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Abstract 

This PhD thesis presents a comprehensive exploration of the development and 

optimization of polyaniline (PANI) and functionalized graphene nanocomposites, a pivotal 

advancement in materials science and engineering. Emphasizing a multidisciplinary approach, 

this work integrates innovative experimental strategies, computational modeling, and advanced 

machine learning techniques to refine the properties of these nanocomposites. The research 

encapsulates innovative synthesis methods and employs groundbreaking machine learning 

models for predictive analysis, significantly enhancing the accuracy in forecasting electrical 

conductivity and gas-sensing responses of PANI/graphene nanocomposites. These models, a 

first in the field, set new standards in sustainable material science. Furthermore, the thesis 

introduces an eco-friendly synthesis pathway for PANI/reduced graphene oxide 

nanocomposites using deep eutectic solvents, marking a leap towards environmental 

sustainability. This integrative research not only enriches the understanding of PANI/graphene 

nanocomposites but also makes substantial contributions to developing sustainable materials. 

The findings and methodologies presented in this thesis are anticipated to have far-reaching 

impacts, opening new avenues in technology and environmental conservation, particularly in 

areas like supercapacitors, gas detection devices, and energy storage systems.  

Keywords:  Polyaniline (PANI); Graphene Nanocomposites; Machine Learning in Material 

Science; Experimental Design Optimization; Computational Modeling; Density Functional 

Theory (DFT); Electrical Conductivity; Gas Sensing; Environmental Sustainability. 
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Résumé 

Cette thèse de doctorat offre une exploration complète du développement et de 

l'optimisation de nanocomposites de polyaniline (PANI) et de graphène fonctionnalisé, une 

avancée cruciale en science et ingénierie des matériaux. Mettant l'accent sur une approche 

multidisciplinaire, ce travail intègre des stratégies expérimentales innovantes, la modélisation 

informatique et des techniques avancées d'apprentissage automatique pour affiner les 

propriétés de ces nanocomposites. La recherche englobe des méthodes de synthèse novatrices 

et utilise des modèles révolutionnaires d'apprentissage automatique pour l'analyse prédictive, 

améliorant significativement la précision dans la prévision de la conductivité électrique et des 

réponses des capteurs de gaz des nanocomposites PANI/graphène. Ces modèles, une première 

dans le domaine, établissent de nouvelles normes en science des matériaux durables. De plus, 

la thèse présente un chemin de synthèse respectueux de l'environnement pour les 

nanocomposites PANI/oxide de graphène réduit en utilisant des solvants eutectiques profonds, 

marquant un pas vers la durabilité environnementale. Cette recherche intégrative enrichit non 

seulement la compréhension des nanocomposites PANI/graphène, mais contribue également 

de manière substantielle au développement de matériaux durables. Les découvertes et 

méthodologies présentées dans cette thèse devraient avoir un impact considérable, ouvrant de 

nouvelles voies dans la technologie et la conservation de l'environnement, notamment dans des 

domaines tels que les supercondensateurs, les capteurs de gaz et les solutions de stockage 

d'énergie.  

Mots-clés :  Polyaniline (PANI) ; Nanocomposites de Graphène ; Machine Learning en Science 

des Matériaux ; Optimisation du Plan d'expérience ; Modélisation Moléculaire ; Théorie 

Fonctionnelle de la Densité (DFT) ; Conductivité Électrique ; Détection de Gaz ; Durabilité 

Environnementale. 
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لخصمُ ال  

والغرافين المُعدلّ،  أنيلين  بوليالاستكشافًا شاملًً لتطوير وتحسين نانومركبات  تقدم هذه الأطروحة  

محوري في علم وهندسة المواد. مع التركيز على المنهج الشمولي المتعدد التخصصات، يدمج  وهو تقدم  

هذا العمل استراتيجيات تجريبية مبتكرة ونمذجة حسابية وتقنيات تعلم الآلة المتقدمة لتحسين خصائص هذه  

تصنيع مبتكرة وتستخدم نماذج التعلم الآلي الرائدة للتحليل التنبؤي،   النانومركبات. تتضمن البحوث طرق

  بالتوصيل الكهربائي واستجابات الكشف عن الغاز لنانومركبات بولي   مما يعزز بشكل كبير الدقة في التنبؤ

المواد  /أنيلين علم  في  جديدة  معايير  تضع  المجال،  هذا  في  نوعها  من  الأولى  النماذج  هذه  تعُد  غرافين. 

أكسيد /أنيلين   مركبات بوليلنانويع صديقة للبيئة  . علًوة على ذلك، تقدم الأطروحة طريقة تصنةالمستدام

ً ، مما يمثل  المذيبات المنصهرة بعمقباستخدام    الجرافين المخفض  نحو الاستدامة البيئية. هذا   تطوراً مهما

يثري فقط   المتكامل لا  نانومركبات  البحث  إثراء فهم  أيضًا  الجرافين فحسب،  /أنيلين   البوليعلى  يقدم  بل 

مستدامة. من المتوقع أن تكون النتائج والمنهجيات المقدمة في هذه المواد  الفي تطوير  مساهمات جوهرية  

البيئة، خاصة في   والحفاظ على  التكنولوجيا  آفاقًا جديدة في  فتفتح  المدى،  بعيدة  تأثيرات  ذات  الأطروحة 

 .وحلول تخزين الطاقة الغازات مجالات مثل المكثفات الفائقة وأجهزة استشعار 

؛ النمذجة تحسين تصميم التجارب الجرافين؛ التعلم الآلي في علم المواد؛  مركباتالبولي أنيلين؛ نانوُ:الكلماتُالمفتاحية

 .؛ التوصيل الكهربائي؛ الاستشعار للغاز؛ الاستدامة البيئية الحسابية؛ نظرية الكثافة الوظيفية
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General Introduction 

The aim of the present section is to provide an introductory material on the research 

conducted in this PhD thesis, outlining its motivation, objectives, and organization. It delves 

into the rationale behind the study, the aims driving the research, and the outcomes achieved. 

Furthermore, it provides a structured overview of the thesis, guiding readers through the 

journey of the investigation from its inception to its conclusion. This introductory section sets 

the stage for a detailed exploration of the innovative work undertaken in the field of polyaniline 

and graphene-based nanocomposites, highlighting their multifunctional applications and 

contributions to materials science. 

The quest for designing high-performance, conducting, and multifunctional 

nanocomposites has rapidly gained momentum in recent years, marking a significant stride in 

advanced material science (Raza et al. 2021). This field is particularly vibrant in the context of 

conducting polymers and graphene-based materials, which are being explored for their unique 

and tunable attributes. These properties include enhanced electrical conductivity, mechanical 

strength, and advanced sensing capabilities, making these nanocomposites highly sought-after 

in various industrial applications (Chee et al. 2015; Fu et al. 2019; Guezzout et al. 2023). 

Polyaniline (PANI), known for its easy synthesis and exceptional gas-sensing properties, 

emerges as a key player when integrated with nanoparticles like carbon-based materials, 

enhancing its intrinsic qualities and broadening its application spectrum (Tanguy et al. 2018; 

Singh and Shukla 2020; Kausar 2021; Kazemi et al. 2021). Simultaneously, graphene's 

extensive surface area and remarkable physicochemical properties revolutionize gas sensor 

technologies, offering highly sensitive detection capabilities. The fusion of graphene with 

PANI-based systems results in cost-effective, high-performance nanocomposites, leveraging 

both materials' strengths (Bogue 2014; Vikrant et al. 2018; Zamiri and Haseeb 2020; Kazemi 

et al. 2021; Yap et al. 2021).  

However, the development of PANI/graphene nanocomposites faces significant 

challenges, primarily due to the complexity of optimizing their properties. Achieving a deep 

understanding of their intricate molecular interactions is crucial for enhancing their functional 

performance. Traditional methods, involving exhaustive experimental testing to explore every 

possible material combination, are not only impractical but also resource-intensive. In this 

context, predictive modeling emerges as a crucial strategy. Innovative techniques like machine 

learning (ML) and molecular modeling offer a promising pathway to overcome these 
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challenges. They facilitate efficient, cost-effective predictions of the nanocomposites' 

properties, thereby reducing the dependency on extensive laboratory work. This approach not 

only paves the way for precise customization of nanocomposites for specific industrial 

applications but also marks a significant advancement towards the development of sustainable 

and high-performance material technologies. The integration of computational and 

experimental methodologies is vital in addressing the complexity of material interactions, 

ensuring the progression of nanocomposite development towards a more sustainable and 

application-specific future. 

Within the framework of this PhD project, focused on the development and 

optimization of PANI and functionalized graphene nanocomposites. This endeavor aims to 

address the critical need for advanced materials that exhibit both enhanced performance and 

eco-friendliness. The specific objectives include: 

• Innovative Synthesis: To design and develop PANI/graphene nanocomposites through 

innovative synthesis methods, enhancing their functional properties and eco-friendliness. 

• Computational Modeling: Utilizing computational techniques such as density functional 

theory (DFT) and molecular dynamics (MD) to accurately model the electronic and 

molecular behavior within the nanocomposites. 

• Machine Learning Integration: Implementing machine learning, particularly Artificial 

Neural Networks (ANNs), for predicting and enhancing the nanocomposites' electrical 

conductivity and gas sensing properties. 

• Experimental Validation: Conducting comprehensive experimental studies to corroborate 

the predictions of computational models, aiming to understand the nanocomposites' real-

world applicability. 

• Application Exploration: Investigating the practical uses of these nanocomposites in 

supercapacitors, gas sensors, and energy storage devices, showcasing their potential for 

diverse industrial applications. 

• Future Material Innovations: Focusing on future material developments, particularly in 

sustainable advancements, by experimenting with novel functionalization techniques and 

broadening the application spectrum of these nanocomposites. 

• Sustainable Material Science Contributions: Striving to contribute significantly to the 

field of sustainable material science by developing eco-friendly solutions to address global 

environmental and technological challenges. 
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Therefore, the construction of this PhD thesis is meticulously organized to provide a 

comprehensive understanding of the development and applications of polyaniline and 

graphene-based nanocomposites. The structure of this thesis is as follows: 

• General Introduction - Establishes the research context, detailing the general overview, 

problem statement, and research aims. It also outlines the thesis structure, setting the 

foundation for the ensuing chapters. 

• Chapter I: Literature Review - Presents a comprehensive literature review on the 

development and applications of polyaniline and graphene-based nanocomposites, 

particularly focusing on their roles in electrical conductivity and gas sensing. This chapter 

offers an in-depth examination of the evolution, methodologies, and properties of these 

innovative materials, setting the stage for subsequent experimental and computational 

analysis. 

• Chapter II: Theoretical and Methodological Framework - Details the theoretical and 

methodological framework employed in the research. This chapter explains the 

computational methods, materials characterization techniques, and experimental 

procedures utilized in the study, offering a foundational understanding of the mechanisms 

and operations involved in the development and application of PANI/graphene 

nanocomposites.  

• Chapter III: Machine Learning in Nanocomposite Research - Delves into the 

groundbreaking application of advanced machine learning methodologies for predicting the 

electrical and gas sensing properties of PANI/graphene nanocomposites. This chapter 

covers an extensive dataset analysis from over 100 references, with a focus on the accuracy 

and robustness of ANNs in predictions. It includes a detailed examination of the 

applicability domain (AD) for model evaluation and the influence of molecular inputs on 

the performance of PANI/graphene nanocomposites. This chapter will contribute 

significantly to the development of high-performance nanocomposites, underlining the 

potential of machine learning in material science and its applicability in areas like 

supercapacitors, gas sensors, and energy storage devices. 

• Chapter IV: Synthesis and Characterization of PANI/rGO Nanocomposites - Presents 

an extensive investigation into the synthesis, modeling, and characterization of 

polyaniline/reduced graphene oxide (PANI/rGO) nanocomposites, highlighting the 

innovative use of deep eutectic solvents (DES) in their synthesis. This chapter explores the 

successful synthesis of PANI/rGO nanocomposites via in-situ chemical polymerization, 
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employing DES as an electrolyte—a novel approach in nanocomposite fabrication. It 

details the application of Response Surface Methodology (RSM), ANNs, and molecular 

simulation techniques for a holistic modeling and optimization process. The chapter 

provides critical insights into the electrical conductivity, structural changes, and thermal 

stability of PANI/rGO nanocomposites, positioning them as promising materials for 

supercapacitors and gas sensors and underscoring their potential in eco-friendly 

innovations. 

• Conclusion and Future Directions - Concludes the thesis by summarizing key findings, 

particularly in gas sensor applications. It opens a window into prospective research 

avenues, particularly focusing on the enhancement of gas detection methodologies for 

environmental monitoring. This concluding chapter not only summarizes the significant 

strides made in the field but also sketches a roadmap for future explorations that promise 

to elevate the practical efficacy of gas sensing technologies in tackling environmental 

challenges. 
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Chapter I: Literature Review 

This chapter affords an insightful overview of the developments in the modeling and 

elaboration of polyaniline (PANI) and graphene nanocomposites, focusing on their application 

in electrical conductivity and gas sensing. It elucidates the pivotal role these nanocomposites 

play as materials for detecting a variety of gases, exploring the mechanisms behind their 

sensing abilities. Highlighting the timeliness of this review, it draws predominantly from 

studies published in the last decade, showcasing the field's progression towards contemporary 

and innovative research. 

I.1. Introduction  

 The survey of polyaniline (PANI) and graphene nanocomposites represents a 

significant stride in the advancement of materials science, especially in developing high-end 

applications, like sensitive and efficient electrical and gas sensors or energy storage materials. 

This chapter delves deeply into the synergistic integration of PANI and graphene, underscoring 

the significant strides made in enhancing the performance and applicability of these 

nanocomposites for cutting-edge engineering solutions. Through a comprehensive literature 

review, this chapter purposes to map out the up-to-date landscape of PANI/graphene 

nanocomposites, elucidating the potential that lies in their unique combination for 

technological innovation. 

Drawing from a wealth of scientific research published over the last decade, 

meticulously curated to capture the essence of innovation in PANI/graphene nanocomposites 

over the recent decade. This exploration is meticulously illustrated in Figure I.1, which serves 

as a visual gateway to understanding the structural and compositional nuances that make these 

materials stand out in the field of gas sensing technologies. The figure is a proof to the 

architectural elegance of PANI/graphene nanocomposites, shedding light on the molecular 

interactions and structural configurations that underpin their exceptional properties.  

In parallel, Table I.1 offers an organized summary of seminal research findings and 

pivotal developments in the field, spanning from 2010 to 2024. This table summarize the 

essence of scholarly discourse on PANI/graphene nanocomposites, presenting a curated 

overview of the evolutionary trajectory of research within this function. It provides a snapshot 

of the progress and challenges encountered in the synthesis, electrical, and sensing 

performances of these materials, particularly in the context of gas sensor applications. Notably, 

our analysis identifies a research gap in the synthesis, electrical, and sensing performances of 
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PANI and graphene materials, highlighting the need for further exploration in gas sensor 

systems. For readers seeking foundational insights and background information, a selection of 

comprehensive reviews is provided, including works by (Chauhan et al. 2016; Sen et al. 2016; 

Pandey 2016; Huang et al. 2018; Tanguy et al. 2018; Shoaie et al. 2019; Al-Haidary et al. 

2021). These reviews, cataloged in Table I.1, offer a broad spectrum of knowledge, setting the 

stage for the subsequent discussions in this chapter. 

 

Figure I.1. Research trends and millstones in terms of “PANI/graphene nanocomposites”, 

and “PANI/graphene gas sensors”: A Scopus database analysis. 

Upon reviewing Table I.1, it becomes evident that existing literature primarily delves into 

the foundational theories and synthesis methodologies concerning either PANI or graphene 

independently. Notably, discussions on PANI/graphene nanocomposites with a specific focus 

on supercapacitors have been observed (Huang et al. 2018), yet comprehensive analyses 

emphasizing the latest breakthroughs in PANI/graphene composites, particularly in gas sensing 

applications, remain uncommon. The inception of scholarly discourse on PANI/graphene 

nanocomposites in the context of gas sensing was marked by a pivotal study in 2010 (Al-

Mashat et al. 2010), underscoring the novelty and increasing interest in this research domain. 

Despite this growing fascination, a thorough review that solely concentrates on the gas sensing 

capabilities of PANI/graphene composites is yet to be found. 

Hence, this chapter inventors in offering an exhaustive overview of PANI/graphene-based 

nanocomposites, spotlighting their utility as conductive mediums across various domains, 

notably in gas sensors. This discourse begins by laying down the foundational principles of 

PANI and graphene, subsequently navigating through the latest advancements and applications 

of these materials, spanning the years 2010 to 2024, as depicted in Figure I.1. This endeavor 
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aims to bridge the existing knowledge gap and furnish a holistic perspective on the potential of 

PANI and graphene composites in the evolving landscape of material science. 

Table I.1. Selected key review articles in the literature on PANI, Graphene, and 

PANI/graphene nanocomposite gas sensors. 

Review title Main Focus Reference 

Synthesis and sensing applications of polyaniline 

nanocomposites: a review 

PANI nanocomposites (Sen et al. 

2016) 

Highly Sensitive and Selective Chemiresistor Gas/Vapor 

Sensors based on Polyaniline Nanocomposite: A 

comprehensive review 

PANI-based sensors (Pandey 2016) 

High-performance supercapacitors based on polyaniline -

graphene nanocomposites: Some approaches, challenges 

and opportunities 

Developmental stage of 

different PANI/graphene 

nanocomposites 

(Chauhan et 

al. 2016) 

Polyaniline/graphene nanocomposites towards high -

performance supercapacitors: A review 

PANI/graphene nanocomposites 

for supercapacitors 

(Huang et al. 

2018) 

A review on advances in application of polyaniline for 

ammonia detection 

PANI based ammonia detection 

sensors 

(Tanguy et al. 

2018) 

Electrochemical sensors and biosensors based on the use 

of polyaniline and its nanocomposites: a review on recent 

advances 

PANI-based biosensors 

 

(Shoaie et al. 

2019) 

Development of polyaniline for sensor applications: A 

review 

PANI as conductive sensors (Al-Haidary et 

al. 2021) 

A Review on Polyaniline: Synthesis, Properties, 

Nanocomposites, and Electrochemical Applications 

PANI-based nanocomposites 

and its applications 

(Majeed et al. 

2022) 

I.2. Background on Conducting Polymers 

  Conducting polymers (CPs), such as polypyrrole (PPy), polythiophene (PTh), and 

PANI, have emerged as materials of significant interest due to their remarkable electrical and 

mechanical properties. These polymers have found extensive applications across various 

domains owing to their unique combination of conductivity and flexibility (Gerard et al. 2002; 

Yan et al. 2020). The exploration of CPs began in earnest in 1963 when Bolto et al. discovered 

the conductor properties of PPy derivatives, achieving impressively low resistivity levels of 1 

Ωcm (Bolto et al. 1963). The field was further revolutionized in 1977 with Shirakawa, 

MacDiarmid, and Heeger's synthesis of doped polyacetylene (PA), a breakthrough that led to 

their Nobel Prize in Chemistry in 2000 for pioneering work on conducting polymers (Chiang 

et al. 1977; Heeger et al. 2000).  
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The conductivity in CPs arises from their extended π conjugated systems, which 

facilitate the delocalization of π electrons across the polymer chain, imparting them with 

semiconductor-like properties (MacDiarmid 2001). Doping processes are employed to enhance 

the conductivity of these materials, making them suitable for an extensive array of applications, 

such as energy storage, electronics, and sensors (Gubler et al. 2002; Harun et al. 2007). The 

conductivity spectrum of these materials is depicted in Figure I.2. 

 
Figure I.2. Conductivity range of conducting polymers and polymer composites (Kaur et al. 

2015; Ahmadi et al. 2019). 

 Following the initial discoveries, the development of various CPs such as PPy, PTh, 

PANI, and others continued to expand. Figure I.3 showcases the molecular structures of these 

pivotal conducting polymers, while Table I.2 summarizes the properties and electrical 

conductivities of several well-studied CPs, indicating the scope for enhancing these materials 

through advanced synthesis techniques and doping strategies (Pionteck et al. 2007; Kar et al. 

2015; Idumah 2021).  Despite their promising applications, the use of some CPs in biomedical 

fields is limited due to potential air oxidation and hazardous by-products (Mozafari et al. 2012; 

Yi and Abidian 2016). Nonetheless, the electrical and electrochemical properties of CPs are 

significantly enhanced through doping or by incorporating additional components, such as 

inorganic oxides or other organic compounds (Zhang et al. 2018).  
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Polyacetylene  Poly (para-phenylene)  

  
Polypyrrole  Polythiophene  

  
Polyaniline  Poly (para-phenylene vinylene) 

Figure I.3. Chemical structures of common conducting polymers (Ramakrishnan 2011). 

Table I.2. Conductivity and other properties of some commonly available CPs (Pionteck et al. 

2007; Kar et al. 2015; Idumah 2021). 

Conducting polymer Chemical 

structure 

Conductivity 

(S cm-1) 

Doping 

type 

Properties  

Polyacetylene (PA) 

 

200 – 1000 n, p High electrical conductivity 

Polyaniline (PANI) 

 

30 – 200 n, p Various structural 

configurations, environmentally 

durable, cost-effective 

Polypyrrole (PPy) 

 

10 – 700 p Excellent electrical conductivity, 

Simplicity in synthesis, and ease 

of surface modification 

Polythiophene (PTh) 

 

10 – 1000 p Ease of synthesis and favorable 

optical characteristics 

Poly(para-phenylene) 

(PPP) 

 

10-7 – 100 n, p Environmentally stable 

 Poly (3, 4-

ethylenedioxy 

thiophene) (PEDOT) 

 

0.4 – 400 n, p Transparent conductor that 

exhibits both environmental and 

electrochemical stability 

Poly (para-phenylene 

vinylene) (PPV) 

 

1 – 1000 p Transformed into a thin film 

with a highly organized 

crystalline structure 

Poly(iso-

thionaphthene) 

(PITN) 

 

1 – 50 p Colorless and transparent 

conductor 

Despite their advantages, CPs face challenges such as reduced electrical conductivity, 

low surface area due to agglomeration, varied polymerization methods leading to uncontrolled 

morphologies, and instability of nanostructured CPs. To address these limitations, graphene's 
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incorporation into CP matrices is explored to enhance the electroactivity of resulting 

nanocomposites. This strategic direction is underscored by ongoing studies dedicated to 

understanding the interplay between CPs and graphene-based nanocomposites, aiming to 

unlock new potentials for CP applications (Roth and Graupner 1993; Skotheim 1997; Partridge 

et al. 2000; Mishra 2018). 

Ongoing research focuses on improving existing CPs for broader applications, 

leveraging techniques like doping and the creation of nanocomposites to enhance their 

properties. CPs-based sensors, in particular, benefit from their lightweight, corrosion 

resistance, low cost, and environmental stability. The inclusion of materials including metal 

oxides, carbon nanotubes, and graphene derivatives into CPs has been explored to improve 

their reversibility, sensitivity, and response times. 

A key focus of recent investigations has been the integration of graphene into CP 

frameworks to develop nanocomposites with significantly improved electroactivity. This 

approach seeks to leverage the synergistic interactions between CPs and graphene derivatives, 

aiming to transcend the traditional limitations of CPs by exploiting graphene's remarkable 

properties. Among the spectrum of CPs, PANI emerges as a particularly notable material due 

to its superior electrical conductivity, stability under environmental conditions, and 

straightforward synthetic route. PANI's versatile doping/dedoping chemistry facilitates a 

modifiable conductivity spectrum, positioning it as a prime candidate for diverse applications, 

including but not limited to sensors, supercapacitors, and anti-corrosion coatings. Furthermore, 

the compatibility of PANI with various doping agents and its adaptability to different forms—

ranging from fibers and films to complex nanocomposites—significantly broadens its practical 

and research-based applications. These distinguishing features highlight the central role of 

PANI in the ongoing evolution of conducting polymers and prelude a more detailed 

examination of its essential properties in the following section. 

I.2. Basic of Polyaniline  

 PANI has been a subject of extensive investigation due to its noteworthy characteristics, 

drawing significant interest for possible use in electronic devices such as batteries, capacitors, 

and sensor materials. Its outstanding conductivity and adaptable features position it as a 

compelling choice for advancing modern electronic technologies (Sen et al. 2016; Boublia et 

al. 2023a; Kyomuhimbo and Feleni 2023). Notably, the combination of PANI with 

carbonaceous elements in nanocomposites has surfaced as an attractive tactic for crafting 

sophisticated materials, capitalizing on their mutually beneficial attributes.  
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PANI is distinguished by its outstanding electrical conductivity, elevated 

pseudocapacitance, and robust resilience against environmental degradation (Hong et al. 2019; 

Heme et al. 2021). Simultaneously, carbonaceous materials, encompassing graphene, carbon 

nanotubes, and carbon black, are recognized for their remarkable mechanical strength, 

extensive surface area, and excellent electrical conductivity. Researchers have significantly 

enhanced electrochemical performance through this combination, making these materials well-

suited for diverse applications (Chen et al. 2023a; Zhang et al. 2023).  

I.2.1. History of Polyaniline Research  

PANI stands as a keystone within the domain of conducting polymers, with its inception 

tracing over a century and a half ago, marking it as one of the most venerable materials in this 

field. The early 1980s witnessed a resurgence of academic interest in PANI, sparked by its 

unique conductive properties and versatile applications (Huang et al. 1986; Rasmussen 2017). 

Originally referred to as "black aniline" for its dark green hue, a consequence of the bulk 

polymerization of aniline monomers, its initial misidentification as aniline black underscores 

the early complexity of its chemistry (Travis 1994). The historical trajectory of PANI began in 

1862 with Henry Letheby's pioneering work, which laid the foundational understanding of 

aniline's transformative chemistry through oxidation processes. Letheby's experiments, 

particularly the oxidation of aniline monomer in sulfuric acid solutions using a platinum 

electrode, yielded a spectrum of colors from blue to purple, eventually leading to the synthesis 

of a pigment adhering to the electrode in shades ranging from dark blue to bluish green 

(Letheby 1862). By the 1890s, PANI's application extended to the textile industry as a pigment, 

a period that also saw the material's conductive properties being enhanced through acid doping, 

thus modulating its conductivity based on the pH environment. The seminal work of Alan 

MacDiarmid in the late 20th century introduced a paradigm shift in the understanding of PANI 

by identifying its variable oxidation forms - leucoemeraldine (fully reduced), emeraldine 

(partially oxidized), and pernigraniline (fully oxidized) states (Macdiarmid et al. 1987). This 

breakthrough provided insights into the tunability of PANI's electrical and electrochemical 

properties through doping and dedoping processes, employing a range of dopants including 

carbon-based materials and metal oxides. Such advancements not only expanded the functional 

versatility of PANI but also its morphological diversity, paving the way for its application 

across various technological and industrial sectors. This era of research opened new avenues 

for innovation, leveraging the inherent variability of conducting polymers to develop materials 
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with tailored electrical properties and structural configurations (Sengupta et al. 2006; Visakh 

et al. 2017). 

I.2.2. Structural Insights and Properties of Polyaniline 

Subsequent research has elucidated the structural intricacies and diverse physical forms 

of PANI, underscoring its versatility and adaptability as a conducting polymer. PANI can be 

synthesized into various morphologies, including globular structures, nanotubes, and fibrils, 

each exhibiting distinct properties that contribute to its superiority over other conducting 

polymers (Zare et al. 2020). This versatility is not just a testament to PANI's morphological 

diversity but also to its multifaceted applications in various fields. Central to PANI's 

exceptional performance is its reversible redox property, a characteristic intimately linked to 

its unique molecular structure, which comprises alternating reduced and oxidized repeated 

units – specifically, benzene diamine and quinone diamine functional groups. This duality is 

beautifully illustrated in Figure I.4, which depicts the chemical structure of PANI. 

 

Figure I.4. Structural composition of PANI, illustrating benzene diamine and quinone 

diamine repeated units (Luo and Wang 2018). 

 The seminal insights by MacDiarmid shed light on the diverse nature of PANI, 

famously summarized in his quote: "There are as many different types of PANI as there are 

people who synthesize it" (MacDiarmid et al. 2001; Company and Laureates 2003). This 

diversity is largely a function of the synthesis method, choice of chemical or electrochemical 

doping agents, and the accompanying electrolytes, leading to PANI's varied oxidation states. 

For instance, a y-value of 1 corresponding to the fully reduced leucoemeraldine base state, 

whereas y = 0 denotes the fully oxidized pernigraniline base form. The most stable form, the 

emeraldine base, manifests at a semi-oxidized form when y = 0.5 (Macdiarmid et al. 1987). 

This variability is further illustrated in Figure I.5, which provides a comprehensive overview 

of PANI's redox and protonation states. PANI's color spectrum, ranging from transparent 

yellow color to green, blue, and violet, is a direct reflection of its oxidation states (Gupta and 

Miura 2006). Typically synthesized in acidic conditions, the protonated form of PANI, known 

as emeraldine salt, exhibits electrical conductivity in the range of 1 − 10 𝑆 𝑐𝑚−1. In contrast, 
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its base form has significantly lower conductivity, around 10−10 𝑆 𝑐𝑚−1 (Kulkarni 1993). This 

conductivity is modifiable through alterations in pH, dopant concentration, exposure to 

ambient oxygen or nitrogen, and variations in the electrochemical process parameters. On the 

other hand, the leucoemeraldine and pernigraniline forms of PANI are generally non-

conductive, corresponding to their respective reduced, semi-oxidized, and fully oxidized forms. 

The synthetic versatility of PANI allows for its transformation from one form to another, such 

as the conversion of Emeraldine salt to either leucoemeraldine salt or pernigraniline salt, 

through oxidative or reductive processes (Huang et al. 1986; Wnek 1986; Li et al. 2009). 

Moreover, modifying the oxidation state of emeraldine salt through the introduction of diverse 

dopants and adjusting the doping level can significantly augment its conductivity. This 

highlights the tunability of PANI for a wide range of applications (Bhadra et al. 2009; Fratoddi 

et al. 2015a). 

a) 

 

 

b) 

 

c) 

 

Figure I.5. Redox/Protonation forms and color variations of polyaniline (Zhang 2007). 

I.2.3. Polyaniline Synthesis 

 The synthesis of PANI has evolved markedly, benefiting from a suite of innovative 

methodologies that span electrochemical polymerization, chemical polymerization, vapor-

phase polymerization (VPP), photochemically initiated polymerization, enzyme-catalyzed 

polymerization, and polymerization employing electron acceptors. These varied approaches 

signify the breadth of ongoing research and development in PANI synthesis, underscoring a 

commitment to enhancing the polymer's properties and morphologies for bespoke applications 

and material specifications (Majeed et al. 2022). 
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A paradigmatic synthesis procedure commonly cited in literature involves oxidatively 

polymerizing aniline with ammonium peroxydisulfate (APS) under acidic medium, 

predominantly hydrochloric acid (HCl). This process results in the production of significant 

amounts of conductive PANI granules (Figure I.6). For example, detailed procedural 

documentation includes preparing a solution of APS (4.564 g) in 200 mL of HCl (2.5 M), 

followed by the gradual addition of 2 mL aniline under vigorous stirring at temperatures 

maintained below or equal to 5℃. This addition phase, lasting approximately 30 minutes, 

precedes a further 2 hours of stirring at near-freezing conditions, after which the reaction 

mixture is permitted to stand at room temperature (~28 ℃) for 10–15 hours, leading to the 

formation of a dark green precipitate. This precipitate is then filtered, thoroughly washed until 

nearly colorless, and subsequently dried at 80 ℃ for 12 hours, culminating in the production 

of powdered PANI (Yang et al. 2010; Kumar et al. 2016; Kebiche et al. 2020). 

 

Figure I.6. Schematic illustration of PANI synthesis via oxidative polymerization (Rangel-

Olivares et al. 2021). 

 The inherent electrical conductivity of PANI is closely tied to the uniform distribution 

of dopant sites across the surface of the polymer. These sites play a crucial role in adsorbing 

species that influence and regulate conductivity. PANI's synthesis yields elongated chains 

comprised of alternating structural units: the reduction unit [B-NH-B-NH]n and the oxidation 

unit [B-N=Q=N]n (Figure I.4 and Figure I.7). This redox dynamic facilitates the transition 

between benzenoid and quinoid structures, imbuing PANI with a distinct conjugated symmetry 

and resulting in pronounced asymmetry within its conducting and valence bands (Bhadra et al. 

2009).  
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Figure I.7. Mechanism of PANI synthesis highlighting the structural units (Zhang et al. 

2019c). 

I.2.4. Polyaniline Applications 

 The exploration of conducting PANI nanostructures has become a focal point in 

contemporary materials science research, attributed to their versatile applicability across a 

spectrum of industrial domains. This interest is propelled by PANI's distinctive attributes, 

including its variable conductivity through doping and dedoping processes, remarkable 

chemical stability, cost-efficiency, ease of fabrication, and processability (Kulkarni et al. 1989; 

Stockton and Rubner 1997; Huang et al. 2003; Li et al. 2009). As a quintessential conducting 

polymer, PANI's adoption in the realms of electrical, optoelectrical, electrochemical, and gas 

sensing applications underscores its unparalleled utility (Sengupta et al. 2006; Kumar et al. 

2020). PANI emerges as a superior alternative to traditional sensor materials, boasting fast 

response and recovery times, exceptional selectivity at room temperature, and obviating the 

need for the high operational temperatures—up to 300 ℃—typically required by conventional 

sensors (Chakraborty et al. 2020). Pioneering developments by Hirata et al. (Hirata and Sun 

1994) and Kukla et al. (Kukla et al. 1996) introduced the initial PANI-based material used as 

a sensors capable of detecting NH3 gas, demonstrating response rates of 27% and 135% for 

concentrations of 10 and 100 ppm, respectively. These findings not only attest to PANI's 

environmental robustness and operability at ambient temperatures but also its repeatability in 

measurement accuracy. Despite these advances, challenges persist in fabricating PANI-based 

gas sensor devices that combine rapidity, full reversibility, heightened sensitivity, and 

functionality at ambient conditions (Li et al. 2018b; Zhang et al. 2019a). The seminal work of 

Hirata et al. has catalyzed a burgeoning interest in multifunctional PANI-based sensors, 

positioning them at the forefront of sensor technology research. Notably, the integration of 

PANI with graphene to form nanocomposites enriches the material's architecture with 
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expansive surface areas attributed to well-defined two-dimensional (2D) nanostructures, 

enhancing its efficacy in gas detection applications. This evolving landscape of PANI 

applications, particularly in sensor technology, signifies a paradigm shift towards the 

development of highly efficient, cost-effective, and environmentally stable sensing materials. 

The subsequent section will delve into the foundational aspects of graphene and its derivatives, 

further elucidating their synergistic role in complementing PANI's functional versatility. 

I.3. Brief introduction of Graphene and its derivatives  

I.3.1. Fundamentals of Graphene 

 Graphene, a 2D monolayer of sp²-bonded carbon atoms arranged in a hexagonal 

honeycomb lattice, stands as a revolutionary material within the realm of nanotechnology and 

materials science. This zero-band-gap semiconductor, characterized by its remarkable 

electrical, mechanical, and thermal properties, has catalyzed a paradigm shift in various 

research domains, including photovoltaics, biomedicine, and environmental engineering 

(Malik et al. 2019). The unique electronic structure of graphene, resulting from its sp² 

hybridization, endows it with extraordinary conductivity and optical transparency. Figure I.8 

delineates the diverse allotropes of carbon, positioning graphene within the wider context of 

carbon nanostructures (Clemons et al. 2010). 

 
Figure I.8. Spectrum of carbon nanoallotropes: positioning graphene within the family of 

carbon materials (Jindal et al. 2022). 

Since its isolation in 2004 by Andre Geim and Konstantin Novoselov, graphene has 

consistently occupied a prominent position in scientific inquiry. This recognition reached its 
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pinnacle with the Nobel Prize in Physics awarded in 2010 for their groundbreaking research on 

this 2D material (Novoselov et al. 2004; Geim and Novoselov 2010; Bogue 2014). 

I.3.2. Structural Characteristics and Synthesis 

 Graphene is not just a singular entity but extends to multilayer configurations, with up 

to ten layers being considered multilayer graphene (Waite and Nazarpour 2016). The interlayer 

van der Waals forces and the covalent bonding within the layers give rise to graphene's 

distinctive physical and chemical properties. The carbon-carbon bond length within the lattice 

is a mere 0.142 nm, contributing to the strength and flexibility of graphene sheets (D Ghuge et 

al. 2017). Figure I.9 offers an insight into the bonding configuration of graphene, highlighting 

its hybridized orbitals and the distribution of free electrons that facilitate its conductivity. 

 

Figure I.9. Bonding configuration in graphene (Tiwari et al. 2020). 

Graphene synthesis relies on two primary strategies: top-down and bottom-up methods, 

as depicted in Figure I.10. The top-down approach begins with graphite, with the goal of 

separating it into graphene layers using methods such as solid, liquid, or electrochemical 

exfoliation. A variation within this category involves transforming graphite oxide into graphene 

oxide (GO), then reducing it chemically or thermally. Conversely, the bottom-up technique 

constructs graphene by assembling molecular precursors through processes like chemical vapor 

deposition (CVD) or epitaxial growth. The resulting graphene's characteristics, including its 

layer count, defect levels, and its electrical and thermal conductivities, as well as its solubility 

and affinity towards water, vary significantly based on the chosen production method (Bhuyan 

et al. 2016; Lee et al. 2019; Zhang et al. 2019d, 2022b; Saeed et al. 2020; Wu et al. 2020). 

