x ∈R

has the unique solution

v (x, t)= 1p
4πt

∫ +∞

−∞
exp

[
− (x−ξ)2

4t

]
f (ξ)dξ

It then follows from Duhamel’s principle that the problem

(1.7)

 ut (x, t)−uxx (x, t)= f (x) , x ∈R, t > 0

u (x,0)= f (x) , x ∈R

has the unique solution

(1.8) u (x, t)=
∫ t

0
v (x, t−τ)dτ=

∫ t

0

∫ +∞

−∞
1p

4π (t−τ)
exp

[
− (x−ξ)2

4(t−τ)

]
f (ξ)dξdτ

From (1.8), we infer that the Green’s function for problem (1.7) is

(1.9) G (x, t;ξ,τ)= 1p
4π (t−τ)

exp
[
− (x−ξ)2

4(t−τ)

]
, t > τ> 0

It is seen that the Green’s function (1.9) exhibits singular behavior as x= (x, t) approaches

ξ = (ξ,τ). This holds true for Green’s functions in general, and is reflected in the fact

that G (x,ξ) for (1.5)− (1.6) satisfies, as a function of x, the PDE

(1.10) Lσ= δ (x−ξ)
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which is (1.5) with f (x) replaced by δ (x−ξ). We call a solution of (1.10) a singularity

solution for L []. The essence, then, of the Green’s function method is to represent f (x) in

(1.5) as a sum of delta functions, thereby obtaining u (x) as the "sum" of the corresponding

singularity solutions adjusted to obey (1.6).

Green’s functions play a fundamental role in the study of partial differential equations

(PDEs) and are widely used in various areas of mathematical physics and engineering.

Here are some key reasons why Green’s functions are important in the study of PDEs:

(i) Existence and Uniqueness: Green’s functions can be used to establish the

existence and uniqueness of solutions to certain types of PDEs. By constructing a Green’s

function, which is a solution to a PDE with a specific type of forcing term, one can then

represent the general solution of the PDE as a convolution integral involving the Green’s

function and the given forcing term. This representation allows for the characterization

of solutions and the establishment of existence and uniqueness results.

(ii) Boundary Value Problems: Green’s functions are particularly useful in solving

boundary value problems for linear PDEs. By exploiting the properties of Green’s func-

tions, one can find solutions that satisfy specific boundary conditions. The construction

of Green’s functions provides a systematic and general approach to solving boundary

value problems, allowing for the determination of solutions in complex domains with

diverse boundary conditions.

(iii) Integral Representations: Green’s functions provide integral representations

for solutions of PDEs. These representations can simplify the analysis and computation

of solutions, as they often involve convolutions or integrals that can be evaluated more

easily than solving the PDE directly. The use of Green’s functions allows for the transfor-

mation of PDE problems into integral equations, which can be amenable to analytical or

numerical techniques.

(iv) Operator Inversion: Green’s functions enable the inversion of differential

operators. By considering the adjoint operator associated with a given PDE, one can

construct the corresponding Green’s function. This Green’s function can then be used to

invert the differential operator, allowing for the determination of solutions from given

data or boundary conditions. This inversion process is essential in many applications,

such as inverse problems and parameter identification.

(v) Approximation and Numerical Methods: Green’s functions provide a the-

oretical foundation for approximation and numerical methods for solving PDEs. By

approximating the Green’s function or using its properties, one can develop efficient

numerical algorithms, such as boundary element methods or finite element methods, for
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the discretization and solution of PDEs. Green’s functions also play a role in the analysis

of convergence and stability properties of these numerical methods.

(vi) Physical Interpretation: Green’s functions have important physical interpre-

tations. In many cases, the Green’s function represents the response of a system to

a unit impulse or point source. Therefore, it provides insights into the behavior and

characteristics of the underlying physical phenomenon described by the PDE. Green’s

functions allow for the understanding of propagation, diffusion, and wave phenomena,

among others, in terms of the fundamental solutions of the associated PDEs.

In Duffy’s work [68], we can discover additional intricacies and distinctive features

regarding Green’s functions and their practical applications.
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2
BLOW-UP AND QUENCHING PHENOMENA

This chapter provides a detailed exploration of the concept of quenching and

its diverse applications, as well as its significance in different areas of science

and engineering. It examines two categories of reaction-diffusion equations that

involve singularities in the reaction term: “blowup,” where the reaction tends towards

infinity as the variable approaches infinity, and “quenching,” where the reaction tends

towards infinity at a specific value of the variable. The chapter also delves into the role

of quenching in biology and medicine.

2.1 Quenching phenomenon and applications

2.1.1 What is Quenching?

Quenching refers to a rapid cooling process used in materials science and metallurgy

to achieve specific properties in a material, such as increased hardness or improved

strength. During quenching, a heated material is rapidly cooled by immersing it in a

quenching medium, which can be a liquid, gas, or even a solid. Each material has a

certain hardenability, which is determined based on its chemical composition and its

previous history (whether it has received other heat treatments). We find in Liščić et al.
[129] everything related to this topic.

In the study of quenching and tempering, several key aspects are illustrated through
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FIGURE 2.1. Flowchart of quenching and tempering.

FIGURE 2.2. Temperature curve during quenching and tempering.

various figures. Figure 2.1 presents a comprehensive flowchart that outlines the process of

quenching and tempering. This flowchart serves as a valuable visual aid in understanding

the overall procedure. Additionally, Figure 2.2 provides a temperature curve that depicts

the variations in temperature throughout the quenching and tempering process. Lastly,

Figure 2.3 showcases the microstructural changes that occur during quenching. This

figure highlights the transformations that take place at a microscopic level, shedding

light on the structural modifications that arise from the quenching process.
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FIGURE 2.3. Microstructural change during quenching.

FIGURE 2.4. Quenching by water.

There are several types of quenching media commonly used:

(i) Water: Water is one of the most commonly used quenching media due to its high

cooling capacity. It provides rapid cooling rates, but it can also cause severe distortion or

cracking in some materials. See Figure 2.4.

(ii) Oil: Different types of oils, such as mineral oil or vegetable oil, are often used as

quenching media. Compared to water, oil provides a slower and more controlled cooling

rate, which helps reduce the risk of distortion or cracking. See Figure 2.5.

(iii) Polymer solutions: Polymer solutions, such as water-based polymer solutions

or polymer quenchants, offer a controlled and uniform cooling rate. They can be tailored

to specific applications and materials. See Figure 2.6.

(iv) Salt solutions: Salt solutions, such as brine solutions, are used for specialized

quenching applications. They provide a controlled cooling rate and are often used for

specific materials or processes. See Figure 2.7.

(v) Gas: In some cases, gases like nitrogen or helium are used as quenching me-

dia. Gas quenching allows for rapid cooling without direct contact, which is useful for
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FIGURE 2.5. Quenching by oil.

FIGURE 2.6. Quenching by Polymer solutions.

FIGURE 2.7. Quenching by salt solutions.
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FIGURE 2.8. Quenching by gas.

materials that are sensitive to contact with liquids. See Figure 2.8.

The quenching process typically involves several steps:

(i) Heating: The material is heated to a specific temperature, known as the austeni-

tizing temperature, to transform its microstructure.

(ii) Immersion: The heated material is quickly immersed in the quenching medium,

ensuring rapid cooling.

(iii) Cooling: The quenching medium extracts heat from the material, causing it to

cool rapidly. The cooling rate and quenching media selection are critical factors that

influence the resulting material properties.

(iv) Stabilization: After quenching, the material may undergo a stabilization process,

such as tempering or annealing, to relieve internal stresses and improve the material’s

overall stability and strength.

The choice of quenching medium and the specific quenching process parameters

depend on factors such as the material type, desired properties, and the application

requirements. It is essential to carefully control the quenching process to achieve the

desired material characteristics while minimizing the risk of distortion or cracking.

2.1.2 Quenching in biology and medicine

In biology, medicine, and ecology, the term “quenching” is used to describe various

phenomena related to the extinguishing or suppression of biological processes, signals,

or activities. Understanding and manipulating quenching phenomena are important

for studying cellular processes, diagnosing diseases, and maintaining ecological balance.

Here are a few examples of how quenching is used in these fields:
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(i) Fluorescence Quenching: Fluorescence quenching refers to the reduction or

suppression of fluorescence emission in fluorophores or fluorescent molecules. It occurs

when an external agent or molecule interacts with the excited state of the fluorophore, re-

sulting in the dissipation of energy and a decrease in fluorescence intensity. Fluorescence

quenching is widely used in molecular biology, biochemistry, and medical diagnostics for

studying molecular interactions, protein-protein interactions, and detecting biomarkers.

(ii) Reactive Oxygen Species (ROS) Quenching: Reactive oxygen species, such

as superoxide radicals and hydrogen peroxide, are highly reactive molecules involved

in various physiological and pathological processes. Quenching refers to the process

of neutralizing or reducing the levels of ROS in cells or tissues. This can be achieved

through the action of antioxidants, enzymes, or other molecules that scavenge or convert

ROS into less reactive forms. ROS quenching is important for maintaining cellular

homeostasis and preventing oxidative damage to biomolecules.

(iii) Quenching of Biological Signals: In cellular signaling and communication,

quenching can refer to the termination or suppression of signaling pathways or sig-

nals. For example, G-protein-coupled receptors (GPCRs) can undergo desensitization or

quenching, where their ability to transmit signals is reduced or turned off in response to

prolonged stimulation. This helps prevent overstimulating and allows cells to reset their

responsiveness to subsequent signals.

(iv) Quenching of Biological Processes: Quenching can also refer to the inhibition

or suppression of biological processes or activities. For instance, in the context of photo-

synthesis, quenching mechanisms regulate the excess energy absorbed by chlorophyll

molecules, preventing damage to the photosynthetic machinery. In ecology, quenching

may describe the suppression of specific ecological processes or interactions, such as the

reduction of predation or competition, through various mechanisms.

2.1.3 Role of quenching in cellular processes

Quenching, as a rapid cooling process, can play a significant role in cellular processes by

affecting cellular behavior, metabolism, and various physiological responses. Here are

some ways in which quenching impacts cellular processes:

(i) Cryopreservation: Quenching is a crucial step in cryopreservation, a process

used to preserve cells and tissues at extremely low temperatures. By rapidly cooling cells,

quenching prevents the formation of ice crystals, which can cause cellular damage. This

enables the successful preservation of cells for long-term storage, transplantation, and
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research purposes.

(ii) Protein Folding: Quenching can influence protein folding, a critical process

for protein structure and function. Rapidly cooling a protein sample can "trap" it in a

specific conformation, preserving its structure at a particular moment in time. This allows

researchers to study protein folding pathways and dynamics, aiding in the understanding

of protein structure-function relationships and related cellular processes.

(iii) Enzyme Inactivation: Quenching can be employed to rapidly halt enzymatic

activity. By rapidly cooling a sample, enzymatic reactions can be stopped, preserving

the reaction state at a specific time point. This enables the analysis of enzyme kinetics,

substrate specificity, and the study of metabolic pathways.

(iv) Cellular Metabolism: Quenching can be used to rapidly stop cellular metabolic

processes. By quickly cooling cells, enzymatic reactions and metabolic pathways are

halted, allowing for the analysis of metabolite levels, enzyme activities, and metabolic

fluxes at a specific moment. This provides insights into cellular metabolism and its

regulation, aiding in the understanding of metabolic pathways and their roles in cellular

processes.

(v) Gene Expression Analysis: Quenching is employed in techniques such as the

rapid freezing of cells or tissues for gene expression analysis. By quickly cooling cells,

transcriptional activity is halted, preserving the gene expression profile at a specific

time point. This allows researchers to study gene expression patterns and regulatory

networks in various cellular processes.

2.1.4 Quenching in contact lenses manufacturing

Contact lenses are a complex product that relies on various factors from a materials

science perspective. To meet the specific demands of different users, it is crucial to

place a stronger emphasis on understanding and optimizing specific properties. One key

aspect is the choice of material for the contact lens, as it directly influences wear time

and comfort for the wearer. These properties are not only influenced by the inherent

characteristics of the material but also by the manufacturing processes involved, such as

plasma processing. By considering both material-based properties and manufacturing

techniques, a comprehensive approach can be adopted to enhance the performance and

comfort of contact lenses. See Figure 2.9.

In contact lens manufacturing, there are certain processes that can be related to

the concept of quenching in the context of contact lens manufacturing. Here are a few
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FIGURE 2.9. Contact lenses from a materials science.

relevant processes:

(i) Heat Treatment: After the contact lenses are formed, they usually undergo a

heat treatment process to achieve their final physical properties. This process involves

exposing the lenses to elevated temperatures, which initiates and completes the polymer-

ization or crosslinking of the lens material. The heat treatment step can be considered

analogous to the heating phase in quenching, where the lenses are subjected to high

temperatures to induce specific changes in their structure.

(ii) Quenching and Annealing: After the lenses are heated, they need to be cooled

down to stabilize their structure and reduce any residual stresses. Controllable quenching

rates are employed to ensure the lenses solidify and retain their desired optical and

mechanical properties. Additionally, an annealing process may follow the quenching

phase, where the lenses are held at a specific temperature for a certain period to further

relieve any internal stresses and enhance their stability.

(iii) Surface Treatments: In some cases, contact lenses may undergo surface treat-

ments to modify their properties. This can involve the use of chemical agents or plasma

treatment to alter the lens surface properties, such as increasing wettability or improving

the deposition of certain coatings. These treatments can be considered quenching-like

processes since they involve the rapid modification of the surface properties of the lenses.

38



2.1. QUENCHING PHENOMENON AND APPLICATIONS

2.1.5 Quenching in bioengineering

In the field of bioengineering, the term “quenching” can be used to describe certain

phenomena and processes. Here are a few examples of how quenching is relevant in

bioengineering:

(i) Protein Quenching: In bioengineering, the term “protein quenching” is often

used to refer to the rapid inactivation or suppression of protein activity. This can involve

the use of chemical agents or physical methods to halt or reduce the function of specific

proteins. Protein quenching is employed in various applications, such as controlling

enzymatic activity, preventing protein degradation, or modulating cellular signaling

pathways.

(ii) Cellular Quenching: Cellular quenching refers to the process of rapidly stopping

or inhibiting cellular activity. This can be achieved through the addition of specific agents

or treatments that interrupt cellular processes or induce cell death. Cellular quenching

is often used in bioengineering experiments or applications where the temporary or

permanent cessation of cellular function is desired, such as in tissue engineering, drug

screening, or cell-based assays.

(iii) Quenching of Biochemical Reactions: Quenching can also be used to describe

the rapid termination or inhibition of biochemical reactions. For example, in enzymatic

assays or reactions, quenching agents are often added to stop the reaction and stabilize

the reaction products. This helps prevent further enzymatic activity and allows for the

accurate measurement or analysis of reaction intermediates or end products.

(iv) Quenching of Fluorescence: Fluorescence quenching, as mentioned earlier,

is also relevant in bioengineering. It involves the reduction of fluorescence emission

from fluorophores or fluorescent molecules due to energy transfer or interactions with

other molecules in the system. Fluorescence quenching techniques are widely used in

bioengineering research to study molecular interactions, protein-protein binding, and

biomolecular dynamics.

2.1.6 Protein quenching in bioengineering

Here are a few examples of how protein quenching is used in various bioengineering

applications:

(i) Enzyme Inhibition: Protein quenching is often employed to inhibit the activity of

specific enzymes. This can be useful in drug development and therapeutic interventions.

By identifying small molecules or inhibitors that can bind to and quench the activity of
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target enzymes, bioengineers can design drugs that selectively block enzymatic pathways

involved in disease processes. This approach is commonly used in the development of

enzyme inhibitors for conditions such as cancer, cardiovascular diseases, and metabolic

disorders.

(ii) Protein Stabilization: Protein quenching techniques can be used to stabilize

proteins and prevent their degradation or denaturation. By introducing certain chemical

agents or modifications, bioengineers can inhibit the activity of proteases or other factors

that contribute to protein degradation. This is particularly important in areas such as

protein therapeutics, where the stability of recombinant proteins needs to be maintained

for effective delivery and therapeutic efficacy.

(iii) Signal Transduction Modulation: Protein quenching can be used to modulate

signal transduction pathways within cells. By selectively targeting and inhibiting specific

proteins involved in signaling cascades, bioengineers can manipulate cellular responses

and regulate biological processes. This approach is valuable in areas such as synthetic

biology and tissue engineering, where precise control of cellular behavior and function is

required.

(iv) Protein-Protein Interaction Studies: Protein quenching techniques are com-

monly employed in studies aimed at understanding protein-protein interactions. By

selectively quenching the fluorescence of specific proteins or fluorescently labeled pro-

teins, researchers can investigate the dynamics and kinetics of protein-protein binding

events. This allows for the characterization of protein interactions, the identification of

binding partners, and the study of protein complex formation.

(v) Biomaterial Coating and Surface Modification: Protein quenching can be

used to modify the surfaces of biomaterials to prevent unwanted protein adsorption or

fouling. By quenching the activity of proteins that promote adhesion or biofilm formation,

bioengineers can design coatings or surface modifications that resist protein binding

and enhance the biocompatibility of biomaterials. This is particularly important in

applications such as implantable medical devices, where protein fouling can lead to

complications and device failure.

2.1.7 Advancements and innovations in quinching-based

technologies

Advancements and innovations in quenching-based technologies have led to significant

breakthroughs in various fields. Quenching, a process that involves rapid cooling of ma-
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terials, plays a crucial role in enhancing the properties and performance of a wide range

of materials and components. Here are some notable advancements and innovations in

quenching-based technologies:

(i) Quenching in Metallurgy: In the field of metallurgy, advancements in quenching

techniques have revolutionized material properties. Innovative quenching methods, such

as high-pressure gas quenching and cryogenic quenching, have been developed to achieve

improved hardness, strength, and wear resistance in metals. These techniques have

found applications in the aerospace, automotive, and manufacturing industries, enabling

the production of high-performance materials and components. See Figure 2.10.

(ii) Quenching in Heat Treatment: Heat treatment processes, such as hardening,

tempering, and annealing, heavily rely on quenching to achieve desired material proper-

ties. Advancements in quenching technologies, such as precision-controlled cooling rates

and tailored quenching mediums, have enabled precise control over material microstruc-

tures and mechanical properties. This has resulted in enhanced strength, toughness, and

fatigue resistance in heat-treated components. See Figure 2.11.

(iii) Quenching in Additive Manufacturing: Additive manufacturing, or 3D print-

ing, has seen remarkable advancements with the integration of quenching-based tech-

nologies. Rapid quenching of printed parts during the manufacturing process enables the

formation of fine-grained microstructures, improved mechanical properties, and reduced

residual stresses. This has expanded the possibilities for producing complex geometries

and functional components with superior performance. See Figure 2.12.

(iv) Quenching in Biomaterials: Quenching techniques have also been applied to

biomaterials, such as biomedical implants and prosthetics. Innovations in quenching-

based surface treatments, such as plasma electrolytic oxidation and laser quenching,

have been developed to improve the biocompatibility, corrosion resistance, and wear

resistance of biomaterials. These advancements have contributed to the development of

longer-lasting and more reliable medical devices. See Figure 2.13.

(v) Quenching in Electronics: Quenching-based technologies have found applica-

tions in the electronics industry, particularly in the rapid cooling of electronic components

and semiconductors. Enhanced quenching methods, such as liquid immersion cooling

and vapor phase quenching, have been employed to dissipate heat generated by high-

power electronic devices, enabling efficient thermal management and improved device

performance.
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FIGURE 2.10. Quenching in Metallurgy.

FIGURE 2.11. Quenching in Heat Treatment.

FIGURE 2.12. Quenching in Additive Manufacturing.
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FIGURE 2.13. Quenching in Biomaterials.

2.2 Quenching reaction diffusion models

2.2.1 Quorum-quenching microbial infections

In [66], Dong et al. discuss the concept of quorum quenching as a potential strategy for

controlling microbial infections. They explain that many pathogens rely on cell-to-cell

communication, known as quorum sensing, to coordinate their activities during infection.

By disrupting this communication, quorum quenching can prevent the expression of vir-

ulence genes and the formation of biofilms. The paper highlights that quorum-quenching

mechanisms are widespread in various organisms and have been used to develop new

antimicrobial strategies. It also mentions the discovery of quorum-sensing signal degra-

dation enzymes in mammals, which may play a role in host defense against infectious

diseases. Overall, the paper emphasizes the importance of studying quorum quenching

for the development of novel approaches to combat infectious diseases.

2.2.2 Nonphotochemical quenching

In [209], Troiano et al. investigate the mechanisms of nonphotochemical quenching

(NPQ) in the light-harvesting complex stress-related protein LHCSR3 from the green

alga Chlamydomonas reinhardtii. The study identifies two distinct quenching processes

within LHCSR3: pH-dependent quenching and zeaxanthin-dependent quenching. The

pH-dependent quenching is controlled by protonated residues that sense a pH drop,

while zeaxanthin-dependent quenching occurs even at neutral pH. Both quenching

processes play a role in preventing the formation of damaging reactive oxygen species

and provide different induction and recovery kinetics for photoprotection. The findings
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shed light on the molecular mechanisms of NPQ and contribute to the understanding of

photoprotection in green algae.

2.2.3 Quenching for Microalgal Metabolomics

The paper of Kapoore and Vaidyanathan [110] investigates the impact of different quench-

ing parameters on intracellular metabolite leakage in Chlamydomonas reinhardtii, a

green alga. The study explores various factors such as quenching solvents, methanol

concentration, buffer additives, quenching time, and solvent-to-sample ratio. The re-

searchers measured the recovery of twelve metabolite classes using gas chromatography

mass spectrometry (GC-MS) and established a mass balance to understand the fate of

metabolites during quenching treatments. They found that conventional 60% methanol

resulted in significant loss of intracellular metabolites and that increasing methanol

concentration or quenching time increased leakage. They recommend quenching with

60% aqueous methanol supplemented with 70 mM HEPES at -40◦C with a 1:1 sample-

to-quenching solvent ratio for higher recovery and reduced metabolite leakage.

2.2.4 Fluorescent Quenching in Ophthalmology

This paper of Nichols et al. [166] investigates the contribution of evaporation to tear

thinning in the tear film. The study aims to determine if a high concentration of fluores-

cein in the tear film would show a greater reduction in fluorescent intensity compared to

a low concentration due to self-quenching at high concentrations. Tear film thickness,

thinning rate, and fluorescent intensity were measured in healthy subjects using a

modified spectral interferometer. The results show that there were no differences in

tear film thickness or thinning rates between low and high fluorescein concentration

conditions. However, the rate of fluorescent decay was significantly faster in the high

concentration group, suggesting that evaporation plays a primary role in normal tear

thinning between blinks.

2.2.5 Flame Enhancement and Quenching in Fluid Flows

In [212], Vladimirova et al. study the effects of turbulent combustion in flows where

fuel and air are mixed before ignition, which is an important subject in scientific and

industrial fields. The study examines how the movement of the flow affects the reaction
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process and alters the speed of the flame. Both experimental and theoretical approaches

are used to understand this phenomenon. It is observed that moderate turbulence

enhances the flame, but excessive movement of the flow can cause the flame to extinguish.

Detailed analytical theories for combustion in fluid phases are currently considered

impractical, so researchers rely on heuristic reasoning and simplified models, especially

in well-understood situations such as the flamelet regime. The analysis often begins with

an approximation based on geometric optics, using Huygens’ principle to explain how

the flame propagates.

The objective of this study is to examine a commonly used mathematical model,

known as the scalar reaction diffusion equation with passive advection, which is widely

employed in the field of combustion research:

(2.1)
∂T
∂t

= u ·∇T = κ∇2T + 1
τ

R (T)

Here T is the normalized temperature, 0 ≤ T ≤ 1, u is the fluid velocity, which we

assume is incompressible, κ is thermal diffusivity, and τ is the typical reaction time. In

the absence of fluid velocity (2.1) admits flat propagation front with laminar burning

velocity of the order of v0 ∼
√

κ
τ

and characteristic thickness of the order of δ∼
p
κτ . The

model (2.1) can be derived from a more complete system under assumptions of constant

density and unity Lewis number (the ratio of material and tem perature diffusivity), as

shown, for instance, in Clavin and Williams [50]. The equation (2.1) has a more general

applicability than the geometrical optics approximation; moreover, the geometrical optics

limit can be obtained from (2.1) in a certain parameter range.

We will consider reaction rates R (T) of two types, KPP (Kolmogorov, Petrovskii,

Piskunov), see Fisher [82] and Kolmogorov et al. [119], and ignition. The KPP type

is characterized by the condition that the function R (T) is positive and convex on the

interval 0< T < 1. This reaction type is used often in problems on population dynamics

(see e.g. Aronson and Weinberger [22] and Fife [74]), but is relevant in combustion

modelling, for example in some autocatalyctic reactions, see Hanna et al. [100]. A reaction

term of ignition type is characterized by the presence of critical ignition temperature,

such that the function R (T) is identically 2 zero below ignition temperature. This type of

reaction term is used widely to model combustion processes (see e.g. Volpert et al. [214]

and Zeldovich et al. [221]), in particular approximating the behavior of Arrhenius-type

chemical reactions which vanish rapidly as temperature approaches zero.

The main goal is to understand how the shape and strength of fluid flow impact the

combustion process. We are motivated by recent analytical research that has established
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precise limits on combustion enhancement and quenching. The principal objective is

to test and expand upon these findings. The authors examined two types of flows:

shear flows, which are part of a larger category called “percolating,” and cellular flows,

characterized by closed streamlines that form isolated cells. For both types of flows, they

investigated both flame enhancement and quenching phenomena.

In the study of flame enhancement, they examined the initial temperature in the form

of a laminar front, propagating as a traveling wave distorted by the imposed flow. The

focus is on establishing relations between flame propagation speed v and flow properties,

particularly for large advection velocities.

In the investigation of quenching phenomena, we consider the presence of a non-zero

initial temperature within a finite region. To examine this, we utilize an ignition-type

reaction term, as quenching is not possible with the KPP-type source term. Our focus is

on determining the critical size W◦ of the initial hot region. When the size is below this

critical value, the flame is extinguished solely due to diffusion, without the influence of

advection. This occurs as the temperature decreases below a certain threshold, causing

the reaction to cease before a steady traveling wave configuration can be established.

However, when advection is present, the initially hot region is stretched by the fluid

flow, enabling quenching through diffusion. The objective is to gain insights into how the

geometry and intensity of the flow impact the size of the initial hot region W that can be

quenched.

2.2.6 Prey-predator model: Invasion and co-extinction waves

In [67], Ducrot and Langlais investigates a mathematical model describing the dynamics

of prey-predator interactions in a fragile environment. The authors focus on the existence

of traveling wave solutions for predator invasion and the possibility of co-extinction of

both species. The model considered is the following{
Bt (t, x)−d∆B (t, x)= B (t, x) g (B (t, x))−C (t, x)

Ct (t, x)−∆C (t, x)= rC (t, x)
(
1− C(t,x)

B(t,x)

)
The model consists of a singular reaction-diffusion system that describes the densities

of prey B and predators C over time t and space x. The system includes diffusion

coefficients, growth rates, and a logistic growth function for the prey. The authors

consider both a spatially homogeneous problem and a spatially structured problem with

initial data and no-flux boundary conditions.
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The main goal of the study is to find traveling wave solutions for predator invasion in

the system. The authors use numerical simulations to support their findings and propose

a regularization procedure to analyze the existence of weak traveling wave solutions.

They also investigate the possibility of finite-time quenching, where both populations

vanish after the predator invasion wave.

The paper presents assumptions and main results, including the definition of weak

traveling wave solutions and the conditions for their existence. The authors analyze the

regularized Holling-Tanner system and provide nonexistence results. They also discuss

the qualitative properties of traveling wave solutions and their implications.

Overall, the article contributes to the understanding of the dynamics of prey-predator

interactions in fragile environments and provides insights into the existence and proper-

ties of traveling wave solutions in the studied system.

2.3 Quenching and Blow-up problems

In this section, our focus is on reaction-diffusion equations of the form

(2.2) ut −∆u = f (u,∇u, t, x)

where the solution u = u (t, x) is a real-valued function defined for (t, x) ∈ [0×T]×Ω,

with 0 < T ≤ ∞ and Ω being a bounded subset of RN . In a more general setting, the

diffusion term in the equation can take the form of A (u), where A is a second-order

elliptic operator that may be nonlinear and degenerate. We focus solely on the case

where the diffusion term is equivalent to the Laplacian. We assume Cauchy-Dirichlet

data, meaning that u is given on the boundary ∂Ω and at the initial time t = 0. We

are particularly interested in equations where f exhibits some form of singularity with

respect to u. These situations can be broadly classified into two categories:

In the first case f →∞ as u →∞, this behavior can be observed in functions such as

f (u) = eu or f (u,ux) = up −u2
x. These functions find applications in various fields like

combustion theory, population genetics, and population dynamics. The main interest

is a possibility that there are solutions which can tend to infinity in finite time. This

phenomenon is known as “blowup”.

