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 الملخص

الخواص  دراسة  المرون تمت  الضوئية،  الالكترونية،  لمواد ة  يالبنيوية،  الكهروحرارية  الثلاثية   و    زنتل 

3GaAs3Sr  3  وGaAs3Ba  2  وZnP2Ba    من طرق المبادئ الأولى في الحساب   تين متكاملتينطريقباستعمال

الأمواج المستوية المزادة خطياً مع  و طريقة    (PP-PW)  هما طريقة الأمواج المستوية مع الكمون الكاذب 

في      3GaAs3Ba  و  3GaAs3Sr  المركبينيتبلور  في إطار نظرية دالية الكثافة.   LAPW)-(FP  الكمون الكامل  

في بنية    2ZnP2Ba  بينما يتبلور،  (في الجداول البلورية   62  رقم)  Pnma  الزمرة الفضائية ة،  قائم  يةمعينبنية  

لمعالجة     GGA-PBEsolاستعملت ال .(في الجداول البلورية   72  رقم)  Ibam  الزمرة الفضائية معينية قائمة،  

و   لحساب   (XC)  الترابط و التبادل كمون البنيوية   PBEsol-GGAالاستعملت  و  .  الميكانيكيةالخواص 

الخواص    TB-mBJاضافة إلى ال البلورية الإلكترونية والضوئية.   في دراسة  البنية  تتوافق قيم معاملات 

 . التجريبية المتوفرة النتائج مع( المحسوبة للحالة الاساسية  و حجم الخلية الاساسية  الشبكة البلورية  وابت )ث

والخ المرونة  ثوابت  قدرنا عدديًا  لقد  نتائجنا.  إلى موثوقية  يشير  المرونة   بها   رتبطةالم  واص مما    )ثوابت 

ijC،    معامل يونغE معامل القص ،  G  معامل بواسون ،  و درجة حرارة ديباي  D)    لأحادي البلورة و

المعدوم   البلورات تحت الضغط  الخواص.  و  متعدد  المتباينة  أن    سرعات الصوت  الحسابات  نتائج  بينت 

المدروسة   مباشرةالمواد  أساسية  طاقة  بموانع  النواقل  أنصاف  لعائلة  و    3GaAs3Sr  للمركبين  تنتمي 

3GaAs3Ba  مانع طاقي أساسي غير  و،  على التواليإلكترون فولت    1.285  إلكترون فولت و  1.271  ماقيمته

قمنا بتحليل الحالات الإلكترونية لنطاقات الطاقة باستخدام .  2ZnP2Baـإلكترون فولت ل  1.24  مباشر قيمته

مجال طاقوي    مخططات  في  الضوئية  الثوابت  تم حساب  الجزئية.  الحالات  إلكترون    30  إلى   0  منكثافة 

  مع تناقص موانع الطاقة للمركبات المدروسة.   (0)1بينت نتائج الحسابات تزايد ثابت العزل الساكن .  فولت 

باستعمال   للمركبات  الكهروحرارية  الثوابت  دراسة  النقل تمت  تشير  -شبه  بولتزمان  نظرية  الكلاسيكية. 

أن إلى  جدارة  2ZnP2Ba  نتائجنا  رقم  بأفضل  مما    300  عند   1.77  بلغ  (ZT)  يتمتع  مرشحًا  كلفن،  يجعله 

 محتملاً للتطبيقات الكهروحرارية.

 

المفتاحية: الثلاثية،  (DFTالكثافة )دالية  نظرية    الكلمات  المبادئ الأولى )، مركبات زنتل  الهيكلab initioحسابات  ؛   ة ( 

 حرارية. كهروالمعاملات ال ،نةومرالثوابت  ،الخصائص الكهروضوئية ،فعالةال الكتل ة،الإلكتروني

  



Abstract 

The structural, electronic, optical, elastic and thermoelectric properties of the ternary 

Zintl compounds Sr3GaAs3, Ba3GaAs3 and Ba2ZnP2 were studied using two complementary 

first-principles calculation methods, the pseudopotentials plane waves (PP-PW) and the full 

potential Linearized Augmented Plane wave (FP-LAPW) methods within the density function 

theory framework.  Sr3GaAs3 and Ba3GaAs3 crystallize in an orthorhombic system, space 

group Pnma (no 62), while Ba2ZnP2 crystallizes in an orthorhombic system, space group Ibam 

(no 72).  GGA-PBEsol was used to treat the exchange and correlation potential (XC) to 

calculate the structural and elastic properties.  GGA-PBEsol and TB-mBJ were used to study 

its electronic and optical properties. The values of structural parameters (the parameters and 

volume of primitive cell) calculated agreed well with available experimental data. This 

indicates the reliability of our results. We have numerically estimated the elastic constants and 

associated properties (elastic constants Cij, Young's modulus E, shear modulus G, Poisson's 

modulus  and Debye temperature D) for single-crystal and polycrystalline under zero 

pressure and anisotropic sound velocities. The calculation results showed that the studied 

compounds belong to the semiconductor family, with direct band gaps for the compounds 

Sr3GaAs3 and Ba3GaAs3, valued at 1.271 eV and 1.285 eV, respectively, and an indirect band 

gap energy with a value of 1.24 eV for Ba2ZnP2.  We analysed the electronic states of the 

energy bands using partial density diagrams of states.  Optical constants were calculated in an 

energy range from 0 to 30 MeV. The results of the calculations showed an increase in the 

static dielectric constant () with a decrease in the energy impedances of the studied 

compounds.  The thermoelectric constants of the compounds were studied using semi-

classical Boltzmann transport theory. Our results indicate that Ba2ZnP2 has a best figure of 

merit (ZT) of 1.77 at 300 K, making it a potential candidate for thermoelectric applications. 

Keywords: Density functional theory (DFT); Ternary Zintl phases; First-principles (ab initio) 

calculations; Electronic structure; Effective masses; Optoelectronic properties; Elastic 

constants; Thermoelectric coefficients. 

 

  



Résumé 

Les propriétés structurelles, électroniques, optiques, élastiques et thermoélectriques 

des composés ternaires Zintl Sr3GaAs3, Ba3GaAs3 et Ba2ZnP2 ont été étudiées à l'aide de deux 

méthodes de calcul complémentaires de principes premiers, les ondes planes pseudo 

potentielles (PP-PW) et l'onde plane augmentée linéarisée à plein potentiel (FP-LAPW) dans 

le cadre de la théorie de la fonction de densité. Sr3GaAs3, Ba3GaAs3 cristallisent dans un 

système orthorhombique, groupe spatial Pnma (no 62), tandis que Ba2ZnP2cristallise dans un 

système orthorhombique, groupe spatial Ibam (no 72). GGA-PBEsol a été utilisé pour traiter 

le potentiel d'échange et de corrélation (XC) afin de calculer les propriétés structurelles et 

élastiques. GGA-PBEsol et TB-mBJ ont été utilisés pour étudier ses propriétés électroniques 

et optiques. Les valeurs des paramètres structurels (les paramètres et le volume de la cellule 

primitive) calculées concordaient bien avec les données expérimentales disponibles. Cela 

indique la fiabilité de nos résultats. Nous avons estimé numériquement les constantes 

élastiques et les propriétés associées (constantes élastiques Cij, module d'Young E, module de 

cisaillement G, module de Poisson  et température de Debye D) pour les monocristallin et 

polycristallins sous pression nulle et vitesses sonores anisotropes. Les résultats des calculs ont 

montré que les composés étudiés appartiennent à la famille des semi-conducteurs, avec des 

bandes interdites directes pour les composés Sr3GaAs3, Ba3GaAs3, évaluées respectivement à 

1.271 eV et 1.285 eV, et une énergie de bande interdite indirecte d'une valeur de 1,24 eV pour 

Ba2ZnP2. Nous avons analysé les états électroniques des bandes d'énergie à l'aide de 

diagrammes de densité partielle d'états. Les constantes optiques ont été calculées dans une 

plage d'énergie de 0 à 30 MeV. Les résultats des calculs ont montré une augmentation de la 

constante diélectrique statique () avec une diminution des impédances énergétiques des 

composés étudiés. Les constantes thermoélectriques des composés ont été étudiées à l'aide de 

la théorie semi-classique du transport de Boltzmann. Nos résultats indiquent que Ba2ZnP2 a 

un meilleur facteur de mérite (ZT) de 1.77 à 300 K, ce qui en fait un candidat potentiel pour 

les applications thermoélectriques. 

Mots-clés: Théorie de la fonctionnelle de la densité (DFT); Phases ternaires de Zintl; Calculs 

de première-principes (ab initio); Structure électronique; Masses effectives; Propriétés 

optoélectroniques; Constantes élastiques; Coefficients thermoélectriques 

 

 



 
 

 تشكرات 

آله وصحبه   وعلى  للعالمين  رحمة  أرسله الله  من  على  والسلام  والصلاة  العالمين  الحمد لله رب 

 وإخوانه إلى يوم الدين، أما بعد:

" وإن تعدوا نعمة الله  ونعمه لا تحصى، قال عز من قائل  -فنحمد الله ونشكره على منه وإكرامه  

له    -لا تحصوها" يتقبله مني ويضع  أن  عليه وأسأله عز وجل  وأعانني  العلمي  العمل  هذا  إلى  وفقني  إذ 

أنه ولي ذلك والقادر  لقائه،  ينفع به غيري من الطلاب وأن يجعله ذخرا لي يوم  القبول في الأرض وأن 

 عليه. 

بالشكر الجزيل إلى أستاذي الفاضل    أتقدم  أستاذ باحث بجامعة فرحات -بوحمادو عبد المجيد  ثم 

على إشرافه و تأطيره لهذا العمل ومتابعته طول فترة التكوين وتحمل التقصير مني صابرا على    -1عباس  

لا أسس صحيحة متفوقين في الفيزياء الحسابية، إذ قال رسول الله صلى الله عليه وسلم "  على  بناء طلبة  

 ".يشكر الله من لا يشكر الناس 

الأستاذ    إلى  بالشكر  أتقدم  نصيركما  التي    قشي  واللجنة  العمل  إنجاز  في   لي  مساعدا  كان  الذي 

ساعد سعود صابر و علالي جمال الممتحنون  والأساتذة    شيحي الطيبتشرفت بمناقشة مذكرتي برئاسة  

 ميسوم راجي 

إلى    الشكر  أوجه  أن  أنسى  العزيزينولا  في جميع    والدي  بعد الله  الأول  الفضل  لهما  كان  الذين 

من  المتواضع  العمل  هذا  إتمام  في  المعنوي  أو  الحسي  العون  يد  لي  مد  من  كل  وإلى  العلمية،  مسيراتي 

 والكبيرة والزملاء والأصدقاء. (زوجتي) العائلة الصغيرة

آله وصحبه وإخوانه   نبينا محمد وعلى  العالمين، وصلى الله على  الحمد لله رب  أن  وآخر دعونا 

 إلى يوم الدين، وسلم تسليما.
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1. Preamble  

Physical properties of solid materials include mechanical, thermal, electrical, 

magnetic, optical properties, and many others. These are essential in determining the 

suitability of a material for a particular application. For example, mechanical properties such 

as elasticity, strength, and hardness are critical in the design of materials for engineering 

applications, including construction, aerospace, and automotive industries. Thermal 

properties such as thermal conductivity and specific heat are critical in the design of materials 

for heat transfer applications. Electrical and magnetic properties of solid materials are 

essential in designing materials for electronic and magnetic applications, such as magnetic 

refrigeration devices [1], magnetic resistors. Optical properties such as refractive index, 

absorption, and reflection are crucial in designing materials for optical applications, including 

lenses, mirrors, and fibre optics. 

The study of physical properties of solid materials is essential in the development of 

new materials with improved properties and applications. It enables researchers to understand 

the fundamental principles that govern the behaviour of materials under different conditions, 

which is critical in the design of new materials for specific applications. The advancements in 

technology have led to the development of new materials with unique physical properties. 

The study of physical properties of these materials has opened up new frontiers in various 

fields, including renewable energy, biomedicine, and electronics. For example, the discovery 

of materials with high-temperature superconductivity has led to the development of new 

technologies that could revolutionize energy transmission and storage and a some of 

discoveries related to material properties are driven by the objective of enhancing the 

efficiency, performance, and, notably, the environmental and health aspects of devices, while 

also extending their lifespan. 

In summary, the study of physical properties of solid materials is of critical 

importance in understanding the fundamental principles that govern the behaviour of 

materials under different conditions. It is essential in the design of new materials with 

improved properties and applications, which has significant implications in various fields, 

including engineering, materials science, physics, chemistry, and many others. 

Solids' physical properties are closely related to the behavior of their electrons. As a 

result, the primary goal of condensed matter theory is to solve the problem of solid electronic 

structure. The theory of electronic structure is useful for understanding and interpreting 

experimental results, as well as for prediction. Theorists have developed semi-empirical 
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models to gain a fundamental understanding of electronic structure and thus material 

properties. Such models frequently include a large number of parameters that can be adjusted 

based on experimental data. Other methods of calculation that are more rigorous and 

sophisticated are ab initio methods, which are based on fundamental quantum theory and use 

only atomic constants as input parameters to solve the Schrödinger equation. These methods 

are now used to study structural, electronic, mechanical, and optical properties of atoms, 

molecules, and materials. They are also an excellent tool for studying specific effects that are 

difficult or impossible to determine experimentally such as very high temperature and 

pressure, as well as for predicting new materials, and they can sometimes replace costly or 

even impossible experiments in the laboratory. The power of ab-initio calculations stems 

from the density functional theory (DFT) formalism and its two-exchange energy and 

correlation approximations: the local density approximation (LDA) and the generalized 

gradient approximation (GGA). The basic formalism of the DFT is based on Hohenberg and 

Kohn's (1964) theorem [2], which states that the total energy of a system is a functional of the 

electron density. Density Functional Theory (DFT) is a powerful theoretical framework used 

to study the physical properties of materials. DFT is a quantum mechanical approach that 

allows for the prediction of properties such as electronic structure, atomic and molecular 

interactions, and the thermodynamics of materials. It has revolutionized the field of material 

science by providing a way to study the behavior of materials at the atomic and molecular 

level. One of the major advantages of DFT is that it is computationally efficient and allows 

for the investigation of large systems, such as complex molecules and nanoparticles, which 

would be impossible to study experimentally. By using DFT, researchers can understand the 

structure and properties of materials on a microscopic scale, which is essential for designing 

new materials with specific properties. DFT has been used to study a wide range of materials, 

from metals and semiconductors to organic compounds and biological molecules. It has 

provided insight into the properties of materials such as their electronic structure, bonding, 

and reactivity, and has led to the discovery of new materials with unique properties. For 

example, DFT was used to predict the properties of graphene, a two-dimensional material 

with remarkable electrical and mechanical properties, long before it was ever synthesized. 

In conclusion, DFT is a fundamental tool for the study of materials science, providing 

researchers with a way to understand the properties of materials at the atomic and molecular 

level. Its impact has been significant, leading to new discoveries and advances in the field of 

materials science, and it will continue to be an essential tool in the design and development 

of new materials with specific properties. 
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2. Statement of the problem and objectives of the thesis 

In recent years, there has been significant interest among energy researchers in the 

development and application of new and renewable energy sources [3-8]. The latter hold a 

key position in combating environmental pollution, improving the global economy, and 

offering various advantages compared to other direct current power sources. One such 

renewable energy is thermoelectricity, which involves the conversion of heat into electricity 

(Seebeck effect 1821 [9]) and electricity into cold (Peltier effect 1834) [10]. Materials 

involved in this process are referred to as thermoelectric (TE) materials. One of the most 

significant compounds used to achieve this objective are thermoelectric (TE) materials, which 

are applied to power generation and device cooling to phase out chlorofluorocarbons (CFCs) 

and exploit low-level waste heat. TE materials generate electricity from thermal energy (heat) 

with high efficiency. When two ends of a conductor are at different temperatures, they 

produce a voltage difference between the two substances, resulting in an electric current 

(Seebeck effect 1821, also known as a Seebeck generator) [9]. The heat drives the free 

carriers (electrons in the n-type or holes in the p-type) to cold points, while the reverse 

phenomenon (Peltier effect 1834) [10] is used in device cooling (heat pumps).  

Zintl phases are a promising class of chemical compounds for thermoelectric (TE) 

applications due to their high efficiency. Typically, they are composed of alkali or alkaline-

earth (s-block) and post-transition (d-block) elements, or other metals or semimetals (p-

block), where the most electronegative element takes the valence electrons of the more 

electropositive elements within to create a covalent bond that satisfies the octet rule. Binary 

compounds consist of polyionic structures, while ternary, quaternary, and even quinary 

compounds can have a metal, semimetal, or small-gap semiconductor structure. Eduard Zintl 

[11] was the first to establish this concept, which was later expanded by William Klemm 

[12]. However, the non-classical Zintl concept involves complex compounds between 

transition and rare-earth elements, with both ionic and covalent bonds playing a role in the 

structural requirements of this concept [13]. 

Newly synthesized Zintl phases exhibit a wide range of interesting physical properties 

such as thermoelectricity [14], metallic/semi-metallic superconductivity [15]; magnetic order 

[16], semiconductor colossal natures [17], magnetoresistance [18], photovoltaics [14], energy 

storage [19], energy conversion [20], energy-related applications, and mixed-valence [21], 

among others. Zintl compounds are still being developed through scientific research to 
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improve their figure of merit ZT in thermoelectric applications. The best-performing Zintl 

compounds with ZT>1 have been observed in various materials such as Yb14MnSb11 [22], 

Ca5Al2Sb6 [13], and Ba8Ga16Ge30 [23], among others. Recently, Stoyko et al, [24] reported on 

the synthesis and crystal structures of the ternary gallium-arsenide Zintl phases Sr3GaAs3 and 

Ba3GaAs3, with a preliminary ab initio calculation of the band structure of Ba3GaAs3 

revealing its semiconducting nature. However, there are no prior reports on in-depth 

theoretical or experimental studies of the basic physical properties of the AE3GaAs3 (AE = 

Sr, Ba) compounds, such as elastic constants, charge carrier effective masses, optical 

properties, and anisotropy of physical properties, except for Stoyko et al.'s work. Therefore, 

the present study aims to conduct a comprehensive investigation of the structural, electronic, 

optical, and elastic properties of Sr3GaAs3 and Ba3GaAs3 using density functional theory 

(DFT)-based first-principles calculations for both fundamental physics and application 

perspectives. The study also aims to assess the potential applications of these Zintl phases. 

Furthermore, a novel Zintl compound, dibarium zinc diphosphide (Ba2ZnP2), has been 

synthesized for the first time by A. Balvanz et al [25].Using the Pb flux technique. This 

compound crystallizes under the K2SiP2 structure type (orthorhombic, space group Ibma no. 

72), and its electronic properties were calculated using the tight-binding linear muffin-tin 

orbital (TB-LMTO) method within DFT framework with local density approximation (LDA), 

revealing its semiconducting nature. However, there is no literature on the physical properties 

of Ba2ZnP2, except for its band structure within electronic structures of band engineering 

strategies for Ba2CdP2 in Supporting Information, based on the Yb2CdSb2 structure type. 

Therefore, this study is dedicated to investigating the structural, elastic, optical, and 

thermoelectric properties of Ba2ZnP2 via DFT calculations, with a focus on its potential 

applications. The main goal of computational physics is to identify materials that are worthy 

of experimental research and to evaluate their potential for applications. 
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3. Organization of the thesis  

The thesis is structured as follows: 

➢ The first part includes the theoretical framework containing three chapters, the first 

provides an overview of ab-initio calculations methods and discusses single particle 

self-consistent field methods, namely Hartree and Hartree-Fock, as approximations of 

the multi-body Schrödinger equation. The Hohenberg-Kohn-Sham formulation of the 

functional theory of density is also introduced. The second and third chapters related 

the details of the pseudopotential plane-wave and the full-potential 

linearized/augmented plane wave plus local orbitals methods, respectively.  

➢ The second part includes the chapters one and two and will concentrate on the 

computational tools used in this study, namely the pseudopotential plane-wave (PP-

PW) method with the GGA-PBEsol functional for treating exchange-correlation 

effects, as implemented in the CASTEP code, and the full-potential 

linearized/augmented plane wave plus local orbitals (FP-L/APW + lo) method with 

both the GGA-PBEsol and Tran-Blaha modified Becke-Johnson (TB-mBJ) potential, 

as implemented in the WIEN2k package. The results of the calculations, which 

determine the properties of the ternary Zintl phases gallium arsenides (AE3GaAs3, 

AE= Sr, Ba) and the dibarium zinc diphosphide (Ba2ZnP2), are presented. 

➢ Finally, the Conclusion chapter summarizes the work, and the results of the 

calculations that determine the structural, elastic, electronic, optical, and 

thermoelectric properties of Sr3GaAs3, Ba3GaAs3, and Ba2ZnP2 are presented. 
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1.1 Introduction 

The advancement in computational power and calculation methods has enabled the 

determination of material properties with high accuracy through ab initio (first-principles) 

methods of electronic structure, without any reliance on experimental parameters. This has 

not only facilitated the explanation of known material properties but also enabled the 

prediction of properties suitable for new materials, thus replacing expensive and impractical 

laboratory experiments [1, 2]. As a result, basic computational methods have become 

increasingly important in materials science, and are now considered essential complements to 

experimental research techniques in various fields [3]. 

Calculation methods refer to the mathematical and computational techniques used to 

predict, simulate, or analyse various physical, chemical, or biological phenomena. There are 

several calculation methods used in various scientific fields, including: 

1. Quantum Mechanics: It is a branch of physics that deals with the behavior of matter 

and energy at the atomic and subatomic level. Quantum mechanics calculations are used to 

predict the behavior of atoms, molecules, and solids. The commonly used quantum 

mechanical calculation methods include Density Functional Theory (DFT), Hartree-Fock 

(HF), and Configuration Interaction (CI). 

2. Molecular Dynamics: Molecular dynamics (MD) is a simulation method used to 

predict the time evolution of a molecular system. MD calculations are used to study the 

behavior of complex biological molecules, such as proteins and nucleic acids. The commonly 

used molecular dynamics calculation methods include classical MD, ab initio MD, and 

coarse-grained MD. 

3. Monte Carlo: The Monte Carlo method is a statistical calculation method used to 

simulate the behavior of a system based on random sampling. Monte Carlo calculations are 

used in various fields, such as physics, chemistry, finance, and engineering. The commonly 

used Monte Carlo calculation methods include Metropolis-Hastings algorithm, Gibbs 

sampling, and Importance sampling. 

4. Finite Element Method: The Finite Element Method (FEM) is a numerical calculation 

method used to solve differential equations by dividing the problem into smaller, finite 

elements. FEM calculations are used in various fields, such as civil engineering, mechanical 

engineering, and aerospace engineering. 
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5. Computational Fluid Dynamics: Computational Fluid Dynamics (CFD) is a numerical 

calculation method used to simulate fluid flow and heat transfer in a system. CFD calculations 

are used in various fields, such as aerospace engineering, automotive engineering, and 

chemical engineering. 

These are just a few examples of the many calculation methods used in various scientific 

fields. Each method has its own strengths and limitations, and the appropriate method is 

chosen based on the specific research question and available computational resources. 

Ab initio calculations have gained increasing interest among physicists and chemists 

due to their potential to reduce costs and accelerate results. These first-principles methods aim 

to calculate the physical and chemical properties of materials without relying heavily on 

approximations, using the fundamental equations of quantum mechanics. Complex 

interactions related to the structural and chemical properties of materials lead to a range of 

functional properties, making accurate and quantitative insight into such properties critical for 

optimizing and understanding material behavior. First-principles calculations based on 

Density Functional Theory (DFT) have resulted in significant advancements in our 

understanding of the underlying physics of such systems. DFT is a widely used approach for 

studying electronic structure by minimizing the one-body density functional to determine the 

system's ground-state energy, with the electronic charge density being a crucial factor. DFT 

has been successful in describing the structural and electronic properties of a broad range of 

materials, and complementary implementations such as calculating polarization using the 

Berry phase formalism and merging with perturbation theory (DFPT) have expanded its 

application and success. Additionally, DFT is computationally efficient and well-

implemented in a range of codes. The following sections provide an overview of DFT and 

related implementations utilized throughout this thesis. 

1.2 Equation of Schrödinger and Many-Body problem 

In order to practically apply the density functional approach, the methodology relies 

on solving the one-electron Schrödinger equation using a local effective potential to 

investigate the ground-state properties of many-electron systems. In the presence of N nuclei, 

each with Z electrons (where Z represents the atomic number), this leads to a many-body 

problem. To study a system at the atomic level, one must initially consider the interactions 

between electrons and electrons, electrons and nuclei, and nuclei and nuclei. This is achieved 

through solving the generalized Schrödinger equation. 
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ˆ /H i t =    (1.1) 

In this context, Ĥ refers to the quantum Hamiltonian operator, i represents the imaginary unit, 

and  denotes the wave function of the quantum system. 