The top-down approach commences with graphite as the starting material. It involves 

mechanical exfoliation techniques, such as the use of adhesive tape or atomic force microscopy 

(AFM) tips, to peel off graphene layers. This method also includes liquid-phase exfoliation, 

where graphite intercalation compounds (GICs) are expanded and then exfoliated to graphene, 
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and subsequent steps where GO is chemically or thermally reduced to graphene. This procedure 

is noted for its economic efficiency and ability to produce graphene with minimal defects, and 

it can yield sheets of varying sizes, from nanometers to micrometers (Chen et al. 2010; Huh 

2011; Park et al. 2011).  

On the other hand, the bottom-up approach synthesizes graphene from smaller 

molecular precursors. This is achieved through processes such as the epitaxial growth on 

silicon carbide (SiC) substrates or by CVD, where hydrocarbons such as methane are 

decomposed on catalytic surfaces of metals like nickel or copper. The CVD process is 

particularly advantageous for producing large-area graphene films with properties such as high 

transparency and flexibility, suitable for various applications (Kumar et al. 2011; Brownson 

and Banks 2012; Mahmoudi et al. 2018; Plutnar et al. 2018). 

Top-down Bottom-up 

Source: Graphite Source: CH4, C2H6, C3H8, gas/SiC 

 

 

  

Mechanical 
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Figure I.10. Diagram illustrating the methods for synthesizing graphene, categorized into 

top-down and bottom-up strategies (adapted from reference (Mahmoudi et al. 2018)). 
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I.3.3. Functionalization of Graphene 

The modification of graphene's functional forms, encompassing GO, rGO, graphene 

quantum dots (GQDs), as well as functionalized graphene, has propelled graphene's application 

spectrum forward, particularly by ameliorating its solubility and processability. Such 

derivatives have become critical in the innovation of applications ranging from advanced 

energy storage systems to sophisticated sensing technologies. Figure I.11 presents the distinct 

chemical structures of these graphene derivatives, highlighting the strategic chemical 

modifications designed to customize their attributes for specific applications (Young et al. 

2012; James and Tour 2013).  

For example, the functional groups present on GO, including carboxylic, hydroxyl, and 

epoxy, as depicted in Figure I.11, not only improve its aqueous dispersion but also prevent re-

stacking of individual layers, thus maintaining its exfoliated state. This functionality is 

leveraged to attain superior dispersion of graphene derivatives in various solvents. Efforts to 

enhance the compatibility of GO and rGO within polymer matrices have focused on 

functionalizing these derivatives with organic molecules that fortify the interfacial interaction 

with the matrix (Guezzout et al. 2023).   

“Graphene oxide” “Reduced graphene oxide” 

 
 

Functionalized graphene” “Graphene quantum dots” 

  

Figure I.11. Chemical structures of graphene derivatives (Tiwari et al. 2020; Díez-Pascual 

and Luceño-Sánchez 2021). 
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Table I.3. Overview of the physicochemical properties of graphene, GO, rGO and GQD. 

Property  Graphene  GO rGO GQD Reference 

Electrical 

conductivity (S m- 

1) 

~104 ~0.50 2.00× 102 – 

3.50 × 105 

- (Gao et al. 2009; Park et al. 2009; 

Goenka et al. 2014) 

Surface area (m2 

g-1) 

2.63 × 104 ~2.39 

× 104 

~2.73 × 104 18.41× 

104 

(Stoller et al. 2008; Zhang et al. 

2020b; Tang et al. 2022) 

Electron mobility 

(cm2V–1s-1) 

2.00 × 105 – 

2.50 × 105  

0.10–

10.00  

3.00 × 103 

– 1.00 × 

104 

- (Gómez-Navarro et al. 2007; 

Bolotin et al. 2008) 

Energy gap (eV) 0.27 ~2.20  ~1.00 – 

1.69 

2.20 – 

3.10 

(Zhan et al. 2012; Liang 2014; 

Mattson et al. 2014; Tian et al. 

2014a; Yan et al. 2018) 

The physicochemical properties of graphene and its derivatives, as presented in Table 

I.3, offer a comparative perspective on their respective electrical conductivities, surface areas, 

and additional essential properties. This table emphasizes the superior performance 

enhancements achievable when graphene is integrated into polymer matrices, even at minimal 

filler concentrations. Notably, graphene's vast surface-to-volume ratio presents a significant 

advantage over conventional fillers like carbon nanotubes (CNTs), further promoting its 

utilization for the reinforcement of polymer matrices. 

I.3.4. Emerging Trends in Graphene Research 

The advent of graphene-based nanocomposites marks a significant milestone in the 

realm of material science, heralding a new era of technological advancements and sustainable 

solutions. Figure I.12 serves as a testament to the wide array of applications stemming from 

graphene derivatives in nanocomposite materials, showcasing the material's exceptional 

adaptability and its substantial influence on enhancing polymer matrix performance (Madurani 

et al. 2020).  The strategic incorporation of graphene into conducting polymers transcends mere 

property enhancement, paving the way for groundbreaking applications across a spectrum of 

sectors. This pivotal integration highlights the revolutionary capacity of graphene-based 

nanocomposites to redefine the landscape of modern industries. The synergy between graphene 

and polymers, particularly conducting polymers, not only augments the intrinsic properties of 

the composites but also fosters the emergence of cutting-edge applications, from revamping 

electronics to pioneering eco-friendly materials.  
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Figure I.12. Graphene-based nanocomposites applications in research and industry. 

Reproduced from (Madurani et al. 2020). 

This collaboration underlines the transformative essence of graphene-based 

nanocomposites, positioning them as key players in the evolution of industry practices and the 

pursuit of sustainability. For instance, the intrinsic sensitivity of graphene to gas molecule 

adsorption renders it an extraordinary candidate for semiconductor gas sensors. Such sensors 

benefit from graphene's eminent sensitivity, a characteristic so pronounced that Geim and 

Novoselov have deemed it to possess "ultimate sensitivity" for detecting molecular interactions 

(Novoselov et al. 2004). Thus, ongoing research and development efforts are poised to further 

unlock the potential of graphene-polymer nanocomposites, tailoring their attributes to meet 

specific technological and scientific demands. The future of graphene nanocomposite research 

promises a trajectory of continual innovation, offering bespoke solutions to the intricate 

challenges of contemporary engineering and material science. This forward momentum is 

anticipated to catalyze a wave of technological breakthroughs, cementing the role of graphene-

based materials in shaping the next frontier of scientific exploration and industrial application.  

I.4. Polyaniline/graphene-based nanocomposites  

The combination of PANI with graphene represents a frontier in the development of 

nanocomposites, merging the electrical prowess of conducting polymers with the mechanical 

robustness and sensory acuity of carbon-based materials. This synergistic combination has 

sparked considerable interest, thanks to its potential to revolutionize fields ranging from energy 

storage to environmental sensing (Meer et al. 2016; Hong et al. 2019; Zhao et al. 2022). Figure 

I.13 offers an illustrative summary of the multifaceted properties, synthesis methodologies, and 

the expansive application spectrum of graphene-PANI nanocomposites, underlining the 

substantial enhancements these composites introduce to polymer matrices. 
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I.4.1. Synthesis and Morphological Control 

Recent advancements in the field of material science have led to the development of 

graphene/PANI nanocomposites, showcasing a notable synergy between the electrical and 

mechanical properties of conducting polymers and carbon-based materials (Wang et al. 2014a; 

Kazemi et al. 2021).  

This section delves into the diverse synthesis techniques and the controlled morphological 

characteristics of these innovative materials, highlighting their significant impact on enhancing 

composite properties and broadening application horizons. Moreover, a variety of synthesis 

methods have been explored to fabricate PANI/graphene nanocomposites, each contributing to 

the unique textural, electrical, and mechanical properties of the final product. These include: 

• In-situ electropolymerization: These methods involve direct polymerization of aniline in 

the company of either graphene or its derivatives. The process facilitates fine integration of 

graphene into the PANI matrix, enhancing electrical conductivity and thermal stability 

through π-π interactions (Ansari et al. 2014a; Zhang et al. 2019a). 

• Interfacial polymerization: Leveraging the interface between two immiscible phases, this 

technique allows for the precise control over the polymerization process, leading to 

nanocomposites with distinct interfacial properties. 

• In-situ oxidative polymerization: Commonly used for PANI, this approach introduces 

graphene or its derivatives into the polymerization medium, enhancing the interaction 

between PANI and graphene (Yang et al. 2014; Raji et al. 2019). Although in-situ 

polymerization offers numerous advantages for promoting the effective dispersion of 

nanofillers within PANI matrix, it is not without drawbacks. These includes complicated 

methods and processing stages and the use of costly reactants (Verdejo et al. 2009).  

• Solution mixing: This approach, often used for its simplicity and effectiveness in achieving 

even distribution of graphene, involves the blending of graphene with PANI in a suitable 

solvent. Despite its advantages, challenges arise in completely removing solvents post-

processing (He et al. 2014). 

• Self-Assembly: Leveraging molecular interactions to create ordered structures, this method 

faces challenges in scalability and purification but offers precise control over composite 

architecture (Gao et al. 2006; Smith et al. 2011; Wu et al. 2018b).  

• Electropolymerization: An innovative method characterized by its rapid process and 

environmental friendliness, electropolymerization utilizes a three-electrode system to 
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polymerize aniline on the electrode surface, efficiently integrating graphene into the PANI 

structure (Zhang et al. 2015; Tomczykowa and Plonska-Brzezinska 2019). 

  Each method impacts the composite's morphology, influencing properties such as 

conductivity, mechanical strength, and surface area. Figure I.13 illustrates the synthesis, 

structural characteristics, and multifunctional applications of these nanocomposites, providing 

a visual comprehension of their role in advancing material science and engineering solutions.  

Consequently, Table I.4 and Figure I.13 collectively provide an in-depth analysis of 

various synthesis strategies employed for crafting graphene/PANI nanocomposites, 

showcasing the breadth of their applications across multiple technological fields. This detailed 

compilation underscores the adaptability and efficacy of these nanocomposites in addressing 

contemporary technological challenges. Table I.4 further elucidates the diverse synthetic 

pathways leveraged to integrate graphene derivatives with polyaniline, tailoring the 

nanocomposite's properties for specific functionalities. From enhancing the sensitivity of gas 

sensors to improving the energy storage capacity of supercapacitors, these methodologies 

reflect the transformative impact of PANI/ graphene nanocomposites across a spectrum of 

applications. 

 

Figure I.13. Diagrammatic summary of characteristics, synthesis approaches, and utilizations 

of nanocomposites comprising PANI and graphene (Wang et al. 2014a). 
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Table I.4. Selected preparation methods for nanocomposites of polyaniline with graphene and 

their applications. 

Conducting 

Polymer 

Nanofiller Synthesis method Application Reference 

PANI rGO Chemical oxidative 

polymerization (In-situ) 

NH3 Sensors (Huang et al. 2012) 

  Microwave irradiation and 

in-situ chemical 

polymerization 

Active electrode 

material for 

supercapacitors 

(Nguyen and Shim 

2015) 

  Reduction, doping, and in-

situ chemical 

polymerization 

High-performance 

supercapacitors 

(Wang et al. 2014b) 

PANI Graphene In situ chemical oxidatively 

polymerization 

Electrodes and 

hydrophobicity 

(Parveen et al. 

2016) 

  Single-step electrochemical 

co-layering 

Flexible 

supercapacitors 

(Wen et al. 2017) 

  Chemical decreasing and 

electro-polymerization 

High-efficiency 

supercapacitor 

(Cong et al. 2013) 

PANI GO Modified Hummers method 

and layer-by-layer assembly 

Lithium-sulfur batterie (Moon et al. 2015) 

  In situ chemical oxidatively 

polymerization 

NH3 and CH3OH 

detection 

(Konwer et al. 2013; 

Li et al. 2018c) 

I.4.2. Synergistic Material Properties of Polyaniline/Graphene Nanocomposites 

As aforementioned, the integration of PANI with graphene and its derivatives has 

heralded a new era in the development of nanocomposites, characterized by a harmonious 

blend of properties that significantly exceed those of their individual components. The 

exceptional electrical conductivity, environmental robustness, and pseudocapacitive nature of 

PANI synergize with the mechanical resilience, vast surface area, and electrical conductivity 

inherent to graphene. This symbiotic relationship fosters marked enhancements in 

electrochemical performance, rendering these nanocomposites highly suitable for a broad array 

of applications spanning electronic devices to energy storage systems (Chen et al. 2023a; Zhang 

et al. 2023). 

The interplay between PANI and graphene leads to pronounced improvements across 

several metrics, including thermal behavior, electrical conductivity, mechanical strength, 

optical properties, and electrochemical performance. These advancements position the 

nanocomposites as superior alternatives to their pristine counterparts (Kumar and Baek 2014; 

Wang et al. 2014a). However, challenges associated with graphene's insolubility in water and 

its tendency to agglomerate, a consequence of van der Waals interactions, have necessitated 

the exploration of graphene derivatives. Thus, GO, and rGO as well as functionalized graphene 
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have thus emerged as viable nanofillers, addressing these limitations and enhancing the 

compatibility of graphene within polymer matrices (Díez-Pascual and Luceño-Sánchez 2021; 

Chen et al. 2023b).  

Incorporating graphene into PANI leads to the formation of a donor-acceptor complex, 

where graphene acts as the electron acceptor and aniline, the monomer of PANI, as the electron 

donor. This interaction, facilitated by their conjugated π electrons, results in the formation of 

PANI fibers on the surface of graphene, establishing a π-π* conjugation arrangement that 

significantly augments the doping level of PANI. Figure II.14 illustrates the stages of this 

interaction, from the initial adsorption of aniline onto graphene to the polymerization of PANI 

and the resultant effects of the π-π* conjugation arrangement on the performance of the 

nanocomposite (Zengin et al. 2002; Zhou et al. 2010; Terrones et al. 2011). 

This conjugation system not only enhances the electrical conductivity of the 

nanocomposites but also improves their electrochemical performance, making them 

particularly attractive for applications requiring high conductivity and stability (Wu et al. 

2013a). The graphene-PANI interaction, especially the creation of the π-π* conjugation 

arrangement, enriches the nanocomposites with a greater electron cloud area, facilitating 

improved charge interaction among gas particles and the π electrons of the system (Yan et al. 

2010; Zhou et al. 2010).  

 
Figure I.14. Illustrative representation of the π-π* conjugated network: (a) Interaction of 

aniline with graphene, (b) synthesis of the graphene/PANI composite, (c) Influence of the π-

π* conjugated structure in graphene/PANI, and (d) Influence of the π-π* conjugated structure 

in PANI. 

The advancement of polyaniline/graphene nanocomposites, underpinned by the 

strategic control of their synthesis and the in-depth understanding of their synergistic material 

properties, underscores the potential of these materials in pushing the boundaries of current 
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technologies. As research progresses, these materials are predictable to performance a pivotal 

role in the development of next-generation electronic and energy storage solutions, among 

other applications. 

I.4.3. Prospects and Innovations in Polyaniline/Graphene Nanocomposites 

The journey to enhance the electrical characteristics of graphene-based PANI 

nanocomposites has been marked by significant scholarly attention, resulting in notable 

improvements in electrical conductivity and supercapacitance. These advancements have 

broadened the spectrum of applications for these materials, spanning electronic devices (Mitra 

et al. 2015), high-performance supercapacitors (Ladrón-de-Guevara et al. 2019), advanced 

energy storage systems (Martins et al. 2021), sensitive sensing arrays (Huang et al. 2012; 

Chang et al. 2021) and innovative fuel-cell technologies (Zhao et al. 2018), among others. This 

multifaceted exploration underscores a transformative phase in materials science, where 

PANI/graphene nanocomposites are at the forefront of pioneering new realms of possibilities 

within various technological sectors. 

Looking ahead, the trajectory for PANI/graphene nanocomposites is rich with potential. 

The ongoing advancements are not just enhancing the physical and chemical properties of these 

materials but are also paving the way for their integration into next-generation technological 

solutions. The focus on optimizing their electrical characteristics is expected to yield even more 

sophisticated applications, thereby expanding the role of conducting polymers in addressing 

complex engineering and environmental challenges. 

Key future directions include: 

• Enhanced Performance: Continuous efforts to refine the synthesis processes and post-

treatment techniques aim to further elevate the intrinsic qualities of PANI/graphene 

nanocomposites, particularly targeting higher conductivity and energy density for 

supercapacitors and batteries. 

• Sustainability and Environmental Applications: Leveraging the eco-friendly nature of 

PANI and the mechanical robustness of graphene, future research will likely explore 

sustainable applications, such as biodegradable electronics and green energy solutions. 

• Biomedical Innovations: The biocompatibility and flexible characteristics of these 

nanocomposites open new avenues in medical technology, including wearable health 

monitors and implantable devices for drug delivery and diagnostics. 

• Advanced Sensing Platforms: With their enhanced sensitivity and selectivity, 

PANI/graphene sensors are set to revolutionize environmental monitoring, healthcare 
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diagnostics, and security systems through the detection of a wider variety of chemical and 

biological analytes.  

As a results, the exploration and development of PANI/graphene nanocomposites are carving 

out a niche in the landscape of materials science, championing the evolution of conducting 

polymers into a cornerstone of modern technological and environmental solutions. As this 

field continues to mature, it promises to deliver groundbreaking innovations that will redefine 

the capabilities of smart materials in the 21st century and beyond. 

I.5. Literature survey: Insights for improving polyaniline/graphene performance 

A comprehensive survey of the literature reveals extensive research aimed at optimizing 

the electrical properties of PANI/graphene nanocomposites under ambient conditions. These 

studies identify several critical factors influencing performance, including synthesis methods, 

morphologies, component ratios, doping types, protonation degrees, redox states, and 

temperature (Tian et al. 2014b). For example, doped PANI/GO composites have demonstrated 

an electrical conductivity (σ) of 10 𝑆 𝑐𝑚−1 and a specific capacitance of 531 𝐹 𝑔−1, 

significantly surpassing the performance of pristine PANI, which shows values of 2 

2 𝑆 𝑐𝑚−1and 216 𝐹 𝑔−1, respectively (Wang et al. 2009). These enhancements underscore the 

potential of PANI/graphene nanocomposites for broad application in electronics, 

supercapacitors, sensors, fuel cells, and more (Kazemi et al. 2021).  

Nanocomposite materials comprising PANI and graphene have demonstrated enhanced 

electrical properties when compared to their individual constituents. The conductivity and 

dielectric constants of these nanocomposites are influenced by the graphene loading in PANI, 

suggesting a diverse array of potential applications in the electrical sector. Research findings 

indicate that the conductive PANI forms selectively ordered deposits on the surfaces of GO 

due to the influence of electrostatic forces, hydrogen bonding, and π-π interactions, thus 

facilitating carrier mobility (Zhou et al. 2010; Tung et al. 2017; Kulkarni et al. 2018). For 

example, the electrical conductivity of PANI/GO nanocomposites increased from 0.71 to 4.71 

S cm-1 as the GO loading was raised from 0 to 20 wt.% (Yin et al. 2016). In another research 

work, the reported conductivity of PANI/rGO with 50 wt.% rGO loading was 18.078 S cm-1, 

demonstrating a substantial increase compared to the conductivity of pure PANI (Mitra et al. 

2015). Graphene's exceptional properties, such as direct current (DC) conductivity, high carrier 

mobility, and robust mechanical attributes, contribute to its outstanding electrical, mechanical, 

and morphological characteristics. Enhanced conductivity rGO synthesized through 

microwave-assisted reduction highlights these capabilities (Iskandar et al. 2017). Research 
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studies by Chen et al. (Chen et al. 2013) and Lin et al. (Lin et al. 2014) reported PANI/GO 

nanocomposites achieving higher electrical conductivities than pure PANI, attributed to 

improved charge transfer mechanisms facilitated by graphene integration. Similarly, Ansari et 

al. (Ansari et al. 2014b) found that sulfonated PANI/graphene nanocomposites exhibited 

significantly higher electrical conductivity.  Table I.5 compiles electrical conductivities from 

various PANI and PANI/graphene nanocomposites, elucidating the significant role of synthesis 

methodologies and graphene modifications in tuning electrical properties. This comprehensive 

overview showcases the promising capabilities of PANI/graphene nanocomposites as high-

performance materials for a myriad of technological implementations.  In Table I.5, the 

conjunction with the insights from the literature, underscores the significant advancements in 

synthesizing PANI/graphene nanocomposites with tailored electrical properties. As the field 

progresses, these findings are poised to spur further innovations in material science, opening 

avenues for new applications in electronics, energy storage, and sensing technologies. The 

ongoing exploration and refinement of these composites promise to yield even more 

sophisticated materials, harnessing the unique synergies between PANI and graphene to meet 

the evolving demands of modern engineering and technology. 
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Table I.5. Conductivity properties of nanocomposites based on PANI, graphene, and their 

derivatives. 

PANI-based 

nanocomposite 

Synthesis method Temperature 

(℃) 

Electrical 

Conductivity  

(S cm-1) 

References 

PANI Electro-chemical method RT 6.30 × 10−4 (Bhadra et al. 2007) 

PANI In-situ oxidative method - 10−4 (Kar and Choudhury 

2013) 

PANI In-situ self-organization 

method 

RT 3.50 × 10−3 (Reddy et al. 2009) 

PANI/Carbon black   1.38  

PANI In-situ oxidative method 30 ℃ 6.02 (Li et al. 2010) 

PANI  10 ℃ 1.88  

PANI/ZnO In-situ oxidative method RT 1.93 (Khan and Khalid 

2010) 

PANI In-situ oxidative method RT 3.26 × 10−4 (Umare et al. 2010) 

PANI In-situ polymerization RT 3.18 × 10−4 (Chen et al. 2013) 

PANI/Gr   2.53  

PANI/Gr@Ag   20.32  

PANI/Gr@Ni   6.28  

PANI In-situ oxidative method RT 15.40 (Du et al. 2013) 

PANI/Gr   120.10  

PANI/GO Emulsion polymerization RT 4.74 (Imran et al. 2014) 

PANI/GO In-situ polymerization RT 1.23 × 10−2 (Lin et al. 2014) 

PANI/rGO In-situ polymerization RT 18.08 (Mitra et al. 2015) 

PANI In-situ oxidative method RT 4.40 (Islam et al. 2016) 

PANI/Gr   5.20  

PANI/Gr@Au   7.00  

PANI Chemical polymerization 90 ℃ 7.5 × 10−4 (Konwer 2016) 

PANI/GO  30 ℃ 0.47  

PANI/GO  110 ℃ 0.84  

PANI In-situ polymerization RT 1.25 (Ismail et al. 2019) 

PANI/MoO2   2.37  

PANI/Gr   5.58  

PANI/Gr/MoO2   9.87  

PANI Interfacial polymerization 

method 

RT 4.12 × 10−2 (Adrian et al. 2019) 

PANI-DBSA   5.56 × 10−2  

PANI/Gr-DBSA   7.31 × 10−2  

PANI In-situ oxidative method RT 2.05 × 10−2 (Usman et al. 2019) 

PANI/rGO   6.74 × 10−2  

PANI/rGO/Chitosan   5.28 × 10−2  

PANI In-situ polymerization RT 1.79 × 10−2 (Firdaus et al. 2020) 

PANI/Gr   7.28 × 10−2  

PANI/Gr-DBSA   8.07 × 10−2  

PANI/Gr Solvent blending method  8.62 × 10−3  

PANI/Gr-DBSA   1.20 × 10−2  

PANI In-situ oxidative method RT 1.27 × 10−2 (Ali et al. 2021) 

PANI/N-GO   0.75  

PANI/rGO/LCNF In-situ oxidative method RT 0.96 (Tanguy et al. 2022) 

PANI/GO/APTES Chemical polymerization RT 7.32 × 10−2 (Alruwais et al. 2021) 

I.4. Gas sensor properties of PANI/graphene-based nanocomposites  

 Recent advancements in the field of PANI/graphene-based gas sensors have garnered 

significant attention due to their unique structural characteristics, superior sensing 

performance, room temperature operational ability, and broad application spectrum (Wang et 

al. 2016; Hosseingholipourasl et al. 2020). These developments mark a notable progression in 

enhancing the functionality of graphene-centric gas detection technologies. Hadano et al. 
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(Hadano et al. 2021) described the gas detection mechanism within PANI/rGO composites, 

noting the strategic positioning of rGO clusters among PANI molecular chains, as depicted in 

Figure I.15. The use of N-methyl-2 pyrrolidone as a softening agent during the composite 

synthesis encourages cluster formation. This composite is then applied as a slender film over 

an interdigital electrode array, serving as the sensor for NH3, showing a 250% sensitivity at 

100 ppm within 97 s and detecting levels as low as 5 ppm.  

 
Figure I.15. The proposed NH3 sensing mechanism of PANI/rGO nanocomposites (adapted 

from reference (Hadano et al. 2021)). 

As illustrated in Figure I.15, NH3's interaction with PANI/rGO leads to a phase shift in PANI 

from its emeraldine salt form to the emeraldine base state, diminishing the availability of charge 

carriers and, consequently, the mobility of charge transfer, thereby elevating the composite's 

resistance  (Javadian-Saraf et al. 2021; Gautam et al. 2022). This deprotonation process impacts 

the conductivity of both PANI as well as PANI/rGO (Timmer et al. 2005). Furthermore, the 

role of rGO in the sensing mechanism is emphasized, where its resistance spikes upon NH3 

contact, primarily due to the interaction between NH3's nucleophilic hydrogen and the 

electrophilic carboxyl (-COOH) groups on rGO's surface, alongside its extensive surface area 

(Hu et al. 2013; Samaddar et al. 2018; Zhang et al. 2019b). 

 The performance of gas sensors is gauged by several parameters including response, 

sensitivity, selectivity, stability, response and recovery times, detection limits, and operational 
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temperatures (Yang et al. 2013). The gas sensor's response is determined by the redox 

properties of the analyzed gas and the type of majority carrier in the sensing material, causing 

shifts in the sensor's resistance (Zhang et al. 2022a). Sensitivity is closely associated with the 

resistance change of the sensing material when exposed to gas. The sensitivity (S) of a gas 

sensor can be quantified through different equations (Mirzaei et al. 2016): 

𝑆 =  
𝑅𝑎

𝑅𝑔
  Eq. (1) 

𝑆 =  
𝑅𝑔

𝑅𝑎
 Eq. (2) 

𝑆 =  
𝑅𝑎 − 𝑅𝑔

𝑅𝑔
 Eq. (3) 

𝑆 =  
𝑅𝑎 − 𝑅𝑔

𝑅𝑎
 Eq. (4) 

where 𝑅𝑎 is the resistance in clean air and 𝑅𝑔 is the resistance in the presence of the target gas. 

The sensor's response is presented as a percentage, calculated as 𝑆 × 100%. This mechanism 

affects electron mobility and thus alters the material's conductivity, inversely related to 

resistivity. The electrical conductivity (σ) is defined by Eq. (5) (Chen et al. 2013): 

𝜎 =  
1

𝑞
 Eq. (5) 

where q represents electrical resistivity, further detailed as (Chen et al. 2013):  

𝑞 =  𝑅𝑠 × 𝑡 Eq. (6) 

Here, 𝑅𝑠 stands for the sheet resistance and t denotes the thickness of the sample. Therefore, 

integrating Eq. (5) and Eq. (6) (Chen et al. 2013), gives us:  

𝜎 =  
1

𝑅𝑠 × 𝑡
 Eq. (7) 

 The variations in resistance observed in PANI/graphene nanocomposite materials are 

explicated through a recognized gas sensing mechanism. Figure I.16 presents a diagrammatic 

portrayal of the custom-built apparatus for testing gas sensor functionality. The process 

operates on the principle that when gas molecules adhere to the sensor material's surface, it 

results in a concomitant increase in the Schottky barrier height (Skucha et al. 2010).  
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Figure I.16. Diagrammatic representation of the custom-designed gas sensing evaluation 

setup (Pang et al. 2021b). 

Identifying the mechanism of charge transfer, the spatial distribution of surface electron 

charge, and the electrostatic potential shift upon gas exposure is pivotal (Wang et al. 2020). 

Illustrative in Figure II.17 are the energy differentials between the conduction band (Ec) and 

the valence band (Ev) in N-QGD, as well as the delineation of the highest occupied (HOMO) 

and lowest unoccupied (LUMO) molecular orbitals in PANI, alongside the Fermi level (Ef) 

alignments relative to the vacuum across the energy band structure of PANI/N-GQD 

nanocomposites. A synergistic p-n junction is formed where the p-type PANI robustly 

interfaces with the n-type N-GQD (Hong et al. 2021), depicted in Figure I.18. Within this 

intersection's depletion zone, a unique electronic environment is established. The resistive 

properties of the PANI/N-GQD nanocomposites are subject to change upon NH3 gas exposure, 

due to the migration of electrons from PANI's depletion layer and the counter-movement of 

holes in N-GQD. In ambient air, surface-bound oxygen molecules siphon electrons from the 

nanocomposites' conduction and valence bands, heightening resistivity. These oxygen 

molecules, once engaged with NH3, can alleviate electron concentration within the conductive 

band, diminishing the depletion region. The surface interactions with gas profoundly influence 

the semiconductor's conductive traits, consequently altering the resistance and heightening the 

material's gas detection response (Meng et al. 2015; Zhang et al. 2018). Subsequently, the 

conductive and resistive features of the sensor material are interdependent, shifting with the 

nature of the material and the gas concentration encountered. 
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Figure I.17. Diagrammatic representation of the p-n heterojunction and energy band gap 

structure of PANI/N-GQD (Produced from (Hong et al. 2021)). 

 PANI, while utilized in gas sensor materials, faces limitations such as sensor variability 

over time, low temperature stability, minimal responsiveness, and sensitivity to moisture. 

Notably, its reaction to NH3 gas is non-reversible, and its stability decreases with extended 

exposure to the gas, although reversibility can be achieved if exposure is under 10 minutes 

(Nicolas-Debarnot and Poncin-Epaillard 2003). To overcome these challenges, PANI has been 

combined with nanoscale graphene-based materials to create composites. (Pandey 2016; 

Hakimi et al. 2018). These composites benefit from the interaction between PANI and carbon 

nanoparticle materials, which includes sp2 bonds, through robust π-π stacking interactions (Cho 

et al. 2014). This interaction enhances electron movement, thus improving charge carrier 

delocalization and consequently boosting the performance of the electrical sensing layer (Hu 

et al. 2013; Christopholi et al. 2020). Additionally, extensive research efforts have been 

dedicated to advancing the sensor systems of PANI-based nanocomposites by integrating 

graphene and its derivatives.  

 The first reported effort to combine PANI and graphene was by Al-Mashat et al. in 

2010 (Al-Mashat et al. 2010). They developed a hydrogen gas sensor using a PANI/graphene 

nanocomposite as the sensitive layer through chemical synthesis. The process involved coating 

graphene with PANI via ultrasonication, using a mix of aniline monomer and ammonium 

persulfate. The resulting PANI/graphene nanocomposite sensor exhibited a 16.57% sensitivity 

to 1% H2 gas, a significant improvement over sensors made solely of graphene sheets or PANI. 

Following this pioneering work, PANI/graphene-based nanocomposites have been widely 

adopted in various sensing applications (Tanguy et al. 2018). For instance, chemical oxidation-

synthesized PANI/graphene nanocomposites have been employed to detect NH3 in 

concentrations ranging from 1 to 6400 ppm (Wu et al. 2013b). PANI/graphene nanocomposites 
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have also been developed using solution mixing techniques (Parmar et al. 2013) and in-situ 

polymerization (Al-Hartomy et al. 2019b), specifically for toluene detection. These composites 

demonstrated a response of 11.6% at 100 ppm and a significant 90.0% at 5000 ppm. 

Additionally, Javadian-Saraf and team (Javadian-Saraf et al. 2021) made a PANI/GO 

nanocomposite with exceptional NH3 gas sensing capabilities, owing to the interplay between 

p-n heterojunctions and the synergistic effect of GO sheets, translating NH3 concentrations into 

chemoresistive changes. In another development, (Bai et al. 2015) fabricated an NH3 sensor 

from a PANI/rGO hybrid using the chemical oxidative method. This sensor was then coated 

onto a flexible polyethylene terephthalate (PET) film, exhibiting rapid response at room 

temperature, high sensitivity, and remarkable selectivity. The enhanced performance of the 

NH3 sensor based on the PANI/rGO hybrid is likely due to the acidic/basic de-doping 

mechanism and the interactions between PANI and rGO (Virji et al. 2004).Wu and colleagues 

(Wu et al. 2013b) discovered that PANI/GO sensors possess a lower NH3 detection threshold 

compared to those based solely on PANI, detecting concentrations as low as 1 ppm, which is 

significantly lower than the 10 ppm limit of PANI sensors, albeit with a modest sensitivity of 

about 3%. Li et al. (Li et al. 2018c) developed a unique PANI hollow nanosphere GO-hybrid 

(PANIHs/GO), resembling rambutan, using in-situ chemical oxidation polymerization. This 

hybrid was then integrated into flexible devices on PET substrates for NH3 gas detection. The 

resulting PANIHs/GO-based sensor exhibited a 31.80% response to 100 ppm of NH3, with 

response and recovery times of 102 and 186 seconds, respectively, and a detection limit as low 

as 50 ppb. 

Furthermore, while metal oxides are deemed highly promising for gas sensing due to 

their advantageous characteristics, they are not without limitations. These sensors often show 

reduced sensitivity at room temperature and typically function effectively only at high 

temperatures. The necessity for elevated operational temperatures, usually in the range of 

150°C to 500°C, presents issues related to stability and energy consumption (Mirzaei et al. 

2015). The complexity of the heating systems required for traditional metal oxide sensors poses 

a challenge. To mitigate these issues, an effective strategy is to develop innovative gas-sensing 

materials using hybrid nanocomposites of conducting polymers and metal oxides. These 

nanocomposites, which merge the distinct properties of both constituents, demonstrate 

enhanced performance over their individual components in sensor applications (Zegebreal et 

al. 2023). Specifically, the integration of metal oxides like zinc oxide (ZnO), manganese 

dioxide (MnO2), tin (IV) oxide (SnO2), vanadium (V) oxide (V2O5), indium (III) oxide (In2O3), 

and nickel cobaltite (NiCo2O4) into PANI and PANI/graphene-based sensors can significantly 
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increase the contact points. This integration not only addresses the limitations of pure metal 

oxide sensors but also augments the sensitivity, stability, and energy efficiency of the resulting 

nanocomposite sensors, offering considerable advantages for gas detection technologies. Xu et 

el. (Xu and Wu 2020), developed a novel ternary nanocomposite, PANI/Gr/In2O3, through in-

situ chemical oxidative polymerization. They explored its NH3 sensing response and compared 

it with that of pure PANI and PANI/Graphene nanocomposites. Figure I.18 displays the sensor 

response to varying NH3 concentrations, revealing a distinct linear relationship between 

response and NH3 levels. Notably, the PANI/Gr/In2O3 sensor outperformed both PANI and 

PANI/GNR in sensitivity, evidenced by a steeper response curve. This enhanced performance 

is credited to the combined effects of graphene and In2O3, improving gas adsorption and 

electrical conductivity. Consequently, this sensor shows heightened sensitivity and a broader 

detection range, enabling detection of lower gas concentrations, potentially down to the ppb 

level. The exceptional efficacy of the PANI/Gr/In2O3 sensor stems from the synergistic 

interaction between graphene and In2O3, enhancing its gas sensing abilities (Andre et al. 2019; 

Amu-Darko et al. 2023).  

 

Figure I.18. Response concentration fitting curves of the PANI/Gr/In2O3-based sensor (Xu 

and Wu 2020). 

Likewise, Gaikwad and colleagues (Gaikwad et al. 2017) conducted a study on the sensing 

capabilities of PANI nanofibers, PANI/GO, and PANI/GO/ZnO nanocomposites, synthesized 

via a nano-emulsion technique. The PANI/GO/ZnO composite showed a 5.71% response to 

1000 ppm of NH3 at 80°C, which was 10.3 times higher than that of the PANI sensor, with a 

recovery time of 90 seconds. In a related study, Huang et al. (Huang et al. 2012) utilized aniline 

monomer with rGO-MnO2 as both a template and oxidant, leading to the creation of PANI 

nanoparticles adhered to rGO sheets. This composite exhibited a 45% sensitivity to NH3 gas. 
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Moreover, PANI/rGO/SnO2 nanocomposites, synthesized using in-situ chemical oxide 

polymerization, were tested for detecting various gases including NH3 (Kebiche et al. 2013; 

Ye et al. 2015; Kwak et al. 2019), H2S (Zhang et al. 2019a), and CH4 (Navazani et al. 2018), 

all at room temperature. The outcomes revealed that the PANI/rGO/SnO2 sensor had a 160% 

response to an NH3 concentration of 20 ppm, a 9.10% response to 100 ppb of H2S, and a 

26.10% response to 100 ppm of CH4. Xu and Wu (Xu and Wu 2020) recently developed a 

PANI/graphene nanoribbon/In2O3 nanocomposite, demonstrating notable improvements in gas 

sensing at room temperature over pure graphene nanoribbons (GNR) or In2O3 porous spheres. 

