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Abstract 

       Motivated by the increasing need for high-performance semiconductor materials, we 

conducted a comprehensive investigation into the structural, elastic, electronic, and optical 

properties of two recently synthesized compounds, namely Tl2CdGeSe4 and Tl2CdSnSe4, using 

the full potential linearized augmented plane wave (FP-LAPW) and pseudopotential plane wave 

(PP-PW) employing density functional theory calculations. The calculations were carried out 

with the inclusion of relativistic effects, specifically accounting for spin-orbit coupling (SOC). 

The resulting equilibrium structural parameters obtained from the computations exhibit 

remarkable agreement with available measurements. It should be noted that the calculations for 

all the properties examined were carried out using the theoretic equilibrium lattice parameters. 

The obtained results for both monocrystalline and polycrystalline elastic constants indicate that 

the investigated compounds exhibit softness, ductility, mechanical stability, and significant 

structural and elastic anisotropy. By employing the Tran-Blaha modified Becke-Johnson 

potential and considering the inclusion of spin-orbit coupling (SOC), our calculations reveal 

that both Tl2CdGeSe4 and Tl2CdSnSe4 are direct bandgap semiconductors. Incorporating SOC 

leads to a reduction in the fundamental bandgap of Tl2CdGeSe4 from 1.123 to 0.981 eV and 

that of Tl2CdSnSe4 from 1.097 to 0.953 eV. The l-decomposed atom-projected densities of 

states were utilized to determine the individual contributions of each constituent atom to the 

electronic states within the energy bands. The upper valence subband predominantly arises from 

the Se-4p states, while the bottom of the conduction band primarily originates from the Se-4p 

and Ge-4p/Sn-5p states. Furthermore, frequency-dependent linear optical parameters, including 

the complex dielectric function, absorption coefficient, refractive index, reflectivity, and 

energy-loss function, were calculated across a wide energy range for electromagnetic waves 

polarized parallel and perpendicular to the c-axis. Efforts were made to elucidate the 

microscopic origins of the observed peaks and structures in the calculated optical spectra. 

 

Keywords: First-principles calculations; Spin-orbit coupling; Effective masse; DFT; FP-

LAPW; GGA; TB-mBJ. 



 ملخص

والمرنة والإلكترونية  البنيوية بدافع الحاجة المتزايدة لمواد أشباه الموصلات عالية الأداء، أجرينا تحقيقًا شاملاً في الخصائص  

باستخدام الموجة المستوية ، وذلك ،  4CdSnSe2Tlو 4CdGeSe2Tl لمركبين تم تصنيعهما مؤخرًا، وهماضوئية وال

. تم الكثافةدالية ات نظرية حساب اللذان يستخدمان( PP-PWوالموجة المستوية الكاذبة )( FP-LAPW) متزايدة خطياال

 نتائجتظهر. (SOC) إجراء الحسابات مع تضمين التأثيرات النسبية ، على وجه التحديد لحساب اقتران الدوران والمدار

ية للتوازن التي تم الحصول عليها من الحسابات اتفاقًا ملحوظًا مع القياسات المتاحة. وتجدر الإشارة إلى أن ويبنال ثوابتال

شبكة التوازن النظري. النتائج التي تم الحصول  ثوابتالعمليات الحسابية لجميع الخصائص التي تم فحصها أجريت باستخدام 

، صلابةبات التي تم فحصها تظهر ليونة ، تشير إلى أن المرك بلورتومتعددة ال عليها لكل من الثوابت المرنة أحادية البلورية

 Tran-Blaha المعدلة من Becke-Johnson كمونومرن كبير. من خلال استخدام بنيوي ميكانيكي ، وتباين  ستقرارإ

هما أشباه  4CdSnSe2Tl و 4CdGeSe2Tl ، تكشف حساباتنا أن كلا من)SOC (اقتران مدار الدوران ادخالوالنظر في 

 0.981إلى  1.123من  4CdGeSe2Tl إلى تقليل فجوة النطاق الأساسية لـ SOC ذات فجوة نطاق مباشرة. يؤدي دمج نواقل

لتحديد المساهمات  فولت. تم استخدام كثافات الدول المتحللة 0.953إلى  1.097من  4CdSnSe2Tl فولت وتلك الخاصة بـ

 ت الإلكترونية داخل نطاقات الطاقة. ينشأ النطاق الفرعي التكافؤ العلوي في الغالب من حالاتالفردية لكل ذرة مكونة للحالا

Se-4p بينما ينشأ الجزء السفلي من نطاق التوصيل بشكل أساسي من حالات ، Se-4p و Ge-4p / Sn-5p.  علاوة على

ك دالة العزل الكهربائي المعقدة ، ومعامل الامتصاص المعتمدة على التردد ، بما في ذل اطياف الدوال الضوئية ذلك ، تم حساب 

، ومعامل الانكسار ، والانعكاسية ، ووظيفة فقدان الطاقة ، عبر نطاق طاقة واسع للموجات الكهرومغناطيسية المستقطبة 

لأطياف في اتي لوحظت بذُلت جهود لتوضيح الأصول المجهرية للقمم والتراكيب ال.c المتوازية والعمودية على المحور

  .ية المحسوبةضوئال

 .FP-LAPW ؛DFTوTB-mBJ  ؛GGA ؛كتلة فعالة  مدار؛ال اناقتران دور ؛ ةيحسابات المبادئ الأول الكلمات المفتاحية:



Résumé 

      Motivés par le besoin croissant de matériaux semi-conducteurs hautes performances, nous 

avons mené une enquête approfondie sur les propriétés structurelles, élastiques, électroniques 

et optiques de deux composés récemment synthétisés, à savoir Tl2CdGeSe4 et Tl2CdSnSe4, en 

utilisant l'onde plane augmentée linéarisée à plein potentiel (FP-LAPW) et l'onde plane 

pseudopotentielle (PP-PW) en utilisant des calculs de théorie fonctionnelle de la densité. Les 

calculs ont été effectués en tenant compte des effets relativistes, notamment en tenant compte 

du couplage spin-orbite (SOC). Les paramètres structurels d'équilibre résultants obtenus à partir 

des calculs présentent un accord remarquable avec les mesures disponibles. Il convient de noter 

que les calculs pour toutes les propriétés examinées ont été effectués en utilisant les paramètres 

de réseau d'équilibre théoriques. Les résultats obtenus pour les constantes élastiques 

monocristallines et polycristallines indiquent que les composés étudiés présentent une douceur, 

une ductilité, une stabilité mécanique et une anisotropie structurelle et élastique significative. 

En utilisant le potentiel de Becke-Johnson modifié par Tran-Blaha et en tenant compte de 

l'inclusion du couplage spin-orbite (SOC), nos calculs révèlent que Tl2CdGeSe4 et Tl2CdSnSe4 

sont des semi-conducteurs à bande interdite directe. L'incorporation de SOC conduit à une 

réduction de la bande interdite fondamentale de Tl2CdGeSe4 de 1.123 à 0.981 eV et celle de 

Tl2CdSnSe4 de 1.097 à 0.953 eV. Les densités d'états projetées par les atomes l-décomposés 

ont été utilisées pour déterminer les contributions individuelles de chaque atome constitutif aux 

états électroniques dans les bandes d'énergie. La sous-bande de valence supérieure provient 

principalement des états Se-4p, tandis que la partie inférieure de la bande de conduction 

provient principalement des états Se-4p et Ge-4p/Sn-5p. De plus, les paramètres optiques 

linéaires dépendant de la fréquence, y compris la fonction diélectrique complexe, le coefficient 

d'absorption, l'indice de réfraction, la réflectivité et la fonction de perte d'énergie, ont été 

calculés sur une large gamme d'énergie pour les ondes électromagnétiques polarisées 

parallèlement et perpendiculairement à l'axe c. Des efforts ont été faits pour élucider les origines 

microscopiques des pics et des structures observées dans les spectres optiques calculés. 

 

Mots-clés: Calculs ab-initio; Couplage spin-orbite; Masse efficace; DFT; FP-LAPW; GGA; 

TB-mBJ. 
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General introduction 

 

 

 

1. Preamble   

The field of condensed matter physics and materials science has yielded numerous 

exciting discoveries, leading to the development of new materials and their subsequent 

applications. These advancements are closely tied to our comprehension and utilization of 

interacting systems involving electrons and nuclei. Understanding and describing the 

fundamental interactions within such systems necessitates the application of the laws of 

quantum mechanics and electrostatics. 

Computational materials science endeavors to unravel the various properties and 

phenomena exhibited by materials, as well as to design and fabricate improved materials that 

contribute to scientific and technological progress. This field employs computer-based 

modeling techniques, employing theories and algorithms rooted in physics, mathematics, 

chemistry, materials science, and computer science. In many instances, computational 

approaches become indispensable when dealing with materials under extreme and 

inhospitable conditions that cannot be replicated in a laboratory setting, such as high 

pressures, elevated temperatures, exposure to hazardous substances or nuclear radiation, or 

due to material cost considerations. 

Presently, computational materials science has transitioned from being a specialized 

subject to a commonplace and routine practice. It has become as familiar as analyzing X-ray 

diffraction (XRD) patterns or examining scanning electron microscopy (SEM) or transmission 

electron microscopy (TEM) images. Moreover, the significance of computational materials 

science is widely acknowledged, with many scientists embracing the approach of 

"computation first, then experiment" or advocating for "material design by computation" [1]. 

The properties of a solid are predominantly governed by the behavior of its electrons. 

To model and predict these properties, the field of materials science employs a variety of 

theoretical and computational methods for electronic structure calculations. These methods 

encompass highly accurate ab initio quantum chemistry techniques, which operate based on 

explicitly correlated multi-electron wave functions. These techniques are rooted in quantum 

theory and do not rely on any adjustable or empirical parameters. The only essential input 

data are the atomic numbers of the constituent atoms and initial structural information. Semi-
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empirical methods, on the other hand, rely on atomic parameters and experimental data to 

predict properties that have not been determined experimentally. Empirical methods utilize 

experimental data to determine the values of specific parameters. In the realm of electronic 

structure calculations, first-principles simulations have emerged as a dependable and 

computationally feasible tool in condensed matter physics. These simulations employ density 

functional theory, specifically utilizing approximations such as the local density 

approximation (LDA) and generalized gradient approximations (GGA). Overall, these 

theoretical and computational approaches play a vital role in materials science, enabling 

researchers to model and predict the properties of materials with a high degree of accuracy 

and computational efficiency. 

In this thesis, the focus lies on performing quantum-mechanical calculations to 

determine the optimized structural parameters and monocrystalline and polycrystalline elastic 

moduli of the considered materials. To achieve this, an efficient method called the 

pseudopotential plane wave (PP-PW) approach, which is based on density functional theory 

(DFT), was employed. These calculations were carried out using the Cambridge Sequential 

Total Energy Package (CASTEP) software [2]. To investigate the electronic and optical 

properties of the materials under study, another computational method known as the full-

potential (linearized) augmented plane wave plus local orbitals (FPL/APW+lo) was utilized. 

This approach, implemented in the WIEN2k code [3], is recognized as one of the most 

accurate methods for calculating electronic structures and related properties.    

2. Problematic, Statement of the problem and research objectives  

Semiconductors have garnered significant attention from researchers due to their 

versatile applications in various fields. Alkali metals based on chalcogenide materials have 

particularly gained high regard for their potential in a wide range of technologies. In 1965, it 

was recognized that binary chalcogenides could be intercalated with different species, 

including alkali metals. Subsequently, in 1967, HAHN and STRICK [4] attempted to 

synthesize quaternary chalcogenides with metals, resulting in the formation of compounds 

with the general formula CuCIIIDIVX4 (where CIII represents elements such as B, Al, Ga, In; 

DIV denotes elements like Si, Ge, Sn; and X stands for S, Se, Te). 

In recent years, extensive research has been conducted on the semiconducting and optical 

properties of ternary and quaternary chalcogenides, where oxygen atoms in silicates, 
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germinates, and stannates are replaced with S, Se, or Te. These compounds are of interest 

from a structural perspective as they exhibit various anionic groups formed by connecting a 

fundamental structural unit, DIVX4 (DIV = Si, Ge, Sn; X = S, Se, Te), in a tetrahedral 

configuration [5]. Furthermore, compounds with general compositions AI
2 BIIDIVX2 (where 

AI represents elements like Cu, Ag; BII represents Cd, Zn; DIV denotes Sn, Ge; and X stands 

for S, Se) were synthesized by researchers [6]. Additional investigations have focused on two-

dimensional or layered metal chalcogenides with different quaternary systems, such as 

AI/Cu/DIV/X (AI = Na, K, Cs, Tl; DIV = Ti, Zr; X =S, Se, Te) and AICu2E
VX4 (E

V = Nb, Ta) 

systems, as well as ternary AIDIVX (DIV = Zr, Hf) systems [6; 7]. The study of metal 

chalcogenides is motivated by the structural differences observed between metal oxides and 

metal chalcogenides [8]. The Roman numerals in the formula correspond to the number of 

valence electrons, while the subscripts indicate the quantity of that particular ion in the 

formula unit. Throughout the years, leading up to the 20th century, scientists explored various 

elemental forms in the case of AI, including alkali metals, alkaline earth metals, other metals 

like thallium, and transition metals like copper, silver, and gold, resulting in several formulas 

for quaternary chalcogenides. In this study, we specifically focus on the compound with the 

formula AI
2B

IIDIVX4. 

Quaternary chalcogenide compounds described by the formula AI
2B

II DIVX4 (2-1-1-4), 

where AI represents Cu or Ag, BII represents Zn, Cd, or Hg, DIV represents Si, Ge, or Sn, and 

X represents S, Se, or Te, have been extensively studied and documented in the literature [9; 

10-13]. These compounds are often synthesized in quasi-binary or quasi-ternary systems and 

predominantly crystallize in tetragonal structures, such as stannite (space group I-42m) or 

kesterite (space group I-4). In some cases, an orthorhombic structure, known as the Wurtz-

stannite structure, is observed, which is derived from the sphalerite or wurtzite structure. This 

structure is characterized by the tetrahedral coordination of atoms [14].  

Since the early 20th century, numerous experimental and theoretical studies have been 

conducted on quaternary chalcogenides involving copper, silver, and alkali metals [10-24]. 

Compounds with AI = Li, such as Li2ZnGeS4 [15], Li2Hg(Si/Ge/Sn)S4, Li2Cd(Ge/Sn)S4[25], 

and Li2Cd(Sn/Ge)Se4[16], crystallize in an orthorhombic structure with space group Pna21 

(no: 33). These materials have been extensively investigated for their nonlinear optical 

properties and as lithium ionic conductors for all-solid lithium batteries, offering potential 



 

4 
 

General introduction 

 

solutions to safety concerns associated with rechargeable lithium-ion batteries using non-

aqueous liquid electrolytes [25-28]. 

Compounds with AI = Ag, such as Ag2ZnSnS4, Ag2HgSnSe4, Ag2HgSnS4, and Ag2PbGeS4, 

have also been synthesized [17-20]. These compounds exhibit noncentrosymmetric structures, 

making them suitable for nonlinear optics applications. Furthermore, AI = Cu compounds, 

including CuMn2InSe4, Cu2Cd(Ge/Si)S4, Cu2Mg(Si/Ge)S4, Cu2CdSnSe4, and Cu2CdGeSe4, 

crystallize in various structures such as I-42m and at high temperatures Pmn21. These 

compounds have demonstrated promising properties in diverse applications [10-13; 24]. 

There are four known compounds with BII = Pb, namely Cu2PbSiS4 [29], Ag2PbGeS4 [30], 

and Tl2PbSiS4 [31, 41], along with Tl2PbGeS4, discovered as early as 1980 [42]. These 

compounds contribute to improving efficiency in various applications [43]. Quaternary 

chalcogenides based on copper, silver, and alkali metals offer diverse stable crystal structures, 

compositional flexibility, high thermal stability, semiconductivity, photovoltaic effects, 

spintronics, non-linear optical properties, and favorable thermoelectricity. As a result, they 

find applications in photovoltaic cells, optoelectronics, nonlinear optical devices, and 

photocatalytic water splitting for hydrogen gas production [3-8; 25-28]. 

Despite their appealing properties, there are concerns regarding chalcogenides containing 

alkali metals. The low electronegativity and reactivity of alkali metals may hinder their 

technological applications. To overcome these drawbacks, researchers have explored 

substituting alkali metals with thallium (Tl) due to its similar chemistry to alkali metals while 

offering some advantageous properties. Tl has a lower electronegativity than alkali metals, 

leading to smaller bandgaps and improved charge carrier mobility. Additionally, Tl is heavier, 

resulting in lower lattice thermal conductivity and improved thermoelectric efficiency. 

Furthermore, Tl+ possesses a lone pair of electrons, making Tl-containing materials less 

sensitive to air and moisture compared to alkali metal-based compounds [35]. 

One interesting advantage of substituting alkali metals with thallium is the possibility of 

achieving isostructural compounds. By replacing an alkali metal atom with a Tl atom in a 

material, it is possible to maintain the same crystal structure. This characteristic has sparked 

significant research interest in exploring Tl-based chalcogenides as alternatives to alkali 

metal-containing chalcogenides [34; 35]. 
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Despite numerous reports on the synthesis and characterization of Tl-based quaternary 

chalcogenides, such as Tl2B
IIDIVX4 (B

II = Mn, Cd, Hg, Pb, Fe, Zn; DIV = Si, Ge, Sn; X = S, 

Se, Te) systems [34–47], the research on these materials remains insufficient. However, their 

potential applications make them a subject of current interest. 

Tl-based chalcogenides offer several advantages, including diverse crystal structures, 

compositional flexibility, high thermal stability, semiconductivity, photovoltaic effects, 

spintronics, and non-linear optical properties. Moreover, their potential as solid electrolytes in 

all-solid lithium batteries holds promise for resolving safety concerns associated with 

rechargeable lithium-ion batteries that employ non-aqueous liquid electrolytes. 

In summary, quaternary chalcogenide compounds with the formula AI
2B

IIDIVX4, where AI 

represents Cu and Ag or Li, BII represents Zn, Cd, or Hg, DIV represents Si, Ge, or Sn, and X 

represents S, Se, or Te, have attracted significant attention in research. Their unique properties 

and structural characteristics make them suitable for various applications in fields such as 

photovoltaics; optoelectronics, nonlinear optics, and energy storage [10-24]. The exploration 

of Tl-based chalcogenides as alternatives to alkali metal-based compounds offers 

opportunities to overcome certain limitations and improve their technological potential. 

Quaternary chalcogenides based on thallium have shown great promise in the search 

for new phases and materials. The systems where AI = Tl have been extensively studied with 

various formulas and compositions. For example, Tl2HgSnSe4, Tl2HgSiSe4, and Tl2HgGeSe4 

were synthesized in 2012 by Mozolyuk [38; 39], and Tl2PbSiS4 with an orthorhombic 

structure (space group P21/a) was studied experimentally in 2017 by Mozolyuk and L. 

Piskach [31] and theoretically in 2019 [41]. In 1980, G. Eulenberger [42] investigated 

Tl2PbGeS4, which crystallizes in a monoclinic structure (space group P21/a). The 

thermoelectric properties of Tl2(Cd/Hg/Mn)(Ge/Sn)Te4 were measured by Michael A. in 2005 

[35], and the six compounds in this series crystallize in the tetragonal space group I-42m. 

Selezen synthesized Tl2(Cd/Hg)(Si/Ge)(Se/Te)4 in 2020 [44], focusing on four compounds: 

Tl2CdGeSe4, Tl2CdSnSe4, Tl2CdSiTe4, and Tl2HgSiTe4, which all crystallize in the tetragonal 

space group I-42m. The crystal structures, formation conditions, absorption coefficient 

spectra, and some electronic properties of Tl2CdGeSe4 and Tl2CdSnSe4 have been studied [37; 

44-47], including ab initio calculations of their band structures and optical coefficients [11; 

13]. 
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Previous studies combining experimental and theoretical approaches have shown that 

Tl2CdSnSe4 and Tl2CdGeSe4 could be very promising compounds for applications in solar 

cells, thin films, and optoelectronics [45]. Understanding the fundamental properties of a 

material, such as its structural, elastic, electronic, and optical properties, is crucial for 

predicting its potential applications [48]. However, to the best of our knowledge, the elastic 

properties of Tl2CdGeSe4 and Tl2CdSnSe4 have not yet been explored either experimentally 

or theoretically. In addition, there is still a need for in-depth theoretical exploration of the 

electronic and optical properties of these compounds. To address these gaps, we conducted a 

detailed investigation of the structural, elastic, electronic, and optical properties of the newly 

synthesized materials Tl2CdGeSe4 and Tl2CdSnSe4 using two complementary density 

functional theory (DFT) methods: pseudopotential plane wave (PP-PW) and full-potential 

(linearized) augmented plane wave plus local orbitals (FP-(L)APW + lo) methods. It's worth 

noting that DFT calculations have become a powerful tool for predicting the fundamental 

properties of materials and their applications, and they play a crucial role in both theoretical 

and applied studies [49; 50]. 

3.Thesis outline 

In this thesis, we have conducted the following work: 

The thesis is divided into two parts, in addition to the introduction and conclusion. 

The first part: 

The introduction provides the context of the thesis, outlines the themes addressed, discusses 

the state of the art prior to our work, specifies the objectives, and outlines the thesis structure. 

Chapters 1 and 2 present the theoretical framework in which our work was conducted. 

Chapter 1 covers the fundamentals of density functional theory (DFT) and the approximations 

used to handle exchange and correlation effects, such as the local density approximation 

(LDA), the generalized gradient approximation (GGA), and the Tran-Blaha modified Becke-

Johnson potential (TB-mBJ). 

Chapter 2 explains the principles of the pseudopotential plane wave (PP PW) method 

employed in the CASTEP code, as well as the linearized augmented plane waves (FP-LAPW) 

method implemented in the WIEN2k code. 
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The second part: 

Chapter 3 presents the computational settings used in our study. We discuss and analyze the 

obtained results, including the crystal structure, elastic moduli, electronic structure, and 

optical coefficients and functions. 

The thesis concludes with a general summary, highlighting the main findings of our study. 

Several appendices provide additional information on the CASTEP and WIEN2k programs, 

along with a brief overview of spin-orbit coupling. 

We aim for the reported data to provide theoretical support to existing experimental and 

theoretical findings, while serving as a foundation for future experimental and theoretical 

investigations. Ultimately, our goal is to contribute towards a better understanding of the 

potential technological applications of the materials studied in this thesis. 
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Chapter Ι Density Functional Theory (DFT) 

Ι.1. Schrödinger equation of a crystal 

     The physical realm is constituted by electrons, which carry a negative charge, and a limited 

number (typically a few or a few hundred) of heavy nuclei with a positive charge. The 

overarching objective is to effectively characterize the attributes of a specific set of atoms by 

employing the principles of quantum mechanics, specifically by employing the time-

independent Schrödinger equation in its simplest form. 

ĤΨ = EΨ                                                                     (Ι.1) 

E represents the energy of the lowest possible state in a crystal, which is known as the ground 

state. Ψ represents the wave function that describes the quantum system. H is the Hamiltonian 

operator, which is responsible for determining the total energy of a specific wave function. The 

specific form of H depends on the situation. 

