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Introduction

Optimization is a fundamental concept that pervades various fields, playing a cru-

cial role in decision-making, resource allocation, and problem-solving. At its core,

optimization involves the process of finding the best possible solution from a set of

feasible alternatives, with the objective of either maximizing or minimizing an objective

function while satisfying certain constraints. Understanding the different types of

optimization problems, their characteristics, applications and methodologies is essential

for addressing complex challenges and driving innovation across industries.

Optimization problems are characterized by their ability to optimize objectives while

considering constraints. These problems can vary widely in complexity, involving linear

or nonlinear objective functions, as well as linear or nonlinear constraints. Despite

their complexity, optimization problems find applications in numerous fields, including

finance, engineering, logistics, and operations research. For instance, in finance, opti-

mization techniques are used for portfolio management and asset allocation, while in

engineering, they are employed for process optimization and system design. The impor-

tance of optimization lies in its ability to enhance efficiency, improve decision-making

processes, and maximize resources, ultimately leading to cost savings and competitive

advantages for organizations.

Optimization problems come in various forms and complexities, reflecting the di-

verse challenges encountered in real-world scenarios. These problems span across a

spectrum, ranging from simple linear objectives with linear constraints to more com-

plex quadratic, nonlinear or even stochastic objectives with nonlinear or stochastic

constraints. Linear programming, convex quadratic programming, semidefinite opti-

mization, and other types of optimization problems represent different facets of this

spectrum.

Linear Optimization (LO) focuses on optimizing linear objective functions subject



12 Introduction

to linear equality and inequality constraints. LO has widespread applications in re-

source allocation, production planning, and transportation logistics. Its simplicity and

efficiency make it a popular choice for addressing optimization problems in various

industries.

Convex Quadratic Optimization (CQO) involves optimizing quadratic objective

functions subject to linear constraints. Quadratic programming (QP) is utilized in port-

folio optimization, control system design, and structural optimization. The convexity

property of quadratic functions ensures the existence of globally optimal solutions,

making QP particularly valuable in practical applications.

Semidefinite Optimization (SDO) extends linear programming to problems with

linear matrix inequality constraints. It is applied in robust control, signal processing,

and combinatorial optimization. Semidefinite optimization techniques offer powerful

tools for solving complex optimization problems involving structured matrices and

non-convex constraints.

Convex Quadratic Semidefinite Optimization (CQSDO) combines the properties of

convex quadratic programming and semidefinite optimization. This hybrid approach is

used in machine learning, quantum information theory, and computational biology. By

leveraging both convexity and semidefinite relaxation, convex quadratic semidefinite

optimization enables efficient solutions to challenging optimization problems.

Indeed, LO is often considered one of the simplest optimization problems due to its

linear objective function and linear constraints. Despite its apparent simplicity, LO has

extensive implications and applications across various fields. In economics, for instance,

the importance of LO was recognized with the Nobel Prize in Economics awarded to

Kantorovich [37] and Koopmans [51] in 1976.

In 1947, Dantzig proposed the well-known simplex method for solving LO problems

[15]. Before 1984, every LO problem was solved using the simplex method [15] or a

variant thereof. Research efforts were made to develop alternative methods, but none

of the proposed methods improved upon the simplex method.

In the 1970s, complexity theory became integral to LO, raising questions about

the theoretical limits of solving linear programs. Klee and Minty’s discovery [47] of

an example showcasing the exponential nature of the simplex method’s worst-case

complexity highlighted the need for more efficient algorithms.
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Khachiyan’s breakthrough in 1979 with the ellipsoid method demonstrated a polynomial-

time algorithm for linear programming [40]. However, the ellipsoid method, while

theoretically significant, was not as practical as the simplex method in real-world

applications.

In 1984, Karmarkar proposed an innovative interior point method with polynomial

convergence, competing with the simplex method for solving large-scale LO problems

[38]. This method and its variants that were developed subsequently are now called

interior-point methods (IPMs). For a survey, we refer to [5, 16, 62, 65, 85]. Megiddo

[53] and Sonnevend [67] were the first to recognize the relevance of the central path

for LO. The authors in [66] investigated the first primal-dual path-following IPM for

LO problems with full-Newton step. This technique has extensively extended to other

optimization problems (e.g., [44, 48, 81]).

In IPMs, the determination of search directions plays a key role in the feasibility,

convergence and complexity bound of the algorithm. In fact, one can apply kernel

functions technique to achieve this, this last requires two types of iterations, inner

iterations and outer iterations (e.g. [13, 10, 12]). Moreover, Darvay [18] introduces a new

method for finding efficient search directions. He applied the square root function on

both sides of an algebraic equivalent transformation (AET) on the centering equation of

the system which defines the central path. Then he used the full-Newton method to the

resulting system. This method is extended to other optimization problems such as: CQO

[1], SDO [77], second-order cone optimization (SOCO)[78] and symmetric optimization

(SO) [79]. Moreover, Kheirfam and Nasrollahi in [46] extended this technique which is

based on the square root function to the integer powers of this function. Furthermore,

Based on the AET strategy, Darvay and Takàcs in [19] considered a new function to

present a new primal-dual IPM for L0. In the same way, Kheirfam and Haghighi in [45]

presented a new primal-dual IPM for P∗(κ)-linear complementarity. For more related

papers, we refer to [2, 31, 56, 21].

Currently, the AET technique has become a wide research interest, and the search

for a new AET to describe a new primal-dual IPM has become an important motivation

for researchers. In 2011, Zhang and Xu [93] proposed a specific search direction for

LO. They considered the equivalent form v2 = v of the centering equation, and they

transformed it into the form xs = µv. After that, they assumed that the variance vector
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is fixed and they applied full-Newton’s method. Based on this new AET, Darvay and

Takàcs [20] proposed another technique to obtain a new descent direction for solving

LO. They applied the function ψ(t) = t2 on both sides of the nonlinear equation v2 = v.

Next, they used full-Newton’s method to get the new search direction. The authors

proved both the theoretical and numerical effectiveness of their method compared to

other existing techniques. Furthermore, the same authors in [68] extended this approach

to symmetric optimization problems. Later, Kheirfam [41] extended the method to

P∗(κ)-horizontal linear complementarity problems, while Guerra [32] applied it to the

SDO case. For more related papers about Darvay and Takàcs’ technique, we refer to

(see e.g., [23, 42, 43]).

Motivated by the above-mentioned works, many questions naturally arise. Chief

among these inquiries is the reevaluation of the method proposed in [20] by incorporat-

ing new functions. Additionally, there arises a compelling need to explore the potential

for extending the works of Darvay and Takàcs [20] and Zhang and Xu [93] to a broader

spectrum of optimization problems such as: CQO, SDO and CQSDO. By doing so, we

aim to unlock new dimensions of applicability and efficacy in optimization methodolo-

gies. These questions hold paramount significance as they catalyze the advancement of

research and innovation within the realm of optimization.

This thesis aims to propose, develop and analyze new interior point algorithms

(IPAs) based on new descent directions in optimization. We explore the possibility

of extending some IPAs from LO to more general problems, such as CQO, SDO and

CQSDO. Therefore, we include some new results related to efficient complexity of the

corresponding algorithms.

Short Out line of the Thesis.

The thesis contains six chapters, followed by a bibliography which are organized as

follows:

Chapter 1: A mathematical background on convex analysis, matrix theory and mathe-

matical programming is stated which will be utile throughout this thesis.

Chapter 2: We recall the concept of the central path, outlining its properties. Then,

we derive the classical Newton search direction for LO. Furthermore, we introduce a

pioneering IPA for LO, which relies on the algebraic equivalent transformation technique

for determining search directions. The chapter ends with a discussion of the most recent
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modification to this technique.

Chapter 3: Building upon the work of Darvay and Takàcs [20] which is based on the

technique of algebraic transformation, we propose two new functions ψ(t) to enhance

the performance of path-following algorithms. The first function is ψ(t) = t
7
4 , where

we have shown that the corresponding algorithm converges after O

(
√
n log

n+ 3
7√2

ε

)
iterations. The second function is defined by ψ(t) = t

3
2 , where we have proven that

the corresponding algorithm converges after O

(
√
n log n+ 3√4

ε

)
iterations. Numerical

tests specifically on some problem from the Netlib test collections were conducted to

consolidate the obtained theoretical results.

Chapter 4: We introduce new primal-dual IPAs for CQO. The first proposed algorithm

is based on an extension of the techniques presented in the work of Darvay and Takàcs

for LO [20], while the other on it’s first idea presented in the work of Zhang and Xu [93].

We demonstrate that the presented methods solve efficiently the CQO problem within

polynomial time. Notably, the short-step algorithms achieve the best-known iteration

bound. Moreover, we present a comparative numerical study to prove the efficiency of

our proposed algorithms.

Chapter 5: We present a novel primal-dual IPA tailored for SDO. Drawing inspiration

from Zhang and Xu’s approach to linear optimization, our method extends their tech-

nique. The symmetrization of the search direction is based on the Nesterov-Todd scaling

scheme. We shown that our short-step algorithm achieves the best-known iteration

bound. Namely, O(
√
n log n

ε
) iterations. Furthermore, we conduct a comprehensive

numerical study, focusing on some SDO applications to underscore the effectiveness of

our proposed algorithm.

Chapter 6: We introduce a primal-dual IPA for CQSDO. This algorithm is based on an

extension of the technique presented in the work of Zhang and Xu for LO [93]. The

symmetrization of the search direction is based on the Nesterov-Todd scaling scheme.

Our analysis shows that this method solves efficiently the problem within polynomial

time. Notably, the obtained short-step algorithm achieves the best-known iteration

bound, namely O(
√
n log n

ε
) iterations. The numerical experiments conclude that the

newly proposed algorithm is not only polynomial but requires a number of iterations

clearly lower than that obtained theoretically.

Finally, we end this thesis by a general conclusion and suggestions for future work.
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Fundamental notions

In this chapter, we will introduce certain concepts and results of matrix calculus and

some properties of symmetric matrices (especially, positive semidefinite matrices), as

well as basic notions of convex analysis and mathematical programming that will be

useful later. For more details we refer to [8, 39, 61, 63, 84].

1.1 Matrix theory

In this section, we provide some useful notions concerning matrix analysis. We start

with Mn, the set of square matrices of order n with real coefficients:

Mn = {A ∈ Rn×n}.

and the set Sn, which denotes the space of symmetric matrices of Mn:

Sn = {A ∈ Mn | AT = A}.

1.1.1 Eigenvalues and Spectrum

1. Let A ∈ Mn be a matrix. Then, A is regular (or invertible) if and only if det(A) ̸= 0,

where det(A) is the determinant of the matrix A.

2. The polynomial pA(λ), defined by pA(λ) = det(A− λI), is called the characteristic

polynomial of A. The roots of pA(λ) are called the eigenvalues of A.
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3. Let λ1, · · · , λm be the eigenvalues of the matrix A of order n. Then, the characteris-

tic polynomial can be represented as:

pA(λ) = p0 + p1λ+ · · ·+ pn−1λ
n−1 + λn = (λ− λ1)

n1 · · · (λ− λm)
nm ,

where ni are positive integers such that
m∑
i=1

ni = n. The number ni is the algebraic

multiplicity of the eigenvalue λi, i = 1, . . . ,m.

4. An eigenvalue is called simple if its multiplicity is equal to 1.

5. It is important to note that the determinant of a matrix A is the product of its

eigenvalues. i.e., det(A) =
n∏

i=1

λi.

6. The spectrum of A ∈ Mn, for n ≥ 1, is the set of eigenvalues of A:

sp(A) = {λ ∈ R | det(λI − A) = 0}.

7. The spectral radius of A is the largest eigenvalue of A in absolute value:

ρ(A) = max
λ∈sp(A)

|λ|.

8. If A ∈ Sn, then

(a) All eigenvalues of A, denoted λi(A), are real.

(b) There exists an orthonormal basis in which A is diagonalizable, i.e., there

exists an orthogonal matrix P (called the transition matrix) such that A = PDP T ,

where D is a diagonal matrix. The columns of P are the eigenvectors of A and the

eigenvalues (λi) of A are the diagonal coefficients of D. In this case, the matrices A

and D are said to be similar.

9. For our purposes, it is appropriate to write the eigenvalues in increasing order:

λmin(A) = λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) = λmax(A).

10. Let A and B be two matrices in Sn, then:

(a) λmin(A+B) ≥ λmin(A) + λmin(B).

(b) λmax(A+B) ≤ λmax(A) + λmax(B).
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11. Let A ∈ Mn, then:

(a) If A is orthogonal (i.e., ATA = I), then the eigenvalues of A are −1 or 1.

(b) A is regular (or invertible) if and only if 0 /∈ sp(A).

12. Let A ∈ Mn be an invertible matrix, then:

(a) λ is an eigenvalue of A if and only if λ is an eigenvalue of AT .

(b) λ is an eigenvalue of A if and only if 1
λ

is an eigenvalue of A−1.

(c) λ is an eigenvalue of A if and only if λ+ µ is an eigenvalue of A+ µIn.

(d) λ is an eigenvalue of A if and only if µλ is an eigenvalue of µA.

1.1.2 Trace, inner product and norm

1. The trace of a matrix A ∈ Mn is defined as the sum of its diagonal elements

Tr(A) =
n∑

i=1

aii, ∀A ∈ Mn.

2. The trace of a matrixA ∈ Mn, equals the sum of its eigenvalues. i.e., Tr(A) =
n∑

i=1

λi.

3. For all A,B,C ∈ Mn and α, β ∈ R, the following properties hold:

(a) Tr(αA+ βB) = αTr(A) + βTr(B) (Linearity).

(b) Tr(AT ) = Tr(A).

(c) Tr(A2) ≤ Tr(ATA).

(d) Tr(AB) = Tr(BA) (Invariance under permutation).

(e) Tr(AB) ≤ 1
2
(Tr(A2 +B2)) for symmetric matrices A and B.

(f) Tr(ABC) = Tr(CAB) = Tr(BCA) ̸= Tr(ACB).

(g) Tr(BAB−1) = Tr(A).

4. The usual inner product of two vectors x and y in Rn is defined by:

⟨x, y⟩ =
n∑

i=1

xiyi = xTy.
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5. Similarly, an inner product is defined on the set of real square matrices. The inner

product of two matrices A,B ∈ Mn is defined by:

A •B = ⟨A,B⟩ = Tr(ATB) =
n∑

i=1

n∑
j=1

aijbij = B • A.

Now, let’s state the properties of the inner product A • B. For this, consider

A,B,C ∈ Mn and α, β ∈ R:

(a) ⟨A+B,C⟩ = ⟨A,C⟩+ ⟨B,C⟩.

(b) ⟨αA, βB⟩ = αβ⟨A,B⟩.

6. The vector norm is a mapping from Rn to R+, denoted by || · ||, and satisfies the

following conditions:

(a) ∀x ∈ Rn : ||x|| = 0 ⇐⇒ x = 0,

(b) ∀α ∈ R,∀x ∈ Rn : ||αx|| = |α|||x||.

(c) ∀x, y ∈ Rn : ||x+ y|| ≤ ||x||+ ||y||.

7. Let x = (x1, x2, . . . , xn) ∈ Rn. The following are the commonly used vector norms:

(a) The ℓ1 norm (also known as the Manhattan norm or taxicab norm) is defined

as:

∥x∥1 =
n∑

i=1

|xi|.

(b) The ℓ2 norm (also known as the Euclidean norm) is defined as:

∥x∥2 =

√√√√ n∑
i=1

x2i .

(c) The ℓ∞ norm (also known as the maximum norm or Chebyshev norm) is

defined as:

∥x∥∞ = max
1≤i≤n

|xi|.

8. For any vector x ∈ Rn, we have:

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞.

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2.
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9. Let A,B ∈ Mn. The mapping || · || : Mn → R+ is called the matrix norm and

satisfies the following conditions:

(a) ||A|| = 0 ⇐⇒ A = 0.

(b) ||αA|| = |α|||A||, where α ∈ R.

(c) ||A+B|| ≤ ||A||+ ||B||.

(d) ||AB|| ≤ ||A||||B||.

10. For any matrix A ∈ Mn, we have:

(a) ||A||1 =
n

max
j=1

n∑
i=1

|aij|.

(b) ||A||∞ =
n

max
i=1

n∑
j=1

|aij|.

(c) ||A||2 =

√
n

max
i=1

|λi| =
√
ρ(ATA). This is called the Euclidean norm, where

λi, i = 1, . . . , n, are the eigenvalues of the matrix ATA.

11. ||A||F =
√
A • A =

√√√√ n∑
i=1

n∑
j=1

a2ij, ∀A ∈ Mn. This is called the Frobenius norm, it

satisfies the following properties:

(a) ||A||F = ||AT ||F .

(b) ||A||2 ≤ ||A||F ≤
√
n||A||2.

(c) ||αA||F = |α|||A||F ∀α ∈ R.

(d) ||A+B||F ≤ ||A||F + ||B||F (Triangle inequality).

(e) ||AB||F ≤ ||A||F ||B||F .

(f) ||A+B||2F + ||A−B||2F = 2(||A||2F + ||B||2F ) (Parallelogram identity).

(g) ⟨A,B⟩ = 1
4
(||A+B||2F − ||A−B||2F ).

(h) ⟨A,B⟩ = 1
2
(||A+B||2F − ||A||2F − ||B||2F ).

(i) If ⟨A,B⟩ = 0, then ||A + B||2F = ||A − B||2F = ||A||2F + ||B||2F (Pythagorean

theorem).

12. We note that if A ∈ Sn, then the following results can be easily obtained:
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||A||F =
√

Tr(A2) =

√√√√ n∑
i=1

λ2i (A).

||A||2 =
√
λmax(A2) = max

i=1
|λi(A)| = ρ(A).

For any matrix norm, we have:

ρ(A) ≤ ||A||.

1.1.3 Positive semidefinite matrices and their properties

In this subsection, we are interested on symmetric positive semidefinite matrices.

Definition 1.1. A matrix A ∈ Mn is said to be:

• Positive semidefinite (written as A ⪰ 0) if xTAx ≥ 0 for all x ∈ Rn. We denote by

Sn
+ the set of symmetric positive semidefinite matrices.

• Positive definite (written as A ≻ 0) if xTAx > 0 for all x ∈ Rn\{0}. We denote by

Sn
++ the set of symmetric positive definite matrices.

Theorem 1.2. For a matrix A ∈ Sn, the following propositions are equivalent:

1. A ∈ Sn
+ (resp. A ∈ Sn

++).

2. λi(A) ≥ 0 (resp. λi(A) > 0) for all i = 1, . . . , n.

3. There exists a matrix C ∈ Mn such that A = CTC (resp. there exists a regular matrix

C ∈ Mn such that A = CTC).

4. All leading principal minors of A are positive (resp. strictly positive).

Properties

1. For A,B ∈ Sn
+:

(a) A ⪰ B implies A−B ⪰ 0.

(b) A+B ⪰ B.

(c) A1/2BA1/2 ⪰ 0.
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(d) Tr(AB) ≤ Tr(A)Tr(B).

(e) Tr(AB) ≥ 0.

2. It is easy to observe that a matrix A ∈ Sn
++ if and only if A−1 ∈ Sn

++, since the

eigenvalues of A−1 are 1
λi(A)

for all i = 1, . . . , n.

3. Any principal sub-matrix of a semidefinite positive (resp. definite) matrix is also

positive semidefinite (resp. definite).

4. For any A ∈ Sn
+, there exists i ∈ {1, . . . , n} such that aii = max

j∈{1,...,n}
|aij|.

5. If A ∈ Sn
+ and aii = 0 for some i ∈ {1, . . . , n}, then aij = 0 for all j ∈ {1, . . . , n}.

6. Let B ∈ Mn be an invertible matrix. If A ∈ Sn
+ (resp. Sn

++)⇐⇒ BTAB ∈ Sn
+ (resp.

Sn
++).

7. The following equivalence holds:

A ⪰ 0 ⇐⇒ A+B ⪰ 0,∀B ⪰ 0.

8. Also,

A ≻ 0 ⇐⇒ A+B ≻ 0,∀B ≻ 0.

9. For A,B ∈ Sn
+,

A •B = 0 ⇐⇒ AB = 0 ⇐⇒ 1

2
(AB +BA) = 0.

10. For A,B ∈ Sn:

(a) If A ⪰ 0, then ∥A∥F ≤ Tr(A) and n(det(A))
1
n ≤ Tr(A).

(b) If C,D ∈ Sn such that C − A ⪰ 0 and D −B ⪰ 0, then Tr(AB) ≤ Tr(CD).

(c) A ⪰ B ⇐⇒ CTAC ⪰ CTBC for all C ∈ Mn.

(d) If A ⪰ In, then A is invertible, and In ⪰ A−1.

(e) If B ⪰ A ≻ 0, then B is invertible (B ≻ 0) and A−1 ⪰ B−1.

11. λmin(A)λmax(B) ≤ λmin(A) Tr(B) ≤ A •B ≤ nλmax(A) Tr(B) ≤ n2λmax(A)λmax(B),
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Theorem 1.3. For A ∈ Sp
++, C ∈ Sn, and B ∈ Rp×n, then A B

BT C

 ⪰ 0 ⇐⇒ C −BTA−1B ⪰ 0.

 A B

BT C

 ≻ 0 ⇐⇒ C −BTA−1B ≻ 0.

1. The matrix S = C −BTA−1B is called the Schur complement of A. In particular,

for any x ∈ Rn and X ∈ Sn:1 xT

x X

 ⪰ 0 ⇐⇒ X − xxT ⪰ 0.

Proposition 1.4. For A ∈ Sn
+, there exists a unique matrix B ∈ Sn

+ such that A = BB = B2.

Often, B is called the square root of A, and we often write B = A1/2. Moreover, rank(A) =

rank(B).

Cholesky Factorization

Definition 1.5. For A ∈ Sn
++, there exists a unique lower triangular invertible matrix L

such that A = LLT .

Diagonally Dominant Matrix

Definition 1.6. A matrix A ∈ Mn is:

1. Diagonally dominant if |aii| ≥
n∑

j ̸=i=1

|aij| for all i = 1, . . . , n.

2. Strictly diagonally dominant if |aii| >
n∑

j ̸=i=1

|aij| for all i = 1, . . . , n.

Theorem 1.7. If A ∈ Sn is strictly diagonally dominant and all diagonal elements are strictly

positive, then A is positive definite.

1.2 Convex analysis

The convexity plays an important role in mathematical optimization theory. The notion

of convexity takes two forms: a convex set and convex function.
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1.2.1 Convex sets

Definition 1.8. • A set C in Rn (C ̸= ∅) is called:

1. Affine set if

λx+ (1− λ)y ∈ C, ∀x, y ∈ C, ∀λ ∈ R.

2. Convex set if

λx+ (1− λ)y ∈ C, ∀x, y ∈ C, ∀λ ∈ [0, 1].

• A polyhedron convex is defined as

C = {x ∈ Rn
+ / Ax ≤ b, Cx = d}.

Where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp.

• A point x ∈ C is called extremal point of C if

∀x1, x2 ∈ C, ∀λ ∈]0, 1[: x = (1− λ)x1 + λx2 ⇒ x = x1 = x2.

Definition 1.9. Let C be a non-empty convex set, d is called an admissible direction of

C if

∀x ∈ C, ∀λ ≥ 0 : x+ λd ∈ C with d ∈ Rn (d ̸= 0).

Definition 1.10. Convex combination of m points x1, . . . , xm of Rn is the form

x =
m∑
j=1

λjxj,

with λj ≥ 0, ∀j = 1, . . . ,m and
m∑
j=1

λj = 1.

Definition 1.11. Let X ⊆ Rn be a non-empty convex set. The convex hull of X , denoted

Conv(X), is the smallest convex set containing X , i.e.,

Conv(X) =

{
k∑

i=1

λixi : k ∈ N∗,
k∑

i=1

λi = 1, λi ∈ R+, xi ∈ X

}
.
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1.2.2 Convex function

Definition 1.12. Let f : C → R be a function with C ⊂ Rn a non-empty convex set . We

say that f is:

• Affine if

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ R.

• Convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

or

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi), ∀m ∈ N, ∀λi ≥ 0 /
m∑
i=1

λi = 1, ∀xi ∈ Rn.

• Strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y), ∀x, y ∈ C, x ̸= y, ∀λ ∈]0, 1[.

• Strongly convex if ∃α > 0, with λ ∈]0, 1[, ∀x, y ∈ C and x ̸= y we have:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)− α

2
λ(1− λ)∥x− y∥2.

• Quasiconvex if

∀x, y ∈ C, ∀λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ max(f(x), f(y)).

• Concave if (−f) is convex, i.e.,

f(λx+ (1− λ)y ≥ λf(x) + (1− λ)f(y), ∀x, y ∈ C, ∀λ ∈ [0, 1].

• Coercive if

lim
∥x∥→+∞

f(x) = +∞.

Remark 1.13. f is strongly convex ⇒ f is strictly convex ⇒ f is convex ⇒ f is quasicon-

vex.
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1.2.3 Characterization of differentiable convex function

For once or twice differentiable functions, there are some additional criteria for verifying

convexity. A useful alternative characterization of convexity for differentiable functions

is given in the following properties.

Definition 1.14. Let f : C ⊆ Rn → R be a continuous differentiable function at a point

x ∈ C.

• The gradient for differentiable function f is the vector of its partial derivatives

∇f(x) =
(
∂f(x)

∂x1
,
∂f(x)

∂x2
, · · · , ∂f(x)

∂xn

)T

.

• The Hessian for twice continuous differentiable function f is the symmetric matrix

of Mn, noted H(x) = ∇2f(x) with Hij(x) =
(

∂2f
∂xi∂xj

)
(x); i, j = 1, 2, . . . , n, or

H(x) =



∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

· · · ∂2f(x)
∂x2∂xn

...
... . . . ...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n

 .

Theorem 1.15. Let f : C ⊆ Rn → R be a differentiable function, the following propositions are

equivalents:

1. f is convex.

2. ∀x, y ∈ C, f(y) ≥ f(x)+ < ∇f(x), y − x > .

3. The gradient of f is a monotone operator:

∀x, y ∈ C,< ∇f(y)−∇f(x), y − x >≥ 0.

Remark 1.16. f is strictly convex over C if and only if the above inequalities are strict

whenever x ̸= y.

Proposition 1.17. Let f : C ⊆ Rn → R of class C 2.

• f is convex if and only if ∇2f(x) is positive semidefinite on C.

