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RÉSUMÉ

L
’apprentissage automatique a transformé le domaine du diagnostic médical, et son im-
portance est devenue encore plus évidente, où il peut analyser différentes modalités de
données médicales de sources diverses, telles que les images médicales, les résultats des

tests de laboratoire, historiques cliniques et les signaux physiologiques. Depuis l’apparition de
l’épidémie de COVID-19, des techniques telles que le RT-PCR et les tests rapides d’antigènes ont
été utilisées pour le diagnostic afin d’isoler rapidement les patients et de prévenir la propagation
de l’infection. Cependant, le manque des kit de dépistage et la durée de ces techniques présentent
une état d’urgence qui nécessite la création d’outils de diagnostic basés sur l’IA pour identifier et
isoler les patients rapidement. De nombreuses études ont été menées à cet égard pour développer
des systèmes de diagnostic basés sur l’apprentissage automatique, où les informations et les
historiques cliniques ont été utilisés pour prédire la présence de la maladie, cependant, ces
informations peuvent ne pas être suffisantes pour un diagnostic précis. D’autres techniques
telles que la radiographie pulmonaire et les scanners CT ont été étudiées et ont montré des
performances élevées et prometteuses. Cependant, ces méthodes nécessitent un contact physique
entre les professionnels de la santé et les patients, qui peut présente une éventuelle propagation
du virus. Par conséquent, il est essentiel de disposer de systèmes de diagnostic à distance qui
peuvent identifier rapidement, en toute sécurité et avec précision les personnes infectées sans
nécessiter de contact physique. COVID-19 peut se manifester par un ensemble de symptômes tels
que la fièvre, la fatigue et la toux, qui est considérée comme l’un des symptômes les plus courants.
L’utilisation des données de toux ou de sons respiratoires dans le processus de diagnostic a
montré des performances acceptables et des résultats rapides. Donc, l’apparition de la COVID-19
a signalé l’importance du développement et de l’amélioration des systèmes de diagnostic qui
peuvent utiliser les données de toux ou de sons respiratoires pour fournir un diagnostic efficace,
rapide et à distance.
Dans cette thèse, nous proposons des méthodes novatrices pour le dépistage de la COVID-19, où
le son de la toux est utilisé avec des techniques différentes. Notre première approche est basée
sur l’hybridation d’un réseau de neurones convolutifs (CNN) avec une mémoire à court et long
terme (LSTM) ainsi qu’un mécanisme d’attention et une augmentation des données spectrales.
La deuxième approche est un ensemble d’méthodes basées sur l’apprentissage ensembliste, où
l’algorithme des Forêts aléatoires est principalement utilisé. La première approche consiste à
transmettre le vecteur de descripteurs de bas niveau initial au classifieur, la deuxième et la
troisième sont basées sur la compression de l’espace des attributs et la réduction de la dimen-
sionnalité en utilisant des autoencodeurs et l’encastrement linéaire local, respectivement, pour
réduire la complexité de calcul et utiliser les attributs les plus discriminantes. Les méthodes pro-
posées sont évaluées sur un ensemble de données disponible publiquement appelé COUGHVID,
et les résultats démontrent leur faisabilité et leur haute performance. Les contributions de cette
thèse comprennent le développement de nouvelles architectures basées sur l’apprentissage pro-
fond et l’apprentissage ensembliste pour le dépistage de la COVID-19, qui peuvent être utilisées
à la fois dans des contextes cliniques et à distance. Ces résultats mettent en évidence le potentiel
du diagnostic basé sur l’apprentissage automatique pour améliorer la rapidité et la précision
du dépistage du COVID-19 et son importance pour la prise des décisions éclairées, notamment
pendant les pandémies.
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ABSTRACT

M
achine learning (ML) has transformed the field of medical diagnosis, and it has become
even more important, where it can analyze different medical-related data modalities
from various sources, such as medical images, laboratory test results, clinical histories,

and physiological signals. Since the emergence of COVID-19 outbreak, techniques such as RT-
PCR and rapid antigen test have been used for diagnosis in order to quickly isolate patients
to prevent virus spread, however, the lack of test kits and time-consuming of these techniques
cause a serious situation that requires building some AI-based diagnosis tools to quickly identify
and isolate infected people. Many studies have been conducted in this respect, to build ML-
based diagnosis systems, where clinical information and history have been used to predict the
presence of the disease, however, this information may not be sufficient for accurate diagnosis.
Other techniques like Chest X-ray and CT scans have been investigated and showed a high
and promising performance, however, the mentioned methods require physical contact between
healthcare workers and patients and they are not always practical and safe, especially during
the highly contagious COVID-19 pandemic. Therefore, there is a critical need for remote, ML-
based diagnosis systems that can quickly, safely, and accurately identify infected individuals,
without requiring physical contact. COVID-19 can present with a range of symptoms, such as
fever, fatigue, and, coughing, which is considered one of the most common symptoms. Utilizing
cough or respiratory sound data in the diagnosis process has shown promising performance and
quick diagnosis results. Thus, the emergence of COVID-19 has underscored the importance of
developing and enhancing ML-based diagnosis systems that can utilize cough or respiratory
sound data to provide an efficient, quick, and remote diagnosis of the disease.
In this thesis, we propose novel methods for COVID-19 screening, where cough sound is used
to employ various techniques. Our first approach is based on hybridizing Convolutional Neural
Network (CNN) with Long-Short Term Memory (LSTM) along with Attention mechanism and
spectral data augmentation. The second one is a set of ML approaches that are based on ensemble
learning, where Random Forest algorithm was primarily used. The first approach consists of
forwarding a raw Low-Level Descriptors (LLD) vector to the classifier, the second and the third
are based on feature space compression and dimensionality reduction using Stacked Autoencoders
and Locally Linear Embedding (LLE), respectively, to reduce computing complexity and make
use of the most discriminant features to perform the classification task. The proposed methods
are evaluated on a publicly available dataset called COUGHVID, and the results demonstrate
their feasibility and high performance. The contributions of this thesis include the development
of novel Deep Learning (DL) and ML-based architectures for COVID-19 screening, which can
be used in both clinical and remote settings. These findings highlight the potential of ML and
DL-based diagnosis system in improving the speed and accuracy of COVID-19 screening and its
potential to assist healthcare providers for decision making, especially during pandemics.
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1
INTRODUCTION

T
he field of medical diagnosis has always been of great significance, as an accurate and

timely diagnosis can be critical in ensuring the best possible results for patients, thus,

it has been always a center of interest to the research community.

As different types of data become more available, and Artificial Intelligence (AI)-based techniques

and algorithms become more developed and efficient, the use of ML and DL in medical diagnosis

has largely grown. These techniques have shown great promise in improving the accuracy and

efficiency of medical diagnosis, and they have been widely applied in diagnostic tasks, such as

clinical information diagnoses, image diagnoses, and audio diagnoses.

1.1 COVID-19 outbreak

By December 2019, from Wuhan, China, the world faced a new disease from the Severe Acute

Respiratory Syndrome CoronaVirus 2 (SARS-CoV2) COVID-19. This disease is declared a global

pandemic because of its quick spread, the cause of death of more than six million, and infection

of more than 600 million people across the world, as of February 2023 [143, 145]. As above-

mentioned, COVID-19 is spreading quickly because of its possible air viral transmission, in a

form of aerosols, it was proved in a study on the stability of the surface [133], that the SARS-CoV-

2 was stable on its surface for about three hours. Moreover, the SARS-CoV-2 can be traveling

through the generated droplets from sneezing, speaking, or coughing, making a risk of contagion

if the inter-person distance is less than 30 feet [108], and according to the same study, wearing a

face mask can safely reduce the inter-person distance to 6.5 feet. In order to limit the SARS-CoV-2

virus from spreading quickly, there has been a global need for information and knowledge about

SARS-CoV-2 diagnostic and surveillance technology. Healthcare professionals may select where

and how to concentrate efforts and resources to properly isolate and treat affected people, with
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timely and precise in-place diagnoses. This process can slow down the mortality rate and delay

the spread of the virus. In order to lessen the devastation caused by the disease and stop its

spread, frontline healthcare professionals and authorities may greatly benefit from all of the

technologies needed for the quick identification of COVID-19. Several techniques have been

employed globally to recognize and diagnose COVID-19 since its emergence. The experience

gained from the previous SARS outbreak proved to be useful, the previously developed diagnostic

tools for SARS-CoV-1 were adapted and improved to help identify the new virus, SARS-CoV-2,

within a few days. Specifically, there were several techniques to screen and identify SARS-CoV-2

such as Transmission Electron Microscopy which is used to visualize the virus’s morphology[97],

Full Genome sequencing which played a crucial role in identifying the virus and developing

specific primers and probes for Polymerase Chain Reaction testing [62], and CT imaging-based

methods [28].

1.2 Testing and diagnosing tools

Reverse Transcription Polymerase Chain Reaction (RT-PCR)

RT-PCR technique has been widely used in viral detection, diagnostics, and other research fields.

It has been used extensively in the detection of SARS-CoV-2, the virus responsible for the COVID-

19 pandemic [27]. More precisely, RT-PCR presents a molecular biology technique used to amplify

RNA sequences by converting them to complementary DNA (cDNA) via reverse transcription

and then amplifying the resulting cDNA using Polymerase Chain Reaction (PCR). Unlike other

molecular tests which do have not good specificity, RT-PCR was considered the gold standard for

COVID-19 diagnosis tools [126]. Regarding the process, the application of RT-PCR consists of

several steps [35], including:

1. RNA Extraction: A patient’s sample, such as a nose swab, blood, or tissue, is utilized to

extract RNA using an appropriate RNA isolation kit or methodology.

2. Reverse Transcription: Using a reverse transcriptase enzyme and primers that are partic-

ular to the desired RNA target, the extracted RNA is then reverse-transcribed to create

cDNA.

3. cDNA Amplification: A DNA polymerase enzyme and gene-specific primers are employed

in PCR to amplify the resultant cDNA. To guarantee effective amplification, ideal cycle

parameters, including temperature and time, are selected.

4. Detection: Many techniques, such as gel electrophoresis, fluorescent dyes, or probes designed

specifically for the amplified product, are used to find the amplified PCR products.
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Rapid Antigen Detection Test

Rapid Antigen Detection is a diagnostic test for COVID-19 that works by detecting certain viral

proteins in respiratory samples, unlike RT-PCR tests, which detect the genetic material of the

virus, rapid antigen tests detect viral proteins directly from a patient by taking a nasopharyngeal

swab or an anterior nasal swab, and the results may be acquired in few minutes, making it a

faster and more practical choice for COVID-19 testing [61]. Although, it’s crucial to remember

that antigen testing often has lower sensitivity than RT-PCR tests and a higher likelihood of

returning false-negative [43]. Positive antigen test results are therefore thought to be quite

reliable, but negative ones should have verification by an RT-PCR, especially in those who have

symptoms or have been exposed to COVID-19 before [83]. There are a few steps to perform a

rapid antigen test:

1. Collection: A patient’s sample, such as a nose swab, blood, or tissue, is collected.

2. Preparation: The sample is mixed with substances such as detergents or enzymes that can

help uncover the viral particles from possible existing protective layers of proteins, lipids,

or other substances, and this, allows antibodies on the test device to interact and detect

viral proteins.

3. Application: The processed sample is introduced to a test device that contains antibodies

able to identify the viral proteins.

4. Incubation: Giving the antibodies the time to react with the viral proteins in the sample.

The test device is incubated for a brief duration, typically 10 to 15 minutes.

1.3 ML in COVID-19 Diagnosis

The capacity of AI to efficiently and precisely evaluate massive volumes of data has made it a

useful weapon in the fight against COVID-19. Predictive models for the diagnosis of COVID-19

are being developed using AI-based approaches including ML, DL, and Computer Vision (CV),

enabling healthcare professionals to make quick and more informed decisions regarding patient

treatment. Clinical data under COVID-19 are being analyzed using ML in order to find anomalies

and monitor the course of the illness [5, 40, 42, 60, 114, 152]. In the context of CV, chest X-rays,

and CT scans as well, have been widely used for diagnosing COVID-19, several studies have

shown that COVID-19 pneumonia can cause characteristic changes in the lungs that can be

detected through medical imaging, including ground-glass opacities, consolidation, crazy-paving

pattern, and peripheral distribution of lesions. [12, 90]. Chest X-rays and CT scans have been

shown to be effective in identifying COVID-19 pneumonia, with some studies reporting high

sensitivity and specificity using different DL approaches [13, 34, 36, 68, 89, 138]. Regarding audio

analysis, a significant challenge was raised by some researchers to use AI-based solutions to
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quickly, safely, and efficiently diagnose COVID-19 from coughs, or respiratory sounds, due to the

lack of data, the variability of cough sounds, and the difficulty in handling and analyzing audio

data. However, recent studies have made strides in tackling this challenge, by first, enlarging

existing datasets and making them available for research purposes [19, 22, 87, 91] then exploring

and utilizing several ML and DL techniques and approaches to perform efficient diagnosis

systems [3, 19, 55, 92]. In terms of COVID-19 detection accuracy, techniques like X-ray and

CT scan medical analysis can produce good diagnosis results, occasionally even outperforming

RT-PCR. Nevertheless, because patients have to be present physically for these procedures, the

risk of a further virus spreading is increased. This emphasizes the value of a contactless analysis,

and that is considered one of the motivating factors for the work of this thesis.

1.4 COVID-19 Symptoms

The COVID-19 symptoms can be minor to severe, and some people may even have no symptoms

at all. Depending on the virus variant, COVID-19 symptoms often show up 2 to 14 days after

exposure to the virus [150]. According to the WHO [143], COVID-19 symptoms can be categorized

into three groups:

• The most frequently reported ones that include fever, cough, fatigue, and loss of taste or

smell.

• Some less common symptoms include sore throat, headache, muscle pain, diarrhea, skin

rash, discoloration of fingers or toes, and red or irritated eyes.

• Certain symptoms that can be particularly severe and require immediate medical attention,

such as difficulty breathing or shortness of breath, loss of speech or mobility, confusion, and

chest pain.

In order to define the main symptoms of the disease, a meta-analysis study on 54 published

works that include clinical data i.e. the presence of symptoms or questionnaires has been done [6]

where a total of 6382 samples were included in the statistical analysis. 6380 in the 54 studies have

recorded cough symptom, whereas 5298 in 53 studies have recorded fever symptom. Dyspnea

(shortness of breath) has been recorded in 3388 in only 27 studies, and 3803 from 22 studies

denoted for the fatigue symptom. Thus, the mentioned study defines and confirms the most 3

common symptoms of COVID-19; Cough, Fatigue, and Shortness of breath.

1.5 Motivations

What motivates our research? The COVID-19 pandemic has highlighted the need for accurate, effi-

cient, and more precisely, safe diagnostic tools to combat the spread of the virus. The development

of such tools has become a top priority for healthcare professionals worldwide. Integrating AI
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approaches in medical diagnosis, particularly in the analysis of cough sounds, offers a promising

solution as it will give the possibility to make diagnostics remotely. This thesis work aims to

investigate the integration of AI approaches in medical diagnosis, with a focus on analyzing

cough sounds as a potential indicator of COVID-19 infection. The following motivations have

inspired this research and driven the investigation being undertaken:

1. The timely release of RT-PCR test results is a critical factor in containing the spread of

COVID-19. However, in some countries, the process of obtaining and releasing these test

results may take hours or even days, leading to delays in diagnosis, and treatment. Without

isolation, this can possibly increase the risk of virus transmission.

2. The availability of RT-PCR test kits is a major concern in some countries, where the quantity

of test kits may be insufficient or lacking due to economic constraints. This shortage of

testing resources has limited the ability of healthcare systems to detect, diagnose, and

contain the spread of COVID-19.

3. As mentioned in the COVID-19 symptoms section, and reported in a previous study [40],

the cough symptom had the highest correlation with positive COVID-19 cases.

4. Coughing is one of the symptoms of many chest and respiratory diseases such as Asthma,

Bronchitis, Tuberculosis, and Pertussis, and as we previously discussed, it is additionally

one of the most common symptoms of COVID-19 illness. To differentiate coughs linked to

COVID-19 from those caused by other respiratory illnesses, more investigation is necessary.

An earlier study [129] presents a method for analyzing cough sounds quantitatively, which

is capable of characterizing significant differences in the sound after a Methacholine

challenge. The analysis suggests that acoustic examination of cough sounds may provide

information on airway flow mechanics during cough, potentially aiding in the diagnosis

of respiratory disorders. Another study [21] focuses on distinguishing between dry and

wet cough sounds. To achieve this, the authors suggest using two features: the number of

peaks of the energy envelope and the power ratio of two frequency bands. They tested their

approach on a set of eight highly dry and eight highly wet cough sound recordings and

observed a clear differentiation between the two types of cough sounds using these features.

The aforementioned research has shown that coughing has the potential to differentiate

between COVID-19-related coughs and those associated with other diseases. However,

it is important to know that there are several respiratory and non-respiratory medical

conditions that can also cause coughing [55], which can create challenges that may require

more attention.

5. Access to large and diverse datasets is crucial for the development of accurate and reliable

models in medical diagnosis. In this work, our research has utilized the largest publicly

available dataset of cough sounds under COVID-19, COUGHVID [91], it provides more than
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20,000 recordings which present a valuable resource for the development of an effective

AI-assisted diagnosis tool. However, the dataset suffers from class imbalance issue, which

requires more care in this respect.

6. The need for a remote, safe, quick, efficient, and accurate diagnostic tool has become crucial

in the context of the COVID-19 pandemic to avoid physical contact between patients and

healthcare providers and reduce the spread of the virus.

1.6 Thesis objectives and research questions

The overarching objective of this thesis is to develop and evaluate the performance of an AI-

assisted diagnosis system for COVID-19 based solely on cough sound data. Additionally, we also

have some sub-objectives listed below:

• This thesis will explore the theoretical background of the ML, DL, data augmentation, and

dimensionality reduction techniques used in the development of an AI-assisted diagnosis

system for COVID-19 using cough sound data. By providing a detailed examination of

the theoretical foundations of these methods, the thesis aims to contribute to the broader

theoretical understanding of these techniques and their potential applications in various

domains.

• In addition to exploring several studies that attempted to diagnose respiratory diseases

using ML and DL, we present a succinct and critical review of related works regarding the

diagnosis of COVID-19 utilizing cough and respiratory sounds using ML and DL approaches

as well as the existing datasets.

• We analyze the COUGHVID dataset and propose a raw signal, spectral, tabular data

augmentation, and class balancing to create more variability in a way to enhance the

efficiency of ML and DL-based solutions.

• The present study proposes a new framework for COVID-19 diagnosis that relies solely

on cough sound data as input. The framework is based on a hybrid DL approach that

incorporates an attention-based CNN and LSTM. This approach is designed to effectively

recognize and distinguish between positive and negative COVID-19 cases.

• The current study aims also, to propose a novel ensemble learning-based framework for

COVID-19 diagnosis that utilizes Random Forest as the primary classifier. The proposed

approach involves training the model on a large set of low-level audio features extracted

from cough sounds. The approach has been enhanced through two additional methods: first,

by incorporating a Stacked Autoencoder to extract the most discriminant features from the

large set of audio features, and second, by utilizing LLE to reduce the feature space and

capture more important patterns in the data.
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The following research questions were developed to guide this study and achieve its objectives:

1. Can ML models trained on cough sound data accurately distinguish between positive and

negative cases of COVID-19?

2. Can ML methods achieve comparable performance to DL methods in developing accurate

and efficient diagnosis systems for COVID-19 based on cough sound data, or is DL necessary

to achieve the desired level of performance?

3. How can the issue of class imbalance (the lack of positive samples) in COVID-19 cough

sound datasets be addressed to improve the performance of AI-assisted diagnosis systems?

1.7 Thesis outline

The thesis is divided into two main parts. The first part will provide an overview of the theoretical

background of ML, DL, data augmentation, and dimensionality reduction techniques used in

COVID-19 diagnosis from cough sound as well as a detailed and concise literature review of the

field. The second part will focus on our contributions, which aim to diagnose COVID-19 cough

sounds using various ML, and DL techniques.

Part I: Theoretical background and literature review

Chapter II — Theoretical Background:

Provides an in-depth discussion of ML and DL concepts, as well as the methods used in the

contributions of this thesis. This chapter aims to establish a strong foundation for the rest of the

thesis and provide a comprehensive understanding of the relevant used theories and techniques,

as well as an exploration of the state-of-the-art of ML and DL for respiratory diseases diagnostic.

Chapter III — Literature Review:

Focuses on the data availability, the state-of-the-art and an in-depth literature review of ML and

DL methods for diagnosing COVID-19 from cough sound.

Part II: Our approaches for diagnosing COVID-19 from cough sound

Chapter IV — Hybrid CNN-LSTM with Attention-mechanism architecture and

SpecAugment for COVID-19 diagnosis from Cough sound:

This chapter provides a detailed description of the proposed framework which consists of applying

SpecAugment technique for spectral data augmentation and then, hybridizing CNN and LSTM

along with attention mechanism and presents the results of the conducted experiments, followed

by a discussion and conclusion of the work.
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Chapter V — The application of Random Forest method for COVID-19 diagnosis from

Cough Sound

Focuses on, first, the diagnosis of COVID-19 from cough sound using a simple ensemble learning

framework based on Random Forest and LLD for audio, then, the enhancement of the former

by using a Stacked Autoencoder for dimensionality reduction. Lastly, the use of LLE method

instead of Stacked Autoencoder to boost the performance of the classification model. The chapter

provides a detailed description of each of the proposed approaches, the experimental setup, and

the obtained results. Finally, a thorough discussion, ablation study and conclusion of the work

are presented.

Conclusion and perspectives for future work:

Concludes the present work by summarizing the proposed approaches and the achievements of

each one, and also illustrating some perspectives for future work and challenges regarding the

field.

1.8 Publications

The research presented in this thesis is based on several publications, which have been listed

below. These publications were either authored or co-authored by the author of this thesis, they

include a journal paper, a paper under review for a journal publication, one book chapter, and

two conference proceedings.

1. S. Hamdi, A. Moussaoui, M. Oussalah, M. Saidi, Early COVID-19 Diagnosis from Cough

Sound Using Random Forest and Low-Level Descriptors, in: Third Int. Conf. Comput. Inf.

Sci. 2021, 2021: pp. 1–6.

2. M. Berrimi, S. Hamdi, R.Y. Cherif, A. Moussaoui, M. Oussalah, M. Chabane, COVID-19 de-

tection from Xray and CT scans using transfer learning, in: 2021 Int. Conf. Women Data Sci.

Taif Univ. (WiDSTaif ), 2021: pp. 1–6. https://doi.org/10.1109/WiDSTaif52235.2021.9430229.

3. S. Hamdi, M. Oussalah, A. Moussaoui, M. Saidi, Attention-based hybrid CNN-LSTM and

spectral data augmentation for COVID-19 diagnosis from cough sound, J. Intell. Inf. Syst.

(2022). https://doi.org/10.1007/s10844-022-00707-7.

4. S. Hamdi, A. Moussaoui, M. Oussalah, M. Saidi, Autoencoders and Ensemble-Based So-

lution for COVID-19 Diagnosis from Cough Sound BT - Modelling and Implementation

of Complex Systems, in: S. Chikhi, G. Diaz-Descalzo, A. Amine, A. Chaoui, D.E. Saidouni,

M.K. Kholladi (Eds.), Springer International Publishing, Cham, 2022: pp. 279–291.
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5. S. Hamdi, A. Moussaoui, M. Oussalah, M. Saidi, Locally Linear Embedding and Ensemble
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THEORETICAL BACKGROUND

2.1 Introduction

T
he field of ML has fundamentally transformed the approach to problem-solving across

various fields. In simple words, ML consists of training an algorithm to learn from data

to perform a particular task. The importance of data in this process cannot be overstated,

as it provides algorithms with the knowledge necessary to enhance their performance. In this

chapter, we provide an overview of the fundamental concepts and techniques that form the basis

of our work on diagnosing COVID-19 from cough sound. We start by introducing ML’s essential

types, algorithms, and techniques, including dimensionality reduction, data augmentation, and

ensemble learning. We then, delve into DL methods that have been applied to our work, including

CNN, LSTM, and attention mechanism. Throughout this chapter, we also explore the various

types of audio features utilized in our research, such as LLD, spectrograms, and mel-spectrograms.

Lastly, we will discuss some recent works that have investigated respiratory diseases using ML

and DL. By the end of this chapter, readers will have a comprehensive understanding of the

theoretical background necessary to comprehend our approaches for COVID-19 diagnosis from

cough sound. This includes a general overview of ML and a detailed understanding of the specific

methods and techniques used in the present work.

2.2 Introduction to Machine Learning

ML can be defined as a subfield of AI that trains algorithms to automatically learn patterns from

data and make predictions or decisions for unseen instances without being explicitly programmed.

It aims to enable computers to learn from data and improve their performance on a particular

task, without being explicitly programmed for that task. In essence, ML algorithms use statistical
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techniques as well as optimization algorithms that aim to fit a model to identify patterns in data

and generalize them to make new predictions.

2.2.1 Types of Machine Learning

There are various types of machine learning: supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning [7].

1. Supervised learning: A supervised learning algorithm is trained on labeled data, which

means that the input data has been prior annotated with the intended output label. Depend-

ing on the used mechanism of each algorithm, generally, reducing the error between the

predicted output and the actual output is performed, the algorithm learns to map the input

data to the proper output. Supervised learning is used in tasks such as classification and

regression. The classification consists of predicting the category or class, such as predicting

whether a cough sample belongs to a COVID-19-positive or a healthy individual. On the

other hand, regression refers to the learning process that aims to predict a continuous

output, such as predicting a patient’s blood glucose levels based on factors such as their

age, weight, and family history of diabetes. This can help physicians better manage and

treat patients with diabetes.

2. Unsupervised learning: Unsupervised learning involves processes that aim to discover

underlying patterns in data without relying on labeled examples. Unsupervised learning

is used commonly for clustering and dimensionality reduction. The clustering is based on

grouping data points, the algorithm finds patterns or resemblances in the data without

knowing what these patterns could be, whereas the dimensionality reduction involves

reducing the number of features in a dataset. Its main aim is to pinpoint the most important

and instructive features that can explain the variance of data. Various algorithms and

techniques are used for dimensionality reduction including Locally Linear Embedding

(LLE), and Autoencoders which will be discussed in Section 2.8.

3. Semi-supervised learning: Combines labeled and unlabeled data to improve model

accuracy, especially when obtaining labeled data is difficult or costly. By using both types

of data, algorithms can better identify patterns and achieve better performance than

supervised learning alone. This approach is useful in medical diagnosis tasks and can

enhance ML model performance.

4. Reinforcement learning Involves an algorithm interacting with an environment and

receiving rewards or punishments to learn the optimal action to take for maximum reward.

It’s commonly used in robotics and can also be applied to some medical diagnosis tasks.

Techniques like Deep Q-Network and Policy Gradient methods are used for reinforcement

learning.
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2.2.2 Machine learning pipeline

ML pipeline framework guides the general process of creating a ML model, from data acquisition

to model evaluation. It provides a systematic approach to ensure accurate and efficient model

development. This section will cover the essential elements of the machine learning pipeline and

their best practices.

1. Data collection and preparation: The first stage of the ML pipeline involves collecting

and preparing data, including identifying sources, cleaning, and preprocessing. Data quality

is crucial as it impacts model performance, and the type of data determines the appropriate

model or technique to use. This step also involves exploratory data analysis and splitting

data into training, validation, and test sets.

2. Data exploration and visualization: This step involves performing statistical analysis

and visualization to identify patterns and correlations between features using techniques

like scatter plots, histograms, and heat maps. It is essential to resolve data quality issues

such as missing values and outliers before model training.

3. Feature engineering: Involves, in general, feature extraction and feature selection.

Feature extraction transforms raw data into a format suitable for ML algorithms, Mel-

Frequency Cepstral Coefficients (MFCCs) in audio data for instance, while feature selection

selects the most relevant subset of features to avoid redundancy and overfitting. For

example, RFE is a common method used for feature selection, which recursively removes

features from the dataset and builds a model on the remaining features until the desired

number of features is reached.

4. Model selection, data split, and training: In this step, the appropriate machine learn-

ing algorithm is selected based on the problem, data type, and desired performance, which

may require experimentation with several algorithms. The data is split into training and

testing subsets, with a commonly used split of 70-80% for training and 20-30% for testing,

and the testing set should be independent of the training set. The training phase involves

fitting the algorithm to the data and adjusting parameters or weights to minimize the error

between real and predicted outputs. In clustering, the algorithm aims to group similar data

points together and separate dissimilar points based on the maximum distance between

classes and the minimum distance within each class.

5. Model evaluation: The performance of a trained model is determined to show its ability

in predicting outcomes on unseen data. Different metrics are used to evaluate the model,

including Accuracy, Precision, Sensitivity, F1-score, ROC-AUC, Specificity, and others,

depending on the problem and the model type. This process helps identify the strengths

and weaknesses of the model and guides the selection of a more appropriate model or

adjustments to its hyper-parameters. We can list the above-mentioned evaluation metrics
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which they have been used in this work. In the following formulations, TP, TN, FP, and FN,

refer to the component of the confusion matrix, true positive, true negative, false positive,

and false negative.

• Accuracy is the ratio of the number of correctly classified samples to the total number

of samples and can be represented mathematically as follows:

(2.1) Accuracy=
TP +TN

TP +TN +FP +FN

• Precision is a metric that measures the proportion of correctly predicted positive in-

stances out of all predicted positive instances. It can be represented with the following

formula:

(2.2) Precision =
TP

TP +FP

• Sensitivity, recall, or true positive rate, measures the proportion of actual positive

cases that are correctly predicted by the model. It can be calculated as:

(2.3) Sensitivity=
TP

TP +FN

• F1-score which combines precision and recall into a single score, and it is calculated

as the harmonic mean of precision and recall:

(2.4) F1= 2§
Precision§Sensitivity

Precision+Sensitivity

• ROC-AUC is commonly used to measure the performance of binary classification

models, which measures the area under the Receiver Operating Characteristic (ROC)

curve. In other words, A higher ROC-AUC score indicates a better performance of the

model in distinguishing between the two classes. The ROC curve plots the Sensitivity

against the false positive rate (FPR) at various threshold values. Mathematically,

ROC-AUC can be formulated as:

(2.5) ROC° AUC =

Z1

0
Sensitivity(FPR°1(t))dt

where FPR°1(t) is the inverse function of the FPR at threshold t.

• Specificity, also known as true negative rate, is the proportion of the negatives that

are correctly predicted as negatives by the model. Mathematically, it can be computed

as:

(2.6) Speci f icity=
TN

TN +FP
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6. Model validation: In the ML pipeline, the validation step is critical to assess the per-

formance of the trained model on new data. To achieve this, model validation techniques

such as k-fold Cross-Validation and Leave-one-out Cross-validation (LOOCV) are used. In

our contributions, we used k-fold Cross-Validation, in which, the dataset is divided into

k subsets, and the model is trained k times, each time, k°1 subsets are used used for

training and the remaining subset for validation. After computing the intended evaluation

metrics k times, the average of each metric is finally considered. Algorithm 1 describes the

process of k-fold Cross-Validation.

Algorithm 1 k-Fold Cross-Validation [7]

Require: X : training data, k: number of folds
Ensure: average performance metric of the model

1: Divide X into k equal-sized folds
2: for i √ 1 to k do
3: X test √ ith fold
4: X train √ X with X test removed
5: Train the model on X train

6: Test the model on X test

7: Calculate performance metric on X test

8: Add performance metric to list
9: end for

10: Calculate the average of the performance metrics

7. Hyper-parameter tuning: Hyper-parameters are parameters that control the behavior

of the learning algorithm, and their values need to be chosen carefully to achieve optimal

performance. There are various techniques available for tuning hyper-parameters, such

as GridSearch, random search, and Bayesian optimization. In this process, the model

is trained and validated using different sets of hyper-parameters, and the best set of

hyper-parameters is selected based on the evaluation metric. In our contributions, we used

GridSearch to tune hyper-parameters, which involves exhaustively searching through a

predefined set of hyper-parameters and selecting the set that produces the best performance.

Algorithm 2 describes the process of GridSearch.

Figure 2.1 illustrates a simplified overview of the ML pipeline, from data acquisition and to model

training and prediction.

2.3 Common machine learning algorithms

This section will detail some of the most widely used ML algorithms. These algorithms include

linear and polynomial regression, SVM for supervised learning, and k-means clustering algorithm

for unsupervised learning.
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Algorithm 2 GridSearch

Require: X : training data, y: target labels, parameters: dictionary of hyperparameters with
possible values, k: number of folds for cross-validation

Ensure: best hyperparameters for the model
1: Define a list to hold all the possible combinations of hyperparameters
2: Initialize the performance metric to track the best model so far
3: for each possible combination of hyperparameters do
4: Train the model on X with the given hyperparameters
5: Evaluate the model using k-fold cross-validation and the chosen performance metric
6: if the model’s performance is better than the previous best then
7: Update the performance metric
8: Save the hyperparameters that resulted in the better performance
9: end if

10: end for
11: return the hyperparameters that resulted in the best performance

Figure 2.1: Overview of the ML Pipeline, showing the various stages, from data collection to
model prediction

2.3.1 Linear and polynomial regression

In supervised learning, linear regression is a widely used technique for predicting a continuous

outcome variable based on one or more input variables which are features. Linear regression

aims to find the best linear relationship between the input variables and the target variable

[104]. Linear regression assumes that the relationship between the input variables x1, x2, ..., xn

and the outcome variable y can be represented by a linear equation of the form:

y= µ0 +µ1x1 +µ2x2 + ...+µnxn +≤

where µ0,µ1, ...,µn are the coefficients or parameters of the model, and ≤ is the error term that

captures the difference between the predicted and actual values of y. The objective of linear

regression is to estimate the values of µ0,µ1, ...,µn that best fit the observed data. This is typically

done by minimizing the loss function Mean Squared Error (MSE) between the predicted values
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ŷi and the actual values yi for all d observations in the training dataset:

MSE =
1
d

n
X

i=1
(yi ° ŷi)

2

where d is the number of samples. Minimizing MSE depends on the values of µ0,µ1, ...,µn, which

can be estimated using various algorithms, the most commonly used is Gradient Descent (GD).

