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Introduction

These notes constitute the core of the semester-long course in Analysis III offered to

second-year students in the Mathematics LMD program. They may also be useful for

second-year students in the physics program as well as for students in the common

engineering core. This course consists of five chapters: the first is dedicated to

numerical series, the second to sequences and series of functions, and the third to

power series, particularly important for the study of functions of complex variables.

Fourier series, which are useful in the third year, especially in problems governed by

parabolic equations, constitute the fourth chapter. Finally, the last chapter addresses

the convergence of integrals and is complemented by an introduction to integrals

dependent on one or more parameters. We hope that our dear students will derive

greater benefit from these notes.

iii



Chapter 1

NUMERICAL SERIES

1.1 Definitions

Let (Un)n∈N∗ be a sequence of real or complex numbers. From this sequence, we

define a new sequence

(Sn)n∈N∗ as follows:

S1 = U1

S2 = U1 + U2

...

Sk = U1 + U2 + ...+ Uk

...

Sn =
∑n

k=1 Uk.

(1.1)

The general term Sn is called the partial sum of order n.

1. A numerical series, denoted by {(Un)n∈N∗,(Sn)n∈N∗} , is defined, where Un is

called the general term of the series.

1
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2. The series is said to be convergent with a sum S if the following limit exists

and is finite:

S = lim
n→+∞

Sn =

∞∑
n=1

Un, (1.2)

Otherwise, i.e., if this limit is∞ or does not exist, then the series is said to be

divergent.

3. The remainder of order n for the series
∑∞

n=1 Un is defined as the number

Rn = Un+1 + Un+2 + ... =

∞∑
p=n+1

Up. (1.3)

The series converges if the sequence (Rn)N∈N∗ approaches 0 as n→ +∞ :

∞∑
n=1

Un converge⇔ ∀ε > 0,∃n0 ∈ N∗,∀n ∈ N∗, n ≥ n0 =⇒ |Rn| < ε. (1.4)

If S is this limit, this is equivalent to

∀ε > 0,∃n0 ∈ N∗,∀n ∈ N∗, n ≥ n0 =⇒ |S − Sn| < ε. (1.5)

Example 1 Consider the series a+ar+ar2+ ..+ar2..., which is called a geometric

series with the first term a and common ratio r. Assuming r 6= 1, we then calculate

Sn:

U1 = a,

U2 = ar,

...

Un = arn−1.

We have Sn = a + ar + ... + arn−1 and rSn = ar + ar2 + ......... + arn−1 + arn, By
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subtraction, Sn − rSn = a− ar2, so

Sn =
a (1− rn)
1− r .

Discussion:

• If |r| < 1, lim
n→+∞

rn = 0 =⇒ S = lim
n→+∞

Sn =
a

1− r , then the series
∑∞

n=1 Un is

convergent.

• If |r| > 1, rn → +∞ as n → +∞, so lim
n→+∞

Sn = ±∞ and in this case, the

geometric series is divergent.

• If r = 1, the series is a+a+...a+..., and in this case Sn = na =⇒ lim
n→+∞

Sn = +∞

and the series diverges.

• If r = −1, we have the series a− a+ a− a+ ..., so

Sn =

 0 if n is even,

a if n is odd,

The sequence (Sn)n∈N∗ has no limit; therefore, the series
∑∞

n=1 (−1)
n−1 a di-

verges.

1.2 Operations on Series

Let (Un)n∈N∗ and (Vn)n∈N∗ be two numerical series, then:

1. If
∑∞

n=1 Un converges and
∑∞

n=1 Un converges, then the sum series
∑∞

n=1 (Un + Vn)

also converges.
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2. If one of the series converges and the other diverges, then the series
∑∞

n=1 (Un + Vn) =∑∞
n=1 Un + Vn diverges.

3. If both series diverge, there is no general statement about the sum (as one may

have a sum of +∞ and the other −∞).

The series
∑∞

n=1 Un and
∑∞

n=1 Vn =
∑∞

n=1 aUn, where a ∈ R∗ are of the same

nature.

1.2.1 Necessary Condition for Convergence

Suppose that the series
∑∞

n=1 Un converges to S :

S = lim
n→+∞

Sn =
∞∑
n=1

Un,

so S = lim
n→+∞

Sn−1, but Sn − Sn−1 = Un, which yields, in the limit:

lim
n→+∞

(Sn − Sn−1) = lim
n→+∞

Un

=⇒ lim
n→+∞

Sn − lim
n→+∞

Sn−1 = lim
n→+∞

Un

=⇒ lim
n→+∞

Un = 0

so
∑∞

n=1 Un converges =⇒ lim
n→+∞

Un = 0.We also have, by contrapositive reasoning:

lim
n→+∞

Un 6= 0 =⇒
∞∑
n=1

Un diverge. (1.6)

Example 2
∑∞

n=1
en

n
.

Let Un = en

n
, then lim

n→+∞
Un = +∞, so the series

∑∞
n=1

en

n
diverge.

Remark 3 A series can diverge even if its general term tends towards 0.
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1.2.2 The harmonic series diverges.

It is the series

1 +
1

2
+
1

3
+ ...+

1

n
+ ... =

∞∑
n=1

1

n
. (1.7)

Note that limn→+1
1
n
= 0. However, as we will see, this series diverges:

1 +
1

2
+

{
1

3
+
1

4

}
+

{
1

5
+
1

6
+
1

7
+
1

8

}
+

{
1

9
+
1

10
+ ...+

1

15
+
1

16

}
+ ....

Let’s then introduce the following auxiliary series:

1 +
1

2
+

{
1

4
+
1

4

}
+

{
1

8
+
1

8
+
1

8
+
1

8

}
+

{
1

16
+
1

16
+ .....+

1

16

}
+ ...

By comparison, we have:

S2 ≥ 1 +
1

2
,

S4 ≥ 1 +
1

2
+
1

4
+
1

4
= 1 + 2.

1

2
,

S8 ≥ 1 +
1

2
+
1

2
+
1

2
+ 4.

1

2
.

By induction

S2n ≥ 1 +
n

2
.

Since lim
n→+∞

(
1 + n

2

)
= +∞, then lim

n→+∞
S2n = +∞ and thus lim

n→+∞
Sn = +∞, There-

fore, the harmonic series diverges.

Another demonstration:
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Let f (x) = 1
x
, x > 0, then Un = f (x) = 1

n
. According to the graph of the function

f , we have the inequalities

1 >
∫ 2
1

dx

x
,

1
2

>
∫ 3
2

dx

x
,

....

1
n

>
∫ n
n−1

dx

x
.

By addition:

1 +
1

2
+ ...+

1

n
>

∫ n+1

1

dx

x
, (1.8)

Meaning Sn > ln (n+ 1) , nd by taking the limit, we have lim
n→+∞

Sn = +∞, thus the

harmonic series diverges.

1.3 Criteria for Convergence of Series with Posi-

tive Terms

1.3.1 Comparison of Series

Theorem 4 Let
∑∞

n=1 Un and
∑∞

n=1 Vn dbe two series with positive terms such that

Un ≤ Vn,∀n ≥ 1 (1.9)

then
∞∑
n=1

Vn converge⇒
∞∑
n=1

Un converge.

Proof. Let Sn and Gn be the respective partial sums of the series
∑∞

n=1 Un and∑∞
n=1 Vn. Then (1.9) =⇒ ∀n∈N∗ : Sn ≤ Gn ≤ G because {Gn} is increasing, so the



CHAPTER 1. NUMERICAL SERIES 7

sequence {Sn} is bounded by G, Moreover, {Sn}n≥1 is an increasing sequence as the

terms Un are positive.

Conclusion 5 the sequence {Sn}n≥1 is increasing and bounded, so it is convergent.

We also have: if Un ≥ Vn ∀n ≥ 1, and if the series
∑∞

n=1 Vn diverges, then the

series
∑∞

n=1 Un also diverges..

Example 6 Study the nature of the series
∑∞

n=1

(
1
2

)n √n
n+1

Let Un =
(
1
2

)n √n
n+1

, then

∀n ∈ N∗ : Un ≤
(
1

2

)n
1

n+ 1
≤
(
1

2

)n
.

As the series with general term Vn =
(
1
2

)n
converges, the same is true for the series∑∞

n=1

(
1
2

)n √n
n+1

.

1.3.2 Alembert criterion

Theorem 7 Let
∑∞

n=1 Un be a series with positive terms. Suppose lim
n→+∞

Un+1
Un

= l,

then:

a) if l < 1, then the series converges,

b) if l > 1,then the series diverges,

c) if l = 1, no conclusion can be drawn.

Proof.

a) If l < 1,∃r ∈ R∗+: l < r < 1.Therefore,

∃N ∈ N∗ such that ∀n > N :
Un+1
Un

< r.
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We obtain successively:

Un+1 < rUn,

Un+2 < Un+1 < r2Un,

Un+3 < rUn+2 < r3Un,

...

By adding term by term, we will have

Un+1 + Un+2 + Un+3 + ... < rUn + r2Un + r3Un...

= Un (r + r2 + r3 + ...) .

