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Preface

This mathematics course goes beyond certain developments within the strict frame-
work of the program usually covered in the first year of the undergraduate cycle of
higher education. We wanted to make it a reference document that engineering stu-
dents can use in the rest of their studies to deepen or review the notions of algebra or
analysis used in the teaching of applied mathematics for the master’s degree.
In this work, we have endeavored to give precise definitions and present rigorous rea-
soning without, however, seeking exhaustiveness. Furthermore, as far as possible, we
have sought to motivate the concepts introduced and to illustrate them with examples,
remarks and warnings in order to make learning more dynamic.

This manuscript constitutes the essential part of Analysis 1 and Algebra 1 which
I gave first year LMD science of matter. We will enhance the course with applications
and motivations from physics and chemistry.
It covers the essential elements of set theory, applications and relationships, internal
laws, an introduction to general algebra such as groups, rings, fields. It then addresses
the real functions of a real variable, in particular the notion of limit, its properties, the
notion of continuity and differentiability of functions and finally we study the usual
functions, these functions appear naturally in solving simple problems, especially those
dealing with real-world topics in physics. It also covers an introduction of vector spaces
given in the last chapter. We then formalize the abstract and fundamental concept in
linear algebra as well as that of linear applications.
At the end of each party, we offer exercises with solutions.
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Chapter 1
General algebra

1.1 Introduction
The primary purpose of this chapter is to review a number of topics from analysis,
and some from algebra, that will be called upon in the following chapters. These are
topics of a classical nature, such as appear in books on advanced calculus and linear
algebra. For our treatment of modern analysis, we can distinguish three fundamental
notions which will be particularly stressed in this chapter. These are
(a) set theory, of an elementary nature;
(b) the concept of a function;
(c) algebraic structures
On a number of occasions in this chapter, we will also take the time to discuss the
relationship of modern analysis to classical analysis. We begin this now, assuming
some knowledge of the points (a) to (c) just mentioned.
Modern analysis is not a new brand of mathematics that replaces the old brand. It
is totally dependent on the time-honoured concepts of classical analysis, although
in parts it can be given without reference to the specifics of classical analysis. For
example, whereas classical analysis is largely concerned with functions of a real or
complex variable, modern analysis is concerned with functions whose domains and
ranges are far more general than just sets of real or complex numbers. In fact, these
functions can have domains and ranges which are themselves sets of functions. A
function of this more general type will be called an operator or mapping. Importantly,
very often any set will do as the domain of a mapping, with no specific reference to
the nature of its elements.
A set is a concept so basic to modern mathematics that it is not possible to give
it a precise definition without going deeply into the study of mathematical logic.

2



1.2. DEFINITIONS OF SETS 1. FUNDAMENTAL STRUCTURES

Commonly, a set is described as any collection of objects but no attempt is made
to say what a collection is or what an object is. We are forced in books of this type to
accept sets as fundamental entities and to rely on an intuitive feeling for what a set is.
The objects that together make up a particular set are called elements or members
of that set. The list of possible sets is as long as the imagination is vivid, or even
longer (we are hardly being precise here) since, importantly, the elements of a set may
themselves be sets.
Later in next chapter we will be looking with some detail into the properties of certain
sets of numbers. We are going to rely on the readers experience with numbers and not
spend a great deal of time on the development of the real number system.

1.2 Definitions of sets
Definition 1.2.1 (Set). A set is a collection of elements. In practice there is two
ways of constructing or writing sets by giving the list of its elements, for example
{0, 1, 2, 3, 5, 7, 8}, {red, black, blue}, or else a collection of elements that verify a prop-
erty, for example {x ∈ R| 0 ≤ x ≤ 1} = [0, 1] , {x ∈ R| |x − 2| < 2}.

Definition 1.2.2 (Empty set). This is the set containing no element, we note it ∅, it
can also be defined as

∅ := {x | x ̸= x}.

It is necessary to make some comments regarding the definition of an empty set.

Théorème 1.2.3. (a) All empty sets are equal.
(b) The empty is the set containihg no elements.
(c) The only set with no elements is the empty set.

Definition 1.2.4 (Relationships between elements and sets). If x indicates one of the
elements of the set E, we say that x belongs to E and we note x ∈ E. If x is not an
element of E, we say that x does not belong to E and we note x /∈ E.

Definition 1.2.5 (Finite set). We say that the set E is finite if the number of elements
of E is finite. The number of elements of E is called the cardinal of E denoted
Card(E).

Example 1.2.6. E = {0, 1, 2, 3, 5, 7, 8} ⇒ Card(E) = 7, E = ∅ ⇒ Card(E) = 0,
N is not a finite set.

Definition 1.2.7 (Subset (Inclusion)). We say that a set A is included in another
set B (which we note A ⊂ B), if all the elements of A are also in B. We also call that
A is a subset of B.

3



1.2. DEFINITIONS OF SETS 1. FUNDAMENTAL STRUCTURES

Figure 1.1: Inclusion

Definition 1.2.8 (Set of parts of E). Let E be a finite set, we call set of parts of
E, or ( power set) the set of all subsets that set E could contain denoted P (E) and
we have Card(P (E)) = 2Card(E).

Example 1.2.9. E = {1, 2, 3} and as Card(E) = 3, then Card(P (E)) = 23 = 8, we
have

P (E) = {∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , E} .

Definition 1.2.10 (Equal Sets). Two sets are equal if they have the same elements,
in particular (E ⊂ F and F ⊂ E) ⇔ (E = F )

Example 1.2.11. E =
{
x ∈ R| x2 − 3x + 2 = 0

}
, F = {1, 2}

1- E ⊂ F because if x ∈ E, we have x2 − 3x + 2 = 0 ⇒ x = 1, or x = 2. then
x ∈ F.

2-F ⊂ E because if x ∈ F, we have


x = 1 ⇒ 1 − 3 (1) + 2 = 0
or
x = 2 ⇒ 22 − 3 (1) + 2 = 0

then x ∈ E.

Finally we conclude that E = F.

Definition 1.2.12 (Complement Set). Let E be a set, and A a part of E. The set
of elements of E which do not belong to A is called complementary of A in E, and is
denoted CE

A . We also note CA if there is no ambiguity (and sometimes also Ac or A).

4



1.2. DEFINITIONS OF SETS 1. FUNDAMENTAL STRUCTURES

Figure 1.2: Complement

Definition 1.2.13 (Union of Sets). Let A and B be two parts of E. The union of A
and B is the set, denoted A ∪ B , consisting of the elements belonging to at least one
of the sets A and B.

A ∪ B = {x ∈ E/x ∈ A or x ∈ B}

The «or » is not exclusive: x can belong to A and B at the same time.

Figure 1.3: Union

Definition 1.2.14 (Intersection). Let A and B be two parts of the set E. The
intersection of A and B is the set, denoted A∩B , consisting of the elements belonging
to both A and B. When the intersection of A and B is the empty set, we say that the
sets A and B are disjoint.

A ∩ B = {x ∈ E/x ∈ A and x ∈ B}

Definition 1.2.15 (Set Difference). For A, B ⊂ E, Set difference which is denoted by
A − B, lists the elements in set A that are not present in set B .

Proposition 1.2.16. Let A, B, C be parts of a set E.
• A ∩ B = B ∩ A and A ∪ B = B ∪ A (Commutative Property).

5



1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

Figure 1.4: Intersection

• (A ∩ B) ∩ C = A ∩ (B ∩ C) and (A ∪ B) ∪ C = A ∪ (B ∪ C) (Associative
Property).

• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (Dis-
tributive Property).

• CE
A∪B = CE

A ∩ CE
B and CE

A∩B = CE
A ∪ CE

B .

• CE
[
CE

A

]
= A, A ⊂ B ⇔ CE

B ⊂ CE
A .

• A ∩ ∅ = ∅, A ∩ A = A, A ⊂ B ⇔ A ∩ B = A.

• A ∪ ∅ = A, A ∪ A = A, A ⊂ B ⇔ A ∪ B = B.

Definition 1.2.17 (Cartesian Product of Sets). Let E and F be two sets. If x ∈ E
and y ∈ F we can make a new element called couple and denoted (x, y). All of these
pairs is called the Cartesian product of E and F and is noted

E × F = {(x, y) / x ∈ E and y ∈ F} .

Example 1.2.18. 1-E = {1, 2} , F = {3, 5}

E × F = {(1, 3), (1, 5), (2, 3), (2, 5)}

2- [0, 2] × R = {(x, y) / 0 ≤ x ≤ 2 and y ∈ R}

1.3 Functions
The concept of function is fundamental in modern analysis. (It is equally important

in classical analysis but may be given a restricted meaning there, as we remark below.)
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1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

A function is often described as a rule which associates with an element in one set
a unique element in another set; we will give a definition which avoids the undefined
term rule. In this definition we will include all associated terms and notations that
will be required.
Definition 1.3.1 (Function). We call Functions of a set E in a set F , any corre-
spondence f between the elements of E and those of F.

Definition 1.3.2 (Domain of definition of f). The domain of a function f is the set
Df of elements x ∈ E corresponds a unique element y = f(x) ∈ F .

Figure 1.5: Sagittal diagram

• y = f(x) is called image of x and x is a predecessor of y.
• E is called starting set and F the arrival set of the function f. We write

f : E → F
x → f(x)

For example The image of 1 is 1, the image of 2 is 1,

Figure 1.6: Direct image

1 has two antecedents: 1 and 2. 2 has antecedent: 3.
3 has two antecedents: 4 and 5.
4 has no antecedent.

7



1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

Definition 1.3.3 (Application). An application is a function of a set E in a set F
such that Df = E. In other words that f is a map if

∀x, x′ ∈ E, x = x′ ⇒ f(x) = f(x′)

Example 1.3.4. The application Id : E → E such that

∀x ∈ E, Id(x) = x

is called identity application on E.

Definition 1.3.5 (Graph). We call graph of an application f : E → F , the set

Γf = {(x, f(x)); x ∈ E} .

Definition 1.3.6 (Equality). Two maps f, g : E → F are equal if and only if for all
x ∈ E, f(x) = g(x)

Definition 1.3.7 (Composition). Let f : E → F and g : F → G then g ◦ f : E → G
is the map defined by g ◦ f(x) = g (f(x))

E
f→ F

g→ G︸ ︷︷ ︸
g◦f

Definition 1.3.8 (Restriction And extension of a application). Given an application
f : E → F

1- We call restriction of f to a subset non-empty X of E, the application g :
X → F such that

∀x ∈ X, g(x) = f(x).

We note g = f�X .
2- Given a set G such that E ⊂ G, we call extension of the application f to the

set G, all application h of G in F such that f is the restriction of h to E.

Let E, F be two sets.

Definition 1.3.9 (Direct image of a part). Let A ⊂ E and f : E → F , the direct
image of A by f is the set

f(A) = {f(x) � x ∈ A} .

f(A) is a subset of F.

8



1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

Figure 1.7: Direct image of a part

Definition 1.3.10 (Reciprocal image). Let B ⊂ F and f : E → F , the reciprocal
image of B by f is the set

f−1(B) = {x ∈ E � f(x) ∈ B} .

f−1(B) is a subset of E.

Figure 1.8: Reciprocal image of a part

Proposition 1.3.11. Let f : E → F , A1, A2 ⊂ E and B1, B2 ⊂ F , then

• f(A1 ∪ A2) = f(A1) ∪ f(A2).

• f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2).

• f−1(B1 ∪ B2) ⊂ f−1(B1) ∪ f−1(B2).

• f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2).

• f−1(CE
B1) = CE

f−1(B)

9



1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

Definition 1.3.12 (Injective application). Let E, F be two sets and f : E → F be a
map. f is injective if every element of F has at most one antecedent, that is, if two
distinct elements of E have distinct images:

∀x1 ∈ E ∀x2 ∈ E x1 ̸= x2 =⇒ f(x1) ̸= f(x2) (1)
which is equivalent to the following implication

∀x1 ∈ E ∀x2 ∈ E f(x1) = f(x2) =⇒ x1 = x2 (2)

Remark 1.3.13. In practice we must use (2) and not (1), it is easier to show that
quantities are equal than to show that quantities are different.

Figure 1.9: Injective application

Figure 1.10: Non-injective application

Definition 1.3.14 (Surjective application). Let E, F be two sets and f : E → F be
a map. f is surjective if for all y ∈ F , there exists x ∈ E such that y = f(x). In
other words

∀y ∈ F, ∃x ∈ E such that y = f(x).

Another formulation: f is surjective if and only if f(E) = F.

10



1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

Figure 1.11: Surjective application

Figure 1.12: Non-surjective application

Remark 1.3.15. f is surjective if and only if every element y of F has at least one
antecedent.

Definition 1.3.16 (Bijective application). f is bijective if it is injective and sur-
jective. That is equivalent to: for all y ∈ F there exists a unique x ∈ E such that
y = f(x). In other words

∀y ∈ F, ∃!x ∈ E [y = f(x)] .

Remark 1.3.17. The existence of x comes from the surjectivity and uniqueness from
injectivity. In other words, every element of F has a unique antecedent by f .

11



1.3. FUNCTIONS 1. FUNDAMENTAL STRUCTURES

Figure 1.13: bijective application

Definition 1.3.18 (Reciprocal application). Let E, F be sets. If f : E → F is
bijective we define the reciprocal map by

f−1 : F → E
y → f−1(y) = x

Example 1.3.19. Let f be the application from ]0, +∞[ to ]0.1[ defined by

∀x ∈ ]0, +∞[ ; f(x) = 1√
x + 1

Show that the map f is bijective and determine f−1.

Solution • We show that f is injective.
Let x, x′ ∈ ]0, +∞[ ; f(x) = f(x′) =⇒ 1√

x + 1
= 1√

x′ + 1
=⇒ x = x′.

Then f is injective.
• We show that f is surjective.
Let y ∈ ]0, 1[ ; y = f(x) =⇒ y = 1√

x + 1
=⇒ x = 1

y2 − 1. Then

∀y ∈ ]0, 1[ ; ∃x ∈ ]0, +∞[ ; y = f(x).

Thus f is surjective.
As f is injective and surjective, then it is bijective and

f−1 : ]0, 1[ → ]0, +∞[

y → 1
y2 − 1

12



1.4. EQUIVALENCE RELATION AND
ORDER RELATION 1. FUNDAMENTAL STRUCTURES

1.4 Equivalence relation and
Order relation

Definition 1.4.1 (Binary relation). We call binary relation, any assertion between
two objects, which may or may not be verified. We denote xRy and we read “x is
related to y”.

Definition 1.4.2. Given a binary relation R between the elements of a non-empty
set E, we say that

1. R is Reflexive, ∀x ∈ E; (xRx)
xRx︷ ︸︸ ︷

x → x

2. R is Transitive, ∀x, y, z ∈ E; (xRy) and (yRz) =⇒ (xRz)
xRz︷ ︸︸ ︷

x −→ y −→ z

3. R is Symmetric, ∀x, y, ∈ E; (xRy) =⇒ (yRx)
yRx︷ ︸︸ ︷

x ↔ y
4. R is Anti-Symmetric, ∀x, y ∈ E; (xRy) and (yRx) =⇒ x = y.

Definition 1.4.3 (Equivalence relations). We say that a binary relation R on a set
E is an equivalence relation if it is Reflexive, Symmetric and Transitive.

Definition 1.4.4 (Equivalence class and quotient set). Let E be a set with an equiv-
alence relation R, and x an element of E. We call the equivalence class of x the
part of E, denoted ·

x, consisting of the elements of E equivalent to x, this is the set
·
x = {y ∈ E; xRy}.

We call quotient set of E by the equivalence relation R, the set of equivalence
classes of all the elements of E. This set is noted

E/R =
{ ·
x; x ∈ E

}
Example 1.4.5. In R we define the relation R by

∀x, y ∈ R, xRy ⇔ x2 = y2

R is an equivalence relation.
1. R is Reflexive,

∀x ∈ R, x2 = x2

then

∀x ∈ R, xRx

2. R is symmetric, ∀x, y ∈ R;

xRy ⇔ x2 = y2

⇔ y2 = x2

⇔ yRx

13



1.4. EQUIVALENCE RELATION AND
ORDER RELATION 1. FUNDAMENTAL STRUCTURES

3. R is Transitive, ∀x, y, z ∈ R;
xRy and yRz ⇔ x2 = y2 and y2 = z2

⇔ x2 = z2

⇔ xRz

Equivalence class of an element x ∈ R
·
x = {y ∈ R; xRy}
·
x =

{
y ∈ R; x2 = y2

}
·
x = {y ∈ R; x = y or x = −y}
·
x = {x, −x}

Quotient set R/R

R/R =
{ ·
x; x ∈ R

}
R/R = {{x, −x} ; x ∈ R} .

