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 ملخص

تمثل مقاومة المضادات الحيوية تهديدًا كبيرًا للصحة العامة العالمية، حيث يؤدي الإفراط في استخدام المضادات الحيوية 
وظهور البكتيريا المقاومة إلى تقويض العلاجات التقليدية. تقدم الجزيئات الطبيعية المستخلصة من النباتات الطبية بديلًا واعدًا 

الدراسة هي تقديم  أهداف هذه المقاومة، إذ تعمل تقنية النانوتشكيل على تحسين استقرارها وفعاليتها العلاجية.في مكافحة هذه 
تحليل شامل لمقاومة المضادات الحيوية في بيئة سريرية، واستكشاف إمكانيات الزيوت الأساسية الطبيعية كعوامل مضادة 

كشفت دراسة استعادية أجريت في قسم  .للميكروبات بديلة، وتقييم فعالية تَركِيبَاتها النانوية في تعزيز الأنشطة البيولوجية
الأمراض المعدية بمستشفى سطيف الجامعي خلال المرحلة الأولى من تحقيقنا عن معدلات مقلقة لمقاومة الأموكسيسيلين 

 Escherichia(. وكانت أكثر سلالة بكتيرية تم تحديدها هي %60.15م )، والسيفوتاكسي(%70 <) (، السيفازولين011%)
coli المنتجة لإنزيم البيتا لاكتاماز واسع الطيف (BLSE) في الجزء الثاني، تناولت  .من العزلات %30.12، والتي مثلت

 Cymbopogonونبات  Satureja hortensis L. (ASHEO)من نبات  (HE) الدراسة استخلاص الزيوت الأساسية
citratus (DC.) Stapf (LGEO)   في الجزائر باستخدام تقنية التقطير بالبخار، بالإضافة إلى استخدام تقنية

 و ASHEO لإجراء مقارنة بين GC-MS الميكروفلويدايزيشن للحصول على نانوتشكيلات هذه الزيوت. تم استخدام جهاز
LGEO حلبات النانومن حيث محتواهما من المركبات الطيارة في مست (MF-ASHEO و MF-LGEO). أظهرت نتائج 

MF-ASHEO  مركبًا في 35( مقارنةً بـ %00.65مركبات ) 0وجود ASHEO (95.46%).  أما المركبات التي تم
 LGEO من إجمالي محتوى الزيت في مستحلب النانو، وهو ما يشبه %05.62فقد شكلت  MF-LGEO تحديدها في

أظهرت الزيوت الأساسية ونانوتشكيلاتها خصائص مضادة للبكتيريا والبيوفيلم، .%). 05.52( رالمستخلص بالتقطير بالبخا
فعالية كبيرة ضد عزلات بكتيرية ممرضة من الجراثيم الموجبة والسالبة لصبغة جرام.  LGEO و ASHEO حيث أظهر

مم، بينما  30.55مم و 66.55اوح بين نشاطًا ضد جميع السلالات البكتيرية المختبرة، مع مناطق تثبيط تتر  ASHEO أظهر
تثبيطًا كاملًا لسلالة  LGEO ، وأظهر%51بنسبة تزيد عن  P. aeruginosaو  E. coliتم تثبيط تكوين البيوفيلم بواسطة 

.Bacillus subtilis دفة هتم التحقق من التأثيرات المبيدة للبكتيريا والمثبطة لنموها لمركب الكارفاكرول على البروتينات المست
، MF-LGEO بالإضافة إلى ذلك، أظهرت الزيوت الأساسية، وخاصة in silico .والنمذجة  ADME باستخدام تحليل

، مما Fusarium، وAspergillus ،Penicilliumخصائص مضادة للفطريات ضد الفطريات المفرزة للسموم مثل سلالات 
للتلوث الفطري السام. كما كشفت الدراسة أن الزيوت الأساسية يؤثر على معدلات نموها ويقترح إمكانية استخدامها كعلاج 

ونانوتشكيلاتها أظهرت سمية خلوية واعدة ضد ثلاث سلالات خلوية، مع تعزيز تأثيرات مضادة للالتهابات بواسطة تقنية 
سية التي تم دراستها االميكروفلويدايزيشن، حيث ارتبطت هذه النتائج بتعديلات في مكونات النانوتشكيل. أظهرت الزيوت الأس

 ميكروغرام/مل لـ 30.00±  625.35بلغت  IC50 تأثيرات مضادة للأكسدة معتدلة في تثبيط الجذور الحرة، مع قيمة
ASHEOوقيمة ، IC50  ميكروغرام/مل لـ 3.06±  03.05بلغت LGEO.  كان لتقنية الميكروفلويدايزيشن تأثير عميق

 C. citratusو  S. hortensisتدعم نتائجنا استخدام نباتي  .البيولوجي للزيتعلى محتوى المركبات الطيارة والنشاط 
لاستخراج زيوتهما الأساسية الثمينة، خاصةً للوقاية من الأمراض الفطرية السامة والالتهابات البكتيرية المقاومة للمضادات 

 الحيوية.

؛ الزيوت الأســــــــــــاســــــــــــية؛ Cymbopogon citratus (DC.) Stapf؛  .Satureja hortensis L كلمات مفتاحية:
 in silico. التشكيل النانوي؛ مضاد للبكتيريا؛ مضاد للفطريات؛ مضاد للأكسدة؛ سمية للخلايا؛

 



Abstract  

Antibiotic resistance is one of the biggest global public health threats. The abuse of antibiotics 

and the emergence of resistant strains of bacteria undermine the effectiveness of conventional 

treatments. Natural molecules extracted from medicinal plants offer a promising alternative to 

combating this resistance, with nanoformulation improving their bioavailability and therapeutic 

effectiveness. A retrospective study conducted at the department of infection diseases at CHU 

Setif during the initial phase of our investigation revealed alarmingly high rates of resistance to 

amoxicillin (100%), cefazoline (>70%), and cefotaxime (58.06%). Escherichia coli ESBL 

represented the most common bacterial strain identified (29.03%). In the second part, the study 

examined the extraction by hydrodistillation of essential oils (EOs) from Algerian Satureja 

hortensis L. (ASHEO) and Cymbopogon citratus (DC.) Stapf (LGEO), and the 

microfluidization technique was used to get their nanoformulations. The GC-MS apparatus was 

utilized for a comparative examination of ASHEO and LGEO with their microfluidization 

nanoemulsions (MF-ASHEO and MF-LGEO) volatile content. MF-ASHO showed 8 

compounds (99.56%) vs ASHEO's 26 compounds (95.46%). The identified components in MF-

LGEO represented 97.53% of the total nanoemulsion oil, which was similar to the 

hydrodistilled LGEO (97.73%). The essential oils and nanoformulations showed antibacterial 

and antibiofilm properties, while ASHEO and LGEO showed superior efficacy against 

pathogenic isolates of Gram-positive and Gram-negative bacteria. ASHEO effectively 

exhibited activity against all tested bacterial strains with inhibition zones measured between 

55.66 mm and 29.66 mm, and the biofilm formation of E. coli and P. aeruginosa was suppressed 

by over 60%, while LGEO demonstrated complete inhibition of B. subtilis. The bactericidal 

and bacteriostatic effects of carvacrol on the target proteins were validated by ADME and in 

silico analyses. Additionally, essential oils, especially MF-LGEO, showed antifungal properties 

against mycotoxigenic fungi including Aspergillus, Penicillium and Fusarium strains by 

influencing their growth rates and suggesting potential treatment for toxigenic fungal 

contamination. The study also found that essential oils and nanoformulations showed promising 

cytotoxicity against three cell line strains, with microfluidization enhancing anti-inflammatory 

effects, and these findings were linked to alterations in nanoformulation components. Studied 

essential oils revealed moderate antioxidant effects in radical scavenging, with an IC50 value 

of 536.47 ± 21.99 µg.mL-1 for ASHEO and an IC50 value equal to (82.87 ± 2.15 µg.mL-1). The 

microfluidization procedure has a profound impact on both the volatile content and biological 

activity of the oil. Our findings reassure the use of S. hortensis and C. citratus for their valuable 

essential oils and to prevent fungal toxigenic diseases and pathogenic-resistant bacteria.  

 

Key words: Satureja hortensis L.; Cymbopogon citratus (DC.) Stapf; essential oils 

microfluidization; antibacterial; antifungal; antioxidant; cytotoxicity; in silico. 



Résumé 

La résistance aux antibiotiques constitue une menace majeure pour la santé publique mondiale, 

l’abus d’antibiotiques et l’émergence de bactéries résistantes compromettant les traitements 

conventionnels. Les molécules naturelles extraites de plantes médicinales offrent une 

alternative prometteuse dans la lutte contre cette résistance, et la nanoformulation permet 

d'améliorer leur stabilité et leur efficacité thérapeutique. Les objectifs de cette étude sont de 

fournir une analyse complète de la résistance aux antibiotiques en milieu clinique, d'explorer le 

potentiel des huiles essentielles naturelles en tant qu'agents antimicrobiens alternatifs, et 

d'évaluer l'efficacité de leurs nanoformulations pour améliorer les activités biologiques. Une 

étude rétrospective menée au département des maladies infectieuses du CHU de Sétif au cours 

de la phase initiale de notre enquête a révélé des taux alarmants de résistance à l'amoxicilline 

(100 %), à la céfazoline (> 70 %), et à la cefotaxime (58,06 %). La souche bactérienne la plus 

fréquemment identifiée était Escherichia coli productrice de BLSE, représentant 29,03 % des 

isolats. Dans la deuxième partie, l'étude a porté sur l'extraction par hydrodistillation des huiles 

essentielles (HE) de Satureja hortensis L. (ASHEO) et de Cymbopogon citratus (DC.) Stapf 

(LGEO) d’Algérie, avec l'utilisation de la technique de microfluidisation pour obtenir leurs 

nanoformulations. L'appareil GC-MS a permis de réaliser un examen comparatif des ASHEO 

et LGEO avec leur teneur en composés volatils dans les nanoémulsions issues de la 

microfluidisation (MF-ASHEO et MF-LGEO). MF-ASHEO a révélé 8 composés (99,56 %) 

contre les 26 composés identifiés dans ASHEO (95,46 %). Les composants identifiés dans MF-

LGEO représentaient 97,53 % du total de l'huile dans la nanoémulsion, un résultat similaire à 

celui de l’huile hydrodistillée LGEO (97,73 %). Les huiles essentielles et leurs 

nanoformulations ont démontré des propriétés antibactériennes et antibiofilm, avec ASHEO et 

LGEO montrant une efficacité supérieure contre des isolats pathogènes de bactéries Gram-

positives et Gram-négatives. ASHEO a montré une activité contre toutes les souches de 

bactéries testées, avec des zones d'inhibition mesurées entre 55,66 mm et 29,66 mm, et la 

formation de biofilms par E. coli et P. aeruginosa a été inhibée à plus de 60 %, tandis que 

LGEO a montré une inhibition totale de Bacillus subtilis. Les effets bactéricides et 

bactériostatiques du carvacrol sur des protéines cibles ont été validés par des analyses ADME 

et in silico. De plus, les huiles essentielles, en particulier MF-LGEO, ont démontré des 

propriétés antifongiques contre des champignons mycotoxigènes, y compris des souches 

d'Aspergillus, Penicillium et Fusarium, influençant leur taux de croissance et suggérant un 

potentiel thérapeutique pour le traitement de la contamination fongique toxique. L'étude a 

également révélé que les huiles essentielles et leurs nanoformulations avaient une cytotoxicité 

prometteuse contre trois lignées cellulaires, la microfluidisation renforçant les effets anti-

inflammatoires, ces résultats étant liés à des modifications des composants de la 

nanoformulation. Les huiles essentielles étudiées ont montré des effets antioxydants modérés 

dans la capture des radicaux libres, avec une valeur IC50 de 536,47 ± 21,99 μg.mL⁻¹ pour 

ASHEO et une valeur IC50 de 82,87 ± 2,15 μg.mL⁻¹ pour LGEO. La procédure de 

microfluidisation a un impact profond sur la teneur en composés volatils et l'activité biologique 

des huiles. Nos résultats soutiennent l'utilisation de S. hortensis et C. citratus pour leurs huiles 

essentielles précieuses, notamment pour la prévention des maladies fongiques et des infections 

causées par les bactéries multirésistantes. 

Mots clés : Satureja hortensis L. ; Cymbopogon citratus (DC.) Stapf ; huiles essentielles ; 

microfluidisation ; antibactérien ; antifongique ; antioxydant ; cytotoxicité ; in silico. 
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Introduction 

"I did not invent penicillin. Nature did that. I only discovered it by accident " is a quote 

attributed to Alexander Fleming, the renowned Scottish bacteriologist best known for his 

discovery of penicillin. The accidental discovery of this antibiotic underscores its significant 

influence, as it stands as one of the pivotal medical breakthroughs of the 20th century. Although 

Fleming was not the originator of penicillin, his fortunate discovery sparked a revolutionary 

period in medicine, ultimately leading to the saving of numerous lives. Pathogenic germs have 

posed an enduring danger throughout history, leading to multiple outbreaks and worldwide 

pandemics, necessitating this requirement. A series of scientific investigations and 

observations, including those of Pasteur, Joubert, and Duchesne, have fueled this pursuit, which 

has ultimately resulted in the discovery of numerous antibiotics (Shama, 2016). 

The promising landscape that these anti-infectives presented has gradually reduced in less 

than a half of century since their first use. Over the past 40 years, microbial infections have 

become increasingly recurrent due to the progressive emergence of antimicrobial resistance 

(AMR). When this resistance occurs to multiple drugs of more than three classes, it is known 

as multidrug resistance (MDR) (Mancuso et al., 2021). The overuse of antibiotics, mutations, 

the exchange of resistance genes, the propagation of resistant clones, and other factors are the 

primary drivers of MDR development (Catalano et al., 2022). Presently, antimicrobial 

resistance is responsible for at least 700,000 deaths annually worldwide. Without the 

development of new and improved treatments, the World Health Organization (WHO) (2018) 

warns that this figure could skyrocket to 10 million by 2050, underscoring a significant global 

health threat. 

The recent advancement in the treatment of AMR applies various options, such as 

combinatorial drug approaches, plant-derived products, bio-nanotechnology approaches, and 
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many others. In recent years, there has been an increasing interest in natural product-based 

medicines from plant origin. In contemporary times, there has been a notable surge in scholarly 

attention towards medicinal remedies derived from natural products of botanical provenance. 

Plants represent a significant reservoir of biologically active secondary metabolites, harboring 

substantial therapeutic promise (Atanasov et al., 2021). Estimates from the World Health 

Organization (WHO, 2018) indicate that almost 80% of the population in Africa and 40% of 

China's population depend on traditional plant-based medicines as an essential component of 

their basic healthcare routine. 

Medicinal plants are a valuable source of diverse bioactive secondary metabolites, which 

can be utilized in the creation of groundbreaking medicinal medicines that offer unique health 

advantages. Algeria is a rich reservoir of diverse medicinal and aromatic plants. The chemo-

diversity and therapeutic effects of Algerian plants vary from those of the same plants found in 

other regions and climates due to the unique geographical position of the country (Selwal et al., 

2023). Various aromatic plants cultivated in Algeria have been identified as potential sources 

for the production of essential oils (EOs)  (Benziane et al., 2023). Therefore, EOs have emerged 

as a compelling resource for discovering novel, potent, and secure bioactive compounds that 

offer a wide range of therapeutic advantages, particularly in terms of antioxidant and 

antibacterial properties (Mohamed and Alotaibi, 2023).   

Plants belonging to groups such as Boraginaceae, Lamiaceae, and Poaceae are grown 

worldwide for their bioactive components, including EOs, alkaloids, and polyphenols (Llinares 

et al., 2021). These oils, such as Satureja hortensis (Summer savory) and Cymbopogon citratus 

(Lemongrass), which are commonly used, serve as natural defenses against predators and 

environmental stressors. These plants possess abundant EOs including biologically active 

compounds like thymol and geranial, which have antibacterial effects (Rezende et al., 2022).    
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In this context, we were interested in studying two plants of the Algerian flora, represented 

by Satureja hortensis L. and Cymbopogon citratus (DC.) Stapf, collected in Boussaada, M’Sila. 

The objectives of this study are to provide a comprehensive analysis of antibiotic resistance 

within a clinical setting, explore the potential of natural EOs as alternative antimicrobial agents, 

and assess the efficacy of their nanoformulations in enhancing biological activity. By 

examining the antibacterial and antifungal properties of these formulations, the study aims to 

identify promising natural alternatives that could contribute to addressing the growing threat of 

multidrug-resistant pathogens. 
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Literature Review 

1. Antibiotics  

1.1. Antibiotic’s History and Classification   

Antibiotics are an important class of medications that are extensively used in healthcare. 

These antimicrobial medicines have dual functions, serving as preventive measures 

(prophylactic) and as treatments for diseases caused by various microorganisms, such as 

bacteria and fungi. The word "antibiotic" usually refers to drugs that have the ability to either 

kill or inhibit the growth of bacteria (Yang et al., 2021). 

In the annals of medical history, the advent of the first antibiotic, Salvarsan, in 1910, 

heralded a transformative epoch. Over a span slightly exceeding a century, antibiotics have 

exerted a profound influence on modern medicine, contributing to a remarkable extension of 

the average human lifespan by 23 years. The watershed moment occurred with the discovery 

of penicillin in 1928 by the English Bacteriologist Sir Alexander Fleming, instigating a golden 

age of natural product antibiotic exploration that reached its zenith in the mid-1950s. 

Subsequent years have witnessed a gradual wane in the discovery and development of 

antibiotics, accompanied by the emergence of drug resistance in numerous human pathogens. 

Virtually all classes of antibiotics were discovered during a "golden age" that extended from 

1936 to 1962 (Hutchings et al., 2019) (Figure 01). 
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Figure 01: Timeline showing the decade new classes of antibiotic reached the clinic (Hutchings 

et al., 2019). The antibiotics are colored per their source: green = actinomycetes, blue = other bacteria, purple 

= fungi and orange = synthetic. At the bottom of the timeline are key dates relating to antibiotic discovery and 

antimicrobial resistance, including the first reports of drug resistant strains methicillin-resistant S. aureus (MRSA), 

vancomycin-resistant enterococci (VRE), vancomycin-resistant S. aureus (VRSA) and plasmid-borne colistin 

resistance in Enterobacteriaceae. 

Antibiotics can be classified in various ways, but the most commonly used schemes 

center around their molecular structures, mode of action, and spectrum of activity (Calderón 

and Sabundayo, 2007). Another classification criterion is the route of administration, which 

includes injectable, oral, and topical antibiotics.  
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1.1.1. Antibiotics’ Classification Based on Source and Mechanism of Action 

Considering the origin of antibiotics, they can be categorized into three main groups: (i) 

natural compounds derived from microorganisms, (ii) semi-synthetic variants that involve 

structural modifications of natural products, and (iii) entirely synthetic products. While natural 

antibiotics such as benzylpenicillin, cephalosporins, and gentamicin present a significant 

drawback due to their high toxicity, semi-synthetic antibiotics like ampicillin and amikacin, as 

well as synthetic antibiotics such as moxifloxacin and norfloxacin, demonstrate an enhanced 

therapeutic effect and lower toxicity when compared to their natural counterparts (Pancu et al., 

2021). Several antibiotics, such as Chloramphenicol, are classified simultaneously as natural, 

semi-synthetic, and synthetic (Rai and Kosalec, 2022).  

The various structures of antibiotics are closely related to distinct mechanisms of action 

(figure 02). Earlier research identified primary bacterial targets for antibiotics, including cell 

wall synthesis, protein synthesis, cell membrane function, and nucleic acid synthesis. (Ullah et 

al., 2017).  

 

Figure 02: Bacterial targets and action mechanisms of different antibiotics (Eyler and Shvets, 

2019). 



 Literature Review 

 

 
7 

 

It is essential to consider the comprehensive overview provided in the (Table 01). 

Table 01: All classes of clinically used antibiotics and their source (Hutchings et al., 2019). 

