
People's Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

 

Setif 1 University Ferhat Abbas 
Faculty of Sciences 
Department of Mathematics 

 

 

 

Doctoral thesis 

Domain : Mathematics and Computer Science  
Field : Mathematics 
Specialty : ODE and PDE 

 
 

Title : 
 

 QUALITATIVE STUDY OF SOME CLASSES OF 
KOLMOGOROV DIFFERENTIAL SYSTEMS  

 
Presented by  

 CHOUADER RIMA 

Supervisor : Pr. AHMED BENDJEDDOU   
 

 
In front of the jury composed of : 

Mr. RACHID  CHEURFA  MCA Setif 1 University Ferhat Abbas  President  

Mr. AHMED  BENDJEDDOU   Prof Setif 1 University Ferhat Abbas Supervisor 

Mr. NABIL  BEROUAL                MCA Setif 1 University Ferhat Abbas Examiner 

Mr. MOHAMED  GRAZEM     MCA Boumerdes University M’hamed Bouguara Examiner 

Mr. MOHAMED  AHMED BOUDREF  MCA Bouira University Akli Mohand Oulhaj  Examiner 

Mr. SALAH DRABLA   Prof Setif 1 University Ferhat Abbas Invited 

 
 
 

2023 / 2024 



 

Acknowledgments 

 
In the name of ALLAH the Merciful, Praise to Allah, Lord of the Worlds, 

Praise be to the Lord of all worlds. Prayers and peace be upon our Prophet, 

Muhammad, his family and all of his companions. 

 

Firstly, I would like to express my gratitude to my supervisor professor 

BENDJEDDOU AHMED for his guidance in my study and my research at 

the University Ferhat  Abbas  Sétif 1. His patience, encouragement and all 

kinds of support make me grow as a researcher. I truly appreciate the 

invaluable knowledge and experience provided over the last four years. His 

diligence and rigorous scholarship sets me a good example. I am very 

grateful for his tireless dedication to my thesis as well as his encouragement 

and help along the way. 

 

Secondly, I would like to thank members of my thesis committee: 

Mr.CHEURFA RACHID, from UFA Sétif 1 for agreeing to judge my 

work with the jury as a chairman. 
MCA. Mr. BEROUAL NABIL from UFA Sétif 1, MCA.GRAZEM 

MOHAMED, from University of M’hamed bouguara Boumerdes, MCA. 

BOUDRAF MOHAMED, from University of Akli mohand Oulhaj Bouira 
and professor DRABLA Salah, from UFA Sétif 1 for their agreeing to be the 

referees of my thesis. 

 

My special gratitude goes to my family: my parents  and to my brothers and 

my sisters for supporting me spiritually throughout writing this thesis and 

my life in general. 

 

Finally , I would like also to thank my second family. It would not be 

possible for me to finish this thesis without their full support and 

encouragement. I dedicate this thesis to my husband Hicham, and our 

daughter Sondos. 

 

 



 

 

 

 

 

 

Dedication 
 

 

 

This thesis is dedicated to: 

My parents Chouader Rachid and Saliha Guerniche. 

My big family Chouader. 

My husband Hicham and our daughter Sondos. 

To all those who encouraged me. 

 

 

 

 

 

 



Contents

List of Figures 1

List of publications 1

General Introduction 2

1 Preliminary on planar polynomial differential systems 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Polynomial Differential System . . . . . . . . . . . . . . . . . . 7
1.1.2 Solutions of Differential System . . . . . . . . . . . . . . . . . . 8
1.1.3 Existence and uniqueness of the solution . . . . . . . . . . . . . 9
1.1.4 Phase Portrait and Flow . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.6 Jacobian Matrix and Linearization of polynomial system . . . . 10
1.1.7 Invariant curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.8 Limit cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.9 Notion of integrability . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.10 Return map (Poincaré Map) . . . . . . . . . . . . . . . . . . . 19

1.2 Kolmogorov systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Prey-predator systems . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Lotka-Volterra prey-predator model . . . . . . . . . . . . . . . 22
1.2.3 Kolmogorov systems . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Poincaré Compactification . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Infinite Singular Points . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Kolmogorov differential systems with prescribed algebraic limit cy-
cles 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 The main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A class of integrable Kolmogorov systems with non-algebraic limit
cycle 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



CONTENTS 2

3.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Septic Kolmogorov system with non algebraic stable limit cycle 47
3.4.2 Septic Kolmogorov system with non algebraic unstable limit cycle 49
3.4.3 Non existence of limit cycle of Septic Kolmogorov system . . . 50

Conclusion and persepectives 51

Bibliography 52



List of Figures

1.1 Vector field. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 8
1.2 Asymptotic stability of equilibrium points.. . . . . . . . . .. . . . .. . . . . . 12
1.3 Stability of equilibrium points.. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Classification of limit cycles.. . . . . . . . . . . . . . . . . . . . . . . .. . . . . ..14
1.5 Limit cyle for a = −0.1 . . . . . . . . . . . . . . . . . . . . . . . . ... . .. . .. . 15
1.6 Limit cyle for a = 0.1 . . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . ..15
1.7 Existence of limit cycle located between C and C

′
.. . . . . .... . . . . . . .. .15

1.8 The Poincaré map. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . .20
1.9 The phase portrait in the Poincaré disk of system (1.4). . . . . . . . . . . .24
1.10 The local charts (Uk, φk) for k = 1, 2, 3 of the Poincaré sphere.. . . . . ... 26
1.11 The phase portrait in the Poincaré disk of system (1.8). . . . . . . . . . . .28

2.1 The phase portrait in the Poincaré disc of the polynomial differential system

(2.5) which present two limit cycles.. .. . . . . . . . . . . . . . . . .. .. . . .37
2.2 The phase portrait in the Poincaré disc of the polynomial differential system

(2.6) which present three cycle limit.. . . . . . . . . . . . . . . . . . .. . . . 38
2.3 The phase portrait in the Poincaré disc of the polynomial differential system

(2.7) which present one cycle limit.. . . . . . . . . . . . . . . . . . . . .. . . 39

3.1 Phase potrait of system (3.12) on the Poincaré disc.. . . . . . . .. . . . .. . . 48
3.2 Phase potrait of system (3.15) on the Poincaré disc.. . . . . .. . . . . . .. .. .50
3.3 Phase potrait of system (3.16) on the Poincaré disc.. . . . . . .. . . . . .. . 51

1



List of publications

1. Rima Chouader, Salah Benyoucef, and Ahmed Bendjeddou [34], Kol-
mogorov differential systems with prescribed algebraic limit cycles, Sib. Electron.

Math. Rep. 18 (2021), no. 1, 1—8.

2. Rima Chouader, Ahmed Bendjeddou, Salah Benyoucef, A class of inte-
grable Kolmogorov systems with non algebraic limit cycle. Transactions of A.

Razmadze Mathematical Institute.(Article submitted)

Conferences

1. IEEE International conference on recent advances in mathematics and informat-

ics (ICRAMI’2021) Tebessa, Algeria. On the non-existence of limit cycles for a

familly of kolmogorov systems.

2. The First International Workshop on Applied Mathematics (1st-IWAM′2022),
Constantine-Algeria. An integrable class of Kolmogorov systems transforms into

a riccati equation.

3. The First Conference on Mathematics and Applications of Mathematics (1st

CMAM 2021), Jijel,Algeria. On the non-existence of limit cycles in a class of

cubic kolmogorov systems.

4. 2nd National Seminaire of Mathematics, Mentouri University Constantine 1,

Algeria. Integrability of cubic Kolmogorov systems.

5. National Conference on Mathematics and Applications “NCMA 23”, University

Ferhat Abbas of Setif1, Algeria. Coexistence of limit cycle in a septic Kolmogorov

system enclosing a non-elementary singular point.

6. The Second National Conference on Mathematics and its Applications (2nd SC-

NMA 2022), Bordj Bou Arréridj, Algeria. Classes of polynomial differential

systems with algebraic limit cycles.

2



General Introduction

Differential systems are an important branch of mathematics. They model phenom-

ena resulting from practice, such as the interaction between two species in ecology

and the balance between supply and demand in economy. Generally they are used

in scientific fields such as: physics, biology, economics, mechanics, astronomy and in

many problems of chemisty. The significant development of the theory of dynamical

systems during this century has helped to develop methods of studying the properties

of their solutions.The direct solution to the differential system is usually diffi cult or

impossible. Since Andronov (1932), three different approaches have traditionally been

used to study dynamic systems: qualitative methods, analytical methods and numeri-

cal methods the most important of them are qualitative methods. This study makes it

possible to provide information on the behavior of the solutions of a differential system

without the need to solve it explicitly, and it consists in examine the properties and

characteristics of the solutions of this system, and to justify, among these solutions, the

existence or non-existence of an isolated closed curve shape, more precisely the limit

cycles, their number and their stability. A limit cycle is an isolated periodic solution

in the set of all periodic solutions. Several books have dealt with the qualitative study

of differential systems particularly ([5], [89], [65], [72], [88]).

In order to position our problem well, let us begin by giving a history. The concept

of limit cycles appeared for the first time in the famous articles of H. Poincaré [73].

Through his book “On curves inscribed by a differential equation”([73], [74], [75], [76]).

Published between 1881 and 1886. Henri Poincaré (1854-1912) paved the way for
the approach differential equations, where the effort is no longer focused on the direct

solution, but on the technical study of the solutions. Look at the problem from the

qualitative point of view, the method of study consists in studying the succession of

points. The intersection of a path with a plane perpendicular to it. He said that if a

the maximal solution of the equation

dy

dx
=
G (x, y)

F (x, y)
(1)

where F and G are polynomials of real variables (x, y) with real coeffi cients and any

3



General Introduction 4

degrees, remains bounded, then either this solution converges to an equilibrium point,

or its asymptotic behavior is a periodic function.

The Mathematician Ivar Bendixson (1861-1935) gave a rigorous proof of Poincaré’s
statement and extended it to the famous Poincaré-Bendixson theorem on the limit set

of trajectories of dynamical systems in a bounded region [9]. The mathematician

David Hilbert (1862-1943) presented, during the second congress. Mathematics In-
ternational (1900), 23 famous problems considered as the col-election having had the

most inuence in mathematics [53]. The second part of the sixteenth Hilbert’s prob-

lem poses the question of the maximum number and arrangement of isolated periodic

projections (limit cycles) for the system{
x′ = dx

dt = F (x, y)

y′ = dy
dt = G (x, y)

(2)

where F and G are polynomials of real variables (x, y) with real coeffi cients and any

degrees.his problem until today, not completely solved, has been the subject of several

works. We note Hn the maximum number of limit cycles of the system (2) .

Dulac (1870-1955) proposed in 1923 a proof ensuring that Hn is fini for all n

where n = max(deg(F ), deg(G)), but his proof had an error. There Dulac’s resolution

to this problem was made independently byMartinet & Mossy (1987), Ilyashenko
(1991) and Ecalle (1992). Petrovsky & Landis (1957) believed to find the value of
H2 but they noticed an error in their own demonstration before they were informed

by a counter example of Shi (1982) [81] in which a quadratic system has 4 cycles

boundaries. Thus, if Hn is a number ni for all n, we only know that H2 ≥ 4 [81],

H3 ≥ 13 [58], H3 ≥ 20 [51], H5 ≥ 28 [87], H6 ≥ 35 [86], H7 ≥ 50 [59]. Christopher
& Lloyd (1995) [36] gave a lower bound to the number Hn

Hn ≥ n2 ln (n) (3)

In mathematical biology, a model of a system of differential equations has been pro-

posed, independently, byAlfred James Lotka (1880-1949) in 1925 andVito Volterra
(1860-1940) in 1926, hence the name Lotka-Volterra. He stated a simple system of or-

dinary differential equations. Volterra considered x(t) and y(t) the densities of prey

and predators, and assuming linear behaviors and taking positive constants a, b, c and

d, he stated the following model{
x′ = x(a− by)

y′ = y(−c+ dx)
(4)

Later, Lotka—Volterra systems were generalized and considered in arbitrary dimen-

sion, i.e. Consequently, the applications of these systems started to multiply. New
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applications on population dynamics had been developed, but also these systems have

been used for modeling many natural phenomena, such as chemical reactions, plasma

physics or hydrodynamics just as other problems from social science and economics. In

view of this, it is clear that population models, in particular competition or predator—

prey models are important both in their original field and in their application to many

other problems from other areas.

This model does not presents any limit cycles, but it remains the starting point of

several models currently offered. Among these models is that of Kolmogorov (1903-

1987).

We are interested in some systems of ordinary differential equations planars of the

type {
x′ = F (x, y)

y′ = G (x, y)
(5)

and other systems modeling prey-predator problems of the Kolmogorov type{
x′ = xF (x, y)

y′ = yG (x, y)
(6)

where F,G are functions of class C1 on an open set of R2 in R.
Motivated by the work ([12], [13], [11], [15]) of ProfessorAhmed Bendjeddou and

all, as well as by his directives, we were able to make contributions by formulating
a few theorems concerning the existence, the number and the explicit expressions of

limit cycles of a few classes of differential systems of types (5) and (6).

There is an enormous amount of work focusing on the study of limit cycles for

systems of Kolmogorov type, see for example ([45], [49], [50], [52]), but very few concern

limit cycles expressed in an explicit way. The only known limit cycles were algebraic

and explicitly given, see for example the work of Bendjeddou and all ([11], [15]). In

this thesis we will focus on:

1) For a given algebraic curve, we exhibit the following Kolmogorov differential
system {

x′ = x (R (x, y)U − yΦ (x, y)Uy)

y′ = y (S (x, y)U + xΦ (x, y)Ux)
(7)

Where R (x, y) , S (x, y) ,Φ (x, y) and U (x, y) are polynomial functions. Our contri-

bution consist to show that the system (7) admits all the bounded components of

Γ = {(x, y) ∈ R2, U (x, y) = 0} as hyperbolic limit cycles if certain conditions on the
parameters are satisfied.