�̂�𝑡𝑜𝑡 = −
ℏ

2
∑

∇
r
→
i

2

me

n
i=1 −

ℏ

2
∑

∇
R
→
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2

M

N
I=1 +

1

8πϵ0
∑

e2

| r⃗ i−r⃗ j|

n
i=1,  j≠i +

1

8πϵ0
∑

e2ZIZJ

| R⃗⃗ I−R⃗⃗ J|
N
I=1,  J≠I −

1

4πϵ0
∑ ∑

e2ZI

| R⃗⃗ I−r⃗ i|
N
I=1

n
i=1                            (Ι.2) 

 

 ħ:  Planck constant 

m: The mass of the electron 

ri, rj: are the positions of the electrons i and j, respectively. 

M: is the mass of the nucleus. 

RI, RJ: are the positions of the nuclei I and J respectively. 

ZI, ZJ: are the atomic numbers of the nuclei I and J respectively. 

In equation (I.2), the first two terms represent the kinetic energies of electrons and nuclei (Te 

and TN), the third and fourth terms represents the Coulomb repulsion between electrons, 

designated as Ve-e, and nucleis as VN-N, and the fifth term represents the Coulomb attraction 

between electrons and nuclei, designated as VN-e. 

The Schrödinger equation (Eq. I.1) can be solved for systems with simple structures, such as 

the hydrogen atom, where only one nucleus and one electron. However, for solids, the system 

is described by the many-body problem, involving all the electrons and nuclei in the crystal 

lattice. In practice, dealing with such a large number of particles, typically on the order of 1023, 

makes the problem extremely complex. The Hamiltonian (Eq. I.2) describes a strongly coupled 

system involving both electrons and nuclei. The last three terms in the Hamiltonian have a 
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complex structure, making it challenging to solve the Schrödinger equation exactly. To address 

this complexity and find suitable approximate solutions, several methods are employed at three 

distinct levels: the Born-Oppenheimer approximation, density functional theory, and solving 

the Kohn-Sham equation. 

Ι.2. Level 1: Born Oppenheimer approximation 

      A fundamental observation in the application of quantum mechanics to atoms is that the 

mass of atomic nuclei is significantly greater than that of individual electrons. Each proton or 

neutron in a nucleus possesses a mass that is more than 1800 times greater than that of an 

electron. This substantial disparity in mass implies that electrons exhibit considerably more 

rapid responses to changes in their surroundings than nuclei. Consequently, it becomes possible 

to distinguish between two components of our physical inquiries. We commence our analysis 

by examining the equations that describe the motion of electrons in the presence of fixed atomic 

nuclei. In this context, we determine the lowest energy configuration or state of the electrons 

while they interact with the nuclei. This state, designated the ground state of the electrons, 

represents the configuration with the lowest energy level. The division of nuclei and electrons 

into separate mathematical problems is referred to as the Born-Oppenheimer approximation. 

[1]. 

If this hypothesis is assumed, the nuclei lose all their kinetic energy, and the interaction energy 

among them remains constant, serving as a reference point for measuring energies.  

Htot = He + VN−N         (Ι.4) 

He = Te + VN−e(ext) + Ve−e                  (Ι.5) 

The remaining energies in the system consist of the kinetic energy of the electron gas, the 

potential energy resulting from electron-electron interactions, and the potential energy of the 

electrons influenced by the external potential of the nuclei (which is now considered external 

to the system). This part is universal. However, the specific details regarding the nuclei involved 

and their positions are solely determined by the external potential, denoted as Vext [2]. 

Ι.2.1. The Hartree and Hartree-Fock approximation 

      In an effort to describe the ground state of the many-electron system with a single 

determinant state, the Hartree approximation is employed. This approximation treats the 

electrons within an atom as if they were independently moving in an average potential. The 

average potential is formed by combining the external potential due to the nuclei and the 
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Coulomb potential originating from the electron density. In other words, in the Hartree 

approximation, each electron is treated as moving in an average potential that is determined by 

the combined influence of the external potential of the nuclei and the electron density itself. 

[
−h²

2m
 ∇2 + Veff(rᵢ, R )] фᵢ(r) = εᵢфᵢ(r)                                              (Ι. 6) 

With 

                   Veff(rᵢ, R ) = VH(rᵢ)+ Vext(rᵢ)                                               (Ι. 7) 

Where    

 𝑇𝑒 = ⟨ф𝑒|�̂�𝑒|ф𝑒⟩ is the kinetic energy of the electrons 

𝑉𝐻 = ⟨ф𝑒|�̂�𝑒−𝑒|ф𝑒⟩  The Hartree potential of electron-electron interactions 

𝑉𝑒𝑥𝑡 = ⟨ф𝑒|�̂�𝑒−𝑛|ф𝑒⟩ The electron-nuclei potential interactions. 

Using a variational argument, we obtain from this the single-particle Hartree equations:  

{−
ℎ2

2𝑚
 ∇𝑖
2 + VH(rᵢ) + Vext(rᵢ)}ф(rᵢ) = 𝜀𝑖ф𝑖(rᵢ)            (Ι. 8) 

VH(rᵢ) Called: Hartree potential. It is given by: 

VH(rᵢ) = ke
2∑ ⟨ф(rᵢ)|

1

|r⃗ i−r⃗ j|
|ф(rᵢ)⟩j≠i                          (Ι. 9) 

Vext: is the external potential (Hartree effective field) 

Ui: The Coulomb potential arising from the electron density 

[
−1

2

h²

m
∆ᵢ + Uᵢ(rᵢ) + Vᵢ(rᵢ)]фᵢ(r) = εᵢфᵢ(r)                     (Ι. 10) 

          Hᵢ = −
h²

2m
∆ᵢ + V(r)                                             (Ι. 11) 

V(r) is the average potential and gives the approximate wave function in the product form as:  

 фHartree(r1, r2, … , rN) = ф
1(r1)ф

2(r2),… , ф
N(rN)       (Ι. 12) 

The Hartree equation necessitates a self-consistent solution. The density plays a pivotal role in 

determining the average potential, as postulated by Hartree [3]. However, the Hartree method 

fails to account for the impact of antisymmetry in many-electron wave functions (exchange) 

and the correlations between electrons. In this method, each electron is represented by an 

orbital, and the overall wave function is expressed as a product of [4]. 

In 1930, Fock [5] demonstrated that the Hartree wave function violates the Pauli 

Exclusion Principle. In constructing the Hartree wave function, the Pauli Exclusion Principle is 

respected by assigning only one electron with a specific spin to each orbital. However, if 
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electrons are considered indistinguishable fermions (particles with a spin of 1/2), the overall 

wave function must be antisymmetric, meaning that it changes sign when any two electrons are 

interchanged. The fundamental premise of the Hartree-Fock theory is the utilization of a Slater 

determinant, which conveniently organizes the orbitals. [3, 6].  

ф ≈ Фѕᴅ =
1

√𝑁! |

|

ф1(�⃗� 1)         ф2(�⃗� 1) ⋯ ф𝑁(�⃗� 1)

ф1(�⃗� 2)         ф2(�⃗� 2) ⋯ ф𝑁(�⃗� 2)
⋮                       ⋮                        ⋮

 ∙  
ф1(�⃗� 𝑁)         ф2(�⃗� 𝑁)  ⋯ ф𝑁(�⃗� 𝑁)

|

|
        (Ι. 13) 

 

N! is the normalization constant. 

The equation (Ι.10) system is self-consistently solvable, as the potential depends on the wave 

functions. This approximation yields satisfactory results, particularly in the context of 

molecular physics. However, in the case of extended systems, such as solids, it remains 

challenging to apply. 

Ι.3.  Level 2: Density Functional Theory  

Despite its simplified form, Equation (Eq. I.5) presents a significant challenge in its 

resolution. Various techniques can be utilized to simplify this equation, including the Hartree-

Fock (H.F.) method, which directly addresses the many-body wave function. While the Hartree-

Fock method is highly effective for atoms and molecules, its accuracy is reduced when applied 

to solids. 

However, a more contemporary and sophisticated methodology, Density Functional 

Theory (DFT), reinterprets the many-body problem using a considerably smaller mathematical 

entity, necessitating the utilization of considerably less information to encode it. In particular, 

the electron density, denoted as ρ, becomes a function of only three variables: x, y, and z. This 

transition from E[ϕ] to E[ρ] effectively reduces the computational effort required to 

comprehend the electronic properties of atoms, molecules, and solids. 

The pioneering density-based technique for addressing many-electron systems 

(consisting of N electrons) was introduced by Thomas and Fermi in 1927 [7;8]. The Thomas-

Fermi method, so named for its pioneers, approximates the kinetic energy expression associated 

with the homogeneous electron gas, which is expressed as a functional of the local electron 

density. This approximation assumes that electrons are non-interacting. The kinetic energy 



 

18 
 

Chapter Ι Density Functional Theory (DFT) 

density, representing the kinetic energy per unit volume, pertains to non-interacting electrons 

moving within a constant potential. 

Subsequently, Hohenberg and Kohn extended this approach to encompass any 

electronic system, including inhomogeneous electron gases [9]. 

Ι.3.1. Hohenberg-Kohn Theorems (HK) 

 Density Functional Theory (DFT) is a theoretical framework that aims to ascertain the 

fundamental characteristics of the ground state of a system containing a specific number of 

electrons interacting through Coulomb forces with fixed nuclei. The theory postulates that the 

total energy, denoted as E, of an interacting system of non-spin-polarized electrons within an 

external potential (such as the Coulomb potential arising from solid-state nuclei) can be 

precisely expressed as a functional of the electronic density ρ in its ground state [10] . 

 The formulation of DFT, known as Hohenberg-Kohn (HK), is based on two pivotal 

theorems introduced by Hohenberg and Kohn in 1964 [5]. These theorems represent a departure 

from the conventional approaches to the problem.: 

First theorem: The Density as a Basic Variable 

The first Hohenberg-Kohn theorem is stated as follows: 

« The external potential Vext(r) is (to within a constant) a unique functional of ρ(r); since in 

turn, Vext(r) fixes the Hamiltonian, we see that the full many-particle ground state is a unique 

functional of ρ(r) » [9]. 

This theorem can be proved by assuming a group of an arbitrary number of electrons, enclosed 

within a large box and subject to an external potential V(r) as well as mutual Coulomb repul-

sion. Additionally, let us assume that another potential V′ext (r), characterized by a ground state 

ρ0, yields the same density ρ(r). It is important to note that we are exclusively considering situ-

ations where the ground state is nondegenerate. By applying Rayleigh-Ritz's variational princi-

ple, we have [11]: 

 𝐸 < ρ(r)[Vext(r) − V′ext(r)]dr + E
′  ∫ dr3

 
  ...... (1) 

  𝐸′ < ρ(r)[V′ext(r) − Vext(r)]dr + E∫dr
3 …… (2)        
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The combination of the two equations (1) and (2) leads to the following contradiction: E + E′< 

E + E′!  . We reached a contradiction in the inequality because, for a non-degenerate system, 

there cannot be two distinct external potentials producing the same ground-state Density 

Functional Theory density (unless they differ only by an insignificant additive constant); the 

potential Vext(r) can be uniquely determined based on the ground state density. It is important 

to note that this demonstration, which relies on the variational principle, applies exclusively to 

the ground state. 

The consequence of this initial theorem is that the ground state density serves as an exclusive 

determinant for various aspects: 

 The external potential and the system's Hamiltonian with the exception of a constant 

term. 

 By solving the Schrödinger equation utilizing this Hamiltonian, the wave function of 

any state can be determined. This includes the unique ground state wave function, which 

possesses the lowest energy [12]. 

By this theorem, the total energy of interacting electrons in an external potential is precisely 

expressed as a functional of the ground state electronic density ρ  

  E = E[ρ]                                                                 (Ι. 14) 

    E[ρ] = ⟨ф|H|ф⟩                                                     (Ι. 15) 

            = ⟨ф|T + 𝑉𝑒−𝑒 + 𝑉𝑒𝑥𝑡|ф⟩                               (Ι. 16) 

              = ⟨ф|T + 𝑉𝑒−𝑒|ф⟩ + ⟨ф|𝑉𝑒𝑥𝑡|ф⟩                    (Ι. 17) 

 E[ρ] =  FHK  [ρ] + ∫ ρ (r) 𝑉𝑒𝑥𝑡 dr                          (Ι. 18) 

The functional FHK[ρ] is a universal functional applicable to any many-electron system, 

irrespective of the external potential. This functional incorporates exchange and correlation 

effects. The question that arises is how to identify the ground state density and determine the 

universal functional. The second theorem is of assistance in answering this question. 

Second theorem: The variational principle 

The total energy functional of any many-particle system attains its minimum value when the 

density is equal to the exact density of the ground state. Consequently, to ascertain the energy 
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of the ground state, it is necessary to seek to minimize the functional energy. This can be 

achieved by applying an analogous variational principle. 

« Hohenberg and Kohn demonstrated that, for a potential Vext(r) and a given number of 

electrons N, the system's total energy attains its minimum when the density ρ(r) corresponds 

to the exact density of the ground state. » 

 E [ρ0] = Min E[ρ]                                                     (Ι. 19) 

it remains to formally determine FHK [ρ]: 

 FHK [ρ]=T[ρ(r)] +  Vext  [ρ(r)]                                   (Ι. 20) 

To effectively employ the theorems of Hohenberg and Kohn, it is necessary to utilize 

approximations that align with the Kohn-Sham equations [13]. These equations were developed 

to establish the fundamental principles required to use the theorems above. 

ΙΙ.3.2 The Kohn-Sham equations 

     Kohn and Sham transformed Density Functional Theory (DFT) into a practical tool by 

relying on the Hohenberg-Kohn equation. The innovative concept involves substituting the 

complex system of N interacting real particles, which is challenging to analyze, with a 

hypothetical system of independent, non-interacting particles (a fictitious system). This 

alternative system is easier to study and is constructed such that, in the ground state, both 

systems share the same density. The approach begins with a reference Hamiltonian where the 

electrons do not interact with each other and are influenced solely by the effective external 

Kohn-Sham potential. Furthermore, they employed the total energy functional, which 

encompasses the precise kinetic and electron-electron potential energy functionals, to identify 

the correlation energy. 

Eₑ = T + V                                  (Ι. 21) 

EHF =  T₀ + (𝑉𝐻 + Vₓ)⏟      
V

                  (Ι. 22) 

By subtracting (Ι. 22) from(Ι. 21), the functional correlation contribution appears to be: 

 Vc = T − T₀                                                                (Ι. 23) 

With the Hartree functional given by: 
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 𝐸𝐻 = T₀ + 𝑉𝐻                                                              (Ι. 24) 

Because exchange contribution is, absent in the Hartree solution so: 

 𝑉𝐻 = V − 𝑉𝑋                                                        (Ι. 25)                    

Then       Vx = V − VH                                                       (Ι. 26) 

The Hohenberg-Kohn functional can be rewritten in the following manner: 

    FHK = T + V + T₀ − T₀                               (Ι. 27) 

              = T₀ + V + (T − T₀)⏟    
Vc

                           (Ι. 28) 

                = T₀ + V + 𝑉𝑐 + VH− VH                   (Ι. 29) 

                       = T₀ + V + 𝑉𝑐 + (V − VH)⏟    
Vₓ

                  (Ι. 30) 

               = T₀ + VH+ (Vₓ + 𝑉𝑐)⏟      
𝑉𝑥𝑐

                          (Ι. 31) 

Kohn-Sham’s effective potential is given by: 

Veff = Vext + VH + VXC         (Ι. 32) 

Where 

VXC =
δExc|ρ(r)|

δρ(r)
                                                               (Ι. 33)    

is the exchange-correlation interaction. 

VH =
1

2
∫

ⅇ2

4𝜋𝜀0

𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′                                                                        (Ι. 34)    

is the Hartree potential of electrons 

The Schrödinger equation to be solved under the Kohn and Sham approach is of the form:  

[−
h2

2mc
∇i
2 + Veff(r)] |ϕi(r)⟩ = εi|ϕi(r)⟩    (i = 1,… . , N)        (Ι. 35) 

Thus, the total energy of the system will be written as: 

E[ρ] = T0[ρ] + VH[ρ] + Vxc[ρ] + Vext[ρ]                          (Ι. 36) 
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The exchange-correlation energy is defined as the difference between the actual kinetic energy 

and the kinetic energy of an electron gas in the absence of interactions. It also represents the 

difference between the actual interaction energy and the Hartree energy, which includes all 

contributions from multiple bodies. The exchange-correlation potential is defined as the 

functional derivative. 

                  Vxc =
δVxc[ρ]

δρ
                                              (Ι. 37) 

The exact ground-state density ρ(𝑟 ) of an N-electron system is: 

                     ρ(r ) = ∑ ϕi(r )
∗ϕi(r )

N
i=1                           (Ι. 38) 

Where the single-particle wave functions ϕi(r ) are the N lowest-energy solutions of the Kohn 

Sham equation: 

                      HKSϕi = ϵiϕi                                             (Ι. 39) 

The Kohn and Sham equations must be solved in a self-consistent manner, which entails 

initiating the process with an initial density and subsequently determining the density through 

the use of a set of trial molecular orbitals. The process commences with the acquisition of an 

effective potential, Veff(r), and the resolution of an equation to determine a novel electron 

density. Based on this new density, a new effective potential can be calculated. This iterative 

process continues until convergence is achieved, defined as the point at which the new electron 

density is equal to or nearly equal to the previous one (according to a fixed convergence 

criterion). 

To solve the Kohn-Sham equations, it is necessary to define the Hartree potential, which, in 

turn, requires knowledge of the electron density. However, the determination of the electron 

density is contingent upon the knowledge of the single-electron wave functions, which can only 

be obtained through the resolution of the Kohn-Sham equations [1]. This problem is commonly 

approached iteratively, as illustrated in the following figure. 
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Figure Ι.1: A flowchart illustrating the steps involved in the nth iteration of the self-consistent 

procedure used to solve the Hartree-Fock or Kohn-Sham equations. 

Ι.3.3. Exchange-correlation energy approximations 

     In order to solve the Kohn-Sham equations, it is necessary to define the exchange-correlation 

functional. However, this functional is only known approximately. 

Exc = Ec + Ex                (Ι. 40) 
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The exchange energy (EX) represents the energy associated with the interaction between 

electrons of identical spin. It arises from the fundamental principle known as the Pauli 

Exclusion Principle, which dictates that two electrons with the same spin cannot occupy the 

same spatial location simultaneously. It is important to note that the exchange energy is 

independent of the electron's charge and is solely determined by the spin properties of the 

electrons. The exchange energy (EX) arises due to the antisymmetric nature of the wave 

function, which ensures that the wave function changes sign when the coordinates of any two 

electrons are exchanged. 

In contrast, EC arises from the interaction between electrons of opposite spins. However, 

electrons also experience repulsion due to their shared negative charges. Moreover, electronic 

correlation leads to a reduced overlap of electron densities, resulting in relatively weak 

attractive energy. Unfortunately, this intricate n-electron effect was overlooked in the Hartree-

Fock method and remains challenging to accurately approximate. 

In materials with typical electron densities, the exchange energy dominates over the correlation 

energy. Yet, at extremely low electron densities, the correlation energy gains significance as 

the exchange interaction weakens in these sparse electron densities [14].   

ΙΙ.3.3.1. Local Density Approximation (LDA) 

    Local Density Approximation (LDA) represents an early and widely utilized approximation 

for the exchange-correlation interaction. The exchange-correlation energy of the system is 

postulated to be equivalent to that of a uniform electron gas with a density ρ(r).  The precise 

formulation of the exchange-correlation energy for such a uniform electron gas is known. 

Exc[ρ] = ∫ ρ(r) Ɛxc
homρ(r)dr        (Ι. 41) 

Ɛ𝑥𝑐
ℎ𝑜𝑚is the exchange-correlation energy per electron of a homogeneous electron gas of a density 

ρ(r). The LDA approximation is most applicable to systems exhibiting low spatial variations in 

electron density. However, it has been demonstrated to be effective across a broader range of 

materials. Nevertheless, this approach is inadequate for accurately describing the properties of 

d and f compounds. Notably, the binding energies are consistently overestimated by this 

approximation [15]. The LDA is based on the local density within a given volume. 

Consequently, the exchange-correlation energy associated with a specific density 𝜌(𝑟 )  can be 

calculated by dividing the material into infinitesimal volumes of constant density [2].  
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ΙΙ.3.3.2. Generalized Gradient Approximation (GGA) 

   The LDA approximation simplifies the problem significantly by treating each point in space 

as if it were part of a homogeneous electron gas with a density equal to that of the actual system 

at that point. While it is relatively simple and computationally efficient, it may not capture 

certain non-local effects accurately, leading to limitations in its predictive power for certain 

systems. While the Generalized Gradient Approximation (GGA) introduces an additional factor 

to the exchange-correlation contribution, considering the local density within each infinitesimal 

volume and the densities in neighboring volumes. This means that the density gradient becomes 

a significant factor. GGA demonstrates slight improvements over LDA, although it has a few 

drawbacks. However, it offers some flexibility in incorporating the density gradient. In contrast 

to LDA, which has a single exchange-correlation functional, GGA encompasses multiple 

versions, including PW86 (Perdew–Wang 1986) [16], PW91 (Perdew–Wang 1991) [17], and 

PBEsol (Perdew–Burke–Ernzerhof, 1996) is exact for solids under intense compression [18]. 

In GGA, the non-uniform nature of the electron density is accounted for by replacing  Ɛ𝑥𝑐
ℎ𝑜𝑚 

with a semi-local function dependent on both the electron density and the magnitude of its 

gradient.       

Exc[ρ]=∫ ƒ((ρ(r), |∇ρ(r)|)            (Ι. 42) 

where ƒ is an analytical function, it can be parameterized in diverse manners [15]. 

The generalized gradient approximation (GGA) demonstrates strong performance across 

diverse systems, typically yielding structural properties with 1% to 3% errors. Addressing 

overbinding issues inherent in the local density approximation (LDA), GGA tends to increase 

lattice constants and decrease cohesive energies. Additionally, GGA computations often result 

in band gaps approximately 50% smaller than LDA, occasionally indicating no band gap. The 

Generalized Gradient Approximation (GGA) encounters limitations in systems characterized 

by strongly localized orbitals, an additional repulsive interaction occurs between two electrons 

on that site that was first recognized by Hubbard (1965). These instances commonly arise in 

rare-earth elements and their compounds, as well as in transition metal oxides featuring narrow 

and highly correlated d- and f-orbitals. The DFT is inaccurate in the calculation of the band gap, 

which is not sur prising as the method is not designed to describe the non-local nature of electron 

correctly. The band gap underestimation commonly reaches up to 50% when compared with 

experimental data [14]. 
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Ι.3.3.3. Tran-Blaha modified Becke-Johnson approach 

    Two approaches stand out in the realm of theoretical methods for understanding excited 

states: LDA+U and GW. The applicability of LDA+U is limited to localized electron 

configurations, notably those of 3d and 4f electrons. On the other hand, GW methods provide 

unparalleled accuracy but at a significantly higher computational cost [19]. In 2006, Becke and 

Johnson proposed a new version of the exchange potential, TB-mBJ, and in 2009, a modified 

Becke-Johnson potential by Tran-Blaha was published. This modification enabled the accurate 

determination of band gaps for semiconductors and insulators using an orbital-independent 

exchange-correlation potential that relies solely on semi-local quantities [20]. By utilizing this 

proposed potential, Calculations of the band structure become computationally affordable and 

comparable to LDA and GGA methods, thus enabling an efficient application to large systems. 

This is particularly useful for studying materials like transition metal oxides with strong 

correlations and rare-earth compounds [21]. 