• f is strictly convex if and only if ∇2f(x) is positive definite on C.
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1.3 Newton’s method for solving nonlinear systems

Let F : Rn → Rn be a differentiable nonlinear function. Newton’s method is an iterative

approach designed to find a point x ∈ Rn such that F (x) = 0.

At each iteration xk, the method approximates F linearly around xk and determines

the next iterate xk+1 by solving for the zero of this linear approximation. Given that J

represents the Jacobian matrix of F , the approximation is expressed as:

F (xk +∆xk) ≈ F (xk) + J(xk)∆xk,

where the Newton direction ∆xk is chosen so that this linear approximation is set to

zero. This yields the following update rule:

xk+1 = xk +∆xk,

with the Newton step ∆xk given by:

∆xk = −J(xk)−1F (xk).

The method converges to a solution provided that the initial guess x0 is sufficiently

close to a zero of F . Newton’s method is renowned for its quadratic convergence near

the solution, making it a powerful tool in solving nonlinear systems.

1.4 Mathematical programming

Mathematical programming (MP) constitutes a vast and rich domain in numerical

analysis, addressing several important practical problems.

In general, a mathematical program is an optimization problem with constraints of

the form:

 min f(x)

x ∈ C,
(MP)

where C = {x ∈ Rn / hj(x) ≤ 0, j = 1, . . . ,m, gi(x) = 0, i = 1, . . . , p}, with f, gi, hj

are functions from Rn to R.

We call f the objective function and C the set of feasible or admissible solutions.
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1.4.1 Classification of a mathematical program

The classification of (MP) depends on various factors, and key aspects include the con-

vexity of the objective function and constraints. Here are some common classifications:

1. Unconstrained convex optimization: f convex, C = Rn (no constraint).

2. Linear programming: f linear, C affine set.

3. Quadratic programming: f quadratic, C affine set.

4. Linearly constrained convex problems: f convex, C affine set.

5. Convex programming: f convex, C convex set.

6. Semidefinite programming: programs where the feasible set is defined by linear

matrix inequalities.

1.4.2 Existence and uniqueness of optimal solutions

We are interested in identifying points in convex set C at which the function f attains a

(local or global) minimum.

• Local minimum: Let f : C → R. A point x∗ ∈ C is a local minimum of (MP) if

there exists a neighborhood V (x∗) of x∗ such that

f(x∗) ≤ f(x),∀x ∈ V (x∗).

• Global minimum: A point x∗ ∈ C is a global minimum of (MP) if

f(x∗) ≤ f(x),∀x ∈ C.

Remark 1.18. Local and global maximum can be defined similarly by just reverting the

inequalities.

Proposition 1.19. Let C be a convex set and f : C −→ R be a convex function. If x∗is a local

minimum of (MP), then x∗ is a global minimum of f over C.
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Existence of a solution

Theorem 1.20 (Weierstrass [9]). Let C be a compact subset of Rn and f : C −→ R be

continuous on C. Then, there exists at least x∗ ∈ C such that f(x∗) ≤ f(x) for all x ∈ C.

Corollary 1.21. If C is non-empty and closed and f is continuous and coercive on C, then

(MP) has a global optimal solution.

Uniqueness of a solution

Theorem 1.22. [9] Let C be a non-empty convex subset of Rn and f a strictly convex function

on C. Then, (MP) admits at most an optimal solution.

1.4.3 Constraints qualification

Definition 1.23. We say that the constraint hi(x) ≤ 0 is active or saturated at x ∈ C if

hi(x) = 0. We introduce then the set

I(x) = {i : hi(x) = 0}.

By definition, an equality constraint is saturated.

Here are three classical qualification conditions:

- Slater (1950): If C is convex (i.e., hi are convex and gj affine) and int(C) ̸= ∅, then the

constraints are qualified at every feasible point.

- Karlin (1959): If C is a convex polyhedron (i.e., hi, gj are affine), then the constraints

are qualified at every feasible point.

- Mangasarian-Fromovitz (1967): If the gradients of all constraints saturated at x ∈ C

are linearly independent, then the constraints are qualified at x.

1.4.4 Optimality conditions

Theorem 1.24. (Karush-Kuhn-Tucker (K.K.T)) Suppose that one of the preceding constraint

qualification conditions is satisfied at the point x ∈ C. A necessary condition for f to have a
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local minimum at x is that there exist λ ∈ Rm
+ and µ ∈ Rp such that:

∇h(x) +
m∑
i=1

λi∇hi(x) +
p∑

j=1

µj∇gj(x) = 0,

λihi(x) = 0, i = 1, . . . ,m,

gj(x) = 0, j = 1, . . . , p.

The λi and µj are called the Karush-Kuhn-Tucker multipliers.

Remark 1.25. - If the constraints are not qualified at x, the KKT conditions do not apply.

- If (MP) is convex, the KKT conditions are both necessary and sufficient for x to be a

global minimum.

1.5 Linear programming

Without loss of generality, a linear program (LP) can be presented in the following

standard form 
min cTx

Ax = b,

x ≥ 0,

(LP)

whereA is a real matrix of dimensions (m,n) assumed to be full rank (rank(A) = m < n),

b ∈ Rm and c, x ∈ Rn.

The set of feasible solutions S = {x ∈ Rn : Ax = b, x ≥ 0} is a closed convex

polyhedron.

The dual of (LP) is given by: 
max bTy

ATy + s = c,

s ≥ 0,

(LD)

with s ∈ Rn and y ∈ Rm.

Proposition 1.26. [61] A feasible and bounded linear program (with a bounded objective) has

at least one optimal solution, located on the boundary of the feasible set.

Proposition 1.27. [61] If x∗ is an optimal solution of (LP ) , then x∗ is a vertex of the feasible

set of (LP ).
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1.5.1 Methods of resolution

1) Simplex method

Developed by G. Dantzig in the late 1940s [15], the simplex method systematically

moves along the boundary of the feasible set from one adjacent vertex to another,

reducing the objective value until reaching the optimum. A simple optimality criterion

allows identifying the optimal vertex. The algorithm converges in a finite number

of iterations, not exceeding Cm
n under the assumption that all visited vertices’s are

non-degenerate.

In degenerate cases, the algorithm may cycle, but suitable techniques exist to prevent

this phenomenon. Despite its potential cycling issue, the simplex method exhibits

excellent numerical behavior in practice, as evidenced by its widespread applications in

solving a broad class of practical problems. The theoretical complexity of the simplex

method is exponential, on the order of O(2n) operations.

2) Interior point methods

These methods are introduced in the late 1950s for solving nonlinear mathematical

programs, IPMs did not gain much enthusiasm for LO at first due to the quasi-total

dominance of the simplex method. However, after the appearance of Karmarkar’s

algorithm in 1984 for LO [38], IPMs underwent a significant revolution, resulting in over

3000 (in the 2000’s year) publications within a few years. There are three fundamental

classes of IPMs, namely: affine methods, potential reduction methods and central path

methods.

a) Affine methods (Dikin 1967): In 1967, Dikin [27] was the first to introduce

this type of IPMs for LO. After the appearance of Karmarkar’s article [38] in 1984 for

LO, several researchers dedicated their work to affine methods, including Barnes [6],

Cavalier and Soyster [14], Vanderbei and Freedman [74]. The convergence of these

methods was initially studied by Dikin, who proved that the algorithm converges under

the assumption of non-degeneracy. Subsequently, Tseng and Luo [73] demonstrated

that the method converges even in the degenerate case. There are three types of affine

methods: primal, dual, and primal-dual.

For more details on affine methods we refer to [27, 36].
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b) Potential reduction methods: The potential function plays a crucial role in the

development of IPMs. Reducing this function directly leads to the reduction of the

objective function. Karmarkar’s algorithm applied to the LO problem in standard form

uses a potential function of the form: n ln(cTx−Z)−
n∑

i=1

ln(xi), where Z is a lower bound

on the optimal objective value. Karmarkar proves the convergence and polynomiality

of his algorithm by showing that this function is reduced by at least a constant at

each iteration. Since 1987, researchers introduced primal-dual type potential functions,

among which the one by Todd and Ye [69] defined as: Φρ(x, s) = ρ ln(xT s)−
∑n

i=1 ln(xisi),

where ρ > n. This function played a significant role in the development of potential

reduction algorithms after 1988. The algorithms corresponding to these methods have

polynomial complexity.

For more details on the method mentioned in this paragraph, we refer to [36, 85].

c) Central path methods: As the name suggests, this method is based on tracking

a central trajectory. The central trajectory method involves staying within a certain

neighborhood of the central trajectory using Newton iterations.

The central trajectory method was first studied for linear programming by Bayer

and Lagarias [7], and later by Meggido [54], Gonzaga [30], Monteiro and Adler [55],

Kojima et al. [49], Roos and Vial [64]...etc.

Due to their attractive properties, including polynomial complexity and superlinear

convergence, many researchers have proposed interesting extensions to solve other

important optimization problems (see e.g., [3, 4, 28]).

1.6 Quadratic Programming

Quadratic programming is known for its diverse applications in various fields. Often, it

serves as an intermediate procedure for nonlinear programs, as seen in methods like

Sequential Quadratic Programming (SQP).

Without loss of generality, a quadratic program can be presented in the following

form 
min f(x) = 1

2
xTQx+ cTx

Ax = b,

x ≥ 0,

(QP)
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where Q is a symmetric matrix of order n, b ∈ Rm, c, x ∈ Rn, and A ∈ Rm×n is full rank

(rank(A) = m < n).

Recall that the set of constraints S = {x ∈ Rn : Ax = b, x ≥ 0} forms a closed convex

polyhedron, and the objective function f is infinitely differentiable. (QP) is convex if

and only if f is convex, in which case the matrix Q is positive semidefinite.

Methods of resolution

We can classify the resolution methods of (QP) into two categories in accordance with

their principles: simplicial methods (Wolfe method [83]) and IPMs [3, 82] which are

extensions of the algorithms proposed for the linear case.

Due to the attractive properties of central path methods including polynomial

complexity and superlinear convergence. In this thesis, we are interested on primal-

dual IPMs of the central path type to solve some optimization problems such as: LO,

CQO, SDO and CQSDO. In the next chapter, we will provide an overview of these

methods for LO.
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Interior point algorithms using the algebraic

equivalent transformation method for linear op-

timization

In this chapter, we recall the concept of the central path, outlining its properties. We then

derive the classical Newton search direction for linear optimization (LO). Furthermore,

we introduce a pioneering interior point algorithm (IPA) for LO, which relies on the

algebraic equivalent transformation technique for determining search directions. In

this context, a comparative numerical study was reported which is published in Euro-

Tbilisi Mathematical Journal [86]. The chapter ends with a discussion of the most recent

modification to this technique.

2.1 Linear optimization problem

We reconsider the linear programming (LP) problem in the following standard form


min cTx

Ax = b,

x ≥ 0,

(LP)
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where A ∈ Rm×n, b ∈ Rm and c, x ∈ Rn.

The dual problem of (LP) can be written in the following form

max bTy

ATy + s = c,

s ≥ 0, s ∈ Rn,

y ∈ Rm.

(LD)

We assume that the pair (LP) and (LD) satisfy the conditions belows:

• The matrix A is a full rank row, i.e., Rank(A) = m < n.

• There exist (x0, y0, s0) such that:

Ax0 = b, ATy0 + s0 = c, x0 > 0, s0 > 0. (IPC)

This last condition (IPC) is named the interior point condition for (LP) and (LD).

We denote by:

- F(LP ) = {x ∈ Rn : Ax = b, x ≥ 0} , the set of feasible primal solutions of (LP).

- A vector x ∈ F(LP ) is called a feasible solution of (LP).

- A vector x∗ ∈ F(LP ) that minimizes the objective function of (LP) is called an optimal

solution of (LP).

- The set F(LP ) is bounded if the objective function is bounded on F(LP ).

- F 0
(LP ) = {x ∈ Rn : Ax = b, x > 0} , the set of strictly feasible primal solutions of (LP).

- F(LD) =
{
y ∈ Rm : ATy + s = c, s ≥ 0

}
, the set of feasible dual solutions of (LD).

- A vector y∗ ∈ F(LD) that maximizes the objective function of (LD) is called an optimal

solution of (LD).

- F 0
(LD) =

{
y ∈ Rm : ATy + s = c, s > 0

}
, the set of strictly feasible dual solutions of

(LD).

- F 0 = F 0
(LP ) × F 0

(LD), the set of strictly feasible primal-dual solutions of (LP) and (LD).

Here are some fundamental results of duality in linear programming

1. If one of the problems (LP) and (LD) has an optimal solution, the other also has

one, and their corresponding optimal values are equal.

2. If one of the problems has an unbounded optimal value, the other does not have

an optimal solution.
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Theorem 2.1 (Weak Duality [61]). If x and (y, s) are feasible solutions for (LP) and (LD)

respectively, then

cTx ≥ bTy.

Theorem 2.2 (Strong Duality [61]). If x and (y, s) are feasible solutions corresponding to a

finite optimal value for (LP) and (LD) such that

cTx = bTy,

then x is an optimal primal solution for (LP), and y is an optimal dual solution for (LD).

Remark 2.3. It is easy to notice that if x and (y, s) are feasible solutions for (LP) and (LD)

respectively, then the following property holds:

cTx = bTy ⇔ xT s = 0 ⇔ xs = 0.

2.2 The classical central path method

For (LP) problem, we associate the following perturbed problem:
min fµ(x)

Ax = b,

x > 0,

(LPµ)

where fµ is the perturbed function defined by:

fµ(x) = cTx− µ
n∑

i=1

log(xi),

and µ is a strictly positive barrier parameter.

Properties of fµ(x)[36]:

1. The function fµ(x) is strictly convex (Indeed, ∇2fµ(x) = µX−2 is a positive definite

matrix, because X = diag(x1, ..., xn) is a positive definite matrix and µ > 0).

2. If F 0
(LP ) and F 0

(LD) are non-empty, then for any µ > 0, the perturbed problem (LPµ)

has a unique solution, denoted x(µ), and called the "central point".

3. When µ→ 0, x(µ) → x∗ the optimal solution of (LP).
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4. The function µ → (x(µ), y(µ), s(µ)) defines the central path of (LPµ) which we

denote by:

TC = {(x(µ), y(µ), s(µ)) : µ > 0}.

5. x(µ) is uniquely defined by the following Karush-Khun-Tucker optimality condi-

tions:  c− µX−1e− ATy = 0,

Ax = b, x > 0,

where y ∈ Rm is the Lagrange multiplier associated with the constraint Ax = b of the

problem (LPµ) and e is the all-one vector of length n, the previous system becomes:
Ax = b, x > 0,

ATy + s = c, s > 0,

xs = µe, µ > 0,

(Sµ)

with

xs = Xs = (x1s1, x2s2, ..., xnsn)
T ,

denotes the Hadamard product of the vectors x and s.

Note that (Sµ) corresponds to the complementarity conditions for a linear primal-dual

problem.

The system (Sµ) also denotes the optimality conditions for the following dual per-

turbed problem 
max bTy + µ

n∑
i=1

log(si)

ATy + s = c,

s > 0.

(LDµ)

Indeed, the Karush-Kuhn-Tucker optimality conditions for the problem (LDµ) are

given by 
b− Ax = 0,

µS−1e− x = 0,

ATy + s = c,

(S′µ)

where x is the Lagrange multiplier associated with the constraint ATy + s = c and

S = diag(s1, ..., sn). Hence, (S′µ) is equivalent to (Sµ).

(Sµ) is a system of nonlinear equations, Newton’s method is one of the most techniques

used for its resolution.
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At each µ, we find a solution (x(µ), y(µ), s(µ)) close to the central path (proximity

condition).

Definition 2.4. The solution (x(µ), y(µ), s(µ)) is said to be close to the central trajectory

if it belongs to the set:

TC(θ) = {(x, y, s) ∈ F 0
(LP ) × F 0

(LD)/ ∥xs− µe∥ ≤ θµ, 0 < θ < 1},

where ∥.∥ is the Euclidean norm.

The system (Sµ), can be written as F (x, y, s) = 0, where

F (x, y, s) =


Ax− b

ATy + s− c

xs− µe

 .

Newton’s iteration is defined by (x+, y+, s+) = (x, y, s)+(∆x,∆y,∆s),where (∆x,∆y,∆s)

is the solution of the linear system:
A 0 0

0 AT I

S 0 X



∆x

∆y

∆s

 = −


0

0

xs− µe

 . (LS)

Theoretically, we assume that we have an initial strictly feasible primal-dual solution

close to the central path. For any µ > 0, (Sµ) admits a unique solution denoted as

(x(µ), y(µ), s(µ)) called the µ-center of (LP) and (LD) [67]. The set of all µ-centers

constructs the central path. The limit of the central path as µ tends to zero exists and

gives the optimal solution for both problems (LP) and (LD).

2.3 Recent descent directions based on the algebraic equiv-

alent transformation

In their works, Darvay [17, 18] defined a new method to find search directions for

IPMs based on an algebraic equivalent transformation (AET) technique applied to the

centrality equation xs
µ

= e,. The principle of Darvay’s method is to replace this last

equation in (Sµ) by the following equation φ
(

xs
µ

)
= φ(e), where φ is an invertible
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function, i.e., φ−1 exists.

The system (Sµ) becomes as follow:
Ax = b, x > 0,

ATy + s = c, s > 0,

φ
(

xs
µ

)
= φ(e), µ > 0.

(2.1)

The application of Newton’s method to the nonlinear system (2.1), gives
A∆x = 0,

AT∆y +∆s = 0,

s
µ
φ′(xs

µ
)∆x+ x

µ
φ′(xs

µ
)∆s = φ(e)− φ(xs

µ
).

(2.2)

where φ′ denotes the derivative of φ.

By introducing the following notations:

v =

√
xs

µ
, dx =

v∆x

x
and ds =

v∆s

s
,

we can obtain easily

µv(dx + ds) = s∆x+ x∆s and dxds =
∆x∆s

µ
.

Therefore, the linear system (2.2) can be written in the following form:
Ādx = 0,

ĀT∆y + ds = 0,

dx + ds = pv,

(2.3)

where

pv =
φ(e)− φ(v2)

vφ′(v2)
, and Ā =

1

µ
Adiag

(x
v

)
.

Next, some values of the vector pv related to different choices of the function φ are

stated.
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Functions φ(t) The vector pv

φ(t) = t (v−1 − v) (Roos et al. [65], the classical method),

φ(t) =
√
t 2(e− v) (Darvay [18]),

φ(t) = t−
√
t

2(v − v2)

2v − e
, v > e

2
(Darvay and Takács [19]),

φ(t) =

√
t

2(1 +
√
t)

e− v2 (Kheirfam and Haghani [45]),

φq(t) = t
q
2 , q ∈ N

2

q
(v1−q − v) (Kheirfam and Nasrollahi [46]).

The value of pv for different functions φ.

In [86], a comparative numerical results are presented, where we use a different func-

tions in the AET technique. In the next section we present other approaches for defining

search directions.

2.4 Other ways to determine search directions

In [93], Zhang and Xu proposed a specific search direction for LO. They considered the

equivalent form v2 = v of the centering equation and they transformed it into the form

xs = µv. After that, they assumed that the variance vector v is fixed and they applied

Newton’s method.

Based on this new AET, Darvay and Takàcs [20] proposed another technique to obtain a

new descent direction for LO. The proposed method was as follows:

for x, s > 0 and µ > 0, from the third equation of system (Sµ) we deduce that

xs = µe⇔ xs

µ
= e⇔

√
xs

µ
= e⇔ xs

µ
=

√
xs

µ
.

In other words,

xs = µe⇔ xs

µ
= e⇔ v2 = e⇔ v = e⇔ v2 = v,

where, xs
µ

denotes the Hadamard product of the vectors x and s divided by µ > 0, hence
xs
µ
=
(

x1s1
µ
, x2s2

µ
, ..., xnsn

µ

)T
> 0 and

√
xs
µ

is the vector obtained by taking square roots of

the components of xs
µ
.
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The perturbed central path system (Sµ) can be equivalently stated as follows:
Ax = b,

ATy + s = c,√
xs
µ
= xs

µ
.

(2.4)

Applying the AET method to (2.4), we obtain
Ax = b,

ATy + s = c,

ψ

(√
xs
µ

)
= ψ(xs

µ
).

(2.5)

where, ψ is defined , invertible and continuously differentiable on the interval (k2,∞),

with 0 ≤ k < 1, such that 2tψ′ (t2)− ψ′ (t) > 0, ∀t > k2.

This last system (2.5) can be written in the form f(x, y, s) = 0, where

f(x, y, s) =


Ax− b

ATy + s− c

ψ

(√
xs
µ

)
− ψ(xs

µ
)

 . (2.6)

Applying Newton’s method to this system we get: x+ = x + ∆x, y+ = y + ∆y,

s+ = s+∆s, where (∆x,∆y,∆s) is the solution of the linear system:

A∆x = 0,

AT∆y +∆s = 0,

1
µ
(s∆x+ x∆s) =

−ψ
(

xs
µ

)
+ ψ

(√
xs
µ

)
ψ′(xs

µ
)− 1

2
√

xs
µ

ψ′(
√

xs
µ
)
.

(2.7)

Defining the scaled vector v and the scaled search directions dx and ds according to

v =

√
xs

µ
, dx =

v∆x

x
and ds =

v∆s

s
. (2.8)

Hence, we obtain
1

µ
(s∆x+ x∆s) = v(dx + ds), (2.9)

and

dxds =
∆x∆s

µ
. (2.10)
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Obviously, with these notations, the scaled feasible Newton system of (2.7) can be

expressed as: 
Adx = 0,

A
T
∆y + ds = 0,

dx + ds = pv.

(2.11)

Where

A =
1

µ
Adiag

(x
v

)
,

and

pv =
2ψ(v)− 2ψ(v2)

2vψ′(v2)− ψ′(v)
. (2.12)

Here, diag(x
v
) is a diagonal matrix, which contains on its main diagonal the elements of

the vector x
v

respectively in the original order.

Darvay and Takàcs [20] consider the function:

ψ :

(
1√
2
,+∞

)
→ R, ψ(t) = t2,

thus

pv =
v − v3

2v2 − e
.

The condition 2tψ′(t2)− ψ′(t) > 0,∀t > k2 is satisfied in the case where k2 = 1√
2
.

Throughout this chapter, we use a proximity measure of the central path defined by:

δ(v) = δ(xs, µ) =
∥pv∥
2

=
1

2

∥∥∥∥ v − v3

2v2 − e

∥∥∥∥ .
The generic representation of this algorithm is given as follows:
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Primal-dual algorithm for LO

Input

a proximity parameter 0 < τ < 1;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

a strictly feasible (x0, y0, s0) such that δ(x0s0, µ0) < τ , where µ0 =
(x0)

T
s0

n
;

begin

x := x0; y := y0; s := s0;µ := µ0;

while xT s ≥ ε do

µ := (1− θ)µ;

solve the system (2.11) via (2.8) to obtain (∆x,∆y,∆s);

take x := x+∆x; y := y +∆y; s := s+∆s;

end

Figure 2.1: Generic algorithm

In order to facilitate the convergence analysis of the algorithm, let us define the

vector

qv = dx − ds.

Then, using the above equation and the third equation of (2.11) we have

dx =
1

2
(pv + qv) and ds =

1

2
(pv − qv).

This implies

dxds =
p2v − q2v

4
. (2.13)

Since dTx ds = dTx

(
−AT

∆y
)
= −

(
Adx

)T
∆y = 0, then

∥qv∥ = ∥pv∥ . (2.14)

In the next, we present some results related to algorithm complexity analysis.

Lemma 2.5 (Analysis of strict feasibility [20]). If δ = δ(xs, µ) < 1 and v > 1√
2
e, then

x+ > 0 and s+ > 0,

i.e., the new iterations are strictly feasible.
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Lemma 2.6 (Quadratic convergence of proximity measure [20]). If δ = δ(xs, µ) < 1√
2

and

v > 1√
2
e, then

v+ =

√
x+s+
µ

>
1√
2
e and δ(x+s+;µ) ≤

5δ2

1− 2δ2

√
1− δ2,

which proves that the full Newton step ensures local quadratic convergence of the proximity

measure.

Lemma 2.7 (The effect of a full Newton step on the duality gap [20]). Let δ = δ(xs, µ).

Then,

(x+)
⊤s+ ≤ µ(n+ 8δ2),

for all n ∈ N∗.

Lemma 2.8 (The well-defined algorithm [20]). Let δ = δ(xs, µ) < 1√
2
, v > 1√

2
e, and

µ+ = (1− θ)µ, where 0 < θ < 1. Furthermore, let v++ =
√

x+s+
µ+

. Then, v++ >
1√
2
e and

δ(v++) = δ(x+s+, µ+) <

√
1− δ2

2
√
1− θ(1− 2δ2 + θ)

(θ
√
n+ 10δ2).

Moreover, if δ < 1
10

and θ = 1
12

√
n

, then δ(x+s+, µ+) <
1
10

.

Lemma 2.9 (The complexity analysis [20]). Suppose (x0, s0) are strictly feasible, µ0 = (x0)T s0

n
,

and δ(x0s0, µ0) < 1√
2
. Let xk and sk be the vectors obtained after k iterations. Then, for every

k ≥
[
1

θ
log

µ0(n+ 4)

ε

]
,

we have (xk)T sk ≤ ε.

Theorem 2.10. [20] Suppose that x0 = s0 = e. For the default values θ = 1
12

√
n

and τ = 1
10

,

the algorithm given in Figure 2.1 requires no more than

12
√
n log

µ0(n+ 4)

ε

iterations. The resulting vectors satisfy
(
xk
)T
sk < ε.

In the next chapter, primal-dual IPAs for LO based on new search directions are

presented using two new functions: ψ (t) = t
7
4 and ψ (t) = t

3
2 .
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3
New full-Newton step interior point algorithms

for linear optimization

Building upon the work of Darvay and Takàcs [20] which is based on the technique of

algebraic transformation, we propose two new functions ψ(t) to enhance the perfor-

mance of path-following algorithms. The first function is ψ(t) = t
7
4 , where we have

shown that the corresponding algorithm converges after O

(
√
n log

n+ 3
7√2

ε

)
iterations.

The second function is defined by ψ(t) = t
3
2 , where we have proven that the correspond-

ing algorithm converges after O

(
√
n log n+ 3√4

ε

)
iterations. Numerical tests specifically

on some problem from the Netlib test collections were conducted to consolidate the

obtained theoretical results. The set of those results were published in RAIRO Oper.

Res. [87] and Stat. Optim. Inf. Comput. [89].

