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Abstract

In this thesis we are interested with theoretical and numerical study of convex quadratic
optimization. For this purpose, we have introduced two methods of interior point.
The first depends on the classical central-path with modified Newton search direc-
tions. Meanwhile, the second one is based on the weighted path and also new search
directions. In the two cases, we have proved that the corresponding algorithms are
defined and converge locally quadratically. In addition, this algorithm has the best
known polynomial complexity. Finally, this study is followed by some numerical ex-
periments for evaluation.

Keywords: Convex quadratic optimization,Interior-point methods, Short-step method,
Polynomial complexity.
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Glossary of Notation

Problem Classes

MP :  Mathematical programming.
(CQO) : Convex quadratic optimization.
(LO) . Linear optimization.

P . Primal standard format.

(D) : Dual problem of (P).

P,) . Primal barrier problem.

(D,)  : Dual barrier problem.

AET . Algebraically equivalent transformation.
P . Interior-Point.

IPA . Interior-Point Algorithm.

IPC . Interior-Point Condition.

IPMs : Interior-Point Methods.

KK.T : Krush-Kuhn-Tucker.

Spaces
R . The set of real numbers
R" . The real n-dimensional space.
R?  : The nonnegative orthant of R".
R, : The positive orthant of R".

R™ ™ . The set of all n x n squared matrices.

Vectors



4 GLOSSARY OF NOTATION

x; : The i-th component of z.
zt . (x1,...,x,) the transpose of a vector x, with components z;
x>0 = x; >0, Vi
x>0 : x;>0, Vi
e = (1,...,)T eR™
|| = Absolute value of a vector x € R". |z| = (|z;]),i=1,...,n
oy = Z x;y; the standard inner product in R".
i=1
Ty = (2191, ..., Toyn) Hadamard product.
log(z) = (log(zy),---,log(z,))", = > 0.
T
T T In
L ) e
N = (Vx,--- ,v/x,)" the square of a vector x, with components z;.
r = (274,27
|z|| :  denote the Euclidean norm (27z)'/2.
|z|l. :  denote the Maximum norm (max |z;|).
Matrices Z
X >0 : Means X is positive semidefinite.
X >0 : Means X is positive definite.
I : Order identity matrix .
Opnxn :  The null matrix of type (n,n).
AT :  The transposed matrix of A.
Al : The inverse of a regular matrix A.

tr(A) = Za” ZA ), (the trace of a matrix A € R"*").

IAll, = \/ ATA (the spectral norm of A ).
D(z) = diagonal matrix whose diagonal elements are the components of the vector x.
X = diag(x),denote the diagonal matrix whose diagonal elements are the components ofz.
Z = diag(z),denote the diagonal matrix whose diagonal elements are the components ofz.
Functions

of af  \' : . n
Vi) =z(z), -, (x) . the gradient of a function f:R" — R.

ox 1 ) 8a:n
V2f(x) = o7 () . the Hessian matrix of f:R"™ — R.

Ox; 8$] 1<2,5<n

Wp(t) . a kernel function.



Introduction

The CQO problems are an interesting class of nonlinear convex programming which
have been proven to be useful in many domains of applied mathematics and engi-
neering. Also the CQO includes the standard linear optimization (LO) [8]. Further,
it can be seen as a special case of general symmetric conic optimization problems
(see e.g.,[25, 29]). There are many direct and iterative methods for finding optimal
solutions of CQOs. Beside the active set methods [43], a classical Wolfe like simpli-
cial algorithm for solving CQOs has in the worst case an exponential complexity, the
feasible path-following interior-point methods (IPMs) gained much more attention
then others due to their highly numerical efficiency and their polynomial complexity
(see e.g.,[40, 44, 45]). These methods used the central-path as a guideline to fol-
low the central-path for reaching an optimal solution of CQO. However, their derived
algorithms require that the starting point must be strictly feasible and on the central-
path. Still, it is uneasy task to find a perfectly centered initial point. Primal-dual
path-following algorithms are among the most effective methods for solving opti-
mization problems.

In the last years, the determination of new search directions has a great influence
to improving the complexity and the numerical efficiency of these methods. Among
the proposals, the technique of algebraic equivalent transformations (AET) becomes
a widely used tool for offering new search directions in interior-point methods.
This technique was first introduced by Darvay’s [22] for linear optimization (LO)
where he offered a search direction induced by the univariate square root func-
tion. His full-Newton short-step IPA has the best well-known iteration bound, namely;,
@ (\/ﬁlog E). Since then, this idea was extended successfully to convex quadratic
and semide%nite optimization (SDO) problems, monotone and sufficient linear com-
plementarity problems (LCP) (see e.g. [1, 4, 5, 8, 20, 31]). Therefore, it is worth to
analyze other cases when starting points are not centered. It is well-known that with
every algorithm which follows the central-path, we can associate a target sequence
on the central-path. This idea leads to the concept of target-following methods in-
troduced earlier by Jansen et al [31]. Weighted-path following IPMs can be viewed

as a special case of them and which are used as an alternative to remedy this draw-

S5



6 INTRODUCTION

back [3, 7, 10, 23, 40]. In [18], Darvay proposed a weighted-path following IPMs
for solving LO. Later, Achache [6], Mansouri et al. [34] and Wang et al. [38, 40]
extended successfully Darvay’s algorithm for solving monotone LCP, P, (x)—LCP over
symmetric cones, monotone mixed and horizontal LCP, respectively. The relevance
of the technique of AETs for the central-path equation has been treated in [19, 38]
and subsequently in references [1, 5].

Later, different univariate functions are investigated for several optimization prob-
lems (see e.g. [20, 21, 38, 40, 46]). We also mention that the paradigm of so-called
barrier kernel functions is a good way for obtaining new search directions (see e.g.
[3, 4, 12, 14, 15, 24, 29, 47]).

Our main goal in this thesis is to investigate two proposed IPA for solving the CQOs.
The first one is based on the classical full-Newton step based on AET introduced by
the univariate function v(¢) = t* applied to the centering equation which defines the
central-path. However, the second one is based on a new weighted-path following
IPA for solving the CQOs based also on an AET induced by the function ¢ (t) = t2. At
each iteration, only full-Newton steps and the strategy of the central-path are used
for getting an e-approximated optimal solution for CQO. These algorithms achieves
the best known polynomial complexity. Further, under some imported changes on the
original versions of these algorithms, the new obtained numerical results are very en-
couraging.

Short Outline of the Thesis

The thesis contains three chapters, followed by a bibliography. This thesis is orga-
nized as follows

e Chapter 1: In this chapter, we present a mathematical background which will
be useful throughout the thesis.

e Chapter 2: This chapter presents a new feasible full-Newton step path-following
method for CQO based on a new modified Newton search direction obtained
by the application of the AET technique introduced by the new univariate func-
tion ¢(t) = t*. Under new appropriate defaults of 7 and 6, the favorable it-
eration bound of the algorithm with short-step method is achieved, namely,
O(v/nlog E) which is as good as the bound for CQOs. For evaluating the effi-
ciency of oeur algorithm some numerical results are provided.

e Chapter 3: Getting a perfectly centered initial point for feasible path-following

interior-point algorithms is a hard practical task. Therefore, it is worth to ana-



lyze other cases when the starting point is not necessarily centered. In this chap-
ter, we propose a short-step weighted-path following interior-point algorithm
(IPA) for solving convex quadratic optimization (CQO). The latter is based on
a modified search direction which is obtained by using the technique of al-
gebraically equivalent transformation (AET) introduced by a new univariate
function to the Newton system which defines the weighted-path. At each itera-
tion, the algorithm uses only full-Newton steps and the strategy of the central-
path for tracing approximately the weighted-path. We show that the algorithm
is well-defined and converges locally quadratically to an optimal solution of
CQO. Moreover, we obtain the currently best known iteration bound, namely,
@) <\/ﬁ10g E) which is as good as the bound for linear optimization analogue.
Some numérical results are given to evaluate the efficiency of the algorithm.
Finally, we end the thesis by a conclusion and future work.



Chapter 1
Mathematical background

In this chapter, we present some mathematical background in matrix and convex
analysis, differential calculus, quadratic optimization and some methods of resolu-
tion.

1.1 Matrix Analysis

We denote by R", the finite-dimensional Euclidean vector space n € N and by R"*",
the set of real square matrices of order n.
- For all x and y € R", we denote by:

n

T

ry= E TiYi,
=1

the usual scalar product of 2 and y. The vector 2”7 denotes the transpose of the
vector column x of R".

- Two vectors z and y are orthogonal only if 2”7y = 0.

- The Euclidean norm associated with the usual scalar product, is given by:

|zl = VaTle =

Definition 1.1. A mapping ||.|| : R" — R is said to be a vectorial norm if it satisfies

the following conditions:
e ||z|| >0,V e R ||z|| =0 <z =0.
o |az| =|al|z|,Va € R,Vz € R".

o lz+yll <=l +llyll, Ve, y € R™.
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- The Cauchy-Schwarz inequality:
|z%y| < Nzl ly]| Va,y € R™.
Definition 1.2. We say that the matrix A is positive semi-definite if:
T Az >0 ,Vz € R™,
and we say that A is positive definite if:

2" Az > 0,Vr € R*(z #0).

1.2 Differential calculus

In this paragraph, we introduce the notion of differentiability of a function. We start

to give some basic topological notions.

Definition 1.3. Let D be a subset of R" and f : D — R. We say that f is continuous
inx € D, if f(zx) — f(z*) for any sequence {x,} of D such that z;, — 2*. So we say
that f is continuous over all D C R", if it is continuous at any point of D.

Suppose now that the set (), is an open set of R" and f is a function f : Q@ — R.

Definition 1.4. For all x € Q2 , and h € R", the directional derivative of f at z in the
direction h, is given by

of . flx+th) — f(z)
%(x)—tg% ; .

The gradient of f at z, denoted by V f(z), is the column vector of R" given by:

Vi(z) = (g—i(x),...,gi(w))T.

Recall the formula:

aof

ah(if) = W'V f(z), Vz €Q, VheR"

- We say that x* is a critical or stationary point of the function f if
Vf(@*)=0.

- We denote for all z € Q, V?f(z) the square symmetric matrix of order n, given by

_ %
N afﬂlal’j

(V2f () (x),Yi,j=1,...,n.
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V?f(x) is called the Hessian matrix H from f to x. We also have:

H=V*f(z)h = a‘hTVf(x).

Ox

- We say that f is of class C* on ( if the partial derivatives of order 2 of f, exist and

are continuous.