Polynomial regression is an extension of linear regression that models a non-linear relationship

between the independent variable x and the dependent variable y as annth-degree polynomial

function. The equation for the polynomial regression model with degree n can be represented as:

y= µ0 +µ1x+µ2x2
+µ3x3

+ ...+µnxn
+≤

2.3.2 Support Vector Machine (SVM)

SVM is one of the most well-known supervised algorithms, The main idea behind SVM is to find

the optimal linear separating hyperplane i.e. the decision boundary that separates the data of

one class from another [17]. Consider a dataset D be given as (X1, y1),(X2, y2),...,(X |D|, y|D|) where

X i is a training instance associated to a class label yi where yi 2 {+1,-1}, and the data are linearly

separable.

(2.7)
w · xi +b ∏+1 where yi =+1

w · xi +b ∑°1 where yi =°1

where w is a weight vector W = {w1,w2, ...,wn}; n is the number of features, b is a bias. By

multiplying each equation by the associated label yi we get:

(2.8) yi(w · xi +b)∏+1

The optimal hyperplane is:

(2.9) w0 · x+b0 = 0

By using equations 2.7, we can obtain the width of the margin defined by only the Support

Vectors, which are the training samples that satisfy:

(2.10) yi(w · xi +b)= 1

Then, the width of the margin can be denoted by:

(2.11) Ω(w0,b0)=
2

||w||

The objective is to maximize Equation 2.11 and so minimize 1
2 ||w||2, which can be solved by

quadratic programming.

(2.12)
min

w

1
2
||w||

2

s.t. yi(w · xi +b)∏ 1
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Using Lagrangian multipliers L(w,b,Æ) and the partial derivatives of L, we get the dual of the

problem 2.12:

(2.13)

max
|D|
X

i=1
Æi °

|D|
X

i=1

|D|
X

j=1
ÆiÆ j yi yjxi · x j

s.t.
|D|
X

i=1
Æi yi = 0

Furthermore, in the case of non-linearly separable data, penalizing misclassification should be

put forward using Cost factor C, and slack-variables ªi, thus, the optimization problem 2.12

becomes:

(2.14)

min
w

1
2
||w||

2
+C

|D|
X

i=1
ªi

s.t. yi(w · xi +b)∏ 1°ªi

ªi ∏ 08i 2 {1,2, ..., |D|}

Hence, this formulation 2.14 introduces the Soft margin concept, which makes a compromise

between a large margin and less misclassification. The parameter C > 0 controls the effect

of the penalization. This parameter is often used for regularization to reduce overfitting.

SVM utilizes a Kernel Method where a non-linear mapping is applied to transform the input

data to a higher dimensional space, allowing SVM to find a linear separation in this new space.

The kernel mapping can be represented as follows:

(2.15) K(X i, X j)=¡(X i) ·¡(X j)

Various kernels have been used to map the data to higher dimensional space, including [96]:

• Polynomial Kernel of degree h: K(X i, X j)= (X i · X j +1)h

• Gaussian radial basis function kernel: K(X i, X j)= e°||X i°X j ||
2/2æ2

• Sigmoid kernel: K(X i, X j)= tanh(kX i · X j °±)

2.3.3 Decision Trees

Decision Tree is a popular supervised learning algorithm that is widely used for classification and

regression, A decision tree is a hierarchical model that partitions the data into smaller subsets

based on a sequence of binary decisions on features. Each internal node of the tree represents a

decision rule based on a specific feature, and each leaf node represents a predicted outcome. The

algorithm uses a greedy approach to recursively split the data into smaller subsets based on the

feature that results in the maximum information gain or reduction in impurity [46]. Let X be the
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input data, Y be the target variable, and D be the dataset. The goal of a decision tree algorithm

is to learn a tree, T, that can predict the value of Y for any given X . The algorithm starts by

selecting the feature that results in the maximum information gain or reduction in impurity. The

data is then split into two subsets based on the values of the selected feature. This process is

repeated recursively for each subset until a stopping criterion is met, such as a maximum depth

or minimum number of data points in a leaf node. The final prediction of the decision tree model

for a new instance, Xnew, is obtained by traversing the tree from the root to a leaf node based on

the decision rules and returning the predicted value associated with that leaf node. The impurity

or entropy of a node, N, is defined as:

H(N)=°
K
X

i=1
p(i) log2 p(i)

where K is the number of classes, and p(i) is the proportion of data points in N that belong to

class i. The information gain of a split on feature F at node N is defined as the reduction in

impurity:

IG(N,F)= H(N)°
2

X

i=1

|N(i)|
|N|

H(N(i))

where |N(i)| is the number of data points in the ith subset, and |N| is the total number of data

points in N. The feature that results in the maximum information gain is selected for the split.

2.3.4 K-means

K-means is an unsupervised learning algorithm used for clustering data points into k different

clusters based on their similarity (denote that k is given as input). The algorithm starts by

randomly selecting k initial centroids, one for each cluster. Then, for each data point, the algorithm

assigns it to the nearest centroid based on the Euclidean distance between the point and the

centroid. After all data points have been assigned, the centroids are updated as the mean of all

data points assigned to that centroid. The algorithm repeats the same process and stops updating

centroids when there is no change. The objective of k-means is to minimize the intra-cluster sum

of squares, which is defined as the sum of the squared Euclidean distances between each data

point and its assigned centroid [46]. The k-means algorithm can be formulated as follows:

Given a dataset x1, x2, ..., xn, where xi 2 Rd, and the number of clusters k, the objective is to

minimize the intra-cluster sum of squares:

minimize
k

X

i=1

X

x2Ci

||x°µi||
2,

where Ci is the set of data points assigned to centroid µi.
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2.4 Ensemble Learning

Ensemble learning is a popular and widely used ML technique, in simple words, it consists of

combining multiple simple classifiers to perform a powerful classifier. In this section, we will

describe the three main techniques of ensemble learning which are Bagging, Boosting, and

Stacking, as well as the ensemble learning algorithm Random Forest that has been widely used

in our work.

2.4.1 Bagging

Bagging, or bootstrap aggregating, is a technique that trains multiple models on bootstrap

samples of the training data and aggregates their predictions using a simple voting or averaging

mechanism. The main idea behind bagging is to reduce the variance of the model by introducing

randomness in the data and the model itself. Bagging can be used with any base model, but it

is particularly effective with high-variance models such as decision trees. Let D be the training

data of size n, and let D i be a bootstrap sample of size ni drawn from D with replacement. The

bagging algorithm trains m models, denoted by f i(x), on the bootstrap samples D i [46]. The final

prediction is obtained by aggregating the predictions of the individual models using a simple

voting or averaging mechanism:

fbagging(x)=
1
m

m
X

i=1
f i(x)

2.4.2 Boosting

In boosting, multiple simple models are trained sequentially, and the weights of the training data

are adjusted to emphasize the misclassified examples in each iteration. Let D be the training data

of size n, and let wi be the weight of example i. The boosting algorithm trains m models, denoted

by f i(x), on the training data weighted by wi. The weights are updated after each iteration using

a weighting function W(y, f i(x)) that depends on the true label y and the model prediction f i(x).

The final prediction is obtained by combining the individual models using a weighted average:

fboosting(x)=
m
X

i=1
Æi f i(x)

where Æi is the weight of the i-th model, and it is determined by taking the logarithm of the ratio

of the error of the i-th model to the error of a random classifier:

Æi = log
1°errori

errori

where errori is the error of the i-th classifier, calculated as the sum of the weights of the

misclassified examples [46].
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2.4.3 Stacking

In stacking, a set of base models is trained on the training data, and their predictions are used

as input features to train a higher-level model [7]. Let D be the training data of size n, and

let f1(x), f2(x), ..., fm(x) be the base models. The stacking algorithm trains a higher-level model,

denoted by g(x), on the predictions of the base models:

g(x)= h( f1(x), f2(x), ..., fm(x))

where h is a function that combines the predictions of the base models. The predictions of the

stacking ensemble for a new instance x are obtained by feeding x into the base models, obtaining

their predictions, and then feeding the predictions into the higher-level model:

fstacking(x)= g( f1(x), f2(x), ..., fm(x))

2.4.4 Random Forest

Random Forest is one of the most common ensemble learning algorithms, that builds multiple

decision trees which are well-known for their high variance (Sections 2.3.3 and 2.4.1), and

combines their outputs to improve the overall accuracy of the predictions. Each decision tree in

the Random Forest is built using a different subset of the training data and a random subset

of the features. The algorithm then aggregates the predictions from all the trees to obtain the

final prediction [7, 16, 18, 46]. Compared to one single tree model, Random Forest has several

advantages including:

• Avoiding overfitting: Random Forest utilizes multiple decision trees, and random subsets

of the data (bagging method) and features, thus, the algorithm reduces the risk of overfitting

to the training data.

• Enhanced accuracy: By aggregating the predictions of multiple trees, the algorithm can

enhance the overall prediction accuracy.

• Feature importance: Random Forest can be used for feature selection or interpretation,

as it can provide information on the importance of different features.

Random Forest algorithm can be summarized in the following steps:

1. Randomly select a subset of the training data (with replacement) to create a new training

set.

2. Randomly select a subset of the features to use for the current tree.

3. Build a decision tree using the selected data and features.

4. Repeat steps 1-3 to create multiple decision trees.
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5. To make a prediction for a new data point, run it through all the trees in the forest and

aggregate their predictions.

Mathematically, let X = x1, x2, ..., xn be the set of training data points, where xi is a d-dimensional

feature vector, and Y = y1, y2, ..., yn be the corresponding set of labels. Let T be the number of

trees to be built in the random forest. At each node of a decision tree, the algorithm selects

a feature j and a threshold value s that optimizes a certain splitting criterion. The criterion

measures the purity of the resulting subsets after the split and is typically based on:

• Gini index (GI), which is defined as:

GI= 1°
X

i

(pi)
2

where pi is the proportion of the number of samples of a particular class in the set.

• Or Information gain which is measured by the Entropy. A lower entropy value indicates a

more pure set. It is defined by the following formula:

Entropy=°
n
X

i=1
pi log2(pi)

where pi is the proportion of the number of elements of a particular class in the set, and n

is the total number of classes.

Let m be the number of features to be considered at each node of a decision tree, where m << d

ensures diversity among the trees. Let p be the proportion of the training data to be used for each

tree, where 0 < p ∑ 1. Algorithm 3 describes the main steps of the training process of random

forest.

Algorithm 3 Random Forest training algorithm

Require: Training data X , labels Y , number of trees T, number of features m, proportion of
training data p

Ensure: List of decision trees F = f1, f2, ..., fT

1: F √;
2: for t = 1 to T do
3: X t √ randomly select p£n data points from X with replacement
4: jt √ randomly select m features from the d features
5: f t √ build a decision tree on X t using the features jt

6: add f t to F

7: end for
8: return F

To make a prediction for a new data point xnew, random forest aggregates the predictions from

all the trees:

ŷ=
1
T

T
X

t=1
f t(xnew)
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where ŷ is the predicted label, f t(x) is the predicted label from tree f t, and T is the number of

trees in the forest. We denote also that random forest can be used for regression tasks.

2.5 Introduction to Deep Learning

DL is a sub-type of ML where ANNs are used to learn complex representations of data. ANNs

consist of interconnected units, which are trained to recognize patterns in data through back-

propagation algorithm. ANNs are not recently developed, this concept was first introduced in the

1940s [79], and since then, they have been extensively studied and improved. However, the recent

development in computing power and availability of huge amounts of data have allowed making

ANNs deeper, which can learn increasingly complex features of the data. This is where the term

deep learning comes from, as it emphasizes the ability of these networks to learn from data

in different representations at each level through multiple layers of units. Each layer captures

different levels of patterns, thus, more complex features are learned when network is deeper. In

this section, we will discuss various topics related to DL, including different architectures, back-

propagation algorithm, CNN, LSTM, and attention mechanism. We will explore the underlying

principles, the fundamental concept, and the main applications of each one, and specifically, what

have been used in our work.

2.5.1 Artificial Neural Network (ANN)

The idea behind ANNs is to simulate and mimic the structure and function of the human brain,

which is composed of a huge network of neurons that communicate with each other through

synapses. Neurons receive inputs from other neurons, process them, and produce an output

signal that is transmitted to other neurons for further processing or to make a specific action.

Similarly, ANNs are made up of units that take input from other units, process it using an

activation function, and then, the latter either sends the output to other units or achieves the

decision step. Weights and biases of a unit are modified and adjusted with the aim of enhancing

the performance of the network using a process called backpropagation. Various architectures

of ANN have been developed and used for different applications, we can summarize them by

mentioning the two main ones [123, 124]:

• Feed-forward architectures: In this type of ANN, the information takes only one

direction, from the input layer to the output. There are several feed-forward architectures,

few of them include Single-Layer perceptron (SLP), Multi-Layer Perceptron (MLP), Deep

Neural Network (DNN), and CNN. This type of neural network is often used in applications

that do not require time-dependent or sequential data processing, in other words, where

the input data can be processed independently of the order in which it is presented. For

instance, CNNs are often used for image and video processing, while SLP, MLP, and DNN

are mostly used for general tasks.
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• Recurrent architectures: This type is designed for sequential data processing tasks.

Specifically, Recurrent Neural Network (RNN)s have feedback connections that allow them

to process sequences of variable length, and they can learn to model long-term dependencies

in the input data. Several recurrent architectures have been developed since the emergence

of this concept including RNN, LSTM, and Gated Recurrent Unit (GRU). Unlike Feed-

forward architectures, this type is well-suited for applications that require the processing

of time-dependent or sequential data. Recurrent architectures are used for specific tasks

in Natural Language Processing (NLP), Speech Recognition (SR) due to their ability to

capture the temporal correlations in the input data. We shall note that LSTM and GRU are

specialized types of RNNs that tackle the issue of Vanishing gradients on long sequences.

Figure 2.2 illustrates a general structure of a DNN with three hidden layers, each layer containing

7, 7, and 6 units, respectively. The arrow represents the flow of information, each edge is associated

with a weight that needs to be optimized during the training process. The output of each node is

determined by its input and the corresponding weight, which is then passed through an activation

function to produce an output. This output is then forwarded to the units of the next layer until

the final output layer is reached.

Figure 2.2: General structure of a DNN with input, output, and three hidden layers. Each unit in
each layer processes input using an activation function and forwards its activation to the next
layer.

The activation function is a non-linear function that introduces non-linearity into the network,

allowing it to learn complex relationships between the input and output [123, 124]. Several

functions have been used with neural networks, including:

• Rectified Linear Unit (ReLU): It applies the function f (x)= max(0, x) to the output of

a unit, where x is the input to that unit. The rectifier becomes widely used in CNN, and

also in our present work.
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• Sigmoid or logistic: This function takes any input value and maps it to a value between 0

and 1, which makes it useful for binary classification problems. It is defined as: f (x)= 1
1+e°x

where x presents the input. Sigmoid has also been used in the major parts of our work.

• Hyperbolic Tangent (TanH): Rescaled and biased logistic function, maps the input to

a value between -1 and 1 and makes each layer’s output more or less normalized at the

beginning of the training process. TanH is defined by tanh(x)= ex°e°x

ex+e°x . It often helps speed

up convergence.

• Softmax: A special case of logistic, this function is mostly useful and used in the output

layer of a neural network for multi-class problems. It is defined by æ(z)i = ezi
Pk

j=1 e
z j

for i =

1, . . . ,k where z vector of real numbers z = (z1, z2, . . . , zk). It maps a k-dimensional vector of

real numbers to a k-dimensional vector of real numbers between 0 and 1 that sum up to 1.

Mathematically, let’s take a simple example, the classification of a suspect COVID-19 case from

clinical information (50 features) as positive or negative, the formulation behind a DNN involves

the computation of the output of each unit, based on its inputs, weights, and biases, using an

activation function. The input to the network is denoted by x 2Rn where it presents the input to

the first hidden layer, and the output is denoted by ŷ 2Rm, where n = 50 is the dimension of the

input or feature vector, and m = 2 is the dimension of the output, which corresponds to positive or

negative. For a given layer l, the input to a unit j is denoted by z(l)
j

and defined as the weighted

sum of the outputs from the previous layer, plus a bias term, followed by an activation function f :

z(l)
j
= f

√

kl°1
X

i=1
w(l)

i j
a(l°1)

i
+b

(l)
j

!

where w(l)
i j

is the weight of the connection between the i-th neuron in the previous layer and

the j-th neuron in the current layer, a(l°1)
i

is the output of the i-th unit in the previous layer,

b(l) j is the bias term for the j-th neuron in the current layer, and kl°1 is the number of units in

the previous layer. The output of the l-th layer is given by a(l) 2Rkl , where kl is the number of

neurons in layer l. The output of the final layer is the predicted output ŷ. The weights w and

biases b are learned through a training process, which consists of minimizing a loss function that

measures the difference between the predicted output ŷ and the actual output y. In our binary

classification example, as well as similar problems, Binary Cross Entropy (BCE) can be used as a

loss function which is defined by:

L BCE(y, ŷ)=°
1
N

N
X

i=1
(yi log( ŷi)+ (1° yi) log(1° ŷi))

where N is the number of samples in the dataset, y is the actual class vector, ŷ is the predicted

class vector. The first term in the summation penalizes the model when the true label yi is 1

(positive) but the predicted probability ŷi is low (less likely to be positive), while the second term
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penalizes the model when the true label yi is 0 (negative) but the predicted probability ŷi is high

(more likely to be positive). The loss function needs to be optimized using the backpropagation

algorithm, which will be discussed in the next section.

2.5.2 Backpropagation algorithm

The Backpropagation algorithm is widely used for training feed-forward neural networks, where

its variant Backpropgation Through Time is used to train RNN type. It is based on the gradient

descent optimization technique [123]. The algorithm is used to adjust the weights of the network

in order to minimize the prediction error. By sending the error backward across the network from

the output layer to the input layer, the algorithm propagates errors. This is accomplished by first

calculating the output layer error, which is the difference between the output that was predicted

and the actual. After that, the error signal is computed, which is the derivative of the activation

function multiplied by the error at the current layer, the error at each neuron in the output

layer is then propagated back to the previous layer. Up until the input layer is reached, this

procedure is repeated for each hidden layer of the network. Algorithm 4, shows the mechanism of

the backpropagation algorithm in updating and adjusting weights using gradients.

2.5.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN)s are a type of neural network architecture that is widely

and mainly used for image recognition tasks. CNNs are inspired by the visual cortex in the

brain, which is composed of cells that are tuned to recognize specific visual stimuli in particular

locations of the visual field, without taking the whole visual field into consideration. They have

been initiated by Y. LeCun et al. [69] for recognizing handwritten zip codes for automated sorting

operations. Specifically, this type of architecture is designed to work with images, as its basic

building block is the convolutional layer, which consists of a set of learnable filters that slide over

the input image and produce a set of feature maps by computing the dot product between the

filter and the local patches or region of the input. During the training phase, the convolutional

layer can learn from local features (particular features in an image, for instance) without taking

their locations into account, thus, this can be considered as the main advantage of CNNs. CNNs

are characterized by two important characteristics, compared to DNN:

• Local connectivity: Unlike DNNs, in which, there is a full connection between units

i.e. every unit is fully connected with all units in the previous and next layers, in CNNs,

each unit is connected only to a subset of the previous layer which is called receptive field.

Consequently, the computation cost will be reduced by reducing the number of learnable

parameters of the network.

• Weight sharing: In contrast to DNNs, where weights are typically initialized and updated

independently, one by one, CNNs use shared weights that are updated jointly within each
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Algorithm 4 Backpropagation algorithm for ANN training [102]
Require: Training dataset D = (x1, y1), (x2, y2), ..., (xm, ym), learning rate ¥, number of epochs

num_epochs, number of layers L, loss function J

Ensure: Trained neural network weights and biases
1: Initialize weights and biases randomly;
2: for epoch in 1 to num_epochs do
3: for example in D do
4: Perform forward propagation to compute the output of the last layer aL for input x;
5: Compute error signals ±L for output layer;

±L =r ŷJØ f 0(zL)

where r ŷJ is the gradient of the loss function with respect to the predicted output ŷ, Ø
is the element-wise multiplication, and f 0(zL) is the derivative of the activation function
of the output layer with respect to its input.

6: for l in L°1 to 1 do
7: Compute error signals ±l for hidden layers using ±l+1 and weights Wl+1

±l = (WT
l+1±l+1)Ø f 0(zl)

where WT
l+1 is the transpose of the weight matrix Wl+1 connecting layer l+1 to layer l,

f 0(zl) is the derivative of the activation function f (zl) evaluated at the weighted input
zl of layer l. We denote that ±L is the error signal for the output layer.

8: end for
9: Compute weight and bias gradients for the current example using error signals and

input activations;

@J

@W
(l)
i j

= a
(l°1)
i

±(l)
j

@J

@b
(l)
j

= ±(l)
j

where W
(l)
i j

is the weight between neuron i in layer l°1 and neuron j in layer l, b
(l)
j

is

the bias for neuron j in layer l, a
(l°1)
i

is the activation of neuron i in layer l°1, and ±(l)
j

is the error signal for neuron j in layer l.
10: Compute the weight and bias updates using the gradient descent formulas:

W
(l)
i j

=W
(l)
i j

°¥
@J

@W
(l)
i j

b
(l)
j
= b

(l)
j
°¥

@J

@b
(l)
j

11: end for
12: end for
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filter or kernel. This weight sharing is possible because the filter is forced to recognize the

same patterns across the entire input volume, making it more efficient in recognizing local

patterns and reducing the number of parameters that need to be learned. Figure 2.3 shows

the concept of shared weights and local connectivity within a convolutional layer and how

the same filter is applied to different parts of the input image.

Figure 2.3: A schematic diagram of a convolutional layer that shows the receptive field of a
neuron and how weights are shared within the receptive field.

Generally, a CNN is composed three main types of layers: Convolutional layer, Pooling layer, and

fully connected layers.

• Convolutional layer: considered as feature extractor and the main block in CNN, uses

the convolution operation to compute a set of output feature maps from the input feature

map or image. A convolutional layer is a set of independent filters, each one is indepen-

dently convolved with the input image to give a set of feature maps. This type of layer

is parametrized i.e. it has a set of learnable weights which form the filters. Filters are

generally square grids or matrices of discrete numbers, their width and height are smaller

than the input image [33]. The output of the k-th feature map in the l-th convolutional

layer is computed by convolution operation which is defined by:

z
(l)
k

=

Cl°1
X

c=1

P
X

p=1

Q
X

q=1
w

(l)
k,c,p,qa(l°1)

c +b
(l)
k

where z
(l)
k

is the output of the k-th feature map in the l-th layer, a
(l°1)
c is the activation of

the c-th feature map in the (l°1)-th layer, w
(l)
k,c,p,q is the weight associated with the k-th

feature map at position (p, q) in the l-th layer and the c-th feature map in the (l °1)-th

layer, b
(l)
k

is the bias term added to each neuron in the k-th feature map, and P and Q

are the spatial dimensions of the filter. Figure 2.4 illustrates the convolution operation

between an input (local receptive field) and a filter to produce an output. The filter slides

over the local receptive field which is a small portion of the input image. At each step, the
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element-wise multiplication between the filter and receptive field is computed, and the sum

of these multiplications produces a single output element. The filter is then shifted to the

right by a certain amount called the stride, and the process is repeated until the entire

input has been convolved with the filter to produce the output which is the feature map.
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Figure 2.4: Convolution operation between input (local receptive field) and filter to produce
feature maps.

As above-mentioned in Section 2.5.1 and in order to introduce some non-linear transforma-

tion to avoid possible linear transformation, the output of a convolutional layer should also

be activated. ReLU ( f (x)= max(0, x)) is the most used activation function in the context of

CNNs.

• Pooling layer: This layer is not parametrized, it has no weight or bias to learn and

optimize during the training process. Specifically, the pooling layer is used to simplify

the network by connecting the input to a small square window of fixed width and height.

The pooling layer also uses a stride, which defines the step size of the pooling window. By

applying this, the pooling layer reduces the complexity of the network. Various methods

have been used in the pooling layer, such as Max-pooling, Min-pooling and Average-pooling

[33]. Figure 2.5 shows a simplified example of the three mentioned pooling functions. In

our work, we used Average-pooling and Max-pooling, and they can be defined by:

Avg-pooling(x,S)=
1

hw

X

i, j

(xi, j)

Max-pooling(x,S)=max
i, j

(xi, j)

where x is the input data (resulted feature maps), S is a region of size (h£w) in x, i and j

are indices that iterate over the rows and columns of the region S, where 1
hw

P

i, j represents

the average value of all the elements in the region S. maxi, j represents the maximum value

of all the elements in the region S.
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Figure 2.5: Example of pooling operations in CNNs. Max pooling selects the maximum value in
each pooling window, while min pooling selects the minimum value and average pooling calculates
the average value.

• Fully connected layer: After the convolutional and pooling layers, the output is a set of

feature maps that contain spatial information. In order to pass this information to a fully

connected layer, the feature maps need to be flattened into a one-dimensional vector. This

is done by stacking all the elements of each feature map on top of each other, resulting in a

long vector. This flattened vector is then fed into a fully connected layer, which is a regular

neural network layer where all the nodes are connected to the nodes in the previous layer.

The mathematical formulation of a fully connected layer can be represented as:

z(l)
= w(l)a(l°1)

+b(l)

where w(l) is the weight matrix of the layer, a(l°1) is the output vector of the previous layer,

and b(l) is the bias vector. The output of the fully connected layer is then passed through an

activation function before being fed into the next fully connected layer, or to produce an

output prediction in the case of the last layer.

Fig. 2.6 illustrates the general flow of a CNN, which starts with the input data, followed by

convolutional layers that extract feature maps, pooling layers that downsample the feature maps,

flattening that reshapes the pooled feature maps into a vector, fully connected layers that apply a

non-linear transformation to the vector, and finally, an output layer that produces the predictions

Input
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Full connection

Output

F
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Figure 2.6: General flow of a CNN architecture
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2.5.4 Long-Short Term Memory (LSTM)

In Section 2.5.1, we discussed RNNs, which have been introduced to overcome the limitation

of ANNs in handling sequential data. RNNs have feedback connections that allow them to

process sequences of variable length, and they can learn to model long-term dependencies in

the input data. However, RNNs suffer from the issue of vanishing gradients when processing

long sequences, which hinders their ability to capture long-term dependencies accurately [51].

To tackle this issue, specialized types of RNNs have been developed, such as LSTM and GRU

architectures. One of the contributions in the present work is based on LSTM. In the following

section, we will discuss LSTM architecture and how it overcomes the limitations of traditional

RNNs and details the maths behind it [52]. RNNs struggle when the sequences become too long,

where the gradients in the network become too small to update the weights effectively, this is

called vanishing gradients, resulting in a degradation in performance. LSTM networks were

introduced to address this limitation, by utilizing memory cells to maintain information over

long sequences and gating mechanisms to control the flow of information through the cell. These

mechanisms enable LSTMs to selectively forget or remember information, allowing them to

model long-term dependencies more effectively than traditional RNNs. LSTM has three main

components: input gate, forget gate, and output gate.

• Input gate: Responsible for controlling how much new information should be added to

the cell state. It uses the current input and the previous hidden state as inputs and applies

a sigmoid function to both to produce a value between 0 and 1 for each element of the cell

state. An input gate value of 0 means that no new information is added to the cell state for

that element, while a value of 1 means that all the new information is added. The input

gate can also be thought of as a filter that controls which information from the current

input should be allowed into the cell state, and which should be ignored. The input gate in

the LSTM is defined by Equation 2.16. Equation 2.17 is used to compute the candidate cell

state, and Equation 2.18 to compute the updated cell state.

(2.16) i t =æ(Wi · [ht°1, xt]+bi)

(2.17) C̃t = tanh(Wc · [ht°1, xt]+bc)

(2.18) Ct = f t ØCt°1 + i t Ø C̃t

In Equations 2.16, and 2.17, xt presents the input vector at time step t, ht°1 is the hidden

state vector from the previous time step, æ presents the sigmoid activation function. The
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weight matrix and bias term for the input gate are denoted by Wi and bi, respectively.

The input gate controls the amount of new input that is used to update the cell state by

squashing the input between 0 and 1 using Equation 2.16. A gate value of 1 means that all

of the input information passes through to the cell state, while a value of 0 means that all

new input information are blocked. The input gate acts as a filter that determines which

information from the current input should be added to the cell state and how much of it

should be ignored. Equation 2.17 is used to compute the candidate cell state, starting by

applying dot product operation to the concatenation [ht°1, xt] with Wc, then adding the

bias term bc, after that, applying TanH to squash the value between -1 and 1 to allow the

candidate cell to capture a wide range of values. We denote that Wc and bc are trainable

parameters that are used to update the cell state. Lastly, Equation 2.18 is used to update

the cell state using the computed C̃t, i t, Ct°1 which is the cell state of the previous step, and

f t denoted by Equation 2.19 which is the forget gate activation, Ø denotes the element-wise

multiplication.

• Forget gate: Determines which information to keep or discard from the cell state. It

receives input from the previous hidden state ht°1 and the current input xt and produces a

forget vector f t that ranges between 0 and 1 for each element of the cell state Ct°1. The

forget gate uses æ that squashes the input to a value between 0 and 1 in order to determine

how much of each cell state element to forget. The forget gate activation f t is computed as:

(2.19) f t =æ(Wf · [ht°1, xt]+b f )

where Wf and b f represent the weight matrix and bias vector for the forget gate, respec-

tively. The activation of the forget gate is used to compute the update of the cell state

(Equation 2.18).

• Output gate: Controls the flow of information from the current hidden state to the output.

The output gate takes as input the current input xt, the previous hidden state ht°1, and

the current cell state Ct, and produces the output vector ht which is the hidden state of

timestep t. It is responsible for producing the output of the LSTM cell. Mathematically, the

output gate ot is defined by Equation 2.20:

(2.20) ot =æ(Wo · [ht °1, xt,Ct]+bo)

where Wo and bo are the weight matrix and bias vector of the output gate. The output

vector ht is computed using Equation 2.21:

(2.21) ht = ot Ø tanh(Ct)
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Figure 2.7: General structure of LSTM cell

2.5.5 Attention Mechanism

The attention mechanism has been widely used in various DL applications, including NLP, CV,

and SR. Similar to how human attention works, this mechanism allows the model to pay more

focus to certain important parts of the input while ignoring others. The attention mechanism can

be applied by assigning a weight to each input based on its significance to the treated task. The

fact of using attention mechanism in DL models has significantly improved the performance of

these models by adding the ability to extract and capture more complex relationships between

input and output. This concept has been widely used in different applications such as Natural

Language Processing (NLP) [2, 14, 15, 139], Speech Recognition (SR) [20, 24, 73, 141], and

Computer Vision (CV) [53, 144, 148, 149]. Regular neural networks suffered from fixed-length

encoding vectors of data, where input data may have an equal importance degree, which can lead

to the model’s performance loss [122]. On the other hand, the key to the attention mechanism

concept is to assign different importance (weights) to input data, which allows the model to

learn from relevant and important information and enhance its performance. Several benefits

from using the attention mechanism with DL models, such as faster convergence, by focusing

on the most important parts of the input data, the model can show quick convergence, and

more interpretability, where different applications need to interpret their predictions such as

finance, and by focusing on the most relevant parts of the data, the prediction results can be more

interpretable. There are several types of attention mechanisms, including additive attention, and

scaled dot-product attention. In the rest of this section, we will explore additive attention, which

is the attention type that has been used in our work.

Additive attention was introduced in Bahdanu Attention [11] which is used for sequence-

to-sequence for machine translation tasks. It is based on three phases: score alignment, weight

computation, and context vector computation, or what we call later attention vector. It uses a
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feedforward neural network to compute the attention scores. However, in our work, we used a

simplified variant of additive attention where the attention weights are computed by taking the

dot product of the input with a weight matrix, followed by applying a bias term and a hyperbolic

tangent activation function. The alignment scores are then obtained by taking the dot product of

the attention weights with the input. Given the hidden state of the LSTM layer Ht = [h1,h2, ...,ht],

ht presents the hidden state of the encoder at timestep t, and the input of the attention layer.

Scores alignment phase is represented by learnable weights Watt and batt. Scores alignment is

defined by Equation 2.22.

(2.22) St = tanh(Wattht +batt)

After computing the scores alignment St which presents how well each element in the input

sequence aligns with the current hidden state ht, Softmax function is used to compute weights

Æt to transform and normalize the alignment scores into a probability distribution, using Equa-

tion 2.23.

(2.23) Æt =
exp(St)

PT
j=1 exp(S j)

where T is the total length of the input sequence. The attention weights determine how much

focus to place on each element of the input sequence at time step t.

After computing attention weights Æt, we then compute the context vector, denoted as the

attention vector at, defined by Equation 2.24.

(2.24) at =

T
X

j=1
Æt, jh j

2.6 Overfitting and Normalization

One common issue in ML is overfitting, which occurs when the model becomes too complex and

starts to memorize the training data instead of learning generalizable patterns. Preventing

overfitting is crucial in ML and DL, to ensure that the model generalizes well to unseen and

new data. Normalization techniques, such as batch normalization, can also be used to prevent

overfitting by scaling the inputs to have zero mean and unit variance, which can improve the

convergence of the training process.

2.6.1 Dropout

Dropout is a regularization technique that randomly drops out some nodes in the neural network

during training, which helps prevent overfitting. During training, at each update of the network
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weights, a neuron is either dropped out with probability p or kept with probability 1° p. If a

neuron is dropped out, its output is multiplied by 0, effectively setting it to zero, and the signal

is not propagated through it during that particular forward or backward pass. This introduces

random drop network weight, effectively creating a different and more robust model at each

update and preventing overfitting.