In another case we have reaction terms that satisfy f → ∞ as u → K for some

K ∈ [0,∞). An example of such a function is f (u) = −1
u . This type of reaction-diffusion

equation with a singular reaction term is commonly encountered in the study of electric

current transients in polarized ionic conductors. It can also be seen as a special case of
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models in chemical catalyst kinetics (Langmuir-Hinshelwood model) or enzyme kinetics.

Researchers have extensively studied this equation under certain assumptions, which

imply that the solution u (t, x) approaches K in finite time. As the reaction term tends

to infinity, the smooth solution ceases to exist, and this phenomenon is referred to as

“quenching” or “extinction”.

2.3.1 Reaction-diffusion equations

The main focus of our investigation lies in the reaction terms, denoted as f = f (u), which

do not explicitly depend on ∇u, t or x. To represent the semigroup generated by the

operator ∆ with Dirichlet boundary conditions in a specific function space, we use the

notation et∆. In this context, the variation of constants formula for equation (2.2) can be

expressed as follows:

(2.3) u (t)= et∆u0 +
∫ t

0
e(t−s)∆ f (u (s))ds.

To establish both local existence and uniqueness for equation (2.2), one method is to

utilize the contraction mapping principle described in (2.3). A crucial requirement for

this approach is that the reaction term f must exhibit local Lipschitz continuity.

The solution obtained can be continued locally, and in certain cases, it exists for all

subsequent time intervals (global existence). However, for specific combinations of f and

u0, there exists a finite time T <∞ such that ‖u (t)‖∞ →∞, as t → T. This phenomenon

is called blowup.

In the case where f = 0 in (2.2), the equation reduces to the linear diffusion or

heat equation. For example, if we impose the condition u = 0 on the boundary and

u0 ∈ C (Ω), the solution can be expressed in closed form as u (t) = et∆u0. By examining

this expression, we can easily verify various qualitative properties of u (t). In particular,

we observe that u (t) exists globally, and blowup does not occur.

This example clearly illustrates that a (possible) blowup in equation (2.2) arises as a

result of the cumulative effect of the nonlinearity f (u). This observation is elementary in

the context of ordinary differential equations. Specifically, if we set ∆u = 0 and f (u)= up

with p > 1 in (2.2), and examine the corresponding ODE:

(2.4) u′ = up, t > 0; u (0)= 1,

we find that the solution is given by u (t) = [1+ (1− p) t]
1

1−p . Therefore, the solution is

smooth for t ∈
(
0, 1

1−p

)
, and u (t)→∞ as t → 1

1−p , i.e., u blows up.
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The situation becomes significantly more intricate for partial differential equations

such as equation (2.2). In general, it is not feasible to obtain explicit solutions for these

equations, making it challenging to analyze the potential occurrence of blowup.

The pioneering work on the blowup problem for the reaction-diffusion equation was

conducted by Fujita. He investigated the Cauchy problem for the equation ut−∆u = u1+α,

where α> 0, and established that if 0 < Nα< 2 (N being the spatial dimension), then

the initial value problem did not possess any nontrivial global solutions. However,

if Nα > 2, nontrivial global solutions did exist, provided that the initial values were

sufficiently small. Following the publication of Fujita’s paper, extensive research has been

dedicated to studying the blowup phenomenon in Levine reaction-diffusion equations.

For a comprehensive overview, one can refer to the review Galaktionov and Vazquez [84]

and Levine [126], as well as the references cited therein.

Another scenario in which the reaction-diffusion equation lacks a global (smooth)

solution is when the reaction term exhibits singularity for finite values of u. A common

example is equation (2.2) with f (u)=−u−p, where p > 0. In this case, it is possible that

there exists a time T such that inf
x∈Ω

u → 0, as t → T. Consequently, the reaction term

blows up, leading to the cessation of a smooth solution. This phenomenon is known as

quenching (or extinction, as referred to in some papers by Galaktionov and Vazquez

[84]).

Similar to the blowup problem, the occurrence of quenching is also attributed to a

nonlinear reaction term. However, we can establish that quenching is impossible under

certain conditions using the parabolic Harnack’s inequality. For example, if we have a

uniformly elliptic operator as the diffusion term in (2.2) and f ≡ 0 with the boundary

condition u = 1, then quenching cannot occur.

In the case of ordinary differential equations we can demonstrate quenching by a

simple example. We replace the term up in (2.4) by −u−p, p > 0, and solve it to get

u (t) = [1+ (1− p) t]
1

1−p . From this we obtain that the solution is smooth for t ∈
(
0, 1

1−p

)
,

and u (t)→∞ as t → 1
1−p , i.e., u quenches. As we delve into the examination of quenching

in the context of the PDE (2.2), we find that the diffusion term ∆u acts as a barrier

against quenching. Consequently, the analysis of quenching becomes more challenging

due to the resistance offered by the diffusion term.

Although there are some similarities between the blowup and quenching problems,

there exists a qualitative difference between them. In the blowup problem, the solution

u (t) becomes unbounded, whereas in the quenching problem, some derivative of the

solution u (t) blows up. Typically, it is the time derivative ut that blows up in quenching
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problems, which adds to the complexity of these equations. The changes in the solution

with respect to time occur at an increasingly rapid rate. Consequently, traditional

analysis methods such as the contraction mapping principle used in (2.3) do not provide

significant insights into the qualitative properties of the solution near the quenching

point, as the size of the time steps tends to zero.

The quenching problem was first addressed in a seminal paper by Kawarada [113].

This paper served as a catalyst for extensive research on the quenching problem con-

ducted by numerous authors. The subsequent studies explored various aspects such as

the existence and nonexistence of quenching solutions, the structure or size of quench-

ing points, as well as the asymptotic behavior of solutions in space and time near the

quenching points.

2.3.2 An overview of results

In this subsection, we provide an overview of the results obtained in this context. Addi-

tionally, for further information, one can refer to Galaktionov and Vazquez [84], Kawohl

[114] and Levine [126]. Our focus is centered on examining the quenching and blowup

problems for equations of the form (2.2). These types of equations find numerous applica-

tions in the fields of physics, chemistry, and biology, as highlighted in references Grinrod

et al. [95], Henry [103] and Sperp [206]. In the following, we present several scenarios in

which blowup or quenching behavior can potentially occur.

(i) The theory of combustion and population genetics (see Galaktionov and Vazquez

[84], Souplet [205] and Zeldovich et al. [221] and related sources) utilizes the theory

of blowup and quenching. In this context, there exist two well-known scalar models.

The first one is the exponential reaction model, characterized by the equation (2.2) with

f (u)= δeu. This model, also referred to as the Frank-Kamenetsky equation see Zeldovich

et al. [221], plays a significant role in combustion theory. For example, it is employed to

describe the combustion of one-dimensional solid fuels, which can be represented by{
Tt = Txx +δεexp

(T−1
εT

)
ct =−εΓδcexp

(T−1
εT

)
where T and c represent respectively the fuel temperature and concentration, and δ, Γ,

ε are positive physical constants. Typically, ε represents the inverse of the activation

energy. If we assume 0 < ε¿ 1, and look for solutions in the form T = 1+εu+ ... and

c = 1−εC1 + ..., we are led to ut = uxx +δeu and (Ci)t =Γδeu. The other classical blowup

equation is (2.2) with f (u)= up.
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(ii) Population dynamics were investigated in a study to Souplet [205], where equa-

tion (2.2) was initially introduced with the function f (u)= |u|p−1 u−b |∇u|q (p > 1, q ≥ 1)
(see Chipot and Weissler [42]). The focus of this model was to analyze the impact of

the gradient damping term b |∇u|q on potential blowup behavior. The term f1 = |u|p−1 u
represents the birth rate, while the term −b |∇u|q represents the death rate within the

population. Specifically, the dissipative gradient term symbolizes the action of a predator

that eliminates individuals during their movements. Alternatively, the birth rate can

also be described using an exponential term, such as i.e., f1 (u)= eu or f1 (u)= ueu .

(iii) The investigation of the diffusion equation arising from polarization phenomena

in ionic conductors was discussed in Kawarada [113] and related works (see references

therein). Kawarada’s Paper [113] specifically examined equation (2.2) in one spatial

dimension, where f (u) = 1
1−u and u ≡ 0 on the parabolic boundary. In this context,

“quenching” refers to the scenario where u approaches 1. It is worth noting that these

equations are typically expressed in a form where the singularity occurs at u = 0, i.e.,

f (u)=− 1
u .

(iv) This case can be considered as a limit of models used in chemical catalyst

kinetics, such as the Langmuir Hinshelwood model, or in enzyme kinetics (see Fila et

al. [75] and Phillips [178], as well as other relevant sources). In this particular case,

the function f = f (u,ε) is smooth for ε> 0, and f (u,ε) → f (u), as ε→ 0, where f (u) is

negative for u > 0 and singular at u = 0. Specifically, the reaction term is denoted by

f = f (u)χ ({u > 0}), which emphasizes that the reaction stops when u = 0.

(v) The issue of a superconducting vortex intersecting with the boundary separating a

vacuum and a superconducting material was explored in previous research (see Chapman

et al. [38], and Merle and Zaag [139]). In the paper to Merle and Zaag [139], a vortex

line at time t ≥ 0 is represented as

L (t)= {(x, y, z)= (x,0,u (t, x)) |x ∈Ω} ,

where Ω= (−1,1) or Ω=R, and u > 0 is a regular function. The physical derivation

leads to the satisfaction of (2.2) by u (x, t) with a reaction term f (u) = e−uH0 −F0 (u),

Here, H0 denotes the applied constant magnetic field, and F0 is a regular function that

satisfies F0 (u)∼ 1
u and F ′

0 (u)∼− 1
u2

as u → 0. In this model, a vortex reconnecting with

the boundary (the plane z = 0) corresponds to quenching.

(vi) When investigating the movement of the interface between liquids and solids

in the context of phase transitions (see Fila et al. [78] and Kawohl [115]), the equation

involved has a nonlinear diffusion term. This gives rise to the following form of the
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equation:

ut −∇· ∇u√
1+|∇u|2

=−1
u

.

(vii) When examining detonation theory (as referenced in Galaktionov et al. [85] and

other relevant literature), both the diffusion term and the reaction term in the equation

are nonlinear. Consequently, the equation can be expressed as follows:

ut − ln
(

ecuuxx −1
cuuxx

)
= ln(u)− 1

2
u2

x

where c is a nondimensional positive constant representing the chemical prop erties.

This equation was studied in Galaktionov et al. [85] with Neumann boundary conditions.

Models (i) and (ii) exhibit the potential for the function u to experience a blow-

up phenomenon within a finite time frame. Correspondingly, in models (iii)-(vii) it is

possible that u quenches in finite time.

Now, we will provide a concise overview of the equations (2.2) and discuss the relevant

literature on the topic. The equation (2.2) has been the subject of extensive research,

as evidenced by numerous books, see Evans [72], Grinrod [95], Henry [103], Krylov

[121], Lieberman [127], Smoller [203] and Sperp [206] and other referenced works. The

studies conducted have yielded various outcomes, including the investigation of existence,

uniqueness, continuous dependence, stability, smoothness, and asymptotic properties of

solutions, among others.

Henry [103] has explored the geometric theory of equations (2.2). In this context, a

fundamental strategy is to reformulate the partial differential equation as an ordinary

differential equation within a Banach space, which includes unbounded operators. As a

result of this approach, the theory of C0-semigroups has emerged (see Goldstein [91] and

Pazy [176]). The main objective is to establish the necessary and sufficient conditions for

ensuring the well-posedness of the problem. When considering linear equations, whether

they are homogeneous or nonhomogeneous, employing a semigroup approach allows for

an explicit solution to the problem. However, when dealing with nonlinear equations, as

mentioned earlier, the use of fixed-point theorems becomes necessary to establish the

existence of solutions.
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2.4 Earlier results

Let’s consider the problem

(2.5)


ut −∆u = f (u) , t ∈ (0,T) , x ∈Ω
u (t, x)= 1 , t ∈ (0,T) , x ∈ ∂Ω
u (0, x)= u0 (x) , x ∈Ω

with an initial function u0 (x) satisfying 0< u0 (x)≤ 1 and u0 = 1 on the boundary. Here

T represents a positive constant. We assume that the reaction term f (u) is singular at

u = 0 in the sense that lim
u→0

f (u)=−∞. For u > 0, we assume that f (u) is smooth and to

satisfy (−1)k f (k) (u)< 0; k = 0,1,2.

It is widely known, as referenced in (Sperp [206] p.34, Th.3.3.), that the problem (2.5)

has a unique local solution within the set (0, tε)× Ω. This solution can be extended to

(0, t)×Ω, where

T = inf
τ

{
τ≥ 0 | lim sup

t→τ,x∈Ω

(
u (t, x)+ 1

u (t, x)

)
=∞

}

Furthermore, it is established, as mentioned in (Sperp [206] p.41, Th. 3.8.), that u (t, x) is

a C∞-function with respect to to t and xi in (t, x) ∈ (0, t)×Ω.

Definition 2.1. We say that a is a quenching point and T is a quenching time for u (t, x),

if there exists a sequence {(tn, xn)} with tn → T and xn → a, such that u (tn, xn) → 0 as

n →∞.

Definition 2.2. We say that b is a blowup point and T is a blowup time for u (t, x), if

there exists a sequence {(tn, xn)} with tn → T and xn → b, such that u (tn, xn) →∞ as

n →∞.

Below (i) to (iv), we will introduce the most important typical research subjects for

blowup and quenching problems:

(i) What are necessary and sufficient conditions for blowup or quenching?

Kawarada [113] investigated the quenching problem in his initial paper. He focused

on studying equation (2.5) withh specific parameter values: f (u)= −1
u , N = 1 and u0 = 1.

Acker and Walter [5] subsequently demonstrated that when Ω is sufficiently large, then

u quenches in finite time. This phenomenon occurs specifically for singularities of this

53



CHAPTER 2. BLOW-UP AND QUENCHING PHENOMENA

type, when u0 = 1. An essential aspect of their research lies in proving that, for suitably

large Ω, problem (2.5) lacks a stationary solution.

Even if equation (2.5) possesses a stationary solution, quenching can still occur under

certain conditions. In such cases, it becomes crucial for the initial function to have values

that are sufficiently close to zero. Acker and Kawohl [4] have provided a proof that when

the initial value u0 is small enough, then u quenches in finite time. This result applies

specifically when N = 1 and
∫ 1

0 f (s)ds =∞.

Levine [125] examines the stationary states of problem (2.5) and establishes that

when the initial value u0 is small enough, quenching occurs within a finite time frame.

This result holds true for the specific case where N = 1 and f (u)=−u−p (p > 0). In the

proof, the initial function u0 is compared to the smallest stationary solution, and it is

demonstrated that this smallest stationary solution is unstable.

(ii) Regarding the set of blowup or quenching points, it is worth considering whether
these phenomena can occur throughout an entire interval or if they are limited to specific
points. In other words, is it possible for blowup or quenching to happen continuously over
an interval, or do they occur only at isolated points?

Acker and Kawohl [4] proved that quenching occurs in the interval (0,T) for functions

f (u) that satisfy (−1)k f (k) (u) < 0; k = 0,1,2. They considered Ω as a ball in RN and

assumed that the initial function u0 satisfies ∆u0+ f (u0)≤ 0 and (∆u0 + f (u0))r ≥ 0. The

argument is based on the inequality urt ≥ 0, which is proved by the maximum principle.

Deng and Levine [59] proved in RN under certain assumptions on f (u) and u0 that

the set of quenching points is a compact subset of Ω. They use the method developed in

Friedman and McLeod [83], where the corresponding blowup problem has been studied.

Guo [98] established that the set of quenching points is a discrete subset of Ω for the

specific case where f (u)=−u−p, (p > 0),and u′′
0 + f (u0)≤ 0 (N = 1). The proof relied on

Angenent’s result [18] concerning certain parabolic equations.

(iii) What kind of asymptotic behavior do solutions obey near the blowup or quenching
points?

It is evident that either ut or ∆u in the equation will blow up when quenching occurs.

Concerning the asymptotic behavior of solutions near a quenching point, several results

have been established, considering different assumptions on u0, f (u) and N.

Chan and Kwong [37] established that when quenching occurs, the derivative ut

blows up (Note that f (u) does not need to be a power singularity). Their result specifically

applies to the case where
∫ 1

0 f (u)du =∞. Deng and Levine [59] extended this theorem

to reaction terms that are less singular. Additionally, Fila and Kawohl [77] proved that if
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f (u)=−u−p, (p > 0). Then

min
x∈Ω

u (t, x) ≤ [(1+ p) (T − t)]
1

1+p

u (t, x) ≥ C1 (T − t)
1

1+p

in a neighborhood of the quenching point (t < T), which provides upper and lower bounds

for u (t, x). However, it’s important to note that the upper bound is only valid at one

specific point with respect to x.

Friedman and McLeod [83] proved that if f (u)= up and N ≥ 1 in (2.5), then

min
x∈Ω

u (t, x) ≤ c

(T − t)
1

1+p

u (t, x) ≤ c

(T − t)
1

1+p

in a neighborhood of the blowup point (t < T).

Guo [98] proved that, in the case N = 1 and p ≥ 3, if f (u) =−u−p, (p > 0). Then for

any quenching point (a,T),

lim
t↑T

u (t, x) (T − t)−
1

1+p = (1+ p)
1

1+p

uniformly, when |x−a| ≤ C
p

T − t for any positive constant C. Fila and Hulshof [79]

extended this result to p ≥ 1. For the weaker singularities 0< p < 1, the proof is done in

Guo [96].

Giga and Kohn [89, 90] proved that if f (u) = up in (2.5) and (a,T) be the blowup

point. Then

lim
t↑T

(T − t)−
1

1+p u
(
a+ y

p
T − t , t

)
= (p−1)−

1
p−1 ,

uniformly, when |y| ≤ C. When f (u)= eu in (2.5), then

lim
t↑T

u
(
a+ y

p
T − t , t

)
+ ln(T − t)= 0,

uniformly for |y| ≤ C. The extension of this result to higher space dimensions has been

worked out in Guo [97] (p ≥ 1) and in Fila et al. [76] (p > 0). See also Bebernes and Eberly

[29], Bebernes et al. [30] and Yuen [220].

Fila and Kawohl [77] proved that if f (u)=−u−p (p > 0) and let (0,T) be the quenching

point (r = |x| , N ≥ 1). Then

u (T, r)≤
[

(p+1)
2(1−p)

] 1
1+p r

2
1+p for 0< p < 1

u (T, r)≥ Cεr
ε+2
1+p for 0< p, t ∈ [0,T]
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See also the corresponding results for the blowup problem in A. Friedman and McLeod

[83].

Flippas and Guo [80] proved that if (0,T) be the quenching point for equation (2.5),

when f (u)=−u−p (p > 0) and N = 1. Then for given C > 0 as t → T, either

(T − t)
−1

1+p u (t, x)− (1+ p)
1

1+p

= (1+ p)
1

1+p

2p (− log(T − t))

(
x2

2(T − t)
−1

)
+ o

(
1

− log(T − t)

)
or else, for some integer m ≥ 3 and some constant c 6= 0

(T − t)
−1

1+p u (t, x)− (1+ p)
1

1+p

= c (T − t)(
m
2 −1) hm

(
xp

T − t

)
+ o

(
(T − t)(

m
2 −1)

)
where the convergence takes place in Ck (|x| < C

p
T − t

)
for any k ≥ 0. hm is the Hermite

polynomial of order m.

They also proved in Filippas and Guo [80] that if (0,T) be the quenching point for

equation (2.5), when f (u)=−u−p (p > 0) and N = 1. Then

u (T, x)=
[

(1+ p)2

8p

] 1
1+p

( |x|2
|log |x||

) 1
1+p

(1+ o (1)) , as |x|→ 0

Note that the latter result is also proved independently in Merle and Zaag [139],

where, in addition, the stability of quenching problems is studied. See also Filippas and

Kohn [81], Herrero and Velazquez [104] and Velazquez [211].

In [198], Salin considered the problem

(2.6)


ut −uxx = log(αu) t ∈ (0,T) , x ∈ (−`,`)
u (0, x)= u0 (x) x ∈ (−`,`)
u (t,±`, t)= 1 t ∈ (0,T)

where α ∈ (0,1) and u0 ∈ (0,1]. The reaction term f (u) =−u−p in (2.5) is here replaced

by the weaker logarithmic singularity f (u) = log(αu). It is shown in Salin [198] that

quenching is possible, i.e., we have: for ` large enough, the solution u (t, x) of (2.6)

quenches in finite time. Moreover, if u′′
0 (x)+ log(αu0 (x)) ≤ 0, then the set of quenching

points is finite.

We can find other very important results in Salin’s works [196–200].

(iv) What can be proved on solutions after blowup or quenching?
Because ut blows up, equation (2.5) does certainly not have a strong solution for all

t > 0. The answer to (iv) therefore depends essentially on the concept of solution that
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one employs and also on how singular the reaction term is. It is interesting to know: (a)

Whether the solution u (t, x) can have nontrivial continuations when t > T ? or (b) Is u (t, x)
identically zero, when t > T (complete quenching)? Note here that f = f (u)χ ({u > 0}).

In Galaktionov and Vazquez [86], the analysis focuses on question (iv) for a broader

range of singularities compared to the ones examined by Fila et al. [75] and Phillips

[178]. The authors Galaktionov and Vazquez [86] make a significant contribution by

establishing the essential conditions that determine complete quenching, taking into

account the function f (u). Specifically, in the case of power singularities, Galaktionov

and Vazquez [86] proved that if f (u)=−u−p in (2.5) and N = 1. Then

(a) Complete quenching occurs if and only if p ≥ 1.

(b) If 0 < p < 1, then the solution of (2.5) has a non-trivial continuation after the

quenching time T.
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3
REACTION-DIFFUSION SYSTEMS WITH INITIAL

CONDITIONS

This Chapter establishes the fundamental principles necessary to comprehend

Chapter 7, emphasizing the significance of potential analysis in comprehending

parabolic problems and reaction-diffusion systems. It delivers a succinct intro-

duction to Kato classes, enabling the examination of elliptic and parabolic equations with

lower-order singular terms, while providing a historical perspective on the model that

will receive primary attention in Chapter 7. Furthermore, the chapter explores a specific

reaction-diffusion system and showcases its wide-ranging applications in biology, ecology,

medicine, and physics. Numerous prior studies are referenced throughout the chapter.

3.1 Introduction

Reaction-diffusion systems with initial conditions are mathematical models that de-

scribe the dynamics of interacting substances undergoing both diffusion and chemical

reactions. These systems involve partial differential equations (PDEs) that capture the

spatiotemporal evolution of the concentrations of the substances involved.

In biology, reaction-diffusion systems with initial conditions have been widely used to

study various biological phenomena, including embryonic pattern formation (see Figure

3.1), morphogenesis (see Figure 3.2), and tissue development (see Figure 3.3). One of
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FIGURE 3.1. Embryonic pattern formation.

FIGURE 3.2. Morphogenesis.

the most famous examples is the [210] model , proposed by Alan Turing in 1952, which

explains how spatial patterns can arise from homogeneous initial conditions through the

interaction of diffusing substances with activator-inhibitor dynamics. This model has

been applied to understand the formation of patterns in biological structures such as

animal coat markings (see Figure 3.4), plant morphogenesis (see Figure 3.5), fish skin

pigmentation (see Figure 3.6), patterns in butterflies (see Figure 3.7), development of

digits in vertebrate limbs (see Figure 3.8), and the fingerprints (see Figure 3.9).

In ecology, reaction-diffusion systems have been used to study the spread of pop-

ulations, such as the spreading of invasive species or the propagation of diseases. By

incorporating diffusion and reaction terms into the models, researchers can simulate
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FIGURE 3.3. Tissue development.

FIGURE 3.4. Animal coat markings.

the spatial expansion of populations and investigate factors that influence their dy-

namics. These models can help in understanding the impact of habitat fragmentation,

environmental gradients, and dispersal mechanisms on population distribution and

persistence.

In medicine, reaction-diffusion systems have been employed to study the diffusion

and reaction of drugs within biological tissues. By modeling the transport of drugs and

their interactions with targeted receptors or enzymes, researchers can simulate drug
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FIGURE 3.5. Plant morphogenesis.

FIGURE 3.6. Fish skin pigmentation.

distribution patterns and optimize treatment strategies. Reaction-diffusion models have

been used, for example, to investigate drug delivery in cancer treatment, where the

spatial distribution of drugs within tumors can play a crucial role in their effectiveness.

In science, reaction-diffusion systems have broader applications beyond biology and

medicine. They have been used to study chemical reactions, patterns formation in physi-

cal systems (see Figure 3.10), patterns formation in bacterial mixtures (see Figure 3.11),

self-organization phenomena (see Figure 3.12), and patterns in nature (see Figure 3.13).

Reaction-diffusion models can provide insights into complex spatiotemporal behaviors

that emerge from simple local interactions, leading to the formation of intricate patterns

and structures (see Figure 3.14).
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FIGURE 3.7. Patterns in butterflies.

FIGURE 3.8. Development of digits in vertebrate limbs.

In Murray’s books [161, 162] we find many models and examples in this vein.

This chapter serves as an introduction to Chapter 8, focusing on a distinct class

of reaction-diffusion systems with initial conditions that have attracted great interest

among researchers due to their many applications in the fields of biology and environ-

mental sciences. Our main objective will be to study the following reaction-diffusion
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FIGURE 3.9. Fingerprints.

FIGURE 3.10. Patterns formation in physical systems.

FIGURE 3.11. Patterns formation in bacterial mixtures.

system.

(3.1)



−∂ui

∂t
+∆ui =λi pi+1(x, t) f i+1(ui+1) , 1≤ i ≤ 2m−1

−∂u2m

∂t
+∆u2m =λ2m p1(x, t) f1(u1)

ui(x,0)=ϕi(x), x ∈Rn , 1≤ i ≤ 2m
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FIGURE 3.12. Self-organization phenomena.

FIGURE 3.13. Patterns in nature.

where (x, t) ∈Rn × (0,∞), n ≥ 3, and for 1≤ i ≤ 2m, m ∈N∗; the functions ϕi :Rn → [0,∞)

are continuous, the constants λi are nonnegative, the functions f i : (0,∞) → [0,∞) are

continuous and nondecreasing, pi : Rn × (0,∞) → [0,∞) refers to measurable functions

that fulfill a relevant assumption connected to the parabolic Kato class P∞(Rn) introduced

in Zhang [223], see Appendix B.

In their work [182], Redjouh et al. investigate this quasi-linear parabolic reaction-

diffusion system of arbitrary order with initial conditions. The content of paper [182]

forms the basis of Chapter 8 of this thesis.

These systems have garnered interest due to their wide-ranging applications in fields

such as biology, ecology, medicine, bioengineering, biochemistry, and physics. Notably,

there is a wealth of examples and references related to these applications in the works

of Abdellaoui [2], Alqahtani [17], Ghanmi et al. [87, 88], Gontara et al. [92, 93], Haq et
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FIGURE 3.14. Intricate patterns and structures.

al. [101], Lair and Wood [124], Mâagli et al. [130, 131], Murray [161, 162], Nisar et al.
[167], Yadav et al. [218], Zhang [222, 223], and the corresponding references therein.

3.2 Potential analysis

Potential analysis is a branch of mathematics that focuses on the study of harmonic

functions, their properties, and their applications in various fields. It has a rich history

and plays a crucial role in many areas of science and engineering.

The origins of potential analysis can be traced back to the 18th and 19th centuries,

when mathematicians like Laplace, Poisson, Lagrange, and Gauss made significant

contributions to the development of the theory. Laplace’s equation and Poisson’s equa-

tion, which are fundamental equations in potential theory, emerged during this period.

However, the field gained significant development and recognition in the 19th century

with the contributions of mathematicians like Augustin-Louis Cauchy, Carl Gustav Jacob

Jacobi, and Bernhard Riemann.

The importance of potential analysis lies in its ability to describe and understand

various physical phenomena. It provides a mathematical framework to analyze the

behavior of quantities such as electric potential, temperature distribution, fluid flow, and

gravitational potential. By studying harmonic functions and their properties, potential

analysis helps solve real-world problems and make predictions about the behavior of

physical systems.
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One of the key issues addressed by potential analysis is the study of parabolic

problems. Parabolic partial differential equations (PDEs) describe processes that evolve

over time, such as heat conduction, diffusion, and population dynamics. Potential analysis

provides techniques to study the behavior and solutions of parabolic PDEs, enabling

insights into the evolution of these processes and their long-term behavior.

Another important area where potential analysis is applied is in the study of reaction-

diffusion systems. These systems arise in various biological, chemical, and ecological

contexts, where the interaction between diffusion and chemical reactions plays a crucial

role. Potential analysis provides tools to analyze the dynamics and stability of such sys-

tems, helping to understand pattern formation, spatial organization, and other complex

behaviors.

In this context, we will employ various potential analysis techniques. To explore

additional concepts and information in this field, we suggest consulting Armitage and

Gardiner’s work [21].

The most important contents of a potential analysis include:

(i) Harmonic Functions: Potential analysis focuses on the study of harmonic func-

tions, which are solutions to Laplace’s equation. Understanding the properties and

behavior of harmonic functions is fundamental to potential analysis.

(ii) Green’s Functions: Green’s functions are fundamental solutions to certain

partial differential equations, such as the Poisson equation. They play a crucial role

in potential analysis by providing a way to represent solutions and investigate the

properties of the underlying equations.

