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Abstract
Multi-objective optimization problems (MOPs) involve the simultaneous optimiza-

tion of multiple, often conflicting objectives, and have wide-ranging applications in

fields such as engineering, business, economics, and logistics. Most MOPs are classi-

fied as NP-Hard, meaning that finding an exact optimal solution is computationally

expensive and impractical for large instances. In such cases, stochastic methods are

preferred, as they offer near-optimal solutions within a reasonable time, as opposed

to exact methods, which guarantee optimal solutions but require exponentially longer

runtimes.

This thesis addresses a bi-objective optimization problem known as the Minimum

Weight Minimum Connected Dominating Set (MWMCDS) problem. The objective is to

minimize both the number of nodes (cardinality) and the total weight of the connected

dominating set (CDS) in a given graph, a well-known challenge in graph theory.

To tackle this problem, three greedy stochastic algorithms are proposed. The first,

Greedy Simulated Annealing (GSA), applies the simulated annealing technique with

an aggregated objective function to guide the search process. The second, Improved

NSGA-II (I-NSGA-II), is an enhanced version of the widely used NSGA-II algorithm,

specifically adapted for multi-objective optimization. The third algorithm, Multi-objective

Greedy Simulated Annealing (MGSA), introduces a new multi-objective adaptation of

simulated annealing based on Pareto optimization. In all three approaches, tailored

greedy heuristics are integrated to boost the efficiency of the solution process.

Experimental results, based on several performance metrics, demonstrate that the

proposed algorithms outperform existing state-of-the-art methods, achieving superior

results in terms of both solution quality and computational efficiency.

Keywords: multi-objective combinatorial optimization, stochastic algorithms, greedy

heuristic, minimum weight minimum connected dominating set problem
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Résumé
Les problèmes d’optimisation multi-objectif (POMs) nécessitent l’optimisation simul-

tanée de divers objectifs souvent contradictoires. Ils ont de nombreuses applications

dans différents domaines scientifiques, notamment l’ingénierie, le commerce, l’économie,

la logistique, etc. La plupart des MOPs sont des problèmes NP-difficiles, il est donc trop

coûteux en termes de calcul de trouver une solution optimale exacte s’il en existe une.

Dans de telles situations, des méthodes stochastiques sont appliquées pour trouver

une solution quasi-optimale dans un temps de calcul raisonnable, plutôt que des ap-

proches déterministes qui garantissent l’optimalité des solutions retournées mais dans

un temps exponentiel.

Dans cette thèse, nous traitons le problème d’optimisation bi-objectif appelé problème

de l’ensemble dominant connexe de cardinalité minimale et de poids minimale (MWM-

CDS), qui cherche à minimiser à la fois la cardinalité et le poids total du problème bien

connu en théorie des graphes ; l’ensemble dominant connexe.

Trois algorithmes stochastiques gloutons sont proposés pour résoudre le problème

mentionné. Le premier, GSA, est un recuit simulé standard qui utilise une fonction

objective agrégée pour guider le processus de recherche. Le deuxième, I-NSGA-II,

représente une version améliorée du célèbre algorithme NSGA-II dans le domaine

de l’optimisation multi-objectifs. Le troisième, MGSA, est une nouvelle adaptation

multiobjectif de l’algorithme de recuit simulé basée sur la technique de Pareto. Dans

chacune de ces approches, une heuristique gloutonne est développée et utilisée pour

améliorer l’efficacité de la résolution de problème. Les résultats expérimentaux basés

sur plusieurs métriques de performance montrent que les algorithmes proposés sur-

passent les méthodes actuelles de pointe.

Mots-clés: optimisation combinatoire multi-objectifs, algorithmes stochastiques,

heuristique gloutonne, problème d’ensemble dominant connexe de cardinalité mini-

male et de poids minimale
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Chapter 1

Introduction

1.1 Overview

Many real-world problems require balancing multiple, often conflicting crite-

ria. These are known as multi-objective optimization problems (MOPs). Unlike

single-objective optimization, which seeks one optimal solution, MOPs aim to

identify a set of solutions that represent trade-offs between different objectives.

These solutions form the Pareto optimal set, where no single solution can im-

prove one objective without worsening at least one other.

MOPs appear in various aspects of everyday life, with examples in fields

such as engineering, business, economics, and logistics. Take buying a house,

for instance: we might aim to minimize costs, the age of the house, and the dis-

tance to work or school, while maximizing property quality and neighborhood

safety. On top of that, several constraints — such as budget, space requirements,

access to public transport, and layout — further complicate the decision.

From this example, it’s evident that finding an exact optimal solution, if it

exists, would be computationally expensive and often impractical.
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Solving multi-objective optimization problems (MOPs) has always been chal-

lenging due to their computational complexity and the vast solution space in-

volved. In fact, many real-world MOPs are exponentially large, and a straight-

forward reduction from the knapsack problem shows that they are NP-hard to

compute [1]. As a result, finding near-optimal solutions is often a practical and

feasible approach for addressing these problems.

Over the past few decades, various methods have been developed to tackle

MOPs, with many relying on heuristic approaches to provide approximate so-

lutions within a reasonable computation time. A large number of these heuris-

tics follow a greedy strategy. In addition to heuristics, metaheuristic algo-

rithms have also gained prominence. These are stochastic, approximate meth-

ods that can efficiently find near-optimal solutions, unlike exact algorithms that

guarantee optimality but require exponential time. Metaheuristics are particu-

larly well-suited for global exploration, as they are able to navigate vast search

spaces and identify promising regions in a reasonable computational time [2, 3]

This thesis presents greedy approximation approaches to solve an edge-

weighted variant of the connected dominating set (CDS) problem, known as

the minimum weight minimum connected dominating set (MWMCDS) prob-

lem. The objective is to minimize two criteria: the size of the CDS and its total

weight. These concepts have practical applications in various domains, includ-

ing wireless sensor networks, mobile ad hoc networks, and vehicular ad hoc

networks [4, 5, 6, 7]. Additionally, other key applications are found in fields

such as cancer therapy [8], sociology [9], and biology [10, 11].
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1.2 Goals and contributions

The primary goal of this thesis is to develop novel algorithms to solve the multi-

objective optimization problem MWMCDS by balancing the trade-off between

two objectives: minimizing the size and total weight of the generated connected

dominating set. The proposed methods are designed to deliver high-quality

solutions within a reasonable computational time. The main contributions of

this work are summarized as follows:

1. Greedy simulated annealing algorithm (GSA) [12]:

GSA is a standard simulated annealing algorithm enhanced by initializing with

good starting solutions generated through a greedy heuristic or randomly. It

explores neighboring solutions either through a greedy strategy or randomly.

Additionally, GSA employs an effective temperature adjustment mechanism to

guide the search. The performance of the proposed algorithm was evaluated

and compared to a recent multi-objective genetic algorithm, MOGA [13], and

the MCDS approach from [14]. The experimental results demonstrate the supe-

riority of our method over the alternatives.

2. An improved non-dominated sorting genetic algorithm II (I-NSGA-II)

[15]:

In this study, we introduce I-NSGA-II, an enhanced algorithm based on NSGA-

II, specifically designed to address the Minimum Weight Minimum Connected

Dominating Set (MWMCDS) problem. As part of the development process,

three greedy heuristics were implemented, and the most effective one was se-

lected to initialize the algorithm.

I-NSGA-II generates the initial population using either the selected greedy

heuristic or random initialization. Offspring are created by applying either a
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local search strategy or genetic operators, with equal probability. Fast non-

dominated sorting and crowding distance mechanisms are employed to rank

and select solutions for the next generation, ensuring diversity and conver-

gence.

We compared the performance of I-NSGA-II and NSGA-II using multiple

metrics, including Pareto front quality for the two objective functions, hyper-

volume indicator, C-metric, and execution time. The experimental results demon-

strate that I-NSGA-II consistently outperforms NSGA-II, offering better conver-

gence and computational efficiency.

3. A Multiobjective greedy simulated annealing algorithm (MGSA) [16]:

MGSA is a multiobjective simulated annealing algorithm leveraging the Pareto

optimization technique. It is initialized using a combined greedy heuristic that

balances both weight reduction and cardinality minimization. Neighbors are

generated either greedily or randomly, with equal probability. The algorithm

also incorporates adaptive temperature control and solution acceptance mech-

anisms to enhance the search process.

After reaching the maximum number of iterations, the approximate Pareto

set is further refined by eliminating redundant vertices. The performance of

MGSA was compared against recent algorithms from the literature, namely

MOGA [13], MCDS [14], I-NSGA-II [15], and GSA [12] on two types of datasets.

The results obtained demonstrate the superiority of MGSA.

1.3 Thesis organization

The remainder of this thesis is organized as follows:

Chapter 2: Outlines the background of the thesis. It defines the optimiza-

tion problem and presents its classes. Furthermore, it offers a comprehensive
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overview of resolution methods, heuristics, and metaheuristics employed for

addressing optimization problems.

Chapter 3: Devoted to discuss the multi-objective optimization. It defines

the important concept, provides a detailed explanation of decision-making,

presents some known multi-objective evolutionary algorithms, and describes

well-known performance metrics used to compare multi-objective algorithms.

Chapter 4: Focuses on the minimum weight minimum connected dominat-

ing set problem. First, it recalls some basic definitions of graph theory, then

presents the important dominating set variants and reports their complexity.

After that, the MWMCDS problem is formally defined, and related works from

the literature are discussed. Illustrative examples are provided throughout to

clarify these concepts.

Chapters 5, 6, and 7: Each chapter presents in detail one of the three con-

tributions we have developed. Specifically, Chapters 5, 6, and 7 describe the

frameworks of the proposed approaches: GSA, I-NSGA-II, and MGSA, respec-

tively. Pseudo-codes for the main algorithmic components are presented, ac-

companied by a detailed discussion of the experimental results.

Chapter 8: Finally, Chapter 8 concludes the thesis and states future direc-

tions in order to achieve further research studies.
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Chapter 2

Background

2.1 Introduction

According to the Cambridge English Dictionary, optimization is defined as ’the

act of making something as good as possible.’ In mathematical terms, optimiza-

tion involves finding the best solution(s) to a problem with one or more objec-

tives. As a result, optimization problems can be categorized into two types:

single-objective and multi-objective optimization problems.

To address these problems, numerous methods have been proposed in the

literature, classified based on various criteria. Common classifications include

enumerative methods, deterministic methods, and stochastic methods. Among

these, metaheuristics — stochastic approaches — are extensively used to tackle

most optimization problems and have proven effective in a wide range of ap-

plications.

This chapter is organized as follows: Sections 2 and 3 provide definitions of

optimization problems and combinatorial optimization problems, respectively.

Section 4 presents a classification of optimization problems. Section 5 reviews

various solution methods, including enumerative, deterministic, and stochastic

methods. Finally, Section 6 focuses on heuristics.
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2.2 Definition of an optimization problem

A general single-objective optimization problem can be mathematically expressed

as minimizing (or maximizing) an objective function f as follows [17, 18]:



optimize f(x)

subject to

x ∈ X

gj(x) ≤ 0, for j = 1, . . . , l

hk(x) = 0, for k = 1, . . . , p

(2.1)

Here, f(x), gj(x), and hk(x) are functions of the design vector x = (x1, . . . , xi, . . . , xn)
T ,

where the components xi are referred to as decision variables. X represents the

search space. The functions gj(x) represent the l inequality constraints, while

hk(x) represent the p equality constraints.

2.3 Definition of a combinatorial optimization prob-

lem

A Combinatorial Optimization Problem (COP) can be defined as an optimiza-

tion problem where the search space consists of a finite set of feasible solutions,

and an associated objective or cost function. Formally, a COP is represented

by the pair P = (S, f), where S is the discrete set of feasible solutions, and

f : S → R is the objective function to be optimized. The aim is to find a glob-

ally optimal solution s∗ ∈ S, such that f(s∗) ≤ f(s) for all s ∈ S, assuming
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a minimization problem. In many cases, finding such an optimal solution re-

quires exploring large, complex search spaces, which is where metaheuristic

approaches become especially useful due to their ability to efficiently explore

and exploit these spaces.

2.4 Classification of optimization problems

Optimization problems can be classified into several categories based on differ-

ent criteria. According to [19], the classification can be made with respect to the

following factors:

• Number of objective functions: Optimization problems are classified as

single-objective when there is only one objective function, or as multiob-

jective when involving multiple objective functions. In practice, optimiza-

tion studies often utilize up to two objective functions; however, there are

exceptions, such as in cases where three objectives are optimized, as seen

in [20, 21].

• Presence of constraints: Optimization problems can be categorized into

two types: constrained and unconstrained, based on the presence or ab-

sence of constraints that restrict the set of feasible solutions within the

larger search space. In general, solving unconstrained problems is sim-

pler, as there are no additional limitations to consider. However, in most

practical applications, optimization problems are constrained, making them

more challenging to solve due to the need to satisfy various conditions or

requirements while searching for an optimal solution.
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• Function form: The objective function in an optimization problem can be

classified as either linear or nonlinear. If all constraints are linear, the prob-

lem is considered linearly constrained. On the other hand, when the func-

tions involving the design variables are nonlinear, the problem is termed a

nonlinear optimization problem. The distinction between linear and non-

linear plays a significant role in determining the complexity and methods

used to solve the problem.

• Types of design variables: Design variables can be continuous (any real

value with range), discrete (integer or specific values), or mixed-integer

(a combination of both). Discrete optimization includes integer program-

ming, where all variables are integers, and combinatorial optimization.

• Uncertainty in values: An optimization problem is classified as deter-

ministic when the objective and constraint functions have explicitly de-

fined and consistent values for a given set of design variables. On the

other hand, a problem is considered stochastic if it involves uncertainty

or noise in the design variables, objective functions, or constraints, caus-

ing variability in the results.

2.5 Resolution methods

To identify the Pareto-optimal set, numerous methods have been proposed in

the literature, which can be categorized from various perspectives. In this the-

sis, we classify these methods into three main categories: enumerative methods,

deterministic methods, and stochastic methods [22, 23].
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2.5.1 Enumerative methods

Enumerative methods evaluate the objective function(s) systematically at every

point in the search space, often referred to as brute-force or exhaustive search.

These approaches are only practical for problems with a finite number of solu-

tions, as exploring every candidate becomes unmanageable for larger problems.

A key limitation is that the evaluation time grows with the number of options,

making these methods inefficient for large solution spaces or when evaluations

are computationally intensive [22].

2.5.2 Deterministic methods

Deterministic methods are defined by the absence of randomness, relying in-

stead on the mathematical structure of the problem to generate a set of solu-

tions that converge toward the global optimum. These approaches consistently

yield the same output for a given input, as they follow a fixed sequence of

steps, making them generally easier and faster to implement. Commonly used

in nonlinear minimization problems, deterministic methods often involve iter-

ative procedures that, after a set number of iterations, converge to the global

optimum [24, 25].

2.5.3 Stochastic methods

Most optimization problems are challenging to solve using the aforementioned

exploration methods, as the time complexity can become impractical or even

unbounded, particularly for problems involving large or highly complex search

spaces. Stochastic optimization methods are considered suitable and efficient

methods that involve random variables for solving them [26]. For stochastic
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problems, the random variables appear in the formulation of the optimization

problem itself, which includes probabilistic objective functions or random con-

straints. Stochastic methods can be divided into two primary categories: single-

solution search approaches and population-based search approaches. The first group

returns a new feasible solution at each step during the search, one of the well-

known examples of these approaches is the simulated annealing algorithm [27].

