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Glossary of Notations

Problem Classes and Terminology

CP : Complementarity problem;

NCP : Non-Linear complementarity problem;

LCP : Linear complementarity problem;

MLCP : Monotone linear complementarity problem;

LP : Linear programming or linear optimization;

QP : Quadratic programming;

CQO : Convex quadratic optimization;

P : Primal of a mathematical programming;

D : Dual of (P);

SNE : System of nonlinear equations;

VIP : Variational inequalities problem;

AET : Algebraic equivalent transformation;

IP : Interior-Point;

IPMs : Interior-Point Methods;

IPAs : Interior-Point Algorithms;

IPC : Interior-Point-condition;

K.K.T : Karush-Kuhn-Tucker;

PSD : Positive semi-definite;

PD : Positive definite;

MIN1 : The strategy based on the first minorant function;

MIN2 : The strategy based on the second minorant function;

MAJ1 : The strategy based on the first majorant function;

MAJ2 : The strategy based on the second majorant function;

ITER : The number of iterations to obtain a solution of LCP;

CPU : The required time (in seconds) to obtain a solution of LCP;
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GLOSSARY OF NOTATIONS

Spaces and Orthants

R : the set of real numbers ;

Rn : the real n-dimensional space;

Rn
+ : the nonnegative orthant in Rn;

Rn
++ : the positive orthant in Rn;

Rn×n : the space of all n× n real squared matrices;

Matrices
M : = (mij); a matrix with entries mij;

MT : the transpose of a matrix M ;

M−1 : the inverse of a matrix M ;

In : identity matrix of order n;

X = diag(x) : the diagonal matrix with diagonal elements equal

to the components of the vectorxwithXii = xi;

Vectors
e : = (1, . . . , 1)T ; vector of ones;

xT : = (x1, . . . , xn); the transpose of avector x with components xi;

xy : = (x1y1, . . . , xnyn)T ; Hadamard product;

xTy = 〈x, y〉 : =
n∑
i=1

xiyi; the standard inner product of x ∈ Rn and y ∈ Rn;

√
x : = (

√
x1, . . . ,

√
xn)T , (x ≥ 0);

x−1 : =

(
1

x1
, . . . ,

1

xn

)T
(x 6= 0);

x

y
: =

(
x1
y1
, . . . ,

xn
yn

)T
(y 6= 0);

|x| : the absolute value of x ∈ Rn;

‖x‖ : the Euclidian norm of x ∈ Rn;

‖x‖∞ : = max
i=1,...,n

|xi|; the maximum norm of x ∈ Rn;

max(x) : the maximal component of the vector x;

min(x) : the minimal component of the vector x;

(x0, y0) : the initial point;

(x?, y?) : the solution of complementarity problem;

Functions
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GLOSSARY OF NOTATIONS

∇F : the gradient of a function F : Rn → Rn;

∇2F : the hessian matrix of F ;
∂fi
∂xj

(x) : the partial derivative of fi atxj;
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Introduction

This thesis deals with the complexity analysis and numerical implementation of some

interior-point methods for solving some classes of complementarity problems (abbre-

viated CP). The CPs in finite dimension consists to find a vector pair (x, y) ∈ Rn×Rn

satisfying

y = F (x), xTy = 0, x ≥ 0, y ≥ 0, (CP)

where F (x) : Rn → Rn is a given continuously differentiable vector function, i.e.,

F (x) = (F1(x), · · · , Fn(x))T . Here the inequality (≥) and xTy = 0 indicate the non

negativity and the orthogonality of the vectors x and y, respectively.

The systematic study of CP began in the mid-1960s and during the last decades

it became an important topic of research in mathematical programming and numer-

ical optimization. This problem reflects many applications areas such as operations

research, bi-matrix games, variational inequalities, economics, engineering and equi-

librium modeling [35, 36] and they have been the subject of much research interest.

Also, it generalizes the so-called standard linear complementarity problems (LCP)

[2, 20, 38], i.e., when F (x) = Mx + q (affine function) where M ∈ Rn×n is a given

matrix and q ∈ Rn. The LCPs includes linear and convex quadratic optimization (for

more details we refer the reader to the monograph of Cottle, Pang and Stone [20]

). Also the CPs is a particular case of the semi-definite complementarity problems

(SDCP) which acts on the cone of symmetric semi-definite matrices ([4]).

For the solution of CPs, a number of direct as well as iterative methods have been

proposed and analyzed. Besides, the direct famous pivoting like simplicial Lemke’s

algorithm for LCPs, smoothing and non-smoothing methods [4, 40] to solving CPs,

the interior-point methods gained much more attention than others due to their poly-

nomial complexity and their highly practical efficiency. These methods showed first

their powerful for solving the linear optimization (LO) since Karmarkar’s work [44].

For more details concerning IPMs we direct the reader to monographs in references
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INTRODUCTION

[67, 73]. These methods have been extended successfully to many types of optimiza-

tion problems such as convex quadratic optimization (CQO) [1, 73], linear semidefi-

nite problems (SDO) [64], second-order cone optimization (SOCO) [13].

In the literature of interior-point methods, we distinguish four important types of

them, notably,

1. Projective methods,

2. Affine-scaling methods,

3. Potential-reduction methods,

4. Path-following methods or central-path methods.

Interior point methods can be classified based on the length of the step and the

neighborhood used. In this way, the methods that generate new iterations within

smaller neighborhood of the central path are referred to as short update methods,

while those that use a wider neighborhood are called large update methods.

In this thesis, our fundamental contributions import on the complexity analysis

and the numerical implementation of some path-following interior point methods

for solving monotone LCPs and P?(κ)−NCPs based on classical and new search di-

rections and on efficient step-sizes (displacement step). The determination of a new

search direction and computing efficient step-size on it, have a great effect in improv-

ing the complexity analysis of these algorithms and their practical performances. For

this purpose, we cite the paradigm of barrier kernel functions which has offered new

Newton directions which leads to improving the polynomial complexity for large-step

algorithm from O
(
n log

n

ε

)
which based on the classical logarithmic barrier methods

to O
(√

n log n log
n

ε

)
. However, for the short-step these algorithms deserve the best

well-known iterations bound, namely O
(√

n log
n

ε

)
(see, e.g. [1, 5, 14, 15, 64, 63]).

Subsequently, in 2002, an other important proposal presented by Darvay [29] which

offered new search directions based on the so called algebraic equivalent transforma-

tions (AETs) induced by univariate kernel functions applied to the centrality equa-
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INTRODUCTION

tions. The application of Newton’s methods to the new modified system leads to

offer new Newton descent search directions. These methods based AETs enjoy also

the best known polynomial complexity for short-step algorithms. Besides, in some

interior-point methods based logarithmic barrier approach, the computation of the

displacement step (step-size) is usually based on adopting classical line search rule

such as Armijo, Wolfe ect... It is shown that these procedures (rules) cost very expen-

sive in computing this step-size [19]. Recently some new procedure are suggested

to remedy this drawback. Among them the novel strategy of the so-called majorant

and minorant (lower and upper bound) functions for computing the step-size which

is exploited by many authors for solving the following optimization problems such as

LO, CQO and SDO (see [13, 18, 23, 55, 58]). In this thesis, we have exploited this

procedure only for monotone LCP to improve its numerical efficiency for getting a

solution of monotone LCPs.

Short outline of the thesis

The thesis contains five chapters, followed by a bibliography. This thesis is organized

as follows

Chapter 1. In this chapter, a mathematical background is stated and which will be

utile throughout the thesis.

Chapter 2. This chapter deals with the study of the short-step full-Newton step

primal-dual interior-point algorithm for solving monotone LCP. Under a new sugges-

tion of the defaults of the barrier parameter θ and the threshold τ , we show that this

algorithm has the best-known polynomial complexity, namely, O
(√

n log
n

ε

)
where n

is the dimension of the variables. Its efficiency is also confirmed by presenting some

numerical experiments on some monotone LCPs.

Chapter 3. In this chapter, we propose a short-step feasible full-Newton step path-

following interior-point algorithm (IPA) for monotone linear complementarity prob-

lems (MLCPs). The proposed IPA uses the technique of algebraic equivalent transfor-

7



INTRODUCTION

mation (AET) induced by an univariate function to transform the centering equations

which defines the central-path. By applying Newton’s method to the modified system

of the central-path of LCP, a new Newton search direction is obtained. Under new

appropriate defaults of the threshold τ which defines the size of the neighborhood of

the central-path and of θ which determines the decrease in the barrier parameter, we

prove that the IPA is well-defined and converges locally quadratically to a solution of

the monotone LCPs. Moreover, we derive its iteration bound, namely, O(
√
n log

n

ε
)

which coincides with the best-known iteration bound for such algorithms. Finally,

some numerical results are presented show its efficiency.

Chapter 4. In this chapter, based on optimization techniques, we propose a descent

logarithmic barrier interior-point method for solving monotone linear complemen-

tarity problems (MLCP). The idea is to transform the MLCP as a convex quadratic

optimization (CQO). Then an associated barrier problem is stated. The existence and

the uniqueness of the optimal solution of the latter is showed and its convergence

to a solution of MLCP is proved. For its numerical aspects, the descent direction is

computed by using classical Newton’s method. However, the displacement step along

this direction for maintaining points interior during the algorithm process, a novel

strategy of the so-called minorant and majorant approximating functions is applied.

The obtained numerical results are very promising.

Chapter 5. In this chapter, we establish the polynomial complexity of a feasible short-

step path-following interior-point algorithm (IPA) for solving the class of nonlin-

ear complementarity problems with P?(κ)-mapping (abbreviated P?(κ)-NCP). The

proposed algorithm uses only full Newton steps with the advantage that no line

search is required. We prove that the algorithm is well defined and converges lo-

cally quadratically to a solution of NCP. Moreover, we show that the algorithm has

O
(√

n(1 + 4κ) log
(n
ε

))
as a complexity result for short-update methods. Some nu-

merical results are provided to show the efficiency of our algorithm.

Finally, we end the thesis by a conclusion and suggestions for future work. Moreover,

some well-known results used in this thesis are summarized in Appendices.
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Chapter 1

Background on Complementarity problems

and Interior-point methods

In this chapter, we give some relevant elements of the theory of complementarity

problems (CPs) and a brief survey on interior-point methods (IPMs).

1.1 Nonlinear complementarity problems

In mathematics context and in optimization, a nonlinear complementarity problem

NCP consists to find vectors x ∈ Rn and y ∈ Rn such that

y = F (x), xTy = 0, x ≥ 0, y ≥ 0, (NCP)

where F : Rn → Rn is a continuously differentiable function, the expression xTF (x)

denotes the inner product of x and F (x) in Rn, and the inequalities are understood

to be component-wise. From the orthogonality of x and F (x), it turns to require that

the component-wise product xTi Fi(x) = 0 for all i = 1, . . . , n.

In the sequel, the feasible set and the strictly feasible set of NCP are denoted, respec-

tively, by

F = {(x, y) ∈ R2n
+ : y = F (x)},

F s = {(x, y) ∈ F : x > 0, y > 0}.

The solution set of NCP is given by

F? = sol(LCP ) = {(x?, y?) ∈ F : (x?)Ty? = 0}.

Definition 1.1. If x ∈ F or (x ∈ F s) then x is called a feasible (or strictly feasible)

solution of NCP.

9



CHAPTER 1. BACKGROUND ON COMPLEMENTARITY PROBLEMS AND IPMS

1.1.1 Some classes of nonlinear complementarity problems

In this subsection, we cite some important classes of NCPs [41].

• The class of monotone functions:

∀x, y ∈ Rn : 〈x− y, F (x)− F (y)〉 ≥ 0.

• The class of strictly monotone functions:

∀x, y ∈ Rn and x 6= y : 〈x− y, F (x)− F (y)〉 > 0.

• The class of P0-functions:

∀x, y ∈ Rn and x 6= y : max
1≤i≤n:xi 6=yi

(xi − yi)(Fi(x)− Fi(y)) ≥ 0.

• The class of P -functions:

∀x, y ∈ Rn and x 6= y : max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) > 0.

• The class of P?(κ)-functions: for any x 6= y in Rn and κ ≥ 0

(1 + 4κ)
∑

i∈I+(x,y)

(xi − yi)(Fi(x)− Fi(y)) +
∑

i∈I−(x,y)

(xi − yi)(Fi(x)− Fi(y)) ≥ 0,

where

I+(x, y) = {i : (xi−yi)(Fi(x)−Fi(y)) ≥ 0} and I−(x, y) = {i : (xi−yi)(Fi(x)−Fi(y)) < 0}.