 

Classa 

Discovery 

reportedb 

Introduced 

clinically 

Example (and 

producing 

organism) 

Molecular Target 

Antibiotics from Actinomycetes 

Aminoglycosides 1944 1946 Kanamycin A 

(Streptomyces 

kanamyceticus) 

Protein synthesis: 30S 

ribosomal subunit 

Tetracyclines 1948 1948 Tetracycline 

(Streptomyces 

aureofaciens) 

Protein synthesis: 30S 

ribosomal subunit 

Amphenicols 1947 1949 Chloramphenicol 

(Streptomyces 

venezuelae) 

Protein synthesis: 50S 

ribosomal subunit 

Macrolides 1952 1952 Erythromycin 

(Saccharopolyspo

ra 

erythraea) 

Protein synthesis: 50S 

ribosomal subunit 

Tuberactinomycins 1951 1953 Viomycin 

(Streptomyces 

puniceus) 

Protein synthesis: 30S 

and 50S ribosomal 

subunits (binds to the 

Intersubunit bridge 

B2a) 

Glycopeptides 1954 1958 Vancomycin 

(Amycolatopsis 

orientalis) 

Cell wall synthesis: D-

Ala-D-Ala termini 

of lipid II 

Lincosamides 1962 1963 Clindamycin 

(Semi-synthetic 

derivative of 

lincomycin 

(Streptomyces 

lincolnensis) 

Protein synthesis: 50S 

ribosomal subunit 

Ansamycins 1959 1963 Rifamycin SV 

Semi-synthetic 

derivative of 

rifamycin 

(Amycolatopsis 

rifamycinica) 

Nucleic acid synthesis: 

RNA polymerase 
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Cycloserines 1954 1958 Seromycin 

(Streptomyces 

orchidaceus) 

Cell wall synthesis: 

inhibition of alanine 

racemase and D-

alanine-D-alanine 

ligase 

Streptogramins 1953 1965 Pristinamycin 

(Streptomyces 

pristinaespiralis) 

Protein synthesis: 50S 

ribosomal subunit 

Phosphonates 1969 1971 Fosfomycin 

(Streptomyces 

fradiae) 

Cell wall synthesis: 

MurA (UDP-GlcNAc3-

enolpyruvyltransferase) 

inhibition 

Carbapenems 1976 1985 Meropenem 

Synthetic 

molecule based on 

thienamycin 

(Streptomyces 

cattleya) 

Cell wall synthesis: 

penicillin-binding 

proteins 

Lipopeptides 1987 2003 Daptomycin 

(Streptomyces 

roseosporus) 

Cell wall: cell 

membrane disruption 

Lipiarmycins 1975 2011 Fidaxomicin 

(Dactylosporangi

um 

aurantiacum 

subsp. 

hamdenesis) 

Nucleic acid synthesis: 

RNA polymerase 

Antibiotics from other bacteria 

Polypeptides 1939 1941 Gramicidin A 

(Bacillus brevis) 

Cell wall: forms ion 

channels that increase 

the permeability of the 

bacterial cell membrane 

Bacitracin 1945 1948 Bacitracin A 

(Bacillus subtilis) 

Cell wall synthesis: 

inhibition of 

dephosphorylation of 

C55-isoprenyl 

pyrophosphate 

Polymyxins 1950 1959 Colistin 

(Paenibacillus 

polymyxa) 

Cell wall: cell 

membrane disruption 

Mupirocin 1971 1985 Mupirocin 

(Pseudomonas 

fluorescens) 

Protein synthesis: 

isoleucyl t-RNA 

synthetase 
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Monobactams 1981 1986 Aztreonam 

Synthetic 

molecule based on 

SQ 26,180 

(Chromobacteriu

m violaceum) 

Cell wall synthesis: 

penicillin-binding 

proteins 

Antibiotics from fungi 

Penicillins 1929 1943 Amoxicillin Semi-

synthetic 

derivative of 

penicillin 

(Penicillium 

chrysogenum) 

Cell wall synthesis: 

penicillin-binding 

proteins 

Fusidic acid 1958 1962 Fusidic acid 

(Fusidium 

coccineum) 

Protein synthesis: 

elongation factor G 

Enniatinsc 1953 1963 Fusafungine 

(Fusarium 

lateritium) 

Cell wall: cell 

membrane disruption 

Cephalosporins 1948 1964 Cefacetrile Semi-

synthetic 

derivative of 

cephalosporin 

C (Acremonium 

chrysogenum) 

Cell wall synthesis: 

penicillin-binding 

proteins 

Pleuromutilins 1951 2007 Retapamulin 

Semi-synthetic 

derivative of 

pleuromutilin 

(Pleurotus 

mutilus) 

Protein synthesis: 50S 

ribosomal subunit 

Synthetic antibiotics 

Arsphenaminesd   Salvarsan Not known 

Sulfonamides 1907 1910 Mafenide Folate synthesis: 

inhibition of 

dihydropteroate 

synthetase 

Salicylatese 1931 1936 4-Aminosalicylic 

acid 

Folate synthesis: 

prodrug that inhibits 

dihydrofolate reductase 

Sulfones 1908 1945 Dapsone Folate synthesis: 

inhibition of 
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dihydropteroate 

synthetase 

Pyridinamides 1952 1952 Isoniazid Cell wall: prodrug that 

inhibits the 

synthesis of mycolic 

acids 

Nitrofurans 1945 1953 Nitrofurantoin DNA synthesis: DNA 

damage 

Azolesf 1959 1960 Metronidazole DNA synthesis: DNA 

damage 

(Fluoro) quinolones 1962 1962 Ciprofloxacin DNA synthesis: 

inhibition of DNA 

gyrase, and 

topoisomerase IV 

Diaminopyrimidines 1950 1962 Trimethroprim Folate synthesis: 

inhibition of 

dihydrofolate reductase 

Ethambutol 1962 1962 Ethambutol Cell wall: arabinosyl 

transferase 

inhibition 

Thioamides 1956 1965 Ethionamide Cell wall: prodrug that 

inhibits the 

synthesis of mycolic 

acids 

Phenazinesf 1954 1969 Clofazimine DNA synthesis: binds 

to guanine bases 

Oxazolidinones 1987 2000 Linezolid Protein synthesis: 50S 

ribosomal subunit 

Diarylquinolines 2004 2012 Bedaquiline ATP synthesis: proton 

pump inhibition 
a Classes are defined by origin, structure and/or mechanism of action, which distinguishes between 

bacitracin, colistin and daptomycin, for example.  

b Year reported refers to first report in literature.  

c The European Medicines Agency recommended the withdrawal of fusafungine from the market in 

February 2016.  

d Salvarsan is no longer in clinical use.  

e Salicylic acids are found in nature, but this was not the source of this class of antibiotic.  

f Compound synthesis was inspired by natural antibiotic classes. 
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1.1.2. Antibiotics’ Classification Based on Chemical Structure 

Antibiotics belonging to identical structural classifications commonly exhibit analogous 

profiles regarding efficacy, toxicity, and potential allergic reactions. Notable categories 

delineated by chemical or molecular architectures encompass beta-lactams, macrolides, 

tetracyclines, quinolones, aminoglycosides, sulphonamides, glycopeptides, and oxazolidinones 

(Frank and Tacconelli, 2012) ; Adzitey, 2015). 

The fundamental structural element common to all 56 beta-lactam antibiotics is the four-

membered beta-lactam ring. Bacterial beta-lactamases catalyze the cleavage of this ring, 

leading to the inactivation of the antibiotic. The primary basis for the antibacterial efficacy of 

these compounds lies in the intactness of the beta-lactam ring (Chambers et al. 1995). (Figure 

03) presents the general chemical structures of the main antibiotic classes. 

 
   

Penicillins Cephalosporins Carbapenems Monobactams 

 

β-lactams 

 

 

 

 

 

Macrolides Quinolones 
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Tetracyclines Aminoglycosides 

Figure 03: Chemical Structures of Main Antibiotic Classes (de Souza Mendes and de Souza 

Antunes, 2013). 

1.1.3. Antibiotics’ Classification by the Type of Pharmacological Effects 

Antibiotics exhibit either bactericidal or bacteriostatic effects, serving as a basis for their 

classification. Bactericidal compounds induce bacterial cell death by impeding processes such 

as cell wall synthesis, cell membrane function, or protein synthesis (Walsh, 2003). Examples 

within this category encompass β-lactams, aminoglycosides, glycopeptides, ansamycins, 

quinolones, streptogramins, lipopeptides, and macrolides. In contrast, bacteriostatic agents 

hinder bacterial cellular activity and growth without causing cell death. This category includes 

sulfonamides, tetracyclines, chloramphenicol, oxazolidinones, and macrolides (Ullah et al., 

2017). 

1.1.4. Antibiotics’ Classification Based on the Spectrum of Activity 

Antibiotics vary in their spectrum of activity, influencing the range of microorganisms 

they target. Extended spectrum antibiotics, like tetracyclines, combat bacteria, rickettsiae, and 

protozoa. Broad spectrum antibiotics, exemplified by quinolones, are effective against both 

Gram-positive and Gram-negative bacteria. On the other hand, narrow spectrum antibiotics, 

such as macrolides, specifically target either Gram-positive or Gram-negative bacterial 
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organisms (Pancu et al., 2021). This spectrum concept guides clinicians in selecting antibiotics 

based on the precise nature of the infection. 

1.1.5. Antibiotics’ Classification Based on Route of Administration 

Antibacterial agents are also classified based on the mode of administration. Topical 

antibiotics are applied directly to body surfaces, parenteral antibiotics are administered via 

injection, and oral antibiotics are taken orally (Zhou et al., 2020). The selection of 

administration routes is influenced by factors like convenience, patient compliance, as well as 

the pharmacokinetics and pharmacodynamic properties of the drug. 

1.2. Antibiotics’ Resistance  

1.2.1. Types of Resistance 

The ability of microorganisms to oppose the effects of antimicrobial drugs is known as 

antibiotic resistance, and it arises when an antibiotic becomes less effective at preventing 

bacterial growth (Nadeem et al., 2020).  The four principal forms of antibiotic resistance evolve 

as: 

A. Natural Resistance (Intrinsic, Structural) 

In this form of resistance, the development of resistance is not linked to antibiotic use 

but is instead attributed to the structural properties of bacteria (Kadhum Abu Gulel and Hasan, 

2019). This phenomenon arises due to intrinsic resistance, wherein microorganisms deviate 

from the target antibiotic structure, or when antibiotics, due to their specific characteristics, fail 

to interact with their intended targets (Waglechner and Wright, 2017). An illustrative example 

is observed with Gram-negative bacteria and vancomycin; the outer membrane hinders the 

movement of vancomycin antibiotics, rendering these Gram-negative bacteria naturally 

resistant to vancomycin (Antonoplis et al., 2019). 
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B. Acquired Resistance 

Apart from the resistance that arises from modifications in the genetic characteristics of 

bacteria, another kind of resistance occurs when bacteria lose their ability to respond to 

antibiotics that they were previously susceptible to. This acquired resistance can arise from 

modifications in the main chromosome or additional chromosome structures such as plasmids 

and transposons (Andersson et al., 2020). 

Chromosomal resistance is a consequence of mutations occurring randomly in the 

bacterial chromosome, which can be induced by various physical and chemical factors. These 

mutations may lead to changes in the composition of bacterial cells, resulting in decreased drug 

permeability or alterations to the drug's target within the cell (Majeed and Aljanaby, 2019). 

Extrachromosomal genetic materials are necessary for extrachromosomal resistance and 

can be transferred by integrons, transposons, and plasmids. Plasmids are DNA segments that 

can replicate independently of chromosomal DNA (Thomas and Frost, 2021). Typically, 

plasmids are responsible for the production of antibiotic-inactive enzymes. 

Resistance to antibiotics like streptomycin, aminoglycosides, erythromycin, and lincomycin 

can develop in response to these forms of chromosomal resistance (Krause et al., 2016). 

C. Cross-resistance 

It refers to the resistance exhibited by specific microorganisms against a particular 

antibiotic, often operating through identical or related mechanisms and extending to resistance 

against other antibiotics. This phenomenon is commonly observed when antibiotics share 

structural similarities, such as resistance to erythromycin, neomycin, kanamycin, or resistance 

to cephalosporins and penicillins (Etebu and Arikekpar, 2016). However, cross-resistance can 

also manifest between entirely different drug groups, as seen in cases like erythromycin-
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lincomycin, and this resistance may have a chromosomal origin or not (Hasan and AL-

Harmoosh, 2020). 

D. Multi-drug Resistance (MDR)  

Multidrug-resistant organisms possess the ability to resist the impact of various 

antimicrobial medications belonging to different chemical classes or subclasses simultaneously, 

employing a range of strategies. Various bacterial species, isolated from diverse clinical 

specimens, exhibited indications of employing one or more strategies to resist antimicrobial 

agents as described in (figure 04) (Fair and Tor, 2014). 

Either one or both of these mechanisms can induce multidrug resistance in bacteria. 

Initially, bacteria may accumulate multiple genes, each encoding drug resistance, within a 

single cell, typically on resistance (R) plasmids. Alternatively, increased expression of genes 

responsible for multidrug efflux pumps, expelling a variety of medicines, can lead to multidrug 

resistance. Antibiotic-resistant bacteria have the ability to transfer copies of DNA specifying 

defense mechanisms to other bacteria, even those of closely related species. Subsequently, these 

recipient bacteria can transmit the resistant genes, giving rise to new generations of antibiotic-

resistant bacteria. This phenomenon is referred to as horizontal gene transfer (Okoye et al., 

2022). 

Bacterial strains are classified as multidrug-resistant (MDR) if they demonstrate 

resistance to three or more types of antimicrobials. Species that exhibit resistance to all but one 

or two classes of antibiotics are considered highly resistant to medicines. If a species is resistant 

to all available antibiotics, it is termed pan-drug resistant (Stanford et al., 2020). 
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Figure 04 : Illustration depicts multidrug resistance (MDR) mechanisms bacteria (Chawla et 

al., 2022). 

1.2.2. Mechanisms of Antibiotics Resistance 

Four main categories can be used to classify antimicrobial resistance mechanisms: (1) 

prevention of cell penetration; (2) expulsion via efflux pumps; (3) degradation or modification 

(inactivating proteins); (4) modification of drug targets. Gram-negative bacteria employ all four 

main mechanisms, while gram-positive bacteria less frequently employ the strategy of limiting 

drug uptake (due to the absence of an LPS outer membrane) and lack certain types of drug 

efflux mechanisms (Reygaert, 2018) (as elaborated on in later sections of this manuscript). 

(Figure 05) illustrates a comprehensive overview of the molecular mechanisms causing 

antibiotic resistance.  

 

 



 Literature Review 

 

 
17 

 

A. Prevention of Cell Penetration 

This mechanism arises from alterations in the permeability of both the internal and 

external membranes, leading to reduced drug uptake into the cell or swift expulsion through 

pump systems (Hasan and AL-Harmoosh, 2020). This is especially important for Gram-

negative bacteria because of their double membrane structure, which makes the cellular 

envelope relatively impermeable. Because of this intrinsic resistance, it is difficult to develop 

new antimicrobials that can penetrate the cell envelope, in contrast antibiotics, which are 

effective against Gram-positive pathogens (Darby et al., 2023). A decrease in membrane 

permeability can occur due to mutations in porin proteins found in resistant strains. For instance, 

a mutation in specific porins, such as OprD, can confer resistance to carbapenems in 

Pseudomonas aeruginosa strains (Li et al., 2012). 

B. Expulsion via Efflux Pumps 

Furthermore, even in the case where an antibiotic is able to pass through the outer 

membrane (OM), it can be swiftly expelled out of the cell by a variety of broad-spectrum efflux 

pumps, which may result in resistance. These pumps use the energy from the hydrolysis of ATP 

or the proton motive force to pump out chemicals from the cell (Bhowmik et al., 2023). The 

active pump systems in the tetracycline class of antibiotics are the most typical route via which 

resistance develops. Tetracyclines are expended and unable to concentrate inside the cell by an 

energy-dependent active pumping system. (Li et al., 2020).  

This mechanism of resistance is in plasmid and chromosomal control. For instance, 

active pumping systems are efficient in countering quinolones, 14-membered macrolides, 

chloramphenicol, and beta-lactams (Guo et al., 2020). 
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C. Degradation or Modification (inactivating proteins) 

Bacteria employ two primary methods to render drugs inactive: through the 

modification of the drug or by transferring a chemical group to the drug. Since most bacteria 

produce enzymes that break down antibiotics, one of the most significant pathways for 

resistance to antibiotics is enzymatic inactivation (Schaenzer and Wright, 2020). The β-

lactamases constitute a vast category of enzymes that hydrolyze drugs. Tetracycline is another 

drug susceptible to inactivation through hydrolysis, facilitated by the tetX gene (Tooke et al., 

2019). 

Additionally, there are many different transferases identified; acetylation is the most 

commonly used mechanism. Acetylation is used against a variety of drugs, such as 

aminoglycosides, chloramphenicol, streptogramins, and fluoroquinolones. Phosphorylation and 

adenylation are mainly utilized against aminoglycosides (Murina et al., 2018) .  

D. Modification of Drug Targets  

Antimicrobial agents can target various components within bacterial cells, and bacteria, 

in turn, can modify an equal number of these targets to develop resistance against the drugs. 

The target regions of the interaction with the antibiotics and the modifications that occur in the 

drug-related receptor are different; these target regions may involve complex enzymes and 

ribosomes (Martinez, 2014).  

Primarily, one mechanism through which gram-positive bacteria, develop resistance to 

β-lactam drugs involves modifications in the structure and/or quantity of penicillin-binding 

proteins (PBPs). PBPs serve as transpeptidases crucial in the formation of peptidoglycan within 

the cell wall. Variations in the number of PBPs, such as an increase in those with reduced drug-

binding capability or a decrease in PBPs with normal drug binding, can influence the 

effectiveness of drug binding to the target. Structural changes, exemplified by the acquisition 
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of the mecA gene leading to PBP2a alteration in S. aureus, can diminish the drug's ability to 

bind or entirely prevent drug binding (Larsen et al., 2022).  

Drug resistance targeting ribosomal subunits can arise through ribosomal mutation (e.g., 

aminoglycosides, oxazolidinones), methylation of ribosomal subunits (e.g., aminoglycosides, 

macrolides in gram-positive bacteria, oxazolidinones, streptogramins), often associated with 

erm genes, or ribosomal protection (e.g., tetracyclines). These mechanisms disrupt the drug's 

capacity to bind to the ribosome. The extent of drug interference significantly differs across 

these mechanisms (Roberts, 2004 ; Giuliodori et al., 2018). 

In the case of drugs aimed at inhibiting nucleic acid synthesis, such as fluoroquinolones, 

resistance occurs through alterations in DNA gyrase (e.g., gyr A in gram-negative bacteria) or 

topoisomerase IV (e.g., grl A in gram-positive bacteria). These mutations induce structural 

changes in gyrase and topoisomerase, diminishing or completely preventing the drug's capacity 

to bind to these components (Mathur et al., 2021; Bhatt and Chatterjee, 2022).  

Resistance to drugs that target metabolic pathways typically arises through mutations 

occurring in enzymes critical to the folate biosynthesis pathway, such as DHPS 

(dihydropteroate synthase) and DHFR (dihydrofolate reductase), or via the overproduction of 

resistant forms of these enzymes (e.g., sulfonamides-resistant DHPS, trimethoprim-resistant 

DHFR). Sulfonamides and trimethoprim exert their effects by binding to these enzymes, 

effectively mimicking the structures of the natural substrates (sulfonamides mimic p-amino-

benzoic acid, trimethoprim mimics dihydrofolate). These drugs act through competitive 

inhibition by binding to the active site of the enzymes. Mutations in these enzymes are most 

often located in or around the active site, leading to structural alterations that impede drug 

binding while still permitting the natural substrate to bind (Smilack, 1999; Huovinen, 2001). 
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Figure 05: Overview of the molecular mechanisms of antibiotic resistance (Darby et al., 

2023). 

1.3. Antibiotic’s Resistance from Biofilms 

Bacterial biofilms refer to collective gatherings of microbes enclosed within a polymeric 

matrix, typically situated on a surface (Davies, 2003). These biofilms, accounting for a 

significant portion (65%) of infections and contributing to antibiotic treatment failures, are 

associated with diverse infections. They play a role in various conditions such as medical device 

and implant-related infections (Khatoon et al., 2018), chronic infections, as well as ailments 

affecting the lungs, bladder, wounds, dental structures, skin, ears, nose, throat, sinus, and 

orthopedic regions (Hancock et al., 2021). 