The second category involves exploring a set of solutions (population) simulta-

neously in the search space, aiming toward the optimal solution, though with-

out guaranteeing its attainment. Evolutionary algorithms, such as genetic algo-

rithms, are among the most well-known population-based search methods.

2.6 Heuristics

The term “heuristic” is derived from the ancient Greek word heuriskein, mean-

ing the art of discovering new strategies for solving problems. Technically,

heuristic is a method of problem-solving used to find approximate solutions

when it’s not feasible to exhaustively search through every possible solution

due to computational constraints or the large size of the solution space. Heuris-

tics enable a simple approach to traverse through a large space quickly without

attaining an optimal solution; instead, the solution attained is approximate. A

survey of the literature on heuristic classification reveals that the most widely

recognized categories are local search heuristics, constructive heuristics, and

metaheuristics [28].
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2.6.1 Constructive heuristics

Constructive heuristics are generally the quickest approximate algorithms for

solving combinatorial optimization problems [29]. They are straightforward,

easy to implement, and do not require extensive computational tuning. These

algorithms begin with an empty solution and progressively build upon it until a

complete solution is formed. A well-known example of a constructive heuristic

is the greedy algorithm.

It is essential to know the difference between constructive methods which

extend empty solution until get a full solution, and local search techniques

which refine a complete solution through local moves [29]. A pseudocode for a

constructive heuristic is shown in Algorithm 1.

Algorithm 1 Constructive Heuristic Algorithm

1: s← ∅
2: Determine ℜ(s)
3: while ℜ(s) is not empty do
4: c← SelectFrom(ℜ(s))
5: s← s ∪ {c}
6: Update ℜ(s)
7: end while
8: Output: constructed solution s.

Referring to Algorithm 1, the process starts by identifying the set of possible

extensions for each feasible solution s. From this, a set of solution components,

R(s), is generated to expand s. At each iteration, one of the potential extensions

is selected, and this continues until R(s) is empty, indicating either that s is a

complete solution or that it is a partial solution that cannot be extended further

into a feasible one.
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2.6.1.1 Greedy heuristics

Greedy heuristics are a type of constructive heuristic that use a weighting func-

tion in the procedure SelectFrom R(sp) (see Algorithm 1). At each step, a locally

optimal solution is selected and then used as input for the next stage. Although

a greedy algorithm does not guarantee an optimal solution, it can efficiently

provide a close approximation. For instance, in the traveling salesman problem,

which has high computational complexity, a greedy approach involves visiting

the nearest unvisited city at each step. While this method may not yield the best

solution, it completes in a reasonable number of steps, making it practical for

problems where finding the exact optimal solution would require an excessive

number of steps.

2.6.2 Local search heuristics

Local search methods have proven highly effective in solving complex com-

binatorial optimization problems. This strategy involves making small, incre-

mental changes to improve the current solution by exploring its neighborhood.

The current solution is replaced by the best neighboring solution, and the search

continues from there until no further improvement can be found, indicating

that a local minimum has been reached. Formally, the neighborhood is defined

as [29]:

A neighborhood structure is a function N : S → 2S , which assigns to each s ∈ S a

set of neighbors N(s) ⊆ S, where N(s) is the neighborhood of s.

Neighborhood structures are typically defined by the specific modifications

applied to a solution s to generate all its neighbors. The process of applying

these modifications, producing a neighbor s′ ∈ N(s), is known as a move.
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The most basic form of local search is iterative improvement. This begins

with an initial solution, followed by selecting an appropriate neighborhood to

replace the current solution. The process continues until a local optimum is

found. Algorithm 2 outlines the general local search algorithm.

Algorithm 2 Generic local search algorithm

1: input: Initial solution s0
2: Output: current_solution (local optima)
3: current_solution← s0
4: while Termination condition not satisfied do
5: Generate N(current_solution)
6: s′ ← SelectNeighbor(N(current_solution))
7: if f(s′) < f(current_solution) then
8: current_solution← s′

9: end if
10: end while

2.6.2.1 Selection of the neighborhood

To enhance the selection process for identifying a suitable neighbor, several

strategies are commonly employed in the literature, including first improve-

ment, best improvement, and random selection strategies [30].

• First Improvement: This approach involves generating neighboring so-

lutions incrementally. The first neighbor that offers a lower cost than the

current solution is chosen. In this method, the neighborhood is explored

in a fixed order, allowing for a quick assessment.

• Best Improvement: This method conducts a comprehensive evaluation of

all neighboring solutions to find the one with the lowest cost, making it

particularly effective for minimization tasks. However, this thorough ex-

ploration can be computationally demanding, particularly in larger neigh-

borhoods.
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• Random Selection: In contrast to the previous strategies, this method se-

lects a neighboring solution at random. The aim is to improve the current

solution’s quality based on the associated cost, introducing an element of

randomness into the search process.

To optimize both the quality of solutions and search efficiency, it may be

beneficial to implement the first improvement strategy when starting with a

randomly generated solution, while employing the best improvement strategy

when the initial solution is derived through a greedy method.

2.6.2.2 Escaping from Local Optima

Local search algorithms can be effective when the search space contains few

local optima or when the local optima exhibits similar qualities. However, a

significant limitation of these algorithms is their tendency to converge on a local

optimum, potentially leading to suboptimal solutions (see Figure 2.1).

Additionally, the algorithm’s success can heavily depend on the initial solu-

tion chosen. To address these challenges, various alternative algorithms were

developed in the 1980s aimed at enhancing search performance, as illustrated

in Figure 2.2.

2.6.3 Metaheuristics

Metaheuristic is a term introduced by Glover in [32] to design a new kind of

algorithm devised to tackle difficult optimization problems. The word meta-

heuristic consists of two Greek words, meta which means “beyond” or “in the

sense of an upper level”, and heuristic which means “to find”. Thus, meta-

heuristics can be viewed as approaches that combine basic heuristic techniques
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FIGURE 2.1: Example of a problem with local minima Ref[31].

in higher-level frameworks to solve combinatorial optimization problems effi-

ciently and effectively through iterative attempts.

Metaheuristics are approximate optimization techniques designed to find

high-quality solutions for a variety of computationally complex problems that

are inefficient to solve with exact methods. Unlike heuristics, which are problem-

specific and often tailored to a particular class of problems, metaheuristics are

more general-purpose and flexible, making them applicable to a wide range of

problems. Their primary aim is to effectively escape local minima, allowing

further exploration of the search space and the discovery of potentially better

solutions. While they do not guarantee finding a global optimum, metaheuris-

tics typically yield near-optimal solutions at relatively low computational costs

[3, 33, 34].

Successful metaheuristics depend on two key attributes: diversification, which

focuses on exploring the search space, and intensification, which emphasizes

exploiting the best solutions discovered. Diversification aims to uncover re-

gions with potential near-optimal solutions, while intensification hones on the

current top candidates, refining the search for even better results. Achieving a
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FIGURE 2.2: Family of strategies for escaping from local optima
Ref[30].

good balance between these two strategies is essential for increasing the likeli-

hood of reaching global optimality [35].

Some of the more popular research methods can be distributed on the diversi-

fication-intensification spectrum line as shown in Figure 2.3.

The figure shows that random search prioritizes diversification by generat-

ing random solutions throughout the search space without using search mem-

ory. In contrast, local search focuses on intensification, selecting the best solu-

tion that improves upon the current one. Population-based and single-solution-

based methods fall between these two approaches. Single-solution-based ap-

proaches typically emphasize intensification, while population-based approaches

place a stronger focus on diversification [29, 30].
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FIGURE 2.3: Balancing the diversification and intensification spec-
trum in metaheuristics Ref [30].

2.6.3.1 Classification of metaheuristics

There are several ways to categorize metaheuristics, in this section, we present

the most common ones [29, 30, 35].

• Nature-inspired versus non-nature inspired: Many algorithms are de-

signed to mimic natural processes in order to efficiently find high-quality

solutions for combinatorial optimization problems. Nature-inspired algo-

rithms, such as neural networks, genetic algorithms, simulated annealing,

ant colony optimization, and bacterial foraging optimization, are based on

natural phenomena. On the other hand, non-nature inspired algorithms

include techniques like tabu search, variable neighborhood search, and

iterated greedy algorithm.

• Single-solution search versus population-based search: The key distinc-

tion between these methods is the number of candidate solutions man-

aged at once. Single-solution-based methods, or trajectory-based meth-

ods, concentrate on one solution at a time, exploring the search space

by following specific paths. Examples include tabu search, iterated lo-

cal search, simulated annealing, and variable neighborhood search. In
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contrast, population-based algorithms evolve a set of solutions simulta-

neously, such as in evolutionary algorithms, ant colony optimization, par-

ticle swarm optimization, bee colony optimization, and artificial immune

systems.

• One versus various neighborhood structures: The majority of metaheuris-

tics work on a single neighborhood structure, maintaining a stable fitness

landscape topology during the search. However, this approach may con-

strain the diversification of solutions. To address this limitation, some

metaheuristics adopt a set of neighborhood structures by swapping be-

tween different fitness landscapes, examples including variable neighbor-

hood search and iterated local search.

• Memory usage versus memoryless methods: A key characteristic in clas-

sifying metaheuristics is whether they utilize memory. Memoryless meth-

ods, such as local search, simulated annealing, and greedy randomized

adaptive search procedure, do not store or retrieve search history, relying

solely on the current solution and search trajectory for decision-making

during the process. Other metaheuristics like tabu search incorporate a

memory that contains valuable information such as visited elite solutions

etc. Two types of memories exist, short-term memory which prevents re-

visiting recently discovered solutions and avoids recycling, and long-term

memory which helps to ensure diversification and intensification aspects.

• Deterministic versus stochastic: Deterministic methods make decisions

based on fixed rules, thus for the same initial solution, the same final so-

lution will be obtained. For instance local search and tabu search. On the

other hand, stochastic metaheuristics apply some random rules leading to



Chapter 2. Background 20

different final solutions from the same initial solution. Examples include

simulated annealing, evolutionary algorithms, etc.

• lIterative versus greedy: Iterative algorithms begin with a complete so-

lution and refine it through successive iterations. In contrast, greedy al-

gorithms start with an empty solution and progressively build upon it by

adding elements according to predefined criteria until a full solution is

reached.

2.6.3.2 Simulated annealing

Simulated annealing derives its name from the physical annealing process of

solids, where a crystalline material is heated to its melting point and then slowly

cooled to achieve the optimal crystal lattice configuration, minimizing defects

and reaching its lowest energy state. If the cooling is gradual, the result is a solid

with high structural integrity. Simulated annealing draws an analogy between

this thermodynamic process and the search for global minima in optimization

problems [36].

Simulated annealing is a widely studied local search metaheuristic, partic-

ularly effective for discrete optimization problems and, to a lesser extent, con-

tinuous ones. One of its key features is its ability to escape local optima by

allowing hill-climbing moves (i.e., moves that temporarily worsen the objec-

tive function) in the search for a global optimum. Its ease of implementation,

convergence properties, and use of hill-climbing moves have contributed to its

popularity as an optimization technique that can [37]:

(a) Handle cost functions with arbitrary levels of nonlinearity, discontinuity,

and stochasticity.
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(b) Manage various boundary conditions and constraints imposed on these

cost functions.

(c) Be relatively simple to implement with minimal coding compared to other

nonlinear optimization algorithms.

(d) Offer statistical assurances that the global optimum can be reached.

Survey articles providing a comprehensive overview of the theoretical ad-

vancements and practical applications of simulated annealing include [38, 39,

40, 41, 42, 43]. Notable books dedicated solely to this topic include [44, 45].

The basic iteration

At each iteration of the simulated annealing process, the algorithm evaluates a

neighboring solution s′ based on the current solution s. The system then prob-

abilistically determines whether to move to this new solution s′ or remain at

the current state s. If the neighboring solution s′ improves the objective func-

tion, it is accepted outright. However, if s′ results in a worse outcome, the

algorithm may still accept it with a certain probability, which decreases as the

system’s temperature cools. These probabilities eventually guide the system

towards lower energy states. Typically, this process is repeated until the system

achieves a sufficient state for the application or until the allocated computa-

tional resources are depleted.

Exploring Neighboring Solutions

In optimization, neighboring solutions are derived by making slight modifi-

cations to a given solution. For example, in the traveling salesman problem,

where the solution is represented as a permutation of cities, a neighboring so-

lution is created by swapping the positions of two cities. These small changes,
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or "moves," generate a new set of potential solutions that are close to the origi-

nal one. The idea is that these moves allow for gradual improvements, such as

finding more efficient city connections in the traveling salesman scenario.

However, simply moving from one better neighbor to the next may only

lead to a local optimum rather than the global best solution. The simulated

annealing algorithm overcomes this by not only favoring better neighbors but

also occasionally accepting worse ones. This strategy helps the algorithm ex-

plore the broader solution space and escape local optima, increasing the chance

of finding the global optimum if given enough time.

Metropolis acceptance criterion

The probability of transitioning from the current solution s to a neighboring

solution s′ is determined by the Metropolis acceptance criterion [46]. The ob-

jective is to minimize the energy (or objective function) of the system, where

solutions with lower energy are considered better. The candidate solution s′

is accepted with a probability given by the function P (f(s), f(s′), t), which de-

pends on the objective function values of the current and candidate solutions,

as well as the temperature t.

P (f(s), f(s′), ti) =


exp

[
−f(s′)−f(s)

ti

]
if f(s′)− f(s) > 0

1 if f(s′)− f(s) ≤ 0

.

Let ti represent the temperature parameter at iteration i, which controls the

probability of accepting worse solutions in the simulated annealing process

such that

ti > 0 for all i and lim
i→∞

ti = 0

Note that when i increases, ti typically decreases, allowing the algorithm to
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focus more on refining the current solution while limiting the acceptance of less

optimal neighbors. The acceptance probability drives the search in simulated

annealing. A slow temperature decrease allows the system to reach equilibrium

at each iteration.

Change temperature

The temperature controls how sensitive the solution s is to changes in the sys-

tem’s energy. The algorithm begins with a high initial temperature t0, which

decreases according to a user-defined annealing schedule until it reaches tf = 0.

This process enables broad exploration of the search space, gradually narrow-

ing to regions of lower energy, akin to steepest descent. While the probability

of converging to a global optimum approaches 1 as the annealing schedule in-

creases [47], in practice, the time required often exceeds that of an exhaustive

search.

Statement of the algorithm

Algorithm 3 describes the general process of simulated annealing algorithm. It

iterates M0 + M1 + ... + Mi times, where i represents the value for ti that sat-

isfies specific stopping criteria (e.g., reaching a predetermined total number of

iterations or finding a solution of desired quality). In addition, if Mi = 1 for all

i, then the temperature changes at each iteration.

Single-objective Versus Multi-objective Problems

Originally developed for single-objective combinatorial optimization, simulated

annealing has since been adapted for multi-objective problems [43]. Multi-

objective simulated annealing is easy to implement and can generate a Pareto-

optimal set in one run with minimal computational cost. Additionally, its per-

formance remains robust regardless of the shape of the Pareto front, which often
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Algorithm 3 Simulated Annealing Algorithm

1: Input: Initial solution s ∈ S, Temperature change counter k = 0, Tempera-
ture cooling schedule tk, Initial temperature T = t0 ≥ 0, Repetition schedule
Mk.

2: repeat
3: Set repetition counter m = 0.
4: repeat
5: Generate a solution s′ ∈ N(S).
6: Calculate ∆s,s′ = f(s′)− f(s).
7: if ∆s,s′ ≤ 0 then
8: s← s′.
9: else

10: s← s′ with probability exp
(
−∆s,s′

tk

)
.