1.2 Some problems formulated as nonlinear

complementarity problems

1.2.1 Variational inequalities problem

The variational inequalities problem (VIP) is defined as: Find x̄ ∈ C such that

(x− x̄)TF (x) ≥ 0, for allx ∈ C, (VIP)

where C is nonempty subset of Rn and F a mapping from Rn into itself. If C = Rn
+,

then the (VIP) reduces to an NCP (See [42]).

10



CHAPTER 1. BACKGROUND ON COMPLEMENTARITY PROBLEMS AND IPMS

1.2.2 System of nonlinear equations

The constrained system of nonlinear equations:

h(x, y) = 0, x ≥ 0, y ≥ 0, (SNE)

where h : R2n → R2n is defined by

h(x, y) =

F (x)− y

Y x

 ,

and Y is the diagonal matrix. The (SNE) is equivalent to the NCP because if the pair

vectors (x?, y?) solves (SNE), then the vector x? solves NCP where y? = F (x?), and

conversely (See [4]).

1.3 Linear complementarity problems

If F is a linear function i.e. F (x) = Mx + q where M ∈ Rn×n and q ∈ Rn, then the

problem CP reduces to LCP.

x ≥ 0, y ≥ 0, y = Mx+ q, xTy = 0 (LCP)

1.3.1 Classes of linear complementarity problems

The LCP has been studied for many different classes of matrices M ∈ Rn×n. We list

some of them [20]:

• The class of skew-symmetric matrices (SS):

∀x ∈ Rn , x 6= 0 : xTMx = 0.

• The class of positive semi-definite matrices (PSD):

∀x ∈ Rn , x 6= 0 : xTMx ≥ 0.

Additionally, if xTMx > 0,M is called positive definite (PD). The LCP with a

PSD matrix M is called monotone LCP abbreviated (MLCP).

11



CHAPTER 1. BACKGROUND ON COMPLEMENTARITY PROBLEMS AND IPMS

• The class of P -matrix: Matrix with all principal positive minors or equivalently

[31]

∀x ∈ Rn , x 6= 0 : ∃i ∈ {1, . . . , n} s.t. xi(Mx)i > 0.

• The class of P0-matrix: Matrix with all principal non negative minors or equiv-

alently [32]

∀x ∈ Rn , x 6= 0 : ∃i ∈ {1, . . . , n} s.t. xi 6= 0 and xi(Mx)i ≥ 0.

• The class of P?(κ) Matrix:

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn,

where κ ≥ 0 and

I+(x) = {i : xi(Mx)i > 0} and I−(x) = {i : xi(Mx)i < 0}.

The index sets I+(x) and I−(x) depend on the matrix M though they do not

explicitly represent the dependence. It should be noticed that the last inequality

can be rewritten as

xTMx+ 4κ
∑

i∈I+(x)

xi(Mx)i ≥ 0, ∀x ∈ Rn.

Observe that P?(0) is the set of positive semi-definite (PSD) matrices and P?(κ1) ⊂

P?(κ2) if 0 ≤ κ1 ≤ κ2.

We call M a P?-matrix if it belongs to the class P? = ∪κ≥0P?(κ).

The relationship between some of the above classes is as follows

SS ⊂ PSD, P ∩ SS = ∅, (PSD ∪ P ) ⊂ P? ⊂ P0.

Some of these relations are obvious, like PSD = P?(0) ⊂ P? or P ⊂ P?, while others

require a proof which can be found in [21, 52]

12



CHAPTER 1. BACKGROUND ON COMPLEMENTARITY PROBLEMS AND IPMS

1.4 Some problems formulated as linear

complementarity problems

1.4.1 Convex quadratic programming

Let us consider the following convex quadratic program:

min
x
{cTx+

1

2
xTQx : Ax ≤ b, x ≥ 0}, (QP)

where Q is a symmetric semidefinite matrix in Rn×n, c ∈ Rn, b ∈ Rm, x ∈ Rn and

A ∈ Rm×n with rank (A) = m.

By the K.K.T. optimality condition: x is an optimal solution of QP, if and only if, there

exists y ∈ Rm
+ , and λ ∈ Rn

+ such that
Qx+ c+ ATy − λ = 0

yT (b− Ax) = 0

λTx = 0

⇔


λ = Qx+ c+ ATy

µ = −Ax+ 0y + b

λTx+ µTy = 0, x, y, λ, µ ≥ 0.

The above conditions define LCP, where

M =

 Q AT

−A 0

 , q =

c
b

 .

1.4.2 Linear programming

Let us consider the following linear program in its canonical form

min
x
{cTx : Ax ≤ b, x ≥ 0}, (P)

and its dual

max
y
{bTy : ATy + z = c, z ≥ 0}, (D)

inspired from the QP case, the associated LCP, is given by

M =

 0 AT

−A 0

 , q =

c
b

 .

Result 1.2. In the corresponding LCP for convex quadratic programs (QP) and linear

programming (P), the matrix M is positive semi definite (PSD).

13



CHAPTER 1. BACKGROUND ON COMPLEMENTARITY PROBLEMS AND IPMS

1.4.3 Obstacle problems

The obstacle problem [59] can be formulated using the following equation and in-

equalities: find u such that

(ü(z)− f(z))T (u(z)− g(z)) = 0, ü(z)− f(z) ≥ 0, u(z)− g(z) ≥ 0,

where f(z) : Rn → Rn, g(z) : Rn → Rn, we approximate the second-order deriva-

tive ü with a second order centred finite difference to get a discrete version on an

equispaced grid zi = ih, i = 1, ..., n.

(Mu− f)T (u− g) = 0, Mu− f ≥ 0, u− g ≥ 0,

where gi = g(zi), fi = f(zi), M =



2

h2
−1

h2
0 . . . 0

−1

h2
. . . . . . . . . ...

0
. . . . . . . . . 0

... . . . . . . . . . −1

h2

0 . . . 0
−1

h2
2

h2


.

This can be written as a linear complementarity problem by setting x = u − g and

q = Mg − f , that is

(Mx+ q)Tx = 0, Mx+ q ≥ 0, x ≥ 0.

1.4.4 Absolute value equation

Let us consider the following Absolute value equation (AVE)

Az − |z| = b, (AVE)

where A ∈ Rn×n, b ∈ Rn, z ∈ Rn, and |z| denote the absolute value of z. Mangasarian

[56] has proved that the Absolute value equation (AVE) is equivalent to the general

LCP. Indeed, for z ∈ Rn, we define z+ = max(z, 0) and z− = max(0,−z). Then it is

easy to conclude that

z+ ≥ 0, z− ≥ 0, z = z+ − z−, |z| = z+ + z− and (z+)T z− = 0.
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Therefore, the AVE is equivalent to the general LCP with coefficient matrix and affine

vector:

M = (A+ I)(A− I)−1, q = ((A+ I)(A− I)−1 − I)b.

1.5 Some results of the existence and uniqueness

solution of CPs

In the theory of the CPs, mapping classes of the input F (including matrix M) play

a major role, since the CPs shows different properties depending on a class of input

mappings F (including matrices M).

Theorem 1.3 ([43]). Let F : Rn → Rn be a continuous and strongly monotone func-

tion. Then NCP has a unique solution.

Theorem 1.4 ([35]). Let F : Rn → Rn be a continuous and monotone function. If the

set of strictly feasible points is not empty, then NCP has a non empty compact solution

set.

Theorem 1.5 ([20]). Let M ∈ Rn×n be a positive semi-definite matrix. If the LCP is

feasible, then it is solvable.

This can be proved by showing that there exists a vector u satisfying the Karush-

Kuhn-Tucker (K.K.T.) condition of the quadratic programming problem QP:

(M +MT )x−MTu+ q ≥ 0,

xT ((M +MT )x−MTu+ q) = 0,

u ≥ 0,

uT (Mx+ q) = 0.

Another known property of monotone LCPs is that the solutions set is convex.

Theorem 1.6 ([52]). If M ∈ Rn×n is a positive definite matrix (PD), then the LCP has

a unique solution for any q ∈ Rn.

15
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Theorem 1.7 ([52]). A matrix M ∈ Rn×n is a P -matrix if and only if the LCP has a

unique solution for all vectors q ∈ Rn.

1.6 Solution methods for CPs

There are a variety of solutions approaches for CPs which have been studied inten-

sively. Among them:

1. Smoothing and non-smoothing methods: By employing an appropriate merit

or potential function, the NCP can be solved employing unconstrained mini-

mization techniques [4, 34, 36, 41]. However, this approach generally involves

non-smooth functions. The so called NCP functions, ψ : R2 → R, are such that

ψ(a, b) = 0 implies a ≥ 0, b ≥ 0 and ab = 0. Then, a solution of the NCP can be

obtained by solving the following nonlinear system of equations in
ψ(x1, F1(x))

...

ψ(xn, Fn(x))

 = 0

2. Lemke’s algorithm: is a pivoting algorithm introduced by Lemke [54] for solv-

ing LCPs and it is a generalization of Dantzig’s Simplex Method developed ear-

lier for LO based on the notion of complementarity pivots. Lemke’s algorithm

is known for its good numerical study, whereas in theory it is considered inef-

ficient because of its exponential arithmetic complexity expressed by the total

number of possible pivots. Nevertheless Lemke’s algorithm was extremely use-

ful.

3. Interior-point methods: Originally developed for linear optimization (LO), have

been successfully extended to CPs [53, 73]. Researchers have proposed algo-

rithms over the years that improve the effeciency of these methods [1, 10, 40,

41, 45, 57, 71], which have been a significant area of research in the field of op-
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timization. The class of path-following primal-dual IPMs deserved much more

attention due to their polynomial complexity and their practical efficiency

1.7 Some ways to determine search directions

Determining a search direction plays an important role in IPMs. In the last decade,

several types of search directions have been proposed. Some of them are based on

the strategy of so-called self-regular and kernel barrier functions. Meanwhile, others

are based on the strategy of algebraic equivalent transformation (AET) technique.

1.7.1 Kernel functions

Kernel functions play an important role in the design of new primal-dual interior-

point algorithms for solving CPs. Peng, Roos and Terlaky [64] introduced the notion

of self-regular barriers and they determined new large-update IPMs with better it-

eration bounds than the long step interior-point algorithms studied before. Various

IPMs have been successfully generalized to CPs [7, 11, 14, 16, 49, 70, 63].

Definition 1.8. [15] A function ψ : R++ → R+ is called kernel function if it is twice

continuously differentiable and if the following conditions hold:

1. ψ(1) = ψ′(1) = 0

2. ψ′′(t) > 0, for all t > 0;

3. lim
t→0

ψ(t) = lim
t→+∞

ψ(t) = +∞.

It should be mentioned that in some cases in the literature condition 3. used to

define the notion of coercive kernel function. This kernel function may be extended

to a positive v ∈ Rn
+ by

Ψ(v) =
n∑
i=1

ψ(vi).

This function is nonnegative, and zero if and only if v = e (i.e., v is the vector of

all-one).

17
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1.7.2 Algebraic equivalent transformation

In 2002, Darvay [25], uses the AET technique based on the univariate function ψ(t) =
√
t for LO. By means of this function, a new type of Newton direction is obtained and

the best iteration bound for feasible short-step IPAs is derived. This method was

extended successfully to convex quadratic optimization (CQO) and monotone LCP

by Achache (see, e.g., [1, 2, 5]), semidefinite optimization (SDO) and second-order

cone optimization (SCOP) by Wang and Bai (see, e.g.,[68, 69]). Besides, Kheirfam

and Haghighi [46] investigated the AETs based on the function ψ(t) =

√
t

2(1 +
√
t)

to

solve P∗(κ)-LCPs, where the best iteration bound is achieved for short-step methods.

Subsequently, Haddou et al. [40] presented a generalized direction in interior-point

methods for monotone LCP. Their approach is based on AET induced by the class

of smooth concave univariate functions. By utilizing the AET technique based on

the logarithmic function ψ(t) = log t, Pan et al. [62] presented an infeasible IPA to

solve LO. Furthermore, Darvay and Takács [28] developed a new IPA for LO based on

a new modified search direction induced by an asymptotic barrier kernel function.

The best polynomial complexity is provided. Recently, Darvay et al. [27], proposed

an IPA for LO where their search direction is based on AET introduced by the new

univariate function ψ(t) = t−
√
t. Later, Darvay et al. [30] generalized this algorithm

for sufficient LCP.
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Chapter 2

Path-following interior-point algorithm for

monotone linear complementarity problems

In this chapter, a path-following full-Newton step interior-point algorithm (IPA) for

solving monotone LCP is proposed. Under a new suggestion of the defaults of the

barrier parameter θ and the threshold τ , we show that this algorithm has the best-

known polynomial complexity, namely, O
(√

n log
n

ε

)
where n is the dimension of the

variables. Its efficiency is also confirmed by presenting some numerical experiments

on some monotone LCPs.