1.3 Convex analysis

In this paragraph, we cite some basic notions of convex analysis which will be useful
afterwards.
Convex functions

Definition 1.5. A set D C R" is said to be convex if Vz,y € R" the segment [z, y] C
D.

Definition 1.6. Let D C R" be a convex setand f: D— R.
1- f is said to be convex on D if:

f(I=t)x+ty) <A —=t)f(x)+tf(y).Ve,y € D,Vt € [0,1].
2- f is said to be strictly convex if:
f(I=t)e+ty) < (1 —1t)f(x) +tf(y).Ve,y € D,x #y,Vt € ]0,1].

Definition 1.7. If f is of class C* on D, then f is convex over D if and only if the
matrix Hessian V?f(z) is positive semi-definite. Likewise, f is said to be strictly
convex on D if and only if the Hessian matrix is positive definite.

1.4 Unconstrained optimization problem

In this section, we only consider unconstrained optimization problem. We give the
existence and the uniqueness of a minimum thus the characterization of the latter
through its optimality conditions. A unconstrained optimization problem (P) is de-
fined by

(P) min f(z).

reR™

Definition 1.8. If D C R",2* €D and f: D — R.
1- We say that z* is a global minimum of f on D if:

f(x) > f(z*),Vx € D.
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2- We say that z* is a local minimum of f on D if there exists a neighborhood V' of =*
such that :
flz) > f(z*),Yx e DN V.

Remark 1.9. Any global minimum is a local minimum.

1.4.1 Results of existence and uniqueness of the solution

In order to be able to easily calculate or approach the solution of an optimization
problem, it is interesting to know the hypotheses guaranteeing the existence and
uniqueness of this solution.

Existence.

Theorem 1.10. Let D C R". If f : D — R, is continuous and if D is a compact set
(closed and bounded), then f has a minimum on D.

Theorem 1.11. We suppose that:
1. The set D is closed
2. f is lower semi-continuous on D.
3. ||x‘}iir}rmf(x) = 400, (ie. fis coercive).

Then f has a minimum on D.

Uniqueness.
The following result shows the impact of convexity in optimization problems.

Proposition 1.12. Let f be a convex function defined on a convex set D. Then any local
minimum of f on D is a global minimum. If f is strictly convex, it there is at most a

global minimum.

1.4.2 Necessary and sufficient conditions for optimality
Necessary conditions

Theorem 1.13. (First order necessary optimality conditions) Let f : R" — R, a differ-

entiable functional. If x* achieves a minimum (global or local) of f on R" then:
Vi) =0.

Theorem 1.14. (Second-order necessary optimality conditions) Let x* a minimum of
f. If f is twice differentiable at the point z*, then:

(V2f(z*)y,y) >0, Yy e R™
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Sufficient conditions

Theorem 1.15. (First order sufficient condition ) If f is convex and if:
Vi) =0.

then x* is a global minimum of f.

Theorem 1.16. (Second order sufficient condition) If f is twice differentiable and if
Vf(z*) = 0 and V*f(z*) positive definite then z* is a global minimum of f.

1.4.3 Optimality conditions
The constraint qualification

Definition 1.17. Let x be the feasible for convex optimization problem and put
I(z) = {i | hy(x) = 0}. We say that the linear independence constraint qualifica-
tion hold at x if the gradients

are linearly independent.

Theorem 1.18. (Karush-Kuhn-Tucker (K.K.T) )If x* is a solution of (CP), if the gra-
dients of f,g and h are finite at x*, and if a constraint qualification is satisfied, then
there exists an y* € R™ and z* € R* such that:

m k
Vi(x*)+ Zijgi(:c*) + Z 2;Vh;(z*) =0,
i=1 j=1

zihi(x*) =0, j=1,--- K,
220, j=1¢€ ()

1.4.4 Order of convergence for a sequence of points

Let z* be the limit of a sequence {z;},., produced by an iterative algorithm. We
say that z;, — =* when £ — +o0 @xk_—x* — 0O when k — +o00 & ||z — 2| =0
when k£ — +00. Now we try to characterize the speed of convergence of the quantity
xr — 2" — 0 when k — +o00. We say that:

- ), converges linearly to x*, if there is a ¢4 (0 < ¢, < 1) such that:

|tpr1 — || < ek ||z —2*||  from a certain rank k.

- ¥ converges super linear to z* if lim ¢ = 0.
k—+o00

- xj, converges quadratically to 2, if there is a ¢(0 < ¢ < 1) such that:

|Zppr — 2*]| < ¢|lzr, — 2*||* from a certain rank k.
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1.5 Convex quadratic optimization

Let us consider the convex quadratic optimization (CQO) problem in its standard
format: .
min {§$TQ£E +clx st Az =b,x > O} , P)

where () € R"" is symmetric positive semidefinite, A € R"™*" with rank (A) =
m(m <n),ce R", be R™, x € R"is the vector of variables.

If there exists a feasible solution to CQOs, then there exists an optimal solution.

We associate Lagrange multipliers y € R™ and z € R"(z > 0) with the constraints
Az = b and z > 0, and write the Lagrangian

1
L(fﬂ, Y, Z) = §xTQx + CTm - yT(Ax - b) - ZT.CI?.

Dual quadratic format of P

To determine the Lagrangian dual
LD(y7 Z) = minL($7 Y, Z)
we need stationarity with respect to x:

Vol(z,y,2) =Qx+c— ATy — 2 =0.

Hence ]
Lp(y,z) = §xTQx + e —y' (A —b) — 2T
=bly+al(c+Qv— Aly—2) - %xTQx
=bly — %xTQx
and the dual problem has the form:
gnyaic {bTy — %xTQx st ATy+2—-Qr=c, 2> 0} , (D)

We define the following feasibility sets:

Fp ={z € R"| Az = b, x > 0}, the feasible solutions set of (P).

Fp={y € R™| ATy + 2 = Qz, » > 0} the feasible solutions set of (D).
Fp={x € R" | Az = b, v > 0} the strict feasible solutions setof (P).
Fp={y e R™| ATy + 2 = Qz, z > 0}, the strict feasible solutions set of (D).
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1.5.1 Resolution methods
Wolfe’s algorithm for CQOs

It is one of the most widely used methods and was developed by P. Wolfe in 1959.
Wolfe’s algorithm can be directly applied to solve any quadratic programming prob-
lem. Wolfe’s rule calls for the calculation of () in the linear search procedure.

We mention that this algorithm has an exponential complexity.

Step1(Input):
ag € [0,10%)], calculate ¢ (0), o} (0);
take p = 0.1, and o = 0.9;

ap=0,by = 10,k = 0;
begin

Step2: Calculate py (o)

o If i () < 91 (0) + papy(0); go to Step3,
e Else put a1 = ay, biy 1 = ay; and go to Step4.
Step3 Calculate ¢} (o)
o If (o) = 0 (0)(gr(ar)) < —0p(0) Stop and take & = ay, ;
e Else a1 = ak, by,1 = by and go to Step4;

Qg1+ bpyr

e Step4 Calculate a1, a1 = 5 ;
k =k + 1 and return to Step2.

end

Wolfe’s Algorithm for CQOs
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Interior Point Methods

Interior-point methods are a certain class of algorithms that solve linear and non-
linear convex optimization problems. Arguably, interior-point methods were known
as early as the 1960s. Interior point methods in mathematical programming have
been the most important research area in optimization since the development of the
simplex method for linear programming. Interior point methods have strongly in-
fluenced mathematical programming theory, practice and computation. For example
linear programming is no longer synonymous with the simplex method, and linear
programming is shown as a special case of nonlinear programming due to these
developments. On the theoretical side, permanent research led to better compu-
tational complexity bounds for linear programming, quadratic programming, linear
complementarity problems, semi-definite programming and some classes of convex
programming problems. The interior point method attempts to overcome the poten-
tial weakness of the simplex method and it has been shown that the interior point
methods can be solved in polynomial time. Interior-point methods solve the problem
(P) by applying Newton’s method to a sequence of equality constrained problems.
These methods is divided into three important classes such as:

e Projection’s method for Karmarkar

e Potential method

e Path-following method.

In this work, we concentrate only on the third class which is path-following IPMs
for solving CQOs. Here we give the principal for the basic ideas for the latter.

Perturbed problem (Log Barriers)

We replace the primal quadratic problem (P) with primal Barrier problem:

)1 -
min {§xTQx +cle—p ; logz; s.t. Ax = b} , (P
and replace the dual quadratic problem (D) with dual Barrier problem:
1 n
max {bTy — —2TQz + p Z logz; st. ATy+2—Qz=c, } ; (D,)
oYz 2 i=1

where 1 > 0 is a barrier parameter.
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First Order Optimality Conditions

Consider the primal barrier quadratic program (P,,):

)1 -
min {§xTQx +clr— MZ logz; s.t. Ax = b} . (P.)

i=1

We write out the Lagrangian

1
L(x,y,p) = §xTQx + e — y"'(Az —b) — NZ log z;.
The conditions for a stationary point of the Lagrangian are:
vxL(xaya :u) =C— ATy - ﬂX_le + Q*T = 07

V,L(z,y, 1) = Az — b =0, where X! = diag(x, ", 25", -+ 2, b).

Let us denote

z=pX"te, ie Xz=pe.

Thus we consider the system:

Axr =b,x > 0,
ATy 4+ 2—-Qr=c2>0,
Xz = pe.

Newton Method

The first order optimality conditions for the barrier problem form a large system of
nonlinear equations
F(z,y,2) =0,

where F : R — R?"*™ s an application defined as follows:

Axr —b
F(ZE,y,Z): ATy—l-Z—QZ'—C
xrz — je.

Actually, the first two terms of it are linear, only the last one, corresponding to the
complementarity condition, is nonlinear. Note that

A 0 0
VF({L’,y, Z) = _Q AT I ’
Z 0 X

Thus, for a given point (z,y, z) we find the Newton direction (Ax, Ay, Az) by solving
the system of linear equations:
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A 0 O Ax b— Ax
—Q AT I |.| Ay |=|c—ATy—2+4+Qzx
A 0 X Az pe — X Ze

For more details see([26, 27])



Chapter 2

A feasible short-step IPA for convex
quadratic optimization based on new
search directions

2.1 A feasible full-Newton step IPA for CQO

Throughout the paper, we assume that both (P) and (D) satisfy the Interior-Point-
Condition (IPC), i.e., there exists (2°,y°, 2°) such that:

Az =0, 2" >0, ATy + 20 — Q2" =¢, 2° > 0.

Finding an optimal solution for (P) and (D) is equivalent to solving the following
system, which represents the Karush-Kuhn-Tucker (KKT) optimality conditions

Axr =b, x>0,
ATy +2—Qr=c, >0, (2.1)
rz = 0.

