
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE 

MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE 

UNIVERSITE FERHAT ABBAS SETIF-1 

FACULTE DE TECHNOLOGIE 

 

 

THESE 

 
Présentée au Département d’Electronique 

Pour l’obtention du Diplôme de 

 

 

 

DOCTORAT LMD 

 

 

 

Filière : Electronique                                       Option : Instrumentation Electronique 

 

 

Par 

 

MOKHNACHE ABDELAZIZ 

 

THEME 

 

Implémentation d’Algorithmes Avancés de Traitement de 

l’Information Dédiés au Cryptage et à la Cryptanalyse 

 

 

 

Soutenue le 16 / 07 / 2023 devant le Jury: 

 

Pr. BOUKEZZOULA  Naceur-Eddine   Univ. Sétif 1    Président 

Pr. ZIET Lahcene      Univ. Sétif 1    Directeur de thèse 

Pr. FERHAT HAMIDA  Abdelhak   Univ. Sétif 1   Membre 

Pr. BENCHEIKH  Abdelhalim   Univ. Sétif 1   Membre 

Dr. BEKKOUCHE Tewfik    Univ. BBA    Membre 

Dr. SOUKKOU Ammar     Univ. Jijel   Membre 

  



 

Publications and Conferences 

Publications 

Mokhnache, A., Ziet, L. (2020). Cryptanalysis of a pixel permutation based image encryption 

technique using chaotic map. Traitement du Signal, Vol. 37, No. 1, pp. 95-100. 

https://doi.org/10.18280/ts.370112 

Conferences 

Security Enhancement of an Image Encryption Scheme Using the Sine-Sine Chaotic Map and 

an Efficient Permutation Technique. Conference, Abdelaziz Mokhnache, Ziet Lahcene, Hafssa 

Mounir, SÉMINAIRE INTERNATIONAL SUR L’INDUSTRIE ET LA TECHNOLOGIE, 

Oran, Algeria on 14/03/2021  

https://doi.org/10.18280/ts.370112


 

Index 

Introduction ......................................................................................................... 1 

1 Introduction to Cryptography .................................................................... 4 

1.1 Introduction ................................................................................................................ 4 

1.2 History ........................................................................................................................ 4 

1.3 Objectives of Cryptography ....................................................................................... 6 

1.3.1 Confidentiality ...................................................................................................... 6 

1.3.2 Integrity ................................................................................................................ 6 

1.3.3 Authentication ...................................................................................................... 6 

1.3.4 Non-repudiation.................................................................................................... 6 

1.4 Types of cryptosystems .............................................................................................. 7 

1.4.1 Symmetric ciphers ................................................................................................ 7 

1.4.1.1 Stream ciphers ............................................................................................... 8 

1.4.1.1.1 The One Time Pad .................................................................................... 9 

1.4.1.2 Block ciphers............................................................................................... 10 

1.4.1.2.1 Data Encryption Standard (DES) ........................................................... 10 

1.4.1.2.2 Advanced Encryption Standard (AES) ................................................... 12 

1.4.1.3 Modes of operation ..................................................................................... 14 

1.4.1.3.1 ECB Mode .............................................................................................. 14 

1.4.1.3.2 CBC Mode .............................................................................................. 15 

1.4.1.3.3 OFB Mode .............................................................................................. 16 

1.4.1.3.4 CFB Mode .............................................................................................. 17 

1.4.1.3.5 Counter Mode ......................................................................................... 17 

1.4.1.3.6 Galois Counter Mode (GCM) ................................................................. 18 

1.4.2 Asymmetric ciphers ............................................................................................ 19 

1.4.2.1 The RSA Cipher .......................................................................................... 20 

1.4.3 Hash Functions ................................................................................................... 22 

1.4.4 Message Authentication Codes .......................................................................... 23 



 

1.4.5 Digital Signatures ............................................................................................... 23 

1.4.6 Key Exchange Protocols .................................................................................... 25 

1.4.6.1 Diffie-Hellman Key Agreement .................................................................. 25 

1.5 Cryptanalysis ............................................................................................................ 26 

1.5.1 Classical Cryptanalysis....................................................................................... 27 

1.5.1.1 Differential cryptanalysis ............................................................................ 28 

1.5.1.2 Linear Cryptanalysis ................................................................................... 28 

1.5.1.3 Brute force attacks ...................................................................................... 28 

1.5.2 Implementation Attacks ...................................................................................... 29 

1.5.2.1 Side-Channel Analysis ................................................................................ 30 

1.5.2.2 Fault analysis attacks .................................................................................. 30 

1.5.2.3 Probing attacks ............................................................................................ 30 

1.5.3 Social Engineering Attacks ................................................................................ 30 

1.6 Conclusion ................................................................................................................ 31 

2 Overview on Image Encryption ................................................................ 32 

2.1 Introduction .............................................................................................................. 32 

2.2 Overview on Digital Images..................................................................................... 32 

2.2.1 Digital Images .................................................................................................... 33 

2.2.1.1 Grayscale Images ........................................................................................ 33 

2.2.1.2 The Color Image ......................................................................................... 33 

2.2.2 Basic Operations on Images ............................................................................... 34 

2.2.2.1 Pixel-wise arithmetic................................................................................... 34 

2.2.2.2 Pixel-wise Convolution ............................................................................... 36 

2.2.2.3 Pixel-wise Permutation ............................................................................... 37 

2.2.3 Common Image Formats .................................................................................... 38 

2.2.3.1 BMP Format ................................................................................................ 39 

2.2.3.2 PNG Format ................................................................................................ 39 

2.2.3.3 JPEG Format ............................................................................................... 39 



 

2.3 Image Encryption Schemes ...................................................................................... 39 

2.3.1 Spatial domain encryption .................................................................................. 40 

2.3.2 Transform domain encryption ............................................................................ 41 

2.3.3 Mixed-domain encryption .................................................................................. 41 

2.4 Evaluation metrics .................................................................................................... 42 

2.4.1 Histogram Uniformity ........................................................................................ 43 

2.4.2 Histogram Deviation .......................................................................................... 44 

2.4.3 Correlation Coefficient ....................................................................................... 44 

2.4.4 Irregular Deviation ............................................................................................. 45 

2.4.5 Deviation from Ideality ...................................................................................... 45 

2.4.6 Avalanche Effect ................................................................................................ 46 

2.4.7 NPCR and UACI ................................................................................................ 46 

2.4.8 Execution Time................................................................................................... 47 

2.4.9 Key Space/Size ................................................................................................... 47 

2.4.10 Key Sensitivity ................................................................................................... 47 

2.5 Conclusion ................................................................................................................ 48 

3 Proposed Hybrid Cryptanalysis Method ................................................. 49 

3.1 Introduction .............................................................................................................. 49 

3.2 Encryption Algorithm Description ........................................................................... 50 

3.3 Cryptanalysis of the proposed algorithm.................................................................. 54 

3.3.1 Revealing the Key Image ................................................................................... 54 

3.3.2 Unmasking The Semi-Encrypted Image ............................................................ 55 

3.3.3 Reversing The Permutation Phase ...................................................................... 56 

3.3.4 Brute Forcing the Encryption Key ..................................................................... 58 

3.3.5 Cryptanalysis Time Complexity ......................................................................... 58 

3.4 Results and Discussion ............................................................................................. 59 

3.5 Summary of Algorithm Weaknesses ........................................................................ 62 

3.6 Conclusion ................................................................................................................ 63 



 

4 Comparative Analysis Between a Pixel-Wise Image Encryption Scheme 

and AES in a Web Application Context .......................................................... 64 

4.1 Introduction .............................................................................................................. 64 

4.2 Description of the Chaotic Encryption Scheme ....................................................... 65 

4.3 Brief Description of the Web Application ................................................................ 67 

4.3.1 Image Uploading System ................................................................................... 67 

4.3.2 Image Serving System ........................................................................................ 67 

4.4 Application encryption requirements ....................................................................... 67 

4.4.1 High Security ...................................................................................................... 68 

4.4.2 High Performance............................................................................................... 68 

4.4.3 Side Effect Freedom ........................................................................................... 68 

4.5 Evaluation Tests........................................................................................................ 69 

4.5.1 Eavesdropping resistance test ............................................................................. 69 

4.5.2 Randomization Test ............................................................................................ 69 

4.5.3 Integrity test ........................................................................................................ 70 

4.5.4 Symmetry Test .................................................................................................... 70 

4.5.5 Storage Space test ............................................................................................... 71 

4.5.6 Raw speed test .................................................................................................... 72 

4.5.7 Server Load test .................................................................................................. 72 

4.6 Results and Discussions ........................................................................................... 73 

4.6.1 Eavesdropping resistance test ............................................................................. 74 

4.6.2 Randomization Test ............................................................................................ 75 

4.6.3 Integrity test ........................................................................................................ 76 

4.6.4 Symmetry Test .................................................................................................... 77 

4.6.5 Storage Space test ............................................................................................... 78 

4.6.6 Raw speed test .................................................................................................... 80 

4.6.7 Server Load Test ................................................................................................. 81 

4.7 Conclusion ................................................................................................................ 82 



 

5 A Highlight on Some Common Image Encryption Design Issues ......... 83 

5.1 Introduction .............................................................................................................. 83 

5.2 Security Issues .......................................................................................................... 84 

5.2.1 Information Leakage .......................................................................................... 84 

5.2.2 Lack of data integrity ......................................................................................... 85 

5.2.3 Lack of Randomization ...................................................................................... 86 

5.3 Performance Issues ................................................................................................... 88 

5.3.1 Requirement of encoding and decoding ............................................................. 88 

5.3.2 Inefficiency with compressed images ................................................................ 90 

5.4 Usability Issues and Limitations .............................................................................. 91 

5.4.1 Randomness by dependency on plain image ...................................................... 91 

5.4.2 Ignoring image metadata .................................................................................... 93 

5.5 Conclusion ................................................................................................................ 95 

General Conclusion and Perspectives ............................................................. 96 

References .......................................................................................................... 98 

 

 

  



 

Table of Figures 

Figure 1-1: Symmetric ciphers principle .................................................................................... 7 

Figure 1-2: Stream cipher ........................................................................................................... 8 

Figure 1-3: Encryption using One-time Pad algorithm .............................................................. 9 

Figure 1-4: Block Cipher .......................................................................................................... 10 

Figure 1-5: DES cipher architecture ......................................................................................... 11 

Figure 1-6: Feistel Network ..................................................................................................... 11 

Figure 1-7: Triple-DES Cipher ................................................................................................. 12 

Figure 1-8: The Advanced Encryption Standard (AES) ........................................................... 13 

Figure 1-9: Encryption using ECB mode ................................................................................. 14 

Figure 1-10: ECB penguin image ............................................................................................. 15 

Figure 1-11: Encryption using CBC mode ............................................................................... 16 

Figure 1-12: Encryption using OFB Mode .............................................................................. 16 

Figure 1-13: Encryption using CFB Mode ............................................................................... 17 

Figure 1-14: Encryption using Counter Mode ......................................................................... 18 

Figure 1-15: Encryption using Galois Counter Mode (GCM) ................................................. 19 

Figure 1-16: Public key cryptography principle....................................................................... 20 

Figure 1-17: RSA Cryptosystem .............................................................................................. 21 

Figure 1-18: Hash functions work principle diagram .............................................................. 22 

Figure 1-19: Message Authentication Code (MAC) ................................................................ 23 

Figure 1-20: Digital Signature system components ................................................................. 24 

Figure 1-21: Diffie-Hellman key exchange protocol ............................................................... 26 



 

Figure 1-22: Overview of cryptanalysis ................................................................................... 27 

Figure 1-23: Overview of Classical Cryptanalysis................................................................... 27 

Figure 1-24: Overview of Implementation Attacks .................................................................. 29 

Figure 2-1: 6 by 6 Grayscale Image ......................................................................................... 33 

Figure 2-2: A 24 by 24 Color Image......................................................................................... 34 

Figure 2-3: Decomposition of Mario image into RBG channels ............................................. 34 

Figure 2-4: Image arithmetic operations with thresholding ..................................................... 35 

Figure 2-5: Image arithmetic operations with modulo ............................................................. 36 

Figure 2-6: The addition of two images ................................................................................... 36 

Figure 2-7: Image Convolution ................................................................................................ 37 

Figure 2-8: Image Permutation................................................................................................. 38 

Figure 2-9: Image encryption Permutation-Substitution architecture overview ..................... 40 

Figure 2-10: Transform domain image encryption overview ................................................... 41 

Figure 2-11: Mixed domains image encryption overview ....................................................... 42 

Figure 2-12: Difference between plain image and encrypted image histograms .................... 43 

Figure 3-1: The proposed encryption algorithm diagram ........................................................ 50 

Figure 3-2: Proposed Encryption Algorithm in Pseudo-code .................................................. 52 

Figure 3-3: Proposed Decryption Algorithm in Pseudocode.................................................... 52 

Figure 3-4: Examples of Images Encrypted Using the Proposed Algorithms .......................... 53 

Figure 3-5: Diagram of revealing the Key Image .................................................................... 55 

Figure 3-6: Diagram of revealing the Semi-encrypted image .................................................. 55 

Figure 3-7: Diagram of the process that reveals the permutation vector ................................. 56 



 

Figure 3-8: Image encryption using the proposed algorithm ................................................... 59 

Figure 3-9: Revealing the key image using a chosen-plaintext attack ..................................... 60 

Figure 3-10: Revealing the key image using an online reverse image search using Google ... 60 

Figure 3-11: Image cryptanalysis using the proposed method ................................................. 61 

Figure 3-12: Brute-forcing the encryption key ......................................................................... 62 

Figure 4-1: . The pixel-wise image encryption model ............................................................. 65 

Figure 4-2: Encryption Diagram .............................................................................................. 66 

Figure 4-3: Images used in the experimental tests ................................................................... 73 

Figure 4-4: Baboon test image encryption using AES and the Chaotic cipher ........................ 74 

Figure 5-1: Characteristics of a good cipher ............................................................................ 83 

Figure 5-2: Information leakage ............................................................................................... 85 

Figure 5-3: Man In the Middle Attack on encrypted image ..................................................... 86 

Figure 5-4: Revealing patterns when encrypting similar images ............................................. 87 

Figure 5-5: The need for encoders and decoders when using the encryption scheme ............. 89 

Figure 5-6: The possible types of image encryption outputs ................................................... 90 

Figure 5-7: Principle of algorithms requiring the retain of a secret info .................................. 92 

Figure 5-8: Example of real image metadata ........................................................................... 93 

Figure 5-9: Available options in handling image metadata ...................................................... 94 

 

 



 

  

List of Tables 

Table 1: Brute-force attacks estimated time on symmetric ciphers with by key lengths ......... 28 

Table 2: Proposed Encryption Algorithm metrics .................................................................... 53 

Table 3: Eavesdropping resistance test results ......................................................................... 74 

Table 4: Randomization test results .......................................................................................... 75 

Table 5: Integrity test results .................................................................................................... 76 

Table 6: Symmetry test results ................................................................................................. 77 

Table 7: Storage space test results ............................................................................................ 79 

Table 8: Summary of encoding and metadata effects on decrypted image size ....................... 79 

Table 9: Encryption and decryption speed results .................................................................... 80 

Table 10: Server load test results .............................................................................................. 81 

  



 

List of Abbreviations 

AES: Advanced Encryption Standard 

CBC: Cipher Block Chaining 

CFB: Cipher Feedback 

DCT: Discrete Cosine Transform 

DES: Data Encryption Standard 

DFT: Discrete Fourier Transform 

ECB: Electronic Code Book 

FRFT: Fractional Fourier Transform 

GCM: Galois Counter Mode 

GIMP: Gnu Image Manipulation Program 

IBM: International Business Machines 

JPEG: Joint Photographic Experts Group 

MAC: Message Authentication Code 

NIST: National Institute of Standards and Technology 

NPCR: Number of Pixels Change Rate 

OFB: Output Feedback 

OTP: One Time Pad 

PNG: Portable Network Graphic 

RSA: Ronald Rivest, Adi Shamir and Leonard Adleman algorithm 

UACI: Unified Average Changing Intensity 

  



 

 

 

 

 

Acknowledgments 

 

My thanks are wholly devoted to ALLAH for guiding me and helping me all the way to 

conclude this thesis successfully. 

I would like to thank my supervisor – Pr. ZIET Lahcene for his valuable supervision, 

support and guidance during the course of my PhD degree. 

Additionally, I would like to express my gratitude to Dr. BEKKOUCHE Tewfik for his 

guidance at the beginning of my journey, which was very helpful. 

I also thank Pr. BOUKEZZOULA  Naceur-Eddine, Pr. FERHAT HAMIDA  Abdelhak, 

Pr. BENCHEIKH  Abdelhalim, Dr. BEKKOUCHE Tewfik and Dr. 

SOUKKOU Ammar who honored me with their acceptance to examine this work. 

I would like to thank my friends, lab mates, colleagues and research team for the precious 

time spent together. 

My appreciation also goes out to my beloved family for their encouragement, patience and 

support through all the years of my studies. 

 



 

 

 ملخّص
ريقة جديدة في تحليل الشفرات طلمساهمة الأولى هي اقتراح ا مساهمتين في مجال أمن المعلومات، هذه الرسالة  قدمت

ائي. تستخدم خوارزمية ذو حجم لانه حديثا والتي تدعي امتلاك مفتاحلكسر حماية إحدى الخوارزميات المنشورة 
رة مق لكسر الخوارزمية المنشو وهجمات البحث المع المختار تحليل الشفرات المقترحة مزيًجا من هجمات النص العادي

المعروفة.  AESر الحديثة وخوارزمية أما المساهمة الثانية فهي مقارنة تحليلية بين إحدى خوارزميات تشفير الصو .تمامًا
الخطيرة  خير بعض المشكلاتخلال المساهمتين السابقتين، أبُرزت في الأاستنادا على النتائج المتوصل إليها من 
هدفها لفت انتباه نبغي تجنبها، يالتي قائمة من الأنماط  في شكل الحديثةور والشائعة في العديد من أنظمة تشفير الص

 فير المستقبلية.مصممي هذه الخوارزميات إلى تلك الأخطاء الشائعة، أملا في تحسين جودة أنظمة التش

 رية الفوضى، تشفير الصور ، التشفير ، تحليل الشفرات ، نظالبيانات أمنالكلمات المفتاحية: 
Abstract 

In this thesis, we present two contributions in information security field. The first contribution 

is the proposition of a new hybrid cryptanalysis method against a new published algorithm 

claiming infinite key size. The proposed cryptanalysis algorithm uses a combination of chosen-

plaintext and brute-force attacks to completely break the proposed algorithm. The second 

contribution is a comparative analysis between a pixel-wise encryption schemes and AES 

algorithm in the context of a real web application. Based on the results of the work above, a 

highlight on some common major issues found in many modern image encryption schemes is 

done at the end. It presents a curated list of image encryption anti-patterns aiming to draw 

algorithm designers’ attention to those repeatedly committed errors and help improving the 

overall quality of future cryptosystems. 

Keywords: Security, Image Encryption, Cryptography, Cryptanalysis, Chaos 

Résumé 

Dans cette thèse, nous présentons deux contributions dans le domaine de la sécurité de l'infor-

mation. La première contribution est la proposition d'une nouvelle méthode de cryptanalyse 

hybride contre un nouvel algorithme publié revendiquant une taille de clé infinie. L'algo-

rithme de cryptanalyse proposé utilise une combinaison d'attaques de texte en clair choisi et 

de force brute pour casser complètement l'algorithme proposé. La deuxième contribution est 

une analyse comparative entre un schéma de chiffrement pixel par pixel et un algorithme AES 

dans le contexte d'une application Web réelle. Sur la base des résultats des travaux ci-dessus, 

une mise en évidence de certains problèmes majeurs communs rencontrés dans de nombreux 

schémas de cryptage d'image modernes est effectuée à la fin. Il présente une liste organisée 

d'anti-modèles de chiffrement d'image visant à attirer l'attention des concepteurs d'algo-

rithmes sur ces erreurs commises à plusieurs reprises et à aider à améliorer la qualité globale 

des futurs cryptosystèmes. 

Mots-clés : Sécurité, Cryptage d'images, Cryptographie, Cryptanalyse, Chaos 



 

  

1 

Introduction 

Since the early days of humanity, information security was known to be important [1]. Human 

beings are known to have a great sense of privacy. Therefore, they tend not to share everything 

in public. They usually share information with someone and hide it from someone else. This is 

why cryptography was invented. 

Cryptography is the science that study secure means of communication in the presence of 

unwanted third parties. Its origins dated to thousands of years ago and with time it became 

increasingly important [2]. Nowadays, billions of people are connected to the internet, their 

devices are sharing and receiving billions of gigabytes of data every day over the wires of 

internet. With this increase of connectivity, the demand for secure ciphers that can ensure the 

security of all that data increased as well. Therefore, fast and secure ciphers were developed 

over the last few decades and the world took security and cryptography very seriously [3]. 

