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Abstract

This thesis is concerned by the occurrence of non trivial periodic solutions

called limit cycles for polynomial differential systems in the real plane. This

work splits into two major parts. In the first one, we have studied the existence

and the number of limit cycles for two classes of planar differential systems of

degrees four and seven respectively. The second part is concerned by the study

of crossing limit cycles for a class of piecewise discontinuous differential systems

separated by a straight line and formed by arbitrary linear and cubic parts with

an isochronous center at the origin.

Keywords: Polynomial differential system, first integral, periodic orbit,

limit cycle, piecewise discontinuous differential systems, isochronous cubic

center, linear system, crossing limit cycle.

Mathematics Subject Classification: 34A30 · 34C05 · 34C25 · 34C07 ·

37G15.
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Résumé

Cette thèse s’intéresse à l’occurrence de solutions périodiques non triviales

appelées cycles limites pour les systèmes différentiels polynomiaux dans le

plan réel. Ce travail se compose de deux grandes parties. Dans la première,

nous avons étudié l’existence et le nombre de cycles limites pour deux classes

de systèmes différentiels planaires de degrés quatre et sept respectivement.

La deuxième partie concerne l’étude des cycles limites de croisement pour

une classe de systèmes différentiels discontinus par morceaux séparés par une

droite et formés par des parties arbitraires linéaires et cubiques avec un centre

isochrone à l’origine.

Mots-clés: Systèmes différentiels polynomiaux, intégrale première, orbite

périodique, cycle limite, systèmes différentiels discontinus par morceaux, centre

cubique isochrone, système linéaire, cycle limite de croisement.

Classification des sujets de Mathématiques: 34A30 · 34C05 · 34C25 ·

34C07 · 37G15.
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General Introduction

1 Background

Differential equations are a fundamental component in the description of physical

phenomena through mathematical models that cover almost every branch of human

knowledge (biology, technology, electronics, mechanics, economics, etc). Historically,

the notion of Ordinary Differential Equations appeared in the 17th century with the

works of Jakob Bernoulli (1654 − 1705), Isaac Newton (1642 − 1727) and Gottfried W.

von Leibniz (1646 − 1716).

The qualitative theory of differential equation started at the end of the 19th century

with the works of H. Poincaré (1854 − 1912) in his series of publications ”Mémoire

sur les courbes définies par une équation différentielle ”[62, 63], in which he gave a

geometrical sense to differential equations. This innovative method involved the study

of the topological structure of the solutions of a differential equation, which allowed

to deduce properties about such solutions without explicitly knowing them. Also,

in [64] (1878), Gaston Darboux studied the integrability of the first order nonlinear

algebraic differential equations in the complex projective plane in his ”Mémoire sur les

équations différentielles algébriques du premier ordre et du premier degré ”. In the last

years, these works has been intensively reconsidered and has taken more importance.

For example, the mathematicians have reconsidered in a modern form the way he

considered projective differential equations and the relationship he established between

the existence of algebraic solutions, and the existence of first integrals. and how to

4



General Introduction

Poincaré proposed the concept of a limit cycle as a periodic orbit for which at least one

trajectory of the vector field approaches in positive or negative time. An alternative

definition is usually provided:

”A limit cycle is a non trivial periodic orbit that is isolated in the set of all

possible periodic solutions of a given differential equation”.

He also defined other fundamental objects such as phase portrait, a name for the

compilation of the minimal information which enables to determine the topological

structure of the orbits of a differential system, or the notion of return map, which

is also known as Poincaré map, which maps a radial initial condition ρ to the radial

component Π(ρ) after a 2π loop on the angular component. It also resulted from

Poincaré’s work with a contribution of I. Bendixon (1861 − 1935) during the first years

of the 20th century resulted in the well known Poincaré-Bendixson’s Theorem, which

states that under compacity conditions every solution tends to a singular solution

which can be either a critical point, a periodic orbit or a connected set.

In the second ICM, celebrated in Paris (1900), D. Hilbert proposed a list of twenty-three

problems to be solved during the 20th century. One of the most difficult problems

suggested by Hilbert is the 16th Hilbert Problem and involves two subproblems:

relative position and number of limit cycles. Smale [70], in Mathematical problems

for the next century (1998), reformulates the second part of Hilbert problem as follows:

Consider here two-dimensional polynomial differential systems of the form

dx
dt

= P (x, y) , dy
dt

= Q (x, y) , (1)

where P and Q are polynomials in R[x, y] , which denotes the ring of the

polynomials in the variables x and y with real coefficients. By definition,

the degree of this system is n = max(deg(P ), deg(Q)). Is there a maximum

bound of number the limit cycles?

5



General Introduction

The study of limit cycles is very interesting since they are involved in a large number of

phenomena in nature or in social sciences where periodic behaviour can be observed. A

classical example is the periodicity of the oscillations in RLC circuits and the existence

of some isolated periodic orbits. In this line, the works of the engineer A. Liénard

(1869 − 1958) and the physicist B. Van der Pol (1889 − 1959) are highly remarkable.

Years later, A. A. Andronov (1901−1952) and his collaborators tackled the problem of

mechanical and electronical oscillators focusing on the limit cycles analysis. Actually,

the Van der Pol equation d2x
dt2 + (1 − x2) dx

dt
+ x = 0, and Liénard equations

d2x
dt2 + (f(x)) dx

dt
+ g(x) = 0, which can be written as a system as follows

ẋ = y,

ẏ = −f (x) y − g (y) .

where ẋ = dx
dt

. These equations are actually subject to intense research thanks to their

frequent apparitions in a wide class of models arising from different areas of sciences

in which limit cycles can occur.

Among the main problems appearing in the qualitative theory of real planar

differential systems of the form (1), are the determination of centres, limit cycles, and

first integrals. It is very difficult to detect if a planar differential system is integrable

or not and also to know if limit cycles for this system can occur. There is a huge

literature about limit cycles, most of them deal essentially with their detection, their

number and their stability. By contrast to that, there are just a few papers devoted to

the determination of the explicit expressions of these limit cycles. Historically, the first

known explicit limit cycles were algebraic (see, for example, [1, 11, 54] and references

therein). On the other hand, it seems intuitively clear that “most” limit cycles of planar

polynomial vector fields are non-algebraic, for instance, the limit cycle appearing in

the Van der Pol equation is non-algebraic as it is proved by Odani [58]. The Van der

6



General Introduction

Pol equation can be written as a polynomial differential system (1) of degree 3, but its

limit cycle is not known explicitly. In the chronological order, the first examples were

explicit non-algebraic limit cycles appeared are those of A. Gasull and all [37] and by

Al-Dosary, Khalil I. T. [2] for n = 5. In [14], R. Benterki and J. Llibre presented an

example of an explicit non-algebraic limit cycle for n = 3. Later Bendjeddou and all

published many papers giving explicit non-algebraic limit cycles for several polynomial

differential systems of degree greater than or equal to 3 see [7, 8, 9, 10, 13, 19, 20].

Let us consider the system

dx
dt

= f (x, y) , dy
dt

= g (x, y) , (2)

where t is time f and g are tow arbitrary functions. There are systems of the form

(2) with an infinite number of limit cycles just as there are systems without limit

cycles as is the case for example of the linear ones. But if we assume the discontinuity

hypothesis on the functions f and g, the situation changes drastically. It is partly for

this raison that Andronov, Vitt and Khaikin have started in 1930 the study of the so

called discontinuous piecewise differential systems in the plane. (see for instance their

original monography [5]), where system is changed by two or more sub-systems acting

each in an appropriate zone of the plan. From this date and till now, these new kind of

systems have been a topic of great interest in the mathematical community due to their

applications in various areas. They are particularly used for modeling real phenomena

and different modern devices, see for instance the books [21, 68] and references quoted

therein.

In the last few years, there has been an increasing interest in the study of the problem

of bounding a number of limit cycles for planar piecewise differential systems, see

[24, 29, 31, 34, 36, 40, 50, 71]. This interest has been mainly motivated by their wider

range of applications in various fields of science (e.g., engineering, biology, control

theory, design of electric circuits, mechanical systems, economics science, medicine,

7



General Introduction

chemistry, physics, etc.).

There are many papers studying planar piecewise linear differential systems with two

zones (see, e.g., [15, 16, 17, 49, 51, 56, 57] and references therein). For the discontinuous

planar nonlinear differential systems there are several papers studying the number of

limit cycles (see [6, 24, 33, 44, 45, 50] and references therein). Note that for the

piecewise cubic polynomial differential system, there are two recent papers see [41, 42]

obtaining at least 24 and 18 small limit cycles, respectively.

2 Objective

This research project has a twofold objective. Firstly, we aim to undertake a

qualitative study of some classes of planar polynomial differential systems of the form

(1), with the help of the integrability property since the existence of a first integral

for a given system determines its phase portrait. More precisely, we present two new

results about this topic, we study the integrability and the existence of non trivial

solutions that are limit cycles for same classes of planar polynomial differential system

by given them explicitly thanks to the first integral. In a second part, we turn to the

qualitative theory of discontinuous piecewise differential system of the form (2) formed

by an arbitrary linear part and a cubic acting each in one of the two regions separated

by the straight line x = 0. We prove the existence and the exact number of limit cycles

of this case.

3 Outline of the thesis

The scientific contributions of this work are collected in Papers 1-3. In addition,

there is a main body which includes a summary of the research performed and

explanations of methods and theoretical tools used in the appended papers.

Chapter 1 describes briefly some of the basic concepts, definitions and results used

through this work such as limit cycles, invariant curve, the integrability problem,

poincaré compactification, and piecewise vector field. Chapter 2 formed by two part.

8



General Introduction

The first part is devoted to the study of the integrability and the existence of limit

cycle for a class of quartic differential system. We show that this class is integrable

and we give the explicit expression for its first integral. After that, we prove under

suitable conditions on the parameters, that this class admits a non-algebraic limit

cycle surrounding an unstable node. At infinity, we use the Poincaré compactification

technique to show that there is only one singular point at infinity. In the second

part, we provide a new family of planar polynomial differential systems of degree seven

with a non elementary point at the origin. We show the integrability of this family

by transforming it into a Riccati equation. We determine sufficient conditions for

the coexistence of algebraic and non-algebraic limit cycle surrounding such a point.

Moreover, these limit cycles are explicitly given. Finally, Chapter 3 is concerned

specially by the study the existence and the number of crossing limit cycles that

can arise in some class of planar piecewise differential systems formed by two regions

and separated by a straight line, where in the left region we consider an arbitrary

linear differential system, while in the right one the system is cubic with homogeneous

nonlinearity and an isochronous center at the origin. More precisely, we show that this

piecewise system may have at most zero, one or two explicit algebraic or non-algebraic

limit cycles depending on the type of their linear parts, i.e. if those systems have foci,

center, saddle, node with different eigenvalues, non-diagonalizable node with equal

eigenvalues or linear system without equilibrium points.

9
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I. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS IN THE PLANE

1 Preface

This chapter aims to give to the reader an overview of the theoretical tools and

concepts used in the appended papers. The chapter is outlined as follows. At first,

we introduce the concept of phase portraits of a dynamical system in the plane and

illustrate most of the characteristic behaviors that differentiate the nonlinear systems

from the linear ones. The planar dynamical systems are then described. After that,

we recall some basic notions about the main topics of this work, that are limit cycles,

invariant curves, the integrability problem and the Poincaré compactification. The

chapter concludes with a brief description of the particular case of the discontinous

piecewise differential system.

2 Saddles, Nodes, Foci and Centers

In this section, we study the topology of the phase portrait for the linear system and

nonlinear system near to the origin. We will successively study the trajectories of linear

system, then the behavior of the trajectories of nonlinear system in the neighborhood

of equilibrium points, and explain the differences between them.

2.1 Linear differential systems

Consider the linear system

Ẋ = AX, (I.1)

when X ∈ R2 and A ∈ M2 (R). We begin by describing the portraits for the linear

system

Ẋ = BX, (I.2)

where the matrix B = P−1AP ;P ∈ GL2 (R), has one of the follows forms:

B =

 λ 0

0 µ

 , B =

 λ 1

0 λ

 , B =

 a −b

b a

 .

12
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The phase portrait for the linear system (I.1) above is then obtained from the phase

portrait for (I.2) under the linear transformation coordinates x = Py.

Case 1. B =

 λ 0

0 µ

 with λ < 0 < µ. The system (I.2) is said to have a

saddle at the origin. The phase portrait for the linear system (I.2) in this case is given

in Figure (I.1).

Remark 1 If µ < 0 < λ, then the arrows in figure 1.1 are reversed.

Case 2. B =

 λ 0

0 µ

 with λ ≤ µ < 0 or B =

 λ 1

0 λ

 with λ < 0. The origin is

referred to as a stable node in each of these cases. If λ = µ then the origin is a proper

node. If λ < µ or λ < 0 then the origin is an improper node in the other two cases.

The phase portrait for the linear system (I.2) in this case is given in Figure (I.1).

Remark 2 If λ ≥ µ > 0 or if λ > 0 in case 2, then the arrows in figure. (I.2) are

reversed and the origin is referred to as an unstable node. Thus, Then the stability of

the node is determined by the sign of the eigenvalues:

• If λ ≤ µ < 0, then we have a stable node at the origin.

• If λ ≥ µ > 0, then we have a unstable node at the origin.

Case 3. B =

 a −b

b a

 , a < 0. The origin is referred to as a stable focus in these

cases, the phase portrait for the linear system (I.2) in this case is given in Figure (I.1).

Remark 3 If a > 0, the trajectories spiral away from the origin with increasing t and

the origin is called an unstable focus.

Case 4. B =

 0 −b

b 0

. The system (I.2) is said to have a center at the origin in

this case. the phase portrait for the linear system (I.2) in this case is given in Figure

(I.1).

13
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x

y

Saddle point

x

y

Stable node

x

y

Unstable node

x

y

Stable focus

x

y

Unstable focus

x

y

Center point

Figure I.1: Classification of phase portrait

Classification of equilibrium points by eigenvalues

Consider the differential system (I.1), let λ, µ be the eigenvalues of the matrix A, X0

the equilibrium point. We distinguish the different cases according to the eigenvalues

λ and µ of the matrix A.

1. If λ and µ are real nonzero and of different sign, then the equilibrium point X0

is a saddle point, it is always unstable.

2. If λ and µ are real with the same sign, we have three cases:

• If λ < µ < 0, the equilibrium point X0 is a stable node.

• If 0 < λ < µ, the equilibrium point X0 is an unstable node.

• If λ = µ ̸= 0, the equilibrium point X0 is a proper node, it is stable if λ < 0

and unstable if λ > 0.

3. If λ and µ are conjugate complexes and Im (λ, µ) ̸= 0, then the equilibrium point

X0 is a focus. It is stable if Re(λ, µ) < 0 and unstable if Re(λ, µ) > 0.

4. If λ and µ are pure imaginary, then the equilibrium point X0 is a center.

14
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Figure (I.1) summarizes the types of equilibrium.

2.2 Nonlinear differential systems

A phase portrait is a geometric representation of the trajectories of a dynamic system

in the phase space, in with each set of initial conditions corresponds a curve or a point.

To know the aspect of the trajectories of the dynamical systems at least locally, it

is enough to know their behavior through the study of so-called singular points, as

H.Poincaré did in [62].

We consider the nonlinear system of differential equations

Ẋ = f (X) , (I.3)

where X ∈ R2 and f : E → R2 is a continuous function and E is an open subset of R2.

A point X0 ∈ R2 is called a singular point (or an equilibrium point) of system (I.3)

if f(X0) = 0. If a singular point has a neighborhood that does not contain any other

singular point, then that singular point is called an isolated singular point.

In what follows, any possible singular point is isolated and so let X0 be a singular

point of system (I.3). To study the behavior of the solutions near to X0, we consider

the associated linearized system (I.1) at this point. Here, the matrix A is given by

A =
(

∂fi

∂xj
(X0)

)
= Df(X0), where i = 1, 2, j = 1, 2.

Definition 4 X0 is said to be hyperbolic if any eigenvalue of the matrix of Df(X0)

has a non-zero real part. Otherwise, it is said to be non-hyperbolic.

