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NOTATIONS AND SYMBOLS

The notations and symbols used throughout this thesis are listed below:

Notations
• MP: Mathematics programming.

• LP: Linear programming.

• NLP: Nonlinear programming.

• QP: quadratic programming.

• SDP: Semi Definite programming.

• IPMs: Interior point methods.

• lsc: Lower semicountinous.

• usc: Upper semicountinous.

Symbols
Vector spaces and sets

• R: the set of real numbers.

• R = [−∞,+∞].

• R+: the set of positive real numbers.

• Rn: n-dimensional Euclidean vector space.

• Rn
+: positive orthant of Rn.
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Notations and symbols

• [α, β]: the closed interval of real numbers between α and β.

• (α, β): the open interval of real numbers between α and β.

• Dom(f): the effective domain of a function f : X → R,

Dom(f) = {x ∈ X; f(x) <∞}

.

• x ≥ 0: means that all elements xi: in the vector x are greater than or equal
to zero.

• xk: the kth vector of a sequence of vectors.

• xi: the ith component of x.

• xt: is the transpose of the vector x.

• e1, ...en: the elements of the canonical basis of Rn.

• e: the vector of Rn whose all components are equal to 1.

• A ∈ Rm,n a matrix with m rows and n columns,

• int(X): the interior of a set X.

Functions

• m : is the number of constraints in the nonlinear programming problem,
which is equivalent to the number of rows in the constraint matrix A.

• n: is the number of decision variables in the nonlinear programming prob-
lem, which is equivalent to the number of columns in the constraint matrix
A.

• ∇f(x) : the gradient of f at x ∈ Dom(f), in which

(∇f(x))i =
∂f(x)

∂xi
, ∀i = 1, n.

• ∇2f(x) : the hessian of f at x ∈ Dom(f), in which

(
∇2f(x)

)
i,j

=
∂2f(x)

∂xi∂xj
, ∀i, j = 1, n.

• ‖ x ‖: is the euclidean norm of the vector x.

• 〈., .〉: usual scalar product of Rn.

7



CONTENTS

General Introduction 9

1 Preliminary notions 14
1.1 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.1 Affine sets and applications . . . . . . . . . . . . . . . . . . . 14
1.1.2 Convex sets and applications . . . . . . . . . . . . . . . . . . . 15
1.1.3 Implicit function theorem . . . . . . . . . . . . . . . . . . . . 17
1.1.4 Lower and upper semicountinous functions . . . . . . . . . . 17

1.2 Mathematical programming . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Classification of a mathematical programming . . . . . . . . . 18
1.2.2 Existence and uniqueness of the optimal solution of (MP ) . . 18
1.2.3 Qualification of constraints . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Method of solving a mathematical programming . . . . . . . . 20

2 A logarithmic barrier approach via majorant function for nonlinear
programming 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 The problem formulation . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 The perturbed problem . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Solving the perturbed problem . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Some useful inequalities . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 The descent direction and line search function . . . . . . . . . 31
2.2.3 Computation of the step size . . . . . . . . . . . . . . . . . . . 32
2.2.4 The first majorant function . . . . . . . . . . . . . . . . . . . 33
2.2.5 The second majorant function . . . . . . . . . . . . . . . . . . 37

2.3 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Nonlinear convex objective . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Example with variable size . . . . . . . . . . . . . . . . . . . . 41

8



Contents

2.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 An inverse barrier penalty method for nonlinear programming 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 The problem formulation . . . . . . . . . . . . . . . . . . . . . 45
3.2 The penalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Existence and uniqueness of optimal solution of perturbed
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 The convergence of (Pr) . . . . . . . . . . . . . . . . . . . . . 47
3.3 Solving the perturbed problem . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 The Newton descent direction . . . . . . . . . . . . . . . . . . 49
3.3.2 The step size . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 A projective interior point method for nonlinear programming 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Karmarkar method . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Generalization of the algorithm . . . . . . . . . . . . . . . . . 59

4.2 Extension of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 The problem formulation . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 The linearization . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 The principle of the method . . . . . . . . . . . . . . . . . . . 64
4.2.4 The step size . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.6 Description of the algorithm . . . . . . . . . . . . . . . . . . . 67

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Conclusion 72

Perspectives 73

Bibliography 77

9



GENERAL INTRODUCTION

Optimization is the process of finding the best possible solution for a given problem,
a set of constraints and objectives. In other terms, it is the process of maximizing
or minimizing a particular function, subject to certain conditions or constraints.
Optimization problems arise in various fields, including mathematics, engineering,
economics, and computer science, among others. The goal of optimization is to find
the optimal solution that satisfies the constraints and achieves the objectives.
There are different types of optimization techniques, including:

Linear programming.
Integer Linear Programming.
Nonlinear programming.
Quadratic programming.
Semi definite programming.

These techniques involve using mathematical algorithms and models to find the best
solution. Optimization is essential in many practical applications, such as designing
efficient systems, allocating resources, and minimizing costs.
In this work, we are interested to solve a nonlinear convex differentiable optimization
programming problem. Unfortunately, general optimization problems are difficult
to solve, so we considered using different interior point methods.
The first interior point methods and their polynomial complexity are appeared on
1955 by K. R. Frisch to solve a convex programming [19]. On 1967 P.Huard propose
a method of centers for solving problems with nonlinear constraints [20]. On 1968,
the interior point methods are developed by A. V. Fiacco and G. P. McCormick
to solving convex nonlinear programming [18]. On 1970 N.Shor introduce a ellip-
soid method for solving a linear programming [37], which developed on 1979 by
L.G.Kachian and proved its polynomial complexity [23].
Lots of previous studies solve the linear, quadratic, semi definite and nonlinear pro-
gramming using the interior point methods give much attention to the logarithmic
barrier methods [10, 12] which proposed by Frish [18] and developed by Fiacco and
McCormick [19]. In this method, the non negativity constrains xi ≥ 0 are replaced
by a penalty term −r ln(xi). If the barrier parameter r tends to zero, we prove the
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General Introduction

convergence.
There are another known barrier methods as the inverse barrier methods which
proposed by Carroll [8] where the inverse barrier function is given by

∑n
i=1

1
xi
, and

developed by Fiacco and McCormick [19]. Kowalik [28] proposed the quadratic
barrier function

∑n
i=1

1
x2i
, D.En, C.Roos and T.Terklay [15] proposed a new type of

inverse barrrier to solving linear programming using the barrier function 1
r

∑n
i=1

1
xri

in which r → 0.
The penalization is a simple concept which makes it possible to transform an

optimization problem with constraints into a problem or a sequence of problems
without constraints. From a theoretical point of view, the penalization approach is
sometimes used to study an optimization problem for which certain constraints are
difficult to take into account, while the penalized problem has properties that are
better understood or easier to demonstrate. If the penalty is well chosen, if we are
lucky the desired properties of the original problem can be obtained directly proper-
ties of the penalized problem, in this case we speak of exact penalization, otherwise
sometimes delicate passages to the limit make it possible to obtain properties of the
original problem, we speak of inexact penalization.

From a numerical point of view, this transformation allows to use optimization
algorithms, very efficient and better adapted to the structure of the penalized prob-
lem, to obtain the solution of problems whose admissible set can have a complex
structure. However, it is not a "one size fits all" technique, because it has its own
drawbacks: difficulty or impossibility to find an exact penalization, non-accuracy
exact penalization, non-accuracy, need to minimize a sequence of functions,...
Before 1984, any linear optimization problem was solved by the simplex method
developed by G.Dantzig [14].
The simplex method had not any seriously competition until 1984 when Karmarkar
proposed a new polynomial time algorithm to solve a linear programming problem
[21]. The polynomial complexity of Karmarkar algorithm made it better than the
simplex method since of its exponential complexity. After the development that’s
Karmarkar made, the researchers improve the complexity of the algorithm [4] [27]
[31] [23] [41] [33] and develop it to solve quadratic and nonlinear programming
[6][39][16].
As we say, this thesis is devoted of the study of optimization problem and specially
the resolution of the nonlinear programming which described bellow:

min
x∈Rn

f(x)

Ax = b

x ≥ 0

(P)

Where the objective function f is nonlinear, convex, twice differentiable on

Y = {x ∈ Rn : Ax = b, x ≥ 0}

11



General Introduction

The stricture of this thesis
This thesis is divided into four chapters.

In the first chapter, we give some preliminary notions on convex analysis, optimiza-
tion and mathematical programming and the results of existence and uniqueness of
an optimal solution, and some methods of resolution of mathematical programming
which will be used as support for the continuation, which we used it to demonstrate
the theoretical results in the following chapters.

In the second chapter, we are interested to solve a nonlinear optimization problem
using a barrier logarithmic penalty method, we thought to use a logarithmic barrier
function

∑n
i=1 ri ln ri −

∑n
i=1 ri lnxi where r ∈ Rn

+ to perturb the (NLP). Then, we
prove the existence and the uniqueness of the optimal solution of the perturbed
problem, in addition to studying the convergence of the perturbed problem to the
original problem. We calculate the Newton descent direction and we compute the
step size using a technique of majorant function related to a secant technique which
make it possible to calculate it in less time and with fewer number of iteration. We
prove the effectiveness of our study by numerical simulations very encouraging.

In the third chapter, we thought to use the barrier function in [15] to solving a
constrained convex nonlinear programming which had the same properties as the
logarithmic barrier function and conserve all the properties of the objective function.
The inverse barrier function using in this chapter is given by r

∑n
i=1

1
xri

where r > 0

which ensure the convexity of the perturbed function. We define the perturbed
problem of the original problem using the inverse barrier function which kept the
properties of the first objective function, we studied the existence and the uniqueness
of the optimal solution of the perturbed problem and we prove its convergence to
the optimal solution of the original problem. Then, we are interested into the resolu-
tion of the perturbed problem. Firstly, we calculated the Newton descent direction,
secondly, we calculate the step size along this direction using a tangent technique.
In the last section, we present some numerical tests which prove the effectiveness of
our approach when we compared it with the classical line search method.

In the fourth chapter, we are interested in the resolution of a nonlinear program-
ming using the reduction of Karmarkar, we develop a new approach based on the
technique of majorant function [12, 2] which facilitates the calculate of the step
size instead of the potential function used by Karmarkar [40, 38, 25] . The main
difficult in our study is how to linearize the objective function and ensure that the
new function is a majorant linear approximation of the objective function, the lin-
earization by a mojorant approximation help us to majorate the potential function
and calculate the step size explicitly. The technique of the majorant function along

12



General Introduction

a direction of descent is a very reliable alternative that will be confirmed as the
technique of choice as well as for nonlinear programming and for other classes of
optimization problems, and their practical performances seems quite promising for
the field of continuous optimization.

At the end we give a general conclusion resume our work and outline potential future
directions.
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CHAPTER 1

PRELIMINARY NOTIONS

In this chapter, we will cover some fundamental concepts of convex analysis and
general mathematical programming.
These concepts will be useful in demonstrating the theoretical results in the subse-
quent chapters. (See [1][26][34][11][5][36] [7]).

1.1 Convex analysis
The convexity is an important mathematics concept in the theoretical and numerical
study of the optimization programming problems.

1.1.1 Affine sets and applications

Definition 1. (Affine set).
A set E ⊆ Rn is said an affine set if:

∀x1, x2 ∈ E, λx1 + (1− λ)x2 ∈ E, ∀λ ∈ R.

This definition means that a set E is affine if the line which connects any two
points x1 and x2 is contained in E.