This enhanced sensing ability is attributed to the formation of a p-n junction between the p-

type PANI and n-type In2O3, leading to an increased electron depletion layer. Consequently, 

the PANI/Gr-based sensor, enriched with metal oxides, showcases exceptional performance 

with heightened sensitivity and the ability to detect low gas concentrations, paving the way for 

advancements in gas sensing technologies. The remarkable sensitivity of this composite sensor 

makes it highly efficient in detecting even minute amounts of gases, marking a significant stride 

in sensor technology. Its potential applications span across various fields, including highly 

precise gas monitoring in medical diagnostics, environmental studies, and sophisticated safety 

systems. Offering superior functionality compared to traditional gas sensors, the PANI/Gr-

based sensor integrated with metal oxides emerges as a leading solution in the realm of ultra-

sensitive gas detection, as supported by further studies (Zhang et al. 2020a; Lin et al. 2023). In 

addition, PANI/Gr-based nanocomposites, especially when augmented with metallic 

nanoparticles, are emerging as potent materials for biosensing applications. This includes the 

detection of hydrogen peroxide (H2O2), an essential analyte in a multitude of biological systems 

and processes. The unique attributes and adaptability of these PANI/Gr-based nanocomposites 

position them as valuable tools for a range of biosensing tasks. Their capability to accurately 

detect H2O2 not only broadens the scope of biosensor technology but also supports the detailed 

examination and tracking of biological processes. This has significant implications for 

enhancing biomedical research and healthcare practices (Du et al. 2017; Liu et al. 2019).  

While numerous PANI/graphene, PANI/GO, and PANI/rGO nanocomposites have 

been successfully utilized in gas sensor development, PANI/GQDs have not been as 

extensively explored. Gavgani et al. (Gavgani et al. 2016) and Hakimi et al. (Hakimi et al. 

2018) developed ammonia sensors using PANI/S, N-GQDs on PET substrates, and PANI/N-

GQDs hybrids with silver (Ag) and aluminum (Al) electrodes. The response of PANI/S and N-

GQDs to NH3 increased by 42% and 385% respectively at 100 and 1000 ppm, with a response 

time of 115 seconds and a recovery time of 44 seconds at room temperature (Gavgani et al. 
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2016). The PANI/N-GQDs sensor with Ag contacts showed a 110.9% response at 1500 ppm 

NH3, outperforming the Al electrode sensor, which had an 86.9% response (Hakimi et al. 

2018). In a recent study by Hong et al. (Hong et al. 2021), PANI/N-GQD/ hollow In2O3 

nanofiber composites were synthesized through in-situ chemical oxidative polymerization for 

use as electrode materials in NH3 gas sensors. These sensors effectively detected NH3 

concentrations between 0.6 and 2.0 ppm at 25°C. Notably, a 20 wt.% N-GQD composite 

showed a 15.1% response at 1 ppm NH3, approximately 4.4 and 1.4 times higher than pure 

PANI and PANI/hollow In2O3 nanofiber composites, respectively. This suggests its potential 

application in detecting hepatic or renal diseases through human breath analysis. 

 The aforementioned research suggests enhanced sensing performance of 

PANI/graphene-based materials at room temperature. Table I.6 collects various studies that 

investigate the sensing attributes of PANI/graphene nanocomposites towards different target 

gases, such as NH3, CH4, acetone (CH3COCH3), and H2S. Notably, PANI/GO nanocomposites, 

especially those with 10 wt.% GO, showed an NH3 response that was 550% and 726% greater 

than responses to other gases, respectively (Javadian-Saraf et al. 2021). Figure I.19 presents 

selectivity data for PANI/GO/V2O5 nanocomposites at 100 ppm for gases like CO, H2, 

formaldehyde (CH2O), methanol (CH3OH), ethanol (C2H5OH), CH3COCH3, and C7H8, in 

comparison to 10 ppm of H2S and NH3. This data demonstrates notably lower responses to 

gases other than NH3 (Xing et al. 2022). Therefore, while PANI/graphene-based 

nanocomposites are promising for sensing a broad spectrum of gases, the majority of existing 

research has predominantly focused on NH3 gas detection. 

 
Figure I.19. The selectivity of PANI/GO/V2O5 nanocomposite of different gases (Xing et al. 

2022). 



Chapter I 

38 | P a g e  
 

Table I.6. Summary of gas detection properties of PANI, Graphene and its derivatives-based 

nanocomposites sensors. 

Sensing 

nanocomposite 

Gas 

sensing 

Operating 

temperature (℃) 

Response 

time (s) 

Recovery 

time (s) 

Sensitivity or 

Response (% at x 

ppm) 

References 

PANI/rGO H2 RT - - 16.57– 104  (Al-Mashat et al. 

2010) 

PANI NH3 RT 8760 - 2.03 – 92 (Kebiche et al. 
2012) 

PANI/rGO NH3 RT 1000 - 37.1 – 50  (Huang et al. 

2013) 
PANI/CrGO   - 240 59.2 – 50   

PANI NO2 RT 11 420 12.10 – 100  (Sonker et al. 

2016) 
PANI NH3 RT - 144 13.4 – 50  (Huang et al. 

2012) 

rGO   - 140 5.2 – 50   

PANI/rGO   - 240 0.6 – 50   

PANI/Gr NH3 RT 50 23 4.7 – 50  (Wu et al. 2013b) 

PANI/rGO CH4 RT 85 45 - (Wu et al. 2013a) 

PANI/Gr C6H5CH3
 30  660 - 8.4 – 100  (Parmar et al. 

2013) 
PANI/rGO/SnO2

 NH3 RT 660 - 1.6 – 20  (Ye et al. 2015) 

rGO NO2 RT 10  10  1.2 – 4  (Guo et al. 

2018a)  
    7  7 1.27– 20   

PANI/rGO NH3 12 − 40  18 36 4900 – 100  (Guo et al. 2016) 

PANI/ In2O3
 NH3 RT - - 3.2 – 100  (Pang et al. 

2017) 

PANI/ S, N-GQDs NH3 RT 115 44 42.3 – 100  (Gavgani et al. 
2016) 

PANI/GO NH3 RT 61 10 14.63 – 50  (Wei et al. 2017) 

PANI/GO/ZnO NH3 RT 2 164 1.307 – 300  (Gaikwad et al. 
2017) 

PANIHs/GO NH3 RT 102 186 31.8 – 100  (Li et al. 2018c) 

PANI/Gr/SnO2 NH3 RT 8 33 2.78 – 10  (Bera et al. 2018) 

PANI/rGO NH3 RT 96 1326 13 – 15  (Lee and Wang 

2019) 
PANI/Gr C6H5CH3 RT 8.6 16 90 – 5000  (Al-Hartomy et 

al. 2019) 

PANI/rGO/SnO2 H2S RT 80 88 9.1 – 0.1  (Zhang et al. 
2019a) 

PANI/N-rGO NH3 25  - - 208 – 20  (Tanguy et al. 

2019) 
PANI/MWCNTs NH3 RT 9 30 92 – 100 (Maity and 

Kumar 2018) 

PANI/P-rGO NH3 25  - - 773 – 100  (Tanguy et al. 
2020) 

PANI/Gr/ In2O3 NH3 RT - - 8.6 – 0.65  (Xu and Wu 

2020) 
PANI/rGO/SnO2 NH3 RT 35 40 56 – 100  (Saravanan et al. 

2020) 

PANI/GO NH3 RT 51 23 9.6 –70  (Mohammed et 
al. 2022) 

 CO  - - 31.26 – 230   

PANI/N-GQD/ 
In2O3 

NH3 RT - - 15.6 – 1  (Hong et al. 
2021) 

PANI/ Gr NH3 RT ~46 ~198 60 – 1  (Wu et al. 2021) 

V2O5/PANI/GO NH3 RT 70 520 31.2 ± 1.8 – 10  (Xing et al. 

2022) 

PANI/rGO/LCNF NH3 RT - - 745 – 60  (Tanguy et al. 
2022) 

PANI/N-GQD CH3OH 26  100 96 0.15 – 100  (Masemola et al. 

2022) 
 C2H5OH  85 62 0.66 – 100   

PANI/GCs NH3 RT 34 42 1.30 – 10 (Wang et al. 

2019) 
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I.5. Computational insights into Polyaniline and graphene nanocomposites 

The quest for high-performance nanocomposites necessitates precise control over 

synthesis and processing conditions. This control is essential for optimizing composition, 

morphology, and structure, and for devising novel characterization techniques at the nanoscale. 

Predicting the properties of PANI/graphene nanocomposites is particularly crucial, considering 

the vast array of possible material configurations. Traditional experimental methods, while 

effective, are often time-consuming and labor-intensive, involving the synthesis and analysis 

of numerous samples (Agrawal and Choudhary 2016; Boublia et al. 2022a). 

Cutting-edge computational chemistry techniques, particularly density functional theory 

(DFT) and molecular dynamics (MD) simulations, has substantially refined our understanding 

of conducting polymers and graphene-based composites. These potent computational 

techniques are essential for dissecting the complex charge transfer dynamics and molecular 

interactions that are central to the materials' gas sensing capabilities. DFT and MD simulations 

unveil the nuanced electrochemical properties of PANI and their graphene-based counterparts, 

revealing how their selectivity and sensitivity can be meticulously engineered to detect a range 

of gas molecules with heightened precision (Shokuhi Rad et al. 2016; Oliveira et al. 2022; Riaz 

et al. 2022).  

For instance, the research conducted by Ullah et al. (Ullah et al. 2013),  assessed the 

PANI emeraldine salt's response to gases like NH3, CO2, and CO, across a range of phenyl ring 

configurations, using advanced computational levels to investigate the system's selectivity and 

sensitivity. They employed a combination of interaction energy, natural bond orbital, and 

Mulliken charge analyses to appraise the sensing efficacy, finding a particularly pronounced 

interaction with NH3, as depicted in Figure I.20 (A). This reaction led to notable shifts in the 

PANI energy spectrum, indicating a heightened selectivity for NH3, aligning well with 

empirical observations. Moreover, MD simulations have provided a microscopic view into the 

behavior of these sensors, with Pang et al. (Pang et al. 2021b) visualizing NH3 distribution 

within a HCl-doped PANI system, offering a dynamic portrayal of gas molecule interactions 

at the nanoscale 
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A) 

 

B) 

 

Figure I.20.  (A) Comparative adsorption energies of different gases on polyaniline (Ullah et 

al. 2013), and (B) Molecular Dynamics visualization of NH3 in a HCl-PANI system (Pang et 

al. 2021b). 

Diving into the intricate world of PANI/graphene nanocomposite systems, Guo et al. 

(Guo et al. 2018b), expanded this inquiry into the interactions between gases like NH3 and 

graphene/PANI composites. They deployed DFT and MD simulations to unravel the 

interactions between key gases—NH3, NO, CO, and H2—and the graphene/PANI composites. 

These studies provided valuable insights into the adsorptive behaviors of NH3 on the nuanced 

surfaces of PANI and graphene, delineating specific sites of interaction as depicted in Figure 

I.21 (A). The simulation parameters were meticulously set, with MD simulations conducted at 

a granular 0.5 femtosecond timestep to shed light on the gas diffusion within these composites. 

The initial models used for their sorption isotherms and diffusion studies are elaborated in 

Figure I.21 (B), offering a comprehensive view of the dynamic process.  

Thus, the findings from Guo et al.’s research (Guo et al. 2018b) underscored a 

remarkable enhancement in the sensitivity of graphene/PANI composites towards NH3—a 

result of significant shifts in both the density of states (DOS) and electrical conductivity 

following NH3 exposure. This sensitivity amplifies their potential as selective and sensitive 

platforms for ammonia detection, a testament to their prowess demonstrated in Figure I.21 (B).  

Moreover, the composites' accelerated NH3 detection capability, as evidenced by the 

diffusion studies, marks a substantial improvement over PANI alone. These insights present 

the graphene/PANI nanocomposites as promising contenders for the development of 

sophisticated ammonia sensors, capable of operating efficiently in multifaceted environments.  
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A) 

 

B) 

 
C) 

 

Figure I.21. Analytical visualization of gas interactions with graphene/PANI: (A) Energy 

profiles of gas adsorption, (B) Structural models for gas sorption and diffusion analysis, and 

(C) Comparative diffusion trajectories of key gases (Guo et al. 2018b). 

In an insightful study, Farooqi et al. (Farooqi et al. 2020a) advanced our understanding 

of the sensing capabilities of graphene-PANI nanocomposites, particularly in detecting gases 

like methylamine and ammonia. Leveraging the M06-2X DFT level of theory, they 

meticulously explored the non-covalent interactions that play a pivotal role in gas detection. 

Their study reveals the intricate dance of attractive and repulsive forces that come into play 

when gases are adsorbed onto these composites, as depicted in Figure I.22. The visualization 

of these interactions in 3D iso-surfaces elucidates the nuanced mechanisms by which these 

materials respond to gas molecules.  

Thus, the computational analysis applied in their research delineates how the unique 

electronic environment of graphene-PANI composites confers enhanced sensitivity towards 

NH3. These findings are crucial, as they provide a foundational understanding necessary for 

designing gas sensors that are not only highly selective but also remarkably responsive to the 

presence of target gases. 
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A) 

 

B) 

 

Figure I.22. Non-bonding interaction depictions in graphene-PANI structures with (A) 

methylamine and (B) ammonia (Farooqi et al. 2020a). 

Despite these advancements, conventional models face accuracy and generalizability 

issues when applied to PANI/graphene composites with varying states and molecular 

structures. The integration of machine learning (ML) into this domain offers a new avenue for 

efficiently discovering structure-property relationships in nanomaterials. ML, a rapidly 

evolving branch of artificial intelligence, holds the potential to revolutionize material discovery 

and optimization processes (Chen et al. 2021b). By training ML models on extensive datasets 

of experimental or simulated materials, researchers can predict the properties of new materials 

based on their structural characteristics. These interpretable models can provide insights into 

the structural factors underlying specific material properties, enhancing our understanding of 

these complex systems (Audus and de Pablo 2017; Zhou et al. 2019).  

ML's integration with experimental and theoretical approaches can significantly 

accelerate the development of tailored high-performance nanocomposites. The ability to 

predict polymer characteristics before synthesis could lead to energy and cost savings in 

industrial development, hastening the exploration of structure-property relationships among 

diverse polymers (Motevalli et al. 2020; Cencer et al. 2021).  

ML's application in polymer research has already shown promising results, as evidenced 

by Biswas et al.'s development of a ML-based smart sensing platform utilizing a PANI-coated 

paper device for urinary pH sensing. This innovative approach combines DFT-based 

calculations with real-time pH prediction, demonstrating over 98% accuracy through a smart 

web app interface, a pioneering step in non-invasive health monitoring and clinical diagnostics 

(Biswas et al. 2022). However, it is worth noting that, as of now, there is no existing ML model 

specifically designed to predict the gas sensing or electrical properties of PANI/graphene 
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composites. This gap highlights a potential area for future research, where the development of 

such predictive models could significantly advance the field of nanocomposite materials 

science. 

I.6. Conclusion 

This chapter has elucidated several key insights into the realm of PANI and 

functionalized graphene nanocomposites, marking significant strides in the field of materials 

science and engineering. The noticeable points derived from this chapter include: 

• The narrative of this chapter meticulously charts the evolution and multifaceted 

applications of PANI and graphene-based nanocomposites. It ventures into their 

synthesis techniques, morphological intricacies, and the resultant synergistic 

properties that underscore their advanced electrical, mechanical, and sensory 

functionalities. 

• It showcases an array of sophisticated synthesis techniques, including in-situ 

electropolymerization and interfacial polymerization, tailored to fortify the interaction 

between PANI and graphene. These methodologies culminate in nanocomposites 

endowed with distinct structural, electrical, and mechanical attributes, emphasizing 

the pivotal role of meticulous synthesis in realizing the composites’ optimal 

functionalities. 

• The discourse accentuates the remarkable electrical conductance, environmental 

durability, and pseudocapacitive traits of PANI. In concert with graphene’s 

mechanical robustness and extensive surface area, these attributes amalgamate to 

endow the nanocomposites with superior electrochemical prowess. This synergy 

renders them exceedingly apt for diverse applications spanning electronic devices to 

energy storage solutions. 

• Future perspectives delineated in the chapter spotlight the burgeoning avenues for 

PANI/graphene nanocomposites, aiming at amplifying their efficacy, environmental 

sustainability, biomedical applicability, and sensing capabilities. The ongoing 

advancements and investigative endeavors in these nanocomposites are anticipated to 

transcend the confines of existing technologies, ushering in groundbreaking solutions 

to intricate engineering and ecological quandaries. 

• An exhaustive literature review within the chapter pinpoints pivotal factors that 

significantly sway the performance of PANI/graphene nanocomposites. Notable 

enhancements in synthesis protocols and the strategic incorporation of graphene 
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derivatives have been identified as key to augmenting the electrical conductance and 

overall utility of these materials, setting the stage for their extensive deployment in 

high-end electronics, supercapacitors, sensors, and beyond. 

To sum up, this chapter provides a foundational description on the modeling and 

improvement of eco-friendly, multifunctional nanocomposite materials based on polyaniline 

and functionalized graphene. It heralds the profound impact of these nanocomposites on 

boosting forward the frontiers of material science and engineering, signaling an epoch of 

innovative technological breakthroughs and sustainable material solutions.
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Chapter II: Research Theories and Methodologies 

The aim of the present chapter is to provide an in-depth analysis of the theoretical 

approaches and methodological processes employed in the study of PANI and graphene-based 

nanocomposites. This chapter outlines the confluence of advanced computational tools and 

traditional experimental techniques that form the backbone of current research, facilitating the 

systematic development of materials with tailored properties. 

II.1. Introduction 

The exploration of PANI and graphene-based nanocomposites within the landscape of 

polymer nanocomposite science necessitates a deep dive into advanced research theories and 

methodologies. This survey delves into the sophisticated blend of computational and 

experimental techniques that form the cornerstone of contemporary material science research. 

The focus lies on leveraging advanced machine learning algorithms, intertwined with proven 

experimental design approaches, to unravel the complexities and fine-tune the properties of 

these cutting-edge nanocomposites.  

Central to this exploration are the machine learning methods, serving as powerful 

instruments for analyzing and predicting the behavior of PANI and graphene nanocomposites 

with enhanced accuracy. These methods are instrumental in distributing the intricate behaviors 

of PANI and graphene nanocomposites, enabling researchers to predict outcomes with 

increased precision and reliability. Complementing these computational techniques are 

experimental design strategies like Response Surface Methodology, which play a crucial role 

in optimizing process variables and enhancing material performance. 

 Additionally, this chapter emphasizes the significance of characterization and 

electrochemical tools in providing comprehensive insights into the morphological, structural, 

and electrochemical attributes of the nanocomposites. Techniques ranging from spectroscopy 

and microscopy to advanced electrochemical analyses serve as key enablers in deciphering the 

nuanced interactions within these materials. The incorporation of these diverse methodologies 

not only enriches our understanding of PANI/graphene nanocomposites but also paves the way 

for their application in various technological domains, from energy storage to environmental 

sensing. Thus, this comprehensive approach to research methodologies underlines the 

importance of an integrated, multi-dimensional analysis in the field of nanocomposite science. 

It highlights the synergy between computational prowess and experimental ingenuity, 

necessary for the advancement of material science and engineering. 
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II.2. Computational Approaches  

II.2.1. Machine Learning Methods  

Machine Learning (ML) has paved its role as a cornerstone of computational algorithms, 

facilitating cognitive learning patterns akin to human intelligence. As the frontiers of data 

expand, ML has become an indispensable instrument for pattern detection, predictive analytics, 

and decision-making in a spectrum of sectors, encompassing visual recognition systems, 

financial modeling, and the realm of biomedical sciences. The hallmark of ML is its inherent 

capacity to undertake complex tasks autonomously, eschewing explicit programmatic 

instructions. Instead, ML algorithms fine-tune their parameters through an iterative learning 

process, aptly termed 'training.' Within this phase, algorithms assimilate patterns from datasets, 

enhancing their predictive acumen for fresh, uncharted data, thus bolstering their adaptability 

and precision progressively (Xu et al. 2022).   

The collection of ML methodologies spans from the straightforward Multi Linear 

Regression (MLR) to the intricate Artificial Neural Networks (ANNs), with various 

intermediate algorithms like Multiple Non-Linear Regression (MLNR), Decision Tree (DT), 

Random Forest (RF), Gradient Boosting Machine (GBM), k-Nearest Neighbors (k-NN), and 

Support Vector Regression (SVR) enriching the mix. These methods are depicted in Figure 

II.1, and a systematic breakdown of their strengths and limitations is presented in Table II.1. 

This analytical comparison draws from a robust body of literature (Rashidian and Hassanlourad 

2014; Belgiu and Drăguţ 2016; Song et al. 2017; Pandey et al. 2017; Fissa et al. 2019; Mienye 

et al. 2019; Quang et al. 2019; Maulud and Abdulazeez 2020; Bansal et al. 2022; Li et al. 

2022b; Manoharan et al. 2022). These scholarly works are critical in identifying the most 

suitable ML approaches for analyzing and modeling the properties of polymeric 

nanocomposites, steering the selection of computational techniques that align with the 

sophisticated demands of polymer nanocomposite research. 

Consequently, the integration of ML in nanocomposite research has shattered 

conventional limitations, unveiling a new realm of understanding into the complex attributes 

and functionalities of these materials. By carefully selecting and thoroughly validating ML 

algorithms, researchers are now poised to forge innovative nanocomposites, customized for 

avant-garde applications. The synergy between ML, experimental inquiry, and theoretical 

analysis promises a swifter path to discovering and designing nanocomposites with bespoke 

characteristics for targeted uses (Motevalli et al. 2020).  
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Figure II.1. Diagrammatic illustration of the ML algorithms: A) MLR, B) MLNR, C) DT, D) 

RF, E) GBM, F) k-NN, G) SVR, and H) ANN. 

Given that the properties of polymer materials are intricately linked to a multitude of 

synthesis and processing parameters, ML emerges as a particularly valuable asset in polymer 

research. The predictive power of ML to foresee the traits of polymers prior to synthesis can 

lead to substantial savings in energy and production costs, thereby expediting the exploration 

of structure-property relationships across various polymer classes. This predictive prowess has 

catalyzed the widespread adoption of polymer-based materials in fields such as electrical 

engineering, medical technology, and manufacturing engineering (Audus and de Pablo 2017; 

Zhou et al. 2019). Scientists have embarked on a multitude of successful projects, leveraging 

ML to probe the synthesis processes and properties of polymers (Cencer et al. 2021). The 

application of ML in conjunction with mechanical properties of polymer composites (Altarazi 

et al. 2018; Hiraide et al. 2021), liquid crystal behavior of copolyether (Leon et al. 2007), 

thermal conductivity and dielectric behaviors (Wu et al. 2019; Chen et al. 2020; Liang et al. 

2021; Armida et al. 2023),  glass transition (Tg) (Chen et al. 2021a; Boublia et al. 2022c; Xing 

et al. 2022), melting (Tm) and degradation temperature (Td), as well as quantum physical and 
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chemical properties (Ma et al. 2019; Ma and Luo 2020; Kuenneth et al. 2021; Bejagam et al. 

2022), marking a significant stride in the accuracy of such predictions. 

Table II.1. Comparative analysis of machine learning algorithms and their implications for 

nanocomposite research. 

Algorithm Core Strengths Potential Limitations Relevance to 

nanocomposite research 

MLR Straightforward to implement 

and interpret; effective for 

datasets with clear linear trends; 

informative on variable 

interdependencies. 

Assumes a linear relationship; 

may not capture complex, 

non-linear interactions; risk 

of overfitting with many 

variables. 

Ideal for initial exploration 

of linear relationships in 

nanocomposite properties 

and synthesis parameters. 

MNLR Captures intricate, non-linear 

relationships; adaptable model 

for complex systems. 

Higher risk of overfitting; 

may require substantial data 

to train effectively. 

Suitable for modeling 

complex behaviors in 

nanocomposite synthesis 

and property analysis. 

DT Highly interpretable; versatile 

with various data types; effective 

at illustrating non-linear 

relationships. 

Can overfit noisy or intricate 

data; sensitive to minor data 

variations; may necessitate 

pruning. 

Useful for classifying 

nanocomposite types and 

understanding decision 

rules influencing properties. 

RF Aggregates multiple DTs to 

reduce overfitting; robust to 

noise; can handle a variety of 

data types. 

Computationally intensive; 

potentially less 

interpretability due to 

ensemble nature. 

Employed for enhanced 

predictive accuracy of 

nanocomposite 

performance under diverse 

conditions. 

GBM Sequential learning reduces error 

margins; less prone to 

overfitting; can handle diverse 

data types. 

Computationally demanding; 

parameter tuning required; 

potential for reduced 

interpretability. 

Applicable for optimizing 

nanocomposite 

formulations with iterative 

refinement. 

k-NN Handles linear and non-linear 

data; high prediction accuracy; 

intuitive classification based on 

proximity. 

Computational load increases 

with dataset size; sensitive to 

irrelevant features and noise. 

Effective in property 

prediction based on 

similarity measures among 

nanocomposite datasets. 

SVM Manages non-linear boundaries; 

robust to overfitting; effective 

with high-dimensional data. 

Requires significant 

computational resources; 

selection of kernel and 

parameters is crucial. 

Utilized for regression tasks 

in nanocomposite studies, 

particularly in high-

dimensional compositional 

space. 

ANN Simulates complex brain-like 

processing; handles vast and 

complex datasets; models both 

linear and non-linear 

relationships. 

Computationally demanding 

training process; may overfit 

with excessive complexity; 

can be challenging to 

interpret. 

Integral for multifaceted 

modeling of synthesis and 

predictive analysis in 

advanced nanocomposite 

development. 
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II.2.2. Artificial Neural Networks 

ANNs stand as a transformative branch of ML, offering computational analogs to the 

human brain's architecture and functionality. These networks are composed of a sequence of 

layers filled with interconnected processing units known as neurons, each contributing to the 

model's predictive capability. In this arrangement, the neurons are sequentially organized into 

input, hidden, and output layers, which process the incoming data and generate predictive 

outcomes (Rashidian and Hassanlourad 2014; Fissa et al. 2019; Quang et al. 2019). ANNs 

encompass a variety of configurations, including feedforward networks, radial basis function 

networks, and fuzzy networks, each suitable for different applications (Himmelblau 2000; 

Wang and Fu 2005). The potency of ANNs was highlighted by Hornik et al. (Hornik et al. 

1989), who showed that even a single-layered feedforward network can approximate any 

conceivable function from multiple dimensions. This versatility has seen ANNs eclipse 

traditional modeling techniques in terms of predictive accuracy, particularly in complex 

engineering domains (Pirdashti et al. 2013; Susaimanickam et al. 2023). 

The strength of ANNs lies in their nonparametric nature, allowing for model 

development devoid of any presuppositions regarding data distribution or variable 

interactions—requirements typically mandated by standard parametric statistical methods 

(Walczak and Cerpa 2019). In an ANN, each neuron receives weighted input signals, akin to 

synaptic inputs in a biological context (Bullock 1997), with the weights being analogous to 

synaptic strength. It is the optimization of these weights through a process known as 'training' 

that enables ANNs to learn and adapt. 

Within the context of nanocomposite research, ANNs serve as a versatile modeling tool, 

adept at handling both linear and nonlinear multivariate regression challenges found in 

synthesis and fabrication processes (Boublia et al. 2022a). The network is crafted with layers 

populated by a predetermined number of artificial neurons, each characterized by weights and 

a transfer function. The input weights, calculated from the product of input units, undergo 

processing through the neuron's transfer function in what is known as a 'feedforward process'. 

This is followed by 'backpropagation', a training phase where the network fine-tunes its weights 

based on a set of input-response data pairs, aiming to minimize the mean square error between 

experimental and predicted outputs. The culmination of ANN modeling is in the validation and 

testing of datasets, an essential step in gauging the network's performance and reliability 

(Himmelblau 2000; Wang and Fu 2005). Thus, given their exceptional adaptability and 

precision, ANNs have emerged as an indispensable tool in the repertoire of nanocomposite 
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researchers, providing a robust framework for probing the intricate behaviors and properties of 

these advanced materials. 

II.2.3. Importance of Database  

The establishment of a detailed materials database is the cornerstone of any successful 

ML model. It is a curated collection of material structures and properties, informed by empirical 

research or computational predictions. The ability of an ML model is intrinsically linked to the 

database's scope, diversity, and uniformity of data representation. These factors are vital for a 

model that aims to be predictive, offering reliable insights into new materials and phenomena. 

Remarkably, even databases of moderate size can yield highly accurate ML models, as 

evidenced by their applications in the design of energetic materials and thermal conductivity 

analyses for polymers.  

When constructing a database from scratch is impractical due to resource demands, 

existing public databases offer a treasure trove of structured and property data. These databases 

are invaluable assets, as highlighted in Table II.2, where they serve as a foundation for various 

applications. An illustrative case is the assimilation of 1,442 homopolymer structures from 

assorted polymer families, with all property data for neat polymers sourced from the acclaimed 

PolyInfo database. Such comprehensive polymer databases empower ML algorithms to unearth 

deeper insights into polymer science and contribute to the evolution of polymer informatics.  

Table II.2. Key public databases for accessing polymer and nanocomposite material data. 

Database Short description URL 

PoLyInfo Comprehensive data for polymeric 

material design 

https://polymer.nims.go.jp/  

Polymer Genome Informatics platform for polymer 

property prediction 

https://www.polymergenome.org/  

CROW Polymer Properties 

Database 

Extensive polymer properties 

information 

http://polymerdatabase.com/  

Polymer Science Learning 

Center Spectral Database 

Polymer IR and NMR spectral data https://pslc/uwsp.edu  

MATWEB Material Property 

Data  

Properties of thermoplastics and 

thermosetting polymers 

http://www.matweb.com  

Polymer Property Predictor 

and Database 

Flory–Huggins’s interaction parameters 

and Tg for polymers 

https://pppdb.uchicago.edu/  

NanoMine Open-source data resource for the 

nanocomposite’s community. 

https://materialsmine.org/nm#/  

Nevertheless, there exists a void in databases encompassing detailed processing 

procedures or experimental metadata. The scientific community is thus encouraged to share 

their datasets and code openly, enhancing the collective knowledge base. When specific 

requirements exceed the scope of public databases, data extraction from scientific literature 

https://polymer.nims.go.jp/
https://www.polymergenome.org/
http://polymerdatabase.com/
https://pslc/uwsp.edu
http://www.matweb.com/
https://pppdb.uchicago.edu/
https://materialsmine.org/nm#/
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stands out as a viable strategy. An instance of this approach can be seen in organic solvent 

nanofiltration research by Wang et al. (Wang et al. 2023), where a dataset comprising 9,252 

data points was compiled from 20 scholarly articles. This database, detailing chemical 

structures and optical properties, facilitated the discovery of high-efficiency thin-film 

nanocomposite membranes through rigorous high-throughput screening. Thus, the examples 

cited here exemplify the practicality and the innovative impact of data extraction in material 

science, setting the stage for both predictive performance modeling and the conceptualization 

of high-performance material designs for future exploration. 

II.2.4. Molecular Descriptors  

Molecular modeling is a cornerstone in the development of materials, providing a bridge 

between theoretical concepts and empirical findings. This tool enriches our understanding of 

material behavior at a microscopic level, offering detailed insights into the underlying 

mechanisms of materials' properties. For polymer nanocomposite research, the adept 

application of computational techniques is crucial for uncovering new potential and enhancing 

material functionalities (Patra 2022; Zhao et al. 2023). Molecular descriptors, a product of 

cross-disciplinary principles from quantum chemistry, information theory, organic chemistry, 

and graph theory, stand at the forefront of this computational endeavor. They offer a window 

into the intricate behaviors of polymer nanocomposites, serving as a simulation tool to predict 

material properties with a high degree of accuracy (Brown et al. 2006; Mallakpour et al. 2010). 

These descriptors are pivotal in accurately capturing the essence of molecular attributes, which 

is fundamental for refining synthesis and application strategies for advanced material 

development. The analysis of molecular descriptors is augmented by an arsenal of statistical, 

chemometric, and cheminformatics tools, enabling researchers to navigate through complex 

datasets to extract meaningful insights. This analytical prowess ensures that the exploration 

and innovation of polymers and nanocomposites are grounded in data-driven precision.  

In the realm of ML, a recent work reported by (Boublia et al. 2023c) stands out, 

demonstrating the efficacy of the COSMO-RS-derived σ-Profiles inputs in constructing robust 

models for homo-polymers and co-polymers. These σ-Profiles are presented as a superior 

alternative to conventional molecular inputs traditionally cited in polymer literature. Their 

study culminated in the construction of a multitask ANN model adept at predicting critical 

thermal properties of materials, such as the Tg and Tm of polyhydroxyalkanoates, as depicted 

in Figure II.2. This model exemplifies the synergy between molecular modeling and ANN, 

paving the way for precise predictions that are crucial for material design and application.  
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Figure II.2. COSMO-RS derived 𝜎Profiles of the 24 monomers used as molecular descriptor to 

predict Tg and Tm of polyhydroxyalkanoates (Boublia et al. 2023c). 

II.2.5. Model Evaluation 

Model evaluation stands as a foundation stone in the application of ML within material 

science, serving as the litmus test for the predictive prowess and dependability of 

computational models. The domain's complex nature, which includes forecasting the behavior 

of nanocomposites and polymer materials, necessitates a comprehensive and nuanced approach 

to validation. 

II.2.5.1. Evaluation Metrics 

Model evaluation is an indispensable component of the machine learning pipeline, with 

its significance magnified in the domain of chemical engineering where predictive precision 

and reliability are paramount. The effectiveness of a machine learning model in forecasting the 

behaviors of nanocomposites or the outcomes of polymer reactions is fundamentally contingent 

upon a meticulous evaluation grounded in robust statistical measures and validation 

methodologies. Crucial to this process is the selection of appropriate evaluation metrics, which 

must be meticulously tailored to align with the specific requirements and nuances of the 

model's application. For regression tasks pivotal to material research, a suite of metrics—such 

as the Root Mean Square Error (RMSE), coefficient of determination (R2), Average Standard 

Deviation (ASD), Average Absolute Relative Deviation (AARD), Mean Absolute Error 

(MAE), and Mean Squared Error (MSE)—is indispensable. These metrics, quantitatively 

detailed in Table II.3, offer a multi-faceted view into the model's predictive accuracy and the 
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extent of deviation from actual observations, thereby underscoring the model's efficacy in real-

world applications (Umehara et al. 2019; Lian et al. 2024). 

Table II.3. Summary of evaluation metrics for machine learning models. 

Metric Mathematical Definition Description 

RMSE 𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)2𝑁

1

𝑁
 

A measure of the model's prediction error, 

calculating the square root of the average of squared 

differences between predicted and actual values. 

Lower values indicate better fit. 

R2 𝑅2 = 1 −
∑ (𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)2𝑁

1

∑ (𝑌𝑒𝑥𝑝 − �̅�)2𝑁
1

 

Represents the proportion of variance in the 

dependent variable that is predictable from the 

independent variables, with values closer to 1 

indicating a better model fit. 

ASD 𝐴𝑆𝐷 = √
∑ (𝑌𝑝𝑟𝑒𝑑 − �̅�)2𝑘

1

𝑁
 

Typically refers to the dispersion or variation of a 

set of values. Not a standard metric for ML model 

evaluation. 

AARD 𝐴𝐴𝑅𝐷 (%)  =  
100 

𝑁
× ∑

|(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑒𝑥𝑝)|

𝑌𝑒𝑥𝑝

𝑁

1

 

Evaluates the average error magnitude in relation to 

true values, serving as a standardized gauge of 

model accuracy. Smaller AARD values suggest 

higher predictive precision, especially useful for 

assessing models across diverse datasets. 

MAE 𝑀𝐴𝐸 =
1

𝑁
∑|𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑|

𝑁

1

 

Provides an intuitive gauge of average error 

magnitude in the data's units, preferring models with 

minimal MAE for their precision. Effective for 

continuous outcomes, it's robust against outliers, 

offering a clearer accuracy picture than RMSE. 

MSE 𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)

2
𝑁

1

 

Similar to RMSE but averages the squares of the 

prediction errors. It heavily penalizes larger errors, 

making it sensitive to outliers. 

II.2.5.2. Validation Techniques 

In terms of validation, simple hold-out methods provide an initial gauge of model 

performance by testing on unseen data. However, the k-fold cross-validation technique stands 

out for its robustness, methodically partitioning the dataset into 'k' equal parts to iteratively 

train and validate the model, hence providing a holistic assessment of performance. For an 

exhaustive and rigorous validation, especially when precise prediction of nanocomposite 

properties is critical, the leave-one-out method, despite its computational demands, may be 

employed to ensure utmost accuracy and generalizability (Syed 2011).  

Basically, the process of cross-validation is considered by the strategic omission of 

subsets of data from the dataset, subsequently employing the remaining data to construct a ML 

model. This model is then tasked with predicting the values of the omitted subset, offering an 

evaluation of the model's predictive power. The simplest variant of cross-validation, the leave-

one-out method, involves the exclusion of a single data point at a time. To ascertain the 

robustness and applicability of our developed ML models, a k-fold cross-validation technique 

(Stone 1976) can be implemented. This approach involves partitioning the dataset into five 
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equal subsets, rotating each as a test set while the rest serve as the training set, which includes 

a validation subset. The overarching aim of k-fold cross-validation is to train the model with 

diverse data segments and to assess its predictive prowess with the complementary test sets. 