Definition 5 X0 is called non-elementary if the eigenvalues of the linear part of the

Df(X0) are both zero, and elementary otherwise. If both of the eigenvalues of the linear

part of the Df(X0) are real. then the singular point X0 is called hyperbolic. X0 is said

to be non-elementary is called degenerate if the linear part is identically zero, otherwise

it is called nilpotent.

Does the knowledge of the behavior of the linear approximation of a non-linear system

15
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in the neighborhood of an equilibrium point, allow us to deduce the behavior of the

non-linear system? To clarify what we means by behavior, we introduce the following

definition:

Definition 6 (Topological equivalence) The trajectories (or the orbits) of two

dynamical systems are topologically equivalent if there exists a homeomorphism (a

bicontinuous bijection) that makes it possible to pass from a trajectory of the first system

to a trajectory of the second.

Theorem 7 (Hartman-Grobman) If the equilibrium X0 is hyperbolic, then the

trajectories of the nonlinear system (I.3) in a neighborhood of the equilibrium point

X0 are topologically equivalent to those of the linear approximation ( I.1) .

Topologically equivalent trajectories have the same appearance. We can therefore speak

of a node or a focus, or even a saddle, for the equilibrium points of nonlinear systems,

by studying the eigenvalues of the matrix of the linear approximation, but not of the

center.

Remark 8 In the case of a non-hyperbolic equilibrium, it is the higher order terms,

the very ones which have been neglected, which will locally determine the shape of the

trajectories.

Remark 9 Let E be an open subset of R2 containing the origin and let f ∈ C1 (E)

with f(X0) = 0. If the singular point X0 is a center for the linear system (I.1) with

A = Df(X0), then the singular point X0 is either a center or a weak focus for the

nonlinear system (I.3). The nature of X0 requires further investigation: this is the

"problem of the center".

Stability of the equilibrium points

The behavior of the solutions in the neighbourhood towards or away from the

equilibrium points as t goes to infinity is what stability of equilibrium points means.

16
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Definition 10 (Stable equilibrium point) An isolated equilibrium point X0 is said

to be stable if for given any neighbourhood V of X0 every solution passes near X0

remains in V as t increasing.

Definition 11 (Asymptotically stable equilibrium point) The equilibrium point

X0 is said to be asymptotically stable if every solution starts in the neighbourhood of

X0 approaches X0 as t goes to infinity.

Remark 12 If the equilibrium point X0 in not stable is said to be unstable.

3 Dynamical systems and limit cycles

The mathematical formalism of differential equations has proven useful for

describing dynamical systems, that is the evolution of a system with respect to an

independent variable, usually time. The mathematical model of the behavior for

such dynamical systems is described by a set of two first order autonomous nonlinear

ordinary differential systems as follows

ẋ = dx
dt

= P (x (t) , y (t)) ,

ẏ = dy
dt

= Q (x (t) , y (t)) ,
(I.4)

where P and Q are coprime polynomials in the ring R[x, y], of degrees n leas or equal

n where n ∈ N∗. The dot over a letter denotes the derivative with respect to time t.

In the literature equivalent mathematical objects to refer to this planar differential

systems appear: as a vector field

X = P
∂

∂x
+Q

∂

∂y
,

as a differntial form

ω = Qdx− Pdy,

17
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Definition 13 A flow in C2 along a time t ∈ R is defined as

φ : R × C2 → C2

(t,Ω) → φt (Ω)

such that

(i) φ0 (Ω) = Ω,

(ii) φt (φs (Ω)) = φt+s (Ω) ,

for all Ω in C2 and t, s ∈ R.

System (I.4) defines a flow in C2, φ (x, y). It is known that this flow is a smooth

function defined for all (x, y) in some neighborhood of initial position and initial time.

Also, it satisfies (I.4) in the sense that

d

dt
(φt (x, y))t=τ = X (φτ (x, y)) .

Definition 14 A solution of (I.4) through a point (x0, y0) ∈ C2 is defined as

(x (t) , y (t)) = {φt (x0, y0) , t ∈ R}.

3.1 Periodic solutions

Definition 15 We call Periodic Solution of system (I.4) any solution X(t) =

(x(t), y(t)) for which there is a real number T > 0 such that

∀t ∈ R, X (t+ T ) = X (t) .

The smallest number T > 0 that is suitable is then called period of this solution. Any

periodic solution corresponds to a closed orbit in phase space.

18
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3.2 Invariant curves

Invariant algebraic curves play an important role in the integrability of polynomial

planar differential systems, see for example [23, 27, 33] and are also used in the study

of existence and not-existence of periodic solutions and therefore the existence and

non-existence of limit cycles.

Definition 16 Let f ∈ R [x, y] a non-zero polynomial. The algebraic curve f (x, y) = 0

is an invariant algebraic curve of the polynomial system (I.4) if there is K ∈ R [x, y]

such that

Xf = P
∂f

∂x
+Q

∂f

∂y
= Kf. (I.5)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. Since

the polynomial differential system has degree n, any cofactor has degree at most n− 1.

On the points of the algebraic curve f = 0 the gradient
(

∂f
∂x
, ∂f

∂y

)
of f is orthogonal to

the vector field X = (P,Q). Hence at every point of f = 0 the vector field X is tangent

to the curve f = 0. So the curve f = 0 is formed by trajectories of the vector field X.

This justifies the name "invariant algebraic curve" since it is invariant under the flow

defined by X.

Theorem 17 [39] We consider the system (I.4) and Γ (t) a periodic orbit of period

T > 0. We assume that f : Ω ⊆ R2 → R is an invariant curve

Γ (t) = {(x, y) ∈ Ω : f (x, y) = 0} ,

and K (x, y) ∈ C1 is the cofactor given in equation (I.5) , of the invariant curve

f (x, y) = 0. Suppose that p = (x0, y0) ∈ Ω such that f (p) = 0 and ∇f (p) ̸= 0,

then ∫ T

0
div (Γ (t)) dt =

∫ T

0
K (Γ (t)) dt,
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where div is the divergence of system (I.4), i.e.

div (x, y) = ∂P

∂x
(x, y) + ∂Q

∂y
(x, y) .

Remark 18 The assumption ∇f (p) ̸= 0 means that f does not contain singular

points.

3.3 Limit cycles

Consider system (I.4), let γ (t) = {x, y : (x (t) , y (t))} a periodic orbit of period T .

Definition 19 A limit cycle γ is an isolated periodic orbit, i.e.; for some arbitrarily

smal neighborhood of the periodic orbit γ there are no other periodic orbits.

Definition 20 A limit cycle is said to be algebraic it’s contained in an oval of an

invariant algebraic curve of the system (I.4), and non-algebraic otherwise.

Definition 21 (Stability of limit cycles) We say that the limit cycle γ =

{(x (t) , y (t)) , t ∈ [0, T ]} of system (I.4) is stable if all the inner and outer trajectories

converging to γ, for t → +∞, and unstable that is if all trajectories wrap, spiral

around γ for t → −∞. Semi-stable (half-stable) limit cycle will have trajectories

such that, from one side spiral towards it, while from the other side spiral away from

as t → ∞.

3.4 The Poincaré Map

The idea of the Poincaré map is the following: If Γ is a periodic orbit of the system

(I.4) throught the point X0 = (x0, y0) and Σ is a hyper-plane perpendicular to Γ at X0,

then for any point X = (x, y) ∈ Σ sufficiently near X0, the solution of (I.4) throught

X at t = 0, will cross Σ again at a point P (X) near X0; see figure (I.2). The mapping

X → P (X) is called the Poincaré map. The next theorem establishes the existence

and continuity of the Poincaré map P (X) and of it is first derivative DP (X).

Theorem 22 Let E be an open subset of R2. Suppose that ϕt (x0) is a periodic solution
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of (I.4) of period T and that the cycle

Γ =
{
x ∈ R2 : X = ϕt (X0) , 0 ≤ t ≤ T

}

is contained in E. Let Σ is an hyperplane orthogonal to Γ at X0; i.e., let

Σ =
{
X ∈ R2 :< (X −X0) , (P (X0), Q(X0)) >= 0

}
.

Then there is a δ > 0 and a unique function τ (X) defined and continuously

differentiable for X ∈ Nδ (X0), such that τ (X0) = T and

ϕτ(X) (X) ∈ Σ,∀X ∈ Nδ (X0) .

x 0

x

P(x)

¡

§

Figure I.2: The Poincaré map.

Definition 23 Let Γ,Σ, δ and τ (x) be defined as in theorem (22). For x ∈ Nδ (x0)∩Σ,

the function P (x) = ϕτ(x) (x) is called the Poincaré map for Γ at x0.

Remark 24 It follows from theorem (22), that: P ∈ C1 (U) where U = Nδ (x0) ∩ Σ.

Theorem 25 Let E be an open subset of R2 and suppose that f ∈ C1 (E). Let γ(t)

be a periodic solution of (I.4) of period T . Then the derivative of the Poincaré map

P (s) along a straight line Σ normal to

Γ =
{
x ∈ R2 : x = γ (t) − γ (0) , 0 ≤ t ≤ T

}
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at point x = 0 is given by

P (0) = exp
(∫ T

0
∇.f (γ (t)) dt

)
.

Corollary 26 Under the hypothese of theorem (25), the periodic solution γ (t) is a

stable limit cycle if ∫ T

0
∇.f (γ (t)) dt < 0,

it is an unstable limit cycle if

∫ T

0
∇.f (γ (t)) dt > 0,

and it may be semi-stable limit cycle if

∫ T

0
∇.f (γ (t)) dt = 0.

4 The integrability problem

Definition 27 (First integral) A C1 function H : Ω → R such that it is constant

on each trajectory of polynomial differential system (I.4) and it is not locally constant

is called a first integral of system (I.4) in Ω ⊑ R2. The equation H (x (t) , y (t)) =

constant for all values of t for which the solution (x(t), y(t)) is defined and contained

in Ω, these conditions are equivalent

∂H

∂t
= P (x, y) ∂H

∂x
(x, y) +Q (x, y) ∂H

∂y
(x, y) = 0,

and H (x, y) = constant are formed by the orbits or trajectories of the system (I.4).

The problem of finding such a first integral and determining the functional class to

which it must belong is what we refer to as the integrability problem. ”The importance

of the existence of first integral for a differential system is that it determines its phase

portrait”.

To find an integrating factor or an inverse integrating factor for system (I.4) is closely
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related to finding its first integral. When considering the integrability problem, we are

also asked to study whether an (inverse) integrating factor belongs to a certain given

class of functions.

Definition 28 (Integrating factor) Let U an open set of R2. A function µ : U → R

of class Ci (U) , i > 1, is called an integrating factor of system (I.4) if that satisfies the

following linear partial differential equation

P (x, y) ∂µ
∂x

(x, y) +Q (x, y) ∂µ
∂y

(x, y) = −µ (x, y) div (P,Q) , (I.6)

where div (P,Q) is called the divergence of a vector field V = (P,Q) defined as

div (V ) = div (P,Q) = ∂P

∂x
+ ∂Q

∂y
.

The first integral H associated to the integrating factor µ is given by

H (x, y) =
∫
µ (x, y)P (x, y) dy + h (x) ,

satisfying ∂H
∂x

= −µQ.

When a polynomial differential system has an integrating factor µ we can make a time

rescaling and the associated 1-form ω = µQdx+ µPdy because closed.

Definition 29 (Inverse integrating factor) A function V (x, y) is an inverse of

integrating factor of system (I.4) in an open subset U ⊆ R2 if V ∈ C1 (U), V ̸= 0

in U and

P
∂V

∂x
+Q

∂V

∂y
=
(
∂P

∂x
+Q

∂Q

∂y

)
V.

Clearly, from the definition, V = 0 is an invariant curve of system (I.4), not algebraic

at first. Moreover, it is easy to check that the function µ = 1/V defines an integrating

factor in U\ {V = 0} of system (I.4).

Invariant algebraic curves are the main objects used in the Darboux theory of

integrability. In [32], G. Darboux gives a method for finding an explicit first integral
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for a system (I.4) in case that d (d+ 1) /2 + 1 different irreducible invariant algebraic

curve are known, where d is the degree of the system. In this case, a first integral of

the form

H (x, y) = fλ1
1 fλ2

2 ...fλs
n ,

where fi (x, y) = 0 is an invariant algebraic curve for system (I.4) and λi ∈ C not all

of them null, for i = 1, 2, ..., s; s ∈ N can be constructed. The functions of this type

are called Darboux functions.

Some generalizations of the classical Darboux theory of integrability may be found in

the literature. For instance, independent singular points can be taken into account to

reduce the number of invariant algebraic curves necessary to ensure the Darbouxian

integrability of the system, see [26]. A good summary of many of these generalizations

can be found in [59] and a survey on the integrability of two-dimensional systems can

be found in [25]. One of the most important definitions in this sense is the notion

of exponential factor which is given by C. Christopher in [30], when he studies the

multiplicity of an invariant algebraic curve. The notion of exponential factor is a

particular case of invariant curve for system (I.4).

Definition 30 (Exponential factor) Let two coprime polynomial h, g ∈ R[x, y], the

function eh/g is called an exponential factor for system (I.4) if there exists a polynomial

k of degree at most d−1 called cofactor, where d is the degree of the system, the following

relation is satisfied

P

(
∂eh/g

∂x

)
+Q

(
∂eh/g

∂y

)
= K (x, y) eh/g.

Proposition 31 If F = eh/g is an exponential factor and g is not a constant, then

g = 0 is an invariant algebraic curve, and h satisfies the equation P
(

∂h
∂x

)
+ Q

(
∂h
∂y

)
=

hkg + gkF where kg and kF are the cofactoers fo g and F , respectively.

This proposition is proved in [30]. Since the exponential factor is the most current
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generlization in the Darboux theory of integrability, any function of the form

fλ1
1 ...fλp

p

[
exp

(
h1

gn1
1

)]µ1

...

[
exp

(
hq

g
nq
q

)]µq

,

where p, q ∈ N, fi (x, y) = 0 (1 ≤ i ≤ p) and gj (x, y) = 0 (1 ≤ j ≤ q) are invariant

algebraic curve of system (I.4), hj (x, y) ∈ C[x, y] and λi, µj ∈ C and nj (1 ≤ j ≤ q)

are non-negative integers, is called a Darbouxian function. For more information on

the Darboux theory of integrability see for instance [33], [43], [55] and the references

therein. Note that a polynomial or a rational first integral is a particular case of a

Darboux first integral.

We recall that the integrability problem consists in finding the class of functions a first

integral of a given system (I.4) must belong to. We have the system (I.4) defined in a

certain class of functions, in this case, the polynomials with real cofficients R[x, y] and

we consider the problem whether there is a first integral in another, possibly larger,

class. For instence in [65], H. Poincaré stated the problem of determining when a

system (I.4) has a rattional first integral. The works of M.J. Prelle and M.F. Singer

[66] and M.F. Singer [69] go on this direction since they give a characterization of

when a polynomial system (I.4) has an elementary or a Liouvillian first integral.

A planar differential system can have equilibrium points at infinity and therefore

these points can influence the topology of the phase plane. To detect them and

recognize their nature, we use the so-called Poincaré compactification technique.