Unlike two decades ago where information on the internet were just text and very few images, 

nowadays multimedia represents the largest portion of transferred data. With the increasing 

popularity of social networks and video streaming services, researchers and companies started 

looking for new means of data compression and encryption techniques that could handle the 

increasing load of transmitted information. Some researchers started pivoting from studying 

general purpose ciphers and began developing new specialized techniques of cryptography 

dedicated to multimedia such as images and videos. In the recent years, the number of 

researches treating the topic of image encryption has increased significantly. 

The newly proposed image ciphers differed in many aspects and metrics. However, they 

focused mainly on security and performance enhancement. Some of them improved encryption 

and decryption speed. The other focused on enhancing the overall security while another part 

tried to achieve both of these objectives and develop faster and more secure schemes. However, 

every system has weaknesses. Some new ciphers were unsecure and got cracked by 

cryptanalysts just few months or a couple of years after being proposed. Cryptanalysis is crucial 

for propelling cryptography. It draws the attention of cryptosystem designers to the 

vulnerabilities found in their systems and prevents weak ciphers from being adopted and used 

in sensitive applications. In summary, cryptanalysis makes ciphers more secure [4]. 

In this context, we proposed a hybrid method of cryptanalysis that was applied on a recently 

designed image cipher claiming to be secure and has infinite key space. With a combination of 



 

  

2 

differential and brute-force attacks, we developed an algorithm capable of fully identifying and 

completely revealing any image that was encrypted with that cipher. 

Motivated by the popularity of chaos based encryption systems, we tried to implement a chaos 

based encryption algorithm into a real world image sharing web application. A comparative 

analysis was performed between a recently proposed chaos based image encryption scheme 

claiming to be fast and the Advanced Encryption Standard (AES) based on the real needs and 

requirements of the application. 

During the time that we’ve spent analyzing new proposed image ciphers, we found some anti-

patterns that are commonly committed by many image cryptosystem designers. The main 

reason for these common issues based on our analysis is that many cipher designers don’t 

usually think about the engineering context where the cipher is going to be implemented in real 

world applications. Some of the vulnerabilities are security related while others are 

performance and usability issues. We collected those common issues and highlighted them to 

help cryptosystem designers proposing more secure and performant algorithms by avoiding 

these anti-patterns in future systems. 

This thesis is going to be organized into five chapters. The first one will be a state of the art 

about cryptography in general. Different types of cryptosystems will be presented and 

explained. Moreover, to help the reader get prepared for the cryptanalysis part later, a section 

will be dedicated to talk about attacks of different types that are relevant to modern ciphers. 

Since our main work is related to digital image security, the second chapter will be a state of 

the art about image encryption. It will start by an introduction to the notion of digital images 

and basic digital image processing techniques. Then an overview on image ciphers is taken, 

focusing on the classification of modern image encryption techniques and the most used 

evaluation metrics. 

The third chapter will be dedicated to the cryptanalysis method that we have proposed on the a 

newly published image encryption algorithm. First, the published encryption scheme is briefly 

described. Then, the attack algorithm is explained in details and the practical results are 

presented and discussed. At the end of the chapter, the vulnerabilities that was found in the 

scheme that led to its crack are highlighted. 

In the fourth chapter, a comparative analysis between a pixel-wise chaos based image 

encryption algorithm and AES is conducted in the context of a web application. A customized 



 

  

3 

test suite is designed according to the requirements of the application, then both the chaos based 

algorithm and AES are compared together to select the most suitable encryption algorithm for 

that type of applications. 

Based on our experience trying to implement a pixel-wise encryption algorithm into a web 

application, the fifth chapter will be a summary of our findings about some common 

vulnerabilities and issues found across multiple modern image encryption schemes that follow 

the pixel-wise encryption model. These anti-patterns are presented and explained in order to 

help cryptosystem designers avoid them when designing future ciphers. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 
 

Introduction to Cryptography 

 

Index 

1.1 Introduction 

1.2 History 

1.3 Objectives of Cryptography 

1.4 Types of cryptosystems 

1.5 Cryptanalysis 

1.6 Conclusion 

 

 



 
4 

 

Introduction to Cryptography 
1 Introduction to Cryptography 

1.1  Introduction 

Cryptography is the science of securing data and communications stored or sent over a public 

channel. It is generally the study of techniques that turns confidential data of arbitrary length 

into codes that looks random using a small piece of information called a secret key. The secured 

data can be recovered only if the secret key is known. 

Humanity knew the importance of cryptography since the early days. However, the need for it 

increased with the technological advancement and the numerical transition that the world knew 

in the last decades. 

This chapter will be an overview on cryptography. The start will be some historical information 

about its origins and evolution. Then its objectives and categories are presented. Finally, we 

will have a look on cryptanalysis which is the art of breaking cryptography. Cryptanalysis 

represents the core of our first contribution in this thesis. 

1.2 History 

One of the earliest ciphers that was used on a large scale was a transposition method of 

encryption known as the skytale cipher, used by the Spartans around 500 B.C. The skytale was 

a strip of leather wound around a wooden rod like a belt. The message was written on the strip 

and the strip was unwound to scramble the message. On the other side, the original message is 

recovered by winding the strip again around a rod of the same diameter of the one used in 

encryption [1]. That was the same principle of nowadays modern symmetric cryptography.  

Then, the great emperor of Rome Julius Caesar, used a cipher where every alphabet was shifted 

three places to the left. Hence, D will be written in place of A and B will be replaced with E. 

This cipher was used for confidential communication between Roman Generals and the 

emperor. The cipher was named Caesar cipher after the name of the emperor [2]. 

 
Chapter 

 1 



Chapter 1: Introduction to Cryptography 

 

5 

In 1586, Blaise de Vigenère came up with an innovative new cipher. He developed a powerful 

new way of encryption by the use of twenty-six distinct cipher alphabets to encrypt a message. 

The cipher alphabets are all simple Caesar shifts of one to twenty-six arranged in a square. 

Vigenere cipher was thought undecipherable until 1863 when Friedrich Kasiski published a 

general method to decipher it [1]. 

In 1917, the american Edward Hebern invented the electro-mechanical machine in which the 

key is embedded in a rotating disc. It encodes a substitution table that is changed every time a 

new character is typed [1]. 

In 1918, the German engineer Arthur Scherbius invented the Enigma machine for commercial 

use. Rather than the one rotor used by Hebern's device, it uses 3 rotors. The Enigma machine 

was relied upon heavily by the German military in World War II [1]. 

After the start of World War II in 1939, Allan Turing and a team of cryptographers at Bletchley 

Park in England, invented an electro-mechanical device called the Bombe. It was used to 

decipher the Enigma-encrypted communication between the German Navy headquarters at Kiel 

and the submarines in the North Atlantic [1]. 

In 1945 Claude E. Shannon published an article called "A mathematical theory of 

cryptography" where he set the fundamentals for modern cryptography [3]. 

In 1970s, IBM designed a block cipher to protect its customers' data. It was a fairly complicated 

set of bit operations performed in 16 rounds on the 64 bits of a message and 56 bits of key size. 

It was ready to be run by standard digital computer hardware at great speed. In 1977, the US 

adopted it as a national standard called the Data Encryption Standard, or DES [4]. This cipher 

was widely used in computers and in a lot of other devices and applications. It remained in use 

until it was broken in 1997. 

In 1976, a protocol for sharing secret keys through a public channel was proposed by Diffie 

and Hellman [5]. Their revolutionary idea opened the door for a new type of cryptosystems 

known later by public-key cryptography. 

In 1978, Rivest, Shamir and Adleman proposed the first public-key algorithm called RSA 

exploiting a mathematical problem named “factoring problem” [6]. RSA remained one of the 

most important public-key algorithms until now. 



Chapter 1: Introduction to Cryptography 

 

6 

In June 1997, a group of scientist broke DES for the first time. The group won the challenge 

proposed by RSA Security company to highlight the lack of security provided in Data 

Encryption Standard. 

In September 1997, NIST (National Institute of Standards and Technology) announced a call 

for new algorithms in order to select the Advanced Encryption Standard, or AES the successor 

of DES in a more open and transparent way. AES got selected and standardized in 2001. 

1.3 Objectives of Cryptography 

A trustworthy cryptosystem has to abide by certain rules and objectives. Any cryptosystem that 

fulfils the objectives mentioned below is considered safe and hence can be utilized for 

cryptographic properties. 

1.3.1 Confidentiality 

The first objective of cryptography and the most intuitive one is confidentiality. Which means 

that no one besides the intended recipient can understand the message or the information that 

was sent. Confidentiality was the primary goal that pushed the invention and development of 

cryptography in the first place. 

1.3.2 Integrity 

A cryptosystem has to ensure that the information in storage or in transit between the sender 

and the recipient cannot be altered by any means without being detected. The receiver of a 

message should be able to check whether the message was modified during transmission, either 

accidentally or deliberately. 

1.3.3 Authentication 

Authentication means that the receiver of a message should be able to verify its origin. When 

initiating a communication, the sender and the recipient should be able to identify each other 

identity, and no one should be able to send a message to the recipient and pretend to be the 

already authenticated sender. 

1.3.4 Non-repudiation 

This property assures that the sender can never convincingly deny his intention to send the 

message. The importance of this property appears when the sender denies his sending of the 

message and the receiver want to prove him wrong in front of a third party judge. 



Chapter 1: Introduction to Cryptography 

 

7 

1.4 Types of cryptosystems 

Cryptosystems can be divided into multiple categories depending on which criteria is 

considered. However, they are generally classified into two categories based on the encryption 

key nature: symmetric and asymmetric ciphers. 

1.4.1 Symmetric ciphers 

Symmetric ciphers are the most convenient and intuitive type of ciphers to think about. It is a 

system of cryptography composed of two algorithms: an encryption algorithm and a decryption 

one, as well as a shared secret key between two parties or more that want to share data securely 

over a public channel. The data encrypted with the encryption algorithm using a given secret 

key can be fully decrypted with the decryption algorithm using the same key exclusively [2]. 

This process is illustrated in Figure 1-1. 

 

Figure 1-1: Symmetric ciphers principle 

Both encryption and decryption algorithms implementations need to be completely known to 

the public and should not involve any hidden parts. The secrecy of the plain data given the 

cipher data should be only dependent of the secrecy of the secret key [7]. This is a well-known 

principle in cryptography called Kirchhoff’s' principle. 

Sometimes in symmetric ciphers, the encryption and decryption keys can be slightly different 

from each other. However, one of them should be easy to compute given the other one [7]. 



Chapter 1: Introduction to Cryptography 

 

8 

Based on the data type fed into a symmetric cipher, we can distinguish 2 types of ciphers: stream 

ciphers and block ciphers. 

1.4.1.1 Stream ciphers 

Stream ciphers are encryption algorithms that encrypt streams of data bit by bit or character by 

character using a pseudo random generator and a secret key. 

 

Figure 1-2: Stream cipher 

Figure 1-2 illustrates how stream ciphers work in general. Generally, they work by adding a bit 

from a pseudo-random sequence to the corresponding plaintext bit modulo 2 (XOR operator). 

The key stream is generated using a cryptographically secure pseudo-random bit generator. 

Since the operation of addition modulo 2 is reversible, the decryption on the other hand is done 

by generating the same pseudo-random sequence and adding it bit by bit to the cipher text. 

There are synchronous stream ciphers where the key stream depends only on the key, and 

asynchronous ones where the key stream also depends on the resulting ciphertext. 

Stream ciphers are known to be very fast and resource efficient [4]. They are mostly used in  

applications and environment with little computational resources such as cell phones and 

embedded devices [7]. 



Chapter 1: Introduction to Cryptography 

 

9 

Some examples of the most used stream ciphers in real applications are: ChaCha, Salsa20, 

RC4 …etc. 

1.4.1.1.1 The One Time Pad 

The one-time pad (OTP) is an encryption technique where a plaintext is paired with a truly 

random secret key having the same length. Then, each bit or character of the plaintext is 

encrypted by combining it with the corresponding bit or character from the pad using modular 

addition as illustrated in Figure 1-3. The one-time pad algorithm was invented by Gilbert 

Vernam in 1917. 

 

Figure 1-3: Encryption using One-time Pad algorithm 

The one-time pad was proven by Shannon to be perfectly secret in 1949 [8]. Perfect secrecy 

means that the ciphertext leaks no information about the plaintext. Therefore, the algorithm 

resists all ciphertext-only attacks. Even with unlimited computing power an adversary will not 

be able to get any information about the plaintext. 

However, one-time pad and all perfectly secret ciphers are usually impractical. It is hard in 

practice to generate truly random bit sequences of sufficient length and transmit them securely 

to the recipient on every encryption operation. 

Although the impracticality of the one-time pad in real world, it was the building block for a 

lot of other algorithms that came after. Those algorithms abandoned the unrealistic assumption 

of unlimited computing power and considered the feasible attacks in practice only. Truly 

random bits’ sequences were replaced by pseudo-random ones generated by a good pseudo-

random bit’s generator. 



Chapter 1: Introduction to Cryptography 

 

10 

1.4.1.2 Block ciphers 

Block ciphers on the other hand doesn’t encrypt one bit of plaintext at a time but take a block 

of data instead. As illustrated in Figure 1-4, block ciphers are algorithms that take as inputs a 

block of fixed length of plaintext and a key and output a block of ciphertext having the same 

size as the plaintext. A good block cipher should have good diffusion properties, which means 

that the encryption of any plaintext bit in a given block is affected by every other plaintext bit 

in the same block. If a single bit is changed in plaintext, the ciphertext should change 

completely. 

 

Figure 1-4: Block Cipher 

In practice, the vast majority of block ciphers have a block length of either 64 bits such as DES 

(Data Encryption Standard) and 3DES (triple DES) or 128 such as the advanced encryption 

standard (AES). 

1.4.1.2.1 Data Encryption Standard (DES) 

The data encryption standard (DES) was the most widely used symmetric-key encryption 

algorithm for secure and authentic communications. It is a block cipher that takes 56-bit key 

and 64-bit plaintext message as inputs and outputs a 64-bit ciphertext. 

As shown in Figure 1-5, DES consists of 16 identical rounds as well as an initial and final 

permutations. In each round, a different 48-bit round key derived from the primary 56-bit key 

is used. The round itself is composed from a Feistel Network as shown in Figure 1-6, which is 

a powerful structure and an important building block for many modern block ciphers including 

DES, the Soviet/Russian GOST as well as two more recent ones called Blowfish and Twofish 

ciphers. 



Chapter 1: Introduction to Cryptography 

 

11 

 

Figure 1-5: DES cipher architecture 

A Feistel network takes two inputs, a data block and a sub-key, and output a block of the same 

size. First, the block is divided into two sub-blocks, right and left sub-block. The right block 

and the round key are fed into a pseudo-random function whose output is XORed with the left 

sub-block. The result of this operation will be the right sub-block of the network output. The 

left sub-block of the output is the exact copy of the right sub-block of the input without 

modifications. 

 

Figure 1-6: Feistel Network 



Chapter 1: Introduction to Cryptography 

 

12 

An important advantage of Feistel networks compared to other cipher designs like substitution–

permutation networks (SP Networks) is that the entire operation is guaranteed to be invertible 

regardless of the round function being invertible or not. Therefore, the round function can be 

made arbitrarily complicated, since it does not need to be designed with invertibility in mind. 

Nowadays with the advancement in computing power, DES is considered insecure against 

brute-force attacks because of its small key. Therefore, DES should not be used in real 

applications anymore.  

 

Figure 1-7: Triple-DES Cipher 

One way of strengthening DES is using a derived algorithm called Triple-DES (3DES). It is an 

algorithm constructed of 3 stages of DES encryption and decryption algorithms using a 

different key for each stage as shown in Figure 1-7. 

 Another simple approach for strengthening DES is to use a method called key whitening. For 

this, two additional 64-bit keys k1 and k2 needs to be XORed to the plaintext and ciphertext, 

respectively, before and after the DES algorithm. According to equation Eq1 below. 

 𝐷𝐸𝑆𝑘,𝑘2,𝑘3(x) = 𝐷𝐸𝑆𝑘(𝑥 ⊕ 𝑘1)⨁𝑘2 Eq 1 

1.4.1.2.2 Advanced Encryption Standard (AES) 

In January 1997, the National Institute of Standards and Technology started an open selection 

process for a new encryption standard – the advanced encryption standard (AES). NIST 

encouraged cryptographers from all around the world to participate. The requirements were to 

support a block size of at least 128 bits, and three key sizes of 128, 192 and 256 bits. In 

November 2001, NIST selected the cipher named Rijndael developed by J. Daemen and V. 

Rijmen to be the AES. 



Chapter 1: Introduction to Cryptography 

 

13 

Rijndael is a block cipher that supports different block and key sizes. Block and key sizes of 

128, 160, 192, 224 and 256 bits can be combined independently. However, after being selected 

as the AES the block length was fixed to 128 bits and only key lengths of 128, 192 and 256 bits 

were chosen [9]. 

AES consists of the repeated application of a round transformation on the state. The number of 

rounds depends on the block length and the key length. 

 

Figure 1-8: The Advanced Encryption Standard (AES) 

AES accepts a block of data of 128 bits and a key of 128, 192 or 256 bits. The data block is 

first XORed with the first round key which is a sub-key derived from the provided key. Then 

10 rounds are performed on the resulting block as shown in Figure 1-8. Each round consists of 

4 steps except for the last one which has 3 steps only. The round steps are: 

 SubBytes: a non-linear substitution where each byte is replaced with another according 

to a predefined S-Box. 



Chapter 1: Introduction to Cryptography 

 

14 

 ShiftRows: a transposition step where the last three rows of the state are shifted 

cyclically a certain number of steps. 

 MixColumns: a linear mixing operation which operates on the columns of the state, 

combining the four bytes in each column. 

 AddRoundKey: an application of XOR operator between the state and the 

corresponding round key. 

By design, the last round doesn’t include the MixColumns step. 

1.4.1.3 Modes of operation 

Most of the time the data to encrypt is larger than one block. A mode of operation is the method 

used to encrypt large data using a symmetric block cipher. There exist a lot of modes of 

operation that differ in speed and level of security. If the length of the message is not a multiple 

of the block size, it must be padded to be a multiple of the block size prior to encryption. 

1.4.1.3.1 ECB Mode 

The Electronic Code Book (ECB) mode is the most straightforward way of encrypting a 

message. Given a block cipher with a block of size b bits, messages which exceed b bits are 

divided into b-bit blocks. As shown in Figure 1-9, in ECB mode each block is encrypted 

separately from the other blocks. There is no interaction between blocks or influence on each 

other. The block cipher by the way can be any block cipher algorithm like AES or 3DES. 

 

Figure 1-9: Encryption using ECB mode 

This property of ECB mode of encrypting and outputting the result of each block separately 

makes it the most performant mode of operation since there is no other processing than the 



Chapter 1: Introduction to Cryptography 

 

15 

encryption itself. However, this made ECB unsecure because it reveals too much patterns about 

the plaintext data.  

Figure 1-10 represents the ECB penguin image, a famous experience where the pixels of a 

penguin image is encrypted using ECB mode. The result as shown below is an encrypted image 

that reveals a lot of patterns about the original image although every pixel has been encrypted. 

 

 

Figure 1-10: ECB penguin image 

1.4.1.3.2 CBC Mode 

Cipher Block Chaining (CBC) mode is a mode of operation that solved the security problem 

that ECB have. Unlike ECB where each block is encrypted separately and there is no influence 

of one block on the other, in CBC each ciphertext output depends on all ciphertext blocks that 

precedes it as well as a random initialization vector (IV) that should be provided upon each 

execution of the process. Therefore, even if two plaintexts are similar the ciphertext will be 

completely different because the initialization vector (IV) will not be the same. 

CBC mode works as shown in Figure 1-11, in the first block the initialization vector bits are 

added to the plaintext block, the result is encrypted and output as the first ciphertext block. This 

ciphertext is then used as an initialization vector for the next block and so on. Each block in the 

ciphertext will depend on all the ciphertext blocks before it and on the initialization vector as 

well. 

 



Chapter 1: Introduction to Cryptography 

 

16 

 

Figure 1-11: Encryption using CBC mode 

 

Chaining cipher blocks solved the security problem that ECB had. However, this security comes 

at a performance cost. In CBC, the blocks’ encryption cannot be parallelized and take advantage 

of modern hardware where CPUs have multiple cores and threads. In order to decrypt the last 

block, you need to decrypt all the blocks before it synchronously in the same thread. 

1.4.1.3.3 OFB Mode 

In the Output Feedback (OFB) mode a block cipher is used to build a stream cipher encryption 

scheme in a block-wise way. 

 

Figure 1-12: Encryption using OFB Mode 

Figure 1-12 represents the encryption process in OFB mode. The process is quite similar to 

using a standard stream cipher because the key stream depends only on the Initialization vector 



Chapter 1: Introduction to Cryptography 

 

17 

and doesn’t depend neither on the plaintext or the ciphertext. First, the block cipher takes the 

initialization vector and encrypts it using the secret key, the resulting block is then fed into the 

block cipher and encrypted again and so on. This operation is repeated as many as the number 

of blocks contained in the plaintext. Those resulting blocks are then added to the plaintext 

(using XOR operation) block per block and the result will be the final ciphertext. 

OFB mode uses only the encryption algorithm. In the decryption process, the same operations 

are repeated and the difference will be only in the last step where the XOR operation needs to 

be performed between the ciphertext and the encrypted blocks. 