2) We are interested on the Septic Kolmogorov system of the form:{
x′ = (x+ p)P6 (x, y)

y′ = (y + q)Q6 (x, y)
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where

P6 (x, y) =

(
x (q + y)

(
ax4 + ay4 + 2bxy3 + 2bx3y

)
+cx(x+ p)(q + y)2 +

(
x2 + y2

) (
−4qy3 + x4 − 3y4

) )

Q6 (x, y) =

(
y (p+ x)

(
ax4 + ay4 + 2bxy3 + 2bx3y

)
+cy(q + y)(x+ p)2 +

(
x2 + y2

) (
4px3 − y4 + 3x4

) )

and p, q, a, b, c are real numbers. We show that under certain conditions on the

parameters, this class has non-algebraic limit cycle. The tool we use here is the notion

of integrability and the influence of the first integral on the solutions of systems.

This thesis is structured as follows, it is composed of:

• The first chapter, which is more of a glossary, brings together some basic con-
cepts, introductory and necessary for understanding the entire thesis.

• The second chapter is devoted to construction three classes of Kolmogorov type
systems of degree greater than n modeling the problems of prey-predator, where

it suffi ces to check certain conditions on the parameters to directly conclude the

existence and the number of limit cycles. In addition we have given the algebraic

expression of these limit cycles. In the future, we hope to extend this work for

non-algebraic limit cycles.

• The third chapter, we have studied the integrability and the existence of a non-
algebraic limit cycle of a class Kolmogorov differential systems of degree septic,

moreover, we characterized the conditions for the suggested system in order to

find the implicit expression of limit cycle and we study the system at infinity

by using the Poincaré compactification. We end our work with a conclusion and

some perspectives.



Chapter 1

Preliminary on planar
polynomial differential systems

1.1 Introduction

The main objective of the first chapter is to introduce some of the basic concepts

needed for the qualitative study of dynamics systems and present some results, which

we will use in the sequel. We start by definition of polynomial differential systems,

moreover, we will discuss the solution of differential system, invariant curve, inte-

grability, periodic solutions, limit cycles. We will recall the fundamentals theorems:

existence and uniqueness of the solution of an initial value problem and of limit cycles.

Finally, we will end this chapter with the concept of poincaré map and the method of

Poincaré compactification.

1.1.1 Polynomial Differential System

We consider a planar polynomial differential system of the form:{
x′ = dx

dt = P (x (t) , y (t))

y′ = dy
dt = Q (x (t) , y (t))

(1.1)

where P and Q are polynomials in the variables x and y.The system (1.1) is of degree

n where n = max(deg(P ), deg(Q)), if P and Q do not explicitly depend on t, then the

system (1.1) is said to be autonomous.

To know the aspect of the trajectories of the system (1.1) at least locally, we have

to find your equilibrium points. A point (x∗, y∗) ∈ R2 is called an equilibrium point

(singular point, critical point) of system (1.1) if{
P (x∗, y∗) = 0

Q(x∗, y∗) = 0

7
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In the literature equivalent mathematical objects to refer to this planar differential

systems appear: as vector field.

A vector field X is a region of the plane in which there exists at every point M of

Ω ⊆ R2 a vector ~V (M, t), i.e an application:

X : Ω ⊆ R2 → R2

M (x, y)→ ~V (M, t) =

(
P (x, y)

Q (x, y)

)

where P and Q are class C1 on Ω ⊆ R2. we can also write

χ = P (x, y)
∂

∂x
+Q (x, y)

∂

∂y

In this thesis, we assume that P and Q are C1 functions, then the Cauchy Lipchitz

conditions are satisfied at any point of system (1.1). So in each initial condition

(x0, y0), the system (1.1) has a unique solution.

Figure 1.1 : Vector field.

1.1.2 Solutions of Differential System

A solution to differential system (1.1) is an application

ϕ : I ⊆ R→ R2

t→ ϕ(t) = (x(t), y(t)),
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where I is a non-empty interval such that, for all t ∈ I, the solution
ϕ(t) = (x(t), y(t)) satisfies this system i.e: ϕ̇(t) = X(ϕ(t)). If ϕ1(t) = (x1(t), y1(t))

and ϕ2(t) = (x2(t), y2(t)) are two solutions on I1 and I2 respectively. We say that

ϕ2(t) is an extension of ϕ1(t) if I1 ⊂ I2 and ∀t ∈ I, ϕ1(t) = ϕ2(t). The solution

(x(t), y(t)) is called maximal solution on I if it does not admit any extension on I.

Definition 1 The solution ϕ(t) = (x(t), y(t)) is a periodic solution of the system (1.1)

if there exists a real number T > 0 such that ∀t ∈ I, ϕ(t + T ) = ϕ(t). The smallest

number T is called the period of the solution ϕ.

1.1.3 Existence and uniqueness of the solution

A solution to system (1.1) is a vector-valued function X(t) = (x(t), y(t)) with t in

some interval I ⊆ R, which satisfies

Ẋ =
dX

dt
= F (x, y) (1.2)

Or
dX

dt
−
(
P (x, y)

Q (x, y)

)
=

(
0

0

)
A solution is called maximal if no such extension exists on an interval J ⊃ I. The

interval I is said to be the maximal interval on which a solution to (1.2) exists. If the

solutions of differential system have the maximal interval equal to R then it is called
complete [5].

Remark 2 (Existence and Uniqueness Theorem [72]).

All the planar differential systems considering in our work are polynomial, means

that we do have always existence and uniqueness of solutions for all initial conditions;

i.e.; the initial value problem (1.2) with X(t0) = (x(t0), y(t0)), has a unique solution

X(t). Furthermore, F (x, y) is locally Lipschitz function, then we have always a maxi-

mal solution for system (1.1). By using the existence and uniqueness theorem, a self

intersection of a solution for an autonomous systems is impossible except the case

when the solution is periodic. We emphasize that this is not the case if we consider a

non-autonomous systems.

1.1.4 Phase Portrait and Flow

Although it is often impossible (or very diffi cult) to determine explicitly the solutions

of a differential equation, it is still important to obtain information about the behavior

of solutions, at least of qualitative nature.
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We consider a planar polynomial differential system (1.1). We think of this as

describing the motion of a point in the (x, y) plane (which in this context is called
the phase plane), with the independent variable as time. The path travelled by the
point in a solution is called a trajectory of the system.

A phase portrait is a geometric representation tric of trajectories of a dynamical

system in phases plane such that for a given initial conditions corresponds to a curve

or a point.

1.1.5 Flow

A dynamical system can be defined by a function Φt : R2 → R2 that makes X moving

(forward) to Xt, which is defined for all t ∈ R, gives the behaviour of X during the time

t starting at t = 0 (or at any initial condition t = t0) as Φ0 such that Φ0(X) = X.

Moving Xt backward gives naturally Φ−t the inverse of Φt. In the same manner,

moving Xt again by another elapsing time s gives Φt+s(X) = Φt(Φs(X)). The formal

definition of the function has these three properties is given as follows:

1. dΦt
dt (x, y) = (P (Φt(x, y)), Q (Φt(x, y))),

2. Φ0(x, y) = (x, y),

3. Φt+s(x, y) = Φt(Φs(x, y)),for all (x, y) ∈ R2 and s, t ∈ R.

1.1.6 Jacobian Matrix and Linearization of polynomial system

The most natural approach to study the behavior of the trajectories of a nonlinear

autonomous differential system, in the vicinity of a singular point, consists in reducing

to the associated linear system, then in making the link between the trajectories of

the two systems.

We consider the nonlinear system (1.1) near an equilibrium point (x∗, y∗), the

linearization of the system (1.1) is given in matrix form by:(
x′

y′

)
=

(
∂P
∂x (x∗, y∗) ∂P

∂y (x∗, y∗)
∂Q
∂x (x∗, y∗) ∂Q

∂y (x∗, y∗)

)(
x

y

)

The Jacobian matrix of the system (1.1) at a critical point (x∗, y∗) given by

A = J(x∗, y∗) =

(
∂P
∂x (x∗, y∗) ∂P

∂y (x∗, y∗)
∂Q
∂x (x∗, y∗) ∂Q

∂y (x∗, y∗)

)

Let λ1 and λ2 be the eigenvaluesof this matrix. We distinguish the different breaks

according to the eigenvalues λ1 and λ2 of the matrix J(x∗, y∗).
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(i) λ1 and λ2 are real nonzero and have different designs, the critical point (x∗, y∗)

is a saddle. It is still unstable.

(ii) λ1 and λ2 are real of the same sign

• If λ1 < λ2 < 0, the critical point (x∗, y∗) is a stable node.

• If 0 < λ1 < λ2, the critical point (x∗, y∗) is an unstable node.

• If λ1 = λ2 = λ, the critical point (x∗, y∗) is a proper node, it is stable if λ < 0

and unstable if λ > 0.

(iii) λ1 and λ2 are complex conjugates, ie ∀j = 1, 2, λj = αj + iβj and Im(λj) 6= 0,

then the critical point (x∗, y∗) is a focus, it is stable if Re(λj) < 0 and unstable if

Re(λj) > 0.

(iv) λ1 and λ2 are pure imaginary ie Im(λj) 6= 0 and Re(λj) 6= 0, ∀j = 1, 2, then

the critical point (x∗, y∗) is a center, it is stable.

Stability of equilibrium point

Any non-linear system can have several equilibrium positions which can be stable or

unstable, in some situations the stability of equilibrium required which is defined as

follows:

Let (x∗, y∗) be a point of equilibrium and X(t) = (x(t), y(t)) the solution of the

differential system (1.1) defined for all t ∈ R.

• An equilibrium point X∗ = (x∗, y∗) of system (1.1) is stable if

∀ε > 0, ∃σ > 0, ‖(x, y)− (x∗, y∗)‖ < σ =⇒ (∀t > 0, ‖X (t)−X∗‖ < ε) .

• An equilibrium point X∗ = (x∗, y∗) of system (1.1) is asymptotically stable if

it is stable and there exist σ > 0 such that if ‖(x, y)− (x∗, y∗)‖ < σ then

lim
t→∞
‖X (t)−X∗‖ = 0.

• An equilibrium point X∗ = (x∗, y∗) of system (1.1) is unstable if it is not stable.
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Figure 1.2: Asymptotic stability of

equilibrium points.

Figure 1.3: Stability of equilibrium

points.

1.1.7 Invariant curve

In the study of differential equations the search for invariants curves is essential. He

is indeed more interesting to consider the sets of the phase portrait which are not

transformed by ow into other sets over time, see for example ([30], [32]), and also are

used in the study of the existence and non-existence of limit cycles.

Definition 3 We say that a curve defined by U(x, y) = 0 is an invariant curve for

(1.1) if there exists a polynomial K(x, y) satisfying

P (x, y)
∂U

∂x
(x, y) +Q(x, y)

∂U

∂y
(x, y) = K(x, y)U(x, y) (1.3)

The polynomial K(x, y) is called a cofactor of the curve U.

• Equality (1.3) shows that on the invariant curve, the gradient
(
∂U
∂x (x, y), ∂U∂y (x, y)

)
of U is orthogonal to the vector field X = (P,Q), so at any point of the invariant

curve the vector field is tangent to this curve.

• An invariant curve U(x, y) = 0 is said to be algebraic curve of degree n, if U(x, y)

is a polynomial of degree n, otherwise we say that the curve is a non algebraic

curve.

• if the polynomial differential system (1.1) has an algebraic invariant curve

U(x, y) = 0 of degree n, then any cofactor is of degree at most n− 1.

Lemma 4 Let f, g ∈ C[x, y] of class C1. Then for the polynomial differential system

(1.1), fg = 0 is an algebraic invariant curve with cofactor Kfg if and only if f = 0

and g = 0 are algebraic curves invariant with Kf and Kg cofactors; respectively. Also,

Kfg = Kf +Kg.
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Proposition 5 Suppose U ∈ C[x, y] and let U = Un1
1 , ...Unrr r be its factorization

into irreducible factors over C[x, y].Then for a polynomial system (1.1), U = 0 is an

invariant algebraic curve with cofactor ku if and only if Ui = 0 is an invariant algebraic

curve for each i = 1, .....r with cofactor kui. Moreover ku = n1ku1 + ......+ nrkur .

Theorem 6 [48]We consider the system (1.1) and Γ(t) a periodic orbit of period T >

0. We assume that U : Ω ⊂ R2 → R is an invariant curve, Γ(t) = {(x, y) ∈ Ω :

U(x, y) = 0}, and K(x, y) ∈ C1 is the cofactor given in equation (1.3), of the invariant

curve U(x, y) = 0. Suppose that p ∈ Ω such that U(p) = 0 and ∇U(p) 6= 0, then

T∫
0

div(Γ(t))dt =

T∫
0

K(Γ(t))dt

The assumption ∇U(p) 6= 0 means that U does not contain singular points.

1.1.8 Limit cycles

We have seen that the solution tend towards a singular point, another possible behavior

for a trajectory is to tend towards a periodic movement in the case of a planar system,

that means that the trajectories tend towards what is called a limits cycles Γ =

{(x(t), y(t)), t ∈ [0, T ]} which is an isolated periodic solution in the set of all periodic
solutions of system. Isolated means that neighborhood trajectories are note closed,

they will either spiral away or towards the limit cycle.