Definition 2. (Affine application ).
We say that an application f is affine if:

f : Rn → R

∀x1, x2 ∈ Rn, ∀λ ∈ R; f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2)

14



Chapter 1: Preliminary notions

1.1.2 Convex sets and applications

Definition 3. (Convex set).
A set E ⊆ Rn is said convex if:

∀x1, x2 ∈ E, λx1 + (1− λ)x2 ∈ E. ∀λ ∈ [0, 1].

This definition means that a set E is convex if the segment which connects any
two points x1 and x2 is contained in E.

ie:
[x, y] = {λx+ (1− λ)y : 0 ≤ λ ≤ 1} ⊆ E

.

Definition 4. (Convex function).
A real function f defined in a convex E ⊆ Rn is said convex if:

∀x1, x2 ∈ E,∀λ, 0 ≤ λ ≤ 1; f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Remark 1.
f is convex if and only if:

• ∇2f(x) is a semi-definite positive matrix.

yt∇2f(x)y ≥ 0, ∀x, y ∈ D.andy 6= 0

• The mean values of ∇2f(x) are all positives.

Definition 5. (Strictly convex function).
A real function f defined in a convex E ⊆ Rn is said strictly convex if:

∀x1, x2 ∈ E : x1 6= x2,∀λ ∈ [0, 1]; f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2)

Remark 2.
f is strictly convex if and only if:

• ∇2f(x) is a definite positive matrix (yt∇2f(x)y > 0, ∀x, y ∈ D and y 6= 0).

• The mean values of ∇2f(x) are all strictly positives.

Definition 6. (Strongly convex function).
A real function f is said strongly convex function with coefficient δ > 0 if and only
if:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)−
1

2
δλ ‖ x2 − x1 ‖2

For all x1, x2 ∈ E and λ ∈ [0, 1].

15



Chapter 1: Preliminary notions

Definition 7. (Convex combination).
Either the set of elements {x1, ... , xm} of Rn, we say that x is a convex combination
of these points if there exists the reals {α1, ... , αm} checking:

• αi ≥ 0, ∀ i = 1,m.

•
∑m

i=1 αi = 1.

• x =
∑m

i=1 αixi.

Definition 8. (Convex polyhedron)
A subset D is called a convex polyhedron if it is the intersection of a finite number
of half-spaces of Rn.
i.e.

D =
m⋂
i=1

{x ∈ Rn; 〈ai, x〉 ≤ bi, ai ∈ Rn, bi ∈ R}.

Definition 9. (Convex envelope).
Either the set K ⊆ Rn, we call a convex envelope of K, and we denote by conv(K),
the smallest convex set containing K.

In finite dimension, it is still the set of convex combinations of the elements of
K:

conv(K) = {x ∈ Rn : x =
m∑
i=1

αixi , xi ∈ K ,
m∑
i=1

αi = 1, αi ≥ 0, m ∈ N}.

Definition 10. (Proper function).
A real function f is defined on E ⊆ Rn is said a proper function if:

• f(x) > −∞, ∀x ∈ E.

• dom(f) 6= Φ.

Definition 11.
Let X be a convex and closed part of Rn.
A point x of X is said an extreme point if the equality

x = ty + (1− t)z; y, z ∈ X, t ∈]0, 1[

has no solution other than x = y = z.
Geometrically this means that there is no line segment not reduced to a point, con-
tained in A and containing the point x inside it (i.e. in such a way that x is not one
of the extremities of this segment).

16



Chapter 1: Preliminary notions

1.1.3 Implicit function theorem

Theorem 1. ( Version R2).
Either D is an open of R2, and F : D → R an application of class Ck, with k ≥ 1.
Either (x0, y0) ∈ Rn such that:

F (a, b) = 0 et
∂F

∂y
(x0, y0) 6= 0.

Then, there exists a neighborhoods U and V of x0 and y0 in R, and an application
ϕ : U → V of class Ck such that:

∀x ∈ U, y ∈ V : F (x, y) = 0⇔ y = ϕ(x).

We can also choose U and V in which the partial derivative ∂yF 6= 0 in U × V ,
and we have:

∀x ∈ U, ϕ′(x) = −
∂F
∂x

(x, ϕ(x))
∂F
∂y

(x, ϕ(x))

1.1.4 Lower and upper semicountinous functions

Definition 12. Lower semicountinous function (lsc)
Either f : Rn → R is a lower semicountinous function on x0 ∈ Rn if:

∀ε > 0,∃α > 0 : f(x) ≥ f(x0)− ε; ‖ x− x0 ‖≤ α.

Definition 13. Upper semicountinous function (usc)
f is a upper semicountinous on x0 if −f is lower semicountinous on x0.

Remark 3.
f is countinuous on x0 if f is both lsc and usc on x0.

1.2 Mathematical programming
A general constrained mathematical programming problem can be stated as an
optimization problem with constraints which define as follow:

min f(x)

x ∈ D
(MP)

In which

D =



x ∈ Rn,

gj(x) ≤ 0 j = 1,m,

hi(x) = 0 i = 1, p.

17



Chapter 1: Preliminary notions

D is called the set of feasible solutions of (MP )
f, hi, gj : Rn −→ R are a given functions.
f is called the objective function.

Definition 14.

• We call a feasible solution of (MP ), any point satisfying the constraints, ie: any
point belonging to D.

• We call a global optimal solution x∗ of (MP ) the feasible solution which minimizes
the objective function on D.

We write:
x∗ = argmin

x∈D
f(x)

• We call a local optimal solution x∗ ∈ D of (MP ) if there is a neighborhood V of
x∗ such that:

f(x∗) ≤ f(x) ∀x ∈ D

1.2.1 Classification of a mathematical programming

Every mathematical programming is classified according of two fundamental prop-
erties: the convexity and the diferentiability of the objective function and the con-
straints.

• (MP ) is called a differentiable problem if f, gj, hi are all differentiable.

• (MP ) is called a convex problem if f is convex and the set of constraints D is
convex.

We can also classify a mathematical programming according to the nature of the
objective function and the constrains.

• (MP ) is called a linear programming if f is a linear function and gj, hi are affine.

• (MP ) is called a quadratic (nonlinear) programming if f is a quadratic (nonlinear)
function.

1.2.2 Existence and uniqueness of the optimal solution of
(MP )

Theorem 2. Existence (Weistrass)
If f is a continue function on the set D which is compact (closed and bounded) then
(MP ) have at least one optimal solution x∗ ∈ D.

18



Chapter 1: Preliminary notions

Corollary 1.
If f is a continue and coercive function on the set D (lim‖x‖→+∞ f(x) = +∞) which
is closed and non-empty then (MP ) have at least one optimal solution.

Theorem 3. Uniqueness
If D is a convex non-empty set, and f is a strictly convex set then (MP ) admits
one optimal solution x∗ ∈ D.

Remark 4.
The strict convexity of f does not ensure the existence of the optimal solution but
only the uniqueness.

1.2.3 Qualification of constraints

Definition 15.
An inequality constraint gj(x) ≤ 0 is called an active constraint on x∗ ∈ D if:

gj(x
∗) = 0 ∀j = 1,m

We define the set I(x∗) by:

I(x∗) = {j; gj(x∗) = 0}.

An equality constraint hi(x) = 0 is active for all feasible point x ∈ D.

The constraints are qualified in all feasible point x ∈ D if:

• Slater 1950: D is convex and int(D) 6= φ.

• Karlin 1959: D is a polyeder convex (hi, gj are affines).

• Mangasarian-Fromovitz 1967: If the gradients of all active constraints on x ∈ D
are linearly independent, then the constraints are qualified on x.

1.2.4 Optimality conditions

In the rest of this chapter, we assume that the functions f , gj and hi are at least
twice continuously differentiable.

We consider the problem (MP ) in the following form :

min f(x)

hi(x) = 0, i = 1, p

gj(x) ≤ 0, j = 1,m

x ∈ Rn

(MP)
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Definition 16.
The Lagrangian associated to the problem (MP ) is given by:

L(x, λ, µ) = f(x) +

p∑
i=1

λihi +
m∑
j=1

µjgj

λi, µj are called the Lagrange multipliers, in which λi ∈ R for all i = 1, p and
µj ∈ R+ for all j = 1,m.

Theorem 4. Karush-Kuhn-Tucker
Either x∗ is an optimal local solution of (MP ) satisfying the condition of qualifiaction
of constraints, then there exists two lagrange multipliers λ∗ ∈ Rp and µ∗ ∈ Rm

+ such
that: 

∇xL(x∗;λ∗, µ∗) = 0, (Optimality conditions)

µ∗jgj(x
∗) = 0, (Complementary condition)

µ∗j ≥ 0, j = 1,m

gj(x
∗) ≤ 0, j = 1,m

hi(x
∗) = 0, i = 1, p

Are define the first necessary conditions of the first order.

Remark 5.

1. If the constrains are not qualified on x∗, then the conditions of KKT do not
apply.

2. If (MP ) is convex, then the KKT conditions are necessary and sufficient for
x∗ be a global minimum.

3. If (MP ) is convex, then all local minimum is a global minimum.

1.2.5 Method of solving a mathematical programming

We can classify the methods of solving a mathematical programming into three main
categories:

1) Gradient methods

a) Conjugate gradient methods
The conjugate gradient methods were proposed by Hestenes on 1952 to solve
a linear programming with a positive definite matrix. In 1964 Fletcher and
Reeves generalized this method to solve a nonlinear programming problems.
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The conjugate gradient methods are known by there efficiency to solve a
quadratic problems without constraints.

In the constrained problems, there is a simple change of variable help us to
return to the unconstrained problem.

Indeed: x verify Ax = 0.

We suppose: x = x + PAz such that PA = I − At(AA)−1A is the operator of
the projection on the kernel of the matrix A.

The main purpose of this method is to progressively build up directions d0, ..., dn
mutually conjugate with the hessian matrix of the objective function f notice
with ∇2f(x)

dj∇2f(x)dk = 0, ∀j, k = 1, n

b) Projected gradient
Projected gradient methods solve general programs of the form :

min f(x)
Ax = b
x ≥ 0

In which f is a differentiable, not necessarily convex function.

The main purpose of this method is to project the gradient of the objective
function onto the boundary of the domain, which gives a path along the bound-
ary in the direction of the strongest relative slope. This method is essentially
interesting in the case of linear constraints, because in this case, the projection
is easy to calculate.

2) Interior point methods

We can classify the interior point methods into three main categories which described
bellow, in all of these methods we replace the constraint of non negativity x ≥ 0 by
an ellipsoid, or a barrier function.

a) Reduction potential methods
In operations research, linear programming models are one of the most com-
monly utilized models to handle a wide range of real-world problems. The
application of linear programming in agriculture, telecommunications, trans-
portation challenges, profit maximization and cost reduction, and so on are
widely known in the literature. It is still one of several operational research
approaches employed by military forces across the world. Large linear pro-
gramming problems were unsolvable before to the development of Karmarkar’s
[21] efficient interior-point approach for solving linear problems. A linear pro-
gramming problem with millions of variables and equations may now be solved
utilizing multiple interior point methods established following Karmarkar’s
fundamental work [21]. Because linear programming models are utilized in
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many different sectors of the economy and industry, finding efficient methods
to tackle linear programming problems is essential.
The Karmarkar algorithm described in [21] for solving a linear problem presents
the important role of the potential function in the interior point methods.
Karmarkar proves the convergence and the polynomiality of his algorithm by
showing that this function is reduced at each iteration by at least one constant.
His algorithm is the first interior point algorithm which competes the simplex
method at that time.

b) Trajectory centry methods
They were delivered at the same time as the potential reduction methods and
developed in the early 90s. They have good properties theoretical: polynomial
complexity and superlinear convergence. The algorithms of (TC) restrict the
iterates to a neighborhood of the central path, the latter is an arc of perfectly
feasible points.

c) Barrier methods
Barrier methods are designed to solve (MP ) by instead solving a sequence
of specially constructed unconstrained optimization problems. The idea in
the barrier penalty method is to choose a penalty function B(x) which define
bellow and a constant r so that the optimal solution x(r) of the perturbed
problem is also an optimal solution of the original problem (MP ).