The time dependent Schrödinger equation is:  

ˆ ( ) ( ) ( )
d

H t t i t
dt

 =   (1.2) 

In this context, is the reduced Planck constant. 

For a non-relativistic system, independent of time, we write the Schrödinger equation as 

follows: 

Ĥ E =   (1.3) 

In this context, E is the total energy and the quantum Hamiltonian operator is written as: 

 ˆ ˆ ˆ ˆ ˆ ˆ
e n ee en nnH T T V V V= + + + +  (1.4) 

In this context, ˆ ˆ ˆ ˆ ˆ,  ,  ,  , e n ee en nnT T V V V and ˆ
nnV  are the kinetic energy operator of electrons, the 

kinetic energy operator of nuclei, the potential of electron-electron Coulomb interactions, the 

potential of electron-nucleus Coulomb interactions and the potential of nucleus -nucleus 

Coulomb interactions, respectively.  

So, for more details: 

 

222 2 2 2 2 2
2 2

,0 0 0

ˆ
2 2 8 4 8i i

i ji
r R

i i i j i j i je n i j i j i j

z z ez ee
H

m m r r R r R R   

= −  −  + − +
− − −

         (1.5) 

In this context, 
nm  and 

em  are the mass of the nucleus and electrons, iR  and 
ir , are the 

positions of nuclei and electrons, respectively.   
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Fig. 1.1: The nucleus and electrons dependent to the positions iR  and 
ir . 

Finally, depending on the system under consideration, the two types of particles can 

couple to an external electromagnetic field [4]:   

( ) ( ) ( )ˆ . .i
n field i ext i ext i Ri i ext i

i i

Z e
V Z e R t i A R t I B R t

M c
−

 
=  +  − 

 
   (1.6) 

So, ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
e n ee en nn n field e fieldH T T V V V V V− −= + + + + + +   (1.7)  

In this context, 
ext  and 

extA  are the potentials corresponding to the electromagnetic field 

( ) ( )
( )1 ext

ext ext

A rt
E rt rt

c t


= − −


, and ( ) ( ).ext extB rt A rt=   , 

iI  characterizes the magnetic 

moment of the nucleus i, 
B  is the Bohr magneton, 

2
B

e

mc
 = , and j  is the spin operator 

corresponding to the electron j. Practically, for many-body systems, this task will be done in 

following levels. 
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It is out of question to solve the Equation of Schrödinger for Many-Bodies exactly. In order 

to find acceptable approximate eigen-states, we will need to make approximations at 3 

different levels. 

1.2.1 LEVEL 1: Born-Oppenheimer approximation 

One year following the publication of the Schrödinger equation, Max Born and Robert 

Oppenheimer discussed the significant discrepancy in mass between two distinct types of 

particles in their oft-cited but less-read publication of 1927 [5]. This approach enables 

scientists to differentiate between the motions of electrons and nuclei, thereby simplifying the 

mathematical solution of the Schrodinger equation. The separation is predicated on the 

fundamental reality that the nuclei masses are considerably larger than the electrons masses 

[6]. Therefore, the kinetic energy of the nuclei is typically ignored in this approximation (

ˆ 0nT = ), allowing for the nuclei to be treated as static at their respective positions.  

What are the implications of using the Born-Oppenheimer approximation on the 

Hamiltonian in equation 1.3? As a result of the approximation, the nuclei are considered 

stationary, which means that their kinetic energy becomes zero and the first term of the 

Hamiltonian disappears. The last term is reduced to a constant value. This leaves us with the 

kinetic energy of the electron system, the potential energy resulting from electron-electron 

interactions, and the potential energy of the electrons within the external potential of the 

nuclei. This can be expressed formally as: ˆ ˆ ˆ ˆ
extH T V V= + +   (1.8) 

22 2 2 2
2

,0 0

ˆ ˆ ˆ ˆ
2 8 4i

i
e e ee en r

i i j i je i j i j

z ee
H T V V

m r r R r 

= + + = −  + −
− −

     (1.9) 

e eH E =     (1.10) 

An interesting observation to make is that the kinetic and electron-electron terms ˆ ˆ( )T V+  in 

equation 1.9 are solely dependent on the fact that we are dealing with a many-electron system, 

making them universal. On the other hand, system-specific information such as which nuclei 

are involved and their positions are entirely provided by the potential energy term ( ˆ
extV ).  

If spin-orbit (SO) effects are deemed significant, they can be incorporated for every nuclear 

configuration using the following approach [7]: 
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0
ˆ ˆ ˆ

e SOH H H= +   (1.11) 

0 0Ĥ E =    (1.12) 

To resolve the intricate many-body problem of electrons, which entails a vast quantity of 

particles and intricate electron-electron interactions, additional approximations must be 

implemented. 

1.2.2 LEVEL 2: Density Functional Theory  

After applying the initial level of approximation, known as the Born-Oppenheimer 

approximation, the resulting quantum many-body problem becomes less complex than its 

original form but still proves to be excessively intricate to resolve. Numerous techniques exist 

to simplify equation 1.9 into an approximate yet manageable form. One historically 

significant method is the Hartree-Fock (HF) method, elucidated in various condensed matter 

textbooks, which demonstrates exceptional performance in the context of atoms and 

molecules and is thus frequently employed in quantum chemistry. Nonetheless, its precision is 

comparatively lower when applied to solids. In this context, we will not delve into the 

intricacies of the HF method but rather explicate a more contemporary and potent method - 

Density Functional Theory (DFT). 

1.2.2.1 The theorems of Hohenberg and Kohn 

In 1964, a significant paper was published by Hohenberg and Kohn in the Physical 

Review [8], which gave birth to Density Functional Theory (DFT). This seminal report 

presented the fundamental theorems that serve as the key theoretical foundations for all 

contemporary DFT approaches. These theorems form the fundamental pillars upon which the 

entire DFT framework is constructed [9] 

Hohenberg and Kohn formulated two theorems that establish density functional theory 

(DFT) as a rigorous quantum physical approach. DFT takes into account the interactions 

between electrons, as well as their interaction with an external potential, by using the ground-

state electron density. This external potential is the attraction of the electrons to the nuclei, 

and its determination relies on knowledge of the charges and positions of the nuclei in the real 

system. Once the number of electrons is integrated into the density, the external potential can 

be uniquely determined by the ground-state electron density.  
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First theorem: There is a one-to-one correspondence between the ground-state electron 

density ( )r  of a many-electron system, such as an atom, molecule, or solid, and the external 

potential Vext. As a direct result of this theorem, the expectation value of any observable Ô  in 

the exact ground state of the system is uniquely determined by the ground-state electron 

density: ˆ| |   [ ]O O    =  

Second theorem: For Ô  being Ĥ , the ground-state total energy functional [ ] [ ]
extVH E    

is of the form: 

ˆ ˆ ˆ[ ] | | | |

[ ] ( ) ( )

extV ext

HK ext

E T V V

F r V r dr

    

 

 = +  +  


= + 
  (1.13) 

With the context, the Hohenberg-Kohn density functional ˆ ˆ[ ] | |HKF T V  = +   is 

universal for any many-electron system. 

[ ]
extVE   reaches its minimal value (equal to the ground-state total energy) for the ground-

state density corresponding to Vext. 

The one-to-one correspondence between ground-state density and external potential 

( )extV   is a fascinating concept. It is evident that every many-electron system possesses a 

unique external potential, which, when applied in conjunction with the Hamiltonian and 

Schrödinger's equation, results in a unique many-particle wave function for the ground state. 

The corresponding electron density can be effortlessly derived from this wave function. Thus, 

an external potential unequivocally leads to a unique ground-state density that corresponds to 

it. However, it appears intuitively that the density carries less information than the wave 

function. If this were the case, it would not be possible to determine a unique external 

potential with only a ground-state density. Remarkably, the first theorem of Hohenberg and 

Kohn establishes that this is indeed possible. The density contains just as much information as 

the wave function does, which is to say that it encapsulates all of the knowledge that could be 

acquired about an atom, molecule, or solid. Hence, all measurable quantities can be obtained 

in a unique manner from the density alone, that is, they can be expressed as functionals of the 

density. 

The universality of ˆ ˆ[ ] | |HKF T V  = +   is noteworthy. Equation 1.13 can be 

easily derived using the density operator, and with the knowledge of the ground-state density, 

the contribution to the total energy resulting from the external potential can be calculated with 
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precision. Despite the absence of an explicit expression for the Hohenberg-Kohn functional 

[ ]HKF  , it is a universal functional for any many-electron system since it does not contain 

information regarding the nuclei and their positions. As a result, an expression for [ ]HKF 

exists in theory, which can be applied to any atom, molecule, or solid. 

The second theorem enables the use of the Rayleigh-Ritz variational principle [10] to 

determine the ground-state density. Among the infinite possible densities, the one that 

minimizes [ ]
extVE   is considered the ground-state density, which corresponds to the external 

potential ( )extV r . However, this process can only be carried out if an approximation of 

[ ]HKF   is available. Once the density ρ is obtained, all information about the system becomes 

accessible. 

It is important to emphasize the significance of the energy functional [ ]
extVE  . When 

the density ρ is evaluated for the specific 
extV  of a solid, it provides the ground state energy. 

However, if it is evaluated for any other density, the resulting number has no physical 

significance. 

1.2.2.2 The Kohn-Sham equations 

The Kohn-Sham equations, which were introduced in 1965, have made density 

functional theory (DFT) a practical tool for determining the ground state density. The 

equations provide a practical procedure for obtaining the ground state density by rewriting the 

Hohenberg-Kohn functional. In this functional, the correlation energy is defined as the 

difference between the total energy in the exact solution and the Hartree-Fock solution. The 

total energy functionals, denoted as Ee[ρ] and EHF[ρ], correspond to the exact and Hartree-

Fock Hamiltonians, respectively, are [9]: 

eE T V= +     (1.14)        and       0 ( )HF H x

V

E T V V= + +   (1.15) 

In the context of the Kohn-Sham density functional theory, the exact kinetic and electron-

electron potential energy functionals are denoted as T and V, respectively, while T0 represents 

the functional for the kinetic energy of a non-interacting electron gas. Additionally, VH stands 

for the Hartree contribution to the potential energy, and Vx represents the exchange 

contribution. Subtracting the expression for the Hartree potential energy from the total 

potential energy gives the expression for the exchange-correlation potential energy. By 
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subtracting the equation for the Hartree potential energy (1.15) from the total potential energy 

(1.14), the functional for the correlation contribution to the potential energy can be obtained. 

0cV T T= −    (1.16) 

The exchange contribution to the total energy refers to the component that is present in the 

Hartree-Fock solution but is absent in the Hartree solution. It is worth noting that the Hartree 

functional can be expressed as:  
0H HE T V= +    (1.17) 

So, Vx can be defined as follows: 
x HV V V= −    (1.18) 

Within this context, the Hohenberg-Kohn functional can be rewritten as follows:  

0 0HKE T V T V T T= + = + + −  

          0 0( )

cV

T V T T= + + −  

 
0 c H HT V V V V= + + + −  

           0 ( )

x

H c K

V

T V V V V= + + + −  

            0 ( )

xc

H x c

V

T V V V= + + +  

In this context, Vxc refers to the exchange-correlation energy functional, which incorporates 

the challenging exchange and correlation contributions. However, it is formally unknown to 

us. Assuming, for the moment, that we do have knowledge of Vxc, we can explicitly represent 

the energy functional [9]: 

0[ ] [ ] [ ] [ ] [ ]
extV H xc extE T V V V    = + + +    (1.19) 

One could potentially apply the second Hohenberg-Kohn theorem to determine the ground 

state density, but this would not be beneficial to the transformation we have made. 

Alternatively, the above expression can be viewed as the energy functional of a non-

interacting classical electron gas, subject to two external potentials: one originating from the 

nuclei, and the other from exchange and correlation effects. The corresponding Hamiltonian, 

referred to as the Kohn-Sham Hamiltonian, is defined as follows: 

0
ˆ ˆ ˆ ˆ ˆ

KS H xc extH T V V V= + + +     (1.20) 

2 2

0

( ')
'

2 4 | ' |
i xc ext

e

e r
dr V V

m r r




=  + + +

−     (1.21) 
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The Kohn-Sham theorem can be expressed in the following manner: The ground-state density 

of a system with N electrons, denoted by ( )r , is equal to:   

1

( ) ( )* ( )
N

i i

i

r r r  
=

=    (1.22) 

Where the N lowest-energy solutions of the Kohn-Sham equation, represented by the single-

particle wave functions ( )i r , are used. The Kohn-Sham equation can be defined as: 

ˆ
KS i i iH   =    (1.23).  

Now, the second Hohenberg-Kohn theorem is no longer necessary to determine the ground-

state density. Instead, we can solve non-interacting single-particle equations that resemble the 

Schrödinger equation. This approach is more feasible than using the regular Schrödinger 

equation, which would involve solving a complex system of coupled differential equations 

due to the electron-electron interaction. The advantage of relying on the non-interacting 

single-particle equations lies in their simplicity, which enables us to determine the ground-

state density efficiently. This approach has revolutionized the study of electronic structure in 

materials science by providing a more practical method for calculating electronic properties of 

materials. 

It's important to note that the single-particle wave functions ( )i r  are not equivalent to 

the wave functions of individual electrons. Instead, they represent mathematical quasi-

particles that do not have a direct physical interpretation. The overall density of these quasi-

particles is the only quantity that can be guaranteed to match the true electron density. 

Furthermore, the single-particle energies 
i  do not correspond to the energies of individual 

electrons. Rather, they represent the energies of these quasi-particles. While this may seem 

like a subtle distinction, it is a crucial aspect of the Kohn-Sham approach that allows for 

efficient calculations of electronic properties in materials. The use of quasi-particles has 

become a powerful tool in modern condensed matter physics, and has led to significant 

advancements in our understanding of materials at the atomic scale. 

Both the Hartree operator VH and the exchange-correlation operator Vxc are dependent 

on the density ( )r , which, in turn, depends on the single-particle wave functions ( )i r . This 

leads to a self-consistency problem where the solutions ( ( )i r ) determine the original 

equation (VH and Vxc in HKS), and the equation cannot be solved until its solution is known. 

An iterative procedure is required to overcome this paradox, as shown in Fig. 1.2. The 

iterative procedure starts with a guessed density ρ0, which is used to construct a Hamiltonian, 
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denoted by HKS1. The eigenvalue problem is then solved, yielding a set of ϕ1 from which a 

density ρ1 can be derived. Typically, ρ0 and ρ1 will differ from each other. The density ρ1 is 

then used to construct HKS2, which generates a new density ρ2, and so on. This procedure can 

be repeated until a final density ρf is reached, which generates a HKSf that yields the same 

density ρf as its solution. This final density is consistent with the Hamiltonian. 

This iterative approach allows us to solve the self-consistency problem and determine an 

accurate ground-state density for the system. The Kohn-Sham approach has become a 

powerful tool for calculating electronic properties in materials science, and its success is 

largely due to its ability to solve the self-consistency problem efficiently. 

 

 

Fig. 1.2: Flow chart outlining the iterative self-consistency procedure for solving the Hartree-

Fock or Kohn-Sham equations [11].  
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1.2.2.3 Approximations for the Exchange-Correlation energy 

The accurate and reliable description of the electronic structure of atoms, molecules, 

and materials is a fundamental goal in theoretical chemistry, condensed matter physics, and 

materials science. One of the most successful and widely used methods for this purpose is 

density functional theory (DFT), which reduces the many-body problem to the calculation of 

the electronic density and solves it via the Kohn-Sham equations. However, the practical 

implementation of DFT requires the specification of an essential ingredient, namely, the 

exchange-correlation energy functional Exc, which describes the non-classical many-electron 

interactions that are not accounted for by the classical Coulomb interactions. Unfortunately, 

the exact form of Exc is not known and may never be known, which poses a major challenge 

to the accuracy and applicability of DFT. To overcome this challenge, various approximations 

for Exc have been proposed since the inception of DFT, ranging from simple and efficient to 

complex and accurate. These approximations are usually expressed in terms of explicit or 

implicit functionals of the electronic density, which are often parameterized by empirical or 

non-empirical methods. Recently, Perdew has introduced a useful and insightful classification 

scheme for the many and varied Exc functionals that exist, based on a metaphorical ladder 

with rungs that correspond to different levels of approximation and accuracy. The lowest rung 

is the Hartree approximation, which neglects the exchange-correlation effects entirely and 

reduces Exc to zero. The highest rung is the exact exchange-correlation functional, which 

incorporates all the non-classical many-electron interactions exactly, but is practically 

unknown and computationally infeasible. The intermediate rungs include various levels of 

approximation, such as the local density approximation, the generalized gradient 

approximation, the meta-generalized gradient approximation, the hybrid functionals, and the 

range-separated functionals. These approximations are classified into non-empirical and 

empirical categories, depending on whether they are derived from first principles or fitted to 

experimental or theoretical data. The Jacob's ladder classification scheme [12] provides a 

systematic and intuitive way of comparing and selecting different Exc functionals for specific 

applications, depending on the desired level of accuracy and computational cost. Furthermore, 

the choice of Exc functional depends on the physical and chemical properties of the system 

under investigation, such as the electronic structure, bonding, reactivity, spectroscopy, and 

thermodynamics. For example, some Exc functionals may be suitable for describing the 

ground-state properties of isolated atoms or small molecules, but not for extended or complex 

systems, while others may be better for capturing the dynamic and excited-state properties of 

molecules or materials. Therefore, it is important to test and validate the accuracy and 



Part 1  Chapter 1                                                                    Density functional theory 

25 
 

reliability of different Exc functionals for a given system and property of interest, and to 

account for the limitations and uncertainties associated with the approximations and 

assumptions made. In recent years, there have been significant advances in the development 

and assessment of new and improved Exc functionals, based on machine learning, data mining, 

quantum chemistry, and many other techniques. These advances have opened up new 

opportunities and challenges for the application and interpretation of DFT in various fields of 

science and technology, ranging from catalysis and energy storage to materials design and 

drug discovery. 

 

Fig. 1.3: Schematic diagram of “Jacob’s ladder” of exchange-correlation functionals proposed 

by J. P. Perdew [12]. 

1.2.2.3.1 Local Density Approximation 

The Local Density Approximation (LDA) is a widely used approximation for the 

exchange-correlation interaction in quantum mechanics. It is regarded as one of the earliest 

and most conventional approximations in the field. The fundamental concept behind LDA is 

that the exchange-correlation energy of a system is assumed to be equivalent to that of a 

homogeneous electron gas possessing the same density. The exchange-correlation energy of 

this homogeneous electron gas has been accurately defined and characterized by previous 

research. Specifically, LDA assumes that the exchange-correlation energy of a non-uniform 

electron system can be approximated by integrating the exchange-correlation energy density 

of the electron gas over the density distribution of the non-uniform system. This 

approximation has proved to be successful in various fields of research, including condensed 
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matter physics, materials science, and quantum chemistry. The exact expression of the 

exchange-correlation energy of such a homogeneous electron gas is known: 

hom[ ] ( ) [ ( )]xc xcE r r dr   =     (1.24) 

In this context,  
hom

xc  is the exchange-correlation energy per electron of a homogeneous 

electron gas of density . 
hom

xc
 can be expressed in various analytical parameterized forms, 

among which one finds those by Hedin-Lundqvist [13], Barth-Hedin [14], Vosko-Wilk-

Nusair [15], Ceperley-Alder [16], Perdew-Zunger [17]. In practice, exchange and correlation 

are calculated separately. The analytical expression for the exchange energy is known exactly: 

1/3

4/33 3
[ ] ( )

4

LDA

xE r dr 


 
= −  

 
    (1.25) 

Strictly, the LDA is valid only for slowly varying densities. Experience with calculations of 

atoms, molecules, and solids shows that penultimate equation can in general also be applied to 

these systems. Indeed, LDA works surprisingly well, especially for metals. A partial 

explanation for this success of the partial LDA is systematic error cancelation: Typically, in 

inhomogeneous systems LDA underestimates correlation but overestimates exchange, 

resulting in unexpectedly good values of 
LDA

xE . This error cancelation is not accidental, but 

systematic, and caused by the fact that for any density the LDA satisfies a number of so-

called sum rules [18], [19]. The expression of correlation energy has been estimated by means 

of different numerical parameterizations [17] and [20]. All of which leads to very similar total 

energy results [21]. 

Despite the shortcomings found in LDA, it achieved good results in several areas, 

including the following: 

Firstly, the structural, elastic, and vibrational properties often good enough 

1. Crystal bulk lattice constants accurate to within 3%, usually underestimated. 

2. Bulk moduli somewhat too large, > 10% error not uncommon for d metals. 

3. Phonons somewhat too stiff. 

Secondly, binding energies are too negative (overbinding), up to several eV 

1. Cohesive energies of solids, but formation enthalpies often o.k. 

2. Molecular atomization energies, mean error ≈ 3 eV 
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Thirdly, activation energies in chemical reactions unreliable 

1. Too small/absent, e.g., for H2 on various surfaces (Al, Cu, Si, ...). 

Fourthly, relative stability of crystal bulk phases can be uncertain 

1. SiO2 high pressure phase more stable than zero pressure phase 

2. Underestimated transition pressure e.g., for diamond -tin phase transitions in Si & 

Ge. 

3. Magnetic phases. 

Fifthly, electronic structure can be usefully interpreted (density of states, band structures), 

except for band gaps (a more fundamental issue than LDA!) [22]. 

1.2.2.3.2 Generalized gradient approximation 

The Generalized Gradient Approximation (GGA) is a widely used method in 

computational chemistry and physics that improves upon the Local Density Approximation 

(LDA) by incorporating the density gradient in the exchange-correlation contribution. This 

allows for a more accurate description of the electronic structure of molecules and materials. 

GGA functionals are designed to calculate the exchange-correlation contribution of each 

infinitesimal volume based not only on the local density in that volume, but also on the 

density in neighboring volumes. This is accomplished by including the gradient of the density 

in the calculation. Because of this input, the method is called the Generalized Gradient 

Approximation. While there is only one LDA exchange-correlation functional due to a unique 

definition of the exchange-correlation energy, there is some freedom in incorporating the 

density gradient into the calculation, resulting in several versions of GGA functionals. 

However, the parameters for these functionals must be carefully chosen and are often based 

on experimental data, which means that GGA calculations are not strictly speaking ab initio. 

Despite these drawbacks, much progress has been made in developing successful GGA 

functionals over the years. Some of the most commonly used GGA functionals include 

Perdew 86 (P86) [23], Becke (B86, B88) [24], Perdew-Wang 91 (PW91) [25], Laming-

Termath-Handy (CAM), Perdew-Burke-Ernzerhof (PBE)[25], revised Perdew-Burke-

Ernzerhof (RPBE) [26], Perdew-Burke-Ernzerhof revised for solids (PBEsol) [27], Becke 

exchange and Lee-Yang-Parr correlation (BLYP) [28], and Armiento-Mattsson 2005 (AM05) 

[29]. As an example of the applications of GGA functionals, PW91 is widely used for 

modelling metallic surfaces, while PBE and RPBE are often applied to study metal oxides in 
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heterogeneous catalysis research [30]. These functionals have been shown to provide more 

accurate predictions for total energies, atomization energies, and structural properties than 

LDA functionals, but they still have limitations, such as their inability to describe van der 

Waals interactions and their tendency to underestimate barrier heights. The exchange-

correlation functional Exc[ρ] within GGAs is typically approximated by a specific 

mathematical form [31]:  

[ , ] ( , , , )GGA

xcE dr f     
     

=      (1.26) 

Here, f is a parameterized analytic functions 

The GGAs are called “semi-local” functionals due to their dependence on ( )r . For 

many properties, for example geometries and ground state energies of molecules and solids, 

GGAs can yield better results than the LDAs. Especially for covalent bonds and weakly 

bonded systems, many GGAs are far superior to LDA. The functional form of 

( , , , )f    
   

   is taken as a correction to the LDA exchange and correlation while 

(again) ensuring consistency with known sum rules. In fact, some of these functionals are not 

even based on any physical model. In other words, the actual form of GGA EX and GGA EC 

usually does not assist the understanding of the physics these functionals try to describe. 

Within GGA the exchange energy takes the form [32]: 

4/3( ) ( )GGA LDA

x xE E F s r dr 


= −   (1.27) 

The argument of the function F is the reduced density gradient for spin  

4/3

( )
( )

( )

r
s r

r












=    (1.28) 

sσ is to be understood as a local inhomogeneity parameter. 

For the function F two main classes of realizations have been put forward (see in 

particular Adamo, di Matteo, and Barone, 1999). The first one is based on a GGA exchange 

functional developed by Becke, 1988b. As outlined above, this functional is abbreviated 

simply as B (sometimes one also finds B88) [32]: 

2
88

11 6 sinh

B s
F

s s



 



 −
=

+
   (1.29) 
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β is an empirical parameter that was determined to 0.0042 by a least-squares fit to the exactly 

known exchange energies of the rare gas atoms He through Rn. In addition to the sum rules, 

this functional was designed to recover the exchange energy density asymptotically far from a 

finite system. 

