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Abstract

Since the advent of deep learning, there has been a technological revolution, endowing
computers with remarkable abilities in learning, reasoning, thinking, and decision-
making. Deep learning has played a pivotal role in facilitating feature extraction,
particularly in the realm of computer vision, where it significantly contributes to
learning and recognizing image and video content. This impact extends to the
field of medical image research, as demonstrated in this thesis. The focus is on
the role of deep learning in the precise automatic segmentation of medical images,
specifically in segmenting brain glioma tumors and their associated sub-tumoral
tissue from multimodal MRI scans. The thesis presents various contributions aimed
at achieving accurate segmentation, including a comparative study between machine
learning-based methods and deep learning architectures. Additionally, it sheds light
on the substantial influence of class imbalance on image segmentation evaluation
metrics. Lastly, the thesis proposes a transfer learning-based method to construct a
model capable of classifying three types of brain tumors: Meningioma, glioma, and
pituitary tumors.
Keywords— Deep learning, Medical Images, Brain Tumor, Image segmentation, Image
Classification, Class imbalance
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The first step is always the hardest

1
INTRODUCTION

1.1 Introduction

Since the advent of machine learning (ML) techniques, the world of technology has

known a great revolution by leaving the explicit programming way where instructions

are provided by humans to another way of processing information which is learning

and making decisions. Machine Learning is designed to learn from huge quantities

of data allowing systems to extract useful knowledge to build predictive models

over unseen data. its impact has been particularly significant across diverse sectors,

including intelligent robots, self-driving vehicles, enhanced security protocols, and

advancements in the healthcare domain[1] one of the most notable advancements

within machine learning is the emergence and evolution of Deep learning[2] which

is inspired by the human brain to imitate the thinking process. This shift has

raised new capabilities in all computer science fields, especially computer vision.

The ability of deep learning architectures, notably, Convolutional Neural Networks

(CNNs), to automatically learn features from raw data has led to unprecedented

achievements in tasks such as image classification, object detection, and semantic

segmentation, this has offered Medical image analysis significant advantages through

the development of beneficial deep learning basic computer-assisted intervention

systems that strengthen diagnostic abilities from pathology structure detection

1
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to disease diagnosis and helped Radiologists to save time and effort. semantic

image segmentation is one of the major techniques used to identify and locate

pathology structures which is crucial for treatment planning and assessing the

progress of the disease, it has recognized an important improvement with the

use of deep neural networks where several approaches have been proposed and

achieved very competitive results However, they are not accurate enough compared

to experts’ manual segmentation because of the patient’s anatomy variations, the

noise, due to artifacts that may occur during the acquisition phase may affect

image resolution and the low contrast between tissues, which leads to the absence

of well-precise bounds between healthy tissues and abnormalities. However, this

process is challenging and still a hot topic.

1.2 Thesis goals

his thesis presents multiple contributions aimed at achieving accurate automatic

medical image segmentation, specifically in segmenting brain glioma tumors and their

associated sub-tumoral tissue from multimodal MRI scans based on Deep Learning :

• The first contribution is multi-pathway deep learning architecture which has

provided promising results against the existing methods

• The second contribution is a deep learning architecture called PU-NET that

aims to propose a new way of handling multimodal MRI images, it has

provided significant results that outperform the majority of existing methods.

• The third contribution is a comparative study between the Machine learning-

based methods here SVM and RF and our deep learning architectures,

Furthermore, this thesis also highlights the significant impact of class imbalance

on image segmentation evaluation metrics.

• The fourth contribution is a transfer learning-based method from our proposed

deep learning architecture used for brain glioma segmentation to build a model
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that classifiy three kind of brain tumors :Meningioma,glioma and pituitary

tumors.

1.3 Thesis outline

The outline of this dissertation is as follows:

• Chapter 2: Magnetic Resonance Imaging and Brain Pathology: Biomedical

Background provides an overview of the medical imaging techniques with

a special focus on magnetic resonance imaging techniques and their basic

principles and physics behind along with a concise overview of brain anatomy,

enhancing our grasp of the brain pathology under examination, which is

expounded upon in the concluding sections of this chapter.

• Chapter 3: Image segmentation: state of the art expands on the image

analysis techniques used in computer vision, especially the image segmentation

technique. It reviews the historical context of image segmentation techniques,

particularly focusing on methods that were prevalent before the advent of

deep learning and discusses the various traditional approaches, algorithms,

and challenges they faced.

• Chapter 4: Deep Learning for image segmentation is devoted to introducing

deep learning as a paradigm for image segmentation. Defining key concepts

related to deep learning, such as neural networks, convolutional neural

networks (CNNs), and the basics of image segmentation using deep learning

techniques. Discussing the factors that make deep learning particularly

suitable for image segmentation tasks. Also, introduce popular deep learning

architectures used for image segmentation, such as U-Net and its variants.

• Chapter 5: Parallel Pathway U-net Architecture for Brain Tumor Segmentation

is dedicated to presenting our first contribution by Explaining the rationale

behind the architecture, how it differs from traditional U-Net, and the advan-

tages it offers. Providing insights into the training process, hyperparameters,
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and modifications made to enhance its performance. Presenting the results

obtained from applying this architecture to the BRATS 2018 dataset. and

finally, discuss these results and compare them with previous studies.

• Chapter 6: PU-net Architecture for Brain Tumor Segmentation introduces

our second proposed solution to address the challenge of brain tumour

segmentation. The PU-net architecture represents a significant enhancement

and optimization compared to our previous proposal in Chapter 5. We

have fine-tuned various aspects, including training parameters, memory

utilization, processing speed, and achieved results. This innovative architecture

incorporates a novel mechanism for efficiently handling multimodal inputs and

has demonstrated remarkable effectiveness when pitted against the existing

approaches in the field.

• Chapter 7: Machine Learning for Brain Tumor Segmentation reviews a

comparative study between our proposed deep learning architectures in chapter

6 and traditional machine learning models, specifically Support Vector Machine

(SVM) and Random Forest. Through this examination, we aim to discern the

relative strengths and weaknesses of deep learning vis-à-vis machine learning

in the context of brain tumor segmentation. Additionally, we address the

pertinent issue of class imbalance, shedding light on how this challenge can

significantly impact the outcomes of various evaluation metrics.

• Chapter 8 Transfer Learning from Brain Tumor Segmentation to Brain Tumor

Classification: this chapter discusses the transfer learning technique where we

propose to use a pre-trained model to segment brain glioma tumors to build

a model that classifies brain tumors into meningioma, glioma, and pituitary

tumor by just making some changes and taking advantage of the knowledge

gained by the pre-trained model.

• Chapter 9 presents a conclusion of the thesis encapsulating the study key

findings, and it also offers valuable insights into potential directions for future

research expansion.
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2
Magnetic Resonance Imaging and Brain

Pathology:Biomedical Background

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Medical imaging modalities . . . . . . . . . . . . . . . . 8

2.2.1 Radiography . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Mammography . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Computed tomography . . . . . . . . . . . . . . . . . . 9
2.2.4 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Nuclear medicine based modalities . . . . . . . . . . . . 10

2.3 Magnetic Resonance Imaging . . . . . . . . . . . . . . . 11
2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 MRI Components . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 MRI functioning Principe . . . . . . . . . . . . . . . . . 12
2.3.4 MRI Imaging Sequences and views . . . . . . . . . . . . 13

2.4 Brain Anatomy . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 General Structure . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Protective Brain Structures . . . . . . . . . . . . . . . . 16
2.4.3 Cerebral Tissues and Cells . . . . . . . . . . . . . . . . . 16

2.5 Brain Pathologies . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Gliomas . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Pituitary tumors . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Meningioma Tumor . . . . . . . . . . . . . . . . . . . . 20
2.5.4 Brain Tumor Diagnostic . . . . . . . . . . . . . . . . . . 20

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7
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2.1 Introduction

In the health sector, medical imaging plays a vital role in many disease diagnosing,

treatment planning, and patient monitoring, it has transformed the landscape of

modern healthcare, enabling clinicians and researchers to peer into the human

body with unprecedented clarity and precision. There are several medical imaging

modalities, each used for a particular purpose. Magnetic Resonance Imaging (MRI)

has emerged as a cornerstone technology for non-invasive visualization of anatomical

structures and pathological conditions. With its exceptional soft tissue contrast,

versatility, and absence of ionizing radiation, MRI has become an indispensable

tool for diagnosing and studying a wide range of medical conditions, particularly

those involving brain pathology.

This chapter provides an in-depth exploration of the medical imaging world,

with a special focus on the principles of MRI, including the underlying physics

and techniques that enable its remarkable imaging capabilities. Furthermore, we

introduce the human brain anatomy and vocabulary in addition to the brain

gliomas used as the main pathology in this study and other pathologies that are

revealed by the MRI modality.

2.2 Medical imaging modalities

since the advent of medical imaging techniques, the health sector has witnessed

a great revolution. This revolution is particularly evident in disease diagnosis,

tailored treatment applications, and patient monitoring. Medical images offer

precise insights into internal bodily structures, thereby aiding in the identification

of diverse cancers across various body regions, as well as detecting blood vessel clots,

neurological ailments, and fractures in bones. there are several medical imaging

techniques spanning from x-rays to magnetic resonance techniques and more [3],

some of them are detailed in the next sections.
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2.2.1 Radiography

was the first modality in medical imaging discovered by Wilhelm Roentgen after

he invented X-rays on November 8, 1895. X-rays are a type of electromagnetic

radiation produced by an X-ray tube. A radiography image is obtained by emitted

X-rays passed through the patient body and captured by a detector behind him.

When the X-rays infiltrate within the body there is a variation in the absorption

of X-rays by different tissues for example bones absorb radiation more than soft

tissues this is which produces a contrast in the resulting image and allows a

clear representation of all structures. it is required to diagnose broken bones,

cardiovascular disorders, or some lung pathologies.[3]

2.2.2 Mammography

is breast radiography with an x-ray tube and detector designed specifically for the

women’s breast, it uses less X-ray energy than general radiography purposes. it

aids in revealing lumps that may be benign or malignant like cancers. generally,

women after 45 years old are advised to do mammography for early asymptomatic

breast cancer screening.[3]

2.2.3 Computed tomography

also called the CT scanner was available in 1970, it is the first modality assisted by

a computer. In general CT scanners are built based on X-ray radiation similar to

radiography with a different physical design where the patient’s body is captured

by an x-rays beam applied through various angles by rotating the X-ray tube

around the body detectors are opposite to the x-rays tube as usual to collect the

results x-rays energies after the absorption phenomena of the body tissues. images

are reconstructed to create 2D or 3D images. CT is often used to diagnose: the

presence of tumors, cardiac tissue, cardiovascular disease, bone injuries, pulmonary

disease, colon health. [3]
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2.2.4 Ultrasound

is medical imaging modality completely different from previously mentioned modali-

ties, it is real-time imaging using high sound waves. The ultrasound machine consists

of the following components: transducer probe monitor, keyboard, processor (CPU),

data storage disk, and printer. The most essential component is the transducer

probe. This probe plays a dual role, it produces the sound waves used and receives

their echoes back. in an ultrasound exam, a transducer (probe) is placed directly

on the skin or inside a body opening. A thin layer of gel is applied to the skin

so that the ultrasound waves are transmitted from the transducer through the gel

into the body. The ultrasound image is produced based on the reflection of the

waves off of the body structures. The strength (amplitude) of the sound signal and

the time it takes for the wave to travel through the body provide the information

necessary to produce an image. [3]

2.2.5 Nuclear medicine based modalities

Nuclear medicine imaging is the radiology sector in which the specialists use chemical

substances of radioactive materials called radiotracers that are given to the patient

by injection into the bloodstream, orally or inhaled. Once the tracers reach the

appropriate area of the exam and are decayed, they free up energy in the form of

gamma rays which are detected by an external radiation detector and reconstructed

by a computer. Single Photon Emission Computed Tomography (SPECT) and

Positron Emission Tomography (PET) scans are the two most common imaging

modalities in nuclear medicine.[3]

2.2.5.1 Single Photon Emission Computed Tomography (SPECT)

is a nuclear imaging equipment with a physical design similar to a CT scan and

also assisted by a computer to generate the final images,it is used to capture

the distribution of the radioactive tracers in the patient’s body using rotated

gamma camera detectors that can detect gamma rays emission from the decayed

radio-tracers at different angles of the body, The computer translates the collected



2. Magnetic Resonance Imaging and Brain Pathology:Biomedical Background 11

information and generates two-dimensional (2D) cross-sections or 3D with stacked

2d cross-sections together.

2.2.5.2 Positron Emission Tomography (PET)

is also similar to SPECT in using radioactive tracers but the main difference is

the type of radioactive where in SPECT the decayed radio actives generate direct

gamma rays but PET generates particles called positrons and these positrons

generate gamma rays photons. Positrons are electrons with positive charge as

the electrons have negative charge positrons and electrons annihilate and generate

a pair of gamma rays photons that shoot in opposite directions, which will be

detected to create 2D or 3D images.

2.3 Magnetic Resonance Imaging

2.3.1 Definition

Magnetic resonance imaging is a non-invasive medical imaging technique that uses

non-ionizing radiation to create high detailed 2D or 3D anatomical images to

distinguish pathological tissues. It is based on the Nuclear magnetic resonance

phenomenon. Generally, MRI is considered as very important test for diagnosing

and monitoring diseases in soft tissues. [3, 4, 5]

2.3.2 MRI Components

Magnetic Resonance Imaging (MRI) consists of several components that work

together to produce high-quality images of the body’s internal structures. These

components[4, 5] include:

Magnetic field: A strong, uniform magnetic field is generated by a supercon-

ducting magnet or an iron-core magnet, which is the basis for MRI signals.

Radiofrequency (RF) coils: These coils transmit and receive the RF signals

that are used to excite and detect the hydrogen protons in the body. There are

different types of RF coils, including surface coils, body coils, and head coils, each

designed for a specific imaging application.
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Gradient coils: These coils generate the gradient magnetic fields that are used to

encode the spatial information of the hydrogen protons in the body. The gradient

magnetic fields are used to create images with high spatial resolution.

Computer: The computer controls the magnetic field, RF signals, and gra-

dient fields and processes the signals to create images. It also stores and dis-

plays the images.

Software: Specialized software is used to control the MRI scanner, acquire

images, and perform image analysis, such as image reconstruction, segmentation,

and visualization.

Together, these components work to produce high-resolution, non-invasive

images of the body’s internal structures, which can be used for a variety of

medical purposes, including diagnosing diseases, monitoring treatment response,

and evaluating anatomy and function.

2.3.3 MRI functioning Principe

Magnetic resonance imaging uses the magnetic resonance property of the protons

that are the nucleus of the hydrogen atom which are abundant in the human body

as the water (H2O) is the dominant component, especially in soft tissues.[4, 5]

• Proton spin: In chemistry, the hydrogen atom contains a single Proton with a

positive charge and one electron revolves around it with a negative charge.

The proton turns around its on-axis and forms a tiny magnet like the Earth,

which is known as proton spin. In the human body, all protons are randomly

aligned in the form that the net magnetization result is equal to 0.

• Precession: when the human body is exposed to a magnetic field B0, all

protons are aligned with the B0 axis, some aligned in the same direction to

B0, others aligned in the reverse direction but all parallel to the B0 axis and

spin around B0. The B0 field affect also the spinning speed which is called

precession frequency .
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• Excitation and Resonance: radio a frequency is applied equally to the proton’s

Larmor frequency, and the energy is transferred from the RF to the protons

this phenomenon is called resonance once the protons absorb this energy they

flip from their longitudinal plane Z axis to its transverse plane XY axis and

this is considered as an excitation phase.

• Relaxation: corresponds to the equilibrium state’s return of tissue magnetiza-

tion after stopping the emission of the RF radiofrequency which is escorted

by protons liberation RF signal received on a receptive coil to construct the

MRI image. but this is not enough to get a high-quality image with contrast

because a very potent received signal may lead to a light image and a weak

signal leads to a dark image, that is why these two relaxation tissues times

were introduced longitudinal relaxation time (T1) and transverse relaxation

time (T2) to produce different contrast, and they are different to each tissue

composition and depend on the field strength.

• Image construction: The received signal is finally interpreted using Fourier

transformation algorithms to generate the MRI image using a computer.

2.3.4 MRI Imaging Sequences and views

MRI sequences depend on some important parameters, that are introduced by the

MRI technician in the configuration dashboard[4, 5].

• Repetition Time (TR): is the quantum of time between successive RF pulses

applied to the same slice measured in milliseconds.

• Echo Time (TE): is the time between the RF pulse excitation and the receipt

of the echo signal. measured in milliseconds.