Formation of bacterial biofilms occurs in five main phases as shown in (Figure 06): (1) 

adherence to a surface by free-moving (planktonic) cells, (2) essentially irreversible surface 

attachment and the creation of a protective polymeric extracellular matrix, (3) development of 

cell clusters embedded within the biofilm matrix (maturation I stage), (4) growth and maturation 
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of microcolonies (maturation II stage), and (5) detachment and dispersal of some bacterial cells 

permitting new biofilm foci to form (Hancock et al., 2021; Sauer et al., 2022). 

 

Figure 06: Phases of biofilm formation (Asma et al., 2022). 

Hundreds of genes, including dozens of regulators, control the substantial changes in 

growth state and cellular metabolism that occur during these phases. Biofilm cells, which are 

considered a stress adaptation, have distinctive transcriptional and proteomic profiles that allow 

them to withstand harsh environmental conditions and demonstrate resilience against a variety 

of stressors, including antibiotics (Hancock et al., 2021).  

Moreover, biofilms elude the host's defense mechanisms, enhancing their capacity to endure 

and instigate chronic infections. In addition to the inherent genetic resistance carried by specific 

bacteria, biofilms exhibit an adaptive resistance that is approximately 10–1000 times greater 

compared to their planktonic counterparts against most antibiotics. Upon dispersal from 

biofilms, bacteria revert to their usual susceptibility (Davies, 2003).  
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2. Essential Oils (EOs) 

2.1. Definition  

Aromatherapy got its name from the combination of "aroma," referring to fragrance or smell, 

and "therapy," indicating treatment. This boasts a rich history spanning thousands of years. 

Even Hippocrates, considered the father of modern medicine, endorsed aromatherapy, 

emphasizing the importance of aromatic baths and scented massages for overall well-being. 

Over time, influential figures in the realm of EOs, which are volatile, concentrated, and 

aromatic extracts obtained from plant materials (flowers, roots, stems, leaves, seeds, bark, 

wood), defended aromatherapy as a legitimate therapy for enhancing the health of the mind, 

body, and spirit (Farrar and Farrar, 2020). 

A definition of EOs was proposed in October 1987 by AFNOR (Association Française de la 

Normalisation), it designates "A product obtained from plant material, either by steam 

distillation, mechanical processes from the peel of Citrus fruits, or by dry distillation. The 

essential oil is then separated from the aqueous phase through physical processes for the first 

two methods, and it may undergo physical treatments that do not result in significant changes 

to its composition".  

Essential oils exhibit solubility in alcohol, ether, and fixed oils, while remaining insoluble 

in water. Typically, these volatile oils are in a liquid state and colorless at room temperature, 

possessing a distinctive scent. They commonly have a density lower than unity, except for 

certain instances such as cinnamon, sassafras, and vetiver. Particularly, these oils demonstrate 

a refractive index and exceptionally high optical activity. Found in various herbs, these volatile 

oils contribute to the diverse scents emitted by plants. Their applications extend to the cosmetics 

industry, perfumery, and aromatherapy (Dhifi et al., 2016).  
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2.2. Chemical Composition of EOs 

Essential oils, which are substances produced from aromatic plants, are characterized by a 

chemical composition that is often complex and highly diverse yet analyzable. Some of its 

compounds are consistently present, while others are secreted when the plant undergoes stress, 

such as infection, damage, encounters with predators, or changes in weather conditions. The 

components in EOs can exhibit variability based on factors like harvest timing, cultivar, 

geographical origin, and even the extraction method (Angane et al., 2022). 

Determining the most potent compounds within EOs can be a challenging task. The most 

commonly utilized techniques for identifying the chemical composition of EOs include gas 

chromatography (GC), gas chromatography-mass spectrometry (GC-MS) , high-performance 

liquid chromatography (HPLC) (Ambrosio et al., 2019) ; Deng et al., 2020), and liquid 

chromatography coupled to mass spectrometry (LC-MS) (Turek and Stintzing, 2013).  

The main chemical constituents of EOs are terpenes and polyphenols. They have specific 

origins in primary metabolic precursors and are generated via diverse biosynthetic pathways 

(de Sousa et al., 2023). (Figure 07) shows the structural formula of some of the major 

components of EOs. These chemical compounds have been reported to have biological 

properties and their mechanisms of action are discussed later.  

Terpenes and terpenoids 

   
 

Limonene β-caryophyllene ρ-cymene α-pinene 
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Phenylpropenes 
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Sophoraflavanone G 

Figure 07: Structural formula of some of the major components of EOs (Angane et al., 2022). 

- Terpenes and Terpenoids  

Terpenes are hydrocarbons, whereas terpenoids represent a modified category of 

terpenes featuring functional groups containing oxygen, such as ketone, hydroxy, aldehyde, 

ether, or carboxylic moieties. The chemical structures of terpenes can vary from linear to mono- 

or polycyclic compounds, with their backbone formed by the condensation of two to numerous 

5-carbon-base (C5) units, known as isoprene units. Monoterpenes (from the Latin mono, or 

one) are the most representative and simple terpenes (Tian et al., 2019). Examples of terpenoids 

include linalool, menthol, geraniol, carvacrol, citronellal, linalyl acetate, piperitone, and thymol 

(Masyita et al., 2022). These biologically active compounds exhibit diverse effects, such as 

anticancer (Kamran et al., 2022), antibacterial (Guimarães et al., 2019), and antioxidant 

properties (Gutiérrez-del-Río et al., 2021). 

- Phenylpropenes 

Phenylpropanoids form a category of organic compounds synthesized by plants through 

the shikimate pathway, with their biogenetic precursor being the aromatic amino acid L-

phenylalanine. The core structure of phenylpropanoids consists of a phenyl ring connected to a 

C3 propane moiety. Although present in the plant kingdom, they are less common compared to 

terpenes. Instances of phenylpropanoids, including compounds like eugenol, estragole, 
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isoeugenol, myristicin, cinnamaldehyde, and vanillin, serve as examples in this context 

(Masyita et al., 2022). Recent research points to the anticancer properties of anethole (Contant 

et al., 2021). Additionally, myristicin has been recognized for its antiproliferative and anti-

inflammatory effects (Abdullah et al., 2018). Furthermore, vanillin has been associated with 

diverse biological activities, encompassing antidiabetic, antimicrobial, analgesic, and 

antifungal effects (Olatunde et al., 2022). 

- Flavonoids 

The majority of flavonoids have been classified as therapeutic agents. They are naturally 

produced through the phenylpropanoid pathway, and their bioactivity relies on the absorption 

mechanism and bioavailability (Shkondrov et al., 2017). Flavonoids are categorized into 

various subgroups, such as flavones, flavonols, flavanones, and others, based on their degree of 

oxidation. They find applications in various domains, including natural dyes, cosmetics, and 

skincare products, as well as anti-wrinkle skin agents (Ullah et al., 2020). 

- Other Constituents   

Essential oils comprise various amino acid derivatives, including alanine, isoleucine, 

leucine, valine, and methionine. While polyketides, lipids, and sulfur derivatives are 

infrequently present in EOs, examples include jasmonic acid, methyl jasmonate, cis-jasmone, 

(Z)-3-hexenal, and allicin (Dajic Stevanovic et al., 2020). 

2.3.  Biological Activities of EOs 

2.3.1. Antibacterial Activity 

The antibacterial impact of EOs may be observed through either inhibiting cell growth 

or inducing cell-killing, though discerning between these mechanisms is difficult. The 

effectiveness of EOs against microorganisms relies on factors such as their chemical 
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composition, environmental conditions, and the structures of the target bacteria, whether Gram-

positive or Gram-negative (Fancello et al., 2016). Various in vitro techniques, including 

determining the minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) through methods like broth macro dilution/microdilution or agar 

disk/well diffusion, are employed to assess the efficacy of antimicrobial compounds. Agar 

disk/well diffusion and broth macro dilution/microdilution, which are frequently used in 

clinical microbiology laboratories, have been recognized as useful methods for assessing the 

antibacterial activity of EOs (Balouiri et al., 2016). 

Essential oils have surfaced as a promising alternative for addressing microbial infections, 

sparking interest in the exploration of novel therapeutic compounds that disrupt quorum sensing 

(QS) mechanisms and inhibit biofilm formation (Martínez et al., 2021). 

2.3.2. Antifungal Activity 

The use of EOs emerges as a potential direction in addressing the serious challenges 

encountered in the treatment of fungal infections, marked by increased resistance due to the 

extensive application of antifungal agents. This recognition has prompted the need for 

alternative, nonconventional approaches to formulate effective antifungal treatment strategies 

(Abd Rashed et al., 2021). Several research investigations have demonstrated the effectiveness 

of EOs in treating fungal infections; however, not all studies have delved into the fundamental 

mechanisms of their actions. The predominant parameter utilized in assessing antimicrobial 

properties is the minimum inhibitory concentration (MIC) and minimum fungicidal 

concentration (MFC), representing the lowest concentration of antifungal agents required to 

inhibit fungal growth or lethally affect mycetes, respectively  (Natu and Tatke, 2019); (Sharifi-

Rad et al., 2017). 
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2.3.3. Antioxidant Activity  

Over the past few years, there have been reports on the considerable effectiveness of 

herbal antioxidant products in treating various diseases. EOs have various modes of action as 

antioxidants, such as combining with free radicals generated by the damaged mitochondrial 

membrane to produce reactive phenoxy radicals. These radicals’ further combine with reactive 

oxygen species (ROS), preventing additional damage (Tit and Bungau, 2023). The use of 

numerous EOs with antioxidant properties as natural antioxidants has become an area of 

significant interest, particularly in the fields of food science and medicine. For example, EOs 

of citrus and salvia exhibit significant antioxidant potentials  (Agarwal et al., 2022 ;  Mot et al., 

2022). 

2.3.4. Anti-inflammatory Activity 

Inflammation is a normal protective response induced by the body in the presence of 

harm or infection to eliminate damaged or dead cells. During this process, there is a cascade 

activation of enzymes, adhesion molecules, and pro-inflammatory cytokines. In addition to 

their antioxidant and antimicrobial properties, EOs also exhibit anti-inflammatory activity by 

inhibiting pro-inflammatory mediators. Their interactions are associated with signaling 

cascades involving cytokines, transcription factors, and the expression of pro-inflammatory 

genes (Spisni et al., 2020).  

Several investigations have been carried out to examine the influence of EOs on inflammation 

in the colon (Zhang et al., 2017); (Rezayat et al., 2018). 

2.3.5. Antiproliferative Activity 

The exploration of plants used in different forms of traditional medicine has unveiled several 

valuable drugs, including taxol, camptothecin, vincristine, and vinblastine, as revealed by 
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scientific studies (Loizzo et al., 2008). Numerous studies indicate that specific EOs can 

influence the activity of carcinogen-metabolizing enzymes (Blowman et al., 2018). Moreover, 

these oils demonstrate potential in chemoprevention (Magalhães et al., 2021), exhibit antitumor 

properties (Machado et al., 2022), and have the capacity to induce apoptosis in various cancer 

cell lines (Mohamed Abdoul-Latif et al., 2023).  

2.4.Methods for Extracting EOs 

Several techniques are used to isolate EOs from various plant materials, including 

hydrodistillation, solvent extraction, cold expression, and enfleurage. Each method present 

unique characteristics and drawbacks in terms of quality, efficiency, and cost. 

2.4.1. Hydrodistillation 

Hydrodistillation is the simplest and most common method of extracting EOs, first 

described by Avicenna (980-1037) when he extracted pure essential oil from rose using the 

alembic. It can be used to extract EOs from whole plants or specific plant parts such as flowers, 

roots, leaves, or stems. This hydrodistillation technique, equipped with a Clevenger-type 

apparatus (figure 08), involves immersing the plant material in water and then heating it in a 

flask. The water vapor, directed over the plants in a distillation chamber, flows towards a 

condenser until the release of volatile aromatic compounds. The steam and EOs are then 

collected in the condenser, where they naturally separate. The steam is recovered for reuse, 

while the EOs can be collected in an alcoholic solution ready for bottling (Khan et al., 2023). 

However, this procedure is characterized by significant energy consumption and high 

temperatures (100° C). Therefore, due to its increasing interest in recent years, several modules 

have been developed and improved, such as microwave-assisted accelerated hydrodistillation, 

microwave-assisted compressed hydrodistillation, microwave-assisted hydrodistillation, and 

vacuum microwave hydrodistillation (Singh Chouhan et al., 2019).  
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Figure 08: Schematic representation of hydro distillation (Teresa-Martínez et al., 2022). 

2.4.2. Solvent Extraction 

Solvent extraction, also known as solid-liquid extraction, is an ancient technique that 

underwent development in the 11th century by modifying the conditions during the blending 

process with a solvent. The techniques involved in this process include maceration, infusion 

digestion, decoction, and percolation. Soxhlet extraction emerged in the 18th century as a further 

advancement. In maceration, powdered plant materials are combined with a solvent; if the 

solvent is cold or boiling water, it is referred to as an infusion. In digestion, powdered plant 

materials are mixed with a solvent similarly to maceration but with gentle heating as shown in 

(Figure 09). Decoction is an extraction method where powdered plant materials are mixed with 

water and boiled. Percolation involves mixing powdered plant materials with a solvent in a 

percolator (Zhang et al., 2018). 
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Figure 09: Schematic of solvent extraction method (Asfaw, 2022). 

2.4.3. Cold Pressing or Mechanical Pressing 

Cold extraction, also known as cold pressing, is a technique suitable for plants that 

contain significant amounts of EOs in their peels, such as citrus fruits (orange, grapefruit, and 

lemon). Its operating principle involves pressing the citrus peels, which are torn by needles, 

creating compressed areas in the skin that encourage the EOs to emerge and be collected by a 

collector (Çakaloğlu Ebcim et al., 2018). The EOs is then separated by centrifugation, dried 

with anhydrous sodium sulfate, and stored in the dark at 4°C until analysis time (Figure 10). 

The use of significant amounts of water in this technique can alter the qualities of EOs 

through hydrolysis, the dissolution of oxygenated compounds, and the transportation of 

microorganisms. Consequently, manufacturers are actively exploring methods to eliminate the 

reliance on water in such extractions. Thus, to avoid these alterations, new conventional 

physical processes have emerged. They are based on the rupture of oil sacs through bursting 

under the influence of a vacuum, or the use of the principle of abrasion of fresh bark (Durazzo 

et al., 2022).  
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Figure 10: Schematic diagram of the cold press oil extraction setup (Asfaw, 2022). 

2.4.4. Efleurage 

Enfleurage stands as another traditional extraction technique with ancient origins, 

primarily employed for extracting EOs from flowers like jasmine. In this method, a purified 

and odorless cold fat is applied to plant material, such as flowers as exposed in (Figure 11). The 

fragrances emitted by the flowers are then absorbed by the fat. The process involves replacing 

old flowers with new ones, and this cycle is repeated over extended periods until the fat reaches 

saturation. Subsequently, the saturated fat is collected and subjected to extraction using alcohol. 

In contemporary terms, this method is characterized as time-consuming, labor-intensive, and 

expensive. It lacks practical applications for EOs in the food industry and is essentially 

considered obsolete today (Stratakos and Koidis, 2016). 

 

Figure 11: Schematic representation of efleurage extraction method (Asfaw, 2022). 
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2.4.5. Supercritical CO2 Extraction 

The extraction of EOs using carbon dioxide is an extraction process that employs 

supercritical gases to extract volatile compounds from plants. The uniqueness of this technique 

lies in the high quality of EOs coupled with a short extraction duration, as it does not require 

the use of chemical solvents, leaving no residues in the EOs. This technique is widely regarded 

as the most efficient and environmentally friendly among various extraction methods. 

Supercritical CO2 is a fluid with properties of both a liquid and a gas, providing excellent 

extraction capabilities with specific pressure and temperature. The carbon dioxide penetrates 

plant cells to extract aromatic compounds without damaging the plant and without leaving 

residues in the elimination phase (Yang and Hu, 2014). The schematic representation of 

supercritical CO2 extraction is illustrated in (Figure 12).  

 

 

Figure 12: Schematic representation of supercritical CO2 extraction (Asfaw, 2022). 
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2.5. Nanoformulations of EOs  

Essential oils show promising properties, but before considering them as an alternative 

disease control system, we must address challenges related to their volatility in the environment, 

low water solubility, and susceptibility to oxidation. The application of nanoformulation to EOs 

could address these issues by safeguarding them against degradation and evaporation losses. 

This approach enables a controlled release of the products and facilitates their handling 

(Sedaghat Doost et al., 2020). 

Nanoemulsions play a crucial role in improving drug delivery owing to their nanometer-

sized particles (ranging from 50 to 1000 nm), extensive surface area, enhanced stability, optical 

transparency, controlled release, and favorable flow properties. Researchers have successfully 

formulated various nanoemulsions based on EOs, demonstrating heightened antimicrobial and 

antibiofilm potential (Ullah et al., 2022).   

Nevertheless, Nanoemulsions can be generated through different emulsification methods, 

encompassing oil-in-water (O/W) or water-in-oil (W/O), as well as multiple emulsions like 

water-in-oil–water (W/O/W) or oil-in-water-in-oil (O/W/O), as illustrated in (Figure 13). The 

creation of nanoemulsions containing EOs is achievable through high-energy processes such as 

high pressure, microfluidization, or sonication, and low-energy processes including 

spontaneous emulsion, phase inversion, and emulsion inversion point (Hunde et al., 2023). 

 

Figure 13: Schematic illustrating the various emulsification techniques (Koshani and Jafari, 

2019). 
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2.5.1. High Energy Methods 

The synthesis of oil nanoemulsions is mainly achieved through high-energy 

emulsification, a technique widely utilized. High-energy approaches are preferred over 

traditional emulsions for nanoemulsion formation, primarily due to their kinetic stability, 

enhanced bioavailability, and optical transparency. Ultrasound generators, high-pressure 

homogenizers, and high-shear stirring, as illustrated in (Figure 14), are common high-energy 

methods, selected for their ease of formation and the ability to yield large-scale production (Mei 

et al., 2011); (Espitia et al., 2019). 

 

Figure 14: High energy methods such as high pressure homogenization (HPH), 

microfluidizer, and ultrasonication break macroemulsions into smaller droplets 

(Aswathanarayan and Vittal, 2019). 

2.5.2. Low-Energy Methods 

Methods with low energy input for preparing nanoemulsions include phase inversion 

temperature, phase transition, and self-emulsification methods. The control and efficacy of low-

energy emulsification methods primarily rely on the physicochemical properties of surfactants 

during the nanomaterial preparation process (Nuchuchua et al., 2009). Many studies have 
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focused on creating stable nanoemulsions using low-energy input methods. (Pavoni et al., 

2020). A schematic representation of a low-energy method for generating nanoemulsions is 

represented in (Figure 15). 

 

Figure 15: Schematic illustration of a low-energy technique to produce nanoemulsions (API: 

Active principle ingredient) (Vandamme and Anton, 2010). 
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3. Description of the Studied Medicinal Plants  

3.1.  Satureja hortensis L.  

3.1.1.  Botanical Description and Taxonomy 

Summer savory, scientifically known as Satureja hortensis L., in Arabic as "الصعتر الصيفي" , 

is an annual herbaceous plant characterized by a robust branching structure and linear leaves. 

This plant belongs to the Lamiaceae family. This plant, a yearly herb, reaches a height of 10–

25cm with branched stems. It features a highly branched stem (10–35cm) adorned with short, 

backward-pointing white hairs. The leaves are linear or linear-lanceolate, approximately obtuse, 

emucronate, slightly stalked, arranged in opposite pairs, and have entire margins (10–30mm×1–

4mm). These leaves are relatively thick, have a fringed edge, and contain glandular punctuation 

on their surfaces. Its flowers, found in clusters at the upper nodes of the branches, exhibit hues 

ranging from purple to violet-white, featuring red peels on the inside (Hassanzadeh et al., 2016 

; Fierascu et al., 2018). 