11: end if
12: m← m+ 1.
13: until m = Mk

14: Update temperature: T ← tk(T, k).
15: k ← k + 1.
16: until stopping criterion is met.
17: Output: Optimized solution s∗.

poses challenges for mathematical programming methods.

Serafini [48] first introduced the multi-objective simulated annealing (MOSA)

algorithm by modifying the decision acceptance criteria. Since then, various

criteria have been explored to improve the acceptance of non-dominated solu-

tions. A selection rule was proposed to focus exploration on these solutions.

Ulungu et al. [49] later developed an alternative MOSA, followed by a compre-

hensive version [50], which uses a weighted aggregation function for evalua-

tion. While the algorithm operates with a single current solution, it maintains a

record of all non-dominated solutions found during the search.

Suppapitnerm and Parkes [51] introduced SMOSA, a simulated annealing-

based approach for multi-objective problems. The algorithm explores a single
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solution per iteration, adjusting the temperature adaptively based on the ob-

jective function values. All non-dominated solutions are stored. A novel ac-

ceptance probability is proposed, using an annealing schedule with separate

temperatures for each objective. If a solution is potentially Pareto-optimal, it is

accepted; otherwise, a multi-objective acceptance rule is applied. For further

examples of multi-objective simulated annealing algorithms, see [52, 53, 54, 55,

56].

2.6.3.3 Genetic algorithm

The genetic algorithm is an optimization and research method inspired by ge-

netics and natural selection and evolution principles, in which the fittest indi-

viduals are selected to produce offspring of the next generation. The genetic

algorithm (GA) was initially introduced by John Holland in 1975, since then

several changes have been made to this formulation.

In the process of natural selection, the most suitable individuals from a popu-

lation are chosen to generate offspring (next generation) that inherit the char-

acteristics of their parents. If the parents have better fitness, their offspring will

outperform their parents and have a better chance of survival. This process

keeps repeating itself and will eventually find the generation with the fittest

individuals. The genetic algorithm translates this concept to problem-solving

scenarios, where a number of solutions are evaluated, and the best among them

is selected. Six phases are considered: initial population, fitness function, selec-

tion, crossover, mutation, and termination.

Initial population

The genetic algorithm starts with a set of individuals called a population. Each

individual represents a solution to the problem to solve, and it is characterized



Chapter 2. Background 26

by a set of parameters (variables) known as genes. The genes are linked in a

chain (string), forming a chromosome (solution). Normally, an individual’s ge-

netic set is represented by a string in alphabetical terms wherein binary values

(a string of 1 and 0) are used.
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FIGURE 2.4: Population, chromosome, and gene.

Fitness function

The fitness function serves as the objective function to be optimized, it provides

the mechanism for evaluating the individuals by assigning a fitness score to

each, which guides the selection phase to decide whether an individual will be

selected for the next generation.

Selection

Selection shapes the natural survival-of-the-fittest mechanism: the fittest solu-

tions survive, while the weakest die. Two pairs of individuals are chosen for

reproduction based on their fitness scores. A commonly used method for selec-

tion is the roulette-wheel method, where the probability of selecting a particular

individual is proportional to its fitness score.

Fig. 2.5 illustrates a simple example of roulette-wheel selection (RWS) with
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FIGURE 2.5: Example of roulette-wheel selection (RWS).

a population of five solutions. Each individual’s probability of selection is pro-

portional to the area of a sector of the roulette wheel. The numbers labeled

on the wheel spokes represent cumulative probabilities for use by the pseudo-

random number generator, which are used to choose solutions for reproduc-

tion. For example, the number 0.13 selects solution 1, and 0.68 selects solution

4. On the left side, the standard roulette wheel selection with a single pointer

to spin five times is depicted. On the right side, the stochastic universal selec-

tion (SUS) is shown, which uses five linked equidistant pointers, resulting in

five selections with one spin. Determining the correct number for a specified

pseudo-random number r involves searching an array of values that bracket r.

For a population size M , this method can be implemented in O(logM) time.

Nevertheless, the method is characterized by high stochastic variability, which

can lead to strong divergences of the actual number of times the solution s is

chosen, Ns, and its expected value, E[Ns]. In order to eliminate this effect, sam-

pling without substitution can be used to ensure that at least the integer part of

E[Ns] is approached and the non-integer parts are evenly distributed over the

random sampling. Baker’s Stochastic Universal Selection (SUS) [57] provides



Chapter 2. Background 28

an effective implementation of this concept, as demonstrated by Hancock’s em-

pirical study [58], showcasing its superiority in practice.

Crossover

In the crossover phase, parents swap some of their genes to generate new com-

binations. An example of a one-point crossover is provided below. Given the

parents A1 and A2 with a crossover point at position 3, offspring A5 and A6 are

formed by interchanging the parental genes until the crossover point is reached.
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FIGURE 2.6: Crossover operation.

Mutation

In certain newly generated offspring, there is a chance that some of their genes

can mutate with a low random probability. This means that a gene (or a subset

of genes) is selected randomly and the value of its allele will change (changing

from 0 to 1 or vice versa). Mutation serves to maintain diversity in the popula-

tion and avoid premature convergence.
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FIGURE 2.7: Mutation operation.
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Termination

Genetic Algorithm is a stochastic search method that can in principle run in-

definitely, to terminate its execution, a stopping criterion needs to be speci-

fied. Common approaches include setting a limit on the number of generations,

or the computer clock time, or monitoring population diversity and stopping

when it falls below a certain threshold.

Statement of the algorithm

Algorithm 4 outlines the process of a genetic algorithm. It starts with the ini-

tialization phase and then repeats the selection, crossover, and mutation oper-

ations until a stopping criterion is met. Ultimately, the algorithm outputs the

best solution found.

Algorithm 4 Genetic Algorithm

1: input: Population size N
2: population← INITIALIZE(N)
3: repeat
4: for each individual in population do
5: EVALUATE(individual)
6: end for
7: parents← SELECTION(population)
8: offspring ← CROSSOVER(parents)
9: MUTATION(offspring)

10: population← REPLACEMENT(population, offspring)
11: until stopping criterion is met
12: Output: Optimized solution individual∗.

Single-objective Versus Multi-objective Problems

Genetic algorithms are suitable for multiobjective optimization because they

operate on a population of individuals and therefore they capture the whole

Pareto front in a single run. Furthermore, they require minimal prior knowl-

edge of the problem compared to other classical methods. As a result, numer-

ous approaches and variations of genetic algorithms that deal with more than



Chapter 2. Background 30

one objective have been published in the technical literature.

Schaffer [59] was the first that introduce a multiobjective genetic algorithm

named VEGA (Vector Evaluating Genetic Algorithm). VEGA uses GA’s selec-

tion technique to generate non-dominated individuals, where each objective is

identified as the selection indicator for a portion of the population. However,

this approach overlooks the concept of Pareto optimization and it results in

poor coverage of the Pareto frontier.

Non-dominated sorting was introduced by Goldberg [60] to categorize the pop-

ulation according to Pareto optimality. Initially, non-dominated individuals are

identified, assigned a rank of r (where r is the iteration number), and eliminated

from the population. This step is repeated with the remaining individuals until

the whole population has been ranked.

Many other multiobjective genetic algorithms were proposed including [61, 62,

63, 64]. In general, these algorithms differ from each other in the following

points [65, 66, 67]: the fitness assignment procedure, the approach to main-

taining the diversity of solutions, and whether Pareto solutions are stored in a

different set than the population. Fonseca and Fleming [61] have divided multi-

objective genetic algorithms into non-Pareto and Pareto-based approaches, For

an overview of genetic algorithms in multiobjective optimization, see [68].

2.7 Conclusion

In this chapter, we provide a thorough review of optimization problems and the

various approaches used to address them. We started by establishing funda-

mental definitions for optimization and combinatorial optimization problems,

followed by an examination of their classification based on distinct attributes.
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We then looked at the three main resolution methods: the enumeration meth-

ods, deterministic methods, and stochastic methods. Additionally, the chapter

covered heuristics extensively with particular emphasis on those used in our

research work.
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Chapter 3

Multi-objective optimization

3.1 Introduction

Multi-objective optimization (MOP) differs from traditional single-objective op-

timization, which seeks a single optimal solution, by aiming to identify a set of

solutions that balance multiple, often conflicting objectives. This complexity

arises from the inherent trade-offs between objectives, necessitating advanced

strategies to effectively explore the solution space. These strategies produce a

set of non-dominated solutions, which must be evaluated using specialized per-

formance metrics. This chapter provides a comprehensive overview of MOP,

discussing its definition, key concepts like Pareto dominance and optimality,

decision-making techniques, and leading evolutionary algorithms for address-

ing MOPs. Additionally, the chapter outlines the most commonly used perfor-

mance metrics to assess the quality of these solutions.
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3.2 Definition of a multi-objective optimization prob-

lem

A multi-objective optimization problem seeks to optimize several conflicting

objectives simultaneously. Rather than focusing on a single best solution, the

goal is to find a set of solutions that represent trade-offs among the objectives,

such as minimizing cost while maximizing quality. These solutions are known

as Pareto-optimal solutions, named after the economist Vilfredo Pareto [69],

and they reflect different compromises where no objective can be improved

without worsening another.

Formally, a multi-objective optimization problem is defined as follows [70,

18, 71]: :

Optimize F (x) = (f1(x), . . . , fm(x))
T , x ∈ Ω

subject to gj(x) ≤ 0, j = 1, . . . , l,

hk(x) = 0, k = 1, . . . , p.

(3.1)

Here, F represents the vector of m objective functions to be optimized, while

x = (x1, . . . , xn) ∈ Ω is the decision variable vector, with Ω being the feasible set.

The functions gj(x) correspond to the l inequality constraints, and hk(x) repre-

sent the p equality constraints. Each decision variable xi is typically bounded

by lower and upper limits, xli ≤ xi ≤ xui, for i = 1, . . . , n.

Figure 3.1 presents a multi-objective optimization scenario involving three

decision variables and two objective functions. The feasible search space is

mapped onto the corresponding objective space.
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FIGURE 3.1: A multi-objective optimization problem having three
variables and two objectives.

3.3 Pareto dominance and optimality

The primary aim of multi-objective optimization is to seek an optimal solution

for the given problem. This involves finding solutions that optimize multi-

ple, often conflicting objectives simultaneously. To overcome this challenge,

most multi-objective optimization algorithms utilize the concept of Pareto dom-

inance. This principle compares two solutions to assess whether one outper-

forms (dominates) the other. Below, we provide definitions of the terminology

pertinent to Pareto dominance and optimality. For these definitions, we refer to

[72].

Definition 3.1. Pareto Dominance

In a multi-objective optimization problem, given two feasible solutions xa and

xb, we say that xa dominates xb (denoted as xa ⪯ xb) if the following conditions

hold:

fi(xa) ≤ fi(xb) ∀i ∈ {1, . . . ,m}, and ∃k ∈ {1, . . . ,m} such that fk(xa) < fk(xb)
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Definition 3.2. Pareto-Optimal Solution

A solution x∗ is considered Pareto-optimal if no other solution exists that domi-

nates it:

∄x ∈ Ω such that x ⪯ x∗

Definition 3.3. Pareto-Optimal Set

The Pareto-optimal set X∗ is the set of all solutions that are not dominated by any

other feasible solutions. This set is defined as:

X∗ = {x∗ ∈ Ω | ∄x ∈ Ω such that f(x) ⪯ f(x∗)}

Definition 3.4. Pareto-Optimal Front

The Pareto-optimal front, denoted by F∗, refers to the set of all objective function

values corresponding to the Pareto-optimal solutions. It is defined as:

F∗ =
{
f(x∗) = (f1(x

∗), . . . , fm(x
∗))T | x∗ ∈ X∗

}

Figure 3.2 illustrates the dominance relationship between solutions and Pareto

optimality, where both objectives are to be minimized.

3.4 Decision making

The optimal Pareto set in most multi-objective optimization problems consists

of a vast, or even infinite, number of solutions. However, in practice, only a

single solution is usually selected from this set. The Decision Maker (DM) is

the person tasked with selecting the most suitable solution, where their pref-

erences are taken into consideration in order to determine a total order among

the Pareto set’s elements. There are several ways to include DM preferences.
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FIGURE 3.2: Illustration of the Pareto optimality and dominance
relations between solutions.

The decision maker (DM) might, for instance, rank the goals by their impor-

tance. Alternatively, they could sample a section of the Pareto front and select

a solution from that subset.

Methods for solving multi-objective problems are typically categorized based

on when the DM provides preference information. As a result, various deci-

sion support techniques have been developed to incorporate DM preferences

into the optimization process [73]. The following classification illustrates these

methods:

3.4.1 Priori methods

Priori techniques are widely recognized for their broad applicability and sim-

plicity. These methods combine multiple objectives into a single objective func-

tion, using various aggregation techniques such as the weighted sum, fuzzy
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integrals, and Tchebychev functions, as discussed in the literature [18]. In the

weighted sum approach, the decision maker assigns priorities to each criterion

to create a single objective function. The optimization process then focuses on

finding the best solution for this combined objective.

3.4.2 Posteriori methods

Posterior methods aim to identify Pareto-optimal solutions without requiring

direct input from the decision maker (DM) during the optimization process. As

a result, these methods present the full set of Pareto solutions, allowing the DM

to select the most suitable option afterward. By eliminating the need to model

the DM’s preferences or have prior knowledge of the problem, these techniques

offer flexibility. However, the large number of solutions generated can make it

challenging for the DM to effectively analyze the optimal Pareto set.

3.4.3 Interactive methods

Interactive methods are designed to actively involve the decision maker (DM)

throughout the entire optimization process. The DM engages with the method

at each step, clearly expressing preferences, and refining them as the process

continues. This iterative approach proceeds until the DM is satisfied with the

solution.

Posterior methods are often considered the most effective for obtaining a set

of optimal solutions, as the decision is made after the optimization process has

been completed. This allows the DM to make an informed choice based on the

full range of available alternatives [26].

Figure 3.3 presents a categorization based on the DM preference of various

techniques used in multi-objective optimization.
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3.5 Multi-Objective Evolutionary Algorithms

When solving an MOP, the objective is not only to find the Pareto set but also

to ensure that its solutions are well-distributed. Evolutionary Algorithms (EA)

are metaheuristics that have proven highly effective in solving MOPs by dis-

covering a diverse set of Pareto optimal solutions within a single run [71, 18,

75]. Over the years, there has been a growing interest in the application of

EAs for MOPs, leading to the development of multi-objective evolutionary al-

gorithms (MOEAs) [59, 76], including the Multi-Objective Genetic Algorithm
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(MOGA) [77]; the Niched Pareto Genetic Algorithm [62]; the Non-dominated

Sorting Genetic Algorithm (NSGA) [63], along with its successors NSGA-II [78]

and NSGA-III [79]; the Strength Pareto Evolutionary Algorithm (SPEA) [80]

and its improved version SPEA2 [81]; and the Multi-Objective Evolutionary Al-

gorithm based on Decomposition (MOEA/D) [82]. This section will delve into

a detailed presentation of the popular MOEAs.

3.5.1 Non-dominated sorting genetic algorithm II (NSGA-II)

The Non-dominated Sorting Genetic Algorithm II (NSGA-II), developed by

Deb et al. in 2002 [78], is an improved iteration of the original Non-dominated

Sorting Genetic Algorithm (NSGA), introduced by Srinivas and Deb in 1994

[63].