Definition 1.4.6 (Order relation). We say that a binary relation R on a set E is an
order relation if it is Reflexive, Antisymmetric and Transitive. and we note
(E; R).
Remark 1.4.7. Order relations are often denoted ≼ . If x ≼ y, we say that x is less
than or equal to y or that y is greater than or equal to x.
Definition 1.4.8. Consider an order relation on a set E.

1. We say that two elements x and y of E are comparable if
x ≼ y or y ≼ x.

2. We say that is a relation of total order, or that E is totally ordered, if all
the elements of E are two by two comparable. If not, we say that the relation is a
partial order relation or that E is partially ordered.
Example 1.4.9. Let E be a set and P(E) be the set of parts of E. We consider on
P(E), the binary relation ⊂, then ⊂ is an order relation on E

1. ⊂ is Reflexive,
∀A ⊂ P(E); A ⊂ A

2. ⊂ is Transitive, ∀A, B, C ⊂ P(E);
A ⊂ B and B ⊂ C ⇒ A ⊂ C

3. ⊂ is anti-symmetric, ∀A, B ⊂ P(E);
A ⊂ B and B ⊂ A ⇒ A = B

Example 1.4.10. The division (N; \) is partially ordered
∃p, q ∈ N; p - q and q - p

14
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1.5 Internal composition laws
Definition 1.5.1. Let E be a set. An internal composition law (ICL) on E is a
map

∗ : E × E → E
(a, b) → a ∗ b,

and we say that a ∗ b is the composite of a and b for the law ∗. A set E provided with
an internal composition law constitutes an algebraic structure and denoted (E, ∗).

Example 1.5.2.
1. The addition defined by (a, b) → a + b is an internal composition law in N, Z,

Q, R and C.
2. The multiplication defined by (a, b) → a × b is an internal composition law in

N, Z, Q, R and C.
3. The composition defined by (f, g) → f ◦ g is an internal composition law on

the sets of applications from E to E.

Definition 1.5.3 (Usual properties of laws internal). Let ∗ be an internal law on the
set E.

• Commutativity: the law ∗ is commutative if

∀a, b ∈ E : a ∗ b = b ∗ a.

• Associativity: the law ∗ is associative if

∀a, b, c ∈ E : a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• Neutral element: the law ∗ admits a neutral element e ∈ E if

∀a ∈ E : a ∗ e = e ∗ a = a.

• Symmetrical element: An element a′ ∈ E is the symmetric of a in E, if

a ∗ a′ = e = a′ ∗ a.

1.6 Group, Subgroups
Definition 1.6.1 (Groups). A group (G, ∗) is a set G to which is associated an
operation ∗ (the law of composition) verifying the following four properties

1. For all x, y ∈ G, x ∗ y ∈ G (∗ is a law of internal composition).
2. For all x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z) (the law is associative).

15
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3. There exists e ∈ G such that ∀x ∈ G, x ∗ e = x and e ∗ x = x (e is the neutral
element).

4. For all x ∈ G there exists x′ ∈ G such that x∗x′ = x′ ∗x = e (x′ is the inverse of
x and is denoted x−1), if in addition the operation checks for all x, y ∈ G, x∗y = y ∗x,
we say that G is a commutative group (or abelian).

Remark 1.6.2.
• The neutral element e is unique.
• An element x ∈ G has only one inverse.

Definition 1.6.3 (Subgroups). Let (G, ∗) be a group. A part H ⊂ G is a subgroup
of G if

• e ∈ H,
• For all x, y ∈ H, we have x ∗ y ∈ H,
• For all x ∈ H, we have x−1 ∈ H.

Remark 1.6.4. Note that a subgroup H is also a group (H, ∗) with the law induced by
that of G.

Example 1.6.5. (R∗
+, ×) is a subgroup of (R∗, ×). Indeed

• 1 ∈ R∗
+,

• If x, y ∈ R∗
+ then x × y ∈ R∗

+,
• If x ∈ R∗

+ then x−1 = 1
x

∈ R∗
+.

1.7 Rings, Sub-ring
Definition 1.7.1 (Ring). We call ring a set A provided with two internal composition
laws, an addition and a multiplication, satisfying the following axioms:

(P1) (A, +) is a commutative group (Abelian ). The neutral element for addition
in a ring A is denoted by 0A and is called null element of A.

Explicitly, for all x, y, z ∈ A we have
1. (x + y) + z = x + (y + z),
2. x + y = y + x,
3. x + 0A = 0A + x = x,
4. x + (−x) = (−x) + x = 0A.
(P2) The multiplication × is associative on A.
So for all x, y, z ∈ A, we have: x × (y × z) = (x × y) × z.
(P3) The multiplication is distributive (on the left and right) compared to
the addition on A and admits a neutral different from 0A, denoted 1A called unit

element. Explicitly, for all x, y, z ∈ A, we have
1. x × (y + z) = x × y + x × z and (x + y) × z = x × z + y × z,
2. a × 1A = 1A × a.
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Definition 1.7.2 (Subring). Let (A, +, ×) be a ring and B be a part of A. We say
that B is subring of A if

• (B, +) is a subgroup of (A, +).
• B is stable for multiplication, i.e. if b1, b2 ∈ B then b1 × b2 ∈ B.
• The neutral multiplicative of A belongs to B, i.e. 1A ∈ B.

Remark 1.7.3. Note that (B, +, ×) itself a ring, with the same neutral multiplicative.

1.8 Body, Subbody
Let K be a non-empty set with two internal composition laws + and ×.

Definition 1.8.1 (Body). We say that (K; +; ×) is a body if
1. (K; +; ×) is a ring (or unit ring),
2. Any element of K − {0K} admits a symmetric for × in K
If, moreover × is commutative, then (K; +; ×) is called an abelian body

Definition 1.8.2 (Subbody). Let (K; +; ×) be a body. A part K′ of K is a subbody
of (K; +; ×) if

1. K′ is a subring of K,
2. ∀x ∈ K − {0K} : x−1 ∈ K′.

Example 1.8.3. Prove that S = {x + y
3
√

3 + z
3
√

9} is subbody of R.

Solution: It easy to prove that S is a subring of R.
The multiplication is commutative in R, so 1 = 1 + 0 3

√
3 + 0 3

√
9 is the neutral element

for the multiplication, it is only necessary to verify that for x + y
3
√

3 + z
3
√

9 ̸= 0 ∈ S,

the inverse x2 − 3yz

D
+ 3z2 − xy

D
+ y2 − xz

D
, where D = x3 + ”y3 + 9z3 − 9xyz is in S.

1.9 Solved exercises

1.9.1 Exercises
1.1

Let A, B, C three parts of a set E. Prove the equalities

a) A − (B ∪ C) = (A − B) ∩ (A − C)

b) A − (B ∩ C) = (A − B) ∪ (A − C)
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c) A ∩ (B − C) = (A ∩ B) ∩ (A − C)

1.2 In the set P(E) of parts of a set E, we consider the equation A ∩ X = B.

a) Indicate a necessary and sufficient condition such that this equation admits
solutions.

b) Then solve this equation.

1.3 In the set P(E) of parts of a set E, we consider the equation A ∪ X = B.

a) Indicate a necessary and sufficient condition such that this equation admits
solutions.

b) Then solve this equation.

1.4

On R2 we define the relation R by

(x, y)R(x′, y′) ⇔ x = x′

Prove that R is an equivalente relation, then determine the equivalence class of an
element (x0, y0) ∈ R2.

1.5
On R2 we define the relation ≺ by

(x, y) ≺ (x′, y′) ⇔ ((x < x′) or (x = x′ and y ≤ y′))

Prove that ≺ is a relationship of order on R2.

1.6

Let f : R −→ R defined by f(x) = 2x

1 + x2

1. Is f surjective, injective ?
2. Prove that f(R) = [−1, +1]
3. Prove that the restriction g : [−1, +1] −→ [−1, +1], g(x) = f(x) is bijective.

1.7

Let ⋆ be an internal law on R

∀(x, y) ∈ R2 x ⋆ y = xy + (x2 − 1)(y2 − 1)

18
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1. Is ⋆ associative on R? commutative on R? verify that R admits a neutral element
for ⋆? Does this law give R a group structure?
2. Calculate the symetric of the real 2 for ⋆ .
3. Solve the equations 2 ⋆ x = 2, and 2 ⋆ x = 5.

1.8

Velocity group in special relativity

Let G =] − 1, 1[, we define on G tha law ⋆ by

∀(x, y) ∈ G2, x ⋆ y = x + y

1 + xy

Show that (G, ⋆) is a n abelian group.
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1.9.2 Solutions
1.1

a) A − (B ∪ C) = A ∩ (B ∪ C) = A ∩ (B ∩ C)
= (A ∩ B) ∩ (A ∩ C) = (A − B) ∩ (A − C)

b) A − (B ∩ C) = A ∩ (B ∩ C) = A ∩ (B ∪ C)
= (A ∩ B) ∪ (A ∩ C) = (A − B) ∪ (A − C)

c) A ∩ (B − C) = A ∩ (B ∩ C) = (A ∩ B) ∩ (A ∩ C)
= (A ∩ B) ∩ (A − C)

1.2

a) If there exists a part X of E allowing us to write A ∩ X = B, this implies B ⊂ A,
which is therefore a necessary condition for the equation to have a solution.
If this condition is met, the equation admits the solution X = B since A ∩ B = B
results from the inclusion B ⊂ A.
The condition found is therefore necessary and sufficient for the equation to have so-
lutions.
b) For a part X of E to be a solution, it is necessary and sufficient for X to be the
union of B and a part of E contained in the complement of A ; in other words, it is
necessary and sufficient for X to be of the form B ∪ (P ∩ A), where P is in P(E).

1.3
This exercise is treated like the previous one.
a) A ⊂ B.
b) X = B ∩ (P ∪ A); where P ∈ P(E).

1.4

The relation R is an equivalence relation, in fact, it is:
1) Reflexive: (x, y)R(x, y) because x = x.
2) Symetric: If (x, y)R(x′, y′) then x = x′ which is written x′ = x and which is equiv-
alent to (x′, y′)R(x, y) .
3) Transitive: If (x, y)R(x′, y′) and (x′, y′)R(x′′, y′′) then x = x′ and x′ = x′′ which
gives x = x′′ and which leads (x, y)R(x′′, y′′).
Let’s find the equivalence class of (x0, y0), i.e., determine all couples (x, y) such that
(x, y)R(x0, y0) or (x, y)R(x0, y0) ⇔ x = x0, in another word x = x0 and y is any real
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number.
So Cl((x0, y0)) = {(x0, y)/y ∈ R}.

1.5

The order relation,
1) Reflexive: x = x and y ≤ y which implies (x, y) ≺ (x, y).
2) Antisymetric: If (x, y) ≺ (x′, y′) and (x′, y′) ≺ (x, y) then from the first relation we
have necessarily x = x′, and from the second relation we have y ≤ y′ and y′ ≤ y, then
x = x′ and y ≤ y′.
3) Transitive: If (x, y) ≺ (x′, y′) and (x′, y′) ≺ (x′′, y′′)
Either x = x′ and x′ = x′′ in this case we have y ≤ y′ and y′ ≤ y′′ then y ≤ y′′ and so
(x, y) ≺ (x′′, y′′).
Or x = x′ and x′ < x′′ in this case, we have x ≤ x′′ and so (x, y) ≺ (x′′, y′′).
Or x < x′ and x′ = x′′ in this case we have x < x′′ and so (x, y) ≺ (x′′, y′′).
1.6
1) f is not injective , because f(2) = f(1

2
) = 4

5
.

f is not surjective because y = 2 has no antecedent,
in fact, the equation f(x) = 2 becomes 2x = 2(1 + x2), then x2 − x + 1 = 0, this
equation has no solution in R.
2) The equation f(x) = y is equivalent to equation yx2 − 2x + y = 0....(1), we have
△ = 4 − 4y2 so the equation (1) has no solution except if y ∈ [−1, +1], so we have
exactly f(R) = [−1, +1].

3) Let y ∈]1, 1[−0. The possible solutions of the equation g(x) = y are x = 1 −
√

1 − y2

y

or x = 1 +
√

1 − y2

y
. The second solution does not belong to [1, 1] (It is strictly

greater than 1 if y > 0, and strictly less than 1 if y < 0). On the other hand,

x = 1 −
√

1 − y2

y
= y

1 +
√

1 − y2 is in [1, 1]. In fact,

1 ≤ 1 +
√

1 − y2 ⇒ 0 <
1

1 +
√

1 − y2 ≤ 1

while 1 < y < 1. We can deduce

−1 ≤ −1
1 +

√
1 − y2 ≤ x ≤ 1

1 +
√

1 − y2 ≤ 1.

On the other hand, if y = 1, the equation g(x) = 1 has the only solution x = 1 while
if y = 1, the equation g(x) = 1 has the only solution x = 1. Finally, if y = 0, the
equation g(x) = 0 admits as the only solution x = 0.
In all cases, we have proved that for all y ∈ [1, 1], the equation g(x) = y admits a
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unique solution with x ∈ [1, 1]. We have clearly proved that g is a bijection. Of course,
a method of analysis, using continuity and strict monotonicity of g, would be easier.

1.7

Let us first notice that ⋆ clearly defines an internal composition law on R because the
two usual operations + and × are themselves internal composition laws on R
1. The law ⋆ is not associative on R because 2 ⋆ (3 ⋆ 4) = 52533 ̸= (2 ⋆ 3) ⋆ 4 = 13605.
It is on the other hand commutative on R Let’s check it. Let x and y be two real
numbers. The multiplication being commutative on R, we have:

x ⋆ y = xy + (x2 − 1)(y2 − 1) = yx + (y2 − 1)(x2 − 1) = y ⋆ x.

The commutativity property of the law ⋆ is deduced from that of the two usual laws
+ and ×. We notice that 1 ⋆ x = x = x ⋆ 1 for all real x. The neutral element is
therefore the real 1. Of course, R does not have a group structure for the law ⋆ since
the law is not associative on R.
2. If s is a symmetric of element 2 for the law ⋆ in R, it then verifies: s ⋆ 2 =
1 = 2 ⋆ s. Calculating the real s amounts to looking for solutions to the equation:
3s2 + 2s − 4 = 0. The real 2 has two symmetrical ones for the law ⋆ů These are the

two reals:−1 +
√

13
3

,
−1 −

√
13

3
.

3. The equation 2 ⋆ x = 2 (of unknown x) admits solutions 1 and −5/3; the equation
2 ⋆ x = 5 (of unknown x) admits for solutions 4/3 and −2.
1.8

We have th(u + v) = thu + thv

1 + thuthv
, (see chapter 4). So we put x = thu and y = thv,

and we have , x ⋆ y = th(u + v) = th(argthx + argthy)
We deduce that:
- The law ⋆ is internal, since a hyperbolic tangent belongs to ]1, 1[.
- (x ⋆ y) ⋆ z = th(argthx + argthy) + argthz) = x ⋆ (y ⋆ z).
- 0 is a neutral element.
- The opposite of x is also its inverse for ⋆.
Direct method: We have

(∀x ∈ R, x ∈] − 1, 1[) ⇔ (|x| < 1)

, from which we deduce
∀(x, y) ∈] − 1, 1[2, |xy| < 1,

consequently 1 + xy > 0.
then x + y

1 + xy
< 1 is equivalent to x + y < 1 + xy, that’s to say (1 − x)(1 − y) > 0, this
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inequality is verified for all x, y elemnts of ] − 1, 1[.
We show, in an analogous manner, that

∀(x, y) ∈] − 1, 1[2, x + y

1 + xy
> −1.

The law ⋆ is then internal in ] − 1, 1[.
This law is obviously commutative and admits 0 as a neutral element. Any real element
x admits −x as symmetrical with respect to this law.
Moreover, we have ∀(x, y, z) ∈] − 1, 1[3,

x ⋆ (y ⋆ z) = x + y ⋆ z

1 + x(y ⋆ z)
=

x + y+z
1+yz

1 + x. y+z
1+yz

= x + y + z + xyz

1 + xy + yz + zx
= (x ⋆ y) ⋆ z.

