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Abstract  

Dynamic PET imaging plays a key role in improving cancer diagnosis, assessing therapy response, 

and characterizing tumor lesions. However, dynamic PET suffers from several limitations such as 

noisy images and longer data acquisition time. This study aimed to enhance lesion detectability in 

18F-FDG PET images and shorten the total duration of the 18F-FDG study using principal 

component analysis (PCA), while preserving the detectability of lesions. For this purpose, activity 

maps were generated using the 4D-XCAT anthropomorphic phantom combined with time activity 

curves calculated using a standard 18F-FDG 3-compartment model. A 9 mm spherical liver lesion 

was inserted into the 4D-XACT phantom. The widely used STIR image reconstruction software 

was used to generate dynamic 18F-FDG PET images. The PCA method was applied to the simulated 

dynamic 18F-FDG-PET images generated at different scanning times (0-11, 0-13, 0-15, 0-20, 0-25, 

0-35, 0-40, 0-45, 0-50, and 0-55 min) and at T=35-55 min. The estimated Principal Component 

Images (PCIs) were visually assessed and compared to the SUMmed images generated at T=35-55 

min. The Tumor-to-Background Ratio (TBR) and Activity Profiles Line (APLs) were considered in 

the quantitative assessment. For lesion detectability, the comparison between the 3 PCIs (PCI1, 

PCI2 and PCI3) and SUM images showed that PCI2 could provide superior lesion detectability 

compared to the SUM images at T-35-55. Concerning the time acquisition reduction, the visual 

assessment of the 3 estimated PCIs and SUM images showed that PCI3 has better detectability of 

the lesion regardless of the scanning time. PCI2 showed good lesion detectability at all timing 

expect at 11 and 13 min, whereas PCI1 showed lower lesion detectability at all times. 

Quantitatively, the TBR estimated on PCI3 was similar to that on the SUM images (TBR on PCI3 

was 2.49±0.72 and 3.08±0.49 on the SUM images) but higher than that on PCI1 and PCI2 from 

timing 11 to 35 min. The TBR on PCI1 decreased with the increase in scanning time. On PCI2, the 

TBR increased with scanning time (maximum of 3.87±1.11 at 55 min). 

The findings of this study suggest the use of the PCI3 at 20 and 25 min to resuce the scanning time 

in dynamic 18F-FDG PET. This study demonstrated that PCA allows enhancement lesion 

detectability and reduction of scanning time in dynamic 18F-FDG-PET imaging, hence increasing 

patient comfort and minimizing motion effects. 

Keywords: 

Dynamic 18F FDG PET images, detectability, reduction of scan time, PCA, STIR software, 4D-

XCAT phantom.      
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Résumé 

L’imagerie TEP dynamique joue un rôle clé dans l’amélioration du diagnostic du cancer, 

l’évaluation de la réponse thérapeutique et la caractérisation des lésions tumorales. Cependant, elle 

souffre de plusieurs limitations telles que des images bruitées et un temps d’acquisition de données 

long. Cette étude visait à améliorer la détectabilité des lésions dans les images TEP au 18F-FDG et à 

réduire la durée totale de l'étude au 18F-FDG en utilisant la méthode d'analyse en composantes 

principales (ACP), tout en préservant la détectabilité des lésions. Pour cela, les cartes d'activité ont 

été générées à l'aide du fantôme anthropomorphe 4D-XCAT combiné à des courbes d'activité 

temporelle calculées à l'aide d'un modèle standard à 3 compartiments 18F-FDG. Une lésion 

hépatique sphérique de 9 mm a été insérée dans le fantôme 4D-XACT. Le logiciel de reconstruction 

d’images STIR a été utilisé pour générer des images TEP dynamiques au 18F-FDG. La méthode 

ACP a été appliquée aux images 18F-FDG-PET dynamiques simulées générées à différents temps de 

numérisation (0-11, 0-13, 0-15, 0-20, 0-25, 0-35, 0-40, 0 -45, 0-50 et 0-55 min), et à T=35-55 min. 

Les images en composantes principales (PCI) estimées ont été évaluées visuellement et comparées 

aux images SUMmed, générées à T = 35-55 min. Le rapport tumeur/fond (TBR) et les profils de 

d'activité (ALP) ont été pris en compte dans l'évaluation quantitative. Pour la détectabilité des 

lésions, la comparaison entre les images de 3 PCI et SUM montre que PCI2 pourrait fournir une 

détectabilité des lésions supérieure à celle des images SUM, à T-35-55. Concernant la réduction du 

temps d'acquisition, l'évaluation visuelle des 3 images PCI et SUM estimées montre que PCI3 a une 

meilleure détectabilité de la lésion tumorale quel que soit le temps de numérisation. PCI2 montre 

une bonne détectabilité des lésions à tous les moments, sauf à 11 et 13 minutes, tandis que PCI1 

montre une détectabilité des lésions plus faible à tout moment. Quantitativement, le TBR estimé sur 

PCI3 est similaire aux ceux calculés dans les images SUM (TBR sur PCI3 est de 2,49 ± 0,72 et 3,08 

± 0,49 sur les images SUM) mais supérieur à celui calculé sur PCI1 et PCI2 du timing 11 à 35 min. 

Le TBR obtenu sur PCI1 diminue avec l'augmentation du temps de scan. Sur PCI2, le TBR 

augmente avec le temps de scan (maximum de 3,87 ± 1,11 à 55 minutes). 

Les résultats obtenus dans cette étude suggèrent l’utilisation de PCI3 à 20 ou 25 minutes pour 

optimiser/réduire le temps de scan dans la TEP dynamique au 18F-FDG. Cette étude montre que 

l'ACP pourrait améliorer la détectabilité des lésions et de réduire le temps de scan en imagerie 

dynamique 18F-FDG PET, ce qui pourrait augmenter le confort du patient et minimiser les effets du 

mouvement. 

Mots clés: 

Images 18F-FDG TEP dynamiques, détectabilité, optimisation du temps de l'acquisition des 

données, PCA, logiciel STIR, fantôme 4D-XCAT. 
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 ملخص

ً في تتلعب دوراً   (dPET) تقنية التصوير المقطعي بالإصدار البوزيتروني الديناميكي حسين تشخيص رئيسيا

شوشة ور المعلاجية، وتوصيف الأورام. ومع ذلك، تعاني من عدة قيود مثل الصتقييم الاستجابة ال السرطان،

 . )وقت الفحص (وزمن طويل لتحصيل البيانات

 DGF F18للـ البوزيترونيبالإصدار  PETd إلى تحسين قابلية اكتشاف الأورام في صور الدراسة هدفت هذه

لى إمكانية ع، مع الحفاظ  (PCA) المكونات الرئيسيةباستخدام طريقة تحليل مدة الدراسة الإجمالية  تقليصو

رباعي  نساننموذج لجسم الإباستخدام  FDG  F18 تركيز توزيع لهذا الغرض، تم إنشاء خرائط .الأوراماكتشاف 

سام لاثي الأقثالنشاط الزمني المحسوبة باستخدام نموذج قياسي  توزيع المدمجة مع منحنيات XCAT-4D  الأبعاد

دام تم استخ .XACT-D-4 4 نموذج لجسم الإنسانمم في  9كبدي كروي بقطر  ورمتم إدراج و    FDG  F18للـ

ور صعلى  PCA تم تطبيق طريقةثم  .FDG PET-F18لإنشاء صور ديناميكية  STIRبرنامج إعادة بناء الصور 

-0، 20-0، 15-0، 13-0، 11-0الديناميكية المحاكاة المولدة في أوقات مختلفة للمسح ) PET FDG  F18الـ 

 دقيقة. T=35-55 دقيقة(، وعند 55-0و  0-50، 0-45، 0-40، 0-35، 25

 عند ور المجمعةبصرياً ومقارنتها بالص (PCI) التي حصلنا عليها باستخدام المكونات الرئيسية تم تقييم الصور

م اعتبار ت ثم .ة السريريةالمستخدمة في الممارس (SUMmed)بتطبيق طريقة إنشاؤها  التي تم T=35-55  دقيقة

 في التقييم الكمي. (ALP) خطوط النشاطو (TBR) نسبة الورم / الخلفية

قد  PCI2 أن SUMو PCI1, PCI2, PCI3 بالنسبة لقابلية اكتشاف الأورام، أظهرت المقارنة بين صور الـ  

 T=35-55.  عندالمستخدمة في الممارسة السريرية  SUM مقارنة بالصور للورميوفر قابلية اكتشاف أفضل 

 أن SUMو PCI1, PCI2, PCI3 بالنسبة لتقليل زمن الحصول على البيانات، أظهر التقييم البصري للصور الـ  

PCI3  أظهرو . للحصول على البيانات مستخدمال بغض النظر عن وقت الأورام لديها قابلية اكتشاف أفضل 

دقيقة، في حين  13و  11في جميع الأوقات، باستثناء  للورمقابلية اكتشاف جيدة   له PCI2   ان  أيضا التقييم 

 أقل في جميع الأوقات.  لورماقابلية اكتشاف  PCI1 أظهر

هو  PCI3على  SUM )TBRيشبه ذلك المحسوب في صور  PCI3المقدر على  TBRمن الناحية الكمية، فإن 

من  PCI2و PCI1( ولكنه أعلى من ذلك المحسوب على SUMعلى صور  0.49±  3.08و ±0.72  2.49

تحصيل  مع زيادة وقت PCI1الذي تم الحصول عليه على  TBRدقيقة. يتناقص  35إلى  11التوقيت من 

  دقيقة(. 55في  1.11±  3.87وقت )بحد أقصى المع  TBR، يزداد PCI2. في البيانات

وقت  تقليصلدقيقة  25أو  20عند  PCI3في هذه الدراسة إلى استخدام  تشير النتائج التي تم الحصول عليها

ي وقت الفحص ف يقلص و الأوراميمكن أن يحسن إمكانية اكتشاف  PCAتوضح هذه الدراسة أن و الفحص.

 .الصور على ، وبالتالي زيادة راحة المريض وتقليل تأثيرات الحركة  PET  FDG  F18التصوير الديناميكي 

 :الدالةالكلمات 

ية، وقت الفحص، تحليل المكونات الرئيس تقليص، إمكانية اكتشاف الورم، FDG PET-F18صور ديناميكية 

  4D-XCAT برامج لإعادة بناء الصور، نموذج لجسم الإنسان
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GENERAL INTRODUCTION 

Medical imaging is an essential diagnostic tool in oncology and an effective tool for 

assessing tumor extension. The primary objective of such medical technologies is the early 

detection of cancer to help deciding the best treatment option. It provides clinicians with precise 

anatomical information (e.g., CT, ultrasound, MRI, etc.) and very important functional and/or 

metabolic information (e.g., fMRI, PET, SPECT, dPET). 

Positron Emission Tomography (PET) is a nuclear medicine imaging technique that 

allows early diagnosis of different types of cancer. The 18F-FDG radiotracer allows lesion 

characterization, staging, and therapy monitoring of different types of tumors [CZE06] 

[GAM02]. In clinical routine use of PET imaging, data acquisition is performed 60 min after 18F-

FDG injection using a single static frame [BOE15]. The generated images are converted to 

Standardized Uptake Value (SUV) images for analysis by the oncologists. These images are 

normalized to the 18F-FDG activity injected and the patient weight [HUA11]. Being derived from 

static acquisition, the SUV does not provide information about the 18F-FDG kinetics that are 

subject to variations in uptake period, duration of the scan time, and plasma glucose level 

[BOE11]. 

Several attempts have been made to improve image quality, quantitative accuracy, and 

reduce radiation dose in static PET imaging [KEY95] [KUH16][TAT03][BOUC23]. Similarly, 

significant efforts have been undertaken in dynamic PET to improve tumors diagnosis and 

therapy response assessment, taking advantage, for example, of the dynamic course of the 18F-

FDG spatial distribution in the imaged organ to evaluate the 18F-FDG metabolic rate. Dynamic 

PET (dPET) imaging technique had a significant impact in this regard and had aided in the initial 

diagnosis and characterization of tumor [ZHU19][NOZ15][RUS13][KIM09][HER88][YAO95]. 

On the other hand, a limited number of studies have explored lesions detectability in parametric 

PET and static PET images [DIM21a][DIM21b]. Moreover, compared to SUV images, 

parametric images have demonstrated the ability to improve tumor detectability [FAH19]. 

However, there is still a shortfall of studies investigating lesion detectability and dPET remains 

limited to research [DIM21a][DIM21b]. dPET suffers from several drawbacks such as the long 

time duration of data acquisition (60 min is used in 18F-FDG studies), high noise of the data 
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(limited counts in short frames duration), and invasive procedures used in the determination of 

the arterial Input Function (IF) [WU95][BEN05] [DEG][CHE07][ALE20]. 

 Several studies have been carried out to optimize the acquisition time in dPET. Grkovski 

et al. [GRK17] showed that the acquisition time could be reduced to 20 min in the case of head 

and neck cancers. The kinetic parameters obtained were rather equivalent in a comparison study 

carried out by Torizuka et al. [TOR00] using 30 min and 60 min acquisition protocols. The work 

of Visser et al. [VIS08] on 13 patients with non-small cell lung carcinoma reported an agreement 

between 30 min and 50 min acquisition protocols. 

dPET images can be analyzed using different strategies, such as the Patlak method 

[PAT85], full compartmental modeling methods [BEN07], and non-compartmental [THI05], that 

produce parametric images to extract further information. The use of the Patlak method and 

compartment modeling allows the calculation of the metabolic rate of glucose and the kinetics of 

18F-FDG to distinguish between benign and malignant lesions. These methods require the use of 

an arterial sampling, which complicates and increases the study duration [BIS02]. Principal 

Component Analysis (PCA), which is one of non-compartmental methods, does not require IF 

and does not include any model-based restrictions since it is independent of any kinetic model. 

PCA is one of the most commonly used tools for studying brain disorders 

[FRI93][PED94][ZUE03] and estimating characteristic images that can be used to delineate 

regions of interest; these images are subsequently used to estimate radiotracer kinetics in 

myocardial perfusion studies [FRO01][FRO01]. However, PCA is still of limited use in oncology 

studies [THI03]. Moreover, PCA images have not been used to assess improvements in lesion 

detectability in 18F-FDG-PET studies. To the knowledge of the authors and from the existing 

literature, the PCA method has not been used specifically to investigate the shortening of the 

acquisition time in 18F-FDG PET/CT tumor imaging. 

Therefore, this study aimed to enhance the quality of 18F-FDG PET images and shorten 

the total duration of 18F-FDG while preserving the detectability of lesions using the PCA method. 

This was investigated by means of estimating relevant images from dynamic imaging sequences 

that provided a lesion detectability level similar to that of the usual static images acquired at 35 to 

55 mins post-injection. Full-length and shorter dynamic sequences were assessed both 

qualitatively and quantitatively to demonstrate the potential of the proposed methodology. To do 
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so, a realistic 4D XCAT human torso phantom with the standard 3-compartment model was 

utilized to generate time-dependent activity and 511 keV attenuation maps. Open-source 

Software for Tomographic Image Reconstruction (STIR) [THI12] was employed to reconstruct 

the dynamic 18F-FDG-PET images from the series of activities. The PCA method was 

implemented and applied to the dynamic 18FDG-PET reconstructed images at different scanning 

times (11, 13, 15, 20, 25, 35, 40, 45, 50, and 55 min), producing Principal Component Images 

(PCIs). The PCIs were visually assessed and compared to the SUMmed images obtained at t=35-

55 min. The Tumor-to-Background Ratio (TBR) and Activity Lines Profiles (ALPs) were 

considered for the quantitative assessment. 