1.4.1.3.4 CFB Mode 

The Cipher Feedback (CFB) mode also uses a block cipher as a building block for a stream 

cipher. It is very similar to the OFB mode mentioned earlier. However, the ciphertext is fed 

back instead of the output of the block cipher. 

 

Figure 1-13: Encryption using CFB Mode 

Figure 1-13 represents the encryption process in CFB mode. First, the block cipher takes the 

initialization vector and encrypts it using the secret key, the resulting block is then added to the 

plaintext block to get the first ciphertext block. Then this ciphertext block is used in place of 

the initialization vector in the next block and so on until the encryption of the whole plaintext 

is done. 

1.4.1.3.5 Counter Mode 

Counter mode is a mode that solved both security and performance problems of the modes 

above. CTR mode works by feeding an initialization vector into the block cipher. The output 

of the block cipher is then added to the plaintext and outputs the ciphertext. The initialization 



Chapter 1: Introduction to Cryptography 

 

18 

vector should be different for every block to not add the same bit values to all blocks of plaintext 

as illustrated in Figure 1-14. Actually, counter mode uses a block cipher as a stream cipher. 

The initialization vectors in CTR mode don’t need to be random. The only condition they need 

to meet is uniqueness while the block cipher is using the same key. The IV is divided into two 

sets, the first set of bits is used as a Nonce (Number used Once) that should be unique as long 

as the key is fixed, while the other set is used as a counter that starts from 0 and increment by 

1 after each block encryption. 

 

Figure 1-14: Encryption using Counter Mode 

One attractive feature of the Counter mode is that it is highly parallelizable because it does not 

require any feedback from the previous blocks. The last block can be encrypted or decrypted 

without the need to encrypt or decrypt the previous blocks like in CBC mode. With counter 

mode, we can have two or more block ciphers running in parallel, increasing the speed 

proportionally. For applications with high throughput demands, e.g. in networks with data rates 

in the range of Gigabits per second, encryption modes that can be parallelized are very desirable 

[4]. 

1.4.1.3.6 Galois Counter Mode (GCM) 

The Galois Counter Mode (GCM) is another mode of operation for symmetric-key ciphers. It 

is widely adopted for its security and performance. It is an authenticated encryption algorithm 

designed to provide both data integrity and confidentiality. 

Figure 1-15 illustrates how GCM mode works. It works similar to Counter Mode by taking an 

initialization vector IV which combines a Nonce and a counter. It increments the counter on 



Chapter 1: Introduction to Cryptography 

 

19 

each block and encrypt the new IV using the block cipher and XOR the result with the plaintext 

block. The encryption output is then fed into a MAC (Message Authentication Code) generation 

algorithm to compute an authentication tag of the ciphertext. The final output of GCM that will 

be sent to the recipient will contain the IV, the ciphertext and the authentication tag. This way, 

the recipient is the only one who can decrypt the message and can make sure that the message 

was created by the real sender and that nobody tampered with the ciphertext during 

transmission. GCM provides confidentiality, authentication and integrity and it is widely used 

in various applications. 

 

Figure 1-15: Encryption using Galois Counter Mode (GCM) 

1.4.2 Asymmetric ciphers 

Asymmetric-key or also known as public-key cryptography is a cryptographic system that 

involves two algorithms: encryption and decryption but involves two different keys. One of the 



Chapter 1: Introduction to Cryptography 

 

20 

keys is used for encryption called a public key and the other one is used for decryption known 

as a private key. While the public key is publicly known to everyone, the private key is only 

known the intended recipient of the cipher data [10]. 

The relationship that exists between the keys and algorithms is that any data encrypted using 

the public key should be decrypted using the private key only and vice-versa. The private and 

public keys used in the process are generated using a key generator which generate a valid pair 

of keys each time it runs [7]. 

Asymmetric ciphers are known to be slow compared to symmetric ciphers and to offer the same 

level of security they should use keys larger in size. However, one of the most used applications 

of them is shared secret key establishment over a public channel. RSA, and EIgamal are some 

examples of well-known Asymmetric-key algorithms [4]. 

 

Figure 1-16: Public key cryptography principle 

The flow of communication using an asymmetric ciphers goes like illustrated in Figure 1-16. 

The sender asks for the receiver’s public key to encrypt his message. He then sends the 

encrypted message to the recipient. The recipient receives the ciphertext and decrypt it using 

his private key. 

1.4.2.1 The RSA Cipher 

RSA cipher is one of the most famous and widely deployed public-key cryptosystems. It was 

published in 1978 by three cryptographers: Ron Rivest, Adi Shamir and Leonard Adleman [6]. 

The name RSA is an acronym comes from their last names’ first letters. 



Chapter 1: Introduction to Cryptography 

 

21 

The security of RSA relies on the well-known mathematical difficulty of factoring the product 

of two large prime numbers named the "factoring problem". Until now, RSA is considered safe 

and there are no published methods to defeat the system if a large enough key is used [1]. 

 

Figure 1-17: RSA Cryptosystem 

RSA is composed of 3 algorithms as illustrated in Figure 1-17: Key Generation, encryption and 

decryption algorithms. The key generation algorithm generates a pair of private and public 

keys. The encryption algorithm takes the message and the public key as inputs and outputs a 

ciphertext. To decrypt that ciphertext it needs to be fed into the decryption algorithm with the 

private key [4]. 

The RSA key generation algorithm has 3 steps: 

1. Choose 2 large distinct primes 𝑝 and 𝑞, and compute 𝑛 =  𝑝 ×  𝑞.  

2. Choose 𝑒 that is prime to 𝜑(𝑛). The pair (𝑛, 𝑒) is published as the public key.  

3. Compute 𝑑 with 𝑒𝑑 ≡  1 𝑚𝑜𝑑 𝜑(𝑛). The pair (𝑛, 𝑑) is used as the secret key. 

𝜑(𝑛) is called Euler phi function, which is the number of integers in the range [1, 𝑛 − 1] which 

are prime to 𝑛. When 𝑛 is the product of 2 primes, there is a simple formula to calculate 𝜑(𝑛) 

as in equation eq2 

 φ(n)  =  (p −  1)(q −  1) Eq 2 

Once the private and public keys are generated. The encryption is then performed by rising the 

message to the power of the public key as defined by equation 3 below. 



Chapter 1: Introduction to Cryptography 

 

22 

 
𝑐 = 𝑚𝑒 Eq 3 

The decryption process on the other hand is similar to the encryption. We got the message back 

by rising the ciphertext to the power of the private key as shown in eq4. 

 𝑚 = c𝑑 Eq 4 

The security of RSA relies on the difficulty of finding the composite n factorization. If an 

adversary successfully gets the factors p and q of n, he will also know 𝜑(𝑛)  =  (𝑝 −  1)(𝑞 −

 1), and then he can derives d from the public encryption key e using an algorithm named 

extended Euclidean algorithm. 

1.4.3 Hash Functions 

Cryptographic hash functions are one of the most important cryptographic primitives. They are 

one way algorithms that take an arbitrarily sized block of data and encrypt it into a fixed-sized 

bit string called the cryptographic hash value or message digest as shown in Figure 1-18. It can 

be looked at as a message unique representation or fingerprint [4]. If a single bit changes in the 

data, the hash function will output a completely different hash value. Unlike other 

cryptographic algorithms seen before, hash functions do not have a key. 

 

Figure 1-18: Hash functions work principle diagram 

There are some requirements for an algorithm to meet in order to be considered as a good hash 

function. The first requirement is that the hash function should be one way. Which means, given 

a hash value ℎ(𝑥) of a message 𝑥, it should be computationally infeasible to calculate the 

message 𝑥 back. The other requirement is that a hash function should be collision resistant. 

This means, given a message 𝑥1 or its hash value ℎ(𝑥1), it should be computationally infeasible 

to find a message 𝑥2 ! =  𝑥1 but has the same hash value ℎ(𝑥1)  =  ℎ(𝑥2). 



Chapter 1: Introduction to Cryptography 

 

23 

Hash functions play an important role in various applications such as data integrity, storing 

passwords in databases, deriving cryptographic keys from users’ passwords …etc. 

1.4.4 Message Authentication Codes 

Message Authentication Code (MAC) is a tag attached to a message to ensure the integrity and 

authenticity of the message. MACs share some similarities with cryptographic hash functions, 

however, they address different security requirements. The purpose of a MAC is to authenticate 

the source of a message and its integrity [10]. Unlike a cryptographic hash, the MAC can be 

generated only by the sender or the intended recipient who has access to the secret key. 

 

Figure 1-19: Message Authentication Code (MAC) 

With the use of MACs, no message manipulation can happen without being detected. The MAC 

is calculated as a function of the message and the shared secret key to get a tag of a fixed length. 

Then, both the message and the authentication tag get sent to the recipient. When receiving the 

message and the tag, the recipient verifies the message integrity by recalculating the tag using 

the shared secret key as illustrated in Figure 1-19. If the tag he finds corresponds to the tag he 

received the message is valid. Otherwise, the message has been manipulated intentionally or 

modified accidentally by a third party. 

1.4.5 Digital Signatures 

Digital signatures are important cryptographic tools that are widely used today. They are built 

on top of public-key cryptography and their applications range from digital certificates for 



Chapter 1: Introduction to Cryptography 

 

24 

secure e-commerce to legal signing of contracts to secure software updates. The purpose of 

digital signatures is to provide authentication and non-repudiation [2]. 

Digital signatures share some similarities with MACs since they both verify integrity. However, 

they differ in the non-repudiation assurance [7]. MACs can protect the message from third 

parties. However, in case of a conflict or a disagreement between the two ends of the encryption, 

it is not possible to prove in front of a neutral party who encrypted the message. 

In order to see how the above mentioned limitation of MACs can be a problem, lets imaging a 

scenario where Alice is a car dealer and Bob is a customer. Both Alice and Bob agreed on a 

shared secret key to communicate securely with each other. Bob ordered a specific car from 

Alice and by sending here an encrypted order with the shared secret key and he was aware of 

the non-return policy of Alice. After few days, bob changed his mind and tell Alice that he is 

not going to pay for the car and he no longer wants it. Then, Alice decided to take legal action 

against him. She showed the encrypted order that Bob sends to her but Bob denied that the 

order was from his part and he claimed that the order was written by Alice herself. In this case 

the judge decided that he cannot be sure if Bob was really the sender or Alice. Thus, Bob 

probably gets away with his dishonesty. However, digital signatures can prevent that from 

happening. 

 

Figure 1-20: Digital Signature system components 

A digital signature system usually consists of three algorithms as shown in Figure 1-20: 



Chapter 1: Introduction to Cryptography 

 

25 

 A key generation algorithm that selects a private key uniformly at random from the 

key space. The algorithm outputs the private key and a corresponding public key. 

 A signing algorithm that produces a signature given a message and a private key. 

 A signature verifying algorithm that, given the message, the public key and signature, 

either accepts or rejects the message's claim to authenticity and returns either “true” 

or “false”. 

1.4.6 Key Exchange Protocols 

Before key exchange protocols were invented, keys exchange between two parties who want 

to communicate securely was done through a private channel. There was no mean that allow 

agreement on a shared secret key in public without the key being known by third parties. Key 

Exchange Protocols were invented to solve this problem. Their invention made it possible for 

two parties who want to communicate securely, and who have never met before, to agree on a 

shared secret key in public without the secret being known by third parties. 

1.4.6.1 Diffie-Hellman Key Agreement 

Diffie-Hellman key exchange protocol provided the first practical solution to the key 

distribution problem. In 1976, W. Diffie and M.E. Hellman published their fundamental 

technique of key exchange together with the idea of public-key cryptography in the famous 

paper, “New Directions in Cryptography” [5]. Exponential key exchange enables two parties 

that have never communicated before to establish a mutual secret key by exchanging messages 

over a public channel. This technique was a revolutionary concept that opened the door for 

public key cryptography. 

Figure 1-21 illustrates how Diffie-Hellman protocol works. Let p be a sufficiently large prime 

(1024 bits or more). Let g be a primitive root in 𝑍𝑝
∗ . p and g are publicly known. Alice and Bob 

can agree on a secret shared key by executing the following protocol:  

1. Alice chooses a, 0 ≤  𝑎 ≤  𝑝 −  1, at random, sets 𝐴 =  𝑔𝑎 𝑚𝑜𝑑 𝑝, and sends the 

result 𝐴 to Bob.  

2. Bob chooses b, 0 ≤  𝑏 ≤  𝑝 −  1, at random, sets 𝐵 =  𝑔𝑏 𝑚𝑜𝑑 𝑝, and sends the result 

𝐵 to Alice.  



Chapter 1: Introduction to Cryptography 

 

26 

3. Alice computes the shared key 𝑘 =  𝐵𝑎  =  (𝑔𝑏)𝑎 

4. Bob computes the shared key 𝑘 =  𝐴𝑏  =  (𝑔𝑎)𝑏 

 

Figure 1-21: Diffie-Hellman key exchange protocol 

Thus both Alice and Bob end up with the same shared secret key k that is known to them only. 

If an attacker wants to know the secret that Alice or Bob choose. He needs to solve the Discrete 

Logarithm Problem. However, this is a hard mathematical problem to solve. 

1.5 Cryptanalysis 

Cryptography is the art and science whose goal is to secure data and communications from 

eavesdropping and tampering by the non-authorized persons or systems. Cryptanalysis on the 

other hand is the opposite. It is the art and the science of deciphering or forging communications 

that was secured by cryptography. Cryptography and cryptanalysis are two competing fields. 

The success of one of them in a given area means the failure of the other [4]. 

Since the early days of cryptography, cryptanalysts were working hard on breaking the 

encryption system and retrieve data. Over time, a lot of cryptanalysis methods had been 

developed and added to the toolset of cryptanalysts. 



Chapter 1: Introduction to Cryptography 

 

27 

 

Figure 1-22: Overview of cryptanalysis 

Cryptanalysis nowadays can be divided into 3 main categories as illustrated in Figure 1-22: 

Classical Cryptanalysis, Implementation attacks and Social Engineering methods [4]. 

1.5.1 Classical Cryptanalysis 

 

Figure 1-23: Overview of Classical Cryptanalysis 

Classical cryptanalysis is the science of recovering the plaintext or the encryption key from the 

ciphertext. It focuses on studying the internal structure and underlying mathematical concepts 

of the system and try to find vulnerabilities. If any weaknesses are found, they will be used to 

get information about the key or the plaintext which is considered a failure of the encryption 

system. As shown in Figure 1-23, differential cryptanalysis, linear cryptanalysis and brute-force 

attacks are well-known examples of this category. 



Chapter 1: Introduction to Cryptography 

 

28 

1.5.1.1 Differential cryptanalysis 

Differential cryptanalysis is performed by looking at ciphertext pairs, where the plaintext has a 

particular difference known to the attacker. The exclusive-or of such pairs is called a differential 

and certain differentials have certain probabilities associated to them, depending on what the 

key is. By analysing the probabilities of the differentials computed in a chosen plaintext attack 

some information about the underlying structure of the key is revealed sometimes [7]. 

1.5.1.2 Linear Cryptanalysis 

A good cipher should always contain non-linear components. However, linearity could be 

introduced by cipher designer unintentionally. The idea behind linear cryptanalysis is to 

approximate the behaviour of the non-linear components with linear functions. Some 

probabilistic analysis is then performed to determine information about the key [7]. 

1.5.1.3 Brute force attacks 

Brute force attacks are the simplest form of attacks that can be conducted against any type of 

ciphers using trial and error. They consist on performing an exhaustive search for the cipher 

encryption key trying all possible values. The longer the key the more resistant is the cipher 

against this kind of attacks. 

Data Encryption Standard (DES) uses a key of 56 bits, which was the primary reason for its 

cryptanalysis after few decades of its invention. Nowadays 56 bits key are crack-able in few 

hours or days as illustrated in Table 1 [4]. 

Table 1: Brute-force attacks estimated time on symmetric ciphers with by key lengths 

Key Length Security Estimation 

< 64 bits few hours or days 

112 -128 bits several decades in the absence of quantum computer 

256 bits 
several decades, even with quantum computers that run the currently 

known quantum computing algorithms 

 

Nowadays, key lengths of 128 bits or more are encouraged to resist brute-force attacks. 

However, with the development of quantum computers this key size will fall in the scope of 



Chapter 1: Introduction to Cryptography 

 

29 

exhaustive search too. That’s why researchers and governments who care about the security of 

their data should keep an eye upon quantum computers’ development. However, a long key will 

only help if the cipher structure is safe. If any analytical attack is possible, key size will be less 

relevant. 

1.5.2 Implementation Attacks 

Implementation attacks are a relatively new type of attacks. They have become popular with 

the rise of devices and integrated circuits that perform the cryptographic operations. This type 

of attacks doesn’t attack the abstract cryptographic algorithm but their practical 

implementations in cryptographic devices [11].  These devices are components in a system that 

either perform the actual cryptographic operations or handle the data needed for these 

operations. Examples include dedicated cryptographic hardware modules like encryption 

coprocessors, and memory circuits that store secret keys or even general purpose hardware like 

microcontrollers that execute software implementations of cryptographic algorithms. 

Cryptographic devices tend to be closed platforms in order to increase the protection from 

Attacks and they come in many shapes such as smart cards or USB tokens. 

Implementation attacks are relevant against cryptosystems to which an attacker has physical 

access. In most Internet-based attacks against remote systems, implementation attacks are 

usually not a concern [4] 

 

Figure 1-24: Overview of Implementation Attacks 

Implementation attacks can be classified into 3 sub-categories as shown in Figure 1-24: Side-

channel attacks, Fault attacks and Probing attacks. 



Chapter 1: Introduction to Cryptography 

 

30 

1.5.2.1 Side-Channel Analysis 

Side-channel analysis (SCA) attacks have received a lot of attention in the last decade. They 

are passive attacks which exploit physical signals emitted by normally operated cryptographic 

devices [11]. The most common side channels are execution time, power consumption, 

temperature and electromagnetic radiation. The basic principle of SCA attacks is to determine 

secret keys or part of them from their influence on the side-channel signals. 

1.5.2.2 Fault analysis attacks 

Fault analysis attacks are a general more complex type of attacks than SCA attacks because 

they are active attacks that require tampering with the cryptographic system [11]. Their 

principle is to induce faults in a cryptographic circuit and make it behaves abnormally or 

delivers incorrect results. The delivered incorrect result reveals information about the secret 

key. 

1.5.2.3 Probing attacks 

Probing attacks are another passive but yet powerful type of implementation attacks. In this 

type of attacks, the inputs and outputs of internal logic cells and blocks are electrically 

connected to a monitoring device to read out their state while the cryptographic circuit operates 

normally. This type of attacks is getting harder and more complicated with the constantly 

shrinking dimensions of cryptographic devices. However, the effort may still be worth it 

because successfully planted probes in the right locations allow in the best case to directly read 

out bits of secret keys. 

1.5.3 Social Engineering Attacks 

Social engineering is a mean of breaking security and bypass data encryption, not through 

cipher systems analysis but through the psychological manipulation of people into performing 

actions or revealing private information. Examples of social engineering includes the act of 

behaving as an authority, intimidation and creating a state of scarcity and urgency in order to 

lead people to disclose their confidential information. 

An attacker always looks for the weakest link in a cryptosystem either the weakness is in the 

system itself or in the people who use it. That means that in order to keep systems safe, a strong 

algorithm should be chosen and an attentive eye should be kept on making social engineering 

and implementation attacks not practical.  



Chapter 1: Introduction to Cryptography 

 

31 

1.6 Conclusion 

In this chapter, we gave a brief introduction to the field of cryptography. We saw some history 

about cryptography and how that science had started. The primary techniques and tools of the 

field as well as their categories and applications were then presented. Finally, we looked at the 

techniques of breaking security. We will exploit some of those techniques in chapter 3 to break 

a recently published image encryption scheme. 

  



 

 

 

 

 

 

 

 

 

Chapter 2 
 

Overview on Image Encryption 

 
Index 

2.1 Introduction 

2.2 Overview on Digital Images 

2.3 Image Encryption Schemes 

2.4 Evaluation metrics 

2.5 conclusion 

 



 
32 

 

Overview on Image Encryption 
2 Overview on Image Encryption 

2.1 Introduction 

New problems of security and privacy have emerged with the presence of modern 

communication systems. Images nowadays are one of the most usable forms of information. 

Image and video encryption is applied in various fields, including multimedia systems, medical 

imaging and military communications. 

Due to the importance of images in the modern world, the study and development of encryption 

techniques specific to images have known a lot of interest recently. Many algorithms have been 

proposed and many techniques have been developed by security researchers. 

In this chapter, some basics about digital images are given. Then, different images encryption 

techniques and their evaluation metrics are presented. This chapter will give the reader the 

necessary notions to understand the following chapters. 

2.2 Overview on Digital Images 

An image is a visual representation of something fed into the visual system to carry information. 

However, the term is usually used when referring to the static representation of scenes or objects 

either on paper or on screens. Images can be classified based on their storage medium into two 

categories: analog and digital images. Digital images are simply the type of images that are 

viewed on monitors of electronic devices like phones and computers. Analog images on the 

other hand are the images found elsewhere on films, paper, T-shirts …etc. Digital images will 

be the focus of our study in this thesis. 