2.6.2 Batch Normalization (BN)

BN is applied to the inputs of each layer in a mini-batch during the training phase [56]. It works

by normalizing the mean and variance of the inputs to a neural network layer, thereby reducing

the effect of the scale of the weights and the input data. Additionally, it helps in preventing

overfitting, as it reduces the internal covariate shift, which is the phenomenon of the distribution

of each layer’s inputs changing during training. BN layer output is given by Equations 2.25 and

2.26.

(2.25) yk
= ∞(k) x̂(k)

+Ø(k)

(2.26) x̂k
=

x(k) °µB
q

æ2
B
+≤

where x(k) is the input to the k-th layer, µB and æB are the mean and standard deviation of

the input over the mini-batch B, and ≤ is a small constant added to avoid division by zero. The

normalized input x̂(k) is then scaled and shifted using learned parameters ∞(k) and Ø(k).

2.7 Overview on Audio Features

Audio refers to the sound waves that are perceived by the human ear. These sound waves can be

represented as an electrical signal known as an audio signal. An audio wave is a representation

of how a sound wave varies over time and can be graphed as an amplitude vs. time plot, as

exemplified in Figure 2.8, while audio features present the mathematical representations of

these audio signals that can be used to characterize various aspects of the sound such as pitch,

loudness, timbre, and extract more useful information which can be used for several tasks such

as classification, synthesis, clustering, segmentation, and more. In our work, we focus on the

extraction of audio features from cough sound, which are used as input to our ML and DL models

to build COVID-19 diagnosis systems based on solely cough sound. The question may arise as

to why we should focus on extracting audio features when DL models can automatically extract

features and classify audio data. While it is true that DL models have shown impressive results

in audio classification tasks, utilizing raw audio signals without any feature extraction may

lead to the suboptimal performance of the model. Raw audio signals contain a large amount of

redundant and irrelevant information, which can make it difficult for ML or DL models to extract
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the most important features for a given task. Additionally, raw audio signals may suffer from

issues such as noise, variability in recording conditions, and speaker characteristics, which can

further complicate the feature extraction process. Therefore, extracting relevant audio features

can provide a more informative representation of the audio data, leading to better results for the

given task.

Figure 2.8: Illustration of a sound wave showing the variation of amplitude over time. The
zoomed-in section highlights the detailed variations in signal amplitude.

There are several types of audio features that can be used depending on the task to be performed,

including time-domain and frequency-domain. These categories are mostly used in our work, thus,

in the rest of this section, a comprehensive study will be conducted on various audio features

that belong to the two mentioned types of features.

2.7.1 Time domain features

Can be used to characterize the properties of an audio signal. These features are computed

directly from the raw audio waveform and include various statistics such as the amplitude,
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energy, and temporal characteristics of the signal.

2.7.1.1 Zero Crossing Rate (ZCR)

ZCR indicates the number of times the audio signal crosses the zero amplitude level. It is a

simple and effective feature for detecting the presence of high-frequency components in a signal.

ZCR is defined by equation Equation 2.27 [38, 41].

(2.27) ZCR =
1

N °1

N°1
X

t=1
|sgn(x(t))° sgn(x(t°1))|

where N is the number of samples in the audio signal, x(t) represents the audio signal at time t,

and sgn(·) is the signum function, which returns the sign of a number as +1, 0, or -1 for positive,

zero, or negative numbers respectively.

2.7.1.2 Root Mean Square Energy (RMSE)

Measures the root mean square of the signal amplitude over time. It provides a measure of the

overall energy level of the signal [38]. RMSE is defined by Equation 2.28.

(2.28) RMSE =

v

u

u

t

1
N

N
X

t=1
x2(t)

where x(t) is the signal amplitude at time t and N is the total number of samples in the signal.

The resulting value is expressed in the same units as the original signal amplitude, such as dB or

volts.

2.7.1.3 Temporal Centroid

Indicates the center of gravity of the signal’s energy distribution over time [66]. It is calculated

by weighting each time sample with its energy and computing the mean of the weighted time

values. Temporal Centroid is defined by Equation 2.29.

(2.29) TemporalCentroid =

PN
t=1 n|x(t)|2

PN
t=1 |x(t)|2

where N is the number of samples in the signal and x(t) is the amplitude of the signal at time

index t.

2.7.2 Frequency domain features

These are other types of features that describe the distribution of energy of a signal in the

frequency domain. Computing these features is based on an essential step which is transforming

the signal from the time domain into the frequency domain using techniques such as Fourier
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Transform (FT), or Short-Time Fourier Transform (STFT). This type of feature can provide

information about the spectral characteristics of the audio signal, which refers to the distribution

of energy or power across different frequencies present in the signal. It provides information

about how much of the signal’s energy is concentrated at different frequencies. In the following,

we will detail the mostly used frequency-domain features in our contributions.

2.7.2.1 Mel-spectrogram

The raw audio signal captures the amplitude of the sound wave over time, however, it cannot

provide information about the individual frequencies present in the signal. To extract the fre-

quency information, Fast Fourier Transform (FFT) can be used, which decomposes the signal

into its individual frequencies and the frequency’s amplitude which results in the Spectrum, as

illustrated in Figure 2.9. However, in most of the audio signal cases such as speech and music,

signals are non-periodic, which vary over time, in other words, the spectrum obtained by applying

the FFT on the whole signal provides frequency information for the entire signal duration, and

not any time-varying changes in frequency content, thus, the need to represent the spectrum of

the signal as it varies over time is raised.

Fast Fourier

Transform

Figure 2.9: Illustration of a sound wave and the spectrum which is the result of applying FFT.

With this respect, STFT can be applied to present the spectrum over time, which consists of

applying FFT of several windowed segments of the signal. The windowing function such as

Hamming, or Han, is applied to the signal to reduce spectral leakage which is caused by the

abrupt start and end points of the signal. The windowing function smooths out these points by

gradually increasing and decreasing the amplitude of the signal within the window. The STFT is

performed with a sliding window over the signal, and the result is called a Spectrogram, which is

a visual representation of the signal’s amplitude as it varies over time at different frequencies.

STFT of an input signal x(n) can be defined by Equation 2.30 [59].

(2.30) X (m,k)=
N°1
X

n=0
x(n)w(n°m)e°i2ºkn/N

where w(n°m) is the window function centered at m, N is the length of the FFT which refers to

the window size, k is the frequency bin index which usually ranges from 0 to (N/2)+1, i is the
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imaginary unit (i.e.
p
°1 ), while X (m,k) presents the frequency representation of the signal at

time m and frequency bin k.
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Figure 2.10: Illustration of the STFT applied on an input signal. The input signal is divided into
overlapping windows of fixed length (window size) and shifted by a fixed interval (hop length) to
produce a sequence of windowed segments. Each segment is windowed using a window function
and then, spectrum is computed using FFT with a chosen FFT length. The amount of overlap
between adjacent windows (overlap length) affects the time-frequency resolution trade-off in the
resulting spectrogram.

Furthermore, Figure 2.10 presents a summary of the main steps to produce a Spectrogram, which

can be represented in 2-dimensional visualization by stacking the resulting spectrums on top

of each other, where the x-axis presents time and the y-axis presents frequency as shown in

Figure 2.11.
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Short-Time

Fourier Transform

Figure 2.11: Example of an input signal wave and the resulting Spectrogram, where the y-axis is
converted to log-scale and the color dimension to decibels.

Moreover, studies have shown that humans do not perceive frequencies on a linear scale, thus,

the Mel-scale [121] is put forward, which is a unit of pitch that is based on how humans perceive

sound. Mel-spectrogram is a spectrogram where the frequencies are converted to the Mel-scale

using Equation 2.31.

(2.31) fmel = 2595log10

µ

1+
f

700

∂

where f is the frequency in Hz and fmel is the frequency in Mel-scale. Figure 2.12 shows the

application of Mel-scale on an input spectrogram.

Mel-scale

Figure 2.12: Example of an input spectrogram and the resulting Mel-spectrogram.

2.7.2.2 Spectral Centroid

Similarly to Temporal Centroid, Spectral Centroid measures the center of gravity of the spec-

trogram and indicates the frequency at which the energy of a signal is concentrated. Spectral

Centroid can be mathematically defined by Equation 2.32.

(2.32) SC =

Pn
i=1 f (i)£ |X (i)|
Pn

i=1 |X (i)|

where X (i) is the magnitude value in the i-th frequency bin, f (i) is the frequency corresponding

to the i-th frequency bin in the spectrogram, and n is the number of frequency bins.

40



2.8. DIMENSIONALITY REDUCTION

2.7.2.3 Spectral roll-off

Spectral Roll-off measures the frequency below which a certain percentage of the total spectral

energy lies, which can be calculated with SR = frollo f f , where frollo f f is the frequency at which

the cumulative spectral energy, Ecum( f ), reaches the desired percentage, and f is the frequency.

The cumulative spectral energy is defined by Equation 2.33.

(2.33) Ecum( f )=
n
X

i=1
|X (i)|2

where X (i) is the magnitude value in the i-th frequency bin, and n is the number of frequency

bins in the spectrogram.

2.7.2.4 Mel-Frequency Cepstral Coefficients (MFCCs)

MFCCs are a set of features commonly used in speech and audio processing, derived from the

spectral envelope of a sound signal. They capture the most relevant spectral characteristics for

the perception of speech and music. MFCCs are computed through several steps, and can be

summarized by Equation 2.34.

(2.34) MFCCs = DCT(log10(MelSpectrum))

where MelSpectrum is the Mel-frequency spectrum of the signal, and DCT is the Discrete

Cosine Transform. The logarithm is taken to compress the dynamic range of the spectrum and to

emphasize the spectral envelope.

2.8 Dimensionality Reduction

Dimensionality Reduction is a data analysis technique often used in ML, which consists of

reducing the number of features or variables in a dataset, where data is involved in a process of

transformation, from higher-dimensional space into lower-dimensional space by preserving the

most of variance. It aims to eliminate irrelevance, and redundancy and have a more comprehen-

sive way to visualize data. As discussed in Section 2.2.1, dimensionality reduction can be used in

unsupervised learning tasks, additionally, it has been reported to be useful for supervised tasks

[58, 75]. Various methods have been developed and used in different applications of dimension-

ality reduction including Principal Component Analysis (PCA), Linear Discriminant Analysis

(LDA), t-distributed Stochastic Neighbourhood Embedding (t-SNE), LLE, and Autoencoders. This

section will give a comprehensive introduction to the methods that have been widely used in this

thesis, LLE, and Autoencoders.

2.8.1 Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) consists of a nonlinear dimensionality reduction technique that

seeks to preserve the local structure of data [101]. Finding a lower-dimensional representation of
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the data that preserves the local relationships between neighboring points is the idea behind

LLE, where weight is defined for each data point, and the weights are chosen to minimize the

squared difference between each data point and its reconstruction. Mathematically, it can be

defined by Equation 2.35.

(2.35) min
W

N
X

i=1
|xi °

N
X

j=1
Wi jx j|

2 s.t.
N
X

j=1
Wi j = 1

where W is the weight matrix, which maps each point xi to a set of its neighbors. The weight Wi j

reflects the degree to which point x j contributes to the reconstruction of point xi. The constraint
PN

j=1 Wi j = 1 ensures the reconstruction of each point is a linear combination of its neighbors.

After that, the algorithm tries to find a lower-dimensional projection Y of the input data X that

preserves the weight matrix W. Equation 2.36 defines an optimization problem where yi is the

lower-dimensional projection of xi, and the aim is to find a new set of data points y1, y2, ..., yN

that preserve the local geometry of the original points x1, x2, ..., xN , as measured by W .

(2.36) min
Y

N
X

i=1
|yi °

N
X

j=1
Wi j yj|

2 s. t.

8

>

>

<

>

>

:

N
P

i=1
yi = 0

N
P

i=1
yi yT

i
= I

where yi is the embedding of the data point xi and I is the identity matrix. The first constraint

ensures that the embedding is centered at the origin, while the second constraint ensures

that the embedding has unit covariance. Figure 2.13 illustrates the three main steps of LLE.

In the first step, nearest neighbors are selected for each data point. In the second step, the

data is reconstructed using linear weights. In the third step, the reconstructed data is mapped

to an embedded coordinate system using an optimization algorithm. The resulting embedded

coordinates represent a low-dimensional representation of the original high-dimensional data.
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Figure 2.13: Illustration of the three main steps of LLE [101].

2.8.2 Autoencoders

Autoencoder consists of an ANN that is widely used for unsupervised learning tasks, with a

particular focus on dimensionality reduction. In simple words, an autoencoder is a neural network

that learns to compress and then reconstruct different types of input data, while minimizing the

reconstruction error. Autoencoders can be used to extract meaningful features and patterns from

high-dimensional data, which is often useful for dimensionality reduction, data compression, and

visualization. An autoencoder consists of three parts: an encoder, decoder, and latent space. The

encoder network takes input data and maps it to a compressed representation, also called latent

space, or code. Encoder network can be presented mathematically by Equation 2.37 [39].

(2.37) z = fµencoder(x)

where z is the latent space representation, x is the input data, fµencoder
is the encoder function

which involves learnable weights µenc.

Decoder network takes the compressed representation z and maps it back to the original input

data. Decoder network can be defined by Equation 2.38.

(2.38) x̂ = gµdecoder(x)

where x̂ is the reconstructed data, gµdecoder
is the decoder function with learnable weights µdecoder.

g is denoted as a non-linear transformation that aims to reconstruct the original input with
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minimal error from the latent representation z. Thus, this is commonly achieved by minimizing a

reconstruction loss between the input x and the reconstructed output x̂. Various loss functions

have been used depending on the data and the task, including MSE, BCE, and Huber loss. A

general formulation of the loss function in an autoencoder is given by Equation 2.39.

(2.39) Loss(x, x̂)=
1
n

n
X

i=1
L(xi, x̂i)

where x is the input data, x̂ is the reconstructed data, n is the number of samples, and L is the

used loss function.

In the training process, an optimization algorithm, such as Stochastic Gradient Descent (SGD),

is used to minimize Loss(x, x̂). There are various variations of autoencoders that have been

developed to address specific tasks. One such variation is deep autoencoder, which is similar to a

DNN, where it includes multiple hidden layers, allowing it to learn more complex representations

of the input data. Figure 2.14, shows a general structure of a deep autoencoder with two hidden

layers.

x∈ℝ⁶

Autoencoder

bottleneck

x̂∈ℝ⁶

z∈ℝ3

Encoder Latent
space

Decoder

Figure 2.14: General structure of a deep autoencoder with two hidden layers, a latent space of
size 3, and an input size of 6. The encoder maps the input to a compressed representation in the
latent space, while the decoder maps the latent space back to the original input space.

2.9 Data Augmentation Methods

Data augmentation reflects the synthetic increase of dataset size, by generating new samples

based on the existing ones. It is widely used as it has shown promising improvement in many

ML models [1, 10, 30, 82]. This technique is used to overcome the lack of data, dataset skew, or

imbalanced datasets, where the number of samples in one class is much smaller than in the other

class. Data augmentation can be applied to different types of data such as tabular data, textual

data, images, and audio. By applying this technique, ML models can learn from a larger and

more diverse set of data, leading to better performance and generalization on new and unseen

data. In our contributions, data augmentation was an essential step to enhance our ML and DL
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models, thus, SMOTE for tabular data and audio-specific data augmentation techniques will be

explored and discussed in this section.

2.9.1 SMOTE

SMOTE [23] is an algorithm that mainly addresses the issue of imbalanced datasets. However,

it can also be a data augmentation algorithm, it is suitable for tabular data and it works by

generating synthetic samples of the minority class to balance the dataset, thus improving the

performance of ML models. The idea behind SMOTE is based on selecting an instance from

the minority class, finding its k nearest neighbors in the same class then, creating a synthetic

instance by choosing one random neighbor from the k neighbors and then, by connecting the two

instances, a line segment is created in the feature space. The synthetic instances are generated

as a convex combination of the two chosen instances, where the combination is controlled by a

random number between 0 and 1. This process is repeated until the desired level of balance is

achieved. Algorithm 5 formally describes the SMOTE process.

Algorithm 5 SMOTE Algorithm [23]
Require: X : The minority class samples, N number of synthetic samples to be generated, and

the number of nearest neighbors to consider k

Ensure: N New synthetic minority class samples
1: Create an empty dataset for the synthetic samples S;
2: for i √ 1 to N do
3: Randomly choose a minority class sample xi;
4: Find k-nearest neighbors for xi from the minority class;
5: Randomly choose one of the k-nearest neighbors xnn;
6: Generate new synthetic sample xnew as a convex combination of xi and xnn:

xnew = xi +≤(xnn ° xi)

where ≤ is a random number between 0 and 1;
7: Add xnew to the synthetic dataset S;
8: end for
9: return Synthetic minority class samples S;

2.9.2 Audio data Augmentation

Audio data augmentation is the creation of new variations of existing audio data by applying

different transformations to the original signal to enhance the performance of the trained ML

and DL models. By applying various transformations to the original audio signals, the resulting

augmented signals can capture different variations of the same underlying signal, making

the models more robust to different variations and distortions in the input data. Audio data

augmentation techniques can be categorized into two main types: signal-based augmentation, and
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spectral-based augmentation. In the first category, Pitch-shifting, Time-shifting, Time-stretching,

and White-noise, and SpecAugment for the second category will be discussed in the rest of this

section.

• Pitch-shifting: Consists of changing the pitch, or the frequency, without changing the

audio duration, where the frequency of each spectral component in the audio signal is

scaled by a factor to raise or lower the pitch, and this can be achieved by resampling the

signal at a higher or lower sampling rate. Let x[n] be the input signal, and y[n] be the

output signal after pitch-shifting by a factor Æ, which represents a semi-tone by unit. The

relation between x[n] and y[n] can be expressed by y[n] = x[n/Æ], where n is the sample

index and Æ is the shifting factor. If Æ is greater than 1, the pitch is shifted upwards, and if

Æ is less than 1, the pitch is shifted downwards. Figure 2.15 shows an example of original

and pitch-shifted signals.

Pitch
Shifting

Figure 2.15: Pitch-shifting transformation with Æ= 3 .

• Time-shifting: Involves shifting the signal along the time axis. This can be achieved

by adding or removing some silence or audio from the beginning or the end of the signal.

The main purpose of time-shifting is to introduce temporal variability in the data. Given

an audio signal x[n], a time-shifted version of the signal x can be represented as x0(n) =

x[n° n0], where n0 is the amount of time to shift the signal by. Figure 2.16 shows an

example of original and time-shifted signals.

Time
Shifting

Figure 2.16: Time-shifting transformation with n0 = 0.5 .
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• Time-stretching: Consists of changing the duration of a signal without affecting the

pitch. It can be represented by changing the signal sampling rate by a certain factor s.

It can be formulated by x0[n] = x[m] where m = round(n§ s). The value of s determines

the amount of time stretching or compression applied to the signal. If s < 1, the signal is

stretched, otherwise, the signal is compressed. Figure 2.17 shows an example of original

and time-stretched signals.

Time
Stretching

Figure 2.17: Time-stretching transformation with s = 0.5 .

• White noise: Adds random noise to the signal. This can help to make the model more

robust to noise and other possible distortions. Background white noise has a constant power

spectral density, which means that it has an equal amount of energy across all frequencies.

This can be achieved by adding a random sequence of values that are sampled from a

normal distribution. The added noise can be represented by noise[n]. The noised signal

y[n] is computed by y[n]= x[n]+noise[n]. Figure 2.18 shows an example of original and

noised signals.

White

Noise

Figure 2.18: White noise addition with a standard deviation æ= 0.02.

• SpecAugment: Belongs to spectral augmentation category, introduced by Google Brain

research [95]. SpecAugment is designed to randomly mask time-frequency spectrogram

segments of the audio signal during training. This process helps the model learn to recognize

informative patterns, even when some parts of the signal are missing. Consequently, the

47



CHAPTER 2. THEORETICAL BACKGROUND

model is more likely to prevent overfitting and improve generalization. SpecAugment

technique uses three steps: time warping, time masking, and frequency masking.

Time warping involves shifting a random sequence of consecutive time steps in the spec-

trogram to the left or right, causing the spectrogram to warp in time. This technique is

designed to improve the model’s robustness to temporal shifts. The extent of the warping is

controlled by a time warp parameter W . Time warping is described by Equation 2.40.

(2.40) Sw( f , t)= S( f , g(t))

where S is the given spectrogram, Sw is the time-warped spectrogram, f is the frequency

index, t is the time index, and g(t) is a function that maps the original time index t to the

warped time index.

Time masking involves masking a random sequence of consecutive time steps in the

spectrogram, while frequency masking involves masking a random sequence of consecutive

frequency bins in the spectrogram. Both types of masking can be applied independently, and

they are based on T and F, which are parameters of Time masking, and Frequency masking,

respectively. tr and fr present the number of timesteps and mel frequency channels that

will be masked, and they are chosen from 0 to T, and 0 to F, respectively. SpecAugment

can be formulated by, first, time masking by Equation 2.41.

(2.41) St( f , t)=

8

<

:

S( f , t) if t < t0 or t ∏ t0 + tr

0 otherwise

where S is the given spectrogram, St is the time-masked spectrogram, f is the frequency

index, t is the time index, and t0 is chosen from [0,ø° tr) where ø presents the number of

timesteps, and second, frequency masking which can be defined by Equation 2.42.

(2.42) S f ( f , t)=

8

<

:

S( f , t) if f < f0 or f ∏ f0 + fr

0 otherwise

where S f presents the frequency-masked version of the spectrogram S, f0 is chosen from

[0,∫° fr), where ∫ presents the number of mel frequency channels. By using time and

frequency masking to the spectrogram, SpecAugment technique can effectively increase the

variability of the training dataset, and also, tackle the class imbalance issue. Figure 2.19

exemplified the result of applying time and frequency masking on an input spectrogram.
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Time
masking

T

Frequency
masking

F

Figure 2.19: Simple illustration of SpecAugment technique.

2.10 ML and DL for respiratory diseases diagnosis

In this section, different recent works that have used ML and DL for different respiratory diseases

diagnosis, excluding COVID-19, will be explored. We aim is to demonstrate the effectiveness of

these techniques in accurately diagnosing respiratory diseases, which can greatly motivate our

findings.

A. Manickam et al. [78] proposes a novel deep learning approach for the automatic detection

of pneumonia using deep transfer learning to simplify the detection process with improved

accuracy. The study preprocesses input chest X-ray images to identify the presence of pneumonia

using U-Net architecture-based segmentation and classifies pneumonia as normal and abnormal

(Bacteria, viral) using pre-trained on ImageNet dataset models such as ResNet50, InceptionV3,

InceptionResNetV2. The dataset used consists of over 5300 images. The results showed that the

proposed ResNet50 model achieved 93.06% of accuracy, 88.97% of precision, 96.78% o sensitivity,

and an F1-score of 92.71%, which is higher than other models compared.

In the context of Chronic Obstructive Pulmonary Disease (COPD), S. Swaminathan et al.

[125] developed a machine learning algorithm for the early detection of exacerbations in patients

with COPD. The algorithm outperformed individual pulmonologists in identifying exacerbations

and predicting appropriate triage action. The algorithm used simulated data for outpatient

triage and evaluation of patients with COPD. The top two performing algorithms were the

Gradient-Boosted Decision Tree and the Logistic Regression. The algorithm agreed with the

consensus opinion in 88% of triage cases and had a success rate of 97% in determining if an

exacerbation had occurred. The algorithm can improve the accuracy and consistency of COPD
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triage and exacerbation prediction, and provide simple, easily accessible, safe, and highly accurate

at-home decision support for patients. The study used 2501 patient scenarios for training and

101 cases for validation. E. Showkatian et al. [115] developed and compared the performance

of a CNN model trained from scratch and a transfer learning-based approach to automatically

detect Tuberculosis (TB) from chest X-ray images. Two publicly available datasets from Maryland

and China with a total of 800 images, were used to train and evaluate the proposed models.

The performance of the models was evaluated using five performance metrics. The proposed

CNN architecture achieved an accuracy of 87%, while transfer learning-based models, including

InceptionV3, Xception, ResNet50, VGG19, and VGG16, achieved higher accuracy, precision,

sensitivity, F1-score, and ROC-AUC. Xception, ResNet50, and VGG16 models showed the highest

performance for automated TB classification. The study provides a transfer learning approach

with deep CNNs that can effectively classify TB and normal cases from chest radiographs.

In another context, A. G. Taylor et al. [127] aimed to create a large annotated dataset of chest

X-rays containing pneumothorax and to train deep CNN to prioritize X-rays with potentially

emergent moderate or large pneumothorax. A total of 13,292 frontal chest X-rays, including

3,107 with pneumothorax, were annotated by radiologists to train and evaluate multiple network

architectures. Using an internal validation set, the two top-performing models were selected

and evaluated on a held-out internal test set and an external National Institutes of Health

ChestX-ray14 set. The "high sensitivity model" produced a sensitivity of 0.84, specificity of 0.90,

and AUC of 0.94, while the "high specificity model" showed a sensitivity of 0.80, specificity of

0.97, and AUC of 0.96.

Regarding lung cancer, several studies have been conducted, Q. Song et al. [120] introduce

three deep neural networks (CNN, DNN, and Stacked AutoEncoder (SAE)) for classifying lung

cancer calcifications in Computed Tomography (CT) images. The LIDC-IDRI database, which

includes 244,527 images from 1010 cases, was used to train and evaluate the performance of these

networks. The networks were adjusted to classify benign and malignant lung nodules, and the

CNN network demonstrated the highest accuracy (84.15%), sensitivity (83.96%), and specificity

(84.32%) among the three networks. Similarly, I. Shafi et al. [109] highlight the challenge of

developing a model for the early detection of lung cancer based on DL-enabled SVM. The model

is trained and validated on 888 annotated CT scans from the LIDC/IDRI database, achieving

an accuracy of 94% in detecting pulmonary nodules representing early-stage lung cancer. The

suggested method outperforms other known approaches, such as complex DL, straightforward

ML, and hybrid methods applied to lung CT scans for nodule diagnosis. The results of the study

demonstrate the potential for the proposed model to greatly assist radiologists while reducing

the need for repeated CT scans and associated radiation exposure. In a recent study, G. Liu et

al. [74] aim to improve the accuracy of classifying benign and malignant lung nodules using a

novel multimodal attention-based 3D CNN that combines a total of 204 CT scans’ features and

clinical information. The suggested DL model had an average diagnostic sensitivity for malignant
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nodules of 96.2% and an average accuracy for classifying benign and malignant nodules of 81.6%.

This outperformed the traditional ResNet and VGG networks, which achieved lower sensitivities

and accuracies. M. A. Moragheb et al. [85] improved a hybrid approach for the efficient generation

of nodule masks and reduction of false positives in pulmonary or benign nodules with a diameter

of 3 cm or less. The approach involves conducting nodule segmentation preprocessing and using a

U-Net CNN model for nodule identification. After the training phase on the LIDC IDRI dataset,

the U-Net CNN model achieved a dice coefficient of 0.678 and a sensitivity of 75%, reducing

false positives from 11.1 to 2.32 false positives per true positive. J. Uthoff et al. [131] examined

the benefit of including perinodular parenchymal features in ML tools for pulmonary nodule

assessment using a dataset of 363 cases (74 malignant, 289 benign) with pathology-confirmed

diagnosis. Radiomic features extracted from the parenchyma surrounding lung nodules were

used to build an ANN classifier, which showed improved performance over exclusively nodular

features. The best-performing ML tool has features extracted from surrounding parenchyma

tissue quartile bands based on nodule diameter, and it achieved 100% of sensitivity and 96% of

specificity.

Other studies investigated Sleep-Disordered Breathing (SDB), and Obstructive Sleep Apnea

(OSA) to be more precise. In order to detect the severity of SDB, T. Kim et al. [64] aimed to

identify acoustic biomarkers that can predict the severity of SDB by analyzing breathing sounds

collected from patients during full-night Polysomnography (PSG). The study extracted audio

features and selected a group of features that could potentially serve as acoustic biomarkers.

Based on the chosen acoustic biomarkers, ML techniques were utilized to classify the severity

of SDB. The study has a four-group classification accuracy of 88.3% and a binary classification

accuracy of 92.5%. The results suggest that acoustic biomarkers may be used to predict the

severity of SDB based on breathing sounds collected using microphones, which could be used

outside of specialized facilities for screening purposes. J. Zhang et al. [151] conducted a model for

detecting OSA using a single-channel Electrocardiogram (ECG) signal and CNN. The proposed

model uses a combination of three types of filters in the first convolution layer, a LSTM to learn

temporal dependencies. The model was trained and tested on the Apnea-ECG dataset, which

contains 70 ECG records, and achieved a Cohen’s kappa coefficient of 0.92, a sensitivity of 96.1%,

a specificity of 96.2%, and an accuracy of 96.1% for detecting OSA events. The results indicate

that the proposed model outperformed the baseline method and could be a useful tool for detecting

OSA based on a single-lead ECG. In another study, A. Sheta et al. [113] propose an automated

system for the detection of OSA based on ECG signals. The proposed framework consists of

three steps: noise removal using a Notch filter, feature extraction from the ECG signal, and

OSA diagnosis using ML and DL models. The Apnea-ECG Database is used in this study. The

experimental results demonstrate that the proposed approach achieves an accuracy of 86.25%

in the validation stage. On the other hand, H. Elmouaqet et al. [31] present a new deep RNN

framework for detecting sleep apnea events automatically from single respiratory channel inputs.
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The framework uses LSTM and Bidirectional Long Short-Term Memory (BiLSTM) models for

automatic feature extraction and detection of apneic events. The framework is evaluated over

three respiratory signals: Oronasal thermal airflow, Nasal pressure (NPRE), and abdominal

respiratory inductance plethysmography using PSG data of 17 patients with obstructive, central,

and mixed apnea events, which form a total of 45417 segments. The results demonstrate that

the proposed framework is effective in detecting apneic events, achieving high true positive

rate 90.3%, true negative rate 83.7% and a ROC-AUC of 92.4% using NPRE signal. In another

research, M. Sharma et al. [111] investigated a simple and computationally efficient system to

detect OSA in elderly subjects using respiratory and oximetry signals. The proposed model is

developed using the Sleep Heart Health Study (SHHS) database, which includes two groups

SHHS-1 and SHHS-2, involving 5,793 and 2,651 subjects, respectively, with an average age of ∏
60 years. The model is created by combining GentleBoost and Random under-sampling Boosting

algorithms. The developed model achieved an accuracy of 89.39% and 84.64% for the imbalanced

and balanced datasets, respectively using a 10-fold cross-validation technique. These results show

that the respiratory and SpO2 signals-based model can be used for automated OSA detection and

can be better than the state-of-the-art models. Lastly, a very recent work from A. I. Sharaf [110],

where he proposed an automated approach to detect and classify apneic events in OSA using

single-lead ECG signals. The approach involves applying Wavelet Scattering Transformation

(WST) to the ECG signals, extracting features from the WST coefficients, and using Random

Forest classifier for classification. The experiment resulted in an accuracy of 91.65% and 90.35%

using the 10-fold and hold-out cross-validation methods, respectively, outperforming most existing

methodologies.

2.11 Conclusion

This chapter provided a comprehensive overview of the theoretical background of ML and DL,

covering important topics related to algorithms, techniques, and methodologies that have been

used to build powerful ML to automatically handle different real-life issues nowadays, medical

diagnostic tools, for instance, with a particular focus on audio data, and the possibility to extract

and compute different features such as spectral-based, and energy-related, which can yield

valuable patterns and enable the development of robust and efficient models in the upcoming

chapters of this thesis, which involve a particular focus on building ML and DL model for a

supervised task, which is the diagnosis of COVID-19. Finally, exploring the use of ML and DL in

the diagnosis of different respiratory diseases such as Pneumonia, Lung cancer, Sleep Apnea,

Chronic obstructive pulmonary disease, Pneumothorax, and Tuberculosis, has shown promising

results, and greatly motivate our findings, thus, in the next chapter, a detailed literature review

of recent works will be presented, for specifically, COVID-19 diagnosis from, cough sound, or,

respiratory sounds to be more general.
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LITERATURE REVIEW

3.1 Introduction

A
s shown in the last chapter, ML and DL have become powerful tools for medical diagnosis,

particularly in the context of respiratory diseases. With the emergence of COVID-19

outbreak, the need for a similar tool is raised by the research community, with this respect,

many works have been done and evaluated. In particular, different types of audio features have

been extracted to find potential relevant patterns from cough and respiratory sounds, which can

lead to better diagnosis and classification performance. In this chapter, a critical summary of

recent works related to diagnosing COVID-19 from cough sound, and respiratory sounds will

be provided, as well as a descriptive and statistical overview of the existing datasets, with a

particular focus on the one used in the present work. Moreover, we will categorize the related

works according to their ML and DL approaches. Through this review, we aim to gain insights

into the state-of-the-art methods for COVID-19 diagnosis and to identify potential research

directions through a comparative analysis, that can contribute to the development of an effective

and efficient diagnostic system. This chapter is an extended and revised version of the literature

review presented in our papers [44, 45, 136, 137]. First, the datasets of cough and respiratory

sounds under COVID-19 will be presented, then, a deep review of recent ML and DL-based

methods and frameworks that are employed to diagnose COVID-19 from audio, a particular focus

will be put forward to the employed data augmentation and class balancing due to the lack of

COVID-19 positive samples, after that, comparative analysis and discussion, and the important

limitations of the methods, followed by a short introduction about our proposed approaches.
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3.2 Cough and respiratory sounds under COVID-19 data

availability

Since the emergence of COVID-19 outbreak, the demand for quick, accurate, and safe diagnostic

techniques has been rapidly growing. Cough and respiratory sounds have become a valuable

source for diagnosing COVID-19 patients as they can provide essential information about the

patient’s condition, such as the presence of wheezing, breathing rate, and respiratory effort.

Therefore, several datasets have been compiled for the purpose of diagnosing COVID-19 from

cough and respiratory sounds, including COUGHVID Dataset, UC dataset, and Coswara

dataset. These datasets provide a valuable resource for researchers and practitioners to develop

and evaluate ML and DL algorithms for diagnosing COVID-19 from cough and respiratory sounds.