This thesis manuscript was structured as follows: 

Chapter I, firstly, provides an overview about PET technique and the general principle of 

PET imaging. Then, it gives details about the physics behind PET imaging and summarizes some 

algorithms used in medical image reconstruction and software used for the visualization and 

analysis of medical images. It also discusses the different types of numerical phantoms used in 

medical imaging and 18F-FDG compartment models. Finally, it gives a brief review on simulation 

in PET and the theoretical basis of PCA method. 

Chapter II details the methodology adopted and tools used to simulate dynamic 18F-FDG 

PET images. It also presents and discusses the achieved results. The methodology section 

describes how to generate activity maps and calculate time-activity curves using the 18F-FDG 

three-compartments model. It details also the reconstruction procedure followed, using STIR 

software. 

Chapter III presents the methodology and results of using the proposed PCA approach to 

enhance lesion detectability and reduce the data acquisition time. The procedures used to 

generate PCIs and SUM images were described in detail. The quantitative and qualitative 

comparisons of the images generated for lesion detectability assessment and scanning time 

optimization are discussed in separate sections. 

At the end of this manuscript, we present a general conclusion and perspectives of the 

work. 
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Introduction 

This chapter serves as an introduction, offering a comprehensive overview of the 

fundamental principles, historical development, and widespread applications of PET imaging. 

In this chapter, we outline several key points, such as the general principles of PET imaging 

and the physics behind PET imaging, including the decay of the radionuclide, annihilation of 

the positron, radiation interactions with matter, instrumentation and different coincidence 

events that can destroy the quality of PET images. 

I.1 PET overview 

PET, or Positron Emission Tomography, is a nuclear medicine imaging technique that 

uses a radioactive tracer to produce a three-dimensional image or map of functional processes 

in the body. The images are obtained by gamma camera scanner (Figure I.1). PET scans are 

used to observe metabolic processes and can be used to study various conditions, such as 

cancer, heart diseases, and neurological disorders. It is considered as a complementary 

technique of medical imaging called anatomical, such as radiography, ultrasound, computed 

tomography (CT, usually called "X-ray scanner", or magnetic resonance imaging (MRI), 

which provide information on the structure of organs, their shapes, their limits, and, in some 

cases, their contents (bone structures, bladder stones, etc.). 

 

Figure I.1: A PET/CT scanner, Discovery 710, General Electric (GE) [WWW01] 

The idea of using short-lived positron emitters for physiological studies was born in 

the 1950s. The first tomographic instruments used in research appeared in the 1960s [KUH62] 

when the feasibility of a PET scan using two detectors was demonstrated [BRO69]. In the 

1970s, the first prototype PET system was developed by Edward J. Hoffman and Michael 
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Phelps at the University of Washington (Saint Louis) [PHE75]. The first images of patients 

quickly followed [HOF76], marking the arrival of PET imaging in clinical use. 

However, the quality of the images obtained was poor because of low computing 

power and the lack of development of efficient image reconstruction algorithms. 

In the early 1990s, the first whole-body PET system was described [DAH92], and the 

first PET system was dedicated to small animal studies [CUL92]. In the 1990s and early 

2000s, the first PET systems coupled with computed tomography (PET-CT) were developed 

and introduced, allowing anatomical information to be obtained along with metabolic 

information. In the 2010s, the first PET systems coupled with MRI (PET-MRI) were 

introduced. 

This diagnostic tool is now increasingly used worldwide. In Algeria, there are, at 

present, 4 PET scanners in state and private hospitals. In addition, almost all PET systems 

currently in service worldwide are PET-CT systems. 

The clinical applications of PET imaging include oncology (diagnosis, 

characterization and monitoring of tumor evolution, etc.), cardiology (myocardial viability 

and perfusion study) and neurology (Alzheimer’s disease, Parkinson’s disease, epilepsy, 

cerebral vascular pathologies). 

In the preclinical field, PET imaging of small animals, called microTEP (μTEP) 

imaging, is used for the development of new drugs as well as for the study of new therapeutic 

strategies, such as vectorized internal radiotherapy β or α. 

I.2 General Principle of PET Imaging 

PET requires injecting the patient with a radiopharmaceutical (or radiotracer). This 

drug involves coupling between a vector molecule (single molecule, group of molecules, 

proteins, or antibodies), also called a tracer or vector, and a radioactive isotope (or 

radioisotope), called a marker (Figure I.2). 
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Figure I.2: Diagram representing the principle of a PET 

The tracer allows fixation of the compound in the body and is adapted to the biological 

process studied. The marker makes it possible to identify the place of attachment of the 

radiopharmaceutical via the emission of ionizing radiation that passes through the patient. The 

main radiopharmaceutical used in PET is fluorodeoxyglucose combined with 18-fluorine (18F-

FDG). Indeed, this 18F-labeled glucose analog allows visualization of cells with high 

carbohydrate metabolism, such as tumor cells. 

Radioisotopes used in PET are positron emitters (β+). The positrons (β+) created 

during the decay of the radioisotope annihilate with an electron of the medium after a brief 

course in the tissues, thus giving rise to two photons, γ, of the same energy (511 keV) emitted 

simultaneously, in almost opposite directions. 

These two photons are detected via a set of detectors arranged in rings inside which 

the patient is positioned. These rings are made of crystals and are coupled to electronic 

modules, allowing preprocessing of the signal before it is directed to a computer. 

The position of the radiopharmaceutical in the patient’s body is estimated via temporal 

coincidence detection of the pairs of photons created from the measured annihilation position. 

The projection of their detection location on a couple of crystals is called the response line 

(LOR). During the acquisition, the camera records the number of events detected for each 

LOR, as well as some physical parameters of interest (the time of flight of the two photons, 

their energy, etc.). The information contained in each LOR is called a projection, and all these 

projections constitute the measured "raw" signal. The conversion of these projections to the 

final medical image is called tomographic reconstruction. 
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Two types of acquisition data are commonly used: static and dynamic.  

The static mode refers to acquiring images at a single time point after the radiotracer 

injection has reached a relatively stable distribution within the body. The dynamic mode aims 

to evaluate the distribution of tracer concentrations within organs over a period of time. It 

serves as a crucial method for investigating the temporal functionality of organs within live 

(in vivo) settings. It is used in many applications, ranging from cancer to neuroinflammation 

[MUZ12][LAV15]. 

Dynamic PET imaging consists of acquiring a sequence of static PET images in 

frames at varying intervals after administering the radiopharmaceutical agent. The duration of 

each frame may vary according to the particular study being conducted. These time frames 

can be too short to detect/capture quick variations in radiotracer concentration uptake post 

injection or can be extended when less noisy images are needed. Figure I.3 shows an 

illustration of a 4D dynamic PET image scans. 

 

Figure I.3: Illustration of a 4D dynamic PET images scans. 

The dynamic PET data can be acquired using two general approaches: 

 List mode acquisitions (not all PET scanners allow for this mode): This mode 

permits the storage of every occurred event including: the instant of detection, 

the energy of the photon detected, and the number of the corresponding LOR. 

In this mode, the N frames and their durations are determined by the user after 

the acquisition process. In this case, the sinogram is divided into N frames, 

followed by an individual reconstruction of each frame. 

 Standard dynamic acquisition: In this mode, time intervals for each frame are 

established before the scanning process. Every detected event during these 

intervals is recorded in the respective sinogram for that specific time point. 

Then, individual reconstructions are conducted for each of these sinograms 

separately [RAH09]. 
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I.4 The physics behind PET imaging 

PET imaging is based on positron emission. These positrons are emitted by atoms of a 

radioisotope in an unstable state. Radioisotopes are usually produced artificially by cyclotrons 

or generators. These radioisotopes are partly characterized by their half-life, T1/2. 

A positron emitter must have some physical characteristics to be used in nuclear 

medicine. Indeed, the half-life time T1/2 must be long enough to allow the transport from the 

cyclotron radiopharmaceutical to the hospital, administration and the observation time of the 

physiological phenomenon of interest. In parallel, this time must also be relatively short to 

avoid prolonged irradiation of patients and/or care personnel. It is also necessary to take into 

account the additional radiation potentially emitted by the isotope: it is preferable to choose 

isotopes whose ratio of branching (i.e. probability of emission) of the positrons is as high as 

possible. Finally, the energy of the positrons must be as low as possible to minimize their path 

before annihilation. 

TABLE I.1 Characteristics of the main radioisotopes used in PET. 

Table I.1: Characteristics of the main isotopes used in clinical and preclinical PET 

[CHER05]. The average course of β+ represents the thickness necessary to absorb half of the 

β+. 

Radioisotopes 11C 13N 15O 18F 

Period (minutes) 20,3 10 2,1 109,8 

Branching ratio of + (%) 99,8 100 99,9 96,7 

Mean kinetic energy of β+ (MeV) 0,39 0,49 0,73 0,25 

Maximum kinetic energy of β+ (MeV) 0,96 1,19 1,72 0,64 

Mean range β+ in water (mm) 1,1 1,3 2 0,6 

Maximum range β+ in water (mm) 3,9 5,1 8 2,3 

 

I.4.1 Decay of the radionuclide: positron emission 

A positron-emitting radioisotope is an isotope made unstable by an excess of protons. 

During the decay process, a proton (p) of the nucleus is converted into a neutron (n) via the 

weak nuclear force. A positron (β+) and an electron neutrino (ƞ) are then emitted to balance 

the process, as shown in equation (I.1): 

 𝑝 → 𝑛 + β+ + ƞ    (I.1) 

 The β+ emission is not mono-energetic. The positron is emitted with an excess of 

kinetic energy that allows it to move in the surrounding environment (Figure I.4). 
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Figure I.4: Diagram showing the different steps from decay to generation of γ-511 keV 

photons: 1) decay and path of the positron until the encounter with an electron of the medium; 

2) creation of the positronium; 3) positronium annihilation and creation of γ-511 keV photons. 

I.4.2. Annihilation of the positron 

 The positron emitted will then interact with the surrounding environment, undergoing 

a series of collisions with the electrons of matter. Each of these collisions causes a loss of its 

initial kinetic energy via ionization or excitation. When a positron loses almost all of its 

kinetic energy, it combines with an electron of the medium, forming a quasistable system 

called a positronium. The half-life of this atom is a hundred nanosecond maximum. The 

positronium disappears by producing two photons, γ, of approximately 511 keV, which are 

emitted simultaneously and in quasicollinearity. Indeed, before annihilation, the positron has 

residual kinetic energy and a nonnull amount of movement. Due to the principle of 

conservation of energy and momentum, the energy of the two γ photons is actually slightly 

different from 511 keV, and there is a noncollinearity effect between them. The distribution of 

the angles between the two annihilation photons is estimated by a Gaussian function. The 

mid-height width (FWHM) was 0.58 ± 0.25 [BAI05]. The energy difference between the two 

γ photons is related to this noncollinearity and is also expressed by a Gaussian function. The 

relationship between the FWHM of the noncollinearity angle θ and the FWHM of the E 

energy difference of the two γ photons is given by the following equation (I.2): 

𝛥ѳ(𝑟𝑎𝑑) =
2𝛥𝐸

511(𝐾𝑒𝑉)
       (I.2) 

By applying the formula (I.2) with an angle of 0.25, we find an energy difference of 

approximately 2.6 keV between the two annihilation photons, or 0.5% of the average energy 

(511 keV). 
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I.4.3 Radiation interactions with matter 

The γ-511 keV photons, which result from annihilation, propagate and interact with 

the surrounding environment and the detection elements of the PET camera. In the energy 

ranges for PET imaging, the following three main interactions are generally considered: the 

photoelectric effect, Compton scattering and, to a lesser extent, Rayleigh scattering. The 

absorption of γ-511 keV photons during these interactions follows an exponential law and can 

be expressed as: 

𝐼(𝑥) =  𝐼0. 𝑒− ∫ µ(𝐸, 𝑥)𝑑𝑥
𝑥

0
      (I.3) 

where 𝐼(𝑥) represents the number of photons transmitted without any interaction after 

path x in matter and 𝐼0 is the initial number of photons considered. µ(E, x) (cm-1) represent 

the contribution of all linear attenuation coefficients of each type of interaction to a given 

energy E. Therefore, we have: 

µ(𝐸) = µphotoelectric(𝐸) + µCompton(𝐸) + µRayleigh(𝐸)  (I.4) 

 Each of these coefficients is related to the effective section σi (cm2 per atom), which 

reflects the probability of each interaction i, by the following relationship: 

µ𝑖(𝐸) =  
𝑁𝐴 ρ

𝐴
 σi(𝐸)       (I.5) 

where NA (mol-1) is the Avogadro constant, A(g) is the atomic mass of the medium 

and ρ (g/cm3) is its density. 

I.4.3.a Photoelectric effect 

The photoelectric effect corresponds to the total transfer of energy from the γ-511 keV 

photon to an electron in a deep atomic layer strongly bound to the atom. The photon 

disappears completely, and the lost kinetic energy is entirely attributed to the electron, which 

is subsequently ejected from the atom. The energy of the Eγ incident photon given to the 

electron contributes in part to the release of the electron from its atomic layer, and the rest is 

recovered as kinetic energy. 

The cross section of the photoelectric effect [KNO99] is given by the following 

relation: 

σphotoelectric(𝐸) ∝
𝑍𝑛

𝐸3.5              n ∈ [4; 5]     (I.6) 
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From equation (I.6), we can observe that the photoelectric effect is more likely when 

the energy of the photon is low and the atomic number Z of the medium is high. For detection 

purposes, it will be interesting to choose materials with a high Z. 

I.4.3.b Compton scattering 

Compton scattering is an inelastic process, which means that the incident photon at γ-

511 keV loses some of its energy. During this process, a photon γ provides part of its energy 

to an electron weakly bound to its nucleus. This electron is extracted from the atom with 𝐸𝑒 

kinetic energy, and a scattered photon is created with 𝐸𝑐 energy. 

The 𝐸𝑐 energy of the scattered photon as a function of the scattering angle is given 

according to the following formula: 

𝐸𝑐 =
𝐸γ

1+
𝐸γ

𝑚𝑒+𝑐2(1−𝑐𝑜𝑠ѳ)
        (I.7) 

where 𝑚𝑒 is the electron mass, c is the speed of light and θ is the scattering angle. 

The cross section of this interaction is given by the Klein–Nishina relationship 

[KLE19]. This indicates that the Compton effect is greater when the material is dense. 

Compton diffusion is the dominant interaction in soft tissues (major tissues of the body) for 

energies between 40 keV and 10 MeV [GAG92]. 

σCompton(𝐸) ∝
ρ

𝐸γ
      𝐸 > 100 𝐾𝑒𝑉     (I.8) 

I.4.3.c Rayleigh scattering 

Rayleigh scattering is a coherent (elastic) process, which means that the incident 

photon is deflected without energy loss. This effect concerns photons of low energies that 

pass near electrons strongly bound to the atom. In this case, the electron is not ejected from 

the atom, and the energy transfer to the atom is negligible. 

The cross-section of this interaction increases with the square of the atomic number Z 

and the density of the medium. However, this decreases the energy of the incident photon 

(equation (1.10)). In the energy ranges around the photons at γ-511 keV, this effect is 

negligible in biological tissues and detection systems compared to the photoelectric effect and 

Compton diffusion. 
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σ𝐑𝐚𝐲𝐥𝐞𝐢𝐠𝐡(𝐸) ∝
ρ𝑧2

𝐸γ
      (I.9) 

Table I.2 gives the linear attenuation coefficients at 511 keV for photoelectric and 

Compton scattering effects for three of the main detection crystals used in PET (BGO, LSO, 

GSO) and for the main biological tissues. 

Table I.2: Table showing linear attenuation coefficients at 511 keV for each of the 

photoelectric and Compton interactions for the main biological tissues and the three main 

detection crystals used in PET: bismuth germanate (BGO), lutetium oxyorthosilicate (LSO) 

and gadolinium oxyorthosilicate (GSO) [PHE06][KNO08]. 