(iii) Dirichlet Problem: The Dirichlet problem is a central concept in potential

analysis. It involves finding a harmonic function that satisfies prescribed boundary

conditions. The study of the existence, uniqueness, and regularity of solutions to the

Dirichlet problem is an important aspect of potential analysis.

(iv) Potential Theory: Potential theory deals with the study of potentials, which

are functions related to the distribution of charges or energy in a given domain. It

encompasses various concepts and techniques used to analyze potentials, including the

maximum principle, mean value property, and representation formulas.

(v) Applications: Potential analysis has wide-ranging applications in various fields,

including physics, engineering, probability theory, and geometric function theory. It is

employed in understanding phenomena such as electrostatics, heat conduction, fluid flow,

and random processes.

67



CHAPTER 3. REACTION-DIFFUSION SYSTEMS WITH INITIAL CONDITIONS

3.3 Kato Classes

In recent years, there have been many results in the study of elliptic equations with

singular lower order terms in the Kato class. We recall that

Definition 3.1. For n ≥ 3, a function V ∈ L1
Loc (Rn) is said to belong to the Kato class Kn

if it satisfies the following condition

lim
r→0

sup
x

∫
|x−y|<r

|V (y)|
|x− y|n−2 d y= 0.

The Kato class elliptic Kn is used to analyze elliptic equations with lower-order singu-

lar terms. It plays a significant role in establishing results such as Harnack inequalities

and properties of solutions to elliptic equations within this class. The work by Aizenman

and Simon [8] demonstrated that the Kato class elliptic is the natural replacement for

the Lebesgue class Lp with p > n
2 , to ensure important properties of solutions to elliptic

equations.

As part of the natural generalization of the Kato class from the elliptic case to the

parabolic case, we consider the following parabolic equation

(3.2) Hu (t, x)=
n∑

i, j=1

∂

∂xi

(
ai j (t, x)

∂u
∂x j

)
(t, x)−V (t, x)u (t, x)− ∂u

∂t
(t, x)= 0

in a bounded domain Q = D× [0,T]⊂Rn+1. Here ai j are bounded measurable functions

and the matrix a = (
ai j (t, x)

)
is positive definite uniformly in (t, x). This means the

existence of a number λ> 1 such that λ−1I ≤ a ≤λI.

For the function V we will impose the following condition which will be called condi-

tion K . Let

(3.3) Nh (V )= sup
t,x

∫ t

t−h

∫
D
|V (y, s)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dsd y,

(3.4) N∗
h (V )= sup

s,y

∫ s+h

s

∫
D
|V (x, t)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dtdx,

where α is a fixed positive constant and V (s, y) is regarded as zero when (s, y) is outside

of Q.

Definition 3.2. We say that V satisfies condition K if

(3.5) lim
h→0

Nh (V )= lim
h→0

N∗
h (V )= 0.
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The space of all L1
Loc functions satisfying condition K will be called the parabolic

Kato class, denoted by P∞(Rn).

The Kato class parabolic P∞(Rn) plays a significant role in the analysis of parabolic

equations with lower-order singular terms. It is used to establish results such as Harnack

inequalities and other properties of solutions within this class. The Kato class parabolic

P∞(Rn) is an extension of the Kato class Kn in the elliptic case, providing a natural

framework for studying parabolic equations with lower-order singularities.

Proposition 3.1. If the function V is independent of t, then V belongs to the parabolic

Kato class if and only if it belongs to the Kato class in the elliptic case, i.e.,

lim
r→0

sup
x

∫
Br(x)

|V (y)|
|x− y|n−2 d y= 0, n ≥ 3.

For a more comprehensive understanding of Kato classes and their applications, I

recommend referring to Appendix A of this thesis, as well as exploring the references

Aizenman and Simon [8] and Zhang [223]. These sources provide further insights and

in-depth discussions on Kato classes, offering valuable information and perspectives on

their significance and relevance in the respective field of study.

3.4 History and earlier results

We will present a historical overview of the model (3.1) that will be the central focus of

Chapter 6. This overview will include a discussion of significant works closely related to

the model’s content, along with references to these works.

In [222], Zhang discussed the existence and the asymptotic behavior of solutions of

the parabolic problem

(3.6)


∆u− ∂u

∂t
= q(x, t)up+1 , (x, t) ∈Rn × (0,∞)

u(x,0)= u0(x) , x ∈Rn, n ≥ 3,

and arrived at the following result:

Theorem 3.1. (See [222]) Assume p > 0, q ∈P∞(Rn). For any M > 1, there is a constant

b0 > 0 such that for each nonnegative uo ∈ C2(Rn) satisfying ‖u0‖L∞(Rn) ≤ b0, there exists
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a positive and continuous solution u of (3.6) such that

M−1
∫
Rn

G(x, t, y,0)u0(y)d y≤ u(x, t)≤ M
∫
Rn

G(x, t, y,0)u0(y)d y

for all (x, t) ∈Rn × (0,∞).

G denotes the fundamental solution of the heat equation ∆u− ∂u
∂t

= 0 in Rn × (0,∞),

defined by

G(x, t, y, s)= 1

[4π(t− s)]
n
2

exp
(
−|x− y|2

4(t− s)

)
for all t > s and x, y ∈Rn

In [131], Maâgli et al. studied the existence of positive solutions for the following

nonlinear parabolic boundary value problem

(3.7)


∆u−uϕ (.,u)− ∂u

∂t
= 0 in Rn × (0,∞)

u(x,0)= u0(x) in Rn, n ≥ 3,

with initial condition u0(x) not necessarily bounded function. The nonlinearity ϕ satisfies

an appropriate condition related to the parabolic Kato class P∞ (Rn).

Under certain assumptions about the initial value and the nonlinearity, They arrived

at the following result:

Theorem 3.2. There exists a positive continuous solution u in Rn × (0,∞) for problem

(3.7) satisfying for each t > 0 and x ∈Rn

cPu0 (x, t)≤ u (x, t)≤ Pu0 (x, t)

where c ∈ (0,1).

(Pt)t>0 denote the Gauss semigroup defined for all nonnegative measurable function

Φ on Rn by

PtΦ(x)= PΦ (x, t)=
∫
Rn

G(x, t, y,0)Φ(y)d y, t > 0, x ∈Rn

In [133], Mâatoug and Riahi studied the following problem

(3.8)


∆u+ q(x, t)up − ∂u

∂t
= 0 in D× (0,∞)

u = 0 on ∂D× (0,∞)

u(x,0)= u0(x) in D
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with D is a domain of Rn. Mâatoug and Riahi in [133] introduced a parabolic functional

class J∞ (D) and required the function q(x, t) in (3.8) to satisfy some conditions related

to this class while allowing global existence and continuity for solutions of problem (3.8).

They arrived at the Theorem below.

Let h be the positive solution of the homogeneous Dirichlet problem
∆u = 0 in D
u = 0 on ∂D
lim u (x)

|x|→∞
= 1

Theorem 3.3. Suppose p > 0 and q be a nonnegative function defined on D× (0,∞) such

that the function (x, t) 7→ h (x)p−1 q (x, t) is in the class J∞ (D). Then there exist positive

constants α, β and c such that for each nonnegative function u0 ∈ C2 (D) satisfying for

all x ∈ D, u0 (x) ≤ αh (x), there exists a continuous solution u of (3.8) such that for all

(x, t) ∈ D× (0,∞)

∫
D

G(x, t, y,0)u0(y)d y≤ u(x, t)≤β
∫

D
G(x, t, y,0)u0(y)d y.

Here G(x, t, y, s) denotes the heat kernel in D× (0,∞) with Dirichlet boundary condi-

tion.

In [130], Mâagli et al. are interested in the problem

(3.9)


∆u−uϕ (.,u)− ∂u

∂t
= 0 in Rn+× (0,∞), n ≥ 2

u = 0 on ∂Rn+× (0,∞)

u(x,0)= u0(x) in Rn+

where D is the half-space Rn+ = {x = (x1, , xn) : xn > 0}, p ≥ 1, q(x, t) is a measurable function

in D× (0,∞) and u0 is a nonnegative measurable function defined on Rn+ and satisfying

some properties which allows u0 to be not bounded.

In the simplest case that uϕ ((x, t) ,u) = p (x, t)up, the global existence of positive

solutions of problem (3.9) has been shown in [134] where Mâatoug and Riahi require u0

to be bounded of class C2 (
Rn+

)
and q(x, t) to belong to a certain functional class. Later, in

[135] Mâatoug and Riah generalised their result in [134] by considering a more large

class called parabolic Kato class in Rn+ denoted by P∞ (
Rn+

)
.
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In [92], Gontara and Turki studied the existence and asymptotic behavior of positive

continuous solutions for the followin nonlinear parabolic problem

(3.10)


∆u− ∂u

∂t
=λp (x, t) g (v) in Rn × (0,∞)

∆v− ∂v
∂t

=µq (x, t) f (v) in Rn × (0,∞)

u (x,0)=ϕ (x) , v (x,0)=ψ (x) in Rn, n ≥ 3

where the initial conditions ϕ, ψ : Rn → [0,∞) are continuous, the constants λ, µ are

nonnegative, f , g : (0,∞)→ [0,∞) are nondecreasing and continuous, p, q :Rn → [0,∞)
are measurable functions and satisfy an appropriate hypothesis related to the parabolic

Kato class P∞(Rn).

Theorem 3.4. There exist two constants λ0 and µ0 such that for each λ ∈ [0,λ0) and each

µ ∈ [
0,µ0

)
, problem (3.10) has a positive continuous solution (u,v) satisfying for each t > 0,

x ∈Rn 
(
1− λ

λ0

)
Pϕ (x, t)≤ u (x, t)≤ Pϕ (x, t)(

1− µ

µ0

)
Pψ (x, t)≤ v (x, t)≤ Pψ (x, t)

In [183], Redjouh and Mesbahi studied problem (3.10) but in the case of four coupled

equations. They showed the existence of continuous positive solutions using potential

analysis techniques.

The elliptic case where the problem formed by a single elliptic equation has been

studied by several authors such as Gontara et al. [93], Cîrstea and Radulescu [44–48].
The elliptical case of (3.10) was studied in Cîrstea and Radulescu [49], Lair and Wood

[124], and Ghanmi et al. [87]. In [49], Cirstea and Radulescu consider the problem

(3.11)

{
∆u = p (x) g (v)
∆v = q (x) f (u) , x ∈Rn, n ≥ 3

where f , g are positive and nondecreasing functions on (0,∞) and p, q are nonnegative

locally holder and radially symmetric functions in Rn. They established the existence of

positive entire solutions for (3.11) provided that

lim
t→+∞

g (c f (t))
t

for all c > 0

Moreover, they proved that if∫ ∞

0
tp (t)dt =

∫ ∞

0
tq (t)dt =∞
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then all positive entire radial solutions of (3.11) blow-up at infinity. However, if p and q
satisfy the following condition ∫ ∞

0
t [p (t)+ q (t)]dt <∞

then all positive entire radial solutions of (3.10) are bounded.

In [124], Lair and Wood studied the system (3.11) in the case when f (u)= uβ, g (v)=
vα, α> 0, β> 0 and p, q are nonnegative continuous and not necessarily radial. They

showed that entire positive bounded solutions exist if p and q satisfy at infinity the

following decay condition

p (x)+ q (x)≤ C |x|−(2+δ)

for some positive constant δ.

In [87], Ghanmi et al. considered the following system

(3.12)


∆u =λp (x) g (v) , x ∈ D
∆v =µq (x) f (u) , x ∈ D
u |∂D= aϕ , v |∂D= bψ

lim
x∈D, |x|→∞

u (x)=α and lim
x∈D, |x|→∞

v (x)=β if D is unbounded

where D is a C1,1 domain in Rn (n ≥ 3) with compact boundary. λ and µ are nonnegative

constants, the functions f , g : (0,∞) 7→ [0,∞) are continuous and nondecreasing, the

functions p, q are measurable and nonnegative in D belonging to a certain elliptic Kato

class K (D) introduced and studied in Bachar et al. [24] and Mâagli and Zbiri [132]. The

initial conditions ϕ, ψ are nonnegative continuous functions and the constants a, b, α, β

are nonnegative and satisfy a +α> 0, b+β> 0. For two constants λ0, µ0 assumed to be

positive and by applying a potential theory approach, Ghanmi et al. proved in [87] the

following theorem:

Theorem 3.5. For each λ ∈ [0,λ0) and each µ ∈ [
0,µ0

)
, problem (3.12) has a positive

continuous bounded solution (u,v) such that
(
1− λ

λ0

)[
αh+aHDϕ

]≤ u ≤αh+aHDϕ(
1− µ

µ0

)[
βh+bHDψ

]≤ v ≤βh+bHDψ

where HDϕ denotes the unique harmonic function u in D with boundary value ϕ and

satisfying further lim
|x|→∞

u (x)= 0 whenever D is unbounded.
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In [88], Ghanmi et al. are concerned with the entire radially symmetric solutions

of nonlinear Schrödinger elliptic systems in anisotropic media. In terms of the growth

of the variable potential functions, they establish conditions such that the solutions

are either bounded or blow up at infinity. In order to discuss the existence of positive

radial solutions to this class of nonlinear systems, They are concerned with the following

system of nonlinear differential equations

(3.13)



1
A

(
Au′)′− p (t) g (v)= 0 , t ∈ (0,∞)

1
B

(
Bv′

)′− p (t) g (u)= 0 , t ∈ (0,∞)
u (0)= a > 0 , v (0)= b > 0

lim
t→0

A (t)u′ (t)= 0 , lim
t→0

B (t)v′ (t)= 0

where the continuous functions A, B : [0,∞)→ [0,∞) are differentiable and positive on

(0,∞) and satisfy certain assumptions.

Problem (3.13) in the case of arbitrary order was studied by Mesbahi in [152] by

applying some results and techniques of functional analysis such as Schauder’s fixed

point theorem and potential theory tools.

We can find in the references mentioned in this paragraph and references given there

other results linked to similar problems and in the same context whether in the parabolic

or elliptical case.

74



C
H

A
P

T
E

R

4
FIRST-ORDER QUASI-LINEAR PDES AND THEIR

APPLICATIONS

TThe primary focus of this chapter is on introducing first order quasilinear PDEs

and exploring their applications. Consequently, this chapter serves as an intro-

ductory section for the concluding chapter of this thesis. It discusses Lagrange’s

form for first order PDEs and the method of characteristics for solving them. Applica-

tions presented include determining systems of surfaces orthogonal to a given set, the

important Hamilton-Jacobi equation in physics, and modeling the birth-death processes

of bacteria using first order PDEs. First order equations are also significant in areas like

stochastic processes, fluid dynamics, and solid mechanics. Overall, the chapter explores

the theory and wide-ranging relevance of first order PDEs across various domains of

mathematics and science.

4.1 Introduction

The field of partial differential equations continues to captivate mathematicians due to

the many unsolved problems that remain. Despite tremendous progress over decades

of study and application of advanced mathematical concepts, PDEs still hold immense

complexity that challenges us to develop new insights and innovative solution methods.

Each equation that defies conventional techniques serves as a reminder of how much
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is yet to be understood about systems governed by continuous changes across time and

space. It stimulates ever greater curiosity to uncover the hidden truths just beyond our

current reach. The enduring attraction of PDEs stems from their representation of real-

world phenomena across diverse domains from biology to astronomy. Through modeling

with PDEs, we have gained comprehension of varied disciplines beyond mathematics. Our

modern technologies likewise rely on applications of PDE theory. There is no question that

PDEs constitute one of the most vibrant areas of ongoing research, as their widespread

utility across sciences inspires continued investigation. The bounty of unanswered

questions and opportunities for breakthroughs ensures PDEs will remain a wellspring

of exciting mathematical problems demanding the innovative perspectives of future

scholars. It is a testament to both the power and limitations of human understanding

confronted with nature’s complexities. See Chowdhury et al. [43], Kruzhkov [120], Rhee

et al. [184], Sneddon [204] and references given there.

4.2 First order quasilinear PDEs

We restrict our work to a class of first order quasilinear PDEs whose general form is

(4.1) ξ1 p1 +·· ·+ξn pn = R

where ξ j = ξ j (x,u) (1≤ j ≤ n) and R are given functions of n independent variables

x1, . . . , xn, and a dependent variable u = u (x1, . . . , xn), p j = ∂u
∂x j

, and u is a smooth vector

field in a domain Ω of R3. We wish to find a relation between x = (x1, . . . , xn) and u
involving an arbitrary function. Lagrange presented the initial comprehensive theory of

equations of this nature, which led to equation (4.1) being commonly known as Lagrange’s

equation.

We recall that a PDE is said to be quasilinear, if it is linear with respect to all the

highest order derivatives of the unknown function. A smooth function u = u (x1, . . . , xn) is

a solution of equation (4.1), if and only if u is constant along the phase curves of the field

u, i.e., it is the first integral of the associated characteristic system

(4.2)
dx1

ξ1
= ·· · = dxn

ξ j
= du

R

Lagrange’s method of characteristics reduces the problem of solving PDE (4.1) to the

characteristic system (4.2). For further information about this method and how to apply

it, see Ince [106], Kruzhkov [120], Rhee et al. [184] and Sneddon [204].
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The method of solving quasilinear equations of the form (4.1) is contained in:

Theorem 4.1. The general solution of a quasilinear PDE (4.1) is F
(
ϕ1, . . .ϕn

)= 0, where

F is an arbitrary function and ϕ j (x1, . . . , xn,u) = c j (1≤ j ≤ n) are linearly independent

first integrals of the associated characteristic system (4.2).

Proof. We first note that if the solutions of system (4.2) are

ϕ j (x1, . . . , xn,u)= c j, 1≤ j ≤ n

then the n equations
n∑

i=1

∂ϕ j

∂xi
dxi +

∂ϕ j

∂u
du = 0, for 1≤ j ≤ n

must be compatible with equations (4.2). In other words, we must have

(4.3)
n∑

i=1
pi
∂ϕ j

∂xi
+R

∂ϕ j

∂u
= 0

Solving the set of n equations (4.3) for p j, we find that

(4.4)
p j

∂(ϕ1,...ϕn)
∂(x1,...,xi−1,u,xi+1,...,xn)

= R
∂(ϕ1,...ϕn)
∂(x1,...,xn)

, for 1≤ j ≤ n

∂
(
ϕ1, . . .ϕn

)
∂ (x1, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u1
∂x1

∂u1
∂x2

. . . ∂u1
∂xn

∂u2
∂x1

∂u2
∂x2

. . . ∂u2
∂xn

...
...

...
∂un
∂x1

∂un
∂x2

. . . ∂un
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Consider now the relation

(4.5) Φ
(
ϕ1, . . .ϕn

)= 0

Differentiating it with respect to x j, we obtain the equation

n∑
i=1

(
∂Φ

∂ϕi

∂ϕi

∂x j
+ ∂ϕi

∂u
∂u
∂x j

)
= 0
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and there are n such equations, one for each value of j. Eliminating the n quantities
∂Φ

∂ϕ1
, . . . ,

∂Φ

∂ϕn
from these equations, we obtain the relation

(4.6)
∂
(
ϕ1, . . .ϕn

)
∂ (x1, . . . , xn)

+
n∑

i=1

∂u
∂x j

∂
(
ϕ1, . . . ,ϕi−1,ϕi,ϕi+1, . . . ,ϕn

)
∂ (x1, . . . , xi−1,u, xi+1, . . . , xn)

= 0

Substituting from equations (4.4) into equation (4.6), we see that the function U defined

by the relation (4.5) is a solution of equation (4.1), as we desired to show. �

In Kruzhkov [120], Mesbahi [156], Reinhard [185], Sneddon [204], we find a proof

of this theorem, in addition to many other important theorems and properties relevant

within this context

4.3 The significance of first order PDEs

First order partial differential equations (PDEs) are encountered in various fields of

study, including stochastic process theory, mathematical physics, and solid mechanics.

In stochastic process theory, the Fokker-Planck equation is a prominent example of a

first order PDE. This equation describes the evolution of the probability density function

associated with a stochastic process. It is widely used in the study of diffusion processes

and Brownian motion. Oksendal [168] covers the Fokker-Planck equation as a first order

PDE arising in stochastic processes.

In mathematical physics, the Hamilton-Jacobi equation is another important first

order PDE. It arises in classical mechanics and plays a fundamental role in the formula-

tion of Hamiltonian dynamics. The equation describes the evolution of a characteristic

function associated with the motion of a dynamical system.

The Hopf equation, also known as Burgers’ equation without viscosity, is a first

order PDE that finds applications in diverse contexts. It is utilized in the study of gas

dynamics without pressure and in describing the velocity field of a medium composed

of non-interacting particles in the absence of external forces. The Hopf equation is of

particular interest in fluid dynamics and can provide insights into the behavior of flows

in various physical systems. See Rugina [189] for an application to wave propagation in

soft tissues, and see Aris [20] for a discussion of first order PDEs such as the continuity

equation and the Navier-Stokes equations in fluid dynamics.

In solid mechanics, the mass conservation equation is commonly encountered as a

first order PDE. This equation describes the motion of a fluid, whether it is a liquid or a
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gas, in the absence of sources and sinks. It captures the fundamental principle of mass

conservation and is used to model fluid movement in a variety of scenarios, such as the

flow of fluids in pipes or channels and the movement of biological fluids of different types.

See Marsden and Hughes [137] and the references cited there.

The transport equation is a prototype of first order PDEs and appears in different

scientific disciplines. It describes the transport or advection of a quantity, such as a fluid

or a scalar field, by a velocity field. The transport equation has widespread applications,

including the modeling of fluid infiltration through porous media, such as sand. In this

context, the equation helps understand how fluids flow under the influence of gravity

alone, without the presence of sources or sinks.

Moreover, the transport equation is relevant in the mathematical modeling of collec-

tive movements observed at various levels of biological organization, such as traffic-like

behavior in biological systems. For example, molecular motor proteins like kinesin and

dynein, which are responsible for intracellular transport in eukaryotic cells, can experi-

ence traffic jams that have implications for cellular function and disease. The transport

equation provides a mathematical framework to study and analyze these phenomena,

aiding in the understanding of complex biological processes. See Evans [72] and Murray

[161, 162].

In summary, first order PDEs play a crucial role in diverse scientific domains. They

arise in stochastic process theory, mathematical physics, solid mechanics, and other areas

of research. Understanding and solving these equations contributes to our comprehension

of fundamental physical and biological phenomena, enabling us to make predictions

and develop practical applications in various fields. See as well Han and Park [99] and

Gorgone and Oliveri [94].

4.4 Applications

4.4.1 Surfaces orthogonal to a given system of surfaces

An interesting application of the theory of linear PDEs of the first order is to the

determination of the systems of surfaces orthogonal to a given system of surfaces. If

we have a collection of surfaces whose positions in space are defined by a linear PDE,

we can use the theory of such equations to derive the differential equation that the

orthogonal surfaces must satisfy. Specifically, we take the given differential equation for

the reference surfaces and apply the necessary conditions such that the tangent planes
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FIGURE 4.1. Surfaces orthogonal to a given system of surfaces.

of any two surfaces, one from each system, are perpendicular at every point where they

intersect. This leads to a new differential equation whose solution gives the orthogonal

surfaces. Solving this related equation allows us to systematically determine whether

the entire system of surfaces is fully orthogonal to the original given surfaces. This

demonstrates how linear partial differential equations can be used to analyze geometric

relationships between surfaces and derive new surfaces with desired properties based on

their interactions with other surfaces. See Reinhard [185], Sneddon [204].

Suppose we are given a one-parameter family of surfaces characterized by the equa-

tion

(4.7) f (x, y, z)= c

We want to determine a system of surfaces that intersect the given surfaces in a perpen-

dicular manner, with the surfaces from each system meeting at 90 degree angles. (See

Figure 4.1).

The normal at the point (x, y,u) to the surface of system (4.7) which passes through

80



4.4. APPLICATIONS

that point is the direction given by the direction ratios

(4.8) (P,Q,R)=
(
∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
If the surface with equation

(4.9) z =φ (x, y)

cuts each surface of the given system orthogonally, then its normal at the point (x, y, z)
which is in the direction (

∂z
∂x

,
∂z
∂y

,−1
)

is perpendicular to the direction (P,Q,R) of the normal to the surface of the set (4.7) at

that point. We therefore have the linear PDE

(4.10) P
∂z
∂x

+Q
∂z
∂y

= R

for the determination of surfaces (4.9). Substituting from equations (4.8), we see that

this equation is equivalent to
∂ f
∂x

∂z
∂x

+ ∂ f
∂y

∂z
∂y

= ∂ f
∂z

Conversely, any solution of the linear PDE (4.10) is orthogonal to every surface of the

system characterized by equation (4.7), for (4.10) simply states that the normal to any

solution of (4.10) is perpendicular to the normal to that member of system (4.7) which

passes through the same point.

Linear equation (4.10) is therefore the general PDE determining the surfaces orthog-

onal to members of system (4.7); i.e., the surfaces orthogonal to system (4.7) are the

surfaces generated by the integral curves of system

(4.11)
dx

fx (x, y, z)
= d y

f y (x, y, z)
= dz

fz (x, y, z)

Example 4.1. Consider the family of one-parameter surfaces characterized by the equa-

tion

z (x+ y)= c (3z+1)

In this case

f (z)= z (x+ y)
(3z+1)
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so that system (4.11) take the form

dx
z (3z+1)

= d y
z (3z+1)

= dz
(x+ y)

which has the following two first integrals

x− y = c1

x2 + y2 −2z3 − z2 = c2

Thus any surface which is orthogonal to the given surfaces has equation of the form

x2 + y2 −2z3 − z2 =ψ (x− y)

where ψ is an arbitrary function.

4.4.2 Hamilton-Jacobi equation

The most important first order PDE occurring in mathematical physics is the Hamilton-

Jacobi equation

(4.12)
∂S
∂t

+H
(
q1, . . . , qn;

∂S
∂q1

, . . . ,
∂S
∂qn

)
= 0

appropriate to the Hamiltonian H (q1, . . . , qn, p1, . . . , pn) of a dynamical system of n gen-

eralized coordinates q1, . . . , qn and the conjugate momenta p1, . . . , pn.

The Hamilton-Jacobi equation, as expressed in equation (4.12) is one of the most

pivotal first order PDEs that arises in mathematical physics. It relates the partial deriva-

tives of a function S, known as the Hamilton’s characteristic function, with respect to

time and the generalized coordinates of a dynamical system. The function S contains

complete information about the trajectory and evolution of the dynamical system. Re-

markably, the Hamilton-Jacobi equation allows deriving the trajectory of a system from

S alone, without needing to know its momenta or velocities explicitly. It involves the

Hamiltonian H, which encapsulates the total energy of the system as a function of the

generalized coordinates q j and their conjugate momenta p j. Solving the Hamilton-Jacobi

equation permits finding S and thereby obtaining integral curves in the phase space,

whose projections onto the coordinate space give the trajectory of the system. Moreover,

knowledge of S is equivalent to solving the system’s Hamilton’s equations of motion.
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Therefore, this first order PDE underlies classical analytical mechanics and serves as

a link between the Lagrangian and Hamiltonian formulations. It has extraordinarily

wide applications, from classical to quantum dynamics. In general, the solution methods

for this nonlinear PDE have greatly expanded our understanding of both integrable and

chaotic dynamical systems in nature. For more details, see Abraham [3].

This is an equation in which the dependent variable S is absent. Hence the following

characteristic system

(4.13)
dt
1

= dq1
∂H
∂p1

= ·· · = dqn
∂H
∂pn

= dp1

− ∂H
∂q1

= ·· · = dpn

− ∂H
∂qn

i.e., they are equivalent to the Hamiltonian equations of motion

(4.14)
dq j

dt
= ∂H
∂p j

,
dp j

dt
=− ∂H

∂q j
, 1≤ j ≤ n

A modified form of equation (4.12) is obtained by writing

S =−Wt +S1

We then find that

(4.15) H
(
q1, . . . , qn;

∂S1

∂q1
, . . . ,

∂S1

∂qn

)
=W

Suppose, for example, that a system with two degrees of freedom has Hamiltonian

(4.16) H = P px2 +Qqy2

2(X +Y )
+ ξ+η

X +Y

where P, X ,ξ are functions of x alone and Q,Y ,η are functions of y alone. Then equation

(4.15) becomes
1
2

(
P px +Qqy

)+ (
ξ+η)−W (X +Y )= 0

Then one of the characteristic equations is

dx
P px

+ dpx
1
2 P ′px +ξ′−W X ′ = 0

with solution

px = {2(W X −ξ+a)}
1
2

where a is an arbitrary constant. Similarly we could have shown that

qy =
{
2

(
W X −η+b

)} 1
2
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where b is an arbitrary constant. Thus since px, is a function of x alone and qy is a

function of y alone, we have

S =−Wt+
∫

{2(W X −ξ+a)}
1
2 dx+

∫ {
2

(
W X −η+b

)} 1
2 d y

showing that a solution of the Hamilton- Jacobi equation can always be found for a

Hamiltonian of the form (4.16).