It follows that the law ⋆ is associative and that (] − 1, 1[, ⋆) is a group.
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Chapter 2
Numbers

2.1 Introduction
In the very beginning, human life was simple. An early ancient herdsman compared
sheep of his herd with a pile of stones when the herd left for grazing and again on its
return for missing animals In the earliest systems probaly the vertical strokes or bars
such as I, II, III etc.. were used for numbers 1, 2, 3, etc. The symbol " IIII" was used
by many people including the ancient egypcians for the number of fingers of one hand.
Around 5000 B.C, the Egypcians has a number system based on 10. The Egyptians
had very few signs (hieroglyphs) to count:

|: représents 1

2: représents 10

3: représents 100

4: représents 1000

5: représents 10000

6: représents 100000

7: représents 1000000
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Their system is called "additive", like the Greeks and Romans: we "add the signs"
to obtain the desired number. For example, what does :

4443333333332222222|||||||
Different people invented their own symbols for numbers. But these systems of otations
proved to be inadequate with advencement of societies and were discarded. Ultimatly
the set {1, 2, 3, 4, ...} was adopted as the counting set (also called the set of natural
numbers). The solution of the equation x+2 = 2 was not possible in the set of natural
numbers. So the natural number system was extented to the set of whole numbers.
No number in the set of whole numbers W could satisfy the equation x + 4 = 2 or
x + a = b if a > b, and a, b ∈ W . The negative integers −1, −2, −3, ... were introduced
to form the set of integers Z = {0 ∓ 1, ∓2, ....}.
Again the equation of type 2x = 3 or bx = a where a, b ∈ Z and b ̸= 0 had no solution
in the set Z., so the numbers of the form a

b
where a, b ∈ Z and b ̸= 0 , were invented to

remove such difficulties. The set Q = {a

b
/a, b ∈ Z with b ̸= 0} was named as the set

of rational numbers. Stoll the solution of equations such as x2 = 2 or x2 = a (where
a is not a perfect square) was not possible in the set Q. So the irrational numbers of
the type ∓

√
2 or ∓

√
a where a is not a perfec square were introduced. This process

enlargment of the number system ultimately led to the set of real numbers R = Q∪Q′

( the set Q′ is the set of irrational numbers) which is used most frequently in everyday
life.

2.2 Rational numbers and irrational numbers
We know that a rational number is a number which can be put in the form p

q
where

p, q ∈ Z with q ̸= 0. The numbers
√

16, 3.7, 4 etc., are rational numbers.
√

16 can be
reduced to the form p

q
where p, q ∈ Z with q ̸= 0, because

√
16 = 4 = 4

1
.

Irrational numbers are those numbers which cannot be pu into the form p

q
where

p, q ∈ Z with q ̸= 0. The numbers
√

2,
√

3,
7√
5

,

√
5
16

are irrational numbers.

2.2.1 Decimal representation of rational and irrational num-
bers

1) Terminating decimals: A decimal which has only a finite numbers of digits in its
decimal part, is called a terminating decimal. Thus 202.04, 0.0000415, 100000.41237895
are examples of terminating decimals.
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Since a terminating decimal can be converted into a common fraction, so every termi-
nating decimal represents a rational number.
2) Recurring decimals: This is another type of rational numbers. In general, a
recurring or periodic decimal is a decimal in which one or more digits repeat indefi-
nitely.
It will be showed that a recurring decimal can be converte into a common fraction. So
every recurring decimal represents a rational number.
A non-terminating decimal is a decimal which neither terminates nor it is recurring.
It is not possible to convert such a decimal into a common fraction. Thus a non-
terminating , non-recurring decimal represents an irrational number.
2.2.2 Example

1. .25(= 25
100

) is a rational number.

2. .3333...(= 1
3

) is a recurring decimal, it is a rational number.

3. 2.3(= 2.333...) is a rational number .

4. 0.142857142857....(= 1
7

) is a rational number.

5. 0.01001000100001.... is a non-terminating number, non-periodic decimal, so it
is an irrational number.

6. 214.12112211122211112222.... is also an irrational number.

7. 1.4142135.... is an irrational number.

8. 7.3205080.. is an irrational number.

9. 1.709975947... is an irrational numbber.

10. 3.141592654.... is an important irrational number called it π(pi) which denotes
the constant ratio of the circumference of any circle to the length of its diameter.
An approximate value of π is 22

7
, a better approximation is 355

113
and a still better

approximation is 3.14159. The value of π correct to 5 lac decimal places has been
determined with the help of computer.
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2.3 Real numbers and thier properties
We are already familiar with the set of real numbers and most of thier propreties.

We now state them in a unified and systematic manner. Before stating them we give
a preliminary definition.
Taken togather, the rational numbers (recurring decimals) and irrational numbers
(non-recurring decimales) from the set of real numbers, denoted by R.
We now state several propreties of R, with which we will alrady familiar, although
we may not have met thier names before. These properties are used frequently in
Analysis, and we do not always refer to them explicitly by name.

Figure 2.1: R ⊃ Q ⊃ Z ⊃ N

2.3.1 Properties
Property (R1): These are the properties that we have always practiced.

For a, b, c ∈ R we have

• a + b = b + a • a × b = b × a
• 0 + a = a • a × 1 = a si a ̸= 0

• a + b = 0 ⇔ a = −b • a × b = 1 ⇔ a = 1
b

• a + (b + c) = (a + b) + c • a × (b × c) = (a × b) × c
• a × (b + c) = a × b + a × c • a × b = 0 ⇔ a = 0 ou b = 0

Property (R2): The relation ≤ on R is an order relation, and moreover, it is total.
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We so we

• ∀x ∈ R, x ≤ x then xRx,
• ∀x, y ∈ R; if xRy and yRx then x = y,
• ∀x, y, z ∈ R; if xRy and yRz then xRz.

For (x, y) ∈ R × R by definition we have

x ≤ y ⇐⇒ y − x ∈ R+ = {x ∈ R; x ≥ 0} ,

x < y ⇐⇒ x ≤ y and x ̸= y.

The operations of R are compatible with the order relation ≤ in the following sense,
for real numbers a, b, c, d

(a ≤ b and c ≤ d) =⇒ a + c ≤ b + d

(a ≤ b and c ≥ 0) =⇒ a × c ≤ b × c

(a ≤ b and c ≤ 0) =⇒ a × c ≥ b × c

We define the maximum and the minimum of two real values a and b by

max (a, b) =
{

a if a ≥ b
b if a < b

min (a, b) =
{

b if a ≥ b
a if a < b

Property (R3): Let x ∈ R, there exists a unique relative integer, the integer
part denoted E(x), such that

E(x) ≤ x ≤ E(x) + 1

We also note E(x) = [x].
Example 2.3.1. We have

• E(2, 853) = 2, (2 ≤ 2.853 ≤ 3)
• E(π) = 3, (3 ≤ π ≤ 4)
• E(−π) = −4, (−4 ≤ −π ≤ −3)

Property (R4):

1. Trichotomy Property: If a, b ∈ R, then exactly one of thefollowing inequali-
ties holds

a > b or a = b or a < b.

2. Transitive Property: If a, b, c ∈ R, then

a < b and b < c =⇒ a < c.
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3. Archimedean Property: If a ∈ R, then there is a positive integer n such that

n > a.

4. Density Property: a, b ∈ R and a < b, then there is a rational number x and
an irrational number y such that

a < x < b and a < y < b.

2.3.2 Solving inequalities
Solving an inequality involving an unknown real number x means determining those
values of x for which the given inequality holds; that is, finding the solution set of
the inequality. We can often do this by rewriting the inequality in an equivalent, but
simpler form, using the rules given in the last sub-section.
Example 2.3.2. Solve the inequality x + 2

x + 4
>

x − 3
2x − 1

Solution We rearrange this inequality to give a somewhat simpler inequality, using

x + 2
x + 4

>
x − 3
2x − 1

⇔ x + 2
x + 4

− x − 3
2x − 1

> 0

⇔ x2 + 2x + 10
(x + 4)(2x − 1)

> 0

⇔ (x + 1)2 + 9
(x + 4)(2x − 1)

> 0.

Now, the numerator is always positive. The denominator vanishes when x = −4 or
x = 1

2
. By examining separately the sign of the denominator when x < −4 , −4 < x <

1
2

and x >
1
2

, we can deduce that the last fraction is positive precisely when x < −4

or x >
1
2

. Hence the solution set of the original inequality is S =] − ∞, 4[∪]1
2

, +∞[.

Definition 2.3.3 (Absolute value). For a real number x, we define the absolute
value of x by

|x| =
{

x if x ≥ 0
−x if x < 0

Thus, the representative curve of the absolute value function is the next
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Figure 2.2: Absolute function

Proposition 2.3.4. ∀x, y ∈ R; we have
1. |x| ≥ 0; |−x| = |x| ; |x| > 0 ⇐⇒ x ̸= 0
2.

√
x2 = |x|

3. |x × y| = |x| × |y|
4. |x + y| ≤ |x| + |y| (Triangle inequality)
5. ||x| − |y|| ≤ |x − y| (Second triangle inequality)

Example 2.3.5. Solve the inequality | x − 2 |< 1
Solution We have

| x − 2 |< 1 ⇔ −1 < x − 2 < 1
⇔ 1 < x < 3.

Example 2.3.6. Solve the inequality | x − 2 |≤| x + 1 |
Solution We have

| x − 2 |≤| x + 1 |⇔ (x − 2)2 ≤ (x + 1)2

⇔ x2 − 4x + 4 ≤ x2 + 2x + 1.

⇔ 3 ≤ 6x.

⇔ 1
2

≤ x.

So the solution set of the original inequality is S = [1
2

, +∞[.

Example 2.3.7. Use the Triangle Inequality to prove that:
a) | a |≤ 1 =⇒| 3 + a3 |≤ 4
b) | b |≤ 1 =⇒| 3 − b |> 2
Solution a)Suppose that | a |≤ 1. The triangle inequality then gives

| 3 + a3 |≤| 3 | + | a3 |
= 3+ | a |3

≤ 3 + 1(since | a |< 1)
≤ 4
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b) Suppose that | b |< 1. The ’ reverse form’ of the triangle inequality then gives

|3 − b |≥|| 3 | − | b | |
= |3− | b | |
≥ 3− | b |

Now | b |< 1, so that − | b |> −1. Thus 3− | b |> 3 − 1 = 2 .
And we can then deduce from the previous chain of inequalities that| 3 − b |> 2. So
the solution set of the original inequality is S = [1

2
, +∞[.

Let a, b ∈ R be such that a < b, the intervals are parts of the totally ordered set
(R; ≤).

Definition 2.3.8 (Intervals). 1. We call closed interval of origin a and end b, the
set defined as follows

[a, b] = {x ∈ R; a ≤ x ≤ b} .

2. We call open interval of origin a and end b, the set defined as follows

]a, b[ = {x ∈ R; a < x < b} .

3. We call interval semi-open on the right of origin a and end b, the set defined
as follows

[a, b[ = {x ∈ R; a ≤ x < b} .

4. We call interval semi-open on the left of origin a and end b, the set defined
as follows

]a, b] = {x ∈ R; a < x ≤ b} .

Definition 2.3.9. It is often practical to add the two ends to the number line

R = R∪ {−∞, +∞}

Definition 2.3.10. Let a be a real number, V ⊂ R a subset. We say that V is a
neighborhood of a if there exists an open interval I such as a ∈ I ⊂ V .

Remark 2.3.11. The notion of neighborhood will be useful for limits.
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2.4 Least upper bounds and
greatest lower bounds

2.4.1 Upper and lower bounds
Definition 2.4.1 (Maximum, minimum). Let A be a non-empty part of R

1. A real M is a maximum or (largest element) of A if

M ∈ A and ∀x ∈ A; x ≤ M.

If it exists, the largest element is unique, we then note it max A.
2. A real m is a minimum or (smallest element) of A if

m ∈ A and ∀x ∈ A; x ≥ m.

If it exists, the smallest element is unique, we then note it min A.

Remark 2.4.2. It should be kept in mind that the largest element or the most small
element do not always exist.

Example 2.4.3. • min ]0, 5] does not exist and max ]0, 5] = 5,
• The interval ]a, b[ has no largest element, nor smallest element.
• min(]1, 2] ∪ {6}) does not exist and max(]1, 2] ∪ {6}) = 6.

Definition 2.4.4 (Upper and lower bounds). Let A be a non-empty part of R
1. A real M is an upper bound of A if ∀x ∈ A; x ≤ M.
2. A real m is a lower bound of A if ∀x ∈ A; x ≥ m.

Example 2.4.5. • 3 is an upper bound of A = ]0, 2[ , in addition the upper bounds
of A are exactly the elements of [2, +∞[ .

• −3 is a lower bound of A = ]0, 2[ , in addition the lower bounds of A are exactly
the elements of ]−∞, 0] .

• the lower bounds of A = ]−2, +∞[ are exactly the elements of ]−∞, −2] . .

If an upper bound (resp. a lower bound) of A exists we say that A is bounded
above (resp. bounded below).

there is not always an upper or lower bound, in addition we do not have uniqueness.

Definition 2.4.6 (Similar terminology applies to functions). A function f defined on
an interval I ⊂ R is said to:
• be bounded above by M if f(x) ≤ M for all x ∈ I; M is a an upper bound of
f ;
• be bounded below by m if f(x) ≥ m for all x ∈ I; m is a lower bound of f ;
• have a maximum (or maximum value) M if M is an upper bound of f and
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f(x) = M , for at least one x ∈ I;
• have a minimum (or minimum value) m if m is a Lower bound of f and f(x) = m,
for at least one x ∈ I;

Example 2.4.7. Let f be the function defined by f(x) = x2,x ∈ [1
2

, 3[. Determine
whether f is bounded above or below, and any maximum or minimum value of f .

Solution First, f is increasing on the interval [1
2

, 3[, so that since 1
2

< x < 3 it

follows that 1
4

< f(x) < 9. Hence f is bounded above and bounded below.

Next, since f(1
2

) = 1
4

and 1
4

is a lower bound for f on the interval [1
2

, 3[, it follows

that f has a minimum value of 1
4

on this interval.

Finally, 9 is an upper bound for f on the interval [1
2

, 3[, but there is no point x ∈ [1
2

, 3[
for which f(x) = 9. 9 cannot be a maximum for f on the interval.

2.4.2 Least upper bounds, greatest lower bounds
We have seen that the interval [0, 2] has a maximum element 2, but [0, 2[ has no

maximum element. However, the number 2 is rather like a maximum element of [0, 2[,
because 2 is an upper bound of [0, 2[ and any number less than 2 is not an upper
bound of [0, 2[. In other words, 2 is the least upper bound of [0, 2[.

Definition 2.4.8 (Least upper bound). A real number M is the least upper bound,
or supremum, of a set E ⊆ R if:
1. M is an upper bound of E;
2. if M ′ < M , then M ′ is not an upper bound of E. In this case, we write M = sup E.

If E has a maximum element, max E, then sup E = max E. For example, the
closed interval [0, 2] has least upper bound 2. We can think of the least upper bound
of a set, when it exists, as a kind of generalised maximum element.
If a set does not have a maximum element, but is bounded above, then we may be
able to guess the value of its least upper bound. As in the case E = [0, 2[, there may
be an obvious missing point at the upper end of the set. However it is important to
prove that your guess is correct. We now show you how to do this.

Example 2.4.9. Prove that the least upper bound of [0, 2[ is 2.

Solution We know that M = 2 is an upper bound of [0, 2[, because

x ≤ 2 for all x ∈ [0, 2[.

33



2.4. LEAST UPPER BOUNDS AND
GREATEST LOWER BOUNDS 2. NUMBERS

To show that 2 is the least upper bound, we must prove that each number M ′ < 2 is
not an upper bound of [0, 2[. To do this, we must find an element x ∈ [0, 2[ which is
greater than M ′. But, if M ′ < 2, then there is a real number x such that M ′ < x < 2
and also 0 < x < 2:
Since x ∈ [0, 2[, the number M ′ cannot be an upper bound of [0, 2[. Hence M = 2 is
the least upper bound, or supremum, of [0, 2[.

Similarly, we define the notion of a greatest lower bound.
Definition 2.4.10 (Greatest lower bound). A real number m is the greatest lower
bound, or infinimum, of a set E ⊆ R if:
1. m is an lower bound of E;
2. if m′ > m, then m′ is not an upper bound of E. In this case, we write m = inf E.
Example 2.4.11. • The upper bounds of A = ]0, 1] are the elements of [1, +∞[.
Then the least upper bound is 1, the least bounds of A = ]0, 1] are the elements of
]−∞, 0]. Then the greatest lower bound is 0.

• ]0, +∞[ has not least upper bound, and inf]0, +∞[= 0.

