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𝑢 Velocity in x-direction,  𝑚. 𝑠−1 

𝑣 Velocity in y-direction, 𝑚. 𝑠−1 

𝑉⃗  Field velocity,  (𝑢𝑒 𝑥 + 𝑣𝑒 𝑦), 1.m s −  

𝑈, 𝑉  Dimensionless velocity-components 

𝑥 , 𝑦 Cartesian coordinates,  m  

𝑋, 𝑌             Dimensionless coordinates 

𝑋𝑝 Dimensionless width of the porous layer 

𝑌𝑝 Dimensionless thickness of the porous layer 

Greek symbols 

𝛼 Thermal diffusivity,  𝑚2. 𝑠−1 

𝛽 Thermal expansion coefficient, −1 𝜌0(𝜕𝜌 𝜕𝑇⁄ )⁄ , 𝐾−1  

𝛾  Ratio of specific heats 𝐶𝑝 and 𝐶𝑣 

∆𝑇 Temperature difference,  ∆𝑇 = 𝑇𝐻 − 𝑇𝐶  , 𝐾 

𝜀 

εr  

Porosity of the porous layer 

Emissivity 

𝜀𝑏 Boussinesq parameter:   𝜀𝑏 = ∆𝑇 2𝑇0⁄     

𝜂 Dimensionless size of the porous layer 

𝜃 

Θ = 𝑇 𝑇0⁄  

Dimensionless temperature,  𝜃 = (𝑇 − 𝑇0) ∆𝑇⁄  

Dimensionless radiative temperature 

𝜇 Dynamic viscosity of the fluid,  𝑘𝑔.𝑚−1. 𝑠−1 

𝜈 Kinematic viscosity,  𝑚2. 𝑠−1 

𝜋  Dimensionless pressure     

𝜌 Fluid density,  𝑘𝑔.𝑚−3 

𝜏 Dimensionless time 

𝜎 Ratio of heat capacities 𝜎 = (𝜀(𝜌𝐶𝑝)𝑓 + (1 − 𝜀)(𝜌𝐶𝑝)𝑠) (𝜌𝐶𝑝)𝑓⁄  

Subscripts 

𝑎𝑣𝑔 Average value 

𝐶 Cold 

𝐻  Hot 

𝑒𝑓𝑓                   Effective property of the porous layer 

𝑓  Refers to the fluid domain 

𝑠  Refers to the porous medium 
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𝐶𝑃  Constant properties 

𝑉𝑃  Variable properties 

0  Reference state 

∗ Dimensionless parameters 
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GENERAL INTRODUCTION 

 Industries are increasingly turning to modeling to solve multi-physics problems related 

to the design of systems with complex geometries. The advancing performance of modern 

computers allows for calculations involving coupled physical phenomena, such as thermo-

mechanical deformations of structures, coupled heat transfers involving conduction, 

convection, and radiation, fluid-structure interaction, and electromagnetic-thermal coupling. 

Numerous studies have been conducted using numerical and practical experimentation. While 

laboratory experimentation is crucial for validating the initial approach, it is hindered by the 

high cost of equipment and implementation difficulties. Numerical simulation remains the most 

cost-effective and widely used method. The rapid evolution of computer capabilities over the 

past two decades has significantly advanced our understanding of natural convection, thermal 

radiation, and the coupling between these phenomena. 

 Coupled thermal phenomena in confined environments are of considerable interest in 

the field of engineering. This interest is reflected in numerous applications, such as solar energy 

collectors, electronic component cooling, thermal comfort in buildings, and furnaces, among 

others. The study of natural convection in confined spaces is still the subject of extensive 

research, both numerically and experimentally. In such problems, various modes of heat 

transfer (convection, conduction, radiation) can occur in a coupled manner, particularly through 

the walls. 

 The majority of these studies involve a relatively small temperature difference, for 

which the Boussinesq approximation is used, assuming that fluid properties remain constant 

except for a linear dependence of density on temperature in the gravity term. However, in many 

physical and industrial applications, such as thermal insulation systems, chemical reactors, 

atmospheric flows, and combustion processes, temperature differences can reach tens of 

degrees. In such situations, the assumptions used to apply the Boussinesq approximation cannot 

be justified, and a different modeling approach is required, one that takes into account realistic 

variations in fluid properties. 

 Our work aims to study natural convection and the coupling between natural convection 

and surface radiation in a differentially heated cavity in the non-Boussinesq case, in the 

presence of a porous medium and internal heat generation. The objective here is to consider 

large temperature differences by using low Mach number models that allow us to dispense with 

the Boussinesq hypothesis while maintaining the decoupling between pressure and density 

fluctuations characteristic of incompressible flows. The numerical resolution of this problem 

primarily involves the finite volume approximation of the generalized Navier-Stokes equations. 

 Particular attention is given to examining the effect of the Boussinesq parameter, the 

Rayleigh number, wall emissivity, the variation of thermophysical properties of the fluid with 

temperature, the Darcy number, porosity, and the internal Rayleigh number on the temperature 

distribution, the flow structure within the cavity, and the contribution of different phenomena 

to overall heat transfer. 

This manuscript is structured into six chapters. 
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 Chapter 1 provides an extensive literature review on natural convection in closed 

cavities. It presents the generalities and definitions related to the studied phenomena, namely 

natural convection, internal heat generation and thermal radiation, as well as their coupling. The 

chapter also reviews different works that have addressed this type of problem, including studies 

conducted under the Boussinesq approximation, using low Mach number models, and in porous 

media. 

In Chapter 2, we describe in detail the modeling steps used in a two-dimensional system. 

Starting from a general formalism, we present the balance equations describing the unsteady 

motion of a Newtonian, viscous, and compressible fluid. Then, simplifying assumptions are 

applied to different degrees to achieve different types of flow (low Mach flow, incompressible 

flow, and dilatable flow), highlighting the application limits relative to each system of 

equations. 

Chapter 3 describes the numerical solution methodology for the partial differential equations 

presented in Chapter 2. Throughout this chapter, we briefly present the finite volume method 

applied to fluid flows and, in general terms, the steps of discretization of mathematical 

equations. 

Chapter 4 focuses on the investigation of the coupling between porous medium and natural 

convection with an internal heat source. The motivation for this study stems from the limited 

number of research studies that have explored this specific coupling. Therefore, the objective 

of the study is to examine how the presence of a porous medium and internal heat generation 

influence fluid flow and heat transfer within a square cavity. 

 Chapter 5 is dedicated to presenting the numerical results of pure natural convection at 

a low Mach number of a fluid (air) confined in a differentially heated square cavity. The 

objective is to first validate the developed numerical code by comparing the obtained results 

with those in the literature. Then, we study the validity range of the Boussinesq approximation 

and examine the effect of various dominant parameters on the thermal and dynamic behavior 

of the fluid, including the presence of a porous medium and its properties such as permeability 

and porosity. 

 Chapter 6 focuses on the study of the coupling between natural convection and surface 

radiation in a differentially heated square cavity in the non-Boussinesq case. Numerical 

experiments are conducted to validate the method and highlight the effect of radiation on the 

thermal and dynamic fields, taking into account the presence of a porous medium and its 

properties. 

 The culmination of these six chapters leads to a comprehensive understanding of the 

complex interplay between natural convection and other influential factors in diverse systems. 

The findings contribute to the optimization and design of systems with complex geometries, 

enabling advancements in fields such as energy systems, environmental engineering, and 

geothermal technologies. By considering realistic variations in fluid properties, non-Boussinesq 

conditions, and the coupling with porous media, this research pushes the boundaries of our 

knowledge, paving the way for innovative solutions and improved system performance. 
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I.1 INTRODUCTION  

With the prodigious development of modern techniques, it has become essential for any 

engineer, regardless of the field in which they will be called upon, to possess a good knowledge 

of the fundamental laws of heat transfer. This phenomenon is particularly significant in 

technical sciences, engineering designs, and industry; it manifests in all aspects of life and has 

a wide range of applications. Heat transfer is a complex process that occurs based on the 

different fundamental modes, namely: conduction, convection, and radiation. Among these 

modes, convection stands out as the most significant mode of energy transfer. Considering the 

factors that induce fluid motion, convection can be classified into three categories: forced 

convection, natural convection, and mixed convection 

Natural convection of fluids in enclosures has garnered extensive research attention due 

to its importance in mechanical, industrial, thermal, and engineering applications. It finds 

practical applications in electronic component refrigeration, buried pipe protection, nuclear 

reactor cooling systems, solar energy collection, and room ventilation, among others [1]. 

Researchers have explored numerous cavity forms, including rectangular configurations [2,3], 

triangular shapes [4], trapezoidal structures [5], and other variations [6,7]. Sadeghi et al. [8] 

have provided a comprehensive review of studies that employed cavities and enclosures with 

different geometric designs. 

The natural convection process within a square cavity has garnered significant interest 

from researchers over the years due to its importance and wide range of applications across 

various disciplines and sectors [9,10]. The first studies in this field date back to 1942 and 

include notable works such as those by Elenbaas [11], and the syntheses conducted by Ostrach 

[12,13], Batchelor [14], Shih [15], and Gebhart et al. [16]. In the latter reference, the validity 

limits of the widely used Boussinesq hypothesis in the analysis of natural convection are 

thoroughly discussed. In 1983, De Vahl Davis and Jones [9] confirmed the accuracy of the 

benchmark solution, establishing a foundation for verifying different methods and computer 

programs employed to generate contributed solutions. 

 Reddy et al. [17] conducted a numerical investigation on the flow of nanofluid inside a 

square cavity under isothermal conditions on both side walls and adiabatic conditions on the 

top and bottom walls. The finite difference method was utilized to solve the governing 

differential equations expressed in terms of the stream function. The results indicate an increase 

in the rate of heat transfer with higher values of the Rayleigh number (Ra). 

 The investigation conducted by Hassanzadeh et al. [18] focuses on the impact of a 

revolving rough cylinder within a square cavity on the mechanism of natural convective heat 

transfer. Six different cases are examined, and the differences between the cases become more 

pronounced at lower Rayleigh numbers and higher rotating speeds. 

 In a study by Rui et al. [19], the process of natural convection melting in a square cavity 

is explored. The authors developed an enthalpy-based lattice Boltzmann model (TLBM) in 

combination with the pseudo-potential LB model to accurately track the solid-liquid interface. 
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The results demonstrate that TLBM effectively simulates the solid-liquid phase transition 

process with great precision. 

 In a study by Leporini et al. [20], the natural convection process of air within a square 

cavity with active side and bottom walls was investigated. The authors examined the effects of 

the position relative to the gravity vector and the temperature difference between the hot and 

cold walls. Numerical simulations were performed using both a pure convection model and a 

combined radiative-convective model. The results show good agreement with experimental 

measurements, and the inclusion of radiance contribution does not affect the outcomes. 

A numerical analysis of laminar natural convection in a square cavity filled with air (Pr 

= 0.71) was provided by Alsabery et al. [21]. The cavity contained two cylinders of different 

geometric shapes (square, circular, and elliptical), each with the same surface area. While the 

other walls of the cavity were assumed to be fully insulated, the right wall was uniformly cooled 

to a constant temperature, 𝑇𝑐. The results highlighted the significant influence of Rayleigh 

numbers on the flow and heat transfer within the cavity 

Karki et al. [22] employed the lattice Boltzmann approach to study the impact of 

adiabatic obstructions on two-dimensional natural convection within a square enclosure. It was 

observed that the average heat transfer along the hot wall increases with the size of the obstacles 

until it reaches an optimum value. Further increases in size lead to a decrease in heat transfer. 

 The Boussinesq approximation, widely used for numerically simulating natural 

convection problems, is based on the Oberbeck-Boussinesq principle. However, the accuracy 

of this approximation was limited to small temperature variations. To address this limitation, 

researchers and engineers were motivated to develop approaches that extend beyond the range 

of validity of the Boussinesq approximation, particularly for buoyancy-driven flows with large 

temperature differences. Mayeli et al. [23] collected and classified various methodologies for 

the numerical modeling of laminar natural convection, including both Boussinesq and non-

Boussinesq approximations for Newtonian fluids. These classifications fell into two broad 

categories: compressible and incompressible techniques. Figure 1 provides a summary of the 

different approximations used for the numerical simulation of natural convection problems. 
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Figure I.1: Classification of various approximations used in the numerical modeling of 

natural convection issues. 

I.2 BOUSSINESQ APPROXIMATION  

In 1903, Boussinesq observed that density variations can be neglected, except when 

multiplied by gravitational acceleration in the equation of motion for the vertical component of 

the velocity vector [24]. This simple approximation has had a profound impact on various areas 

of fluid dynamics. It allows us to treat flows with small density variations as incompressible 

while still accounting for the primary effects of density variations. Moreover, it holds 

significant analytical and numerical importance by eliminating acoustic modes, which can be 

challenging to handle 

Many problems in fluid dynamics have been successfully solved using Boussinesq-type 

approximations, yielding results that align well with experimental data [25]. Notably, the work 

of Gray and Giorgini [26] deserves mention, as they developed a new method for deriving 

approximation equations for natural convection flows. By systematically applying this 

approach, they defined specific conditions for eliminating different terms. This technique 

effectively determines the conditions under which a particular Newtonian liquid or gas satisfies 

the conventional Boussinesq approximation. The study used air and water at room temperature 

as examples to illustrate the application of this technique. 

Turkel [27] provided a general description of preconditioning the steady-state 

compressible inviscid fluid dynamic equations. Extensions of the Navier-Stokes equations were 

also taken into account. Various variations of the preconditioning matrix were presented, along 

with implementation details. 

Cherkasov et al. [28] discussed laminar natural convection in a gas confined between 

two vertical isothermal plates, each heated to different temperatures. They obtained an 

analytical solution using the Boussinesq approximation and compared it to a similar problem 

involving a liquid. 
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Hamimid et al. [29] investigated the combined effects of laminar natural convection 

and surface radiation in a differentially heated square cavity. The computations were performed 

using the finite volume method, a staggered grid, and the SIMPLER algorithm. A power-law 

scheme was applied to approximate the advection-diffusion terms, while analytical formulas 

were used to calculate view factors. The study examined the influence of emissivity on 

temperature and velocity profiles within the enclosure. Additionally, results for local and 

average convective and radiative Nusselt numbers under various parametric conditions were 

provided and analyzed. 

Meyali et al. [30] presented a formulation based on the Boussinesq approximation for 

the numerical simulation of natural convection. By incorporating density variations into the 

advection terms, the study accounted for centrifugal effects arising from both bulk enclosure 

rotation and individual vortices, leading to more accurate results. 

Many numerical and theoretical studies on natural convection in a cavity use the 

Boussinesq approximation [28,31–35]. Recently, the ideal gas law and asymptotic expansion 

methods have been employed to reevaluate this approximation. Generally, the Boussinesq 

approximation is considered valid when the maximum temperature differences do not exceed 

10% of the reference temperature of the gas [36]. However, this approximation has not been 

questioned in the context of solute convection, highlighting the need to develop alternative non-

Boussinesq models, such as the low Mach number approximation, to address these situations 

I.3 LAW MACH NUMBER APPROXIMATION  

Boussinesq's approximation has sparked extensive discussion, as previously mentioned. 

Over the past fifty years, numerous publications have addressed the validity of the Boussinesq 

approximation, particularly in the context of closed systems [37–39]. 

 Gray and Giorgini [26] provided detailed information on the Boussinesq 

approximation, noting that its validity limit for air is around 28.6 K. This work has likely 

influenced the ideas developed by Paolucci [40], which are currently being examined in several 

studies. In particular, Rey [41] built on these ideas by specifying the limits of applicability of 

this approximation and further explored its practical constraints. 

In practical terms, Mach numbers are always extremely low for internal flows, rendering 

the Mach number limit insignificant. Additionally, Pons and Le Quéré [42–44] raised concerns 

about the impact of pressure forces and even viscosity  [45]. 

In general, density fluctuations in physical flows can arise from compressibility 

(pressure variation), dilatability (temperature variation), or a combination of two species (fluids 

with different densities). When the Mach number in a flow exceeds unity, the flow becomes 

supersonic and may exhibit shock waves that significantly influence the flow behavior. Even at 

low fluid velocities (such as in natural or mixed convection), numerically processing the 

conservation equations in their compressible form presents challenges. 

The concept of a low Mach number arises when studying compressible flows at low 

speeds. This condition is characterized by a flow's characteristic velocity, 𝑈, being significantly 
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lower than the speed of sound, 𝑐 (which represents the propagation speed of pressure waves). 

Consequently, the Mach number, 𝑀𝑎, defined as the ratio of 𝑈 to 𝑐, is much less than unity. 

Such flows are encountered in various physical phenomena, including oceanic circulation, 

respiratory and vocal processes, natural convection, aeroacoustics, and industrial processes 

such as gas cooling or heating in enclosed domains and combustion. In these cases, significant 

density variations occur due to heat generated by chemical reactions. Furthermore, even in 

hypersonic flows, regions near stagnation points and adhesive surfaces can exhibit zero 

velocity. 

Paillere et al. [46] investigated two numerical methods for solving low Mach number 

compressible flows and their application to single-phase natural convection problems. One 

method is based on an asymptotic model of the Navier-Stokes equations, which is valid for 

small Mach numbers. The other method is more general than the Boussinesq incompressible 

flow model. 

Jagannathan et al. [47] presented results from direct numerical simulations of 

stationary compressible isotropic turbulence conducted at very high resolutions. They analyzed 

compressibility effects by decomposing the velocity and pressure fields into solenoidal and 

dilatational components. They proposed a critical turbulent Mach number of approximately 0.3, 

which delineated two distinct flow regimes. 

Arima [48] investigated a mathematical model for environmental fluids that described 

fluid flow motions with significant density variations. The model was formulated as an unsteady 

low-Mach number flow based on the compressible Navier-Stokes equations. By making this 

assumption, the detailed acoustic effects were eliminated from the governing equations. 

Boscarino [49] presented a finite volume shock-capturing method that asymptotically 

preserved all Mach numbers for numerical solutions of the compressible Euler equations of gas 

dynamics. Numerical tests were conducted in one and two dimensions to demonstrate the 

performance of the proposed scheme in both compressible and incompressible regimes. 

Yu Zhang et al. [50] numerically investigated the non-Boussinesq effect in thermal 

convection within an air-filled horizontal concentric annulus using the variable property-based 

lattice Boltzmann flux solver (VPLBFS). The study analyzed various solutions, including the 

real solution considering total fluid properties, constant property solution, dynamic viscosity, 

partial Boussinesq approximation, thermal conductivity, and fluid density. The study revealed 

complex flow instability behavior under non-Boussinesq conditions and its correlation with 

heat transfer characteristics. It emphasized the significance of considering the integral effect of 

total fluid properties and fluid density variation. 

The low Mach number approximation has become a valuable tool in fluid dynamics and 

thermodynamics. It simplifies the mathematical representation of fluid flow phenomena when 

the flow velocity is much smaller than the speed of sound. This technique is based on the 

understanding that density variations due to compressibility are negligible at low Mach 

numbers. As a result, it has been widely applied across various scientific and engineering fields. 

From astrophysics to combustion science, and from environmental modeling to biomedical 
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engineering, the low Mach number Approximation has provided valuable insights and 

predictions for complex fluid behaviors. 

I.4 NATURAL CONVECTION IN POROUS MEDIA  

Natural convection in porous media is a fascinating field where the low Mach number 

approximation plays a crucial role. Natural convection refers to the flow of a fluid driven by 

temperature gradients and the resulting density differences, while porous media involve 

materials with interconnected voids filled by a fluid. Understanding the interaction between 

natural convection and porous media is of great importance in various domains, including 

geothermal energy extraction, subsurface environmental remediation, and the study of heat 

transfer in porous materials such as soils. Researchers typically use a combination of the Darcy-

Brinkman equation, which describes fluid flow through porous media, and the heat conduction 

equation to analyze natural convection in porous media. These equations are often solved 

together to model the coupled phenomena. 

Modeling natural convection in porous media presents challenges due to the complex 

geometry of porous materials and the interplay between fluid flow and heat transfer. Accurate 

simulation and prediction of these phenomena often require high-performance computing and 

advanced numerical techniques. 

In the past decade, significant progress has been made in this field, particularly with 

regard to the low Mach number approximation. This approximation has paved the way for new 

insights into understanding and leveraging the complexities of convection in porous media. 

Gray and Giorgini [26] introduced a novel method for deriving approximate equations 

governing natural convection flows. This approach allows for the explicit identification of terms 

that can be neglected and establishes conditions under which the conventional Boussinesq 

approximation is applicable to both liquids and gases. 

In a review by Stauffer et al. [51]  on thermally driven convection in porous media, it 

was revealed that air exhibits a critical Rayleigh number of 4𝜋2. However, the thermal gradient 

decreases due to adiabatic effects. Finite amplitude analysis predicted the onset of convection 

in air-filled porous media, and the resulting Ra vs. Nu curves aligned with experimental data 

for water. 

Peirotti et al. [52]  investigated the validity of the Boussinesq approximation in natural 

convection within a fluid-saturated porous cavity with insulated walls. Numerical calculations 

were performed for water and air, considering various Rayleigh numbers and aspect ratios. The 

findings demonstrated significant differences between the Nusselt numbers obtained using the 

Boussinesq approximation and those predicted by the model 

In recent years, there has been a growing body of literature dedicated to advancing our 

understanding of low Mach number natural convection in porous media. Researchers have 

focused on exploring the complexities of fluid-solid interactions, the influence of heterogeneity 

in porous structures, and the effects of porosity and permeability on convective heat and mass 

transport. The integration of numerical simulations and experimental investigations has played 
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a crucial role in validating and refining theoretical models, leading to more accurate predictions 

and the design of more efficient systems. 

Lebeau et al. [53]  proposed a numerical model for convective heat and mass transport 

in both compressible and incompressible gas flows with soil-water phase change. The model 

considered adiabatic processes of compression heating and expansion cooling, allowing the 

inherently compressible gaseous phase to be treated as incompressible. The method employed 

a Galerkin finite element formulation with adaptive mesh refinement and dynamic time step 

control. The significance of this model became evident as the thermal gradient approached the 

adiabatic gradient, indicating that pore-air compressibility could not be ignored in medium to 

large-sized enclosures with small temperature differentials. 

Johnson et al. [54] investigated numerical models of flow in unsaturated porous media, 

focusing specifically on the use of retention functions to account for capillary effects. However, 

many porous systems undergo changes in porosity, which in turn affect the retention function 

during the simulation. To address this issue, they introduced a new retention function that 

updates the maximum capillary pressure, residual saturation, and maximum saturation before 

applying the saturation fit. This correction helped rectify unphysical model behaviors and led 

to significant changes in simulation outcomes, particularly in systems dominated by capillary 

effects. The porosity-dependent retention function proved essential for obtaining meaningful 

simulation results in systems with varying porosity 

Shankar et al. [55] investigated the linear stability of thermal buoyant flow in a fluid-

saturated vertical porous slab, considering both weak and strong horizontal permeability 

heterogeneities. The study examined linear, quadratic, and exponential heterogeneity models 

and found Gill's proof to be ineffective. It presented neutral stability curves and calculated the 

critical Darcy-Rayleigh number for convective instability. The research highlighted both the 

similarities and differences between the various heterogeneity models concerning fluid flow 

stability 

In their research, Yan et al. [56] explored the impact of low- or high-permeability 

inclusions on density-driven free convection in porous media. The study conducted sensitivity 

analyses using the modified Elder problem, focusing on permeability contrast, effective area, 

and distance. The results indicated that high-permeability inclusions had stronger effects due to 

unbalanced solute distributions, that larger effective areas influenced free convection, and that 

free convection was more sensitive to inclusions that were vertically closer. The findings also 

revealed that high-permeability inclusions had a more significant impact at the early stage, 

while those located far from the source zone exhibited a later impact. These insights contributed 

to the understanding of unstable density-driven flow and solute transport in porous media with 

structured heterogeneity 

Barletta et al. [57] analyzed buoyancy-induced parallel flow in a cylindrical porous 

layer with an annular cross-section, assuming a radial thermal gradient originating from a 

uniformly distributed heat source. The study investigated the onset of convective instability by 

utilizing the heat-source Rayleigh number and the ratio between the internal and external radii. 
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Neutral stability curves and critical values were computed numerically, revealing that 

axisymmetric modes were the most critical type of instability. 

I.5 NATURAL CONVECTION IN POROUS MEDIA WITH AN INTERNAL HEAT 

SOURCE 

In the realm of natural convection within porous media, the introduction of internal heat 

generation adds a layer of complexity. The interaction between fluid dynamics and thermal 

processes becomes intricately intertwined as the porous matrix itself acts as a heat source, 

leading to significant implications across various fields. The presence of an internal heat source 

further complicates porous media convection, opening up diverse applications such as 

geothermal reservoir management, nuclear reactor safety protocols, and optimization of 

subsurface heat transport. Extensive research efforts have been devoted to understanding this 

phenomenon, as demonstrated by the study by Hardee et al. on heat transfer characteristics in 

fluid-saturated porous media. Their investigation combines analytical models with 

experimental data, and derives an approximate criterion for dry out in two-phase boiling heat 

transfer within stationary beds [58]. 

Furthermore, Hdhiri et al. [59] employed a numerical methodology to explore natural 

convection within a square cavity filled with a porous medium. Using the Darcy-Brinkman 

model, they predicted heat transfer within the porous material and obtained numerical solutions 

for varying Grashof, Prandtl, and Darcy numbers. Their research emphasized the significant 

impact of increasing Prandtl numbers on average Nusselt number values, noting that 

homogeneous media tended to overestimate heat transfer rates compared to porous media. 

Additionally, their work established valuable correlations for heat transfer rates in scenarios 

involving porous media. 

Turkyilmazoglu published two papers. The first paper investigated free convection 

flow on a heated, vertically stretching permeable surface within a porous medium. The 

governing equations were transformed into self-similar nonlinear ordinary differential 

equations, which were solved analytically using exponential series. Closed-form solutions were 

obtained under specific conditions, providing insights into heat transfer mechanisms [60]. In 

the second paper, the author analyzed free convection flow of fluids in saturated porous media 

with a nonconstant heat flux at the wall and internal heat generation/absorption. The focus was 

on obtaining analytical solutions for the temperature field of the porous medium.  