5 Poincaré compactification

Let S2 be the set of points (s1, s2, s3) ∈ R3 such that s2
1 + s2

2 + s2
3 = 1. We will call

this set the Poincaré sphere. Given a polynomial vector field

X (x, y) = (ẋ, ẏ) = (P (x, y) , Q (x, y))
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in R2 of degree d. It can be extended analytically to the Poincaré sphere by projecting

each point (x1, x2) ∈ R2 identified by (x1, x2, 1) ∈ R3 into the Poincaré sphere using

the straight line through x and the origin of R2. In this way we obtain two copies of X :

one on the northen hemisphere {(s1, s2, s3) ∈ S2 : s3 > 0} and another on the southern

hemisphere {(s1, s2, s3) ∈ S2 : s3 < 0}. The equator S1 = {(s1, s2, s3) ∈ S2 : s3 = 0}

corresponds to the infinity of R2. The local charts needed for doing the calculations

on the Poincaré sphere are

Ui = {s ∈ S2 : si > 0} , Vi = {s ∈ S2 : si < 0} ,

where s = (s1, s2, s3), with the corresponding local maps

φi (s) : Ui → R2, ψi (s) : Vi → R2,

such that φi (s) = −ψi (s) = (sm/si, sn/si) for m < n and m,n ̸= i, for i = 1, 2, 3. The

expression for the corresponding vector field on S2 in the local chart U1 is given by

u̇ = vd
[
−uP

(
1
v
, u

v

)
+Q

(
1
v
, u

v

)]
, v̇ = −vd+1P

(
1
v
, u

v

)
;

the expression for U2 is

u̇ = vd
[
P
(

u
v
, 1

v

)
− uQ

(
u
v
, 1

v

)]
, v̇ = −vd+1Q

(
u
v
, 1

v

)
;

and the expression for U3 is just

u̇ = P (u, v) , v̇ = Q (u, v) ,

where d is degree of the vector field X. The expression for the charts Vi are those for

the carts Ui multiplied by (−1)d−1, for i = 1, 2, 3. Hence, to study the vector field X, it

is enough to study its Poincaré compactification restricted to the northern hemisphere

plus S1, which we denote by D call the Poincaré disk. To draw the phase portraits we

will consider the projection π (s1, s2, s3) = (s1, s2) of the Poincaré disk into the unit
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disk centered at the origin.

Finite singular points of X are the singular points of its compactification which are

in D2\S1, and they can be studied using U3. Infinite singular points of X are the

singular points of the corresponding vector field on the Poincaré disk D lying on S1.

Clearly a point s ∈ S1 is an infinite singular point if and only if −s ∈ S1, and the local

behavior of one is the same as the other multiplied by (−1)d−1. Hence to study the

infinite singular points it suffices to look only at U1|v=0 and at the origin of U2. For

more details, see [33].

u

u
u

v v

v

U1

U2

U3

y
1

y
2

y
3

Figure I.3: The local charts (Uk, ϕk) for k = 1, 2, 3 of the Poincaré sphere.

6 Piecewise vector field

A discontinuous piecewise differential system on R2 is a pair of Cr (with r ≥ 1)

differential systems in R2 separated by a codimension one manifold Σ. The line

of discontinuity Σ of the discontinuous piecewise differential system is defined by

Σ = h−1 (0), where h : R2 → R is a differentiable function having 0 as a regular

value. Note that Σ is the separating boundary of the regions or zones Σ+ =

{(x, y) ∈ R2| h (x, y) > 0} and Σ− = {(x, y) ∈ R2| h (x, y) < 0}. So Cr vector field
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associated to a piecewise differential system with line of discontinuity Σ is

Z (x, y) =


Z+ (x, y) , if (x, y) ∈ Σ+,

Z− (x, y) . if (x, y) ∈ Σ−,
(I.7)

As usual, system (I.7) is denoted by Z = (Z+, Z−,Σ) or simply by Z = (Z+, Z−),

when separation line Σ is well understood. In order to establish a definition for

the trajectories of φZ (p, t) and investigate its behavior, we need a criterion for the

transition of the orbits between Σ+ and Σ− across Σ. The contact between the vector

field Z+ (resp. Z−) and the line of discontinuity Σ is characterized by the derivative

of h in the direction of the vector field Z+ i.e.

Zh (p) = ⟨∇h (p) , Z (p)⟩ ,

where ⟨., .⟩ is the usual inner product in R2. The basic results of the discontinuous

piecewise differential systems in this context were stated by Filippov [35], [47]. We can

divide the line of discontinuity Σ in the following sets:

(a) Crossing set: Σc : {p ∈ Σ : Z+h (p) .Z−h (p) > 0}.

(b) Escaping set: Σe : {p ∈ Σ : Z+h (p) > 0 and Z−h (p) < 0}.

(c) Sliding set: Σs : {p ∈ Σ : Z+h (p) < 0 and Z−h (p) > 0}.

The escaping set Σe or Sliding set Σs are respectively defined on points of Σ where both

vector fields Z+ (resp. Z−) simultaneously point outwards or inwards from Σ while the

interior of its complement in Σ defines the crossing region Σc (see Figure (I.4)). The

complementary of the union of these regions is the set formed by the tangency points

between Z+ (resp. Z−) with Σ.
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Figure I.4: The regions Σc in (a), Σe in (b) and Σs in (c).

When p ∈ Σ±
c it is natural to consider that the trajectories of Z (p) = Z− (p) are

given by concatenations of trajectories of Z+ (resp. Z−). So, for to determine all

possible trajectories of such a vector field it is necessary to define the dynamics in

regions Σ±
e and Σ±

s . In Σ±
e ∪ Σ±

s we define a vector field Z+ (resp. Z−) given by the

unique convex conbination of Z+ (resp. Z−) wich is tangent to Σ± at p, see Figure

(I.5). This is if p ∈ Σ±
e ∪ Σ±

s , then

Z±
s (p) = 1

Z+H (p) − Z−H (p)
(
Z+H (p)Z− (p) − Z−H (p)Z+ (p)

)
.

å
s

x

y

p
Z(p)
s

Figure I.5: Filippov vector field Z±
s (p) when p ∈ Z±

s (p).

We have that Z (p) = Z+ (resp. Z (p) = Z−), then given a trajectory φZ (q, t) ∈

Σ+ ∪ Σ− and Σ±, q is said to be a departing point (resp. arriving point) of φZ (p, t) if

there exist t0 < 0 (resp. t0 > 0) such that lim
t→t+

0

φZ (q, t) = p (resp. lim
t→t−

0

φZ (q, t) = p).

With these definitions if p ∈ Σ±
c , then it is departing point (resp. arriving point) of
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φZ (q, t) for any q ∈ γ1 (p) (resp. q ∈ γ2 (p)), where

γ1 (p) = {φZ (p, t) : t ∈ I ∩ t ≥ 0} and γ2 (p) = {φZ (p, t) : t ∈ I ∩ t ≤ 0} ,

are the trajectories of differential system Z+ (resp. Z−) in Σ+ and Σ− through p,

respectively. these definitions are analogous if the piecewise differential system (I.7) is

defined in n connected and open regions.

Definition 32 A periodic orbit Γ of the discontinuous piecewise differential system

(I.7) is a smooth piecewise curve which is formed by pieces of orbits of each part of

this system, so Γ writes Γ = γ1 ∪ γ2, where γ1 ⊂ Σ+ and γ2 ⊂ Σ−, and it is such that

φZ (p, t+ T ) = φZ (p, t), for some T > 0, where T is called of period of the periodic

orbit Γ.

If γi ∩Σ ⊂ Σc for all i = 1, 2, then the periodic orbit Γ is called the crossing periodic

orbit, otherwise is called sliding periodic orbit.

Definition 33 If a periodic orbit Γ is isolated in the set of all periodic orbit of Z, then

it is called limit cycle of piecewise differential system (I.7).

Definition 34 Consider two discontinous vector field Z and Ẑ defined in open sets,

U and Û , of R2 with discontinutiy curve Σ and Σ̂, respectively. Then,

• Z and Ẑ are Σ-equivalent if there exists an orientation preserving homeomorphism

h : U → Û that sends Σ to Σ̂ and sends orbits of Z to orbit of Ẑ;

• Z and Ẑ are topologically aquivalent if ther exists an orientation preserving

homeomorphism h : U → Û sends orbits of Z to orbits of Ẑ.

Definition 35 We say that

(a) a point p ∈ Σ− ∪ Σ+ is a regular equilibrium point associated to the vector field Z+

(resp. Z−) if Z+ (p) = 0 (resp. Z− (p) = 0). Besides then, p is real (admissible)

if p ∈ Σ± or virtual (non admissible) if p ∈ Σ∓.
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(b) a point p ∈ Σ is a boundary equilibrium point associated to the vector field Z+

(resp. Z−) if Z+ (p) = 0 (resp. Z− (p) = 0).

(c) a point p ∈ Σ is a pseudo-equilibrium point if there is α ∈ (0, 1) such that

(1 − α)Z− (p) + αZ+ (p) = 0, i.e., Z+ (resp. Z−) are anti-collinear to Σ at

p. Obviously, p is an equilibrium of Zs. If p behaves as a node, a focus or a

saddle for the dynamics of Zs, we say that p is a pseudo-node, pseudo-focus or

pseudo-saddle, respectively.

One of the most important tools in the study of flows in the neighborhood of periodic

orbits is obviously the Poincaré map, which for this case, if defined as follows:

When the trajectory of Z+ (resp. Z−) through p ∈ Σ+
c returns to Σ−

c (by the first

time) after a positive time t+ (p), we define the half returns map of Z+ by Π+ (p) =

φZ+ (t+ (p) , p) = q ∈ Σ−
c . When the trajectory of Z− through q ∈ Σ−

c returns to Σ+
c

(by the first time) after a positive time t− (q), we define the half return map of Z−

by Π− (q) = φZ− (t− (q) , q) = µ ∈ Σ. The first return map or Poincaré return map of

Z = (Z+, Z−) is defined by the composition of these two half return maps, that is,

Π (p) = Π− ◦ Π+ (p) = φZ− (t− (φZ+ (t+ (p) , p)) , φZ+ (t+ (p) , p))

or in the reverse order, applying first the flow of Z− and after the flow of Z+, more

details about this construction are provided in [33], [46].
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II. LIMIT CYCLES OF SOME CLASSES OF PLANAR POLYNOMIAL DIFFERENTIAL
SYSTEMS

1 Preface

As we have said in the introduction, we are interested by the problem which consists

in finding explicitly the limit cycles, if exist, for a given planar polynomial differential

system. In that direction, we have obtained via the integrability approach two results.

In fact, this chapter is composed of two parts: the first one is concerned by the

explicit limit cycle for a class of quartic polynomial differential system surrounding

a node. The second one is concerned by the coexistence of two limit cycles for a planar

differential system of degree seven. In these results, the limit cycles are obviously

explicitly obtained.

2 Limit cycle for a class of quartic differential systems with
an unstable node

In this section, we are interested by the integrability and the existence of limit cycles

for the class of quartic differential systems, given by

ẋ =
(
hlx− 2ly + (1 + h)x2 − (2 − h)xy − y2

) (
x2 + xy + y2

)
+ x(l + x+ y)2,

ẏ =
(
hly + x2 + (2 + h)xy − (1 − h)y2

) (
x2 + xy + y2

)
+ y(l + x+ y)2,

(II.1)

where h and l are non-zero real constants. Moreover, under some suitable conditions,

we will show that system (II.1) exhibits one non-algebraic limit cycle explicitly given

surrounding an unstable node at the origin. The study of the existence and nature of

singular points at infinity is done via the Poincaré compactification method. We show

that this system admits one singular point at infinity.

2.1 The main result

As a main result, we prove the following theorem.

Theorem 36 Consider the class of quartic differential system (II.1), the following

statements hold
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1 The origin (0, 0) is unstable node.

2 System (II.1) is integrable and its first integral is

I(x, y) =
(x2 + y2) exp(−h arctan y

x
)

l + x+ y
− 2

∫ arctan y
x

0

exp(−hs)
2 + sin 2sds.

3 If h < 0 and l > 0, then system (II.1) has an explicit non-algebraic limit cycle,

in polar coordinates (r; θ) given by

r (θ, r∗) = 1
2

(
(cos θ + sin θ) ρ (θ, r∗) +

√
4lρ (θ, r∗) + (sin 2θ + 1) ρ2 (θ, r∗)

)
,

where

ρ (θ, r∗) = exp (hθ)
(

r2
∗

l + r∗
+ 2

∫ θ

0

e−hs

2 + sin 2sds
)
> 0, for all θ ∈ R,

and

r∗ = e2πh

e2πh−1

(√(∫ 2π
0

e−hs

sin 2s+2 ds
)2

+ 2l (e−2πh − 1)
∫ 2π

0
e−hs

sin 2s+2 ds−
∫ 2π

0
e−hs

sin 2s+2 ds

)
,

4 The class of quartic system (II.1) has one singular point at infinity.

Proof

For the study of singular points at finite distance, we know that if (x, y) is singular

point of the system (II.1), then this point is included in the set {xẏ − yẋ = 0} such

that (x, y) ∈ R2, So we find that the origin (0, 0) is a singular point and other singular

points if they exist, are included in the line given by {2l + x+ y = 0}.

Statement (1) The Jacobian matrix of the differential system (II.1) at the origin

is

Dj(0, 0) =

l2 0

0 l2


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tr(Dj(0, 0)) = 2l2 and det(Dj(0, 0)) = l4, then ∆ = (tr)2 − 4det = 0, then the

origin (0, 0) is unstable node.

Statement (2) The differential system (II.1) in polar coordinates becomes

ṙ = F (θ)r3 +G(θ)r2 +H(θ)r + 4l2,

θ̇ = M(θ)r2 +N(θ)r,
(II.2)

where

F (θ) = (5h+ 3) cos θ + (5h− 3) sin θ + (1 − h) cos 3θ + (1 + h) sin 3θ,

G(θ) = 2(hl + 2) sin 2θ + 4(hl + 1),

H(θ) = 8l(cos θ + sin θ),

M(θ) = 5h(cos θ + sin θ) + sin 3θ − cos 3θ,

N(θ) = 8l + 4l sin 2θ.

Taking θ as an independent variable, system (II.2) is equivalent to the nonlinear

differential equation

dr

dθ
= F (θ)r3 +G(θ)r2 +H(θ)r + 4l2

M(θ)r2 +N(θ)r . (II.3)

To solve this equation, we use the following change of variable

ρ = r2

l + r(cos θ + sin θ) . (II.4)

The differential equation (II.3) leads to the linear differential equation

ρ̇ = dρ

dθ
= hρ+ 2

2 + sin 2θ . (II.5)

Hence the general solution of (II.5) is readily obtained by

ρ(θ) = exp(hθ)(k +
∫ θ

0

2 exp(−hs)
2 + sin 2θ ds), (II.6)
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where k ∈ R. By replacing the expression of ρ(θ) of (II.6), we get

k = r2 exp(−hθ)
l + r cos θ + r sin θ − 2

∫ θ

0

exp(−hs)
2 + sin 2θds.

We return to Cartesian coordinates to obtain the first integral of system (II.1) by

I(x, y) =
(x2 + y2) exp(−h arctan y

x
)

l + x+ y
− 2

∫ arctan y
x

0

exp(−hs)
2 + sin 2sds. (II.7)

Statement (3) From the (II.4) we can obtain the two solutions of the nonlinear

differential equation (II.3)

r1 (θ, k) = 1
2

(
(cos θ + sin θ) ρ (θ, k) −

√
4lρ (θ, k) + (sin 2θ + 1) ρ2 (θ, k)

)
,

r2 (θ, k) = 1
2

(
(cos θ + sin θ) ρ (θ, k) +

√
4lρ (θ, k) + (sin 2θ + 1) ρ2 (θ, k)

)
.

We note that the r1 (θ, k) r2 (θ, k) = −lρ < 0 for any θ from the which condition.

Therefore, we choose the greater and positive solution

r (θ, k) = r2 (θ, k) = 1
2

(
(cos θ + sin θ) ρ (θ, k) +

√
4lρ (θ, k) + (sin 2θ + 1) ρ2 (θ, k)

)
,

(II.8)

where

ρ (θ, k) = exp (hθ)
(
k + 2

∫ θ

0

exp (−hs)
2 + sin 2s ds

)
.

Now, we prove that system (II.1) possesses a non-algebraic limit cycle. Among

the solutions of (II.3), we consider the solutions such that r (0, k) = r0 > 0. This

requires that

k = r2
0

l + r0
.

We note by r (0, r0) = r0. The equation (II.8) becomes

r (θ, r0) = 1
2

(
(cos θ + sin θ) ρ (θ, r0) +

√
4lρ (θ, r0) + (sin 2θ + 1) (ρ (θ, r0))2

)
,

(II.9)
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where

ρ (θ, r0) = exp (hθ)
(

r2
0

l + r0
+ 2

∫ θ

0

exp (−hs)
2 + sin 2s ds

)
. (II.10)

A periodic solution must verify the following condition r (2π, r0) = r (0, r0) = r0.