3.1 First new full-Newton step interior point algorithm

based on the function ψ(t) = t7/4

In this section, we reconsider the technique introduced by Darvay and Takàcs [20] with

our new function ψ(t) = t
7
4 . The aim of this technique is to obtain better theoretical and

numerical results.
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Let consider ψ :
((

1
2

) 4
7 ,∞

)
→ R, such that ψ (t) = t

7
4 . From (2.12), we get

pv =
8v − 8v

11
4

14v
7
4 − 7e

. (3.1)

The condition 2tψ′ (t2)− ψ′ (t) > 0,∀t > k2 is satisfied in this case, when k2 =
(
1
2

) 4
7 . We

give a proximity measure to the central path as follows:

δ(v) = δ(xs, µ) =
∥pv∥
2

=
4

7

∥∥∥∥∥ v − v
11
4

2v
7
4 − e

∥∥∥∥∥ . (3.2)

3.1.1 Analysis of the algorithm

In the following lemma, we state a condition which ensures the feasibility of the gener-

ated point after a full-Newton step x+ and s+, where x+ = x+∆x and s+ = s+∆s.

Lemma 3.1. Let δ = δ(xs, µ) < 1 and v > 1

2
4
7
e. Then

x+ > 0 and s+ > 0.

Proof. For each 0 ≤ α ≤ 1 denote x+(α) = x+ α∆x and s+(α) = s+ α∆s. Hence,

x+(α)s+(α) = xs+ α(x∆s+ s∆x) + α2∆x∆s. (3.3)

Now, in view of (2.9) and (2.10) we have

1

µ
x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds, (3.4)

also from (2.11) and (2.13), we can write

1

µ
x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2v
4

− q2v
4

)
. (3.5)

In addition, from (3.1) we obtain

v2 + vpv = v2 +
8v2 − 8v

15
4

14v
7
4 − 7e

=
6v

15
4 + v2

14v
7
4 − 7e

. (3.6)

Let’s consider the function: f(x) =
6x

15
4 + x2

14x
7
4 − 7

, for x > 1

2
4
7

. We have f(x) ≥ f(1), so

f(x) ≥ 1. Using this result, we get

v2 + vpv ≥ e, (3.7)
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this implies that

1

µ
x+(α)s+(α) ≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
− α

p2v
4

≥ (1− α)v2 + αe+ α(α− 1)
p2v
4

− α2 q
2
v

4

≥ (1− α)v2 + α

[
e−

(
(1− α)

p2v
4

+ α
q2v
4

)]
.

In addition, we have∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)
∥p2v∥∞

4
+ α

∥q2v∥∞
4

≤ (1− α)
∥pv∥2

4
+ α

∥qv∥2

4
= δ2,

where ∥.∥∞ marks the Chebychev norm (or l∞ norm).

Also, as δ < 1 we get ∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞
< 1,

then

e−
[
(1− α)

p2v
4

+ α
q2v
4

]
> 0.

Hence, x+(α)s+(α) > 0 for each 0 ≤ α ≤ 1, which means that the linear functions of α,

x+(α) and s+(α) do not change sign on the interval [0, 1]. Therefor x+(0) = x > 0 and

s+(0) = s > 0 give x+(1) = x+ > 0 and s+(1) = s+ > 0. This means that the full-Newton

step is strictly feasible.

The following lemma will be useful in the next part of the analysis.

Lemma 3.2. [19, Lemma 5.2] Let f : [d,∞) → (0,∞) be a decreasing function with d > 0.

Furthermore, let us consider the positive vector v of length n such that min(v) > d. Then∥∥f(v) (e− v2
)∥∥ ≤ f(min(v))

∥∥e− v2
∥∥ ≤ f(d)

∥∥e− v2
∥∥ .

Now, in Lemma 3.3 we show the quadratic convergence of the full-Newton step.

Lemma 3.3. Suppose that δ = δ(xs, µ) < 1

2
4
7

and v > 1

2
4
7
e, then

v+ >
1

2
4
7

e and δ(x+s+, µ) ≤ 18δ2,

which proves that the full-Newton step ensures a local quadratic convergence of the proximity

measure.
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Proof. We know from Lemma 3.1 that x+ > 0 and s+ > 0, then v+ =
√

x+s+
µ

is well

defined. From δ = δ(xs, µ) < 1

2
4
7

, we get

√
1− δ2 >

√
1− 1

2
8
7

>
1

2
4
7

. (3.8)

Let α = 1. Then from (3.5) it follows that

v2+ =
x+s+
µ

= v2 + vpv +
p2v
4

− q2v
4
. (3.9)

From (3.7), we obtain

v2+ = v2 + vpv +
p2v
4

− q2v
4
> e− q2v

4
,

hence

min(v2+) ≥ 1− ∥qv∥2∞
4

≥ 1− ∥qv∥2

4
≥ 1− δ2,

and this relation yields

min(v+) ≥
√
1− δ2. (3.10)

From (3.8) and (3.10), we obtain : v+ > 1

2
4
7
e.

This completes the first part of the proof.

Now, we introduce the notation

δ(v+) = δ(x+s+, µ) =
∥pv+∥
2

= 4

∥∥∥∥∥
(
v+ − v

11
4
+

)(
14v

7
4
+ − 7e

)(
e− v2+

)(e− v2+)

∥∥∥∥∥.
From (3.9), we have

e− v2+ = e− x+s+
µ

= e−
[
(v2 + vpv) +

p2v
4

− q2v
4

]
=
q2v
4
−
[
(v2 + vpv) +

p2v
4

− e

]
=
q2v
4

− p2v
4

[
4(v2 + vpv)

p2v
+ e− 4

p2v

]
.

Applying (3.1) and (3.6), we obtain

e− v2+ =
q2v
4

− p2v
4

[
100v

11
2 − 60v

15
4 + 9v2 − (14v

7
4 − 7e)2

16
(
v − v

11
4

)2 ]

=
q2v
4

− p2v
4

[
112
(
v − v

11
4

)2 − 12v
11
2 + 164v

15
4 − 103v2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2 ]

=
q2v
4

− p2v
4

[
7e+

164v
15
4 − 12v

11
2 − 103v2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2 ]
.
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We can prove that 0 ≤
[
7e+

164v
15
4 − 12v

11
2 − 103v2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2 ]
≤ 7e, ∀v > 1

2
4
7
e, so

these imply that

∥e− v2+∥ ≤
∥∥∥∥q2v4

∥∥∥∥+ ∥∥∥∥p2v4
[
7e+

164v
15
4 − 12v

11
2 − 103v2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2 ]∥∥∥∥
≤ ∥qv∥2

4
+ 7

∥pv∥2

4
= 8δ2. (3.11)

Let’s consider the function: f(t) =

(
t− t

11
4

)(
14t

7
4 − 7

)(
1− t2

) , for all t > 1

2
4
7
, t ̸= 1. Because

f ′(t) < 0, so f is decreasing. Hence, in view of Lemma 3.2 and (3.10), we obtain

δ(x+s+, µ) < 4

√
1− δ2 −

(
1− δ2

) 11
8(

14(1− δ2)
7
8 − 7

)
δ2

∥e− v2+∥. (3.12)

From (3.11) and (3.12) we deduce

δ(x+s+, µ) < 32

√
1− δ2 −

(
1− δ2

) 11
8(

14(1− δ2)
7
8 − 7

)
δ2

δ2.

Now, if we take f(δ) = 32

√
1− δ2 −

(
1− δ2

) 11
8(

14(1− δ2)
7
8 − 7

)
δ2

for δ < 1

2
4
7

, then we obtain that f(δ) <

f( 1

2
4
7
) < 18, and we conclude that

δ(x+s+, µ) ≤ 18δ2,

This completes the proof.

In the following lemma, we analyze the effect of the full-Newton step on the new

duality gap:

Lemma 3.4. Let δ = δ(xs, µ). Then, the duality gap satisfies:

(x+)
T s+ ≤ µ(n+ 6δ2), for all n ∈ N∗.
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Proof. From (3.6), we have

v2 + vpv =
6v

15
4 + v2

14v
7
4 − 7e

=
6v

15
4 + v2 + (14v

7
4 − 7e)− (14v

7
4 − 7e)

14v
7
4 − 7e

= e+
6v

15
4 + v2 − 14v

7
4 + 7e

14v
7
4 − 7e

= e+
p2v
4

[
4
(
6v

15
4 + v2 − 14v

7
4 + 7e

)(
14v

7
4 − 7e

)
64
(
v − v

11
4

)2
]

= e+
p2v
4

[
84v

11
2 − 42v

15
4 + 14v

15
4 − 7v2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2
]

= e+
p2v
4

[
96
(
v − v

11
4

)2
+ 164v

15
4 − 103v2 − 12v

11
2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2
]

= e+
p2v
4

[
6e+

164v
15
4 − 103v2 − 12v

11
2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2
]
.

Since

[
6e+

164v
15
4 − 103v2 − 12v

11
2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2
]
≤ 6e, because

164v
15
4 − 103v2 − 12v

11
2 −

(
14v

7
4 − 7e

)2
16
(
v − v

11
4

)2 ≤ 0, for all v > 1

2
4
7
e.

Then

v2 + vpv ≤ e+ 6
p2v
4
. (3.13)

Using (2.14), (3.5) and (3.13), we obtain

(x+)
T s+ = µ

n∑
i=1

(v+i
)2

= µ

n∑
i=1

(
v2i + vi (pv)i +

(pv)
2
i

4
− (qv)

2
i

4

)

≤ µ

n∑
i=1

(
1 + 6

(pv)
2
i

4

)
+ µ

(
∥pv∥

2 − ∥qv∥
2

4

)

≤ µn+ 6µ
∥pv∥

2

4

≤ µ
(
n+ 6δ2

)
.

This completes the proof.

The next lemma shows that the algorithm is well-defined.
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Lemma 3.5. Let δ = δ(x, s;µ) < 1

2
4
7

, v > 1

2
4
7
e and µ+ = (1 − θ)µ, where 0 < θ < 1, then,

v++ =
√

x+s+
µ+

> 1

2
4
7
e, and

δ(x+s+, µ+) <
4

7

[ √
1− δ2

(
(1− θ)

7
8 − (1− δ2)

7
8

)(
8δ2 + θ

√
n
)

2(1− θ)
3
2 (1− δ2)

7
8 − 2

√
1− θ(1− δ2)

15
8 − (1− θ)

19
8 + (1− θ)

11
8 (1− δ2)

]
.

Moreover, if δ < 1
8

and θ = 1
10

√
n
, then δ(x+s+, µ+) <

1
8
.

Proof. From Lemma 3.3 we have v+ > 1

2
4
7
e. Then

v++ =

√
x+s+
µ+

=

√
x+s+

µ(1− θ)
=

1√
1− θ

v+ >
1

2
4
7

e. (3.14)

This last inequality follows from 0 < θ < 1 ⇒ 1√
1−θ

> 1.

Now, from (3.2), we have

δ(v++) =
∥pv++∥

2
=

1

2

∥∥∥∥∥8v++ − 8v
11
4
++

14v
7
4
++ − 7e

∥∥∥∥∥
= 4

∥∥∥∥∥
(
v++ − v

11
4
++

)(
14v

7
4
++ − 7e

)(
e− v2++

)(e− v2++

)∥∥∥∥∥. (3.15)

Let us compute the three expressions of the previous norm, from (3.14) we obtain

v++ − v
11
4
++ = v++

(
e− v

7
4
++

)
=

v+√
1− θ

(
e− v

7
4
+

(1− θ)
7
8

)
=

v+

(1− θ)
11
8

(
(1− θ)

7
8 e− v

7
4
+

)
. (3.16)

14v
7
4
++ − 7e =

14v
7
4
+

(1− θ)
7
8

− 7e

=
14v

7
4
+ − 7(1− θ)

7
8 e

(1− θ)
7
8

. (3.17)

e− v2++ =
(1− θ)e− v2+

(1− θ)
. (3.18)

From (3.17) and (3.18), we have

(
14v

7
4
++ − 7e

)(
e− v2++

)
=

[
14v

7
4
+ − 7(1− θ)

7
8 e

(1− θ)
7
8

][
(1− θ)e− v2+

(1− θ)

]

=
14(1− θ)v

7
4
+ − 14v

15
4
+ − 7(1− θ)

15
8 e+ 7(1− θ)

7
8v2+

(1− θ)
15
8

. (3.19)
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Then, from (3.16), (3.18) and (3.19), we obtain

(
v++ − v

11
4
++

)(
e− v2++

)(
14v

7
4
++ − 7e

)(
e− v2++

) =

[
v+(1− θ)

15
8

(
(1− θ)

7
8 e− v

7
4
+

)][
(1− θ)e− v2+

]

(1− θ)
11
8 (1− θ)

[
14(1− θ)v

7
4
+ − 14v

15
4
+ − 7(1− θ)

15
8 e+ 7(1− θ)

7
8v2+

]

=

v+

(
(1− θ)

7
8 e− v

7
4
+

)(
(1− θ)e− v2+

)
√
1− θ

(
14(1− θ)v

7
4
+ − 14v

15
4
+ − 7(1− θ)

15
8 e+ 7(1− θ)

7
8v2+

) .
(3.20)

Let us consider the function

f(x) =

x

(
(1− θ)

7
8 − x

7
4

)
√
1− θ

(
14(1− θ)x

7
4 − 14x

15
4 − 7(1− θ)

15
8 + 7(1− θ)

7
8x2
) , x > 1

2
4
7

.

We have f ′(x) < 0, then the function f is decreasing for all x > 1

2
4
7

. From Lemma 3.2,

(3.15) and (3.20), we deduce that

δ(x+s+, µ+) < 4

√
1− δ2

(
(1− θ)

7
8 −

√
1− δ2

7
4

)∥∥∥∥∥(1− θ)e− v2+

∥∥∥∥∥
√
1− θ

(
14(1− θ)

√
1− δ2

7
4 − 14

√
1− δ2

15
4 − 7(1− θ)

15
8 + 7(1− θ)

7
8 (1− δ2)

) .
(3.21)

According to (3.11), we get

∥(1− θ)e− v2+∥ ≤ ∥e− v2+∥+ ∥θe∥ ≤ 8δ2 + θ
√
n. (3.22)

Hence, by using (3.21) and (3.22) we get

δ(x+s+, µ+) <
4

7

[ √
1− δ2

(
(1− θ)

7
8 − (1− δ2)

7
8

)(
8δ2 + θ

√
n
)

2(1− θ)
3
2 (1− δ2)

7
8 − 2

√
1− θ(1− δ2)

15
8 − (1− θ)

19
8 + (1− θ)

11
8 (1− δ2)

]
,

which proves the first part of the lemma.

Now, suppose that δ < 1
8

and θ = 1
10

√
n
. Let’s consider the function

h(δ) =

√
1− δ2

(
(1− θ)

7
8 − (1− δ2)

7
8

)
2(1− θ)

3
2 (1− δ2)

7
8 − 2

√
1− θ(1− δ2)

15
8 − (1− θ)

19
8 + (1− θ)

11
8 (1− δ2)

,
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we obtain that h′(δ) > 0, so h is increasing for each δ < 1
8
, then

h(δ) ≤ h
(1
8

)
, (3.23)

where

h
(1
8

)
=

a
√
1− θ

7
4 − a

11
4

2a
7
4

√
1− θ

3 − 2a
15
4

√
1− θ −

√
1− θ

19
4 + a2

√
1− θ

11
4

,

such as a =
√

1− 1
82

, θ = 1
10

√
n

. Using n ≥ 1 we get θ ≤ 1
10

, which is equivalent to

h
(1
8

)
≤ 0.89. (3.24)

Moreover, we have

8δ2 + θ
√
n = 8δ2 +

1

10
<

1

8
+

1

10
=

9

40
. (3.25)

Finally, using (3.23), (3.24) and (3.25), we get

δ(x+s+, µ+) <
4

7
h

(
1

8

)
(8δ2 + θ

√
n) <

4

7
× 0.89× 9

40
= 0.1144 <

1

8
.

Which completes the second part of the proof.

The next lemma gives an upper bound on the number of iterations.

Lemma 3.6. Assume that the pair (x0, s0) is strictly feasible, µ0 =
(x0)

T
s0

n
and δ(x0s0, µ0) <

1

2
4
7

. Moreover, let xk and sk be the vectors obtained after k iterations. Then the inequality(
xk
)T
sk < ε is satisfied when

k ≥ 1

θ
log

[µ0(n+ 3
7√2
)

ε

]
.

Proof. After k iterations, we have µk = (1− θ)kµ0. From Lemma 3.4 and δ(xs, µ) < 1

2
4
7

,

we get

(xk)T sk ≤ µk

[
n+

3
7
√
2

]
= µ0(1− θ)k

[
n+

3
7
√
2

]
.

Hence, the inequality
(
xk
)T
sk < ε holds if

µ0(1− θ)k

[
n+

3
7
√
2

]
≤ ε

⇐⇒ log(1− θ)k + log µ0

[
n+

3
7
√
2

]
≤ log ε

⇐⇒− k log(1− θ) ≥ log

µ0

[
n+ 3

7√2

]
ε

.
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As θ ≤ − log(1− θ), we see that the last inequality is valid only if

kθ ≥ log

µ0

[
n+ 3

7√2

]
ε

⇐⇒k ≥ 1

θ
log

µ0

[
n+ 3

7√2

]
ε

.

This completes the proof.

Theorem 3.7. Suppose that x0 = s0 = e. If we consider the default values for θ and τ , we

obtain that the algorithm given in Figure 2.1 requires no more than

10
√
n log

(
n+ 3

7√2

ε

)

iterations. The resulting vectors satisfy
(
xk
)T
sk < ε.

Proof. Since x0 = s0 = e, then µ0 =
(x0)

T
s0

n
= 1 and if we take θ = 1

10
√
n

in Lemma 3.6,

the result holds.

3.2 Second new full-Newton step interior point algorithm

based on the function ψ(t) = t3/2

In this section, we restrict our analysis to the case ψ :
(

1
3√4
,∞
)
→ R, such that ψ (t) = t

3
2 .

This yields:

pv =
4v − 4v

5
2

6v
3
2 − 3e

, (3.26)

The condition 2tψ′ (t2)− ψ′ (t) > 0,∀t > k2 is satisfied in this case, when k2 = 1
3√4

.

For the analysis of the algorithm, we define a norm-based proximity measure δ(xs, µ)

as follows:

δ(v) = δ(xs, µ) =
∥pv∥
2

=
2

3

∥∥∥∥∥ v − v
5
2

2v
3
2 − e

∥∥∥∥∥ . (3.27)

In the next subsection, we present some results related to algorithm complexity analysis.

3.2.1 Complexity Analysis

The following lemma shows the feasibility of the full-Newton step under the conditions

δ(xs, µ) < 1 and v > 1
3√4
e.
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Lemma 3.8. Suppose that δ(xs, µ) < 1 and v > 1
3√4
e. Then the full-Newton step is strictly

feasible, hence:

x+ > 0 and s+ > 0.

Proof. For each 0 ≤ α ≤ 1 denote x+(α) = x+ α∆x and s+(α) = s+ α∆s. Hence,

x+(α)s+(α) = xs+ α(s∆x+ x∆s) + α2∆x∆s.

Now, in view of (2.9) and (2.10) we have

1

µ
x+(α)s+(α) =

xs

µ
+ αv(dx + ds) + α2dxds. (3.28)

Also from (2.11) and (2.13), we can write

1

µ
x+(α)s+(α) = v2 + αvpv + α2

(
p2v − q2v

4

)
,

so
1

µ
x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2v − q2v

4

)
. (3.29)

In addition, from (3.26) we obtain

v2 + vpv =
2v

7
2 + v2

6v
3
2 − 3e

. (3.30)

Now, let’s consider the function: f(x) = 2x
7
2+x2

6x
3
2−3

, with x > 1
3√4

. We have f(x) ≥ f(1), so

f(x) ≥ 1. Using this result, we get

v2 + vpv ≥ e. (3.31)

Then

1

µ
x+(α)s+(α) ≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
− α

p2v
4

≥ (1− α)v2 + αe+ α(α− 1)
p2v
4

− α2 q
2
v

4
,

so
1

µ
x+(α)s+(α) ≥ (1− α)v2 + α

(
e−

(
(1− α)

p2v
4

+ α
q2v
4

))
. (3.32)
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To get the inequality x+(α)s+(α) > 0, it suffices to prove that
∥∥∥(1− α)p

2
v

4
+ α q2v

4

∥∥∥
∞
< 1.

In this way, we have∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)
∥p2v∥∞

4
+ α

∥q2v∥∞
4

≤ (1− α)
∥pv∥2

4
+ α

∥qv∥2

4
,

from (2.14), we get∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)
∥pv∥2

4
+ α

∥pv∥2

4

≤ ∥pv∥2

4
= δ2 < 1.

Hence, x+(α)s+(α) > 0 for each 0 ≤ α ≤ 1, which means that the linear functions

of α, x+(α) and s+(α) do not change sign on the interval [0, 1] and for α = 0, we have

x+(0) = x > 0 and s+(0) = s > 0. This leads to x+(1) = x+ > 0 and s+(1) = s+ > 0.

This means that the full-Newton step is strictly feasible.

The local quadratic convergence of the full-Newton step is proved in the following

lemma.

Lemma 3.9. Let δ = δ(xs, µ) < 1
3√4

and v > 1
3√4
e. Then v+ =

√
x+s+
µ

> 1
3√4
e and

δ(x+s+, µ) < 8δ2,

which means local quadratic convergence of the full- Newton step.

Proof. We know from Lemma 3.8 that x+ > 0 and s+ > 0, then v+ =
√

x+s+
µ

is well

defined.

Let α = 1. Then from (3.29), it follows that

v2+ = v2 + vpv +
p2v
4

− q2v
4
. (3.33)

Using (3.33) and the inequality (3.31), we obtain

v2+ ≥ e+
p2v
4

− q2v
4

≥ e− q2v
4
,

hence

min(v2+) ≥ 1− ∥q2v∥∞
4

≥ 1− ∥qv∥2

4
≥ 1− δ2,
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and this relation yields

min(v+) ≥
√
1− δ2. (3.34)

Since δ < 1
3√4
, then

√
1− δ2 >

√
1− 1

3
√
16

>
1
3
√
4
,

using this last inequality and (3.34), we get

v+ >
1
3
√
4
e.

This completes the first part of the proof.

Now, from (3.33) and (3.30) we have∥∥e− v2+
∥∥ =

∥∥∥∥e− ((v2 + vpv
)
+
p2v
4

− q2v
4

)∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+ ∥∥∥∥e− (v2 + vpv

)
− p2v

4

∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥e− 2v
7
2 + v2

6v
3
2 − 3e

− p2v
4

∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥6v
3
2 − 3e− 2v

7
2 − v2

6v
3
2 − 3e

− p2v
4

∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥∥
4×

(
6v

3
2 − 3e− 2v

7
2 − v2

)
(
6v

3
2 − 3e

)
× p2v

− e

 p2v
4

∥∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥∥∥
−16v5 + v2 − 8v

7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2
 p2v

4

∥∥∥∥∥∥∥
≤

∥∥∥∥q2v4
∥∥∥∥+

∥∥∥∥∥∥∥
16v5 + v2 − 8v

7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2
 p2v

4

∥∥∥∥∥∥∥ .
On one hand, we have

16v5 + v2 − 8v
7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 ≥ 0,∀v > 1
3
√
4
e.

On the other hand, we have

16v5 + v2 − 8v
7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 = 5e+K(v),

where

K(v) =
36v

3
2 − 36v3 − 9e+ 32v

7
2 − 4v5 − 19v2

4
(
v − v

5
2

)2 .
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Since

K(v) ≤ 0, ∀v > 1
3
√
4
e,

then, we conclude that

0 ≤ 16v5 + v2 − 8v
7
2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 ≤ 5e,

which implies that

∥e− v2+∥ ≤
∥∥∥∥q2v4

∥∥∥∥+ 5

∥∥∥∥p2v4
∥∥∥∥ = 6δ2. (3.35)

Now, by the definition of δ we have

δ(v+) = δ(x+s+, µ) =
∥pv+∥
2

=
2

3

∥∥∥∥∥∥
(
v+ − v

5
2
+

)
(
2v

3
2
+ − e

)
(e− v2+)

(e− v2+)

∥∥∥∥∥∥ .
Let’s consider the function: f(t) =

(
t−t

5
2

)
(
2t

3
2−1

)
(1−t2)

, for all t > 1
3√4
, t ̸= 1. Since f ′(t) < 0, so

f is decreasing.

Hence, in view of Lemma 3.2, we obtain

δ(x+s+, µ) ≤
2

3

(
(1− δ2)

1
2 − (1− δ2)

5
4

)
δ2
(
2 (1− δ2)

3
4 − 1

) ∥e− v2+∥.

From this last inequality and (3.35), we deduce

δ(x+s+, µ) ≤
4
(
(1− δ2)

1
2 − (1− δ2)

5
4

)
δ2
(
2 (1− δ2)

3
4 − 1

) δ2. (3.36)

Now, if we take g(δ) =
4

(
(1−δ2)

1
2−(1−δ2)

5
4

)
δ2

(
2(1−δ2)

3
4−1

) for δ < 1
3√4

, then we obtain that g(δ) ≤

g( 1
3√4
) < 8, and we conclude that

δ(x+s+, µ) < 8δ2.

This completes the proof.

The next lemma examines the effect of the full-Newton step on the duality gap.

Lemma 3.10. Let δ = δ(xs, µ). Then, the duality gap satisfies

(x+)
T s+ ≤ µ(n+ 4δ2).
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Proof. From (3.30) we have

v2 + vpv =
2v

7
2 + v2

6v
3
2 − 3e

= e+
2v

7
2 + v2 − 6v

3
2 + 3e

6v
3
2 − 3e

= e+
4
(
2v

7
2 + v2 − 6v

3
2 + 3e

)
(
6v

3
2 − 3e

)
p2v

× p2v
4

= e+
12v5 − 3v2 − 36v3 + 36v

3
2 − 9e

4
(
v − v

5
2

)2 × p2v
4

= e+

4e+ 36v
3
2 − 36v3 − 9e+ 32v

7
2 − 4v5 − 19v2

4
(
v − v

5
2

)2
× p2v

4

≤ e+ 4
p2v
4
,

because
36v

3
2 − 36v3 − 9e+ 32v

7
2 − 4v5 − 19v2

4
(
v − v

5
2

)2 ≤ 0,∀v > 1
3
√
4
e.

Then

(x+)
T (s+) ≤ µ(n+ 4δ2).

Which completes the proof.

The following lemma investigates the effect on the proximity measure after a main

iteration of the algorithm.