• Flip angle (θ): is the angle by which the axis of the hydrogen proton shifts

from its longitudinal plane (static magnetic field B0) Z axis to its transverse

plane XY axis by excitation with RF pulse.
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all of these parameters are factors of contrast By tuning them a lot of sequences

can be generated for example:

MRI Sequences
Parameters

TR
(msec)

TE
(msec)

T1-Weighted
(short TR and TE) 500 14

T2-Weighted
(long TR and TE) 4000 90

Flair
(very long TR and TE 9000 114

in addition to multiple sequences, the MRI scan produces three anatomical

views: axial, sagittal, and coronal

Figure 2.1: The Brain Mri Views

2.4 Brain Anatomy

2.4.1 General Structure

The brain is the central processing and controlling organ in the human body; it

is made of 60% fat and the remaining 40% is a combination of water, protein,

carbohydrates and salts which are in the form of blood vessels and nerves including

neurons and glial cells. It consists of three main parts: cerebrum, cerebellum,

and brain stem which is related to the spinal cord to form the central nervous



2. Magnetic Resonance Imaging and Brain Pathology:Biomedical Background 15

system that controls all activities of the body. It processes and interprets the

information received from the five sensory systems and makes decisions to be

executed by the appropriate body part.[6, 7]

• The cerebrum: represents the largest part of the brain, it is split into two

halves called hemispheres each controls the opposite half of the body, and also

each hemisphere is divided into four regions known as lobes: frontal, parietal

temporal, and occipital lobe, that perform an important function.

• The cerebellum: resides in the posterior cranial fossa inferior to the cerebrum,

it maintains the coordination of movements and balance.

• Brain Stem: performs the role of a main bridge from the cerebrum and the

cerebellum to the spinal cord, it controls many automatic functions like heart

rate, breathing, digestion, wake and sleep cycles, and body temperature. . . It

contains also a set of nerve fibers that carry signals controlling muscles and

sensations between the cerebrum and the rest of the body [6, 7]

Figure 2.2: The Brain Anatomy
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2.4.2 Protective Brain Structures

The human brain is surrounded by a protective system, encased in several layers

from outer to inner [6, 7]:

• Skull (Cranium): is the bony protective structure that surrounds the whole

brain.

• Meninges: the under skull cover, encompasses three layers of protective

membranes from outer to inner: the dura mater, arachnoid mater, and pia

mater. The meninges provide additional padding and support for the brain.

• Cerebrospinal Fluid (CSF): is a liquid that surrounds the brain and the spinal

cord, it protects them from injuries and shocks and serves as a nutrient and

hormone delivery and waste removal system for the brain

Figure 2.3: The Brain Protective Structure

2.4.3 Cerebral Tissues and Cells

There are two main tissues in the brain white matter and gray matter[6, 7].

• Gray Matter (GM): refers to the darker outer portions, it is a central nervous

system tissue part that is made of the neuronal cell bodies also called soma,

and the glial cells which provide them nourishment to assist their functioning.

It is primarily responsible for the information processing and interpretation
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• White Matter (WM): refers to the lighter inner portions, containing the axons,

which are the long stems that connect the neurons covered with myelin. It is

in charge of ensuring the information transfers between the different parts of

the nervous system

Figure 2.4: The Neuron Anatomy

2.5 Brain Pathologies

As with all human organs, the brain is also expected to several diseases and disorders

each with its causes, Symptoms, and treatments like Alzheimer’s[8], Parkinson’s,

Epilepsy, Multiple Sclerosis[9] and brain tumors. This study focused on three types

of brain tumors Gliomas, Pituitary tumors, and meningioma tumors.

Figure 2.5: Brain Tumors

2.5.1 Gliomas

Gliomas are among the most life-threatening types of cancer that affect the human

brain or spinal cord. They are a common type of primary brain tumors, where they
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mainly grow in the glial cells opposite to metastasis cancers, which grow anywhere

in the body and spread to the brain.[10, 11, 12, 13]

2.5.1.1 Type of Gliomas

Gliomas encompass a diverse range of types, exhibiting variations in growth

rates and malignancy. The specific glioma type diagnosed plays a crucial role

in determining the severity of the condition and guides the healthcare team in

devising an appropriate treatment plan. Gliomas are typically classified into two

categories: low-grade gliomas and high-grade gliomas. [14]

1. Low-grade gliomas: are regarded as benign tumors, they are characterised by a

slow growth rate and regular morphological shapes in the outward appearance.

This category can be treated surgically in the case of early diagnosis and

the survival rate may reach up to 10 years, but sometimes, it is possible to

be recurrent and grow again, if regular examinations and safety precautions

are not applied they may spread and become life threatening. Treatment for

Low-Grade Gliomas:

Surgery: Surgical removal of the tumor is often the first-line treatment for

low-grade gliomas. The goal is to remove as much of the tumor as possible

while preserving neurological function. Complete removal may not always be

feasible, especially if the tumor is located in a critical area of the brain.

Radiation Therapy: Radiation therapy may be used to target any remaining

tumor cells after surgery or as the primary treatment in cases where surgery

is not possible.

Chemotherapy: Some low-grade gliomas may be treated with chemother-

apy, either alone or in combination with surgery and/or radiation therapy.

Chemotherapy drugs can be administered orally or intravenously.

Monitoring: Due to the potential for recurrence or transformation into higher-

grade tumors, individuals with low-grade gliomas are often closely monitored



2. Magnetic Resonance Imaging and Brain Pathology:Biomedical Background 19

through regular imaging studies (such as MRI scans) to detect any changes in

the tumor.

2. High-grade gliomas: are more aggressive and still considered untreatable

because of their fast-growing, complete restriction is impossible because of

their irregular contours in the morphology shape, which means tumor cells

quickly affect random nearby healthy cells. Often, a set of treatment options

are used after surgeries, such as radiotherapy, chemotherapy, or combined

approaches. These tumors have a high recurrent probability and a poor

survival rate of 2 to 5 years.

2.5.2 Pituitary tumors

it refers to an abnormal mass that arises in the pituitary gland which is a small,

pea-sized gland located at the base of the brain, it is also known as the master

gland due to its vital role in regulating various hormonal functions in the body and

controlling other glands such as thyroid gland, adrenal glands and reproductive

glands (ovaries and testes)

Type of Pituitary tumors: Most pituitary tumors can be classified as benign tumors

but they can affect the normal functioning of the gland leading to an overproduction

or underproduction of hormones. There are different types of pituitary tumors,

and they may be classified based on their size or the specific type of cells they

originate from [15]. Some common types include:

1. Prolactinomas: These tumors secrete excessive amounts of prolactin, a

hormone that stimulates breast milk production. They are usually benign.

2. Adenomas: The majority of pituitary tumors are adenomas, which are usually

benign and arise from the gland’s tissue.

3. Growth hormone-secreting tumors: These tumors lead to an excess production

of growth hormone, causing acromegaly in adults or gigantism in children.
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4. ACTH-secreting tumors: These tumors can cause the overproduction of

adrenocorticotropic hormone (ACTH), resulting in Cushing’s disease.

5. Non-functioning tumors: These tumors do not produce excess hormones but

can cause symptoms due to their size, such as headaches or vision problems.

2.5.3 Meningioma Tumor

it is a kind of tumor that grows in the meninges which are the three protective

layers that cover the brain and spinal cord [16].

Type of Meningioma: Meningiomas are mostly benign and characterised by a slow

growth rate. However, some can be aggressive and exhibit faster growth. Therefore,

they are grouped into three grades based on their histological characteristics.

1. Grade 1: low grade often benign with a slow growth rate

2. Grade 2: Atypical mid-grade tumors with higher recurrence rate after surgical

remover.

3. Grade 3: Anaplastic is considered malignant (cancerous) with faster growth

speed.

2.5.4 Brain Tumor Diagnostic

Early detection and accurate delineations are crucial for any cancer type, mainly

brain tumors, to apply treatments correctly, reduce mortality rate, and ensure

good patient quality of life. For this, The healthcare provider takes a detailed

medical history, including any symptoms the individual may be experiencing and a

neurological examination is conducted to assess motor function, reflexes, sensory

perception, and other neurological signs. then, different imaging modalities are

used. These include Magnetic Resonance Imaging (MRI) or Computed tomography

(CT) to detect these abnormal masses. Currently, MRI is recognized as the best

non-invasive diagnostic tool for the majority of brain pathologies[17, 18], due to

its potential in soft tissue imaging based on the hydrogen atoms magnetization

and its diversity in imaging modalities (T1, T2 weighted images, flair or using
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contrast enhancement agent gadolinium to obtain T1 images), which help to exhibit

complementary information about tumor segments. It also provides 3D high-

resolution detailed anatomical structures in a safe way without radiation fears[19, 20],

after that a segmentation process is applied. Segmentation is a crucial step in

medical image analysis for identifying and delineating the cancer[21] This process

helps in characterizing the tumor, measuring its size, and assisting in treatment

planning. There are two main approaches to performing segmentation: manual

segmentation and automatic (or computer-aided). In manual segmentation, a

trained human expert, often a radiologist or a neuroscientist, visually examines

medical images and manually outlines the tumor boundaries. it is advantageous

regarding human expertise where Trained professionals can leverage their knowledge

and experience to accurately identify and delineate tumor regions. but it can be a

tedious and time-intensive process, especially for large datasets, and greatly depends

on human experiences and skills where There may be variations in interpretations

among different experts. Automatic segmentation relies on computer algorithms

and image processing techniques to identify and delineate tumor regions without

direct human involvement. This approach offers notable advantages, including

high efficiency in analyzing large datasets swiftly, rendering it suitable for high-

throughput applications. Moreover, the use of algorithms ensures result consistency,

minimizing variability associated with human subjectivity. However, challenges

exist, particularly in the context of algorithm performance, as the accuracy of

automatic segmentation is contingent on the effectiveness of the specific algorithm

employed. Additionally, tumors with irregular shapes or locations may present

difficulties for automated methods, highlighting the need for ongoing research and

development to enhance the robustness of these segmentation techniques[22, 23].

This which we are going to discuss in the next chapters.

2.6 Conclusion

In conclusion, this chapter has provided a comprehensive exploration of the existing

medical imaging modalities focusing on Magnetic Resonance Imaging (MRI) as a
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pivotal medical imaging modality, particularly in the context of brain anatomy and

pathology By delving into the principles and techniques of MRI, we have gained

insight into its unparalleled ability to produce detailed and non-invasive images of

the brain’s internal structures. the discussion extended to the nuanced world of brain

anatomy and pathology, with a specific focus on gliomas. From defining gliomas to

elucidating the diagnostic process through MRI, we have unraveled the intricate

relationship between this imaging modality and the detection, characterization,

and understanding of these tumors.



Don’t Wait for Opportunity, Create it

3
Image Segmentation:State of the art

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 image Analysis . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Image Segmentation . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Type of Image Segmentation . . . . . . . . . . . . . . . 26

3.4 Image Segmentation Techniques . . . . . . . . . . . . . 27
3.4.1 Edge Based Approaches . . . . . . . . . . . . . . . . . . 27
3.4.2 Region Based Approaches . . . . . . . . . . . . . . . . . 28
3.4.3 Machine Learning Based Approaches . . . . . . . . . . . 29

3.5 Application In Brain Tumor Segmentation . . . . . . . 32
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Introduction

Image segmentation using deep learning has outstripped the results of traditional

methods which rely on manual feature engineering and classical algorithms. This

chapter exhibits the most famous image analysis techniques, focusing on image

segmentation and its history and state-of-the-art techniques that were prevalent

before the advent of neural networks. it also delves into their application on brain

tumour segmentation by citing some proposed approaches within this pre-deep

23
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learning epoch to comprehend their role and limitations in tackling the complexities

of medical image segmentation.

3.2 image Analysis

in computer vision, image analysis is a branch of knowledge in image processing

that is focused on the extraction of useful information from digital images to

gain a deeper understanding and context. It is a multi-disciplinary field that

combines computer science, mathematics, and statistics to develop algorithms

and methods for processing and analyzing images. it is widely used in many

application areas, such as medicine, biology, remote sensing, and security. [23]

there are three main levels of image analysis:

• Classification: refers to analyzing a set of images and categorizing the entire

image into one of several predefined classes, in other words, assigning a label

to each image example

Figure 3.1: Example of image Classification task

• object detection: is to spot the area of interest by drawing a kind of rectangle

called a bounding box which means locating and classifying objects into the

belonging classes.
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Figure 3.2: Example of Tumor Detection

• Segmentation:is to identify and locate the pixels of the areas of interests as

example shows

Figure 3.3: Example of Tumor Segementation and localization

3.3 Image Segmentation

3.3.1 Definition

In computer vision, image segmentation is the process of dividing an image into a set

of regions to identify and locate the objects that are in the scene to understand the

context. , It is used in different domains like content-based image retrieval, medical

imaging, robotics, real-time self-driving cars, video surveillance, and automatic

traffic control . . . .

Formal Definition:

The definition of image segmentation provided by Horowitz and Pavlidis [24] is as fol-

lows:

Let X be the domain of the image, and f be the function that associates a

value f(x, y) with each pixel. A homogeneity predicate P is defined on the set
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of subsets of X. The segmentation of X is defined as a partition of X into m

subsets {S1, ..., Sm} such that:

• The union of all subsets Si covers the entire domain X: X = Um
i=1Si

• The intersection between any two subsets Si and Sj is empty for all i 6= j:

Si ∩ Sj = ∅ ∀i, j : i 6= j

• The homogeneity predicate P is true for each subset Si: P (Si) = true ∀i

• The homogeneity predicate P is false for the union of any two distinct subsets

Si and Sj: P (Si ∪ Sj) = false ∀i, j : i 6= j

These conditions ensure that the segmentation forms a valid partition of the

image domain, with each subset representing a distinct, homogeneous region.

The first condition guarantees coverage of the entire image, the second ensures

non-overlapping regions, the third ensures homogeneity within each region, and

the fourth prevents the merging of two regions into a homogeneous one. This

definition establishes a rigorous framework for the segmentation of images, laying

the foundation for meaningful and precise image analysis.

3.3.2 Type of Image Segmentation

There are several image segmentation types:

1. Naïve image segmentation: refers to simple approaches that aim to segment

an image into a set of homogeneous regions based on certain low-level features

such as intensity, and colors, a human interpretation is necessary. they are

characterised by straightforward implementation but they can be with limited

abilities in handling complex images of varying intensities and non-uniform

object shape

2. Semantic segmentation: opposite to naive approaches, the pixels are grouped

into a set of regions according to a specific category, otherwise it focuses on

understanding the high-level semantic meaning of the segmented regions by

assigning a label
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3. Instance segmentation: is a refined version of semantic segmentation the

difference lies in Objects of the same category are labeled differently

3.4 Image Segmentation Techniques

Over the years, the image segmentation research area has experienced numerous

techniques starting with those based on rigid and classical programming algorithms

until those based on machine learning. In the next sections, we exhibit the main

techniques for this purpose.[25, 26, 27, 28]

3.4.1 Edge Based Approaches

Aim to locate different objects present in the image scene based on identifying

their borders or edges. Edges are a significant local change in the image pixel

intensities. generally associated with a discontinuity in the image intensity, there

are two main approaches for the edge segmentation derivative method and the

Active contour method.[29]

• Derivative-based methods: In these methods, image intensities are represented

as a function f(x, y), and edge segmentation is performed based on the first or

second derivative of this function. In the first derivative, edges correspond to

local maxima in the gradient, while in the second derivative, they correspond

to zero-crossing properties (Laplacian).

Figure 3.4: The segmentation with edge kernels

• Active contour method: also known as the snake method, this is a very well-

known edge segmentation technique. it is a deformable contour model that
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can capture the shape of an object by adjusting its shape to fit the object’s

contour.

3.4.2 Region Based Approaches

Aim to group pixels into a set of homogeneous areas based on pixel intensities and

some similarity criterion, there are several techniques like Thresholding, region

growing and split and merge Algorithm.[30]

• Thresholding-based segmentation: is among the oldest and the simplest used

techniques for image segmentation, it yields a binary image where the pixels

are partitioned depending on their intensity value according to a certain value

known as a threshold. There are three types of thresholding: global threshold,

local threshold, and adaptive threshold .

The global threshold consists of using a fixed value T and binaries pixel

intensities using the equation below the output of this method is a white and

dark image.

g(x, y) =
1, if f(x, y) > T

0, if f(x, y) ≤ T
(3.1)

The local threshold keeps the same basic idea of the global thresholding, only

applied over the partitioned sub-images obtained from the whole image each

with its appropriate threshold T. Adaptive threshold or dynamic thresholding

is a kind of local thresholding selected in a deeper way based on pixel

Figure 3.5: The segmentation with Thereshold Algorithm
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• region growing: it is a pixel-based segmentation technique that aims to control

the growing regions that begin from initial seed pixels and group neighbor

pixels according to similar properties. the basic concepts of this algorithm in

1 algorithm.