The fundamental framework of NSGA-II operates as follows: First, it em-

ploys Pareto dominance to classify individuals within the parent population

based on their non-domination levels. Next, evolutionary operators — selec-

tion, crossover, and mutation — are applied to create an offspring population

of the same size as the parent population. This combined population (parents

and offspring) is then sorted into fronts according to the dominance ranks of

the individuals. Finally, the selection of individuals for the next generation is

conducted from this combined population, considering both the ranked fronts

and the crowding distance. This mechanism is applied to preserve diversity

within the population.

NSGA-II procedure is characterized by three key elements: using an elitist

principle, emphasizing non-dominated solutions, and implementing an explicit

mechanism to preserve diversity.
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Figure 3.4 presents a diagram illustrating the workflow of the NSGA-II al-

gorithm, and algorithm 5 outlines its pseudo-code.
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FIGURE 3.4: Operating principle of NSGA-II algorithm.

Algorithm 5 Pseudo code of the NSGA-II algorithm

1: Initialize population P0 with N individuals
2: Evaluate fitness of each individual in P0

3: for generation t = 0 to T − 1 do
4: Generate offspring population Qt from Pt using crossover and mutation
5: Evaluate fitness of each individual in Qt

6: Combine populations: Rt = Pt ∪Qt

7: Perform non-dominated sorting on Rt to identify Pareto fronts Fi

8: Initialize new population Pt+1 = ∅
9: Initialize front index i = 1

10: while |Pt+1|+ |Fi| ≤ N do
11: Pt+1 = Pt+1 ∪ Fi

12: i = i+ 1
13: end while
14: Sort front Fi by crowding distance
15: Add the most widely spread individuals from Fi to Pt+1 until |Pt+1| = N
16: end for
17: Output: the final population PT as the set of Pareto-optimal solutions
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3.5.2 Strength Pareto Evolutionary Algorithm 2 (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is a multi-objective op-

timization algorithm developed by Zitzler et al. [81] as a revised version of its

predecessor SPEA. SPEA2 seeks to effectively identify solutions that optimize

multiple objectives simultaneously. It works as follows: each candidate solution

is evaluated based on its "strength", or how many solutions it dominates, and

its "raw fitness", or how closely it resembles other solutions. These evaluations

are employed to create and maintain an external archive of non-dominated so-

lutions. The algorithm iteratively evolves a population of candidate solutions

using genetic operators, including selection, crossover, and mutation.

SPEA2 distinguishes itself from its predecessor by utilizing a refined fit-

ness assignment strategy, which incorporates a nearest neighbor density es-

timation technique to enhance search efficiency. Additionally, it implements

an improved archive truncation method to preserve boundary solutions. The

pseudo-code for the SPEA2 algorithm is shown in Algorithm 6.

Algorithm 6 Pseudo code of the SPEA2 Algorithm

1: Initialize population P with random solutions
2: Calculate raw fitness for each solution in P
3: Assign strength to each solution in P based on the number of solutions it

dominates
4: Construct the archive A by selecting nondominated solutions from P ∪ A
5: while termination condition not met do
6: Generate offspring population Q through variation and recombination

of solutions in P
7: Calculate raw fitness and strength for each solution in Q
8: Update the environmental fitness of solutions in P ∪Q
9: Select the best solutions from P ∪Q to form the next generation

10: end while
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3.5.3 Pareto Archived Evolution Strategy (PAES)

PAES (Pareto Archived Evolution Strategy) is a (1+1) evolution strategy origi-

nally introduced by Knowles et al. [83]. This method incorporates local search

techniques with a population size of one, leveraging a reference archive of pre-

viously discovered solutions to enhance its performance. The archive plays a

crucial role in determining the approximate dominance ranking of the current

solution vector.

The PAES process can be summarized as follows: Initially, a single individ-

ual is generated to serve as the parent for producing new solutions. A muta-

tion operator is then applied to this parent individual to create an offspring.

The algorithm evaluates whether the offspring should be added to the archive

and decides which solution will become the parent for the next generation.

Non-dominated solutions identified during the search are stored in an exter-

nal archive [18, 84]. This iterative process helps in maintaining a diverse set of

high-quality solutions.

The pseudo-code for PAES is provided in Algorithm 7, illustrating the step-

by-step operation of the strategy.

3.5.4 The multi-objective evolutionary algorithm based on de-

composition (MOEA/D)

MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition),

proposed by Zhang et al. [82], decomposes multi-objective optimization prob-

lems (MOPs) into a number of single-objective problems (SOPs). This decompo-

sition involves linear or nonlinear weighted aggregations of the original MOP

objectives. Various aggregation methods can be utilized, including the weighted
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Algorithm 7 Pseudo code of the PAES Algorithm

1: Initialize archive A with a random solution
2: Set iteration counter t← 0
3: while termination condition not met do
4: Generate a new solution s′ by perturbing a solution from A
5: if s′ is dominated by any solution in A then
6: Discard s′

7: else if s′ dominates any solution in A then
8: Replace dominated solutions in A with s′

9: else
10: Add s′ to A
11: end if
12: Increment iteration counter t← t+ 1
13: end while
14: Output: Archive A containing the approximated Pareto front

sum approach, the Tchebycheff approach, and the penalty boundary intersec-

tion method.

Once the SOPs are established, MOEA/D creates neighborhood relation-

ships among them based on their aggregation weight vectors. To determine

these relationships, the algorithm calculates the distances between the aggrega-

tion vectors; SOPs with smaller distances between their vectors are considered

closer by MOEA/D. This structure allows MOEA/D to optimize each SOP us-

ing information from its neighboring problems, enhancing the search process.

The pseudo-code for MOEA/D is illustrated in Figure 8, which outlines the

algorithm’s step-by-step execution.

3.6 Performance metrics

In single-objective optimization problems, assessing the quality of a solution is

relatively straightforward: for minimization problems, a smaller value of the

objective function indicates a better solution. However, evaluating the quality
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Algorithm 8 Pseudo code of the MOEA/D algorithm

1: Initialize the weight vectors λ1, λ2, ..., λµ uniformly in the objective space
2: Randomly initialize a population P of size µ
3: Set iteration counter t← 0
4: while termination condition not met do
5: for i← 1 to µ do
6: Select neighbors of solution xi using a neighborhood selection strat-

egy
7: Decompose the objectives for each solution and its neighbors
8: Update the neighbor solutions using a local search or variation oper-

ator
9: end for

10: Update the population P with the improved solutions
11: Update the external archive if necessary
12: Increment iteration counter t← t+ 1
13: end while

of a Pareto set in multi-objective optimization (MOP) is more complex. Key

requirements for an effective MOP strategy include [85]:

1. Convergence: The obtained solution set should closely approximate the

true Pareto front.

2. Diversity: The strategy should maintain a diverse set of solutions.

The first requirement ensures that the solutions are near-optimal, while the

second guarantees a broad spectrum of trade-off solutions. These two func-

tionalities cannot be adequately captured by a single performance indicator,

prompting the development of various metrics in the literature [86].

In the following sections, we will present the most commonly used perfor-

mance metrics in this context.

3.6.1 Hypervolume (HV)

One of the most prominent indicators in multi-objective optimization is the

hypervolume, also referred to as the S-metric or Lebesgue measure. Initially
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proposed by Zitzler and Thiele in [80], the hypervolume indicator is charac-

terized by its robust mathematical properties, enabling it to effectively capture

both dominance and distribution characteristics of Pareto fronts without requir-

ing explicit knowledge of the true Pareto front. Empirical investigations [87,

88] have demonstrated its superior performance relative to alternative metrics,

contributing to its widespread adoption within the evolutionary computation

community [89].

The hypervolume indicator quantitatively assesses the volume of the objec-

tive space that is dominated by the approximation of the Pareto front, denoted

as YN , which is constrained by a reference objective vector r ∈ Rm. This rela-

tionship is defined such that for all y ∈ YN , y ≤ r. The hypervolume is mathe-

matically represented as:

HV (YN ; r) = λm

( ⋃
y∈YN

[y, r]

)

where λm signifies the m-dimensional Lebesgue measure. A higher value of

the hypervolume indicator correlates with enhanced convergence towards the

Pareto front and increased diversity among the solutions. Figure 3.5 illustrates

this concept in the context of a bi-objective scenario (m = 2).

3.6.2 C-metric (C)

The C-metric, also known as the coverage of two sets, is a binary performance

indicator introduced in [80]. It evaluates the performance of two non-dominated

sets by computing the proportion of points in one Pareto front approximation

that are weakly dominated by points in the other set.
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FIGURE 3.5: Illustration of the hypervolume indicator for a bi-
objective problem.

Let Y 1
N and Y 2

N represent two approximations of the Pareto front. The C-

metric quantifies the proportion of points in Y 2
N that are weakly dominated by

points in Y 1
N . This binary indicator maps the ordered pair (Y 1

N , Y
2
N) to the inter-

val [0, 1] and is defined as follows:

C
(
Y 1
N , Y

2
N

)
=
|{y2 ∈ Y 2

N | ∃y1 ∈ Y 1
N such that y1 ≤ y2}|
|Y 2

N |
.

If C (Y 1
N , Y

2
N) = 1, this indicates that all elements of Y 2

N are either dominated

by or equal to elements of Y 1
N . Conversely, if C (Y 1

N , Y
2
N) = 0, none of the ele-

ments of Y 2
N are weakly dominated by elements of Y 1

N .

It is crucial to compute both orderings, as it is not guaranteed that C (Y 1
N , Y

2
N)

is equal to 1 − C (Y 2
N , Y

1
N). Moreover, C(Y 1

N , Y
2
N) > C(Y 2

N , Y
1
N) implies that Y 1

N

contains superior solutions compared to Y 2
N .

3.6.3 Generational Distance (GD)

The Generational Distance (GD) [76] is a performance metric that quantifies the

average distance between the solutions in an approximated Pareto front and
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their nearest counterparts in the true Pareto front. The GD is defined mathe-

matically as follows:

GD (YN ;YP ) =
1

|YN |

 ∑
y1∈YN

min
y2∈YP

∥∥y1 − y2
∥∥p 1

p

where |YN | denotes the number of points in the approximated Pareto front

YN , and YP ⊆ YP represents a discrete approximation of the true Pareto front.

Typically, the parameter p is set to 2, corresponding to the Euclidean distance.

A lower GD value indicates better performance, as it signifies that the solu-

tions within the approximated Pareto front are closer to the true Pareto front,

thereby reflecting enhanced convergence quality.

3.6.4 Spacing (SP)

The spacing metric (SP) [90] quantifies the variation in distances between con-

secutive elements of a Pareto front approximation. This indicator is computed

as follows:

SP (YN) =

√√√√ 1

|YN | − 1

|YN |∑
j=1

(
d̄− d1 (yj, YN\ {yj})

)2
where YN denotes the Pareto front approximation. The term d1 (yj, YN\ {yj}) =

miny∈YN\{yj} ∥y − yj∥1 represents the l1 distance from the point yj ∈ YN to the set

YN\ {yj}, and d̄ is the mean of all d1 (yj, YN\ {yj}) for j = 1, 2, . . . , |YN |.

A lower value of the spacing metric indicates better performance, suggest-

ing that the algorithm produces a more consistent and evenly distributed set of

solutions.
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3.7 Conclusion

This chapter focuses on multi-objective optimization (MOO), beginning with a

clear definition of the field and an introduction to the concept of Pareto domi-

nance, which is fundamental for identifying optimal solutions in multi-objective

problems. Subsequent sections explore various decision-making approaches,

including a priori, posteriori, and interactive methods, highlighting their re-

spective strengths and applications.

The chapter further investigates Multi-Objective Evolutionary Algorithms

(MOEAs), which have garnered significant interest due to their effectiveness in

exploring the solution space and identifying diverse sets of non-dominated so-

lutions. Prominent MOEAs, such as NSGA-II, SPEA-II, PAES, and MOEA/D,

are examined in detail, discussing their mechanisms and comparative advan-

tages.

Finally, the chapter concludes with an overview of performance metrics

commonly employed to evaluate the quality of solutions generated by multi-

objective optimization algorithms, providing a comprehensive framework for

assessing their effectiveness.
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Chapter 4

Minimum weight minimum

connected dominating set

(MWMCDS) Problem

4.1 Introduction

The study of dominating sets and their variants is crucial due to their wide-

ranging applications and the fundamental challenges they present in graph

theory. These concepts not only solve practical problems in network design,

social networks, and biological systems but also drive theoretical research and

algorithm development in combinatorial optimization. Minimum weight mini-

mum connected dominating is a bi-objective optimization problem that seeks to

optimize both the size and the weight of the generated connected dominating

set. In this chapter, we first introduce some basic definitions in graph theory

which are necessary to understand the rest of this thesis. Then, we describe the

dominating sets and their variants. After that, we delve into the MWMCDS

problem, providing a formal problem statement and illustrating the problem

with a detailed example and we conclude by mentioning related works.
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4.2 Preliminaries on graphs

For a given graph G = (V,E) consists of two sets V and E. The elements of

V are called vertices (or nodes), and the elements of E are called edges (or lines).

Each edge has a set of one or two vertices associated with it, which are called

endpoints. An edge is said to join its endpoints.

In the remainder of this section, we provide the basic definitions related to

graphs, accompanied by illustrative examples. For basic concepts in graphs,

we refer to [91, 92, 93, 94].

Definition 4.1: If vertex v is endpoint of edge e, then v is said to be incident on

e, and e is incident on v.

Definition 4.2: A vertex u is adjacent to vertex v if they are joined by an edge.

Definition 4.3: Two distinct adjacent vertices can be referred to as neighbors,

denoted N(V ), such that:

N(v) = {u | (v, u) ∈ E ∨ (u, v) ∈ E}

Definition 4.4: Adjacent edges are edges that have an endpoint in common.

Definition 4.5: A multi-edge is a collection of two or more edges having identical

endpoints.

Definition 4.6: A self-loop is an edge that connects a vertex to itself.

Example

Figure 4.1 shows an example of a graph G = (V,E), G has vertices set V =

{1, 2, 3, 4} and edges set E = {a, b, c, d, e, f}. The edge f has two endpoints, that

is 2 and 3. 2 and 3 are called neighbors, because they are joined by the edge f . a

and e are adjacent edges because they have an endpoint in common (vertex 2).

The set {a, b} is a multi-edge with endpoints 1 and 2. Edge c is a self-loop.
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FIGURE 4.1: A graph.

4.2.1 Simple graphs

The majority of theoretical graph theory focuses on simple graphs. This is par-

tially due to the fact that many problems regarding general graphs can be re-

duced into problems about simple graphs.

Definition 4.7: A simple graph is a graph without self-loops or multi-edges.

Definition 4.8: The degree of a vertex v in a simple graph G, denoted deg(v), is

the number of neighbors of v in G, deg(v) = |N(v)|.

Definition 4.9: An isolated vertex in a graph is a vertex of degree zero.

Definition 4.10: A walk in a simple graph G is a sequence of vertices: W =

v0, v1, . . . , vn such that for j = 1, . . . , n, the vertices vj−1 and vj are adjacent.

Definition 4.11: A graph G is connected if there is a walk between every pair of

vertices.

Example

Figure 4.2 illustrates a simple graph G = (V,E) with vertices set V = {1, 2, 3, 4}

and edges set E = {a, b, c, d}. Degrees of vertices are: deg(1) = 1, deg(2) =

3, deg(3) = 2, deg(4) = 2. W = 1, 2, 4, 3 is a walk. G is connected because,

between every pair of vertices, there is a walk.
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FIGURE 4.2: A simple graph.