Materials Soft tissue Bone BGO LSO GSO 

µPhotoelectric (cm-1) 0,00002 0,001 0,4 0,3 0,18 

µCompton (cm-1) 0,096 0,169 0,51 0,58 0,46 

µTotal (cm-1) ∼ 0,096 0,17 0,96 0,88 0,7 

 

I.4.4 Detection process 

The role of a PET system is to detect γ-511 keV photons that have left the patient or 

phantom. The material used at the entrance of the detection chain must therefore have the 

ability to stop γ photons while maintaining an energy of approximately 511 keV. It is 

preferable that the photoelectric µP ratio/µCompton is also as high as possible. Indeed, the 

photoelectric effect corresponds to a complete local energy deposit, while Compton scattering 

can generate multiple interactions with neighboring detection elements, leading to difficulties 

in locating the interaction [CHE12]. Figure I.5 illustrates all the elements that make up the 

conventional detection chain used in PET. 

 

Figure I.5: Diagram showing the main components of the detection chain of a standard PET 

scanner. 
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I.4.4.a Detection crystals: scintillator 

The scintillation crystals constitute the first element in the detection chain. These 

scintillators are usually arranged in crystals of small dimensions and aim to convert incident 

gamma photons into luminous photons. The emission of these luminous photons is isotropic 

and directly proportional to the amount of energy deposited by incident photons at γ-511 keV 

[KNO99]. The shape of a crystal is most often a parallelepiped with an entrance face of 

square section and small dimensions (in the order of a millimeter in preclinical PET). These 

geometric characteristics aim to optimize the detection sensitivity while preserving good 

spatial resolution. The luminous photons are then captured by photomultiplier tubes, the 

second element of the detection chain. 

Scintillators are characterized mainly by their density ρ (directly related to the 

stopping power of photons at γ-511 keV), their conversion efficiency η of photons at γ-511 

keV into luminous photons, the time τ necessary for the emission of light photons after the 

energy deposition of γ-511 keV photons, the wavelength range of the emitted light and the 

transparency of the scintillating crystal. Table 1.3 summarizes the characteristics of the major 

crystals currently used in PET imaging. 

Table 1.3: The main characteristics and parameters associated with three of the main 

scintillating crystals used today in clinical and preclinical PET [KNO99]. Some parameters 

may vary depending on the crystal purity, temperature, pressure, and ambient humidity. 

Crystals scintillators   BGO LSO GSO 

Density ρ (g.cm-3) 

 

7,13 7,4 6,71 

Efficiency η (photons/511 keV) 

 

4200 13000 4600 

Decay τ (ns) 

 

300 ∼ 40-50 ∼60 

Linear attenuation µ(511 keV) (cm-1) 

 

0,96 0,88 0,7 

Ratio Photoélectric/Compton   0,78 0,52 0,35 

 

I.4.4.b Light guide 

After interactions occurred within the crystals, the light signal must be transported to 

PhotoMultiplier Tubes (PMTs), the next step in the detection chain. An optical guide for a 

refractive index close to that of the crystals is interposed between the crystals and the PMT. 

The dimensions of this guide are carefully chosen to fit the shape of the PMT input interface. 
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I.4.4.c Photomultiplier tubes 

The majority of PET systems use photomultiplier tubes (PMTs) (Figure I.6) as 

converters of light photons into electric current [HAM94], although there are now other 

systems, such as SiPM modules from APD technologies ("Avalanche PhotoDiode", [REN02]) 

[SCH08]. The light from the optical guide is transmitted through the entrance window of the 

TPM, and the photocathode is excited (Figure I.6). The photocathode consists of a very fine 

material capable of releasing the maximum number of electrons via the photoelectric effect 

from the incident light energy. The probability that a bright photon releases an electron, called 

the quantum efficiency, is related to the overall sensitivity of the PMT. 

 

Figure I.6: Diagram of a photomultiplier tube (PMT). 

A strong difference in potential accelerates the electrons thus formed on the 

photocathode and directs them to the first dynode after focusing. The electrons deposit their 

energy on this dynode, which in turn generates some electrons (from 3 to 5 secondary 

electrons per incident electron). The ratio between the number of secondary electrons emitted 

and the number of incident electrons is called the secondary emission coefficient𝜌. These 

secondary electrons are directed to another dynode, where they in turn generate new 

secondary electrons. This process continues through the application of increasing electrical 

potential between subsequent dynodes. Generally, a PMT consists of 10 to 15 dynodes, and 

the last step is repeated 10 to 15 times. The set of electrons leaving the last dynode is 

collected by the anode, and a measurable electrical signal proportional to the number of 

incident light photons is thus created. The gain G (or amplification) of the PMT is given by 

the following relation (1.12): 
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G = ρn         (1.10) 

where n is the number of dynodes. Typically, the gain of a TPM is between 105 and 

108. 

After processing and corrections (calculation of the energy of incident photons, 

elimination of low-energy photos, etc.), the signal leaving the PMT is stored as a digital 

signal. 

I.4.5 Coincidence events 

The first step is to apply an energy window with low and high thresholds to eliminate 

the maximum number of scattered photons and high-energy photons. The high threshold also 

eliminates stack-up effects, during which several photons deposit energy almost 

simultaneously in the same block of crystals, leading to a detection greater than 511 keV. 

Each of the photons-γ thus discriminated is called a single event. 

The temporal coincidence then consists of matching the detected photons. When a 

photon (1st single event) is recorded by the system, a window of a few nanoseconds is 

opened. If a photon is detected in this time interval (2nd single event), it is considered that it 

is the second photon related to annihilation; thus, a coincidence is recorded within the LOR 

associated with the crystal couple involved. 

 

FIGURE I.7: Different types of coincidences. 

The following different types of coincidences could be recorded: 
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 I.4.5.a True coincidences 

A true coincidence corresponds to the detection of the two photons-γ of annihilation, 

which has undergone no diffusion in the object medium (Figure I.7.1). The LOR is overlaid 

with the direction of the annihilation photons and thus provides relevant information on the 

localization of the radiopharmaceutical. True coincidences are the signals to be reconstructed. 

The number of true coincidences NT is proportional to the activity A0 of the source: 

I.4.5.b Scatter coincidences 

A scattered coincidence corresponds to a coincidence of the two photons-γ of an 

annihilation in which at least one has undergone one or more successive Compton diffusions 

in the object medium (Figure I.7.2). The energy of these photons is therefore less than 511 

keV, and their trajectory is modified. The scattered coincidence rate recorded during a scan is 

proportional to the activity and depends on the energy resolution of the detectors, the energy 

window and the external shielding of the PET system. 

In this case, the LOR is no longer overlaid with the place of annihilation, and the 

location information of the radiopharmaceutical is incorrect. An overestimation of the activity 

in the imaged volumes (especially in the regions without or low activity), a decrease in the 

contrast in the image and a decrease in spatial resolution were observed in this case. 

I.4.5.c Random coincidences 

Random coincidences correspond to the coincidence of photons-γ from two different 

annihilations (Figure I.7.3) without considering any scattering. 

In this case, there are two distinct decays, and the associated LOR has no connection 

with the actual location of annihilation. The location information of the radiopharmaceutical 

is also erroneous, resulting in an increase in the general background noise that degrades the 

restitution of the different contrasts. 

The number of random coincidences 𝑁𝑅𝑎𝑛𝑑𝑜𝑚 for a source activity A0 is estimated by 

the relationship: 

𝑁𝑅𝑎𝑛𝑑𝑜𝑚 = 2𝜏 ∗ (𝑁𝑠𝑖𝑛𝑔𝑙𝑒
𝐴 . 𝑁𝑠𝑖𝑛𝑔𝑙𝑒

𝐵 ) ∝  𝐴0
2
      (I.11) 
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With: 

𝑁𝑠𝑖𝑛𝑔𝑙𝑒
𝐴 = 𝐴0. 𝛺𝐴. 𝜀𝐴 and 𝑁𝑠𝑖𝑛𝑔𝑙𝑒

𝐵 = 𝐴0. 𝛺𝐵 . 𝜀𝐵     (I.12) 

 

With: 

 2𝜏 is the duration of the time window in seconds. 

 𝑁𝑠𝑖𝑛𝑔𝑙𝑒
𝐴 and 𝑁𝑠𝑖𝑛𝑔𝑙𝑒

𝐵 are the single events recorded in detectors A and B, 

respectively. 

 𝛺𝐴/𝐵 are the solid angles of detectors A and B, respectively. 

 𝜀𝐴/𝐵 are the efficacies of detectors A and B, respectively. 

To minimize the random coincidence rate, we try to decrease the size of the time 

window. In practice, efforts will also be made to minimize the activity of the 

radiopharmaceutical while preserving metabolic information. 

I.4.5.d Multiple coincidences 

A multiple coincidence corresponds to a coincidence of more than two annihilation 

photons-γ (Figure I.7.4). There are therefore at least two distinct decays, and no LOR can be 

directly obtained. 

A first solution to treat this type of coincidence is to not take into account any of the 

detections and therefore not consider this type of event. Conversely, all detections can be 

taken into account to form all possible coincidences. In the case of three-photon detection, as 

in our example, there will be three distinct coincidences, of which at least two will be 

associated with coincidences. Finally, it is also possible to keep only the two detections 

associated with the most energetic radiation and thus form a single coincidence. 

I.4.6 Data storage 

Events detected coincidentally were recorded in binary format on a computer 

connected to the PET system. There are three storage formats: list mode, full histogram, and 

sinogram [CHER12]. 

I.4.6.a List-mode  

This format contains all the information accessible from the detection chain, without 

any compression. We can generally find the energies, times and indices of the detection 

crystals associated with the two photons γ relative to the LOR considered. Each line of this 
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binary contains information about coincidence events. In practice, several tens of gigabytes 

(GB) can be exceeded for acquisitions with very high statistics. With this format, the user has 

all the information accessible from the measurement and can thus use all types of 

reconstructions offered by the machine or even use its own reconstruction algorithms. 

I.4.6.b Full histogram 

The full histogram format is a compressed format that contains only the number of 

coincidences detected in the LOR. In practice, the binary file associated with this format is of 

constant size and depends only on the total number of possible theoretical LORs of the PET 

system under consideration. 

I.4.6.c Sinogram 

A sinogram is a compressed format of the data that allows visualization of all the 

coincidences recorded as image matrices (2D or 3D). It is defined as a regular sampling of 

space according to a coordinate system dependent on the angle and distance of the LOR from 

the center of the tomograph (Figure I.8). 

 

Figure I.8: Schema explaining the creation of a sinogram [MOR19]. 

Let us consider an activity distribution f(x, y) in a two-dimensional object and the 2D 

graph s(u, Φ) associated with the transverse plane perpendicular to the detector axis, called 

the slice. To locate an LOR in this plane, the cylindrical coordinates u and Φ correspond to 

the distance of the LOR from the center of the tomograph and the angulation angle from the 

horizontal axis x (azimuth angle), respectively. 
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The projections p (u, Φ0) are expressed according to equation (1.13): 

𝑝( µ, Φ0) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑣 =  ∫ 𝑓(𝑢. cos Φ0 − 𝑣. 𝑠𝑖𝑛Φ0,   𝑢. 𝑠𝑖𝑛Φ0 + 𝑣. 𝑐𝑜𝑠Φ0)𝑑𝑣
+∞

−∞

+∞

−∞
        (1.13) 

Each line of a sinogram represents the entire LOR associated with the same azimuth 

angle Φ, and the position on this line corresponds to the distance u of the LOR considered. 

The total of the projections according to the set of angles Φ then represents the sinogram s(u, 

Φ) of the considered section. 

A pixel of the sinogram corresponds to an LOR between two pairs of elementary 

detectors, and each event is detected in coincidence increments by one unit of the value of this 

pixel. 

A PET system with N detection rings can generate N direct sinograms in 2D mode, 

one sinogram for each ring and N2 sinograms in 3D mode. 

In practice, the sinogram is the most commonly used tool in clinical and preclinical 

practice because it allows simplified visualization of the data before the reconstruction step. 

However, its use is less flexible than that of the list-mode format or the full histogram because 

irreversible approximations are made before reconstruction. 

I.5 Algorithms used in medical image reconstruction 

Medical image reconstruction algorithms play a crucial role in transforming raw 

imaging data into meaningful diagnostic images. The choice of algorithm depends on the 

imaging modality, the specific application, and the trade-offs between speed and image 

quality. The following are some commonly used algorithms in medical image reconstruction: 

 Filtered Back Projection (FBP): FBP is a traditional algorithm used in X-ray 

computed tomography (CT) and single-photon emission computed tomography 

(SPECT). It works by applying a filter to the projections and then back-projecting 

them to reconstruct the image. However, because of its speed, FBP may not handle 

complex data such as MRI or PET scans well [KAK01]. 

 Iterative Reconstruction: These methods iteratively update an initial estimate of the 

image until it converges to a solution. Variants include the Expectation-Maximization 

(EM) algorithm and Maximum Likelihood (ML) algorithms. Iterative reconstruction is 

commonly used in PET and SPECT imaging [ZEN10]. 
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 Radon Transform: The Radon transform is central to CT image reconstruction. It 

mathematically describes how X-ray projections relate to the original image, forming 

the basis for FBP and iterative methods in CT reconstruction [KAK01]. 

 Filtered Iterative Reconstruction: Combining FBP and iterative techniques, these 

algorithms filter projection data before using an iterative approach. They aim to 

improve image quality, particularly on CT images [ZEN10]. 

 Algebraic Reconstruction Techniques (ART): ART is an iterative reconstruction 

technique used in CT and emission tomography. Image pixels are updated in parallel 

based on the discrepancies between the measured and estimated projection data 

[KAK01]. 

 Statistical reconstruction: In emission tomography (such as PET and SPECT), 

statistical reconstruction algorithms take into account the Poisson statistics of the 

photon counts. Maximum Likelihood Estimation (MLE) and Ordered Subsets 

Expectation Maximization (OSEM) are commonly used in this context [SHE82] 

[ZEN10]. 

 Model-Based Reconstruction: These methods use mathematical models to describe 

the physics of the imaging process. They are used in various modalities, including 

MRI and PET, to account for artifacts and improve image quality [FES20]. 

 Dictionary Learning: In MRI reconstruction, dictionary learning techniques aim to 

find sparse representations of images in a dictionary. These methods can lead to 

compressed sensing and accelerated MRI acquisition [ELA10]. 

 Machine Learning-Based Reconstruction: Deep learning techniques, including 

Convolutional Neural Networks (CNNs), have been applied to medical image 

reconstruction tasks, showing promise in tasks such as denoising, artifact reduction, 

and superresolution [ZHU18]. 

 Filtered Sinogram Reconstruction: Used in various modalities, including CT, this 

approach applies filtering in the sinogram domain before backprojection, aiming to 

reduce artifacts and improve image quality [FES20] [KAK01]. 

The choice of algorithm depends on the specific imaging modality, the type of data 

acquired, and the trade-offs between speed, image quality, and computational resources. 

Advances in computer technology and the adoption of machine learning techniques have led 

to significant improvements in medical image reconstruction in recent years. 
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Several open-source software tools and libraries are available for PET image 

reconstruction. These tools can be valuable for researchers and institutions looking to develop 

and customize PET reconstruction algorithms. Some of these open-source PET reconstruction 

software programs include the following: 

 STIR (Software for Tomographic Image Reconstruction): STIR is an open-source 

reconstruction toolkit designed for PET and SPECT. It offers a range of reconstruction 

algorithms, including filtered back projection, expectation-maximization, and OSEM 

(Ordered Subsets Expectation-Maximization). STIR is widely used in the PET 

community and provides flexibility for algorithm development. 