The presentation of penalty methods has assumed either that the problem has
no equality constraints, or that the equality constraints have been converted
to inequality constraints. For the latter, the conversion is easy to do, but the
conversion usually violates good judgement in that it unnecessarily complicates
the problem. Furthermore, it can cause the linear independence condition to
be automatically violated for every feasible solution. In a barrier method, we
presume that we are given a point x0 that lies in the interior of the feasible
set of (MP )

Definition 17. Barrier function.

We say a barier function associated to X ⊆ Rn, all function B define on
int(X) such that:

• B is continue.

• B(x) ≥ 0, ∀x ∈ int(X).

• limB(x) = +∞;x→ x∗ ∈ Fr(X).

The most used barrier functions are the logarithmic and inverse functions de-
fined respectively by :

Bl(x) = −
n∑
i=1

ln(−gi(x)),
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Br(x) = −
n∑
i=1

(gi(x))−1
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CHAPTER 2

A LOGARITHMIC BARRIER APPROACH VIA
MAJORANT FUNCTION FOR NONLINEAR

PROGRAMMING

2.1 Introduction
In this chapter, we are interested in the theoretical and numerical study of a convex
nonlinear optimization problem with linear and affine constraints, our objective is
to develop a new approach of logarithmic barrier interior point methods. In the
first section, we define the problem under consideration and perturb it using the
logarithmic barrier function which has the following form

∑n
i=1 ri ln ri−

∑n
i=1 ri lnxi

where the penalty term is represented by a vector r ∈ Rn
++. We then begin our

work by investigating the existence and uniqueness of the optimal solution to the
perturbed problem followed by a convergence study. In the second section, we
are investigated in the resolution of the perturbed problem which is based on the
classical Newton method to compute the descent direction and a majorant function
approach connected to a secant technique to calculate the step size.

Finally, we conclude with a summary of the algorithm and some numerical tests
show the effectiveness of this strategy when compared to the classical line search
method.

2.1.1 The problem formulation

The following is the problem to be explored in this chapter:

min
x∈Rn

f(x)

Ax = b

x ≥ 0

(P)
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In which:

Y = {x ∈ Rn : Ax = b, x ≥ 0},

Y 0 = {x ∈ Rn : Ax = b, x > 0},

are the sets of feasible and strictly feasible solutions of (P ) respectively.

Assumptions:

A1 f is nonlinear, convex, twice continuously differentiable function on Y .

A2 A ∈ Rm×n is a full rank matrix, b ∈ Rm, (m < n).

A3 There exists x0 > 0 such that Ax0 = b.

A4 The set of optimal solutions of (P1) is nonempty and bounded.

For x∗ be an optimal solution in the problem (P ), there exists two Lagrange
multipliers u∗ ∈ Rm, v∗ ∈ Rn

+ such as:
∇f(x∗) + Atu∗ − v∗ = 0,

Ax∗ = b,

< v∗, x∗ >= 0.

(2.1)

We are able to write
f ∗ = f(x∗) = min

x∈Y 0
f(x).

In the following, we replace the nonlinear problem (P ) with a perturbed problem
using the barrier function

∑n
i=1 ri ln ri −

∑n
i=1 ri lnxi. What is new in our work is

that the term of penalty r is taken as a vector r = (r1, r2, ..., rn)t ∈ Rn with ri are
all strictly positive for i = 1, n.

2.1.2 The perturbed problem

In this part, we define the function ψ : Rn
++ × Rn → R ∪ {+∞} which is convex,

lower semi continuous and proper function.

ψ(r, x) =



∑n
i=1 ri ln(ri)−

∑n
i=1 ri ln(xi), if x, r > 0,

0, if r = 0, x ≥ 0,

+∞, if not.

(2.2)
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Then consider the function φ defined on Rn
++ × Rn by:

φr(x) = φ(r, x) =


f(x) +

∑n
i=1 ri ln(ri)−

∑n
i=1 ri ln(xi) if Ax = b; x, r ≥ 0,

+∞ if not.
(2.3)

Finally, the convex function m is defined as follows:

m(r) = inf
x
{φr(x); x ∈ Rn} (Pr)

Remark 6.
Because of the convexity of φr, it’s clearly that m is convex.

We notice that the two problems (P ) and (Pr) are coincided when ‖ r ‖→ 0,
which means that the optimal solution of the problem (Pr) is an approximated so-
lution of the problem (P ), then φ∗r = m(0).

Existence and uniqueness of the optimal solution of perturbed problem

Definition 18.
The function f : Rm → R ∪ {∞} is called inf-compact if the set

Cd(f) = {d ∈ Rn : [f ]∞(d) ≤ 0, Ad = 0, d ≥ 0}
is compact which means that its cone of recession is reduced to zero.
[f ]∞(d) is the asymptotic function of f , defined as follows:

[f ]∞(d) = lim
t→+∞

f(x+ td)− f(x)

t

Lemma 1.
The problem (Pr) has a unique optimal solution x(r) if the objective function φr is
inf-compact.

Proof.
To demonstrate that (Pr) admits one unique optimal solution, suffice it to prove

that the cone of recession of φr is reduced to zero.

According to the fourth assumption, (P ) admits one unique optimal solution
then the cone of recession Cd(f) of f is reduced to zero:

Cd(f) = {0}
We have:

[φr]∞(d) = lim
t→+∞

φr(x+td)−φr(x)
t

= lim
t→+∞

f(x+td)−f(x)
t

− lim
t→+∞

∑n
i=1 ri(ln(xi+tdi)−ln(xi))

t
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Which give us:

[φr]∞ =


[f ]∞(d) if Ad = 0, d ≥ 0,

+∞ if not.

Then we can conclude:

{d ∈ Rn; [φr]∞ ≤ 0} = {0}

Which means that Cd(φ) = {0}.
By taking into account that φr is strictly convex, we come to conclusion that

the perturbed problem (Pr) admits one unique optimal solution which is denoted
by x(r) ∈ Y 0.

Convergence of perturbed problem

Lemma 2.
We assume that x(r) is the optimal solution of (Pr) and x∗ is the optimal solution
of (P ).
We have

x(r)→ x∗ when ‖ r ‖→ 0.

Proof.

According to the necessary and sufficient optimality conditions, there exists
λ(r) ∈ Rm verify: 

∇f(x(r))−X−1r r + Atλ(r) = 0,

Ax(r)− b = 0.
(2.4)

In which X is the diagonal matrix with diagonal entries Xii = xi,∀i = 1, n.

We impose that the couple (x(r), λ(r)) is a solution of the equation
F (x(r), λ(r)) = 0 in which

F (x(r), λ(r)) =

∇f(x(r))−X−1r r + Atλ(r)

Ax(r)− b



The two functions r 7→ x(r) and r 7→ λ(r) are differentiable on Rn
+, by using the

implicit function theorem, we get(
∇2f(x(r)) +RX−2r At

A 0

)(
∇x(r)
∇λ(r)

)
=

(
X−1r

0

)
(2.5)
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Where R is the diagonal matrix with diagonal entries Rii = ri,∀i = 1, n.
And

∇x(r) =



∂x1
∂r1

∂x1
∂r2

· · · ∂x1
∂rn

∂x2
∂r1

∂x2
∂r2

· · · ∂x2
∂rn

...
... . . . ...

∂xn
∂r1

∂xn
∂r2

· · · ∂xn
∂rn


, ∇λ(r) =



∂λ1
∂r1

∂λ1
∂r2

· · · ∂λ1
∂rn

∂λ2
∂r1

∂λ2
∂r2

· · · ∂λ2
∂rn

...
... . . . ...

∂λm
∂r1

∂λm
∂r2

· · · ∂λm
∂rn


.

Remember that the function m which is differentiable on Rn
+ is define by:

m(r) = f(x(r)) +
n∑
i=1

ri ln(ri)−
n∑
i=1

ri ln(xi(r))

We have

∇m(r) = (∇x(r))t
(
∇f(x(r))−X−1r r

)
+ (e+ z1 − z2)

In which
e = (1, 1, ..., 1)t,

z1 = (ln r1, ln r2, ..., ln rn)t,

z2 = (lnx1, lnx2, ..., lnxn)t.

According to (2.4) and (2.5), we get

∇m(r) = −(∇x(r))tAtλ(r) + (e+ z1 − z2)

= −(A∇x(r))tλ(r) + (e+ z1 − z2)

= e+ z1 − z2.

For x(r) ∈ Y and since of the convexity of m, we get:

m(0) ≥ m(r)− rt∇m(r)

≥ f(x(r)) +
∑n

i=1 ri ln ri −
∑n

i=1 ri lnxi(r)− rt(e+ z1 − z2)

And therefore we have

m(0) ≥ f(x(r)) +
∑n

i=1 ri ln ri −
∑n

i=1 ri lnxi(r)−
∑n

i=1 ri −
∑n

i=1 ri ln ri +
∑n

i=1 ri lnxi(r)

= f(x(r))−
∑n

i=1 ri

Taking into account that:
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f ∗ = m(0) = min
x
f(x∗)

Then, we come conclusion

f ∗ ≤ f(x(r)) ≤ f ∗ +
n∑
i=1

ri.

for the rest, we are interesting on the trajectory of x(r) when ‖ r ‖ tends to zero.

a) The case in which f is only convex,
This case is a little complicated, we impose that ‖r‖∞ ≤ 1, and for that we
note

x(r) ∈ {x; Ax = b, x > 0, f(x) ≤ n+ f ∗}

This set is convex, bounded and non empty, its cone of recession is reduced to
zero.
It follows that each accumulation point of xr is an optimal solution of (P ) only
if ‖r‖ → 0.

b) The case in which f is strongly convex with coefficient γ strictly
positive,
We have

n∑
i=1

ri ≥ f(x(r))− f(x∗) ≥ 〈∇f(x∗), x(r)− x∗〉+
γ

2
‖ x(r)− x∗ ‖2

Using (2.1), we obtain

n∑
i=1

ri ≥ 〈v∗, x(r)〉+
γ

2
‖ x(r)− x∗ ‖2

Then

‖ x(r)− x∗ ‖ ≤

(
2

γ

n∑
i=1

ri

) 1
2

We come to conclusion that the convergence of x(r) to x∗ is of order 1
2
.

Remark 7.
If the problem (P ) or the perturbed problem (Pr) will have an optimal solution and
the values of their objective functions are equal and finite, the other problem has an
optimal solution.
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The general principle of the method

The general prototype of our method is as follows:

i Starting by (r0, x0) ∈ Rn
+ × Y 0.

ii Find an approximate solution of (Pr) has been noted by xk+1 such that:

φ(rk, xk+1) ≤ φ(rk, xk).

iii Take: ‖rk+1‖∞ ≤ ‖rk‖∞.
The iterations continue until we obtained the good approximate solution.