ΙΙ.4. Level 3:  Solving the Kohn–Sham equations 

The solution of the Kohn-Sham (KS) equations necessitates the observance of three 

fundamental principles: self-consistency, the variational principle, and constraints. The self-

consistency principle is an indispensable aspect of the Density Functional Theory (DFT) 

methodology, whereby the interconnectedness of KS orbitals, electron densities, and the 

Hamiltonian are considered throughout the calculation process. The KS orbitals determine the 

electron densities, which in turn determines the KS Hamiltonian, which determines the new 

electron densities (as well as the new KS orbitals). It is therefore essential to obtain a set of KS 

orbitals that yield a KS Hamiltonian whose solutions correspond to the initial KS orbitals. This 

process, known as self-consistency, ensures meaningful and accurate results. 

The choice of the basis of the wave functions to project the Kohn-Sham monoelectronic 

states which can be taken as a linear combination of orbitals called Kohn-Sham orbitals (KS) 

written in the following form: 

ϕi =∑Cij
j

Фj    (Ι. 43) 
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Solving in most methods means that we want to find the expansion coefficients Cij needed to 

express single particle wave function ϕiin a given basis set Фj for the occupied orbitals, which 

minimize the total energy. 

The variational principle dictates that the total energy of a system is composed of four 

distinct terms, each being a functional that depends uniquely on the electron density at the 

ground state. However, the non-interacting kinetic energy remains an exception. When the 

density minimizes the variational energy at the ground state, the total energy becomes stationary 

against small density variations. The general variational principle can be applied to determine 

the total energy concerning the electron density, KS eigenvalues, or the norm of the residual 

vector for an eigenstate. However, it is important to observe constraints when seeking the 

minimum total energy. These constraints include maintaining a fixed total number of electrons 

or ensuring the orthonormality of orbitals [14]. 

Constraints play a crucial role when seeking the minimum total energy. Some of the key 

constraints that must be observed include: 

1. Fixed Total Number of Electrons: The total number of electrons in the system must 

remain constant throughout the calculation, which can be represented mathematically 

as: 

𝑛 = ∫𝜌(𝑟)𝑑𝑟             (Ι. 44)  

2. Orthonormality of Orbitals: The orbitals used in the calculation must be orthonor-

mal to each other. Mathematically, this can be expressed as:  

∫𝜙𝑖
∗𝜙𝑗𝑑𝑟 = δ𝑖𝑗        (Ι. 45) 

where δij is the Kronecker delta (0 𝑖𝑓 𝑖 ≠ 𝑗, 1 𝑖𝑓 𝑖 = 𝑗). If the Kronecker delta condition is not 

met, the density can assume any value, potentially resulting in energy lower than the ground-

state energy, which is both unacceptable and unphysical. 

To adhere to the principles of quantum mechanics, the Kohn-Sham orbitals undergo enhance-

ments while satisfying the aforementioned constraints. These improvements ensure that the 

Kohn-Sham orbitals become both antisymmetric and unique, aligning with the fundamental 

characteristics of the quantum realm [14; 22]. 

Iterative diagonalization is an approach used to solve the Kohn-Sham equations iteratively. 

The following is a description of the method: 
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1. Initial approximation: 

The electron density of the solid is approximated by combining the electron densities of each 

atom in its isolated state, as provided by the pseudopotential. 

2. Evaluation of KS System: 

Exchange-correlation potential (VXC) and Hartree potential VH to evaluate the Kohn-Sham 

system. 

3. Solution of Coupled KS Equations: 

A set of coupled Kohn-Sham equations is solved, yielding a set of Kohn-Sham orbitals as 

solutions (to determine the wave function of a single particleϕi) 

4. Calculation of new Electron Density: 

Utilizing the new Kohn-Sham orbitals ϕi(r), the new electron density ρ(r) is calculated, 

incorporating a mixture of the previous and current densities. 

5. Iterative Refinement and Convergence Check: 

If the difference is within a pre-defined tolerance, the SCF cycle has converged, and you 

have found the self-consistent electron density and effective potential. If not, mix the new 

and old densities to form a better guess and return to step two. The iteration process 

continues until the energy change (or density change) of the system becomes smaller than 

a predefined stopping criterion, typically in the range of 10-4 to 10-5 eV. 

Upon satisfaction of the pre-specified convergence criterion, self-consistency is established, 

and the resulting energy estimate is deemed to represent the system ground-state energy, as 

defined by the electron density at that state.  



 

29 
 

Chapter Ι Density Functional Theory (DFT) 

References 

[1] D. S. Sholl, J. A. Steckel. John Wiley and Sons, Density functional theory A Practical 

Introduction, ISBN 978 0470 373170, 2009 

[2] S. Cottenier, Density Functional Theory and the Family of (L) APW-methods: a step-by-

step introduction, Ghent University, Belgium, 2013.  

[3] M. K. Harbola, A. Banerjee, Many-Electric problem in terms of the density: From Thomas 

Fermi to Modern Density-functional Theory. J. Theoretical and Computational Chemistry, Vol. 

2, No. 2, pp. 301–322, 2003 

[4] J. D. Patterson, B.C. Bailey, Solid-State Physics, J. Springer, Berlin, 2007.  

[5] V. Fock, Approximation method for solving the quantum mechanicalmultibody problem. 

(naherungsmethode zur LSsung des quantenmechanischen Mehrkorperproblems), 1930 

[6] J. C. Slater, a Simplification of the Hartree Fock, J. Physical Review, Vol. 81, No. 3, 1951 

[7] L. H. Thomas, The calculation of atomic fields, In Mathematical Proceedings of the 

Cambridge Philosophical Society, Vol. 23, No. 05, pp. 542-548, 1927 

 [8] E. Fermi, Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und 

ihre Anwendung auf die Theorie des periodischen Systems der Elemente, J. Z. Phys., Vol. 48, 

No. 1-2, pp. 73-79, 1928. 

[9] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, Vol. 136, No. 3B, pp. 

B864, 1964 

[10] D. J. SINGH, Plane waves, Pseudopotentials and the LAPW method, Second Edition, 

Uppsala University, Sweden ISBN 10: 0-387-29684, 2006 

[11] J. Kohanoff, Electronic Structure Calculations for Solids and Molecules Theory and 

Computational Methods (Cambridge University Press UK, 2006). 

[12] R. M. Martin, Electronic structure Basic theory and practical methods, university press 

Cambridge, ISBN 0 521 782856, 2004 

[13] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation 

Effects, Phys. Rev. Vol. 140, pp. 1133-1138, 1965 



 

30 
 

Chapter Ι Density Functional Theory (DFT) 

[14] J. G. Lee, Computational Materials Science An Introduction  Second Edition, Taylor & 

Francis Group, ISBN 9781498749732, 2017 

[15] M. Freyss, Density functional theory. Centre de Cadarache, France, NEA/NSC/R5, 2015 

[16] J. P. Perdew, Y. Wang, Accurate and simple density functional for the electronic exchange 

energy: Generalized gradient approximation, Phys. Rev. B, Vol 33, No 12, pp. 8800-8802, 

1986 

[17] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. 

Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient 

approximation for exchange and correlation, Phys. Rev. B, Vol. 46, pp. 6671-6687, 1992 

[18] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, 

Phys. Rev. Lett., Vol 77, pp. 3865, 1996 

 [19] A. D. Becke and E. R. Johnson, A simple effective potential for exchange, J. Chem. Phys., 

Vol. 124, No. 22, pp. 221101(4), 2006 

 [20] F. Tran, P. Blaha, and K. Schwarz, Band gap calculations with Becke-Johnson exchange 

potential, J. Phys.: Condens. Matter, Vol. 19, No 19, pp. 196208(8), 2007 

[21] F. Tran and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semi-

local Exchange-Correlation Potential, Phys. Rev. Lett., Vol. 102, No. 22, pp. 226401(4), 2009 

[22]G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations 

using a plane-wave basis set, Phys. Rev. B, Vol. 54, No. 16, pp. 11169(18), 1996 

 

 



 

 

 

 

 

 

Chapter II 

Pseudo Potential Plane Wave and 

Full-Potential Linearized Augmented 

Plane-Wave 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter ΙΙ 

ΙΙ.1. Pseudopotential Plane-Wave method (in brief) ................................................... 31 

ΙΙΙ.2. The Augmented Plane Wave method ................................................................. 32 

ΙΙΙ.3. The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method ... 34 

ΙΙΙ.3.1. LAPW with Local Orbitals (LAPW+LO) ................................................... 36 

ΙΙ.3.2. The APW+lo method ........................................................................................ 38 

References ................................................................................................................... 39 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

Chapter ΙΙ Pseudo Potential Plane Wave and Full-Potential Linearized Augmented Plane-Wave 

 

ΙΙ.1. Pseudopotential Plane-Wave method (in brief) 

In the study of condensed matter systems and the solution of the Schrödinger equation, 

atomic space can be divided into two distinct regions with different properties. The first region, 

situated in close proximity to the nuclei, is predominantly comprised of tightly bound core 

electrons. The core electrons exhibit minimal response to neighboring atoms and exert a 

negligible influence on the chemical bonding between atoms. Consequently, they can be 

considered essentially fixed in their positions. Conversely, the remaining volume encompasses 

the valence electron density, which actively participates in the bonding of atoms. This 

distinction between core and valence electrons is known as the frozen core approximation [1]. 

This approximation posits that the configuration of core electrons within a solid is equivalent 

to that of isolated atoms. Consequently, the treatment of core electrons is resolved at the atomic 

level, and the focus shifts to investigating the behavior and motion of valence electrons within 

the ionic potential, as initially suggested by Fermi in 1934 [2] and subsequently developed by 

Hellmann in 1935 [3]. 

        The Bloch theorem represents a foundational concept in the field of solid-state physics, 

wherein it describes the behavior of electrons within a periodic crystal lattice. The theorem 

states that the electronic wave functions in a crystal can be expressed as a product of a periodic 

function and a plane wave. Consequently, each electronic wave function can be represented as 

a summation of plane waves. The plane wave basis set is employed to expand the electronic 

wave functions in reciprocal space. Plane waves are a mathematically simple basis set that can 

accurately describe periodic functions. The use of periodic boundary conditions, which assume 

the system repeats itself indefinitely in space, effectively treats the interactions between atoms 

in the finite system as if the system were part of an infinite, periodic crystal lattice. This 

simplifies the calculations and allows for the use of efficient algorithms based on the fast 

Fourier transform (FFT) to solve the Kohn-Sham equations in reciprocal space. In order to 

ensure that the interactions between neighboring unit cells do not affect the properties of the 

finite system, the size of the unit cell is chosen to be sufficiently large so that the interactions 

between the periodic replicas of the system are negligible. This implies that the unit cell should 

be sufficiently large to prevent significant overlap or coupling between the periodic replicas. 

 



 

32 
 

Chapter ΙΙ Pseudo Potential Plane Wave and Full-Potential Linearized Augmented Plane-Wave 

    The finite system is placed in a unit cell of a fictitious crystal, and this cell is made sufficiently 

large to avoid interactions between neighboring cells. Subsequently, the Kohn-Sham equations 

can be solved for any system in momentum space. However, for finite systems, a very large 

number of plane waves is required, as the electronic density is concentrated on a small fraction 

of the total volume of the supercell. The valence wave functions of the large Z atoms exhibit 

strong oscillations in proximity to the atomic core, a consequence of the orthogonalization of 

the inner electronic wave functions. The description of these oscillations necessitates the use of 

a considerable number of plane waves, which can present a challenge in the calculation of the 

total energy. 

The Kohn-Sham equations can be solved in momentum space, allowing for the 

examination of any system. However, due to the concentration of electronic density in a small 

portion of the supercell’s total volume, a large number of plane waves is required for finite 

systems. It is noteworthy that the valence wave functions of atoms with a high atomic number 

(Z) exhibit significant oscillations near the atomic core as a consequence of orthogonalizing the 

inner electronic wave functions. However, the inner electrons are largely inactive and do not 

significantly contribute to the formation of chemical bonds. This indicates that an atom can be 

described based on its valence electrons, which experience an effective potential that includes 

both the nuclear attraction and the repulsion of the inner electrons.  

The Pseudopotential Plane-Wave (PP-PW) method employs two primary elements: 

pseudopotentials and plane waves. The pseudopotential approximation is utilized to substitute 

the strong ionic potential with a weaker pseudopotential. This approximation simplifies the 

interaction between valence electrons and atomic nuclei. Instead of the true valence wave 

functions, the pseudopotential acts on a set of pseudo wave functions. In this approach, the 

external potential, denoted as Vext, is obtained by summing the pseudopotentials of all atoms 

within the system [4]. 

ΙΙΙ.2. The APW method 

The augmented plane wave (APW) method was initially proposed by Slater in 1937 [5], 

but it did not become widely utilized until 1964 [6]. Although the APW method itself is no 

longer widely used, it provided a foundational concept for modern computational techniques. 

The underlying concept of the APW method was derived from pseudopotential methods, with 

the objective of providing a more accurate description of wave functions in the atomic core 

regions. 
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The APW method is constructed by augmenting plane waves with additional basis 

functions that are localized around the atomic sites. These localized basis functions are capable 

of capturing the short-range behavior of the wave functions near the atomic cores, thereby 

allowing for a more accurate representation of the electronic structure in these regions. 

In order to address the issue of electron motion in a periodic potential, Slater proposed 

a solution that involved dividing the crystal into non-overlapping atomic spheres surrounding 

each atom. Within each atomic sphere, the wave function is expanded using a basis set that 

includes both plane waves and augmented plane waves. Outside the atomic spheres, the 

wavefunction is expanded solely in terms of plane waves (Fig ΙΙ.1). The following is an 

illustration of Slater's method in action: 

 Inside spheres (region I): The potential is spherically symmetrical. The wave function 

is expanded using a combination of spherical harmonics and radial solutions. Around 

each atom, a sphere with radius Rα is drawn (referred to as Sα, or a "muffin tin sphere"). 

 Outside spheres (region II): The potential is constant, and a single plane wave is used 

to solve Schrödinger's equation [6,7]. 

A single augmented plane wave (APW) employed in the expansion of  φ
K⃗⃗ 
k⃗⃗ (r ) is defined as 

follows: 

φ(r) = {
  ∑ Alm

α,k⃗⃗ +K⃗⃗ 
l,m μl

α(r′, E)Ym
l (r′̂)             r ∈  I

   
1

√V
ei (k⃗⃗ +K⃗⃗ ).r⃗                                            r ∈ II

         (ΙΙ.1) 

Where k⃗  is the Bloch vector (APW basis set is k-dependent), V is the cell volume,                                    

K⃗⃗  is a reciprocal lattice vector, and r = r − rά  is the position inside the spheres, relative to the 

center of each sphere. The Yℓm are spherical harmonics. The Alm
α,k⃗⃗ +K⃗⃗  are yet undetermined 

parameters. The 𝜇𝑙
𝛼(𝑟′, 𝐸) are solutions to the radial part of the Schrödinger equation for a free 

atom α:  

[−
𝑑2

𝑑𝑟2 +
𝑙(𝑙+1)

𝑟2 + 𝑉𝛼(𝑟) − 𝐸𝑙] 𝑟𝜇𝑙
𝛼(𝑟, 𝐸) = 0                  (ΙΙ.2) 
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Figure ΙΙ.1:  The partitioning of a unit cell into muffin-tin regions and an interstitial 

region in the case of a system with two atoms non-overlap. 

For a free atom at energy E, the boundary condition requires that 𝜇𝑙
𝛼(𝑟, 𝐸) vanishes as r tends 

to infinity, limiting the number of energies for which a solution uαℓ can be obtained for a true 

free atom. However, as this boundary condition does not apply in this context, a numerical 

solution can be found for any EE. Consequently, it is possible to identify values of the energy 

El for which 𝜇𝑙
𝛼(𝑟′, 𝐸)) vanishes at the sphere's limit, resulting in a separation of the plane 

waves with respect to the radial functions. This issue is known as the asymptote problem. 

As the bands approach the asymptote, the calculations become more complex. To address this 

problem, several modifications to the APW method have been proposed. One notable method, 

proposed by Andersen [8], ensures that both the basis functions and their derivatives are made 

continuous by matching them to a radial function 𝜇𝑙
𝛼 at a fixed El, along with their derivatives 

�̇�𝑙
𝛼, with respect to the energy El. This modification effectively resolved the issues with the 

APW method, providing a more flexible and accurate method for calculating the band structure. 

This improvement led to the development of the LAPW method. 

ΙΙΙ.3. The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) 

method 

The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method was developed to 

address the computational challenges that were encountered when employing the standard 

augmented plane wave (APW) method. Two primary difficulties have been identified [9]: 

1. Energy dependence: The Schrödinger equation exhibits energy dependence due to the 

nonlinearity of the energy parameter used for the radial solutions within the muffin-tin 
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spheres. Here, the Schrödinger equation is solved exactly within each atomic sphere, 

which presents a significant computational challenge. In order to overcome this 

challenge, techniques such as the determination of determinants or more advanced 

methods for varying the energy parameter have been employed. 

2. The secular equation exhibits singular behavior. Another challenge arises from the 

singular behavior of the secular equation, particularly when a radial solution node 

coincides with the muffin-tin-sphere boundary, a situation commonly referred to as the 

asymptotes. 

In the full-potential method (FP-LAPW) [12,13], the basic functions inside the spheres are 

linear combinations of radial functions, 𝜇𝑙
𝛼(𝑟′, 𝐸)𝑌𝑚

𝑙 (𝑟′̂) and their derivatives as a function of 

energy �̇�𝑙
𝛼(𝑟′, 𝐸)𝑌𝑚

𝑙 (𝑟′̂)  with respect to the linearization parameters, 𝐸𝑙. The 𝜇𝑙 are defined 

exactly as in the APW method (Eq ΙΙ.2), with a fixed 𝐸𝑙.  The energy derivative,  �̇�𝑙(𝑟)𝑌𝑚
𝑙 (�̂�) 

satisfies [10], which linearizes the Schrödinger equation within each atomic sphere, thereby 

simplifying the calculation and improving efficiency. 

[−
d2

dr2 +
l(l+1)

r2
+ V(r) − El] rμ̇l(r) = rμl(r)          (ΙΙ.3) 

The aforementioned functions are calibrated to align with the values and derivatives of the plane 

waves at the boundaries of the spheres. The resulting augmented plane waves serve as the basis 

for the LAPWs (Linearized Augmented Plane Waves), which are commonly referred to as such. 

The wave functions can be expressed in terms of this basis as follows: 

φ(r) = {
  ∑ [Almlm μl(r) + Blmμ̇(r)Ylm(r̂)           r ∈ I

      
1

√V
ei (k⃗⃗ +K⃗⃗ ).r⃗                                            r ∈ II

       (ΙΙ.4) 

Where Blm is the coefficient corresponding to the function μl and is of the same nature as the 

coefficients Alm.  

In the LAPW method plane waves are used in the interstitial region, as in the APW method.  

Inside the spheres, the LAPWs offer greater variational freedom compared to APWs; the plane 

waves are used linearized augmented. 

ul (ϵ, r) = ul (El, r) + (ϵ-El)u̇l(ϵ, r) + O((ϵ − El)
2)           (ΙΙ.5) 

This is because, if El differs slightly from the band energy,ϵ, a linear combination, will 

reproduce the APW radial function constructed at the band energy (Going to the LAPW method 

introduces quadratic errors of order (ϵ − El)
2in the wave function). Despite these minor 
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limitations, the LAPW functions serve as a reliable basis for obtaining all the valence bands 

within a relatively broad energy range using a single El. However, it is also feasible to divide 

the energy interval into multiple energy windows, where each window corresponds to a specific 

energy El for which the solutions are obtained separately [11]. The final definition of an LAPW 

is then: 

φ
K⃗⃗ 
k⃗⃗ ((r ) = {

∑ [Alm
α,k⃗⃗ +K⃗⃗ 

lm μl
α(r′, E1,l

α ) + Blm
α,k⃗⃗ +K⃗⃗ µ̇l

α(r′, E1,l
α )Ym

l (r̂′)           r ∈ I

       
1

√V
ei (k⃗⃗ +K⃗⃗ ).r⃗                                                                r ∈ II

    (ΙΙ.6) 

 

Once the E1,l
α  values have been fixed, the basis functions can be computed definitively. 

Subsequently, the same procedure utilized for the plane wave basis set can be employed in the 

calculations [7].  

In the LAPW method, a single diagonalization is sufficient to obtain accurate energy bands at 

a specific k-point. In contrast, the APW method necessitates a distinct diagonalization for each 

band [10]. 

ΙΙΙ.3.1. LAPW with Local Orbitals (LAPW+LO) 

The electronic states of matter are classified into three categories: core states, semi-core 

states (which lie between valence and core states), and valence states. In the LAPW+LO 

method, the electronic structure of materials is determined by treating the valence and core 

states differently. The valence states are expanded using LAPW basis functions, which allows 

for the accurate description of their extended nature by utilizing the crystal potential. 

Conversely, the core states are addressed using a numerical basis within an atomic 

approximation. This approximation constrains the core wave functions to be spherical and 

neglects any off-site overlaps. The core states are computed using an atomic code, where the 

spherical part of the crystal potential replaces the atomic potential within the atomic sphere. 

Consequently, both the core and valence states are calculated in a self-consistent manner. The 

core states are treated in a fully relativistic manner within the context of the spherical 

approximation, whereas the valence states utilize the full crystal potential, accounting for their 

extended character. 

The LAPW method necessitates the use of non-overlapping spheres, which 

consequently renders the augmenting functions, ul and u′l, orthogonal (due to diagonalization) 

to any core state that is strictly confined within the MT sphere. However, for elements with 
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diverse electronic configurations, there are extended core states that are not sufficiently close 

to zero on the sphere boundary to have ul and u′l orthogonal to them. It has been observed in 

numerous elements, including alkali metals, rare earths, actinides, and early transition metals 

[12, 13], as well as in 4f and 5f materials [14, 15], that high-lying and extended core states (e.g., 

the 5p state in the 4f elements) exist. These states are also referred to as semi-core states. Semi-

core states possess a higher energy than core states but a lower energy than valence states. 

As an illustrative example, consider the hybridization of the 3p core state in bcc copper. 

This state extends beyond the MT sphere, with a fraction of the charge outside the atomic 

sphere. This is because the 3p states are too high in energy (4.3 Ry below the Fermi level) to 

be confined within this sphere. In contrast, the 4p states in the valence region are approximately 

0.2 Ry below the Fermi level. This issue may be mitigated by treating the 3p and 4p states in 

the valence region, although this approach may lack flexibility. An alternative approach would 

be to expand the muffin-tin sphere. However, when a compound is studied as a function of 

pressure or when atoms are moved from equilibrium positions to study lattice vibrations, the 

small bond distances do not allow the muffin-tin ball to expand sufficiently. 

In 1991, Singh [16] solved this dilemma by adding another type of basis function to the 

LAPW basis set, called a local orbital (LO). A local orbital is defined for a particular ℓ and m, 

and for a particular atom α. It is local in the sense that it is completely confined within the MT. 

It is defined as: 

ɸα,LO
lm ={

(Alm
α,LO ul

α(r′, E1,l
α ) + Blm

α,LOu̇l
α(r′, E1,l

α ) + Clm
α,LOul

α(r′, E2,l
α )) Ym

l (r̂′)  r ∈ I

 0                                                                                                                    r ∈ II 
 

                                                                                                                                (ΙΙ.7) 

Where ul
α(r′, E1,l

α ) and u̇l
α(r′, E1,l

α ) as in the LAPW basis set are used, with as linearization 

energyE1,l
α , ℓ a value suitable for the highest of the two valence states (4p in our example). The 

three coefficientsAlm
α,LO

, Blm
α,LO

 and Clm
α,LO

 are determined by requiring that the LO is normalized 

and has zero value and zero slopes at the muffin tin boundary. This ensures that the wave 

function does not leak out of the muffin tin sphere. 