The bounding series is convergent because it is a geometric series with a ratio

r < 1, Therefore, the series Un,+1 + Un+2 + ... is convergent. We deduce that

the series
∑∞

n=1 Un also converges.

b) If l > 1, then

∃ε > 0 such that 1 < 1 + ε < l.

For this ε, all the elements of the sequence
{
Un+1
Un

}
are > 1 + ε except for a

finite number, i.e.,

∃N ∈ N∗ : UN+1
UN

> 1 + ε ∀n ≥ N,

By giving N the successive values N,N + 1, N + 2, we will have:

UN+1
UN

> 1 + ε =⇒ UN+1 > (1 + ε)UN

UN+2
UN+1

> 1 + ε =⇒ UN+2 > (1 + ε)UN+1 > (1 + ε)2 UN ,
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Thus, the series UN+1+UN+2+ ... is bounded below by the series (1 + ε)UN +

(1 + ε)2 UN+...which is a divergent geometric series because its ratio is 1+ε > 1.

This implies that the series UN+1 + UN+2 + ...is divergent, and consequently,

the series
∑∞

n=1 Un is also divergent.

c) If l = 1 : There are examples that lead to convergence and others to divergence,

but this is demonstrated using other means.

1.3.3 Cauchy criterion

Theorem 8 Let
∑∞

n=1 Un be a numerical series with positive terms, and let l =

lim
n→+∞

n
√
Un = lim

n→+∞
(Un)

1
n . Then, we have the cases:

a) if l < 1, the series converges,

b) if l > 1, the series diverges,

c) if l = 1, no conclusion can be drawn.

Proof.

a) For l < 1, use a similar technique as in the Alembert criterion. For any ∀ε >

0,∃N ∈ N : ∀n > N :
∣∣ n√Un − l∣∣ < ε =⇒ l − ε < n

√
Un < l + ε, so ∀n > N

Un < l+ε.We can always choose ε small enough so that l+ε is < 1. For suchε

: ∀n > N Un < (l + ε)n < 1, so

UN+1 < (l + ε)N+1 ,

UN+2 < (l + ε)N+2 ,
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the geometric series (l + ε)N+1+(l + ε)N+2+... converges. Therefore, the series

UN+1+UN+2+... is convergent as it is bounded by a convergent geometric series.

Hence, the series U1 + U2 + ...+ UN + UN+1 + ... is also convergent.

b) If l > 1 : ∃N ∈ N∗ : ∀n > N : n
√
Un > l− ε and we can always choose ε such that

l − ε > 1. Then

∀n > N : Un > (l − ε)n > 1.

Since
∑∞

n=1 (l + ε)n diverges (geometric series with ratio l − ε > 1), then∑∞
n=1 Un diverges =⇒

∑∞
n=1 Un diverges.

c) If l = 1 no conclusion can be drawn: There is a possibility of convergence or

divergence depending on the series under consideration

1.3.4 Comparison with an Integral:

Theorem 9 Let
∑∞

n=1 Un be a series with positive terms and {Un}n∈N∗ a non-

decreasing sequence. Let f be a continuous, non-decreasing function on an interval

of the form [a,+∞[ such that ∀n ∈ N∗ f(n) = Un, Then, the series
∑∞

n=1 Un nd the

integral
∫ +∞
1

f(x)dx shave the same nature.

Proof. Considering the graph of this function for x between n and n + 1, and

assigning values 1, 2, ..., to n, we have:

U1 = U1 (2− 1) >
∫ 2
1
f(x)dx,

U2 = U2 (2− 1) >
∫ 3
2
f(x)dx,

...

Un = Un (n+ 1− n) >
∫ n+1
n

f(x)dx.
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By addition:

U1 + U2 + ....+ Un = Sn >

∫ n+1

1

f(x)dx. (1.10)

On the other hand, we also have:

U2 = U2 (2− 1) >
∫ 2
1
f(x)dx,

U3 = U2 (3− 1) >
∫ 3
2
f(x)dx,

...

Un+1 = Un (n+ 1− n) >
∫ n+1
n

f(x)dx.

By addition:

U2 + U3 + ...+ Un+1 = Sn >

∫ n+1

1

f(x)dx,

Namely:

Sn+1 − U1 <
∫ n+1

1

f(x)dx. (1.11)

Two cases may arise:

1. If
∫ +∞
1

f(x)dx converges, then according to (1.11)

Sn+1 <

∫ n+1

1

f(x)dx+ U1 <

∫ +∞

1

f(x)dx+ U1 =⇒ Sn <

∫ +∞

1

f(x) + U1.

The sequence {Sn}n≥1 is bounded, and since it is also increasing, it converges,

i.e.,
∑+∞

1 Un converges.

2. If
∫ +∞
1

f(x)dx = +∞, then according to (1.10)

Sn >

∫ +∞

1

f(x)dx , ∀n ≥ 1. (1.12)

By taking the limit:
∑∞

n=1 Un >
∫ +∞
1

f(x)dx =⇒
∑∞

n=1 Un diverges.
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1.3.5 Equivalence criterion

Let
∑∞

n=1 Un and
∑∞

n=1 Vn be two series with positive terms such that for n ∈

V (+∞) : Un ∼ Vn, then
∑∞

n=1 Un and
∑∞

n=1 Vn have the same nature.

1.3.6 Another comparison criterion:

Let
∑∞

n=1 Un and
∑∞

n=1 Vn dbe two series with positive terms. By calculating lim
n−→+∞

Un
Vn
,

three cases arise:

• 1st case: If lim
n−→+∞

Un
Vn
= 0 , then

∑∞
n=1 Vn converges ⇒

∑∞
n=1 Un converges.

• 2nd case: If lim
n−→+∞

Un
Vn
= +∞, then

∑∞
n=1 Vn diverges ⇒

∑∞
n=1 Un diverges.

• 3rd case: If lim
n−→+∞

Un
Vn
= l =⇒

∑∞
n=1 Un and

∑∞
n=1 Vn have the same nature.

In general, one takes Vn = 1
nα
and calculates lim

n−→+∞
Un
Vn
= lim

n−→+∞
n−αUn to conclude.

1.4 Series with Arbitrary Terms

Let
∑∞

n=1 Un be a numerical series that can take positive and negative values.

Definition 10 We say that the series
∑∞

n=1 Un converges absolutely if the series of

positive terms
∑∞

n=1 |Un| converges.

Theorem 11 Every absolutely convergent series is convergent.

Proof. Suppose that the series
∑∞

n=1 Unconverges absolutely. Consider
∑∞

n=1 Un,

and show that its remainder |Rn| −→ 0 as n −→ +∞. Now,

|Rn| = |Un+1 + Un+2 + ...| ≤ |Un+1|+ |Un+2|+ ... (1.13)
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but lim
n→+∞

(|Un+1|+ |Un+2|+ ...) = 0 as it is the remainder of the convergent series∑∞
n=1 |Un| , so lim

n→+∞
|Rn| = 0 =⇒

∑∞
n=1 Un converges.

Remark 12 As we will see from the study of alternating series, the reverse is not

always true, i.e., there are convergent series that are not absolutely convergent.

Alternating Series:

These are series of the following form:

∞∑
n=1

(−1)n Un = U1 − U2 + U3 − U4 + ..., where all Ui are ≥ 0. (1.14)

Theorem 13 ( Leibniz’s Criterion) If the sequence {Un}n≥1 is decreasing, and

lim
n→+∞

Un = 0, then the series
∑∞

n=1 (−1)
n Un converges, and its sum S is positive with

S ≤ U1.

Proof. Consider the sum S2n, then

S2n = (U1 − U2) + (U3 − U4) + ...+ (U2n−1 − U2n)

By hypothesis, all these parentheses are positive, so S2n is also positive, and the

sequence {S2n} is thus increasing. Let’s show that it is bounded. We write S2n as

follows:

S2n = U1 − (U2 − U3)− (U4 − U5)− ...− (U2n−2 − U2n−1)− U2n,

which means that S2n < U1, so the sequence {S2n} is increasing and bounded, so it

converges: lim
n→+∞

S2n = S.

Now consider the sequence {S2n+1}n≥1 . We have

S2n+1 = S2n + U2n+1 =⇒ lim
n→+∞

S2n+1 = lim
n→+∞

S2n + lim
n→+∞

U2n+1 = S
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The subsequences {S2n} and {S2n+1} are convergent, so they converge to S,. As

{S2n} = {S2n} ∪ {S2n+1} the sequence {Sn} lso converges to S. Since S2n+1 =

S2n + U2n+1 ≤ U1 − U2n−1 ≤ U1, then Sn ≤ U1 for all ∀n ≥ 1 c.q.f.d.

Remark 14 We have |Rn| ≤ Un+1.

Example 15
∑∞

n=1
(−1)n
n
.

Un =
1
n
is the general term of a series with positive terms where Un+1 = 1

n+1
<

Un =
1
n
and lim

n→+∞
Un = 0 ⇒

∑∞
n=1

(−1)n
n

converges.

The series
∑∞

n=1

∣∣∣ (−1)nn

∣∣∣ =∑∞n=1 1n is divergent, i.e., the series ∑∞n=1 (−1)nn
is not

absolutely convergent. Such a series is called semi-convergent.