Closed-form solutions were found, revealing either unique or multiple solutions depending on 

whether the medium was cooling or heating. Thresholds for multiple solutions were determined, 

with algebraically decaying solutions dominating. The paper also validated the exact solutions 

through simplified real models. The results contributed to further research on free convecting 

flows in porous environments, emphasizing the need for justification of numerical methods 

[61]. 

Another study conducted by El Ahmed et al. [62]  involved the numerical simulation 

of magnetohydrodynamic free convection and heat transfer in wavy enclosures filled with a 

heat-generating porous medium. The study employed complex models, including Buongiorno's 
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model with Brownian motion and thermophoresis for nanofluids, as well as the Darcy model 

for porous media. The wavy enclosure was subjected to an inclined magnetic field and a 

constant heat generation source. The system was numerically solved using an implicit finite 

difference method and compared with published data. 

Shankar et al. [63] conducted a study on the stability of natural convection in a vertical 

layer of heat-generating Darcy porous medium with Oldroyd-B fluid, using a local thermal non-

equilibrium (LTNE) model. This model incorporated two heat transport equations for the fluid 

and solid phases, accounting for uniform volumetric heating in both phases. The introduction 

of internal heating induced flow asymmetry, resulting in competing modes. 

Khan et al. [64] investigated triple-diffusive free convection in porous chambers, with 

a specific focus on internal volumetric heat generation and temperature. The study examined 

square, trapezoidal, and triangular porous chambers, using different concentrations of NaCl and 

Sucrose as solutal components. The research explored the effects of internal heat generation 

rate, Rayleigh and Lewis numbers, buoyancy ratios, salt concentration, and Nusselt, Lewis, and 

Sherwood numbers. The triangular cavity exhibited the highest heat and mass transfer rates 

among the investigated configurations. 

Rao et al. [65] studied natural convection in a wavy cavity involved in cooling a heat 

source with a constant heat flux. The non-dimensional governing equations were solved using 

a finite difference method. Parameters considered in the analysis included heater length, 

effective Rayleigh-Darcy number, and the waviness of the right vertical wall. The results 

indicated that convection in the wavy cavity depended primarily on ε only at high Ra, and a 

significant enhancement of convection was observed as the surface roughness increased. 

Al-Amir et al. [66]  conducted a study on the significance of natural convection and 

entropy generation in enclosures, particularly when using nanofluids and porous media. These 

processes enhanced heat transfer, fluid flow, and overall system performance. Optimizing them 

led to improvements in thermal management systems such as heat exchangers, electronic 

cooling systems, and renewable energy devices. The study focused on investigating entropy 

generation and natural convection in a Z-staggered cavity filled with a porous medium 

containing TiO₂-water nanofluid. The results demonstrated that increasing the Rayleigh number 

and nanoparticle volume fraction enhanced heat transmission, while decreasing the Darcy 

number and heat generation factor reduced the Nusselt number. The most effective streamline 

configuration was achieved at an inclination angle of 60 degrees. 

Fereidooni's research focused on the free convection of Cu-H2O nanofluid flow and 

heat transfer in a wavy circular porous domain using the finite element method (FEM). The 

study examined the influence of the shape factor of nanomaterials on flow and heat transfer 

characteristics. The results revealed that the average Nusselt number increased with the 

concentration of the nanofluid and the shape factor of the nanoparticles, while it could decrease 

by reducing the values of the wavy wall’s contraction ratio A and the number of undulations D 

[67]. 
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Collectively, these studies represent a significant body of research that not only 

enhances our understanding of natural convection in porous media but also provides practical 

insights for various applications, including geothermal energy extraction, nuclear reactor safety, 

and the optimization of subsurface heat transport. This research serves as a foundation for 

further exploration and underscores the importance of ongoing efforts to unravel the 

complexities of this captivating field. 

Moreover, several studies have explored specific aspects of this phenomenon, including 

the effects of nanofluids and magnetohydrodynamics. Additionally, research has focused on the 

stability of natural convection in heat-generating porous media and the influence of surface or 

volumetric radiation on this phenomenon. These investigations have significantly advanced our 

understanding of the complexities associated with heat transfer and fluid flow within porous 

materials. 

I.6 NATURAL CONVECTION IN POROUS MEDIA WITH SURFACE RADIATION  

Surface radiation plays a crucial role in heat transfer within porous materials. These 

materials can induce fluid motion through natural convection driven by temperature differences. 

However, the presence of radiation emission and absorption on the surfaces of these materials 

adds complexity to the heat transfer process. The interaction between radiation and natural 

convection is significant in various fields, including geothermal energy, heat insulation, and 

environmental science. Depending on factors such as temperature variations and the radiative 

properties of the porous materials, radiation can either enhance or hinder natural convection. 

Researchers use mathematical models, computer simulations, and experimental studies 

to examine how radiation affects heat transfer rates and fluid flow in porous materials. These 

studies aim to develop more energy-efficient systems and improve materials for various 

applications, ranging from underground energy storage to nuclear reactors 

 In a study by Yih [68], numerical solutions were presented for the influence of radiation 

on natural convection in an isothermal vertical cylinder embedded in a saturated porous 

medium. The Keller box method was employed to transform the partial differential equations 

into non-similar boundary layer equations. The results showed that the local Nusselt number 

increased with the transverse curvature parameter ξ, and the local heat transfer rate rose with 

the conduction-radiation parameter Rd and the surface excess temperature rate H. 

Hossain et al. [69] examined the effect of radiation on the flow of optically dense, 

viscous, incompressible fluid induced by Darcy’s buoyancy on a heated inclined flat surface. 

They employed the Keller box elimination method, the implicit finite difference method, and 

the Rosseland diffusion approximation. The results showed that the local Nusselt number 

increased with the buoyancy parameter. The study also demonstrated the impacts of the surface 

temperature excess ratio and the conduction-radiation parameter. 

Scarella et al. [70] expanded the investigation of the interaction between natural 

convection and radiation heat transfer in a differentially heated cavity to the low Mach number 

approximation in 3D for both transparent and participating media. They solved the Navier-
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Stokes and energy equations using the finite volume method and the discrete ordinates method. 

The work was validated using the Boussinesq approximation and simulations. 

Gorla and Bakier [71] examined radiation and convection heat transfer in porous 

media using Darcy's model. They considered a rectangular profile fin with three types of fins: 

a long fin, a finite-length fin with an insulated tip, and a finite-length fin with an exposed tip. 

The study discussed the effects of the porosity parameter 𝑆ℎ, the radiation parameter 𝐺, and 

the temperature ratio 𝐶𝑇 on temperature distribution and heat transfer rate. The results showed 

that radiation transferred more heat compared to a similar model without radiation. 

Darvishi [72] investigated convection heat transfer in porous media using the homotopy 

analysis method (HAM). The study considered a rectangular profile fin with three types: long, 

finite, and exposed. The heat transfer equation was formulated using Darcy's model, and the 

effects of porosity, radiation, and temperature parameters were analyzed. The results showed 

that radiation transferred more heat compared to a similar model without radiation. The 

auxiliary parameter in the HAM was derived using the averaged residual error concept, which 

reduced computational time. The study found that the base heat flow increased with medium 

permeability and buoyancy effects and was enhanced by surface radiation or the tip Biot 

number. 

The work of El-Kabeir et al. [73] investigates the effect of thermal radiation and 

nonlinear Forchheimer terms on boundary-layer flow and heat transfer from a vertical cylinder 

in a porous medium with nanofluids. A model was created, and the governing equations were 

numerically solved. Parametric research was conducted after comparisons with earlier work 

indicated a high level of agreement. 

Xu [74] investigated the utilization of nanofluids and metal foam in thermal engineering 

to enhance heat transfer rates. Metal foam offered advantages such as low weight, high specific 

surface area, and thermal conductivity. Nanofluids, with their increased thermal conductivity, 

served as effective heat transfer mediums. The study examined the flow and heat transfer modes 

of nanofluids, metal foam, and their combination, aiming to urge researchers to focus on 

fundamental transport concepts for improving heat transfer in porous media. This 

understanding could contribute to enhancing the performance of miniaturized heat exchangers 

and heat sinks used for electronics cooling. 

In their article, Badruddin et al. [75] presented a comprehensive review of recent 

research on heat transfer in porous media, focusing on various geometrical shapes such as 

vertical plates, cavities, and cylindrical shapes. The review encompassed phenomena such as 

natural convection, mixed convection, thermal equilibrium, and thermal non-equilibrium. 

Despite more than a century of research, new discoveries continue to deepen our understanding 

of porous media, highlighting its significance in various applications. 

I.7 CONCLUSION  

 Natural convection, particularly within square cavities, is of significant importance in 

engineering applications such as electronic component cooling, solar energy capture, and room 

ventilation. Extensive research has been conducted on cavity geometries, as well as on factors 
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like rotation, fluid properties, and the development of numerical models to simulate these 

processes. Although the Boussinesq approximation is a fundamental approach, its limitations 

have led to the exploration of alternative methods, such as the low Mach number 

Approximation. These advancements have greatly enhanced our understanding of heat transfer 

and fluid dynamics, with practical applications in both engineering and environmental science. 

The study of natural convection in porous media is a complex, multidisciplinary field 

that has made substantial progress over the years. It involves intricate interactions between 

fluids and solids, as well as various mechanisms of heat transfer. Darcy's law is commonly used 

to represent porous media, describing the relationship between fluid velocity and the pressure 

gradient within the medium. The low Mach number approximation can be seamlessly integrated 

into Darcy's law to account for low-speed, incompressible flows. 

Heat transfer in porous media involves conduction through the solid matrix and 

convection through fluid-filled pores. The low Mach number approximation simplifies the fluid 

flow aspect of this heat transfer, allowing for a more accurate depiction of natural convection 

patterns within the porous material. 

Mathematical modeling and numerical simulation are tools used to study the impact of 

factors such as surface radiation, internal heat generation, and nanofluids on heat transfer rates 

and fluid flow within porous media. They allow for the examination of interactions between 

parameters such as temperature, porosity, radiation intensity, and fluid properties in these 

media. These interactions are crucial in advancing our understanding of natural convection in 

radiation-influenced environments. The integration of the low Mach number Approximation 

will further expand the field of study, providing valuable practical insights. 

Internal heat generation within porous media is a phenomenon that can significantly 

influence natural convection patterns. Understanding how heat sources affect fluid motion and 

temperature distribution is essential for optimizing systems and processes. Consequently, we 

have relied on mathematical modeling and numerical simulations to explore the intricacies of 

natural convection in these contexts, providing valuable insights into heat transfer rates and 

fluid flow patterns. 

This comprehensive review aims to synthesize the latest developments and trends in the 

study of low Mach number natural convection in porous media, providing an up-to-date 

resource. We delve into the theoretical foundations of this approximation and explore key 

findings in the field. By doing so, we hope to offer researchers, engineers, and scientists a 

valuable reference for understanding the complexities of convection in porous materials and 

designing innovative solutions that leverage the low Mach number approximation 
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II.1 INTRODUCTION 

 In this chapter, we explore the fascinating world of fluid mechanics, where we study the 

behavior of different types of fluids like water and air. We start by developing a set of equations 

that help us understand how these fluids move and change over time. As we go through the 

chapter, we break down these equations into simpler forms to make them easier to work with. 

We also discuss the assumptions we make about the flows, like assuming the density stays 

constant or that the flow is one-dimensional. By understanding these basic principles, we can 

gain a better understanding of how fluids behave and open the door to more advanced studies 

in fluid dynamics. 

II.2 CONSERVATION EQUATIONS 

 The state of flow of a fluid is characterized by its velocity vector V , density  , pressure

p , and temperature T . The velocity vector V components are denoted as ,u v in the ,x y and 

z directions, respectively. Assuming that the internal properties , , vc  , 
pc , namely density 

and temperature, are known, equations exist to determine the values of the six dependent 

variables , , , , ,u v w p T  as functions of time and space , ,x y z and t . The balance equations 

governing the fluid motion in a spatial domain consist of three conservation laws, along with 

the fluid's equation of state: 

• Conservation of mass, which ensures the conservation of mass for fluid particles. 

• Conservation of momentum, which applies Newton's law to fluid particles. 

• Conservation of energy, which states that energy cannot be created or destroyed and 

preserves the energy of fluid particles. 

• The thermodynamic equation of state (or constitutive equation), which establishes a 

relationship between the state variables ( , , )f p T . 

II.2.1 Compressible Flow 

 This model, which does not involve approximations, is the most comprehensive and can 

be used to accurately describe flows with high compression ratios. 

II.2.1.1 Conservation Equations 

 By disregarding heat loss through radiation, we can derive a system of six equations 

[1,2] for a two-dimensional compressible flow of a viscous Newtonian fluid that satisfies 

Stokes' hypothesis and the perfect gas law. Assuming that the only volume force present is 

gravity F g= , the equations are detailed in Appendix I: 

• Continuity equation: 

.( ) 0V
t





+ =


                          (II.1) 

• Momentum equation: 
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( )
1

. .
3

V
V V g p V V

t
   
 

 + = − +  +   
 

                      (II.2) 

• Energy equation: 

( ) . :p

T dp
c V T r k T V

t dt
 

 
+  = +  + + 

 
                               (II.3) 

• State equation: 

p RT=                                     (II.4) 

Equations (II.1-II.4) are universally applicable and hold true regardless of variations in physical 

properties related to pressure and temperature. Furthermore, it is feasible to establish a set of 

simpler equations, although their scope is more limited, that correspond to various specific 

cases. 

II.2.2.2 Summary of the Equations 

 In the low Mach number approximation, we have 𝑀𝑎 ≪ 1. Therefore, terms of 

order higher than or equal to 2Ma can be neglected in the continuity, energy, and state 

equations. The momentum equation is solved at the order 
( )2Ma

, resulting in the simplified 

equations that govern low Mach number flows. 

(0)
(0) (0)

*
. 0v

t





+ =


                                 (II.5) 

(0) 0p =                                      (II.6) 

( )
(0)

(0) (0) (0) (0) (0) * (1) 1 (0) (0) 1 (0) (0)

*

1 1 1
Re . Re .

3

v
v v g p v v

t Fr
    



− −
+  = −  +   +  


      (II.8) 

( )
(0) (0)

(0) (0) (0) (0) 1 (0) (0)

* *

1
.p

T dp
c v T Pe k T

t dt






−  −
+  =   + 

 
                          (II.9) 

(0) (0) (0)p T=                                (II.10) 

II.2.2.3 Redimensioning the conservation equations  

 To reestablish the conservation equations in dimensional form, we utilize the 

velocity scale and the pressure scale. The dimensionless variables can be expressed as follows: 

( )* * (0) (1) 2 *

0 0 0 0

* * * * * (0)

0 0 0 0 0 0

/ ; / / ; / ; / ; / ;

/ ; / ; / ; / ; / , /

f f dyn f

p p p

x x l t t l U V V U p p U

k k k T T T c c c g g g p p p

    

  

= = = = =

= = = = = =
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Finally, we obtain the conservation equations in the low Mach number approximation in 

dimensional form (omitting the superscripts "0" for simplicity): 

. 0V
t





+ =


                              (II.11) 

0p =                             (II.12) 

1
. .

3
dyn

V
V V g p V V

t
   

 
+  = − +  +   

 
                                      (II.13)  

( ).p

T d p
c V T k T

t dt


 
+  =   + 

 
                            (II.14) 

p RT=                                (II.15) 

In the particular case of constant density  , convection does not occur. Assuming that this state 

is represented by: 

0V = , 0 =
, 0p p=

 et 0T T=
, equation (2.13) gives: 

0 00 g p= −                                                    (II.16) 

With : 0 0P gy=
 

Where a temperature difference exists, density changes with temperature. Pressure dynp
 can 

therefore be expressed as the sum of perturbed pressure p  and static pressure 0 0P gy=
: 

0dynp p p= +                                                                                                                       (II.17) 

The total pressure can therefore be written as:             0( , ) ( )p x t p p p t= + −  

By subtracting equations (II.13) and (II.16), we can write:

( ) 0

1
( ) . .

3

V
V V g p V V

t
    
 

 + = − − +  +   
 

                                    (II.18) 

It is also assumed that the dynamic viscosity is either constant 0 0( ) ( )T T  = =  or given by 

Sutherland's law [7]: 

3/2

0

0 0

( ) T ST T

T T S









+ 
=  

+ 
                                             (II.19) 
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With 
5 1 1

0 0273 ,  110.5 ,  1.68 10 . .T k S K kg m s  − − −= = =   [8–10]. Thermal conductivity is 

given by: 

0 0

0

( ) ( )
pC k

k T T


=                                                  (II.20)           

II.2.3 Dimensionalization of the Low Mach Number Equations 

 To ensure the generality of the solutions for numerical validation of the calculation 

code and comparison with literature results, the conservation equations of the low Mach number 

model are introduced with the following scaled variables: 

2

t

H


 = ,  

x
X

H
= ,  

y
Y

H
= ,  

uH
U


= , 

vH
V


= , 

2

2

p H




=Π , 

0

p
P

p
= , 0T T

T


−
=


  where: 

H CT T T = −   ,  
0

2

H CT T
T

+
=

 
 

Where: 0/ 2b T T =   represents a parameter that measures the temperature difference between 

the active walls.   

The dimensionless thermophysical quantities are defined based on their values under reference 

conditions:
 

* * *

0 0 0/ , / ; /k k k     = = =  et 
*

0/ 1p p pC C C= = ,[3]. 

Based on these considerations, we obtain the following system of dimensionless equations: 

𝜕𝜌∗

𝜕𝜏
+

𝜕𝜌∗𝑈

𝜕𝑋
+

𝜕𝜌∗𝑉

𝜕𝑌
= 0                                                          (II.21) 

* * * *1
Pr .

3

U U U U U
U V V

X Y X X X Y Y
   



              
+ + = − + + +        

             
                  (II.22) 

*
* 1

Pr
2 b

V V V
U V Ra

X Y Y




 

    − 
+ + = − − + 

    
    

                                              
* * *1

Pr .
3

V V
V

X X Y Y
  

        
+ +      

       
                  (II.23) 

𝜌∗𝑐𝑝
∗ (

𝜕𝜃

𝜕𝜏
+ 𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) =

𝜕

𝜕𝑋
(𝑘∗ 𝜕𝜃

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝑘∗ 𝜕𝜃

𝜕𝑌
) +

𝛾−1

2𝜀𝑏𝛾

𝑑𝑃

𝑑𝑡
                         (II.24) 

*

(2 1)b

P


 
=

+
                                                                                  (II.25) 

The dynamic viscosity and thermal conductivity become: 

( )
( )3/2 0*

0

1 /
2 1

2 1 /
b

b

S T

S T





  
 

+
= +

+ +
                                                  (II.26) 
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*
* ( )
( )

Pr
k

 
 =                                                                (II.27) 

In addition to these equations, we have the dimensionless form of the equation of state, which 

is given by: 

*

(2 1)b

P


 
=

+
                                                                                  (II.28) 

When solving these equations numerically, the problem is that there are more unknowns than 

equations (at 2D, there are six unknowns). This is due to the pressure decomposition, which 

introduces thermodynamic pressure p (or (0)p ) as an additional unknown. In order to close the 

problem, we need an additional equation translating the initial state, which is the conservation 

of mass equation. 

II.2.3.1 Calculation of p  

 The thermodynamic pressure is the ambient pressure: 

( ) 1,p t t=                                                       (II.29) 

in an open cavity and is determined by the conservation of total mass:  

0 0   ,   d M d t 
 

 = =                                    (II.30) 

in a closed cavity. The volume of the system is denoted by   , and 0M is defined as the initial 

mass of the system:  

0
0 0

0

1 p
M d d

R T


 
=  =                                                (II.31) 

From the equation of state, we obtain: 

p

RT
 =  and 0

0

0

p

RT
 =                                    (II.32) 

Integrating over a control volume, we have: 

0

0

pp
d d

RT RT 
 =          0

0

1 1
p d p d

T T 
 =                              (II.33) 
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Finally, we obtain the expression: 

0
0

1

1

d
T

p p

d
T







=






                                                   (II.34) 

II.2.3.2 Calculation of 
d p

dt
  

 The second additional equation is given by the calculation of the term
d p

dt
. The 

conservation of mass equation, combined with the energy equation and the equation of state, 

allows us to write the divergence of velocity in the form given by equation (2.38). We have: 

For the equation of state: 

2

1d d p p dT

dt RT dt RT dt


= −                                                                         (II.35) 

For the continuity equation: 

1 1
.

d p dT
V

dt T dtp
 = − +                                                                          (II.36) 

For the energy equation: 

1 1
.p

p p

dT dT dp
c k T

dt dt c c dt


 
= =   +                                                            (II.37) 

Combining equations (II.10) and (II.11), we have: 

1 1 1
. .

d p dp
V k T

dt RT RT dtp

 

 

− −
 = − +   +                                       (II.38) 

With: 

1
p

R
c




=

−
                

Integrating over the control volume of equation (II.38), we get: 

*

1 1 1
. .

d p d p
V d k T d

dt dtp p p

 

  

 − −
  = − +   +  

 
                                       (II.39) 

 



 CHAPTER II                 Mathematical modeling under the Low Mach Number Approximation 

28 
 

Applying the divergence theorem for impermeable wall conditions: 

*
. . . 0

S
V d V n dS


  = =                                                      (II.40) 

We obtain: 

1 1 1
.

d p
d k T d

dtp p



  

−
 =                                                               (II.41) 

p  only depends on time, thus: 

1 1
.

d p
d k T d

dt



  

−
 =                                          (II.42) 

Using the divergence theorem: 

.
S S

T
k Td k TdS k dS

n


   =  =

                                        (II.43) 

Therefore: 

1 1

S

d p
d k TdS

dt



 

−
 =                                       (II.44) 

Finally, we have: 

( 1)
S

k TdSd P

dt d





− 
=






                                          (II.45) 

By dimensioning the expressions of p  and 
d p

dt
, we have: 

𝑃 =
∫ 𝑑Ω
Ω

∫
1

2𝜀𝑏𝜃+1
𝑑Ω

Ω

                                                                                                             (II.46) 

1
2 . .b

S

d P
k dS

d nd


 





=





                                                   (II.47) 
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In the case of the Boussinesq approximation, the dimensionless equations are as follows: 

0
U V

X Y

 
+ =

 
                                                                                                (II.48) 

2 2

2 2
Pr

U U U U U
U v

X Y X X Y





      
+ + = − + + 

      
                                                           (II.49) 

2 2

2 2
Pr Pr

V V V V V
U V Ra

X Y Y X Y






      
+ + = − + + + 

      
                                                (II.50) 

2 2

2 2
U V

X Y X Y

    



    
+ + = +

    
                                               (II.51) 

II.2.4 Incompressible Flow 

 In an incompressible flow, the density remains constant and uniform. This characteristic 

is reflected in the continuity equation, where the flow is considered isovolumetric: . 0V = . 

This property also implies that pressure does not need to be interpreted as a thermodynamic 

quantity. In this approximation, we impose 0 =  everywhere, effectively neutralizing the 

equation of state ( , )p p T= , which becomes meaningless. This approximation is equivalent 

to assuming that the speed of sound is infinitely greater than the flow velocity. Pressure, which 

was a thermodynamic quantity in compressible flows, becomes solely a dynamic quantity that 

satisfies the constraint. 

In this case, we assume that the fluid properties ( , ,k  ) are constant and equal to their values 

in the reference state. Additionally, we neglect the thermodynamic pressure gradient. These 

assumptions are valid for low Mach numbers, where the variations in p   and T are very small. 

0dynp p p= + 
0dynp p gy = −                            (II.52) 

 0 0 0( ) ( ) ( )dyng p g p gy    − − = − − − dyng p= −               (II.53) 

The following incompressible equations result from simplification of the low Mach number 

equations: 

. 0V =                          (II.54) 

0

1
dyn

V
V V g p V

t




 
+  = −  +  

 
                                        (II.55) 

T
V T aT

t


+  = 


                                (II.56) 
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The thermal problem and the dynamic problem are decoupled, allowing for separate solution. 

In the case where gravity can be neglected, the dilatable equations (Boussinesq equations) are 

identical to the incompressible equations, resulting in the decoupling of velocity and 

temperature. 

II.2.5 Dilatable Flow (Boussinesq Approximation) 

 The assumption of an incompressible fluid is often too simplistic for certain flows, as it 

fails to account for changes in density caused by temperature variations. In the presence of 

gravity, these density changes give rise to an Archimedean force field that can induce fluid 

motion. However, it's important to note that this type of movement differs in nature from the 

sound waves that we typically want to filter out or ignore. 

To incorporate these density variations while still considering the dominance of sound waves, 

we employ the Boussinesq approximation. This approximation assumes that the speed of sound 

waves is infinitely greater than the velocity of the flow. By doing so, we can capture the effects 

of density variations on fluid motion without explicitly accounting for the compressibility of 

the fluid. 

In cases of natural convection where density variations within the fluid are small and flow 

velocities are relatively slow (low Mach number), the fluid can be treated as nearly 

incompressible. The Boussinesq approximation allows us to neglect density variations (   ) 

except in the gravitational force, known as Archimedes' term, which drives thermo-convection. 

This hypothesis simplifies the analysis while still considering the essential influence of density 

variations on the fluid flow [11]. 

Therefore, we have: 

. 0V =  And 0
d p

dt
=                                                    (II.57) 

The equation system then becomes: 

. 0V =                                    (II.58) 

( ) 0

0 0

( ) 1
.