Assuming φ (θ) = cos θ+ sin θ, we note that φ (2π) = φ (0) = 1, then r (2π, r0) =

r (0, r0) if and only if ρ (2π, r0) = ρ (0, r0). Hence the condition r (2π, r0) = r0

gives two different values of r0

r∗ = e2πh

1 − e2πh∫ 2π

0

e−hs

sin 2s+ 2 ds−

√√√√(∫ 2π

0

e−hs

sin 2s+ 2 ds
)2

+ 2l (e−2πh − 1)
∫ 2π

0

e−hs

sin 2s+ 2 ds

 ,
r∗ = e2πh

1 − e2πh∫ 2π

0

e−hs

sin 2s+ 2 ds+

√√√√(∫ 2π

0

e−hs

sin 2s+ 2 ds
)2

+ 2l (e−2πh − 1)
∫ 2π

0

e−hs

sin 2s+ 2 ds

 .

We consider only values of r∗ such that r (2π, r∗) = r∗ > 0. Since e−hs

sin 2s+2 > 0, for

all θ ∈ R, thus
∫ 2π

0
e−hs

sin 2s+2 ds > 0 for all θ ∈ R.

As h < 0 and l > 0, it follows that eπh

1−e2πh > 0 and 2l
(
e−2πh − 1

) ∫ 2π
0

e−hs

sin 2s+2 ds > 0

then√√√√(∫ 2π

0

e−hs

sin 2s+ 2 ds
)2

+ 2l (e−2πh − 1)
∫ 2π

0

e−hs

sin 2s+ 2ds >
∫ 2π

0

e−hs

sin 2s+ 2 ds.

Then, we have only one positive choice of r0:

r∗ =
eπh

1−e2πh

(∫ 2π
0

e−hs

sin 2s+2ds+
√(∫ 2π

0
e−hs

sin 2s+2ds
)2

+ 2l (e−2πh − 1)
∫ 2π

0
e−hs

sin 2s+2ds

)
,

(II.11)
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After the substitution of this value r∗ into r(θ, r0) we obtain

r (θ, r∗) = 1
2

(
(cos θ + sin θ) ρ (θ, r∗) +

√
4lρ (θ, r∗) + (sin 2θ + 1) (ρ (θ, r∗))2

)
,

where ρ (θ, r∗) are the functions defined in the statement of Theorem (36). Since

r∗ > 0, l > 0 and
∫ θ

0
e−hs

sin 2s+2 ds > 0 for all θ ∈ R, then

ρ (θ, r∗) = exp (hθ)
(

r2
∗

l + r∗
+ 2

∫ θ

0

e−hs

2 + sin 2sds
)
> 0, for all θ ∈ R,

and 4lρ (θ, r∗) > 0, thus

r (θ, r∗) = 1
2

(
(cos θ + sin θ) ρ (θ, r∗) +

√
4lρ (θ, r∗) + (sin 2θ + 1) (ρ (θ, r∗))2

)
> 0,

(II.12)

for all θ ∈ R. Now, r (θ, r∗) is a periodic solution. In order to prove that the

periodic orbit is a hyperbolic limit cycle, we consider (II.9) and introduce the

Poincaré return map r0 7−→ Π (2π, r0) = r (2π, r0). Therefore, a limit cycles of

system (II.1) is hyperbolic if, and only if

dr (2π, r0)
dr0

∣∣∣∣∣
r0=r∗

̸= 1,

where

r∗ =
e2πh

1−e2πh

(∫ 2π
0

e−hs

sin 2s+2 ds+
√(∫ 2π

0
e−hs

sin 2s+2 ds
)2

+ 2l (e−2πh − 1)
∫ 2π

0
e−hs

sin 2s+2 ds

)
,

after some calculations we obtain that

dr (2π, r0)
dr0

∣∣∣∣∣
r0=r∗

= e2πh < 1.

Consequently, the limit cycle of differential system (II.1) is hyperbolic and stable

Statement (4) In the local chart U1, where x = 1
v

and y = u
v
, system (II.1)
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becomes

u̇ = (u+ 2lv + 1)(u4 + u3 + 2u2 + u+ 1),

v̇ = −v(h+ 1 + (2h− 1)u+ (1 + hl)v + 2(h− 1)u2 + l(h− 2 + 2)uv + 2lv2

+ (h− 3)u3 + (1 − 2l + hl)u2v + 2luv2 + l2v3 − u4 − 2lu3v).

We have u̇|v=0 = u5 + 2u4 + 3u3 + 3u2 + 2u+ 1, the system (II.1) has one infinite

singular point that is (−1, 0).

At this singular point, the Jacobian matrix of system (II.1) in the chart U1 is

Dj(−1, 0) =

2 4l

0 −2


tr(Dj(−1, 0)) = 0 and det(Dj(−1, 0)) = −4, then ∆ = (tr)2 − 4det = 16.

Therefore the point (−1, 0) is saddle.

In the local chart U2, where x = u
v

and y = 1
v
, the differential system (II.1) writtes

as

u̇ = −(u+ 2lv + 1)(u4 + u3 + 2u2 + u+ 1),

v̇ = −v(h− 1 + (1 + 2h)u+ (1 + hl)v + 2(h+ 1)u2 + (2 + hl + 2l)uv

+ 2lv2 + (h+ 3)u3 + (4l + hl + 1)u2v + 2luv2 + l2v3 + u4).

thus, the origin is not a singular point in the chart U2.

2.2 Application

The following example illustrate our result. Let h = −2 and l = 1.5, system (II.1)

becomes

ẋ = −(3x+ 3y + x2 + 0.5xy + y2)(x2 + xy + y2) + x(1.5 + x+ y)2,

ẏ = (3x− 3y + x2 + 3.5xy − 3y2)(x2 + xy + y2) + y(1.5 + x+ y)2.

(II.13)
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The system (II.1) has a non-algebraic limit cycle whose expression in polar coordinates

(r, θ) is

r (θ, r∗) = 1
2

(
(cos θ + sin θ) ρ (θ, r∗) +

√
2ρ (θ, r∗) + (sin 2θ + 1) (ρ (θ, r∗))2

)
> 0,

(II.14)

where

ρ (θ, r∗) = exp (−2θ)
(

r2
∗

l + r∗
+ 2

∫ θ

0

e2s

2 + sin 2sds
)
,

and r⋆ = 0.33849. The phase portrait in the Poincaré disc of differential system (II.13)

is plotted in figure (II.1)

Figure II.1: Phase portrait of differential system (II.13).
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3 Coexistence of limit cycles in a septic planar differential
system enclosing a non-elementary singular point, using
riccati equation

In this section, we consider the family of the polynomial differential systems of the

form

ẋ = x (x2 + y2)2 (x2 + y2 − h) + ((a+ b)x2 + (a− b) y2)

(h2cx− 2hcx3 + 2hx2y − 2hcxy2 + 2hy3 + cx5 + 2cx3y2 + cxy4) ,

ẏ = y (x2 + y2)2 (x2 + y2 − h) + ((a+ b)x2 + (a− b) y2)

(h2cy − 2hx3 − 2hcx2y − 2hxy2 − 2hcy3 + cx4y + 2cx2y3 + cy5) ,

(II.15)

where a, b, h and c ∈ R+
∗ . We prove that these systems are integrable. Moreover, we

determine sufficient conditions for the polynomial differential system (II.15) to possess

exactly two limit cycles, one of them is algebraic and the other non-algebraic, and both

are explicitly given.

Let’s recall that the first result for the coexistence of algebraic and non-algebraic limit

cycles goes back to J. Giné and M. Grau [40] for n = 9, Bendjeddou and Cheurfa [12]

for n = 5. B. Ghermoul et all [38], we find a result concerning a class for n = 5,

for which a unique non-algebraic limit cycle around a non-elementary critical point

is given. The non-algebraic limit cycle is also constructed explicitly, by passage to

a Bernoulli equation. Here we give a result for a class of septic planar differential

systems. By transforming the differential system to a Riccati type equation, we show

the coexistence of two limit cycles one is algebraic, while the other is non-algebraic,

surrounding both a non-elementary singular point, namely the origin. Let us recall that

the Riccati differential equation appear in many applications such as in control theory,

flow, econometric models and diffusion problems (see for instance [48], [67]). On the

other hand a Riccati equation has at most two limit cycles. In the work [40], J. Giné

and M. Grau. proved their result by transforming their system to a Riccati equation
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and expressing their solution in terms of the solutions of the corresponding second

order homogeneous linear differential equation. Our method is different since we have

a system with an invariant algebraic curve which constitute a particular solution of

the Riccati equation obtained after a suitable change of variable in our system. Using

Polyanin et al. [72], pp 31, we obtain the general solution of this equation and this

allow us to obtain the first integral of the system.

3.1 The main result

Our main result is the following one.

Theorem 37 The multi-parameter polynomial differential system (II.15) possess

exactly two limit cycles: the circle (γ1) : x2 + y2 − h = 0 surrounding a transcendental

limit cycle (γ2) explicitly given in polar coordinates (r, θ) by the equation

r (θ, r∗) =
 h exp (φ(θ))

(
r2

∗
r2

∗−h
+ c

∫ θ
0 exp (−φ(s)) ds

)
−1 + exp (φ(θ))

(
r2

∗
r2

∗−h
+ c

∫ θ
0 exp (−φ(s)) ds

)


1
2

,

with φ(θ) =
∫ θ

0
ds

a+b cos 2s
and

r∗ =
 h exp (φ(2π))

(
c
∫ 2π

0 exp (−φ(s)) ds
)

−1 + exp (φ(2π))
(
1 + c

∫ 2π
0 exp (−φ(s)) ds

)


1
2

,

if the following conditions are assumed

b2 − a2 < 0, (II.16)

and

exp (φ(2π)) < c
∫ 2π

0
exp (−φ(s)) ds. (II.17)

Proof

Firstly, we have

yẋ− xẏ = 2h
(
x2 + y2

)2 (
(a+ b)x2 + (a− b) y2

)
.
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We see from (II.16), that the origin O(0; 0) is the unique critical point at finite distance.

Also, it is obvoious, by considering the jacobian matrix of the differential system

(II.15), that the origin is a non elementary point.

We prove that (γ1) : x2 + y2 − h = 0 is an invariant algebraic curve of the differential

system (II.15). Indeed, if we put

P = x (x2 + y2)2 (x2 + y2 − h) + ((a+ b)x2 + (a− b) y2)

(ch2x− 2chx3 + 2hx2y − 2chxy2 + 2hy3 + cx5 + 2cx3y2 + cxy4) ,

Q = y (x2 + y2)2 (x2 + y2 − h) + ((a+ b)x2 + (a− b) y2)

(ch2y − 2hx3 − 2chx2y − 2hxy2 − 2chy3 + cx4y + 2cx2y3 + cy5) ,

U (x, y) = x2 + y2 − h

Immediately we have

P (x, y)∂U
∂x

(x, y) +Q(x, y)∂U
∂y

(x, y) = K (x, y)U (x, y) ,

where

K (x, y) = 2
(
x2 + y2

) ((
x2 + y2

)2
+ c

(
(a+ b)x2 + (a− b) y2

) (
x2 + y2 − h

))
.

Therefore, the circle (γ1) : x2 + y2 − h = 0 is an invariant curve of system (II.15). Of

course (γ1) defines a periodic solution γ1(t) = (x (t) , y (t)) of system (II.15), since it

do not pass through the origin. To see that (γ1) is in fact a limit cycle, we recall a

classic result characterizing limit cycles among other periodic orbits (see for instance

[54] for more details), which means that (γ1) is a limit cycle when
∫ T

0 div(γ1 (t))dt ̸= 0

stable if
∫ T

0 div (γ1 (t)) dt < 0, and instable otherwise
∫ T

0 div(γ1(t))dt > 0, where T is

the period of the periodic solution γ1 (t), we use also a practical result of H. Giacomini

and al. [52], which asserts that

∫ T

0
div(γ1 (t))dt =

∫ T

0
K (x (t) , y (t)) dt.
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Since b2 − a2 < 0, so the curve K (x, y) = 0 do not cross cercle γ1, thus K(x, y) ̸= 0

inside γ1\{(0, 0)} and K(0, 0) = 0, hence
∫ T

0 K (x, y) dt ̸= 0. Consequently (γ1) defines

an algebraic limit cycle for system (II.15).

The search for the non-algebraic limit cycle, requires the integration of our system.

To prove our results we write the polynomial differential system (II.15) in polar

coordinates (r, θ), defined by x = r cos θ and y = r sin θ. Then the system (II.15)

become

ṙ = r3 (h− r2) (−r2 − acr2 + ach− bcr2 cos 2θ + bch cos 2θ) ,

θ̇ = −2hr4 (a+ b cos 2θ) .
(II.18)

Taking as independent variable the coordinate θ, this differential system writes

dr

dθ
= 1

2r
(
h− r2

) r2 + acr2 − ach+ bcr2 cos 2θ − bch cos 2θ
h (a+ b cos 2θ) . (II.19)

Note that since h > 0, a > 0 and b > 0, therefore, θ̇ < 0 and the orbits r(θ) of the

differential equation (II.19) has reversed their orientation with respect to the orbits

(r(t), θ(t)) or (x(t), y(t)) of the differential systems (II.18) and (II.15), respectively.

Via the change of variables ρ = r2, this equation is transformed into the Riccati

equation

dρ

dθ
= (h− ρ) ρ+ acρ− ach+ bcρ cos 2θ − bch cos 2θ

h (a+ b cos 2θ) (II.20)

= −ac+ bc cos 2θ + 1
h (a+ b cos 2θ) ρ2 + 2ac+ 2bc cos 2θ + 1

a+ b cos 2θ ρ− ch. (II.21)

Since ρ = h is evidently a particular solution, so from the last lines of the introduction,

the general solution can be written as

ρ (θ, k) = h+ Φ (θ)
(
k −

∫ θ

0
Φ (s)

(
−ac+ bc cos 2s+ 1

h (a+ b cos 2s)

)
ds

)
,
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where

Φ (θ) = exp
(∫ θ

0
exp

(
−
∫ s

0

dw

a+ b cos 2w

)
ds

)
,

and then

ρ (θ, k) =
h exp (φ(θ))

(
k + c

∫ θ
0 exp (−φ(s)) ds

)
−1 + exp (φ(θ))

(
k + c

∫ θ
0 exp (−φ(s)) ds

) , (II.22)

with φ(θ) =
∫ θ

0
ds

a+b cos 2s
and k ∈ R.

Consequently, the general solution of (II.19) is

r (θ, k) =
 h exp (φ(θ))

(
k + c

∫ θ
0 exp (−φ(s)) ds

)
−1 + exp (φ(θ))

(
k + c

∫ θ
0 exp (−φ(s)) ds

)


1
2

.

By passing to Cartesian coordinates, we deduce the first integral

H(x, y) = (x2 + y2)
(x2 + y2 − h) exp

(
φ(arctan y

x
)
) − c

∫ arctan y
x

0
exp (−φ(s)) ds.

The trajectories of system (II.15) are the level curves H(x, y) = k, k ∈ R and since

these curves are obviously non-algebraic except to the curve (γ1) which corresponds to

k → +∞, thus any other limit cycle, if exists, should also be non-algebraic.