• If a limit cycle is contained in a algebraic curve of the plan, then we say that it
is algebraic, otherwise it is called non algebraic.

• The limit cycle appear only in non-linear differential systems.

Stability of limit cycle

In [56], d. Jordan B. Smith that adjacent tracks they are not closed and act like

spirals approaching or moving away from them limit cycle when t→∞ is then a limit

cycle: stable, unstable, or nearly stable depending on whether the near curves point

to, away from, or two, respectively. These solutions are relatively of less importance

in comparison with the solution periodic.

a) The limit cycle Γ is stable (or attractive), if the interior and exterior trajectories

spirals tend towards the closed orbit when t→ +∞
b) The limit cycle Γ is unstable (or repulsive), if the interior and exterior trajec-

tories spirals tend towards the closed orbit when t→ −∞
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c) The limit cycle Γ is semi-stable, if the interior spiral trajectories tend towards

the closed orbit when t → +∞, the others (external) tend towards when t → −∞,
and viceversa.

Figure 1.4: Classification of limit cycles.

Example 7 We consider the following system:{
x′ = −y + ax

(
4− x2 − y2

)
y′ = x+ ay

(
4− x2 − y2

)
this system has a limit cycle Γ represented by

Γ(θ) = (2 cos θ, 2 sin θ)

because we have

div (P,Q) =
∂P

∂x
+
∂Q

∂y
= −4a

(
x2 + y2 − 2

)
and

T∫
0

div (Γ(t)) dt =

T∫
0

div (cos θ, sin θ) dt

= a

2π∫
0

− 4
(

(2 cos θ)2 + (2 sin θ)2 − 2
)
dθ

= −16πa.

So the cycle Γ(t) = (2 cos θ, 2 sin θ) is a unstable limit cycle if a > 0 and is a stable
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limit cycle if a < 0.

Figure 1.5 : Limit cyle for

a = −0.1.

Figure 1.6 : Limit cyle for

a = 0.1.

Criteria for the existence of limit cycles in the plane

In this subsection, we give some results which allow us it possible to prove the existence

or the non existence of limit cycles for a polynomial differential system (1.1).

Theorem 8 [46] Consider two closed curves C and C ′, one surrounding the other. If

in each point of C, the velocity vector field (P,Q) of the trajectory passing through it

is directed towards outside, and if at each point of C ′ it is directed inwards, then there

exists at least a limit cycle between C and C ′. See Figure 1.7.

Figure 1.7 : Existence of

limit cycle located between C

and C ′.
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Giacomini, Llibre and Viano in [45], presented a method to study the existence

and non-existence of limit cycles of a planar vector field, based on the following two

criteria:

Theorem 9 (Criterion1) [45] Let (P,Q) be a vector field of class C1 defined on a

non-empty open set D of R2, (x(t), y(t)) a periodic solution of period T of the system

(1.1) and K : D → R a C1 map such that

T∫
0

K(x(t), y(t))dt 6= 0

and U = U(x, y) a C1 solution of the linear partial differential equation

P (x, y)
∂U

∂x
(x, y) +Q(x, y)

∂U

∂y
(x, y) = K(x, y)U(x, y)

then the closed trajectory Γ = {(x(t), y(t)) ∈ D : t ∈ [0, T ]} is contained in Σ =

{(x, y) ∈ Ω : U(x, y) = 0} and Γ is not contained in a period annulus of (P,Q).

Moreover, if the vector field (P,Q) and the functions K and U are analytic, then Γ is

a limit cycle.

Theorem 10 (Criterion2) Consider the system (1.1) and assume that:

1. P,Q of class C1.

2. U = U(x, y) of class C1 (Ω) a solution of the partial differential equation:

P (x, y)
∂U

∂x
(x, y) +Q(x, y)

∂U

∂y
(x, y) =

(
∂P

∂x
(x, y) +

∂P

∂y
(x, y)

)
U(x, y)

If γ is a limit cycle, then is contained in

Σ = {(x, y) ∈ Ω : U(x, y) = 0}

Criteria for a non existence of limit cycles in the plane

One of the most important criterion in dynamical systems that permits us to confirm

the absence of limit cycles is the Poincar e-Bendixon Theorem known as Bendixon’s

Criterion [38],[66].

Theorem 11 (Bendixon’s criterion) [38] Let D be a connected domain of R2.

If the divergence
(
∂P
∂x + ∂Q

∂y

)
is nonzero and of constant sign on D, then the dif-

ferential system {
x′ = P (x, y) ,

y′ = Q (x, y)

does not admit a periodic solution entirely contained in D.
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Theorem 12 [33] If the system has no singular point, then it has no limit cycles.

A generalized form of Theorem 11 was introduced by Dulac (see [56]) which can

be given as follows:

Theorem 13 (Dulac’s criterion) [56] Let D be a simply connected domain of R2,

and let ψ be a class function C1 on D.

If the quantity
(
∂(ψP )
∂x + ∂(ψQ)

∂y

)
is nonzero and of constant sign on D, then the

differential system {
x′ = P (x, y) ,

y′ = Q (x, y)

does not admit a periodic solution entirely contained in D.

1.1.9 Notion of integrability

The aim of this section is to introduce the terminology of the notions of invariant curve

and the first integral, Integrating factors, Inverse integrating factor and Exponential

factor for real planar polynomial differential systems. For a detailed discussion of this

theory see [38].

First integral

Definition 14 We say that a non-locally constant C1 function H : Ω → R is a first
integral of the differential system (1.1) in Ω if H is constant on the trajectories of the

system (1.1) contained in Ω , i.e, if

dH

dt
(x, y) = P (x, y)

∂H

∂x
(x, y) +Q(x, y)

∂H

∂y
(x, y) ≡ 0

Moreover, H = k is the general solution of this equation, where k is an arbitrary

constant.And a system (1.1) is integrable in Ω if it has a first integral H in Ω.

Integrating factors

It is possible to deduce the expression for the first integral by means of two concepts

of factor of integration and factor of inverse integration.

Definition 15 Let Ω be an open subset of R2 and R : Ω → R be an analytic func-

tion which is not identically zero on The function R is an integrating factor of the
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differential system (1.1), or of on Ω if one of the following three equivalent conditions:

∂ (RP )

∂x
= −∂ (RQ)

∂y

div(RP,RQ) = 0

XR = −Rdiv(X)

on Ω. As usual the divergence of the vector field X is defined by

div (X) = div(P,Q) =
∂P

∂x
+
∂Q

∂y

It is clear that the function H satisfying{
x′ = RP = ∂H

∂y

y′ = RQ = −∂H
∂x

The first integral H associated to the integrating factor R is given by

H(x, y) = −
∫
R(x, y)P (x, y)dy + h(x)

Or

H(x, y) =

∫
R(x, y)Q(x, y)dx+ h(y)

Inverse integrating factor

The inverse integrating factor is among the tools that are used in the study of the

existence and non-existence of limit cycles.

Definition 16 A non-zero function V : Ω → R is said to be an inverse integrating

factor of system (1.1) if of class C1(Ω), not locally null and satisfies the following

linear partial differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V

It is easy to verify that the function R = 1
V defines an integrating factor in Ω\{V = 0}

of the system (1.1).

The following theorem, proved in [45], gives an important relation between a limit

cycle and an inverse integrating factor.

Theorem 17 [45] Let V : Ω→ R be an inverse integrating factor of system (1.1). If

Γ is a limit cycle of (1.1), then Γ is contained in the set

Γ = {(x, y) ∈ Ω : V (x, y) = 0}

Proposition 18 [45] If system (1.1) has two different integrating factors R1 and R2

on the open subset U ⊆ R2 and have no constant common factors other than 1, then

the function R = R1/R2 is also an integration factor on U \ {R2 = 0}.
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Exponential factor

There is another object, which is called exponential factor, which plays the same role

as the invariant algebraic curves to obtain a first integral of a polynomial differential

system (1.1).

Definition 19 Let h, g ∈ R[x, y] either be coprime polynomials in the ring R[x, y], or

h ≡ 1. Then, for the polynomial differential system (1.1), the function exp(g/h) is an

exponential factor if there is a polynomial K ∈ R[x, y] of degree at most m − 1, such

that:

P
∂
(
exp( gh)

)
∂x

+Q
∂
(
exp( gh)

)
∂y

= K
(
exp(

g

h
)
)

Then, for the exponential factor exp(g/h) we stated that K was its cofactor. Since the

exponential factor cannot vanish, it does not define invariant curves of the polynomial

system (1.1) .

1.1.10 Return map (Poincaré Map)

In 1881[74], Henri Poincaré defined the Poincaré map or first return map which is one

of the most basic tool for studying the stability of periodic orbits. The idea of the

Poincaré map is the following: If Γ is a periodic orbit of the system (1.1) through the

point X0 = (x0, y0) and Σ is a hyperplane perpendicular to Γ at X0, then for any

X = (x, y) ∈ Σ suffi ciently near X0, the solution of (1.1) through X at t = 0, will

cross Σ again at a point Π(X) near X0, (Figure 1.8). The mapping X → Π(X) is

called the Poincaré map. The next theorem establishes the existence and continuity

of the Poincaré map Π(X) and of its first derivative DΠ(X).

Theorem 20 [72] Let Ω be an open subset of R2. Suppose that Φt(X0) is a periodic

solution of (1.1) of period T and that the cycle

Γ = {X ∈ R2/X = (X0), 0 ≤ t ≤ T}

is contained in Ω. Let Σ be the hyperplane orthogonal to Γ at X0, i.e., let

Σ = {X ∈ Rn/(X −X0).(P (X0), Q(X0)) = 0}
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Figure 1.8 : The Poincare map.

Then there is δ > 0 and a unique function τ(x, y), defined and continuously differ-

entiable such that τ(X) = T and Φτ(X)(X) ∈ Σ for all (X) ∈ Nδ(X0).

Definition 21 Let Γ,Σ, δ and τ(X) be defined as in Theorem 20. Then for X0 ∈
Nδ(X0) ∩ Σ the function

Π(X) = Φτ(X)(X)

is called the Poincaré map for Γ at X0.

Theorem 22 [72] Let Γ(t) be a periodic solution of (1.1) of period T . Then the

derivative of the Poincaré map Π(s) along a straight line Σ normal to

Γ = {X ∈ R2/ X = Γ(t)− Γ(0), 0 ≤ t ≤ T}

at X = (0, 0) is given by

Π′(0, 0) = exp

T∫
0

div(P (Γ(t)) , Q (Γ(t)))dt

Stability of Poincaré map

The following corollary characterizes the stability of a limit cycle.

Corollary 23 [72] Under the hypotheses of Theorem 22. Consider Γ(t) is a periodic

orbit of system (1.1) of periodic T.
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1 If

T∫
0

div(P (Γ(t)) , Q (Γ(t)))dt < 0, then Γ is a stable limit cycle.

2 If

T∫
0

div(P (Γ(t)) , Q (Γ(t)))dt > 0, then Γ is a unstable limit cycle.

3 If

T∫
0

div(P (Γ(t)) , Q (Γ(t)))dt = 0, then Γ may be a stable, unstable or semi-stable

limit cycle or it may belong to a continuous band of cycles.

4 If

T∫
0

div(P (Γ(t)) , Q (Γ(t)))dt 6= 0, then Γ is a hyperbolic limit cycle.

1.2 Kolmogorov systems

Models are always a simplification of reality and will help to see a process from a global

perspective. If we would like to develop methods to analyze the dynamics of a system

with 2 differential equations, for example a prey-predator model. A prey-predator

model is a model where we consider two species, one of which is eaten by the other.

To model a population of foxes and rabbits that are interacting, it will be necessary

to introduce a system with 2 differential equations.

1.2.1 Prey-predator systems

Predator-prey models are arguably the building blocks of the bio- and ecosystems

as biomasses are grown out of their resource masses. Species compete, evolve and

disperse simply for the purpose of seeking resources to sustain their struggle for their

very existence. Depending on their specific settings of applications, they can take the

forms of resource-consumer, plant-herbivore, parasite-host, tumor cells (virus)-immune

system, susceptible-infectious interactions, etc. They deal with the general loss-win

interactions and hence may have applications outside of ecosystems. When seemingly

competitive interactions are carefully examined, they are often in fact some forms of

predator-prey interaction in disguise.

Consider two populations whose sizes at a reference time t are denoted by x(t),y(t),

respectively. The functions x and y might denote population numbers or concentra-

tions (number per area) or some other scaled measure of the populations sizes, but are

taken to be continuous functions. Changes in population size with time are described

by the time derivatives x′ = dx/dt and y′ = dy/dt , respectively, and a general model
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of interacting populations is written in terms of two autonomous differential equations{
x′ = xf(x, y),

y′ = yg(x, y).

(i.e., the time t does not appear explicitly in the functions xf(x, y) and yg(x, y)). The

functions f and g denote the respective per capita growth rates of the two species.

1.2.2 Lotka-Volterra prey-predator model

Alfred Lotka and Vito Volterra independently proposed in 1925-26 a simple system of

population dynamics. The Lotka-Volterra model describes the interactions between

a population of prey and a population of predators: the state variables are x the

number of prey and y the number of predators. It is assumed that in the absence

of predators, the prey population grows exponentially with an exponent a > 0 and

that in the absence of prey, the predator population decreases exponentially with an

exponent c < 0. When the two populations coexist, it is assumed that the number of

prey decreases and the number of predators increases proportionally to the product xy

with factors b < 0 and d > 0 respectively. We therefore obtain the following system:{
x′ = x (a− by)

y′ = y (−c+ dx)

Note that the disadvantage of this model is that it does not admit a limit cycle.This

is why the russian A.Kolmogorov generalized this model so that the new model admits

limit cycles.