The second class of GGA exchange functionals use for F a rational function of the 

reduced density gradient. Prominent representatives are the early functionals by Becke, 1986 

(B86) and Perdew, 1986 (P), the functional by Lacks and Gordon, 1993 (LG) or the recent 

implementation of Perdew, Burke, and Ernzerhof, 1996 (PBE). As an example, we explicitly 

write down F of Perdew’s 1986 exchange functional, which, just as for the more recent PBE 

functional, is free of semi-empirical parameters [32]: 

1/15
2 4 6

86

2 1/3 2 1/3 2 1/3
1 1.296 14 0.2

(24 ) (24 ) (24 )

P s s s
F   

  

      
 = + + +            

   (1.30) 

We finally note a semantic detail. GGA functionals are frequently termed non-local 

functionals in the literature. This is a somewhat misleading and actually sloppy terminology 

that should be avoided. 

1.2.2.3.3 Meta-generalized gradient approximation and hybrid functionals 

Meta-GGAs typically improve upon the accuracy of GGAs as they additionally take 

into account the local kinetic energy density. This allows meta-GGAs to more accurately treat 

different chemical bonds (eg. covalent, metallic, and weak) compared to LDAs and GGAs 

(Examples include TPSS, revTPSS, M06L, MBJ, SCAN, MS0, MS1, MS2, RSCAN and 

R2SCAN etc.).  

The meta-GGA can be written as [33]:  

3[ , ] ( ( ), ( ), ( ))mGGA

xcE d rf r r r    =     (1.31) 

 

where the kinetic energy density is defined as the following summation over all occupied 

Kohn-Sham orbitals (r) [33]: 

21
( ) ( ( ))

2

OCC

i

i

r r =      (1.32) 
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a) Modified Becke-Johnson 

Here we will be interested in one meta-GGA functional, the modified Becke-Johnson 

(mBJ) XC potential, which has been optimized for the description of electronic band gaps of 

homogeneous solids. Various comparisons show that the mBJ is the best semilocal 

approximation to determine band gaps, achieving on average an accuracy even better than the 

one of hybrid functionals[34] and at a much lower computational price. 

Becke and Johnson [35] proposed an exchange potential, which was designed to 

reproduce the exact exchange potential in atoms. The Becke and Johnson (BJ) potential, 

which does not contain any empirical parameter, where [36]: 

1 5 2 ( )
( ) ( )

12 ( )

BJ BR

x x

t r
V r V r

r 
= +    (1.33) 

Where: 

*

1

1
( ) ( ) ( )

2

N

i i

i

t r r r 
=

=      (1.34) 

( )t r is the KS kinetic-energy density, and  

( ) ( )1 1
( ) 1 ( )

( ) 2

BR x r x r

xV r e x r e
b r

− − 
= − − − 

 
   (1.35) 

and  

3 1/3[ / (8 )]xb x e −=    (1.36) 

( )BR

xV r
 is the Becke-Roussel [37] exchange potential. 

x is determined from a nonlinear equation involving. 

There is a simple modification of the BJ potential (called TB-mBJ) was proposed, 

1 5 2 ( )
( ) ( ) (3 2)

12 ( )

TB mBJ BR

x x

t r
V r CV r C

r 

− = + −    (1.37) 

Where                                                  

C A B g
−

= +     (1.38) 

and 
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3
( ) ( )1 1

2 ( ) ( )cell
cell

r r
g d r

V r r

 

 

 
−

 

  
 = +
 
 

    (1.39) 

is the average of g = |∇ρ|/ρ in the unit cell of volume Vcell.  

A and B are two free parameters whose values are A = −0.012 and B = 1.023 bohr1/2 according 

to a fit to the experimental band gaps. The TB-mBJ potential is as accurate as the much more 

expensive hybrid methods. 

b) Hybrid functionals 

Hybrid functionals, which combine some exact exchange with a GGA, are another class of 

methods used in computational chemistry and physics. The most widely used hybrid 

functional is B3LYP. By incorporating a small fraction of exact exchange (about 20%) into 

the calculation, hybrid functionals can mimic the effects of static correlation and produce 

highly accurate results. However, the cost of computing hybrid functionals is higher than that 

of standard GGAs, as exact exchange is non-local and depends not only on the electron 

density but also on the density matrix. This means that additional approximations cannot be 

utilized as efficiently. Meta-GGAs are a newer class of functionals that aim to achieve similar 

levels of accuracy to hybrid functionals, but without the higher computational cost. The goal 

is to design functionals that perform almost as well as hybrid functionals but can be computed 

more efficiently.  
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2.1 Introduction 

During the early 1980s, the electronic structure literature was dominated by plane 

wave-based pseudopotential methods, despite the emergence of density functional 

calculations and ab initio total energy methods. Today, a similar parallel can be observed with 

the advent of ab initio molecular dynamics using the Car-Parrinello (CP) method [1], which 

significantly enhances plane wave-based density functional methods, allowing the solution of 

previously challenging problems. However, there has been limited application of these ideas 

to non-plane wave-based methods. This early dominance of plane wave methods was 

primarily due to the simplicity of plane waves, making their development and implementation 

straightforward, even though other methods may have offered computational advantages. As 

non-plane wave CP-like codes are developed, new possibilities may emerge, but their impact 

on certain problems, such as high-temperature superconductors, is yet to be seen. This chapter 

aims to stimulate efforts to explain the PW, providing a review of plane wave pseudopotential 

and CP methods as groundwork for further research. For more detailed information, readers 

are referred to existing literature, including the reviews of Payne et al [2]. (For CP and related 

methods) and Pickett [3] and Cohen [4], as well as relevant papers [5] on planewave 

pseudopotential methods. 

2.2 Plane Waves 

2.2.1 Bloch's theorem 

With Bloch's theorem, we can describe electronic states in a crystalline material by 

considering a plane wave with a crystal momentum k modulated by a periodic function with 

the same periodicity as the lattice. The periodicity ensures that the wave functions retain their 

form within each unit cell, facilitating the understanding of electronic properties in periodic 

systems. This fundamental theorem has been instrumental in shaping the field of condensed 

matter physics and understanding the electronic structure of crystalline materials. 

Bloch's theorem, based on the periodicity of the crystal lattice, establishes the crystal 

momentum k as a conserved quantum number and provides the boundary condition for the 

single-particle wave functions: 

.
( ) ( )Lik R

k L kr R e r + =  (2.1) 

Were RL is a direct lattice vector. The most general solution that satisfies this boundary 

condition is  



Part 1  Chapter 2                                           Pseudopotential Plane-Wave method 

38 
 

( ) ( ) ( , )ikr iGr ikr

k G

G

r e c k e e k r = =   (2.2) 

Where the G are reciprocal lattice vectors. 

The Fermi liquid theory (FLT) explains how electrons and nuclei strongly interact 

through the Coulomb potential in solids. However, FLT suggests that near the Fermi energy, 

electrons in metals behave as independent particles called quasi particles, with renormalized 

masses and intensities but no interactions at low energies. This theory is foundational in 

understanding metals and guiding band structure methods. The pseudopotential 

approximation deals with the strong interactions of core electrons and nuclei. It replaces the 

strong core potential with a pseudopotential that mimics the all-electron valence wave 

function outside a selected core radius. While this simplifies calculations, generating and 

using pseudopotentials adds complexity to the method. The frozen core approximation is 

generally reliable, except for elements with extended core states. 

 

Fig. 2.1: Schematic illustration of the replacement of the all-electron wave function and core 

potential by a pseudo-wave function and pseudopotential [6]. 
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2.2.2 Cut-off energy 

When using a PW-DFT code, there is a parameter within the input file that enables 

you to define an energy cut-off. This cut-off is essential due to the impracticality of achieving 

a full expansion encompassing an infinite number of plane waves. Nonetheless, it can be 

demonstrated that the influence of higher-frequency plane waves is overshadowed by that of 

the lower-frequency ones. Hence, it becomes a feasible approach to implement a certain cut-

off, selecting only those wave vectors that meet the criteria. The reciprocal lattice vectors 

residing within this sphere are included in the basis set. Instead of using Kmax, the cut-off 

energy is frequently designated as the free electron energy corresponding to Kmax 

2 2

max

2
cut

e

K
E

m
=   (2.3) 

Limiting the plane-wave basis set using a finite cut-off energy introduces an error in the 

calculated total energy. Nonetheless, elevating the cut-off energy can mitigate this error. In 

theory, by expanding the basis set with a larger energy cut-off, the error can be minimized 

extensively, showcasing a primary benefit of plane wave bases. Conversely, a drawback of 

these bases involves their demand for numerous plane waves to depict localized states 

characterized by intense wave function oscillations. To address this challenge, the 

pseudopotential approximation can be employed. 

2.3 Pseudopotentials  

2.3.1 The Phillips-Kleinman Construction 

The pseudopotential approach started with the orthogonalized plane wave (OPW) 

method [7]. This method expanded valence wave functions using orthogonalized plane waves 

to the core states, c .  

,

,

( ) ( ) ( )OPW PW c PW c

c

k G k G k G 


    + = + −  +   (2.4) 

Where 
PW  and 

OPW is a plane wave and the corresponding OPW, respectively, and the sum 

is over core states and atoms. 

A pseudopotential related to this approach, may be constructed as follows: Let H be the 

original Hamiltonian with core and valence wave functions, 
c and 

v respectively, 
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meanwhile ,c and 
v are the core and valence eigenvalues, respectively, the pseudo states 

satisfy a Schrodinger-like equation with an additional contribution, VR to the Hamiltonian: 

, , ,

,

( )R

v c c c

c

V   


   = −    (2.5) 

Where the Phillips-Kleinman [8] pseudopotential, VPK is yielded from where VR (it differs 

from a normal potential term in that it is energy dependent through 
v ) and the original 

potential, V 

PK RV V V= +   (2.6) 

Beyond the core region, VPK approaches V as the core wave functions disappear, indicating a 

certain radius, rc around an atom where the atom's contribution to VR becomes negligible. The 

construction is linear, with each atom  a making a distinct and independent additive 

contribution. Importantly, due to the additional repulsive contribution in the core, the 

pseudopotential is generally significantly weaker than the original potential, leading to a 

reasonable convergence of plane wave expansions for the pseudo-wave functions. 

2.3.2 Norm Conserving Pseudopotentials 

Significant advancements have taken place in the sophistication and effectiveness of 

pseudopotentials since the Phillips-Kleinman construction. This progression has largely been 

influenced by the following objectives: 

1 Primarily, the aim is to ensure that the pseudopotential possesses maximum softness, 

facilitating the expansion of valence pseudo-wave functions using minimal plane waves. 

2 Additionally, it should exhibit a high degree of transferability, ensuring accurate 

reproduction of other atomic configurations. This quality is particularly crucial for ensuring 

reliability in solid-state applications, where the crystal potential differs inherently from the 

atomic potential. 

3 Moreover, the precision of reproducing the valence charge density is a key consideration in 

constructing the pseudo-charge density from pseudo-wave functions. 

The notion of norm-conservation [9,10] has played a pivotal role in harmonizing these 

competing objectives. Norm-conserving pseudopotentials represent a significant advancement 

in this regard. In these pseudopotentials, the pseudo-wave functions and potential are 

designed to match the actual valence wave functions and potential beyond a specific core 
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radius, denoted as rc. Within the radius rc, the pseudo-wave functions diverge from the true 

wave functions, while still maintaining the same norm constraint. That is 

2 * 2 *

0 0

 ( ) ( )  ( ) ( )
c cr r

PS PSdr r r r dr r r r   =   (2.7) 

The atomic reference state is characterized by wave functions, with enforced spherical 

symmetry. It's important to note that these wave functions and eigenvalues differ across 

various angular momenta, denoted as l. This distinction highlights the necessity for the 

pseudopotential to be l-dependent. Such pseudopotentials are commonly termed semi-local. A 

way to gauge transferability involves examining the logarithmic derivatives at rc of both the 

all-electron and pseudo-wave functions, namely   and PS . By equating these derivatives 

for r > rc it is ensured that the logarithmic derivatives at rc also match for the atomic reference 

configuration. 

( , ) ( , )1 1

( , ) ( , )

PS

c c

PS

c c

d r E d r E

r E dr r E dr

 

 
=   (2.8) 

In the context where E represents the reference energy, the final equation remains valid only 

when E corresponds precisely to the atomic reference eigenvalue. The extent of validity of 

this last equation is determined by the range of E values for which it remains applicable. This 

determination involves the application of Green's theorem, as elaborated in the work by Shaw 

and Harrison [11]. 

2 *

2 *

0

1
ln ( , )  ( , ) ( , )

( , ) ( , )

cr

c c c c

c c c

r E dr r r E r E
E r r r E r E

  
 

 
− =

     (2.9) 

Consequently, the application of norm-conservation not only guarantees the matching 

of logarithmic derivatives between the pseudo- and all-electron wave functions at the 

reference energy but also ensures alignment in the first derivative concerning E. As a result, 

the disparity in logarithmic derivative between pseudo- and all-electron forms becomes a 

second-order effect in the deviation from the reference point, contributing to the 

establishment of transferability for norm-conserving pseudopotentials. Approaches for 

constructing soft-core, semi-local norm-conserving pseudopotentials were pioneered by 

Hamann et al.[12], and subsequently refined by Bachelet et al. [13] (BHS), who compiled 

precise pseudopotential data for all periodic table elements. An alternative methodology was 

presented by Kerker [14], yielding pseudopotentials of similar quality. This technique 
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employs uncomplicated analytical representations for the pseudo-wave functions within a 

specific range rc. Troullier and Martins [15], [16] further enhanced this method, which is 

widely employed today for generating norm-conserving pseudopotentials used in practical 

computations. 

 

Fig. 2.2: Bachelet, Hamann and Schluter procedure for generating norm-conserving 

pseudopotentials [6]. 

The significant achievement of BHS tabulation was the separation of ab initio 

calculations from the process of pseudopotential generation. This separation greatly reduced 

the initial difficulty of entering the field. This change is likely one of the reasons for the 

subsequent uptick in activity within plane wave pseudopotential investigations of solids.  

2.3.3 The Kleinman-Bylander Transformation 

The challenge with above pseudopotentials: one radial variable for plane waves, 

separate evaluation of angular integrals. The fully nonlocal approach separates integrals. 

Transformation starts from semilocal form with Vl. Pseudo wave functions φl
PS match 

potential. New pseudopotential has local (VL) and nonlocal (VNL) parts. VNL localized after 

subtracting local [17]. 

ˆ ˆ
ˆ ˆ

ˆ

SL PS PS SL

l lm lm lNL

NL l PS SL PS
l lm lm l lm

V V
V V

V

 

 
= =    (2.10) 

With  
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ˆ ˆNL PS SL PS

l lm l lmV V =    (2.11) 

To observe this, let's employ this operator on the pseudo wave function. Within the plane 

wave representation, we can examine any arbitrary matrix element of the Kleinman-

Bylanderized pseudopotential. 

ˆ ˆ
ˆ

ˆ

PS PS

l lm l lmNL

l PS PS
lm lm l lm

q V V q
q V q

V

 

 


 =    (2.12) 

2.3.4 Ultrasoft pseudopotentials 

In 1990, Vanderbilt introduced an innovative and revolutionary approach to creating 

pseudopotentials by loosening the norm-conservation limitation. Pseudopotentials produced 

using this method (owing to their pliancy) necessitate a significantly reduced plane wave cut-

off and consequently fewer plane waves. Hence, they are commonly referred to as "ultrasoft" 

pseudopotentials [18]. The total energy with the inclusion of ultrasoft pseudopotentials is 

formulated as follows: 

21 1 ( ) ( )
[ ] ( ) ( )

2 2
e i NL i XC loc

i i

n r n r
E V drdr E n dr V r n r

r r
 


 = −  + + + +

−
          (2.13) 

The customary structure encompasses the Hartree, exchange-correlation, local, and 

kinetic components. Conversely, the nonlocal segment of the pseudopotential is presented 

utilizing a novel collection of projection operators: 

(0) I I

NL nm n mV D  =     (2.14) 

where the superscript I denotes the atom around which the projector is centred. The strict 

adherence to the norm-conserving condition is eased by incorporating a comprehensive 

orthonormality requirement using the overlap matrix S 

i j ijS  =    (2.15) 

Where  

,

1 I I

nm n m

nm I

S q  = +    (2.16) 

With  
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( )nm nmq drQ r=    (2.17) 

Commencing with the density, even though it offers the advantage of crafting milder 

pseudopotentials, it unavoidably leads to heightened intricacy in the Kohn-Sham equations. 

The variational differentiation of the density concerning the orbitals is: 

*
,

( )
( ) ( ) ( ) ( )

( )

I I I

nm n m i

nm Ii

n r
r r r Q r r

r


    




 = − +          (2.18) 

We arrive at the modified Kohn-Sham equations 

( )2 (0)

* *

( ) 1
( ) ( )

( ) ( ) 2

I Ie e
eff nm eff nm n m i

i i

E E n r
dr V D dr V r Q r

n r r

  
  

  

  
   = = −  + + +   

       (2.19) 

Where Veff is the regular potential 

eff H loc XCV V V V= + +     (2.20) 

As evident from the altered Kohn-Sham equations, in contrast to norm-conserving 

pseudopotentials, the coefficients of the projectors in the nonlocal segment of the 

pseudopotential are consistently adjusted during each iteration in a self-consistent fashion. 

While this does add a minor computational burden, the benefits in the plane wave expansion 

outweigh the resultant drawback. 
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3.1 Introduction 

When selecting a basis set, there are two objectives to pursue. Firstly, it's 

advantageous for the basis functions to possess maximum mathematical simplicity. This 

simplification aids in streamlining the calculation of matrix elements. Conversely, the second 

significant criterion, which can sometimes appear contradictory to the first, involves having 

basis functions that are adept at representing the specific system in question. Consequently, a 

trade-off arises between solving a greater number of relatively straightforward equations or 

dealing with fewer yet more intricate ones.  

3.2 The Augmented Plane wave (APW) method 

The LAPW method represents a modification of Slater's original augmented plane 

wave (APW) approach [1]. Therefore, prior to delving into an explanation of the LAPW 

method, we will revisit the pertinent components of the APW method and the rationale behind 

its transformation into the LAPW method. Additional insights into the APW method can be 

obtained from Loucks' book [2], which includes reprints of several initial papers detailing the 

formulation and application of this technique. Within the interstitial space separating the 

atoms, both the potential and wave functions exhibit smoother behaviours. As a result, space 

is divided into distinct regions, and distinct basis expansions are employed within these 

regions: for the inner non-overlapping atom-centered spheres, radial solutions of 

Schrödinger's equation are employed, while plane waves are used in the remaining interstitial 

region (Fig. 3.1). 

1/2 ( )            r I

( ) ( )             r
( )

i G k r
G
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lm l lm

lm

C e

A u r Y r S
r

− + 
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  (3.1) 

Where   is a wave function,   is the cell volume, ( )lu r  is 

2

2 2

( 1)
( ) ( ) 0l l

d l l
V r E ru r

dr r

 +
− + + − = 

 
 (3.2) 

In this context, the expansion coefficients are denoted as CG and Alm, while El represents a 

parameter. V stands for the spherical segment of the potential within the sphere, and all values 

are assumed to be in Rydberg units. The radial functions, as defined by last equation, possess 

inherent orthogonality with respect to any eigenstate of the identical Hamiltonian that 

becomes zero at the boundary of the sphere [3]. This characteristic is illustrated by observing  
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its origin in Schrödinger's equation. 

 
2 2

1 2
2 1 1 2 2 12 2

( ) ( )
( ) ( ) ( )

d ru r d ru r
E E ru r u r u u

dr dr
− = −   (3.3) 

 

Fig. 3.1: The dual representation of the APW and LAPW methods. Stars and lattice 

harmonics are symmetrized plane waves and spherical harmonics used to represent the 

density and potential [4]. 

The radial solutions, represented as u1(r) and u2(r), correspond to different energies E1 

and E2, respectively. The construction of the overlap involves utilizing this relationship and 

employing integration by parts. If either u1(r) or u2(r) vanishes at the sphere boundary, the 

surface terms disappear, and the remaining terms cancel out. Slater justifies the selection of 

these specific functions by observing that plane waves serve as solutions to Schrödinger's 

equation within a constant potential, while the radial functions act as solutions within a 

spherical potential, given that El matches the eigenvalue. Although this approximation of the 

potential is rough, it remains viable in certain scenarios. Notably, the muffin-tin (MT) 

approximation, widely employed in APW codes, has been instrumental in elucidating 

properties of transition metals and compounds. This approximation performs excellently for 

densely packed materials like face-centered cubic (fcc) and those with an ideal c/a hcp. For 

materials with a body-centered cubic (bcc) or related structures such as CsCl, the MT 

approximation is less precise but still viable [5]. As the symmetry of sites and coordination 

diminishes, the reliability of this approximation progressively wanes. An additional aspect to 

consider is the continuity of the dual representation defined by Eqn. (3.1) at sphere 

boundaries, a requisite for well-defined kinetic energy. Thus, imposing this constraint 

becomes necessary. In the APW method, achieving this is accomplished by defining the 

coefficients Alm through the spherical harmonic expansion of plane waves, with each lm 

component's coefficient matching at the sphere boundary 
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The centre of the sphere serves as the reference origin, with the sphere radius denoted as R. 

Consequently, the determination of Alm relies entirely on the coefficients of planewaves 

denoted as CG and the energy parameters labeled as El. These coefficients and parameters 

represent the variational components within the APW method. The specific functions, 

characterized by the label G, are composed of individual plane waves in the interstitial region, 

harmonized with radial functions within the spheres. These merged plane waves are referred 

to as augmented plane waves or APWs. 

In the scenario where El is considered a constant parameter rather than a variable coefficient, 

the APW method would essentially entail utilizing the APWs as a foundational basis. While 

the APWs offer solutions to Schrödinger's equation within the spheres, these solutions are 

limited to the energy El. They lack the flexibility required for accommodating changes in the 

wave function as the band energy deviates from this reference value. Consequently, El must 

be equated with the band energy, implying that energy bands (at a fixed k-point) cannot be 

derived through a simple diagonalization process. Another challenge associated with the 

APW method pertains to its extension to a broader crystal potential, surpassing the constraints 

of the muffin-tin approximation (utilizing a general potential in the interstitial region while 

retaining a spherical potential within the spheres). This complexity arises because the optimal 

variational selection of El no longer aligns with setting El to the band energy. Specifically, 

various bands are likely to possess distinct orbital characteristics within the sphere (e.g., 2z
d  

versus 2 2x y
d d− ). However, under non-spherical potentials, these orbitals encounter varying 

effective potentials, which deviate from the spherical average utilized for determining the 

radial function. Despite these challenges, it's worth noting that extending the APW method 

beyond the warped muffin-tin approximation is not entirely impossible and has been explored 

in some instances [5,6]. 

An additional, less severe issue with the APW technique involves the so-called asymptote 

problem. Within the formula (Eqn. 3.4) for the matching coefficient, the term Alm, ul(R) 

emerges in the denominator. Nonetheless, there exist instances of the energy parameter, El, 

for which ul becomes negligible at the boundary of the sphere. At these specific energy levels, 

the interplay between plane waves and radial functions becomes disconnected. In the vicinity 

of this asymptotic scenario, the relationship between Alm, the Clebsch-Gordan coefficients CG, 
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and consequently the secular determinant, exhibits significant fluctuations. This phenomenon 

leads to computational challenges when energy bands align closely with an asymptote. 

Moreover, caution is essential in the proximity of an asymptote to guarantee accurate 

counting of eigenvalues. Various modifications to the APW approach were proposed before 

1975 to tackle these challenges. Bross and colleagues [7] presented an altered APW 

technique, where multiple radial functions selected to possess identical logarithmic 

derivatives are matched with plane waves. This matching necessitates continuity in both the 

wave function's value and its first derivative. This strategy, akin to the LAPW method, 

enables the determination of all band energies through a single diagonalization process. 

Koelling introduced an alternative, yet related, approach utilizing two radial functions. One 

function assumes a zero value at the sphere boundary, while the other has zero slope [8]. 

These functions, derived by solving the radial equation subject to these boundary conditions, 

are then matched to plane waves to ensure continuity of the basis functions and their first 

derivatives. A potential challenge with this method arises from the fact that enforcing the 

boundary conditions at the sphere radius can result in basis functions that blend regular and 

irregular solutions, potentially failing to meet the physical boundary conditions at the nucleus. 

Nonetheless, Koelling demonstrated that this approach improves convergence for d-bands of 

transition metals. Similar to the Bross procedure, the asymptote problem does not manifest 

here. Other enhancements were explored by Marcus. Andersen [3], [9] extended this work by 

proposing a method in which the basis functions and their derivatives achieve continuity by 

matching to a radial function at a fixed El along with its derivative with respect to El. This 

choice effectively addressed the aforementioned issues with the APW method and 

additionally provided a flexible and accurate technique for modelling band structures. This 

method is known as the LAPW method. As expected, initial LAPW computations [9] were 

conducted within the muffin-tin (MT) approximation and employed a model potential. 