To go a step further, if we put θ = 0 in the solution, we get r (0, k) =
(

hk
−1+k

) 1
2 . Let

r0 =
(

hk
−1+k

) 1
2 , so r(0, r0) = r0 > 0, corresponds to the value k = r2

0
r2

0−h
providing a

rewriting of the general solution of (II.18) as

r (θ, r0) =

 h exp (φ(θ))
(

r2
0

r2
0−h

+ c
∫ θ

0 exp (−φ(s)) ds
)

−1 + exp (φ(θ))
(

r2
0

r2
0−h

+ c
∫ θ

0 exp (−φ(s)) ds
)


1
2

, (II.23)

where r0 = r(0) and φ(θ) =
∫ θ

0
ds

a+b cos 2s
. A periodic solution of system (II.15) must

satisfy the condition

r(2π, r0) = r(0, r0) (II.24)

The condition (II.24) equivalent to

r2
0 =

h exp (φ(2π))
(
c
∫ 2π

0 exp (−φ(s)) ds
)

−1 + exp (φ(2π))
(
1 + c

∫ 2π
0 exp (−φ(s)) ds

) , (II.25)
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provided two distinct values of r0 = h and thanks to (II.17), the well defined second

value is

r0 = r∗ =
 h exp (φ(2π))

(
c
∫ 2π

0 exp (−φ(s)) ds
)

−1 + exp (φ(2π))
(
1 + c

∫ 2π
0 exp (−φ(s)) ds

)


1
2

. (II.26)

r∗ is the intersection of the periodic orbit with the positive x-semi.axis, providing the

value r∗ > 0. Indeed, since h, a, b, c ∈ R+
∗ and b2 − a2 < 0, then φ(θ) > 0 for all θ ∈ R,

so

r∗ =
 h exp (φ(2π))

(
c
∫ 2π

0 exp (−φ(s)) ds
)

−1 + exp (φ(2π))
(
1 + c

∫ 2π
0 exp (−φ(s)) ds

)


1
2

>

 h exp (φ(2π))
(
c
∫ 2π

0 exp (−φ(s)) ds
)

exp (φ(2π))
(
1 + c

∫ 2π
0 exp (−φ(s)) ds

)


1
2

> 0 for all s ∈ [0, 2π] .

Injecting this value of r∗ in (II.23), we get the candidate solution

r (θ, r∗) = r (θ, r0) =
 h exp (φ(θ))

(
r2

∗
r2

∗−h
+ c

∫ θ
0 exp (−φ(s)) ds

)
−1 + exp (φ(θ))

(
r2

∗
r2

∗−h
+ c

∫ θ
0 exp (−φ(s)) ds

)


1
2

. (II.27)

Next we prove that r (θ, r∗) > 0. Indeed

r (θ, r∗) =
 h exp (φ(θ))

(
r2

∗
r2

∗−h
+ c

∫ θ
0 exp (−φ(s)) ds

)
−1 + exp (φ(θ))

(
r2

∗
r2

∗−h
+ c

∫ θ
0 exp (−φ(s)) ds

)


1
2

.

>

h exp (φ(θ))
(

r2
∗

r2
∗−h

+ c
∫ θ

0 exp (−φ(s)) ds
)

exp (φ(θ))
(

r2
∗

r2
∗−h

+ c
∫ θ

0 exp (−φ(s)) ds
)


1
2

=
√
h > 0,

because h > 0 and exp (φ(θ))
(

r2
∗

r2
∗−h

+ c
∫ θ

0 exp (−φ(s)) ds
)
> 0 for all θ ∈ [0, 2π] . In

order to prove that the periodic orbit is an hyperbolic limit cycle, we consider (II.23),

and introduce the Poincaré return map r0 7→ P (r0) = r(2π, r0), see [33] and [60], We

compute dr(2π, r0)
dr0

at the value r0 = r∗. We find that

dr(2π, r0)
dr0

∣∣∣∣∣
r0=r∗

= hr∗

(r2
∗ − h)2

(h exp (φ(2π)))
1
2
(

r2
∗

r2
∗−h

+ c
∫ 2π

0 exp (−φ(s)) ds
)−1

2

(
−1 + exp (φ(2π))

(
r2

∗
r2

∗−h
+ c

∫ 2π
0 exp (−φ(s)) ds

)) 3
2
.
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Taking into account (II.17), we deduce that dr(2π, r0)
dr0

∣∣∣∣∣
r0=r∗

̸= 1, and finally (γ2) is the

expected non-algebraic limit cycle. Obviously (γ2) lies inside (γ1) when r∗ < h. Since

the Poincaré return map do not possess other fixed points, the system (II.15) admits

exactly two limit cycles.

3.2 Application

For a = 2, b = c = 1
4 and h = 1 the system (II.15) becomes

ẋ = x (x2 + y2)2 (x2 + y2 − 1) +
(

9
4x

2 + 7
4y

2
)

(
1
4x− 1

2x
3 + 2x2y − 1

2xy
2 + 2y3 + 1

4x
5 + 1

2x
3y2 + 1

4xy
4
)
,

ẏ = y (x2 + y2)2 (x2 + y2 − 1) +
(

9
4x

2 + 7
4y

2
)

(
1
4y − 2x3 − 1

2x
2y − 2xy2 − 1

2y
3 + 1

4x
4y + 1

2x
2y3 + 1

4y
5
)
.

(II.28)

This system possesses two limit cycles : the circle (Γ1) : x2 + y2 − 1 = 0 surrounding

a transcendental limit cycle (Γ2) explicitly given in polar coordinates (r, θ) by the

equation

r (θ, r∗) =
 exp (φ(θ))

(
r2

∗
r2

∗−1 + 1
4
∫ θ

0 exp (−φ(s)) ds
)

−1 + exp (φ(θ))
(

r2
∗

r2
∗−1 + 1

4
∫ θ

0 exp (−φ(s)) ds
)


1
2

with φ(θ) =
∫ θ

0
ds

2+ 1
4 cos 2s

and r∗ =
 heφ(2π)

(
c
∫ 2π

0 exp(−φ(s))ds

)
−1+eφ(2π)

(
1+c

∫ 2π

0 exp(−φ(s))ds

)
1
2

≃ 0.80204, see figure

(II.2).
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Figure II.2: Two limit cycles for system (II.28).

4 Discussions and conclusions

Although the integrability of the differential system is not an easy task. We have

succeeded in constructing some classes of integrable differential systems with explicit

non-algebraic limit cycle. First, we have a quartic polynomial differential systems

with unstable node, we give the exact expression of the first integral. On the other

hand, we show the existence of a limit cycle which is not algebraic. Secondly we have

studied a new family of polynomial planar differential systems of degree seven with a

non-elementary point at the origin. We show that under certain conditions this family

is transformed into a Riccati type equation. This allowed us to determine the first

integral, and to show that this family admits two limit cycles one is algebraic and the

other is not algebraic.
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III. LIMIT CYCLES FOR DISCONTINUOUS PIECEWISE DIFFERENTIAL SYSTEMS
FORMED BY AN ARBITRARY LINEAR SYSTEM AND A CUBIC ISOCHRONOUS CENTER

1 Preface

The study of the discontinuous piecewise differential systems, more recently also

called Filippov systems, has attracted the attention of the mathematicians during

these past decades due to their applications. These piecewise differential systems in the

plane are formed by different differential systems defined in distinct regions separated

by a straight line. A pioneering work on this subject was due to Andronov, Vitt and

Khaikin in 1920’s, and later on Filippov in 1988 provided the theoretical bases for this

kind of differential systems. Nowadays a vast literature on these differential systems is

available.

There are many papers studying planar piecewise linear differential systems with two

zones (see, e.g., [15, 16, 17, 51, 56, 57] and references therein). For the discontinuous

planar nonlinear differential systems there are several papers studying the number of

limit cycles (see [12, 24, 33, 40, 50] and references therein). Note that for the piecewise

cubic polynomial differential system, there are two recent papers see [23, 42] obtaining

at least 18 and 24 small limit cycles, respectively.

Another interesting and natural problem is to express analytically the limit cycles.

Nevertheless, in most of these papers explicit limit cycles do not appear. The present

paper is a contribution in that direction, motivated by the recent publication of some

research papers exhibiting planar polynomial systems with algebraic or non-algebraic

limit cycles given analytically (see, e.g., [15, 16, 22, 53]).

In this chapter, we analyse the version of Hilbert’s 16Th problem for a piecewise

differential system in the plane for a particular case. We estimate the maximum

number of crossing limit cycles for a planar piecewise differential system separated by

straight line Σ and formed by two regions. More precisely, we study a class of planar

discontinuous piecewise differential systems with two linearity regions separated by a

straight line Σ = {(x, y) ∈ R2 : x = 0}. We assume that the two linearity regions in
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the phase plane are the left and right half-planes

ΣL = {(x, y) ∈ R2 : x < 0}, ΣR = {(x, y) ∈ R2 : x > 0},

formed by an arbitrary linear differential system and by cubic systems with

homogeneous nonlinearity with an isochronous center at the origin. We can write

such systems as

ẋ = −y + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

ẏ = x+ b30x
3 + b21x

2y + b12xy
2 + b03y

3,
in ΣR,

ẋ = αx+ βy + γ,

ẏ = ηx+ δy + ξ,
in ΣL,

(III.1)

where α, β, γ, η, δ, ξ and aij, bij for i, j ∈ {0, 1, 2, 3} , i+ j = 3 are the real constants.

Consider the piecewise differential systems (III.1). In order to state precisely our

results, we introduce first some notations and definitions. In accordance with Filippov

[35], we distinguish the following open regions in the discontinuity set Σ.

1. Crossing region:

Σc = {(0, y) ∈ Σ :
(
a03y

3 − y
)

(βy + γ) > 0}, (III.2)

2. Sliding region:

Σs = {(0, y) ∈ Σ :
(
a03y

3 − y
)

(βy + γ) ≤ 0}. (III.3)

As usual, isolated periodic orbits are called limit cycles. There are two types of limit

cycles ′′ crossing and sliding ones ′′ in the planar discontinuous piecewise differential

systems. The first type of the limit cycles contains in some arc of discontinuity lines

that separate the different differential systems (for more detail see [61]), and the second

type contains only isolated points of the lines of discontinuity. But we shall work only
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with crossing limit cycles. An equilibrium point is called a real (resp. virtual) singular

point of the right system of (III.1) if this point locates in the region ΣR (resp. ΣL).

A similar definition can be done for the left system of (III.1).

The linear differential system that we consider in the second half-plane ΣL is either

a focus (we include in this class the centers), or a saddle, or a node with different

eigenvalues, or node with equal eigenvalues whose linear part does not diagonalize, or

linear without equilibrium points. Note that if a piecewise differential system with two

pieces separated by a straight line has a star node (node with equal eigenvalues whose

linear part diagonalize), this prevents the existence of periodic orbits.

2 Canonical forms

We assume that the discontinuous piecewise differential systems are formed by an

arbitrary linear differential system and a cubic system with homogeneous nonlinearity

with an isochronous center at the origin.

A center of a planar polynomial differential system is said isochronous if there exists a

neighborhood of this point such that all periodic orbits in this neighborhood have the

same period. Due to Theorem 11.1 of [28], a cubic polynomial differential system with

homogeneous nonlinearity and with an isochronous center at the origin has one of the
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following canonical forms

(S1) :


ẋ = −y − 3xy2 + x3,

ẏ = x+ 3x2y − y3.

(S2) :


ẋ = −y + x2y,

ẏ = x+ 3xy2.

(S3) :


ẋ = −y (1 + 3x2) ,

ẏ = x (1 + 2x2 − 9y2) .

(S4) :


ẋ = −y (1 − 3x2) ,

ẏ = x (1 − 2x2 + 9y2) .

It is known that system (S1) has the first integral

H1 (x, y) = (x2 + y2)2

1 + 4xy . (III.4)

The period annulus of this system is given by:

{
(x, y) ∈ R2 : H1 (x, y) = h1, h1 ∈ (0,+∞)

}
.

System (S2) has the first integral

H2 (x, y) = x2 + y2

1 + x2 . (III.5)

The period annulus of this system is given by:

{
(x, y) ∈ R2 : H2 (x, y) = h2, h2 ∈ (0,+∞)

}
.

System (S3) has the first integral

H3 (x, y) = (x+ 2x3)2 + y2

(1 + 3x2)3 . (III.6)

The period annulus of this system is given by:
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{
(x, y) ∈ R2 : H3 (x, y) = h3, h3 ∈

(
0, 4

27

)}
,

System (S4) has the first integral

H4 (x, y) = (x− 2x3)2 + y2

(1 − 3x2)3 . (III.7)

The period annulus of this system is given by:

{
(x, y) ∈ R2 : H4 (x, y) = h4, h4 ∈ (0,+∞)

}
.

The following lemma provides a normal form for an arbitrary linear differential system

having a real focuss (resp. a center), saddle, node with different eigenvalues and

non-diagonalizable node with equal eigenvalues, respectively

Lemma 38 . i) A linear differential system having a focus (resp. a center) can be

written as

ẋ = αx+ βy + γ, ẏ = − 1
β

(
(α− λ)2 + ω2

)
x+ (2λ− α) y + ξ, (III.8)

with ω > 0, β ̸= 0, λ ̸= 0 (resp. ω > 0, β ̸= 0 and λ = 0). Moreover, when λ ̸= 0 this

system has the first integral

Hf (x, y) = (
(
ω2 + (α− λ)2

)
x2 + 2β (α− λ)xy + β2y2 + 2λγ((α−λ)2+ω2)+βξ(αλ−λ2−ω2)

λ2+ω2 x

+2β
(
γ + λ(βξ−γ(2λ−α))

λ2+ω2

)
y + γ2((α−λ)2+ω2)+βξ(2γ(α−λ)+βξ)

λ2+ω2 )

× exp
(

−2λ
ω

arctan
(

ω((λ2+ω2)x+2λγ−αγ−βξ)
(λ2+ω2)(α−λ)x+β(λ2+ω2)y+(ω2−λ2+αλ)γ+βλξ

))
.

(III.9)

and if λ = 0, the first integral of (III.8) is

Hc (x, y) =
(
ω2 + α2

)
x2 + 2βαxy + β2y2 − 2βξx+ 2βγy.

ii) A linear differential system having a saddle (resp. a node with different eigenvalues)
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(resp. a non-diagonalizable node with equal eigenvalues) can be written as

ẋ = αx+ βy + γ, ẏ = 1
β

(
ρ2 − (α− r)2

)
x+ (2r − α) y + ξ, (III.10)

withβ ̸= 0 and ρ2 > r2 > 0 ( resp. β ̸= 0 and r2 > ρ2 > 0) (resp. β ̸= 0, r ̸= 0 and

ρ = 0). Moreover, when ρ ̸= 0 this system has the first integral

Hs,n(x, y) =
(
(α− r − ρ)x+ βy + γ + βξ−γ(2r−α)

r−ρ

) (
(α− r + ρ)x+ βy + γ + βξ−γ(2r−α)

r+ρ

) ρ−r
r+ρ ,

(III.11)

when ρ = 0, the first integral of (III.10) is given by

Hn′ (x, y) = 1
r (r − δ)x+ βry + rγ + βξ − γδ

exp
(

r2x− βξ + γδ

r (r − δ)x+ βry + rγ + βξ − γδ

)
.

(III.12)

Proof. Consider the general linear differential system

ẋ = αx+ βy + γ, ẏ = ηx+ δy + ξ. (III.13)

Its eigenvalues are given by λ1,2 = 1
2

(
α + δ ±

√
(α− δ)2 + 4βη

)
.

i) We know that system (III.13) has a focus if 1
2(α+δ) = λ and (α− δ)2 +4βη = −4ω2

for some ω > 0, βη < 0 and λ ∈ R, then δ = 2λ − α and η = − 1
β
((α − λ)2 + ω2).

Therefore, we obtain system (III.8).

ii) The linear differential system (III.13) has a saddle if 1
2 (α + δ) = r and (α− δ)2 +

4βη = 4ρ2 for some r2 < ρ2, then α = 2r − δ and η = − 1
β

(
(r − δ)2 − ρ2

)
. Therefore,

we obtain system (III.10).

Analogously to the previous case, the linear differential system (III.13) has a node

with different eigenvalues if 1
2 (α + δ) = r and (α− δ)2 + 4βη = 4ρ2 for some r2 > ρ2,

then α = 2r − δ, η = − 1
β

(
(r − δ)2 − ρ2

)
.

We know that system (III.13) has a non-diagonalizable node with equal eigenvalues

if (α− δ)2 + 4βη = 0 and 1
2 (α + δ) = r ̸= 0, then δ = 2r − α and η = − 1

β
(r − δ)2.

58



III. LIMIT CYCLES FOR DISCONTINUOUS PIECEWISE DIFFERENTIAL SYSTEMS
FORMED BY AN ARBITRARY LINEAR SYSTEM AND A CUBIC ISOCHRONOUS CENTER

Therefore, we obtain system (III.10) with ρ = 0.

It is clear that Hf , Hc, Hs,n, and Hn′ are first integrals of systems (III.8), (III.8)

with λ = 0, (III.10) with ρ ̸= 0 and (III.10) with ρ = 0, respectively. In fact, all the

following equations are satisfied:

dHi

dt
= ẋ

∂Hi

∂x
+ ẏ

∂Hi

∂y
≡ 0, i = f, c, s, n, n′.