Théorème 2.4.12. Any non-empty part of R and bounded above admits an upper
bound. In the same way, any non-empty part of R and bounded below admits a lower
bound.

An equivalent characterization of sup and inf by real sequences.
Théorème 2.4.13. 1. M = sup A if and only if M is an upper bound of A and it
exists a sequence (an)n∈N in A which converges to M .

2. m = inf A if and only if m is a lower bound of A and it exists a sequence
(an)n∈N in A which converges to m.
Proposition 2.4.14. Let A and B be two non-empty and bounded parts of R; We
have the following assertions

1. A ⊂ B =⇒ sup A ≤ sup B and inf B ≤ inf A,
2. sup A ∪ B = max {sup A, sup B} ,
3. inf A ∪ B = min {inf A, inf B} .

Exercise 1. Study the existence of the minimum, maximum, lower bound and upper
bound of the following parts of R

A = [−1, 2[ ∩ Q, B = {−3n; n ∈ N} .

Solution 2.4.15. 1. A is the set of rationals contained in [−1, 2[, we have inf A =
min A = −1. We consider the sequence an = 2 − 1

n
∈ A, we have lim

n−→∞
an = 2 then

sup A = 2 but max A does not exist since 2 /∈ A.
2. sup B = max B = 0 (for n = 0) but inf B and min B do not exist ( lim

n→+∞
− 3n =

−∞).
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2.5 Reasoning by recurrence
Proof by induction (Recursive reasoning): It is a way to prove that some-

thing is true for a sequence of numbers. This methode consists of proving the following
points.

Let P (n) be the property we want to demonstrate. To prove that P (n) is true for
any integer n ≥ k, (k can be 0 or 1 or 2 or...), we proceed in three steps:

Step1 (Initialization): We show that P (k) is true for k = 0 or, 1, or 2.
Step2 (Heredity): We assume that P (n) is true and we show that P (n + 1) is

still true.
Step3 (Conclusion): Once the two previous steps are established, we conclude

that the property P (n) is true for all n ≥ k.
Example 2.5.1. Prove the following property by induction

∀n ≥ 1; 1 + 2 + 3 + · · · + n = n (n + 1)
2

.

Consider P (n) : 1 + 2 + 3 + · · · + n = n (n + 1)
2

.
Step1 (Initialization): P (1) is true since for n = 1, we have

1 = 1 (1 + 1)
2

,

Step2 (Heredity): We assume that P (n) true, i.e.,

1 + 2 + 3 + · · · + n = n (n + 1)
2

and we prove that P (n + 1) is true. Indeed

1 + 2 + 3 + · · · + (n + 1) = 1 + 2 + 3 + · · · + n + (n + 1)

= n (n + 1)
2

+ (n + 1)

= (n + 1) (n + 2)
2

So P (n + 1) is true.
Step3 (Conclusion): We conclude that P (n) is true for all n ≥ 1.

Théorème 2.5.2. ( Bernoullis Inequality) For any real number x ≥ −1 and any
natural number n, (1 + x)n ≥ 1 + nx.
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Proof. Let P (n) be the statement

P (n) : (1 + x)n ≥ 1 + nx, for all x ≥ −1

Step 1 First we show that P (1) is true: (1 + x)1 ≥ 1 + 1x. This is obviously true.
Step 2 We now assume that P (k) holds for some k ≥ 1, and prove that P (k + 1) is
then true.
So, we are assuming that (1+x)k ≥ 1+kx, for all x ≥ −1. Multiplying this inequality
by (1 + x), we get

(1 + x)k+1 ≥ (1 + x)(1 + kx)
= 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x

Thus, we have (1 + x)k+1 ≥ 1 + (k + 1)x; in other words the statement : P (k + 1)
holds.
So, P (k) true for some k ≥ 1 =⇒ P (k + 1) is true.
It follows, by the Principle of Mathematical Induction, that (1+x)n ≥ 1+nx, for allx ≥
−1, n ≥ 1
Step 3 (Conclusion): We conclude that P (n) is true for all n ≥ 1.

2.6 Solved exercises

2.6.1 Exercises
2.1
Arrange the following numbers in increasing order:

(a) 7
36

,
3
20

,
7
6

,
7
45

,
11
60

(b) 0.465, 0.465, 0.465, 0.4655, 0.4656

2.2
Find the fraction whose decimal expansion are:

(a) 0.231, (b) 2.281

2.3
Let x = 0.21 and y = 0.2 find x + y and xy on decimal form.
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2.4
Prove that:

√
a2 + b2 ≤ a + b, for a, b ≥ 0

2.5
Prove the inequalities

(a) 2n ≥ 1 + n, (b) 2
1
n ≤ 1 + 1

n

2.6
Let E1 = {x : x ∈ Q, 0 ≤ x < 1} and E2 = {

(
1 + 1

n

)2
: n = 1, 2, ....}

1. Show that each of the sets E1 and E2 is bounded above. Which of them has a
maximum element?
2. Chow that each of the sets E1 and E2 is bounded below. Which of them has a
minimum element?
3. Determine the least upper bound of each of the sets E1 and E2.
4. Determine the greatest lower bound of each of the sets E1 and E2.

2.7
For each of the following functions, determine whether it has a maximum or a mini-
mum, and determine its supremum and infimum:
(a) f(x) = 1

1 + x2 , x ∈ [0, 1[, (b) f(x) = 1 − x + x2, x ∈ [0, 2[.

2.6.2 Solutions
2.1

(a) We have 7
36

= 0.194,
3
20

= 0.15,
7
6

= 1.16,
7
45

= 0.15,
11
60

= 1.183

Then: 3
20

<
7
45

<
11
60

<
7
36

<
7
6

.

(b) We have 0.465 < 0.465 < 0.465 < 0.4655 < 0.46565.

2.2
(a) First we find the fraction x such that x = 0.231 if we multiply both sides of this
equation by 103 (because the recuring block has length 3)

1000x = 231.231 = 231 + x
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Hens
999x = 231 =⇒ x = 231

999
= 7

333

b) Let x = 0.81
Multiplying bboth sides by 102 we obbtain

100 = 81x = 81 + x

Hence
99x = 81 =⇒ x = 81

99
= 9

11
Thus

2.281 = 2 + 2
10

+ 9
110

= 259
110

2.3 First we write the numbers x and y in the fractional form, we obtain x = 43
99

and

y = 2
9

then x + y = 43
99

= 0.43 and xy = 42
891

= 0047138.
2.4 We tackle this inequality using the various rearrangement rules and a chain of
equivalent inequalities until we obtain an inequality that we know must be true

√
a2 + b2 ≤ a + b ⇔ a2 + b2 ≤ (a + b)2

⇔ a2 + b2 ≤ a2 + 2ab + b2

⇔ 0 ≤ 2ab

This final inequality is certainly true, since a, b ≥ 0. It follows that the original
inequality

√
a2 + b2 ≤ a + b, is also true for a, b ≥ 0.

2.5
(a) By the Binomial Theorem for n ≥ 1

(1 + x)n = 1 + nx + n(n − 1)
2!

x2 + ....... + xn

≥ 1 + nx

Then, if we substitute x = 1 in this last inequality, we get

2n ≥ 1 + n for n ≥ 1.

(b) We start by rewriting the required result in an equivalent form:

2
1
n ≤ 1 + 1

n
⇔ 2 ≤

(
1 + 1

n

)n

by the power rule
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Now, if we substitute x = 1
n

in the Binomial Theorem for (1 + x)n, we get

(1 + 1
n

)n = 1 + n
( 1

n

)
+ n(n − 1)

2!

( 1
n

)2
+ ....... +

( 1
n

)n

≥ 1 + 1 = 2

Since the inequality 2 ≤
(

1 + 1
n

)n

for n ≥ 1 is true, it follows that the original in-

equality 2
1
2 ≤ 1 + 1

n
for n ≥ 1, is also true, as required.

2.6
For E1
- E1 is bounded above by the elements of the set ]1, +∞[
- E1 is bounded below by the elements of ] − ∞, 0]
- The least upper bound of E1 is 1, the greatest lower bound is 0
- E1 admits 0 as a minimum.
- E1 has no maximum.
For E2
- E2 is bounded above by the elements of the set ]4, +∞[
- E2 is bounded below by the elements of ] − ∞, 1]
- The least upper bound of E2 is 4, the greatest lower bound is 1
- E2 admits 4 as a maximum.
- E2 has no minimum.

2.7
For f(x) = 1

1 + x2 , x ∈ [0, 1[
- f is bounded above by the elements of [1, +∞[
- f has 1 as a maximum and supremum in the same time.
- f is bounded below by the elements of the set ] − ∞, 1[
- f has no minimum.
For f(x) = 1 − x − x2, x ∈ [0, 2[
- f is bounded above by the elements of the set ]3, +∞[
- f has no maximum and no supremum.
- f is bounded below by the elements of the set ] − ∞,

3
4

].

- f has 3
4

as a minimum and infemum in the same time.
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Chapter 3
Real functions with a real variable

3.1 Introduction
A technical definition of a what is a function in math is a relation from a set of inputs
to a set of possible outputs where each input is related to exactly one output. Typical
examples of function in math are from integers to integers or from the real numbers
to real numbers.

In addition, it is a relation or a process which connects each element x of a set X
to the domain of the function and to a single element y of another set Y (usually the
same set), the codomain of the function.

Suppose if we call the function f , then we can denote this relation as y = f(x)
(read f of x), the element x is the argument or input of the function, and y denotes
the value of the function, the output, or the image of x by f . Let us study what is a
function in math in detail.

3.2 Notions of function

3.2.1 Definitions
Definition 3.2.1. A function of a real-valued real variable is a map f defined on R
or a part D of R whth values in R, we write f : D → R. In general, D is an interval
or a interval meeting. We call D the domain of definition of function f.
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Definition 3.2.2. The graph of function f : D → R is a part of R2 defined by

Gf = {(x, f(x)); x ∈ D} .

Figure 3.1: Graphic representation of a function

Figure 3.2: Set which is not the graph of a function

Definition 3.2.3 (Bounded functions). Let f : D → R be a function. We say that
• f is bounded above on D; if ∃M ∈ R, ∀x ∈ D, f(x) ≤ M,
• f is bounded below on D; if ∃m ∈ R, ∀x ∈ D, f(x) ≥ m,
• f is bounded on D; if f is bounded above and bounded below in the same time

on D, i.e.,

∃M, m ∈ R, ∀x ∈ D; m ≤ f(x) ≤ M.

Here is the graph of a bounded function below

Definition 3.2.4 (Increasing, decreasing functions). Let f : D → R be a function.
We say that

• f is increasing on D if ∀x, y ∈ D, x < y =⇒ f(x) ≤ f(y),
• f is strictly increasing on D if ∀x, y ∈ D, x < y =⇒ f(x) < f(y),
• f is decreasing on D if ∀x, y ∈ D, x < y =⇒ f(x) ≥ f(y),
• f is strictly decreasing on D if ∀x, y ∈ D, x < y =⇒ f(x) > f(y),
• f is monotonic on D if f is increasing or decreasing on D,
• f is strictly monotone strictly increasing or strictly decreasing on D.
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Figure 3.3: Graph of a bounded function

Figure 3.4: Increasing function

Definition 3.2.5 (Parity ). Let I be an interval of R symmetric with respect to 0
(i.e. of the form ]−a, a[ or [−a, a] or R). Let f : D → R be a function defined on this
interval. We say that

• f is even if ∀x ∈ I, f(−x) = f(x),
• f is odd if ∀x ∈ I, f(−x) = −f(x).

Remark 3.2.6. f is even if and only if its graph is symmetric with respect to on the
y-axis and f is odd if and only if its graph is symmetric with respect to at the origin.

Figure 3.5: Even function
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Figure 3.6: Odd function

Definition 3.2.7 (Periodicity). Let f : R → R be a function and T be a real number,
T > 0. The function f is called periodic of period T if ∀x ∈ R, f(x + T ) = f(x).

Here is the graph of a periodic function.

Figure 3.7: Periodic function

3.2.2 Function operations
Let f : D → R and g : D → R be two functions defined on the same part D of R.

We can then define the following functions
• The sum of f and g is the function f + g : D → R defined by (f + g)(x) =

f(x) + g(x) for all x ∈ D,
• The product of f and g is the function f · g : D → R defined by (f · g)(x) =

f(x) · g(x) for all x ∈ D,
• The multiplication by a scalar α ∈ R of f is the function α ·f : D → R defined

by (α · f)(x) = f(x) for all x ∈ D.
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Figure 3.8: Sum of functions

3.3 Limit of a function

3.3.1 Definitions
Let f be a function defined in the neighborhood of x0 ∈ R, except perhaps in x0.

Definition 3.3.1 (Limit at a point). We say that f admits a limit ℓ at the point x0,
if

∀ε > 0, ∃δ > 0, ∀x ∈ Df : |x − x0| < δ =⇒ |f(x) − ℓ| < ε,

We also say that f(x) tends to ℓ when x tends to x0. We then note lim
x→x0

f(x) = ℓ.

Remark 3.3.2. 1. We can replace certain strict inequalities «<» by large inequalities
«≤» in definition

∀ε > 0, ∃δ > 0, ∀x ∈ Df : |x − x0| ≤ δ =⇒ |f(x) − ℓ| ≤ ε,
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2. δ generally depends on the ε. To mark this dependence we can write

∀ε > 0, ∃δ (ε) > 0, ∀x ∈ Df : |x − x0| ≤ δ =⇒ |f(x) − ℓ| ≤ ε,

3. The inequality |x − x0| < δ is equivalent to x ∈ ]x0 − δ, x0 + δ[. The inequality
|f(x) − ℓ| ≤ ε is equivalent to f(x) ∈ ]ℓ − ε, ℓ + ε[.

Definition 3.3.3. • We say that f has limit +∞ in x0 if

∀A > 0, ∃δ > 0, ∀x ∈ Df : |x − x0| ≤ δ =⇒ f(x) > A.

We then note lim
x→x0

f(x) = +∞.

• We say that f has limit −∞ in x0 if

∀A > 0, ∃δ > 0, ∀x ∈ Df : |x − x0| ≤ δ =⇒ f(x) < −A.

We then note lim
x→x0

f(x) = −∞.

Definition 3.3.4 (Limit to infinity). Let f : I → R be a function defined on an
interval of the form I =]a, +∞[.

• We say that f admits a limit ℓ at +∞ if

∀ε > 0, ∃B > 0, ∀x ∈ I : x > B =⇒ |f(x) − ℓ| < ε.

We then note lim
x→+∞

f(x) = ℓ.

Figure 3.9: Limit at infinity

• We say that f admits a limit +∞ at +∞ if

∀A > 0, ∃B > 0, ∀x ∈ I : x > B =⇒ f(x) > A.

We then note lim
x→+∞

f(x) = +∞.
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Remark 3.3.5. We would define the limit in −∞ in the same way for functions defined
on intervals of the type ]−∞, a[.

Definition 3.3.6 (Limit left and right). • Say that f admits a limit ℓ ∈ R to right
in x0 therefore means

∀ε > 0, ∃δ > 0; x0 < x < x0 + δ =⇒ |f(x) − ℓ| ≤ ε,

and we note lim
x→x+

0

f(x) = ℓ.

• say that f admits a limit ℓ ∈ R to left in x0 therefore means

∀ε > 0, ∃δ > 0; x0 − δ < x < x0 =⇒ |f(x) − ℓ| ≤ ε,

and we note lim
x→x−

0

f(x) = ℓ.

Figure 3.10: Limit left and right

Proposition 3.3.7.

lim
x→x0

f(x) = ℓ ⇐⇒ lim
x→x+

0

f(x) = lim
x→x−

0

f(x)

3.3.2 Properties
Proposition 3.3.8 (Uniqueness of the limit). If a function admits a limit, then this
limit is unique.

Let there be two functions f and g. We assume that x0 is a real, or that x0 = ±∞.
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Proposition 3.3.9 (Rules for limits). If lim
x→x0

f(x) = ℓ ∈ R and lim
x→x0

g(x) = ℓ′ ∈ R,
then

• lim
x→x0

[f(x) + g(x)] = ℓ + ℓ′

• lim
x→x0

[f(x) · g(x)] = ℓ · ℓ′

• lim
x→x0

[λ · f(x)] = λ · ℓ, fo all λ ∈ R
• lim

x→x0
|f(x)| = |ℓ|

• If ℓ′ ̸= 0, then lim
x→x0

[
f(x)
g(x)

]
= ℓ

ℓ′

In addition, if lim
x→x0

f(x) = +∞ (or −∞) then lim
x→x0

1
f(x)

= 0

Proposition 3.3.10 (Composition rule).

