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Abstract

In this thesis we are interested with theoretical and numerical study of convex quadratic

optimization. For this purpose, we have introduced two methods of interior point.

The first depends on the classical central-path with modified Newton search direc-

tions. Meanwhile, the second one is based on the weighted path and also new search

directions. In the two cases, we have proved that the corresponding algorithms are

defined and converge locally quadratically. In addition, this algorithm has the best

known polynomial complexity. Finally, this study is followed by some numerical ex-

periments for evaluation.

Keywords: Convex quadratic optimization,Interior-point methods, Short-step method,

Polynomial complexity.
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Glossary of Notation

Problem Classes

MP : Mathematical programming.

(CQO) : Convex quadratic optimization.

(LO) : Linear optimization.

(P) : Primal standard format.

(D) : Dual problem of (P).

(Pµ) : Primal barrier problem.

(Dµ) : Dual barrier problem.

AET : Algebraically equivalent transformation.

IP : Interior-Point.

IPA : Interior-Point Algorithm.

IPC : Interior-Point Condition.

IPMs : Interior-Point Methods.

K.K.T : Krush-Kuhn-Tucker.

Spaces

R : The set of real numbers

Rn : The real n-dimensional space.

Rn
+ : The nonnegative orthant of Rn.

Rn
++ : The positive orthant of Rn.

Rn×n : The set of all n× n squared matrices.

Vectors
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4 GLOSSARY OF NOTATION

xi : The i-th component of x.

xT : (x1, . . . , xn) the transpose of a vector x, with components xi
x ≥ 0 = xi ≥ 0 , ∀i.
x > 0 : xi > 0, ∀i.
e = (1, . . . , 1)T ∈ Rn.

|x| = Absolute value of a vector x ∈ Rn. |x| = (|xi|), i = 1, . . . , n.

xTy =
n∑
i=1

xiyi the standard inner product in Rn.

xy = (x1y1, . . . , xnyn)THadamard product.

log(x) = (log(x1), · · · , log(xn))T , x > 0.

x

y
=

(
x1
y1
, · · · , xn

yn

)T
, y 6= 0.

√
x = (

√
x1, · · · ,

√
xn)T the square of a vector x, with components xi.

x−1 = (x−11 , . . . , x−1n )T

‖x‖ : denote the Euclidean norm (xTx)1/2.

‖x‖∞ : denote the Maximum norm (max
i
|xi|).

Matrices
X � 0 : Means X is positive semidefinite.

X � 0 : Means X is positive definite.

I : Order identity matrix .

0n×n : The null matrix of type (n, n) .

AT : The transposed matrix of A.

A−1 : The inverse of a regular matrix A.

tr (A) =
n∑
i=1

aii =
n∑
i=1

λi(A), (the trace of a matrix A ∈ Rn×n).

‖A‖2 =
√
ρ (ATA), (the spectral norm of A ).

D(x) = diagonal matrix whose diagonal elements are the components of the vector x.

X = diag(x),denote the diagonal matrix whose diagonal elements are the components ofx.

Z = diag(z),denote the diagonal matrix whose diagonal elements are the components ofz.
Functions

∇f(x) =

(
∂f

∂x1
(x), · · · , ∂f

∂xn
(x)

)T
: the gradient of a function f : Rn → R.

∇2f(x) =

(
∂2f

∂xi∂xj
(x)

)
1≤i,j≤n

: the Hessian matrix of f : Rn → R.

ψ(t) : a kernel function.



Introduction

The CQO problems are an interesting class of nonlinear convex programming which

have been proven to be useful in many domains of applied mathematics and engi-

neering. Also the CQO includes the standard linear optimization (LO) [8]. Further,

it can be seen as a special case of general symmetric conic optimization problems

(see e.g.,[25, 29]). There are many direct and iterative methods for finding optimal

solutions of CQOs. Beside the active set methods [43], a classical Wolfe like simpli-

cial algorithm for solving CQOs has in the worst case an exponential complexity, the

feasible path-following interior-point methods (IPMs) gained much more attention

then others due to their highly numerical efficiency and their polynomial complexity

(see e.g.,[40, 44, 45]). These methods used the central-path as a guideline to fol-

low the central-path for reaching an optimal solution of CQO. However, their derived

algorithms require that the starting point must be strictly feasible and on the central-

path. Still, it is uneasy task to find a perfectly centered initial point. Primal-dual

path-following algorithms are among the most effective methods for solving opti-

mization problems.

In the last years, the determination of new search directions has a great influence

to improving the complexity and the numerical efficiency of these methods. Among

the proposals, the technique of algebraic equivalent transformations (AET) becomes

a widely used tool for offering new search directions in interior-point methods.

This technique was first introduced by Darvay’s [22] for linear optimization (LO)

where he offered a search direction induced by the univariate square root func-

tion. His full-Newton short-step IPA has the best well-known iteration bound, namely,

O
(√

n log
n

ε

)
. Since then, this idea was extended successfully to convex quadratic

and semidefinite optimization (SDO) problems, monotone and sufficient linear com-

plementarity problems (LCP) (see e.g. [1, 4, 5, 8, 20, 31]). Therefore, it is worth to

analyze other cases when starting points are not centered. It is well-known that with

every algorithm which follows the central-path, we can associate a target sequence

on the central-path. This idea leads to the concept of target-following methods in-

troduced earlier by Jansen et al [31]. Weighted-path following IPMs can be viewed

as a special case of them and which are used as an alternative to remedy this draw-

5



6 INTRODUCTION

back [3, 7, 10, 23, 40]. In [18], Darvay proposed a weighted-path following IPMs

for solving LO. Later, Achache [6], Mansouri et al. [34] and Wang et al. [38, 40]

extended successfully Darvay’s algorithm for solving monotone LCP, P∗(κ)−LCP over

symmetric cones, monotone mixed and horizontal LCP, respectively. The relevance

of the technique of AETs for the central-path equation has been treated in [19, 38]

and subsequently in references [1, 5].

Later, different univariate functions are investigated for several optimization prob-

lems (see e.g. [20, 21, 38, 40, 46]). We also mention that the paradigm of so-called

barrier kernel functions is a good way for obtaining new search directions (see e.g.

[3, 4, 12, 14, 15, 24, 29, 47]).

Our main goal in this thesis is to investigate two proposed IPA for solving the CQOs.

The first one is based on the classical full-Newton step based on AET introduced by

the univariate function ψ(t) = t2 applied to the centering equation which defines the

central-path. However, the second one is based on a new weighted-path following

IPA for solving the CQOs based also on an AET induced by the function ψ(t) = t
3
2 . At

each iteration, only full-Newton steps and the strategy of the central-path are used

for getting an ε-approximated optimal solution for CQO. These algorithms achieves

the best known polynomial complexity. Further, under some imported changes on the

original versions of these algorithms, the new obtained numerical results are very en-

couraging.

Short Outline of the Thesis

The thesis contains three chapters, followed by a bibliography. This thesis is orga-

nized as follows

• Chapter 1: In this chapter, we present a mathematical background which will

be useful throughout the thesis.

• Chapter 2: This chapter presents a new feasible full-Newton step path-following

method for CQO based on a new modified Newton search direction obtained

by the application of the AET technique introduced by the new univariate func-

tion ψ(t) = t2. Under new appropriate defaults of τ and θ, the favorable it-

eration bound of the algorithm with short-step method is achieved, namely,

O(
√
n log

n

ε
) which is as good as the bound for CQOs. For evaluating the effi-

ciency of our algorithm some numerical results are provided.

• Chapter 3: Getting a perfectly centered initial point for feasible path-following

interior-point algorithms is a hard practical task. Therefore, it is worth to ana-
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lyze other cases when the starting point is not necessarily centered. In this chap-

ter, we propose a short-step weighted-path following interior-point algorithm

(IPA) for solving convex quadratic optimization (CQO). The latter is based on

a modified search direction which is obtained by using the technique of al-

gebraically equivalent transformation (AET) introduced by a new univariate

function to the Newton system which defines the weighted-path. At each itera-

tion, the algorithm uses only full-Newton steps and the strategy of the central-

path for tracing approximately the weighted-path. We show that the algorithm

is well-defined and converges locally quadratically to an optimal solution of

CQO. Moreover, we obtain the currently best known iteration bound, namely,

O
(√

n log
n

ε

)
which is as good as the bound for linear optimization analogue.

Some numerical results are given to evaluate the efficiency of the algorithm.

Finally, we end the thesis by a conclusion and future work.



Chapter 1

Mathematical background

In this chapter, we present some mathematical background in matrix and convex

analysis, differential calculus, quadratic optimization and some methods of resolu-

tion.

1.1 Matrix Analysis

We denote by Rn, the finite-dimensional Euclidean vector space n ∈ N and by Rn×n,

the set of real square matrices of order n.

- For all x and y ∈ Rn, we denote by:

xTy =
n∑
i=1

xiyi,

the usual scalar product of x and y. The vector xT denotes the transpose of the

vector column x of Rn.

- Two vectors x and y are orthogonal only if xTy = 0.

- The Euclidean norm associated with the usual scalar product, is given by:

‖x‖2 =
√
xTx =

√√√√ n∑
i=1

x2i .

Definition 1.1. A mapping ‖.‖ : Rn → R is said to be a vectorial norm if it satisfies

the following conditions:

• ‖x‖ ≥ 0,∀x ∈ Rn, ‖x‖ = 0⇔ x = 0.

• ‖αx‖ = |α| ‖x‖ ,∀α ∈ R,∀x ∈ Rn.

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,∀x, y ∈ Rn.

8



1.2. DIFFERENTIAL CALCULUS 9

- The Cauchy-Schwarz inequality:∣∣xTy∣∣ ≤ ‖x‖ ‖y‖ ∀x, y ∈ Rn.

Definition 1.2. We say that the matrix A is positive semi-definite if:

xTAx ≥ 0 ,∀x ∈ Rn,

and we say that A is positive definite if:

xTAx > 0, ∀x ∈ Rn(x 6= 0).

1.2 Differential calculus

In this paragraph, we introduce the notion of differentiability of a function. We start

to give some basic topological notions.

Definition 1.3. Let D be a subset of Rn and f : D → R. We say that f is continuous

in x ∈ D, if f(xk) → f(x?) for any sequence {xk} of D such that xk → x?. So we say

that f is continuous over all D ⊂ Rn, if it is continuous at any point of D.

Suppose now that the set Ω, is an open set of Rn and f is a function f : Ω→ R.

Definition 1.4. For all x ∈ Ω , and h ∈ Rn, the directional derivative of f at x in the

direction h, is given by

∂f

∂h
(x) = lim

t→0

f(x+ th)− f(x)

t
.

The gradient of f at x, denoted by ∇f(x), is the column vector of Rn given by:

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T
.

Recall the formula:

∂f

∂h
(x) = hT∇f(x), ∀x ∈ Ω, ∀h ∈ Rn.