• split/merge algorithm: this algorithm considers an image as a whole region

then a quadtree split is applied where each region satisfies a homogeneity crite-

ria, then merging neighboring regions if their union satisfies the homogeneity

criteria. the basic steps are in the algorithm 2

Algorithm 1 Region growing Algorithm
1: Choose a seed pixel as the starting point.
2: Seed Region Formation: Make the seed pixel the initial region.
3: Neighbor Pixel Selection: Select neighboring pixels based on specific criteria.
4: Pixel Connectivity: Define pixel connectivity rules (4 or 8-connectivity).
5: Region Growing: Iteratively add neighboring pixels meeting inclusion criteria

to the region.
6: Assign a label to pixels within the region.
7: Termination Condition: Specify when to stop the region growing process.
8: Repeat: If needed, apply region growing for multiple seed pixels.

Algorithm 2 Split/Merge Algorithm
1: Start with the entire image as a single region.
2: Examine the properties of the current region (e.g., variance of intensity values).
3: Split Condition: If the properties indicate heterogeneity above a certain

threshold, divide the region into smaller sub-regions.
4: Examine the properties of the sub-regions.
5: If the properties of adjacent sub-regions are sufficiently similar, merge them

back into a larger region.
6: Repeat Split and Merge: Continue the split and merge process recursively until

no further splits or merges are needed.
7: Define a termination condition, like a minimum region size, to stop the process.
8: Assign labels to the final regions.

3.4.3 Machine Learning Based Approaches

Machine learning (ML) is a branch of Artificial intelligence (AI) that gives electronic

systems the ability to learn automatically, improve, and make decisions without

being explicitly programmed. The main concept is to learn hidden patterns (features)
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from data called training data and build predictive models that can make decisions

over unseen data. The predictive models are a kind of classification rules, decision

trees, or mathematical formulas. . . ; in the context of image segmentation, the

training data is a set of images collected to tackle a specific problem. According

to the way of learning from data, ML techniques are categorized into two main

types supervised and unsupervised methods[28, 31, 29]

Supervised Learning based techniques In general, the training data is as-

sociated with labels, and ML techniques are trained to build models that try to

achieve outputs similar to the presented labels with an estimated error and the final

objective is to minimize this error during the learning process. Mathematically, we

have an input X and an output Y and the ML technique is used to find a function f

that verifies the equation: f(X) =Y after this function parameters are tuned it will

be used to predict over new data. It exists a panoply of algorithms like k-nearest

neighbors, support vector machines, Random Forests, and Artificial Neural Networks.

in the context of image segmentation also called semantic segmentation, each image

in the train set is associated with a label image or mask also known as ground

truth that represents an image with the same size and the same information as the

corresponding image in the training set where each pixel intensity is associated with

the appropriate category or class label. The model compares the predicted output

segmentation with the label image by computing the error and minimizing it until

obtaining a precise localization for each object with the exact semantics, the labels

can be presented in one of these two forms: class label or one-hot-vector-encoding.

• Class label format: each class is labeled by a definite integer number so each

pixel in the ground truth will take the value of a class as the intensity value.
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Figure 3.6: Class label format

• One-hot-vector encoding: is a representation of categorical class labels as

binary vectors. It requires that the class category be integer. Then each

class will be converted to a binary vector of size (height*width of the original

image), where all values are zero except the index of the class will take 1.

This representation is the most compatible with deep learning frameworks

and in general, the class label format is converted implicitly or explicitly to

one hot encoding before processing.

Figure 3.7: One-hot encoding format

Unsupervised learning based techniques Unlike supervised techniques, un-

supervised techniques are used to learn from unlabelled datasets in another way

the training data is not associated with labels, and ML techniques are used to
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discover hidden patterns in the data, this kind of technique requires human expert

interpretation.[29] Clustering is very recognized in the image segmentation context,

the main idea is to group image pixels or voxels into a set of classes known

as clusters using a similarity criterion like the Jaccard coefficient or Euclidian

distance. it represents a form of an optimization problem where the objective

function is to maximize the similarity of intra-classes and minimize it inter-classes.

K-means, Fuzzy C-means(FCM) and Possibilistic c means (PCM) are the most

renowned clustering algorithms.

3.5 Application In Brain Tumor Segmentation

In the past, traditional methods for brain tumor segmentation were indeed used,

but their efficiency was limited due to the complexity and variability of brain tumor

appearances in addition to the multimodal medical images. These conventional

approaches often relied on handcrafted features and heuristics, which made them

less robust and adaptable to the diverse nature of tumors. They faced challenges in

accurately delineating tumor boundaries and distinguishing between different tumor

types. With the advent of machine learning techniques, brain tumor segmentation

has undergone a transformative evolution, Clustering techniques have been widely

used, In [32]the authors suggested using both k-means and fuzzy c-means algorithms

to segment brain tumors and compare the final result to estimate the efficiency

of each algorithm in terms of segmentation accuracy and execution time. in [33]

proposed to segment brain MRI using a fuzzy-possibilistic C-means algorithm in

addition to the k-means method to perform the skull stripping to extract the brain

region only as a pre-processing step Without forgetting supervised techniques like

support vector machine and random forest, k nearest neighbor[34, 35, 36, 37] Ran-

dom Forest (RF) [38], These methods use feature extraction (edges, texture, colors,

etc.), a te- tedious process, as one of their core phases because their accuracy is

directly related to the quality of the best discriminative features, this step must be

preceded by a time-consuming feature selection. However, both feature selection and
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extraction are implicit and fully automatic in DNN, making them more adaptive

to learning from various images [39].

Recently, deep learning-based approaches have prevailed in the general medical

image segmentation state of the art [40, 41, 42, 43, 44]. And the brain tumor seg-

mentation domain [45], where convolution neural network (CNN) is the fundamental

architecture used with the encoder-decoder variants like fully convolutional networks

(FCN) and U-net. They return results that outstripped previously mentioned

techniques. Deep learning has indeed brought about a revolutionary change in brain

tumor segmentation and has demonstrated exceptional capabilities in capturing

intricate patterns and features in general medical images which has significantly

improved the accuracy of brain tumor segmentation, enabling better diagnosis and

treatment planning, this method is better discussed in the next chapter.

3.6 Conclusion

In this chapter, we have discussed the most important techniques for image analysis.

Our focus was on the progression of image segmentation methodologies, from

traditional algorithms to those based on machine learning. We have thoroughly

explored each category of technique by exhibiting its main principles and some

renowned algorithms. Additionally, we conducted a literature review that specifically

focused on their applications in brain tumor segmentation.
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4.1 Introduction

Automatic image segmentation is a crucial aspect of image analysis that has seen

significant advancements and challenges, especially with the emergence of Deep

learning. This chapter offers the history of deep neural networks since the invention

of artificial neural networks with its detailed steps for feedforward and backward

34
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processes, in addition to direct attention to the most important used techniques

and architectures in the context of image segmentation using deep learning.

4.2 Artificial Neural Network (ANN)

Artificial Neural network ANN is a machine learning technique that mimics the

brain’s cognitive system , it has a long history of development since 1943. like most

supervised machine learning techniques ANN can resolve regression or classification

problems in any field. as the brain is a massive network of connected neurons,

neural networks are first designed as neuron 4.1 with a graph of multiple nodes

and connections in layered structure: input layer, hidden layer, and output layer

depending on the type of neural network.[46].

Figure 4.1: From Human Neuron to Neural Network

According to the number of layers, the neural network architectures are clas-

sified as follow:

The neural network model is a kind of mathematical function that contains

variables, weights, and bias, during the learning process the weights are adjusted



36 4.2. Artificial Neural Network (ANN)

Single Layer Neural Network
(Perceptron) One Input Layer- one Output Layer

Multilayer Neural Network Shallow Neural Network
One Input Layer-
One Hidden Layer-
One Output Layer

Deep Neural Network
One Input Layer-
more Hidden Layers-
One Output Layer

according to the variable’s input values to reach an output similar to the desired

outputs and get the ability to predict over unseen data within a tolerable error

this refers to the supervised learning process. The neural network supervised

learning is as follow:

1. Random Weights Initialization.

2. The input goes through the network to obtain an output, then calculates the

error between the correct and the network output.

3. Adjust the weights to reduce the error using a learning algorithm generally

called the backpropagation algorithm(Gradient descent).

4. Repeat steps 2-3 for all training data

it is mainly composed of two main steps feedforward pass(step 1-2) and backward

pass(step 3).
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Figure 4.2: The Supervised learning process

4.2.1 The Learning Algorithm

A learning algorithm [1] is a mathematical operations applied over the Network,

it is used to update the weights and bias levels of a network to improve the

Artificial Neural Network performance in terms of accuracy and precision. this

iterative process helps a neural network to learn from the existing conditions and

improve. since the development of neural networks, the learning algorithm has

known different development stages due to the variety of networks and the learning

requirements but the basic idea that was founded on is the same, the gradient

descent algorithm or The Delta rule.

4.2.1.1 Gradient Descent

is an optimization algorithm used to find a local minimum/maximum of a differ-

entiable function. in machine learning algorithms, gradient descent is commonly

used to train and update the model’s parameters to minimize the error function

also known as the cost function. Mathematically, the gradient is the rate of change

of a function and it is related to the derivative of the function. it represents the

amount by which the output function changes for a small change in the input

variable. for example in the case of the linear function F(x)=ax, the gradient is

a, and this is called the slope. the term gradient is usually used in the case of
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multivariate functions which are functions with multiple inputs. the main concept

of the gradient descent algorithm is to start from an arbitrary point x and move to

the next point by gradient called ∆x with a step size called η using the following

equation x=x+η∆x and repeat the process until converging towards the stationary

point called local minimum if the movement is with a negative gradient or local

maximum inversely and this is known as the direction.

Figure 4.3: Gradient Descent

4.2.2 Single Layer Neural Network: Perceptron

Perceptron is the basic architecture in the simple neural network, it is inspired

by biological neuron architecture. in 1943, the neuroscientist Warren McCulloch

and the logician Walter Pitts were the first to propose the concept of the neuron

functioning in a mathematical computational model as the figures show where

the inputs and the outputs formed as binary

In 1957, Frank Rosenblatt introduced the first single-layer perceptron as a

supervised linear classifier for binary classes. based on the Muc proposition which

supports all types of inputs not only binary ones. it aims to find the appropriate

decision linear or hyperplane boundary. the figure below exhibits an example of

a single-layer perceptron associated with its parameters
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Figure 4.4: Single Perceptron Network

4.2.2.1 Perceptron FeedForward Pass

The figure exposes the perceptron functioning where the nodes (X1..X3) represent

the input signals and the(w1..w3) the weights for the corresponding input signals,

the bias is used to avoid the zero input when (XW=0) with an output greater

than 0.[1] The feedforward process starts as follows: the inputs are first multiplied

by the weights before reaching the summing node where they are aggregated in

addition to the bias to generate the weighted sum S.

S = (w1 × x1) + (w2 × x2) + (w2 × x2) + b (4.1)

in general way the weighted sum can be formulated as follows:

S = wx+ b (4.2)

the weighted sum enters into the activation function node to generate the output

y = ϕ(v) (4.3)

y = ϕ(v) = ϕ(wx+ b) (4.4)

the output of this function is denoted as a predicted output y which must be equal

to the desired outcome or the correct label introduced with the input data, the

learning process here is supervised which means the perceptron model learns how to

reach the correct output within a tolerable error by adjusting the weights through

the use of a specific learning algorithm.
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4.2.2.2 The single Layer Network Learning Rule: Backward Pass

in the single-layer Network, the learning rule has undergone several changes due

to the activation function and error function. for example in the perception, the

activation functions are a kind of a step function or threshold and error computed

based on a simple equation.

eij = dij − yij (4.5)

where e is the error , d is the desired output and y the predicted output.

the learning rule applied here is called the perceptron learning rule and is

defined based on the delta rule without using derivatives because the step function

is not differentiable, and as it is used to update the network weights the learning

rule is defined as follows:

wij = wij + ∆wij (4.6)

where wij is the weight between the output node i and input node j and ∆wij

considred as the gradient of wi computed as follow

∆wij = αeixj (4.7)

where α is the learning rate (0<α<1), xj the output from the input node j,and

ei is the error of the output node i

after that, the Adaline (Adaptive linear perceptron) perceptron was developed

by Bernard Widrow and Ted Hoff in 1960 which is similar to the previous but with

a small change in the activation function which is the linear activation (identity

function), the use of such a continuous function provides the advantage of being

differentiable which allows further the use of cost functions like MSE for Mean

Squared Error, that can be minimized to update weight using the gradient descent

algorithm, the cost function is defined as follow:

Ei = 1
2 (di − yi)2 (4.8)

example:
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Figure 4.5: Example of Adaline Network with out set to linear activation

the figure 4.5 shows an example of Adaline perceptron where X1 and X2 are

considered as inputs,w1 and w2 as weights, and out as output node where a linear

activation is applied to generate the prediction Y figure resumes the feedforward

process which is similar to the perceptron one.

Figure 4.6: The Adaline Feedforward Pass

after that, the error between the desired and the predicted output is calculated

using the below equation and the backward pass start to minimize this error by

updating the weights using the gradient descent algorithm.

E(w) = 1
2

n∑
j=1

dj −
(
b+

∑
i

wixi

)
j

2

(4.9)

in this case, the gradient ∆wij is computed using the partial derivatives because the

objective function is multivariate so a vector of gradients is generated as follows:

∇E(~w) ≡
[
∂E

∂w0
,
∂E

∂w1
, · · · , ∂E

∂wn

]
(4.10)
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where ∂E
∂wi

is the partial derivative of the function E with respect to wi computed

using the chaine rule as follow:

∂E

∂wi

= ∂E

∂Y
× ∂ϕ

∂S
× ∂S

∂wi

(4.11)

Figure 4.7: The Adaline backward Pass

Figure4.7 resume the backward learning process and after calculating the

gradients, each weights is updated using the previous delta rule defined as

wij = wij + ∆wij (4.12)

where ∆wi = −η ∂E
∂wi

with η as the learning rate.

4.2.3 Multilayer Neural Network

in this case, the network must have at least one hidden layer, and the more hidden

layers the more going deeper which is known as a deep neural network. this kind

of network was proposed as an extension of a single-layer network to solve more

complex problems not only linearly separable problem .[1]

Figure 4.8: Multilayer Neural Network with one Hidden Layer
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4.2.3.1 Back-propagation for multilayer Neural Network

it keeps the same key idea of the Adaline learning rule the only difference lies in

the multiple hidden layers which make the backward pass more complicated and

need more complex chain rule calculus to calculate the gradients, the feedforward

and backward passes of the multilayer network in Figure4.9, and from here the

backpropagation algorithm has been structured.

Figure 4.9: Multilayer Backpropagation pass

The Algorithm below recapitulates the main step in the neural network learning

process.

Algorithm 3 Backpropagation Algorithm : Feedforwad and backward passes
1: let X1 to Xn be inputs
2: let H1 to Hk be the hidden nodes.
3: let w1 to wm be the weights between nodes
4: for each node Hj do
5: Compute the weighted Sum Sj (Eq.:4.1)
6: Compute the activationϕ of each Sj (Eq.: 4.3)
7: repeat 3-4 until reach the output node and generating the output Y.
8: end for
9: Compute the error using E function (Eq.:4.8)
10: for each node wi do
11: backpropagate the error and compute the Gradient using chaine rule.
12: Update each weights.
13: end for
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4.2.4 Activation Functions

An activation function is a crucial component of artificial neural networks and

deep learning models. It introduces non-linearities into the network, allowing it

to learn from and make predictions on complex data.

The primary purpose of an activation function is to determine the output of a

neural network node or neuron. Without activation functions (or with only linear

activation functions), a neural network, no matter how deep, would behave like a

single-layer perceptron, unable to capture complex patterns and relationships

in the data.[47]

Here are some common activation functions used in neural networks:

Sigmoid function (Logistic):

σ(x) = 1
1 + e−x

(4.13)

Output range: (0, 1) Used in the output layer of binary classification models.

Hyperbolic Tangent function (tanh):

tanh(x) = e2x − 1
e2x + 1 (4.14)

Output range: (-1, 1) Similar to the sigmoid but with a wider output range.

Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x) (4.15)

Widely used in hidden layers due to its simplicity and effectiveness in training

deep neural networks.

Leaky ReLU:

LeakyRelu(x) =
αx, if x < 0
x, if x ≥ 0

(4.16)

where

α is a small positive constant, typically 0.01. It addresses the "dying ReLU"

problem where neurons can become inactive during training.
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4.2.5 Loss Functions

A loss function, also known as a cost function or objective function, measures the

difference between the predicted values of a model and the actual values (ground

truth) in the training data. The goal during the training of a machine learning

model is to minimize this loss function. Different types of problems (classification,

regression, etc.) and tasks may require different loss functions. Here are some

commonly used loss functions:[48]

Mean Absolute Error :

MAE = 1
n

n
i=1 |yi − ŷi| (4.17)

Similar to MSE, but it computes the average absolute difference instead. It is

less sensitive to outliers.

Binary Cross-Entropy (Log Loss):

Binary Cross-Entropy = − 1
n

n
i=1 [yi log (ŷi) + (1− yi) log (1− ŷi)] (4.18)

Used for binary classification problems. It measures the difference between the true

distribution and the predicted distribution for binary outcomes.