2.2 Solving the perturbed problem
Consider the following perturbed problem defined as follows:{

minx φr(x)

x ∈ Rn

2.2.1 Some useful inequalities

Taking into consideration the statistical serie of n real numbers {z1, ..., zn}, we define
their arithmetic mean z and their standard deviation σz.

These quantities are defined as follows:

z =
1

n

n∑
i=1

zi, σ2
z =

1

n

n∑
i=1

z2i − z2 =
1

n

n∑
i=1

(zi − z)2

For the following result see [13][40]

Proposition 1.
z − σz

√
n− 1 ≤ min

i=1,n
zi ≤ z − σz√

n−1

z + σz√
n−1 ≤ max

i=1,n
zi ≤ z + σz

√
n− 1

In the case where zi are all positifs, we have:

ln
(
z − σz

√
n− 1

)
≤

n∑
i=1

ln(zi) ≤ ln
(
z + σz

√
n− 1

)
Theorem 5. [12][33]

Assume that zi > 0 for all i = 1, n, then:

A1 ≤
n∑
i=1

ln(zi) ≤ A2,
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with:
A1 = (n− 1) ln

(
z + σz√

n−1

)
+ ln

(
z − σz

√
n− 1

)
,

A2 = ln
(
z + σz

√
n− 1

)
+ (n− 1) ln

(
z − σz√

n−1

)
.

In this part, we are interested in the numerical solution of the problem (P1),
we begin our work by calculating the descent direction and step size using a new
majorant function approach.

2.2.2 The descent direction and line search function

Generally, a descent direction d may be computed by various methods, in our study
we use the Newton’s method and so d is given by solving the following quadratic
convex minimization problem:

min
d

(
1
2
〈∇2φr(x)d, d〉+ 〈∇φr(x), d〉

)
Ad = 0.

According to the necessary and sufficient optimality conditions, there exists µ ∈
Rm such that: 

∇2φr(x)d+∇φr(x) + Atµ = 0

Ad = 0.

Which is equivalent to ∇2f(x) +RX−2 At

A 0

 d

µ

 =

 X−1r −∇f(x)

0


From which we get

(
dt 0

) ∇2f(x) +RX−2 At

A 0

 d

µ

 =
(

dt 0
) X−1r −∇f(x)

0


Then

〈∇2f(x)d, d〉+ 〈∇f(x), d〉 = 〈r,X−1d〉 − 〈RX−1d,X−1d〉 (2.6)

This system is equivalent to

ΓZ = B (2.7)
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In which

Γ =

X∇2f(x)X +R XAt

AX 0

 , Z =

(
X−1d
µ

)
, B =

(
r −X∇f(x)

0

)

The linear system (2.7) can be efficiently solved via the Cholesky decomposition.
The direction d being computed, we look for t giving a significant decreasing of the
search line function. Then, the next iteration will be taken equal to x+ td.

2.2.3 Computation of the step size

Generally, the most used methods in the search line are the classical iterative meth-
ods as Armijo-Goldstein, Wolfe, Fibonnaci,..., but the computational cost in there
becomes high when n is very large.

In this part, we are interested to avoid this difficulty. The method that we use
bellow is simple and more effective than the first, it consists on the use of majorant
function of the line search function. The choice of the step size t∗ > 0 must give us
a significant decrease of the last function, we have:

θ0(t) = φr(x+ td)− φr(x)

= f(x+ td)− f(x)−
∑n

i=1 riln(1 + tyi), y = X−1d

According to proposition 2.1, we have: ρ ≤ min
i
ri ≤ ri ∀i = 1, n

In which ρ = r − σr
√
n− 1

Then, we obtain

θ(t) =
θ0(t)

ρ
≤ θ1(t) =

1

ρ
(f(x+ td)− f(x))−

n∑
i=1

ln(1 + tyi)

We have

θ
′
(t) = 1

ρ

(
〈∇f(x+ td), d〉 −

∑n
i=1 ri

yi
1+tyi

)
,

θ
′′
(t) = 1

ρ

(
〈∇2f(x+ td)d, d〉+

∑n
i=1 ri

y2i
(1+tyi)2

)
.

And
θ
′
1(t) = 1

ρ
〈∇f(x+ td), d〉 −

∑n
i=1

yi
1+tyi

,

θ
′′
1 (t) = 1

ρ
〈∇2f(x+ td)d, d〉+

∑n
i=1

y2i
(1+tyi)2

.

We deduce from (4.11), that

θ
′
(0) + θ

′′
(0) = 0
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We have
θ
′′
(0) ≥ 0 and θ

′′
(0) ≥ 0

Which give us that θ′(0) ≤ 0.
Now it must to prove that θ′1(0) ≤ 0, we have:

a If yi ≥ 0, it is clearly that θ′1(0) ≤ 0.

b If yi < 0,

We deduce from (4.11), that

θ
′

1(0) + θ
′′

1 (0) ≤ 0

We have
θ
′′

1 (0) ≥ 0

We come conclusion that θ′1(0) ≤ 0

What is prove the significant decrease of θ1.

2.2.4 The first majorant function

The choice of t∗ in which θ′(t∗) = θ
′
(topt) = 0 consists of some numerical complica-

tions, so generally we can’t obtain t∗ directly. To solve this problem, we propose to
find an approximation function of θ.

This method is based on the use of a majorant function θ2 of the function θ.

Lemma 3.

The first majorant function of θ is given by:

θ2(t) =
1

ρ
(f(x+ td)− f(x))− (n− 1)ln(1 + tα)− ln(1 + tβ)

In which 
α = y + σy√

n−1

β = y − σy
√
n− 1

Proof.

In the following, we take:

xi = 1 + tyi, x = 1 + ty and σx = tσy

Applying the inequality
∑n

i=1 ln(xi) ≥ A1 (theorem 2.2), we get that

θ1(t) ≤ θ2(t)
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Such that

θ2(t) =
1

ρ
(f(x+ td)− f(x))− (n− 1)ln(1 + tα)− ln(1 + tβ)

Where
α = y + σy√

n−1 ,

β = y − σy
√
n− 1

We have

θ
′
2(t) = 1

ρ
〈∇f(x+ td), d〉 − (n− 1) α

1+tα
− β

1+tβ
,

θ
′′
2 (t) = 1

ρ
〈∇2f(x+ td)d, d〉+ (n− 1) α2

(1+tα)2
+ β2

(1+tβ)2
.

The domains of θ2 is H2 =]0, T [ in which T = max{t : 1 + tβ > 0}.
This domain is content in the domain of the line search function θ.
We notice that :

θ(0) = θ1(0) = θ2(0) = 0,

θ
′′
1 (0) = θ

′′
2 (0) > 0,

θ
′
1(0) = θ

′
2(0) < 0.

We prove that the strictly convex function θ2 is a good approximation of θ1 in
a neighborhood of 0, hence the unique minimum t∗ of θ2 guarantee a significant
decrease of the function θ1, and we have the follows inequalities:

θ(t) ≤ θ1(t) ≤ θ2(t) < 0

Remark 8.
θ2 is a strictly convex function.

Proposition 2.
The auxiliary function ω is given by

ω(t) = nηt− (n− 1)ln(1 + tα)− ln(1 + tβ)

In which 
α = y + σy√

n−1

β = y − σy
√
n− 1
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We have

ω
′
(t) = nη − (n− 1) α

1+tα
− β

1+tβ
,

ω
′′
(t) = (n− 1) α2

(1+tα)2
+ β2

(1+tβ)2
.

Then: 

ω(0) = 0,

ω
′
(0) = n(η − y),

ω
′′
(0) = n(y2 + σ2

y) =‖ y ‖2 .

We impose that ω′(0) ≤ 0 and ω′′(0) ≥ 0.

Case when f is linear

We impose that f is a linear function

f(x) = ctx, x, c ∈ Rn

The auxiliary function ω is given by:

ω(t) =
ctd

ρ
t− (n− 1)ln(1 + tα)− ln(1 + tβ)

Remark 9.

• ω have the same properties as θ2.

• The unique root of the equation ω′(t) = 0 rated by t∗ is the minimum of θ2.

• t∗ that we have guarantee a significant decrease of the function φr along the Newton
descent direction d.

Case when f is only convex

In this case, the equation θ
′
2(t) = 0 is no longer reduces to an equation of second

degree, we thought to look at another function greater than θ2, for this we use the
secant technique.

Given t ∈]0, T [, for all t ∈]0, t], we have

f(x+ td)− f(x)

ρ
≤ f(x+ td)− f(x)

ρt
t.

Then the auxiliary function ω is define as follows:

ω(t) = nηt− (n− 1)ln(1 + tα)− ln(1 + tβ)
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Such as, we take

η =
f(x+ td)− f(x)

nρt
.

and we calculate t∗ the root of the equation ω′(t) = 0.

1. If t = 1 and T > 1 then t is the optimal solution.

2. If t 6= 1, then

a If t∗ ≤ t, in this case we have θ(t∗) ≤ θ1(t
∗) ≤ θ2(t

∗) ≤ ω(t∗), which means
that we assure a significant decrease of the function φr along the direction
d.

b If t∗ > t, we must to choose another t ∈]t∗, T [ and calculate t∗ for the new
auxiliary function and repeat this until we have that t∗ ≤ t, for example
we choose

t = t∗ + ζ(T − t∗); ζ ∈ [0, 1].

Minimization of the auxiliary function ω

We have
ω(t) = nηt− (n− 1)ln(1 + tα)− ln(1 + tβ)

And
ω
′
(t) = nη − (n− 1) α

1+tα
− β

1+tβ

ω
′′
(t) = (n− 1) α2

(1+tα)2
+ β2

(1+tβ)2

For getting t∗, we need to calculate the root of the equation:

ω
′
(t) = 0

Equivalent to
ηαβt2 + (η(α + β)− αβ)t+ η − y = 0

1) If η = 0, t∗ = −y
αβ
.

2) If α = 0, t∗ = y−η
ηβ
.

3) If β = 0, t∗ = y−η
ηα
.

4) If ηαβ 6= 0, in this case we have two roots of the equation of the second degree
but there is just only root t∗ which belongs to the domain of definition of ω,
both roots are:

t∗1 =
1

2

(
1

η
− 1

α
− 1

β
−
√

∆

)
, t∗2 =

1

2

(
1

η
− 1

α
− 1

β
+
√

∆

)
.

In which
∆ =

1

η2
+

1

α2
+

1

β2
− 2

αβ
−
(

2n− 4

nη

)(
1

α
− 1

β

)
.
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2.2.5 The second majorant function

Here, we considered finding another approximation of θ1 simpler than θ2 and has
one logarithm.

Remember that:

θ1(t) =
1

ρ
(f(x+ td)− f(x))−

n∑
i=1

ln(1 + tyi); ρ = r − σr
√
n− 1

Using the inequality:

n∑
i=1

ln(1 + tyi) ≥ (‖ y ‖ +ny)t+ ln(1− t ‖ y ‖)

Then, we get a second majorant function of θ noting by θ3 such that:

θ3(t) =
1

ρ
(f(x+ td)− f(x))− (‖ y ‖ +ny)t− ln(1− t ‖ y ‖)

We have
θ
′
3(t) = 1

ρ
〈∇f(x+ td), d〉− ‖ y ‖ −ny + ‖y‖

1−t‖y‖

θ
′′
3 (t) = 1

ρ
〈∇2f(x+ td)d, d〉+ ‖y‖2

(1−t‖y‖)2 > 0

The domains of θ3 is H3 = [0, T3[, with T3 = max{t; 1− t ‖ y ‖> 0}.