 
Chapter 

 2 



Chapter 2: Overview on Image Encryption 

 
33 

2.2.1 Digital Images 

A digital image is an electronic representation of a visual stored in binary format on an 

electronic storage medium. The common representation model of a digital image is the pixels’ 

matrix model. 

2.2.1.1 Grayscale Images 

A grayscale image is the simplest form of digital image. It is usually represented as a matrix of 

M * N elements. Each element of the matrix is called a pixel. The pixel is the smallest building 

block of a digital image. It is encoded in 8 bits of data and takes values in the range of [0, 255] 

of intensity or so called gray value. A pixel with value equal to 0 is a totally black pixel. As the 

intensity increases the pixel becomes brighter until it reaches 255 which is a totally white pixel. 

 

Figure 2-1: 6 by 6 Grayscale Image 

Figure 2-1 represents a 6 * 6 grayscale image. It has 6 rows and 6 columns, that means a total 

of 36 pixels. The gray value of each pixel is written on inside the pixel. As noted, the bigger 

the value the brighter is the pixel. 

2.2.1.2 The Color Image 

The color image on the other hand is simply the superposition of 3 grayscale images called 

channels which have the same dimensions. Each channel represents the pixel intensities of one 

of the primary colors (Red, Green and Blue). Those three colors are used to represent all other 

colors. Given the right values, graphics cards know how to display the right corresponding 

color on digital screens. 



Chapter 2: Overview on Image Encryption 

 
34 

 

Figure 2-2: A 24 by 24 Color Image 

Figure 2-2 represents a 24 by 24 color image of the famous video-game character Mario. Under 

the hood this image is composed from 3 channels corresponding to the RGB colors as illustrated 

in Figure 2-3 below. 

 

Figure 2-3: Decomposition of Mario image into RBG channels 

2.2.2 Basic Operations on Images 

In digital image processing, there exist many operations that can be performed on images. The 

basic operations that are going to be used in the following chapters are described below. 

2.2.2.1 Pixel-wise arithmetic 

Some of the most common operations performed on digital images are arithmetic operations 

like addition and multiplication (subtraction and division are addition and multiplication 

respectively). Those operations can be applied either between two images or between an image 

and a scalar value. Adding a scalar value to an image means increasing the value of all pixels 



Chapter 2: Overview on Image Encryption 

 
35 

of that image by that value. On the other side, adding two images together means adding pixels 

having similar positions together. 

When doing arithmetic operations on images and the value of a given pixel passes 255 

ascending or 0 descending, two methods are used to deal with that, thresholding or modulo. 

Thresholding is fixing the upper threshold to 255 and the lower threshold to 0 if values goes 

above 255 or below 0. The second method is the use of modulo operator. In this case all 

arithmetic operations are calculated with modulo 255. 

 

Figure 2-4: Image arithmetic operations with thresholding 

Figure 2-4 illustrates how arithmetic operations are performed on images with thresholding. As 

seen in this example, values bigger than 255 and smaller than 0 are fixed to 255 and 0 

respectively. In case when the pixel value is a non-integer as a result of division, the value is 

rounded to the nearest integer. 

Figure 2-5 illustrates image arithmetic operations with a scalar with modulo. Values above 255 

and below 0 are calculated modulo 255. The modulo needs to be positive always because pixels 

values are integers in the range from 0 to 255. 

 



Chapter 2: Overview on Image Encryption 

 
36 

 

Figure 2-5: Image arithmetic operations with modulo 

The choice between those two techniques of dealing with out-ranged values depends on the 

specifications of each application. 

 

Figure 2-6: The addition of two images 

Figure 2-6 shows how two images are added together. The addition is done pixel-wise. Each 

two pixels having similar positions are added together. If images are of different dimensions, 

the smaller image is padded with zeros. 

2.2.2.2 Pixel-wise Convolution 

convolution is a mathematical operation on two functions (f and g) that produces a third 

function (f * g) that expresses how the shape of one is modified by the other. It is the integral 

of the product of the two functions after one is reflected about the y-axis and shifted over the 

other. 



Chapter 2: Overview on Image Encryption 

 
37 

In image processing, convolution is the process of adding each element of the image to its local 

neighbors, weighted by a small matrix called a kernel. Kernel convolution is used for different 

purposes like: blurring, sharpening, edge detection, and more. 

 

Figure 2-7: Image Convolution 

Figure 2-7 illustrates how convolution is calculated using an embossing kernel as an example. 

The center element of the kernel is placed over the source pixel. The source pixel is then 

replaced with a weighted sum of itself and the nearby pixels 

2.2.2.3 Pixel-wise Permutation 

Pixels permutation is a fundamental operation in digital image processing. It is used heavily in 

image encryption. It is the change of pixels’ positions with each other using a predefined map 

or permutation vector. 

Figure 2-8, illustrates how image permutation is performed using a permutation vector. First, 

the image is reshaped into a single row. Then the permutation is done using the permutation 

vector by moving the pixel to the index corresponding to the permutation vector element value. 

For example, the first pixel is moved to the 4th position, the second pixel to the 1st and so on. 

After the permutation is done, the image is reshaped back to its original shape.  



Chapter 2: Overview on Image Encryption 

 
38 

 

Figure 2-8: Image Permutation 

Permutation is commonly used in image encryption schemes to break the correlation between 

adjacent pixels and scramble the image. Alongside with pixel substitution, they form the 

building blocks of many modern image cryptosystems [12]. 

2.2.3 Common Image Formats 

When it comes to storing images on disk. Images are stored in many formats. Each format has 

advantages and disadvantages. Images can be classified into 2 categories: vector images and 

raster images [13]. 

Vector images are mathematical formulas that establish points on a grid to build images. They 

are great for images that need to be regularly resized because they can adjust in size without 

losing resolution. 

Raster images on the other hand are comprised of a fixed number of colour pixels. This means 

if the file is resized, its resolution could be compromised. This type represents the majority of 

images found online and in print. Raster images are the type of images that we care about in 

this thesis. Following are some of the most common file formats. 



Chapter 2: Overview on Image Encryption 

 
39 

2.2.3.1 BMP Format 

BMP is short for bitmap. It is a raster image format that maintains high image quality and a 

large amount of details while treating each individual image pixel as its own entity.  

BMP files are lossless and uncompressed by default [14]. They retain as much detail as possible 

and they are easy to edit in the same time. However, they are usually larger than other formats 

like PNG and JPEG. 

2.2.3.2 PNG Format 

PNG stands for Portable Network Graphic. It is a type of raster images particularly popular file 

among web designers because it can handle graphics with transparent or semi-transparent 

backgrounds. It is an open format that is supported by a variety of image editing software [15]. 

PNG images uses a lossless compression. That means the image won’t lose any of its data when 

it’s compressed. This is a big advantage over lossy options like JPEG files, where some 

information disappears in the compression process. However, lossless compression tends to 

make PNGs bigger files than JPEGs, so they require more storage space.  

2.2.3.3 JPEG Format 

JPEG stands for Joint Photographic Experts Group, an international organization that 

standardized this format during the early 1990s [16]. It’s a well-known file format for digital 

images and it is used heavily by photographers and on web pages and it is compatible with most 

browsers and applications. 

JPEG format uses a lossy compression where all colours that are not distinguishable by the 

human eye are discarded [16]. This allow images to be very small in size without a clear visual 

difference. This makes JPEG the preferred format for many applications. However, this small 

file size advantage comes at a cost of losing some details. 

2.3 Image Encryption Schemes 

Modern Image encryption techniques can be divided into 3 general categories: spatial, 

transform and mixed domain. Each category consists of a variety of techniques and sub-

categories. However, almost all image encryption algorithms can be classified in one of those 

global types. 



Chapter 2: Overview on Image Encryption 

 
40 

2.3.1 Spatial domain encryption 

Spatial domain based techniques are techniques that rely on direct image pixels’ manipulation 

by changing pixels’ positions and values. These categories have known a wide interest in the 

recent years due to their good performance and simplicity. 

Spatial based image encryption schemes are generally composed of two phases: permutation 

and diffusion. The permutation is the process of changing pixels’ positions which eliminates 

the correlation between adjacent pixels. On the other hand, the diffusion phase changes the 

value of each pixel of the image in a pseudo-random way. The combination of these two phases 

renders the image pseudo-random both visually and statistically. Figure 2-9 illustrates a very 

common model of spatial image encryption algorithms. 

 

Figure 2-9: Image encryption Permutation-Substitution architecture overview 

many new schemes based on spatial techniques have been proposed using chaotic maps for 

their performance [17]–[20], DNA (Deoxyribonucleic Acid) for their parallelism and low 

power consumption [20]–[22], and elliptic curves for their security and small key size [23], 

[24]. 



Chapter 2: Overview on Image Encryption 

 
41 

2.3.2 Transform domain encryption 

Transform based image encryption techniques have been studied extensively in the recent years 

too. The general principle of such techniques is to first take the image from the spatial domain 

into another domain where the encryption function is applied, then transform the image back 

to spatial domain. Some well-known and widely used transforms in recent studies are Fractional 

Fourier Transform (FrFT) and Discrete Cosine Transform (DCT) [25]–[28]. 

In practice, the necessary modifications happen in the transform domain as illustrated in Figure 

2-10. The image to be encrypted is first transformed into a given transform domain. Then, it is 

scrambled using the proposed encryption algorithm. Finally, it is transformed back into the 

spatial domain again. 

 

Figure 2-10: Transform domain image encryption overview 

The Discrete Fourier (DFT) is one of the most used transform for image encryption especially 

in the optical field because of its ease of implementation [29]. Information security in the optical 

domain has received particular attention in recent years because optical field offers the 

possibility of parallel data processing resulting in high-speeds which is a desirable feature to 

have [30]. 

2.3.3  Mixed-domain encryption 

Mixed domains encryption algorithms uses techniques from both spatial and transform 

domains. They modify the image both in spatial domain and transform domains trying to take 

advantage of their power to make more robust and secure schemes. 



Chapter 2: Overview on Image Encryption 

 
42 

 

Figure 2-11: Mixed domains image encryption overview 

Figure 2-11 represents one way of constructing a mixed-domain image encryption algorithm. 

The order of domain operations or the number of them doesn’t matter. There could be multiple 

spatial manipulations and multiple transforms. The encryption key can be the same or it can be 

unique per domain. All these are implementation details that are left to the creativity and 

assessment of the algorithm designer. 

2.4 Evaluation metrics 

When a given image is encrypted, its pixels’ values change compared to their original values. 

A good encryption algorithm should eliminate the similarity and maximize the difference in 

pixel values between the original and the encrypted image. Furthermore, no linearity should 

exist between the encrypted image pixel values. The plain and encrypted images should be 

completely independent and should have a low correlation in between. The cipher image 

patterns should be totally random and must not reveal any feature of the original image [12]. 

One of the important and most intuitive metrics of encryption is the visual inspection. The more 

hidden are the original image patterns the better the encryption algorithm is. However, visual 

inspection only is not reliable to judge the confusion of image patterns. Therefore, other more 

robust metrics should be considered to evaluate the quality of encryption quantitatively [31]. 

Evaluation metrics related to image encryption can be classified into two categories: metrics 

that measure the ability of the cipher to replace the original image with a new uncorrelated one, 

the other type of metrics measures the diffusion characteristics of the encryption algorithm. 



Chapter 2: Overview on Image Encryption 

 
43 

2.4.1 Histogram Uniformity 

An image histogram is a bar graph that represents the frequency of each gray level of the image. 

The horizontal axis represents the gray-level values whose range is usually from 0 to 255. While 

the vertical bar represents the number of occurrences of the corresponding gray level in the 

image [12]. The histogram of an encrypted image should satisfy two conditions: 

1. It should be entirely different from the histogram of the plain image. 

2. It should have a uniform distribution, which means that the probability of occurrence of 

any grayscale value is the same. 

 

Figure 2-12: Difference between plain image and encrypted image histograms 

Figure 2-12 illustrates the difference between both histograms of the plain and encrypted test 

image Baboon. 



Chapter 2: Overview on Image Encryption 

 
44 

2.4.2 Histogram Deviation 

The histogram deviation is a metric that measures the quality of encryption in terms of how it 

maximizes the deviation between the original and the encrypted images [32]. Histogram 

deviation is calculated as follows: 

 𝐷𝐻 =
(

𝑑0 + 𝑑255

2 + ∑ 𝑑𝑖
254
𝑖=1 )

𝑀 × 𝑁
 Eq 5 

 

Where 𝑑𝑖 is the amplitude of the absolute difference at the gray level 𝑖. 𝑀 and 𝑁 are the 

dimensions of the image to be encrypted. The higher the value of DH is, the better the quality 

of the encryption algorithm. 

2.4.3 Correlation Coefficient 

Correlation coefficient of pixels with the same indices between plain and encrypted image is a 

useful metric to assess the encryption quality of image cryptosystems [32]. It can be calculated 

as follows: 

 
𝑟𝑥𝑦 =

𝑐𝑜𝑣(𝑥, 𝑦)

√𝐷(𝑥)√𝐷(𝑦)
 

Eq 6 

 

where 𝑥 and 𝑦 are the plain and cipher images. In numerical computations, the following 

discrete formulas can be used: 

 
𝐷(𝑥) =

1

𝐿
∑(𝑥𝑙 − 𝐸(𝑥))2

𝐿

𝑙=1

 
Eq 7 

 
𝑐𝑜𝑣(𝑥, 𝑦) =

1

𝐿
∑(𝑥𝑙 − 𝐸(𝑥))(𝑦𝑙 − 𝐸(𝑦))

𝐿

𝑙=1

 
Eq 8 

 

𝐸(𝑥) is calculated as follows: 



Chapter 2: Overview on Image Encryption 

 
45 

 
𝐸(𝑥) =

1

𝐿
∑ 𝑥𝑙

𝐿

𝑙=1

 
Eq 9 

 

where L is the number of pixels. 

A low value of 𝑟𝑥𝑦, means low similarity between the plain and the encrypted, which means a 

better quality of encryption. 

2.4.4 Irregular Deviation 

The irregular deviation measures how much the difference between the plain and encrypted 

image is irregular [12]. The formula for calculating this metric is as follows: 

 
𝐷𝑖 =

∑ 𝐻𝐷(𝑖)255
𝑖=0

𝑀 × 𝑁
 

Eq 10 

 
𝐻𝐷(𝑖) = |𝐻(𝑖) − 𝑀𝐻| 

Eq 11 

 

Where 𝐻 is the histogram of the absolute difference between the original and the encrypted 

image. 𝑀𝐻 is the mean value of this histogram. 

The lower the value of 𝐷𝑖, the better the encryption quality will be. 

2.4.5 Deviation from Ideality 

The deviation from ideality measures how close the encrypted image using a given algorithm 

to an assumed ideal encrypted image. An ideally encrypted image 𝐶𝑖 must have a constant 

probability of existence of any gray level. Which is equivalent to a completely uniform 

histogram distribution, the. From this definition of the ideal encrypted image histogram, it can 

be formulated as 

 
𝐷 =

∑ |𝐻(𝐶𝑖) − 𝐻(𝐶)|255
𝐶𝑖=0

𝑀 × 𝑁
 

Eq 12 

 



Chapter 2: Overview on Image Encryption 

 
46 

where 𝐻(𝐶) is the histogram of encrypted image. And 𝐻(𝐶𝑖) is calculated as according to the 

equation: 

 
𝐻(𝐶𝑖) =  {

𝑀 × 𝑁

256
           0 ≤ 𝐶𝑖 < 255

0                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 
Eq 13 

 

The lower the value of 𝐷, the closer the real encrypted image to ideality. Which means the 

better the encryption algorithm used to encrypt the image. 

2.4.6 Avalanche Effect 

Avalanche effect metric is used to test the efficiency of the diffusion mechanism of the 

encryption algorithm. Given an image P and a 1 pixel modified image P’. Both images P1 and 

P2 are encrypted to output C1 and C2 respectively. The Avalanche effect metric is the 

percentage of different bits between C1 and C2. If C1 and C2 are different in half of their pixels, 

the encryption algorithm diffusion characteristics are considered to be good. In other words, 

having good diffusion property means that a change of one pixel in the plain image results in a 

change of half image pixels or more. 

2.4.7 NPCR and UACI 

To test the effect of a one-pixel modification on the whole image encrypted by a given 

encryption algorithm, two common metrics are usually used: NPCR and UACI. 

Given two cipher images C1 and C2, whose corresponding plain images have only one-pixel 

difference, The NPCR is defined as 

 
𝑁𝑃𝐶𝑅 =  

∑ 𝐷(𝑖, 𝑗)𝑖,𝑗

𝑀 × 𝑁
× 100% 

Eq 14 

 

Where 𝐷 is a binary image having the same size as C1 and C2 and calculated as follows: 

 
𝐷(𝑖, 𝑗)  = {

0   𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)

1   𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)
 

Eq 15 

 



Chapter 2: Overview on Image Encryption 

 
47 

The UACI is defined as: 

 
𝑈𝐴𝐶𝐼 =  

1

𝑀 × 𝑁
[∑

𝐶1(𝑖, 𝑗) − 𝐶2(𝑖, 𝑗)

255
𝑖,𝑗

] × 100% 
Eq 16 

 

The 𝑁𝑃𝐶𝑅 measures the percentage of the number of different pixels between the two images 

𝐶1 and 𝐶2 with respect to the total number of pixels, while the 𝑈𝐴𝐶𝐼 measures the average 

difference in intensities between the two images 𝐶1 and 𝐶2. A high value of NPCR/UACI 

generally results in high resistance to differential attacks. If a minor change in the plaintext 

image can cause a significant change in the encrypted image, then the differential attack 

becomes useless. And no meaningful relationship can be found between the plain image and 

the encrypted one [29]. 

2.4.8 Execution Time 

The execution or processing time is the time required to encrypt and decrypt an image. The 

smaller the execution time, the better the encryption efficiency will be. However, sometimes 

achieving high level of security while maintaining a small execution time is not possible. 

Therefore, compromises need to be done between security and performance usually. 

2.4.9 Key Space/Size 

The key space of an encryption/decryption algorithm is the total number of different keys that 

can be used in the encryption or decryption process. While a key size is the number of bits that 

constitute the key. However, those two concepts are interconnected. The bigger the size of the 

key the bigger the key space of it. If we assume that the size of a given key is 𝑘, finding the 

correct key using exhaustive search will take 2𝑘 operations. 

For an image encryption scheme to be secure against brute force attacks it needs to have a key 

space at the order of 2100 at least [4].  

2.4.10 Key Sensitivity 

The key sensitivity is the sensitivity of the encryption algorithm to a slight change in the 

encryption key. It can be evaluated by encrypting an image with a given key, then making a 

small modification in one of the elements constituting the key and try to decrypt the encrypted 



Chapter 2: Overview on Image Encryption 

 
48 

image with this new key. The decryption algorithm should produce a totally encrypted image 

[12]. 

The process above should be repeated and each time the precision of the key modification 

should be increased until the appearance of the original image after decryption. This limit will 

be the precision of this algorithm towards the encryption key. 

2.5 Conclusion 

In this chapter some notions about digital images are presented. The building blocks of digital 

images and the basic operations were discussed. Then, an overview about modern image 

cryptosystems was taken as well as their evaluation metrics. 

Despite the effort put into developing and securing image encryption schemes. Security flaws 

are being constantly detected by cryptanalysts. Finding these issues in cryptosystems and 

highlighting them is an important step in the cycle of adapting new cryptosystems. It helps 

cryptosystems’ designers enhancing their algorithms before they get widely adopted. This 

prevents many potential future security disasters from occurring. 

The next chapter of this thesis will be dedicated to the presentation of a novel hybrid 

cryptanalysis method that we proposed against a recently published image encryption scheme.



 

 

 

 

 

 

 

 

 

Chapter 3 
 

Proposed Hybrid Cryptanalysis Method 

 
Index 

3.1 Introduction 

3.2 Encryption Algorithm Description 

3.3 Cryptanalysis of the proposed algorithm 

3.4 Results and Discussion 

3.5 Summary of Algorithm Weaknesses 

3.6 Conclusion 

 



 
49 

 

Proposed Hybrid Cryptanalysis Method 

3 Proposed Hybrid Cryptanalysis Method 

3.1 Introduction 

Recently, a new image encryption algorithm was proposed [33]. It uses a modified version of 

the Arnold's chaotic cat map to permute the pixels. The resulted image after that is confused 

with a secret value selected randomly from the permuted image. Finally, the output image is 

hidden in another image selected as part of the secret key. Given that this key image can be any 

random image existing in the world, the authors claimed that this algorithm has an infinite key 

space which increases its efficiency against brute-force attacks. Therefore, it is supposed to be 

secure for real life applications. 

The idea of a cryptosystem having an infinite key-space was interesting for us as it was not 

very known in the cryptographic community. We have done a thorough analysis of that 

algorithm trying to identify any weaknesses or security issues. Our investigation revealed that 

the algorithm has some serious vulnerabilities that make it completely broken and unsecure to 

be used with real data. 