However, shortly thereafter, fully self-consistent codes were developed for both slab [10-12] 

and bulk [13] systems, eliminating any approximation to the charge density or potential 

(referred to as full-potential). This ushered in a phase of general potential calculations [13-

19]. During this period, the method's power and accuracy were showcased primarily through a 

series of electronic structure calculations involving surfaces and adsorbates (for a 

comprehensive review, refer to Wimmer et al. [20]). These demonstrations firmly established 

the LAPW method as the preferred choice for precise electronic structure calculations in 

materials containing transition metal atoms. 
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3.3 The Linearized Augmented Plane wave (LAPW) method 

The LAPW method, a conventional approach to linearize the APW method, emerged 

in the early 1970s [3,4]. In this strategy, the expansion of basis functions occurs in a manner 

akin to Eq. (3.1) in the interstitial region. However, within the muffin tin, these basis 

functions are influenced not only by ul(r) but also by its derivative. 

( ) /l lu r u E    

1/2 ( )                              r I

[ ( ) ( )] ( )             r
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i G k r
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lm l lm l lm
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C e

A u r B u r Y r S
r

− + 

+ 


= 


  (3.5) 

This results in the LAPW approach being more versatile than the APW approach. This is due 

to its capability to approximate the radial function ul(r) through a Taylor expansion when 

dealing with linearization energies El that are only marginally distinct from the actual 

eigenenergy E. 

2( , ) ( , ) ( ) ( , ) (( ) )l l l l l lu r E u r E E E u r E O E E= + − + −   (3.6) 

The introduction of an additional term 
2(( ) )lO E E−  leads to a second-order error in the wave 

function and a fourth-order error in the eigenenergy. However, the coefficients Alm, Blm are not 

determined by the Taylor expansion, but by ensuring both the value and slope of the 

augmented function match a plane wave at RMT. The linearization of the APWs resolves the 

issue of energy-dependent basis functions, but it comes at the expense of sacrificing the 

optimal shape of the basis functions within the muffin-tin sphere. 

3.3.1 Semi-Core State 

In the LAPW technique, there exists a singular linearization energy (denoted as E1) 

corresponding to each l quantum number. This situation poses a challenge when dealing with 

systems that encompass states sharing the same l quantum number, yet possessing distinct n 

quantum numbers, consequently giving rise to distinctly disparate energies. This issue 

predominantly arises in systems featuring semi-core states, which reside not within the 

valence region but also lack the same low-energy status as core states. To address this, the 

LAPW method introduces localized orbitals to handle semi-core states. These localized 

orbitals remain uninfluenced by k and G variables, being exclusive to a single atom and 
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possessing a specific l characteristic. Referred to as local due to their confinement within 

muffin-tin spheres, they remain non-existent within the interstitial spaces. 

1 1 2

0                                                                                          r I
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= 
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 (3.7) 

Within the confines of the muffin-tin spheres, local orbitals encompass an extra radial 

function that is assessed at a fresh linearization energy E2. Two of the coefficients are 

ascertained based on the stipulation that both the value and the initial derivative of the local 

orbitals reach zero at the boundary of the sphere. As for the third coefficient, it can be 

assigned a specific constant value, such as unity. The resultant LAPW+LO basis set proves 

effective in adequately representing both the valence region and the already well-localized 

semi-core states. 

3.4 APW+lo 

An alternative approach for linearizing the APW method is the APW+local orbitals 

technique [21-23]. In this method, the eigenvalue problem is linearized by selecting a constant 

linearization energy of E1. However, the increased flexibility is not achieved by introducing 

an extra term to the original APW basis functions. Instead, it involves incorporating a 

supplementary collection of local orbitals. 
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Each of these local orbitals is designed to have zero value at the boundary of the sphere, 

without imposing any limitations on the derivatives at the muffin-tin boundaries. 

Consequently, a surface component for the kinetic energy needs to be considered [4]. The 

APW+lo complete basis set is made up of two distinct categories of basis functions. Firstly, 

the APWs (as defined in Eqn. 3.1) characterized by a consistent linearization energy of E1. 

Secondly, the lo's (as described in Eqn. 3.8). This defines the basis set configuration.         

 1

                            

                               

APW
i APW
lo
i APW

i N

i i N




 


=  (3.9) 

In this context, NAPW denotes an integer value dependent on the total size of the basis set and 

the quantity of included local orbitals. A notable advantage of this alternative linearization, in 

comparison to the LAPW method, is its ability to maintain the optimal shape of the basis 
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functions within the muffin-tin. This preservation of shape leads to an improved 

representation of the eigenstate and subsequently reduces the necessary basis set size to 

achieve the same level of accuracy. 

Similar to the LAPW approach, where there exists a sole linearization energy (denoted 

as E1) for each angular momentum quantum number l, a challenge arises when attempting to 

depict semi-core states. However, in the APW+lo method, these semi-core states are managed 

through an additional collection of localized orbitals. 

2
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  (3.10) 

Once more, the local orbital emerges alongside a secondary linearization energy of E2. This 

energy can be intentionally positioned within the semi-core zone, allowing for appropriate 

treatment of eigenstates that share the same quantum number 'l' but possess varying principal 

quantum numbers, denoted as n. Furthermore, these local orbitals are seamlessly aligned to a 

zero value at the spherical boundary, and this alignment does not impose any constraints on 

the initial derivative. 

3.5 Mixed Augmentation  

Madsen et al. [23] demonstrated that the APW+lo approach generally achieves 

quicker convergence than the LAPW method. This implies that comparable accuracy in 

metrics like total energy can be attained using a smaller basis set in the APW+lo method as 

opposed to the LAPW method. Typically, additional localized orbitals (lo's) are only 

necessary to extend the expansion up to the physical l quantum numbers, encompassing the l 

quantum numbers within the electronic configuration of the relevant element. On the contrary, 

higher l quantum numbers are adequately addressed by pure APW's. Nevertheless, certain 

scenarios may demand supplementary lo's for higher quantum numbers in the supplementary 

basis set, which mitigates the advantage gained in basis set reduction. Conversely, radial 

functions devoid of significant l-character do not notably benefit from the precise shape of 

the ul function. Thus, a combined augmentation strategy was proposed [23], in which the 

crucial I quantum numbers are treated with APW+lo and the higher l quantum numbers are 

augmented via LAPW. This hybrid approach is referred to as the (L)APW+lo method. All 

findings presented in this study were acquired using the hybrid (L)APW+lo methodology. 
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3.6 The full potential (L)APW+lo method 

Enhanced precision of the (L)APW+lo approach can be achieved through the 

utilization of the complete potential (FP). This involves substituting the constant muffin-tin 

potential with a variable potential in the interstitial region and a non-spherical component 

within the muffin-tin.  
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These enhancements are also termed non-muffin-tin corrections. The selection of basis 

functions in the interstitial domain remains unaffected by these corrections. However, the 

radial functions u, as defined in Eqn. (3.2), cease to be the exact solutions within the muffin-

tin sphere. In theory, to accurately evaluate function ul, the actual crystal potential of the 

muffin-tin area should be employed. Nevertheless, significant improvements in results are not 

anticipated, as the non-muffin-tin corrections introduce only minor modifications to the 

muffin-tin potential. Additionally, the flexibility of basis functions within the linearized APW 

methods should be sufficient to characterize both the eigenstates influenced by non-muffin-tin 

corrections and those within the muffin-tin potential. 
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1.1 Calculation methods and settings 

The equilibrium crystalline structure parameters and elastic constants of the considered 

ternary Zintl phases were determined using the DFT-based pseudopotential plane-wave (PP-

PW) method with the GGA-PBEsol functional[1]. This method was implemented in the 

CASTEP package[2]. Vanderbilt’s ultrasoft pseudopotentials [3] were used to describe the 

interactions between the valence electrons (As: 4s24p1; Ga: 3d104s24p1; Sr: 4s23p2; Ba: 

5s25p66s2) and the pseudo-ionic cores (nuclei plus frozen core electrons). To ensure accurate 

total energy convergence, an energy cut-off of 350 eV for the plane-wave basis set and a 

5x3x10 special Monkhorst-Pack [4] k-points mesh for the Brillouin zone (BZ) sampling were 

adopted. 

To begin this work, the BFGS algorithm (named after Broyden, Fletcher, Goldfarb, and 

Shannon) [5] was employed to identify the equilibrium structural parameters that correspond 

to the crystal structure with the lowest energy. The computations were conducted using 

specific tolerance parameters for achieving convergence: 

i. Self-consistent total energy within 5.010− eV/atom. 

ii. Maximum force acting on each atom within 0.01eV/Å.  

iii. Maximum stress within 0.02GPa  

iv. Maximum atomic displacement within 5.010− Å.  

To compute the monocrystalline elastic constants (Cijs) of the studied orthorhombic 

systems, the stress-strain method using the generalized Hooker's law [1] was employed. Three 

distinct strain tensors are applied to the equilibrium crystal structure to determine the nine 

independent Cijs required for characterizing the elastic properties; the first strain tensor was 

with non-zero 11  and 32 components, the second strain tensor was with non-zero 22 and 

31 components and the third one was with non-zero 33 and 12 components, The 

computations are carried out with specific settings, including a total energy convergence of 

1.010− eV/atom, a Hellman-Feynman force of 0.002eV/Å, and an ionic displacement of 

1.010− Å. Several physical properties that are linked to the Cijs, such as mechanical 

stability, elastic anisotropy, anisotropic sound wave velocities, and polycrystalline elastic 

moduli, as well as related properties like bulk modulus, shear modulus, Young's modulus, 

Poisson's ratio, brittleness/ductility, average sound velocity, and Debye temperature, are 

determined through established empirical and theoretical relationships [6]. 
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To compute the electronic structure and related properties of the studied materials, the 

state-of-the-art DFT-based full-potential linearized/augmented plane wave plus local orbitals 

(FP-L/APW+lo) method was used. The calculations were carried out using both the GGA-

PBEsol and [7] Tran-Blaha modified Becke-Johnson (TB-mBJ) potential [8], which was 

specifically developed to improve the electronic structure of semiconductors and insulators, 

particularly for better quantitative estimates of their bandgaps. The WIEN2k package [9] was 

utilized to implement the calculations, with a cut-off parameter of lmax=10 for the spherical 

harmonics basis set and a reciprocal lattice vector cut-off of min

max 10 / MTK R=  for the plane-

wave basis set, where min

MTR  is the smallest muffin-tin sphere. The radii of the muffin-tin 

spheres for Sr, Ba, Ga, and As are 2.50 Bohr and 2.34 Bohr, respectively. The self-consistent 

calculations are considered to have converged when the total energy is stable within 10-5 Ry 

and the force acting on each atom of the system is less than 510 − Ry/Bohr. 

Linear optical responses of matter to incident electromagnetic radiation are described by 

the complex dielectric function  () ;  () = () +i () [10], where the real part (  () 

) and the imaginary one (  () ) describe, respectively, the dispersion and the absorption of 

the electromagnetic radiation by the medium which it crosses.  () spectrum is calculated 

by summing the electric dipole operator matrix elements between the occupied and 

unoccupied wave functions over the Brillouin zone while respecting the selection rules.  () 

spectrum is calculated from  () spectrum using Kramers-Kronig relationship [10]. Spectra 

of all the other linear optical parameters, including refractive index, extinction coefficient, 

reflectivity, and absorption coefficient, are deduced from  () and  () spectra, using the 

well-known relationships [11]. The transport properties were computed within a dense mesh 

of 30×30×30 k-points in the BZ using Boltzmann’s transport theory with the constant 

scattering time approximation (CSTA) and the rigid band approximation (RBA) as 

implemented in the BoltzTraP1 code [12]. 
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1.2 Results and discussion 

1.2.1 Structural properties 

The compounds Sr3GaAs3 and Ba3GaAs3, which belong to the ternary Zintl-phase, exhibit 

an orthorhombic structure characterized by the space group Pnma Ba3GaSb3-type structure 

(no. 62), with eight formula units present in a single unit cell [13]. A representation of the 

Sr3GaAs3 unit cell is depicted in Fig. 1.1. The key feature of the AE3GaAs3 structure is the 

formation of GaAs4 tetrahedra by Ga and As atoms (Fig. 1.1a). These tetrahedra are 

connected via two common edges to form isolated [Ga2As6] units (Fig. 1.1b), which are held 

together by covalent bonds. The isolation of these polyanions from one another is facilitated 

by the alkaline-earth AE cations. The [Ga2As6] units are oriented along the b-axis and 

arranged in slabs that are offset by / 4a . The AE cations serve to separate and balance the 

charge of the polyanions [Ga2As6]. Thus, the structure can be understood as valence-precise 

[AE2+]3[Ga3+] [As3-]3 or, alternatively, as [AE2+]6[Ga2As6]
12-, i.e., Zintl phases. However, it is 

essential to note that the Zintl formalism oversimplifies the interactions between cations and 

anions, and the actual bonding arrangements in these compounds may be considerably more 

intricate[14]. 

 

Fig. 1.1: Crystal structure of the Sr3GaAs3 unit-cell (a), and the [Ga2As6] polyanion (b). 

Coordination polyhedron around Ga is shown. The purple spheres represent the Sr atoms, the 

green spheres denote the Ga atoms, and the red ones schematize the arsenic atoms. 

The AE3GaAs3 compounds (where AE = Sr, Ba) have a unit cell consisting of 56 

atoms. Within this unit cell, there exist four non-equivalent positions for AE (AE1, AE2, 
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AE3, and AE4) and three non-equivalent positions for As (As1, As2, As3, and As4) atoms. 

The Wyckoff atomic positions for these compounds are as follows: AE1 at 8d (xAE1, yAE1, 

zAE1), AE2 at 8d (xAE2, yAE2, zAE2), AE3 at 4c (xAE3, 1/4, zAE3), AE4 at 4c (xAE4, 1/4, zAE4), Ga 

at 8d (xGa, yGa, zGa), As1 at 4c (xAs1, 1/4, zAs1), As2 at 4c (xAs2, 1/4, zAs2), As3 at 8d (xAs3, yAs3, 

zAs3), and As4 at 8d (xAs4, yAs4, zAs4). The coordinates xX, yX, and zX refer to the positions 

internal coordinates of the X atom. Hence, there are a total of 26 free structural parameters, 

including three lattice parameters (a, b, and c) and 23 internal coordinate parameters, that are 

not fixed by symmetry. As a result, we need to optimize these parameters by determining 

their values that correspond to the minimal total energy before exploring other physical 

properties. To achieve this, we use the experimental crystal structure data [13] as input and 

determine the equilibrium structural parameters by relaxing the atomic positions and lattice 

parameters of the unit cell through the minimization of force and stress. 

The calculated equilibrium unit-cell and the optimized values of the lattice parameters (a, b 

and c) and internal atomic coordinates (x, y, z) obtained using the pseudopotential plane-wave 

(PP-PW) within GGA08 [1]. Where the resulting total energy-volume curve was fitted to the 

Birch-Murnaghan equation of state [15]. Our results are listed in Table 1.1 and 1.2 along with 

the available experimental. 

The relative deviation ( ) ( )%   –  100 /  opt exp expd x x x= of the calculated lattice parameters 

(a, b and c) of Sr3GaAs3 (Ba3GaAs3) are excellent agreement between the GGA08 optimized 

lattice parameters values and the corresponding experimental one [13], which are less than -

0.4% (-0.3%), -0.5% (-0.4%) and -0.3% (-0.3%) respectively. One can note that the unit-cell 

parameters a, b and c of A3GaAs3 increases when increase of the ionic radii (RSr < RBa). In 

addition, relative change of the averaged unit cell deviation (dr) defined as follows: 

( ) ( )( ) ( )1/3 exp 1/3 exp 1/3
/

opt

r uc uc ucd V V V= − [16], where ( )opt

ucV  and ( )exp

ucV are the optimized and experimental 

unit cell volumes, can be used to give an average measure of the relative deviation of the 

optimized structure from the experimental counterpart. The very small value of dr; 

dr = −0.39% for Sr3GaAs3 and dr = −0.31% for Ba3GaAs3, provides a solid proof of the 

reliability of the theoretical method used for predicting the structural parameters and gives 

confidence in the reported results on the electronic, optical and elastic properties of the title 

compounds that will be presented in the following sections. One notes that the unit cell 

parameters (a, b and c) are related to sizes of the constituent elements. The unit cell volume 
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(V) and lattice parameters (a, b and c) of Ba3GaAs3 are larger than those of Sr3GaAs3. This is 

attributed to the fact that the atomic radium of Ba (2.53 Å) is larger than that of Sr (2.19 Å).  

Table 1.1: Calculated and experimental equilibrium lattice parameters (a, b and c, in Å) and 

unit cell volume (V, in Å3) for Sr3GaAs3 and Ba3GaAs3 along with available experimental 

counterparts [13]. 

 Sr3GaAs3 Ba3GaAs3 

Present work a Expt. b Present work a Expt. b 

a  

b  

c  

V  

12.706 

19.175 

6.484 

1579.7 

12.757 

19.268 

6.503 

1598.6 

13.3195 

19.9121 

6.7800 

1798.2 

13.3589 

19.9788 

6.8008 

1815.1 
 

a Using PP-PW within GGA08.         b Ref.[13]. 

 

Table 1.2: Calculated equilibrium atomic position fractional coordinates for Sr3GaAs3 and 

Ba3GaAs3 along with the available experimental counterparts [13], given in parentheses. 

 

 

Atom 

x y z 

Present work a Exp. b Present work 
a 

Exp. b Present work 
a 

Exp. b 

Sr3GaAs3 

Sr1 

Sr2 

Sr3 

Sr4 

Ga 

As1 

As2 

As3 

As4 

 

Ba3GaAs3 

Ba1 

Ba2 

Ba3 

Ba4 

Ga 

As1 

As2 

As3 

As4 

 

0.01219 

0.26371 

0.26637 

0.48081 

0.12592 

0.23508 

0.01516 

0.01010 

0.25832 

 

 

0.00992 

0.26516 

0.26771 

0.48015 

0.12770 

0.22964 

0.02222 

0.01666 

0.25885 

 

0.01274 

0.26474 

0.26816 

0.48050 

0.12642 

0.23468 

0.01681 

0.01121 

0.25889 

 

 

0.01098 

0.26589 

0.26836 

0.47937 

0.12737 

0.22915 

0.02242 

0.01687 

0.26014 

 

0.57438 

0.07364 

1/4 

1/4 

0.16325 

1/4 

1/4 

0.08941 

0.58948 

 

 

0.57558 

0.07493 

1/4 

1/4 

0.16493 

1/4 

1/4 

0.09081 

0.59197 

 

0.57417 

0.07335 

1/4 

1/4 

0.16332 

1/4 

1/4 

0.08982 

0.58990 

 

 

0.57530 

0.07478 

1/4 

1/4 

0.16495 

1/4 

1/4 

0.09121 

0.59211 

 

0.27619 

0.30883 

0.68961 

0.16939 

0.01492 

0.21232 

0.81442 

0.23492 

0.29450 

 

 

0.27262 

0.31128 

0.68906 

0.16491 

0.01782 

0.20966 

0.82535 

0.22737 

0.30835 

 

0.27769 

0.30854 

0.68712 

0.16924 

0.01367 

0.21000 

0.81317 

0.23326 

0.29433 

 

 

0.27503 

0.31222 

0.68616 

0.16338 

0.01690 

0.20661 

0.82548 

0.22609 

0.30814 
 

a Using PP-PW within GGA08. 
b Ref. [13] 
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Bond lengths provide information about the chemical bond characters. From Table 1.3, 

which lists the bond lengths of some selected bonds, the bond length of the Ga-As bond 

ranges between 2.4911 and 2.5589 Å, which closely match the sum of the corresponding 

covalent radii of Ga (1.246 Å) and As (1.210 Å), suggesting that the Ga-As bond is of strong 

covalent bonding character. The bond length of the Sr-As (Ba-As) bond ranges between 

3.1203 and 3.4583 Å (between 3.2682 and 3.5659 Å), which is longer than the sum of the 

respective covalent radii of Sr (1.85 Å)/Ba (1.96 Å) and As (1.210 Å), suggesting that these 

bonds are almost ionic in nature. This statement is confirmed by the calculated diagrams of 

the site projected and l-decomposed density of states, which we will discuss later. 

Table 1.3: Calculated interatomic distances (in Å) for Sr3GaAs3 and Ba3GaAs3 compared with 

the available experimental counterparts [13]. 

 

 

 Sr3GaAs3 Ba3GaAs3  Sr3GaAs3 Ba3GaAs3 

Present  Exp. [13] Present Exp. [13] Present  Exp. [13] Present  Exp. [13] 

AE1–As4 3.1428 3.157 3.3405 3.3530 AE3–As2 3.2927 3.310 3.3979 3.4195 

AE1–As3 3.1521 3.173 3.3285 3.3441 AE3–As1 3.4125 3.427 3.5659 3.5780 

AE1–As3 3.1957 3.209 3.4219 3.4279 AE4–As1 3.1346 3.147 3.3503 3.3556 

AE1–As4 3.2708 3.286 3.4045 3.4150 AE4–As2 3.1674 3.171 3.3709 3.3740 

AE1–As3 3.3387 3.351 3.422 3.4430 AE4–As3 3.1632 3.175 3.289 3.2985 

AE1–As2 3.436 3.460 3.5619 3.5846 AE4–As1 3.3204 3.337 3.4303 3.4519 

AE2–As4 3.13 3.148 3.3245 3.3353 AE4–As2 3.3754 3.398 3.5012 3.5234 

AE2–As3 3.1579 3.172 3.3734 3.3789 Ga–As4 2.4914 2.4855 2.5319 2.5281 

AE2–As4 3.1761 3.190 3.4022 3.4082 Ga–As3 2.4911 2.4911 2.5266 2.5245 

AE2–As3 3.2716 3.287 3.3749 3.3937 Ga–As1 2.5157 2.515 2.5308 2.5299 

AE2–As4 3.3605 3.373 3.4417 3.4631 Ga–As2 2.5372 2.538 2.5586 2.5589 

AE2–As1 3.4583 3.485 3.5848 3.6071 AE1–Ga 3.0897 3.113 3.2254 3.2505 

AE3–As1 3.1203 3.132 3.2896 3.3032 AE2–Ga 3.1064 3.130 3.2439 3.2715 

AE3–As2 3.1612 3.172 3.3914 3.3948 AE3–Ga 3.2249 3.251 3.3639 3.3903 

AE3–As4 3.1677 3.182 3.2682 3.2839 AE4–Ga 3.2181 3.241 3.3704 3.3948 
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1.2.2 Electronic properties 

1.2.2.1 Energy band dispersions 

The electronic energy band dispersions, density of states and effective mass are of 

great importance for technology, electronic band structure is a quite helpful theoretical tool to 

predict whether a material is conductive, semiconductor or isolator; it transmits, reflects or 

absorbs the visible spectrum and so on. In other words, according to the band gap type, the 

band gap character (direct or indirect gap) and dispersion of the electronic states one can for 

example predict whether a material can be an eventual candidate for thermoelectric 

applications or optoelectronic applications, including lighting, lasing, optical sensing, displays 

manufacturing, and sunlight converter and so on. Thus, it is of great importance to study the 

electronic structure of materials through accurate theoretical methods. The calculated band 

energy dispersions for our compounds, along the selected high-symmetry points in the first 

Brillouin zone (red line in Fig. 1.2). 

 

 

 

Fig. 1.2: The selected path (red line) in the Brillouin zone for calculating the energy band 

dispersions for AE3GaAs3 (Ae = Sr, Ba). The high-symmetry points have the following 

coordinates (in units of the reciprocal lattice unit vectors): Г (0,0,0), Z (0,0,1/2), T (-

1/2,0,1/2), Y (-1/2,0,0), S (-1/2,1/2,0), X (0,1/2,0) U (01/2,1/2) and R (-1/2,1/2,1/2). 
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The calculations carried out for the considered compounds in this work are are 

investigated with GGA-PBEsol and mBJ functionals within the full potential linearized 

augmented plane wave (FP-LAPW) method, using mBJ functionals at the optimized structural 

parameters of both explored systems are depicted in Fig. 1.3. As seen in this figure, Sr3GaAs3 

and Ba3GaAs3 are semiconductors, our calculation yielded a direct band gap located at the 

 point. The mBJ (GGA-PBEsol) fundamental bandgap value is equal to 1.271 eV (0.655 eV) 

for Sr3GaAs3 and 1.285 eV (0.572 eV) for Ba3GaAs3 between the valence band maximum and 

the conduction band minimum respectively. There are no experimental values for the gaps of 

the studied compounds so far up to date to be compared with our findings. Nevertheless, our 

GGA-PBEsol bandgap for Ba3GaAs3 is in acceptable agreement with the unique reported 

theoretical result; Eg = 0.78 eV, calculated using the tight-binding linear muffin-tin orbital 

method with the LDA functional (Increasing by 65%). and for mBJ bandgap for Sr3GaAs3 

there is the unique reported value for this compound; Eg = 1.35 eV, calculated using the 

pseudopotential projector augmented waves method with the mBJ functional [17]. 