Lemma 4.
θ3 is strictly convex function.

Proposition 3.
For all t ∈ [0, T3[, we have

a) θ3(0) = θ1(0) = 0.

b) θ′3(0) = θ
′
1(0) < 0

c) θ′′3 (0) = θ
′′
1 (0) > 0.

d) θ3(t) ≤ θ1(t).

Proof.

a) We have from definition that

θ3(0) = θ1(0) = 0.
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b) We have

θ
′

3(0) =
1

ρ
〈∇f(x), d〉 − ny = θ

′

1(0) < 0

c) We have

θ
′′

3 (0) =
1

ρ
〈∇2f(x)d, d〉+ ‖ y ‖2= θ

′′

1 (0) > 0.

d) Taking in consideration the function

φ(t) = θ1(t)− θ3(t)

= −
∑n

i=1 ln(1 + tyi) + (‖ y ‖ +ny)t+ ln(1− t ‖ y ‖)

We have
φ
′
(t) = θ

′
1(t)− θ

′
3(t)

= −
∑n

i=1
yi

1+tyi
+ ‖ y ‖ +ny − ‖y‖

1−t‖y‖

=
(
ny −

∑n
i=1

yi
1+tyi

)
+
(
‖ y ‖ − ‖y‖

1−t‖y‖

)
=
∑n

i=1

(
yi − yi

1+tyi

)
+
(
‖ y ‖ − ‖y‖

1−t‖y‖

)
= t
∑n

i=1

(
y2i

1+tyi

)
− t
(
‖y‖2

1−t‖y‖

)
= t
∑n

i=1

(
y2i

1+tyi

)
− t
(∑n

i=1 y
2
i

1−t‖y‖

)
= t
∑n

i=1 y
2
i

(
1

1+tyi
− 1

1−t‖y‖

)
≤ 0

Since we have − ‖ y ‖≤ yi ≤‖ y ‖, ∀i = 1, n then 1− t ‖ y ‖≤ 1+ tyi ∀i = 1, n.

We prove that φ is decreasing for all t ∈ [0, T3[ and φ(0) = 0 so we come to
conclusion that φ(t) ≤ 0 so θ1(t) ≤ θ3(t) for all t ∈ [0, T3[.

θ3 is a good approximation of θ1 in a neighbourhood of 0, the unique minimum
t∗ of θ3 guarantee a significant decreasing of the function θ1, and we have:

θ1(t
∗) ≤ θ2(t

∗) ≤ θ3(t
∗)
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Minimization of an auxiliary function

Let us define the convex function ω2, where it’s minimum is reached at t∗.

ω2(t) = nηt− (‖ y ‖ +ny)t− ln(1− t ‖ y ‖)

Taking into consideration that

η =


ctd
nρ
, if f is linear,

f(x+td)−f(x)
nρt

, if f is convex.

It is easy to calculate

ω
′
2(t) = nη− ‖ y ‖ −ny + ‖y‖

1−t‖y‖

ω
′′
2 (t) = ‖y‖2

(1−t‖y‖)2

Then:
ω2(0) = 0,
ω
′
2(0) = n(η − y),
ω
′′
2 (0) =‖ y ‖2 .

We impose that ω′2(0) ≤ 0 and ω′′2 (0) ≥ 0.
For getting t∗, we need to calculate the root of the equation ω′2(t) = 0.

t∗ =
n(y − η)

‖ y ‖2
.

2.3 Description of the algorithm
In this part, we present the algorithm which resume our study to obtain the optimal
solution x∗ of the problem (P ).

2.4 Numerical tests
In the tables bellow

• Iter represents the number of iterations to obtain x∗.

• Min represents the minimum and T(s) represents the time in seconds.

• Method 1 corresponds to the method of majorant function introduced in this
work.

• Method 2 corresponds to the method of majorant function introduced in [10].

• Method 3 corresponds to the classical line search method (Wolf).
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Algorithm 1 The general algorithm using majorant function technique

1. Input ε > 0, rs > 0 , x0 ∈ K, X with X(i, i) = x0(i), r ∈ Rn
+, δ ∈ [0, 1]n.

2. Iteration

* Calculate d and y = X−1d

(a) If ‖ y ‖> ε do

i Calculate η, α, β and solve the equation ω′(t) = 0 for obtain t∗ .
ii Calculate x = x+ t∗d, and return to (∗)

(b) If ‖ y ‖≤ ε, we obtained a good approximation of m(r).

i If ‖r‖ ≥ rs, r = δ × r and return to (∗).
With δ × r = (δ1 × r1, ..., δn × rn).

ii If ‖r‖ ≤ rs, Stop. We have a good approximation of the optimal
solution .

We indicate by O.F. and O.S. the objective function and the optimal solution
respectively.

Remark 10.
In the numerical examples, we use the first majorant function to calculate the step
size.

2.4.1 Nonlinear convex objective

Example 1.
The two following examples are written as follows:

min
x∈Rn

f(x)

Ax = b

x ≥ 0

And f ∗ = f(x∗).

1. O.F

f(x) = x21 + x22 − 3x1 − 5x2

A =

(
1 2 1 0
3 1 0 1

)
, b =

(
4
7

)
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O.S

x∗ = (1,
3

2
, 0,

5

2
), and f ∗ = −7, 25.

2. O.F

f(x) = x21 + x22 − 2x1 − x2

A =

(
1 4 1 0
2 3 0 1

)
, b =

(
5
6

)
O.S

x∗ = (
13

7
,
18

17
, 0,

22

17
), and f ∗ = −4, 059.

2.4.2 Example with variable size

The objective function is linear

Example 2.
We consider a linear optimization problem

f ∗ = min{atx : Ax = b, x ≥ 0}.

In which A is the m ∗ 2m matrix defined by:

A[i, j] =


1 if i = j or j = 1 +m,

0 if not.

a ∈ R2m, and b ∈ Rm are defined by:

a[i] = −1, a[i+m] = 0, b[i] = 2 ∀i = 1,m.

O.S
f ∗ = −2m.

The objective function is nonlinear

Example 3. Quadratic case [35]

We consider the following quadratic problem with n = m+ 2

f ∗ = min{f(x) : Ax = b, x ≥ 0}.

In which:
f(x) =

1

2
〈x,Qx〉.
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With

Q[i, j] =



2 if i = j = 1 or i = j = m,

4 if i = j and i 6= {1,m},

2 if i = j − 1 or i = j + 1,

0 otherwise.

A[i, j] =



1 if i = j,

2 if i = j − 1,

3 if i = j − 2,

0 otherwise.

fi = 1, ∀i = 1, n, ∀j = 1,m.
We test this example for different value of n.

Example 4. Erikson’s problem

Consider the following convex problem:

f ∗ = min[f(x) : Ax = b, x ≥ 0].

Where f(x) =
∑n

i=1 xiln
(
xi
ai

)
, ai, bi ∈ R are fixed, and

A[i, j] =


1 if i = j or j = i+m,

0 if not.

We test this example for different values of n, ai and bi.

2.5 Tables
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Table 2.1: Numerical simulations for example 1

Method 1 Method 2 Method 3
Example Min Iter T(s) Min Iter T(s) Min Iter T(s)

1 -7.17 3 0.0009 -7.17 4 0.0010 -7.18 9 0.0100
2 -4.04 4 0.0012 -4.05 7 0.0020 -4.05 10 0.0100

Table 2.2: Numerical simulations for example 2

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
5 -9.91 7 0.0007 -9.96 9 0.001 -9.79 9 0.018
25 -50.01 8 0.026 -49.8 9 0.03 -49.67 11 0.049
50 -99.86 8 0.14 -99.6 9 0.17 -99.35 11 0.22
100 -199.53 9 1.25 -199.21 9 1.21 -199.60 13 1.79
200 -399.01 8 10.9200 -398.43 9 11.9650 -399.21 13 18.4203
500 -994.24 12 22.4312 -992.34 14 25.9720 -993.34 19 29.2319

Table 2.3: Numerical simulations for example 3

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
4 0.285 8 0.0061 0.285 9 0.007 0.285 14 0.019
50 5.37 6 0.019 5.372 7 0.021 5.374 14 0.053
100 10.924 6 0.065 10.927 7 0.08 10.93 14 0.188
500 55.3722 8 14.5 55.372 7 13.8 55.374 14 29.815

2.6 Comments
The objective of this work is solving a nonlinear problem (P ) with a logarithmic
barrier interior point method based on a majorant function technique which utilized
to calculate the step size instead of the line search method.
The numerical tests prove the efficiency of our approach.
In table (2.1), we evaluate the effectiveness of our approach using two quadratic
examples with fixed size n = 4, we remark at the first that the number of iteration
when we compared method 1 to 3 is about the half and in less execution time. We
also notice a small difference between method 1 and 2 in the number of iteration or
in the time.
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Table 2.4: The case where ai = 1 and bi = 6,∀i = 1.n (Example 4)

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
10 32.94 3 0.0038 32.95 3 0.004 32.95 4 0.0180
50 164.79 4 0.02600 164.79 4 0.0250 164.79 6 0.0820
100 329.57 5 0.1011 329.58 5 0.0760 329.58 6 0.2300
500 1647.34 9 0.2300 1646.04 10 0.2420 1647.01 12 0.4320
1000 3295.54 12 0.4500 3297.54 13 0.5100 3294.42 15 0.6800

Table 2.5: The case where ai = 2 and bi = 5,∀i = 1.n ( Example 4)

Method 1 Method 2 Method 3
n Min Iter T(s) Min Iter T(s) Min Iter T(s)
10 0.62 ×10−8 2 0.0021 0.66 ×10−7 2 0.002 9.09 ×10−6 3 0.01
50 0.1 ×10−7 3 0.0028 0.11 ×10−8 3 0.003 1.86 ×10−4 4 0.07
500 0.75 ×10−7 3 0.0045 0.76 ×10−7 3 0.04 1.0003 ×10−4 5 0.22

In table (2.2), we study a quadratic example with variable size, we change n at each
time. As in table 1 Method 1 and 2 are close with a small advantage to the first.
On the other hand method 1 takes less time with fewer number of iterations than
method 3 which makes our approach more effective than the line search.
In table (2.3), we evaluate the effectiveness of our approach using a linear program
with variable size. We studied it with different value of n. We notice at the start
that the number in method 1 is less than the number of iterations method 3,

Table (2.4) and (2.5) present a nonlinear program which is evaluated with various
values of n, ai and bi, as shown in the tables above. Our approach takes less time
and requires fewer iterations than method 3 and competes with method 2.

These tests clearly demonstrate the influence of our approach compared to the
classical line search method, as shown in the tables by a reduction in the number of
iterations and a fewer the calculation time. However, it competes with the method
introduced in [10] where r ∈ R.
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CHAPTER 3

AN INVERSE BARRIER PENALTY METHOD FOR
NONLINEAR PROGRAMMING

3.1 Introduction
In this chapter, we thought to use a new inverse barrier approach to solve a nonlinear
programming problem.
The following is how this chapter is organized: In the second section, we define the
perturbed problem of (P ) using the inverse barrier function in [15] that conserves the
properties of the first objective function, investigate the existence and uniqueness of
the perturbed problem’s optimal solution, and demonstrate its convergence to the
optimal solution of the original problem.
The resolution of the perturbed problem is the focus of the third section. First, we
calculated the Newton descent direction, and then we used a tangent technique to
calculate the step size along this direction.

The numerical experiments presented in the final section demonstrate the effec-
tiveness of our approach.