If lim
x→x0

f(x) = ℓ and lim
x→ℓ

g(x) = ℓ′, so lim
x→x0

g ◦ f = ℓ′.

Example 3.3.11. Determine the following limit

lim
x−→0

sin(sin x)
sin x

.

Let f(x) = sin x, x ∈ R, and g(x) = sin x

x
, x ̸= 0. Then lim

x−→0
f(x) = lim

x−→0
sin x and

lim
x−→0

g(x) = lim
x−→0

sin x

x
= 1. Also, f(x) = sin x ̸= 0; in the punctured neighbouhood

] − π, 0[∪]0, π[ of 0 (for example).
It follows, by Coposition rule, that

lim
x−→0

g(f(x)) = lim
x−→0

sin(sin x)
sin x

= 1.

Proposition 3.3.12. Let f and g be two functions defined in the neighborhood of x0 ∈
R. If f is bounded in the neighborhood of x0 and if lim

x→x0
g(x) = 0, then lim

x→ℓ
(f(x).g(x)) =

0.

Finally here is a very important proposition which means that we can pass to the
limit in a large inequality.

Proposition 3.3.13. • If f ≤ g and if lim
x→x0

f(x) = ℓ ∈ R and lim
x→x0

g(x) = ℓ′ ∈ R,
then ℓ ≤ ℓ′

• If f ≤ g then

lim
x→x0

f(x) = +∞ =⇒ lim
x→x0

g(x) = +∞

lim
x→x0

g(x) = −∞ =⇒ lim
x→x0

f(x) = −∞

47



3.4. CONTINUITY OF A FUNCTION 3. REAL FUNCTIONS

• If f ≥ g and if lim
x→x0

f(x) = +∞ then lim
x→x0

g(x) = +∞
• Squeeze Rule

If f ≤ g ≤ h and if lim
x→x0

f(x) = lim
x→x0

h(x) = ℓ ∈ R , then g has a limit in x0 and lim
x→x0

g(x) = ℓ

3.4 Continuity of a function

3.4.1 Continuity at a point
Let I be an interval of R and f : I → R be function.

Definition 3.4.1. We say that f is continuous at a point x0 ∈ I if

∀ε > 0, ∃δ > 0, ∀x ∈ I : |x − x0| < δ =⇒ |f(x) − f(x0)| < ε,

that is to say if f admits a limit in x0 (this limit is then worth necessarily f(x0)).

In this graphic, we may see that there is a region around x0 , where function values
differ by less than ϵ from f(x0). So in fact, there is a distance difference δ, such that
all function values are inside the interval ]f(x0) − ϵ, f(x) + ϵ[ highlighted in grey.

Example 3.4.2. The following functions are continuous:
• A constant function on an interval,
• The square root function x →

√
x on [0, +∞[,

• The functions sin and cos on R,
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• The absolute value function x → |x| on R,
• The exponential function exp on R,
• The logarithmic function ln on ]0, +∞[.

Definition 3.4.3 (Continuity on the left and on the right).
• We say that f is continuous on the right at a point x0 ∈ I if

lim
x→x+

0

f(x) = f(x0),

that is to say

∀ε > 0, ∃δ > 0, ∀x ∈ I; x0 < x < x0 + δ =⇒ |f(x) − f(x0)| ≤ ε,

• We say that f is continuous on the letf at a point x0 ∈ I if

lim
x→x−

0

f(x) = f(x0),

that is to say

∀ε > 0, ∃δ > 0, ∀x ∈ I; x0 − δ < x < x0 =⇒ |f(x) − f(x0)| ≤ ε

Théorème 3.4.4. f is continuous at x0 ⇐⇒ f is continuous on the right and
continuous on the letf at x0.

Combination Rules for continuous functions
Proposition 3.4.5. Let f, g : I → R be two continuous functions at a point x0 ∈ I.
So

• λ · f is continuous at x0 (for all λ ∈ R),
• f + g is continuous at x0,
• f · g is continuous at x0,
• if f(x0) ̸= 0, then 1

f
is continuous at x0.

Proposition 3.4.6. Let f : I → R and g : J → R be two functions such that
f(I) ⊂ J . If f is continuous at a point x0 ∈ I and if g is continuous at f(x0), then
g ◦ f is continuous at x0.
Definition 3.4.7 (Continuity extension). Let I be an interval, x0 a point of I and
f : I − {x0} → R a function.

• We say that f is extendable by continuity in x0 if f admits a finite limit in
x0. Let us then write lim

x→x0
f(x) = ℓ

• We then define the function f̃ : I → R by setting for all x ∈ I

f̃(x) =
{

f(x) x ̸= x0
ℓ x = x0

Then f̃ is continuous at x0 and we call it the extension by continuity of f in x0.
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3.4.2 Continuity over an interval
Let I be an interval of R and f : I → R be a function x0 a point of I.

Definition 3.4.8. We say that f is continuous on I if f is continuous at every point
of I.
Notation 3.4.9. We denote by C(I;R) or C0(I;R) the set of continuous functions on I
whose values are in R.
Proposition 3.4.10. If f is continuous at x0 and if f(x0) ̸= 0, then there exists δ > 0
such that

∀x ∈ ]x0 − δ, x0 + δ[ f(x) ̸= 0.

Théorème 3.4.11 (The Intermediate Value Theorem). Let f : [a, b] → R be a con-
tinuous function on a segment. For any real y between f(a) and f(b), there exists
c ∈ [a, b] such that f(c) = y.

Remark 3.4.12. An illustration of the intermediate value theorem, the real c is not
necessarily unique. Moreover if the function is not continuous, the theorem is no
longer true.

This is the most used version of the intermediate value theorem.
Proposition 3.4.13. Let f be a continuous function on interval [a, b], such that
f(a)f(b) < 0, there exists c ∈]a, b[ such that f(c) = 0.

Example 3.4.14. Let f be a continuous function on [0, 1] such that for all x in this
interval, f(x) ∈ [0, 1]. Show that there exists an element x ∈ [0, 1] such that f(x) = x.
For all x ∈ [0, 1] we put g(x) = f(x) − x. The function g is continuous, because it is
the sum of two continuous functions.
We have
- g(0) = f(0) − 0 = f(0) > 0.
- g(1) = f(1) − 1 < 0 because f(1) < 1.
So, according to the intermediate value theorem,there exists x ∈ [0, 1] such that g(x) =
0, that is f(x) − x = 0 or even f(x) = x.
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3.4.3 Uniform continuity
Definition 3.4.15. Let f be a continuous function on an interval I.
f is uniformly continuous on I if, and only if,

∀ϵ > 0, ∃α(ϵ) > 0, ∀(x, y) ∈ I2, | x − y |=⇒| f(x) − f(y) |< ϵ.

Here the choice of α depends only on ϵ.

Remark 3.4.16. The notion of uniform continuity is a global notion, unlike the notion
of continuity at a point, which is local.

Example 3.4.17. Consider the function f : [0, 1] −→ R defined by f(x) = x2.
We have

∀(x, y) ∈ R2, x2 − y2 = (x − y)(x + y).

It results
∀(x, y) ∈ [0, 1]2, |f(x) − f(y)| ≤ 2|x − y|.

Let ϵ be a strictly positive real and α the real defined by α = ϵ

2
.

we have the implication

∀(x, y) ∈ [0, 1]2, |x − y| < α ⇒ |f(x) − f(y) < ϵ.

So, the function f is uniformly continuous on [0, 1].

Théorème 3.4.18. If a function f is uniformly continuous on I, then it is continuous
on I.
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Here is a theorem very used in practice to show that a function is bijective.

Théorème 3.4.19 (Bijection Theorem). Let f : I → R be a function defined on an
interval I of R. If f is continuous and strictly monotonic on I, So

1. f establishes a bijection of the interval I in the image interval J = f(I),
2. the inverse function f−1 : J → I is continuous and strictly monotonic on J and

it has the same direction of variation as f .

Figure 3.11: Representation of f and f−1
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3.5 Differentiation of a functions

3.5.1 Introduction
This section is an introduction to one of the most fabulous inventions of man, that

of differential calculus, in the case of functions of a real variable with real values. The
history of differential calculus begins largely with Galileo and Newton who needed new
mathematical tools to develop the notions of speed and acceleration of a movement.
But the possibility of calculating the slope of the tangent to a curve was essential in
other problems such as those of extremum or for more applied questions. Newton
and Leibniz were the first to attempt to formalize the notion of derivative. They
disputed the paternity of this invention but it now seems certain that they discovered
it independently. The notion of limit was only developed much later, in the 19th
century by Cauchy and Weierstrass; the formalization of the derivation by Newton
and Leibniz suffered from numerous shortcomings. Newton also refused to publish his
work and Leibniz’s writings were obscure and difficult to understand. Lagrange, a
century later, introduced the term derivative as well as the notation f’. After having
defined what a differentiable function is as well as its derivative, we will give the
rules for calculating derivatives that you have known since high school. We will see
in particular that the derivative allows us to approach a given function by an affine
function. We will be interested in the global properties of differentiable functions.
Rolle’s theorem and that of finite increments will be in constant use in analysis. The
inequality of finite increments which follows from the theorem of the same name is a
real machine for manufacturing inequalities.

3.5.2 Definitions
Let I be an open interval of R and f : I → R a function. Let x0 ∈ I.

Definition 3.5.1. f is differentiable in x0 if the rate of increase f(x) − f(x0)
x − x0

has
a finite limit when x tends to x0. The limit is then called the derivative number of
f at x0 and is denoted f ′(x0). So

f ′ (x0) = lim
x→x0

f(x) − f(x0)
x − x0

The function x → f ′(x) is the derivative function of f , it is written f ′ or df

dx
.
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Example 3.5.2. The function defined by f(x) = x2 is differentiable at every point
x0 ∈ R. Indeed

f(x) − f(x0)
x − x0

= x2 − x2
0

x − x0
= (x − x0) (x + x0)

x − x0
= (x + x0) →

x→x0
2x0.

We even showed that f ′ (x) = 2x.

Definition 3.5.3. f is differentiable on I if f is differentiable at every point x0 ∈ I.

Proposition 3.5.4.
• If f is differentiable at x0 then f is continuous at x0.
• If f is differentiable on I then f is continuous on I.

Remark 3.5.5. The converse is false, for example, the absolute value function f(x) = |x|
is continues in 0 but is not differentiable in 0.

So, what do we do?
We use one-sided limits and our definition of derivative to determine whether or

not the slope on the left and right sides are equal.

lim
h−→0−

f(x + h) − f(x)
h

= lim
h−→0−

−(−x + h) − (−x)
h

= lim
h−→0−

x − h + x

h
= lim

h−→0−

−h

h
= −1

lim
h−→0+

f(x + h) − f(x)
h

= lim
h−→0+

(x + h) − (x)
h

= lim
h−→0+

x + h − x

h
= lim

h−→0+

h

h
= 1

And upon comparison, we find that the slope of the left-side equals −1 and the slope
of the right-side equals +1, so they disagree.

Therefore, the function f(x) = |x| is not differentiable at x = 0. While the
function is continuous, it is not differentiable because the derivative is not continuous
everywhere, as seen in the graphs below.
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Proposition 3.5.6. Let f, g : I → R be two differentiable functions on I. So for all
x ∈ I, f + g, λf , f.g, and f

g
, g ̸= 0 are differentiable and we have:

• (f + g)′(x) = f ′(x) + g′(x),
• (λ · f)′(x) = λ · f ′(x) where λ is a fixed real,
• (f · g)′(x) = f ′(x)g(x) + f(x)g′(x),

• f(x)
g(x)

= f ′(x)g(x) − f(x)g′(x)
[g(x)]2

, (if g(x) ̸= 0).

Proposition 3.5.7. If f is differentiable in x and g is differentiable in f(x) then g ◦f
is differentiable in x of derivative

(g ◦ f)′ (x) = g′ (f (x)) · f ′ (x)

Proposition 3.5.8. Let I be an open interval. Let f : I → J be differentiable and
bijective of which we denote f−1 : J → I the reciprocal bijection. If f ′ does not vanish
on I then f−1 is differentiable and we have for all x ∈ J(

f−1
)′

(x) = 1
f ′ (f−1 (x))

.

Proposition 3.5.9. • ∀x ∈]a, b[, f ′(x) ≥ 0 ⇐⇒ f is increasing,
• ∀x ∈]a, b[, f ′(x) ≤ 0 ⇐⇒ f is decreasing,
• ∀x ∈]a, b[, f ′(x) = 0 ⇐⇒ f is constant,
• ∀x ∈]a, b[, f ′(x) > 0 ⇐⇒ f is strictly increasing,
• ∀x ∈]a, b[, f ′(x) < 0 ⇐⇒ f is strictly decreasing.

Théorème 3.5.10 (Successive derivatives). Let f : I → R be a differentiable function
and let f ′ its derivative. If the function f ′ : I → R is also differentiable we note f ′′ =
(f ′)′ the second derivative of f . More generally we note

f (0) = f, f (1) = f ′, f (2) = f ′′ and f (n+1) =
(
f (n)

)′

If the derivative n-th f (n) exists we say that f is n-times differentiable.
• Leibniz formula

(f · g)(n) = C0
nf (n) · g + C1

nf (n−1) · g(1) + C2
nf (n−2) · g(2) + ... + Cn

nf.g(n)

In an other word

(f · g)(n) =
n∑

k=0
Ck

n · f (n−k) · g(k),

such that

Ck
n = n!

k! (n − k)!
.
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Example 3.5.11. Let’s calculate the n − th derivatives of ex · (x2 + 1) for all n ≥ 0.
Let us denote f(x) = ex then f (k) = ex, ∀k

f (k) = f (1) = f (2) = f (n+1) =
(
f (n)

)′

Let us denote g(x) = x2 + 1 then

g′(x) = 2x, g′′(x) = 2, g(k) = 0 ∀k ≥ 3.

Let’s apply Leibniz’s formula

(f · g)(n) = C0
n · f (n) · g(0) + C1

n · f (n−1) · g(1) + C2
n · f (n−2) · g(2)

(f · g)(n) = ex
(
x2 + 2nx + n (n − 1)

)
.

Théorème 3.5.12. If f defined on an open interval I =]a; b[, is differentiable and
admits a local maximum or minimum at a ∈ I, then f ′(a) = 0.

Théorème 3.5.13 (Rolle’s Theorem). Let f : [a, b] → R such that
• f is continuous on [a, b],
• f is differentiable on ]a, b[,
• f(a) = f(b).
Then there exists c ∈]a, b[ such that f ′(c) = 0.

Geometric interpretation:
There is at least one point of the graph of f where the tangent is horizontal.

Figure 3.12: Rolle’s theorem
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Cinematic interpretation: From a moving point on an axis which returns to its
starting position has seen its speed cancel out at a given moment.

Théorème 3.5.14 (Hospital Rule). Let f, g : I → R be two differentiable functions
and let x0 ∈ I. We suppose that

• f(x0) = g(x0) = 0,

• ∀x ∈ I − {0} , g′(x) ̸= 0. If lim
x→x0

f ′(x)
g′(x)

= ℓ (ℓ ∈ R) , then lim
x→x0

f(x)
g(x)

= ℓ.

Théorème 3.5.15 (Mean value theorem). Let f : [a, b] → R be a continuous function
on [a, b] and differentiable on ]a, b[. There exists c ∈]a, b[ such that

f(b) − f(a) = (b − a) f ′(c)

Figure 3.13: Mean value theorem

3.6 Convex functions

3.6.1 Definitions
Let f : I −→ R be a function defined on an interval I ⊂ R. We say that f is

convex if:

∀(x, y) ∈ I, ∀λ ∈ [0, 1]; f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

57



3.6. CONVEX FUNCTIONS 3. REAL FUNCTIONS

Figure 3.14: Convex function. A function which is convex cannot have a line segment
drawn between two points that is below the curve.

A function on a graph is convex if a line segment drawn through any two points
on the line of the function never lies below the curved line segment. I.e., basically, a
convex function has its curve opening upward like a cup. Whereas a concave function
has its curve opening downward like a hat or cap.