2.1 The LCP

Recall again from Subsection 1.3, that the LCP consists in finding vectors x, y in Rn

such that

x ≥ 0, y ≥ 0, y = Mx+ q, xTy = 0 (LCP)

where M is a given n × n matrix and q ∈ Rn. The notation x ≥ 0 and y ≥ 0 means

that xi ≥ 0 and yi ≥ 0 for all i = 1, ..., n.

For the problem LCP, we assume that the following conditions hold [17].

• The matrix M is positive semidefinite i.e., ∀x ∈ Rn : xTMx ≥ 0 (LCP is called

monotone).

•F s = {(x, y) ∈ R2n : y = Mx + q, x > 0, y > 0 } 6= ∅, the set of all strictly feasible

solutions of LCP, i.e. there exists an x0 > 0 such that y0 = Mx0 + q > 0.

These conditions imply that there exist a solution for the monotone LCP. Also it

is known [53] that finding a solution of LCP is equivalent to solving the following
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system: 
y = Mx+ q,

xy = 0, x ≥ 0, y ≥ 0.

(2.1)

2.1.1 The central-path of LCP

The basic idea behind path-following interior-point methods is to replace xy = 0 in

(2.1) by the perturbed equation xy = µe where µ > 0. Hence, we obtain the following

system of equations: 
y = Mx+ q

xy = µe, x > 0, y > 0.

(2.2)

Then for a fixed µ > 0 system (2.2) has a unique solution denoted by (x(µ), y(µ)),

which is called the µ−center of LCP. The set of µ−centers is called the central-path.

If µ goes to zero then the limit of the central-path exists and converges to a solution

of LCP [53, 78, 73].

2.1.2 The Newton search directions and proximity

Next, we want to define search directions (∆x,∆y) that move in direction of the

µ−centers (x(µ), y(µ)). Applying Newton’s method to (2.2) for a given strictly feasible

point (x, y) then the Newton direction (∆x,∆y) at this point is the unique solution

of the following linear system [67, 78, 73]:
∆y = M∆x,

X∆y + Y∆x = µe− xy.

This last can be written as:−M I

Y X

∆x

∆y

 =

 0

µe− xy

 , (2.3)

where X =diag(x) and Y =diag(y). For simplicity, we use the following notations

v :=

√
xy

µ
, dx :=

v∆x

x
, dy :=

v∆y

y
, d :=

√
x

y
. (2.4)
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Using (2.4), it yields the following scaled Newton system:
dy = M̄dx,

dx + dy = pv,

(2.5)

where M̄ = DMD with D = diag(d) and pv = v−1 − v.

For the analysis of the algorithm, we use a norm-based proximity measure δ(v)

defined by [67]:

δ := δ(xy;µ) =
‖pv‖

2
. (2.6)

Clearly,

δ(v) = 0⇔ v = e⇔ xy = µe.

Hence, the value of δ(v) can be considered as a measure for the distance between the

given pair (x, y) and the corresponding µ−center (x(µ), y(µ)).

Furthermore, we define the τ -neighborhood of the central path as follows:

N (τ, µ) = {(x, y) : x > 0, y = Mx+ q > 0 : δ(xy;µ) ≤ τ},

where τ is a threshold parameter and µ > 0 is fixed.

2.2 The interior-point algorithm and its complexity

analysis

In this section, we describe the path-following full-Newton step IPA for MLCP. The

algorithm starts with a strictly feasible initial point (x0, y0) such that δ(x0y0;µ0) ≤ τ

where 0 < τ < 1 and for a certain µ0 > 0 is known. The full-Newton step between

successive iterates for the system (2.2) is defined as (x+, y+) = (x + ∆x, y + ∆y)

where the Newton’s direction ∆x and ∆y are solutions for the linear system (2.3).

Then it updates the parameter µ by the factor 1− θ with 0 < θ < 1, and target a new

µ−center and so on. This procedure is repeated until the stopping criterion xTy ≤ ε

is satisfied for a given accuracy parameter ε.
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Therefore, the generic path-following full-Newton step interior-point algorithm

for LCP is described in Algorithm 1 as follows.

Algorithm 2.2.1 Full-Newton step IPA for monotone LCP
1: Initialize:
2: k = 0, µ(0) > 0, (x(0), y(0)) > 0;
3: an accuracy parameter ε > 0;

4: a barrier update parameter 0 < θ < 1; default θ =
1√

2(n+ 1)
;

5: a threshold parameter 0 < τ < 1; default value τ =
1√
2

;

Ensure: (x(0), y(0)) ∈ N (τ, µ(0))
6: while nµ ≥ ε do
7: Compute (∆x,∆y) from (2.3);
8: Set x(k+1) = x(k) + (∆x)(k) and y(k+1) = y(k) + (∆y)(k);
9: Set µ(k+1) := (1− θ)µ(k);

10: Set k = k + 1;
11: End

2.2.1 Analysis of the short-step IPA

In this subsection, we give a condition which guarantees the feasibility of the full-

Newton step. We start to give the following lemma which is a useful technical result

that will be used later in the analysis

Lemma 2.1 ([12]). Let δ = δ(xy;µ) > 0 where µ > 0 and (dx, dy) be the unique

solution of system (2.5). Then one has

0 ≤ dTx dy ≤ 2δ2, (2.7)

and

‖dxdy‖∞ ≤ δ2, ‖dxdy‖ ≤
√

2δ2. (2.8)

Lemma 2.2. Let (x, y) ∈ F s be a strictly feasible primal-dual point, then x+ = x+ ∆x

and y+ = y + ∆y are positive if and only if e+ dxdy > 0.

Proof. We have,

x+y+ = (x+ ∆x)(y + ∆y) = xy + x∆y + y∆x+ ∆x∆y.

22



CHAPTER 2. PATH-FOLLOWING IPA FOR MONOTONE LCP

Due to (2.4), we have µdxdy = ∆x∆y, andx∆y + y∆x = µv(dx + dy), then we get

x+y+ = µ(e+ dxdy).

If x+ > 0 and y+ > 0 then x+y+ > 0 and so e + dxdy > 0. Conversely, for each

0 ≤ α ≤ 1 denote x(α) := x+ α∆x, y(α) := y + α∆y. Therefore,

x(α)y(α) = xy + α(µe− xy) + α2∆x∆y.

If e+ dxdy > 0 then µe+ ∆x∆y > 0 and ∆x∆y > −µe. Hence

x(α)y(α) > (1− α)(xy + αµe) ≥ 0.

Thus, we obtain that for each 0 ≤ α ≤ 1 the x(α)y(α) ≥ 0 inequality holds, which

means that the linear functions of α, x(α) and y(α) do not change sign on the interval

[0, 1]. Consequently, x(0) = x > 0 and y(0) = y > 0 yields x(1) = x+ > 0 and

y(1) = y+ > 0. This completes the proof.

Lemma 2.3. Let δ = δ(xy;µ) < 1. Then x+ > 0 and y+ > 0, which means that the

full-Newton step is strictly feasible.

Proof. Due to Lemma 2.2, x+ > 0, y+ > 0 if and only if e+ dxdy > 0. Since

1 + (dxdy)i ≥ 1− |(dxdy)i| ≥ 1− ‖dxdy‖∞ ∀i,

then by (2.8), it follows that

1 + (dxdy)i ≥ 1− δ2.

Thus e + dxdy > 0 if δ < 1 and then x+ and y+ are strictly feasible. This completes

the proof.

The next lemma shows the influence of the full-Newton step on the proximity

measure. For convenience, we may write

v+ =

√
x+y+
µ

.

It is easy to see that

v2+ = e+ dxdy ⇔ x+y+ = µ(e+ dxdy). (2.9)
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Lemma 2.4. If δ < 1. Then δ+ := δ(v+;µ) ≤ δ2√
2(1− δ2)

.

Proof. By definition 2δ+ = ‖v+ − v−1+ ‖. Due to (2.9), we get v+ =
√
e+ dxdy and

v−1+ =
e√

e+ dxdy
, then

2δ+ = ‖ dxdy√
e+ dxdy

‖ ≤ ‖dxdy‖√
1− ‖dxdy‖∞

.

Hence from (2.8), δ+ ≤
δ2√

2(1− δ2)
. This completes the proof.

Corollary 2.5. Let δ ≤ 1√
2

, thus δ+ ≤ δ2 which means that the full-Newton step ensures

the local quadratic convergence of the proximity measure during the algorithm.

2.2.2 Complexity analysis of the short-step IPA

The next lemma examines what is the effect of the full-Newton step on the duality

gap during the algorithm process.

Lemma 2.6. Let δ = δ(xy;µ) and suppose that the vectors x+ and y+ are obtained

using a full-Newton step, thus x+ = x+ ∆x and y+ = y + ∆y. We have

(x+)Ty+ ≤ µ(n+ 2δ2),

and if δ ≤ 1√
2

, then

(x+)Ty+ ≤ 2µn. (2.10)

Proof. Using (2.9), we obtain (x+)Ty+ = µeT (e + dTx dy) = µ(n + dTx dy). Next, due to

(2.7), it follows that (x+)Ty+ ≤ µ(n+2δ2). Now, let δ ≤ 1√
2

then δ2 ≤ 1

2
from which it

implies that (x+)Ty+ ≤ µ(n+ 1). But since n+ 1 ≤ 2n, ∀n ≥ 1, this gives the required

result.

In the next lemma we analyze the effect which a Newton step followed by an

update of the parameter µ has on the proximity measure. Suppose that µ is reduced

by the factor (1− θ) at each iteration.
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Lemma 2.7. Let δ ≤ 1√
2

and µ+ = (1− θ)µ, where 0 ≤ θ < 1. Then

δ2(x+y+;µ+) ≤ 2

15
(1− θ) +

θ

2
+

1

8(1− θ)
.

Moreover, if θ = 1√
2(n+1)

and n ≥ 2, then δ(x+y+;µ+) ≤ 1√
2
.

Proof. We have,

4δ2(x+y+;µ+) = ‖
√

1− θv−1+ −
1√

1− θ
v+‖2

= ‖
√

1− θ(v−1+ − v+)− θ√
1− θ

v+‖2

= (1− θ)‖v−1+ − v+‖2 +
θ2

1− θ
‖v+‖2 − 2θ(v−1+ − v+)Tv+

= (1− θ)‖v−1+ − v+‖2 +
θ2

1− θ
‖v+‖2 − 2θ(v−1+ )Tv+ + 2θ(v+)Tv+

= 4δ2+(1− θ) +
θ2

1− θ
‖v+‖2 − 2θn+ 2θ‖v+‖2,

because (v−1+ )Tv+ = n and vT+v+ = ‖v+‖2. Next, Lemma 2.6 (2.10), implies that

‖v+‖2 =
1

µ
xT+y+ ≤ (n+ 1),

which it follows that

δ2(x+y+;µ+) ≤ (1− θ)δ2+ +
θ2(n+ 1)

4(1− θ)
+
θ

2
.

Let δ ≤ 1√
2

so δ2+ ≤
2

15
, and θ = 1√

2(n+1)
, then θ2 = 1

2(n+1)
, these imply that

δ2(x+y+;µ+) ≤ 2

15
+

11

30
θ +

1

8(1− θ)
.

For n ≥ 2, θ ∈
[
0, 1√

6

]
and consider the following function

f(θ) =
2

15
+

11

30
θ +

1

8(1− θ)
.

This function is continuous and monotone increasing on
[
0, 1√

6

]
since

f ′(θ) =
1

8 (θ − 1)2
+

11

30
> 0.

Consequently,

f(θ) ≤ f( 1√
6
) = 0.4943 <

1

2
, for all θ ∈

[
0, 1√

6

]
.

Then, after the barrier parameter is update to µ+ = (1− θ)µ with θ = 1√
2(n+1)

and if

δ ≤ 1√
2
, we obtain δ(x+y+;µ+) ≤ 1√

2
. This completes the proof.
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Lemma 2.7 indicates that Algorithm 2.2.1 is well defined, more exactly that the

conditions x > 0, y > 0 and δ(x+y+;µ+) ≤ 1√
2

hold during the algorithm process.

In the next lemma we compute a bound for the number of iterations produced by

the algorithm.

Lemma 2.8. Assume that the pair (x0, y0) ∈ F s with δ(x0y0;µ0) ≤ 1√
2

for each µ0 > 0.

Let xk and yk be the vectors obtained after k iterations. Then the inequality (xk)Tyk ≤ ε

is satisfied if k ≥
[

1

θ
log

2nµ0

ε

]
.