 

 

Fig. 1.3: Band structures of AE3GaAs3 (AE = Sr, Ba) calculated using the TB-mBJ potential. 

The Fermi level is set to zero. 
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Our obtained results reveal that: 

• The Gallium arsenides of the alkaline metals AE3GaAs3 (AE = Sr, Ba) compounds 

have similar electronic structure. 

• The valence band maximum (VBM) and the conduction band minimum (CBM) are 

both located at the  point, therefore these compounds are direct band gap ( − ) 

semiconductors. 

• The energy band gap decreases when moving from Sr3GaAs3 to Ba3GaAs3, due to the 

decrease of the ionization potential when moving in the same sequence. 

• The TB-mBJ approach improves the band gap values of Sr3GaAs3 and Ba3GaAs3 by 

approximately 194% and 225%, respectively, compared to the corresponding GGA08 

ones. 

• Substituting of Sr by Ba in AE3GaAs3 leads to a monotonously narrowing of the mBJ 

fundamental band gap; it is the reverse case when using the GGA08. 

1.2.2.2 Charge-carrier effective mass 

Charge-carrier effective masses are very important physical parameters that 

characterize the electronic energy band dispersions and consequently they link the band 

structure to the transport parameters, such as charge-carrier mobility and Seebeck coefficient. 

Thus, it is of great importance to determine the charge-carrier effective masses in solids to 

have insight into their transport properties. Therefore, it is necessary to estimate the electron 

and hole effective masses of the studied compounds at the band edge. The hole effective mass 

mh
* (electron effective mass me

*) was numerically evaluated by fitting the energy band 

dispersions e (k) around the VBM (around the CBM) to parabolas E (k) = Ak2, then the 

effective masses m* could be compute using the following expression: 

( )2

0

* 2 2

1 E km

m k


=


    (1.1) 
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Table 1.4: Calculated electron and hole effective masses (me
*and mh

*, respectively; in unit of 

electron rest mass) for Sr3GaAs3 and Ba3GaAs3 compounds at VBM and CBM along the -

X  -Y and -Z directions in BZ. correspond to the [010], [100] and [001] crystalline 

directions, respectively. 

 

Sr3GaAs3 

direction me
* mh

* 

-X 0.45 0.19 

-Y 0.39 1.61 

-Z 2.05 2.24 

 

Ba3GaAs3 

-X 1.05 0.70 

-Y 0.43 1.73 

-Z 9.98 3.13 

 

The effective mass is m*, in units of m0 (m0 denotes the electron rest mass). The 

computed effective masses in the Brillouin zone at the  point from the band dispersion 

around the VBM and CBM toward the X, Y and Z directions are listed in Table 1.4. 

According to this table, it shows clearly that the hole effective mass at the valence band 

maximum is heavier than that of the electron at the conduction band minimum and the hole 

effective mass along z-axis larger than the corresponding ones along x- and y-axes. So, the 

calculated band effective masses show a noticeable anisotropy of electronic properties. These 

results predict the hole mobility should be less than the electron one in the considered 

compounds, and our calculations show that charge-carrier effective masses of Sr3GaAs3 are 

smaller than that of Ba3GaAs3; this expects that the mobility of charge-carriers in Sr3GaAs3 is 

larger than in Ba3GaAs3. Hereby, the charge-carrier masses were inversely (directly) 

proportional with the electrical conductivity (the Seebeck coefficient) respectively. 

Consequently, the n-type Sr3GaAs3 and Ba3GaAs3 compounds would have the largest 

electrical conductivity, while the p-type Sr3GaAs3 and Ba3GaAs3 compounds would have the 

highest the Seebeck coefficient. 

The hole and electron effective masses in an arbitrary direction infinitesimally close to 

the Γ-point for an orthorhombic system can be obtained through the following relationship 

[18]: 

*

2 * 2 * 2 *

[100] [010] [001]

1

cos ( ) / cos ( ) / cos ( ) /
m

m m m  
=

+ +
    (1.2) 
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where α, β, and γ are the angles between that specific direction and the [100], [010] 

and [001] crystalline directions, respectively. Fig. 1.4 and 1.5 illustrate 3D-representations of 

the crystalline direction dependence of holes and electrons effective masses at Γ-point and 

their cross-sections (2D-representations) in the (100), (010) and (001) crystalline planes. 

From these figures, it is obvious that the charge carrier effective masses in the title 

compounds are strongly anisotropic. Thus, transport parameters, such as mobility and 

Seebeck coefficient, are expected to be strongly anisotropic too. One notes that the effective 

mass of electrons in Ba3GaAs3 shows the strongest anisotropy due to its unusual heavy holes 

mass in the [001] crystalline direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4: 3D-representations of the crystal direction dependent effective masses of electrons 

(a) and holes (b) at Γ-point and their cross-sections in the (001); (ab), (010); (ac) and (100); 

(bc) crystalline planes for Sr3GaAs3. 
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Fig. 1.5: 3D-representations of the crystal direction dependent effective masses of electrons 

(a) and holes (b) at Γ-point and their cross-sections in the (001); (ab), (010); (ac) and (100); 

(bc) crystalline planes for Ba3GaAs3. 
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1.2.2.3 Density of states 

The computed total density of states (TDOS) and the atomic-resolved l-projected 

density of states (PDOS) diagrams guide us to closely investigate the electronic structure and 

gain insight into the nature of chemical bonds between constituents of the studied compounds 

employing the mBJ potential. Fig. 1.6 illustrates both curves (i.e., TDOS and PDOS) for the 

title compounds (Sr3GaAs3 and Ba3GaAs3) between -12 eV and 5 eV for our compounds 

Sr3GaAs3 (Ba3GaAs3). The valence band of Sr3GaAs3 consists of six sub-bands labeled V1, 

V2, V3, V4, V5 and V6, (the valence band of Ba3GaAs3 is subdivided into seven sub-bands 

labelled V1, V2, V3, V4, V5, V6 and V7; the V7 sub-band is not shown for clarity of the 

figure). 

Firstly, V1 in energy range between from -2.2 eV (-2.0 eV) to 0 eV, mainly consists of 

the As-4p states with a noticeable contribution from the Ga-4p states and a small contribution 

from the AE-nd (n = 3 for Sr and n = 4 for Ba) states. One notes the presence of a weak 

mixing between the As-4p and AE-nd states and between the Ga-4p and AE-nd states, which 

is an indicative of the presence of a weak degree of covalency in the As–AE and Ga–AE 

bonds. For V2 valence band group, there is an overlapping between two mainly orbitals, the 

As-4p and Ga-4p states, suggesting that the As-Ga chemical bond is the covalent nature. The 

sub-bands V3 and V4 energy range are start from ~-5.57 eV (~-5.40 eV) to -4.59 eV (~-4.35 

eV), consist of the hybridized Ga-4s and As-4p orbitals. The sub-band V5, ranging between 

~-9.92 eV and ~-880 eV (~-9.49 eV and ~-8.37 eV), is composed mainly of the hybridizing 

between the As-4s states and the Ga-4sp states. The V6 valence band, forming a narrow peak 

centered at -10.68 eV (~-10.13 eV), consists of the hybridized As-4s and Ga-4s states. The 

valence subband V7; not shown in Fig. 1.6, located between ~-13.48 eV and ~-12.51 eV, 

which appears only in Ba3GaAs3 is originated from the Ba-5p states.  

The main feature in Fig. 1.6 is the strong hybridization (overlapping) between the As 

and Ga states in all the valence band region, indicating the high covalency of the As-Ga 

chemical bond. This conclusion is consistent with that deduced from the As-Ga bond length 

discussed in the structural properties section. On the other hand, apart the weak overlapping in 

the V1, the PDOS distribution of the AE (Sr/Ba) atom is energetically separated from those of 

the Ga and As atoms, indicating that the chemical bonding between AE and Ga/As is 

predominantly of ionic character. The conduction sub-band C1, ranging from the CBM up to 

8 eV, consists mainly of the AE-nd (Sr/Ba) states. Hence, the Sr/Ba-nd electrons would play 
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an important role in the electrical conductivity for the title compounds. It is worth noting that 

despite the fact that the As/AE atoms have four inequivalent crystallographic positions, the 

general profiles of their respective PDOS are very similar to each other but with somewhat 

different amplitudes as shown in Fig. 1. 6, suggesting that they would have the same bonding 

character with neigh boring atoms. 

 

Fig. 1.6: The calculated TDOS, its projections on orbitals and PDOS for Sr3GaAs3 (left panel) 

and Ba3GaAs3 (right panel) using the mBJ potential. The Fermi level is at zero. 
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1.2.3 Elastic properties 

The elastic moduli of solids, both monocrystalline and polycrystalline, serve to 

measure how these materials react to external deformations within the elastic range. 

Consequently, these moduli are intricately connected to a multitude of fundamental 

characteristics of solids, the mechanical properties, structural stability, sound velocity, 

bonding forces between neighbouring atoms, nature and strength of chemical bond, 

machinability, anisotropy and lattice dynamics, .... Hence, the assessment of solid materials' 

elastic moduli is of profound significance from both foundational and practical standpoints. 

1.2.3.1 Monocrystalline elastic constants 

The calculated elastic constant in single-crystal at orthorhombic phase were described 

by twenty-one independent elastic constants Cijs (and their elastic compliances Sijs), with 

considerable values of nine independent elastic constants, labeled C11, C12, C13, C22, C23, C33, 

C44, C55 and C66. Our calculated elastic constants Cij of considered compounds are presented 

in Table 1.5. Show both theme's values. Until now no experimental or theoretical data interest 

to study the elastic constants of the title compounds. According to Table 1.5. One can make 

the following conclusions:  

i. The C11, C22 and C33 elastic constants illustrate the stiffness stress lengthways the 

crystallographic a, b and c axes, respectively. For both studied compounds, the C11 > 

C22 > C33. Sr3GaAs3 and Ba3GaAs3 compounds appear large resistant to versus the 

external stress along the [100] crystallographic direction comparing that along the 

other directions ([010] and [001]). This indicates that values of the Cijs do not change 

significantly with the radius of the alkali-earth atom in the title compounds. 

ii. As can be again attributed to the more robust bonds that along the crystallographic a-axis. 

the shear modulus of the (100), (010) and (001) planes represented by the C44, C55 and C66 

elastic constants, respectively. Also, suggest that the linear compressibility (β) along the 

[100] direction is smaller than that along the [010] direction which in turn is a little 

smaller than that along the [001] direction;      . 

Table 1.5: Calculated elastic constant Cij (in GPa) for the orthorhombic Zintl phase 

Sr3GaAs3 and Ba3GaAs3 compounds. 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 

Sr3GaAs3 93.3 22.1 27.2 82.8 26.9 81.5 28.8 28.4 26.5 

Ba3GaAs3 84.4 16.8 22.4 79.7 22.9 76.4 20.5 23.4 20.6 
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The letters are comparatively little than the C11, C22 and C33, demonstrating that these 

compounds are less resistance to shear deformation than compression. On the other 

hand, C44, C55 and C66 values are almost equal, so one can draw a conclusion that the 

shear modulus of the title compounds is almost isotropic. 

iii. The computed elastic constants of the studied compounds satisfy the conditions of 

Born and Huang mechanical stability criteria [19,20]: 

C11>0, C22>0, C33>0, C44>0, C55>0, C66>0, C11+ C22-2C12 >0, C11+ C33-2C13 >0, C22+ 

C33-2C23 >0, C11+C22+C33+2(C12+C13+C23+)>0 

This suggests the mechanical stability of Sr3GaAs3 and Ba3GaAs3 compounds. 

iv. There are some important physical properties of the material (such as thermal 

conductivity) related sound velocity in a crystal. For given the single-crystal elastic 

wave velocities in different directions ([100], [001] and [110]) can be use Christoffel 

equation [21] and procedure of Brugger [22] in an orthorhombic system, the pure 

longitudinal (L) and transverse (T) wave velocities propagating are given by the 

following expressions [23]:  

     

     

     

1 2

1 2

1 2

100 100 100

11 66 55

010 010 010

22 66 44

001 001 001

33 55 44

/ , / , /

/ , / , /

/ , / , /

L T T

L T T

L T T

v C v C v C

v C v C v C

v C v C v C

  

  

  

= = =

= = =

= = =

     (1.3) 

Where  : is the mass density of the propagating medium. The calculated elastic wave 

velocities along [100], [001] and [110] directions are listed in Table 1.6. From this 

latter, one can see that the transverse wave velocities are less than the longitudinal 

ones, where its values less than 4500 m/s, and both the longitudinal and transverse 

waves increase when substitution Ba by Sr atoms.  

 

Table 1.6: Longitudinal and transverse acoustic wave velocities (vL and vT, in m/s) in different 

crystallography directions for considered compounds.  

 

  100

Lv  
 010

Lv  
 001

Lv  
 
1

100

Tv  
 
1

010

Tv  
 
1

001

Tv  
 

2

100

Tv  
 

2

010

Tv  
 

2

001

Tv  

Sr3GaAs3  4461.6 4203.1 4170.0 2377.8 2377.8 2461.6 2461.6 2478.8 2478.8 

Ba3GaAs3 4021.3 3907.7 3826.0 1986.7 1986.7 2117.4 2117.4 1981.9 1981.9 
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1.2.3.2 Elastic anisotropy 

The extent of elastic anisotropy is widely recognized for its significant role in 

materials, engineering, and physical crystallography. It influences material stability, 

dislocations, and reveals diverse bonding characteristics in various crystallographic 

directions. Understanding elastic anisotropy is crucial for insights into microcracks in solids 

[24] and its effect at the nanoscale precursor textures in alloys [25]. So, there are several 

criterion to investigate the elastic anisotropy for example: universal index[26], shear 

anisotropic factors [27], the percentage anisotropy in compressibility and shear [28], The 

scalar log-Euclidean anisotropy index [29] and 3D representation of elastic moduli. In this 

presentation, we introduce two distinct approaches for evaluating elastic anisotropy.  

First, universal index AU has been proposed by Ranganathan and Ostoja-Starzewski 

[26], which is defined as follows:  

5 6U V V

R R

G B
A

G B
= + −     (1.4) 

where B and G represent the bulk and shear modulus and the subscripts V and R denote Voigt 

and Reuss approximations, respectively. The isotropic crystals are characterized by universal 

index equal to zero (AU= 0), so, any deviation from this value means that the extent of 

anisotropy crystals and can be measuring its degree. Calculated value of AU for Sr3GaAs3 and 

Ba3GaAs3 compounds is equal to 0.037 and 0.158 respectively, denoting that Sr3GaAs3 is 

characterized by a feeble elastic anisotropy, whereas Ba3GaAs3 is characterized by a 

noticeable elastic anisotropy, so its degree increases when substitution Strontium by Barium 

atoms in AE3GaAs3 system. 

Second, the evaluation of the elastic anisotropy in a material is by representation 3D 

of the crystallographic directions dependence of its elastic moduli (Young’s modulus and 

bulk's modulus), In a 3D plotting, the exhibition a spherical shape means an isotropic 

system, and the aberration from a spherical shape denotes the degree of anisotropy. 

Representation of the 3D-closed surface for the crystallographic direction dependence of the 

Young's modulus E and compressibility  of an orthorhombic crystal are expressed by the 

following well-known relations [30]  

4 2 2 2 2 4 2 2 4 2 2 2 2 2 2

1 11 1 2 12 1 3 13 2 22 2 3 23 3 33 2 3 44 1 3 55 1 2 66

1
2 2 2l S l l S l l S l S l l S l S l l S l l S l l S

E
= + + + + + + + +      (1.5) 

( ) ( ) ( )2 2 2

11 12 13 1 12 22 23 2 33 23 13 3

1
S S S l S S S l S S S l

B
 = = + + + + + + + +       (1.6) 
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Where, l1, l2 and l3 are the direction cosines coordinates with respect to X, Y and Z axes 

respectively, which show the angles between these axes, and Sijs are the elastic compliances 

constants. Computed 3D-closed surface and their central cross sections in the YZ, XZ and XY 

planes of the Young's modulus and bulk's modulus for both considered compounds are shown 

in Fig. 1.7 and Fig. 1.8. From these illustration 3D and its central cross sections for the two 

considered compounds of young's modulus E, one can see that deviate largely from the 

spherical shape and circular form respectively, demonstrating a noticeable directional 

dependence, while from bulk's modulus, evidencing that these compounds are characterized 

by a feeble elastic anisotropy and we show that the values of young's modulus and bulk's 

modulus along the X, Y and Z axes for Ba3GaAs3 are less than Sr3GaAs3 values. 

Fig. 1.7 shows that the 3D-representations (2D-representations) of the Young’s modulus 

deviate considerably from the spherical shape (circular form), suggesting that this property is 

noticeably anisotropic. The minimum value of E is equal to 67 (54) GPa along the [100] 

direction and the maximum value is equal to 82 (77) GPa along the [001] direction in 

Sr3GaAs3 (Ba3GaAs3) 
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Fig. 1.7: 3D-representations of crystal direction dependence of the Young’s modulus and 

their cross-sections in the (001), (010) and 001) crystalline planes for Sr3GaAs3 and Ba3GaAs3 

Fig. 1.8 shows that the deviation degree of the 3D-representations (2Drepresenations) 

of compressibility from the spherical shape (circle form) is less than that of the Young’s 

modulus, suggesting that this property is less anisotropic than the Young’s modulus. The 

minimum value of β is equal to 0.0067 (0.008) GPa-1 along the [100] direction and the 

maximum value is equal to 0.0079 (0.0085) GPa-1 along the [001] in Sr3GaAs3 (Ba3GaAs3). 

This is consistent with the statement that has been already drawn from the elastic constants 

C11, C22 and C33; β exhibits a relatively weak anisotropy. Note that Ba3GaAs3 is somewhat 
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more elastically anisotropic than Sr3GaAs3, which is consistent with the statement that has 

been deduced from the universal anisotropy index AU, vide supra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8: 3D-representations of the crystal direction dependence of the linear compressibility 

and their cross-sections in the (001), (010) and 001) crystalline planes for Sr3GaAs3 and 

Ba3GaAs3. 

1.2.3.3 Polycrystalline elastic moduli 

In a polycrystalline system, numerous grains possess distinct structures that can 

influence the relative elastic properties. Consequently, we must consider hypotheses such as 

the isostress of Voigt [31], isostrain Reuss [32] and Hill approximations [33], which bulk 's 

modulus B and shear's modulus G in recent approximations defined by following express: 

( ) ( )11 22 33 12 13 23

1
2

R

S S S S S S
B

= + + + + +     (1.7) 
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( ) ( ) ( )11 22 33 12 13 23 44 55 664 4 31

15R
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   ( )11 22 33 44 55 66 12 13 23

1
3

15
VG C C C C C C C C C= + + + + + − + +     (1.10) 

Here: Sij (Cij) is the elastic compliances (stiffness) constants, where Sij = 1/Cij  

Hill proved that the effective values is equal to the arithmetic mean between bulk and shear 

moduli: 

2

R V
H

B B
B

+
=      (1.11)      and                    

2

R V
H

G G
G

+
=     (1.12) 

Young's modulus (E), Poisson ratio's  [34], average longitudinal vl, transverse vT elastic 

wave velocities, the average wave velocity vm [35] and Debye temperature TD [36] in 

polycrystalline structure can be computed from the following expressions: 

9
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     (1.13)                        and                       

( )

3 2

2 3

B G

B G


−
=

+
    (1.14) 

1/2

3 4

3

H H
l

B G
v



 +
=  

 
           (1.15)    and                            

1/2

H
T

G
v



 
=  

 
    (1.16) 

1/3

3 3

1 1 2

3
m

l T

v
v v

−

  
= +  

  
        (1.17)    and         

1/3
3

4

A
D m

B

Nh n
T v

K M





 
=  

 
    (1.18) 

Where:  is the mass density, n is the number of atoms in the molecule, NA is 

Avogadro number, M is the molecular weight, h and KB are Planck and Boltzmann constants 

respectively. Employing the aforementioned relations, the obtained results are listed in Table 

1.7, which let us to make some conclusions: 

a) There is well-known relationship between the elastic moduli (bulk and shear) and 

the elastic properties of polycrystalline pure metals, Pugh’s ratio empirical criterion 

[37], which provide information concerning the brittle-ductile nature of a material, if 

B/G >1.75 denotes the ductile nature of the material; otherwise, it is brittle. The 

computed B/G ratio values registered in Table 1.6, these results indicating the brittle 

nature of the considered compounds. Brittle materials are fragile to thermal shocks 

[38]. 
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Table 1.7: Calculated Reuss, Voigt and Hill bulk (B, in GPa), shear’s modulus (G, in GPa), 

Young’s modulus (E, in GPa) and Poisson’s ratio (σ, dimensionless), Pugh ratio BH/GH, 

average sound velocities (vm, in m/s), Debye temperature (TD, in K) and density (  ) for 

polycrystalline Sr3GaAs3 and Ba3GaAs3 compounds. The subscript V, R and H stand to the 

Voigt, Reuss and Hill. 

 Theory B G E  B/G vm   TD 

 

Sr3GaAs3 

V 45.55 28.84 71.45 0.239  

 

1.58 

 

 

2747 

 

 

4.687 

 

 

268.4 

R 45.45 28.65 71.02 0.240 

H 45.50 28.75 71.24 0.239 

 

Ba3GaAs3 

V 40.53 24.78 61.75 0.246  

 

1.66 

 

 

2395 

 

 

5.219 

 

 

224.2 

R 40.51 24.02 60.17 0.252 

H 40.52 24.40 60.96 0.249 

b) Values of B, G and E of Sr3GaAs3 are somewhat greater than those of 

Ba3GaAs3.This is expected as the unit-cell volume of Ba3GaAs3 is somewhat greater 

than that of Sr3GaAs3; the bulk modulus value is inversely proportional to the unit-cell 

volume, and the Cij values of Ba3GaAs3 are somewhat smaller than those of Sr3GaAs3. 

c) Debye temperature TD is correlated with several important physical properties of 

solids, such as heat capacity value, thermal expansion, melting temperature, so on. As 

a rule, when TD increase, thermal conductivity and melting temperature increase [38], 

as well as, it can be used to separate between high- and low-temperature regions for a 

solid. Debye temperature TD was calculated by relationship mentioned above [36]. 

The values of TD dependences Sr3GaAs3 and Ba3GaAs3 are listed in Table 1.6. On the 

hand, TD and Vm of Sr3GaAs3 are somewhat larger than those of Ba3GaAs3, which is 

expect as the elastic moduli of the former are somewhat larger than those of the later. 

d) The determination of chemical bonding nature can be by the use of Poisson’s ratio 

σ and comparison between shear G and bulk B moduli, in order for chemical bonding 

to be covalent, G must be small comparing, A typical value of σ for covalent bonding 

is less than 0.2; for ionic bonding σ is typically 0.3-0.4; finally for pure-ionic limit 

bonding σ is 0.5 and G is zero [39]. One shows that the values of the studied 

compounds are equal almost 0.25. So, we suggest that the chemical bonding in 

Sr3GaAs3 and Ba3GaAs3 compounds has a dominant covalent character. 
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1.2.4 Optical properties 

The Sr3GaAs3 and Ba3GaAs3 compounds have an orthorhombic structure. Thus, the 

consequent dielectric functions are xx (), yy () and zz (). These latter correspond to 

incident radiation in an electrical field polarized parallel along three axes dependents (x, y and 

z) respectively.  The optical properties may be concluded from the imaginary part 2 () and 

the real part 1 () of the complex dielectric function  ()= 1 () + i 2 (). The linear 

optical response of the medium is characterized by the dielectric function ε(ω). The intraband 

and interband transitions are contributions to ε(ω), but the first is important for metals, where 

2 () explains the absorbed energy, and it is computed from the matrix elements dependent 

valence band and the conduction band using well-known relationship[40,41], while the real 

part 1 () describe the incident radiation, it can be calculated from 2 () within the 

Kramers–Kronig transformation [42]. 

The computed components of the imaginary and real parts of the dielectric tensor for 

the studied compounds are display in Fig. 1.9 in a wide range of energy, 0-14 eV. We see the 

spectra of components ( xx,  yy and  zz) of the imaginary and real parts exhibit main peaks 

with almost the same position for title compounds and it appear a considerable anisotropy. 