1.2.3 Kolmogorov systems

Andrei Kolmogorov generalized the formalism introduced by Lotka and Volterra by

introducing the following type of systems:{
x′ = xf (x, y)

y′ = yg (x, y)

with the following conditions on the functions f and g assumed to be of class C1:

∂f

∂y
< 0,

∂g

∂y
< 0,

∂f

∂x
< 0 for large x

∂g

∂x
> 0

These conditions emerge when natural constraints are imposed on the dynamic

interaction between populations. Indeed, the first two conditions result from the hy-

pothesis that if the number of predators increases, then the growth rate of the two
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populations decreases. The last two conditions are suffi cient to guarantee the exis-

tence and uniqueness of a state of equilibrium where the two populations coexist, i.e.

a singular point of the dynamics in {x > 0, y > 0}
Since the paper of May (1972), determining conditions which guarantee uniqueness

of limit cycles in predator-prey models has become an outstanding problem in math-

ematical ecology. Recently, Kuang and Freedman (1988). Huang (1988), Huang and

Merrill (1989) provided some criteria for uniqueness of limit cycles in predator-prey

models. The idea of their criteria is based on a uniqueness theorem of limit cycles

for a general Lienard equation by Zhang (1958, 1986). In this paper, we propose a

general Kolmogorov-type model which consists of the above two and many other mod-

els (Cheng, 1981, for example) as special cases. We have proved the existence and

uniqueness theorems of limit cycles in the model. The method we used in the proof of

uniqueness of limit cycles is not dependent on Zhang’s theorem (see Huang. 1989).

The general model is {
x′ = φ (x) (F (x)− π (y))

y′ = ϕ (y) (ψ (x) + ξ (y))

where x is the prey density, y is the predator density, φ (x),ψ (x) are predator

response functions, π (y) , ϕ (y) , ξ (y) are predator φ (x)F (x) density functions, is the

“relative” or “per capita” growth function which governs the growth of the prey in

the absence of predators, φ (x)π (y) the predator,is the death rate of the prey due to

ϕ (y) (ψ (0) + ξ (y)) is the death rate of predator in the absence of prey.

One of the most classic examples of a Kolmogoroff type model is the model in-

troduced by Robert May in 1972. It is obtained from the Lotka-Volterra model by

replacing the exponential growth of the prey in the absence of the predator by growth

called logistic (implying asymptotic saturation) and by introducing a saturation effect

to the predator’s effi ciency.

Many researchers have been interested in the study of Kolmogorov systems,in par-

ticularment, integrability and the existence of limit cycles.The search for the explicit

expression of the limit cycles of differential systems is a diffi cult task,especially that of

Kolmogorov.To ourknowledge,all explicit expressions of limit cycles now a days were

only algebraic(see the works from Bendjeddou and all [11],[21],[22]).

Example 24 A general cubic kolmogorov system has the form{
x′ = (x+ p)

(
y (mx+ ny + l) + ax2 + bx

)
y′ = (y + q)

(
−x (mx+ ny + l) + ay2 + by

) (1.4)

This system can have one or more limit cycles,if we choose p = q = 4, a = n = 1, b =
1
4 ,m = 1

2 and l = 2 then the system (1.4) is reduced to the following system:
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{
x′ = (x+ 4)

(
y
(

1
2x+ y + 2

)
+ x2 + 1

4x
)

y′ = (y + 4)
(
−x
(

1
2x− y − 2

)
+ y2 + 1

4y
)

By using the translation : u = x+ 4, v = y + 4, we obtain{
u′ = u

(
u2 + 1

2uv −
39
4 u+ v2 − 8v + 31

)
v′ = v

(
6u− 15

4 v − uy −
1
2u

2 + v2 − 1
)

and back to the notation (x, y) the previous system become{
x′ = x

(
x2 + 1

2xy −
39
4 x+ y2 − 8y + 31

)
y′ = y

(
−1

2x
2 − xy + 6x+ y2 − 15

4 y − 1
)

This system have a limit cycle represented by the figure 1.9

Figure 1.9 : The phase portrait in the

Poincare disk of system (1.4)

1.3 Poincaré Compactification

In the definition of the Poincaré compactification we base ourselves on the reference of

[38]. In order to study the behavior of the trajectories of a planar differential system

near infinity it is possible to use a compactification. One of the possible constructions

relies on stereographic projection of the sphere onto the plane, in which case a single

“point at infinity” is adjoined to the plane, see Bendixson [9]. A better approach
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for studying the behavior of trajectories near infinity is to use the so called Poincaré

sphere, introduced by Poincaré [76]. It has the advantage that the singular points at

infinity are spread out along the equator of the sphere and are therefore of a simpler

nature than the singular points of the Bendixson sphere. However, some of the singular

points at infinity on the Poincaré sphere may still be very complicated.

In order to improve the construction, we introduce the so called Poincaré—Lyapunov

sphere, which is however based on a construction of a more abstract nature than the

previous ones. The singularities are also spread along the equator but are in general

simpler than for the Poincaré sphere. In the Poincaré—Lyapunov compactification we

prefer to work on a hemisphere, calling it as the Poincaré—Lyapunov disk, and similarly

talk about a Poincaré disk, if we restrict the Poincaré sphere to one of the hemispheres

separated by the equator that represents the points at infinity.

1.3.1 Infinite Singular Points

In order to draw the phase portrait of a vector field, we would have to work over the

complete real plane R2, which is not very practical. If the functions defining the vector

field are polynomials, we can apply Poincaré compactification, which will tell us how

to draw it in a finite region. Even more, it controls the orbits which tend to or come

from infinity.

In this part, we study the behavior of the trajectories of a planar differential systems

near infinity. Let X(x, y) = (P (x, y), Q(x, y)) represent a vector field to each system

which we are going to study its phase portraits, then for doing this we use the so called

a Poincaré compactification. We consider the Poincaré sphere S2 = {(x, y, z) ∈ R3

(x∗, y∗) : x2 + y2 + z2 = 1}, and we define the central projection f : T(0,0,1)S
2 → S2

(with T(0,0,1)S
2 the tangent space of S2 at the point (0, 0, 1) ), such that for each point

m ∈ T(0,0,1)S
2, T(0,0,1)S

2(m) associates the two intersection points of the straight line

which connects the point m and (0, 0)). The equator S2 = {(x, y, z) ∈ S2 : z = 0}
represent the infinity points of R2. In summary we get a vector field X ′ defined in S2

\ S1, which is formed by to symmetric copies of X, and we prolong it to a vector field

n(X) on S2. By studying the dynamics of n(X) near S1 we get the dynamics of X at

infinity. We need to do the calculations on the Poincaré sphere near the local charts

Ui = {Y ∈ S2 : yi > 0}, and Vi = {Y ∈ S2 : yi < 0} for i = 1, 2, 3.With the associated

diffeomorphisms Li : Ui → R2 and Gi : Vi → R2 for i = 1, 2, 3. After a rescaling in

the independent variable in the local chart (U1, L1) the expression for n(X) is

u′ = vn
[
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)]
, v′ = −vn+1P

(
1

v
,
u

v

)
, (1.5)
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in the local chart (U2, L2) the expression for n(X) is

u′ = vn
[(
P

(
u

v
,

1

v

))
− uQ

(
u

v
,

1

v

)]
, v′ = −vn+1Q

(
u

v
,

1

v

)
, (1.6)

in the local chart (U3, L3) the expression for n(X) is

u′ = P (u, v) , v′ = Q (u, v) . (1.7)

Figure 1.10 : The local charts (Uk, φk) for

k = 1, 2, 3 of the Poincare sphere.

Note that for studying the singular points at infinity we only need to study the

infinite singular points of the chart U1 and the origin of the chart U2, because the

singular points at infinity appear in pairs diametrally opposite.

For more details on the Poincaré compactification see Chapter 5 of [38].

1.3.2 Application

Example 25 we study the phase portrait on the Poincaré disk of the system{
x′ = −x− y2

y′ = y + x2
(1.8)

This is a Hamiltonian system because it can be written as{
x′ = −∂H

∂y

y′ = ∂H
∂x

with Hamiltonian H(x, y) = 1
3(x3 + y3) + xy.
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Therefore H is a first integral of system (1.8); i.e., H is constant on the solutions

of (1.8), because on any solution (x(t), y(t)) of (1.8) we have

dH

dt
(x(t), y(t)) =

∂H

∂x

(
−x− y2

)
+
∂H

∂y

(
y + x2

)∣∣∣∣
(x,y)=(x(t),y(t))

= 0

System (1.8) has two finite singular points, a saddle at (0, 0) and a linear center at

(−1,−1) with eigenvalues ±
√

3i. Since the first integral H is well defined at (−1,−1),

this singular point is a center.

Now we shall compute the infinite singular points. Let X be the vector field

associated to (1.8). Then the expression for p(X) in the local chart U1 is{
u′ = 1 + 2uv + u3

v′ = v2 + vu2

Therefore on U1 there is a unique singular point, (−1, 0) which is an unstable node

at infinity. Since the degree of X is 2, the diametrically opposite point is a stable node

in V1.

The expression for p(X) in the local chart U2 is{
u′ = −1− 2uv − u3

v′ = −v2 − vu2

Since the origin of U2 is not a singular point there do not exist additional infinite

singular points.

The unique separatrices of system (1.8) are the separatrices of the saddle (0, 0).

Since H(0, 0) = 0, in order to locate such separatrices it is suffi cient to draw the curve

H(x, y) = 0. Hence the phase portrait of system (1.8) on the Poincaré disk as is given

in Figure 1.11.
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Figure 1.11 : The phase portrait in the

Poincar disk of system (1.8) .



Chapter 2

Kolmogorov differential systems
with prescribed algebraic limit
cycles

2.1 Introduction

Many mathematical models in biology and population dynamics are modeled by sys-

tems of ordinary differential equations having the form:{
x′ = dx

dt = xF (x, y)

y′ = dy
dt = yG (x, y)

Where x(t) and y(t) represent the population density of two species at time t, and

F (x, y) , G (x, y) are the capita growth rate of each specie, usually, such systems are

called Kolmogorov systems.

Generally, Kolmogorov system is introduced as the structure of many natural phe-

nomena models. Their applications can be appear in several fields such as, physics,

biology, chemical reactions, hydrodynamics, fluid dynamics,economics, etc. for more

detail see ([8], [27], [78], [83]).

We consider the following polynomial differential system{
x′ = x (ax+ by + c)

y′ = y (mx+ ny + l)

This system known as Lotka—Volterra predator—prey model, if a = n = 0 the system

becomes {
x′ = x(by + c)

y′ = y(mx+ l)

where

29
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• The variable x is the population density of prey (for example, the number of
rabbits per square kilometre).

• The variable y is the population density of some predator (for example, the
number of foxes per square kilometre).

• dx
dt and

dy
dt represent the instantaneous growth rates of the two populations.

• t represents time

• The prey’s parameters, a and b, describe, respectively, the maximum prey per

capita growth rate, and the effect of the presence of predators on the prey growth

rate.

• The predator’s parameters, m, n, respectively describe the predator’s per capita
death rate, and the effect of the presence of prey on the predator’s growth rate.

• All parameters are positive and real.

The Lotka-Volterra system of equations is a phenomenological model of competing

population dynamics, it can model the dynamics of ecological systems with predator-

prey interactions, competition, disease and mutualism.It is known that the model of

Lotka-volterra have no limit cycle, but it remains the starting point of several models

currently in applied science.

In [57] Kolmogorov developed a more general system than that of Lotka—Volterra

predator—prey model, this is the system{
x′ = xF (x, y)

y′ = yG (x, y)

This model was then the subject of several extensions by Rascigno and Richardson

[77], May [68] and Albrecht et al [2]. The functions F and G are respectively the

growth rates of the two populations x and y, they are of class C1 ([0,+∞[) and satisfy

the following conditions :

1. For a fixed prey density, the population growth rate of prey x decreases with the

growt of the population of predators y. This leads to the condition

∂F

∂y
(x, y) < 0

2. For a fixed density of predators, the growth rate of the predator population y

increases by the growth of the prey population x. This leads to the condition

∂G

∂x
(x, y) > 0
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3. For low densities of both populations, the prey population grows and therefore

we have

F (0, 0) > 0

4. There is a suffi cient number of predators for which, a small number of prey

cannot grow any longer. This leads to the condition

∃A > 0, such that F (0, A) = 0

5. The medium admits a limited carrying capacity. This leads to the condition

∃B > 0, such that F (B, 0) = 0

6. If there is a suffi cient number of prey, the number of predators increases, other-

wise it decreases. This leads to the condition

∃C > 0, such that G (C, 0) = 0

7. According to Kolmogorov [57] and Rascigno and Richardson [77], if B ≤ C,

the predators are in extinction and the prey saturates the environment (this is

also true for the model of Lotka—Volterra predator—prey). However, to have a

coexistence between the populations of prey and predators, it is necessary to

ensure that C < B.

To our knowledge, the first result which gives an system differential of kolmogorov

type with an algebraic limit cycle whose exact expression is known is found in the

article [11], by A. Bendjeddou et al. And then we find the work of A. Bendjeddou,

S. Benyoucef ([21],[22]). Who showed the existence of a finite class cycle of the Kol-

mogorov system, and gives its explicit form.

This chapter is a contribution to the study of a class of differential systems of

the kolmogorov type. It is interesting to see if the differential system recognizes a

limit cycle or not and if we know the exact expression for that limit cycle it is even

better. Motivated by some papers presenting planar polynomial systems with one or

more algebraic term cycles given analytically (see for instance work of Bendjeddou

and Cheurfa [12],[13],[17]), and mainly based on the papers of C. Christopher [35],S.