Lemma 3.11. Let δ = δ(xs, µ) < 1
3√4

, v > 1
3√4
e and µ+ = (1 − θ)µ, where 0 < θ < 1. In

addition, let v++ =
√

x+s+
µ+

. Then v++ >
1

2
4
7
e, and

δ(x+s+, µ+) <
2

3
√
1− θ


(
(1− δ2)

1
2 (1− θ)

3
4 − (1− δ2)

5
4

)
(6δ2 + θ

√
n)

2(1− θ)(1− δ2)
3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

 .
Moreover, if δ < 1

6
and θ = 1

7
√
n
, then δ(x+s+, µ+) <

1
6
.

Proof. From Lemma 3.9 we have v+ > 1
3√4
e. Then

v++ =

√
x+s+
µ+

=

√
x+s+

(1− θ)µ
=

1√
1− θ

v+ >
1
3
√
4
e. (3.37)

This last inequality follows from 0 < θ < 1 ⇒ 1√
1−θ

> 1.
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Now, from the definition of δ, we write

δ(v+) = δ(x+s+, µ+) =
∥pv++∥

2
=

2

3

∥∥∥∥∥∥
(
v++ − v

5
2
++

)
(
2v

3
2
++ − e

)
(e− v2++)

(e− v2++)

∥∥∥∥∥∥ .
Let us compute the three expressions of the previous norm. From (3.37) we obtain

v++ − v
5
2
++ =

1√
1− θ

v+ −
(

1√
1− θ

v+

) 5
2

=
1

(1− θ)
5
4

[
(1− θ)

3
4v+ − v

5
2
+

]
,

2v
3
2
++ − e =

2v
3
2
+

(1− θ)
3
4

− e,

e− v2++ =
1

(1− θ)

[
(1− θ)e− v2+

]
.

Then

(
2v

3
2
++ − e

)
(e− v2++) =

[
2 (1− θ) v

3
2
+ − 2v

7
2
+ + (1− θ)

3
4 v2+ − (1− θ)

7
4

]
(1− θ)

7
4

. (3.38)

And (
v++ − v

5
2
++

)
(e− v2++) =

(1− θ)
3
4 v+ − v

5
2
+

(1− θ)
9
4

[
(1− θ)e− v2+

]
. (3.39)

These two last equalities give

δ(v+) =
2

3

∥∥∥∥∥∥
(
(1− θ)

3
4 v+ − v

5
2
+

) [
(1− θ)e− v2+

]
2 (1− θ)

3
2 v

3
2
+ − 2(1− θ)

1
2v

7
2
+ + (1− θ)

5
4 v2+ − (1− θ)

9
4

∥∥∥∥∥∥ . (3.40)

Let us consider the function

f(t) =
(1− θ)

3
4 t− t

5
2

2 (1− θ)
3
2 t

3
2 − 2(1− θ)

1
2 t

7
2 + (1− θ)

5
4 t2 − (1− θ)

9
4

,∀t > 1
3
√
4
.

After some calculation, we obtain f ′(t) < 0 for all n ∈ N∗and t > 1
3√4

, then the function

f is decreasing. From lemma 3.2 and (3.40), we deduce that

δ(x+s+, µ+) <
2
[
(1− θ)

3
4 (1− δ2)

1
2 − (1− δ2)

5
4

] ∥∥[(1− θ)e− v2+
]∥∥

3
√
1− θ

[
2(1− θ)(1− δ2)

3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

] .
(3.41)

According to (3.35), we get

∥(1− θ)e− v2+∥ ≤ ∥e− v2+∥+ ∥θe∥ ≤ 6δ2 + θ
√
n.
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Hence, by using this last inequality in (3.41), we get

δ(x+s+, µ+) <
2

3
√
1− θ


(
(1− δ2)

1
2 (1− θ)

3
4 − (1− δ2)

5
4

)
(6δ2 + θ

√
n)

2(1− θ)(1− δ2)
3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

 .
which proves the first part of the lemma.

Now, suppose that δ < 1
6

and θ = 1
7
√
n
. Let’s consider the function

f(δ) =
(1− δ2)

1
2 (1− θ)

3
4 − (1− δ2)

5
4

2(1− θ)(1− δ2)
3
4 − 2(1− δ2)

7
4 + (1− θ)

3
4 (1− δ2)− (1− θ)

7
4

,

we obtain f ′(δ) > 0, so f is increasing for each δ < 1
6
, then

f(δ) ≤ f

(
1

6

)
, (3.42)

where

f

(
1

6

)
=

(
35
36

) 1
2 (1− θ)

3
4 − (35

36
)
5
4

2(1− θ)(35
36
)
3
4 − 2(35

36
)
7
4 + (1− θ)

3
4 (35

36
)− (1− θ)

7
4

.

Also, we have for all n ∈ N∗, 3
√
1− θ > 0 and 2 (6δ2 + θ

√
n) = 2

(
6δ2 + 1

7

)
< 2

(
1
6
+ 1

7

)
,

then
2 (6δ2 + θ

√
n)

3
√
1− θ

<
2
(
1
6
+ 1

7

)
3
√
1− θ

=
13

63
√
1− θ

. (3.43)

According to (3.42) and (3.43) we obtain

δ(x+s+, µ+) <
13

63
g(θ), (3.44)

with

g(θ) =

(
35
36

) 1
2 (1− θ)

3
4 − (35

36
)
5
4

2(1− θ)
3
2 (35

36
)
3
4 − 2(1− θ)

1
2 (35

36
)
7
4 + (1− θ)

5
4 (35

36
)− (1− θ)

9
4

,

if n ≥ 1 then 0 < θ ≤ 1
7
. The function g is continuous and decreasing on 0 < θ ≤ 1

7
.

Consequently

g(θ) < g(0) =

(
35
36

) 1
2 − (35

36
)
5
4

2 (35
36
)
3
4 − 2(35

36
)
7
4 + (35

36
)− 1

. (3.45)

Finally, using (3.44) and (3.45), we get

δ(x+s+, µ+) <
13

63
×

(
35
36

) 1
2 − (35

36
)
5
4

2 (35
36
)
3
4 − 2(35

36
)
7
4 + (35

36
)− 1

= 0.1598 <
1

6
.

Which completes the second part of the proof.

The next lemma gives a bound on the number of iterations.
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Lemma 3.12. Suppose that the pair (x0, s0) is strictly feasible, µ0 =
(x0)

T
s0

n
and δ(x0s0, µ0) <

1
3√4

. Moreover, let xk and sk be the vectors obtained after k iterations. Then the inequality(
xk
)T
sk < ε is satisfied when

k ≥ 1

θ
log

[
µ0(n+ 3

√
4)

ε

]
.

Proof. After k iterations, we have µk = (1− θ)kµ0. From Lemma 3.10 and δ(xs, µ) < 1
3√4

,

we get

(xk)T sk < µk

(
n+ 4

(
1
3
√
4

)2
)

= µ0(1− θ)k
(
n+

3
√
4
)
.

Hence, the inequality
(
xk
)T
sk < ε holds if

µ0(1− θ)k
(
n+

3
√
4
)
≤ ε

⇐⇒ log(1− θ)k + log µ0
(
n+

3
√
4
)
≤ log ε

⇐⇒ −k log(1− θ) ≥ log
µ0
(
n+ 3

√
4
)

ε
.

As θ ≤ − log(1− θ), then the last inequality is valid if

kθ ≥ log
µ0
(
n+ 3

√
4
)

ε
⇐⇒ k ≥ 1

θ
log

µ0
(
n+ 3

√
4
)

ε
.

This completes the proof.

Theorem 3.13. Suppose that x0 = s0 = e. If we consider the default values for θ and τ , we

obtain that the algorithm represented in Figure 2.1 requires no more than

7
√
n log

(
n+ 3

√
4
)

ε

iterations. The resulting vectors satisfy
(
xk
)T
sk < ε.

Proof. Since x0 = s0 = e, we get µ0 =
(x0)

T
s0

n
= 1 . If we replace θ = 1

7
√
n

in Lemma 3.12,

the result holds.

3.3 Numerical experiments

In this section, we conduct comparative numerical tests on the algorithm depicted in

Figure 2.1, utilizing three distinct choices for the function ψ. Specifically, we explore our
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new functions ψ(t) = t
7
4 and ψ(t) = t

3
2 as proposed in papers [86] and [89] respectively,

alongside the function introduced by Darvay and Takàcs [20], defined as ψ(t) = t2.

Our objective is to assess the algorithm’s efficiency presented in Figure 2.1, by utilizing

these three functions independently. Additionally, we aim to evaluate the suitability of

our proposed functions in comparison to that of Darvay and Takàcs.

For the numerical tests, we consider eight fixed-size examples and one variable-size

example taken from the literature [11]. After that, we solve some problems from the

Netlib test collection [29]. The implementation is carried out in Matlab R2009b, using

the following parameters:

• The accuracy parameter ε = 10−4.

• θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for the first eight fixed size examples.

• θ = 0.7 for the variable size example and the Netlib problems.

The obtained results will be presented in comparative tables where we note by:

• Iter: the number of iterations necessary for optimality.

• T (s): the execution time in seconds.

• M1, M2 and M3: the primal-dual interior point algorithms based on the functions

ψ(t) = t
3
2 , ψ(t) = t

7
4 and ψ(t) = t2, respectively.

3.3.1 Examples with fixed size

Example 3.14. A =

1 1 1 1

1 1 0 −3

 , c =
(
1 2 3 4

)T
, b =

(
1 0.5

)T
.

Where: x0 =
(
0.5 0.27 0.14 0.09

)T
, s0 =

(
1 2 3 4

)T
, y0 =

(
0 0

)T
.

Example 3.15. A =


2 1 0 −1 0 0

0 0 1 0 1 −1

1 1 1 1 1 1

, c =
(
3 −1 1 0 0 0

)T
, b =

(
0 0 1

)T
.

Where: x0 =
(
0.0658 0.1326 0.1330 0.2677 0.1330 0.2664

)T
, y0 =

(
−2 −2 −3

)T
,

s0 =
(
10 4 6 1 5 1

)T
.
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Example 3.16. A =


2 1 1 0 0

1 2 0 1 0

0 1 0 0 1

 , c =
(
−5 −5 0 0 0

)T
, b =

(
8 7 3

)T
.

Where: x0 =
(
2.2534 1.5743 1.9185 1.5976 1.4256

)T
, s0 =

(
1 3 2 2 2

)T
, y0 =(

−2 −2 −2
)T

.

Example 3.17. A =


−1 1 1 −1 1 0 0

0 2 −3 2 0 1 0

−3 2 1 0 0 0 1

3 5 4 0.5 0 0 0

, c =
(
2 −9 −2 −0.5 0 0 0

)T
,

b =
(
1 2 1 12.5

)T
.

Where: x0 = s0 =
(
1 1 1 1 1 1 1

)T
, y0 =

(
−1 −1 −1 −1

)T
.

Example 3.18. A =



0 1 2 −1 1 1 0 0 0

1 2 3 4 −1 0 1 0 0

−1 0 −2 1 2 0 0 1 0

1 2 0 −1 −2 0 0 0 1

1 3 4 2 1 0 0 0 0


, b =



4

10

1

1

11


,

c =
(
1 1 1 1 1 1 1 1 1 1

)T
.

Where: x0 = s0 =
(
1 1 1 1 1 1 1 1 1

)T
, y0 =

(
0 0 0 0 0

)T
.

Example 3.19. A =



1 0 −4 3 1 1 1 0 0 0 0 0

5 3 1 0 −1 3 0 1 0 0 0 0

4 5 −3 3 −4 1 0 0 1 0 0 0

0 −1 0 2 1 −5 0 0 0 1 0 0

−2 1 1 1 2 2 0 0 0 0 1 0

2 −3 2 −1 4 5 0 0 0 0 0 1


,

c =
(
−9 −4 4 −7 −2 −6 0 0 0 0 0 0

)T
, b =

(
3 12 7 −2 6 10

)T
.

Where : x0 = s0 =
(
1 1 1 1 1 1 1 1 1 1 1 1

)T
,

y0 =
(
−1 −1 −1 −1 −1 −1

)T
.
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Example 3.20. A =



1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 0 1 0


, b =



5

5

4

4

4

3

3


,

c =
(
0.5 0.8 −2 −0.5 0.82 −1.98 0.5 0.82 −1.98 0.5 0.82 −1.98 0.5 0.82

)T
.

Where: x0 =
(
1 1 1 1 1 1 1 1 1 1 1 1 1

)T
,

y0 =
(
−0.5 −0.2 −3 −1 0.02 0.02 1

)T
,

s0 =
(
1 1 1 1 1 1 1 1 1 1 1 1 1

)T
.

Example 3.21. A =



3 −5 2 −8 −5 2 6 10 5 2

2 −8 −6 −7 6 5 5 6 −9 −8

6 1 9 5 −2 3 10 −5 6 −7

6 3 −2 1 −4 7 −8 10 8 4

1 −3 −1 5 −8 −4 4 1 4 −2

4 −1 3 −2 5 −8 4 1 −6 0

4 −2 6 −8 8 8 −2 −1 6 7

8 0 −9 −5 5 4 −8 −6 5 5



, b =



49

0

22

84

−42

−14

108

15



, c =

(
103 −39 −131 −140 236 134 −164 7 −49 70

)T
.

Where: x0 =
(
1 2 2 1 4 5 2 4 2 4

)T
, s0 =

(
8 10 5 4 9 1 4 6 5 1

)T
,

y0 =
(
−9 10 −6 5 0 3 10 7

)T
The obtained results of these eight fixed size examples are summarized in Tables 3.1

and 3.2.
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M1 M2 M3

Example θ Iter T (s) Iter T (s) Iter T (s)

0.1 94 0.0132 94 0.0152 94 0.1412

0.3 28 0.0071 28 0.0077 29 0.0084

Example 3.14 0.5 15 0.0067 16 0.0070 17 0.0075

0.7 11 0.0058 13 0.0062 15 0.0067

0.9 10 0.0023 12 0.0032 15 0.0040

0.1 99 0.0155 99 0.0168 99 0.0606

0.3 30 0.0083 30 0.0085 30 0.0086

Example 3.15 0.5 16 0.0072 17 0.0073 18 0.0075

0.7 11 0.0067 14 0.0070 16 0.0073

0.9 10 0.0057 13 0.0061 16 0.0071

0.1 115 0.0126 115 0.0137 115 0.0183

0.3 35 0.0079 35 0.0085 35 0.0103

Example 3.16 0.5 19 0.0072 19 0.0075 21 0.0075

0.7 13 0.0070 16 0.0073 18 0.0074

0.9 12 0.0066 15 0.0071 18 0.0074

0.1 106 0.0164 106 0.0170 107 0.0174

0.3 32 0.0089 32 0.0093 32 0.0097

Example 3.17 0.5 17 0.0082 18 0.0084 19 0.0087

0.7 12 0.0064 14 0.0072 17 0.0074

0.9 11 0.0059 14 0.0070 17 0.0073

0.1 109 0.0182 109 0.0194 109 0.0208

0.3 33 0.0092 33 0.0106 33 0.0124

Example 3.18 0.5 18 0.0071 18 0.0077 20 0.0089

0.7 12 0.0069 15 0.0075 17 0.0086

0.9 11 0.0067 14 0.0072 17 0.0084

Table 3.1: Numerical results of the fixed size LO examples
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M1 M2 M3

Example θ Iter T (s) Iter T (s) Iter T (s)

0.1 112 0.0219 112 0.0221 112 0.0224

0.3 34 0.0099 34 0.0104 34 0.0106

Example 3.19 0.5 18 0.0082 19 0.0083 20 0.0085

0.7 13 0.0078 15 0.0081 18 0.0083

0.9 11 0.0074 14 0.0078 17 0.0081

0.1 113 0.0247 113 0.0256 113 0.1867

0.3 34 0.0129 34 0.0117 34 0.0120

Example 3.20 0.5 18 0.0083 19 0.0093 20 0.0091

0.7 13 0.0080 15 0.0087 18 0.0088

0.9 12 0.0085 15 0.0089 18 0.0086

0.1 131 0.0469 131 0.0482 131 0.0501

0.3 40 0.0150 40 0.0173 40 0.0216

Example 3.21 0.5 22 0.0092 22 0.0094 24 0.0096

0.7 15 0.0085 18 0.0087 21 0.0090

0.9 14 0.0073 17 0.0076 21 0.0081

Table 3.2: Numerical results of the fixed size LO examples

3.3.2 Example with variable size

Example 3.22. (Cube example): n = 2m,

A[i, j] =

 1 if j = i or j = i+m

0 otherwise
, c[i] =

 −1 if i = 1, ...,m

0 if i = m+ 1, ..., n
,

b[j] = 2 for j = 1, ...,m

Where: x0[i] = 1, for i = 1, ..., n, y0[j] = −2 for j = 1, ...,m,

s0[i] =

 1 if i = 1, ...,m

2 if i = m+ 1, ..., n
,

The obtained results are summarized in the Table 3.3.
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M1 M2 M3

(m,n) Iter T (s) Iter T (s) Iter T (s)

(25, 50) 14 0.0701 17 0.0756 21 0.0876

(50, 100) 15 0.1845 18 0.1962 22 0.2788

(100, 200) 16 0.8154 19 0.8451 23 0.9747

(150, 300) 16 2.1723 19 2.4143 23 3.2392

(300, 600) 17 14.0970 20 17.5707 24 24.0428

(400, 800) 17 32.9461 21 42.0424 25 50.8862

(500, 1000) 17 64.9954 21 80.9903 25 97.2056

(1000, 2000) 18 524.3113 22 689.5115 26 743.5775

Table 3.3: Numerical results of LO Example 3.22

3.3.3 Netlib problems

The obtained numerical results for some Netlib problems are summarized in Table 3.4.

M1 M2 M3

Problem (m,n) Iter T (s) Iter T (s) Iter T (s)

Afiro (27, 51) 15 0.0552 19 0.0828 22 0.0941

Sc50a (50, 78) 09 0.1734 11 0.1956 16 0.2909

Sc50b (50, 78) 09 0.1245 11 0.1325 16 0.3071

Blend (74, 114) 16 0.5323 20 0.6779 24 0.9493

Share2b (96, 162) 18 1.1874 23 1.9154 27 2.3279

Scsd1 (77, 760) 15 40.9947 19 48.7907 23 60.3563

Bandm (305, 472) 22 43.2515 26 51.2125 29 71.4231

Scsd6 (141, 1350) 16 284.3564 19 302.2165 23 377.7166

Table 3.4: Numerical results for some Netlib LO problems
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3.4 Comments

Based on the numerical tests conducted on examples of various dimensions as well as

on some problems from the Ntelib tests collection, we have arrived at the following

conclusions:

For the fixed size examples:

• The numerical results show that the number of iterations and the execution time

necessary for optimality of the algorithm given in Figure 2.1 depends on the values

of the parameter θ. It is quite surprising that θ = 0.9 gives the smallest number of

iteration and the minimal time in the three choices of ψ(t).

• The number of iterations required for optimality using our new functions ψ(t) =

t7/4 and ψ(t) = t3/2 is significantly lower than that of the function given by Darvay

and Takàcs ψ(t) = t2. Similarly, the computation time is slightly improved with

our new functions compared to ψ(t) = t2.

• The function ψ(t) = t
3
2 offers better results compared to the two other functions

ψ(t) = t
7
4 and ψ(t) = t2.

For the variable size and the Netlib problems:

• The numerical results show the efficiency of our new functions for problems with

large size as well as for the Netlib collection. Indeed, the number of iterations and

the computation time are naturally reduced in the case of ψ(t) = t
3
2 and ψ(t) = t

7
4

compared to the case of ψ(t) = t2.

The results obtained in all examples demonstrate the effectiveness of our new functions

ψ(t) = t7/4 and ψ(t) = t3/2. This confirms our theoretical results and strengthens our

objective as expressed by the proposed algorithmic complexities.

3.5 Conclusion

In this chapter, we have described new primal-dual path-following methods to solve

linear programs. Our approach is a reconsideration of Darvay and Takàcs’ technique

[20] with using new functions ψ(t) = t
7
4 and ψ(t) = t

3
2 . We showed that the obtained
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algorithms solve the linear problem in polynomial time. Moreover, we provided some

numerical experiments that prove the efficiency of our proposed algorithms. The

obtained results motivating us to extend Darvay and Takàcs’ algorithm for other op-

timization problems such as quadratic programming and semidefinite programming.

This is the concept of the next chapters.
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4
Efficient primal-dual interior point algorithms

for convex quadratic optimization

This chapter introduces new primal-dual interior point algorithms for convex quadratic

optimization (CQO). The first proposed algorithm is based on an extension of the

techniques presented in the work of Darvay and Takàcs [20] for LO while the other on

it’s first idea presented in the work of Zhang and Xu [93]. We demonstrate that the

presented methods solve efficiently the CQO within polynomial time. Notably, the

short-step algorithms achieve the best-known iteration bound. Moreover, we present

comparative numerical study to prove the efficiency of our proposed algorithms. A part

of those results were accepted for publication in J. Inf. Optim. Sci. [88].

4.1 Convex quadratic optimization problem

We reconsider the convex quadratic programming (CQP) problem in its standard form


min 1

2
xTQx+ cTx

Ax = b,

x ∈ Rn
+.

(CQP)

Where Q represents a symmetric positive semidefinite matrix with dimensions n× n,

A ∈ Rm×n, c ∈ Rn and b ∈ Rm.
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The dual problem of (CQP ) can be expressed as
max bTy − 1

2
xTQx

ATy −Qx+ s = c,

y ∈ Rm, s ∈ Rn
+.

(CQD)

Denoted by:

- F(CQP ) = {x ∈ Rn : Ax = b, x ≥ 0} , the set of feasible primal solutions of (CQP).

- A vector x ∈ F(CQP ) is called a feasible solution of (CQP).

- A vector x∗ ∈ F(CQP ) that minimizes the objective function of (CQP) is called an optimal

solution of (CQP).

- F 0
(CQP ) = {x ∈ Rn : Ax = b, x > 0} , the set of strictly feasible primal solutions of

(CQP).

- F(CQD) =
{
(y, s) ∈ Rm × Rn : ATy −Qx+ s = c, s ≥ 0

}
, the set of feasible dual solu-

tions of (LD).

- A vector y∗ ∈ F(CQD) that maximizes the objective function of (CQD) is called an

optimal solution of (CQD).

- F 0
(CQD) =

{
(y, s) ∈ Rm × Rn : ATy −Qx+ s = c, s > 0

}
, the set of strictly feasible dual

solutions of (LD).

- F 0 = F 0
(CQP ) × F 0

(CQD), the set of strictly feasible primal-dual solutions of (CQP) and

(CQD).

Here are some fundamental results of duality in convex quadratic programming.

Theorem 4.1 (Weak duality [82]). If x ∈ F(CQP ) and (y, s) ∈ F(CQD), then

1

2
xTQx+ cTx ≥ −1

2
xTQx+ bTy.

Theorem 4.2 (Strong duality [82]). Let x∗ ∈ F(CQP ) and (y∗, s∗) ∈ F(CQD) such that

1

2
(x∗)TQx∗ + cTx∗ = −1

2
(x∗)TQx∗ + bTy∗,

then x∗ and (y∗, s∗) are optimal solutions for (CQP) and (CQD) respectively.

Definition 4.3 (Duality gap [82]). For x ∈ F(CQP ) and (y, s) ∈ F(CQD), the quantity

1

2
xTQx+ cTx−

(
−1

2
xTQx+ bTy

)
= xT s,

is called the duality gap of the two problems (CQP) and (CQD) at (x, y, s).
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In the following theorem, we express the condition for x∗ and (y∗, s∗) to be optimal

solutions of (CQP) and (CQD) respectively in terms of complementarity condition.

Theorem 4.4. [82] If x∗ ∈ F(cqp) and (y∗, s∗) ∈ F(CQD), then x∗ and (y∗, s∗) are optimal

solutions of (CQP) and (CQD) respectively if and only if

(x∗)T s∗ = 0 ⇔ x∗s∗ = 0 ⇔ x∗i s
∗
i = 0, ∀i = 1, . . . , n.

Remark 4.5. The existence of an optimal solution for one of the problems (CQP) and

(CQD) implies the optimality of the other, and their optimal values are equal. If one of

the two problems has an unbounded optimal value, the other has no solution.

4.2 The classical central path method

Suppose that:

• The matrix A is a full rank row, i.e., Rank(A) = m < n.

• F 0 ̸= ∅, i.e., a strictly feasible primal-dual point exists.

This last condition is called the interior point condition for (CQP ) and (CQD).

Under these assumptions, finding an optimal solution for both (CQP ) and (CQD) is

the same as solving a system of nonlinear equations:
Ax = b,

ATy −Qx+ s = c,

xs = 0, x, s ≥ 0.

(4.1)

The main concept behind primal-dual path-following IPMs is to replace the last equation

in system (4.1), which is called the complementarity equation with the parameterized

equation xs = µe, where e represents a vector of all ones with a length of n and µ > 0.

This leads us to consider the system below
Ax = b,

ATy −Qx+ s = c,

xs = µe, x, s > 0.

(4.2)

If the previous assumptions holds, then for a fixed µ > 0, the µ-center given by Son-

nevend [67] is the unique solution of system (4.2). For different µ, the central path

generate a sequence which converges to a primal-dual optimal solution for both prob-

lems (CQP ) and (CQD), when µ→ 0.
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4.3 New search direction based on Zhang and Xu’s tech-

nique

This section presents a new class of search direction for CQP based on Zhang and Xu’s

method for LO [93].

Note that for x, s > 0 and µ > 0, the vector v =
√

xs
µ
=

(√
x1s1
µ
,
√

x2s2
µ
, ...,

√
xnsn
µ

)T

> 0

is well defined. From the third equation of system (4.2), we deduce that

xs = µe⇔ xs

µ
= e⇔ v2 = e⇔ v = e⇔ v2 = v. (4.3)

By transforming the left-hand side of the equation v2 = v into the xs space, we can

derive the following equation

xs = µv. (4.4)

Now, the perturbed central path can be equivalently stated as follows
Ax = b,

ATy + s−Qx = c,

xs = µv.

(4.5)

This last system (4.5) can be written in the form F (x, y, s) = 0, where

F (x, y, s) =


Ax− b

ATy + s−Qx− c

xs− µv

 (4.6)

According to Zhang and Xu’s idea [93], assuming that the variance vector v is fixed

and applying Newton’s method to this system, we obtain: x+ = x+∆x, y+ = y +∆y,

s+ = s+∆s, where (∆x,∆y,∆s) is the solution of the linear system
A∆x = 0,

AT∆y +∆s−Q∆x = 0,

1
µ
(s∆x+ x∆s) = µv − xs.