- We say that x? is a critical or stationary point of the function f if

∇f(x?) = 0.

- We denote for all x ∈ Ω, ∇2f(x) the square symmetric matrix of order n, given by

(∇2f(x))ij =
∂2f

∂xi∂xj
(x), ∀i, j = 1, . . . , n.
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∇2f(x) is called the Hessian matrix H from f to x. We also have:

H = ∇2f(x)h =
∂

∂xi
hT∇f(x).

- We say that f is of class C2 on Ω if the partial derivatives of order 2 of f, exist and

are continuous.

1.3 Convex analysis

In this paragraph, we cite some basic notions of convex analysis which will be useful

afterwards.

Convex functions

Definition 1.5. A set D ⊂ Rn is said to be convex if ∀x, y ∈ Rn the segment [x, y] ⊂
D.

Definition 1.6. Let D ⊂ Rn be a convex set and f : D→ R .

1- f is said to be convex on D if:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).∀x, y ∈ D,∀t ∈ [0, 1].

2- f is said to be strictly convex if:

f((1− t)x+ ty) < (1− t)f(x) + tf(y).∀x, y ∈ D, x 6= y,∀t ∈ ]0, 1[ .

Definition 1.7. If f is of class C2 on D, then f is convex over D if and only if the

matrix Hessian ∇2f(x) is positive semi-definite. Likewise, f is said to be strictly

convex on D if and only if the Hessian matrix is positive definite.

1.4 Unconstrained optimization problem

In this section, we only consider unconstrained optimization problem. We give the

existence and the uniqueness of a minimum thus the characterization of the latter

through its optimality conditions. A unconstrained optimization problem (P ) is de-

fined by

(P ) min
x∈Rn

f(x).

Definition 1.8. If D ⊂ Rn, x? ∈ D and f : D → R.
1- We say that x? is a global minimum of f on D if:

f(x) ≥ f(x?),∀x ∈ D.
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2- We say that x? is a local minimum of f on D if there exists a neighborhood V of x?

such that :

f(x) ≥ f(x?),∀x ∈ D ∩ V .

Remark 1.9. Any global minimum is a local minimum.

1.4.1 Results of existence and uniqueness of the solution

In order to be able to easily calculate or approach the solution of an optimization

problem, it is interesting to know the hypotheses guaranteeing the existence and

uniqueness of this solution.

Existence.

Theorem 1.10. Let D ⊂ Rn. If f : D → R, is continuous and if D is a compact set
(closed and bounded), then f has a minimum on D.

Theorem 1.11. We suppose that:

1. The set D is closed

2. f is lower semi-continuous on D.

3. lim
‖x‖→+∞

f(x) = +∞ , (i.e. f is coercive).

Then f has a minimum on D.

Uniqueness.

The following result shows the impact of convexity in optimization problems.

Proposition 1.12. Let f be a convex function defined on a convex set D. Then any local
minimum of f on D is a global minimum. If f is strictly convex, it there is at most a
global minimum.

1.4.2 Necessary and sufficient conditions for optimality

Necessary conditions

Theorem 1.13. (First order necessary optimality conditions) Let f : Rn → R, a differ-
entiable functional. If x? achieves a minimum (global or local) of f on Rn then:

∇f(x?) = 0.

Theorem 1.14. (Second-order necessary optimality conditions) Let x? a minimum of
f . If f is twice differentiable at the point x?, then:〈

∇2f(x?)y, y
〉
≥ 0, ∀y ∈ Rn.
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Sufficient conditions

Theorem 1.15. (First order sufficient condition ) If f is convex and if:

∇f(x?) = 0.

then x? is a global minimum of f.

Theorem 1.16. (Second order sufficient condition) If f is twice differentiable and if
∇f(x?) = 0 and ∇2f(x?) positive definite then x? is a global minimum of f.

1.4.3 Optimality conditions

The constraint qualification

Definition 1.17. Let x be the feasible for convex optimization problem and put

I(x) = {i | hi(x) = 0}. We say that the linear independence constraint qualifica-

tion hold at x if the gradients

∇gi(x) (i = 1, · · · ,m), ∇hj(x) (j ∈ I(x)),

are linearly independent.

Theorem 1.18. (Karush-Kuhn-Tucker (K.K.T) )If x∗ is a solution of (CP), if the gra-
dients of f, g and h are finite at x∗, and if a constraint qualification is satisfied, then
there exists an y∗ ∈ Rm and z∗ ∈ Rk such that:

∇f(x∗) +
m∑
i=1

y∗i∇gi(x∗) +
k∑
j=1

z∗j∇hj(x∗) = 0,

z∗jhj(x
∗) = 0, j = 1, · · · , k,

z∗j ≥ 0, j = 1 ∈ I(x).

1.4.4 Order of convergence for a sequence of points

Let x? be the limit of a sequence {xk}k≥0 produced by an iterative algorithm. We

say that xk → x? when k → +∞ ⇔ xk − x? → 0 when k → +∞ ⇔ ‖xk − x?‖ = 0

when k → +∞. Now we try to characterize the speed of convergence of the quantity

xk − x? → 0 when k → +∞. We say that:

- xk converges linearly to x?, if there is a ck(0 < ck < 1) such that:

‖xk+1 − x?‖ ≤ ck ‖xk − x?‖ from a certain rank k0.

- xk converges super linear to x? if lim
k→+∞

ck = 0.

- xk converges quadratically to x?, if there is a c(0 < c < 1) such that:

‖xk+1 − x?‖ ≤ c ‖xk − x?‖2 from a certain rank k0.
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1.5 Convex quadratic optimization

Let us consider the convex quadratic optimization (CQO) problem in its standard

format:

min
x

{
1

2
xTQx+ cTx s.t. Ax = b, x ≥ 0

}
, (P)

where Q ∈ Rn×n is symmetric positive semidefinite, A ∈ Rm×n with rank (A) =

m(m ≤ n), c ∈ Rn, b ∈ Rm, x ∈ Rn is the vector of variables.

If there exists a feasible solution to CQOs, then there exists an optimal solution.

We associate Lagrange multipliers y ∈ Rm and z ∈ Rn(z ≥ 0) with the constraints

Ax = b and x ≥ 0, and write the Lagrangian

L(x, y, z) =
1

2
xTQx+ cTx− yT (Ax− b)− zTx.

Dual quadratic format of P

To determine the Lagrangian dual

LD(y, z) = min
x
L(x, y, z)

we need stationarity with respect to x:

∇xL(x, y, z) = Qx+ c− ATy − z = 0.

Hence
LD(y, z) =

1

2
xTQx+ cTx− yT (Ax− b)− zTx

= bTy + xT (c+Qx− ATy − z)− 1

2
xTQx

= bTy − 1

2
xTQx

and the dual problem has the form:

max
x,y, z

{
bTy − 1

2
xTQx s.t.ATy + z −Qx = c, z ≥ 0

}
, (D)

We define the following feasibility sets:

FP = {x ∈ Rn | Ax = b, x ≥ 0}, the feasible solutions set of (P).

FD = {y ∈ Rm | ATy + z = Qx, z ≥ 0},the feasible solutions set of (D).

F0
P = {x ∈ Rn | Ax = b, x > 0},the strict feasible solutions setof (P).

F0
D = {y ∈ Rm | ATy + z = Qx, z > 0}, the strict feasible solutions set of (D).



14 CHAPTER 1. MATHEMATICAL BACKGROUND

1.5.1 Resolution methods

Wolfe’s algorithm for CQOs

It is one of the most widely used methods and was developed by P. Wolfe in 1959.

Wolfe’s algorithm can be directly applied to solve any quadratic programming prob-

lem. Wolfe’s rule calls for the calculation of ϕ′(t) in the linear search procedure.

We mention that this algorithm has an exponential complexity.

Step1(Input):

α0 ∈ [0, 1099], calculate ϕk(0), ϕ′k(0);

take ρ = 0.1, and σ = 0.9;

α0 = 0, b0 = 1099, k = 0;

begin

Step2: Calculate ϕk(αk)

• If ϕk(αk) ≤ ϕk(0) + ραkϕ
′
k(0); go to Step3,

• Else put αk+1 = αk, bk+1 = αk; and go to Step4.

Step3 Calculate ϕ′k(αk)

• If ϕ′k(αk) ≥ σϕ′k(0)(ϕ′k(αk)) ≤ −σϕ′k(0) Stop and take α̂ = αk ;

• Else αk+1 = αk, bk+1 = bk and go to Step4;

• Step4 Calculate αk+1, αk+1 =
αk+1 + bk+1

2
;

k = k + 1 and return to Step2.

end

Wolfe’s Algorithm for CQOs
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Interior Point Methods

Interior-point methods are a certain class of algorithms that solve linear and non-

linear convex optimization problems. Arguably, interior-point methods were known

as early as the 1960s. Interior point methods in mathematical programming have

been the most important research area in optimization since the development of the

simplex method for linear programming. Interior point methods have strongly in-

fluenced mathematical programming theory, practice and computation. For example

linear programming is no longer synonymous with the simplex method, and linear

programming is shown as a special case of nonlinear programming due to these

developments. On the theoretical side, permanent research led to better compu-

tational complexity bounds for linear programming, quadratic programming, linear

complementarity problems, semi-definite programming and some classes of convex

programming problems. The interior point method attempts to overcome the poten-

tial weakness of the simplex method and it has been shown that the interior point

methods can be solved in polynomial time. Interior-point methods solve the problem

(P) by applying Newton’s method to a sequence of equality constrained problems.

These methods is divided into three important classes such as:

• Projection’s method for Karmarkar

• Potential method

• Path-following method.

In this work, we concentrate only on the third class which is path-following IPMs

for solving CQOs. Here we give the principal for the basic ideas for the latter.

Perturbed problem (Log Barriers)

We replace the primal quadratic problem (P) with primal Barrier problem:

min
x

{
1

2
xTQx+ cTx− µ

n∑
i=1

log xi s.t. Ax = b

}
, (Pµ)

and replace the dual quadratic problem (D) with dual Barrier problem:

max
x,y, z

{
bTy − 1

2
xTQx+ µ

n∑
i=1

log zi s.t. ATy + z −Qx = c,

}
, (Dµ)

where µ ≥ 0 is a barrier parameter.
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First Order Optimality Conditions

Consider the primal barrier quadratic program (Pµ):

min
x

{
1

2
xTQx+ cTx− µ

n∑
i=1

log xi s.t. Ax = b

}
. (Pµ)

We write out the Lagrangian

L(x, y, µ) =
1

2
xTQx+ cTx− yT (Ax− b)− µ

n∑
i=1

log xi.

The conditions for a stationary point of the Lagrangian are:

∇xL(x, y, µ) = c− ATy − µX−1e+Qx = 0,

∇yL(x, y, µ) = Ax− b = 0, where X−1 = diag(x−11 , x−12 , · · · , x−1n ).

Let us denote

z = µX−1e, i.e. Xz = µe.