There are four main peaks in imaginary part of incident radiation along three crystallography 

directions for Sr3GaAs3 and Ba3GaAs3 compounds listed in Table 1.8. One can conclude that 

the fundamental originated of the peaks E1, E2, E3 and E4 of the Sr3GaAs3 (Ba3GaAs3) () 

spectrum due based on the PDOS diagrams given in Fig. 1.6, one can assign the observed 

structure in () spectrum to electronic transitions from the V1, V2, V3 and V4 valence sub-

bands to the C1 conduction sub-band, i.e., transitions from the filled As-4p and Ga-4p states to 

the empty Sr/Ba-nd states (n = 3 for Sr and n = 4 for Ba). From Fig. 1.9, one observes that the 

energy locations and magnitudes of the major peaks in the () spectra are clearly different 

in the energy range from 1.5 eV to 7.5 eV. In other words, () curves are distinct from each 

other in the energy range 1.5-7.5 eV and are almost superposed in the rest of the considered 

energy range. The magnitude of the structure corresponding to E||b is somewhat larger than 

those corresponding to E||a and E||c. These features indicate that the imaginary part of the 

dielectric function; (), exhibits a well pronounced anisotropy in the energy range ~1.5 to 

~7.5 eV and it is almost isotropic in the rest of the considered energy range for both studied 

compounds. 
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Table 1.8: Determined the main peak positions of the dependent components ( xx,  yy and  

zz) of the imaginary part for Sr3GaAs3 and Ba3GaAs3 compounds. 

Directions xx yy zz 

Peak positions E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4 

Sr3GaAs3 3.33 3.99 4.34 4.88 3.42 3.96 4.29 5.67 3.58 4.23 4.48 5.16 

Ba3GaAs3 2.82 3.88 4.15 4.72 2.73 3.45 3.96 4.29 2.90 3.58 4.15 4.75 

 

 

 

Fig. 1.9: Real (upper panel) and imaginary (lower panel) parts of the dielectric function for 

Sr3GaAs3 and Ba3GaAs3 compounds of the incident radiations polarized along x-, y- and z-

axes directions, using the TB-mBJ potential. 

The real part of dielectric function is considered importance parameter, because there 

are many features of materials science dependence by the static dielectric constant (0), this 

latter is the real parts at low energy limit. According to Penn model[43]: 

( ) ( ) ( ) ( )
2 2

1 0 1 / 1 / 4 / 4 / 3p g g F g FE E E E E   = + − +
  

   (1.19) 

Where 
p  is the plasma energy and neglecting the small quantity /g FE E , the values of 

static dielectric constants for Ba3GaAs3 along the three directions (x-, y- and z-axes) are 
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represented in Table 1.8. We note that the values of static dielectric constants for Ba3GaAs3 

are greater than that of Sr3GaAs3 and there is inversely proportional relationship between the 

band gap Eg and (0). Also, one observes that () exhibits obvious anisotropy in the 

energy window from 0 eV to ~7.5 eV for both studied compounds. Each () (x, y and z) 

curve increase with the increasing photon energy from its static value to reach a maximum 

then starts to decrease. Magnitude of () (x, y and z) curve, corresponding to the E||b 

polarization, is somewhat greater than those of ()xx and ()zz . The maximum magnitude 

of () corresponding to E||b polarization is ~12.83 at ~1.84 eV for Sr3GaAs3 and ~13.00 at 

~2.22 eV for Ba3GaAs3. 1 (ω) has negative values in the energy range from ~4.62 eV to 

~9.81 eV for Sr3GaAs3 and from ~4.68 eV to ~12.84 eV for Ba3GaAs3, which correspond to 

metallic behavior. The calculated values of the electronic static dielectric constant for the 

three polarizations; ()xx, ()yy and ()zz for the studied compounds are summarized in 

Table 1.9. The  , given by following relation [16], [44]: ( (0) (0)) / (0)zz xx tot   = − , can 

be used as a measure of optical anisotropy. The calculated  is equal to 0.042 for Sr3GaAs3 

and 0.013 for Ba3GaAs3, implying a relatively low anisotropy degree. 

Table 1.9: Calculated static anisotropy 
OPTA  based on the static refractive index ( )0n  and the 

static dielectric constants ( )1 0  for Sr3GaAs3 and Ba3GaAs3 compounds along x-, y-, z-axes. 

 Direction ( )0n  ( )1 0  OPTA  

 

Sr3GaAs3 

xx 2.89 8.330 1.00 

yy 2.94 8.636 1.06 

zz 2.83 7.983 0.94 

 

Ba3GaAs3 

xx 2.94 8.655 0.99 

yy 3.03 9.168 1.08 

zz 2.88 8.320 0.93 

Using ε1(ω) and ε2(ω) well-known relationships could be calculate the absorption coefficient 

α(ω), electron energy-loss function L(ω), reflectivity R(ω), refraction index n(ω) and 

extinction coefficient k(ω), these parameters are display in Fig. 1.10. We can conclude the 

following:  
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a) The absorption spectrum is extends horizontally forward starting from 1.3 eV up to 30 

eV, this is start corresponding to the energy direct gap at  point. In the 

semiconductors, typically when the photon energy is increases the absorption 

coefficient α(ω) rises rapidly as is the case with our system. These compounds have a 

band gap about 1.3 eV may absorb the infrared rays of the invisible field and there is 

the strong absorption of the electromagnetic wave occurs in the Near-UV region. The 

high absorptivity of the electromagnetic wave in the visible spectrum and Near-UV 

region, suggests that these compounds are possible candidates for optoelectronic 

applications based on absorption of electromagnetic radiation in the aforementioned 

energy ranges. We can see that Sr3GaAs3 (Ba3GaAs3) is characterized by a high 

optical absorption (>106 cm-1) in two wide optical structures centered almost at 9 eV 

(8 eV) and 23 eV (18 eV) respectively. 

b) The reflectivity coefficient R () of title materials is characterized by an averages 

value where these are reaches approximately 45% for a photon energy equal to ~6.5 

eV. Whereas the static reflectivity coefficient R (0) has a value for a maximum of 

0.26. The magnitude of R(ω) is higher than 23.5 (24.5) in an energy range 0–12.6 eV 

(0–9.6 eV) for Sr3GaAs3 (Ba3GaAs3), and R(ω) curve exhibits some maxima and 

humps in the aforementioned energy range. For photon energy higher than 12.5 (9.6 

eV) for Sr3GaAs3 (Ba3GaAs3). 

c) To describe the energy loss of a fast electron traversing in a material, the spectrum of 

the electron energy loss function L(w) is depicted in Fig. 1.10. Where the primary 

peak location is usually associated with the plasma frequency [38]. One can see that 

the L (w) peak is at edges in the reflection spectrum, it is at approximately 12.9 eV for 

Sr3GaAs3, as we note two peaks almost at 9.8 eV and 11.5 eV for Ba3GaAs3.  

d) The refractive index is interesting parameter in optoelectronic devices. Fig. 1.10 

represents the refractive index n(ω) for three different orientations in an extensive 

spectral region reaches to 30 eV. We note at the lower energy limit that n(0) (the static 

refractive index) value for Sr3GaAs3 (Ba3GaAs3) is listed in Table 1.8. As we see the 

refractive index increases in about the 0 - 2.5 eV energy range, after that it decreases, 

where the n(ω) maximum value of Sr3GaAs3 (Ba3GaAs3) exceed 3.36 (3.62) at photon 

energy of approximately to 2.54 eV (1.97eV) for the E||b, then it decreases rapidly to a 

minimum value of ~0.44 at ~11.93 eV for Sr3GaAs3 and ~0.5 at ~9.10 eV for 

Ba3GaAs3. 
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e) The extinction coefficient k(ω) reaches its maximum (around 2.5) almost at 4.5 eV for 

both studied compounds for E||b polarization. From Fig. 1.10, the optical properties of 

the title compounds exhibit a noticeable anisotropy.  

f) As con be determined an important parameter, static anisotropy, reflecting the 

photonic response through the material crystallographic orientations. The static 

anisotropy expressed as follows [44]: 

( )
 

( )
 

( )
 

( )
 

1

1

0 0
,

0 0

dir dir

OPT poly poly

n
A

n





 
=  

  

    (1.20) 

Here, ( )
 

0
dir

n  ( )
 

1 0
dir

  are the value of along x-, y- and z-axes, ( )
 

0
poly

n  ( )
 

1 0
poly

  

are its values in polycrystalline. A material is optically isotropic if 1OPTA = , 

otherwise, it is optically anisotropic. The degree of deviation of 
OPTA from unity 

reveals the extent of the optical anisotropy. The values of 
OPTA are listed in Table 1.8. 

According to this table, the studied compounds exhibit a sure optical anisotropy, 

particularly with regard to y- and z-axes. 
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Fig. 1.10: Calculated absorption coefficient α(ω), electron energy-loss function L(ω), 

reflectivity R(ω), refraction index n(ω) and extinction coefficient k(ω) for Sr3GaAs3 and 

Ba3GaAs3.  
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1.2.5 Thermoelectric properties 

Seebeck's effect [45] and peltier's effect [46] phenomena are caused by the conversion 

between heat and electricity such as in generator and cooling (refrigerator) applications, 

resepectively.  For thermoelectric materials with highly efficient, figure of merit ZT 

(dimensionless parameter) has large valeus and have no limit to it value [47]. Figure of merit 

defined as: 2 /ZT S T k= , where S is Seebeck coefficient or thermopower,    is the 

electrical conductivity ( 2 /PF S  =  is called power factor),   is the relaxation time, T is the 

absolute temperature, 
e lk k k= +  thermal conductivity, 

ek is the electronic thermal 

conductivity and 
lk is the lattice thermal conductivity, 

lk  is frequently calculated as the 

difference between k and 
ek from Wiedemann–Franz equation: 

ek L T= , where L is the 

Lorenz factor, 2.4×10-8 J2K-2C-2 for free electrons[48].   

So, the field of thermoelectric materials is needing research focused on minimizing the 

thermal conductivity and large power factor. The transport properties of Sr3GaAs3 and 

Ba3GaAs3 compounds were calculated based on the calculated mBJ-GGA electronic structure 

using the Boltzmann theory[49] as executed in the BoltzTraP code[12]. The calculated of the 

electrical conductivity scaled by relaxation time ( /  ), electronic thermal conductivity 

scaled by relaxation time ( /ek  ), power factor ( 2 /PF S  = ), Seebeck coefficient (S), the 

thermoelectric figure of merit (ZT) as a function of charge-carrier concentration between 1018 

cm-3 and 1021 cm-3 aimed to get better thermoelectric performance [38], [48] for both the n-

type and p-type doped studied compounds at 300, 600 and 900 K, Seebeck coefficient along 

the X, Y and Z axes (S) and the thermoelectric figure of merit (ZT) along the X, Y and Z axes 

as a same function at 600K are shown in Fig. 1.11 and Fig. 1.12, respectively. The Seebeck 

coefficient (S) of holes and electrons in a non-degenerate semiconductor with parabolic bands 

are [50-51]: 

0 ln 2.5V
h

k N
S r

e p

  
= + −  

  
   and  0 ln 2.5C

e

k N
S r

e n

  
= − + −  

  
 

Where r , hS , eS , VN , CN , n  and p  are the scattering mechanism parameter, the Seebeck 

coefficients of hole, the Seebeck coefficients of electron, the effective density of states in 

valence band, the effective density of states in conduction band, the number of electron 

carriers, and the number of hole carriers, respectively.  
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Fig. 1.11: Transport coefficients of the Seebeck coefficient ( S ), electrical conductivity over 

relaxation time ( /  ), electronic thermal conductivity over relaxation time ( /ek  ), power 

factor ( 2 /PF S  = ) and figure of merit ( ZT ) as a function of carrier concentration 1018 cm-

3 and 1021 cm-3 for the n-type and p-type doped Sr3GaAs3 and Ba3GaAs3 compounds at 300, 

600 and 900 K.   

For mixed and degenerate semiconductors, the combined Seebeck coefficient is given 

by[51-52]: 
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e e h h

e h

S S
S

 

 

+
=

+
     (1.21)         and           

2 2/3

* 8

3 3

B
DOS

k
S m T

e h n

    
=   

  
    (1.22) 

Where 
Bk   is the Boltzmann constant, T  is the temperature, n  is the carrier concentration and 

*

DOSm  is the density of states effective mass, it is given by: 

( )
1/3

* * * * 2/3

DOS xx yy zz Vm m m m N=     (1.23) 

Where 
*

xxm , 
*

yym  and 
*

zzm   are the band effective mass components along X − , Y −  and 

Z − , respectively and 
VN  is the band degeneracy.  

 

Fig. 1.12: Representation of Seebeck coefficient (S) (figure of merit (ZT) along the X, Y and 

Z axes) as a function of carrier concentration 1018 (1015) cm-3 and 1021 cm-3 for the n-type and 

p-type doped Sr3GaAs3 and Ba3GaAs3 compounds at 600 K.  
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According to Fig. 1.11 and Fig. 1.12, we can conclude the following: 

a) Effect of charges carrier concentration and temperature  

The extent of Seebeck coefficient is inversely proportional with the charges carrier 

concentration for both studied compounds n-type and p-type doping, while the electrical 

conductivity, the thermal conductivity and the power factor have been directly proportional at 

the same temperature. There is a fairly inverse relationship between electrical conductivity 

and temperature, i.e., that Sr3GaAs3 and Ba3GaAs3 become has behavior of the conductor at 

high temperature, because the electrical conductivity at the semiconductors is directly related 

to the temperature. The Seebeck coefficient, the power factor and the thermal conductivity 

have a directly proportional to the temperature at the same carrier concentration. This is a 

common trend in the thermoelectric materials.  

b) Effect of substitution Alkaline earth (Sr, Ba) atoms and doping type  

For the Seebeck coefficient efficiency, the effect of p-type doping at Sr3GaAs3 and 

Ba3GaAs3 compounds is slightly larger than n-type, because of the hole effective mass is 

heavier than the electron effective mass (as shown in Table 1.4), for the carrier concentration 

equal 1018cm-3, Seebeck coefficient of p-type Sr3GaAs3 (Ba3GaAs3) equal to 560 V/K (650 

V/K) at 300K. Meanwhile, Seebeck coefficient of n-type title compounds equal to 450 V/K 

(540 V/K) corresponding to same conditions. The efficient of p-type and n-type doped 

Ba3GaAs3 is more considerable than Sr3GaAs3 one. Thus, one can suggest that Ba3GaAs3 with 

a greater interest and Sr3GaAs3 with p-type doping are more appropriate for thermoelectric 

performance than the n-type ones. The p-type and n-type doped Sr3GaAs3 is large electrical 

conductivity than Ba3GaAs3 ones. We note that electrical conductivity of the n-type doped 

studied compounds are large than p-type ones, these results are expected, because the hole 

effective mass is heavier than the electron effective mass.  

c) Figure of merit (ZT) 

 From Fig. 1.11, one can observe the variation of ZT as function of carrier 

concentration, where the figure of merit reaches its maximum at deference carrier 

concentration of both the n-type and p-type doped investigated compounds for 300, 600 and 

900 K. Table 1.10, conclude the maximum of figure of merit at the same temperature and 

charge-carrier concentration, the maximum of ZT for the p-type doped studied compounds are 
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slightly less than that of the n-type doped ones and the p-type and n-type doped Ba3GaAs3 is 

often large than Sr3GaAs3 one. The figure of merit ZT reaches a maximum of 1.02 for an 

electron concentration of 71018 cm-3 of Ba3GaAs3 compound at 900k. 

Table 1.10: Maximum values of figure of merit, at differences temperature and charge-carrier 

concentration for the p-type and n-type doped Sr3GaAs3 and Ba3GaAs3 compounds. 

 Sr3GaAs3 Ba3GaAs3 

Hole Electron Hole Electron 

T(k) 900 600 300 900 600 300 900 600 300 900 600 300 

ZT 0.96 0.99 1 0.99 1 0.99 0.98 0.98 0.99 1.02 1.01 1 

cc (cm-3) 4.1018 5.1016 2.1013 2.1018 3.1016 1.1013 1.1019 2.1017 2.1013 7.1018 1.1017 1.1013 

d) Thermoelectric anisotropy 

According Fig. 1.12, Seebeck coefficient of the p-type and n-type compounds along 

the z-axis are larger than the corresponding ones along x- and y-axes, due to of the directly 

proportional between the charge-carrier masses and Seebeck coefficient. So, Seebeck 

coefficient of Sr3GaAs3 and Ba3GaAs3 are anisotropic.  

e) Quality of the Sr3GaAs3 and Ba3GaAs3 in thermoelectric field  

 The TE quality of compounds regarded as important factors to estimate Seebeck 

coefficient and figure of merit (ZT), we compared Sr3GaAs3 and Ba3GaAs3 Zintl phase one to 

some in A3TrPn3 system discovered. Where A is Ca, Sr and Ba atoms from Alkaline earth, Tr 

is Al, Ga and In atoms, Pn is p, As and Sb atoms, for example Ca3AlSb3, Sr3AlSb3 [52], 

Sr3AlAs3 and Ba3AlAs3 [53].  

Table 1.11: Values of Seebeck coefficient at 300K and charge-carrier concentration of  

cm-3 for some compounds in system A3TrPn3 Zintl phase.  

 [52]Ca3AlSb3 [52]Sr3AlSb3 [53]Sr3AlAs3 [53]Ba3AlAs3 Sr3GaAs3 Ba3GaAs3 

Doping type n p n p n p n p n p n p 

S (V/K) 380 430 480 500 327 442 404 472 331 454 408 514 
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From this table, we can note the following: 

- Generally, Seebeck coefficient of studied compounds (Sr3GaAs3 and Ba3GaAs3) has 

the largest values 

- In the A3TrPn3 system, when the atoms are larger, the Seebeck coefficient increases. 

So, we think the big values of Seebeck coefficient will be at Ba3InAs3 and Ba3GaSb3 

(found stable compounds) for A3TrPn3 system. 

- Under the same conditions, the values of Seebeck coefficient for A3TrPn3 system are 

greater than their values at a traditional thermoelectric Bi2Te3 material (313 μV/K for 

the p-type and 196 μV/K for the n-type [54]). 

So, one can propose that the Zintl phase Sr3GaAs3 and Ba3GaAs3 as probable candidates 

for thermoelectric applications if one can further reduce their thermal conductivities by 

alloying, nano-structuring, superlattice growth or other techniques[38]. As can be enhanced 

these results through doping with Zn2+ on the Ga3+ site under (Sr-Ba)3Ga1-xZnxAs3 (x= 0.0 to 

0.1) for p-type[55]. 
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2.1 Calculation methods and settings 

First-principles study basis on the density functional theory (DFT) calculations are 

performed by two methods, the pseudopotential plane-wave (PP-PW) method with the GGA-

PBEsol [1] functional for describe the exchange-correlation to the accuracy of the results, as 

implemented in the CASTEP package [2] and the full-potential linearized/augmented plane 

wave plus orbitales (FP-L/APW + lo) with both the GGA-PBEsol and Tran-Blaha modified 

Becke-Johnson (TB-mBJ) potential [3,4], which almost yields band gaps close to 

experimental values, as implanted in the WIEN2k code [5]. 

  The first method is used to calculate the full optimized geometric and elastic 

constants, where the interaction between the valence electrons (Ba: 5s2 5p6 6s2, Zn: 3d10 4s2 

and P: 3s2 3p3) and the ion core are described by the Vanderbilt ultrasoft pseudopotentials [6] 

(nuclei plus frozen core electrons) with the energy cut-off of 400 eV for the plane-wave and a 

676 [7] k-points in Brillouin zone (BZ). For determining the minimum energy crystal 

structure and calculating the nine independent Cijs, we used the Broyden-Fletcher-Goldfarb- 

Shannon algorithm (BFGS) [8] and Stress-strain method depended by Hooker’s law [1] 

through the following settings: Total energy convergence, maximum force acting on each 

atom, Maximum stress and ionic displacement within 5.010-6 eV/atom, 0.01 eV/Å, 0.02 GPa 

and 5.010-4 Å, respectively. Where C ijkl is the elastic constants tensor which is a 66 matrix. 

Using Voigt notations, the Hooke’s law for an orthorhombic system is written: 
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    (2.1) 

   The second method is exploited for computing the properties depended of the 

electronic structure, when the cut-off parameter RMTKmax= 9 for the spherical of the plane-

wave, where RMT is the smallest muffin-tin sphere radius, and the muffin-tin sphere radii of 

Ba, Zn and P are: 2.50, 2.50 and 2.04 Bohr, with the convergent of the total energy is stable in 

range 10-5 Ry and less than 510-4 Ry/Bohr for the force acting on each atom, are selected to 

the accurate calculation. As for the optical properties dependent of incident electromagnetic 

radiation are described by the real part (1 ()) and the imaginary one (2 ()), where  ()= 
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1 () + i2 () . Theoretically, the  () spectrum is calculated by summing all the 

allowed electronic transitions from the filled valence states to the empty conduction states via 

the following relationship: 

( ) ( )
2

3

2 2 2
,0

( ) 1
2

ij

i j kn kn kn kn

n n

Ve
d k kn p kn kn p kn f f E E

m
   

 
 



 =  − − −     (2.2) 

Here kn , which is obtained from the resolution of the Kohn-Sham equations, is the wave 

function of the electronic state ( ,k n ) in an energy band of index n with a wave vector k and 

the corresponding energy is Ekn, Pi (i = x, y, z) is the momentum operator, fkn is the Fermi 

distribution corresponding to the energy level Ekn  and ( )kn knE E  − −  is the Dirac function. 

 () is deduced from  () using the Kramers-Kronig (KK) transformation as follows [9]: 
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For the other linear optical parameters, are inferred from 1 () and  () spectra, using the 

well-known relationships [10]. The transport properties were computed within a dense mesh 

of 30×30×30 k-points in the BZ. Using Boltzmann’s transport theory with the constant 

scattering time approximation (CSTA) and the rigid band approximation (RBA) as 

implemented in the BoltzTraP1 code [11]. For some thermodynamic properties (such as 

Grüneisen parameter), we use the quasi-harmonic model, as applied in the Gibbs1 package 

[12] 

2.2 Results and discussion 

2.2.1 Structural properties 

The ternary Zintl-phase dibarium zinc diphosphide compound Ba2ZnP2 has an 

orthorhombic structure, space group Ibma (no. 72) with two formula units in one-unit [13] 

Fig. 2.1 displays (Using the 3D visualization program for structural models, VESTA) the 

primitive cell of Ba2ZnP2 contains 10 atoms (Z = 2) and there are seven free structural 

parameters that are not fixed by the space group symmetry, viz., a, b, c, xBa, yBa, xP and yP. In  

the unit cell of Ba2ZnP2, the three constituent elements are located in the following Wyckoff 

sites: Ba: 8j (xBa, yBa, 0); Zn: 4b (0 0 0); P: 8j (xP, yP, 0). According to this figure, one can note 

the prominent structural feature in the Ba2ZnP2 structure is that the Zn and P atoms form ZnP2 

tetrahedra. Also, the arrangement of P atoms products distorted octahedral-like around each 
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Ba atom in the structure to be at the center. The equilibrium unit-cell, the optimized values of 

the lattice parameters (a, b and c) and the internal atomic coordinates (x, y, z) are obtained 

using the pseudopotential plane-wave (PP-PW) within GGA08 (GGA-PBEsol) [1]. Where the 

resulting total energy volume curve was fitted to the Birch-Murnaghan equation of state [14].  

 

 

Fig. 2.1: (a) Ball-and-stick view of the Ba2ZnP2 structure, projected down the a-axis. The 

representation emphasizes the isolated [ZnP4] polyanionic chains, “solvated” by the cations 

Ba. The orthorhombic conventional cell is outlined. (b) A close-up view of a segment of the 

[ZnP4] chains, depicting the edge-shared ZnP4 tetrahedra. 

Our results are listed in Table 2.1 and 2.2 with the available experimental. The 

relative deviation d (%) = (Xopt-Xexp)×100/Xexp of the calculated lattice parameters (a, b and c) 

of Ba2ZnP2, where Xopt and Xexp are the optimized and experimental unit cell parameters, are 

excellent agreement between the GGA08 optimized lattice parameters values and the 

corresponding experimental one, which are less than -0.94%, -0.47% and -0.79%, 

respectively. Furthermore, the relative deviation of the averaged unit cell (dr) defined as 
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follows: ( )1/3 (exp)1/3 (exp)1/3( ) /opt

r uc uc ucd V V V= −  [15], where 
( )opt

ucV  and 
(exp)

ucV  are the optimized unit 

cell volume and the experimental counterpart, respectively, is usually used to quantify the 

average relative deviation of an optimized structure from the experimental counterpart. The 

calculated unit cell volume is equal to 553.1 Å3
 and the measured one is equal to 565.4 Å3, 

and thus dr = −0.7%. 

Table 2.1: Atomic position coordinates for the Ba2ZnP2 compound, compared with the 

available experimental. 