Benyoucef [20], we will extend the same concept to Kolmogorov systems, where once

we have selected components of the Kolmogorov system that satisfy certain conditions,

we can directly infer the number and explicit form of limit cycles.
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More precisely, in the following we introduce three different classes of differential

systems of order n of the Kolmogorov type, in which we will study hyperbolic algebraic

limit cycles. {
x′ = x (R (x, y)U (x, y)− yΦ (x, y)Uy)

y′ = y (S (x, y)U (x, y) + xΦ (x, y)Ux)
(2.1)

Where R (x, y) , S (x, y) , U (x, y) and Φ (x, y) are polynomial functions.Our contribu-

tion consist to show that the system (2.1) admits all the bounded components of Γ as

hyperbolic limit cycles if certain conditions on the parameters are satisfied.

This result was the subject of a publication entitled "Kolmogorov differential sys-

tems with prescribed algebraic limit cycles" in the journal Siberian Electronic Math-

ematical Reports (2021), 1-8 see [34].

2.2 The main results

In this section we introduce the following theorems that are of particular importance

in the study of some class differential kolmogorov system .

Theorem 26 Let U is C1 function in open subset V = {(x, y) ∈ R2, x > 0, y > 0}, if
U = 0 is non-singular of polynomial differential system{

x′ = x ((P (y) + axy + b)U (x, y)− αyUy)
y′ = y (Q (x) + cxy + d)U (x, y) + αxUx)

(2.2)

Where P (y) and Q (x) are polynomial of any degree, α, a, b, c, d are real numbers sat-

isfying α 6= 0, a + c 6= 0, then the system (2.2) admit all the bounded components of

U = 0 as hyperbolic limit cycles.

Proof of theorem 26 Let Γ = {(x, y) ∈ R2, U (x, y) = 0} is a trajectory of the
system (2.2).

To show that all the bounded components of Γ are hyperbolic limit cycles of system

(2.2), we will prove that Γ is an invariant curve of the system (2.2), and
T∫
0

div (Γ) dt 6= 0 (See for instance Perko [72] [17, Pages 216-217]).

1) Calculate the differential of the function U(x, y) with respect to the differential

system (2.2):
dU
dt = Uxx

′ + Uyy
′

= Ux (x ((P (y) + axy + b)U − αyUy)) + Uy (y (Q (x) + cxy + d)U + αxUx))

= U (xUx (P (y) + axy + b) + yUy(Q (x) + cxy + d)) .

which shows that U(x, y) = 0 an invariant curve of the system (2.2) with a cofactor

K (x, y) = (xUx (P (y) + axy + b) + yUy(Q (x) + cxy + d)) .



KOLMOGOROV SYSTEM WITH PRESCRIBED ALGEBRAIC LIMIT
CYCLES 33

2) We show that
T∫
0

div (Γ) dt is nonzero. Since we know that

T∫
0

div (Γ) dt =

T∫
0

K (x (t) , y (t)) dt

We have
T∫
0

K (x (t) , y (t)) dt =
T∫
0

(xUx (P (y) + axy + b) + yUy(Q (x) + cxy + d)) dt

=
T∫
0

(xUx (P (y) + axy + b)) dt+
T∫
0

(yUy(Q (x) + cxy + d) dt.

Since

dt =
dx

x ((P (y) + axy + b)U − αyUy)
=

dy

y (Q (x) + cxy + d)U + αxUx)

then

T∫
0

div (Γ) dt =

∮
Γ

xUx (P (y) + axy + b)

axyUx
dy +

∮
Γ

yUy(Q (x) + cxy + d)

−αxyUy
dx

Since U(x, y) = 0 is algebraic curve, then we have Ux(x, y)dx + Uy(x, y)dy = 0, thus

Ux(x, y)dx = −Uy(x, y)dy, and we get
T∫
0

div (Γ) dt =

∮
Γ

(P (y)+axy+b)
ay dy −

∮
Γ

(Q(x)+cxy+d)
αx dx

= 1
α

∮
Γ

(
ax+ P (y)

y + b
y

)
dy −

∮
Γ

(
cy + Q(x)

x + d
x

)
dx

 .

By applying the GREEN formula we obtain

1
α

∮
Γ

(
ax+ P (y)

y + b
y

)
dy −

∮
Γ

cy + Q(x)
x + d

xdx


= 1

α

∫ ∫
int(Γ)

(
∂
(
ax+

P (y)
y

+ b
y

)
∂x +

∂
(
cy+

Q(x)
x

+ d
x

)
∂y

)
dxdy

= 1
α

∫ ∫
int(Γ)

(a+ c) dxdy,

where int (Γ) denotes the interior of Γ.

As a + c 6= 0, and α 6= 0, then
T∫
0

K (x (t) , y (t)) dt, is nonzero.This complete the

proof of Theorem 26.
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Theorem 27 Let U is C1 function in open subset V = {(x, y) ∈ R2, x > 0, y > 0}

We consider a polynomial differential system{
x′ = x

(
aU (x, y)− αxy2Uy

)
y′ = y

(
bU (x, y) + αyx2Ux

) (2.3)

Where α 6= 0, a+ b 6= 0, then the system (2.3) admits all the bounded components

of U = 0 as hyperbolic limit cycles.

Proof of theorem 27 Let Γ = {(x, y) ∈ R2, U (x, y) = 0} is a trajectory of the
system (2.3).

To show that all the bounded components of Γ are hyperbolic limit cycles of system

(2.3), we will prove that Γ is an invariant curve of the system (2.3), and
T∫
0

div (Γ) dt 6= 0 (See for instance Perko [72] [17, Pages 216-217]).

1) Calculate the differential of the function U(x, y) with respect to the differential

system (2.3):
dU
dt = Uxx

′ + Uyy
′

= Ux
(
x
(
aU − αxy2Uy

))
+ Uy

(
y
(
bU + αyx2Ux

))
= U (axUx + byUy) .

which shows that U(x, y) = 0 an invariant curve of the system (2.3) with a cofactor

K (x, y) = (axUx + byUy) .

2) We show that
T∫
0

div (Γ) dt is nonzero. We know that

T∫
0

div (Γ) dt =

T∫
0

K (x (t) , y (t)) dt

We have
T∫
0

K (x (t) , y (t)) dt =
T∫
0

(axUx + byUy) dt

=
T∫
0

(axUx) dt+
T∫
0

(byUy) dt.

Since

dt =
dx

x (aU − αxy2Uy)
=

dy

y (bU + αyx2Ux)

then
T∫

0

div (Γ) dt =

∮
Γ

axUx
−αx2y2Ux

dy +

∮
Γ

byUy
−αy2x2Uy

dx

Since U(x, y) = 0 is algebraic curve, then we have Ux(x, y)dx + Uy(x, y)dy = 0, thus

Ux(x, y)dx = −Uy(x, y)dy, and we get
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T∫
0

div (Γ) dt =

∮
Γ

a
αxy2dy −

∮
Γ

b
αyx2dx

= 1
α

∮
Γ

(
a
xy2

)
dy −

∮
Γ

(
b
x2y

)
dx

 .

By applying the GREEN formula we obtain∮
Γ

(
a
xy2

)
dy −

∮
Γ

(
b
x2y

)
dx


=

∫ ∫
int(Γ)

(
∂
(

a
xy2

)
∂x +

∂
(

b
x2y

)
∂y

)
dxdy

= −a+b
α

∫ ∫
int(Γ)

1
x2y2 dxdy,

where int (Γ) denotes the interior of Γ.

As α 6= 0,and a + b 6= 0, then
T∫
0

div (Γ) dt is nonzero.This complete the proof of

Theorem 27

Theorem 28 Let U and Φ are C1 functions in open subset

V = {(x, y) ∈ R2, x > 0, y > 0} such that Φ (x, y) = c
a+bxy + ya

xb
,where a, b, c

are nonzero reals and a + b 6= 0.If the curve Φ (x, y) = 0 lies outside all bounded

components of the non-singular curve U = 0, then the differentiel system{
x′ = x (aU (x, y)− yΦ (x, y)Uy)

y′ = y (bU (x, y) + xΦ (x, y)Ux)
(2.4)

admits all the bounded components of U = 0 as hyperbolic limit cycles.

Proof of theorem 28 Let Γ = {(x, y) ∈ R2, U (x, y) = 0} is a trajectory of the
system (2.4).

To show that all the bounded components of Γ are hyperbolic limit cycles of system

(2.4), we will prove that Γ is an invariant curve of the system (2.4) ,and
T∫
0

div (Γ) dt 6= 0 (See for instance Perko [72] [17, Pages 216-217]).

1) Calculate the differential of the function U(x, y) with respect to the differential

system (2.4):
dU
dt = Uxx

′ + Uyy
′

= Ux (x (aU − yΦ (x, y)Uy)) + Uy (y (bU + xΦ (x, y)Ux))

= (axUx + byUy)U.

which shows that U(x, y) = 0 an invariant curve of the system (2.4)with a cofactor

K (x, y) = (axUx + byUy) .
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2)We show that
T∫
0

div (Γ) dt is nonzero.

Notice that
T∫

0

div (Γ) dt =

T∫
0

K (x (t) , y (t)) dt

We have
T∫

0

K (x (t) , y (t)) dt =

T∫
0

(axUx + byUy) dt

Since

dt =
dx

x (aU − yΦ (x, y)Uy)
=

dy

y (bU + xΦ (x, y)Ux)

then
T∫

0

div (Γ) dt =

∮
Γ

axUx
yxΦ (x, y)Ux

dy +

∮
Γ

byUy
−yxΦ (x, y)Uy

dx

Since U(x, y) = 0 is algebraic curve, then we have Ux(x, y)dx + Uy(x, y)dy = 0, thus

Ux(x, y)dx = −Uy(x, y)dy, and we get

T∫
0

div (Γ) dt =

∮
Γ

a

yΦ (x, y)
dy −

∮
Γ

b

xΦ (x, y)
dx.

By applying the GREEN formula we obtain∮
Γ

a
yΦ(x,y)dy −

∮
Γ

b
xΦ(x,y)dx


=

∫ ∫
int(Γ)

(
a
y

∂
(

1
Φ(x,y)

)
∂x + b

x

∂
(

1
Φ(x,y)

)
∂y

)
dxdy

= −
∫ ∫
int(Γ)

(
a
y
∂(Φ(x,y))

∂x
+ b
x
∂(Φ(x,y))

∂y

)
(Φ(x,y))2 dxdy

Φ (x, y) = c
a+bxy + ya

xb
⇒

∂
(

c
a+b

xy+ ya

xb

)
∂y = 1

xby(a+b)

(
a2ya + abya + cxxby

)
a
y
∂(Φ(x,y))

∂x + b
x
∂(Φ(x,y))

∂y = a
y

∂
(

c
a+b

xy+ ya

xb

)
∂x + b

x

∂
(

c
a+b

xy+ ya

xb

)
∂y

a
y

(
− 1
xb+1(a+b)

(
b2ya + abya − cxxby

))
+ b

x

(
1

xby(a+b)

(
a2ya + abya + cxxby

))
= c.

So
T∫
0

div (Γ) dt = −
∫ ∫
int(Γ)

c
(Φ(x,y))2 dxdy,

where int (Γ) denotes the interior of Γ.

As c 6= 0, then
T∫
0

div (Γ) dt is nonzero. This complete the proof of Theorem 28.
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2.3 Applications

As applications of our theorems, we present three systems of kind of Kolmogorov

systems as follow :

Example 29 In the model (2.2), we take a = b = c = d = α = 1,

P (y) = y2, Q(x) = x2 and

U(x, y) =

((
(x− 2)2 + (y − 3)2 − 1

)2
− (x− 2)2 (y − 3) + 4 (x− 2) (y − 3)2

)
, then

we obtain



x′ = x

 (
y2 + xy + 1

)((
(x− 2)2 + (y − 3)2 − 1

)2
− (x− 2)2 (y − 3) + 4 (x− 2) (y − 3)2

)
−y
(
4x2y − 13x2 − 16xy + 56x+ 4y3 − 36y2 + 120y − 156

)
)


y′ = y

 (x2 + xy + 1)

((
(x− 2)2 + (y − 3)2 − 1

)2
− (x− 2)2 (y − 3) + 4 (x− 2) (y − 3)2

)
+x
(
4x3 − 24x2 + 4xy2 − 26xy + 86x− 8y2 + 56y − 120

)
)


(2.5)

We remark that this system satisfy the conditions of Theorem 26, hence the system

(2.5) possess two limit cycles represented by the curve

U(x, y) =

((
(x− 2)2 + (y − 3)2 − 1

)2
− (x− 2)2 (y − 3) + 4 (x− 2) (y − 3)2

)
=

0. See Figure 2.1

Figure 2.1 : The phase portrait in the Poincare disc

of the polynomial differential system (2.5) which

present two limit cycles.
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Example 30 Let a = b = 1,and

U (x, y) = ((x− 2)2 + (y − 2)2 − 1)2 − (x− 2)2(y − 2)− (x− 2)(y − 2)2,

then the differentiel system (2.3) becomes


x′ = x(((x− 2)2 + (y − 2)2 − 1)2 − (x− 2)2(y − 2)− (x− 2)(y − 2)2

−xy2(4x2y − 9x2 − 18xy + 40x+ 4y3 − 24y2 + 64y − 68))

y′ = y(((x− 2)2 + (y − 2)2 − 1)2 − (x− 2)2(y − 2)− (x− 2)(y − 2)2

+yx2(4x3 − 24x2 + 4xy2 − 18xy + 64x− 9y2 + 40y − 68))

(2.6)

It is easy to verify that all conditions of Theorem 27 are satisfied. Then system

(2.6) has three limit cycles represented by the curve

U (x, y) = ((x − 2)2 + (y − 2)2 − 1)2 − (x − 2)2(y − 2) − (x − 2)(y − 2)2 = 0. See

figure 2.2

Figure 2.2 : The phase portrait in the Poincare disc

of the polynomial differential system (2.6) which

present three cycle limit.