By iterating this process five times, we gain a robust estimation of the model's performance, 

particularly in relation to data not included in the training folds. The model's final iteration is 

then selected based on its ability to yield the lowest average error rate across all the k-fold 

validations (refer to Figure II.3). This meticulous process is instrumental in thwarting the 

tendency of overfitting and offers a comprehensive evaluation of the model's adaptability to 

novel data, thus ensuring its readiness for deployment in real-world scenarios. 

 
Figure II.3. Schematic illustration of the k-fold cross-validation (k=5) protocol. 

II.4. Experimental Design Approaches  

Response Surface Methodology (RSM), introduced by Box and Wilson (Box and 

Wilson 1992) in the mid-20th century, has been adopted in polymer-based materials for its 

efficacy in optimizing complex chemical processes. It is a robust statistical technique that 

integrates multiple variables to streamline the experimental workflow and enhance the desired 

outcome.  

For instance, in polymers, conductivity is a key performance metric influenced by 

factors such as temperature "X1," dopant concentration "X2," polymerization time "X3," and 

cross-linking degree "X4." Continuous variation in these factors can lead to changes in the 

polymer’s conductivity, which RSM can adeptly map and optimize. The relationship between 

conductivity "Y" and its influencing factors in a polymer system can be represented by the 

following equation: 

𝑌 = 𝑓(𝑋1) +  𝑓(𝑋2) + 𝑓(𝑋3) + 𝑓(𝑋4) + 𝑒 Eq. (8) 
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Here, Y represents the conductivity (dependent variable), f signifies the functional responses, 

X1 to X4 are the independent variables affecting conductivity, and ϵϵ captures the experimental 

error and other uncertainties. 

The essence of RSM lies in its capacity to discern the optimal conditions within the 

landscape of the response surface, as illustrated in Figure II.4. It navigates through the terrain 

of maxima, minima, and saddle points to pinpoint the region yielding the most favorable 

response. Although RSM is a formidable analytical tool, it does not dictate the data collection 

methodology. It assesses variable interactions to identify the best operational parameters or a 

suitable range within the experimental domain (Bradley 2007). 

Diverse RSM approaches include the Box-Behnken Design (BBD), Central Composite 

Design (CCD), Doehlert Matrix (DM), among others. These methods have been instrumental 

in revealing the intricate relations between dependent and independent variables in polymer 

research (Boublia et al. 2022a). 

On the other hand, for a rigorous empirical assessment of the model's reliability, 

optimal conditions derived from RSM are experimentally validated and subjected to statistical 

scrutiny via t-tests or Chi-Square analysis. Model trustworthiness is affirmed when the P-value 

is below 0.05, lack of fit is above 0.05, R2 exceeds 0.9, and adequacy precision surpasses 4. 

The Analysis of Variance (ANOVA) further corroborates the significance of the model's 

predictive power (Witek-Krowiak et al. 2014).  

 

Figure II.4. Schematic workflow of response surface methodology in polymer optimization.  

Furthermore, the systematic steps of RSM, summarized in Figure II.4, range from 

identifying optimization variables to experiment design, variable level determination, 

mathematical-statistical data processing, model evaluation, and optimal condition discovery. 
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Thus, different experimental design frameworks, such as full factorial, CCD, DM, and BBD, 

are considered based on their suitability for the given research objectives. The Table II.4 

encapsulates the merits and drawbacks of these designs, aiding in the selection of the most 

appropriate RSM model for the task at hand.  

Table II.4. Merits and drawbacks of RSM models: Full Factorial, CCD, DM, and BBD. 

RSM 

Models 
Advantages Disadvantages 

Full 

factorial 
• Comprehensive combination coverage; no 

factor or level limits 

• Challenging with multiple factors; high labor 

demand. 

CCD • Excellent predictive scope; 

accommodates five levels per factor 

• Requires symmetrical spacing around the center, 

varying with factor count. 

DM • Optimal for polynomial models; fewer 

runs needed 

• Limited use in common software applications.  

BBD • Reduces experimental runs; ideal for 

second-order models 

• Limited to three or more factors; unsuitable for 

extreme condition experiments. 

Within this context, BBD stands out for its efficiency in optimizing multifaceted 

systems. It significantly reduces experimental iterations, conserves resources, and carefully 

avoids the extremes of factor levels, thereby circumventing the potential for suboptimal 

experimental outcomes.  

II.5. Characterization and electrochemical tools 

In the landscape of advanced materials research, the characterization of PANI/graphene 

nanocomposites stands as a cornerstone for elucidating their multifaceted characteristics and 

unlocking their vast application potential. Employing a spectrum of sophisticated analytical 

techniques, researchers delve into the intricate dynamics of these nanocomposites, aiming to 

finely calibrate their properties to meet specific application needs. These characterization and 

electrochemical tools provide a window into the nanocomposites' morphological, structural, 

and electrochemical profiles, shedding light on pivotal aspects that dictate their overall 

performance (Divya et al. 2019; Babel and Hiran 2021). The integration of these diverse 

techniques paints a holistic picture of the nanocomposites, laying the groundwork for their 

tailored application in cutting-edge technologies.  

PANI/graphene nanocomposites undergo thorough examination through methodologies 

such as UV-Visible Spectroscopy (Kumar et al. 2018a), Photoluminescence Spectroscopy (PL) 

(Beygisangchin et al. 2021), Fourier Transform Infrared Spectroscopy (FT-IR)(Usman et al. 

2019), X-ray Diffraction (XRD) (Li et al. 2018a), and X-ray Photoelectron Spectroscopy (XPS) 

(Gabunada et al. 2019), alongside critical electrochemical and electrical analyses including 
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Electrical Conductivity (Xavier et al. 2019) and Cyclic Voltammetry (CV) (Gul et al. 2020). 

These approaches are complemented by thermal analysis through Thermogravimetric Analysis 

(TGA) (Parveen et al. 2016), providing insights into the thermal stability and degradation 

patterns of the nanocomposites.  

Moreover, direct microscopy techniques such as Atomic Force Microscopy (AFM), 

Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) are 

instrumental in visualizing the micro to nanoscale architecture of these materials (Das et al. 

2023). These microscopy methods are pivotal in investigating the dispersion level of graphene 

fillers within the PANI matrix—a challenge in both the fabrication and post-preparation phases 

of nanocomposites. Techniques like SEM, TEM, XRD, Raman spectroscopy, and AFM are 

routinely employed to evaluate filler dispersion, utilizing image analysis to examine the 

nanocomposite structure, particle distribution, aggregate size, and more (Javadian-Saraf et al. 

2021).  

Meanwhile, in light of increasing concerns about environmental conservation and 

industrial safety, the effectiveness of PANI/graphene nanocomposites in detecting gases has 

become highly significant. Techniques like conductometric (Li et al. 2024), chemoresistive 

(Pandey 2016; Zamiri and Haseeb 2020), and optical (Ismail and Sulaiman 2021) gas sensing 

are utilized for their sensitivity and selectivity towards environmental pollutants and hazardous 

gases. These materials demonstrate exceptional sensitivity and selectivity for various gases, 

making them essential tools for monitoring environmental pollution and safeguarding 

industrial environments.  

To facilitate an efficient selection of these diverse techniques, Table II.5 provides a 

quick-reference framework that encapsulates the essence of each method, ranging from 

spectroscopic and microscopic analyses to thermal and electrochemical evaluations. It outlines 

not only the type of information each technique can reveal but also highlights the particular 

properties of PANI/graphene nanocomposites that can be explored. This structured overview 

is designed to streamline the decision-making process in the research of these complex 

materials, ensuring that the chosen methods align optimally with the intended research 

objectives and contribute effectively to the advancement of knowledge in the field of polymer 

nanocomposites. 
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Table II.5. Summary of characterization techniques for PANI/graphene nanocomposites. 

Characterization 

Technique 

Information Provided Properties Analyzed Applicability to 

PANI/graphene 

UV-Visible 

Spectroscopy 

Analyzes electronic 

transitions and band gaps 

Optical properties, band 

gap 

Assessing optoelectronic 

characteristics 

Photoluminescence (PL) Evaluates luminescent 

properties of materials. 

Electron-hole 

recombination 

Investigating light-

emitting efficiency 

Raman Spectroscopy Vibrational modes, 

molecular interactions 

Material structure, 

stress/strain analysis 

Structural 

characterization and 

integrity 

FT-IR Spectroscopy Chemical bonds, 

functional groups 

Compositional analysis Chemical compatibility 

and bonding analysis 

X-ray Diffraction (XRD) Crystalline structure, 

graphitization level 

Crystallinity, phase 

analysis 

Structural phase and 

crystallinity assessment 

X-ray Photoelectron 

Spectroscopy (XPS) 

Surface chemistry, 

elemental composition 

Surface chemistry, 

oxidation states 

Surface composition and 

electronic structure 

Atomic Force 

Microscopy (AFM) 

Visualizes surface 

topology at the 

nanometer scale. 

Surface morphology, 

mechanical properties 

Nanostructural analysis 

and mechanical 

assessment 

Electrical Conductivity 

Analysis 

Measures the electrical 

conductivity of 

composites. 

Conductivity, charge 

transport 

Conductivity 

performance for 

electronics 

Cyclic Voltammetry 

(CV) 

Investigates redox 

behavior and 

electrochemical 

properties. 

Electrochemical 

properties, redox 

potential 

Evaluating charge 

storage and transfer 

Thermogravimetric 

Analysis (TGA) 

Assesses thermal 

stability and degradation. 

Thermal stability, 

degradation temperature 

Thermal analysis for 

processing and 

application 

Scanning Electron 

Microscopy (SEM) 

Examines surface 

morphology and 

topography. 

Surface texture, 

morphological features 

Morphological 

evaluation and 

dispersion quality 

Transmission Electron 

Microscopy (TEM) 

Provides detailed 

internal structure images. 

Internal morphology, 

nanoparticle distribution 

Nanostructural details 

and composite 

homogeneity 

Conductometric, 

Chemoresistive, and 

Optical gas sensing 

techniques 

Tests sensitivity and 

selectivity for gas 

detection. 

Sensor response, 

selectivity 

Gas sensor development 

for environmental 

monitoring 
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II.5. Conclusion  

This chapter has provided a profound exploration into the integrative use of 

computational and experimental methodologies within the sphere of polymer nanocomposite 

research. Through a meticulous analysis of machine learning techniques in combination with 

sophisticated experimental design strategies, we have projected new directions for optimizing 

the utility and efficiency of PANI/graphene nanocomposites.  

The expansive survey of characterization and electrochemical tools further accentuates 

the chapter’s pivotal role in deepening our comprehension of the intricate structural, 

morphological, and electrochemical attributes of these advanced materials.  

This incorporated methodology not only sharpens our predictive accuracy but also 

extends our ability to customize nanocomposites for targeted technological endeavors. The 

findings presented herein underscore the critical importance of cross-disciplinary approaches 

in expanding the boundaries of material science.  

By combining computational prowess with experimental rigor, this chapter heralds an 

era marked by significant breakthroughs in the development and application of polymer 

nanocomposites, setting the stage for future innovations in this dynamic field. 
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Chapter III: Enhancing Precision in PANI/Gr Nanocomposite 

Design: Robust Machine Learning Models, Outlier Resilience, 

and Molecular Input Insights for Superior Electrical Conductivity 

and Gas Sensing Performance 

In this chapter we employed various machine learning algorithms to model the 

electrical conductivity and gas sensing responses of polyaniline/graphene (PANI/Gr) 

nanocomposites based on a comprehensive dataset gathered from over 100 references. 

Artificial neural networks (ANNs) demonstrated superior predictive accuracy among the 

models. The investigation delves into identifying and mitigating outliers, both structural and 

response-related, showcasing the robustness of the proposed ANN models. The study 

emphasizes the critical role of applicability domain (AD) analysis in evaluating model 

reliability. Results indicate high accuracy for electrical conductivity (RMSE: 0.408, R2: 0.984) 

and gas sensing responses for ammonia, toluene, and benzene gases (RMSE: 0.350, 0.232, and 

0.081, R2: 0.967, 0.983, and 0.976, respectively). Input contribution analysis highlights key 

parameters influencing performance. The σ-Profiles of additives emerge as significant 

contributors, emphasizing the importance of molecular-input understanding in machine 

learning models. These findings contribute to developing high-performance PANI/Gr 

nanocomposites with implications for diverse applications like supercapacitors, gas sensors, 

and energy storage devices. The study underscores the need for further research to deepen the 

understanding of molecular inputs' impact on PANI/Gr system performance, enabling more 

precise material design. 

III.1. Introduction  

 PANI/graphene-based nanocomposites have risen as up-and-coming materials due to 

their distinctive electrical and gas-sensing properties, rendering them well-suited for diverse 

industrial applications. However, developing PANI/graphene-based nanocomposites with 

enhanced properties and attaining a comprehensive comprehension of the interconnections 

between their properties and constituents necessitates in-depth analysis. Experimentally 

investigating every possible combination of PANI/graphene mixtures is challenging, time-

consuming, and expensive. Hence, establishing prediction models for PANI/graphene-based 

nanocomposites' physicochemical features is critical. In this context, adopting ML techniques, 

particularly Artificial Neural Networks (ANNs), is an efficient and cost-effective alternative. 

ANNs, with their capacity to mimic the structure and function of the human brain, have 

garnered significant attention in this domain. ANNs are a type of ML algorithm capable of 
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identifying patterns in datasets and making accurate predictions for new data based on these 

patterns. ANNs have demonstrated remarkable success across diverse fields, effectively 

addressing material design, optimization, and process control challenges. By using ANNs, 

researchers can build accurate predictive models that can simulate the behavior of complex 

systems, such as PANI/graphene-based nanocomposites, with remarkable accuracy and 

efficiency.  

This research aims to thoroughly comprehend the performance prediction of 

PANI/graphene-based nanocomposites using ANNs and demonstrate the potential of this 

approach for designing and developing new high-performance nanocomposites. Twelve years 

of published data on PANI/graphene nanocomposites were utilized to build databases and 

create a data-driven platform to predict the electrical conductivity and gas sensing response 

performances of any new PANI/graphene-based nanocomposite. A comprehensive 

methodology is employed utilizing the COSMO-RS-derived σ-profiles of additives in the 

systems as inputs into eight different ML algorithms, including simple linear models such as 

Multi Linear regression (MLR), Multiple Non-Linear Regression (MLNR), Decision Tree 

(DT), Random Forest (RF), Gradient Boosting Machine (GBM), k-Nearest Neighbors (k-NN), 

Support Vector Regression (SVR), and ANNs. A thorough statistical evaluation and 

examination of the molecular space of applicability were performed to validate the predictive 

accuracy and robustness of the developed models. Furthermore, a bootstrap forest was 

employed to categorize PANI/graphene systems based on their inputs, unveiling insights into 

the influences of individual inputs on the enhancement or reduction of electrical conductivity 

and gas sensing response in the nanocomposite systems. This groundbreaking study introduces 

pioneering holistic models, showcasing their proof-of-concept potential that effectively map 

the properties of graphene-based nanocomposites. It is also the first reported model to predict 

the electrical conductivity and gas-sensing response of polyaniline/graphene-based 

nanocomposites. The model's outstanding performance underscores the prospect of this 

methodological approach in guiding the design of novel PANI/graphene systems, reduces the 

necessity for extensive experimental measurements, leading to a substantial reduction in the 

nanocomposite manufacturing cycle, thereby facilitating the design of tailor-made conducting 

nanocomposites for specific applications. 

III.2. Methodologies 

This research aims to build a machine-learning technique for estimating the performance 

of polyaniline and graphene nanocomposite systems in high-end applications based on their 
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electrical and gas sensing properties. The accurate prediction of the performance of such 

systems is a significant and currently unresolved challenge that involves modeling various 

processes occurring at distinct time and length scales. Instead of pursuing a multi-scale 

approach, a different strategy focuses on the conditions that can be imposed on the 

polyaniline/graphene systems and accurately predicted. Figure III.1 represents the overall 

procedure used for the development of the models. The first and foremost step of the 

methodology involves generating a comprehensive dataset from published literature sources 

and organizing it in a readable format. Subsequently, machine learning algorithms were 

evaluated and validated utilizing k-fold cross-validation. The best model was selected based on 

its performance and then further hyper-tuned to improve accuracy.  The final models were 

employed to predict the systems' conductivity, gas-sensing effectiveness, and responsiveness 

to various parameters. The methodology will be thoroughly discussed in the subsequent 

sections of the manuscript.  

 

Figure III.1. A comprehensive summary of the ML-assisted workflow for developing robust 

models capable of predicting electrical conductivity and gas sensing response. 

III.2.1. Datasets processing and treatment 

 One of the key steps in building a machine learning model is obtaining relevant datasets. 

To construct the datasets for this study, a comprehensive search was conducted to gather 

information on synthesis conditions that could affect the effectiveness of PANI and graphene 

nanocomposites. This was achieved by mining all available data published between 2010 and 

2023 from credible sources such as Scopus, Google Scholar, and Web of Science using relevant 

keywords such as “polyaniline, PANI, graphene, nanocomposite, and PANI/graphene.” This 

study's performance evaluation of novel polyaniline/graphene nanocomposites was based on 

the collected experimental data. Data were sourced from tables and figures, while for specific 

figures where direct data retrieval proved challenging, a digitized image tool, in conjunction 
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with the professional software Origin Lab® 2022b, was employed effectively to ascertain their 

values. 

Furthermore, the resulting experimental data was systematically organized into two 

primary datasets: electrical conductivity and gas sensing response. The raw data points in each 

dataset varied due to the availability of information reported in the literature, including a sum 

of 989 data points for electrical conductivity and 931 data points for gas sensing. Within the 

extensive gas sensing dataset, 26 different gases were identified in the literature, encompassing 

a range of substances such as hydrogen, ammonia, methane, nitrogen dioxide, sulfur dioxide, 

hydrogen sulfide, carbon dioxide, carbon monoxide, benzene, toluene, among others. Upon a 

comprehensive examination of the gas-specific datapoints, it became evident that ammonia, 

benzene, and toluene gases have received considerable attention in the literature. This is 

reflected in the substantial number of datapoints associated with these gases, establishing a 

robust foundation for comparative analysis with existing research. Furthermore, the 

prominence of these gases in real-world applications underscores their relevance and renders 

them meaningful choices for in-depth investigation within the scope of our study. Furthermore, 

various parameters, such as the concentrations of the monomer, oxidant, and doping agents, 

the graphene filler's type and loading, the synthesis conditions (temperature and time), and the 

operative temperature, were extracted from each report. The gas sensors' response also 

considered the tested gas's type and concentration. The experimental data that met the criteria 

for analysis was then organized in Excel, and a percentage distribution was generated to aid in 

the examination. The next step in the process was data cleaning and pretreatment since most 

unprocessed data sets contain duplicate or even inaccurate information that can negatively 

impact the machine learning model's performance. All the data points collected for this study 

were obtained from in situ polymerization, which involves synthesizing the PANI/Gr 

nanocomposites directly on the graphene surface. This approach simplifies the systems and 

eliminates potential contamination from external sources, resulting in more reliable and 

accurate experimental data. Additionally, this methodology ensures a higher degree of 

homogeneity in the resulting nanocomposites. It reduces the variability in the measured 

properties, which is crucial for developing robust ML models for predicting the electrical 

conductivity and gas sensing response values. The final data utilized in this study consisted of 

616 data points of various systems and synthesis conditions for electrical conductivity and 668 

datapoints for gas sensing, with the gas sensing data further subdivided and analyzed for the 

presence of ammonia, benzene, and toluene gases (338, 146, and 122 datapoints, respectively).  
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Further, the datasets were converted and used on the logarithmic scale during training 

for all property sets used in the models to aid machine learning. Figure III.2 presents a 

comprehensive summary of the histogram distribution for the employed datasets, showcasing 

their frequency counts, averages, and one-sigma standard deviations. Utilizing a logarithmic 

scale during model training leads to a more uniform distribution, effectively mitigating any 

unbalanced skewness in the models. 

A) Electrical conductivity 

 

B) Ammonia Sensing response 

 

C) Toluene Sensing response 

 

D) Benzene Sensing response 

 

Figure III.2. Histogram distribution of the collected datasets utilized for A) Electrical 

conductivity, B) Ammonia (NH3), C) Toluene (C7H8), and D) Benzene (C6H6) Sensing 

responses. 

III.2.2. Input selection 

 When building an ML model, identifying relevant inputs is vital in ensuring the model’s 

accuracy and effectiveness. To determine the relevant factors that affect the performance of 

polyaniline/graphene systems, a comprehensive literature review was conducted to identify 

commonly reported input parameters. These inputs were then incorporated into the ML models, 

considering the design concept of nanocomposites and experimental operation. As shown in 

Figure III.3, four sections were chosen as input descriptors. They are as follows: 1) matrix: 

aniline amount, type, and amount of oxidant, volume, and concentration of the doping agent, 

and additives, 2) filler: graphene filler type and loading, 3) synthesis conditions: temperature 

and time, and 4) operating conditions: temperature and gas concentration for the gas sensing 

response properties. It is worth noting that some inputs that may affect the electrical 

conductivity or gas response were not included in the datasets as they were either not widely 

reported in the literature or not uniformly documented. However, many of the inputs used in 
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these datasets were categorical, and a short abbreviation was utilized to incorporate categorical 

data in the ML algorithms effectively. This involved assigning numerical values to the 

categorical inputs, such as the type of graphene nanofiller and doping agents. The numerical 

inputs, such as temperature and time, were entered as reported in the literature.  

 
Figure III.3. The input selection process for machine learning models of 

polyaniline/graphene nanocomposites. 

 Given the limited number of variations for inputs, including monomers, oxidants, and 

graphene fillers, incorporating them as molecular inputs into the model would not significantly 

increase its complexity and result in overfitting. However, the wide range of various additives 

used in the systems can dramatically impact the material properties. To properly account for 

these impacts, it was crucial to include the additives as molecular inputs in the model. Utilizing 

sigma profiles derived from the COSMO-RS offered a powerful method for characterizing the 

complex mixture of additives in the system. This approach accurately describes the mixture 

and provides valuable insights into the behavior and properties of the material under study. 

This molecular method allows for a complete examination of the effects of additives on 

polyaniline/graphene systems, yielding a clearer understanding of their influence on material 

characteristics and behavior. The methodology behind the molecular inputs is thoroughly 

described in a subsequent section. 

 In this study, the density functional theory (DFT) computations were conducted using 

the DMol3 code, part of the Material Studio® 2020 software developed by BIOVIA 

Corporation. This code employs localized numerical orbitals as basis functions and can predict 

the energy and structure of atoms without any experimental data inputs (Delley 1995, 2000; 

Moumeni et al. 2023; Yasmin et al. 2023). To improve upon the limitations of the LDA in 
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accurately predicting bond energies and equilibrium distances, the GGA with the PBE method 

was used to treat the correlation (Dal Corso et al. 1996; Perdew et al. 1996). The GGA 

functional is known for its reliable numerical behavior and is commonly employed in DFT 

methodology. The computations were performed using the high-quality DNP basis set, 

including hexadecapole for multipolar expansion. Using a numerical basis set and precise DFT 

spherical atomic orbitals to mitigate any potential basis set superposition effects and enhance 

the accuracy of the system description, even for weak bonds. To optimize computational 

performance and achieve convergence efficiently, a thermal smearing of 5 ×  10−3 Ha was 

utilized. Additionally, we set the density at 0.2 charges and 0.5 spins, respectively, to improve 

the overall computational efficiency. These computational approaches contributed to a more 

reliable and accurate analysis of the system under investigation. In addition, for the graphene-

based compounds, we employed specific models to simulate their structures. The graphene 

(Gr) model contained 92 atoms and was adopted from previous studies (Legarreta-Mendoza et 

al. 2019). The model of graphene oxide (GO) consisted of 114 atoms, which include two epoxy 

groups (C − O − C), two hydroxyl groups (−OH), and four carboxyl groups (−COOH) (Tabari 

and Farmanzadeh 2020). For reduced graphene oxide (rGO), a model of 93 atoms with the 

charge set at −2, where oxygen atoms bonded to 2 carbon atoms to represent the C − O − C 

group (Shi et al. 2020). After geometry optimization, energy computations were performed 

utilizing a conductor-like screening model for real solvents (COSMO-RS) solvation with a 

dielectric constant of 78.54, representative of water (Klamt 2018), to generate COSMO files. 

These files were subsequently leveraged to calculate sigma profiles (σ-profiles).  

III.2.3. Machine learning models 

 This study aimed to identify polyaniline/graphene-based nanocomposites with high 

electrical conductivity and gas-sensing solid capabilities for ammonia, toluene, and benzene. 

To achieve this, we evaluated eight different ML algorithms concurrently, including simple 

linear models such as MLR, MLNR, DT, RF, GBM, k-NN, SVR, and ANN.  

 These ML algorithms, including MLR, MLNR, DT, RF, GBM, K-NN, SVR, and ANN 

models, were all implanted and directly programmed using the JMP® statistical software 

(version 16). To optimize the model hyperparameters, we employed several techniques, 

including stepwise parameter variation for MLR to achieve the smallest value of root mean 

squared error (RMSE), varying the number of splits between 1 and 100 for DT, using default 

settings with 100 trees for RF and GBM; performing k-NN regression for all k-values of 10; 

and adjusting the neuron’s number in the first hidden layer of ANNs between 5 and 25. 
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Additionally, to further optimize the performance of the ANNs, we performed further 

adjustments by varying the configuration of neurons in the second hidden layer, along with 

their activation functions. These refinements were accomplished through a conventional 

iterative approach, systematically seeking the most effective settings (Matsukawa et al. 2021) 

through a seven-level factorial design, which evaluated 25 two-hidden layer configurations. 

All other software options in JMP® 16 were kept as default. 

III.2.4. Criteria for model evaluation 

 To analyze the reliability and applicability of the developed ML models, a k-fold cross-

validation technique was employed (Stone 1976). In this strategy, the dataset is divided into 

k=5 subsets of equal size, one of which serves as the test set, while the remaining k-1 subsets 

form the training set, which also includes the validation set. The primary objective of this 

technique is to train the model using different subsets of the data and evaluate its performance 

using the held-out test set. By repeating this process k times, we can estimate the model's 

performance using data not included in the specific fold. The final model is then selected based 

on the parameter set that provides the lowest average error across all k iterations. This method 

effectively prevents overfitting and gives a more thorough assessment of the models' capacity 

to adapt to new data. 

 Moreover, various metrics were employed to assess the models' reliability. These 

metrics encompass root mean square error (𝑅𝑀𝑆𝐸), coefficient of determination (𝑅2), the 

standard deviation (𝐴𝑆𝐷), average absolute relative deviation (𝐴𝐴𝑅𝐷), and Mean Absolute 

Error (𝑀𝐴𝐸), which are determined through Eq. (1) – Eq. (5). In these equations, 𝑌𝑒𝑥𝑝, 𝑌𝑝𝑟𝑒𝑑, 

and �̅� are utilized to denote the target properties' experimental, predicted, and average values, 

respectively. The symbol 𝑁 represents the total number of data points in the datasets. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)2𝑁

1

𝑁
 Eq. (9) 

𝑅2 = 1 −
∑ (𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)2𝑁

1

∑ (𝑌𝑒𝑥𝑝 − �̅�)2𝑁
1

 Eq. (10) 

𝐴𝑆𝐷 = √
∑ (𝑌𝑝𝑟𝑒𝑑 − �̅�)2𝑘

1

𝑁
 Eq. (11) 

𝐴𝐴𝑅𝐷 (%)  =  
100 

𝑁
× ∑

|(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑒𝑥𝑝)|

𝑌𝑒𝑥𝑝

𝑁

1

 Eq. (12) 
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𝑀𝐴𝐸 =
1

𝑁
∑|𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑|

𝑁

1

 Eq. (13) 

 Although all of these metrics are generally useful for evaluating model accuracy, it was 

found that the RMSE is mainly affected by a small number of highly inaccurate predictions. In 

practical applications, such predictions can have significant consequences. Therefore, RMSE 

has been adopted as the primary metric for quantifying accuracy in this study, in which the 

analysis of the current data sets indicates that the RMSE provides a conservative estimate of 

the model's performance, making it a suitable choice for evaluating the accuracy of the 

developed models. 

III.2.5. Artificial neural network  

 Upon evaluating the constructed models, the most effective model, ANN, was chosen 

for interpretation. The hidden neurons within layers 1 and 2, denoted as 𝐻𝑛,𝑙 and 𝐻𝐻𝑛,𝑙 

respectively, are mathematically represented by Eq. (14) and Eq. (15). The weights between 

neurons m and n, denoted as 𝑊𝑚,𝑛,𝑙, along with the biases of neurons (b), are specified in the 

equations. The hyperbolic tangent function (tanh) utilized in Eq. (14) and Eq. (15) confines the 

neuron's activation or deactivation values within the range of [-1, 1]. Ultimately, the ANN 

model's output response (𝑦𝑝𝑟𝑒𝑑) is determined through Eq. (16), derived from Eq. (14) and Eq. 

(15) (Haykin 2009; Lemaoui et al. 2021). 

𝐻𝑛,𝑙 = 𝑡𝑎𝑛ℎ (∑(𝑊𝑚,𝑛,𝑙)(𝐼𝑚) +

𝑁

𝑛=1

𝑏𝑛,𝑙) Eq. (14) 

𝐻𝐻𝑛,𝑙 = 𝑡𝑎𝑛ℎ (∑(𝑊𝑚,𝑛,𝑙)(𝐻𝑛,𝑙) +

𝑁

𝑛=1

𝑏𝑛,𝑙) Eq. (15) 

𝑌𝑝𝑟𝑒𝑑 = ∑(𝑊𝑚,𝑛,3)(𝐻𝐻𝑛,2) +

𝑁

𝑛=1

𝑏𝑛,3 Eq. (16) 

 The optimization process during ANN training involved the implementation of the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, well-regarded for its efficacy in 

handling datasets. To ascertain the suitability of the dataset for training ANNs, a meticulous 

evaluation was conducted, considering factors such as the model's complexity, dimensionality 

of the input space, and intrinsic relationships within the data. Despite the considerable number 

of data points, we underscored the significance of scrutinizing the distribution across training, 

validation, and testing sets. To gauge the model's generalization performance, we employed 

appropriate cross-validation techniques, ensuring a robust assessment of the ANN training 
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efficiency. The effectiveness of training ANNs with a specific number of hidden neurons 

underwent comprehensive testing and cross-validation procedures. This rigorous validation 

process guarantees the models' robustness and their ability to generalize effectively to new, 

unseen data. For internal validation, a k-fold of 5 was adopted, and an ANN network learning 

rate of 0.10 was set, employing squared penalty optimization [∑(𝑌𝑒𝑥𝑝 − 𝑌𝑝𝑟𝑒𝑑)
2

] to enhance 

learning stability. The model weights were initialized randomly to ensure diversification in the 

preliminary state and prevent convergence to local minima. A maximum of 1,000 epochs were 

carried out throughout the training process, and early stopping was incorporated to avoid 

overfitting. The training was stopped if the validation loss did not improve in consecutive 

epochs. The model with the lowest achieved Mean Squared Error (MSE) value was chosen as 

the best, while all other settings in JMP 16 Pro® remained at their default values. 

III.2.6. Applicability domain analysis 

 To determine the outliers in the datasets and establish the range of molecules/systems 

for accurate predictions, an applicability domain (AD) evaluation was conducted. The AD 

approach relies on two key specifications, namely, the leverage values ℎ𝑖, and the 𝑆𝐷𝑅. The 

AD range is defined as 0 < ℎ𝑖 < ℎ∗, and –3 < 𝑆𝐷𝑅 < +3. The critical leverage value ℎ∗ and the 

leverage value ℎ𝑖  are determined using Eq. (17), Eq. (18), and Eq. (19), respectively. A matrix 

represents the input parameters considered for this study 𝑥𝑖 of dimensions 1 × 𝐷 while 𝐷 is the 

number of input parameters. The training data points are represented by a matrix 𝑉 of 

dimensions 𝑁 × 𝐷, where 𝑁 is the total number of data points in the datasets, moreover, the 

superscript "T" signifies the transpose of matrices (Tropsha et al. 2003; Almi et al. 2020). 

𝑆𝐷𝑅 =
𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑒𝑥𝑝

√∑ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑒𝑥𝑝)2𝑁
𝑚=1

𝑁

 
Eq. (17) 

ℎ𝑖 = 𝑥𝑖(𝑋T𝑋)−1 ∗ 𝑥𝑖
T Eq. (18) 

ℎ∗ = 3(D+1)/N Eq. (19) 

 The William plot is widely used to represent the applicability domain (AD) visually due 

to its simplicity (Tropsha et al. 2003; Mitra et al. 2010). It involves plotting the 𝑆𝐷𝑅 versus ℎ𝑖 

values to determine the AD coverage. the AD coverage is calculated using the following 

equation Eq. (20), where 𝑁𝑖𝑛𝑠𝑖𝑑𝑒 refers the count of data points that lie within the specified 

boundaries, while 𝑁𝑡𝑜𝑡𝑎𝑙 represents the total number of data points considered for analysis. 

𝐴𝐷𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑖𝑛𝑠𝑖𝑑𝑒

𝑁𝑡𝑜𝑡𝑎𝑙
 × 100 Eq. (20) 
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III.3. Results and discussion  

III.3.1. Database treatment and visualization 

 To develop accurate ML-based prediction models, it is necessary to visualize and 

analyze the constructed datasets to investigate the correlations and structures of each input. The 

collected datasets for both electrical conductivity and gas sensing capabilities of 

PANI/graphene nanocomposites involve several forms of nanocomposites based on various 

parameters such as aniline concentrations, oxidant types and concentrations, graphene types, 

and loading, dopant types and concentrations, and additive types. Including such 

comprehensive and diverse data is essential for developing reliable prediction models. The 

datasets consist of graphene-based nanofillers, including Gr, GO, and rGO. The commonly 

used oxidants and dopants for PANI/graphene nanocomposite fabrication are ammonium 

persulphate and hydrochloric acid, respectively. The loading of graphene varies from 0 to 50 

wt%, with most loadings being between 0.1 to 3 wt%, although exceptional cases of high 

loading rates were noticed for GO fillers. Moreover, more information has been gathered about 

the concentrations of aniline monomers/oxidants, such as APS or potassium persulphate (KPS), 

which range from 10-3 to 2 M, with the majority of the concentrations ranging between 0.5 to 

1 M. The aniline monomers/dopants include 9 different doping agents with concentrations 

ranging from 0.1 to 10 M, with most concentrations of 1M. We also observed high 

concentrations of formic acid as a dopant (10 M), which is not typically applied in experiments. 

The additives vary from organic solvents surfactants to nanoparticles, with different 

concentrations. The datasets underwent essential preprocessing steps to enhance the accuracy 

and reliability of ML models for predicting the performance of PANI/graphene 

nanocomposites. These steps encompassed handling missing data, detecting and removing 

outliers, and normalizing data to ensure equitable consideration of each input variable in the 

analysis. For instance, the deliberate selection of ammonia, benzene, and toluene as selected 

gases in this study was grounded in their prevalence in industrial and environmental contexts, 

aligning them closely with gas-sensing applications. Their distinct chemical properties permit 

an exploration of the versatility of polyaniline/graphene-based nanocomposites across diverse 

chemical environments (Wang et al. 2016; Tanguy et al. 2018). Moreover, the extensive 

literature on these gases serves as a robust foundation for comparative analysis, contributing 

meaningfully to existing research and advancing the understanding of gas-sensing materials. 

The practical significance of ammonia, benzene, and toluene in real-world applications, 

including environmental monitoring and industrial processes, further justifies their selection 

for in-depth investigation. While recognizing the importance of other gases, our focused 
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exploration of ammonia, benzene, and toluene enables valuable insights into the materials' 

performance within the defined scope and objectives of this study.  

Consequently, the application of such preprocessing steps is crucial for developing 

accurate prediction models by reducing noise and improving the reliability of results. The 

comprehensive information gathered about the inputs forms the basis for building highly 

accurate and reliable ML models. Such models aid in the design and optimization of new and 

innovative materials. Thus, the use of advanced visualization and data preprocessing 

techniques along with comprehensive datasets is essential for developing accurate prediction 

models. 

III.3.2. Input selection   

 Input selection is a critical process that selects the key features that contribute most to 

the PANI/graphene systems. As mentioned earlier, the input variables were chosen based on 

the design principles of nanocomposites and the requirements of experimental operations. 

Although the number of variations for inputs, such as monomers, oxidants, and graphene fillers, 

is limited, incorporating them as molecular inputs into the model is still essential. This 

approach ensures that the model's complexity does not significantly increase and results in 

overfitting. However, using various additives in the systems can dramatically impact their 

material properties. Therefore, it is crucial to include the additives as molecular inputs in the 

model to account for these impacts properly. The following section will analyze the σ-Profiles 

of some selected additives and other features. This analysis will better understand the 

proportion of each input variable to the PANI/graphene systems' performance and behavior. 