The following Lemma provides a first integral for a linear differential system without

equilibrium points.

Lemma 39 [17]. A linear differential system without equilibrium points can be written

as

ẋ = ax+ by + c, ẏ = µax+ µby + d, (III.14)

where a, b, c, µ and d are real constants such that d ̸= µc and µ ̸= 0. Moreover, this

system has the first integral

Hw (x, y) =


bµ2x2 − 2bµxy − 2dx+ by2 + 2cy if a+ bµ = 0,

((a+ bµ) (ax+ by) + ac+ bd) e
a+bµ
d−cµ

(µx−y) if a+ bµ ̸= 0.
(III.15)

Remark 40 . According to Lemma 39 and Lemma 38 , it seems clear that limit cycles

(if exist) of systems (III.1) are algebraic, when the left subsystem of (III.1) is one of

the following types:

-a linear center;

-a linear saddle;

-a linear node with different eigenvalues;

-a linear system without equilibria (III.14) with a+ bµ = 0.

While that limit cycles (if exist) are non-algebraic when the left subsystem of (III.1)
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is one of the following types:

-a linear focus;

-a non-diagonalizable node with equal eigenvalues;

-a linear system without equilibria (III.14) with a+ bµ ̸= 0.

3 Statement of the main results

The main result is the following:

Theorem 41 . The following statements hold for the discontinuous piecewise

differential systems (III.1)

(1) if (III.1) is of the type linear focus and cubic isochronous center at the origin, then

the piecewise differential systems (III.1) have at most two crossing limit cycles.

Moreover, these limit cycles, if exist are non-algebraic and there are system of

this type with one or two limit cycles.

(2) if (III.1) is of the type linear center and cubic isochronous center at the origin,

then the piecewise differential systems (III.1) have no crossing limit cycles.

(3) if (III.1) is of the type linear saddle and cubic isochronous center at the origin,

then the piecewise differential systems (III.1) have at most one crossing limit

cycle. Moreover, this limit cycle, if exists, is algebraic and there are systems of

this type with one limit cycle.

(4) if (III.1) is of the type linear node with different eigenvalues and cubic isochronous

center at the origin, then the piecewise differential systems (III.1) have at most

one crossing limit cycle. Moreover, this limit cycle, if exists, is algebraic and there

are systems of this type with one limit cycle.

(5) if (III.1) is of the type non-diagonalizable linear node with equal eigenvalues and

cubic isochronous center at the origin, then the piecewise differential systems
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(III.1) have at most one crossing limit cycle. Moreover, this limit cycle, if exists,

is non-algebraic and there are systems of this type with one limit cycle.

(6) if (III.1) of the type linear without equilibrium point and cubic isochronous center

at the origin, then the piecewise differential systems (III.1) have at most one

crossing limit cycle. Moreover, this limit cycle, if there exists, is non-algebraic

and there are systems of this type with one limit cycle.

Theorem 41 will be proved in section 2.

In the next proposition, we show that there are discontinuous piecewise differential

systems (III.1) of the type linear real focus and cubic isochronous center at the origin,

with two non-algebraic crossing limit cycles.

Proposition 42 . The discontinuous piecewise differential systems (III.1) formed by

one of the four cubic isochronous centers (S1), or (S2), or (S3), or (S4), and a family

with one parameter of linear differential system of the form

ẋ = −2
5x+ βy − 1

8 , ẏ = − 1
50β

(52x+ 5) , (III.16)

with β ∈ (−∞,−0.563 86), have exactly two nested non-algebraic crossing limit cycles.

Moreover, these limit cycles are given by

Γ1 = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪
{
(x, y) ∈ ΣL : Hf1 (x, y) = 5. 974 1 × 10−2

}
,

Γ2 =
{
(x, y) ∈ ΣR : Hj (x, y) = h′

j

}
∪ {(x, y) ∈ ΣL : Hf1 (x, y) = 0.101 04} ,

where j ∈ {1, 2, 3, 4},

h1 =
(

0.139 44
β

)4
, h2 = h3 = h4 =

(
0.139 44

β

)2
,

h′
1 =

(
0.217 03

β

)4
, h′

2 = h′
3 = h′

4 =
(

0.217 03
β

)2

and

Hf1 (x, y) =
(26

25x
2 − 2

5βxy + 61
260x+ β2y2 − 11

52βy + 17
832

)
e− 2

5 arctan 520x+50
104x−520βy+55 .
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See Figure III.1.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure III.1: The two nested crossing limit cycles of systems (III.16) + (Sj) with β = −1.

In the next proposition, we show that there are discontinuous piecewise differential

systems (III.1) of the type linear virtual focus and cubic isochronous center at the

origin, with one non-algebraic crossing limit cycle.

Proposition 43 . The discontinuous piecewise differential systems (III.1) formed by

one of the four cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with

one parameter of linear differential system of the form

ẋ = −x+ βy + 1, ẏ = 1
β

(3βy − 5x+ 5) , (III.17)

with β ∈ (−∞,−5. 466 4), have exactly one non-algebraic crossing limit cycle.

Moreover, this limit cycle is given by

Γ1 = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪
{
(x, y) ∈ ΣL : Hf2 (x, y) = 5. 374 3 × 10−2

}
,
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where j ∈ {1, 2, 3, 4},

h1 =
(

2. 104 0
β

)4

, h2 = h3 = h4 =
(

2. 104 0
β

)2

and

Hf2 (x, y) =
(
5x2 − 4βxy − 10x+ β2y2 + 4βy + 5

)
e−2 arctan x−1

βy−2x+2 .

See Figure III.2.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4..

Figure III.2: The unique crossing limit cycle of systems (III.17) + (Sj) with β = −6.

In the next proposition, we show that there are discontinuous piecewise differential

systems (III.1) of the type linear saddle and cubic isochronous center at the origin,

with one algebraic crossing limit cycle.

Proposition 44 . The discontinuous piecewise differential systems (III.1) formed by

one of the four cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with

one parameter of linear differential system of the form

ẋ = x+ βy + 1
10 , ẏ = 1

4β
(3x+ 4) , (III.18)
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with β ∈ (−∞,−1. 405 6), have exactly one algebraic crossing limit cycle. Moreover,

this limit cycle is given by

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hs (x, y) = −3. 281 8} ,

where j ∈ {1, 2, 3, 4} , h1 =
(

0.541 03
β

)4
and h2 = h3 = h4 =

(
0.541 03

β

)2

Hs (x, y) =
(
−1

2x+ βy − 19
10

)3 (3
2x+ βy + 23

30

)
.

See Figure III.3.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure III.3: The unique crossing limit cycle of systems (III.18) + (Sj) with β = −2.

In the next proposition, we show that there are discontinuous piecewise differential

systems (III.1) of the type linear node with different eigenvalues and cubic isochronous

center at the origin; with one algebraic crossing limit cycle.

Proposition 45 . The discontinuous piecewise differential systems (III.1) formed by

one of the four cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with
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one parameter of linear differential system of the form

ẋ = 6x+ βy + 1, ẏ = 8
β
x+ 4

β
, (III.19)

with β ∈ (−∞,−4.500 1), have exactly one algebraic crossing limit cycle. Moreover,

this limit cycle is given by

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hn (x, y) = 36. 008} ,

where j ∈ {1, 2, 3, 4} , h1 =
(
−1. 732 1

β

)4
and h2 = h3 = h4 =

(
−1. 732 1

β

)2

Hn (x, y) = (2x+ βy + 3)
(4x+ βy + 2)2

4

.

See Figure III.4.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure III.4: The unique crossing limit cycle of systems (III.19) + (Sj) with β = −5.

In the next proposition, we show that there are discontinuous piecewise differential

systems (III.1) of the type linear non-diagonalizable node with equal eigenvalues and

cubic isochronous center at the origin, with one non-algebraic crossing limit cycle.
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Proposition 46 . The discontinuous piecewise differential systems (III.1) formed by

one of the four cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a family with

one parameter of linear differential system of the form

ẋ = x+ βy − 1, ẏ = − 1
β

(4x+ 3βy − 4) , (III.20)

with β ∈ (−∞,−4. 092 5), have exactly one non-algebraic crossing limit cycle.

Moreover, this limit cycle is given explicitly by

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hn′ (x, y) = 0.211 46} ,

where j ∈ {1, 2, 3, 4} , h1 =
(

1. 575 2
β

)4
and h2 = h3 = h4 =

(
1. 575 2

β

)2

Hn′ (x, y) = 1
2 − βy − 2xe

x−1
2−βy−2x .

See Figure III.5.

(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure III.5: The unique crossing limit cycle of systems (III.20) + (Sj) with β = −5.

Remark 47 The assumption on the parameter β in Propositions 42–46 is a necessary
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condition such that the cubic polynomial differential system with homogeneous

nonlinearity (S3) has an unbounded period annulus surrounding the origin (a necessary

condition is h3 <
4
27 which is also a necessary condition for the existence of crossing

limit cycles of systems (S3) + (III.16) − (S3) + (III.20).

For (Sj) + (III.16) − (Sj) + (III.20), j = 1 or 2 or 4, the assumption β < 0 is a

sufficient condition for the existence of crossing limit cycles because if β < 0, the two

intersection points (0, y0) and (0, y1) of the orbit arc in ΣR and the orbit arc in ΣL;

satisfy (−y) (βy + γ) ≤ 0. This implies that the two intersection points (0, y0) and

(0, y1) are sliding points and this prevents the existence of crossing limit cycle.

In the next proposition, we show that there are discontinuous piecewise differential

systems (III.1) of the type linear without equilibria and cubic isochronous center at

the origin, with one non-algebraic crossing limit cycle.

Proposition 48 . The discontinuous piecewise differential systems (III.1) formed by

one of the four cubic isochronous centers (S1) or (S2) or (S3) or (S4) and a class with

one parameter of linear differential system of the form

ẋ = (µ− 1)x− y − 1
100 , ẏ = µ (µ− 1)x− µy − µ+100

100 , (III.21)

when µ ̸= 0, have one explicit non-algebraic crossing limit cycle given by

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hw (x, y) = 0.995 01} ,

where j = j ∈ {1, 2, 3, 4} , h1 = (0.173 38)4 and h2 = h3 = h4 = (0.173 38)2 and

Hw (x, y) =
(101

100 + (1 − µ)x+ y
)
eµx−y.

See Figure III.6.

Remark 49 The assumption b < 0 in Proposition 48 is a necessary condition for

the existence of crossing limit cycle of the system because the crossing region of
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(a) Case when Sj = S1. (b) Case when Sj = S2.

(c) Case when Sj = S3. (d) Case when Sj = S4.

Figure III.6: The unique crossing limit cycle of systems (III.21) + (Sj) with µ = 3.

these systems is given by −by
(
y + 1

100

)
> 0, hence this last inequality implies that

the crossing region is an open interval
(
− 1

100 , 0
)

of the line Σ if b > 0 and is an

open interval (0,+∞) ∪
(
−∞,− 1

100

)
of the line Σ if b < 0. Since the intersection

points (0, y1) and (0, y2), where y1 = −0.173 38 and y2 = 0.173 38, are located in(
−∞,− 1

100

)
∪ (0,+∞), we have to choose b < 0.

4 Proof of the Theorem

We consider the discontinuous piecewise differential systems (III.1). If there exists a

limit cycle of the discontinuous piecewise differential systems (III.1), it must intersect

the discontinuity line Σ at two different points (0, y0) and (0, y1). In order to investigate

the limit cycles of these systems, we use the Poincaré map of (III.1).

We can define a right return map PR as y1 = PR(y0) and a left return map PL as

y2 = PL(y1). Composing the right return map PR with the left return map PL, the
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Poincaré map P of (III.1) can be constructed by PL and PR as follows:

y2 = P (y0) = PL ◦ PR(y0).

It is obvious that the zeros of equation

F (y0) = y0 − P (y0) ,

correspond to the periodic solution of the discontinuous piecewise differential systems

(see figure III.7).

x

y

x=0

y
0

y
1

y
2

P
L R

P

(a) The poincaré map of (III.1)

x

y

x=0

y
0

y
1

P
L RP

¡+ ¡ -

(b) The periodic solution of (III.1)

Figure III.7: The poincaré map and the periodic solution of (III.1)

In what follows, we give the detailed calculations for right and left return maps. For

determine the right return map PR, we use the first integrals for the right side systems

of (III.1). Assume that the orbits starting at the point (0, y0) go into the right zone

ΣR under the flow of the right differential systems. If these orbits can reach Σ again

at some point (0, y1), then (0, y0) and (0, y1) must satisfy the following equation

ej = Hj(0, y0) −Hj(0, y1) = 0, (III.22)

where j ∈ {1, 2, 3, 4} and Hj are given by (III.4), (III.5), (III.6) and (III.7)
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respectively. The equations III.22 for j ∈ {1, 2, 3, 4} are equivalent to

(y0 − y1) (y1 + y0) = 0. From this equation, the unique solution satisfying y0 < y1

is y1 = −y0. Then, we can define a right Poincaré map as

PR(y0) = −y0. (III.23)

Proof of statement (1) of Theorem 41. First, we consider the case where the left

subsystem of (III.1) is a linear focus type satisfying (III.8) with λ ̸= 0. To determine

the left return map PL, we use the parametric representation of the solution of the

linear differential system (III.8) in ΣL. Thus the solution of this system with λ ̸= 0

starting at the point (0, y1) is given by

xL (t) = eλt (λ (βξ − γ (2λ− α)) + (λ2 + ω2) (γ + βy1)) sinωt
ω (λ2 + ω2)

−
(βξ − γ (2λ− α))

(
etλ cosωt− 1

)
λ2 + ω2 ,

yL (t) =

(
γ
(
(α− λ)2 + ω2

)
+ βξα

) (
etλ cosωt− 1

)
β (λ2 + ω2) + eλt

(
cosωt− α− λ

ω
sinωt

)
y1

−(λ (α− λ) (γ (α− λ) + βξ) + (λγ − βξ)ω2) eλt sinωt
ωβ (λ2 + ω2) .

Then from the equation xL(t) = 0, we obtain

y1 (t) = −
ω (βξ − γ (2λ− α))

(
e−tλ − cosωt

)
+ (γ (λ2 + ω2) + λ (βξ − γ (2λ− α))) sinωt

β (λ2 + ω2) sinωt .

(III.24)

For this case, the parametric representation of the left return map PL is

PL(y1) =

(
γ
(
(α− λ)2 + ω2

)
+ βξα

) (
etλ cosωt− 1

)
β (λ2 + ω2) + eλt

(
cosωt− (α− λ)

ω
sinωt

)
y1

−(λ (α− λ) (γ (α− λ) + βξ) + (λγ − βξ)ω2) eλt sinωt
ωβ (λ2 + ω2) .

Since y1 = −y0, the zeros of function F are the zeros of the function G given by

G (t) = −y1 (t) − PL (y1 (t)) .
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When substituting the previous expressions of y1 (t) and PL (y1 (t)) into the equation

G (t) = 0, we obtain the equation

1
β (λ2 + ω2−)

((
γ
(
ω2 − λ2

)
+ λ (βξ + γα)

)
− ω (βξ − γ (2λ− α)) sinh λt

sinωt

)
= 0.

(III.25)

Now, it is easy to see that the existence of a crossing limit cycle is equivalent to the

existence of a positive t satisfying (III.25). For convenience, we use the notation

f1 (t) =
(
γ
(
ω2 − λ2

)
+ λ (βξ + γα)

)
− ω (βξ − γ (2λ− α)) sinh λt

sinωt . (III.26)

So, the way of solving equation (III.25 is the same as that of the equation f1 (t) = 0. In

order to investigate a number of solutions of f1 (t) = 0, and since f1 is a C1− function

in R⧹ {0}, we use the first derivative of the function f1 with respect to the variable t.

Simple calculations yield

f ′
1 (t) = −ω (αγ − 2λγ + βξ)

sin2 ωt
(λ sinωt cosh λt− ω cosωt sinh λt) .