1.4.1 Abel’s criterion

This criterion is a generalization of Leibniz’s criterion. We have

Theorem 16 Let {an}∞n=1 and {bn}∞n=1 be two numerical sequences satisfying the

following three conditions:

1. The sequence {Bn}∞n=1 is bounded, where Bn =
∑n

k=1 bk,

2. The sequence {an}∞n=1 is decreasing, and lim
n→+∞

Un = 0, then the series
∑+∞

1 anbn

converges.

Remark 17 If bn = (−1)n , Abel’s criterion reduces to Leibniz’s criterion.

Example 18 Let’s study the series of terms Un = einαan where α 6= πk, k ∈ Z

Here, bn = einα,so let Bn =
∑n

k=1 e
ikα be the partial sum corresponding to the

series
+∞∑
n=1

bn =
+∞∑
n=1

einα.
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Thus, for α 6= πZ, we have

Bn = eix
ei(n+1)α − 1
eiα − 1

As |Bn| < 2

|ei α2 ||ei α2 −e−i α2 | <
1

|sin α2 |
=⇒ the sequence {Bn} is bounded.

For{an} sa decreasing sequence such that lim
n−→+∞

an −→ 0, we have
∑∞

n=1 e
inαan

converges.

Special cases: the series
∑+∞

n=1
einα

ns
, 0 < s ≤ 1, α ∈ R\ {πZ} ,

∑+∞
n=1

cosnα
ns

et∑+∞
n=1

sinnα
ns

, n ≥ 1, 0 < s ≤ 1, α ∈ R\ {πZ} are all convergent.

For α > 1 all these series are evidently convergent.



Chapter 2

SEQUENCES AND SERIES OF

FUNCTIONS

2.1 Sequences of functions.

Consider a sequence of functions fn : (a, b)→ R such that x→ fn (x) , possibly

with a = −∞, or b = +∞. In the following, (α, β) denotes an interval ⊆ (a, b) .

2.1.1 Simple convergence

Suppose that for each x ∈ (α, β) , the sequence {fn (x)} has a limit. This limit is

then a function f of x defined on (α, β) .We say that the sequence of functions {fn}

simply converges (S.C) to f on (α, β) :

fn → f simply on (α, β)⇔ ∀x ∈ (α, β) : lim
n→+∞

fn (x) = f (x)

This is equivalent to:

∀x ∈ (α, β) ,∀ε > 0,∃N (x, ε) ∈ N,∀n ∈ N : n ≥ N ⇒ |fn (x)− f (x)| < ε. (2.1)

16



CHAPTER 2. SEQUENCES AND SERIES OF FUNCTIONS 17

Example 19 a) Let fn : R→ R be defined by

fn (x) =
nx2

1 + nx2
, n ∈ N.

• For x 6= 0, lim
n→+∞

fn (x) = 1.

• For x = 0, we have fn (0) = 0⇒ lim
n→+∞

fn (0) = 0.

Thus, the sequence {fn} S.C to the function f defined by x 7−→ f (x) =

 1 si x 6= 0,

0 si x = 0.

b) Let fn : R→ R be defined by

fn (x) = nπe−nx
2

+ x.

∀x ∈ R, we have lim
n→+∞

fn (x) = x. Thus, the sequence {fn} S.C to the function

f defined by x 7−→ f (x) = x, ∀x ∈ R.

c) Consider the sequence of functions

fn (x) =
sinnx

n
, x ∈ R.

We have ∀x ∈ R, lim
n→+∞

fn (x) = 0, Therefore, the sequence of functions {fn}

simply converges to the zero function f (x) = 0, ∀x ∈ R.

d) Consider the sequence of functions

fn (x) = 2nx
2e−n

2x2 , x ∈ R.
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This S.C sequence towards the null function. Nevertheless, we have

1∫
0

fn (x) dx = 1− e−n
2 ⇒ lim

n→+∞

 1∫
0

fn (x) dx

 = 1;

but
1∫
0

(
lim

n→+∞
fn (x)

)
dx =

1∫
0

0dx = 0, i,e.,

lim
n→+∞

 1∫
0

fn (x) dx

 6= 1∫
0

(
lim

n→+∞
fn (x)

)
dx.

e) Let’s return to example c). We note that f rn (x) = cosnx and lim
n→+∞

f ′n (x) does

not exist in general and yet f ′(x) = 0; in other words:

d

dx

(
lim

n→+∞
fn (x)

)
6= lim

n→+∞

(
d

dx
fn (x)

)
.

Finally, returning to the first example, the functions fn are all continuous on [0, 1]

but the function f is not.

Conclusion 20 In general, simple convergence does not preserve continuity and

does not allow the symbols d
dx
and

∫
with lim

n→+∞
. To remedy this defect of simple

convergence, we introduce a new type of convegence for sequences of functions.

2.1.2 Uniform convergence

Definition 21 We say that the sequence of functions {fn} converges uniformly

(C.U) on (α, β) to the function f to mean:

∀ε > 0, ∃N (ε) ∈ N,∀x ∈ (α, β) ,∀n ∈ N : n ≥ N (ε)⇒ |fn (x)− f (x)| < ε. (2.2)
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This time, N (ε) depends only on ε and does not depend on x.

It is clear that

C.U on (α, β)⇒ C.S on (α, β) .

Example 22 Let’s revisit example a). We have uniform convergence of the sequence

{fn} to f on [c, +∞[ for a given c > 0. Indeed, on this interval:

|fn (x)− f (x)| =
∣∣∣∣ nx2

1 + nx2
− 1
∣∣∣∣ = 1

1 + nx2
.

To get
1

1 + nx2
< ε for all x ≥ c. it suffi ces to have

1

1 + nc2
< ε, i.e., nc2 >

1

ε
− 1⇒

n >
1− ε
nc2

. Therefore, for n ≥ N (ε) =

[
1− ε
nc2

]
+ 1, we have |fn (x)− f (x)| < ε.

Can we get U.C on [0, c[? If yes, then we will have U.C on [0, +∞[ .

Suppose this is the case; then ∀ε > 0,∃N (ε) ∈ N,∀n ≥ N et ∀x ∈ [0, c[ :

|fn (x)− f (x)| < ε.

Choose n such that x = 1√
n
∈ [0, c[ , which is possible; it suffi ces that n > c2.

Then, for this choice of n and x:

∣∣∣∣fn( 1√
n

)
− f

(
1√
n

)∣∣∣∣ = 1

2
does not tend to 0 as n→ +∞.

Therefore, there is no uniform convergence on [0, c[ and consequently not on [0, +∞[ .

Remark 23 In the definition of U.C, it is specified that N is independent of x ∈

(α, β) , but N obviously depends on the interval (α, β) itself.

Stating that {fn} → f uniformly on (α, β) is equivalent to saying that

∀ε > 0,∃N (ε) ∈ N,∀x ∈ (α, β) ,∀n,m ∈ N : n > m ≥ N (ε)⇒ |fn (x)− fm (x)| <

ε.

Interpretation of U.C using a norm:
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Let E be the vector space over R of functions defined on (α, β) , taking real and

bounded values on (α, β) . The norm ‖.‖∞ on E is defined as: if f ∈ E

‖f‖∞ = sup
x∈(α, β)

|f (x)| . (2.3)

Stating that the sequence {fn} → f uniformly on (α, β) means that

‖fn − f‖∞ = sup
x∈(α, β)

|fn (x)− f (x)| → 0 if n→ +∞. (2.4)

2.2 Series of functions

Let the sequence of functions Un : (α, β) → R, where eventually a = −∞, or

b = +∞. Consider the series

U1 (x) + U2 (x) + ...Un (x) + ... (2.5)

and the sequence of partial sums:

S1 (x) = U1 (x) , Sn (x) = U1 (x) + U2 (x) + ...Un (x) . (2.6)

This series is called a series of functions. The set Dc of real numbers x for

which this series converges is called the domain of convergence.

Theorem 24 The remainder Rn (x) of a convergent series of functions tends to 0

as n→ +∞.

Proof. It suffi ces to use the fact that Rn (x) = S (x)− Sn (x) . Now, for all x ∈ Dc :

lim
n→+∞

Sn (x) = S (x)⇒ lim
n→+∞

Rn (x) = 0.
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2.3 Simple, uniform and normal convergence of a

series of functions

Definition 25 a) We say that the series of functions
+∞∑
n=0

Un (x) simple conver-

gence (S.C) to its sum S (x) on an interval I = (α, β) , to express that the

numerical series
+∞∑
n=0

Un (x) is convergent :

∀x ∈ I : lim
n→+∞

Sn (x) →
n→+∞

S (x) =
+∞∑
n=0

Un (x) , (2.7)

the relation (2.7) is equivalent to

∀x ∈ I,∀ε > 0,∃N (x, ε) ∈ N,∀n ∈ N, n ≥ N (x, ε)⇒ |Sn (x)− S (x)| < ε.