3.6.2 Graph of convex function
Théorème 3.6.1 ( The graph of a convex function is located above all its
tangents). Let f : I −→ R a convex function and differentiable then:

∀x0 ∈ I, ∀x ∈ I; f(x) ≥ f(x0) + f ′(x0)(x − x0)

Figure 3.15: The graph of a convex function is located above its tangents
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Example 3.6.2. The application f : R −→ R, f(x) = x2 is convex on R
In fact, ∀(x, y) ∈ R2, ∀λ ∈ [0, 1], we have

f(λx + (1 − λ)y) − (λf(x) + (1 − λ)f(y))
= (λx + (1 − λ)y)2 − (λx2 + (1 − λ)(y)2)
= λ(λ − 1)(x2 − 2xy + y2)
= λ(λ − 1)(x − y)2

This quantity is negative for λ ∈ [0, 1], then

∀(x, y) ∈ R2, ∀λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ (λf(x) + (1 − λ)f(y))

3.7 Derivative of usual functions
The following table is a summary of the main formulas to know, x is a variable.
Function Derivative Function Derivative

xn nxn−1 (n ∈ Z) arccos (x) −1√
1 − x2

∀x ∈ ]−1, 1[

1
x

−1
x2 arcsin (x) 1√

1 − x2
∀x ∈ ]−1, 1[

√
x

1
2
√

x
arctan (x) 1

1 + x2 ∀x ∈ R

ex ex chx shx

ln x
1
x

shx chx

cos x − sin x thx 1 − th2x = 1
ch2x

sin x cos x arg ch (x) 1√
x2 − 1

tan x

(1 + tan2 x) =
1

cos2 x
arg sh (x) 1√

x2 + 1
xα αxα−1 (α ∈ R) arg th (x) 1

x2 − 1
∀x ∈ ]−1, 1[

3.8 Solved exercises

3.8.1 Exercises
3.1
Using the definition of the notion of limit at a point, show that:
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1. lim
x→∞

1
x

= 0

2. lim
x→0+

1
x

= +∞

3. lim
x→1−

1
1 − x2 = +∞

4. lim
x→a

√
x =

√
a with a ∈ R⋆

+

3.2
Determine the following limits:

1. lim
x→+∞

x4 + 2x2 + 1
x2 − 1

2. lim
x→∞

x −
√

x2 − 2x

3. lim
x→0

sin x

x

4. lim
x→0+

xx

5. lim
x→1

x3 + 3x2 − 3x − 1
x2 + x − 2

6. lim
x→+∞

cos x2

x

3.3
Determine the following limits:

1. lim
x→+∞

x cos(ex)
x2 + 1

2. lim
x→1+∞

ln x(ln(ln x))

3. lim
x→0

2x − 1 +
√

x2

x

4. lim
x→+∞

ln(1 + x2e−x)

5. lim
x→0

√
2 + x −

√
2 − x

x

6. lim
x→0

ln(1 + x)
x

3.4
Let f : R −→ R be a function defined by:

f(x) =

 x +
√

x2

x
if x ̸= 0

0 if x = 0

Determine the set on which f is continuous.

3.5
Let a, b be two real numbers.

Let f : R −→ R be a function defined by:

f(x) =


sin(ax)

x
if x < 0

a if x = 0
ebx − x if x > 0

1. Using the Hospital’s rule Determine the limit

lim
x−→0

x cos x − sin x

x2
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2. Determine a, b so that f is continuous on R.
3. Determine a, b so that f is differentiable on R.
3.6
Calculate, when they exist, the derivatives of the following functions:

1. f1(x) = ln(3 + sin x)
2. f2(x) = ln(

√
1 + x2)

3. f3(x) = ln
( 2x cos x

1 − cos x

)
4. f4(x) = xx

5. f5(x) = sin((ex)2)
6. f6(x) = x

sin x
x

3.7
Let f : R −→ R be a function defined by:

f(x) =


3 − x2

2
if x ≤ 1

1
x

if x > 1

Show that there exists c ∈]0, 2[ such that f(2) − f(0) = (2 − 0)f ′(c)
Determie the possible values of c.
3.8
A tractor starting from a point A located on a straight road must reach a point B
located in a field. The tractor goes twice as fast on the road as in the field. It is
assumed that the tractor moves on the road and in the field at constant speed. The
distance AC is designated by L and the distance CB by d. Determine point D where
the tractor must leave the road so that the travel time from A to B is minimal. We
will discuss the solution according to the values of L and d.

3.8.2 Solutions
3.1
1. Let ϵ > 0 We look for m ∈ R such that if x ∈]m, +∞[ then we have∣∣∣∣ 1
x

− 0
∣∣∣∣ = 1

| x |
< ϵ this inequality is equivalent to | x |> 1

ϵ
. posing m = 1

ϵ
we have for

all x ∈]m, +∞[,
∣∣∣∣ 1
x

− 0
∣∣∣∣ < ϵ. This proves that lim

x→∞

1
x

= 0.
2. Let M ∈ R, we can suppose that M ≥ 1. We lokk for δ ≥, such that , for all
x ∈ R⋆

+, if | x − 0 |=| x |= x < δ.
Then 1

n
> M . This inequality is equivalent to 1

M
> x. Then it is sufficient to choose

δ = 1
M

. So lim
x→0+

1
x

= +∞

3. Let M > 0, we search δ > 0 such that, for all x > 0, if 1 − x < δ then 1
1 − x2 ; we
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have
1

1 − x2 > M ⇔ x >

√
1 − 1

M
⇔ 1 − x ≤ 1 −

√
1 − 1

M
.

We take δ = 1 −
√

1 − 1
M

.
4. Let ϵ > 0, we search δ ∈ R such that, for all x ∈ R+, if | x − a |< δ then
|
√

x −
√

a |< ϵ.
For x ∈ R+ such that x > a we have

√
x −

√
a < ϵ ⇔ x < (ϵ +

√
a)2 ⇔ x − a < (ϵ +

√
a)2 − a = ϵ2 + 2ϵ

√
a.

If x < a, we show that
√

a −
√

x < ϵ ⇔ a − x < 2ϵ
√

a − ϵ2.

We take δ = min(2ϵ
√

a + ϵ2, 2ϵ
√

a − ϵ2)

3.2

1. x4 + 2x2 + 1
x2 − 1

= x4

x2
1 + 2

x2 + 1
x4

1 − 1
x2

−→
x→+∞

+∞

2. ∀x ∈ R⋆,
sin x

x
= sin x − sin 0

x − 0
−→
x→0

sin′ 0 = 1

3. x−
√

x2 − 2x = (x −
√

x2 − 2x)(x +
√

x2 − 2x)
(x +

√
x2 − 2x)

= x2 − (x2 − 2x)
1 +

√
x2 − 2x

= x

x

2
1 +

√
1 − 2

x

−→
x→+∞

1
4. xx = ex ln x,

(
X = x ln x −→

x→0+
0

)
, then xx −→

x→0
1

5. x3 + 3x2 − 3x − 1
x2 + x − 2

= (x − 1)(x2 + 4x + 1)
(x − 1)(x + 2)

−→
x→+1

2.

6. For all x ∈ R⋆
+,

−1
x

≤ cos x2

x
≤ 1

x
then the limit is 0.

3.3

1. For x ∈ R+, 0 ≤
∣∣∣∣x cos ex

x2 + 1

∣∣∣∣ ≤ 1
x

, then the limit requested is 0.
2. ln x ln(ln x) = X ln X with X = ln x −→

x→1+
0, then the limit is 0.

3.
2x − 1 + x2

x
= 2x + | x |

x
=

{
2x − 1 + 1 if x ≥ 0
2x − 1 − 1 if x ≤ 0

And lim
x−→0+

2x − 1 + x2

x
= 0, lim

x−→0−
2x − 1 + x2

x
= −2 .

4. x2e−x −→
x→+∞

0 then lim
x−→+∞

ln(1 + x2e−x) = 0.
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5.

√
2 + x −

√
2 − x

x
= 2x

x(
√

2 + x +
√

2 − x)
−→
x→0

√
2

2
.

6. ln(x + 1)
x

= ln(x + 1) − ln 1
x − 0

−→
x→0

1.

3.4

Let us already note that this function is defined on R and continues on R⋆ it remains
to study the continuity at 0.
On the other hand

√
x2 =| x |, we will therefore distinguish two cases x < 0 and x > 0.

If x < 0 so f(x) = x + −x

x
= x − 1, then lim

0−→0−
f(x) = −1

If x < 0 so f(x) = x + x

x
= x + 1, then lim

0−→0+
f(x) = 1

Therefore lim
0−→0−

f(x) ̸= lim
0−→0+

f(x)
Which shows that is not continuous at 0.

3.5

1.(x cos x − sin x)′

(x2)
= − sin x

x
−→
x→0

0 then

lim
x−→0

x cos x − sin x

x2 = 0
2. For x ̸= 0 , f is defined, continuous and differentable, we study the continuity and
differientiability at x = 0.
If a ̸= 0 sin(ax)

x
= a

sin(ax)
ax

−→
x→0

a

If a = 0 sin(ax)
x

= 0 −→
x→0

0 = a, and ebx − x −→
x→0

1

f is continuous at 0 if and only if


lim

x→0−
= f(1)

lim
x→0+

= f(1)

⇔
{

a = f(1)
1 = 1 ⇔ a = 1

3. f must be continuous, then a = 1.
if x < 0 so that f(x) = sin x

x
, f ′(x) = x cos x − sin x

x2 −→
x→0−

0 from question 1.
if x > 0 , so that f(x) = ebx − x, f ′(x) = bebx − 1 −→

x→+
−1 .

For a = 1 and b = 1 f’ admits one limite at 0. f continuous, f is C1 at 0 then f is
differentiable.

3.6
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1.
∀x ∈ R f ′

1(x) = cos x

3 + sin x

2.
∀x ∈ R f ′

2(x) = x

1 + x2

3.
∀x ∈ R f ′

3(x) = −4 sin x

4 − cos2 x

4.
∀x ∈ R⋆

+ f ′
4(x) = x ln x + x + 1

x
e(x+1) ln x

5.
∀x ∈ R f ′

5(x) = 2e2x cos(e2x)

6.
∀x ∈ R⋆

+ f ′
6(x) = x cos x ln x − sin x ln x + sin x

x2 e
sin x

x
ln x

3.7

To use the mean value theorem, we must first show that f is differentiable on R.
If x ̸= 0 , f is differentiable. Lets study the function at x = 1.

lim
x−→1−

f(x) = lim
x−→1−

3 − x2

2
= 1 = f(1)

and lim
x−→1+

f(x) = lim
x−→1−

1
x

= 1 = f(1)
Which shows that the function is continuous at x = 1.
For x < 1,

lim
x−→1−

f(x) − f(1)
x − 1

= lim
x−→1−

3−x2

2 − 1
x − 1

= lim
x−→1−

1 − x2

x − 1
= lim

x−→1−
−1 + x

2
= −1

For x > 1,

lim
x−→1+

f(x) − f(1)
x − 1

= lim
x−→1+

1
x

− 1
x − 1

= lim
x−→1+

1 − x

x(x − 1)
= lim

x−→1+
−1

x
= −1

Then f is differentiable at x = 1.
f is differentiable on R , in particular f is continuous on [0, 2], we can apply the mean
value theorem [0, 2] so there exists c ∈]0, 2[ such that f(2) − f(0) = (2 − 0)f(c).

f(1
2

) = 1
2

and f(0) = 3 − 02

2
= 3

2
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Therefore,

f(2) − f(0) = (2 − 0)f(c) ⇔ 1
2

− 3
2

= 2f ′(c) ⇔ f ′(c) = −1
2

Suppose that 0 ≤ c ≤ 1 then

f ′(c) = −1
2

⇔ −c = −1
2

⇔ c = 1
2

We verify that 0 ≤ 1
2

≤ 1 then c = 1
2

is a solution.
Suppose 1 < c ≤ 2, so,

f ′(c) = −1
2

⇔ − 1
x2 = −1

2
⇔ x2 = 2 ⇔ x = ±

√
2

we have −
√

2 /∈]1, 2[ and
√

2 ∈]1, 2[.
So,

√
2 is solution, there are two solutions c = 1

2
and c =

√
2.

3.8

We note x the distance AD, see the figure, and v the speed of the tractor on the road.
The travel time on the road is x

v
. The distance traveled in the field is

BD =
√

d2 + (L − x)2

and the travel time in the field is BD

(v
2)

. The total travel time to go from A to B

depending on the distance x traveled on the road is therefore

T (x) = x

v
+

2
√

d2 + (L − x)2

v
= 1

v

(
x + 2

√
d2 + (L − x)2

)
We are therefore led to determine the minimum of the function T on [0, L].
Let’s start by determining the possible values for the extrema of T .
We verify that for all x ∈ [0, L]

T ′(x) = 1
v

1 − 2(L − x)√
d2 + (L − x)2


We then have

T ′(x) = 0 ⇔
√

d2 + (L − x)2 = 2(L−x) ⇔ d2+(L−x)2 = 4(L−x)2 ⇔ 3(L−x)2 = d2 ⇔ L−x = d√
3

either
x0 = L − d√

3
, x0 ∈ [0, L] ⇔ L >

d√
3

.
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We have tow cases:
1) If L ≤ d√

3
, so T ′ has no zeros on ]0, L[.

The sign of T ′ is that of T ′(L) = 1
v

. It is positive. The function T then is strictly
increasing on [0, L], and its minimum is reached at 0 and take the value T (0) =
2
v

√
L2 + d2

To minimize travel time, the tractor must enter the field at A. 2) If L >
d√
3

, so T ′

equal to zero at x0 ∈]0, L[, we have T ′(L) = 1
v

> 0 and

T ′(0) = 1
v
√

d2 + L2

(√
d2 + L2 − 2L

)
= 1

v
√

d2 + L2

d2 − 3L2
√

d2 + L2 + 2L
< 0,

Because d2 − 3L2 < 0 under the hypothesis L >
d√
3

. T is then decreasing on [0, x0]

and increasing on [x0, L].
We deduce that T admits a minimum at x0. To minimize travel time, the tractor
must leave the road at a distance x0 = L − d√

3
from point A. The travel time is then

T (x0) = L + d
√

3
v

.

Figure 3.16: Situation considered
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Chapter 4
Some elementary functions

4.1 Introduction
The term elementary function is very often mentioned in many math classes and in
books. In fact, the vast majority of the functions that students and scientists come
across are elementary functions of a real variable. However, there is a lack of a pre-
cise mathematical definition of elementary functions. Only a few authors in their
textbooks, e.g. Stewart in his Calculus books try to give a description of elementary
functions. Unfortunately, these descriptions are not given properly.
Thus, this note is written to introduce a precise mathematical definition of some ele-
mentary functions of a real variable. First we traited the trigonometric functions and
their inverse function, second the hyperbolic functions and their inverses are studied.
After the definition is introduced, it is easy to see that the elementary functions of a
real variable posses properties that could greatly simplify the mathematical analysis
needed to be done on them. Also, many problems in mathematics deal with elemen-
tary functions or even if the functions are non-elementary, very often the studying of
these non-elementary functions leads to elementary functions.
The properties of elementary functions given in this note allow for problems of con-
tinuity of functions, which often arise in calculus, to be reduced to finding the set of
admissible values for a given elementary function.
Then the properties of the fundamental elementary functions can be applied to finding
the set of admissible values for any given elementary function, which becomes the set
of points for which the elementary function is continuous.
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4.2 Reciprocal circular functions

4.2.1 Brief reminders of trigonometric functions
Let’s review trigonometric functions.

Proposition 4.2.1 (Sine function). The sine function, denoted sin, is:
- Defined on R.
- With values in [−1, +1].
- Odd.
- 2π-periodic.
- Continuous on R .
- Differentiable on R. and ∀x ∈ R sin′ x = cos x.
- Class C∞ on R.
- Forthermore, the restriction of the sine function to [−π

2
, +π

2
] is strictly increasing.

Figure 4.1: Sine function

Proposition 4.2.2 (Cosine function). The cosine function, denoted cos, is:
- Defined on R.
- With values in [−1, +1].
- Even.
- 2π-periodic.
- Continuous on R .
- Differentiable on R. and ∀x ∈ R cos′ x = − sin x.
- Class C∞ on R.
- Forthermore, the restriction of the cosine function to [0, π] is strictly decreasing.
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Figure 4.2: Cosine function

Proposition 4.2.3 (Tangent function). The tangent function, denoted tan, it is given
by:

∀x ∈ R −
{

π

2
+ kπ/k ∈ Z

}
, tan x = sin x

cos x
.

And it is:
- Defined on R −

{
π

2
+ kπ/k ∈ Z

}
.

- With values in R.
- Even.
- π-periodic.
- Continuous on R −

{
π

2
+ kπ/k ∈ Z

}
.