4.2.2 Directed / undirected graphs

Depending on the nature of the graph edges, we can categorize graphs into two

types: directed and undirected.

Definition 4.12: If the pairs (u, v) ∈ E are ordered pairs, then G is called a

directed graph (also known as digraph).

Definition 4.13: If the pairs (u, v) ∈ E and (v, u) ∈ E denote the same edge,

meaning each edge between two vertices creates a connection in two opposite

senses at one, then G is called undirected graph.

Example

In Figure 4.3 an example of a directed graph is shown on the left, and an undi-

rected graph on the right.

4.2.3 Subgraphs

Definition 4.14: A subgraph of a graph G is a graph H such that VH ⊂ VG and EH ⊂

EG .

Definition 4.15: In a graph G, the induced subgraph on a set of vertices W =

w1, . . . , wn, denoted G(W ), has W as its vertex set, and it contains every edge of
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(b) Undirected graph

FIGURE 4.3: A directed \undirected graph.

G whose endpoints are in W . That is,

V (G(W )) = W and E(G(W )) = {e ∈ E(G) | the endpoints of edge e are in W}

Example

Figure 4.4 illustrates an undirected graph G = (V,E) with the vertex set V =

{1, 2, 3, 4} and the edge set E = {a, b, c, d, e, f}. A subgraph of G, denoted as

H , has the vertex set VH = {2, 3, 4} ⊆ V and the edge set EH = {c, e, f} ⊆ E.

An induced subgraph of G, denoted as J , has the vertex set VJ = {2, 3, 4} ⊆ V

and the edge set EJ = {c, e, f, d} ⊆ E, which includes every edge in G whose

endpoints are in VJ .

4.3 Dominating set and its variants

Given a simple undirected graph G = (V,E), where V is the set of vertices and

E is the set of edges.

Definition 4.16: A dominating set (DS) is a subset D of V such that each vertex
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(c) Induce subgraph of G

FIGURE 4.4: An undirected graph G, a subgraph of G , and an
induced subgraph of G.

not in D has at least one neighbour in D. Vertices in the DS are called domina-

tors, and those out of it are called dominatees.

Definition 4.17: A connected dominating set (CDS) is a connected induced sub-

graph by D, where D represents a DS.

Definition 4.18: A minimum connected dominating set (MCDS) is a CDS of mini-

mum cardinality (size).

Definition 4.19: If G is a vertex-weighted graph, a minimum weight connected

dominating set (MWCDS) is a CDS with minimum total weight.

Example

Figure 4.5 gives an illustrative example of a dominating set and its variants on

a simple undirected graph with 7 vertices and 9 edges. Dominators are high-

lighted with a black background and white lettering.

4.3.1 Complexity

From the view of complexity theory, the DS problem is a classic NP-hard prob-

lem, and cannot be approximated with a constant ratio under the assumption

P ̸= NP [95]. Its considered variants are generally NP-hard [96, 97].
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FIGURE 4.5: Example of DS (Dominating Set), CDS (Connected
DS), MCDS (Minimum CDS) and MWCDS (Minimum weighted

CDS) in a simple undirected graph.

4.4 Minimum weight minimum connected dominat-

ing set (MWMCDS) Problem

MWMCDS is a new bi-objective combinatorial optimization problem variant of

CDS defined firstly by Rengaswamy et al. in 2017 [13]. It seeks to minimize si-

multaneously the cardinality of the connected dominating set and its total edge

weight. The authors in [13] proposed a multiobjective genetic algorithm labeled

MOGA based on the scalarization model and built upon a fitness model to deal
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with this problem, they used a data transfer model to analyze performance dif-

ference between an MCDS and an MWMCDS, and their experiments show that

using an MWMCDS instead of MCDS gives better results.

4.4.1 Problem statement

Given an undirected edge-weighted graph G = (V,E,w), where V and E rep-

resent the set of vertices and the set of edges respectively, and w : E 7→ R+ is a

function that assigns a positive weight value to all edges in E. In the rest of this

thesis, |v| is denoted by n, and |E| by m. The goal in the MWMCDS problem is

to find a connected dominating set D ⊆ V in which the cardinality and the total

weight are to be minimized together. Hence, we can formulate this problem as

follows:

minimize {F1(D), F2(D)}

subject to ∀ v ∈ V \D : N(v) ∩D ̸= ∅,

D ⊆ V ,

G(D) is connected.

In the above definition, we look for a connected dominating set D ⊆ V (a candi-

date solution) in which two objective functions are simultaneously minimized.

Let |D| represent the cardinally of D. The first objective function F1(D) := |D|,

named as the cardinality objective function, intends to minimize the size of

the candidate solution while the second objective function F2(D) named as the

weight objective function, intends to minimize its total weight. F2(D) is calcu-

lated as follows:
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F2(D) := F2a + F2b (4.1)

F2a =
∑

((u,v)∈E)∧(u∈D∧v∈D)

w(u,v) (4.2)

F2b =
∑

(u∈V \D)

min{w(u,v) | (u, v) ∈ E ∧ v ∈ D} (4.3)

As indicated in the previous formulas, F2a counts the sum of all weights of

edges that connect two vertices in D, and F2b takes for each vertex v in V \ D

the minimum weight from all weights of edges that connect v with a vertex in

D and then aggregates them. F2(D) is the sum of F2a and F2b.

4.4.2 Graphical example

Figure 4.6 gives a graphical example of the MWMCDS problem. In particu-

lar, Figure 4.6.a shows a simple undirected edge-weighted graph that contains

8 vertices and 10 edges. The labels printed within the vertices represent their

ID, and those printed next to the edges are their weights. The solutions shown

in Figure 4.6.b represents a feasible solution, and Figures 4.6.c and 4.6.d corre-

spond to Pareto optimal solutions. The black vertices are the vertices that com-

pose the candidate solution D, the red weights are the weights that F2a takes

into account, and the green weights are those that F2b considers.

The feasible solution shown in Figure 4.6.b, D = {0, 1, 5, 6, 7}, has the objective

function values F1(D) = 5 and F2(D) = 74 (F2a = 51, F2b = 23). The Pareto

optimal solution 1, shown in Figure 4.6.c, with D = {0, 1, 2, 5}, has the objective

function values F1(D) = 4 and F2(D) = 50 (F2a = 13, F2b = 37). The Pareto

optimal solution 2, shown in Figure 4.6.d, with D = {0, 1, 5}, has the objective

function values F1(D) = 3 and F2(D) = 66 (F2a = 9, F2b = 57).
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FIGURE 4.6: An illustrative example of the MWMCDS problem.

4.4.3 Related work

Due to the difficulty and the potential benefits of solving DS and its variants,

considerable work has been conducted in this regard. Most of them are based

on metaheuristic algorithms, which are approximate approaches that can find

reasonably near-optimal solutions in an acceptable computation time, rather

than exact algorithms that guarantee the optimality of the returned solutions

but in an exponential time.
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As an example of such approaches, Morgan and Grout [98] introduced the

first metaheuristic to deal with the MCDS problem. The latter combines tabu

search and simulated annealing algorithm. Jovanovic et al. [99] proposed an

ant colony optimization algorithm (ACO) with greedy heuristics. Recently, Li

et al. [100] presented a greedy randomized adaptive search procedure (GRASP)

that incorporates a tabu search as a local enhancement process. Besides, Wu

et al. [101] developed a tabu search procedure (RSN-TS) based on a restricted

swap-based neighborhood. The authors conducted a considerable number of

experimental tests to show that RSN-TS outperforms GRASP and ACO both in

terms of solution quality and computation time. Later, Hedar et al. [102] imple-

mented two methods for solving the MCDS problem. The first one is a memetic

algorithm and the second one is a simulated annealing. The performance of

both approaches when applied to the MCDS problem on common benchmark

instances is better than ACO and GRASP but less than RSN-TS based on results

reported in the literature.

However, few researches have been carried out on the MWCDS problem.

Ambühl et al [103] developed an approximation algorithm to solve this prob-

lem. A hybrid genetic algorithm (HGA) and a population-based iterated greedy

(PBIG) algorithm were proposed in [104]. Bouamama et al. [105] developed a

hybrid ant colony optimization approach combined with a reduced variable

neighborhood search (ACO-RVNS) to solve both MCDS and MWCDS. In this

algorithm, MCDS is treated as MWCDS with a unit weight of one to every ver-

tex of the input graphs. It was demonstrated that ACO-RVNS outperforms

RSN-TS, PBIG, and HGA across all available benchmark sets, especially for

large problem instances. In [106] a restart local search algorithm with the tabu

method (RLS-Tabu) is proposed to solve the MWCDS problem. The authors
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present two strategies in the neighborhood search procedure for appropriately

eliminating vertices: a greedy and random strategy, and multiple deletion strat-

egy. More recently, authors in [107] developed a local search algorithm called

CVPLS to tackle the MWCSD problem.

One should mention that all previous approaches have something in com-

mon: they optimize only a single objective function such as minimizing the

size of the connected dominating set (CDS) and minimizing its total weight

for MCDS and MWCDS, respectively. To the best of our knowledge, the first

approach in the literature that considered these two objectives together was

presented in [13]. The authors of this study first defined the minimum weight

minimum connected dominating set problem (MWMCDS) of which the aim

is to minimize simultaneously the size and the total weight of the generated

CDS. Then, they proposed a multiobjective genetic algorithm (MOGA) based

on a scalarization model to deal with the MWMCDS problem. They compare

MOGA with an MCDS produced in [14]. The analysis by comparison with the

MCDS algorithm indicates significant performance by MOGA.

MWMCDS problem was then exclusively addressed in our works, which

are listed below and thoroughly detailed in the next chapters.

• A greedy simulated annealing algorithm (GSA) [12] based on the scalar-

ization concept. The experimental results indicate that GSA performs bet-

ter than MOGA and MCDS.

• An improved Pareto genetic algorithm based on NSGA-II named I-NSGA-

II [15]. A comparison of this approach against NSGA-II demonstrates its

superiority.
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• A multiobjective greedy simulated annealing algorithm (MGSA) [16] based

on Pareto optimality concept. Comparative analysis against MCDS, MOGA,

GSA, and I-NSGA-II demonstrates the effectiveness of MGSA.

4.5 Conclusion

Throughout this chapter, we have explored the Minimum Weight Minimum

Connected Dominating Set (MWMCDS) problem. We started by introducing

preliminaries and basic definitions of graph theory which are essential for com-

prehending the rest of this thesis. These definitions include simple graphs, di-

rected/undirected graphs, and subgraphs. Illustrating examples are also given.

We then delved into the dominating set (DS) and its variants. After that, we

presented the MWMCDS problem which is an extension of DS. We outline its

problem statement, provide a detailed example, and survey related work.
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Chapter 5

Greedy Simulated Annealing (GSA)

Algorithm for MWMCDSP

5.1 Introduction

In this chapter, we introduce a novel technique termed the Greedy Simulated

Annealing (GSA) algorithm to address the MWMCDSP. The GSA algorithm

improves the standard Simulated Annealing (SA) approach by introducing a

greedy heuristic for generating initial solutions and neighbor candidates, hence

enhancing the overall solution quality and computational efficiency. Addition-

ally, GSA employs an effective temperature adjustment mechanism to guide the

search. This chapter details the design of the GSA algorithm, its components,

and its effectiveness compared to existing approaches.

5.2 Greedy heuristic

All the greedy heuristics used in this thesis follow the same process, the differ-

ence lies in the selection method.
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5.2.1 General process

A feasible solution is greedily constructed as follows. For a given partial fea-

sible solution S, all vertices in V can be partitioned into three disjoint subsets

with respect to S: vertices in S (named as BLACK vertices), vertices that are not

in S but are dominated by BLACK vertices (called GRAY vertices), and vertices

that are not in S and not dominated by BLACK vertices (referred to as WHITE

vertices). The initial vertex is selected from WHITE vertices, and subsequent

vertices are chosen from GRAY vertices in order to establish the connectivity of

DS. The heuristics terminate when there is no WHITE vertex left and all BLACK

vertices are connected to each other.

5.2.2 Selection method

Let ds(v) represents the number of WHITE neighbors of vertex v (current degree

with respect to S).

The first vertex vfirst is chosen as follows:

vfirst ← argmax{dS(v) | v ∈ V }. (5.1)

The remaining vertices to be placed in S are chosen as follow:

v∗ ← argmax{dS(v) | (v ∈ V \ S) ∧ (color(v) = GRAY)}. (5.2)

5.3 Representation

A problem instance is mapped to an edge-weighted graph G(V,E,w) where

each vertex v in V is represented by a unique integer number from {0, 1, · · · , n−
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1}, where n denotes the size of V , that is, n = |V |. A candidate solution S is

coded by a vector of fixed length n of which each element can take values 0 or

1 depending on if the corresponding vertex belongs to S or not.

5.4 Aggregated objective function

Given a candidate solution S, with respect to the objective functions F1 and F2

defined in Section 4.4.1, the sum-weighted aggregated objective function can be

defined as:

F := α× F ′
1 + β × F ′

2 (5.3)

Where α ∈ [0, 1] and β ∈ [0, 1] are parameters such that α+ β = 1 and α = β. In

addition, F ′
1 and F ′

2 are the normalized values of F1 and F2, based on the total

number of vertices and total weight respectively.

5.5 GSA framework

Simulated Annealing (SA) [27] is a well-known metaheuristic approach that

has been applied successfully to a large number of combinatorial optimiza-

tion problems. SA is both a single-solution-based algorithm and exploration-

oriented (see Section 2.6.3.2).

Our algorithm named GSA is a standard SA algorithm improved by starting

with a good initial solution based on a greedy heuristic and generating neigh-

bors either greedily or randomly. Moreover, GSA uses a useful calculation

method for changing temperature. These improvements ensure computational

efficiency and improve the quality of obtained solutions. A high-level descrip-

tion of the GSA algorithm is illustrated in Alg. 9.
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Algorithm 9 GSA for the MWMCDS problem

1: input: A problem instance (G, V,E,w), and parameters sol_size , k and T0

2: φ← generate_initial_solution(sol_size) //see Alg. 10
3: Temperature← T0

4: Sbest ← argmin{F (S)| S ∈ φ} //see (5.3) for the definition of F.
5: S ← Sbest

6: while termination condition not satisfied do
7: p← random number uniformly distributed over [0, 1]
8: if p > 0.5 then
9: S ′ ← neighbor_greedy(S) //see Alg. 13

10: else
11: S ← pick a random solution from φ
12: S ′ ← neighbor_random(S)
13: end if
14: if F (S ′) < F (Sbest) then
15: Sbest ← S ′

16: end if
17: if accept(Temperature,S,S’) then
18: S ← S ′

19: end if
20: Temperature← change_temperature(Temperature,k)
21: end while
22: output: {Sbest, F1(S

best), F2(S
best)}

5.5.1 Initial solutions

The initial solutions set is created as given in Algorithm 10, where sol_size =

100. The first solution is generated using the greedy heuristic, which involves

selecting vertices based on their degree, and subsequent solutions are generated

at random. This process ensures a diverse initial set of solutions and offers a

balanced starting point for further optimization.