Present across the Mediterranean region, this genus includes over 91 species. Originating 

from North Africa, the Middle East, Southern and Southeastern Europe, and Central Asia, Iran 

is particularly rich in biodiversity, hosting more than 8 species within this diversified genus 

(Bimbiraitė-Survilienė et al., 2021 ; Peiri and Fazeli, 2022). The aerial part and the full 

classification of S. hortensis L. are shown in (Figure 16) and (Table 02), respectively, bellow.  



 Literature Review 

 

 
39 

 

 

Figure 16: Aerial part of Satureja hortensis L. (www.sekrety-zdrowia.org). 

Table 02: Taxonomy of Satureja hortensis L. (“Catalog Record Search,” n.d.). 

Botanical name                  Satureja hortensis L. 

Kingdom Plantae 

Phylum Tracheophyta 

Class Magnoliopsida 

Order Lamiales 

Family Lamiaceae 

Genus Satureja 

Species hortensis 

  

3.1.2.  Chemical Composition and Bioactive Compounds  

Examining the overall composition, the moisture content in fresh leaves is 72%, with protein 

at 4.2%, fat at 1.65%, sugar at 4.45%, fiber at 8.60%, and ash at 2.11%. On a dry weight basis, 

the primary provider of bioactive compounds includes the volatile oil (up to 5%), triterpenic 

acids, tannins (up to 8%), mucilage, resins, sugars, mineral salts, and other constituents 

(Fierascu et al., 2018). 
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Several studies detail the composition of the EOs extracted from S. hortensis. The EOs 

components are influenced by the plant's growth environment, leading to anticipated variations 

in the EOs composition across different regions where S. hortensis is cultivated. The plant itself 

contains a volatile oil ranging from 0.2% to 3% (Hassanzadeh et al., 2016). The major 

constituents of the volatile oil obtained include carvacrol, thymol, phenols, and flavonoids. 

Various studies have identified γ-terpinene (15.30–39%), carvacrol (11–67%), thymol (0.3–

28.2%), and p-cymene (3.5–19.6%) as the primary components in these volatile oils 

(Hamidpour et al., 2014 ; Katar et al., 2017 ; Mohtashami et al., 2018).  

Despite variations in their findings, all studies generally report similar components in the 

volatile oils, with some detecting additional elements such as α-phellandrene, α- and β-pinene, 

sabinene, terpineol, α-thujene, among others (Estaji et al., 2018). Therefore, when exploring 

the potential application of EOs or extracts derived from S. hortensis, it is crucial to include 

information about the harvesting area and general composition. This ensures a comprehensive 

understanding of the reviewed results. 

 

Figure 17 : Main bioactive compounds of S. hortensis (Fierascu et al., 2018). 
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3.1.3.  Biological Activities  

The presence of monoterpenes, such as γ-terpinene, carvacrol, and thymol in the EOs, 

strongly suggests the potential for effective biological activities. The evaluation of the EOs 

extracted from Iranian S. hortensis demonstrated significant antimicrobial efficacy against 

various microorganisms. Minimum inhibitory concentration (MIC) values ranged 0.07 to 0.15 

μl/ml for E. coli, and 0.31 to 0.62 μl/ml for Salmonella sp (Seyedtaghiya et al., 2021). Another 

study regarding the effect of EOs obtained from an Algerian S. hortensis revealed a good 

antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus 

aureus, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus mirabilis, and Streptococcus 

enterococcus (Jafari et al., 2016). 

The commercial EOs (from Iran) has demonstrated significant antioxidant effects through 

various assays, such as 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-

ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS), ferric thiocyanate, and β-carotene 

bleaching (Fathi et al., 2013). In vitro studies have confirmed the antioxidant activity of S. 

hortensis essential oil, attributed to the presence of polyphenolic compounds (Rodríguez-Yoldi, 

2021). The addition of S. hortensis essential oil (ASHEO), obtained through hydro-distillation 

from Turkish vegetal material, endowed chitosan nanoparticles with antioxidant properties 

(ranging from 43.66% to 56.99%, as determined by the DPPH assay (Feyzioglu and Tornuk, 

2016).  

Several studies have explored the anti-inflammatory effects of S. hortensis. A study 

conducted by (Hajhashemi et al., 2002) presents the effects of various natural products derived 

from the roots of Iranian S. hortensis, including EOs, hydroalcoholic extract, and polyphenolic 

extract. (Bimbiraitė-Survilienė et al., 2021) enhanced the efficacy of S. hortensis extracts in 
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their study, demonstrating their ability to combat lipid peroxidation in human epidermal cells, 

including melanocytes and melanoma. 

In the past decade, various review papers have highlighted additional activities of S. 

hortensis natural products. These include antiviral properties (evaluated against HIV virus) 

(Costa et al., 2015) (Hassanzadeh et al., 2016), inhibitory effects of methanol extracts on the 

adhesion of activated human platelets to laminin-coated plates (Hamidpour et al., 2014) (Jafari 

et al., 2016) as well as antispasmodic and diuretic effects (Lesjak et al., 2018). 

3.2. Cymbopogon citratus (DC.) Stapf 

3.2.1.  Botanical Description and Taxonomy 

The term Cymbopogon originates from the Greek terms "kymbe" (meaning boat) and 

"pogon" (meaning beard), describing the arrangement of flower spikes. Cymbopogon 

comprises approximately 55 species that are native to tropical and semi-tropical regions of Asia. 

These plants are also grown in South and Central America, Africa, and various other tropical 

nations (Shah et al., 2011). Cymbopogon citratus (DC.) Stapf (Lemon grass), (Figure 18), is a 

perennial aromatic herb without branching, emitting a lemon fragrance and growing in dense 

clumps. Its leaves can reach a length of 90 cm and a width of 1.25 cm. They are isolated, light 

green, highly fragrant, long, tapered, and gathered in sheaths over a certain portion of their 

lengths. Additionally, the edges of the leaves are hyaline, formed by numerous small teeth 

directed towards the top of the plant. The underground part of C. citratus consists of a bulbous 

rhizome. Although this plant rarely blooms, it has a floral stalk that can reach a length of 60 cm 

with numerous branches ending in clustered, greenish spikes. C. citratus reproduces through 

rhizomes and thrives in semi-tropical and tropical regions (Mathieu et al., 2015).  

The common names of C. citratus are citronnelle or herbe citron (French), lemon grass or 

West Indian lemongrass (English), Pasto limón (Spanish), Erva-cidreira (Portuguese), 
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Westindisches zitrongrasen (German), Magnérin or Amagnérin (Ivory Coast), ce kala (Mali), 

nche awuta or ahihia tii (Nigeria), الليمون  The complete .(Shah et al., 2011) (Arabic) عشب 

classification and aerial part of C. citratus are illustrated in (Figure 18) and (Table 03), 

respectively, in the following part. 

 

Figure 18: Aerial part of Cymbopogon citratus (DC.) Stapf (anonymous). 

Table 03: Taxonomy of Cymbopogon citratus (DC.) Stapf (Shah et al., 2011). 

Botanical name         Cymbopogon citratus (DC.) Stapf 

Kingdom Plantae 

Phylum Tracheophyta 

Class Liliopsida 

Order Poales 

Family Poaceae 

Genus Cymbopogon Spreng 

Species citratus 

 

3.2.2.  Chemical Composition and Bioactive Compounds 

Cymbopogon citratus has a low moisture content of 5.7%, contributing to its significant 

antimicrobial activities and storage capability. It also contains crude fiber at 9.28%, facilitating 
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food digestion and enhancing food absorption by the body. The plant includes crude fat, crude 

ash, crude protein, and 5% carbohydrates, serving as an energy source or booster. It's worth 

noting that the crude fiber content in lemongrass is notably higher compared to other 

conventional plants (Oladeji et al., 2019). Several essential mineral components were 

identified, including potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), manganese 

(Mn), iron (Fe), zinc (Zn), phytate, and phosphorus (P) (Boukhatem et al., 2014). Additionally, 

other minerals present in C. citratus encompass chromium (Cr), nickel (Ni), copper (Cu), 

arsenic (As), cadmium (Cd), and lead (Pb) (Tibenda et al., 2022). 

The qualitative and quantitative phytochemical screening of C. citratus has revealed 

important bioactive chemical compounds, potentially linked to the plant's therapeutic potency. 

Various bioactive constituents, including ketones, alcohols, phenols, terpenes, flavonoids, 

saponins, steroids, tannins, alkaloids, geranial, terpenoids, polyphenols, esters, aldehyde, and 

fatty acids, have been isolated and analyzed (Roriz et al., 2014).  

The literature states that the key components in C. citratus include EOs and flavonoids, 

which play a substantial role in the plant's notable medicinal and pharmacological effects. 

Citral, the main component of C. citratus EOs, is a mixture of two isomeric acyclic 

monoterpene aldehydes: trans-citral, known as geranial, and cis-citral, known as neral. Geranial 

boasts a strong lemon odor, while neral has a milder and sweeter floral-herbal aroma (Oladeji 

et al., 2019). The EOs of C. citratus primarily consists of monoterpene fractions, with citral 

making up 23.6% to 91.8% in the aerial parts (leaves and stalks). Additionally, myrcene (up to 

16.2%), geraniol (up to 41.2%), and geranyl acetate (up to 4.1%). It's worth noting that citral 

holds industrial importance as it serves as a raw material for the production of ionone, vitamin 

A, and β-carotene (Ranitha. et al., 2014). 
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3.2.3.  Biological Activities  

The efficiency of C. citratus has been documented in numerous researches. Researchers has 

identified various effects of LG (lemon grass), encompassing antibacterial, neuroprotective, 

anti-diabetic, antioxidant, free radical scavenging, anti-tumor, and immunomodulatory 

properties (Figure 19).  

 

Figure 19 : Modern pharmacological effects of C. citratus (Du et al., 2023). 

C. citratus essential oil comprises bioactive compounds that have the potential to disrupt 

the bacterial cell membrane, leading to the leakage of intracellular contents and subsequent cell 

death. The presumed bactericidal effectiveness against a broad spectrum of bacteria is attributed 

to this mechanism of action (Yap et al., 2021). A study conducted by Boudechicha et al. (2023) 

revealed noteworthy findings regarding the antifungal activity of LG EOs and its 
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microfluidization oil. The results demonstrated significant antifungal effects against 

mycotoxigenic strains of fungi. Furthermore, when evaluating the antimicrobial impact, the 

study highlighted the heightened potency of microfluidization oil in comparison to LG essential 

oil when tested against pathogenic strains of both Gram-positive and Gram-negative bacteria.  

Reactive Oxygen Species (ROS) can induce oxidative stress in the body, leading to 

cellular damage associated with various disorders like heart and neurodegenerative diseases, 

cancer, and general inflammation when present in elevated and sustained levels. To mitigate 

such damages, the consumption of exogenous antioxidants proves beneficial. Citral, which is 

the main component of its EOs C. citratus, is suggested to play a crucial role in alleviating 

endothelial dysfunctions linked to oxidative stress. This is evidenced by their ability to reduce 

ROS production in human umbilical vein endothelial cells (HUVECs) and mitigate the 

vasoconstriction induced by thromboxane A2  (Figueirinha et al., 2008;  Balakrishnan et al., 

2014 ; Campos et al., 2014).  

The presence of citral in the EOs of this plant reduces inflammation in the mouse ileum 

and edema in the Wistar rat's paw aponeurosis. The mechanism of action involves reducing 

lymphocyte migration through the inhibition of β7-expression. This explains the use of this 

plant in cases of colic and gastrointestinal disorders in both humans and animals (Watanabe et 

al., 2010). Citral, geranial, neral, and carvone as the primary constituents of C. citratus have 

been identified as having the capacity to hinder the production of pro-inflammatory cytokines, 

including tumor necrosis factor alpha (TNF-α) (Boukhatem et al., 2014). 

It was revealed that lemongrass (LG) exhibited anti-tumor properties and demonstrated 

a noticeable inhibitory impact on various cancer cells. This effect was primarily ascribed to the 

presence of its ethanolic compounds. Lemongrass (LG) exhibited a potent anti-colon cancer 

effect, as evidenced by the ethanol extract inducing apoptosis in colon cancer cells in a time- 
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and dose-dependent manner in vitro. Notably, this effect did not cause harm to healthy cells. 

Moreover, in mice xenotransplanted with colon cancer, LG effectively inhibited tumor growth 

at a dosage of 16 mg/kg (Ruvinov et al., 2019). 
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I. Material and Methods 

1. Material 

1.1. Chemicals and Microorganisms  

All chemicals used in this study were of HPLC-grade and were procured from Sigma-

Aldrich, Saint Louis, MO, USA. The HepG2 cell line, Vero normal cell line (derived from 

the African green monkey kidney), and WI-38 normal lung cells were acquired from the 

American Type Culture Collection (ATCC)® through VACSERA (Cairo, Egypt). Dimethyl 

sulphoxide (DMSO) was sourced from Merck, Darmstadt, Germany. Fetal calf serum (FCS) 

and antibiotic (ciprofloxacin) were obtained from Hyclone, Logan, UT, USA, while 

Dulbecco’s Modified Eagle Medium (DMEM) was purchased from Gibco, Thermo Fisher 

Scientific, Inc., Waltham, MA, USA. 

This study investigated the following bacterial strains from the laboratory of applied 

microbiology from Setif 1 University: Escherichia coli (ATCC 25922), Pseudomonas 

aeruginosa (ATCC 27853), Klebsiella pneumoniae (ATCC 13883), Proteus mirabilis 

(clinical isolate), Acinetobacter baumannii (clinical isolate), Bacillus subtilus (ATCC 6633), 

Staphylococcus aureus (ATCC 25923), and Methicillin-resistant Staphylococcus aureus 

(MRSA) (clinical isolate). These strains pose a potential threat to human health and exhibit 

fast-emerging resistance to antibacterial substances. The clinical isolates are multi-drug-

resistant strains. 

Different types of fungi from the ITEM (agro-food microbial culture collection, 

ISPA, CNR, Bari, Italy) were used in the antifungal test. These included Aspergillus flavus 

ITEM 698, Aspergillus parasiticus ITEM 11, Aspergillus carbonarius ITEM 5010, 

Aspergillus ochraceus ITEM 5117, Aspergillus oryzae ITEM B5, Penicillium verrucosum 
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NRRL 695, Penicillium chrysogenum ATCC 48271, Fusarium graminearum ATCC 56091, 

Fusarium moniliforme ITEM 52539, and Fusarium oxysporum ITEM 12591. 

1.2. Plant Material 

The aerial parts of Algerian Summer savory (Satureja hortensis L.) and lemongrass 

(Cymbopogon citratus (DC.) Stapf) were harvested from Bousaada, M’Sila Province, 

located between the Saharan Atlas Mountains and the El-Hodna Salt Lake in north-central 

Algeria in Marsh 2021. The taxonomic identification and deposition of plant materials, 

carried out by Dr Saouli Nassira from the Department of Biology and Plant Ecology (Faculty 

of Life Sciences and Nature, Ferhat Abbas University, Setif 1, Algeria), resulted in the 

assignment of a voucher specimen marked with the Algerian number CAS28/06/21 for 

Cymbopogon citratus (DC.) Stapf and SAS28/03/21 for Satureja hortensis L.  

Following harvesting, the plant specimens underwent drying at room temperature in a dark 

and arid environment.  

2.  Methods  

2.1. Retrospective Study  

2.1.1. Location of the Study  

This study, conducted retrospectively, aimed to describe the bacterial isolates 

collected from diagnostic samples obtained from hospitalized patients at the Infectious 

Diseases service of the University Hospital Center (UHC) of Setif. The study spanned eight 

months, from January 1, 2023, to August 31, 2023, inclusive.   

2.1.2. Data Collection 

It involved extracting the results of all antibiograms conducted during the study 

period recorded in the register of the infectious diseases service. These results included the 
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identification number, date of isolation, identified microorganism, type of specimen, as well 

as the tested antibiotics with their susceptibility profile (S, I, R). This data was supplemented 

with specimen source information obtained from laboratory records. 

2.2. Plant Extraction 

The EOs were obtained through the hydrodistillation technique employing the 

Clevenger apparatus. A 100g sample was heated with distilled water for a duration of 3-4 

hours. Subsequently, the oily phase was condensed, and the resulting EOs were extracted, 

dehydrated using anhydrous sodium sulfate, and stored in airtight glass vials sealed with 

aluminum foil at a temperature of +4 °C until analysis. This procedure was replicated thrice 

for consistency and reliability of results. 

2.3. Nanoformulation Preparation 

The initial step involved the preparation of a coarse emulsion by blending a solution 

of carboxymethyl cellulose (CMC) at a concentration of 2%, EOs at 1% volume/volume 

(v/v), and Tween 80 at 1% v/v with a magnetic stirrer for a duration of 30 minutes. Following 

this, the emulsion was introduced into a microfluidization system (M110P, Microfluidics, 

Westwood, MA, USA) and subjected to a pressure of 150 MPa for five cycles to achieve the 

nanoemulsion state. Subsequently, the resulting emulsion was stored under refrigeration 

conditions until it underwent further investigation (Salvia-Trujillo et al., 2013). 

2.4. Nanoemulsion Characterizations 

Particle size distribution, polydispersity index (PDI), and ξ-potential were assessed 

utilizing a Zetasizer Nano ZS instrument (Nano-S90, Malvern Panalytical Ltd., UK) under 

controlled conditions at a temperature of 25 ± 0.1° C. The nanoemulsion was stored in a 

sealed, 50 mL graduated bottle at 25° C for a period of five days (Boudechicha et al., 2023). 
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2.5. Gas Chromatography-Mass Spectrometry (GC–MS) 

The objective of this investigation was to assess the influence of the microfluidization 

technique on the volatile components of ASHEO and LGEO through GC-MS analysis. 

Following the formation of the nanoemulsion, it was combined with diethyl ether using a 

vortex mixer and then transferred to a 2 mL screw-cap vial for subsequent analysis after 

settling and drying with anhydrous sodium sulfate. This extraction procedure was replicated 

three times to ensure accuracy. The volatile compounds present in LGEO) and ASHEO as 

well as their respective nanoemulsions were analyzed using gas chromatography. (Agilent 

8890 GC System) coupled with a mass spectrometer (Agilent 5977B GC/MSD), employing 

an HP-5MS fused silica capillary column (30 m length, 0.25 mm inner diameter, 0.25 mm 

film thickness). The temperature of the oven was initially set at 50°C and then ramped from 

50°C to 200°C at a rate of 5°C/min, followed by an increase from 200°C to 280°C at a rate 

of 10°C/min, and held isothermal for 7 minutes. Helium gas was utilized as the carrier at a 

flow rate of 1.0 mL/min. Injection of 1 μL of the sample occurred at 230°C with a split ratio 

of 1:50. Mass spectra in electron impact mode (EI) were recorded at 70 eV over a scanning 

m/z range from 39 to 500 amu. Peaks were identified by comparison with NIST databases, 

standards, and published literature. The percentages of detected compounds were calculated 

based on GC peak areas, and the Kovats index of each compound was determined by 

referencing retention times to those of C6-C26 n-alkanes and comparing them to established 

literature values. 
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2.6. Evaluation of Biological Activities 

2.6.1. Antibacterial Activity 

A. Disc Diffusion 

The antimicrobial properties of ASHEO, MF-ASHEO, LGEO, and MF-LGEO were 

assessed using  the agar diffusion method described by Santos et al. (2019). Eight bacterial 

species were subjected to testing, comprising MDR bacteria. Following a 24-hour incubation 

period at 37°C, the diameters of inhibition zones were measured. The obtained results were 

compared against positive controls using cefazolin KZ (30μg, UG LF9015, Liofilchem, 

Italy) and a negative control comprising DMSO. To ensure statistical reliability, all 

experiments were conducted in triplicate. 

B. Minimum Inhibitory Concentration (MIC) and Minimum 

Bactericidal Concentration (MBC) 

The minimum inhibitory concentration (MIC) values of ASHEO, MF-ASHEO, 

LGEO, and MF-LGEO were determined in triplicate using the broth microdilution method 

in accordance with the Clinical and Laboratory Standards Institute guidelines (CLSI, 2018). 