Note that the zeros of f ′
1 (t) are the zeros of K1 (t), where

K1(t) = λ sinωt cosh λt− ω cosωt sinh λt.

Note that the left linear differential system (III.8) has the eigenvalues λ± i
√
ω, ω > 0,

at its singularity

(x0, y0) =
βξ − γ (2λ− α)

λ2 + ω2 ,−
γ
(
(α− λ)2 + ω2

)
+ βξα

β (λ2 + ω2)

 .
So, it follows that the frequency is ω, and consequently if (x0, y0) is a virtual focus,

we have t ∈
(
0, π

ω

)
and t ∈

(
π
ω
, 2π

ω

)
for (x0, y0) is a real focus.

i) If (x0, y0) is a virtual focus, i.e., if βξ − γ (2λ− α) > 0, we have K1(0) = 0 and

K1(t) ̸= 0 for t ̸= 0, since K ′
1(t) = (λ2 + ω2) sinωt sinh λt cannot vanish in

(
0, π

ω

)
, so,

f ′
1 (t) ̸= 0 for t ∈

(
0, π

ω

)
. Therefore, the equation f1 (t) = 0 with βξ − γ (2λ− α) > 0
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may have at most one solution in
(
0, π

ω

)
. Hence systems (III.1) has at most one crossing

limit cycle.

ii) If (x0, y0) is a real focus, i.e., if βξ− γ (2λ− α) < 0, and since K1( π
ω

) = ω sinh
(
λπ

ω

)
and K1(2π

ω
) = −ω sinh

(
λ2π

ω

)
and sign

(
K1( π

ω
)K1(2π

ω
)
)
< 0, while K ′

1(t) ̸= 0 in
(

π
ω
, 2π

ω

)
,

then K1 is a strictly monotone function in
(

π
ω
, 2π

ω

)
. Thus f ′

1 (t) = 0 has exactly one

solution in
(

π
ω
, 2π

ω

)
and consequently, the equation (III.26) has at most two zeros in(

π
ω
, 2π

ω

)
. From the above analysis, we conclude that systems (III.1) have at most two

crossing limit cycles when βξ − γ (2λ− α) < 0. Using the first integrals of both

differential systems of (III.1) and knowing that the non-algebraic crossing periodic

orbits passes through the points (0, y1i) and through the point (0, y0i), i = 1, 2 where

y1i is defined by (III.24) and y0i = −y1i. we obtain the following expressions:

Γi = {(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0i)}∪{(x, y) ∈ ΣL : H (x, y) = H (0, y0i)} , i = 1, 2,

where j ∈ {1, 2, 3, 4} and Hj are given by (III.4), (III.5), (III.6), (III.7) respectively.

Proof of statement (2) of Theorem 41. Using the notation introduced in the proof

of statements (1), we consider that the left subsystem of (III.1) is a linear center type

satisfying (III.8) with λ = 0. The solution of system (III.8) with λ = 0 starting at the

point (0, y1) is

xL (t) = 1
ω2 ((αγ + βξ) + ω (γ + βy1) sinωt− αγ cosωt− βξ cosωt) ,

yL (t) = (γ (α2 + ω2) + βξα) (cosωt− 1)
βω2 +

(
cosωt− α

ω
sinωt

)
y1 + ξ sinωt

ω
.

Then, from equation xL(t) = 0, we obtain

y1 (t) = −((βξ + γα) + γω sinωt+ (−γα− βξ) cosωt)
βω sinωt .
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For this case, the parametric representation of the left return map PL is

PL(y1) = (γ (α2 + ω2) + βξα) (cosωt− 1)
βω2 +

(
cosωt− α

ω
sinωt

)
y1 + ξ sinωt

ω
.

Since y1 = −y0, substituting the previous two expressions into the equation G (t) =

−y1 (t) − PL (y1 (t)) = 0, we obtain 2
β
γ = 0. Hence, if γ ̸= 0, this last equality does

not hold, the equation F (y0) = 0 has no solutions and consequently, the discontinuous

piecewise differential systems (III.1) have no periodic solutions. If γ = 0, then G (t) = 0

for all t > 0, i.e., F (y0) = 0 has a continuum of solutions. So, the discontinuous

piecewise differential systems (III.1) either does not have periodic solutions, or it has

a continuum of periodic orbits, and consequently, these differential systems have no

limit cycles.

Proof of statements (3) and (4) of Theorem 41. Now, we assume that the left

subsystem of (III.1) is a linear system satisfying (III.10) with ρ ̸= 0. We recall that

if r2 > ρ2 > 0, then system (III.10) has a real or a virtual node with two different

eigenvalues, while if r2 > ρ2 > 0 the system has a real or a virtual saddle. We have

to study these cases simultaneously. To determine the left return map PL of (III.1),

we use the parametric representation of the solution of the linear differential system

(III.10) with ρ ̸= 0 in ΣL starting at the point (0, y1), this solution is

xL (t) = e(r+ρ)t (γ (α− r + ρ) + βξ + β (r + ρ) y1)
2ρ(ρ+ r) − βξ − γ (2r − α)

ρ2 − r2

+e
(r−ρ)t (γ (α− r − ρ) + βξ + β (r − ρ) y1)

2ρ(ρ− r) ,

yL (t) =
e(r+ρ)t

(
γρ2 − γ (α− r)2 + (βξ + β (r + ρ) y1) (ρ+ r − α)

)
2βρ (r + ρ)

−

(
γ (α− r)2 + 2βξr − βξ (2r − α) − γρ2

)
β (r2 − ρ2)

+
e(r−ρ)t

(
γ (α− r)2 − γρ2 + (βξ + β (r − ρ) y1) (α− r + ρ)

)
2βρ (r − ρ) .
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Hence, the left Poincaré map is written as follows:

PL(y1) =

(
γρ2 − γ (α− r)2 + (βξ + β (r + ρ) y1) (ρ+ r − α)

)
2βρ (r + ρ) e(r+ρ)t

+

(
γ (α− r)2 − γρ2 + (βξ + β (r − ρ) y1) (α− r + ρ)

)
2βρ (r − ρ) e(r−ρ)t

−γ (α− r)2 − γρ2 + βξ (α− r)
β (r2 − ρ2) ,

and from the equation xL(t) = 0, we obtain

y1 (t) = e(ρ+r)t (ρ− r) (γ (α− r + ρ) + βξ) − 2ρ (βξ − γ (2r − α))
β (ρ2 − r2) (e(r−ρ)t − e(r+ρ)t) (III.27)

+e
(r−ρ)t (r + ρ) (γ (α− r − ρ) + βξ)
β (ρ2 − r2) (e(r−ρ)t − e(r+ρ)t) .

But y1 = −y0, so this reduces the equation y0 − P (y0) = 0 to the form

1
β (ρ2 − r2)

((
ρ2 − r2

)
(−2γ) + 2r (βξ − γ (2r − α))

) sinh ρt
sinh rt−2ρ (βξ − γ (2r − α)) = 0.

(III.28)

For convenience, we use the notation

f2(t) =
(
2r (βξ − γ (2r − α)) − 2γ

(
ρ2 − r2

)) sinh ρt
sinh rt − 2ρ (βξ − γ (2r − α)) . (III.29)

Now, the way of solving (III.28) is equivalent to that of finding the solutions t of the

equation f2 (t) = 0. In order to investigate the number of the equation of f2 (t) = 0,

and since f2 is a C1− function in R⧹ {0}, we consider its first derivative. Simple

calculations yield

f ′
2(t) = −2r (βξ − γ (2r − α)) − 2γ (ρ2 − r2) (r cosh rt sinh ρt− ρ sinh rt cosh ρt)

sinh2 rt
.

Note that any zero of f ′
2 is a zero of K2, where

K2(t) = r cosh rt sinh tρ− ρ sinh rt cosh tρ.

Since K2(0) = 0 and K ′
2(t) = (r2 − ρ2) sinh rt sinh ρt ̸= 0 for any t > 0 (because r ̸= 0
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and ρ ̸= 0), we can conclude that equation (III.28) has at most one real solution,

and there are values of r, γ, ρ, β, ξ and α for which this solution exists. Hence systems

(III.1) have at most one crossing limit cycle. Using the first integrals of both differential

systems of (III.1) and knowing that the algebraic crossing periodic orbit passes through

the points (0, y0) and (0, y1), where y1 is defined by (III.27) and y0 = −y1, we get the

following expressions of the limit cycle when exist:

Γ = {(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0)} ∪ {(x, y) ∈ ΣL : H (x, y) = H (0, y0)} ,

where j ∈ {1, 2, 3, 4} and Hj are given by (III.4), (III.5), (III.6), and (III.7) respectively.

This completes the proof of statements (3) and (4) of Theorem 41.

Proof of statement (5) of Theorem 41. Now, we consider the case where the left

subsystem of (III.1) is a linear system satisfying (III.10) with ρ = 0. By an analogous

analysis of previous statements, the solution (xL(t), yL(t)) of system (III.10) with ρ = 0

which pass through the point (0, y1) is

xL (t) = ert (γ (2r − α) − βξ) − (γ (2r − α) − βξ)
r2 + tert (γ (α− r) + βξ + βry1)

(r) ,

yL (t) =
ert
(
γ (α− r)2 + β (αξ + r2y1)

)
−
(
γ (α− r)2 + βξ (α− r)

)
βr2

−
tert

(
γ (α− r)2 + β (α− r) (ξ + ry1)

)
βr

,

whence we get the following parametric representation for the left Poincaré map:

PL(y1) =
ert
(
γ (α− r)2 + β (αξ + r2y1)

)
−
(
γ (α− r)2 + βξ (α− r)

)
βr2 (III.30)

−
tert

(
γ (α− r)2 + β (α− r) (ξ + ry1)

)
βr

.
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From the equation xL(t) = 0, we obtain

y1 (t) = − 1
tβert

(
− 1
r2 (γ (2r − α) − βξ) + 1

r2 e
rt (γ (2r − α) − βξ) + t

r
ert (βξ − γ (r − α))

)
.

(III.31)

Using (III.30), (III.31), and taking into account that y0 = −y1 (t) and P (y0) =

PL(y1 (t)), the equation y0 − P (y0) = 0 become

1
βr

(
(γ (2r − α) − βξ) sinh rt

rt
+ γ (α− r) + βξ

)
= 0, (III.32)

the previous equation is equivalent to f3 (t) = 0, where

f3 (t) = sinh rt
rt

+ βξ − γ (r − α)
γ (2r − α) − βξ

. (III.33)

Now, the way of solving (III.32) is equivalent to that of finding the solutions t of

the equation f3 (t) = 0. The study of the maximum number of zeros of f3 (t) = 0 is

equivalent to finding of the maximum number of intersection points zi of the curve

F : y = sinh z
z

with the horizontal line L : y = − βξ−γ(r−α)
γ(2r−α)−βξ

.

It is easy to check that K3(z) = sinh z
z

is an even function and K3(z) is strictly increasing

for z > 0 and strictly decreasing for z < 0, and that lim
z→0

K3(z) = 1.

Clearly, we can choose the values of the parameters of system (III.10) with ρ = 0 such

that the straight line L intersects the curve F at either zero or one or at two points.

If L does not intersect F, then f3 (t) = 0 has no solution, and systems (III.1) has no

limit cycles.

If L intersects F in a unique point, then the intersection point is multiple to two, this

point should be y = 1 and z = 0. This implies that t = 0; again, systems (III.1) have

no limit cycles.

If there are two intersection points, says (z1, y
′
1) and (z2, y

′
2). Taking into account the

evenness of the function K3(z) = sinh z
z

, it follows that z1 = −z2 and y′
1 = y′

2. So, the
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equation f3 (t) = 0 has at most one solution in t ∈ (0,+∞) for z = rt, and consequently,

a unique solution for y1 and y0. Hence, systems (III.1) has at most one crossing limit

cycle. Using the first integrals of both differential systems of (III.1) and knowing that

the algebraic crossing periodic orbit passes through the points (0, y0) and (0, y1) where

y1 is defined by (III.31) and y0i = −y1i, we obtain the following expressions for limit

cycle:

Γ = {(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0)} ∪ {(x, y) ∈ ΣL : H (x, y) = H (0, y0)} ,

where j ∈ {1, 2, 3, 4} and Hj are given by (III.4), (III.5), (III.6) and (III.7) respectively.

This completes the proof of the statement (5) of theorem 41.

Proof of statement (6) of Theorem 41. Finally, we consider the case when the

left subsystem of (III.1) is a linear system satisfying (III.14) having without equilibria,

neither real nor virtual. In a similar way as in the previous cases, the solution of system

(III.14) with a+ µb ̸= 0 starting at the point (0, y1), is

xL (t) =
b (cµ− d) (a+ bµ) t+

(
eat+btµ − 1

)
(ac+ bd+ b (a+ bµ) y1)

(a+ bµ)2 ,

yL (t) = a (d− cµ) t+ ay1

(a+ bµ) − µ (ac+ bd)
(a+ bµ)2 + eat+btµµ (ac+ bd+ b (a+ bµ) y1)

(a+ bµ)2 .

Then the left Poincaré map is

PL(y1) = a (d− cµ) t+ ay1

(a+ bµ) − µ (ac+ bd)
(a+ bµ)2 + eat+btµµ (ac+ bd+ b (a+ bµ) y1)

(a+ bµ)2 ,

and from equation xL(t) = 0, we obtain

y1 (t) = −

(
eat+btµ − 1

)
(ac+ bd) − b (a+ bµ) (d− cµ) t

b (eat+btµ − 1) (bµ+ a) , (III.34)

Since y1 = −y0, the equation y0 − P (y0) = 0 is equivalent to −y1 (t) − PL(y1 (t)) = 0.
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Substituting the previous two expressions into −y1 (t) − PL(y1 (t)) = 0, we obtain

− (d− cµ) t coth
(1

2 (a+ bµ) t
)

− 2
b (a+ bµ) (ac+ bd) = 0, (III.35)

or, equivalently f4 (t) = 0, where

f4 (t) = 1
2 (a+ bµ) t coth

(1
2 (a+ bµ) t

)
+ ac+ bd

b (d− cµ) . (III.36)

In order to investigate the number of solutions of f4 (t) = 0, we find by an analogous

analysis of the previous case, the number of intersection points zi of the curve F′ : y =

z coth(z) with the straight line L′ : y = ac+bd
b(cµ−d) .

The function K(z) = z coth z is even, strictly increasing for z > 0 and strictly

decreasing for z < 0, and K(0) = 0.

Clearly, the straight line L′ may intersect the curve F′ at either zero, one or two

points.

If L′ does not intersect F′, then the equation f4 (t) = 0 has no solution, and systems

(III.1) have no limit cycles.

If L′ intersects F′ at a unique point, the intersection point is multiple to two, this

point should be y = 0 and z = 0. This implies that t = 0 (because a+ bµ ̸= 0); again,

systems (III.1) have no limit cycles.

If the intersection points are two, we denote them by (z1, y
′
1) and (z2, y

′
2). Since

K3(z) = z coth z is an even function and the the straight line L′ is horizontal, it

follows that z1 = −z2 and y′
1 = y′

2. So, equation (III.35) has at most one solution

t > 0 for z = 1
2t (a+ bµ), and consequently, a unique solution for y1 and y0 follows

from (III.34) and (III.23), respectively. To obtain in this way at most one limit cycle

for the discontinuous piecewise differential systems, we use the first integrals of both

differential systems knowing that the non-algebraic periodic orbit passes through the

points (0, y0) and (0,−y0), where y1 is defined by (III.34) and y0i = −y1i, we get the
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following expression:

Γ = {(x, y) ∈ ΣR : Hj(0, y) = Hj(0, y0)} ∪ {(x, y) ∈ ΣL : H (x, y) = H (0, y0)} ,

where j ∈ {1, 2, 3, 4} and Hj are given by (III.4), (III.5), (III.6) and (III.7) respectively.

Now, we consider system (III.14) with a + µb = 0. In this case, the solution of

system (III.14), starting at the point (0, y1), is

xL (t) = (c+ by1) t+ 1
2 (bd− bcµ) t2,

yL (t) = y1 + 1
2
(
bdµ− bcµ2

)
t2 + (byµ+ d) t.