(2.8)

b) We say that the series of functions
+∞∑
n=0

Un (x) converges uniformly (C.U) to

its sum S (x) on I when the sequence of partial sums {Sn}n≥1 converges uni-

formly on I to the function S (x) =
+∞∑
n=0

Un (x) , which is equivalent to:

∀ε > 0,∃N (ε) ∈ N,∀n ∈ N, n ≥ N (ε)⇒ |Sn (x)− S (x)| < ε ∀x ∈ I, (2.9)

In a more concise and practical form, this is equivalent to:

lim
n→+∞

‖Sn − S‖∞ = 0, où ‖Sn − S‖∞ = sup
x∈(α, β)

|Sn (x)− S (x)| . (2.10)
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Using Cauchy sequences, uniform convergence is equivalent to:

∀ε > 0,∃N (ε) ∈ N, ∀n ∈ N,∀m ∈ N,m > n ≥ N (ε)⇒ |Sm (x)− Sn (x)| < ε ∀x ∈ I.

(2.11)

c) Suffi cient Conditions for Uniform Convergence

Let’s first give the following definition:

Definition 26 We say that the series
+∞∑
n=0

Un (x) is bounded on the interval

I, if there exists a convergent numerical series with positive terms
+∞∑
n=0

vn such

that

∀n ∈ N : |Un (x)| ≤ vn ∀x ∈ I. (2.12)

We also say that the series
+∞∑
n=0

Un (x) converges normally on I.

Theorem 27 (C.N)
+∞∑
n=0

Un (x) converges normally on I ⇒
+∞∑
n=0

Un (x) con-

verges uniformly on I.

Proof. Suppose that the series
+∞∑
n=0

Un (x) converges normally on I, then there exists

a sequence {vn}n≥0 such that ∀n ∈ N : |Un (x)| ≤ vn. Therefore, we have:

|Un+1 (x)| ≤ vn+1,

|Un+2 (x)| ≤ vn+2,

...

By summing term by term, we get:

+∞∑
k=n+1

|Uk (x)| ≤
+∞∑

k=n+1

vk ⇒
∣∣∣∣∣
+∞∑

k=n+1

Uk (x)

∣∣∣∣∣ ≤
+∞∑

k=n+1

vk,
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This inequality involves the remainders of both series
+∞∑
n=0

Un (x) and
+∞∑
n=0

vn. As the

latter series converges, its remainder
+∞∑

k=n+1

vk →
n→+∞

0, so we can write:

∀ε > 0,∃N (ε) ∈ N,∀n ∈ N, n ≥ N (ε)⇒
∣∣∣∣∣
+∞∑

k=n+1

vk

∣∣∣∣∣ < ε

so also that

∀ε > 0,∃N (ε) ∈ N,∀n ∈ N, n ≥ N (ε)⇒
∣∣∣∣∣
+∞∑

k=n+1

Uk (x)

∣∣∣∣∣ < ε, ∀x ∈ I,

This precisely means that we have uniform convergence of the series of functions
+∞∑
n=0

Un (x) on I.

Corollary 28 Every normally convergent series is absolutely convergent.

Theorem 29 The series
+∞∑
n=0

Un (x) is normally convergent on I if and only if the

numerical series
+∞∑
n=0

‖Un‖∞ , where ‖Un‖∞ = sup
x∈I
|Un (x)| , is convergent.

Proof. If the series
+∞∑
n=0

Un (x) is normally convergent on I, there exists a convergent

numerical series with positive terms
+∞∑
n=0

vn such that ∀n ∈ N : |Un (x)| ≤ vn ∀x ∈ I.

Now, ∀n ∈ N : ‖Un‖∞ ≤ vn , and therefore, the numerical series
+∞∑
n=0

‖Un‖∞ is

convergent.

The converse is obvious; one can simply take vn = ‖Un‖∞ .

Theorem 30 (Integration) If the series of functions
+∞∑
n=0

Un (x) converges uni-

formly on I, and if, moreover, all functions n → Un (x) are continuous on I, then

its sum S (x) is a continuous function on I.
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Proof. Let x0 be any element in I. In terms of the remainder Rn (x) = Un+1(x) +

Un+2 (x) + ..., the difference S (x)− S (x0) is expressed as:

S (x)− S (x0) = Sn (x)− Sn (x0) +Rn (x)−Rn (x0) .

Taking absolute values, we have successively:

|S (x)− S (x0)| ≤ |Sn (x)− Sn (x0)|+ |Rn (x)−Rn (x)|

≤ |Sn (x)− Sn (x0)|+ |Rn (x)|+ |Rn (x)| .

Now, Sn is continuous at x0 ⇔ ∀ε > 0,∃δ1 (ε) > 0 / |x− x0| < δ1 ⇒ |Sn (x)− Sn (x0)| <

ε/3

But
+∞∑
n=0

Un (x) converges uniformly on I so there exists ∃N (ε) such that we have

both for x and x0 :

∀ε > 0,∃N1 (ε) ∈ N / n > N (ε)⇒ |Rn (x)| < ε/3 and |Rn (x0)| < ε/3.

Combining these, we get for |S (x)− S (x0)| and for n > N (ε)

∀ε > 0,∃δ1 (ε) > 0 / |x− x0| < δ1 ⇒ |S (x)− S (x0)| < ε/3 + ε/3 + ε/3 = ε,

which means that the sum S (x) is continuous at x0. As x0 is arbitrary in the interval

I, S (x) is therefore continuous on I. c.q.f.d.

We present above, without proof, the two theorems.

Theorem 31 (Integration) Suppose the series of functions
+∞∑
n=0

Un (x) converges

uniformly on I to its sum S (x). If, for every n ∈ N, the functions x → Un (x) are

integrable over I = [α, β] , then
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i) the function x→ S (x) is integrable on I,

ii) the numerical series with general term vn =
β∫
α

Un (x) dx is convergent, and more-

over, we have

∀α0, α1 ∈ [α, β] :
+∞∑
n=0

α1∫
α0

Un (x) dx =

α1∫
α0

(
+∞∑
n=0

Un (x)

)
dx,

iii) the series of functions with general term wn (x) =
x∫
x0

Un (t) dt is uniformly con-

vergent on [α, β] to its sum
+∞∑
n=0

x∫
x0

Un (t) dt and we have:

+∞∑
n=0

x∫
x0

Un (t) dt =

x∫
x0

(
+∞∑
n=0

Un (t)

)
dt. (2.14)

Theorem 32 (Differentiation) Let
+∞∑
n=0

Un (x) , x ∈ N be a series of functions such

that:

a) ∀n ∈ N, the function x→ Un (x) is a C1 function on [α, β] ;

b) the derived series
+∞∑
n=0

d
dx
Un (x) converges uniformly on [α, β] ;

c) ∃x0 ∈ [α, β] such that the numerical series
+∞∑
n=0

Un (x0) is convergent,

then we have:

i)
+∞∑
n=0

Un (x) converges uniformly on [α, β] ,
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ii) the function x→ S (x) =

+∞∑
n=0

Un (x) is differentiable on [α, β] , and we have

d

dx

(
+∞∑
n=0

Un (x)

)
=

+∞∑
n=0

d

dx
Un (x) . (2.15)

At α and β, it involves semi-differentiability.

Theorem 33 (Leibniz’s Theorem for Alternating Series) Let {Un}n∈N∗ be a

sequence of non-negative functions defined on an interval [α, β] satisfying:

i) ∀n ∈ N∗,∀x ∈ [α, β] : Un+1 ≤ Un;

ii) the sequence {Un}n∈N∗ converges to the zero function on [α, β] ;

then the series
+∞∑
n=0

(−1)n Un (x) converges uniformly on [α, β] .

Proof. According to Chapter I, we know that ∀x ∈ [α, β] : |Rn (x)| ≤ Un+1 (x) ,

but we also have ∀x ∈ [α, β] Un+1 (x) ≤ ‖Un+1‖∞ . According to ii), we have

∀ε > 0,∃n0 (ε) ∈ N∗ / ∀n ∈ N∗ : n > n0 (ε)⇒ ‖Un‖ < ε.

By combining, we obtain

∀ε > 0,∃n0 (ε) ∈ N∗/∀n ∈ N∗ : n > n0 (ε)⇒ ∀x ∈ [α, β] : |Rn (x)| < ε,

or equivalently

∀ε > 0,∃n0 (ε) ∈ N∗/∀n ∈ N∗ : n > n0 (ε)⇒ ∀x ∈ [α, β] : ‖Rn‖ < ε,

meaning the uniform convergence of the series
+∞∑
n=0

(−1)n Un (x) on [α, β] .
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2.4 Applications

By way of applications:

Exercise 34 Show that the series given by the general term

Un (x) = x
1

2n+1 − x
1

2n−1 , n ∈ N∗

is simply convergent but not uniformly convergent on R.

Solution 35 We find that this series simply converges to S (x) such that

S (x) =


−1− x, x < 0

0, x = 0

1− x, x > 0.

Exercise 36 Consider the series of functions with the general term

Un (x) = (−1)n ln
(
1 +

x

n (1 + x)

)
, x ≥ 0 et n ∈ N∗.