2.1.1 The central-path of CQO

The primal-dual path-following IPA is usually replace the complementarity equation
rz = 0, in (2.1) by the parameterized equation zz = pe with ¢ € R’ . Thus we
consider the system:

Axr =b,x > 0,
ATy 4+ 2—-Qr=c2>0, (2.2)
Tz = pe.

If the IPC holds, then system (2.2) has a unique solution for each fixed p > 0 de-
noted by (z(u),y(n), z(1)). The set {(x(u), y(u), (1)) | p > 0} is called the p-center
of CQO. The set of u-centers is called the central-path of CQOs. If i tends to zero

18
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then the limit of the central-path exists and since the limit point satisfies the comple-
mentarity condition, the limit yields an optimal solution for CQO. The relevance of
the central-path for LO and CQO has been discussed in the following monographs,
(see, e.g. [40, 44, 45]).

2.1.2 The new search direction for CQO by using AETs

Similar to [1, 22], the AET technique for computing the new search direction for
CQO is simply based on replacing the non linear equation zz = pe by the new one:

¥ (%) = ¥(e)

where 9(.) : (0,400) — R is a continuously differentiable and invertible function.
Using the function ¢, then (2.2) can be rewritten as the following system:

Ar =b,x > 0,

Aly+2—-Qr=c,z>0, (2.3)
Tz

7/J— :¢€7

(u) (e)

where ¢ is applied coordinate-wisely. Applying Newton’s method to the modified
system (2.3), we obtain the following system:

AAzx =0,

ATAy+ Az — QAz =0,

p(i(e) — B(22)
o

where 9" denotes the derivative of +). To simplify matters, we introduce the following

vi= i and d:=Vvazz L.
\/ 1

So the scaling directions are defined as

(2.4
2Ax + Az =

notations

d, = UA—J; and d, = &AZ (2.5)
x z
In addition, we have
Az + zAx = po(d, + d,). (2.6)

Next, since () is positive semidefinite matrix, therefore using (2.4), we deduce that
dld, = (Azx)'(Az) = (Az)TQAx > 0. 2.7)
Now, due to (2.5), (2.6) and (2.7), the scaled form of system (2.4) is given by
Ad, =0,
ATAy +d, — Qd, =0, (2.8)
dx + dz = Pv
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where
Ple) —p(v?)
v == —-— 2-
b v (v?) (2.9)

with A = AD, Q = DQD and D :=diag(d).
Next, by restricting ourselves to () = ¢, then (2.9) and (2.4) are given by

Py = %(v*’ — ) (2.10)
and
AAz =0,
ATAy+ Az — QAz =0, (2.11)
W, T2, 4 Tz
2Ax + 1Az = = ((— —(=)).
(= ()

Moreover, we address by:
roi=x+Ar; y,=y+Ay; z=z+ Az

to the new iterate after a full-Newton step.

2.1.3 The proximity measure and some bounds

For the analysis of the algorithm, we use at each iterate a norm-based proximity
measure §(v; ;1) defined by

§(v) = 6(zz; p) = 2||pol| =|lv™2 — | (2.12)

It is clear that

d(v) =0 v=e<rz=Le.

So §(v) is used to measure how far is a point (z,y, z) from the central-path.

Next, across system 2.8 and according to 2.12, we can easily prove the following
inequalities.

Lemma 2.1. Let (d,, Ay, d,) be a solution of (2.8) and 1 > 0. If § := §(v) > 0, then

1
0<dld, < §52 (2.13)
and
It < 2 dods | < Lo? (2.14)
Tz |10 = 167 Tz _— 8 . .
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2.1.4 The algorithm

The full-Newton step IPA for solving the CQO works as follows. First, we use a
suitable threshold (default) value 7 > 0, with 0 < 7 < 4 and we suppose that a
strictly feasible initial point (2°,7°, z°) exists such that §(2°2°; u°) < 7, for certain p°
is known. Using the obtained new search directions (Az, Ay, Az) from (2.11) and
taking a full-Newton step, the algorithm produces a new iterate (x + Az, y + Ay, z +
Az). Then it updates the barrier parameter p to (1 — ¢)u with 0 < 6 < 1 and solves
the Newton system (2.11), and target a new u-center and so on. This procedure is
repeated until the stopping criterion 2”2 < ¢ is satisfied for a given accuracy ¢ > 0.
The generic IPA for the CQO is stated in Figure 2.1 as follows.

Input:

1
A threshold parameter 0 < 7 < 4 (default value 7 = z_l);
accuracy parameter ¢ > 0;

. 1
a barrier update parameter 6, 0 < 6 < 1 (default value 6 5 m),
a strictly feasible initial point (2°,7°, 2°) and p° s.t. §(2°2% %) < }1;
begin
Setx = a2y :=y" 2= 2% p =
while 27z > e do
begin
o pi=(1-0)u;
e calculate (Az, Ay, Az) from (2.11);
o (z,y,2) = (x+ Az,y + Ay, z + Az);
endwhile
end.

Figure 2.1: Algorithm 1. The IPA for CQO

2.2 The analysis of the short-step algorithm

In this section, we will show across our new defaults that Algorithm 1, is well-defined,
i.e., at each iteration, the full-Newton step is feasible and the condition §(zz; u) < 7
are maintained through the algorithm.

In the next lemma, we investigate the feasibility of a full-Newton step under the
condition § < 4.

Lemma 2.2. Let 0 < 4, then the full-Newton step is strictly feasible.
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Proof. Let a € [0, 1], we define 2(«a) = = + aAzx and z(a) = z + aAz. Then
z(a)z(a) = vz + a(zAz + 2Az) + > AzAz.
Using (2.5) and (2.6), we get
z(a)z(a) = p((1 — a)v® + a(v® + vp, + ad.d,)). (2.15)

Hence z(a)z(a) > 0 if v* + vp, + adyd, > 0. By Lemma 2.1 (2.13), and from (2.10)
substitution p, = §(U‘3 —v) and let § < 4, it follows that

v* +up, + adyd, > vQ+va—a||dde||ooe

> v 4 op, —a—e

\Y,
S
_|_
|
=
<
w
|
=
|
]
o

V
|
<
4
&
|
o
|
o

1 1 1 2
> 51}2—}—50 2—622—1)2<U2—6) > 0,Vv > 0.
The functions o« — z(«) and o« — z(«) > 0 are continuous, x(0) > 0 and z(0) > 0 and
x(a)z(a) > 0 for each o € [0, 1]. These imply that (1) =z, > 0 and 2z(1) = z, > 0.

This shows the strict feasibility of a full-Newton step. This completes the proof. [

Lemma 2.3. Let 6 < 4, then
1
minv, > 1\/ 16 — 62

T2y
where v, = Sy

W
Proof. Setting o = 1 in (2.15), then from (2.10), we have

1 1
vi =02+ up, + dyd, = 51)2 + 5@’2 + d,d,.

. . 1 1 ) 1 1
Lemma 2.2, implies that §v2 + 51)_2 —e>0if § < 4, so 51)2 + 51)_2 > e. Hence,

vi > e+ d,d,. Next, due to (2.14), we obtain

52 1
v > e+ dyd, > (e — ||dpd.||oe) > <1 - 1_6> e > —(16 — 6%)e.

This implies that
1
minv, > 2 16 — 2.

This proves the lemma. O

Next, we prove that the iterate across the proximity measure is locally quadratically
convergent through the algorithm 1.
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Lemma 2.4. Assume < 4, then

4 64 5)
0L =90 =0 ) <oy < + —62.
+ (U+) <I+Z+ :u) + (m (]_6 — 52)3> ]

: 1 : .
Moreover, if § < 1 then 6, < 6> which means the local quadratic convergence of the
full-Newton step.

Proof. Letv, =, /aij“ and 6, =[jv;® — v, |, then we have,

- (59

€ —vy

3
vy

R e

For all t € R |, we define the function g by

g(t) = 1T E

Using g, we deduce that
0y =llg(vs)(e = vl <llg(vs)llclle — v

where g(vy) = (g1(v4)1, -+, gn(vy)n). The function g is continuous and monotoni-
cally decreasing and positive on (0, +c0). Hence

0 < lg((v2))] = g((vs)s) < glminwy) < g GW - 52) .

Then

4 64
9wl = =5+ =57
So

o, < 4 + o1 le — 2|
TV /(16— 0% o
Next, letting & = 1 in (2.15) and due to (2.10), we have

1 1
le = 021l =lle = (22 + vpy + dodo)l| =lle — 50* = 5072 = dud |

Then . .
e =2 <le = 50 = 5o 2+ dud].

Next, we may write

1 1
P
2 2

= ||o(v).4p?

I

where
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Let us consider the function y
t) = ——.
o(t) 2(t2 +1)2

The function ¢ is continuous and monotonically increasing and positive for all ¢ €
(0, +00). Then we have

1
0<o(t) < 5= lim ¢(t),Vt > 0
This yields
0 <o) < %,W =1,..,n. (2.16)

1 1 .. .
Then, as ||p,||* = 152, 16(v) oo = max ¢(v;) < 5 and 1P2]] <l|pol?, this implies that

1 1
e— —v?— —v7?
2 2

1
< 4llé(0) sollpell® = 50°.

By (2.14), we deduce that:
5
2 < 262
le— o3l < 2

Next, for § < 4, we have

5, <2 ! + o 62
TT8\VI6—02  J16—02p )

1
Next, let § < R then §, < 2. This completes the proof. Il

In the next lemma, we obtain an upper bound for the duality gap after a full-

Newton step.
Lemma 2.5. After a full-Newton step it holds

xlzy < 2pn. (2.17)

Tz
Proof. Asv? =~ we have
I

(23) 2y = " (2124) = pe’ v = pe’ (v* + vp, + ddz)
= pe’ (e +v* +vp, —e) + pdld,

= pele+ e’ (v +vp, — ) + pdid,

1 1
T T T §U2 N 50_2 R
= pe e+ pd,d, + pe (03 — o) Ap;

Then, after some simplifications, we get

()" 2y = pele + pdld. + 4pe” o(v)p?,
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where ¢(U) = (¢(v1>7 ¢(U2>7 U 7¢<Un)) with

Due to (2.16), we have
1 .
0 <[p(v;)] = p(v;) < 5> Vi.

Therefore
e"v? < pe’e+ pdld, + 4pe” max|p(v;)|p?

< pele + pdld, + 2||p,|?
1 1

< —6%p + =0°

<npt 0+ 0%

<pu (n + 252) < (n+6)p.