The lower valence state, which is more free-atom-like, is sharply peaked at an energy E2,l
α . A 

single radial function, ul
α(r′, E2,l

α ), at that same energy will be sufficient to describe it. Local 

orbitals are not connected to plane waves in the interstitial region; consequently, they lack k 

and K dependence. The size of the LAPW base set increases when local orbitals are added, 
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resulting in a slight increase in computational time. However, this is offset by the high accuracy 

offered by local orbitals. 

ΙΙ.3.2. The APW+lo method 

        Local orbitals were initially introduced in the LAPW method by Singh to treat semi-core 

states [17]. An energy-independent APW basis set is insufficient for identifying solutions in a 

region around a fixed energy parameter. This dependence has been eliminated in the 

LAPW+LO method, however, this has come at the cost of a larger basis size. Sjöstedt, 

Nordström, and Singh have recently made an additional improvement by introducing a basis 

that combines the advantages of the APW method and those of the LAPW method. This method 

is designated as "APW+lo" and corresponds to an energy-independent basis set (analogous to 

the LAPW+LO method), which has been demonstrated to be highly efficacious in reducing the 

basis set sizes. The variational freedom can be enhanced by employing a complementary basis 

set comprising local orbitals for physically significant L-quantum numbers. The local orbitals 

impose no additional constraints on the APW basis set, thus maintaining the number of plane 

waves in the interstitial region. The definition of these functions is as follows: 

φα,lo
lm ((r ) = {

∑ [Alm
α,lo

lm μl
α(r′, E1,l

α ) + Blm
α,loµ̇l

α(r′, E1,l
α )Ym

l (r̂′)           r ∈ I

           0                                                                                      r ∈ II
        (ΙΙ.8) 

φα,lo
lm  and Blm

α,lo
 are determined by normalization, and by requiring that the local orbital has zero 

value at the muffin tin boundary. The APW and the local orbital are continuous at the sphere 

boundary, but for both their first derivative is discontinuous [13]. 
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ΙΙΙ.1. Computational Details  

          Two complementary codes based on the density functional theory were employed for a 

complete investigation of the structural parameters, elastic moduli, electronic properties and 

optical spectra of quaternary chalcogenide compounds Tl2CdGeSe4 and Tl2CdSnSe4. 

The first part of the present work, namely, the structural optimization and elastic constants, 

were performed using an efficient method to relax the crystal structure, namely the 

pseudopotential plane wave (PP-PW) approach based on density functional theory (DFT) as 

incorporated in the Cambridge Sequential Total Energy Package (CASTEP) [1]. The exchange–

correlation interactions were modeled using the PBEsol form of the general gradient 

approximation (labeled GGA-PBEsol or GGA-08) [2], which was specially developed to better 

predict the optimized crystal structures of solids. Norm-conserving pseudopotentials [3, 4] were 

used to describe the Coulombic interactions between the valence electrons and ion cores. The 

electron states Tl: 5d106s2 6p1, Cd: 4s24p64d105s2, Sn: 4d105s25p2, Ge: 3d104s24p2 and Se: 

3d104s24p4 were treated as the valence states. The Kohn–Sham electronic wave functions were 

developed on a plane wave basis set truncated at an energy cutoff of 1350 eV. Integrations over 

the Brillouin zone (BZ) were performed over a 7 × 7 × 6 special Monkhorst–Pack k-mesh [5]. 

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) technique [6] was employed to relax the free 

structural parameters. The Se internal coordinates, xSe, ySe, zSe, and the lattice parameters, a and 

c, with convergence cutoffs of 5.0×10–6eV/atom, 0.01 eV/Å, 0.02GPa and 5.0×10–4Å for the 

total energy, maximum ionic Hellmann–Feynman force, maximum ionic displacement and 

maximum stress, respectively. The well-known stress–strain technique [1] was used to calculate 

the monocrystalline elastic constants 𝐶𝑖𝑗. In this approach, 𝐶𝑖𝑗 is estimated by computing the 

stress tensors ↔ σ generated by applying different small deformation tensors ↔ δ to the 

equilibrium lattice, and then 𝐶𝑖𝑗 is determined by a linear fit of the computed stress–strain 

curves. Two deformations, where the first is defined by a strain tensor ↔ δ with only two 

nonzero components, viz., δxx and δyz,  and the second with also only two non-zero components, 

viz.,δzz and δxy, are sufficient to determine the six independent elastic constants, namely, C11, 

C33, C44, C66, C12 and C13, of a tetragonal system. The phonon-dispersion curves were calculated 

through a linear-response method based on density functional perturbation theory. 

The second part of the present work, namely, the electronic and optical properties were carried 

out through the full-potential (linearized) augmented plane wave plus local orbitals (FP-L/APW 

+ lo) as implemented in the WIEN2k code [7]. The FP-(L)APW + lo method is one of the most 
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accurate approaches for calculating electronic structure and the associated properties. It is well 

established that the energy bandgap calculated through common exchange–correlation (XC) 

functionals, namely the local density approximation (LDA) and the generalized gradient 

approximation (GGA), are generally significantly smaller than that from experimental data. 

Thus, some XC functionals beyond the standard LDA and GGA, such as hybrid functionals, 

the GW method, and the Tran-Blaha-modified Becke-Johnson (TB-mBJ) potential, have been 

developed to overcome this deficiency. To remedy the systematic underestimation of the 

bandgap by the GGA, we used the TB-mBJ potential [8, 9], which has been shown to predict 

bandgaps that are in good agreement with experimental counterparts and with theoretical results 

obtained using more advanced calculations, such as those based on Green’s function (GW) and 

hybrid functionals, for a wide variety of semiconductors and insulation [10–11]. Note that the 

computation cost when using the TB-mBJ potential is significantly lower than that when using 

the hybrid functionals and GW approximation [12]; the computation time using the TB-mBJ 

potential is comparable to that using the standard LDA and GGA. Therefore, TB-mBJ was 

chosen to correct the bandgaps of the studied Tl-based selenides. The valence wave functions 

inside the interstitial region were developed on a plane wave basis set, with the largest k vector 

(𝐾𝑚𝑎𝑥) equal to 9/𝑅𝑀𝑇
𝑚𝑖𝑛 , where 𝑅𝑀𝑇

𝑚𝑖𝑛 is the smallest muffin-tin radius in the Bohr unit. The 

valence wave functions inside the muffin-tin spheres were developed on spherical harmonics 

up to 𝑙𝑚𝑎𝑥 = 10. The muffin-tin sphere radius was chosen to equal 2.5 Bohr for Tl, 2.46 Bohr 

for Cd, 2.14 Bohr for Ge, 2.35 Bohr for Sn, and 2.14 Bohr for Se. The total energy convergence 

was set to 10–5 Ry, and the atom relaxation was determined with a force on each atom less than 

0.1 eV/Å. The optical properties of a material affect the characteristics of electromagnetic 

waves passing through it by modulating their propagation vector (dispersion) or intensity 

(absorption). The linear macroscopic response of a solid medium to incident electromagnetic 

waves is modeled by the optical complex dielectric function Ɛ(ω) = Ɛ1(ω) + Ɛ2(ω), where Ɛ1(ω) 

(the real part) models the dispersion of electromagnetic radiation and Ɛ2(ω) (the imaginary part) 

models the dissipation of the energy of electromagnetic radiation inside the crossed medium. 

Theoretically, the Ɛ2(ω) spectrum is calculated by summing all the individual contributions of 

the allowed direct electronic transitions between the pairs of electronic states (𝑉𝑛, k) and (𝐶𝑛′ , 

k), where (𝑉𝑛, k) is an occupied electronic state in a valence band of index n and (𝐶𝑛′ , k) is an 

unoccupied electronic state in a conduction band of index 𝑛′. The spectrum of the dispersive 

part of the dielectric function, Ɛ1(ω), is then computed from the Ɛ2(ω) spectrum through the 

Kramers–Kronig transformation. The spectra of the other macroscopic linear optical functions, 
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namely, the refractive index n(ω), extinction coefficient k(ω), optical reflectivity R(ω), 

absorption coefficient α(ω) and energy-loss function L(ω), can be computed from the Ɛ1(ω) and 

Ɛ2(ω) spectra. All the reported spectra of macroscopic linear optical functions in this work were 

calculated using the random phase approximation formulation developed by Ambrosch–Draxl 

and Sofo [13] and implemented in the WIEN2k code. A large grid of 40×40×40 k-points was 

used to calculate the electronic properties and optical spectra, as they are very sensitive to the 

k-mesh. Due to the presence of heavy atoms in the studied compounds, all the performed 

calculations were carried out both with and without spin–orbit coupling, which we refer to 

hereafter as + SOC and NSOC, respectively. 

ΙΙΙ.2. Results and Discussion 

ΙΙΙ.2.1. Structural properties of the Tl2CdXSe4 (X= Ge, Sn) compounds 

ΙΙΙ.2.1.1 Structural description 

        The quaternary chalcogenide compounds Tl2CdGeSe4 and Tl2CdSnSe4 crystallize in the 

tetragonal system with the non-centrosymmetric space group I-42 m (No. 121), as determined 

through X-ray diffraction analysis [14; 15; 16]. The location and coordination of the 

surrounding atoms constituting the unit cell structure of Tl2CdGeSe4, as a representative, are 

depicted in Fig. ΙΙΙ.1 The Cd and Ge atoms, which are bonded to four Se atoms forming slightly 

distorted tetrahedral (see the polyhedral diagrams in Fig. ΙΙΙ.1b, c), occupy Wyckoff sites 2b (0, 

0, 0.5) and 2a (0, 0, 0), respectively. The Tl atom, which is coordinated by eight Se atoms 

forming a distorted tetragonal antiprism (Fig ΙΙΙ.1d), is located at Wyckoff site 4c (0, 0.5, 0). 

The Se atom, which is surrounded by 1Cd, 1Ge and 4Tl cations forming a trigonal prism, 

occupies Wyckoff site 8i(𝑥𝑆𝑒 , 𝑥𝑆𝑒 , 𝑧𝑆𝑒), where𝑥𝑆𝑒 , 𝑥𝑆𝑒 and 𝑧𝑆𝑒 are the internal coordinates of 

the Se atom. Thus, the crystal structure of the studied compounds has four free structural 

parameters not fixed by the space group, namely the following: the cell parameters, a and c, 

and the internal coordinate, 𝑥𝑆𝑒  and 𝑧𝑆𝑒, which have to be relaxed to reach the equilibrium 

crystal structure. 
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Figure ΙΙΙ.1: (a) Depiction of the unit cell structure of Tl2CdGeSe4. (b) Polyhedral 

representation showing the arrangement of Cd and Ge atoms within the unit cell. (c) The closest 

neighboring Se atoms surround the Cd and Ge atoms, forming CdSe4 and GeSe4 tetrahedra. (d) 

The closest neighboring Se atoms surround the Tl atoms within the unit cell  

ΙΙΙ.2.1.2. Equilibrium structural properties 

        The equilibrium structural parameters of the studied compounds, viz., the lattice 

parameters, a and c, the internal coordinates of the Se atom and the distances between the 

nearest neighbors, computed both with and without spin–orbit coupling (labeled + SOC and 

NSOC, respectively), are presented in Tab. ΙΙΙ.1 and ΙΙΙ.2 along with the available 

corresponding measured values [14; 15; 16]. Our calculated values for the lattice parameters 

and the corresponding experimental data [17; 15; 16] demonstrate excellent agreement; the 

maximum relative discrepancy does not exceed − 0.8% when spin–orbit coupling is included 

(𝑑(%) = ((𝑥 − 𝑥𝑒𝑥𝑝𝑡)/𝑥𝑒𝑥𝑝𝑡 ∗ 100). The calculated relaxed fractional internal coordinates of 

the Se atom and bond lengths are also consistent with the available corresponding experimental 

data. 
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Table ΙΙΙ.1: Calculated equilibrium lattice parameters (a and c, in Å), unit cell volume (V, in 

Å3), relative deviation of the computed values from the corresponding experimental data (d %), 

and relaxed fractional internal coordinates of the Se atom (x/a, y/a z/c) for the Tl2CdGeSe4 and 

Tl2CdSnSe4 compounds. Available results in the literature for the investigated compounds are 

tabulated for the sake of comparison. + SOC (NSOC) refers to calculations performed with 

(without) including spin-orbit coupling (SOC) 

  Tl2CdGeSe4    

 Present  Expt [24]  Other[27] 

 NSOC +SOC    

a 7.8739 7.9453 8.0145   8.4502 

d (%) − 1.7 -0.8   5.4 

c 6.7256  6.7107 6.7234  6.7740 

d (%) 0.03 -0.2   0.4 

V 416.976 423.632 431.859  483.703 

d (%) -3.5 -1.9   12.2 

Se x/a 0.1713 0.1689 0.1641  0.16044 

Se y/a 0.1713 0.1689 0.16410  0.16044 

Se z/c 0.2166 0.2185 0.2819  0.28758 

 

        Tl2CdSnSe4    

 Present  Expt [15] [14] Theory[16] 

 NSOC +SOC    

a 7.9125  7.9888  8.04802  8.04901  8.1673  

d (%) -1.6 -0.7   1.5 

c 6.8216 6.8651 6.8569 6.8573 6.9405 

d (%) -0.5 0.1   1.2 

V 427.084 438.137 444.123 444.260 462.964 

d (%) -3.8 -1.3   4.2 

Se x/a 0.1759 0.1762 0.1742 0.1713 0.1761 

Se y/a 0.1759 0.1762 0.1742 0.1713 0.1761 

Se z/c 0.2275 0.2352 0.240 0.2520 0.2366 
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Table ΙΙΙ.2: Calculated equilibrium interatomic distances (d, in Å), number of identical bonds 

(N.B.), and coordination numbers (C.N.) of atoms in the Tl2CdGeSe4 and Tl2CdSnSe4 including 

spin-orbit coupling, compared to available data in the literature 

Tl2CdGeSe4      

Atom Bond (N.B.) d (Å)   C.N. 

  Present Expt.[15]   

Tl Tl–Se (4) 3.2972 3.336  8 

 Tl–Se (4) 3.5055 3.545   

Cd Cd–Se (4) 2.6777 2.65  4 

Ge Sn–Se (4) 2.3986 2.368  4 

Se Se–Ge (1) 2.3986 0.2368  6 

 Se–Cd (1) 2.6777 2.65   

 Se–Tl (2) 3.2972 3.336   

 Se–Tl (2) 3.505 3.545   

Tl2CdSnSe4      

Atom Bond (N.B.) d (Å)   C.N. 

  Present Expt.[15] Expt. [14]  

Tl Tl–Se (4) 3.3572 3.42 3.433 8 

 Tl–Se (4) 3.4545 3.453 3.447  

Cd Cd–Se (4) 2.6933 2.58 2.587 4 

Sn Sn–Se (4) 2.5673 2.63 2.605 4 

Se Se–Sn (1) 2.5673 2.63 2.605 6 

 Se–Cd (1) 2.6933 2.58 2.587  

 Se–Tl (2) 3.3572 3.42 3.433  

 Se–Tl (2) 3.4545 3.453 3.447  

 

This excellent consistency between the calculated values and the experimental counterparts 

confirms the reliability of the PP-PW method in predicting the optimized structural geometry. 

Note that the unit cell parameters of Tl2CdSnSe4 are somewhat larger than those of Tl2CdGeSe4. 

Since all constituent atoms except DIV (DIV = Ge, Sn) are the same, the increase in unit cell 

volume when Sn substitutes for Ge is attributed to the fact that the atomic radius of the Sn atom 

(R = 2.81Å) is somewhat larger than that of the Ge atom (R = 2.45Å). To check the dynamic 
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stability of the title compounds, the phonon-dispersion curves along the high symmetry lines in 

the Brillouin zone were calculated for both compounds. As seen from the phonon-dispersion 

curve of Tl2CdGeSe4 represented in Fig.ΙΙΙ.2, the dispersion branches have positive frequencies 

at any vector, suggesting that the compounds of interest are dynamically stable. 
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Figure ΙΙΙ.2:  Calculated phonon dispersion along the high symmetry lines in the Brillouin 

zone for Tl2CdGeSe4 
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ΙΙΙ.2.2. Elastic properties of the Tl2CdXSe4 (X= Ge, Sn) compounds  

ΙΙΙ.2.2.1. Preamble 

        Elastic properties describe the mechanical behavior of materials; their measurement 

provides information about the forces binding the atoms or ions that make up a solid. A body, 

that is acted on by external forces, or, more generally, a body in which one part exerts a force 

on neighboring parts, is said to be in a state of stress are described by stress tensors that 

determine the direction of the forces and the plane on which they apply. A solid body changes 

its shape when subjected to stress. Provided the stress is below a certain limiting value (For 

small stresses, the elastic modulus is constant and the material behaves elastically), the elastic 

limit, the strain is recoverable, and that is to say, the body returns to its original shape when the 

stress is removed. The proportionality between stress and deformation within the limit of small 

deformations are respectively described by two symmetric tensors of second order 𝜎𝑖𝑗 and Ɛ𝑖𝑗. 

The proportionality between the two tensors introduces two characteristic constants of the 

material. 

For the monocrystalline, we often use the constants of elasticity 𝐶𝑖𝑗 or of deformability𝑆𝑖𝑗. The  

𝐶𝑖𝑗 values are closely related to a wide range of fundamental solid-state properties, such as 

mechanical stability, phonon dispersion, heat capacity, Debye temperature, Gruneisen 

parameter, thermal expansion, the character and strength of the interatomic bonds, elastic wave 

velocities and melting point. 

For an isotropic material (a polycrystalline), we can measure the polycrystalline modulus of 

elasticity. BV, GV, BR, GR, BH, and GH, where the subscripts V, R, and H denote the Voigt, 

Reuss, and Hill approximations, respectively. , Young’s modulus E and Poisson’s ratio ν, etc. 

ΙΙΙ.2.2.1.1. Hooke's Law 

The relation connecting the state of stress and strain is determined from the physical properties 

of the solid undergoing deformation. Hooke in 1960 determined the states of stress and strain 

produced in a body by applied forces. During the deformation, the removal of the external forces 

leads in some cases to the complete recovery of a body to the natural state; the strain is 

recoverable, while in other cases the body retains compressed even though the load is removed 
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the strains called permanent or plastic strains. For many materials, the relation is linear if the 

magnitude of the stresses is confined to a certain range so the object returns to its original shape 

and size upon removal of the load. The linear low for the relationship between stress and strain 

is called the generalized Hook's law. The general and inverse form of writing Hooke’s law is as 

follows: 

                     σij = CijklƐkl                                                         (ΙΙΙ. 1) 

                     Ɛij = Sijklσkl                                                         (ΙΙΙ. 2) 

C is a tensor of rank four, called the stiffness tensor or elasticity tensor, and S is called the 

elastic compliance constant. The stiffness tensor is represented by a matrix of real numbers that 

contains 81 constants of stiffness Cijkl. The symmetry of the stress tensor and the strain tensor 

will reveal the symmetry of the quantities. 

                          Cijkl = Cijlk = Cjikl = Cjilk                                 (ΙΙΙ. 3) 

Generally, reduce the number of components independent Cijklfrom 81 to 36. The components 

Cijklbecome Cij by transforming the indices by Voigt notation [18]. Thus, Voigt's notation 

makes it possible to transform the stress and strain tensors into 6-component vectors and 

therefore Hooke's law can be written as: 

                                       σi = CijƐj                                               (ΙΙΙ.4) 

With  

          

(

  
 

σ1
σ2
σ3
σ4
σ5
σ6)

  
 
=

(

 
 
 

C11
C21
C31
C41
C51
C61

C12
C22
C32
C42
C52
C62

C13
C23
C33
C43
C53
C63

C14
C24
C34
C44
C54
C64

C15
C25
C35
C45
C55
C65

C16
C26
C36
C46
C56
C66)

 
 
 

(

 
 
 

Ɛ1
Ɛ2
Ɛ3
Ɛ4
Ɛ5
Ɛ6)

 
 
 

                             (ΙΙΙ. 5) 

 

The symmetry elements of the crystal further reduce the number of independent constantsCij. 

Where 

                              Cij = Cji                                                                 (ΙΙΙ. 6) 
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The symmetry of the Cij matrice implied by relations (ΙΙΙ.3) further reduces the number of 

independent stiffness constants and compliances from 36 to 21; these numbers will be decreased 

when we consider the symmetry of the crystal. 

For a tetragonal material, the number of independent elasticity constants is reduced to six 

independent elastic constants in the form of the elastic matrix [19]: 

               CTetrag =

(

 
 
 

C11
.
.
.
.
.

C12
C11
.
.
.
.

C13
C13
C33
.
.
.

.

.

.
C44
.
.

.

.

.

.
C44
.

.

.

.

.

.
C66)

 
 
 

                                 (ΙΙΙ. 7) 

ΙΙΙ.2.2.1.2. Mechanical Properties 

 Young's modulus (modulus of elasticity E): is the constant that connects the tensile 

stress (or compression) and the deformation for an isotropic elastic material, it is defined 

as the ratio of tensile stress σ to tensile strain Ɛ. It is constant that this compression 

remains small and that the elasticity limit of the material is not reached, whose stress is 

one-dimensional: 

                              E =
σ

Ɛ
                                                       (ΙΙΙ. 8) 

 Poisson coefficient (ν): the ratio of transverse contraction strain versus longitudinal 

extension strain under a stretching force (unit transverse contraction/unit axial 

elongation). 

                    ν =
(l0−l) l0⁄

(L0−L) L0⁄
= −

Δl l0⁄

ΔL L0⁄
=

Ɛtransveral

Ɛlongitudinal
                            (ΙΙΙ. 9) 

The typical value of Poisson’s ratio for a covalent material is 0.2, while it is in the range 

of 0.3–0.4 for an ionic material and equal to 0.5 for the pure-ionic limit and the material 

is perfectly incompressible [21]. 

 The bulk modulus (B): is defined as the relative change in volume V under applied 

pressure P, which can be expressed as follows 

                                           B = −V
dP

dV
                                       (ΙΙΙ. 10) 

The bulk modulus is an extension of Young's modulus to three dimensions. 



 

   51 
 

Chapter ΙΙΙ Results and Discussion 

 

 The shear modulus (G): is a measure of strain strength, relates shear stress and strain for 

an isotropic elastic material, which describes the deformation of shape at constant 

volume. 

To verify the brittleness or ductility of the studied materials are three important parameters, we 

can calculate  Pugh’s ratio (𝐵 𝐺⁄ ), Poisson ratio (ν) and Cauchy pressure (C12–C44); the critical 

limits can be known from B G > 1.75⁄ , ν > 0.26 for ductile nature and the opposite are true for 

fragile materials and if C12–C44 is negative, a material is brittle; otherwise, it is ductile. [22; 23]. 

Another factor value (𝐺 𝐵⁄ ) is about 0.57 distinguishing between brittle and ductile materials. 

A low G/B value means ductility, while a high G/B value implies more brittleness [24]. In the 

case of an isotropic material, Poisson's ratio makes it possible to directly connect the shear 

modulus G to Young's modulus E (𝐸 = 2𝐺(1 + ν) for isotropic and homogenous materials). 