1. Show that this series converges simply on R+.

2. Show that this series converges uniformly on R+.

3. Is the convergence normal on R+.

Solution 37 1. Apply the alternating series criterion: lim
n→+∞

Un (x) = 0 and we

have |Un+1 (x)| ≤ |Un (x)| because

x

(n+ 1) (1 + x)
≤ x

n (1 + x)
⇒ 1 +

x

(n+ 1) (1 + x)
≤ 1 + x

n (1 + x)
,
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Since the ln function is increasing, we get

|Un+1 (x)| ≤ |Un (x)| .

2. We have

|Rn (x)| ≤ |Un+1 (x)| ≤
x

(n+ 1) (1 + x)
≤ 1

n+ 1
,

which comes from the fact that ln (1 + t) ≤ t for t > −1. As 1
n+1
→ 0 if

n → +∞, then |Rn (x)| → 0 if n → +∞ independently of x. Therefore, the

convergence is uniform.

3. There is no absolute convergence, hence no normal convergence.
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POWER SERIES

3.1 Radius of Convergence of a Power Series

Definition 38 A power series, or series of power, is any series of functions of

the form

a0 + a1x+ a2x
2 + ...anx

n + ..., (3.1)

where a0, a1, a2, ...an, ...are constants called the coeffi cients of the series.

Theorem 39 (Abel) 1. If the series converges for every x0 6= 0, it converges

absolutely for every x ∈ ]−x0, x0[ .

2. If the series diverges for x1 6= 0, it diverges for every x such that |x| ≥ |x1| .

Proof.

1. The series (3.1) converges at x0 means that the numerical series a0 + a1x +

a2x
2 + ...anx

n + ... converges, and therefore, lim
n→+∞

anx
n = 0, Thus:

∃M > 0,∀n ∈ N , |anxn| < M. (3.2)

29
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Consider the series

|a0|+ |a1x0|
∣∣∣∣ xx0
∣∣∣∣+ ∣∣a2x20∣∣ ∣∣∣∣ xx0

∣∣∣∣2 + ...+ |anxn0 |
∣∣∣∣ xx0
∣∣∣∣n + ... (3.3)

According to (3.2) , the series (3.3) has the upper bound

M +M

∣∣∣∣ xx0
∣∣∣∣+M

∣∣∣∣ xx0
∣∣∣∣2 + ...+M

∣∣∣∣ xx0
∣∣∣∣n + ..., (3.4)

Now, x ∈ ]−x0, x0[ ⇒
∣∣∣ xx0 ∣∣∣ < 1, so the geometric series (3.4) is convergent.

Therefore, the series (3.3) is also convergent, and consequently, the series (3.1)

is absolutely convergent.

2. Assume the opposite, i.e., ∃x such that |x| > |x1| for which the series (3.1)

converges. Since |x1| < |x| ⇒ x1 ∈ ]− |x| , |x|[. according to part 1 of the

theorem, the series converges (3.1) at x1, which is a contradiction. Therefore,

this series diverges for all x such that |x| > |x1| .

Theorem 40 To any power series
+∞∑
n=0

anx
n, we can associate a positive real number

R, epossibly zero or infinity, such that:

a) The series converges absolutely for every x such that |x| < R;

b) The series diverges for every x such that |x| > R.

Proof.

a) Apply the d’Alembert criterion to the series
+∞∑
n=0

|anxn| for x ∈ ]−R,R[ . Then

lim
n→+∞

∣∣∣∣an+1xn+1anxn

∣∣∣∣ = lim
n→+∞

∣∣∣∣an+1an

∣∣∣∣ . |x| .
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There is convergence if lim
n→+∞

∣∣∣an+1an

∣∣∣ . |x| < 1, i.e., if |x| < lim
n→+∞

∣∣∣∣ anan+1

∣∣∣∣ . The
sought-after number R is thus

R = lim
n→+∞

∣∣∣∣ anan+1

∣∣∣∣ . (3.5)

b) Of course, the series diverges for lim
n→+∞

∣∣∣an+1an

∣∣∣ |x| > 1; hence, for |x| > lim
n→+∞

∣∣∣∣ anan+1

∣∣∣∣ ,
i.e., for |x| > R.

The number R is called the radius of convergence of the power series
+∞∑
n=0

anx
n.With

the Cauchy criterion, this number is calculated using the formula

R =
1

lim
n→+∞

|an|1/n
. (3.6)

The series converges absolutely in the interval (−R,R) .

For x = −R or x = R, we cannot conclude immediately; it will be necessary,

of course, to study the convergence of the two numerical series
+∞∑
n=0

anR
n and

+∞∑
n=0

(−1)n anRn.

Remark 41 In the appendix at the end of this chapter, we provide the extension of

the notion of power series to the complex variable, as well as that of the radius of

convergence when the coeffi cients an are not given by a single formula.

Theorem 42 On any interval of the form [−α, α] contained in the convergence

domain Dc = (−R,R), the power series
+∞∑
n=0

anx
n is bounded.



CHAPTER 3. POWER SERIES 32

Proof. For any x ∈ [−α, α] , we have: |anxn| ≤ |an|αn. Now, the numerical se-

ries
+∞∑
n=0

|an|αn is convergent since α < R, Therefore, the power series
+∞∑
n=0

anx
n is

bounded, and we can deduce that it is uniformly convergent on the interval [−α, α] .

Theorem 43 1. On any interval [−α, α] ⊂ Dc, the sum of a power series is a

continuous function.

2. If the bounds−R and R of the convergence domain Dc belong to Dc, then

x∫
0

(
+∞∑
n=0

anx
n

)
dx =

+∞∑
n=0

x∫
0

anx
ndx (3.7)

3. If Dc = (−R,R) is the convergence domain of the power series S (x) =
+∞∑
n=0

anx
n, then the derivative series

ϕ (x) =
+∞∑
n=0

(n+ 1) an+1x
n (3.8)

has the same convergence domain, and additionally, d
dx
S (x) = ϕ (x) or

Proof. Calculate the radius of convergence of the derivative series:

lim
n→+∞

∣∣∣∣(n+ 1) an+1(n+ 2) an+2

∣∣∣∣ = lim
n→+∞

∣∣∣∣an+1an+2

∣∣∣∣
= lim

n→+∞

∣∣∣∣ anan+1

∣∣∣∣
= R.

We thus have the same convergence domain, and the derivative series is therefore

normally convergent within Dc. The series (3.1) is thus differentiable, and we can
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write:
d

dx

(
+∞∑
n=0

anx
n

)
=

+∞∑
n=0

d

dx
(anx

n) =

+∞∑
n=0

(n+ 1) an+1x
n. (3.9)

The series (3.8) can be further differentiated, and the process can be continued

indefinitely.

In conclusion, the function x 7→ S (x) is C∞ on any interval contained within the

convergence domain.

Example 44 a) The power series
+∞∑
n=0

xn converges in Dc = ]−1, 1[ and

+∞∑
n=0

xn =
1

1− x. (3.10)

Differentiating both sides, we get

1

(1− x)2
=

+∞∑
n=1

nxn−1 =
+∞∑
n=0

(n+ 1)xn (3.11)

within Dc = ]−1, 1[ .

We also have in ]−1, 1[

ln (1− x) = −
+∞∑
n=1

xn

n
. (3.12)

b) 1
1+x2

=

+∞∑
n=0

(−1)n x2n in ]−1, 1[ , and integrating both sides, we get

arctanx =

+∞∑
n=0

(−1)n x2n+1

2n+ 1
. (3.13)

Functions Expandable in Power Series

In the neighborhood of a point x0 ∈ ]−R,R[ ,we can affi rm that
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a) The sum of a power series is a C∞ function on ]−R,R[ . Conversely, can we

consider that a C∞ function is the sum of a power series? The answer is

yes under certain additional conditions. Indeed, let f : ]α, β[ → R be a C∞

function. When we can associate a power series
+∞∑
n=0

an (x− x0)n, with f , where

an and x0 ∈ R are such that we have

f (x) =

+∞∑
n=0

an (x− x0)n ,∀x ∈ ]x0 − a, x0 + a[ ⊂ ]α, β[ .

We say that f is expandable in a power series in ]x0 − a, x0 + a[ around x0.

The sum
+∞∑
n=0

an (x− x0)n is then called the power series expansion of f . This

expansion, when it exists, is unique because these coeffi cients an are uniquely

determined by

an =
f (n) (x0)

n!
. (3.14)

b) Existence condition:

Necessary condition:

f is expandable in a series in ]x0 − a, x0 + a[ ⇒ f is C∞in ]x0 − a, x0 + a[ and

an =
f (n) (x0)

n!
.

Suffi cient condition:

f is C∞in ]x0 − a, x0 + a[ , and there exists a constant M > 0 such that

∀n ∈ N :
∣∣f (n) (x)∣∣ ≤ Mn!

an
⇒ f (x) =

+∞∑
n=0

an (x− x0)n ,∀x ∈ ]x0 − a, x0 + a[ .
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c) Examples:

ex =

+∞∑
n=0

xn

n!
,∀x (3.15)

coshx =
+∞∑
n=0

x2n

(2n)!
et cosx =

+∞∑
n=0

(−1)n x2n
(2n)!

,∀x (3.16)

sinhx =

+∞∑
n=0

x2n+1

(2n+ 1)!
et sinx =

+∞∑
n=0

(−1)n x2n+1
(2n+ 1)!