Proof. It follows from (2.10) in Lemma 2.6 that (xk)Tyk ≤ 2nµk = 2n(1 − θ)kµ0. In

this way (xk)Tyk ≤ ε stands if 2n(1− θ)kµ0 ≤ ε. We take logarithms, so we may write

k log(1 − θ) ≤ log ε − log(2nµ0). We know that − log(1 − θ) ≥ θ for 0 ≤ θ < 1, so

the inequality holds only if kθ ≥ log ε − log(2nµ0) = log

(
2nµ0

ε

)
. This proves the

lemma.

We end this subsection with a theorem that gives the iteration bound of the algo-

rithm.

Theorem 2.9. Using the defaults θ = 1√
2(n+1)

and τ = 1√
2

where µ0 =
1

2
, we obtain that

Algorithm 2.2.1 given in Fig. 1 requires at most O
(√

n log
n

ε

)
iterations for getting

an ε- approximated solution of LCP.

Proof. Let θ = 1√
2(n+1)

and µ0 =
1

2
, by using Lemma 2.8, the proof is straightforward.

This completes the proof.

2.3 Numerical results

For the implementation, our accuracy is set to ε = 10−6 and we use different values of

the barrier parameter µ0. In addition, we compare the obtained numerical results by

Algorithm 2.2.1 with those obtained by Algorithm 2.1 (Achache and Goutali [8]),

and Algorithm 2.3 (Achache and Tabchouche [12]) where their proposed thresholds

τ and update barrier parameters θ are given, respectively, by (τ =
1√
2
, θ =

1

2
√
n

)
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and

(
τ =

2√
10
, θ =

√
6

23n

)
.

Problem 1. Consider the monotone LCP where M and q are given by:

M =



2 1 1 1

1 2 0 1

1 0 1 2

−1 −1 −2 0


, q =



8

6

−2

6


.

The strictly feasible starting point taken in the algorithm is:

x0 = (0.05, 0.08, 1.79, 0.22)T , y0 = Mx0 + q.

The details of obtained numerical results with different values of µ0 are summarized

in Table 2.1.

Table 2.1: Numerical results for Problem 1.

0.5 0.05 0.005 0.0005

ITER CPU ITER CPU ITER CPU ITER CPU

Algorithm 2.2.1 39 0.0154 33 0.0112 27 0.0092 20 0.0058
Algorithm 2.3 50 0.0181 42 0.0136 34 0.0114 26 0.0095
Algorithm 2.1 51 0.0164 43 0.0138 35 0.0108 27 0.0097

A solution of LCP is given by

x? = (0, 0, 2, 0)T , y? = (10, 6, 0, 2)T .

Problem 2. Consider the following monotone LCP where M and q are given by

M =



1 0 −0.5 0 1 3 0

0 0.5 0 0 2 1 −1

−0.5 0 1 0.5 1 2 −4

0 0 0.5 0.5 1 −1 0

−1 −2 −1 −1 0 0 0

−3 −1 −2 1 0 0 0

0 1 4 0 0 0 0



, q =



−1

3

1

−1

5

6

1.5



.
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The strictly feasible starting point for this example is taken as:

x0 = (0.98, 0.14, 0.31, 1.84, 0.32, 0.12, 0.17)T , y0 = Mx0 + q.

The details of numerical results obtained with different relaxed barrier values of µ0

are summarized in Table 2.2.

Table 2.2: Numerical results for Problem 2.

0.5 0.05 0.005 0.0005

ITER CPU ITER CPU ITER CPU ITER CPU

Algorithm 2.2.1 53 0.0259 45 0.0170 37 0.0150 29 0.0114
Algorithm 2.3 71 0.0330 60 0.0281 49 0.0207 39 0.0172
Algorithm 2.1 72 0.0335 61 0.0284 50 0.0209 39 0.0173

The solution for this problem is given by

x? = (1, 0, 0, 2, 0, 0, 0)T , y? = (0, 3, 1.5, 0, 2, 5, 1.5)T .

Problem 3. The matrix M and the vector q for the monotone LCP are given by

M =



4 −2 0 · · · 0

−2 4 −2
. . . 0

0 −2 4
. . . 0

... . . . . . . . . . ...

0 0 0 · · · 4


, q =



−1

1

...

1

−1


.

The strictly feasible starting point taken in the algorithm is:

x0 = e ∈ Rn, y0 = Mx0 + q.

The obtained numerical results by three previous algorithms are summarized in Ta-

bles 2.3, 2.4 and 2.5.

28



CHAPTER 2. PATH-FOLLOWING IPA FOR MONOTONE LCP

Table 2.3: Numerical results for Problem 3 by Algorithm 2.2.1.

0.5 0.05 0.005 0.0005

ITER CPU ITER CPU ITER CPU ITER CPU

5 44 0.0077 37 0.0064 30 0.0053 23 0.0036
10 65 0.0156 55 0.0136 46 0.0105 36 0.0084
50 164 0.9144 142 0.8543 120 0.6329 98 0.5619
100 243 2.6210 212 2.3213 180 2.0481 149 1.7305
500 603 172.0450 531 154.0775 459 132.4235 388 112.8244
1000 887 1669.3372 785 1510.5483 683 1311.0767 581 1097.1375

Table 2.4: Numerical results for Problem 3 by Algorithm 2.3

0.5 0.05 0.005 0.0005

ITER CPU ITER CPU ITER CPU ITER CPU

5 57 0.0103 48 0.0083 40 0.0071 31 0.0059
10 88 0.0211 75 0.0175 62 0.0149 49 0.0109
50 228 1.2854 197 1.1388 166 0.9484 136 0.6826
100 339 3.1661 295 3.0346 251 2.7138 207 2.3356
500 837 239.1470 738 214.7906 638 196.9205 538 155.4740
1000 1231 2286.9273 1089 2025.3267 948 1761.2855 806 1515.7447

Table 2.5: Numerical results for Problem 3 by Algorithm 2.1

0.5 0.05 0.005 0.0005

ITER CPU ITER CPU ITER CPU ITER CPU

5 59 0.0111 50 0.0097 41 0.0078 31 0.0067
10 90 0.0215 77 0.0186 63 0.0159 50 0.0118
50 233 1.3874 201 1.2191 170 1.0140 139 0.8314
100 346 3.4691 301 3.1584 256 2.7953 211 2.3650
500 856 244.7315 754 221.2114 652 188.4625 550 160.8751
1000 1257 2335.6518 1113 2058.6456 969 1795.3135 824 1537.322

A solution of LCP is given by

x? = (0.25, 0, ..., 0, 0.25)T , y? = (0, 0.5, 1, ..., 1, 0.5, 0)T .
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Comments. Through the obtained numerical results stated in tables, we see that the

algorithm offers a solution for monotone LCPs under new choices of the defaults of

the updating barrier parameter θ and the threshold τ and obtains better numerical re-

sults with the relaxed parameter µ0 = 0.00005 and the update barrier θ =
1√

2(n+ 1)
,

since the number of iterations is significantly reduced compared to the numerical re-

sults obtained by using the two other defaults. Moreover, across the numerical results

obtained for the three examples of monotone LCP, confirm that Algorithm 2.2.1 per-

forms well in practice in comparison with Algorithm 2.1 and Algorithm 2.3, since

the number of iterations and the elapsed times (CPU) produced by our algorithm,

are always less than those obtained by the other algorithms.

2.4 Conclusion

In this chapter, we presented an efficient short-step full-Newton step primal-dual

interior-point algorithm for solving monotone LCP. We showed under the threshold

τ =
1√
2

and the updating barrier parameter θ =
1√

2(n+ 1)
that this algorithm

achieves the best-known polynomial complexity, namely, O
(√

n log
n

ε

)
. The numer-

ical results obtained by our algorithm, are very encouraging.
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Chapter 3

A path-following interior-point algorithm for

monotone LCP based on a modi�ed Newton

search direction

In [47], Kheirfam and Nasrollahi utilized the AETs technique based on the power

function ψq(t) = t
q
2 , q ≥ 1, to develop a full-Newton short-step IPA for LO. They of-

fered a family of new search directions with respect to the parameter q. Further,

under defaults τ =
2

(q − 1)2 + 2
and θ =

1

((2q − 1)3 − 5q)
√
n

with q ≥ 3, they ob-

tained the following iteration bound, namely,

O

√n log

µ0

(
n+

4q(q − 2)

((q − 1)2 + 2)2

)
ε

 .

Their study includes some earlier works. For example,

• for q = 1, then ψ(t) =
√
t and which is introduced by Darvay in [26, 29] for LO

and P∗(κ)-LCP;

• for q = 2, then ψ(t) = t, this gives the classical Newton directions [67];

• for q = 3, then ψ(t) = t
3
2 which is introduced recently by Moussaoui and

Achache in [61] for CQO;

• for q = 4, then ψ(t) = t2 which is introduced by Kheirfam in [48] for LO.

For more details about the AETs technique we direct the reader to the references

[26, 29, 45, 71].
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Based on the iteration bound obtained by [47], we notice that if q becomes very

large then θ gets very small. Consequently, the rate (1 − θ) which determines the

decrease in the barrier parameter converges to one. This leads to a slow convergence

and even to a divergence of their algorithm. So it clear that taking a member of

ψq(t) = t
q
2 with a large value of q leads to bad numerical results.

In this chapter, in order to improve the numerical results of these algorithms, we

reconsider the analysis of their IPAs designed for LO to the monotone LCP where

a non parametric univariate function, namely, ψq(t) = t
5
2 is suggested. Therefore,

similar to LO, we use the AET technique introduced by this function to nonlinear

equations of the system which defines the central-path of monotone LCPs, a modi-

fied nonlinear equations is obtained. The application of Newton method to the latter,

a modified search direction is offered. The proposed IPA uses full-Newton steps for

tracing approximately the central-path. Unlike LO case, the presence of non orthog-

onality of scaled directions in LCPs, a different analysis is stated. Further, under new

appropriate choices of defaults τ and θ, we prove that the algorithm is well-defined

and converges locally quadratically to a solution of monotone LCP. Moreover, the

currently best known iteration bound for the algorithm with short-update method,

namely, O
(√

n log
n

ε

)
is obtained. Some numerical results are presented to evaluate

our proposed algorithm. Further, in order to improve its efficiency, some changes

are imported on it. Finally, we compare the performances of our algorithm with a

previously Fischer type IPAs on a set of monotone LCPs.

3.1 Preliminaries and the problem statement

A monotone LCP consists in finding a couple of vectors (x, y) ∈ Rn × Rn such that

y −Mx = q, xy = 0, x ≥ 0, y ≥ 0, (LCP)

whereM ∈ Rn×n is positive semi-definite (PSD) and q ∈ Rn. Throughout this chapter,

we assume that the interior-point condition (IPC) holds for the monotone LCP, i.e.,
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there exists a pair of vectors (x0, y0) such that

y0 −Mx0 = q, x0 > 0, y0 > 0.

In this case the monotone LCP has a solution.

The main idea of path-following IPAs is to replace the equation xy = 0 in LCP by

the parameterized equation xy = µe where µ > 0. Hence, we obtain the system of

equations:

y −Mx = q, xy = µe, x, y > 0. (3.1)

Under the IPC condition, Kojima et al. [52] shows that system (3.1) has a unique

solution denoted by (x(µ), y(µ)) for each µ > 0, which is called the µ−center of

monotone LCP. The set of µ−centers is called the central-path of monotone LCP. If

µ goes to zero, then the limit of central-path exists and since the limit point satisfies

the complementarity condition xy = 0, the limit yields a solution of LCP.

3.2 The modified search directions for LCP

Following [2, 25], the AET technique for computing a new search direction for IPAs

is based on the transformation of the centrality equation xy = µe in (3.1) to the

new equation ψ(
xy

µ
) = ψ(e) where ψ : (0,+∞) → R is a continuously differentiable

function and invertible i.e., ψ−1 exists. Then, (3.1) is transformed to the following

system:

y −Mx = q, ψ(xy
µ

) = ψ(e), x, y ≥ 0, (3.2)

where ψ is applied coordinate-wisely. Applying Newton’s method to system (3.2) for

a given strictly feasible point (x, y) yields the new Newton system:
∆y −M∆x = 0,

1

µ
yψ′(

xy

µ
)∆x+

1

µ
xψ′(

xy

µ
)∆y = ψ(e)− ψ(

xy

µ
),

(3.3)

where ψ′ denotes the derivative of ψ.
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Next, to facilitate the analysis of the algorithm, we introduce the following nota-

tions:

v :=

√
xy

µ
, dx :=

v∆x

x
, dy :=

v∆y

y
, d :=

√
x

y
. (3.4)

From (3.2) and (3.4), system (3.3) can be written as follows:
dy − M̄dx = 0,

dx + dy = pv,

(3.5)

where

pv :=
ψ(e)− ψ(v2)

vψ′(v2)

and M̄ := DMD, D := diag(d). The system (3.5) determines a family of new scaled

Newton search directions related to the function ψ.