5.5.2 Neighbors generation

The neighbor of a candidate solution is obtained either greedily using pro-

cedure neighbor_greedy() (see Alg. 13) or randomly using procedure neigh-

bor_random() with respect to a probability distribution p. In this context, both



Chapter 5. Greedy Simulated Annealing (GSA) Algorithm for MWMCDSP 66

Algorithm 10 generate_initial_solution (sol_size)

1: input: sol_size
2: φ← ∅
3: S ← generate_greedy() //see Alg. 11
4: φ← φ ∪ {S}
5: for i← 2 to sol_size do
6: S ← generate_random() //see Alg. 12
7: φ← φ ∪ {S}
8: end for
9: output: φ = {S1, S2, . . . , Ssol_size}

Algorithm 11 generate_greedy()

1: S ← ∅
2: vfirst ← argmax{ds(v) | v ∈ V }
3: vfirst.color ← GRAY
4: for all v ∈ V \ {vfirst} do
5: v.color ← WHITE
6: end for
7: repeat
8: v∗ ← argmax{ds(v) | (v ∈ V \ S) ∧ (color(v) = GRAY )}
9: v∗.color ← BLACK

10: S ← S ∪ {v∗}
11: for all v ∈ N(v∗) \ S do
12: v.color ← GRAY
13: end for
14: until (All vertices are colored either BLACK or GRAY)
15: output: S

procedures follow the same basic steps except that the last chooses the input

solution and the dominator vertices randomly.

5.5.3 Acceptance criterion

The candidate solution S ′ is accepted as the current solution if it outperforms

the incumbent solution S, otherwise, it may be accepted or rejected depending

on the Metropolis condition (for further details on the Metropolis condition, see

2.6.3.2.1).
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Algorithm 12 generate_random()

1: S ← ∅
2: vfirst ← pick a random vertex from V
3: vfirst.color ← GRAY
4: for all v ∈ V \ {vfirst} do
5: v.color ← WHITE
6: end for
7: repeat
8: v∗ ← pick a random vertex from GRAY vertices
9: v∗.color ← BLACK

10: S ← S ∪ {v∗}
11: for all v ∈ N(v∗) \ S do
12: v.color ← GRAY
13: end for
14: until (All vertices are colored either BLACK or GRAY)
15: output: S

Algorithm 13 Procedure neighbor_greedy(S)

1: input: an incumbent solution S
2: S ′ ← S
3: v ← argmin{|N(v)|, v ∈ S ′}
4: v.color ← GRAY
5: S ′ ← S ′ \ {v}
6: for all vertex vp ∈ N(v) do
7: if (vp.color == GRAY ) ∧ (N(vp) ∩ (S ′ \ {v}) = ∅) then
8: vp.color ← WHITE
9: end if

10: end for
11: while There exists WHITE vertex do
12: v∗ ← argmax{dS’(v) | (v ∈ V \ S ′) ∧ (color(v) = GRAY )}
13: v∗.color ← BLACK
14: S ′ ← S ′ ∪ {v∗}
15: for all v ∈ N(v∗) \ S ′ do
16: v.color ← GRAY
17: end for
18: end while
19: output: S ′
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5.5.4 Change tempearture

The temperature plays a crucial role in controlling the evolution of the solution

S. Initially, the algorithm starts with the initial temperature T0 set to a high

value (T0 = 1000), then, after k consecutive iterations (here k is set to 3) at the

same temperature, the temperature will be decreased by a factor of 1-γ (γ = 0.9).

If the temperature takes a value lower than 1, we use a temperature reheating

and it returns to the initial value T0.

5.6 Complexity

Here, we describe the time complexity of GSA algorithm.

The generate_initial_solution procedure, which includes the application of a greedy

heuristic and the generation of random solutions, is performed in O(sol_size×

(n + m)) time. The generate_greedy and generate_random procedures used in

neighbors’ generations require O(n+m) time for each neighbor. The acceptance

criterion and temperature change steps each require O(1) time. Consequently,

the overall time complexity of the GSA algorithm for max_iter iterations can be

expressed as:

O(sol_size× (n+m)) + (max_iter× (n+m))

5.7 Experimental evaluation

The proposed algorithm GSA was implemented using C++ language. The ex-

perimental results were obtained on a PC with an Intel Core i5-1135G7 2.40GHz

processor and 8.0 GB of memory.
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Its performance was compared against two recent algorithms from the litera-

ture, namely MOGA [13] and MCDS [14]. The results of the two approaches are

reproduced from [13].

GSA was evaluated on the same benchmark set introduced in [13] where

each instance consists of a simple undirected edge-weighted graph modeling a

data transfer system where every vertex transfers data at instant t with proba-

bility Pt and this data can be dropped with probability Pd. The distance traveled

by the data in the transfer is represented indirectly by the weight, which is ex-

pressed by the energy consumed during the travel. Thus, the energy consumed

in case of successful transfer is equal to the distance traveled by the data, and

in the case of failed transfer is equal to half of distance traveled. The energy

consumed in the transfer of all data in the network is represented by energy

consumption.

5.8 Results

The performance of GSA against MOGA and MCDS with respect to energy con-

sumption for 100 instances of data transfer is shown in Figure 5.1.

It can be seen that GSA consumes the least amount of energy in all cases com-

pared with MCDS. Compared to MOGA, the energy requirements of GSA are

lesser in all cases except the scenario (n = 100) where both algorithms give

similar results.

Figure 5.2 represents the number of dominator vertices produced by GSA,

MOGA, and MCDS for different networks. Here too it can be seen that GSA

performs better than MCDS in all cases by producing CDS of minimal size.

Compared to MOGA, GSA gives the same results in 4 cases (n=30, n=40, n=60,

and n=70), in all other cases GSA performs the best.
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From previous results, it can be deduced that the proposed algorithm GSA

generates more useful solutions for the MWMCDS problem than MCDS and

MOGA.
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5.9 Conclusion

For the purpose of solving the minimum weight minimum connected dominant

set problem (MWMCDSP) in wireless sensor networks, we have introduced

a novel method in this chapter termed Greedy Simulated Annealing (GSA).

GSA integrates a simulated annealing algorithm, which is seeded by a greedy

constructive heuristic and employed in two hybridization models. The perfor-

mance of the proposed algorithm was assessed and compared against existing

algorithms such as MOGA and MCDS in terms of energy consumption and the

size of the connected dominating set. Results obtained demonstrate the superi-

ority of GSA.
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Chapter 6

Improved Non-dominated Sorting

Gentic Algorithm (I-NSGA-II) for

MWMCDSP

6.1 Introduction

In this chapter, we introduce the Improved Non-dominated Sorting Genetic Al-

gorithm II (I-NSGA-II) designed to solve the MWMCDSP. I-NSGA-II enhances

the well-known algorithm NSGA-II in the generation of the initial population

phase as well as in producing neighbors.

The chapter is organized as follows: we first discuss the greedy heuristics,

and then we present the detailed design of the I-NSGA-II algorithm. Follow-

ing this, we analyze the computational complexity of the proposed approach.

Finally, we demonstrate the effectiveness of I-NSGA-II through extensive ex-

periments and provide a comparative analysis with the standard NSGA-II.
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6.2 Greedy heuristics

We have applied three greedy heuristics named GR1, GR2, and GR3 to deter-

mine MWMCDS, the first heuristic (GR1) is similar to the heuristic used by

Dahmri and Bouamama in [12], the second heuristic (GR2) and the third heuris-

tic (GR3) are new heuristics proposed for the MWMCDS problem. The overall

process of these algorithms follows the general procedure outlined in Section

5.2.1, the selection methods are described below.

Let V cand denote the set V if all vertices are WHITE, or the set of GRAY vertices

if there is at least one GRAY vertex in V , ds(v) represents the number of WHITE

neighbors of vertex v (current degree with respect to S), tw(v) denotes the total

weight value of edges that connect vertex v with their neighbors N(v), n repre-

sents the number of vertices in the graph G, and We denotes the total weight of

all edges in G.

The first heuristic (GR1) selects the vertex having the greatest values of ds.

v ← argmax{ds(v)} | v ∈ V cand} (6.1)

The second heuristic (GR2) selects the vertex with the greatest ratio between

their ds and tw.

v ← argmax{ds(v)
tw(v)

| v ∈ V cand} (6.2)

The third heuristic (GR3) chooses the vertex having the minimum value of the

difference between the normalized value of its tw and ds.

v ← argmin{tw(v)
We

− ds(v)

n
| v ∈ V cand} (6.3)



Chapter 6. Improved Non-dominated Sorting Gentic Algorithm (I-NSGA-II)

for MWMCDSP
74

Fig. 6.1 gives an illustrative example of an MWMCDS problem instance and

the solutions obtained using the three greedy heuristics. The latter is a simple

undirected edge-weighted graph which contains 9 vertices and 12 edges. The

constructed solution shown in Fig. 6.1.a, Fig. 6.1.b and Fig. 6.1.c corresponds to

the one obtained using the first greedy heuristic, the second greedy heuristic

and the third greedy heuristic respectively.

In Fig. 6.1.a, the first vertex chosen is 1 because it has the greatest degree

of WHITE neighbors (ds(1) = 5), then the vertex 0 then 5. Thus, Fc = 3 and

Fw = 87. In Fig. 6.1.b the vertices 2, 0, 5, and 1 are selected in this order by

applying Eq. 6.2. The values of objective functions of the obtained MWMCDS

solution are Fc = 4 and Fw = 77. The MWMCDS solution found by the third

heuristic (Eq. 6.3) is shown in Fig. 6.1.c, where the vertices 2, 0, 5, 4, 3, and 8

are selected in this order. This solution has a cardinality of Fc = 6 and a total

weight of Fw = 61.

6.3 Design of I-NSGA-II algorithm

We propose to solve the MWMCDS problem with an improved Pareto genetic

algorithm based on NSGA-II (see 3.5.1) refereed as I-NSGA-II. The original

NSGA-II is enhanced by using greedy heuristics to generate the initial pop-

ulation of solutions. In addition, neighbors are obtained by applying either

a genetic algorithm or a local search method. The genetic algorithm gener-

ates neighbors randomly which extends the solution space, and the local search

method concentrates on obtaining better neighbors based on greedy heuristic

which enhances the quality of front solutions. The nondominated sorting phase

and crowding distance functions are employed to obtain a better spread of non-

dominated solutions.
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FIGURE 6.1: An illustrative example of an MWMCDS problem
instance and the solutions obtained using GR1, GR2, and GR3.

Algorithm 14 shows the main structure of I-NSGA-II. In line 2, the par-

ent population named Pt, which contains sol_size individuals (each individual

represents a feasible solution S) is constructed greedily or randomly. Lines 5-

14 produce the offspring population called as Qt by generating a neighbor for

each solution in Pt. Neighbors are obtained by either applying local_search(Si)

method or by using genetic_algorithm(Si) (crossover and mutations operations).

The combined population Rt is constructed in line 15, then it is sorted into fronts

on line 16 by applying the function fast_nondominated_sorting (Rt). A selection

phase is needed to select the next generation Pt+1 from the set of fronts F using

the function selection(F ) (line 17). These steps are repeated until a maximum

number of iterations max_iter is reached.
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Algorithm 14 I-NSGA-II for the MWMCDS problem

1: input: A problem instance (G, V,E,w), and parameter sol_size ∈ Z+

2: Pt ← generate_initial_solution(sol_size)
3: repeat
4: Qt ← ∅
5: for i← 0 to sol_size do
6: Si ← the ith solution from Pt

7: p← random number uniformly distributed over[0,1]
8: if p > 0.5 then
9: S ′

i ← local_search(Si)
10: else
11: S ′

i ← genetic_algorithm(Si)
12: end if
13: Qt ← Qt ∪ {S ′

i}
14: end for
15: Rt ← Pt ∪Qt

16: F ← fast_nondominated_sorting(Rt) //see algorithm 15
17: Pt+1 ← selection(F ) //see algorithm 16
18: Pt ← Pt+1

19: until termination condition is satisfied
20: output: Approximate Pareto front Pt

6.3.1 Initial population

In order to obtain the initial solutions set Pt, we generate one of them using a

greedy heuristic, and the remaining are generated randomly.

6.3.2 Neighbors production

In our algorithm, the set of neighbors Qt is generated using the local search

method or genetic algorithm with equal probability.

6.3.2.1 Local search method

The local search method is used to generate solutions neighbors in the search

space. For a solution S we generate the neighbor S ′ by applying the following

changes. Initially, we search for the worst vertex in S (the vertex that gives the
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worst results using the greedy heuristic). Then, we remove it from the solution

and we check if the produced solution stays connected. In that case, we stop,

otherwise, we add to the solution a vertex greedily and we repeat this step until

obtaining a connected set.

6.3.2.2 Genetic algorithm

The solution S ′ is produced from S using self-crossover and mutation opera-

tors. In the self-crossover operator, we exchange the segments of S at a ran-

domly chosen crossover point and store the resulting new solution in S ′. In bit

flip mutation, an individual’s gene is changed with a low random probability.

6.3.3 New population selection

The initial population Pt and the offspring population (Qt) are combined to

form the population Rt. From Rt only half of the individuals will be selected

for the next generation (Pt+1). Nondominated sorting is applied to sort and

partition the population into fronts (F1, F2,..., etc) according to the dominating

status of each individual. The progress of the fast nondominated sorting strat-

egy is explained in Algorithm 15.

After constructing the fronts, a selection phase is needed to choose among the

fronts the solutions that will form Pt+1. If the selection is made between two

solutions from different fronts, we prefer the solution with the lower (better)

rank. Otherwise, if both solutions belong to the same front, then we use the

crowding distance operator to decide. More details are described in Algorithm

16.

The crowding distance calculation mechanism works as follows: for each

objective function, the boundary solution is assigned an infinite distance value.
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Algorithm 15 fast_nondominated_sorting() procedure
1: input: Rt

2: for all p ∈ Rt do
3: Sp ← ∅ //Sp is the set of solutions dominated by p
4: np ← 0 //np is the domination counter of p
5: for all q ∈ Rt do
6: if (p < q) then //if p dominates q
7: Sp ← Sp ∪ {q}
8: else if (q < p) then
9: np ← np + 1

10: end if
11: end for
12: if (np == 0) then
13: Prank ← 1
14: F1 ← F1 ∪ {p} //F1 represents the first front
15: end if
16: end for
17: i← 1
18: while (Fi ̸= ∅) do
19: Q← ∅ //Q will contain the members of the next front
20: for all p ∈ Fi do
21: for all q ∈ Sp do
22: nq ← nq − 1
23: if (nq == 0) then
24: qrank ← i+ 1
25: Q← Q ∪ {q}
26: end if
27: end for
28: end for
29: i← i+ 1
30: Fi ← Q
31: end while
32: output: {F1, F2, ..., Fi}

All other intermediate solutions are assigned a distance value calculated as

given in eq.6.4.

CDi =
M∑

m=1

fm(x+ 1)− fm(x− 1)

fm(xmax)− fm(xmin)
(6.4)
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Algorithm 16 selection() procedure

1: input: {F1, F2, ..., Fi}
2: i← 1
3: cn← 0
4: while (Fi ̸= ∅) do
5: cn← cn+ |Fi|
6: if (cn == N) then
7: Pt+1 ← individuals which are in [F1, ..., Fi]
8: return Pt+1

9: else if (cn > N) then
10: Pt+1 ← individuals which are in [F1, ...,Fi-1]
11: Icr ← crowding_distance(Fi) //Icr contains the individuals selected

using crowding distance calculation
12: Pt+1 ← Pt+1 ∪ {Icr}
13: return Pt+1

14: end if
15: i← i++
16: end while
17: output:Pt+1

where CDi represents the crowding distance value of the individual i, M repre-

sents the number of objectives, fm(x + 1) represents the mth objective function

value of the individual x + 1, and fm(xmax) and fm(xmin) separately represents

the mth objective function value’s maximum and minimum value. The selected

individuals are those with the maximum value of CD.