Furthermore, the calculated isotropic bulk moduli B and shear moduli G allow the calculation 

of Young’s modulus E and Poisson’s ratio (ν) via the following relationships: 

                               ν =
3B−2G

2(3B+G)
                                             (ΙΙΙ. 11) 

and 

                                E =
9BG

3B+G
                                                 (ΙΙΙ. 12) 

The hardness of a material is characterized by both intrinsic and extrinsic properties. Intrinsic 

properties encompass bond strength, cohesive energy, and crystal structure. On the other hand, 

extrinsic properties include defects, stress fields, and morphology. Experimental hardness 

values vary depending on measurement methods, temperature, and other factors. Similarly, 

theoretical hardness values are influenced by the formalism used in calculations[25]. We can 

calculate Vicker’s hardness (Hv) using Young’s modulus E and Poisson’s ratio. It is well 

established that diamond is the hardest material on earth. It has a Vicker’s hardness value in the 

range of 70–150 GPa. Hardness is an important mechanical property that is defined as the 

resistance of a material to localized deformation [26] using the following expression: 

                     HV =
(1−2ν)E

6(1+ν)
                                                      (ΙΙΙ. 13) 

An empirical model for Vicker’s hardness has been proposed by Chen et al ; this model may 

not accurately predict the hardness of pure metals or materials dominated by metallic bonding 
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with a very low Pugh's modulus ratio[27].  (HV) based on a large sample of measured values 

from the literature as follows: 

                        Hv = 2(K
2G)0.585 − 3                                       (ΙΙΙ. 14) 

Where𝐾 = 𝐺 𝐵⁄ . The bulk and shear moduli are the most important parameters for identifying 

the hardness. The high hardness requires that the bulk and shear modulus be as large as possible 

[28; 29]. Generally, the shear modulus is a significantly better qualitative predictor of hardness 

than the bulk modulus [30]. We can conclude that the shear modulus is more closely related to 

the hardness than the bulk modulus. 

 The propagation velocities of longitudinal Vl and transverse Vt acoustic waves are derived from 

[31]: 

Vl = √
E(1−ν)

ρ(1+ν)(1−2ν)
= √

B+4G 3⁄

ρ
                                     (ΙΙΙ. 15) 

Vt = √
E

2ρ(1+ν)
= √

G

ρ
                                                      (ΙΙΙ. 16) 

Where ρ is the mass density 

The Vm, obtained using theoretical Vl and Vt, is: 

    Vm = [
1

3
(
1

Vl
3 +

2

Vt
3)]

−1 3⁄

                                               (ΙΙΙ. 17) 

The Debye temperature is an important parameter of a solid. It appears in equations 

describing properties resulting from atomic vibrations and in phonics theories. At low 

temperatures the vibrational excitations arise solely from acoustic vibrations. Debye 

temperature can be estimated numerically from the average sound wave velocity Vm as 

follows [31]: 

           TD =
h

kB
Vm [

3n

4π

NA ρ

M
]
1 3⁄

                                                (ΙΙΙ. 18) 

Where; h is Plank’s constant (h = 6.6262. 10−34 kg m2s−1 (j. s)), is Boltzmann’s constant 

(kB = 1,3806. 10
−23m2Kg s−2(j. deg−1)), NA is Avogadro’s number, p is the density, M is the 

molecular weight of the solid and n is the number of atoms in the molecule[32]. 
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Another significant parameter that can be derived from the elastic constants 𝐶𝑖𝑗 is the melting 

point 𝑇𝑚 , which is the temperature at which a substance transitions from a solid to a liquid 

state. The melting point can be estimated using the following empirical formula[33]: 

𝑇𝑚 = 354 +  4.5 ((2𝐶11 + 𝐶33) 3)⁄  

Where 𝑇𝑚, is in K,  𝐶11𝑎𝑛𝑑 𝐶33 in GPa. 

       Polycrystalline materials are composed of many crystallites of varying sizes and 

orientations. Theoretically, the bulk modulus (B) and shear modulus (G) are important 

parameters of crystals to depict their abilities to resist compression and shear deformations. In 

view of the Voigt and Ruess [19] models the isotropic polycrystalline elastic moduli B and G 

can be calculated from the single-crystal elastic Cij and compliance constants (Sij ( it is not 

possible to measure the Cij values in this case). In the Voigt approximation a uniform strain is 

assumed throughout the polycrystal, and the upper limits of B and G, viz., B V and GV, can be 

evaluated. While Reuss [33] assumed that the stress is everywhere uniform, so his 

approximation yields the upper bound (upper limit) for the B and G moduli, Hill’s 

approximation [19] assumes that the arithmetic means of the Voigt and Reuss limits constitutes 

the best theoretical value for the polycrystalline modulus of elasticity. 𝐵𝑉, 𝐺𝑉, 𝐵𝑅, 𝐺𝑅, 𝐵𝐻,  and 

𝐺𝐻, where the subscripts V, R and H denote the Voigt, Reuss and Hill approximations, 

respectively[34, 35]. 

ΙΙΙ.2.2.2.  Monocrystalline elastic constants 

The monocrystalline elastic constants Cijmirror the extent of the crystals’ ability to recover their 

original shape after the stress is removed within the elastic limit, so they are key mechanical 

parameters of crystals. The Cijvalues are closely related to a wide range of fundamental solid-

state properties, it is of fundamental and practical interest to evaluate the Cijvalues of a crystal 

using reliable theoretical approaches and precise experimental techniques. we determined the 

lattice parameters to match experimental values, we employed the "Energy-strain" method via 

the CASTEP code to compute the six independent second-order elastic constants 𝐶11, 𝐶12, 𝐶13, 

𝐶33, 𝐶44, and 𝐶66 for Tetragonal crystal. We are not aware of any experimental or theoretical 

determination of the Cijvalues for the compounds of interest; hence, our results, listed in Table 

ΙΙΙ.3, are the first numerical assessment. From the predicted Cij values, information on the 

elastic and mechanical properties can be extracted. 
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Table ΙΙΙ.3: Calculated monocrystalline elastic constants (𝐶𝑖𝑗, in GPa) for the Tl2CdGeSe4 and 

Tl2CdSnSe4 compounds with (+ SOC) and without (NSOC) including spin-orbit coupling 

System 𝐂𝟏𝟏 𝐂𝟑𝟑 𝐂𝟒𝟒 𝐂𝟔𝟔 𝐂𝟏𝟐 𝐂𝟏𝟑 

Tl2CdGeSe4       

NSOC 46.1  75.0 16.3 13.6 19.2 19.1 

+SOC 35.8  67.3  9.8    9.6 12.8 13.9 

Tl2CdSnSe4       

NSOC 46.4  74.8 11.0 11.8 17.8 17.8 

+SOC 40.3  67.4 13.2 14.4 15.2 14.4 

Based on the results obtained, we can draw the following conclusions: 

 The computed Cijvalues fulfill all the necessary conditions for the mechanical stability of a 

tetragonal crystal [36]: 

 C11 > |C12|;2C13
2 < C33(C11 + C12);  C44 > 0; C66 > 0. Thus, Tl2CdGeSe4 and 

Tl2CdSnSe4 are mechanically stable.  

 The C11 value, which reflects the resistance to linear compression or elongation of the 

crystal along the a-axis, is noticeably smaller than the C33 value, which mirrors the 

resistance to linear compression or elongation along the c-axis, indicating that the studied 

compounds show higher stiffness against strains along the c-axis than against strains along 

the a-axis. This suggests that under the same perpendicular uniaxial stress, the crystal is 

more compressible along the a-axis than along the c-axis; thus, the linear compressibility is 

dependent on the crystal direction. This result indicates that the interatomic bonds along the 

a-axis are weaker than those along the c-axis.  

  The C11and C33 values are noticeably larger than those of C12, C13, C44 and C66, which 

characterize the resistance to shear deformations, indicating that the studied compounds are 

more resistant to compression than to shear.  

 The velocities of sound waves propagating along the main crystal directions can be deduced 

from the monocrystalline elastic constants. The formulas used and the obtained results for 

the velocities of sound waves propagating along the [100] [010]⁄ , [110], and [001] 

crystallographic directions are listed in Table ΙΙΙ.4. Table ΙΙΙ.4 shows that the sound wave 

velocities depend considerably on their own polarizations and on the crystal directions. The 

noticeable differences between the velocities of the sound waves propagating in the 
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considered principal directions constitute proof of the considerable elastic anisotropy of the 

compounds of interest. The longitudinally polarized sound wave propagating along the 

[001] crystallographic direction is the fastest. The sound wave velocity is closely linked to 

the lattice thermal conductivity; the lower the sound velocity is, the lower the lattice thermal 

conductivity. The relatively low values of the anisotropic sound wave velocities suggest 

that the lattice thermal conductivities of both considered compounds are lower. 

Table ΙΙΙ.4: Computed velocities (in ms−1) of the anisotropic sound waves propagating in the 

[100], [110], and [001] crystallographic directions in the monocrystals Tl2CdGeSe4 and 

Tl2CdSnSe4, isotropic longitudinal, transversal and average sound velocities (Vl, Vm and 

Vt, in ms−1), and Debye temperature, the melting point (TD, 𝑇𝑚 , in K) for the polycrystalline 

aggregates Tl2CdGeSe4 and Tl2CdSnSe4. The mass density ρ is equal to 7.1307 g cm3⁄ for 

Tl2CdGeSe4 and 7.2670 g cm3⁄ for Tl2CdSnSe4. L and T refer to longitudinal and transversal 

polarization of the sound wave, respectively. Calculations were performed including spin-orbit 

coupling 

Direction Polarisation Formula Tl2CdGeSe4 Tl2CdSnSe4 

[100] [100] (L) √C11 ρ⁄  2241  2355 

 [010] (T1) √C66 ρ⁄  1160 1408 

 [001] (T2) √C44 ρ⁄  1172 1348 

[110] [110] (L) √(C11 + C12 + 2C66) 2ρ⁄  2180 2928 

 [11̅0] (T1) √(C11 − C12) 2ρ⁄  1613 1727 

 [001] (T2) √C44 ρ⁄  1172  1348 

[001] [001] (L) √C33 ρ⁄  3084  3045 

 (001)Plane T √C44 ρ⁄  1172  1348 

𝑉𝑙   1286  1422 

𝑉𝑡   2346  2494 

𝑉𝑚   1504  1573 

𝑇𝐷   150 155 

𝑇𝑚   562.3 576 



 

   56 
 

Chapter ΙΙΙ Results and Discussion 

 

 

ΙΙΙ.2.2.3. Polycrystalline elastic moduli  

    Generally, the synthesized samples are polycrystalline aggregates of single-phase 

monocrystals with random orientation; therefore, it is impossible to measure the Cij values in 

this case. Instead, we can measure the isotropic bulk modulus B (which reflects the resistance 

to volume change under the hydrostatic pressure effect) and the shear modulus G (which 

characterizes the resistance to shape change under the influence of shear force). Theoretically, 

it is possible to calculate the isotropic elastic moduli B and G of a material from its elastic 

constants (𝐶𝑖𝑗values) and compliance constants (𝑆𝑖𝑗values) via Voigt–Reuss–Hill (VRH) 

approximations [19]. Voigt approximation assumed a uniform strain throughout the polycrystal, 

the upper limits of B and G, viz., 𝐵𝑉 and𝐺𝑉, can be evaluated. In contrast, through the Reuss 

approximation, which is based on an assumption of uniform stress, we can estimate the lower 

limits of B and G, viz., 𝐵𝑅and 𝐺𝑅. Hill’s approximation [19] assumes that the arithmetic mean 

of the Voigt and Reuss limits constitutes the best theoretical value for the polycrystalline 

modulus of elasticity. 𝐵𝑉, 𝐺𝑉, 𝐵𝑅 , 𝐺𝑅 , 𝐵𝐻 and𝐺𝐻, where the subscripts V, R, and H denote the 

Voigt, Reuss, and Hill approximations, respectively, are given by the following relationships 

[34, 35]: 

               BV =
1

9
{2(C11 + C12) + 4C13 + C33}                                                         (ΙΙΙ. 19) 

GV =
1

30
(M + 3C11 − 3C12 + 12C44 + 6C66); M = C11 + C12 + 2C33 − 4C13         (ΙΙΙ. 20) 

                 BR =
C2

M
; C2 = (C11 + C12)C33 − 2C13

2                                                    (ΙΙΙ. 21) 

   GR = 15{(18BV C
2⁄ ) + [6 (C11 + C12)⁄ ] + (6 C44⁄ ) + (3 C66⁄ )}−1                    (ΙΙΙ. 22) 

                                         BH =
BV+BR

2
                                                                         (ΙΙΙ. 23) 

                                         GH =
GV+GR

2
                                                                        (ΙΙΙ. 24) 

    In addition, Young’s modulus E reflects the resistance of a material to uniaxial stresses. It is 

defined as the ratio of the vertically applied linear stress and the linear strain. In another hand 

Poisson’s ratio σ mirrors the tendency of a material to expand or contract in a direction 

perpendicular to a loading direction, given by the negative value of the ratio of the transverse 
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strain (vertical to the applied stress) to the longitudinal strain (in the direction of the applied 

stress), can be numerically estimated through the following relationships: 

                                    E =
9BG

3B+G
; ν =

3B−2G

2(3B+G)
                                         (ΙΙΙ. 25; 26) 

Table ΙΙΙ.5: Predicted Reuss, Voigt, and Hill bulk (BR, Bv, andBH, in GPa) and shear ( GR, GV, 

and GH, in GPa) moduli, Hill Young’s modulus (EH , EV, ER, in GPa) and Hill Poisson’s 

ratio(νR , νV , νH dimensionless) for the polycrystalline aggregates Tl2CdGeSe4 and 

Tl2CdSnSe4. + SOC (NSOC) refers to calculations performed with (without) including spin-

orbit coupling (SOC) 

System  Tl2CdGeSe4 Tl2CdSnSe4 

 NSOC +SOC NSOC +SOC 

𝐵𝑉  31.3  24.5 30.5  26.2  

𝐵𝑅  30.0 22.6 29.3 25.0 

𝐵𝐻  30.6 23.5 29.9 25.6 

𝐺𝑉  16.6 12.4 14.4 15.1 

𝐺𝑅  15.8 11.3 13.1 14.4 

𝐺𝐻  16.2 11.8 13.9 14.7 

𝐸𝑗 Ex 36.2 30.0 37.74 33.32 

 Ey 36.2 30.0 37.74 33.32 

 Ez 63.9 56.4 64.87 59.39 

𝐸𝑉  42.3 31.8 37.3 37.9 

𝐸𝑅  40.3 29.0 34.2 36.2 

𝐸𝐻  41.3 30.4 35.8 37.1 

𝜈𝑉  0.274 0.283 0.296 0.258 

𝜈𝑅  0.275 0.285 0.305 0.259 

𝜈𝐻  0.275 0.285 0.300 0.259 

 

The values of the isotropic elastic moduli B, G, E, and ν deduced from the predicted Cijvalues 

are gathered in Table ΙΙΙ.5. From the obtained results, we can get the following information: 
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 The isotropic elastic moduli B, G, and E have relatively small values, reflecting the 

materials' low hardness and stiffness. Hardness is an important mechanical property that is 

defined as the resistance of a material to localized deformation [1; 26]. The calculated 

Vickers hardness (3.30 GPa for Tl2CdGeSe4 and 2.42 GPa for Tl2CdSnSe4) confirms the 

low hardness of these materials.  

 The B value is practically double that of G, suggesting that shear deformation can occur 

more easily than volume change and that G is the decisive elastic modulus affecting the 

mechanical stability of the title compound [37].  

 Poisson’s ratio (ν) is often used to indicate plasticity in materials. Indeed, from the ν value, 

we can predict whether a material is ductile or brittle. When the ν value is greater than 0.26; 

the material is predicted to be ductile, and when it is lower than 0.26, the material is brittle 

[38]. According to this indicator, Tl2CdGeSe4 is rather ductile, while Tl2CdSnSe4 is on the 

border between ductile and brittle. Based on the fact that the shear modulus G mirrors the 

resistance to plastic deformation and the bulk modulus B mirrors the resistance to fracture, 

another empirical indicator claims that the quotient of B and G (B/G) of the polycrystalline 

phase can provide information about plasticity in materials [39]. According to this indicator, 

a compound is ductile if the B/G ratio is greater than 1.75; otherwise, it is brittle. Our 

predicted B/G ratio values, B/G = 2.08 for Tl2CdGeSe4 and B/G = 1.74 for Tl2CdSnSe4, 

confirm the results already obtained through Poisson’s ratio, i.e., that Tl2CdGeSe4 is ductile 

and Tl2CdSnSe4 is on the border between ductility and brittleness. A ductile material is 

easily machinable and resistant to thermal shock.  

 The typical value of Poisson’s ratio for a covalent material is ≈ 0.2, while it is in the range 

of 0.3–0.4 for an ionic material and equal to 0.5 for the pure-ionic limit [40]. Based on these 

criteria, Tl2CdGeSe4, with ν ≈0.285, and Tl2CdSnSe4, with ν ≈ 0.259, exhibit a mixture of 

covalent and ionic interatomic bonds, but the ionic character is dominant. 

 The Debye temperature 𝑇𝐷, which is closely related to the thermal parameters of solids, can 

be predicted from the average velocity of the elastic wave 𝑉𝑚, which can be numerically 

estimated from the B and G values [40, 41]. The predicted 𝑉𝑚 and TD values are presented 

in Table ΙΙΙ.4. A high Debye temperature mirrors a high associated thermal conductivity 

[32]. These low values of 𝑉𝑚 and 𝑇𝐷 denote a low thermal conductivity for the studied 

compounds. 
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ΙΙΙ.2.2.4. Elastic anisotropy 

 Microcracks and mechanical failures can occur in crystals with notable elastic anisotropy [41]. 

Thus, it is essential to analyze the extent of elastic anisotropy to understand its mechanism and 

possibly find a procedure to improve the mechanical properties of crystals to avoid the 

drawbacks of elastic anisotropy. A variety of experimental and theoretical metrics have been 

established to quantify the extent of elastic anisotropy in materials [42]. Here, we used five 

different ways to probe the degree of elastic anisotropy in the studied materials.  

 Since the shear modulus G is a key elastic parameter for the mechanical stability of 

materials, we start by evaluating the extent of the shear anisotropy through the calculation 

of the shear anisotropic factors A1, A2 and A3. For a tetragonal system, A1 = A2. The shear 

anisotropic factorA1 = A2, which characterizes the anisotropy of shear caused by the 

application of stress on the crystallographic planes {100} along the crystallographic 

directions < 011 > (symbolized by < 011 > {100}) and along the directions < 010 > 

(symbolized by (< 010 > {100}), is defined as: 𝐴1 = 𝐴2 = 4𝐶44 (𝐶11 + 𝐶33 − 2𝐶13)⁄ . The 

shear anisotropic factor𝐴3, which characterizes the anisotropy of the < 110 > {001} and < 

010 > {001} shear, is given by 𝐴3 = 2𝐶66 (𝐶11 − 𝐶12)⁄ [41, 43]. For isotropic shear, the 

corresponding anisotropic factor is equal to unity. Thus, the degree of deviation of the 

anisotropy factors from unity reflects the elastic anisotropy degree of the crystal. The 

calculated values for 𝐴1 𝐴2⁄  and 𝐴3 are equal to 0.52 and 0.84 (0.67 and 1.15), respectively, 

for Tl2CdGeSe4 (Tl2CdSnSe4), suggesting that these compounds are characterized by a large 

shear anisotropy. 

  The ratio of the linear compressibility along the c-axis (βc) to the linear compressibility 

along the a-axis (βa), defined as [43]  

        βC βa = ((𝐶11 − 𝐶13)(𝐶12 − 𝐶13) (𝐶33 − 𝐶13)⁄ )⁄                    (ΙΙΙ.27) 

Is usually used to assess the degree of elastic anisotropy in crystals. The calculated 

βc βa⁄ ratios are equal to 0.39 for Tl2CdGeSe4 and 0.52 for Tl2CdSnSe4, highlighting the 

strong anisotropy of the linear compressibility in both studied compounds. 

 A widely used metric to quantify the degree of elastic anisotropy in crystals is the so-called 

universal elastic anisotropy AU, defined as follows [44]: 

                              𝐴𝑈 =
5𝐺𝑉

𝐺𝑅
+
𝐵𝑉

𝐵𝑅
− 6                                         (ΙΙΙ. 28) 
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Where BV (GV) and BR (GR) are the estimated values of B (G) according to Voigt 

and Reuss approximations, respectively. For a perfect isotropic crystal, AU is equal 

to zero. We never expect perfect isotropic behavior in a crystal; thus, the more the 

value of AU deviates from zero, the greater the elastic anisotropy of the crystal. The 

computed value of AU is equal to 0.51 for Tl2CdGeSe4 and 0.60 for Tl2CdSnSe4, 

confirming that the title compounds are characterized by considerable elastic 

anisotropy.  

 The percent anisotropy in compression (Acomp) and in shear (Ashear), defined as  

                      {
𝐴𝑐𝑜𝑚𝑝 = ((𝐵𝑉 − 𝐵𝑅) (𝐵𝑉 + 𝐵𝑅) × 100⁄ )

𝐴𝑠ℎ𝑒𝑎𝑟 = ((𝐺𝑉 − 𝐺𝑅 𝐺𝑉 + 𝐺𝑅⁄ ) × 100)
                            (ΙΙΙ. 29) 

 Where the subscripts V and R denote the Voigt and Reuss limits, respectively, are 

helpful indicators for estimating the elastic anisotropy in compressibility and in shear, 

respectively [45]. The degree of deviation of Acomp and Ashear from 0% mirrors the 

extent of the elastic anisotropy. In our case, Acomp and Ashear are equal to 4.0% and 

4.6%, respectively, for Tl2CdGeSe4 and 2.3% and 2.4%, for Tl2CdSnSe4. Once again, 

these indicators highlight the strong elastic anisotropy in the compression and shear of 

the title compounds. 

 The three-dimensional (3D) representation of the crystal direction dependence of the elastic 

moduli is the most straightforward method and is widely used to illustrate the degree of 

elastic anisotropy in crystals. Note that the 3D representation of the crystal direction 

dependence of the modulus of elasticity is a closed surface, where the distance between the 

center of that surface and any point on the surface in a given direction is equal to the 

magnitude of the represented elastic modulus in that direction.  

Therefore, for an isotropic elastic modulus, the aforementioned closed surface has a 

perfect spherical shape, and thus, the extent of the deviation of the shape of this surface 

from the perfect spherical shape reflects the degree of anisotropy of that elastic modulus. 

In the present study, the elastic anisotropy degree of the Tl2CdGeSe4 and Tl2CdSnSe4 

crystals was assessed using 3D representations of the directional dependence of 

Young’s modulus (E) and linear compressibility (β). The linear compressibility (β) 

measures the relative linear shrinkage of a crystal subjected to compression along a 

given crystallographic direction. The crystal direction dependent Young’s modulus E 
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and linear compressibility β for a tetragonal system are given by the following 

relationships [45]: 

1

E
= (l1

4 + l2
4)S11 + l3

4S33 + 2l1
2l2
2S12 + 2(l1

2l3
2 + 2l2

2l3
2)S13 + (l2

2l3
2 + l1

2l3
2)S44 +

                                      l1
2l2
2S66                                                     (ΙΙΙ. 30) 

β = (S11+S12 + S13)− (S11 + S12 + S13 + S33)l3
2                   (ΙΙΙ. 31) 

Here, l1, l2 and l3 are the directional cosines of a given crystal direction in spherical coordinates. 