A short descriptive and statistical overview of each one is given below:

3.2.1 COUGHVID dataset

COUGHVID [91] is a dataset consisting of audio recordings of cough sounds. The dataset was

created by L. Orlandic et al. from the École Polytechnique Fédérale de Lausanne (EPFL), Switzer-

land, to aid in cough sound analysis and ML models development for COVID-19 screening.

Table 3.1 shows the overall statistics of the provided recordings. It has been collected through a

web application from April 1st, 2020 until December 1st, 2020 where users across the world were

asked to click on the recording button, then fill out a meta-data questionnaire that contains age,

gender, geolocation information, previous existing respiratory conditions, and COVID-19 status.

The reported COVID-19 status consists of three possible values or classes Healthy, COVID-19,

and Symptomatic. In order to clinically validate the crowdsourced data, it was annotated by

four physician experts who provided more than 1000 annotations for various items including

the quality and type of cough, as well as audible dyspnea, wheezing, stridor, choking, and nasal

congestion. In addition, the reports of physicians include impressions about the patient’s infection

and the severity of their condition. The audio recordings codec is Opus, with a sample rate of

48kHz. The dataset is publicly available in Zenodo 1 platform and has been used in various

studies for COVID-19 diagnosis using data mining and ML methods. COUGHVID has been used

to build and test the effectiveness of all ML and DL which are reported in this thesis. Further

focus on COUGHVID dataset will be carried out in the next chapters in the data engineering

steps.

3.2.2 UC dataset

The UC dataset is a crowdsourced data collection framework that involves a web-based app

and an Android app for data gathering [19]. Users input their symptoms and record respiratory

1https://zenodo.org/record/4048312
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Healthy Symptomatic COVID-19 No Status Total recordings
Number of samples 12479 2590 1155 11326 27550

Table 3.1: COVID-19 status label distribution over the three statues Healthy, COVID-19, and
Symptomatic, which are reported by users

sounds, including coughing and deep breathing. The dataset contains information about age,

gender, medical history, COVID-19 testing, and location. In addition, the Android and iOS apps

prompt users to input further sounds and symptoms every two days, allowing for the study of

the progression of user health based on sounds. By May 2020, the dataset is composed of 378

unique users collected from web and Android apps, with a total sample count of 459. The dataset

contains information about users who tested positive for COVID-19 and those who did not. The

age distribution in the dataset is skewed towards middle age. The dataset provides 32 cases who

have declared COVID-19 positive status. A newer version with more samples is reported in [146].

3.2.3 Coswara dataset

The Coswara dataset [112] is a collection of respiratory sounds, including cough (shallow and

heavy), breath (deep and shallow), and voice (vowels o/e/a, counting normal, and fast). It was

widely used for the development of a diagnosis tool for COVID-19. The dataset was collected via

worldwide crowdsourcing using a web app, with participants providing metadata and recording

sound samples using their device microphone. As of August 7, 2020, the dataset has a participant

count of 941, with each participant providing 9 audio files, one for each of the sound categories.

The first released version of Coswara dataset consists of 6507 clean, 1117 noisy, and 845 highly

degraded audio files. Table 3.2 shows summarized statistics of the provided recordings.

Healthy Not-healthy Total
Participants 790 104 894

Number of samples 5947 560 6507

Table 3.2: Coswara status label distribution over COVID-19 statues Healthy, and Not-healthy, by
excluding the noisy and highly degraded audio recordings

Overall, these are the most used datasets for COVID-19 screening based on respiratory sounds,

where they have been crowdsourced through web and mobile apps, also, they provided some

additional meta-data that can be beneficial for building a demographic or clinical information-

based diagnosis system. In terms of the number of Non-healthy of COVID-19 cases, COUGHVID

provides more samples compared to the first released version of UC and Coswara. However,

we shall note that all of these datasets suffer from class imbalance issue, where the number

of COVID-19 positive cases is relatively small compared to healthy and symptomatic cases,
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Figure 3.1 shows a histogram of the class distribution of discussed datasets, where it clearly

shows a non-balanced distribution. This class imbalance can decrease the performance of ML

models and may require special handling during data engineering and model training.

0

3500

7000

10500

14000

Healthy Non-healthy Symptomatic No-status declared

COUGHVID UC Coswara

Figure 3.1: Histogram for the class label distribution of the three datasets COUGHVID, UC, and
Coswara .

3.3 Related works

As part of this literature review, several systematic and technical reviews have been collected

and analyzed, these studies have been conducted by researchers from various fields, including

computer science, biomedical engineering, and medicine. In these reviews, several study and

methodology categorizations have been followed, K. Santosh et al. [103] categorize the works

based on several factors, and the most important was shallow and ML-based learning using

handcrafted features, and DL architecture to extract deep features from Mel-spectrograms. M.

Husain et al. [54], investigated a scoping review, in which they examined and categorized different

relevant works based on, mostly, DL architectures such as CNN and used features. Another review

from S. Ghrabli et al. [37], focused only on DL techniques and architectures. In another review

study, Md. Mahadi Hasan et al. [48], categorized their literature search by only ML and DL-based

techniques. Lastly, without any specific categorization, K. Kumar et al. [70], reviewed several

works, however, they mentioned various methodologies in terms of ML and DL. Overall, we found

that almost all of these studies focus on comparing the performance of ML-based and DL-based

methodologies for COVID-19 diagnosis, whereas others explore the effectiveness of different audio

features. However, we have noticed that there is a lack of emphasis on the data augmentation
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strategy, which is a crucial step in improving the performance of ML and DL models under class

imbalance limitation which was discussed in Section 3.2.

In order to provide a comprehensive and targeted overview of the current state of research

in the field of cough-based COVID-19 detection and diagnosis, we have chosen to analyze and

summarize a total of 40 research papers after excluding numerous studies based on specific

criteria. We have intentionally omitted pre-print articles, as they have not yet undergone the

peer-review process and may lack the rigor and validation of published works. Moreover, we have

chosen to exclude studies that focus solely on speech or breath sounds to maintain a consistent

focus on cough-based analysis. Furthermore, we have also excluded one specific work that relies

solely on the signal envelope and its upper and lower boundaries for the classification of cough

sounds, and another one that proposes a theoretical framework.

Building ML or DL models for various applications including COVID-19 detection using cough,

breathing, and speech recordings, typically involves a pipeline encompassing several techniques

and strategies. As such, different review categorizations can be adopted to analyze and assess the

works in this discipline. These categorizations can focus on various aspects of the model-building

process, such as feature extraction, data augmentation techniques, model selection, or evaluation

metrics. Therefore, in this literature review, we will categorize the studies based on ML-based

and DL-based methodologies, as well as studies that are based on a comparative analysis between

ML and DL, with a particular focus on the used data augmentation techniques, if existed.

3.3.1 ML-based Approaches

In one of the pioneering studies in the field, B. Chloë et al. [19] investigate the potential of

utilizing respiratory sounds; coughing and breathing, for diagnosing COVID-19. This study

compiled and employed UC dataset where a variety of audio features were extracted, such as

signal duration, onset, tempo, period, RMS Energy, spectral centroid, Roll-off frequency, zero-

crossing, 13 first components of MFCCs, ∆-MFCCs, ∆2-MFCCs, making a total of 477 handcrafted

feature. In addition, 256 VGGish features were extracted and combined with handcrafted features.

Dimensionality reduction was conducted using PCA. The results demonstrated that SVM using

RBF as kernel and PCA could effectively distinguish between COVID-19 and non-COVID-19

users, with precision and recall rates of 80% and 72%, respectively, and a ROC-AUC of 82%. The

study also analyzed the impact of different sound modalities and dimensionality reduction on

performance as well as the impact of the employed data augmentation in results improvement.

The findings indicated that combining cough and breathing sounds improved performance, and

data augmentation (Amplifying the original signal, Adding white noise, and Changing pitch and

speed) significantly boosted recall and ROC-AUC to 90% and 87%, respectively.

In the study conducted by J. Vrindavanam et al. [135], various spectral and pitch handcrafted

features were extracted (Dominant Crest factor, Linear Predictor Coefficients (LPC), Dominant

Frequency, Power Spectral Density, RMS Energy, Zero-cross rating, Formant Frequency, Spectral
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Centroid, Spectral Bandwidth, Spectral Roll-off, Spectral Flatness) from cough audio samples

which are collected from UC dataset, Coswara, and Freesound for healthy samples, followed by

a feature selection process based on importance using methods such as Information Value (IV),

Random Forest Feature importance, RFE, Extra Trees Classifier (ETC), Chi-Square value (CS),

and L1 Feature selection (L_ONE). The researchers evaluated Logistic Regression, SVM, and

Random Forest classifiers using GridSearch. The best performance was achieved by SVM, with an

accuracy of 83.9% and a sensitivity of 81.2%. This study highlights the potential of using classical

ML models, along with handcrafted feature and selection techniques, to diagnose COVID-19

patients based on solely cough sound.

In another study, N. M. Manshouri [81] employed SVM with radial basis function kernel.

First, MFCCs, and Power Spectral Density features have been extracted using the waterfall

representation of the signal frequency spectrum. The coughs of individuals with COVID-19

were identified with a 95.86% classification accuracy. The detection of COVID-19 coughs was

accomplished with a sensitivity of 98.6% and a specificity of 91.7%.

A. Tena et al. [128] conducted a study on the automated identification of COVID-19 from

cough sounds by analyzing time-frequency features extracted from various datasets, including

the University of Lleida (UL), UC, Pertussis dataset, Coswara dataset, and Virufy dataset.

They used YAMNet to identify cough boundaries within the audio files and then transformed

the cough samples into time-frequency representations using Wigner distribution (WD) and

Choi-Williams exponential function. The study extracted 39 time-frequency features by dividing

the spectrum into seven frequency bands, calculating various attributes such as instantaneous

spectral energy, instantaneous frequency, instantaneous frequency peak, the mean frequency of

the total spectrum, joint, instantaneous Shannon entropies, spectral Shannon entropies, Kurtosis,

and moments of the marginal signals of instantaneous power and Spectral density. Two feature

selection strategies were employed: RFE and Autoencoder. The study conducted several tasks,

in the one related to COVID-19 Positive versus Negative classification, ML models, including

Random Forest, SVM, LDA, and Logistic Regression are employed. When employing RFE and

Random Forest, the study achieved an accuracy of 89.79%, a sensitivity of 93.81%, and an AUC

of 96.04%. In contrast, using the Autoencoder and RF, they reported an accuracy of 83.67%, a

sensitivity of 89.58%, and an AUC of 93.56%.

In another study [86], P. Mouawad et al. explore the classification of COVID-19 using cough

and sustained vowel sounds. The authors addressed the imbalance in their dataset by employing

a novel method of informative undersampling using an information-theoretic measure of informa-

tion rate, combined with RUS + IR. They extracted symbolic recurrence quantification measures

along with Mel Frequency Cepstral Coefficients (MFCC) features from the audio signals, which

captured complex dynamics in vocal sounds. For classification, they utilized the XGBoost model

and optimized performance using a threshold-moving method. The results demonstrated that

the proposed method achieved an F1-score of 91% for cough sounds and 89% for sustained vowel
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sounds. This research highlights the potential of using symbolic recurrence quantification mea-

sures and MFCC features in effectively discriminating between healthy and COVID-19-affected

individuals based on cough and sustained vowel sounds.

I. Södergren et al. [117] proposed a robust ensemble method, by utilizing the ComParE

2016 feature set, which yields a feature vector of size 6373, and ensembling two classical ML

models: SVM and Random Forest. The average of the weighted predictions from both models is

taken to create an ensemble that demonstrated strong performance on the DiCOVA challenge

data. The ensemble model achieved a ROC-AUC score of 85.21%, outperforming the baseline

provided by the challenge organizers and placing fourth on the leaderboard. The Random Forest

method, in particular, was found to converge toward high prediction performance with consistent

prediction correlation, despite randomly initiating feature selection. These results highlight

the effectiveness of combining classical ML models, such as SVM and Random Forest, with the

ComParE 2016 feature set for the task of detecting COVID-19 from cough sounds.

In order to examine the performance of state-of-the-art ML methods in effectively classifying

COVID-19 from cough sounds, N. K. Chowdhury et al. [25] utilized four datasets: UC dataset

and Coswara for training, Virufy, and NoCoCoDa for validation. In this study, a set of hand-

crafted features have been used: MFCCs, Mel-Scaled Spectrogram, Tonal Centroid, Chromagram,

and Spectral Contrast. An ensemble-based multi-criteria decision-making (MCDM) approach

was proposed to identify top-performing ML techniques among Extremely Randomized Trees

(Extra-Trees), SVM, Random Forest, Adaptive Boosting (AdaBoost), MLP, Extreme Gradient

Boosting (XGBoost), Gradient Boosting (GB), Logistic Regression, k-Nearest Neighbors (kNN)

and Histogram-based Gradient Boosting (HGBoost). The MCDM method integrates ensemble

methods, employs the Technique for Order Preference by Similarity to the Ideal Solution (TOP-

SIS) for ranking purposes, and then, utilizes entropy to determine evaluation criteria weights.

The class imbalance issue was addressed by employing SMOTE during training. Three different

training strategies have been explored, including nested Cross-Validation with hyper-parameter

optimization. RFE with Cross-Validation is used for feature reduction under various estimators.

Experiments evaluations show that using Extra-Trees classifier, the model achieved a ROC-AUC

of 95%, precision of 100%, and sensitivity of 97%.

In a cough analysis study by J. J. Valdés et al. [132], different cough types (Dry, Wet, Whooping,

and COVID-19) have been analyzed using supervised and unsupervised methods using a small

dataset. Supervised classifiers, kNN, XGBoost, and Random Forest, were applied to input dissimi-

larity spaces computed using Dynamic Time Warping (DTW) measures. The results demonstrated

high performance in identifying COVID-19 coughs, with sensitivities of 0.71 for kNN and 0.86

for both XGBoost and Random Forest. The presented results are considered preliminary, due to

the dataset size, absence of signal preprocessing techniques, and hyperparameter tuning, which

suggest more improvement and refinement.

In another comparative study between different ML approaches, F. Z. Solak [118] investigated
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the use of Virufy dataset. Due to the class imbalance of this dataset, the ADASYN oversampling

technique was employed for data balancing. Through a non-linear analysis (Entropy measures,

Lempel-Ziv Complexity (LZC), and Multifractal Detrended Fluctuation Analysis), the author

extracted 29 features. The most 9 effective features were then selected using the ReliefF method.

Five algorithms SVM with Radial Basis Function (SVM-RBF), Random Forest, AdaBoost, ANN,

and kNN were utilized to classify cough sounds as COVID-19 or Non-COVID-19. The study found

that the SVM-RBF classifier, combined with the selected features, achieved a 95.8% classification

accuracy, 93.1% sensitivity, 98.6% specificity, 98.6% precision, a Kappa value of 0.92, and a 93.2%

ROC-AUC.

A hybrid framework named CR19, proposed by E. E. Hemdan et al. [50], leverages the genetic

algorithm in combination with ML techniques to enhance its accuracy. The performance of the

hybrid framework (GA-ML) is compared to standalone ML approaches; Logistic Regression,

LDA, kNN, Classification And Regression Tree (CART), Naive Bayes, and SVM. The results

demonstrate that the hybrid GA-ML technique outperforms the standalone ML methods based

on different evaluation metrics. The proposed framework achieves an accuracy of 92.19%, 94.32%,

97.87%, 92.19%, 91.48%, and 93.61%, compared to accuracies of 90.78%, 92.90%, 95.74%, 87.94%,

81.56%, and 92.198% for Logistic Regression, LDA, kNN, CART, Naive Bayes, and SVM, respec-

tively.

Similarly, based on Particle Swarm Optimization (PSO), M. A. A. Albadr et al. [4], proposed

PSO-Extreme Machine Learning (PSO-ELM), which is a ML algorithm known for its accuracy

and speed in classification tasks. The proposed system uses MFCCs as input features, which were

extracted from respiratory system voice samples obtained from the Corona Hack Respiratory

Sound Dataset (CHRSD). The system encompasses thirteen different scenarios: breath deep,

breath shallow, all breath, cough heavy, cough shallow, all cough, count fast, count normal, all

count, vowel a, vowel e, vowel o, and all vowels. Experimental results reveal that the PSO-ELM

classifier achieves the highest accuracy in detecting COVID-19 across all scenarios, reaching

accuracies of 95.83%, 91.67%, 89.13%, 96.43%, 92.86%, 88.89%, 96.15%, 96.43%, 88.46%, 96.15%,

96.15%, 95.83%, and 82.89% for breath deep, breath shallow, all breath, cough heavy, cough

shallow, all cough, count fast, count normal, all count, vowel a, vowel e, vowel o, and all vowel

scenarios, respectively.

In another study, M. Melek [80] used Virufy and NoCoCoDa datasets and extracted MFCCs

features from cough sounds, which are then classified with seven different ML classifiers; SVM,

LDA, kNN, and Partial Least-Squares Regression (PLSR). LOOCV strategy is implemented to

determine optimal hyperparameter values for MFCCs and classifiers. kNN classifier based on the

Euclidean distance achieved an accuracy of 0.9833 after applying Sequential Forward Selection

(SFS) to identify the most effective features for each classifier.

Table 3.3 provides a summary of the ML-based approaches discussed in this section, high-

lighting the dataset names, extracted and used features, learning and classification methodology,
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data augmentation and class balancing techniques, and the main reported results.

Table 3.3: Summary of ML-based studies. DA refers to Data Augmentation, CB refers to Class

Balancing, dash (-) refers to not reported (used and not mentioned, or not completely used), Acc

for accuracy, Rec for recall, AUC for ROC-AUC, Prec for precision, Spec for specificity

Work Data Features ML model DA and CB Results

B. Chloë et

al. [19]

UC 477 handcrafted such

as MFCCs and RMS

Energy.

256 features extracted

using VGGish

SVM with RBF

Kernel and PCA

DA: applied

(Amplifying the

original signal,

Adding white

noise, Changing

pitch and speed).

CB: -

Rec: 90%

Prec: 70%

AUC: 87%

J. Vrinda-

vanam et

al. [135]

UC

Coswara

Freesound

Dominant Crest

factor, LPC, Dominant

Frequency, Power

Spectral Density,

RMSE, ZCR, Formant

Frequency, Spectral

Centroid, Bandwidth,

Roll-off, and Flatness.

SVM DA: -

CB: -

Acc: 83.9%

Rec: 81.2%

N. M.

Manshouri

[81]

- 19 MFCCs

Power Spectral

Density

SVM DA: -

CB: -

Acc: 95.86%

Rec: 98.6%

Spec: 91.7%

A. Tena et

al . [128]

UL

UC

Pertussis

Coswara

Virufy

39 time-frequency

features

Random Forest

SVM

LDA

Logistic

Regression

DA: -

CB: -

RFE

Acc: 89.79%

Rec: 93.81%

AUC: 96.04%

P.

Mouawad

et al.[86]

Private MFCC, Symbolic

Recurrence

Quantification

measures

XGBoost DA: -

CB: applied

(Informative

undersampling

with RUS + IR)

F1-score: 91%

(cough)

I.

Södergren

et al. [117]

DiCOVA ComParE 2016

feature set (6373

features)

Ensemble (SVM,

Random Forest)

DA: -

CB: -

AUC: 85.21%
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Work Data Features ML model DA and CB Results

N. K.

Chowd-

hury et al.

[25]

UC

Coswara

Virufy

NoCoCoDa

MFCCs, Mel-Scaled

Spectrogram, Tonal

Centroid,

Chromagram,

Spectral Contrast

Ensemble-based

MCDM:

Extra-Trees, SVM,

Random Forest,

AdaBoost, MLP,

XGBoost, GBoost,

Logistic

Regression, kNN,

HGBoost

DA: -

CB: applied

(SMOTE)

Rec: 97%

Prec: 100%

AUC: 95%

J. J. Valdés

et al. [132]

Private DTW measures kNN, XGBoost,

Random Forest

DA: -

CB: -

Rec: 0.86

(XGBoost and

Random

Forest)

F. Z. Solak

et al. [118]

Virufy 29 non-linear features,

ReliefF feature

selection

SVM-RBF,

Random Forest,

AdaBoost, ANN,

kNN

DA: -

CB: applied

(ADASYN

oversampling)

Acc 95.8%,

Rec: 93.1%,

Prec: 98.6%,

Spec 98.6%,

Kappa: 0.92,

AUC: 93.2%

E. E.

Hemdan et

al. [50]

Coswara - Logistic

Regression, LDA,

kNN, CART, Naive

Bayes, SVM,

Hybrid GA-ML

framework

DA: -

CB: -

GA-ML Acc:

92.19%

M. A. A.

Albadr et

al. [4]

CHRSD MFCCs PSO-ELM DA: -

CB: -

Acc: 96.43%

(heavy cough)

M. Melek

[80]

Virufy

NoCoCoDa

MFCCs SVM, LDA, kNN,

PLSR

DA: -

CB: -

Acc: 98.33%

(kNN

Euclidean)

3.3.2 DL-based Approaches

K. K. Lella et al. [71], developed a Deep Convolutional Neural Network (DCNN) model for di-

agnosing COVID-19 using respiratory sounds from the UC dataset. The study employed three

multi-feature channels (De-noising Auto Encoder, Gamma-tone Frequency Cepstral Coefficients

filter bank, and Improved Mel-frequency Cepstral Coefficients) to extract deep features from the

input sounds. By combining breath, cough, and voice sounds, the DCNN model achieved approxi-
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mately 95% accuracy on Task II of the dataset. Four steps of data augmentation techniques have

been used: time stretching, two phases of pitch shifting, compression of the range dynamically,

and adding background noise, to enhance the model’s performance. This work outperformed

previous approaches in testing accuracy for the same task for this dataset.

A. Imran et al. [55] use a limited dataset of cough sounds from a small number of patients for

each of the four groups (Healthy, COVID-19, Pertussis, and Bronchitis). The study proposes a

cough classifier based on CNN which receives Mel-spectrogram as input. The cough classifier

is trained on ESC-50 dataset in order to classify a recording as cough/non-cough. Furthermore,

three different classifiers have been trained to diagnose COVID-19, Deep Transfer Learning-

based Multi Class classifier (DTL-MC), Classical Machine Learning-based Multi Class classifier

(CML-MC) which is SVM, and Deep Transfer Learning-based Binary Class classifier (DTL-BC).

DTL-MC and DTL-BC use MEl-spectrogram as input, while CML-MC (SVM) model uses MFCCs

and features extracted using PCA. Additionally, a mediator-based architecture is designed to

minimize the probability of misdiagnosis by complementing the weakness of one classifier with

the strength of the other and vice versa. The study reports an accuracy of 95.80% for cough

detector, 92.64% for DTL-MC, 88.76% for CML-MC, and 92.85% for DTL-BC on the validation set.

In the aim of participation in the DiCOVA challenge, J. Harvill et al. [47] developed a method

for classifying COVID-19 from coughing sounds by leveraging unsupervised learning with Auto

regressive Predictive Coding (APC) for pre-training on the COUGHVID dataset and fine-tuning on

the DiCOVA challenge dataset [88]. Four LSTM layers were used in the APC process to minimize

the MSE and subsequently copied the first two layers into the fine-tuning network, using the

output of the second layer as extracted features. The fine-tuning network comprised the output

from the second layer of the APC model followed by two Bi-directional LSTM layers. SpecAugment

spectral augmentation technique was applied during the fine-tuning phase, experimenting with

different probabilities of applying it (0%, 50%, and 100%). Experiments have demonstrated

that using SpecAugment 100% of the time during fine-tuning slightly outperformed 50% and

significantly improved over not using it at all (0%). The proposed configuration achieved a ROC-

AUC of 76.81% on validation data and 85.35% on the blind DiCOVA challenge data, ranking

third out of 29 participants. The results highlight the effectiveness of APC pre-training and

significantly, spectral augmentation in improving the performance of the proposed model.

H. Xue et al. [147] combined the Coswara and UC datasets and introduced a method for

self-supervised representation learning using contrastive pre-training on unlabeled data. First,

log-compressed mel-filterbanks have been extracted, then, random masking has been employed,

which enabled the Transformer structure (feature encoder) to learn representations. In the

downstream phase, the feature encoder was fine-tuned with labeled data. The researchers

experimented with various models, including VGGish, Gated Recurrent Unit (GRU), GRU-CP

(CP: Contrastive Pre-training enabled), Transformer, Transformer-CP, and an ensembling method

that combines these methods. During the downstream phase, they tested two similarity functions
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Cosine and Bilinear along with different masking rates (0%, 25%, 50%, 75%, and 100%). The

optimal results were achieved by ensembling two Transformer-CPs with varying masking rates,

which led to an accuracy of 84.43%, a sensitivity of 73.24%, and a ROC-AUC of 90.03%.

Another interesting research by S. Rao et al. [99], where they employed log-mel spectrogram

from DiCOVA 2021 dataset alongside COVID-19 positive samples from the COUGHVID dataset

due to the lack of positive samples. The researchers investigated various DL methods, including

fully connected neural networks, pruned neural networks based on the Lottery Ticket Hypothesis,

and CNNs, specifically, the fine-tuned VGG13 architecture. A crucial aspect of this work involved

the use of data augmentation, which is, as above-mentioned, up-sampled positive samples

by 400 recordings from COUGHVID dataset. Moreover, the audio mix-up technique was also

investigated to avoid possible overfitting by randomly mixing a pair of inputs x1 and x2 and their

corresponding outputs y1 and y2 to enhance model generalization. Mix-up uses a parameter

∏ 2 (0,1) to create a convex combination of the pair. The custom VGG13 was trained with two

configurations, first with BCE, and the second with Focal loss which is commonly used to address

the class imbalance issue. Experiments show that ensembling the two configurations along with

data augmentation techniques led to a validation ROC-AUC of 82.23% and a test ROC-AUC of

78.3% with a sensitivity of 80.49%, outperforming the fully connected network method and other

recent baselines on the DiCOVA challenge.

S. Kim et al. [63], proposed a novel model that combines ResNet-50 and DNN. After hand-

crafting MFCCs, ∆-MFCCs, ∆2-MFCCs, spectral contrast, chroma, onset, RMS energy, spectral

bandwidth, centroid, flatness, roll-off, and ZCR, Bhattacharyya distance was computed for each

feature to identify the most effective ones for COVID-19 detection. The model employed two

branches: ResNet-50, which processed Mel-spectrogram images, and a DNN that received the

selected feature vector. Cough sound data from three crowdsourced datasets UC, Coswara, and

COUGHVID were used for training and testing the model. Audio recordings containing only

cough sounds were carefully selected through direct listening and inspection. The outputs of

these branches were concatenated and forwarded to a fully connected layer for learning and

classification. The model demonstrated high sensitivity and specificity rates of 0.95 and 0.96,

respectively, indicating improved performance compared to some other studies.

Similarly, in a recently published study, S. Ulukaya et al. [130], propose a multi-branch CNN

architecture called MSCCov19Net. It consists of three branches-architecture that combines neural

features extracted from diverse domains: MFCC features, Spectrogram images, and Chroma

features (Chromagram). The study used two datasets for training: Coswara and COUGHVID,

where used Virufy and NoCoCoDa for testing, with a total of 2960/370/370 cough segments for

training/validation/testing, respectively. The study employs signal data augmentation strategy by

using pitch shifting and white noise addition to enhance the model’s generalization. The proposed

system shows an accuracy of 61.5% in Virufy data and 90.4% in NoCoCoDa data.

One such study from Z. Ren [100], where he proposed an attention-based ensemble learning

64



3.3. RELATED WORKS

approach that leverages complementary representations from cough samples. Using DiCOVA

challenge dataset, the methodology involves extracting three single-model representations from

hand-crafted features (log Mel, MFCCs, and ComParE feature set), deep image-from-audio-based

representations (Mel-spectrogram images), and deep audio-based representations (extracted

from fine-tuned CNN14_16k and ResNet38 where log Mel-spectrograms are forwarded as input).

The attention mechanism was examined at both the feature and decision levels. The results

revealed that feature-level and decision-level attention-based fusions outperformed single-model

classifiers and max/average fusion for COVID-19 recognition, with the attention-based fusion

achieving the best ROC-AUC of 77.96% on the test set.

With the aim of focusing on the interpretability, A. Pal et al. [94] proposed a novel, inter-

pretable COVID-19 diagnosis framework based on DL, using cough sound features and symptoms

metadata. The used dataset consists of 30000 audio segments from 150 patients, representing

four cough classes (COVID-19, Asthma, Bronchitis, and Healthy). DL technique employs a three-

layer DNN model to generate cough embeddings from handcrafted features (MFCCs, log energy,

ZCR, Skewness, Entropy, Formant frequencies F1-F4, Kurtosis, and Fundamental frequency F0),

while a transformer-based self-attention network called TabNet generates symptom embeddings.

The results demonstrate the model’s ability to accurately classify between COVID-19 positive

and negative cases using cough features, demographic and symptom data, and both types of data

combined. Furthermore, the model effectively classifies among the four cough classes, including

Bronchitis, Asthma, COVID-19 Positive, and COVID-19 Negative. With a specificity and accuracy

of 95.04 ± 0.18% and 96.83 ± 0.18% respectively, the proposed framework combines the high

accuracy and generality of deep neural networks with TabNet’s interpretability.

For the same purpose. H. Li et al. [72] examined the data variance between COVID-19

subjects and healthy individuals. Data augmentation techniques; pitch and time shifting, and

noise injection have been employed to increase training data variance of Coswara dataset,

then convert audio signals into Mel-spectrograms images. A ResNet34 pre-trained model with

ImageNet weights was used for automatic feature extraction. The authors reported that most

handcrafted features such as MFCCs and RMSE exhibit minor differences between COVID-19

subjects and healthy individuals, with more pronounced differences in speech samples. The

system is evaluated on 172 COVID-19 subjects and 793 healthy subjects, achieving a ROC-AUC

of over 70%.

In another transfer learning-based study, M. Aly in [8], proposed a two-phase model for

COVID-19 detection using cough and breath sounds. The first phase involves Mel-spectrogram,

while the second phase focuses on feature extraction and classification with nine pre-trained

models; ResNet18/34/50/100/101, GoogLeNet, SqueezeNet, MobileNetv2, and NASNetMobile. The

dataset, derived from the Coswara dataset, comprises data from approximately 1600 individuals

(1185 males and 415 females). Data augmentation was employed, though the specific technique

was not explicitly detailed. The classification model achieved remarkable accuracy of 99.2% with
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the SGD with Momentum (SGDM) optimizer. Among tested models, ResNet18 emerged as the

most stable for classifying cough and breath sounds from a limited dataset, demonstrating a

sensitivity of 98.3% and a specificity of 97.8%.

Building on the previous study [8], another model has been introduced by M. Loey and S.

Mirjalili [76], in which, the sound-to-image transformation was optimized by the scalogram

technique, then, the classification step was performed using six pre-trained models; GoogleNet,

ResNet18, ResNet50, ResNet101, MobileNetv2, and NASNetMobile. The dataset employed is

based on COUGHVID dataset, which consists of 1457 cough sound samples, with 755 from COVID-

19 patients and 702 from healthy individuals. The recognition model achieves an accuracy of

94.9% with the SGDM optimizer. Similar to the previous study, ResNet18 proves to be the most

stable model for classifying cough sounds from a limited dataset, yielding a sensitivity of 94.44%

and a specificity of 95.37%.

Using different CNN-based architectures, M. Esposito et al. [32], utilize data from Coswara

and COUGHVID datasets, to employ several CNN architectures; transfer learning, with VGG13,

and custom architectures; Convolutional Recurrent Neural Network (CRNN), Gated Convolu-

tional Neural Network (GCNN), Gated Convolutional Recurrent Neural Network (GCRNN),

and a fusion method. As input features, Mel-spectrograms were utilized. Initial results show an

accuracy of 61.81%, but more recent findings have improved this figure to 80%.

Another study from S. K. Mahanta et al. [77], which employs ConvNets, which is a CNN model,

trained on a subset of Coswara dataset (approximately 1.36 hours of cough sound recordings from

75 COVID-19 positive and 965 COVID-19 negative subjects). To handle class imbalance issue,

and increase the model’s generalizability, some signal-based data augmentation techniques were

applied; Time stretching, Pitch shifting, Time shifting, Trimming, and gaining. MFCCs were

extracted to be the input of the proposed ConvNets. By achieving a ROC-AUC score of 87.07%

on a blind test set, this result surpasses the DiCOVA 2021 Challenge’s baseline model by 23%,

securing the top position on the leaderboard.

In another study, C. Wall et al. [140] used two datasets, ICBHI and Coswara, to create

five customized datasets, labeled D1–D5. D2 is a Coswara dataset consisting of only coughing

sounds. After extracting MFCCs features, various DL models have been employed: Attention-

Convolutional Recurrent Neural Network (A-CRNN), Attention-BiLSTM (A-BiLSTM), Attention-

Bidirectional Gated Recurrent Unit (BiGRU) (A-BiGRU), and CNN. Regarding D2, 0.9825 was

the highest reported accuracy, using by A-BiGRU model, with a sensitivity of 1.0, and 0.96 of

specificity.

In another similar work, Y. He et al. [49] proposed an attention-based network, named TFA-

CLSTMNN, which refers to Time-Frequency Attention-Convolutional LSTM Neural Network.

MFCCs features were computed and used as neural network input. Experimental results show

an accuracy of 95% on publicly available datasets.

V. Dentamaro et al. [29], proposed AUCO ResNet architecture, which is based on ResNet
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architecture and includes three attention mechanisms for merging relevant information from

activation maps at various levels of the network, the model receives Mel-spectrogram as input

and applies the first attention mechanism; Convolutional Block Attention Module (CBAM), which

selectively emphasizes informative features. The second attention mechanism is a Squeeze-and-

Excitation (SE) block, which recalibrates channel-wise feature responses. The third attention

mechanism is the sinusoidal learnable attention mechanism, which captures fine-grained infor-

mation within the feature maps. The authors re-implemented many state-of-the-art works for

fair comparison [19, 26, 55]. The comparison relied on the tasks reported in [19] (Task I. Posi-

tive COVID-19 vs. Healthy without symptoms, Task II. Positive COVID-19 reporting cough vs.