Example 31 If we take a = b = 1, c = 2 and U(x, y) = 2x2 − 10x+ 3y2 − 12y + 20,

then the differential system (2.4) reads

{
x′ = x

((
2x2 − 10x+ 3y2 − 12y + 20

)
− 1

xy
2
(
x2 + 1

)
(6y − 12)

)
y′ = y

((
2x2 − 10x+ 3y2 − 12y + 20

)
+ y

(
x2 + 1

)
(4x− 10)

) (2.7)
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It is easy to verify that all conditions of Theorem 28 are satisfied. We conclude

that the system (2.7) has one limit cycle represented by the curve

2x2 − 10x+ 3y2 − 12y + 20 = 0. See Figure 2.3

Figure 2.3 :The phase portrait in the Poincare disc

of the polynomial differential system (2.7) which

present one cycle limit.



Chapter 3

A class of integrable Kolmogorov
systems with non-algebraic limit
cycle

3.1 Introduction

In biology, the first model with a limit cycle is the one introduced in 1936 by the

Russian mathematician Andrei Kolmogorov (1903-1987) which bears his name and

has the following form: {
x′ = xf (x, y)

y′ = yg (x, y)
(3.1)

where f and g are functions of class C1 on an open set of R2 in R.
More specifically, in the following we introduce a Kolmogorov models whish widely

used in ecology to describe the interaction between two populations, and a limit cycle

of system (3.1) is an isolated periodic orbit and it is said to be algebraic if it is

contained in the zero set of an algebraic curve, otherwise it is called non-algebraic,

and it also corresponds to an equilibrium state of the system.There are works which

are interested in the study of limit cycles for Kolmogorov type systems, see for example

([50], [52], [61], [63], [64]), but very few concern limit cycles expressed in an explicit way.

The only known limit cycles were algebraic, see for example the work of A. Bendjeddou,

A. Berbache and R. Cheurfa [11],S. Benyoucef and A. Bendjeddou ([21], [22]),and R.

Boukoucha, A. Bendjeddou [26].With respect to algebraic limit cycles.

One of the most important topics in qualitative theory of planar dynamical systems

is related to the second part of the unsolved Hilbert 16th problem which consisted to

study the maximum number of limit cycles and their relative distributions of the real

40
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planar polynomial system of degree n: There is an extensive literature on that subject,

most of it deals essentially with detection, number and stability of limit cycles, see for

instance ([38], [41]).

We say that a polynomial differential system is integrable if it admits a first integral.

We note that the determination of a first integral for a given differential system is not

an easy task. The importance of the existence of first integral for a differential system

is that it completely determines its phase portrait see ([29], [30], [43]).
Many different methods have been used for proving the existence and nonexistence

of limit cycles in simply connected region, for instance see ([12], [45]).

In recent years, existence and nonexistence of limit cycle for some class of Kol-

mogorov system has been studied, see for instance ([11], [20], [21], [34], [61], [62]).

In the literature, we can find also another interesting but even more diffi cult prob-

lem is to give an explicit expression of a limit cycle.

In 1995, Odani [71] showed that the limit cycle appearing in Van der Pol’s equation

is not algebraic but without expressing it explicitly. Since 2006, other mathemati-

cal researchers have published articles where they give the explicit expression of the

non-algebraic limit cycles whose existence they have proven for polynomial systems

([3], [17], [19], [42], [47]).

In this chapter, we are interested in studying the integrability and the existence of

limit cycles for a septic Kolmogorov systems of the form:{
x′ = (x+ p)P6 (x, y)

y′ = (y + q)Q6 (x, y)
(3.2)

where

P6 (x, y) =

(
x (q + y)

(
ax4 + ay4 + 2bxy3 + 2bx3y

)
+cx(x+ p)(q + y)2 +

(
x2 + y2

) (
−4qy3 + x4 − 3y4

) )

Q6 (x, y) =

(
y (p+ x)

(
ax4 + ay4 + 2bxy3 + 2bx3y

)
+cy(q + y)(x+ p)2 +

(
x2 + y2

) (
4px3 − y4 + 3x4

) )

and p, q, a, b, c are real numbers. We show that our system exhibiting an explicit

expression of first integral. Moreover, according to certain conditions on the parame-

ters the system admits a non algebraic limit cycle which can be explicitly given. We

give an examples to illustrate this proved result.
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3.2 The main result

As a main result, we shall prove the following theorem.

Theorem 32 Consider Kolmogorov differential system (3.2). The following state-

ments are holds.

Statement 1 : System (3.2) has the first integral given by the expression

I (x, y) =

(
x4 + y4

)
exp

(
−

arctan y
x∫

0

F (s) ds

)
(x+ p) (y + q)

−
arctan y

x∫
0

G (s)

exp

(
s∫
0

F (w) dw

)ds (3.3)

Where

F (s) =
(3a+ a cos 4s+ 4b sin 2s)

3 + cos 4s
G (s) = c

Statement 2 : if r0q+pq > 0 and a < 0, c > 0, where ρ0 should satisfy ρ0 =
r4
0

(r0q+pq)

the system (3.2) has a non-algebraic limit cycle implicitly given

ρ (θ, ρ∗0) = exp
(
a (θ) + b arctan (tan (θ))2

)(
ρ∗0 +

∫ θ

0
c exp

(
−as− b arctan (tan s)2

)
ds

)
where

ρ∗0 = ce2πa

∫ 2π
0 exp

(
−b arctan

(
tan2 s

)
− as

)
ds

1− e2πa

Moreover, this limit cycle is stable and hyperbolic.

Statement 3 : if p = q = 0 the system (3.2) has no limit cycle.

3.3 Proof of the main result

For the demonstration of Theorem 32 , we need the following lemma

Lemma 33 Consider a planar diffrential system which in polar coordinates has the

form: 
r′ = F (θ)H (r, θ)− ∂H

∂θ
(r, θ) +G (θ)

θ′ =
∂H

∂r
(r, θ)

then this system possess a first integral expressed as

W (r, θ) = H (r, θ) exp

 θ

−
∫
0

F (s) ds

− θ∫
0

G (s) exp

− s∫
0

F (w) dw

 ds
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Proof of Lemma 33: Let us set

U (θ) = H (r, θ) exp

 θ

−
∫
0

F (s) ds

 andV (θ) =

θ∫
0

G (s) exp

− s∫
0

F (w) dw

 ds

The derivatives of U and V with respect to θ are

dU

dθ
=

(
∂H

∂θ
(r, θ)− F (θ)H (r, θ)

)
exp

 θ

−
∫
0

F (s) ds

 ,

dV

dθ
= G (θ) exp

 θ

−
∫
0

F (s) ds

 ,

By replacing the expression of derivatives of U and V with respect to θ in the expression

of W , it follows that

∂W

∂θ
(r, θ) =

(
∂H

∂θ
(r, θ)− F (θ)H (r, θ)−G (θ)

)
exp

 θ

−
∫
0

F (s) ds


By the chain rule, the derivative ofW with respect to t is given by following expression,

dW

dt
(r (t) , θ (t)) =

dW

dr
(r, θ)

dr

dt
+
dW

dθ
(r, θ)

dθ

dt

=

∂H
∂r

(r, θ) exp

 θ

−
∫
0

F (s) ds

(F (θ)H (r, θ)− ∂H

∂θ
(r, θ) +G (θ)

)

+

(∂H
∂θ

(r, θ)− F (θ)H (r, θ)−G (θ)

)
exp

 θ

−
∫
0

F (s) ds

 ∂H

∂r
(r, θ)

= 0.

So W (r, θ) is a first integral of system. This complete the proof of Lemma 33.

Beginning by discussing the singular points of system (3.2).We have

xy′ − yx′ =
(
x2 + y2

) (
x4 + y4

)
(4pq + 3py + 3qx+ 2xy)

and any singular point must satisfy{
(x+ p)P6 (x, y) = 0

(y + q)Q6 (x, y) = 0

so the singular points are (0, 0), (−p,−q) and any point of the form
(
x,−q 4p+3x

3p+2x

)
where x is solution of equation P6

(
x,−q 4p+3x

3p+2x

)
= 0.
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• If
(
−81cp2 + 1024q4 + 768apq3

)
= 0 then

(
0,−4

3q
)
is a singular point.

• If
(
−81cq2 − 1024p4 + 768ap3q

)
= 0 then

(
−4

3p, 0
)
is a singular point.

• If p = q = 0, the unique singular point is (0, 0) .

Proof of statement (1) of Theorem 32 :

In order to prove the statement(1) of Theorem 32, it must to transform the system

to polar coordinates (r, θ) where x = r cos θ , y = r sin θ , then the system (3.2)

becomes{
r′ = f1 (θ) r7 + f2 (θ) r6 + f3 (θ) r5 + f4 (θ) r4 + f5 (θ) r3 + f6(θ)r2 + f7r

θ′ = f8 (θ) r6 + f9 (θ) r5 + f10 (θ) r4
(3.5)

Where

f1 (θ) = 4b+ 18 cos 2θ − 2 cos 6θ − 4b cos 4θ + 5a sin 2θ + a sin 6θ,

f2 (θ) = (6p+ 6aq + 4bp) cos θ + (6ap− 6q + 4bq) sin θ + (5p+ aq − 4bp) cos 3θ

+ (5q − ap+ 4bq) sin 3θ + (3q + ap) sin 5θ + (aq − 3p) cos 5θ,

f3 (θ) =

(
c cos2 θ sin2 θ + apq cos4 θ + apq sin4 θ

+ (−4pq + 2bpq) cos θ sin3 θ + (4pq + 2bpq) cos3 θ sin θ

)
,

f4 (θ) = cp cos θ + cq sin θ − cp cos 3θ + cq sin 3θ,

f5 (θ) = cp2 + cq2 +
(
−cp2 + cq2

)
cos 2θ + 4cpq sin 2θ,

f6 (θ) = 2cp2q sin θ + 2cpq2 cos θ,

f7 (θ) = cp2q2,

f8 (θ) = 5 sin 2θ + sin 6θ,

f9 (θ) = 18q cos θ + 18p sin θ + 3q cos 3θ + 3q cos 5θ − 3p sin 3θ + 3p sin 5θ,

f10 (θ) = pq (3 + cos 4θ) .

The differential system (3.5) where

r4
(
f8 (θ) r2 + f9 (θ) r + f10 (θ)

)
6= 0,

can be written as the equivalent differential equation

dr

dθ
=
f1 (θ) r6 + f2 (θ) r5 + f3 (θ) r4 + f4 (θ) r3 + f5 (θ) r2 + f6 (θ) r + f7 (θ)

r3 (f8 (θ) r2 + f9 (θ) r + f10 (θ))
. (3.6)

We use the transformation of variable ρ =
((r cos θ)4+(r sin θ)4)

((r cos θ)+p)((r sin θ)+q) the equation (3.6)

becomes a linear differential equation

dρ

dθ
= F (θ) ρ+G (θ) , (3.7)

where F (θ) = (3a+a cos 4θ+4b sin 2θ)
cos 4θ+3 and G (θ) = c.
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The general solution of this linear equation is

ρ (θ) = exp

 θ∫
0

F (s) ds

h+

θ∫
0

G (s) exp

− s∫
0

F (w) dw

 ds

 . (3.8)

Where h ∈ R, and the functions F (s), G(s) are defined in theorem.

Consequently, the implicit solution of equation (3.8) is given by

H (r, θ)− exp

 θ∫
0

F (s) ds

h+

θ∫
0

G (s) exp

− s∫
0

F (w) dw

 ds

 = 0 (3.9)

Where

H (r, θ) =
(r cos θ)4 + (r sin θ)4

((r cos θ) + p) ((r sin θ) + q)

By passing to Cartesian coordinates, we deduce the first integral is

I (x, y) =

(
x4 + y4

)
(x+ p) (y + q) exp

(
a arctan y

x + b arctan
( y
x

)2)−∫ arctan y
x

0
c exp

(
−as− b arctan (tan s)2

)
ds.

Hence the statement(1) of Theorem is proved.

Proof of statement (2) of Theorem 32:
Notice that system (3.2) has a periodic orbit if and only if the equation (3.8) has

a strictly positive 2π-periodic solution. This, moreover, is equivalent to the existence

of a solution of equation (3.8) that satisfies r(2π, r0) = r(0, r0) and r(0, r0) > 0, with

r0 > 0, for this, it suffi ces to verify that ρ(2π, ρ0) = ρ(0, ρ0) and ρ0 > 0 for any θ in

[0; 2π].

For θ = 0,we remark that the solution ρ(θ, ρ0) of the differential equation ,such as

ρ(0, ρ0) = ρ0, corresponds to the value

k = ρ0 =
r4

0

(r0q + pq)

and as we have r0q + pq > 0, then ρ0 > 0.

We replace the value of k in the general solution of equation (3.8) we obtain

ρ (θ, ρ0) = exp
(
a (θ) + b arctan (tan (θ))2

)(
ρ0 +

∫ (θ)

0
c exp

(
−as− b arctan (tan s)2

)
ds

)

The condition of the periodic solution with 2π-periodic starting at ρ(0, ρ0) = ρ0 > 0

is ρ (2π, ρ0) = ρ (0, ρ0) .