V
V V g p V

t

 


 

−
 + = −  + 


                            (II.59) 

T
V T aT

t


+  = 


                                 (II.60) 

So, to use this approximation, the ratio between density variation and density must be small: 
𝛥𝜌

𝜌
=

(𝜌−𝜌0)

𝜌0
≪ 1 
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In actual fact, this assumption involves simplifying the equation of fluid state by linearizing the 

expression of   as a function of temperature variations T , as follows: 

0 0

0

( )T T
T


 

 
= + −  

                         (II.61) 

For a perfect gas:  

p

RT
 =      

T T

 
= −


                                    (II.62) 

This gives us:  

0 0

0

( )T T
T


 

 
= + − − 

 
                                    (II.63) 

    0
0 0

0

( )T T
T


 = − −                          (II.64) 

And since: 

0 0

1 1

p pT T




 =

 
= − = 

 
 (for a perfect gas), we finally obtain: 

0 0(1 ( ))T T  = − −    

Then, noting that the value of   is small and that temperature gradients are rarely very high, 

we can replace    by 
0

  in all the terms of equations (II.11)-(II.14) (low Mach number 

equations) except in the gravity term (Archimedes term or buoyancy force), which is linearized 

as follows:  

( )0 0 0g g T T g   = − −                       (II.65) 

And the system of equations describing the natural convection flow of a Newtonian fluid, 

assumed to be a perfect gas, under Boussinesq's assumptions is: 

. 0V =                                (II.66) 

(𝑉⃗ 𝛻)𝑉⃗ +
𝜕𝑉⃗⃗ 

𝜕𝑡
= 𝛽(𝑇 − 𝑇0)𝑔 −

1

𝜌0
𝛻𝑝′ + 𝜈𝛻𝑉⃗                                                           (II.67) 

T
V T a T

t


+  = 


                        (II.68) 

  In the present work, the flows considered are compressible flow with low Mach number 

and incompressible dilatable flow, or simply Boussinesq flow. 
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II.3 THE COMPOSITE FLUID/POROUS SYSTEM 

 The low Mach number approximation in the porous media equation enables efficient and 

accurate modeling of fluid flows through porous materials in various engineering applications. 

It facilitates simulations and analyses of phenomena such as groundwater flow, oil reservoir 

simulations, filtration processes, and heat transfer in porous media. By simplifying the 

equations while still accounting for essential flow characteristics, this approximation provides 

a valuable tool for understanding and predicting fluid behavior in porous media systems. 

The governing equations for the system are expressed in a dimensional form [12]. 

Fluid region: 
 

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
= 0 

(II.69) 

𝜌(
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝́

𝜕𝑥
+ [

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)] +

1

3
(𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
) 

(II.70) 

𝜌(
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
)

= −
𝜕𝑝́

𝜕𝑦
+ [

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
)] +

1

3
(𝜇

𝜕2𝑣

𝜕𝑥2
+ 𝜇

𝜕2𝑣

𝜕𝑦2
) − 𝑔(𝜌 − 𝜌0) 

(II.71) 

(𝜌𝐶𝑝)𝑓(
𝜕𝑇

𝜕𝑡
) + (𝜌𝐶𝑝)𝑓 [𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
] =

𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
+

𝑑𝑝̅

𝑑𝑡
 

(II.72) 

𝑝̅ = 𝜌𝑅𝑇 (II.73) 

 

Porous region: 

 

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
= 0 

(II.74) 

𝜌 (
1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑢

𝜕𝑦
)

= −
𝜕𝑝́

𝜕𝑥
+

1

𝜀

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

1

𝜀

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) +

1

3

1

𝜀
(𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
)

− 𝐷𝑥 

 

(II.75) 
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𝜌 (
1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑣

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑣

𝜕𝑦
)

= −
𝜕𝑝́

𝜕𝑦
+

1

𝜀

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) +

1

𝜀

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) +

1

3

1

𝜀
(𝜇

𝜕2𝑣

𝜕𝑥2
+ 𝜇

𝜕2𝑣

𝜕𝑦2) − 𝐷𝑦

− 𝑔(𝜌 − 𝜌0) 

 

(II.76) 

(𝜌𝐶𝑝)𝑒𝑓𝑓(
𝜕𝑇

𝜕𝑡
) + (𝜌𝐶𝑝)𝑓 [𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
] =

𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
+

𝑑𝑝̅

𝑑𝑡
 

(II.77) 

𝑝̅ = 𝜌𝑅𝑇 (II.78) 

With:  

𝐷𝑥 = 𝜇0

𝑢

𝐾
+

1.75

√150

𝜌

√𝐾

𝑢⃗ 

𝜀
3

2⁄
𝑢 

(II.79) 

𝐷𝑦 = 𝜇0

𝑣

𝐾
+

1.75

√150

𝜌

√𝐾

𝑣 

𝜀
3

2⁄
𝑣 

(II.80) 

 

Based on the above description, and with the following variable changes: 

𝜏 =
𝑡

𝐻2

𝛼𝑒𝑓𝑓

 𝑋 =
𝑥

𝐻
 

 

𝑌 =
𝑦

𝐻
 𝑈 =

𝑢𝐻

𝛼𝑒𝑓𝑓
 

𝜋 =
𝜀2𝑝𝐻2

𝜌𝛼𝑒𝑓𝑓
2  𝜃 =

𝑇 − 𝑇0

𝛥𝑇
 

ΔT= TH-TC 

T0= 
(𝑇𝐻+𝑇𝐶)

2
 

𝑉 =
𝑣𝐻

𝛼𝑒𝑓𝑓
 

𝜀𝑏 =
ΔT

2𝑇0
 𝑃̅ =

𝑝̅

𝑝0
 

  

 

            Based on the assumption of mass, momentum, and energy conservation, the following 

equations describe the unsteady two-dimensional flow with natural convection in a porous 

cavity [13]: 

 

Fluid region: 

𝜕𝜌∗

𝜕𝜏
+

𝜕𝜌∗𝑈

𝜕𝑋
+

𝜕𝜌∗𝑉

𝜕𝑉
= 0 

(II.81) 

𝜌∗(
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑣

𝜕𝑈

𝜕𝑌
)

= −
𝜕𝜋

𝜕𝑋
+ 𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗

𝜕𝑈

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗

𝜕𝑈

𝜕𝑌
)] +

1

3
(𝜇∗

𝜕2𝑈

𝜕𝑋2
+ 𝜇∗

𝜕2𝑈

𝜕𝑌2
) 

 

(II.82) 
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𝜌∗(
𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑣

𝜕𝑉

𝜕𝑌
)

= −
𝜕𝜋

𝜕𝑌
+ 𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗

𝜕𝑉

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗

𝜕𝑉

𝜕𝑌
)] +

1

3
(𝜇∗

𝜕2𝑉

𝜕𝑋2
+ 𝜇∗

𝜕2𝑉

𝜕𝑌2
)

− 𝑅𝑎𝑃𝑟
𝜌∗ − 1

2𝜖𝑏
 

(II.83) 

𝜌∗𝐶𝑝 (
𝜕𝜃

𝜕𝜏
) + (𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
)

=
𝜕

𝜕𝑋
𝑘∗

𝜕𝜃

𝜕𝑋
+

𝜕

𝜕𝑌
𝑘

𝜕𝜃

𝜕𝑌
+

𝛾 − 1

2𝜀𝑏𝛾

𝑑𝑝̅

𝑑𝜏
                                                          

(II.84) 

𝜌∗ =
𝑃̅

(2𝜀𝑏𝜃 + 1)
 

(II.85) 

 

Porous region:  

𝜕𝜌∗

𝜕𝜏
+

𝜕𝜌∗𝑈

𝜕𝑋
+

𝜕𝜌∗𝑉

𝜕𝑉
= 0 

(II.86) 

𝜌∗(𝜀
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑣

𝜕𝑈

𝜕𝑌
)

= −
𝜕𝜋

𝜕𝑋
+ 𝜀𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗

𝜕𝑈

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗

𝜕𝑈

𝜕𝑌
)] +

1

3
𝜀(𝜇∗

𝜕2𝑈

𝜕𝑋2

+ 𝜇∗
𝜕2𝑈

𝜕𝑌2
) − 𝜀2

𝑃𝑟

𝐷𝑎
𝑈 −

1.75

√150 𝐷𝑎

|𝑈⃗⃗ |

𝜀
3

2⁄
𝑈 

 

  

(II.87) 

𝜌∗(𝜀
𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑣

𝜕𝑉

𝜕𝑌
)

= −
𝜕𝜋

𝜕𝑌
+ 𝜀𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗

𝜕𝑉

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗

𝜕𝑉

𝜕𝑌
)] +

1

3
𝜀(𝜇∗

𝜕2𝑉

𝜕𝑋2
+ 𝜇∗

𝜕2𝑉

𝜕𝑌2
)

− 𝜀2𝑅𝑎𝑃𝑟
𝜌∗ − 1

2𝜖𝑏
− 𝜀2

𝑃𝑟

𝐷𝑎
𝑉 −

1.75

√150 𝐷𝑎

|𝑉⃗ |

𝜀
3

2⁄
𝑉 

(II.88) 

𝜎 (
𝜕𝜃

𝜕𝜏
) + (𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
)

=
𝜕

𝜕𝑋
𝑘∗

𝜕𝜃

𝜕𝑋
+

𝜕

𝜕𝑌
𝑘

𝜕𝜃

𝜕𝑌
+

𝛾 − 1

2𝜀𝑏𝛾

𝑑𝑝̅

𝑑𝜏
                                                          

(II.89) 

𝜌∗ =
𝑃̅

(2𝜀𝑏𝜃 + 1)
 

(II.90) 

 

With [14]:   
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𝜎 =
𝜀(𝜌𝐶𝑝)𝑓 + (1 − 𝜀)(𝜌𝐶𝑝)𝑠

(𝜌𝐶𝑝)𝑓
 

𝜎 =
(𝜌𝐶𝑝)𝑒𝑓𝑓

(𝜌𝐶𝑝)𝑓
 

  (II.91) 

II.3.1 Dilatable Flow (Boussinesq Approximation) 

         The fluid completely saturates the porous medium, which is assumed to be 

macroscopically isotropic, homogeneous, and in local thermal equilibrium. The thermophysical 

properties of the porous medium are considered constant. Furthermore, the temperature 

differences within the flow domain are assumed to be small, justifying the use of the Boussinesq 

approximation. 

 𝜌(𝑇) = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)] (II.92) 

Where:   𝛽 = −
1

𝜌0
(
𝜕𝜌

𝜕𝑇
)𝑃 

Also, the Darcy-Brinkman-Forchheimer model is used in the momentum equation [20]. 

 The conservation equations of mass, momentum and energy can be expressed as follows: 

 

Fluid Region 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (II.93) 

 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇(

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) (II.94) 

 𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇(

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) − 𝜌𝑟𝑒𝑓𝑔 (II.95) 

 𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑃 (𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) (II.96) 

With: 𝜌𝑟𝑒𝑓 = 𝜌 − 𝜌0 = −𝜌0𝛽(𝑇 − 𝑇0) 

Porous region 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (II.97) 

 
1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2 𝑢
𝜕𝑢

𝜕𝑥
+

1

𝜀2 𝑣
𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜇𝑒𝑓𝑓

𝜌𝜀
𝛻2𝑢 − 𝐷𝑥 (II.98) 

 
1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2 𝑢
𝜕𝑣

𝜕𝑥
+

1

𝜀2 𝑣
𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜇𝑒𝑓𝑓

𝜌𝜀
𝛻2𝑣 + 𝛽(𝑇 − 𝑇0)𝑔 − 𝐷𝑦 (II.99) 

 (𝜌𝐶𝑝)𝑒𝑓𝑓

𝜕𝑇

𝜕𝑡
+ (𝜌𝐶𝑝)𝑓

(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘𝑒𝑓𝑓 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) (II.100) 

 (𝜌𝐶𝑝)𝑒𝑓𝑓
= 𝜀. (𝜌𝐶𝑝)𝑓

+ (1 − 𝜀)(𝜌𝐶𝑝)𝑠
 (II.101) 

Where 𝐷𝑥 and 𝐷𝑦, represent the matrix drags per unit volume of the porous medium in x and y 

direction respectively.|V⃗⃗ | is the magnitude of the velocity vector given by: 
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 |𝑉⃗ | = √𝑢2 + 𝑣2 (II.102) 

The solid matrix drag per unit volume can be expressed in the following form: 

 𝐷 = 𝐴𝑉 + 𝐵𝑉2 (II.103) 

 For a one-dimensional flow with velocity V, the above form of drag expression is 

supported by a number of packed bed and fluidized bed correlations, including the widely used 

Ergun’s (1952) correlation. 

 It can be shown that the contribution of the solid matrix drag for a two-dimensional flow 

takes the following form: 

 𝐷𝑥 = 𝐴𝑢 + 𝐵(𝑢2 + 𝑣2)
1

2𝑢 (II.104) 

 𝐷𝑦 = 𝐴𝑣 + 𝐵(𝑢2 + 𝑣2)1/2𝑣 (II.105) 

The constants A and B involved in the Ergun's correlation are given by: 

 𝐴 = 150
(1−ε)2

𝜀3

𝜇𝑓

𝐷𝑝
2 (II.106) 

 𝐵 = 1.75
(1−ε)

𝜀3

𝜌𝑓

𝐷𝑝
 (II.107) 

Where 𝐷𝑝 is the effective diameter of particles. 

By introducing the permeability K of the medium: 

 𝐾 =
𝜀3𝐷𝑝

2

150(1−𝜀)2
 (II.108) 

The solid matrix drag components Dx, Dy, become: 

 𝐷𝑥 =
𝜇𝑓

𝐾
𝑢 +

1.75

√150

𝜌𝑓

√𝐾

|𝑉⃗⃗ |

𝜀3/2 𝑢 (II.109) 

 𝐷𝑦 =
𝜇𝑓

𝐾
𝑣 +

1.75

√150

𝜌𝑓

√𝐾

|𝑉⃗⃗ |

𝜀3/2 𝑣 (II.110) 

 The effective properties of the porous medium, keff, (ρCp)eff
 and μ

eff
 generally depend 

on its porosity and the tortuosity of the solid phase as well as the local fluid velocity. In this 

work, the interest is not focused on the effects of these parameters, but for simplicity, the 

corresponding fluid properties are used throughout the study. The momentum equations in the 

porous region thus become: 

1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜇

𝜌𝜀
𝛻2𝑢 −

𝜇

𝜌𝐾
𝑢 −

1.75

√150

1

√𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑢  (II.111) 

1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2 𝑢
𝜕𝑣

𝜕𝑥
+

1

𝜀2 𝑣
𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜇

𝜌𝜀
𝛻2𝑣 + 𝛽(𝑇 − 𝑇0)𝑔 −

𝜇

𝜌𝐾
𝑣 −

1.75

√150

1

√𝐾

|𝑉⃗⃗ |

𝜀3/2 𝑣  (II.112) 

 The governing equations are converted to non-dimensional form using the following non-

dimensional variables: 

𝜏 =
𝑡

𝐻2

𝛼

 , 𝑋 =
𝑥

𝐻
 , 𝑌 =

𝑦

𝐻
 , 𝑈 =

𝑢𝐻

𝛼
 , 𝑉 =

𝑣𝐻

𝛼
 , 𝑃 =

𝜀2𝑝𝐻2

𝜌𝛼2
 

𝜃 =
𝑇−𝑇0

𝛥𝑇
 , 𝛥𝑇 = 𝑇𝐻 − 𝑇𝐶  , 𝑇0 =

𝑇𝐻+𝑇𝐶

2
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 Considering the previous assumptions, the governing equations for an unsteady 2-D 

problem can be written in dimensionless form: 

Fluid Region 

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0 (II.113) 

 
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 𝛻2 𝑈 (II.114) 

 
𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟 𝛻2 𝑉 + 𝑅𝑎 𝑃𝑟 𝜃 (II.115) 

 
𝜕𝜃

𝜕𝜏
+ (𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) = (

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
) (II.116) 

 

Porous region  

 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0 (II.117) 

𝜀
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 𝜀 𝛻2𝑈 −

𝑃𝑟

𝐷𝑎
𝜀2𝑈 − 1.75√

𝜀

150𝐷𝑎
|√𝑈2 + 𝑉2|𝑈          (II.118) 

 𝜀
𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟 𝜀 𝛻2𝑉 + 𝑅𝑎𝑃𝑟 𝜀2 𝜃 −

𝑃𝑟

𝐷𝑎
𝜀2𝑉 − 1.75√

𝜀

150𝐷𝑎
|√𝑈2 + 𝑉2|𝑉      

(II.119) 

 𝜎
𝜕𝜃

𝜕𝜏
+ (𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) = (

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2)     (II.120) 

With: 𝜎 =
𝜀.(𝜌𝐶𝑝)

𝑓
+(1−𝜀)(𝜌𝐶𝑝)

𝑠

(𝜌𝐶𝑃 )𝑓
 

 

II.4 CONCLUSION 

 In this chapter, we have made significant progress in creating a mathematical model 

for compressible flow. By simplifying the equations, we have uncovered the assumptions made 

for different types of flows, such as low Mach number flow and incompressible flow. It's 

important to consider the limitations of each equation system, as they affect how applicable 

they are in real-life situations. 

Moving forward, the next chapter will focus on a numerical method called the finite volume 

method. This method is a powerful tool for solving equations and obtaining numerical solutions. 

It allows us to simulate and analyze complex flows, considering the complexities of the 

compressible flow model we established in this chapter. 

By combining theoretical understanding with computational techniques, we can gain a deeper 

knowledge of fluid dynamics and apply it to practical scenarios. The next chapter will provide 

valuable insights into how we can implement this mathematical model in practice, empowering 

us to tackle challenging problems and make informed engineering decisions. 
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III.1. INTRODUCTION 

 The equations introduced in the previous chapter are nonlinear, elliptic, coupled partial 

differential equations. Due to their complexity, analytical solutions are not feasible, and 

numerical methods are employed for their solution. Various numerical techniques have been 

developed [1], including finite difference methods [2,3], finite element methods [4–6], finite 

volume methods [7–11], and spectral methods [12]. Among these methods, the finite volume 

method is widely used due to its numerous advantages, including: 

• Conservation of momentum and energy balances: The difference equations derived 

from the finite volume method accurately reflect the conservation principles of 

momentum and energy. This ensures that the conservation principle in discretized form 

is satisfied for the entire numerical domain. 

• Numerical robustness and ease of use: The finite volume method is known for its 

numerical stability and ease of implementation. It provides a formalism that closely 

resembles physical reality, specifically the conservation of energy and momentum 

balances. 

In the following sections, we will describe the finite volume method in detail, highlighting its 

advantages and discussing its application to the solution of the conservation equations. 

III.2. GENERAL FORM OF CONSERVATION EQUATIONS  

 To simplify the presentation, the dimensionless form of the low Mach number 

conservation equations, as discussed in the previous chapter, can be mathematically translated 

into scalar function transport equations. These equations take the general form of convection-

diffusion equations  : 

( ) ( ) ( ). .V S
t

   


+ =  +


                                                                                   (III.1) 

The first term in this equation: the transient term, ( )
t





, represents the accumulation of   in 

time. The second, ( ). V  , represents convective transport  . In the second member, the first 

term, ( ).   , corresponds to diffusion transport  , and the last,S , source term, to local 

production of  . the termes : ,  and S  and are explained in detail in Table III.1. 
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Table III.1: Expressions of ,  and S  for Mach weak equations (Case of fluid region). 

Equation      S
 

Continuity   0 0 

Momentum following x U  *Pr   *1
.

3 X

V  −
𝜕𝜋

𝜕𝑋
 

Momentum following y V  *Pr   *1
.

3 Y

V  −
𝜕𝜋

𝜕𝑌
− 𝑅𝑎𝑃𝑟

𝜌∗−1

2𝜖𝑏
 

Energy   *k  1

2 b

d P

dt



 

−
 

 

Table III.2:Expressions of ,  and S  for Mach weak equations (Case of porous region). 

Equation      S
 

Continuity   0 0 

Momentum 

following x 

U  𝜀 𝑃𝑟 𝜇∗  𝜀
1

3
𝛻𝜇∗𝛻. 𝑉⃗ |

𝑋
− 𝜀2 𝑃𝑟

𝐷𝑎
𝑈 −

1.75

√150 𝐷𝑎

|𝑈⃗⃗ |

𝜀
3

2⁄
𝑈 −

𝜕𝜋

𝜕𝑋
  

Momentum 

following y 

V  𝜀 𝑃𝑟 𝜇∗  𝜀
1

3
𝛻𝜇∗𝛻. 𝑉⃗ |

𝑌
− 𝜀2 𝑃𝑟

𝐷𝑎
𝑉 −

1.75

√150 𝐷𝑎

|𝑉⃗⃗ |

𝜀
3

2⁄
𝑉 −

𝜕𝜋

𝜕𝑌
−

𝜀2𝑅𝑎𝑃𝑟
𝜌∗−1

2𝜖𝑏
  

Energy   *k  1

2 b

d P

dt



 

−
 

III.3 THE FINITE VOLUME METHOD  

III.3.1 Principle 

 Conservative formulations of partial differential equations offer the advantage of being 

able to be reformulated integrally using the divergence theorem. The conservation principle is 

the fundamental law of the finite volume method. It states that the variation of a property 

depends on the net flow across the boundary S enveloping the volume Ω. The control volume 

method is, therefore, a discretization technique for solving equations written in conservative 

form. Its principle is very simple, initially developed in the case of compressible flows by 

Godunov [13] and Glimm [14], then spread to the scientific community of mechanics by 

Patankar & Spalding [15] in the 1970s and discussed in detail by Patankar [16] in 1980. The 

principle of the finite volume method is to integrate the equation to be solved on each of the 

control volumes. 

 As shown in Figure III.1, the domain is discretized using a dimensional grid (uniform 

or non-uniform) in both directions and oriented positively to the right (East) and upwards 

(North) respectively. To write the discretization scheme at a point P, we choose a nomenclature 

adapted to the principle of the finite-volume method for storing variables in our mesh, all with 
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the aim of making things easier in the subsequent discretization. We therefore consider the 

element P as shown in Figure III.1, and note that the uppercase indices (E, W, N, S) characterize 

the variables relating to the centroids adjacent to P, while the lowercase indices (e,w,n,s) refer 

to the faces of the element. 

 

Figure III.1: 2D control volume. 

III.3.2 Offset mesh 

 The discretization of a diffusion transport equation over a control volume using the finite 

volume method involves the velocity values at the volume interfaces ( , , ,e w n su u v v ). It is 

therefore advantageous to calculate these velocities directly at the interfaces (without having to 

perform interpolations). On the other hand, discretizing the continuity equation and the pressure 

gradient using linear interpolation can induce significant errors due to the "checkerboard, 

jagged, zig-zag" pressure or velocity distribution (an oscillating pressure field in a collocative 

mesh, (Figure III.2a) [17] is seen as a uniform field). To circumvent these difficulties, we prefer 

to use staggered grids (Figure III.2b). However, recent methods have been proposed on 

collocative meshes by Rhie & Chow [18], which eliminate the problem of harmful oscillations 

by means of appropriate interpolation [19]. 

E 

S 

W 

N 

e w 

s 

n 

P 

x

y

wx +

sy +

X 

Y 

ex −

wx ex

ny

sy

sy −

ex +

wx −

ny +

ny −
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                                (a)                                                                           (b) 

Figure III.2: Velocity-pressure formulation mesh: (a) collocative mesh; (b) offset mesh. 

 The main mesh (Figure III.1) is decomposed into three secondary meshes. A main mesh 

is constructed to compute the pressure, temperature, density ( ,P  ,  ), and the conservation of 

mass equation (at the center of each control volume). Two shifted meshes, one to the right and 

one upwards, are used to compute the velocities ( ,u v ) in the two directions (on the faces of the 

control volume). This means that not all unknowns of the problem are computed on the same 

computational mesh. Different meshes, control volumes, and storage points can be used for 

different variables. The relative arrangement of the different variables is schematically 

represented in Figure III.3. 

 

Figure III.3: Control volumes for scalars and velocities. 
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 The MAC (Marker And Cell) approach, which is used for numerical modeling of free-

surface flow, has shown to be particularly well-suited for the offset mesh, which Harlow and 

Welch first presented in 1965 [17]. Due to the clustering of discrete velocities around pressure 

nodes, which creates a very compact structure, this mesh arrangement has a number of benefits. 

It thus permits concise approximations with reasonably close spots. Additionally, the spatial 

convergence properties of the staggered mesh make it a superb option for precise simulations 

[16]. 

III.4 DISCRETIZATION OF CONSERVATION EQUATIONS  

 When the general version of the unstable differential equation (III.1) is integrated in time 

over the control volume CV  around the present node P, we obtain: 

 

( ) ( )
CV CVt t

dtd div u dtd
t
 

 


+ −

     

 ( )
CV CVt t

div grad dtd S dtd
 

  =       (III.2) 

Using Gauss's divergence theorem, we obtain: 

( ) ( )( )
CV CV CV CVt t A t A t

dtd u dAdt grad d Adt S dtd
t

  
 


+ −  = 

               (III.3) 

Where A is the surface bounding the control volume CV . 

III.4.1 Transitional term 

 To integrate this particular term, we consider only the variation in time, assimilating the 

variable   to its value at the center of the control volume: 

( ) ( ) 0

1 .
CV

P Pt
I d dt

t
  




=  = − 

                                                    (III.4) 

Where   designates the control volume of   and   its measurement ( x y =    ) in the 

2D case, and the exponent 0 indicates that the quantity is considered at the previous time step. 

III.4.2 Convective term 

2 ( ) ( )( )
CV CV

n e w s n
t A t A

I u dA dt u dA dA dA dA dt = = − + −        

                                      ( ) ( ) ( ) ( )e w n suA uA vA vA t   = − + −   (III.5) 
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We define the variable ( )i iF vA=  , which represents the convective mass flow through the 

surface (i), ( , , , )i e w n s=  . 

Table III.3: Convective coefficient expression. 

Face E W n s 

Convective 

mass flux 
e e e eF u A=  w w w wF u A=  n n n nF v A=  s s s sF v A=  

It comes that: 

 2 e e w w n n s sI F F F F t   = − + −     (III.6) 

III.4.3 Diffusive term 

 Finally, the gradient of   at the interfaces is determined by assuming that varies linearly 

between each mesh point (Figure III.4). The conclusion is as follows: 

( )3 ( ) ( ) ( ) ( )
CV

e w n s
t A

I grad d Adt A A A A t
x x y x

   


    
=  =  −  +  −   

    
   (III.7) 

( ) ( ) ( ) ( )3 ( ) ( ) ( ) ( )P W N P P SE P
e w n s

e w n s

I A A A A t
x x y y

      

   

 − − −−
=  −  +  −   
 
 

  (III.8) 

 

Figure III.4: Interpolation for the gradient   

The diffusive coefficient is given by i i
i

i

A
D

x


=  , where ( , , , )i e w n s=  

Table III.4 : Diffusion coefficient expressions. 