III.3.2.1 σ-Profiles analysis 

 The analysis of the additives in terms of molecular inputs via σ-Profiles offers a 

comprehensive understanding of the chemical makeup and behavior of the 

polyaniline/graphene systems. This technique provides a holistic view of the molecular 

interactions and composition, offering a more in-depth analysis than other methods. Indeed, 

the analysis of the σ-Profiles can provide valuable insights into the polarization and 

concentration of specific atoms within the nanocomposites, which can, in turn, inform their 

performance. By examining these profiles, we can gain insights into the distribution and 

arrangement of the atoms within the nanocomposites, which can be crucial in understanding 

how they interact and contribute to the material's properties. Therefore, this analysis can be a 

valuable tool in developing and optimizing polyaniline/graphene-based systems. Furthermore, 

the observed peaks in the σ-Profiles provide valuable information concerning the polarity and 
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concentration of specific atoms within a molecule. Increased peak heights indicate higher 

concentrations, while the peak location offers insights into the corresponding polarity 

characteristics (Torrecilla et al. 2010). This analysis helps identify "polar" molecules, 

characterized by substantial peaks at σ values exceeding ±0.008 e/Å2 (Adeyemi et al. 2020). 

In addition, the utilization of σ-Profiles offers a unique perspective into the relationships 

between organic components. Unlike conventional approaches that primarily focus on atom 

categories and their correlations, such as group contribution methodology or molecular 

fingerprinting, the σ-Profiles comprehensively depict molecules as assemblies of charged 

surface segments, offering a quantitative definition (Abranches et al. 2022). The use of σ-

Profiles offers several advantages over other molecular inputs, including HOMO energy, 

LUMO energy, and topological indices. These profiles are an intuitive and easily 

understandable analysis tool with a robust quantum chemical foundation. σ-Profiles offer a 

unique capability to capture polarizability and asymmetric electron densities arising from 

covalent bonds between atoms with differing electronegativities. These attributes make σ-

Profiles particularly valuable for characterizing non-covalent interactions between molecules 

and properties that depend significantly on intermolecular interactions (Awaja et al. 2023; 

Lemaoui et al. 2023b, a), such as electrical conductivity. By utilizing σ-Profiles, we can gain 

valuable insights into the molecular interactions that govern the behavior of nanocomposite 

materials, leading to advancements in material design and applications in various fields 

(Boublia et al. 2022b). An additional advantage of σ-Profiles lies in their capability to 

characterize molecules of varying sizes, facilitated by their unnormalized histograms 

comprising 61 points within the σ value range of [−0.030, +0.030] e/Å2(Boublia et al. 2022c). 

This inherent property ensures a consistent number of inputs for machine and deep learning 

applications, as it remains unaffected by variations in the molecular structure. Analyzing 

additives in the PANI/Gr system using σ-Profiles provides a comprehensive view of their 

chemical composition and behavior. However, simplifying this complexity, even with 61 

dimensions of σ-Profiles, may overlook crucial details essential for a comprehensive system 

understanding. The decision to preserve the full complexity of σ-Profiles without reduction 

ensures complex details about the diverse contributions of different additives, aligning with 

principles of interpretability and specificity in this analysis. Additionally, reducing 

dimensionality carries the risk of compromising the ability to distinguish between various 

additive mixtures, a critical consideration for our comprehensive analysis. Therefore, the 

current dimensionality, including 61 dimensions dedicated to σ-Profiles, is a judicious choice, 
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achieving a balance that ensures a comprehensive representation of the system. Figure III.4 (1) 

presents a graphical representation of a series of representative additives modeled in this study. 

The σ-Profiles of key components, such as the aniline monomer, two oxidants, three 

representative graphene fillers, and three dopants were also analyzed and graphically displayed 

in Figure III.4 (2).  

1)   

A1) B1) C1) 

   
D1) E1) F1) 

   
2)   

A2) B2) C2) 

   
Key: 

Colors:       highly positive          slightly positive          neutral          slightly negative        highly negative 

Atoms:     carbon    hydrogen    oxygen    zinc     titanium     tin     nitrogen     chloride     sulfur      sodium      potassium 

Figure III.4. COSMO-RS molecular structures and σ-Profiles of selected components: 1) 

Various additives (A1-F1), and 2) Aniline monomer, two oxidants, graphene fillers, and three 

dopants (A2-C2). 

  Upon observing Figure III.4, it becomes evident that the σ-Profiles can be classified 

into three distinct regions, each delineated by the electrostatic properties of the molecular 
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surface. These regions are identified as the hydrogen bond donor (HBD) region (−0.030 <

σ < −0.008 e/Å2), the non-polar region −0.0075 < σ < +0.008 e/Å2), and the hydrogen 

bond acceptor (HBA) region (+0.008 < σ < +0.030 e/Å2)(Lemaoui et al. 2020, 2022; Uka 

et al. 2023). As depicted in Figure III.4, the HBD, non-polar, and HBA regions are clearly 

distinguished using vertical dashed lines. As described earlier, the peaks in the σ-Profile 

include more of a measure of the relative concentration of different atom types within the 

molecular system, therefore revealing underlying molecular insights into the behavior of 

compounds. The additives used in these systems can vary greatly, including solvents, inorganic 

nanoparticles, and surfactants. Solvents play a key aspect in the preparation and effectiveness 

of polyaniline/graphene systems. They serve a dual purpose as they are employed both for 

dissolving the polyaniline and graphene and for doping/dedoping the system, thereby affecting 

its conductivity. Additionally, solvents can also serve as washing agents. The choice of solvent 

has a major impact on the properties of the system, including its stability, dispersion, and 

conductivity (Goswami et al. 2023). Each of these solvents has unique properties and 

characteristics, such as boiling point, solubility, and polarity, which can affect the properties 

of the polyaniline/graphene system. In the case of water (H2O), acetone (C3H6O), and methanol 

(CH3OH), as shown in Figure III.4 (A1), The σ-Profile graphs exhibit wide peaks that span 

across both the HBA and HBD areas, showing the potential of these solvents to act as both 

HBAs and HBDs, this phenomenon is primarily governed by the concentration and polarization 

of the partially positive hydrogen (H𝛿+) and partially negative oxygen (O𝛿−) atoms in the 

molecule, respectively. The sigma profile graphs for xylene (C8H10), ethylene glycol (C2H6O2), 

and m-cresol (C7H8O) show that these solvents also have the potential to act as both HBAs and 

HBDs, with distinct peaks and regions in their profiles (Figure III.4 (B1)). The exact nature of 

these peaks and regions depends on the specific functional groups in the molecule, includes the 

−OH group in ethylene glycol and the phenol group in m-cresol. Furthermore, dimethyl 

propylene urea (C6H12N2O), ethyl ether ((C2H5)2O), and dimethylformamide (C3H7NO) reveals 

small peaks in the HBA region and minimal or no presence in the HBD region (Figure III.4 

(C1)). The presence of functional groups, such as amines and ethers, accounts for this 

observation, for instance, in the case of C3H7NO, it can be attributed to the nitrogen (N) atom, 

which has a relatively high electronegativity, allowing it to attract electrons and partially 

negative charges. However, these solvents have a weak HBA ability, suggesting that they can 

be classified as intermediate polar with different solubility properties. Further, the σ-Profile of 

ethanol (C2H5OH) and glycerol (C3H8O3) suggest that they can act as both HBAs and HBDs, 
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with distinctive peaks and regions in their profiles determined by the functional groups in the 

molecule. On the other hand, chloroform (CHCl3) is dominated by a peak close to the HBA 

region, which is primarily attributed to the presence of a highly polarizable chloroform 

molecule due to the fact of a highly electronegative chlorine (Cl) atom in the molecule Figure 

III.4 (D1). This polarizability enables chloroform to act as an effective HBA, leading to the 

observed peak close to the HBA region. Inorganic nanoparticles are essential in controlling the 

properties and behavior of polyaniline/graphene systems, promoting oxidation and improving 

the material's conductivity for practical functionality. In terms of their σ-Profiles, as shown in 

Figure III.4 (E1), tin oxide (SnO2), zinc oxide (ZnO), and titanium oxide (TiO2) show unique 

peaks and regions in both HBD or HBA regions, which can influence the interactions between 

the polyaniline and graphene components. For example, due to its excellent conductivity-

promoting properties, SnO2 is a widely used oxidant in polyaniline/graphene systems. It is a 

wide bandgap semiconductor made up of tin and oxygen atoms and is commonly used in 

various fields, including catalysis, gas sensing, and environmental remediation (Arora et al. 

2012). The σ-Profile of SnO2 shows broad peaks in both the HBD and HBA areas, indicating 

that it can act as both an HBD and HBA. These peaks are primarily attributed to hydroxyl 

groups and oxygen atoms appearing on the SnO2 surface. The −OH groups can act as HBDs 

by donating a hydrogen atom, while the oxygen atoms can act as HBAs by accepting a 

hydrogen atom. However, it is essential to note that these specific characteristics can vary 

depending on various factors, such as the nanoparticle synthesis process, particle size, and 

crystal structure (Krithika and Balavijayalakshmi 2022). 

Moreover, considering surfactant substances as additives in these systems, it is essential 

to note that their σ-Profile, as represented by sodium dodecyl sulfate (SDS), sodium 

cetyltrimethylammonium bromide (CTAB), and sorbitan monooleate (SMO), will typically 

have a larger neutral region, indicating that they are not likely to participate in hydrogen 

bonding interactions with other substances (Figure III.4 (F1)). However, some HBD or HBA 

regions may be present, suggesting that these substances can form weak hydrogen bonds with 

other molecules due to their unique molecular structure. However, they are not typically 

considered strong HBDs or HBAs. Surfactant molecules tend to interact more strongly with 

each other through hydrophobic and VDW interactions rather than with H bonding with other 

molecules, owing to the polar head groups and nonpolar tails in their molecular structure. 

Despite not directly participating in hydrogen bonding interactions, surfactants are pivotal in 

improving the dispersion, stability, and characteristics of polyaniline/graphene 

nanocomposites, making them an essential component of these materials.  
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 In the context of the statement provided, the σ-Profiles also yield significant insights 

into these components' molecular interactions and behavior, which are invaluable contributions 

to advancing the field. The key components analyzed in this study include an aniline monomer, 

two oxidants, three representative graphene fillers, and three dopants (Figure III.4 (2)). Even 

though these components may not be directly included as molecular inputs, their σ-Profiles 

offer a deeper understanding of their electronic structure and interactions with the surrounding 

environment. By analyzing Figure III.4 (A2), aniline, for example, can act as an HBD and an 

HBA. The HBD and HBA properties of aniline are essential in the polymerization process, as 

they allow for hydrogen bond creation between aniline monomers, which can facilitate the 

polymerization reaction. Specifically, the density of electrons on the nitrogen atom and the 

benzenoid and quinoid unit of aniline can contribute to its ability to undergo oxidative 

polymerization with oxidants, including ammonium persulfate (APS) or potassium persulfate 

(KPS). Alternatively, the σ-Profiles of APS and KPS can offer valuable information on their 

reactivity and capability to oxidize aniline monomers. 

The electron density on the sulfate groups of these oxidants, as revealed by their σ-

Profiles, can facilitate the H bond creation with the electron's lone pairs on the aniline nitrogen 

atom. Furthermore, the σ-Profiles can indicate the ability of these oxidants to accept electrons 

during the oxidation process. In the case of graphene and its derivatives (Figure III.4 (B2)), σ-

Profile can give insight into the interactions between the graphene sheets and the surrounding 

solvent or other molecules. For Gr, σ-Profile shows a uniform electron density distribution 

around the sheet, with a slight electron density depletion at the edges. This is because the 

carbon-carbon bonds in Gr are powerful, and the electron density is uniformly dispersed over 

the sheet. 

In contrast, GO shows a more significant variation in electron density, as the O-

containing functional groups on the sheet surface can create regions of higher or lower electron 

density. These functional groups can interact with solvent molecules or other molecules in 

solution through hydrogen bonding or other interactions, which can affect the stability and 

reactivity of the GO (Prías Barragán et al. 2020). For rGO shows a decrease in electron density 

compared to GO, as the reduction process removes some of the oxygen-containing functional 

groups from the sheet surface. This can lead to a uniform electron density around the sheet, 

similar to Gr (Masson et al. 2017). Doping is a process in which impurities, or dopants, are 

intentionally introduced into a material to modify its properties. Hydrochloric acid (HCl), 

sulfuric acid (H2SO4), and perchloric acid (HClO4) are widely recognized and used as dopants 

to modify the electronic and structural properties in the case of the polyaniline/graphene 



Chapter III                                                                  

77 | P a g e  
 

nanocomposite systems. When examining the σ-Profile (Figure III.4 (C2)) of HCl, H2SO4, and 

HClO4, it can be observed that there are regions of high electron density around the sulfur, 

chlorine, and oxygen atoms. These regions of high electron density indicate that these atoms 

have a partial negative charge and are, therefore, capable of acting as HBAs. Therefore, these 

molecules can participate in H-bonding interactions with suitable donor molecules, which can 

play a key function in chemical reactions and the behavior of these compounds in various 

applications. Overall, σ-Profiles reveal important information about the electronic structure and 

interactions of key components in conducting polymer composites like polyaniline/graphene. 

This analysis can assist in designing and enhancing the material properties in wide variety of 

applications, including electronics and energy storage materials. Additionally, accurately 

predicting the hydrogen bonding ability of these molecules based on its σ-Profile can also be 

beneficial for gas sensing applications. This can aid in the discovery and development of gas 

sensors with improved sensitivity and selectivity, leading to better detection and identification 

of various gases in industrial and environmental settings. 

III.3.2.2. Input contribution analysis 

To understand the individual influence of each parameter on the nanocomposites' 

performance, the relative contributions of input parameters in the ML models and their effects 

on electrical conductivity and gas sensing responses were thoroughly examined. We utilized 

the "predictor screening" tool available in JMP Pro® SAS 16, incorporating the bootstrap forest 

approach, to evaluate the significance of variables in our predictive model. This approach 

involves generating multiple decision trees from different data subsets and then combining 

their results to recognize the most influential predictors in the model. To ascertain the 

significance of each feature, the model's accuracy is evaluated after removing individual 

features. The impact of each parameter is then visually represented in Figure III.5.  
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C) ln SR C7H8  

  
D) ln SR C6H6  

  

Figure III.5. Relative contribution of input parameters to accuracy (A) electrical 

conductivity, (B) NH3, (C) C7H8, and (D) C6H6 Sensing response models. 

To achieve high electrical conductivity and gas sensing response values, it is essential 

to understand the influences of synthesis and operational conditions and use them to reduce the 

generation of undesired properties. For electrical conductivity (Figure III.5 (A)), the oxidant 

amount, aniline amount, doping agent concentration, and operating temperature were the most 

critical features, followed by graphene filler type with corresponding loading and synthesis 

conditions, including temperature and time. This indicates that synthesis and operating 

conditions play important roles in the electrical conductivity property. For instance, According 

to Zheng et al. (Zheng et al. 2021), PANI's electrical conductivity increases with the rise in the 

oxidant (APS) molar ratio, attributed to higher concentrations of cation radicals and increased 

PANI chain length. These factors contribute to the enhancement of interchain transfer in 
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electrical conductivity. However, an increase in APS concentration above 0.5 M leads to the 

production of phenazine, which reduces the electrical conductivity (Jelmy et al. 2013; Reza et 

al. 2019). Additionally, Nazari et al. (Nazari and Arefinia 2019) demonstrated that the 

conductivity of PANI shows an initial increase with an aniline amount of up to 0.15 M, but it 

decreases with further additions of aniline. Moreover, the rise in PANI particle conductivity 

with Oxi/Ani ratio can be attributed to an augmentation in both the crystalline regions and the 

doping level of microstructures. Extensive investigations into the impact of diverse dopants on 

electrical conductivities have been conducted, revealing a positive correlation between each 

dopant's concentration and PANI's electrical conductivity (Rahman et al. 2021). Significantly, 

the electrical conductivity of PANI experiences a notable decline with increasing the 

DBSA/Ani ratio, indicating that the intramolecular mobility of charged species along the chain 

exerts a more substantial impact on electrical conductivity than the intermolecular hopping of 

charge carriers within crystalline regions. However, at very high DBSA concentrations 

(DBSA/Ani= 3), a more pronounced reduction in conductivity can be achieved by 

simultaneously reducing both the doping level and crystallinity (Neelgund and Oki 2011). 

Additionally, the electrical conductivity of PANI/Gr nanocomposites was evaluated across 

different operating temperatures and varying loadings of graphene. The observed enhancement 

in conductivity with increasing temperature can be attributed to thermally-assisted charge 

carrier hopping, a characteristic commonly found in disordered materials. Al-Hartomy et al. 

(Al-Hartomy et al. 2019) assessed the electrical conductivity of PANI-Gr systems at various 

temperatures and diverse Gr loadings. Incorporating Gr into the PANI matrix remarkably 

enhances the composite's conductivity, attributed to the synergetic interactions between PANI 

and Gr phases involving charge transfer between delocalized P-orbitals. The system's 

conductivity demonstrates an increasing trend up to a 6 wt% content of Gr in PANI, after which 

it exhibits a subsequent decrease (Badi et al. 2016; Al-Hartomy et al. 2019).  Moreover, the 

synthesis time and temperature can also impact the size and structure of the PANI/Gr 

nanocomposites, which in turn affect the electrical conductivity. Longer synthesis times and 

lower temperatures can lead to larger and more well-defined PANI/Gr systems, typically 

exhibiting higher electrical conductivity. The gas concentration is the most significant input 

affecting all gas sensing properties, including NH3, C7H8, and C6H6. As gas concentration 

decreases, a stepwise reduction trend is observed in the actual sensor resistance values. 

Additionally, the sensor's resistance decreases with rising temperature. Higher gas 

concentrations result in gas molecules covering the largest surface area of the sensor, 

promoting an increased surface reaction. This, in turn, leads to higher resistance and a more 
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pronounced response from the sensor. Conversely, lower gas concentrations result in fewer gas 

molecules adsorbing on the sensor's surface, diminishing surface reactions and reducing the 

sensor's resistance (Tanguy et al. 2018). Additionally, for NH3 gas sensing response (Figure 

III.5 (B)), the most critical features contributing to high sensitivity are the dopant amount and 

synthesis time. These input variables are followed by aniline amount, graphene filler type with 

its corresponding loading, dopant type, and synthesis temperature. Doping PANI changes it 

from an insulator to a conductor, increasing its sensitivity to gases. This phenomenon arises 

from the protonation/deprotonation process of PANI, wherein the introduction of a proton acid 

stabilizes the regular and output resistance response curve. Consequently, the system's 

conductivity and NH3 adsorption capacity exhibit an increase (Li et al. 2022a, 2023). For 

instance, during the in-situ polymerization of PANI with the addition of HCl as a dopant, a 

doping reaction (protonation) takes place, leading to neutral PANI molecules gaining protons 

and forming N+−H bonds. Subsequently, as NH3 molecules adsorb on the PANI surface and 

interact with one another, PANI loses protons and converts into an emeraldine base, resulting 

in a sharp increase in resistance (deprotonation) and NH3 transforming into ion (NH4
+) 

(Fratoddi et al. 2015b). According to a previous study, the response values of five different 

samples of 1 wt% PANI/rGO produced from varying HCl molarities (0.1, 0.5, 1, 1.5, and 2 M) 

exhibit varying trends, with response values changing with HCl concentration, particularly at 

the lowest and highest NH3 concentrations. Response values are observed to decrease on either 

side of this optimal concentration, which has been found that 1wt% PANI/rGO sensors 

prepared using a 1 M HCl concentration demonstrate good NH3 response capabilities, with 

different sensing response values increasing with increasing NH3 concentration (Kundu et al. 

2023). The introduction of GO in the PANI/GO system was observed to improve its response 

values, similar to the enhancement observed in electrical conductivity. The optimal loading of 

1 wt% GO resulted in the strongest response value, reaching 31.2 ± 1.8% (Xing et al. 2022). 

Notably, Gr has shown to play a beneficial role in C7H8 and C6H6 gases typically similar to 

NH3 sensing measurements which achieved a significantly higher maximum response 

compared to other nanocomposite samples (Xu and Wu 2020). Several experimental studies 

have demonstrated that PANI/Gr-based gas sensors are more suitable for measuring room 

temperature gases, as they are less affected by operating temperatures and maintain reliable gas 

response sensing properties (Liu et al. 2022). Additionally, it should be noted that there is a 

lack of experimental data in relation to the influence of other input variables on the sensing 

properties of C7H8 and C6H6 gases (Figure III.5 (C) and (D)). Hence, further research is 

required to comprehensively understand the behavior of PANI/Gr nanocomposites towards 
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these gases and to identify the crucial input variables that can be optimized to improve gas 

sensing properties. Such studies could facilitate the advancement of more effective and reliable 

gas sensors for detecting C7H8 and C6H6, which are important industrial pollutants. Therefore, 

in addition to synthesis and operational conditions, the σ-Profiles of additives play a pivotal 

role in predicting the electrical conductivity and gas sensing responses of PANI/Gr systems. 

These additives exert a substantial influence on both the preparation and performance of 

nanocomposites. The types of additives used in PANI/Gr systems can vary greatly, including 

solvents, inorganic nanoparticles, or surfactants. Interestingly, for both electrical conductivity 

and gas sensing response values, the nonpolar regions of the additive molecules were observed 

as the most significant inputs. This can be attributed to the fact that most additives act as 

solvents (e.g., H2O, C3H6O or CH3OH) as washing agents to remove any unreacted aniline or 

other compounds from the system. This study imparts invaluable insights into the structural 

features of PANI/Gr nanocomposites, enabling the optimization of both electrical conductivity 

and gas sensing response values. By prioritizing the significance of synthesis and operational 

conditions, along with additives possessing specific σ-Profile features, the design of new 

PANI/Gr nanocomposites with exceptional electrical conductivities and NH3, C7H8, and C6H6 

sensing responses becomes feasible. This approach facilitates the selection of more focused 

and efficient PANI/Gr prospects, presenting the opportunity for the advancement of highly 

effective gas sensor technologies. 

III.3.3. ML algorithms analysis  

 After analyzing the input parameters, eight different ML algorithms were utilized to 

predict the electrical conductivity and gas sensing responses (NH3, C7H8, and C6H6) of 

PANI/Gr nanocomposite systems. These algorithms include MLR, MLNR, DT, RF, GBM, k-

NN, SVR, and ANN, each of which requires the selection of hyperparameters to ensure optimal 

performance (MacKay 1996). These algorithms include MLR, MLNR, DT, RF, GBM, k-NN, 

SVR, and ANN, each of which requires the selection of hyperparameters to ensure optimal 

performance. These hyperparameters were determined through train and test sets. The 𝑅2, 

𝐴𝑆𝐷, and residual error used for evaluation of the robustness and cognitive ability of each 

developed ML model. Table III.1 shows the predictive performance of the electrical 

conductivity and gas sensing response models trained by the different ML algorithms. The 

average 𝑅2 from the various models ranged from 0.616 to 0.998. As shown in Table III.1, some 

of the developed ML models demonstrated good training performance for predicting the 

different properties, while others did not achieve high accuracy. 
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Table III.1. Performance evaluation of 8 tuned ML models in train and test sets and optimum 

key parameters. 

 Electrical 

Conductivity 

Ammonia Sensing 

Response 

Toluene Sensing 

Response 

Benzene Sensing 

Response 

 R2 ASD (±) R2 ASD (±) R2 ASD (±) R2 ASD (±) 

         

MLR         

 45 parameters 37 parameters 26 parameters 25 parameters 

Train 0.9166 0.4320 0.7827 0.4692 0.9276 0.2543 0.8872 0.2161 

Test 0.8811 0.5069 0.6160 0.5779 0.7872 0.3303 0.8744 0.2693 

         

MNLR         

 73 parameters 54 parameters 37 parameters 34 parameters 

Train 0.9667 0.2642 0.9231 0.2738 0.9356 0.2361 0.9192 0.1760 

Test 0.9538 0.2947 0.8667 0.3387 0.8082 0.3039 0.9102 0.2224 

         

DT         

 42 splits 31 splits 12 splits 16 splits 

Train 0.9040 0.3781 0.8723 0.3490 0.8085 0.2617 0.9346 0.1682 

Test 0.8900 0.3835 0.8107 0.4426 0.6309 0.3013 0.9254 0.1817 

         

RF 94 trees 81 trees 70 trees 73 trees 

     

Train 0.9528 0.2548 0.9290 0.2476 0.9543 0.1630 0.9511 ±0.1679 

Test 0.9448 0.2716 0.8908 0.3210 0.8153 0.2403 0.9314 ±0.1907 

         

GBM         

 122 trees 113 trees 104 trees 98 trees 

Train 0.9562 0.2119 0.9061 0.3038 0.9137 0.2529 0.9205 0.1784 

Test 0.9477 0.2315 0.8610 0.3736 0.7663 0.3205 0.8899 0.2221 

         

k-NN         

 3 neighbors 3 neighbors 2 neighbors 2 neighbors 

Train 0.9611 0.2054 0.9693 0.1257 0.9750 0.1275 0.9550 0.1632 

Test 0.9525 0.2364 0.9203 0.1731 0.9560 0.1784 0.9245 0.1878 

         

SVR         

 C=4.84, γ=0.434 C=4.40, γ=0.495 C=4.36, γ=0.423 C=4.41, γ=0.495 

Train 0.9642 0.2282 0.9574 0.1862 0.9685 0.1369 0.9583 0.1156 

Test 0.9601 0.2313 0.9275 0.2138 0.9556 0.1451 0.9377 0.1788 

         

ANN         

 20–20 neurons 20–10 neurons 10–10 neurons 15–5 neurons 

Train 0.9850 0.1064 0.9725 0.1339 0.9877 0.0721 0.9977 0.0346 

Test 0.9776 0.1307 0.9444 0.1799 0.9692 0.1166 0.9919 0.0631 

         

To select the best model among the developed ML algorithms, a visualization of their 

prediction residual errors (𝑅𝑆𝐸) can be displayed using a violin plot, as shown in Figure III.6. 

A fatter plot in the violin plot indicates that the distribution of the prediction residual errors is 

more spread out, which suggests higher variability and potentially larger errors in the model 

predictions. Conversely, a thinner plot indicates a more centralized distribution, which suggests 

lower variability and potentially more accurate predictions.  
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B) Test 

 
Ammonia Sensing Response  
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Toluene Sensing Response  
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Benzene Sensing Response  

G) Train 
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Figure III.6. An in-depth assessment of ML model performance on electrical conductivity 

and sensing response properties for NH3, C7H8, and C6H6 predicted by different ML 

algorithms. Violin plots visually depict error probability density. Green, blue, red, and purple 

segments show train set errors, while gray segments represent test set errors. Box plots within 

each violin indicate extrema (whisker edges), interquartile range (box boundaries), and 

median (white dot) of error. 

By analyzing Table III.1 and Figure III.6, it can be observed that while MLR is one of 

the algorithms that were tested, its 𝑅2 values for the test set analysis of electrical conductivity, 
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NH3, C7H8, and C6H6 models are only 0.881, 0.616, 0.787, and 0.874, respectively. 

Furthermore, the corresponding 𝐴𝑆𝐷 of the testing sets is between 0.2 and 0.5. Based on these 

results, it can be confirmed that linear models are unsuitable for accurate electrical conductivity 

and gas sensing response prediction, except for very narrow ranges of conditions where the 

problem might be nearly linear. 

Furthermore, the nonlinear ML models examined demonstrated significantly superior 

effectiveness to the linear ones. Based on the evaluation of the different nonlinear models, it 

was found that the k-NN, SVR, and ANN models provided lower 𝐴𝑆𝐷 values compared to the 

tree-based and other models. However, when considering the testing set standard deviations, 

the ANN model outperformed the k-NN or SVR models. This, along with the high 𝑅2 value of 

over 0.98, and the excellent fit demonstrated by the ANN model makes it the best candidate 

for further hypertuning. Hence, the ANN algorithm was selected for further optimization. 

III.3.4. ANN Hypertuning 

III.4.4.1 Second hidden layer 

 In recognizing the pivotal role of hyperparameter optimization experiments for diverse 

ML algorithms, we deliberately directed our focus toward ANN optimization. This deliberate 

choice stems from the inherent suitability of ANN in modeling the intricate interactions within 

our datasets. The primary objective was to highlight the efficacy of ANN within the specific 

context of our study, rather than embarking on an exhaustive comparison across a diverse array 

of algorithms. Numerous studies have delved into the exploration of multiple hidden layers in 

ANNs, consistently demonstrating that the incorporation of such layers enhances prediction 

accuracy across a wide spectrum of properties (Kakkar et al. 2021; Matsukawa et al. 2021). 

This underscores the significance of considering the depth of ANN architectures to effectively 

capture and model complex relationships within datasets—a critical factor in achieving 

superior predictive performance. The capability of multiple hidden layers to capture intricate 

relationships between inputs and outputs is a key contributing factor to the improved predictive 

capabilities of ANNs.  

Achieving the optimal network architecture requires meticulous tuning of the number of 

hidden layers and neurons in each layer to suit the specific problem under investigation 

precisely. To investigate the influence of the second hidden layer's neuron count on network 

performance, we conducted a seven-level factorial design for both the first and second layers, 

with the number of neurons varying from 5 to 25. This resulted in 25 different network 

configurations, with the 5-5 architecture being the simplest and the 25-25 architecture being 
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the most intricate. Consequently, the results of this study have been meticulously showcased 

through the use of contour maps in Figure III.7, providing a comprehensive and intuitive 

representation of the findings. These maps illustrate the RMSE of the 25 ANN configurations, 

based on the training set, for predicting electrical conductivity and the three gas sensing 

response properties. 

Figure III.7 (A) shows that the two-layer ANN configuration with 20–20 neurons best 

predicted electrical conductivity, with a lower RMSE in the test set, exhibiting a value of 0.3876 

S cm-1. Regarding the gas sensing response properties, Figure III.7 (B), (C), and (D) show that 

the ANN models with 20–10, 10–10, and 15–5 neurons, respectively, outperformed other 

models and had the lowest RMSE values of 0.3170, 0.1862, and 0.0642% for ammonia, toluene, 

and benzene gases, respectively. The presented findings underscore the promising potential of 

ANNs in effectively predicting the electrical conductivity and gas-sensing response properties 

of polyaniline-graphene nanocomposites with high accuracy. 

A) 

 

B) 

 
C) 

 

D) 

 

Figure III.7. 2D Surface plots representing the RMSE values for all the analyzed ANN 

architectures in the training set for the (A) Electrical conductivity, (B) NH3, (C) C7H8, and 

(D) C6H6 Sensing response models. 

 The findings emphasize the importance of meticulous optimization of neuron count per 

layer and thoughtful selection of suitable activation functions when employing ANNs for 

predictive modeling. The configurations that demonstrated the highest accuracy and reliability 
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were the 62–20–20–1, 63–20–10–1, 63–10–10–1, and 63–15–5–1 ANN configurations, which 

are illustrated clearly and concisely in Figure III.8. Hence, this methodology can significantly 

facilitate the rational design and exploration of innovative multifunctional nanocomposite 

systems. These systems can be precisely customized to fulfill specific requirements in diverse 

applications, including electronics, sensors, and energy storage. 

 

Figure III.8. Schematic representation of the hypertuned ANN architectures (62–20–20–1, 

63–20–10–1, 63–10–10–1, and 63–15–5–1) for electrical conductivity and gas sensing 

response prediction models. 

III.3.5. Model analysis 

III.3.5.1. Error evaluation 

 Following the meticulous selection of the optimal ANN configurations, the models 

underwent a rigorous evaluation to assess their performance in predicting electrical 

conductivity properties and gas-sensing responses. As indicated in Table III.2, the ANN models 

exhibited exceptional accuracy in their predictions of the testing sets, with R2 values of 0.978, 
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0.944, 0.969, and 0.992 for electrical conductivity, ammonia, toluene, and benzene gas sensing 

response, respectively. These high R2 values are a testament to the effectiveness of the ANN 

models in capturing the complex relationships between the input features and target properties 

of polyaniline-graphene nanocomposites. However, this accuracy is critical for advancing our 

understanding of these materials. It has the prospect of influencing the design and 

implementation of novel nanocomposites for a broad spectrum of applications. 

Table III.2. Statistical parameters for evaluating the effectiveness of modeled ANNs. 

Parameter Electrical 

conductivity  

Ammonia 

Sensing response 

Toluene Sensing 

response 

Benzene Sensing 

response 

Training     

R2
train 0.985 0.973 0.988 0.998 

RMSE  0.388 0.317 0.186 0.064 

ASD ±0.1064 ±0.1339 ±0.0721 ±0.035 

MAE 0.1505 0.1893 0.1019 0.0489 

Testing     

R2
test 0.978 0.944 0.969 0.992 

RMSE  0.479 0.459 0.358 0.127 

ASD ±0.1307 ±0.1799 ±0.1166 ±0.0631 

MAE 0.1848 0.2544 0.1649 0.0892 

Total     

R2 0.984 0.967 0.983 0.996 

RMSE  0.408 0.350 0.232 0.081 

ASD  ±0.1113 ±0.1431 ±0.0812 ±0.0404 

MAE 0.1574 0.2024 0.1148 0.0572 

 To validate the performance of the ANN models, scatter plots of the training and testing 

sets were meticulously examined, as depicted in Figure III.9. Each joint scheme consists of 5 

plots, including a scatter plot and four marginal distribution plots. For instance, in Figure III.9 

(A), the gray and green-colored scatter plots demonstrate the correlation between experimental 

and predicted electrical conductivity values in both the training and testing sets. Additionally, 

the four marginal distribution plots on the top and right-hand side offer a comprehensive insight 

into the distribution of experimental and predicted values in their respective sets. The findings 

reveal excellent agreement of the ANN models, with data points mostly aligning along the y = 

x diagonal, exhibiting minimal dispersion and scattering. For the electrical conductivity model, 

as shown in Figure III.9 (A), the ANN model achieved an RMSE of 0.338 and R2 of 0.985 for 

the train set and 0.479 and 0.978 for the testing set, respectively. 

 Similarly, in the case of the ammonia gas model (Figure III.9 (B)), the ANN model 

achieved RMSE and R2 values of 0.317 and 0.973 for the train set and 0.459 and 0.944 for the 

testing set, respectively. For the gas sensing response of toluene and benzene gases, as 

presented in Figure III.9 (C) and (D), the ANN models achieved higher accuracy, with all data 
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points closely centered around the perfect fitting line and lower RMSE values of 0.193 and 

0.064 and higher R2 values, reaching 0.988 and 0.998 for the train sets and 0.350 and 0.127 and 

0.961 and 0.992 for the testing sets, respectively. These findings demonstrate the ANN models' 

exceptional performance, which suggests the models' substantial accuracy and reliability in 

predicting the conductivity and gas sensing performances of all three gases, including 

ammonia, toluene, and benzene.  

A) 

 
 

B) 

 

C) 

 

D) 

 

Figure III.9. Scatter plots for the (A) electrical conductivity, (B) NH3, (C) C7H8, and (D) 

C6H6 sensing response properties, RMSEs, and R2 are indicated in each plot. The heights of 

the marginal distributions represent the counts of data points. 

III.3.5.2. Input attribution through SHAP analysis 

In this study, the SHapley Additive exPlanations (SHAP) method was employed to 

interpret the output of the ANN, a critical step in validating model performance and unraveling 

the intricate processes underlying ANN predictions. As ANNs inherently possess a 'black box' 

nature due to their complex, non-linear interactions, understanding the individual inputs' 

influence becomes paramount for ensuring model transparency and interpretability. SHAP, 

rooted in game theory, serves as a robust framework for attributing importance scores to each 
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input feature concerning specific predictions (Meyer et al. 2022; Mosca et al. 2022; Martin and 

Audus 2023).  

To achieve this, we employed the 'Kernel Explainer' method from the SHAP toolkit in 

Python, designed to handle intricate and computationally intensive models like ANNs. This 

method utilizes a unique kernel function to compute SHAP values, allowing an in-depth 

analysis of the model by approximating the contribution of each input to the final prediction. 

The primary objective of integrating SHAP was to enhance the interpretability of the ANN, 

making its decision-making process more transparent and understandable. One significant 

advantage of SHAP is its ability to reflect the impact of each input in each sample, showcasing 

both positive and negative impacts. The SHAP values for each input were then summarized 

and ranked based on their mean values, as depicted in Figure III.10. 

A) ln k  

  
B) ln SR NH3  

  
C) ln SR C7H8  

  
D) ln SR C6H6  
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Figure III.10. SHAP input importance to accuracy (A) electrical conductivity, (B) NH3, (C) 

C7H8, and (D) C6H6 Sensing response models. 

The SHAP values for each input are summarized with a bar char are ranked according 

to the mean value of SHAP as shown in Figure III.10. Specifically, concerning electrical 

conductivity (Figure III.10 (A)), crucial inputs such as oxidant amount, aniline amount, doping 

agent concentration, and operating temperature emerged as the most critical contributors. 