 

 

 x y z 

 Present 

worka 

Expb Present 

worka 

Expb Present 

worka 

Expb 

Ba2ZnP2 

Ba 

Zn 

P 

  

0.19345   

 0 

0.19876    

 

0.19118 

0 

0.20008  

 

0.36040  

 0 

0.10606   

 

0.35970 

0 

0.10649  

 

0 

0.25 

0 

 

0 

0.25 

0 

a Using PP-PW within GGA08. 

b Ref. [13] 

 

The chemical bond nature can be determined from bond lengths, Table 2.3 lists of 

various selected bonds, the bond length of the Zn-P is 2.488 Å, suggesting that the Zn-P bond 

is of strong covalent bonding character because the sum of the corresponding covalent radii of 

Zn (1.323 Å) and P (1.080 Å) is closely match. About of the Ba-P bond, it ranges between 

3.278 and 3.412 Å, suggesting that these bonds are almost ionic nature because of the large 

sum of the respective covalent radii of Ba (1.323 Å) and P (1.080 Å), we will discuss this 

extensively later. 

Table 2.2: Optimized and experimental lattice parameters of Ba2ZnP2. 

 Ba2ZnP2 

Present worka Expb 

a (Å) 

b (Å) 

c (Å) 

V (Å3) 

6.6926  

13.0467  

6.3346  

553.1 

6.756  

13.108  

6.385  

565.4 

a Using PP-PW within GGA08. 

b Ref. [13]. 
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Table 2.3: Determined interatomic distances (in Å) for Ba2ZnP2. 

 Present worka Expb  Present worka Expb 

Ba-Ba1 4.091 4.107 Ba-P 3.319 3.320 

Ba-Ba2 4.416 4.370 Ba-P3 3.278 3.306 

Ba-Ba3 4.348 4.370 Ba-P8 3.285 3.317 

Ba-Ba4 4.091 4.107 Ba-P2 3.278 3.306 

Ba-Zn3 3.168 3.207 Zn-P 2.488 2.515 

Ba-Zn5 3.168 3.207 Zn-P1 2.488 2.515 

Ba-P6 3.340 3.347 Zn-P9 2.488 2.515 

Ba-P7 3.412 3.466 Zn-P10 2.488 2.515 

a Using PP-PW within GGA08. 

b Ref. [13]. 

2.2.2 Electronic properties 

2.2.2.1 Band structure 

Electronic band structure is a quite helpful theoretical tool to predict whether a 

material is conductive, semiconductor or isolator; it transmits, reflects or absorbs the visible 

spectrum and so on. In other words, from the band gap value, the band gap character (direct or 

indirect gap) and dispersion of the electronic states, one can for example predict whether a 

material can be an eventual candidate for thermoelectric applications or optoelectronic 

applications, including lighting, lasing, optical sensing, displays manufacturing, and sunlight 

converter and so on. Thus, it is of great importance to study the electronic structure of 

materials through accurate theoretical methods. The band energy dispersions for Ba2ZnP2 

compound is calculated along the selected high-symmetry points optimized path in the 

Brillouin zone, red line in Fig. 2.2, Γ→T→W→R→S→→X→T, where T (1/2, -1/2, 0), W 

(3/4, -1/4, -1/4), R (1/2 0, 0), Г (0, 0, 0), X (1/2 -1/2, 1/2). This investigation by using TB-

mBJ and PBEsol within the full potential linearized/augmented plane wave plus orbitales (FP-

L/APW +lo) method. As seen in Fig. 2.3, Ba2ZnP2 is semiconductor, our calculation yielded 

an indirect band gap located between T at VBM and X at CBM points of 1.24 and 0.57 eV for 

TB-mBJ and PBEsol, respectively. There are no experimental values for the band gap of the 

studied compound, except the calculation of A. Balvanz, et al [13] using the light binding 

linear muffin-tin orbital (TB-LMTO-ASA) with local density approximation (LDA) of 0.6 
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eV, and other study dependent of Yb2CdSb2 structure type (SG. Cmc21 No. 36) of A. Balvanz, 

et al [16] using GGA-PBE with Projector Augmented Wave method under VASP code, where 

it was characterized by the direct band gap equal to 0.15 eV. Third, as is visible from Fig. 2.3, 

the energy band around the CBM at the X-point is much more dispersive and isotropic than 

that around the VBM at the T-point. In particular, the topmost valence band in the T–Г 

direction is almost flat. This evidences that the hole effective mass at the VBM will be 

heavier and more anisotropic than the electron effective mass at the CBM. The nearly flat 

bands around the VBM along the high symmetry T–Г line indicates that the hole effective 

mass will be much heavier along this direction. Dispersion of the energy band around the 

VBM demonstrates that the hole effective mass and related properties are strongly 

anisotropic. 

 

Fig. 2.2: Calculated band structure diagrams for Ba2ZnP2 along the selected path (red lines) in 

the first Brillouin zone (the green lines). 
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Fig. 2.3: Band structure for Ba2ZnP2 using the TB-mBJ and PBEsol. The Fermi level is set to 

zero. 

2.2.2.2 Charge-carrier effective mass 

The evaluated effective mass is of great importance in determining the transport 

properties and their related phenomena (Seebeck coefficient and electrical conductivity…etc) 

of materials. Therefore, it becomes needed to estimate the electron and hole effective masses 

of the studied compound at the band edge. The hole effective mass mh
* (electron effective 

mass me
*) was numerically evaluated by fitting the energy band dispersions e (k) around the 

VBM (around the CBM) to parabolas e (k) = Ak2, then the effective masses m* could be 

compute using the following expression: 
( )2

0

* 2 2

1 E km

m k


=


    (2.4) 

The effective mass is m*, in units of m0 (m0 denotes the electron rest mass). The 

computed effective masses in the Brillouin zone at some high symmetry points from the band 

dispersion around the VBM and CBM toward the considered directions are listed in Table 

2.4. According to this table, it shows clearly that the hole effective mass at the valence band 

maximum is heavier than that of the electron at the conduction band minimum, this result is 

due to the fact that the bottommost of the conduction band is more dispersive than the 

topmost of the valence band, the hole effective mass along T- direction is very larger than 

the corresponding ones along T-W and T-X directions. These results predict the hole mobility 
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should be lighter than the electron one in the considered compound. Hereby, the charge-

carrier masses were inversely (directly) proportional with the electrical conductivity (Seebeck 

coefficient). Consequently, the n-type Ba2ZnP2 compound would have the largest electrical 

conductivity, while the p-type Ba2ZnP2 compound would have the highest Seebeck 

coefficient. it is obvious from Table 2.4 that the electron effective mass is almost isotropic, 

while the hole effective mass is strongly anisotropic, which can be traced back to the flatter 

band around the VBM along the high symmetry T-Г direction than along the T-W and T-X 

directions. 

Table 2.4: Calculated electron and hole effective masses (me
*and mh

*, respectively; in unit of 

electron rest mass) for Ba2ZnP2 compound at VBM and CBM within TB-mBJ along some 

directions in BZ. 

 

Ba2ZnP2 

direction me
* direction mh

* 

X-T 0.81 T- 10.6 

X- 0.81 T-W 0.18 

  T-X 4.26 

 

2.2.2.3 Density of states 

The calculated total density of states TDOS (states/eV/unit-cell) and atomic-resolved 

l-projected density of states PDOS (states/eV/atom) diagrams conduct us toward a close 

examination of the electronic structure. Both curves (i.e., TDOS and PDOS) of title 

compound using TB-mBJ are described in Fig. 2.4. From these diagrams, one observes that 

the electronic states composing the valence bands of the Ba2ZnP2 compound mainly come 

from the Zn and P atoms, while the states of the conduction band bottom are dominantly 

formed from the Ba atom. These diagrams appear clearly that the TDOS part valance bands 

between -10 eV and the Fermi level for Ba2ZnP2 compound. One can divide the formed range 

into six main pseudo regions where the subbands V5 and V6, located in the lowest energy 

region far from the Fermi level, not shown in Fig. 2.3 for clarity of the figure, are originated 

from core electrons. 

Firstly, V1, Beneath Fermi level, there is a structure start from -2.9 eV with barycentre 

is of -2.44 eV, it contains two main parts formed by a hybridization between P-3p, Zn-4p3d 

and Ba-5p4d orbitals with great contribution from the two latter states. One notes that the Zn-
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4p is hybridized with the P-3p, indicating a covalent character of the Zn-P bond. The very 

weak presence of the valence two Ba-6s electrons evidences that the Ba atom has donated 

almost these two valence Ba-6s electrons to the [ZnP4] anion, indicating an ionic bonding 

between the Ba cation and the [ZnP4] anion. Contribution of the Ba-5p4d states in the V1 

subband and their hybridization with the P-3p, indicating the presence of a contribution of 

covalent nature in the bonding between the Ba cation and the [ZnP4] anion. This behavior of 

the Ba cation seems to violate the Zintl concept which supposes that Ba is only an electron 

donor. One can conclude that the bonding between the Ba and the anion [ZnP2] is dominantly 

of ionic character with weak contribution of covalent nature due to the hybridization between 

the Ba-5p4d and the P-3p states. Secondly V2, is ranged from-4.0 to -3.2 eV, this is mainly 

arisen by contribution of Zn-4s state and P-3p state with great influence, so presence of the 

covalent bond between Zn and P atoms. Thirdly V3, we can see one big peak in range -7.2 to -

6.4 eV as a result of Zn-3d. Fourthly, V4 confined between -9.8 and -8.6 eV, this energy range 

was attributed to the contribution of 3s state of P atom and a small contribution from the 3d-

Zn states with small contributions from the Ba-5p and Zn-4p4s states. The conduction bands, 

ranging from the CBM up, consists mainly of the Ba-4d states. Hence, the 4d-Ba electrons 

would play an important role in the electrical conductivity for the Ba2ZnP2 compound. 

According to Fig. 2.4, one can note the main feature, it is the strong hybridization between the 

Zn and P states in mostly valence bands, signifying the high covalency of the Zn-P chemical 

bond as mentioned above in the structural properties section. On the other hand, apart the 

weak overlapping in the V1, the PDOS of the Ba atom is energetically separated from those of 

the Zn and P atoms, signifying that the chemical bonding between Ba and Zn/P is mostly of 

ionic character.  
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Fig. 2.4: The calculated TDOS and PDOS for Ba2ZnP2. The Fermi level is at zero. 

The Zn-P interaction must be considered as an intermediate mixed interaction with a 

polar-covalent character as it can be seen in Fig. 2.5.  
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Fig. 2.5: Contours map of the electronic density showing the partially covalent character of 

the Zn-P bond and the dominantly ionic nature of the Ba-P bond, using the QTAIM as 

implemented in the CRITIC2 software. 

2.2.3 Elastic properties 

2.2.3.1 Monocrystalline elastic constants Cijs 

Monocrystalline and polycrystalline elastic moduli of solids quantify their responses to 

applied external deformations within the elastic limit. Therefore, elastic moduli are closely 

related to a number of fundamental physical properties of solids, such as mechanical 

properties, structural stability, sound velocity, bonding forces between neighboring atoms, 

nature and strength of chemical bond, machinability, anisotropy, lattice dynamics, 

thermoelectricity and thermodynamic properties. Thus, determination of the elastic moduli of 

solids is of great importance from basic and applied perspectives. The calculated elastic 

constant in single-crystal at orthorhombic phase were described by twenty-one independent 

elastic constants Cijs (and their elastic compliances Sijs), with considerable values of nine 

independent elastic constants, labeled C11, C12, C13, C22, C23, C33, C44, C55 and C66. Our 

calculated elastic constants Cij of Ba2ZnP2 are presented in Table 2.5. Until now no 

experimental or theoretical data interest to study the elastic constants of the title compound. 

According to Table 2.5. we can make the following conclusions:  

a) The C11, C22 and C33 elastic constants illustrate the stiffness stress lengthways the 

crystallographic a, b and c axes, respectively. For the studied compound, the C33  C22 > C11. 
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The Ba2ZnP2 compound appeared large resistant to versus the external stress along the [001] 

and [010] crystallographic direction comparing that along the other directions [100]. As can 

be again attributed to the more robust bonds that along the crystallographic z-axis. The shear 

modulus of the (100), (010) and (001) planes represented by the C44, C55 and C66 elastic 

constants, respectively. The latter are comparatively little than the C11, C22 and C33, 

demonstrating that this compound is less resistance to shear deformation than compression. 

This evidences that the linear compressibility (β) will be almost isotropic. 

b) The computed elastic constants of the studied compounds satisfy the conditions of Born 

and Huang mechanical stability criteria [17,18]: 

C11>0, C22>0, C33>0, C44>0, C55>0, C66>0, C11+ C22-2C12 >0, C11+ C33-2C13 >0, C22+ C33-

2C23 >0, C11+C22+C33+2(C12+C13+C23)>0. This suggests the mechanical stability of title 

compound. 

 

Table 2.5: Calculated elastic constant Cij (in GPa) for the orthorhombic Zintl phase Ba2ZnP2 

compound. 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 

Ba2ZnP2 83.9     27.7   

   

26.9   

    

93.6   

   

18.1   

    

93.8    

   

17.4   

    

25.7   

    

22.1 

 

2.2.3.2 Elastic wave velocities 

There are some important physical properties of the material (such as thermal 

conductivity) closely related with the sound velocity in a crystal. The single-crystal elastic 

wave velocities in different directions ([100], [010] and [001]) can be estimate using 

Christoffel equation [19] and procedure of Brugger [20] in an orthorhombic system, the pure 

longitudinal (L) and transverse (T) wave velocities propagating are given by the following 

expressions [21]:  

     

     

     

1 1 1
2 2 2

1 2

1 1 1
2 2 2

1 2

1 1 1
2 2 2

1 2

100 100 100

11 66 55

010 010 010

22 66 44

001 001 001

33 55 44

( / ) ,  ( / ) , ( / )

( / ) , ( / ) , ( / )

( / ) , ( / ) , ( / )

L T T

L T T

L T T

v C v C v C

v C v C v C

v C v C v C

  

  

  

= = =

= = =

= = =

    (2.5) 

In this context,   is the mass density of the propagating medium. The calculated elastic wave 

velocities along [100], [001] and [110] directions are listed in Table 2.6. From this latter, one 
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can see that the transverse wave velocities are less than the longitudinal ones, where its values 

less than 4500 m/s. This can be explained by the fact that the measuring of C44, C55 and C66, 

are smaller than those measuring of C11, C22 and C33. Also, the table illustrates also that the 

sound velocities are anisotropic. 

 

Table 2.6: Longitudinal and transverse acoustic wave velocities (vL and vT, in m/s) in different 

crystallography directions for considered compound within their density = 4.83.  

  100

Lv  
 010

Lv  
 001

Lv  
 
1

100

Tv  
 
1

010

Tv  
 
1

001

Tv  
 

2

100

Tv  
 

2

010

Tv  
 

2

001

Tv  

Ba2ZnP2 4167.8 4402.1 4046.8 2139.1 2139.1 2306.7 2306.7 1898.0 1898.0 

 

2.2.3.3 Elastic anisotropy 

It is well-known that the elastic anisotropy extent of a great important in materials and 

engineering sciences as well as physical crystallography point of view, also it affects the 

stability, dislocations of materials and the elastic anisotropy reflects different bonding natures 

in different crystallographic directions. Evaluation of the elastic anisotropy is necessary to 

understand the microcracks in solids [22] and its effect at the nanoscale precursor textures in 

alloys [23]. So, there are several criterium to investigate the elastic anisotropy for example: 

universal index [24], shear anisotropic factors [25], the percentage anisotropy in 

compressibility and shear [26], The scalar log-Euclidean anisotropy index [27] and 3D 

representation of elastic moduli. We present two different approaches ways to evaluate the 

elastic anisotropic read:  

First, universal index AU has been proposed by Ranganathan and Ostoja-Starzewski 

[24], which is defined as follows:  

5 6U V V

R R

G B
A

G B
= + −     (2.6) 

where B and G represent the bulk and the shear modulus, the subscripts V and R denote Voigt 

and Reuss approximations, respectively. The isotropic crystals are characterized by universal 

index equal to zero (AU= 0), so, any deviation from this value means that the extent of 

anisotropy crystals, can be measuring its degree. Calculated value of AU for Ba2ZnP2 is equal 

to 0.35, denoting that is Ba2ZnP2 characterized by a noticeable elastic anisotropy. 
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Second, evaluation the elastic anisotropy in a material is by representation 3D of the 

crystallographic directions dependence of its elastic moduli (Young’s modulus and bulk's 

modulus), In a 3D plotting, the exhibition a spherical shape means an isotropic system, and 

the aberration from a spherical shape denotes the degree of anisotropy. Representation of the 

3D-closed surface for the crystallographic direction dependence of the young's modulus E and 

compressibility  of an orthorhombic crystal are expressed by the following well-known 

relations [28]:  

4 2 2 2 2 4 2 2 4 2 2 2 2 2 2

1 11 1 2 12 1 3 13 2 22 2 3 23 3 33 2 3 44 1 3 55 1 2 661/ 2 2 2E l S l l S l l S l S l l S l S l l S l l S l l S= + + + + + + + +  (2.7) 

2 2 2

11 12 13 1 12 22 23 2 33 23 13 31/ ( ) ( ) ( )B S S S l S S S l S S S l = = + + + + + + + +     (2.8) 

Where, l1, l2 and l3 are the direction cosines coordinates with respect to X, Y and Z 

axes respectively, which show the angles between these axes, and Sij are the elastic 

compliances constants.  
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Fig. 2.6: 3D-representations of the crystal direction dependence of the Young’s modulus (E, 

in GPa) and linear compressibility (β, in GPa-1) and their cross-sections in the (xy; ab), (xz; 

ac), (yz; bc) and (x = y) planes for Ba2ZnP2. 

Computed 3D-closed surface and their central cross sections in the YZ, XZ and XY 

planes of the Young's modulus and bulk's modulus for Ba2ZnP2 are shown in Fig. 2.6. From 

these illustration 3D and its central cross sections for the considered compound of young's 

modulus E, one can see that deviate largely from the spherical shape and circular form, 

respectively, demonstrating a noticeable directional dependence, while from bulk's modulus, 

evidencing that this compound is characterized by a feeble elastic anisotropy. The minimum 

value of E is equal to 51 GPa along the [011] direction and the maximum value is equal to 84 

GPa along the [001] direction. Thus, the relative difference between the Emax and Emin is 

approximately equal 52% of the isotropic value of E (~64.5 GPa). The minimum value of β is 
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equal to 7.13-3 GPa-1 along the [100] direction and the maximum value is equal to 

7.25-3 GPa-1 along the [010]. 

2.2.3.4 Polycrystalline aggregate elastic moduli 

In polycrystalline system, there are the several grains has some structure, but could 

affect relative elastic properties, therefore we have to resort to hypotheses such isostress of 

Voigt [29], isostrain Reuss[30] and Hill approximations [31], which bulk 's modulus B and 

shear's modulus G in recent approximations defined by following express: 

11 22 33 12 13 231/ ( ) 2( )RB S S S S S S= + + + + +     (2.9) 

11 22 33 12 13 23 44 55 661/ [4( ) 4( ) 3( )] /15RG S S S S S S S S S= + + − + + + + +     (2.10) 

11 22 33 12 13 23( 2[ ]) / 9VB C C C C C C= + + + + +     (2.11) 

11 22 33 44 55 66 12 13 23( 3[ ] [ ]) /15VG C C C C C C C C C= + + + + + − + +     (2.12) 

Here: Sij (Cij) is the elastic compliances (stiffness) constants, where Sij = 1/Cij. 

Hill proved that the effective values is equal to the arithmetic mean between bulk and shear 

moduli: 

( ) / 2H R VB B B= +        (2.13)     and         ( ) / 2H R VG G G= +     (2.14) 

Young's modulus (E), Poisson ratio's   [32], average longitudinal vl, transverse vT elastic 

wave velocities, the average wave velocity vm [33] and Debye temperature TD [34] in 

polycrystalline structure can be computed from the following expressions:  

9 / (3 )E BG B G= +      (2.15)              and        (3 2 ) / (6 2 )B G B G = − +     (2.16) 

1
2[(3 4 ) / (3 )]l H Hv B G = +     (2.17)     and         

1
2[ / ]T Hv G =     (2.18) 

1
33 3[(1/ 2 / ) / 3]m l Tv v v

−

= +      (2.19)      and         
1

3( / )[3 / (4 )]D B A mT h K nN M v =     (2.20) 

Where:  is the mass density, n is the number of atoms in the molecule, NA is Avogadro 

number, M is the molecular weight, h and KB are Planck and Boltzmann constants, 

respectively. Employing the aforementioned relations, the obtained results are listed in Table 

2.7, which let us to make some conclusions: 

a) There is well-known relationship between the elastic moduli (bulk and shear) and the 

elastic properties of polycrystalline pure metals, Pugh’s ratio empirical criterion [35], which 

provide information concerning the brittle-ductile nature of a material, if B/G >1.75 denotes 

the ductile nature of the material; otherwise, it is brittle. The computed B/G ratio values 

registered in Table 2.7, this result indicating the ductile nature of the considered compound. 

Brittle materials are fragile to thermal shocks [36]. 
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b) Debye temperature TD is correlated with several important physical properties of solids, 

such as heat capacity value, thermal expansion, melting temperature, so on. As a rule, when 

TD increase, thermal conductivity and melting temperature increase [36], as well as, it can be 

used to separate between high- and low-temperature regions for a solid. Debye temperature 

TD was calculated by relationship mentioned above [34]. The value of TD dependence 

Ba2ZnP2 is listed in Table 2.7.  

c) The determined of chemical bonding nature can be by the use of Poisson’s ratio σ and 

comparison between shear G and bulk B moduli, in order for chemical bonding to be 

covalent, G must be small comparing, A typical value of σ for covalent bonding is 0.1 and 

G/B= 24/22; for ionic bonding σ is typically 0.25 and G/B= 6/10; finally, for metallic bonding 

σ is 0.33 and G/B= 3/8; in the extreme case where σ is 0.5 and G is zero [20]. One shows that 

the values of the σ is equal almost 0.27. So, we suggest that the chemical bonding in Ba2ZnP2 

has a dominant ionic character. 

d) The predicted values for the B, G and E moduli are moderate, evidencing the moderate 

resistance of Ba2ZnP2 against averaged volume change, shearing deformation and 

unidirectional compression/attraction. 

e) The B value is almost double that of G, indicating that Ba2ZnP2 is more resistant to change 

in volume than to change in shape and therefore G is the decisive modulus of elasticity 

affecting the mechanical stability of Ba2ZnP2. 

Table 2.7: Calculated Reuss, Voigt and Hill bulk (B, in GPa), shear’s modulus (G, in GPa), 

Young’s modulus (E, in GPa) and Poisson’s ratio (σ, dimensionless), Pugh ratio BH/GH, 

average sound velocities (vm, in m/s) and Debye temperature (TD, in K) for polycrystalline 

Ba2ZnP2 compound. The subscript V, R and H stand to the Voigt, Reuss and Hill.  

 Theory B G E  B/G vm TD 

 

Ba2ZnP2 

V 46.31     26.27    66.28     0.26       

 

1.82 

 

 

2542 

 

 

250.0 

R 46.31     24.58     62.67     0.27      

H 46.31 25.43 64.48 0.27 
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2.2.4 Optical properties 

The Ba2ZnP2 compound has an orthorhombic symmetry. Thus, the consequent 

dielectric functions are xx (), yy () and zz (). These latter correspond to incident 

radiation in an electrical field polarized parallel along three axes dependents (x, y and z), 

respectively.  The optical properties may be concluded from the imaginary part 2 () and the 

real part 1 () of the complex dielectric function  ()= 1 () + i 2 (). The linear optical 

response of the medium is characterized by the dielectric function ε(ω). The intraband and 

interband transitions are contributions to ε(ω), but the first is important for metals, where 

2 () explains the absorbed energy, and it is computed from the matrix elements dependent 

valence band and the conduction band use well-known relationship [37,38], while the real 

part 1 () describes the incident radiation, it can be calculated from 2 () within the 

Kramers–Kronig transformation [39]. According the PDOS diagrams depicted in Fig. 2.4, one 

can assign the observed structure in 2 () spectrum to electronic transitions from the V1, V2, 

V3 and V4 valence bands to the CBM band, i.e., transitions from the occupied P-3p and Zn-4s 

states to the unfilled Ba-5d states. The computed components of the imaginary and real parts 

of the dielectric tensor for the studied compound are display in Fig. 2.7 in a wide range of 

energy, 0-30 eV. We see the spectra of components ( xx,  yy and  zz) of the imaginary and 

real parts exhibit main peaks with almost the same position for title compound and it appear a 

considerable anisotropy. There are two main peaks in imaginary part of incident radiation 

ranging 0-15 eV along three crystallography directions for Ba2ZnP2 compound listed in Table 

2.8. The magnitude of the structure corresponding to  zz is slightly larger than those 

corresponding to  xx and  yy. It exhibits a well distinct anisotropy in the energy range 0-20 eV 

and it is nearly isotropic in the rest energy range for considered compound. 

Table 2.8: Determined the main peak positions dependent components ( xx,  yy and  zz) of 

the imaginary part for Ba2ZnP2 compound. 