- Differentiable on R −
{

π

2
+ kπ/k ∈ Z

}
. and ∀x ∈ R −

{
π

2
+ kπ/k ∈ Z

}
tan′ x =

1 + tan2 x = 1
cos2 x

.

- Class C∞ on R −
{

π

2
+ kπ/k ∈ Z

}
.

- Forthermore, the restriction of the tangent function to ]− π

2
,
π

2
[ is strictly increasing.

Figure 4.3: Tangent function
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4.2.2 Arcsine function
Proposition 4.2.4. The sine function is a bijection from [−π

2
, +π

2
] on [−1, +1]. The

reciprocal bijection is called the arcsine function and is noted arcsin

arcsin :

 [−1, +1] −→ [−π

2
, +π

2
]

y 7−→ arcsin y

∀y ∈ [−1, +1] , sin(arcsin y) = y

∀x ∈ [−π

2
, +π

2
] , arcsin(sin x) = x

Forthermore, the arcsin function is:
- Strictly increasing on [−1, +1]
- Odd.
- Continuous on [−1, +1].
- Differentiable on ] − 1, +1[ and

∀y ∈] − 1, +1[, arcsin′ y = 1√
1 − y2

- Class C∞ on ] − 1, +1[
- Realise a bijection from ] − 1, +1[ on [−π

2
, +π

2
]

Figure 4.4: Arcsine function
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4.2.3 Arccosine function
Proposition 4.2.5. The cosine function is a bijection from [0, π] on [−1, +1]. The
reciprocal bijection is called the arccosine function and is noted arccos

arccos :
{

[−1, +1] −→ [0, π]
y 7−→ arccos y

∀y ∈ [−1, +1] , cos(arccos y) = y

∀x ∈ [0, π] , arccos(cos x) = x

Forthermore, the arcsin function is:
- Strictly decreasing on [−1, +1].
- Continuous on [−1, +1].
- Differentiable on ] − 1, +1[ and

∀y ∈] − 1, +1[, arccos′ y = −1√
1 − y2

- Class C∞ on ] − 1, +1[
- Realise a bijection from ] − 1, +1[ on [0, π]

Figure 4.5: Arccosine function

4.2.4 Arctangent function

Proposition 4.2.6. The tangent function is a bijection from ] − π

2
,
π

2
[ with values in

R. The reciprocal bijection is called the arctangent function denoted arctan
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arctan :

 R −→ ] − π

2
,
π

2
[

y 7−→ arctan y

∀y ∈ R , tan(arctan y) = y

∀x ∈] − π

2
,
π

2
[ , arctan(tan x) = x

Forthermore, the arctan function is:
- Strictly increasing on R.
- Continuous on R.
- Odd - Differentiable on R and

∀y ∈ R, arctan′ y = 1
1 + y2

- Class C∞ on R
- Realise a bijection from R on ] − π

2
,
π

2
[

Figure 4.6: Arctangent function

4.3 Hyperbolic functions

4.3.1 Definitions and first properties
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Hyperbolic sine and cosine

Definition 4.3.1. The functions hyperbolic sine sh and hyperbolic cosine ch are de-
fined on R by

ch :


R −→ R

x 7−→ ex + e−x

2
, sh :


R −→ R

x 7−→ ex − e−x

2

Remark 4.3.2. Any function f : I ⊂ R −→ R decomposes uniquely into the sum of an
even function and of an odd function

∀x ∈ I, f(x) = f(x) + f(−x)
2

+ f(x) − f(−x)
2

Indeed, f(x) + f(−x)
2

is even and f(x) − f(−x)
2

is odd. The hyperbolic cosine and
hyperbolic sine functions are respectively the even part and the odd part of the expo-
nential function in this decomposition.

Proposition 4.3.3. For all x ∈ R
1. chx + shx = ex

2. chx − shx = e−x

3. ch2x − sh2x = 1

Proposition 4.3.4. The functions ch and sh are differentiable on R, for all x ∈ R
ch′(x) = sh(x), sh′(x) = ch(x)
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Proposition 4.3.5. - The function sh is odd, strictly increasing on R, strictly negative
on R⋆

− and strictly positive on R⋆
+ and vanishes at 0.

- The function ch is even, strictly positive on R, strictly decreasing on R⋆
− and strictly

increasing on R⋆
+ and ∀x ∈ R, chx ≥ 1.

Hyperbolic tangent

Definition 4.3.6. The function hyperbolic tangent th is defined on R by

th :


R −→ R

x 7−→ shx

chx

Figure 4.7: Hyperbolic tangent

Proposition 4.3.7. The function th is odd, differentiable on R, and for all x ∈ R

th′x = 1 − th2x = 1
ch2x

.

Consequently, th is strictly increasing on R and vanishes at 0. It admits at −∞
a horizontal asymptote of equation y = −1 and at +∞ a horizontal asymptote of
equation y = −1
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4.3.2 Addition formulas for hyperbolic functions
Proposition 4.3.8. For all x, y ∈ R

ch(x + y) = chxchy + shxshy
ch(x − y) = chxchy − shxshy
sh(x + y) = shxchy + chxshy
ch(x − y) = chxchy − shxshy

th(x + y) = thx + thy

1 + thxthy

th(x − y) = thx − thy

1 − thxthy

4.3.3 Inverse hyperbolic functions
Hyperbolic sine argument function argsh

Proposition 4.3.9. The hyperbolic sine function defines a bijection of R on its image
R. The reciprocal application is called a function hyperbolic sine argument and denoted
argsh:

argsh :
{

R −→ R
y 7−→ argshy

∀y ∈ R, sh(argshy) = y

∀x ∈ R, argsh(shx) = x

The function argsh is:
- Odd.
- Continuous on R.
- Diffrentiable on R and

∀y ∈ R, argsh′y = 1√
1 + y2

- Strictly increasing on R.
- Realise a bijection from R to R.
- C∞ on R.
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Figure 4.8: Hyperbolic sine functions and sine argument

Hyperbolic cosine argument function argch

Proposition 4.3.10. The hyperbolic cosine function restricted on R+ define a bijec-
tion from R⋆

+ on its image [1, +∞[. The reciprocal application is called a function
hyperbolic cosine argument and denoted argch:

argch :
{

[1, +∞[ −→ R
y 7−→ argchy

∀y ∈ [1, +∞[, ch(argchy) = y

∀x ∈ R+, argch(chx) = x

The function argch is:
- Continuous on [1, +∞[.
- Diffrentiable on ]1, +∞[ and

∀y ∈]1, +∞[, argch′y = 1√
1 − y2

- Strictly increasing on [1, +∞[.
- Realise a bijection from [1, +∞[ to R.
- C∞ on ]1, +∞[.
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Figure 4.9: Hyperbolic cosine functions and cosine argument

Hyperbolic tangent argument function argth

Proposition 4.3.11. The hyperbolic tangent function defines a bijection of R on its
image ]1, 1[. The reciprocal application is called Hyperbolic tangent argument and is
denoted argth.

argth :
{

] − 1, +1[ −→ R
y 7−→ argthy

∀y ∈] − 1, +1[, th(argthy) = y

∀x ∈ R, argth(thx) = x

The function argth is:
- Odd.
- Continuous on ] − 1, +1[.
- Diffrentiable on ] − 1, +1[ and

∀y ∈]1, +∞[, argth′y = 1
1 − y2

- Strictly increasing on ] − 1, +1[.
- Sealise a bijection from ] − 1, +1[ to R.
- C∞ on ] − 1, +1[.

77



4.4. SOLVED EXERCISES 4. ELEMENTARY FUNCTIONS

Figure 4.10: Hyperbolic tangent and tangent argument functions

4.4 Solved exercises

4.4.1 Exercises
4.1

We traced the trigonometric circle in a direct orthonormal coordinate system (see
figure below). The angle α is measured in radians. The triangles OAH and OBC are
rectangular respectively in H and C. We recall that the area of the angular sector
OAC is α

2
.

1. Calculate the area of triangle OAH. Deduce that : ∀α ∈]0,
π

2
], 0 < sin α < α.

2. Prove that for α ∈]0,
π

2
], we have 1 > cos2 α > 1 − α2. Deduce that lim

α→0
cos α = 1.

3. Calculate the area of triangle OBC. Deduce the inequalities:
∀α ∈]0,

π

2
], sin α < α < tan α.

4. Deduce from the previous questions that lim
α→0

sin α

α
= 1 and lim

α→0

tan α

α
= 1. We thus

prove that sin and tan are differentiable at 0. Explain why.
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5. For α ∈]0,
π

2
]. Establish inequalities:

α ≤ cos2 α ≤ cos α, 0 ≤ 1 − cos α ≤ sin2 α, 0 ≤ 1 − cos α ≤ α2

6. Deduce then limit lim
α→0

cos α

α

7. Deduce lim
h→0

cos(α + h) − cos α

h
= 1 and lim

h→0

sin(α + h) − cos α

h
. What important

property of cos and sin do we get to prove ?

4.2

Calculate: arcsin(sin(3π

4
)), arccos(cos(2009π

3
))

4.3

1. Let x ∈ [−1, +1] sipmlify
(a) cos(arcsinx).
(b) sin(arccosx).

2. Let x ∈ R simplify
(a) cos(3arctanx).
(b) cos2(1

2
arctanx).

4.4

Solve the equation: arcsinx = 2arctanx

4.5
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- Show that : arctanx + arctan1
x

=


π

2
if x > 0

−π

2
if x < 0

- Show that ∀x ∈ [−1, 1] : arcsinx + arccosx = π

2

4.6

Prove that : ∀x ∈ R, ∀n ∈ N, (chx + chx)n = chnx + chnx.

4.7

Simplify, where they are defined, the following expressions:

1. ch(argshx)
2. th(argshx)

3. sh(2argshx)
4. sh(argchx)

5. th(argchx)
6. ch(argthx)

4.4.2 Solutions
4.1
1. The area of triangle OAH is given by OC × HA

2
= sin α

2
. If α ∈]0,

π

2
] then the

triangle OAH is not flat and its area is positve therefore sin α > 0. Furthermore, the
triangle OAH is included in the angular sector OAC and therefore sin α

2
<

α

2
which

proves the second inequality.
2. If α ∈]0,

π

2
]. We use the previous question. From 0 < sin α < α we have 0 < sin2 α <

α2 because the function f(x) = x2 is increasing on R+. then 1 > 1 − sin2 α > 1 − α2

which gives 1 ≥ cos2 α > 1 − α2, if α −→ 1 then lim
α−→0

cos α = 1.

3. The area of triangle OBC is OC × BC

2
= tan α

2
. As the AHC triangle is strictly

included in the OAC sector and that this sector is strictly included in the triangle
OBC, we deduce that sin α < α < tan α.
4.Let α ∈]0,

π

2
]. We deduce from the inequality of question 1. that 0 <

sin α

α
< 1.

Likewise, from tan α < α we deduce sin α > α cos α and therfore, sin α

α > cos α
−→

α→0+
1,

then we deduce lim
α−→0+

sin α

α
= 1. At 0− we find same limit by parity. Secod limit is

obvious. We recognize that sin α

α
is the rate of increase of sin at 0. It then admits a

limit when α −→ 0 and sin is differentiable at 0 with a derivative equal to 1. Same
for tan.
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5. We know that 0 ≤ cos α ≤ 1 so by multiplying by cos α which is positive, we obtain
the first inequality. We deduces that 1 ≥ 1 cos2 α ≥ 1 cos α and therefore the second
inequality. The last follows by using that sin α < α.
6. We divide the last inequality by α ∈]0,

π

2
]:

0 ≤ 1 − cos2 α

α
≤ α2

α
= α −→

α→0+
0

So lim
α−→0+

1 − cos α

α
= 0, By parity, it follows that lim

α−→0

1 − cos α

α
= 0.

7. Using the addition formulas and previous questions:

cos(α + h) − cos α

h
= cos α

cos h − 1
h

− sin α
sin h

h
−→
h→0

− sin α

We recognize in the first term of the previous line the rate of increase of cos in α. It
has been proven that it tends to sin α when h −→ 0. Therefore cos is differentiable in
α and its derivative is sin α. We proceed in the same way for sin.

4.2

1. we know that arcsin : [−1, 1] −→ [−π

2
,
π

2
] , we must determine the real

x ∈ [−π

2
,
π

2
] such that sin x = sin(3π

4
. So, sin(3π

4
) = sin(π

2
+π

4
= cos π

4
=

√
2

2
= sin π

4
,

then arcsin(sin(3π

4
)) = π

4
.

2 We have arccos : [−1, 1] −→ [0, π] so we must determine the real x ∈ [0, π] such
that cos x = cos(2009π

3
). But 2009 = 3 × 670 − 1, so 2009π = −π

3
[2π]. But

cos(−π

3
) = cos π

3
. So arccos(cos(2009π

3
)) = π

3
.

4.3

1.Let x ∈ (−1, 1].
(a) arcsinx ∈ [−π

2
,
π

2
], so cos(arcsinx) =

√
1 − sin2(arcsinx) =

√
1 − x2.

(b) arccosx ∈ [0, π], so sin(arccosx) =
√

1 − cos2(arccosx) =
√

1 − x2.

2. Let x ∈ R. Remark that, for X ∈] − π

2
,
π

2
[, as 1 + tan2 X = 1

cos2 X
. It comes

cos X =
√

1 + tan2 x, so cos arctanx = 1√
1 + x2

because arctanx ∈] − π

2
,
π

2
[
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(a) We know that cos(3X) = 4 cos3 X − 3 cos X it comes,

cos(3arctanx = 4 cos3 arctanx − 3 cos arctanx

= 4
(1 + x2) 3

2
− 3

(1 + x2) 1
2

= 1 − 3x2

(1 + x2) 3
2

(b) As cos2 X = 1 + cos 2X

2
:

cos2
(1

2
arctanx

)
= 1

2
(cos arctanx + 1) = 1

2
√

1 + x2
+ 1

2
.

4.4

For all X ∈] − π

2
,
π

2
[, as 1 + tan2 X = 1

cos2 X
, it comes that X =

√
1 + tan2 X, so

cos arctanx = 1√
1 + x2

, because arctan x ∈] − π

2
,
π

2
[, and as sin X = ∓

√
1 − cos2 X ,

also we have sin arctanx = x√
1 + x2

.
We have then:

arcsinx = 2arctanx

=⇒ x = sin(2arctanx)
=⇒ x = 2 sin(arctanx) cos(arctanx)

=⇒ x = 2x

1 + x2

=⇒ x3 − x = 0 =⇒ x = −1, x = 0 or x = 1.

4.5
The same method applies in both questions.

1. Let θ1 :


R⋆ −→ R

x 7−→ arctanx + arctan1
x

, θ1 is differentiable on R⋆ and θ′
1 = 0.

Therefore, there exist real c1 and c2 such that θ1|R⋆
−

= c1 and θ1|R⋆
+

= c2. By taking
the limit of θ1 when x tends towards −∞ and +∞ we show that c1 = −π

2
and c2 = π

2
.

2. Let θ2 :
{

[−1, +1] −→ R
x 7−→ arcsinx + arccosx , θ2 is differentiable on [−1, +1] and θ′

2 = 0.

θ2 is therefore constant on [−1, 1] and evaluating the expression atx = 0, we show that
this constant is equal to π

2
.

4.7
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1. Let x ∈ R, as chx > 0 on R, then chx =
√

1 + sh2x

ch(argshx) =
√

1 + sh2(argshx) =
√

1 + x2

2 Let x ∈ R, as thx = shx

chx
:

th(argshx) = sh(argshx)
ch(argshx)

= x√
1 + x2

3. Let x ∈ R, Using the addition formulas,

sh(2argshx) = 2ch(argshx)sh(argshx) = 2x
√

1 + x2

4. Let x ∈ [1, +∞[, as shx > 0, then shx =
√

ch2x − 1

sh(argchx) =
√

ch2(argchx) − 1 =
√

x2 − 1

5. Let x ∈ [1, +∞[,

th(argchx) = sh(argchx)
ch(argchx)

=
√

x2 − 1
x

6. Let x ∈ R, from, 1 − th2x = 1
ch2x

ch(argthx) = 1√
1 − th2(argthx)

= 1√
1 − x2

.
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Chapter 5
Linear algebra

5.1 Introduction
Linear algebra is a universal language used to describe many phenomena in mechanics,
electronics, and economics, for example. It is therefore not surprising to find this
subject taught at the beginning of many university courses because it is necessary to
be able to express more advanced concepts in subsequent years. So it is crucial for a
student to master their vocabulary and grammar as early as possible. However, even
if it is a field of mathematics, it is not necessary to be a sophisticated mathematician
to learn it, Fortunately. This course aims to try to learn this beautiful language that
is linear algebra to first year students of matter sciences.