Next, some values of the vector pv related to different choices of the function ψ are

stated.

Functions ψ(t) The vector pv

ψ(t) = t (v−1 − v), (Roos and al. [67]. Standard),

ψ(t) =
√
t 2(e− v), (Darvay [26]),

ψ(t) = t−
√
t

2(v − v2)
2v − e

, v >
e

2
(Darvay and Takács [28]),

ψ(t) = log t −2v log v, (Pan [62]),

ψ(t) =

√
t

2(1 +
√
t)

e− v2, (Kheirfam and Haghani [46]),

ψ(t) = t
q
2 , q ≥ 1

2

q
(v1−q − v) (Kheirfam and Nasrollahi [47]),

ψ(t) = t
3
2

2

3
(v−2 − v) (Moussaoui and Achache [61]).

The value of pv for different functions ψ.

Now, we consider the AET introduced by the function ψ(t) = t
q
2 with q = 5. This

yields

pv =
2

5
(v−4 − v). (3.6)
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Moreover, system (3.3) becomes


∆y −M∆x = 0,

y∆x+ x∆y =
2µ

5

(xy
µ

)−3

2 −
(
xy

µ

) . (3.7)

Next, according to (3.6), we define a norm-based proximity measure as follows:

δ(v) := δ(xy;µ) :=
5

2
‖pv‖ = ‖v−4 − v‖. (3.8)

Clearly, δ(v) = 0⇔ v = e⇔ xy = µe. Therefore, the value of δ(v) can be considered

as a measure of the distance between the given pair (x, y) and the central-path.

Furthermore, we define the τ -neighborhood of the central-path as follows:

N (τ, µ) = {(x, y) : x > 0, y = Mx+ q > 0 : δ(xy;µ) ≤ τ},

where τ is a threshold (default) and µ > 0 is fixed.

3.2.1 The Algorithm

Now we are ready to describe the generic full-Newton step IPA for monotone LCP as

follows. First, we use a suitable threshold value, with 0 < τ < 5 and we suppose

that an initial point (x0, y0) ∈ N (τ, µ0) exists for certain µ0 > 0 is known. The full-

Newton step between successive iterates is defined as (x+, y+) = (x + ∆x, y + ∆y)

where the Newton directions ∆x and ∆y are solutions for the linear system (3.7).

Then it updates the parameter µ by the factor (1 − θ) with 0 < θ < 1, and target

a new µ-center and so on. This procedure is repeated until the stopping criterion

xTy ≤ ε is satisfied for a given accuracy parameter ε.

Therefore, the generic algorithm the full-Newton step IPA for monotone LCP is

stated as follows.
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Algorithm 3.2.1 Generic full-Newton step IPA for monotone LCP
1: Initialize:
2: k = 0, µ(0) > 0, (x(0), y(0)) > 0;
3: an accuracy parameter ε > 0;

4: a barrier update parameter 0 < θ < 1; default θ =
1

35
√

2n
;

5: a threshold parameter 0 < τ < 1; default τ = 1√
2
;

Ensure: (x(0), y(0)) ∈ N (τ, µ(0))
6: while nµ ≥ ε do
7: Compute (∆x,∆y) from (3.7);
8: Set x(k+1) = x(k) + (∆x)(k) and y(k+1) = y(k) + (∆y)(k);
9: Set µ(k+1) := (1− θ)µ(k);

10: Set k = k + 1;
11: End

3.3 Analysis of the algorithm

In this section, we will show across the new defaults of θ and τ , that Algorithm

3.2.1 is well-defined and converges locally quadratically to a solution of monotone

LCP. Moreover, we show its polynomial complexity. We mention that due to non

orthogonality of the scaled direction, our analysis is quite different from those used

in LO case.

Next, the following technical results are essentially provided in our analysis. The

next lemma is similar to the one given in Lemma 2.1. Here, for the benefits of readers,

we reconsider the proof according to the new proximity.

Lemma 3.1. Let µ > 0 and (dx, dy) be a solution of system (3.5) with δ := δ(xy;µ).

Then one has

0 ≤ dTx dy ≤
2

25
δ2 (3.9)

and

‖dxdy‖∞ ≤
δ2

25
, ‖dxdy‖ ≤

√
2

25
δ2. (3.10)

Proof. For the first part of (3.9) we have, dTx dy =
1

µ
(∆x)T∆y =

1

µ
(∆x)TM∆x ≥ 0,

since M is PSD. The second part of it, follows trivially from the following equality

4

25
δ2 = ‖pv‖2 = ‖dx + dy‖2 = ‖dx‖2 + ‖dy‖2 + 2dTx dy ≥ 2dTx dy.
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For the first claim in (3.10), since

dxdy =
1

4
((dx + dy)

2 − (dx − dy)2),

and

‖dx + dy‖2 = ‖dx − dy‖2 + 4dTx dy,

but since dTx dy ≥ 0, it follows that ‖dx − dy‖ ≤ ‖dx + dy‖. On the other hand,

‖dxdy‖∞ =
1

4
‖(dx + dy)

2 − (dx − dy)2‖∞

≤ 1

4
max(‖ dx + dy‖2∞, ‖dx − dy‖2∞)

≤ 1

4
max(‖dx + dy‖2, ‖dx − dy‖2) ≤

1

4
‖dx + dy‖2 =

1

4
‖pv‖2 =

δ2

25
.

Therefore, ‖ dxdy ‖∞≤
δ2

25
. Next, to prove the last claim of (3.10), we have

‖dxdy‖2 = eT (dxdy)
2 =

1

16
eT
(
(dx + dy)

2 − (dx − dy)2
)2

=
1

16

∥∥(dx + dy)
2 − (dx − dy)2

∥∥2
≤ 1

16

(
‖(dx + dy)

2‖2 + ‖(dx − dy)2‖2
)
≤ 1

16

(
‖dx + dy‖4 + ‖dx − dy‖4

)
≤ 1

8
‖dx + dy‖4 =

1

8
‖pv‖4 =

2

54
δ4.

Hence, ‖dxdy‖ ≤
√

2

25
δ2. This completes the proof.

In the next lemma, we show the feasibility of a full-Newton step under the condi-

tion δ < 5 throughout the algorithm.

Lemma 3.2. Let δ < 5, then x+ = x + ∆x > 0 and y+ = y + ∆y > 0, i.e., the

full-Newton step is strictly feasible.

Proof. For any α ∈ [0, 1] and (x, y) a strictly feasible point for LCP LCP, we have

x(α)y(α) = (x+ α∆x)(y + α∆y) = xy + α(x∆y + y∆x) + α2∆x∆y.

Using (3.4), we get,

x(α)y(α) = µ
(
(1− α)v2 + α(v2 + vpv + αdxdy)

)
. (3.11)

37



CHAPTER 3. A PATH-FOLLOWING IPA FOR MLCP BASED ON A MODIFIED
NEWTON SEARCH DIRECTION

So x(α)y(α) > 0 if v2 + vpv + αdxdy > 0. Due to (3.10) in Lemma 3.1 and (3.6) with

δ < 5, it follows that

v2 + vpv + αdxdy ≥ v2 + vpv − α‖dxdy‖∞e

≥ v2 + vpv − α
δ2

25
e

=
3

5
v2 +

2

5
v−3 − α δ

2

25
e

>
3

5
v2 +

2

5
v−3 − e.

Hence it is clear that x(α)y(α) > 0 if
3

5
v2 +

2

5
v−3− e ≥ 0. Let us consider the function

g(t) =
3

5
t2 +

2

5
t−3 − 1 for t > 0. From g′′(t) > 0, it follows that g is strictly convex

and therefore, it has a minimum at t = 1, since g′(1) = 0, so g(t) ≥ g(1) = 0,∀t > 0.

Hence,
3

5
v2 +

2

5
v−3 − e ≥ 0.

Thus x(α)y(α) > 0 for α ∈ [0, 1]. Since x and y are positive we obtain that x(α) > 0

and y(α) > 0 for all α ∈ [0, 1]. Then, by continuity the vectors x(1) = x+ and

y(1) = y+ are positive, i.e., x+ > 0 and y+ > 0 are strictly feasible. This completes

the proof.

For convenience, we may write

v+ =

√
x+y+
µ

.

Lemma 3.3. If δ < 5, then min v+ ≥
1

5

√
25− δ2.

Proof. From (3.11) in the proof of Lemma 3.2, setting α = 1 and as x(1) = x+,

y(1) = y+ and pv =
2

5
(v−4 − v), we get

v2+ = v2 + vpv + dxdy =
3

5
v2 +

2

5
v−3 + dxdy.

By Lemma 3.2, we have seen that
3

5
v2 +

2

5
v−3− e ≥ 0 if δ < 5, hence

3

5
v2 +

2

5
v−3 ≥ e.

Consequently, v2+ ≥ e+ dxdy. Next, using (3.10), we deduce that

v2+ ≥ e+ dxdy ≥ (e− ‖dxdy‖∞e) ≥
(

1− δ2

25

)
e =

1

25
(25− δ2)e,

hence min v+ ≥
1

5

√
25− δ2. This completes the proof.
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Next, we prove that the iterate across the proximity measure is locally quadrati-

cally convergent during the algorithm.

Lemma 3.4. Let (x, y) a strictly feasible point for LCP LCP and δ < 5. Then

δ+ := δ(v+) := δ(x+y+;µ) ≤
(

25

25− δ2
+

54

(25− δ2)2
+

5

5 +
√

25− δ2

)(
3

5
+

√
2

25

)
δ2.

In addition, assume δ ≤ 1

4
, then δ+ ≤ δ2, which means the locally quadratically conver-

gence of the proximity measure.

Proof. We have

δ+ =
∥∥v−4+ − v+

∥∥ =

∥∥∥∥e− v5+v4+

∥∥∥∥ =

∥∥∥∥(e− v2+)

(
e+ v+ + v2+ + v3+ + v4+

(e+ v+)v4+

)∥∥∥∥ .
Consider the function

f(t) =
1 + t+ t2 + t3 + t4

(1 + t)t4
=

1

t2
+

1

t4
+

1

1 + t
.

Using f we can write

δ+ = ‖f(v+)(e− v2+)‖ ≤ ‖f(v+)‖∞‖e− v2+‖.

The function f is continuous and positive on (0,+∞). Moreover, from f ′(t) < 0 for

t > 0 it follows that f is decreasing, therefore,

0 < |f((v+)i)| = f((v+)i) ≤ f(min v+) ≤ f

(
1

5

√
25− δ2

)
.

Consequently

‖f(v+)‖∞ =
25

25− δ2
+

54

(25− δ2)2
+

5

5 +
√

25− δ2
.

This implies that

δ+ ≤
(

25

25− δ2
+

54

(25− δ2)2
+

5

5 +
√

25− δ2

)
‖e− v2+‖.

Next, setting α = 1 in (3.11), and due to (3.6), we have,

‖e− v2+‖ = ‖e− (v2 + vpv + dxdy)‖ = ‖e− 3

5
v2 − 2

5
v−3 − dxdy‖.

39



CHAPTER 3. A PATH-FOLLOWING IPA FOR MLCP BASED ON A MODIFIED
NEWTON SEARCH DIRECTION

Hence

‖e− v2+‖ ≤
∥∥∥∥e− 3

5
v2 − 2

5
v−3
∥∥∥∥+ ‖dxdy‖.

Next, we may write ∥∥∥∥e− 3

5
v2 − 2

5
v−3
∥∥∥∥ =

∥∥∥∥ϕ(v).
25

4
p2v

∥∥∥∥ ,
where

ϕ(v) =
e− 3

5
v2 − 2

5
v−3

(v−4 − v)2
= − v

5(3v3 + 6v2 + 4v + 2e)

5(v4 + v3 + v2 + v + e)2
.

Let us consider the function

ϕ(t) = − t5(3t3 + 6t2 + 4t+ 2)

5(t4 + t3 + t2 + t+ 1)2
. (3.12)

This function is continuous and monotonically decreasing and negative on (0,+∞) ,

and consequently, we have

−3

5
= lim

t7→+∞
ϕ(t) < ϕ(t) ≤ 0, ∀t > 0.

This implies that

0 ≤ |ϕ(vi)| = −ϕ(vi) <
3

5
,∀i = 1, ..., n.