This chapter will describe our cryptanalysis work conducted against the former encryption 

scheme and discuss the algorithm that we proposed to completely break that algorithm 

encryption [34]. In the rest of this chapter we will first describe the algorithm under study. Then, 

a detailed cryptanalysis algorithm of the proposed scheme is presented. The experimental 

results showing the effectiveness of our proposed cryptanalysis are presented in the next 

section. Some concluding remarks are given at the end of the chapter. 

 

 
Chapter 

 3 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
50 

3.2 Encryption Algorithm Description 

The novelty of the image encryption scheme proposed by Anwar et Meghana in [33] was the 

use of a random image as part of the secret key. Conventional image cryptosystems transform 

images into noise like images. According to authors, this was a clear sign for attackers that there 

is some information hidden inside this image and could be a big attractor for them to try to 

break it. This new algorithm transforms the plain image into a visually meaningful encrypted 

image. Authors said that having such operation in place will not just make the encryption more 

secure but it may even reduce the number of attacks on the image. 

 

Figure 3-1: The proposed encryption algorithm diagram 

Figure 3-1 represents the proposed algorithm diagram. This algorithm is based on pixel 

permutation using a variation of the Arnold’s chaotic cat map algorithm, where each pixel is 

replaced by another pixel from the image. The pixel permutation is performed as shown in 

equation Eq 17. 

 [
𝑥𝑖

𝑦𝑖
] = [

1 𝜀
𝜑 𝜑𝜀 + 1

] [
𝑥𝑖−1

𝑦𝑖−1
] (𝑚𝑜𝑑 𝑛) Eq 17 

where 𝑥, 𝑦 are the 𝑖𝑡ℎ pixel position of a 𝑛 ×  𝑛 image. Parameters ε and φ are positive constant 

parameters chosen such that the determinant below is equal to 1. 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
51 

 
|
1 𝜀
𝜑 𝜑𝜀 + 1

| = 1 Eq 18 

 

This permutation process is executed 𝑇 times (𝑇 ≥ 1). The other parameters 𝜀 and 𝜑 are chosen 

such that the matrix determinant is equal to 1. All those parameters 𝑇, 𝜀 and 𝜑 are parts of the 

secret key and they are only known to the two sides of the cryptosystem and not exposed 

publicly. The obtained image after permutation is then normalized to have pixel values between 

0 and 255 if needed. 

From that normalized image 𝑁, a random pixel whose position is part of the encryption key is 

chosen to use its value 𝐾 a secret key. Then, a new matrix 𝑃 having the same image dimensions 

and initialized by 𝐾 is created, 𝑃(𝑖, 𝑗) = 𝐾. 

To obtain a semi-encrypted image 𝑍, a bit-wise 𝑋𝑂𝑅 operation is then performed between the 

normalized image 𝑁 and the newly created matrix 𝑃 initialized with the secret value 𝐾. This 

semi-encrypted image is then masked into another image 𝐾𝑅𝑒𝑓, called the key image. It should 

be chosen to be bigger or equal in size to the image that is being encrypted. This last step of 

hiding the encrypted image into another image acts as a steganography step that aims to elude 

the attackers. 

 
𝑍(𝑖, 𝑗) = 𝑁(𝑖, 𝑗) ⊕ 𝑃(𝑖, 𝑗)

𝐸(𝑖, 𝑗) = 𝐾𝑅𝑒𝑓(𝑖, 𝑗) − 𝑍(𝑖, 𝑗)
  Eq 19 

 

Theoretically, the proposed algorithm has an infinite key space because any random image can 

be chosen as part of the secret key. Therefore, it is very efficient against brute-force attacks 

aiming to decode the encrypted image by an exhaustive search for the possible choices in the 

key space. 

Figure 3-2 represents the proposed encryption algorithm written in pseudocode as appearing in 

the original paper [33]. 

 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
52 

 

Figure 3-2: Proposed Encryption Algorithm in Pseudo-code 

For the decryption process, the encrypted image, the key image and the key has to be shared. 

The decryption process begins with using the key image and the received encrypted image to 

obtain an intermediary image Z. The obtained image is then XORed with secret pixel value 

received as part of the key. The final step is performed by inversing the permutation. 

 

Figure 3-3: Proposed Decryption Algorithm in Pseudocode 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
53 

Figure 3-3 represents the decryption algorithm written in pseudocode taken from the original 

paper. 

Some evaluation metrics were calculated for the proposed algorithm and compared to the 

Arnold’s Cat Map Algorithm (ACM) which is a permutation only algorithm. The metrics shows 

that ACM has smaller correlation coefficient while the proposed algorithm has better Structural 

similarity index (SSIM) and NPCR. The results are summarized in table 2. 

Table 2: Proposed Encryption Algorithm metrics 

 
ACM Proposed 

SSIM CC NPCR SSIM CC NPCR 

Baboon 0.1379 0.643 97.8 0.1505 0.4852 98 

Sample 0.2792 0.9936 98.8 0.7752 0.8762 99.3 

 

 

Figure 3-4: Examples of Images Encrypted Using the Proposed Algorithms 

Figure 3-4 represents some examples of images encrypted using the proposed algorithm. It is 

clear that the resulting cipher images look similar although the plain images are different. 

Because of the infinite key space and changing both pixels’ values and locations during the 

encryption process, the authors claimed that this algorithm would be resistant to known attacks 

and has a high level of security. 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
54 

3.3 Cryptanalysis of the proposed algorithm 

An attentive investigation of the proposed algorithm reveals some security issues. These 

vulnerabilities will be exploited to break this cryptosystem and decode the encrypted image. In 

this section, we will present our proposed cryptanalysis algorithm that leads to breaking the 

former encryption scheme. The cryptanalysis uses a hybrid which consists of a combination of 

chosen-plaintext and brute-force attacks and consists of 4 main steps as follows: 

1. Revealing the Key Image 

2. Unmasking The Semi-Encrypted Image 

3. Reversing The Permutation Phase 

4. Brute-forcing the encryption key and recovering the plain image 

These steps are performed in the reverse order of encryption. We start by retrieving the key 

image back using a chosen-plaintext attack. Then we extract out the semi-encrypted image. 

After that the permutation phase is reversed through a series of chosen plaintext-attacks. 

Finally, the secret value is deduced by a brute-force attack and the original image is retrieved 

successfully without the need to know anything about the secret key. The steps above are 

detailed in the following sections. 

3.3.1 Revealing the Key Image 

The strongest part of this algorithm is the use of a key image that could be any existing random 

image. This allows the algorithm to have an infinite key-space according to its authors. This 

can be true to some extent. However, in reality, the key image is easily identifiable when 

looking to the cipher image. Actually, they are nearly the same in most cases. This reveals some 

information about the used key. This leakage of information about the secret key should not 

happen in secure cryptosystems.  In the case when the key image is an image that is available 

online, it will be just an image-search away. 

Even in cases where the key image can’t be looked up online, the algorithm is not taking full 

advantage of the large key space that the key image offers. It may be able to resist brute-force 

attacks, but it is weak against chosen-plaintext attacks. The exact key image can be restored 

completely using a single chosen plain-image. 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
55 

 

Figure 3-5: Diagram of revealing the Key Image 

Figure 3-5 shows how the Key Image is revealed. According to the algorithm, if a totally black 

image is encrypted, the result will be the exact key image following the equation Eq20. 

 𝐾𝑅𝑒𝑓 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑧𝑒𝑟𝑜𝑠(𝑚, 𝑛))  Eq 20 

In the encryption process, the permutation phase is effectless toward totally black images 

because all pixels’ values are equal. In addition, the secret key chosen as a random pixel’s value 

of the permuted image will be equal to 0 because all pixels’ values of the images are zeros. 

Hence, the diffusion phase will have no effect too because 0 is a neutral element in the XOR 

operation. In this case, the encrypted image will be the result of subtracting a black image from 

the key image. Therefore, the encrypted image will be equal to the exact key image provided 

as a secret key to the encryption algorithm. 

3.3.2 Unmasking The Semi-Encrypted Image 

Since the key image 𝐾𝑅𝑒𝑓 is already revealed from the previous step, it is possible to unmask 

the semi-encrypted image 𝑍(𝑖, 𝑗) according to equation Eq 21. 

 𝑍(𝑖, 𝑗) = 𝐾𝑅𝑒𝑓(𝑖, 𝑗) − 𝐸(𝑖, 𝑗) Eq 21 

 

Figure 3-6: Diagram of revealing the Semi-encrypted image 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
56 

Figure 3-6 represents a visual representation of the equation Eq21 above. The key image has 

already been revealed from the prvevious step, the cipher image is publicly known. Therefore, 

a pixel by pixel subtraction of the cipher image from key image will reveal the semi-encrypted 

image Z. 

3.3.3 Reversing The Permutation Phase 

The permutation phase in the proposed algorithm is based on Arnold’s cat map. Without 

knowing its parameters and the number of times it has been executed, it is hard to reverse it 

using a brute force attack. However, regardless of the parameters being used and how many 

times the permutation operation is executed, it is possible to model that whole process as one 

permutation operation using a permutation vector 𝑃𝑉 following Eq22. 

 

𝐼      = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐼, 1, 𝑚 × 𝑛)

𝐼(𝑖)  = 𝐼(𝑃𝑉(𝑖))

𝐼      = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐼, 𝑚, 𝑛)

 Eq 22 

 

In this model, if the permutation vector is known, the permutation process can be easily 

reversed. Actually, using a series of chosen-plaintext attacks, the exact permutation vector that 

was used in the encryption process can be restored completely. 

 

Figure 3-7: Diagram of the process that reveals the permutation vector 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
57 

Figure 3-7 represents the diagram of the chosen plaintext attack algorithm used to get the 

permutation vector back. Given an image 𝐼0 of size (𝑚 × 𝑛) chosen such that the pixel 

𝐼0(0, 0) = 255 and zeros elsewhere. 𝐸0 is noted as the encrypted image corresponding to the 

plain image 𝐼0. Knowing both the key image 𝐾𝑅𝑒𝑓 and the encrypted image 𝐸0, the semi-

encrypted image 𝑍0 corresponding to 𝐼0 can be extracted using Eq21. 

We know from Eq19 that 𝑍0 = 𝑁0 ⊕ 𝑃0. In the actual case, there will be just two possible 

values of 𝑃0, 𝑃0(𝑖, 𝑗) ∈ {0,255} with 0 having a much higher probability because it is randomly 

selected from the permuted image 𝑃0. 

If a secret value of 0 is chosen, the diffusion phase will have no effect on the permuted image 

and we will get 𝑁0 = 𝑍0. Otherwise, a value of 1 will inverse the pixels of 𝑁0. The resulting 𝑍0 

will be a totally white image with a single black pixel. In this later case 𝑁0 is obtained by 

XORing 𝑍0 with 1 again. 

Now that we have both the plain image 𝐼0 and the corresponding permuted image 𝑁0. The 

permutation positions 𝑖0 (the index of 255 inside 𝐼0) and 𝑖0
′  (the index of 255 inside 𝑁0) can be 

determined using a simple search. Thus, the first element of the permutation vector is found. 

 

𝐼0      = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐼0, 1, 𝑚 × 𝑛)

𝑁0    = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑁0, 1, 𝑚 × 𝑛)

𝑖0     = 𝑖𝑛𝑑𝑒𝑥𝑂𝑓(255, 𝐼0)

𝑖0              
′  = 𝑖𝑛𝑑𝑒𝑥𝑂𝑓(255, 𝑁0)

𝑃𝑉(𝑖0)   = 𝑖0
′

 

 

Eq 23 

The other permutation vector elements can be restored by repeating this process (𝑚 × 𝑛) times 

using different images 𝐼𝑖𝑥𝑗each time, where the pixel 𝐼𝑖×𝑗(𝑖, 𝑗) = 255 and zeros elsewhere, 𝑖 ∈

{0, . . . , 𝑚}  and 𝑗 ∈ {0, . . . , 𝑛}. 

Once the permutation vector is restored, the permutation phase can be reversed as shown in 

Eq24 below. 

 

𝐼                   = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐼, 1, 𝑚 × 𝑛)

𝐼(𝑃𝑉(𝑖))     = 𝐼(𝑖)

𝐼                    = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝐼, 𝑚, 𝑛)

  
Eq 24 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
58 

3.3.4 Brute Forcing the Encryption Key 

At this stage, revealing the original image is just one step ahead. Knowing the semi-encrypted 

image 𝑍 and the permutation vector from the steps above, the permutation phase can be 

reversed. The result is the XOR output of the plain image and the secret key. 

 𝐼 ⊕ 𝑃 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑍) Eq 25 

The resulting image may not be the exact original image, However, it can be visually 

identifiable because all pixels are XORed with the same value. This can be sufficient in some 

cases where the attacker doesn’t care too much about the image details. 

However, because the secret key is a random pixel value from the permuted image, it has a 

small key-space of just 256 possible values which are easy to brute-force. By iterating over the 

256 possible values of the secret key 𝑃, 256 samples will be generated. One of those samples 

is the exact original image that was encrypted with the algorithm. The other samples are more 

or less similar to the original one. Depending on the details' importance for the attacker, the 

number of samples can be reduced. 

If the secret key value happens to be 0, the diffusion phase will not have any effect. There will 

be no need for this step at all because the previous step will output the exact original image. 

This situation is more likely to happen when encrypting images containing a lot of black areas. 

3.3.5 Cryptanalysis Time Complexity 

The time complexity of the proposed cryptanalysis algorithm is directly proportional to the size 

of the image. The more pixels the image have, the longer the algorithm will take to break its 

encryption. 

Since the cryptanalysis scheme is based on multiple runs of the encryption algorithm itself, we 

can measure the time needed for cryptanalysis as a function of the image size (𝑚, 𝑛) and the 

time taken by the encryption algorithm to encrypt that specific image (𝑇𝑒𝑛𝑐). The cryptanalysis 

time (𝑇𝑎𝑡𝑡𝑎𝑐𝑘) can be expressed approximately using the following formula: 

 𝑇𝑎𝑡𝑡𝑎𝑐𝑘 ≈ ((𝑚 ∗ 𝑛) + 257)𝑇𝑒𝑛𝑐 Eq 26 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
59 

The cryptanalysis algorithm needs one encryption operation to reveal the key image, (𝑚 ∗  𝑛) 

encryption operations to retrieve the permutation vector and another 256 runs to brute force the 

secret value used for diffusion. 

3.4 Results and Discussion 

To verify the effectiveness of the proposed cryptanalysis, some experiments have been executed 

on the grayscale image “Cameraman” of size 256 × 256 as shown in Figure 3-8 (a). This image 

is encrypted with the algorithm described in [33] using “baboon” image as the key image shown 

in Figure 3-8 (b). The corresponding cipher image is shown in Figure 3-8 (c). 

 

Figure 3-8: Image encryption using the proposed algorithm 

In our example, we’ve chosen to mask the semi-encrypted image inside the blue channel of the 

RGB key image. 

To recover the key image, a totally black image shown in Figure 3-9 (a) is encrypted using the 

previous encryption process. Clearly, the corresponding encrypted image shown in Figure 4-9 

(b) is the Key Image used as a secret key by the encryption algorithm. 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
60 

 

Figure 3-9: Revealing the key image using a chosen-plaintext attack 

Because the used key image in this example is an image that could be found online (baboon), 

we tried a reverse image search using Google search engine. Because of the strong similarity 

between the key image and the encrypted one, Google reverse image search was able to guess 

the original image perfectly. The result is shown in Figure 3-10. In this case, the search result 

image can be downloaded and used to recover the original plain image following the rest of the 

steps mentioned above. 

 

Figure 3-10: Revealing the key image using an online reverse image search using Google 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
61 

Sure, this method is not going to work perfectly in all cases. It just works when the exact key 

image is available online and a big level of similarity exists between it and the resulting cipher 

image. The previous method is always preferred over this one. 

 

Figure 3-11: Image cryptanalysis using the proposed method 

The Figure 3-11(a) shows the semi-encrypted image after its extraction from the encrypted one. 

After reversing the permutation phase, the image shown in Figure 3-11(b) is obtained. This 

image is the result of the 𝑋𝑂𝑅 operation between the plain image and the secret value 𝐾 which 

is a random pixel value chosen from the permuted image. Although it is not the exact same 

plain image that have been encrypted, it is clear enough to identify it and know for sure that it 

represents the "Cameraman" image. 

Because "Cameramen" is a well-known test image, it was easy to guess without going much 

further. But, if the encrypted image was for a less known image or contains some text, it won't 

be easy to exploit in this form. For that reason, brute-forcing the Key will be required. 

To recover the original image in a pixel perfect format, trying the 256 different cases of the key 

is required. For illustration purposes, just 8 samples are going to be generated as shown in 

Figure 3-12. The corresponding key values that will be used are 𝐾 ∈

{0,32,64,96,128,160,192,224}. 

 

(a) semi-encrypted image (b) diffused image 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
62 

 

Figure 3-12: Brute-forcing the encryption key 

Figure 3-12(e) where 𝑘 = 160 represents the most accurate generated sample compared to the 

original image. This means that the exact key value is not too far from 160. If more details are 

needed, the attaquer can easilly investigate the other values and generate all the 256 possible 

values. 

3.5 Summary of Algorithm Weaknesses 

In this chapter we performed an attack against a novel image encryption algorithm recently 

proposed in [33] and announced to be secure for real data encryption. Following are some of 

the most important weaknesses identified in the proposed scheme that made it totally breakable: 

 In this encryption scheme, the cipher image has a lot of similarities with the key image. 

In other words, the cipher image leaks information about the secret key, which is a 

vulnerability that should never exist in a cryptosystem. 

 Making multiple permutation only rounds doesn’t offer any further improvements to the 

algorithm security. Any number of permutation rounds can be modelled with a single 

permutation vector at the end. 

(a) K = 0 (b) K = 32 
 

(c) K = 64 (d) K = 96 
 

(g) K = 192 (h) K = 224 (f) K = 160 (e) K = 128 



Chapter 3: Proposed Hybrid Cryptanalysis Method 

 
63 

 Because the permutation key is chosen as a random pixel value from the permuted image, 

it has a reduced key space that can be brute-forced easily. Another issue with this 

approach is the possibility of the random pixel value to be 0. Thus, the diffusion phase 

will have no effect at all. 

 Having just one round of encryption and a weak dependency on the plain image creates 

some linearity between the plain and the encrypted image, which is a sign of an unsecure 

algorithm. 

3.6 Conclusion 

After performing an attack exploiting the vulnerabilities found in former scheme, the algorithm 

is found to be weak against some well-known types of attacks, namely chosen-plaintext and 

brute-force attacks. Our proposed cryptanalysis method and experimental results proved the 

security claim of that scheme to be wrong. We proved that Images encrypted using this scheme 

can be easily decoded using our proposed method that uses a combination of chosen-text and 

brute-force attacks. Therefore, relying on this cryptosystem to encrypt images containing 

sensitive information is not secure.  

In the next chapter we will present a comparative analysis that was carried between AES and a 

chaotic image encryption scheme recently proposed. This study was carried out in the process 

of building a security layer for a real web application where image encryption was needed. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Chapter 4 
 

Comparative Analysis Between a Pixel-

Wise Image Encryption Scheme and AES 

in a Web Application Context 

 
Index 

4.1 Introduction 

4.2 Brief Description of the Web Application 

4.3 Application encryption requirements  

4.4 Evaluation Tests 

4.5 Results and Discussions 

4.6 Conclusion 

 



 
64 

 

Comparative Analysis Between a Pixel-

Wise Image Encryption Scheme and AES 

in a Web Application Context 
4 Comparative Analysis Between a Pixel-Wise Image Encryption Scheme 

and AES in a Web Application Context 

4.1 Introduction 

The study presented in this chapter was carried out in the process of building a security layer 

for a real web application where a huge amount of user generated images need to be stored on 

the application servers and delivered to the right users on their request. 

To ensure that images are stored securely on servers, an encryption system was required to be 

integrated into the application. The first encryption scheme that was proposed to be used as the 

application encryption layer was AES. The reason was that it is general purpose and the actual 

standard encryption algorithm for data. However, pixel-wise category of ciphers especially 

chaos based image encryption algorithms were heavily studied recently as an alternative way 

to traditional algorithms in the field of image encryption. This rise of their popularity made this 

kind of algorithms worth investigating as an alternative solution. 

After some research among the recently proposed schemes, we found a chaotic encryption 

scheme that uses a substitution-permutation network and based on a simple Pseudo Random 

Number Generator called Bülban chaotic map [35]. The interesting part in that scheme was the 

raise of the processing unit from individual pixels to the images’ rows and columns which led 

to less computations and more speed while maintaining the same level of security as other 

schemes. Due to the potential this scheme has, it was decided by the development team to be 

the algorithm that is going to be tested alongside AES. 

 
Chapter 

 4 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
65 

This chapter will be divided into four sections. The first and the second sections will be brief 

descriptions of the chaotic algorithm and the relevant part of the web application respectively. 

The third section will present the tests that we designed based on the real needs of the 

application to test the proposed ciphers. 

In the fourth section we will present and discuss the experimental results of comparing 

AES_GCM_256 cipher and the above mentioned chaotic cipher using our test suite. 