,∀x (3.17)

(1 + x)m = 1+mx+
m (m− 1)

2!
x2+ ...

m (m− 1) ... (m− n+ 1)
n!

xn+ ... (3.18)

under the conditions:


m ≤ −1, Dc = ]−1, 1[ ;

−1 < m < 0, Dc = ]−1, 1[ ;

m ≥ 0, Dc = [−1, 1] .

3.2 Function C∞ not developable in series

Let f be the function defined by

f (x) =

 exp
(
− 1
x2

)
, si x ∈ R∗

0, si x = 0

It is shown by induction that f is aC∞ function onR∗ and f (n) (x) =
Pn (x)

x3n
exp

(
− 1
x2

)
,

where Pn is a polynomial of degree 2n − 2. Therefore, lim
x→0

f (n) (x) = 0 ⇒ ∀n ∈ N :

f (n) (0) = 0. It follows that the Taylor series of f is the zero series. Consequently,

there exists no real number α > 0 such that on the interval ]−α, α[ , we have

∀x ∈ ]−α, α[ : f (x) =
+∞∑
n=0

f (n) (0)

n!
xn

because f does not vanish at 0.



CHAPTER 3. POWER SERIES 36

3.3 Additional information on power series

Accumulation Points and Radius of Convergence

Let {Un}n∈N be a numerical sequence. We say it has a finite accumulation

point l if:

∀ε > 0, there exists an infinite number of Un in ]l − ε, l + ε[ .

Similarly, we say it has +∞ (resp. −∞) as an accumulation point if:

∀A > 0, there exists an infinite number of Un in ]A,+∞[ (resp. in ]−∞, A[).

The largest accumulation point of the sequence {Un}n∈N (denoted as L) is called the

upper limit of the sequence. We write

L = lim
n→+∞

Un. (3.19)

Considering the sequence
{

n
√
|an|
}
, we then have the general formula for calculating

the radius of convergence

R =
1

lim
n→+∞

n
√
|an|

. (3.20)

Example 45 Determine the radius of convergence of the following power series:

1. z + z2 + z3 + z5 + z7 + z11 + z13 + ...zp + ..., p prime number;

2. Consider the sequence {λn} defined by

λn =


1

p+
√
p
, si n = 3p

1
pp
, si n = 3p+ 1

(−a)p , si n = 3p+ 2n, a > 0 cste.
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Solution 46 1. This is a power series with an =

 0, si n non premier;

1, si n = p premier;

Therefore, n
√
|an| =

 0, si n non premier;

1, si n = p premier;

and the sequence
{

n
√
|an|
}
has two accumulation points, which are 0 and 1.

Thus, lim
n→+∞

n
√
|an| = 1⇒ R = 1.

2. It is clear that

n
√
|an| = n

√
|λn| =



1
3p
√
p+
√
p
, si n = 3p

1

p
p

3p+1

, si n = 3p+ 1

a
p

3p+1 , si n = 3p+ 2.

These three expressions tend to 1, 0 and a1/3 respectively as p→ +∞⇒

R =
1

sup {1, a1/3} .

Extension of the Notion of Power Series to the Complex Variable

We consider power series
+∞∑
n=0

anz
n of the complex variable z. Its radius of con-

vergence is calculated in the same way as in the case of the real variable, only the

study at the boundary differs since the convergence domain Dc is now a disc in C.

Example 47 Study of the series
+∞∑
n=1

zn

n
.

It is clear that R = 1. For z such that |z| = 1, we have z = exp (iθ) . The study at

the boundary thus amounts to studying the numerical series
+∞∑
n=1

exp (inθ)

n
for which

we apply Abel’s criterion:
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The sequence
{
1
n

}
n∈N∗ is positive, decreasing, and tends to 0 as n→ +∞ while

for θ 6= kπ

2
, k ∈ Z, the sequence {exp (inθ)}n∈N∗ is uniformly bounded, i.e., ∃M > 0,

∀N ∈ N∗, ∀θ 6= θ 6= kπ

2
, k ∈ Z :

∣∣∣∣∣
N∑
n=1

exp (inθ)

∣∣∣∣∣ < M

The series
+∞∑
n=1

exp (inθ)

n
converges for the corresponding values of z and diverges for

z of the form z = exp
(
ikπ
2

)
.
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FOURIER SERIES

Definition 48 A Fourier series is any series of functions of the form

a0
2
+ a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x+ ...+ an cosnx+ bn sinnx+ ...

= a0
2
+
∞∑
n=1

an cosnx+ bn sinnx,

(4.1)

where the real constants a0, an and bn fot n ≥ 1, are called the coeffi cients of the

series.

Remark 49 When the Fourier series converges, its sum is a function with a period

of 2π.

4.1 Determination of Fourier Coeffi cients

Let f be a 2π−periodic function. Can it be represented by a convergent Fourier

series (4.1) in the interval (−π, π)? In other words, we seek real numbers a0, an and

bn, n ≥ 1, to have

f(x) =
a0
2
+ a1 cosx+ b1 sinx+ ......+ an cosnx+ bn sinnx+ ... (4.2)

39
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It is clear that if the numerical series |a0|
2
+
∑
n≥1
|an|+ |bn| converges, then the Fourier

series is bounded on (−π, π) , Therefore, by integrating (4.2) on (−π, π) , we obtain

successively:

π∫
−π
f(x)dx =

π∫
−π

(
a0
2
+
∞∑
n=1

an cosnx+ bn sinnx

)
dx

=
π∫
−π

a0
2
dx+

∞∑
n=1

(
an

π∫
−π
cosnxdx+ bn

π∫
−π
sinnxdx

)
.

(4.3)

but
π∫

−π

cosnxdx =

[
sinnx

n

]π
−π
= 0∀n ≥ 1,

and
π∫

−π

sinnxdx =

[
− cosnx

n

]π
−π
= − 1

n
[cosnπ − cos (−nπ)] = 0∀n ≥ 1

Therefore, (4.3) leads to
π∫
−π
f(x)dx = πa0, so

a0 =
1

π

π∫
−π

f(x)dx. (4.4)

To find the expressions for an and bn, we will use the trigonometric identities:

sinmx cosnx = 1
2
[sin (m+ n)x+ sin (m− n)x] ,

cosmx sinnx = 1
2
[cos (m+ n)x+ cos (m− n)x] ,

sinmx cosnx = 1
2
[cos (m− n)x+ cos (m+ n)x] ,

(4.5)

which immediately give:

For n 6= m :
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π∫
−π
sinmx cosnxdx = 0,

π∫
−π
cosmx cosnxdx = 0,

π∫
−π
sinmx sinnxdx = 0,

(4.6)

For n = m : (n ≥ 1)

π∫
−π

cos2 (nx) dx =
1

2

π∫
−π

(1− cos (2nx)) dx = π

To find anand bn, we consider the two integrals respectively:

π∫
−π
f(x) cosnxdx =

π∫
−π

[(
a0
2
+
∑
n≥1

an cosmx+ bn sinnx

)
cosmx

]
dx

= a0
2

π∫
−π
cosmxdx+

∑
n≥1

π∫
−π
an cosnx cosmxdx+

∑
n≥1

bn
π∫
−π
sinnx cosmxdx

According to the identities (4.5) and (4.6) above, we find

π∫
−π

f(x) cosnxdx = an

π∫
−π

cos2 (nx) dx,

which gives

an =
1

π

π∫
−π

f(x) cosnxdx. (4.7)

To find the coeffi cients bn, we consider
π∫
−π
f(x) sinnxdx, and we obtain

bn =
1

π

π∫
−π

f(x) sinnxdx. (4.8)

Remark 50 If f is a periodic function, the same value is obtained by integrating on
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an arbitrary interval with a length equal to the period. Indeed, if T = 2π for example,

we have

∀x ∈ R :
π∫

−π

f(x)dx =

λ+2π∫
λ

f(x)dx. (4.9)

This is because the integral on the right decomposes into

λ+2π∫
λ

f(x)dx =

−π∫
λ

f(x)dx+

π∫
−π

f(x)dx+

π∫
−π

f(x)dx+

λ+2π∫
π

f(x)dx.

Now, if we substitute t = x− 2π in the last integral, then

λ+2π∫
π

f(x)dx =

λ∫
−π

f(2π + t)dt = −
−π∫
λ

f(t)dt =

π∫
−π

f(x)dx.

Definition 51 We say that f is piecewise monotonic on the interval [a, b], if it

is possible to decompose it into points: x0 = a < x1 < x2 < .... < xn = b; such that

on each interval (xi, xi+1), the function f is either increasing or decreasing. If f is

monotonic and bounded, these possible discontinuity points are of the 1st kind. To

determine if x0 is such a point, we have

Lg = lim
x
<→x0

f(x) = f(x0 − 0) 6= Ld = lim
x
>→x0

f(x) = f(x0 + 0),

and Lg and Ld are finite numbers.