 PETPVC: PETPVC is an open-source software package for partial volume correction 

(PVC) in PET imaging. It is designed to improve the quantitative accuracy of PET 

data by correcting for partial volume effects. PVC is an important step in the image 

reconstruction process for PET. 

 OSEM++: OSEM++ is an open-source software tool for PET image reconstruction 

that focuses on the OSEM algorithm. It was developed as a research project and can 

be used to implement and experiment variations of the OSEM algorithm. 

 PyPET: Python for PET image reconstruction: PyPET is an open-source Python 

library that provides tools for PET image reconstruction and analysis. It offers various 

reconstruction algorithms, including MLEM (Maximum Likelihood Expectation-

Maximization) and OSEM, along with image analysis capabilities. 

These open-source tools and libraries offer flexibility and customization options for 

PET image reconstruction, making them valuable resources for researchers and institutions 

working in the field of medical imaging. You can explore and choose the one that best fits 

your specific needs and research objectives. 

STIR is one of the most common software programs used by the scientific community. 

Below, we provide some details about this software. 

I.5.1 STIR software 

STIR, software for tomographic image reconstruction, is an open-source software 

library used for reconstructing tomographic images in various fields, primarily in the medical 

imaging domain. It is widely used for positron emission tomography (PET) and single-photon 
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emission computed tomography (SPECT) image reconstruction, but it can also be applied to 

other tomographic imaging modalities [THI12]. 

The following are some key points about STIR: 

 Open-Source: STIR is an open-source project, which means that the source 

code is freely available to the public. This encourages collaboration and 

development by the user community. 

 Purpose: STIR is designed for the reconstruction of 2D and 3D images from 

projection data acquired through various imaging techniques, with a primary 

focus on positron emission tomography (PET) and single-photon emission 

computed tomography (SPECT).  

 Functionality: A range of reconstruction algorithms, including analytical 

methods such as filtered back-projection, as well as iterative algorithms such as 

OSEM (ordered subset expectation maximization) and MLEM (maximum 

likelihood expectation maximization), are available. 

 Applications: STIR is utilized primarily in the field of nuclear medicine, 

specifically for the reconstruction and analysis of PET and SPECT images. It 

facilitates the accurate visualization and quantification of biological processes 

within the human body, aiding in the diagnosis and treatment of various 

diseases. 

 Data Processing: Data processing provides tools for calibrating and performing 

corrections on acquired data, such as normalization, attenuation correction, 

scatter correction, and random estimation. 

 Data Formats: STIR supports various data formats commonly used in medical 

imaging, including Interfile, ECAT, and DICOM formats. 

 Platform compatibility: STIR is typically available for Unix-based systems 

(Linux, mac, OS) and can also be compiled on Windows with some effort. 

 Community and Documentation: STIR has an active user and developer 

community. Comprehensive documentation, including user guides and API 

(Application Programming Interface) references, is available to help users 

understand and utilize the software effectively. 
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 Other applications: Beyond medical imaging, STIR can be adapted for other 

tomographic imaging techniques, such as industrial nondestructive testing, 

geophysics, and materials science. 

The STIR is a versatile and powerful tool for researchers, physicists, and engineers 

working with tomographic image reconstruction. It offers a flexible framework for 

experimenting with different algorithms and techniques to obtain high-quality reconstructed 

images from raw projection data [WWW03]. 

Below is how STIR is typically used: 

 Data Acquisition: STIR is used to acquire projection data from images. It can also be 

employed when projection data are acquired using a tomographic imaging system. 

These data consist of multiple 2D views or projections taken from different angles 

around the object of interest. 

 Data Preprocessing: Before reconstruction, the acquired projection data may require 

preprocessing, which includes normalization, correction for attenuation (the 

absorption of radiation in tissues), scatter correction (accounting for scattered 

radiation), and random estimation (to correct for random coincidence events in PET). 

 Image reconstruction: STIR is subsequently used to reconstruct a 2D or 3D image 

from the preprocessed projection data. It employs various algorithms, including 

iterative methods such as ordered subset expectation maximization (OSEM) or 

maximum likelihood expectation maximization (MLEM), to generate the 

reconstructed image. 

 Image quality improvement: Reconstructed images may require postprocessing to 

enhance image quality, remove noise, and apply filters or other techniques for optimal 

visualization and interpretation. 

 Clinical and Research Applications: The reconstructed images have applications in 

both clinical and research settings. In clinical practice, they are used by physicians for 

diagnosis and treatment planning. In research, these images can be analyzed for 

scientific investigations, and new algorithms can be developed and tested. 

 Software Development: STIR also serves as a valuable resource for software 

developers and researchers who wish to develop image reconstruction algorithms, as it 

provides an open-source platform for experimentation and testing. 
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 Educational and Training Purposes: Educational institutions and medical facilities 

often use STIR as a teaching tool to instruct students and train professionals in the 

principles of tomographic image reconstruction. 

 Collaboration and customization: The STIR can be customized and adapted for 

specific research and clinical requirements. It also allows for collaboration between 

researchers and developers in the field of tomographic imaging. 

In summary, STIR is used to process raw projection data from various tomographic 

imaging modalities, apply corrections and normalization, and reconstruct high-quality 

2D or 3D images. These reconstructed images are vital for clinical diagnosis, 

treatment planning, and medical research, making STIR an essential tool in the field of 

medical imaging. 

I.6 Softwares used for visualizing and analyzing medical images 

There are several software options available for visualizing medical images, and the 

choice of software often depends on the specific type of medical image data and the desired 

functionality. The following are some popular software tools for medical image visualization: 

3D Slicer: As mentioned earlier, 3D Slicer is an open-source platform designed for 

medical image analysis, visualization, and 3D reconstruction. It is a versatile tool for various 

imaging modalities. 

 OsiriX: OsiriX is a popular medical image viewer and postprocessing software 

primarily used in the field of radiology. It offers advanced features for viewing and 

analyzing DICOM images. 

 MITK (Medical Imaging Interaction Toolkit): MITK is an open-source platform for 

the development of medical image analysis applications. It provides visualization and 

processing tools for various imaging modalities. 

 ImageJ: ImageJ is a widely used open-source image processing program that can be 

extended with plugins to support various medical image formats and analyses. 

 ITK-SNAP: ITK-SNAP is an open-source software application for segmenting and 

visualizing 3D medical images. It is particularly useful for tasks such as image 

segmentation and region-of-interest analysis. 

 Mango: Mango is a simple, free software tool for viewing and working with medical 

images, particularly for brain imaging studies. It supports various file formats and 

basic image manipulation. 
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 Horos: Horos is an open-source DICOM viewer for medical images, and it is an 

offshoot of OsiriX. It is known for its user-friendly interface and broad platform 

support. 

 Aeskulap: Aeskulap is an open-source DICOM viewer that offers basic image 

viewing and manipulation features. 

 MIPAV (Medical Image Processing, Analysis, and Visualization): MIPAV is an 

open-source image analysis and visualization software developed by the National 

Institutes of Health (NIH). It supports various medical image formats and provides 

tools for image processing. 

 3D-DOCTOR: 3D-DOCTOR is a commercial medical imaging software that offers 

advanced tools for image processing, 3D rendering, and visualization. 

These software tools vary in terms of their capabilities, complexity, and intended use 

cases. It is important to select the one that best suits your needs, considering factors such as 

the type of medical imaging data you work with and the specific analysis and visualization 

tasks you want to perform. 

Below, we provide the detailed features of the 3D slice software used in this study. 

I.6.1 3D slicer software 

3D Slicer is a free, open-source software platform used for medical image analysis, 

visualization, and 3D image reconstruction. It is primarily designed for the healthcare and 

medical research communities and provides a wide range of tools and features for working 

with medical imaging data (Figure I.9) [FED12]. 
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Figure I.9: General view of a 3D slicer. 

The following are some key aspects and features of 3D Slicer: 

 Image analysis: 3D Slicer can load and manipulate various types of medical imaging 

data, such as MRI, CT, ultrasound, and PET scans. It offers tools for image 

registration, segmentation, and visualization. 

 3D Visualization: The software allows users to create 3D visualizations of medical 

images, making it particularly useful for surgical planning, anatomical studies, and 

education. 

 Image Registration: 3D Slicer can align and register multiple medical images or 

image volumes, which is essential for tasks such as fusing MRI and CT scans. 

 Segmentation: Users can perform manual or automated segmentation of structures 

and regions within medical images. This approach is valuable for defining regions of 

interest and conducting quantitative analyses. 

 Volume Rendering: The software offers volume rendering capabilities to visualize 

medical data in 3D, providing detailed, anatomical context. 

 Extension Support: 3D Slicer is highly extensible, and users can enhance its 

functionality by installing various extensions and plugins, which cover a wide range of 

medical image analysis tasks. 

 Research and Clinical Applications: 3D Slicer is widely used in both research and 

clinical applications, such as image-guided surgery, radiation therapy planning, and 

neuroimaging studies. 
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 Community and Support: It has an active and supportive user community, making it 

a valuable resource for those working with medical image data. There are user forums, 

documentation, and tutorials available to assist users. 

 Open Source: 3D Slicer is open-source, which means it is freely available for anyone 

to use, modify, and distribute. This open nature has contributed to its popularity in the 

medical imaging field. 

3D Slicer is widely used in medical research, healthcare institutions, and educational 

settings. It provides a versatile platform for a wide range of medical image analysis tasks, 

from basic image viewing to advanced research applications. 

I.7 Phantoms 

 There are two types of phantoms, physical phantoms, which can be used for 

experimental measurements, and digital phantoms, which can be used in calculation codes. 

I.7.1. Physical phantom 

 The phantoms used in these measurements are generally composed of tissue-

equivalent materials and are often equipped with dosimeters for performing measurements. 

More than 27 physical phantoms exist; the Rando-Alderson phantom is one of the most 

frequently used phantom in medical applications. It consists of three types of tissue: soft 

tissue, bone and lungs [XU14]. 

I.7.2. Numerical phantoms 

 Digital phantoms are essentially geometric models that present the internal and 

external anatomical characteristics of the human body. Since 1960, approximately 121 

mathematical phantoms [XU14] have been reported in the literature for studies involving 

ionizing and nonionizing radiation. An important part of the literature on medical imaging is 

related to the development and application of these phantoms. The organs and surfaces of 

digital phantoms are defined by several geometric modeling techniques, quadric equations, 

voxels, and deformable surfaces called NURBS (non-Uniform rational basis splines), to adjust 

the shape of each organ in the desired way (respiratory movement, etc.). 
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I.7.3 Geometric modeling techniques for numerical phantoms 

 For radiation imaging and dosimetry, a phantom must define the surface of an organ in 

which radiation interactions and energy deposits must be calculated. Clearly, the construction 

of such phantoms must take into account several factors, such as anatomy, radiosensitivity, 

computational efficiency and geometric compatibility, with a Monte Carlo code [XU14].  

Two general methods of solid geometry modeling have been widely developed by the 

computer graphics community (CAD): constructive solid geometry (CSG) and Boundary 

REPresentation (BREP) [XU14]. 

 CSG: Creates a solid object using Boolean operators to combine very simple objects 

called primitives. Examples of these primitives include cubes, cylinders, prisms, pyramids, 

spheres, cones and ellipsoids, which are surfaces that are easily described by quadric 

equations. Moreover, CSG representations are easy to adopt and can work well when objects 

are relatively simple in shape. 

In BREP, there are two types of information: topological and geometric. Topological 

information provides relationships between vertices, edges, and faces. In addition to 

connectivity, topological information also includes edge and face orientations. There is more 

advanced modern BREP-based software where information outside of an object is defined as 

NURBS. For these models, the surfaces are very smooth, and the faces are represented as 

polygons with vertices defined by a set of values of coordinates x, y and z. A polygonal mesh 

or unstructured grid is a collection of vertices and polygons that define the geometric shape of 

a polyhedral object. In principle, NURBS and polygonal meshes are interchangeable BREP 

data structures. 

Unlike the CSG representation, the BREP representation is much more flexible 

because a better set of operating tools is available. These features allow BREP-based 

phantoms to include very complex anatomical features. In addition, the BREP technique is 

ideal for determining the extent of surface deformation, which is necessary for adjusting 

organ size and for simulating organ movements [XU14]. 

 For example, in Figure I.10 below, the left lung can be represented in the CSG method 

as "half an ellipsoid with a section removed". These surface equations are computationally 

efficient and are accepted by almost all Monte Carlo codes. However, even with complicated 
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and carefully designed Boolean operations such as this, phantoms based on quadric surfaces 

are not anatomically realistic in terms of geometry. 

  

 

Figure I.10 The left lung was defined by different modeling techniques. (a) A mathematical 

lung model using the CSG method before and after a Boolean operation is performed to 

remove a section of ellipsoid B from A. (b) A CSG method involving a group of rigid voxels 

with anatomical detail dependent on voxel size. (c) Representation of the lung based on 

voxels. (d) A type of BREP method involving a polygonal mesh that is easy to deform 

anatomically accurately [XU14]. 

I.7.4. Different Digital Phantoms 

I.7.4.a. Analytical phantoms 

 Analytical phantoms are modeled by the CSG method, which represents human 

anatomy by simple geometric shapes. An example of these phantoms most commonly used in 

dosimetry is the one described in [CRI87], which developed the ORNL series (Oak Ridge 

National Laboratory). This series or “family” of phantoms consisted of an adult male; a 

newborn; and individuals aged 1, 5, 10 and 15 years and adults. These phantoms also 

represented an adult woman with additional anatomical characteristics. Each phantom is 

composed of three types of tissue with distinct densities: bone, soft tissues and lungs. They 

were defined analytically in three main geometric sections, as illustrated in Figure (1.11.a): an 

elliptical cylinder representing the arms, chest and hips; a truncated elliptical cone 

representing the legs and feet; and an elliptical cylinder representing the head and neck. 

Figure (I.11.b) shows the skeleton, internal organs and tissues. An image of the “family” is 

shown in Figure I.11.c. 
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 The simple geometry of these phantoms makes Monte Carlo calculations faster than 

with more complex phantoms. Mathematical phantoms have been used for applications in 

medical imaging, nuclear medicine and radiation protection [NCR96][ICR92]. 

 

Figure I.11: Analytical phantom. (a) External view of an adult male. (b) Skeleton and internal 

organs. (c) Representation of individuals of both sexes and different ages. (d) Cross-sectional 

view of the phantom for a 9-month pregnant woman [XU14]. 

I.7.4.b Voxelized phantoms 

 Voxelized phantoms are fundamentally different from analytical phantoms. A 

tomographic image dataset consists of several slices, each displaying a two-dimensional (2D) 

pixel map of the anatomy. The 3D volume of a voxel is measured by multiplying the pixel 

size by the thickness of an image slice. Unlike analytical phantoms, which are based on 

quadratic surface equations, a voxelized phantom contains a large number of small cubes 

grouped together to represent different anatomical structures. However, quadratic surface 

equations and voxels belong to the same class of geometries. 

Creating a voxelized phantom involves four general steps: 
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 Acquire a set of tomographic images (e.g., CT, MR, or anatomical photograph) that 

cover the entire body volume; 

 Identify organs or tissues of interest (e.g., lungs, liver, skin, etc.) from the original 

image by assigning each pixel an identification number; 

 Specify density (for example, soft tissue, hard bone, air, etc.); 

 Save segmented image slices in a 3D volume that can be used for 3D visualization (for 

anatomical structure verification) and Monte Carlo calculations. 

 [LEE06] analyses the difference in results between the use of mathematical phantoms 

and voxelized phantoms: dose differences of up to 115% for some organs were observed. 

These parameters are explained by geometric approximations in mathematical phantoms as 

relative positions of organs and geometric shape. Several types of voxelized phantoms have 

been created, such as the phantoms developed by [ZUB92] (phantom ZUBAL), [KRA03] 

(phantom MAX and FAX), [XU00][XU05] (VIP-MAN phantom), [LEE05] (pediatric VIP 

series: 9 months, 4, 8, 11 and 14 years), and [ZHA03] (VCH phantom). 