(4.7)

Defining the scaled search directions

dx = X−1V∆x and ds = S−1V∆s, (4.8)

with

X = diag(x) and S = diag(s),
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where, diag(x) and diag(s) are diagonals matrices, which contains on their main diago-

nal the elements of x and s respectively in the original order.

Hence, we obtain

s∆x+ x∆s = µv(dx + ds), (4.9)

and

dxds =
∆x∆s

µ
. (4.10)

Obviously, with these notations, the scaled feasible Newton system of (4.7) can be

expressed as: 
Adx = 0,

A
T
∆y + ds −Qdx = 0,

dx + ds = pv,

(4.11)

where

pv = e− v, (4.12)

and

A =
1

µ
AV −1X , Q = µV −1XQV −1X. (4.13)

We define a proximity measure as follows:

δ(v) = δ(xs, µ) = ∥pv∥ = ∥e− v∥ . (4.14)

Thus we have

δ(xs, µ) = 0 ⇐⇒ v = e⇐⇒ xs = µe.

Hence, the value of δ(v) can be considered as a measure for the distance between the

given pair (x, y, s) and the µ-center (x(µ), y(µ), s(µ)).

Now, the generic representation of the obtained algorithm is given as follows:
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Generic Primal-dual IPM for CQP

Input:

a proximity parameter 0 < τ < 1 (default τ = 1
2
);

an accuracy parameter ε > 0;

an update parameter θ, 0 < θ < 1 (default θ = 1
7
√
n
);

a strictly feasible point (x0, y0, s0) such that δ(x0s0, µ0) < τ , where µ0 =
(x0)

T
s0

n
;

begin

x := x0; y := y0; s := s0; µ := µ0;

while xT s ≥ ε do

Set µ := (1− θ)µ;

Solve the system (4.11) via (4.8) to obtain (∆x,∆y,∆s);

Compute x := x+∆x; y := y +∆y; s := s+∆s;

end while

end.

Figure 4.1: First Generic algorithm for CQP

Note that, from (4.11), we have

dTx ds = dTx

(
Qdx − A

T
∆y
)
= dTxQdx −

(
Adx

)T
∆y ≥ 0, (4.15)

this last inequality holds because Adx = 0 and Q is a positive semidefinite matrix. Thus,

the directions are not orthogonal in CQP, in contrast with LP case where the directions

are orthogonal. So, this makes a different analysis.

In the next subsection, we present some results related to algorithm complexity analysis.

4.3.1 Analysis of the algorithm

In this subsection, we describe the effects of a full-Newton step of a µ-update and prove

the local convergence of the algorithm. Finally, we conclude with the complexity result

of our algorithm.

We first recall some useful lemmas, which will be used later in the analysis of the

algorithm.

Lemma 4.6. Let δ = δ(xs, µ) and (dx,∆y, ds) be a solution of (4.11) . Then one has

0 ≤ dTx ds ≤
1

2
δ2, (4.16)
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and

∥dxds∥∞ ≤ 1

4
δ2 and ∥dxds∥ ≤ 1

2
√
2
δ2. (4.17)

Proof. From (4.14), the last equation of (4.11), (4.15) and the following equality

δ2 = ∥pv∥
2 = ∥dx + ds∥2 = ∥dx∥2 + ∥ds∥2 + 2dTx ds,

the first part of the lemma was fallows. For the second statement, we have

dxds =
1

4

(
(dx + ds)

2 − (dx − ds)
2) ,

and

∥dx + ds∥2 = ∥dx − ds∥2 + 4dTx ds,

this means that

∥dx − ds∥ ≤ ∥dx + ds∥ . (4.18)

Moreover, we have

∥dxds∥∞ =
1

4

∥∥(dx + ds)
2 − (dx − ds)

2
∥∥
∞

≤ 1

4
max

(
∥dx + ds∥2∞ , ∥dx − ds∥2∞

)
≤ 1

4
max

(
∥dx + ds∥2 , ∥dx − ds∥2

)
≤ 1

4
∥dx + ds∥2 .

Hence

∥dxds∥∞ ≤ 1

4
δ2.

This proves the first part of the second statement of the lemma.

For the second part, using (4.18) we have

∥dxds∥2 = eT (dxds)
2

=
1

16
eT
(
(dx + ds)

2 − (dx − ds)
2)2

=
1

16

∥∥(dx + ds)
2 − (dx − ds)

2
∥∥2

≤ 1

16

(∥∥(dx + ds)
2
∥∥2 + ∥∥(dx − ds)

2
∥∥2)

≤ 1

16

(
∥dx + ds∥4 + ∥dx − ds∥4

)
≤ 1

8
∥dx + ds∥4 =

1

8
δ4.
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This implies that

∥dxds∥ ≤ 1

2
√
2
δ2,

which completes the second part of the proof of the lemma.

Lemma 4.7. [93, Lemma 4.2] One has

1− δ ≤ vi ≤ 1 + δ, ∀i = 1, ..., n. (4.19)

In the next lemmas, we show under the condition δ(xs, µ) < 2
√
2 − 2 that the

full-Newton step is strictly feasible.

Lemma 4.8. Let x+ = x + ∆x and s+ = s + ∆s be the generated point after a full-Newton

step. Hence x+ > 0 and s+ > 0 if and only if v + dxds > 0.

Proof. For each 0 ≤ α ≤ 1 denote x+(α) = x+ α∆x and s+(α) = s+ α∆s. Hence,

x+(α)s+(α) = xs+ α(s∆x+ x∆s) + α2∆x∆s.

Now, in view of (4.9), (4.10) and (4.11) we have:

x+(α)s+(α) = µ
(
v2 + αv (e− v) + α2dxds

)
= µ

(
(1− α)v2 + αv + α2dxds

)
. (4.20)

Suppose that v + dxds > 0, which is equivalent to dxds > −v. Substitution gives

x+(α)s+(α) > µ(1− α)
(
v2 + αv

)
.

Hence, x+(α)s+(α) > 0 for each 0 ≤ α ≤ 1, which means that the linear functions of

α, x+(α) and s+(α) do not change sign on the interval [0, 1] and for α = 0 we have

x+(0) = x > 0 and s+(0) = s > 0. This leads to x+(1) = x+ > 0 and s+(1) = s+ > 0.

This means that the full-Newton step is strictly feasible.

Lemma 4.9. If δ = δ(xs, µ) < 2
√
2 − 2. Then the primal-dual full-Newton step is strictly

feasible.

Proof. On one hand, by Lemma 4.8, x+ and s+ are strictly feasible if v + dxds > 0. This

last inequality holds if ∥dxds∥∞ < min(v).

On the other hand, It follows from Lemma 4.6 and Lemma 4.7, that one has

∥dxds∥∞ ≤ 1

4
δ2 and 1− δ ≤ min(v).

It is clear that the inequality ∥dxds∥∞ < min(v) holds for 1
4
δ2 < 1−δ, which is equivalent

to δ < 2
√
2− 2. Thus, v + dxds > 0 holds if δ < 2

√
2− 2. This completes the proof.
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In the next lemma, we show the local convergence of the full-Newton step.

Lemma 4.10. Let δ = δ(xs, µ) < 2
√
2− 2, then

δ(x+s+, µ) ≤ δ +
1

2
√
2
δ2,

which means local convergence of the full-Newton step.

Proof. For convenience, we may write v+ =
√

x+s+
µ
.

Let α = 1. From (4.20) it follows that

v2+ = v + dxds. (4.21)

By Lemma 4.6 and Lemma 4.7, we get

min
(
(vi)

2
+

)
≥ min (v)− ∥dxds∥∞

≥ 1− δ − 1

4
δ2.

Therefore,

min
(
(vi)+

)
≥
√
1− δ − 1

4
δ2. (4.22)

From (4.14), we have

δ (v+) = δ(x+s+, µ) = ∥e− v+∥

=

∥∥∥∥ 1

e+ v+

(
e− v2+

)∥∥∥∥
=

√√√√ n∑
i=1

(
1

1 + (vi)+

(
1− (vi)

2
+

))2

≤

√√√√( 1

1 + min
(
(vi)+

))2 n∑
i=1

(
1− (vi)

2
+

)2
≤ 1

1 + min
(
(vi)+

) ∥∥e− v2+
∥∥

≤ 1

1 + min
(
(vi)+

) ∥e− v − dxds∥

≤ 1

1 + min
(
(vi)+

) [∥e− v∥+ ∥dxds∥]

≤ 1

1 + min
(
(vi)+

) [δ + ∥dxds∥] .

From Lemma 4.6 and (4.22) it follows that

δ (v+) ≤
1

1 +
√

1− δ − 1
4
δ2

[
δ +

1

2
√
2
δ2
]
≤ δ +

1

2
√
2
δ2.

This completes the proof.
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In the next lemma, we give the change in the duality gap after taking a full-Newton

step.

Lemma 4.11. Let δ = δ(xs, µ). Then

(x+)
T s+ ≤ µ

(
n (1 + δ) +

1

2
δ2
)
.

Proof. We know from (4.20) (For α = 1), Lemma 4.6 and Lemma 4.7, that

(x+)
T s+ = eT (x+s+)

= µeT (v + dxds)

= µ
(
eTv + dTx ds

)
≤ µ

(
n (1 + δ) +

1

2
δ2
)
,

this completes the proof.

The next lemma shows that the algorithm is well defined.

Lemma 4.12. Let δ = δ(xs, µ) < 2
√
2− 2 and µ+ = (1− θ)µ, where 0 < θ < 1. Then

δ (ṽ) = δ(x+s+, µ+) <
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .

Moreover, if δ < 1
2

and θ = 1
7
√
n
, then δ (ṽ) < 1

2
.
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Proof. According to the definition of δ in (4.14), (4.21), (4.22) and Lemma 4.6, we get

δ(x+s+, µ+) =

∥∥∥∥e−√x+s+
µ+

∥∥∥∥
=

1√
(1− θ)

∥∥∥√(1− θ)e− v+

∥∥∥
=

1√
(1− θ)

∥∥∥∥∥ (1− θ)e− v2+√
(1− θ)e+ v+

∥∥∥∥∥
=

1√
(1− θ)

√√√√ n∑
i=1

(
1√

(1− θ) + (vi)+

(
1− θ − (vi)

2
+

))2

≤ 1√
(1− θ)

√√√√( 1√
(1− θ) + min

(
(vi)+

))2 n∑
i=1

(
1− θ − (vi)

2
+

)2
≤ 1√

(1− θ)
(√

(1− θ) + min
(
(vi)+

)) ∥∥(1− θ)e− v2+
∥∥

≤ 1√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
) ∥(1− θ)e− v − dxds∥

≤ 1√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
) [∥(1− θ)e− v∥+ ∥dxds∥]

≤ 1√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
) [∥−θe∥+ ∥e− v∥+ ∥dxds∥]

≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) ,

which proves the first part of the lemma.

Now, suppose that δ < 1
2

and θ = 1
7
√
n
. Then, we obtain

δ(x+s+, µ+) ≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
)

<

1
7
+ 1

2
+ 1

8
√
2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .

Using n ≥ 2, we get
√
1− θ =

√
1− 1

7
√
n
≥
√

1− 1
7
√
2
. Also, δ < 1

2
gives√

1− δ − 1
2
√
2
δ2 >

√
1
2
− 1

8
√
2
. Taking all these inequalities into consideration, we con-

clude

δ(x+, s+;µ+) <

1
7
+ 1

2
+ 1

8
√
2√

1− 1
7
√
2

(√
1− 1

7
√
2
+
√

1
2
− 1

8
√
2

)
= 0.485 14 <

1

2
.
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This completes the proof.

Lemma 4.13. Assume that the pair (x0, s0) is strictly feasible, µ0 =
(x0)

T
s0

n
and δ(x0s0, µ0) <

1
2
. Moreover, let xk and sk be the vectors obtained after k iterations. Then, the inequality(
xk
)T
sk < ε is satisfied when

k ≥

[
1

θ
log

(
µ0
(
3
2
n+ 1

8

)
ε

)]
.

Proof. After k iterations we have µk = (1− θ)kµ0. From Lemma 4.11 and δ(xs, µ) < 1
2
,

we get (
xk
)T
sk < µk

(
n (1 + δ) +

1

2
δ2
)

= (1− θ)kµ0

(
3

2
n+

1

8

)
.

Hence, the inequality
(
xk
)T
sk < ε holds if

(1− θ)kµ0

(
3

2
n+

1

8

)
≤ ε.

By taking logarithms of both sides, we obtain

k log(1− θ) + log

(
µ0

(
3

2
n+

1

8

))
≤ log (ε) .

As θ ≤ − log(1− θ), we see that the inequality is valid if

kθ ≥ log

(
µ0

(
3

2
n+

1

8

))
− log (ε) = log

(
µ0
(
3
2
n+ 1

8

)
ε

)
.

Hence,

k ≥

[
1

θ
log

(
µ0
(
3
2
n+ 1

8

)
ε

)]
.

This completes the proof.

Theorem 4.14. Suppose that x0 = s0 = e. If we consider the default values for θ and τ, we

obtain that the algorithm given in Figure 4.1 requires no more than

O

(
√
n log

(
3
2
n+ 1

8

)
ε

)

interior-point iterations. The resulting vectors satisfy
(
xk
)T
sk < ε.

Proof. Since x0 = s0 = e, we get µ0 =
(x0)

T
s0

n
= 1 . So, from Lemma 4.13, the result

holds.
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4.4 New search direction based on Darvay and Takàcs’

technique

In this section, we generalize the technique introduced by Darvay and Takàcs [20] to

get new search direction for CQP. Since (x, s, µ) > 0, we deduce from (4.3) that

xs

µ
= e⇔

√
xs

µ
= e⇔ xs

µ
=

√
xs

µ
,

with, xs
µ
=
(

x1s1
µ
, x2s2

µ
, ..., xnsn

µ

)T
> 0 and

√
xs
µ
=

(√
x1s1
µ
,
√

x2s2
µ
, ...,

√
xnsn
µ

)T

. Now, we

can express the perturbed system (4.2) as follows
Ax = b,

ATy −Qx+ s = c,

xs
µ
=
√

xs
µ
.

(4.23)

In according with Darvay and Takàcs’ idea, let’s define a continuously differentiable

function ψ on (k2,∞), such that 0 ≤ k < 1, and 2tψ′ (t2)− ψ′ (t) > 0, ∀t > k2. Applying

the AET technique on system (4.23), we obtain
Ax = b,

ATy −Qx+ s = c,

ψ(xs
µ
) = ψ

(√
xs
µ

) (4.24)

Newton iteration applied to system (4.24) define: x+ = x+∆x, y+ = y+∆y, s+ = s+∆s,

where (∆x,∆y,∆s) is the search direction solution of the following linear system

A∆x = 0,

AT∆y −Q∆x+∆s = 0,

1
µ
(s∆x+ x∆s) =

−ψ
(

xs
µ

)
+ ψ

(√
xs
µ

)
ψ′(xs

µ
)− 1

2
√

xs
µ

ψ′(
√

xs
µ
)
.

(4.25)

From the scaled search directions dx and dx defined as (4.8), system (4.25) can be

represented as 
Adx = 0,

A
T
∆y −Qdx + ds = 0,

dx + ds = pv,

(4.26)
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where

pv =
2ψ(v)− 2ψ(v2)

2vψ′(v2)− ψ′(v)
,

the matrices A and Q are defined as in (4.13).

Let ψ :
(

1√
2
,∞
)
→ R, ψ (t) = t2. So

pv =
v − v3

2v2 − e
. (4.27)

The condition 2tψ′ (t2)−ψ′ (t) > 0,∀t > k2 is holds for k2 = 1√
2
. Introducing a proximity

measure

δ(v) = δ(xs, µ) =
∥pv∥
2

=
1

2

∥∥∥∥ v − v3

2v2 − e

∥∥∥∥ , (4.28)

Now, we describe the generic algorithm in Figure 4.2.

Generic Primal-dual IPM for CQP

Input:

a proximity parameter 0 < τ < 1 (default τ = 1
10
);

an accuracy parameter ε > 0;

an update parameter θ, 0 < θ < 1 (default θ = 1
12

√
n
);

a strictly feasible point (x0, y0, s0) such that δ(x0s0, µ0) < τ , where µ0 =
(x0)

T
s0

n
;

v0 =
√

x0s0

µ0 > e√
2
;

begin

(x, y, s) := (x0, y0, s0);µ := µ0

while xT s ≥ ε do

Take µ := (1− θ)µ;

Solve the system (4.26) via (4.8) to obtain (∆x,∆y,∆s);

Compute x := x+∆x; y := y +∆y; s := s+∆s;

end while

end.

Figure 4.2: Second Generic algorithm for CQP

The next section contains some results of the complexity analysis of our algorithm.
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4.4.1 Convergence and complexity analysis

Lemma 4.15. Let qv = dx − ds. Then,

∥qv∥ ≤ ∥pv∥ . (4.29)

Proof. From the last equation of system (4.26), we obtain

dx =
pv + qv

2
and ds =

pv − qv
2

.

Those give

dxds =
p2v − q2v

4
, (4.30)

on the other hand, we have

∥pv∥
2 = ∥dx + ds∥2 = ∥dx − ds∥2 + 4dTx ds = ∥qv∥2 + 4dTx ds.

Since Adx = 0 and Q is a positive semidefinite matrix, then

dTx ds = dTx

(
Qdx − A

T
∆y
)
= dTxQdx −

(
Adx

)T
∆y ≥ 0,

which gives ∥qv∥ ≤ ∥pv∥ .

Lemma 4.16. If v > 1√
2
e and δ = δ(xs, µ) < 1. The full-Newton step is strictly feasible, i.e.,

(x+, s+) > 0.

Proof. Let α ∈ [0, 1]. Denote by (x+(α), s+(α)) = (x+ α∆x, s+ α∆s). So,

x+(α)s+(α) = xs+ α(s∆x+ x∆s) + α2∆x∆s.

In view of (4.9) and (4.10), we can observe that

x+(α)s+(α)

µ
=
xs

µ
+ αv(dx + ds) + α2dxds. (4.31)

Based on (4.26) and (4.30), we express

x+(α)s+(α)

µ
= (1− α)v2 + α(v2 + vpv) + α2

(
p2v − q2v

4

)
. (4.32)

In addition, from (4.27) we obtain

v2 + vpv =
v4

2v2 − e
≥ e. (4.33)
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This last inequality follows directly from

(
v2 − e

)2 ≥ 0 ⇔ v4 ≥ 2v2 − e.

Then

x+(α)s+(α)

µ
≥ (1− α)v2 + αe+ α2

(
p2v
4

− q2v
4

)
− α

p2v
4

≥ (1− α)v2 + α

(
e−

(
(1− α)

p2v
4

+ α
q2v
4

))
. (4.34)

x+(α)s+(α) > 0 when
∥∥∥(1− α)p

2
v

4
+ α q2v

4

∥∥∥
∞
< 1. Consequently,∥∥∥∥(1− α)

p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)
∥p2v∥∞

4
+ α

∥q2v∥∞
4

≤ (1− α)
∥pv∥22
4

+ α
∥qv∥22
4

,

from (4.29), we get∥∥∥∥(1− α)
p2v
4

+ α
q2v
4

∥∥∥∥
∞

≤ (1− α)
∥pv∥22
4

+ α
∥pv∥22
4

≤ ∥pv∥22
4

= δ2 < 1.

So, x+(α)s+(α) > 0 ∀α ∈ [0, 1]. This indicates that the linear functions of α, x+(α)

and s+(α) do not switch signs within the interval [0, 1] and for α = 0, we have

(x+(0), s+(0)) = (x, s) > 0. As a result, it follows that (x+(1), s+(1)) = (x+, s+) > 0.

This completes the proof.

In the next result, we give the conditions of quadratically convergence of the prox-

imity δ.

Lemma 4.17. Suppose v > 1√
2
e and δ = δ(xs, µ) < 1√

2
. So v+ =

√
x+s+
µ

> 1√
2
e also

δ(x+s+, µ) ≤
5δ2

1− 2δ2

√
1− δ2.

Proof. According to Lemma 4.16, we have x+, s+ > 0, this means that v+ =
√

x+s+
µ

is

well defined.

Let’s set α = 1. Consequently, from equation (4.32), it can be deduced that

v2+ =
x+s+
µ

= v2 + vpv +
p2v
4

− q2v
4
. (4.35)
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Now, in view of (4.33) we have

v2 + vpv = e+
(v2 − e)

2

2v2 − e
. (4.36)

From (4.27), (4.35) and (4.36) we may write

v2+ = e+
(v2 − e)

2

2v2 − e
+

1

4

(
v − v3

2v2 − e

)2

− q2v
4

= e+
(v2 − e)

2

2v2 − e
+

(v(e− v2))
2

4 (2v2 − e)2
− q2v

4

= e+
(v2 − e)

2

2v2 − e

(
e+

v2

4 (2v2 − e)

)
− q2v

4

= e+
(v2 − e)

2
(9v2 − 4e)

4 (2v2 − e)2
− q2v

4
. (4.37)

Using (4.27) and (4.37) we get

e− v2+ =
q2v
4

− (v2 − e)
2
(9v2 − 4e)

4 (2v2 − e)2

=
q2v
4

− (9v2 − 4e)

v2
· v

2 (e− v2)
2

4 (2v2 − e)2

=
q2v
4

− (9v2 − 4e)

v2
· v

2 + v6 − 2v4

4 (2v2 − e)2

=
q2v
4

− (9v2 − 4e)

v2
· (v − v3)2

4 (2v2 − e)2

=
q2v
4

− (9v2 − 4e)

v2
· p

2
v

4
. (4.38)

Since 9v2−4e
v2

< 9e, for all v > 1√
2
e, and from (4.29), we get

∥∥e− v2+
∥∥ ≤

∥∥∥∥q2v4
∥∥∥∥+ ∥∥∥∥(9v2 − 4e)

v2
· p

2
v

4

∥∥∥∥ < ∥pv∥
2

4
+ 9

∥pv∥
2

4
= 10δ2. (4.39)

Besides these, we know that p2
v

4
> 0 and we also have from (4.33) that v2+vpv = v4

2v2−e
≥ e.

As a result, these inferences indicate that, based on (4.35)

v2+ = v2 + vpv +
p2v
4

− q2v
4

≥ e− q2v
4
.

Hence

min(v2+) ≥ 1− ∥qv∥2∞
4

≥ 1− ∥qv∥2

4
≥ 1− ∥pv∥2

4
≥ 1− δ2,

and this relation yields

min(v+) ≥
√
1− δ2. (4.40)
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On the other hand, from δ < 1√
2
, it can be deduced that

√
1− δ2 > 1√

2
. In view of (4.40),

we get v+ > e√
2
. Moreover, using the definition of δ, we get

δ (v+) = δ(x+s+, µ) =
1

2

∥∥∥∥ v+
2v2+ − e

(
e− v2+

)∥∥∥∥ .
Let f(t) = t

2t2−1
for all t > 1√

2
. We have f ′(t) < 0, this implies that f is decreasing for all

t > 1√
2
. Therefore, by using (4.39), (4.40) and Lemma 3.2, we obtain

δ (v+) ≤ 1

2
f(
√
1− δ2)

∥∥(e− v2+
)∥∥

≤ 1

2

√
1− δ2

2 (1− δ2)− 1

∥∥(e− v2+
)∥∥

≤ 5δ2

1− 2δ2

√
1− δ2.

This completes the proof.

The lemma bellow examines the strong duality gap.

Lemma 4.18. Let δ = δ(xs, µ). So

(x+)
T s+ ≤ µ

(
n+ 9δ2

)
.

Moreover, if δ < 1√
2
, then (x+)

T s+ < µ
(
n+ 9

2

)
.

Proof. Firstly, from (4.36), we get

v2 + vpv = e+

(
4 (2v2 − e)

v2

)(
v2 (e− v2)

2

4 (2v2 − e)2

)

= e+

(
8e− 4e

v2

)
p2v
4

≤ e+ 8
p2v
4
, (4.41)

and we know that

(x+)
T s+ = µ

n∑
i=1

(v+i
)2

= µ

n∑
i=1

(
v2i + vi (pv)i +

(pv)
2
i

4
− (qv)

2
i

4

)

= µ

n∑
i=1

(
v2i + vi (pv)i

)
+ µ

(
∥pv∥

2 − ∥qv∥
2

4

)

≤ µ
n∑

i=1

(
1 + 8

(pv)
2
i

4

)
+ µ

(
∥pv∥

2 − ∥qv∥
2

4

)

≤ µn+ 8µ
∥pv∥

2

4
+ µ

∥pv∥
2

4

≤ µ
(
n+ 9δ2

)
.
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Now, if δ < 1√
2

then

(x+)
T s+ < µ

(
n+

9

2

)
.

This completes the proof.

Now, in the next lemma, we show that the algorithm is well defined.

Lemma 4.19. Suppose that, v > 1√
2
e, µ+ = (1− θ)µ, with 0 < θ < 1 and δ = δ(xs, µ) < 1√

2
.

In addition, let ṽ =
√

x+s+
µ+

. So, ṽ > 1√
2
e and

δ (ṽ) = δ(x+s+, µ+) <

√
1− δ2

2
√
1− θ (1− 2δ2 + θ)

(
θ
√
n+ 10δ2

)
.

Furthermore, when δ < 1
10

and θ = 1
12

√
n
, then δ (ṽ) < 1

10
.

Proof. By using Lemma 4.17, we have v+ > 1√
2
e. From ṽ =

√
x+s+
µ+

, we deduce

ṽ =

√
x+s+
µ+

=
1√
1− θ

v+ >
1√
2
e.

This last inequality follows from 0 < θ < 1.