Synthesis and operating conditions played pivotal roles in influencing electrical conductivity, 

with varying effects observed for different input parameters. For instance, aniline amount, 

oxidant amount, Gr filler, HCl doping agent, doping agent concentration, and synthesis time 

exhibited a positive impact on electrical conductivity, whereas systems without Gr filler (Gr[/]) 

and doping agent, GO filler, dopant volume, and other doping agents had a negative effect. The 

influence of temperature was also explored, revealing that an increase in synthesis and 

operating temperature tended to decrease electrical conductivity, aligning with both input 

contribution analysis and existing literature reports (Neelgund and Oki 2011; Jelmy et al. 2013; 

Al-Hartomy et al. 2019; Nazari and Arefinia 2019; Reza et al. 2019; Rahman et al. 2021; Zheng 

et al. 2021). Turning to NH3 gas sensing response ((Figure III.10 (C)), synthesis time and gas 

concentration emerged as pivotal inputs positively affecting the sensing response. Conversely, 

aniline and oxidant amount, camphorsulfonic acid (C10H16O4S) doping agent, dopant volume, 

and operating temperature were identified as inputs exerting a negative impact on the sensing 

response. The role of doping agents in transforming PANI from an insulator to a conductor, 

particularly through the protonation/deprotonation process, was discussed, with the impact on 

NH3 adsorption capacity well-established in the literature (Fratoddi et al. 2015b; Li et al. 2022a, 

2023). For the prediction of C7H8 and C6H6 sensing response (Figure III.10 (C) and (D)), it was 

highlighted that a lack of experimental data regarding the influence of other input features 

necessitates further research. Comprehensive studies are required to unravel the behavior of 

PANI/Gr nanocomposites towards these gases and identify crucial input variables for 
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optimization. Such endeavors hold the promise of advancing more effective and reliable gas 

sensors for detecting C7H8 and C6H6, crucial industrial pollutants. 

Conclusively, as elucidated in earlier sections, the σ-Profiles of additives play a pivotal 

role alongside synthesis and operational conditions in predicting the electrical conductivity and 

gas sensing responses of PANI/Gr systems. These additives, including solvents, inorganic 

nanoparticles, or surfactants, exert a substantial influence on both the synthesis and 

performance of nanocomposites. Intriguingly, for electrical conductivity, nonpolar regions of 

additive molecules emerged as the most significant inputs, predominantly influencing 

conductivity positively. Conversely, HBA and HBD regions were identified as exerting a 

negative impact on conductivity. This observed phenomenon can be attributed to the solvent-

like role of most additives, acting as washing agents to eliminate any unreacted aniline or other 

compounds from the system. In terms of gas sensing responses, all regions of additive 

molecules were noted to negatively affect the gas sensing response. In addition, the SHAP 

analysis also revealed that, even with 61 dimensions of σ-Profiles, other inputs played more 

crucial roles in the ANN predictions. This underscores the complexity of our system and 

emphasizes the need for a multifaceted approach. Consequently, the extensive SHAP analysis 

aligns with the input contribution analysis, shedding light not only on the intricate relationships 

between input variables and model predictions but also providing actionable insights for the 

future optimization of gas sensors. This contribution adds to the ongoing discourse, advancing 

our understanding and strategies for enhancing the performance of PANI/Gr nanocomposite 

systems. 

III.3.5.3. Applicability domain results 

 AD is a crucial theory in ML for ensuring that models generate reliable predictions. It 

refers to the space in which a model can operate with dependable accuracy, and accurate 

identification is key to informed decision-making. A standardization theory is implemented to 

identify and eliminate outliers from the training set and define inputs outside the AD in the test 

set. This process is especially critical for ANNs, complex models dependent on the range of 

molecules analyzed. Quantitative evaluation of the AD provides valuable information on the 

range of molecules for which ANNs can generate accurate predictions. The range of molecules 

or systems for which ANNs can generate accurate predictions can be determined by precisely 

defining the AD. This knowledge is invaluable across various applications, from 

electrocapacitors and gas sensors to materials science and beyond, where ANNs are 

increasingly used to model complex systems and predict outcomes (Almi et al. 2020; 
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Oluwaseye et al. 2020; Lemaoui et al. 2021). In determining the AD of ANN models, various 

methods can be applied. However, among numerous approaches, the leverage method strategy 

is the most widely employed technique for identifying outliers in datasets (Tropsha et al. 2003; 

Mitra et al. 2010). The ADs of the proposed ANNs are visually depicted in Figure III.11 using 

William's graphs, where the AD boundaries are illustrated within the range of 0 < ℎ𝑖 < ℎ∗ 

(vertical dashed line) and –3 < 𝑆𝐷𝑅 < +3 (filled-colored line) for all the models.  

A) Electrical conductivity 

 

B) Ammonia Sensing response 

 

C) Toluene Sensing response 

 

D) Benzene Sensing response 

 

Figure III.11. Applicability Domain Assessment using William Plots: (A) Electrical 

Conductivity, (B) Ammonia Sensing Response, (C) Toluene Sensing Response, and (D) 

Benzene Sensing Response Models. 

Figure III.11 (A), (B), (C), and (D) provide a helpful comparison of the applicability 

domains of various models, including the electrical conductivity model and models for sensing 

response to ammonia, toluene, and benzene. Upon examining these models, it becomes evident 

that the critical leverage of the toluene sensing model exceeds that of the other models, with 

the benzene sensing model showing the second-highest critical leverage value (ℎ𝐶7𝐻8

∗ =

1.6552 >  ℎ𝐶6𝐻6

∗ = 1.9794 > ℎ𝑁𝐻3

∗ = 0.7111 > ℎ𝑘
∗ = 0.3834). However, despite the 

differences in critical leverage among the models, the analysis reveals that the majority of data 

points (over 97%) conform within the AD boundaries, signifying the dataset's limited inclusion 

of outliers based on the leverage method (i.e., ℎ𝑖 > ℎ∗), this metric holds significant importance 

in evaluating the data quality employed to train ML models. As presented in Table III.3, the 

electrical conductivity model has a lower percentage of structural outliers (0.16%) compared 

to the ammonia sensing model (0.30%). These findings suggest that the electrical conductivity 
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model may be more reliable in its predictions than the ammonia sensing model. Furthermore, 

it is essential to highlight that both the toluene and benzene sensing models exhibited no 

structural outliers, as their leverages consistently remained below the critical boundary of ℎ𝑖 <

ℎ∗. This observation is consistent with the expected behavior of well-trained ANN models. It 

supports their reliability for predicting the toluene and benzene sensing properties of 

polyaniline/graphene systems within their AD.  

In addition to the structural outliers discussed earlier, response outliers were also 

identified in the models. Specifically, specific data points at exception compositions and 

conditions were identified as outliers based on their 𝑆𝐷𝑅 values exceeding the acceptable ±3 

𝑆𝐷𝑅 boundary. As a result, the coverage of the models within their AD was reduced to 99.03%, 

98.52%, 98.36%, and 97.95% for the electrical conductivity, ammonia, toluene, and benzene 

sensing response models, respectively. Outliers can substantially influence the accuracy of 

model predictions, emphasizing the criticality of meticulous identification and evaluation of 

the AD of models to ensure dependable and precise predictions. It is worth emphasizing that 

the absence of data points in the double outlier region (i.e., ℎ𝑖 > ℎ∗ and 𝑆𝐷𝑅𝑖 > ±3) as 

illustrated in Figure III.11. This observation underscores the robustness of the proposed ANN 

models, indicating minimal impact from outliers on their performance.  

In summary, accounting and identifying structural and response outliers are crucial for 

improving the reliability and accuracy of ANN models in chemical engineering applications. 

This study underscores the significance of the AD method as an invaluable instrument for 

assessing data quality during model training, enabling the identification and evaluation of 

outliers that could potentially impact model predictions. The concurrent use of k-fold validation 

and AD analysis provides a robust framework for the holistic evaluation of our models. It is 

important to note that the AD analysis, in particular, considers the distribution of training data 

and helps identify how different a data point is from the majority of the points. This method 

has been chosen deliberately to enhance the understanding of model performance within 

specific boundaries. Consequently, the findings from this study indicate that the predictions of 

new polyaniline/graphene systems, falling within the same domain of applicability, can be 

deemed reliable for preliminary polymer nanocomposite investigations, even without 

experimental data. This highlights the significance of dependable and precise predictions for 

advancing new nanocomposites, mainly when the properties of the materials are challenging 

to measure experimentally. 
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Table III.3. Applicability domain parameters for the electrical conductivity, ammonia, 

toluene, and benzene sensing response models. 

Parameter Electrical 

conductivity  

Ammonia 

Sensing response 

Toluene Sensing 

response 

Benzene Sensing 

response 

ℎ∗ 0.3834 0.7111 1.9794 1.6552 

Training     

Structural outliers 0.16% 0.30% 0.0% 0.0% 

Response outliers 0.65% 0.89% 0.82% 2.05% 

𝐴𝐷𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  99.19% 98.82% 99.18% 97.95% 

Testing     

Structural outliers 0.81% 0.30% 0.0% 0.0% 

Response outliers 0.81% 1.47% 4.0% 0.0% 

𝐴𝐷𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  99.19% 97.06% 96% 100% 

Total     

Structural outliers 0.16% 0.30% 0.0% 0.0% 

Response outliers 0.81% 1.18% 1.64% 2.05% 

𝐴𝐷𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  99.03% 98.52% 98.36% 97.95% 

III.3.5.4. Systematic predictions and comparative analysis 

Systematic predictions of the effect of aniline concentration, dopant type and its 

concentration, graphene loading on conductivity, and gas type and concentration, along with 

the influence of graphene loading and operating temperature on gas sensing responses using 

the developed ANNs were evaluated and compared with the experimental data as shown in 

Figure III.12. The results showcase the multifaceted behavior of PANI/Gr in varying 

experimental conditions, providing insights into the potential applications of these composites 

in sensor technology. The conductivity exhibits a non-linear response to the concentration of 

aniline, which suggests a threshold behavior where the conductivity stabilizes beyond a certain 

concentration (Cao and Wang 2018). While the ANN models capture this phenomenon to some 

extent, there is a noticeable divergence from experimental data. This discrepancy suggests the 

intricate nature of molecular-level interactions that might not be entirely accounted for by the 

ANN. Molecularly, this can be associated with increased π-π stacking between the aniline-

derived PANI chains and the graphene sheets, leading to improved charge transport pathways 

(Imran et al. 2014). When considering dopant effects, the nature of the dopant and its 

concentration have pronounced effects on the conductivity of PANI (Alesary et al. 2018). The 

protonation of the nitrogen atoms in the PANI backbone by acid dopants like HCl and H2SeO3 

enhances the delocalization of electrons, which is crucial for conductivity (Tung et al. 2011). 

The temperature dependence of conductivity is consistent with a semiconducting behavior 

where thermal energy aids in the hopping of charge carriers, enhancing conductivity (Badi et 

al. 2016; Gaikwad et al. 2017; Al-Hartomy et al. 2019).  
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D) 

 

E) 

 

F) 

 
G) 

 

H) 

 

I) 

 
J) 

 

K) 

 

L) 

 

Figure III.12. Comparative analysis of experimental (symbols) and ANN-predicted (dashed 

lines) electrical conductivity and gas sensing responses: effect of aniline concentration (A), 

dopant type and its concentration (B and C), graphene loading and operating temperature (D) 

on electrical conductivity, and gas type and concentration (E–H), along with the influence of 

graphene loading (I–K) and operating temperature on gas sensing response (L). 

Thus, the ANN predictions closely follow the experimental data, suggesting that the 

temperature effect is well-characterized by the network parameters, capturing the thermally 

activated processes within the material. In terms of gas sensing, the nanocomposites exhibit 

distinct responses to NH3, C7H8 and C6H6. The molecular interactions between these gases and 

the PANI/Gr nanocomposite are crucial for the sensing mechanism (Liu et al. 2022). NH3, 
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being a polar molecule with a lone pair of electrons, can interact with the π-electron rich regions 

of the composites, likely forming charge transfer complexes. This interaction alters the 

distribution of charge carriers in the PANI chains, leading to a measurable change in 

conductivity which is utilized for sensing (Huang et al. 2013; Ansari et al. 2014b). C7H8 and 

C6H6, being aromatic compounds, may also interact with the nanocomposite through π-π 

stacking interactions. The presence of the methyl group in toluene introduces steric hindrance 

and a slight electron-donating effect, potentially altering its interaction with the nanocomposite 

compared to C6H6. The differential sensing response between C6H6 or C7H8 can be attributed 

to the size and electron density of these molecules, which influences their adsorption onto the 

system surface and subsequent interaction with the conductive network (Murugan et al. 2014; 

Xu et al. 2014; Subramanian et al. 2018). The enhancement in gas response with increasing 

graphene content can be rationalized by the expanded surface area provided by graphene, 

which facilitates greater adsorption of gas molecules. Additionally, graphene's high electron 

mobility may contribute to more efficient charge transfer upon interaction with gas molecules, 

leading to a stronger sensing response.  Meanwhile, the response to gases such as NH3, C7H8, 

and C6H6 indicates that the nanocomposites are sensitive to changes in gas concentration, with 

the response magnitude varying according to the type of gas (Tanguy et al. 2018). The response 

to NH3 is especially significant, which is a desirable trait for sensors targeting this gas. 

However, the ANN predictions are less accurate at higher concentrations, potentially due to 

saturation effects that are not fully represented in the mode.  

Consequently, the experimental findings enriched by molecular insights into the 

nanocomposite's interaction with aniline, dopants, temperature, and gases, demonstrate the 

complexity and potential of PANI/Gr as a material for gas sensors. Although ANNs prove 

valuable in predicting overarching trends and behaviors, the existing disparities between 

experimental and predicted data emphasize the imperative for further model refinement. 

Supplementary approaches such as molecular dynamics simulations or quantum mechanical 

modeling could complement ANN predictions, offering a more thorough understanding of the 

intricate interactions involved. The imperative for further refinement is driven by the complex 

and dynamic nature of nanocomposites' responses, necessitating a nuanced comprehension. 

These findings not only yield insights into the intricate behavior of PANI/Gr nanocomposites 

but also lay the foundation for optimizing these materials for specific applications, particularly 

in the domain of sensitive and selective gas detection. 
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III.4. Conclusions 

 In conclusion, this study comprehensively explores machine learning models for 

predicting the properties of polyaniline/graphene (PANI/Gr) nanocomposites, leveraging a rich 

dataset from numerous sources. The ANN models emerge as highly accurate tools for 

forecasting electrical conductivity and gas sensing responses, with meticulous attention given 

to identifying and handling outliers. The robustness of these models, particularly in the face of 

structural and response outliers, underscores their reliability.  

The input contribution analysis provides crucial insights into the key parameters shaping 

the performance of PANI/Gr nanocomposites, highlighting the significance of oxidant, aniline, 

doping agent concentration, and operating temperature. Complementing this, the SHAP 

analysis reveals intricate relationships among input variables and model predictions, offering 

valuable insights for gas sensor optimization and contributing to the ongoing discourse on 

enhancing PANI/Gr nanocomposite systems' performance. Furthermore, the study underscores 

the influential role of molecular inputs, particularly the σ-Profiles of additives, in predicting 

material properties. 

Applicability domain (AD) analysis is a critical facet of model evaluation, revealing 

high coverage percentages and emphasizing the models' dependability within specific 

parameter ranges. The significance of understanding and managing outliers is highlighted, as 

they can significantly impact model predictions. Notably, the absence of data points in the 

double outlier region underscores the resilience of the proposed ANN models. 

The implications of this research extend to the practical development of high-performance 

PANI/Gr nanocomposites, offering valuable contributions to fields such as supercapacitors, 

gas sensors, and energy storage devices. The call for further investigations into the nuanced 

impacts of molecular inputs on material performance reflects the ongoing pursuit of precision 

in nanocomposite design. Overall, this study significantly advances our understanding of 

machine learning applications in chemical engineering, providing a foundation for informed 

decision-making and reliable predictions in developing novel materials.  
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Chapter IV: Comprehensive investigation of multifunctional 

polyaniline/reduced graphene oxide nanocomposites synthesized 

from deep eutectic solvents: Experimental, RSM, ANN and 

computational studies 

This chapter reports a comprehensive investigation into the synthesis, modeling, and 

characterization of multifunctional polyaniline/reduced graphene oxide (PANI/rGO) 

nanocomposites, with a focus on their synthesis using deep eutectic solvents (DES). Leveraging 

an in-situ chemical polymerization method, PANI/rGO nanocomposites were successfully 

synthesized, introducing a novel approach employing DES as the electrolyte. The study utilized 

Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and molecular 

simulation techniques to model, optimize, and characterize the nanocomposites 

comprehensively. RSM analysis disclosed the impact of APS/ANI molar ratio, rGO loading, 

and polymerization time on electrical conductivity, with optimal conditions identified: 

APS/ANI molar ratio of 0.75, 3 wt.% rGO loading, and a 6-hour polymerization time, yielding 

a high electrical conductivity of 4.975 × 10-3 S cm-1. Integration of ANN techniques enhanced 

predictive accuracy, reaching an electrical conductivity of 4.988 × 10-3 S cm-1, surpassing 

RSM. Characterization techniques including UV-vis, PL, Raman, FTIR, and XRD highlighted 

structural changes, while XPS analysis revealed intensified CN peaks in PANI/rGO, indicating 

a denser nanocomposite coating. Electrochemical studies showcased superior capacitance at 

145.79 F g-1, surpassing individual components, and TGA analysis unraveled enhanced 

thermal stability. Molecular-level insights provided a nuanced understanding of the PANI-rGO 

system through FMO, COSMO-RS, NCI, and QTAIM analyses. The study not only presents an 

innovative synthesis method but also positions PANI/rGO nanocomposites as promising 

materials for supercapacitors and gas sensors, offering potential for advancements in green 

chemistry and eco-friendly innovations.  

IV.1. Introduction 

The synthesis of PANI/rGO nanocomposites conventionally relies on in-situ chemical 

oxidative polymerization, a preferred method for its efficiency (Gospodinova and Terlemezyan 

1998; Ćirić-Marjanović 2013). However, the quest for elevated electrical conductivity 

demands a meticulous manipulation of various parameters (Boublia et al. 2023a, 2024). These 

encompass critical factors such as GO filler loading, the oxidant-to-monomer ratio, the nature 

and concentration of dopant acids, reaction temperature, monomer purity, and polymerization 

time (Ameen et al. 2010; Pang et al. 2021a). The traditional approach to optimization, involving 
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the alteration of one parameter at a time, is time-intensive and resource-draining. Conducting 

numerous experiments, each adjusting a single factor while keeping others constant, consumes 

considerable time and energy resources. To overcome these limitations, a more efficient 

approach involves the collective optimization of all pertinent parameters. This is accomplished 

through an empirical design based on statistical methodologies, illustrated by the 

implementation of Response Surface Methodology (RSM) (Sharifi et al. 2018; Boublia et al. 

2022a). RSM, combining mathematical and statistical methods, plays a significant role in 

process modeling and optimization studies (Silva et al. 2018). It discerns the impact of 

independent variables, either in isolation or combination, on the synthesis processes. An 

inherent strength of RSM lies in its capacity to reduce the number of experiments needed for 

an in-depth statistical analysis, especially in scenarios involving numerous factors. This 

modeling approach utilizes polynomials to locally approximate, resulting in the derivation of a 

mathematical expression that succinctly expresses the complex interplay between the response 

and the independent variables (Boublia et al. 2022a).  

A thorough literature review was conducted to pinpoint the key factors influencing the 

electrical conductivity of PANI/rGO. The investigation revealed that the electrical conductivity 

of PANI experiences an increase with a higher oxidant molar ratio. Such enhancement in 

conductivity is attributed to a rise in the density of cation radicals and the extension of PANI 

chain length. These factors facilitate an enhanced interchain transfer, thereby increasing the 

carrier mobility (Zheng et al. 2021). Nevertheless, concentrations of oxidant exceeding 0.5 M 

resulted in phenazine production, causing a reduction in electrical conductivity (Jelmy et al. 

2013; Reza et al. 2019). Moreover, studies demonstrated an initial increase in PANI 

conductivity with an aniline amount of up to 0.15 M, followed by a decrease with further 

additions of aniline (Nazari and Arefinia 2019). The investigation of the oxidant-to-aniline 

ratio indicated that an optimal PANI conductivity and yield were achieved with a ratio close to 

1. Higher ratios, however, led to over-oxidation, resulting in a decrease in both conductivity 

and yield (Adams et al. 1996). Diverse dopants were explored for their impact on electrical 

conductivity, showing a positive correlation between dopant concentration and PANI's 

conductivity (Rahman et al. 2021). Although, an increase in the dopant/aniline ratio resulted in 

a notable decline in PANI conductivity, emphasizing the influence of intramolecular mobility 

of charged species along the chain on electrical conductivity, surpassing the impact of 

intermolecular hopping within crystalline regions (Cao et al. 1989; Sengupta and Adhikari 

2007; Sapurina and Stejskal 2008). At extremely elevated dopant concentrations, a substantial 

decline in conductivity was accomplished through concurrent reductions in doping levels and 
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crystallinity (Neelgund and Oki 2011). Evaluation of PANI/rGO nanocomposites across 

different temperatures and rGO loadings demonstrated enhanced conductivity as temperature 

rises, linked to thermally-assisted charge carrier hopping in disordered materials. The 

integration of rGO into the PANI matrix notably enhanced the conductivity of the 

nanocomposite. This improvement can be attributed to synergistic interactions between the 

PANI and rGO phases, involving charge transfer among delocalized P-orbitals (Sreeja et al. 

2019). the duration and temperature of the synthesis process played a crucial role in 

determining the size and structure of PANI/rGO nanocomposites, directly influencing their 

electrical conductivity. Extended synthesis times and lower temperatures yielded larger and 

well-defined PANI/rGO systems with enhanced electrical conductivity. Previous studies 

emphasized that the yield and electrical conductivity remain unaffected by the polymerization 

temperature when maintained below 0°C. Conversely, elevated temperatures were found to 

induce more defects, resulting in diminished conductivity (Cao et al. 1989). Consequently, a 

polymerization temperature of approximately 0°C was considered optimal for the synthesis of 

PANI/rGO. 

In light of the reviewed literature, despite numerous studies on PANI synthesis, a 

specific optimization of PANI/rGO conductivity using RSM techniques, particularly in 

scenarios involving the nanoscale, taking into account the interactions and synthesis factors at 

play, remains unexplored. This study addresses this gap by identifying key factors influencing 

PANI electrical conductivity, including rGO loading, oxidant-to-monomer molar ratio, and 

polymerization time. Notably, PANI/rGO was synthesized via in-situ polymerization in a 

choline chloride/triethylene glycol-based deep eutectic solvent (DES) acting as an electrolyte. 

Employing BBD-RSM and ANN methodologies, we systematically assessed various 

nanocomposite synthesis conditions, analyzing the intricate relationship between electrical 

conductivity and these factors. Beyond optimization, we conducted a comprehensive analysis 

of the synthesized nanocomposites using Ultraviolet–visible Spectroscopy (UV-Vis), 

photoluminescence Spectroscopy (PL), Raman Spectroscopy, Fourier-transform infrared 

Spectroscopy (FTIR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), 

Cyclic voltammetry (CV), and thermogravimetric (TGA) analyses, exploring their structural, 

optical, and electrochemical properties. Significantly, our tailored computational models for 

PANI and rGO align with experimental data, enhancing the credibility of our findings. 

Theoretical analyses, including Frontier Molecular Orbital (FMO), COnductor like Screening 

MOdel for Real Solvents (COSMO-RS), Non-Covalent Interaction (NCI) based on the 

Reduced Density Gradient (RDG), and Quantum Theory of Atoms in Molecules (QTAIM) 
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deepen our understanding of bonding interactions, providing insights for potential applications 

in nanocomposite technology. This combined computational and experimental methodology 

strives to provide an in-depth understanding of PANI/rGO nanocomposites for the creation of 

efficient, versatile, and eco-friendly materials. 

IV.2. Experimental section  

IV.2.1. Materials  

Choline chloride (ChCl) ([(CH3)3NCH2CH2OH]+Cl−, Sigma-Aldrich, 99%), 

tetraethylene glycol (TEG) (HO(CH2CH2O)3CH2CH2OH, Aldrich, 99%), Natural graphite 

powder was consummated by using graphite as a powder with particle size of the order of 10 

μm. Sulfuric acid (H2SO4, Aldrich, 98%), sodium nitrate (NaNO3, Aldrich, 99%), hydrogen 

peroxide (H2O2, Aldrich, 30%), hydrazine monohydrate (N2H4, Sigma-Aldrich, > 99%), aniline 

monomer (ANI)(C6H5NH2, Sigma-Aldrich, ≥ 99.5%), ammonium persulfate (APS) 

((NH4)2S2O8, Sigma-Aldrich, 98%) was utilized as an oxidant and hydrochloric acid (HCl, 

Fisher chemical, 37%). All materials were employed in their as-received state, and aniline was 

saved under refrigeration at 4°C when not in use. 

IV.2.2. Sample preparation 

Three different DES formulations were prepared by combining ChCl with TEG in 

varying molar ratios (1:1, 1:2, and 1:3). The mixtures were heated at 60°C with continuous 

stirring. After 30 minutes, the resulting DESs became a homogeneous colorless liquid. Figure 

V.1 provides a schematic representation of the DES preparation process. Only the DES with a 

1:2 molar ratio exhibited stability and was selected for further experimentation. The preparation 

of GO followed our prior work (Guezzout et al. 2017, 2023) and for the reduction of GO to 

rGO, a hydrazine chemical reduction method was then employed.  

The synthesis of PANI/rGO nanocomposites was carried out according to previously 

established procedures (Lamiel et al. 2015; Usman et al. 2019). Initially, a dispersion of rGO 

was prepared by weighing the appropriate amount, adding distilled water, and subjecting it to 

ultrasonication for 1 hour. Simultaneously, an APS solution was prepared by dissolving it in 

fresh 1 M HCl/DES solution. The synthesis of PANI/rGO commenced with the dissolution of 

pure aniline and rGO in a 1 M HCl/DES solution, leading to the formation of an aniline-rGO 

suspension. This suspension was then subjected to 20 minutes of ultrasonication and placed in 

an iced bath, maintaining a temperature range of 05°C while being mechanically stirred (as 

depicted in Figure IV.1). The oxidant (APS solution) was carefully added drop by drop to the 

aniline-rGO suspension, following a two-step process to prevent excessive temperature 
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elevation. The ratio of oxidant to aniline was carefully controlled throughout this synthesis. 

Approximately 20−30 minutes after the initial addition of the oxidant, the solution's color 

underwent a transition from blackish-blue to progressively greener, reflecting the progression 

of the reaction. The resultant nanocomposites and pure PANI were separated by centrifugation 

and subjected to thorough washing with 1 M HCl, fresh distilled water, and acetone. The 

compounds were subsequently dried in an oven at 50°C for a period of 48 hours. Details 

regarding the polymerization time, the aniline to rGO ratio, and the aniline to APS ratio are 

provided in the experimental design strategy outlined below. 

 

Figure IV.1. Flowchart illustrating of the experimental methodology used in this work. 

IV.2.3. Experimental design by response surface methodology 

Data analysis investigation is a valuable tool for uncovering concealed insights and 

constructing predictive models. The RSM, initially introduced by Box and Wilson (Silva et al. 

2018), stands out as a robust approach for scrutinizing interactive influences within a system 

and for optimizing its performance. RSM typically employs specific experimental designs, 

with the most commonly employed ones being the Box-Behnken Design (BBD) and the Central 

Composite Design (CCD) (Silva et al. 2018).  In the context of this study, we employed the 

BBD design to explore the impact of variables such as molar ratio of APS/ANI, rGO loading, 

and polymerization time on the electrical conductivity of PANI/rGO-based nanocomposites. 

Within the BBD framework, each factor is systematically assigned one of three equidistant 

values. The experimental conditions are represented by points positioned at the midpoint of the 

edges in the experimental space, which can be visualized as a cube, as well as at the center (as 

depicted in Figure IV.2). The total number of experiments, N, the variables under 

consideration, k, and the central points, C0, can be calculated using the following Eq (21):  

𝑁 = 2𝑘 (𝑘 − 1) +  𝐶0 Eq. (21) 
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Figure IV.2. Configuration of the Box-Behnken design for a three-factor system. 

Table IV.1 provides an overview of the experimental design using the BBD model. This 

design incorporates three factors, each with three levels, and we have included both actual and 

coded values for better understanding. The three optimized independent variables are APS/ANI 

ratio (X1), rGO loading (X2), and polymerization time (X3). For each independent variable, we 

employed a horizontal encoding scheme, which assigns three values: 1, 0, and 1. This encoding 

facilitates the systematic exploration of the experimental space. The actual ranges for these 

variables are X1: 0.25–0.75; X2: 1–5 wt.%; X3: 2–6 h, respectively. 

Table IV.1. Factors Investigated in the Box-Behnken Design Experiment. 

Factors  Coded Levels    

  -1 0 1 

Molar ratio of APS/ANI X1 0.25 0.5 0.75 

rGO loading (wt.%) X2 1 3 5 

Time (h) X3 2 4 6 

The relationship and interactions between the independent variables and the response factors 

were thoroughly investigated using a second-order polynomial equation (Eq (2)): 

𝑦 =  𝛽0 + ∑ 𝛽𝑗𝑋𝑗 + ∑ 𝛽𝑗𝑗𝑋𝑗
2 +

𝑘

𝑗=1

𝑘

𝑗=1

∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑘

𝑖<𝑗

 Eq. (22) 

Here, y represents the predicted value of the response, 𝛽0 is the offset term, j, ij, and jj 

correspond to the linear coefficients, the cross-product coefficients, and the quadratic 

coefficients, respectively. 𝑋𝑖 and 𝑋𝑖 are the independent factors. To carry out this analysis, we 

employed JMP SAS Pro® 16 software. This robust software facilitated the evaluation of 

experimental data and the execution of analysis of variance (ANOVA) to ascertain the model's 



Chapter IV 

104 | P a g e  
 

fitting accuracy. This statistical analysis is essential for understanding the impact and 

significance of the independent variables on our response factors. 

IV.2.4. Artificial neural network 

In the present study, we harnessed the power of Artificial Neural Networks (ANNs) to 

predict the intricate, non-linear relationship between our input parameters (X1, X2, and X3) and 

the response variable (y), utilizing an experimental dataset derived from the BBD design. Our 

network architecture was meticulously constructed using JMP SAS Pro® 16 software (SAS 

Institute, Cary, NC), ensuring the efficacy of the feed-forward ANN. The configuration of the 

neural network holds a pivotal role in shaping the ANN model's capacity for generalization. It 

essentially comprises three key layers: input, hidden, and output, with each layer 

accommodating an array of neurons. The quantity of neurons in the input and output layers 

directly corresponds to the count of input and output variables. Consequently, we evaluated 

eight different ANN architectures, each equipped with a single hidden layer containing varying 

neuron counts ranging from 3 to 24. To ensure the model's robustness and reliability, we 

divided our datasets into training and testing subsets, following an 80%:20% ratio. This 

strategy allowed us to systematically explore various ANN architectures, ultimately selecting 

the optimal setup based on superior performance with the testing dataset. The equations within 

the ANN model incorporate various parameters that elucidate the neural network's behavior. 

These parameters encompass the weights (Wm) connecting neurons, the inputs (x) to specific 

neurons (n), considerations of the hidden layer (l), and the biases (b) associated with each 

neuron. Additionally, we incorporated the hyperbolic tangent (tanh) function into the 

expressions, effectively confining the output of each neuron to the variety of [1, 1]. This 

interval signifies the extent of activation or deactivation, ensuring meticulous control over the 

network's dynamics and results. The mathematical representation of the output of neuron (j) 

arises from the synergistic interplay of these parameters:  

𝐻𝑛,𝑙 = 𝑡𝑎𝑛ℎ ( ∑ (𝑊𝑚,𝑛,𝑙)(𝑋𝑛,𝑙)

𝑚=1

𝑏𝑛,𝑙) Eq. (23) 

To assess the effectiveness of both ANN and RSM models, performance metrics including root 

mean square error (𝑅𝑀𝑆𝐸), coefficient of determination (𝑅2), average absolute relative 

deviation (𝐴𝐴𝑅𝐷), and mean absolute error (MAE) were applied where their expressions are 

shown in Eqs. (24−27), respectively. Where 𝜎𝑒𝑥𝑝, 𝜎𝑝𝑟𝑒𝑑, and 𝜎 indicate the experimental, 

predicted, and average values, while p denotes the total count of experimental data points. 
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𝑅2 = 1 −
∑ (𝜎𝑒𝑥𝑝 − 𝜎𝑝𝑟𝑒𝑑)2𝑝

1

∑ (𝜎𝑒𝑥𝑝 − �̅�)2𝑝
1

 Eq. (24) 

𝑅𝑀𝑆𝐸 = √
∑ (𝜎𝑒𝑥𝑝 − 𝜎𝑝𝑟𝑒𝑑)2𝑝

1

𝑝
 Eq. (25) 

𝐴𝐴𝑅𝐷 (%)  =  
100 

𝑝
× ∑

|(𝜎𝑝𝑟𝑒𝑑 − 𝜎𝑒𝑥𝑝)|

𝜎𝑒𝑥𝑝

𝑝

1

 Eq. (26) 

𝑀𝐴𝐸 =
1

𝑝
∑|𝜎𝑝𝑟𝑒𝑑 − 𝜎𝑒𝑥𝑝|

𝑝

1

 Eq. (27) 

IV.2.5. Characterization and morphology 

The Ultraviolet–visible (UV-Vis) were recorded with V-650 JASCO 

spectrophotometer equipped with an integrating sphere. The photoluminescence (PL) 

investigation was carried out on the spectrofluorometer HORIBA FL3-DFX-iHR320 model. 

Raman was recorded with an invia microscope spectrometer (RENISHAW). Fourier-transform 

infrared (FTIR) spectroscopy was analyzed by the V-650 JASCO spectrophotometer equipped 

with an integrating sphere.  X-ray diffraction (XRD) analysis was performed with Cu Ka X-

ray sources on a D/Max-2400 powder diffractometer (Japanese Physical Company). The 

surface analysis of the synthesized materials was examined through means of an X-ray 

Photoelectron Spectroscopy (XPS) (Escalab THERMO SCIENTIFIC). 

Cyclic voltammetry (CV) experiments were performed utilizing a Volta Lab PGZ 301 

apparatus with Volta Master 40 software, employing a standard three-electrode configuration. 

The setup comprised a counter electrode made of platinum, a reference electrode of Ag/AgCl, 

and a working electrode made of platinum with modifications. A solution of 0.1 M lithium 

perchlorate (LiClO4) in dimethylformamide (DMF) served as the electrolyte support in the 

analytical protocol. The electrochemical performances of PANI/rGO nanocomposites were 

explored through CV within a potential window with a range of 0.8 V to 1.6 V. 

Thermal stability study of the PANI/rGO nanocomposites were conducted under 

nitrogen atmosphere (N2) at room temperature up to 1000 °C with a heating rate of 10 °C 

minutes through thermogravimetric (TGA) analysis.  
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IV.2.6. Electrical conductivity measurements    

The four-point probe method was employed to assess the electrical conductivity of pure 

PANI, rGO, and PANI/rGO nanocomposites. Digital micrometers were used to determine the 

thickness of the samples, which were shaped into discs with a diameter of approximately 12 

mm. The electrical measurements were performed using a Keithley 195 current source and a 

Keithley 197 electrometer, both computer-controlled. For these measurements, the disc pellet 

samples were placed on an insulated test bed, connected to a PRF-912 probe model (as 

represented in Figure IV.3). This test was primarily focused on quantifying the sample's surface 

resistance. The reciprocal of resistivity (ρ) determined the electrical conductivity (σ) of the disc 

pellet samples, as expressed in Eq (28): 

𝜎 =
1

𝜌
 Eq. (28) 

Where σ represents electrical conductivity in Siemens per centimeter (S cm-1), while ρ denotes 

resistivity measured in ohm-centimeters (Ω cm). 

 

Figure IV.3. Schematic illustration of the four-point probe method utilized in this study. 

IV.2.7. Computational methodology 

This study involved comprehensive calculations concerning geometric parameters, 

internal energies, and electronic properties of the nanocomposite. Initially, we utilized the 

Material Studio software (Shankar et al. 2022) to perform MD simulations aimed at assessing 

the interaction energy between the PANI molecule and rGO sheet. The initial simulation box 

was constructed by placing the rGO sheet alongside the PANI molecule to investigate the 

inherent interactions between these components. Accordingly, the box's geometry was 

optimized to relax the entire molecular system. Subsequently, the box underwent NVT 

dynamics for approximately 2000 picoseconds, utilizing a 1 femtosecond time step at a 

temperature of 298 Kelvin. These simulations employed the COMPASS forcefield. After the 

NVT dynamics, a second MD simulation was conducted using the NPT thermodynamic 
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ensemble for 20,000 picoseconds, also with a 1 femtosecond time step at 298 Kelvin. The 

outcome of this simulation led to another round of geometric optimization (Bousba et al. 2024). 

Energies were calculated for approximately of a hundred resulting conformations or more. 

Among these conformations, the one with the lowest energy was selected as the model for 

subsequent analysis. The selected model was further optimized via the DFT M06-2X functional 

(Moltved and Kepp 2019) and the TZVP basis set (Darwish et al. 2023; Mouffok et al. 2023; 

Uka et al. 2023), and this optimization was carried out with the Turbomole software (Boublia 

et al. 2022b, 2023c; Lemaoui et al. 2022, 2023a; AlYammahi et al. 2023). To delve deeper into 

the characteristics of the PANI/rGO system and their interactions, the COSMO-RS 

methodology was applied. This involved utilizing the COSMOThermx program to calculate 

pertinent parameters. In addition, the optimization process allowed us to determine geometrical 

parameters as well as various QTAIM and RDG topological parameters. 