1 . .
Let § < T then e"v2 < (n + 1)y, but since (n + 1) < 2n,¥n > 1, it follows that
e"v? < 2un. This completes the proof. [

In the following lemma, we investigate the effect of a full Newton-step on the
proximity measure followed by updating the parameter y by a factor (1 — 6), where
0<0<l1.

Theorem 2.6. Let i, = (1 — 0)p and let x > 0,z > 0, then we have

24/2n6
O(vyspg) <04+ s
1-46
In addition, let § < ~, and  — —— n > 2, then 6(vs:j1,) < .
n addition, let § < 7, an _12\/%n en 6(vs; ) < 7.
Tz -3
Proof. As vy and §; = |jv
s 25 and s o
T4z - T4z 1
ooy = | Feze N [Tz :Hl_gg—?’_
($+Z+,M+) (m#) (1 _ Q)IM ( ) Uy 1 — €U+
3 1
= (|1 =035 = (1= 0)Fvs + (1= 0) 0y — ——oy
3 3 3 1
< (1_9)51);3_(1_ 29 H+H1—9)2v+— ] 9v+
= (1-0)26.+|(1—6)>

1

i [t for & € (0,1).

< Sot|a-0i-
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. s 1 6]2 — 6|
By Lemma 2.5, < v/2n and since |(1 — )2 — = , Vo € (0,1),
then 99— 6
5(%+Z+,M+) §5++ |1_ 9|\/2n
2 — 2
As 612 — 9| < 4 , V0 € (0,1), we obtain
V-0 V1-0
2v/2n 6
0(ryzy; <, + )
( +~+ /JJJr) + \/1——6
1
As§ < 7 50 54 < 1.254904 62, then we get
2v2n 0
5 Suy) < 0.078431 + .
([E+Z+ :U’+> m
1 1
Letd = ———,n > 2hence f € |0, — | from which we deduce that §(v_; < &(0
e 0.5:] (013 1) < €06)
where 1
0) = 0.078431 + , V0 € (0,1).
30 A e

Since £'(A) > 0, then £(6) is strictly increasing on {0, 2—14} and so £(0) < & (i) =

1
0.248682. This implies that §(x 2 ;) < T This completes the proof. O

Theorem 2.6, shows that Algorithm 1 is well-defined since the conditions = >
0,z>0,and §(zz;pu) < % are maintained through the algorithm.

In the next lemma, we derive an upper bound for the total number of iterations
produced by Algorithm 1.

1
are strictly feasible such that 6(z°2°; %) < T

with 1° > 0. Moreover, let z* and 2" denote the vectors obtained by Algorithm 1, after
k-iterations with ° := p*. Then (%) 2* < ¢ holds if

1 240
kZ[—log ,un-"
0 €

0 0

Lemma 2.7. Assume that z° and z

Proof. From Lemma 2.5 (2.17), we deduce that (z*)"2* < 2(1 — 6)*1.°n. So the in-
equality (2*)"2* < € holds if 2(1 — 0)"°n < e. Taking logarithms, we get

klog(1 —6) < loge — log2nu’ < loge — log 2u’n.

Next, as —log(1 — 0) > 6,0 < 6 < 1, then the above inequality holds if

2n1°

€

k6 > log 2nu° — log e = log

This completes the proof. O
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1 1
Theorem 2.8. Let § = and ;° = =, then Algorithm 1, requires at most
124/2n 2
@) <\/ﬁ log ﬁ)
€

iterations for getting an approximated primal-dual solution of CQO with the output

2z <e

1
Proof. Letf = and ;° = 7 the results follows directly from Lemma 2.7. [

1
12+/2n

2.3 Numerical results

In this section, we implemented Algorithm 1 by using Mat lab R2010a and run on
a PC with CPU 2.00 GHz and 4.00 G RAM memory and double precision format
on some examples of CQOs with different size. Here our accuracy is ¢ = 10~*. The
strictly feasible initial point and the optimal solution for CQO problems are denoted

by («° > 0,1°, 2

> 0) and (z*,y*, z*), respectively. Here, we display the following
notations:"Iter" and "CPU" to denote the number of iterations and the elapsed time
produced by our algorithm. Also to improve our numerical results we have relaxed
1
12v/2n

for each example, two tables, one is for different appropriate initial points taken in

the barrier parameter p° € {1,0.5,0.05}, with § = ,n > 2. We also display

Algorithm 1 according to each p° > 0 such that §(2°2°, %) < 1 and the other is for
the number of iterations and the elapsed time produced by our algorithm for each
example.

Example 1. We consider the convex quadratic optimization, where

2 0 0 0
-1 1 1 0 0 2 0 0
A: 7Q: )
2 3 0 1 00 2 0
0 0 0 2

c = (6.8565, —3.5720, —5.6797,0.6479)", b = (0.5,3)”. The different strictly feasible
starting points of Algorithm 1 are stated in the table below:

Table 2.1: Initial points for Example 1.

Wlla">0 22 >0 5(x2% u°)
1 | (1.6243,1.0033,4.5688,2.3291)7 (0.6064, 1.0293,0.2162, 0.4211)7 | 0.0842
0.5 | (1.0298,0.9873,1.0092,0.9628)" (0.5,0.5,0.5,0.5)" 0.1016
0.05 | (0.05,0.04,0.05,0.05)" (0.9,1.195,1.001, 1.01)7 0.2416

Next, the number of iterations and CPU times for this example are summarized in
the table below.
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Table 2.2: Numerical results for Example 1.

1’ —

1 0.5 0.05

Iter | CPU Iter | CPU Iter | CPU

355 0.207200 | 332 0.205742 | 332 0.175473

An optimal solution of the COQs in Example 1 is:

r* = (0.3431,0.7002,0.1428,0.2132)",
y* = (—5.3941,1.0742)%,
z* = (0.0001, 0.0000, 0.0000, 0.0001)7".

Example 2. Let the matrices A and () be given as

1.2 1 1.8 0
A= 3 -1 15 -2 1 |,
-1 2 -3 4 2

20 1.2 1 18 O
1.2 32 1 1 1

Q=1 05 1 14 1 1 ;
1

05 1 1 15
-1 1 1 1 16

c = (—21,-37,-16,—-22,-19)", b = (5,2.5,4)". The initial points and the obtained
numerical results are stated in the following tables.

Table 2.3: Initial points for Example 2.

Wlla">0 22 >0

o272 pi°)

1 e (1.0298,0.9873,0.9690, 1.0092, 0.9628)”

0.1201

0.5

1.0298, 0.9873,0.9690, 1.0092, 0.9628)"  (0.5000, 0.5000, 0.5000, 0.5000, 0.5000)"

0.1201

(
0.05 | (0.5182,0.4920, 0.4811,0.5057,0.4773)" ¢/10

0.1474

Table 2.4: numerical results of Example 2.

1’ —

1 0.5 0.05

Iter | CPU Iter | CPU Iter | CPU

406 0.264340 | 380 0.243439 | 293 0.165237
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An optimal solution for this example is:

r* = (1.0182,0.9920,0.9811, 1.0057,0.9773)",
y* = (—0.3172,0.0913, —0.6271)7,
2* = 107%(0.4573,0.1949,0.1971, 0.1923,0.0489)"".

Problem 3. We consider the CQO, where n = 2m and

A= (a;) = 0 if i£jor(i+1)#y
Y i j=i+m.

27—1 if i>45 ori=j7=n
o J Cor J 0 if i=i+m
Qli,j] =< 2i—1 if i< c= ) ,
o T 1 else if,
i(i+1) if i=j.

bli] = 0.5.

In this example, we take 2° = 0.5¢, 3 = O and 2° = e as the strictly feasible initial
point. The obtained numerical results are showed in the table below.

Table 2.5: Numerical results for Example 3 with different size.

T=1

Size (m,n) | ' =0.5

Iter | CPU

) = (10, 20) 2892 4.345861
)= (50,100) | 6761  77.349749
) = (
) =(

100, 200) 9736 150.012162
= (1000, 2000) | 15753 2480.426429

An optimal solution for Example 3 is:

x* = (0.0000, - - - ,0.4185)7,
y* = (0.0003, - - - ,0.0003),
2* = (0.3876, - -~ ,0.0000)".

Comments. Across the obtained numerical results stated in the previous tables, we
see that the number of iterations produced by Algorithm , is too large. This is due to
the fact that the default ¢ provided by our analysis is very poor when the size n of
the problem becomes very large. Consequently, the rate of decrease in the sequence
of barrier parameters {;"} approaches to one. This leads to a slow convergence of
Algorithm 1, to an optimal solution for large size CQO problems.
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2.3.1 A numerical modification of Algorithm 1

In this subsection, according to the above comments and in order to accelerate the
convergence of Algorithm 1, we import some modifications on it, where instead of
using the default of ¢ stated in our analysis, we take it as a constant belongs to the
set {0.1,...,0.9}. In addition, to ensure that iterates remain interior, we introduce a
primal and dual step-size ay,.x > 0 such that x + pa. Az > 0 and 2z + pagya.Az > 0
where o, = min(pa, 1) with p € (0,1) and @ = min(«,,c,) such that o, and «, are
computed as follows:

a, = min {(—xz;)/(Ax;) : Az; <0} o, =min{(—2;)/(Az) : Az; < 0}.

Based, on our modifications the new obtained numerical results are stated in tables
below.

Table 2.6: New obtained numerical results for Example 1.

p’ =
011 0.5 0.05

Iter | CPU Iter [ CPU Iter | CPU
0.1 | 101 0.062610 | 94 0.062887 | 73 0.043659
0.2 | 48 0.039662 | 45 0.033867 | 35 0.033420
03130 0.028877 | 28 0.024989 | 22 0.024648
04|21 0.030101 | 20 0.023720 | 15 0.023575
05|16 0.023684 | 15 0.025608 | 11 0.026514
0.6 |12 0.023404 | 11 0.024542 | 9 0.021171
0719 0.023096 | 9 0.019677 | 7 0.019430
0817 0.020431 | 7 0.020159 | 5 0.021679
0915 0.017440 | 5 0.016987 | 4 0.017399

Table 2.7: New obtained numerical results for Example 2.

p’ —
011 05 0.05

Iter | CPU Iter | CPU Iter | CPU
0.1 | 103 0.062552 | 97 0.054235 | 75 0.045948
02149 0.038470 | 46 0.036995 | 36 0.031934
0.3 |31 0.028234 | 29 0.026437 | 22 0.027367
04 | 22 0.028094 | 20 0.027767 | 16 0.024999
05|16 0.023248 | 15 0.023424 | 12 0.022347
0.6 |12 0.024802 | 12 0.021535 | 9 0.021052
0719 0.018651 | 9 0.024192 | 7 0.021086
0817 0.020868 | 7 0.022089 | 5 0.020154
0915 0.017233 | 5 0.016867 | 4 0.017240
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Table 2.8: New obtained numerical results for Example 3.