Categorical Cross-Entropy:

Categorical Cross-Entropy = − 1
n

n
i=1

m
j=1yij log (ŷij) (4.19)

Used for multi-class classification problems. It generalizes binary cross-entropy

to more than two classes.

Hinge Loss (SVM Loss):

Hinge Loss = 1
n

n
i=1 max (0, 1− yi · ŷi) (4.20)

Commonly used in support vector machines (SVMs) and for binary classification.

It penalizes misclassifications.

It’s important to choose a loss function that aligns with the objectives of the

specific machine learning task.
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4.3 Deep Learning for image segmentation

4.3.1 Definition

Deep learning is an artificial intelligence discipline and a machine learning subset

and a kind of neural network biologically inspired by the human brain cognitive

system There are several (DL) Architectures each used for a specific kind of problem.

This technique has gained an important interest in the medical sector and especially

for segmentation tasks. [49, 50, 51]

4.3.2 Convolutional Neural Network (CNN)

convolutional neural network is a kind of deep neural network that mimics the brain’s

visual cortex function in receiving, integrating, processing, and interpreting visual

information.[52] CNN offers electronic systems like computers and smartphones

a slight human ability to understand the visual context (images and videos ).

practically, CNN architectures are used for image classification, object recognition,

and image segmentation tasks.

Figure 4.10: The Convolutional Neural Network architecture

regardless of the used method, using the original image directly leads to bad

results that’s why a processing step is required called feature extraction, for this

purpose various techniques have been developed and they are completely independent

of machine learning techniques. there are numerous feature extractors each designed

to extract a specific type of feature like Robert, Sobel, and Laplacian for edge

extraction or Gabor for texture the parameters of those extractors are manually fixed
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which requires high cost and time and finally yield low performances, However, CNN

turned this manual design into an automated process which is its primary advantage

where the feature parameters are initialized randomly and tuned along the training

process according to the data. convolutional neural networks are mainly composed

of two paths: feature extraction path and classification path. the feature extraction

path is composed of stacked convolution and pooling layers to extract numerous

features and finished with a fully connected layer to perform the classification. in

this section, we describe the most important operations behind CNN

1. Convolution Layer: refers to the convolution operation, it is the mathematical

operation that calculates the dot product between two matrices which are the

image matrix and the convolution filter. it generates a new abstracted image

called a feature map. the filter shape may be 1D,2D, or 3D and the values of

the filter matrix play the role of the weights in a simple neural network they

are fixed through the training process and that’s why the layer is called the

convolution layer.

Figure 4.11: The Convolution operation

2. Pooling Layer: this is a mathematical operation that aims to reduce the size of

the feature maps and keeps only representative pixel information to minimize

computation time and memory consumption. it binds neighboring pixels of a

selected square area using a specific pool size in one-pixel value.

the pixels are bound to either max-pooling operation or Average pooling. the



48 4.3. Deep Learning for image segmentation

max-pooling is to select and keep in the feature map the pixel of the maximum

value however the average pooling is to compute the average value of the

pixels in the selected area example:

Figure 4.12: The Pooling operation

3. Fully Connected layer: also known as dense layer, it is a type of layer that

connects all neurons from the previous layer to every neuron in the current

layer. its purpose is to perform the classification task on the extracted features

by the previous layers in the network.

4.3.3 Fully convolutional Neural Network FCN

is similar to convolution neural network architecture, but instead of the fully

connected layer in the classification path. FCN[53, 2] uses an up-sampling path

consisting of layers with opposite operations in the down-sampling path. These

operations may be the reverse operations of the convolution(transposed convolution)

or the pooling operations (unpooling with max-unpooling, nearest neighbour or

bed of nails). In addition to some skip connection which is a merging and

concatenating information between layers of the two paths in order to recover

the spatial information of the objects ”where are these objects located”.At the

end, an output image with a set of probabilities is generated to identify the

classes. as we mentioned above the most important layers to perform in this kind

of architecture are the upsampling layers which are used to increase the spatial

resolution, their is as follow:
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• Up-sampling with Transposed Convolution:(fractionally-strided convolution) is

a technique designed to recover or enhance spatial information that might have

been lost during downsampling operations, such as max pooling or strided

convolution. It involves convolving the input feature map with learnable

kernel weights, using a stride greater than 1 and zero-padding to increase the

spatial dimensions. During training, learnable weights are updated through

backpropagation. By applying this transposed convolution operation, The

result is an output feature map with higher resolution, enabling the model to

capture finer details and patterns in the data.

Figure 4.13: Example of Transposed Convolution

• Up-sampling with max-unpooling: during the max-pooling operation in the

feature extraction step the indexes of the max values are saved to be used later

in the upsamling where the input pixels from the feature map are mapped to

the saved index and filling zeros the remain indexes. example
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Figure 4.14: Up-sampling with max-unpooling

• Up-sampling with nearest neighbor: is a simple upsampling approach where

the input feature map pixel are copied to the corresponding output and the

k-nearest neighbors are filled with the same pixel value example

Figure 4.15: Up-sampling with nearest neighbor

• Up-sampling with bed of nails: same as the nearest neighbor approach but

the the k-nearest neighbors are filled with zeros example:

Figure 4.16: Up-sampling with bed of nails
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4.3.4 Popular Architecture for Image Segmentation
4.3.4.1 SegNet Architecture

SegNet is a deep learning architecture specifically designed for semantic segmentation

tasks in computer vision first introduced by Vigy et al in for real world segmentation

images 2017[54] and later used for medical image segmentation [55]. it is a

symmetrical encoder-decoder architecture where the encoder path represents the

vgg16 convolution parts with its 13 layers. the decoder path consists of Upsampling

layers that uses the max-unpooling which is one of the distinctive features of

SegNet, it use max-pooling indices from the encoder stage ,Rather than storing

the actual pixel values during max-pooling, this information is later used in the

decoder to perform precise upsampling.

Figure 4.17: The SegNet Architecture

4.3.4.2 DeepLab Architecture

DeepLab is a series of popular semantic segmentation models designed by Google

in open-sourced and since the appearance of the first version DeepLab V1 multiple

improvement have been made DeepLab V2,V3 and V3+.

The first version named DeepLab v1[56] was built upon a mixture of convolution

neural network CNN and conditional Random Field (CRF). the CNN part is a

kind of traditional feature-extracting path composed of a series of convolution and
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pooling operations or pre-trained model but with a specific change in last layers

where the Atrous convolution layers are integrated.

Atrous convolution (dilated convolution), the name atrous comes from the

French word “à trous “ which means with holes. These holes are gaps introduced

between the elements of the convolution kernel (filter) to increase the receptive

field or the field of view without augmenting the number of trainable parameters in

the kernel. This gap is defined by a dilation rate greater or equal two to when it

is set to one, it is referred to as the ordinary convolution to allow the capturing

of contextual information from a broader region around each pixel and gathering

multi-scale features using different dilation rates..

Figure 4.18: The Atrous Convolution Kernel

in DeepLabv1, this kind of convolution is used to get a higher sampling density

to calculate the feature map and then use bilinear interpolation to restore the

feature to the original image size and fully connected Conditional Random Field

CRFs used to enhance the model’s ability to capture details, ensuring the accurate

split of the boundary positions. One of the significant enhancements in DeepLab

v2 [56] is the introduction of Atrous Spatial Pyramid Pooling (ASPP) module

which involves parallel atrous (dilated) convolutions with different dilation rates

to capture multi-scale contextual information and helps the model to have a more

comprehensive perception of the input image at different scales.

The third version DeepLab v3[57] similar to the second version but with CRF

removed and replaced by(1*1) convolution in addition to some updates in the ASPP
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like adding batchnormalization layers and global average pooling with pre-trained

VGG19 or Resnet as backnone architecture.

The last version DeepLabV3+[58] was changed to FCN architecture with

encoder(DeepLabV3) and decoder netowrk with the usage of separble atrous convolu-

tions .

4.3.4.3 U-Net Architecture

U-net was the first architecture introduced to deal with semantic segmentation of

biomedical images and achieved great success in medical image segmentation, first

proposed [59] in 2015 .It is based on a fully convolutional neural network(FCN).

the architecture was designed as a symmetric U-shape composed of two paths a

contracting path and an expansive path based on the encoder-decoder aspect with

a bottleneck between them as an additional touch.

1. Contracting Path: often referred to as the encoder path, consists of a series of

convolutional and pooling layers. These layers are responsible for extracting

and capturing features at various scales and reducing the spatial resolution of

the input image.

2. Expansive path: known adecoder path,consists of a series of transposed

convolutions (also known as "deconvolutions" or "up-sampling") and skip

connections which are a critical component of UNet and help improve the

segmentation accuracy. They connect feature maps from the contracting path

to the corresponding feature maps in the expansive path. This allows the

network to use both low-level and high-level features in the segmentation

process, which is particularly useful for capturing fine details. This path

is responsible for gradually increasing the spatial resolution of the feature

map while combining information from the contracting path through skip

connections.
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3. Bottleneck: The architecture includes a bottleneck layer that connects the

encoder and decoder parts. It acts as a bridge for information to pass from

the encoding to the decoding part of the network.

4. Final Convolutional Layer: The expansive path eventually leads to a final

convolutional layer that produces the segmentation mask. This layer typically

has a single channel output for each class that the network is designed to

segment.

Figure 4.19: The U-Net Architecture

4.4 Conclusion

This chapter summarized the historical trajectory of deep neural networks with

special attention to the convolutional neural network and the fully convolutional

neural network and their use in the image segmentation task. It provided details

about the architecture design with layers operation, learning process, and the most

well-known architecture used to perform image segmentation.
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5.1 introduction

Automatic medical image segmentation is one of the main tasks for many organs

and pathology structures delineation.It is also a crucial technique in the posterior

clinical examination of brain tumors, like applying radiotherapy or tumor restrictions.

Various image segmentation techniques have been proposed and applied to different

56
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image types. Recently, it has been shown that the deep learning approach accurately

segments images, and its implementation is usually straightforward. This chapter

introduces an innovative deep-learning methodology tailored to segment brain

gliomas from multimodal MRI data. Our approach introduces a novel strategy for

effectively handling multiple input modalities, presenting advancements in training

strategies, evaluation metrics, and experimental results. Through a comprehensive

comparative analysis, we discuss the findings, highlighting both the advantages

and limitations of our proposed architectures. Furthermore, we delve into the

implications of our research, suggesting potential future directions for refining

and expanding the application of our novel approach in the dynamic field of

medical image analysis.

5.2 Related works

In the last few years, brain tumor segmentation has received great interest [60],

and various challenges have been documented under the BRATS title acronym for

Brain Tumor Segmentation. The majority of contributions involved the utilization

of deep learning techniques and achieved the top ranks. For example, in BRATS

2017 release,Kamnitsas et al[61] proposed an approach that explores multiple

deep network architectures trained separately and Ensemble prediction maps to

construct the final segmentation results; this achieved the first place on the challenge.

Cascaded neural networks with anisotropic and dilated convolutions in the second

place introduced by Wang et al [62], where the cascaded design is used to segment the

whole tumor bounding box first, which was used to feed the next model to segment

the tumor core, and finally, Enhancing the tumor is segmented with the same process.

In BRATS 2018,Myronenko[63] was the first winner with its proposed 3D encoder-

decoder architecture, accompanied by a variational auto-encoder part starting from

the encoder endpoint. It aims to reconstruct the original input image to regularize

the shared encoder. The second winner was Isensee et al [64], who proposed using

3D baseline U-Net with minor modification and focused on region-based prediction

and a co-training process that uses additional data. McKinleyet al[65] was the
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third winner with its preposition, which is a shallow network similar to the famous

U-Net architecture that uses a densely connected block of dilated convolutions

and introduces a new loss function based on binary cross-entropy loss function to

calculate the label’s uncertainty. Wang et al [66] propounded a work to segment

brain glioma structures. It aims to use test time augmentation by augmenting

images with 3D rotation, flipping, scaling, and adding noise to training and test

images using different underpinning 3D network structures to perform multi-class

segmentation and cascaded networks. A.Albiol et al [67]preferred to get inspired by

the well-known two-dimensional (2D) deep learning models like VGG, inception2,

inception3, and dense-like models and extend them to 3D versions. All these models

were used to segment brain gliomas separately in addition to a final ensemble result.

RuiHua et al[68] developed a cascaded 3D V-Nets framework to handle the problem.

The segmentation was performed in a cascaded way where the whole tumor was

segmented first by three ensembled V-Nets. The detected tumor is segmented to

the other tumor parts necrosis, edema, and enhancing tumor using two ensembled

V-Nets. Kermi et al[69] proposed four channels of 2D U-Net architecture to segment

gliomas and used residual blocks instead of plain blocks in the original U-Net.

To address the class imbalance problem, Weighted Cross-Entropy (WCE) and

generalized Dice loss were used. Marcinkiewicz et al [70] suggested segmenting brain

gliomas in 2D two cascaded stages based on a convolutional neural network inspired

by U-Net, the first stage applied to detect regions of interest and the second stage

used to perform multi-class classification. In the next BRATS challenges 2019, the

top-ranked approaches [71, 72, 73] were also based on deep learning architectures.

Many additional proposed methods exist in [74, 75]of different proposed 2D and

3D-based networks. Outside the BRATS challenge, a multitude of research studies

has explored deep learning-based approaches [76, 77, 78, 79], which have exhibited

favourable achievements too. These works often employ a 2D and 3D U-Net

architecture as a foundation and incorporate customized enhancements.

The significant limitations of these existing works are the increased computational

complexity, high memory requirements, and long-running time due to using the
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3D format and complex operations in deep learning architectures like dilated

convolutions and residual blocks, which entail processing many parameters.

5.3 Methodology

In this work, we propose to segment the brain gliomas tumour from multi-modal MRI

images (T1CE, T1, T2, Flair) using a deep learning architecture called PP-UNET.

Our architecture is inspired from the well-known deep learning architecture used for

biomedical image segmentation U-NET[59], where we proposed a customized U-NET

used in multi-pathway mode to deal with MRI modalities. Each image modality

goes through a processing U-net pathway and before generating the final prediction

map the final pathways results are merged or concatenated. The customized U-NET

is designed symmetrically as follows: the contraction path: also called the encoder

path, consists of three levels each level is made of two consecutive (3*3)convolution

layers of 16 learnable filters doubled for each level, each followed by an Activation

Layer with LeakyRELU function parameters, then the result (R) of these layers go

through a (2*2) pooling layer followed by batch normalization layer and Dropout

layer to prevent overfitting. The expanding path: also called the decoder path,

consists of three levels too each level is made of a transposed convolution layer, then

a concatenation layer known also as skip connection between the two symmetric path

where the result (R) is concatenated with the transposed convolution result to get

more information, then a dropout layer and two consecutive (3*3)convolution layers

each followed by an Activation Layer with LeakyRELU function parameters are

applied. The paths are related between them by two consecutive (3*3)convolution

layers each followed by an Activation Layer with LeakyRELU function parameters

called a bridge. The final outputs of the expanding paths from each modality are

concatenated and then the resulting map goes through a (1*1) convolution layer

with a sigmoid activation function to generate the final prediction map.
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Figure 5.1: The parallel pathways architecture PP-UNET
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5.4 Experimentations

5.4.1 Data :

In our work we propose to use the brain tumor segmentation (BRATS) dataset

2018 version [80, 81, 12], it s composed of two datasets training data and validation

data, the training data contains a set of MRI images of 285 patients diagnosed

with high-grade gliomas (Glioblastoma) and low-grade gliomas. Each patient file

encompasses four co-registered MRI modalities native pre-contrast (T1), post-

contrast T1-weighted (T1c), T2-weighted (T2), and T2 Fluid Attenuated Inversion

Recovery (FLAIR). In addition to the manual segmentation file where all pixels

were segmented into four classes with four rates (0, 1, 2, 4) summarized in Table

5.1. The data was acquired with various scanners at 19 institutions and with

different clinical protocols, All Brats multimodal scans are available as Nifty files

(.nii.gz) and they are pre-processed: co-registered to the same anatomical template,

interpolated to the same resolution (1mm3) and skull-stripped. Tables 5.1 and

5.2 below summarize the training dataset information:

Table 5.1: The Brats 2018 training data information

MICCAI_BraTS_2018_Data_Training
Gliomas grade High Grade Gliomas (HGG) Low Grade Gliomas (LGG)
# of patients 210 75
Modalities T1, T1CE, T2, FLAIR
Dimension (240,240,155)
Format Nifty (Nii.gz)

Ground truth Available in seg.nii.gz file

Labels

0 =background and healthy tissue
1= Necrotic /non-enhancing (NCR/NET).