4.4.3 Fokker-Planck equation

First order PDEs arise frequently in the theory of stochastic processes. One such equation

is the Fokker-Planck equation

(4.17)
∂p
∂t

=β ∂

∂x
(px)+D

∂2 p
∂x2

which reduces in the case D = 0 to the first order linear equation

(4.18)
∂p
∂t

=βx
∂p
∂x

+βP

Equation (4.17) is known as the Fokker-Planck equation, which governs the time

evolution of the probability density function P of stochastic systems under Brownian

motion. It contains diffusive and drift terms represented by the diffusion coefficient D
and mobility parameter β respectively. In the special case where D = 0, it reduces to the

first order linear PDE in (4.18). These equations have direct physical interpretations

in terms of probabilistic distributions. For instance, P could denote the probability

that a harmonically bound particle in a thermal bath or fluctuating electrical signal

assumes a particular position or deflection value x at time t. Solving such equations helps

characterize the dynamical behavior of random systems. However, it is important to note

the Fokker-Planck equation (4.17) relies on the underlying stochastic process possessing

a Gaussian distribution and following the Markoff property, meaning future states are

independent of past states given the present state. This restrictive assumption may

break down for non-Gaussian noise or systems with memory effects. Nonetheless, within

this framework, these first-order PDEs provide a powerful tool for modeling diffusion

and transport in noisy environments. See Oksendal [168] for additional clarification.

4.4.4 Birth and death processes connected with bacteria

First order partial differential equations play an extremely significant role in modeling

and understanding birth and death processes, which are fundamental phenomena in
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fields such as population dynamics and cellular biology. Probably the most well-known

application is in studying bacterial reproduction and mortality. Bacteria multiplying via

binary fission and facing risks of death can be mathematically described as a continuous-

time Markov process with birth and death rates. The time evolution of the probability of

having a certain bacterial population size n at time t then satisfies a first order linear

PDE. Solving this allows for predicting population distributions over generations. More

complex models incorporate factors like limited resources, aging, or damage accumu-

lation. These increase realism but yield quasilinear or nonlinear first order equations

that are challenging to solve. Nonetheless, such equations have provided key insights

into bacterial evolution, antibiotic resistance spread, disease outbreaks, and cellular

regulation mechanisms. They also serve as prototypes for other branching processes

across the sciences. Due to their biological importance, first order PDEs emerging from

birth and death dynamics remain an extremely active area of research with ongoing

discoveries about non-equilibrium dynamics in living systems. See L.J.S. Allen [15] and

E. Allen [16].

Suppose, for example, that at time t there are exactly n live bacteria and that:

(i) The probability of a bacterium dying in time (t, t+δt) is µnδt;
(ii) The probability of a bacterium reproducing in time (t, t+δt) is λnδt;
(iii) The probability of the number of bacteria remaining constant in time (t, t+δt) is(

1−λnδt−µnδt
)
;

(iv) The probability of more than one birth or death occurring in time (t, t+δt) is zero.

If we assume Pn (t) is the probability of there being n bacteria at time t, then these

assumptions lead to the equation

Pn (t+δt)=λn−1Pn−1 (t)δt+µn+1Pn+1 (t)δt+{
1−λnδt−µnδt

}
Pn (t)

which is equivalent to

(4.19)
∂Pn

∂t
=λn−1Pn−1 (t)+µn+1Pn+1 (t)− (

λn +µn
)
Pn (t)

In the general case λn,µn would depend on n and t; if we assume that the probability of

the birth or death of a bacterium is proportional to the number present, we write

(4.20) λn = nλ and µn = nµ

where λ and µ are constants, and equation (4.19) reduces to

∂Pn

∂t
=λ (n−1)Pn−1 (t)− (

λ+µ)
nPn (t)+µ (n+1)Pn+1 (t)
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and if we introduce a generating function Φ (t, z) defined by the relation

Φ (t, z)=
∞∑

n=0
Pn (t) zn

we see that this last equation is equivalent to the first order linear equation

∂Φ

∂t
= (z−1)

(
λz−µ) ∂Φ

∂z

which is easily solved

(4.21) Φ= f
(
µ−λz
1− z

e−(λ−µ)t
)

where the function f is arbitrary. If there are m bacteria present at t = 0, then Φ− zm, so

that

zm = f
(
µ−λz
1− z

)
from which it follows that

f (ξ)=
(
µ−ξ
λ−ξ

)m

Hence at time t

Φ=
µ

(
1− e(λ−µ)t

)
− z

(
λ−µe(λ−µ)t

)
µ−λe(λ−µ)t −λz

(
1− e(λ−µ)t

)
m

Pn (t) is the coefficient of zn in the power series expansion of this function. If it λ < µ,

then Φ→ 1 as t →∞, so that the probability of ultimate extinction is unity.
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5
SINGULAR REACTION-DIFFUSION SYSTEM ARISING

FROM QUENCHING

In this paper, we study a singular parabolic reaction-diffusion system with positive

Dirichlet boundary conditions. It is shown that certain conditions are sufficient

to guarantee finite-time quenching and global existence of solutions. This system

appears in the modeling of the quenching phenomena.

The content presented in this chapter has been documented in a publication [64]

titled “Singular Reaction-Diffusion System Arising From Quenching” in the journal

Nonlinear Dynamics and Systems Theory, co-authored by S. Mesbahi.

5.1 Introduction

Quenching refers to the process of rapidly cooling a material from a high temperature to a

lower temperature. This is done to alter the material’s physical or mechanical properties

such as hardness or strength. The rapid cooling prevents the material from undergoing

a gradual cooling process, which would allow the material to form larger crystals that

could weaken the material’s structure. Quenching can be accomplished using different

methods, including immersion in water, oil, or air, depending on the desired outcome.

The study of this important phenomenon began in 1975 with a paper by Kawarada [113],
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where he studied a model in one space dimension. That paper was an introduction to the

large-scale studies of the quenching problem by many researchers in several scientific

fields. For a detailed survey, we refer to Chan [36], Levine [126], Rouabah et al. [187],

Zouaoui et al. [229].

By using reaction-diffusion models, researchers can simulate the behavior of quench-

ing processes and predict the resulting microstructure and mechanical properties of the

metal. This can help in the design of new quenching techniques and in the optimization of

existing ones. For more research on the phenomenon of quenching via reaction-diffusion

systems, we refer the readers to Bonis [57], Ji et al. [107], Mesbahi [143], Mu et al. [160],

Pei and Li [177], Salin [196–198], Wang [215], Zheng and Song [225], Zheng and Wang

[224] and the references therein, where we will also find, in addition to the results by

Mesbahi [140] and [155], many theoretical and numerical methods frequently used to

study such problems.

In biology, quenching is a process that involves the rapid cooling of a sample in

order to interrupt or halt certain biological processes. This procedure has several uses,

including stopping metabolic processes and preserving metabolite profile of a sample

in metabolomics. Protein synthesis and degradation can also be stopped for protein

level and modification analysis in cells or tissues, while RNA in cells or tissues can

be preserved for the analysis of gene expression. Moreover, microbial cultures can be

preserved for long-term storage or transport by rapidly cooling them to halt growth and

metabolic activity.

Quenching has many applications in medicine. One common medical application of

quenching is cryotherapy, where extreme cold to treat disease or injury is used. This can

include using liquid nitrogen to freeze and destroy cancerous tissue, or the use of ice

packs to reduce swelling and inflammation. Another application is controlling the release

of drugs from drug delivery systems. Rapid cooling of the system can halt or slow down

drug release, enabling sustained release over time. Furthermore, quenching can aid in

the preservation of biological samples such as blood or tissue samples for analysis or

storage. Rapid cooling can prevent degradation of the sample and preserve its integrity

for later use.

Quenching is also an important process in the manufacture of contact lenses. Typi-

cally, after the lenses are shaped, they undergo thermal quenching by being immersed in

cold water. This process helps in solidifying their structure and preventing any deforma-

tion or distortion during handling and further processing. Furthermore, it enhances the

mechanical and optical features of the lenses making them stronger, more resistant to
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damage, and long-lasting. Chemical quenching is also used by manufacturers to adjust

the properties of the lenses. For instance, to crosslink the polymer chains in the lenses or

to enhance their strength and flexibility. For better understanding, we refer to Barka et

al. [26], Khurshid et al. [117].

In this work, we are interested in the study of the following reaction-diffusion system

with general singular terms and positive Dirichlet boundary conditions that can be

applied to the quenching phenomenon:

(5.1)



(u1)t −∆u1 =− f1 (u2) in (0,T)×Ω,
...

...

(um−1)t −∆um−1 =− fm−1 (um) in (0,T)×Ω,

(um)t −∆um =− fm (u1) in (0,T)×Ω,

u1 = u2 = ·· · = um = 1 on (0,T)×∂Ω,

u1 (0, x)= u10 (x) , . . . , um (0, x)= um0 (x) in Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary. The functions f j

(1≤ j ≤ m) are positive on (0,1]. The initial data satisfy

(5.2)


u10, u20, . . . , um0 ∈ C2 (Ω)∩C1

(
Ω

)
,

u j0 = 1, for all 1≤ j ≤ m, on ∂Ω,

0< u j0 ≤ 1, for all 1≤ j ≤ m, in Ω.

The rest of this chapter is organized as follows. In the next section, we state our main

results. In the third section, we prove some important preliminary results. The fourth

section is devoted to the proof of the main results. The chapter ends with a concluding

remarks and perspectives.

5.2 Statement of Main Results

5.2.1 Assumptions

For this model, the finite-time quenching phenomena are caused by singular nonlineari-

ties in the absorption terms of (5.1).

Definition 5.1. We say the solution (u1, . . . ,um) of problem (5.1) quenches if (u1, . . . ,um)

exists in the classical sense and is positive for all 0≤ t < T, and also satisfies

inf
t→T

min
x∈[0,1]

{(u1 (t, x) , . . . ,um (t, x)}= 0
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In this case, T is called quenching time.

To study problem (5.1), we also assume that the positive functions f j : (0,1]→ (0,+∞),

1≤ j ≤ m, satisfy the following simple assumptions which allow them to be chosen from

a wide range:

(H1) The functions f j, 1≤ j ≤ m, are locally Lipschitz on (0,1],

(H2) f ′j (s)< 0 on (0,1] for all 1≤ j ≤ m,

(H3) lim
s→0+ f j (s)=+∞ for all 1≤ j ≤ m.

In order to state our results more conveniently, we denote by ϕ the first eigenfunction

associated with the first eigenvalue λ1 of the problem{
∆ϕ+λϕ= 0 in Ω,

ϕ= 0 on ∂Ω,

normalized by
∫
Ωϕ(x)dx = 1, with ϕ(x)> 0 in Ω.

5.2.2 The Main Results

The following theorem gives us a sufficient condition for finite-time quenching.

Theorem 5.1. Under hypotheses (H1)− (H3), the solution of problem (5.1) quenches in

finite time for any initial data provided that λ1 is small enough.

Many quenching studies confirm that time-derivatives blow-up while the solution it-

self remains bounded. We refer, for example, to Chan [36] and Kawarada [113]. Through-

out this chapter, without any special explanation, we assume that the initial data

u10, . . . , um0 satisfy

(5.3) ∆u10 − f1 (u20)< 0, . . . , ∆um0 − fm (u10)< 0 in Ω.

Thus, the global existence of solutions can be described by the following theorem.

Theorem 5.2. If the diameter of Ω is small enough and the initial data satisfies 0< ε≤
u10, . . . ,um0 ≤ 1 in Ω, then under hypotheses (H1)−(H3), the solution of problem (5.1) does

not quench in finite time. In this case, we say that the solution (u1, . . . ,um) exists globally.
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5.3 Preliminary Results

We will prove two important lemmas which we will use to prove our main results.

Lemma 5.1. Assume that the initial data satisfy (5.3), then (u1)t , . . . , (um)t < 0 in (0,T)×
Ω.

Proof. Let I j (t, x) = (
u j

)
t (t, x) for all 1 ≤ j ≤ m and (t, x) ∈ (0,T)×Ω. Differentiating

system (5.1) with respect to t, we have

∂
∂t I1 =∆ (u1)t − (u2)t f ′1 (u2) in (0,T)×Ω,
...

...

∂
∂t (Im) (x, t)=∆ (um)t − (u1)t f ′m (u1) in (0,T)×Ω,

I1 = I2 = ·· · = Im = 0 on (0,T)×∂Ω,

I j (0, x)< 0, for all 1≤ j ≤ m in Ω,

which, after simplification, gives

(5.4)



∂
∂t I1 −∆I1 =−I2 f ′1 (u2) in (0,T)×Ω,
...

...

∂
∂t Im −∆Im =−I1 f ′m (u1) in (0,T)×Ω,

I1 = I2 = ·· · = Im = 0 on (0,T)×∂Ω,

I j (0, x)< 0, for all 1≤ j ≤ m in Ω.

By the comparison principle, we have, for all (t, x) ∈ (0,T)×Ω,

I j (t, x)= (
u j

)
t (t, x)< 0 for all 1≤ j ≤ m.

This shows that u1, . . . ,um are strictly decreasing in time. �

Now, we consider the radial solutions of problem (5.1) on Ω= Br = {
x ∈RN : |x| < R

}
.

Lemma 5.2. Let (u1, . . . ,um) be the global solution of problem (5.1) with (u10, . . . ,um0)≡
(1, . . . ,1), u1, . . . ,um ≥ b in (0,∞)×BR for some b ∈ (0,1). Then (u1, . . . ,um) approaches
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uniformly from above to a solution (U1, . . . ,Um) of the steady-state problem

(5.5)



∆U1 = f (U2) in BR ,
...

...

∆Um−1 = f (Um) in BR ,

∆Um = f (U1) in BR ,

U1 =U2 = ·· · =Um = 1 on ∂BR .

Proof. Since (1, . . . ,1) is a strict super-solution of problem (5.1), by Lemma 5.1, we have

(u1)t , . . . , (um)t < 0 in (0,∞)×BR . Define the functions

Q j (t, x)=
∫

BR

G (x, y)u j (t, y)d y, in (0,∞)×BR , for all 1≤ j ≤ m,

where G (x, y) is Green’s function associated with the operator −∆ on BR under Dirichlet

boundary conditions. Hence

∂

∂t
(Q1) =

∫
BR

G (x, y) (u1)t (t, y)d y

=
∫

BR

G (x, y)∆u1 (t, y)d y−
∫

BR

G (x, y) f1 (u2 (t, y))d y,

...

∂

∂t
(Qm) =

∫
BR

G (x, y) (um)t (t, y)d y

=
∫

BR

G (x, y)∆um (t, y)d y−
∫

BR

G (x, y) fm (u1 (t, y))d y,

this gives us

∂

∂t
(Q1) = 1−u1 (x, y)−

∫
BR

G (x, y) f1 (u2 (t, y))d y,

...

∂

∂t
(Qm) = 1−um (x, y)−

∫
BR

G (x, y) fm (u1 (t, y))dy,

It follows from
(
u j

)
t < 0 for all 1≤ j ≤ m, that

G (x, y) f1 (u2 (t, y)) , . . . , G (x, y) fm−1 (um (t, y)) and G (x, y) fm (u1 (t, y))
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are nondecreasing with respect to t. According to the monotone convergence theorem

with

b ≤U j (x)= lim
t→0

u j (t, x) for all 1≤ j ≤ m,

we have

lim
t→0

∂

∂t
(Q1) = 1−U1 (x)−

∫
BR

G (x, y) f1 (U2 (y))d y,

...

lim
t→0

∂

∂t
(Qm) = 1−Um (x)−

∫
BR

G (x, y) fm (U1 (y))d y.

Furthermore, since Q1, . . . ,Qm are bounded, (Q1)t , . . . , (Qm)t ≤ 0, and by (u1)t , . . . , (um)t <
0, we have

lim
t→0

∂

∂t
(
Q j

)= 0 for all 1≤ j ≤ m,

which yields

U1 (x) = 1−
∫

BR

G (x, y) f1 (U2 (y))d y,

...

Um (x) = 1−
∫

BR

G (x, y) fm (U1 (y))d y,

and therefore (U1, . . . ,Um) is a solution of problem (5.5), and the uniform convergence is

ensured by Dini’s theorem. �

5.4 Proofs of the Main Results

Proof of Theorem 5.1 Let (u1, . . . ,um) be the solution of problem (5.1) with the maxi-

mal existence time T. By the maximum principle, we have 0≤ u j ≤ 1 for all 1≤ j ≤ m, in

(0,T)×Ω. Let

(5.6) ψ j (t)=
∫
Ω

(
1−u j

)
ϕdx for all 1≤ j ≤ m, t ∈ [0,T)
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and

(5.7) Ψ (t)=ψ1 (t)+·· ·+ψm (t) , t ∈ [0,T) .

By hypotheses (H1)− (H3) and the corresponding Taylor expansions, we can easily get

(5.8) f1 (u2)≥ δ (1−u2)+ c1 , . . . , fm (u1)≥ δ (1−u1)+ cm,

where δ, c1, . . . , cm are positive constants determined by f1 (u2) , . . . , fm (u1).

By a straight-forward computation and (5.8), we have

ψ′
1 (t) = −

∫
Ω
∆u1ϕdx+

∫
Ω

f1 (u2)ϕdx

=
∫
Ω
∆ (1−u1)ϕdx+

∫
Ω

f1 (u2)ϕdx

≥ −λ1

∫
Ω

(1−u1)ϕdx+δ
∫
Ω

(1−u2)ϕdx+ c1

∫
Ω
ϕdx

= −λ1ψ1 (t)+δψ2 (t)+ c1.

In the same way, with ψ2 (t) , . . . ,ψm (t), we finally get the following inequalities:

ψ′
1 (t) ≥ −λ1ψ1 (t)+δψ2 (t)+ c1,

...

ψ′
m (t) ≥ −λ1ψm (t)+δψ1 (t)+ cm.

Using (5.7), we get

(5.9) Ψ′ (t)≥ (δ−λ1)Ψ (t)+C , with C = c1 +·· ·+ cm.

Since 0 ≤ u j ≤ 1 in (0,T)×Ω, then 0 ≤ 1−u j ≤ 1 in (0,T)×Ω, which clearly implies

by (5.6) that 0≤ψ j (t)≤ 1 for all 1≤ j ≤ m, consequently, 0≤Ψ (t)≤ m. Since λ1 is small

enough, it is obvious that (δ−λ1)Ψ (t)+C > 0. Then, by (5.9), we have

dΨ
(δ−λ1)Ψ (t)+C

≥ dt , t ∈ [0,T) ,
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which gives, by integration from 0 to T,

(5.10) t ≤


1

δ−λ1
log

(
(δ−λ1)Ψ (t)+C
(δ−λ1)Ψ (0)+C

)
if δ 6=λ1,

1
C

(Ψ (t)−Ψ (0)) if δ=λ1.

Now, letting t → T− in (5.10) and combining lim
t→T−Ψ (t)≤ m, we get

(5.11) T ≤


1

δ−λ1
log

(
m (δ−λ1)+C

(δ−λ1)Ψ (0)+C

)
if δ 6=λ1,

1
C

(m−Ψ (0)) if δ=λ1.

Since 0≤Ψ (t)≤ m, we can easily arrive at the positivity of the right-hand side of (5.11),

which shows finite time quenching of the solutions in system (5.1). This ends the proof of

Theorem 5.1. �

Proof. Consider the auxiliary system

∂
∂t ū1 =∆ū1 − f (ū2) in (0,T)×Ω,
...

...

∂
∂t ūm =∆ūm − f (ū1) in (0,T)×Ω,

ū1 = ·· · = ūm = 1 on (0,T)×∂Ω,

ū1 (0, x)= ·· · = ūm (0, x)= 1 in Ω.

By the comparison principle, we have u j ≤ ū j for all 1≤ j ≤ m.

We first consider the following system:

∆ū∗
1 = f1 (1) in BR ,

...
...

∆ū∗
m = fm (1) in BR ,

ū∗
1 = ·· · = ū∗

m = 1 on ∂BR .

By Green’s function, the solution is
(
ū∗

1 , . . . , ū∗
m

)
denoted as follows:

ū∗
j =

f j (1)
(|x|2 −R2)
2N

+1 , 1≤ j ≤ m
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and

min ū∗
j =

− f j (1)R2

2N
+1 , 1≤ j ≤ m.

Clearly,
(
ū∗

1 , . . . , ū∗
m

)
is a super solution of (5.1). By Lemma 5.2, the solution (u1, . . . ,um)

of (5.1) is global only if ū∗
1 , . . . , ū∗

m > 0. �

5.5 Concluding Remarks and Perspectives

This contribution advances mathematical research on quenching phenomena. The results

of this study can be used to study other singular reaction-diffusion phenomena. We

managed to overcome some difficulties and achieved very important results. This leads

us to think more about the problem and do further theoretical and numerical research

under other conditions. These efforts will advance quenching technology and modeling

in many scientific fields.
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6
QUENCHING REACTION-DIFFUSION SYSTEMS IN

BIOENGINEERING AND LIFE SCIENCES

TThis research chapter revolves around investigating the phenomenon of quench-

ing in reaction-diffusion systems and highlighting its significance. The primary

focus is on analyzing a specific type of parabolic singular reaction-diffusion model

that incorporates positive Dirichlet boundary conditions. The objective is to establish

the sufficiency of certain conditions for quenching to occur within a finite time frame

and to demonstrate the global existence of solutions. The novelty of this work lies in

the simplicity of the conditions imposed on the nonlinearity. This simplicity allows us

to choose it from a wide range of possibilities, thus facilitating the application of the

model to numerous singular reaction-diffusion phenomena. To bolster our findings, we

will present various real-world applications in the fields of bioengineering and life sci-

ences, showcasing the practical relevance of quenching phenomena. Additionally, we are

conducting a numerical study utilizing the Scilab program to complement our theoretical

analysis. Finally, the chapter ends with a conclusion and some potential future perspec-

tives for further research in this area.

The content presented in this chapter has been documented in a research paper

[62] entitled “Quenching Reaction-Diffusion Systems in Bioengineering and Life Sci-

ences” published in the Engineering and Technology Journal. The paper represents a
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collaborative effort involving S. Mesbahi and K. I. Saffidine.

6.1 Introduction

Quenching is a rapid cooling process that alters specific properties of materials by manip-

ulating the cooling rate. The material is heated above the recrystallization temperature

but below the melting point to allow grain restructuring, followed by controlled cool-

ing to a predetermined temperature. The exploration of this significant phenomenon

commenced in 1975 when Kawarada [113] published a paper that focused on a one-

dimensional model. This publication served as an initial stepping stone for extensive

investigations into the quenching problem conducted by numerous researchers across

various scientific disciplines. The phenomenon of quenching is observed in many fields,

such as metallurgy, biology, medicine, ecology, bioengineering, the manufacture of medi-

cal devices, instruments, and contact lenses, particularly in the context of polymerization

processes. In this context, quenching refers to the rapid cooling or solidification of a

material, typically a polymer, to halt or control a chemical reaction. We find sufficient

information about this in Liščić et al. [129], Banasiak and Mokhtar-Kharroubi [25]. In

the production of contact lenses, polymerization is a key step in forming the lens mate-

rial. The polymerization reaction involves the conversion of monomers, small molecules

with reactive groups, into a polymer network. This reaction is often initiated by heat or

light, and it proceeds through a process known as reaction-diffusion. The monomers are

dispersed in a liquid solution, and the polymerization reaction occurs as the monomers

diffuse and react with each other. During the polymerization process, it is crucial to

control the reaction to achieve the desired properties of the contact lens material, such

as their mechanical strength, transparency, and water content. Quenching is employed

as a means to stop the polymerization reaction at a specific stage. By rapidly cooling or

solidifying the material, the diffusion of monomers and reaction products is effectively

halted, preventing further polymerization. Quenching can be accomplished through

various methods, such as immersion in a cooling bath or exposure to cold air or liquid

nitrogen. The specific quenching technique used depends on the manufacturing process

and the desired properties of the contact lenses. For some examples and additional

details, see Barka et al. [26], Rouabah et al. [187].

Quenching in reaction-diffusion systems can manifest in different ways, depending

on the specific characteristics of the system. In simultaneous quenching, the quenching

of different components can occur simultaneously, meaning that the concentrations of
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all the substances involved in the reaction become zero at the same time. This type of

quenching is often studied to understand the overall behavior of the system and the

underlying mechanisms. Non-simultaneous quenching occurs when the concentrations of

different substances in the system become zero at different times. This type of quenching

can lead to more complex dynamics and is also the subject of research in reaction-

diffusion systems. Different types of quenching rates can lead to different behaviors and

can be studied to understand the system’s dynamics. In many cases, the solution of a

reaction-diffusion system quenches in finite time, meaning that the concentration of

one or more substances becomes zero after a certain amount of time has passed. This

type of quenching is often of interest in practical applications, as it can lead to the

system reaching a steady state more quickly. Understanding these and other quenching

species in reaction-diffusion systems is essential for studying their behavior and can

have implications for various fields, such as engineering, chemistry, biology, ecology, and

medicine. See Chan [36], Liščić et al. [129],

The spatial distribution of quenching, which refers to the location and extent of

the regions where the concentration of one or more substances in a reaction-diffusion

system becomes zero, can have various effects on the behavior of these systems. In some

cases, it can lead to the formation of complex patterns, such as spots, stripes, or spirals.

This is due to the interaction between the quenching regions and the diffusion of the

substances involved in the reaction. The spatial distribution of quenching can also affect

the stability of the system, as it can lead to the formation of unstable regions where

the concentration of one or more substances becomes zero. Understanding the effect of

quenching on stability is important for predicting the behavior of the system and for

designing control strategies. See Cross and Greenside [52].

The phenomenon of quenching in bioengineering is the application of heat treatment

quenching to biological or biomimetic materials. For example, quenching can be used to

create bioactive glasses, which are materials capable of chemically bonding with living

tissues. Bioactive glasses are obtained by melting a mixture of silicon, calcium, sodium,

and phosphorus salts, and then rapidly cooling to prevent crystallization. Bioactive

glasses can be used as implants, drug delivery agents, or tissue regeneration scaffolds.

See Jones [108], Hench and Jones [102] and the references mentioned therein. Another

example of quenching in bioengineering is the production of silk nanofibers. Silk is a

natural protein produced by certain insects and spiders, which possesses exceptional

mechanical properties. Silk can be dissolved in an aqueous solution, then stretched and

rapidly cooled to form nanofibers. Silk nanofibers can be used as reinforcement materials,
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sensors, filters, or matrices for cell culture.

Therefore, quenching in bioengineering is a process that allows for the creation of

innovative and high-performance materials, drawing inspiration from the principles

of metallurgy. Quenching can modify the structure and properties of materials at the

nanoscale or micrometer scale, depending on the temperature, cooling rate, and chemical

composition parameters. In Kundu [123], we find a lot about this content.

Here are some phenomena that can be modeled using reaction-diffusion equations:

(i) Protein Folding and Unfolding: Quenching can refer to the rapid cooling or sud-

den change in environmental conditions that leads to the folding or unfolding of proteins.

The process of protein folding involves the formation of a three-dimensional structure,

while unfolding refers to the disruption of the native protein structure. Reaction-diffusion

equations can be used to model the conformational changes and kinetics of protein folding

and unfolding.

(ii) Cell Signaling and Receptor-Ligand Binding: Quenching can also describe

the attenuation or termination of cell signaling pathways or the binding of ligands to

receptors. In these cases, reaction-diffusion equations can be used to model the diffusion

of signaling molecules or ligands, as well as their binding kinetics with receptors. The

equations can capture the spatial and temporal dynamics of the signaling or binding

process and provide insights into the quenching mechanisms.

(iii) Fluorescence Quenching in Biosensors: Quenching can occur in biosensors

that rely on fluorescence-based detection. When a fluorescent molecule or fluorophore is

in close proximity to a quencher molecule, the fluorescence emission can be attenuated.

Reaction-diffusion equations can be employed to model the diffusion of the fluorescent and

quencher molecules, as well as the quenching kinetics. This allows for the optimization

of biosensor designs and the prediction of fluorescence quenching patterns.

It’s important to note that these examples are just a few instances where reaction-

diffusion equations can be applied to model quenching phenomena in bioengineering.

The specific equations and parameters would depend on the particular system and the

underlying mechanisms involved. We find many details, real models, and techniques

used to study such problems in Barka et al. [26], Berestycki et al. [32], de Bonis [57], Ji

et al. [107], Kawarada [113], Mesbahi [143, 155], Murray [161, 162], Pei and Li [177],

Salin [196], Wang [215], Zhou et al. [227], Zhu et al. [228], as well as in the sources

mentioned there.

In this chapter, we will mathematically investigate a problem that aligns with the

previously discussed concept of quenching. Our focus lies on examining a reaction-
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diffusion model that incorporates singular nonlinearity and positive Dirichlet boundary

conditions:

(6.1)


ut −∆u =− f (u) in (0,T)×Ω
u = 1 on (0,T)×∂Ω
u (0, x)= u0 (x) in Ω

with

(6.2)


u0 ∈ C2 (Ω)∩C1

(
Ω

)
u0 = 1, on ∂Ω,

0< u0 ≤ 1, in Ω

∆u0 − f (u0)< 0, in Ω

where Ω is a smooth and bounded domain in RN (N ≥ 2), and f is a positive function on

(0,1].