Dirichlet’s Theorem: If the function f is periodic with a period of 2π, piecewise

monotonic, and bounded, then its Fourier series converges everywhere. Its sum S(x)

is equal to f(x) if f is continuous at x, while at discontinuity points, its sum is equal

to the arithmetic mean of the left and right limits, i.e., if x = x0 is a discontinuity

point of f , then
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S(x0) =
Lg + Ld

2
=
f(x0 − 0) + f(x0 + 0)

2
. (4.10)

Example 52 Let f be a function with a period of 2π, given by f(x) = x2,−π ≤

x ≤ π.

For the calculation of coeffi cients:

a0 =
1

π

π∫
−π

f(x)dx =
1

π

π∫
−π

x2dx =
1

π

[
x3

3

]π
−π
=
2π3

3
,

an =
1

π

π∫
−π

f(x) cosnxdx =
1

π

π∫
−π

x2 cosnxdx =
4(−1)n
n2

,

bn =
1

π

π∫
−π

f(x) sinnxdx = 0.

As f is piecewise monotonic, bounded, and continuous, it is equal to its Fourier

series:

x2 =
π3

3
+ 4

∞∑
n=1

(−1)n
n2

cosnx, x ∈ [−π, π] .

For x = 0 : 0 = π3

3
+ 4

∑
n≥1

(−1)n
n2
; we deduce the sum

∑
n≥1

(−1)n+1
n2

=
π2

12
.

For x = π, we obtain

∞∑
n=1

1

n2
=
π2

6
. (4.12)
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4.2 Fourier Series of Functions with Arbitrary Pe-

riod

Let f be a periodic function with period w. With the change of variable x = Wt
π
,

the new function f(Wt
π
) ebecomes periodic with period 2π. In its Fourier series, it

develops as follows:

f(
Wt

π
) =

a0
2
+ a1 cos t+ b1 sin t+ ....+ an cosnt+ bn sinnt+ ...,

where an = 1
π

π∫
−π
f(t) cosntdt et bn = 1

π

π∫
−π
f(t) sinntdt

Returning to the variable x, we have: t = πx
W
=⇒ dt = π

W
dx, then

an =
1

w

W∫
−W

f(x) cos

(
nWx

π

)
dx and bn =

1

W

W∫
−W

f(x) sin

(
nWx

π

)
dx,

and therefore,

f(x) =
a0
2
+
∞∑
n=1

(
an cos

nWx

π
+ bn sin

nWx

π

)
. (4.13)

4.3 Fourier Series of Even and Odd Functions

1. If f is an even function, then:
π∫
−π
f(x)dx = 2

π∫
0

f(x)dx, which gives:

For f(x) cosnx even =⇒ an =
1
π

π∫
−π
f(x) cosnxdx = 2

π

π∫
0

f(x) cosnxdx,

For f(x) sinnx odd =⇒ bn = 0.

2. If f is an odd function, i.e.,
π∫
−π
f(x)dx = 0,which gives:

For f(x) cosnx odd =⇒ an = 0,
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For f(x) sinnx even =⇒ bn =
2
π

π∫
0

f(x) sinnxdx.

4.4 Complex Form of Fourier Series

Let f be a periodic function with period 2π represented by its Fourier series:

f(x) =
a0
2
+

∞∑
n=1

an cosnx+ bn sinnx.

Since cosnx = einx+e−inx

2
and sinnx = einx−e−inx

2i
, then

f(x) = a0
2
+
∞∑
n=1

an

(
einx+e−inx

2

)
+ bn

(
einx−e−inx

2i

)
= a0

2
+
∞∑
n=1

an−ibn
2

einx + an+ibn
2

e−inx.

By letting c0 = a0
2
, cn =

an − ibn
2

and c−n =
an + ibn
2

, the Fourier series of f is

written as:

f(x) = c0 +
∞∑
n=1

cne
inx + c−ne

−inx,

or in a more compact form:

f(x) =
∞∑

n=−∞
cne

inx, (4.14)

which is the complex form of the Fourier series with

cn =
1

2π

π∫
−π

f(x)e−inxdx, n ∈ Z. (4.15)



CHAPTER 4. FOURIER SERIES 46

4.5 Approximation of a Function by a Trigono-

metric Polynomial

Consider the function f(x) on the interval [a, b]. If we approximate f(x) by another

function g(x), the error can be evaluated by the maximum deviation δm given

by:

δm = max
a≤x≤b

|f(x)− g(x)| , (4.16)

or more commonly and widely used, by the mean square deviation δ defined as:

δ2 =
1

b− a

b∫
a

(f(x)− g(x))2 dx. (4.17)

Now, consider f as a 2π−periodic function. Among all trigonometric polynomials

Pn (x) =
a0
2
+

n∑
k=1

ak cos kx+ bn sin kx (4.18)

where a0, ak, bk, k = 1, 2, ...n, are arbitrary real coeffi cients, it is shown that the

polynomial that gives the best possible approximation (i.e., the smallest δ) is the

one where a0, an and bn are the Fourier coeffi cients. This polynomial,

a0
2
+ a1 cosx + b1 sinx + ..... + an cosnx + bn sinnx is then called the Fourier

polynomial. It is shown that:

δ2 =
1

π

π∫
−π

f 2(x)dx−
(
a20
2
+

n∑
n=k

a2k + b2k

)
, (4.19)

which leads to the Bessel’s inequality:
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1

π

π∫
−π

f 2(x)dx ≈ a20
2
+

n∑
k=1

a2k + b2k, (4.20)

and if n −→∞ (δ = 0), it results in the Parseval-Liapounov equality:

1

π

π∫
−π

f 2(x)dx =
a20
2
+

∞∑
n=1

a2n + b2n. (4.21)

Example 53 Let’s revisit the previous example f(x) = x2. Then
π∫
−π
x4dx = 2

5
π5,

The Parseval-Liapounov equality reads:

2

5
π4 =

(
2π2

3

)2
2

+
∞∑
n=1

(
4(−1)n
n2

)2
,

and after simplification, it yields the formula:

∞∑
n=1

1

n4
=
π4

90
. (4.22)



Chapter 5

IMPROPER INTEGRALS

5.1 Definitions

Definition 54 A function f is said to be locally integrable on I if it is integrable

on every interval [a, b] ⊆ I

Definition 55 Let f be a function defined on the interval [a, b[ = I (where b = +∞)

and locally integrable on I. We say that the integral

b∫
a

f (x) dx converges at b if the

function F (x) =

x∫
a

f (t) dt defined on [a, b[ has a finite limit as x → b (this finite

limit is called the integral of f on [a, b[ and is denoted as

b∫
a

f (t) dt); otherwise,

b∫
a

f (t) dt is said to be divergent.

- Let f be a function defined on I = ]a, b] (where b = −∞) can be
b∫

a

f (x) dx and

locally integrable on I. We say that the integral F (x) =

b∫
x

f (t) dt converges at a if

48
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the function F (x) =

b∫
x

f (t) dt defined on ]a, b] ahas a finite limit as x→ a.

Example 56 I =

+∞∫
a

dx

xα
.

1. For α 6= 1, I =
+∞∫
a

dx

xα
=

[
1

(α− 1)xα−1

]+∞
1

.

If α > 1⇒ I =
1

α− 1 , so I converges.

If α < 1⇒ I diverges.

2. For α = 1, I =

+∞∫
a

dx

x
= [lnx]+∞1 = +∞, so I diverges.

Example 57 Study the convergence of the following integrals:

a)

+∞∫
0

e−tdt :

We have

x∫
0

e−tdt = 1− e−x, and as lim
x→+∞

e−x = 0,

+∞∫
0

e−tdt is convergent and equals

1.

b)

+∞∫
0

cos tdt :

We have

x∫
0

cos tdt = sinx, as lim
x→+∞

sinx does not exist,

+∞∫
0

cos tdt is divergent.

c)

2∫
1

1

t− 1dt :

We have

2∫
x

1

t− 1dt = − ln (x− 1) if x > 1. As limx>→1
− ln (x− 1) = −∞, the integral

2∫
1

1

t− 1dt is divergent.
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- Let f be a function defined on I = ]a, b[ except possibly at isolated points; a or

b could be −∞ or +∞ . Suppose that the function f is locally integrable on I. We

say that the integral

b∫
a

f (t) dt is convergent (at both a and b) if there exists c ∈ ]a, b[

such that

c∫
a

f (t) dt and

b∫
c

f (t) dt are both convergent. By definition, we set

b∫
a

f (t) dt =

c∫
a

f (t) dt+

b∫
c

f (t) dt.

Example 58 I =

2∫
0

dt

t− 1 .

We have I =

1∫
0

dt

t− 1 +
2∫
1

dt

t− 1
1∫
0

dt

t− 1 is divergent and
2∫
1

dt

t− 1 is divergent ⇒ I is divergent.

5.2 Absolute Convergence of Improper Integrals

Definition 59 We say that the integral

b∫
a

f (t) dt is absolutely convergent if

b∫
a

|f (t)| dt

is convergent.

Theorem 60

b∫
a

f (t) dt absolutely convergent⇒
b∫

a

f (t) dt convergent. Indeed, since

for all real t : − |f (t)| ≤ f (t) ≤ |f (t)| , then

∣∣∣∣∣∣
b∫

a

f (t) dt

∣∣∣∣∣∣ ≤
b∫

a

|f (t)| dt.