Then as ‖pv‖2 =
4

25
δ2, ‖ϕ(v)‖∞ = max

i
|ϕ(vi)| ≤

3

5
, and ‖p2v‖ ≤ ‖pv‖2, it yields∥∥∥∥e− 3

5
v2 − 2

5
v−3
∥∥∥∥ ≤ ‖ϕ(v)‖∞

25

4
‖pv‖2 =

3

5
δ2.

Due to (3.10), ‖dxdy‖ ≤
√

2

25
δ2, we get ‖e− v2+‖ ≤

(
3

5
+

√
2

25

)
δ2. This implies that

δ+ ≤
(

25

25− δ2
+

54

(25− δ2)2
+

5

5 +
√

25− δ2

)(
3

5
+

√
2

25

)
δ2.

Next, assume δ ≤ 1

4
, then we get δ+ ≤ 1.6466δ2. This completes the proof.

The next lemma shows the influence of a full-Newton step on the duality gap and

gives an upper bound for it.

Lemma 3.5. Let δ = δ(xy;µ) and suppose that the vectors x+ and y+ are obtained using

a full-Newton step, thus x+ = x+∆x and y+ = y+∆y. We have (x+)Ty+ ≤ µ(n+2δ2).

In addition, if δ ≤ 1

4
, then

(x+)Ty+ ≤ 2µn. (3.13)
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Proof. Due to (3.4) and (3.6) we have

v2 + vpv + dxdy =
3

5
v2 +

2

5
v−3 + dxdy,

then

x+y+ = µ(v2 + vpv + dxdy) = µ

e+
25

4
p2v.

3

5
v2 +

2

5
v−3 − e

(v−4 − v)2
+ dxdy


≤ µ

(
e+

25

4
p2v + dxdy

)
,

since after some reductions,

3

5
v2i +

2

5
v−3i − 1

(v−4i − vi)2
= −ϕ(vi) <

3

5
< 1, for all i

where ϕ is defined in (15). Then from (3.8) and (3.9), we get

(x+)Ty+ = eT (x+y+) ≤ µ

(
n+

25

4
‖pv‖2 +

2

25
δ2
)
≤ µ(n+ 2δ2).

Next, let δ ≤ 1

4
so δ2 ≤ 1. Using this fact we deduce that (x+)Ty+ ≤ µ(n + 2). But

since n+ 2 ≤ 2n,∀n ≥ 2. This completes the proof.

In the next theorem we analyze the effect of a full-Newton step on the proximity

by updating the parameter µ by a factor (1− θ).

Theorem 3.6. Let δ ≤ 1

4
and µ+ = (1− θ)µ, where 0 < θ < 1. Then

δ(x+y+;µ+) ≤ 5
√

2n θ√
1− θ

+ δ+.

In addition, if δ ≤ 1

4
and θ =

1

35
√

2n
, n ≥ 2, then δ(x+y+;µ+) ≤ 1

4
.

Proof. As
√
x+y+
µ+

=
1√

1− θ
v+ and δ+ = ‖v−4+ − v+‖, we have

δ(x+y+;µ+) =

∥∥∥∥(√ x+y+
(1−θ)µ

)−4
−
√

x+y+
(1− θ)µ

∥∥∥∥ =

∥∥∥∥(1− θ)2v−4+ −
1√

1− θ
v+

∥∥∥∥
=

∥∥∥∥(1− θ)2v−4+ − (1− θ)2v+ + (1− θ)2v+ −
1√

1− θ
v+

∥∥∥∥ .
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Next, from the triangular inequality it follows that

δ(x+y+;µ+) ≤
∥∥(1− θ)2v−4+ − (1− θ)2v+

∥∥+

∥∥∥∥(1− θ)2v+ −
1√

1− θ
v+

∥∥∥∥
= (1− θ)2δ+ +

∣∣∣∣(1− θ)2 − 1√
1− θ

∣∣∣∣ ‖v+‖
≤ δ+ +

∣∣∣∣(1− θ)2 − 1√
1− θ

∣∣∣∣ ‖v+‖
= δ+ +

∣∣∣∣(1− θ)2 − √1− θ
1− θ

∣∣∣∣ ‖v+‖
= δ+ +

1

|1− θ|

∣∣∣(1− θ)3 −√1− θ
∣∣∣ ‖v+‖

= δ+ +

∣∣∣∣ (1− θ)5 − 1

(1− θ)3 +
√

1− θ

∣∣∣∣ ‖v+‖
= δ+ +

∣∣∣∣−θ(θ4 − 5θ3 + 10θ2 − 10θ + 5)

(1− θ)3 +
√

1− θ

∣∣∣∣ ‖v+‖.
Next, as

1

(1− θ)3 +
√

1− θ
≤ 1√

1− θ
, and 0 < θ4−5θ3+10θ2−10θ+5 ≤ 5, ∀ θ ∈ (0, 1),

and also due to (3.13) in Lemma 3.5, we have ‖v+‖ ≤
√

2n it follows that,

δ(x+y+;µ+) ≤ δ+ +
5
√

2nθ√
1− θ

, ∀ θ ∈ (0, 1).

As δ+ ≤ 1.6466δ2 and let δ ≤ 1

4
, then we get

δ(x+y+;µ+) ≤ 0.1029 +
5
√

2n θ√
1− θ

.

Let θ =
1

35
√

2n
, n ≥ 2, hence θ ∈

[
0,

1

70

]
. Finally, we conclude that

δ(x+y+;µ+) ≤ h(θ)

where

h(θ) =
1

7
√

1− θ
+ 0.1029.

As h′(θ) > 0, ∀θ ∈
[
0,

1

70

]
, hence h(θ) is an increasing function so h(θ) ≤ h(

1

70
) =

0.2468. Finally, we deduce δ(x+y+;µ+) ≤ 1

4
. This proves the theorem.

Theorem 3.6 shows that Algorithm 3.1 is well defined, since (x, y) ∈ N is maintained

throughout the algorithm.

42



CHAPTER 3. A PATH-FOLLOWING IPA FOR MLCP BASED ON A MODIFIED
NEWTON SEARCH DIRECTION

3.3.1 Iteration bound

Lemma 3.7. Assume that the pair (x0, y0) is strictly feasible point and δ(x0y0;µ0) ≤
1

4

for a fixed µ0 > 0. Let xk and yk be the vectors obtained after k iterations with µ := µk.

Then the inequality (xk)Tyk ≤ ε is satisfied if k ≥
⌈

1

θ
log

nµ0

ε

⌉
.

Proof. We have µk = (1−θ)µk−1 = (1−θ)kµ0, then from Lemma 3.5 (3.13), (xk)Tyk ≤

(1 − θ)k2nµ0. So (xk)Tyk ≤ ε holds if (1 − θ)k2nµ0 ≤ ε. By taking the logarithm, we

deduce that k log(1−θ) ≤ log ε− log 2nµ0. Next, by the inequality − log(1−θ) ≥ θ for

all 0 < θ < 1, we obtain kθ ≥ log 2nµ0− log ε = log
2nµ0

ε
. This proves the lemma.

Theorem 3.8. Using the defaults θ =
1

35
√

2n
, n ≥ 2 and δ =

1

4
where µ0 =

1

2
.

Algorithm 3.2.1 requires at most O(
√
n log

n

ε
) iterations for getting an ε-approximate

solution of LCP.

Proof. Let θ =
1

35
√

2n
and µ0 =

1

2
, by using Lemma 3.7, the proof is straightforward.

3.4 Numerical results

To evaluate the performance of Algorithm 3.2.1, we consider some examples of

monotone LCP problems of different sizes, each example is followed by two tables

one contains initial starting points and the other summarizes numerical results ob-

tained by the algorithm. In our implementation, we use ε = 10−4 and µ0 =
(x0)Ty0

n
.

In addition, we compare the obtained numerical results by Algorithm 3.2.1 with

those obtained by Algorithm in Fig. 1 (Kheirfam and Nasrollahi [47]), where their

proposed threshold τ and update barrier parameter θ if q = 5 are given by (τ =
1

9
,

θ =
1

704
√
n

). A solution of the monotone LCP is denoted by x?. Finally, the ”Iter” and

”CPU” denote the number of iterations and the elapsed time, respectively.

Problem 1. Consider the following MLCP where M ∈ R5×5 and q ∈ R5 are given by:
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M =



6 6 4 3 2

8 21 14 10 12

4 14 13 5 9

4 10 5 6 5

3 12 8 4 10


, q =



−20.5

−64.5

−44.5

−29.5

−36.5


.

For this example, the initial point for the algorithm is taken as

x0 = (1, 1, 1, 1, 1)T , y0 = Mx0 + q = (0.5, 0.5, 0.5, 0.5, 0.5)T ,

with the proximity δ(x0y0, µ0) = 0, i.e., (x0, y0) ∈ N (τ, µ0).

A solution of Problem 1 is:

x? = (0.6364, 2.3222, 0.5847, 0, 0.2046)T , y? = (0, 0, 0, 0.2149, 0)T .

Problem 2. In this example of MLCP, M ∈ R8×8 and q ∈ R8 are given by:

M =



8 9 13 13 5 11 9 10

8 10 15 15 7 12 10 12

13 15 26 26 10 20 13 21

13 15 26 26 10 20 12 20

5 7 10 10 5 9 5 8

11 12 20 20 9 19 13 15

9 10 13 12 5 13 16 13

10 12 21 20 8 15 13 22



, q =



−8.265

−9.3033

−14.835

−14.4633

−5.995

−12.4133

−10.015

−12.3033



.

The initial starting points considered for Problem 2 is

x0 = (0.2233, 0.1893, 0.1207, 0.1202, 0.2758, 0.1431, 0.1961, 0.1403)T ,

y0 = Mx0 + q = (4.4778, 5.2820, 8.2864, 8.3217, 3.6254, 6.9875, 5.1000, 7.1288)T ,

with the proximity δ(x0y0, µ0) = 0.0011, i.e., (x0, y0) ∈ N (τ, µ0).

A solution of Problem 2 is:

x? = (0.1948, 0, 0.2655, 0, 0.2506, 0, 0.2221, 0)T ,
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y? = (0, 0.2165, 0, 0.1495, 0, 0.1872, 0, 0.1178)T .

Problem 3. Let us consider the MLCP where M and q are given by:

M =



1 2 2 · · · 2

2 5 6 · · · 6

2 6 9 · · · 10

...
...

... . . . ...

2 6 10 · · · 4n− 3


, q = −Me+ e.

For this example, we consider the following initial starting point x0 = y0 = e, where

the proximity δ(x0y0, µ0) = 0, i.e., (x0, y0) ∈ N (τ, µ0).

In Table 3.1, the obtained numerical results for Problems 1,2 and 3 are summarized.

Table 3.1: Number of iterations and CPU time for Problems 1,2 and 3.

Algorithm 3.2.1 Kheirfam Algorithm

n ITER CPU ITER CPU
Problem 1 5 1116 0.5311 15937 4.9717
Problem 2 8 1479 0.8817 21095 7.7729

5 1193 0.5481 17027 5.1758
10 1797 1.1259 25625 12.7354
20 2696 2.4844 38424 31.6842

Problem 3 30 3413 4.4300 48624 70.1209
50 4587 13.6326 - -
100 6832 120.4609 - -

Comment 1. Across the Table 3.1, we see that the number of iterations and the

elapsed time produced by our algorithm by using our theoretical default θ =
1

35
√

2n
are too much higher. This means that the algorithm converges to a solution of LCP but

very slowly. Meanwhile, for the default θ =
1

704
√
n

proposed by [47], the algorithm

diverges when n reaches the size n ≥ 50. It is clear that our numerical results are

better than those given by the algorithm in [47].

In general, the obtained numerical results by using both θ are not good. The cause

is due to the fact that the defaults of θ become very small for large size problems.
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This leads during the execution of algorithms that the rate of decrease (1− θ) in the

sequence of barrier parameters {µk} becomes close enough to one.

3.4.1 A numerical amelioration for the algorithm

In this subsection, in order to ameliorate the performances of Algorithm 3.2.1, we

make some changes, where instead of using the theoretical default of θ, we select

them as a constant which belongs to (0, 1) and we use ε = 10−7. Further, to keep

iterations positive, we introduce a step-size αk > 0 such that xk + ραk(∆x)k > 0 and

yk + ραk(∆y)k > 0 with αk = min{1, ᾱ} and ρ ∈ (0, 1) where ᾱ = min{αx, αy} and

αx, αy are given by

αx = {−(xi)
k/(∆xi)

k; (∆xi)
k < 0}; αy = {−(yi)

k/(∆yi)
k; (∆yi)

k < 0}.

Our obtained numerical results based on those modifications are compared with Fis-

cher Algorithm [34] and summarized in Table 3.2.