0 —
Size (m,n) | | 0.1 0.5 0.65 0.95

Iter | CPU Iter [ CPU Iter | CPU Iter | CPU
(10,20) 364 0.574110 56 0.094392 37 0.023738 | 13 0.019624
(50, 100) 380 4.114823 58 0.528836 39 0.141632 | 14 0.055535
(100, 200) 386 13.905783 59 2.078463 39 0.664945 | 14 0.256223
(1000,2000) | 403 1320.457701 | 62 542.518584 | 41  41.610999 | 15 107.677837




Chapter 3

A weighted-path following IPA for
convex quadratic optimization based
on modified search directions

3.1 A weighted-path following IPA for CQO

In this section, we study first the existence and uniqueness of the weighted-path of
CQO and the new modified search directions. Finally, we state the generic weighted-
path following full-Newton step IPA for CQO.

3.1.1 The weighted-path of CQO

Throughout the paper, we assume that both problems (P) and (D) satisfy the follow-
ing conditions.

e Interior-Point-Condition (IPC). There exists a triplet of vectors (z°, ", 2°) such
that:

A’ =b,2° > 0, ATy° + 20 — Q2 =¢,2° > 0.

e Symmetric and positive semi-definiteness. The matrix () is symmetric positive
semidefinite, i.e. Q = QT and v" Qv > 0, for all v € R".

Getting an optimal solution for both problems (P) and (D) is equivalent to solving
the following system of optimality conditions:

Ax =0b,2 > 0,
ATy+2-Qr=c2>0, (3.1)
xz = 0.

32
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Similar to the standard central-path methods, the basic idea behind weighted-path
following IPMs is to replace the third equation (complementarity condition) in (3.1)
by the parametrized equation zz = w”; where w € R’},. Thus we consider the

following parametrized system:

Axr =b,xz > 0,
ATy +2—Qr=c,2>0, (3.2)
T2 = w2

Under our assumptions, system (3.2) has a unique solution denoted by (z(w), y(w), z(w))
for all fixed w € R"} .. The set

{(z(w),y(w), 2(w)) : w >0}

is called the weighted-path of both problems (7) and (D). If w tends to zero then the
limit of the weighted-path exists and since the limit point satisfies the complementar-
ity condition, the limit yields an optimal solution for CQO. Similar to the monotone
LCP [6], the existence and the uniqueness of the weighted-path can be derived in the
following way. Consider the following log-barrier problem

min 27z — Zw?lnxizi st. Ar =0, ATy+2—Qr=c,2>0,2>0.
(z,9,2) Py

Therefore, the necessary and sufficient optimality conditions of the log-barrier prob-
lem are characterized by the solutions of system (3.2). In other word, the existence
and the uniqueness of the weighted-path is equivalent to the existence of unique
minimizers for the log-barrier problem for each weight w > 0. It is easy to verify by
the IPC, that the objective function of the log-barrier problem is strictly convex for
each w > 0. Now, by the application of Newton’s method for system (3.2), we get
the classical Newton search directions [34]. Note that if w = \/pe with y is a positive
scalar, then the weighted-path reduces to the classical central-path. The relevance of
the central-path has been discussed in the monographs, (see, e.g.,[44, 45]).

3.1.2 The new modified search direction

Following [6, 18], we turn now to describe the new modified Newton search direction
for CQO. The AET based directions for CQO is simply based in replacing the weighted
equation zz = w? by the new equation

Y(wz) = P(w?)
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where ¢(.) : (0,+00) — R is continuously differentiable and invertible function.
Then, system (3.2) is converted to the following system

Axr =0b,2 > 0,
ATy+2-Qr=1c2>0 (3.3)
U(wz) = P(w?),

where v is applied coordinate-wisely. As system (3.2) has a unique solution so is the

system (3.3). Applying Newton’s method to system (3.3) for a given strictly feasible
point (z,y, z), i.e. the IPC holds, we obtain the following system:

AAx =0,
ATAy + Az — QAg =0, (3.4)
z2Ax + Az = w(ww)/(;;b)(xz) ,

where v’ denotes the derivative of 1.
To simplify matters, we define the vectors

v:=+/rz and d:=Vzz1.
The vector d is used to scale the vectors x and z to the same vector v as:
d 'z =dz =w. (3.5)
Due to (3.5), the scaling directions are given by
d, = d 'Az and d. = dAz. (3.6)

In addition, we have
Az + zAx = v(d, + d.). (3.7)

Now, since () is positive semidefinite matrix, it follows that
dld, = (Az)'(Az) = (Az)TQAx > 0. (3.8)
Hence, from (3.5), (3.7) and (3.8), system (3.4) can be written as

Ad, =0,
ATAy +d, — Qd, =0, (3.9)
da: + dz = Do
where ) )
Y(w?) —¥(?)
vy (v?)
with A = AD, Q = DQD and D :=diag(d).

Dy = (3.10)
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Next, substituting (t) = £ in (3.10) and in (3.4), yields

9
Py = gv‘Q(w?’ —?) (3.11)

and
AAx =0,
ATAy + Az — QAz =0,
3 _ 3
2Ax + Az = g(w (z2) )
3 \ Tz

Therefore, the new unique modified search directions (Ax, Ay, Az) are obtained by

(3.12)

solving system (3.12). Moreover, the new iterate is computed by taking a full-Newton
step as follows:

ryi=x+Ax; yp=y+ Ay, zpoi=z24 Az

We end this subsection with this remark. By choosing function ¢ (¢) appropriately, the
system (3.12) can be used to define a class of new search directions. For example:

e Y(t) = t yields p, = v '(w? — v?), we recuperate the standard weighted search
directions (see [7, 8, 40]).

e 1)(t) = V/t yields p, = 2(w — v), we get Darvay’s weighted search directions [18].

3.1.3 The proximity measure

For any positive vector v and according to (3.11), we define the norm-based proxim-
ity measure (v;w) as follows:

—2(,3 _ .3
_3lpell 0@, (3.13)

d(v;w)

2&)1‘ Ww;

It is clear that

S(viw) =0 w? =0v* & xz =W’

So 0(v;w) is to measure the distance of a point (z, y, z) to the weighted-path (z(w), y(w), z(w)).

Let us define another measure o (w) as follows:

ro(w) = X)) (3.14)

min(w)

The quantity oo (w) is to measure the closeness of w to the central-path. Here,
min(w) = min(w;)
2

and likewise

max(w) = miax(wi).

Note that in (3.14), o¢(w) = 1 if w is on the central-path.
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3.1.4 The generic weighted-path full-Newton step IPA for CQO

The weighted-path following IPA for CQO works as follows. First, we use a suitable
threshold (default) value 7 > 0 with 0 < 7 < 3 and we suppose that a strictly feasible

0 > 0,9% 2" > 0) such that §(z°2°;wy) < 7 for some known vector

initial point (z
wp. Using the obtained search directions from (3.12) and taking a full Newton-step
the algorithm produces a new iterate (x + Ax,y + Ay, z + Az). Then, the vector
w is reduced by the factor (1 — ) with 0 < # < 1 and solves system (3.12), and so
target a new iterate and so on. This procedure is repeated until the stopping criterion
nmax(w?) < e is satisfied for a given accuracy parameter ¢ > 0. The generic IPA is

stated in Algorithm 2 as follows.

Input:
A threshold parameter 7 < 3 (default 7 = 1);

an accuracy parameter ¢ > 0;
1

36\/%00@10))’
a starting point (2°, ", 2%) and wy s.t. §(2°2% wy) < 1;
begin
Set z := 1%y :yo z:=2"w = wp;
while n max(w?) > €
begin
ow:=(1—-0)w;
e Solve system (3.12) to obtain the direction (Az, Ay, Az);
eUpdate v := x4+ Ax,y =y + Ay, z := z + Az;
endwhile
end

a barrier update parameter ¢, 0 < 6 < 1 (default =

Figure 3.1: Algorithm 2. The weighted-path full Newton step IPA for CQO

3.2 Convergence analysis

In this section, we will show across our new defaults that Algorithm 2 is well-defined
and solves the CQO in polynomial complexity.

We first quote the following technical results which will be used later in the analysis
of Algorithm 2.

Lemma 3.1. Let (d,, Ay, d.) be a solution of (3.9) and w > 0. If § := d(v;w) > 0, then
Vi=1,---,n, one has
2
0<dld, < 55%3, Vi (3.15)
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and
2 2

el < Gt ]| < 202, v (3.16)

7,7

Proof. For the first claim, we have
0 <[|d |1 + 2d3 do+[|d.||* =||ds + d.* =[p.1*.
But since d’d, > 0 by (3.8), it follows that
1 2
dEd. < Sl = 0%, Vi
For the second claim, as

o = (e + 4o = (ds — )

then, we have

||dxdz||oo = (H(dx + dz)2 - (dac - dz)2||00)

< aX(’|dx+dZ||goaHdm_dznzo)

<

1

4

1

—m
4

1

7 max(lde + %, [lde — d|1°).
|

Since dZd, > 0, we have ||d, + d.|* >||d. — d.||*, then we obtain
2 07
I” =

—w , Vi.

1 1
dxdz 00 < - da: dz == v
oo < 2+ a2 = g =&

For the last claim, we have

dod.||* = e" (dod2)* = —e" ((ds + dz)* — (dy — d2)*)”

16

1 1
= 75l +d.)° = (de = )I)IP) < 75 (Ide + - |P+llde — &:|P)°
1
< —(||dy + d,||*+|ds — d. —d d4:— 4_—644
Hence,
|d.d.|| < 5%2 Vi.
This completes the proof. O

The next lemma investigates the feasibility of a full-Newton step.

Lemma 3.2. Let (z,y, z) be a strictly feasible point and assume § := §(v;w) < 3, then
r,=x+Ax>0and z, =2+ Az >0, i.e., x, and z, are strictly feasible.

Proof. Let a € [0, 1], we define z(«) = z + oAz and z(a) = z + aAz. Then, we have

z(a)z(a) = vz + a(zAz + 2Az) + *AzAz.
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Using (3.7) and (3.8), we get
z(a)z(a) = (1 — a)v® + a(v? + vp, + ad,d.). (3.17)

Hence z(a)z(a) > 0 if v* + vp, + ad,d, > 0. By Lemma 3.1 (3.16), and from (3.11)
and let § < 3, it follows that

v? +up, — alld.d, || e
52

2 2

V7 + Up, — a—w;
Prm %y

1

2
2 3, -1 2\
"+ —wiv T —w;, Vi
3 3 (2 1

v2 4+ vp, + ad,d,

(AVARRN V]

V

Clearly, z(a)z(a) > 0 if
%Uz + gw?v_l —w? >0, Vi.
Letting
g(t) = %tg + %Cugt_l —w? t >0, Vi.

g is a strictly convex function and has a minimum at ¢ = w;, and so g(¢) > g(w;) = 0.