Now, we have

δ (ṽ) =
1

2

∥∥∥∥ ṽ − ṽ3

2ṽ2 − e

∥∥∥∥ , (4.42)

where

2ṽ2 − e =
2v2+ − (1− θ)e

1− θ
, (4.43)

and

ṽ − ṽ3 = ṽ(e− ṽ2)

=
1√
1− θ

v+

(
e− 1

1− θ
v2+

)
=

1

(1− θ)
√
1− θ

v+
(
(1− θ) e− v2+

)
. (4.44)

Then

ṽ − ṽ3

2ṽ2 − e
=

1

(1− θ)
√
1− θ

v+
(
(1− θ) e− v2+

) 1− θ

2v2+ − (1− θ)e

=
1√
1− θ

v+
2v2+ − (1− θ)e

(
(1− θ) e− v2+

)
. (4.45)

Let f(t) = t
2t2−(1−θ)

for all t > 1√
2
. Since f ′(t) < 0, we conclude that f is decreasing

for all t > 1√
2
. Moreover, considering Lemma 3.2 and (4.45), we get

δ (ṽ) =
1

2

∥∥∥∥ ṽ − ṽ3

2ṽ2 − e

∥∥∥∥ ≤
√
1− δ2

2
√
1− θ (1− 2δ2 + θ)

∥∥(1− θ) e− v2+
∥∥ . (4.46)
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From (4.39) we have∥∥(1− θ) e− v2+
∥∥ ≤ ∥−θe∥+

∥∥e− v2+
∥∥ < θ

√
n+ 10δ2. (4.47)

Hence, by using (4.46) and (4.47) we obtain

δ (ṽ) <

√
1− δ2

2
√
1− θ (1− 2δ2 + θ)

(
θ
√
n+ 10δ2

)
,

with that, we conclude the first part of the proof.

Now, assume that δ < 1
10

and θ = 1
12

√
n
. In addition, we have

√
1− δ2 < 1 and θ > 0.

Then, we get

δ (ṽ) <
θ
√
n+ 10δ2

2
√
1− θ (1− 2δ2)

=
1
12

+ 10δ2

2
√
1− θ (1− 2δ2)

<
1

2
√
1− θ

50

49

(
1

12
+

1

10

)
=

1

2
√
1− θ

(
55

294

)
.

For n ∈ N∗, we get 2
√
1− θ = 2

√
1− 1

12
√
n

=
√

4− 1
3
√
n

≥
√

11
3
. Taking all these

inequalities into consideration, we conclude

δ (ṽ) <

√
3

11

(
55

294

)
=

5
√
33

294
<

1

10
.

With that, we have completed the proof.

Lemma 4.20. Assume a strictly feasible point (x0, s0) with δ(x0s0, µ0) < 1√
2
, and µ0 =

(x0)
T
s0

n
.

Additionally, (xk, sk) is the obtained pair vectors after k iterations. So
(
xk
)T
sk < ε holds when

k ≥

[
1

θ
log

(
µ0
(
n+ 9

2

)
ε

)]
.

Proof. After k iterations, µk = (1 − θ)kµ0. From Lemma 4.18 and δ(xs, µ) < 1√
2
, it

becomes (
xk
)T
sk < µk

(
n+

9

2

)
= (1− θ)kµ0

(
n+

9

2

)
.

Hence,
(
xk
)T
sk < ε is satisfied if

µ0

(
n+

9

2

)
(1− θ)k ≤ ε.

By introducing logarithms of both sides, and take into consideration θ ≤ − log(1− θ),

the above inequality holds when

kθ ≥ log

(
µ0

(
n+

9

2

))
− log (ε) = log

(
µ0
(
n+ 9

2

)
ε

)
.
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Hence,

k ≥

[
1

θ
log

(
µ0
(
n+ 9

2

)
ε

)]
.

This completes the proof.

Theorem 4.21. Suppose that x0 = s0 = e and consider the default values of θ and τ, the

algorithm presented in Figure 4.2 requires no more than

O

(
√
n log

(
n+ 9

2

)
ε

)

interior-point iterations. Furthermore
(
xk
)T
sk < ε.

Proof. The case x0 = s0 = e gives µ0 =
(x0)

T
s0

n
= 1. Substitute this value into Lemma

4.20, the result remains valid.

4.5 Numerical experiments

In this section, we present some numerical results of our algorithms given in Figures

4.1 and 4.2 as well as the algorithm given in [13] which is based in the technique of

the kernel function. For the numerical tests, we consider four fixed-size examples

and one variable-size example taken from the literature [12]. Moreover, we solve

some problems from the quadprog test collection (https://CRAN.R-project.org/

package=quadprog). The numerical results are obtained using MATLAB R2009b

environment. In the algorithm given in [13], we take the best choice of its parameters

which are considered as τ = 5n,

ψpq(t) =
t2 − 1

2
− tanhp(1)

∫ t

1

cothp(x)eqc(coth(x)−coth(1))dx, with p = 2, q = 1,

and

c =
1

coth2(1)− 1
.

Moreover, we choose a step size α = min(αx, αs) with

αx = min
i=1..n

− xi

∆xi
, if ∆xi < 0,

1, elsewhere,
and αs = max

i=1..n

− si
∆si

, if ∆si < 0,

1, elsewhere.

In the three algorithms, we take ε = 10−4.

The obtained results will be presented in comparative tables where we note by:

https://CRAN.R-project.org/package=quadprog
https://CRAN.R-project.org/package=quadprog
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• Iter: the number of iterations necessary for optimality.

• T (s): the execution time in seconds.

• M1: the algorithm presented in Figure 4.1.

• M2: the algorithm presented in Figure 4.2.

• M3: the algorithm presented in [13].

4.5.1 Examples with fixed size

The examples are taken from the literature [12]. We take θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Example 4.22. A =

−1 1 0

1 1 1

 , b =

1

2

 , c =


−2

−4

0

 , Q =


2 0 0

0 2 0

0 0 0


The starting points are:

x0 =
(
0.3262 1.3261 0.3477

)T
, y0 =

(
0 −2.0721

)T
,

s0 =
(
0.7247 0.7247 2.0722

)T
.

Example 4.23. A =

1 1 1 0

1 5 1 1

 , b =

2

5

 , c =


1

2

0

0

 , Q =


4 −2 0 0

−2 4 0 0

0 0 0 0

0 0 0 0

 .

The starting points are:

x0 =
(
0.9683 0.5775 0.4543 1.1444

)T
, y0 =

(
−0.9184 −1.1244

)T
,

s0 =
(
0.7612 0.9141 0.9185 1.1244

)T
.

Example 4.24. A =


1 1.2 1 1.8 0

3 −1 1.5 −2 1

−1 2 −3 4 2

 , b =


9.31

5.45

6.60

 , c =



1

−1.5

2

1.5

3


,
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Q =



20 1.2 0.5 0.5 −1

1.2 32 1 1 1

0.5 1 14 1 1

0.5 1 1 15 1

−1 1 1 1 16


.

The starting points are:

x0 =
(
2.4539 0.7875 1.5838 2.4038 1.3074

)T
,

y0 =
(
20.5435 9.4781 4.3927

)T
,

s0 =
(
7.1215 7.9763 8.3150 6.8686 7.9750

)T
.

Example 4.25. A =


1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05

1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1

1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1

 ,

b =


11.651

16.672

21.295

 , c =



−0.5

−1

0

0

−0.5

0

0

−1

−0.5

−1



, Q =



30 1 1 1 1 1 1 1 1 1

1 21 0 1 −1 1 0 1 0.5 1

1 0 15 −0.5 −2 1 0 1 1 1

1 1 −0.5 30 3 −1 1 −1 0.5 1

1 −1 −2 3 27 1 0.5 1 1 1

1 1 1 −1 1 16 −0.5 0.5 0 1

1 0 0 1 0.5 −0.5 8 1 1 1

1 1 1 −1 1 0.5 1 24 1 1

1 0.5 1 0.5 1 0 1 1 39 1

1 1 1 1 1 1 1 1 1 11



.

The starting points are:

x0 =
(
0.9491 0.6121 1.8477 1.8115 1.2511 2.5211 1.5062 1.5658 0.8207 1.1289

)T
,

y0 =
(
4.3800 19.9367 4.5679

)T
,

z0 =
(
3.8902 4.4625 3.9788 3.6606 3.9018 3.5561 3.8760 3.7190 3.9138 4.3396

)T
.

The obtained results of these four fixed size examples are summarized in Table 4.1.
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M1 M2 M3

Example θ Iter T (s) Iter T (s) Iter T (s)

0.1 91 0.0189 90 0.0116 826 0.2476

0.3 29 0.0111 28 0.0103 252 0.1010

Example 4.22 0.5 16 0.0082 17 0.0087 133 0.0713

0.7 10 0.0081 15 0.0083 60 0.0512

0.9 06 0.0076 15 0.0080 30 0.0445

0.1 106 0.2983 105 0.2810 791 0.3097

0.3 32 0.0281 32 0.0229 238 0.1265

Example 4.23 0.5 17 0.0084 19 0.0091 126 0.0873

0.7 11 0.0070 17 0.0089 77 0.0712

0.9 07 0.0031 17 0.0033 42 0.0711

0.1 128 0.2866 127 0.2751 1125 0.4870

0.3 39 0.0182 39 0.0173 342 0.1755

Example 4.24 0.5 21 0.0089 23 0.0112 144 0.1247

0.7 13 0.0082 20 0.0107 88 0.0933

0.9 07 0.0071 20 0.0090 42 0.0860

0.1 127 0.0367 126 0.0380 1206 0.9543

0.3 39 0.0267 38 0.0254 288 0.3072

Example 4.25 0.5 21 0.0116 22 0.0142 152 0.2101

0.7 12 0.0091 20 0.0117 96 0.1692

0.9 07 0.0079 20 0.0227 63 0.1629

Table 4.1: Numerical results of the fixed size CQP Examples

Next, in Table 4.2 some obtained results are summarized for some problems from

the quadprog test collection.
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M1 M2 M3

Example θ Iter T (s) Iter T (s) Iter T (s)

0.1 67 0.0105 66 0.0099 1534 0.6624

0.3 21 0.0089 20 0.0086 420 0.5190

Tame 0.5 11 0.0048 13 0.0073 198 0.2818

0.7 07 0.0042 11 0.0058 90 0.1333

0.9 04 0.0039 11 0.0051 24 0.0609

0.1 73 0.0168 72 0.0166 1936 0.9018

0.3 23 0.0078 22 0.0086 576 0.4120

Genhs28 0.5 12 0.0067 14 0.0077 304 0.2677

0.7 08 0.0062 12 0.0075 121 0.1969

0.9 05 0.0059 12 0.0073 30 0.1283

0.1 87 0.0314 86 0.0295 750 1.7687

0.3 27 0.0073 26 0.0071 228 0.9756

Hs51 0.5 14 0.0054 16 0.0055 120 0.7354

0.7 09 0.0051 14 0.0054 50 0.4356

0.9 05 0.0049 14 0.0052 30 0.3617

0.1 74 0.02010 73 0.0140 1190 0.1681

0.3 23 0.0083 22 0.0074 306 0.0704

Zecevic2 0.5 12 0.0065 14 0.0090 85 0.0538

0.7 08 0.0061 12 0.0065 50 0.0452

0.9 05 0.0048 12 0.0061 30 0.0411

Table 4.2: Numerical results of some quadprog problems

Now, let’s provide an example with a variable size to demonstrate the efficiency of

our obtained algorithms when dealing with problems of large sizes.

4.5.2 Example with variable size

In this example, we take θ = 0.7.
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Example 4.26. [12] Assume that n = 2m, A[i, j] =

 1 if i = j or i+m = j

0 otherwise
,

b[i] = 2 ∀ 1 ≤ i ≤ m, c[i] =

 −1 ∀ 1 ≤ i ≤ m

0 ∀m+ 1 ≤ i ≤ n
, Q = In×n.

The starting points are:

x0[i] = x0[i+m] = 1, s0[i] = 1, s0[i+m] = 2, y0[i] = −1 ∀ 1 ≤ i ≤ m.

The obtained primal-dual optimal solutions are: x∗[i] = 3
2
, x∗[i +m] = 1

2
, s∗[i] = s∗[i +

m] = 0, y∗[i] = 1
2
∀ 1 ≤ i ≤ m.

In Table 4.3, we provide a summary of the Example 4.26 results for various sizes of

(m,n).

M1 M2 M3

(m,n) Iter T (s) Iter T (s) Iter T (s)

(10, 20) 12 0.1270 20 0.2897 108 0.3119

(25, 50) 13 0.0838 21 0.3162 108 0.7721

(50, 100) 13 0.1962 21 0.2250 108 1.6101

(100, 200) 13 0.2030 22 0.2571 140 4.0470

(250, 500) 15 13.8259 24 22.6768 140 17.3496

(500, 1000) 15 91.9980 25 152.7817 176 75.6636

(600, 1200) 15 158.2562 25 313.8644 176 123.1605

(750, 1500) 16 349.8760 26 651.8636 176 222.2253

Table 4.3: Numerical results of CQP Example 4.26

Comments:

Based on the numerical tests conducted on examples of various dimensions as well as

on some problems from the quadprog tests collection, we observe that:

• The iterations number and the time required for achieving optimality with the

three algorithms are influenced by the values of the parameters θ. Notably, θ = 0.9

offers the smallest number of iterations with minimal time.
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• The number of iterations required for optimality using our new approach, M2,

is significantly lower than that of M1 and M3 if the value of θ is in the range

{0.1, 0.3}. Otherwise, if θ ∈ {0.5, 0.7, 0.9}, our other new approach M1 gives

the smallest number of iterations. This becomes particularly apparent when the

problem’s dimensions are large, as illustrated in Table 4.3.

• The method M1 remains robust regardless of θ variations, making it a reliable

choice.

• In Table 4.3, the method M3 demonstrates its effectiveness compared to our

proposed approaches, M1 and M2, by significantly reducing the time required

to solve problems with large dimensions. However, the number of iterations is

higher than our approach M1.

The numerical experiments demonstrate the efficiency of our proposed algorithms. This

efficiency is measured by the small iterations number and the reduced time to obtain the

optimal primal-dual solution. Indeed, the number of iterations recorded in all examples

tested is clearly lower than the theoretical number.

4.6 Conclusion

In this chapter, we have introduced new primal-dual interior point methods for solving

convex quadratic programming problems. Our approaches are a generalization of

the works of Darvay and Takàcs [20] and Zhang and Xu [93] for linear optimization.

We demonstrated that the resulting algorithms require polynomial time to solve the

considered problem. Additionally, we conducted numerical experiments, the results of

which were acceptable and encouraging. Finally, we highlight that implementing the

algorithm with the update parameter θ significantly reduces the number of iterations

required by our proposed algorithms and improves their real numerical performance.

The obtained results consolidate and confirm our theoretical purposes.

By exploiting the advantages of the previous technique in LO [93], in the next two

chapters, we extended it to more general problems such as semidefinite optimization.
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5
Efficient primal-dual interior point algorithm for

semidefinite optimization

In this chapter, we present a novel primal-dual interior point algorithm tailored for linear

semidefinite optimization (SDO). Drawing inspiration from Zhang and Xu’s approach

to linear optimization, our method extends their technique. The symmetrization of the

search direction is based on the Nesterov-Todd scaling scheme. We demonstrate the

efficiency of our method, showcasing its ability to solve problems within polynomial

time. Notably, our short-step algorithm achieves the best-known iteration bound of

O(
√
n log n

ε
). Furthermore, we conduct a comprehensive numerical study, focusing on

some applications of semidefinite programming to underscore the effectiveness of our

proposed algorithm. The set of those results were in revision on Oper. Res. Lett review

[90].

5.1 Semidefinite optimization problem

A semidefinite program (SDP) is a type of mathematical optimization problem that

involves optimizing a linear objective function over the cone of positive semidefinite

matrices. The standard form of SDP is expressed as follows
minC •X

Ai •X = bi for i = 1, . . . ,m,

X ⪰ 0.

(SDP)
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Where b ∈ Rm, the matrices C and Ai, i = 1, . . . ,m, are given and belong to the linear

space of n× n symmetric matrices Sn.

The dual problem of (SDP), can be expressed as follows
max bty∑m

i=1 yiAi + S = C,

S ⪰ 0.

(DSDP)

Definition 5.1. • A point X is said to be feasible for (SDP) if: Ai •X = bi for i =

1, . . . ,m and X ⪰ 0.

• A point X is said to be strictly feasible for (SDP) if it is feasible for (SDP) and

satisfies X ≻ 0.

• A point (y, S) is said to be feasible for (DSDP) if:
∑m

i=1 yiAi + S = C and S ⪰ 0.

• A point (y, S) is said to be strictly feasible for (DSDP) if it is feasible for (DSDP)

and satisfies S ≻ 0.

Theorem 5.2 (Weak Duality). If X and (y, S) are feasible solutions of (SDP) and (DSDP)

respectively, then we always have

C •X − bTy = X • S ≥ 0.

This difference is called the duality gap.

Contrary to linear programming and convex quadratic programming, it is not always

true that the optimality of two problems (SDP) and (DSDP) implies that X • S = 0. (see

the example of Vandenberghe and Boyd [8, 70, 75, 92]).

The next theorem gives the conditions that ensure strong duality and the existence of

primal-dual solutions.

Theorem 5.3 (Strong Duality). Let

p∗ = min{C •X : Ai •X = bi for i = 1, . . . ,m,X ⪰ 0},

and

q∗ = max{bTy : ATy + S = C, S ⪰ 0}.

So,
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1. If (SDP) is strictly feasible with p∗ finite, then p∗ = q∗, and this value is attained for

(DSDP).

2. If (DSDP) is strictly feasible with q∗ finite, then p∗ = q∗, and this value is attained for

(SDP).

3. If (SDP) and (DSDP) are both strictly feasible, then p∗ = q∗, and these two values are

attained for both problems.

5.2 The classical central path method

Assume that:

• The matrices Ai, i = 1, . . . ,m, are linearly independent.

• The problems (SDP ) and (DSDP ) satisfy the interior-point condition (IPC), i.e.,

there exist (X0 ≻ 0, y0, S0 ≻ 0) such that

Ai •X0 = bi,∀i = 1, . . . ,m;
m∑
i=1

y0iAi + S0 = C. (IPC)

It’s well known that under these assumptions, finding an optimal solution of both

problems (SDP ) and (DSDP ) is equivalent to solving the following system


Ai •X = bi, i = 1, . . . ,m, X ⪰ 0,
m∑
i=1

yiAi + S = C, S ⪰ 0,

XS = 0.

(5.1)

The two first equations of system (5.1) are called feasibility conditions of (SDP ) and

(DSDP ), respectively. The last one is named the complementarity condition.

The basic idea of primal-dual IPMs is to replace the complementarity condition in

(5.1), by the parameterized equationXS = µI , withX,S ≻ 0 and µ > 0. So, we consider

the following system 
Ai •X = bi, i = 1, . . . ,m, X ≻ 0,
m∑
i=1

yiAi + S = C, S ≻ 0,

XS = µI.

(5.2)



5.3 New search direction 101

Under the previous assumptions, for each µ > 0, the system (5.2) has a unique

solution denoted by (X(µ), y(µ), S(µ)) which is called the µ-center of both problems

(SDP ) and (DSDP ) [50, 57]. The set of all µ-centers defines a homotopy which is called

the central path of (SDP ) and (DSDP ). If µ goes to zero, then the limit of the central

path exists and since the limit satisfies the complementarity condition, the limit yields a

primal-dual optimal solution of both problems (SDP ) and (DSDP ) [34].

5.3 New search direction

This section presents a new class of search direction for SDO based on Zhang and Xu’s

method for LO [93].

First, let’s consider the Nesterov-Todd (NT)-symmetrization scheme [58, 59] defined as

P = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2. (5.3)

Furthermore, we define D = P 1/2 where P 1/2 denotes the symmetric square root of P .

The matrix D is used to scale both matrices X and S to the same matrix V defined by

V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ
(D−1XSD)1/2.

Note that the matrices D and V are symmetric and positive definite. Moreover, we have

V 2 =

(
1
√
µ
D−1XD−1

)(
1
√
µ
DSD

)
= D−1XS

µ
D.

Also, for X,S ≻ 0 and µ > 0, from the third equation of the system (5.2) we deduce that

XS = µI ⇔ XS

µ
= I ⇔ V 2 = I. (5.4)

Moreover, we have

XS = µI ⇔ V =
1
√
µ
(D−1XSD)1/2 =

1
√
µ
(D−1µID)1/2 = I. (5.5)

From (5.4) and (5.5), we deduce

V 2 = V.

Transforming the left-hand side of the equation V 2 = V to the XS space, we obtain

XS = µDV D−1.
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Then, system (5.2) can be rewritten in the following form
Ai •X = bi, i = 1, . . . ,m, X ≻ 0,
m∑
i=1

yiAi + S = C, S ≻ 0,

XS = µDV D−1.

(5.6)

According to Zhang and Xu’s idea [93], we assume that the variance matrix V is fixed.

The application of Newton’s method to the system (5.6) produces the following system

of equations for the search direction ∆X , ∆y and ∆S


Ai • (X +∆X) = bi, i = 1, . . . ,m,
m∑
i=1

(yi +∆yi)Ai + (S +∆S) = C,

(X +∆X) (S +∆S) = µDV D−1.

(5.7)

If we neglect ∆X∆S, then since Ai • X = bi,∀i = 1, . . . ,m, and
m∑
i=1

yiAi + S = C, the

system (5.7) can be rewritten as follows


Ai •∆X = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +∆S = 0,

∆X +X∆SS−1 = µDV D−1S−1 −X.

(5.8)

It is clear that ∆S is symmetric due to the second equation of the system (5.8). How-

ever, a crucial observation is that ∆X is not necessarily symmetric, because X∆SS−1

may not be symmetric. Several researchers have proposed methods for symmetrizing

the third equation in (5.8) such that the resulting new system had a unique symmetric so-

lution. Among them, we consider the symmetrization scheme yielding the NT-direction

[58, 59] defined in (3.37).

In the NT-scheme, we replace the term X∆SS−1 in the third equation of (5.8) by

P∆SP T . The system (5.8) becomes
Ai •∆X = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +∆S = 0,

∆X + P∆SP T = µDV D−1S−1 −X.

(5.9)

Let us further define

Ai =
1
√
µ
DAiD, ∀i = 1, ...,m, DX =

1
√
µ
D−1∆XD−1, DS =

1
√
µ
D∆SD. (5.10)
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Obviously, with these notations, the scaled NT search directions (DX ,∆y,DS) can be

expressed as 
Ai •DX = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +DS = 0,

DX +DS = PV .

(5.11)

Where

PV = I − V. (5.12)

For the analysis of the algorithm, we define a proximity measure as follows:

δ(V ) = δ(X,S;µ) = ∥PV ∥F = ∥I − V ∥F . (5.13)

Due to the first two equations of the system (5.11), DX and DS are orthogonal. Thus

DX •DS = DS •DX = 0 (5.14)

Then, we can easily verify that

δ(V ) = 0 ⇔ V = I ⇔ DX = DS = 0 ⇔ XS = µDV D−1. (5.15)

Hence, the value of δ(V ) can be considered as a measure for the distance between the

given pair (X, y, S) and the µ-center (X(µ), y(µ), S(µ)).

5.3.1 The generic primal–dual IPM for SDO

The generic representation of this algorithm is given in Figure 5.1 as follows:

In the next section, we present some results related to algorithm complexity analysis.

5.4 Analysis of the algorithm

In this section, we describe the effects of a full-NT step of a µ-update and prove the

local convergence of the algorithm. Finally, we conclude with the complexity result of

our algorithm.

We first recall some useful lemmas, which will be used later.

Lemma 5.4. ([25, Lemma 6.1]) Let X(α) = X + α∆X and S(α) = S + α∆S. Suppose that

X ≻ 0 and S ≻ 0. If

det (X(α)S(α)) > 0, ∀0 ≤ α ≤ α̃,

then X(α̃) ≻ 0 and S(α̃) ≻ 0.
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Generic Primal-dual IPM for SDO

Input:

a proximity parameter 0 < τ < 1 (default τ = 1
2
);

an accuracy parameter ε > 0;

an update parameter θ, 0 < θ < 1 (default θ = 1
7
√
n
);

a strictly feasible point (X0, y0, S0) and µ0 = X0•S0

n
such that δ(X0, y0, S0) < τ ;

begin

X := X0; y := y0; S := S0; µ := µ0

while X • S ≥ ε do

µ := (1− θ)µ;

solve the system (5.11) via (5.10) to obtain (∆X,∆y,∆S);

X := X +∆X; y := y +∆y;S := S +∆S;

end while

end.

Figure 5.1: Generic algorithm for SDO

Lemma 5.5. ([25, Lemma 6.2]) Let Q ∈ Sn
++, and M ∈ Rn×n be skew-symmetric, i.e., M =

−MT . Then, det (Q+M) > 0. Moreover, if the eigenvalues of Q+M are real, then

0 < λmin(Q) ≤ λmin(Q+M) ≤ λmax(Q+M) ≤ λmax(Q).

Lemma 5.6. ([26, Lemma 6.3.2]) Let DXS = 1
2
(DXDS +DSDX) be the symmetric part of

DXDS, then we have

∥DXS∥F ≤ 1

2
√
2
∥PV ∥2F .

In the next lemma, we give some basic properties about the proximity measure δ(V ).

Lemma 5.7. For any i = 1, ..., n, we have

1− δ(V ) ≤ λi(V ) ≤ 1 + δ(V ).

Proof. From (5.13), we have

δ(V ) = ∥I − V ∥F

=

√√√√ n∑
i=1

(1− λi (V ))2

≥ |1− λi (V )| , ∀i = 1, ..., n.
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Using this last inequality, the result easily follows.

In the following lemma, we state a condition that ensures the feasibility of the full

NT-step.

Lemma 5.8. Let (X,S) be a strictly feasible primal-dual points. Hence X+ = X +∆X ≻ 0

and S+ = S +∆S ≻ 0, if and only if V +DXS ≻ 0.

Proof. We introduce a step length α ∈ [0, 1] and we define

X(α) = X + α∆X and S(α) = S + α∆S. (5.16)

Thus X(0) = X , X(1) = X+ and one can introduce similar notations for S, hence

V = 1√
µ
(D−1XSD)1/2 ≻ 0. Applying (5.10) and (5.16), we have

X(α)S(α) = XS + α(X∆S +∆XS) + α2∆X∆S

= µD
(
V 2 + α (DXV + V DS) + α2DXDS

)
D−1

∼ µ
(
V 2 + α (DXV + V DS) + α2DXDS

)
,

thus

X(α)S(α) = Q(α) +M(α). (5.17)

Where

Q(α) = µ

(
V 2 +

1

2
α (DXV + V DS + V DX +DSV ) +

1

2
α2 (DXDS +DSDX)

)
,

and

M(α) = µ

(
1

2
α (DXV + V DS − V DX −DSV ) +

1

2
α2 (DXDS −DSDX)

)
.

It’s easy to show that the matrix M(α) is skew-symmetric, for each 0 ≤ α ≤ 1.