 For these phantoms, the reference values given by the International Commission on 

Radiological Protection publications 89 [ICR02] and [ICR93] are used to define the mass, 

dimensions and materials of these phantoms. 

I.7.4.c Hybrid phantoms 

 Voxelized phantoms and their posture and size are difficult to modify. These 

phantoms are modeled by the BREP technique [XU14], which is why hybrid phantoms have 

been developed. In these phantoms, the contours of the organs are expressed by the NURBS 

surfaces. Once the desired geometry is obtained, the phantom can be voxelized into its new 

shape. 

Paul Segars of Duke University used NURBS-based techniques to create the first 

hybrid phantom. The well-known NCAT phantom was developed from CT images and was 

subsequently extended into the 4th dimension to model cardiac and respiratory movements 

[SEG01]. The 4D NCAT phantom offers a more realistic model of anatomy, the cardiac 

system, and respiratory motion [SEG02]. 4D NCAT has been widely used in nuclear medicine 

imaging research. The NCAT phantom design also served as the basis for the development of 

a 4D digital mouse phantom named MOBY [SEG04] and, ultimately, the 4D XCAT whole-
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body hybrid phantom [SEG10]. This phantom was used in our study; it will be described in 

more detail in chapter II. 

Figure I.12 shows the original phantom of MIRD with the phantoms MCAT, NCAT, XCAT, 

MOBY and ROBY provided by Paul Segars. 

 

Figure I.12: Comparison between the first-generation MIRD analytical phantom and the 

MCAT, NCAT, XCAT, MOBY and ROBY hybrid phantoms provided by Paul Segars 

[XU14]. 

I.8 Principal component analysis  

In the medical diagnosis process, digital medical images are processed and analyzed to 

provide meaningful and reliable information to physicians. These images can be analyzed 

using different methods, such as principal component analysis (PCA), which is considered an 

efficient method. PCA is a statistical method that has been identified as one of the most 

powerful techniques for image recognition and compression. Its main goal is to reduce the 

large dimensionality of the data space (observed variables) to a smaller essential 

dimensionality of the feature space (independent variables). The method is based on a 

mathematical procedure for extracting relevant information by calculating the eigenvalue 

decomposition (EVD) of a data covariance matrix or singular value decomposition (SVD) of a 

data matrix. 

Historically, the use of PCA dates back to the beginning of the last century through the 

work of Pearson [PEA01]. It was originally used as a tool for detecting outliers by projecting 

the data on the different factorial axes and calculating the distances from these axes. The use 

of PCA in this way is not very practical since an operator must view the projections to make a 
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decision on the presence of outliers. In 1933, PCA was developed by Harold Hotelling and 

named the Hotelling transform [HOT33]. 

Depending on the application domain, PCA is also known as the Hotelling transform 

or discrete Karhunen–Loève transform (KLT) in signal processing [GHA91] and Singular 

Value/EigenValue Decomposition (SVD/EVD) in numerical analysis. 

Since PCA is a well-known and powerful technique for feature extraction and 

dimension reduction, it has been widely used in data analysis and data compression. In the 

medical image domain, it is used in a wide range of applications, such as image fusion, 

segmentation, image registration, feature extraction, compression and classification. In the 

following paragraph, we will cite some works about the applications of PCA in the area of 

nuclear medicine. 

In nuclear medicine, PCA has proven to be useful for discriminating between patients 

with dementia of Alzheimer type and asymptomatic controls [FRI93][HAB08][SCA04]. It has 

also been used to perform the fusion of CT-MRI and MRI images through the works of 

Vijayarajan & Muttan [VIJ15]. 

I.8.1 Definition 

Principal component analysis (PCA) is a multivariate statistical method aimed at 

structuring and summarizing information. This method consists in transforming variables 

correlated to each other into uncorrelated variables called principal components. In dynamic 

image sequences, PCA allows to summarize and transform the content of a sequence of 

images indexed by time into a small number of images. The first images obtained represent 

the linear transformation of the original variables which contains the highest variance. The 

second images are also linear combinations of the original data which contains as much of the 

remaining variance as possible, and so on [PEA01]. 

Numerically, the data of the dynamic frames could be represented in the matrix Z, 

where each line contains the values of the pixels of each frame taken over the time. 

Z = [

z1,1 ⋯ z1,n

⋮ ⋱ ⋮
zm,1 ⋯ zm,n

]       (I.14) 

 

https://en.wikipedia.org/wiki/Harold_Hotelling
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Before applying the PCA, we transform the matrix Z using the following pretreatment 

procedure: 

xij = (zij − zj)/sj        (I.15) 

where 

 𝑧𝑖𝑗 and 𝑥𝑖𝑗 are the original and final values, respectively, of pixel i (i=1...n) of frame j 

(j=1...,m). 

 𝑥𝑗and Sj are the mean and the standard deviation of the jth row of the original data Z 

matrix, respectively. 

Once the data are transformed, the ith principal component is calculated as follows: 

Yi =  X′ei = xi1e1i + xi2e2i + ⋯ + ximemi (i = 1,2, … , m)   (I.16) 

With: 

𝑉𝑎𝑟 (𝑌𝑖) = 𝜆𝑖 and Cov (Yi, Yj) = 0, i ≠ j      (I.17) 

ei and 𝜆𝑖  are the eigenvector and eigenvalue, respectively, and 𝜆1 > 𝜆2 > ⋯ > 𝜆2 > 0. The 

values of ei and 𝜆𝑖 were calculated using the SVD function. 

Approximately 80-90% of the total variance in the data can be attributed to the first few 

components. These components can replace the original m variables without much loss of 

information. 

I.9 18F-FDG Compartment Models 

Compartmental models for 18F-FDG (fluorodeoxyglucose) are mathematical 

representations of the distribution and kinetics of 18F-FDG in the human body. These models 

help researchers and clinicians understand how 18F-FDG is taken up, distributed, and cleared 

within tissues, which is crucial for interpreting PET images and extracting quantitative 

information about tissue metabolism. They can be used to estimate important parameters, 

such as the rate of FDG uptake in different tissues, the rate of FDG clearance from the 

bloodstream, and the metabolic activity of specific organs or tissues. This information can be 

crucial for diagnosing and monitoring various diseases, particularly cancer and neurological 

disorders. 
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In a compartmental model for 18F FDG, the body is divided into compartments, each 

representing a specific tissue or organ or state. The model describes the movement of FDG 

between these compartments over time. The basic idea is to use a system of differential 

equations to simulate how FDG is taken up by tissues, distributed throughout the body, and 

eventually cleared from the body. Different compartments may correspond to the blood, 

various organs, and other tissues of interest. 

Typically, the model includes compartments such as the following: 

1. Blood compartment: This compartment represents the FDG in the bloodstream 

and may include an arterial compartment to account for the arterial input 

function (AIF), which represents the FDG concentration in the arterial blood. 

2. Tissue compartments: These compartments represent the various tissues or 

organs under investigation, such as the brain, heart, liver, or tumors. Each 

tissue compartment has parameters that describe the uptake and clearance of 

FDG in that tissue. 

3. A compartment for excretion: This accounts for the elimination of FDG from 

the body, typically via the urinary system. 

The specific structure of the compartmental model can vary depending on the study 

and the complexity needed to accurately represent the biological processes in question. The 

model parameters are estimated from dynamic PET data, and various analysis techniques are 

used to derive meaningful information about glucose metabolism in different tissues. 

Several compartment models are used for PET imaging, including the following: 

I.9.1 Two-compartment model (one-tissue compartment model) 

The two-compartment model, or one-tissue compartment model, is a simpler version 

of the compartment models used in positron emission tomography (PET) imaging. This model 

is used to describe the distribution and kinetics of a tracer within the body. The one-tissue 

compartment model assumes a single compartment for the tissue of interest. 
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Figure I.13:  Diagram showing the two-compartments model of 18F-FDG uptake 

[WWW02]. 

In the context of 18F-FDG PET imaging, the one-tissue compartment model consists of 

two main compartments: 

Plasma Compartment: The plasma compartment represents the concentration of 18F-

FDG in the blood. 

Tissue Compartment: In this model, there is only one tissue compartment, which 

represents the concentration of the tracer within the tissue of interest. This compartment 

accounts for both the uptake and clearance of the tracer in the tissue. 

The one-tissue compartment model describes the transfer of 18F-FDG from the plasma 

compartment to the tissue compartment and its subsequent clearance from the tissue. The 

compartments are connected by two rate constants, K1 and k2. This model is governed by a 

differential equation that describes these processes. 

The basic equation for a one-tissue compartment model is as follows: 

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝐾1𝐶0(𝑡) − 𝐾2𝐶1(𝑡)        (I.18) 

 

 
𝒅𝑪𝟏(𝒕)

𝒅𝒕
 represents the rate of change of 18F-FDG concentration in the tissue 

compartment. 

 𝑪𝟎(𝒕) is the concentration of the tracer in the plasma compartment (blood). 

 𝑪𝟏(𝒕) is the concentration of the tracer in the tissue compartment. 

 𝑲𝟏: represents the rate of tracer transfer from the plasma compartment to the 

tissue compartment. It characterizes the rate of tracer uptake into the tissue. 

http://www.turkupetcentre.net/petanalysis/model_compartmental.html#k1
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 𝑲𝟐: represents the rate of tracer clearance from the tissue compartment back to 

the plasma compartment. It characterizes the rate of 18F-FDG leaving the 

tissue. 

These parameters help describe the dynamics of 18F-FDG uptake and clearance in the 

tissue of interest. Estimating these parameters from PET imaging data and plasma input 

function data allows for quantitative assessment of glucose metabolism in the tissue, in the 

case of 18F-FDG. The one-tissue compartment model provides a simplified way to assess 

tissue metabolic activity, making it a useful tool for various clinical and research applications, 

especially in oncology for tumor characterization and monitoring treatment response. 

I.9.2 Three-compartment model (two-tissue compartment model) 

The two-tissue compartment model is a mathematical model commonly used in the 

analysis of 18F-FDG PET images. This model is used to describe the distribution and kinetics 

of a tracer within the body and provides a more detailed understanding of the dynamics of 

tracer uptake and clearance compared to the one-tissue compartment model. 

 

 

Figure I.14:  Diagram showing the three-compartment model of 18F-FDG uptake [WWW02]. 

 

In the context of 18F-FDG PET imaging, the two-tissue compartment model consists of 

the following compartments: 

 Plasma Compartment: This compartment represents the concentration of 18F-

FDG in the blood. 

 First Tissue Compartment (Free or Reversible Compartment): This 

compartment represents the concentration of 18F-FDG within the tissue of 

interest, accounting for the reversible uptake and release of the tracer. 
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 Second Tissue Compartment (Irreversible or Trapped Compartment): 

This compartment accounts for the irreversible trapping of 18F-FDG within the 

tissue, representing the phosphorylated form of the tracer that cannot easily 

return to the blood. 

The two-tissue compartment model describes the transfer of 18F-FDG between the 

plasma compartment and the two tissue compartments, as well as the clearance of 18F-FDG 

from both compartments. This model is governed by a set of differential equations that 

represent these dynamic processes. 

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝐾1𝐶0(𝑡) − (𝐾2+𝐾3)𝐶1(𝑡) + 𝐾4𝐶2(𝑡)   (I.19) 

 

𝑑𝐶2(𝑡)

𝑑𝑡
= 𝐾3𝐶1(𝑡) − 𝐾4𝐶2(𝑡)    (I.20) 

where 

 𝑪𝟎(𝒕) is the concentration of the tracer in the plasma compartment (blood). 

 𝑪𝟏(𝒕) is the concentration of the tracer in the reversible compartment. 

 𝑪𝟐(𝒕) is the concentration of the tracer in the irreversible compartment. 

 K1 (influx rate constant): This parameter represents the rate of 18F-FDG 

transfer from the plasma compartment to the first tissue compartment. 

 K2 (efflux rate constant): This parameter represents the rate of 18F-FDG 

transfer from the first tissue compartment back to the plasma compartment. 

 K3 (phosphorylation rate constant): This parameter represents the rate of 

conversion of 18F-FDG in the reversible compartment to the irreversible 

compartment. 

 K4 (dephosphorylation rate constant): This parameter represents the rate of 

dephosphorylation of 18F-FDG in the irreversible compartment. 

Estimating these parameters from PET imaging data and plasma input function data 

allows for quantitative assessment of glucose metabolism in the tissue. The two-tissue 

compartment model provides a more comprehensive understanding of the dynamics of tracer 

uptake and retention within the tissue, making it a valuable tool for various clinical and 
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research applications, especially in the field of oncology for the assessment of tumor 

metabolism and treatment response. 

I.9.3 Four-compartment model (three-tissue compartment model) 

The three-tissue compartment model is an advanced mathematical model used in 

positron emission tomography (PET) imaging, particularly for studying the uptake and 

kinetics of radiolabeled tracers such as 18F-fluorodeoxyglucose (18F-FDG). This model, in 

which two tissue compartments are in parallel, is more complex and detailed than the one-

tissue and two-tissue compartment models. It provides a deeper understanding of the 

dynamics of tracer distribution, binding, and clearance within the body. 

 

Figure I.15:  Diagram showing the four-compartment model of 18F-FDG uptake [WWW02]. 

 

In the context of 18F-FDG PET imaging, the three-tissue compartment model involves 

three main compartments: 

 Plasma Compartment (Vascular Compartment): This compartment 

represents the concentration of 18F-FDG in the blood. 

 First Tissue Compartment (Free Compartment): This compartment 

accounts for the reversible uptake and release of 18F-FDG in the tissue. It 

represents the fraction of 18F-FDG that can freely exchange between the tissue 

and plasma. 

 Second Tissue Compartment (Specific Binding Compartment): This 

compartment represents the specific binding of 18F-FDG to receptors or targets 
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within the tissue, such as cell membranes or cellular structures. It accounts for 

the fraction of 18F-FDG that is specifically bound and retained within the 

tissue. 

 Third Tissue Compartment (Nonspecific Binding Compartment): This 

compartment accounts for the nonspecific binding of 18F-FDG in the tissue, 

which may include interactions with cellular components other than specific 

targets. 

The three-tissue compartment model describes the transfer of 18F-FDG between the 

plasma compartment and the three tissue compartments, as well as the clearance of 18F-FDG 

from these compartments. This model is governed by a set of differential equations that 

describe the complex dynamics of tracer uptake, binding, and clearance within the tissue. 

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝐾1𝐶0(𝑡) − (𝐾2+𝐾3 + 𝐾5)𝐶1(𝑡) + 𝐾4𝐶2(𝑡) + 𝐾6𝐶3(𝑡)    (I.21) 

𝑑𝐶2(𝑡)

𝑑𝑡
= 𝐾3𝐶1(𝑡) − 𝐾4𝐶2(𝑡)    (I.22) 

𝑑𝐶3(𝑡)

𝑑𝑡
= 𝐾5𝐶1(𝑡) − 𝐾6𝐶3(𝑡)    (I.23) 

where 

 𝑪𝟎(𝒕) is the concentration of the tracer in the plasma compartment (blood). 

 𝑪𝟏(𝒕) is the concentration of the tracer in the free compartment. 

 𝑪𝟐(𝒕) is the concentration of the tracer in the specific binding compartment. 

 𝑪𝟑(𝒕) is the concentration of the tracer in the nonspecific binding 

compartment. 

 K1 (influx rate constant): The rate of 18F-FDG transfer from the plasma 

compartment to the free compartment. 