3.1.1 The problem formulation

The problem under consideration in this chapter is given by:

f ∗ = min {f(x); x ∈ Y } (P )

Under the following assumptions:

a) f is a non linear, convex, twice continuously differentiable function on Y ,

Y = {x ∈ Rn; Ax = b, x ≥ 0}

is called the set of feasible solution of (P ).

45



Chapter 3: An inverse barrier penalty method for NLP

And
Y 0 = {x ∈ Rn; Ax = b, x > 0}

is called the set of strictly feasible solution of (P ).

b) A ∈ Rm×n is a full rank matrix, b ∈ Rm, (m < n).

c) There exists x0 > 0 such that Ax0 = b.

d) The set of optimal solutions of (P ) is non empty and bounded.

x∗ is an optimal solution of (P ), if there exist two Lagrange multipliers. λ∗ ∈
Rm, µ∗ ∈ Rn

+ such as: 
∇f(x∗) + Atλ∗ − µ∗ = 0,

Ax∗ = b,

〈µ∗, x∗〉 = 0.

(3.1)

3.2 The penalization
The penalty method consists in replacing the constrained programming (P ) with
a simpler constrained problem or an unconstrained one, hence the non-negativity
constraints xi > 0 are replaced by an inverse barrier function r

∑n
i=1

1
xri
, in which

r > 0.
The following perturbed problem (Pr) is associated to the original problem (P ):

(Pr)


min fr(x)

x ∈ Rn

In which

fr(x) =


f(x) + r

∑n
i=1

1
xri
, if Ax = b, x ≥ 0,

∞ if not

r > 0 is called barrier term.
The first and the second order derivatives of fr are given by

∇fr(x) = ∇f(x)− r2X−r−1e

∇2fr(x) = ∇2f(x) + r2(r + 1)X−r−2

In which X is the diagonal matrix with diagonal entries Xii = xi,∀i = 1, n, and
e = (1, 1, ..., 1)t ∈ Rn.

fr is a strictly convex, proper and lower semi continuous function.
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3.2.1 Existence and uniqueness of optimal solution of per-
turbed problem

Lemma 5.
For (Pr) admits a unique optimal solution, let fr be an inf compact and strictly
convex function.

Proof.
According to assumption d, (P ) admits a unique optimal solution which means that
the cone of recession Cf of f is reduced to zero, we have:

Cf = {d ∈ Rn; [f ]∞(d) ≤ 0, Ad = 0, d ≥ 0} = {0}

[f ]∞(d) is the asymptotic function of f , which defined by:

[f ]∞(d) = lim
α→+∞

f(x0 + αd)− f(x0)

α

To demonstrate that (Pr) admits a unique optimal solution, suffice it to demon-
strate that the cone of recession of fr is reduced to zero.

We notice that the two asymptotic function of f and fr respectively are related
by

[fr]∞ =


[f ]∞(d) if Ad = 0, d ≥ 0,

∞ if not.

Then we deduce that: {d ∈ Rn; [fr]∞ ≤ 0} = {0}, which means that Cfr = {0}.
Furthermore, because fr is a strictly convex function, (Pr) admits only an optimal

solution x(r).

In the rest we denote x(r) by xr.

3.2.2 The convergence of (Pr)

Lemma 6.
For r > 0, we assume that x∗ and xr are the optimal solutions of the original problem
(P ) and the perturbed problem (Pr) respectively, then we have

lim
r→0

xr = x∗

Proof.
Let us begin by defining the differentiable convex function on R∗+ by:

m(r) = f(xr) + r

n∑
i=1

1

xri (r)

When r → 0, the two problems (P ) and (Pr) coincide, i.e.

m(0) = f ∗ = min f(x)
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We have

m′(r) = 〈∇fr(xr), x′r〉+
∑n

i=1
1

xri (r)
− r

∑n
i=1

ln(xi)
xri (r)

As we suppose that xr is the optimal solution of (Pr), which implies that∇fr(xr) =
0, then

m′(r) =
n∑
i=1

1

xri (r)
−

n∑
i=1

ln(xri (r))

xri (r)

Since m is convex, we have

m(0) ≥ m(r)− rm′(r) = f(xr)− r
n∑
i=1

ln
(

1
xri (r)

)
xri (r)

We suppose that zi = 1
xri (r)

.
Then

m(0) ≥ f(xr)− r
n∑
i=1

zi ln zi

According to proposition 2, we have

zi ≤ γ, γ = z + σz
√
n− 1⇒ −zi ≥ −γ

According to theorem 7, we have
n∑
i=1

ln(zi) ≤ A2

Then m(0) ≥ f(xr)− rγA2

Then f(xr)− nrγA2 ≤ f ∗ = m(0) ≤ f(xr)
Now, we are interested on the trajectory when r → 0. We have the two following

cases:

a) The case in which f is strongly convex with coefficient δ strictly positive.

We have
rγA2 ≥ f(xr)− f(x∗)

≥ 〈∇f(x∗), xr − x∗〉+ δ
2
‖ xr − x∗ ‖2

≥ δ
2
‖ xr − x∗ ‖2

Then ‖ x(r)− x∗ ‖ ≤
√

2rγA2

b) The case in which b is only convex.

This case is a little complicated, we impose that r ≤ 1, and for that we note

x(r) ∈ {x; Ax = b, x > 0, f(x) ≤ nγA2 + f ∗}
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This set is convex, bounded, and non-empty, and its cone of recession is re-
duced to zero.
As a result, each accumulation point of xr is an optimal solution of (P ) if
r → 0.

3.3 Solving the perturbed problem
In this part, we are interested in the numerical solution of the perturbed problem
(Pr).

3.3.1 The Newton descent direction

Several methods exist for calculating the descent direction d. In this work, we choose
Newton’s method, so d is obtained by solving the quadratic convex minimization
problem: 

mind
1
2
dt∇2fr(x)d+∇tfr(x)d

Ad = 0.

Using the necessary and sufficient optimality conditions, there exists λ ∈ Rm

such that: 
∇2fr(x)d+∇fr(x) + Atλ = 0

Ad = 0.

In which 

H(x) = ∇2fr(x) = ∇2f(x) + r2(r + 1)X−r−2

h(x) = ∇fr(x) = ∇f(x)− r2X−r−1e

C =

 H(x) At

A 0


Then, we get

C

 d

λ

 =

 −h(x)

0

 (∗)

By multiplying (∗) by the vector (dt 0), we get the following system

(dt 0) C

 d

λ

 = (dt 0)

 −h(x)

0

 (∗∗)
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The system (∗∗) is equivalent to

〈∇2f(x)d, d〉+ 〈∇f(x), d〉 = r2(〈X−r−1d, e〉 − (r + 1) ‖ X− r
2
−1d ‖2)(3.2)

3.3.2 The step size

In this part, we will calculate the step size using a tangent technique rather than
the classical line search methods, which require minimizing a uni dimensional search
line function θ : R∗+ → R to find the optimal solution α∗ which given a significant
decrease of the following convex function:

θ(α) = fr(x+ αd)

= f(x+ αd) + r
∑n

i=1
1

(xi+αdi)r

We have

θ
′
(α) = 〈∇f(x+ αd), d〉 − r2

∑n
i=1

di
(xi+αdi)r+1

θ
′′
(α) = 〈∇2f(x+ αd), d〉+ r2(r + 1)

∑n
i=1

d2i
(xi+αdi)r+2

Remark 11.

1. To ensure that the search line function θ is well defined, it is necessary that
the point x+ αd ∈ Y , i.e. θ is a convex function.

2. According to (2), we have θ
′
(0) + θ

′′
(0) = 0 and such as θ′′(α) ≥ 0 ie

θ
′′
(0) ≥ 0, which give us that θ′(0) ≤ 0.

Because of the complex form in which the function θ is defined, solving the
equation θ′(α) = 0 explicitly to obtain the optimal step size alpha∗ is difficult. To
avoid this difficulty, we proposed another method, which is described below.

Tangent technique

Using the tangent method allowed us to calculate the step size α∗ in a more straight-
forward manner than the classical methods. Our algorithm terminated when the
condition θ′(α∗) < ε was satisfied.
Description of the method
This technique is divided into two phases, which are described below:

Phase 1:
Obtain the domain Ik =]αk, αk+1[ such that its bounds satisfy the condition:

θ′(αk).θ
′(αk+1) < 0

Which means that the optimal step size α∗ ∈ Ik.
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Phase 2:

a) Draw the tangents Tk and Tk+1 at the points αk and αk+1.

Tk : θ(α) = θ(αk) + (α− αk)θ
′
(αk)

Tk+1 : θ(α) = θ(αk+1) + (α− αk+1)θ
′
(αk+1)

b) Determine the point α′k corresponding to the intersection of the two tan-
gents Tk and Tk+1.

α
′

k =
θ(αk+1)− θ(αk) + αkθ

′
(αk)− αk+1θ

′(αk+1)

θ′(αk)− θ′(αk+1)

We have two cases:

∗ If θ′(α′k) < ε stop.
∗ If θ′(α′k) > ε, we have two cases:
− If θ′(αk).θ′(α

′

k) < 0, put

αk = αk

α
′

k = αk+1

And return to a.
− If θ′(α′k).θ′(αk+1) < 0,

put
α
′

k = αk

αk+1 = αk+1

And return to a.

3.4 Description of the algorithm
In this section, we present the algorithm that will allow us to resume our investiga-
tion in order to find the optimal solution to the original problem (P ).
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Algorithm 2 The general algorithm using the tangent technique (Inverse barrier
method)

1. Input ε > 0, r > 0 , x0 ∈ Y 0, X with X(i, i) = x0(i), ρ ∈]0, 1[.

2. Iteration

(a) Calculate d and h = X−1−rd.

(b) If ‖ h ‖> ε

• Calculate α∗ according to the tangent technique.
• Calculate x = x+ α∗d.

(c) If ‖ h ‖< ε

• If r > r: r = ρr, go to 1.
• If r < r: Stop, we have a good approximation of the optimal solution.

3.4.1 Numerical experiments

The two following examples are written as follows:

f ∗ = min {f(x) : Ax = b, x ≥ 0} .

Example 5.
f(x) = x21 + x22 − 3x1 − 5x2

A =

(
1 2 1 0
3 1 0 1

)
, b =

(
4
7

)
The optimal solution is

x∗ = (1,
3

2
, 0,

5

2
), and f ∗ = −7, 25.

Example 6.
f(x) = x21 + x22 − 2x1 − x2

A =

(
1 4 1 0
2 3 0 1

)
, b =

(
5
6

)
The optimal solution is

x∗ = (
13

7
,
18

17
, 0,

22

17
), and f ∗ = −4, 059.

Example 7. Erikson’s problem.
Consider the following convex problem:

f ∗ = min[f(x) : Ax = b, x ≥ 0].
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Where f(x) =
∑n

i=1 xiln
(
xi
ai

)
, ai, bi ∈ R are fixed, and

A[i, j] =

{
1 if i = j or j = i+m,
0 if not .

We test this example for different values of n, ai and bi.

Tables:
In the following tables:
Iter represents the number of iterations to obtain x∗. Min represents the minimum
and T(s) represents the time in seconds. Method 1 corresponds to the tangent
technique introduced in this work.
Method 2 corresponds to the classical line search method (Wolf).