Lemma 5.5 implies that the determinant of the matrix X(α)S(α) is positive if the matrix

Q(α) ≻ 0. To this end, from (5.11) and (5.12), we have

Q(α) = µ

(
V 2 +

1

2
α (DXV + V DS + V DX +DSV ) +

1

2
α2 (DXDS +DSDX)

)
= µ

(
V 2 +

1

2
α ((DX +DS)V + V (DX +DS)) + α2DXS

)
= µ

(
(1− α)V 2 + α

(
V 2 +

1

2
(PV V + V PV )

)
+ α2DXS

)
= µ

(
(1− α)V 2 + α

(
V 2 +

1

2
((I − V )V + V (I − V )) + αDXS

))
,
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so

Q(α) = µ
(
(1− α)V 2 + α (V + αDXS)

)
. (5.18)

Suppose that V + DXS ≻ 0, then, Q(1) = µ (V +DXS) ≻ 0 and Q(0) = µV 2 ≻ 0.

Furthermore, V +DXS ≻ 0 implies that αDXS ≻ −αV for any 0 < α < 1, then Q(α) ≻

µ (1− α) (V 2 + αV ). This means that Q(α) ≻ 0. Thus det (X(α)S(α)) > 0. Moreover,

since X = X(0) ≻ 0 and S = S(0) ≻ 0, Lemma 5.4 implies that X+ = X(1) ≻ 0 and

S+ = S(1) ≻ 0 for α̃ = 1. This complete the proof of the lemma.

Corollary 5.9. The new iterate after a full NT-step is certainly strictly feasible if

∥DXS∥F < λmin (V ) .

Proof. Lemma 5.8 implies that X+ ≻ 0 and S+ ≻ 0, if and only if V + DXS ≻ 0. We

have,

V +DXS ≻ 0 ⇔ λmin (V +DXS) > 0. (5.19)

In the other hand, we have

λmin (V +DXS) ≥ λmin (V )− |λmin (DXS)| ≥ λmin (V )− ∥DXS∥F . (5.20)

Thus, the inequality (5.19) holds if ∥DXS∥F < λmin (V ) . This completes the proof of

the corollary.

Lemma 5.10. Let δ = δ(X,S;µ) be defined as (5.13), µ > 0 and (X,S) be any pair of positive

definite matrices. If δ <
√
2(
√√

2 + 1− 1), then the full NT-step for SDO is strictly feasible,

hence X+ ≻ 0 and S+ ≻ 0.

Proof. It follows from lemma 5.6 and lemma 5.7, that

∥DXS∥F ≤ 1

2
√
2
δ2 and 1− δ ≤ λmin(V ).

It is clear that the inequality ∥DXS∥F < λmin (V ) holds for 1
2
√
2
δ2 < 1 − δ, which is

equivalent to δ <
√
2(
√√

2 + 1− 1). By Corollary 5.9, the new iterates after a full-NT

step are strictly feasible, which completes the proof.

The next lemma shows the local convergence of the full NT-step.
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Lemma 5.11. Let δ = δ(X,S;µ) <
√
2(
√√

2 + 1− 1), then

δ(X+, S+;µ) ≤ δ +
1

2
√
2
δ2,

which means local convergence of the full NT-step.

Proof. Let α = 1. Then from (5.17) it follows that

V 2
+ ∼ X+S+

µ
= V +DXS +M, (5.21)

with

M =
1

2
(DXV + V DS − V DX −DSV +DXDS −DSDX) .

It should be noted that M is a skew-symmetric matrix. Lemma 5.5 implies that

λmin(V
2
+) ≥ λmin(V +DXS).

Using Lemma 5.6, Lemma 5.7 and (5.20), we get

λmin(V
2
+) ≥ λmin (V )− ∥DXS∥F

≥ 1− δ − 1

2
√
2
δ2.

Thus

λmin(V+) ≥

√
1− δ − 1

2
√
2
δ2. (5.22)

On the other hand, using the definition of δ, we have

δ (V+) = δ(X+, S+;µ) = ∥I − V+∥F

=
∥∥(I + V+)

−1 (I − V 2
+

)∥∥
F

=

√√√√ n∑
i=1

(
1

1 + λi (V+)
(1− λ2i (V+))

)2

≤

√√√√ n∑
i=1

(
1

1 + λmin (V+)
(1− λ2i (V+))

)2

≤ 1

1 + λmin (V+)

√√√√ n∑
i=1

(1− λ2i (V+))
2

≤ 1

1 + λmin (V+)

∥∥I − V 2
+

∥∥
F

≤ 1

1 + λmin (V+)
∥I − V −DXS∥F

≤ 1

1 + λmin (V+)
(∥I − V ∥F + ∥DXS∥F ) ,
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then

δ (V+) ≤
1

1 + λmin (V+)

[
δ +

1

2
√
2
δ2
]
. (5.23)

Now, in view of (5.22) and (5.23) we get

δ (V+) ≤ 1

1 +
√

1− δ − 1
2
√
2
δ2

[
δ +

1

2
√
2
δ2
]

≤ δ +
1

2
√
2
δ2.

This completes the proof.

In the next lemma, we give a majorization of the duality gap after taking a full

NT-step.

Lemma 5.12. Let δ = δ(X,S;µ). Then the duality gap satisfies

X+ • S+ ≤ µn (1 + δ) .

Proof. Since M is a skew-symmetric matrix, using (5.14) then

X+ • S+ = µTr
(
V 2
+

)
= µTr (V +DXS +M)

= µTr (V )

= µ

n∑
i=1

λi (V )

≤ µnλmax (V ) .

This last inequality and Lemma 5.7 give

X+ • S+ ≤ µn (1 + δ) .

This completes the proof.

The next lemma shows that the algorithm is well-defined.

Lemma 5.13. Let δ = δ(X,S;µ) <
√
2(
√√

2 + 1− 1) and µ+ = (1− θ)µ, where 0 < θ < 1.

Then

δ(X+, S+;µ+) ≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .

Moreover, if δ < 1
2
, θ = 1

7
√
n

and n ≥ 2, then δ(X+, S+;µ+) <
1
2
.
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Proof. From the definition of δ, we obtain

δ(X+, S+;µ+) =

∥∥∥∥∥I −
√
X+S+

µ+

∥∥∥∥∥
F

=
1√

(1− θ)

∥∥∥√(1− θ)I − V+

∥∥∥
F

=
1√

(1− θ)

∥∥∥∥(√(1− θ)I + V+

)−1 (
(1− θ)I − V 2

+

)∥∥∥∥
F

≤ 1√
(1− θ)

(√
(1− θ) + λmin (V+)

) ∥∥(1− θ)I − V 2
+

∥∥
F

≤ 1√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
) ∥(1− θ)I − V −DXS∥F

≤ 1√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
) [∥(1− θ)I − V ∥F + ∥DXS∥F ]

≤ 1√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
) [∥−θI∥F + ∥I − V ∥F + ∥DXS∥F ]

≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) ,

which proves the first part of the lemma.

Now, suppose that δ < 1
2

and θ = 1
7
√
n
. Then, we obtain

δ(X+, S+;µ+) ≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
)

<

1
7
+ 1

2
+ 1

8
√
2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .

Using n ≥ 2,we get
√
1− θ =

√
1− 1

7
√
n
≥
√

1− 1
7
√
2
.Also, δ < 1

2
gives

√
1− δ − 1

2
√
2
δ2 >√

1
2
− 1

8
√
2
. Taking all these inequalities into consideration, we conclude

δ(X+, S+;µ+) <

1
7
+ 1

2
+ 1

8
√
2√

1− 1
7
√
2

(√
1− 1

7
√
2
+
√

1
2
− 1

8
√
2

)
= 0.485 14 <

1

2
.

This completes the proof.

In the next lemma, we give an upper bound for the total number of iterations

produced by the algorithm given in Figure 5.1.
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Lemma 5.14. Assume that the pairX0and S0 are strictly feasible, µ0 = X0•S0

n
and δ(X0, S0;µ0) <

1
2
. Moreover, let Xk and Sk be the matrices obtained after k iterations. Then, the inequality

Xk • Sk < ε is satisfied when

k ≥ 1

θ
log

( 3
2
µ0n

ε

)
.

Proof. After k iterations we have µk = (1− θ)kµ0. From Lemma 5.12 and δ(X,S;µ) < 1
2
,

we get

Xk • Sk ≤ µkn (1 + δ) < (1− θ)k
3

2
µ0n.

Hence, the inequality Xk • Sk < ε holds if

(1− θ)k
3

2
µ0n ≤ ε.

By taking logarithms of both sides, we obtain

k log(1− θ) ≤ log (ε)− log

(
3

2
µ0n

)
.

As θ ≤ − log(1− θ), we see that the inequality is valid if

kθ ≥ log

(
3

2
µ0n

)
− log (ε) .

Hence,

k ≥ 1

θ
log

( 3
2
µ0n

ε

)
.

This completes the proof.

Theorem 5.15. Suppose that µ0 = 2
3
. If we consider the default values for θ and τ, we obtain

that the algorithm given in Figure 5.1 requires no more than

O
(√

n log
n

ε

)
interior-point iterations. Hence, the resulting vectors satisfy Xk • Sk < ε. This means that the

currently best-known iteration bound for the algorithm with small-update method is archived.

Proof. By replacing µ0 = 2
3

in Lemma 5.14, the result holds.

5.5 Numerical experiments

In order to compare the efficiency of our algorithm with the existing methods, we offer

a comparative numerical study between our approach presented in this paper and the
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algorithm given by L. Guerra in 2022 [32]. Different values of the update barrier θ are

presented to show their influence in reducing the number of iterations produced by

the two algorithms as well as the time necessary for optimality. The implementation is

manipulated in Matlab R2018a. The accuracy parameter taken is ε = 10−4.

Note that L. Guerra [32] took in her approach the function ψ(t) = tp, p ≥ 2 and

showed that the minimal number of iterations is achieved for p = 2. For this reason,

in our computational study, we consider p = 2. In the following tables of results, we

note by Itr G and Itr Z the iteration number produced by Guerra’s approach [32] and

our approach, respectively. Furthermore, TG(s) and TZ(s) represent the execution

time necessary for optimality in seconds using Guerra’s approach and our approach,

respectively.

Example 5.16. [76]

Consider the following SDP problem

A1 =



0 1 0 0 0

1 2 0 0 −1

0 0 0 0 1

0 0 0 −2 −1

0 −1 1 −1 −2


, A2 =



0 0 −2 2 0

0 2 1 0 2

−2 1 −2 0 1

2 0 0 0 0

0 2 1 0 2


,

A3 =



2 2 −1 −1 1

2 0 2 1 1

−1 2 0 1 0

−1 1 1 −2 0

1 1 0 0 −2


, C =



3 3 −3 1 1

3 5 3 1 2

−3 3 −1 1 2

1 1 1 −3 −1

1 2 2 −1 −1


, b =


−2

2

−2

 .

We take: X0 = I , y0 =
(
1 1 1

)T
and S0 = I as a feasible starting points. The

numerical results of this problem are summarized in Table 5.1.

Example 5.17. [32] Let us consider the SDP problem with variable size. We take n = 2m,

and

Ak(i, j) =


1 if i = j = k

1 if i = j = m+ k

0 otherwise

, k = 1, ...,m.
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θ Itr G TG(s) Itr Z TZ(s)

0.1 104 0.2614 105 0.2684

0.3 32 0.0332 33 0.0335

0.5 20 0.0245 18 0.0230

0.7 18 0.0232 11 0.0180

0.9 17 0.0212 06 0.0166

Table 5.1: Numerical results of SDP problem 5.16

C(i, j) =

 −1 if i = j = 1, ...,m

0 otherwise
, i, j = 1, ..., n.

and

b(i) = 2, i = 1, ...,m.

We consider the following starting points

X0 =


2− γ if i = j = 1, ...,m

γ if i = j = m+ 1, ..., n

0 otherwise

,

y0(i) = − 1
γ
, i = 1, ...,m,

and

S0(i, j) =


−1 + 1

γ
if i = j = 1, ...,m

1
γ

if i = j = m+ 1, ..., n

0 otherwise

,

where, γ = 2−
√
2. An exact optimal solution of Problem 5.17 is given by

X∗(i, j) =

 2 if i = j = 1, ...,m

0 otherwise
,

y∗(i) = −1, i = 1, ...,m,

and

S∗(i, j) =

 1 if i = j = m+ 1, ..., n

0 otherwise
.
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The numerical results of this problem are summarized in Table 5.2.

(m,n) θ Itr G TG(s) Itr Z TZ(s)

(5,10 ) 0.1 111 0.21 112 0.18

0.3 34 0.07 35 0.06

0.5 21 0.06 19 0.04

0.7 19 0.04 12 0.03

0.9 18 0.04 07 0.02

(15, 30) 0.1 121 25.54 122 25.47

0.3 37 7.71 38 8.23

0.5 22 4.90 21 4.62

0.7 20 4.34 13 3.07

0.9 20 4.21 08 1.59

(25, 50) 0.1 126 423.36 127 593.69

0.3 39 178.05 39 182.72

0.5 23 108.98 21 102.40

0.7 21 99.98 13 43.98

0.9 21 98.14 08 38.86

(40, 80) 0.1 131 8409.86 132 8451.87

0.3 40 2774.87 41 2885.30

0.5 24 1649.02 22 1510.23

0.7 22 1536.65 14 988.40

0.9 21 1448.37 08 558.71

Table 5.2: Numerical results of SDP problem 5.17

Example 5.18 (Random SDP [52]). The test problem is generated as follows: After

inputting two positive integers m,n, MATLAB language generates m matrices Ri ∈

Rn×n, i = 1, . . . ,m randomly. Then we take Ai =
RT

i +Ri

2
, bi = Tr(Ai), and C =

∑m
i=1Ai +

I to obtain an SDP and it’s dual with an initial strictly feasible primal-dual point

(X0, y0, S0) = (I, e, I).

The numerical results of this problem are summarized in Table 5.3.
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(m,n) θ Itr G TG(s) Itr Z TZ(s)

(05,15 ) 0.1 115 1.37 116 1.04

0.3 35 0.33 36 0.34

0.5 21 0.23 20 0.23

0.7 14 0.24 08 0.16

0.9 13 0.20 06 0.11

(10,35) 0.1 123 84.47 124 89.29

0.3 38 22.82 38 22.89

0.5 23 13.86 21 12.51

0.7 11 12.56 07 7.90

0.9 11 7.96 05 6.80

(05,50) 0.1 126 510.26 127 514.43

0.3 39 152.41 39 153.39

0.5 13 99.79 11 82.07

0.7 10 69.98 07 46.79

0.9 10 78.21 05 39.17

(40,40) 0.1 124 172.34 125 178.32

0.3 38 61.03 39 62.96

0.5 23 30.34 21 27.87

0.7 13 43.89 08 11.43

0.9 13 30.69 06 09.24

(30,50) 0.1 126 523.33 127 546.04

0.3 39 160.68 39 163.83

0.5 23 116.18 21 93.03

0.7 11 106.98 07 78.14

0.9 11 104.63 05 28.64

Table 5.3: Numerical results of Random SDP problem 5.18
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Example 5.19 (Max-Cut problem [52]).


minL •X

diag(X) = e
4
,

X ⪰ 0.

where L = A − Diag(Ae), e is the vector of all components equal to 1, and A is the

weighted adjacency matrix of a graph [35]. We choose the following feasible starting

point:

X0 =
1

4
I, y0 = abs(L)e, S0 = L− Diag(y0).

The numerical results of this problem are summarized in Table 5.4.

(m,n) θ Itr G TG(s) Itr Z TZ(s)

(10,10) 0.1 136 0.45 137 0.47

0.3 42 0.12 42 0.15

0.5 25 0.11 23 0.10

0.7 11 0.08 07 0.07

0.9 11 0.07 06 0.06

(15,15) 0.1 143 1.84 144 1.89

0.3 44 0.65 44 0.55

0.5 26 0.34 24 0.31

0.7 13 0.29 08 0.18

0.9 13 0.26 07 0.13

(30,30) 0.1 156 54.36 157 61.68

0.3 48 16.27 48 16.94

0.5 27 13.65 25 12.14

0.7 14 11.57 10 8.47

0.9 14 6.47 09 5.32

Table 5.4: Numerical results of Max-Cut problem 5.19
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Example 5.20 (Educational testing problem (ETP) [52]).
max eTy,

A− Diag(y) ⪰ 0,

y ≥ 0.

where A ∈ S++
m . This problem can readily be expressed as a dual form of SDP, involving

symmetric matrices of dimension n×n, where n = 2m. We choose the following feasible

starting point:

X0 =

3Im 0

0 2Im

 , y0 = 0.4λmin(A)e, S0 =

A− Diag(y0) 0

0 Diag(y0)

 .
The numerical results of this problem are summarized in Table 5.5.

(m,n) θ Itr G TG(s) Itr Z TZ(s)

(08,16) 0.1 128 1.51 129 1.62

0.3 39 0.43 40 0.55

0.5 24 0.29 22 0.24

0.7 22 0.28 14 0.17

0.9 21 0.25 08 0.13

(15,30) 0.1 134 35.71 135 36.05

0.3 41 11.18 42 11.19

0.5 25 6.40 23 6.36

0.7 22 5.99 14 3.98

0.9 22 5.03 08 1.83

(30,60) 0.1 141 1576.90 142 1587.81

0.3 43 471.47 44 478.23

0.5 26 283.62 24 264.02

0.7 23 250.15 15 162.33

0.9 23 239.79 08 81.13

Table 5.5: Numerical results of ETP problem 5.20
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Comments:

The numerical results show that the number of iterations and the execution time

necessary for optimality in the two approaches depends on the values of parameter

θ. It is quite surprising that when the value of θ increases, the number of iterations

and the computational time decrease. On the other hand, our algorithm offers better

numerical results in terms of the number of iterations and the computation time than

that of Guerra algorithm [32]. This observation is confirmed more and more when the

value of θ and the size of the problem increase.

5.6 Conclusion

In this chapter, we have described a new primal-dual path-following method to solve

semidefinite programs. Our approach is a generalization of [93] for linear optimiza-

tion. We have shown that the best result of iteration bounds for small-update methods

was achieved, namely O(
√
n log n

ε
)-iterations. Moreover, we presented some numerical

results, which proved the efficiency of our algorithm. Finally, we point out that the

implementation with the update parameter θ reduced significantly the number of itera-

tions produced by this algorithm and leads it to reach its real numerical performances.

These numerical results consolidate and confirm our theoretical purpose.
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6
Efficient primal-dual interior point algorithm for

convex quadratic semidefinite optimization

In this chapter, we introduce a primal-dual interior point algorithm for convex quadratic

semidefinite optimization. This algorithm is based on an extension of the technique

presented in the work of Zhang and Xu for linear optimization. The symmetrization

of the search direction is based on the Nesterov-Todd scaling scheme. Our analysis

demonstrates that this method solves efficiently the problem within polynomial time.

Notably, the short-step algorithm achieves the best-known iteration bound, namely

O(
√
n log n

ε
)-iterations. The numerical experiments conclude that the newly proposed

algorithm is not only polynomial but requires a number of iterations clearly lower than

that obtained theoretically. The set of those results were published in J. Appl. Math.

Comput. [91].

6.1 The central path

In this section, we recall the concept of the central path with its accompanying properties,

and then proceed to derive the classical search direction for the convex quadratic

semidefinite optimization (CQSDO).
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We consider the CQSDO problem defined on Sn by
minC •X + 1

2
X •Q(X)

Ai •X = bi for i = 1, . . . ,m,

X ⪰ 0,

(CQSDP)

and its dual problem 
max bTy − 1

2
X •Q(X)

m∑
i=1

yiAi + S −Q(X) = C,

S ⪰ 0.

(CQSDD)

Where b ∈ Rm, the matrices C and Ai, i = 1, . . . ,m, are given and belong to the linear

space of n× n symmetric matrices Sn and Q : Sn → Sn is a self-adjoint linear operator

on Sn, i.e., A •Q(B) = B •Q(A) ∀A,B ∈ Sn.

Throughout the chapter, we assume that:

• The matrices Ai, i = 1, . . . ,m, are linearly independent.

• The transformation Q is monotone, i.e., X •Q(X) ≥ 0 for all X ∈ Sn.

• The problems (CQSDP ) and (CQSDD) satisfy the interior-point condition (IPC),

i.e., there exist (X0 ≻ 0, y0, S0 ≻ 0) such that

Ai •X0 = bi,∀i = 1, . . . ,m;
m∑
i=1

y0iAi + S0 −Q(X0) = C. (IPC)

It is well-known that, under the previous assumptions, finding an optimal solution

of both problems (CQSDP ) and (CQSDD) is equivalent to solve the Karush–Kuhn–

Tucker optimality conditions of (CQSDP ) and (CQSDD)
Ai •X = bi, i = 1, . . . ,m, X ⪰ 0,
m∑
i=1

yiAi + S −Q(X) = C, S ⪰ 0,

XS = 0.

(6.1)

The basic idea of primal-dual IPMs is to replace the third equation in system (6.1),

the so-called complementarity condition for (CQSDP ) and (CQSDD), by the param-

eterized equation XS = µI , with µ > 0. This substitution results in the following
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system 
Ai •X = bi, i = 1, . . . ,m, X ≻ 0,
m∑
i=1

yiAi + S −Q(X) = C, S ≻ 0,

XS = µI.

(6.2)

Under the previously mentioned assumptions, for each µ > 0, the system (6.2) has

a unique solution denoted by (X(µ), y(µ), S(µ)) called the µ-center of both problems

(CQSDP ) and (CQSDD) [60]. The set of all µ-centers defines a homotopy called the

central path of (CQSDP ) and (CQSDD). Essentially, the central path represents a

continuous trajectory of solutions parameterized by µ, where each µ-center corresponds

to a specific point along this path. As µ approaches zero, the central path converges to a

limit solution, which satisfies the complementarity condition. This limit solution serves

as a primal-dual optimal solution for both problems (CQSDP ) and (CQSDD).

6.2 New search direction

This section introduces a novel class of search direction for CQSDO inspired by Zhang

and Xu’s method for LO as described in [93]. First, let’s consider the Nesterov-Todd

symmetrization scheme as defined in [58, 59] by

P = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2. (6.3)

Furthermore, we define D = P 1/2 where P 1/2 denotes the symmetric square root of P .

The matrix D is used to scale both matrices X and S to the same matrix V defined by

V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ
(D−1XSD)1/2.

It’s important to note that the matrices D and V are symmetric and positive definite.

Moreover, we have

V 2 =

(
1
√
µ
D−1XD−1

)(
1
√
µ
DSD

)
= D−1XS

µ
D.

Also, from the third equation of the system (6.2), we deduce that

XS = µI ⇔ XS

µ
= I ⇔ V 2 = I. (6.4)

Additionally, we have

XS = µI ⇔ V =
1
√
µ
(D−1XSD)1/2 =

1
√
µ
(D−1µID)1/2 = I. (6.5)



6.2 New search direction 121

Based on equations (3.7) and (6.5), we deduce

V 2 = V.

Transforming the left-hand side of this last equation to the XS space, we obtain

XS = µDV D−1.

In light of this, we can express system (6.2) in the following form
Ai •X = bi, i = 1, . . . ,m, X ≻ 0,
m∑
i=1

yiAi + S −Q(X) = C, S ≻ 0,

XS = µDV D−1.

(6.6)

According to Zhang and Xu’s idea [93], we assume that the variance matrix V is fixed.

Applying Newton’s method to the system (6.6) yields the following set of equations for

the search direction ∆X , ∆y and ∆S
Ai •∆X = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +∆S −Q(∆X) = 0,

∆X +X∆SS−1 = µDV D−1S−1 −X.

(6.7)

It is clear that ∆S is symmetric, as implied by the second equation of the system

(6.7). However, a crucial observation is that ∆X is not necessarily symmetric, be-

cause X∆SS−1 may not be symmetric. Several researchers have proposed methods

for symmetrizing the third equation in (6.7) such that the resulting new system had a

unique symmetric solution. In this context, we will consider the symmetrization scheme

yielding the NT-direction [58, 59] defined in (3.37).

In the Nesterov-Todd scheme, we replace the term X∆SS−1 in the last equation of

(6.7) by P∆SP T . The system (6.7) becomes
Ai •∆X = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +∆S −Q(∆X) = 0,

∆X + P∆SP T = µDV D−1S−1 −X.

(6.8)

Let us further define

Ai =
1
√
µ
DAiD, ∀i = 1, ...,m, DX =

1
√
µ
D−1∆XD−1, DS =

1
√
µ
D∆SD. (6.9)
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Obviously, with the notations (6.9) and from (6.8), the scaled NT search directions

(DX ,∆y,DS) can be represented as follows
Ai •DX = 0, i = 1, . . . ,m,
m∑
i=1

∆yiAi +DS − Q̄(DX) = 0,

DX +DS = PV .

(6.10)

Where

PV = I − V, (6.11)

and

Q̄(DX) = DQ(DDXD)D =
1
√
µ
DQ(∆X)D.

Remark 6.1. Note that, In the CQSDO case and due to the first two equations of the

system (6.10), we have

DX •DS =
1

µ
∆X •Q(∆X) ≥ 0. (6.12)

This means that DX and DS are not orthogonal.

Now, For the analysis of the algorithm and according to (6.10), we define a proximity

measure as follows

δ(V ) = δ(X,S;µ) = ∥PV ∥F = ∥I − V ∥F . (6.13)

It’s clear that

δ(V ) = 0 ⇔ V = I ⇔ XS = µDV D−1. (6.14)

Hence, the value of δ(V ) can be considered as a measure for the distance between the

given pair (X, y, S) and the µ-center (X(µ), y(µ), S(µ)).

Now, we can describe the algorithm more formally. The algorithm starts with a

strictly feasible initial point (X0, y0, S0) such that δ(X0, S0;µ0) < τ where 0 < τ < 1 for

an arbitrary parameter µ0 > 0. The full Nesterov-Todd step between successive iterates

for the system (6.6) is defined as (X+, y+, S+) = (X +∆X, y +∆y, S +∆S) where the

directions ∆X , ∆y and ∆S are solutions for the linear system (6.8). Then it updates the

parameter µ by the factor 1− θ with 0 < θ < 1, and targets a new µ−center and so on.

This procedure is repeated until the stopping criterion X • S ≤ ε is satisfied for a given

accuracy parameter ε.

Therefore, the generic path-following Nesterov-Todd step interior point algorithm

for CQSDO is described in Figure 6.1 as follows.