The remaining sections of this chapter are structured as follows. In the subsequent

section, we will showcase real-life applications of the investigated model in the fields of

bioengineering and biology. Following that, in the third section, we will present our main

result and demonstrate them in detail. The fourth section focuses on the numerical study

conducted. Finally, the chapter concludes with concluding remarks and perspectives.

6.2 Real-life applications

We can explore several examples of quenching phenomena that can be effectively modeled

using reaction-diffusion equations. For more in-depth information and comprehensive

details about these examples, we can refer to the works of Chenna et al. [40], Hussain et

al. [105], Purich [181], Suckart et al. [208], Williams [217], Zhou et al. [227], and in the

sources mentioned there.

(i) The extinguishing of a chemical flame: When a flame is quenched, it under-

goes a rapid transition from a state of combustion to an extinguished state due to the

removal of one or more essential components for sustaining the flame, such as fuel

or oxygen. This quenching process can be described by a singular reaction-diffusion

equation that models the chemical reactions and diffusion of species involved in the

combustion process. The equation used to model flame quenching depends on the specific

combustion chemistry and the reaction mechanism of the fuel being burned. However,

a simplified example can be represented by the reaction-diffusion equation (6.1) with
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a single species, such as the fuel concentration (denoted as u), and a reaction term

that accounts for the combustion reaction. In this case, − f (u) is the reaction term that

describes the combustion reaction. The specific form of f (u) depends on the combustion

chemistry and can involve nonlinear terms to capture the reaction kinetics. Modeling

flame quenching using reaction-diffusion equations aids in understanding the dynamics

of combustion processes, optimizing fire safety measures, and designing efficient fire

suppression systems.

(ii) The diffusion-limited quenching of reactive oxygen species (ROS) by
antioxidants: Reactive oxygen species, such as hydrogen peroxide H2O2 and superoxide

radicals O•−
2 , are highly reactive molecules that can cause oxidative damage to cells

and tissues. Antioxidants are substances that can neutralize or scavenge these ROS,

protecting cells from oxidative stress. The reaction-diffusion equation (6.1) can describe

the diffusion of ROS and antioxidants and the quenching process. The quenching effect

is modeled by a reaction term that becomes singular when the concentration of ROS

is high and the concentration of antioxidants is low. In this case, − f (u) dominates and

leads to a decrease in the ROS concentration. This behavior represents the quenching of

ROS by antioxidants, where the antioxidants act as scavengers to neutralize the reactive

species.

(iii) The enzyme inhibition: Enzymes play a crucial role in biological processes

by catalyzing chemical reactions. However, enzymes can be inhibited by various factors,

such as inhibitors or regulatory molecules, leading to a decrease in their activity. The

reaction-diffusion equation (6.1) can be used to model the spatial distribution of the

enzyme concentration and the inhibitor concentration, as well as the quenching effect due

to enzyme inhibition. The quenching effect is modeled by a reaction term that becomes

singular when the concentration of the inhibitor is high. In this case, the reaction term

− f (u) dominates and leads to a decrease in the enzyme activity. This behavior represents

the quenching of enzyme activity due to inhibition.

(iv) The quenching in fluorescence resonance energy transfer (FRET) as-
says: FRET is a widely used technique to study molecular interactions and proximity

in biological systems. It relies on the transfer of energy between a donor fluorophore

and an acceptor fluorophore, which are typically attached to biomolecules of interest.

However, the fluorescence signal can be quenched when the donor and acceptor fluo-

rophores come into close proximity or interact with each other. The reaction-diffusion

equation (6.1) can describe the diffusion of the donor and acceptor fluorophores and the

quenching process in FRET assays. The quenching effect is modeled by a reaction term
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that becomes singular when the concentration of the acceptor fluorophore is high. In

this case, term − f (u) dominates and leads to a decrease in the fluorescence signal of

the donor fluorophore. This behavior represents the quenching of fluorescence in FRET

assays, where the proximity or interaction between the donor and acceptor fluorophores

results in energy transfer and a reduction in the donor fluorescence intensity.

(v) The diffusion-limited quenching of free radicals by antioxidants: Free

radicals, such as reactive oxygen species (ROS), are highly reactive molecules that can

cause damage to cellular components and contribute to various diseases. Antioxidants

are molecules that can neutralize free radicals by donating an electron, thereby reducing

their reactivity and preventing cellular damage. The reaction-diffusion equation (6.1)

can describe the diffusion of free radicals and antioxidants and the quenching process.

When the concentration of free radicals is sufficiently high and the concentration of

antioxidants is low, the reaction term − f (u) dominates and leads to a decrease in the

concentration of free radicals. This behavior represents the quenching of free radicals by

antioxidants, where the antioxidants act as scavengers to neutralize the reactive species

and reduce their harmful effects.

6.3 Statement of main results

The finite-time quenching phenomenon is caused by singular nonlinearity in the ab-

sorption term of (6.1). Therefore, we present the concept of a quenched solution to our

problem.

6.3.1 Assumptions

Definition 6.1. A solution u of problem (6.1)− (6.2) is said to be quenche if u exists in

the classical sense and is positive on [0,T), and also satisfies inf
t→T

min
x∈[0,1]

u (t, x)= 0. In this

case, T is called quenching time.

To study problem (6.1)− (6.2), we also assume that the positive function f : (0,1]→
(0,+∞) satisfies the following two hypotheses (H1) and (H2):

(H1) f is a strictly decreasing and locally Lipschitzian function on (0,1].

(H2) lim
s→0+ f (s)=+∞.
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To make our findings more easily understandable, we denote by ϕ the first eigenfunc-

tion associated with the first eigenvalue λ1 of the problem.{
∆ϕ+λϕ= 0 in Ω,

ϕ= 0 on ∂Ω,

normalized by
∫
Ωϕ(x)dx = 1, with ϕ(x)> 0 in Ω.

6.3.2 The main results

An adequate condition for finite-time quenching is provided by the following theorem.

Theorem 6.1. Under hypotheses (H1)−(H2), the solution of problem (6.1)−(6.2) quenches

in finite time for any initial data provided that λ1 is small enough.

Proof. Let u be the solution of problem (6.1)− (6.2) with the maximal existence time T.

By the maximum principle, we have 0≤ u ≤ 1 in (0,T)×Ω. Let

(6.3) ξ (t)=
∫
Ω

(1−u)ϕ (x)dx , t ∈ [0,T)

By Assumptions (H1)− (H2) and the corresponding Taylor expansions, we get easily

(6.4) f (u)≥ δ (1−u)+β

where δ and β are positive constants. By a straight-forward computation and (6.4), we

obtain

dξ
dt

= −
∫
Ω

ut.ϕ (x)dx

= −
∫
Ω
∆u.ϕ (x)dx+

∫
Ω

f (u)ϕ (x)dx

=
∫
Ω
∆ (1−u) .ϕ (x)dx+

∫
Ω

f (u)ϕ (x)dx

≥ −λ1

∫
Ω

(1−u)ϕ (x)dx+δ
∫
Ω

(1−u)ϕ (x)dx+β
∫
Ω
ϕ (x)dx

= (δ−λ1)ξ (t)+β.
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Since 0≤ u ≤ 1 then 0≤ 1−u ≤ 1 in (0,T)×Ω. This is confirmed by (6.3) that 0≤ ξ (t)≤ 1.

Since λ1 is small enough, it is obvious that (δ−λ1)ξ (t)+β> 0. This gives us

dξ
(δ−λ1)ξ (t)+β ≥ dt , t ∈ [0,T) ,

which gives, by integration from 0 to T,

(6.5) T ≤


1

δ−λ1
log

(
(δ−λ1)ξ (T)+β
(δ−λ1)ξ (0)+β

)
if δ 6=λ1

1
β

(ξ (t)−ξ (0)) if δ=λ1

Now, letting t → T− in (6.5) and combining lim
t→T−ξ (t)≤ 1, we obtain

(6.6) T ≤


1

δ−λ1
log

(
(δ−λ1)+β

(δ−λ1)ξ (0)+β
)

if δ 6=λ1

1
β

(1−ξ (0)) if δ=λ1

The positivity of the right-hand side of (6.6), which illustrates the finite time quenching

of the solutions of problem (6.1)− (6.2), can be readily reached since 0≤ ξ (t)≤ 1. This is

what is required. �

Remark 6.1. Many quenching studies confirm that time-derivatives blow-up while the

solution itself remains bounded. We refer, for example, to Chan [36] and Kawarada [113].

The global existence of solutions can be described by the following theorem.

Theorem 6.2. If the diameter of Ω is small enough and the initial data satisfies 0< ε≤
u0 ≤ 1 in Ω, then under hypotheses (H1)− (H2), the solution of problem (6.1)− (6.2) does

not quench in finite time. In this case, we say that the solution u exists globally.

Proof. Consider the auxiliary problem
ūt =∆ū− f (ū) in (0,T)×Ω
ū = 1 on (0,T)×∂Ω
ū (0, x)= 1 in Ω
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According to the comparison principle, we have u ≤ ū.

Now, we consider the following problem: ∆ū∗ = f (1) in Bρ

ū∗ = 1 on ∂Bρ

with

Bρ =
{

x ∈RN : |x| < ρ
}

and ρ ≥
(

2N
f (1)

) 1
2

By Green’s function, the solution is ū∗ denoted as follows:

ū∗ = f (1)
(|x|2 −ρ2)
2N

+1

and

min ū∗ = − f (1)ρ2

2N
+1

Clearly, ū∗ is a super solution of (6.1)− (6.2). Therefore, the solution u of (6.1)− (6.2) is

global only if ū∗ > 0. �

6.4 Conclusion and perspectives

(i) This research work focuses on understanding and studying quenching phenomena,

which involve rapid changes in temperature or physical conditions and can lead to com-

plex phenomena in different systems. The study contributes to a deeper understanding

of the mathematical principles underlying quenching processes, advancing research in

this area.

(ii) The results obtained in this study have wider implications beyond quenching

phenomena alone. They can be applied to the study of other singular reaction-diffusion

phenomena. This opens up new avenues for investigating and understanding various

physical and chemical processes where similar mathematical principles may be at play.

(iii) The study’s findings and insights provide a foundation for further theoretical

and numerical investigations under different conditions. This deeper dive into the

problem aims to achieve additional progress in the field and expand our knowledge. This

deeper dive into the problem aims to push the boundaries of current understanding and

potentially uncover new phenomena or mechanisms.
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(iv) The primary goal of the research is to contribute to the advancement of quenching

technology and modeling in diverse scientific disciplines. Quenching phenomena have

practical implications in fields such as bioengineering, biology, and many others. By

deepening the understanding of quenching through mathematical research, the study

can potentially lead to improved techniques, methodologies, and models that benefit

these scientific fields. The advancements may enable better control and optimization of

quenching processes, which can have practical applications in various industries.
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7
ON A SINGULAR DEGENERATE REACTION-DIFFUSION

MODEL APPLIED TO QUENCHING AND BIOLOGY

In this chapter, we are interested in studying a singular nonlinear degenerate

reaction-diffusion model having a natural growth with respect to the gradient. Our

approach uses Schauder’s fixed point theorem. This type of problem has numerous

important applications across multiple disciplines, such as biology, ecology and medicine.

By employing rigorous mathematical techniques, we aim to advance the theoretical

understanding of this type of nonlinear degenerate reaction-diffusion problems and lay

the groundwork for further developments and real-world implementations.

The content of this chapter is based on a research paper [63] titled “On a Singular

Degenerate Reaction-Diffusion Model Applied to Quenching and Biology”, published in

the Algerian Journal of Sciences. This paper is the result of a collaborative effort with S.

Mesbahi.

7.1 Introduction

Singular degenerated reaction-diffusion systems are a class of partial differential equa-

tions that exhibit a unique mathematical structure. These systems are characterized

by the presence of a singular or degenerate term in the equation, which can lead to
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complex behavior and interesting applications. In the context of quenching, singular

degenerated reaction-diffusion systems can be used to model phenomena such as the

quenching of flames or the extinction of biological populations. The singular term in the

equation can represent a critical threshold or a phase transition, where the system’s

behavior changes dramatically. For example, consider a model for the spread of a fire in

a forest. The reaction-diffusion equation can describe the dynamics of the fire, with the

singular term representing the critical temperature at which the fire is extinguished.

By analyzing the properties of the singular degenerated reaction-diffusion system, re-

searchers can gain insights into the conditions under which the fire will be quenched

and the factors that influence the quenching process. Similarly, in the context of biology,

singular degenerated reaction-diffusion systems can be used to model the dynamics of

biological populations, such as the spread of infectious diseases or the growth of tumors.

The singular term in the equation can represent a critical population density or a phase

transition in the system’s behavior, such as the onset of extinction or the transition to a

state of uncontrolled growth.

The analysis of singular degenerated reaction-diffusion systems often involves tech-

niques from nonlinear analysis, such as the study of free boundaries, the analysis of

steady-state solutions, and the investigation of the asymptotic behavior of the solu-

tions. These systems can exhibit rich and complex dynamics, including the formation

of patterns, the occurrence of bifurcations, and the existence of multiple stable states.

The applications of singular degenerated reaction-diffusion systems span various fields,

including ecology, epidemiology, materials science, and even social sciences. By under-

standing the mathematical properties of these systems and their connection to real-world

phenomena, researchers can develop more accurate models and gain insights that in-

form practical applications. We find numerous real applications in biology, medicine and

ecology in the works of Mesbahi et al. Mesbahi et al. [62, 64, 140, 143, 155], and also in

DiBendetto [60], Murray [161, 162] and corresponding references therein.

The problem we will study here fits into this context, and we find that it has many

important applications in biology, medicine, the environment, and many other interesting

scientific fields. The analysis of these systems often involves advanced mathematical

techniques. By understanding the rich and complex dynamics exhibited by these systems,

researchers can develop more accurate models that provide valuable insights in various

scientific domains. We are interested in the following nonlinear singular degenerated
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reaction-diffusion system having natural growth with respect to the gradient

(7.1)


∂u
∂t

−div (a (t, x)∇u)+d (t, x)
|∇u|p

uγ
= f (t, x) in QT

u (t, x)= 0 on Γ

u (0, x)= u0 (x) in Ω

where Ω is a bounded open subset of RN , N > 2, and QT is the cylinder (0,T)×Ω, T > 0,

Γ = (0,T)× ∂Ω, 2 < p < N, 0 < γ < 1, a (t, x) and d (t, x) are two bounded measurable

functions satisfying

(7.2) 0<α1 ≤ a (t, x)≤α2

(7.3) 0<β1 ≤ d (t, x)≤β2

where α1, α2, β1 and β2 are fixed real numbers such that α1 <α2 and β1 < β2. On the

function f , we assume that it is non-negative and not identically zero, and that it belongs

to the Lebesgue space Lm (QT) with m > 1. Moreover, the initial data u0 ∈ L∞ (Ω) satisfies

the following condition of strict positivity

∃Dω > 0,∀ω⊂⊂Ω : u0 ≥ Dω

We find a detailed history of this problem and its applications in numerous areas

in Benkirane et al. [31], Boccardo et al. [33], Dall’Aglio et al. [53–55], De Bonis and

Giachetti [58], El Hadfi et al. [70], El Ouardy and El Hadfi [71], Keller and Choen [116],

Magliocca [136], Martínez-Aparicio and Petitta [138], Nachman and Callegari [165],

Youssfi et al. [219] and references therein.

The problem described in (7.1) presents several key difficulties that must be ad-

dressed. Firstly, the presence of the lower-order term introduces complications. The

natural growth term in the equation depends on the gradient, which adds mathematical

complexity. Additionally, the singularity in the equation depends on the variable u,

further complicating the analysis. Perhaps most challenging is the need to prove the

strict positivity of the solution within the interior of the parabolic cylinder. Establishing

this positivity property is a non-trivial task. To overcome these difficulties, we must

approximate the singular problem (7.1) by another non-singular one, and we show that

this problem admits a non-negative solution (the proof is based on the application of

Schauder’s fixed point theorem) and that this solution is strictly positive in the interior of

the parabolic cylinder (the proof is based on the use of the intrinsic Harnack inequality).
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Below, we will use |E| to denote the Lebesgue measure of a subset E ⊂RN . The Hölder

conjugate exponent of q > 1 is q′ = q
q−1 , while the Sobolev conjugate exponent of p for

1≤ p < N is N p
N−p . For a fixed k > 0, we define the truncation function Tk as follows:

Tk (s)=max {−k,min {s,k}}

To streamline notation, we will use C to represent values that may vary from step

to step or even within the same step, depending on some parameters. However, C will

remain constant with respect to the indices of any sequences introduced.

7.2 Statement of the main result

First, we have to clarify in which sense we want to solve our problem.

Definition 7.1. A weak solution to problem (7.1) is a function u ∈ L1
(
0,T;W1,1

0 (Ω)
)

such

that for every ω⊂⊂Ω there exists cω such that u ≥ cω > 0 in (0,T)×ω,
(
a (t, x) |∇u|p−1) ∈

L1 (QT),
|∇u|p

uγ
∈ L1 (

0,T;L1
loc (Ω)

)
. Furthermore, we have that

−
∫

QT

u
∂φ

∂t
dtdx+

∫
QT

a (t, x)∇u.∇φdtdx

+
∫

QT

d (t, x)
|∇u|p

uγ
φdtdx =

∫
QT

fφdtdx+
∫
Ω

u0 (x)φ (0, x)dx

for every φ ∈ C1
c ([0,T)×Ω).

Now, we can state the main result of this chapter, it is the following theorem.

Theorem 7.1. Let 0< γ< 1, λ= p (N +1+δ)
p (N +1+δ)−Nδ

and δ=min
{
γ,1− q

}
. Assume that a

satisfy (7.2), d satisfy (7.3) and f ∈ Lm (QT) with 1< m < N
p+1 . Then there exists a solution

u of problem (7.1) in the sense of Definition 7.1 verify the following regularity:

(i) If λ≤ m < N
p+1

, then u ∈ Lp
(
0,T;W1,p

0 (Ω)
)
∩Lσ (QT) with

σ= m
N (p−δ)+ p
N − pm+ p

(ii) If 1< m <λ, then u ∈ Ls
(
0,T;W1,s

0 (Ω)
)
∩Lσ (QT) with

s = m
N (p−δ)+ p

N +1−δ (m−1)
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7.3 Approximating Scheme

Let 0< ε< 1. We approximate problem (7.1) by the following nonlinear and non-singular

problem

(7.4)


∂uε
∂t

−div (a (t, x)∇uε)+d (t, x)
uε |∇uε|p

(ε+|uε|)γ+1 = fε (t, x) in QT

uε (t, x)= 0 on Γ

uε (0, x)= uε0 (x) in Ω

where

fε = f
1+ε f

and fε ∈ L∞ (QT)

such that

(7.5) ‖ fε‖Lm(QT ) ≤ ‖ f ‖Lm(QT ) and fε→ f strongly in Lm (QT) , m > 1

and

uε0 (x)= u0 (x)
1+εu0 (x)

∈ L∞ (Ω)

such that
‖uε0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) and uε0 → u0 strongly in L1 (Ω)

Problem (7.4) admits weak solutions uε ∈ Lp
(
0,T;W1,p

0 (Ω)
)
∩L∞ (QT), as shown in

references Dall’Aglio and Orsina [56] and Lions [128]. Additionally, the solution of

problem (7.4) is continuous in time, meaning uε ∈ C
(
[0,T] ;L1

loc (Ω)
)
. Since the right side

of (7.4) is non-negative, uε is also non-negative.

Lemma 7.1. Let uε be solutions to problem (7.4). Then∫
QT

d (t, x)
uε |∇uε|p

(ε+uε)γ+1 ≤ |QT |1−
1
m ‖ f ‖Lm(QT ) +‖u0‖L1(Ω)

Proof. See DiBendetto [60]. �

Remark 7.1. According to Lemma 7.1, and since∫
QT

d (t, x)
uε |∇uε|p

(ε+uε)γ+1 ≥ 0 and f ∈ L1 (QT)

one has that∫
QT

∣∣∣∣d (t, x)
uε |∇uε|p

(ε+uε)γ+1 − f
∣∣∣∣≤ 2 |QT |1−

1
m ‖ f ‖Lm(QT ) +‖u0‖L1(Ω) < C
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Lemma 7.2. Let the assumptions of Theorem 7.1 be in force. Then the solution uε of (7.4)

satisfy the following estimate:

(i) If λ≤ m < N
p+1

, then uε is uniformly bounded in the space

Lp
(
0,T;W1,p

0 (Ω)
)
∩Lσ (QT)

(ii) If 1< m <λ, then uε is uniformly bounded in the space

Ls
(
0,T;W1,s

0 (Ω)
)
∩Lσ (QT)

where s and σ are defined in Theorem 7.1.

7.4 Proof of the main result

Now we can prove Theorem 7.1.

Proof of Theorem 7.1 In view of Lemma 7.2,

uε* u weakly in Lδ
(
0,T;W1,δ

0 (Ω)
)
, ∀δ< s < p and a.e. in QT

By Remark 7.1, fε−d (t, x) uε|∇uε|p
(uε+ε)γ+1 ∈ L1 (QT) and from Lemma 7.2, we have a (t, x)∇uε is

bounded in Lρ (QT) for all 1 ≤ ρ < s
p−1 < p. Then div (a (t, x)∇uε) is bounded in the

space Lρ′ (QT) ⊂ Lp′
(QT) ⊂ Lp′ (

0,T;W−1,p′
0 (Ω)

)
, and then ∂uε

∂t is bounded in the space

Lp′ (
0,T;W−1,p′

0 (Ω)
)
+L1 (QT) . Using the compactness results in Simon [202], we obtain

(7.6) uε→ u strongly in L1 (QT) and a.e. in QT .

We can use the same proof as in Abdellaoui and Redwane [1], we obtain

(7.7) Tk (uε)→ Tk (u) strongly in Lp
(
0,T;W1,p

0 (Ω)
)

and also we have

(7.8) ∇uε→∇u in a.e. in QT
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On the other hand, recalling (7.2), (7.6), (7.8), Lemma 7.2 and the dominated convergence

theorem implies that the sequence a (t, x)∇uε converges weakly to a (t, x)∇u in Lρ (QT) for

every 1≤ ρ < s
p−1 . Therefore, for every ϕ ∈ C1

c (Ω× [0,T)) ,

(7.9) lim
ε→0

∫
Q

a (t, x)∇uε∇ϕ=
∫

Q
a (t, x)∇u∇ϕ

Now we prove that

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 → d (t, x)
|∇u|p

uγ
, strongly locally in L1 (QT)

For any measurable compact subset E of QT , we have∫
E

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 =
∫

E∩{uε≤k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1

+
∫

E∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1

≤
∫

E∩{uε≤k}
d (t, x)

|∇uε|p
uγε

+
∫

E∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1

We get ∫
E

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 ≤ 1
cγε

∫
E

d (t, x) |∇Tk (uε)|p +
∫

E∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1

Let ν> 0 be fixed. For k > 1 , we use T1 (uε−Tk−1 (uε)) as a test function in (7.4), yielding∫ T

0

∫
Ω

∂uε
∂t

T1 (uε−Tk−1 (uε))+
∫

QT

a (t, x)∇uεT1 (uε−Tk−1 (uε))

+
∫

QT

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 T1 (uε−Tk−1 (uε))

=
∫

QT

fεT1 (uε−Tk−1 (uε))

Recalling (7.2) and the fact uε ≥ 0, we can write∫
Ω

S1 (uε (T))+α1

∫
{k−1≤uε≤k}

|∇uε|p

+
∫

QT

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 T1 (uε−Tk−1 (uε))

≤
∫

QT

fεT1 (uε−Tk−1 (uε))+
∫

QT

S1 (u0) ,
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where

S1 (uε (T))=
∫ uε(T)

0
T1 (s−Tk−1 (s))ds.

It is easy to see that S1 (uε (T)) ≥ 0 a.e. in Ω. After the first and second non-negative

terms of the previous inequality are removed, we arrive at

∫
QT

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 T1 (uε−Tk−1 (uε))(7.10)

≤
∫

QT

fεT1 (uε−Tk−1 (uε))+
∫

QT

S1 (u0)

=
∫

QT

fεT1 (uε−Tk−1 (uε))
∫
Ω

∫ u0

0
T1 (s−Tk−1 (s))ds.

Since T1 (uε−Tk−1 (uε))≥ 0,

T1 (uε−Tk−1 (uε))=

 0 if uε ≤ k−1

1 if uε > k

recalling the condition (7.3) and the fact that uε > 0, we have

∫
QT

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 T1 (uε−Tk−1 (uε))

=
∫

QT∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1 T1 (uε−Tk−1 (uε))

+
∫

QT∩{uε≤k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1 T1 (uε−Tk−1 (uε))

=
∫

QT∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1

+
∫

Q∩{uε≤k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1 T1 (uε−Tk−1 (uε))

≥
∫

E∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1
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and ∫
QT

fεT1 (uε−Tk−1 (uε))

=
∫

QT∩{uε≤k−1}
fεT1 (uε−Tk−1 (uε))+

∫
QT∩{k−1<uε≤k}

fεT1 (uε−Tk−1 (uε))

+
∫

Q∩{uε>k}
fεT1 (uε−Tk−1 (uε))

=
∫

QT∩{k−1<uε≤k}
fεT1 (uε−Tk−1 (uε))+

∫
QT∩{uε>k}

fε

=
∫

QT∩{uε≤k−1}
f +

∫
QT∩{k−1<uε≤k}

f +
∫

QT∩{uε>k}
f

also we have∫
Ω

S1 (u0)=
∫
Ω

∫ u0

0
T1 (s−Tk−1 (s))ds =

∫
Ω

∫
[0,u0]∩{s>k−1}

T1 (s−Tk−1 (s))ds

Therefore, from (7.10) combined with the two later inequalities and the above equality,

we obtain ∫
E∩{uε>k}

d (t, x)
uε |∇uε|p

(uε+ε)γ+1

≤
∫

Q∩{uε≥k−1}
f +

∫
E

∫
[0,u0]∩{s>k−1}

T1 (s−Tk−1 (s))ds

It follows from f ∈ Lm (Q) and T1 (s−Tk−1 (s)) ∈ L1 (Ω) that∫
E∩{uε>k}

d (t, x)
uε |∇uε|p

(uε+ε)γ+1 → 0 as k →∞

Then, there exists k0 > 1 such that

(7.11)
∫

E∩{uε>k}
d (t, x)

uε |∇uε|p
(uε+ε)γ+1 ≤ ν

2
, ∀k > k0, ∀ε ∈ (0,T)

Since from (7.7) (Tk (uε)→ Tk (u)) strongly in Lp
(
0,T;W1,p

0 (Ω)
)
, then there exists εν, θν

such that |E| ≤ θν, and we have

(7.12)
1
cγε

∫
E

d (t, x) |∇Tk (uε)|p ≤ ν

2
, ∀ε≤ εν

The estimates (7.11) and (7.12) imply that d (t, x) uε|∇uε|p
(uε+ε)γ+1 is equi-integrable. This fact,

together with the a.e. convergence of this term to d (t, x) |∇u|p
uγ , implies by the Vitali
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Theorem that

(7.13) d (t, x)
uε |∇uε|p

(uε+ε)γ+1 → d (t, x)
|∇u|p

uγ
, strongly locally in L1 (QT)

Let ϕ ∈ C1
c (Ω× [0,T)), taking ϕ test function in problem (7.4), by (7.5), (7.6), (7.9) and

(7.13), we can let ε→ 0 yielding

−
∫

QT

u
∂ϕ

∂t
+

∫
QT

a (t, x)∇u∇ϕ+
∫

QT

d (t, x)
|∇u|p

uγ
ϕ

=
∫

QT

fϕ+
∫
Ω

u0 (x)ϕ (x,0)

Thus, Theorem 7.1 is proved. �
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8
EXISTENCE RESULT OF CONTINUOUS POSITIVE

SOLUTIONS FOR A REACTION-DIFFUSION SYSTEM

TTis chapter mainly seeks to contribute to the study of a quasilinear parabolic

reaction-diffusion system of arbitrary order with initial conditions. Using po-

tential analysis techniques, we establish the existence of continuous positive

solutions. The originality lies in the fact that our system is of arbitrary order, which rep-

resents a significant advancement as our main result extends and generalizes previous

findings.

The content of this chapter was published in a research paper [182] entitled “Ex-

istence result of continuous positive solutions for a reaction-diffusion system” in the

journal Partial Differential Equations in Applied Mathematics in collaboration with S.

Mesbahi and M. Redjouh.

8.1 Introduction

Our research aims to investigate a specific class of reaction-diffusion systems that has

captured considerable attention from numerous researchers, thus underscoring their

importance and relevance. In this chapter, we will examine a model that possesses

extensive applications across disciplines such as biology, ecology, medicine, bioengineer-
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ing, biochemistry, physics, and various other fields of knowledge. Notably, we can find

numerous models and references related to these applications in the works of Abdellaoui

[2], Alqahtani [17], Ghanmi et al. [87, 88], Gontara et al. [92, 93], Haq et al. [101], Lair

and Wood [124], Mâagli et al. [130, 131], Murray [161, 162], Nisar et al. [167], Yadav

et al. [218], Zhang [222, 223], and the corresponding references therein. These sources

also provide valuable mathematical techniques that we employ in addressing similar

problems. The originality of our study lies in the system we intend to investigate, which

possesses arbitrary order. This distinctive feature allows our main result to surpass

the conclusions drawn from previous studies conducted on models with only one or two

equations. The difficulties we encounter are similar to those in [92], [130], [131], [222]

and [223]. However, our study introduces additional obstacles arising from the unique

characteristics and underlying assumptions of the model. Nevertheless, we are confident

of successfully overcoming these obstacles.