Table 3.1: Numerical simulations for example 6 and 7

Method 1 Method 2
Example Min Iter T(s) Min Iter T(s) )

1 -7.21 4 0.025 -7.13 6 0.062
2 -4.04 24 0.061 -4.05 36 0.075

Table 3.2: The case where ai = 2 and bi = 4,∀i = 1.n (Example 8)

Method 1 Method 2
n Min Iter T(s) Min Iter T(s)
10 0.75 ×10−6 3 0.19 0.86 ×10−4 4 0.21
50 0.2 ×10−6 3 0.16 0.275 ×10−4 5 0.23
200 0.72 ×10−7 4 0.22 0.2001 ×10−3 6 0.32

Table 3.3: The case where ai = 1 and bi = 6,∀i = 1.n (Example 8)

Method 1 Method 2
n Min Iter T(s) Min Iter T(s)
10 32.95 3 0.07 32.95 5 0.19
50 164.77 3 0.18 164.76 6 0.25
200 659.07 4 0.24 659.04 7 0.38
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3.5 Comments
The goal of this work is to solve a nonlinear programming problem using a new
interior point method based on an inverse barrier function which utilized for the
first time in this work to solve the nonlinear optimization problems. The numerical
tests described above demonstrate the effectiveness of our approach, as we observe
fewer iterations in less times when compared to the classical line search method
(Wolf).

In table (3.1), we evaluate the effectiveness of our approach using two quadratic
programs which are a type of nonlinear programming (Example 6 and 7). We no-
tice at the start that the number of iterations in our technique "the inverse barrier
method" (method 1) is less than the number of iterations in the classical line searches
(method 2), and on the other hand method 1 takes less time than method 2 which
makes our approach more effective than the line searches.

Table (3.2) and (3.3) present a nonlinear model which is evaluated with various
values of n, ai and bi, as shown in the tables above. Like the previous quadratic
problems, our approach takes less time and requires fewer iterations than method
2. From all the aforementioned, one can conclude the effectiveness of our approach
when compared with the classical line search method.
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CHAPTER 4

A PROJECTIVE INTERIOR POINT METHOD FOR
NONLINEAR PROGRAMMING

4.1 Introduction
In this chapter, we proposed an algorithm for solving a convex problem, having an
idea to extend the Karmarkar algorithm to the non linear problems. calculation
of feasible solution in each iteration and the fact that the objective function value
must decrease in each iteration with the fixed desired tolerance.First, we briefly
recall the algorithm proposed by Karmarkar for solving the linear problems. In
addition, we present our approach to solve the nonlinear problem which is separated
into two parts: linearizing the objective function and calculating the step size using
a majorant function technique. Finally, we present some numerical test which prove
the importance of our algorithm.

4.1.1 Karmarkar method

We consider the following linear optimization programming:

(LP )


min ctx = z∗

Ax = 0

x ∈ Sn

In which:
Sn = {x ∈ Rn : etnx = 1, x ≥ 0}

is the simplex of dimension n and of center a such that:

ai =
1

n
, ∀i = 1, n
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.
Hypotheses

H1) The optimal value z∗ = 0.

H2) x0 is a strictly realizable point such that: Ax0 = 0, x0 ∈ Sn, we can take
x0 = 1

n
en.

H3) A ∈ Rp×n is a full rank matrix.

Remark 12.

1. If z∗ 6= 0, using the equality etnx = 1, we get that

ctx = z∗etnx⇒ (c− z∗en)tx = 0⇒ (c
′
)tx = 0

The condition (z∗ is known) is restrictive in practice. For this reason, the
researchers proposed different approximations of z∗ as the upper and lower
bounds, or both at the same time.
The most used variant is the Ye-Lustig approximation, which proposed a ma-
joration of z∗ [41] such that:

zk = ctxk > z∗

.

2. If b 6= 0 using the equality etnx = 1 we get that

Ax = betnx⇒ A
′
x = (A− betn)x = 0

Description of the algorithm

starting from the initial point x0, the algorithm constructs a series of interior points
which converges to the optimal solution of the problem in polynomial time. In order
to reduce the objective function to zero, we minimized locally on a sphere inscribed
in the feasible region.
At each iteration k, the iterated xk is brought back to the center of the simplex S
using a projective transformation Tk define by:

Tk : Sn → Sn

x 7→ y = Tk(x) =
X−1

k x

etnX
−1
k x

We can write
x = T−1k (y) =

Xky

etnXky
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In which: Xk is the diagonal matrix with diagonal entries (Xk)ii = (xk)i,∀i = 1, n.
The problem transformed The linear transformed programming of (LP ) is given
by: 

min ctXky
etnXky

= 0

A Xky
etnXky

= 0

etny = 1

y ≥ 0

Which equivalent to 

min ctXky = 0

AXky = 0

etny = 1

y ≥ 0

(4.1)

Lemma 7. [25]
If we know a feasible solution y0 for a linear programming, in which y0i are all positive
fori = 1, n, then the ellipsoid

E =

{
y ∈ Rn;

n∑
i=1

(
yi − y0i
y0i

)2

≤ β2, 0 < β < 1

}

is in the interior of the positive orthant of Rn.

The problem (4.1) can be written under the form:

min ctXky = 0

AXky = 0

etny = 1

‖ y − a ‖2≤ (tr)2

(4.2)

In which, 0 < t < 1 and r = 1√
n(n−1)

.

Theorem 6.
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The optimal solution of (4.2) is given explicitly by: yk = a− trdk, in which

dk = pk

‖pk‖ ,

pk = (I −Bt
k(BkB

t
k)
−1Bk)cXk,

Bk =

[
Ak

etn

]
.

Algorithm 3 The algorithm proposed by Karmarkar for linear problem
Input
k = 0 : ε > 0,x0 = a = 1

n
en, r = 1√

n(n−1)
.

Iteration

1. If ctxk > 0 do
(Xk)ii = (xk)i, Ak = AXk, Bk =

[
Ak
etn

]
.

Calculate pk = (I −Bt
k(BkB

t
k)
−1Bk)cXk,

dk = pk

‖pk‖ ,
yk = a− trdk, 0 < t < 1.

2. xk+1 = T−1k (yk) = Xky
k

etnXkyk
,

k = k + 1 and return to 1.

Stop.

Convergence

To control the convergence karmarkar introduces the potential function defined by:

P (x) =
n∑
i=1

ln

(
ctx

xi

)
Theorem 7. [27]
The point yk verified:

ctXky
k

ctXka
≤ 1− t

n− 1
.

Lemma 8. [27]
For xk is the kth iteration of the algorithm, we have

ctxk

ctx0
≤
(
exp(P (xk)− P (x0))

) 1
n
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Which means that if P (xk) tends to −∞, then zk = ctxk tends to zero.

Theorem 8. [27]
For 0 < t ≤ 1

4
, then we start from x0 = a, the algorithm find the feasible point x

after O(nq + n lnn) iterations such that:

a) ctx = 0.

Or

b) ctx
ctx0
≤ ε = 2−q, in wich q is a fixed precision.

4.1.2 Generalization of the algorithm

Either the following linear programming:
min ctx = z∗

Ax = b
x ≥ 0

(4.3)

Hypotheses

H1) The optimal value z∗ = 0.

H2) x0 is a strictly realizable point such that: Ax0 = b, x0 > 0.

H3) A ∈ Rp×n is a full rank matrix.

The projective transformation is defined by Tk : Rn
+ → Sn+1 such that:

Tk(x) =


yi =

xi
xk
i

1+
∑n

i=1
xi
xk
i

; i = 1, n

yn+1 = 1−
∑n

i=1 yi

It’s simple to see that:

x = T−1k (x) =
Xky[n]

yn+1

In which: Xk = diag(xk) and y[n] = (y1, ..., yn)t.
By applying the projective transformation, we get that the following problem

min ct Xky[n]
yn+1

= z∗

AXky[n]
yn+1

= b∑n
i=1 yi = 1

y[n] ≥ 0, yn+1 ≥ 0
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Which equivalent to 

min(ck)ty

Aky = 0∑n+1
i=1 yi = 1

y ≥ 0

(4.4)

In which: ck = (ctXk − z∗), Ak = (ADk − b) and y =

(
y[n]
yn+1

)
Taking into consideration that we can replace the condition y ≥ 0 by the sphere

S(a, αr), since if we have y ∈ S(a, αr) then y ≥ 0 (here we cite karmarkar), In which
r = 1√

n(n−1)
and 0 < α < 1.

Now, we can write (4.4) in the following form:
min(ck)ty
Bky = 0
‖ y − a ‖≤ αr

(4.5)

Where a = 1
n+1

en+1, Bk =

(
Ak

etn+1

)
and y =

(
y[n]
yn+1

)
Lemma 9.
The optimal solution of (4.5) is given by

yk = a− αrdk

In which dk = pk
‖pk‖

, pk = (I −Bt
k(BkB

t
k)
−1Bk)c

k

Remark 13.
We notice that each feasible solution of (4.3) can be transformed by Tk into a feasible
solution of (4.5) and reciprocally each feasible solution of (4.5) with yn+1 ≥ 0 can
be transformed by T−1k into a feasible solution of (4.3).

4.2 Extension of the algorithm
Here, we are interested in the resolution of the nonlinear problem (P ) using the
reduction of Karmarkar, we develop a new approach based on the technique of
majorant function [12][2] which facilitates the calculate of the step size instead of
the potential function used by Karmarkar [21]. The main difficult in our study is the
linearization of the objective function. The step size is calculated using a majorant
function technique.
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4.2.1 The problem formulation

The problem to be studied in this paper is as follows:
minx f(x) = z∗

Ax = b

x ≥ 0

(4.6)

In which: f is a nonlinear, convex and differentiable function.

Hypotheses:

H1) A ∈ Rm×n is a full rank matrix.

H2) There exists x0 > 0 such that: Ax0 = b.

H3) The optimal value z∗ = f(x∗) is known from the beginning.

The problem transformed:

The Karmarkar’s projective transformation Tk is define as follows:

Tk : Rn → Sn+1

x 7→ y = Tk(x)

Where 
yi =

xi
xk
i

1+
∑n

j=1

xj

xk
j

, i = 1, n

yn+1 = 1−
∑n

i=1 yi

In which

Sn+1 = {y ∈ Rn+1;
n+1∑
i=1

yi = 1, y ≥ 0}

is the simplex of dimension n and of center ai = 1
n+1

for all i = 1, n+ 1.
It’s clearly that we can write

x = T−1k (y) =
Xky[n]

yn+1

such that:

y[n] = yn+1

(
(Xk)

−1x
)

= (yi)
n
i=1,

Where Xk is the diagonal matrix with diagonal entries Xk
ii = xki ,∀i = 1, n, and

xk is the strictly feasible point of (4.6).
The problem (4.6) is transformed as follows:
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

min
y

h(y) = yn+1(f(T−1k (y))− z∗)

AT−1k (y) = b∑n+1
i=1 yi = 1

yi ≥ 0, ∀i = 1, n

(4.7)

Which equivalent to

min
y

h(y) = yn+1(f(T−1k (y))− z∗)

Aky = 0

y ∈ S

(4.8)

In which:
Ak = (AXk − b) and y =

(
y[n]
yn+1

)
h : Rn+1 → R is a nonlinear, convex [25] and differentiable function on the set

X = {y ∈ Rn+1; Aky = 0, y ∈ S}
,

in which the optimal objective value of h tends to zero.

4.2.2 The linearization

For solving the problem (4.8) using the Karmarkar’s projective method, it must to
linearize the convex function h.
By applying the linearization technique to the function h at the neighborhood of
the point a which is the center of the simplex Sn+1

h(y) = h(a) +∇th(a)(y − a) (4.9)
for all y ∈ Y
Where

Y = {y ∈ Rn+1; ||y − a|| ≤ αr}
We have: 0 < α < 1 and r = 1√

n(n+1)
is the radius of the inscribed sphere.