For θ = 2π, we have

ρ (2π, ρ0) = e2πa

(
ρ0 + c

∫ 2π

0
exp

(
−b arctan

(
tan2 s

)
− as

)
ds

)
,
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and if ac < 0, we obtain

ρ∗0 = ce2πa

∫ 2π
0 exp

(
−b arctan

(
tan2 s

)
− as

)
ds

1− e2πa
> 0.

We substituted the value of ρ∗0 in the general solution of equation (3.8) we obtain

ρ (θ, ρ∗0) = exp
(
a (θ) + b arctan (tan (θ))2

)(
ρ∗0 +

∫ θ

0
c exp

(
−as− b arctan (tan s)2

)
ds

)
(3.10)

Strict positivity of ρ (θ, ρ∗0) for all θ in [0; 2π]

ρ (θ, ρ∗0) = exp
(
a (θ) + b arctan (tan (θ))2

)(
ρ∗0 +

∫ θ

0
c exp

(
−as− b arctan (tan s)2

)
ds

)
.

If (a < 0, c > 0 ), ρ∗0 > 0 and also ρ (θ, ρ∗0) > 0.Therefore ρ (θ, ρ∗0) is strictly positive.

In order to determine the hyperbolicity of these periodic orbit, see for instance

[12], we consider the equation (3.8), and we introduce the Poincaré return map λ →
Π (2π, λ) = ρ (2π, λ) Therefore, a limit cycles of system (3.2) are hyperbolic if and

only if

ρ (2π, ρ0) = exp
(
a (2π) + b arctan (tan (2π))2

)(
ρ0 +

∫ (2π)

0
c exp

(
−as− b arctan (tan s)2

)
ds

)

dΠ(2π,λ)
dλ

∣∣∣
λ=ρ0

=
d
(

exp(a(2π)+b arctan(tan(2π))2)
(
ρ0+

∫ (2π)
0 c exp(−as−b arctan(tan s)2)ds

))
dρ0

= exp

(
2π∫
0

F (s) ds

)
= e2πa 6= 1,

the limit cycle is hyperbolic and it is stable since a < 0.

Proof of statement (3) of Theorem 32: If p = q = 0 then

ρ (θ) =
(r cos θ)4 + (r sin θ)4

(r cos θ) (r sin θ)
. (3.11)

So the solution r (θ) given by solving equation (3.11) we obtain

−1

4
r2
(
−r2 cos 4θ − 3r2 + 4ρ cos θ sin θ

)
= 0,

is
r1 (θ) = 0,

r2 (θ) = − 2
cos 4θ+3

√
ρ (cos θ sin θ) (cos 4θ + 3),

r3 (θ) = 2
cos 4θ+3

√
ρ (cos θ sin θ) (cos 4θ + 3),

if p = q = 0 then the origin is the unique singular point , on the other hand

r1 (0) = r2 (0) = r3(0) = 0. We notice that the two axes x = 0 and y = 0 are invariant

curves, so if there is a limit cycle surrounding the origin which intersects the two axes,

therefore there is no limit cycle. This complete the proof of theorem 32.
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3.4 Applications

The following examples are given to illustrate our result.

3.4.1 Septic Kolmogorov system with non algebraic stable limit cycle

Example 34 Let a = −1 and b = c = p = q = 1 , then the system (3.2) becomes


x′ = (x+ 1)

(
x (1 + y)

(
−x4 − y4 + 2xy3 + 2x3y

)
+x(x+ 1)(1 + y)2 +

(
x2 + y2

) (
−4y3 + x4 − 3y4

) )

y′ = (y + 1)

(
y (1 + x)

(
−x4 − y4 + 2xy3 + 2x3y

)
+y(1 + y)(x+ 1)2 +

(
x2 + y2

) (
4x3 − y4 + 3x4

) ) (3.12)

The system (3.12) has the first integral

I (x, y) =

(
x4 + y4

)
exp

(
−

arctan y
x∫

0

F (s) ds

)
(x+ 1) (y + 1)

−
arctan y

x∫
0

G (s)

exp

(
s∫
0

F (w) dw

)ds.
Where

F (s) =
(−3− cos 4s+ 4 sin 2s)

3 + cos 4s
.

G (s) = 1.

And it has five singular points: (0, 0) is an unstable node, (0.0848055,−1.34225) is

an unstable focus, (−1.41584, 1.47036) is an unstable focus, (−1.90897,−2.11129) is a

stable focus, (−1,−1) is a saddle point.

We study points (u∗, v∗) at infinity of system (3.12). Using (1.4), we get the

Poincaré compactification in the local chart (u1, v1) .

Let x = 1
v , y = u

v , v > 0, then the system (3.12) becomes
u′ =

(
2u+ 3v + 3uv + 4v2

) (
u6 + u4 + u2 + 1

)
v′ = −v (v + 1)

(
−3u6 − 4u5v − u5 − u4v − u4 − 2u3v + u2v3 + u2v2

+3u2 + 2uv4 + 2uv3 + 2uv − u+ v5 + v4 − v + 1

)
(3.13)

Let v = 0, the infinite singular points of the system (3.13) in chart (u1, v1) should

satisfy (2u)
(
u6 + u4 + u2 + 1

)
= 0.

(u′, v′)|(0,0) = 0, the origin is the singular point of system (3.13)

Df (0, 0) =

(
2 3

0 −1

)
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Which is saddle, with eigenvalues λ1 = 2 and λ2 = −1.

In the local chart (U2, V2) the expression for n(X) is
u′ = −

(
2u+ 3v + 3uv + 4v2

) (
u6 + u4 + u2 + 1

)
v′ = −v (v + 1)

(
3u6 + 4u5v − u5 − u4v + 5u4 + 6u3v + u2v3 + u2v2

+u2 + 2uv4 + 2uv3 + 2uv − u+ v5 + v4 − v − 1

)
(3.14)

Let v = 0, the infinite singular points of the system (3.14) in chart (u1, v1) should

satisfy − (2u)
(
u6 + u4 + u2 + 1

)
= 0.

(u′, v′)|(0,0) = 0, the origin is the singular point of system (3.14)

Df (0, 0) =

(
−2 −3

0 1

)

which is saddle, with eigenvalues λ1 = 1 and λ2 = −2.

The expression of limit cycle is implicitly given by

(r cos θ)4 + (r sin θ)4

(1 + r cos θ) (1 + r sin θ)
= exp

(
−θ + arctan (tan (θ))2

)(
ρ∗0 +

∫ θ

0
exp

(
s− arctan

(
tan2 s

))
ds

)
where

ρ∗0 = e−2π

∫ 2π
0 exp

(
− arctan

(
tan2 s

)
+ s
)
ds

1− e−2π
= 0.623 29

Clearly, the system has one limit cycle as it is shown on the phase portrait of Poincaré

disc in figure 3.1.

Figure 3.1: Phase potrait of the system

(3.12) on the Poincare disc.
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3.4.2 Septic Kolmogorov system with non algebraic unstable limit
cycle

Example 35 Let a = b = c = 1, p = 2, q = −1, the system (3.2) becomes
x′ = (x+ 2)

(
x (−1 + y)

(
x4 + y4 + 2xy3 + 2x3y

)
+x(x+ 2)(−1 + y)2 +

(
x2 + y2

) (
4y3 + x4 − 3y4

) )

y′ = (y − 1)

(
y (2 + x)

(
x4 + y4 + 2xy3 + 2x3y

)
+y(−1 + y)(x+ 2)2 +

(
x2 + y2

) (
8x3 − y4 + 3x4

) ) (3.15)

The system (3.15) has the first integral

I (x, y) =

(
x4 + y4

)
exp

(
−

arctan y
x∫

0

F (s) ds

)
(x+ 2) (y − 1)

−
arctan y

x∫
0

G (s)

exp

(
s∫
0

F (w) dw

)ds
Where

F (s) =
(3 + cos 4s+ 4 sin 2s)

3 + cos 4s
.

G (s) = 1.

And it has five singular points: (0, 0) is an unstable node, (−2.862983,−3.049953)

is an stable focus, (−3.405015, 3.405015) is an stable focus, (−0.182396, 1.323842) is a

unstable focus, (−2, 1) is a saddle point.

The expression of limit cycle is implicitly given by

(r cos θ)4 + (r sin θ)4

(2 + r cos θ) (r sin θ − 1)
= exp

(
−θ + arctan (tan (θ))2

)(
ρ∗0 +

∫ θ

0
exp

(
s− arctan

(
tan2 s

))
ds

)
,

where

ρ∗0 = e2π

∫ 2π
0 exp

(
− arctan

(
tan2 s

)
− s
)
ds

1− e2π
= 0.623 29
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Clearly, the system (3.15) has one limit cycle as it is shown on the phase portrait

of Poincaré disc in figure 3.2.

Figure 3.2 : Phase potrait of the system

(3.15) on the Poincare disc.

3.4.3 Non existence of limit cycle of Septic Kolmogorov system

Example 36 Let a = b = 1, c = −1, p = q = 0, the system (3.2) becomes{
x′ = x

(
xy
(
x4 + y4 + 2xy3 + 2x3y

)
− x2y2 +

(
x2 + y2

) (
x4 − 3y4

))
y′ = y

(
yx
(
x4 + y4 + 2xy3 + 2x3y

)
− x2y2 +

(
x2 + y2

) (
−y4 + 3x4

)) (3.16)

For the system (3.16), we notice that the two axes x = 0 and y = 0 are invariant

curves, so if there is a limit cycle surrounding the origin which intersects the two axes,
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therefore there is no limit cycle. See figure 3.3.

Figure 3.3 : Phase potrait of the system (3.16)

on the Poincar disc.



Conclusion and persepectives

One of the most important topics in qualitative theory of planar dynamical systems

is related to the second part of the unsolved Hilbert 16th problem which consisted to

study the existence, the non-existence and the maximum number of limit cycles which

shown to model many real-world phenomena.

In this work we were interested in the qualitative study of Kolmogorov differential

systems. Firstly, we presented some basics concerning the qualitative theori differential

systems, especially planar differential systems. Secondly, we studied some classes of

differential system of order n of the next Kolmogorov type{
x′ = x (R (x, y)U − yΦ (x, y)Uy)

y′ = y (S (x, y)U + xΦ (x, y)Ux)

Where R (x, y) , S (x, y) and Φ (x, y) are polynomial functions, and show that these

systems admit exactly the limits Curve components as hyperbolic term cycles if certain

conditions on the system parameters are saturated.

Thirdly, we have studied the integrability and the existence of a non-algebraic limit

cycle of a following class of Kolmogorov differential systems of degree septic:
x′ = (x+ p)

(
x (q + y)

(
ax4 + ay4 + 2bxy3 + 2bx3y

)
+cx(x+ p)(q + y)2 +

(
x2 + y2

) (
−4qy3 + x4 − 3y4

) )

y′ = (y + q)

(
y (p+ x)

(
ax4 + ay4 + 2bxy3 + 2bx3y

)
+cy(q + y)(x+ p)2 +

(
x2 + y2

) (
4px3 − y4 + 3x4

) )

where p, q, a, b, c are real numbers, moreover, we have determined their explicit expres-

sion.

In perspective, it is convenient to apply our method of study on Kolmogorov type

systems where the degree less than five. Knowing that there are results of existence

of limit cycles for classes of quartic and cubic system differential planaire, but to our

knowledge none of these works gives the limit cycle in the case of existence in an

explicit way, as we did it in this thesis.
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systems, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64, no. 2, 253—259 (2018).

[15] A. Bendjeddou, R. Benterki and T. Salhi, Explicit non-algebraic limit cycle for

polynomial systems of degree seven, Appl. Math. Sci. (Ruse) 3, no. 13—16, 613—622

(2009).

[16] A. Bendjeddou, R. Boukoucha, Explicit limit cycles of a cubic polynomial differ-

ential systems, Stud. Univ Babes-Bolyai Math. 61, no. 1, 77—85 (2016).

[17] A. Bendjeddou and R. Cheurfa, Coexistence of algebraic and non-algebraic

limit cycles for quintic polynomial differential systems, Elect. J. of Diff. Equ.,

Vol2017,No. 71, pp (2017).

[18] A. Bendjeddou and M. Grazem, A class of quintic Kolmogorov systems with

explicit non-algebraic limit cycle, Zh. Sib. Fed. Univ. Mat. Fiz.12, no. 3, 285—297

(2019).

[19] R. Benterki, J. Llibre, Polynomial differential systems with explicit non-algebraic

limit cycles, Electronic Journal of Differential équations, No. 78, 1—6 (2012).

[20] S. Benyoucef, Polynomial differential systems with hyperbolic algebraic limit cy-

cles,Electron. J. Qual. Theory Di er. Equ. 2020, Paper 34 (2020), 1-7.

[21] S. Benyoucef and A. Bendjeddou, Kolmogorov system with explicit hyperbolic

limit cycle, Zh. Sib. Fed. Univ. Mat. Fiz. 10, no. 2, 216—222 (2017).

[22] S. Benyoucef and A. Bendjeddou, A class of Kolmogorov system with exact limit

cycles, Int. J. Pur. App. Math., Vol. 103 (4) (2015), 439-451.

[23] T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers and sepa-

ratrix cycles of analytic systems, SIAM Rev, 36 :341—376 (1994).



BIBLIOGRAPHY 55

[24] R. Boukoucha, Explicit limit cycles of a family of polynomial differential systems,

Electron. J. Differential Equations, No. 217, 7 pp (2017).