4.2 Description of the Chaotic Encryption Scheme 

The pixel-wise encryption model is a well-known and commonly studied type of image 

encryption schemes. It consists of taking a matrix of pixels as input and feed it into an 

encryption algorithm which randomizes the pixels according to a secret key. Then, it outputs a 

matrix of random-looking pixels as the encrypted image, usually of the same dimensions as the 

input image as illustrated in Fig.4-1. 

 

Figure 4-1: . The pixel-wise image encryption model 

Algorithms following this model are generally described using a one channel grayscale image. 

However, they can be generalized to color images containing multiple channels by encrypting 

each channel separately and combine them later into one color encrypted image. Later, the 

decryption process is done by separating the encrypted color image channels and applying the 

decryption algorithm on each of them, then combine them into one image to regenerate the 

plain image. 

Pixel-wise encryption schemes generally differ in the pixels’ manipulation technique used to 

randomize the plain image’s pixels. Recently, cryptosystems’ designers and security researchers 

developed many techniques that differ in speed, security and implementation complexity. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
66 

However, many of them accomplish the same purpose in general, which is the randomization 

of the input image pixels. 

These pixels’ manipulation techniques can be divided into 3 general categories based on the 

domain where the pixel randomization happen: spatial, transform and mixed domains as 

mentioned in Chapter 2. However, there are other classifications based on different parameters. 

Talhaoui et al proposed in [35] a new efficient and high-speed image encryption scheme based 

on the Bülban chaotic map originally proposed in [36] and defined by the following equation: 

 𝑥𝑛+1 = 𝑥𝑛 ∗ √
𝑎

𝑥𝑛 − 𝑏
 Eq 27 

Where, 𝑥0, 𝑎, 𝑏 are secret parameters chosen such as 𝑥0  >  𝑏 >  0 and 𝑎 >  0. 

 

 

Figure 4-2: Encryption Diagram 

 

Figure 4-2 illustrates the encryption diagram of the actual scheme. The plain image is fed into 

a Substitution-Permutation network where a circular shift of rows and columns is applied to 

break the correlation of adjacent pixels and the XOR operation with the Modulo function is 

used to mask the pixels’ values and prevent the leak of information. The process is repeated T 

times and each round uses different shuffling and substitution sequences generated using the 

chaotic map. The output of the SP network on the last round represents the cipher image. 

Some design decisions were wisely made by the authors to increase the speed of that algorithm. 

They intentionally choose a simple chaotic map and a simple structure. Also, the processing 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
67 

unit was raised from the pixel level to the row/column level. This enhances the algorithm 

efficiency by requiring the generation of a small set of random numbers only. 

The security tests and simulation analysis have been carried out by the authors. They stated that 

the scheme is extremely secure and very fast for real-time image processing. 

The other cipher AES which will be compared with this scheme is described in Chapter 1. 

4.3 Brief Description of the Web Application 

The web application in hands is a professional network for artists, where people creates their 

portfolios and upload their original and creative art works and pictures and control its visibility. 

The application has a big reliance on users’ uploaded original images. It has both web and 

mobile interfaces where users interact and consume data which is mostly composed of images. 

The two main parts of the application that are relevant to image encryption are the image 

uploading and serving systems. 

4.3.1 Image Uploading System 

The images that needs to be encrypted are the user generated ones. The image is first uploaded 

by the users through the web interface or the mobile application. When it reaches the server, it 

needs to be encrypted with a predefined key. Then the encrypted version is stored in the server 

storage space and a copy of its location is then stored in the database with a reference to the 

user that uploaded it. 

4.3.2 Image Serving System 

The stored images are going to be shown later to users based on some predefined permissions. 

When the user requested the image using an HTTP request, the server first check the user 

permissions, if the user doesn’t have the permission to view the image, the server immediately 

respond with a 403 (forbidden) status code. Otherwise, it reads the image from the storage space 

and decrypt it using the same encryption key then sends it back. The user then views the plain 

image on the web or mobile application. 

4.4 Application encryption requirements 

In order to select the right cipher to use for image encryption within the application, we first 

defined the application requirements and needs. Those requirements will serve as guidelines 

for designing the tests later. Below are the application requirements described briefly. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
68 

4.4.1 High Security 

For an application that stores users’ images to be trustworthy, it needs to treat security very 

seriously. The uploaded images should be kept safe from unauthorized access from other users 

or even from hackers that may get access to the server storage space. The used encryption 

algorithm needs to be secure against both passive and active attacks. That means, a hacker with 

access to storage space should get no information from the encrypted images stored there. 

Moreover, if encrypted images are changed, the compromised images should be detected so 

they can be deleted and replaced from the backup storage. The application should never try to 

decrypt and send compromised images to the users. We cannot be sure if the modification is 

random or maliciously done, so the safest way is to discard the infected images and replace 

them from the backup. 

4.4.2 High Performance 

One of the most critical aspects for a high traffic online application is speed. In the current 

application, for security reasons, images are stored encrypted and no plain versions of them are 

kept. That means, images should be decrypted on every request to the server. A slow 

cryptosystem will slow down the server by making it stuck in encryption or decryption process 

for a long period of time. Therefore, the number of requests per second that the server is capable 

of handling will decrease which will directly affect the user experience when many users are 

connected simultaneously. This will also increase the financial dispenses needed for paying the 

servers very rapidly with the growth of the user base. In the current use case, cryptosystem 

performance especially decryption speed is very critical. 

4.4.3 Side Effect Freedom 

Another important requirement of the needed encryption scheme is that it needs to be side-

effect free. It needs to keep all the original image information such as metadata and image’s 

dimensions for copyright reasons. Therefore, no data loss is tolerated after encryption and 

decryption. Moreover, the encrypted images need to be roughly the same size as the original 

ones. Original images are compressed and highly optimized before encryption to save storage 

space. Therefore, any increase in size after encryption should not surpass 10% of the original 

size. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
69 

4.5 Evaluation Tests 

To select the most suited algorithm for the application, we designed 7 tests evaluating different 

aspects of the competing candidates. Those tests were built with the real world application 

usage scenario in mind. They are high level end-to-end tests that don’t test the internals of the 

ciphers themselves. In fact, they test the outcomes of the cryptosystems and their behavior from 

a software engineering perspective. The tests are listed and described below. 

4.5.1 Eavesdropping resistance test 

The eavesdropping resistance test will evaluate the ability of the cipher to hide data. This test 

follows these steps: 

1. encrypting a test image using the encryption algorithm being evaluated. 

2. Members of the team are asked to act as potential attackers and analyze the encrypted 

image trying to get as many information about the original image as possible. 

3. All information that can be extracted are listed in a table and compared with other 

ciphers. 

The more the quantity of information that can be extracted about the plain image from the 

encrypted one, the less resistant to eavesdropping the corresponding cipher is. 

4.5.2 Randomization Test 

A good encryption algorithm should output different results when encrypting the same data 

again. This is why block ciphers’ modes of operation were invented and developed. Outputting 

the same result when encrypting similar data leaks information about the plain data that should 

be hidden and opens the door for differential attacks. This test evaluates the algorithm’s ability 

to randomize the encryption of similar images under the use of the same secret key. The test 

consists of the following steps: 

1. Take a test image and encrypt it using the encryption algorithm. 

2. Repeat the encryption process again for the same image using the same secret key while 

changing the initialization vector or any initialization information that the algorithm 

support. 

3. Calculate the SHA256 hash of the two encrypted images and compare them. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
70 

For this test to be considered successful, the two hash values should be different. This means 

the algorithm outputs different results for the same data each time it is executed. This is a 

desired behavior. 

4.5.3 Integrity test 

Data integrity is one of the goals of cryptography. Preserving data integrity means the 

impossibility of tampering with the encrypted data without detecting in the decryption phase 

that the data was manipulated by some third party. In algorithms that guarantee the integrity of 

data, if one bit of the encrypted data is modified, the decryption algorithm will detect it. In our 

case this guarantees that whatever image the user uploaded is what he will get when he 

requested it back later. If any sort of modifications happens to the encrypted image it should be 

detected before decryption. This means that the application can delete the infected image and 

get a valid copy of it from the backup system. Also, this will be a clear indication that some 

kind of hacking or incident happened and investigations must be conducted by the development 

team. 

This test will consist of the following steps: 

1. Take a test image and encrypt it. 

2. Change one bit of the encrypted image.  

3. Decrypt the modified encrypted image using the same key. 

If the decryption algorithm detects that the encrypted data was modified, it passes the test, 

otherwise it will be considered a failure. 

4.5.4 Symmetry Test 

The symmetry test goal is to test the ability of the cipher to fully recover the data after applying 

encryption and decryption operations in sequence. It tests if the ciphers in question verify Eq28 

which is the definition of a symmetric cipher. 

 𝐷(𝐸(𝑥, 𝑘), 𝑘) = 𝑥 Eq 28 

 

The test will be conducted as follows: 

1. Take a picture with a digital camera. 

2. Calculate the SHA256 hash of this image. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
71 

3. Encrypt the image. 

4. Decrypt the encrypted image using the same key used for encryption. 

5. Calculate the SHA256 hash of the decrypted image and compare it to the hash found 

before encryption. 

The two hashes must be equal for this test to pass. Finding two different values of the SHA256 

hash means that the cipher is not symmetric. Therefore, the algorithm is not 100% reversible 

and has low fidelity reproducing the original data. 

4.5.5 Storage Space test 

Storage space is a limited resource. In web applications, user-generated content and uploaded 

media can get too big and its storage can become too expensive if not managed properly. Having 

small files stored is always recommended. That’s why in this application big images are resized 

to a resolution of 2-4 MP and optimized for storage immediately when they are uploaded, before 

the encryption step. Therefore, it is recommended that the used cipher outputs encrypted files 

of the same size as the original ones with a toleration of plus 10% at maximum. 

This test evaluates the change in size between the original and encrypted images and between 

the original the decrypted ones. In the current use case, images are being adequately compressed 

and highly optimized. Therefore, it is required that the cipher doesn’t break these optimizations 

by either increasing the image size more than 10% of the original size or degrading the image 

visually. The test will be conducted as follows: 

1. Take a picture with a digital camera. 

2. Record the file size of this image. 

3. Encrypt the image. 

4. Record the file size of the encrypted image 

5. Decrypt the image. 

6. Record the file size of the decrypted image. 

7. Compare the file sizes of the original, the encrypted and the decrypted images. 

For this test to pass, the encrypted image must satisfy the formula below, where 𝑒𝑛𝑐𝑆𝑖𝑧𝑒 is the 

size of encrypted image and 𝑜𝑟𝑔𝑆𝑖𝑧𝑒 is the size of the original one. 

 𝑒𝑛𝑐𝑆𝑖𝑧𝑒 ≤ 110% 𝑜𝑟𝑔𝑆𝑖𝑧𝑒 Eq 29 

On the other hand, the decrypted image must be the same size as the original image. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
72 

4.5.6 Raw speed test 

In our case, the cipher raw speed of encryption and decryption is directly related to the 

performance of the application. Therefore, it is very important for the cipher to have a good 

speed to avoid degrading the responsiveness of the server and sacrifice the whole user 

experience. This test evaluates the raw speed of the cipher’s encryption and decryption 

processes when executed in isolation. And it goes as follows: 

1. Select three test images: 

a. 256*256 grayscale image 

b. 256*256 color image 

c. 2 – 4 Mega Pixels image 

2. Encrypt each image 10 times and calculate the average time. 

3. Decrypt all the previously encrypted images 10 times and calculate the average time. 

4. Record the average times in a table for later comparisons with other ciphers.  

In this test, we tested with an image of 2 – 4 MP on purpose since it is the common resolution 

that is going to be encrypted after the application preprocessing of uploaded images. This size 

will be a good simulation of the real images that will be encrypted. It will be a more realistic 

test than using the common small test images only. 

4.5.7 Server Load test 

An important metric that defines the responsiveness of web applications is the number of 

requests per second that the server is capable of handling. This tests a real scenario when many 

users connect to the server simultaneously. This test will be performed as follows: 

1. Create a simple Node.js server that reads a previously encrypted image from the 

storage space, decrypts it and send it in response. 

2. Run this server on localhost. 

3. Using load test tools such as “Autocannon” or “wrk”, start a load test against the 

server. And repeat the test 3 times. 

4. Calculate the average value of requests per second and record it in a table for 

comparison. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
73 

The higher the number of requests per second the more money the corresponding cipher will 

save the company on scale. Therefore, high values are desired. 

4.6 Results and Discussions 

In this section, the tests described above will be implemented over both AES and the chaotic 

cipher to identify which cipher is better suited to be used in the former web application. 

The AES version that will be used is the AES_GCM_256 which mean AES block cipher with 

a key length of 256 and using Galois Counter Mode as mode of operation. This version of the 

algorithm comes embedded in Node.js under the “crypto” built-in library. 

The chaotic cipher is going to be coded from scratch using Node.js and the “scijs” suite 

especially the “ndarray” package to simplify working with multi-dimensional array, “imread” 

and “imwrite” packages to decode image files and encode them back. 

The test images that are going to be used throughout the tests are 3 images: 

1. The first image is a grayscale 256*256 pixels PNG image without metadata called 

Cameraman. 

2. The second is a color 256*256 pixels JPEG image without metadata called Baboon. 

3. The third image is a color 2048*1536 pixels JPEG image captured with a phone camera 

and resized while keeping all the original metadata. This image will be referred to as 

“Minaret”. 

 

Figure 4-3: Images used in the experimental tests 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
74 

Fig.4-2 illustrates the former mentioned test images. Left is Minaret, top right is Cameraman 

and bottom right is Baboon. 

4.6.1 Eavesdropping resistance test 

In this test, Baboon image is encrypted using both algorithms, AES and The Chaotic Algorithm. 

The result of AES is a binary file, while the result of the chaotic algorithm is an image composed 

of random looking pixels of the same dimensions as the original. 

 

Figure 4-4: Baboon test image encryption using AES and the Chaotic cipher 

Fig.4-4 represents the encryption of Baboon test image using AES cipher and the chaotic cipher. 

Fig.4-4 (a) represents the original image, while (b) and (c) represent the AES and the chaotic 

encrypted images respectively. 

Using tools like the operating system file explorer and an image editing programs (like GIMP), 

Here are the information the team was able to extract from each encrypted file about the original 

image listed in Table 3. 

Table 3: Eavesdropping resistance test results 

Cipher Leaked information 

AES Original Data size 

Chaotic Cipher 

Original Data type 

Original Image resolution 

Original Image dimensions 

Original Number of channels 

 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
75 

We notice that AES is hiding all information about the original image other than the data size. 

The chaotic cipher on the other hand is revealing the original data type and exposing that the 

original data was an image, the image resolution (the number of pixels), the image dimensions 

and whether the original image was grayscale or colored by exposing the number of channels. 

Clearly the chaotic cipher is exposing a lot of information about the original image. Whether 

an attacker can reveal the exact original content of the plain image or not, knowing only the 

above information about the plain data defeats the purpose of confidentiality. Cryptography 

insists on the fact that an attacker should know nothing about the plain data. Depending on the 

application, those revealed pieces of information can be very dangerous to expose publicly. 

They can act as a basis on which attackers can build more advanced and targeted attacks. 

AES cipher is exposing less information about the original image. Therefore, it will be the 

winner of this test. 

4.6.2 Randomization Test 

In this test, the same Cameraman test image is encrypted twice using AES and twice using the 

chaotic cipher. On each experiment the encrypted image SHA256 hash is calculated. The test 

results are summarized in Table 4. 

Table 4: Randomization test results 

Experiment SHA256 hash 

AES Enc 1 K7P3AFb69NMuItxpBk+tCSrz3HlBZe79RR1ZtNE+Bgk= 

AES Enc 2 b7DSTMtBz4O7naxajHn1jXjNQ0R4u6C7GGZwH3tQUyQ= 

Chaotic Enc 1 ZTH/oRaYiw/dHdypwRQNNyGbmDYRiZyzLWuU576Qxb0= 

Chaotic Enc 2 BOGERR4xGWEqQsoJSJg2c/SSab4tQVR6S/aVH+/uPsc= 

 

The goal of this test is to assess the ability of the cipher to randomize the results and hide 

patterns created by similar images when they are encrypted. 

In Table 4 we see that both AES and the chaotic cipher output different encrypted images each 

time they run although giving the same input image and using the same secret key. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
76 

AES_GCM_256 cipher is capable of randomizing the results using the initialization vector it 

accepts when initializing the encryption algorithm. This vector is a short sequence of random 

bits used to randomized the output when the same input is given. It got mixed with the key and 

passed unencrypted with the cipher data. Later, the decryption algorithm will be able to reuse 

the same IV used in encryption to correctly decrypt the data. 

The problem of lack of randomization in pixel-wise cipher is very common and it is found in 

many other pixel-wise image ciphers [20], [23], [24], [37]–[45]. However, the current chaotic 

cipher well solved this issue. It did that by the introduction of two extra random rows on the 

top and bottom of the image at the first round. Those rows are included in the confusion step 

and due to the recursive confusion of pixels, randomness affects all the encrypted image pixels. 

Both ciphers pass the randomization test. 

4.6.3 Integrity test 

To test the level of encrypted data integrity provided by each cipher. The Cameraman test image 

is encrypted twice. One time by AES and the other by the chaotic cipher. Then, both encrypted 

images are slightly modified. The AES encrypted image file is modified directly using a binary 

file editor. Since the chaotic cipher encrypted image is stored as an image file format, modifying 

it directly gave inconsistent behavior in decoding the file later, some bits have special 

significance in the file format used so it breaks the decoding operation and the encryption 

algorithm will not execute. Therefore, the modification will be done after decoding and before 

decryption to a random pixel with a random value. 

Finally, both modified encrypted images are tried to be decrypted using the same key. The 

decryption results are summarized in Table 5. 

Table 5: Integrity test results 

Cipher Modification detected Detection method 

AES Yes Authentication Failed 

Chaotic No / 

 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
77 

AES stopped before performing decryption showing a message that data authentication failed. 

AES_GCM_256 stores an authentication tag alongside the encrypted data, on decryption it 

calculates the tag of the data again and compare it with the tag of the original data. If a single 

bit of data is changed, the new tag will be completely different and the cipher will throw an 

error preventing the decryption of a manipulated data. 

The chaotic cipher on the other hand failed to detect the pixel change and decrypt the image 

normally. The reason for that is the absence of any kind of checksums or authentication tags 

calculated on the original data to protect it from undetected manipulations. This lack of integrity 

check was found to be common in many pixel-wise ciphers [39]–[42]. 

AES is clearly the winner in this test. 

4.6.4 Symmetry Test 

To test the symmetry of the two ciphers, both 3 test images will be needed. Each of them will 

be encrypted by both algorithms and decrypted using the same key used for encryption. The 

original image and the decrypted one will be compared together using their SHA256 hashes. 

The experimental results are summarized in Table 6. 

Table 6: Symmetry test results 

AES Cipher 

 Original Image Hash Encrypted Image Hash 

Cameraman 
9wuhrJv36qvFde2NLS8Kk6O1Fd9RFF

TWHSIV78qqUKA= 

9wuhrJv36qvFde2NLS8Kk6O1Fd9RFFTW

HSIV78qqUKA= 

Baboon 
cVgVr5Dzffso+wKqemzc5CHOx0FgcN

E31znOXNyWkYc= 

cVgVr5Dzffso+wKqemzc5CHOx0FgcNE3

1znOXNyWkYc= 

Minaret 
SwgK5CeHcR7vBRCzdtt0qKL2Ki1A5v

tva7YVLnMNSRZ= 

SwgK5CeHcR7vBRCzdtt0qKL2Ki1A5vtva

7YVLnMNSRZ= 

Chaotic Cipher 

 Original Image Hash Decrypted Hash 

Cameraman 
9wuhrJv36qvFde2NLS8Kk6O1Fd9RFF

TWHSIV78qqUKA= 

9wuhrJv36qvFde2NLS8Kk6O1Fd9RFFTW

HSIV78qqUKA= 

Baboon 
cVgVr5Dzffso+wKqemzc5CHOx0FgcN

E31znOXNyWkYc= 

RfPehJSlZ/d/8eCoAaJBVIeroZr8n0HGCQ

SfpC7kqHw= 

Minaret 
SwgK5CeHcR7vBRCzdtt0qKL2Ki1A5v

tva7YVLnMNSRZ= 

P3KWnVtiDwcdAEfiH79ElJn3ETvaI0OzD

2BGF9q00ZV= 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
78 

It is noted that AES restored the exact same image file after encryption and decryption. The 

chaotic cipher on the other hand didn’t return the exact original file though the exact pixel 

values and positions where restored. This issue in the chaotic cipher is caused by a loss of data 

or an encoding/decoding parameters modification. 

Since the chaotic algorithm is a pixel-wise cipher, the only image data it considers is pixels’ 

values. Image metadata are completely ignored. Therefore, the encrypted image will lack the 

metadata that existed on the original one and so will be the decrypted image, and this issue is 

common in many image ciphers proposed recently [17]–[26], [46], [37], [47], [38], [48], [49], 

[39]–[45], [50]–[60]. In decryption, if the image is encoded into another image format than the 

original image or used different output parameter like JPEG quality or PNG compression ratio, 

the decrypted image will differ too from the original one. 