To represent the PANI conducting polymer, an oligomer was employed, comprising 

four monomer units of aniline. This oligomer includes 4 phenyl rings and a total of 48 atoms. 

In our model, rGO was selected. It's composed of 55 carbon atoms and 11 oxygen atoms, with 

open ends saturated by hydrogen atoms. rGO is essentially the reduced form of GO, featuring 

oxygen-containing groups like carboxyl acid (–COOH), hydroxy (–OH), and epoxy (–O–) 

functional groups that are haphazardly affixed to the edges and surface. The portrayal of rGO's 

structure lacks precision due to the erratic distribution of these oxygen-containing functional 

groups and the notable structural disarray within the framework (Dreyer et al. 2010). Both rGO 

and PANI underwent neutral optimization. This optimization allowed us to determine various 

electronic properties, including charge distribution, energies associated with the highest and 

the lowest occupied molecular orbitals (HOMO and LUMO, respectively), as well as band gap 

(Eg), which was estimated using the HOMO and LUMO energies through the following 

equation (Eq (29)): 

𝐸𝑔 = 𝐸𝐿𝑈𝑀𝑂 − 𝐸𝐻𝑂𝑀𝑂  Eq. (29) 

To comprehensively investigate weak interactions within a three-dimensional 

framework, our study employs an illuminating approach focused on the analysis of NCI 

(Johnson et al. 2010; Kr et al. 2022). Several theoretical models, including NCI-RDG and 

QTAIM, were applied. The RDG analysis relies on fundamental electron density (𝜌) and 

reduced density gradients (RDGs), expressed in mathematical terms using Eq (30), where 𝜌 

denotes the electron density, and 𝛻𝜌 signifies its initial derivative. This method is particularly 

effective for identifying van der Waals interactions and weak non-covalent interactions, 
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including hydrogen bonding and steric repulsions, which become significant at specific 

distances and can significantly influence the system as a whole (Boutouil et al. 2020; Mandal 

et al. 2023).  

𝑠 =
1

2(3𝜋2)1/3

|𝛻𝜌|

𝜌4/3
 Eq. (30) 

For NCI analyses based on the RDG and QTAIM, we incorporated the Molden input 

from Turbomole and utilized the computational tool Multiwfn (Lu and Chen 2012) to explore 

and identify potential weak interactions within the analyzed system.  

To visualize the results, we generated RDG plots and QTAIM maps via the Visual 

Molecular Dynamics (VMD) interface (Humphrey et al. 1996). Furthermore, color scatter plots 

were created with the assistance of gnuplot (Williams et al. 2017). These advanced 

computational techniques facilitated an in-depth examination of weak interactions within the 

system under investigation. 

IV.3. Results and discussion 

IV.3.1. Response Surface Methodology results 

In this investigation, a series of 15 experiments was executed using RSM-BBD, 

involving three repeated experiments that incorporated three input variables and three center 

points. Each experiment was replicated twice, and the mean value was determined. The design 

matrix for the experiments and the predicted outcomes are detailed in Table IV.2. Notably, the 

center point runs (#4, #10, and #15) exhibited minimal variations in the electrical conductivity, 

indicative of excellent experimental repeatability.  

Furthermore, a comprehensive evaluation of the experimental outcomes involved an in-

depth analysis of multiple regression models. After assessing various models, the quadratic 

model emerged as the most suitable fit for all design points.  

To understand the effects of the variables and their interactions, Analysis of Variance 

(ANOVA) was performed, and the findings are reported in Table IV.3. It was observed that a 

linear effect (X1) and a quadratic effect (X3
2) were statistically significant, with a p-value < 

0.05. 
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Table IV.2. RSM-BBD design matrix with its corresponding responses of electrical 

conductivity. 

#Run Code values  Real values  Electrical conductivity 

σ x 10-3 (S cm-1) 
 X1 X2 X3  X1 X2 X3  

1 + − 0  0.75 1 4  3.142 

2 0 − −  0.5 1 2  3.203 

3 0 + +  0.5 5 6  2.958 

4 0 0 0  0.5 3 4  2.472 

5 − 0 −  0.25 3 2  2.189 

6 − + 0  0.25 5 4  1.756 

7 − 0 +  0.25 3 6  2.277 

8 − − 0  0.25 1 4  1.893 

9 0 + −  0.5 5 2  2.122 

10 0 0 0  0.5 3 4  2.250 

11 0 − +  0.5 1 6  3.739 

12 0 0 0  0.75 5 4  3.295 

13 + 0 −  0.75 3 2  3.715 

14 + 0 +  0.75 3 6  4.975 

15 0 0 0  0.5 3 4  2.122 

Nevertheless, the other linear and interaction terms, along with all quadratic terms, were 

considered statistically insignificant (p-value > 0.05). The experimental data exhibited a 

favorable agreement with the formulated model equation, evident from the lack of fit result 

with a p-value > 0.05. Subsequently, a second-order polynomial function, represented by Eq 

(31), was deduced to approximate the σ of PANI/rGO nanocomposites: 

𝜎 = 2.28144 + 0.87651 𝑋1 − 0.23076 𝑋2 + 0.33983 𝑋3 + 0. 07224  𝑋1𝑋2

+ 0. 29292 𝑋1𝑋3 + 0. 07501 𝑋2𝑋3 + 0. 26177 𝑋1
2 − 0.02154 𝑋2

2

+ 0. 74556 𝑋3
2 

Eq. (31) 

Here, σ, X1, X2, and X3 represent the electrical conductivity of PANI/rGO nanocomposites, 

coded forms of the APS/ANI ratio, rGO loading, and the time of polymerization, respectively.  

The results from the ANOVA analysis, presented in Table IV.3, reveal an exceptionally 

low p-value (<0.0001), signifying a highly significant alignment of the model with the 

experimental data. Moreover, the lack of fit value (0.1212) substantiates the model's aptitude 

in capturing the experimental trends, thereby confirming its bona fide predictive power. 

Moreover, the model demonstrates excellent predictive performance, supported by the elevated 
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adjusted and predicted R2 values of 0.8041 and 0.9301, respectively, highlighting the precision 

and dependability of its predictions. 

Additionally, to verify the adequacy of the model and ensure it meets the analysis 

assumptions, residual analysis was conducted. Given the dispersion of residuals observed in 

Figure IV.5, the data points scatter randomly about the center line, devoid of any apparent 

systematic trends or patterns. This randomness is indicative of the model's adequacy in 

capturing the inherent variability of the experimental data. Furthermore, the scatter of residuals 

displayed uncorrelated and random distribution on both sides of the center line, indicating 

constant variance. These robust findings provide compelling evidence that the model is 

appropriate and indeed satisfies the assumptions of the analysis. 

Table IV.3. Statistical analysis (ANOVA) for the quadratic model of electrical conductivity in 

PANI/rGO nanocomposites. 

Parameter Df Sum of Squares Mean Square F Ratio Prob.> F 

Intercept 9 10.123 1.125 7.3866 0.0002* 

X1 (Molar ratio of APS/ANI) 1 6.147 6.147 40.3646 0.0014* 

X2 (rGO loading) 1 0.426 0.426 2.7974 0.1553 

X3 (Time) 1 0.924 0.924 6.0671 0.057 

X1*X2 1 0.021 0.021 0.1371 0.7264 

X1*X3 1 0.343 0.343 2.2538 0.1936 

X2*X3 1 0.023 0.023 0.1478 0.7165 

X1
2 1 0.253 0.253 1.6615 0.2538 

X2
2 1 0.002 0.002 0.0113 0.9196 

X3
2 1 2.052 2.052 13.4778 0.0144* 

Lack of fit 3 0.699 0.233 7.4106 0.1212 

Pure error 2 0.063 0.031   

Total 14 10.885    

*Significant at 95% confidence interval. 
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Figure IV.4. Correlation between residuals and predicted values for the electrical 

conductivity of PANI/rGO nanocomposites. 

To understand the interaction effects of two variables while maintaining the other 

variables at their central point value (zero level), we created 2D contour and 3D surface plots 

using Eq (31). Figure IV.5 (A) and (D) depict the influence of the APS/ANI ration and rGO 

loading at a constant polymerization time of 4 h. It is evident that the electrical conductivity 

increases as the APS/ANI ratio and rGO loading vary from 0.5 to 0.75 and 3 to 5 wt.%, 

respectively. However, at higher APS/ANI ratios and increased rGO loading, the electrical 

conductivity shows a decreasing trend. This behavior can be attributed to the increased amount 

of APS (oxidant), resulting in the generation of a higher number of radical cations, which 

consequently accelerates the chemical oxidative polymerization of ANI. As acknowledged, the 

electrical conductivity of PANI is contingent on the protonation degree or the effective 

conjugation length of PANI chains (Qiu et al. 2020). In addition, the higher content of rGO in 

the nanocomposites hinders the orderly arrangement of PANI chains, inducing a higher 

structural disorder and creating more conjugated defects, ultimately contributing to lower 

conductivity (Sreeja et al. 2019).  

Likewise, Figure IV.5 (B) and (E) exhibit the combined impact of APS/ANI ratio and 

polymerization time (h) on electrical conductivity while keeping the rGO loading fixed at 3 

wt.%. It is evident that electrical conductivity continues to rise with an increase in the 

polymerization time, consistent with previous reports (Zhou et al. 2015; Sharifi et al. 2018).  

Finally, Figure IV.5 (C) and (F) demonstrate the linear influence of rGO loading and 

polymerization time on the electrical conductivity, suggesting their minor impact on the overall 

electrical conductivity. 
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A) 

 

D) 

 

B) 

 

E) 

 

C) 

 

F) 

 

Figure IV.5. Two-dimensional (2D) contour and three-dimensional (3D) surface plots 

illustrating the combined impact on electrical conductivity. Interplay of APS/ANI ratio and 

rGO loading (A, D), APS/ANI ratio and polymerization time (B, E), and rGO loading and 

polymerization time (C, F). 
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IV.3.2. Artificial Neural Network Modeling 

In this study, an ANN was constructed to capture the intricate non-linear associations 

among three independent variables (molar ratio of APS/ANI, rGO loading, and polymerization 

time) and the desired output (electrical conductivity) through the application of the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. configuration that yielded the lowest RMSE and 

the highest R2 values. following this analysis, we determined the final architecture of the ANN 

model, adopting a 3-12-1 configuration, where the hidden layer comprises 12 neurons. Figure 

IV.6 (A) illustrates the statistical metrics RMSE and R2 for different architectures, revealing 

that the 3-12-1 architecture yields lower RMSE and higher R2 values, indicating superior 

predictive performance. The proposed ANN structure is schematically depicted in Figure IV.6 

(B).  

 A)  

 

B)  

 

Figure IV.6. A) Performance of the developed ANN model with respect to the neurons’ 

number in the hidden layer, and B) Schematic representation of the 3-12-1 ANN architecture. 

IV.3.3. Comparison between RSM and ANN models 

The effectiveness of the proposed approaches has been validated, establishing the 

superiority of the methods in depicting the PANI/rGO nanocomposites’ electrical conductivity. 

To compare the predictions of the respective models (RSM-BBD and ANN), a comprehensive 

error analysis was performed, and key performance metrics, including R2, RMSE, AARD, MAE, 

and relative deviation (RD%), were computed using the equations detailed in the methodology 

section. As depicted in Figure IV.7 (A) and (B), the scatter plots for both models illustrated 

strong concordance with the experimental data, substantiated by the elevated R2 values of 0.93 

and 0.97 for RSM and ANN, correspondingly. Notably, the ANN demonstrated superior 

accuracy in fitting the experimental data when contrasted with the RSM model, as indicated by 

the plot of RD% in Figure IV.7 (C). This higher predictive accuracy of the ANN model 
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highlights its superior performance. However, it is crucial to recognize that the ANN model, in 

its standard form, does not inherently elucidate the influence of input parameters on the 

response; this understanding typically necessitates further analysis, such as a query strategy for 

selecting informative training data or post-hoc interpretability methods. In contrast, the primary 

advantage of RSM lies in its capacity to demonstrate factor contributions through coefficients 

in the regression model.  

Evaluation metrics listed in Table IV.4, incorporating metrics such as R2, AARD, and 

RMSE provides additional validation of the robust alignment between the ANN-predicted and 

experimental values, surpassing the performance achieved by the RSM model. The enhanced 

predictive prowess of ANNs can be ascribed to their adeptness in approximating non-linear 

systems, a capability beyond the scope of RSM, which is confined to approximating systems 

using second-order polynomials.  

A) RSM-BBD 

 

B) ANN 

 

                C) 

       

Figure IV.7. Regression analysis between actual and predicted electrical conductivity using 

A) RSM-BBD and B) ANN models, and C) Relative deviation plot for the predictions of 

electrical conductivity by RSM-bbd and ANN models. 
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Table IV.4. Comparative assessment of predictive performance between RSM and ANN 

models. 

Metric 
Model  

BBD ANN (3-12-1) 

R2 0.9301 0.9675 

RMSE  0.3902 0.1535 

AARD (%) 7.68 2.86 

MAE 0.1985 0.0797 

IV.3.4. Electrical conductivity optimization of the PANI/rGO nanocomposites 

In our endeavor to improve the electrical conductivity of PANI/rGO nanocomposites, 

we harnessed the power of a response surface optimization approach and ANN predictive 

model. These methodologies are intricately crafted to identify the optimal position within the 

design space, whether it involves a minimum, a maximum, or a specific region characterized 

by a stable response. The main objective in this investigation was to maximize the electrical 

conductivity of PANI/rGO nanocomposites. To accomplish this, we relied on the RSM and 

ANN models. Through meticulous analysis, we uncovered the precise conditions that lead to 

the highest electrical conductivity. These optimal conditions were revealed to be an APS/ANI 

molar ratio of 0.75, an rGO loading of 3 wt.%, and a polymerization time of 6 hours.  

Following this optimization, a comprehensive analysis using various techniques, 

encompassing UV-visible, Raman, FTIR, PL, XRD, XPS, CV, and TGA analyses were 

performed for the PANI/rGO samples. These analyses provided in-depth insights into the 

structural, optical, and electrochemical performances of the investigated PANI/rGO 

nanocomposites. 

IV.3.5. Compositional and structural analyses 

IV.3.5.1. UV-visible spectroscopy  

Extensive investigations have been undertaken to comprehensively analyze the optical 

properties of PANI/rGO (1, 3, and 5 wt.%) nanocomposites, as depicted in Figure IV.8. The 

UV-Visible spectrum of pure PANI, revealed in Figure IV.8 (A), unveils the existence of two 

significant absorbance peaks around 270 nm and 655 nm. The initial peak at 270 nm is 

attributed to the π–π* electron orbital transition of the benzenoid ring within PANI structure. 

This transition reflects the movement of electrons within the conjugated system, shedding light 

on the electronic properties associated with the benzenoid moiety (Ansari et al. 2014a; Mitra 

et al. 2015). On the other hand, the UV-Vis spectrum of rGO demonstrates enhanced and 

uniform absorption spanning the range of 240 to 800 nm, indicating the occurrence of a 
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restricted number of oxygen groups or graphitic domains on the graphene planes. This 

observation can be attributed to the n → π* transition arising from the occurrence of  bonds in 

carbonyl or carboxyl groups within rGO, which occur as a result of partial reduction  (Habib 

et al. 2022). This absorbance profile is characteristic of graphene materials and indicates the 

restoration of electronic conjugation within rGO sheets (Li et al. 2008; Bhattacharya et al. 

2018).  

A) 

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 

 

Figure IV.8. A) UV–Visible adsorption spectra (A) with its corresponding Tauc plots for 

pure PANI, rGO, and PANI/rGO nanocomposites (B, C, D, E, and F). 

The enhanced absorption and absence of distinct peaks within this range indicate the 

formation of a continuous, highly conjugated graphene structure in rGO. Regarding the 

PANI/rGO nanocomposites in varying ratios, it is noteworthy that compared to the pure PANI 

or rGO samples, it displays three robust absorbance peaks at 210 nm, 270 nm, and 655 nm, 

each showing a shift with respect to the peaks observed in the pure materials. These peaks are 

shifted, suggesting a relatively complex interaction between PANI and rGO. The observed 

peak at approximately 210 nm is attributed to a π–π* aromatic transition (Abd Razak et al. 

2021). The wide peak ranging from 240 to 320 nm in the PANI/rGO spectra is associated with 

the benzenoid π–π* transition. Additionally, a shoulder is observed, likely stemming from the 

Polaron–π* transition of quinoid-imine functional groups due to protonation. These findings 
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affirm the presence of diverse interactions, involving hydrogen bonding and π-π coordination 

among the PANI and rGO (Lin et al. 2013; Lu et al. 2013; Geethalakshmi et al. 2014). 

Moving on, Figure IV.8 (B, C, D, E, and F) show the corresponding Tauc plot, (αhν)² 

with hν, for pure PANI, rGO, and PANI/rGO (1, 3, and 5 wt.%) samples, with h representing 

the Planck constant and ν denoting the frequency. The energy gap (Eg) can be estimated by 

determining the x-intercept of the extrapolated Tauc plot (Choudhary and Verma 2019). For 

pure PANI and rGO, the band gap is found to be approximately 1.61 and 1.46 eV, respectively 

(Figure IV.8 (B and C)).  Furthermore, as the rGO loading increases up to 3 wt.%, the optical 

band gap of the composite decreases to 1.51 eV. In PANI/rGO nanocomposites, the integration 

of rGO leads to the formation of new energy levels known as trap states. These states are 

typically located near the valence band and arise due to the complex interaction between PANI 

and rGO, introducing localized states or defect levels within the composite structure. These 

trap states play a pivotal role in the electronic properties of the nanocomposite (Figure 8 (D 

and E)).  While electron delocalization within the conjugated PANI chains is a contributing 

factor, the primary mechanism for the reduced energy gap (Eg) and increased conductivity lies 

in these trap states. These states provide a pathway for electrons to move from the valence band 

to the conduction band with minimal energy input. Essentially, the trap states create a 'stepping 

stone' effect, allowing electrons to 'hop' between these states. This hopping mechanism is less 

energy-intensive than the direct transition across the full band gap in a pristine material. As a 

result, the presence of these trap states in PANI/rGO nanocomposites facilitates easier and 

more efficient electron movement, leading to enhanced electrical conductivity. However, it is 

important to note that this is a nuanced balance. An excessive concentration of trap states or 

rGO can lead to increased scattering and localization effects, potentially countering the benefits 

of enhanced conductivity. Nevertheless, as shown in Figure IV.8 (F), with a continued increase 

in rGO loading (5 wt.%), barriers are formed within the PANI chain, hindering electron 

delocalization and resulting in a corresponding increase in the band gap (1.57 eV) ) (Sreeja et 

al. 2019). Thus, incorporating 3 wt.% rGO into the PANI matrix promotes electron 

delocalization, broadening the absorption range, and enhancing electrical conductivity 

(Konwer 2016; Kandulna et al. 2019). Meanwhile, the reduction in the energy gap compared 

to rGO alone is particularly significant which expands the absorption range into the visible area 

of the electromagnetic spectrum, thereby improving the light harvesting efficiency of 

PANI/rGO nanocomposites. Consequently, the incorporation of rGO facilitates increased 

delocalization of electrons within the PANI chains, allowing for the absorption of a wider range 
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of photons (Choudhary and Kandulna 2019). As a result, the PANI/rGO nanocomposites 

exhibit improved electrical conductivity, as observed in the present study.  

IV.3.5.2. Photoluminescence studies (PL) 

Photoluminescence (PL) spectra provide valuable insights into the recombination 

efficiency of photo-generated electrons and holes, which can be inferred from the fluorescence 

intensity. A strong PL intensity signifies a rapid recombination of photo-generated charge 

carriers with a short lifetime. Conversely, a higher separation efficiency of the photo-generated 

carriers, i.e., electrons (e−) and holes (h+), resulting in longer lifetimes, leads to a reduction in 

the intensity observed in the PL spectra (Chaudhary et al. 2019). Figure IV.9 illustrates the PL 

spectrum of pure PANI, rGO, as well as rGO-PANI nanocomposite samples (1, 3, and 5 wt.%), 

recorded using an excitation wavelength of 320 nm. The PL spectrum for pure PANI exhibits 

two broad peaks in the wavelength range of 420-440 nm and 510-535 nm. These PL peaks, 

specifically located at approximately 436.1 nm and 535 nm, correspond to the π–π* transition 

and π* → Polaron transition, respectively (Banerjee et al. 2009; Geethalakshmi et al. 2014). In 

rGO, a significant broad peak appears within the wavelength range of 400-450 nm, signifying 

the formation of additional sp2 carbon atoms resulting from the reduction of GO. Moreover, a 

broad peak is observed in the range of 510-535 nm, suggesting a reduction in the quantity of 

disorder-induced states within the π–π* energy gap of rGO. This decrease in disorder-induced 

states contributes to the enrichment of small-sized sp2 clusters in the rGO structure (Singh et 

al. 2022). Moving forward to discuss PANI/rGO nanocomposites, the emission peaks 

predominantly originate from the π–π* transition of the benzenoid unit, transitioning from the 

polaronic band to the π band structures of PANI. This emission also signifies the presence of 

electronic states involved in the photoexcitation process. The arrangement of quinoid and 

benzenoid units in PANI facilitates the formation of singlet excitons, which subsequently 

undergo photonic emission as they decay to the ground state. Consequently, excitons 

significantly contribute in the photoluminescence behavior of conjugated polymers. This effect 

primarily stems from the inherent structure of the conjugated systems, where the delocalization 

of π-electrons facilitates more efficient charge carrier movement (Sreeja et al. 2019). In 

PANI/rGO nanocomposites, the interaction between PANI and rGO creates an environment 

conducive to increased carrier mobility. The conjugation within PANI allows for a smoother 

transition of charge carriers, enhancing the overall electrical conductivity of the composite. 

This enhancement is particularly significant when considering the separation between electrons 

(e-) and holes (h+), which directly impacts the mobility of excitons (electron-hole pairs). The 

presence of rGO in the composite also plays a pivotal role. rGO, with its high surface area and 
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conductive nature, provides additional pathways for charge transfer, further augmenting the 

mobility of charge carriers within the composite material. This enhancement in excitons 

significantly contributes to a more pronounced PL. Interestingly, the PL intensity shows a 

remarkable amplification with the incorporation of rGO up to a specific threshold (3 wt.%), 

beyond which a slight reduction is observed. This observation could be attributed due to 

improved charge transfer and reduced electron-hole recombination, excessive rGO can lead to 

the formation of non-radiative recombination centers, thus diminishing the PL intensity. The 

slight deviation in the emission peak in PANI/rGO nanocomposites is mainly influenced by 

variations in the arrangement of quinoid and benzenoid units within PANI (Souza Jr et al. 2006; 

Lai et al. 2012; Maruthamani et al. 2016; Choudhary and Verma 2019). As a result, these 

findings, in agreement with the UV-visible spectroscopy findings, afford compelling evidence 

of the substantial impact of rGO on the optical properties of PANI/rGO nanocomposites. 

 

Figure IV.9. PL spectrum of PANI, rGO, and PANI/rGO nanocomposites. 

IV.3.5.3. Raman spectroscopy 

Raman spectroscopy serves as a rapid and nondestructive characterization method, 

providing valuable insights into the lattice structure, structural disorders, crystallization, and 

defects of carbon-based materials (Wu et al. 2018a). In this study, Raman analysis was utilized 

to explore the structural alterations in PANI throughout de-doping and redoping procedures, as 

well as to analyze the vibrational spectrum of nonpolar bonds, particularly the C–C interactions 

within the PANI backbone and the basal planes of rGO. Figure IV.10 (A) presents the Raman 

spectra for rGO, PANI, and PANI/rGO (1, 3, and 5 wt.%) nanocomposites. 

The Raman spectra of rGO shows two discernible peaks with significance: one at 1351 cm-1 

associated with the D mode, suggesting defects in graphitic carbon, and the other at 1580 cm-1 

(G mode), aligning with the first-order scattering of the E2g mode commonly observed in sp2-

carbon fields  (Wu et al. 2009; Kim et al. 2014). The extent of disorder in carbon materials is 
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commonly assessed using the ID/IG ratio. In this case, the low ID/IG ratio of rGO (0.516) 

suggests a reduction in structural defects compared to its precursor material, GO. Literature 

reports suggest that the high ID/IG ratio in GO is indicative of a distorted lattice and a significant 

number of sp3-like defects resulting from the oxidation process during its preparation (Maulana 

et al. 2017). The presence of oxygen-containing chemical moieties or groups during oxidation 

causes disturbances in the graphene lattice and leads to the formation of sp3 carbon domains in 

GO. Nevertheless, during the reduction process, some of these defects are repaired, leading to 

a more ordered lattice in rGO defects by restoring the sp2 hybridized carbon network and 

reducing the sp3 domains, as evidenced by a lower ID/IG ratio. This process, however, might 

not completely eliminate all defects, leaving some residual disruptions in the lattice structure. 

The removal of oxygen-containing functional groups during reduction restores sp2 carbon 

domains and recovers the graphene-like structure. As a consequence, the ID/IG ratio in rGO 

decreases, representing a reduction in the number of sp3-like defects and an increase in the 

relative abundance of sp2 carbon fields (Wang et al. 2010; Kim et al. 2014). 

The Raman spectrum of pristine PANI reveals distinct bands linked to the doped 

polymer, including C–H bending in the quinoid ring at 1161 cm-1, C–N+ stretching at 1329 cm-

1, and C=C stretching in the quinonoid ring at 1590 cm-1. In PANI/rGO nanocomposites, the 

Raman spectra exhibits characteristic peaks consistent with those of pure PANI, corroborated 

by prior research, providing further evidence of the presence of PANI in the nanocomposites 

(Louarn et al. 1996; Niaura et al. 2004; Salunkhe et al. 2014). Interestingly, As the rGO content 

increases in the PANI/rGO nanocomposites, the vibration intensity at approximately 1470 cm−1 

(corresponding to C=N quinoid stretching) undergoes changes, signifying that the addition of 

rGO encourages the prevalence of the quinoid form of PANI, promoting a conjugated planar 

arrangement. This finding is additionally substantiated by analyzing the intensity ratio of the 

C–H vibration in the quinoid unit (1150 cm−1) relative to that of the consistent benzenoid (1160 

cm−1) (Pereira da Silva et al. 2000; Jain and Annapoorni 2010).  The stabilization of quinoid 

rings in the PANI/rGO nanocomposites is facilitated by π–π interactions with the basal planes 

of rGO, resulting in an increased level of polymer chain ordering within the hybrids (Wang et 

al. 2010). This enhanced polymer chain ordering promotes stronger interactions and facilitates 

more effective charge transfer between rGO and PANI. 

IV.3.5.4. Fourier transformation infrared spectroscopy (FTIR) 

To complement the Raman data and gain insights into the interaction between rGO and 

PANI, FTIR spectroscopy was employed in this study. Figure IV.10 (B) showcases the FTIR 

spectra of PANI, rGO, as well as PANI/rGO nanocomposites (at 1, 3, and 5 wt.% rGO) in the 
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region between 1800 and 1000 cm-1. This zoomed-in view allows for the identification of peaks 

resulting from the interactions between rGO and PANI. For further reference, Figure A.1 and 

Figure A.2 in the Appendix display the FTIR spectra of rGO and pure PANI, respectively.  

Remarkably, the FTIR spectrum of rGO exhibited distinct changes, with a novel peak 

emerging at 1565 cm-1, attributed to sp2 hybridized CC, and the disappearance of the peak at 

1050 cm-1, indicative of epoxide groups. These observations proved the successful reduction 

of GO to rGO, aligning with similar FTIR spectra reported in the literature for rGO (Kumar et 

al. 2018b). In the FTIR spectrum of PANI and PANI/rGO nanocomposites, prominent 

absorption peaks are observed at 3277, 1623, 1428, and 1318 cm-1, corresponding to N-H, 

C=N, C=C, and C−N stretching, correspondingly (Mostafaei and Zolriasatein 2012). Notably, 

the intensity ratio of the PANI bands (1623 and 1428 cm-1) is indicative of the occurrence of 

reduced (benzenoid) and oxidized (quinoid) repeat units. These characteristic bands serve as 

compelling evidence for the presence of the emeraldine salt phase of PANI in the 

nanocomposites (Jain et al. 2016). The emeraldine salt phase represents the conductive state of 

PANI, featuring alternating benzenoid and quinoid repeat units. This conductive state is crucial 

for optimizing the electrical properties of PANI/rGO nanocomposites. In the structure of 

polyaniline, the alternating arrangement of benzenoid and quinoid units plays a crucial role in 

defining its electrical properties. This structural configuration facilitates the delocalization of 

π electrons across the benzenoid units, which is essential for the intrinsic conductivity of the 

polymer. This delocalization contributes to the overall electronic structure of PANI, allowing 

for a certain degree of electron mobility within the polymer chain. Simultaneously, the presence 

of quinoid units introduces sites for potential charge transfer interactions. These interactions 

are not purely based on the delocalization of π electrons but involve hopping mechanisms, 

where charge carriers, such as polarons and bipolarons, move between localized states along 

the polymer chain. This charge transfer process is influenced by the degree of oxidation 

(doping) of PANI and is critical in applications where PANI undergoes redox reactions or 

interacts with other materials, such as graphene in composites. Therefore, the electrical 

conductivity in PANI is a result of a complex interplay between the delocalization of π 

electrons, predominantly within the benzenoid segments, and charge transfer mechanisms, 

facilitated by the quinoid structures and doping levels. This interplay enables PANI to exhibit 

a range of conductive behaviors, adapting to different environmental conditions and 

applications. As a result, the presence of the emeraldine salt phase enables the efficient flow of 

electrons, contributing to improved electrical conductivity and enhanced performance of the 
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nanocomposites in various applications, including energy storage devices, sensors, and 

conductive coatings. 

A) 

 

B) 

 

Figure IV.10. A) Raman spectra and B) FT-IR spectrum of pure PANI, rGO, and PANI/rGO 

nanocomposites. 

Interestingly, the FTIR spectrum of PANI/rGO nanocomposites did not exhibit the 

functional groups present on the rGO. This finding indicated that the surface of rGO was 

effectively coated with PANI through precise interactions, such as π–π electron stacking and 

H- bonding among the amine group of PANI and the oxygen groups in rGO (Xu et al. 2010; 

Imran et al. 2014). Notably, the polymerization process involving aniline in the presence of 

rGO follows a specific mechanism. Aniline undergoes oxidation, consequential in the 

construction of oxidized radicals. These radicals then undergo a reductive elimination of 2H+ 

to form an α,α-aniline dimer. Subsequently, these dimers can propagate to longer chain lengths 

through repeated oxidation and reaction with generated aniline radicals via oxidation 

(Gospodinova et al. 1993). These interactions not only ensure the uniform dispersion of rGO 

within the PANI matrix but also contribute significantly to the improved electrical properties 

and overall performance of the PANI/rGO nanocomposites. 

V.3.5.5. X-ray diffraction analysis (XRD) 

The structures of the PANI/rGO nanocomposites were further elucidated through 

powder X-ray diffraction (XRD) analyses. These analyses were conducted to investigate the 

elemental composition, carbon bonding, morphology, and crystallinity of the nanocomposites 

(Vinet and Zhedanov 2011). Figure IV.11 illustrates the XRD patterns of pure rGO and PANI, 

as well as PANI/rGO (1, 3, and 5 wt.%) nanocomposites. The XRD measurements were 

conducted over an angular range of 10° ≤ 2θ ≤ 60°, utilizing a scanning rate of 6° min-1 with a 
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step size of 0.02°. In the XRD analysis of PANI, small diffraction peaks were observed at 

15.20°, 20.20°, and a distinct peak at 25.50°, corresponding to the (011), (020), and (200) 

Bragg's reflections, correspondingly. These peaks are indicative of the crystalline planes 

associated with the emeraldine salt state of PANI (Yan et al. 2010). The XRD pattern of rGO 

displayed peaks at 2θ = 26.51° and 44.40°, representing the characteristic (002) and (100) peaks 

of graphite-like structures, respectively. The intensities of these peaks amplified as a result of 

the interaction between rGO and PANI chains in different proportions (Abd Razak et al. 2021). 

 

Figure IV.11. XRD patterns of pure PANI, rGO, and PANI/rGO nanocomposites. 

Upon forming the PANI/rGO nanocomposites, new peaks surfaced, demonstrating a 

shift compared to the pristine rGO peaks. This shift is ascribed to the π–π bond stacking of the 

benzene rings in PANI with rGO. Particularly, the peak at 2θ = 25.50° in pure PANI shifted to 

26.60° when PANI was blended with rGO, signifying a substantial interaction between rGO 

particles and PANI chains (Mitra et al. 2015). Moreover, the XRD analysis of rGO/PANI 

nanocomposites revealed diffraction peaks similar to those observed in PANI or rGO, 

suggesting the absence of additional crystalline structures in the nanocomposite samples. Based 

on these outcomes, it can be resolved that the characteristic diffraction peaks indicate extensive 

physical and chemical interactions between rGO and PANI chains. These interactions include 

H-bonds, electrostatics, and π-π coordination interactions (Abd Razak et al. 2021). 

IV.3.6. X-ray photoelectron spectroscopy (XPS) 

The investigation of elemental composition was advanced by X-ray photoelectron 

spectroscopy (XPS), providing deeper insights into the samples. The comprehensive survey 

spectra, as depicted in Figure IV.12 (A), distinctively portray the characteristic chemical 

profiles of pure PANI, rGO, and PANI/rGO nanocomposite samples, featuring discernible 

signals consistent to carbon (C 1s), nitrogen (N 1s), and oxygen (O 1s) for each respective 
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material. Additionally, it is noteworthy that besides the detection of C KLL and O KLL Auger 

electron emissions in the high binding energy region, the oxygen signal present in the PANI 

sample may have arisen from residual APS as well as water molecules adsorbed onto the 

surface (Moyseowicz and Gryglewicz 2019). This oxygen signal might also stem from the rGO 

component within the PANI/rGO samples. Intriguingly, a subtle yet noteworthy N 1s peak 

observed in the rGO spectrum can be ascribed to doped nitrogen resulting from the hydrazine 

reduction process, thus further enriching our understanding of these intricate materials (Lamiel 

et al. 2015; Yu et al. 2023).  

Meanwhile, the N1s spectrum at high resolution for both PANI and PANI/rGO reveals 

four discernible components, as illustrated in Figure IV.12 (B) and (C).  The peaks at binding 

energies of 398.1 and 399.2 eV are indicative of imine (-N=) and amine (-NH-) groups, 

respectively, while those at 401.6 and 405.1 eV are associated with positively charged nitrogen 

groups N+ and -NH+, respectively. PANI is predominantly composed of amine groups, 

suggesting its protoemeraldine form (Vallés et al. 2011; Li et al. 2020). Throughout synthesis, 

PANI undergoes oxidation, leading to the partial conversion of amine to imine nitrogen. This 

transformation is explicable by the simultaneous reduction of GO oxygen functionalities and 

PANI nitrogen groups, facilitated by superheated water and the hydrothermal process (Xu et 

al. 2011), also via hydrothermal process (Moyseowicz and Gryglewicz 2019). The heightened 

fraction of positively charged nitrogen can be attributed to the interactions between PANI and 

rGO, inducing a restructuring of the benzenoid amine structure of PANI. Moreover, the 

elevated doping level of PANI in this composite is expected to augment its electrical and 

electrochemical performance. The C 1s spectra’ deconvolution for PANI, PANI/rGO 

nanocomposite, and rGO samples is presented in Figure IV.12 (D).  

Upon closer examination of the primary peak line of PANI, as shown in Figure IV.12 

(D), a decomposition into four distinct peak lines becomes evident. Specifically, PANI displays 

a peak at 284.6 eV attributed to C–C and C=C bonds. Furthermore, characteristic peaks 

associated with carbon-nitrogen interactions manifest as follows: C–N, C–N+, C=N, and C=O, 

each corresponding to binding energies of approximately 285.6, 286.7, as well as 287.9 eV, 

respectively. The presence of carbonyl functional groups within PANI can be ascribed to the 

generation of benzoquinone and hydroquinone, resulting from partial surface oxidation (Zou 

et al. 2018).  
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A) 

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 

 

Figure IV.12. XPS surveys with the broad high-resolution spectrum of the C 1s and N 1s 

areas for pure PANI, rGO, and PANI/rGO nanocomposites (3 wt.%). 

Turning attention to Figure IV.12 (E and F), the C 1s spectrum for PANI/rGO and rGO display 

six discernible peak lines: C=C and C-C (284.31 eV), C-N (285.4 eV), C-OH (285.7 eV), C-

O-C (286.6 eV), C=O bonds (288.1 eV), and π−π stacking (290.4 eV) (Fujimoto et al. 2016; 

Yu et al. 2023). Notably, the C-N peaks are more prominent in the PANI/rGO spectra than in 

the rGO sample. While inherent oxygen defects may exist in the raw rGO sample, the majority 

of the oxygen in the PANI/rGO nanocomposite coating likely originates from slight rGO 

oxidation during synthesis. This oxygen content acts as active sites, facilitating PANI 

polymerization. In this context, it is reasonable to infer that rGO contributes to the formation 

of a more comprehensive and densely structured PANI/rGO nanocomposite coating. This 

observation holds significant implications for the structural and functional properties of the 

resultant nanocomposite material. 