Face E w n s 

Diffusion 

conductance 
e e

e

e

A
D

x


=  w w

w

w

A
D

x


=  n n

n

n

A
D

y


=  s s

s

s

A
D

y


=  

The final result is: 

( )3 ( ) ( ) ( ) ( )e E P w P W n N P s P SI D D D D t       = − − − + − − −   (III.9) 

E W 
e w 

P 

wx ex

xx
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Calculating conductance  : 

 In general e w   , thermal conductivity is a function of temperature ( )T =   or even 

a function of space ( )x =   for composite materials. If we consider the flux at the interface 

"e" (Figure III.5), it can be expressed as: 

P E P E
e

ee e

eP E

T T T T
q

xx x  − +

− −
= =

+
 

  (III.10) 

 

Figure III.5: Diffusivity for a composite material. 

From equation (III.10), we derive the expression for thermal conductivity at the control 

volume interface: 

e P E
e e

e e P e E e

P E

x
x

x x x x




   − + + −

 
 = =

 +
+

 

   (III.11) 

If we define the parameters: e
e

e

x
f

x





+

= and 1 e
e

e

x
f

x





−

− = , equation (III.11) becomes: 

1

1 (1 )

P E
e

e e e P e E

P E

f f f f

 
 = =

−  + − 
+

 

   (III.12) 

III.4.4 Source term 

Given by: 

4
CVt

I S d S t


=  =       (III.13) 

Where S  is the average value of S over the considered volume. 

E 
e 

P eq P

ex

ex +

ex −

E eq
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III.4.4.1 Linearization of the source term 

 The source term S  often depends on the variable . It can be expressed as a linear 

function of p  . Pantakar's method [16] is recommended for linearizing the source term. It 

involves writing: 

pPC SSS +=   (III.14) 

Where CS  represents the constant part of S  (which does not depend on P ), while PS  is the 

coefficient of P  ( PS  does not represent S  evaluated at P). 

Using the expressions for 1 2 3, ,I I I  and 4I  , equation (3.3) can be written in discretized form 

as:  

( ) ( )   
0

e e w w n n s sP P
F F F F t     − + − + −  −

( ) ( )( ) ( ) ( ) ( )e E P w P W n N P s P S C P pD D D D t S S t        − − − + − − −  = +     (III.15) 

III.4.5 Continuity equation 

In the case of Navier-Stokes equations, we also need to solve the continuity equation: 

( ) ( ) 0u v
t x y


 

  
+ + =

  
  (III.16) 

Integration of this equation over the control volume CV leads to:  

( ) ( ) ( ) 0
CV CV CVt dt t

d dt u d dt v d dt
x y

  
  

   
 +  +  =  

    
        (III.17) 

0( ) ( ) ( ) ( ) ( ) 0P P e w n suA uA vA vA
t

     


− + − + − =


  (III.18) 

This gives:  

0( )P P w e s nF F F F
t

 


− = − + −


  (III.19) 
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Performing the operation [(III. 15) − (𝜙𝑃 × (III. 19))] , we obtain:  

 0

P w e s n P P e e w w n n s sF F F F S F F F F
t

     
 

+ − + − −  + − + − − 
 

 

( ) 0 0

e E e P w P w W n N n P s P s S C P PD D D D D D D D S
t

         


− − + + − − + = +


         (III.20) 

III.4.6 Numerical schemes  

 In equation (III.20), the unknown variable   is not yet expressed on its domain of 

definition (in convective terms), which are the discretization nodes. The interpolation that 

accomplishes this depends on the choice of spatial discretization scheme. Several schemes are 

available, such as CDS, upwind, exponential, hybrid, and power, which provide the value of 

the variable   on its domain. 

Assuming that 
F

Pe
D

=  represents the mesh Péclet number, the conservation equation, once 

implicitly discretized in time, takes the form: 

1 1 1 1 1 1 1 1 1 1n n n n n n n n n n

P P E E W W N N S Sa a a a a b    + + + + + + + + + += + + + +  (III.21) 

The coefficients of equation (3.41) are expressed in the following general forms: 

( ) ,0E e e ea D A P F= + −                  (III.22) 

( ) ,0W w w wa D A P F= +                  (III.23) 

( ) ,0N n n na D A P F= + −                  (III.24) 

( ) ,0S s s sa D A P F= +                  (III.25) 

0

P E W N S P Pa a a a a a S= + + + + −                 (III.26) 

0 0

P Pa
t




=


                              (III.27) 

0 0

C P Pb S a = +                   (III.28) 
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The expression in square brackets represents the maximum between the quantities and ( )A P  

serves as a characteristic function of the chosen scheme (Table III.4) [20]. 

Table III.5: Expression of the function ( )A P  for different schemes. 

Schéma ( )A P  

CDS 1 0.5 P−  

Upwind 1 

Exponentiel ( )exp( ) 1P P −  

Hybride 0,1 0.5 P−  

Power Law ( )
5

0, 1 0.1 P−  

 The exponential scheme discretizes all convective and diffusive terms, unlike 

conventional schemes such as off-center and upstream. This discretization involves the 

expression of the J coefficients on the faces of the control volumes. These coefficients are 

interpolated between the two nodes separating the faces in such a way that the stationary 1D 

convection-diffusion equation is satisfied between these two points, regardless of the problem 

being solved. 

 The hybrid scheme [21] and power scheme [20] used in this study are derived directly 

from the exponential scheme. Both schemes are based on the approximation of coefficients 

where the exponential term appears, which can be computationally expensive. Depending on 

the Peclet number, the hybrid scheme performs a piecewise linear approximation of the function 

A (P), and the power scheme performs a polynomial approximation. 

III.4.7 Discretization of the momentum equation 

 The approach to obtaining the values of the velocities u and v is to solve the Navier-

Stokes equations similar to the general transport equation (III.1), replacing each of these 

variables with the corresponding shifted meshes to calculate the coefficients nba (

, , , ,P E W N Sa a a a a ). The parameters are calculated so that a translation (shift) is made for the 

main mesh by one value 2x x =   in the direction x  to obtain u  and by one value 2y y =   

in the direction y  to obtain v . 

 Scalar quantities such as pressure, temperature, etc., will be denoted with the index (I, J), 

while vector components will be calculated on a grid shifted by half a mesh in the direction of 

the corresponding component (Figure III.6). 

In this case, the pressure gradient at a node of the offset mesh is integrated by considering the 

pressure difference between the two neighboring points of the main mesh. 
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 Figure III.6 shows the continuous lines of the mesh numbered using capital letters. In the 

x direction, the numbering is ...., I-1, I, I+1, .... etc., where scalar variables (temperature, 

pressure, density, etc.) are calculated. In the y direction, the numbering is ...., J-1, J, J+1, .... etc. 

The discontinuous lines that construct the scalar cell faces are denoted by lowercase letters: ..., 

i-1, i, i+1, ... and ..., j-1, j, j+1, ... in the x and y directions, respectively. 

 Thus, the nodes of scalar variables ( , , .....T P  ) are defined by the intersection of 

continuous lines indicated by capital letters. For example, point P in Figure III.6 is identified 

by the index (I, J). Velocity components (u, v) are stored at the centers of mesh faces (scalar 

cell), faces (e, w) of the scalar cell for the u component, and faces (n, s) for the v component. 

Their corresponding nodes are located at the intersection of a continuous line with a broken 

line, and are therefore defined by a combination of lowercase and uppercase letters. The u 

component of velocity is defined by the index (i, J), and the v component is defined by the 

index (I, j) (Figures III.7, III.8) 

 

Figure III.6: Control volume for scalar quantities ( ,P   ) and continuity equation. 

 The offset between the pressure grid and the velocity grids allows for the calculation of 

velocity field divergence directly at the pressure nodes, avoiding pressure oscillations observed 

when using collocated grids. 
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Figure III.7: Control volume for the u component and its adjacent components. 

 

Figure III.8: Control volume for the v component and its adjacent components. 
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Expressed in the new coordinate system, the momentum equation in the x direction discretized 

at point (i, J) is given by: 

, 1,

, ,

I J I J

i J i J nb nb u u

u

P P
a u a u V S V

x

−−
= −  +   (III.29) 

Where: 

( ), , 1, , , ,i J i J nb nb I J I J i J i Ja u a u P P A b−= + − +  (III.30) 

 Where uV  is the volume of the control volume of u, ij ub S V=   is the source term of 

the momentum equation along x and 
,i JA  is the area of the face (e or w) of the control volume 

of u. 

 In the new numbering system, the neighboring nodes E, W, N and S of the sum 

( )nb nba u  are given by the indices (i-1,J), (i+1,J), (i,J+1) and (i,J-1) (see Figure III.7). 

 The values of the coefficients 
,i Ja  and nba  can be calculated with one of the previously 

presented numerical scheme differentiation methods (Upwind, Hybrid, Power....) adapted for 

convection-diffusion problems. The coefficients contain combinations of convective flux per 

unit mass F and diffusion conductance D at the faces of the u-velocity control volumes. 

Application of the new notation system (offset mesh) gives us the values of F and D for each 

of the faces e, w, n and s of the control volume for u. 

, 1, , 1, 1, 2,

, 1,

1
( ) = 

2 2 2 2

i J i J I J I J I J I J

w w i J i J

F F
F u u u

   
 − − − −

−

+  + +    
= = +    

    
 (III.31) 

1, , 1, , , 1,

1, ,

1
( ) = 

2 2 2 2

i J i J I J I J I J I J

e e i J i J

F F
F u u u

   
 + + −

+

+  + +    
= = +    

    
  (III.32) 

, 1, , , 1 1, 1, 1

, 1,

1
( ) = 

2 2 2 2

I j I j I J I J I J I J

s s I j I j

F F
F v v v

   


− − − − −

−

+  + +    
= = +    

    
  (III.33) 

, 1 1, 1 , 1 , 1, 1 1,

, 1 1, 1

1
( ) = 

2 2 2 2

I j I j I J I J I J I J

n n I j I j

F F
F v v v

   


+ − + + − + −

+ − +

+  + +    
= = +    

    
 (III.34) 

1,

1

   
I J

w

i i

D
x x

−

−


=

−
   (III.35) 

,

1

 
I J

e

i i

D
x x+


=

−
   (III.36) 

1, , 1, 1 , 1

14( )

I J I J I J I J

s

J J

D
y y

− − − −

−

 + + +
=

−
   (III.37) 
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1, 1 , 1 1, ,

1

 
4( )

I J I J I J I J

n

J J

D
y y

− + + −

+

 + + +
=

−
   (III.38) 

The following movement quantity equation is analogously changed to: 

( ), , , 1 , , ,I j I j nb nb I J I J I j I ja v a v P P A b−= + − +  (III.39) 

Similarly, the coefficients 
,I ja  and nba  contain combinations of F and D, their values are 

obtained by the same calculation procedure as the speed u and are given by: 

, , 1 , 1, 1, 1 , 1

, , 1

1
( ) = 

2 2 2 2

i J i J I J I J I J I J

w w i J i J

F F
F u u u

   
 − − − − −

−

+  + +    
= = +    

      (III.40) 

1, 1, 1 1, , , 1 1, 1

1, 1, 1

1
( ) = 

2 2 2 2

i J i J I J I J I J I J

e e i J i J

F F
F u u u

   
 + + − + − + −

+ + −

+  + +    
= = +    

      (III.41) 

, 1 , , 1 , 2 , , 1

, 1 ,

1
( ) = 

2 2 2 2

I j I j I J I J I J I J

s s I j I j

F F
F v v v

   


− − − −

−

+  + +    
= = +    

       (III.42) 

, , 1 , , 1 , 1 ,

, , 1

1
( ) = 

2 2 2 2

I j I j I J I J I J I J

n n I j I j

F F
F v v v

   


+ − +

+

+  + +    
= = +    

       (III.43) 

1, 1 , 1 1, ,

14( )

I J I J I J I J

w

I I

D
x x

− − − −

−

 + + +
=

−
   (III.44) 

, 1 1, 1 , 1,

14( )

I J I J I J I J

e

I I

D
x x

− + − +

+

 + + +
=

−
   (III.45) 

, 1

1

I J

s

j j

D
y y

−

−


=

−
   (III.46) 

,

1

I J

n

j j

D
y y+


=

−
   (III.47) 

III.5 VELOCITY-PRESSURE COUPLING 

 The Navier-Stokes equations cannot be solved independently for each velocity 

component because the continuity equation imposes a constraint that relates to all three 

components of velocity or momentum. However, if we divide the resolution by component, we 

refer to it as velocity prediction, which needs to be followed by a correction step to satisfy the 

incompressibility condition, for example ( 0divV = ). 

 There are several methods that can be categorized into two families: one eliminates the 

pressure problem by taking the curl of the Navier-Stokes equation, and the other addresses 

pressure by establishing a specific equation. In the first case, we have the Vorticity-Vector 

Potential formulation in 3D or the Vorticity-Current Function formulation in 2D (− ). In 
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the second case, we have the Primitive Speed-Pressure (P, V) formulation. In certain 

applications, the energy equation can also be coupled, such as in the case of natural convection. 

 The coupling problem arises due to the presence of velocity and pressure variables in 

both momentum equations. The pressure gradient acts as the driving force in these equations. 

Unfortunately, there is no transport equation available for the pressure variable, unlike the two 

velocity components. In other words, if the pressure gradient is known in advance, we can 

calculate the velocity field that satisfies the continuity equation. However, pressure is always 

as unknown as velocity. A given velocity field may satisfy the continuity equation but not the 

momentum transport equations. This characteristic of the equations necessitates the use of a 

pressure-velocity coupling algorithm. 

III.5.1 SIMPLER Algorithm 

 Techniques for coupling the Navier-Stokes equations, equivalent to the projection 

method, were developed and implemented by Spalding and Patankar at Imperial College 

London in the 1960s-1970s. These techniques gave rise to multiple versions known as SIMPLE, 

SIMPLER, SIMPLEST, and so on.  

 The most universal and widely used algorithm is undoubtedly the SIMPLE algorithm 

by Patankar and Spalding [15]. Subsequent variations include SIMPLEC (van Doormal and 

Raithby [22]), PISO (Issa [23]), and SIMPLER (Patankar [16]), which were used in this work. 

 The superiority of the SIMPLER algorithm over SIMPLE lies in the fact that the 

derivation of the pressure equation does not involve any simplifications. In SIMPLE, the 

derivation of the pressure correction equation involves canceling out the term nb nba u  . 

Consequently, the pressure field in SIMPLER is closer to reality than that in SIMPLE since 

estimating an initial velocity field is generally easier than estimating a pressure field. It is worth 

noting that the SIMPLER algorithm does not require an initial pressure field. The pressure is 

directly generated from the initialization of the velocity. As a result, more consistent under-

relaxation coefficients can be used for the velocities. Furthermore, no under-relaxation is 

necessary for the pressure. While it is true that one iteration following the SIMPLER algorithm 

takes about 30% more time than that of SIMPLE, this effort is largely compensated by a 

significant reduction in the number of iterations required for convergence. 

 However, in terms of computational convergence speed, the SIMPLER algorithm is 

30% to 50% more efficient than SIMPLE, according to Anderson [24] and Jang [25]. 
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Figure III.9: SIMPLER algorithm. 
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III.5.2 SIMPLER transient algorithm 

 To describe transient phenomena, a temporal discretization is performed in addition to 

the spatial discretization. This is characterized by the time step t . 

The SIMPLER algorithm, used to solve steady-state problems, can also be used to solve 

unsteady-state problems. The momentum equations now contain unsteady terms. 

 In unsteady regimes, with implicit formulation; the iterative SIMPLER procedure is 

applied at each time level until convergence is achieved. Figure III.10 shows the structure of 

the algorithm. 

Initialize u,v,p and

Put on the time step

Iterative SIMPLER process until convergence

Stop

Start



t

0 0 0 0, , ,

t t t

u u v v p p  

= + 

= = = =

maxt t

Yes

u,v,p and  

No

 

Figure III.10: Transient SIMPLER algorithm. 
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III.6 RELAXATION  

 The iterative process used in SIMPLER requires controlling the rate of change of the 

unknowns at each iteration. This is accomplished through sub-relaxation methods [24]: 

Consider *

P  the value of P  at the current iteration. If P  satisfies equation:  

P P nb nb

nb

a a b = +                                                                      (III.48) 

So, for the system to be solved for the current iteration, we estimate a value of P  given by: 

nb nb

nb
P

P

a b

a





+

=


                                                                     (III.49) 

The change in P  from one iteration to the next is given by: 

*
nb nb

nb
P P

P

a b

a



 

+

= −


  (III.50) 

The change in P  is a fraction   defined by: 

* *
nb nb

nb
P P P

P

a b

a



   

 +
 = + −
 
 
 


  (III.51) 

After rearranging the terms, we find: 

*1P
P nb nb P P

nb

a
a b a


  

 

−
= + +   (III.52) 

Thus, the new value of the magnitude P  depends on the previous value *

P  and its correction 

*
nb nb

nb
P

P

a b

a



 

+

 = −


 using the under-relaxation coefficient   whose value is strictly less 

than 1. 

III.7 SOLVING THE LINEAR SYSTEM OF DISCRETIZED EQUATIONS   

III.7.1 THOMAS algorithm (TDMA)  

 Developed by Thomas in 1949, this is a direct method for one-dimensional (1D) situations 

but can be used iteratively line by line to solve two-dimensional (2D) problems. 
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 Finite volume discretization yields a tridiagonal system for the 1D case, a penta-diagonal 

system for the 2D case and a septa-diagonal system for the 3D case. Other discretization 

schemes give more than one diagonal, e.g., the QUICK scheme gives seven diagonals in the 2D 

case. In this case, the source term is two diagonals. 

A tridiagonal system can be written in the general form, (see [26] for details): 

1 1i i i i i i ia b c d  − ++ + =                                                                                   (III.53) 

In matrix form, this system can be written as 

1 1 1 1

2 2 2 2 2

3 3 3

1

   c    0                    0    

           

             .    .     

 .              .    .   .         c

  0                              

n

nn n

b d

a b c d

a b c

a b







−

   
   
   
    =
   
   
   
   

 .

 .

nd

 
 
 
 
 
 
 
 

  (III.54) 

The calculation is as follows: 

• For i=2, we use the equations:  

2 2 2 1
2 2

2 2

,  
b d c

P Q
a a

+
= =   (III.55) 

• For i varying from 3 to N-1, we use the equations:  

1

1 1

,   i i i i
i i

i i i i i i

b d c Q
P Q

a c P a c P

−

− −

+
= =

− −
  (III.56) 

         With 0NP =  and  N NQ =  (where N  is a boundary condition).  

           The last step determines the unknowns; for i varying from N-1 to 1, we use equation: 

1i i i iP Q  += +  

                 1  and N  are domain boundary values. 

III.7.1.1 Application of the THOMAS algorithm to 2D problems (TDMA) 

 Thomas' algorithm (TDMA) can be applied iteratively to solve a two-dimensional system 

of equations [20]. Let's consider the mesh considered in Figure III.11 and a general transport 

equation discretized as: 

P P E E W W N N S Sa a a a a b    = + + + +                                                            (III.57) 
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To solve this system, Thomas' algorithm is applied for a selected line, for example the North-

South (N-S) line. The discretized transport equation is rearranged as: 

S S P P N N E E W Wa a a a a b    − + − = + +   (III.58) 

The right-hand side of equation (III.58) is assumed to be temporarily known. Equation (III.58) 

is of the same form as equation (III.53), with:  

j S

j P

j N

j W W E E

a

D a

a

C a a b





 

=

=

=

= + +

      (III.59) 

We can now solve the system along the (N-S) direction of the chosen line for values 

2,3,4,............,j n=  as shown in Figure III.11.  

EastWest

Nord

Sud

 

Figure III.11: Line-by-line application of the TDMA method. 

• Points at which values are calculated 

• Points at which values are considered to be temporarily known 

 Known values at the boundary  

 On the left-hand side of equation (III.78), only the tridiagonal system can be efficiently 

solved by Thomas' algorithm. The solution is first calculated on the second row of the control 

volumes, the values on the first row are assumed to be known (known values on the boundary) 

and the values on the third row are assumed to be temporarily known. After the [ 2 ] vector has 

been calculated using Thomas' algorithm, we move on to the [ 3 ] vector and assume that the 

second line has already been calculated (in the previous iteration) and the values of the fourth 

line are assumed to be temporarily known, then more generally to the [
j ] vector, where the 

entire resolution zone is thus scanned. 

The line-by-line calculation procedure is repeated until the solution reaches convergence. 
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III.8 CONVERGENCE CRITERION  

 The convergence criterion used in SIMPLER is ( )1max n n e + −  :  , scanning all cells 

in the domain where n is the iteration order and   denotes U, V or   . In most cases ue , ve , Te  

are taken to be less than 10-7. For pressure and pressure correction, the convergence test is 

performed on the velocity divergence, which must be less than 10-7. Steady state is assumed to 

be reached when the deviation between two variables calculated for two successive time steps 

is less than 10-5.  

III.9 CONCLUSION 

 In this chapter, we have provided a brief overview of the finite volume method as applied 

to fluid flows and the general steps involved in discretizing the mathematical model. 

Furthermore, we have presented a detailed explanation of the velocity-pressure coupling 

algorithms, namely SIMPLE and SIMPLER. Our focus was on the CDS, Upwind, Exponential, 

Hybrid, and Power schemes, which were selected for their effectiveness in terms of both results 

and computation time in this particular study. Additionally, we discussed the resolution of 

algebraic equations using the line-by-line method based on Thomas' algorithm (TDMA). 

 Moving forward, the next three chapters will apply the methodology outlined thus far to 

address specific problems. These include the analysis of natural air convection under the low 

Mach approximation, the coupling of natural convection in the non-Boussinesq case with 

radiation, and the consideration of a magnetic field gradient during the convection process. 

 By delving into these topics, we aim to gain deeper insights into the behavior of fluid 

flows and explore the interaction of convection with various physical phenomena. The 

application of the finite volume method, along with the specific schemes and algorithms 

discussed, will provide us with valuable tools to examine and understand these complex 

scenarios. 
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IV.1 INTRODUCTION 

 Natural convection in a porous media enclosure has received considerable 

attention from the research community in recent years due to its many applications in 

engineering and environmental problems. The comprehensive literature on these applications 

can be found in Adjal et al. [1], Astanina et al. [2], Wu et al. [3], Dutta et al. [4], and others. 

Various enclosure geometries, including square [5–7], rectangular [8], triangular [9, 10], 

parallelepiped [11], trapezoidal [12], quadrantal [13], cubic [14], and rhombic cavities [4], 

have been studied. 

The square cavity has been one of the most extensively studied geometries, 

particularly in conjunction with internal heat generation and other phenomena such as 

magnetic fields [15, 16], surface radiation [17], volumetric radiation [18], and porous media 

[19, 20]. The extended Darcy model, which incorporates the Forchheimer and Brinkman 

extensions [21], has been frequently employed to account for porous media effects. 

Recent studies by N. Hdhiri et al. [19] and S. Hamimid et al. [17] have explored 

natural convection heat transfer in differentially heated square cavities filled with working 

fluids and porous media. These studies have examined the influence of parameters such as 

Prandtl number, emissivity, and internal heat generation on heat transfer rates and flow 

patterns. Similarly, M. S. Astanina et al. [5] investigated transient natural convection with 

temperature-dependent viscosity within a partially porous square cavity, while M.G. 

Sobamowo et al. [22] analyzed the thermal performance of a natural convection porous fin 

with temperature-dependent thermal conductivity and internal heat generation. 

Other studies have delved into the effects of heat sink and heat source on entropy 

generation, MHD natural convection flow, and heat transfer in tilted porous enclosures filled 

with nanofluids [23], as well as the heat removal process of a heat-generating porous bed 

using bottom injection of a cold fluid [24]. The influence of porous medium permeability on 

flow mechanisms has been explored, along with the natural convection cooling of a heat 

source implanted on the bottom wall of a nanofluid-filled enclosure [25]. 

Despite these studies, there remains a gap in the research regarding the coupling 

between porous media, natural convection, and internal heat generation. Therefore, the 

objective of this chapter is to examine how the presence of a porous medium and internal heat 

generation affect fluid flow and heat transfer in a square cavity. The study aims to provide a 

better understanding of the combined effects of influential parameters such as external 

Rayleigh number (RaE), internal Rayleigh number (RaI), porosity (ɛ), and Darcy number (Da), 

with a particular focus on the competition between the two Rayleigh numbers (RaI and RaE). 

IV.2 PHYSICAL MODEL AND GOVERNING EQUATIONS 

 The studied domain is a two-dimensional square enclosure of dimension H. It contains a 

fluid-saturated porous layer of finite thickness that is located in the center of the cavity and 

surrounded by two vertical fluid layers of equal widths. The vertical surfaces are maintained 

at constant temperatures CT and HT , leading to free convection motions within the cavity, and 

the horizontal walls are assumed to be adiabatic. Figure IV.1 depicts the composite 
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fluid/porous system, boundary conditions, and coordinate system for the problem under 

investigation. 

0

CT T

U V

=

= = 0

HT T

U V

=

= =

0
T

U V
Y


= = =



0
T
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Y


= = =



PorousFluid Fluid

XP

q H

g

 
Figure IV.1: Schematic representation of the cavity 

 The fluid is assumed to be homogeneous and laminar and satisfies the classical 

hypotheses of an incompressible Newtonian fluid with internal heat generation. The porous 

medium is completely saturated by the fluid and is assumed to be macroscopically isotropic, 

homogeneous and in local thermal equilibrium. In addition, the thermophysical properties of 

the porous medium are considered constant. Moreover, it is hypothesized that the temperature 

differences in the flow domain under consideration are small enough to justify the 

employment of the Boussinesq approximation. 

𝜌(𝑇) = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)]  (IV.1) 

Where:   𝛽 = −
1

𝜌0
(
𝜕𝜌

𝜕𝑇
)𝑃 

Also, the Darcy-Brinkman-Forchheimer model is used in the momentum equation [20]. 