2= Peritumoral edema (ED)
4 =Enhancing tumour (ET).
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Table 5.2: The Brats 2018 Validation data information

MICCAI_BraTS_2018_Data_Validation
Gliomas grade Unknown
# of patients 66
Modalities T1, T1CE, T2, FLAIR
Dimension (240,240,155)
Format Nifty (Nii.gz)

Ground truth Not available

5.4.2 Data Pre-processing:

Normalizing the data is an essential step in all machine learning tasks, to avoid

the domination of some features to others and gain the right information from all

relevant features. In our case we propose to use z-score normalisation [82, 83] to

get a normal distribution of all voxels in each image modality by computing the

mean and standard deviation only for the brain region (non zero part). [84] and

update each voxel value by a new value computed by equation 5.1.

Z = v − µ
σ

(5.1)

Where v is the voxel value and µ, σ are the mean and the standard deviation

voxels respectively.

Figure 5.2: Example of normalized slice with the Z-score formula on slice 102 extracted
from T1contrast enhanced file of patient named “Brats18_TCIA09_141_1”

5.4.3 Implementation details:

Our deep learning proposed approach was implemented using python3 over the

Tensorflow Keras library and executed on UB2-HPC (University of BATNA 2)
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GPU node which contains 4 GPUs configured with CUDA 10.0 and CUDNN 5.6.7.

In this case, the official Brats training data was splited randomly into Train set

90% and Valid set 10% with 42 as a random state to build the model, which

is later tested over the official validation set, provided by the organisation of 66

patients which is used in our case as test set.

Table 5.3: The PP-UNET Model used datasets

Datasets # of patients Data source
Train set 256 MICCAI_BraTS_2018_Data_Training (90%)
Valid set 29 MICCAI_BraTS_2018_Data_Training (10%)
Test set 66 MICCAI_BraTS_2018_Validation_Data

To obtain results that are more significant in very efficient way we proposed

resolving the problem as binary segmentation problem rather than multi-class

segmentation, where we turned the original label classes to the proposed classes

in the challenge, we trained the model for each class separately, and the results

were fused. The new classes are exhibited in Table 5.4 :

Table 5.4: The segmentation Classes

New Class Labels
Whole Tumor (WT) All the classes labels (NCR/NET 1 +edema 2

+Enhancing Tumor 4)
Tumor Core (TC) Is (NCR/NET 1 +Enhancing Tumor 4)
Enhancing Tumor (ET) Is the enhancing Tumor 4 label

for each class each model is trained over 2D MRI images in the axial view each

cropped from(240,240,155) to (160,160,128) with the following indices [40:200,40,200,12:140]

the slices are organized as follows:

• Each slice in Each modality must be from the same patient and the same

index to respect the parallel pathways inputs

• the slices in the same modality are charged as follows: each index slice is

charged from all patient’s files to guarantee the perfect data shuffle.
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Table 5.5: The PP-UNET architecture Layers information

PP_UNET Layers Config Input Size Output Size

Input Input Layer - 160*160*1 -

Encoder

Conv+ BN+LR+

Conv+ BN+LR+

Maxpooling +Dropout

Conv(3*3)

Padding=same

Pool(2*2)

160*160*1

160*160*16

160*160*16

160*160*16

160*160*16

80*80*16
Conv+ BN+LR+

Conv+ BN+LR+

Maxpool +Dropout

Conv(3*3)

Padding=same

Pool(2*2)

80*80*16

80*80*32

80*80*32

80*80*32

80*80*32

40*40*32
Conv+ BN+LR+

Conv+ BN+LR+

Maxpooling +Dropout

Conv(3*3)

Padding=same

Pool(2*2)

40*40*32

40*40*64

40*40*64

40*40*64

40*40*64

20*20*64

Bridge
Conv+ BN+LR+

Conv+ BN+LR+

Conv(3*3)

Padding=same

20*20*64

20*20*128

20*20*128

20*20*128

Decoder

Conv2dtranspose+concat+

Dropout+ Conv+ BN+LR+

Conv+ BN+LR

Kernel(3*3)

Stride=2

Padding=same

20*20*128

40*40*64

40*40*64

40*40*64

Conv2dtranspose+concat+

Dropout+ Conv+ BN+LR+

Conv+ BN+LR

Kernel(3*3)

Stride=2

Padding=same

40*40*64

80*80*32

80*80*32

80*80*32

Conv2dtranspose+concat+

Dropout+ Conv+ BN+LR+

Conv+ BN+LR

Kernel(3*3)

Stride=2

Padding=same

80*80*32

160*160*16

160*160*16

160*160*16

Concatenation Concat (path1,path2,path3,path4) Output of each path 160*160*16*4 160*160*64

Output Convolution
Conv(1*1)

sigmoid
160*160*64 160*160*1

Table 5.6: The network parameters

Parameters values
Views Axial
# Training Samples 32768
# Vaidation Samples 3712
Initial filters N° 16
Batch size 16
Dropout rate 0.4
Optimizer Adam (default)
Epochs 100
Model checkpoint Active
Early stopping Active (patience epochs=10)
Trainable params 2147649
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The final Network details and parameters are in tables 5.5 and 5.6 Initial filters N°

represents the number of convolution kernels and doubles for each network plain

block. Batch size is the number of training samples used in one iteration. Epochs

are the number of times that the algorithm train over the whole samples. The

dropout rate is the proportion of randomly selected nodes to set to zero with early

stopping used to stop the learning process if the validation dice score didn’t improve

after 10 patience epochs and Model checkpoint active to save the best model with

the best validation dice score,all used to prevent over-fitting. Finally, the Adam

optimizer with default parameters was used to fine-tune the network weights and

Trainable params as the nubmer of trainable parameters in the network.

5.4.4 Evaluation Metrics

Evaluation metrics are quantitive measures used to assess the performance and

the effectiveness of machine learning models. They are frequently computed based

on the confusion matrix.

All evaluation metrics used are those proposed by the challenge organization [12].

The evaluation metrics used are Dice Score, Sensitivity, Specificity, and Hausdorff 95

distance, those metrics are highly recommended for medical image segmentation[85].

Most of the time the healthy tissue pixels are larger than the tumours ones which

means that the data suffer from the class imbalance distribution problem which

prevent the right learning and lead the model to learn only about the frequent class

label where the images segmentation problem focuses on the infrequent class[86]. In

such cases, all these metrics are well adapted to address the class imbalance problem.

They only consider the segmentation class and not the background class[87].

Dice Score: it measures the overlap of the predicted mask and the ground truth.

it does not account for the background class which make it more suitable in the

class imbalance problem. The dice score outputs is a score in the range [0,1] where

1 is a perfect overlap. Thus, (1-Dice) can be used as a loss function.

Dice = 2|A ∩B|
|A|+ |B| (5.2)
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Where A and B are the prediction mask and the Ground truth respectively.

Sensitivity: known also as true positive rate refers to the proportion of positives

that are correctly predicted comparing to the ground truth in our case measures the

proportion of true predicted and segmented tumor pixels which is very important

for patients diagnosis

Sensitivity = TP

TP + FN
(5.3)

Where TP is the number of true positives and FN the number of false negatives.

Specificity: or true negative rate is the proportion of negatives that were cor-

rectly predicted.

Specificity = TN

TN + FP
(5.4)

Where TN is the number of true negatives and FP is the number of false positives.

Hausdorff distance: it measures the greatest distance between the predicted

tumor area A and the ground truth tumor area B[88] Formally, it is defined as follows:

H(A,B) = max(h(A,B), h(B,A)) (5.5)

Where A and B are the prediction map and the Ground truth respectively.

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (5.6)

Where a and b are points from the sets A and B respectively, and ‖.‖ is any metric

between these points ; for example the Euclidian distance between a and b, h(A,B)

called directed Hausdorff distance fromA toB which compute the maximum distance

of a point a to the nearest point b and oppositely in h(B,A). The Hausdorff95

indicates the distance of the tow point sets is with a percentile value of 95.

h(A,B) = max
a∈A

(95%) min ‖a− b‖ (5.7)
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5.5 Results

The table 5.7 exhibits the results of the model PP-UNET over the training and

the validation set.

Table 5.7: The PP-UNET training and validation results

Metrics Dice Hausdorff95 Sensitivity Specificity
Classes WT TC ET WT TC ET WT TC ET WT TC ET
Train Set 0.912 0.888 0.863 7.112 7.008 5.973 0.924 0.908 0.892 0.968 0.986 0.994
Valid Set 0.912 0.874 0.864 6.566 6.007 4.914 0.931 0.906 0.854 0.963 0.985 0.994

The tables 5.8, 5.9 shows the PP-Unet detailed results over the test set, all

results were collected from the online submission system CBICA server https://ipp.

cbica.upenn.edu/ which is an Image Processing Portal available for authorized

users to access the Center for Biomedical Image Computing and Analytics computing

cluster and imaging analytics.

Table 5.8: The PP-UNET Dice and Hausdorff95 Test results

Metrics Dice HD95(mm)
classes WT TC ET WT TC ET
Mean 0.890 0.787 0.745 6.109 10.620 8.046
Median 0.908 0.873 0.857 3.741 5.656 2.236

25quantile 0.881 0.724 0.780 2.828 3.0 1.414
75quantile 0.935 0.925 0.886 6.123 15.367 4.414

Table 5.9: The PP-UNET Sensitivity and Specificity Test results

Metrics Sensitivity Specificity
classes WT TC ET WT TC ET
Mean 0.912 0.821 0.791 0.992 0.996 0.998
Median 0.945 0.927 0.863 0.993 0.997 0.998

25quantile 0.907 0.768 0.769 0.990 0.995 0.997
75quantile 0.968 0.958 0.916 0.996 0.998 0.999

The following figures 5.3, 5.4 and 5.5 are examples from the test set Table

5.1 segmented by our PP-UNET

https://ipp.cbica.upenn.edu/
https://ipp.cbica.upenn.edu/
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Figure 5.3: Segmentation result of the brain tumor structures by the Proposed PP-UNET
on patient named “Brats18_TCIA02_400_ 1”/slice 70 on the axial view

Figure 5.4: Segmentation result of the brain tumor structures by the Proposed PP-UNET
on patient named “Brats18_CBICA_BHF_1 ”/slice 69 on the axial view

Figure 5.5: Segmentation result of the brain tumor structures by the Proposed PP-UNET
on patient named “Brats18_TCIA09_248_ 1”/slice 125 on the axial view

5.5.1 PP-UNET vs RGBA

in this section, we propose to compare the results of The PP-UNET architecture

against the RGBA version to evaluate the effectiveness of the models. The RGBA

model is one branch version, it involves stacking each corresponding slice from

each modality (T1ce, T1, T2, and Flair) on the axial view as RGBA color images
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and provide them directly to the U-NET part of our proposed model as input the

whole architecture is provided in the following figure.

Figure 5.6: The RGBA architecture

The Table 5.10 provide the results of the RGBA model against the PP-UNET

results over the test.

Table 5.10: The PP-UNET Vs RGBA results

Metrics Dice HD95(mm) Sensitivity Specificity
Classes WT TC ET WT TC ET WT TC ET WT TC ET
PP_UNET 0.890 0.787 0.745 6.109 10.62 8.046 0.912 0.821 0.791 0.992 0.996 0.998
RGBA 0.891 0.786 0.761 8.210 14.113 5.584 0.909 0.800 0.798 0.992 0.996 0.998

5.5.2 PP-UNET against existing Methods

in this section, 5.11 summarizes the results of the state-of-the-art techniques

that refer to the currently existing approach or method that has achieved high

performance in the field to compare them against our PP-UNET results to analyze

the strengths and weaknesses of both methods and determine if our approach

outperforms state-of-the-art or provides any notable improvements.
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Table 5.11: PP-UNET and state-of-the-art techniques comparison results

Method type DICE HD95(mm)
WT TC ET WT TC ET

[63] 3D 0.910 0.866 0.823 4.51 6.85 3.92
[64] 3D 0.912 0.863 0.808 4.27 6.52 2.41
[65] 3D 0.903 0.847 0.796 3.55 4.17 4.93

[66]
3D U-Net+ TTA 0.873 0.783 0.754 5.90 8.03 4.53
3D WNet+TTA 0.895 0.730 0.770 4.92 11.13 4.44
3D Cas+TTA 0.902 0.858 0.797 6.18 6.37 3.13

[67]

3D VGG 0.872 0.760 0.751 _ _ _
3D inception2 0.877 0.773 0.753 _ _ _
3D inception3 0.873 0.776 0.781 _ _ _
3D Densely 0.874 0.755 0.729 _ _ _
Ens 0.881 0.777 0.773 _ _ _

[68] 3D 0.904 0.836 0.776 5.17 6.27 3.51
[76] 3D 0.895 0.797 0.777 9.13 8.67 3.90
[79] 3D 0.900 0.820 0.800 6.0 7.5 4.4
[69] 2D 0.868 0.805 0.783 8.12 9.84 3.72
[70] 2D 0.898 0.811 0.751 _ _ _
[77] 2D 0.895 0.823 0.813 4.05 6.34 2.93
[78] 2D 0.872 0.808 0.772 5.62 8.36 3.57
PP-UNET 2D 0.890 0.787 0.745 6.10 10.62 8.04

5.6 Discussion

From the provided results in tables 5.7, 5.8and 5.9, the PP-UNET model is

performing and proves its capability of generalization over the unseen data which is

the Test set here and the results are close to each other which proves the absence of

overfitting and the efficiency of the used dropout layers, From the provided results

in Table 5.10, the RGBA model results are slightly raiser than the PP-UNET ones

but without any significance, both results are comparably similar however, in terms

of memory consumption, training time, and trainable parameters the RGBA version

is more optimized than the PP-UNET from the idea of one branch in RGBA against

four branches in the PP-UNET which is its major limit. as an advantage of this

experiment, we have got an important insight into our proposal that our customized
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changes to the U-net network were a good choice and beneficial.

from the table 5.11 which exposes the results of the existing works, our 2D

PP-UNET performs well compared to the 2D proposed works, the margin between

the results is not very significant for both whole tumor and tumor core classes but

in the case of the ET classes the majority of works reached significant rates of dice

scores. when compared to the 3D approaches, our approach still performs well for

both whole tumor and tumor core classes with the same note of the ET classes the

majority of works reached significant rates of dice scores especially the top-ranked

approaches highlighted in red color. the advantage of this approach compared to

the existing work is the simplicity and straightforward implementation with the

same limited mentioned when compared to the RGBA version.

5.7 Conclusion

In this work, we investigated an approach inspired by the reputed U-net architecture

to tackle the brain tumour segmentation problem from multimodal MRI images

called PP-UNET, we suggested using multiple pathways of an updated U-net

each dealing with a specific 2D slice extracted from a specific modality. we

suggested exploring this task in RGBA form where we used one pathway fed

with the four slices stacked as an RGBA color image . The results were also verified

against the proposed works where our method achieved interesting results and

using additional improvement seemed as the next verified step with our method

for more results enhancement.
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6.1 Introduction

In this chapter we introduce a new perspective to our deep-learning architecture

which provides significant improvement in the segmentation of the brain glioma

tumor. we proposed a novel approach, called PU-NET, for automatic brain tumor

segmentation in multi-modal magnetic resonance images(MRI). We introduced an

input processing block to a customized fully convolutional network derived from

72
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the U-Net network to handle the multi-modal inputs. We performed experiments

over the Brain Tumor Segmentation(BRATS) dataset collected in 2018 too and

achieved Dice scores of 90.5%,82.7%, and 80.3% for the whole tumor, tumor core,

and enhancing tumor classes, respectively. This study provides promising results

compared to the deep learning methods used in this context[89].

6.2 Methodology

In this work, we propose a deep-learning architecture for brain tumor segmentation

based on the encoder-decoder aspect and inspired by the reputed network used

to segment biomedical images called U-Net [59]with significant changes. This

architecture is called PU-NET, which refers to its two main parts: an input

processing part and a customized U-Net network part. They are based on a central

block known as a plain block. It encompasses two consecutive convolution layers

of (3 × 3) kernel size with stride(1,1), each followed by a Batch normalization

layer added to ensure the network data normalization and improve the training

convergence and speed, followed by a LeakyRelu layer as an activation function

with a slope α set to 0.01 Eq.6.1.

LeakyRelu(x) =
αx, if x < 0
x, if x ≥ 0

(6.1)

Figure 6.1: The architecture of the plain block

In contrast with the original proposition, all used convolutions are padded to

preserve and mitigate the loss of information at the image borders. This loss is

significant as the pooling operation applied later will induce information loss.
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We also proposed using the LeakyRelu activation instead of the Relu function in

the original proposition to prevent the dying Relu [90, 91] problem that may happen

where most of the Relu Eq. 6.2 neurons only output zero because of negative inputs

during the learning process, which may cause the inactivity of a significant part of

the network neurons and negatively affect the results.

Relu(x) =
0, if x < 0
x, if x ≥ 0

(6.2)

The input processing part handles the multi-modal MRI scans quickly and

efficiently. It consists of four input layers, each for a specific modality 2D slice

(T1ce, T1, T2, Flair), each followed by a plain block to extract relevant features from

each modality separately as a first step. Then, a concatenation layer is used to merge

the four outputs and transfer the output to the U-Net part as the primary input.