The 3D representations of the directional dependence of the linear compressibility (β) and 

Young’s modulus (E) as well as their projections in the (ac)/(bc) and (ab) planes for Tl2CdGeSe4 

and Tl2CdSnSe4 are shown in Figs ΙΙΙ.3 and 4, respectively. Note that the overall topology of 

the closed surfaces of the Young’s modulus and linear compressibility in Tl2CdGeSe4 are 

similar to those in Tl2CdSnSe4. Clearly, the closed surfaces representing the directional 

dependence of E and β deviate sharply from a spherical shape, mirroring the strong elastic 

anisotropy of these compounds. To facilitate greater insight into the changes in Young’s 

modulus and linear compressibility along different crystal directions in a plane, we plot the 

cross-sections of the 3D representations of E and β in the (ac)/(bc) and (ab) ((100)/(010) and 

(001)) planes in Figs ΙΙΙ.2 and 3. These figures demonstrate the considerable deviation of the 

projections (cross-sections) of the directionally dependent Young’s modulus and linear 

compressibility in the (ac)/(bc) plane from the circular form for both considered compounds, 

highlighting the strong anisotropy of E and β in this plane. While the cross-sections in the (ab) 

plane exhibit a perfect circular form for β, highlighting the isotropic character of β in the (ab) 

plane. The cross-sections of E in the (ab) plane exhibit weak anisotropy. The degree of elastic 

anisotropy can also be quantified from the relative difference between the minimum and 

maximum values of the elastic modulus.  

Figures ΙΙΙ.2 and 3 show that the linear compressibility of the title compounds reaches the 

maximum (βmax) when the stress is applied along any crystal direction in the (ab) ((001)) plane 

(note that the linear compressibility is isotropic in the (ab) plane) and is minimum (βmin) when 

the stress is applied along the c-axis, i.e., perpendicular to the (ab) plane. This indicates that 

when hydrostatic pressure is applied, the contraction of the title crystals that occurs along any 

direction in the (ab) plane is greater than that occurring along the other crystal directions. The 

βmax of Tl2CdGeSe4 (Tl2CdSnSe4) is equal to 18.514 (15.935) TPa−1, and βmin is equal to 

7.211 (8.028) TPa−1. The difference between βmax and βmin is noticeable; the former is almost 

twice the latter, indicating that the linear compressibility is remarkably anisotropic. Young’s 
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modulus value reaches the maximum (Emax) when the unidirectional stress is applied along the 

[001] crystal direction, while it reaches the minimum (Emin) when the unidirectional stress is 

applied along the [111] crystal direction. The E max of Tl2CdGeSe4 (Tl2CdSnSe4) is equal to 

59.3 (59.9) GPa and the E min is equal to 25.2 (32.6) GPa. These results show that the [001] 

crystal direction is more resistant to uniaxial compression than the other crystal directions. This 

is consistent with the result that C33 is the largest elastic constant. The relatively large difference 

between the E max and E min values, where the former is almost twice the latter, demonstrates 

the strong anisotropy of Young’s modulus. Note that this large difference between the 

maximum and minimum values of linear compressibility as well as the large difference between 

the maximum and minimum values of Young’s modulus can make the comparison between the 

theoretical values and the corresponding experimental values slightly complex because the 

values of these moduli of elasticity depend on the direction of the applied stress with respect to 

the crystal direction. 

Figure ΙΙΙ.3: The directional variation of linear compressibility (a) and Young's modulus (b) 

and their respective cross-sections (a) and (b) within the (ab), (ac), and (bc) planes of the 

Tl2CdGeSe4 compound
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Figure ΙΙΙ.4: The directional variation of linear compressibility (a) and Young's modulus (b) 

and their respective cross-sections (a) and (b) within the (ab), (ac), and (bc) planes of the 

Tl2CdGeSe4 compound 
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ΙΙΙ.2.3. Electronic properties of the Tl2CdXSe4 (X= Ge, Sn) compounds  

ΙΙΙ.2.3.1 Preamble 

It is well known in atomic physics when an atom is far apart or isolated the electrons levels 

(atomic orbitals) have a discrete energy level. As the atoms are brought closer, the electronic 

states are perturbed by the presence of neighboring atoms, their atomic orbitals overlap and 

discrete states broaden to form bands. The Pauli principle requires that no more than two 

electrons, of opposite spins, May occupy the same orbital state which is a state entirely defined 

by the space coordinates alone. Therefore, when two atoms are very close to each other, their 

respective energy bands will overlap with each other and transform into a Molecular orbit; each 

molecule orbital split into two, and the molecular orbit ends up having two discrete energy 

levels, the same thing happens when N atoms combine. In general, the more we add atoms; the 

more energy levels the molecular orbit will have (each atomic orbital splits into N discrete 

molecular orbitals, each one with a different energy). A solid cube one centimetre on an edge 

may contain 1023 atoms packed together; each molecular orbital of this solid will now have 1023 

discrete energy levels. The gaps between them will be tiny such that, we no longer can we 

notice individual energy levels, it will appear that the energy is continuous (form an energy 

continuum called energy band) [47; 48]. 

Band theory helps to know the nature of materials, whether they are conductors, semi-

conductors, or insulators; the forbidden band allows that, which separates the conduction 

(consists of free electrons) and valence band (consists of valence electrons). In an insulator, the 

valence band which is the highest energy electron is completely filled, and the band gap is more 

than 5 eV. When the conduction and valence bands overlap the material is a conductor (metal) 

and the conduction band is half full at 0 K and has a very low resistivity so a very high 

conductivity because of the very large number of electrons that can participate in current 

transport. In a semi conductor, the conduction band is unfilled and the valence band is normally 

filled. Semi-conductor materials have zero conductivity at 0 K, and quite low conductivity at 

finite temperatures, but it is possible to alter their conductivity by orders a magnitude, and at 

finite temperatures some electrons leave the valence band and occupy the conduction band. The 

band gap is between 1 to 5 eV; which allows electrons excited from the valence band to the 

conduction band by absorption of light in the visible and near infra-red region of the 

electromagnetic spectrum. It characterizes by three mechanisms, photon absorption, thermal, 
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impurity (i.e. doping), Carriers that make it to the next band are like free carriers with new 

mass, m*. This is the key reason why semiconductor can be used in active devices [35; 49; 50]. 

ΙΙΙ.2.3.2 Energy band dispersion  

Some key physical parameters, especially those required for optoelectronic devices, such as 

bandgaps, effective masses of charge carriers, optical coefficients and transport parameters, are 

calculated from the energy band structure. Therefore, it is crucial to use an accurate theoretical 

method to correctly describe the energy band dispersions to obtain accurate estimations of the 

relevant properties. In the present work, the energy band dispersions along the lines joining the 

high symmetry points in the first Brillouin zone (X–M– Γ–Z–N–P–X) were calculated for 

Tl2CdGeSe4 and Tl2CdSnSe4 in their equilibrium crystal structures using the FP- (L)APW + lo 

approach within the DFT framework. Both the GGA-PBEsol and TB-mBJ functionals were 

used to model the exchange-correlation interactions, and calculations were performed both with 

and without spin-orbit coupling, referenced as + SOC and NSOC, respectively. From the band 

structure diagrams shown in Fig ΙΙΙ.5, we highlight the following characteristics: First, the 

energy band structure diagrams of the studied compounds are very similar. This is attributed to 

the fact that these quaternary compounds have identical crystal structures, and three similar 

component atoms and the different component atoms belong to the same column of the periodic 

table. Second, the energy levels in the upper valence band at the M and Z points are so close to 

each other that it is difficult to determine which is the topmost of the valence band without 

carefully looking at the curve of the upper valence band and examining the numerical values of 

the energy levels. The numerical values show that the energy level in the upper valence band at 

the M-point is slightly higher than that at the Z-point for both considered materials, indicating 

that the valence band maximum (VBM) is located at the M-point for both compounds. As the 

conduction band minimum (CBM) is also located at the M-point for both compounds, we can 

state that both studied compounds are direct bandgap (M–M) semiconductors. Note that 

previous calculation results [27, 29] have shown that Tl2CdSnSe4 is a direct bandgap (M–M) 

semiconductor [27], which agrees with our findings, while Tl2CdGeSe4 has been shown to be 

an indirect bandgap (Z–M) semiconductor [29], which is inconsistent with what we found. To 

verify our results, the band structure calculation for Tl2CdGeSe4 was repeated using the PP-PW 

method as implemented in the CASTEP code [34], and the resulting bandgap character agrees 

with the results we obtained using the FP-LAPW method. Note that the band structure 

calculated by Vu et al [29]. 



 

   66 
 

Chapter ΙΙΙ Results and Discussion 

 

Figure ΙΙΙ.5: The calculated TB-mBJ energy band structures for Tl2CdGeSe4 and Tl2CdGeSe4 

along the X → M → Γ → Z → N → P → X k-point path. The VBM and CBM lie both at the 

M-point, thus both compounds are direct bandgap semiconductors. The black and the red lines 

represent the bands calculated with and without spin–orbit coupling, respectively. The zero of 

energy is chosen to coincide with the top of the valence band. 𝐸𝑔
𝑆𝑂𝐶 (𝐸𝑔

𝑛𝑠𝑜𝑐) is the fundamental 

bandgap calculated with SOC (without SOC) 

Also shows that the energy levels in the upper valence band at the M and Z points are so similar 

to each other that it is difficult to tell which is the topmost of the valence band without 

examining the numerical values of the energy levels. If we take into account that our optimized 
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structural parameters with which the band structure of Tl2CdGeSe4 was calculated are slightly 

smaller than those with which Van et al [29]. Calculated the band structure (see Table ΙΙΙ.1), it 

can therefore be stated that the bandgap may change from the direct type (M–M) to the indirect 

type (Z–M) depending on the values of the structural parameters with which the band structure 

is calculated. It should be noted that our optimized structural parameters for Tl2CdGeSe4 are 

more in agreement with the corresponding experimental counterparts than those optimized by 

Van et al. [29] (see Table ΙΙΙ.6). Third, the energy band around the CBM is slightly more 

dispersive than that around the VBM, indicating that the electron effective mass is somewhat 

greater than that of the holes. Fourth, the energy band dispersions calculated using GGA08 and 

TB-mBJ have similar general characteristics, but they are significantly different with regard to 

the bandgap values. The predicted fundamental bandgaps using GGA08 and TB-mBJ both with 

and without taking into account spin–orbit coupling are gathered in Table ΙΙΙ.5 along with 

available data from the literature [26, 27]. Table 6 shows that the GGA-PBEsol functional 

seriously underestimates the bandgaps compared to the counterparts provided by the TB-mBJ 

potential and the experiments [26, 27]. 75The use of the TB-mBJ potential with the inclusion 

of SOC widens the bandgap by more than 222% for Tl2CdGeSe4 and by more than 252% for 

Tl2CdSnSe4 compared to the GGA-PBEsol bandgap. Generally, the TB-mBJ potential rigidly 

pushes the conduction band toward higher energy away from the valence band maximum [51]. 

Fifth, the inclusion of SOC does not significantly affect the overall appearance of the energy 

band dispersions; in particular, the bands around CBM and VBM are almost unaffected by the 

inclusion of SOC, as expected from their Se-4p character. The only notable change in the band 

structure with SOC (+ SOC) is an approximately 13% reduction in the bandgap with respect to 

that of the counterpart calculated without SOC (NSOC); the CBM shifts to lower energies, thus 

decreasing the bandgap. Sixth, despite the considerable improvement of the bandgaps when 

using the TB-mBJ potential compared to the counterparts calculated using GGA-PBEsol, our 

numerical estimations of the bandgaps remain somewhat smaller than the experimental 

counterparts [26, 27], by about 35% for Tl2CdGeSe4 and 20% for Tl2CdGeSe4. A possible 

reason for the discrepancy between the theoretical predictions and the corresponding 

experimental values may be the uncertainties in the measurements. Indeed, even a small 

uncertainty in the measured spectra of the absorption coefficients from which the reported 

bandgaps were deduced could cause this discrepancy. Note that the reported bandgaps were 

evaluated from the tangent of the absorption coefficient at the lower energy and any deviation 

of the plotting tangent could cause a noticeable deviation in the determined bandgap value. 



 

   68 
 

Chapter ΙΙΙ Results and Discussion 

 

Thus, it is not easy to evaluate the error in the deduced bandgap from the measured absorption 

coefficient, which justifies why there is no information on the accuracy of the reported 

experimental data. Furthermore, small differences in the structural parameters could sometimes 

produce, for the same semiconductor, an appreciable difference in the calculated bandgap, 

possibly larger than 20% [47]. Note that there is no exchange-energy functional from which the 

TB-mBJ potential is derived; thus, the calculation of the optimized structural parameters is not 

possible within the TB-mBJ potential. Additionally, note that sometimes the optical bandgap is 

larger than the Kohn–Sham bandgap because sometimes the lower energy electronic transitions 

from the conduction band to valence band could be forbidden according to the selection rules. 

Further theoretical and experimental studies of the electronic structures of the considered 

systems are necessary to increase the reliability of both calculations and measurements. 

Table ΙΙΙ. 6: Energy bandgaps of Tl2CdGeSe4 and Tl2CdSnSe4 compounds using different 

methods: GGA-PBEsol and TB-mBJ. We considered both spin–orbit coupling (SOC) and the 

absence of spin–orbit coupling (NSOC). Our calculations were compared with existing 

theoretical and experimental data found in the literature 

Functional Bandgap (eV)  

 Tl2CdGeSe4 Tl2CdSnSe4 

Present   

GG08-NSOC  0.431 0.398 

GG08 + SOC  0.305 0.271 

TB-mBJ   +SOC  0.981 0.953 

TB-mBJ  NSOC  1.123 1.097 

Expt. [25] 1.711 1.391 

          [26]  1.321 1.292 

Calc. [26] 1.1433 1.2434 

 

1From the absorption coefficient measurements; 2From the photoconductivity Measurements;  

3Using the TB-mBJ + SOC ; 4TB-mBJ-NSOC 

 

 



 

   69 
 

Chapter ΙΙΙ Results and Discussion 

 

ΙΙΙ.2.3.3 Charge carrier effective masses  

The effective masses of charge carriers are key to the transport phenomena in materials. Thus, 

it is of great importance to estimate the effective masses of charge carriers in semiconductors. 

The effective mass is a tensor, but it can be treated as a scalar at the extremum of the energy 

bands. The dispersion of the energy band in the vicinity of its extremum can be adjusted by a 

parabola: 

                           E(k) =
ħ2k2

2m∗
                                                             (ΙΙΙ. 32) 

Where ħ is Planck’s constant and m∗ is the charge carrier effective mass. Thus, the charge-

carrier m∗ can be determined through the following expression: 

                             
1

m∗
= ħ2 (

∂2E(k)

∂2k
)                                                    (ΙΙΙ. 33) 

Before that we must fit the dispersion E(k) of the topmost valence band and lowest conduction 

band around the VBM and CBM respectively,  to a quadratic polynomial in the reciprocal lattice 

vector k where  E(k) = Ak2. The predicted electron and hole effective masses, denoted 

𝑚𝑒
∗  𝑎𝑛𝑑 𝑚ℎ

∗ , respectively, at the CBM (located at the M -point) and VBM (located at the M -

point), respectively, toward the G and X points (M → Γ and M → X directions) in the Brillouin 

zone are gathered in Table ΙΙΙ.7. The obtained results reveal that 𝑚𝑒
∗ > 𝑚ℎ

∗ , which means that 

the mobility of holes is higher than that of electrons. The effective masses of electrons and holes 

exhibit a very weak anisotropy; the electron and hole effective masses toward the M → Γ 

direction are approximately equal to the corresponding masses toward the M → X direction. 

The inclusion of SOC in the calculations somewhat increases the electron and hole effective 

masses (Fig ΙΙΙ.5).  
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Table ΙΙΙ. 7: Calculated effective masses of electrons (𝑚𝑒
∗) and holes (𝑚ℎ

∗ ) at the conduction 

band minimum (CBM) and valence band maximum (VBM), respectively. These values are 

determined at the M-point and are further analyzed towards the G and X points in the Brillouin 

zone 

Tl2CdGeSe4 

 me
∗  mh

∗  

 M → Γ M → X M → Γ M → X 

GGA08 0.376 0.395 0.344 0.351 

GGA08+SOC 0.422 0.452 0.346 0.356 

TB-mBJ+SOC 0.732 0.738 0.394 0.402 

TB-mBJ+NSOC 0.542 0.561 0.387 0.392 

Tl2CdSnSe4 

 me
∗  me

∗  

 M → Γ M → X M → Γ M → Γ 

GGA08 0.326 0.343 0.307 0.315 

GGA08+SOC 0.419 0.457 0.313 0.317 

TB-mBJ+SOC 0.514 0.551 0.351 0.354 

TB-mBJ+NSOC 0.466 0.487 0.348 0.354 

 

ΙΙΙ.2.3.4 Density of states  

To determine the origin of the electronic states forming the valence and conduction energy 

levels of the quaternary selenides Tl2CdGeSe4 and Tl2CdGeSe4, the total density of states 

(TDOS) and l-projected atomic resolved density of states (PDOS) were calculated using the 

TB-mBJ potential with SOC. As seen in Fig ΙΙΙ. 6: 
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Figure ΙΙΙ. 6: Total densities of states (TDOS) and partial densities of states (PDOS) were 

computed for Tl2CdGeSe4 and Tl2CdSnSe4 crystals using the TB-mBJ potential, taking into 

account spin-orbit coupling. The TDOS is given in states per eV per primitive cell, while the 

PDOS is expressed in states per eV per atom per orbital 
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 The valence bands are regrouped in seven subbands denoted V1, V2, V3, V4, V5, V6 and V7. 

The V7, V6, V5, V4, V3 and V2 subbands are somewhat isolated, lying in narrow energy 

windows far from the upper valence band group V1. To shorten the text, the results relating to 

Tl2CdSnSe4 are given in brackets here after. The V7 subband, centered at − 13.5 (− 13.1) eV, 

comes from the Ge-4s (Sn-5s) and Se-4s states. The V6 subband, covering the energy range of 

− 12.9 to − 12.02 (− 12.7 to − 12.03) eV, is dominated by the contribution of the Tl-5d states, 

with a small contribution from the Se-4s states. The Tl-5d states form the V5 subband, peaking 

at − 10.2 (− 10.3) eV. The V4 subband, peaking at − 8.9 (− 8.9) eV, is composed of the Cd-4d 

states. The V3 band group, centered at − 8.3 (− 8.2) eV, is derived from the Cd-4d states. The 

V2 subband, centered at − 7.4 (− 6.8) eV, is a mixture of the Cd-4d and Ge-4s (Sn-5s) orbitals. 

As seen in Fig ΙΙΙ.7, the upper valence band group V1, ranging from approximately − 6.5 (− 

6.5) up to the Fermi level, is subdivided into two parts: V1-a and V1-b. The lower part, V1-a, 

ranging from approximately − 6.5 (− 6.5) eV to − 4.6 (− 4.5) eV, is composed of the hybridized 

Tl-6s and Se-4p states. The upper part, V1-b, ranging from approximately − 4.6 (− 4.5) eV to 

the Fermi level, is mainly associated with the Se-4p states, with a very small contribution from 

the Tl-6s, Cd-5s and Ge-4p (Sn-5p) states. This is quite consistent with the Se2−, Tl1+ (the p 

shell is empty), Cd2+ and Ge4+/Sb4+ oxidation states, suggesting that the Se–Tl, Se–Cd and Se–

Ge (Sn) bonds predominantly exhibit ionic characteristics. In addition, the Se–Cd, Se–Tl and 

Se–Ge (Se–Sn) bonds are expected to have some degree of covalency due to weak hybridization 

between the Se-4p and Cd-5s states, between the Se-4p and Tl-6s states and between the Se4p 

and Ge-4p (Sn-5p) orbitals, respectively. The edge of the conduction band (the bottom of the 

C1 conduction subband) is mainly from the empty Se-4p and Ge-4s (Sn-5s) states, while the 

remainder of C1 is made up of a mixture of the Sn-sp, Cd-s, Tl-p and Se-p states, indicating 

that not all Se ions are saturated. Interestingly, in the case of Tl2CdGeSe4, the Se-4p states, 

which are the main contributors to the valence band, are positioned mainly in the upper part of 

the valence band and substantially in its central portion, while the main contributions of the Ge-

4p states are in the central portion of the valence band. These theoretical findings are in 

excellent agreement with the experimental measurements of the energy distribution of the Se-

4p and Ge-4p states in Tl2CdGeSe4 [29]. 
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Figure ΙΙΙ.7: The total densities of states (TDOS) for the upper valence subband in the 

Tl2CdGeSe4 and Tl2CdSnSe4 compounds at the atomic level 
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ΙΙΙ.2.4. Optical properties of the Tl2CdXSe4 (X= Ge, Sn) compounds  

        Optical properties of a material change or affect the characteristics of light passing through 

it by modifying its propagation vector or intensity. The light is electromagnetic radiation, which 

includes infrared (IR) typically in fields 0.1 to 1 eV (12000_1200), visible range in 1.7 to 3 eV 

(700_400nm), ultraviolet (UV) between 3 to 100 eV (400_12). Optical properties of solids are 

dependent on their band gaps and can be gained from the complex dielectric function Ɛ(𝜔) =

Ɛ1(𝜔) + 𝑖Ɛ2(𝜔). The imaginary part ε2(ω) describes the electron transitions from occupied 

states below the fermi energy to unoccupied states above, so characterizes the absorption of the 

incident light by the matter, and it can be obtained by electronic structure through the joint 

density of states and the momentum matrix elements between the occupied and the unoccupied 

wave functions [52] 

Ɛ2(ω) =
Ve2

2πħm2ω2
∫d3k∑ |⟨kn|P|kn′⟩|2ƒ(kn) [1 − ƒ(kn′)]nn′  δ (EknEkn′ − ħω)    (ΙΙΙ. 34) 

Where ħω is the energy of the incident phonon, the ⟨kn|P|kn′⟩ is the components of the dipole 

moment matrix, kn and kn′ are the initial and final states, respectively, |kn⟩ is the eigenfunction 

with eigenvalueEnk, ƒ(kn) is the Fermi distribution function. |⟨kn|P|kn′⟩|2ƒ(kn)(1 − ƒ(k𝑛′)) 

is the matrix element representing the probability of transition between the kn states of the 

valence band and the kn′ states of the conduction band. The conservation of energy during 

transitions is represented by the Dirac function: δ (EknEkn′ − ħω).  

The real part Ɛ1(𝜔) can be attracted from the imaginary part Ɛ2(𝜔) using Kramer–Kronig 

relationship; and it depicts the polarization degree of the medium under an external electric 

field, it characterizes the dispersion of the incident radiation when it traverses a medium. 

                               Ɛ1(𝜔) = 1 +
2

𝜋
𝑃 ∫

𝜔′Ɛ2(𝜔
′)

𝜔′2𝜔2

∞

0
𝑑𝜔′                                               (ΙΙΙ. 35) 

Where ω is the frequency of the incident phonon, P the principal part of the Cauchy integral. 

There are two contributions to Ɛ(ω), intraband transitions and inner-band (interband) 

transitions. The contribution from that intraband transitions is mainly present in metals while 

inner-band transitions occur primarily in semiconductors. Inner-band transitions can be divided 

into direct and indirect transitions. The indirect interband transitions are neglected which 

involves scattering of phonons and are expected to give only a small contribution to Ɛ(ω)[53]. 
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 Other optical properties are derived from the dielectric functions of solids such as absorption 

(The photons that constitute the light are absorbed by the material). Refraction (Photons pass 

through and do not interact with the medium (transmission), and change their velocity). 