Healthy, and Task III. Positive-COVID-19 vs. Healthy with cough and asthma). The experimental

result shows a significant improvement for Task II compared to the state-of-the-art works, where

it has shown an accuracy of 0.9256, a precision of 0.8881, 0.9256 of sensitivity, and 0.9257 of

ROC-AUC.

In another work, L. K. Kumar and P. J. A. Alphonse [67] proposed a light-weight CNN model

using Modified-MFCCs and Enhanced Gamma-tone Frequency Cepstral Coefficients (GFCCs)

to classify various respiratory diseases, including Asthma, Bronchitis, Pertussis, and COVID-

19. The primary benchmark dataset was obtained from UC while data related to Pertussis

and Bronchitis diseases were collected from different crowdsourced sound datasets. Different

receptive fields and depths have been employed and tested in the proposed model to obtain

various contextual information for classification. Experiments suggested that a 1 £ 12 receptive

field and a depth of 5-Layer for the light-weight CNN were optimal for extracting and identifying

features from respiratory sound data. The proposed model has shown approximately 4-10%

accuracy improvement compared to conventional MFCCs features. The model achieves around

92% accuracy in predicting COVID-19.

T. Rahman et al. [98], presented a stacking CNN model which receives cough or breath

spectrogram, followed by a Logistic regression as meta-learner. The combined dataset includes

samples from UC and additional crowdsourced data. For symptomatic and asymptomatic pa-

tients, the model achieved an accuracy of 96.5% and 98.85% using cough sound spectrograms,

respectively. Additionally, it reached 91.03% and 80.01% for breath sound.

In order to develop a diagnosis system that is compatible and suitable for low-power devices,

M. Soltanian and K. Borna [119] designed a lightweight CNN which receives MFCCs features

from Virufy dataset as input. Quadratic form kernels are used to generalize linear convolution by

considering cross-correlations within the receptive field and calculating a second-order convolu-

tion with an expanded weight tensor which led to enhancing performance. However, second-order

convolution also led to a higher computational cost, with this respect, Kernel separation has

been used by breaking down the kernel into separate components which maintain the desired

nonlinearity. Experiment results show that the separable quadratic convolution layer outper-

forms the ordinal layer, where it achieved 97.5%, 95.2%, 100%, and 100% for accuracy, sensitivity,
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specificity, and precision, respectively, compared to the classical convolution layer which achieved

95%, 90% for accuracy and sensitivity, respectively.

The subsequent, Table 3.4, offers a summary of the DL-based methods addressed in this

section. It emphasizes as well, the used dataset, extracted and employed features, learning and

classification techniques, data augmentation and class balancing strategies, and the reported

findings.

Table 3.4: Summary of DL-based studies.

Work Data Features DL model DA and CB Results

K. K. Lella

et al. [71]

UC De-noising Auto

Encoder, Gamma-tone

Frequency Cepstral

Coefficients filter

bank, Improved

MFCCs

DCNN DA: applied (Time

stretching, two

phases of pitch

shifting,

compression of the

range dynamically,

and adding

background noise)

CB: -

Acc: 95% on

Task-II

A. Imran

et al. [55]

Limited

dataset

(Healthy from

ESC-50,

COVID-19,

Pertussis, and

Bronchitis)

Mel-spectrogram,

MFCCs, PCA

CNN (Cough

Classifier),

DTL-MC,

CML-MC (SVM),

DTL-BC

DA: -

CB: -

Acc: 92.64%

(DTL-MC),

88.76%

(CML-MC),

92.85%

(DTL-BC)

J. Harvill

et al. [47]

COUGHVID

DiCOVA

Output from the

second layer of APC

model

APC pre-training

with 4 LSTM

layers, fine-tuning

with 2

Bi-directional

LSTM layers

DA: applied

(SpecAugment

with 100% chance)

CB: -

AUC: 76.81%

(validation),

AUC: 85.35%

(DiCOVA blind

data)

H. Xue et

al. [147]

Coswara

UC

Log-compressed

mel-filterbanks

Contrastive

pre-training,

ensembling

Transformer-CP

model with

Random masking

DA: -

CB: -

Acc: 84.43%,

Rec: 73.24%,

AUC: 90.03%

68



3.3. RELATED WORKS

Work Data Features DL model DA and CB Results

S. Rao et

al. [99]

DiCOVA,

upsampled

with

COUGHVID

Log-mel spectrogram VGG13, Fully

connected

networks, Pruned

networks

DA: applied

(Upsampling and

Audio mix-up)

CB: -

AUC: 78.3%,

Rec: 80.49%

S. Kim et

al. [63]

UC

Coswara

COUGHVID

MFCCs, ∆-MFCCs,

∆
2-MFCCs, spectral

contrast, chroma,

onset, RMS energy,

spectral bandwidth,

centroid, flatness,

roll-off, ZCR

Two branches,

ResNet-50 and

DNN,

concatenated and

forwarded to fully

connected layer

for learning

DA: -

CB: -

Rec: 0.95,

Spec: 0.96

S. Ulukaya

et al. [130]

Coswara and

COUGHVID

for train.

Virufy and

NoCoCoDa for

evaluation

MFCCs features,

Spectrogram images,

Chroma features

(Chromagram)

Multi-branch

CNN

(MSCCov19Net)

DA: Pitch shifting,

White noise

addition

CB: -

Acc: 61.5% on

Virufy, and

90.4% on

NoCoCoDa

Z. Ren

[100]

DiCOVA Log Mel, MFCCs,

ComParE feature set,

Mel-spectrogram

images, deep

audio-based

representations

Attention-based

ensemble learning

(CNN14_16k,

ResNet38)

DA: -

CB: -

AUC: 77.96%

A. Pal et al.

[94]

Private MFCCs, log energy,

ZCR, Skewness,

Entropy, Formant

frequencies F1-F4,

Kurtosis,

Fundamental

frequency F0

DNN (3-layer) +

TabNet

(transformer-

based

self-attention

network)

DA: -

CB: -

Acc: 96.83%,

Spec: 95.04%

H. Li et al.

[72]

Coswara Mel-spectrograms ResNet34 DA: applied (pitch

and time shifting,

noise injection)

CB: -

AUC: 70%
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Work Data Features DL model DA and CB Results

M. Aly [8] Coswara Mel-spectrogram Different versions

of ResNet

(18/34/50/100/101),

GoogLeNet,

SqueezeNet,

MobileNetv2, and

NasNetmobile

DA: applied

(strategy not

specified)

CB: -

Acc: 99.2%,

Rec: 98.3%,

Spec: 97.8%

M. Loey

and S.

Mirjalili

[76]

COUGHVID Scalogram GoogleNet,

ResNet18,

ResNet50,

ResNet101,

MobileNetv2, and

NasNetmobile

DA: -

CB: -

Acc: 94.9%,

Rec: 94.44%,

Spec: 95.37%

M.

Esposito et

al. [32]

Coswara

COUGHVID

Mel-spectrograms VGG13, CRNN,

GCNN, GCRNN,

Fusion method

DA: -

CB: -

Acc: 80%

S. K.

Mahanta

et al. [77]

Coswara MFCCs CNNs DA: applied (Time

stretching, Pitch

shifting, Time

shifting,

Trimming and

Gaining)

CB: -

AUC: 87.07%

(DiCOVA

challenge)

C. Wall et

al. [140]

Coswara

dataset (D2):

coughing

sounds only

MFCCs A-CRNN,

A-BiLSTM,

A-BiGRU, CNN

DA: -

CB: -

A-BiGRU:

Acc: 0.98

Rec: 1.0

Spec: 0.96

Y. He et al.

[49]

Publicly

available

datasets

MFCCs TFA-CLSTMNN

(Time-Frequency

Attention-

Convolutional

LSTM Neural

Network)

DA: -

CB: -

Acc: 95%
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Work Data Features DL model DA and CB Results

V. Denta-

maro et al.

[29]

UC Mel-spectrogram AUCO ResNet

(with CBAM, SE

block, and

sinusoidal

learnable

attention

mechanisms)

DA: -

CB: -

Task II

Acc: 0.92

Prec: 0.88

Rec: 0.92

AUC: 0.92

L. K.

Kumar

and P. J. A.

Alphonse

[67]

UC

Pertussis and

Bronchitis

datasets

MMFCC, EGFCC Light-weight CNN

(1 £ 12 receptive

field, 5-Layer

depth)

DA: -

CB: -

COVID-19

task

Acc: 92%

T. Rahman

et al. [98]

UC and

crowdsourced

data

Spectrogram Stacking CNN

with Logistic

Regression

meta-learner

DA: -

CB: -

Cough:

Acc: 96.5%

(symptomatic)

Acc: 98.85%

(asymp-

tomatic)

M.

Soltanian

and K.

Borna

[119]

Virufy MFCCs Lightweight CNN

with separable

quadratic

convolution

DA: -

CB: -

Acc: 97.5%

Rec: 95.2%

Spec: 100%

Prec: 100%

3.3.3 Works involved comparison: ML and DL Techniques

On behalf of the INTERSPEECH 2021 Computational Paralinguistics Challenge, B. Schuller et al.

[105], utilized two subsets of UC dataset where the quality of the data was manually checked, and

all audio recordings were resampled and converted to 16 kHz and mono/16 bit for the COVID-19

Cough Sub-challenge to establish challenging baselines using various audio feature extraction

techniques and toolkits. Feature extraction step included ComParE functional features, BoAW

features, deep unsupervised representation learning with the AUDEEP toolkit, and deep feature

extraction from pre-trained CNNs using the DEEP SPECTRUM toolkit. For feature learning and

classification, they employed CNN, LSTM, and SVM models. By implementing a majority voting

system among the best-performing models, this study achieved an Unweighted Average Recall

(UAR) score of 73.9% for DEEPSPECTRUM+SVM, 70.6% for ComParE functionals+SVM, and

84.6% for CNN+LSTM RNN.

In another comparative study, E. A. Mohammed et al. [84] explored various approaches,

including ensembling a CNN model trained from scratch, VGG16, and Tuned-VGG16 to classify
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cough sounds as COVID-19 positive or negative cases. The dataset used in the study comprised

1020 audio recordings. Seven features have been extracted: Mel-spectrum, Chroma, Tonal spec-

trogram, Power spectrum, MFCCs, and raw data segment. Class imbalance by segmenting each

cough recording into non-overlapping coughs to prevent losing cough features when splitting each

audio file. The study compared shallow ML models such as Naïve Bayes, Logistic Regression,

kNN, Random Forest, SGD, XGBoost, and SVM, to DL, CNN from scratch, the original VGG16

model, and VGG16 with data augmentation. The results indicated that DL models outperformed

their shallow counterparts, with CNN models trained from scratch showing the highest perfor-

mance. The researchers also emphasized the importance of data augmentation in enhancing

model performance and suggested the use of ensemble models for more robust classifiers with

resistance to overfitting. They achieved 77%, 80%, and 71% for ROC-AUC, precision, and recall,

respectively.

Similarly, M. Pahar et al. [92] conducted a comparative study of various ML and DL tech-

niques, including ResNet50 (transfer learning), CNN, LSTM, SVM, Logistic regression, and MLP,

to classify COVID-19 positive and negative cases using the Coswara and Sarcos datasets. Input

features such as MFCCs, MFCCs with appended velocity, MFCCs with appended acceleration, log

energies, ZCR, and Kurtosis are employed in this study. To address data imbalance and augment

the data, SMOTE has been used. Transfer learning with ResNet50 achieved a 98% of ROC-AUC

and 95% of sensitivity. The study also applied SFS for optimal feature selection, with LSTM

demonstrating the best performance when trained on Coswara and tested on Sarcos, achieving a

93.8% of ROC-AUC and 91% of sensitivity.

H. Coppock et al. [26] developed the COVID-19 Identification ResNet (CIdeR), a model

based on the ResNet architecture that takes the concatenation of cough and breathing data

as input, from Coswara dataset. Spectrograms have been extracted from WAV audio files and

log spectrograms for both cough and breathing signals. To address the class imbalance issue,

they employed a weighted binary-cross-entropy loss function. For a fair comparison, they used a

baseline method involving SVM with ComParE features from OpenSMILE and PCA for selecting

the top 100 components with the highest explained variance. The authors carried out four tasks,

with the COVID-19 positive vs. COVID-19 negative task yielding the best results for CIdeR in

comparison to the baselines. The CIdeR model achieved a ROC-AUC of 0.846 ± 0.040.

In a recent study, K. A. Nasab et al. [9] compared various supervised ML and DL methods;

SVM, Random Forest, Fully Connected neural network, CNN, and LSTM. Cough data have been

collected from 40000 individuals, including both healthy and positive cases, using an online web

app sorfeh.com. To enhance the dataset, two data augmentation strategies have been employed,

time-stretching (with an interval of 0.8 to 1.1 times) and pitch-shifting (within a range of -2.5 to

2.5 semi-tones). MFCCs, Chroma, ZCR, RMSE, Spectral Centroid, Bandwidth, Roll-off, Tonetz,

and Mel-spectrogram have been extracted to be used as input to the learning methods, forming

a total of 914 features. The models, generally, achieved accuracy, sensitivity, and specificity
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rates higher than 70%, with data augmentation proving to be beneficial in improving model

performance. LSTM model stood out, reaching an accuracy of 95% and a sensitivity of 95.5%.

In a study conducted by R. Islam [57], two well-known ML and DL techniques were compared

for the classification of cough sounds of the Virufy dataset. Chromagram features were extracted

from the audio samples and forwarded as input for the classifier algorithms. The authors modeled

two ANN based classifiers, specifically CNN and DNN. Experiments demonstrated that the CNN

classifier achieved an accuracy of 92.9%, while the DNN reached 91.7% accuracy. Furthermore,

the study provided a performance comparison between the proposed system and two popular ML

algorithms, SVM and kNN. The comparison shows the performance of DL model CNN against

ML models.

By extending their previous work [92], M. Pahar et al. [93] employed seven standard classifiers

to achieve a promising baseline performance. Five datasets with a total of 10.29 hours and without

COVID-19 labels for pre-training have been included; TASK, Brooklyn, and Wallacedene datasets

(Tuberculosis) for cough, Google Audio Set and Freesound datasets for cough, sneeze, speech, and

non-vocal sounds, and LibriSpeech for speech data. For classification, three coughing datasets

with COVID-19 labels have been used; Coswara, ComParE, and Sarcos. MFCCs, ∆-MFCCs,

∆
2-MFCCs, linearly-spaced log filterbank energies, and ZCR features have been extracted. Then,

CNN, LSTM, have been pre-trained while ResNet50 was fine-tuned to enhance performance.

Bottleneck features were extracted from these pre-trained models and used as input for Logistic

regression, SVM, MLP, and kNN classifiers. The highest ROC-AUC of 0.98 was achieved with

ResNet50 architecture on coughs from the Coswara dataset, while SVM achieved a ROC-AUC of

0.94 and 0.92 on bottleneck features from breaths in Coswara dataset and speech recordings in

the ComParE dataset, respectively. Among all vocal audio, coughs carried the strongest COVID-19

signature, followed by breath and speech.

In another comparison between the performance of a ML technique and a DL technique

in constructing a low-cost COVID-19 screening tool by D. S. Vijayakumar and M. Sneha [134].

The dataset used in the research is relatively small, comprising 8 COVID-19 cough samples, 28

pneumonia samples, 15 pertussis samples, and 30 normal cough sounds. Feature extraction was

carried out using the Mel scale and log-based spectrogram. Two classification models have been

built: one utilizing SVM, and the other employing a DL-based LSTM network with an attention

mechanism. The results indicate that the SVM classifier achieved an overall accuracy of 94%,

while the attention-LSTM classifier reached 88%.

Table 3.5, presents a summary of the comparative studies between ML and DL techniques

addressed in this section. It focuses on the utilized datasets, extracted and employed features,

compared methodologies, data augmentation and class balancing strategies, and the reported

performance metrics.
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Table 3.5: Summary of Comparative Studies between ML and DL Techniques

Work Data Features ML & DL

models

DA and CB Results

B. Schuller

et al. [105]

UC ComParE, BoAW,

AUDEEP, DEEP

SPECTRUM

CNN, LSTM, SVM DA: -

CB: -

UAR: 73.9%

(DEEPSPEC-

TRUM+SVM),

70.6% (Com-

ParE+SVM),

84.6%

(CNN+LSTM

RNN)

E. A. Mo-

hammed et

al. [84]

Coswara and

other

crowdsourced

data

Mel-spectrum,

Chroma, Tonal

spectrogram, Power

spectrum, MFCCs,

raw data segment

CNN, VGG16,

Tuned-VGG16,

Naïve Bayes,

Logistic

Regression, kNN,

Random Forest,

SGD, XGBoost,

SVM

DA and CB:

applied (Recording

segmentation into

non-overlapping

coughs)

AUC: 77%

Prec: 80%

Rec: 71%

(Ensebmling

CNN, VGG16,

and

Fine-tuned

VGG16)

M. Pahar

et al. [92]

Coswara

Sarcos

MFCCs, ∆-MFCCs,

∆
2-MFCCs, log

energies, ZCR,

Kurtosis

ResNet50, CNN,

LSTM, SVM,

Logistic

Regression, MLP

DA and CB:

applied (SMOTE)

ResNet50:

Rec: 95%

AUC: 98%

LSTM (Train

on Coswara

and test on

Sarcos): Rec:

91% AUC:

93.8%

H.

Coppock et

al. [26]

Coswara Log spectrograms CIdeR

(ResNet-based),

SVM with

ComParE features

and PCA

DA: -

CB: Weighted

binary-cross-

entropy loss

function

CIdeR

AUC: 84.6%

K. A.

Nasab et

al. [9]

Croudsourced

from online

web app

MFCCs, Chroma,

ZCR, RMSE, Spectral

Centroid, Bandwidth,

Roll-off, Tonetz,

Mel-spectrogram

SVM, Random

Forest, Fully

Connected Neural

Network, CNN,

LSTM

DA:

Time-stretching,

Pitch-shifting

CB: -

LSTM:

Acc: 95%

Rec: 95.5%

R. Islam

[57]

Virufy Chromagram CNN, DNN, SVM,

kNN

DA: -

CB: -

CNN:

Acc: 92.9%
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Work Data Features ML & DL

models

DA and CB Results

M. Pahar

et al. [93]

Multiple

datasets

including

Coswara,

Brooklyn, and

Freesound

MFCCs, ∆-MFCCs,

∆
2-MFCCs, Log

filterbank energies,

ZCR, Bottleneck

features from

ResNet50

CNN, LSTM,

ResNet50, Logistic

Regression, SVM,

MLP, kNN

DA: -

CB: -

ResNet50 and

Coswara

AUC: 0.98

SVM and

Coswara

breaths

AUC: 0.94

SVM and

ComParE

speech

AUC: 0.92

D. S. Vi-

jayakumar

and M.

Sneha

[134]

8 COVID-19,

28 pneumonia,

15 pertussis,

30 normal

coughs

Mel scale, Log-based

spectrogram

SVM, LSTM with

attention

mechanism

DA: -

CB: -

SVM

Acc: 94%

Attention-

LSTM

Acc: 88%

3.4 Comparative analysis

In this section, we will delve into the differences between various methodologies used in the

related works, focusing on the performance and characteristics of ML and DL models, the impact

of data augmentation strategies, feature extraction and selection methods, and performance

metrics.

3.4.1 ML vs. DL

In general, DL models, such as CNN and LSTM, tend to outperform ML models in COVID-

19 diagnosis from cough tasks. Table 3.5 shows that various DL techniques and approaches

reported in [9, 26, 57, 84, 92, 93, 105]; CNN, LSTM, pre-trained models such as VGG16 and

ResNet50, demonstrate higher performance against different ML algorithms; Naïve Bayes,

Logistic Regression, kNN, Random Forest, SGD, XGBoost, MLP, and SVM. The studies [9, 47,

92, 105] demonstrated the effectiveness of LSTM in capturing the time-dependent relationships

between input features compared to other ML methods. CNNs (including pre-trained models)

also have shown promising performance in most of the previous studies [26, 57, 57, 63, 84, 92,

99, 105, 130], where informative and most relevant patterns were efficiently extracted. Attention

mechanism (including Transformers) have also shown high performance in [72, 94, 100, 147].

However, there are cases where ML models can achieve competitive results against DL models

such as [134], where SVM reported 94% of accuracy against Attention-LSTM which reported

only 88%. State-of-the-art review shows some very competitive results using ML algorithms
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against DL methods. To present a fair comparison, the same testing data should be considered

in both comparison parties, for instance, DiCOVA challenge, ensembling Random Forest and

SVM in [117] achieved a ROC-AUC of 85.21%, while Attention-based ensemble of CNN and

ResNet38 [100] achieved only 77.96%. Studies like [50, 81, 93, 117] show that SVM method

can reach more than 85% of accuracy, sensitivity, or ROC-AUC, also some other studies like

[25, 86, 117, 128, 132], demonstrate the effectiveness and the ability of Random Forest, or Tree-

based methods, to be more general. ML algorithms can be more effective than DL in some cases,

especially when combined with powerful and appropriate feature extraction, feature selection,

and also data augmentation steps. The present analysis confirms that even with the development

of revolutionary DL techniques, ML algorithms are still able to provide promising results with

less computational cost, and faster training, and inference times, compared to DL. However,

it is crucial to indicate the limitation of these techniques such as the need for manual feature

extraction which can be time-consuming, for instance, computing the large set of energy-related,

voicing-related, and spectral-related features, 477 handcrafted features in [19], 6373 features

of ComParE in [117]. It may not also capture all relevant information which inevitably led to a

decrease in the model’s performance [29]. On the other hand, DL techniques may require more

computational power and longer training time, and they can also be more complex to explain

or interpret, however, these methods work by first, performing feature extraction, and then the

classification step, which means there is no need to manually extract audio features [29] where

most of the studies used only Mel-spectrogram [55, 72, 99, 100] as model input.

3.4.2 Feature extraction and selection methods

Feature extraction plays a crucial role in building effective ML and DL models for COVID-

19 diagnosis from cough sounds. Extracting informative and discriminative features allows

the models to capture the unique characteristics of cough sounds associated with COVID-19

and differentiate them from other cough types or healthy coughs. In the studies presented in

Tables 3.3, 3.4, and 3.5, various feature extraction techniques have been employed to improve

the performance of the models, these include MFCCs [9, 84, 92, 93], chroma features [9, 57, 84],

spectral features (Centroid, Bandwidth, Roll-off) [25, 135], and ZCR [9, 63, 92, 93, 135]. These

features capture essential information about the cough sounds’ frequency, energy distribution,

and temporal characteristics, contributing to the classification task’s success. Handcrafted feature

extraction methods, such as those mentioned above, often require domain knowledge and can

be time-consuming and resource-intensive, as mentioned in Section 3.4.1. On the other hand,

automatic feature extraction methods using DL architectures like CNN and LSTM, can learn to

extract relevant features directly from the time-frequency representation of audio data, without

any need for manual intervention. In the studies [8, 29, 55, 76], DL models have shown promising

results in automatic feature extraction from Mel-spectrogram, which allows them to build an

efficient diagnosis system. However, handcrafted features can still achieve competitive results
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when combined with appropriate feature selection and powerful classifiers, as demonstrated in

[81, 93, 117]. Furthermore, another type of feature has been widely explored by some studies,

which is bottleneck-based representation, which in general, consists of a latent space of an

encoder (a compact of the most discriminating features), it has been used in [19] as VGGish,

De-noising Auto Encoder in [71], Output from the second layer of APC model in [71], AUDEEP
2 and DEEPSPECTRUM 3 in [105], and Bottleneck features from fine-tuned ResNet50 in [93].

While this type of feature extraction has demonstrated its effectiveness, it can be also considered

as feature selection, which is an essential step to improve the efficiency of ML and DL models by

reducing the dimensionality of the feature space. Other feature selection techniques have been

also investigated and demonstrated their impact on the enhancement of classification models;

SFS has been used in [80] and helped to achieve a classification accuracy of 98.33% using kNN

algorithm, also in [92] to select the most relevant features to avoid redundancy and possible

overfitting. RFE was compared with Autoencoder and has shown a significant impact in boosting

Random Forest performance [128] from 83.67% using Autoencoder + Random Forest to 89.79%

using RFE + Random Forest, it has been also used in [135] to identify the best 15 features. PCA

has been employed in various studies [19, 26, 55] to select the most principal components, as well

as LDA [50, 80, 81, 128], however, the latter has been used as a supervised learning method, and

not explicitly for feature selection. Feature extraction and selection in COVID-19 cough sound

diagnosis face challenges like noise, recording variations, and individual differences. Addressing

the quality and relevance of features is essential for accurate and efficient diagnostic models.

3.4.3 Data augmentation strategies

As discussed in Section 3.2 and shown in Figure 3.1, all available coughing under COVID-19

datasets suffer from the lack of data, especially positive cases, this was a challenging task due to

several factors, the need for social distancing and strict health protocols make it difficult to gather

respiratory sounds in environments under control, also the urgency of the pandemic that required

quick data collection, which may lead to decrease the quality of collected data, thus, various

techniques have been employed to tackle this limitation and make use of the available data

efficiently. Data augmentation and class balancing methods have been employed in 14 studies of

the 41 we analyzed, with one work that investigated without specifying the strategy. Amplifying

original signal, white noise, and changing pitch and speed in [19] reported an improvement of

almost 10% in all metrics. The novel Informative undersampling with Information Value in [86]

for balancing training data reported a significant difference of 38% in the ROC-AUC metric, as

well as other evaluation metrics. SMOTE has been used in [25, 92], to create synthetic samples

from minority class, it has shown a performance boosting for various classifiers in Strategy 1 vs.

Strategy 2 [25], it has been noticed that SMOTE had an impact on almost all classifiers’ sensitivity,

2https://github.com/auDeep/auDeep
3https://github.com/DeepSpectrum/DeepSpectrum

77



CHAPTER 3. LITERATURE REVIEW

which has been improved from 62% to 77% for Random Forest, in [92], several variants of SMOTE

has been implemented, however, the best results are still obtained using the standard version.

Adaptive Synthetic (ADASYN) oversampling, which is an improved version of SMOTE and works

by employing a density distribution as a criterion to determine the number of synthetic samples

to be generated for each minority sample, has been used to balance Virufy dataset in [118].

Time stretching, followed by two phases of pitch shifting, compression of the range dynamically,

and adding background noise in the form of several types of audio scenes, have been applied

sequentially to generate new audio samples [71]. SpecAugment has been used in one work [47],

and shown a promising boost of the ROC-AUC from 70.81% to 76.81% in DiCOVA blind data. In

[99], DiCOVA challenging has been used for training, and due to the limited number of COVID-19

samples (50), it has been upsampled with 400 samples from COUGHVID data, additionally,

Audio mix-up technique has been also used to generate more training samples by randomly mix

a pair of samples with a specific parameter ∏ which ensure the convex combination between the

pair. It was mentioned that the employed data augmentation strategy has highly contributed

to the model’s performance. Pitch shifting and background white noise have been applied in

[72, 130] with an additional time shifting in [72]. In [77], five augmentation techniques have been

applied, time stretching, pitch shifting, time shifting, trimming, and gaining, where the CNN

model showed a high boosting in terms of ROC-AUC, from 72.33% to 87.07%. Another method has

been introduced to enrich the training set in [84], which is the segmentation of cough recordings

into non-overlapping coughs, this ensured an additional number of samples. Weighted BCE

loss function has been used in [26] to handle class imbalance problem. Lastly, time stretching

and pitch shifting have been implemented in [9] and show a high-performance boosting of all

evaluation metrics, where LSTM model achieved 95.1% instead of 88.83%. Table 3.6 provides a

comparison of results with and without data augmentation or class balancing for the works that

have reported both findings. This comparison will help to understand the effectiveness of these

techniques in enhancing the performance of models for COVID-19 diagnosis from cough sounds.

3.5 Identified limitations

In this literature review, several limitations have been identified that impact the development

and performance of COVID-19 diagnosis systems from cough sounds. One significant challenge

is the collection of high-quality cough data, which is crucial for creating reliable and accurate

diagnostic models. Additionally, a majority of the studies (26 out of 40) lack sufficient COVID-19

samples and do not employ data augmentation and class balancing strategies, which can impact

the generalizability of the findings. Furthermore, it is worth noting that a common limitation

observed in many studies is the utilization of small datasets, which may limit the robustness and

generalizability of the developed models [55, 77, 132, 134]. Another concern is the inadequate

consideration of the sensitivity metric, particularly in binary classification-based works (positive
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Table 3.6: Comparative results with and without data augmentation or class balancing

Work
Not augmented and not balanced Augmented or balanced

Acc Rec Prec AUC Acc Rec Prec AUC

[19] - 0.82 0.80 0.72 - 0.90 0.70 0.87
[86] 0.98 - - 0.46 0.97 - - 0.84
[25] 0.85 0.62 0.90 0.81 0.84 0.77 0.75 0.84
[118] - - - - 0.958 0.931 0.986 0.932
[71] - - - - 0.95 - - -
[47] - - - 0.7081 - - - 0.7681
[99] - - - - - - - 0.8223
[130] - - - - 0.904 - - -
[72] - - - - - - - 0.70
[77] - - - 0.7233 - - - 0.8707
[84] - - - - - 0.71 0.80 0.77
[92] - - - - - 0.91 - 0.938
[26] - - - - - - - 0.846
[9] 0.8883 0.9065 0.8752 - 0.951 0.955 0.9453 -

and negative COVID-19 cases). Sensitivity is an important metric in medical diagnosis, especially

for a condition like COVID-19, yet it has often been overlooked in the existing literature, with only

81.2% in [135], 73.24% in [147], 80.49% in [99] and 71% in [84]. Moreover, the use of pre-trained

models with only small fine-tuned parts of the network may not be sufficient to adapt to the

specific task of COVID-19 diagnosis from cough sounds [8, 32, 72, 100]. On the other hand,

training and inferencing deep models from scratch can lead to high computational costs, which

may be a limiting factor for some research applications [47, 71, 147], though this limitation has

been addressed in [67] by suggesting a light-weight CNN, it should have more focus and attention.

Addressing these limitations in future research will be crucial for the development of more fast,

reliable, and efficient COVID-19 diagnostic systems based on cough sounds.

3.6 Statistical summary of the literature review

In this section, we present a visual summary of the related literature through a set of histograms.

The first histogram depicts the growth in the number of the collected papers on COVID-19

diagnosis from sound data, starting from 2020. To provide a more detailed overview of the field,

two additional subfigures are included. The first subfigure illustrates the distribution of studies

based on their methodology, categorizing them into ML-based, DL-based, and comparative studies

between ML and DL approaches. The second subfigure focuses on the data augmentation and

class balancing techniques employed in these studies, showcasing the number of papers that
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utilized Synthetic-based methods, Signal-based augmentation, Spectral-based augmentation, and

other strategies. These visualizations offer a comprehensive snapshot of the current state and

trends in the research on COVID-19 diagnosis from sound data. Figure 3.2 shows the distribution

of published papers over the years, while Figure 3.3 presents the distribution over category, and

data augmentation or class balancing strategy.
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Figure 3.2: Number of published papers, related to COVID-19 diagnosis from respiratory sound
and more specifically, cough, per year starting from 2020 until 2023, including the number of
excluded which were excluded from the review.
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Figure 3.3: (a) Number of published papers per category, ML-based, DL-based, and compar-
ative studies between ML and DL; (b) Number of papers per data augmentation and class
balancing type, including synthetic-based methods, signal-based augmentation, spectral-based
augmentation, and others.
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3.7 Conclusion and proposed approaches

In this comparative study, we have analyzed the performance and characteristics of various

methodologies used in COVID-19 diagnosis from cough sound. We have focused on ML and DL

models, data augmentation strategies, feature extraction and selection methods, and performance

metrics. We observed that DL models, such as CNN and LSTM, generally outperform ML models

in COVID-19 diagnosis tasks. However, ML algorithms can still achieve competitive results when

combined with powerful feature extraction, feature selection, and data augmentation steps. The

effectiveness of these techniques can be limited by factors such as manual feature extraction

and the need for domain knowledge. Regarding feature extraction and selection methods, we

found that extracting informative and discriminative features is crucial for building effective

ML and DL models. While handcrafted feature extraction methods can be time-consuming and

resource-intensive, automatic feature extraction methods using DL architectures can learn to

extract relevant features directly from the time-frequency representation of audio data. Data

augmentation and class balancing strategies are essential for addressing the limited availability

of cough data, especially the COVID-19-positive ones. Several techniques have been employed

in the studies we analyzed, including SpecAugment, time stretching, white noise, and changing

pitch and speed, for data augmentation, while using SMOTE and ADASYN and employing novel

approaches like Informative undersampling with Information Value for class balancing.