As

b∫
a

|f (t)| dt < +∞, we have

∣∣∣∣∣∣
b∫

a

f (t) dt

∣∣∣∣∣∣ < +∞, so
b∫

a

f (t) dt is convergent.

Example 61

+∞∫
0

e−t sin tdt
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We have

+∞∫
0

|e−t sin t| dt =
+∞∫
0

e−t |sin t| dt ≤
+∞∫
0

e−tdt < +∞,

so

+∞∫
0

e−t sin tdt is absolutely convergent, and therefore,

+∞∫
0

e−t sin tdt is conver-

gent.

5.3 Some Convergence Criteria

Majorization Convergence Criterion: If f is positive, then the integral

b∫
a

f (t) dt

converges at b if the function F (x) =

x∫
a

f (t) dt is bounded on [a, b[ .

Comparison Criterion: Let f and g be two positive functions, defined and

locally integrable on [a, b[ .

If there exists M > 0 such that f (x) ≤Mg (x) ∀x ∈ [a, b[ , then:

b∫
a

g (t) dt < +∞⇒
b∫

a

f (t) dt < +∞.

Equivalence Criterion: Given two positive functions f and g defined and

locally integrable on [a, b[ . Let l = lim
x
<→b

f(x)
g(x)

. Then

- if l = 0,

b∫
a

g (x) dx converges ⇒
b∫

a

f (x) dx converges.

- if l = +∞, then if
b∫

a

f (x) dx diverges ⇒
b∫

a

g (x) dx diverges

- if l is finite, both integrals are of the same nature.

Remark 62 In applications, the function g (x) =
1

xα
is frequently used.

Example 63 a) Convergence of

+∞∫
0

e−t
2
dt (comparison with e−t)
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b) Show that

+∞∫
1

tα−te−t
2
dt converges for α > 0

(
comparison with 1

t2

)

c) Show that

+∞∫
1

tα−te−t
2
dt converges for α > 0 (comparaison with tα−1)

5.4 Reference Integrals

- Riemann Integrals:

+∞∫
a

dt
tα
, (a > 0) , converges if α > 1.

a∫
0

dt
tα
, (a > 0) , converges if α < 1.

- Bertrand Integrals:

Let α, β ∈ R
+∞∫
a

dt

tα(ln(t))β
, (a > 0) , converges if (α > 1) or (α = 1 and β > 1) .

- Gauss Integrals:

The integral

+∞∫
0

e−t
2
dt converges and equals

√
π
2

- Dirichlet Integrals:

The integral

+∞∫
0

sin t
t
dt converges and equals π

2
.

- Fresnel Integrals:

The integrals

+∞∫
0

sin t2dt and

+∞∫
0

cos t2dt are convergent and equal
π

2
√
2
.
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Let’s show that the first integral converges:

+∞∫
0

sin t2dt =

+∞∫
0

2t
sin t2

2t
dt.

We set u = 1
2t
→ u

′
= 1

t2

v
′
=
sin t2

2t
→ v = sin t2

+∞∫
0

sin t2dt =
sin t2

2t

]+∞
0

−
+∞∫
0

sin t2

t2
dt = −

+∞∫
0

sin t2

t2
dt

= −
1∫
0

sin t2

t2
dt−

+∞∫
1

sin t2

t2
dt.

The first integral converges because lim
t→+∞

sin t2

t2
= 1.

For the second integral, we have
∣∣∣ sin t4t2

∣∣∣ ≤ 1
t2
. Since

+∞∫
1

1
t2
dt is convergent, it follows

that

+∞∫
1

sin t2

t2
dt is convergent. In conclusion,

+∞∫
0

sin t2dt is convergent.

5.5 Integral depending on a parameter

5.5.1 Limit passage under the integral sign

We study lim
n→+∞

∫
I

fn (t) dt.

If I = [a, b] , we know that if fn are continuous and fn→ f (CU), then

b∫
a

fn→
b∫

a

fdt.

Let {fn} be a sequence of functions from I to K (K = R or C) .
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1) fn are piecewise continuous on I;

2) fn → f simply, where f is piecewise continuous on I;

3) ∃ϕ : I → R+ piecewise continuous on I and integrable, verifying ∀n ∈ N

|fn (x)| ≤ ϕ (x) ;

then the functions fn are integrable on I, and thus
∫
I

fn →
∫
I

fdt.

Example 64 Study lim
n→+∞

+∞∫
−∞

1+2 sin( tn)
1+t2

dt.

Let f : R→ R, defined by

fn (t) =
1 + 2 sin

(
t
n

)
1 + t2

.

We have fn → f, simply with f (t) = 1
1+t2

. The functions fn and f are piecewise

continuous. Moreover,

|fn (t)| ≤
3

1 + t2
= ϕ (t) .

By dominated convergence, the functions fn and f are integrable, and

lim
n→+∞

+∞∫
−∞

1 + 2 sin
(
t
n

)
1 + t2

dt =

+∞∫
−∞

1

1 + t2
dt.

5.5.2 Continuity of a parameter-dependent integral

We study functions of the form

g : x ∈ X →
∫
I

f (x, t) dt,

where X s often an interval in R.

Continuity by Domination:

If f : X × I → K is such that
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1. For all x ∈ X, t→ f (x, t) is piecewise continuous on I;

2. For all t ∈ I, x→ f (x, t) is piecewise continuous on X;

3. There exists ϕ : I → R+, piecewise continuous and integrable, such that

∀ (x, t) ∈ X × I, |f (x, t)| ≤ ϕ (t) ;

then the function g : x→
∫
I

f (x, t) dt is well-defined and continuous on I.

Example 65 Definition and continuity of g (x) =

+∞∫
0

e−Xt

1+t2
dt with x ∈ R+

Consider f (x, t)→ e−xt

1+t2
defined onr R+ × [0,+∞[ .

For all t ∈ [0,+∞[ , x→ f (x, t) is continuous on R+.

For all (x, t) ∈ R+ × [0,+∞[ , |f (x, t)| ≤ ϕ (t) = 1
1+t2

, where ϕ : [0,+∞[ → R+

is piecewise continuous on [0,+∞[ because ϕ (t) ∼ 1
t2
when t is very large.

By domination, the function g is well-defined and continuous on R+.

5.5.3 Differentiation of a parameterized integral

We study functions of the form g : x ∈ X →
∫
I

f (x, t) dt where X is an interval in

R.

Definition 66 Let f : (x, t) → f (x, t) be defined on X × I. We say that f has a

partial derivative ∂f
∂x
if ∀t ∈ I, the function x → f (x, t) is differentiable. In this

case, we define ∂f
∂x
(x, t) = d

dx
f (x, t) . Let f : X × I → K be such that f has a partial

derivative ∂f
∂x
. If, in addition,

1. For all x ∈ X t→ ϕ (x, t) is piecewise continuous and integrable on I;
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2. For all x ∈ X t→ f (x, t) is piecewise continuous on I;

3. For all x ∈ X t→ ∂f
∂x
(x, t) is piecewise continuous on I;

4. For all x ∈ X t→ ∂f
∂x
(x, t) is continuous on X;

5. There exists ϕ : I → R+ that is piecewise continuous and integrable, such that

∀ (x, t) ∈ X × I :
∣∣∣∣∂f∂x (x, t)

∣∣∣∣ ≤ ϕ (t) ;

then the function g : x →
∫
I

f (x, t) dt is well-defined and C1 on X, with

g
′
(x) =

∫
I

∂f
∂x
(x, t) dt.

Example 67 Calculation of g (x) =

+∞∫
0

e−t
2
cos (xt) dt with x ∈ R.

Let f (x, t) = e−t
2
cos (xt), here X = R, I = [0,+∞[ . f is defined on R× [0,+∞[

and has a partial derivative ∂f
∂x
(x, t) = −te−t2 sin (xt) ,

For all x ∈ R, f(x,t)1
t2
→ 0 as t→ +∞, so t→ f (x, t) is piecewise continuous on

[0,+∞[ ,

For all x ∈ R, t→ ∂f
∂x
(x, t) is piecewise continuous on [0,+∞[ ,

For all t ∈ [0,+∞[ , x→ ∂f
∂x
(x, t) is continuous on R,

Moreover, for all (x, t) ∈ R × [0,+∞[ :
∣∣∂f
∂x
(x, t)

∣∣ ≤ te−t
2
= ϕ (t) where ϕ :

[0,+∞[→ R is piecewise continuous and integrable on [0,+∞[ .

By domination, the function g is C1, and g
′
(x) =

+∞∫
0

− te−t2 sin (xt) dt.

Let V
′
= −te−t2 and U = sin (xt) , then

g
′
(x) =

[
1

2
e−t

2

sin (xt)

]+∞
0

− x

2

+∞∫
0

e−t
2

cos (xt) dt,
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resulting in the first-order linear differential equation for g

g
′
(x) = −x

2
g (x) .

g is a solution to a first-order linear differential equation with the initial condition

g (0) =
√
π
2
, and we obtain

g (x) =

√
π

2
e−

1
2
x2 .
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