To have a decrypted image the same as the original one in a pixel-wise cipher, these 3 conditions 

needs to be satisfied: 

 Original image should not have metadata 

 Encrypted image should be saved in a lossless image format. 

 Decrypted image should be encoded in the same original format and using the same 

parameters 

Satisfying these conditions is hard and impractical in real world applications. Therefore, the 

chaotic cipher has failed this test and the winner is AES. 

4.6.5 Storage Space test 

To test the effects of using both ciphers on storage space. The 3 test images will be encrypted 

and decrypted again using both ciphers. On each step the file size is recorded. The results are 

summarized in Table 7. 

For AES, we see that the file sizes are consistent, encrypted images are always bigger than their 

original one by a fixed value which is the size of initialization vector plus the size of the 

authentication tag attached to the encrypted data. In this case the increase in size is equal to 

0.03 𝐾𝐵 and it is much less than the tolerated 10% of the original size. 

For the chaotic cipher on the other hand, an inconsistency in file sizes is noted. All images are 

encrypted and saved in PNG format to compress image while keeping the data. The decryption 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
79 

is done back to the original image format: Cameraman is restored back to PNG while Baboon 

and Minaret are encoded back to JPG. 

Table 7: Storage space test results 

AES Cipher 

 Original Size (KB) Encrypted Size (KB) Decrypted Size (KB) 

Cameraman 37.87 37.90 37.87 

Baboon 37.91 37.94 37.91 

Minaret 691 691.03 691 

Chaotic Cipher 

 Original Size (KB) Encrypted Size (KB) Decrypted Size (KB) 

Cameraman 37.87 218.56 125 

Baboon 37.91 219.52 18.25 

Minaret 691 10511.73 393.33 

We see a clear increase in the size of encrypted image, because this pixel randomization breaks 

the correlation between the original image pixels and eliminates similar patterns. Therefore, it 

reduces the effect of lossless compression on the encrypted image. As a result, the encrypted 

image size will most likely be bigger than the plain image one.  

Table 8: Summary of encoding and metadata effects on decrypted image size 

 Has Metadata No Metadata 

Same encoding Parameters Different size Same size 

Different encoding Parameters Different size Different size 

The size of decrypted images compared to the original size depends mostly on the encoder and 

existence of metadata. The effect of the encoder parameters and metadata existence on the 

pixel-wise ciphers’ decrypted file size are listed in Table 8. 

The only case where the chaotic cipher outputs a decrypted image having the same size as the 

original one is when the original image has no metadata and the same parameters used to encode 

the original image are used to encode the decrypted image too. 

AES clearly wins this test.  



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
80 

4.6.6 Raw speed test 

Raw speed test will evaluate the speed of both ciphers executed in isolation on a set of test 

images. The test consists of executing for each cipher 10 rounds of encryption and decryption 

over the 3 test images. Then the average time for each experiment is calculated and recorded. 

This test and the next one were performed on a HP OMEN 15 laptop equipped with a Ryzen 7 

5800H CPU and 16 GB or RAM. The test results are summarized in Table 9. 

Table 9: Encryption and decryption speed results 

AES Cipher 

 Encryption speed (ms) Decryption speed (ms) 

Cameraman 1.91 1.05 

Baboon 0.76 0.51 

Minaret 2.78 3.08 

Chaotic Cipher 

 Encryption speed (ms) Decryption speed (ms) 

Cameraman 145.02 98.45 

Baboon 672.77 458.82 

Minaret 3754 4536 

We see in the table above that AES outperform the pixel-wise cipher in terms of raw speed by 

orders of magnitude. AES is ~94x to 1400x faster. This ratio is directly related to the number 

of the image pixels, the more pixels the image has the slower will be the pixel-wise cipher even 

if the file size is the same like in the case of Cameraman and Baboon. They have approximately 

the same file size ~38 KB and the same dimensions of 256*256. However, baboon is an RGB 

image so it has 3 channels instead of 1. Therefore, the time needed to encrypt of decrypt Baboon 

is roughly ~3 times the time needed for Cameraman. 

The first reason of AES outperformance of the chaotic cipher is the nature of the pixel-wise 

algorithms in general. Dealing with pixel data is less efficient and less predictable in terms of 

speed than dealing with binary data directly. In addition to the complex mathematical operations 

used inside operations like square roots and powers of big numbers. While in AES, all the 

operations are primitive and hardware optimized such as shift and logical operations. 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
81 

The second reason is the need for a decoder that decompresses the image and decode it into its 

raw format before applying the encryption algorithm, as well as an encoder to compress it again 

into the original or another well-known image format. The same process should be repeated in 

the decryption phase too. These operations take time and their speeds depend on multiple 

parameters such as the original image format, resolution, compression ratio …etc. In papers 

suggesting new image encryption schemes, these extra steps of encoding and decoding are 

usually ignored. The performance analysis in the papers focuses usually on measuring the time 

taken by the pixel randomization process. Therefore, the performance analysis provided with 

such ciphers is usually irrelevant for real world scenarios. 

Finally, there is another reason of the performance difference that can affect the results in this 

experiment. This reason is the use of a high level garbage-collected language like JavaScript 

for implementing the pixel-wise cipher. On the other hand, the AES implementation present in 

Node.js is the OpenSSL version which is highly optimized and implemented using C, a very 

performant low level compiled language. However, time is money and implementing the 

chaotic scheme in C takes more time and resources than doing it using JavaScript. We decided 

to do the JavaScript version as a prototype and planned to re-implement it later in C or C++ if 

it gets wins against AES in this test suite. However, it turns out that the cipher has many 

performance issues other than the programming language used for its implementation. 

AES clearly wins the raw speed test. 

4.6.7 Server Load Test 

To see the potential impact of each cipher on the responsiveness of the application, we created 

a simple Node.js server that reads a previously encrypted image from the storage space, 

decrypts it and sends it in response. This server is then load-tested using a load test tool called 

“Autocannon”. The load test is performed using all the 3 test images. Results are summarized 

in Table 10. 

Table 10: Server load test results 

 
AES 

(Req/Sec) 

Chaotic 

(Req/Sec) 

Cameraman 1750.7 42.4 

Baboon 1862.5 21.2 

Minaret 108 0 



Chapter 4: Comparative Analysis Between a Pixel-Wise Image Encryption Scheme and AES in 

a Web Application Context 

 
82 

The number of requests per second corresponding to each cipher was expected because it is 

directly related to the raw speed of the cipher. AES was able to handle requests up to 1.8K 

Req/Sec serving small images, while the chaotic cipher reaches ~43 Req/Sec at maximum and 

was not able to resist the test load decrypting the medium sized minaret image. 

AES wins this server load test. 

4.7 Conclusion 

In this chapter, a comparative analysis was done between AES cipher and a recently proposed 

chaotic cipher in the context of selecting the right cipher to use in a web application. 

According to the real needs of the application, seven tests have been designed to test the 

suitability of each cipher to the needs of the application. 

We found that AES outperforms the chaotic cipher in approximately all tests. AES passes all 

the seven tests while the pixel-wise cipher passes only one test and failed in the rest. 

Some issues with the studied chaotic cipher were found to be common to other pixel-wise 

ciphers. These issues are not related to a specific implementation but a flaw in the principle of 

pixels’ encryption itself. Such as the leak of information, the symmetry and metadata loss issue 

as well as the significant increase in size of encrypted image and the degradation of 

performance by requiring encoders and decoders to deal with images on each 

encryption/decryption operation in real world applications. 

This study proved that satisfying the well-known metrics in the field of image encryption field 

is not enough to have a production ready general purpose image cipher. The designers of such 

schemes need to take into account the different contexts and needs of real world applications. 

Finally, the tests above are designed in the context of a specific web application. The final 

judgment was taken in this specific context and it might differ if the context changes. 

Depending on the level of security and performance needed and the level of tolerance toward 

the loss of metadata and data size increase, the studied chaotic cipher can be good enough for 

some other fields or applications with different needs and different requirements.



 

 

 

 

 

 

 

 

Chapter 5 
 

A Highlight on Some Common Image 

Encryption Design Issues 

 
Index 

5.1 Introduction 

5.2 Security Issues 

5.3 Performance Issues 

5.4 Usability Issues and Limitations 

5.5 Conclusion 

 



 
83 

 

A Highlight on Some Common Image 

Encryption Design Issues 

5 A Highlight on Some Common Image Encryption Design Issues 

5.1 Introduction 

Based on our previous experience in chapter 4 trying to implement a chaotic encryption scheme 

into a real web application, a set of image encryption anti-patterns and issues were discovered. 

Most of those issues are affecting the well-known pixel-wise model itself not only specific 

algorithms. They are common across a large set of recently proposed schemes following that 

model regardless of the technique used within the encryption algorithm in most cases. 

Not paying attention to these issues leads encryption schemes’ designers to focus on optimizing 

the already optimized parts while ignoring some real issues that need to be addressed as early 

as possible. 

 

Figure 5-1: Characteristics of a good cipher 

 
Chapter 

 5 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
84 

As illustrated in Figure 5-1, a good general purpose cipher is required to be fast, secure and 

usable with a large number of use cases. Slow algorithms are not suited for applications with 

large amounts of data to encrypt. Insecure ones make data vulnerable to attackers. While very 

specific algorithms cannot be used in the majority of real world applications and will miss the 

required inspection by cryptanalysts to assess their security and fix any potential vulnerabilities.  

In this chapter we will summarize the issues and limitations that we’ve found through the 

analysis of the pixel-wise image encryption model. The results will be divided into 3 categories: 

Security, performance and usability. 

5.2 Security Issues 

Security issues are the most serious issues that can be found in a cryptosystem. The 

cryptosystem main purpose is to provide security via data encryption. Therefore, finding 

security issues in a given scheme defeats the whole purpose of encrypting data. The following 

sections will be a summary of the security issues found in that general image encryption model 

mentioned earlier. 

5.2.1 Information Leakage 

The purpose of encryption is to hide all information about the data being encrypted. Recent 

image encryption algorithms generally follow the pixel-wise model which operate on the pixel 

level of the image. Usually, they take the pixels of the plain image, scramble them and output 

a new image with random looking pixels. 

Algorithms following this famous model can be robust enough to be irreversible by known 

attacks. However, they have some security issues common to all of them. Figure 5-2 illustrates 

the information that can be known by an attacker having only the encrypted image at his 

disposal. These pieces of information are: 

- The type of the plain data, in this case it is obvious that the original data is an image. 

- The dimensions and the size of the plain image. 

- The number of channels of the plain image. 

Whether the attacker can reveal the exact original content of the plain image or not, knowing 

only the above information about the plain data makes the cipher semantically unsecure. 

Semantic security insists on the fact that an attacker should know nothing about the plain data 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
85 

and cannot distinguish the ciphertext from random. Depending on the application, the revealed 

information can be very dangerous to be known. It can act as a basis on which an attacker can 

build more advanced and targeted attacks. 

 

Figure 5-2: Information leakage 

If such image is encrypted using a classical encryption method like AES for example, these 

known pieces of information will not be leaked. AES encrypts blocks of binary data. The 

resulting output will not reveal any information about the image dimensions or the even its data 

type. 

5.2.2 Lack of data integrity 

An encrypted piece of data is usually meant to be transferred from the sender to the receiver 

through a public channel, or to be stored in a public storage in order to be retrieved back later. 

In such environments we can distinguish two general types of attacks: passive attacks and active 

attacks. Passive attacks are attacks where the attacker tries to reveal the plain data or part of it 

only. On the other hands, active attacks are attacks that try to maliciously manipulate the 

encrypted data itself so the decrypted data will be different from the original one. If an attacker 

can modify the encrypted data without being detected, the active attack is considered 

successful. 

Figure 5-3 illustrates how a Man in the middle attack can be performed on image encryption 

schemes that don’t offer an integrity check. The cipher image is sent in a public channel. An 

attacker can modify it maliciously before it gets to the recipient. When the recipient decrypts 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
86 

it, he gets a modified plain image. However, he is not going to know whether it has been 

modified or not. This is considered a successful active attack.  

The more knowledge the attacker has about the plain image and encryption algorithm, the more 

dangerous the modification can be. Many implementations of the image encryption model in 

study are vulnerable to active attacks. Usually they have no integrity check mechanism to stand 

against this type of attacks. 

 

Figure 5-3: Man In the Middle Attack on encrypted image 

Unlike many other implementations, in 2018, an encryption algorithm that combined Hill 

Cipher method, Morse Code and Least Significant Bit algorithm addressed the issue of data 

integrity [49]. However, many other new algorithms don’t offer any way to preserve the 

integrity of encrypted images. 

In classical cryptography, this issue was addressed by introducing the concept of 

“Authenticated Encryption”, which is the combination of both encryption and authentication 

like GCM (Galois Counter Mode) mode for example. Using GCM mode, if a single bit of 

ciphertext is modified it will be detected in decryption. 

5.2.3 Lack of Randomization 

Papers proposing new image encryption algorithms tend to focus generally on the encryption 

of one separate image. They don’t usually provide details on the use of the algorithm with a set 

of images. With the absence of such details, the intuitive approach to encrypt many images is 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
87 

to feed each image into the encryption algorithm separately. The result will be a set of cipher 

images corresponding to a set of plain images. 

An image encryption algorithm can be modelled as a block cipher with a variable block size 

depending on the image size being encrypted. The method described above of encrypting 

multiple images is called ECB (Electronic Code Book) mode of operation. ECB mode is the 

simplest and fastest method of using a block cipher to encrypt data larger than one block in 

size. However, ECB is found to be insecure [61]. 

 

Figure 5-4: Revealing patterns when encrypting similar images 

Figure 5-4 illustrates a real world demonstration on the vulnerability of using image encryption 

algorithms with an ECB-like mode of operation. Supposed there are multiple images inside a 

folder that are going to be encrypted. The result will be a folder with an equal number of 

encrypted images. If two plain images are identical, two cipher images are going to be identical 

too. Therefore, an attacker can get some information on the plain images only by looking to the 

encrypted data. Even if the cipher images are not distinguishable visually, there are 

computational methods to detect similarity such as calculating the correlation coefficient or the 

image hash value using one of the well-known hashing algorithm. 

The way classic cryptography overcame this problem is by introducing various modes of 

operations (View Chapter 1). The goal of modes of operation is to insure that encrypting the 

same data twice doesn’t output the same result. Image encryption algorithms designers needs 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
88 

to pay attention to developing techniques to deal with this situation too. Encrypting similar data 

is very common in real applications. Therefore, this issue should not be overlooked. 

The encryption scheme studied in the previous chapter has successfully solved this problem by 

introducing 2 random rows on top and bottom of the image. These rows are then confused with 

the rest of the image are appended to the cipher image to be used in decryption phase [35]. 

Some other ciphers attempted to solve this problem too but resulted in the introduction of 

another kind of vulnerabilities as will be discussed in section 5.4.1 below. 

5.3 Performance Issues 

A general purpose cryptosystem is required to be fast and resource efficient. If an algorithm is 

secure but takes long time to execute, it won’t be appropriate for applications where large 

amounts of data are processed. One common metric to measure an algorithm’s performance is 

the big O notation, which is a metric that tells how the algorithm execution time increases 

according to the input size. Another common method is to compare the algorithm to similar 

algorithms using the same input like we did in chapter 4. In the following sections, some 

performance issues found in the image encryption model previously mentioned are presented. 

5.3.1 Requirement of encoding and decoding 

In real world, images are not stored as a matrix of pixels. Instead, they are compressed and 

encoded into some well-known image formats like: JPEG, PNG, GIF, WEBP ...etc. On the other 

hand, the pixel-wise encryption model implemented by many algorithms recently operates on 

a matrix of pixels. Therefore, there is an implicit need for a decoder that decompresses the 

image and decode it into pixels before applying the encryption algorithm. As well as an encoder 

to compress it again into the original or another well-known image format. The same process 

in should be repeated in the decryption phase again. 

Figure 5-5 illustrates the hidden extra steps required before and after applying the image 

encryption scheme on real images. Since encryption algorithm is applied on image pixels and 

not on binary image files directly, encoding and decoding steps are required and cannot be 

skipped. 

 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
89 

 

Figure 5-5: The need for encoders and decoders when using the encryption scheme 

If such algorithm is used in a real application to encrypt an image file, the total encryption time 

will be equal to the sum of decoding, encryption and encoding times as in Eq30. 

 
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 = 𝑑𝑒𝑐𝑜𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒 + 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 + 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒 Eq 30 

 

On the other side decryption time will be calculated the same way. Encoding and decoding 

should be taken into account when decrypting an image too. 

Using a classical general purpose encryption algorithm like AES for example to encrypt an 

image doesn’t require any of these extra steps. AES encrypts the binary data directly and 

doesn’t need neither encoding nor decoding. Comparing AES performance to these image 

encryption algorithms needs to be done against the whole process including encoding and 

decoding, comparing it with pixels’ randomization phase only is misleading [62]. 

Ignoring these extra steps of computation makes the performance analysis provided in some 

papers irrelevant and unrealistic. The actual time for real usage will always be bigger than the 

time provided in the papers. These hidden extra steps should be taken into consideration when 

analyzing the performance of the algorithms for a more accurate assessment. 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
90 

5.3.2 Inefficiency with compressed images 

As said in the previous section, images in real world are usually stored and transmitted in a 

compressed format to save disk space and bandwidth. Therefore, a decoder and an encoder 

before and after the encryption algorithm are required. In addition to the performance issue 

discussed earlier, there is another issue with such design, which is that the encryption process 

will most likely increase the size of the provided image. 

In order to encrypt a specific image, the image file needs to be decoded first, encrypted then 

encoded back to either the original or another format. The aim of image encryption is to 

randomize the pixel values of the image. Therefore, the more random are the pixels the better 

the encryption algorithm will be. However, this pixel randomization breaks the correlation 

between image pixels and eliminates similar patterns. Hence, it reduces the effect of 

compression on the encrypted image. As a result, the encrypted image size will most likely be 

bigger than the plain image one. This increase in size will have undesirable consequences on 

the storage and transmission performance. 

 

Figure 5-6: The possible types of image encryption outputs 

Figure 5-6 shows the 3 possible options of the encryption output image: uncompressed image, 

lossless compressed image and lossy compressed image. All of these options have undesired 

effects. 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
91 

Outputting the encrypted image uncompressed preserve all data but it is the worst option from 

a file size perspective. The size of an uncompressed image will be larger than all the other 

options. 

Lossless compression also preserves all data. However, the lossless compression algorithm will 

have negligible effects since the pixels are randomized and the patterns are broken. The 

resulting file size will be approximately equal to the size of an uncompressed image. 

The 3rd option of lossy-compress the encrypted image might reduce the file size a little bit. 

However, it leads to losing part of the image data in compression. Therefore, the decryption 

process will not produce the exact plain image. Losing data is not an accepted compromise for 

good a cipher. 

5.4 Usability Issues and Limitations 

Security and performance are not the only requirements for a good cipher. A cryptosystem needs 

to be usable and versatile. Next are some usability issues found in the model in study. 

5.4.1 Randomness by dependency on plain image 

In this chapter, in section 5.2.3 we discussed the lack of randomness issue when encrypting the 

same image twice that is common to many algorithms. Some algorithms tried to address this 

issue by introducing a dependency on the plain image itself. The idea is to get a new value that 

is a function of the plain image (ex: pixels’ average, a pixel at a given position ...etc.). This 

value is then used to alter the encryption key. Since the encryption process is too sensitive to 

the key, a slight change in the image will produce a change in the key which produce a 

completely different output image. The idea of plain image dependency on encryption works 

fine in encryption phase. However, it fails in decryption either by introducing a security 

vulnerability or a usability issue. 

In [57] a new image encryption algorithm with dependency on plain image was proposed. The 

dependency was introduced by calculating the image pixels’ average and use it to modify the 

initial conditions. A similar method was used in [33], where a random pixel value was selected 

from the permuted image and used as part of the encryption key. Both methods used that plain 

image dependent value in the decryption algorithm without mentioning how that value has been 

transmitted to the decryption phase. There exist two possible options, either it is transmitted 

publicly or securely as illustrated in Figure 5-8 and both approaches have flaws. 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
92 

If the value is transmitted publicly, it will introduce a security vulnerability. The algorithm will 

not be semantically secure. An attacker will know some information about the plain image, 

being either the pixel average or any other function of the plain image. Knowing an information 

like that about the plain image can reduce the scope of brute-force attacks. 

Otherwise, requiring a secure transmission of that info is a usability issue. If a reliable and 

secure transmission channel exists, it is better and more resource efficient to transmit images 

in plain without encryption in that channel. Encryption will not be needed in such conditions. 

It will be just a waste of time and resources. 

 

Figure 5-7: Principle of algorithms requiring the retain of a secret info 

Some other researchers proposed another method where a plain image dependency is 

introduced in encryption, but instead of transmitting it to the decryption algorithm, it is 

recalculated again from the encrypted image itself [58]. However, this method has a serious 

security vulnerability. In order to avoid sending the calculated value to the decryption 

algorithm, one quarter of the image was not confused with the calculated key. Having the 

encrypted image only, one quarter of the plain image can be restored in its permuted form by 

dividing the image into 4 blocks and XORing the 3rd block with the 4th one which is a serious 

security issue. 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
93 

5.4.2 Ignoring image metadata 

When an image is taken with a digital camera, the digital camera usually stores some text 

information alongside the image called metadata, like the location, the capture time, the camera 

settings … etc. An image encryption algorithm should be able to encrypt these metadata and 

decrypt it correctly. It should neither discard it nor output it in plain format. 