Hence,

1 2w3
51)2 + %v_l —w? >0, Vi.

Therefore, Vo € [0,1], x(a)z(a) > 0. Since x and z are positive which implies that
z(a) > 0 and z(«) > 0 for all a € [0, 1]. So by continuity the vectors z(1) = z, and
2(1) = z; > 0. This implies the lemma. O

For the new iterates x, and z,, we define the vector v, = /2, z,.

Lemma 3.3. Assume § < 3, then
(03 = VO =, Vi
Proof. In (3.17), setting o = 1, then from (3.11), we have

1 2
(U?F)Z = UZ + UPy + dzdz = §U2 + gvilwg + dxdz, VZ

1 2
From the proof of Lemma 3.2, we have 51)2 + §U—1w3 w? > 0if § < 3, Vi. From

5 J—

1 2
which we deduce that 51)2 + gv_lwf’ > w?, Vi. Consequently,
(Ui), > w? +d,d,, Vi.
Now, due to (3.16), we deduce that

2
wi2 + da?dz > (wzQ - ||d:cdz||ooe) > %(9 - 52)7 Vi.
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Hence,
(v3); > % 90— 62, Vi.

This proves the lemma. O

Next, we prove that the iterate across the proximity measure is locally quadratically
convergent during the Newton process.

Lemma 3.4. Assume § < 3, then

B - . 5 9 3 2
s =dw) =i < (70 570

In addition, if 6 < 1 then

5 5
5. < =+ 5,
+_(8 9+6\/§)

which means the local quadratic convergence of the full-Newton step.

Proof. We have

S(osiw) = = 07" = o)
1 ||wt =0}
wi || V2
1 |[(w = v (WP A+ woy +07)
W V%
o1 (w? —v3)(w? + woy +07) ‘
Wi vi (W +v4) ‘

For all fixed w € R"

V., 1e. w; >0, Vi, we define the function g by

Wt wit +t2 w; 1
)=+ v Tt TV,
= "mmrn et e "
Using g, we deduce that
1 1 .
0y = —|lg(v)(w? = v}l £ —llg(vs) | llw® = vilI, ¥,

where g(vy) = (¢1(v4 )1, , gn(v4)n). The function ¢ is continuous and monotoni-
cally decreasing and positive on (0, +00). Hence, by Lemma 3.3

Wi .
0 < [g:((v:)))] = g:((v2)) < glv1) < g (VO =07) , ¥
Then . ;
W;
<
ol = 57— e T o v

, Vi
)
This implies that

1 9 3
i< — 22|, Vi.
= W? (9_52 - 31 /—9_52>“W vl Vi
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Next, in (3.17), setting « = 1 and from (3.11), we have

lw® = v}l =llw® = (v* + vpy + dud) |

1
=||lw? — 51)2 — gv_1w3 — d.d,||.

Then

1 2
Joo? = 03] <llo? = 5% = 07 | dads]

Next, we may write

2 1,2 2.1 3 .2

o 1o 2 || _||w — 3V —5v w 9py

w'— v — v W = P
3 3 v (w3 — v3) 4

1 2 9p?
w2—§U2—§U_1 3| _ H(p(v) Zu
where T
vV + 2w
p(v) =

3(v? + vw + w?)?
Let us consider for all 4, the following function

£3(t + 2w;)
3(t2 + wit + w?)?

p(t) =

©(t) is continuous and monotonically increasing and positive for all ¢ € (0, +00).
Then we have

1
< — =i
0<p) < 3 tliglo ©(t),Vt > 0.
This yields
1

0 < o(vs) < g,v@' =1,..,n.

Consequently,
1
0 <Jo(vi)] = p(vi) < 3. (3.18)
2 4 252 1 2 2 .
Then, as [[p.[|” = Gwid”, lle(v)llo = maxe(vi) < 5 and |[p,[| <|ip.[", these imply that
1 2 9 1
w? — 502 - gv_lwg SHW(”)||ooz||10v||2 = 5%2527 Vi

Due to (3.16), it follows -
lw? = vi|| < Go%w?, Vi

Next, for § < 3, we have

so<2( 24 ’ 52
TT9\9-02 " 340-02)



3.2. CONVERGENCE ANALYSIS 41

9 9 3 3
— < < .
9—-4¢> "~ 8 3+4V0—02 T 3+2V2

Hence, after some

This completes the proof. ]
The next lemma gives an upper bound for the duality gap after a full-Newton step.
Lemma 3.5. After a full-Newton step it holds
2t 2, < 2nmax(w?).
Proof. Asv2 = xz;, we have
(1) 2 = ™03 =" (v* + up, + d,d,)
=l (w? +v* +op, — w?) +dld,
=efw? + e (v* + vp, — w?) + dLd,

2 2
=elw? +dld, +ef (v? + v 'w? — S0 — w?)

3 3

—v? + 21)_1w3 —w? 92
—eTw? +d7d, + ¢ | 3 04(?;3 — 7 Zv
Then after some reductions, we get
(w ) 2y = elw? + dpd, + zeTgo(v)pg
where (v) = (p(v1), ¢(v2), -+, @(vn)) with
o(v;) = (v 2) 5, fori=1,--- n.

3(v? + viw; + w?)
Due to (3.18), we have .
0 <Jp(vi)] = p(vi) < 3, Vi.

Therefore, by Lemma 3.1 and from (3.13), we have
9
efv: <e'w’+dld, + 2 max|p(v;) e p?
3
<elw? +did, + =|po||?
4
2 1
< nmax(w?) + 552%2 + 5(52%2, Vi.

2 1
< nmax(w?) + 552 max(w?) + 552 max(w?)

< <n + 362) max(w?) < (n + 6%) max(w?).
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Let § < 1, then e’ v? < (n+ 1) max(w?), but since (n+1) < 2n,Vn > 1, it follows that

e"v? < 2nmax(w?). This gives the required result. O

Next lemma investigates the effect of a full Newton-step on the proximity measure
followed by updating the weighted vector w by a factor (1 — 6), where 0 < 6 < 1.

Theorem 3.6. Let w, = (1 — 0)w and let x > 0,z > 0, then we have

3/ 2n90

. < .
0(vyswy) <0y + =9 c(w)

1
————— n>2, then §(vy;wy) < 1.
36v/2n0c(w) (04 4)

Proof. Let §(xyz,;wy) and w, = (1 — 0)w where 6 € (0, 1). We have

In addition, let § < 1, oc(w) > 1, and 0 =

1 -2/, 3 3
v W, —v
w+)iH + ( + +)H

IR SR
(1—9)(,01 Ui

o(vpswy) = (

1 _
= m””f (1= 0)’w® + (1= 0)°v} — (1= 0)*v —v})|
1 _
< = (X = 0)* v (w® — o) [+]o((1 = 6)° = D))
1—0)° — 1] [Joi |
—(1— 2 ‘( +
(1—-0)%6, + 11— o,
(1 —0)° — 1] JJuy |
<
<, + T o
<o+ 10(6% — 30 +3)[ v |

1-0 min(w)’
As0 < 6?—30+3<3,V0 € (0,1), we obtain

30 oy
5(U+7W+)_5++1 0 min(w)

By Lemma 3.5, we have

lvs]] < v2nmax(w).

Next, Lemma 3.4 implies that

15) 5
. <2+ 62,
+_(8 9+6\/§>

Now, let 6 < 1, then we get

5 5 3vV2noc(w)d
O(vy; <= :
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Let 0 = ,n>2and o.(w) >1s060 € [0, %] from which we deduce that

1
36v2n0.(w)
6(v4;wy) < €(0)

where

5 5 1
) = <§+9+m) T o)
1

1
As () = —— > 0, th 6) is strictly i i the interval (0, —|.
s £'(0) 20 1) , then £(0) is strictly increasing on the interva {,72}

1
Hence £(0) < ¢ (i) = 0.9966 < 1. This proves the theorem. O

Theorem 3.6, shows that Algorithm 2 is well-defined since the conditions = >
0,z > 0, and é(xz;w) < 1 are maintained throughout the algorithm. Also observe
that o¢(w) = o¢(wy) for all iterates produced by Algorithm 2.

The next lemma derives an upper bound for the total number of iterations pro-
duced by Algorithm 2.

Lemma 3.7. Let z* and =* be the k-th iteration produced by Algorithm 2. Then

(M) T2k < e

2
. ﬁ log 2n max(wp) -‘ .

Proof. After k iterations, we have w;, = (1 — #)*w,. By Lemma 3.7, we get that
()T 2% < 2n(1 — 0)?* max(wg)*.
Thus the inequality (2*)” 2* < ¢ holds if
2n(1 — 0)* max(wg)? < .
Taking logarithms, we find
2k log(1 — 6) < loge — log 2n max(wy)®.
Using the inequality — log(1 — ) > 6 where 0 < 6 < 1, so the above inequality holds
if
2n max (wp)?

1
kO > =1
> 5 log ;

This completes the proof. O
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0,0

Theorem 3.8. Suppose that (2°,4°, 2°) is a strictly feasible starting point, wy = S

V2 max(2029)

1
and 6(2°2% wo) < 1. Let § = ——————, then Algorithm 2, requires at most
( 0) < 36v2n0.(wp) & 1
@) (\/ﬁac(wo) log 2)
€
iterations for getting an e-approximate solution of CQO.
1
Proof. Let ) = —————, Theorem 3.8 follows directly from Lemma 3.7. ]
36V 2noc(wp)

1
Corollary 3.9. If we take wy = ﬁe, then Algorithm 2, requires at most O (x/ﬁ log E)
€

iterations which is the currently best known iteration bound for short-update method.

Proof. The proof is an immediate consequence of Theorem 3.8. O

3.3 Numerical results

In this section, we implement Algorithm 2 on some examples of CQO with different
size by using Mat lab R2010a and run on a PC with CPU 2.00 GHz and 4.00 G RAM
memory and double precision format. Here our accuracy is set to ¢ = 10~*. The
strictly feasible initial point (z° > 0,°, 2° > 0) is taken such that §(2°2°,w;) < 1. The
optimal primal-dual solution is denoted by (z*, y*, 2*). Here, we display the following
notations: the "Iter" denotes the number of iterations produced by the algorithm to
obtain an approximated optimal solution. The "CPU" denotes the time (in second)
required to obtain an approximate optimal solution for CQO. Also to improve our nu-

1 0.0
merical results we have relaxed the barrier vector wy = {—e, V2029, L},
V2 V2 max(2029)
1
with the update barrier | = ———— n > 2. We also display a table for the num-
36v/2noc(wp)

ber of iterations and the elapsed time for each example.