In this study, we will employ some potential analysis techniques. For further insights

and information in this field, we recommend referring to Armitage and Gardiner [21]. A

range of effective methods for investigating such problems can be found in the works of

Aibinu et al. [7], Kleefeld et al. [118], Kumar and Nisar [122], Mesbahi et al. [143, 145,

146, 155, 159], Osman [169], Reisch and Langemann [186], Williams [216], Zhou and

Wei [226], and the references provided therein.

We will therefore be interested in studying the existence of positive solutions to the

following reaction-diffusion system:

(8.1)



−∂ui

∂t
+∆ui =λi pi+1(x, t) f i+1(ui+1) , 1≤ i ≤ 2m−1

−∂u2m

∂t
+∆u2m =λ2m p1(x, t) f1(u1)

ui(x,0)=ϕi(x), x ∈Rn , 1≤ i ≤ 2m

where (x, t) ∈Rn × (0,∞), n ≥ 3, and for 1≤ i ≤ 2m, m ∈N∗; the functions ϕi :Rn → [0,∞)

are continuous, the constants λi are nonnegative, the functions f i : (0,∞) → [0,∞) are

continuous and nondecreasing, pi : Rn × (0,∞) → [0,∞) refers to measurable functions

that fulfill a relevant assumption connected to the parabolic Kato class P∞(Rn) introduced

in Zhang [223], see Appendix B. They refer to a class of functions that satisfy certain

growth and regularity conditions in the context of parabolic equations. It is proposed as

a natural generalization of the Kato class in the study of elliptic equations. Specifically,

these functions typically have controlled growth rates and possess sufficient smoothness

properties that allow for the rigorous analysis of parabolic problems.
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Definition 8.1. (See [223]) A Borel measurable function q in Rn+1 belongs to the Kato

class P∞ (Rn) if for all c > 0,

lim
ε→0

sup
(x,t)∈Rn×R

∫ t+ε

t−ε

∫
B(x,

p
ε )

Gc(x, |t− s| , y,0) |q(y, s)|d yds = 0

and

sup
(x,t)∈Rn×R

∫ +∞

−∞

∫
Rn

Gc(x, |t− s| , y,0) |q(y, s)|d yds <∞

where

Gc(x, t, y, s)= 1

(t− s)
n
2

exp(−c
|x− y|2

t− s
) for t > s and x, y ∈Rn

Throughout this chapter, G denotes the fundamental solution of the heat equation

∆u− ∂u
∂t

= 0 in Rn × (0,∞), defined by

G(x, t, y, s)= 1

[4π(t− s)]
n
2

exp
(
−|x− y|2

4(t− s)

)
for all t > s and x, y ∈Rn

The chapter is structured as follows: In the next section, we lay out the assumptions

that form the foundation of our problem and state the main result. Following that,

we present essential technical results that will serve as the basis for our subsequent

analyses. The fourth section is devoted to the proof of the main result by using a potential

theory approach that we deem appropriate. Our approach towards our goal is to prove

the convergence of the approximate problem to some solution of problem (8.1), aligning

with our ultimate goal. Lastly, we conclude the chapter by summarizing our findings and

proposing potential directions for future research.

8.2 Statement of the main result

8.2.1 Assumptions

Below, (Pt)t>0 denote the Gauss semigroup defined for all nonnegative measurable

function Φ on Rn by

PtΦ(x)=
∫
Rn

G(x, t, y,0)Φ(y)d y, t > 0, x ∈Rn.

A function ω is said to satisfy the condition (H0) if it is nonnegative superharmonic,

locally bounded in Rn and the mapping (x, t) 7→ Pω(x, t) is continuous in Rn × (0,∞), with

PΦ(x, t)= PtΦ(x).
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Remark 8.1. (i) The mapping t 7→ Ptω is nonincreasing.

(ii) The mapping (x, t) 7→ PtΦ(x) is lower semicontinuous on Rn × (0,∞) and it becomes

continuous if Φ is furthermore bounded.

(iii) All Superharmonic bounded functions in Rn satisfy (H0).

Now, we fix 2m nonnegative superharmonic functions θi (1≤ i ≤ 2m) satisfying condi-

tion (H0) and we make the following assumptions for all 1≤ i ≤ 2m :

(H1) There exist 2m real constants ci > 1 such that for all 1 ≤ i ≤ 2m and x ∈ Rn, we

have
1
ci
θi(x)≤ϕi(x)≤ ciθi(x) and lim

t→0
Ptϕi(x)=ϕi(x)

(H2) The functions f i : (0,∞)→ [0,∞) (1≤ i ≤ 2m) are continuous and nondecreasing.

(H3) pi (1≤ i ≤ 2m) are nonnegative measurable functions and


(p̃i+1)c = pi+1 f i+1(cPθi+1)

Pθi
, 1≤ i ≤ 2m−1

(p̃1)c = p1 f1(cPθ1)
Pθ2m

for all c > 0

are elements of Kato class P∞(Rn).

Another important assumption that we must add concerning the functions pi, is the

fixing of 2m superharmonic functions θi on Rn satisfying condition (H0).

8.2.2 The main result

The main result of this chapter can be summarized by the following theorem:

Theorem 8.1. Under assumptions (H1)− (H3), there exist 2m constants λ0
i (1≤ i ≤ 2m)

such that for all λi ∈ [0,λ0
i ) (1≤ i ≤ 2m) problem (8.1) has a positive continuous solution

(u1, . . . ,u2m) in (Rn × (0,∞))2m satisfying for all t > 0 and x ∈Rn

(8.2) (1− λi

λ0
i
)Pϕi(x, t)≤ ui(x, t)≤ Pϕi(x, t) , 1≤ i ≤ 2m
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8.3 Preliminary results

In this section, we will showcase a set of results derived from Mâagli et al. [131] and

Zhang [222, 223], which we will employ as evidence to establish our main result. In [222],

Zhang studied the scalar problem:

(8.3)


∆u− ∂u

∂t
= q(x, t)up+1 , (x, t) ∈Rn × (0,∞)

u(x,0)= u0(x) , x ∈Rn, n ≥ 3,

and arrived at the following result:

Theorem 8.2. (See [222]) Assume p > 0, q ∈P∞(Rn). For any M > 1, there is a constant

b0 > 0 such that for each nonnegative uo ∈ C2(Rn) satisfying ‖u0‖L∞(Rn) ≤ b0, there exists

a positive and continuous solution u of (8.3) such that

M−1
∫
Rn

G(x, t, y,0)u0(y)dy≤ u(x, t)≤ M
∫
Rn

G(x, t, y,0)u0(y)d y

for all (x, t) ∈Rn × (0,∞).

Proposition 8.1. (See [131]) (i) L∞(Rn)⊗L1(R)⊂P∞(Rn).

(ii) Let 1≤ p <∞ and q ≥ 1 such that
1
p
+ 1

q
= 1. Then for σ> np

2
and τ< 2

p
− n
σ
< υ,

we have
Lσ(Rn)

|·|τ (1+|·|)υ−τ ⊗Lq(R)⊂P∞(Rn)

(iii) P∞(Rn)⊂ L1
loc(R

n+1).

We define for all measurable function Φ on Rn × (0,∞), the potential

VΦ(x, t)=
∫ t

0

∫
Rn

G(x, t, y, s)Φ(y, s)d yds =
∫ t

0
Pt−s(Φ(., s))(x)ds

Proposition 8.2. (See [131]) Let q be a nonnegative function in P∞(Rn), then there exists

a positive constant αq such that for each superharmonic function v in Rn, we have

V (qPv)(x, t)≤αqPv(x, t) for (x, t) ∈Rn × (0,∞)
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Proposition 8.3. (See [131]) Let v be a superharmonic function in Rn satisfying (H0)

and q be a nonnegative function in P∞(Rn). Then the family of functions{
(x, t)→V f (x, t)=

∫ t

0

∫
Rn

G(x, t, y, s) f (y, s)d yds, | f | ≤ qPv
}

is equicontinuous in Rn×[0,∞). Moreover, for all x ∈Rn we have lim
t→0

V f (x, t)= 0 uniformly

on f .

Now, we can prove the following important proposition:

Proposition 8.4. Under assumption (H1), the functions Pϕi (1≤ i ≤ 2m) are continuous

in Rn × (0,∞).

Proof. Let ci (1≤ i ≤ 2m) be the constant given in (H1). We write for all t > 0 and x ∈Rn

ciPtθi(x)= Pt(ciθi −ϕi)(x)+Ptϕi(x), 1≤ i ≤ 2m

Based on the initial assumption (H0), the mappings (x, t) 7→ Pθi(x, t) (1≤ i ≤ 2m) are

continuous in Rn × (0,∞). Additionally, considering the functions (x, t) 7→ Pt(ciθi −ϕi)(x)

(1≤ i ≤ 2m) and (x, t) 7→ Ptϕi(x) (1≤ i ≤ 2m), we observe that they exhibit lower semicon-

tinuity in Rn × (0,∞). Consequently, we can conclude that the mappings (x, t) 7→ Ptϕi(x)

(1≤ i ≤ 2m) are continuous in Rn × (0,∞). �

8.4 Proof of the main result

Let the following quantities:

(8.4)


λ0

i = inf
(x,t)∈Rn×(0,∞)

Pϕi

V (pi+1 f i+1(Pϕi+1))
, 1≤ i ≤ 2m−1

λ0
2m = inf

(x,t)∈Rn×(0,∞)

Pϕ2m

V (p1 f1(Pϕ1))

Proposition 8.5. Suppose that assumptions (H1)− (H3) are satisfied, then the constants

λ0
i (1≤ i ≤ 2m) defined by (8.4) are positive.
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Proof. Assumption (H1) implies that ϕi ≤ ciθi (1≤ i ≤ 2m). From the fact that f i

(1≤ i ≤ 2m) are nondecreasing and pi (1≤ i ≤ 2m) are nonnegative, we have then

V (pi f i(Pϕi))≤V (pi f i(ciPθi)), 1≤ i ≤ 2m.

Therefore, based on assumption (H3) and the stated Proposition 8.2, there exist (p̃i)ci ∈
P∞(Rn) (1≤ i ≤ 2m) and a positive constants α(p̃i)ci

(1≤ i ≤ 2m) such that for all (x, t) ∈
Rn × (0,∞) and 1≤ i ≤ 2m−1, we obtain

V (pi+1 f i+1(Pϕi+1))(x, t)≤V ((p̃i+1)ci+1 Pθi)(x, t)≤α(p̃i+1)ci+1
Pθi(x, t)

and

V (p1 f1(Pϕ1))(x, t)≤V ((p̃1)c1 Pθ2m)(x, t)≤α(p̃1)c1
Pθ2m(x, t).

Using again (H1), we find for all (x, t) ∈Rn × (0,∞) and 1≤ i ≤ 2m−1

Pϕi(x, t)
V (pi+1 f i+1(Pϕi+1))(x, t)

≥
1
ci

Pθi(x, t)

α(p̃i+1)ci+1
Pθi(x, t)

= 1
ciα(p̃i+1)ci+1

> 0

Pϕ2m(x, t)
V (p1 f1(Pϕ1))(x, t)

≥
1

c2m
Pθ2m(x, t)

α(p̃1)c1
Pθ2m(x, t)

= 1
c2mα(p̃1)c1

> 0,

which implies that λ0
i > 0 for all 1≤ i ≤ 2m. �

Proof of Theorem 8.1 Let λi ∈ [0,λ0
i ) (1≤ i ≤ 2m). We define the sequences (ui

k)k≥0

(where i is an index, not power) by

u2i
0 = Pϕ2i , 1≤ i ≤ m

u2i−1
k = Pϕ2i−1 −λ2i−1V (p2i f2i(u2i

k )) , 1≤ i ≤ m

u2i
k+1 = Pϕ2i −λ2iV (p2i+1 f2i+1(u2i+1

k )) , 1≤ i ≤ m−1

u2m
k+1 = Pϕ2m −λ2mV (p1 f1(u1

k))

We are determined to prove for all k ∈N and 1≤ i ≤ m

(8.5) 0< (1− λ2i−1

λ0
2i−1

)Pϕ2i−1 ≤ u2i−1
k ≤ u2i−1

k+1 ≤ Pϕ2i−1

125
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and

(8.6) 0< (1− λ2i

λ0
2i

)Pϕ2i ≤ u2i
k+1 ≤ u2i

k ≤ Pϕ2i

According to (8.4), we have for all (x, t) ∈Rn × (0,∞)

(8.7)


λ0

i V (pi+1 f i+1(Pϕi+1))(x, t)≤ Pϕi(x, t), 1≤ i ≤ 2m−1

λ0
2mV (p1 f1(Pϕ1))(x, t)≤ Pϕ2m(x, t).

From (8.7), we have for all 1≤ i ≤ m

u2i−1
0 = Pϕ2i−1 −λ2i−1V (p2i f2i(Pϕ2i))

≥ Pϕ2i−1 − λ2i−1

λ0
2i−1

Pϕ2i−1 = (1− λ2i−1

λ0
2i−1

)Pϕ2i−1 > 0

then 
u2i

1 −u2i
0 =−λ2iV (p2i+1 f2i+1(u2i+1

0 ))≤ 0, 1≤ i ≤ m−1

u2m
1 −u2m

0 =−λ2mV (p1 f1(u1
0))≤ 0.

Since f2i (1≤ i ≤ m) are nondecreasing, we obtain

u2i−1
1 −u2i−1

0 =λ2i−1V (p2i( f2i(u2i
0 )− f2i(u2i

1 )))≥ 0, 1≤ i ≤ m

Now, since u2i
0 > 0 (1≤ i ≤ m) are nonnegative which implies u2i−1

0 ≤ Pϕ2i−1, and f2i−1 (1≤ i ≤ m)

are nondecreasing, we deduce from (8.7) that


u2i

1 = Pϕ2i −λ2iV (p2i+1 f2i+1(u2i+1
0 ))≥ (1− λ2i

λ0
2i

)Pϕ2i > 0, 1≤ i ≤ m

u2m
1 = Pϕ2m −λ2mV (p1 f1(u1

0))≥ (1− λ2m

λ0
2m

)Pϕ2m > 0,

which gives us

u2i−1
1 ≤ Pϕ2i−1, 1≤ i ≤ m.

Finally, we find
0< (1− λ2i−1

λ0
2i−1

)Pϕ2i−1 ≤ u2i−1
0 ≤ u2i−1

1 ≤ Pϕ2i−1, 1≤ i ≤ m

0< (1− λ2i

λ0
2i

)Pϕ2i ≤ u2i
1 ≤ u2i

0 ≤ Pϕ2i, 1≤ i ≤ m.
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By induction, we suppose that (8.5) and (8.6) hold for k. Since f2i−1 (1≤ i ≤ m) are

nondecreasing and u2i−1
k+1 ≤ Pϕ2i−1 (1≤ i ≤ m), we have for all 1≤ i ≤ m−1

u2i
k+2 −u2i

k+1 =λ2iV (p2i+1( f2i+1(u2i+1
k )− f2i+1(u2i+1

k+1 )))≤ 0

u2m
k+2 −u2m

k+1 =λ2mV (p1( f1(u1
k)− f1(u1

k+1)))≤ 0

and 

u2i
k+2 = Pϕ2i −λ2iV (p2i+1 f2i+1(u2i+1

k+1 )) ≥ Pϕ2i −λ2iV (p2i+1 f2i+1(Pϕ2i+1))

≥ (1− λ2i

λ0
2i

)Pϕ2i > 0

u2m
k+2 = Pϕ2m −λ2mV (p1 f1(u1

k+1)) ≥ Pϕ2m −λ2mV (p1 f1(Pϕ1))

≥ (1− λ2m

λ0
2m

)Pϕ2m > 0.

Using (8.7), we have

0< (1− λ2i

λ0
2i

)Pϕ2i ≤ u2i
k+2 ≤ u2i

k+1 ≤ Pϕ2i, 1≤ i ≤ m.

Now, using that f2i are nondecreasing, we have

u2i−1
k+2 −u2i−1

k+1 =λ2i−1V (p2i( f2i(u2i
k+1)− f2i(u2i

k+2)))≥ 0, 1≤ i ≤ m.

Since u2i
k+2 ≥ 0, we obtain

0< (1− λ2i−1

λ0
2i−1

)Pϕ2i−1 ≤ u2i−1
k+1 ≤ u2i−1

k+2 ≤ Pϕ2i−1, 1≤ i ≤ m.

Therefore, the sequences (ui
k)k≥0 converge respectively to ui (1≤ i ≤ 2m) satisfying (8.2).

We claim that

(8.8)

 ui = Pϕi −λiV (pi+1 f i+1(ui+1)), 1≤ i ≤ 2m−1

u2m = Pϕ2m −λ2mV (p1 f1(u1)).

Since ui
k ≤ Pϕi (1≤ i ≤ 2m) for all k ∈N, using assumptions (H1), (H3) and the fact that

f i (1≤ i ≤ 2m) are nondecreasing, there exist (p̃i)ci ∈P∞(Rn) (1≤ i ≤ 2m) such that

(8.9)


pi+1 f i+1(ui+1)≤ pi+1 f i+1(ci+1Pθi+1)≤ (p̃i+1)ci+1 Pθi, 1≤ i ≤ 2m−1

p1 f1(u1)≤ p1 f1(c1Pθ1)≤ (p̃1)c1 Pθ2m
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and 
pi+1

∣∣ f i+1(ui+1
k )− f i+1(ui+1)

∣∣≤ 2(p̃i+1)ci+1 Pθi, 1≤ i ≤ 2m−1 for all k ∈N

p1
∣∣ f1(u1

k)− f1(u1)
∣∣≤ 2(p̃1)c1 Pθ2m for all k ∈N.

Based on Proposition 8.3 and the application of Lebesgue’s theorem, we can deduce that

lim
k→∞

V (pi f i(ui
k))=V (pi f i(ui)), 1≤ i ≤ 2m.

So, letting k →∞ in equations


ui

k = Pϕi −λiV (pi+1 f i+1(ui+1
k )), 1≤ i ≤ 2m−1

u2m
k = Pϕ2m −λ2mV (p1 f1(u1

k)),

we have (8.8). Next, we claim that (u1, ...,u2m) satisfies

(8.10)


∆ui − ∂ui

∂t
=λi pi+1 f i+1(ui+1), 1≤ i ≤ 2m−1

∆u2m − ∂u2m

∂t
=λ2m p1 f1(u1).

Since θi (1≤ i ≤ 2m) satisfies (H0) and ( p̃i)ci ∈P∞(Rn) (1≤ i ≤ 2m), using Proposition 8.1

(iii), we have

(p̃i)ci Pθi ∈ L1
loc(R

n × (0,∞)), 1≤ i ≤ 2m.

Moreover (8.9) and Proposition 8.3 implies that

pi f i(ui) ∈ L1
loc(R

n × (0,∞)), 1≤ i ≤ 2m

and

V (pi f i(ui)) ∈ C(Rn × (0,∞))⊂ L1
loc(R

n × (0,∞)), 1≤ i ≤ 2m.

Now, through the application of the heat operator ∆− ∂

∂t
to (8.8), it becomes evident

that the solution (u1, ...,u2m) is positively defined for (8.10). Moreover, considering the

continuity of V (pi f i(ui)) (1≤ i ≤ 2m) in Rn × (0,∞), and employing Proposition 8.4, we

can conclude from (8.8) that

(u1, ...,u2m) ∈ (C(Rn × (0,∞)))2m.
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This implies, according to assumption (H1), (8.8) and Proposition 8.3 that

lim
t→0

ui(x, t)= lim
t→0

Pϕi(x, t)=ϕi(x), x ∈Rn. 1≤ i ≤ 2m

With this final step, we have successfully established the validity of Theorem 8.1. �

8.5 Conclusion

The result of this research is to prove the existence of continuous positive solutions

for a specific class of quasi-linear reaction-diffusion systems of arbitrary order, which

makes our study an extension of previous studies carried out on systems with a specific

number of equations. The approach taken to achieve the main objective of the research

is mainly based on potential analysis techniques, and it yielded reliable results with less

computational effort, as the approximate problem was proven to converge to a solution

to our problem which is consistent with our final objective. The main result obtained

demonstrates the effectiveness of this approach for solving similar problems. We were

able to overcome certain difficulties and achieved very important results. This leads

us to think more about the problem and study it in other circumstances. Furthermore,

a numerical study of our problem can be carried out. These efforts will develop this

important aspect of mathematics.
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9
SOLVING A CLASS OF QUASILINEAR FIRST ORDER PDES

This paper focuses on a specific class of partial differential equations in three real

variables, which are first order and quasilinear. Our objective is to introduce a

solving method for these equations, drawing inspiration from the Lagrangian

approach. We will thoroughly examine all potential cases and clarify various aspects of

the method using practical exercises specifically designed for this purpose.

The content presented in this chapter is the subject of a research paper [61] titled

“Solving a class of quasilinear first order PDEs” published in the “Proceedings of the
Institute of Mathematics and Mechanics” in collaboration with S. Mesbahi.

9.1 Introduction

The study of partial differential equations (which will be abbreviated as PDE in the

following) is still an enthralling field, full of challenging equations that beg for new

ideas and novel approaches. Many problems still exist, acting as continual reminders

of the immense intricacy buried in these equations despite decades of research and

mathematical prowess. With each unsolved equation, the need for fresh perspectives and

ground-breaking concepts grows, fostering eagerness for the undiscovered truths. The

field of PDEs stands as a testament to the unyielding spirit of human curiosity and the

limitless potential for breakthroughs that lie just beyond the horizon.
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Our comprehension of real-world phenomena and our technology today are largely

based on PDEs. It is thanks to modeling through PDEs that we have been able to

understand phenomena derived from other disciplines (such as biology, ecology, economics,

physical sciences, astronomy, chemistry, etc.). There is no doubt that PDEs remain one

of the most active areas of research due to their multiple applications in all areas of

science. See Chowdhury et al. [43], Kruzhkov [120], Rhee et al. [184], Sneddon [204] and

references given there.

In this chapter, we restrict our work to a class of first order quasilinear PDEs with

three real variables, whose general form is

(9.1) P p+Qq+Rr = S

with

P = a1x+b1 y+ c1z+d1u+ e1

Q = a2x+b2 y+ c2z+d2u+ e2

R = a3x+b3 y+ c3z+d3u+ e3

S = a4x+b4 y+ c4z+d4u+ e4

where p = ∂u
∂x

, q = ∂u
∂y

, r = ∂u
∂z

, and u = u (x, y, z) is a smooth vector field in a domain Ω

of R3. The functions P, Q, R, S are linear of (x, y, z,u), and ak, bk, ck, dk, ek are real

numbers for all 1≤ k ≤ 4.

We recall that a PDE is said to be quasilinear, if it is linear with respect to all the

highest order derivatives of the unknown function. A smooth function u = u (x, y, z) is a

solution of equation (9.1), if and only if u is constant along the phase curves of the field

u, i.e., it is the first integral of the associated characteristic system

(9.2)
dx
P

= d y
Q

= dz
R

= du
S

Lagrange’s method of characteristics reduces the problem of solving PDE (9.1) to the

characteristic system (9.2). For further information about this method and how to apply

it, see Rhee et al. [184].

Theorem 9.1. The general solution of PDE (9.1) is F
(
ϕ,ψ,ξ

)= 0, where F is an arbitrary

function and ϕ (x, y, z) = c1, ψ (x, y, z) = c2, ξ (x, y, z) = c3 are linearly independent first

integrals of the associated characteristic system (9.2).
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In Kruzhkov [120], Mesbahi [156], Reinhard [185], we find a proof of this theorem as

well as several other important theorems and properties.

First order PDEs appear frequently in stochastic process theory, as the Fokker-

Planck equation, and in mathematical physics, as the Hamilton-Jacobi equation. As

other examples, we mention the Hopf equation (also known as Burgers’ equation without

viscosity), which is used in a variety of contexts, such as the dynamics of gases without

pressure and in describing the velocity field of a medium consisting of particles moving

without interaction in the absence of external forces. In solid mechanics, we often find

the mass conservation equation, which describes the movement of a fluid (liquid or gas)

when sinks and sources are absent. We also mention the transport equation, which is

the prototype of PDEs of the first order. The model is used in various sciences, such as

the model for fluid infiltration through sand, where the fluid flows under gravity alone

without sources or sinks, see Chechkin et al. [39]. The transport equation also appears

in the mathematical modeling of traffic-like collective movements at different levels of

biological organization. Molecular motor proteins like kinesin and dynein, which are

responsible for most intracellular transport in eukayotic cells, sometimes experience

traffic jams, which manifest as disease, see Chowdhury et al. [43] and Schadschneider

[201].

Below we will present a method for solving system (9.2) and consequently equation

(9.1). We will discuss all possible cases, supporting each case with an illustrative example

that will explain many aspects of the method used.

9.2 Method of solving

Suppose it is possible to find constants λ, µ, υ, τ such that each ratio of system (9.2) is

equal to
λdx+µd y+υdz+τdu
λP +µQ+υR+τS

If λ, µ, υ ,τ are constant multipliers, this expression will be an exact differential, if it

is of the form
1
ρ

λdx+µd y+υdz+τdu
λx+µy+υz+τu

This brings us to the following system

(9.3)

λdx+µd y+υdz+τdu
(a1λ+a2µ+a3υ+a4τ)x+(b1λ+b2µ+b3υ+b4τ)y+(c1λ+c2µ+c3υ+c4τ)z+(d1λ+d2µ+d3υ+d4τ)u

= 1
ρ

λdx+µd y+υdz+τdu
λx+µy+υz+τu
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and this is possible only if

(9.4)


λ

(
a1 −ρ

)+a2µ+a3υ+a4τ= 0

b1λ+
(
b2 −ρ

)
µ+b3υ+b4τ= 0

c1λ+ c2µ+
(
c3 −ρ

)
υ+ c4τ= 0

d1λ+d2µ+d3υ+
(
d4 −ρ

)
τ= 0

System (9.4) can be represented in the matrix form AX = 0, with

A =


a1 −ρ a2 a3 a4

b1 b2 −ρ b3 b4

c1 c2 c3 −ρ c4

d1 d2 d3 d4 −ρ

 , X =


λ

µ

υ

τ


where det A = 0 is required to obtain non-zero solutions for X instead of just the trivial

zero solution, in order to provide meaningful insight about the system’s behavior. Setting

det A = 0 allows finding a particular non-zero solution for X that meets the chapter’s

objective, which leads to

(9.5) Ψ
(
ρ
)= det A = 0

This polynomial has four roots in C, which we may denote by ρ1, ρ2, ρ3, ρ4. We

distinguish the following possible cases:

(i) ρ1 6= ρ2 6= ρ3 6= ρ4 ∈R (ii) ρ1 6= ρ2 ∈R, ρ3 = ρ4 ∈C
(iii) ρ1 = ρ2 6= ρ3 = ρ4 ∈C (iv) ρ1 6= ρ2 = ρ3 = ρ4 ∈R
(v) ρ1 = ρ2 6= ρ3 = ρ4 ∈R (vi) ρ1 = ρ2 6= ρ3 6= ρ4 ∈R
(vii) ρ1 = ρ2 ∈R, ρ3 = ρ4 ∈C (viii) ρ1 = ρ2 = ρ3 = ρ4 ∈C
(ix) ρ1 = ρ2 = ρ3 = ρ4 ∈R

In the following paragraphs, we will discuss all possible cases and provide an illus-

trative example for each. In everything that follows, we denote by c or c j an arbitrary

real constant.

9.2.1 Case (i): ρ1 6= ρ2 6= ρ3 6= ρ4 ∈R
In this case, for any ρ j, 1 ≤ j ≤ 4, There exist real constants

(
λ j,µ j,υ j,τ j

)
satisfying

system (9.3), and thus we have four possible exact differentials, which gives us

λ1dx+µ1d y+υ1dz+τ1du
ρ1(λ1x+µ1 y+υ1z+τ1u) = λ2dx+µ2d y+υ2dz+τ2du

ρ2(λ2x+µ2 y+υ2z+τ2u) = λ3dx+µ3d y+υ3dz+τ3du
ρ3(λ3x+µ3 y+υ3z+τ4u) = λ4x+µ4d y+υ4dz+τ4du

ρ4(λ4x+µ4 y+υ4z+τ4u)
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this admits as first integrals the following(
λ1x+µ1 y+υ1z+τ1u

)ρ2 .
(
λ2x+µ2 y+υ2z+τ2u

)−ρ1 = c1(
λ2x+µ2 y+υ2z+τ2u

)ρ3 .
(
λ3x+µ3 y+υ3z+τ3u

)−ρ2 = c2(
λ3x+µ3 y+υ3z+τ3u

)ρ4 .
(
λ4x+µ4 y+υ4z+τ4u

)−ρ3 = c3

which are linearly independent, where c1, c2 and c3 are arbitrary real constants. Hence

the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.