In the upcoming chapters, we will introduce our novel approaches to COVID-19 diagnosis from

cough sounds, leveraging both DL and ML techniques. Chapter 4 will discuss our DL approach,

which involves a Hybrid CNN-LSTM architecture with Attention mechanism, combined with

SpecAugment data augmentation technique to improve performance. In Chapter 5, we will

present three distinct ML approaches: 1) Use of Random Forest and Low-Level Descriptors, 2)

Random Forest and Stacked Autoencoders, and 3) Enhanced dimensionality reduction with LLE

and Random Forest. These methodologies aim to provide an accurate and efficient diagnosis

while addressing several of the aforementioned limitations. Firstly, we tackle the issue of the

lack of positive COVID-19 samples by investigating the use of different data augmentation and

class balancing techniques. This approach aims to create more variability in the dataset and

enhance the generalization of our DL and ML models. Additionally, we utilize a larger dataset

compared to the majority of existing works, which contributes to the robustness and reliability of

our findings. Moreover, we propose fast and efficient ML-based diagnosis systems that do not rely

solely on complex DL methods, ensuring easy and fast deployment. Finally, we specifically focus

on improving the sensitivity metric, recognizing its significance in medical diagnosis, particularly

for COVID-19. By addressing these limitations, our research offers valuable contributions to the

development of more effective and reliable COVID-19 diagnostic systems based on cough sounds.
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HYBRID CNN-LSTM WITH ATTENTION-MECHANISM

ARCHITECTURE AND SPECAUGMENT FOR COVID-19 DIAGNOSIS

FROM COUGH SOUND

4.1 Introduction

T
he state-of-the-art presented in the literature review has provided a strong motivation

to investigate novel and more effective approaches for diagnosing COVID-19 from cough

sounds. In this chapter, we present an innovative approach based on a hybrid architecture

that combines the strengths of CNNs and LSTMs with an attention mechanism. This methodology

is inspired and motivated by several works discussed in the literature review, including the use

of CNNs [55, 67, 77], LSTMs [9, 47, 49, 105], various attention mechanisms [94, 100, 140, 147],

hybridization of different methods [4, 29, 47, 140], and spectral data augmentation [47]. Our

approach aims to propose a novel framework that uses signal-based and spectral-based data

augmentation to address the lack of positive samples in COUGHVID dataset compared to negative

ones and improve the accuracy and reliability of COVID-19 diagnosis using cough sounds using a

hybrid DL method. This chapter is a revised and extended version of the methodology presented

in our published paper [45]. The subsequent sections cover various aspects of the methodology,

including data preprocessing, data augmentation techniques, and the whole pipeline, from data

cleaning to attention-based hybrid CNN-LSTM architecture. We also discuss the experimental

design, results, and analysis, as well as the potential limitations and future directions of our

approach. By leveraging the complementary strengths of CNNs and LSTMs, along with the

attention mechanism, our method seeks to provide a robust and efficient solution for diagnosing

COVID-19 from cough sounds, potentially contributing to early detection and more effective

management of the pandemic.
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4.2 Materials and methods

Figure 4.1 illustrates an overview of the proposed framework which led to building a model for

diagnosing COVID-19 using cough sound data. The framework consists of several interconnected

components. Initially, COUGHVID audio dataset recordings undergo a pre-processing phase to

ensure the data is clean and prepared for subsequent steps. Following this, two levels of data

augmentation are applied to both the audio signal and spectral data, which serve to expand the

training set and address the issue of class imbalance. The resulting Mel spectrogram features

are then input into a novel attention-based hybrid CNN-LSTM model, which generates binary

classification outputs. The model’s performance is assessed using 10-fold cross-validation, during

which, Accuracy, Precision, Recall, F1-score, and ROC-AUC evaluation metrics are calculated at

each epoch to evaluate the classification performance.

Figure 4.1: Overview of the proposed framework.

The steps mentioned in Figure 4.1 will be described in detail starting from the next section.

4.2.1 Dataset description

Briefly, as mentioned in Section 3.2, we used COUGHVID crowdsourcing dataset [91] from

Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. This largest publicly available

dataset consists of 27550 audio recordings including 1155 positive cases, collected through a

web application from April 1st, 2020 to December 1st, 2020. The recordings are encoded in
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Opus format, with a 48kHz sampling rate. The dataset includes metadata such as age, gender,

geolocation, previous respiratory conditions, and COVID-19 status, which is categorized into

three classes: Healthy, COVID-19, and Symptomatic. The dataset has also been annotated by

physician experts for various items including cough quality, dyspnea, wheezing, stridor, choking,

and nasal congestion. Further details on the dataset will be presented in the next sections as we

discuss the preprocessing steps.

4.2.2 Data cleaning and preparation

4.2.2.1 No COVID-19 status omission

It is important to note that COUGHVID dataset includes data with both known (Healthy,

Symptomatic, and COVID-19) and unknown COVID-19 status. However, since our study is

focusing on a supervised task, we have excluded all samples without COVID-19 status (i.e., no

status provided) from our analysis. This resulted in the removal of 11326 samples from the

dataset. The new total number of recordings becomes 16224.

4.2.2.2 Data formatting and silence removal

In this step, first, we converted the dataset recordings’ webm format to wav format to fulfill our

software requirements. We used Python library soundfile for this conversion. The conversion

process was carried out by first reading each webm file using Librosa library and then writing

the audio file to wav format using soundfile library. Wav files have been downsampled to 22 kHz

to reduce complexity. This step resulted in the creation of a new directory containing the wav files

with the same filename as the corresponding webm files. Next, in the silence removal step, we

aimed to remove the silence regions from the recordings to ensure that our model would not learn

from silence, and only learn from the informative regions. To achieve this, we used the Python

library Unsilence, which is an open-source library for detecting and removing silence regions

from audio files. The library works by first detecting the silent regions using a set of thresholds

and then removing them by interpolating the signal in the region. We applied the library to all

the recordings in the dataset, resulting in new files that only contained the informative regions of

the cough sounds. We used the default parameters of Unsilence were a minimum duration of the

silence of 0.25 seconds, a threshold of -60 dB, and a minimum non-silent length of 0.1 seconds.

During the silence removal step, we found that 142 recordings in the COUGHVID dataset had

zero duration after removing the silent regions. These recordings were considered as empty and

were removed from the dataset. Table 4.1 shows the new class label distribution after applying

the silence removal step with the total duration in hours, and Figure 4.2 shows an example of the

removed regions from an audio recording.
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Table 4.1: COVID-19 status label distribution over the three statues Healthy, COVID-19, and
Symptomatic after removing No-COVID-19 status and empty signals during silence removal step

Healthy Symptomatic COVID-19 Total

Samples 12377 2567 1138 16082

Duration (h) 14.26 3.01 1.44 18.71

Figure 4.2: Example of the applied silence removal from an audio signal

After applying the silence removal step to the audio samples, we took a small set of samples and

manually listened to them to check if any important hearable patterns were preserved. This was

done to ensure that the silence removal step did not remove any important audio signals. Out of

the 100 samples that were manually checked, we did not find any instances where the silence

removal step removed any important audio signals.

4.2.2.3 Cough detection analysis

Each recording has a corresponding cough_detected entry in the metadata, the original study

[91] provides the probability that the sound captured in the recording is a cough, under this

entry. XGBoost was trained on 68 Prosodic, Spectral, and Cepstral features while a nested

Cross-Validation procedure has been used to evaluate a cough classification model based on

these audio features. The dataset has been partitioned into 10 equal segments, known as the

"outer CV folds", and performed a separate Cross-Validation procedure on each fold to optimize

the hyperparameters of the XGBoost model. The optimized XGBoost model was then tested on

the testing data of its respective outer fold. In the model development, 22% of the recordings

were randomly selected for assessing the generalization capabilities of their model to unseen

test participants where the remaining 78% of the data was used to train the final XGBoost

classifier and determine a final set of hyperparameters using a 5-fold random permutation-based

ShuffleSplit Cross-Validation. According to their report, samples confirmed by experts to contain
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coughs have a cough_detected value of 1.0, while samples noted by experts to not contain coughs

have a cough_detected value of 0. Finally, the performance of the model has averaged across the 10

outer Cross-Validation folds. XGBoost model achieved a mean ROC-AUC of 96.4% and a standard

deviation of only 3.3%, indicating that the model performed well and showed little variance

among different testing groups, which yielded to recommending the threshold value of 0.8 to

decide whether a recording is containing a cough or non-cough for COUGHVID dataset users.

However, we wanted to investigate the impact of choosing different cough detection threshold

probabilities on the performance of our model. We thus tested our model’s performance using

different threshold probabilities ranging from 0.6 to 0.9. Through our extensive experiments,

we found that setting the cough detection threshold probability to 0.7 resulted in the best

performance. Table 4.2 shows the new class distribution after omitting all recordings which have

a cough_detected probability threshold under 0.7.

Table 4.2: COVID-19 status label distribution over the three statues Healthy, COVID-19, and
Symptomatic after omitting the recordings with cough_detected value under 0.7

Healthy Symptomatic COVID-19 Total

Samples 8958 (77.06%) 1935 (16.65%) 731 (6.29%) 11624 (100%)

Duration (h) 9.92 2.10 0,9082 12.92

4.2.2.4 Conversion to binary classification problem

One of the key challenges in using COUGHVID dataset for COVID-19 detection is the significant

class imbalance which is shown in Table 4.2, with only 731 positive COVID-19 cases compared

to 8958 non-COVID-19 cases (6.29% of the dataset). To address this issue, we opted to combine

the positive COVID-19 cases with the symptomatic cases under a single class, namely Likely-

COVID-19. This decision was based on the understanding that symptomatic patients with a

cough could potentially have COVID-19, and grouping them together under the same class

could help boost the number of positive cases in the dataset. The remaining cases were labeled

as Non-Likely-COVID-19 or healthy cases. This way, the multi-class classification scheme was

converted into a binary classification scheme. This approach has been adopted as the initial step

to address the dataset’s skew, and further issue handling will be performed by the upcoming data

augmentation pipeline detailed in Section 4.2.5. Table 4.3 shows the new class labeling with their

sample count and the total number of hours.
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Table 4.3: The new classes namely Likely-COVID-19 and Non-Likely-COVID-19 after combining
Positive COVID-19 and Symptomatic classes

Non-Likely-COVID-19 Likely-COVID-19 Total

Samples 8958 (77.06%) 2666 (22.94%) 11624 (100%)

Duration (h) 9.92 3.0 12.92

4.2.3 Mel-Spectrogram computation

Audio time-frequency representation has shown an effective way to extract discriminative features

from audio signals using DL architectures. One of the most common representations is the Mel-

spectrogram (see Section 2.7.2.1) which has shown promising performance using DL approaches

[8, 29, 32, 55]. It converts the time-domain signal into a frequency-domain representation, where

the frequency spectrum is divided into equally spaced frequency bins according to the Mel

scale. Due to its ability to capture important acoustic features of the signal, such as formants,

harmonics, and timbre, in this study, we adopted the mel-spectrogram as the input for our DL

models to capture the most salient cough-related features. Computing Mel-spectrograms involves

several parameters, including window size n_ f tt, hop_length, and the number of Mel-frequency

bins n_mels. These parameters have a significant impact on the resulting mel-spectrograms and

can significantly affect the performance of any subsequent ML or DL models. In order to carefully

choose the best parameters, we made use of GridSearch which yielded the best set of parameters.

The details of the implemented setup and GridSearch will be detailed in the upcoming sections.

We show in Figure 4.3 original audio signals with their corresponding computed Mel-spectrogram

for two Likely-COVID-19 cases and two Non-Likely-COVID-19 cases, where several observations

were made. The mel-spectrograms for both healthy cases (1 and 2) showed a similar magnitude

distribution, with regions H11, H12, H13, H14, H15, and H16 displaying a similar concentration

of magnitudes from 0 Hz to 2048 Hz. The same trend was observed for regions H21, H22, and H23.

Additionally, the cough segments in the healthy cases shared a consistent magnitude distribution

for each 0.5-second period. On the other hand, the COVID-19 cases (1 and 2) showed a different

magnitude distribution in their mel-spectrograms. Regions C11, C12, and C13, as well as regions

C21 and C22, showed a concentration of magnitudes below 1024 Hz. Moreover, it was observed

that the magnitude of cough segments in Likely-COVID-19 cases did not follow a consistent

distribution over time, as seen in the Non-Likely-COVID-19 mel-spectrograms. Specifically, in

regions C11 and C21, it can be noted that the magnitude decreased over time, unlike Non-Likely-

COVID-19 cases where the selected regions shared almost the same magnitude distribution.

Overall, by observing the magnitudes concentration in specific regions of the mel-spectrograms,

we shall note that the latter may carry on several hidden and complex features for both Non-
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Likely-COVID-19 and Likely-COVID-19 classes, which can be detectable by our DL model. It is

also important to note that the identified regions of interest in the Mel-spectrograms may be

influenced by non-cough or background noise patterns, and it is possible that other patterns

relevant to the classification task may exist as well.
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Figure 4.3: Audio waveform and corresponding mel-spectrogram for two Non-Likely-COVID-19

cases (1 and 2) and two Likely-COVID-19 cases (1 and 2), with each region of interest labeled
H11, H12, H13, H14, H15, and H16 for Non-Likely-COVID-19 case (1); H21, H22, and H23 for
Non-Likely-COVID-19 case (2); C11, C12, and C13 for Likely-COVID-19 case (1); and C21 and C22
for Likely-COVID-19 case (2). The x-axis represents time in seconds, while the y-axis represents
frequency in Hz. The color scale indicates the magnitude in dB
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4.2.4 Input size standardization

In order to ensure that our DL models can achieve accurate and reliable results, it is important

to standardize the inputs to a fixed size. This is because DL models require inputs of a fixed size,

and if the inputs are not standardized, the models may produce inconsistent results. To achieve

this standardization, we resized all recordings in our dataset to a standard length of 156027

(7.07 seconds), which was obtained by computing the mean length of all recordings. Samples

with a duration longer than 7.07 seconds were truncated, while those with a duration shorter

than 7.07 seconds were padded with zeros at the beginning and the end with equal amounts. By

standardizing the inputs in this way, we can ensure that all recordings have the same length

and format, which will allow us to train and evaluate our models more effectively. Figure 4.4

shows an illustration of zero-padding and truncating an audio signal with the corresponding

mel-spectrogram.

Figure 4.4: An example of two audio signals, the first with length 58275 (2.64s) which has been
zero-padded to 7.07s, and the second with a length of 200407 (9.08s) which has been truncated to
7.07s

4.2.5 Two-level data augmentation

As we have seen, COUGHVID dataset is imbalanced, even after combining COVID-19 and

Symptomatic. To address this issue, we proposed two levels of data augmentation to increase

the size of the dataset and add more variability in terms of Likely-COVID-19 cases. By applying

these augmentation techniques, we can create additional cases and improve the generalization

capability of our classification model. In the next subsections, we explore the two levels of data

augmentation. The first level is performed directly on the original audio signal, and we utilized

for that, pitch shifting, whereas the second involves using SpecAugment technique to augment

the pre-computed mel-spectrogram.
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4.2.5.1 Signal-based data augmentation: Pitch shifting

Pitch shifting technique (see Section 2.9.2), has been widely used in the literature (see Table 3.3,

3.4, and 3.5), and has shown a significant impact in boosting ML and DL models (see Section 3.4.3).

We utilized Librosa Python library for audio processing and analysis to implement pitch shifting.

Specifically, we applied this method to the Likely-COVID-19 class in order to increase the

number of samples in the minority class. The augmentation involved shifting the pitch of audio

samples down by four semitones (n_step =°4) to generate new samples. n_step was carefully

chosen through a manual review process where two independent listeners examined most of

the augmented recordings to ensure that vocal features were not affected by pitch-shifting. By

incorporating this level of data augmentation, we can add more variability to the dataset and

increase the number of Likely-COVID-19 cases. Figure 4.5 shows the pitch shifting of a Likely-

COVID-19 audio signal with the corresponding mel-spectrogram before and after applying pitch

shifting. In addition to the manual review process of the augmented recordings, we highlight

some regions of interest in both the original and pitch-shifted corresponding mel-spectrogram, in

which, we can observe that almost all patterns are preserved in the pitch-shifted version.

Figure 4.5: Utilizing pitch shifting technique with n_step = °4 on a Likely-COVID-19 audio
signal with the corresponding mel-spectrogram (original and augmented) with a highlight of the
high magnitude regions.

4.2.5.2 Spectral-based data augmentation: SpecAugment

The proposed SpecAugment technique is applied as the second level of data augmentation to

increase the number of Likely-COVID-19 samples in the dataset. This method was inspired
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by the significant improvement of accuracy achieved by the application of SpecAugment in the

DiCOVA challenge (see Section 3.4.3). SpecAugment consists of three-step augmentation method,

the first step involves Time warping, where a random point along the horizontal axis passing

through the center of the mel-spectrogram is warped to the left or right by a distance selected

from a uniform distribution ranging from 0 to the time warp parameter W. In the second step,

Frequency masking is employed to mask consecutive mel frequency channels [ f0, f0 + fr), where

fr is selected from a uniform distribution ranging from 0 to the frequency mask parameter F,

and where f0 is selected in [0,∫- fr) (∫ represents the number of mel frequency channels). Finally,

Time masking is applied in the third step to mask successive time steps [t0, t0 + tr), where tr

is taken from a uniform distribution ranging from 0 to the time mask parameter T, and t0 is

chosen from [0,ø-t), where ø represents the number of timesteps of the mel-spectrogram. The

mentioned steps are applied sequentially to obtain an augmented mel-spectrogram, however,

they can be applied independently or in combination. In this study, we used a combination of

Frequency masking and Time masking with masking parameters F = 30 and T = 30, respectively.

Generating more samples for the minority class (Likely-COVID-19) can help to improve the

model’s ability to recognize and differentiate the positive cases from the healthy cases. With

this respect, we used a combination of time and frequency masking to generate two new mel-

spectrograms for the Likely-COVID-19 class. By generating two samples, we aim to increase the

variability and diversity of the augmented data for this class, which can help the model to learn

more robust features and improve its generalization ability. On the other hand, we generated only

one sample for the Non-Likely-COVID-19 class to ensure diversity, also in the augmented data.

The combination of time masking and frequency masking allows for a more diverse and effective

augmentation of the mel-spectrograms. Time masking is useful for introducing variability in the

time domain, allowing the model to learn more robust features and relationships in the time

series. On the other hand, frequency masking helps to introduce variability in the frequency

domain, which is particularly useful for handling variations in the spectral characteristics of the

audio signals. By combining both time-masking and frequency masking, we can introduce more

comprehensive and diverse forms of augmentation, thereby improving the overall performance of

our DL model. Additionally, the use of both techniques helps in mitigating overfitting. Figures 4.6

and 4.7 show samples of the augmented mel-spectrograms for both classes using spectral data

augmentation SpecAugment.

4.2.6 Attention-based Hybrid CNN-LSTM Architecture

The attention-based hybrid CNN-LSTM architecture for COVID-19 diagnosis is presented in

Figure 4.8. This architecture comprises four blocks. The first block adopts a CNN architecture that

takes in augmented mel-spectrograms as input with a dimension of (39£88£3). The convolution

layers in this block extract the most informative and relevant features using different filters. In

the second block, LSTM, the resulting feature maps from CNN block are forwarded to an LSTM
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Figure 4.6: Illustration of SpecAugment for a Non-Likely-COVID-19 sample, a new mel-
spectrogram is generated by combining Frequency-masking and Time-masking, for each mel-
spectrogram in the dataset.

Figure 4.7: Illustration of SpecAugment for a Likely-COVID-19 sample, two new mel-
spectrograms are generated by combining Frequency-masking and Time-masking, for each
mel-spectrogram in the dataset.

layer. Here, deep features that have high temporal correlation are selected to be passed on to

the third block which is the attention layer for capturing more useful patterns. The last block

consists of a simple fully connected layer for feature learning and classification. The proposed

network architecture is detailed in Table 4.4, in terms of layer type, parameters, and output size.

The following subsections will describe the details of each block.

4.2.6.1 CNN

The CNN block of our proposed architecture consists of four convolutional layers, each having 16,

32, 64, and 128 filters respectively, and a kernel size of (2£2). We follow each convolution layer

with an Average Pooling layer, which is used to downsample the feature maps by linking them to

a window of pre-fixed dimensions and a defined step unit called stride. Our pooling window has a

94



4.2. MATERIALS AND METHODS

Figure 4.8: Block diagram of our proposed Attention-based hybrid CNN-LSTM architecture

size of (2£2) and a stride of size (1£1). To increase the non-linearity of the feature maps, we use

ReLU activation function f (x)= max(0, x) which has been shown to be effective with CNNs. We

further improve the model training process and speed up convergence by using BN to normalize

the activations, and Dropout to avoid overfitting and improve generalization.

4.2.6.2 LSTM

LSTM layer is a crucial component in our proposed architecture. It consists of three gates: input

gate, forget gate, and output gate. The input gate decides which new information will be stored in

the cell state, and the forget gate determines what information to discard from the previous cell

state. The output gate decides what the final output will be. In our implementation, the input

tensor has a shape of (31, 10240) which is the feature maps extracted by CNN block. Specifically,

the output of the last pooling layer AveragePool2D_4 in the CNN block is reshaped after passing

by BN and dropout, and then, fed as input to LSTM layer which processes the temporal sequence

of feature maps by incorporating information from previous time steps and capture relevant

patterns over time using the above-mentioned gates. One LSTM layer with 256 units has been

used, which is activated by TanH, followed by BN and dropout layers to prevent overfitting.

4.2.6.3 Incorporating additive attention mechanism

In order to improve the accuracy of our hybrid CNN-LSTM diagnosis model, we incorporated an

additive attention mechanism which has been investigated in Section 2.5.5. Generally, attention

mechanism is responsible for selectively focusing on the most important and informative parts

of the decoder’s output, LSTM hidden states, in our case. Our simple additive attention layer

is composed of three phases, starting with the scores alignment phase where the hidden states

Ht are passed through a trainable weight matrix defined by Watt and bias batt, and then passed

through a TanH activation function to compute the scores St. The next phase involves computing

the attention weights Æt using Softmax function. Finally, the context vector, or what we named

attention vector is calculated as a weighted sum of all hidden states, where each weight Æt

is multiplied by its corresponding hidden state ht. The output of the attention layer is then
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Table 4.4: The proposed network architecture in terms of layer, output size. Each block (CNN,
LSTM, Attention and Full connection) is surrounded by horizontal lines.

# Layer Details Output size

1 Input Mel-spectrogram (39£88£3) -
2 Conv2D_1 16 filters of size (2£2), stride (1£1) (38,87,16)
3 AveragePool2D_1 Window size (2£2), stride (1£1) (37,86,16)
4 BN_1 + ReLU_1 - (37,86,16)
5 Dropout_1 0.2 (37,86,16)
6 Conv2D_2 32 filters of size (2£2), stride (1£1) (36,85,32)
7 AveragePool2D_2 Window size (2£2), stride (1£1) (35,84,32)
8 BN_2 + ReLU_2 - (35,84,32)
9 Dropout_2 0.2 (35,84,32)
10 Conv2D_3 64 filters of size (2£2), stride (1£1) (34,83,64)
11 AveragePool2D_3 Window size (2£2), stride (1£1) (33,82,64)
12 BN_3 + ReLU_3 - (33,82,64)
13 Dropout_3 0.2 (33,82,64)
14 Conv2D_4 128 filters of size (2£2), stride (1£1) (32,81,128)
15 AveragePool2D_4 Window size (2£2), stride (1£1) (31,80,128)
16 BN_4 + ReLU_4 - (31,80,128)
17 Dropout_4 0.2 (31,80,128)
18 Reshape_1 Reshape into recurrent layer input (31,10240)

19 LSTM_1 256 units (31,256)
20 TanH_5 - (31,256)
21 BatchNorm_5 - (31,256)
22 Dropout_5 0.2 (31,256)

23 Attention_1 - 256
24 Flatten_1 - 256

25 Dense_1 100 units 100
26 ReLU_6 - 100
27 Dropout_5 0.5 100
28 Dense_2 1 unit 1
29 Sigmoid_7 - 1

Total number of parameters 10,820,440
Number of trainable parameters 10,819,448
Number of non-trainable parameters 992

forwarded to a fully connected layer with 100 units for further feature learning, activated by

ReLU function, and followed by dropout to prevent overfitting.
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4.2.7 Baselines

In order to evaluate the performance of our proposed attention-based hybrid CNN-LSTM archi-

tecture, we compared it against three baseline models. The baselines were chosen to represent

the main components of our proposed architecture: CNN, LSTM, and hybrid CNN-LSTM. By

comparing the performance of our proposed model against these baselines, we aim to demonstrate

the impact of each component on the overall performance of the model.

4.2.7.1 CNN architecture

CNN baseline architecture is composed of two convolutional layers with 16 filters. Each one

is followed by Average pooling layer and dropout layer to prevent overfitting. The model also

includes a fully connected layer with 32 units for feature learning and classification.

4.2.7.2 LSTM architecture

LSTM baseline model is composed of two LSTM layers, with the first layer having 128 units

and the second layer having 256 units. The first layer is followed by BN to accelerate the model

training process, while the second is followed by dropout to avoid overfitting. The model ends

with a fully connected layer with 256 units that perform feature learning and classification.

4.2.7.3 Hybrid CNN-LSTM architecture

Hybrid CNN-LSTM baseline is a combination of CNN and LSTM architectures. It includes four

convolutional layers with increasing filter sizes of 16, 32, 64, and 128 respectively, followed by

BN and dropout. After the convolutional block, the network includes a single LSTM layer with

256 units, also followed by BN and dropout. The output of the LSTM layer is then flattened and

passed to a fully connected layer with 100 units, which is followed by a dropout layer to prevent

overfitting. This architecture allows the model to learn both spatial and temporal features from

the input data, while also preventing overfitting by using dropout and benefiting from BN.

4.3 Experimental Design

In all of our experiments, we utilized Adamax optimizer [65], which is a variant of Adam’s

gradient descent algorithm that applies the maximum operation to the norm of the gradient.

This approach results in more effective optimization in certain cases. The output layer of our

model includes a single unit that is activated by Sigmoid function, producing a probability p of

belonging to Non-Likely-COVID-19 (class 0) or Likely-COVID-19 (class 1), as shown in Equation

4.1. To compute the loss function, we used BCE, defined by Equation 4.2, which is applied to

the scores generated by the Sigmoid activation function. Here, N denotes the total number of

predicted data points, yi represents the actual output, and ŷi is the predicted output.
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(4.1) y=

8

<

:

0 if p < 0.5

1 if p ∏ 0.5

(4.2) Loss =°
1
N

N
X

i=1
(yi log( ŷi)+ (1° yi) log(1° ŷi))

4.3.1 Hyper-parameters optimization

To optimize the performance of our deep learning architecture, we conducted a thorough hyper-

parameter tuning stage using GridSearch approach (see Algorithm 2). Our search spanned

over a variety of hyper-parameters including mel-spectrogram computation, the proposed data

augmentation pipeline, and classification model parameters. Specifically, we explored different

values for hop_length (number of samples between consecutive frames), n_mels (number of mel

frequency bands or the height of spectrogram), and n_ f tt (the size of the FFT, or window size) to

improve the quality of the input mel-spectrograms. In addition, we experimented with different

values of n_steps for pitch shifting method and two different values of masking parameters (T

and F) while applying SpecAugment for spectral data augmentation. Finally, we tested different

values of batch size and learning rate for the classification model architecture. The results of

our hyper-parameter tuning and selection process are summarized in Table 4.5. It is worth also

noting that the selection of other hyper-parameters, such as the number of hidden layers, units,

and dropout probability, was based on several rounds of manual fine-tuning processes.

Table 4.5: Mel-spectrogram computation, data augmentation and classification model architecture
hyper-parameters tuning

Tested values Best value

hop_length {128, 256, 512, 1024} 512
n_mels {64, 128, 256} 128
n_ftt {512, 1024, 2048, 4096} 512

n_steps {-1, -2, -3, -4, -5} -4
F (Frequency masking parameter) {30, 50} 30
T (Time masking parameter) {30, 50} 30

batch_size {64, 128, 256, 512, 1024} 256
learning_rate {1e-05,1e-04,1e-03,1e-02} 1e-03

4.3.2 Models training

In this study, all models, including both baselines and proposed model, were trained on Kag-

gle Notebook, which provides ample software and hardware resources for ML and DL tasks.
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Specifically, Kaggle Notebook offers 43 hours of GPU usage and 20 hours of TPU usage per

week, 19.6 GB of disk space, and 16 GB of memory. For better model performance validation, we

used Cross-validation, which involves training the classifier on K °1 folds of data and using the

remaining fold for validation and testing. This process was repeated K times, and the final result

was obtained by averaging the K experiments. In our study, we set K = 10. Before starting the

training process, we first split the whole dataset into two subsets: 80% for training and 20% for

testing. Then, in each fold, 10% of the training set was used for validation, while the remaining

90% was used for training. Each model was trained for 500 epochs. By using this method, we

ensured that the models were thoroughly trained and evaluated in a rigorous manner.

4.3.3 Performance evaluation

To evaluate the performance of our model and compare it with our baseline models, we computed

six metrics: Accuracy, which measures the ratio of correct predictions over the total number of

evaluated instances. Precision, which measures the ratio of correct predictions over the number

of positive samples. Sensitivity, which measures the ratio of true positive predictions over the

total number of positive samples. Specificity to measure the ratio of correctly classified negative

cases over the total number of negative samples. F1-score that combines sensitivity and precision

through harmonic mean, and finally, ROC-AUC which visualizes the tradeoff between true

positive rate (TPR) and false positive rate (FPR). A higher TPR and lower FPR lead to a higher

ROC-AUC score. In addition, it is important to use multiple metrics to ensure a comprehensive

assessment of the model’s performance. Each metric provides a unique perspective on the model’s

performance and limitations, and using multiple metrics can help identify areas for improvement.

For instance, if only classification accuracy is reported, a model with high accuracy may have low

sensitivity, indicating that it is correctly classifying negative samples but missing many positive

ones. In this case, reporting the sensitivity is crucial to indicate the weakness of the model.

4.4 Results and findings

In this section, we present the results of our experiments for baselines and our proposed model.

The metrics were computed by averaging the results obtained from 10-fold Cross-Validation,

using the same test set for all models to ensure a fair comparison. We report the average (avg)

and standard deviation (sd) of Cross-Validation avg ± sd for each metric.

4.4.1 Baselines

LSTM baseline model, achieved an average accuracy of 76.41%, a sensitivity of 73.19%, and a

ROC-AUC score of 76.26%, with a training time of two and a half hours. CNN baseline model,

achieved an average accuracy of 83.37%, a sensitivity of 76.97%, and a ROC-AUC score of 83.00%,

with a training time of three hours. Hybrid CNN-LSTM baseline model, which has the same
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proposed architecture without additive attention layer, achieved the best performance with an

average accuracy of 89.35%, an average sensitivity of 87.74%, and an average ROC-AUC of

89.28%, after 8 hours of training. Table 4.6 presents the Cross-Validation results of the three

baselines, Figure 4.9 shows accuracy and loss curves for CNN, LSTM, and Hybrid CNN-LSTM

baselines. 10-fold CV curves are plotted with discontinued lines, where the average is highlighted

with a thick line.

Table 4.6: Results of 10-fold cross-validation for the proposed baselines (LSTM only, CNN only,
and hybrid CNN-LSTM) using the aforementioned evaluation metrics.

Accuracy Sensitivity Precision Specificity F1 AUC-score

LSTM 76.41±0.88 73.19±2.02 75.89±1.41 79.34±0.98 74.48±0.85 76.26±0.87

CNN 83.37±2.07 76.97±4.78 86.31±2.16 89.04±2.47 81.27±2.79 83.00±2.17

CNN-LSTM 89.35±0.76 87.74±1.81 89.46±1.72 90.81±1.42 88.56±0.97 89.28±0.79

The performance of the baselines on the test set was evaluated to validate the obtained results.

The ROC curve for output probabilities is presented in Figure 4.10.

4.4.2 Proposed approach

To show the performance and robustness of our approach, we provide the Cross-Validation details

of our approach as well as the overall validation performance after 8 hours of training in Table 4.7.

The curves illustrated in Figure 4.11 shows the development of our model during the training

process in terms of accuracy, loss, sensitivity, and precision. A comparison between the proposed

approach and the baselines reveals an overall improvement in all evaluation metrics, particularly

in ROC-AUC and sensitivity scores. The complete comparison of the baselines with our developed

approach is displayed in Table 4.8. Moreover, we exhibit the corresponding ROC curves for

comparison, which clearly demonstrate the superiority of the proposed approach. We note that

for a testing set of 6783 samples, the inference time was 2.84 seconds which means only 0.4

millisecond per instance.

4.5 Analysis and interpretation

This study aimed to develop a fast and effective method for diagnosing COVID-19 using solely

cough sound recordings, with the goal of helping to limit the spread of the virus. The performance

of the proposed framework is presented in the previous section. After pre-processing and filtering

the original data by applying several steps including silence removal and multiclass classification

to binary classification, a data augmentation pipeline that was applied to address the class

imbalance problem, where there were 8958 negative samples versus only 2666 positive samples.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Accuracy and loss curves for baseline, (a) and (b) for accuracy and loss curves of CNN
model, (c) and (d) for LSTM, where (e) and (f) for hybrid CNN-LSTM

The main components of the DL architecture used in this study were LSTM, CNN, and hybrid

LSTM-CNN, which were used as baseline models for comparison. The results revealed that LSTM

alone did not perform well, and show a notable presence of overfitting issue in Figure 4.9 (c)

and (d) despite experimenting with different configurations, with an accuracy of only 77.75%

and a sensitivity of 72.88%. This led to the conclusion that LSTM alone is unable to extract

meaningful patterns from mel-spectrogram images and the model starts to overfit on the training

data without performing well on testing data.

On the other hand, CNN performed better than LSTM in correctly classifying Non-Likely-COVID-

19 samples, achieving 89.73% correct predictions among all negative samples in the test set.

Additionally, the sensitivity was improved from 72.88% achieved by LSTM to 81.53%, indicating
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(a) CNN baseline (b) LSTM baseline (c) Hybrid CNN-LSTM baseline

Figure 4.10: ROC curves of the three proposed baselines CNN, LSTM, and Hybrid CNN-LSTM
which were computed from the model’s output probabilities

Table 4.7: The result of each fold of the 10-fold Cross-Validation for the novel approach (Attention-
based Hybrid CNN-LSTM) in term of the above-mentioned evaluation metrics.

Accuracy Sensitivity Precision Specificity F1 AUC-score

Fold-1 91.41 91.77 89.51 91.11 90.63 91.44

Fold-2 90.93 91.05 90.08 90.81 90.56 90.93

Fold-3 91.78 90.12 91.54 93.14 90.82 91.63

Fold-4 91.41 89.59 91.84 93.00 90.70 91.30

Fold-5 90.96 89.79 91.26 92.05 90.52 90.92

Fold-6 91.33 89.03 91.90 93.30 90.44 91.16

Fold-7 92.03 89.04 93.50 94.63 91.21 91.83

Fold-8 91.59 91.48 91.06 91.69 91.27 91.59

Fold-9 90.01 89.71 89.36 90.28 89.54 89.99

Fold-10 91.99 91.28 91.92 92.65 91.60 91.96

avg±std 91.35±0.57 90.30±0.97 91.20±1.19 92.27±1.26 90.73±0.53 91.28±0.54

that CNN has a greater ability to extract spectral and magnitude distribution-related features

from mel-spectrogram images. The confusion matrices of both models are shown in Figure 4.13,

where LSTM misclassified 866 out of 3,221 positive cases and 635 out of 3,562 negative cases (a),

while CNN misclassified 595 positive samples and 366 negative cases (b).