 The conservation equations of mass, momentum and energy can be expressed as 

follows: 

 

Fluid Region 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (IV.2) 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) (IV.3) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) − 𝜌𝑟𝑒𝑓𝑔 (IV.4) 

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑃 (𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) + 𝑞 (IV.5) 

With: 𝜌𝑟𝑒𝑓 = 𝜌 − 𝜌0 = −𝜌0𝛽(𝑇 − 𝑇0) 
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Porous region 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (IV.6) 

1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜇𝑒𝑓𝑓

𝜌𝜀
𝛻2𝑢 − 𝐷𝑥 (IV.7) 

1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑣

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜇𝑒𝑓𝑓

𝜌𝜀
𝛻2𝑣 + 𝛽(𝑇 − 𝑇0)𝑔 − 𝐷𝑦 (IV.8) 

(𝜌𝐶𝑝)𝑒𝑓𝑓

𝜕𝑇

𝜕𝑡
+ (𝜌𝐶𝑝)𝑓

(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘𝑒𝑓𝑓 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) + 𝑞 (IV.9) 

(𝜌𝐶𝑝)𝑒𝑓𝑓
= 𝜀. (𝜌𝐶𝑝)𝑓

+ (1 − 𝜀)(𝜌𝐶𝑝)𝑠
  (IV.10) 

Where 𝐷𝑥 and 𝐷𝑦, represent the matrix drags per unit volume of the porous medium in x and 

y direction respectively.|V⃗⃗ | is the magnitude of the velocity vector given by: 

 |𝑉⃗ | = √𝑢2 + 𝑣2 (IV.11) 

The solid matrix drag per unit volume can be expressed in the following form: 

 𝐷 = 𝐴𝑉 + 𝐵𝑉2 (IV.12) 

 For a one-dimensional flow with velocity V, the above form of drag expression is 

supported by a number of packed bed and fluidized bed correlations, including the widely 

used Ergun’s (1952) correlation. 

 It can be shown that the contribution of the solid matrix drag for a two-dimensional 

flow takes the following form: 

 𝐷𝑥 = 𝐴𝑢 + 𝐵(𝑢2 + 𝑣2)
1

2𝑢 (IV.13) 

 𝐷𝑦 = 𝐴𝑣 + 𝐵(𝑢2 + 𝑣2)1/2𝑣 (IV.14) 

The constants A and B involved in the Ergun's correlation are given by: 

 𝐴 = 150
(1−ε)2

𝜀3

𝜇𝑓

𝐷𝑝
2 (IV.15) 

 𝐵 = 1.75
(1−ε)

𝜀3

𝜌𝑓

𝐷𝑝
 (IV.16) 

Where 𝐷𝑝 is the effective diameter of particles. 

By introducing the permeability K of the medium: 

 𝐾 =
𝜀3𝐷𝑝

2

150(1−𝜀)2
 (IV.17) 

The solid matrix drag components Dx, Dy, become: 

 𝐷𝑥 =
𝜇𝑓

𝐾
𝑢 +

1.75

√150

𝜌𝑓

√𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑢 (IV.18) 

 𝐷𝑦 =
𝜇𝑓

𝐾
𝑣 +

1.75

√150

𝜌𝑓

√𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑣 (IV.19) 
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 The effective properties of the porous medium, keff, (ρCp)eff
 and μ

eff
 generally depend 

on its porosity and the tortuosity of the solid phase as well as the local fluid velocity. In this 

work, the interest is not focused on the effects of these parameters, but for simplicity, the 

corresponding fluid properties are used throughout the study. The momentum equations in the 

porous region thus become: 

1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜇

𝜌𝜀
𝛻2𝑢 −

𝜇

𝜌𝐾
𝑢 −

1.75

√150

1

√𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑢 (IV.20) 

1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑣

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜇

𝜌𝜀
𝛻2𝑣 + 𝛽(𝑇 − 𝑇0)𝑔 −

𝜇

𝜌𝐾
𝑣 −

1.75

√150

1

√𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑣 (IV.21) 

 The governing equations are converted to non-dimensional form using the following 

non-dimensional variables: 

𝝉 =
𝒕

𝑯𝟐

𝜶

 , 𝑿 =
𝒙

𝑯
 , 𝒀 =

𝒚

𝑯
 , 𝑼 =

𝒖𝑯

𝜶
 , 𝑽 =

𝒗𝑯

𝜶
 , 

𝑷 =
𝜺𝟐𝒑𝑯𝟐

𝝆𝜶𝟐 , 𝜽 =
𝑻−𝑻𝟎

𝜟𝑻
 , 𝜟𝑻 = 𝑻𝑯 − 𝑻𝑪 , 𝑻𝟎 =

𝑻𝑯+𝑻𝑪

𝟐
 

 Considering the previous assumptions, the governing equations for an unsteady 2-D 

problem can be written in dimensionless form: 

Fluid Region 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0  (IV.22) 

𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 𝛻2 𝑈  (IV.23) 

𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟 𝛻2 𝑉 + 𝑅𝑎𝐸 𝑃𝑟 𝜃 (IV.24) 

𝜕𝜃

𝜕𝜏
+ (𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) = (

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
) +

𝑅𝑎𝐼

𝑅𝑎𝐸
  (IV.25) 

 

𝑅𝑎𝐸 and 𝑅𝑎𝐼 are the external and the internal Rayleigh numbers defined respectively as: 

𝑅𝑎𝐸 =
𝑔𝛽∆𝑇𝐻3

(𝑣𝛼)
 and 𝑅𝑎𝐼 =

𝑔𝛽𝑞𝐻5

(𝑣𝛼𝑘)
 

Porous region  

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0  (IV.26) 

𝜀
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+ 𝑃𝑟 𝜀 𝛻2𝑈 −

𝑃𝑟

𝐷𝑎
𝜀2𝑈 − 1.75√

𝜀

150𝐷𝑎
|√𝑈2 + 𝑉2|𝑈 (IV.27) 

𝜀
𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+ 𝑃𝑟 𝜀 𝛻2𝑉 + 𝑅𝑎𝐸 𝑃𝑟 𝜀2 𝜃 −

𝑃𝑟

𝐷𝑎
𝜀2𝑉 −

                                      1.75√
𝜀

150𝐷𝑎
|√𝑈2 + 𝑉2|𝑉  (IV.28) 
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𝜎
𝜕𝜃

𝜕𝜏
+ (𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) = (

𝜕2𝜃

𝜕𝑋2
+

𝜕2𝜃

𝜕𝑌2
) +

𝑅𝑎𝐼

𝑅𝑎𝐸
  (IV.29) 

With: 𝜎 =
𝜀.(𝜌𝐶𝑝)

𝑓
+(1−𝜀)(𝜌𝐶𝑝)

𝑠

(𝜌𝐶𝑃 )𝑓
 

The boundary conditions on the vertical walls are: 

0U V= =  ,  0.5C = = −
  
at 0X =   for  0 1Y   

0U V= =  ,  0.5H = =
  
at  1X =    for  0 1Y   

The adiabaticity conditions applied on the horizontal walls gives: 

0U V= =  ,  0=




Y



  
at   0Y =   for  0 1X   

0U V= =  , 0=




Y



  
at   1Y =      for   0 1X   

IV.3 NUMERICAL PROCEDURE 

 A finite volume approach with a staggered grid is used to numerically solve the 

governing equations and boundary conditions. The control volumes of the grid are employed 

to integrate the conservation equations, and a power scheme is applied to approximate the 

advection-diffusion terms. 

 The outer iterative loop, known as the unsteady SIMPLER algorithm, is repeated until a 

steady state is reached,  indicated by the simultaneous satisfaction of the following 

convergence criteria: |𝜑𝑖𝑗
𝑛𝑒𝑤 − 𝜑𝑖𝑗

𝑜𝑙𝑑| ≤ 10−5, where 𝜑 represents the variables U, V or . 

 The average Nusselt number, which characterizes the contribution of convection 

through the hot vertical wall, is defined as follows: 

𝑁𝑢𝑎𝑣 = −∫
𝜕𝜃(𝑋,𝑌)

𝜕𝑋
|
𝑋=1

𝑑𝑌
1

0
                                                                                             (IV.30)  

IV.4 GRID SENSITIVITY AND VALIDATION TEST 

 A grid sensitivity test is conducted to optimize the balance between required precision 

and computing time. This is achieved by comparing the average Nusselt numbers on the hot 

wall at steady state within a grid range from (120×120) to (200×200). The computational 

parameters for the investigated configuration are as follows: RaE=106, RaI=106, Xp=0.2, 

ɛ=0.4, and Da=10-3. Figure IV.2 presents the results obtained from various grid 

configurations. It is observed that the average Nusselt number increases significantly as the 

grid fineness improves. Particularly, the results for mesh sizes ranging from (160×160) to 

(200×200) are almost identical. This demonstrates that the solution becomes independent of 

the mesh size starting from (160×160). Consequently, using a mesh size of (160×160) is 

considered an ideal compromise between precision and computation time. By employing this 

mesh size, we can effectively verify the accuracy of the code. 
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Figure IV.2: Grid size effect on the average Nusselt number 

 In order to examine the reliability of the proposed formulation, the code is compared to 

results available in the literature and tested in three different situations, which are all 

differentially heated cavities. 

 The first one is completely filled with air in the absence of an internal heat source.   

Figure IV.3 shows good agreement between the results of the present code and those reported 

by De Vahl Davis [26]. In the second configuration, the code verification is performed in the 

case of natural convection with internal heat generation.  

 The results in Figure IV.4 compare the evolution of the average Nusselt number on the 

hot wall for different values of the internal source SQ. A good agreement is obtained by 

comparing these results with those of Berrahil et al. [16].  

 The third comparison is with the numerical results of N. Hdhiri et al. [19], considering 

the case of natural convection with internal heat generation and different working fluids in a 

porous medium (Figure IV.5). These results thus reinforce the accuracy of the present 

numerical method and the reliability of our computational code, which allows us to study 

natural convection in a square enclosure in the presence of an internal heat source and a 

porous medium. 
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 De Vahl Davis Present work 

 

 

(a) 

  

 

 

(b) 

  
 

 
Figure IV.3: Comparison of streamlines 

(a) and isotherms (b) with the study of De 

Vahl Davis [26] for Pr=0.71 and Ra=104 

Figure IV.4: Variation of the average Nusselt 

number on hot wall with internal heat 

generation compared with the work of Berrahil 

et al. [16] for Pr=0.0321 and RaE=3.21x104 

 
Figure IV.5: Comparison of average Nusselt number values for different Prandlt numbers 

with the study of N. Hdhiri et al. [19] for SQ=500, Xp=1, Da=10-2 and ɛ=0.6. 

IV.5 RESULTS AND DISCUSSIONS 

 For a differentially heated square cavity with an internal heat generating fluid at Pr = 

0.71, a numerical study is conducted considering the following control parameters: internal 

Rayleigh number (RaI), external Rayleigh number (RaE), Darcy number (Da) and the porosity 

of the porous medium (ε). Particular effort is made to investigate the effects of these 

parameters on the flow and natural convection heat transfer of the porous. 

IV.5.1 Influence of RaI and RaE on heat transfer and fluid flow 

 This section presents a typical set of results obtained for streamlines, isotherms, 

velocities, median temperature and average Nusselt numbers from the numerical code for 

different values of internal Rayleigh number RaI and external Rayleigh number RaE. In this 

case, the fixed parameters are: Da=10-3, Xp=0,2 and ε=0.4. 
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IV.5.1.1 Flow fields 

 It can be clearly seen from Figure IV.6 that the highest velocity is obtained for RaE=107 

when RaI<7.108, and for RaE = 103 when RaI ≥ 7.108. 

 For law values of the internal Rayleigh number (RaI<108), the maximum velocities 

increase with RaI, except for RaE=107 and increase with increasing RaE. For large values of 

the internal Rayleigh number (RaI>108), the maximum velocity values increase with 

increasing RaI and decrease when RaE increases. The profiles of the maximum velocity 

indicate that the internal and external Rayleigh numbers are the most influential parameters 

on the flow fields. This effect of internal heat generation on the flow field is reasonable 

because internal heat generation contributes to buoyancy forces by accelerating the fluid flow 

(Figure IV.7). 

 The influence of the internal Rayleigh number (RaI) on the streamlines is illustrated in 

Figure 8 for the following test cases: homogeneous medium (Xp=0), in the presence of a 

porous layer (Xp=0.2), and a fully porous medium (Xp=1), with RaE=106. 

 For the two cases of homogeneous medium and fully porous medium, the streamlines 

are characterized by a single symmetrical counterrotating cell occupying the entire cavity 

when the ratio RaI/RaE < 1 and by an asymmetrical counterrotating cell occupying the entire 

cavity when the ratio RaI/RaE =1. This is as a result of the fluid rising in the center and falling 

on the sides of the enclosure due to buoyant forces produced by the difference in fluid 

temperature. In addition, although the shape of the circulating cells remains constant, their 

intensity increases as the internal Rayleigh number increases in both cases (homogeneous 

medium and porous medium). This asymmetrical cell moves to the left corner at the bottom of 

the cavity at RaI/RaE =10, and a second cell appears in the right corner at the top of the 

enclosure. These cells tend to be more intense when the internal Rayleigh number is dominant 

especially when RaI/RaE>10. 

 However, in the second case, when a porous layer of thickness Xp=0.2 is present in the 

center of the cavity, and when RaI/RaE<1, many cells appear due to the high buoyancy forces. 

When RaI/RaE≥1, new cells develop and the fluid structure begins to take on new 

contributions. This is due to the high values of the internal heat generation parameter. 

IV.5.1.2 Thermal fields 

 According to Figure IV.7, the presence of a heat source inside the enclosure causes an 

increase in the temperature of the fluid and a reduction in convective heat transfer at the hot 

wall for both low and high buoyancy forces (Figure IV.10). In addition, it can be observed 

that at high buoyancy forces the reduction in convective heat transfer is less pronounced. This 

can be attributed to the fluid motion being stronger in comparison to the case of low buoyancy 

forces. 

 However, the isotherms in Figure IV.9 depict a symmetric distribution for low values of 

the internal Rayleigh number (RaI), where the contours are almost parallel and the thermal 

boundary layers are so intense that convection phenomena are established and the external 

Rayleigh number is dominant. As the internal Rayleigh number (RaI) increases and the ration 

RaI/RaE>1, symmetry is lost and the isothermal density becomes significant near the top wall. 
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Due to the predominance of internal heat generation, it is the fluid that drives the heat 

exchange rather than the heated walls, resulting in a decrease in the intensity of thermal 

boundary layer development. 

 

 
Figure IV.6: Evolution of the maximum velocity values as a function of internal and external 

Rayleigh numbers for Xp=0.2, Da=10-3 and =0.4 

  

  

  
(a) (b) 

Figure IV.7: Temperature profiles at mid-height according to internal Rayleigh number for 

Xp=0.2, Da=10-3 and =0.4: (a) RaE=104 and (b) RaE=107 
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Figure IV.8: Streamlines for various values of RaI and RaE=106 
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Figure IV.9: Isotherms for various values of RaI and RaE=106 

 As we have seen in Figures IV.7 and IV.8, the ratio RaI/ RaE is a parameter that affects 

the flow and temperature fields in the cavity and is also indicative of the heat transfer 

direction. Accordingly, two distinct regimes are observed.  For RaI/RaE ≤ 1, external heating 

is significant and heat transfer is an increasing function of RaE. For RaI/RaE> 1, heat 
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generation in the cavity becomes dominant over external heating and heat transfer becomes an 

increasing function of RaI.  

 For clarity of presentation and to better highlight these two regimes, Figure IV.10 

illustrates the variation of the average Nusselt numbers for different values of the internal 

Rayleigh number (RaI) and the external Rayleigh number (RaE). The positive values of Nuavg 

indicate that there is ascending motion near the hot wall, although circulation is slowed by the 

buoyancy effect generated by internal heat generation.  

 Therefore, as RaI increases, the average Nusselt number decreases, indicating the 

descending motion near the hot wall, and the negative sign corresponds to the apparition of 

the small cells previously shown in Figure IV.8. It is noticeable that the absolute value for the 

temperature gradient has a maximum value at the hot wall since these cells arrive at the hot 

wall at the upper corner; thus, the values of the average Nusselt numbers along the hot side 

wall are governed by the direction and intensity of the flow adjacent to the hot wall. 

 

 

Figure IV.10: Variations of the average Nusselt number on the hot wall as a function of 

internal and external Rayleigh numbers 

  

 Table IV.1 summarizes some of the results obtained in terms of the average heat 

transfer rate along the hot wall. For RaI =0, the average Nusselt number Nuavg increases with 

RaE and takes positive values for RaI/RaE ≤ 1. 

 By having a negative sign, the values of the average Nusselt number are improved by 

increasing the RaI/RaE ratio. According to the positive and negative Nusselt numbers, the heat 

exchange on the active walls results from the variations between their temperatures or that of 

the fluid, respectively. 

 It is important to note that when RaI/RaE is equal to one, the average Nusselt number is 

always positive. Furthermore, when RaI/RaE> 1 heat transfer is produced by internal heat 

generation. A general observation clearly shows that as the RaI/RaE ratio increases, the heat 

transfer increases. 
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Table IV.1: Average Nusselt number variations as a function of internal and external 

Rayleigh numbers 

          RaE 

IRa 

103 104 105 106 107 

0 1,0098 1,96078 4,20588 8,13745  14,94118 

103   0,5588 2,20588 4,20588 8,02961 14,94118 

104 -2,82353   1,48039 4,15686 8,01832 14,94118 

105 -3,72549 -2,72549 3,71569 8,00941 14,93137 

106 -496,9274 -42,18628 -0,45098 0,45098 14,88233 

107 -4976,647 -488,6078 -41,71569 -3,73529 14,69608 

108 -51088,96 -5099,421 -497,9804 -39,95098 -10,62745 

109 -544633,9 -52345,53 -5159,451 -484,451 -30,26471 

 

IV.5.2 Effect of RaI and Da  

 Calculations are performed for a wide range of internal Rayleigh number 0≤ RaI≤109 

and with different Darcy numbers 10-6 ≤ Da ≤ 1 taking into consideration RaE=106, Xp=0.2 

and ε = 0.4. Figure IV.11 shows the relationships of the natural convection parameter Nuavg 

with the Darcy number and the internal Rayleigh number. 

 As expected, we observe that the average Nusselt number (Nuavg) increases with 

increasing Da and decrease with increasing RaI. This figure shows a linear dependence of the 

Nusselt number on the Darcy number, which implies that the strength of convective motions 

is enhanced with increasing permeability of the porous layer. However, this improvement is 

reduced near the hot wall when RaI is increased for the reasons mentioned previously. 

 

 
Figure IV.11: Variations of the average Nusselt number as a function of internal Rayleigh 

numbers and Darcy numbers for RaE=106 
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 Table IV.2 also shows that the average Nusselt number is positive for low heat 

generation (RaI/RaE≤1), and the heat exchange is approximately constant. When RaI =107, 

Nuavg starts to take negative values, especially when the permeability of the porous layer is 

low (Da=10-6). From RaI>107, all values of Nuavg are negative, and the heat transfer tends to 

improve while considering the negative sign. This means that heat is transferred from the 

fluid to the hot wall (the hot wall absorbs heat from the higher temperature inner fluid). 

 On the other hand, for law Darcy number (Da <10-5), heat exchange is important and 

Nuavg is positive except when RaI exceeds 106. For the highest values of Darcy number (Da 

≥10-5), the Nusselt number and heat exchange remain almost constant with respect to Darcy. 

Figure IV.12 confirms these findings by describing the flow behavior in the cavity and 

determining the evolution of maximum velocities which increase with increasing Da number. 

Table IV.2: Average Nusselt number variations as a function of internal Rayleigh number 

and Darcy number for RaE=106 

     Da 

RaI 

10-6 10-5 10-4 10-3 10-2 10-1 1 

0 3,54902 7,53922 8,50000 8,02941 7,78431 7,71569 7,66667 

103 3,54902 7,53922 8,50000 8,01961 7,78431 7,71569 7,66667 

104 3,53922 7,52941 8,50000 8,01961 7,78431 7,70588 7,65686 

105 3,50000 7,49020 8,45098 8,12745 7,73529 7,69608 7,67647 

106 3,04902 7,03922 8,00980 7,68628 7,19608 7,14706 7,26471 

107 -1,38235 2,77451 3,85294 3,73529 2,97059 3,17647 3,89216 

108 -44,7255 -38,1078 -37,91177 -39,95098 -36,1078 -43,93137 -42,38235 

109 -501,784 -511,1078 -504,5392 -484,451 -499,1078 -477,8431 -408,422 

 

 

Figure IV.12: Evolution of the maximum velocity values as a function of internal Rayleigh 

number and Darcy number for RaE=106 
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IV.5.3 Impact of RaI and ɛ  

 In this section, computations are performed for a wide range of internal Rayleigh 

number 0 ≤ RaI ≤ 109, as well as for various porosity values 0.01 ≤ ε ≤ 1. The other 

parameters are: RaE=106, Xp=0.2 and Da = 10-3. Figure IV.13 shows the variation of the 

average Nusselt number along the hot wall as a function of porosity and internal Rayleigh 

number. It can be seen that the heat transfer rate increases with increasing RaI.  This may be 

due to enhanced convection, which leads to an increase in fluid temperature. 

 It is also important to note that increasing porosity does not significantly affect the 

average Nusselt number, especially for low RaI values (see Table IV.3). When RaI/RaE>1 an 

excellent heat exchange is observed for all values of porosity. 

 These observations are substantiated by the findings presented in Figure IV.14, which 

describe the flow characteristics within the cavity and establish a correlation between the 

evolution of maximum velocities and the increase in porosity. Interestingly, it is revealed that 

at low RaI values (< 106), the influence of porosity  on the flow is minimal, whereas it 

becomes more pronounced as a function of  for high internal Rayleigh values. 

 

 

Figure IV.13: Variations of the average Nusselt number as a function of internal Rayleigh 

number and porosity for Da=10-3 and RaE=106 
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Table IV.3: Average Nusselt number variations as a function of internal Rayleigh number 

and porosity for Da=10-3 and RaE=106 

           ɛ 

RaI 

0,01 0,2 0,4 0,6 0,8 1 

0 7,62745 7,75490 8,02941 8,48039 8,75490 8,80392 

103 7,62745 7,75490 8,01961 8,48039 8,75490 8,80392 

104 7,61765 7,75490 8,01961 8,48039 8,75490 8,79412 

105 7,47059 7,71569 8,12745 8,43137 8,70588 8,74510 

106 7,14706 7,29412 7,68628 7,98039 8,26471 8,30392 

107 3,71569 3,29412 3,73527 4,02941 4,23529 4,10784 

108 -41,70588 -39,3235 -39,3333 -39,46078 -39,46078 -40,15686 

109 -509,3726 -489,951 -484,451 -498,4314 -510,0981 -511,6373 

 

 

Figure IV.14: Evolution of the maximum velocity values as a function of internal Rayleigh 

number and porosity for RaE=106 

IV.6 CONCLUSION 

 In this chapter, the focus was on investigating the heat transfer through natural 

convection in a square cavity subjected to differential heating. The cavity configuration 

includes a vertical porous layer and a uniform internal heat generation. The conservation 

equations of mass, momentum, and energy, which incorporate Brinkman and Forchheimer 

terms, were solved using the finite volume approach and the SIMPLER algorithm. Based on 

the ratio between the internal and external Rayleigh numbers (RaI/RaE), two distinct regimes 

were identified. For RaI/RaE ≤1, the heat transfer is an increasing function of the external 

Rayleigh number. The direction of heat transfer is similar to the classical case of a 

differentially heated cavity, flowing from the hot wall to the cold wall. For RaI/RaE>1, the 

heat transfer is an increasing function of the internal Rayleigh number. Its direction is towards 

the outside of the cavity, occurring at both the hot and cold walls. In general, the presence of a 

porous layer with a low Darcy number or porosity value reduces heat transfer and increasing 

these two parameters progressively increases the heat reduction. 
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V.1 INTRODUCTION  

The study of heat transfer by natural convection in porous media is an area of research 

that holds significant importance in various fields, such as geothermal energy, environmental 

restoration, and heat insulation. Several recent studies [1-4] have focused on understanding 

the interplay between natural convection and porous media, emphasizing the crucial role of 

the properties of the porous medium. Enhancing heat transfer in cavities using porous 

materials has garnered considerable attention, with factors such as permeability, porosity, and 

the thickness of the porous layer identified as key influencers of convective heat transfer [5-

7]. By manipulating these parameters, it is possible to achieve improved thermal management, 

enhanced energy efficiency, and overall system performance 

Earlier research has examined various aspects of natural convection in porous media. 

For instance, Hamimid et al. [8] conducted an analysis of buoyancy-driven convection within 

a square cavity containing a porous layer saturated by a binary fluid. Yan et al. [9] focused on 

the migration of a dense salt plume affected by high-permeability inclusions. By emphasizing 

the disparity between gas and water permeability, Tanikawa et al. [10] highlighted its 

significance in understanding fluid flow dynamics.  Additionally, Tan et al. [11] developed 

predictive models for both permeability and porosity in porous media. Civan [12] made 

valuable contributions by exploring variations in porosity and permeability through fractal 

properties. Habbachi et al. [13] investigated natural convection heat transfer within a cubic 

enclosure featuring a central porous medium. In contrast, Ouarhlent et al. [14] studied heat 

transfer in a cubic chamber partially filled with porous material. The work of Lee et al. [15] 

focused on electrode performance in fuel cells, while Gao et al. [16] extensively studied 

transport phenomena in porous media. Lastly, Kan et al. [17] analyzed the effects of porosity 

on laminar flow and drag reduction. 

While heat transfer in porous media has significant industrial applications, there is a 

research gap concerning natural convection in a porous medium filled with a compressible gas 

at low Mach numbers. This chapter aims to address this gap by examining the impact of 

porous media properties on the thermal and dynamic characteristics of natural convection in 

such a gas, with a specific focus on the low Mach number model. To accurately simulate fluid 

dynamics at velocities much lower than the speed of sound, the low Mach number 

approximation method is employed. This approach allows for a comprehensive understanding 

of the phenomenon. 