[25] R.Boukoucha, A. Bendjeddou, A Quintic polynomial diffential systems with ex-

plicit non-algebraic limit cycle, Int. J. of Pure and App. Math., 103(2015), no. 2,

235—241.

[26] R. Boukoucha, A. Bendjeddou, On the dynamics of a class of rational Kolmogorov

systems,J. Nonlinear Math. Phys., 23:1, (2016), 21-27.

[27] M. Bulıcek and J. Malek, Large data analysis for kolmogorov’s two-equation model

of turbulence, Nonlinear Anal. Real World Appl. 50 (2019), 104—143.

[28] F. H. Busse , "Transition to turbulence via the statistical limit cycle route ";Syn-

ergetics ,p.39 , (1978).

[29] L. Cair´o, J. Llibre , " Phase portraits of cubic polynomial vector fields of Lotka-

Volterra type having a rational first integral of degree 2", J. Phys. A , Volume

40, pp.6329-6348, (2007).

[30] J. Cao and H. Jiang, Planar polynomial vector fields having first integrals and

algebraic limit cycles, J. Math. Anal. Appl. 361, 177-186 (2010).

[31] M. Carbonell, B. Coll and J. Llibre, Limit cycles of polynomial systems with

homogeneous nonlinearities, J. of Math. Anal. and Appl. 142, 573—590 (1989).

[32] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Darboux integrability and the

inverse integrating factor, J. Differential Equations. 194, 116-139 (2003).

[33] J. Chavarriga, H. Giacomini, and J. Llibre, Uniqueness of algebraic limit cycles

for quadratic systems, Journal of mathematical analysis and applications, 261(1)

:85—99 (2001).

[34] R. Chouader, S. Benyoucef, and A. Bendjeddou, Kolmogorov differential systems

with prescribed algebraic limit cycles, Sib. Electron. Math. Rep. 18 (2021), no. 1,

1—8.

[35] C. Christopher, Polynomial vector elds with prescribed algebraic limit cycles,

Geom. Dedicata, 88:1-3 (2001), 255 258.

[36] C. Christopher and N.G. Lloyd, Polynomial systems : A lower bound for the

Hilbert numbers, proc.Royalsoc.London ser. a450 (1995), 219-224.

[37] H. Dulac, Sur les cycles limites, Bull. Soc. Math. France 51, 45—188 (1923).



BIBLIOGRAPHY 56

[38] F. Dumortier, J. Llibre, J.C. Artés, Qualitative theory of planar differential sys-

tems, Universitext, Springer-Verlag, Berlin (2006).

[39] J. Écalle, Introduction aux fonctions analysables et preuve constructive de la

conjecture de Dulac, Hermann (1992).

[40] A. Ferragut, J. Llibre, A. Mahd, A Liouvillian first integrals of differential equa-

tions, Trans. Amer. Math. Soc. 333, no. 2, 673—688 (1992).

[41] P. Gao , " Hamiltonian structure and first integrals for the Lotka-Volterra sys-

tems";Phys. Lett. A , Volume 273, pp. 85-96, (2000).

[42] A. Gasull, H. Giacomini and J. Torregrosa, Explicit non-algebraic limit cycles for

polynomial systems, J. Comput. Appl. Math. 200, 448-457 (2007).

[43] A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. of

Math. Anal. 21, 1235—1244 (1990).

[44] A. Gasull and J. Torregrosa, Small-Amplitude limit cycles in Liénard systems via

multiplicity, J. Differential Equations. 159, 1015—1039 (1998).

[45] H. Giacomini, J. Llibre and M. Viano, On the nonexistence, existence, and unique-

ness of limit cycles, Nonlinearity 9, 501—516 (1996).

[46] J. Ch. Gille, P.Decaulne and M. Pelegrin, Système asservis non linéaires, Tome 3

Méthode topologique Stabilité, Dunod (1975).

[47] J. Gine, M. Grau, Coexistence of algebraic and non-algebraic limit cycles explicitly

given using Riccati equations, Nonlinearity 19, 1939—1950 (2006).

[48] J. Giné and M. Grau, A note on : "Relaxation Oscillator with Exact Limit

Cycles", J. of Math. Anal. and Appl. 324, 739-745 (2006).

[49] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bi-

furcations of Vector Fields, Applied Mathematical Science, Vol. 42, 2nd Print-

ing,Springer, New York, 1986.

[50] Xun-Cheng Huang, Limit cycles in a Kolmogorov-type Model, Int. J. Math. and

Math. Sci. Vol. 13, No 3 (1990), 555-566.

[51] M. Han, D. Shang, Z. Wang and P. Yu, Bifurcation of limit cycles in a fourth

order near hamiltonian system, Int. J. Bifur. Chaos Appl. Sci. Engrg 18(10) 2008,

3013-3027.



BIBLIOGRAPHY 57

[52] X.C. Huang, Lemin Zhu, Limit cycles in a general Kolmogorov model, Nonlinear

Anal.,Theory Methods Appl., Ser. A, Theory Methods, 60:8 (2005), 1393-1414.

[53] D. Hilbert, Mathematische Problem (lecture), Second Internat. Congress Math.

Paris, 1900, Nachr. Ges. Wiss. Göttingen Math—Phys. Kl., pp. 253—297 (1900).

[54] Yu. Ilyashenko, Finiteness theorems for limit cycles, Translations of Math. Mono-

graphs 94, Amer. Math. Soc., (1991).

[55] Yu. Ilyashenko, Dulac’s memoir On limit cycles and related problems of the local

theory of differential equations, Russian Math. Surveys 40, 1—49 (1985).

[56] D.W. Jordon and P. Smith, Nonlinear ordinary differential equation, Oxford ap-

plied mathematics and computing science series, Seconde edition 1987.

[57] Kolmogorov, A.N, . Sulla teoria di Volterra della lotta per l’esistenza. Gior-nale

dell’Istituto Italiano degli Attuari, 7 : 74-80 (1936).

[58] Chengzi Li, Chagjian Liu, Jiazhong Yany, A cubic system with thirteen limit

cycles, J. of Differential equations 246 (2009), 3609-3619.

[59] J. Li, M. Zhang and S. Li, Bifurcation of limit cycles in Z2-equivariant planar

polynomial vector field of degree 7, Int. J. Bifur and Chaos, 16(2006), 925-943.

[60] J. Llibre, R. Ramirez, Inverse problems in ordinary differentials equation and

applications,Progress in Mathematics, 313, Springer, Basel, 2016.

[61] J. Llibre, T. Salhi, On the dynamics of a class of Kolmogorov systems, App. Math.

Comput.,225 (2013), 242 245.

[62] Jaume Llibre, Xiang Zhang, A survey on algebraic and explicit non-algebraic limit

cycles in planar di erential systems, Expositiones Mathematicae (2020).

[63] N.G. Lloyd, J.M. Pearson, Limit cycles of a cubic Kolmogorov system,Appl. Math.

Lett. 9:1 (1996), 15-18.

[64] N.G. Lloyd, J.M. Pearson, A cubic Kolmogorov system with six limit cycles,

Comput. Math. Appl., 44:3-4 (2002), 445-455.

[65] N.G. Lloyd, Limit cycles of certain polynomial differential systems, in Nonlinear

Functional Analysis and its Applications, S.P. Singh, ed NATO AS1 Series C,

Vol. 173, Reidel, Dordrecht, The Netherlands, pp. 317—326 (1986).

[66] Lynch, S. (2017). Dynamical Systems with Applications using Mathematica. 2nd

edition.



BIBLIOGRAPHY 58

[67] R.M.May, Stability and complexity in Model Ecosystems, Princeton, New Jersey,

1974.

[68] May, R. M., Limit cycles in predator-prey communities, Science, 177 :900-902

(1972).

[69] J.O. Moulin, About a conjecture on quadratic vector fields, J. Pure Appl. Algebra

165, 227—234 (2001).

[70] J.O. Moulin, Simple Darboux points of polynomial planar vector fields, J. Pure

Appl. Algebra 189, 247—262 (2004).

[71] K. Odani, The limit cycle of the van der Pol equation is not algebraic, J. Differ-

ential Equations 115, 146—152 (1995).

[72] L. Perko, Differential Equations and Dynamical Systems, 3rd edition, Texts in

Appl. Math. Vol. 7, Springer-Verlag, New York (2001).

[73] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle, J.

Math. Pures. Appl. 7 (3), 375-422 (1881).

[74] H. Poincaré, On curves defined by a differential equation, J. de Math. Pures et

App, série III, tome 7 (1881), pp. 375-422; Oeuvre, Gauthier-Villars, Paris (1880-

1890).

[75] H. Poincaré, On curves defined by a differential equation, J. de Math. Pures et

App, Série III 8, tome 8,p. 251-296 (1882).

[76] H. Poincaré. On the integration of first order and first degree differential equations,

I. Rendiconti del circolo matematico di Palermo, 5:161—191,1891.

[77] Rascigno, A. and Richardson, I. W, On the competitive exclusion principle, Bull.

Math. Biophys. 27 :85-89 (1965).

[78] B. Ryabko, Z. Reznikova, A. Druzyaka, and S. Panteleeva, Using ideas of kol-

mogorov complexity for studying biological texts, Theory Comput. Syst. 52

(2013), no. 1, 133—147.

[79] S. Sastry, Nonlinear systems analysis, stability and control. Springer. (2010).

[80] M. Sghiar. On the 16-hilbert problem, IOSR Journal of Mathematics, 12(6) :22—

25, (2016).



BIBLIOGRAPHY 59

[81] S. Shi, A concrete example of the existence of four limit cycles for plane quadratic

systems, Scientia Sinica, 23(2) 1980, 153-158. Appeared in chinise in Sc.Sin. vol

11,1051-1056.

[82] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20,

no. 2,7—15 (1998).

[83] SH. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biol-

ogy, chemistry, and engineering, CRC press, 2018.

[84] B. Van Der Pool, On relaxation-oscillations, Philos. Mag. VII. Ser. 2, 978—992

(1926).

[85] V. Volterra, Leçons sur la Théorie Mathématique de la Lutte pour la vie, Gauthier

Villars, Paris, 1931.

[86] S. Wang and P. Yu, Bifurcation of limit cycles in quintic Hamiltonian system

under a sixth order perturbation, Chaos Solutions Fractals 26 :5(2005), 1317-

1335.

[87] Y.Wu, Y.Gao andM. Han, On the number and distributions of limit cycles in

quintic planar vector field. Internt.J.Bifur.Chaos Appl. Sci. Engrg. 18 :7 (2008),

1939-1955.

[88] Ye Yanqian and others, Theory of Limit Cycles, Transl. Math. Monographs 66,

Amer. Math. Soc., Providence, (1984).

[89] X. Zhang, The 16th Hilbert problem on algebraic limit cycles, J. Di er. Equations,

251:7(2011) 1778 1789.



 ملخص

الهدف من هذه الأطروحة هو الدراسة النوعية لبعض أصناف أنظمة كولموغوروف التفاضلية. أولاً ، 

ستطعنا ميكية. في الجزء الثاني ، ابعض المفاهيم الأساسية اللازمة للدراسة النوعية للأنظمة الديناقدمنا 

، حيث درسنا ظاهرة حيوية في الطبيعة نوع كولموغوروف لنمذجة  تفاضلية من فئات من أنظمة تقديم 

في الفصل الثالث   و.  ، كما استطعنا تقديم العبارة الجبرية الصريحة لدورات الحدوجود وعدد دورات الحد

لدرجة من ا كولموغوروف للفئة من أنظمة تفاضلية  ةجبري رغي رة الحدووجود  دو ،التكاملقابلية  درسنا 

 يةلتوضيحابعض الأمثلة و في آخر كل فصل عرضنا . وقدمنا العبارة الغير جبرية لدورة الحد ، السابعة

 .المتحصل عليها لنتائج 

 الدوري الحل ، الجبرية غير الحد دورة ، الحد دورة ، التفاضلي كولموغوروف نظام:  المفتاحية الكلمات 

 .الأول التكامل ، التكامل ،

RESUME 

L'objectif de cette thèse est l'étude qualitative de certaines classes de systèmes 

différentiels de type Kolmogorov. Dans le premier chapitre, nous avons introduit 

des concepts de base nécessaires à l'étude qualitative des systèmes dynamiques.  

Dans le deuxième chapitre, nous avons présenté notre premier résultat sur la 

construction d’une classe de systèmes différentiels de type Kolmogorov, avec 

cycles limites algébriques de plus on donne l’expression explicit de ces cycles 

limites. Dans le chapitre trois, nous avons présenté notre deuxième résultat sur 

l’intégrabilité d’une classe de systèmes différentiels de degré sept de type 

Kolmogorov avec cycle limite non algébrique et on donne son expression 

explicite. A la fin de chaque chapitre, on donne des exemples d’illustration .  

Mots clés : Système différentiel de Kolmogorov, Cycle limite, cycle limite non 

algébrique, solution périodique, intégrabilité, intégrale première. 

ABSTRACT 

The objective of this thesis is the qualitative study of some classes of 

Kolmogorov differential systems. In the first chapter, we  introduced some of  

the basic concepts needed for the qualitative study of dynamics systems. In the 

second chapter, we presented our first result on the construction of  a class of 

differential systems of  Kolmogorov type, with algebraic limit cycles and we 

give the explicit expression of these limit cycles. In chapter three,we presented 

our second result on the integrability of a class of Kolmogorov type differential 

systems of degree seven with a non-algebraic limit cycle and we give its explicit 

expression. At the end of each chapter, examples of  illustrations are given. 

Keywords :  Kolmogorov differential  system, Limit cycle, non algebraic limit 

cycle, periodic solution, integrability, first integral. 
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