Figure 5-8 represents some metadata tags of a real image taken with a digital camera Canon 

EOS Kiss X4. The metadata was viewed using GIMP the free and open source image editing 

software. The tags visible in this screenshot is just a fraction of all the tags available on the 

image. 

 

Figure 5-8: Example of real image metadata 

Many new image encryption algorithms focus on image pixels and ignore this important piece 

of information and don’t offer details on how to handle it. In consequence, if an engineer wants 

to implement such algorithms in a real system, he will be faced with 3 options: ignoring 

metadata, outputting it in plain format or using another algorithm like AES to encrypt it and 

inject it back into the image as illustrated in Figure 5-9. 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
94 

 

Figure 5-9: Available options in handling image metadata  

A symmetric cryptosystem by definition should return the same plain data after encryption and 

decryption using the same key. It should neither add additional data nor cause a data loss. 

Ignoring a piece of information is a serious problem that could not be acceptable in a good 

cryptosystem. Therefore, ignoring metadata is not a valid option. 

On the other hand, outputting metadata in plain is a big security issue. This defeats the purpose 

of encryption at all since an important part of the plain data is known from the ciphertext. This 

is not considered a good option too. 

 



Chapter 5: A Highlight on Some Common Image Encryption Design Issues 

 
95 

Finally, using another algorithm like AES to encrypt metadata can solve the problem of security 

and symmetry. However, it introduces another usability problem. It raises the question about 

the purpose of the image encryption algorithm. If AES is going to be used anyway to encrypt 

the image metadata, why not use it to encrypt the image itself too? It is hard to imagine how 

this hybrid and complex approach will be better than using a standard algorithm to encrypt the 

whole data.  

Image metadata is an important piece of information usually associated with the majority of 

digital images. New image encryption schemes should take that information into consideration 

in order to be usable in real world applications.  

5.5 Conclusion 

In this chapter, some common issues in the pixel-wise image encryption algorithms were 

highlighted. The focus was on the most common issues repeated by many designers over the 

years. Most of those issues show up when trying to implement the algorithms into real world 

applications. Actually, good ciphers are designed to secure real data and to be used by real 

people in real and very sensitive applications. Therefore, ciphers need to be designed carefully 

with attention to those real world problems. They need to be optimized with the end user 

experience and security in mind. Satisfying the well-known metrics is not enough to have a 

good cryptosystem. Ciphers should be secure, fast, and usable in real engineering scenarios and 

use cases.



 

 

96 

General Conclusion and Perspectives 

The work done is this thesis was a contribution to the information security domain. A novel 

hybrid method of cryptanalysis was proposed to break a recently published image encryption 

algorithm. This hybrid method was based on a series of chosen-plaintext attacks and a brute-

force attack. The encryption scheme was totally cracked by the cryptanalysis algorithm that we 

proposed. 

During the time that we spent working on this thesis, we were curious to see how these 

algorithms are being used in real engineering applications and communication mediums. 

However, we were not able to find real applications using these kind of algorithms. That led us 

to trying to implement a recently proposed chaos based algorithm claimed to be fast and secure 

in a real world image sharing web application. After designing a custom test suite based on real 

engineering requirements and comparing that chaotic scheme to AES, we found that AES 

outperformed it in the majority of tests. In some tests like speed and server load, AES was 

orders of magnitude faster and capable of handling incoming requests. 

After the researches that we did about classic cryptosystems and image encryption schemes, 

and with the help of our comparative analysis conducted in the fourth chapter, we detected 

some common anti-patterns repeatedly committed among many image encryption algorithms 

recently proposed. We collected those issues and highlighted them in the fifth chapter of this 

thesis. The goal is to draw the attention of cryptosystems’ designers to those common issues 

and vulnerabilities in the future. We expect this to save some research time and effort in 

designing future systems. 

Coming from a software engineering background, and after the comparative analysis we have 

performed and the common issues found in the pixel-wise encryption model, we found 

ourselves questioning the practicality of the whole idea of developing encryption algorithms 

operating on the image pixels’ level. They may have their small set of applications where they 

perform well. However, due to the serious issues they have which have been detected in chapter 

4 and highlighted in more details in chapter 5, we cannot be too optimistic about them getting 

a wide adoption in real world applications in the near future. 

In the journey of working on this thesis, we saw a trend of constantly developing new image 

encryption algorithms. Each year, hundreds of image ciphers are published. However, many of 

them have the same issues we discussed earlier, and we saw in chapter 4 how using standard 



 

 

97 

cryptosystems like AES for example is more performant, practical and secure in many aspects. 

Therefore, the added value of those research efforts is very minimal. 

It is hard to think about any real system where a pixel-wise image-only encryption algorithm 

can be useful and more practical than the standard encryption algorithms. Real systems tend to 

have a variety of data types. Therefore, data type agnostic ciphers are preferred. Anyway, we 

can be proved wrong in the future and such system may exist where image-only algorithms are 

superior. However, we think that the existence of this system should precede the development 

of its specific algorithms. We believe that developing solutions should be driven by the 

necessity for them and not the inverse. 

Our conclusion is that encryption algorithms specific to images or like we have called them 

throughout this thesis: pixel-wise encryption algorithms, are not superior than standard ciphers 

like AES in most of real applications. In addition, it is hard to find real systems where this kind 

of algorithms makes sense due to the flaws by design that it has that are not generally tolerated 

in real world. Cryptosystems needs to be developed with real applications and the end users in 

mind. 

At the end, a good perspective we see for future works in this field is trying to address the 

existing flaws presented in this thesis. We hope to see future researches that continue 

developing image encryption algorithms with practical and real use cases in mind. 



 

 

References 

[1] J. von zur Gathen, CryptoSchool. Berlin, Heidelberg: Springer, 2015. doi: 10.1007/978-3-

662-48425-8. 

[2] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Applications, 

Softcover reprint of the original 3rd ed. 2015 edition. Place of publication not identified: 

Springer, 2016. 

[3] C. E. Shannon, “A mathematical theory of cryptography. Mathematical Theory of 

Cryptography,” 1945. 

[4] “Understanding Cryptography: A Textbook for Students and Practitioners: Paar, Christof, 

Pelzl, Jan, Preneel, Bart: 9783642446498: Books - Amazon.” Accessed: May 30, 2022. 

[Online]. Available: https://www.amazon.com/Understanding-Cryptography-Textbook-

Students-Practitioners/dp/3642446493 

[5] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on 

Information Theory, p. 1976. 

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and 

public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978, doi: 

10.1145/359340.359342. 

[7] N. P. Smart, Cryptography: An Introduction. McGraw-Hill, 2003. 

[8] C. E. Shannon, “Communication Theory of Secrecy Systems,” 1949. 

[9] J. Daemen and V. Rijmen, The design of Rijndael, 2nd ed. Springer, 2002. 

[10] D. Liu et al., Eds., “Chapter 3 - An Introduction To Cryptography,” in Next Generation 

SSH2 Implementation, Burlington: Syngress, 2009, pp. 41–64. doi: 10.1016/B978-1-

59749-283-6.00003-9. 

[11] T. Popp, An introduction to implementation attacks and countermeasures. 2009, p. 115. 

doi: 10.1109/MEMCOD.2009.5185386. 

[12] F. E. A. El-Samie et al., Image Encryption: A Communication Perspective, 1st edition. 

CRC Press, 2017. 

[13] “Image file formats - Easy explained | Adobe.” Accessed: Dec. 05, 2022. [Online]. 

Available: https://www.adobe.com/creativecloud/file-types/image.html 

[14] J. Miano, Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. Addison-

Wesley Professional, 1999. 

[15] “What are PNG files and how do you open them? | Adobe.” Accessed: Dec. 05, 2022. 

[Online]. Available: https://www.adobe.com/creativecloud/file-types/image/raster/png-

file.html 

[16] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consum. 

Electron., vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992, doi: 10.1109/30.125072. 

[17] W. Song, C. Fu, M. Tie, C.-W. Sham, J. Liu, and H. Ma, “A fast parallel batch image 

encryption algorithm using intrinsic properties of chaos,” Signal Process. Image Commun., 

vol. 102, p. 116628, Mar. 2022, doi: 10.1016/j.image.2021.116628. 

[18] I. Ahmad and S. Shin, “A novel hybrid image encryption–compression scheme by 

combining chaos theory and number theory,” Signal Process. Image Commun., vol. 98, p. 

116418, Oct. 2021, doi: 10.1016/j.image.2021.116418. 

[19] Z. Man, J. Li, X. Di, Y. Sheng, and Z. Liu, “Double image encryption algorithm based 

on neural network and chaos,” Chaos Solitons Fractals, vol. 152, p. 111318, Nov. 2021, 

doi: 10.1016/j.chaos.2021.111318. 

[20] W. Dong, Q. Li, and Y. Tang, “Image encryption-then-transmission combining random 

sub-block scrambling and loop DNA algorithm in an optical chaotic system,” Chaos 

Solitons Fractals, vol. 153, p. 111539, Dec. 2021, doi: 10.1016/j.chaos.2021.111539. 



 

 

[21] S. Wang, Q. Peng, and B. Du, “Chaotic color image encryption based on 4D chaotic 

maps and DNA sequence,” Opt. Laser Technol., vol. 148, p. 107753, Apr. 2022, doi: 

10.1016/j.optlastec.2021.107753. 

[22] M. Yildirim, “Optical color image encryption scheme with a novel DNA encoding 

algorithm based on a chaotic circuit,” Chaos Solitons Fractals, p. 111631, Nov. 2021, doi: 

10.1016/j.chaos.2021.111631. 

[23] U. Hayat and N. A. Azam, “A novel image encryption scheme based on an elliptic 

curve,” Signal Process., vol. 155, pp. 391–402, Feb. 2019, doi: 

10.1016/j.sigpro.2018.10.011. 

[24] N. Sasikaladevi, K. Geetha, K. Sriharshini, and M. Durga Aruna, “H3-hybrid 

multilayered hyper chaotic hyper elliptic curve based image encryption system,” Opt. Laser 

Technol., vol. 127, p. 106173, Jul. 2020, doi: 10.1016/j.optlastec.2020.106173. 

[25] A. B. Joshi, D. Kumar, A. Gaffar, and D. C. Mishra, “Triple color image encryption 

based on 2D multiple parameter fractional discrete Fourier transform and 3D Arnold 

transform,” Opt. Lasers Eng., vol. 133, p. 106139, Oct. 2020, doi: 

10.1016/j.optlaseng.2020.106139. 

[26] C. Li and X. Yang, “An image encryption algorithm based on discrete fractional wavelet 

transform and quantum chaos,” Optik, p. 169042, Apr. 2022, doi: 

10.1016/j.ijleo.2022.169042. 

[27] Z. Li, H. Zhang, X. Liu, C. Wang, and X. Wang, “Blind and safety-enhanced dual 

watermarking algorithm with chaotic system encryption based on RHFM and DWT-DCT,” 

Digit. Signal Process., vol. 115, p. 103062, Aug. 2021, doi: 10.1016/j.dsp.2021.103062. 

[28] X. Wang, C. Liu, and D. Jiang, “A novel triple-image encryption and hiding algorithm 

based on chaos, compressive sensing and 3D DCT,” Inf. Sci., vol. 574, pp. 505–527, Oct. 

2021, doi: 10.1016/j.ins.2021.06.032. 

[29] T. Bekkouche, “Développement et implémentation des techniques de cryptage des 

données basées sur les transformées discrètes,” Thesis, 2018. Accessed: Jun. 05, 2022. 

[Online]. Available: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2776 

[30] M. Kaur and V. Kumar, “A Comprehensive Review on Image Encryption Techniques,” 

Arch. Comput. Methods Eng., vol. 27, no. 1, pp. 15–43, Jan. 2020, doi: 10.1007/s11831-

018-9298-8. 

[31] H. M. Elkamchouchi and M. A. Makar, “Measuring encryption quality for bitmap 

images encrypted with rijndael and KAMKAR block ciphers,” in Proceedings of the 

Twenty-Second National Radio Science Conference, 2005. NRSC 2005., Mar. 2005, pp. 

277–284. doi: 10.1109/NRSC.2005.194011. 

[32] D. E. Newton, Encyclopedia of Cryptology, Illustrated edition. Santa Barbara, Calif: 

ABC-CLIO, 1997. 

[33] S. Anwar and S. Meghana, “A pixel permutation based image encryption technique 

using chaotic map,” Multimed. Tools Appl., vol. 78, no. 19, pp. 27569–27590, Oct. 2019, 

doi: 10.1007/s11042-019-07852-2. 

[34] A. Mokhnache and L. Ziet, “Cryptanalysis of a Pixel Permutation Based Image 

Encryption Technique Using Chaotic Map,” Trait. Signal, vol. 37, no. 1, pp. 95–100, Feb. 

2020, doi: 10.18280/ts.370112. 

[35] M. Z. Talhaoui, X. Wang, and M. A. Midoun, “Fast image encryption algorithm with 

high security level using the Bülban chaotic map,” J. Real-Time Image Process., vol. 18, 

no. 1, pp. 85–98, Feb. 2021, doi: 10.1007/s11554-020-00948-1. 

[36] O. Alpar, “Analysis of a new simple one dimensional chaotic map,” Nonlinear Dyn., 

vol. 78, no. 2, pp. 771–778, Oct. 2014, doi: 10.1007/s11071-014-1475-1. 

[37] O. S. Faragallah et al., “Efficient optical double image cryptosystem using chaotic 

mapping-based Fresnel transform,” Opt. Quantum Electron., vol. 53, no. 6, p. 305, Jun. 

2021, doi: 10.1007/s11082-021-02864-5. 



 

 

[38] R. Ni, F. Wang, J. Wang, and Y. Hu, “Multi-Image Encryption Based on Compressed 

Sensing and Deep Learning in Optical Gyrator Domain,” IEEE Photonics J., vol. 13, no. 3, 

pp. 1–16, Jun. 2021, doi: 10.1109/JPHOT.2021.3076480. 

[39] B. Bouteghrine, C. Tanougast, and S. Sadoudi, “Novel image encryption algorithm 

based on new 3-d chaos map,” Multimed. Tools Appl., vol. 80, no. 17, pp. 25583–25605, 

Jul. 2021, doi: 10.1007/s11042-021-10773-8. 

[40] F. Musanna, D. Dangwal, and S. Kumar, “Novel image encryption algorithm using 

fractional chaos and cellular neural network,” J. Ambient Intell. Humaniz. Comput., vol. 

13, no. 4, pp. 2205–2226, Apr. 2022, doi: 10.1007/s12652-021-02982-8. 

[41] Z. Man et al., “A novel image encryption algorithm based on least squares generative 

adversarial network random number generator,” Multimed. Tools Appl., vol. 80, no. 18, pp. 

27445–27469, Jul. 2021, doi: 10.1007/s11042-021-10979-w. 

[42] S. Zhou, X. Wang, Y. Zhang, B. Ge, M. Wang, and S. Gao, “A novel image encryption 

cryptosystem based on true random numbers and chaotic systems,” Multimed. Syst., vol. 

28, no. 1, pp. 95–112, Feb. 2022, doi: 10.1007/s00530-021-00803-8. 

[43] G. Ye, M. Liu, and M. Wu, “Double image encryption algorithm based on compressive 

sensing and elliptic curve,” Alex. Eng. J., vol. 61, no. 9, pp. 6785–6795, Sep. 2022, doi: 

10.1016/j.aej.2021.12.023. 

[44] J. Du, Y. Xiong, C. Wu, and C. Quan, “Optical image encryption with high efficiency 

based on variable-distance ghost imaging,” Optik, vol. 252, p. 168484, Feb. 2022, doi: 

10.1016/j.ijleo.2021.168484. 

[45] S. Anwar and S. Meghana, “A pixel permutation based image encryption technique 

using chaotic map,” Multimed. Tools Appl., vol. 78, no. 19, pp. 27569–27590, Oct. 2019, 

doi: 10.1007/s11042-019-07852-2. 

[46] P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier 

plane random encoding,” Opt. Lett., vol. 20, no. 7, pp. 767–769, Apr. 1995, doi: 

10.1364/OL.20.000767. 

[47] R. Tao, J. Lang, and Y. Wang, “Optical image encryption based on the multiple-

parameter fractional Fourier transform,” Opt. Lett., vol. 33, no. 6, pp. 581–583, Mar. 2008, 

doi: 10.1364/OL.33.000581. 

[48] Y. Zhang, L. Zhang, Z. Zhong, L. Yu, M. Shan, and Y. Zhao, “Hyperchaotic image 

encryption using phase-truncated fractional Fourier transform and DNA-level operation,” 

Opt. Lasers Eng., vol. 143, p. 106626, Aug. 2021, doi: 10.1016/j.optlaseng.2021.106626. 

[49] D. Nofriansyah et al., “A New Image Encryption Technique Combining Hill Cipher 

Method, Morse Code and Least Significant Bit Algorithm,” J. Phys. Conf. Ser., vol. 954, p. 

012003, Jan. 2018, doi: 10.1088/1742-6596/954/1/012003. 

[50] J. Yu, W. Xie, Z. Zhong, and H. Wang, “Image encryption algorithm based on 

hyperchaotic system and a new DNA sequence operation,” Chaos Solitons Fractals, vol. 

162, p. 112456, Sep. 2022, doi: 10.1016/j.chaos.2022.112456. 

[51] X. Li, J. Zeng, Q. Ding, and C. Fan, “A Novel Color Image Encryption Algorithm Based 

on 5-D Hyperchaotic System and DNA Sequence,” Entropy, vol. 24, no. 9, Art. no. 9, Sep. 

2022, doi: 10.3390/e24091270. 

[52] L. Teng, X. Wang, and Y. Xian, “Image encryption algorithm based on a 2D-CLSS 

hyperchaotic map using simultaneous permutation and diffusion,” Inf. Sci., vol. 605, pp. 

71–85, Aug. 2022, doi: 10.1016/j.ins.2022.05.032. 

[53] N. Tsafack, J. Kengne, B. Abd-El-Atty, A. M. Iliyasu, K. Hirota, and A. A. Abd EL-

Latif, “Design and implementation of a simple dynamical 4-D chaotic circuit with 

applications in image encryption,” Inf. Sci., vol. 515, pp. 191–217, Apr. 2020, doi: 

10.1016/j.ins.2019.10.070. 



 

 

[54] H. Liu, J. Liu, and C. Ma, “Constructing dynamic strong S-Box using 3D chaotic map 

and application to image encryption,” Multimed. Tools Appl., Feb. 2022, doi: 

10.1007/s11042-022-12069-x. 

[55] X. Gao, J. Mou, S. Banerjee, Y. Cao, L. Xiong, and X. Chen, “An effective multiple-

image encryption algorithm based on 3D cube and hyperchaotic map,” J. King Saud Univ. 

- Comput. Inf. Sci., vol. 34, no. 4, pp. 1535–1551, Apr. 2022, doi: 

10.1016/j.jksuci.2022.01.017. 

[56] D. Stuttard, “Security & obscurity,” Netw. Secur., vol. 2005, no. 7, pp. 10–12, Jul. 2005, 

doi: 10.1016/S1353-4858(05)70259-2. 

[57] T. Bekkouche, N. Diffellah, and S. Mokhnache, Simple and Efficient Image Encryption 

Scheme based on Recursive Property and Plain Image-Chaotic Map Dependency. 2019. 

[58] X. Huang and G. Ye, “An efficient self-adaptive model for chaotic image encryption 

algorithm,” Commun. Nonlinear Sci. Numer. Simul., vol. 19, no. 12, pp. 4094–4104, Dec. 

2014, doi: 10.1016/j.cnsns.2014.04.012. 

[59] W. Song, C. Fu, M. Tie, C.-W. Sham, J. Liu, and H. Ma, “A fast parallel batch image 

encryption algorithm using intrinsic properties of chaos,” Signal Process. Image Commun., 

vol. 102, p. 116628, Mar. 2022, doi: 10.1016/j.image.2021.116628. 

[60] L. Zhang, X. Liao, and X. Wang, “An image encryption approach based on chaotic 

maps,” Chaos Solitons Fractals, vol. 24, no. 3, pp. 759–765, May 2005, doi: 

10.1016/j.chaos.2004.09.035. 

[61] M. Vaidehi and B. J. Rabi, “Design and analysis of AES-CBC mode for high security 

applications,” in Second International Conference on Current Trends In Engineering and 

Technology - ICCTET 2014, Jul. 2014, pp. 499–502. doi: 10.1109/ICCTET.2014.6966347. 

[62] A. Arab, M. J. Rostami, and B. Ghavami, “An image encryption method based on chaos 

system and AES algorithm,” J. Supercomput., vol. 75, no. 10, pp. 6663–6682, Oct. 2019, 

doi: 10.1007/s11227-019-02878-7. 

 

 