This chapter investigates variations in thermophysical properties, such as thermal 

viscosity and conductivity, which are temperature-dependent. By considering these factors 

collectively, the study aims to establish a comprehensive understanding of the interplay 

between porous media properties and compressible gas behavior, specifically concerning the 

thermal and dynamic characteristics of the system.  

The uniqueness of this study lies in integrating multiple parameters, including porous 

media properties, compressible gas behavior, and the use of the low Mach number 

approximation, inside a square cavity with defined boundary conditions. The study examines 

how porous media properties influence fluid motion, heat transfer, and the Nusselt number, 
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which serves as a metric for assessing heat transfer rates in both fluids and porous media. This 

comprehensive examination aims to improve the understanding of natural convection in 

porous materials with compressible fluids, while exploring its potential applications in various 

fields. 

V.2 MATHEMATICAL FORMULATION 

The system under study is a two-dimensional square cavity of dimension 𝐻. The 

enclosure contains a Newtonian fluid with variable properties, including density 𝜌, molecular 

viscosity 𝜇, thermal conductivity 𝑘, and temperature 𝑇. Positioned at the bottom of the cavity 

is a fluid-saturated porous layer with finite thickness. The porous medium is fully saturated 

with fluid and is assumed to exhibit macroscopic isotropy, homogeneity, and local thermal 

equilibrium. The temperatures of the vertical surfaces are maintained at 𝑇𝐻 and 𝑇𝐶 (𝑇𝐻>𝑇𝐶), 

resulting in laminar free convection within the cavity. Given the lack of any influence from 

the horizontal walls, it can be postulated that these surfaces exhibit adiabatic characteristics. 

The enclosure's four walls adhere to boundary conditions of no-slip and zero-mass flux. The 

initial conditions include constant distributions of reference pressure P0 and temperature   

𝑇0 = (𝑇𝐻 + 𝑇𝐶) 2⁄ , as well as a stationary flow with V=0.  

Figure V.1 shows the boundary conditions, coordinate system, and the combined fluid/porous 

system relevant to the investigation. 

 
Figure V.1: Physical geometry and associated boundary conditions 

To accurately capture significant temperature variations within the differentially 

heated cavity, a low Mach number flow model is used [18-20] 

The use of low Mach number (LMN) models allows for the precise representation of 

these variations, overcoming the limitations associated with the Boussinesq assumption. 

Moreover, these models maintain the characteristic pressure-density decoupling observed in 

incompressible flows.  
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Under the given conditions, the Navier-Stokes equations are expanded in a series 

using a small parameter M2, where M represents the Mach number. The total pressure p is 

further decomposed into the mean thermodynamic pressure 𝑝̅ and the dynamic pressure p'.  

The following equations represent the dimensional governing equations for the 

system: 

Fluid region: 

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
= 0  (V.1) 

𝜌(
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝́

𝜕𝑥
+ [

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)] +

1

3
(𝜇

𝜕2𝑢

𝜕𝑥2
+ 𝜇

𝜕2𝑢

𝜕𝑦2
) (V.2) 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −𝑔(𝜌 − 𝜌0) −

𝜕𝑝́

𝜕𝑦
+ [

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
)] + 

1

3
(𝜇

𝜕2𝑣

𝜕𝑥2
+

                                                     𝜇
𝜕2𝑣

𝜕𝑦2
)                                                                                 (V.3) 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) =

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) +

𝑑𝑝

𝑑𝑡
 (V.4) 

𝑝 = 𝜌𝑅𝑇  (V.5) 

Porous region: 

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢

𝜕𝑥
+

𝜕𝜌𝑣

𝜕𝑦
= 0  (V.6) 

𝜌 (
1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝′

𝜕𝑥
+

1

𝜀
[

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) +

1

3
∆𝜇∆𝑉⃗ ] − 𝐷𝑥 (V.7) 

𝜌 (
1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑣

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝′

𝜕𝑦
+

1

𝜀
[

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) +

1

3
∆𝜇∆𝑉⃗ ] −

                                          𝑔(𝜌 − 𝜌0) − 𝐷𝑦  (V.8) 

(𝜌𝐶𝑝)𝑒𝑓𝑓 (
𝜕𝑇

𝜕𝑡
) + (𝜌𝐶𝑝)𝑓 [𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
] =

𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
+

𝜕

𝜕𝑦
𝑘

𝜕𝑇

𝜕𝑦
+

𝑑𝑝̅

𝑑𝑡
 (V.9) 

(𝜌𝐶𝑝)𝑒𝑓𝑓
= 𝜀. (𝜌𝐶𝑝)𝑓

+ (1 − 𝜀)(𝜌𝐶𝑝)𝑠
  (V.10) 

𝑝 = 𝜌𝑅𝑇  (V.11) 

 The parameters 𝐷𝑥 and 𝐷𝑦 in the momentum equations correspond to the drag forces 

per unit volume of the porous medium along the x and y directions, respectively.  
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 In the case of one-dimensional flow with velocity V, the drag expression is based on 

various correlations for packed and fluidized beds, such as the well-known Ergun's (1952) 

correlation. For a two-dimensional flow, the contribution of the solid matrix drag can be 

mathematically expressed as follows: 

 𝐷𝑥 =
𝜇𝑓

𝐾
𝑢 +

1.75

√150

𝜌𝑓

√𝐾

|𝑉⃗⃗ |

𝜀3/2 𝑢 (V.12)  

 𝐷𝑦 =
𝜇𝑓

𝐾
𝑣 +

1.75

√150

𝜌𝑓

√𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑣  (V.13) 

Where: |𝑉⃗ | = √𝑢2 + 𝑣2 

The walls of the system adhere to non-slip boundary conditions, which leads to the following 

expressions for the boundary and initial conditions: 

𝑢 = 𝑣 = 𝑇 = 0, at 𝑡 = 0 

𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝐻 for 0 ≤ 𝑦 ≤ 𝐻 and 𝑥 = 0 

𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝐶 for 0 ≤ 𝑦 ≤ 𝐻 and 𝑥 = 𝐻 

𝑢 = 𝑣 = 0,  
𝜕𝑇

𝜕𝑦
= 0    for 0 ≤ 𝑥 ≤ 𝐻 and 𝑦 = 0 

𝑢 = 𝑣 = 0,  
𝜕𝑇

𝜕𝑦
= 0    for 0 ≤ 𝑥 ≤ 𝐻 and 𝑦 = 𝐻 

The governing equations are supplemented by Sutherland's law for the temperature 

dependence of transport properties, μ and k: 

𝜇(𝑇)

𝜇0
= (

𝑇

𝑇0
)
3 2⁄ 𝑇0+𝑆𝜇

𝑇+𝑆𝜇
   and   𝑘(𝑇) = 𝜇(𝑇)

𝐶𝑝0𝑘0

𝜈0
  

Where 𝑆𝜇 = 110.5 𝐾 

Depending on the case studied, it is assumed that these properties either vary with temperature 

or remain constant. 

The equations of momentum in the porous region can be expressed as: 

𝜌 (
1

𝜀

𝜕𝑢

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑢

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝′

𝜕𝑥
+

1

𝜀
[

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) +

1

3
∆𝜇∆𝑉⃗ ]   

 −𝜇
𝑢

𝐾
−

1.75𝜌

√150𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑢 (V.14) 

 𝜌 (
1

𝜀

𝜕𝑣

𝜕𝑡
+

1

𝜀2
𝑢

𝜕𝑣

𝜕𝑥
+

1

𝜀2
𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝′

𝜕𝑦
+

1

𝜀
[

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) +

1

3
∆𝜇∆𝑉⃗ ] − 𝑔(𝜌 − 𝜌0) 

 −𝜇
𝑣

𝐾
−

1.75𝜌

√150𝐾

|𝑉⃗⃗ |

𝜀3/2
𝑣 (V.15) 



 CHAPTER V                Natural Convection Heat Transfer in Porous Square Cavity Under 

Low Mach Number Approximation  

84 
 

To make the conservation equations (V.1-V.6, V.9-V.11, V.14, and V.15) dimensionless, the 

following dimensionless parameters are used 

𝝉 =
𝜶𝒕

𝑯𝟐
 ,  𝑿 =

𝒙

𝑯
 ,  𝒀 =

𝒚

𝑯
 ,  𝑼 =

𝒖𝑯

𝜶
 , 𝑽 =

𝒗𝑯

𝜶
,  𝝅 =

𝜺𝟐𝒑′𝑯𝟐

𝝆𝜶𝟐
 ,  𝑷̅ =

𝒑̅

𝒑𝟎
 ,  𝜽 =

𝑻−𝑻𝟎

𝜟𝑻
 ,  

Where:  𝚫𝑻 = 𝑻𝑯 − 𝑻𝑪 ,  𝑻𝟎 =
𝑻𝑯+𝑻𝑪

𝟐
 ,  𝜺𝒃 =

𝚫𝐓

𝟐𝑻𝟎
 

The governing equations are transformed into their dimensionless form, as shown below 

Fluid region: 

𝜕𝜌∗

𝜕𝜏
+

𝜕𝜌∗𝑈

𝜕𝑋
+

𝜕𝜌∗𝑉

𝜕𝑌
= 0  (V.13) 

𝜌∗(
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
) = −

𝜕𝜋

𝜕𝑋
+ 𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗ 𝜕𝑈

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗ 𝜕𝑈

𝜕𝑌
) +

1

3
𝛻𝜇∗𝛻. 𝑉⃗ ] (V.14) 

𝜌∗ (
𝜕𝑉

𝜕𝜏
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

𝜕𝜋

𝜕𝑌
− 𝑅𝑎𝑃𝑟

𝜌∗−1

2𝜖𝑏
+ 𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗ 𝜕𝑉

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗ 𝜕𝑉

𝜕𝑌
) +

                                                      
1

3
𝛻𝜇∗𝛻. 𝑉⃗ ]                                                                                     (V.15) 

𝜌∗ (
𝜕𝜃

𝜕𝜏
+ 𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
) =

𝜕

𝜕𝑋
(𝑘∗ 𝜕𝜃

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝑘∗ 𝜕𝜃

𝜕𝑌
) +

𝛾−1

2𝜀𝑏𝛾

𝑑𝑃̅

𝑑𝜏
 (V.16) 

𝜌∗ =
𝑃̅

(2𝜀𝑏𝜃+1)
  (V.17) 

Porous region: 

𝜕𝜌∗

𝜕𝜏
+

𝜕𝜌∗𝑈

𝜕𝑋
+

𝜕𝜌∗𝑉

𝜕𝑌
= 0  (V.18) 

𝜌∗ (
1

𝜀

𝜕𝑈

𝜕𝜏
+

1

𝜀2
𝑈

𝜕𝑈

𝜕𝑋
+

1

𝜀2
𝑉

𝜕𝑈

𝜕𝑌
) = −

1

𝜀2

𝜕𝜋

𝜕𝑋
+

1

𝜀
𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗ 𝜕𝑈

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗ 𝜕𝑈

𝜕𝑌
) +

1

3
𝛻𝜇∗𝛻. 𝑉⃗ ] −

                                                  
𝑃𝑟

𝐷𝑎
𝑈 −

1.75

√150 𝐷𝑎

|𝑉⃗⃗ |

𝜀
3

2⁄
𝑈                                                         (V.19) 

𝜌∗ (
1

𝜀

𝜕𝑉

𝜕𝜏
+

1

𝜀2
𝑈

𝜕𝑉

𝜕𝑋
+

1

𝜀2
𝑉

𝜕𝑉

𝜕𝑌
) =

1

𝜀2

𝜕𝜋

𝜕𝑌
+

1

𝜀
𝑃𝑟 [

𝜕

𝜕𝑋
(𝜇∗ 𝜕𝑉

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝜇∗ 𝜕𝑉

𝜕𝑌
) +

1

3
𝛻𝜇∗𝛻. 𝑉⃗ ] −

                                           𝑅𝑎𝑃𝑟
𝜌∗−1

2𝜖𝑏
−

𝑃𝑟

𝐷𝑎
𝑉 −

1.75

√150 𝐷𝑎

|𝑉⃗⃗ |

𝜀
3

2⁄
𝑉 (V.20) 

𝜎
𝜕𝜃

𝜕𝜏
+ 𝑈

𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=

𝜕

𝜕𝑋
(𝑘∗ 𝜕𝜃

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝑘∗ 𝜕𝜃

𝜕𝑌
) +

𝛾−1

2𝜀𝑏𝛾

𝑑𝑃̅

𝑑𝜏
 (V.21) 

𝜌∗ =
𝑃̅

(2𝜀𝑏𝜃+1)
  (V.22) 

With: 

𝜎 =
𝜀(𝜌𝐶𝑝)𝑓+(1−𝜀)(𝜌𝐶𝑝)𝑠

(𝜌𝐶𝑝)𝑓
  (V.23) 
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          The governing equations for the cavity flow and heat transfer are influenced by 

dimensionless numbers that play a crucial role. These dimensionless numbers are defined as 

follows: 

𝐷𝑎 = 𝐾 𝐻2⁄  Darcy number 

𝑃𝑟 = 𝜈 𝛼⁄  Prandtl number 

𝑅𝑎 = 𝑔𝛽∆𝑇𝐻3 𝜈𝛼⁄   Rayleigh number 

 

The corresponding dimensionless boundary conditions are: 

𝑈 = 𝑉 = 0, 𝜃 = 𝜃𝐻 for   0 ≤ 𝑌 ≤ 1 and 𝑋 = 0 

𝑈 = 𝑉 = 0, 𝜃 = 𝜃𝐶 for   0 ≤ 𝑌 ≤ 1 and 𝑋 = 1 

𝑈 = 𝑉 = 0,  
𝜕𝜃

𝜕𝑌
= 0    for 0 ≤ 𝑋 ≤ 1 and 𝑌 = 0 

𝑈 = 𝑉 = 0,  
𝜕𝜃

𝜕𝑌
= 0    for 0 ≤ 𝑋 ≤ 1 and 𝑌 = 1 

The dimensionless transport coefficients 𝜇∗(𝜃) and 𝑘∗(𝜃) are given, respectively, by: 

𝜇∗(𝜃) = (2𝜀𝑏𝜃 + 1)3 1⁄ 1+𝑆𝜇 𝑇0⁄

2𝜀𝑏𝜃+1+𝑆𝜇 𝑇0⁄
    and  𝑘∗(𝜃) =

𝜇∗(𝜃)

𝑃𝑟
   

V.3 NUMERICAL MODELLING 

 The governing differential equations for velocity, pressure, and temperature fields in 

two dimensions are solved numerically using a finite volume technique. Advection-diffusion 

terms are approximated using a power scheme (refer to chapter three). To handle the pressure-

velocity coupling, the SIMPLER (Semi-Implicit Method for Pressure Linked Equations 

Revised) method with a staggered grid, as detailed in Patankar [18], is employed. The 

equations are formulated for transient analysis, and an entirely implicit transient differencing 

scheme is used iteratively until convergence to a steady state is achieved. The algebraic 

equations are solved using a combination of the line-by-line method, which includes both 

direct (Thomas algorithm) and iterative (Gauss-Seidel) methods. This approach involves 

solving the discretized equations with two directional sweeps. 

V.4 GRID SENSITIVITY 

 To optimize the trade-off between accuracy and computation time, a mesh sensitivity 

test was conducted in a domain with varying grid sizes, ranging from (80×80) to (260×260). 

The test compared the average Nusselt numbers on the hot wall in steady state (Table V.1). 

The configuration under consideration is defined by the following computational parameters: 

Ra=106, Yp=0.2, ɛ=0.4, Da=10-5, ΔT=360 K. Initially, the medium is at rest and has a uniform 

temperature of T0=300K, with a corresponding Prandtl number of 0.71.  
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 Figure V.2a presents the results obtained for different grid resolutions. It is observed 

that as the mesh becomes finer, the average Nusselt values decrease. For grid sizes ranging 

from (160×160) to (260×260), the results yield similar values, indicating that the solution 

becomes independent of the mesh beyond (160×160). Therefore, (160×160) is considered the 

optimal compromise between accuracy and computation time, and it is used to validate the 

code. Figure V.2b illustrates the mesh model diagram. The number of meshes is 25600. 

Table V.1: Average Nusselt number for different mesh sizes 

 80×80 100×100 120×120 140×140 160×160 240×240 260×260 

𝑵𝒖𝑯 7,1572 7,1091 7,0826 7,0652 7,05299 7,0535 7,05329 

∆𝑵𝒖𝑯(%) 0,67 0,37 0,25 0,17 0,01 0,003 / 

𝑵𝒖𝑪 7,1112 7,075 7,04312 7,01976 7,0012 6,9981 6,99619 

∆𝑵𝒖𝑪(%) 0,51 0,45 0,33 0,26 0,04 0,03 / 

 

 
 

(a) (b) 

Figure V.2: Mesh sensitivity test (a) Evolution of average Nusselt numbers for different 

grid values (b) Mesh diagram 

 

V.5 VALIDATION TESTS 

The code utilized in this study underwent verification by comparing our findings with 

those of previous studies [13,14] and [21]. Figure V.3 illustrates the temperature distribution 

at mid-height (Y=0.5). To ensure the validity of our research, we replicated the conditions of 

the modeling setup described in Habbachi et al. [13], specifically by setting Yp=Xp at the 

center of the cavity. This allowed us to compare our results with theirs by examining different 

thicknesses of the porous layer (Yp), with Ra=105 and Da=10-6. To ensure the code was 

working correctly, we used a Boussinesq code to predict how porous materials interact with 

natural convection. Our numerical results aligned well with the previous findings reported by 

Habbachi et al.  
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Present work Habbachi et al. 

Figure V.3: Temperature profiles for Ra=105, =0.2, Da=10-6, and various values of 

dimensionless thickness of the porous layer in a vertical median plan (Y=0.5). 

 

Figure V.4 depicts the average Nusselt number distribution across various Rayleigh 

numbers. Consistent with the methodology outlined by Ouarhlent et al. [14], comparable 

configurations were employed, featuring a square-shaped porous layer (where Xp=Yp) 

positioned at the center of the enclosure. This setup allowed for a comparative analysis 

between our results and those of Ouarhlent et al. across different porous layer thicknesses (Yp 

or η) and for Da=10-6. Notably, the parameter η, chosen at 20%, 50%, and 80% in the 

investigation conducted by Ouarhlent et al., represents the dimension Yp of the square porous 

layer as a percentage of the cavity's unit dimension. To assess the interaction between porous 

media and natural convection, the code was validated using the Boussinesq model. The 

numerical results from this investigation align with those previously reported by Ouarhlent et 

al. [14]. 

The conclusions drawn are supported by the findings presented in Table V.2, which 

indicate minimal relative differences. Specifically, a marginal variance of 0.2% is noted for 

Ra=106, while average differences of 2.43%, 3.04%, and 6.04% are recorded for Yp values of 

0.2, 0.5, and 0.8, respectively. 
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Figure V.4: Variation of average Nusselt numbers with different Rayleigh numbers and 

for Da=10-6 (Comparative analysis)   

 

Table V.2: Relative difference in Nusselt numbers between our investigation and the 

findings of Ouarhlent et al. [14] 

           Yp 

Ra 

0.2 0.5 0.8 

103 0,77 1,77 8,47 

104 5,62 9,39 6,79 

105 3,12 0,75 8,71 

106 0,20 0,24 0,20 

Average deviations 2,43 3,04 6,04 

Additionally, validation of the non-Boussinesq code was performed against a 

benchmark solution representing convection in a partially heated square cavity without a 

porous material. Tests were conducted for both constant and variable characteristics, focusing 

on a significant temperature difference (ɛb=0.6) at Ra=106, with a reference temperature of 

T0=300 K. The results, as presented in Table V.3, demonstrated excellent agreement with the 

findings reported by P. Quéré et al.[21], particularly regarding the average Nusselt number. 

Table V.3: Comparative analysis between the average Nusselt numbers in this study and 

those reported by Le Quéré et al. [21] 

 Constant properties Variable properties 

 Le Quéré Present work Le Quéré Present work 

𝐍𝐮𝐇 8.85978 8.854992 8.6866 8.679508 

𝐍𝐮𝐂 8.85978 8.863162 8.6866 8.700842 

𝐏̅ 0.856338 0.85576 0.924487 0.923238 
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Overall, the code used in this study was validated by comparing our results with those 

of previous studies [13,14] and [21]. The verification process involved replicating physical 

configurations, employing Boussinesq and non-Boussinesq codes, and evaluating the 

consistency of our findings with established benchmarks and reference data. 

V.6 RESULTS AND DISCUSSIONS  

V.6.1 Impact of constant and variable thermophysical properties under large 

temperature differences 

 This section employs the low Mach number code to examine the influence of the 

Boussinesq parameter (εb) on heat transfer and fluid dynamics in the presence of a horizontal 

porous layer at the bottom of the cavity. Two cases are compared: one featuring constant 

temperature-dependent fluid characteristics and the other with variable properties following 

Sutherland's law.  

 The simulation parameters are set as follows: Pr = 0.71, Ra=106, T0 = 300 K, Da=10-5, 

Yp=0.2 and ε=0.4. To examine the impact of the Boussinesq parameter, different values 

ranging from εb = 0.017 to 0.6 are considered. In the Boussinesq solution, the temperature 

difference (ΔT) is set to 10 K. It should be noted that in previous works, it was demonstrated 

that, under the condition εb ≤ 0.05, corresponding to a temperature difference ΔT ≤ 30°C, the 

incompressible model using the Boussinesq approximation can be applied to simulate both 

pure natural convection and combined natural convection with surface radiation [22, 23]. 

 Figures V.5-V.11 provide an opportunity for two simultaneous comparisons. They 

present the results obtained for three cases: Boussinesq (εb = 0.017), weak non-Boussinesq  

(εb = 0.3), and strong non-Boussinesq (εb = 0.6) at Ra = 106. These simulations are conducted 

in the presence of a porous layer with a porosity of ε = 0.4 and low permeability characterized 

by the Darcy number Da = 10-5, with a dimensionless thickness of Yp = 0.2. The main goal is 

to explore the impact of the Boussinesq parameter on flow and heat transfer phenomena. 

Additionally, these figures enable a comparison of the results achieved with constant versus 

variable fluid properties. This analysis allows us to examine how fluid properties affect both 

flow and heat transfer. 

 Figure V.5 illustrates how the parameter εb influences the flow by presenting the vertical 

and horizontal velocity profiles at Y=0.5 and X=0.5, respectively. The U component profiles 

show that, in contrast to the scenario with a low εb value (εb=0.017), the boundary layer 

contracts near the lower wall due to the presence of the porous layer (Yp=0.2) and expands 

near the opposite wall. The V component profiles along the vertical sides exhibit a similar 

pattern, albeit with varying ratios. It is worth noting that the flow for the V component 

remains unchanged in the stratification zone, while the peak at the cold vertical wall is 

significantly larger for εb=0.6 compared to εb=0. 017. Additionally, there is a distinction in the 

maximum value of the V component within the boundary layer between constant and variable 

fluid properties, despite the porous layer being located at the bottom of the cavity. However, 

for the U component, this difference is more pronounced throughout the entire enclosure, 

except for the region occupied by the porous layer, where the flow remains stagnant due to the 

low permeability and porosity of the porous material. 
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 Figure V.6 displays the horizontal and vertical fluid temperature profiles. At εb=0.6, the 

thermal boundary layer thickens near the hot wall and thins near the cold wall, causing a shift 

of the temperature peaks towards the cold wall. This behavior is solely attributed to non-

Boussinesq factors. 

 As εb increases for the variable properties, the fluid within the central region becomes 

hotter, leading to a reduction in stratification. The vertical temperature profile is impacted by 

the existance of the porous layer at the cavity’s base.  

 The porous layer significantly influences the vertical temperature profile, with the most 

pronounced effect depending on factors such as the variation of fluid characteristics with 

temperature and the high value of εb. 

Figure V.7 illustrates the temperature distribution on the horizontal walls. For small 

values of εb, the presence of a porous layer is observed to result in a slight reduction in 

temperature profiles on the bottom wall (Y = 0). In this region, the impact of fluid properties 

on heat exchange is relatively minimal. However, on the upper wall, the effects of fluid 

properties become more pronounced. When comparing the cases of constant properties (CP) 

and variable properties (VP) for εb = 0.6, a notable difference in temperature distribution is 

observed. The utilization of variable properties greatly enhances thermal transfer at the upper 

wall. It is important to note that the temperature distribution on the horizontal walls is higher 

when considering variable properties compared to constant properties, especially in the 

presence of large temperature differences. 

  

(a) (b) 

Figure V.5: Vertical (a) and horizontal (b) velocities for Ra=106, Da=10-5, Yp=0.2, ε = 0.4 

and different values of εb 
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(a) (b) 

Figure V.6: Cross-section of horizontal (a) and vertical (b) temperature profiles for Ra=106, 

Da=10-5, Yp=0.2, ε = 0.4 and different values of εb 

 

  

(a) (b) 

Figure V.7: Distributions of lower (a) and upper (b) wall temperatures for Ra=106, Da=10-5, 

Yp=0.2, ε = 0.4 and different values of εb. 

 

 Figure V.8 illustrates the streamlines, isotherms, pressure, and density profiles. In 

general, when the temperature difference is small (εb = 0.017), there are no significant 

variations between the solutions for variable and constant properties and all profiles exhibit a 

symmetrical structure relative to the core region of the cavity. The isotherms on the horizontal 

sidewalls indicate the presence of temperature gradients towards the bottom wall. 

Additionally, due to the low permeability and porosity of the porous layer, there is a moderate 

flow in the vicinity of the porous layer along the streamlines. As εb increases to 0.3, the flow 

intensifies, resulting in the loss of symmetry in the streamlines, isotherms, pressure, and 

density contours. When the temperature difference becomes large (εb = 0.6), the symmetry of 

the flow is completely disrupted.  
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 Figure V.9 also demonstrates the effect of fluid properties on heat transfer and flow. In 

both the boundary layers and the core cavity, the temperature rises notably. The impact of 

fluid properties and the porous layer on streamlines and pressure is most noticeable near the 

cavity's bottom wall, in the middle, and close to the top. It is important to note that, whether 

the properties are constant or variable, the boundary layers near the hot wall maintain a 

thicker profile, indicating that the primary cause of this phenomenon is the nonlinear variation 

of density, especially for εb = 0.6. 