Example 4. We consider the convex quadratic optimization, where

-1 1 1 0
A: s =
(2 3 0 1> e

c = (1.3333,1.3333,1.3333,1.3333)", b = (0.33,2)”. The strictly feasible starting point
2" and 2° are chosen according to each value of w, and such that 6(2°z";w,) < 1. For

S O O N
o O N O
o N O O
N O O O

this example, we take

2% = (0.3333,0.3333,0.3333,0.3333)", ° = (-2, -2)7, 2" = (2,2,2,2)".
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Table 3.1: Numerical results for Example 1.

wo —
0.0
1 NEE O
V2 V2 max(z°20)
Iter | CPU Iter | CPU Iter | CPU
1862 0.53163 | 1876 0.137857 | 1862 0.139970

A primal-dual optimal solution of Example 1 is:

z* = (0.2000, 0.5333, 0.0000, 0.0000)”,
y* = (—2.0800, —1.1733)7,
z* = (0.0000, 0.0000, 1.4133,0.5067)"".

Example 5. The data of the following convex quadratic problem is given by

1 -1 19 125 12 04 -0.7 106 1.5 1.05
A= 13 1.2 0.15 215 125 15 04 1.52 1.3 1
1.5 —-1.1 35 125 18 2 195 12 1

I
—_

30 1 1 1 1 1 1 1 1 1
1 21 0 1 ~1 1 0 1 05 1
1 0 15 —05 -2 1 0 1 1 1
1 —05 30 3 -1 1 ~1 05 1
-1 -2 03 27 1 05 1 1 1
©= 1 1 1 -1 1 16 -05 05 0 1 |’
1 0 0 1 05 —05 8 1 1 1
1 1 1 ~1 0.5 1 24 1 1
1 05 1 05 1 0 1 1 39 1
1 1 1 1 11 1 1 1 11

c=(2.1,3.45,4.25,2.5,2.75,4,4.7,2.95,1.4,4)", b = (0.7660, 1.1770, 1.21)". The initial
point is taken as:

2% =(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1) 7
yO = (_17 _17 _1)T7
2* = (6,6,6,6,6,6,6,6,6,6)".
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Table 3.2: Numerical results for Example 2.

woy —

1 202

il /2020 v

V2 V2 max(z020)

Iter | CPU Iter | CPU Iter | CPU

3022 0.293683 | 3037 0.293173 | 3022 0.294073

A primal-dual optimal solution for this example is:

«* = (0.0973,0.0000, 0.0236, 0.1725, 0.0810, 0.2061, 0.0000, 0.1124, 0.0730, 0.0000)”,

y* = (—1.5354,2.0035,0.5461)",

z* = (0.0000, 1.5550, 0.0000, 0.0000, 0.0000, 0.0000, 0.5015, 0.0000, 0.0000, 3.8707)" .

Example 3. We consider the CQO, where n = 2m and

A[i,j]z{? if i£jor(i+1)+£;

if j=i4+m.
2j—1 if i>j5 ori=j=n _
. : o 0 if
Qli,jl=< 2i—1 if i<} = .
o 7 1 elseif,
i(i+1) if i=j.

bli] = 0.5.

1=1+m

b

For this example, we take 2° = 0.5¢, 4° = Ogp» and 2° = e as the strictly feasible

initial point. The obtained numerical results with § =

the table below.

Table 3.3: Numerical results for Example 3 with different sizes.

1
36v2noc(wo)

are showed in

wo —
1 —— 272"

Size —=€ 2920 —
(m,n) J V2 V2 max(2029)

Iter CPU Iter | CPU Iter | CPU
(10,20) | 4356 0.819771 | 4356 0.797447 | 4356 0.806954
(50,100) | 10162 98.984386| 10163 134.18251610163 148.58515
(100,200) | 14624 577.19243414625 694.052208 14625 708.91673
(1000,2000) 51120 1481.7523551120 1482.2489051120 1481.0689

\V2 VA R )

A primal-dual optimal solution of Example 3 is:

z* = (0.0000, - - - ,0.0000, 0.4185)7,
y* = (0.0388,---,0.0388)7,
2* = (0.3876, - - - ,0.3876,0.0000)".
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Comment. Across the obtained numerical results, we see that Algorithm 2 computes
a primal-dual optimal solution for CQOs but in a large number of iterations and with
a significant elapsed time. This means that the algorithm converges slowly to an
optimal solution while using f stated in our analysis. The cause is due to the fact
that 6 becomes very small for problems with a large size n. Consequently, the rate of
decrease (1 — 0) in the sequence of barrier vectors {wy} approaches to one.

3.3.1 A numerical amelioration of Algorithm 2

In this subsection, based on our comment and in order to improve our numerical re-
sults, we import some changes on the original version of Algorithm 2, where instead
of using the updating # provided by our analysis, we take it as a constant belongs
to the set {0.1,...,0.9}. Moreover, to guarantee that the iterates remain interior, we
introduce a step-size ., > 0 such that z + pay. Az > 0 and z + pagy.Az > 0 with
Omax = min{ap, ap} and p € (0,1) where ap and «ap are given by

ap — miin (— X;) if Az; <0 oy — miin <_Az;l) if Az <0

Based, on the imported changes our new obtained numerical results for the same
examples are stated in tables below.

Table 3.4: Numerical results for Example 1 with different value of # and wj .

wo —

1 /00 I
o4 \/§€ v V2 max(202°)

Iter | CPU Iter | CPU Iter | CPU
0.1 175 0.139169 | 176 0.193436 | 175 0.117749
0.2 | 84 0.083488 | 83 0.081854 | 83 0.062218
0.3 |52 0.067883 | 52 0.068502 | 52 0.046201
04 |36 0.063592 | 36 0.060969 | 36 0.039543
0.5 1| 27 0.054806 | 27 0.051760 | 27 0.039456
0.6 | 20 0.054244 | 20 0.054322 | 20 0.032333
0.7 19 0.048853 | 19 0.055084 | 19 0.031448
0.8 19 0.051142 | 19 0.048136 | 19 0.036626
09| 18 0.051417 | 18 0.047807 | 18 0.035654
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Table 3.5: Numerical results for Example 2 with different value of 6 and wj, .

Wy —
1 o 2020

o \/§8 . ﬂmax(xozo)

Iter | CPU Iter | CPU Iter | CPU
0.1 179 0.187614 | 180 0.201249 | 179 0.190970
0.2 85 0.146417 | 86 0.115407 | 85 0.262326
0.3 ] 53 0.092770 | 53 0.081417 | 53 0.069546
04|37 0.077989 | 37 0.067789 | 37 0.052182
0527  0.066829 | 27 0.064044 | 27 0.045523
0.6 |21  0.057692 | 21 0.057452 | 21 0.042347
0.7]121  0.057708 | 21 0.054687 | 21 0.042074
0.8 21  0.063730 | 21 0.058077 | 21 0.039714
09121 0.059037 | 21 0.059576 | 21 0.036237

Table 3.6: Numerical results for Example 3 with different value of 6 and wj, .

0 —
wo 4 Size (m,n) | | 0.1 0.3 0.5 0.9
Iter | CPU Iter [ CPU Iter | CPU Iter |
(10, 20) 182 0.428436 |53 0.087912 28  0.060326 | 18
%e (50, 100) 190 2.366860 |55 0.648054 |29 0.340302 | 18
(100,200) | 193 8.695862 |57 2.523648 29 1.421619 |18
(1000,2000) | 205 5240.8705 | 59 2237.279743 | 31  835.91287 | 19
(10, 20) 182 0.255420 |53 0.090728 28 0.061706 | 18
V020 (50, 100) 190 2.404953 |55 0.694129 29 0.400725 | 18
(100,200) | 193 8.743116 | 57 2.542191 29 1.338784 | 18
(1000,2000) | 204 5239.9845 | 59 2236.4251 | 31 803.36214 | 19
(10, 20) 182 0.274023 |53 0.086902 28  0.059837 | 18
0,0
ﬁx—z(oo) (50, 100) 190 2.003090 |55 0.640520 29  0.365868 | 18
max\(r-z
(100,200) | 193 8.822089 |57 2.344394 |29 1.343666 | 18
(1000,2000) | 204 5239.5095 | 59 2237.26837 |31 784.092613 | 19




General conclusion and perspectives

In this dissertation, we have developed a feasible full-Newton step path-following
method for CQO based on a modified Newton search direction obtained by the ap-
plication of an AET to the central equations introduced by the univariate function
Y(t) = t*. Under new appropriate selection of defaults of 7 and 6, the algorithm
is well-defined and the favorable iteration bound of the algorithm with short-step
method is achieved, namely, O(y/nlog ﬁ). This iteration bound is as good as for
CQOs. Meanwhile, the obtained numerigal results by Algorithm 1 in its original ver-
sion are not good for solving CQO problems with large size. But, with the imported
modifications, the obtained numerical results are significantly ameliorated.

We have also presented a new weighted full-Newton step path-following interior-
point method for CQO based on a new modified Newton search direction obtained
by the application of the AET technique introduced by the new univariate function
Y(t) = t2 for the Newton system which defines the weighted-path. New appropriate
choices of the defaults of  and # are proposed where the favorable iteration bound
of the algorithm with short-step method is achieved, namely, O(y/n log 2). This iter-
ation bound is as good as for LO analogue. Meanwhile, for the obtaineed numerical
results by Algorithm 2 for its first version are not good for CQOs problems with a
large size. But, with the imported changes on Algorithm 2, the obtained numerical
results are significantly improved.

Finally some perspectives are given.

1- A good topic of research is the extension of this two algorithms for other type of
optimization problems.

2- The ameliorated algorithm good topic of study the convergence and so on.
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Appendix

LU decomposition

The system Az = b of linear equations can be solved quickly if A can be factored as
A = LU where L and U are of a particularly nice form. Certain matrices are easier
to work with than others. In this section, we will see how to write any square matrix
A as the product of two matrices that are easier to work with. We will write A = LU,
where:

e [ is lower triangular. This means that all entries above the main diagonal are
zero. In notation, L = (I;) with I = 0 for all j > i.

i 0 0 0
I 2 120

A P

e U is upper triangular. This means that all entries below the main diagonal are
zero. In notation, U = (u;) with v} = 0 for all j < i.

Uy tp
0 uj u?
U= ) ,
O .
0 O u,

A = LU is called an LU decomposition of A.