Comment 2. Across the Table 3.2, we see that the number of iterations and the

elapsed time produced by the ameliorated algorithm when using the default θ as a

constant are too much lower. Meanwhile, for the algorithm proposed by [34], the

algorithm diverges when n reaches the size n > 100. It is clear that our numerical

results are better than those given by the algorithm in [34].

Table 3.2: Number of iterations and CPU time for Problems 1,2 and 3.

Ameliorated Algorithm Fischer Algorithm

θ 0.7 0.9

n ITER CPU ITER CPU ITER CPU
Problem 1 5 11 0.0070 6 0.0043 21 0.9959
Problem 2 8 11 0.0084 6 0.0055 24 1.86589

10 11 0.0092 6 0.0061 24 2.1962
20 12 0.0150 6 0.0076 26 3.1721

Problem 3 50 13 0.0626 7 0.0364 29 5.1747
100 13 0.3405 7 0.2154 31 7.1820
500 15 6.0800 8 3.9539 - -
1000 16 44.6532 8 22.9708 - -
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The numerical results presented in Table 3.1, while confirming the theory, are done

on some very simple and artificial examples, we decided to present in the second

part of this section the results obtained by running our algorithm on some selection

of LCPs from the NETLIB repository [37], the obtained numerical results for this set

of Problems are summarized in Table 3.3. In this case for the choice of feasible initial

points we used the homogeneous and self-dual LCPs model in [75].

Table 3.3: Number of iterations and CPU time of the ameliorated Algorithm for
NETLIB set Problems.

θ 0.55 0.65

Problem n ITER CPU ITER CPU
afiro 78 26 0.5634 20 0.4593
kb2 111 27 1.2623 20 0.9382
sc50b 128 27 1.5837 20 1.1549
blend 188 27 3.7828 21 3.1589
adlittle 194 27 3.5741 21 2.7790
share2b 258 28 5.9648 21 5.3182
stocfor1 282 28 11.9502 21 8.2487
recipe 295 28 6.6336 21 5.0846
scagr7 314 28 11.7109 21 8.8844
share1b 370 28 19.5827 21 23.6124
grow7 441 28 39.6760 22 26.6245
beaconfd 468 28 31.4545 22 27.4596
e226 695 29 114.0905 22 68.2650
capri 753 29 115.2951 22 96.8791
bandm 777 29 174.6404 22 138.2905
agg 1103 30 329.4844 24 212.2758

3.5 Conclusion and remarks

In this chapter, we presented a feasible full-Newton step IPA for monotone LCP. The

proposed algorithm is based on a new modified search direction obtained by using

the technique of AET induced by the function ψ(t) = t
5
2 . The polynomial complexity

of this algorithm is proved via appropriate choices of parameters (defaults), namely
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τ =
1

4
and θ =

1

35
√

2n
, n ≥ 2. The evaluation of Algorithm 3.2.1, across the obtained

numerical results, shows its slow convergence. Even for the version proposed by

[47].

Based on our numerical amelioration the new obtained results are significantly

ameliorated. It should be noted here that getting initial starting points for these

algorithms which verify the theoretical conditions such that the strict feasibility and

the closeness to central-path still a serious problem.
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Chapter 4

A Newton descent logarithmic barrier

interior-point algorithm for monotone LCP

Among many solution methods for LCP, the barrier logarithmic interior-point ap-

proach deserves a great attention due to its numerical efficiency (see [2, 5, 19, 27,

40, 73]).

In this chapter, based on the optimization techniques, we have transformed the

LCP problem into a convex quadratic optimization (CQO) problem, then an uncon-

strained barrier logarithmic problem is stated. The existence and the uniqueness of

an optimal solution of the latter is showed and its convergence to an optimal solu-

tion of LCP is proved. For its numerical aspects, the descent direction is computed

via Newton’s method. Meanwhile, our contribution in this chapter is to exploit the

alternative of so-called minorant and majorant functions for determining the dis-

placement step along this direction. The obtained numerical results are promising

and show the effectiveness of our new approach used.

4.1 Preliminaries

Throughout the chapter, we assume that the following conditions hold for the LCP.

• (PSD). The matrix M is positive semi-definite. In this case the LCP is called

monotone.

• (SF). F s = {x ∈ Rn : x > 0, Mx + q > 0} 6= ∅. The set of strictly feasible

solutions of LCP.
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4.1.1 Statistical inequalities

Lemma 4.1 (Theorem 5 in [23]). Let w1, . . . , wn s.t. wi > 0, ∀i = 1, . . . , n be a sample

of size n, then

D1 ≤
n∑
i=1

ln(wi) ≤ D2

where

D1 = (n− 1) ln

(
w̄ +

σw√
n− 1

)
+ ln

(
w̄ − σw

√
n− 1

)
,

D2 = (n− 1) ln

(
w̄ − σw√

n− 1

)
+ ln

(
w̄ + σw

√
n− 1

)
,

and

w̄ =
1

n

n∑
i=1

wi et σw =

√
1

n
‖w‖2 − w̄2 =

√√√√ 1

n

n∑
i=1

(wi − w̄)2,

denote the mean value of w and its deviation, respectively.

4.2 The barrier problem Pµ associated to the

monotone LCP

First, we have transformed LCP into a convex quadratic optimization:

m = inf[g(x) = 〈x,Mx+ q〉 : x ≥ 0, Mx+ q ≥ 0]. (CQO)

We denote by Sol(CQO) the set of optimal solutions of this problem and by Sol(LCP )

the set of solutions of LCP. Clearly, x ∈ Sol(LCP ) if and only if m = 0 and x ∈

Sol(CQO). It is known that, if (PSD) and (SF) hold, then m = 0, Sol(CQO) and

Sol(LCP ) coincide (e.g, see, Wright [73], Theorem 8.4 ).

We apply now the logarithmic barrier approach to CQO to replace the non-

negativity conditions x ≥ 0 and Mx + q ≥ 0 by additional logarithmic barrier terms

to the objective function for µ > 0 (the barrier parameter), we obtain

f(x, µ) =


〈x,Mx+ q〉 − µ

n∑
i=1

lnxi〈Mx+ q, ei〉+ nµ lnµ, x ∈ F s,

+∞, otherwise,
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where {ei}ni=1 is the canonical basis of Rn.

Let now introduce the function m(µ) defined by

m(µ) = inf
x

[fµ(x) := f(x, µ) : x ∈ F s] . (Pµ)

Pµ is the barrier problem associated to CQO. By construction, P0 is only the problem

CQO, and we have m = m(0) = 0. So solving LCP is equivalent to solving the

perturbed problem Pµ with µ gradually decreases to zero.

Now we focus on the theoretical study of Pµ i.e., the existence and the uniqueness

of an optimal solution of Pµ and this optimal solution converges to a solution of LCP

as µ tends to zero.

We have the gradient and the Hessian of the objective fµ(x) of Pµ are given by

∇fµ(x) = ∇g(x)− µX−1e− µ
n∑
i=1

MT ei
〈ei,Mx+ q〉

, (4.1)

and

H := ∇2fµ(x) = ∇2g(x) + µX−2 + µ
n∑
i=1

(MT ei)(M
T ei)

T

〈ei,Mx+ q〉2
, (4.2)

where

∇g(x) = (M +MT )x+ q and ∇2g(x) = (M +MT ), (4.3)

with X−1 := diag

(
1

x

)
and X−2 := diag

(
1

x2

)
.

Lemma 4.2. Under our hypothesis the objective function fµ(x) is strictly convex.

Proof. We shall prove that the Hessian H is a positive definite matrix for all x ∈ F s

and µ > 0. We prove first that the matrix (MT ei)(M
T ei)

T is symmetric positive

semidefinite for all i. We have for all nonzero y ∈ Rn,

〈(MT ei)(M
T ei)

Ty, y〉 = 〈eieTi My,My〉 = 〈eTi My, eTi My〉 = |eTi My|2 ≥ 0, ∀i = 1, . . . , n.

This implies that (MT ei)(M
T ei)

T ∈ Rn×n are symmetric positive semidefinite for all

i = 1, . . . , n. So their sum is also symmetric positive semidefinite matrix. Next, as M

is positive semi-definite and the diagonal matrix µX−2 is positive definite with µ > 0,

then the matrix H is positive definite too. This implies that fµ(x) is strictly convex
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for each µ > 0. Therefore, if any minimizer of Pµ exists, is unique. This completes

the proof.

Theorem 4.3 (Theorem A.3. in [52]). Let the LCP satisfy the conditions (PSD) and

(SF). Then the problem Pµ has a unique minimal solution x(µ) for every µ > 0.

Lemma 4.4. Let µ > 0 and x(µ) be an optimal solution of Pµ, then x? = lim
µ→0

x(µ) is a

solution of LCP.

Proof. Let x ∈ F s and µ > 0 be given. Since the function f(x, µ) is differentiable at

the point (x(µ), µ), we have,

g(x) = f(x, 0)

≥ f(x(µ), µ) + 〈x− x(µ),∇xf(x(µ), µ)〉+ (0− µ)∇µf(x(µ), µ)

= f(x(µ), µ)− µ∇µf(x(µ), µ),

since the point (x(µ), µ) is an optimal solution of Pµ, we have, ∇xf(x(µ), µ) = 0, this

implies that

g(x) ≥ g(x(µ)) + nµ lnµ− µ
n∑
i=1

ln(xi)µ − µ
n∑
i=1

ln〈ei,Mx(µ) + q〉

− µ

(
n+ n ln(µ)− µ

n∑
i=1

ln(xi)µ − µ
n∑
i=1

ln〈ei,Mx(µ) + q〉

)

= g(x(µ))− nµ.

Since x ∈ F s was arbitrary, we then have

g(x(µ))− nµ ≤ min
x∈Fs

g(x) ≤ g(x(µ)).

Letting µ goes to zero and x? := lim
µ→0

(x(µ)), we get

g(x?) = g

(
lim
µ→0

(x(µ))

)
= lim

µ→0
g(x(µ)) = min

x∈Fs
g(x).

This shows that x? is a solution of LCP. This completes the proof.
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4.3 Numerical aspects of Pµ

In this section we focus on the numerical solution of Pµ, based on the optimality

conditions which are necessary and sufficient, x is an optimal of Pµ if:

∇fµ(x) = 0. (4.4)

We solve (4.4) by using the Newton’s method i.e., finding a vector d(k) at each itera-

tion satisfying the following system:

H(k)d(k) = −∇fµ(x(k)). (4.5)

For the sake of simplicity, we drop the index µ from x(µ) and x(µ)(k), and write x

instead of x(µ) and x(k) instead of x(µ)(k) and H(k) ≡ H(x(k)).

The principal of our algorithm is to generate a sequence {x(k)} of interior points, i.e.

x(k) remains in F s and which converges to an approximate solution of LCP. Therefore

at each iteration k, a displacement step t(k) > 0 is taken such that

x(k) + t(k)d(k) > 0 , M(x(k) + t(k)d(k)) + q > 0,

and

fµ(x(k+1)) < fµ(x(k)).

4.3.1 The prototype algorithm

A prototype algorithm for solving Pµ is formally stated as follows.

Algorithm 4.3.1 Prototype algorithm for solving Pµ
1: Initialize k = 0, µ(0) > 0, x(0), d(0), define f(xµ),∇f(x, µ), ε > 0 and 0 < ρ < 1;
2: Define g(x) = f(x, 0) and ∇g(x);

Ensure: x(0) ∈ F s
3: while |∇g(x(k))d(k)| > ε do
4: Solve the system H(k)d(k) = −∇fµ(x(k));
5: Compute the displacement step t(k);
6: Set x(k+1) = x(k) + t(k)d(k);
7: Set µ(k+1) := ρµ(k)

8: Set k = k + 1;
9: End
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Next task, is the determination of displacement step t(k) along the direction d(k) by

using the strategy of minorant and majorant functions.

4.3.2 The determination of the displacement step

Following Crouzeix and Merikhi [23], instead of using the classical line search meth-

ods for computing the displacement step t(k) at each iteration k which require mini-

mizing the unidimensional function

min
t>0

fµ(x+ td),

we approach the function defined by

γ(t) :=
1

µ
(fµ(x+ td)− fµ(x)) ,

by simple majorant and minorant approximating functions which give at each itera-

tion k an efficient t(k) which occurs a significant decrease in γ(t).

Let us notice that the function γ(t) is definite only if x+td > 0 and M(x+td)+q >

0. Then it is sufficient to find a tmax > 0 such that x + td > 0 and M(x + td) + q > 0

for all t ∈ [0, tmax). So tmax which remains points interior is taken as:

tmax = min
i

{
−xi
di

: di < 0, −〈ei,Mx+ q〉
(Md)i

: (Md)i < 0

}
.