6.4 Complexity

In the following, we analyze the time complexity of the proposed algorithm

I-NSGA-II. generate_initial_solution function is applied to form the initial popu-

lation Pt, this process takes O(n + m) time. In each iteration of the algorithm,

and for every solution in the population, a neighbor is generated either using

the local_search method, which has a time complexity of O(n + m), or the ge-

netic algorithm, which operates in O(n) time. Thus, the overall time to generate
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neighbors in one iteration is O(sol_size × (n + m)). After neighbors are gener-

ated, the algorithm runs two operations: fast_nondominated_sorting and crowd-

ing_distance, which have a combined complexity of O(sol_size2), as governed

by the nondominated sorting process.

This entire process is repeated for max_iter iterations, leading to an overall time

complexity of:

O(max_iter× sol_size× (n+m+ sol_size))

6.5 Experiments

The proposed algorithm I-NSGA-II was implemented using C++ language, on

a PC with an Intel Core i5-1135G7 2.40GHz processor and 8.0 GB of memory.

We also implemented three greedy heuristics to evaluate the performance of

the proposed algorithm I-NSGA-II.

Benchmark instances used in this work were originally proposed in [108]

where each instance consists of an undirected connected vertex-weighted graph

with n vertices and m edges. Since our problem requires an edge-weighted

graph, we obtain the edge weights by averaging the weights of their endpoints.

The instances are divided into two groups: small and medium instances

which include {10, 25, 50, 100, 200, 250} vertices, and large instances which con-

tain {500, 750, 1000} vertices. The number of edges m is varied for each vertex

count n to observe the impact of the degree of connectivity between vertices on

the results. For a specific number of nodes and edges, 10 instances exist for most

graphs. The obtained results represent the average of running the algorithms

on these 10 instances.
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The used parameters for the I-NSGA-II algorithm are the following: the pop-

ulation sol_size is set to 100. The maximum number of iterations max_iter is

set to 100. The crossover probability is set to 0.8, and the mutation probability

to 0.2.

6.6 Results

The experimental results are organized into two parts: the first one corresponds

to the results generated by the greedy heuristics and the second represents the

results of the proposed algorithm I-NSGA-II versus NSGA-II.

6.6.1 Part I: Results of greedy heuristics

The results obtained by applying the three greedy heuristics described in Sec-

tion 6.2 are given in Table 6.1 for small and medium instances and those for

large instances are presented in Table 6.2. These tables are organized as fol-

lows. The first two columns define the instance size, in terms of the number of

vertices (n) and the number of edges (m). The results of each greedy heuristic

are provided in two columns. The first one with heading Time shows the com-

putation time (in seconds), and the second one with heading HVI provides the

hypervolume indicator.

6.6.1.1 Results for small and medium size instances

From Table 6.1, the comparison between the results of greedy heuristics with

regard to execution time, shows that the three algorithms give similar results.

If we consider the hypervolume indicator, it is clearly seen that GR2 obtains the
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worst results. GR1 is better than GR2 up to 82.35% and GR3 is better than GR2

at most 88.23%, while GR3 is better than GR1 up to 64.70%.

TABLE 6.1: Results of greedy heuristics for small and medium in-
stances.

n m
GR1 GR2 GR3

Time (s) HVI Time (s) HVI Time (s) HVI

10 20 0.000 5540.5 0.000 5609.2 0.000 55732.4

40 0.000 17402.1 0.000 16833.0 0.000 179022.9

25 100 0.000 115431.4 0.000 110823.2 0.000 120076.3

250 0.000 362112.2 0.000 355097.4 0.000 361091.5

50 100 0.000 104417.4 0.000 113204.0 0.000 111520.3

500 0.001 1.425E+06 0.000 1.380E+06 0.001 1.392E+06

100 200 0.001 443624.7 0.000 408011.6 0.001 450122.1

600 0.002 3.097E+06 0.001 2.811E+06 0.002 3.146E+06

1000 0.004 5.802E+06 0.004 5.497E+06 0.003 5.664E+06

200 400 0.008 1.733E+06 0.007 1.400E+06 0.006 1.594E+06

1200 0.046 1.160E+07 0.050 1.185E+07 0.051 1.203E+07

2000 0.114 2.255E+07 0.088 2.118E+07 0.098 2.294E+07

250 500 0.047 2.820E+06 0.049 2.771E+06 0.053 2.801E+06

1000 0.089 9.511E+06 0.085 9.208E+06 0.086 9.744E+06

1500 0.110 1.621E+07 0.107 1.548E+07 0.119 1.733E+07

2000 0.139 2.721E+07 0.146 2.531E+07 0.145 2.600E+07

2500 0.179 3.386E+07 0.185 3.012E+07 0.166 3.561E+07

Average 0.043 8.050E+06 0.042 7.496E+06 0.043 8.556E+06

6.6.1.2 Results for large size instances

It can be observed from Table 6.2 that the time results of GR1 are generally the

worst. GR2 and GR3 are faster than GR1 in 11 instances. GR3 executes 10 times

faster than GR2. Concerning the hypervolume indicator, GR2 is the worst, GR1

and GR3 are better than GR2 for all datasets. GR3 is better than GR1 in 9 out of

15 cases.
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From the previous results, we can conclude that GR3 is the best heuristic

with regard to both execution time and hypervolume indicator in small and

medium, and large size problem instances. Thus, this heuristic will be used in

our proposed algorithm I-NSGA-II.

TABLE 6.2: Results of greedy heuristics for large instances.

n m
GR1 GR2 GR3

Time (s) HVI Time (s) HVI Time (s) HVI

500 1000 0.390 1.023E+07 0.383 9.541E+06 0.368 9.836E+06

2000 0.504 4.167E+07 0.452 3.804E+07 0.506 4.255E+07

3000 1.031 7.250E+07 0.845 7.018E+07 1.119 7.291E+07

4000 1.235 8.444E+07 1.172 8.125E+07 1.149 9.423E+07

5000 1.007 1.178E+08 1.273 8.940E+07 1.289 1.150E+08

750 1500 1.365 2.105E+07 1.524 1.763E+07 1.188 1.845E+07

3000 1.498 7.447E+07 1.449 7.021E+07 1.131 8.359E+07

4500 1.586 1.465E+08 1.547 1.381E+08 1.477 1.609E+08

6000 1.710 2.322E+08 1.604 1.755E+08 1.674 2.246E+08

7500 1.853 2.841E+08 1.701 2.530E+08 1.690 3.009E+08

1000 2000 1.924 4.211E+07 2.038 3.891E+07 1.964 4.203E+07

4000 2.371 1.462E+08 2.415 1.224E+08 2.290 1.503E+08

6000 2.675 2.405E+08 2.552 2.184E+08 2.540 2.655E+08

8000 2.640 4.015E+08 2.623 3.414E+08 2.512 3.827E+08

10000 2.802 4.277E+08 2.765 3.886E+08 2.786 4.321E+08

Average 1.639 1.561E+08 1.622 1.366E+08 1.578 1.608E+08

6.6.2 Part II: Results of I-NSGA-II versus NSGA-II

Table 6.3 reported the results of I-NSGA-II and NSGA-II for small and medium

instances and the results for large instances are presented in Table 6.4. In C-

metric, 1 refers to I-NSGA-II, and 2 refer to NSGA-II, that is C(1,2) means C(I-

NSGA-II,NSGA-II), and C(2,1) means C(I-NSGA-II,NSGA-II).
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Figures 6.2 and 6.3 visualize the approximate Pareto front for the two objec-

tive functions F1 and F2 for small and medium instances and large instances

respectively.

TABLE 6.3: Results of I-NSGA-II and NSGA-II for small and
medium instances.

n m
I-NSGA-II NSGA-II

Time HVI C(1,2) Time HVI C(2,1)

10 20 19.992 6067.7 0.616 21.119 6007.4 0.950

40 19.643 19762 0.866 19.012 19583.9 0.950

25 100 20.964 126476 0.412 26.001 126318.3 0.419

250 18.214 381058.5 0.683 21.021 378286.3 0.800

50 100 25.281 125806.4 0.548 31.910 105129.2 0.116

500 23.290 1.487E+06 0.475 28.266 1.453E+06 0.300

100 200 31.076 476289 0.372 47.518 338618.1 0.350

600 31.520 3.156E+06 0.800 38.186 2.748E+06 0

1000 26.896 5.843E+06 0.625 24.684 5.471E+06 0.062

200 400 125.586 1.846E+06 1 114.864 984906 0

1200 50.662 1.248E+07 1 81.229 9.767E+06 0

2000 36.313 2.312E+07 1 53.2277 2.061E+07 0

250 500 134.257 2.855E+06 1 223.215 1.326E+06 0

1000 103.687 1.077E+07 1 182.261 7.052E+06 0

1500 96.514 1.904E+07 1 144.363 1.460E+07 0

2000 51.075 2.824E+07 1 105.997 2.352E+07 0

2500 47.800 3.792E+07 1 97.759 3.359E+07 0

Average 50.751 8.699E+06 0.788 74.154 7.182E+06 0.232

6.6.2.1 Results for small and medium size instances

From Table 6.3 is clearly seen that I-NSGA-II runs faster in 14 out of 17 cases

compared with NSGA-II. The hypervolume indicator results of I-NSGA-II are
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better than NSGA-II results in all cases. Regarding the C-metric values ob-

tained, we can see that most solutions found by I-NSGA-II are better than those

in NSGA-II, especially when the number of vertices increases.

With respect to F1 and F2 values, we can observe from Figure 6.2 that I-NSGA-II

gives better results than NSGA-II in all the problem instances, except scenarios

(n=10 and n=25).
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FIGURE 6.2: Approximate Pareto fronts produced by I-NSGA-II
and NSGA-II for small and medium instances.

6.6.2.2 Results for large size instances

As shown in Table 6.4, I-NSGA-II performs better than NSGA-II in all instances

with respect to the hypervolume indicator. In terms of the run time, I-NSGA-II

obtains better results up to 93.33%. When considering the C-metric, it is evident

that all solutions produced by NSGA-II are dominated by at least one solution
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obtained by NSLS. Figure 6.3 shows that solutions produced by I-NSGA-II dis-

tribute with good diversity and dominate those of NSGA-II.

TABLE 6.4: Results of I-NSGA-II and NSGA-II for large instances.

n m
I-NSGA-II NSGA-II

Time HVI C(1,2) Time HVI C(2,1)

500 1000 565.842 1.160E+07 1 857.378 3.056E+06 0

2000 646.827 4.371E+07 1 968.586 2.634E+07 0

3000 301.842 7.548E+07 1 543.483 4.970E+07 0

4000 232.733 1.157E+08 1 326.853 8.834E+07 0

5000 180.837 1.439E+08 1 238.011 1.170E+08 0

750 1500 1541.980 2.517E+07 1 1869.190 5.480E+06 0

3000 1587.260 9.485E+07 1 2691.110 5.016E+07 0

4500 1084.457 1.738E+08 1 1250.645 1.111E+08 0

6000 711.109 2.556E+08 1 744.935 1.883E+08 0

7500 354.333 3.264E+08 1 547.698 2.635E+08 0

1000 2000 3060.541 4.578E+07 1 3003.330 8.953E+06 0

4000 2754.252 1.722E+08 1 3164.494 8.141E+07 0

6000 2082.053 3.087E+08 1 2052.498 1.918E+08 0

8000 1103.110 4.395E+08 1 1147.286 3.155E+08 0

10000 749.328 5.855E+08 1 812.379 4.474E+08 0

Average 1130.420 1.878E+08 1 1347.858 1.298E+08 0
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FIGURE 6.3: Approximate Pareto fronts produced by I-NSGA-II
and NSGA-II for large instances.
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6.7 Conclusion

To solve the bi-objective problem MWMCDS, we developed an improved ver-

sion of NSGA-II referred to as I-NSGA-II. The main feature of I-NSGA-II lies in

the fact that greedy heuristic is used both for generating initial solutions and

for exploring local search neighborhoods. Furthermore, we have implemented

three greedy heuristics for the problem and the best performing one (on aver-

age) among them is chosen to be used in the development of our approach.

The performance of I-NSGA-II is evaluated on a set of test problem instances

with different sizes. Computational experiments show a significant improve-

ment in our approach over NSGA-II with respect to the hypervolume indicator,

run-time, and quality of solutions.



88

Chapter 7

Multiobjective Greedy Simulated

Annealing (MGSA) Algorithm for

MWMCDSP

7.1 Introduction

This chapter presents the Multiobjective Greedy Simulated Annealing (MGSA)

algorithm which is developed as a novel approach to solving the MWMCDSP.

We first describe the greedy paradigm, then we provide the general framework

of MGSA followed by details of each step. After that, we discuss the compu-

tational complexity of the algorithm. Finally, we present a thorough experi-

mental evaluation to compare its performance against existing state-of-the-art

techniques.
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7.2 Greedy heuristic

To design a greedy heuristic for the minimum weight minimum connected

dominating set problem, we need to consider both objectives: minimizing car-

dinality (F1(D)) and minimizing total weight (F2(D)). The heuristic follow the

process outlined in Section 5.2.1.

The selection of vertices is based on a combined score that considers both the

weight and the cardinality as given in Eq. 7.1. A higher value is considered

better.

S(v) = α ·GD′(v)− (1− α) ·GW ′(v) (7.1)

Where α is a parameter that allows adjusting the importance given to each ob-

jective. A higher α value emphasizes weight reduction, while a lower value

prioritizes minimizing cardinality. GD′ and GW ′ are the normalized values of

GD and GW respectively.

GD(v) counts for a vertex v the number of WHITE neighbors, GD is then calcu-

lated as given in Eq. 7.2.

GD(v) = {ds(v) | v ∈ V cand} (7.2)

GW (v) (Eq. 7.3) represents the weight to be added to F2 upon the inclu-

sion of vertex v in the solution (GW (v) may have a positive or negative value).

Hence, the best vertex is the one with the lowest value of GW.
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GW (v) := wt1(v) −
∑

(v∈V cand∧u∈V cand|(v,u)∈E)

wt2(v,u) (7.3)

wt1(v) =
∑

((u,v)∈E,u∈D∧v∈V cand)

w(u,v)

wt2_1(u,u′) = min{w(u,u′) | (u, u′) ∈ E, u ∈ V cand ∧ u′ ∈ D}

if wt2_1(u,u′) > w(v,u) : wt2(v,u) = wt2_1(u,u′) − w(v,u)

else: wt2(v,u) = 0

7.3 MGSA framework

The Multiobjective Greedy Simulated Annealing (MGSA) algorithm is devel-

oped to tackle the MWMCDS problem. The concept of Pareto optimality is

applied to evaluate multiobjective solutions and store the nondominated ones

in the approximate Pareto front. A novel efficient greedy heuristic is proposed

to seed the algorithm with a good initial solution as well as in generating neigh-

bors. Moreover, MGSA uses useful methods for changing temperature and for

accepting solutions. After a maximum number of iterations, the obtained ap-

proximate Pareto set will be improved by eliminating the redundant vertices.

The flowchart of the MGSA algorithm is illustrated in Figure 7.1, and the pseu-

docode is given in Algorithm 17.

7.3.1 Initial solution

The initial solution is generated using the greedy heuristic defined in Section

7.2 which represents a combined score that considers both the weight and the

cardinality. By starting with a strong initial solution, the algorithm can more
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FIGURE 7.1: MGSA algorithm for MWMCDS problem.
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Algorithm 17 MGSA for the MWMCDS problem

1: input: A problem instance (G, V,E,w), and parameters: maximum number
of iterations maxIter, initial temperatures T01 and T02, predetermined num-
bers of iterations used in the annealing schedule N1 and N2. The number of
acceptances NA, number of iterations to be executed before the first return
to base NB0, base return parameter rB.