The U-Net network part keeps the same divisions as the original proposal [59].

It comprises three parts: An encoder path(contracting path), a decoder path(an

expansive path), and a simple bridge between them. The encoder path is similar to

the convolution neural network (CNN) feed-forward pass. It contains three levels

against four in the original U-Net to alleviate the network’s training parameters and

reduce memory consumption, complexity, and running time. Each level includes a

plain convolution block, except for the first one, where the concatenation output

replaces it, followed by a max-pooling layer with stride two and a dropout layer

that regularizes the network to avoid over-fitting. This path is used for extracting

relevant features and capturing the context of the input images to enable the

segmentation task.

The expansive path is symmetric to the contracting path in the number of levels,

each comprising a stack of layers. It starts with a padded convolution transpose of

(3×3) kernel size with stride(2,2) used to recover some loosed information in previous

convolution layers from the feature map. It is also followed by a concatenation

layer that merges the output of the convolution plain block in the contracting side

with the corresponding output of the convolution transpose to get more information
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about the spatial resolution after a convolution plain block is applied, followed by a

dropout layer. The two paths are related by a bridge, which is a plain block.

Finally, a (1 × 1) convolution with sigmoid activation is applied to generate

the output probabilities for the segmentation map. Figure 6.2 exposes the detailed

PU-NET architecture layers.

Figure 6.2: The PU-NET model architecture used to segment brain tumor structures

6.3 Experimentations

In this proposition we suggest using the same Dataset Brats 2018 in section 5.4.1

with the same pre-processing operation in section 5.4.2 .

6.3.1 Implementation details:

Our deep learning proposed approach was implemented using python3 over the

Tensorflow Keras library and executed on UB2-HPC (University of BATNA 2) GPU

node which contains 4 GPUs configured with CUDA 10.0 and CUDNN 5.6.7. In

our case, the official Brats training data was splited randomly into Train set 80%

and Valid set 20% with 42 as a random state to build the model, which is later
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tested over the official validation set, provided by the organisation of 66 patients

without Ground truth which is used in our case as test set.

Table 6.1: The PU-NET Model used datasets

Datasets # of patients Data source
Train set 228 MICCAI_BraTS_2018_Data_Training (80%)
Valid set 57 MICCAI_BraTS_2018_Data_Training (20%)
Test set 66 MICCAI_BraTS_2018_Validation_Data

similar to the previous study, we proposed resolving the problem as a binary

segmentation problem rather than multi-class segmentation, where we turned the

original label classes to the proposed classes in the challenge, we trained the

model for each class separately, and the results were fused. The classes are

exhibited in Table 5.4.

We propose also to use this training process over the three MRI views (Axial,

Coronal, and Sagittal) separately and ensemble the results over models to ensure

the collection of the 3D contextual information. All image modalities and their

corresponding ground-truth were cropped from (240,240,155) size to (128,128,128)

with the following indices [56:184, 56:184, 12:140] to reduce memory consumption.

Table 6.2 shows our network parameters and table 6.3 shows our network details:

Table 6.2: PU-NET network parameters

Parameters Values
Views Axial/Coronal/Sagittal
Training Samples 29184
Validation Samples 7296
Initial filters N° 16
Batch size 32
Epochs 200
Dropout rate 0.4
Early stopping Active (patience epochs=10)
Model checkpoint Active
Optimizer Adam (default)
Trainable params 565281
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Table 6.3: The PU-NET architecture Layers information

PU-NET Layers Config Input Size Output Size

Input1,input2,input3,input4 Input Layer - 128*128*1 -

Input processing

c1=Plain Block(input1)
c2=Plain Block(input2)
c3=Plain Block(input3)
c4=Plain Block(input4)

Conv(3*3)

Padding=same
128*128*1 128*128*16

Concatenation concat (c1,c2,c3,c4) 128*128*16 128*128*64

Encoder
Maxpooling +Dropout

Conv(3*3)

Padding=same

Pool(2*2)

128*128*64 64*64*64

Plain Block
Maxpool +Dropout

Conv(3*3)

Padding=same

Pool(2*2)

64*64*64

64*64*32

64*64*32

32*32*32

Plain Block
Maxpooling +Dropout

Conv(3*3)

Padding=same

Pool(2*2)

32*32*32

32*32*64

32*32*64

16*16*64

Bridge Plain Block
Conv(3*3)

Padding=same

16*16*64

16*16*128

16*16*128

16*16*128

Decoder

Conv2dtranspose+
concat+Dropout+
Plain Block

Kernel(3*3)

Stride=2

Padding=same

16*16*128

32*32*64

32*32*64

32*32*64

Conv2dtranspose+
concat+Dropout+
Plain Block

Kernel(3*3)

Stride=2

Padding=same

32*32*64

64*64*32

64*64*32

64*64*32

Conv2dtranspose+
concat+Dropout+
Plain Block

Conv(3*3)

Stride=2

Padding=same

64*64*32

128*128*16

128*128*16

128*128*80

Output Convolution
Conv(1*1)

sigmoid
128*128*80 128*128*1

6.3.2 Evaluation Metrics

The same previous evaluation metrics are used, detailed in section 5.4.4
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6.4 Results

6.4.1 Training Results

Tables 6.4 and 6.5 exhibit the results of our PU-NET approach on the training

and validation data respectively(Table 6.1) .the results are reported also over the

MRI views separately in addition to the validation ensemble results realized by

multi-view label fusion using majority voting which prove the efficiency of the

multi-view exploration and fusion in the result’s improvement without overffiting .

Table 6.4: The PU-NET Dice and Hausdorff95 training and validation results

Metrics Dice Hausdorff95

Train set

Classes WT TC ET WT TC ET
Axial 0.927 0.934 0.877 3.524 2.388 1.913
Coronal 0.924 0.918 0.864 3.579 2.448 1.954
Sagittal 0.937 0.910 0.880 3.636 2.564 1.958

Valid set

Axial 0.917 0.806 0.859 3.388 2.323 1.756
Coronal 0.918 0.835 0.861 3.423 2.339 1.792
Sagittal 0.916 0.812 0.857 3.496 2.433 1.800
Ensemble 0.925 0.839 0.868 3.546 2.360 1.771

Table 6.5: The PU-NET Sensetivity and Speceficity training and validation results

Metrics Sensetivity Speceficity

Train set

Classes WT TC ET WT TC ET
Axial 0.922 0.935 0.885 0.953 0.979 0.991
Coronal 0.933 0.921 0.895 0.951 0.979 0.990
Sagittal 0.933 0.923 0.893 0.952 0.979 0.991

Valid set

Axial 0.908 0.792 0.836 0.950 0.981 0.993
Coronal 0.921 0.830 0.861 0.949 0.981 0.992
Sagittal 0.910 0.805 0.837 0.950 0.981 0.992
Ensemble 0.920 0.820 0.849 0.950 0.981 0.992
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6.4.2 Test Results

Tables 6.6 and 6.7 show the results obtained by our approach tested on the Test

set in Table 6.1 in each MRI view, in addition to the ensemble result, which was

realized by multi-view label fusion using majority voting too in addition to the

result of ensembled 5-fold validation,this results proves the ability of the model to

generalize over the test set without overfitting. all results were collected from the

online submission system CBICA server https://ipp.cbica.upenn.edu/ which

is an Image Processing Portal available for authorized users to access the Center

for Biomedical Image Computing and Analytics computing cluster and imaging

analytics.

Table 6.6: The PU-NET Dice and Hausdorff95 test results

Metrics Dice Hausdorff95
Classes WT TC ET WT TC ET
Axial 0.890 0.791 0.781 15.912 12.288 6.231

Coronal 0.889 0.787 0.782 12.134 18.774 11.002
Sagittal 0.894 0.792 0.776 11.174 13.732 3.486
ensemble 0.904 0.815 0.803 5.054 7.732 3.019
5 fold 0.905 0.827 0.803 4.638 8.679 3.573

Table 6.7: The PU-NET Sensetivity et Speceficity test results

Metrics Sensetivity Speceficity
Classes WT TC ET WT TC ET
Axial 0.907 0.807 0.810 0.993 0.997 0.997

Coronal 0.923 0.811 0.821 0.991 0.996 0.997
Sagittal 0.917 0.829 0.803 0.992 0.996 0.997
ensemble 0.924 0.817 0.820 0.993 0.997 0.997
5 fold 0.921 0.817 0.815 0.993 0.997 0.998

The following figures 6.3, 6.4 and 6.5 are examples from the test set Table

6.1 segmented by our PU-NET.

https://ipp.cbica.upenn.edu/
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Figure 6.3: Segmentation result of the brain tumor structures by the Proposed PU-NET
on patient named “Brats18_CBICA_AAM_ 1”/slice 93 on the axial view.

Figure 6.4: Segmentation result of the brain tumor structures by the Proposed PU-NET
on patient named “Brats18_CBICA_ABT_1”/slice 108 on the coronal view.

Figure 6.5: Segmentation result of the brain tumor structures by the Proposed PU-NET
on patient named “Brats18_CBICA_ALA_1”/slice 108 on the sagittal view

6.4.3 PU-NET vs RGBA vs 3D

In this section, our primary goal is to evaluate the effectiveness of our 2D PU-

NET model by specifically examining the impact of the input processing block.We

compare baseline techniques that propose different approaches for processing multi-

modal MRI data.The first baseline technique involves stacking each corresponding

slice from each modality (T1ce, T1,T2, and Flair) as RGBA,The second baseline
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technique involves providing the multi-modal MRI data in the 3D format to the

PU-NET architecture. This means the data is preserved in its volumetric structure

instead of processed as 2D slices. Additionally, the architecture operations are

modified to accommodate the 3D format. Tables 6.8 and 6.9 expose the results

of RGBA model, the results were reported from separate views.

Table 6.8: The RGBA Dice and Hausdroff95 Results on the test set

Metrics Dice Hausdroff95
Classes WT TC ET WT TC ET
Axial 0.891 0.786 0.761 8.210 14.113 5.584

Coronal 0.892 0.793 0.761 13.670 18.720 12.491
Sagittal 0.890 0.789 0.724 11.597 18.722 10.457

Table 6.9: The RGBA Sensetivity and Speceficity Results on the test set

Metrics Sensetivity Speceficity
Classes WT TC ET WT TC ET
Axial 0.909 0.800 0.798 0.992 0.996 0.998

Coronal 0.918 0.795 0.816 0.992 0.997 0.997
Sagittal 0.918 0.800 0.815 0.992 0.996 0.997

Tables 6.10 and 6.11 reports the results the ensemble version of the RGBA

above models and compare them against the 3D PU-NET version and to our

2D PU-NET approach.

Table 6.10: PU-NET and Baseline techniques comparaison Dice and Hausdroff95 results

Metrics Dice Hausdroff95
Classes WT TC ET WT TC ET
RGBA 0.903 0.801 0.772 5.442 6.996 3.967

3D PU-NET 0.884 0.710 0.734 7.898 28.930 29.695
PU-NET 0.905 0.827 0.803 4.638 8.679 3.573
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Table 6.11: PU-NET and Baseline techniques comparaison Sensetivity and Speceficity
results

Metrics Sensetivity Speceficity
Classes WT TC ET WT TC ET
RGBA 0.921 0.766 0.781 0.993 0.998 0.998

3D PU-NET 0.911 0.780 0.750 0.980 0.980 0.982
PU-NET 0.921 0.817 0.815 0.993 0.997 0.998

these results provide compelling evidence that our PU-NET model performs

exceptionally well when compared to stacking slices as RGBA color images. These

results further validate the efficiency and effectiveness of our input processing

block.However, it is worth noting that the 3D version of our model exhibits some

drawbacks. Specifically, it requires a significantly longer training time, exceeding

20 hours under GPU for each class label. In contrast,our 2D PU-NET model

takes a maximum of 1 hour for execution. Furthermore, the results obtained

from the3D version diverge significantly from those of our 2DPU-NET model,

particularly in the TC and ET classes.

6.4.4 PU-NET Versus the Proposed Methods

In this section, table 7.4 summarizes the results of the state-of-the-art techniques

that refer to the currently existing approach or method that has achieved high

performance in the field to comparethem against our PU-NET results to analyze

the strengths and weaknesses of both methods and determine if our approach

outperforms state-of-the-art or provides any notable improvements
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Table 6.12: PU-NET and state-of-the-art techniques comparison results

Method type DICE HD95(mm)
WT TC ET WT TC ET

[63] 3D 0.910 0.866 0.823 4.51 6.85 3.92
[64] 3D 0.912 0.863 0.808 4.27 6.52 2.41
[65] 3D 0.903 0.847 0.796 3.55 4.17 4.93

[66]
3D U-Net+ TTA 0.873 0.783 0.754 5.90 8.03 4.53
3D WNet+TTA 0.895 0.730 0.770 4.92 11.13 4.44
3D Cas+TTA 0.902 0.858 0.797 6.18 6.37 3.13

[67]

3D VGG 0.872 0.760 0.751 _ _ _
3D inception2 0.877 0.773 0.753 _ _ _
3D inception3 0.873 0.776 0.781 _ _ _
3D Densely 0.874 0.755 0.729 _ _ _
Ens 0.881 0.777 0.773 _ _ _

[68] 3D 0.904 0.836 0.776 5.17 6.27 3.51
[76] 3D 0.895 0.797 0.777 9.13 8.67 3.90
[79] 3D 0.900 0.820 0.800 6.0 7.5 4.4
[69] 2D 0.868 0.805 0.783 8.12 9.84 3.72
[70] 2D 0.898 0.811 0.751 _ _ _
[77] 2D 0.895 0.823 0.813 4.05 6.34 2.93
[78] 2D 0.872 0.808 0.772 5.62 8.36 3.57
PU-NET 2D 0.905 0.827 0.803 4.63 8.67 3.57

6.4.5 Discussion

From Table 7.4, our proposed method PU-NET outperforms the 2D approaches

in terms of both Dice and Hausdorff95 metrics. While it is not away from the

top-ranked approaches in the BRATS 2018 challenge and this is due to the fine

parameters tuning; it is important to consider, too, that Myronenko[63], Isenseeet

al[64], and McKinley et al [65] utilized data augmentation techniques and additional

data in the co-training process. In contrast, our work did not incorporate any

additional or augmented data. Furthermore, when computing the statistical p-

values between the dice scores, we found values of 0.61,0.72 and 0.66, respectively,

suggesting that the results are not highly significant compared to our findings.

Regarding Wang et al [66], our 2D approach outperformed all of their proposed
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3D architectures with data augmentation, except for the cascaded architecture, which

exhibited slightly better performance than our PU-NET in TC class segmentation,

similar to the findings of RuiHua et al[68]. However, it is important to note that the

p-values of 0.87 and 0.90 suggest these differences are not statistically significant.

Moreover, our PU-NET approach demonstrated greater efficiency than the extended

architectures proposed by A.Albiol et al [67], which are among the popular deep

learning architectures used in the context of image segmentation, both [76, 79]

works which are out of the BRATS 2018 challenge proposed 3D-based architectures

with complex U-Net designs. Still, our results surpass them and support our the

idea that sometimes complex architectures and using 3D format can increase the

computational complexity without necessarily being efficient, so it is justifiable to

shift the research focus towards 2D simple architectures.

In our perspective, the strength of our PU-NET model lies in incorporating the

input processing block as an initial separate feature extractor for each MRI modality.

It serves as a robust mechanism for integrating the multi-modal complementary

information and improving the tumor segmentation accuracy. In addition, the

simplicity of our U-Net architecture part and the use of 2D slices address major

limitations in deep learning-based approaches, specifically regarding time and

memory requirements, which are advantageous when working with large-size medical

datasets. As with any approach, there are certain limitations associated with

our proposed method; the input processing block in our approach is specifically

designed to handle datasets with multi-modal images. While this benefits such

datasets, it may not be suitable or optimal for datasets with single-modality images.

Similar to other deep learning architectures, the interpretability of our approach is

limited. Deep learning models, including our PU-NET, often function as complex

black boxes, challenging understanding of the underlying decision-making process.

Interpretability is an ongoing area of research in deep learning, and further efforts

are needed to enhance the transparency and explainability of models like ours.

Indeed, while our approach may have limitations, it is important to recognize
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that its performance remains competitive. The results obtained with our 2D PU-

NET architecture demonstrate promise and suggest potential avenues for further

improvement in future research.

6.5 Conclusion

In this work, we investigated a novel approach inspired by the reputed U-net

architecture to tackle the brain tumour segmentation problem from multimodal

MRI images called PU-NET, we introduced an input processing block to an updated

U-net that deal with multi-input 2D images collected from the different modalities.

we suggested to explore this task in the three MRI views coronal, sagittal and

axial and aggregate the final predictions to generate the final segmentation and

benefit from the 3D contextual information .The results were compared later against

the RGBA and the 3D version, also verified against the old machine learning

techniques support vector machines and random forest and the proposed works

where our method achieved interesting results and more using data augmentation

and additional training data seemed as the next verified steps with our method

for more results enhancement.
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7.1 Introduction

Before the emergence of deep learning, machine learning techniques like k-nearest

neighbours, clustering, support vector machines, random forests, and others consti-

tuted a research-focused domain. These traditional machine learning algorithms were

extensively studied and applied across various fields, providing valuable solutions

for classification, clustering, regression, and pattern recognition tasks. Researchers

86
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dedicated considerable efforts to optimizing and fine-tuning these algorithms to

achieve better performance and generalization on diverse datasets.