Example 9.1. Let the equation

xp+ (x+2y) q+ (3z) r = z+4u

In this case, the polynomial Ψ
(
ρ
)

of (9.5) admits four different real roots ρ1 = 1, ρ2 = 2,

ρ3 = 3, ρ4 = 4. The constants
(
λ j,µ j,υ j,τ j

)
associated respectively are (1,0,0,0), (1,1,0,0),

(0,0,1,0), (0,0,1,1). The characteristic system associated with our equation becomes

dx
x

= d (x+ y)
2(x+ y)

= dz
3z

= d (z+u)
4(z+u)

which gives us the following linearly independent first integrals

x2 (x+ y)−1 = c1 , (x+ y)3 z−2 = c2 , z4 (z+u)−3 = c3

where c1, c2 and c3 are arbitrary real constants. Hence the integral curves F (c1, c2, c3)= 0,

where F is an arbitrary real function.

9.2.2 Case (ii): ρ1 6= ρ2 ∈R, ρ3 = ρ4 ∈C
Suppose that the roots of the polynomial Ψ

(
ρ
)

are ρ1 6= ρ2 ∈R and ρ3 = ρ′3+ iρ′′3 = ρ4 ∈C.

In this case, we can find constants
(
λ j,µ j,υ j,τ j

)
, 1≤ j ≤ 4, satisfying system (9.3). The

characteristic system becomes

(9.6)
d f
ρ1 f

= dg
ρ2 g

= dh(
ρ′3 + iρ′′3

)
h
= dk(

ρ′3 − iρ′′3
)
k

where

f = λ1x+µ1 y+υ1z+τ1u

g = λ2x+µ2 y+υ2z+τ2u

k̄ = h = (
λ′

3 + iλ′′
3
)
x+ (

µ′
3 + iµ′′

3
)

y+ (
υ′3 + iυ′′3

)
z+ (

τ′3 + iτ′′3
)
u
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From the first equality of system (9.6), we have the following first integral

(
λ1x+µ1 y+υ1z+τ1u

)ρ2 · (λ2x+µ2 y+υ2z+τ2u
)−ρ1 = c1

The second equality of system (9.6) gives us

E = g(ρ′3+iρ′′3) ·h−ρ2 = c

and from it, we get

logE = ρ′3 log
(
λ2x+µ2 y+υ2z+τ2u

)−ρ2z1

+i
(
ρ′′3 log

(
λ2x+µ2 y+υ2z+τ2u

)−ρ2z2
)

where

z1 = 1
2

log
((
λ′

3x+µ′
3 y+υ′3z+τ′3u

)2 + (
λ′′

3x+µ′′
3 y+υ′′3z+τ′′3u

)2
)

z2 = arctan
(
λ′′

3x+µ′′
3 y+υ′′3z+τ′′3u

λ′
3x+µ′

3 y+υ′3z+τ′3u

)
which implies

E = exp
(
log(g)ρ

′
3 −ρ2z1

)
·exp

[
i
(
log(g)ρ

′′
3 −ρ2z2

)]
We get the following first integral

E = (g)ρ
′
3 · e−ρ2z1 cos

(
ρ′′3 log(g)−ρ2z2

)= c2

The third equality of system (9.6) gives us

E′ = h(ρ′3−iρ′′3) ·k−(ρ′3+iρ′′3) = c

which gives

logE′ = 2i
(
ρ′3z2 −ρ′′3z1

)
and since we are looking for real solutions, we take the following first integral

E′ = ρ′3z2 −ρ′′3z1 = c3

The three first integrals obtained are linearly independent, where c1, c2 and c3

are arbitrary real constants. Hence the integral curves F (c1, c2, c3) = 0, where F is an

arbitrary real function.
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Example 9.2. Let the equation

(2x) p+ (x+2y+2u) q+ (z− y) r = z+u

The polynomial Ψ
(
ρ
)

admits for roots ρ1 = 0, ρ2 = 2, ρ3 = 2− i = ρ4. The constants(
λ j,µ j,υ j,τ j

)
associated respectively are

(1,−2,−4,4) , (1,0,0,0) , (1+ i,1− i,1+ i,2) , (1− i,1+ i,1− i,2)

In this way, we can obtain the following linearly independent first integrals

x−2y−4z+4u = c1

x2 exp(−2z1) ·cos(1log(x)−2z2) = c2

2z2 − z1 = c3

where

z1 = 1
2

log
[
(x+ y+ z+2u)2 + (x− y+ z+0u)2]

z2 = arctan
(

x− y+ z+0u
x+ y+ z+2u

)
Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.

9.2.3 Case (iii): ρ1 = ρ2 6= ρ3 = ρ4 ∈C
Let ρ1 = ρ′1 + iρ′′1 = ρ2 and ρ3 = ρ′3 + iρ′′3 = ρ4 ∈C be the roots of the polynomial Ψ

(
ρ
)
. In

this case, we can find real constants
(
λ j,µ j,υ j,τ j

)
, 1≤ j ≤ 4, satisfying system (9.3). The

characteristic system becomes

(9.7)
d f(

ρ′1 + iρ′′1
)

f
= dg(

ρ′1 − iρ′′1
)

g
= dh(

ρ′3 + iρ′′3
)
h
= dk(

ρ′3 − iρ′′3
)
k

where

ḡ = f = (
λ′

1 + iλ′′
1
)
x+ (

µ′
1 + iµ′′

1
)

y+ (
υ′1 + iυ′′1

)
z+ (

τ′1 + iτ′′1
)
u

k̄ = h = (
λ′

3 + iλ′′
3
)
x+ (

µ′
3 + iµ′′

3
)

y+ (
υ′3 + iυ′′3

)
z+ (

τ′3 + iτ′′3
)
u
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As in the previous case, by applying the same steps to the first and third equality of

system (9.7), we obtain the following first integrals

ρ′1z2 −ρ′′1z1 = c1 and ρ′3z′2 −ρ′′3z′1 = c2

where

z1 = 1
2

log
((
λ′

1x+µ′
1 y+υ′1z+τ′1u

)2 + (
λ′′

1x+µ′′
1 y+υ′′1z+τ′′1u

)2
)

z2 = arctan
λ′′

1x+µ′′
1 y+υ′′1z+τ′′1u

λ′
1x+µ′

1 y+υ′1z+τ′1u

z′1 = 1
2

log
((
λ′

3x+µ′
3 y+υ′3z+τ′3u

)2 + (
λ′′

3x+µ′′
3 y+υ′′3z+τ′′3u

)2
)

z′2 = arctan
λ′′

3x+µ′′
3 y+υ′′3z+τ′′3u

λ′
3x+µ′

3 y+υ′3z+τ′3u

For the second equality of system (9.7), we get

E = g(ρ′3+iρ′′3) ·h−(ρ′1−iρ′′1) = c

which gives

logE = (
ρ′3z1 +ρ′′3z2 −ρ′1z′1 −ρ′′1z′2

)+ i
(
ρ′′3z1 −ρ′3z2 +ρ′′1z′1 −ρ′1z′2

)
then

E = exp
(
ρ′3z1 +ρ′′3z2 −ρ′1z′1 −ρ′′1z′2

)
.exp

[
i
(
ρ′′3z1 −ρ′3z2 +ρ′′1z′1 −ρ′1z′2

)]
and since we are looking for real solutions, we take the following first integral

exp
(
ρ′3z1 +ρ′′3z2 −ρ′1z′1 −ρ′′1z′2

)
.cos

(
ρ′′3z1 −ρ′3z2 +ρ′′1z′1 −ρ′1z′2

)= c3

As a result, the integral curve F (c1, c2, c3) = 0, where c1, c2, c3 are arbitrary real

constants and F is an arbitrary real function.

Example 9.3. Let the equation

(x− y+ z) p+ (x+u) q+ (y−u) r = x+ z

The polynomial Ψ
(
ρ
)

admits for roots ρ1 = −i = ρ2, ρ3 = 1
2 − 1

2 i
p

3 = ρ4. The constants(
λ j,µ j,υ j,τ j

)
associated respectively are

(1−2i,2+ i,2−4i,−5) , (1+2i,2− i,2+4i,−5) ,(
1−

p
3 i,0,1−

p
3 i,−2

)
,

(
1+

p
3 i,0,1+

p
3 i,−2

)
.
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In this way, we can obtain the following linearly independent first integrals

−z1 = c1

exp

(
1
2

z1 +
p

3
2

z2 −0z′1 +1z′2

)
.cos

(
1
2

z1 −
p

3
2

z2 −1z′1 +0z′2

)
= c2

1
2

z′2 −
p

3
2

z′1 = c3

where

z1 = 1
2

log
(
(x+2y+2z−5u)2 + (2x− y+4z+0u)2)

z2 = arctan
2x− y+4z+0u
x+2y+2z−5u

z′1 = 1
2

log
(
(x+0y+ z−2u)2 +

(p
3 x+0y+

p
3 z+0u

)2
)

z′2 = arctan
p

3 x+0y+p
3 z+0u

x+0y+ z−2u

Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.

The remaining cases will only be treated through examples. This approach aims to

streamline concepts and circumvent specific computational challenges arising from the

nature of the equation to be resolved. By employing the same methodology as in prior

cases, we arrive each time at an insufficient number of first integrals. This is the basic

difficulty in this work, and to overcome it, the suitable approach has been identified,

which we will explain through the examples that we will present later in this chapter.

First, we proceed as in the previous examples, we will find at most two first integrals,

then we work to complete them to obtain three linearly independent first integrals, which

will make it possible to find the general solution of the proposed equation. We will treat

each case separately with an illustrative example. It is worth noting that in each of

the subsequent cases, obtaining three first integrals that are linearly independent is

sufficient, and our objective is not to discover all potential first integrals. It is important to

mention that all the equations we will examine below have been meticulously formulated

to be compatible with all conceivable cases. We will develop the method used previously

in the first three cases to obtain additional linearly independent first integrals. For this,

suppose that it is possible to find constants
(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that each

ratio of (9.2) is equal to the following exact differential form

(9.8)
φ1

φ2
= dD
ρD
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where dD denotes the total derivative of D.

We will work to clarify all possible cases through the examples that we will address

below.

9.2.4 Case (iv): ρ1 6= ρ2 = ρ3 = ρ4 ∈R

Example 9.4. Let the equation

(9.9) xp+ (x+2y) q+ zr = z+u

The polynomial Ψ
(
ρ
)

admits a triple root ρ1 = 1 and a simple root ρ2 = 2. The constants(
λ j,µ j,υ j,τ j

)
associated respectively are (1,0,−1,0) and (1,1,0,0). The characteristic sys-

tem corresponding to equation (9.9) can therefore be written in the form

(9.10)
dx
x

= d y
x+2y

= dz
z

= du
z+u

= d (x− z)
x− z

= d (x+ y)
2(x+ y)

This leads to a single first integral

(x+ y)1 (x− z)−2 = c1

We only need two more first integrals. For that, suppose it is possible to find constants(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that each ratio of (9.10) is of the form (9.8), with

D = (α1 +α2) x2 +2β2 y2 + (
γ3 +γ4

)
z2 +γ4u2 + (

β1 +β2 +2α2
)
xy

+(
γ1 +γ2 +α3 +α4

)
xz+ (δ1 +δ2 +α4) xu+ (

2γ2 +β3 +β4
)

yz

+(
2δ2 +β4

)
yu+ (

δ3 +δ4 +γ4
)
zu
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That’s right, if

(
2−ρ)

α1 +2α2 = 0, γ1 +γ2 +
(
1−ρ)

α3 +α4 = 0(
1−ρ)

β1 +β2 +2α2 = 0, 2γ2 +
(
1−ρ)

β3 +β4 = 0(
1−ρ)

γ1 +γ2 +α3 +α4 = 0,
(
2−ρ)

γ3 +2γ4 = 0(
1−ρ)

δ1 +δ2 +α4 = 0,
(
1−ρ)

δ3 +δ4 +γ4 = 0

β1 +β2 +
(
2−ρ)

α2 = 0, δ1 +δ2 +
(
1−ρ)

α4 = 0(
4−ρ)

β2 = 0, 2δ2 +
(
1−ρ)

β4 = 0(
2−ρ)

γ2 +β3 +β4 = 0, δ3 +δ4 +
(
1−ρ)

γ4 = 0(
2−ρ)

δ2 +β4 = 0, 2γ4 −ρδ4 = 0

This linear homogeneous system will have a non-trivial solution, if the determinant of its

coefficient matrix is zero, i.e.,

ρ16 −23ρ15 +231ρ14 −1323ρ13 +4716ρ12 −10626ρ11

+14312ρ10 −8800ρ9 −2880ρ8 +7776ρ7 −3456ρ6 = 0

The roots of this polynomial are : 2 (quadruple), 4, 1+p
3 , 1−p

3 , 3 (triple), 0 (of order 6).

We can find several first integrals, but we only need two. For this, we will choose enough

values of ρ. We can take two different values, and we can be satisfied with a root which

is at least double, then we can take ρ ∈ {2,3}. If we substitute the values of ρ in (9.8) and

solve the resulting system, we find
(
α1,β1,γ1,δ1,α2,β2,γ2,δ2,α3,β3,γ3,δ3,α4,β4,γ4,δ4

)
as following

(−1,0,1,0,0,0,0,0,1,0,2,0,0,0,0,0) for ρ = 2

(2,1,−1,0,1,0,−1,0,−1,−1,0,0,0,0,0,0) for ρ = 3

These values would transform system (9.10) into the following exact differential form

d (x− z)
x− z

= d (x+ y)
2(x+ y)

= d
(−x2 +2z2 +2xz

)
2

(−x2 +2z2 +2xz
) = d

(
3x2 +3xy−3xz−3yz

)
3

(
3x2 +3xy−3xz−3yz

)
which gives us these two new first integrals(−x2 +2z2 +2xz

)3
.
(
3x2 +3xy−3xz−3yz

)−2 = c2(
3x2 +3xy−3xz−3yz

)4
.
(
2x2 +4y2 +4xy

)−3 = c3
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Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.

9.2.5 Case (v): ρ1 = ρ2 6= ρ3 = ρ4 ∈R

Example 9.5. Let the equation

(9.11) (x+ y− z) p+ (2y) q+ (2z+u) r = u

The polynomialΨ
(
ρ
)

admits two double roots ρ1 = 1 and ρ2 = 2. The constants
(
λ j,µ j,υ j,τ j

)
associated respectively are (0,0,0,1) and (0,−1,1,1). Therefore, the characteristic system

that corresponds to equation (9.11) can be expressed as follows

(9.12)
dx

x+ y− z
= d y

2y
= dz

2z+u
= du

u
= d (−y+ z+u)

2(−y+ z+u)

This leads to a single first integral

u2

−y+ z+u
= c1

From system (9.12), other first integrals can be extracted, but we will find this using

our method for the sake of better understanding. Suppose it is possible to find constants(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that each ratio of (9.12) is of the form (9.8), with

D = (α1) x2 + (
β1 +2β2

)
y2 + (−γ1 +2γ3

)
z2 + (

β1 +α1 +2α2
)
xy

+(
γ1 −α1 +2α3

)
xz+ (δ1 +α3 +α4) xu+ (

γ1 −β1 +2β3 +2γ2
)

yz

+(
δ1 +2δ2 +β3 +β4

)
yu+ (−δ1 +2δ3 +γ3 +γ4

)
zu+ (δ3 +δ4)u2
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That’s right, if

(
2−ρ)

α1 = 0, γ1 −α1 +
(
2−ρ)

α3 = 0(
1−ρ)

β1 +α1 +2α2 = 0, γ1 −β1 +
(
2−ρ)

β3 +2γ2 = 0(
1−ρ)

γ1 −α1 +2α3 = 0, −2γ1 +
(
4−ρ)

γ3 = 0(
1−ρ)

δ1 +α3 +α4 = 0, −δ1 +
(
2−ρ)

δ3 +γ3 +γ4 = 0

β1 +α1 +
(
2−ρ)

α2 = 0, δ1 +α3 +
(
1−ρ)

α4 = 0

2β1 +
(
4−ρ)

β2 = 0, δ1 +2δ2 +β3 +
(
1−ρ)

β4 = 0

γ1 −β1 +2β3 +
(
2−ρ)

γ2 = 0, −δ1 +2δ3 +γ3 +
(
1−ρ)

γ4 = 0

δ1 +
(
2−ρ)

δ2 +β3 +β4 = 0, 2δ3 +
(
2−ρ)

δ4 = 0

If the determinant of the coefficient matrix of this linear homogeneous system is zero, it

indicates that the system will possess a non-trivial solution, i.e.,

ρ16 −30ρ15 +406ρ14 −3272ρ13 +17449ρ12 −64658ρ11 +169896ρ10

−316592ρ9 +410064ρ8 −351648ρ7 +179712ρ6 −41472ρ5 = 0

This polynomial has as roots : 2 (quintuple), 3 (quadruple), 4 (double), 0 (quintuple). We

only need two additional first integrals, for this we will choose enough values of ρ. As in the

previous case, we avoid ρ = 0, then we can take ρ ∈ {2,3}. If we substitute the values of ρ in

(9.8) and solve the resulting system, we find
(
α1,β1,γ1,δ1,α2,β2,γ2,δ2,α3,β3,γ3,δ3,α4,β4,γ4,δ4

)
as following

(0,0,0,0,0,0,0,1,0,−1,0,0,0,1,0,2) for ρ = 2

(0,0,0,0,0,0,0,0,0,0,4,1,0,0,2,1) for ρ = 3

These values would transform system (9.12) into the following exact differential form

du
u

= d (−y+ z+u)
2(−y+ z+u)

= d
(
2u2)

2
(
2u2

) = d
(
8z2 +2u2 +8zu

)
3

(
8z2 +2u2 +8zu

)
which gives us these two first integrals(

2u2)3 · (8z2 +2u2 +8zu
)−2 = c2(

8z2 +2u2 +8zu
)4 · (3u2 +3yu+3zu

)−3 = c3

Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.
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9.2.6 Case (vi): ρ1 = ρ2 6= ρ3 6= ρ4 ∈R

Example 9.6. Let the equation

(9.13) xp+ (x+2y) q+ (3z) r = z+u

The characteristic system corresponding to equation (9.13) is

(9.14)
dx
x

= d y
x+2y

= dz
3z

= du
z+u

The polynomial Ψ
(
ρ
)

admits one double root ρ1 = ρ2 = 1 and two simple roots ρ3 = 2,

ρ4 = 3. The constants
(
λ j,µ j,υ j,τ j

)
associated respectively are (1,0,−1,2), (1,1,0,0) and

(0,0,1,0). Then, system (9.14) gives us

d (x− z+2u)
(x− z+2u)

= d (x+ y)
2(x+ y)

= dz
3z

This leads to these two first integrals

(x− z+2u)2 . (x+ y)−1 = c1 and (x+ y)3 . (z)−2 = c2

So, we need another first integral. For that, suppose it is possible to find constants(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that each ratio of (9.14) is of the form (9.8), with

D = (α1 +α2) x2 + (
β1 +2β2

)
y2 + (

3γ3 +γ4
)
z2 +δ4u2 + (

3δ3 +γ4
)
zu

+(
γ1 +γ2 +3α3 +α4

)
xz+ (

γ1 +2γ2 +3β3 +β4
)

yz

+(
β1 +β2 +2α2 +α1

)
xy+ (

δ1 +2δ2 +β4
)

yu+ (δ1 +δ2 +α4) xu

That’s right, if 

2α1 +2α2 = 0, γ1 +γ2 +3α3 +α4 = 0

β1 +β2 +2α2 +α1 = 0, γ1 +2γ2 +3β3 +β4 = 0

γ1 +γ2 +3α3 +α4 = 0, 6γ3 +2γ4 = 0

δ1 +δ2 +α4 = 0, 3δ3 +γ4 = 0

β1 +β2 +2α2 +α1 = 0, δ1 +δ2 +α4 = 0

2β1 +4β2 = 0, δ1 +2δ2 +β4 = 0

γ1 +2γ2 +3β3 +β4 = 0, 3δ3 +γ4 = 0

δ1 +2δ2 +β4 = 0, 2δ4 = 0
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This system will have a non-trivial solution, if the determinant of its coefficient matrix is

zero, i.e.,

ρ16 −35ρ15 +541ρ14 −4866ρ13 +28240ρ12 −110780ρ11 +298955ρ10

−553425ρ9 +686695ρ8 −542426ρ7 +244980ρ6 −47880ρ5 = 0

Among the roots of this polynomial are the following : 1, 2, 3, 6, 0, 5
2 ± 1

2

p
5 , 9

2 ± 1
2

p
5 . Just

choose a single value for ρ, then we can take ρ = 2. If we substitute this value of ρ in (9.8)

and solve the resulting system, we find

(
α1,β1,γ1,δ1,α2,β2,γ2,δ2,α3,β3,γ3,δ3,α4,β4,γ4,δ4

)
as following

(0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,−1) for ρ = 2

Then system (9.14) becomes

d (x− z+2u)
(x− z+2u)

= d (x+ y)
2(x+ y)

= dz
3z

= d
(
u2 + zu

)
2

(
u2 + zu

)
which gives us another first integral

(x− z+2u)2 .
(
u2 + zu

)−1 = c3

Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.

9.2.7 Case (vii): ρ1 = ρ2 ∈R, ρ3 = ρ4 ∈C

Example 9.7. Let the equation

(9.15) (2x− y) p+ (x+2y+2u) q+ zr = z+u

The characteristic system corresponding to equation (9.15) is

(9.16)
dx

2x− y
= dy

x+2y+2u
= dz

z
= du

z+u
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The polynomial Ψ
(
ρ
)

admits one double root ρ1 = ρ2 = 1 and two complex roots con-

jugate ρ3 = 2+ i = ρ4. The constants
(
λ j,µ j,υ j,τ j

)
associated respectively are (0,0,1,0),

(1+ i,1− i,1+ i,2) and (1− i,1+ i,1− i,2). Then, each ratio of (9.16) is equal to

(9.17)
dz
z

= d((1−i)x+(1+i)+y(1−i)z+2u)
(2+i)((1−i)x+(1+i)+y(1−i)z+2u) =

d((1+i)x+(1−i)+y(1+i)z+2u)
(2−i)((1+i)x+(1−i)+y(1+i)z+2u)

This leads to two first integrals, we can take the following

z2 exp(−z1)cos(1log(g)− z2)= c1 and 2z2 − z1 = c2

where

z1 = 1
2

log
(
(x+ y+ z+2u)2 + (−x+ y− z)2)

z2 = arctan
−x+ y− z

x+ y+ z+2u

In order to obtain an additional first integral, we use the same procedure as in the

previous examples. This approach also enables us to obtain other linearly independent

first integrals, but we are limited to finding just one. For that, suppose it is possible to

find constants
(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that each ratio of (9.16) is of the form

(9.8), with

D = (2α1 +α2) x2 + (−β1 +2β2
)

y2 + (
2γ2 +δ3 +δ4 +γ4

)
zu

+(
γ3 +γ4

)
z2 + (2δ2 +δ4)u2 + (

2β1 +β2 +2α2 −α1
)
xy

+(−δ1 +2δ2 +2β2 +β4
)

yu+ (2δ1 +δ2 +2α2 +α4) xu

+(−γ1 +2γ2 +β3 +β4
)

yz+ (
2γ1 +γ2 +α3 +α4

)
xz
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That’s right, if

(
4−ρ)

α1 +2α2 = 0 , 2γ1 +γ2 +
(
1−ρ)

α3 +α4 = 0(
2−ρ)

β1 +β2 +2α2 −α1 = 0 , −γ1 +2γ2 +
(
1−ρ)

β3 +β4 = 0(
2−ρ)

γ1 +γ2 +α3 +α4 = 0 ,
(
2−ρ)

γ3 +2γ4 = 0(
2−ρ)

δ1 +δ2 +2α2 +α4 = 0 , 2γ2 +
(
1−ρ)

δ3 +δ4 +γ4 = 0

2β1 +β2 +
(
2−ρ)

α2 −α1 = 0 , 2δ1 +δ2 +2α2 +
(
1−ρ)

α4 = 0

−2β1 +
(
4−ρ)

β2 = 0 , −δ1 +2δ2 +2β2 +
(
1−ρ)

β4 = 0

−γ1 +
(
2−ρ)

γ2 +β3 +β4 = 0 , 2γ2 +δ3 +δ4 +
(
1−ρ)

γ4 = 0

−δ1 +
(
2−ρ)

δ2 +2β2 +β4 = 0 , 4δ2 +
(
2−ρ)

δ4 = 0

This system will have a non-trivial solution, if the determinant of its coefficient matrix is

zero, i.e.,

ρ16 −31ρ15 +438ρ14 −3712ρ13 +20908ρ12 −81964ρ11 +227592ρ10

−446368ρ9 +604096ρ8 −535360ρ7 +278400ρ6 −64000ρ5 = 0

This polynomial has the following roots : 0, 1, 2, 4, 4±2i, 3± i. Just choose a single value

for ρ, then we can take ρ = 1. substitute it into (9.8) and solve the resulting system, we

find (
α1,β1,γ1,δ1,α2,β2,γ2,δ2,α3,β3,γ3,δ3,α4,β4,γ4,δ4

)
as following

(0,0,0,0,0,0,0,0,0,0,−2,0,0,0,1,0) for ρ = 1

Then system (9.17) becomes

d
(−z2 + zu

)
−z2 + zu

= dz
z

= d((1−i)x+(1+i)+y(1−i)z+2u)
(2+i)((1−i)x+(1+i)+y(1−i)z+2u) =

d((1+i)x+(1−i)+y(1+i)z+2u)
(2−i)((1+i)x+(1−i)+y(1+i)z+2u)

which gives us another first integral

(−z2 + zu
)
.z−1 = c3

Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.
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9.2.8 Case (viii): ρ1 = ρ2 = ρ3 = ρ4 ∈C

Example 9.8. Let the equation

(9.18) (x+ y) p+ (−x+ y) q+ (z+u) r =−z+u

The characteristic system corresponding to equation (9.18) is

(9.19)
dx

x+ y
= d y

−x+ y
= dz

z+u
= du

−z+u

The polynomial Ψ
(
ρ
)

admits two double conjugate complex roots ρ1 = 1− i = ρ2 = ρ3 = ρ4.