Reflection (photons of identical energy are immediately reflected by the material). Loss of 

energy (loss of energy of a fast electron passing through matter). 

  The determination of the real and imaginary parts of the function dielectric allows us to 

evaluate other optical properties with the relations below: the absorption coefficient α(ω), the 

refractive index n(ω) , the extinction coefficient k(ω) , reflectivity R (ω), and the energy loss 

L(ω) 

   ɑ(𝜔) =
√2

𝑐
𝜔√−Ɛ1(𝜔) + √Ɛ1

2(𝜔)+Ɛ2
2(𝜔)                                                   (ΙΙΙ. 36) 

  𝑛(𝜔) = [
Ɛ1(𝜔)

2
+
√Ɛ1

2(𝜔)+Ɛ2
2

2
]

1 2⁄

                                                                      (ΙΙΙ. 37) 

 𝑘(𝜔) = − [
Ɛ1(𝜔)

2
+
√Ɛ1

2(𝜔)+Ɛ2
2

2
]

1 2⁄

                                                                    (ΙΙΙ. 38) 

     𝑅(𝜔) = |
Ɛ(𝜔)0.5−1

Ɛ(𝜔)0.5+1
|
2

                                                                                      (ΙΙΙ. 39) 

     𝐿(𝜔) = |
Ɛ2(𝜔)

Ɛ1
2(𝜔)Ɛ2

2(𝜔)
|                                                                                       (ΙΙΙ. 40) 

 

At low frequency (𝜔 = 0), we get the following relationship:                             

                           𝑛(0) = Ɛ1 2⁄ (0)                                                                     (ΙΙΙ. 41) 

Figure 8 shows the spectra of the components of the imaginary part of the optical complex 

dielectric function, viz., Ɛ2
xx(ω) and Ɛ2

zz(ω), where Ɛ2
xx(ω) and Ɛ2

zz(ω) characterize the 

absorption of the energy of incident electromagnetic waves with an electric field vector E 

polarized parallel to the a-axis (E// a) and the c-axis (E// c), respectively. As clearly seen in the 

aforementioned figure, the Ɛ2(ω) spectra of both compounds exhibit notable anisotropy: 
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(i) the general characteristics of the spectra of the Ɛ2
xx(ω) and Ɛ2

zz(ω) components are 

remarkably distinct from each other throughout the considered energy window;  

(ii)  the number and positions of the major peaks and structures in the Ɛ2
xx(ω) spectrum 

are noticeably different from those in the Ɛ2
xx(ω) spectrum;  

(iii) the amplitudes of the main peaks and structures of the Ɛ2
zz(ω) spectrum are remarkably 

higher than those of the Ɛ2
xx(ω) spectrum.  

It is of fundamental interest to attempt to determine the microscopic origin of the electronic 

transitions between the occupied valence band states and the empty conduction band states 

that give rise to the peaks and structures of the Ɛ2
xx(ω) and Ɛ2

zz(ω) spectra based on the band 

structure and density of state diagrams. For this purpose, the Ɛ2
xx(ω)  and Ɛ2

zz(ω) spectra were 

decomposed into the individual contributions of the electronic transitions between pairs of 

bands, Vn → Cn′, where Vn is a valence band of index n and Cn′ is a conduction band of index 

n′. Once the pair of bands (Vn, Cn′) has been determined, we determine the wave vectors k of 

the electronic states that mainly contribute to the interband transition Vn → Cn′ from the 

(Cn′ − Vn)(k) dispersion. Tables ΙΙΙ.8, 9, 10 and 11 list the energetic positions of the main 

peaks (Pi) of the Ɛ2
xx(ω) and Ɛ2

zz(ω) spectra, the pairs of bands (Vn, Cn′) that dominantly 

contribute to the peaks and structures of the spectra and the electronic states involved in each 

interband direct transition Vn → Cn′. Furthermore, based on the TDOS and PDOS diagrams, 

the main contributions to the Ɛ2
xx(ω) and Ɛ2

zz(ω) spectra in the energy range of 0–6 eV are the 

allowed direct interband electronic transitions from the valence subband V1 to the conduction 

subband C1. This evidence shows that the optical structures in the energy range of 0–6 eV in 

theƐ2
xx(ω) and Ɛ2

zz(ω) curves of the studied compounds mainly originate from the direct 

electronic transitions from the Se-4p occupied valence states to the Se-4p, Ge-4s (Sn-5s), Cd-

5s and Tl-6p empty conduction states. Figure ΙΙΙ.8 shows that the general characteristics of the 

Ɛ1
xx(ω) and spectra Ɛ1

zz(ω) (components of the real part of the dielectric function) are 

remarkably different, indicating the strong anisotropy of this optical property of the considered 

compounds. The peak amplitudes of the Ɛ1
zz(ω) spectrum are significantly higher than those 

of the Ɛ1
xx(ω) spectrum. The static components of the electronic part of the static dielectric 

constant ε(0), an optical parameter of crucial importance for optoelectronic devices, can be 

deduced from the limits of the Ɛ1
xx(ω) and Ɛ1

zz(ω) spectra when ω → 0. The estimated values 

of Ɛxx(0) = Ɛ1
xx(0) = Ɛ1

xx(ω → 0) and Ɛzz(0) = Ɛ1
zz(0) = Ɛ1

zz(ω → 0) are approximately 

equal to 8.23 and 8.82, respectively, for Tl2CdGeSe4 and 8.51 and 9.26, respectively, for 
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Tl2CdSnSe4. The Ɛxx(0) and Ɛzz(0) values of Tl2CdSnSe4 are slightly greater than those of 

Tl2CdGeSe4. This trend is consistent with Penn’s model [54], which claims that a larger 

bandgap corresponds to a smaller static dielectric constant. The available data in the literature 

for the components of the static real part of the dielectric function for the Tl2CdSnSe4 

compound (Ɛ1
xx(0) = 14 and Ɛ1

zz(0) = 16.0) [55] are almost double the values we obtained 

(Ɛ1
xx(0) = 8.51 andƐ1

zz(0) = 9.26. By comparing the magnitudes of our calculated Ɛ2
xx(ω) 

and Ɛ2
zz(ω) spectra with those reported in the literature [55], we notice that the magnitudes of 

the reported Ɛ2
xx(ω) and Ɛ2

zz(ω) spectra for Tl2CdSnSe4 are almost double those of our spectra. 

To check the reliability of our results, we recalculated the Ɛ2
xx(ω) and Ɛ2

zz(ω) spectra of 

Tl2CdSnSe4 using another computer code based on another ab initio method, and the obtained 

results are consistent with our previous results. A probable reason for the discrepancy between 

our results and those reported in the literature is that the results reported [55] were obtained 

using a relatively old version of the WIEN2k code, where the doubling of the number of energy 

bands upon inclusion of SOC is not taken into account when calculating optical properties. If 

the doubling of the number of energy bands when including SOC is not taken into account, 

the magnitude of the imaginary part of the dielectric function (Ɛ2(ω)) is doubled, which has 

repercussions on the optical parameters deduced from Ɛ2(ω), such as the real part of the 

dielectric function (Ɛ2(ω)) and all other optical functions.  
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Figure ΙΙΙ.8: Frequency dependent curves of the real (Ɛ1(ω)) and imaginary (Ɛ2(ω)) parts of 

the dielectric function for incident electromagnetic radiation polarized parallel to the a- and c-

axes for the Tl2CdGeSe4 and Tl2CdSnSe4 materials. The critical point structures (peaks) are 

pointed out by the label i (i = 1, 2, 3. . . ) 
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Table ΙΙΙ. 8: Peak positions of the Ɛ2
𝑥𝑥spectrum for Tl2CdGeSe4, along with the prominent 

interband transition contributions for each peak in their location within the Brillouin zone. 

Bands are counted downward (upward) from the top (bottom) of the valence (conduction) band 

Optical structure Dominant interband transition contributions 

Peak Position Transition BZ Region Percentage Position 

E1 

 

 

2.66 (V1-C1)                          M-Γ-X,P-N   13.88 2.64 

(V1-C2)                                                           X-M-Γ,X-P   2.18                 2.64 

(V2-C1) X-M-Γ,X-P   14.04 2.55 

(V3-C1)                          X-M-Γ   2.08 2.66 

E2 3.91 (V1-C2)                                                           M-Γ-X-P-N-Γ   2.45 3.26 

(V1-C3) M-Γ-X-P   8.28 3.66 

(V2-C2)                          M-Γ-X, P-N-Γ   3.49 3.69 

(V3-C1)                                                           M-Γ-X, P-N   2.36 3.11 

(V3-C2) M-Γ-X-P-N-Γ   2.17 4.08 

(V4-C1)                          X-M-Γ,X-P   3.10 3.02 

(V4-C2)                                                           M-Γ-X-P-N-Γ   3.60 3.99 

(V5-C1) X-M-Γ   6.39 3.21 

(V5-C2)                          X-M-Γ-X-P-N-Γ   2.40 4.18 

(V6-C1)                                                           M-Γ-X-P   4.86 3.99 

(V6-C2) X-M-Γ-X-P-N-Γ   1.51 4.08 

(V7-C1)                          X-M-Γ, X-P   2.47 4.08 

E3 4.63 (V1-C5)                                                           M-Γ-X-P, N-Γ   2.54 4.92 

(V1-C6) X-M-Γ, X-P   5.34 4.82 

(V2-C3)                          M-Γ-X-P   7.68 4.27 

(V2-C4)                                                           M-Γ-Γ-X-P-N   5.51 4.86 

(V3-C3) M-Γ-X-P, N-Γ   4.19 4.66 

E4 5.20 (V1-C4)                          M-Γ-X-P- N-Γ   3.41 4.57 

(V3-C4)                          X-M-Γ-X-P- N-Γ   4.02 4.96 

(V1-C6)                                                           M-Γ-X-P- N-Γ   4.33 5.11 

(V2-C5) M-Γ-X-P, N-Γ   4.23 5.15 

(V2-C6)                          X-M-Γ   3.95 5.35 

(V2-C7)                                                           X-M-Γ-X-P   3.95 5.73 

(V3-C5)                          X-M-Γ   3.39 5.15 

(V3-C6)                                                           X-M-Γ-X-P-N-Γ   4.05 5.54 

(V4-C4) M-Γ-X-P-N-Γ   2.14 5.24 

(V4-C6)                          M-Γ-X-P- N-Γ   2.92 5.82 

(V5-C4)                                                           M-Γ-X-P- N-Γ   2.18 5.54 

(V6-C4) X-M-Γ-X-P   2.76 5.44 

(V9-C1)                          M-Γ-X, P- N   3.31 5.15 
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Table ΙΙΙ.  9: Peak positions of the Ɛ2
𝑧𝑧spectrum for Tl2CdGeSe4, along with the prominent 

interband transition contributions for each peak in their location within the Brillouin zone. 

Bands are counted downward (upward) from the top (bottom) of the valence (conduction) band 

Optical structure Dominant interband transition cntributions 

Peak Position Transition Region Percetage Position 

E1 2.6 (V1-C1)                          M-Γ-X, P-N   4.71                 2.74 

(V2-C1)                                                           X-M-Γ,X-P   16.0 2.56 

(V3-C1) X-M-Γ   3.76 2.51 

E2   3.86 (V1-C2)                          M-Γ-X-P-N-Γ   1.86 3.80 

(V2-C2)                                                           M-Γ-X-P-N-Γ   4.46 3.90 

(V3-C1) M-Γ-X,P-N   3.13 3.19 

(V3-C2)                          M-Γ-X-P-N-Γ   4 3.90 

(V4-C1)                                                           M-Γ-X,P-N   535 3.47 

(V4-C2) M-Γ-X-P-N-Γ   2.25 3.96 

(V5-C1)                          X-M-Γ,X-P   6.54 3.41 

(V6-C1)                                                           M-Γ-X-P   3.81 3.85 

E3 4.35 (V1-C5) X-M-Γ,X-P   4.35 4.62 

(V2-C3)                          M-Γ-X-P   5.72 4.27 

(V3-C3)                                                           M-Γ-X-P   8.56 4.50 

(V5-C2) M-Γ-X-P-N-Γ   2.19 4.69 

(V5-C3)                          X-M-Γ-X-P   2.88 4.72 

(V6-C2)                                                           M-Γ-X-P-N-Γ   4.61 4.59 

(V7-C1) X-M-Γ, X-P   3.31 4.18 

(V8-C1)                          X-M-Γ, X-P-N   4.33 4.72 

E4 4.93 (V1-C6)                                                           M-Γ-X-P-N-Γ   2.41 5.10 

(V2-C4) M-Γ-X-P-N-Γ   2.61 4.86 

(V3-C4)                          M-Γ-X-P-N-Γ   2.61 4.97 

(V3-C5)                                                           X-M-Γ-X-P   3.05 5.17 

(V4-C4)                          M-Γ-X-P   3.17 4.87 

(V4-C5)                                                           M-Γ-X-P-N-Γ   2.46 5.49 

(V5-C5) X-M-Γ-X-P-N-Γ   2.26 4.95 

(V6-C3)                          X-M-Γ-X-P   2.83 5.21 

(V7-C2)                                                           M-Γ-X-P, N   5.51 4.93 

(V9-C1) M-Γ-X, P-N   2.84 5.16 
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Table ΙΙΙ. 10: Peak positions of the Ɛ2
𝑥𝑥spectrum for Tl2CdSnSe4, along with the prominent 

interband transition contributions for each peak in their location within the Brillouin zone. 

Bands are counted downward (upward) from the top (bottom) of the valence (conduction) band 

Optical structure Dominant interband transition contributions 

Peak Position Transition Region Percentage Position 

E1 2.7 (V1-C1)                          M-Γ-X, P-N   14.49 2.57 

  (V2-C1)                                                           X-M-Γ-X-P-N   15.75              2.73 

E2 3.71                                               (V1-C2)    M-Γ-X-P, N-Γ   2.61 3.79 

  (V1-C3)                          M-Γ-X-P   4.15 3.34 

  (V2-C2) X-M-Γ-X-P   4.15 3.1 

  (V3-C1)                          M-Γ-X, N-Γ   6.03 3.14 

  (V4-C1)                                                           M-Γ-X, P-N   5.57 3.20 

  (V5-C1) X-M-Γ, X-P   4.74 3.10 

  (V6-C1)                          X-M-Γ-X-P   9.56 3.61 

  (V7-C1)                                                           X-M-Γ   2.95 3.79 

E3 4.29 (V1-C3) M-Γ-X-P, N-Γ   3.59 4.13 

  (V2-C3)                          M-Γ-X-P   7.94 4.28 

  (V3-C2)                                                           M-Γ-X-P-N-Γ   2.64 4.19 

  (V4-C2) M-Γ-X-P-N-Γ   3.45 3.95 

  (V8-C1)                          X-M-Γ,X-P-N   3.44 4.32 

E4 4.65 (V1-C4)                                                           M-Γ-X-P-N-Γ   4.81 4.55 

  (V1-C5) M-Γ-X-P, N-Γ   2.31 4.88 

  (V1-C6) M-Γ-X-P   2.57 4.73 

  (V2-C4)                          M-Γ-X-P-N-Γ   4.98 4.80 

  (V3-C3)                                                           M-Γ-X-P, N-Γ   4.15 4.58 

  (V3-C4) M-Γ-X-P, N-Γ   3.35 4.89 

  (V4-C3)                          M-Γ-X-P, N-Γ   2 4.79 

  (V9-C1)                                                   X-M-Γ, X-P-N   2.35 4.60 

E5 5.34 (V1-C6) M-Γ-X-P, N-Γ   2.86 5.14 

  (V1-C7)                                                           X-M-Γ, X-P, N-Γ   2.19 5.49 

  (V1-C8) X-M-Γ   2.09 5.24 

  (V2-C5)                          M-Γ-X-P, N-Γ   2.76 5.05 

  (V2-C6)                                                           X-M-Γ-X-P-N-Γ   6.53 5.31 

  (V2-C7) X-M-Γ, X-P, N-Γ   3.3 5.66 

  (V3-C5)                          M-Γ-X-P   3.13 5.13 

  (V3-C6)                                                           X-M-Γ   4.74 5.36 

  (V4-C4) M-Γ-X-P-N-Γ   2.29 5.06 

  (V4-C5)                          M-Γ-X-P   2.19 5.33 

  (V4-C6) M-Γ-X-P-N-Γ   3.17 5.70 

  (V5-C4)                                                           M-Γ-X-P-N-Γ   3.2 5.44 

  (V5-C6) X-M-Γ-X-P   3.19 5.74 

  (V6-C4)                          X-M-Γ-X-P   3.75 5.29 

  (V6-C6)                                                           X-M-Γ-X-P   3.9 5.99 
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Table ΙΙΙ. 11: Peak positions of the Ɛ2
𝑧𝑧spectrum for Tl2CdSnSe4, along with the prominent 

interband transition contributions for each peak in their location within the Brillouin zone. 

Bands are counted downward (upward) from the top (bottom) of the valence (conduction) band 

Optical structure Dominant interband transition contributions 

Peak Position Transition Region Percentage Position 

E1 3.24 (V2-C1)                          M-Γ-X, N-Γ   9.70 3.02 

  (V2-C2)                                                           X-M-Γ-X-P   3.46                 3.12 

  (V3-C1) M-Γ-X, N-Γ   22.0 3.13 

  (V4-C1)                          M-Γ-X, P-N   16.4 3.21 

  (V5-C1) X-M-Γ, X-P   8.78 3.19 

E2 3.8 (V3-C2)                          M-Γ-X-P-N-Γ   4.02 4.02 

 4.06 (V4-C2)                                                           M-Γ-X-P-N-Γ   2.84 3.93 

  (V5-C2) X-M-Γ-X-P   1.90 3.96 

  (V6-C1)                          X-M-Γ-X-P   5.79 3.62 

  (V6-C2)                                                           X-M-Γ-X-P   5.88 4.06 

  (V7-C1) X-M-Γ, X-P   4.80 3.80 

E3 4.24 (V1-C3)                          M-Γ-X-P   1.99 4.12 

 4.45 (V1-C5)                                                           X-M-Γ, X-P   1.78 4.30 

  (V2-C3) M-Γ-X-P   6.5 4.27 

  (V2-C4)                          X-M-Γ-X-P   2.34 4.45 

  (V3-C3)                                                           M-Γ-X-P   5.03 4.33 

  (V5-C2) M-Γ-X-P-N-Γ   2.16 4.33 

E4 4.55 (V1-C4) M-Γ-X-P-N-Γ   2 4.55 

 4.9 (V4-C4)                          X-M-Γ-X-P   3.49 4.77 

  (V5-C3)                                                           X-M-Γ-X-P   2 4.9 

  (V6-C3) M-Γ-X-P, N-Γ   3.72 5.24 

  (V7-C2)                          M-Γ-X-P-N-Γ   3.77 4.70 

  (V8-C1)                                                   M-Γ-X, N-Γ   6.84 4.84 

  (V9-C1) X-M-Γ, X-P-N   4.66 4.63 

E5 5.5 (V2-C7)                                                           X-M-Γ, X-P, N-Γ   3.42 5.67 

  (V3-C6) M-Γ-X-P-N-Γ   2.17 5.55 

  (V4-C6)                          M-Γ-X-P   2.28 5.60 

  (V5-C6)                                                           X-M-Γ, X-P-N-Γ   3.37 5.72 

  (V6-C4) M-Γ-X-P   2.27 5.69 

  (V11-C1)                          M-Γ-X, P-N   4.13 5.83 
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The absorption coefficient α(ω), which is an important optical parameter quantifying the 

fraction of energy of incident radiation of frequency ω absorbed per unit length when it passes 

through a medium, is a key parameter in terms of possible implications of a semiconductor in 

optoelectronic devices. The calculated αxx(ω) and αzz(ω) spectra, components of the 

absorption coefficient α(ω) that correspond to incident electromagnetic radiation polarized 

parallel to the a and c-axes, respectively, are illustrated in Fig. 9a. Both the αxx(ω) and αzz(ω) 

curves consist of one structure extending from the absorption edge, which corresponds to the 

lower allowed electronic interband direct transition, up to the considered energy range. The 

αxx(ω) and αzz(ω) spectra start to increase sharply from the same absorption edge but at 

different rates; the αxx(ω) spectrum grows more rapidly than the αzz(ω) curve. Figure 9a 

clearly shows that in the low energy range (lower than 3.25 eV for Tl2CdGeSe4 and lower than 

2.92 eV for Tl2CdSnSe4), the amplitude of the αxx(ω) spectrum is slightly higher than that of 

the αzz(ω) spectrum, indicating that the edge of the bandgap is somewhat anisotropic. The 

amplitudes of α(ω) spectra of the studied compounds are higher than (104cm−1) in an energy 

range including the visible spectrum and higher than (105cm−1) in a wide energy window 

extending approximately from 2.34 (2.53) eV up to the considered energy range (20 eV). In the 

case of Tl2CdGeSe4 for E//a (E// c) and from 2.28 (2.52) eV up to the considered energy range 

in the case of Tl2CdSnSe4 for E//a (E// c), suggesting that these materials could be potential 

candidates for optoelectronic devices operating in a wide energy range from the visible 

spectrum to the UV range. The α(ω) spectrum reaches a maximum magnitude of approximately 

1.5 × 106 cm−1 at approximately 6.5 eV in both studied E// c materials. Figure 9b represents the 

frequency-dependent curves of nxx(ω) and nzz(ω), components of the refractive index n(ω), 

another important optical parameter describing the refraction of electromagnetic radiation 

propagating through a medium [55]. Figure 9b shows that both investigated compounds' 

refractive indices n(ω) are considerably anisotropic. The static components, nxx(0) and nzz(0), 

of the static refractive index, n(0), are equal to 2.88 (2.93) and 2.98 (3.05), respectively, for 

Tl2CdGeSe4 (Tl2CdSnSe4). The nxx(ω) spectrum exhibits two summa, nsumm−1
xx (ω) =

3.46(3.60) at 2.38 (2.38)eV and nsumm−2
xx (ω)3.50(3.49) at 3.24 (3.16)eV for Tl2CdGeSe4 

(Tl2CdSnSe4), while nzz(ω) exhibits one summa, nsumm
zz (ω) = 3.98(4.20) at 3.31 (3.05)eV 

for Tl2CdGeSe4 (Tl2CdSnSe4). The frequency-dependent curves of the components of the 

optical reflectivity R(ω), namely, Rxx(ω) andRzz(ω), of the title compounds are shown in Fig. 

9c.  
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Figure ΙΙΙ.9: Calculated frequency-dependent curves of the absorption coefficient α(ω), b 

refractive index n(ω) and extinction coefficient k(ω), c reflectivity R(ω) and d energy-loss 

function L(ω) for the Tl2CdGeSe4 and Tl2CdSnSe4 materials 
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It is noted that the R(ω) spectra of Tl2CdGeSe4 and Tl2CdSnSe4 are characterized by a notable 

anisotropy in the energy range of 0–9 eV; the amplitude of Rzz(ω) is clearly higher than that 

of Rxx(ω) in this energy window. The amplitudes of the Rxx(ω) and Rzz(ω) spectra become 

too close and decrease rapidly toward zero value in the energy range of 10─20 eV. The 

components of the static reflectivity, viz.,  Rxx(0) and Rzz(ω), are equal to approximately 23 

(24)% and 25 (26)%, respectively, for Tl2CdGeSe4 (Tl2CdSnSe4). The optical 

reflectivityRzz(ω) is higher than Rxx(ω) by 40% in a large energy window expanding from 

approximately 3.5 eV to 8.9 eV. 