Thus we consider the system:
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0,

Xz = µe.

Newton Method

The first order optimality conditions for the barrier problem form a large system of

nonlinear equations

F (x, y, z) = 0,

where F : R2n+m → R2n+m is an application defined as follows:

F (x, y, z) =

 Ax− b
ATy + z −Qx− c
xz − µe.

 .
Actually, the first two terms of it are linear, only the last one, corresponding to the

complementarity condition, is nonlinear. Note that

∇F (x, y, z) =

 A 0 0

−Q AT I

Z 0 X

 ,
Thus, for a given point (x, y, z) we find the Newton direction (∆x,∆y,∆z) by solving

the system of linear equations:
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 A 0 0

−Q AT I

Z 0 X

 .
 ∆x

∆y

∆z

 =

 b− Ax
c− ATy − z +Qx

µe−XZe

.

For more details see([26, 27])



Chapter 2

A feasible short-step IPA for convex
quadratic optimization based on new
search directions

2.1 A feasible full-Newton step IPA for CQO

Throughout the paper, we assume that both (P) and (D) satisfy the Interior-Point-

Condition (IPC), i.e., there exists (x0, y0, z0) such that:

Ax0 = b, x0 > 0, ATy0 + z0 −Qx0 = c, z0 > 0.

Finding an optimal solution for (P) and (D) is equivalent to solving the following

system, which represents the Karush-Kuhn-Tucker (KKT) optimality conditions
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0,

xz = 0.

(2.1)

2.1.1 The central-path of CQO

The primal-dual path-following IPA is usually replace the complementarity equation

xz = 0, in (2.1) by the parameterized equation xz = µe with µ ∈ Rn
++. Thus we

consider the system: 
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0,

xz = µe.

(2.2)

If the IPC holds, then system (2.2) has a unique solution for each fixed µ > 0 de-

noted by (x(µ), y(µ), z(µ)). The set {(x(µ), y(µ), z(µ)) | µ > 0} is called the µ-center

of CQO. The set of µ-centers is called the central-path of CQOs. If µ tends to zero

18
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then the limit of the central-path exists and since the limit point satisfies the comple-

mentarity condition, the limit yields an optimal solution for CQO. The relevance of

the central-path for LO and CQO has been discussed in the following monographs,

(see, e.g. [40, 44, 45]).

2.1.2 The new search direction for CQO by using AETs

Similar to [1, 22], the AET technique for computing the new search direction for

CQO is simply based on replacing the non linear equation xz = µe by the new one:

ψ

(
xz

µ

)
= ψ(e)

where ψ(.) : (0,+∞) → R is a continuously differentiable and invertible function.

Using the function ψ, then (2.2) can be rewritten as the following system:
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0,

ψ(
xz

µ
) = ψ(e),

(2.3)

where ψ is applied coordinate-wisely. Applying Newton’s method to the modified

system (2.3), we obtain the following system:
A∆x = 0,

AT∆y + ∆z −Q∆x = 0,

z∆x+ x∆z =
µ(ψ(e)− ψ(xz

µ
))

ψ′(xz
µ

)
,

(2.4)

where ψ′ denotes the derivative of ψ. To simplify matters, we introduce the following

notations

v :=

√
xz

µ
and d :=

√
xz−1.

So the scaling directions are defined as

dx =
v∆x

x
and dz =

v∆z

z
. (2.5)

In addition, we have

x∆z + z∆x = µv(dx + dz). (2.6)

Next, since Q is positive semidefinite matrix, therefore using (2.4), we deduce that

dTx dz = (∆x)T (∆z) = (∆x)TQ∆x ≥ 0. (2.7)

Now, due to (2.5), (2.6) and (2.7), the scaled form of system (2.4) is given by
Ādx = 0,

ĀT∆y + dz − Q̄dx = 0,

dx + dz = pv

(2.8)
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where

pv =
ψ(e)− ψ(v2)

vψ′(v2)
(2.9)

with Ā = AD, Q̄ = DQD and D :=diag(d).

Next, by restricting ourselves to ψ(t) = t2, then (2.9) and (2.4) are given by

pv =
1

2
(v−3 − v) (2.10)

and 
A∆x = 0,

AT∆y + ∆z −Q∆x = 0,

z∆x+ x∆z =
µ

2
((
xz

µ
)−1 − (

xz

µ
)).

(2.11)

Moreover, we address by:

x+ := x+ ∆x; y+ := y + ∆y; z+ := z + ∆z

to the new iterate after a full-Newton step.

2.1.3 The proximity measure and some bounds

For the analysis of the algorithm, we use at each iterate a norm-based proximity

measure δ(v;µ) defined by

δ(v) := δ(xz;µ) = 2‖pv‖ =‖v−3 − v‖. (2.12)

It is clear that

δ(v) = 0⇔ v = e⇔ xz = µe.

So δ(v) is used to measure how far is a point (x, y, z) from the central-path.

Next, across system 2.8 and according to 2.12, we can easily prove the following

inequalities.

Lemma 2.1. Let (dx,∆y, dz) be a solution of (2.8) and µ > 0. If δ := δ(v) > 0, then

0 ≤ dTx dz ≤
1

8
δ2 (2.13)

and

‖dxdz‖∞ ≤
δ2

16
, ‖dxdz‖ ≤

1

8
δ2. (2.14)
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2.1.4 The algorithm

The full-Newton step IPA for solving the CQO works as follows. First, we use a

suitable threshold (default) value τ > 0, with 0 < τ < 4 and we suppose that a

strictly feasible initial point (x0, y0, z0) exists such that δ(x0z0;µ0) ≤ τ , for certain µ0

is known. Using the obtained new search directions (∆x,∆y,∆z) from (2.11) and

taking a full-Newton step, the algorithm produces a new iterate (x+ ∆x, y + ∆y, z +

∆z). Then it updates the barrier parameter µ to (1 − θ)µ with 0 < θ < 1 and solves

the Newton system (2.11), and target a new µ-center and so on. This procedure is

repeated until the stopping criterion xT z ≤ ε is satisfied for a given accuracy ε > 0.

The generic IPA for the CQO is stated in Figure 2.1 as follows.

Input:

A threshold parameter 0 < τ < 4 (default value τ =
1

4
);

accuracy parameter ε > 0;

a barrier update parameter θ, 0 < θ < 1 (default value θ =
1

12
√

2n
);

a strictly feasible initial point (x0, y0, z0) and µ0 s.t. δ(x0z0;µ0) ≤ 1

4
;

begin
Set x := x0; y := y0; z := z0;µ := µ0;

while xT z ≥ ε do
begin

• µ := (1− θ)µ;
• calculate (∆x,∆y,∆z) from (2.11);
• (x, y, z) := (x+ ∆x, y + ∆y, z + ∆z);
endwhile

end.

Figure 2.1: Algorithm 1. The IPA for CQO

2.2 The analysis of the short-step algorithm

In this section, we will show across our new defaults that Algorithm 1, is well-defined,

i.e., at each iteration, the full-Newton step is feasible and the condition δ(xz;µ) ≤ τ

are maintained through the algorithm.

In the next lemma, we investigate the feasibility of a full-Newton step under the

condition δ < 4.

Lemma 2.2. Let δ < 4, then the full-Newton step is strictly feasible.
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Proof. Let α ∈ [0, 1], we define x(α) = x+ α∆x and z(α) = z + α∆z. Then

x(α)z(α) = xz + α(x∆z + z∆x) + α2∆x∆z.

Using (2.5) and (2.6), we get

x(α)z(α) = µ((1− α)v2 + α(v2 + vpv + αdxdz)). (2.15)

Hence x(α)z(α) > 0 if v2 + vpv + αdxdz > 0. By Lemma 2.1 (2.13), and from (2.10)

substitution pv =
1

2
(v−3 − v) and let δ < 4, it follows that

v2 + vpv + αdxdz ≥ v2 + vpv − α ‖dxdz‖∞ e

≥ v2 + vpv − α
δ2

16
e

≥ v2 +
1

2
v(v−3 − v)− α δ

2

16
e

≥ 1

2
v2 +

1

2
v−2 − α δ

2

16
e

>
1

2
v2 +

1

2
v−2 − e =

1

2v2
(
v2 − e

)2 ≥ 0,∀v > 0.

The functions α→ x(α) and α→ z(α) > 0 are continuous, x(0) > 0 and z(0) > 0 and

x(α)z(α) > 0 for each α ∈ [0, 1]. These imply that x(1) = x+ > 0 and z(1) = z+ > 0.

This shows the strict feasibility of a full-Newton step. This completes the proof. �

Lemma 2.3. Let δ < 4, then

min v+ ≥
1

4

√
16− δ2

where v+ =

√
x+z+
µ

.

Proof. Setting α = 1 in (2.15), then from (2.10), we have

v2+ = v2 + vpv + dxdz =
1

2
v2 +

1

2
v−2 + dxdz.

Lemma 2.2, implies that
1

2
v2 +

1

2
v−2 − e ≥ 0 if δ < 4, so

1

2
v2 +

1

2
v−2 ≥ e. Hence,

v2+ ≥ e+ dxdz. Next, due to (2.14), we obtain

v2+ ≥ e+ dxdz ≥ (e− ‖dxdz‖∞e) ≥
(

1− δ2

16

)
e ≥ 1

16
(16− δ2)e.

This implies that

min v+ ≥
1

4

√
16− δ2.

This proves the lemma.

Next, we prove that the iterate across the proximity measure is locally quadratically

convergent through the algorithm 1.
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Lemma 2.4. Assume δ < 4, then

δ+ := δ(v+) := δ(x+z+;µ) ≤ δ+ ≤

(
4√

16− δ2
+

64√
(16− δ2)3

)
5

8
δ2.

Moreover, if δ ≤ 1

4
then δ+ < δ2 which means the local quadratic convergence of the

full-Newton step.

Proof. Let v+ =

√
x+z+
µ

and δ+ =‖v−3+ − v+‖, then we have,

δ+ =‖v−3+ − v+‖ =

∥∥∥∥e− v4+v3+

∥∥∥∥ =

∥∥∥∥(e− v2+)

(
e+ v2+
v3+

)∥∥∥∥
For all t ∈ Rn

++, we define the function g by

g(t) =
1

t
+

1

t3
.

Using g, we deduce that

δ+ =‖g(v+)(e− v2+)‖ ≤‖g(v+)‖∞‖e− v2+‖.

where g(v+) = (g1(v+)1, · · · , gn(v+)n). The function g is continuous and monotoni-

cally decreasing and positive on (0,+∞). Hence

0 < |g((v+)i)| = g((v+)i) ≤ g(min v+) ≤ g

(
1

4

√
16− δ2

)
.

Then

‖g(v+)‖∞ =
4√

16− δ2
+

64√
(16− δ2)3

.

So

δ+ ≤

(
4√

16− δ2
+

64√
(16− δ2)3

)
‖e− v2+‖.