The constants
(
λ j,µ j,υ j,τ j

)
associated respectively are (i,1,0,0) and (−i,1,0,0). Each

ratio of (9.19) is equal to

d (ix+ y)
(1− i) (ix+ y)

= d (−ix+ y)
(1+ i) (−ix+ y)

This leads to the following first integral

z2 − z1 = c1

where

z1 = 1
2

log
(
y2 + x2) and z2 = arctan

x
y

We use the same procedure as before to obtain two additional first integrals. This approach

also enables us to obtain other first integrals, but we are limited to finding only two. For

that, suppose it is possible to find constants
(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that each

ratio of (9.19) is of the form (9.8), with

D = (α1 −α2) x2 + (
β1 +β2

)
y2 + (

δ3 +γ3 +γ4 −δ4
)
zu

+(
γ3 −γ4

)
z2 + (δ1 −δ2 +α3 +α4) xu+ (

γ1 −γ2 +α3 −α4
)
xz

+(
δ1 +δ2 +β3 +β4

)
yu+ (δ3 +δ4)u2 + (

γ1 +γ2 +β3 −β4
)

yz

+(
β1 +α1 −β2 +α2

)
xy
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That’s right, if

(
2−ρ)

α1 −2α2 = 0, γ1 −γ2 +
(
1−ρ)

α3 −α4 = 0(
1−ρ)

β1 +α1 −β2 +α2 = 0, γ1 +γ2 +
(
1−ρ)

β3 −β4 = 0(
1−ρ)

γ1 −γ2 +α3 −α4 = 0,
(
2−ρ)

γ3 −2γ4 = 0(
1−ρ)

δ1 −δ2 +α3 +α4 = 0,
(
1−ρ)

δ3 +γ3 +γ4 −δ4 = 0

β1 +α1 −β2 +
(
1−ρ)

α2 = 0, δ1 −δ2 +α3 +
(
1−ρ)

α4 = 0

2β1 +
(
2−ρ)

β2 = 0, δ1 +δ2 +β3 +
(
1−ρ)

β4 = 0

γ1 +
(
1−ρ)

γ2 +β2 −β4 = 0, δ3 +γ3 +
(
1−ρ)

γ4 −δ4 = 0

δ1 +
(
1−ρ)

δ2 +β3 +β4 = 0, 2δ3 +
(
2−ρ)

δ4 = 0

This system will have a non-trivial solution, if the determinant of its coefficient matrix is

zero, i.e.,

ρ16 −20ρ15 +193ρ14 −1173ρ13 +4957ρ12 −15232ρ11 +34650ρ10

−58344ρ9 +71512ρ8 −61504ρ7 +34688ρ6 −11264ρ5 +1536ρ4 = 0

Among the roots of this polynomial, we take 1 and 2, and we substitute them in (9.8). This

allows us to find the constants(
α1,β1,γ1,δ1,α2,β2,γ2,δ2,α3,β3,γ3,δ3,α4,β4,γ4,δ4

)
as following

(0,0,1,1,0,0,−1,1,0,−2,0,0,1,1,0,0) for ρ = 1

(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1) for ρ = 2

Each ratio of (9.19) is equal to

d (xz+ xu+−3yz+ yu)
1(xz+ xu+−3yz+ yu)

= d
(
u2 − zu

)
2

(
u2 − zu

) = d (−ix+ y)
(1+ i) (−ix+ y)

= d (ix+ y)
(1− i) (ix+ y)

which gives us the following first integrals

(xz+ xu+−3yz+ yu)2 · (u2 − zu
)−1 = c2(

u2 − zu
) · e−2z1 cos

(
log

(
u2 − zu

)−2z2
) = c3

Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.
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9.2.9 Case (ix): ρ1 = ρ2 = ρ3 = ρ4 ∈R

Example 9.9. Let the equation

(9.20) (2x) p+ (2y) q+ (2y+2z) r =−x+ z+2u

The characteristic system corresponding to equation (9.20) is

(9.21)
dx
2x

= d y
2y

= dz
2y+2z

= du
−x+ z+2u

The polynomial Ψ
(
ρ
)

admits one quadruple root ρ = 2. The constants
(
λ,µ,υ,τ

)
associated

respectively are (1,−1,0,0). Each ratio of (9.21) is equal to

d (x− y)
2(x− y)

We use the same procedure as in the previous example to obtain other first integrals. For

this, suppose that it is possible to find constants
(
α j,β j,γ j,δ j

)
, 1≤ j ≤ 4, and ρ such that

each ratio of (9.21) is of the form (9.8), with

D = (2α1 −α4) x2 + (
2γ3 +γ4

)
z2 + (

δ4 +2δ3 +2γ4
)
zu+ (2δ1 −δ4 +2α4) xu

+(
2β1 +2α2 +2α3 −β4

)
xy+ (

2γ1 +2α3 −γ4 +α4
)
xz+ (2δ4)u2

+(
2γ3 +β4 +2β3 +2γ2

)
yz+ (

2δ3 +2δ2 +2β4
)

yu+ (
2β2 +2β3

)
y2

That’s right, if

(
4−ρ)

α1 −2α4 = 0, 2γ1 +
(
2−ρ)

α3 −γ4 +α4 = 0(
2−ρ)

β1 +2α2 +2α3 −β4 = 0, 2γ3 +β4 +
(
2−ρ)

β3 +2γ2 = 0(
2−ρ)

γ1 +2α3 −γ4 +α4 = 0,
(
4−ρ)

γ3 +2γ4 = 0(
2−ρ)

δ1 −δ4 +2α4 = 0, δ4 +
(
2−ρ)

δ3 +2γ4 = 0

2β1 +
(
2−ρ)

α2 +2α3 −β4 = 0, 2δ1 −δ4 +
(
2−ρ)

α4 = 0(
4−ρ)

β2 +4β3 = 0, 2δ3 +2δ2 +
(
2−ρ)

β4 = 0

2γ3 +β4 +2β3 +
(
2−ρ)

γ2 = 0, δ4 +2δ3 +
(
2−ρ)

γ4 = 0

2δ3 +
(
2−ρ)

δ2 +2β4 = 0,
(
4−ρ)

δ4 = 0

150



9.3. CONCLUSION

This system will have a non-trivial solution, if the determinant of its coefficient matrix is

zero, i.e.,

ρ16 −40ρ15 +720ρ14 −7676ρ13 +53632ρ12 −256256ρ11 +845824ρ10

−1894400ρ9 +2719744ρ8 −2162688ρ7 +524288ρ6 +262144ρ5 = 0

Among the roots of this polynomial, we take ρ = 4, and we substitute it in (9.8), This

allows us to find the constants

(
α1,β1,γ1,δ1,α2,β2,γ2,δ2,α3,β3,γ3,δ3,α4,β4,γ4,δ4

)
as following

(1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0)

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

(0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

These values would transform system (9.21) into the following exact differential form

d
(
2x2 +2y2 +4xy

)
4

(
2x2 +2y2 +4xy

) = d
(
2x2)

4
(
2x2

) = d (4xy)
4(4xy)

= d (x− y)
2(x− y)

which gives us these linearly independent first integrals

(
2x2 +2y2 +4xy

) · (2x2)−1 = c1(
2x2) · (4xy)−1 = c2

(4xy) · (x− y)−2 = c3

Hence the integral curves F (c1, c2, c3)= 0, where F is an arbitrary real function.

9.3 Conclusion

Our work introduces a versatile approach that can effectively solve a wide range of

first order quasilinear equations, as described within the paper. The method’s relevance
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transcends practical applications, encompassing various mathematical equations ex-

hibiting quasilinearity. Through providing a comprehensive framework, our research

establishes a solid groundwork for addressing such equations and ensuring their success-

ful resolution, irrespective of their immediate real-world significance. The broad scope

and applicability of our method highlight its importance and potential in advancing the

field of mathematical analysis. As a practical application, we can use it to determine

the surfaces orthogonal to a given system of surfaces and to solve the Hamilton-Jacobi

equation, which is of great importance as a first order partial differential equation in

mathematical physics. Additionally, it is worth noting that our methodology can be

extended to tackle equations with two variables of the same type. This extension finds

relevance in several renowned examples, including the transport equation, Maxwell’s

equation, and others.

In conclusion, we emphasize the challenging nature of unsolved PDEs and the need

for fresh insights and innovative concepts to address them. We assert that the field of

PDEs is rich with unresolved equations awaiting breakthroughs. In the near future, we

will endeavor to study some classes of first order nonlinear PDEs.
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CONCLUSION AND PERSPECTIVES

This thesis delves into the captivating realm of reaction-diffusion sys-
tems (RDSs) and their profound applications in the realms of biology
and medicine.

Conclusion

• This research work focuses on understanding and studying quenching
phenomena, which involve rapid changes in temperature or physical con-
ditions and can lead to complex phenomena in different systems. The pri-
mary goal of the research is to contribute to the advancement of quench-
ing technology and modeling in diverse scientific disciplines. By deepen-
ing the understanding of quenching through mathematical research, the
study can potentially lead to improved techniques, methodologies, and
models that benefit fields such as bioengineering, biology, and others.

• The results obtained in this study have broader implications beyond quench-
ing phenomena alone. They can be applied to the study of other singular
reaction-diffusion phenomena, opening up new avenues for investigat-
ing and understanding various physical and chemical processes where
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similar mathematical principles may be at play. The study’s findings and
insights provide a foundation for further theoretical and numerical in-
vestigations under different conditions, aiming to achieve additional progress
in the field and expand our knowledge. These efforts aim to push the
boundaries of current understanding and potentially uncover new phe-
nomena or mechanisms.

• Specifically, the research proves the existence of continuous positive so-
lutions for a specific class of quasi-linear reaction-diffusion systems of
arbitrary order, extending previous studies conducted on systems with
a specific number of equations. The approach taken to achieve this ob-
jective is mainly based on potential analysis techniques, yielding reli-
able results with less computational effort. The main result obtained
demonstrates the effectiveness of this approach for solving similar prob-
lems. Overcoming certain difficulties, the study achieved significant re-
sults, prompting further exploration of the problem in different circum-
stances. Additionally, a numerical study of the problem can be conducted
to deepen understanding. This would involve further exploration of the
problem and could provide additional insights and results.

• This research contributes to the understanding and solving of a specific
class of quasilinear first-order partial differential equations (PDEs). It
emphasizes the challenging nature of unsolved PDEs and the need for
fresh insights and innovative concepts to address them. The study pro-
vides a methodological approach and explores various aspects related to
the solving process. In the future, we plan to study some classes of first-
order nonlinear PDEs, further advancing the field of PDE research.

Perspectives

Here are some potential directions for further research on reaction-diffusion
systems that could build upon or complement the work conducted in this the-
sis:

• Consider systems with spatial or time-dependent coefficients, to model
non-homogeneity. This adds complexity but more realism.
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• Explore mixed hyperbolic-parabolic or nonlocal systems coupling diffu-
sion to advection/jump terms. Such couplings arise in many physical/biological
settings.

• Extend theoretical analysis tools like potential theory to broader classes
of equations, e.g. fully nonlinear or degenerate operators.

• Numerically simulate more complex, multispecies systems to visualize
dynamics and aid refinement of theoretical results.

• Apply potential-based methods to open problems like proving finite-time
blowup or quenching in certain models.

• Study singular irreversible reaction terms modeling quenching past crit-
ical points like phase transitions.

• Couple reaction-diffusion to other physics, e.g fluid dynamics, to under-
stand multi-scale pattern formation.
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KATO’S CLASSES

This appendix draws inspiration from Zhang’s work and provides additional in-

formation and explanations regarding Kato’s class specifically for chapters three

and seven.

In recent years, there have been many results in the study of elliptic equations

with singular lower order terms in the Kato class. We recall that for n ≥ 3, a function

V ∈ L1
Loc (Rn) is said to belong to the Kato class Kn provided that

lim
r→0

sup
x

∫
|x−y|<r

|V (y)|
|x− y|n−2 d y= 0

In their celebrated work [8], using probabilistic ideas, Aizenman and Simon proved that

the class Kn is the natural replacement of the Lebesgue class Lp, with p > n
2 , in order

for solutions of −∆u+V u = 0 to satisfy a Harnack inequality. As a consequence, they

obtained a modulus of continuity for such solutions. Subsequently, using PDE methods,

the authors of the paper of Chiarenza et al. [41] generalized the results in Aizenman and

Simon [8] to elliptic equations in divergence form with bounded, measurable coefficients.

In both works an important role was played by an embedding result for the class Kn

due to Schechter. In contrast to the elliptic case there is not much investigation (known

to the author) on parabolic equations with lower order coefficients in a class parallel

to the Kato class. In this Appendix we will take up this problem. As the reader will

see, this task presents some notable differences from the elliptic situation. To clarify
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the point we mention that it is not clear whether a version of Schechter’s embedding

theorem holds in the parabolic setting. Therefore, we had to work around this obstacle.

We benefited from the ideas in [73], in which Fabes and Stroock deduced the Harnack

inequality for parabolic equations from lower and upper bounds of the fundamental

solutions. In [223], Zhang succeeded in obtaining similar lower and upper bounds for the

fundamental solutions of the parabolic equations with a singular lower order term in

the parabolic Kato class, which is being proposed as a natural generalization of the Kato

class in the elliptic case. Based on these bounds, a Harnack inequality was established.

It is interesting to note that the results of the paper recapture those in Aizenman and

Simon [8], Chiarenza et al. [41] when one deals with time-independent solutions.

We are interested in the parabolic equation

Hu (t, x)=
n∑

i, j=1

∂

∂xi

(
ai j (t, x)

∂u
∂x j

)
(t, x)−V (t, x)u (t, x)− ∂u

∂t
(t, x)= 0

in a bounded domain Q = D× [0,T]⊂Rn+1. Here ai j are bounded measurable functions

and the matrix a = (
ai j (t, x)

)
is positive definite uniformly in (t, x). This means the

existence of a number λ> 1 such that λ−1I ≤ a ≤λI.

For the function V we will impose the following condition which will be called condi-

tion K . Let

(B.1) Nh (V )= sup
t,x

∫ t

t−h

∫
D
|V (y, s)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dsd y

(B.2) N∗
h (V )= sup

s,y

∫ s+h

s

∫
D
|V (x, t)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dtdx

where α is a fixed positive constant and V (s, y) is regarded as zero when (s, y) is outside

of Q.

Definition B.1. We say that V satisfies condition K if

(B.3) lim
h→0

Nh (V )= lim
h→0

N∗
h (V )= 0.

The space of all L1
Loc functions satisfying condition K will be called the parabolic Kato

class.
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The parabolic Kato class is a natural generalization of the Kato class in the study of

elliptic equations. Note that the parabolic Kato class depends on the parameter α. For

our purpose α can be any positive number so that the following inequality holds:

Γ0 (t, x; s, y)≤ C

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
,

for some C > 0 and 0< t− s ≤ T . Here Γ0 is the fundamental solution of the unperturbed

operator H0 defined by

H0u ≡
n∑

i, j=1

∂

∂xi

(
ai j (t, x)

∂u
∂x j

)
(t, x)− ∂u

∂t
(t, x) .

We need to give a few more notations and definitions.

Green’s functions: We will use G (t, x; s, y) and G0 (t, x; s, y) to denote the weak

Green’s functions of operators H and H0 for the initial Dirichlet problem on Q respectively.

The precise definition of the weak Green’s function is standard and can be found in

Aronson [23]. The symbols ∇xG and ∇yG mean the gradient with respect to the first and

the second space variables of G respectively.

Weak solutions: Given f ∈ L1 (Q), a weak solution of Hu = f in Q is a function u
satisfying:

(a) u ∈ C0 (
[0,T] ;L2 (D)

)∩L2 (
0,T;W1,2 (D)

)
(b) V u ∈ L1 (Q)
(c)

∫ T
0

∫
D

[−A∇u∇φ−V uφ+uφt
]
dtdx = ∫ T

0
∫

D fφdtdx

for all φ ∈ C∞
0 (Q) .

Theorem B.1. The weak Green’s function of H for the initial Dirichlet problem exists

and satisfies the following properties.

(a)

sup
s,y

‖G (., .; s, y)‖Lp(Q) ≤ C

sup
t,x

‖G (t, x; ., .)‖Lp(Q) ≤ C, 0< p < n+2
n

(b)

sup
t,x

‖∇G (t, x; ., .)‖Lp(Q) ≤ C

sup
s,y

‖∇G (., .; s, y)‖Lp(Q) ≤ C, 0< p < n+2
n+1
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Here the constant C depends on λ, p,Q and on V in terms of the rate of convergence of

(B.3).

A direct consequence of Theorem B.1 is the next:

Theorem B.2. Suppose D is a bounded C1 domain. Given f ∈ C0
(
D

)
and g ∈ L∞ (Q), the

following initial boundary value problem has a unique bounded weak solution.
Hu = g in D× [0,T] ,

u = 0 in ∂D× [0,T] , and lim
t→0+u (t, x)= f (x) .

Theorem B.3 (Harnack inequality). Let 0<α2 <β2 <α1 <β1 < 1 and δ ∈ (0,1) be given.

Then there are M > 0 and R0 > 0 such that for all (s, x) ∈Rn ×R , all positive R < R0 and

all non-negative weak solutions u of Hu = 0 in B (R, x)× [
s−R2, s

]
, one has

sup
Q−

u ≤ Minf
Q+ u

where

Q− = B (δR, x)× [
s−β1R2, sα1R2]

Q+ = B (δR, x)× [
s−β2R2, sα2R2]

Functions satisfying condition K are in general more singular than Lp,q functions

when n
2p + 1

q < 1. Moreover the parabolic Kato class we are proposing reduces to the Kato

class in the elliptic case when the function V is independent of t.
We will provide some further analysis of Condition K and show that the condition is

indeed the natural extension of the elliptic Kato class. Since much of the argument is

elementary, we tend to be brief.

Proposition B.1. The parabolic Kato class strictly contains the space Lp,q (Q) with

n
2p + 1

q < 1 .

Proof. Proof. By Hölder’s inequality we have

Nh (V )≤ Ch ‖V‖Lp,q and N∗
h (V )≤ Ch ‖V‖Lp,q .

Here Ch is a constant which depends on p, q and h and which goes to zero when h → 0.

We refer the reader to Sturm [207] for details. �
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Proposition B.2. If the function V is independent of t, then V belongs to the parabolic

Kato class if and only if it belongs to the Kato class in the elliptic case, i.e.,

lim
r→0

sup
x

∫
Br(x)

|V (y)|
|x− y|n−2 d y= 0, n ≥ 3.

Proof. By direct calculation, when n ≥ 3,∫ s+h

s
Γα (t, x; s, y) ≤ C

|x− y|n−2 ,∫ s

s−h
Γα (t, x; s, y) ≤ C

|x− y|n−2

where

Γα (t, x; s, y)≤ C

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
.

The result of the proposition immediately follows. �

Proposition B.3. Let V ′ ≡V (−t, x). Then

Nh
(
V ′)= N∗

h
(
V ′)

In this sense N∗
h is a reflection of Nh.

Proof. From (B.2)

Nh
(
V ′)= sup

t,x

∫ t

t−h

∫
D
|V (y,−s)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dsd y,

Making the change of variables s =−s, we obtain

Nh
(
V ′) = sup

t,x

[
−

∫ −t

−t+h

∫
D
|V (y, s)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dsd y

]
= sup

t,x

∫ −t+h

−t

∫
D
|V (y, s)| 1

(t− s)
n
2

exp
(
−α |x− y|2

t− s

)
dsd y

= N∗
h

(
V ′) . q.e.d.

�

Remark B.1. We note that the parabolic Kato class depends on the constant α, which

appears in (B.1) and (B.2). This is a new situation that does not happen in the elliptic

case.
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C
KNOWN NAMES IN THE FIELD OF REACTION-DIFFUSION

SYSTEMS

The purpose of this page is to present some mathematicians who, through
their works, have contributed to the development of reaction-diffusion sys-
tems.

A lan Turing was a pioneering British mathematician, logician, and computer

scientist. He was born on June 23, 1912, in London, England. Turing’s work

during World War II played a crucial role in breaking the German Enigma code,

helping the Allies gain a significant advantage. Turing is widely regarded as the father of

modern computer science and artificial intelligence. He laid the foundation for theoretical

computer science by introducing the concept of a universal machine, now known as the

Turing machine. His theoretical work on computation and algorithms established the

basis for the development of modern computers. He also made significant contributions

to the field of mathematical biology, particularly in the study of morphogenesis. Alan

Turing died on June 7, 1954, at the age of 41.
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V ito Volterra was an Italian mathematician and physicist born on May 3, 1860,

in Ancona, Italy. He is renowned for his significant contributions to mathematical

biology and mathematical physics. Volterra made important advancements in

the fields of functional analysis and integral equations, particularly in the study of

nonlinear systems. He developed a mathematical theory known as the Volterra integral

equations, which have applications in various scientific disciplines. He also made notable

contributions to economics and ecology. His ecological research focused on predator-prey

relationships and the dynamics of biological populations. Vito Volterra’s legacy continues

to influence various scientific fields. His mathematical models and theories remain

significant in the study of nonlinear systems, population dynamics, and ecology. Volterra

died on October 11, 1940, in Rome, Italy.

A lfred James Lotka was an American mathematician, statistician, and de-

mographer. He was born on March 2, 1880, in Lemberg, Austria-Hungary (now

Lviv, Ukraine) and later immigrated to the United States. Lotka is known for

his significant contributions to mathematical biology and population ecology. Lotka’s

groundbreaking work focused on the mathematical modeling of population dynamics

and the study of biological systems. He developed the Lotka-Volterra equations, a set of

differential equations that describe the interactions between predator and prey popula-

tions. Lotka also made significant contributions to the field of demography. He published

numerous influential papers and books, including his notable work "Elements of Physical

Biology" in 1925. He died on December 5, 1949, in New York City.

H iroshi Kawarada is the Professor of the Faculty of Science and Engineering at

Waseda University, Japan, where he is the leader of nano-electronics and power-

electronics, developing carbon-based material devices including diamonds for

nanodevices, biosensors, microwaves, and power field effect transistors. He was appointed

as a Board Member of the Japan Applied Physics Society for the years 2005–2007, the

Director of the Research Organization for Nanoscience & Nanotechnology from 2009–

2010, and he was also chosen as the Chairman of the New Diamond Forum from 2009–

2014. Along with his career, he has published 9 books, given numerous invited talks, and
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has more than 300 scientific publications and over 30 patents. His articles, proceedings,

and patents have been cited by about 9,000 (Google Scholar). He won the Minister of

Education, Culture, Sports, Science, and Technology Award in 2016, the Applied Physics

Society Fellow Award in 2010, and the Superconductivity Science and Technology Award

in 2007.

Jacques-Louis Lions born on May 3, 1928, and passed away on May 17, 2001, was

a renowned French mathematician who made significant contributions to the field

of applied mathematics, particularly in the area of partial differential equations

(PDEs). Lions was born in Grasse, France. He displayed exceptional mathematical talent

from a young age and entered the prestigious École Normale Supérieure in Paris in 1948.

There, he studied under renowned mathematicians such as Laurent Schwartz and Jean

Leray. He obtained his doctorate in mathematics in 1954 under the guidance of Schwartz.

Lions’ research focused on the theory and applications of partial differential equations.

His work greatly impacted the mathematical understanding and numerical analysis of

these equations, providing new insights and techniques for their study. Lions received

numerous honors and awards for his outstanding contributions. In 1986, he was awarded

the Fields Medal, one of the highest honors in mathematics, for his work on nonlinear

partial differential equations and their applications.

James Dickson Murray born on January 2, 1931, in Moffat, Scotland, is a highly

regarded British mathematician and Professor Emeritus of Applied Mathematics

at both the University of Washington and the University of Oxford. He has made

significant contributions to a wide range of research areas, demonstrating remarkable

breadth and depth in his work. One of Murray’s notable achievements is his authoritative

book "Mathematical Biology," which has established him as a leading figure in the field.

Murray’s research encompasses a diverse array of topics, showcasing his intellectual

curiosity and versatility. For instance, he has made groundbreaking contributions to

understanding the biomechanics of the human body during ejection seat launches from

aircraft. His research has delved into understanding and preventing severe scarring, the

formation of fingerprints, determining sex in biological systems, modeling animal coats,
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and analyzing the formation of territories in populations of interacting wolf-deer. He also

has practical implications in fields such as medicine, ecology, and animal behavior.

Ammar Youkana is an Algerian mathematician, born on June 11, 1958, in Batna,

Algeria. Youkana pursued his academic journey at the renowned Jacques-Louis

Lions Laboratory, Pierre and Marie Curie University, Paris VI, France, where he

obtained his degree in applied mathematics in 1986. Throughout his career, Youkana

has focused on the study of reaction-diffusion systems. His work in this area has shed

light on the behavior and properties of such systems, leading to valuable insights with

applications in diverse fields. He has many important scientific papers in this field.

Presently, Youkana serves as a distinguished mathematics professor in the Mathematics

Department of the Mustapha Ben Boulaïd University of Batna. His contributions to the

field and dedication to education have made him a respected figure within the academic

community.

M ichel Pierre is an esteemed French mathematician, born in 1961 in France.

He has held the position of Professor at ENS Cachan Bretagne since 1996 and is

a distinguished researcher at IRMAR, specifically in the Digital Analysis team.

His research focuses on improving models and studying reaction-diffusion systems, mak-

ing notable contributions in both areas. Throughout his career, Pierre has demonstrated

a remarkable dedication to advancing the understanding and application of mathemat-

ics. Pierre’s research on reaction-diffusion systems has also been influential. His deep

understanding of these systems has enabled him to contribute novel approaches and

methods for their analysis and modeling. His work has enhanced our understanding of

the dynamics and behavior of reaction-diffusion phenomena, with applications spanning

diverse scientific disciplines. As an accomplished mathematician, Pierre has authored

and co-authored a substantial number of scientific papers across various branches of

applied mathematics. His publications showcase his breadth of knowledge and expertise,

reflecting his contributions to the field and his commitment to advancing mathematical

research. Among his students was the great mathematician Noureddine Alaa.
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FIGURE C.1. Alan Turing.

FIGURE C.2. Vito Volterra.

FIGURE C.3. Alfred James Lotka.
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FIGURE C.4. Hiroshi Kawarada.

FIGURE C.5. Jacques-Louis Lions.

FIGURE C.6. James Dickson Murray.
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FIGURE C.7. Ammar Youkana.

FIGURE C.8. Michel Pierre.
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ᗫد ظواهر  :  العنوان ᢔᣂشار -تفاعلوأنظمة  التᙬاء والطب  انᘭعلم الأح ᢝ
ᡧᣚ .  

ᢝ علم الأحᘭاء والطب والهندسة الحيᗫᖔة. وᗫتكون من   انᙬشار   -تفاعلᘻستكشف هذه الأطروحة موضᖔع أنظمة    :   ملخص
ᡧᣚ قاتهاᘭوتطب

ᢝ تم    ᘻسعة ᡨᣎا المحددة الᘌع والقضاᖔجوهر الموض ᣢمقدمة عامة تؤكد عᗷ دأ الأطروحةᘘع. تᖔجوانب مختلفة من الموض ᢝᣗفصول تغ
ᢝ الᘘحث. ᘌقدم الفصل الأول نظرة عامة حول أنظمة  

ᡧᣚ شار   -تفاعلاستكشافهاᙬركز    انᗫة المختلفة. وᘭالتخصصات العلم ᢝ
ᡧᣚ قاتهاᘭوتطب

ᢝ علم الأحᘭاء والطب والهندسة الحيᗫᖔة. وᗫقدم الفصل الثالث أنظمة  
ᡧᣚ قاتهᘭد" وتطبᗫ ᢔᣂمفهوم "الت ᣢع ᢝ

ᡧᣍشار    -تفاعلالفصل الثاᙬمع  ان
  .ᣠة من الدرجة الأوᘭه الخطᘘة شᘭة الجزئᘭناقش الفصل الرابع المعادلات التفاضلᗫة. وᘭوط أول ᡫᣃالخامس والسادس  ولتعمق الفصت 

ᢝ أنظمة    والسابع
ᡧᣚشار    -تفاعلᙬناول الفصل  الشاذة  انᙬᗫد. وᗫ ᢔᣂشار    -تفاعلنظام    الثامن وظاهرة التᙬذي  ان ᢝᣗه خᘘةشᘘرت  ᘭفᘭركز  ةكᗫو .
النظᗫᖁة   الأخᢕᣂ الفصل   الأطر  الأطروحة  تقدم   .ᣠالأو الدرجة  من  الخطᘭة  شᘘه  الجزئᘭة  التفاضلᘭة  المعادلات  من  محددة  فئة   ᣢع

ᢝ أنظمة  
ᡧᣚ التقدم ᢝ

ᡧᣚ ساهمᛒ ة، مماᘭقات العملᘭة والتطبᘭاضᗫᖁب الᘭشار  -تفاعلوالأسالᙬان .  

ᗫد، وجود شامل، حلول موجᘘة، معادلات تفاضلᘭة جزئᘭة    - أنظمة تفاعل    :   مفتاحᘭةمات  ـ᛿ل ᢔᣂشار، معادلات مᜓافئة شاذة، ظاهرة التᙬان
 .ᣠة من الدرجة الأوᘭه خطᘘش  

 

Title : QUENCHING PHENOMENA AND REACTION-DIFFUSION SYSTEMS IN BIOLOGY AND MEDICINE. 

Abstract : This thesis explores the topic of reaction-diffusion systems (RDSs) and their applications in biology, 
medicine, and bioengineering. It consists of nine chapters that cover various aspects of the subject. The thesis 
begins with a general introduction that emphasizes the essence of the subject and the specific issues explored in 
the research. The first chapter provides an overview of RDSs and their applications in different scientific 
disciplines. The second chapter focuses on the concept of "Quenching" and its applications in biology, medicine, 
and bioengineering. The third chapter introduces RDSs with initial conditions. The fourth chapter discusses first 
order quasilinear PDEs. Chapters five, six and seven delve into singular RDSs and the quenching phenomenon. The 
eighth chapter examines a quasilinear RDS of arbitrary order. The last chapter focuses on a specific class of first 
order quasilinear PDEs. The thesis presents theoretical frameworks, mathematical methods, and practical 
applications, contributing to advancements in RDSs. 

Keywords : Reaction-diffusion systems, singular parabolic equations, quenching phenomenon, global existence, 
positive solutions, quasilinear first order PDE. 

 

Titre : PHÉNOMÈNES DE TREMPE ET SYSTÈMES DE RÉACTION-DIFFUSION EN BIOLOGIE ET MÉDECINE. 

Résumé : Cette thèse explore le thème des systèmes de réaction-diffusion (SRDs) et leurs applications en biologie, 
médecine et bio-ingénierie. Il se compose de neuf chapitres qui couvrent divers aspects du sujet. La thèse 
commence par une introduction générale qui met l’accent sur l’essence du sujet et les enjeux spécifiques explorés 
dans la recherche. Le premier chapitre donne un aperçu des SRDs et de leurs applications dans différentes 
disciplines scientifiques. Le deuxième chapitre se concentre sur le concept de "Quenching" et ses applications en 
biologie, médecine et bio-ingénierie. Le troisième chapitre présente les SRDs avec conditions initiales. Le 
quatrième chapitre traite des EDPs quasi-linéaires du premier ordre. Les chapitres cinq, six et sept se penchent 
sur les SRDs singuliers et sur le phénomène de trempe. Le huitième chapitre examine un SRD quasi-linéaire d'ordre 
arbitraire. Le dernier chapitre se concentre sur une classe spécifique d’EDPs quasi-linéaires du premier ordre. La 
thèse présente des cadres théoriques, des méthodes mathématiques et des applications pratiques, contribuant 
aux progrès des SRDs.  

Mots-clés : Systèmes de réaction-diffusion, équations paraboliques singulières, phénomène de quenching, 
existence globale, solutions positives, EDP quasi-linéaire du premier ordre. 
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