Now, we introduce the following problem:

miny∇th(a)y

Aky = 0

∑n
i=1 yi = 1, y ≥ 0

(4.10)
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Taking into consideration that we can replace the condition y ≥ 0 by the sphere
S(a, αr), since if we have y ∈ S(a, αr) then y ≥ 0 [27].

We can write (4.10) with the following form:

miny∇th(a)y

Aky = 0

∑n+1
i=1 yi = 1

‖y − a‖2 ≤ (αr)2

(4.11)

The optimal solution of (4.11)

Lemma 10.
The optimal solution of the problem (4.11) is explicitly given by: yk = a−αrdk and:

xk+1
i = xki

1− (n+ 1)αrdki
1− (n+ 1)αrdkn+1

.

In which: dk = sk

‖sk‖ and sk = [I −Bt
k(BkB

t
k)
−1Bk]∇h(a).

Proof.

We put z = y − a, then we can write the problem (4.11) as follows:

minx∇th(a)z

Bkz = 0

‖z‖2 ≤ (αr)2

(4.12)

In which: Bk =

(
Ak
etn+1

)
.

For z∗ be an optimal solution of (4.12), there exists λ ∈ Rm+1 and µ ≥ 0 such
that:

∇h(a) +Bt
kλ+ µz∗ = 0 (A)

By multiplying the both members of (A) by Bk we obtain

Bk∇h(a) +BkB
t
kλ+ µBkz

∗ = 0

Equivalent to
Bk∇h(a) +BkB

t
kλ = 0
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Then
λ = −(BkB

t
k)
−1Bk∇h(a)

By substituting in (A):

z∗ = − 1

µ
[I −Bt

k(BkB
t
k)
−1Bk]∇h(a) = − 1

µ
sk

And as:

‖ z∗ ‖= αr

We directly deduce that:

z∗ = −αrdk where dk =
sk

‖ sk ‖
And

yk = a+ z∗ = a− αrdk

,
We have xk+1(α) = T−1k (yk) = Xky[n]

yn+1

Then
xk+1
i (α) =

xki y
k
i

ykn+1

=
xki (ai−αrdki )
an+1−αrdkn+1

=
1

n+1
xki (1−(n+1)αrdki )

1
n+1

(1−(n+1)αrdkn+1)

= xki
1−(n+1)αrdki

1−(n+1)αrdkn+1

4.2.3 The principle of the method

Starting by initial point x0, the algorithm builds a sequence of interior points that
converges to the optimal solution of the problem. In order to reduce the objective
value to to zero, we minimize it locally on a sphere inscribed in the feasible orthant.
In every iteration k, xk is reduced to the simplex center by the projective transfor-
mation Tk.
In every iteration, we calculate the step size and the descent direction.
We apply the inverse projective transformation T−1k to return to the initial variable,
it is then enough to control the reduction of the objective function f for verifying
the convergence of the algorithm proposed.
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In the following, we describe how we calculate the optimal step size.

4.2.4 The step size

The line search function is given by:

θ(α) = P
(
xk+1(α)

)
− P (xk)

Where P is the potential function associated to the problem (4.6) which is define
by:

P (x) = (n+ 1) ln (f(x)− z∗)−
n+1∑
i=1

ln(xi)

Lemma 11.
The search line function is given by:

θ(α) = (n+ 1) ln

(
h(a− αrdk)

h(a)

)
−

n+1∑
i=1

ln
(
1− (n+ 1)αrdki

)
Proof.
We have

θ(α) = (n+ 1) ln

(
f(xk+1)− z∗

f(xk)− z∗

)
−

n∑
i=1

ln

(
xk+1
i

xki

)
Then

θ(α) = (n+ 1) ln
(
h(yk)
h(a)

)
−
∑n+1

i=1 ln(yki )

= (n+ 1) ln
(
h(a−αrdk)

h(a)

)
−
∑n+1

i=1 ln(yki )

The technique of majorant function

Our approach consist to obtaining the optimal value α > 0 which gives a significant
decreasing of the potential function P associated to the problem (4.6). Since the
equation θ′(α) = 0 cannot solved explicitly, to avoid this problem we exploit the idea
suggested by J.P. Crouzeix and B. Merikhi [12] and we thought about minimizing the
uni-dimensional majorant function of θ which the minimum is calculated explicitly.

In order to calculate the step size we use the technique of majorant function
described in chapter 2.

Lemma 12.
The majorant function θ1 is given by:

θ1(α) = (n+ 1) ln
(
∇th(a)(a−b)+h(b)−αr∇th(a)dk

h(a)

)
− n ln

(
1 +

√
n+1
n
αr||d||

)
−

ln
(

1−
√
n(n+ 1)αr||d||

)
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Proof.

For calculate the majorant function of the line search, we must to majorate the
two parts of the line search function.
For the first part, we propose a new approximation of h in neighborhood of a defined
by:

h(y) = h(a) +∇th(a)(y − a) + β

The choice of the parameter β guarantees that the tangent of h at the point a
becomes a secant of h at the point b ∈ X.

We obtain β by solving the equation:

h(a) +∇th(a)(b− a) + β = h(b)

It’s clear that:
β = ∇th(a)(a− b)− h(a) + h(b)

Then
h(y) = ∇th(a)(y − b) + h(b)

Let yk = a− αrdk then

ln

(
h(a− αrdk)

h(a)

)
≤ ln

(
∇th(a)(a− b) + h(b)− αr∇th(a)dk

h(a)

)
For the second parts, As yi = 1− (n+ 1)αrdki .

By using theorem 5 and proposition 1 in chapter two, we can prove that

n+1∑
i=1

ln(1− (n+ 1)αrdki ) ≥ n ln

(
1 +

√
n+ 1

n
αr||d||

)
+ ln

(
1−

√
n(n+ 1)αr||d||

)

Lemma 13.

The optimal step size is given by:

α =
∇th(a)dk

r||d||
(√

n(n+ 1)−
√

n+1
n

)
∇th(a)dk + (n+ 1)r||d||2 (∇th(a)(a− b) + h(b))

.
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4.2.5 Convergence

Generally to establish the convergence of the algorithm we use the potential function
P which defined previously associated to the problem (4.6).

Lemma 14. [24]
We assume that yk is the optimal solution of the problem (4.11), then we have
h(yk) ≤ h(a).

Lemma 15. [24]
We assume that yk is the optimal solution of the problem (4.11), then we have
h(yk) ≤ (1− α

n+1
)h(a).

Theorem 9. [24]
In every iteration of the algorithm the potential function is reduced by a constant
value δ such that P (xk+1)− P (xk) ≤ −δ, in which δ = −α + −α2

2(1−α)2

4.2.6 Description of the algorithm
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Algorithm 4 General algorithm of our approach

a− Initialization:
ε > 0, x0 is a strictly realizable point.

b− Iteration:

• If f(xk)− z∗ > ε do

Xk = diag(xk),

Ak = (AXk − b)

Bk =

(
Ak
etn+1

)
sk = (I −Bt

k(BkB
t
k)
−1Bk)∇h(a)

dk = sk

||sk||

• Calculate α.

• yk = a− αrdk.

• xk+1 = T−1k (yk) = Xky[n]
yn+1

.
Back to b.

End of the algorithm.
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4.3 Numerical experiments
In the tables below, we represent some numerical results of two algorithms:

• Method 1: the algorithm define in our approach ( the technique of majorant
function to calculate the step size).

• Method 2: The classical line search.

Iter represents the number of iterations to obtain x∗, Min represents the minimum
and T(s) represents the time in seconds.

Examples

Example with fixed size The two following examples are written as follows:
min
x∈Rn

f(x)

Ax = b

x ≥ 0

And f ∗ = f(x∗).

Example 8.
f(x) = x21 + x22 − 3x1 − 5x2

A =

(
1 2 1 0
3 1 0 1

)
, b =

(
4
7

)
x0 = (

9

5
,
3

5
, 1, 1)t

f(x) = x21 + x22 − 2x1 − x2

A =

(
1 4 1 0
2 3 0 1

)
, b =

(
5
6

)
x0 = (1, 1, 0, 1)t

Example with variable size

Example 9.
We consider the following problem:

min f(x) =
∑n

i=1 xi ln
xi
ai

xi + xi+m = bi, i = 1, n, n = 2m

x ≥ 0

In which ai ∈ Rn
+ and bi ∈ R are fixed, we have tested this examples with different

value of n, ai and bi.
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4.3.1 Tables

Table 4.1: Numerical simulations for example 1 and 2

Method 1 Method 2
Example Min Iter T(s) Min Iter T(s)

1) -7.3528 14 0.0537 -7.1213 32 0.0721
2) -4.0658 4 0.0101 -4.0509 27 0.0564

Table 4.2: Numerical simulations for example 10 (The case when ai = 1, bi = 6)

Method 1 Method 2
Example Min Iter T(s) Min Iter T(s)
n=50 159.1254 5 0.0302 160.2314 7 0.0412
n=100 390.2658 20 0.1204 393.2514 31 0.2013
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Table 4.3: Numerical simulations for example 10 (The case when ai = 2, bi = 4)

Method 1 Method 2
Example Min Iter T(s) Min Iter T(s)
n=50 0.000040 20 2.1 0.000041 33 2.9
n=100 0.000071 22 0.236 0.000081 31 0.4313

4.3.2 Comments

The goal of this study is to solve the nonlinear problem (P ) using the potential
reduction of Karmarkar based on a majorant function technique to compute the
step size rather than the line search method. The numerical tests demonstrate the
effectiveness of our technique.
These tests clearly demonstrate the influence of our adjustment on the algorithm’s
numerical behavior, as shown by a reduction in the number of iterations and a fewer
the calculation time.
In table 4.1: We study two quadratic examples with fixed variable, we notice that
the time of calculation in method 1 is nearly to the half when compared to method
2, in addition there is a difference between them in the number of iteration.
In table 4.2 and table 4.3: We study a nonlinear example with variable size, we have
tested this examples with different size and different value of ai and bi, as in table
4.1 we notice that the number of iterations in method 1 is better than 2 and in less
execution time.
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CONCLUSION

In this thesis, we have been able to develop three variants of interior point methods
to solve a nonlinear optimization problem (P ). We provided theoretical, algorith-
mic, and numerical advances in this work, as well as addressed unresolved topics
about the solution of nonlinear problem.

• The choice of the penalty term as a vector made it possible to accelerate the
convergence.

• The introduction of the majorant function technique associated with the secant
to contribute to the minimization of the computational cost of the algorithm.

• Extend the inverse barrier penalty method to the nonlinear case.

• The adaptation of the tangent technique for the step calculation was determined
for the robustness of our inverse barrier variant.

• Extend the application of Karmarkar’s algorithm to the nonlinear case, using the
linearization and translation of the objective.

In all of these works, we calculate the descent direction with the classical Newton
method, our study is supported by numerical tests very important.

72



PERSPECTIVES

The results obtained are very encouraging which motivates us to generalize our work
to several optimization problems such as semi definite programming problems, linear
complementarity problems,...etc.
Here, we present some perspectives:

• Look for new majorant function in the case where r is taken as a vector.

• In the inverse barrier method using a majorant function technique to calculate
the step size.

• Using the minorant function technique to calculate the step size.
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mined using a majorant function technique.
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determined with a tangent technique.

We finish this work by an extension of Karmarkar’s algorithm in nonlinear case,
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