To address the limitations of the baseline models, we thought about combining CNN-LSTM model

to extract the most important spatial and spectral feature maps using the CNN block, and then

passing the feature maps to the LSTM block where temporal correlations between features are

extracted. This hybrid approach boosted the classification accuracy from 85.83% (achieved by

CNN) to 88.44% and a sensitivity of 84.41%. From the confusion matrix in Figure 4.14 (a), we

can see that the best error rate of 7.92% was achieved for negative cases where only 282 samples

were misclassified. However, a total of 502 positive samples were misclassified.

As the need to build a diagnosis system with high sensitivity is crucial in medical cases, an

attention mechanism module was added to the deep extracted temporal features to capture

more informative patterns. This proposed approach achieved the best sensitivity rate of 90.93%
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(a) (b)

(c) (d)

Figure 4.11: (a) Accuracy, (b) loss, (c) sensitivity, and (d) precision curves for our novel proposed
approach Attention-based hybrid CNN-LSTM

Table 4.8: The performance in terms of the six evaluation metrics of our novel approach on the
unseen data compared to the proposed baselines A-CNN-LSTM refers to Attention-based Hybrid
CNN-LSTM

Accuracy Sensitivity Precision Specificity F1 AUC-score

LSTM 77.75 72.88 78.76 82.17 75.71 77.52
CNN 85.83 81.53 87.81 89.73 84.55 85.63
CNN-LSTM 88.44 84.41 90.64 92.09 87.41 88.25
A-CNN-LSTM 91.13 90.93 90.47 91.31 90.71 91.13

compared to the best baseline (hybrid CNN-LSTM with 84.41%), a classification accuracy of

91.13% and F1-score of 90.71%. The best testing results in terms of precision and specificity

(90.64% and 92.09%, respectively) were achieved by the hybrid CNN-LSTM without attention

mechanism. The confusion matrix in Figure 4.14 (b) shows that only 292 positive cases were

misclassified out of 3,221 positive testing samples.

The performance of the proposed approach with two-level data augmentation (Pitch shifting

and SpecAugment) has been compared to the performance of the same model with only pitch

shifting. Table 4.9 presents the comparison of the two scenarios, where results demonstrate

that the proposed two-level data augmentation significantly improves the performance of the
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(a) (b)

Figure 4.12: ROC curves of the baselines and our proposed approach. (a) displays the full ROC
curves, while (b) zooms in on the top-left corner to highlight the differences.

(a) (b)

Figure 4.13: Confusion matrices for the test set: (a) LSTM model and (b) CNN model

model in all evaluation metrics. Specifically, we denote a very low sensitivity of 48.55% for pitch

shifting only, which indicates that the model trained on only pitch shifting augmented data is

biased to correctly classify Non-Likely-COVID-19 with a specificity of 94.78% without focusing

on the model’s sensitivity. Moreover, without data augmentation, the model was biased towards

the positive class and achieved poor performance on the test set even with class weighting.

This highlights the importance of the proposed two-level data augmentation in addressing class

imbalance and improving the performance of the developed approach.

Table 4.9: The performance of our model with the proposed data augmentation (Pitch shifting
(P-S) and SpecAugment) against pitch shifting only

Accuracy Sensitivity Precision Specificity F1 AUC-score

P-S only 77.43 48.55 84.85 94.78 61.76 71.67
P-S + SpecAugment 91.13 90.93 90.47 91.31 90.71 91.13
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(a) (b)

Figure 4.14: Confusion matrices for the test set: (a) Hybrid CNN-LSTM model and (b) Proposed
Attention-based Hybrid CNN-LSTM model

In terms of overall performance, the best-performing classifier was the attention-based hybrid

CNN-LSTM, which was able to distinguish between Likely-COVID-19 and Non-Likely-COVID-19

coughs with an ROC-AUC score of 91.13% (95.5% when computing with output probabilities). This

comparison is illustrated in Figure 4.12 (b). Overall, these findings demonstrate the effectiveness

of the proposed approach in accurately diagnosing COVID-19 using cough sound recordings and

suggest the potential for this method to be used as a screening tool to help limit the spread of the

virus.

4.6 Limitations of the approach

Despite the promising obtained results with quick and easy model deployment, our model is also

prone to inherent weaknesses. In this section, we present the principal limitations of our work.

1. Robustness of Cough Symptom for Discrimination: The first limitation of the ap-

proach is related to the assumption that the cough training data is robust enough to

differentiate between COVID-19 and non-COVID-19 cases. This assumption can be ques-

tioned as some characteristics of COVID-19 cough samples may also exist in patients

with other diseases, as indicated in previous studies [128]. Moreover, the data preparation

phase only considered healthy versus COVID-19 patients, leaving other potential gaps

unexplored.

2. Non-balanced dataset: The class imbalance in the employed COUGHVID dataset repre-

sents a significant limitation to the proposed system. While the dataset contains more than

27,000 recordings, the number of positive cases is quite small compared to negative cases

(1155 vs 12479). As a result, the performance of the proposed system is affected despite the

employed data augmentation strategy.
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3. Impact of binary class transformation: The third limitation of our proposed approach

is related to the binary class transformation that was applied in this study. In order to

simplify the classification task and increase the number of possible positive cases, we

combined the Positive COVID-19 and Symptomatic classes into one single class. While this

approach may reduce the false negative rate, it inevitably results in a loss of information

and capacity to distinguish between COVID-19 and common symptoms. Therefore, the class

labeling of Likely-COVID-19 and Non-Likely-COVID-19 may not fully reflect the complexity

of the diagnostic process and may result in the misclassification of numerous cases.

4. Performance and sensitivity: Our proposed model achieved promising results in terms

of correctly classifying unseen data with an accuracy of over 91%. The model also demon-

strated a high level of sensitivity, surpassing previous studies [19, 84] that used different

datasets. However, the error rate for classifying positive cases as negative is 9.07%, which

is a critical type II error that demands further attention to deal with. Misclassification of

positive cases as negative may result in unisolated patients, leading to the further spread

of the virus.

4.7 Concluding notes

This chapter presents a COVID-19 diagnosis system based on cough sound recordings, utilizing a

DL-based architecture for classification. Our contribution lies in the use of the largest publicly

available cough dataset for COVID-19, COUGHVIG, and the implementation of two-level data

augmentation techniques to address class imbalance and variability issues. Specifically, we

applied signal data augmentation pitch shifting on positive class samples as in the first stage,

followed by the spectral data augmentation technique SpecAugment, which involved randomly

applying frequency and time masking on the mel-spectrograms. These approaches resulted in

the generation of two new samples for the positive class and one for the negative class, thereby

improving the performance of the model. We used hybrid CNN-LSTM and attention mechanism

module, with single CNN, LSTM, and hybrid CNN-LSTM used as baselines to demonstrate

the effectiveness of each part of our proposed architecture. Our best-performing model is the

Attention-based hybrid CNN-LSTM, which achieved an overall classification accuracy of 91.13%

and a sensitivity of 90.93%, outperforming the three baselines. The ability of our model to

discriminate and distinguish between Likely-COVID-19 and Non-Likely-COVID-19 coughs is

highlighted by a ROC-AUC score of 0.9113 on the unseen data. Our contributions to the field

include the successful implementation of two-level data augmentation techniques to improve

classification performance, as well as the use of a simple additive attention mechanism module

to further performance enhancement. These advancements have important implications for the

development of fast and effective COVID-19 diagnosis systems based on cough sound recordings,

which have the potential to limit virus spread. In the next chapter, we will explore new approaches
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for COVID-19 diagnosis from cough sound based on classical ML methods. We will investigate

the use of a different feature type, class balancing technique, and classification method to further

improve the performance of the diagnosis system. These approaches aim to build a simple and

low-cost ML-based diagnosis system as well as addressing the same limitations and challenges,

provide a comparative analysis of different approaches, and give a possible answer for our

research question about the ability of ML-based models to efficiently diagnose COVID-19 from

solely cough sound.
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5
MACHINE LEARNING APPROACHES BASED ON ENSEMBLE

LEARNING FOR COVID-19 DIAGNOSIS FROM COUGH SOUND

5.1 Introduction

A
fter a thorough investigation of a DL approach for COVID-19 diagnosis from cough sound

in the previous chapter, we now shift our focus toward classical ML methods. One of

our research questions is: "Can ML methods achieve comparable performance to DL

methods in developing accurate and efficient diagnosis systems for COVID-19 based on cough

sound data?" To answer this question, we explore the use of an ensemble learning method in

combination with LLD, Autoencoders, and LLE. In the most of related works, ML approaches

have shown great potential in diagnosing COVID-19 from cough sound. From the literature

review, we observe that classical ML methods have been widely used and achieved acceptable

and promising performance, specifically, in terms of sensitivity metric [19, 81, 128] even against

some DL techniques [134]. In this chapter, we will present our works that are based on the use of

an ensemble learning method for COVID-19 diagnosis from cough sound. Specifically, we will

discuss three proposed approaches: (1) The use of Random Forest and original LLD vector [44],

(2) Stacking Autoencoders for bottleneck-based feature extraction [137], and (3) Reducing LLD

feature vector dimensionality using LLE [136]. Our works are all based on the use of an ensemble

learning method, particularly Random Forest, and ComParE feature set. We were motivated to

investigate the use of classical ML methods based on the promising results reported by previous

works. This chapter is an extended version of the combination of our three works. The end of this

chapter will show a comparison between the three proposed approaches in terms of detecting

performance as well as time cost for training and inference.
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5.2 Data exploratory and feature engineering

5.2.1 Data preparation

In this chapter, the same data preparation process as the previous chapter has been followed and

applied to COUGHVID dataset. This includes the elimination of recordings without COVID-19

status, formatting the data, removing silence, and merging the classes COVID-19 and Symp-

tomatic into one single class to turn the problem into a binary classification problem. Additionally,

we did not filter recordings by cough_detected probability. This means that all recordings were

included in the training process, regardless of the probability of detecting a cough in order to help

increase the generalization of our models. Table 5.1 shows overall statistics about COUGHVID

dataset after applying the aforementioned steps.

Table 5.1: Overall statistics about COUGHVID dataset at this stage (No-status elimination,
Silence removal, and Multi-class to binary classification problem). Total length in hours, where
maximum, minimum, and mean in seconds.

Likely-COVID-19 Non-Likely-COVID-19

Samples count 3705 12377
Percentage 23.03% 76.97%
Total length 4.45 14.26
Minimum 0.51 0.49
Maximum 10.05 14.15
Mean ± sd 4.33 ± 2.19 4.14 ± 2.12

5.2.2 LLD ComParE 2016 feature set extraction

LLDs are a set of features that are used in audio signal processing, they capture basic properties of

the audio signal that can be relevant and useful for many applications such as speech recognition,

and audio classification tasks, in general. In simple words, LLDs refer to the set of features

that are extracted in a preprocessing step for further audio, or speech analysis task, such

as spectral roll-of, loudness, and temporal patterns. After providing an overview of LLD, the

focus of the rest of this section will be on the ComParE, specifically, ComParE_2016 feature

set, which is considered the largest and most commonly used LLD feature set. It refers to the

Interspeech 2016 Computational Paralinguistics Challenge [107]. However, this feature set has

been introduced and used in earlier works in the same challenge [106, 142]. Compared to other

smaller variants GeMAPSv01a, GeMAPSv01b, and eGeMAPSv01a, eGeMAPSv01b, eGeMAPSv02

which are available under the open source Python library openSMILE 1, these variants vary from

18 to 88 features, ComParE_2016 is considered the largest LLD feature set as it includes 6373 low-

1https://github.com/audeering/opensmile
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level features, they have been divided into three main groups: Energy-related LLD (4), Spectral-

related LLD (55), and Voicing-related LLD (6). Moreover, ComParE_2016 feature set includes

statistical functions that are applied to the LLD, ∆LLD (velocity), and ∆∆LLD (acceleration)

features, such as mean, standard deviation, linear regression slope, quadratic error, quadratic

regression a, percentile range from 1% to 99%, as well as 6% and 94% percentiles. These statistical

functions aim to extract more hidden patterns and statistically, explore the feature distribution,

yielding a total of 6373 features. Table 5.2 presents the list of the mentioned LLD. In our study,

we extracted this large feature set from the pre-processed cough recordings using OpenSMILE

library, which is a widely used tool for audio feature extraction. ComParE_2016 feature has been

investigated in the literature for COVID-19 diagnosis from cough sound like [117] in DiCOVA

challenge and other related tasks [116], and it has shown acceptable performance.

Table 5.2: ComParE feature set [106, 107, 142]

Group Features

Energy related LLD (4) - Sum of auditory spectrum (loudness)
- Sum of RASTA-style filtered auditory spectrum
- Zero-Crossing Rate
- RMS Energy
- F0 (SHS and viterbi smoothing)

Spectral-related LLD (55) - RASTA-style auditory spectrum, bands 1–26 (0–8 kHz)
- Spectral energy 250–650 Hz, 1 k–4 kHz
- Spectral roll off point 0.25, 0.50, 0.75, 0.90
- Spectral flux, centroid, entropy, slope
- Psychoacoustic sharpness, harmonicity
- Spectral variance, skewness, kurtosis

Voicing-related LLD (6) - Probability of voicing
- Log. HNR, Jitter (local, delta), Shimmer (local)

5.2.3 Exploratory Data Analysis

This analysis is an essential step to understand the dataset and the characteristics of the features

that can contribute to build an efficient classifier. In this study, we performed exploratory data

analysis to gain insights into the distribution of the LLD features extracted from COUGHVID

dataset recordings. Figure 5.1 presents box and whisker plot, showing the distribution of the

most six important features extracted using RFE with Random Forest estimator. These features

include RMSE, MFCCs, and Fundamental Frequency (F0). The plot indicates that there is not

much difference in the distribution of these features between the two classes. The boxes for both

classes are typically the same, with some outliers indicating a slight deviation from the typical

distribution. This suggests that these features may not be significant indicators of COVID-19
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status, and other features or combinations of features may be needed to accurately classify

COVID-19 cases.

Figure 5.1: Box and whisker plot of the six most important features extracted using RFE. No
significant differences between the two classes are observed, and multiple outliers are present.
This suggests the potential need to further data engineering investigation in the dataset to find a
discrimination between the two classes.

The presented box and whisker plot highlighted the need for further data exploration to better

understand the distribution of the data and the potential discriminative power of the extracted

features. This led us to perform a scatterplot matrix of the first three embeddings, illustrated

in Figure 5.2, which were obtained through LLE. The diagonal of the matrix shows the density

distribution of each embedding, we used Kernel Density Estimation (KDE), which facilitates

a more accurate depiction of the data by providing a smooth and continuous estimation of the

distribution. Despite the observed class overlapping, we observe also a trend of high density,

specifically for Non-Likely-COVID-19 class, which can present a possible class separability,

thus, the selected embeddings may able to capture meaningful differences between classes. This

observation supports the hypothesis that training our classifier on dimension-reduced data can

be more beneficial and can achieve better performance, as well as highlighting the importance of

dimensionality reduction in the effective feature selection, and eliminating redundancy. Hence,

by evaluating the performance achieved by our proposed approaches; bottleneck-feature-based

approach and LLE dimensionality reduction, we can obtain a comprehensive confirmation of our
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hypothesis.

Figure 5.2: Scatterplot matrix of the first three embeddings of LLE where diagonal shows the
distribution of embeddings values using KDE, illustrating a trend of high density for Non-Likely-
COVID-19 class

5.2.4 Class balancing by oversampling: SMOTE

As demonstrated in the previous chapter, our findings reveal that the model trained on an

imbalanced dataset exhibits low performance and bias towards the majority class. Similarly, as

the present work is based on the same dataset, we are still facing a class imbalance issue and

we need to address it before proceeding with the training of our classifier. We employ SMOTE

to balance the dataset by oversampling the minority class, by creating equality among the

classes. This approach has been used in the literature and demonstrated to be effective in similar

scenarios [25, 92]. SMOTE method begins by randomly selecting a minority class instance B

and searching for its k-nearest minority class neighbors. Then, a synthetic instance is created

by picking one of the k-nearest neighbors A at random and connecting A and B in the feature

space to construct a line segment. The new synthetic samples are made by convexly joining the

two chosen cases A and B, which leads to the generation of new synthetic minority samples
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where each one is defined by Ngen = A+ (A°B)§∏ where ∏ is a random number between 0 and

1 (see Section 2.9.1 and Algorithm 5). Figure 5.3 presents scatterplots of the first two principal

components (PC1 and PC2) of the data, one for the dataset before oversampling using SMOTE (a),

and the other after oversampling (b). The aim is to demonstrate that the distribution of the data

remains the same even after oversampling the minority class. The scatterplots are color-coded

according to the two classes, and we can observe that the color distributions are similar in both

plots. This suggests that the oversampling technique used in SMOTE has successfully created

synthetic samples that maintain the distribution of the original data, which can address the class

imbalance issue.

(a) (b)

Figure 5.3: Scatterplots of PC1 and PC2 before (a) and after (b) SMOTE to show similar data
distribution after oversampling the minority class

To further assess the effectiveness of SMOTE, we calculated the explained variance ratio for

the first ten principal components before and after oversampling. As shown in the scree plot in

Figure 5.4, there is a small difference in the explained variance ratio between the two cases (0.11

vs. 0.12 for the first component PC1). Although the difference is not significant, it suggests that

SMOTE has addressed the class imbalance issue while not significantly altering the original data

structure.
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Figure 5.4: Scree plot showing the explained variance ratio of the top 10 principal components
before and after oversampling the minority class using SMOTE

After providing a summary of data analysis and addressing the class imbalance issue, we move on

to the next stage of our analysis, where we explore different feature extraction and dimensionality

reduction techniques. Specifically, we consider three different approaches: first, forwarding the

full-length LLD feature vector to the classification model, extracting bottleneck-based features

using a stacked autoencoder, and reducing dimensionality using LLE. Random Forest (see

Section 2.4.4 and Algorithm 3) will be used in the three approaches. We focus on the sensitivity

metric, which is of utmost importance in our context, and compare the performance of these

approaches against each other as well as other ML-based algorithms.

5.3 Approach evaluation and validation

In order to ensure the reliability and generalizability of our models, we used 5-fold Cross-

Validation as a validation technique. This approach involves splitting the dataset into five

equal parts, where each part is used once for validation and the other four parts are used for

training. This process is repeated five times, ensuring that each part of the dataset is used

once for validation. To evaluate the performance of our models, the same evaluation metrics as

the previous chapter were used; accuracy, precision, sensitivity, F1-score, and specificity. These

metrics provide a comprehensive assessment of the model’s performance by measuring different

aspects of its classification ability, especially the ability to correctly identify true positives (Likely-

COVID-19 cases), which is considered the most important metric in our context. We shall note

that training and evaluating the three approaches have been done on a local machine, MacBook

Pro, MacOS 11.7.4, 2,3 GHz Quad-Core Intel Core i7, and 16 GB of memory, thus, all time-cost

performance have been computed based on the capacity of this hardware configuration.
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5.4 Full-length LLD feature vector

In this section, we present the model of the first approach which utilizes the full-length LLD

feature vector without any feature selection or dimensionality reduction technique. This approach

was named LLD-RF.

5.4.1 Methodology description and model training

The first approach consists of forwarding the full feature vector of size 6373 to a Random Forest

classifier. The model is as well, trained on COUGHVID dataset, which was preprocessed to

extract LLD features using OpenSMILE Python library. The preprocessing steps included data

formatting, resampling to 22kHz, silence removal, and finally, the class balancing with SMOTE

to address class imbalance issue. We then, trained our classifier using 5-fold Cross-Validation

after utilizing GridSearch to tune the hyperparameters of the classifier, where we focused on: the

number of trees (n_estimators), the use of the whole training set to build each tree (bootstrapping),

and the maximum number of features (max_features) to consider while conducting the best split.

We based on the default values provided by Scikit-learn2 of the rest of the parameters. Table 5.3

shows the tuned parameters and the selected values and Figure 5.5 presents a general overview

of the approach. The dataset was split into two parts: 80% for training and 20% for testing.

Table 5.3: Tuned hyper-paramaters for the first approach LLD-RF.
p

F presents the square root
of F which is the total number of features (6373)

Tested values Best value

n_estimators [200,1200] 200
bootstrapping {Used, Not used} Not used
max_features {F,

p
F }

p
F

Figure 5.5: Systematic overview of the LLD-RF approach

2https://scikit-learn.org
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5.4.2 Results and discussion

We present the achieved results of the 5-fold Cross-Validation which took about 34 minutes

of training, in terms of the aforementioned performance metrics, which uses the full-length

LLD feature vector. Table 5.4 summarizes the test results of our classifier on the 20% of data.

ROC curve, computed with predicted probabilities in Figure 5.7 (a) to summarize the test’s

overall diagnostic accuracy. Our model achieved a test ROC-AUC value of 0.9046 (0.952 using

output probabilities), indicating that it has more than a 90% chance of discriminating between

Likely-COVID-19 and Non-Likely-COVID-19 cases. The testing performance is illustrated as

confusion matrix in Figure 5.7 (b), where only 7 samples belonging to Non-Likely-COVID-19 are

misclassified. The model achieved more than 99% specificity for Non-Likely-COVID-19 cases,

while its sensitivity was only 81.21% for Likely-COVID-19 cases.

Table 5.4: 5-fold Cross-Validation and testing results of the first approach LLD-RF

Accuracy Precision Sensitivity F1-Score ROC-AUC Specificity

Fold-1 89.77 99.31 80.24 88.76 89.84 99.44
Fold-2 88.61 98.36 78.68 87.43 88.68 98.67
Fold-3 89.92 99.44 80.44 88.93 89.99 99.54
Fold-4 89.09 99.18 78.97 87.93 89.15 99.33
Fold-5 89.34 98.87 79.72 88.27 89.40 99.08

Avg ± sd 89.35 ± 0.0047 99.03 ± 0.0038 79.61 ± 0.0068 88.26 ± 0.0054 89.41 ± 0.0047 99.21 ± 0.003

Test 90.42 99.65 81.21 89.49 90.46 99.71

Figure 5.6: Training and Cross-Validation learning curves of first approach LLD-RF
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(a)
(b)

Figure 5.7: LLD-RF performance evaluation, (a) shows the ROC curve of the predicted probabili-
ties and (b) presents the confusion matrix of the test set

The presented results of the test set for the Full-length LLD feature vector approach show an

overall accuracy of 90.42% and 90.46% of ROC-AUC. The model demonstrates high specificity

of 99.71%, which means that it has the ability to recognize almost all Non-Likely-COVID-19

cases. However, our focus is on the model’s sensitivity, where we denoted only 81.21% which is

relatively lower than specificity, indicating that the model misclassifies about 19% of the Likely-

COVID-19 cases in the test set. At this stage, we can conclude that our first approach suffers

from a weakness related to sensitivity and can show critical cases (false negatives). Thus, further

investigation is needed to improve the model’s performance in terms of sensitivity. Additionally,

it is also important to note that the first approach uses all 6373 features in the feature vector,

which can lead to possible overfitting and decrease the model’s generalization as illustrated in

Figure 5.6, where we observe an increasing standard deviation after the initial training set of

2000 samples and this indicates that the model’s performance becomes less consistent.Therefore,

feature selection or dimensionality reduction techniques can be applied to improve the model’s

performance. Finally, it is worth noting that our model inference time is only 0.5 seconds for a test

set of size 4951 samples, demonstrating the feasibility of our approach for real-time applications.

Additionally, the model training time was very low, with only 7 minutes per fold, indicating the

time efficiency of the approach.

5.5 Bottleneck-based feature extraction

In this section, we introduce a new approach that utilizes an autoencoder-based feature extraction

technique to extract the most important features from the full-length LLD feature vector. The

approach involves reducing the dimensionality from 6373 to 1024 and forwarding the resulting

latent space to a Random Forest model. This approach is called Bottleneck-LLD-RF, and it aims
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to improve the classification performance, specifically, the sensitivity of the model by selecting

the most informative combination of features.

5.5.1 Methodology description and model training

Autoencoder is a neural network that compresses input data into a compact summary known as

the latent-space representation z. The encoder, code, and decoder are the three parts of an autoen-

coder. The encoder compresses the input and generates the code, which the decoder subsequently

uses to reconstruct the input using x0 = wz+b. As proposed in our study, autoencoders can be used

as a dimensionality reduction technique, which reduces and compresses the initial feature vector

while preserving the meaningful patterns inside. In order to train our autoencoder network, we

used two stacked encoder/decoder layers. The first encoder layer, activated by ReLU function,

has 2048 units and receives our extracted LLD feature vector of size 6373. The result is then

forwarded to the second encoder layer with 1024 units, which represents our bottleneck or latent

space’s size and the final size of our new feature vector. For the decoder block, the first decoder

layer consists of 2048 units and receives the bottleneck layer, followed by the last decoder layer to

map the hidden representation z with the original data x of size 6373. Our autoencoder network

was trained for 100 epochs with a batch size of 256 using Adam optimizer and BCE the loss

function. Figure 5.8 shows a general overview of our approach architecture. For Random Forest

classifier stage and also the autoencoder model, we tuned several hyper-parameters through

GridSearch to find the best configuration for our approach, Table 5.5 summarizes the tuned

parameters where split_quality presents the function of measurement of data split quality.

Figure 5.8: Block diagram of the second approach Bottleneck-LLD-RF

5.5.2 Results and discussion

Figure 5.9 presents reconstruction training and validation losses for our autoencoder model. The

train/validation loss curves indicate how well our autoencoder network is performing in terms

of reconstruction loss over the training and validation sets. In this case, the smoothness and

absence of perturbations in the curves suggest that the model is not overfitting or underfitting

the data, and it is able to generalize well to unseen data. The absence of a significant gap between

the train and validation curves suggests that our autoencoder model is not overfitting.
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Table 5.5: Tuned hyper-parameters for the second approach Bottleneck-LLD-RF where
p

F 0

presents the square root of the latent space (1024)

Tested values Best value

n_estimators [200-1200] 1100
bootstrapping {Used, Not used} Used
max_features {F 0,

p
F 0 }

p
F 0

split_quality {Gini, Entropy} Gini

Figure 5.9: Autoencoder reconstruction loss curves for training and validation

Table 5.6 presents the Cross-Validation and test results of our classifier on the 20% of data for

the second approach, bottleneck-based feature extraction using autoencoder. The ROC curve,

computed with predicted probabilities, is presented in Figure 5.11 (a) to summarize the test’s

overall diagnostic accuracy, where Figure 5.11 (b) shows the confusion matrix for the testing

set. Compared to the first approach, we denote a small improvement of the overall accuracy and

ROC-AUC score with 0.22% and 0.20%, respectively, where a significant improvement of the

model’s sensitivity in the test set is denoted by 5.07%. On the other hand, our model yielded a

degradation of 5.03% and 4.67% for precision and specificity, respectively.
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Table 5.6: 5-fold Cross-Validation and testing results of the second approach Bottleneck-LLD-RF

Accuracy Precision Sensitivity F1-Score ROC-AUC Specificity

Fold-1 87.09 92.57 80.63 87.09 89.84 95.35
Fold-2 88.41 93.62 82.40 88.40 88.68 94.40
Fold-3 86.94 93.87 79.01 86.93 89.99 94.85
Fold-4 88.43 93.47 82.60 88.42 89.15 94.24
Fold-5 87.37 92.66 81.14 87.36 89.40 93.59

Avg ± sd 87.65 ± 0.0064 93.24 ± 0.0052 81.16 ± 0.0130 86.77 ± 0.0077 87.64 ± 0.0064 94.12 ± 0.0049

Test 90.64 94.62 86.28 90.26 90.66 95.04

Figure 5.10: Training and Cross-Validation learning curves of second approach Bottleneck-LLD-
RF

The second approach improved ROC-AUC for the predicted classes by only 0.2%, indicating a

slight improvement in the discrimination between Likely-COVID-19 and Non-Likely COVID-19

samples. However, when computing the ROC curve using predicted probabilities, the proposed

system obtains almost the same AUC value as the previous approach (0.951) as well as the ROC

curve, if we observe ROC curves in Figure 5.7 (a) and Figure 5.11 (b), we can note that they

are almost identical due to the improvement of the system’s sensitivity and degradation of the

specificity and precision. Regarding learning process, similar to LLD-RF, the validation curve

of Bottleneck-LLD-RF also shows an increasing performance as the number of samples in the

training set increases, as shown in Figure 5.10. However, compared to LLD-RF, it exhibits a

smaller standard deviation. This can be attributed to the use of bottleneck features, by reducing

the dimensionality of the feature space, the model had a more stable and consistent performance,

leading to a smaller standard deviation. We shall denote that our autoencoder training was

performed once for 42 minutes, while training the Random forest classifier for 6.5 minutes per
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(a)
(b)

Figure 5.11: Bottleneck-LLD-RF performance evaluation, (a) shows the ROC curve of the pre-
dicted probabilities, and (b) presents the confusion matrix of the test set

fold, with an inference time of 1.8 seconds for a test set of the same size.

5.6 LLE dimensionality reduction

Our hypothesis (Section 5.2.3) is that dimensionality reduction can lead to a more discriminative

combination of features and thus enhance the classification performance. To validate this, we

propose a third approach, named LLE-LLD-RF, which utilizes LLE as a dimensionality reduction

technique to extract the most informative features from the full-length LLD feature vector. The

reduced feature set is then fed to the Random Forest model for classification.

5.6.1 Methodology description and model training

LLE is a dimensionality reduction technique that can reveal the intrinsic low-dimensional struc-

ture of high-dimensional data by preserving the local relationships between data points. The main

idea behind LLE is to represent each data point as a weighted linear combination of its k nearest

neighbors in the original high-dimensional space. Then, the low-dimensional representation

of each data point is found by minimizing the reconstruction error ≤(Y ) =
P

i |yi °
Pn

j=1 wi j yj|
2,

where W is the pre-optimized matrix of weights that maps data points with their k nearest

neighbors. The aim is to use the same weight matrix to find the projection Y where yi presents

the data point xi in the low-dimensional space (see Section 2.8.1). The main advantage of LLE

over other linear and non-linear techniques is that it is able to capture and preserve the local

structure and non-linear relationships within high-dimensional data. In our approach, we applied

LLE to our full-length LLD feature vector, reducing its dimensionality from 6373 to 3187, which

is the half of the original dimensionality. The number of components was selected based on a

trade-off between computational complexity and preserving the most informative patterns in
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the data. The reduced feature vectors were then forwarded to the Random Forest classifier for

training and evaluation. The same strategy of choosing the best hyper-parameters was followed,

particularly, the number of neighbors k of the original high-dimensional space was set to 5, as

shown in Table 5.7. The architecture of the third approach is depicted in Figure 5.12 providing a

general overview.

Table 5.7: Selected hyper-parameters for the third approach LLE-LLD-RF where
p

F 0 presents
the square root of the LLE reduced vector (3187)

Tested values Best value

n_estimators [200-1200] 1100
bootstrapping {Used, Not used} Used
max_features {F 0,

p
F 0 }

p
F 0

split_quality {Gini, Entropy} Gini
k [2-10] 5

Figure 5.12: General overview of the LLE-LLD-RF

5.6.2 Results and discussion

Table 5.8 shows the 5-fold Cross-Validation and test results of our third approach LLE-LLD-RF,

where we observe a significant testing improvement of the overall accuracy, sensitivity, and

ROC-AUC by 2.87%, 7.04%, and 2.85%, respectively, compared to the previous approach. The

improvement of ROC-AUC by 2.85% (0.975 for predicted probabilities as shown in Figure 5.14

(a)) indicates that the model is able to distinguish between Likely-COVID-19 and Non-COVID-19

with higher performance than LLD-RF and Bottleneck-LLD-RF. This approach shows a very

significant enhancement of the sensitivity against Bottleneck-LLD-RF, from 86.28% to 93.89%,

which means that our new model LLE-LLD-RF was able to recognize and correctly classify almost

94% of Likely-COVID-19 cases in the testing set (2333 against only 168 which were misclassified

as shown in Figure 5.14 (b)). In contrast, we observe that our third approach LLE-LLD-RF

shows a slight decrease of 1.82% and 1.3% in terms of specificity and precision, respectively. The

validation curve of LLE-LLD-RF shows a similar increasing performance trend as the previous
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approaches. However, the interesting observation here is the behavior of the standard deviation.

Unlike the other approaches, the standard deviation starts with high values and gradually

decreases as the training sample size increases (see Figure 5.13). This suggests that initially,

the model’s performance varies significantly between different subsets of the training data. As

more data points are included in the training, the model learns more representative patterns

and becomes more consistent in its predictions, resulting in a smaller standard deviation. The

training time of LLE-LLD-RF approach was about 60 minutes (including 37 minutes for fitting

LLE), with an inference time of 2.3 seconds for the same testing set.

Table 5.8: 5-fold Cross-Validation and testing results of the third approach LLE-LLD-RF

Accuracy Precision Sensitivity F1-Score ROC-AUC Specificity

Fold-1 92.72 92.15 93.37 92.76 92.72 92.08
Fold-2 92.47 91.91 93.12 92.51 92.47 91.83
Fold-3 91.74 90.84 92.82 91.82 91.74 90.67
Fold-4 92.34 92.31 92.36 92.34 92.34 92.33
Fold-5 91.94 92.29 91.50 91.90 91.94 92.38

Avg ± sd 92.24 ± 0.0035 91.90 ± 0.0055 92.63 ± 0.0065 92.27 ± 0.0036 92.24 ± 0.0035 91.85 ± 0.0062

Test 93.51 93.32 93.89 93.56 93.51 93.22

Figure 5.13: Training and Cross-Validation learning curves of third approach LLE-LLD-RF
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(a)
(b)

Figure 5.14: The performance evaluation of the LLE-LLD-RF approach includes a ROC curve for
the predicted probabilities and a confusion matrix for the test set. The ROC curve is shown in (a),
while the confusion matrix is presented in (b)

5.7 Analysis and comparison

Based on the results presented in Tables 5.4, 5.6, and 5.8, we can observe that all approaches

achieved an acceptable overall accuracy. However, there are some slight variations in their

performance, leading us to favor one approach over the others. We present a summary and

comparison of the achieved results in Table 5.9.