IV.3.7. Electrochemical behavior of PANI/rGO nanocomposites 

To comprehend the electrochemical redox behavior of PANI/rGO nanocomposites, a 

conventional cyclic voltammetry (CV) test was performed. Figure IV.13 illustrates the cyclic 

voltammograms of rGO, pure PANI, and PANI/rGO nanocomposites. When scanned at a rate 

of 25 mV s⁻¹, the CV of pure PANI exhibited the existence of two sets of redox peaks. These 

peaks correspond to specific transitions within the PANI structure, notably the shift from the 
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fully-reduced PANI form (leucoemeraldine) to the partially-oxidized PANI form (emeraldine), 

as well as the transition among emeraldine and the fully-oxidized PANI form (pernigraniline) 

(Salunkhe et al. 2014; Silva et al. 2018; Boublia et al. 2023a).  

In contrast, the CV of PANI exhibits a single pair of redox peaks when scanned at rates 

ranging across 25 to 175 mV s-1. It is important to note that as the scan rate rises from 25 to 

175 mV s-1, there is a proportional increase in current density. This increase can be ascribed to 

the interior resistance within the electrode. CV curves for PANI/rGO nanocomposites share a 

similar overall shape to that of pure PANI, but there is a noticeable difference in current 

densities. Specifically, the current densities of PANI/rGO nanocomposite samples are 

somewhat lower compared to PANI at equivalent potential scan rates. Moreover, by altering 

the weight percentage (wt.%) of rGO in the PANI/rGO nanocomposites, significant changes in 

the profiles of the CV curves and current densities were observed. An increase in the rGO wt.% 

from 3 wt.% resulted in a substantial rise in current density. However, this trend was reversed 

as the rGO content was further increased to 5 wt.%. 

Using the CV data, the specific capacitances (Cp, F g−1) were calculated for various 

potential scan rates (ν, mV s−1) through the application of the following formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒 (𝐶𝑝) =  
∫ 𝐼(𝑉) × 𝑑𝑉

𝑚 × ∆𝑉 × 𝜈
 Eq. (32) 

Here, ∫I(V) dV signifies the integration of current over time, as acquired from the cyclic 

voltammogram, m denotes the mass of the sample, which, in this case, corresponds to the 

PANI/rGO nanocomposites, and is expressed in grams. ΔV represents the potential window, 

while ν represents the scan rate.   

A) 

 

B) 
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C) 

 

D)  

 

E) 

 

Figure IV.13. Cyclic voltammograms of A) rGO, B) PANI, and PANI/rGO nanocomposites 

(C, D, & E) at different scan rates. 

Figure IV.14 offers an insightful evaluation by comparing the CV curves at a scan rate 

of 25 mV s-1 and the computed specific capacitances of pure PANI, rGO, and PANI/rGO 

nanocomposites. Notably, the trends in current density at 25 mV s-1 (Figure IV.14 (A)) and the 

specific capacitance (Figure IV.14 (B), as detailed in Table IV.5) align consistently. The order 

is as follows: PANI/rGO (3 wt.%) < PANI/rGO (1 wt.%) < PANI < PANI/rGO (5 wt.%) < rGO. 

At a scan rate of 25 mV s-1, the PANI/rGO (3 wt.%) nanocomposite exhibits the highest specific 

capacitance, reaching a remarkable 145.79 F g-1. 

 This finding underscores the exceptional electrochemical behavior of PANI/rGO (3 

wt.%), which holds great promise for diverse sensor and energy storage applications. 
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A) 

 

B)  

 

Figure IV.14. A) CV curves at a scan rate of 25 mV s−1 and B) the computed specific 

capacitance of rGO, pure PANI, and rGO/PANI nanocomposites across various scan rate. 

Table IV.5. Specific capacities of pure PANI, rGO, and PANI/rGO at a scan rate of 25 mV 

s−1. 

Sample Specific capacitance (F g-1) 

PANI 101.87 

PANI/rGO (1 wt.%) 128.80 

PANI/rGO (3 wt.%) 145.79 

PANI/rGO (5 wt.%) 109.36 

rGO 70.13 

IV.3.8. Thermo-gravimetric analysis (TGA)  

Thermogravimetry analysis (TGA) proves instrumental in discerning dopants and water 

content within polymers, offering valuable insights into thermal degradation patterns, structural 

characteristics, and thermal stability (Veloso et al. 2022). The progressive degradation at each 

step of the curve can be delineated through the mass loss profile. Employing TGA, we 

investigated the thermal stability of rGO, PANI, and PANI/rGO from room temperature up to 

1000 °C (Figure IV.15).  

In the case of rGO, a significantly lower weight loss of approximately 11% was noted 

at 600 °C, demonstrating its heightened stability. The consistent weight reduction observed 

throughout the temperature spectrum emphasizes the enduring stability of rGO. The initial 

weight decline in rGO (~2%) below 100 °C is ascribed to the evaporation of adsorbed solvent 

molecules. Subsequently, a minor weight loss of ~5% and ~7% was observed in rGO between 

100-300 °C and >300 °C, correspondingly. The gradual loss at temperatures exceeding 300 °C 
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is linked to the elimination of more stable oxides, particularly –COOH groups, with the partial 

presence of oxides validating the successful preparation of rGO (Gebreegziabher et al. 2019).  

In PANI, a weight loss approximately 260 °C links to the evaporation of moisture 

content and dopants, initiating the breakdown of the PANI backbone beyond 260 °C (Park et 

al. 2020). PANI/rGO experiences rapid mass loss at approximately 390 °C, attributed to the 

decomposition of oxygen-containing groups such as –OH, –CO–, and –COOH (Wang et al. 

2013). Furthermore, Figure IV.15 depicts that the thermal stability of the nanocomposite is 

shifted towards elevated temperatures in contrast to pure PANI. While PANI experiences 

complete decomposition at 767 °C, PANI/rGO nanocomposites exhibit decomposition 

temperatures of 838, 870, and 878 °C for PANI/rGO at 1%, 3%, and 5% wt., respectively. This 

enhanced thermal stability can be attributed to the covalent bonding among rGO and the PANI 

backbone (Li and Zheng 2018). Moreover, these covalent bonds foster a substantial π–π 

stacking force amongst the basal plane of rGO and the PANI backbone, further reinforcing the 

nanocomposite's thermal stability (Gupta et al. 2016). 

 

Figure IV.15. The TGA profiles of pure PANI, rGO, and PANI/rGO nanocomposites. 

IV.3.10. Computational calculations 

In the pursuit of advancing materials science and engineering, the choice of appropriate 

models for the constituents of a nanocomposite material is paramount. In this study, a specific 

model for PANI and a distinct model for rGO were selected to comprehensively investigate the 

PANI-rGO nanocomposite. The overarching aim of this study is to align computational results 

with experimental findings. By selecting these tailored models for PANI and rGO, we aim to 

compare and confirm our computational outcomes with experimental data, reinforcing the 

credibility and applicability of our calculations. This holistic approach bridges the gap between 

theory and practice, fostering a deeper understanding of the PANI-rGO nanocomposite's 
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structural and electronic properties, with significant implications for materials design and 

engineering applications. 

IV.3.10.1. Frontier molecular orbital (FMO) analysis 

An advanced computational approach was employed to delve into the intricate 

interaction configurations and characteristics of PANI/rGO nanocomposites. Specifically, 

FMO analysis was utilized to pinpoint the most favorable interaction geometry. The optimized 

structures of PANI, rGO, and PANI/rGO are visually represented in Figure IV.16. This 

investigation revealed a compelling inclination of rGO to establish intimate contact with the 

nitrogen (N) atoms of PANI, significantly, Figure IV.16 (C) distinctly illustrates the close 

contact formed by rGO with the N atoms of PANI. These critical findings, illustrated in Figure 

IV.16, provide invaluable insights into the optimized geometry of both PANI, rGO and the 

PANI/rGO nanocomposite.  

A) PANI 

 

B) rGO C) PANI/rGO 

 

 

Keys:   Carbon  Hydrogen  Oxygen  Nitrogen 

Figure IV.16. Optimized geometry for A) rGO sheet and B) PANI-rGO nanocomposite. 

The interaction among rGO and PANI, as elucidated in the optimized structure, 

assumes paramount importance in comprehending the electronic and molecular characteristics 

of this nanocomposite material. To evaluate the comparative stability and reactivity of the 

optimized structures, a range of parameters were systematically computed. These parameters 

include the interaction energy, energies of the EHOMO, ELUMO, and Eg.  The interaction energy 

was systematically evaluated by subtracting the electronic energies of the resulting complex 
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from the electronic energies of the initial components. A negative interaction energy indicates 

the formation of the complex through an exothermic reaction (Boulechfar et al. 2023a; Yasmin 

et al. 2023) The determined interaction energy for the PANI/rGO nanostructures was 12.566 

eV, suggesting that the formation of these structures was thermodynamically favorable.  

Figure IV.17 provides a comprehensive overview of the EHOMO and ELUMO, along with 

the energy gap, for the PANI, rGO, and PANI-rGO structures, all meticulously optimized in 

their most stable forms. The energy gap of a molecular structure is widely acknowledged as a 

crucial indicator of its electron transport properties (Farooqi et al. 2020b). Specifically, a lower 

energy gap in molecular structures suggests enhanced ease of electron transport. As illustrated 

in Figure IV.17, the optimized configurations of PANI, rGO, and PANI-rGO exhibit energy 

gaps of 0.96 eV, 1.36 eV, and 2.15 eV, respectively. This observation aligns seamlessly with 

the experimental findings outlined in section V.3.5.1. This insight further underscores the 

potential of the PANI/rGO nanocomposite in facilitating efficient electron transport, a key 

attribute in various electronic applications. 
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Figure IV.17. Frontier molecular orbitals of A) PANI, B) rGO and C) PANI-rGO 

nanocomposite. 
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IV.3.10.2. COSMO-RS approach  

Unveiling the structure-property relationship within molecular structures stands as a 

primary objective of COSMO-RS. COSMO-RS, an advanced computational technique, utilizes 

quantum chemical computations and statistical thermodynamics to anticipate the 

thermodynamic attributes of both individual substances and their combinations (Lemaoui et al. 

2021). It relies solely on details about the atoms in pure compounds, encompassing their 

geometry and charge shielding density, rendering it independent of experimental data 

(Paduszyński 2018; Lemaoui et al. 2023b). The COSMO-RS charge distribution in the 

interacting system of PANI, rGO, and PANI-rGO is visually depicted on the COSMO surfaces, 

as illustrated in Figure IV.18. Here, non-polar areas are represented in green, the acceptor of 

the hydrogen bond (HBA) location is shown in red, and the hydrogen bond donor is signified 

by the blue (HBD) region (Lemaoui et al. 2022; Mouffok et al. 2023; Boublia et al. 2023b).   
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Figure IV.18. Optimized COSMO-RS 3D structures of PANI, rGO, and PANI-rGO models. 

In chemistry, sigma profiles and sigma potentials (σ-profiles and σ-potentials, 

respectively) are fundamental tools for studying the distribution of electrostatic potential 

around molecules and ions. They are pivotal in characterizing a molecule's electronic structure 
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and chemical properties, aiding in predicting reactivity, stability, and other key attributes 

(Kahlen et al. 2010; Szabo and Ostlund 2012). Within the COSMO-RS methodology, σ-

profiles (P(σ)) offer graphical representations of charge shielding density on a molecular 

surface, providing insights into specific charge shielding densities in different regions. σ-

potentials (µ(σ)), on the other hand, measure a molecule's interaction affinity by assessing the 

electrostatic potential energy at a exact point within the molecule, considering the surrounding 

solvent environment (Boublia et al. 2022b, 2023c; Mouffok et al. 2023). This metric helps 

evaluate the tendency of components in a mixture to interact with polar surfaces and establish 

hydrogen bonds. The electron density distribution is categorized into three regions: the HBD 

area (σ < − 0.0082 e/Å2), the non-polar area (−0.0082 e/Å2 < σ < 0.0082 e/Å2), and the HBA 

area (σ > 0.0082 e/Å2). Positive µ(σ) values indicate a higher occurrence of repulsive 

interactions, while negative values indicate more significant interactions among molecules 

(Słupek et al. 2021). The horizontal axis, with increasing positive and negative values 

representing H-bond thresholds, delineates areas within a molecule where HBDs interact with 

HBAs (Man et al. 2017).  

In this investigation, Figure IV.19 provides a compelling visualization of the σ-profiles 

as well as σ-potentials for both PANI and rGO, which offer profound insights into their unique 

characteristics. 

A) 

 

B) 

 

Figure IV.19. A) σ-profiles and B) σ-potentials derived by COSMO-RS for PANI and rGO 

models investigated in this study. 

Upon scrutiny of the σ-profiles, it becomes evident that the PANI structure and rGO 

sheets predominantly exhibit nonpolar attributes, with discernible regions exhibiting a 

propensity for HBA, notably linked to the oxygen atoms within the rGO structure. Within the 
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P(σ), the central sector corresponds to nonpolar or weakly polar segments of the molecules, 

whereas the right-hand side reveals strongly polar areas, suggesting potential involvement in 

hydrogen bonding (Figure IV.19 (A)). On the left-hand side, HBD regions emerge. Within the 

carbon-rich zones, nonpolar characteristics prevail, denoted by the green regions in the surface 

charge distribution representations, signifying areas predominantly associated with exposed 

carbon atom surfaces. Peaks positioned within the HBA regions link to the presence of oxygen 

atoms, depicted as red areas in the surface charge density; for rGO, this red area is correlated 

with the epoxy groups (as observed in Figure IV.18 (B)). In contrast, peaks within the HBS 

area of the σ-profile align with hydrogen atoms present in the alkyl side chains and hydroxyl 

groups, illustrated as light blue areas (Prías Barragán et al. 2020). Moreover, a meticulous 

examination of the σ-potentials emphasizes that the primary interaction between PANI and 

rGO transpires within the polar region, encompassing both HBA and HBD sites. This 

phenomenon can be largely attributed to rGO's demonstrated capacity to establish hydrogen 

bonds, as indicated by positive μ(s) values (Behloul et al. 2022; Boulechfar et al. 2023b, a). 

Additionally, it is worth noting that viable interactions are not confined solely to the polar 

realm; they can also manifest within the nonpolar area, where rGO exhibits a negative μ(s) 

value (Figure IV.19 (B)). This observation underscores the intricate nature of the interaction 

between PANI and rGO, which bridges both polar and nonpolar domains. Accordingly, the σ-

profiles and σ-potentials of these distinct compounds provide appreciated insights into their 

chemical composition, accounting for polarization and their potential for hydrogen bonding. 

This comprehensive understanding significantly augments our understandings into the 

plausible interactions among the targeted PANI and rGO structures. 

IV.3.10.3. Non-covalent interaction (NCI) analysis 

NCI analysis is an advanced theoretical approach widely used to unravel intermolecular 

interactions and characterize weak forces in molecular systems. This method employs 

visualization indicators based on electron density and appropriate metrics color-coded to 

represent the strength of these interactions using RDG values at low electron densities (Zhang 

et al. 2021; Murmu et al. 2022). The NCI method assesses the electron density (𝜌) by 

multiplying it with the sign of the second-highest eigenvalue (𝜆2) of the Hessian matrix of the 

electron density at each point on the isosurface (Ferkous et al. 2023). This product, represented 

as (𝜆2)  ×  𝜌, serves as a valuable indicator of whether intermolecular forces are attractive or 

repulsive. A negative sign of (𝜆2)  ×  𝜌 signifies basically attractive interactions, often linked 

with the formation of H-bonds, which are crucial in molecular associations. Conversely, a 
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positive sign of (𝜆2)  ×  𝜌 indicates the presence of steric repulsion or non-bonding 

interactions, which are essential for understanding how molecules interact while maintaining 

their structural integrity (Zhang et al. 2021; Adekoya et al. 2022).  

Figure IV.20 illustrates the NCI-RDG plots resulting from the density analysis of PANI, 

rGO, and their interaction (PANI/rGO). In this context, hydrogen bonding, van der Waals 

forces, and steric repulsive interactions are respectively represented by the colors blue, green, 

and red. The RDG isovalue, ranging from 0.035 to 0.020 a.u., along with the sign of provides 

insights into the strength and nature of these interactions. For PANI, the analysis indicates 

intramolecular van der Waals forces, noticeable as green surfaces in the 3D plot, with a spike 

at -0.01 (a.u.) in the 2D s(ρ) plot. The rest of the spikes are linked with repulsive forces with 

PANI, and no strong electrostatic forces are observed. In the case of PANI/rGO, a cluster of 

RDG spikes lies among 0.00 and 0.01 (a.u.), representing weak forces, also revealed as green 

iso surfaces in the 3D plot. Similar to PANI, no strong electrostatic forces are observed between 

PANI and rGO in the PANI/rGO. It is primarily VDW forces that contribute to the formation 

and stability of the PANI-rGO nanocomposite.  
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Figure IV.20. Scatter plots for RDG (upper) and NCI (bottom) isosurfaces (s = 0.5 a.u.) of 

A) PANI, B) rGO, and C) PANI/rGO isosurfaces (IGM = 0.01 a.u.). The isosurfaces’ colors 

correspond to the sign values (λ2) ρ, ranging from −0.05 to 0.05 a.u. 

IV.3.10.4. Quantum theory of atoms in molecules (QTAIM) results 

The QTAIM framework serves as a robust computational tool for characterizing the 

strength and nature of interactions among chemical compounds (Fuster and Grabowski 2011; 

Popelier 2014; Gabsi et al. 2023). Within Figure IV.21, we present representations of the 

PANI/rGO system, highlighting the presence of bond critical points (BCPs) and bond paths. 

The existence of BCPs in each system substantiates the transfer of electron density and 

unequivocally approves the establishment of chemical bonds among PANI and rGO. To 

pinpoint BCPs with precision, we identify the (3, 1) CPs, also recognized as saddle points, 

situated among interacting atoms of two fragments or along the path connecting analyte atoms 

to the surface (Garg and Goel 2023). BCPs play a pivotal role in probing non-covalent 

interactions within two-fragment systems. By employing BCPs, we can assess critical 

parameters including electron density (ρ(r)), Laplacian of the electron density (Δ2ρ(r)), 

potential energy density (V(r)), Lagrangian kinetic energy (G(r)), and total energy density 

(H(r)). The values of these parameters at BCPs are meticulously outlined in Table IV.6. To 

investigate the strength of intermolecular bonds among PANI and rGO, we classify them based 

on the and H(r) values. Positive and negative values for both parameters signify weak and 

strong interactions, correspondingly. In contrast, a negative H(r) combined with a positive  

denotes medium-strength interactions (Sattar et al. 2022).  
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Figure IV.21. QTAIM molecular graphs showing bond paths and critical points for 

PANI/rGO complex. Orange, yellow, and green dots signify BCP points, ring-critical points, 

and cage-critical points, correspondingly. 

Table IV.6. QTAIM characteristics of the interaction sites (in a.u.) at selected BCPs in 

PANI/rGO complex. 

BCP X  Y ρ(r) 𝚫𝟐𝛒(𝐫) V(r) G(r) |V(r)|/G(r) H(r) 

164 91(C) -- 40(C) 0.000274 0.001532 -0.000132 0.000257 -0.511626 0.000126 

175 54(O) -- 97(C) 0.005454 0.018768 -0.003213 0.003952 -0.812856 0.000740 

247 100(C) -- 32(C) 0.004964 0.000702 -0.002328 0.003031 -0.768261 0.000702 

248 100(C) -- 33(C) 0.004954 0.015022 -0.002333 0.003044 -0.766277 0.000711 

274 102(N) -- 21(C) 0.004138 0.012777 -0.002290 0.002742 -0.835106 0.000452 

284 125(H) -- 88(O) 0.041559 0.176644 -0.041626 0.042893 -0.970443 0.001268 

As detailed in Table IV.6, reveal significant insights into the nature of interactions within the 

PANI-rGO system. Notably, ρ(r) values with positive indicative of hydrogen bond interactions, 

prominently illustrated in the case of 125(H) -- 88(O). Furthermore, the analysis indicated that 

rGO demonstrated a pronounced tendency to closely interact with the nitrogen (N) atoms of 

PANI, illustrated by the BCP of 274: 102(N) -- 21(C). This observation aligns with the concept 

that the electrons' tendency to combine, denoted as V(r), is outweighed by their propensity to 

disperse, represented by G(r), as showed by the |V(r)|/G(r) ratio being less than 1. This ratio, 

G(r)/|V(r)|, can further serve to anticipate atomic interactions: a G(r)/|V(r)| exceeding 1 

suggests noncovalent electrostatic interactions, while a range of 0.5 < G(r)/|V(r)| < 1 indicates 

covalent interactions, and values within 0.5 < G(r)/|V(r)| < 0 point to highly covalent 

interactions (Sattar et al. 2022). The G(r)/|V(r)| values of PANI-rGO system are consistently < 

0, indicative of an electrostatic type of interaction throughout PANI and rGO sheets. This 

comprehension offers valuable insights into the bonding interactions' nature within these 

systems and illuminates their potential in nanocomposite technology. 
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IV.4. Conclusion  

In the current work, we achieved the successful synthesis of PANI/rGO nanocomposites 

through an in-situ chemical polymerization process facilitated by a deep eutectic solvent (DES) 

serving as an electrolyte. A thorough investigation was conducted, integrating Response 

Surface Methodology (RSM), Artificial Neural Networks (ANN), and molecular modeling 

techniques for the comprehensive modeling, optimization, and characterization of PANI/rGO 

nanocomposites. The collaborative implementation of optimization methods and meticulous 

characterization uncovered profound insights into the multifaceted characteristics of these 

nanocomposites. From this integrative approach, several key outcomes have emerged:  

• RSM analysis elucidated the impact of APS/ANI molar ratio, rGO loading, and 

polymerization time on electrical conductivity, culminating in a second-order 

polynomial function. Optimal conditions for maximum electrical conductivity were 

identified as an APS/ANI molar ratio of 0.75, 3 wt.% rGO loading, and a 6-hour 

polymerization time, yielding a high conductivity of 4.975 × 10-3 S cm-1. ANN analysis 

exhibited enhanced conductivity of 4.988 × 10-3 S cm-1, showcasing the superior 

predictive accuracy of the ANN model over RSM. 

• Comprehensive characterization through UV-vis, PL, Raman, FTIR, and XRD 

elucidated significant structural changes in PANI/rGO nanocomposites, emphasizing 

the transformative impact of rGO on PANI. 

• XPS analysis unveiled distinctive elemental compositions, with the deconvolution of 

C 1s spectra highlighting intensified C-N peaks in PANI/rGO, indicating a denser 

nanocomposite coating and promising structural enhancements. 

• Electrochemical studies through cyclic voltammetry showcased superior capacitance 

in PANI/rGO, reaching an impressive 145.79 F g-1, surpassing individual PANI or 

rGO components. 

• TGA analysis affirmed the enhanced thermal stability of PANI/rGO, with 

decomposition temperatures notably higher than pure PANI, attributed to synergistic 

covalent bonding and substantial π–π stacking forces. 

• Molecular-level insights through FMO, COSMO-RS, NCI, and QTAIM analyses 

provided a nuanced understanding of the PANI-rGO system, highlighting the 

dominant role of VDW forces in nanocomposite formation and stability. 
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Conclusion and Future Perspectives  

This dissertation, conducted throughout the PhD research, centered on developing 

multifunctional, eco-friendly nanocomposites using polyaniline (PANI) and functionalized 

graphene. Aiming to deeply understand these materials, the research integrated experimental 

methodologies with computational and machine learning techniques. The primary goal was to 

clarify the complexities of PANI/graphene nanocomposites, focusing on synthesis, structural 

characterization, and performance enhancement. Each chapter systematically contributes to 

this goal, weaving a narrative that reveals the sophisticated processes in the synthesis, 

characterization, and enhancement of these nanocomposites.  

Summary of The Thesis 

The thesis starts with a detailed review of PANI and graphene-based nanocomposites, 

emphasizing their significance in electrical conductivity and gas sensing, and highlighting 

recent research progress. This is complemented by an exploration of the integration of 

computational and experimental techniques in polymer nanocomposite research. The synergy 

of machine learning with experimental design unfolds new potential in optimizing 

PANI/graphene nanocomposites, enhancing our grasp of their complex structural, 

morphological, and electrochemical traits. 

A notable contribution of this PhD thesis is the development of new holistic models for 

predicting the electrical conductivity and gas-sensing responses of PANI/graphene 

nanocomposites. This breakthrough modeling approach sets a new standard in material science, 

showcasing the potential of these models in guiding future nanocomposite technology research 

and applications.  

Thus, key achievements include: 

• A detailed review of PANI and graphene-based nanocomposites, highlighting their 

electrical conductivity and gas sensing capabilities. This included a focus on recent 

advancements and the exploration of gas detection mechanisms. 

• The integration of computational and experimental techniques in polymer nanocomposite 

research. This involved combining machine learning with experimental design to optimize 

PANI/graphene nanocomposites, enhancing understanding of their structural, 

morphological, and electrochemical attributes. 
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• The introduction of the first ML models for predicting electrical conductivity and gas-

sensing responses in PANI/graphene nanocomposites. This marked a major milestone in 

material science, demonstrating the models' potential to accurately map nanocomposite 

properties. 

• Successful synthesis of PANI/graphene nanocomposites using in-situ chemical 

polymerization with a deep eutectic solvent and extensive characterization to understand 

their structural and electrochemical properties. 

• The thorough applicability domain analysis underscored the robustness and dependability 

of the ANN models within specific parameter ranges, emphasizing their practical relevance 

in the development of high-performance materials. 

• The research effectively synthesized PANI/rGO nanocomposites, employing in-situ 

chemical polymerization with a deep eutectic solvent. Comprehensive characterization 

techniques provided detailed insights into their structural and electrochemical properties 

• Employing RSM, ANN, and molecular simulations for optimizing electrical conductivity 

and performance of the nanocomposites. 

Overall, this thesis offers a comprehensive understanding into the advanced applications of 

PANI and graphene-based nanocomposites, bridging the gap between advanced material 

science and sustainable applications. It stands as a testament to innovative approaches in 

synthesizing, characterizing, and optimizing these nanocomposites, thereby unlocking their 

potential in diverse areas like supercapacitors, gas sensors, and energy storage systems. This 

body of work not only propels forward the domain of sustainable materials science but also 

paves the way for future technological breakthroughs in nanocomposite applications. 

Innovative Contributions to The Field 

The innovative contributions of this dissertation in the field of PANI/graphene 

nanocomposites are multi-dimensional, reflecting a comprehensive integration of 

methodologies and insights: 

• Development of Predictive Models: A ground-breaking achievement in this research is 

the development of a robust ML model. This model, a first of its kind, adeptly predicts the 

electrical conductivity and gas-sensing properties of PANI/graphene nanocomposites, 

establishing a new benchmark in polymer science modeling. 

• Advanced Synthesis Techniques: The thesis marks significant advancements in synthesis 

methods, notably in-situ polymerization utilizing deep eutectic solvents. This approach 
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enhances the interaction between PANI and rGO, yielding nanocomposites with superior 

structural and functional attributes. 

• Synergy of Computational and Experimental Techniques: A notable innovation is the 

harmonious blend of computational models, including ANNs, with traditional experimental 

approaches. This integration has led to increased precision in predictions and greater 

customization possibilities in nanocomposite development. 

• Comprehensive Characterization and Electrochemical Analysis: The thesis provides 

an in-depth exploration of various characterization techniques, offering detailed insights 

into the structural, morphological, and electrochemical properties of PANI/graphene 

nanocomposites. 

• Molecular Simulation Insights: Employing advanced techniques like DFT and MD 

simulations, the research deepens our understanding of charge transfer mechanisms and 

molecular interactions within these materials. 

Future Works 

In the future research and development, we believe that the following aspects are worth 

further efforts: 

1. Expanding Applications  

Future research directions will explore the extensive applications of PANI/graphene 

nanocomposites in diverse fields. Central to these endeavors will be the empirical assessment 

of the gas-sensing capabilities of our PANI/rGO nanocomposites. This experimental validation 

will serve to substantiate the theoretical models, bridging the gap between computational 

predictions and real-world effectiveness. By doing so, the research will not only broaden the 

practical applications of these nanocomposites but also contribute significantly to areas of 

sustainable development and environmental monitoring. Additionally, this hands-on approach 

will pave the way for further innovations in nanocomposite technology, driving forward the 

frontiers of materials science. 

2. Advanced Material Design  

Future advancements in this research will focus on the innovative design of 

PANI/graphene nanocomposites, with a particular emphasis on refining synthesis techniques 

and exploring new graphene derivatives. A key area of exploration will be the experimental 

functionalization of graphene and rGO using deep eutectic solvents. This approach aims to 

enhance the performance and broaden the utility of these nanocomposites. By strategically 

modifying the surface chemistry of graphene, it is expected that these alterations will lead to 
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substantial improvements in the properties of the nanocomposites, potentially unlocking new 

applications across various fields. This strategic functionalization, combined with the use of 

deep eutectic solvents, presents an exciting opportunity to push the boundaries of material 

science in novel and sustainable ways.  

3. Interdisciplinary Approaches 

In the future, this research will explore an array of interdisciplinary approaches to further 

advance the field of polymer nanocomposites. One key area will be the exploration of diverse 

machine learning models to enhance predictive capabilities and optimize material properties of 

PANI/graphene systems. Additionally, molecular dynamics simulations will be undertaken to 

gain deeper insights into the nanoscale interactions and behaviors of these materials. This 

combined computational-experimental strategy will enable us to develop more sophisticated 

and effective solutions for complex material science challenges, pushing the boundaries of 

what's achievable in the realm of advanced nanocomposites. 

4. Sustainability and Eco-Friendliness 

This research will strongly emphasize sustainability and eco-friendliness, aligning with 

the urgent need for environmental responsibility and technological advancements. This 

approach will involve developing PANI/graphene nanocomposites using sustainable methods 

and materials, with a keen focus on reducing environmental impact. The exploration will 

include identifying and employing green synthesis techniques, integrating renewable 

resources, and minimizing waste and toxic by-products. By prioritizing eco-friendly practices 

and materials, the research aims to contribute significantly to sustainable development, 

addressing the global environmental challenges.  

This PhD thesis underscores the significance of interdisciplinary approaches in 

propelling polymer nanocomposite science. It lays a solid groundwork for further 

investigations and innovations within material science and engineering. By combining various 

scientific methodologies, this PhD thesis not only enhances our comprehension of 

PANI/graphene nanocomposites but also paves the way for new technological advancements 

in this ever-evolving domain. 
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Appendix  

Appendix A 

 

 

Figure A.1. FT-IR spectra showing the various functional groups present in rGO. 

 

 

Figure A.2. FT-IR spectra showing the various functional groups present in pure PANI.  
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Appendix B 

The main results of this PhD work have been published in papers: 

B.1. Publication of Chapter I 

 
 

https://www.tandfonline.com/doi/abs/10.1080/10408436.2023.2274900
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B.2. Publication of Chapter II 

 

https://link.springer.com/article/10.1007/s00289-022-04398-6
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B.3. Publication of Chapter III 

 

https://pubs.rsc.org/en/content/articlelanding/2024/ta/d3ta06385b/unauth
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B.4. Publication of Chapter IV (Future publication) 

Chapter IV of this thesis, dedicated to the synthesis, modeling, and characterization of 

PANI/rGO nanocomposites, is being prepared as the fourth paper for future publication 

(currently under review). This chapter, with its focus on DES for synthesis, showcases an 

innovative approach in the field of nanocomposite technology. It comprehensively covers novel 

synthesis methods, and the application of RSM, ANNs, and molecular simulations. The 

chapter's findings on electrical conductivity, structural dynamics, and electrochemical 

properties highlight the potential of PANI/rGO nanocomposites in supercapacitors and gas 

sensors, making it a valuable addition to green chemistry and sustainable material science 

literature. 
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ُالملخصُ:

وهندسة  تقدم هذه الأطروحة استكشافاً شاملًً لتطوير وتحسين نانومركبات البولي أنيلين والغرافين المُعدلّ، وهو تقدم محوري في علم   

الآلة  المواد. مع التركيز على المنهج الشمولي المتعدد التخصصات، يدمج هذا العمل استراتيجيات تجريبية مبتكرة ونمذجة حسابية وتقنيات تعلم  

ؤي، مما يعزز المتقدمة لتحسين خصائص هذه النانومركبات. تتضمن البحوث طرق تصنيع مبتكرة وتستخدم نماذج التعلم الآلي الرائدة للتحليل التنب 

من نوعها   بشكل كبير الدقة في التنبؤ بالتوصيل الكهربائي واستجابات الكشف عن الغاز لنانومركبات بولي أنيلين/غرافين. تعُد هذه النماذج الأولى

ئة لنانومركبات بولي في هذا المجال، تضع معايير جديدة في علم المواد المستدامة. علًوة على ذلك، تقدم الأطروحة طريقة تصنيع صديقة للبي

لا يثري    أنيلين/أكسيد الجرافين المخفض باستخدام المذيبات المنصهرة بعمق، مما يمثل تطوراً مهماً نحو الاستدامة البيئية. هذا البحث المتكامل

المستدامة. من المتوقع أن تكون   فقط على إثراء فهم نانومركبات البولي أنيلين/الجرافين فحسب، بل يقدم أيضًا مساهمات جوهرية في تطوير المواد

ة في مجالات النتائج والمنهجيات المقدمة في هذه الأطروحة ذات تأثيرات بعيدة المدى، فتفتح آفاقاً جديدة في التكنولوجيا والحفاظ على البيئة، خاص 

ُ. مثل المكثفات الفائقة وأجهزة استشعار الغازات وحلول تخزين الطاقة 

البولي أنيلين؛ نانومركبات الجرافين؛ التعلم الآلي في علم المواد؛ تحسين تصميم التجارب ؛ النمذجة الحسابية؛ نظرية الكثافة  الكلماتُالمفتاحيةُ:ُ

 .الوظيفية؛ التوصيل الكهربائي؛ الاستشعار للغاز؛ الاستدامة البيئية

Résumé: 

 Cette thèse de doctorat offre une exploration complète du développement et de l'optimisation de 

nanocomposites de polyaniline (PANI) et de graphène fonctionnalisé, une avancée cruciale en science et 

ingénierie des matériaux. Mettant l'accent sur une approche multidisciplinaire, ce travail intègre des stratégies 

expérimentales innovantes, la modélisation informatique et des techniques avancées d'apprentissage 

automatique pour affiner les propriétés de ces nanocomposites. La recherche englobe des méthodes de synthèse 

novatrices et utilise des modèles révolutionnaires d'apprentissage automatique pour l'analyse prédictive, 

améliorant significativement la précision dans la prévision de la conductivité électrique et des réponses des 

capteurs de gaz des nanocomposites PANI/graphène. Ces modèles, une première dans le domaine, établissent 

de nouvelles normes en science des matériaux durables. De plus, la thèse présente un chemin de synthèse 

respectueux de l'environnement pour les nanocomposites PANI/oxide de graphène réduit en utilisant des 

solvants eutectiques profonds, marquant un pas vers la durabilité environnementale. Cette recherche intégrative 

enrichit non seulement la compréhension des nanocomposites PANI/graphène, mais contribue également de 

manière substantielle au développement de matériaux durables. Les découvertes et méthodologies présentées 

dans cette thèse devraient avoir un impact considérable, ouvrant de nouvelles voies dans la technologie et la 

conservation de l'environnement, notamment dans des domaines tels que les supercondensateurs, les capteurs 

de gaz et les solutions de stockage d'énergie. 

Mots clés : Polyaniline (PANI) ; Nanocomposites de Graphène ; Machine Learning en Science des Matériaux 

; Optimisation du Plan d'expérience ; Modélisation Moléculaire ; Théorie Fonctionnelle de la Densité (DFT) ; 

Conductivité Électrique ; Détection de Gaz ; Durabilité Environnementale. 

Abstract: 

 This PhD thesis presents a comprehensive exploration of the development and optimization of 

polyaniline (PANI) and functionalized graphene nanocomposites, a pivotal advancement in materials science 

and engineering. Emphasizing a multidisciplinary approach, this work integrates innovative experimental 

strategies, computational modeling, and advanced machine learning techniques to refine the properties of these 

nanocomposites. The research encapsulates innovative synthesis methods and employs groundbreaking 

machine learning models for predictive analysis, significantly enhancing the accuracy in forecasting electrical 

conductivity and gas-sensing responses of PANI/graphene nanocomposites. These models, a first in the field, 

set new standards in sustainable material science. Furthermore, the thesis introduces an eco-friendly synthesis 

pathway for PANI/reduced graphene oxide nanocomposites using deep eutectic solvents, marking a leap 

towards environmental sustainability. This integrative research not only enriches the understanding of 

PANI/graphene nanocomposites but also makes substantial contributions to developing sustainable materials. 

The findings and methodologies presented in this thesis are anticipated to have far-reaching impacts, opening 

new avenues in technology and environmental conservation, particularly in areas such as supercapacitors, gas 

sensors, and energy storage solutions. 

Keywords: Polyaniline (PANI); Graphene Nanocomposites; Machine Learning in Material Science; 

Experimental Design Optimization; Computational Modeling; Density Functional Theory (DFT); Electrical 

Conductivity; Gas Sensing; Environmental Sustainability. 

 