However, with the evolution of deep learning, there has been a notable shift in

focus within the machine-learning community. Deep learning, particularly fueled

by advancements in neural network architectures and the availability of large-

scale labelled datasets, has demonstrated unprecedented success. this chapter

presents a comparative study between our proposed support vector machine and

random forest models and our previous PU-NET deep learning architecture in

the brain tumour segmentation task to discuss the advantages and limits of each

methodology in addition to an introduction of the class imbalance problem and

its impact on image segmentation.

7.2 Support Vector Machines

Support vector machine[92] is one of the early supervised Machine learning tech-

niques that was originally developed by Vladimir Vapnik and his colleagues in the

1990s. it is used for solving classification as well as Regression problems. the main

goal is to find a hyperplane that best separates data points from different classes in

a high-dimensional feature space. The hyperplane is chosen in such a way that it

maximally separates the classes with the largest margin. The data points that are

closest to the hyperplane and affect its position are known as support vectors, which

gives the algorithm its name It is frequently used for classification where the goal is

to create the best line called the decision boundary that separates n-dimensional

data points in the space into classes. SVM can be in two types:

1. Linear SVM: used for linearly separable data which means the data points/vectors

are separated

2. Non-Linear SVM: used in the case of non-linearly separable data using the

kernel trick.Using a kernel function, SVM can still find a separating hyperplane

by mapping the data to higher dimensional space. common kernels include:

linear, polynomial, radial basis function and sigmoid kernels
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(a) Linear SVM (b) non-Linear SVM

Figure 7.1: Support Vector Machines

7.3 Random Forest

Random Forest [93]is an ensemble learning technique that combines the predictions

of multiple individual decision trees where each tree is trained on a subset of the

training data to make a more accurate and robust model in terms of predictions,it

uses a technique called bagging or bootstrapping to create diverse subsets of

training data for each tree and a final voting is performed between the predictions of

individual trees to determine the final prediction . The decision tree is a supervised

machine-learning technique frequently used for both classification and regression

tasks. it is a kind of graphical hierarchical representation of decisions and their

outcomes.The tree is composed of

• Root Node: the top node of the tree that represents the entire dataset.

• Internal Node: nodes inside the tree that refer to a discriminating attribute or

feature to split the data into subsets using a split criterion like Gini index and

entropy for classification tasks and mean squared error MSE in regression.

• Branches: the edge connection between nodes is a test over attributes where

each branch is a possible decision.

• Leaf Node: or terminal nodes is the final class label reached.

The process of building a decision tree involves recursively splitting the dataset at

internal nodes based on the attribute that provides the best information gain.
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Figure 7.2: Random Forest Architecture

7.4 Methodology

For both SVM and RF, we suggest using predefined scikit-learn python models

with customized feature selection and extraction steps. Feature extraction is a

primordial step in this context, from the fact that each pixel has characteristics

used for the discrimination between the tumor and the healthy pixels. For both

SVM and RF a feature selection step was performed naively, the first main feature

was the image pixel intensities in addition to a texture feature computed using the

Gabor filter and some edge features computed by Sobel, Roberts, Canny, Scharr,

prewit Gaussian and median kernels. in this case, the image pixels are represented

as multidimensional data points stored in vectors where each case is a pixel feature.

7.5 Experimentation

In this section, we propose to evaluate the efficiency of our deep learning (PU-NET)

architecture compared to ordinary machine learning techniques like Support Vector

Machines (SVM) and Random Forest (RF).

7.5.1 Implementation Details

in this case, we suggested using the Train set in Table 6.1 of 228 patients as

training data and the Valid set in Table 6.1 of 57 patients as a Test set and due

to limited available resources and high memory consumption from SVM and RF,

we customized both of datasets as follow:

• Each modality was pre-processed as explained in Section 5.4.2
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• Each modality and ground truth were cropped from (240,240,155) to (128,128,30)

with the following indices [56:184,56:184,sl-15:sl+15] where sl is the index of

the slice in the ground truth which contains the maximum non zero pixels(or

the large tumor region)

• The models were trained over the axial view only

and the remain information are reported in the table below:

Table 7.1: The Data Information

Modalities Dataset # of samples

T1ce, T1, T2, Flair Train set 6840
Test set 1710

Configuration Parameters:

RF and SVM were implemented in Python using numpy, opencv and sklearn

libraries The configuration parameters for each model are:

• SVM: the Stochastic Gradient Descent (SGD) classifier was used with Ra-

dial Basis Function (RBF) kernel approximation and maximum number of

iterations set to 10000,n_job set to -1 for parallel CPU cores execution and

class_weight set to Balanced to address the class imbalance problem.

• RF: The Random Forest Classifier was used with number of estimators set

to 10,n_job=-1 -1,class_weight set to Balanced and max_samples set to 0.2

and gini impurity criteria.

• PU-NET: keep the same number of epochs, dropout rate, early stopping,

model checkpoint and optimizer parameters in Table 6.2 only the number of

initial convolution filters and batch size was set to eight.

7.5.2 Results

Table 7.2 exhibits the training results of the three models evaluated with Dice Score

, Sensetivity and speceficity previously defined in section 5.4.4
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Table 7.2: PU-NET and Machine Learning techniques training comparison results

Models SVM RF PU-NET
Classes WT TC ET WT TC ET WT TC ET
DICE 0.655 0.472 0.372 0.756 0.557 0.372 0.933 0.846 0.852
Sen 0.716 0.783 0.792 0.759 0.782 0.810 0.937 0.854 0.848
Spec 0.828 0.847 0.909 0.853 0.880 0.907 0.991 0.990 0.995

We can see that the performance of our deep learning approach is the best

and from the experiments, we have noticed some limits of SVM and RF com-

pared to PU-NET:

• The requirement for customizing the training data samples to 6840 is due

to the SVM and RF training phase which requires high memory availability

which affect also the small number of estimators 10 in RF model .

• The feature extraction step before launching the training which consume the

memory.

• A tedious Feature Extraction step due to the manual naive choice.

whereas the PU-NET in 6.2 support 29184 samples from each modality as training

data in the same execution environment because of the advantage of feature

extraction during training time and the training over batch. without forgetting

the flexibility in automatic extracting features using convolution kernels with

trainable parameters.

The aim of machine learning techniques is to build models that have the ability

to predict and generalize over unseen data that is why we propose to evaluate the

previous models and test them on the Test set selected samples.

Table 7.3: PU-NET and Machine Learning techniques testing comparison results

Models SVM RF PU-NET
Classes WT TC ET WT TC ET WT TC ET
DICE 0.668 0.463 0.354 0.747 0.505 0.343 0.925 0.788 0.799
Sen 0.707 0.787 0.827 0.736 0.727 0.818 0.931 0.778 0.900
Spec 0.828 0.845 0.910 0.851 0.879 0.908 0.989 0.984 0.998
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From exhibited results in Table 7.3 the PU-NET method still performing better

than SVM and RF and has a significant ability to generalize over the unseen data,

especially in segmenting the small tumour regions TC and ET, this is maybe due

to the quality of naively selected features in both SVM and RF.However, in the

PU-net approach, this step is full automatic,trainable and adaptable to the training

data and this which justify the abundance of deep learning based approaches in

medical image segmentation and in general image analysis tasks.

Figure 7.3: Segmentation results of the brain tumor structures of two slices from an
example patients (Brats18_TCIA08_469_1/slice 78) in the test set by the proposed
method PU-NET against SVM , RF comparing to the Ground Truth (GT)

Figure 7.4: Segmentation results of the brain tumor structures of two slices from an
example patient (Brats18_CBICA_ATB_1/slice 92) in the test set by the proposed
method PU-NET against SVM , RF comparing to the Ground Truth (GT)
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7.6 Class Imbalance and Evaluation Metrics

The class imbalance[94] is regarded as a reputed challenge that faces image seg-

mentation with machine learning techniques[95], It refers to a situation in which

the distribution of the label classes is significantly imbalanced, this means that

one class often the majority class is represented by a remarkably higher number

of instances and predominate other classes which can impact the model learning

process, leading to a highly biased model toward the majority class and a neglect of

the minority class due to the difficulty to effectively capturing its feature. The class

imbalance in medical images refers to the unequal distribution of pixels or voxels

belonging to different classes or structures within the images where the minority

class typically is the region of interest such as tumors and lesions which is the aim

region of the segmentation process and the remaining areas such as normal healthy

tissues and background as the majority class. This imbalance can markedly affect

the learning process, potentially resulting in a model that predominantly segments

normal and background pixels only Figure 7.5 Due to this issue, selecting metrics

for evaluating machine learning model performance becomes challenging, because

it highly influences metrics that heavily weigh the majority class or consider true

negatives in evaluations, potentially yielding misleading results.

Figure 7.5: Class Imbalance Example

To handle this problem several solutions have been proposed such as data

augmentation, oversampling, under-sampling, patch-based segmentation and the

appropriate choice of evaluation metrics to detect the correct performance of the
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model; numerous works have focused on this last point to expose the most suitable

evaluation metrics for image segmentation tasks[96, 97, 98]. This section aims to

exhibit the impact of the class imbalance problem on machine learning evaluation

metrics in medical image segmentation in which we propose to use the accuracy

metric as an additional metric behind the dice score, sensitivity and specificity to

evaluate the performance of the previous models SVM, RF and PU-NET.

7.6.1 Evaluation Metric

All The used evaluation metrics except accuracy, are widely used in the context

of image segmentation and highly recommended to address the class imbalance

problem because of their focus on the infrequent classes or True positives; however,

traditional metrics like accuracy are still used and can be misleading in imbalanced

datasets. In this case a model might achieve high accuracy by simply predicting

the majority class or the healthy tissue and background pixel and this, which is

proved through this experiment. The Accuracy metric is defined as follow:

Acc = TP + TN

TP + FP + TN + FN
(7.1)

7.6.2 Results

Tables 7.4 and 7.5 shows the previous models results in addition to the Ac-

curacy metrics

Table 7.4: PU-NET and Machine Learning techniques training comparison results with
accuracy metric

Models SVM RF PU-NET
Classes WT TC ET WT TC ET WT TC ET
DICE 0.655 0.472 0.372 0.756 0.557 0.372 0.933 0.846 0.852
ACC 0.980 0.970 0.990 0.980 0.980 0.970 0.990 0.990 0.990
Sen 0.716 0.783 0.792 0.759 0.782 0.810 0.937 0.854 0.848
Spec 0.828 0.847 0.909 0.853 0.880 0.907 0.991 0.990 0.995
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Table 7.5: PU-NET and Machine Learning techniques testing comparison results with
accuracy metric

Models SVM RF PU-NET
Classes WT TC ET WT TC ET WT TC ET
DICE 0.668 0.463 0.354 0.747 0.505 0.343 0.925 0.788 0.799
ACC 0.980 0.970 0.990 0.980 0.980 0.970 0.990 0.990 0.990
Sen 0.707 0.787 0.827 0.736 0.727 0.818 0.931 0.778 0.900
Spec 0.828 0.845 0.910 0.851 0.879 0.908 0.989 0.984 0.998

7.7 Discussion

this comparative study encompasses two main experiments. The first was an SVM

and RF-based proposition used to evaluate the performance of deep learning against

old machine learning techniques in the medical image segmentation context ( glioma

segmentation) which conducted to a fact results that deep learning-based approaches

are more powerful and from the experiment phase both SVM and RF are considered

as tedious and time-consuming regarding the conception step and the training step

in addition to the high memory consumption. Furthermore, the low quality of the

segmentation is due to the naive feature selection and extraction step where this step

is fully automatic in deep learning. The second experiment was the introduction

of the accuracy metric to discuss the impact of class imbalance on the evaluation

metrics where in general medical images are regarded as highly imblanced. Table7.4

and Table 7.5 exhibit the summary results of the models on the training and test sets

respectively. A large panoply of metrics is used for the performance evaluation of the

Machine Learning models. Still, there are some constraints because they are not all

suited for all tasks where each task may require specific metrics; for example, in this

experiment, which tackles the glioma segmentation problem, we proposed using Dice

score, Accuracy, sensitivity, and specificity. From the exhibited results in Tables 7.4

and 7.5 , we can see the accuracy is always 99%; however, the Dice varies between

35% to 90%. The Dice score is considered as a similarity measure which measures

the overlap between the predicted map and the ground truth, it depends on the true

positive pixels only which are the objective of the segmentation or the wanted area

of interest, which represents the tumour area in our case but the accuracy is the
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percentage of pixels in the image that are classified correctly, it depends on the true

positive and true negative pixels, in this study the true negative pixels represent the

healthy tissue and the background, which is the large class in terms of pixels that

dominate the image that is why accuracy is near 100% and this is due to the class

imbalance, the gap is highly noted in the SVM and Random forest model, where

there is a significant difference between the accuracy and the Dice coefficient and this

raises concerns about its reliability and precision which justify that is not adaptable

for such problem because high accuracy does not imply high model segmentation

ability. As we mentioned previously dice score focuses on true positives only which

is the infrequent class and penalize false positives which makes it more sensitive and

suitable metrics for this kind of task and a good solution for the class imbalance

problem. [8]. For the sensitivity and the specificity, as we previously mentioned,

sensitivity refers to the proportion of true positives that are correctly segmented

compared to the ground truth, which is, in our task, the rate of indeed predicted

tumorous pixels. Inversely, specificity refers to the proportion of true negatives that

mean the proportion of pixels that are predicted healthy and background exactly

like the ground truth, both metrics work with one class separately so they are not

affected by the class imbalance. They are adaptable for this task. They evaluate

the model’s capability in detecting tumorous pixels and healthy ones, respectively.

The limitation of this experiment is attributed to the use of a limited number of

evaluation metrics. As future directions for this work, it is recommended to consider

alternative solutions, including the exploration of a broader range of evaluation

metrics, as well as the implementation of techniques such as under-sampling and

patch-based segmentation to effectively address this challenge.

7.8 Conclusion

This chapter provided a comparative study between traditional machine learning

techniques using support vector machines(SVM) and Random Forest (RF) in brain

glioma segmentation against our PU-NET deep learning approach which proved

the efficiency of deep learning and justified the abundant use of this technique in
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nowadays. In addition, an introduction to the class imbalance problem in image

segmentation and its impact on evaluation metrics especially accuracy through

an experiment that shows the evaluation of an image segmentation model using

this metric can be misleading .
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8.1 Introduction

In the area of medical imaging and diagnosis, the task of accurately classifying brain

tumours holds immense significance. A pivotal approach in this domain involves

98
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leveraging advanced machine learning techniques, specifically transfer learning, to

enhance the efficiency and effectiveness of the classification process. In this section,

we propose harnessing the capabilities of our brain glioma segmentation model by

applying transfer learning for brain tumor classification. We aim to categorize tumors

into meningioma, glioma, and pituitary tumors using a novel dataset. This transfer

learning methodology has demonstrated remarkable results, overcoming challenges

in a remarkably short training period with a straightforward implementation.

8.2 Transfer Learning

Transfer Learning[99] is a technique used in machine learning and widely used in

deep learning approaches, it aims to exploit the knowledge gained from a previous

task to improve generalization about another. The fundamental concept involves

leveraging the expertise gained by a model through extensive training on a task

with abundant labeled data. Rather than starting the learning process from scratch,

the approach entails applying the acquired patterns or features to different tasks

that lack substantial data. By initiating the model with the knowledge gleaned

from addressing a related task, it aims to enhance performance in scenarios where

training data is limited. it can be applied in various domains, including computer

vision, natural language processing, and speech recognition. Transfer learning

typically involves two main steps:

1. Pre-trained model on Source Task:

A model trained on a large dataset for a source task that is typically related

to the target task. This pre-trained model learns general features and

representations from the source task.

2. Fine-tuning on a Target Task:

The pre-trained model is then adapted or fine-tuned on a smaller dataset

for the target task. The model’s parameters are adjusted to make it more

specialized for the target task while retaining the knowledge gained during

pre-training.
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8.3 Related works

Similar to the significant interest in brain tumour segmentation, there has been

a notable focus on the exploration of brain tumour classification that helps in

pathology diagnosis and further explorations and decisions regarding proposed

treatments. Since the advent of deep learning and convolutional neural networks

(CNN), several medical image datasets have been collected and numerous approaches

have been suggested and employed. In 2015 (Cheng et al) proposed a collection of

MRI brain tumours of three types meningioma, gliomas, and pituitary tumours last

updated in 2017. He proposed enhancing the classification performance of these

brain tumours by incorporating tumor region augmentation and partitioning through

the extraction of diverse features, including a bag-of-words (BOW), an intensity

histogram, and a grey-level co-occurrence matrix (GLCM). The classification of

these features was carried out using a support vector machine (SVM), resulting

in an impressive accuracy of 91.28%[100]. Tahir et al [101] explored different pre-

processing techniques to enhance classification outcomes. Their study involved three

pre-processing methods: noise reduction, contrast enhancement, and edge detection.