 K2 (efflux rate constant): The rate of 18F-FDG transfer from the free 

compartment back to the plasma compartment. 

 k3 (specific binding rate constant): The rate of binding of 18F-FDG to 

specific targets in the tissue. 

 k4 (specific unbinding rate constant): The rate of release of specifically 

bound 18F-FDG from the tissue to the plasma. 
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 k5 (nonspecific binding rate constant): The rate of nonspecific binding of 

18F-FDG in the tissue. 

 k6 (nonspecific unbinding rate constant): The rate of release of 

nonspecifically bound 18F-FDG from the tissue to the plasma. 

Estimating these parameters from PET imaging data and plasma input function data 

allows for a comprehensive quantitative assessment of glucose metabolism and tracer binding 

within the tissue of interest. The three-tissue compartment model is particularly valuable for 

research and clinical applications that require a detailed characterization of tissue-specific 

interactions of radiolabeled tracers with biological targets. 

I.10 Simulation in PET 

Simulations can be used in PET to model and optimize various aspects of the imaging 

process. One common application is Monte Carlo simulations, which are used to predict the 

behavior of particles as they interact with matter. In PET, this can be used to simulate the 

interaction of the emitted positrons with the surrounding tissue, as well as the subsequent 

gamma rays that are produced during the annihilation process. 

These simulations are valuable for understanding the behavior of radiation within the 

body, optimizing the design of PET scanners, and developing new image reconstruction 

algorithms to improve the quality and accuracy of PET images. Additionally, simulations can 

aid in the development and testing of new radiotracers for specific applications. 

Here are a few areas where simulations are used in PET: 

 Image Reconstruction Algorithms: Simulations are often used to develop and test 

image reconstruction algorithms. These algorithms process the raw data collected by 

PET scanners to create detailed 3D images. Researchers simulate the data acquisition 

process to optimize and refine these algorithms. 

 Detector simulation: PET scanners use detectors to capture the radiation emitted by a 

radioactive tracer. Simulations can model how these detectors interact with radiation 

to improve their design and performance. 

 Monte Carlo simulations: Monte Carlo simulations are frequently used to model the 

behavior of radiation in the human body and the detectors. These simulations can help 

in estimating the accuracy and quality of PET images. 
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 Radiation Dose Simulation: In a clinical setting, it's important to understand the 

radiation dose delivered to the patient during a PET scan. Simulations can help 

estimate and optimize the dose to minimize risks while maintaining image quality. 

 Patient-Specific Simulations: Simulations can be used to create virtual patient 

models based on medical imaging data (e.g., CT scans) and simulate the entire process 

of a PET scan for specific patients. This is particularly useful for treatment planning 

and assessing the expected image quality in personalized medicine. 

 Phantom studies: Simulations using phantoms (specially designed objects with 

known properties) are often performed to calibrate PET scanners and validate their 

performance. 

 Motion Correction: PET scans can be affected by patient motion, especially in 

dynamic studies. Simulations can help develop and test motion correction techniques 

to improve image quality. 

These simulations are crucial for improving the accuracy and reliability of PET 

imaging, optimizing scan protocols, and reducing radiation exposure while maintaining 

diagnostic quality. They also play a role in the development of new PET technologies and 

applications. 

Conclusion: 

This chapter has provided a broad and foundational understanding of PET imaging, 

exploring its principles, historical evolution, physics, instrumentation, radiotracers, and 

algorithms that make PET imaging possible. 
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Introduction 

In this chapter, we present the methodology employed and the results obtained from the 

simulation of dynamic 18F-FDG PET images. The simulation process involves several steps, 

which are summarized in Figure II.1. 

In the following sections, we delve into the details of these steps, from the calculation of 

the input function to the generation of the 18F-FDG PET images. 
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Figure II.1. Flowchart illustrating the steps involved in simulating the 18F-FDG PET images.  1) The TACs of different tissues were calculated and combined 

with the 4D-XCAT phantom. 2) A real acquisition protocol was adopted to generate 28 frames of activity maps. 3) Calculation of 18F-FDG concentration, 

according to each time frame, and generation of activity maps. 4) Reconstruction of the 18F-FDG PET images using the STIR reconstruction software.
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II.1 Methodology used in the simulation of dynamic 18F-FDG PET images 

II.1.1 Activity maps generation 

II.1.1.a Numerical phantom 

In this study, we used the realistic 4D-XCAT human torso phantom to model the patient 

body [SEG09][SEG10]. The phantom was used to create time-dependent activity and 511-

keV attenuation maps for different tissues. This phantom was acquired from Duke University. 

The numerical voxelzed phantom includes highly detailed whole-body anatomies for adult 

males and females. The organs of this phantom were created using the Non-Uniform Rational 

Basis Spline (NURBS) technique. The 4D-XCAT phantom is provided as software written in 

the C programming language. Figure II.2 shows the anatomy of the 4D-XCAT phantom of 

males and females. 

a  b 

Figure II.2: XCAT phantom anatomy at different levels of details: a. Male. b. Female [SEG 

09]. 

Main phantom (body) 

To produce the numerical phantom of the body, we ran the 4D-XCAT application with 

a parfile containing numerous parameters. These included parameters to define the sex, image 

and voxel size; photon energy used to define the attenuation coefficient; radionuclide activity 

concentrations for each organ for the activity phantom; and the start slice with the end slice 

defining the part of the body that we wanted to select for the study. In our study, we created a 

male XCAT phantom with an image matrix size of 256 × 256 pixels and 1200 slices. The 

voxel size was set to 2.5 × 2.5 × 2.5 mm3. The radiotracer considered in this study was 18F-

FDG. The photon energy was set to 511 keV, which is the gamma energy of the photon 

emitted during the annihilation of the 18FDG positron. The radionuclide activity 

concentrations for each organ were set to the values derived from the time activity curves 
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(TACS). Details of the calculation of these TACs are given in section (b). At the end, two 

types of body phantoms were created: activity and attenuation phantoms. While the activity 

phantom contains activity concentrations of 18FDG, the attenuation phantom contains the 

attenuation coefficients of each tissue for an energy of 511 keV. These attenuation 

coefficients are determined based on the elemental composition of the tissues and the photon 

energy. We assigned a value ranging from 1 to 106 to each organ in the parameter file to 

identify organs in the phantom and facilitate the insertion of the activity concentrations in the 

organ voxels. In Figure II.3, we show the phantom generated without activity concentrations. 

 

Figure II.3: XCAT phantom generated without activity concentrations. 

 

Lesion 

Concerning the creation of the lesion, we used the same parfile used to create the 

activity and attenuation phantoms of the body but with another mode. This mode allows the 

generation of the activity and attenuation phantom of the lesion. In the parfile, we defined the 

location and size of the lesion. With this version of the XCAT, lesions in the body can be 

modeled only as simple spheres (Figure II.4). In this study, we created a lesion 9 mm in 
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diameter in the liver. To do so, we selected the coordinates of a pixel belonging to the liver in 

the body phantom and set these coordinates to the location parameter of the lesion in the 

parfile. 

 

Figure II.4: Model of the lesion used in this study. 

The lesion created was added to the main phantom (body) in the liver. In Figure II.5, 

we illustrate transverse slices showing the liver before and after insertion of the lesion. 

 

Figure II.5: Insertion of the lesion in the liver. 

 

To facilitate the use of XCAT software for phantom production, lesion insertion and 

manipulation of all the data, we used a script developed in house in the MATLAB 

environment. 

In the section below, we will detail the calculation of the TAC’s and how the insertion of 

activity concentration was made. 

II.1.1.b Generation of 18F-FDG Time Activity Curves    

To generate 18F-FDG time-activity curves (TACs) for different organs and tumors, we 

first calculated the input function (IF), which represents the amount of 18F-FDG in the blood. 
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The calculation was performed using the parametric function proposed by Feng [FEN93][ 

FEN96]. The mathematical expression of this model is given as follows: 

Cp(t) = (A1t − A2 − A3)eλ1t + A2eλ2t + A3eλ3t    (II.1) 

With: 

 λ1 (min-1), λ2 (min-1) and λ3 (min-1) are the eigenvalues of the model. 

  A1 (μCi/ml/min), A2 (μCi/ml) and A3 (μCi/ml) are the coefficients of the 

model. 

The values of λ1⟶3 and A1⟶3 are reported in Table I.1. 

 

𝐀𝟏 (μCi/ml/min) 𝐀𝟐 (μCi/ml) 𝐀𝟑 (μCi/ml) 𝛌𝟏 (min-1) 𝛌𝟐 (min-1) 𝛌𝟑 (min-1) 

851.1225 21.8798 20.8113 -4.1339 -0.1191 -0.0104 

Table II.1. Parameters of the IF used in this study. 

Once the IF was obtained, we calculated the TAC’s of the organs/tissues listed in Table 

II.1 using a standard 3-compartment model [SOK77]. A descriptive schema of this model is 

illustrated in Figure II.6. 

 

Figure II.6: Diagram showing the three-compartment model of 18F-FDG uptake used. 

Table II.2. The 18F-FDG kinetic microparameters and effective blood plasma volume 

V_p used for the different organs. 

organs k1 (ml/min/ml) k2 (min-1) k3 (min-1) k4 (min-1) Vp 

kidney 0.2630 0.2990 0.0000 0.0000 0.4380 

spleen 1.2070 1.9090 0.0080 0.0140 0.0000 

liver 1.2560 1.3290 0.0020 0.0020 0.1650 

marrow 0.4250 1.0550 0.0230 0.0130 0.0400 

myocardium 0.1960 1.0220 0.1490 0.0100 0.5450 

lung 0.1080 0.7350 0.0160 0.0130 0.0170 

aorta 0.0000 0.0000 0.0000 0.0000 1.0000 

soft tissue 0.0470 0.3250 0.0840 0.0000 0.0190 

ventricle 0.0000 0.0000 0.0000 0.0000 1.0000 

stomach 0.6140 1.8850 0.0710 0.0310 0.0630 

tumor 0.1860 0.4380 0.3360 0.0000 0.0800 
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In the model used, Cp(t) is the IF, which was already calculated; Ce(t) and Cm(t) are 

the concentrations of unmetabolized, metabolized and trapped 18F-FDG in tumor cells, 

respectively, expressed in kBq/mL. 

k1⟶4 are 18F-FDG kinetic microparameters that describe the exchanges between the 

compartments. 

 k1 (min−1) and k2 (min−1) represent the reversible exchanges of FGD between the 

blood and tissue compartments; 

 k3 (min−1) represents the phosphorylation of the FDG 18FDG-6-PO4; 

 k4 (min−1) represents the effect of possible dephosphorylation of FDG-6-PO4 to 18F-

FDG. 

The values of these parameters, as reported in the literature, are presented in Table II.2 

[QIA11][DIM06]. 

The 18F-FDG kinetics are described by the following differential equations: 

 

𝒅Ce(t)

𝒅𝒕
=  k1 Cp(t)-( k2 + k3) Ce(t)+ k4 Cm(t)    (II.1) 

𝒅Cm(t)

𝒅𝒕
=  k3 Ce(t)- k4 Cm(t)       (II.2) 

CFDG(t) = Ce(t) + Cm(t) + VpCp(t)     (II.3) 

CFDG(t) is the total concentration of 18F-FDG in a region of interest (ROI). Vp represents 

the effective blood plasma volume contained in the ROI. 

 

The activity concentrations of 18F-FDG in each organ/tissue were calculated using a 

script implemented in the MATLAB environment. 

 

II.1.1.c Frames generation 

In this study, frames were defined as time series of the activity maps concerning the 18F-

FDG distribution in organs/tissues. To generate the frames, a real acquisition protocol was 

adopted. This protocol consists of 28 frames recorded during 55 min with the following 

repartition: 9x10s, 3x30s, 4x60s, 4x120s and 8x300s [WIEN02]. The procedure of frame 

generation, illustrated in Figure II.7, involves the following steps: 



   Chapter II: Simulation of dynamic 18F-FDG PET images 

47 
 

1. The 18F-FDG activity concentration, C, was calculated from the TAC according to 

each frame time interval as follows: 

𝐶 = ∫ CFDG(t) 𝑑𝑡
𝑓𝑟𝑎𝑚𝑒 𝑒𝑛𝑑

𝑓𝑟𝑎𝑚𝑒 𝑠𝑡𝑎𝑟𝑡
       (II.4) 

2. The activity concentration corresponding to the voxel volume was calculated. 

 

3. The activity concentration was assigned for the voxels of each organ/tissue of the 

4D-XCAT phantom. 

The number and time of each frame are given in Table II.3. An in-house script 

implemented in the MATLAB environment was used to generate all the frames for all the 

ograns/tissues. All the frames generated are shown in Figure II.8. 

Table II.3 Frame duration. 

Frame number Frame start (s) Frame end (s) Frame duration (s) 

1 0 10 10 

2 10 20 10 

3 20 30 10 

4 30 40 10 

5 40 50 10 

6 50 60 10 

7 60 70 10 

8 70 80 10 

9 80 90 10 

10 90 120 30 

11 120 150 30 

12 150 180 30 

13 180 240 60 

14 240 300 60 

15 300 360 60 

16 360 420 60 

17 420 540 120 

18 540 660 120 

19 660 780 120 

20 780 900 120 

21 900 1200 300 

22 1200 1500 300 

23 1500 1800 300 

24 1800 2100 300 

25 2100 2400 300 

26 2400 2700 300 

27 2700 3000 300 

28 3000 3300 300 
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Figure II.7: Diagram showing the calculation and insertion of the 18F-FDG activity 

concentrations in spleen voxels. 
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Figure II.8: Number of frames created at each time points. 

 

Each frame was then forward projected and reconstructed using STIR reconstruction 

software. 

II.1.2 Scanner geometry and image reconstruction procedure 

The General Electric (GE) Discovery PET/CT 710 scanner model, implemented in STIR 

software [THI12], was considered in this study. The characteristics of the scanner considered 

are given in Table II.4 [YOO15]. 
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Table II.4. Characteristics of GE Discovery PET/CT 710. 

Number of rings 24 

Number of detectors per ring 576 

Inner ring diameter (cm) 81.02 

Average depth of interaction (cm) 0.94 

Distance between rings (cm) 0.654 

Number of blocks per bucket in transaxial direction 2 

Number of blocks per bucket in axial direction 4 

Number of crystals per block in axial direction 6 

Number of crystals per block in transaxial direction 9 

Number of detector layers 1 

Number of crystals per singles unit in axial direction 1 

Number of crystals per singles unit in transaxial direction 1 

 

For the reconstruction procedure, we used STIR version 4.0.0-alpha software. The STIR 

ray-tracing technique was utilized to perform forward projection of the activity maps to 

generate free-noise sinograms using parameters that define the geometry of the scanner, as 

cited in Table II.4. The generated free-noise sinograms were corrected for attenuation effects 

using attenuation coefficients calculated from the 4D-XCAT attenuation map. Subsequently, 

Poisson noise was added to obtain noisy sinograms that were reconstructed using Ordered 

Subsets-Maximum A posteriori Probability-One Step Late (OSMAPOSL) algorithm with 35 

iterations and 1 subset. The same reconstruction procedure was applied to all frames, resulting 

in a total of 28 frames simulating single-bed dynamic 18F-FDG PET images. The 

reconstructed image matrix was 256 × 256 pixels, and the voxel size was 2.5 × 2.5 × 2.5 mm3. 

The number of slices covering the liver region is 81 slices. 

The steps of the reconstruction procedure are shown in Figure II.9. 
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Figure II.9: Workflow showing the steps followed in the reconstruction procedure. 

 

We implemented and used a MATLAB script to handle and connect all the STIR 

functions and executable files (.exe), from the forward projection to the reconstruction. The 

script was run on a HP Z8 64 workstation in parallel computing using the PARFOR loop. 