The spectra of Lxx(ω) and LZZ(ω), components of the electron energy-loss function L(ω), an 

optical parameter describing the energy lost by fast electrons traversing a homogeneous 

dielectric material, are illustrated in Fig. 9d. The main peak of L(ω) spectra is usually associated 

with the plasma frequency ωp. The Lxx(ω) and LZZ(ω) spectra exhibit a maximum centered at 

approximately 17.5 (16.7) eV, which is associated with the plasma oscillations in Tl2CdGeSe4 

(Tl2CdSnSe4). The main structures in the Lxx(ω) and LZZ(ω) spectra correspond to the trailing 

edges in the Rxx(ω) and RZZ(ω) spectra, respectively. 
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Conclusion 

      In this thesis, we presented an ab-initio study of the structural, elastic, electronic, and optical 

properties of the considered quaternary thallium selenide systems, namely Tl2CdSnSe4 and 

Tl2dGeSe4. We used the pseudopotential plane wave (PP-PW) approach based on density 

functional theory as incorporated in the Cambridge Sequential Total Energy Package 

(CASTEP) in the optimized structural parameters and monocrystalline elastic constants. While 

the calculations of the electronic and optical properties were carried out through the full-

potential (linearized) augmented plane wave plus local orbitals (FP-L/APW + lo) as 

implemented in the WIEN2k code. The exchange-correlation interactions were modeled using 

the PBEsol form of the general gradient approximation (labeled GGA-PBEsol or GGA-08) and 

TB-mBJ approximation. The obtained results can be summarized as follows: 

1. Structural properties:  

           The optimized structural parameters are in excellent agreement with the 

experimental counterparts, confirming the reliability of the theoretical method used to 

predict the physical properties of the title compounds, the maximum relative discrepancy 

does not exceed − 0.8% when spin–orbit coupling is included. 

2. Elastic properties:  

              Analysis of the monocrystalline elastic constants reveals that the investigated 

materials are mechanically stable, soft, and substantially structurally and elastically 

anisotropic. 

- The C11 is smaller than the C33 value, so the crystal is more compressible along the a-

axis than along the c-axis. This result indicates that the interatomic bonds along the a-

axis are weaker than those along the c-axis 

- The C11 and C33 values are larger than those of C12, C13, C44, and C66, which characterize 

the resistance to shear deformations, indicating that the studied compounds are more 

resistant to compression than to shear. 

- The sound wave velocity is closely linked to the lattice thermal conductivity; the 

relatively low values of the anisotropic sound wave velocities suggest that the lattice 

thermal conductivities of both considered compounds are lower. 
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- The isotropic elastic moduli B, G, and E have relatively small values, reflecting the low 

hardness and stiffness of the considered materials. 

- The B value is practically double that of G, suggesting that shear deformation can occur 

more easily than volume change and that G is the decisive elastic modulus affecting the 

mechanical stability of the title compound 

- According to Poisson’s ratio (σ), Tl2CdGeSe4 is rather ductile, while Tl2CdSnSe4 is on 

the border between ductile and brittle. 

- Based on B/G ratio values, B G⁄ ≈ 2.08 for Tl2CdGeSe4 and B G⁄ ≈ 1.74 for 

Tl2CdSnSe4, confirm the results already obtained through Poisson’s ratio, i.e., that 

Tl2CdGeSe4 is ductile and Tl2CdSnSe4 is on the border between ductility and brittleness. 

- A ductile material is easily machinable and resistant to thermal shock 

- Based on Poisson’s ratio (for a covalent material is 0.2, while it is in the range of 0.3–

0.4 for an ionic material and equal to 0.5 for the pure-ionic limit) Tl2CdGeSe4, with𝜎 =

0.285, and Tl2CdGeSe4, with  𝜎 = 0.259, exhibit a mixture of covalent and ionic 

interatomic bonds, but the ionic character is dominant. 

- The low values of the average velocity 𝑉𝑚 and the Debye temperature 𝑇𝐷 denote a low 

thermal conductivity for the studied compounds. 

- These compounds are characterized by a large shear anisotropy, where 𝐴1, 𝐴2and 𝐴3are 

equal to 0.52 and 0.84 (0.67 and 1.15), respectively, for Tl2CdGeSe4 (Tl2CdSnSe4). 

- The ratios of the linear compressibility βc/βa are equal to 0.39 for Tl2CdGeSe4 and 0.52 

for Tl2CdSnSe4, highlighting the strong anisotropy of the linear compressibility in both 

studied compounds. 

- The computed value of universal elastic anisotropy 𝐴𝑈 equal to 0.51 for Tl2CdGeSe4 

and 0.60 for Tl2CdSnSe4, confirming that the title compounds are characterized by 

considerable elastic anisotropy. 

- Anisotropy in compression 𝐴𝑐𝑜𝑚𝑝 and in shear 𝐴𝑠ℎ𝑒𝑎𝑟 are equal to 4.0% and 4.6%, 

respectively, for Tl2CdGeSe4 and 2.3% and 2.4%, respectively, for Tl2CdSnSe4, these 

indicators highlight the strong elastic anisotropy in the compression and shear of the 

title compounds. 

3. Electronic properties: 

Analysis of the energy band dispersions and the density of states diagrams shows that 

the studied materials are direct bandgap semiconductors, the upper valence band 
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dominantly originates from the Se-4p states, and the Se-Tl, Se-Cd, Se-Ge, and Se-Sn 

bonds dominantly have an ionic character with a certain degree of covalency. 

- The energy band dispersions calculated using GGA-08 and TB-mBJ have similar 

general characteristics, but they are significantly different with regard to the bandgap 

values. 

-  The TB-mBJ potential considerably improves the bandgap value, but it is still 

somewhat smaller than its experimental counterpart. The inclusion of the spin–orbit 

coupling reduces the bandgap. 

- Small differences in the structural parameters could sometimes produce, for the same 

semiconductor, an appreciable difference in the calculated bandgap. 

- The energy band around the CBM is slightly less dispersive than that around the VBM, 

indicating that the electron effective mass is somewhat greater than that of the holes. 

- The effective masses of electrons and holes exhibit a very weak anisotropy; the electron 

and hole effective masses toward the M → Γ direction are approximately equal to the 

corresponding masses toward the M → X direction. 

- The inclusion of SOC in the calculations somewhat increases the electron and hole 

effective masses. 

4. Optical properties:  

The frequency-dependent linear optical functions, viz., complex dielectric function, 

refractive index, optical reflectivity, and energy-loss function, were determined for 

incident photons with energies between 0 and 20 eV.  

- The ε2(ω) spectra of both compounds exhibit notable anisotropy. 

- The studied materials exhibit a high absorption in an energy window involving the 

visible spectrum. A tentative analysis was performed to determine the microscopic 

origin of the observed optical structures in the imaginary part of the dielectric function. 

- In the low energy range (lower than 3.25 eV for Tl2CdGeSe4 and lower than 2.92 eV 

for Tl2CdGeSe4), the amplitude of the αxx(ω) spectrum is slightly higher than that of 

the αZZ(ω) spectrum, indicating that the edge of the bandgap is somewhat anisotropic.  

- these materials could be potential candidates for optoelectronic devices operating in a 

wide energy range from the visible spectrum to the UV range. 

- a larger bandgap corresponds to a smaller static dielectric constant. 
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A.1. CASTEP Code 

The name, CASTEP stands for “Cambridge Serial Total Energy Package”. This package was 

developed in 1990s by Professor Mike Payne and his team at Cambridge University and then it 

was completely redesigned from the ground up in 2004 [1]. Serial means to run on serial 

processors, now it can be run in parallel computers as well. CASTEP employs the density 

functional theory within the plane-wave pseudopotential approach. Here is a guide on how to 

calculate structural properties using CASTEP 

 Prepare the input file: the file should contain the structural parameter of the material 

studied, atomic coordinates, and other relevant such as K-point, and energy cut-off. 

You can use .cell  or .cif file format for input file 

 Run the calculation: using a graphical user interface in Materials Studio. The 

calculation may take hours or days depending on the complexity of the system 

 Analyses the results: using CASTEP analysis tools 

Using this ab initio code, one can calculate:  

- lattice constants, atomic positions, bond lengths, and bond angles.  

- Electronic density of state provided information about the distribution of energy levels 

in the material, Band structures, electron density, electron localization function, and 

electron density difference. 

- optical properties; dielectric function, absorption coefficient, loss function, reflectivity, 

refractive index, …  

- Phonon dispersion spectra and phonon density diagram, from which one can determine 

the dynamical stability and thermal properties of the material. 

- anisotropic elastic constants of the material and isotropic elastic moduli, which can be 

used to compute other related properties like material hardness, minimum thermal 

conductivity, fracture toughness, and melting point, … 

Optimize the crystalline structure: The steps involved in setting up a relaxation calculation 

in CASTEP are as follows: 

- Define the optimization parameters (to obtain a stable structure): using the input 

“geometry optimization" keyword. This allows you to specify the optimization method, 

convergence criteria, and other relevant parameters. CASTEP offers several relaxation 
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methods for optimizing the structure of the system including the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method. 

- Specify the unit cell before you choose the exchange-correlation functional 

- Choose cell optimization: full, fix volume, fix shape. By default, CASTEP will perform 

a full relaxation of the atomic positions and cell parameters. 

- Specify the relaxation method (BFGS or LBFGS); the user should select the method 

that is most appropriate for their system. You can add the Pressure effect (hydrostatic 

pressure). 

- Choose pseudopotential, the best cut-off energy and k-point  

- Set the convergence criteria, including the maximum number of SCF cycles (dependent 

on material), the tolerance for the total energy, and the tolerance for the electronic 

density. 

- Run the optimization process. 

BFGS Geometry optimization method: 

By default, CASTEP uses the BFGS geometry optimization method. The BFGS minimizer is a 

method used to find the minimum energy configuration of a system by iteratively adjusting the 

atomic positions. BFGS stands for Broyden-Fletcher-Goldfarb-Shanno, which is a quasi-

Newton optimization algorithm. It uses the gradient of the energy function concerning the 

atomic positions to iteratively improve the configuration of the system until a minimum energy 

state is reached. The algorithm maintains an approximation of the inverse Hessian matrix of the 

energy function, which allows it to estimate the optimal direction to move in at each iteration. 

BFGS is a popular choice due to its relatively low computational cost and robustness in finding 

local minima. However, other minimization algorithms may also be available in CASTEP, 

depending on the specific version and settings used. 

To Calculate elastic constants Cij: you can follow the following steps: 

- Prepare the input file and optimize the crystalline structure with full relaxation. 

- Define the elastic constants: You can define several distorted structures generated for 

each strain pattern. Displays a matrix showing the nonzero components of the strain 

tensor for each generated strain. 

- Run, then analyze. 
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Generally, CASTEP is more efficient for large systems due to the use of plane-wave basis sets 

and pseudopotentials, which can simplify the computation. Well-suited for systems with a large 

number of atoms or complex periodic structures. Often considered more user-friendly with 

extensive documentation and support. Integrated with many graphical user interfaces and 

scripting options for ease of use. 

A.1. Wien2k Code 

  The name Wien2k originates from Vienna University, where Karlheinz Schwarz and 

Peter Blaha developed the program. The first version was called WIEN and it was published in 

1990 [2].  “2k” refers to the fact that the code was rewritten in the early 2000s to take advantage 

of new computational technologies and advances in DFT methods. The code is based on the 

full-potential linearized augmented plane wave (FLAPW) method, which considers all 

electrons (core and valence) self-consistently. It has been running on LINUX (UNIX) system. 

The code has been updated continuously and improved over the years with the addition of new 

features and capabilities. It is highly flexible and adaptable with a wide range of options in the 

interface for calculating various properties. Some of the key features of Wien2k include: 

- Self-consistent field calculation: it is an iterative SCF approach to solving the Kohn-

Sham equation of DFT to accurately predict the properties of the material studied. 

- Relativistic effects can be used such as spin-orbit coupling, which is used in heavy 

elements. 

- Multiple basis sets, LAPW and APW+lo, which allow it accurate model. 

- Wien2k can calculate structural, elastic, electronic, optical, thermoelectric, 

thermodynamic (should add BoltezTrap code and Gibbs2 program, and magnetic 

properties.   

To optimize the crystal structure using Wien2k, you can follow these basic steps: 

- Prepare the structural file, that contains the position atomic, lattice parameter, and space 

group, and choose the reduction of rayon and save for found case. struct file. 

- Do initialization by the command ‘init_lapw’ in a terminal window or in the interface 

(running consists of NN, SG, SYMMETRY, LSTART, KGEN, and DSTART). This 

will create a new directory for the calculation, where all the input and output will be 

stored. 
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- Set up the input files: In the new directory, you need to create the input files for the 

optimization calculation. The main input file is typically called case.in1, and it should 

contain the details of the calculation, including the optimization method, convergence 

criteria, and other parameters. You also need to specify the k-point mesh for the 

Brillouin zone sampling, as well as the basis set and other details of the calculation. 

-  Run the optimization: input the change in volume “-10; -5; 0; 5; 10”, choose “xdstart “ 

, then change the command "run_lapw –p F 0.5 -i 500 -ec 0.0001 -min". This will run 

the self-consistent field (SCF) calculation for a maximum of 500 iterations, and it will 

stop the calculation once the energy convergence criteria of 0.0001 were reached. 

- Analyze the results: Once the optimization calculation is complete, you can analyze the 

results to see if the crystal structure has been optimized. The output files will contain 

information about the optimized structure, including the atomic positions, lattice 

constants, and energy. You can use a program like XCRYSDEN to visualize the 

optimized structure and compare it with the original structure. 

- Repeat if necessary: If the structure has not been fully optimized, you can repeat the 

optimization calculation with different parameters or methods until convergence is 

achieved. 

If you have an internal coordinate in your material, you should optimize it: you can do the same 

thing just change in initialization the option ‘optimize position’. 

Wien2k can be more computationally intensive due to the full-potential treatment, which 

requires more basis functions and can be more demanding in terms of memory and processing 

power. Provides very accurate results, making it suitable for smaller systems where high 

precision is critical. Requires more expertise to set up and run, as it involves more complex 

input and configuration files. Preferred by researchers who require precise control over their 

calculations and are experienced in electronic structure methods. 

A.3. Spin-Orbit Coupling   

Spin-orbit coupling (SOC) is a crucial element in the in-depth exploration of quantum 

systems. It refers to the interplay between a particle's spin and its motion, causing modifications 

in the electron's atomic energy levels, leading to the splitting of spectral lines. This phenomenon 

is a result of the electromagnetic interaction between the electron's spin and the electric field of 

the nucleus through which it moves. In a solid as in atomic physics, the dominant contribution 
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to spin-orbit Pauli is from the motion in the bare Coulomb potential in the innermost region of 

the atomic cores. 

The Hamiltonian for a single electron, taking into account the spin-orbit interaction, is 

expressed as: 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑟) +

ħ

4𝑚2𝑐2
(∇V ×  p). 𝜎        (A. 1) 

The initial two terms signify the kinetic energy and periodic potential of the one-electron 

Hamiltonian within a basic periodic potential V (r), which mirrors the crystal symmetry. ħ is 

Planck’s constant, m is the mass of a free electron, c is the velocity of light, and σ is the 

dimensionless spin operator [S = (p/2)σ]. The third term signifies the spin-orbit interaction 𝐻𝑆𝑂
′

  

𝐻𝑆𝑂
′ =

ħ

4𝑚2𝑐2
(∇V ×  p). 𝜎              (A. 2) 

Where   𝐻 = 𝐻0+𝐻𝑆𝑂
′  

The Hamiltonian (A. 1) is appropriate when the spin–orbit splitting is significant compared with 

typical energy gaps [3].  

    The weak interaction spin-orbit coupling is a mixture of L and S. The orbital movement of 

the electron gives rise to an internal magnetic field proportional to a field, which can interact 

with the intrinsic magnetic moment associated with the spin of the same electron. The quantum 

numbers associated with the eigenvalues of the operators, of the total angular momentum, then  

𝐽 = 𝐿 + 𝑆, … , |𝐿 − 𝑆|             (A. 3) 

In a crystalline solid, the behavior of electrons is described by energy bands denoted as n(k), 

where "n" represents the band index, and "k" is the wave vector. Spin–orbit (SO) coupling 

plays a significant role in shaping the energy band structure (n(k)) in such materials. 

An illustrative example is found in semiconductors like GaAs, where SO interaction induces a 

splitting in the topmost valence band, as depicted in Fig A. 1. 

In the absence of spin in a tight-binding model, the electron states at the valence band edge 

exhibit p-like characteristics, associated with an orbital angular momentum of 1. However, 

when considering spin-orbit (SO) coupling, the electronic states exhibit a total angular 

momentum of 𝐿 = 3 2⁄  and𝐿 = 1 2⁄ . These =𝐿 = 3 2⁄  and𝐿 = 1 2⁄  states are split in energy by 
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a gap, identified as the SO gap. This serves as an illustrative example highlighting how the 

orbital motion of electrons within a crystal is influenced by spin–orbit coupling [4]. 

 

Fig. A.1:  The band structure of GaAs close to the fundamental gap 

The spin splitting of the Bloch states in the zinc blend structure must result from SO coupling. 

In addition, the effects of SOC observed in different studies in the literature like reducing the 

energy band gap [5], and splitting of the first degenerated conduction levels as we sow in GaAs 

valence band. Spin-orbit coupling can play a crucial role in determining the electronic 

properties of materials, such as their magnetic and transport properties. Spin-orbit coupling is 

also the basis for many emerging technologies, such as spintronic, which uses the spin of 

electrons to store and process information. 

 

 

 

 

 

 

 

 

 

 



 

100 
 

Appendix 

References  

[1] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, 

First principles methods using CASTEP, J. Z. Kristallogr, 2004 

[2] P. Blaha, K. Schwarz, P. Sorantin, Full-Potential OTENTIAL, Linearized Augmented Plane 

Wave Programs for Crystalline Systems, Computer Physics Communications, Vol. 59, pp. 399-

415, 1990 

[3] M.S. Dresselhaus G. Dresselhaus A. Jorio, Group Theory Application to the Physics of 

Condensed Matter, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-32897-1, 2008 

[4] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole System, 

springer Tracts in Modern Physics Volume 191, ISBN 3-540-01187-0, 2003 

[5] J. Even, L. Pedesseau, J. M. Jancu, and C. Katan, Importance of spin–orbit coupling in 

hybrid organic/ inorganic perovskites for photovoltaic applications, J. Phys. Chem. (2013)  

 



Abstract 

       Motivated by the increasing need for high-performance semiconductor materials, we conducted a 

comprehensive investigation into the structural, elastic, electronic, and optical properties of two recently 

synthesized compounds, namely Tl2CdGeSe4 and Tl2CdSnSe4, using the full potential linearized augmented plane 

wave (FP-LAPW) and pseudopotential plane wave (PP-PW) employing density functional theory calculations. 

The calculations were carried out with the inclusion of relativistic effects, specifically accounting for spin-orbit 

coupling (SOC). The resulting equilibrium structural parameters obtained from the computations exhibit 

remarkable agreement with available measurements. It should be noted that the calculations for all the properties 

examined were carried out using the theoretic equilibrium lattice parameters. The obtained results for both 

monocrystalline and polycrystalline elastic constants indicate that the investigated compounds exhibit softness, 

ductility, mechanical stability, and significant structural and elastic anisotropy. By employing the Tran-Blaha 

modified Becke-Johnson potential and considering the inclusion of spin-orbit coupling (SOC), our calculations 

reveal that both Tl2CdGeSe4 and Tl2CdSnSe4 are direct bandgap semiconductors. Incorporating SOC leads to a 

reduction in the fundamental bandgap of Tl2CdGeSe4 from 1.123 to 0.981 eV and that of Tl2CdSnSe4 from 1.097 

to 0.953 eV. The l-decomposed atom-projected densities of states were utilized to determine the individual 

contributions of each constituent atom to the electronic states within the energy bands. The upper valence subband 

predominantly arises from the Se-4p states, while the bottom of the conduction band primarily originates from the 

Se-4p and Ge-4p/Sn-5p states. Furthermore, frequency-dependent linear optical parameters, including the complex 

dielectric function, absorption coefficient, refractive index, reflectivity, and energy-loss function, were calculated 

across a wide energy range for electromagnetic waves polarized parallel and perpendicular to the c-axis. Efforts 

were made to elucidate the microscopic origins of the observed peaks and structures in the calculated optical 

spectra 

 ملخص

لمركبين تم ضوئية والمرنة والإلكترونية وال البنيوية تحقيقاً شاملاً في الخصائصبدافع الحاجة المتزايدة لمواد أشباه الموصلات عالية الأداء، أجرينا   

( والموجة المستوية LAPW-FP) متزايدة خطيا، ، وذلك باستخدام الموجة المستوية ال 4CdSnSe2Tlو 4CdGeSe2Tl تصنيعهما مؤخرًا، وهما

. تم إجراء الحسابات مع تضمين التأثيرات النسبية ، على وجه التحديد لحساب اقتران الكثافةدالية حسابات نظرية  اللذان يستخدمان( PP-PWالكاذبة )

ية للتوازن التي تم الحصول عليها من الحسابات اتفاقاً ملحوظًا مع القياسات المتاحة. وتجدر ويبنال ثوابتال نتائجتظهر. (SOC) الدوران والمدار

شبكة التوازن النظري. النتائج التي تم الحصول عليها  ثوابتصائص التي تم فحصها أجريت باستخدام الإشارة إلى أن العمليات الحسابية لجميع الخ

بنيوي ميكانيكي ، وتباين  ستقرار، إصلابةبلور تشير إلى أن المركبات التي تم فحصها تظهر ليونة ، تلكل من الثوابت المرنة أحادية البلورية ومتعددة ال

، تكشف  (SOC)اقتران مدار الدوران ادخالوالنظر في  Tran-Blaha المعدلة من Becke-Johnson كمونم ومرن كبير. من خلال استخدا

إلى تقليل فجوة النطاق الأساسية  SOC ذات فجوة نطاق مباشرة. يؤدي دمج نواقلهما أشباه  4CdSnSe2Tl و 4CdGeSe2Tl حساباتنا أن كلا من

 فولت. تم استخدام كثافات الدول المتحللة 0.953إلى  1.097من  4CdSnSe2Tl وتلك الخاصة بـفولت  0.981إلى  1.123من  4CdGeSe2Tl لـ

-Se حالات لتحديد المساهمات الفردية لكل ذرة مكونة للحالات الإلكترونية داخل نطاقات الطاقة. ينشأ النطاق الفرعي التكافؤ العلوي في الغالب من

4p  التوصيل بشكل أساسي من حالات، بينما ينشأ الجزء السفلي من نطاق Se-4p و Ge-4p / Sn-5p.  اطياف الدوال علاوة على ذلك ، تم حساب

ن المعتمدة على التردد ، بما في ذلك دالة العزل الكهربائي المعقدة ، ومعامل الامتصاص ، ومعامل الانكسار ، والانعكاسية ، ووظيفة فقدا الضوئية 

بذُلت جهود لتوضيح الأصول المجهرية .c جات الكهرومغناطيسية المستقطبة المتوازية والعمودية على المحورالطاقة ، عبر نطاق طاقة واسع للمو

  .ية المحسوبةضوئفي الأطياف التي لوحظت للقمم والتراكيب ال

 