6.3 Convergence Analysis 123

Generic Primal-dual IPM for CQSDO

Input:

a proximity parameter 0 < τ < 1 (default τ = 1
2
);

an accuracy parameter ε > 0;

an update parameter θ, 0 < θ < 1 (default θ = 1
7
√
n
);

a strictly feasible point (X0, y0, S0) and µ0 = X0•S0

n
such that δ(X0, y0, S0) < τ ;

begin

X := X0; y := y0; S := S0; µ := µ0

while X • S ≥ ε do

µ := (1− θ)µ;

solve the system (6.10) via (6.9) to obtain (∆X,∆y,∆S);

X := X +∆X; y := y +∆y; S := S +∆S;

end while

end.

Figure 6.1: Generic algorithm for CQSDO

6.3 Convergence Analysis

In the following section, we will present some results of complexity analysis.

To facilitate the analysis of algorithm given in Figure 6.1, we initially present the

following technical results, which will be used later.

Lemma 6.2. ([25, Lemma 6.1]) Suppose that X ≻ 0 and S ≻ 0. If

det (X(α)S(α)) > 0, ∀0 ≤ α ≤ α̃,

then X(α̃) ≻ 0 and S(α̃) ≻ 0.

Lemma 6.3. ([25, Lemma 6.2]) Let Q ∈ Sn
++, and M ∈ Rn×n be skew-symmetric, i.e., M =

−MT . Then, det (Q+M) > 0. Moreover, if the eigenvalues of Q+M are real, then

0 < λmin(Q) ≤ λmin(Q+M) ≤ λmax(Q+M) ≤ λmax(Q).

Lemma 6.4. ([25, Lemma 6.3.2]) Let DXS = 1
2
(DXDS +DSDX) , the symmetric part of

DXDS, then we have

∥DXS∥F ≤ 1

2
√
2
∥PV ∥2F .
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Lemma 6.5. Let (DX ,∆y,DS) be a solution of (6.10) and µ > 0. If δ = δ(X,S;µ), then

0 ≤ DX •DS ≤ 1

2
δ2. (6.15)

Proof. For the left hand side of (6.15), it follows directly from (6.12). For the right hand

side of it, from (6.10), we have

δ2 = ∥DX +DS∥2F = ∥DX∥2F + ∥DS∥2F + 2DX •DS,

this means that

δ2 ≥ 2DX •DS,

consequently,

0 ≤ DX •DS ≤ 1

2
δ2.

This completes the proof.

In the next lemma, we give some basic properties about the proximity measure δ(V ).

Lemma 6.6. For any i = 1, ..., n, we have

1− δ(V ) ≤ λi(V ) ≤ 1 + δ(V ).

Proof. From (6.13), we have

δ(V ) = ∥I − V ∥F

=

√√√√ n∑
i=1

(1− λi (V ))2

≥ |1− λi (V )| , ∀i = 1, ..., n.

Using this last inequality, the result easily follows.

In the following lemma, we state a condition which ensures the feasibility of the full

Nesterov-Todd step.

Lemma 6.7. Let (X,S) be a strictly feasible primal-dual solution of (CQSDP ) and (CQSDD).

Hence, X+ ≻ 0 and S+ ≻ 0 if and only if V +DXS ≻ 0.

Proof. Let

X+ = X +∆X and S+ = S +∆S. (6.16)
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We introduce a step length α ∈ [0, 1] and we define

X(α) = X + α∆X and S(α) = S + α∆S. (6.17)

Thus X(0) = X , X(1) = X+ and one can introduce similar notations for S. Applying

(6.9) and (6.17), we have

X(α)S(α) = XS + α(X∆S +∆XS) + α2∆X∆S.

= µD
(
V 2 + α (DXV + V DS) + α2DXDS

)
D−1

∼ µ
(
V 2 + α (DXV + V DS) + α2DXDS

)
= Q(α) +M(α). (6.18)

Where

Q(α) = µ

(
V 2 +

1

2
α (DXV + V DS + V DX +DSV ) +

1

2
α2 (DXDS +DSDX)

)
,

and

M(α) = µ

(
1

2
α (DXV + V DS − V DX −DSV ) +

1

2
α2 (DXDS −DSDX)

)
.

The matrix M(α) is skew-symmetric, for each 0 ≤ α ≤ 1. Lemma 6.3 implies that the

determinant of X(α)S(α) is positive if the matrix Q(α) ≻ 0. To this end, from (6.10) and

(6.11), we have

Q(α) = µ

(
V 2 +

1

2
α (DXV + V DS + V DX +DSV ) + α2DXS

)
= µ

(
(1− α)V 2 + α

(
V 2 +

1

2
(PV V + V PV )

)
+ α2DXS

)
= µ

(
(1− α)V 2 + α

(
V 2 +

1

2
((I − V )V + V (I − V )) + αDXS

))
= µ

(
(1− α)V 2 + α (V + αDXS)

)
. (6.19)

Suppose that V + DXS ≻ 0, then, Q(1) = µ (V +DXS) ≻ 0, also Q(0) = µV 2 ≻ 0.

Furthermore, V + DXS ≻ 0 implies that αDXS ≻ −αV for any 0 < α < 1, then

Q(α) ≻ µ (1− α) (V 2 + αV ) ≻ 0, which means that Q(α) ≻ 0 for all 0 ≤ α ≤ 1. Lemma

6.3 implies that det (X(α)S(α)) > 0. Moreover, since X = X(0) ≻ 0 and S = S(0) ≻ 0.

Lemma 6.2 implies that X+ = X(1) ≻ 0 and S+ = S(1) ≻ 0 for α̃ = 1. This completes

the proof of the lemma.
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Lemma 6.8. Let δ = δ(X,S;µ) as defined in (6.13), µ > 0 and (X,S) be any pair of positive

definite matrices. If δ <
√
2
(√√

2 + 1− 1
)

, then the full NT-step for CQSDO is strictly

feasible, hence X+ ≻ 0 and S+ ≻ 0.

Proof. On one hand, by Lemma 6.7 X+ ≻ 0 and S+ ≻ 0 if and only if V + DXS ≻ 0.

This last holds for ∥DXS∥F < λmin (V ) . In fact

V +DXS ≻ 0 ⇔ λmin (V +DXS) > 0. (6.20)

Since,

λmin (V +DXS) ≥ λmin (V )− |λmin (DXS)|

≥ λmin (V )− ∥DXS∥F . (6.21)

Then, (6.20) holds for ∥DXS∥F < λmin (V ) .

On the other hand, it follows from Lemma 6.4 and Lemma 5.7, that one has

∥DXS∥F ≤ 1

2
√
2
δ2 and 1− δ ≤ λmin(V ).

It is easily verified that ∥DXS∥F < λmin (V ) certainly holds for 1
2
√
2
δ2 < 1− δ, which

is equivalent to δ <
√
2
(√√

2 + 1− 1
)

. Thus, V +DXS ≻ 0 holds if

δ <
√
2
(√√

2 + 1− 1
)

. This completes the proof.

The next lemma, shows the influence of a full NT-step on the duality gap.

Lemma 6.9. Let δ = δ(X,S;µ). Then the duality gap satisfies

X+ • S+ ≤ µ

(
n (1 + δ) +

1

2
δ2
)
.

Proof. Since M is a skew-symmetric matrix, Then

X+ • S+ = µTr
(
V 2
+

)
= µTr (V +DXS +M)

= µ [Tr (V ) + Tr (DXS)]

= µ

[
Tr (V ) +

1

2
Tr (DXDS) +

1

2
Tr (DSDX)

]
= µ

n∑
i=1

λi (V ) + Tr (DXDS) , because Tr (DXDS) = Tr (DSDX) .

≤ µnλmax (V ) +DX •DS.
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This last inequality, Lemma 6.5 and Lemma 6.6 give

X+ • S+ ≤ µ

(
n (1 + δ) +

1

2
δ2
)
,

which completes the proof.

The next lemma shows that the algorithm is well defined.

Lemma 6.10. Let δ = δ(X,S;µ) <
√
2
(√√

2 + 1− 1
)

and µ+ = (1−θ)µ, where 0 < θ < 1.

Then

δ(X+, S+;µ+) ≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .

Furthermore, if δ < 1
2
, θ = 1

7
√
n

and n ≥ 2, then δ(X+, S+;µ+) <
1
2
.

Proof. Let α = 1. Then from (6.18), we obtain

V 2
+ ∼ X+S+

µ
= V +DXS +M, (6.22)

with

M =
1

2
(DXV + V DS − V DX −DSV +DXDS −DSDX) ,

it should be noted that M is a skew-symmetric matrix. Lemma 6.3 implies that

λmin(V
2
+) ≥ λmin(V +DXS).

Using Lemma 6.4, Lemma 6.6 and (6.21), we get

λmin(V
2
+) ≥ λmin (V )− ∥DXS∥F

≥ 1− δ − 1

2
√
2
δ2.

Thus

λmin(V+) ≥

√
1− δ − 1

2
√
2
δ2. (6.23)
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Now, from the definition of δ, we get

δ(X+, S+;µ+) =

∥∥∥∥∥I −
√
X+S+

µ+

∥∥∥∥∥
F

=
1√

(1− θ)

∥∥∥√(1− θ)I − V+

∥∥∥
F

=
1√

(1− θ)

∥∥∥∥(√(1− θ)I + V+

)−1 (
(1− θ)I − V 2

+

)∥∥∥∥
F

≤
∥∥(1− θ)I − V 2

+

∥∥
F√

(1− θ)
(√

(1− θ) + λmin (V+)
)

≤ ∥(1− θ)I − V −DXS −M∥F√
(1− θ)

(√
(1− θ) + λmin (V+)

)
≤ ∥(1− θ)I − V ∥F + ∥DXS +M∥F√

(1− θ)
(√

(1− θ) + λmin (V+)
) . (6.24)

We have

∥DXS +M∥2F = Tr
(
(DXS +M)2

)
,

but M = −MT , then

∥DXS +M∥2F = Tr(D2
XS)− Tr(MMT ),

MMT is symmetric positive semidefinite, then Tr(MMT ) ≥ 0 and this means that

∥DXS +M∥2F ≤ Tr(D2
XS) = ∥DXS∥2F .

From this last inequality. (6.13), (6.23) and (6.24), we deduce

δ(X+, S+;µ+) ≤ ∥−θI∥F + ∥I − V ∥F + ∥DXS∥F√
(1− θ)

(√
(1− θ) +

√
1− δ − 1

2
√
2
δ2
)

≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .

Which proves the first part of the lemma.

Now, suppose that δ < 1
2

and θ = 1
7
√
n
. Then, we obtain

δ(X+, S+;µ+) ≤
θ
√
n+ δ + 1

2
√
2
δ2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
)

<

1
7
+ 1

2
+ 1

8
√
2

√
1− θ

(√
1− θ +

√
1− δ − 1

2
√
2
δ2
) .
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Using n ≥ 2, we get
√
1− θ =

√
1− 1

7
√
n
≥
√

1− 1
7
√
2
. Also, δ < 1

2
gives√

1− δ − 1
2
√
2
δ2 >

√
1
2
− 1

8
√
2
. Taking all these inequalities into consideration, we con-

clude

δ(X+, S+;µ+) <

1
7
+ 1

2
+ 1

8
√
2√

1− 1
7
√
2

(√
1− 1

7
√
2
+
√

1
2
− 1

8
√
2

)
= 0.485 14 <

1

2
.

This completes the proof.

In the next lemma, we give an upper bound for the total number of iterations

produced by the algorithm given in Figure 6.1.

Lemma 6.11. Assume that the pair (X0, S0) is strictly feasible, µ0 = X0•S0

n
and δ(X0, S0;µ0) <

1
2
. Moreover, let Xkand Sk be the matrices obtained after k iterations. Then, the inequality

Xk • Sk < ε is satisfied when

k ≥ 1

θ
log

( 3
2
µ0n

ε

)
.

Proof. After k iterations we have µk = (1− θ)kµ0. From Lemma 6.9 and since δ < 1
2
, we

get

Xk • Sk ≤ µ

(
n (1 + δ) +

1

2
δ2
)
< (1− θ)kµ0

(
3

2
n+

1

8

)
.

Hence, the inequality Xk • Sk < ε holds if

(1− θ)kµ0

(
3

2
n+

1

8

)
≤ ε.

By taking logarithms of both sides, we obtain

k log(1− θ) ≤ log (ε)− log

(
µ0

(
3

2
n+

1

8

))
≤ log (ε)− log

(
3

2
µ0n

)
.

As θ ≤ − log(1− θ), we see that the inequality is valid if

kθ ≥ log

(
3

2
µ0n

)
− log (ε) .

Hence,

k ≥ 1

θ
log

( 3
2
µ0n

ε

)
.

This completes the proof.
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Theorem 6.12. Suppose that µ0 = 2
3
. If we consider the default values for θ and τ, we obtain

that the algorithm given in Figure 6.1 requires no more than

O
(√

n log
n

ε

)
,

interior-point iterations. The resulting matrices satisfy Xk • Sk < ε. This means that the

currently best known iteration bound for the algorithm with small-update method is archived.

Proof. Replacing µ0 = X0•S0

n
= 2

3
in Lemma 6.11, the result holds.

6.4 Numerical experiments

This section presents numerical results obtained by applying our algorithm to a set

of CQSDO test problems taken from the reference [33]. These test problems include

evaluations of the nearest correlation matrix (NCM). It’s worth noting that NCM is an

important problem within the realm of finance. Throughout our numerical experiments,

we investigate various values for the update barrier parameter θ to demonstrate their

impact on reducing the number of iterations required by our algorithm. The imple-

mentation was executed using Matlab. For all experiments, we set the barrier update

parameter θ to values within the range {0.1, 0.3, 0.5, 0.7, 0.9}, while maintaining an ac-

curacy parameter ε = 10−4. We denote by "Iter" the number of iterations performed

by the algorithm, "T (s)" the time in seconds necessary to get an approximate optimal

solution and "Z∗" the optimal value.

Example 6.13. We consider the following CQSDO problem with m = 2, n = 3, Q(X) =

HXH such that

H =


√
2 0 0

0
√
2 0

0 0 0

 , A1 =


−1 0 0

0 1 0

0 0 0

 , A2 =


1 0 0

0 1 0

0 0 1

 , C =


−2 0 0

0 −4 0

0 0 0

 ,

b =

1

2

 .

We consider the following starting points

X0 =


0.4 0 0

0 1.4 0

0 0 0.2

 , y0 =

 0

−1.5

 , S0 =


0.3 0 0

0 0.3 0

0 0 1.5

 .

The obtained primal-dual optimal solution is
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X∗ =


0.5 0 0

0 1.5 0

0 0 0

 , y∗ =

 0

−1

 , S∗ =


0 0 0

0 0 0

0 0 1

 .

The obtained optimal value is: Z∗ = −4.5.

The numerical results of this problem are summarized in Table 6.1

θ 0.1 0.3 0.5 0.7 0.9

Iter 88 28 16 10 06

T (s) 0.0692 0.0483 0.0254 0.0364 0.0247

Table 6.1: Results of CQSDO Example 6.13

Example 6.14. Let us consider the CQSDO problem with variable size. We take n = 2m,

Q(X) = X,C[i, j] =

 −1 if i = j, i = 1, ...,m

0 otherwise
,

Ai[j, k] =

 1 if j = k = i or j = k = i+m

0 otherwise
, b[i] = 2 for i = 1, ...,m.

We consider the following starting points

X0[i, j] =


5
4

if i = j = 1, ...,m

3
4

if i = j = m+ 1, ..., n

0 otherwise

,

y0[i] = − 7
12

for i = 1, ...,m,

and

S0[i, j] =


5
6

if i = j = 1, ...,m

4
3

if i = j = m+ 1, ..., n

0 otherwise

,

An exact optimal solution of Example 6.14 is given by

X∗ =


1.5 if i = j = 1, ...,m

0.5 if i = j = m+ 1, ..., n

0 otherwise

,

y∗(i) = 0.5 for i = 1, ...,m, and S∗ = 0n×n.

The obtained optimal value is: Z∗ = −m
4

= −n
8

.

The numerical results of this problem for different sizes (m,n) are summarized in Table

6.2
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θ 0.1 0.3 0.5 0.7 0.9

m Iter T (s) Iter T (s) Iter T (s) Iter T (s) Iter T (s)

05 112 2.0231 34 1.2912 19 0.1996 13 0.1580 10 0.0891

10 119 17.8144 37 5.9705 20 3.4575 14 2.3935 11 1.6814

25 126 3896.84 39 1252.95 21 738.57 14 408.84 11 355.45

Table 6.2: Results of CQSDO Example 6.14

6.4.1 The nearest correlation matrix problem

The nearest correlation matrix problem (NCM) [71, 72, 80] is a fundamental optimiza-

tion problem that arises in various fields, including finance, statistics, and data analysis.

A correlation matrix is a square matrix that captures the relationships between vari-

ables, with diagonal elements representing perfect correlation with themselves and

off-diagonal elements lying between -1 and 1.

The NCM problem involves optimizing a given matrix to find the correlation matrix

that is closest to it while still adhering to the constraints of being a valid correlation

matrix. This optimization is crucial in applications such as portfolio optimization and

risk management, where ensuring the validity of correlation matrices is essential for

accurate analysis and decision-making.

Now, we delve into the mathematical formulation of the NCM problem. Specifically,

we aim to minimize a distance or discrepancy measure, such as the Frobenius norm, be-

tween the given matrix and the sought correlation matrix K while enforcing constraints

that ensure positive semidefiniteness and diagonal elements equal to 1. Thus, the NCM

problem can be formulated as

min
X

{
1

2
∥L(X −K)∥2F : diag(X) = e, X ∈ Sn

+

}
, (NCM)

where, K ∈ Sn, L : Sn → Sn is a self-adjoint linear operator on Sn and e is the all-one

vector of length n.

The NCM problem can be reformulated as a CQSDO with

C = −L2(K) = −L(L(K)), Q(X) = L2(X), b = e,
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and for i = 1, ..., n:

Ai[j, k] =

 1 if i = j = k,

0 otherwise.

Let’s consider the example bellow:

Example 6.15. Let the NCM problem for the data bellows: m = n = 3,

K =


0 −1 −1

−1 −1 −1

−1 −1 0

 and L(X) = X,

Then Q(X) = L2(X) = X and C = −L2(K) = −K, this gives

C =


0 1 1

1 1 1

1 1 0

 , A1 =


1 0 0

0 0 0

0 0 0

 , A2 =


0 0 0

0 1 0

0 0 0

 , A3 =


0 0 0

0 0 0

0 0 1

 , b = e.

We take X0 = I, y0 =


−1.5

−0.5

−1.5

 , S0 =


2.5 1 1

1 2.5 1

1 1 2.5

 .

The obtained primal-dual optimal solution is

X∗ =


1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1

 , y∗ =


0.5

1.5

0.5

 , S∗ =


0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

 .

The obtained optimal value is: Z∗ = 0.25.

The numerical results of this NCM problem are summarized in Table 6.3

θ 0.1 0.3 0.5 0.7 0.9

Iter 108 34 19 13 10

T (s) 0.1107 0.0454 0.0450 0.0429 0.0370

Table 6.3: Results of CQSDO Example 6.15

Example 6.16. We take the same data for the previous example with

L(X) = U
1
2XU

1
2 such that U =


2 0 −1

0 1 0

−1 0 2

 ∈ Sn
++.
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Then, Q(X) = UXU and C = −L2(K) = −Q(K) = −UKU =


−4 1 5

1 1 1

5 1 −4

 .

We take X0 = I, y0 =


−2

−1

−2

 , S0 =


3 1 1

1 3 1

1 1 3

 .

The obtained primal-dual optimal solution is

X∗ =


1 −0.7187 0.0441

−0.7187 1 −0.7187

0.0441 −0.7187 1

 , y∗ =


0.9365

1.1987

0.9365

 ,

S∗ =


0.0016 0.0023 0.0016

0.0023 0.0033 0.0023

0.0016 0.0023 0.0016

 .

The obtained optimal value is: Z∗ = −3.25.

The numerical results of this NCM problem are summarized in Table 6.4

θ 0.1 0.3 0.5 0.7 0.9

Iter 111 35 19 13 10

T (s) 0.1036 0.0459 0.0295 0.0114 0.0112

Table 6.4: Results of CQSDO Example 6.16

Comments:

The numerical results show that the iteration numbers of the algorithm and the

execution time necessary for optimality depend on the values of the parameter θ. Specif-

ically, as the value of θ increases, both the number of iterations and the computational

time decrease. Indeed, the number of iterations recorded in all the tested examples is

clearly lower than the obtained theoretical number.

6.5 Conclusion

We have introduced a novel primal-dual path-following method designed for solving

convex quadratic semidefinite programs. Our approach represents an extension of the

technique presented in the work of Zhang and Xu [93] for linear optimization. We have
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shown that our algorithm can efficiently solve the problem within polynomial time and

that the correspondent short-step algorithm has the best-known iteration bound, namely

O
(√

n log n
ε

)
iterations. Furthermore, we have presented a set of numerical tests that

are not only acceptable but also quite encouraging in their performance. Notably, we

have highlighted that by incorporating the update parameter θ into the implementation,

we can significantly reduce the number of iterations required by the algorithm, thus

aligning it more closely with its real numerical performance. These numerical results

consolidate and confirm our theoretical results.



General conclusion and future works

In this thesis, we have presented a theoretical and numerical study of interior point algo-

rithms for solving different optimization problems, such as linear optimization, convex

quadratic optimization, semidefinite optimization and convex quadratic semidefinite

optimization.

Firstly, we are interested in the resolution of linear programming, we adopted

one of these types of interior point methods which is based on a new direction of

Newton given by Darvay and Takàcs [20] and we proposed two functions ψ(t) = t
7
4

and ψ(t) = t
3
2 . We conducted a comprehensive theoretical study on the analysis and

complexity of the algorithms resulting from these functions. We thus established

comparative numerical experiments of our results with those of Darvay and Takàcs

specifically in some problems from the set of Netlib tests collection. The obtained results

for our new functions are significant and encouraging.

Secondly, we adopt the fundamental analysis employed in Zhang and Xu’s study [93]

and Darvay and Takàcs’ study [20] for LO to the CQP case to formulate a novel primal-

dual path-following interior-point algorithms for CQP. The best iteration bound for

the algorithms with small-update method was archived. Additionally, we established

comparative numerical experiments of our results with another existing method [13],

specifically in some problems from quadprog tests collection. The obtained results for

our approach based on the extension of Zhang and Xu’s work [93] are significant and

encouraging.

Thirdly, leveraging the advantages of the previous technique [93], we extended it to

more general problems such as semidefinite optimization. Specifically:

• For linear semidefinite optimization, we applied the fundamental analysis and

demonstrated that our algorithm achieves the best iteration bounds for small-

update methods, specifically O(
√
n log n

ε
) iterations. Our extensive numerical
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study, focusing on various SDO applications, validated the efficiency of our pro-

posed algorithm.

• For convex quadratic semidefinite optimization (CQSDO), our extended technique

efficiently solves CQSDO problems within polynomial time. The corresponding

short-step algorithm also achieves the best-known iteration bound, O(
√
n log n

ε
)

iterations. The numerical tests performed not only met expectations but also

showed highly encouraging performance.

Finally, we have highlighted that by incorporating the update parameter θ into the

implementation, we can significantly reduce the number of iterations required by all our

obtained algorithms, thus aligning it more closely with its real numerical performance.

These different works are important contributions that allow for improving the

complexity of algorithms and the numerical behavior of primal-dual interior point

methods in different optimization problems mentioned previously. The set of some

obtained results are published in international journals [86, 87, 89, 90] and others are

accepted to published in [88, 91].

Several interesting topics remain for further research:

1. The extension of algorithms presented in chapter 3 for other optimization problems

such as semidefinite problems.

2. The development of an infeasible full-Newton step interior point algorithm for

linear programming and convex quadratic programming based on our algorithms

presented in chapter 3 and chapter 4.

3. The search directions used in the SDO and CQSDO cases are all based on the

Nesterov-Todd symmetrization scheme. It may be possible to design similar algo-

rithms using other symmetrization schemes to obtain an improving polynomial-

time complexity bound.

4. The extension of the study presented in chapters 5 and 6 to semidefinite linear

complementarity problems.
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 :لخصم

 ية. من خلال استخدام تحويلات جبريةوثنال-وليةالنقاط الداخلية الأالأمثلة باستخدام طرق  سائلتتناول هذه الأطروحة حل م 

تربيعية البرمجة ال: البرمجة الخطية، التالية الأربع الأمثلة سائللمعادلات الوسطية، أجرينا دراسة نظرية وخوارزمية لمل مكافئة

عبر تحويلات جبرية  و سألةالتربيعية المحدبة. في كل م عرفةم والبرمجة نصف الخطية عرفةم البرمجة نصفالمحدبة، 

 خوارزمياتها. كلفةتحدودية  تقارب الخوارزميات المقترحة وتوفير معدل ثباتمتنوعة، قمنا بإ

 .بالغةذات أهمية  و مميزةمختلفة  تم تعزيز النتائج المحصل عليها من خلال تجارب عددية

 ،الثنوية-طرق النقاط الداخلية الأولية ،عرفةالبرمجة نصف م ،البرمجة التربيعية المحدبة ،البرمجة الخطية : كلمات مفتاحية

 اتجاه الانحدار. ،التحويل الجبري

Abstract:  

This thesis deals with solving optimization problems using primal-dual interior point methods. 

By employing algebraic transformations of centrality equations, we conducted a theoretical and 

algorithmic study on four optimization problems: linear programming, convex quadratic 

programming, linear semidefinite programming and convex quadratic semidefinite programming. 

For each problem, through various algebraic transformations, we demonstrated the convergence 

of the proposed algorithms and provided the rates of their polynomial algorithmic complexities. 

The obtained results are reinforced by highly significant numerical experiments. 

Keywords: Linear programming, Convex quadratic programming, Semidefinite programming, 

Primal-dual interior point method, Algebraic transformation, Descent direction. 

Résumé :  

Cette thèse concerne la résolution de quelques problèmes d’optimisation par des méthodes de 

point intérieure primale-duale. Moyennant la technique des transformations algébriques des 

équations de centralité, nous avons fait une étude théorique et algorithmique sur quatre problèmes 

d’optimisation à savoir : la programmation linéaire, la programmation quadratique convexe, la 

programmation semi-définie linéaire et la programmation semi-définie quadratique convexe. 

Dans chaque problème, à travers des différentes transformations algébriques, nous avons montré 

la convergence des algorithmes proposés et donné le taux de leurs complexités algorithmiques 

polynomiales. 

Les résultats obtenus ont été consolide par des expérimentations numériques très significatives.  

Mots clés : Programmation linéaire, Programmation quadratique convexe, Programmation 

semi-définie, Méthodes de point intérieure primale-duale, Transformation Algébrique, Direction 

de descente. 
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