The workstation used, powered with Windows 10, is equipped with 20 physical CPUs, an 

Intel© Xeon© Silver 4210 CPU @2.20 GHz, 64 GB of RAM, and an NVIDIA Quadro 

P400 graphics card with 2 GB of RAM. 

The qualitative and quantitative evaluations of the reconstructed images were 

performed using 3D slicer open source software. 
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II.2 Results 

II.2.1 Calculation of the input Function and time activity curves 

The input function obtained using equation II.1 and the parameters values reported in  

Table II.1, is given in Figures II-10. The TAC of 11 tissues modeled in the 4D-XCAT 

phantom were generated, assuming the standard 3-compartment model, the calculated input 

function and kinetic physiological parameters of the 18F-FDG. The generated TAC’s are 

illustrated in Figure II-11. 

 

Figure II-10: 18F-FDG input function used in this study. 
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Figure II-11: TAC's of ¹⁸F-FDG generated in different tissues. 

In Figure II.11, the simulated TAC’s curves of the phantom tissues clearly show tracer 

uptake and clearance, while the TAC of the tumor reveals continuous tracer trapping. This 

behavior is correlated with the constant values k3 and k4 , as deduced from Table II.2. The 

TAC’s derived for the ventricles and the aorta are similar and evidently, reproduce the 

behavior of the IF since all the kinetic microparameters of these organs are equal to zero and 

the effective blood plasma volume is equal to one. A comparison of the calculated TAC’s to 

those published [KAR11] showed good agreement. 

The TAC's obtained were subsequently used to generate 18F-FDG dynamic activity 

maps. 

II.2.2 Generation of dynamic activity maps and attenuation map using TAC’s 

calculated and the XCAT phantom 

In Figure II-12, we illustrate selected transverse slices at the lesion level of all the 

frames of the dynamic activity maps. For more details, transverse, coronal and sagittal slices 

selected from the 1st, 17th and 28th frames of the 18F-FDG activity maps are shown in Figure 
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II-13. These slices were selected to show the effect of the reconstruction procedure when the 

activity concentration in the lesion was lower than, equal to or greater than that in the 

background (liver). The attenuation map, which contains the attenuation coefficients of the 

XCAT tissues for gamma rays of 18F-FDG, is given in Figure II-14. 

Figure II.12 shows the distribution of the 18F-FDG concentration in different tissues 

and at different time points. For more details, in Figure II.13, as expected, the activity is 

highest in the ventricles and the aorta, as shown in the images of frame 1. The lesion appears 

as a cold spot because at this step, the tumor has lower activity than the surrounding tissue. In 

the case of the image selected from frame 17, the lesion could not be recognized because the 

activities in the tumor and in the liver were almost the same. However, the tumor can be 

accurately detected in frame 28, where 18F-FDG trapping is high and irreversible. 

II.2.3 Generation of dynamic 18F-FDG PET images 

The whole generated frames of activity maps were forward projected and 

reconstructed using an in-house script connecting STIR functions. An example of the 

projection data of frame 28 is shown in figure II-15. 

The reconstructed images of those shown in figure II-13 and II-14 are displayed in 

figure II-16 and II-17, respectively. Each frame contained 47 slices.  

Figure II.13 and Figure II.17 show that the qualitative comparisons reveal that the 

images before and after reconstruction are very similar. However, the lesion not clearly 

apparent in frame 17 since the lesion and liver activity values were close, can be not seen in 

the corresponding reconstructed image. This is due to the technical limitations of the scanner 

model used in this study. 

II.2.4 Quantitative and qualitative analysis  

The quantitative analysis of the reconstructed images was performed via the 

calculation of the profiles line traced on a transverse slice at the lesion level of the images 

illustrated in Figures II-13 and II-17. Figure II-18 shows the line profiles obtained. 

In Figure II.18, we can observe that the voxel intensities of the transverse images 

before and after the reconstruction procedure are almost the same. The qualitative and 

quantitative comparisons demonstrated the efficiency of the reconstruction procedure 

performed in the present study. 
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Figure II.12: Transverse slices at the liver level selected from all frames of the activity maps showing the distribution of the concentration of 
18F-FDG in the lesion and other tissues. 
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Figure. II-13: Transverse, coronal and sagittal images of ¹⁸F-FDG activity maps taken at 3 

different time points corresponding to : i = frame 1, ii = frame 17 and iii = frame 28. The 

arrow shows the lesion inserted in the liver. 

 

 

Figure II-14: Transverse slice of the attenuation map of the XCAT phantom for 18F-FDG. 
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Figure II.15: A sinogram of the activity map of frame 28 obtained during the forward 

projection step using the Discovery PET/CT 710 scanner model. 
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Figure II.16:  Reconstructed transverse slices of all the frames of the activity maps showing the lesion in the liver.
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Figure II.17: Transverse, coronal and sagittal reconstructed 18F-FDG PET images taken at 3 

different time points corresponding to i = frame 1, ii = frame 17 and iii = frame 28. 
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Figure II.18: Line profiles through a transverse slice of the 4D-XCAT phantom before and 

after reconstruction: (a) frame 1, (b) frame 17, and (c) frame 28. 

a 

 

b 

 

c 
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In the following paragraphs, we demonstrate the application of the PCA to improve lesion 

detectability in 18F-FDG PET images and reduce the data acquisition time. 

II.3 Discussion 

Notably, dynamic 18F-FDG PET image simulation using a 4D-XCAT phantom with 

kinetic modeling and real patient clinical data differ in several ways. First, images from the 

4D-XCAT phantom and kinetic modeling simulations aim to replicate realistic human 

anatomy and physiology, but they are still computer-generated and may not fully capture the 

complexity of real patient data. Real patient data are obtained from actual patient scans and 

thus reflect the variability and diversity of real-world patients. Second, simulation methods 

can control the level and type of noise and artifacts present in images, whereas real patient 

data may contain various types of noise and artifacts due to patient motion, scanner hardware, 

or other factors. Patient-specific characteristics such as age, body size, and comorbidities can 

significantly affect the results of PET imaging. Simulation methods may not fully replicate 

these characteristics and the associated variability that is present in real patient data. Finally, 

the experimental conditions for the 4D-XCAT phantom and kinetic modeling simulation were 

controlled and standardized, whereas real patient data may vary in terms of the radiotracer 

dose, uptake time, and imaging parameters. 

Despite these differences, 4D-XCAT phantom and kinetic modeling simulations can 

be useful for understanding the underlying physics and limitations of PET imaging and for 

developing and testing imaging algorithms and techniques. Real patient data, on the other 

hand, are essential for clinical decision-making and patient care and provide a more 

comprehensive understanding of the disease process and the effects of treatment. 

Many studies were recently undertaken on the interest of dynamic 18F-FDG PET 

simulation and kinetic modeling such as that of Dimitrakopoulou-Strauss et al. [DIM21-a]. 

This last study focused on the use of kinetic modeling and parametric imaging with dynamic 

PET for oncological applications, which is a broader topic than just lesion detectability 

investigations. Our work reinforces and supports the main findings of Dimitrakopoulou-

Strauss et al. study and resolves some mentioned problems such as the problem of time-

consuming. Indeed, Dimitrakopoulou-Strauss et al. reported that kinetic modeling and 

parametric imaging can be used to improve lesion detectability in oncological PET imaging. 

Similarly, both the 4D-XCAT phantom and kinetic modeling approaches have been shown to 
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be effective at detecting lesions in dynamic 18F-FDG PET images. In terms of quantitative 

accuracy, Dimitrakopoulou-Strauss et al. emphasized the importance of quantitative accuracy 

in oncological PET imaging. Dimitrakopoulou-Strauss et al. also discussed the computational 

complexity of kinetic modeling, which can be time-consuming and require significant 

computing resources. Similarly, the 4D-XCAT phantom approach can be computationally 

intensive. 

The comparison between research works as our actual one on dynamic 18F-FDG PET 

images simulation using 4D-XCAT phantom and kinetic modeling for lesion detectability 

investigation is more focused on a specific application of some simulation and kinetics 

methods. However, all undertaken studies highlight the importance of quantitative accuracy 

and the computational complexity of these approaches. Indeed, different used methods have 

been shown to be effective in detecting lesions, with some studies reporting similar lesion 

detectability. However, there have been some reports of differences in lesion detectability 

depending on factors such as lesion size and location. 

The data generated through this work can be used to study the reduction of the total 

duration of data acquisition in dPET while preserving the detectability of lesions by applying 

multivariate image analysis techniques such as principal component analysis (PCA). This 

could be investigated by extracting relevant images from the simulated dynamic imaging 

sequences that provide a lesion detectability level similar to that of the usual static images 

acquired at 35 min postinjection. Full-length and shorter dynamic sequences can be analyzed 

both qualitatively and quantitatively to demonstrate the potential of the proposed 

methodology. Other methods for reducing the total duration of dynamic PET imaging with 

18F-FDG include sparse sampling schemes, multiparametric image reconstruction, and deep 

learning-based techniques. However, these methods are still in the early stages of 

development and require further validation before they can be routinely used in clinical 

practice. 

Even though we considered in this work only one lesion in the liver, the findings could 

be easily extended to include lesions with different shapes and concentrations in various 

locations. The effect of respiratory motion on the reconstructed images will also be 

considered. 
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Conclusion 

The methodology outlined in this chapter provides a comprehensive framework for the 

simulation of dynamic 18F-FDG PET images. The subsequent sections offer detailed 

implementation steps, from the calculation of the IF to the generation of 18F-FDG PET 

images. We demonstrated the use of a 4D-XCAT phantom and kinetic modeling is central to 

generating these dynamic images. 

Furthermore, in this chapter, we provided findings concerning the calculation of IF and 

time-activity curves (TACs), the generation of dynamic activity maps and the simulation of 

18FDG-PET images. We also presented our results on comparisons between activity maps 

and 18F-FDG-PET images to evaluate the reconstruction procedure adopted in this study. 

The results obtained were used in the following chapter to evaluate the potential 

enhancements that can be achieved by using the PCA method in terms of lesion detectability 

and scanning time. 

The findings of this chapter were published in [BEZ23].
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Introduction 

This chapter delved into the generation of images using principal component analysis 

(PCA) and SUM methods from reconstructed frames of dynamic 18F-FDG PET images. The 

generated images were investigated to study the enhancement of lesion detectability and 

scanning time optimization. 

The following sections detail the generation of the images and discuss the results of the 

application of PCA to simulated dynamic 18F-FDG PET images. 

III.1 Generation of PCIs and SUM images 

III.1.1 Principal component analysis  

As defined in chapter I, PCA serves as a method for examining the variance‒covariance or 

correlation structure within a multivariate dataset, aiming to simplify and condense its 

dimensions. This process involves computing transformation vectors known as Principal 

Components (PCs), which define the directions of the maximum variance within the 

multifeature space. 

In this study, we applied the PCA method to the reconstructed frames of dynamic 18F-

FDG PET images to generate Principal Component Iimages (PCIs). The calculation process is 

based on several steps, as illustrated in Figure III.1. 

First, we arranged the intensities of the voxels of each image of the same frame in the 

rows of the matrix Z. The rows are the variables of the matrix. In the example shown in 

Figure III.1, m, which represents the number of frames, equals 28, and n is the number of 

voxels in each frame (n=256x256x47). The voxel intensities represent the activity 

concentrations of 18F-FDG. 

Z = [

z1,1 ⋯ z1,n

⋮ ⋱ ⋮
zm,1 ⋯ zm,n

]     (III.1) 

Then, before the application of PCA, we preprocessed the data contained in matrix Z to 

transform these data into a more suitable form for analysis. We performed two types of 

preprocessing on the data: “scaling to unit variance” and “mean centering”. 
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Figure III.1: Flowchart showing how to create principal component images. 
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In the scaling to unit variance, we normalize the magnitude of variance present in the 

variables. The reason is that the variables often possess notably varied ranges, and the PCA 

could be influenced more by the variable that has the largest range. In the second 

preprocessing step, mean-centering, we adjusted the rescaled dataset to create a new dataset 

where the mean value of each variable became zero. We used the following expression to 

preprocess the data: 

xij = (zij − zj)/sj      (III.2) 

where 

 𝑧𝑖𝑗 and 𝑥𝑖𝑗 are the original and final values of voxel i (i=1...n) of frame j (j=1...,m), 

respectively. 

 zj and sj are the mean and the standard deviation of the jth row of the original data Z 

matrix, respectively. 

  In the new preprocessed data, no variable dominates over the others, and the matrix Z 

becomes 

Z′ = [

x1,1 ⋯ x1,n

⋮ ⋱ ⋮
xm,1 ⋯ xm,n

]     (III.3) 

Once the data were preprocessed, we calculated the transformation vectors or the principal 

component axes (PCs) using the SVD function. The PCs obtained are orthogonal since the 

condition Cov (PC(i), PC(j)) = 0, with i≠j, is verified. The PCs explain the magnitude of the 

variance in decreasing order, as shown in Figure III.1. We found that 100% of the total 

variance in the original data can be accounted for by the first three principal component axes, 

as shown in Figure III.2. Therefore, the remaining components are rejected without loss of 

useful information. Hence, in this work, we considered only the first three principal 

components. 
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Figure III.2: Variance accounted for the PCIs. 

Each element within the PCs is utilized as a weight factor to create a principal component, 

with Var (w(1,:))>>Var (w(2,:))>> Var (w(3,:))>>…… 

Var (w(i,:)): the variance of Principal Component number I, with i=1:28. 

In this example, Var (w(1,:)) = 24.87, Var (w(2,:)) = 2.52, Var (w(3,:)) = 0.5, and 

Var (w(i,:)) <<0, with i = 4:28. 

Finally, the principal component created can be visualized as images. We call the 

generated images; Principal Component Images (PCIs). 

For comparison purposes, we also applied the summation method to the same 

reconstructed dynamic 18F-FDG PET images at t=35-55 min. The intensity of each  the 

generated images represent the sum of the activity concentration of the 18F-FDG during the 

period considered (t=35-55 min). The generated images were called SUM (SUMmed images). 

We used the SUM images as reference images since these images are used in routine clinical 

practice. 
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III.1.2 Normalization 

For comparison purposes and to remove the negative values in PCIs, all PCIs generated 

were normalized to the SUM images using the proposed mathematical expression: 

𝐼𝑛𝑒𝑤(𝑃𝐶𝐼(𝑖)) = 𝑄𝑖
𝐼𝑚𝑎𝑥(𝑆𝑈𝑀 𝑖𝑚𝑎𝑔𝑒𝑠)

𝐼𝑚𝑖𝑛(𝑄𝑖)
       (III.4) 

𝑄𝑖 = 𝐼(𝑃𝐶𝐼(𝑖)) − 𝐼𝑚𝑎𝑥(𝑃𝐶𝐼(𝑖))       (III.5) 

 

 where 

 𝑃𝐶𝐼(𝑖): is PCI1, PCI2 or PCI3, 

 𝐼(𝑃𝐶𝐼(𝑖)): is the voxel intensity of the PCI(𝑖), 

 𝐼𝑛𝑒𝑤(𝑃𝐶𝐼(𝑖)) is the new voxel intensity of the PCI(𝑖), 

 𝐼𝑚𝑎𝑥(𝑆𝑈𝑀 𝑖𝑚𝑎𝑔𝑒𝑠) is the maximum voxel intensity of the SUM images 

generated in the interval 35-55 min. 

Normalization was performed using (III.4) and (III.5) to transform the pixel intensities of 

the PC images with range (Min_PC, Max_PC) into a new range (newMin_PC, newMax_PC). 