Each strain's overnight bacterial suspension was adjusted to 0.5 McFarland. Subsequently, 

50 µL of this suspension was combined with 50 µL of Muller Hinton Broth (MHB), 

supplemented with concentrations ranging from 0.007 to 1 mg/mL of EOs and there 

nanoemulsions, along with dimethyl sulfoxide (DMSO) at 0.1% and 2,3,5-triphenyl-2H-

tetrazolium chloride (TTC) at 0.05% (added after incubation). The inclusion of DMSO aids 

in enhancing oil solubility, while TTC facilitates the determination of bacterial growth 

(Figure 20A). A well devoid of bacterial suspension served as the negative control. Bacterial 

growth was assessed following an incubation period of 18-24 hours at 37°C. 
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The minimum bactericidal concentration (MBC) is the lowest concentration of EOs 

capable of killing more than 99.9% of the initial bacterial inoculum (i.e. less than 0.01% of 

survivors). 20 μL are taken from wells where no change of color is observed, seeds in spot 

form on Muller Hinton Agar (MHA) and incubated at 37C for 24h (Figure 20B). 

A B 

  

Figure 20: Reading of the MIC (A) and MBC (B) following incubation. 

2.6.2. Antibiofilm Activity 

The impact of our molecules on bacterial biofilm formation was assessed utilizing 

the Cristal violet assay as detailed by Gómez-Sequeda et al. (2020). Sterile 96-well 

polystyrene plates were used for inoculation. Each well received 100 μL of TSB containing 

EOs at varying concentrations, combined with 100 μL of bacterial inoculum adjusted to a 

concentration of 109 CFU/mL. A well devoid of EOs served as the positive control, while 

another without bacterial suspension acted as the negative control. Following a 48-hour 

incubation period at 37°C, the medium from each well was meticulously aspirated, and the 

plate was washed thrice with sterile physiological saline (0.9%). Subsequently, the plate was 

subjected to drying at 60°C for 45 minutes, after which 200 μL of crystal violet solution 

(0.4%) was added to each well and allowed to incubate at room temperature for 15 minutes. 

The plate was then rinsed thrice with saline. Finally, 200 μL of 30% acetic acid solution, 
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prepared with ultra-pure water, was introduced to each well to dissolve the crystal violet 

stain. Absorbance readings were obtained at 595 nm using the microplate reader (Perkin 

Elmer, BioTek®), and the percentage of inhibition was determined using the subsequent 

formula: 

Biofilm Inhibition %  =  
(Abs negative control − Abs test)

Abs negative control
 × 100 

 

 

Figure 21: Detection of biofilm formation using the CV staining method. 

2.6.3. Antifungal Activity 

A. Preparation of Spore Suspension 

Ten strains of toxigenic fungi were utilized in this study. These strains were obtained 

from the Food Toxicology and Contaminant Department, National Research Centre, Cairo, 

Egypt. For the purpose of antifungal assessment and evaluation of the impact of oils and its 

microfluidized solutions on fungal growth inhibition, all ten strains were utilized. 

Additionally, two of these strains were specifically chosen to evaluate anti-aflatoxigenic 

efficiency (Shehata et al., 2019). 
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To prepare the spore suspension, toxigenic fungal cultures were cultivated on 

Czapek-Dox slants agar at 22 ± 1°C for 5 days. A sterile solution of Tween 80 at a 

concentration of 0.01% (v/v) was then applied over the culture slant agar to facilitate the 

extraction of conidia. The surface of the slant was gently scraped using a loop to aid in the 

release of spores. The resulting inoculum concentration ranged from 1.22 to 1.41 × 103 

colony-forming units per milliliter (CFU/mL), as determined using a Burker-Turk counting 

chamber (Hemocytometer). 

Determination of the EOs and their Nanoformulations Activity Against Toxigenic Fungi 

In this study, wells on Czapek-Dox agar plates were loaded with 100 μL of either 

crude or microfluidized EOs, following the application of spore suspensions from each 

fungal species. The inhibition impact of the crude or microfluidized oil was measured by 

measuring the apparent zone diameter in millimeters surrounding each well for every fungus. 

A larger inhibition zone diameter indicated a greater antifungal effect for each extract. 

Antifungal susceptibility testing was conducted using the broth microdilution method, 

following the guidelines established by the Clinical Laboratory Standards Institute (CLSI) 

as per approved standard M38-A2, specifically recommended for toxigenic fungal strains 

under investigation. The minimal antifungal concentration (MFC) was determined following 

the method outlined by Badr et al. (2017). An antifungal standard material (fluconazole) was 

utilized as a positive control in this study. 

2.6.4. Cytotoxicity Assay  

In this study, we subjected HepG2, WI-38, and Vero cell lines to treatment with both 

oil and nanoemulsion, followed by assessment using the MTT assay. The cells were initially 

seeded at a density of 1 × 105 cells/well, and cultured in DMEM supplemented with 10% 

PBS serum and antibiotics. Concentrations of both oils and nanoemulsions were serially 
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diluted, ranging from 0.097 to 1000 μg/mL for HepG2 cells and 31.25 to 1000 μg/mL for 

Vero and WI-38 cells. As a positive control, cisplatin was employed. 

To evaluate cell viability, the absorbance at 540 nm was measured using a microplate 

reader (BMG LABTECH-FLUOstar Omega microplate reader, Ortenberg, Germany) after 

dissolving the formazan crystals in DMSO for a duration of 20 minutes. This allowed for the 

quantification of cellular metabolic activity and assessment of the impact of oil and 

nanoemulsion treatment on the viability of the tested cell lines. The proportion of surviving 

cells and IC50 were calculated using the formula:  

Cell viability % =  
OD sample − OD blank

OD control − OD blank
 x 100 

Where OD sample is the optical density of the sample, OD blank is the optical density of the 

blank (DMSO), and OD control is the optical density of the control. 

Cell viability was evaluated utilizing the WST-1 assay, employing the Abcam® kit 

(ab155902 WST-1 Cell Proliferation Reagent). Initially, 3 × 103 cells were seeded into 96-

well plates and allowed to incubate in complete media for 24 hours. Following this, the cells 

were subjected to treatment with oil or nanoemulsion at varying concentrations for a duration 

of 48 hours. Subsequently, they were exposed to 10 μL of the WST-1 reagent. Cell viability 

was then quantified using a microplate reader. 

Furthermore, morphological alterations in cell lines resulting from exposure to various 

concentrations of ASHEO, LGEO and there nanoemulsions were examined. This evaluation 

was conducted using a Zeiss Axio Vert A1 microscope (Carl Zeiss Microscopy Gmbh, 

07745 Jena, Germany) and compared to untreated controls. Such observations provided 

insights into the effects of the treatments on the cellular structure and morphology, aiding in 

the comprehensive assessment of their impact on cell behavior and health. 
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2.6.5. Antioxidant Activity 

The antioxidative capacity of ASHEO, ALGO and there nanoemulsions were 

evaluated by assessing their ability to scavenge free radicals, employing the DPPH assay as 

described by Hatano et al. (1988). Briefly, our samples or BHT were introduced into a DPPH 

solution and incubated in darkness for 30 minutes. When a DPPH solution is combined with 

an antioxidant, the color of the matching hydrazine changes from purple to yellow (Figure 

22). Subsequently, the absorbance of the solution was quantified at 517 nm utilizing a UV-

Vis spectrophotometer (JASCO V-730 Spectrophotometer, MD 21601, USA). Each 

experiment was conducted in triplicate, and the resultant data were averaged for analysis.  

 

Figure 22: Color shift from purple to yellow during antioxidant-induced 

transformation of DPPH solution (www.libios.fr). 

The inhibition percentage was calculated using the following formula: 

I(%)= (
Absc-Abss

AbsC

) ×100 

AbsC represents the absorbance of the control used in the study, while AbsS indicates the 

absorbance of the test sample. The concentration at which 50% inhibition (IC50) occurs was 

determined by plotting the percentage of inhibition against the concentration of the extract. 
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2.7. Molecular Docking  

The crystal structures of enzymes associated with bactericidal/bacteriostatic effects 

(isoleucyl-tRNA synthetase, DNA gyrase, dihydropteroate synthase, D-alanine: D-alanine 

ligase, IV topoisomerase, dihydrofolate reductase, and penicillin-binding protein 1a) were 

obtained from the Protein Data Bank (https://www.rcsb.org/, accessed on 17 August 2022) 

with the following PDB IDs: 1JZQ, 1KZN, 2VEG, 2ZDQ, 3RAE, 3SRW, and 3UDI. 

Carvacrol as a ligand was downloaded from the PubChem database and accessed on 3 May 

2023 via http://pubchem.ncbi.nlm.nih.gov/. The enzymes were prepared as receptors by 

removing water and co-crystallized ligands and ions. Pymol software ver. 2.5.1 protonated 

them, and Avogadro Software ver. 1.2.0 optimized the ligands' 3D structure via the MMFF94 

force field. CB-DOCK2, a web-based program, performed blind docking (accessed on 3 

May 2023 via http://clab.labshare.cn/cb-dock/php/). It converted input files to pdbqt format 

using OpenBabel and MGL Tools, predicted the protein cavities, and calculated their centers 

and sizes. The top N cavities (n = 5 by default) were submitted to AutoDock Vina for 

docking. The final results are displayed after N rounds of computation. The success rates for 

top-ranking poses with RMSDs less than 2 Å from their location in the X-ray crystal 

structure were shown by the benchmarks of Liu et al. (2022). Best-docked complexes are 

analyzed using Discovery Studio software (Ver. 21.1.0.20298), as described by Farouk et al. 

(2023). 

 

 

2.8. In silico ADME Study 

In our study, we analyzed the in silico ADME profiles of carvacrol utilizing the Swiss 

ADME server, which is operated by the Swiss Institute of Bioinformatics (Daina et al., 
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2017). As part of the ligand preparation process, we generated and submitted SMILES 

notations for evaluation. 

2.9. Statistical Analysis  

All experiments were conducted in three replicates to ensure robustness and reliability. 

The gathered data is presented as the mean value alongside its standard deviation (SD). 

Statistical analyses were conducted utilizing GraphPad Prism 5 software, provided by 

GraphPad Software Inc., located in La Jolla, USA.  
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II. Results and Discussion 

1. Retrospective Study 

During the observational period of the study, 325 records were analyzed, with 31 

originating from hospitalized patients who underwent antibiogram testing. The bacterial 

strains primarily originated from urinary tract samples (37%), followed by wound pus 

samples (29.03%) and blood culture samples (12.90%) as presented in (Figure 23), 

respectively. Among the major antibiotic classes tested, cephalosporins antibiotics were the 

most frequently assessed, comprising 31.51% of the total, followed by penicillin A at 

23.35%, quinolones at 18.42%, and other antibiotic classes. Carbapenems and polypetides 

like colistin were the least tested antibiotic class, representing only 2.43% and 1.94% of the 

total, respectively. as showed in the (Figure 24).  

 

 Figure 23: Main sites of bacteriological sampling in the infectious diseases service. 
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Figure 24: Rates of the major antibiotic classes tested in the infectious diseases service. 

The study findings regarding antibiotic sensitivity in the examined service exhibit 

diverse patterns of resistance among the isolated strains. The data presented in the (Figure 

25) depict varying levels of resistance to commonly tested antibiotics over the study period. 

Notably, amoxicillin resistance peaked at 100%, indicating a significant challenge in treating 

infections with this antibiotic. Similarly, cefazoline resistance surpassed 70%, suggesting 

diminished effectiveness in combating bacterial pathogens. Cefotaxime resistance reached 

58.06%, underscoring the complexity of addressing bacterial infections with this antibiotic. 

Resistance rates to ciprofloxacin and gentamicin were observed at 54.84% and 32.26%, 

respectively, indicating a concerning trend in declining susceptibility to these agents. 

Conversely, resistance to imipenem, amikacin, colistin, and fosfomycin remained 

relatively low throughout the study period, with average rates of 16.13%, 9.68%, 12.90%, 

and 19.35%, respectively. This suggests that these antibiotics may still be effective treatment 

options for certain infections. However, continuous surveillance is crucial to monitor for any 

emerging resistance trends that could compromise their efficacy. 
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Figure 25: Proportion of antibiotic sensitivity within the infectious diseases 

service. 

Several studies have documented increasing rates of resistance to commonly used 

antibiotics in healthcare settings, mirroring the trends observed in our analysis.  For example, 

a study by (Smith and Coast, 2013) demonstrated a significant rise in resistance to 

ciprofloxacin among Gram-negative bacteria, consistent with our findings. Similarly, the 

emergence of multidrug-resistant strains, as evidenced by the high rates of resistance to 

amoxicillin and cefazoline in our study, has been well-documented in the literature (Ventola, 

2015).  

Furthermore, the persistence of low resistance rates to certain antibiotics, such as 

imipenem, amikacin, colistin, and fosfomycin, highlights the ongoing importance of these 

agents in the treatment of bacterial infections. While resistance to these antibiotics remains 

relatively low, continued monitoring is essential to detect any emerging resistance trends 

and ensure their continued effectiveness (Paterson and Bonomo, 2005) ; (Falagas and 

Kasiakou, 2005). 
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The identification of isolated bacteria was carried out at the central laboratory of the 

Setif University Hospital Center (Figure 26). Escherichia coli ESBL was the most frequently 

isolated species (29.03%), followed by Klebsiella pneumoniae, E. coli (16.13%), and 

Klebsiella pneumoniae ESBL (9.68%). In addition to the commonly encountered genus in 

infections (Proteus, Citrobacter, Serratia, and Staphylococcus), rare species were also 

isolated in very small proportions, such as Klebsiella oxytoca (1 strain from hemoculture), 

Citrobacter freundii (1 strain from urine), and Acinetobacter calcoaceticus (1 strain from 

pus). 

 

Figure 26: Proportion of the identified bacteria in the infectious diseases service. 

Our findings align with previous research on antibiotic resistance, highlighting the 

importance of ongoing surveillance and stewardship efforts to combat the emergence and 

spread of multidrug-resistant pathogens (World Health Organization, 2022). The prevalence 

of ESBL-producing strains underscores the need for effective infection control measures and 

judicious antibiotic use to prevent further dissemination of resistant organisms (Barlam et 

al., 2016); (Tinker et al., 2021). In addition, identifying uncommon species, even in tiny 
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numbers, emphasizes the significance of thorough microbiological surveillance to identify 

and control new infections promptly (Arthur et al., 2011). 

To summarize, the study's results emphasize the ever-changing characteristics of 

antibiotic resistance and the worries it presents in medical practice. To minimize the effects 

of antibiotic resistance and maintain the effectiveness of current treatments, it is crucial to 

maintain ongoing surveillance, stewardship activities, and infection control measures. 

2.  Chemical Composition of Extracted EOs and their Nanoformulation 

The extraction process undertaken in this study yielded 2.78 ± 0.05% for S. hortensis, 

surpassing yields reported in other Algerian regions like Tizi-Ouzou (0.06%), Bordj-Ménaïel 

(2.2%), and Jedioua Relizane (0.68%), according to (Djenane et al., 2019) and (Chouitah et 

al., 2018). However, there is a lack of data in the literature regarding the extraction yield of 

ASHEO collected from Bousaada, M’Sila Province in Algeria. Various factors, including 

age, genotype, agronomic and climatic conditions, and harvesting period, influence oil yield 

and plant productivity, as noted by (Djenane et al., 2019). 

The principal constituents identified in the obtained oil, termed ASHEO, were carvacrol 

(45.15%) and γ-terpinene (17.72%), as detailed in (Table 04) and (Figure 27A). Subsequent 

formulation of a nanoemulsion using microfluidization (MF-ASHEO) led to a significant 

enhancement in the concentration of carvacrol (94.51%), while diminishing the levels of γ-

terpinene (0.43%) and ρ-cymene (undetected) in comparison to the original sample 

(ASHEO), as depicted in (Table 04) and (Figure 27B). 

 

Table 04: Percentage of volatile components of ASHEO and MF-ASHEO identified 

by GC-MS analysis. 
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S/N Compound RI a LRI b 

Area% 
Identification 

Method c ASHEO 
MF- 

ASHEO 

1 α -Thujene 933 930 2.30 - RI, MS, STD 

2 α-Pinene 942 939 2.74 - RI, MS, STD 

3 Camphene  955 954 0.29 - RI, MS 

4 β-Pinene 981 979 1.64 - RI, MS, STD 

5 β-Myrcene 993 990 2.54 - RI, MS, STD 

6 α-Phellandrene 1004 1002 0.50 - RI, MS 

7 α-Terpinene 1018 1017 3.38 - RI, MS, STD 

8 p-Cymene 1023 1024 9.01 - RI, MS, STD 

9 Limonene 1031 1029 1.19 - RI, MS, STD 

10 E-β-Ocimene 1049 1050 0.22 - RI, MS 

11 γ-Terpinene 1061 1059 17.72 0.43 RI, MS, STD 

12 cis-Sabinene hydrate 1073 1070 0.18 - RI, MS 

13 Terpinolene 1092 1088 0.27 - RI, MS 

14 Borneol 1170 1169 0.92 - RI, MS 

15 Terpinen-4-ol 1181 1177 0.93 0.51 RI, MS 

16 
Isothymol methyl 

ether 
1240 1244 0.19 - RI, MS 

17 Bornyl acetate 1285 1288 - 0.44  

18 Thymol 1289 1290 2.16 1.48 RI, MS, STD 

19 Carvacrol 1299 1298 45.15 94.51 RI, MS, STD 

20 Carvacryl acetate 1337 1340 1.14 0.87 RI, MS 

21 β-Cubebene 1390 1388 0.20 - RI, MS 

22 β-Caryophyllene 1415 1419 0.80 - RI, MS 

23 Aromandendrene  1440 1439 0.28 - RI, MS 

24 β-Bisabolene 1507 1505 1.32                         - RI, MS 

25 Spathulenol 1577 1578 0.39 - RI, MS 

26 Caryophyllene oxide 1584 1582 1.30 0.82 RI, MS 

27 α-Cadinol 1655 1654 0.95 0.50 RI, MS 

 Total - - 95.46 99.56 - 
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RI a: Retention indices calculated on DB-5 column using alkanes standards. LRI b: Retention indices according to the 

literature. c: Confirmed by comparison with the retention indices, the mass spectrum of the authentic compounds, and the 

NIST mass spectra library data. ASHEO: Algerian Satureja hortensis L. essential oil; MF-ASHEO: microfluidizing 

emulsion of Algerian Satureja hortensis L. essential oil 

A 

 

B 

 

Figure 27: Volatile chromatograms for (A) ASHEO and (B) MF-ASHEO. 

In contrast to previous literature on S. hortensis, our study aligns with (Djenane et 

al., 2019) in identifying carvacrol, γ-terpinene, and p-cymene as the dominant compounds. 

However, (Chouitah et al., 2018). presented a different S. hortensis profile, with cadinol, 

myrtenal, himachalene, selinene as primary constituents. Our study revealed a higher 

concentration of monoterpenes, consistent with (Chambre et al., 2020a) findings in 

Romania. Typically, S. hortensis L. EOs from various regions exhibit higher levels of 

carvacrol than thymol, as observed in Turkey and other locations ((Tozlu et al., 2011) 
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(Bimbiraitė-Survilienė et al., 2021). However, specific chemotypes in Turkey (KIZIL et al., 

2009) and Libya (Giweli et al., 2012) have shown thymol as the major component. 

Environmental factors such as area, climate, and seasonality can influence oil composition, 

as seen in (Baher et al., 2002) research where water stress altered carvacrol and γ-terpinene 

contents. 

High-pressure homogenization methods, such as high-pressure homogenization and 

microfluidization, have the capability to modify the composition of EOs, augmenting certain 

components while diminishing others. For instance, in Algerian Saccocalyx satureioides oil 

nanoemulsion, thymol and carvacrol were found to be more prevalent, while borneol and α-

terpineol concentrations decreased compared to hydrodistilled oil (Aouf et al., 2020). 