Next, letting α = 1 in (2.15) and due to (2.10), we have

‖e− v2+‖ =‖e− (v2 + vpv + dxdz)‖ =‖e− 1

2
v2 − 1

2
v−2 − dxdz‖.

Then

‖e− v2+‖ ≤‖e−
1

2
v2 − 1

2
v−2‖+‖dxdz‖.

Next, we may write ∥∥∥∥e− 1

2
v2 − 1

2
v−2
∥∥∥∥ =

∥∥φ(v).4p2v
∥∥ ,

where

φ(v) =
v4

2(v2 + e)2
.
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Let us consider the function

φ(t) =
t4

2(t2 + 1)2
.

The function φ is continuous and monotonically increasing and positive for all t ∈
(0,+∞). Then we have

0 ≤ φ(t) <
1

2
= lim

t7→∞
φ(t),∀t > 0.

This yields

0 ≤ φ(vi) <
1

2
,∀ i = 1, ..., n. (2.16)

Then, as ‖pv‖2 =
1

4
δ2, ‖φ(v)‖∞ = max

i
φ(vi) <

1

2
and ‖p2v‖ ≤‖pv‖2, this implies that∥∥∥∥e− 1

2
v2 − 1

2
v−2
∥∥∥∥ ≤ 4‖φ(v)‖∞‖pv‖2 =

1

2
δ2.

By (2.14), we deduce that:

‖e− v2+‖ ≤
5

8
δ2.

Next, for δ < 4, we have

δ+ ≤
5

8

(
4√

16− δ2
+

64√
(16− δ2)3

)
δ2.

Next, let δ ≤ 1

4
, then δ+ < δ2. This completes the proof.

In the next lemma, we obtain an upper bound for the duality gap after a full-

Newton step.

Lemma 2.5. After a full-Newton step it holds

xT+z+ ≤ 2µn. (2.17)

Proof. As v2+ =
x+z+
µ

, we have

(x+)T z+ = eT (x+z+) = µeTv2+ = µeT (v2 + vpv + dTx dz)

= µeT (e+ v2 + vpv − e) + µdTx dz

= µeT e+ eT (v2 + vpv − e) + µdTx dz

= µeT e+ µdTx dz + µeT

 1

2
v2 +

1

2
v−2 − e

(v−3 − v)2
.4p2v

 .

Then, after some simplifications, we get

(x+)T z+ = µeT e+ µdTx dz + 4µeTφ(v)p2v,
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where φ(v) = (φ(v1), φ(v2), · · · , φ(vn)) with

φ(vi) =
v4i

2(v2i + e)2
, for i = 1, · · · , n.

Due to (2.16), we have

0 <|φ(vi)| = φ(vi) <
1

2
, ∀i.

Therefore
eTv2+ ≤ µeT e+ µdTx dz + 4µeT max

i
|φ(vi)|p2v

≤ µeT e+ µdTx dz + 2‖pv‖2

≤ nµ+
1

8
δ2µ+

1

2
δ2µ

≤ µ

(
n+

5

8
δ2
)
≤ (n+ δ2)µ.

Let δ ≤ 1

4
, then eTv2+ ≤ (n + 1)µ, but since (n + 1) ≤ 2n,∀n ≥ 1, it follows that

eTv2+ ≤ 2µn. This completes the proof.

In the following lemma, we investigate the effect of a full Newton-step on the

proximity measure followed by updating the parameter µ by a factor (1 − θ), where

0 < θ < 1.

Theorem 2.6. Let µ+ = (1− θ)µ and let x+ > 0, z+ > 0, then we have

δ(v+;µ+) ≤ δ+ +
2
√

2nθ

1− θ
.

In addition, let δ ≤ 1

4
, and θ =

1

12
√

2n
, n ≥ 2, then δ(v+;µ+) ≤ 1

4
.

Proof. As
√
x+z+
µ+

=
1√

1− θ
v+ and δ+ =

∥∥v−3+ − v+
∥∥, we then have,

δ(x+z+;µ+) =

∥∥∥∥∥
(

x+z+√
1− θµ

)−3
−
√

x+z+
(1− θ)µ

∥∥∥∥∥ =

∥∥∥∥(1− θ)
3
2v−3+ −

1√
1− θ

v+

∥∥∥∥
=

∥∥∥∥(1− θ)
3
2v−3+ − (1− θ)

3
2v+ + (1− θ)

3
2v+ −

1√
1− θ

v+

∥∥∥∥
≤

∥∥∥(1− θ)
3
2v−3+ − (1− θ)

3
2v+

∥∥∥+

∥∥∥∥(1− θ)
3
2v+ −

1√
1− θ

v+

∥∥∥∥
= (1− θ)

3
2 δ+ +

∣∣∣∣(1− θ) 3
2 − 1√

1− θ

∣∣∣∣ ‖v+‖
≤ δ+ +

∣∣∣∣(1− θ) 3
2 − 1√

1− θ

∣∣∣∣ ‖v+‖ , for θ ∈ (0, 1).
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By Lemma 2.5, ‖v+‖ ≤
√

2n and since
∣∣∣∣(1− θ) 3

2 − 1√
1− θ

∣∣∣∣ =
θ|2− θ|√

1− θ
, ∀θ ∈ (0, 1),

then

δ(x+z+;µ+) ≤ δ+ +
θ|2− θ|√

1− θ
√

2n.

As
θ|2− θ|√

1− θ
≤ 2θ√

1− θ
, ∀θ ∈ (0, 1), we obtain

δ(x+z+;µ+) ≤ δ+ +
2
√

2n θ√
1− θ

.

As δ ≤ 1

4
so δ+ ≤ 1.254904 δ2, then we get

δ(x+z+;µ+) ≤ 0.078431 +
2
√

2n θ√
1− θ

.

Let θ =
1

12
√

2n
, n ≥ 2 hence θ ∈

[
0,

1

24

]
from which we deduce that δ(v+;µ+) ≤ ξ(θ)

where

ξ(θ) = 0.078431 +
1

6
√

1− θ
, ∀θ ∈ (0, 1).

Since ξ′(θ) > 0, then ξ(θ) is strictly increasing on
[
0,

1

24

]
and so ξ(θ) ≤ ξ

(
1

24

)
=

0.248682. This implies that δ(x+z+;µ+) ≤ 1

4
. This completes the proof.

Theorem 2.6, shows that Algorithm 1 is well-defined since the conditions x >

0, z > 0, and δ(xz;µ) ≤ 1

4
are maintained through the algorithm.

In the next lemma, we derive an upper bound for the total number of iterations

produced by Algorithm 1.

Lemma 2.7. Assume that x0 and z0 are strictly feasible such that δ(x0z0;µ0) ≤ 1

4
,

with µ0 > 0. Moreover, let xk and zk denote the vectors obtained by Algorithm 1, after
k-iterations with µ0 := µk. Then (xk)T zk ≤ ε holds if

k ≥
⌈

1

θ
log

2µ0n

ε

⌉
.

Proof. From Lemma 2.5 (2.17), we deduce that (xk)T zk ≤ 2(1 − θ)kµ0n. So the in-

equality (xk)T zk ≤ ε holds if 2(1− θ)kµ0n ≤ ε. Taking logarithms, we get

k log(1− θ) ≤ log ε− log 2nµ0 ≤ log ε− log 2µ0n.

Next, as − log(1− θ) ≥ θ, 0 < θ < 1, then the above inequality holds if

kθ ≥ log 2nµ0 − log ε = log
2nµ0

ε
.

This completes the proof.
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Theorem 2.8. Let θ =
1

12
√

2n
and µ0 =

1

2
, then Algorithm 1, requires at most

O
(√

n log
n

ε

)
iterations for getting an approximated primal-dual solution of CQO with the output
xT z ≤ ε.

Proof. Let θ =
1

12
√

2n
and µ0 =

1

2
, the results follows directly from Lemma 2.7.

2.3 Numerical results

In this section, we implemented Algorithm 1 by using Mat lab R2010a and run on

a PC with CPU 2.00 GHz and 4.00 G RAM memory and double precision format

on some examples of CQOs with different size. Here our accuracy is ε = 10−4. The

strictly feasible initial point and the optimal solution for CQO problems are denoted

by (x0 > 0, y0, z0 > 0) and (x?, y?, z?), respectively. Here, we display the following

notations:"Iter" and "CPU" to denote the number of iterations and the elapsed time

produced by our algorithm. Also to improve our numerical results we have relaxed

the barrier parameter µ0 ∈ {1, 0.5, 0.05}, with θ =
1

12
√

2n
, n ≥ 2. We also display

for each example, two tables, one is for different appropriate initial points taken in

Algorithm 1 according to each µ0 > 0 such that δ(x0z0, µ0) ≤ 1

4
and the other is for

the number of iterations and the elapsed time produced by our algorithm for each

example.

Example 1. We consider the convex quadratic optimization, where

A =

(
−1 1 1 0

2 3 0 1

)
, Q =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 ,

c = (6.8565,−3.5720,−5.6797, 0.6479)T , b = (0.5, 3)T . The different strictly feasible

starting points of Algorithm 1 are stated in the table below:

Table 2.1: Initial points for Example 1.

µ0 ↓ x0 > 0 z0 > 0 δ(x0z0;µ0)

1 (1.6243, 1.0033, 4.5688, 2.3291)T (0.6064, 1.0293, 0.2162, 0.4211)T 0.0842
0.5 (1.0298, 0.9873, 1.0092, 0.9628)T (0.5, 0.5, 0.5, 0.5)T 0.1016
0.05 (0.05, 0.04, 0.05, 0.05)T (0.9, 1.195, 1.001, 1.01)T 0.2416

Next, the number of iterations and CPU times for this example are summarized in

the table below.
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Table 2.2: Numerical results for Example 1.

µ0 →
1 0.5 0.05
Iter CPU Iter CPU Iter CPU
355 0.207200 332 0.205742 332 0.175473

An optimal solution of the COQs in Example 1 is:

x? = (0.3431, 0.7002, 0.1428, 0.2132)T ,

y? = (−5.3941, 1.0742)T ,

z? = (0.0001, 0.0000, 0.0000, 0.0001)T .

Example 2. Let the matrices A and Q be given as

A =

 1 1.2 1 1.8 0

3 −1 1.5 −2 1

−1 2 −3 4 2

 ,

Q =


20 1.2 1 1.8 0

1.2 32 1 1 1

0.5 1 14 1 1

0.5 1 1 15 1

−1 1 1 1 16

 ,

c = (−21,−37,−16,−22,−19)T , b = (5, 2.5, 4)T . The initial points and the obtained

numerical results are stated in the following tables.

Table 2.3: Initial points for Example 2.

µ0 ↓ x0 > 0 z0 > 0 δ(x0z0;µ0)

1 e (1.0298, 0.9873, 0.9690, 1.0092, 0.9628)T 0.1201
0.5 (1.0298, 0.9873, 0.9690, 1.0092, 0.9628)T (0.5000, 0.5000, 0.5000, 0.5000, 0.5000)T 0.1201
0.05 (0.5182, 0.4920, 0.4811, 0.5057, 0.4773)T e/10 0.1474

Table 2.4: numerical results of Example 2.