This is useful trick for many computational reasons. It is much easier to compute the
inverse of un upper or lower triangular matrix. Since inverses are useful for solving
linear systems, this makes solving any linear system associated to the matrix much
faster as well.

50



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Achache. A new primal-dual path-following method for convex quadratic
programming. Comput. Appl. Math, 25 : 97-110 (2006).

M. Achache. Complexity analysis of a weighted-full-Newton step interior-point
algorithm for P, (x)-LCP, RAIRO-Oper. Res. 50 : 131-143 (2016).

M. Achache. A new parameterized kernel function for LO yielding the best
known iteration bound for a large-update interior point algorithm. Afrika
Matematika, 27(3): 591-601 (2016).

M. Achache. Complexity analysis of an interior point algorithm for the semidef-
inite optimization based on a kernel function with a double barrier term. Acta
Mathematica Sinica, English Series, 31(3): 543-556 (2015).

M. Achache. Complexity analysis and numerical implementation of a short-step
primal-dual algorithm for linear complementarity problems, Appl. Math. Com-
put., 216(7), 1889-1895 (2010).

M. Achache, A weighted path-following method for the linear complementarity
problem, Studia Univ. Babes-Bolyai. Ser. Inform. 49(1): 61-73 (2004).

M. Achache, A weighted full-Newton step primal-dual interior point algorithm
for convex quadratic optimization, Statistics, Optimization & Information Com-
puting, (2): 21-32 (2014).

M. Achache, M. Goutali. A primal-dual interior-point algorithm for convex
quadratic programs, Studia Univ. Babes-Bolyai. Ser. Inform. IVII(1): 48-58
(2012).

M. Achache, M. Goutali. Complexity analysis and numerical implementation of
a full-Newton step interior-point algorithm for LCCO. Numer. Algorithms. 70:
393-405 (2015).

51



52

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

M. Achache, R. Khebchache. A full-Newton step feasible weighted primal-dual
interior point algorithm for monotone LCP. Afrika Matematika. 26 : 139-151
(2015).

M. Achache, H. Roumili and A. Keraghel. A numerical study of an infeasible
primal-dual path following algorithm for linear programming, Appl Math Com-
put, 186 (2), 1472-1479 (2007).

M. Achache, N. Tabchouche. Complexity analysis of an interior point algorithm
for the semidefinite optimization based on a kernel function with a double bar-
rier term. Optimization, 67(8): 1211-1230 (2018).

B. Alzalg. A logarithmic barrier interior-point method based on majorant func-
tions for second-order cone programming, Optimization Letters, 14, 729-746
(2020).

Y.Q. Bai, M. El Ghami and C. Roos. A comparative study of kernel functions
for primal-dual interior point algorithms in linear optimization. SIAM J. Optim.
15(1), 101-128 (2004).

Y.Q. Bai, G.Q. Wang and C. Roos. A new kernel function yielding the best known
iteration bounds for primal-dual interior point method. Acta Math. Sinica,
25(12), 2169-2178 (2009).

L. B. Cherif and B. Merikhi. A variant of a logarithmic method for non linear
convex programming, RAIRO-Operations Research, 53 (1), 29-38 (2019).

J-P. Crouzeix and B. Merikhi. A logarithm barrier method for semi-definite pro-
gramming, RAIRO - Operations Research - Recherche Oprationnelle, 42 (2),
123-139 (2008).

Zs. Darvay, A weighted-path-following method for linear optimization, Studia
Universitatis Babes-Bolyai Series Informatica, 47(2): 3-12 (2002).

Zs. Darvay. New interior-point algorithms for linear optimization. Advanced
Modeling Optimization. 5 (1): 51-92 (2003).

Zs. Darvay, I.M. Papp and P.R. Takacs. Complexity analysis of a full-Newton step
interior-point method for linear optimization, Period. Math. Hung. 73 (1)27-42
(2016).

Zs. Darvay, P.R. Takacs. New method for determining search directions for
interior-point algorithms in linear optimization, Optim. Let. 12 1099-1116
(2018).



BIBLIOGRAPHY 53

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Zs. Darvay. New interior-point algorithms for linear optimization, Advanced
Modeling Optimization, 5 (1), 51-92 (2003).

J. Ding, and T.Y. Li, An algorithm based on weighted logarithmic barrier func-
tions for linear complementarity problems, Arabian Journal for Science and
Engineering, 15(4): 679-685 (1990).

S. Fathi-Hafshejani, Z. Moaberfard. An interior-point algorithm for linearly con-
strained convex optimization based on kernel function and application in non-
negative matrix factorization. Optim Eng, 21(3): 1019-1051 (2020).

L. Goran, G. Wang, and A. Oganian, A Full Nesterov-Todd Step Infeasible
Interior-point Method for Symmetric Optimization in the Wider Neighborhood
of the Central Path,Statistics, Optimization & Information Computing, 9(2),
250-267 (2021).

J. Gondzio. Interior Point Methods for Convex Quadratic Programming, NAT-
COR, Edinburgh (2018).

M. Goutali. Complexité et implémentation numérique d'une méthode de points
intérieurs pour la programmation convexe, Universite Ferhat Abbas Sétif 1
(2018).

L.M. Grana Drummond and BF. Svaiter. On well definiteness of the central path,
J. Optim. Theory Appl, 102 (2), 223-237 (1999).

L. Guerra, M. Achache. A parametric Kernel Function Generating the best
Known Iteration Bound for Large-Update Methods for CQSDO. Statistics, Opti-
mization & Information Computing, 8: 876-889 (2020).

M. Haddou, J. Omer and T. Migot. A Generalized Direction in Interior-Point
Method for Monotone Linear Complementarity Problems, Optim. Lett. 13, 35-
53 (2019).

B. Jansen, C. Roos, T. Terlaky and J.P. Vial. Primal-dual target-following algo-
rithms for linear programming. Annals of Operations Research. 62 : 197-231
(1996).

A. Leulmi. Logarithmic Barrier Interior Point Method for Linearly Constrained
Convex Programming, Universite Ferhat Abbas Sétif 1 (2021).

A. Leulmi, B. Merikhi and D. Benterki. Study of a Logarithmic Barrier Approach
for Linear Semidefinite Programming, Journal of Siberian Federal University.
Mathematics and Physics, 11 (3), 300-312 (2018).



54

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

H. Mansouri, M. Pirhaji, and M. Zanglabadi, A weighted-path-following
interior-point algorithm for cartesian P.(x)-LCP over symmetric cone, Korean
Math. Soc.32, (3): 765-778 (2017).

L. Menniche and D. Benterki. A logarithmic barrier approach for linear pro-
gramming, J. Comput. App. Math, 312, 267-275 (2017).

Y.E. Nesterov and A. Nemirovski. Interior- Point Polynomial Algorithms in Con-
vex Programming, SIAM. (1994).

J. Peypouquet. Convex Analysis in Normed Space. Theory, Methods and Exam-
ples, Springer. (2015).

P.R. Rig6. New trends in algebraic equivalent transformation of the central-
path and its applications, PhD thesis, Budapest University of Technology and
Economics, Institute of Mathematics, Hungary. (2020).

R.T. Rockafellar. Convex Analysis, Princeton University Press, New Jersey.
(1970).

C. Roos , T. Terlaky and J.Ph. Vial. Theory and Algorithms for Linear Optimiza-
tion. An interior Point Approach. John-Wiley and Sons, Chichester, UK. (1997).

G.Q. Wang, Y.J. Yue, and X.Z. Cai, A weighted path-following method for mono-
tone horizontal linear complementarity problem. Fuzzy Information and Engi-
neering. 54: 479-487 (2009).

G.Q. Wang, Y.J. Yue, and X.Z. Cai, Weighted path-following method for mono-
tone mixed linear complementarity problem, Fuzzy Information and Engineer-
ing. 4: 435-445 (2009).

E. Wong. Active-Set Methods for Quadratic Programming, PhD thesis, Depart-
ment of Mathematics, University of California San Diego, La Jolla, CA. (2011).

S.J. Wright. Primal-dual Interior-Point Methods. Copyright by SIAM. (1997).

Y. Ye. Interior-Point Algorithm. Theory and Analysis. New-York: John Wiley.
(1997).

M. Zhang, YQ. Bai and GQ. Wang. A new primal-dual path-following interior-
point algorithm for linearly constrained convex optimization. Journal of Shang-
hai University, 12(6): 475-480 (2008).



BIBLIOGRAPHY 55

[47] D. Zhao, M. Zhang. A primal-dual large-update interior-point algorithm for
semi-definite optimization based on a new kernel function. Statistics, Optimiza-
tion & Information Computing, 1(1), 41-61 (2013).



T

lig) .dsaxall duey il oVl Jiluo J> 9 ddaslly dlaill dwljall pig d>9,bYl 03 9
igs oLy 5550l Hluall Jle asiws oV a3 1l dasill @193 ity sl LoaS o4
@20 calall v )lo3dl ol lash ¢ LI G (9 - Jail 53 5Lusall e amiss a5lilly dasall
390> aalSs ol ool of Lasl 6515 . JioVl J=l a3 by o)Ly

pwdill a0a0)l L)l casdl dawly)al oad |3l

aalSill 6 masll olazl §bo « a1l dasil § o « &axall dusw il dlioVl 3 dpalidal) Cilalsl)
L4y>92l

Abstract

In this thesis we are interested with theorical and numerical study of convex quadratic
optimization. For this purpose, we have introduced two methods of interior point. The
first depends on the classical central-path with modified Newton search directions.
Meanwhile, the second one is based on the weighted path and also new search
directions. In the two cases, we have proved that the corresponding algorithms are
defined and converge locally quadratically. In addition, those algorithms have the best
known polynomial complexity.

Finally, this study is followed by some numerical experiments for evaluation.

Keywords: Convex quadratic optimization, Interior-point methods, Short-step method,
Polynomial complexity.

Résumé

Dans cette these, on a intéressé par I'étude théorique et numérique de la programmation
quadratique convexe. Pour ce but, on a introduit deux méthodes de point intérieur. La
premiere méthode dépend de trajectoire centrale classique avec des directions de
Newton modifiée, la deuxieme est basée sur la trajectoire avec poids et aussi avec des
nouvelles directions. Dans les deux cas, on a montré que les algorithmes sont bien
définis et convergent localement quadratique. De plus, ces algorithmes ont la meilleur
complexité polynomiale.

Finalement, cette étude est suivie par quelque résultats numériques pour évaluation.

Mots clés : Optimisation quadratique convexe, Méthodes de point-intérieur, Méthode
a petit pas, Complexité polynomiale.
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