Similarly, employing microfluidization in our study led to a significant rise in carvacrol 

content (94.51%), at the expense of γ-terpinene and p-cymene, as demonstrated in (Table 

04). (Chambre et al., 2020a) conducted heating treatments on S. hortensis L. oil, observing 

effects on γ-terpinene and carvacrol concentrations under different temperatures and 

durations. Heating resulted in decreased γ-terpinene content while increasing carvacrol 

concentration, suggesting γ-terpinene as a precursor to carvacrol, converted via 

aromatization and hydroxylation processes during storage (Mohtashami et al., 2018). Our 

findings support this hypothesis, showing an inverse relationship between carvacrol and its 

precursor, γ-terpinene, during microfluidization. Carvacrol's bioactivity as an antioxidant, 

antimicrobial, antiparasitic, anti-inflammatory, antinociceptive, hepatoprotective, 

anticancer, and pain management agent underscores its significance in various sectors like 

food and pharmaceuticals (Chambre et al., 2020). Nonetheless, further research is imperative 

to elucidate the mechanisms involved in volatile compound transfer during intensive-energy 

processes. 
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Using the same extraction technique, the yield of C. citratus obtained is 1.76 ± 

0.05%, surpassing the yields reported by (Boukhatem et al., 2014) and (Benoudjit et al., 

2022) in the Blida region of northern Algeria, which were 0.6% and 0.8% (v/w) respectively. 

To our knowledge, there is no existing literature regarding the LGEO of Bousaada, M’Sila 

Province, Algeria. 

The nanoemulsion chemical analysis of the LGEO produced by the microfluidization 

technique showed a quantitative difference compared to the content of the raw LGEO 

volatile oil (Table 05). However, some compounds of minor content were found to be absent 

from the LGEO volatile content by nanoformation technique (camphor, citronellal, 

bergamotene, α-farnesene, and caryophyllene oxide) and also in new components detected 

in MF-LGEO (decanal) (Table 05; Figure 28). Identified components in the nanoemulsion 

were represented in 97.53% of the total nanoemulsion oil. Similar to the hydrodistilled 

LGEO, geranial (35.48%) and neral (28.95%) were predominant, followed by geraniol and 

geranyl acetate (7.97% and 4.55%, respectively). Several mono and sesquiterpenes, such as 

camphor, citronellal, bergamotene, α-farnesene, and caryophyllene oxide, were found in the 

nanoemulsion LGEO when compared to the hydrodistilled oil.  

Table 05: Percentage of volatile components of LGEO and MF-LGEO identified 

by GC-MS analysis. 

S/N Compound RI a LRI b 
Area% Identification 

Method c LGEO MF-LGEO 

1 
6-Methyl-5-heptene-2-

one 
983 985 0.94 0.59 RI, MS 

2 β-Myrcene 992 991 3.61 2.76 RI, MS, STD 

3 Z-β-Ocimene  1040 1037 0.64 0.52 RI, MS 

4 E-β-Ocimene 1051 1050 0.34 0.70 RI, MS 
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5 γ-Terpinene 1063 1059 0.48 0.81 RI, MS 

6 Linalool 1100 1096 1.42 0.98 RI, MS, STD 

7 Perillene 1105 1103 0.31 - RI, MS 

8 trans-Pinocarveol 1140 1139 0.42 0.42 RI, MS 

9 Camphor 1145 1146 0.47 - RI, MS 

10 Citronellal 1156 1153 0.34 - RI, MS 

11 Isoneral 1171 1170 1.35 0.85 RI, MS 

12 Rose furan oxide 1180 1177 0.65 0.36 RI, MS 

13 Isogeranial  1189 1185 2.07 1.44 RI, MS 

14 Decanal 1204 1201 - 1.57 RI, MS 

15 Citronellol 1228 1225 2.10 1.42 RI, MS, STD 

16 Neral 1240 1238 26.91 28.95 RI, MS, STD 

17 Geraniol 1258 1255 9.69 7.97 RI, MS, STD 

18 Geranial 1270 1267 30.73 35.48 RI, MS, STD 

19 Dihydrolinalool acetate 1279 1275 1.41 1.88 RI, MS 

20 Carvacrol 1298 1299 2.61 3.95 RI, MS, STD 

21 Nerolic acid 1337 1340 0.97 - RI, MS 

22 Geranic acid 1351 1355 1.14 0.51 RI, MS 

23 Neryl acetate  1365 1361 2.19 1.36 RI, MS 

24 Geranyl acetate 1384 1383 5.06 4.55 RI, MS 

25 Bergamotene (α-trans-) 1438 1434 0.33 - RI, MS 

26 α-Farnesene 1508 1505 0.43 - RI, MS 

27 Caryophyllene oxide 1582 1583 0.47 - RI, MS 

28 Selin-6-en-4α-ol 1633 1636 0.65 0.46 RI, MS 

 Total - - 97.73 97.53 - 

RI a: Retention indices calculated on DB-5 column using alkanes standards. LRI b: Retention indices according to the 

literature. c: Confirmed by comparison with the retention indices, the mass spectrum of the authentic compounds, and the 

NIST mass spectra library data. LGEO: lemongrass emulsion of essential oil; MF-LGEO: microfluidizing emulsion of 

lemongrass essential oil. 
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Figure 28: Volatile chromatograms for (A) LGEO and (B) MF-LGEO. 

From a qualitative perspective, our findings are consistent with previous research 

(Benoudjit et al., 2022), which also identified neral and geranial as key components of  

LGEO. However, there are quantitative discrepancies. Notably, in our study, geraniol was 

found to be significantly more abundant compared to β-myrcene, ranking second in 

concentration after geranial and neral in Blida LGEO (Boukhatem et al., 2014). 

According to our study, the qualitative volatile profile of LGEO remained consistent 

after formulating a nanoemulsion using the microfluidization technique, although there were 

quantitative variations. However, the predominant components remained unchanged. 

Additionally, both oil and citral content increased in the microfluidized nanoemulsion. These 

compounds have been previously associated with high antifungal activity (Zheng et al., 
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2021). Therefore, this technological process may suggest enhancements in oil application 

for ensuring microbial safety in food products. 

In light of our study findings, Pilong et al. (2022) observed a notable increase in eugenol 

content (70.69%) following the microfluidization of clove EOs into nanoemulsion compared 

to the untreated oil (60.11%). This enhancement is likely due to the substantial increase in 

the surface area/volume ratio of eugenol facilitated by the numerous fine droplets of clove 

EOs. Conversely, the microfluidization process led to a reduction in other constituents of 

clove oil, such as benzyl alcohol and caryophyllene. The authors underscored the importance 

of conducting further mechanistic investigations in this domain. Additionally, various 

studies have suggested that the physical stability and biological activity of emulsions may 

undergo alterations due to phenomena like Ostwald ripening, flocculation, or coalescence 

(Chang et al., 2012). 

3. Characterization of Nanoparticles  

In the nanoemulsion MF-ASHEO, the average particle size measures 41.72 ± 12.72 nm, 

showcasing a monomodal distribution pattern indicative of uniformity. Notably, this size 

falls within the ultra-fine range, being less than 100 nm, which is particularly significant for 

its potential applications. Additionally, the nanoemulsion exhibits a mean zeta potential of  

-39.4 ± 3.75 mV, as illustrated in (Figures 29A and 29B). This zeta potential value suggests 

a high degree of stability, crucial for the sustained dispersion of particles. Furthermore, the 

polydispersity index (PDI) of 0.291 ± 0.04 underscores the uniformity and consistency in 

particle size distribution within the nanoemulsion. 
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Figure 29: (A) Particle size distribution and (B) zeta-potential of MF-ASHEO 

nanoemulsion. 

The operational pressure has a notable impact on both the average droplet size and 

the Polydispersity Index (PDI) of nanoemulsions. Consistent with our study's findings, 

higher pressures tend to yield smaller droplets, with the smallest observed at 150 MPa 

(Salvia-Trujillo et al., 2014). However, during production, droplet size may increase due to 

collision and coalescence, induced by vigorous Brownian motion and insufficient surfactant 

adsorption at higher pressures. For instance, nanoemulsions containing D-limonene and 

terpenes, treated at 300 MPa for ten cycles, exhibited droplet sizes ranging from 74.4 to 

356.7 nm (Donsì et al., 2011). Additionally, apart from operational pressure, interactions 

between carvacrol and surfactant, as well as the adsorption of Tween80 into the MF-ASHEO 

nanoemulsion, played a role in reducing droplet size (Karsli et al., 2022). It is hypothesized 

that the phenol group of carvacrol, the primary component in MF-ASHEO constituting 

94.51%, is positioned at the oil droplet's surface, oriented towards the water phase. This 

arrangement enhances the flexibility of the interphase, facilitating stronger compaction of 

the surfactant blend. The diverse sizes of amphiphilic molecules may lead to improved 

packaging and more effective stabilization of the interfaces. 
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The process of microfluidization resulted in a significant decrease in the zeta 

potential of MF-ASHEO droplets, reaching -39.4 mV, indicating an increase in their overall 

electric charge. When the zeta potential of droplets falls below ±30 mV, it weakens the 

repulsive forces between them within the nanoemulsion, potentially leading to instability 

(Salvia-Trujillo et al., 2015). The non-ionic emulsifier/surfactant Tween 80 imparts a 

negative charge to oil droplets by selectively absorbing hydroxyl ions from the aqueous 

phase or anionic impurities like free fatty acids present in the oil or surfactant phases 

(McClements and Rao, 2011). Furthermore, the anionic hydrocolloid CMC contributes to 

the negative zeta potential of nanoemulsions, aiding in their stabilization. The stability of the 

nanoemulsion depends on interactions and competition with species that have already been 

adsorbed onto the droplet surfaces (Arancibia et al., 2016). Discrepancies in the zeta 

potential between emulsions and nanoemulsions containing different EOs may stem from 

variations in ionizable oil compounds (Guerra-Rosas et al., 2016). Notably, the MF-ASHEO 

nanoemulsion exhibits a lower negative zeta potential compared to Algerian lemongrass oil, 

which contains citral isomers as the major constituents (Boudechicha et al., 2023). 

The particle size, potential and Polydispersity Index (PDI) of the LGEO 

nanoemulsions produced through microfluidization were measured. The findings indicated 

that the average droplet diameter of the nanoemulsions was 20.76 ± 0.36 nm, with a PDI of 

0.179 ± 0.03 (refer to Figure 30A). Additionally, the interfacial electrical charge of the 

droplets following microfluidization processing was recorded as -23.9 mV (Figure 30B). 
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Figure 30: (A) Particle size distribution and (B) zeta-potential of MF-LGEO 

nanoemulsion. 

In comparison to the droplet sizes observed in eugenol and clove nanoemulsions, the 

size of LGEO generated through microfluidization was found to be smaller. This reduction 

can be ascribed to the greater polarity of eugenol, which enhances its solubility in the 

aqueous phase compared to citral isomers (Gago et al., 2019). Various factors such as 

molecular structure, volatile compound content, interfacial tension, or surfactant affinity of 

different EOs or their primary compound-loaded nanoemulsions may contribute to the 

discrepancies in droplet size (Salvia-Trujillo et al., 2015). Notably, Qian and McClements, 

(2011) reported a significant reduction in the average droplet size of corn oil nanoemulsions 

processed once through microfluidization at different pressures, down to 165 nm. 

Subsequent cycles through the microfluidizer had minimal impact. Recent studies have 

focused on creating essential oil-infused nanoemulsions using microfluidization. Donsì et 

al. (2011) observed that nanoemulsions containing D-limonene, combined with terpenes and 

treated for ten cycles at 300 MPa, exhibited droplet diameters ranging from 74.4 to 356.7 

nm. However, it's noteworthy that increased operating pressure may lead to collision and 

coalescence of droplets during nanoemulsion production, resulting in larger droplet sizes due 

to Brownian motion and sluggish surfactant adsorption (Jafari et al., 2007). 
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4. Antibacterial Activity 

4.1. Agar Diffusion 

The findings of the antibacterial efficacy using the disc diffusion technique, revealed the 

robust activity and broad spectrum of ASHEO. Primarily, their antibacterial activities against 

Gram-positive strains of pathogenic bacteria were found to be more potent compared to 

Gram-negative strains (see figure 31), even surpassing those of standard antibiotics. This 

particular EOs exhibited activity against all tested bacterial strains; with inhibition zones 

varying from 55.66 mm to 29.66 mm. According to the statistical analysis, MRSA and 

Bacillus subtilis demonstrated the highest sensitivity, followed by E. coli, S. aureus, P. 

mirabilis, and A. baumannii, while P. aeruginosa and K. pneumoniae exhibited lower 

sensitivity. Conversely, MF-ASHEO did not exhibit any inhibitory activity. 

 

Figure 31:  Antibacterial activity of ASHEO, MF-ASHEO and cefazolin using the disc 

diffusion method. 
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The inherent hydrophobic nature of EOs components is recognized for their ability 

to infiltrate the lipids present in bacterial cell membranes, thereby disrupting their 

organization and augmenting membrane permeability (Abou Baker et al., 2020). In our 

investigation, all tested strains exhibited sensitivity to ASHEO, a phenomenon largely 

attributed to the elevated concentration of carvacrol, a principal active constituent within 

EOs (Friedman, 2014). These results are consistent with previous findings regarding the 

antimicrobial efficacy of EOs rich in carvacrol, as reported for S. hortensis and S. montana. 

Notably, EOs abundant in phenolic compounds, such as carvacrol and thymol, as found in 

S. montana hydrolate, have been extensively documented for their potent antimicrobial 

properties (Pino-Otín et al., 2022). Reliable with the findings of (Sharma et al., 2020) who 

reported the lack of inhibitory effects in nanoemulsions containing Tween 80 and Eucalyptus 

globulus EOs, our study did not observe any antibacterial activity for MF-ASHEO. This 

absence of activity might stem from several factors, including the low oil concentration in 

the nanoemulsion formulation (1%), potential influences of physicochemical properties on 

the antimicrobial efficacy of nanoemulsions, and the short duration of incubation. 

Consequently, there is a need for further enhancements to enhance the antimicrobial efficacy 

of the developed nanoemulsion. 

Regarding the activities differentiation between LGEO and MF-LGEO, all the 

concentrations of the tested EO exhibited significant activity against all tested bacterial 

strains, producing inhibition zones ranging from 16.66 mm to a total inhibition (see figure 

32). Statistical analysis indicated that Bacillus subtilis, S. aureus and MRSA were the most 

susceptible strains with total inhibition, 48.66 and 49.66 mm, respectively, followed by E. 

coli, P. mirabilis, and P. aeruginosa. Conversely, A. baumannii and K. pneumoniae 

exhibited lower sensitivity. Interestingly, MF-LGEO demonstrated no inhibitory activity.  



Results and Discussion  
 

 
77 

 

 

Figure 32: Antibacterial activity of LGEO, MF-LGEO and cefazolin using the disc 

diffusion method. 

The high susceptibility of the tested bacteria to LGEO may be attributed to its 

elevated citral content, particularly geranial (30.73%) and neral (26.91%). Previous studies 

by Kumar Bharti (2013) have highlighted that C. citratus EO primarily comprises 

oxygenated monoterpenoids, such as geranial and neral, which exhibit antibacterial 

properties against pathogens like S. aureus and Salmonella enterica. Additionally, 

Subramaniam et al. (2020) have documented the potential of volatile oil from C. citratus 

against 13 gram-positive and 9 gram-negative isolates. This aligns with findings from 

Schweitzer et al., (2022), who demonstrated the efficacy of C. citratus EO against pathogens 

associated with pitted keratolysis (PK), including Kytococcus sedentarius, Dermatophilus 

congolensis, and Bacillus thuringiensis.  
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According to the findings by Ziani et al. (2011), oil droplets were observed to potentially 

reduce the effectiveness of surfactant-based antimicrobials. This result holds significant 

implications for developing efficient antimicrobial agents suitable for emulsion-based food 

and beverage products. Our own observations align with these collective findings. 

4.2. MICs and MBCs 

To fully exploit the antibacterial potential of our EOs and their nanoformulations, it 

was paramount for our research to meticulously evaluate both minimum inhibitory 

concentrations (MICs) and minimum bactericidal concentrations (MBCs). 

The EOs extracted from S. hortennsis displayed remarkable antibacterial efficacy, 

effectively inhibiting the variety of pathogenic bacteria within a concentration range of 0.031 

to 0.125 mg.mL-1 (Table 06). Particularly noteworthy was its pronounced effect on B. subtilis 

and S. aureus, as previously observed with the paper disk diffusion method, both showing 

heightened sensitivity with MIC and MBC values as low as 0.031 mg.mL-1. Conversely, P. 

aeruginosa and A. baumannii exhibited the highest MIC and MBC values at 0.125 mg.mL-1 

and 0.061 mg.mL-1, respectively. Interestingly, E. coli, K. pneumoniae, MRSA, and P. 

mirabilis demonstrated comparable MICs of 0.062 mg.mL-1. 

Table 06: MICs and MBCs of ASHEO against the bacterial strains. 

 

Bacterial Strains 

MIC 

(mg.mL-1) 

 

MBC 

(mg.mL-1) 

 

S. aureus 0.031  0.062 

E. coli 0.062 0.125 

P. aeruginosa 0.125 0.125 

K. pneumoniae 0.062 0.062 

B. subtilis 0.031 0.031 
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MRSA 0.062 0.031 

A. baumannii 0.125 0.062 

P. mirabilis 0.062 0.062 

 

The present study reaffirmed the antibacterial effectiveness of ASHEO against both 

reference and clinical isolates. These findings are consistent with another investigation 

involving EOs from S. hortensis and S. montana, which reported similar minimum inhibitory 

concentrations (MICs) (Khoury et al., 2016). ASHEO exhibited potent activity with low 

MIC values, measuring approximately 0.125 mg.mL-1 against P. aeruginosa and 0.031 

mg.mL-1 against S. aureus and B. subtilis (Djenane et al., 2011). In contrast, its efficacy was 

comparatively weaker in the study conducted by (Abou Baker et al., 2020), where the EOs 

from S. hortensis demonstrated MIC values of 3 mg.mL-1 against P. aeruginosa and 2 

mg.mL-1 against S. aureus. 

MICs and MBCs assessment of LGEO against tested bacteria are presented in the 

(Table 07).  LGEO showed action mainly against the Gram-positive pathogens, among 

which B. subtilis and S. aureus was the most affected revealed a relatively low MIC (0.031 

mg.mL-1) and MBC (0.031 mg.mL-1). Among Gram-negative bacteria, K. pneumonia, A. 

baumannii and P. mirabilis demonstrated identical MIC and MBC values (0.062 mg.mL-1), 

whereas the highest MIC values were observed against P. aeruginosa and E. coli (0.125 

mg.mL-1).  
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Table 07: MICs and MBCs of LGEO against the bacterial strains. 

 

Bacterial Strains 

MIC 

(mg.mL-1) 

 

MBC 

(mg.mL-1) 

 

S. aureus 0.031 0.031 

E. coli 0.125 0.125 

P. aeruginosa 0.125 0.125 

K. pneumoniae 0.062 0.062 

B. subtilis 0.031 0.031 

MRSA 0.062 0.031 

A. baumannii 0.062 0.062 

P. mirabilis 0.062 0.062 

 

Further investigations are needed to elucidate the roles lemongrass EOs. Moreover, the 

low inhibitory concentration (0.078 mg.mL-1) of lemongrass EO against a S. aureus, aligns 

with our findings (Aiemsaard et al., 2011). Another study by De Silva et al. (2017) 

demonstrated the susceptibility of lemongrass oil against pathogenic bacteria isolated from 

pet turtles including S. enterica, P. aeruginosa and P. mirabilis. However, the MIC and 

MBC values of the citronella oil ranged from 0.244 µg.mL-1 to 0.977 µg.mL-1 when tested 

against the bacterial isolates reported by Wei and Wee, (2013) were significantly higher 

compared to those observed in the present study for essential oil.  

5.  Antibiofilm Activity 

In the CV assay, ASHEO exhibited substantial inhibition of biofilm formation across all 

tested bacterial strains, contrasting with the limited effect observed with MF-ASHEO, which 

corroborates the previously mentioned antibacterial activity results. Notably, MF-ASHEO 

demonstrated negligible impact on biofilm formation, explaining its absence in (Figure 33). 
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Furthermore, biofilm development showed a dose-dependent reduction in the presence of 

ASHEO. Specifically, ASHEO effectively suppressed more than 60% biofilm formation of 

E. coli and P. aeruginosa at concentrations of MIC/2 (0.062 mg.mL-1), MIC/4 (0.031 

mg.mL-1), and MIC/8 (0.015 mg.mL-1) as depicted in (Figure 34). Similarly, each 

concentration of ASHEO (MIC, MIC/2, MIC/4, and MIC/8) effectively inhibited biofilm 

development in B. subtilis. Noteworthy reductions in biofilm formation were observed for 

A. baumannii and S. aureus, with reductions of 52.8%, and 32.08%, respectively, at a 

concentration of 0.015 mg.mL-1 (sub-MICs). While the reduction was less pronounced for 

MRSA, K. pneumoniae, and P. mirabilis at the lowest ASHEO concentration, it still 

surpassed 50%, reaching maximum efficacy at 0.125 mg.mL-1. 