µ0 →
1 0.5 0.05
Iter CPU Iter CPU Iter CPU
406 0.264340 380 0.243439 293 0.165237
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An optimal solution for this example is:

x? = (1.0182, 0.9920, 0.9811, 1.0057, 0.9773)T ,

y? = (−0.3172, 0.0913,−0.6271)T ,

z? = 10−4(0.4573, 0.1949, 0.1971, 0.1923, 0.0489)T .

Problem 3. We consider the CQO, where n = 2m and

A = (aij) =

{
0 if i 6= j or (i+ 1) 6= j

1 if j = i+m.

Q[i, j] =


2j − 1 if i > j or i = j = n

2i− 1 if i < j

i(i+ 1) if i = j.

c =

{
0 if i = i+m

1 else if,
,

b[i] = 0.5.

In this example, we take x0 = 0.5e, y0 = 0Rm and z0 = e as the strictly feasible initial

point. The obtained numerical results are showed in the table below.

Table 2.5: Numerical results for Example 3 with different size.

τ = 1
Size (m,n) ↓ µ0 = 0.5

Iter CPU
(m,n) = (10, 20) 2892 4.345861
(m,n) = (50, 100) 6761 77.349749
(m,n) = (100, 200) 9736 150.012162
(m,n) = (1000, 2000) 15753 2480.426429

An optimal solution for Example 3 is:

x? = (0.0000, · · · , 0.4185)T ,

y? = (0.0003, · · · , 0.0003)T ,

z? = (0.3876, · · · , 0.0000)T .

Comments. Across the obtained numerical results stated in the previous tables, we

see that the number of iterations produced by Algorithm , is too large. This is due to

the fact that the default θ provided by our analysis is very poor when the size n of

the problem becomes very large. Consequently, the rate of decrease in the sequence

of barrier parameters {µk} approaches to one. This leads to a slow convergence of

Algorithm 1, to an optimal solution for large size CQO problems.
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2.3.1 A numerical modification of Algorithm 1

In this subsection, according to the above comments and in order to accelerate the

convergence of Algorithm 1, we import some modifications on it, where instead of

using the default of θ stated in our analysis, we take it as a constant belongs to the

set {0.1, ..., 0.9}. In addition, to ensure that iterates remain interior, we introduce a

primal and dual step-size αmax > 0 such that x + ραmax∆x > 0 and z + ραmax∆z > 0

where αmax = min(ρα, 1) with ρ ∈ (0, 1) and α = min(αx,αz) such that αx and αz are

computed as follows:

αx = min {(−xi)/(∆xi) : ∆xi < 0} αz = min {(−zi)/(∆zi) : ∆zi < 0} .

Based, on our modifications the new obtained numerical results are stated in tables

below.

Table 2.6: New obtained numerical results for Example 1.

µ0 →
θ ↓ 1 0.5 0.05

Iter CPU Iter CPU Iter CPU
0.1 101 0.062610 94 0.062887 73 0.043659
0.2 48 0.039662 45 0.033867 35 0.033420
0.3 30 0.028877 28 0.024989 22 0.024648
0.4 21 0.030101 20 0.023720 15 0.023575
0.5 16 0.023684 15 0.025608 11 0.026514
0.6 12 0.023404 11 0.024542 9 0.021171
0.7 9 0.023096 9 0.019677 7 0.019430
0.8 7 0.020431 7 0.020159 5 0.021679
0.9 5 0.017440 5 0.016987 4 0.017399

Table 2.7: New obtained numerical results for Example 2.

µ0 →
θ ↓ 1 0.5 0.05

Iter CPU Iter CPU Iter CPU
0.1 103 0.062552 97 0.054235 75 0.045948
0.2 49 0.038470 46 0.036995 36 0.031934
0.3 31 0.028234 29 0.026437 22 0.027367
0.4 22 0.028094 20 0.027767 16 0.024999
0.5 16 0.023248 15 0.023424 12 0.022347
0.6 12 0.024802 12 0.021535 9 0.021052
0.7 9 0.018651 9 0.024192 7 0.021086
0.8 7 0.020868 7 0.022089 5 0.020154
0.9 5 0.017233 5 0.016867 4 0.017240
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Table 2.8: New obtained numerical results for Example 3.

θ →
Size (m,n) ↓ 0.1 0.5 0.65 0.95

Iter CPU Iter CPU Iter CPU Iter CPU
(10, 20) 364 0.574110 56 0.094392 37 0.023738 13 0.019624
(50, 100) 380 4.114823 58 0.528836 39 0.141632 14 0.055535
(100, 200) 386 13.905783 59 2.078463 39 0.664945 14 0.256223
(1000, 2000) 403 1320.457701 62 542.518584 41 41.610999 15 107.677837



Chapter 3

A weighted-path following IPA for
convex quadratic optimization based
on modified search directions

3.1 A weighted-path following IPA for CQO

In this section, we study first the existence and uniqueness of the weighted-path of

CQO and the new modified search directions. Finally, we state the generic weighted-

path following full-Newton step IPA for CQO.

3.1.1 The weighted-path of CQO

Throughout the paper, we assume that both problems (P) and (D) satisfy the follow-

ing conditions.

• Interior-Point-Condition (IPC). There exists a triplet of vectors (x0, y0, z0) such

that:

Ax0 = b, x0 > 0, ATy0 + z0 −Qx0 = c, z0 > 0.

• Symmetric and positive semi-definiteness. The matrix Q is symmetric positive

semidefinite, i.e. Q = QT and vTQv ≥ 0, for all v ∈ Rn.

Getting an optimal solution for both problems (P) and (D) is equivalent to solving

the following system of optimality conditions:
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0,

xz = 0.

(3.1)

32
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Similar to the standard central-path methods, the basic idea behind weighted-path

following IPMs is to replace the third equation (complementarity condition) in (3.1)

by the parametrized equation xz = ω2; where ω ∈ Rn
++. Thus we consider the

following parametrized system:
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0,

xz = ω2.

(3.2)

Under our assumptions, system (3.2) has a unique solution denoted by (x(ω), y(ω), z(ω))

for all fixed ω ∈ Rn
++. The set

{(x(ω), y(ω), z(ω)) : ω > 0}

is called the weighted-path of both problems (P) and (D). If ω tends to zero then the

limit of the weighted-path exists and since the limit point satisfies the complementar-

ity condition, the limit yields an optimal solution for CQO. Similar to the monotone

LCP [6], the existence and the uniqueness of the weighted-path can be derived in the

following way. Consider the following log-barrier problem

min
(x,y,z)

xT z −
n∑
i=1

ω2
i lnxizi s.t. Ax = b, ATy + z −Qx = c, x > 0, z > 0.

Therefore, the necessary and sufficient optimality conditions of the log-barrier prob-

lem are characterized by the solutions of system (3.2). In other word, the existence

and the uniqueness of the weighted-path is equivalent to the existence of unique

minimizers for the log-barrier problem for each weight ω > 0. It is easy to verify by

the IPC, that the objective function of the log-barrier problem is strictly convex for

each ω > 0. Now, by the application of Newton’s method for system (3.2), we get

the classical Newton search directions [34]. Note that if ω =
√
µe with µ is a positive

scalar, then the weighted-path reduces to the classical central-path. The relevance of

the central-path has been discussed in the monographs, (see, e.g.,[44, 45]).

3.1.2 The new modified search direction

Following [6, 18], we turn now to describe the new modified Newton search direction

for CQO. The AET based directions for CQO is simply based in replacing the weighted

equation xz = ω2 by the new equation

ψ(xz) = ψ(ω2)
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where ψ(.) : (0,+∞) → R is continuously differentiable and invertible function.

Then, system (3.2) is converted to the following system
Ax = b, x ≥ 0,

ATy + z −Qx = c, z ≥ 0

ψ(xz) = ψ(ω2),

(3.3)

where ψ is applied coordinate-wisely. As system (3.2) has a unique solution so is the

system (3.3). Applying Newton’s method to system (3.3) for a given strictly feasible

point (x, y, z), i.e. the IPC holds, we obtain the following system:
A∆x = 0,

AT∆y + ∆z −Q∆x = 0,

z∆x+ x∆z =
ψ(ω2)− ψ(xz)

ψ′(xz)
,

(3.4)

where ψ′ denotes the derivative of ψ.

To simplify matters, we define the vectors

v :=
√
xz and d :=

√
xz−1.

The vector d is used to scale the vectors x and z to the same vector v as:

d−1x = dz = v. (3.5)

Due to (3.5), the scaling directions are given by

dx = d−1∆x and dz = d∆z. (3.6)

In addition, we have

x∆z + z∆x = v(dx + dz). (3.7)

Now, since Q is positive semidefinite matrix, it follows that

dTx dz = (∆x)T (∆z) = (∆x)TQ∆x ≥ 0. (3.8)

Hence, from (3.5), (3.7) and (3.8), system (3.4) can be written as
Ādx = 0,

ĀT∆y + dz − Q̄dx = 0,

dx + dz = pv

(3.9)

where

pv =
ψ(ω2)− ψ(v2)

vψ′(v2)
(3.10)

with Ā = AD, Q̄ = DQD and D :=diag(d).
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Next, substituting ψ(t) = t
3
2 in (3.10) and in (3.4), yields

pv =
2

3
v−2(ω3 − v3) (3.11)

and 
A∆x = 0,

AT∆y + ∆z −Q∆x = 0,

z∆x+ x∆z =
2

3

(ω3 −
√

(xz)3)√
xz

.

(3.12)

Therefore, the new unique modified search directions (∆x,∆y,∆z) are obtained by

solving system (3.12). Moreover, the new iterate is computed by taking a full-Newton

step as follows:

x+ := x+ ∆x; y+ := y + ∆y; z+ := z + ∆z.

We end this subsection with this remark. By choosing function ψ(t) appropriately, the

system (3.12) can be used to define a class of new search directions. For example:

• ψ(t) = t yields pv = v−1(ω2 − v2), we recuperate the standard weighted search

directions (see [7, 8, 40]).

• ψ(t) =
√
t yields pv = 2(ω − v), we get Darvay’s weighted search directions [18].

3.1.3 The proximity measure

For any positive vector v and according to (3.11), we define the norm-based proxim-

ity measure δ(v;ω) as follows:

δ(v;ω) =
3‖pv‖
2ωi

=
‖v−2(ω3 − v3)‖

ωi
, ∀i = 1, · · · , n. (3.13)

It is clear that

δ(v;ω) = 0⇔ ω3 = v3 ⇔ xz = ω2.

So δ(v;ω) is to measure the distance of a point (x, y, z) to the weighted-path (x(ω), y(ω), z(ω)).