5.2 Vector spaces , vector subspaces
In this chapter, K denotes a body. In most examples, this will be the field of reals R.

Definition 5.2.1 (Vector spaces). Let E be a non-empty set. We say that (E; +; ×)
is a K -vector space (or vector space on K) if and only if

1. (E; +) is an abelian group,
2. The × law is external on E, i.e.

K×E → E
(λ, u) → λ · u

which verify the following properties
• ∀(u, v) ∈ E2; ∀λ ∈ K : λ · (u + v) = λ · u + λ · v,
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• ∀u ∈ E; ∀(λ, µ) ∈ K2 : (λ + µ) · u = λ · u + µ · u,
• ∀u ∈ E; ∀(λ, µ) ∈ K2 : (λ + µ) · u = λ · (µ · u) = λ · (µ · u),
• ∀u ∈ E; 1K · u = u.

Remark 5.2.2. The elements of E are called vectors and those of K scalars.

Definition 5.2.3 (Vector subspace). Let E be a K-vector space. A part F of E is
called a vector subspace if

• 0E ∈ F,
• ∀(u, v) ∈ F 2; u + v ∈ F,
• ∀u ∈ F ; ∀λ ∈ K : λ · u ∈ F.

Example 5.2.4. The set F =
{
(x, y) ∈ R2/ x + y = 0

}
is a vector subspace of R2.

Indeed
(a) (0, 0) ∈ F ,
(b) If u = (x1, y1) and v = (x2, y2) belong to F , then

u = x1 + y1 = 0 and v = x2 + y2 = 0

So

(x1 + x2) + (y1 + y2) = 0

and so

u + v = (x1 + x2, y1 + y2) ∈ F,

(c) if u = (x, y) ∈ F and λ ∈ R, then x + y = 0 So

λ · x + λ · y = 0,

hence λ · u ∈ F .

Definition 5.2.5 (Linear combinations). Let n ≥ 1 be an integer, let v1, v2, ..., vn, n
vectors of a vector space E. Any vector of the form

u = λ1v1 + λ2v2 + ... + λnvn,

where λ1, λ2, ..., λn are elements of K is called linear combination of vectors v1, v2, ..., vn.

Remark 5.2.6. The scalars λ1, λ2, ..., λn are called coefficients of the linear combina-
tion.

Example 5.2.7. In the R-vector space R3, (3, 3, 1) is linear combination of the vectors
(1, 1, 0) and (1, 1, 1) because we have equality

(3, 3, 1) = 2(1, 1, 0) + (1, 1, 1).
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Proposition 5.2.8 (Intersection of two subspaces). Let F, G be two vector subspaces
of a K-space vector E. The intersection F ∩ G is a subspace vector of E.

Proof. As an exercise left to the students.

Definition 5.2.9 (Sum of two vector subspaces). Let F and G be two vector subspaces
of a K-space vector E. All

F + G = {u + v / u ∈ F and v ∈ G} ,

is called sum of the vector subspaces F and G.

Definition 5.2.10 (Direct sum of two subspaces). Let F and G be two vector sub-
spaces of E. F and G are direct sum in E if

• F ∩ G = {0E},
• F + G = E,
We then denote F ⊕ G = E.

Definition 5.2.11 (Subspaces vector additional). If F and G are a direct sum, we
say that F and G are additional vector subspaces in E.

Definition 5.2.12 (Generated subspace). Let V = {v1, v2, ..., vn} be a finite set of
vectors of a K-vector space E. We call vector subspace generated by V the set of
linear combinations of the vectors of V and is denoted V ect (V ). So we have

u ∈ V ect(V ) there existsλ1, λ2, ..., λn ∈ K such that u = λ1v1 + λ2v2 + ... + λnvn.

Example 5.2.13.
1. The vector subspace F = {(x; y) ∈ R; x = y} is generated by
{(1; 1)}, indeed

F = {(x, y) ∈ R; x = y}
F = {(x, x); x ∈ R}
F = {x(1, 1); x ∈ R}
F = V ect {(1, 1)} .

2. The vector subspace F =
{
(x, y, z) ∈ R3; x + y + z = 0

}
is generated by

{(−1, 1, 0), (−1, 0, 1)}, indeed

F =
{
(x, y, z) ∈ R3; x + y + z = 0

}
,

F =
{
(x, y, z) ∈ R3; x = −y − z

}
,

F = {(−y − z, y, z); y, z ∈ R} ,

F = {(−y, y, 0), (−z, 0, z); y, z ∈ R} ,

F = {y(−1, 1, 0), z(−1, 0, 1); y, z ∈ R} ,

F = V ect {(−1, 1, 0), (−1, 0, 1)} .
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Definition 5.2.14 (Generating family of a vector space). Let E be a K-vector space
and F = {v1, v2, ..., vn} a family of vectors of E. We say that F is generator of E if
and only if E = Vect(F), i.e.

∀u ∈ E there exists λ1, λ2, ..., λn ∈ K such that u =
n∑

i=0
λiui

Definition 5.2.15 (Free family). Let (E; +; ×) be a K-vector space and V = {v1, v2, ..., vn}
a family of vectors of E. V is said free in E if and only if none of the vectors vi can
be written as a linear combination of the other vectors.

• In other words, if they exist λ1, λ2, ..., λn ∈ K such that
n∑

i=0
λivi = 0E =⇒ λi = 0, ∀i = 1, ..., n

We say in this case that the vectors v1, v2, ..., vn are linearly independent.

Definition 5.2.16 (Linked family). In the case where V is not free, we say that it is
bound or that the vectors v1, v2, ..., vn are linearly dependent.

• We say in this case that the vectors v1, v2, ..., vn are linearly dependent.

Example 5.2.17. F = {(1, 0, 0, 0) , (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} is a generating fam-
ily of R4, because ∀x, y, z, t ∈ R

(x, y, z, t) = x (1, 0, 0, 0) + y(0, 1, 0, 0) + z(0, 0, 1, 0) + t(0, 0, 0, 1).

Definition 5.2.18. We say that a vector space E is of finite dimension, if we can
find a generating family in E. Otherwise, E is of infinite dimension.

In all that follows, the vector spaces considered are finite dimensions.

Definition 5.2.19 (Basis of a vector space). Let E be a K-vector space and B be a
vector family of E. B is said to be base of E if and only if

1. B is generator of E, i.e. Vect(B) = E.
2. B is free in E.

Example 5.2.20.
• B1= {(1, 0) , (0.1)} is the canonical basis of R2,
• B2= {(1, 0, 0) , (0, 1, 0) , (0, 0, 1)} is the canonical base of R3,
• B3= {(1, 0, ..., 0) , (0, 1, 0, ..., 0) , ..., (0, ..., 0, 1)} is the canonical basis of Rn.

Definition 5.2.21 (Dimension of a vector space). Let E be a K-vector space and B
be any basis of E. The dimension of E is equal to the number of vectors of B and
we write

dim E = Card(B).
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Proposition 5.2.22. If E is a finite-dimensional vector space, then all bases of E
have the same number of vectors.

Remark 5.2.23. If E = {0E} then dim E = 0.

Proposition 5.2.24. If E is a finite-dimensional K-vector space and F is a vector
subspace of E, then

dim F ≤ dim E,

if dim F = dim E, then E = F.

5.3 Linear application
Let E and F be two K-vector spaces.

Definition 5.3.1. A map f from E to F is a linear map if it satisfies the following
two conditions

1. f(u + v) = f(u) + f(v), for all u, v ∈ E,
2. λ · f(u) = f(λ · u), for all u ∈ E and all λ ∈ K.

Notation 5.3.2. The set of linear maps of E in F is denoted L(E, F ).

Example 5.3.3. The map f defined by

f : R3 → R2

(x, y, z) → f (x, y, z) = (−2x, y + 3z)

is a linear map. Indeed, let u = (x, y, z) and v = (x′, y′, z′) two elements of R3 and λ
a real.

f (u + v) = f (x + x′, y + y′, z + z′)
= (−2 (x + x′) , y + y′ + 3 (z + z′))
= (−2x, y + 3z) + (−2x′, y′ + 3z′)
= f (x, y, z) + f (x′, y′, z′)
= f (u) + f (v) ,

and

f (λ · u) = f (λx, λy, λz) = (−2λx, λy + 3λz)
= λ · (−2x, y + 3z) = λ · f (x, y, z)
= λ · f (u) .

88



5.3. LINEAR APPLICATION 5. LINEAR ALGEBRA

Proposition 5.3.4. If f is a linear map of E into F , then
• f(0E) = 0F ,
• f(−u) = −f(u), for everything u ∈ E,
• f is linear if and only if

∀u, v ∈ E; ∀λ, µ ∈ K f(λ · u + µ · v) = λ · f(u) + µ · f(v).

Definition 5.3.5 (Image of a linear map). The image of f , denoted Im(f) is the
part of F defined by

Im(f) = {f(u) ∈ F ; u ∈ E} .

Definition 5.3.6 (Kernal of a linear application). The kernel of f , denoted Ker(f),
is the set of elements of E whose image is 0F

Ker(f) = {u ∈ E; f(u) = 0F } .

Proposition 5.3.7. • The image of f is a vector subspace of F ,
• The kernel of f is a vector subspace of E,
• f is injective if and only if Ker(f) = {0E}.
• f is surjective if and only if Im(f) = F .

Example 5.3.8. In example (5.3.3), we have

Ker(f) =
{
(x, y, z) ∈ R3; f (x, y, z) = 0R2

}
=

{
(x, y, z) ∈ R3; (−2x, y + 3z) = (0, 0)

}
=

{
(x, y, z) ∈ R3; (−2x, y + 3z) = (0, 0)

}
=

{
(x, y, z) ∈ R3; x = 0, y = −3z

}
= {(0, −3z, z) ; z ∈ R}
= Vect {(0, −3, 1)} .

et

Im(f) =
{
f (x, y, z) ∈ R2; (x, y, z) ∈ R3

}
Im(f) =

{
(−2x, y + 3z) ; (x, y, z) ∈ R3

}
Im(f) =

{
(−2x, 0) + (0, y) + (0, 3z) ; (x, y, z) ∈ R3

}
Im(f) = Vect {(−2, 0), (0, 1), (0, 3)} .

Definition 5.3.9 (Rank of a linear map). Let f ∈ L(E; F ) with E of finite dimension.
The rank of f is the dimension of the image of f

rank (f) = dim Im(f).
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Example 5.3.10. In example (5.3.3), we have

Im(f) = Vect {(−2, 0), (0, 1), (0, 3)} ,

but the vectors (−2, 0), (0, 1), (0, 3) are related because

λ1 (−2, 0) + λ2(0, 1) + λ3(0, 3) = (0, 0) ∀λ1, λ2, λ3 ∈ R,
(−2λ1, λ2 + 3λ3) = (0, 0) ,

λ1 = 0, λ2 = −3λ3,

and as the vectors (−2, 0), (0, 1), are free since

(−2λ1, 0) + λ2(0, 1) = (0, 0) ∀λ1, λ2 ∈ R,
(−2λ1, λ2) = (0, 0) =⇒ λ1 = λ2 = 0,

then the family B = {(−2, 0), (0, 1)} is a basis of Im(f), therefore dim Im(f) = 2 =
rank (f) .

Théorème 5.3.11 (Rank theorem). Let f ∈ L(E; F ) with E of finite dimension. So

dim Ker(f) + dim Im(f) = dim E.

Example 5.3.12. The rank theorem is verified for the linear application of example
(5.3.3). Indeed, we have shown that Ker(f) = Vect {(0, −3, 1)} , so dim Ker(f) = 1
therefore

dim Ker(f) + dim Im(f) = 1 + 2 = 3 = dimR3.

5.4 Solved exercises

5.4.1 Exercises
5.1

Are the following parts vector subspaces of R2?

1. F1 = {(x, y) ∈ R2/2x + y ≥ 0}
2. F2 = {(x, y) ∈ R2/x2 + y2 = 1}

3. F3 = {(x, y) ∈ R2/y = x}
4. F4 = {(x, y) ∈ R2/x − 2y = 3}
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5.2

Let F = {(x, y, z) ∈ R3/x + y + z = 0} and G = {(s − t, s + t, t) ∈ R3/s, t ∈ R}
1. Show that F and G are a vector subspaces of R3

2. Determine F ∩ G.

5.3

Show that the following sets are vector subspaces by describing them in the form
V ect(F)
1. F1 = {(x, y) ∈ R2/x − y = 0}
2. F2 = {(x, y) ∈ R2/2x − y = 0}
3. F3 = {(t, −2t) ∈ R2/t ∈ R}

5.4

Let f : R2 −→ R2 such that:

f(x, y) = (2x − y, x + y)

1. Prove that f is linear.
2. Determine Ketf and Imf .

5.5

Determine the kernel and the image of the linear map f : R3 −→ R2 where f(x, y, z) =
(x + y − z, x − y + 2z). Is f injective? surjective?

5.4.2 Solutions
5.1

Recall that a part of R2 is a vector subspace of R2 if and only if it is the singleton 0,
a vector line or whole R2.
1.The couple (0, 1) is an element of F1 but this is not the case for the couple (0, 1)
which is nevertheless collinear with it. F1 is therefore not stable by linear combination
and it cannot be a vector subspace of R2.
2. The zero pair (0, 0) is not an element of F2 and therefore F2 cannot be a vector
subspace of R2.
3. We easily verify that F3 is a non-empty part of R2. If (x, y), (x′, y′) ∈ F3 and
if α, β ∈ R then we check easily that αx + βx′ = αy + βy′, and therefore that
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α(x, y) + β(x′, y′) ∈ F3, F3 is therefore a vector subspace of R2.
4. The zero pair (0, 0) is not an element of F4 and therefore F4 is not a vector subspace
of R2.

5.2

Recall that a part of R3 is a vector subspace of R3 if and only if it is the singleton 0,
a vector line, a vector plane or all R3.
1. F is a non-empty part of R3. If (x, y, z), (x′, y′, z′) ∈ F and if α, β ∈ R, then we
easily verify that the triplet α(x, y, z) + β(x′, y′, z′) verify the equation x + y + z = 0.
F is therefore stable by linear combination and forms a subspace vector of R3 (we
will have recognized that F is a vector plane of space). We also check that G is a
non-empty subset of R3 and if (s − t, s + t, t) an if (s′ − t′, s′ + t′, t′) are two elements
of G with (s, s′, t, t′ ∈ R) and if then α, β ∈ R then:

α(s − t, s + t, t) + β(s′ − t′, s′ + t′, t′) = (S − T, S + T, T )

with S = αs + βs′ and T = αt + βt′, and therefore G is also stable by linear combina-
tion (We will again have noticed that G is a vector plane of space).

2. To determine F ∩G it is enough to solve the system


x + y + z = 0
x = s − t
y = s + t
z = t

and we obtain

as a solution set that parameterized by


x = −3

2
t

y = 1
2

t

z = t

(we recognize the parameterized

equation of a vector line).

5.3

1. F1 =
{
(x, y) ∈ R2/x − y = 0

}
=

{
(x, x) ∈ R2/x ∈ R

}
= V ect((1, 1))

2. F2 =
{
(x, y) ∈ R2/2x − y = 0

}
=

{
(x, 2x) ∈ R2/x ∈ R

}
= V ect((1, 2))

3. F3 = {(t, −2t)/t ∈∈ R} = V ect((1, −2))

5.4

1. We easily verify that f is linear.
2. Let us show that f is bijective. We will deduce that Kerf = {0} and Im(f) = R2.
It is enough to show that there exists one and only couple (x, y) ∈ R such that
f(x, y) = (X, Y ). To do this, let’s solve:
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{
2x − y = X
x + y = Y

The unique solution is
(

x = X + Y

3
, y = 2X − Y

3

)
, and f is there-

fore bijective.

5.5

We have (x, y, z) ∈ Kerf ⇔
{

x + y − z = 0
x − y + 2z = 0 ⇔

{
z = −2x
y = −3x

So Kerf = V ect((1, −3, −2)),

then f is not injective.
Moreover,
Imf = {(x+y−z, x−y+2z)/(x, y, z) ∈ R3} = {x(1, 1)+y(1, −1)+z(−1, 2)/(x, y, z) ∈
R3} = V ect((1, 1), (1 − 1), (−1, 2)) = R2 because (1, 1), (1, −1) are not independent,
so f in then surjective.
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