These techniques were systematically tested in various combinations on diverse test

sets. The authors argue that utilizing a diverse range of preprocessing schemes

yields more benefits than relying on a single preprocessing approach. Utilizing the

Figshare dataset, they applied the SVM classifier, achieving an accuracy of 86%.

However, deep learning-based models offer better flexibility and comfort in terms of

handcrafted feature extraction by making this process fully automatic and achieving

high classification accuracy which is considered its robust advantage. Abiwinanda et

al. crafted a model for brain tumour classification employing convolutional neural

networks (CNN)[102]. They devised seven unique CNN variations, the second

variant of their model achieved the highest testing accuracy, reaching 84.19%,

on the Figshare brain MRI dataset. Finally, Z.N.K.Swati et al[103] suggested

using a well-known pre-trained model Vgg19 to classify tumours using transfer

learning techniques and fine-tuning strategy block-wise in supposing that transfer
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learning is more adaptable for small datasets, they used five-fold cross-validation

and reached an average accuracy of 94.82.

8.4 Methodology

In this instance, we advocate for the implementation of multiclass brain tumor

classification by building a Convolutional Neural Network(CNN)model through the

utilization of transfer learning from our previously introduced RGBA U-NET in

section 5.5.1, specifically designed for glioma segmentation. This strategic approach

leverages the pre-trained encoder and the features extracted during the segmentation

process. The construction of our classification model follows a systematic design:

1. Retaining the RGBA Encoder Model: The first step involves preserving

the RGBA encoder model, which has been initially tailored for glioma

segmentation.

2. Integrating a Global Averaging Pooling Layer: Subsequently, we augment the

model architecture by incorporating a global averaging pooling layer. This

addition serves to condense the spatial dimensions of the extracted features,

facilitating a more compact representation.

3. Introducing a Dense Layer for Multiclass Classification: The next layer

comprises a dense layer equipped with an appropriate number of nodes(classes),

tailored to the multiclass nature of the brain tumor classification task (in this

case, three classes: meningioma, glioma, and pituitary tumors). The activation

function utilized is softmax, allowing for the generation of probabilities across

multiple classes.

By adhering to this architectural design, we capitalize on the knowledge acquired

during glioma segmentation, enabling our model to effectively classify brain tumors

into distinct categories with enhanced accuracy and efficiency. Figure 8.1 exhibit

the final architectural design of the CNN model.



102 8.5. Experimentations

Figure 8.1: The CNN Transfer Learning Architecture

8.5 Experimentations

8.5.1 Data

In this research, our transfer Convolutional Neural Network (CNN) is trained using

a dataset comprising 3064 T-1 weighted contrast-enhanced MRI (CE-MRI) images

of brain tumors. The dataset, originally provided by Jun Cheng and utilized in his

previous paper [100] , encompasses images of gliomas, meningiomas, and pituitary

tumors. This data is organized in matlab data format. Each file stores a struct

containing the following fields for an image:

• cjdata.label: 1 for meningioma, 2 for glioma, 3 for pituitary tumor cjdata.PID:

patient ID

• cjdata.image: image data

• cjdata.tumorBorder: a vector storing the coordinates of discrete points on

tumor border. For example, [x1, y1, x2, y2,...] in which x1, y1 are planar

coordinates on tumor border. It was generated by manually delineating the

tumor border. So we can use it to generate binary image of tumor mask.
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• cjdata.tumorMask: a binary image with 1s indicating tumor region in our

work we focus only on the image data and label to elaborate the classification

task the following table exhibits the remain data information:

Table 8.1: The Data Information

Brain Tumor Dataset
Tumor Types Meningioma Gliomas Pituitary
# of Slices 708 1426 930
Modalities T1CE
Dimension (512,512)
Format Matlab (.mat)

Labels
0 =Meningioma

1=Gliomas
2=Pituitary

8.5.2 Data Pre_Processing

As a normalization technique, we suggest using the min-max normalization[104]also

known as feature scaling or min-max scaling, which is a technique used in data

pre-processing to scale the values of a numerical feature to a specific range[0,1]. same

as other normalisation techniques its purpose is to bring all features to a similar

scale, preventing certain features from dominating due to their larger magnitudes.

The min-max normalization process involves the following steps for each feature:

1. the minimum (min) and maximum (max) values of pixels in each image.

2. update each pixel using the following formula :

X = x−min
max−min (8.1)

where X is the new pixel value and x is the original pixel value

8.5.3 Implementation Details

Our deep learning proposed approach was implemented using python3 over the

Tensorflow Keras library and executed on Colab GPU node Tesla T4 of 15GB

RAM configured with CUDA 12.0. the data was split randomly into Train set



104 8.5. Experimentations

80% , valid set 10% and Test set 10% , we also propose to resize images from

(512,512) to (128,128) and for the reason of transfer learning, the architecture

requires that the images must be in the RGBA format of (128,128,4) shape, more

details are exposed in the table below:

Table 8.2: The Architecture Parameters

Parameters values
Training Samples 2451
Validation Samples 306
Test Samples 307
Initial filters N° 16
Batch size 8
Dropout rate 0.4
Optimizer Adam (default)
Epochs 250
Model checkpoint Active
Early stopping Active (patience epochs=25)

8.5.4 Evaluation Metrics

we suggest evaluate the performance of our image classification model using the

performance metrics outlined in prior studies like [100, 102],they are the most

frequently used metrics in such tasks. The evaluation encompassed key metrics such

as sensitivity/recall(equation5.3), precision, F1-score, and accuracy(equation7.1. all

of these metrics are computed based on the confusion Matrix.

• Precision : measures how often a model can correctly predicts the positive

class

Precision = TP

TP + FP
(8.2)

• F1-Score: The F1 score is the harmonic mean of the precision and recall,The

highest possible value maximum 1.0, indicat perfect precision and recall to

ensure that a classifier makes good predictions of the relevant class (good

precision) in sufficiently large numbers (good recall) on a target dataset

F1− Score = 2 ∗ Precision ∗Recall
Precision ∗Recall

(8.3)
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8.6 Results

The table 8.3 exhibits the results of our transfer learning model on the validation

and the test set mentioned in the table using the proposed evaluation Metrics in

addition to the confusion Matrices used for computing the evaluation metrics.

Table 8.3: Transfer Learning classification Validation and Test Results

Validation TEST

Metrics Tumor Classes Tumor Classes
Meningioma Glioma Pituitary Meningioma Glioma Pituitary

Accuracy 0,9324 0,9638 0,9894 0,9518 0,9286 0,9898
Precision 0,9200 0.9925 0.9588 0,9080 0.9832 0.9604
Recall 0,9324 0,9638 0.9894 0,9518 0,9286 0.9898

F1-Score 0,9262 0.9779 0,9738 0,9294 0.9551 0,9749

(a) Validation (b) Test

Figure 8.2: The Confusion Matrix for Classification Details

8.6.1 Data Augmentation

In this section, we propose the implementation of a data augmentation technique

to enhance the diversity of the dataset. The Python script utilizes the OpenCV

and NumPy libraries to apply a range of random transformations to RGBA images.

These transformations include random horizontal and vertical flips, rotations within

the -45 to 45-degree range, random adjustments to brightness and contrast with

a factor between 0.5 and 1.5 and potential Gaussian blur with randomly selected
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kernel size in the range [3,5,7]. By specifying the number of augmentations per

image, this process systematically augments the dataset, generating a more varied

set of images. The augmented images, along with their corresponding labels, are

then stored and concatenated with the original dataset. This data augmentation

process is instrumental in improving the dataset’s diversity, ultimately contributing

to the enhanced performance and generalization of machine learning models trained

on the augmented dataset. we propose to keep the same data split in the section8.5.3

and augment the training data only where number of training samples has become

after augmentation 4902 instead of 2451, results are reported in table 8.4

Table 8.4: Transfer Learning classification Validation and Test Results with data
augmentation

Validation TEST

Metrics Tumor Classes Tumor Classes
Meningioma Glioma Pituitary Meningioma Glioma Pituitary

Accuracy 0.8784 1.000 1.000 0.9036 0.9762 1.000
Precision 1.000 0.9583 0.9691 0.9740 0.9535 0.9703
Recall 0.8784 1.000 1.000 0.9036 0.9762 1.000

F1-Score 0,9353 0.9787 0,9843 0.9375 0.9647 0.9849

(a) Validation (b) Test

Figure 8.3: The Confusion Matrix for Classification Details with augmented data

Table 8.5 expose the results of another experiment, in which we propose to

extend the test set and segmenting the original dataset into 20% as a test set and
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15% validation set rather than(10%,10% previously), and apply the same data

augmentation process to the remaining training data.

Table 8.5: Transfer Learning classification Validation and Test Results with data
augmentation

Validation TEST

Metrics Tumor Classes Tumor Classes
Meningioma Glioma Pituitary Meningioma Glioma Pituitary

Accuracy 0.9889 0,9711 0,9810 0,9172 0,9811 0,9948
Precision 0,9468 0.9825 1.0000 0,9664 0.9628 0.9795
Recall 0.9889 0,9711 0,9810 0,9172 0,9811 0,9948

F1-Score 0,9674 0.9767 0,9904 0,9412 0.9719 0,9871

(a) Validation (b) Test

Figure 8.4: The Confusion Matrix for Classification Details with extended test set and
augmented data
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8.6.2 Comparaison Against Existing Works

Table8.6 exposes the results achived by the state of the art and our achived results

in the three previous experiments.

Table 8.6: Comparaison between our model and existing methods

Authors Cheng et al Tahir et al Abiwinanda et al Z.N.K.Swati et al Ours

Avg Accuracy 91.28 86 84.19 94.82
95 %
96 %
97 %

8.7 Discussion

Transfer learning is an optimization strategy that seeks to capitalize on the knowledge

acquired by models trained on extensive datasets. Its goal is to efficiently train

models on smaller datasets, achieving high accuracy with reduced effort and time.

This approach is particularly advantageous when there’s a resemblance between

tasks. In this practical application, the primary model undergoes training for brain

glioma segmentation. Subsequently, this acquired knowledge is exploited to enhance

the performance of a related task specifically, the classification of brain tumors. The

three experiments demonstrate highly significant results , confirming the efficacy

of transfer learning in terms of reduced training time, simplified implementation,

and enhanced generalization. In terms of classification quality, each of the three

experiments yielded remarkably high results, boasting accuracy averages of 95%,

96%, and 97%, respectively. Notably, data augmentation played a pivotal role,

particularly evident in the third experiment, where the test dataset size expanded to

613 from 307 in the preceding experiments. This expansion highlighted the model’s

robustness, emphasizing its superior ability to generalize, in term of precision

and recall all experiments reached high scores which prove the effectiveness of

the model in correctly identifiying instances of diseases which is a key indecator

of its power and reliability. when comparing our model results against some

existing methods, our model outperforms them without any complex model and

time-consuming training process.
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8.8 Conclusion

In conclusion, the presented chapter is a critical study in the domain of brain

tumor classification using transfer learning and deep neural network architecture.

We applied transfer learning using our RGBA model constructed for brain glioma

segmentation as a source task and classifying the brain tumor type from glioma,

meningioma, and pituitary using the Figshare dataset as a target task. we suggested

making different experiments with and without data augmentation and the results

were very significant with less time complexity and straightforward implementation.



However difficult life may seem, there is always
something you can do and succeed at.

9
Conclusions

9.1 Results

This thesis introduces a contribution to medical image analysis through the use

of deep learning. One of the most well-known image analysis techniques is image

segmentation which is the process of dividing an image into multiple regions to

identify and locate its objects in medical images, it mainly aims to locate pathology

structures to facilitate diagnosing and patient assisting. unfortunately, all proposed

works are still not enough to reach the best results due to the challenges of such

sensitive images as image low quality and noise, etc...

This thesis focuses on the segmentation of one of the most life-threatening types

of primary brain cancers called glioma from multimodal MRI images using deep

learning.

Our first motivation was to propose a straightforward strategy to handle the

multimodal MRI input images by using multiple pathways, one path for each

modality, and each pathway is a kind of deep learning architecture called U-NET

with result concatenation before the generation of the prediction probability map.

This model achieves competitive results but is a little bit far from the top-ranked

approaches which motivates us toward a second approach.

Our second approach was to propose an optimized and efficient architecture by

110
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suggesting a new way of handling multimodal MRI images where we incorporated

an input processing block into an updated U-NET. it has provided significant results

that outperform the majority of existing methods.

The third motivation was to establish a comparative study between old machine-

learning techniques and our proposed architecture which proved the real efficiency

of deep learning.

finally, we had the motivation to perform a brain tumor classification task based on

knowledge transfer from our built segmentation model using the transfer learning

technique which succeeded in reaching high accuracy in a very simple implementation

and record training time.

9.2 Future Works

Deep learning requires High running resources availability and large data sets to

guarantee better results which we hope to get one day, after discovering the power

of deep learning in the future we could investigate more tasks like :

• Using deep learning for other pathology structure segmentation like breast

cancer lung cancer Etc

• Keep improving our models which prove that better results could be reached

in a very simple way.

• Explore More domains using deep learning rather than the medical one.



Résumé
Depuis  l'avènement  de l'apprentissage  profond,  une révolution technologique  s'est
opérée, dotant les ordinateurs de capacités remarquables en matière d'apprentissage,
de raisonnement, de réflexion et de prise de décision. L'apprentissage profond a joué
un rôle central dans la facilitation de l'extraction de caractéristiques, en particulier
dans  le  domaine  de  la  vision  par  ordinateur,  où  il  contribue  significativement  à
l'apprentissage et à la reconnaissance du contenu des images et des clips vidéo. Cet
impact s'étend au domaine de la recherche en imagerie médicale, comme le démontre
cette  thèse.  L'accent  est  mis  sur  le  rôle  de  l'apprentissage  profond  dans  la
segmentation  automatique  précise  d'images  médicales,  notamment  dans  la
segmentation  des  tumeurs  cérébrales  de  gliome  et  de  leurs  tissus  sous-tumoraux
associés à partir d'images par résonance magnétique multimodales. La thèse présente
diverses  contributions  visant  à  obtenir  une  segmentation  précise,  comprenant  une
étude  comparative  entre  les  méthodes  basées  sur  l'apprentissage  machine  et  les
architectures  d'apprentissage  profond.  De  plus,  elle  met  en  lumière  l'influence
substantielle  du  déséquilibre  de  classes  sur  les  métriques  d'évaluation  de  la
segmentation d'images. Enfin, la thèse propose une méthode basée sur le transfert
d'apprentissage pour construire un modèle capable de classifier trois types de tumeurs
cérébrales : méningiome, gliome et tumeurs hypophysaires.

Mot-clés :  Apprentissage  profond,  Images  médicales,  Tumeur  cérébrale,
Segmentation d'images, Image Classification, Déséquilibre de classe

ملخص
استثنائية              قدرات الحاسوب اكتسب حيث التكنولوجيا، ميدان في ثورة حدثت العميق، التعلم ظهور منذ
        . استخراج      تسهيل في مما حاس مرا دو العميق التعلم لعب القرارات واتخاذ والتفكير والستدلل التعلم في

محتوى               على والتعرف تعلم في كبير بشكل ساهم حيث الحاسوبية، الرؤية مجال في خاصة الخصائص،
              . هذه   في ذلك يظهر كما الطبية، الصور في البحث ميدان إلى التأثير هذا يمتد الفيديو ومقاطع الصور
أورام.                 تقسيم في ما وتحديد بدقة، ميا تلقائ الطبية الصور تقسيم في العميق التعلم دور على هو التركيز الرسالة

المتعدد              المغناطيسي الرنين صور من بها المرتبطة الفرعية وأنسجتها الدبقية الورام نوع من الدماغ
بين.                مقارنة دراسة ذلك في بما دقيق، تقسيم تحقيق إلى تهدف متنوعة مساهمات الرسالة تقدم الوسائط
          . في      الكبير التفاوت تأثير على الضوء تسلط ذلك، إلى بالضافة العميق التعلم وهندسات اللي التعلم طرق

         . لنشاء      النتقالي التعلم على مبنية طريقة الرسالة تقترح مرا، وأخي الصور تقسيم تقييم مقاييس على الفئات
       : النخامية         الغدة وورم الدبقية، والورام السحائي، الورم الدماغ أورام من أنواع ثلثة تصنيف على قادر .نموذج

عدم  :           الصورة، الصورة،تصنيف تجزئة الدماغ، ورم الطبية، الصور العميق، التعلم المفتاحية الكلمات
الطبقي  التوازن
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