Let us define another measure σC(ω) as follows:

σC(ω) =
max(ω)

min(ω)
≥ 1. (3.14)

The quantity σC(ω) is to measure the closeness of ω to the central-path. Here,

min(ω) = min
i

(ωi)

and likewise

max(ω) = max
i

(ωi).

Note that in (3.14), σC(ω) = 1 if ω is on the central-path.
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3.1.4 The generic weighted-path full-Newton step IPA for CQO

The weighted-path following IPA for CQO works as follows. First, we use a suitable

threshold (default) value τ > 0 with 0 < τ < 3 and we suppose that a strictly feasible

initial point (x0 > 0, y0, z0 > 0) such that δ(x0z0;ω0) ≤ τ for some known vector

ω0. Using the obtained search directions from (3.12) and taking a full Newton-step

the algorithm produces a new iterate (x + ∆x, y + ∆y, z + ∆z). Then, the vector

ω is reduced by the factor (1 − θ) with 0 < θ < 1 and solves system (3.12), and so

target a new iterate and so on. This procedure is repeated until the stopping criterion

nmax(ω2) ≤ ε is satisfied for a given accuracy parameter ε > 0. The generic IPA is

stated in Algorithm 2 as follows.

Input:
A threshold parameter τ ≤ 3 (default τ = 1);
an accuracy parameter ε > 0;

a barrier update parameter θ, 0 < θ < 1 (default θ =
1

36
√

2nσc(ω0)
);

a starting point (x0, y0, z0) and ω0 s.t. δ(x0z0;ω0) ≤ 1;
begin

Set x := x0; y := y0; z := z0;ω := ω0;
while nmax(ω2) ≥ ε do

begin
• ω := (1− θ)ω;
• Solve system (3.12) to obtain the direction (∆x,∆y,∆z);
• Update x := x+ ∆x, y := y + ∆y, z := z + ∆z;
endwhile

end

Figure 3.1: Algorithm 2. The weighted-path full Newton step IPA for CQO

3.2 Convergence analysis

In this section, we will show across our new defaults that Algorithm 2 is well-defined

and solves the CQO in polynomial complexity.

We first quote the following technical results which will be used later in the analysis

of Algorithm 2.

Lemma 3.1. Let (dx,∆y, dz) be a solution of (3.9) and ω > 0. If δ := δ(v;ω) > 0, then
∀i = 1, · · · , n, one has

0 ≤ dTx dz ≤
2

9
δ2ω2

i , ∀i (3.15)
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and
‖dxdz‖∞ ≤

δ2

9
ω2
i , ‖dxdz‖ ≤

2δ2

9
ω2
i , ∀i. (3.16)

Proof. For the first claim, we have

0 ≤‖dx‖2 + 2dTx dz+‖dz‖2 =‖dx + dz‖2 =‖pv‖2.

But since dTx dz ≥ 0 by (3.8), it follows that

dTx dz ≤
1

2
‖pv‖2 =

2

9
δ2ω2

i , ∀i.

For the second claim, as

dxdz =
1

4
((dx + dz)

2 − (dx − dz)2)

then, we have

‖dxdz‖∞ =
1

4
(‖(dx + dz)

2 − (dx − dz)2‖∞)

≤ 1

4
max(‖dx + dz‖2∞, ‖dx − dz‖2∞)

≤ 1

4
max(‖dx + dz‖2, ‖dx − dz‖2).

Since dTx dz ≥ 0, we have ‖dx + dz‖2 ≥‖dx − dz‖2, then we obtain

‖dxdz‖∞ ≤
1

4
‖dx + dz‖2 =

1

4
‖pv‖2 =

δ2

9
ω2
i , ∀i.

For the last claim, we have

‖dxdz‖2 = eT (dxdz)
2 =

1

16
eT ((dx + dz)

2 − (dx − dz)2)2

=
1

16
(‖(dx + dz)

2 − (dx − dz)2)‖2) ≤
1

16
(‖dx + dz‖2+‖dx − dz‖2)2

≤ 1

8
(‖dx + dz‖4+‖dx − dz‖4) =

1

4
‖dx + dz‖4 =

1

4
‖pv‖4 =

4

81
δ4ω4

i .

Hence,

‖dxdz‖ ≤
2

9
δ2ω2

i , ∀i.

This completes the proof.

The next lemma investigates the feasibility of a full-Newton step.

Lemma 3.2. Let (x, y, z) be a strictly feasible point and assume δ := δ(v;ω) < 3, then
x+ = x+ ∆x > 0 and z+ = z + ∆z > 0, i.e., x+ and z+ are strictly feasible.

Proof. Let α ∈ [0, 1], we define x(α) = x+ α∆x and z(α) = z + α∆z. Then, we have

x(α)z(α) = xz + α(x∆z + z∆x) + α2∆x∆z.
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Using (3.7) and (3.8), we get

x(α)z(α) = (1− α)v2 + α(v2 + vpv + αdxdz). (3.17)

Hence x(α)z(α) > 0 if v2 + vpv + αdxdz > 0. By Lemma 3.1 (3.16), and from (3.11)

and let δ < 3, it follows that

v2 + vpv + αdxdz ≥ v2 + vpv − α ‖dxdz‖∞ e

≥ v2 + vpv − α
δ2

9
ω2
i

>
1

3
v2 +

2

3
ω3
i v
−1 − ω2

i , ∀i.

Clearly, x(α)z(α) > 0 if
1

3
v2 +

2

3
ω3
i v
−1 − ω2

i ≥ 0, ∀i.

Letting

g(t) =
1

3
t2 +

2ω3
i

3
t−1 − ω2

i , t > 0, ∀i.

g is a strictly convex function and has a minimum at t = ωi, and so g(t) ≥ g(ωi) = 0.

Hence,
1

3
v2 +

2ω3
i

3
v−1 − ω2

i ≥ 0, ∀i.

Therefore, ∀α ∈ [0, 1], x(α)z(α) > 0. Since x and z are positive which implies that

x(α) > 0 and z(α) > 0 for all α ∈ [0, 1]. So by continuity the vectors x(1) = x+ and

z(1) = z+ > 0. This implies the lemma. �

For the new iterates x+ and z+, we define the vector v+ =
√
x+z+.

Lemma 3.3. Assume δ < 3, then

(v+)i ≥
ωi
3

√
9− δ2, ∀i.

Proof. In (3.17), setting α = 1, then from (3.11), we have

(v2+)i = v2 + vpv + dxdz =
1

3
v2 +

2

3
v−1ω3

i + dxdz, ∀i.

From the proof of Lemma 3.2, we have
1

3
v2 +

2

3
v−1ω3

i − ω2
i ≥ 0 if δ < 3, ∀i. From

which we deduce that
1

3
v2 +

2

3
v−1ω3

i ≥ ω2
i , ∀i. Consequently,

(v2+)i ≥ ω2
i + dxdz, ∀i.

Now, due to (3.16), we deduce that

ω2
i + dxdz ≥

(
ω2
i − ‖dxdz‖∞e

)
≥ ω2

i

9
(9− δ2), ∀i.
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Hence,

(v+)i ≥
ωi
3

√
9− δ2, ∀i.

This proves the lemma.

Next, we prove that the iterate across the proximity measure is locally quadratically

convergent during the Newton process.

Lemma 3.4. Assume δ < 3, then

δ+ := δ(v+) := δ(x+z+;ω) ≤ 5

9

(
9

9− δ2
+

3

3 +
√

9− δ2

)
δ2.

In addition, if δ ≤ 1 then

δ+ ≤
(

5

8
+

5

9 + 6
√

2

)
δ2,

which means the local quadratic convergence of the full-Newton step.

Proof. We have

δ(v+;ω) =
1

ωi

∥∥v−2+ (ω3 − v3+)
∥∥

=
1

ωi

∥∥∥∥ω3 − v3+
v2+

∥∥∥∥
=

1

ωi

∥∥∥∥(ω − v+)(ω2 + ωv+ + v2+)

v2+

∥∥∥∥
=

1

ωi

∥∥∥∥(ω2 − v2+)(ω2 + ωv+ + v2+)

v2+(ω + v+)

∥∥∥∥ .
For all fixed ω ∈ Rn

++, i.e. ωi > 0, ∀i, we define the function g by

g(t) =
ω2
i + ωit+ t2

t2(ωi + t)
=
ωi
t2

+
1

ωi + t
, ∀i.

Using g, we deduce that

δ+ =
1

ωi
‖g(v+)(ω2 − v2+)‖ ≤ 1

ωi
‖g(v+)‖∞‖ω2 − v2+‖, ∀i,

where g(v+) = (g1(v+)1, · · · , gn(v+)n). The function g is continuous and monotoni-

cally decreasing and positive on (0,+∞). Hence, by Lemma 3.3

0 < |gi((v+)i)| = gi((v+)i) ≤ g(v+) ≤ g
(ωi

3

√
9− δ2

)
, ∀i.

Then

‖g(v+)‖∞ ≤
9ωi

9ω2
i − δ2ω2

i

+
3

ωi(3 +
√

9− δ2)
,∀i.

This implies that

δ+ ≤ 1

ω2
i

(
9

9− δ2
+

3

3 +
√

9− δ2

)
‖ω2 − v2+‖, ∀i.
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Next, in (3.17), setting α = 1 and from (3.11), we have

‖ω2 − v2+‖ =‖ω2 − (v2 + vpv + dxdz)‖

=‖ω2 − 1

3
v2 − 2

3
v−1ω3 − dxdz‖.

Then

‖ω2 − v2+‖ ≤‖ω2 − 1

3
v2 − 2

3
v−1ω3‖+‖dxdz‖.

Next, we may write∥∥∥∥ω2 − 1

3
v2 − 2

3
v−1ω3

∥∥∥∥ =

∥∥∥∥ω2 − 1
3
v2 − 2

3
v−1ω3

v−4(ω3 − v3)2
.
9p2v
4

∥∥∥∥ .
And after elementary reductions, we get∥∥∥∥ω2 − 1

3
v2 − 2

3
v−1ω3

∥∥∥∥ =

∥∥∥∥ϕ(v).
9p2v
4

∥∥∥∥
where

ϕ(v) =
v3(v + 2ω)

3(v2 + vω + ω2)2
.

Let us consider for all i, the following function

ϕ(t) =
t3(t+ 2ωi)

3(t2 + ωit+ ω2
i )

2
.

ϕ(t) is continuous and monotonically increasing and positive for all t ∈ (0,+∞).

Then we have

0 ≤ ϕ(t) <
1

3
= lim

t7→∞
ϕ(t), ∀t > 0.

This yields

0 ≤ ϕ(vi) <
1

3
, ∀ i = 1, ..., n.

Consequently,

0 <|ϕ(vi)| = ϕ(vi) ≤
1

3
. (3.18)

Then, as ‖pv‖2 =
4

9
ω2
i δ

2, ‖ϕ(v)‖∞ = max
i
ϕ(vi) ≤

1

3
and ‖p2v‖ ≤‖pv‖2, these imply that∥∥∥∥ω2 − 1

3
v2 − 2

3
v−1ω3

∥∥∥∥ ≤‖ϕ(v)‖∞
9

4
‖pv‖2 =

1

3
ω2
i δ

2, ∀i.