 

 

 

ɛb=0.017 

 

(VP) 

    
 

(CP) 

    

 

 

 

ɛb=0.3 

 

(VP) 

    

 

(CP) 

    

 

 

 

ɛb=0.6 

 

(VP) 

    

 

(CP) 

    

 (a) (b) (c) (d) 

Figure V.8: Streamlines (a), isotherms (b), pressure (c) and density (d) profiles for variable 

(VP) and constant (CP) properties and for different values of εb 
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Figure V.9 illustrates the changes in the Nusselt number at the hot and cold walls. 

When examining convective heat transfer, significant variations are observed in the patterns 

of the hot and cold walls based on the Boussinesq parameter ɛb. This behavior is particularly 

pronounced at the top of the cavity, where the Nusselt number is higher for ɛb = 0.6 on the hot 

wall compared to ɛb = 0.017. Conversely, the opposite behavior is observed on the cold wall.  

The presence of the porous layer also affects heat transfer. For Y ≤Yp, regardless of 

the value of ɛb and whether the properties are constant or variable, the Nusselt number 

remains almost constant. However, when Y >Yp, the profiles of the Nusselt number are no 

longer constant, and increasing the values of the Boussinesq parameter (ɛb> 0.017) leads to 

higher Nusselt number values. Incorporating variable properties somewhat enhances heat 

exchange at the top wall compared to fixed properties. 

  

Figure V.9: Variations of convective Nusselt numbers at the hot and cold walls  

for Ra=106, Da=10-5, Yp=0.2 and ε = 0.4 

 Figure V.10 presents the variations in the average Nusselt numbers (Nuavg) considering 

different Darcy (Da) numbers (a), and porosity (ɛ) numbers (b). When low Darcy and porosity 

numbers are considered (Da ≤10-5 and ε ≤ 0.4), the porous layer acts as a solid block and 

approaches nearly isothermal conditions, as shown in Figure V.6 (a, b). As the porosity and 

permeability increase, the flow penetrates the porous region, resulting in a monotonic increase 

in heat transfer.  

 Eventually, for very high porosity and permeability values (Da > 10-4, ε> 0.4), where 

the friction within the porous medium becomes minimal, the Nuavg stabilizes at a constant 

value, resembling the solution for a completely fluid-filled cavity. These scenarios showcase a 

progressive shift from conduction to convection within the porous zone. We have specifically 

chosen these values of porosity and permeability for further analysis, which will be elaborated 

in detail in our future work. 

 The incompressible approach based on the Boussinesq hypothesis is applicable for 

simulating natural convection in a cavity without a porous medium (Yp=0) as well as 

convection in a cavity containing a porous medium (Yp>0) for low temperature gradients. 

According to Figure V.11, when the temperature difference (ΔT) is less than 30°C, which 

corresponds to a value of the Boussinesq coefficient (εb ≤ 0.05), there are no significant 
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differences between constant properties and variable properties. However, as the temperature 

difference increases, there is a substantial divergence between the results of the Boussinesq 

model and those of the low Mach number model, especially when εb reaches its highest value 

of 0.6, corresponding to ΔT = 360°C. It can be observed that variable properties exhibit 

greater heat exchange than constant properties, as noted previously. 

  

    (a)       (b) 

Figure V.10: Variation of the average Nusselt number as a function of Darcy number (a) for ε 

= 0.4 and porosity ɛ (b) for Da=10-5 

 

Figure V.11: Variation of the average Nusselt number as a function of difference temperature 

ΔT for Da=10-5 and ε = 0.4 

V.6.2 Impact of porosity characteristics the flow and heat transfer 

 The objective of this section is to explore the effects of fluid penetration into the 

porous layer and the related heat transfer mechanisms. Our proposed modeling configuration 

involves the placement of a porous layer at the base of a square enclosure. We investigate 

variations in the permeability of the porous layer (measured by the Darcy number) and the 

porosity (ε) across the non-dimensional thickness (Yp) of the porous layer, spanning from 0 to 

1. Throughout the computational analyses, we keep the Rayleigh number (Ra = 106) and 

Boussinesq parameter (εb = 0.6) constant. 
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V.6.2.1 Influence of Darcy number  

 The Darcy number plays a crucial role in comprehending the dynamics of heat transfer 

and fluid flow within porous materials. Adjusting the Darcy number reveals its impact on both 

the horizontal and vertical temperature profiles, as illustrated in Figure V.12. As the Darcy 

number rises (indicating increased permeability and fluid flow through the porous medium), 

even with Yp=0.2, the heat transfer process becomes more effective. A higher Darcy number 

results in a more uniform horizontal temperature distribution and a reduction in temperature 

differentials across the porous layer. This phenomenon is attributed to enhanced convective 

heat transfer, driven by significant temperature gradients at ɛb=0.6. 

 

  

      (a)       (b) 

Figure V.12: Temperature profiles at the midpoint height Y= 0.5 (a) and the midpoint plane 

X=0.5 (b) for Ra=106, Yp=0.2, ε = 0.4, ɛb=0.6, and different Darcy number values 

 

 In terms of fluid dynamics (see Figure V.13), a rise in the Darcy number leads to 

higher velocities within the porous medium (Y≤Yp). This enhanced flow is attributed to the 

decreased resistance to fluid motion resulting from higher permeability. As a result, the fluid 

tends to distribute more uniformly in the remaining cavity (Y>Yp). However, changes in the 

Darcy number have a relatively minor influence on vertical velocities. Vertical flow is 

predominantly governed by buoyancy forces, influenced by parameters such as the Rayleigh 

number (Ra) and the Boussinesq parameter (ɛb). While the Darcy number impacts flow 

patterns and the presence of a porous layer with limited permeability results in a rapid 

velocity reduction within the fluid region, its effect on vertical velocities is less significant 

compared to horizontal velocities. This suggests that heat transfer predominantly occurs via 

conduction within the porous region. 
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       (a) 

       

(b) 

Figure V.13: Vertical (a) and horizontal (b) velocities at the horizontal cross section and the 

vertical cross section for Ra=106, Yp=0.2, ε = 0.4, ɛb=0.6, and different Darcy numbers 

 

Figure V.14 demonstrates the impact of the Darcy number on streamlines and 

isotherms. At low Darcy numbers (Da≤10-5), the porous layer behaves as a solid wall, 

exhibiting nearly uniform temperatures. With increasing permeability (Da>10-5), fluid flow 

penetrates the porous medium, leading to improved heat transfer. At very high Darcy numbers 

(Da≥10-2), streamlines and isotherms stabilize, remaining relatively constant. This stability 

signifies that the streamlines and isotherms indicate that the convective flow patterns and 

temperature distribution reach an equilibrium, ensuring consistent heat transfer efficiency. 

This balance is reflected in the attainment of a uniform average Nusselt number, akin 

to fully fluid-filled enclosures. Notably, there is a substantial rise in 𝑁𝑢 for lower Darcy 

values (refer to Figure V.15). These findings illustrate a gradual shift from conduction-

dominated to convection-dominated heat transfer within the porous domain. Additionally, the 

decrease in the average Nusselt number between scenarios with a small Boussinesq parameter 

(ɛb=0.017) and a large Boussinesq parameter (ɛb=0.6) can be attributed to the impact of large 

temperature differences and the thermodependency of thermophysical properties. 
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Da=10-6 

  

Da=10-5 

  

Da=10-4 

  

Da=10-3 

  

Da=10-2 

  

Da=10-1 

  

Da=1 

  
 (a) (b) 

Figure V.14: Streamlines (a), isotherms (b), for Ra=106, Yp=0.2, ε = 0.4, εb = 0.6, and 

different values of Darcy number 
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Figure V.15: Variations of the average Nusselt number as a function of Darcy number, for 

low (εb=0.017) and high (εb=0.6) temperature differences 

V.6.2.2 Impact of porosity ɛ  

 The porosity of a porous material represents the fraction of voids or pores relative to 

the total volume of the substance. These voids or pores acts as conduits for fluid circulation 

within the porous medium. Thus, adjusting the porosity parameter directly affects the volume 

of space accessible for fluid motion, consequently influencing the dynamics of heat transfer 

and fluid flow. 

 An increase in porosity implies a greater presence of voids within the porous material, 

which creates wider channels for fluid flow. This increase in void space decreases the 

interaction between the solid matrix and the fluid, consequently reducing the efficiency of 

convective heat transfer. As a result, the temperature distribution within the cavity changes, 

often showing more pronounced temperature gradients across the porous layer (see Figure 

16). Elevated porosity values typically correspond to diminished heat transfer effectiveness 

due to reduced convective thermal effects. 

  

         (a)         (b) 

Figure V.16: Temperature profiles at mid-height Y= 0.5 (a) and mid-plane X=0.5 (b) for 

Ra=106, Yp=0.2, Da=10-5, εb = 0.6, and different values of porosity coefficient 
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 Figure V.17 illustrates that higher porosity values are associated with lower horizontal 

and vertical velocities in fluid flow. This decline is a result of the increased empty space 

resulting from higher porosity, which in turn raises the resistance to fluid flow. Consequently, 

fluid velocities diminish, enhancing flow through the porous media (Yp≤0.2). 

 

  
     (a)        (b) 

Figure V.17: Vertical (a) and horizontal (b) velocities for Ra=106, Yp=0.2, Da=10-5, εb = 0.6, 

and different values of porosity coefficient 

 

 Changes in porosity significantly impact streamlines and isotherms, which, in turn, 

reflect changes in fluid flow patterns and heat transfer characteristics within the porous 

medium (see Figure V.18). Greater porosity values (ɛ > 0.4) promote increased fluid 

penetration, leading to larger temperature gradients across the porous material. Conversely, 

lower porosity values (ɛ ≤ 0.4) yield more intricate streamlines and smoother isotherms, 

signifying enhanced convective heat transfer and reduced temperature gradients. 
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 (a) (b) 

Figure V.18: Streamlines (a), isotherms (b), for Ra=106, Yp=0.2, Da = 10-5, εb = 0.6, and 

different values of porosity coefficient 

The distribution of the average Nusselt number, as depicted in Figure V.19, illustrates 

a relationship between the porosity number and heat transfer. It is apparent that with the 

increase in the porosity number, the average Nusselt number initially decreases. However, it 

eventually stabilizes at relatively constant values (ɛ ≥ 0.6). This observation suggests the 
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presence of a critical porosity value beyond which further increases have minimal effect on 

heat transfer and fluid flow. This result aligns with previous studies indicating that higher 

porosity encourages fluid penetration, leads to larger temperature gradients, and enhanced 

convective heat transfer. Conversely, lower porosity values result in smoother flow patterns, 

reduced temperature gradients, and improved convective heat transfer efficiency. 

 

Figure V.19: Variations of the average Nusselt number as a function of Porosity coefficient 

for low (εb = 0.017) and large (εb = 0.6) temperature differences 

V.6.2.3 Impact of porous layer thickness Yp  

Our study also examines the impact of the dimensionless porous layer thickness (Yp) 

on both flow patterns and heat transfer processes. In Figure V.20, temperature profiles in the 

horizontal and vertical midplanes (X=0.5 and Y=0.5) are depicted for different Yp values. For 

thinner porous layers (Yp ≤ 0.4), the temperature profiles exhibit notable gradients, indicating 

a predominantly convective situation with stratification at the cavity’s base. In contrast, with 

an increase in Yp (Yp> 0.4), the temperature profiles tend to adopt a more linear trend, 

resembling the behavior typically observed in a fully conductive cavity. 

  

(a) (b) 

Figure V.20: Temperature profiles at mid-height Y= 0.5 (a) and mid-plane X=0.5 (b) for 

Ra=106, Da=10-5, ε = 0.4, εb = 0.6, and different layer thickness values. 
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Figure V.21 illustrates the profiles of horizontal and vertical velocities in the 

transverse plane (X-Y). Within the porous region, the velocity profile demonstrates a near-

linear pattern. At Yp=0, the profiles signify a purely convective nature. Furthermore, the 

vertical velocity profiles exhibit a symmetric feature, each profile displaying two peaks within 

the boundary layers. These peaks diminish in amplitude as the porous layer thickness 

increases. At Yp=1, representing a fully porous enclosure, both velocity profiles become 

predominantly linear, indicating a primarily conductive flow. Each horizontal velocity profile 

also reveals two peaks near the vertical wall, gradually transitioning to a more linear behavior 

as they approach the bottom of the cavity. Notably, the profiles indicate the absence of 

circulation in the lower region of the cavity. 

  
(a) (b) 

Figure V.21: Vertical (a) and horizontal (b) velocities for Ra=106, ɛ=0.4, Da=10-5, εb = 0.6, 

and different layer thickness values 

 In Figure V.22, contour plots depict isotherms and streamlines, offering insights into 

flow and heat transfer characteristics. For Yp=0 (no porous layer), the streamlines reveal two 

cells rotating clockwise at the cavity center, illustrating pure natural convection. With an 

increase in the porous layer thickness (Yp ≥ 0.2), the strength of these cells diminishes 

compared to the initial scenario, until reaching the configuration of a fully porous cavity (Yp 

= 1), where a single cell dominates the cavity space.  

 For a fully porous cavity (Yp = 1), the isotherms within the porous medium exhibit a 

predominantly vertical orientation, indicating vertical heat conduction through the porous 

material. Heat is conducted from the warmer (high-temperature) fluid in the upper region to 

the cooler (low-temperature) fluid in the lower region. With a substantial thickness of the 

porous layer (Yp = 1), flow obstruction within the porous medium is notable, and flow 

primarily occurs through diffusion in the porous material.  
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Figure V.22: Streamlines (a), isotherms (b), for Ra=106, ε = 0.4, Da = 10-5, εb = 0.6 and 

different layer thickness values 
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Figure V.23 illustrates the distribution of the Nusselt number concerning the 

dimensionless thickness of the porous layer (Yp). The plot illustrates that as the porous layer 

thickness tends towards zero, corresponding to pure natural convection, the Nusselt number 

converges to a singular value. likewise, as the thickness of the porous medium approaches 

unity, representing a state of pure conduction, the flow transitions towards a predominantly 

conductive regime across the medium. 

The influence of a porous medium on natural convection flow is more significant 

compared to a system without a porous medium. The presence of a porous medium 

significantly alters the characteristics of fluid flow and heat transfer within the system. 

However, when examining the average Nusselt number, which acts as an indicator of 

convective heat transfer, the impact of the porous medium is relatively minor until a certain 

porosity value is attained, approximately around Yp = 0.8. This suggests that within this 

range, the porosity of the medium has limited effects on heat transfer.  

However, prior to reaching this critical porosity value, a considerable decrease in the 

average Nusselt number is observed. This reduction is attributed to the inhibition of 

spontaneous convection movement caused by the presence of the porous medium. In other 

words, the porous medium hampers the natural flow of the fluid, leading to a reduction in 

convective heat transfer. 

The graph can be divided into three distinct zones. The initial zone signifies a 

predominantly diffusive region, indicating minimal flow effects (Yp ≥ 0.8). The third zone 

corresponds to mostly convective flow, leading to substantial heat transfer (Yp=0). The 

intermediate zone is characterized by a drastic decline in the Nusselt number as a function of 

Yp. 

 

Figure V.23: Variations of the average Nusselt number as a function of layer thickness for 

low (εb= 0.017) and large (εb = 0.6) temperature differences 
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V.7 CONCLUSIONS  

 This chapter presented a comprehensive analysis of the coupled natural convection and 

porous media within a square cavity, employing a Low-Mach-number approach and a control 

volume method. By examining the effects of temperature difference, porous layer 

characteristics (porosity and permeability), and temperature-dependent fluid properties 

(constant or variable), we have gained valuable insights into the flow patterns and heat 

transfer performance of the system. Key findings from this study can be summarized as 

follows: 

- Under non-Boussinesq conditions and with increasing temperature gradient, there is a 

notable difference between the solutions obtained using compressible (εb > 0.017) and 

incompressible (εb = 0.017) models. Hence, the coupled natural porous media system can 

be accurately simulated by employing the compressible model with the assumption of a 

low Mach number. 

- Fluid compressibility in porous media can have a significant impact on natural convective 

heat transfer. It can change the fluid flow patterns, thereby affecting the rate of heat 

transfer. Furthermore, fluid compressibility can also influence the thermal expansion and 

contraction of the porous medium, introducing additional complexity to the system. 

- The presence of a porous layer at the bottom of the cavity reduces stratification in the 

central region and promotes flow along the horizontal walls and at the upper section of the 

cavity. This configuration also decreases fluid temperatures, resulting in substantial 

alterations in flow patterns and temperature distribution. 

- Variations in thermophysical properties can significantly affect thermal transmission and 

flow patterns. 

- The presence of a low-permeability porous layer caused a significant decrease in heat 

transmission. In contrast, it was noted that heat transfer coefficients increased with higher 

permeability of the porous material. The Nusselt number achieves its peak at a low 

porosity value of 0.1 and stabilizes at a consistent value as porosity rises to 0.8. This 

indicates the presence of an optimal porosity range for maximizing heat transfer 

efficiency. 

- With the increases in the Darcy number, the thermal and dynamic fields within the porous 

layer becomes more pronounced. This implies that as permeability rises, the behavior 

starts resembling that of a fluid medium. The Nusselt number reaches its maximum and 

remains stabilizes when the Darcy number reaches 10-2, indicating the optimal condition 

for heat transfer efficiency in relation to Darcy permeability. 

- The Nusselt number exhibited an inverse correlation with the increase in Yp (the porous 

layer thickness), converging towards a steady value when the thickness approached zero, 

indicating pure natural convection. Similarly, as Yp approached unity, it stabilized at an 

almost consistent value at Yp = 0.8, akin to the porosity-related behavior, highlighting the 

significance of thickness in regulating the heat transfer efficiency within the porous 

medium. The flow through the porous medium transitioned towards a fully conductive 

state. 
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The conclusions drawn in this chapter have significant implications for enhancing the 

design and performance of systems integrating porous layers across diverse engineering 

applications.  

In the realm of thermal engineering, understanding the influence of permeability and 

porosity on heat transfer facilitates the advancement of more effective thermal management 

strategies for energy-efficient buildings and heat exchange systems. Similarly, in geothermal 

energy and oil recovery sectors, a deep understanding of fluid flow and heat transfer in porous 

reservoirs aids in optimizing recovery conditions and elevating energy production rates. 

Profound insights into heat transfer in porous media are crucial for designing and optimizing 

heat exchangers in the petroleum industry. Furthermore, utilizing porous materials in 

electronics cooling enhances the performance and reliability of electronic systems. These 

outcomes also have the potential to refine mathematical models and simulation methodologies 

for fluid dynamics simulations that incorporate porous media effects. 
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VI.1 INTRODUCTION 

 In a variety of natural phenomena and engineering applications, such as grain storage, 

air-conditioning systems and building insulation [1,2], as well as in many industrial 

applications such as furnaces, combustion equipment, burners, electronic component cooling 

and printed circuit boards [3–5], the interplay between natural convection and heat transfer in 

porous/fluid composite domains is apparent in problems of natural convection coupled with 

thermal radiation [6,7].  Most of these applications involve significant temperature variations 

and require modeling that takes into account real variations in fluid properties and the impact 

of compressibility. The low Mach number (LMN) assumption is an important numerical issue 

for low-velocity compressible flows, as it allows realistic fluctuations in fluid properties and 

compressibility effects [8,9]. Global pressure is divided into two terms: mean thermal 

pressure and dynamic pressure. This decomposition eliminates acoustic waves, enabling 

substantial fluctuations in density as a function of temperature. Numerous numerical models 

and tests have been carried out in recent years to study natural convection and heat transfer 

processes in cavities, with and without thermal radiation [10–12]. The differentially heated 

cavity problem is a famous case in CFD code verification that focuses on the influence of 

surface thermal radiation on natural circulation in a differentially heated cavity filled with a 

porous medium and with large temperature changes.  

 Several previous studies have been conducted on the coupling of natural convection 

and surface radiation phenomena [13–17]. Hamimid et al. used a numerical approach with a 

finite volume method to investigate the combined laminar natural convection and surface 

radiation in a differentially heated square cavity. The study analyzed the impact of emissivity 

on temperature and velocity profiles within the cavity and presented results for convective and 

radiative Nusselt numbers under various conditions [13]. Another numerical analysis was 

conducted to study the combined effects of laminar natural convection, internal heat 

generation, and surface radiation. The researchers employed a finite volume method with a 

staggered grid and the SIMPLER algorithm to examine an air-filled square cavity with 

uniform emissivity on all four walls. The study reported results illustrating the influence of 

emissivity and internal heat generation on streamlines and temperature contours within the 

cavity. It also presented the effects of different parametric conditions on convective and 

radiative Nusselt numbers [14].  

 This chapter focuses on investigating natural convection and heat transfer in a 

differentially heated cavity partially filled with a porous layer while considering the influence 

of surface thermal radiation. The cavity is a square enclosure with an adiabatic condition 

applied to the upper and lower walls. By varying the emissivity of the vertical surface 

radiation within the cavity (ranging from 0 to 1), we aim to understand the specific impacts of 

low permeability (Da = 10-5) and high permeability (Da = 10-3) of the porous medium on heat 

transfer and fluid flow phenomena. To obtain quantitative and qualitative information, we will 

perform simulations by setting up appropriate scenarios and analyzing the results. This 

chapter endeavor will provide a comprehensive understanding of the complex relationships 

between convection, radiation, temperature differences, and characteristics of the porous 

medium. 
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VI.2 PROBLEM FORMULATION 

 This study investigates a two-dimensional square cavity with a side H (FigureVI.1). 

The cavity is filled with a porous layer at its bottom and a variable-property Newtonian fluid. 

The natural convection problem is characterized by two vertically heated walls with specified 

temperatures cT , h cT T . The assumption is made that horizontal surfaces experience 

combined contributions from both convection and radiation 0r

T
k q

y


− + =


. All four walls 

are subjected to no-slip and zero-mass flux boundary conditions 0V = , maintaining the same 

emissivity value. 

 A Cartesian ( ,x y ) coordinate system is employed, and the gravitational vector g  is 

applied along the y-coordinate. Initial conditions include constant pressure 0p  and 

temperature 0T  distributions, as well as stationary flow 0V = . The Boussinesq parameter 

0/ 2b T T =   is introduced using the mean temperature and the temperature difference 

between the walls h cT T T = − . 

U=V=0,θ = θ𝑖                  for     τ = 0 

U=V=0,θ = θ𝐶 = 0.5      for     0 ≤ Y ≤ 1 and X= 0 

U=V=0,θ = θ𝐹 = −0.5   for     0 ≤ Y ≤ 1 and X= 1 

U=V=0,
𝜕θ

𝜕𝑌
− 𝑁𝑟𝑄𝑟 = 0    for     0 ≤ X ≤ 1 and Y= 0 

U=V=0,
𝜕θ

𝜕𝑌
− 𝑁𝑟𝑄𝑟 = 0    for     0 ≤ X ≤ 1 and Y= 1 

 A flow model developed for low Mach numbers[13–15] is used to investigate the 

dynamics of the heated cavity. In this case, the Navier-Stokes equations are expressed as 

powers of a very small parameter M² (where M denotes the Mach number). The total pressure 

P is then divided into two components: average thermodynamic pressure and dynamic 

pressure P'. At an initial temperature of 300 K, the fluid (air) is considered to behave as an 

ideal gas in the current study. Sutherland's law is applied to calculate the transport parameters 

μ (T) and k (T). 

( )
( )3/2 0

0

1 /
2 1

2 1 /
b

b

S T
T

T S T





 


+
= +

+ +
                                                                                     (VI.1) 

WhereS  =110.4 [18].  The conductivity is given by: 

( )
( )

Pr

T
k T


=                                                                                                                       (VI.2) 

( )p t
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FigureVI.1: Flow configuration and coordinate system. 

VI.3 GOVERNING EQUATIONS 

 The Low-Mach-Number equations are used to represent this flow as we are concerned 

with a case of significant temperature variations [16,19].  