(newMin_PC, newMax_PC) is equal to the (Min_SUM, Max_SUM) of the SUM images 

obtained in the time interval 35-55 min. The values of (newMin_PC, newMax_PC) are (0, 

13050). To do so, we have followed these steps: 

1. Calculation of the Max_PC; 

2. Substraction of the Max_PC from the pixel intensities of the PC images. 

3. Calculation of the Min_PC obtained from step 2. 

4. The ratio was calculated as w=Max_SUM/Min_PC. 

5. Multiplication of the pixel intensities of the PC images by the ratio w. 

 

Example: PCI1 generated in the interval 0.-13 min with (Min_PC, Max_PC) = (-2.09, 

22.66) 

1. Max_PC = 22.66. 

2. Substraction of the Max_PC from the pixel intensities of the PC images. 

Therefore, (Min_PC, Max_PC) became (-24.74, 0). 
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3. Calculation of the Min_PC obtained from step 2. Min_PC = -24.74. 

4. The ratio was calculated as w=Max_SUM/Min_PC. w = 13050/-24.74. 

5. The pixel intensities of the PC images are multiplied by the ratio w. (Min_PC, 

Max_PC) (0, 13050). 

III.2 Quantitative analysis of PCIs and SUM images 

To quantify lesion detectability on PCIs and SUM images, the TBR metric and activity 

profile lines (APLs) were utilized. For this purpose, a cylindrical Volume of Interests (VOIs) 

and line profiles were drawn at the level of the liver lesion on both PCIs and SUM transverse 

images using 3D slicer software [FED12]. The outlined VOIs are illustrated in Figure III.3. 

The TBR scores were calculated using the following expression: 

𝑇𝐵𝑅 =  
𝐼𝑡𝑢𝑚𝑜𝑟−𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
        (III.6) 

Where 

Itumor and Ibackbround are the mean pixel intensity values determined in VOIs for the tumor 

and the liver, respectively. 

 

Figure III.3. VOIs placed in the tumor and background (in the liver) and ALPs used in the 

calculation of the TBR. 

In the following sections, we investigated the improvement of lesion detectability and 

optimization of scanning time using the PCA method. 
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III.3 Improvement in lesion detectability 

To demonstrate the improvement in the quality of the 18F-FDG PET images, in terms of 

lesion detectability, which can be achieved using the PCA method, we applied the PCA 

method to the data at intervals of 35-55 min. The frames considered in this interval were 

frames 25 to 28. The summed method is also applied in the same interval. The process of 

generating the two types of images is illustrated in Figure III.4. The generated PCI1, PCI2, 

and PCI3 images were normalized according to the normalization procedure explained in § 

III.1.2. 

The transverse slices at the lesion level of the generated images (PCI1, PCI2, PCI3 and 

SUM images) are illustrated in Figure III.5. The obtained PCI1, PCI2, and PCI3 were 

compared to the reference images (SUM images generated at T = 35-55 min) qualitatively and 

quantitatively by calculating the TBR and ALPs. 

III.3.1 Qualitative analysis 

Figure III.5 clearly shows that the lesion was successfully detected in the PCI2 and SUM 

images with high activity in the lesion, while no qualitative diagnostic information could be 

deduced from the PCI3 image. We can see also that the lesion can be detected in PCI1 with 

lower activity in the lesion than in the liver. This observation is in accordance with the fact 

that the PCA method generates images with decreasing amounts of variance. The variance in 

PCI3 is approximately zero since the total variance in the original data (frames 25 to 28) is 

small and the maximum amount of this variance was captured by the PCI1 then PCI2. 
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Figure III.4: Flowchart demonstrating the generation procedure of PCIs and SUM images at 

35-55 min post injection, for lesion detectability enhancement purposes. 

 

Figure III-5: Comparison of transverse slices obtained by the PCA and summed methods at 

T = 35-55 min post injection. The arrow shows the lesion in the liver. 
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III.3.2 Quantitative analysis 

III.3.2.1 TBR and ALP calculation 

We calculated the TBR on PCIs and SUM images to evaluate quantitatively the 

performance of the applied method in terms of lesion detectability. The TBR values obtained 

from the PCI1, PCI2 and SUM images were -0.78 ± 0.01, 4.05 ± 0.5 and 3.09 ± 0.50, 

respectively. As expected, the TBR of the PCI1 was negative since the activity in the liver 

was greater than that in the lesion. 

We also calculated ALP curves at the lesion level on the PCI1, PCI2, PCI3, and SUM 

images. The ALP curves are given in Figure III-6. The results revealed that the APLs of the 

PCI2 and SUM images are close to each other, whereas the APL of the PCI3 seemed to be 

almost a line since the voxel intensities are almost around the same value. The ALPs of PCI1, 

compared to the ALP of SUM images, showed that the lesion voxel intensities were lower 

than those of the liver. 

Qualitative and quantitative analyses using TBR and ALP curves demonstrated that 

PCI2 could provide superior lesion detectability than SUM images. 

 

Figure III-6: Activity lines profile (ALPs) drawn at the lesion level on PCI1, PCI2, PCI3, 

and SUM images generated at T=35-55 min post injection. 

65 70 75 80 85 90

0,0

5,0x103

1,0x104

1,5x104

Liver region Liver region 

 PCI1

 PCI2

 PCI3

 SUM

In
te

n
s
it

y

Voxel Position 

SUM, PCI1, PCI2 & PCI3 activity lines profiles. 

T= 35-55min  

Lesion region 



Chapter III: Enhancement of lesion detectability and optimization of scanning time 

 

74 
 

 

Figure III.7: Flowchart demonstrating the generation procedure of PCIs and SUM images at 

different intervals for scanning time reduction purposes. 

III.4 Scan time optimization 

 

We also used PCA to investigate the effect of the time duration on the dPET images and 

shorten PET dynamic scans. The objective was to reduce the scanning time while preserving 

lesion detectability. For this purpose, we generated PCIs at 11, 13, 15, 20, 25, 30, 35, 40, 45, 

50 and 55 min, starting from the zero time point after 18F-FDG injection. The frames 

considered in each time interval are given in Table III.1. The generation process is illustrated 

in Figure III-7. The generated PCI1, PCI2, and PCI3 images were also normalized according 

to the normalization procedure explained in § III.1.2. 

We compared the obtained PCI1, PCI2, and PCI3 in each time interval to the reference 

images (SUM images generated at T = 35-55 min) qualitatively and quantitatively by 

calculating the TBR and APLs. All the obtained images are illustrated in Figures III-8.a, b, 

and c. The TBR and APL calculated as function of scanning time on PCI1, PCI2 and PCI3 are 

illustrated in Figures III-9. 
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Table III.1: Time intervals with the corresponding frames. 

Time interval (min) Frames 

0-11 1-18 

0-13 1-19 

0-15 1-20 

0-20 1-21 

0-25 1-22 

0-30 1-23 

0-35 1-24 

0-40 1-25 

0-45 1-26 

0-50 1-27 

0-55 1-28 

III.4.1 Qualitative analysis 

Qualitatively, from Figure III-8.a, b, c, the comparison with the SUM images 

demonstrated that for the PCI3, the lesion was clearly detectable regardless of the scanning 

time. However, for T > 40 min, the activity in the lesion was lower than that in the liver. In 

the case of PCI2, the lesion could not be detected at T = 11 min and was hardly detectable at 

T=13 min. However, the lesion could be easily detected elsewhere. For the PCI1, the lesion 

could not be detected at T = 25 min, T = 30 min and T = 25 min and was slightly detectable at 

the remaining intervals, with lower activity in the lesion than in the liver at T > 40 min. 

III.4.2 Quantitative analysis 

III.4.2.1 TBR and APL calculation 

The calculated TBRs are shown in Figure III-9 for all the time intervals. In general, 

the TBR estimated on PCI3 was the closest to the SUM images (2.49±0.72 on PCI3 versus 

3.08±0.49 on SUM images) and was greater than the PCI1 and PCI2 from 11 to 35 min. With 

regard to PCI2, the TBR increased with increasing scanning time (maximum of 3.87 ± 1.11 at 

T = 55 min). The TBR derived from the PCI1 decreased with increasing scanning time, with a 

maximum of 0.53± 0.11 at T=11 min. 

Considering only visual assessment and TBR measurements, PCI2 is the closest to the 

SUM image at 25 and 35 mins, whereas PCI3 looks closest to the SUM image at 15, 20 and 

25 mins. 
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To have better insights on the 18F-FDG uptake within the liver lesion and ease the 

selection of the best time timing to achieve the aim of this study (shortening the total scanning 

duration while preserving the detectability of the tumor lesion), The APL s were calculated 

and illustrated in Figure III-10.a, b, c. 

 The ALPs demonstrated nearly similar uptake on the PCI3 compared to the SUM 

image at timing 15, 20, 25 , 25 and 30 mins, whereas PCI2 comparable uptake to SUM image 

at timing 40, 45, and 50 mins. 

To summarize and take into account the visual appearance of the 3 PCIs, the TBR 

measurements and ALP analysis revealed that the PCI3 at timing 20 min was the closest 

qualitatively and quantitively to the SUM image and could be used for lesion detectability on 

the basis of the present study’s analysis. 
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Figure III-8.a Transverse slices obtained by the PCA method at 0-11, 0-13, 0-15 and 0-20 time intervals showing 18F-

FDG uptake in lesions and other tissues. The SUM images were generated at 35-55 min intervals as described above. 
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Figure III-8.b Transverse slices obtained by the PCA method at 0-25, 0-30, 0-35 and 0-40 time intervals showing 18F-FDG uptake in 

lesions and other tissues. The SUM images were generated at 35-55 min intervals as described above. 
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Figure III-8.c Transverse slices obtained by the PCA method at 0-45, 0-50 and 0-55 time intervals showing 18F-FDG uptake in lesions and other 

tissues. The SUM images were generated at 35-55 min intervals as described above. 
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Figure III-9: TBR calculated from PCI1, PCI2, PCI3 and SUM images as a 

function of scanning time. 
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Figure III-10.a: Activity Lines Profiles (ALPs), as a function of scanning time (0-11, 0-13, 0-15, 0-20), of PCI1, PCI2, PCI3 

and SUM images. 
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Figure III-10.b: Activity Lines Profiles (ALPs), as a function of scanning time (0-25, 0-30, 0-35, 0-40), of PCI1, PCI2, PCI3 and 

SUM images. 
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Figure III-10.c: Activity Lines Profiles (ALPs), as a function of scanning time (0-45, 0-50, 0-55), of PCI1, PCI2, PCI3 and SUM images. 
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III.5 Discussion 

In this chapter, we aimed to shorten the dPET study and enhance lesion detectability 

by applying PCA to the dynamic 18F-FDG series generated using the XCAT phantom in 

combination with the three-compartment model and a simulated input function and TACs of 

different tissues. The visual inspection and quantitative assessment of different time interval 

sequences guided us to select the most suitable time interval sequence to shorten the duration 

of the dPET study, which was found to be 20 minutes. 

Several studies have been performed to optimize the acquisition time in dPET. 

Grkovski et al. [GRK17] showed that the acquisition time could be reduced to 20 min in the 

case of head and neck cancers using 120 patients’ scans. The method used in this work was 

based on the comparison of metrics (TBR and pharmacokinetic parameters) calculated from 

the dataset with those derived from the full dataset. Additionally, the kinetic parameters 

obtained were rather equivalent in a comparison study carried out by Torizuka et al. [TOR00]. 

The latter used 20 patient scans, where all scans duration was 30 min and 60 min acquisition 

protocols. The authors reported that the 30 min kinetic parameters were similar to the 60 min 

parameters. Elsewhere, the study by Visser and coauthors [VIS08] used a population of 13 

patients with non-small cell lung carcinoma and reported agreement between 30 min and 50 

min acquisition protocols. 

Although previous studies used patient data acquired using commercially available 

PET/CT protocols, our XCAT phantom-based approach offers an interesting option that could 

be used to shorten PET studies while preserving lesion detectability with a total scanning 

duration of 20 minutes, hence improving patient image reconstruction in dynamic frames. The 

use of more sophisticated reconstruction methods, such as OSEM iterative reconstruction, 

which incorporates time-of-flight information and point spread function modeling (OSEM-

TOF-PSF), or regularization-based reconstruction methods [STR11] could help further the 

shortening of scanting time while improving lesion appearance and radiotracer uptake, hence 

enhancing further lesion visibility. 

The authors recognize the lack of patient data in the study and emphasize that the 

simulated dynamic series can be considered clinically realistic, according to Lee and 

colleagues [LEE14], if a validated PET imaging system combined with a realistic model of 

the human body and an actual 18F-FDG activity distribution are used. The single lesion model 

used in this study can also be extended to include multiple tumor lesions  of different sizes 

and in different locations within the liver. The authors consider the outcome of this study 
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compelling enough support for its application and validation in a large patient population. 

It worth nothing that even in the case of total body PET scanners [CHE18] (above 120 

cm, extended FOV, increased sensitivity, and eased extraction of TACs), dynamic acquisitions 

still last for 55-60 mins, hence the use of such method (PCA) is of high interest to shorten 

acquisition time while preserving lesion detectability [HUA23]. 

 

Conclusion 

 

Chapter III presents a comprehensive exploration of image generation techniques, 

focusing on PCA and SUM methods applied to dynamic 18F-FDG PET images. Through PCA, 

principal component images are produced. The normalization process enhances the 

comparability of these images with SUM images used in clinical routine. Quantitative 

analysis involving TBR metrics and activity profile lines (ALPs) demonstrates the potential of 

PCA-generated images, particularly PCI2, in enhancing lesion detectability compared to SUM 

images. Additionally, the study investigated the impact of scanning time on image quality, 

suggesting that PCI3 at 20 min may offer optimal lesion detectability while reducing the total 

scanning duration. 

Overall, this chapter elucidates the value of the PCA in image generation and its 

potential implications for clinical imaging. 
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General conclusion and Perspectives 

dPET remains limited to research since it suffers from noisy images and long durations of 

data acquisition. Despite several efforts in dPET [SAM20][GRK17][STR11], the long-time data 

acquisition is still hampering the clinical use of this technique. 

This work aimed to enhance lesion detectability and shorten the duration of dPET by 

applying PCA to the simulated dynamic 18F-FDG series due to the unavailability of clinical data 

and the absence of a gold standard. The simulated dynamic 18F-FDG series were generated using 

an XCAT phantom in combination with the three-compartment model and a simulated IF and 

TAC of different tissues. A 9 mm diameter lesion mimicking the tumor lesion was inserted 

within the liver. The widely used STIR reconstruction software was employed to reconstruct the 

dynamic frames. We used an in-house script developed to generate different tissues TAC’s, 

manipulate the 4D-XCAT phantom and handle all STIR functionalities, such as forward 

projection, attenuation correction, adding noise to the sinograms and image reconstruction. The 

reconstruction computation time was 8.76 min/frame. 

We qualitatively and quantitatively demonstrated the improvement in the detectability of the 

considered liver lesions when the PCA method was applied at 35-55 min post injection on 

simulated dynamic 18F-FDG-PET images. 

Regarding the scan time reduction, we have demonstrated qualitatively and quantitatively the 

possibility to reduce the total duration of data acquisition in dPET while preserving the 

detectability of lesions on simulated dynamic 18F-FDG PET images. The findings suggest that the 

third principal component could be used to obtain images in the first 20 min post injection with a 

lesion detectability level similar to that of usual static images acquired 35 min postinjection. 

The use of a 4D-XCAT phantom and kinetic modeling simulation in dynamic 18F-FDG PET 

imaging can aid in lesion detectability investigations and scan time reduction, thus providing 

better patient care and improving the efficiency of clinical PET imaging. However, it is important 

to note that simulation results should always be validated against real patient data before being 

applied in clinical practice. 
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The findings of this work demonstrate that PCA can play a key role in tumor detection and 

reduce scanning time, thereby increasing patient comfort and minimizing patient motion. 

The present work has raised the research perspective of the use of artificial intelligence 

approaches to predict and generate SUM images in the desired time interval to normalize the 

PCIs estimated early after injection. 
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