Due to (3.16), it follows

‖ω2 − v2+‖ ≤
5

9
δ2ω2

i , ∀i.

Next, for δ < 3, we have

δ+ ≤
5

9

(
9

9− δ2
+

3

3 +
√

9− δ2

)
δ2.
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Now, let δ ≤ 1, then
9

9− δ2
≤ 9

8
and

3

3 +
√

9− δ2
≤ 3

3 + 2
√

2
. Hence, after some

simplifications, we obtain

δ+ ≤
(

5

8
+

5

9 + 6
√

2

)
δ2 < δ2.

This completes the proof.

The next lemma gives an upper bound for the duality gap after a full-Newton step.

Lemma 3.5. After a full-Newton step it holds

xT+z+ ≤ 2nmax(ω2).

Proof. As v2+ = x+z+, we have

(x+)T z+ = eTv2+ = eT (v2 + vpv + dxdz)

= eT (ω2 + v2 + vpv − ω2) + dTx dz

= eTω2 + eT (v2 + vpv − ω2) + dTx dz

= eTω2 + dTx dz + eT (v2 +
2

3
v−1ω3 − 2

3
v2 − ω2)

= eTω2 + dTx dz + eT

 1

3
v2 +

2

3
v−1ω3 − ω2

v−4(ω3 − v3)2
9p2v
4

 .

Then after some reductions, we get

(x+)T z+ = eTω2 + dxdz +
9

4
eTϕ(v)p2v

where ϕ(v) = (ϕ(v1), ϕ(v2), · · · , ϕ(vn)) with

ϕ(vi) =
v3i (vi + 2ωi)

3(v2i + viωi + ω2
i )

2
, for i = 1, · · · , n.

Due to (3.18), we have

0 <|ϕ(vi)| = ϕ(vi) ≤
1

3
, ∀i.

Therefore, by Lemma 3.1 and from (3.13), we have

eTv2+ ≤ eTω2 + dTx dz +
9

4
max
i
|ϕ(vi)|eTp2v

≤ eTω2 + dTx dz +
3

4
‖pv‖2

≤ nmax(ω2) +
2

9
δ2ω2

i +
1

3
δ2ω2

i , ∀i.

≤ nmax(ω2) +
2

9
δ2 max(ω2) +

1

3
δ2 max(ω2)

≤
(
n+

5

9
δ2
)

max(ω2) ≤ (n+ δ2) max(ω2).
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Let δ ≤ 1, then eTv2+ ≤ (n+ 1) max(ω2), but since (n+ 1) ≤ 2n,∀n ≥ 1, it follows that

eTv2+ ≤ 2nmax(ω2). This gives the required result.

Next lemma investigates the effect of a full Newton-step on the proximity measure

followed by updating the weighted vector ω by a factor (1− θ), where 0 < θ < 1.

Theorem 3.6. Let ω+ = (1− θ)ω and let x+ > 0, z+ > 0, then we have

δ(v+;ω+) ≤ δ+ +
3
√

2nθ

1− θ
σC(ω).

In addition, let δ ≤ 1, σC(ω) ≥ 1, and θ =
1

36
√

2nσC(ω)
, n ≥ 2, then δ(v+;ω+) ≤ 1.

Proof. Let δ(x+z+;ω+) and ω+ = (1− θ)ω where θ ∈ (0, 1). We have

δ(v+;ω+) =
1

(ω+)i
‖v−2+ (ω3

+ − v3+)‖

=
1

(1− θ)ωi
‖((1− θ)3ω3 − (v+)3)

v2+
‖

=
1

(1− θ)ωi
‖v−2+

(
(1− θ)3ω3 + (1− θ)3v3+ − (1− θ)3v3+ − v3+

)
‖

≤ 1

(1− θ)ωi
(
‖(1− θ)3v−2+ (ω3 − v3+)‖+‖v+((1− θ)3 − 1)‖

)
= (1− θ)2δ+ +

|(1− θ)3 − 1|
1− θ

‖v+‖
ωi

≤ δ+ +
|(1− θ)3 − 1|

1− θ
‖v+‖
ωi

≤ δ+ +
|θ(θ2 − 3θ + 3)|

1− θ
‖v+‖

min(ω)
.

As 0 < θ2 − 3θ + 3 < 3,∀θ ∈ (0, 1), we obtain

δ(v+;ω+) ≤ δ+ +
3θ

1− θ
‖v+‖

min(ω)
.

By Lemma 3.5, we have

‖v+‖ ≤
√

2nmax(ω).

Next, Lemma 3.4 implies that

δ+ ≤
(

5

8
+

5

9 + 6
√

2

)
δ2.

Now, let δ ≤ 1, then we get

δ(v+;ω+) ≤
(

5

8
+

5

9 + 6
√

2

)
+

3
√

2nσC(ω)θ

1− θ
.
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Let θ =
1

36
√

2nσc(ω)
, n ≥ 2 and σc(ω) ≥ 1 so θ ∈

[
0,

1

72

]
from which we deduce that

δ(v+;ω+) ≤ ξ(θ)

where

ξ(θ) =

(
5

8
+

5

9 + 6
√

2

)
+

1

12(1− θ)
.

As ξ′(θ) =
1

12 (θ − 1)2
> 0, then ξ(θ) is strictly increasing on the interval

[
0,

1

72

]
.

Hence ξ(θ) ≤ ξ

(
1

72

)
= 0.9966 < 1. This proves the theorem.

Theorem 3.6, shows that Algorithm 2 is well-defined since the conditions x >

0, z > 0, and δ(xz;ω) ≤ 1 are maintained throughout the algorithm. Also observe

that σC(ω) = σC(ω0) for all iterates produced by Algorithm 2.

The next lemma derives an upper bound for the total number of iterations pro-

duced by Algorithm 2.

Lemma 3.7. Let xk and zk be the k-th iteration produced by Algorithm 2. Then

(xk)T zk ≤ ε

if

k ≥
⌈

1

θ
log

2nmax(ω0)
2

ε

⌉
.

Proof. After k iterations, we have ωk = (1− θ)kω0. By Lemma 3.7, we get that

(xk)T zk ≤ 2n(1− θ)2k max(ω0)
2.

Thus the inequality (xk)T zk ≤ ε holds if

2n(1− θ)2k max(ω0)
2 ≤ ε.

Taking logarithms, we find

2k log(1− θ) ≤ log ε− log 2nmax(ω0)
2.

Using the inequality − log(1− θ) ≥ θ where 0 < θ < 1, so the above inequality holds

if

kθ ≥ 1

2
log

2nmax(ω0)
2

ε
.

This completes the proof.
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Theorem 3.8. Suppose that (x0, y0, z0) is a strictly feasible starting point, ω0 =
x0z0√

2 max(x0z0)

and δ(x0z0;ω0) ≤ 1. Let θ =
1

36
√

2nσc(ω0)
, then Algorithm 2, requires at most

O
(√

nσC(ω0) log
n

ε

)
iterations for getting an ε-approximate solution of CQO.

Proof. Let θ =
1

36
√

2nσC(ω0)
, Theorem 3.8 follows directly from Lemma 3.7.

Corollary 3.9. If we take ω0 =
1√
3
e, then Algorithm 2, requires at most O

(√
n log

n

ε

)
iterations which is the currently best known iteration bound for short-update method.

Proof. The proof is an immediate consequence of Theorem 3.8.

3.3 Numerical results

In this section, we implement Algorithm 2 on some examples of CQO with different

size by using Mat lab R2010a and run on a PC with CPU 2.00 GHz and 4.00 G RAM

memory and double precision format. Here our accuracy is set to ε = 10−4. The

strictly feasible initial point (x0 > 0, y0, z0 > 0) is taken such that δ(x0z0, ω0) ≤ 1. The

optimal primal-dual solution is denoted by (x?, y?, z?). Here, we display the following

notations: the "Iter" denotes the number of iterations produced by the algorithm to

obtain an approximated optimal solution. The "CPU" denotes the time (in second)

required to obtain an approximate optimal solution for CQO. Also to improve our nu-

merical results we have relaxed the barrier vector ω0 = { 1√
2
e,
√
x0z0,

x0z0√
2 max(x0z0)

},

with the update barrier θ =
1

36
√

2nσC(ω0)
, n ≥ 2. We also display a table for the num-

ber of iterations and the elapsed time for each example.

Example 4. We consider the convex quadratic optimization, where

A =

(
−1 1 1 0

2 3 0 1

)
, Q =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 ,

c = (1.3333, 1.3333, 1.3333, 1.3333)T , b = (0.33, 2)T . The strictly feasible starting point

x0 and z0 are chosen according to each value of ω0 and such that δ(x0z0;ω0) ≤ 1. For

this example, we take

x0 = (0.3333, 0.3333, 0.3333, 0.3333)T , y0 = (−2,−2)T , z0 = (2, 2, 2, 2)T .
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Table 3.1: Numerical results for Example 1.

ω0 →
1√
2
e

√
x0z0

x0z0√
2 max(x0z0)

Iter CPU Iter CPU Iter CPU
1862 0.53163 1876 0.137857 1862 0.139970

A primal-dual optimal solution of Example 1 is:

x? = (0.2000, 0.5333, 0.0000, 0.0000)T ,

y? = (−2.0800,−1.1733)T ,

z? = (0.0000, 0.0000, 1.4133, 0.5067)T .

Example 5. The data of the following convex quadratic problem is given by

A =

 1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05

1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1

1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1



Q =



30 1 1 1 1 1 1 1 1 1

1 21 0 1 −1 1 0 1 0.5 1

1 0 15 −0.5 −2 1 0 1 1 1

1 1 −0.5 30 3 −1 1 −1 0.5 1

1 −1 −2 3 27 1 0.5 1 1 1

1 1 1 −1 1 16 −0.5 0.5 0 1

1 0 0 1 0.5 −0.5 8 1 1 1

1 1 1 −1 1 0.5 1 24 1 1

1 0.5 1 0.5 1 0 1 1 39 1

1 1 1 1 1 1 1 1 1 11



,

c = (2.1, 3.45, 4.25, 2.5, 2.75, 4, 4.7, 2.95, 1.4, 4)T , b = (0.7660, 1.1770, 1.21)T . The initial

point is taken as:

x0 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)T ,

y0 = (−1,−1,−1)T ,

z0 = (6, 6, 6, 6, 6, 6, 6, 6, 6, 6)T .
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Table 3.2: Numerical results for Example 2.