 

Figure 33: Biofilm reduction rates produced by ASHEO. 
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Figure 34: Antibiofilm activity of the ASHEO against (A) P. aeruginosa, (B) A. 

baumannii, and (C) P. mirabilis. (Biofilm formation is visually indicated by the varying 

intensities of violet color on the test plate, progressing from left to right (wells 1 to 7), with 

concentrations in mg.mL-1. The 9th well serves as the control). 

Bacterial biofilms represent an enduring hazard of contamination within the food 

sector, constituting a notable peril to human health. Concerningly, numerous bacteria 

proficient in biofilm formation are evolving resistance against sanitizing agents, 

emphasizing the pressing requirement for innovative approaches to treatment. (Rossi et 

al., 2022).  

Our study found that ASHEO exhibited significant antibiofilm activity against all 

tested biofilm-producing strains. Previous investigations have highlighted the potential 

of Satureja spp. in combating biofilm formation by both bacterial and fungal strains 

(Miladi et al., 2016). In a study carried out by Sharifi et al.  (2018) demonstrated a 

notable effect of sub-MIC Satureja hortensis essential oil in preventing biofilm 

formation by S. aureus and disrupting existing biofilms. They suggested that compounds 

like thymol and terpinene in Satureja hortensis essential oil play a pivotal role in its anti-

biofilm and anti-adhesive properties. In a comparable investigation, Seyedtaghiya et al. 

(2021) documented the effect of S. hortensis essential oil to inhibit biofilm formation in 

E. coli and Salmonella isolate obtained from poultry-related infections. 
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The findings regarding the antibiofilm efficacy of LGEO are summarized in the 

accompanying (Figure 35). According to the data presented, a concentration of 1 mg/mL 

demonstrated a noteworthy 50% reduction in antibiofilm activity across all bacterial 

strains. Particularly notable was the impact of LGEO on biofilms formed by B. subtilis 

and S. aureus, where a concentration as low as 0.062 mg.mL-1 yielded a reduction 

exceeding 30%. In contrast, other bacterial strains exhibited reductions of less than 20% 

at this concentration. 

 

Figure 35: Biofilm reduction rates produced by LGEO. 

Several research studies have illustrated the bactericidal impact of lemongrass on the 

formation of biofilms. In a prior investigation focusing on the EOs of C. citratus, biofilm 

formation by K. pneumoniae, P. aeruginosa, and S. epidermidis was examined, revealing 
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increasing efficacy in proportion to concentration, ultimately achieving total eradication at 

a concentration of 0.2% (v/v) (Khosakueng et al., 2024). Additionally, Adukwu et al. (2012) 

found that S. aureus biofilms exhibited complete loss of viability when treated with 

lemongrass essential oil concentrations ranging from 0.125% to 4% (v/v) over 24 hours. Our 

own observations align with these collective findings. Moreover, Martínez et al. (2021) 

observed that certain EOs significantly impacted biofilms, even in cases where they did not 

demonstrate direct antibacterial activity. 

6. Antifungal Activity 

The antifungal efficacy of ASHEO and MF-ASHEO was assessed against ten strains of 

toxigenic fungi (refer to Figure 36). It was observed that the application of the microfluidized 

technique augmented the antifungal potency. Relative to the standard antifungal agent 

(fluconazole), the fungi inhibition zones were approximately half the size of the standard 

effect. Furthermore, the antifungal effectiveness against toxigenic fungal strains followed an 

ascending order: Aspergillus < Fusarium < Penicillium. The results in (Figure 36) revealed 

that the diameter of inhibition zones against Penicillium fungi ranged from more than 50% 

(14.01±0.34 to 16.11±0.55 mm) compared to fluconazole (26.51±0.16 to 26.66±0.21 mm). 

Additionally, certain Aspergillus strains (A. niger and A. carbonarius) exhibited larger 

inhibition zones than others (A. flavus, A. parasiticus, and A. ochraceous). 
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Figure 36: Antifungal activity of ASHEO, MF-ASHEO and fluconazole. 

Our findings align with prior research conducted by various authors, illustrating the 

efficacy of S. hortensis essential oil on a range of fungal strains including Rhizopus stolonifer 

and Rhizopus oryzae (Tančinová et al., 2022), R. stolonifer, P. digitatum, Aspergillus niger 

and Botrytis cinerea (Nabigol, 2011), and Aspergillus species (García-Díaz et al., 2020). 

These results indicate a potential avenue for the development of natural antifungals for post-

harvest disease management.  

Additionally, Kambiz et al. (2013) provide clear evidence of the antifungal properties 

present in the alcoholic extract of S. hortensis. This extract has demonstrated effectiveness 

against both phytopathogenic and food spoilage fungi, suggesting its potential use as a 

protective agent in various food products based on previous research (Felšöciová et al., 

2020). 
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The potent antifungal effect of savory species is likely linked to their high 

concentrations of phenolic compounds, notably carvacrol and thymol, both major 

monoterpene constituents. Recent studies have highlighted carvacrol's efficacy in combating 

fungal proliferation: it disrupts the cell membranes of Botrytis cinerea mycelia  (Zhang et 

al., 2019) and inhibits the growth of A. flavus when used in vapor form (Duan et al., 2024). 

These findings underscore carvacrol's potential as a promising biofumigant for controlling 

post-harvest grain fungal infestations. 

The current study observed a heightening in the antifungal properties of S. hortensis 

essential oil through the utilization of microfluidization technique. These findings are 

consistent with previous research indicating that transforming solutions of carvacrol and 

thymol into nanoform leads to enhanced efficacy (Hajibonabi et al., 2023). Precisely, the 

nanoemulsion derived from carvacrol and thymol demonstrated improved antimicrobial 

characteristics. Our investigation further strengthens the link between microfluidization, 

utilized for nanoemulsion preparation, and the enhanced properties of Algerian S. hortensis 

essential oil, particularly in terms of biological activities. 

In relation to the antifungal properties of LGEO and MF-LGEO, the findings 

illustrate their effectiveness against a range of toxigenic fungal strains. Particularly 

noteworthy is their pronounced efficacy against Fusarium strains. It is notable that MF-

LGEO exhibits superior inhibition against these fungal strains compared to LGEO, as 

depicted in (Figure 37). This enhanced effect may be attributed to the preservation 

mechanism inherent in the encapsulation process, which helps maintain the bioactive 

components of the oil, thereby protecting them from degradation. Moreover, both LGEO 

and MF-LGEO exhibit notable effectiveness in inhibiting the growth of several Aspergillus 

species, such as A. flavus, A. parasiticus, A. ochraceus, A. oryzae, and A. carbonarius. The 
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inhibition zones observed range from 26±0.15 mm to 28±0.94 mm for LGEO and from 

28±0.33 mm to 34±0.66 mm for MF-LGEO, underscoring their potential as agents for 

controlling fungal proliferation. The inhibition zone diameters against Penicillium fungi 

surpassed 50%, ranging from 34.01±0.57 to 34.26±0.55 mm, whereas those of fluconazole 

ranged from 26.51±0.16 to 26.66±0.21 mm.  The antifungal effectiveness of MF-LGEO 

surpasses that of the conventional antifungal medication Fluconazole and approaches the 

efficacy of LGEO. 

 

Figure 37: Antifungal activity of LGEO, LGEO and fluconazole. 

The highest fungicidal efficacy of C. citratus may be attributed primarily to the 

presence of citral and geraniol as major constituents (Scariot et al., 2021) (Sampaio et al., 

2020). Even so, other components such as citronellol, α-ocimene, α-pinene, and linalool 
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might also contribute to its antifungal properties (Victoria et al., 2012). The EOs derived 

from C. citratus  has demonstrated antifungal activity against various fungi, including 

Raffaelea quercus-mongolicae and Rhizoctonia solani (Lee et al., 2020); Aspergillus flavus 

and Aspergillus parasiticus (Sawadogo et al., 2022); and Colletotrichum musae, Fusarium 

incarnatum, and Fusarium verticillioides (Kamsu et al., 2019). 

Additional research has demonstrated that incorporating EOs into colloidal systems 

like nanoformulations results in increased antimicrobial efficacy compared to using the EO 

alone (Ahmed et al., 2021) (Jayari et al., 2022). As outlined by Donsì et al. (2011), 

nanoformulations comprising small particles with a hydrophilic surface can traverse the cell 

membrane. This process involves the fusion of emulsifier droplets with the phospholipid 

bilayer of microorganisms, enhancing their accessibility across the cell membrane and 

ultimately causing cell death by membrane rupture. 

7. Cytotoxicity  

This study aimed to assess the cytotoxic effects of ASHEO and MF-ASHEO on HepG2, 

Vero, and WI-38 cells using MTT and WST-1 viability assays, with cisplatin as the standard 

reference drug. The findings revealed that both ASHEO and its nanoemulsions significantly 

reduced the viability of HepG2 cells compared to Vero and WI-38 cells. Notably, ASHEO 

exhibited the most potent growth-inhibitory activity against HepG2 cells, with the lowest 

IC50 values (16.69 and 23.92 µg.mL-1) compared to cisplatin (IC50 20.71 and 40.95 µg.mL-

1) in MTT and WST-1 assays, respectively. The lower IC50 values observed in HepG2 cells 

compared to Vero and WI-38 cells suggest the selective cytotoxicity of ASHEO and its 

microfluidized nanoemulsion, as summarized in (Table 08). 
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Table 08: Cytotoxic assessment of ASHEO and its microfluidized nanoemulsion against 

HepG2, Vero, and WI-38 cell lines using MTT and WST-1 assays. 

 

Cell line 

 

ASHEO (µg.mL-1) 

 

MF-ASHEO (IC50 

µg.mL-1) 

Cisplatin (Control)  

(IC50 µg.mL-1) 

MTT WST-1 MTT WST-1 MTT WST-1 

HepG2 16.69±0.5* 23.92±2.0 126.0±1.82 249.08±2.77 20.71±1.15 40.95±1.88 

Vero 88.34±5.0 89.94±4.91 - - 142.33±4.12 287.6±3.43 

WI-38 - - 207.15±2.61 648.71±4.11 277.6±4.5 401.2±3.66 

*The data were expressed as means ±SEM (where n = 3, p ≤ 0.05); SD: standard division 

In (Figure 38), the morphology of HepG2 cells exposed to ASHEO and MF-ASHEO 

was examined at concentrations of 15.62 and 125 µg.mL-1 for 24 hours, in comparison to the 

control cell line. These concentrations were chosen based on their demonstrated cell viability 

below 50% in the MTT assay. The results revealed that the alterations in HepG2 cell 

morphology were dose-dependent. Cells exposed to ASHEO and MF-ASHEO exhibited 

significant changes in morphology, with a reduced cell count per field, suggesting cell 

detachment during exposure. This indicates a potential impact of ASHEO and MF-ASHEO 

on cell membranes. Additionally, a notable accumulation of lipid vacuoles within the cells 

was observed. The HepG2 cells displayed morphological changes, appearing shriveled and 

smaller, with increased intercellular spaces and an irregular, rounded shape compared to the 

control group. Furthermore, some cells exhibited shrinkage at concentrations below the IC50 

and showed signs of apoptotic cell death, including membrane rupture. 
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A B C 

   

 

Figure 38: Morphology of HepG2 Cells Following 24-Hour Cultivation with Treatments: 

(A) ASHEO, (B) MF-ASHEO, Compared to (C) Control Cell Line. 

To our knowledge, there have been limited studies investigating the cytotoxicity of 

S. hortensis volatile oil, particularly with regard to Algerian oils and nanoemulsion activity. 

The cytotoxic effects observed for the current ASHEO) align with findings by (Popovici et 

al., 2019), where the oil exhibited concentration-dependent activity and demonstrated 

greater efficacy than hydro-ethanolic extract on two tumor cell lines, A375 (IC50 22.27 µM) 

and B164A5 (IC50, 34.16 µM), as determined by the MTT assay. 

It is noteworthy that MF-ASHEO exhibited lower cytotoxicity than ASHEO after 24 

hours of exposure in our study. This difference in cytotoxicity between ASHEO and MF-

ASHEO in vitro may be attributed to the entrapment of bioactive compounds in 

nanostructures, altering their route of association or internalization to the targeted cell (Ding 

and Ma, 2015), consistent with findings by Milhomem-Paixão et al. (2017) and da Silva 

Gündel et al. (2018) on the cytotoxicity of andiroba and basil oils nanoemulsions. 

As suggested by Mansour et al. (2023), an effective drug delivery system should 

maximize therapeutic benefits while minimizing toxicity. Our study indicates that utilizing 
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MF-ASHEO as a delivery system enhances drug efficacy, reducing the required 

concentration while maintaining effectiveness and minimizing side effects. Importantly, low 

cytotoxicity in normal cells does not necessarily imply reduced bioavailability of bioactive 

compounds in vivo. Nanostructures can selectively accumulate in the desired target tissues, 

capitalizing on the unique characteristics of pathological processes for therapeutic purposes. 

For instance, nanoparticles can preferentially accumulate in inflammatory lesions due to 

abnormal blood vessels and reduced lymphatic drainage, a phenomenon known as the 

enhanced permeation and retention (EPR) effect, thereby increasing the concentration of 

bioactive compounds at the desired target site (Watanabe et al., 2010 ; J. Liu et al., 2022).  

As illustrated in (Table 09), treatment with LGEO and its nanoemulsions led to a 

decrease in cell viability percentage in HepG2 cells compared to Vero and WI-38 cells. 

Notably, LGEO demonstrated the highest growth inhibitory activity against the HepG2 cell 

line, exhibiting the lowest IC50 values (1.78 and 28.54 µg.mL-1) compared to cisplatin (IC50 

20.71 and 40.95 µg.mL-1) in both MTT and WST-1 assays, respectively. The lower IC50 

values observed in HepG2 cells compared to Vero and WI-38 cells underscore the selectivity 

of the investigated LGEO, as depicted in (Table 09). 

Table 09: Cytotoxic assessment of LGEO and its microfluidized nanoemulsion against 

HepG2, Vero, and WI-38 cell lines using MTT and WST-1 assays. 

 

Cell line 

 

LGEO (µg.mL-1) 

 

MF-LGEO (IC50 µg.mL-

1) 

Cisplatin (Control)  

(IC50 µg.mL-1) 

MTT WST-1 MTT WST-1 MTT WST-1 

HepG2 1.78 ± 

0.08 

28.54 ± 

2.26 

230.77 ± 

3.12 

249.08 ± 

2.77 

20.71±1.15 40.95±1.88 

Vero 236.91 ± 

5.2 

111.04 ± 

6.76 

- - 142.33±4.12 287.6±3.43 

WI-38 - - 618.65 ± 

5.61 

957.41 ± 

7.11 

277.6±4.5 401.2±3.66 
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The observed toxic effects of the current MF-LGEO are in line with the results reported 

by (Trang et al., 2020), who demonstrated the cytotoxic activity of C. citratus oils from 

various regions in Vietnam against lung cancer cells, with an IC50 range of 4.25–8.93 

μg.mL-1. Citral, the main component of LGEO consisting of neral and geranial, has been 

found to possess cytotoxic activity against several human leukemia cell lines, prompting 

apoptosis in leukemia cells via procaspase-3 activation (Nordin et al., 2019). Moreover, 

geraniol, the second most prevalent compound, exhibits notable anticancer properties 

through various signaling pathways (Cho et al., 2016). A comparison between the cytotoxic 

potential of LGEO and its nanoemulsion indicates a reduced efficacy in nanoemulsions due 

to the lower concentration of LGEO within the formulation. This observation is consistent 

with the findings of (Verma and Preet, 2021), where exposure of HEK293 cell lines to 100 

ppm of LGEO nanoemulsion for 48 hours resulted in a maximum cell survivability of 61%. 

The alterations observed in the volatile constituents following the microfluidizing procedure 

could be associated with the safety attributes indicated by the cytotoxicity findings. With the 

quantitative rise in neral and geranial, previous studies have documented anti-inflammatory 

properties (Liao et al., 2015). 

8. Antioxidant Activity 

Employing the DPPH method, the antiradical activity is presented as the inhibition 

percentage at different concentrations of the samples (Figure 39). The inhibition percentage 

increased with increasing the concentration for ASHEO, LGEO and BHT. In contrast, MF-

ASHEO and MF-LGEO showed no reductant activity in the DPPH assay.  



Results and Discussion  
 

 
93 

 

 

Figure 39: Color transition from purple to yellow seen during the transformation of DPPH 

solution by different concentration of samples. 

As presented in the (Figure 40), the ASHEO inhibited 46.70 ± 1.51% at a 500 µg.mL-

1 concentration. However, the BHT showed 85.00 ± 0.02% at only 125 µg.mL-1. The half-

maximum inhibitory concentration (IC50) of both samples is presented in (Figure 41). The t-

test revealed significant differences between ASHEO and BHT (p ≤ 0.0001). The IC50 was 

536.47 ± 21.99 µg.mL-1 and 15.48 ± 0.06 µg.mL-1 for ASHEO and BHT, respectively. 

A                                                                        B 

 

Figure 40: The free radical scavenging activity of ASHEO (A) and BHT (B). 
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Figure 41: The IC50 of ASHEO and BHT. 

 

The ASHEO and BHT standards demonstrated effective scavenging of DPPH 

radicals, with the IC50 values indicating a lower antioxidant activity for ASHEO compared 

to BHT. The antioxidant activity of ASHEO could be attributed to its content of terpenes, 

particularly monoterpene hydrocarbons and oxygenated monoterpenes, as previously 

determined (Martignago et al., 2023). These compounds have the ability to donate protons, 

thereby stabilizing free radicals. The findings of this study are consistent with research 

conducted on S. hortensis EO by (Abou Baker et al., 2020). S. montana EO also exhibited 

notable radical scavenging capacity (Djordjevic et al., 2021).  

The antioxidant capacity assays of C. citratus essential oil, illustrated in the (Figure 

42), reveal comparatively lower activity when compared to BHT. While LGEO exhibited a 

72% inhibition at a concentration of 500 µg.mL-1, BHT demonstrated a slightly higher 

inhibition of 70% at a significantly lower concentration of only 20 µg.mL-1. Moreover, 

LGEO displayed a notably higher IC50 value (82.87 ± 2.15 µg.mL-1) compared to BHT, as 

showed in the (Figure 43), with an IC50 of 15.48 ± 0.06 µg.mL-1, indicating a less potent 

antioxidant activity in comparison. 
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A                                                                        B 

 

Figure 42: The free radical scavenging activity of ASHEO (A) and BHT (B). 

 

Figure 43: The IC50 of LGEO and BHT. 

Fatunmibi et al., (2023) observed an IC50 value of 71.82 µg.mL-1 for the antioxidant 

activity of the essential oil extracted in Nigeria from C. citratus. Similarly, (Bhatnagar, 

2020)'s study on C. flexuosus revealed an IC50 value of 43.67 µg/mL, aligning with our own 

findings. Various plants contain antioxidant compounds that counteract oxidation through 

diverse mechanisms, thus averting oxidative stress. These compounds, such as free radical 
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scavengers, reducing agents, and chelating agents, among others, have been identified 

(Júnior et al., 2024). 

The absence of reductive activity in the DPPH assay for MF-ASHEO and MF-LGEO 

may be attributed to the encapsulation of antioxidant compounds within the nanoemulsions, 

which hinders their release and interaction with the chemical agent. Although the DPPH test 

did not reveal reductive activity in the nanoemulsions, they may still possess antioxidant 

properties (Borges et al., 2018) ; (Ha et al., 2015) found that the release of encapsulated 

compounds in some nanoemulsions can be influenced by the incubation period of the sample 

with the reagent. In the present study, the relatively short incubation period may have limited 

the release of active principles in the nanoemulsions, as evidenced by the expression values 

for reductive activity. 