Direction xx yy zz 

Peak positions E1 E2 E1 E2 E1 E2 

Ba2ZnP2 4.5 10.9 4.6 11.0 4.1 11.3 

The real part of dielectric function is considered importance parameter, from Fig. 2.7 

shown an obvious anisotropy, especially along z-axis and the magnitude of  zz curve equal to 

11.8 at 2.1 eV, and it is somewhat greater than those of  xx and  yy, it can also be note 1 () 
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to reach a maximum at ~2.1 eV then starts to decrease, where the real part of dielectric 

function has negative values ranging ~5 eV to ~10 eV and ~18 eV to ~22 eV, which 

correspond to metallic behavior. There are many features of materials science dependence of 

the static dielectric constant (0) such as measuring of optical anisotropy, this latter is the 

real parts at low energy limit. According Penn model [40]: 

( ) 2 2

1 0 1 ( / ) [1 ( / 4 ) ( / 4 ) / 3]p g g F g FE E E E E = + − +     (2.21) 

Where 
p  is the plasma energy, within neglecting the small quantity /g FE E , the values of 

static dielectric constants for Ba2ZnP2 along three direction crystallography (x-, y- and z-axes) 

are represented in Table 2.9. We note the inversely proportional relationship between the 

band gap Eg and (0). Using ε1(ω) and ε2(ω) well-known relationships could be calculate the 

absorption coefficient α(ω), optical conductivity  (), electron energy-loss function L(ω), 

reflectivity R(ω), refraction index n(ω) and extinction coefficient k(ω), these parameters are 

display in Fig. 2.7.  

Table 2.9: Calculated static anisotropy OPTA based on the static refractive index ( )0n  and the 

static dielectric constants ( )1 0  for Ba2ZnP2 compound along x-, y-, z-axes. 

 Direction ( )0n  ( )0 (%)R  n  ( )1 0  OPTA  

 

Ba2ZnP2 

xx 2.79 22.3 -0.17 7.78 0.93 

yy 2.81 22.6 0.19 7.90 0.95 

zz 2.98 24.7 -0.02 8.86 1.13 
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Fig. 2.7: Real and imaginary parts, absorption coefficient α(ω), optical conductivity  () 

electron energy-loss function L(ω), reflectivity R(ω), refraction index n(ω) and extinction 

coefficient k(ω) of the dielectric function for Ba2ZnP2 compound of incident radiations 

polarized along x-, y- and z-axes directions. 
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We can conclude the following: 

a) The absorption spectrum is extends horizontally forward starting from 1.3 eV up to 30 eV, 

this start corresponding to the energy indirect gap. In the semiconductors, typically, when the 

photon energy is increases the absorption coefficient α(ω) rises rapidly as is the case with our 

system. the Ba2ZnP2 compound has a band gap about 1.24 eV may absorb the infrared rays of 

the invisible field, we can see that the considered compound is characterized by a high optical 

absorption (>106 cm-1) in two wide optical structures lying in the energy range ~5 to ~9 eV 

with threshold exceeding 125104 cm-1 and ~16 to ~22 eV with threshold exceeding 180104 

cm-1. Also, the absorption coefficient is very close to the optimum band gap for the solar cell 

absorbers (1.4 eV), and the title compound have a high absorptivity with direct proportion of 

the electromagnetic wave in the visible spectrum (1.6 to 3.1 eV) and Near-UV region (3.1 to 

6.0 eV), suggests that this compound is possible candidates for optoelectronic applications in 

the aforementioned energy ranges.  

b) The reflectivity coefficient R () of Ba2ZnP2 is plotted in Fig. 2.7. which is characterized 

by an average its values, where it reaches approximately ~ 44% for a photon energy equal to 

~6.9 eV. Whereas the static reflectivity coefficient R (0) has a value for a maximum of 25% 

along [001] direction. The magnitude of R(ω) along [001] is higher than [100] and [010] 

directions, viz. it exhibits obvious anisotropy. 

c) For describing of the energy loss of a fast electron traversing in a material, the spectrum of 

the electron energy loss function L(w) is depicted in Fig. 2.7. Where the primary peak 

location is usually associated with the plasma frequency [36]. One can see that the L(w) peaks 

is at edges in the reflection spectrum centered at 9.97, 12.17, 22.44 and 24.06 eV correspond 

to the abrupt decreases of the reflection spectrum. 

d) The refractive index is interesting parameter in optoelectronic devices. Fig. 2.7 represents 

the refractive index n(ω) for three different orientations in an extensive spectral region 

reaches to 30 eV. We note at the lower energy limit that n(0) (the static refractive index) value 

for Ba2ZnP2 is listed in Table 2.9. As we see the refractive index increases in about the 0 to ~ 

2.5 eV energy range, after that it decreases, where the n(ω) maximum value of title compound 

exceeds 3.49 at photon energy of approximately to 2.2 eV along [001] direction, While the 

extinction coefficient k(ω) reaches its maximum (around 2.2) almost at 4.6 eV for studied 

compound. From Fig. 2.7, the title compound and their optical properties exhibit a noticeable 
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anisotropy. As can be determined an important parameter, static anisotropy, reflecting the 

photonic response through the material crystallographic orientations. The static anisotropy 

expressed as follows [41]: 

( )
 

( )
 

( )
 

( )
 

1

1

0 0
,

0 0

dir dir

OPT poly poly

n
A

n





 
=  

  

    (2.22) 

Here, ( )
 

0
dir

n  ( )
 

1 0
dir

  are the value of along x-, y- and z-axes, ( )
 

0
poly

n  ( )
 

1 0
poly

  are its 

values in polycrystalline. A material is optically isotropic if AOPT= 1, otherwise, it is optically 

anisotropic. The degree of deviation of AOPT from unity reveal the extent of the optical 

anisotropy. The values of AOPT are listed in Table 2.9. Also, this table contains the calculated 

values of the birefringence at zero frequency for the Ba2ZnP2 along [100], [010] and [001] 

directions by well-known relationships [42], where the birefringence along one axis equal to 

the difference between the static refractive index of the other axes within respecting of 

positive direction of the axes. According this table, the studied compound exhibits a sure 

optical anisotropy, particularly with regard to z-axis. 

2.2.5 Thermoelectric properties 

2.2.5.1 Relaxation time and lattice thermal conductivity 

Seebeck's effect [43] and Peltier's effect [44] phenomena are caused by convert 

between heat and electricity such as generator and cooling (refrigerator) applications, 

respectively.  For thermoelectric materials with highly efficient, figure of merit ZT 

(dimensionless parameter) has large values and has no limit to it value [45]. Figure of merit 

defined as:  

2 /ZT S T k=     (2.23) 

Where S is Seebeck coefficient or thermopower,  is the electrical conductivity (PF= 

S2 is called power factor), T is the absolute temperature, k=ke+kl thermal conductivity, ke is 

the electronic thermal conductivity and kl is the lattice thermal conductivity, as kl is frequently 

calculated experimentally as the difference between k and ke from Wiedemann–Franz 

equation: ke=LT, where L is the Lorenz factor: 2.4×10-8 J2.K-2.C-2 for free electrons [46].  

The anisotropic charge-carrier relaxation time  is one of the main physical parameters that 
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control the transport properties of solid materials, determination of relaxation time based on 

Bardeen and Shockley’s deformation potential (DP) theory [47]:  

31
2 24 * 22(2 ) / (3( ) )i i i B iC m K T E =     (2.24) 

Where: Ci,  , mi*, KB, T and Ei are the elastic constant, reduced Planck's constant, the 

charge-carrier effective mass, Boltzmann's constant, absolute temperature and the 3D 

deformation potential constant ( )` ` 0( / ( / ))CBM VBM coreEi e e i i= −  , respectively.  

where i is a slight deformation of lattice parameter i in a direction, i0 is the 

equilibrium value of i, and 
` `CBM VBM coree e−  is the energy change of the CBM (VBM) for 

electrons (holes). Energy of the deep core state is assumed to be insensitive to the slight 

lattice deformations and thus it is considered as the reference energy. A series of lattice 

constants (0.96i0, 0.98 i0, i0, 1.02 i0 and 1.04 i0) were considered to calculate the DPs along the 

a, b and c directions. The average relaxation time (m) is defined as m = (a +b +c) / 3. The 

variation of m as function of temperature is depicted in Fig. 2.9. It is obvious from Fig. 2.9 

that the relaxation time decreases with increasing temperature.  

Also, using Slack’s relationship [48], can be estimating the lattice thermal 

conductivity of the title compound in this regime discussed and at temperatures not too far 

removed from the Debye temperature of the solid, we considered it for our purposes as 

approximate expressions for the thermal conductivity: 

1 2
3 33 2/ ( )l DK BMV T n T=     (2.25) 

Where: M, V, n, T,  and TD are the average atomic mass, the volume per atom (in m3 

unit), the number of atoms in the primitive unit cell, the absolute temperature, the 

dimensionless acoustic Grüneisen parameter (calculated from thermodynamic properties) and 

the acoustic Debye temperature. For the lattice thermal conductivity, 

4 22.43 10 (1 0.514 / 0.228 / )B  =  − +  (in W/m.K unit). 

For the minimum lattice thermal conductivity, kl.min can be calculated by Cahill’s model [49]: 

1 2
3 31

2.min ( ) (2 )
6l B T LK K V v v −

= +     (2.26) 
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Where: KB, V, vT and vL are Boltzmann's constant, the volume per atom (in m3 unit), 

shear and longitudinal sound velocities. The graphs which explain temperature dependence of 

the average relaxation times, the lattice thermal conductivity and its minimal value are plotted 

in Fig. 2.9. So, the field of thermoelectric materials is needing research focused on 

minimizing the thermal conductivity and large power factor. The transport properties of 

Ba2ZnP2 compound were estimated based on the calculated mBJ-GGA electronic structure 

using the Boltzmann theory [50] as executed in the BoltzTraP code [11]. The Seebeck 

coefficient (S) of holes and electrons in a non-degenerate semiconductor with parabolic bands 

are [51,52]:  

0 ln 2.5V
h

k N
S r

e p

  
= + −  

  
     (2.27)       and           0 ln 2.5C

e

k N
S r

e n

  
= − + −  

  
    (2.28) 

Where: r, Sh, Se, NV, N, c, n and P are the scattering mechanism parameter, the valence band, 

the effective density of states in conduction band, the number of electron carriers, and the 

number of hole carriers, respectively.  

 

Fig. 2.8: (a) Total primitive cell energy versus lattice dilation strain a/a0 and (b) band energy 

of VBM (CBM) with respect to core level (core) versus lattice dilation strain a/a0. The red 

lines are the fitting curves.  
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For mixed and degenerate semiconductors, the combined Seebeck coefficient is given 

by [52,53]: 

e e h h

e h

S S
S

 

 

+
=

+
     (2.29)         and           

2 2/3

* 8

3 3

B
DOS

k
S m T

e h n

    
=   

  
    (2.30) 

Where: KB is the Boltzmann constant, T is the temperature, n is the carrier concentration and 

m*
DOS is the density of states effective mass, it is given by:  

* * * * 1/3 2/3( )DOS xx yy zz Vm m m m N=     (2.31) 

Where: m*xx, m*yy and m*zz are the band effective mass components along -X, -Y 

and -Z, respectively, and NV is the band degeneracy.  

 

 

Fig. 2.9: The calculated average relaxation times h, e and Grüneisen parameter , the lattice 

thermal conductivity Kl versus temperature. The red solid line notes the minimal lattice 

thermal conductivity Kmin. 

The calculated the electrical conductivity (), thermal conductivity (), power factor 

(PF=S2), Seebeck coefficient (S), the thermoelectric figure of merit (ZT) as a function of 

charge-carrier concentration between 1018 cm-3 and 1021 cm-3 aimed at better thermoelectric 

performance [36], [46] for both the n-type and p-type doped studied compound at 300, 600, 

900 and 1200 K are shown in Fig. 2.10.  
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Fig. 2.10: Transport coefficients of the Seebeck coefficient (S), electrical conductivity (), 

thermal conductivity (K), power factor (PF=S2) and figure of merit (ZT) as a function of 

carrier concentration 1018 cm-3 and 1021 cm-3 for the n-type and p-type doped Ba2ZnP2 

compound at 300, 600, 900 and 1200 K.   
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According to Fig. 8-10, we can conclude the following: 

a) When the temperature increase, the relaxation time and the lattice thermal conductivity 

decrease, because of the increasing of the thermal speed of the electrons and the vibration 

amplitude of atoms around their mean positions. Where the calculated kl,min for Ba2ZnP2 is 

equal to 0.53 W/m.K, which indicates that Ba2ZnP2 might be a good thermoelectric material. 

the presence of heavy atoms and the complexity of the crystal structure (co-existence of ionic 

and covalent bonds) are the cause of the low value of the lattice thermal [49], [51]. Also, the 

lattice thermal conductivity within Slack’s relationship become smaller than κl,min of Cahill’s 

model afterward ~900K. 

b) The extent of Seebeck coefficient is inversely proportional with the carrier concentration 

for Ba2ZnP2 compound n-type and p-type doping, while the electrical conductivity, the 

thermal conductivity and the power factor have been directly proportional at the same 

temperature. There is inverse relationship fairly between electrical conductivity and 

temperature, i.e., that Ba2ZnP2 become has behavior of the conductor at high temperature, 

because the electrical conductivity at the semiconductors is directly related to the temperature. 

Seebeck coefficient, the power factor and the thermal conductivity have a directly 

proportional to the temperature at the same carrier concentration. This is a common trend in 

the thermoelectric materials.  

c) For the Seebeck coefficient efficiency, the effect of p-type doping at Ba2ZnP2 compound is 

slightly larger than n-type, because the hole effective mass is heavier than the electron 

effective mass (as shown in Table 2.4), for the carrier concentration equal to 1018cm-3, 

Seebeck coefficient of p-type title compound equal to 720 V/K at 900K. Meanwhile, 

Seebeck coefficient of n-type studied compound equal to 603 V/K corresponding to same 

conditions. We note that electrical conductivity of the n-type doped studied compound is large 

than p-type one, these results are expected, because the hole effective mass is heavier than the 

electron effective mass.  

d) As per the variation of ZT as function of carrier concentration, the figure of merit reaches 

its maximum at deference carrier concentration of both the n-type and p-type doped 

investigated compound for 300, 600, 900 and 1200 K. Table 2.10, concludes the maximum 

value of figure of merit at the same temperature and charge-carrier concentration, the 

maximum of ZT for the p-type doped studied compound is greater than that of the n-type 
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doped. The figure of merit ZT reaches a maximum of 1.77 for hole concentration of 81019
 

cm-3 at 300 K. Also, can note figure of merit is large than 1 next to considering concentration 

for 300, 600, 900 and 1200 K. while for n-type compound, ZT< 1. 

Table 2.10: Maximum values of figure of merit at differences temperature and charge-carrier 

concentration for the p-type and n-type doped Ba2ZnP2 compound. 

 Ba2ZnP2 

 Hole  Electron 

T(K) 1200 900 600 300 1200 900 600 300 

ZT 1.15 1.24 1.36 1.77 0.89 0.93 0.93 0.85 

cc (cm-3) 7.1019 6.1019 1.1020 8.1019 1.1019 1.1018 1.1018 1.1018 

 

Table 2.11: Calculated Seebeck coefficient values at 300 K and charge-carrier concentration 

of  cm-3 for Ba2ZnP2 compound compared with those of Ba2ZnSb2 and Ba2ZnBi2 Zintl 

phases compounds. 

 a Ba2ZnP2 b Ba2ZnSb2 b Ba2ZnBi2 

Doping type n p n p n p 

S (V/K) 190 450 ~360 ~290 ~220 ~200 

a Present work.  

b Ref. [57]. 

e) The TE quality of compounds regarded as important factors to estimate Seebeck coefficient 

and figure of merit (ZT), we compared Ba2ZnP2 Zintl phase one to Ba2ZnSb2 and Ba2ZnBi2 

[54] are listed in Table 2.11. 

From this table, we can note the following: 

- Generally, Seebeck coefficient of studied compound has the largest values for p-type doped. 

- Under the same conditions, the values of Seebeck coefficient for Ba2ZnP2 is greater than 

values of the traditional thermoelectric Bi2Te3 material (>313 μV/K for the p-type and >196 

μV/K for the n-type [55]). 
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So, one can propose that the Zintl phase Ba2ZnP2 p-type as probable candidate for 

thermoelectric applications, particularly, if one can further reduce their thermal conductivities 

by alloying, nano-structuring, superlattice growth or other techniques [36].  
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In this work, the equilibrium crystal structure, elastic modules and related properties, 

electronic structures, linear optical properties and thermoelectric properties of the ternary 

Zintl phases Sr3GaAs3, Ba3GaAs3 and dibarium zinc diphosphide (Ba2ZnP2) are studied using 

DFT-based first-principles calculations within the pseudopotential plane-wave (PP-PW) and 

the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method as implemented in 

the WIEN2k code and CASTEP package, with the Generalized Gradient Approximation by 

Perdew-Burke-Ernzerhof for solids (GGA-PBEsol) and Tran-Blaha modified Becke-Johnson 

(TB-mBJ) potential. The main obtained results can be summarized as follows:  

1. Structural properties  

➢ The ternary Zintl-phase compounds Sr3GaAs3 and Ba3GaAs3 have an 

orthorhombic structure, space group pnma Ba3GaSb3-type structure (no. 62) and 

the ternary Zintl-phase dibarium zinc diphosphide compound Ba2ZnP2 has an 

orthorhombic structure, space group Ibma (no. 72) 

➢ The equilibrium lattice parameters, internal coordinates of atoms and bond lengths 

are in excellent agreement with experimental data for the title compounds, where 

the relative deviations between calculated lattice parameters (a and c) and the 

corresponding experimental ones are less than 1%. 

2. Electronic properties  

➢ Sr3GaAs3 and Ba3GaAs3 are semiconductors, our calculation yielded a direct band 

gap located at the  point. The mBJ (GGA-PBEsol) fundamental bandgap value is 

equal to 1.271 eV (0.655 eV) for Sr3GaAs3 and 1.285 eV (0.572 eV) for Ba3GaAs3 

between the valence band maximum and the conduction band minimum. Also, 

Ba2ZnP2 is a semiconductor with an indirect band gap located between T at VBM 

and X at CBM points of 1.24 and 0.57 eV for TB-mBJ and PBEsol, respectively. 

➢ The hole effective mass at the valence band maximum is heavier than that of the 

electron at the conduction band minimum and the hole effective mass along z-axis 

larger than the corresponding ones along a- and y-axes directions for Sr3GaAs3 

Ba3GaAs3 and Ba2ZnP2 compounds. 

➢ The calculated band effective masses show a noticeable anisotropy of electronic 

properties. 

➢ The conduction bands, ranging from the CBM up, consists mainly of the AE-nd 

(Sr/Ba) states for AE3GaAs3 and the Ba-5d states for Ba2ZnP2. Hence, the 4d-Ba 
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electrons would play an important role in the electrical conductivity for the 

Ba2ZnP2 compound. 

3. Elastic properties 

➢ Sr3GaAs3 and Ba3GaAs3 compounds appear large resistant to versus the external 

stress along the [100] crystallographic direction comparing that along the other 

directions ([010] and [001]). Ba2ZnP2 compound appears large resistant against 

versus the external stress along the [001] and [010] crystallographic direction 

comparing that along the other directions [100]. 

➢ Based on Born and Huang mechanical stability criteria, Sr3GaAs3, Ba3GaAs3 and 

Ba2ZnP2 compounds are mechanically stable. 

➢ Calculated value of universal index (AU) for Sr3GaAs3 and Ba3GaAs3 compounds 

is equal to 0.037 and 0.158 respectively, denoting that Sr3GaAs3 is characterized 

by a feeble elastic anisotropy, whereas Ba3GaAs3 is characterized by a noticeable 

elastic anisotropy, so its degree increases when substitution Strontium by Barium 

atoms in A3GaAs3 system. For Ba2ZnP2 is equal to 0.35, denoting that is Ba2ZnP2 

characterized by a noticeable elastic anisotropy. 

➢ The computed B/G ratio values, Sr3GaAs3, Ba3GaAs3 equal to 1.58 and 1.66 

indicating the brittle nature of the considered compounds. For Ba2ZnP2, B/G= 

1.82, this result indicating the ductile nature of the considered compound. 

➢ For the chemical bonding in title compounds, in Sr3GaAs3 and Ba3GaAs3 it is 

equal to 0.24 and 0.25. So, has a dominant covalent character. Poisson’s ratio of 

Ba2ZnP2 is 0.27. So, the chemical bonding has a dominant ionic character. 

4. Optical properties 

➢ The imaginary part of the dielectric function;  (), exhibits a well pronounced 

anisotropy in the energy range ~1.5 to ~7.5 eV and it is almost isotropic in the rest 

of the considered energy range for both AE3GaAs3. Ba2ZnP2 exhibits a well 

distinct anisotropy in the energy range 0-20 eV and it is nearly isotropic in the rest 

energy range for considered compound.  

➢ The maximum magnitude of () corresponding to E||b polarization is ~12.83 at 

~1.84 eV for Sr3GaAs3 and ~13.00 at ~2.22 eV for Ba3GaAs3, The magnitude of  

zz curve equal to 11.8 at 2.1 eV for Ba2ZnP2. 

➢ AE3GaAs3 compounds have a band gap about 1.3 eV, so, the strong absorption of 

the electromagnetic wave occurs in the Near-UV region. Ba2ZnP2 has a high 
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absorptivity with direct proportion of the electromagnetic wave in the visible 

spectrum (1.6 to 3.1 eV) and Near-UV region (3.1 to 6.0 eV), suggests that these 

compounds are possible candidates for optoelectronic applications in the 

aforementioned energy ranges. 

➢ The reflectivity coefficient R () of AE3GaAs3 materials is characterized by an 

average value that these are reaches approximately 45% for a photon energy equal 

to ~6.5 eV. Whereas the static reflectivity coefficient R (0) has a value for a 

maximum of 0.26. The magnitude of R(ω) is higher than 23.5 (24.5) in an energy 

range 0–12.6 eV (0–9.6 eV) for Sr3GaAs3 (Ba3GaAs3), and R(ω) curve exhibits 

some maxima and humps in the aforementioned energy range. For photon energy 

higher than 12.5 (9.6 eV) for Sr3GaAs3 (Ba3GaAs3). The reflectivity coefficient R 

() of Ba2ZnP2 is characterized by an average its values, where it reaches 

approximately ~ 44% for a photon energy equal to ~6.9 eV. Whereas the static 

reflectivity coefficient R (0) has a value for a maximum of 25% along [001] 

direction. The magnitude of R(ω) along [001] is higher than [100] and [010] 

directions, viz. it exhibits obvious anisotropy. 

5. Thermoelectric properties. 

➢ Seebeck coefficient, the power factor and the thermal conductivity have a directly 

proportional to the temperature at the same carrier concentration for all 

compounds.  

➢ For the Seebeck coefficient efficiency, the effect of p-type doping at Ba2ZnP2 

compound is slightly larger than n-type, because the hole effective mass is heavier 

than the electron effective mass. 

➢ For the carrier concentration equal 1018cm-3, Seebeck coefficient of p-type 

Sr3GaAs3 (Ba3GaAs3) equal to 560 V/K (650 V/K) at 300K. Meanwhile, 

Seebeck coefficient of n-type title compounds equal to 450 V/K (540 V/K) 

corresponding to same conditions. The efficient of p-type and n-type doped 

Ba3GaAs3 is more considerable than Sr3GaAs3 one. For Ba2ZnP2, at the carrier 

concentration equal to 1018cm-3, Seebeck coefficient of p-type title compound 

equal to 720 V/K at 900K. Meanwhile, Seebeck coefficient of n-type studied 

compound equal to 603 V/K corresponding to same conditions.  

➢ The maximum of figure of merit (ZT) for the p-type doped AE3GaAs3 compounds 

are slightly less than that of the n-type doped ones and the p-type and n-type doped 
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Ba3GaAs3 is often large than Sr3GaAs3 one. The figure of merit ZT reaches a 

maximum of 1.02 (1.00) for an electron concentration of 71018 (31016) cm-3 of 

Ba3GaAs3 (Sr3GaAs3) compound at 900k. where the maximum of ZT for the p-

type doped Ba2ZnP2 compound is greater than that of the n-type doped. The figure 

of merit ZT reaches a maximum of 1.77 for hole concentration of 81019
 cm-3 at 

300k. Also, can note figure of merit is large than 1 at considering concentration for 

300, 600, 900 and 1200 k. while for n-type compound, ZT< 1. 

➢ The minimum lattice thermal conductivity is calculated kl,min within Cahill’s model 

for Ba2ZnP2 is equal to 0.53 W/m.K, which indicates that Ba2ZnP2 might be a 

good thermoelectric material. The lattice thermal conductivity within Slack’s 

relationship become smaller than κl,min of Cahill’s model afterward ~900K. 