ω0 →
1√
2
e

√
x0z0

x0z0√
2 max(x0z0)

Iter CPU Iter CPU Iter CPU
3022 0.293683 3037 0.293173 3022 0.294073

A primal-dual optimal solution for this example is:

x? = (0.0973, 0.0000, 0.0236, 0.1725, 0.0810, 0.2061, 0.0000, 0.1124, 0.0730, 0.0000)T ,

y? = (−1.5354, 2.0035, 0.5461)T ,

z? = (0.0000, 1.5550, 0.0000, 0.0000, 0.0000, 0.0000, 0.5015, 0.0000, 0.0000, 3.8707)T .

Example 3. We consider the CQO, where n = 2m and

A[i, j] =

{
0 if i 6= j or (i+ 1) 6= j

1 if j = i+m.

Q[i, j] =


2j − 1 if i > j or i = j = n

2i− 1 if i < j

i(i+ 1) if i = j.

c =

{
0 if i = i+m

1 else if,
,

b[i] = 0.5.

For this example, we take x0 = 0.5e, y0 = 0Rm and z0 = e as the strictly feasible

initial point. The obtained numerical results with θ =
1

36
√

2nσC(ω0)
are showed in

the table below.

Table 3.3: Numerical results for Example 3 with different sizes.

ω0 →

Size
(m,n) ↓

1√
2
e

√
x0z0

x0z0√
2 max(x0z0)

Iter CPU Iter CPU Iter CPU
(10, 20) 4356 0.819771 4356 0.797447 4356 0.806954
(50, 100) 10162 98.984386 10163 134.18251610163 148.585150
(100, 200) 14624 577.19243414625 694.05220314625 708.916735
(1000, 2000) 51120 1481.7523551120 1482.2489051120 1481.06895

A primal-dual optimal solution of Example 3 is:

x? = (0.0000, · · · , 0.0000, 0.4185)T ,

y? = (0.0388, · · · , 0.0388)T ,

z? = (0.3876, · · · , 0.3876, 0.0000)T .



3.3. NUMERICAL RESULTS 47

Comment. Across the obtained numerical results, we see that Algorithm 2 computes

a primal-dual optimal solution for CQOs but in a large number of iterations and with

a significant elapsed time. This means that the algorithm converges slowly to an

optimal solution while using θ stated in our analysis. The cause is due to the fact

that θ becomes very small for problems with a large size n. Consequently, the rate of

decrease (1− θ) in the sequence of barrier vectors {ωk} approaches to one.

3.3.1 A numerical amelioration of Algorithm 2

In this subsection, based on our comment and in order to improve our numerical re-

sults, we import some changes on the original version of Algorithm 2, where instead

of using the updating θ provided by our analysis, we take it as a constant belongs

to the set {0.1, ..., 0.9}. Moreover, to guarantee that the iterates remain interior, we

introduce a step-size αmax > 0 such that x+ ραmax∆x > 0 and z + ραmax∆z > 0 with

αmax = min{αP , αD} and ρ ∈ (0, 1) where αP and αD are given by

αP =

 min
i

(
− xi

∆xi

)
if ∆xi < 0

1 if ∆xi ≥ 0,
αD =

 min
i

(
− zi

∆zi

)
if ∆zi < 0

1 if ∆zi ≥ 0.

Based, on the imported changes our new obtained numerical results for the same

examples are stated in tables below.

Table 3.4: Numerical results for Example 1 with different value of θ and ω0 .

ω0 →

θ ↓ 1√
2
e

√
x0z0

x0z0√
2 max(x0z0)

Iter CPU Iter CPU Iter CPU
0.1 175 0.139169 176 0.193436 175 0.117749
0.2 84 0.083488 83 0.081854 83 0.062218
0.3 52 0.067883 52 0.068502 52 0.046201
0.4 36 0.063592 36 0.060969 36 0.039543
0.5 27 0.054806 27 0.051760 27 0.039456
0.6 20 0.054244 20 0.054322 20 0.032333
0.7 19 0.048853 19 0.055084 19 0.031448
0.8 19 0.051142 19 0.048136 19 0.036626
0.9 18 0.051417 18 0.047807 18 0.035654



48
CHAPTER 3. A WEIGHTED-PATH FOLLOWING IPA FOR CONVEX QUADRATIC

OPTIMIZATION BASED ON MODIFIED SEARCH DIRECTIONS

Table 3.5: Numerical results for Example 2 with different value of θ and ω0 .

ω0 →

θ ↓ 1√
2
e

√
x0z0

x0z0√
2 max(x0z0)

Iter CPU Iter CPU Iter CPU
0.1 179 0.187614 180 0.201249 179 0.190970
0.2 85 0.146417 86 0.115407 85 0.262326
0.3 53 0.092770 53 0.081417 53 0.069546
0.4 37 0.077989 37 0.067789 37 0.052182
0.5 27 0.066829 27 0.064044 27 0.045523
0.6 21 0.057692 21 0.057452 21 0.042347
0.7 21 0.057708 21 0.054687 21 0.042074
0.8 21 0.063730 21 0.058077 21 0.039714
0.9 21 0.059037 21 0.059576 21 0.036237

Table 3.6: Numerical results for Example 3 with different value of θ and ω0 .

θ →
ω0 ↓ Size (m,n) ↓ 0.1 0.3 0.5 0.9

Iter CPU Iter CPU Iter CPU Iter CPU
(10, 20) 182 0.428436 53 0.087912 28 0.060326 18 0.047816

1√
2
e (50, 100) 190 2.366860 55 0.648054 29 0.340302 18 0.224515

(100, 200) 193 8.695862 57 2.523648 29 1.421619 18 0.817562
(1000, 2000) 205 5240.8705 59 2237.279743 31 835.91287 19 502.69953
(10, 20) 182 0.255420 53 0.090728 28 0.061706 18 0.045603√

x0z0 (50, 100) 190 2.404953 55 0.694129 29 0.400725 18 0.464692
(100, 200) 193 8.743116 57 2.542191 29 1.338784 18 0.806318
(1000, 2000) 204 5239.9845 59 2236.4251 31 803.36214 19 472.19425
(10, 20) 182 0.274023 53 0.086902 28 0.059837 18 0.048521

x0z0√
2 max(x0z0)

(50, 100) 190 2.003090 55 0.640520 29 0.365868 18 0.223728

(100, 200) 193 8.822089 57 2.344394 29 1.343666 18 0.973272
(1000, 2000) 204 5239.5095 59 2237.26837 31 784.092613 19 486.44412



General conclusion and perspectives

In this dissertation, we have developed a feasible full-Newton step path-following

method for CQO based on a modified Newton search direction obtained by the ap-

plication of an AET to the central equations introduced by the univariate function

ψ(t) = t2. Under new appropriate selection of defaults of τ and θ, the algorithm

is well-defined and the favorable iteration bound of the algorithm with short-step

method is achieved, namely, O(
√
n log

n

ε
). This iteration bound is as good as for

CQOs. Meanwhile, the obtained numerical results by Algorithm 1 in its original ver-

sion are not good for solving CQO problems with large size. But, with the imported

modifications, the obtained numerical results are significantly ameliorated.

We have also presented a new weighted full-Newton step path-following interior-

point method for CQO based on a new modified Newton search direction obtained

by the application of the AET technique introduced by the new univariate function

ψ(t) = t
3
2 for the Newton system which defines the weighted-path. New appropriate

choices of the defaults of τ and θ are proposed where the favorable iteration bound

of the algorithm with short-step method is achieved, namely, O(
√
n log

n

ε
). This iter-

ation bound is as good as for LO analogue. Meanwhile, for the obtained numerical

results by Algorithm 2 for its first version are not good for CQOs problems with a

large size. But, with the imported changes on Algorithm 2, the obtained numerical

results are significantly improved.

Finally some perspectives are given.

1- A good topic of research is the extension of this two algorithms for other type of

optimization problems.

2- The ameliorated algorithm good topic of study the convergence and so on.
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Appendix

LU decomposition

The system Ax = b of linear equations can be solved quickly if A can be factored as

A = LU where L and U are of a particularly nice form. Certain matrices are easier

to work with than others. In this section, we will see how to write any square matrix

A as the product of two matrices that are easier to work with. We will write A = LU ,

where:

• L is lower triangular. This means that all entries above the main diagonal are

zero. In notation, L = (lij) with lij = 0 for all j > i.

L =


l11 0 0 0

l21 l22 0 0
...

...
...

...

ln1 ln2 · · · lnn

 ,

• U is upper triangular. This means that all entries below the main diagonal are

zero. In notation, U = (uij) with uij = 0 for all j < i.

U =


u11 u12 · · · u1n

0 u22 · · · u2n
... 0 · · · ...

0 0 · · · unn

 ,

A = LU is called an LU decomposition of A.

This is useful trick for many computational reasons. It is much easier to compute the

inverse of un upper or lower triangular matrix. Since inverses are useful for solving

linear systems, this makes solving any linear system associated to the matrix much

faster as well.
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 ملخص

لهذا . في هذه الأطروحة نهتم بالدراسة النظرية والعددية في حل مسائل الأمثلة التربيعية المحدبة

الأولى تعتمد على المسار المركزي واتجاهات نيوتن .  النقطة الداخليةيالغرض، قدمنا طريقتين ذوات

 الحالتين ، أثبتنا أن الخوارزميتين الملحقتين معرفة تافي كل.  الثقليالمعدلة والثانية تعتمد على المسار ذ

.زيادة أثبتنا أن التقارب ذات تكلفة حدودية. وتتقارب تربيعيا نحو الحل الأمثل  

.  أخيرا هده الدراسة ألحقت بالتجارب العددية للتقييم  

 الأمثلة التربيعية المحدبة ، طرق النقطة الداخلية ، طرق الخطوة القصيرة التكلفة  :المفتاحيةالكلمات 

.الحدودية  

Abstract 

In this thesis we are interested with theorical and numerical study of convex quadratic 
optimization. For this purpose, we have introduced two methods of interior point. The 
first depends on the classical central-path with modified Newton search directions. 
Meanwhile, the second one is based on the weighted path and also new search 
directions. In the two cases, we have proved that the corresponding algorithms are 
defined and converge locally quadratically.  In addition, those algorithms have the best 
known polynomial complexity. 

Finally, this study is followed by some numerical experiments for evaluation. 

Keywords: Convex quadratic optimization, Interior-point methods, Short-step method, 

Polynomial complexity. 

 

Résumé 

Dans cette thèse, on a intéressé par l’étude théorique et numérique de la programmation 
quadratique convexe. Pour ce but, on a introduit deux méthodes de point intérieur. La 
première méthode dépend de trajectoire centrale classique avec des directions de 
Newton modifiée, la deuxième est basée sur la trajectoire avec poids et aussi avec des 
nouvelles directions.  Dans les deux cas, on a montré que les algorithmes sont bien 
définis et convergent localement quadratique. De plus, ces algorithmes ont la meilleur 
complexité polynomiale. 

Finalement, cette étude est suivie par quelque résultats numériques pour évaluation. 

Mots clés : Optimisation quadratique convexe, Méthodes de point-intérieur, Méthode 

à petit pas, Complexité polynomiale. 
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