9.  Molecular Docking and ADME study 

The antibacterial properties of carvacrol, the main volatile component of the S. hortensis 

under investigation, were examined using a molecular docking method. The study's findings 

indicate that carvacrol forms bonds with crucial enzymes essential for producing and 

restoring cell walls, proteins, and nucleic acids. Enzyme crystal structures (isoleucyl-tRNA 

synthetase, DNA gyrase, dihydropteroatesynthase, D-alanine: D-alanine ligase, IV 

topoisomerase, dihydrofolate reductase, and penicillin-binding protein 1a) were obtained 

from Protein DataBank (https://www.rcsb.org/, accessed on August 17, 2022) with the 

following PDB IDs:1JZQ, 1KZN, 2VEG, 2ZDQ, 3RAE, 3SRW, and 3UDI. 

(Figure 44) presents the binding free energies (∆G). The molecular docking analysis 

yielded the optimal orientations or locations of the ligand within the receptor site. A lower 

∆G signifies a stronger connection between the receptor and the ligand. The binding 

https://www.rcsb.org/
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affinities of carvacrol ranged from -5.2 to -8.1 kcal/mol. The docking scores for 2zdq were 

the highest, as shown in (Figure 44). 

 

Figure 44: Binding free energy values were computed by molecular docking carvacrol to 

bacterial metabolic. 

(Figure 45) illustrate the interaction between carvacrol and the crystal structure of D-

alanine: D-alanine ligase (PDB: 2ZDQ). This interaction exhibits the most elevated docking 

score. The greater binding affinity of carvacrol with 2ZDQ (-8.1 kcal/mol) is due to the 

traditional hydrogen bonding between carvacrol (acting as a hydrogen donor) and the O atom 

of GLU A:197, as well as the OH group of TYR A:218 (acting as hydrogen acceptors), as 

illustrated in (Figure 45). The study discovered hydrogen bonding with lengths ranging from 

2.4 to 2.7Å. In addition to hydrogen bonds, there are other interactions found between the 

residues of 2ZDQ and carvacrol. The interactions mentioned are π-anion, π-σ, π-π stacking, 

and π-alkyl electrostatic and hydrophobic contacts. A π-anion type electrostatic bond is 

exclusively established between the negatively charged O atom of GLU A:197 and the π-

orbitals of carvacrol. The hydrophobic interaction between carvacrol and PHE A:272 

involves the interaction between the C-H group of carvacrol and the π-orbitals of PHE 
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A:272. The study also found that carvacrol alkyl groups form interactions with aryl-

containing amino acids such as PHE A:151, 222, and 272 through their π-orbitals, as shown 

in (Figure 45). Moreover, a π-π stacked interaction refers to the attractive force that occurs 

between aromatic rings as a result of the presence of π-electron clouds, such as the π-orbitals 

of PHE A:151 and 272, and carvacrol. 

Hydrogen bonds within biological complexes are crucial for ensuring the specificity of 

molecular recognition. Their corresponding free energy varies between -1.5 and -4.7 

kcal/mol (Ferreira de Freitas and Schapira, 2017). Weak hydrogen bonds, such as C-H....π-

interactions, play a significant role in maintaining the stability of proteins (Brandl et al., 

2001). The alkyl groups of carvacrol frequently interact with amino acids containing aryl 

groups, such as phenylalanine, through their π-orbitals. The predominant type of interactions 

observed in protein-ligand complexes are hydrophobic interactions involving aliphatic and 

aromatic carbons. Among the aromatic systems, benzene rings are the most frequently 

encountered (Ferreira de Freitas and Schapira, 2017). 

 

 

 

Figure 45: Interactions of carvacrol with 2ZDQ. 
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As far as we know, there have been no previous studies on the computer-based analysis 

of carvacrol and its impact on enzymes related to the killing or inhibiting of bacteria, as well 

as the production of aflatoxins. This topic is explored in the present work. Nevertheless, a 

comparable in-silico investigation of carvacrol, the primary constituent of Origanum 

compactum Benth oil, demonstrated similar effectiveness against nicotinamide adenine 

dinucleotide phosphate oxidase (2CDU) and S. aureus nucleoside diphosphate kinase 

(3Q8U) with a glide score of -6.082 and -6.039 kcal/mol, respectively (El Abdali et al., 

2023). The experimental data revealed that carvacrol has a strong and stable binding affinity 

(-5.5 to -5.6 kcal/mol) with E. coli ESBL, including TEM-72, SHV-2, and CTXM-9. 

Hydrogen bonding between amino acids in ESBL proteins serves to attach the protein 

residues and enhance their interaction with carvacrol. In addition, hydrophobic interactions 

play a significant role in the interactions between ligands and proteins. Carvacrol 

demonstrated a total of five hydrophobic interactions with TEM-72, two with SHV-2, and 

three with CTXM-9 (Khan et al., 2020). 

Carvacrol was analysed by SwissADME for its ADME characteristics, revealing a 

molecular weight below 500. Additionally, it possesses fewer than five hydrogen bond 

donors, acceptors, and Log p values. The value of Log p determines the hydrophobicity and 

lipophilicity of a substance, which in turn affects its transportation. The values of the 

topological polar surface area (TPSA) and the number of rotatable bonds also meet the 

acceptable criteria. Carvacrol possesses sufficient hydrophobic and mild lipophilic 

characteristics, enabling it to rapidly traverse the membrane surface and reach the receptor 

site. Furthermore, the Log S value of the substance falls within a suitable range, indicating 

that it can be readily absorbed in the gastrointestinal tract. The solubility (Log S) has a 

substantial impact on the absorption and distribution characteristics of a substance. In 
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addition, carvacrol has pharmacological characteristics and adheres to Lipinski's rule of 5, 

as depicted in (Figure 46).  

 

Figure 46: In silico ADME Properties of carvacrol using SwissADME. 

Predicting drug-likeness filters at an early stage is crucial for optimizing small 

compounds for therapeutic purposes and enhancing their prospect of being developed into 

effective drugs. These filters rely on empirical principles that prioritise important 

pharmacokinetic indices, offering vital information for drug discovery. (Figure 46) displays 

the crucial drug-likeness filters for carvacrol, a compound suggested by SwissADME as a 

promising option for the development of cancer drugs. Based on Lipinski's rule of five, 

which permits a maximum of one violation, the tested chemical is suitable for oral 

administration as a medication in humans. Moreover, carvacrol has significant absorption in 

the human intestines, making it a suitable choice for oral delivery. The ADME analysis of 
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our study aligns with prior research conducted by Herrera-Calderon et al. (2020) and Fatima 

et al. (2022) who investigated the mechanism of action of carvacrol on several receptors 

implicated in the advancement of breast cancer and its potential as an anticancer drug. 

Considering these pharmacokinetic features, carvacrol shows potential as a viable 

therapeutic option for antibacterial or antifungal treatments. 
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Conclusion 

Antibiotic resistance is one of the biggest global public health threats. The abuse of 

antibiotics and the emergence of resistant strains of bacteria undermine the effectiveness of 

conventional treatments. In this context, the use of natural molecules extracted from medicinal 

plants offers a promising alternative to combating this resistance, due to their chemical diversity 

and multiple mechanisms of action. Furthermore, the nanoformulation of these molecules can 

improve their bioavailability and therapeutic effectiveness. 

The objective of our study in the initial section was to conduct a retrospective investigation 

in the service of Infectious Diseases at Setif Hospital. The data demonstrate a wide range of 

resistance patterns among the isolated isolates, with different levels of resistance detected for 

routinely tested drugs. The resistance rates for amoxicillin, cefazoline, and cefotaxime are 

particularly alarming since they reach 70%. This indicates that there are major difficulties in 

effectively treating infections with these medicines. The decreasing vulnerability to 

ciprofloxacin and gentamicin highlights the pressing need to address the increasing patterns of 

resistance. In addition, the identification of individual bacteria emphasizes the high occurrence 

of E. coli ESBL (29.03%) as the most commonly detected species, followed by K. pneumoniae, 

E. coli (16.13%), and K. pneumoniae ESBL (9.68%). 

Overall, our study highlights the importance of continuous research and monitoring to guide 

the implementation of effective procedures for managing antibiotics and addressing the 

increasing problem of antibiotic resistance in healthcare settings. 

The second section of our study mainly examined the extraction of EOs from S. hortensis 

and C. citratus. Additionally, it involved preparing the nanoformulations of these oils using 

microfluidization and investigating their biological activities. Microfluidization, a high-

pressure homogenization technique, has significantly impacted the volatile composition of 
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ASHEO and LGEO when loaded into nanosystems. This includes changes in carvacrol, thymol, 

for S. hortensis and γ-Terpinene, neral, and geranial for C. citratus, as well as a notable increase 

in decanal content, setting a new record. The generated microfluidization emulsion of MF-

ASHEO and MF-LGEO exhibited unique droplet diameters of 20.76 ± 0.36 nm and 41.72 ± 

12.72 nm, with a PDI of 0.291±0.04 and 0.179 ± 0.03, respectively. The ξ-potential 

nanoemulsion value highlighted the emulsion stability of both plants under investigation. 

The cytotoxicity of the EOs and nanoformulations under investigation exhibited 

encouraging values in two assays (MTT and WST-1) when tested against three distinct cell line 

strains. Furthermore, the cell line experiment also documents the ameliorative effect of the 

microfluidization process, which results in an increase in the anti-inflammatory effect. The 

findings are depicted and associated with the alterations in components identified through the 

GC-MS analysis of the nanoformulations.  

Upon measuring the antibacterial and antibiofilm properties, it was determined that ASHEO 

and LGEO exhibited superior efficacy against pathogenic isolates of Gram-positive and Gram-

negative bacteria compared to MF-ASHEO and MF-LGEO. Significantly, LGEO demonstrated 

complete inhibition of B. subtilis, while ASHEO effectively exhibited activity against all 

bacterial strains that were tested. The inhibition zones measured between 55.66 mm and 29.66 

mm, and the biofilm formation of E. coli and P. aeruginosa was suppressed by over 60% at 

concentrations of MIC/2 (0.062 mg.mL-1), MIC/4 (0.031 mg.mL-1), and MIC/8 (0.015 mg.mL-

1). Additionally, the examined EOs, along with their microfluidization oils, showed antifungal 

properties against mycotoxigenic strains of fungi. Among these, MF-LGEO exhibited 

exceptional antifungal activity against five strains of the Aspergillus genus, three strains of the 

Penicillium genus and two strains of Fusarium genus, influencing their growth rates. The results 
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mentioned above suggest that MF-LGEO may serve as a viable treatment for toxigenic fungal 

contamination, as it inhibits the production of toxins by said fungi.  

Studied EOs revealed moderate antioxidant effects in radical scavenging, with an IC50 

value of 536.47 ± 21.99 µg.mL-1 for ASHEO and an IC50 value equal to 82.87 ± 2.15 µg.mL-

1.  

The bactericidal and bacteriostatic effects of carvacrol on the target proteins were validated 

by ADME and in silico analyses. This abundant molecule found in S. hortensis and comprising 

C. citratus molecules, was found to be an intriguing possibility for the development of cancer 

medications. Furthermore, due to its substantial absorption capacity in the human intestines, 

carvacrol is a suitable selection for oral administration. Considering these pharmacokinetic 

features, carvacrol shows potential as a viable therapeutic option for antibacterial or antifungal 

treatments. 

Satureja hortensis L. and Cymbopogon citratus (DC.) Stapf has been historically used for 

their valuable EOs and to prevent fungal toxigenic diseases and pathogenic resistant bacteria 

infections. These findings corroborate these traditional uses. The microfluidization procedure 

has a profound impact on both the volatile content and biological activity of the oil.  

Exploring the identities, purifications, and isolations of the molecules associated with the 

aforementioned activities would be appealing in the context of the present research. 

In view of this study:  

- It will be interesting to expand the retrospective study to numerous hospital structures to 

determine the frequencies and levels of current resistance and characterize the genes and 

resistance mechanisms of MDRs bacteria.  

- Evaluate in vivo activities to ensure the clinical use of studied EOs. 
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- Conduct a molecular-scale analysis to determine the antivirulence potential of the 

examined plants against MDR strains at the structural level. 
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 ملخص

دية. تقدم يا المقاومة إلى تقويض العلاجات التقليتمثل مقاومة المضادات الحيوية تهديدًا كبيرًا للصحة العامة العالمية، حيث يؤدي الإفراط في استخدام المضادات الحيوية وظهور البكتير 
هداف هذه الدراسة هي تقديم أ  إذ تعمل تقنية النانوتشكيل على تحسين استقرارها وفعاليتها العلاجية. الجزيئات الطبيعية المستخلصة من النباتات الطبية بديلًا واعدًا في مكافحة هذه المقاومة،

لنانوية في تعزيز الأنشطة اوتقييم فعالية تَركِيبَاتها  تحليل شامل لمقاومة المضادات الحيوية في بيئة سريرية، واستكشاف إمكانيات الزيوت الأساسية الطبيعية كعوامل مضادة للميكروبات بديلة،
(، %011الأموكسيسيلين )كشفت دراسة استعادية أجريت في قسم الأمراض المعدية بمستشفى سطيف الجامعي خلال المرحلة الأولى من تحقيقنا عن معدلات مقلقة لمقاومة  .البيولوجية

، والتي مثلت (BLSE) المنتجة لإنزيم البيتا لاكتاماز واسع الطيف Escherichia coli(. وكانت أكثر سلالة بكتيرية تم تحديدها هي %60.15، والسيفوتاكسيم )(%70 <) السيفازولين
 Cymbopogon citratus (DC.)ونبات  Satureja hortensis L. (ASHEO)من نبات  (HE) في الجزء الثاني، تناولت الدراسة استخلاص الزيوت الأساسية .من العزلات 30.12%

Stapf (LGEO)  تخدام جهازم اسفي الجزائر باستخدام تقنية التقطير بالبخار، بالإضافة إلى استخدام تقنية الميكروفلويدايزيشن للحصول على نانوتشكيلات هذه الزيوت. ت GC-MS  لإجراء
مركبات  0وجود  MF-ASHEO أظهرت نتائج .(MF-LGEO و MF-ASHEO) انومن حيث محتواهما من المركبات الطيارة في مستحلبات الن LGEO و ASHEO مقارنة بين

من إجمالي محتوى الزيت في مستحلب النانو، وهو ما  %05.62فقد شكلت  MF-LGEO أما المركبات التي تم تحديدها في .ASHEO (95.46%) مركبًا في 35( مقارنةً بـ 00.65%)
فعالية كبيرة ضد  LGEO و ASHEO أظهرت الزيوت الأساسية ونانوتشكيلاتها خصائص مضادة للبكتيريا والبيوفيلم، حيث أظهر.%). 05.52( المستخلص بالتقطير بالبخار LGEO يشبه

مم،  30.55مم و 66.55نشاطًا ضد جميع السلالات البكتيرية المختبرة، مع مناطق تثبيط تتراوح بين  ASHEO عزلات بكتيرية ممرضة من الجراثيم الموجبة والسالبة لصبغة جرام. أظهر
تم التحقق من التأثيرات المبيدة للبكتيريا  Bacillus subtilis.تثبيطًا كاملًا لسلالة  LGEO ، وأظهر%51بنسبة تزيد عن  P. aeruginosaو  E. coliبينما تم تثبيط تكوين البيوفيلم بواسطة 

، خصائص MF-LGEO بالإضافة إلى ذلك، أظهرت الزيوت الأساسية، وخاصة in silico .والنمذجة  ADME خدام تحليلوالمثبطة لنموها لمركب الكارفاكرول على البروتينات المستهدفة باست
، مما يؤثر على معدلات نموها ويقترح إمكانية استخدامها كعلاج للتلوث الفطري Fusarium، وAspergillus ،Penicilliumمضادة للفطريات ضد الفطريات المفرزة للسموم مثل سلالات 

روفلويدايزيشن، للالتهابات بواسطة تقنية الميك السام. كما كشفت الدراسة أن الزيوت الأساسية ونانوتشكيلاتها أظهرت سمية خلوية واعدة ضد ثلاث سلالات خلوية، مع تعزيز تأثيرات مضادة
 625.35بلغت  IC50 ع قيمةالحرة، مه النتائج بتعديلات في مكونات النانوتشكيل. أظهرت الزيوت الأساسية التي تم دراستها تأثيرات مضادة للأكسدة معتدلة في تثبيط الجذور حيث ارتبطت هذ

وفلويدايزيشن تأثير عميق على محتوى المركبات الطيارة والنشاط كان لتقنية الميكر  .LGEO ميكروغرام/مل لـ 3.06±  03.05بلغت  IC50 ، وقيمةASHEO ميكروغرام/مل لـ ±30.00 
لاستخراج زيوتهما الأساسية الثمينة، خاصةً للوقاية من الأمراض الفطرية السامة والالتهابات البكتيرية المقاومة  C. citratusو  S. hortensisتدعم نتائجنا استخدام نباتي  .البيولوجي للزيت

 للمضادات الحيوية.

؛ الزيوت الأساسية؛ التشكيل النانوي؛ مضاد للبكتيريا؛ مضاد للفطريات؛ مضاد للأكسدة؛ سمية Cymbopogon citratus (DC.) Stapf؛  .Satureja hortensis L مات مفتاحية:كل
 in silico.للخلايا؛ 

 

Abstract  

Antibiotic resistance is one of the biggest global public health threats. The abuse of antibiotics and the emergence of resistant strains 

of bacteria undermine the effectiveness of conventional treatments. Natural molecules extracted from medicinal plants offer a 

promising alternative to combating this resistance, with nanoformulation improving their bioavailability and therapeutic 

effectiveness. The objectives of this study are to provide a comprehensive analysis of antibiotic resistance within a clinical setting, 

explore the potential of natural EOs as alternative antimicrobial agents, and assess the efficacy of their nanoformulations in 

enhancing biological activity. A retrospective study conducted at the service of infection diseases at CHU Setif during the initial 

phase of our investigation revealed alarmingly high rates of resistance to amoxicillin (100%), cefazoline (>70%), and cefotaxime 

(58.06%). Escherichia coli ESBL represented the most common bacterial strain identified (29.03%). In the second part, the study 

examined the extraction by hydrodistillation of essential oils (EOs) from Algerian Satureja hortensis L. (ASHEO) and Cymbopogon 

citratus (DC.) Stapf (LGEO), and the microfluidization technique was used to get their nanoformulations. The GC-MS apparatus 

was utilized for a comparative examination of ASHEO and LGEO with their microfluidization nanoemulsions (MF-ASHEO and 

MF-LGEO) volatile content. MF-ASHO showed 8 compounds (99.56%) vs ASHEO's 26 compounds (95.46%). The identified 

components in MF-LGEO represented 97.53% of the total nanoemulsion oil, which was similar to the hydrodistilled LGEO 

(97.73%). The essential oils and nanoformulations showed antibacterial and antibiofilm properties, while ASHEO and LGEO 

showed superior efficacy against pathogenic isolates of Gram-positive and Gram-negative bacteria. ASHEO effectively exhibited 

activity against all tested bacterial strains with inhibition zones measured between 55.66 mm and 29.66 mm, and the biofilm 

formation of E. coli and P. aeruginosa was suppressed by over 60%, while LGEO demonstrated complete inhibition of B. subtilis. 

The bactericidal and bacteriostatic effects of carvacrol on the target proteins were validated by ADME and in silico analyses. 

Additionally, essential oils, especially MF-LGEO, showed antifungal properties against mycotoxigenic fungi including Aspergillus, 

Penicillium and Fusarium strains by influencing their growth rates and suggesting potential treatment for toxigenic fungal 

contamination. The study also found that essential oils and nanoformulations showed promising cytotoxicity against three cell line 

strains, with microfluidization enhancing anti-inflammatory effects, and these findings were linked to alterations in nanoformulation 

components. Studied essential oils revealed moderate antioxidant effects in radical scavenging, with an IC50 value of 536.47 ± 

21.99 µg.mL-1 for ASHEO and an IC50 value equal to (82.87 ± 2.15 µg.mL-1). The microfluidization procedure has a profound 

impact on both the volatile content and biological activity of the oil. Our findings reassure the use of S. hortensis and C. citratus for 

their valuable essential oils and to prevent mycotoxigenic diseases and pathogenic-resistant bacteria.  

Key words: Satureja hortensis L.; Cymbopogon citratus (DC.) Stapf; essential oils, microfluidization; antibacterial; antifungal;  
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