Fluid Region 
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The non-dimensional variables are used to make the non-dimensional equations. 
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𝑑𝑃

𝑑𝜏
 (VI.22) 

𝜌 =
𝑃

(2𝜀𝑏𝑇+1)
  (VI.23) 

With     𝝈 =
𝜺(𝝆𝒄𝒑)𝒇+(𝟏−𝜺)(𝝆𝒄𝒑)𝒔

(𝝆𝒄𝒑)𝒇
  

VI.4 RADIATIVE ANALYSIS 

          The surface radiation does not modify the equations governing fluid motion but only 

alters the thermal boundary conditions. The coupling of natural convection with surface 

radiation occurs solely through the thermal boundary conditions. Without surface radiation, 

the adiabatic condition implies that the temperature gradient normal to these walls is zero. In 

the presence of surface radiation, the adiabatic condition is translated by the balance between 

conductive and radiative fluxes: 

 −𝑘
𝜕𝑇

𝜕𝑦
|
𝑦=0,   𝐻

+ 𝑞𝑟 = 0 (VI.24) 

𝑞𝑟is the net radiative flux density, determined by the following systems of equations: 

 𝑞𝑟 =
𝜀

1−𝜀
(𝜎𝑇4 − 𝐽) (VI.25) 

 𝐴𝐽 = 𝑏 (VI.26) 

𝐽 is the radiosity vector 

𝐴 is a matrix whose elements are given by: 

 𝐴𝑖𝑗 = 𝛿𝑖𝑗 − (1 − 𝜀)𝐹𝑖𝑗 (VI.27) 

and  

 𝑏𝑖 = 𝜀𝜎𝑇𝑖
4 (VI.28) 
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The system describing the surface radiation is non-dimensionalized using the following 

parameters: 

- The radiation temperature is non-dimensionalized by 𝑇0, thus: 

 𝛩 =
𝑇

𝑇0
= 𝜃

𝛥𝑇

𝑇0
+ 1 =

𝜃

𝜃0
+ 1 (VI.29) 

Where: 𝜃0 =
𝑇0

𝛥𝑇
 

- The radiation flux 𝑞𝑟 is non-dimensionalized by 𝜎𝑇0
4 , thus: 

 𝑄𝑟 = 𝑞𝑟/𝜎𝑇0
4 (VI.30) 

If the enclosure consists of N walls, the dimensionless radiosity of wall i is obtained by 

solving the following system: 

 ∑ (𝛿𝑖𝑗 − (1 − 𝜀𝑖)𝐹𝑖−𝑗)𝑅𝑗
𝑁
𝑗=1 = 𝜀𝑖𝛩𝑖

4 (VI.31) 

Where R is the dimensionless radiosity defined as: 

 𝑅 = 𝐽/𝜎𝑇0
4 (VI.32) 

Consequently, the dimensionless radiative flux density along a surface 𝐴𝑖 is expressed as: 

 𝑄𝑟,𝑖 = 𝑅𝑖 − ∑ 𝑅𝑗𝐹𝑖−𝑗
𝑁
𝑗=1  (VI.33) 

 

VI.4.1 Boundary conditions 

          Since the coupling of natural convection with surface radiation occurs solely through 

the thermal boundary conditions, the corresponding dimensionless boundary conditions are 

given by: 

𝑈 = 𝑉 = 0,  𝜃 =  𝜃0                 for       𝜏 = 0                                                                  (VI.34) 

𝑈 = 𝑉 = 0,  𝜃 = 𝜃𝐶 = −0.5     for  0 ≤ 𝑌 ≤ 1  and  𝑋 = 0 (VI.35) 

𝑈 = 𝑉 = 0,  𝜃 = 𝜃𝐻 = 0.5        for  0 ≤ 𝑌 ≤ 1 and  𝑋 = 1 (VI.36) 

𝑈 = 𝑉 = 0,  
𝜕𝜃

𝜕𝑌
− 𝑁𝑟𝑄𝑟 = 0     for  0 ≤ 𝑋 ≤ 1 and    𝑌 = 0 (VI.37) 

𝑈 = 𝑉 = 0,
𝜕𝜃

𝜕𝑌
− 𝑁𝑟𝑄𝑟 = 0   for  0 ≤ 𝑋 ≤ 1 and    𝑌 = 1 (VI.38) 

Where 𝑁𝑟 = 𝜎𝑇0
4𝐻/𝑘𝛥𝑇 is the dimensionless parameter of conduction-radiation. 
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VI.4.2 Heat transfer parameters 

 The following formulas provide the heat transfer rate on the active vertical walls in 

terms of average convective and radiative Nusselt numbers 𝑁𝑢𝑐𝑎𝑣𝑔and 𝑁𝑢𝑟𝑎𝑣𝑔: 

 𝑁𝑢𝑐𝑎𝑣𝑔
= ∫ −

𝜕𝜃

𝜕𝑋
|
𝑋=0,1

1

0
𝑑𝑌 (VI.39) 

 𝑁𝑢𝑟𝑎𝑣𝑔
= 𝑁𝑟 ∫ 𝑄𝑟|𝑋=0,1

1

0
𝑑𝑌 (VI.40) 

 The total average Nusselt number is obtained by summing the average values of the 

convective and radiative Nusselt numbers: 

 𝑁𝑢𝑎𝑣𝑔 = ∫ (−
𝜕𝜃

𝜕𝑋
|
0,1

+ 𝑁𝑟𝑄𝑟|𝑋=0,1)
1

0
𝑑𝑌 (VI.41) 

VI.4.3 Numerical modelling 

 The 2-D governing differential equations for the velocity, pressure, and temperature 

fields are numerically solved using a finite volume approach. A power scheme is employed to 

approximate the advection-diffusion terms. To solve the pressure-velocity coupling, the 

SIMPLER (Semi-Implicit Method for Pressure Linked Equations Revised)method with a 

staggered grid is used, as described in Patankar[20]. The governing equations are formulated 

in transient form, and a fully implicit transient differencing scheme is used as an iterative 

procedure to reach steady state. The algebraic equations are solved using a combination of the 

line-by-line technique, which employs both the direct method (Thomas algorithm) and the 

iterative method (Gauss-Seidel). The discretized equations are solved using this technique 

with two directional sweeps. For each elemental wall surface, the radiosity is calculated as a 

function of temperature, emissivity, and view factor, through the following matrix equation: 

 [𝐴𝑖,𝑗][𝑅𝑖] = [𝜎𝜃𝑖
4] (VI.42) 

The analytical formulas for the view factors in 2D are provided as follows [21] (Figure VI.1): 

 𝐹𝑖−𝑗 =
−1

2(𝑥2−𝑥1)
[√𝑥2

2 + 𝑦2|
𝑦1

𝑦2

− √𝑥2
2 + 𝑦2|

𝑦1

𝑦2

] (VI.43) 

 𝐹𝑖−𝑘 = −
1

2(𝑥2−𝑥1)
[√(𝑥2 − 𝑥)2 + 𝐻2|

𝑥=𝑥1

𝑥=𝑥2
−√(𝑥1 − 𝑥)2 + 𝐻2|

𝑥=𝑥1

𝑥=𝑥2
] (VI.44) 

VI.5 GRID SENSITIVITY 

 In order to achieve an optimal balance between the required precision and computation 

time, a mesh sensitivity test is conducted at various locations within a domain. A grid size 

variation ranging from (50×50) to (160×160) is used, with particular attention given to 

comparing the average Nusselt numbers on the vertical active walls. 
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 The analysis is characterized by the following specific calculation parameters: Ra=106, 

Yp=0.2, ɛr=0.5, Da=10-3, and ΔT=360 K. The initial state corresponds to a quiescent medium, 

with a uniform temperature T0=300K, for which the Prandtl number is Pr=0.71. 

The results obtained for different mesh configurations are presented in Table VI.1. It 

should be noted that with a finer mesh, there is a reduction in the average Nusselt values. The 

observed reductions indicate that the solution becomes independent of the mesh beyond 

(100×100). This particular mesh size is identified as the optimal balance between accuracy 

and computation time, serving as the basis for code validation 

Table VI.1: Mesh sensitivity test for convective, radiative and total Nusselt numbers. 

Grid 

Nuavg 

50*50 60*60 80*80 100*100 120*120 160*160 

Convective   

 

Hot wall 

 

8.201255 8.191255 8.180472 8.157594 8.15723 8.14867 

Radiative  6.299823 6.28924 6.281225 6.27943 6.275761 6.273356 

 

Total  14.49003 14.48055 14.4617 14.43703 14.43299 14.42803 

Convective  

 

Cold wall 

8.11632 8.07136 8.055877 8.032181 8.026004 8.02463 

Radiative 6.41034 6.402246 6.4055 6.404661 6.406952 6.407051 

Total 14.49352 14.47361 14.46138 14.4368 14.43295 14.42935 

VI.6 VERIFICATION 

Before presenting and discussing the results, the developed numerical code is 

validated to ensure that it produces accurate results. The results of the natural convection 

problem in the presence of surface radiation are compared to two sets of published data. 

The average radiative Nusselt number and isotherms for (42 ×42) grid size are 

compared with those given in Wang et al. [22] and Akiyama et al. [23] as shown in Figures 

VI.2 and VI.3. Results of the present work compare exceedingly well with those given in the 

literature. 

 It should be mentioned here that in the works of Wang et al. [22] and Akiyama et al. 

[23], the Boussinesq approximation was taken into account for the temperature difference 

∆T= 10 K (εb=0.017), while this approximation is no longer valid for such a temperature 

difference. To simulate both pure natural convection (εr = 0) and combined natural convection 

with surface radiation (εr> 0), the use of the incompressible model based on the Boussinesq 

approximation can be considered valid under the condition εb ≤ 0.05 when the temperature 

difference in the cavity is approximately less than 30K [16,24] 



CHAPTER VI                  Influence of Surface Radiation on Heat Transfer and Fluid Flow in a 

Square Cavity with a Porous Layer at the Bottom 

 

117 
 

  

Present work Wang et al. [23] 

Figure VI.2:Comparison of the average radiative Nusselt numbers of  the present work with 

those of Wang et al. [23] 

 

 

 

(a) 

  
 

 

 

(b) 

  
 

 

 

(c) 

  
 Present work Akiyama et al.[24] 

Figure VI.3 : Comparison of the isotherms of  the present 

work with those of Akiyama et al. [24] 
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VI.7 RESULTS AND DISCUSSION 

In this section, we present and discuss the numerical results illustrating the impact of 

the examined parameters on flow characteristics and heat transfer. The study uses a 

compressible numerical model (LMN) to explore the influences of porous layer permeability 

and surface radiation on steady-state heat transfer and fluid flow in the presence of substantial 

temperature variations. 

The system under investigation is an air enclosure incorporating porous media. It 

comprises a differentially heated cavity with isothermal vertical walls and adiabatic top and 

bottom walls 

In the simulation, certain parameters are kept constant. These parameters include the 

Prandtl number (Pr = 0.71), the Rayleigh number (Ra = 106), the Boussinesq parameter (ɛb = 

0.6), the porous layer thickness (Yp = 0.2) and the porosity (ɛ=0.4).  However, we experiment 

with varying the Darcy number Da (10–5, 10–3) and emissivity εr (ranging from 0 to 1) in order 

to investigate the effects of permeability and surface radiation. 

Figures VI.4 and VI.5 show temperature profiles for different emissivity (εr) values 

and two Darcy numbers: a low value (Da = 10–5) and a high value (Da = 10–3). 

 In Figure VI.4, the horizontal temperature profiles of the air in the middle of the cavity 

are presented for the specific case of εb = 0.6. The results demonstrate that the thickness of the 

thermal boundary layer varies with emissivity. Specifically, an increase in emissivity leads to 

thickening of the thermal boundary layer near the hot wall, while it thins near the cold wall. 

This variation in the thickness of the thermal boundary layer causes a shift in the temperature 

peaks towards the cold wall. 

 This effect is solely due to non-Boussinesq effects. In the central region, an increase in 

ε slightly raises the fluid's temperature, and higher permeability reduces the temperature 

stratification, with no significant influence from the porous layer. Figure VI.5 displays 

vertical temperature profiles in the middle of the cavity. Increasing ε results in heating at the 

bottom wall and cooling at the top wall. The presence of the porous layer and the Darcy 

number have noticeable effects. As emissivity increases, the temperature at the bottom wall 

rises in the presence of different permeabilities in the porous layer, while a decrease is 

observed near the top wall. 
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                       Da=10-5                                Da=10-3 

Figure VI.4: Horizontal temperature profiles as a function of emissivity (εr) for low  

(Da =10–5) and high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6 

  
                       Da=10-5                                 Da=10-3 

Figure VI.5: Vertical temperature profiles as a function of emissivity (εr) for low 

(Da =10–5) and high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6 

 The impact of emissivity (εr) and permeability (Da) on the flow is shown in Figures 

VI.6 and VI.7. Horizontal and vertical velocity components are plotted at X=0.5 and Y=0.5, 

respectively. The results reveal that within the porous layer, the flow is slightly faster with 

pure conduction heat transfer when ε is increased, especially at low Darcy numbers. 

Examining the U component profiles, we observe that the boundary layer contracts near the 

bottom wall and expands near the opposite wall. It is interesting to note that in the stratified 

region, the flow remains unchanged for the V component. Moreover, the peak value near the 

cold vertical wall is slightly lower for Da=10-3 compared to Da=10-5, indicating an increase in 

the permeability of the porous medium, resulting in reduced hydrodynamic resistance. 

Convection heat transfer within the porous layer becomes significant at high Darcy values, 

although the dominant mode is conduction.  
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Da=10-5                  Da=10-3 

Figure VI.6: Horizontal velocity profiles as a function of emissivity (εr) for low (Da =10–5) 

and high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6 

 

 
 

 

                Da=10-5                                   Da=10-3 

Figure VI.7: Vertical velocity profiles as a function of emissivity (εr) for low (Da =10–5) and 

high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6. 

 Figures VI.8 and VI.9 demonstrate the impact of surface emissivity on the Nusselt 

number for high values of the Boussinesq parameter εb. The results reveal that the effect of 

surface emissivity on the Nusselt number differs between the free flow region (Yp> 0.2) and 

the porous medium region (Yp ≤ 0.2). In the porous medium region, the cold side wall 

experiences significantly lower values of the Nusselt number compared to the free flow region 

for Da=10-5. On the hot side wall, an opposite effect is observed, where the impact is more 

pronounced compared to the free flow region. These changes are relatively smaller due to 

weaker natural convection and the absence of thermal radiation in the porous medium. 

Figures VI.8 and VI.9, also illustrates the effect of emissivity variation on the radiative 

Nusselt number. As expected, Nusselt values rapidly increases with emissivity on the cold 

side wall and decreases on the hot side wall. This indicates the significant role of surface 

radiation in heat transfer in the cavity, particularly at higher emissivity levels.The presence of 

thermal radiation on the surfaces results in a slight increase in the temperature gradient near 

the hot side wall in the free flow region, causing a slight elevation in the Nusselt number on 
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the hot side as emissivity increases. As a result, the Nusselt number at the hot wall is lower 

than that at the cold wall. Moreover, as emissivity further increases, the temperature gradient 

near the cold side also slightly rises in the free flow region. 

   
 Da=10-5  

   
 Da=10-3  
 

Convective Nusselt numbers Radiative Nusselt numbers Total Nusselt numbers 

Figure VI.8: Evolution of the Nusselt numbersat the cold wall as a function of emissivity (εr) 

for low (Da = 10–5) and high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6 

 

   
 Da=10-5  

   
 Da=10-3  
 

Convective Nusselt numbers Radiative Nusselt numbers Total Nusselt numbers 

Figure VI.9: Evolution of the Nusselt numbersat the hot wall as a function of emissivity (εr) 

for low (Da = 10–5) and high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6 
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 Figures VI.10 and VI.11 display streamlines and isotherm plots, which are used to 

compare simulations with and without surface radiation at different emissivities. The results 

consistently indicate that, since the temperature difference is high (εb = 0.6), the flow loses its 

symmetric nature.  

As we can see in Figure VI.10, the secondary rolls within the primary flow become 

asymmetric. The permeability of the porous layer (Da) significantly influences the flow 

structure. An increase in Da reduces the strength of the cell due to the hydrodynamic 

resistance from the porous layer. At lower Da values, a contracted central cell can be 

observed, while higher Da values result in a horizontally elongated cell 

A closer examination of Figure VI.11 reveals that the slopes of the isotherms near the 

lower wall differ from those near the upper wall.  The predominantly vertical isotherm 

patterns within the porous layer indicate the dominance of conduction heat transfer, whereas 

the predominantly horizontal isotherm patterns imply convection dominance.  

Furthermore, the introduction of radiation causes an increase in temperature at the 

interface and a decrease at the top wall in the free flow region. The presence of natural 

convection and thermal radiation at the interface between the free flow and porous medium 

leads to higher average temperatures in the porous medium compared to cases without 

radiation. Increasing the emissivity of the surfaces slightly amplifies the average temperature 

in the porous medium. The introduction of surface thermal radiation significantly shifts the 

mean temperature line to the right in the porous medium, even with low emissivity values. 

However, the extent of these changes is less pronounced when the emissivity increases from 

0.5 to 1 compared to the range of 0 to 0.5. 

      
Da=10-5 

      
Da=10-3 

ɛr=0 ɛr=0,2 ɛr=0,4 ɛr=0,6 ɛr=0,8 ɛr=1 

Figure VI.10: Streamlines as a function of emissivity (εr) for low (Da =10–5) and high 

 (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6. 
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Da=10-5 

      
Da=10-3 

ɛr=0 ɛr=0,2 ɛr=0,4 ɛr=0,6 ɛr=0,8 ɛr=1 

Figure VI.11: Isothermsas a function of emissivity (εr) for low (Da =10–5) and high  

(Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6. 

 To gain a better understanding of the effects of the studied parameters, we extensively 

investigate the overall heat transfer, represented by the average Nusselt numbers over the 

heated wall, as depicted in Figure VI.12.  

The results demonstrate that overall heat transfer improves as the emissivity (εr) 

increases, regardless of the values of other parameters, even in the presence of the porous 

layer, which inherently resists heat transfer. This observation is clearly evident in Figure 

VI.12, indicating that the permeability of the porous layer does not significantly impact the 

enhancing effect of emissivity. However, our study reveals that in certain situations, 

particularly at lower Da values, increasing εr to 0.8 leads to an increase in the average 

convective Nusselt number. Subsequently, further increases in εr result in a steep stabilization 

of convective Nuavg values, as shown in Figure VI.12a.  

 Additionally, in Figure VI.8b, the influence of effective thermal conductivity and 

hydrodynamic resistance is expressed at high Da numbers, due to the flow penetrating 

through the porous layer. In other words, the increase in Nuavg with respect to εr can be 

attributed to the fact that, for different Da numbers, the flow penetrating into the porous layer 

is not affected by the acceleration caused by the thermal energy resulting from higher 

effective thermal radiation. 
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(a) Convective average Nusselt numbers (b) Radiative average Nusselt numbers 

 
(c) Total average Nusselt numbers 

Figure VI.12: Distribution of the average nusselt numbers as a function of emissivity (εr) for 

low (Da =10–5) and high (Da = 10–3) Darcy numbers with Ra = 106, ɛb=0.6. 

 

VI.8 CONCLUSION 

 The investigation into heat transfer and fluid flow within a cavity, considering the 

influence of permeability in porous media and surface emissivity, has provided valuable 

insights into the complex interplay of these factors. 

Permeability impact: 

- Variations in permeability significantly alter flow behavior. 

- Low permeability restricts fluid flow, reducing convection and heat transfer rates. 

- High permeability facilitates fluid flow, enhancing heat transfer within the cavity. 
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Combined Radiation-Natural Convection: 

- Numerical exploration of combined radiation-natural convection in a differentially heated 

cavity with porous medium revealed insightful patterns. 

- Thermal radiation plays a crucial role in shaping natural convection and heat transfer in both 

free fluid and porous medium regions. 

- Surface thermal radiation induces temperature distribution changes, even with a small 

emissivity. However, increasing emissivity from 0.5 to 1.0 does not lead to remarkable 

alterations. 

- Compared to non-radiation scenarios, temperature rises at the interface and decreases at the 

top insulated wall. This leads to higher temperatures within the porous medium, with a slight 

increase as the emissivity of the surfaces rises. 

In conclusion, this study underscores the significance of permeability and emissivity in 

shaping heat transfer and fluid flow dynamics. The observed variations in parameters provide 

a nuanced understanding of the intricate relationship between these factors, offering valuable 

implications for practical applications and further research in thermal systems. 
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GENERAL CONCLUSIONS  

 This research has investigated the intricate dynamics of fluid flow and heat transfer 

within a square cavity, considering the influence of permeability in porous media, surface 

emissivity, and the coupling effects of natural convection with internal heat generation. The 

study aimed to clarify the complex interactions among these factors and their implications for 

engineering applications involving thermal systems and energy transfer. 

 The primary focus of this study was to examine how the presence of a porous medium 

influences fluid flow and heat transfer characteristics within the square cavity. Through a 

combination of mathematical analysis and numerical simulations using advanced 

computational methods, valuable insights were gained into the behavior of fluid flow and heat 

transfer under varying conditions. 

 Additionally, the investigation addressed the limitations of the Boussinesq 

approximation for predicting fluid heat transfer under significant temperature gradients. By 

adopting a compressible model based on the low Mach number approximation, more accurate 

results were obtained, emphasizing the importance of selecting appropriate modeling 

approaches in complex fluid dynamics scenarios. 

 Furthermore, the study explored the competition between internal and external Rayleigh 

numbers (RaI and RaE), revealing their critical role in shaping overall system behavior. The 

analysis provided insights into the balance between buoyancy forces induced by internal heat 

generation and external temperature gradients imposed on the cavity, elucidating the interplay 

between porous medium characteristics, natural convection, and internal heat generation. 

 This research underscores the importance of understanding variations in thermophysical 

property on fluid flow and heat transfer within cavities, which is crucial for optimizing thermal 

systems and designing efficient heat exchangers. 

 One of the key findings is the significant role of permeability in porous media on altering 

flow behavior. It was observed that low permeability restricts fluid flow, resulting in reduced 

convection and heat transfer rates within the cavity. Conversely, higher permeability facilitates 

fluid flow, thereby enhancing heat transfer effectiveness. This understanding is crucial for 

optimizing thermal management strategies and designing efficient heat exchangers in 

engineering applications. 

 Moreover, the study highlighted the crucial influence of thermal radiation on shaping 

flow patterns and heat transfer dynamics. Surface emissivity plays a critical role in determining 

temperature distributions within the cavity, with increasing emissivity leading to moderate 

alterations in temperature profiles. The incorporation of radiation reduces stratification within 

the cavity and promotes flow along the horizontal walls and within the porous medium, 

ultimately affecting heat transfer rates. 

 These findings have profound implications for optimizing thermal systems and 

designing energy-efficient solutions across various engineering disciplines. Understanding the 

nuanced interactions between permeability, radiation, and fluid dynamics enables the 

development of tailored solutions to enhance heat transfer performance and energy utilization. 
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 Moving forward, several future research directions are highly recommended to expand 

on the current findings. For instance, exploring the influence of a magnetic field in the presence 

of porous media could offer novel perspectives on how magnetic effects impact fluid dynamics 

and heat transfer in such systems. Additionally, investigating volumetric radiation effects 

within a porous medium could provide deeper insights into the role of radiation in modifying 

heat transfer characteristics within porous enclosures. These avenues of research have the 

potential to uncover new phenomena and enhance our understanding of complex thermal 

systems involving porous media and radiative heat transfer. 

 



 ABSTRACT 

ABSTRACT 

This thesis explores natural convection heat transfer in fluid-saturated porous media within enclosed 

cavities, a key area with applications in thermal management and industrial processes. The research examines the 

effects of internal heat generation, thermal radiation, temperature differences and porous medium characteristics 

on fluid flow and heat transfer rates. All simulations are conducted under the low Mach number approximation, 

where high temperature gradients ensure accurate fluid dynamics modeling. Numerical simulations, based on the 

Darcy-Brinkman model and Navier-Stokes equations, analyze laminar flow patterns and temperature fields. Key 

parameters such as internal Rayleigh number, external Rayleigh number, Darcy number, porosity, emissivity, and 

Boussinesq parameter are investigated. Results show that higher Darcy numbers improve fluid flow and heat 

transfer, while increased porosity enhances heat exchange surface area. Thermal radiation plays a significant role 

in shaping convection patterns and overall heat transfer rates. This study provides valuable insights for optimizing 

heat exchange in energy-efficient systems and industrial applications. 

Keywords: Natural convection, Porous layer, Internal heat source, Finite volume method, SIMPLER algorithm, 

Permeability, Porosity, Layer thickness, Low Mach Number approximation, Boussinesq approximation, surface 

radiation. 

RÉSUMÉ 

Cette thèse explore le transfert de chaleur par convection naturelle dans des milieux poreux saturés de 

fluide au sein de cavités fermées, un domaine clé avec des applications dans la gestion thermique et les processus 

industriels. La recherche examine les effets de la génération de chaleur interne, du rayonnement thermique, des 

différences de température et des caractéristiques du milieu poreux sur l'écoulement des fluides et les taux de 

transfert de chaleur. Toutes les simulations sont réalisées sous l'approximation des faibles nombres de Mach, où 

des gradients de température élevés assurent une modélisation précise de la dynamique des fluides. Des simulations 

numériques, basées sur le modèle de Darcy-Brinkman et les équations de Navier-Stokes, analysent les schémas 

d'écoulement laminaire et les champs de température. Des paramètres clés tels que le nombre de Rayleigh interne, 

le nombre de Rayleigh externe, le nombre de Darcy, la porosité, l'émissivité et le paramètre de Boussinesq sont 

étudiés. Les résultats montrent que des nombres de Darcy plus élevés améliorent l'écoulement des fluides et le 

transfert de chaleur, tandis qu'une porosité accrue augmente la surface d'échange de chaleur. Le rayonnement 

thermique joue un rôle significatif dans la formation des schémas de convection et les taux globaux de transfert de 

chaleur. Cette étude fournit des informations précieuses pour optimiser les échanges de chaleur dans des systèmes 

économes en énergie et des applications industrielles. 

Mots-clés : Convection naturelle, Couche poreuse, Source de chaleur interne, Méthode du volume fini, 

Algorithme SIMPLER, Perméabilité, Porosité, Épaisseur de couche poreuse, Approximation de nombre de Mach 

faible, Approximation de Boussinesq, Rayonnement de surface. 

  الملخص

 مجال وهو مغلقة،  تجاويف داخل بالسوائل المشبعة المسامية الوسائط في الطبيعي الحراري بالتدفق الحرارة انتقال الأطروحة هذه تتناول

 درجات وفروقات الحراري والإشعاع الداخلي الحرارة توليد تأثيرات في الدراسة تبحث. الصناعية والعمليات الحرارة إدارة في تطبيقات له أساسي

 لماخ،  المنخفضة  الأعداد  تقريب  تحت  المحاكاة  جميع  إجراء  تم.  الحرارة  انتقال  ومعدلات  السوائل  تدفق  سلوك  على  المسامي  الوسط  وخصائص  الحرارة

-نافييه  ومعادلات  برينكمان-دارسي  نموذج  إلى  العددية  المحاكاة  تستند.  الموائع  لديناميكا  دقيقة  نمذجة  الحرارة  درجات  في  العالية  التدرجات  تضمن  حيث

 دارسي، عدد الخارجي،  رايلي عدد الداخلي،  رايلي عدد مثل رئيسية معايير دراسة تم. الحرارة درجات وحقول الطبقي التدفق أنماط لتحليل ستوكس

 العالية المسامية تعزز بينما الحرارة،  وانتقال السوائل تدفق تحسن لدارسي الأعلى الأعداد أن النتائج أظهرت. بوسينسك ومعامل الانبعاثية،  المسامية، 

 الدراسة هذه توفر. الإجمالية الحرارة انتقال ومعدلات الحراري التدفق أنماط تشكيل في مهمًا دورًا الحراري الإشعاع يلعب. الحراري التبادل مساحة

 .الصناعية والتطبيقات للطاقة الموفرة الأنظمة في الحرارة تبادل آليات لتحسين قيمة رؤى

،  SIMPLER ، خوارزمية volume finiالحمل الطبيعي، الطبقة المسامية، مصدر حراري داخلي، طريقة  :المفتاحية الكلمات

 .، الإشعاع السطحي  Boussinesq ، تقريب Low Mach Numberالنفاذية، المسامية، سمك الطبقة، تقريب 