Table 5.9: Comparison of 5-fold CV and testing results of the three approaches, the first block of
the table presents the Cross-Validation results, shown as avg ± sd, while the second block shows
testing results on the same testing set. The best testing results are highlighted with bold text

Approaches
Evaluation Metrics

Accuracy Precision Sensitivity F1-Score ROC-AUC Specificity

LLD-RF 89.35 ± 0.004 99.03 ± 0.003 79.61 ± 0.006 88.26 ± 0.005 89.41 ± 0.004 99.21 ± 0.003

Bottleneck-LLD-RF 87.65 ± 0.006 93.24 ± 0.005 81.16 ± 0.0130 86.77 ± 0.007 87.64 ± 0.006 94.12 ± 0.005

LLE-LLD-RF 92.24 ± 0.0035 91.90 ± 0.0055 92.63 ± 0.0065 92.27 ± 0.0036 92.24 ± 0.003 91.85 ± 0.006

LLD-RF [44] 90.42 99.65 81.21 89.49 90.46 99.71
Bottleneck-LLD-RF [137] 90.64 94.62 86.28 90.26 90.66 95.04
LLE-LLD-RF [136] 93.51 93.32 93.89 93.56 93.51 93.22

Regarding Cross-Validation results, it is important to note that standard deviation values were

in general, below 0.01, indicating that our models had relatively consistent performance across

the different folds of the Cross-Validation. However, we observe the highest value sd = 0.0130

for the sensitivity of Bottleneck-LLD-RF which suggests that the model had more variability
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in Likely-COVID-19 cases identification. On the other hand, typically, Cross-Validation results

are close to the testing results, indicating that the models are not overfitting and can generalize

to unseen data. Regarding testing performance, first, LLD-RF approach achieved the lowest

sensitivity among the three approaches in the testing phase, with a sensitivity of 81.21% which

leads us to conclude that LLD-RF had not the ability to perform well with Likely-COVID-

19 class. However, it showed the highest precision (99.65%) and specificity (99.71%), which

suggests that LLD-RF approach is more conservative and not well sensitive to predict Likely-

COVID-19 cases, where 18.79% of Likely-COVID-19 test samples (467/2486) are misclassified.

Second, Bottleneck-LLD-RF showed a lower specificity which means that this model is not

able to correctly classify more samples from Non-Likely-COVID-19 compared to LLD-RF. In

contrast, Bottleneck-LLD-RF exhibited a higher sensitivity, compared to LLD-RF with a 5.07%

increase due to the use of the two-layer autoencoder, which had the ability to compact the LLD

feature vector and extract more patterns that are related to Likely-COVID-19 class, the achieved

performance of 86.28% may not be considered reliable in medical diagnosis cases, where 13.71%

of Likely-COVID-19 test cases (341/2486) are not correctly recognized and classified. For further

investigation and in order to validate our aforementioned hypothesis (Section 5.2.3), a third

approach based on dimensionality reduction has been developed and validated. LLE-LLD-RF

approach achieved the highest sensitivity among the three approaches, with a considerable

improvement compared to the other two approaches, 93.89% compared to 81.21% and 86.28%.

Also, the overall accuracy has reached 93.51% outperforming 90.42% and 90.64% for LLD-RF

and Bottleneck-LLD-RF, respectively. However, regarding specificity and precision, this approach

showed the lowest performance, 93.22%, 93.32% compared to 99.71%, 95.04%, and 99.65, 94.62%.

Thus, the choice of the best approach is based on a compromise between sensitivity and specificity

with a particular focus on sensitivity due to its importance in the present context. Figure 5.15

presents a single plot that shows the ROC curves of the three approaches, ROC curves provide a

graphical representation of the performance of each approach in terms of the trade-off between

sensitivity and specificity. The closer the curve is to the top-left corner, the better the overall

performance. From the plotted ROC curves, it is clear that LLE-LLD-RF outperforms the other

two approaches, as its curve is higher and closer to the top-left corner. The curves of LLD-RF

and Bottleneck-LLD-RF appear to be quite similar, indicating that their overall performance

is also similar. However, the ROC-AUC metric provides a quantitative measure of the overall

performance of the approaches, taking into account the entire range of the ROC curve. The results

show that LLE-LLD-RF achieved the highest ROC-AUC value (0.975 for predicted probabilities),

followed by LLD-RF and Bottleneck-LLD-RF (0.952 and 0.951). Therefore, the ROC curves and

ROC-AUC metric confirm the superiority of LLE-LLD-RF over the other approaches in terms of

overall performance.
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Figure 5.15: ROC curves comparison for the three approaches

The obtained testing results confirm our hypothesis that dimensionality reduction may lead

to combine and extract the most informative patterns, hence improving the performance of the

classification model. LLE-LLD-RF approach achieved the highest performance with an accuracy

of 93.51%, a sensitivity of 93.89% and ROC-AUC of 93.51% (0.975 for predicted probabilities),

outperforming both LLD-RF and Bottleneck-LLD-RF approaches. This improvement is attributed

to the fact that LLE preserves the local structure of the data while reducing its dimensionality,

while the latent space in Bottleneck-LLD-RF approach may discard some useful information

in the process of compacting and reducing dimensionality in the neural network. In terms of

time efficiency, Table 5.10 summarize the time cost performance for training and inference of the

three approaches. The training time is measured in seconds and represents the time it takes to

train the model on the dataset (time to perform 5-fold Cross-Validation), while the inference time

is also measured in millisecond and represents the time it takes to classify one single instance

using the trained model.

Discussing Table 5.10, LLD-RF has the shortest training and inference time among the three

approaches, with only 2040 seconds for training and 0.1 milliseconds for inference due to the small

number of Random Forest estimators. Bottleneck-LLD-RF has a longer training and inference

time compared to LLD-RF, with 4470 seconds for training and 0.36 millisecond for inference,

and this can be explained by the complexity of computing in the encoder and decoder networks

(2500 seconds in the training phase). LLE-LLD-RF has the shortest training time among the

three approaches, with 1380 seconds, however, the remaining time (2243 seconds) was spent to
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Table 5.10: The time cost of the three approaches for training (explained in seconds) and inference
(explained in millisecond)

Approach Training time Inference time

LLD-RF 2040 0.1
Bottleneck-LLD-RF 4470 0.36
LLE-LLD-RF 3623 0.46

fit LLE with original data which resulted in a total of 3623 seconds, and also, has the longest

inference time of 0.46 millisecond, due to the computation of the new embedded feature vector.

Considering the performance results, LLE-LLD-RF outperformed both LLD-RF and Bottleneck-

LLD-RF approaches regarding accuracy, sensitivity, and ROC-AUC. However, LLE-LLD-RF has a

longer inference time compared to the other two approaches. On the other hand, LLD-RF has the

shortest time for both training and inference, but it has lower accuracy and sensitivity compared

to LLE-LLD-RF. Therefore, considering the medical context of the problem, where sensitivity

is of utmost importance, the choice of the best approach is mainly related to the factor of the

system’s performance, thus, LLE-LLD-RF would be the best approach to be implemented. This

conclusion is supported by the higher sensitivity achieved by LLE-LLD-RF compared to the

other two approaches, as well as its overall better performance and comparable inference time.

Although LLE-LLD-RF has a shorter training time than Bottleneck-LLD-RF, it has a slightly

longer inference time, which may be negligible in practical use cases. Therefore, LLE-LLD-RF is

the recommended approach for medical diagnosis based on the discussed performance results

and time information.

5.8 Ablation study

In this section, we present an ablation study that aims to demonstrate the effectiveness of

the proposed approach (we consider the best approach LLE-LLD-RF), where we conducted

extensive additional experiments to illustrate the impact of the used classifier (Random Forest)

and dimensionality reduction (LLE). This study is divided into three parts, each focusing on a

specific aspect of the ablation. First, we explore the effectiveness of Random Forest and ensemble

classifiers against several ML algorithms, highlighting their strengths and weaknesses in our

context. Second, we investigate the effectiveness of LLE, by replacing it with other dimensionality

reduction techniques, and third, we conduct a feature analysis to demonstrate the crucial influence

of dimensionality reduction on the overall classification performance.
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5.8.1 Effectiveness of Random Forest and Ensemble classifiers

We evaluated the performance of various simple and ensemble classifiers, in order to assess the

effectiveness of Random Forest and ensemble-based approaches. The classifiers were trained

and evaluated on the same testing set to ensure consistent results and comparison. Table 5.11

highlights the performance achieved by 14 different classifiers, from different categories including

ensemble-based, Discriminant Analysis (DA)-based, and support vector-based.

Table 5.11: First part of the ablation study which involves training different classifiers to demon-
strate the performance of the presented study.

Classifier
Evaluation Metrics

Accuracy Precision Sensitivity F1-Score ROC-AUC Specificity

Logistic Regression 64.71 70.29 51.48 59.43 64.77 78.05
XGBoost 93.19 94.09 92.23 93.15 93.19 94.15
kNN 70.69 93.08 44.97 60.64 70.80 96.63
Linear SVM 64.75 79.47 40.18 53.37 64.85 89.53
Kernel SVM 91.41 95.13 87.36 91.08 91.43 95.49
AdaBoost 63.21 71.74 44.12 54.64 63.30 82.47
Naive Bayes 89.29 95.44 82.62 88.57 89.32 96.02
MLP 78.73 80.32 76.34 78.28 78.74 81.13
Decision Trees 80.12 79.56 81.29 80.42 80.12 78.94
GB 92.24 92.00 92.59 92.30 92.24 91.88
Extra-Trees 93.17 94.97 91.23 93.06 93.18 95.13
Quadratic DA 79.60 87.12 69.67 77.42 79.64 89.61
LDA 65.34 69.50 55.18 61.52 65.38 75.57
RBFSampler 87.63 93.82 80.69 86.76 87.66 94.64
Random Forest 93.51 93.32 93.89 93.56 93.51 93.22

Table 5.11 presents the results of training various classifiers and evaluating their performance. In

terms of overall accuracy, it can be observed that only Kernel SVM and ensemble-based methods

(XGBoost, Extra-Trees, Random Forest, and GB) achieved the highest overall performance.

Examining the precision metric, several classifiers achieved more than 92% precision. However,

most of these classifiers obtained relatively lower accuracy and sensitivity, for instance, kNN

with 93.08% of precision, 70.69% and 44.97% of sensitivity, and Naive Bayes, which recorded the

highest precision of 95.44% and only 82.62%. This phenomenon suggests that although these

classifiers can accurately predict positive instances, they struggled to identify all the positive

instances in the dataset, leading to low sensitivity and overall accuracy. Moving on to sensitivity,

only four classifiers (ensemble-based methods: GB, Extra-Trees, Random Forest, and XGBoost)

achieved more than 90% whereas other methods ranged from 44.12% to 87.36%. This indicates

their effectiveness in discovering and capturing complex patterns related to Likely-COVID-19

class. The same methods, along with Kernel SVM, demonstrate high performance in the aspect of
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distinguishing between Likely-COVID-19 and Non-Likely-COVID-19, as indicated by their high

ROC-AUC values. Regarding specificity, we observe varying results across different classifiers.

Kernel SVM, Naive Bayes, kNN, and most ensemble-based methods, achieved more than 93%

indicating the high capacity of recognizing Non-Likely-COVID-19 samples, however, by giving

a particular focus on the sensitivity, the choice of the best method is questioned, for instance,

considering Naive Bayes, its ability to recognize Non-Likely-COVID-19 class was achieved 96.02%

where only 82.62% of sensitivity was obtained. This study showed the need to focus on the

overall model’s performance, in other words, finding a trade-off between sensitivity, precision, and

specificity. Thus, by considering the above notes, the best performing methods are the ensemble-

based ones, in particular, Random Forest with an overall accuracy of 93.51% and 93.89% of

sensitivity.

5.8.2 Effectiveness of LLE

In this section, we investigate the effectiveness of LLE, by comparing it with several other

methods. Specifically, we explore the performance of LLE, in comparison to PCA, LDA, Isomap,

t-SNE, Singular Value Decomposition (SVD), and Random Projection. By using these alternative

methods, we aim to showcase the unique strengths of LLE. Throughout all experiments, we

maintain the same configuration of Random Forest classifier to ensure a fair and consistent

comparison.

Table 5.12: Second part of the ablation study which involves training our Random Forest classifier
using the embeddings and components generated by 6 dimensionality reduction techniques.

Method
Evaluation Metrics

Accuracy Precision Sensitivity F1-Score ROC-AUC Specificity

PCA 90.40 97.70 82.90 89.70 90.50 98.00
LDA 80.80 81.00 80.60 80.80 80.80 80.90
Isomap 69.37 67.97 73.77 70.75 69.36 64.94
t-SNE 81.31 77.12 89.25 82.75 81.28 73.30
SVD 90.50 98.00 82.80 89.80 90.60 98.30
Random Projection 90.97 97.93 83.78 90.30 91.00 98.21
LLE 93.51 93.32 93.89 93.56 93.51 93.22

Table 5.12 presents the results obtained from applying various dimensionality reduction tech-

niques and training the Random Forest classifier using the resulting embeddings or components.

When comparing LLE to other dimensionality reduction techniques, several observations can be

made. While PCA, SVD, and Random Projection achieve accuracy levels near that of LLE (90.40%,

90.50%, and 90.97% respectively), their sensitivity falls behind. This indicates that these methods

might not capture the intricate relationships within the data that are important for identifying
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positive instances accurately. Although they may achieve high precision and specificity, their

limited ability to identify true positives affects their overall performance. LDA, on the other

hand, achieved a balanced performance and shows comparable sensitivity to PCA, SVD, and

Random Projection. However, its overall performance is noticeably lower (80.80%). LDA operates

based on linear projections that were not able to fully capture the complex nonlinear patterns of

the data, leading to the mentioned suboptimal performance. While Isomap recorded the lowest

performance among all methods, t-SNE, achieves a higher sensitivity (89.25%), however, a lower

overall performance of only 81.31% has been recorded. Considering our criteria of prioritizing

the sensitivity metric, LLE emerges as the top performer among the evaluated dimensionality

reduction techniques. It successfully identifies a high percentage of true positives, making it

particularly suitable for applications where correctly detecting positive instances is critical. Fur-

thermore, LLE achieves a balanced performance by maintaining competitive precision, indicating

its ability to distinguish between Likely-COVID-19 and Non-Likely-COVID-19 instances with

the higher possible performance.

5.8.3 Reduced feature analysis

We delve into the analysis of reduced features obtained through autoencoder and LLE. We begin

by visualizing the 3D scatter plots of the three best features among each of the original, latent

space, and LLE features, ranked by Random Forest importance. Figure 5.16 showcases the 3D

scatter plots, where each data point is represented by its three best features. Despite selecting

the best discriminating features, the visual interpretation of these plots is challenging due to

the complexity and overlapping nature of the data points. Additionally, Figures 5.16 (b) and

Figure 5.16 (c) show a complex data structure although reduction with autoencoder and LLE.

The 3D scatterplots exhibit a high concentration of data points from both classes in one region,

making it difficult to discern clear patterns or class separation. This highlights the limitations of

visual analysis in complex data even after applying dimensionality reduction, emphasizing the

need for alternative visualization techniques.

To address the limitation of the scatterplots, we propose an alternative method, density plots, that

make, in addition to the aforementioned performance, insights about the role of dimensionality

reduction in the process of finding a discriminating combination of features that helps build

efficient classification models. Specifically, we used KDE, which facilitates a more accurate

depiction of the data by providing a smooth and continuous estimation of the distribution.

These density plots highlight the distribution of the top five features ranked by Random Forest

importance, and illustrated in Figure 5.17.

By examining the density distribution of the original features, we observed that it is not clear

in distinguishing between the two classes. The density values showed almost the same level of

density for both classes, a heavy overlap between the distributions, and mixed density peaks. This

indicates that the original feature set alone may not be sufficient to separate classes effectively.
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(a) (b) (c)

Figure 5.16: 3D scatter plots for the three best features, ranked by Random Forest importance,
selected from original (a), latent space (b), and LLE features (c)

On the other hand, the application of the autoencoder for feature compression did not well

improve the separability where we observe the presence of a high overlap between the two classes.

Moreover, LLE feature set demonstrated its effectiveness in capturing features that yielded a

significant trend in density values. We observed a notable trend of high density for Non-Likely-

COVID-19 class and low density for Likely-COVID-19 class. While it may be challenging to

directly interpret this as class separability based on the plotted features alone, these features can

potentially contribute to further combinations that are valuable for distinguishing between the

two classes. Furthermore, we noticed that there were specific regions in the density plots where

many data points from the Non-Likely-COVID-19 class were concentrated. This suggests that

the LLE features may be capturing specific patterns or subgroups within the class, which could

be further explored to enhance the classification performance. While the density plots provide

insights into the distribution of feature values and show some degree of separability between

the classes, it is important to note that the complexity of the data may limit the extent of class

separability. The observed trends in density values indicate potential discriminative patterns,

but further investigation is necessary to fully assess the separability of the classes. In the

previous sections, we evaluated the performance of LLE using various evaluation metrics, which

demonstrated its effectiveness in improving classification accuracy, precision, sensitivity, F1-score,

and specificity. These results reinforce the notion that ML models can leverage the extracted

features to enhance class separability. Therefore, while the density plots provide valuable visual

insights, their interpretation should be complemented by the results obtained from rigorous ML

modeling and performance evaluation as aforementioned in previous sections.

5.9 Concluding notes

ML approaches based on ensemble learning for COVID-19 screening have been investigated in

this chapter. Our research question focused on whether ML methods can achieve comparable

132



5.9. CONCLUDING NOTES

Figure 5.17: Density distribution plots of the top 5 features, ranked in descending order of
Random Forest importance, for the original, latent space, and LLE features. The plots illustrate
the distribution of feature values using KDE for the Non-Likely-COVID-19 and Likely-COVID-19
classes.

performance to DL methods in developing accurate and efficient diagnosis systems. Although DL

approaches have been considered the most effective methods for analyzing complex data, we have

shown and demonstrated that ML methods can also achieve high performance in the present

context. In the literature review, we discussed the performance achieved using ML methods for

COVID-19 diagnosis. Although the results varied widely, some studies reported high accuracy

and sensitivity, indicating the potential of ML methods for COVID-19 diagnosis. However, the
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performance of ML methods is strongly dependent on several factors, such as the quality and size

of the dataset, the extracted and selected features, and also, classification methods. In our study,

we focused on three ML approaches based on ensemble learning: LLD-RF, Bottleneck-LLD-RF,

and LLE-LLD-RF. We evaluated the performance of these approaches using COUGHVID dataset,

which was balanced using SMOTE method. We used 5-fold Cross-Validation and a separate

testing set to evaluate the performance of the approaches. Our results have shown that LLE-

LLD-RF approach achieved the highest performance with an accuracy of 93.51%, a sensitivity

of 93.89%, and a ROC-AUC of 93.51% (97.5% for predicted probabilities), outperforming both

LLD-RF and Bottleneck-LLD-RF approaches. This improvement is attributed to the fact that LLE

preserves the local structure of the data based on the assigned neighbors’ weights while searching

for the optimal projection Y , while the latent space in the Bottleneck-LLD-RF approach discarded

some important patterns in the process of compacting which inevitably causes information loss,

and that was confirmed by our downstream task performance which has shown the superiority

of LLE-LLD-RF, specifically, in terms of sensitivity. As already mentioned, the sensitivity is

the most important metric in our context, as it measures the ability of the model to correctly

identify positive cases and avoid critical cases (false negatives). LLE-LLD-RF approach has shown

the highest sensitivity among the three approaches, making it the appropriate choice for this

application. In addition, we evaluated the time complexity of the three approaches for training

and inference. LLE-LLD-RF approach showed a slightly longer inference time (0.46 millisecond

per instance) compared to LLD-RF and Bottleneck-LLD-RF, however, an inference time of 0.46

millisecond per instance is considered highly efficient for real-time use, which makes our solution

a time-effective and can be deployed for further production use. Our findings have been confirmed

and explained by the the proposed ablation study, where we showed the superiority of Random

Forest and LLE algorithms by performing extensive experiments (14 different classifiers and

6 dimensionality reduction methods). We also showed the capacity of LLE in the selection of

important combination of features. In conclusion, our study has demonstrated that ML methods

based on ensemble learning can achieve high performance in COVID-19 diagnosis from cough

sound data. Our developed LLE-LLD-RF approach has shown superior performance to other

approaches, while also being time-effective. Our findings emphasize the crucial need to pay more

attention to the sensitivity metric in the context of COVID-19 diagnosis, and the importance of

dimensionality reduction in extracting and combining the most informative patterns from cough

sound data.
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GENERAL CONCLUSION

ML and DL techniques have gained significant attention in the field of medical diagnosis and

healthcare. These approaches offer the ability to analyze complex datasets containing medical

images, audio signals, clinical or genetic information. Within the context of respiratory diseases,

such as asthma, COPD, and pneumonia, ML and DL have demonstrated a high ability in aiding

healthcare professionals by identifying important patterns, features and regions of interest that

are often challenging for humans to discern. However, the emergence of COVID-19 pandemic

has presented a challenge for healthcare systems globally. Previously, the diagnosis of COVID-

19 was primarily based on RT-PCR tests, which proved to be expensive, time-consuming, and

necessitated specialized laboratory facilities. The lack of test kits and the resulting delay in

obtaining results blocked efforts to contain the spread of the virus effectively. Consequently, there

emerged an urgent demand for a quick and accurate diagnostic approach for COVID-19. This

pressing need prompted the exploration of novel and innovative methods within the context of

medical diagnosis. ML and DL techniques offer promising solutions to address the challenges

posed by traditional diagnostic methods. By leveraging clinical data, X-ray images, and CT scans,

researchers have endeavored to build robust diagnostic systems. However, it is important to note

that clinical data alone may not suffice for precise diagnosis, and relying solely on X-ray and CT

scans may not consistently yield conclusive evidence of the virus’s presence. While X-ray and CT

scans have demonstrated high diagnosis performance, they require physical access to the patient,

which may compromise safety protocols.

Several researchers have explored the possibility of using respiratory sounds, particularly,

cough to diagnose COVID-19. As previously reported, coughing is one of the most common

symptoms of COVID-19. The use of cough sound data offers several advantages over other

methods of diagnosis. First, it is non-invasive, which eliminates the risk of infection transmission
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during sample collection. Second, can be inferred through web or mobile app, and the most

important advantage is the safety of the solution, where users are supposed to use the diagnosis

system remotely, and then, preventing the break of health rules imposed by authorities.

This thesis aimed to develop a quick, accurate, and safe way to diagnose COVID-19 from solely

cough sound recording using ML and DL techniques. The first research question of this thesis

aimed to address the feasibility of using ML-assisted diagnosis systems to achieve a performance

level that is comparable to the current golden standard of RT-PCR, while the second question

sought to investigate whether DL methods are necessary to develop an accurate and efficient

diagnosis system for COVID-19 based on cough sound data, or if ML methods can achieve a

comparable level of performance. The third research question focused on the strategies to address

the issue of class imbalance which is present in the used cough sound dataset COUGHVID and

also other existing datasets, and how to effectively overcome that.

In order to address the aforementioned research questions, a set of specific objectives were

established and pursued throughout this thesis, which aimed to provide an in-depth theoretical

background about ML, DL, dimensionality reduction, and data augmentation, specifically, the

ones that were widely used in the present work. The background part included as well a concise

summary of the state of the art of ML and DL in the diagnosis and detection of various respiratory

diseases such as Pneumonia, Lung cancer, and OSA. The background was then followed by a

critical and detailed review of the literature and state-of-the-art COVID-19 detection from cough

sound using ML and DL, where 40 papers were analyzed and categorized into three main groups:

ML-based approaches, DL-based approaches, and studies that compared the performance of both

approaches. A comparative analysis has been done from different perspectives; ML vs. DL, feature

extraction and selection techniques, and the employed data augmentation and class balancing

strategies. Finally, some limitations and challenges of the discussed works were highlighted:

1) The need to have high-quality cough data which has relation to the difficulty of collecting

cough samples from patients who may be under isolation or hospitalized, 2) The lack of sufficient

COVID-19 samples and absence of data augmentation and class balancing techniques, which

may have a significant impact on model’s generalization, and 3) The inadequate consideration of

the sensitivity metric, where we denoted that it has often been overlooked, ranging from 73%

to 81.2% in some studies. In order to address the discussed limitations, this thesis aimed to

contribute to the field with two novel approaches for COVID-19 detection from cough sound.

The first approach (Chapter 4) consists of a novel framework that combines the strengths of

both CNN and LSTM along with Attention mechanism, CNN block learns the spatial features

from input mel-spectrograms of cough sound signals, followed by LSTM that captures the

temporal dependencies between these features, and then, additive attention mechanism is

used to highlight the most informative features for the diagnosis task, while the spectral data

augmentation SpecAugment is used to create more variability in the mel-spectrograms, allowing

the model to learn more robust and generalized features. The presented contribution has been
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compared with several baselines: CNN only, LSTM only, and hybrid CNN-LSTM, to validate and

illustrate the effectiveness of each component of the architecture. Regarding achieved results,

our model has been validated using 10-fold Cross-Validation and achieved a testing sensitivity

of 90.93%, overall accuracy, and ROC-AUC of 91.13%. Although our approach outperformed

some studies in terms of sensitivity metric, it suffers from some limitations and needs more

focus on the impact of binary class transformation which may affect the model’s performance

due to our consideration that symptomatic samples may belong to Likely-COVID-19, sensitivity

performance which needs more attention to improve the ability of the model to correctly classify

Likely-COVID-19 samples. The presented study showed the impact of each of the employed

DL techniques and the significant effect of spectral data augmentation in boosting the model’s

performance.

The second approach (Chapter 5) aimed to explore the potential of ML approaches for COVID-

19 diagnosis based on cough sound data. Specifically, we developed three different ensemble

learning-based frameworks that utilize the Random Forest classifier as the primary classifier:

LLD-RF, Bottleneck-LLD-RF, and LLE-LLD-RF. We started our second contribution with an

exploratory analysis and data engineering where we plotted four Locally Linear embeddings (EM1,

EM2, EM3, and EM4) in a scatterplot matrix and denoted a sign of distinction between classes.

In this respect, we put forward a hypothesis that supposes that reducing feature dimensionality

may have an impact on the combination of features that can highly contribute to the classification

process. To validate the hypothesis, we started by LLD-RF, the initial ML approach which

involved training the model on the full LLD ComParE 2016 feature set which was extracted

from cough sounds using OpenSMILE toolkit. This approach achieved a testing accuracy of

90.42%, sensitivity of 81.21%, and ROC-AUC of 90.46%. The presented approach suffers from

the weakness of low sensitivity. We thought about a second approach, Bottleneck-LLD-RF, that

addresses the issue by reducing dimensionality using a stacked autoencoder. This approach

boosted the sensitivity from 81.21% to 86.28%. In the third proposed ML approach, named

LLE-LLD-RF, we used LLE method that preserves the local data structure when moving from

high-dimensional to low-dimensional data. We denote a significant enhancement for sensitivity

metric, where it reached 93.89% outperforming the other two approaches. These results validate

our hypothesis about dimensionality reduction and its ability to extract and combine the most

important features to accurately distinguish between Likely-COVID-19 and Non-Likely-COVID-

19. Regarding time complexity, we denote the model inference for the testing set of size 4951 was

done in only 2.3 seconds, which made our approach time-efficient.

This work presented a significant contribution in the field of detecting COVID-19 from cough

sound using ML and DL methods. The results of our contributions should give us an answer to

the research questions:

Can ML models train on cough sound data accurately distinguish between positive

and negative cases of COVID-19?
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As reported in Chapters 4 and 5, the accuracy of ML models in distinguishing between positive

and negative cases of COVID-19 based on cough sound data appears to be relatively better

than that of some traditional diagnostic techniques, such as RT-PCR and rapid antigen tests.

For instance, rapid antigen tests were reported to have a sensitivity of 60.5% and 72.1% in

asymptomatic and symptomatic patients, respectively, while the sensitivity of our proposed

ML approaches ranged from 81.21% to 93.89%. However, several factors can have an effect on

the performance of these models, such as the quality of the data trained on and the discussed

limitations. Therefore, it is challenging to conclude explicitly that our models outperform other

invasive techniques. Nevertheless, our ML models may present a good alternative for testing

tools, especially in cases where RT-PCR testing is not readily available, or when there is a need

to quickly and accurately identify COVID-19 cases.

Can ML methods achieve comparable performance to DL methods in developing ac-

curate and efficient diagnosis systems for COVID-19 based on cough sound data, or is

DL necessary to achieve the desired level of performance?

Based on the achieved results of our proposed ML and DL-based frameworks, we can conclude

that ML models can achieve comparable or even better performance than DL models in developing

accurate and efficient diagnosis systems for COVID-19 based on cough sound data. Specifically,

our LLE-LLD-RF method has explicitly outperformed the proposed DL-based framework in terms

of sensitivity, with a value of 93.98% compared to 90.93%. This finding suggests that simple

and low-cost ML models can achieve higher results than DL models in such cases, providing a

promising alternative to expensive and complex DL approaches.

How can the issue of class imbalance (the lack of positive samples) in COVID-19 cough

sound datasets be addressed to improve the performance of ML-assisted diagnosis sys-

tems?

Addressing the issue of class imbalance in COVID-19 cough sound datasets is a challenging task

due to its significant impact on the model’s performance, as the model tends to be biased towards

the negative class. In our study, we applied SpecAugment to augment and add more variability to

the Likely-COVID-19 class, as well as the use of SMOTE to oversample our data before training.

These techniques have been shown to provide a significant improvement in our ML models’

performance. However, we cannot explicitly confirm the robustness of these techniques as they

require an evaluation system to check the quality of the augmented data. Therefore, further

research is needed to develop more robust methods to address the class imbalance issue in

COVID-19 cough sound datasets, for instance, by collecting more positive samples.

Overall, this thesis contributes to the ongoing effort to combat COVID-19 pandemic by offering
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a promising alternative to the traditional diagnostic methods, which could help healthcare

providers to quickly and accurately identify COVID-19 cases, ultimately leading to better control

and prevention of the virus spread.
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APPENDIX: DIAGNOSIS MOBILE APPLICATION

Introduction

The diagnosis mobile application aims to provide a safe and remote solution for efficient COVID-

19 screening. Recognizing the importance of an end-to-end process, the application enables users

to easily submit their cough recording to the diagnosis system for analysis and classification.

Various solutions can be implemented, such as embed system and web application. However,

with the widespread availability of smartphones, a mobile implementation becomes the ideal

solution, as it allows for easy access to the system. By making the application available on

different app stores, it ensures widespread accessibility, making the diagnosis process quick and

straightforward for individuals.

Technical Implementation Details

We opted to use the Flutter framework1, which allowed us to develop Android, Web, Windows,

Linux, macOS, Fuchsia and iOS versions of the application using a single codebase. In our

technical implementation and building configuration, we targeted Android and iOS. Flutter

provides a rich set of pre-built UI components and efficient performance, enabling us to create a

seamless and visually appealing user interface for both platforms. As for the backend, we utilized

the Flask micro web framework2. Flask is a lightweight and flexible framework that offers

simplicity and ease of use in building web applications. Its extensive ecosystem and powerful

features, such as routing and request handling, allowed us to efficiently develop the backend

functionality of the diagnosis application. Flask’s scalability and compatibility with various

libraries and extensions provided us with a solid foundation to handle the data processing and

communication between the frontend and backend components.

Systematic Overview of the Developed System

We present a comprehensive illustration of the general workflow of the application. Figure 1

depicts the step-by-step process starting from the user’s interaction with the app, the request

1https://flutter.dev
2https://flask.palletsprojects.com/
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Figure 1: Overview of the proposed end-to-end diagnosis system

being sent to the backend system, the pre-processing steps performed on the data, and finally,

the response provided to the user.

Diagnosis Flow and Use Cases

The diagnosis flow of the mobile application is designed to provide users with a simple and

user-friendly experience for COVID-19 screening. The process begins as the user opens the app,

and the home screen (see Figure 2 (a)) greets them without the need for any registration or login

step. To initiate the screening process, the user simply taps the Get Started button (see Figure 2

(b)).
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(a) (b)

Figure 2: Mobile app home and recording screens

Upon tapping the microphone button, the user can start recording its cough sound (Figure 3 (a)),

which is the key component of the system. Once the recording is complete, the user can tap the

stop button. If the audio recording is successful, a new screen (Figure 3 (b)) immediately appears,

informing the user that their recording is ready for analysis.
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(a) (b)

Figure 3: Recording in progress and ready screens

At this stage, the user is presented with two options: Quick and Advanced (see Figure 3 (b)).

The Quick option triggers the LLE-LLD-RF. On the other hand, the Advanced option initiates

the attention-based hybrid CNN-LSTM. After selecting one of the options, the used will be

presented by progress indicator screen as illustrated in Figure 4 (a).

In the event of a network error, a screen indicating the error will appear, providing the user with

the option to relaunch the request and try again as shown in Figure 4 (b). Similarly, if there is an

error related to the silence removal process, such as an empty recording after removing silence, a

dedicated screen will appear, allowing the user to restart the recording from the beginning and

relaunch the request as illustrated in Figure 4 (c).

Once the analysis is complete, the app displays a screen with the model’s prediction and the

associated probability, providing the user with vital information about their diagnosis. This screen

includes details such as the date, time, and the type of diagnosis performed (Quick or Advanced).

Figures 5 (a) and 5 (b) exemplified Likely-COVID-19 and Non-Likely-COVID-19 diagnosis results,

respectively.
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(a) (b) (c)

Figure 4: Request processing and error screens based on the server’s response

(a) (b)

Figure 5: Model’s prediction response with Likely-COVID-19 and Non-Likely-COVID-19
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