If xL (t) = 0, we get

y1 (t) = − 1
2b (2c+ b (d− cµ) t) ,

and the parametric representation of the left Poincaré map is

PL(y1) = y1 + 1
2
(
bdµ− bcµ2

)
t2 + (by1µ+ d) t.

Hence y1 = −y0, the equation F (y0) = y0−P (y0) = 0 is equivalent to G (t) = −y1 (t)−

PL(y1 (t)) = 0. Substituting the previous two expressions of y1 (t) and PL(y1 (t)) in

G(t) = 0, we obtain 2
b
c = 0. Hence, if c ̸= 0, this last equality does not hold, and

F (y0) = 0 has no solutions and consequently, the discontinuous piecewise differential

systems (III.1) have no periodic solutions. If c = 0, then G (t) = 0 for all t > 0, i.e.,

F (y0) = 0 has a continuum of solutions. So, in this case, the discontinuous piecewise

differential systems (III.1) either do not have periodic solutions, or have a continuum

of periodic orbits, and consequently, these differential systems have no limit cycles. So,

statement (6) of theorem 41 is proved.
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5 Proof of propositions

Proof of proposition 42. We consider the piecewise differential systems (Sj)+(III.16)

with j = 1 or 2 or 3 or 4. We remark that the equilibrium point
(
− 5

52 ,
9

104β

)
of system

(III.16) has as eigenvalues −1
5 ± i. So, this equilibrium point a real focus. The systems

(Sj) + (III.16) have the first integral

Hf1 (x, y) =
(26

25x
2 − 2

5βxy + β2y2 61
260x+ −11

52βy + 17
832

)
e− 2

5 arctan 520x+50
104x−520βy+55 ,

when x ∈ ΣL, and the first integral Hj are given by (III.4),(III.5), (III.6) and (III.7)

respectively when x ∈ ΣR.

For the piecewise differential systems (Sj) + (III.16) with j ∈ {1, 2, 3, 4}, the

function (III.26) becomes

f1 (t) =
10 sinh 1

5t+ 11 sin t
100 sinh 1

5t

The equation f1 (t) = 0 has exactly two positive zeros t1 ≃ 4. 143 8 and t2 ≃ 4. 749 2,

which gives using (III.24), two values of y1: y11 = −0.139 44
β

and y12 = −0.217 03
β

. Since,

we get y0 = −y1, we have y01 = 0.139 44
β

and y02 = 0.217 03
β

. Thus, these two solutions

will correspond to the isolated periodic orbits Γ1 and Γ1 of systems (Sj) + (III.16),

i.e., to two limit cycles of those systems. The smallest one Γ1 intersects the switching

line Σ at the points (0, y01) and (0, y11) and the biggest limit cycle Γ2 intersects the

switching line Σ at the points (0, y02) and (0, y12). Straightforward computations show

that the solution of (Sj) + (III.16) with j = 1 or 2 or 3, or 4, passing through the

crossing points (0, y01) and (0, y11), correspond to

Γ1 = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪
{
(x, y) ∈ ΣL : Hf1 (x, y) = 5.974 1 × 10−2

}
,

where h1 =
(

0.139 44
β

)4
, h2 = h3 = h4 =

(
0.139 44

β

)2
, and the solution of (Sj) + (III.16),
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passing through the crossing points (0, y02) and (0, y12), correspond to

Γ2 =
{
(x, y) ∈ ΣR : Hj (x, y) = h′

j

}
∪ {(x, y) ∈ ΣL : Hf1 (x, y) = 0.101 04} ,

where h′
1 =

(
0.217 03

β

)4
, h′

2 = h′
3 = h′

4 =
(

0.217 03
β

)2
. Moreover, Γ1 and Γ2 are

non-algebraic and travel in a counterclockwise sense around the sliding segment

Σs =
{
(0, y) ∈ Σ : 0 ≤ y ≤ − 1

8β

}
.

See Figure (III.1).

Proof of proposition 43. We consider the piecewise differential systems (Sj)+(III.17)

with j = 1 or 2 or 3 or 4. The equilibrium point (1, 0) of system (III.17) has the

eigenvalues 1 ± i, so it is a virtual focus, those piecewise differential systems have the

first integral

Hf2 (x, y) =
(
5x2 − 4βxy + β2y2 − 10x+ 4βy + 5

)
e−2 arctan x−1

βy−2x+2 ,

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3 or 4, where Hj are given by

(III.4), (III.5), (III.6) and (III.7), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj) + (III.17) with j ∈ {1, 2, 3, 4}, the function

(III.26) becomes

f1 (t) = −2 sinh t− 4 sin t
sinh t .

From the equation f1 (t) = 0, we obtain the unique solution t = 1. 435 4. From this

value of t and using (III.24), we get the values y1 = −2. 104 0
β

, because y1 = −y0, then

y0 = 2. 104 0
β

. So, the discontinuous piecewise differential systems (Sj) + (III.17) have

exactly one crossing limit cycle. Straightforward computations show that the solution

of (Sj) + (III.17) passing through the crossing points (0, y0) and (0, y1) correspond to

Γ1 = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪
{
(x, y) ∈ ΣL : Hf2 (x, y) = 5. 374 3 × 10−2

}
,

where j ∈ {1, 2, 3, 4} , h1 =
(

2. 104 0
β

)4
and h2 = h3 = h4 =

(
2. 104 0

β

)2
. We note that this
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limit cycle is non-algebraic and travels in a counterclockwise sense, around the sliding

segment Σs =
{
(0, y) ∈ Σ : 0 ≤ y ≤ − 1

β

}
.

Proof of proposition 44. We consider the piecewise differential systems (Sj)+(III.18)

with j ∈ {1, 2, 3, 4}. Since the eigenvalues of the matrices of the linear differential

system (III.18) are 3
2 ,−

1
2 , this system has a real saddle at the equilibrium point(

−4
3 ,

37
30β

)
. The piecewise differential systems (Sj) + (III.18) with j = 1 or 2 or 3, or

4, have the first integral

Hs (x, y) =
(

−1
2x+ βy − 19

10

)3 (3
2x+ βy + 23

30

)
,

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3, or 4, where Hj are given by

(III.4), (III.5), (III.6) and (III.7), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj) + (III.18) with j ∈ {1, 2, 3, 4}, the function

(III.29) becomes

f2 (t) = 17
20

sinh t
sinh 1

2 t
− 2.

The unique solution of f1 (t) = 0 is t = 1. 171 4. From this value of t and using

(III.24), we get the values of y1 = −0.541 03
β

. Since y1 = −y0, we have y0 = 0.541 03
β

.

So, the discontinuous piecewise differential systems (Sj) + (III.18) have exactly one

crossing limit cycle. Straightforward computations show that the crossing limit cycle

passing through the crossing points (0, y1) and (0, y2) correspond to

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hs (x, y) = −3. 281 8} ,

where j = 1 or 2 or 3, or 4, h1 =
(

0.541 03
β

)4
and h2 = h3 = h4 =

(
0.541 03

β

)2
. Moreover,

this limit cycle is algebraic and the sliding region of systems (Sj) + (III.19) is defined

by Σs =
{
(0, y) ∈ Σ : 0 ≤ y ≤ − 1

10β

}
, which is inside the periodic orbit. Drawing the

orbit Γ we obtain the limit cycle in figure III.3, which travels in a counterclockwise

sense.
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Proof of proposition 45. We consider the piecewise differential systems (Sj)+(III.19)

with j = 1 or 2 or 3 or 4. The equilibrium point
(

1
2 ,−

4
β

)
of system (III.19) has

eigenvalues 4, 2, so, it is a virtual node. On the other hand, the piecewise differential

systems (Sj) + (III.19) with j ∈ {1, 2, 3, 4} have the first integral

Hn (x, y) = (2x+ βy + 3)
(4x+ βy + 2)2

4

,

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3, or 4, where Hj are given by

(III.4), (III.5), (III.6) and (III.7), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj) + (III.19) with j ∈ {1, 2, 3, 4}, the function

(III.29) becomes

f2 (t) = 20 sinh t
sinh 3t − 4.

Now, solving the equation f2 (t) = 0 with respect to the variable t, we get t = 0.658 48.

Using the expression of y1 given by (III.27) and taking into account that y1 = −y0, we

get y1 = −1. 732 1
β

, and y0 = 1. 732 1
β

. So, the discontinuous piecewise differential systems

(Sj) + (III.19) have exactly one crossing limit cycle, see Figure III.4. Straightforward

computations show that the crossing limit cycle passing through the crossing points

(0, y1) and (0, y2) correspond to

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hn (x, y) = 36. 008} ,

where j ∈ {1, 2, 3, 4} , h1 =
(
−1. 732 1

β

)4
and h2 = h3 = h4 =

(
−1. 732 1

β

)2
. Moreover, Γ

is non-algebraic and travels in a counterclockwise sense, around the sliding set Σs ={
(0, y) ∈ Σ : 0 ≤ y ≤ − 1

β

}
.

Proof of proposition 46. We consider the piecewise differential systems (Sj) + (III.20)

with j = 1 or 2 or 3 or 4. Since the eigenvalues of the matrices of the linear differential

system (III.20) is −1, this system has a virtual node with eigenvalue of multiplicity 2

whose linear part does not diagonalize at the equilibrium point (1, 0). The piecewise
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differential systems (Sj) + (III.20) with j = 1 or 2 or 3, or 4, have the first integral

Hn′ (x, y) = 1
2 − βy − 2xe

x−1
2−βy−2x ,

if x ∈ ΣL, and the first integral Hj with j = 1 or 2 or 3 or 4, where Hj are given by

(III.4), (III.5), (III.6) and (III.7), respectively, if x ∈ ΣR.

For the piecewise differential systems (Sj) + (III.20) with j ∈ {1, 2, 3, 4}, the function

(III.33) becomes

f3 (t) = 1
t

(sinh t− 2t) .

Now, solving f3 (t) = 0, we get t = 2. 177 3, substituting this value of t in the expression

of y1 given by (III.31) and taking into account that y1 = −y0, we get y1 = −1. 575 2
β

,

and y0 = 1. 575 2
β

. So, the discontinuous piecewise differential systems (Sj) + (III.20)

have exactly one crossing limit cycle, see Figure III.5. Straightforward computations

show that the crossing limit cycle passing through the crossing points (0, y1) and (0, y2)

correspond to

Γ = {(x, y) ∈ ΣR : Hj (x, y) = hj} ∪ {(x, y) ∈ ΣL : Hn′ (x, y) = 0.211 46} ,

where j ∈ {1, 2, 3, 4} , h1 =
(

1. 575 2
β

)4
and h2 = h3 = h4 =

(
1. 575 2

β

)2
.

Moreover, this limit cycle is non-algebraic and surrounds the sliding segment Σs ={
(0, y) ∈ Σ : 1

β
≤ y ≤ 0

}
counterclockwise.

Proof of proposition 48. We consider the piecewise differential systems (Sj) + (III.21)

with j ∈ {1, 2, 3, 4}. The planar linear differential system (III.21) has the first integral

Hw (x, y) =
(101

100 + (1 − µ)x+ y
)
eµx−y,

in ΣL and the cubic polynomial differential systems (Sj) with j ∈ {1, 2, 3, 4} have the

first integral Hj, where Hj are given by (III.4), (III.5), (III.6) and (III.7) with j = 1
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or 2 or 3 or 4, respectively, in ΣR. It is easy to see that (III.21) has no equilibria,

neither real nor virtual.

Then for the discontinuous piecewise differential systems (Sj) + (III.21), the function

(III.36) becomes

f4 (t) = t coth 1
2t− 101

50 .

This function f4(t) has exactly a unique positive root t = 0.346 76. From this value

of t and using (III.34), we get the values of y1 = 0.173 38. Since y1 = −y0, we have

y0 = −0.173 38. So, the discontinuous piecewise differential systems (Sj) + (III.21)

have exactly one non-algebraic crossing limit cycle, see Figure III.6. Straightforward

computations show that the crossing limit cycle passing through the crossing points

(0, y1) and (0, y2) correspond to

Γ = {(x, y) ∈ ΣR : Hj = hj} ∪ {(x, y) ∈ ΣL : Hw (x, y) = 0.995 01} ,

where j ∈ {1, 2, 3, 4} , h1 = (0.173 38)4 and h2 = h3 = h4 = (0.173 38)2 . This limit

cycle surrounds the sliding set Σs =
{
(0, y) ∈ Σ : −1

100 ≤ y ≤ 0
}
.

6 Discussions and conclusions

In this chapter, we studied the maximum numbers of crossing limit cycles for the

piecewise differential system separated by straight line and formed by an arbitrary

linear differential system and by cubic systems with homogeneous nonlinearity with an

isochronous center at the origin. We show that these systems may have at most zero

or one or two explicit algebraic or non-algebraic limit cycles depending on the type of

their linear part.
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Journal and Conference Papers Related to the Chapter

Jr) Limit Cycles for Piecewise Differential Systems Formed by an

Arbitrary Linear System and a Cubic Isochronous Center

Aziza BERBACHE, Rebeiha ALLAOUA, Rachid CHEURFA and Ahmed

BENDJEDDOU. "Limit Cycles for Piecewise Differential Systems Formed by an

Arbitrary Linear System and a Cubic Isochronous Center". Memoirs on Differential

Equations and Mathematical Physics, Volume 89, (2023), 17–38, see [18].
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Conclusion and Perspectives

The central theme of this thesis turns around an important aspect of

the qualitative theory of planar polynomial differential systems, that is the

occurrence of non trivial periodic solutions called limit cycles for planar

polynomial differential systems in the real plane. They remained the most

sought solutions when modelling physical systems in the plane. This work splits

into two major parts. In the first one, we have studied the existence and the

number of limit cycles for two classes of planar differential systems of degrees

four and seven respectively. When the limit cycles exist, they are explicitly

obtained via the integrability approach. The second part is concerned by the

study of crossing periodic orbits for some families of piecewise vector fields using

two important tools that are first integrals of each vector field that compose

these families and the other one is the Poincaré return map, which are separated

by a straight line x = 0 and formed by an arbitrary linear differential system

and a cubic polynomial differential system with homogeneous nonlinearity and

an isochronous center at the origin. We have shown that these systems may

have at most two explicit algebraic or non-algebraic limit cycles depending on
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Conclusion and Perspectives

the type of their linear part.

As a continuation of this work, it would be interesting to undertake a similar

task for systems of lower degrees and to see weather our results still hold. As

a second outcome, on can study the existence of periodic orbits and estimate

the number of limit cycles for discontinuous piecewise differential systems in

the case where these systems are separated by one or more continuous curves

homomorphic to a straight line and are composed both of an arbitrary linear

system and of a given quadratic one. Exploring a comparable investigation for

differential systems arising from various scientific disciplines would be also of

significant interest.
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Abstract

This thesis is concerned by the occurrence of non trivial periodic solutions
called limit cycles for polynomial differential systems in the real plane. This
work splits into two major parts. In the first one, we have studied the existence
and the number of limit cycles for two classes of planar differential systems
of degrees four and seven respectively. The second part is concerned by the
study of crossing limit cycles for a class of piecewise discontinuous differential
systems separated by a straight line and formed by arbitrary linear and cubic
parts with an isochronous center at the origin.

Keywords : Polynomial differential system, first integral, periodic orbit, limit
cycle, piecewise discontinuous differential systems, isochronous cubic center,
linear system, crossing limit cycle.

Résumé

Cette thèse s’intéresse à l’occurrence de solutions périodiques non triviales
appelées cycles limites pour les systèmes différentiels polynomiaux dans le
plan réel. Ce travail se compose de deux grandes parties. Dans la première,
nous avons étudié l’existence et le nombre de cycles limites pour deux classes
de systèmes différentiels planaires de degrés quatre et sept respectivement.
La deuxième partie concerne l’étude des cycles limites de croisement pour
une classe de systèmes différentiels discontinus par morceaux séparés par une
droite et formés par des parties arbitraires linéaires et cubiques avec un centre
isochrone à l’origine.

Mot-clé : Systèmes différentiels polynomiaux, intégrale première, orbite
périodique, cycle limite, systèmes différentiels discontinus par morceaux,
centre cubique isochrone, système linéaire, cycle limite de croisement.
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