2: T1 ← T01

3: T2 ← T02

4: generate greedily the initial solution S0

5: archive← S0

6: S ← S0

7: for i = 0 to maxIter do
8: generate the neighbor Snew = N(s) greedily or randomly with equal

probability
9: if (Snew is not dominated by any solution from archive) then

10: archive← archive ∪ {Snew}
11: S ← Snew

12: else if (Snew verify the acceptance probability p) then
13: S ← Snew

14: end if
15: periodically, return to base based on N1, NBi, and rB values
16: periodically, reduce T1 and T2 based on N1, N2, and NA values
17: end for
18: remove redundant vertices from archive
19: output: archive that represents an approximate Pareto front

efficiently navigate the solution space and improve its overall performance in

finding the best possible outcomes.

7.3.2 Neighbors production

A neighboring candidate solution is determined by using either the greedy ap-

proach or a random method, each with an equal probability. The greedy ap-

proach involves selecting the most promising solution available at each step,

aiming to make the most immediate progress. In contrast, the random method

selects solutions without any specific preference, introducing an element of
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chance to the process. This combination of strategies helps balance the explo-

ration of the solution space, potentially leading to more optimal solutions.

7.3.3 Archiving and acceptance

In the archiving procedure, if the new solution is dominated by any members

of the archive, it is not archived, elsewhere, it is archived and the archive is up-

dated by removing dominated solutions. All archived solutions are accepted.

If a solution is not archived, then it is accepted with a probability given by

p =
2∏

i=1

exp

(
− [fi (sn+1)− fi (Sn)]

Ti

)

Thus, the overall acceptance probability is the product of individual accep-

tance probabilities for each objective, and therefore, each objective is assigned

an associated temperature Ti, which obviates the need to scale the objectives

carefully with respect to each other, as long as suitable temperatures can be

determined automatically, as described in the next section.

7.3.4 Annealing schedule

In our algorithm we adopted the annealing schedule proposed in [51]. Initially,

all temperatures are initialized to large values, hence, all feasible solutions are

accepted. A statistical record is maintained for each observed objective function

value. After a pre-determined number of iterations NT1, the temperatures T1

and T2 are set equal to the standard deviation σi, of the accepted values of F1

and F2, respectively, i.e.,

Ti = σi
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Thereafter, after reaching either a specified number of iterations NT2, or a cer-

tain number of acceptances NA, the temperatures are lowered according to the

formula:

T ′
i = αiTi

Where T ′
i denotes the updated temperature, and αi is computed using the for-

mulation proposed in [109]:

αi = max

(
0.5, exp

[
−0.7Ti

σi

])

In this expression, σi represents the standard deviation of fi values for the ac-

cepted solutions at temperature Ti. Subsequently, both counters for NT2 and NA

are reset to zero.

7.3.5 Return to base

In order to completely expose the trade-off between objectives, the periodic

random selection of a solution from the archive, from which to recommence the

search, is done as follows.

Following the initiation of the search process, the activation of a return-to-

base occurs once the fundamental aspects of the trade-off between objectives

have been established. It is prudent for this activation to coincide with the

initial reduction in temperatures, specifically after NT1 iterations. Thereafter,

the rate of return is naturally heightened to enhance the exploration within the

trade-off. The number of iterations NBi to be executed before the i th return-to-

base after the start of the search is given by

NBi = rBNBi−1, i = 2, 3, 4, . . .
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Where rB is a parameter ranging from 0 to 1 which determines the frequency of

return. Naturally, NBi cannot decrease indefinitely, and thus a lower bound for

NBi is established to ensure NBi ≥ 10.

7.4 Complexity

Several important steps that the Multiobjective Greedy Simulated Annealing

(MGSA) algorithm involves determine its overall time complexity. The initial

solution is created using the greedy heuristic which is performed in O(n + m)

time. Generating the neighbors is done greedily or randomly with equal prob-

ability requires O(n + m). Archiving and acceptance checks require compar-

ing the new solution with existing ones in the archive, this is done in O(n ×

|archive|) time. The annealing schedule involves constant-time operations O(1),

and the return-to-base mechanism involves resetting counters, which is O(|archive|).

Consequently, for max_iter iterations, the overall complexity becomes

O((n+m) + max_iter× (n+m+ n× |archive|+ |archive|))

This simplifies to

O(max_iter× (n+m))

as |archive| is small compared to max_iter.

7.5 Experimental evaluation

The proposed algorithm MGSA was implemented using C++ language. The ex-

perimental results were obtained on a PC with an Intel Core i5-1135G7 2.40GHz

processor and 8.0 GB of memory.
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The used parameters for the MGSA algorithm are the following: the max-

imum number of iterations is defined as 1000, the initial temperatures are set

to T1 = T2 = 1000, the predetermined numbers of iterations used in the an-

nealing schedule are NT1 = 200 and NT2 = 100. The number of acceptances is

NA = 10, the number of iterations to be executed before the first return to base

is NB0 = 50, with a base return parameter of rB = 0.9.

To benchmark our algorithm we utilized two distinct datasets. The first

one comprises instances originally proposed by [13], featuring undirected edge-

weighted graphs. While the second set, as suggested by [104], presents undi-

rected vertex-weighted graphs. Given that the MWMCDS problem necessitates

an edge-weighted graph, we derived edge weights by averaging the weights of

their endpoints. Details on these datasets can be found in Sections 5.7, and 6.5.

To measure the performance in the second dataset, we make use of the hy-

pervolume indicator, C-metric, the execution time and the approximate Pareto

fronts.

7.6 Results

The performance of MGSA was compared against current state-of-the-art ap-

proaches, namely MOGA [13], MCDS [14], GSA [12], and I-NSGA-II [15].

7.6.1 Comparison in the first dataset

The performance of MGSA against MCDS, MOGA, and GSA with respect to

energy consumption for 100 instances of data transfer is shown in Figure 7.2. It

is evident from the figure that MGSA consumes the least amount of energy in

all cases.
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Figure 7.3 represents the number of dominator vertices produced by MGSA,

MOGA, MCDS, and GSA for different problem instances. It can be seen that

MGSA outperforms MCDS in 7 out of 9 cases while yielding identical results

in the remaining two cases. When compared to MOGA, MGSA demonstrates

equivalent performance in all instances except for n=80, n=90, and n=100, where

MGSA exhibits superior performance. Against GSA, MGSA achieves identical

results in 8 instances but performs worse in the cases of n=20 and n=50.

0

1000

2000

3000

4000

5000

6000

20 30 40 50 60 70 80 90 100

E
N

E
R

G
IE

 C
O

N
S

U
M

P
T

IO
N

NUMBER OF VERTICES

MGSA MCDS MOGA GSA

FIGURE 7.2: Energy consumption in MGSA, MOGA, MCDS, and
GSA.

7.6.2 Comparison in the second dataset

The comparative analysis in terms of time, HVI, and C-metric between the algo-

rithms MGSA and I-NSGA-II across small and medium instances are presented

in Table 7.1, and for large instances in Table 7.2. In the context of the C-metric,

"1" refers to MGSA, and "2" refers to I-NSGA-II. Therefore, C(1,2) represents

C(MGSA, I-NSGA-II), and C(2,1) represents C(I-NSGA-II, MGSA).
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FIGURE 7.3: Size of CDS in MGSA, MOGA, MCDS, and GSA.

Table 7.1 reveals that MGSA outperforms I-NSGA-II in terms of execution

time for all instances. Considering HVI, MGSA is better than I-NSGA-II in 10

out of 17 instances. With respect to C-metric, MGSA outperforms I-NSGA-II in

13 cases with total domination in 8 of them.

Examining Table 7.2, the evaluation of MGSA and I-NSGA-II in large in-

stances highlights that MGSA maintains its superiority in time efficiency in all

cases and 12 out of 15 cases regarding HVI. Regarding the C-metric values, we

can see that MGSA frequently achieves higher values, indicating it often pro-

duces better solutions than I-NSGA-II.

Figures 7.4 and 7.5 depict the approximate Pareto fronts derived from MGSA

and I-NSGA-II methods for small and medium instances, as well as large in-

stances, respectively. It is clearly seen that MGSA consistently outperforms I-

NSGA-II in all cases, except for instances (10, 20) and (25, 100) where the results

are incomparable.
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TABLE 7.1: Results of MGSA and I-NSGA-II for small and
medium instances.

n m
MGSA I-NSGA-II

Time (s) HVI C(1,2) Time (s) HVI C(2,1)

10 20 0.113 5768 0.450 19.992 6067 0.754

40 0.078 18498 0.525 19.643 19762 0.730

25 100 0.358 126434 0.418 20.964 126476 0.600

250 0.366 386878 0.810 18.214 381058 0.340

50 100 0.649 125287 0.548 25.281 125806 0.536

500 0.974 1.493E+06 1 23.290 1.487E+06 0.090

100 200 1.962 494505 1 31.076 476289 0.067

600 2.390 3.157E+06 0.732 31.520 3.156E+06 0.406

1000 7.184 5.840E+06 0.633 26.896 5.843E+06 0.574

200 400 8.773 1.954E+06 1 125.586 1.846E+06 0

1200 16.069 1.263E+07 1 50.662 1.248E+07 0

2000 9.847 2.286E+07 0.428 36.313 2.312E+07 0.720

250 500 9.095 2.994E+06 1 134.257 2.855E+06 0

1000 11.697 1.114E+07 1 103.687 1.077E+07 0

1500 11.627 1.937E+07 0.954 95.514 1.904E+07 0.115

2000 13.923 2.854E+07 1 51.075 2.824E+07 0

2500 16.968 3.761E+07 1 47.800 3.792E+07 0

Average 6.592 8.750E+06 0.794 50.751 8.699E+06 0.290

The previous results showcase the ability of MGSA to deliver solutions quickly

while taking into account their quality.
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TABLE 7.2: Results of MGSA and I-NSGA-II for large instances.

n m
MGSA I-NSGA-II

Time (s) HVI C(1,2) Time (s) HVI C(2,1)

500 1000 28.838 1.165E+07 1 565.842 1.160E+07 0

2000 36.759 4.530E+07 1 646.827 4.371E+07 0

3000 96.697 7.762E+07 1 301.842 7.548E+07 0

4000 46.037 1.154E+08 0.682 232.733 1.157E+08 0.526

5000 44.169 1.447E+08 0.814 180.837 1.439E+08 0.241

750 1500 75.306 2.727E+07 1 1541.980 2.517E+07 0

3000 88.287 9.526E+07 0.832 1587.260 9.485E+07 0.368

4500 100.016 1.774E+08 1 1084.457 1.738E+08 0

6000 114.328 2.501E+08 0.420 711.109 2.556E+08 0.607

7500 108.594 3.273E+08 0.790 354.333 3.264E+08 0.342

1000 2000 102.763 4.622E+07 0.736 3060.541 4.578E+07 0.412

4000 163.637 1.749E+08 1 2754.252 1.722E+08 0

6000 152.561 3.116E+08 0.820 2082.053 3.087E+08 0.317

8000 145.614 4.419E+08 0.906 1103.110 4.395E+08 0.208

10000 200.758 5.815E+08 0.394 749.328 5.855E+08 0.640

Average 100.290 1.885E+08 0.826 1130.420 1.878E+08 0.244

7.7 Conclusion

In this chapter, we introduce a novel method called Multi-Objective Greedy

Simulated Annealing algorithm (MGSA) for tackling the minimum weight min-

imum connected dominating set (MWMCDS) problem. MGSA integrates a sim-

ulated annealing algorithm, which is seeded by a combined greedy heuristic

that considers both the weight and the cardinality reduction. The performance

of the proposed algorithm was compared with existing state-of-the-art tech-

niques, including MOGA, MCDS, GSA, and I-NSGA-II. The comparison was

based on energy consumption and the size of CDS in the data transfer sys-

tem for the first dataset, and on hypervolume indicator, C-metric, runtime, and
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FIGURE 7.4: Approximate Pareto fronts produced by MGSA and
I-NSGA-II for small and medium instances.
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FIGURE 7.5: Approximate Pareto fronts produced by MGSA and
I-NSGA-II for large instances.

approximate Pareto fronts for the second dataset. The obtained results demon-

strate the effectiveness of the MGSA algorithm.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

This thesis has focused on the development of bi-objective modeling and op-

timization techniques using greedy stochastic algorithms to address the Min-

imum Weight Minimum Connected Dominating Set (MWMCDS) problem; a

significant NP-hard problem in graph theory that aims to minimize the cardi-

nality and the total edge-weight of the generated connected dominating set.

The primary challenge tackled by this work has been the simultaneous mini-

mization of often conflicting objectives while maintaining the quality of solu-

tions. Another challenge is the lack of works that has studied this problem

(one work to the best of our knowledge) which requires greater efforts to find

suitable algorithms and techniques to solve it.

The core contributions of this work include the development of three algo-

rithms called GSA, I-NSGA-II, and MGSA, each introducing an efficient greedy

heuristic to solve the MWMCDSP. These algorithms were tested on one or both

of these datasets [13, 104].

Greedy Simulated Annealing (GSA): The GSA algorithm integrates a greedy
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heuristic with the simulated annealing framework, based on an aggregated ob-

jective function to guide the search process. Moreover, GSA uses a useful cal-

culation method for changing temperature. The performance of the proposed

algorithm was assessed and compared against a recent multiobjective genetic

algorithm named MOGA [13], and an MCDS produced in [14]. The experimen-

tal results compared to those obtained show the superiority of GSA.

Improved Non-dominated Sorting Genetic Algorithm (I-NSGA-II): In this

work, we introduce an improved version of NSGA-II. First, we developed three

greedy heuristics for the problem and the best performing one among them was

chosen to be used in our approach. The I-NSGA-II algorithm incorporates the

selected greedy heuristic to initial population generation and neighbor produc-

tion. Fast nondominated sorting and crowding distance procedures are used

to sort and select vertices for the next generation. This algorithm has demon-

strated superior performance compared to the traditional NSGA-II [78] with

regard to solution quality and computation time.

Multiobjective Greedy Simulated Annealing (MGSA): MGSA is a multi-

objective simulated annealing algorithm based on the Pareto optimization tech-

nique, seeded by a combined greedy heuristic that considers both the weight

and the cardinality reduction. Neighbors are generated either greedily or ran-

domly with equal probability. Moreover, MGSA uses useful methods for chang-

ing temperature and for accepting solutions. The final approximate Pareto front

was refined by eliminating redundant vertices. The performance of MGSA

was benchmarked against recent algorithms from the literature, namely MOGA

[13], MCDS [14], GSA [12], and I-NSGA-II [15]. The results obtained demon-

strate the superiority of MGSA.
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8.2 Future Works

Although this thesis has made significant strides in addressing the challenges

associated with the MWMCDS problem, where the proposed algorithms have

demonstrated their effectiveness in solving it, there are many important points

that we plan to carry out to strengthen our approaches. Our future perspectives

are summarized as follows:

• Develop more advanced greedy heuristics tailored specifically to the MWM-

CDS problem.

• Use multiple greedy heuristics simultaneously.

• Integrate effective local search strategies such as tabu search, variable

neighborhood search (VNS), and ant colony optimization (ACO).

• Apply the proposed algorithms to other bi-objective problems as well es-

pecially those that are similar to MWMCDS.

• Extend the application to solve optimization problems with more than

two objectives.

• Apply the MWMCDS problem to other real-world networks, such as wire-

less sensor networks.
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