Theorem 4.5. The function γ(t) is well-defined on t ∈ [0, tmax), and can be written as

follows:

γ(t) =

(
t2 − 2t

2

)
a+ tb−

n∑
i=1

ln(1 + tzi)−
n∑
i=1

ln(1 + tsi).

where zi =
di
xi

and si =
〈ei,Md〉

〈ei,Mx+ q, 〉
,∀i.

Proof. Let x ∈ F s, then we have

γ(t) =
1

µ
(fµ(x+ td)− fµ(x))

=
t

µ

[
dT (M +MT )x+ dT q + tdTMd− µ

n∑
i=1

ln

(
1 + t

di
xi

)
− µ

n∑
i=1

ln

(
1 + t

〈ei,Md〉
〈ei,Mx+ q〉

)]
.
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Next, according to (4.3), we obtain

γ(t) =
t

µ

[
dT∇g(x) + t

〈∇2g(x)d, d〉
2

]
−

n∑
i=1

ln

(
1 + t

di
xi

)
−

n∑
i=1

ln

(
1 + t

〈ei,Md〉
〈ei,Mx+ q〉

)
.

Now, by (4.1), we have

〈∇fµ(x), d〉 = dT∇fµ(x) = dT∇g(x)− µdTX−1e− µdT
n∑
i=1

MT ei
〈ei,Mx+ q〉

= dT∇g(x)− µdTX−1e− µ
n∑
i=1

〈ei,Md〉
〈ei,Mx+ q〉

,

from which we deduce that

dT∇g(x) = dT∇fµ(x) + µdTX−1e+ µ

n∑
i=1

〈ei,Md〉
〈ei,Mx+ q〉

. (4.6)

Due to the fact that the direction d satisfies ∇2fµ(x)d = −∇fµ(x), then we have

dT∇2fµ(x)d = −dT∇fµ(x),

and

dT∇g(x) = −dT∇2fµ(x)d+ µdTX−1e+ µ
n∑
i=1

〈ei,Md〉
〈ei,Mx+ q〉

.

From (4.2), we have

dT∇2fµ(x)d = 〈∇2g(x)d, d〉+ µdTX−2d+ µ
n∑
i=1

dT (MT ei)(M
T ei)

Td

〈ei,Mx+ q〉2

= 〈∇2g(x)d, d〉+ µdTX−2d+ µ
n∑
i=1

〈ei,Md〉 × 〈ei,Md〉
〈ei,Mx+ q〉2

= 〈∇2g(x)d, d〉+ µdTX−2d+ µ
n∑
i=1

〈ei,Md〉2

〈ei,Mx+ q〉2
.

Letting zi =
di
xi

and si =
〈ei,Md〉
〈ei,Mx+ q〉

then

dT∇2fµ(x)d = 〈∇2g(x)d, d〉+ µ‖z‖2 + µ‖s‖2. (4.7)

Substituting (4.7) into (4.6), we get

dT∇g(x) = −
(
〈∇2g(x)d, d〉+ µ‖z‖2 + µ‖s‖2

)
+ µdTX−1e+ µ

n∑
i=1

〈ei,Md〉
〈ei,Mx+ q〉

= −〈∇2g(x)d, d〉 − µ‖z‖2 − µ‖s‖2 + µ

n∑
i=1

zi + µ

n∑
i=1

si.

.
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Consequently,

γ(t) =
t

µ

[
dT∇g(x) + t

〈∇2g(x)d, d〉
2

]
−

n∑
i=1

ln(1 + tzi)−
n∑
i=1

ln (1 + tsi)

=

(
t2 − 2t

2

)
a+ tb−

n∑
i=1

ln(1 + tzi)−
n∑
i=1

ln(1 + tsi), ∀t ∈ [0, tmax),

where

a =
1

µ
〈∇2g(x)d, d〉, b =

n∑
i=1

zi +
n∑
i=1

si − ‖z‖2 − ‖s‖2.

This completes the proof.

The first and the second derivatives of γ are:

γ′(t) = (t− 1)a+ b−
n∑
i=1

zi
1 + tzi

−
n∑
i=1

si
1 + tsi

,

γ′′(t) = a+
n∑
i=1

z2i
(1 + tzi)2

+
n∑
i=1

s2i
(1 + tsi)2

> 0, ∀t ∈ [0, tmax).

We remark that the function γ satisfies the following properties:

γ(0) = 0, −γ′(0) = γ′′(0) = (a+ ‖z‖2 + ‖s‖2) > 0.

It is clear that γ is strictly convex and differentiable on its domain of definition and

so it reaches a unique minimum t̂ > 0 when γ′(t) = 0. It is reported that finding a

solution of it, is a hard task. So it is worth to find upper and lower approximating

functions easy to handle than γ.

In this chapter, we construct such approximating functions of γ by using the strategy

of minorant and majorant functions of γ. Such minorant and majorant functions γ̂(t)

are constructed to be close enough to γ and satisfying the following properties

γ̂(0) = 0, −γ̂′(0) = γ̂′′(0) = (a+ ‖z‖2 + ‖s‖2) > 0. (4.8)

4.3.3 Minorant and majorant functions

The first minorant and majorant function

We may define the first minorant function γ1 by

γ1(t) =

(
t2 − 2t

2

)
a+tb−(n−1) ln (1 + tδ)−ln (1 + tλ)−(n−1) ln (1 + tκ)−ln (1 + tν) ,
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on [0, t̃1) where

t̃1 = min

{
tmax, −

1

δ
: δ < 0, −1

λ
: λ < 0, −1

κ
: κ < 0, −1

ν
: ν < 0,

}
,

where

δ = z̄ − σz√
n− 1

, λ = z̄ + σz
√
n− 1, κ = s̄− σs√

n− 1
, ν = s̄+ σs

√
n− 1, (4.9)

and

z̄ =
1

n

n∑
i=1

zi, σz =

√√√√ 1

n

n∑
i=1

(zi − z̄)2, s̄ =
1

n

n∑
i=1

si, σs =

√√√√ 1

n

n∑
i=1

(si − s̄)2.

Now, we define the first majorant function γ2 by

γ2(t) =

(
t2 − 2t

2

)
a+tb−(n−1) ln (1 + tβ)−ln (1 + tη)−(n−1) ln (1 + tτ)−ln (1 + tω) ,

on t ∈ [0, t̃2) where

t̃2 = min

{
tmax, −

1

β
: β < 0, −1

η
: η < 0, −1

τ
: τ < 0, − 1

ω
: ω < 0

}
,

where

β = z̄ +
σz√
n− 1

, η = z̄ − σz
√
n− 1, τ = s̄+

σs√
n− 1

, ω = s̄− σs
√
n− 1, (4.10)

and

z̄ =
1

n

n∑
i=1

zi, σz =

√√√√ 1

n

n∑
i=1

(zi − z̄)2, s̄ =
1

n

n∑
i=1

si, σs =

√√√√ 1

n

n∑
i=1

(si − s̄)2.

Next lemma shows that γ1 is a minorant function of γ and γ2 is a majorant function

for γ, respectively.

Lemma 4.6. Let t ∈ [0, t̂1), then γ1(t) ≤ γ(t) ≤ γ2(t) for all t ∈ [0, t̂1), where t̂1 =

min{t̃1, t̃2}.

Proof. From the right hand of the inequality in Lemma 4.1, we have

−D2 ≤ −
n∑
i=1

lnwi.
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Letting first, wi = 1 + tzi, so w̄ = 1 + tz̄, σw = tσz, these imply on one hand that

−(n− 1) ln(1 + tδ)− ln(1 + tλ) ≤ −
n∑
i=1

ln(1 + tzi).

On the other hand if we set wi = 1 + tsi, so w̄ = 1 + ts̄, σw = tσs, these imply that

−(n− 1) ln(1 + tκ)− ln(1 + tν) ≤ −
n∑
i=1

ln(1 + tsi),

where δ, λ, κ and ν are defined in (4.9). By summation of these two inequalities, we

get,

−(n−1) ln(1+tδ)−ln(1+tλ)−(n−1) ln(1+tκ)−ln(1+tν) ≤ −
n∑
i=1

ln(1+tzi)−
n∑
i=1

ln(1+tsi).

Now, adding the term
[(

t2 − 2t

2

)
a+ tb

]
for both sides to the previous inequality,

we obtain

γ1(t) =

(
t2 − 2t

2

)
a+tb−(n−1) ln(1+tδ)−ln(1+tλ)−(n−1) ln(1+tκ)−ln(1+tν) ≤ γ(t).

This shows that γ1(t) ≤ γ(t) for all t ∈ [0, t̃1).

For the proof of the first majorant function we have omitted it since it is similar to

the one used for the first minorant function, where we use the inequality

−
n∑
i=1

lnwi ≤ −D1,

in Lemma 4.1. Then, it is easy to deduce that γ(t) ≤ γ2(t) for all t ∈ [0, t̃2).

In addition, we have

γ′1(t) = (t− 1)a+ b− (n− 1)δ

1 + tδ
− λ

1 + tλ
− (n− 1)κ

1 + tκ
− ν

1 + tν
,

γ′′1 (t) = a+ b+
(n− 1)δ2

(1 + tδ)2
+

λ2

(1 + tλ)2
+

(n− 1)κ2

(1 + tκ)2
+

ν2

(1 + tν)2
> 0,

γ′2(t) = (t− 1)a+ b− (n− 1)β

1 + tβ
− η

1 + tη
− (n− 1)τ

1 + tτ
− ω

1 + tω
,

and

γ′′2 (t) = a+
(n− 1)β2

(1 + tβ)2
+

η2

(1 + tη)2
+

(n− 1)τ 2

(1 + tτ)2
+

ω2

(1 + tω)2
> 0,

Further, the properties in (4.8) are satisfied by γ1 and γ2. Also it is clear that

min
t
γ1(t) ≤ min

t
γ(t) ≤ min

t
γ2(t) for t ∈ [0, t̂1).

This completes the proof.
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The second minorant and majorant function

We may define the second minorant function γ3 by

γ3(t) =

(
t2 − 2t

2

)
a+ t

(
‖z‖+ ‖s‖ − ‖z‖2 − ‖s‖2

)
+ ln(1− t‖z‖) + ln(1− t‖s‖),

on [0, t̃3), and the second majorant function γ4 by

γ4(t) =

(
t2 − 2t

2

)
a− t

(
‖z‖+ ‖s‖+ ‖z‖2 + ‖s‖2

)
− ln(1− t‖z‖)− ln(1− t‖s‖),

on [0, t̃3) where

t̃3 = max{t > 0 : 1− t‖z‖ > 0, 1− t‖s‖ > 0}.

Next, to show that γ3 is a minorant function of γ and γ4 is a majorant function of γ,

respectively, for all t ∈ [0, t̃3), we need to prove the following technical lemma.

Lemma 4.7. For all t ∈ R and z, s ∈ Rn we have

t

(
n∑
i=1

zi − ‖z‖+
n∑
i=1

si − ‖s‖

)
−

n∑
i=1

ln(1+tzi)−ln(1−t‖z‖)−
n∑
i=1

ln(1+tsi)−ln(1−t‖s‖) ≥ 0,

and

t

(
n∑
i=1

zi + ‖z‖+
n∑
i=1

si + ‖s‖

)
−

n∑
i=1

ln(1+tzi)+ln(1−t‖z‖)−
n∑
i=1

ln(1+tsi)+ln(1−t‖s‖) ≤ 0.

Proof. Let

h1(t) = t

(
n∑
i=1

zi − ‖z‖+
n∑
i=1

si − ‖s‖

)
−

n∑
i=1

ln(1+tzi)−ln(1−t‖z‖)−
n∑
i=1

ln(1+tsi)−ln(1−t‖s‖),

and

h2(t) = t

(
n∑
i=1

zi + ‖z‖+
n∑
i=1

si + ‖s‖

)
−

n∑
i=1

ln(1+tzi)+ln(1−t‖z‖)−
n∑
i=1

ln(1+tsi)+ln(1−t‖s‖),
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then

h′1(t) =
n∑
i=1

zi − ‖z‖+
n∑
i=1

si − ‖s‖ −
n∑
i=1

zi
1 + tzi

+
‖z‖

1− t‖z‖
−

n∑
i=1

si
1 + tsi

+
‖s‖

1− t‖s‖

=
n∑
i=1

zi

(
1− 1

1 + tzi

)
+ ‖z‖

(
1

1− t‖z‖
− 1

)
+

n∑
i=1

si

(
1− 1

1 + tsi

)
+ ‖s‖

(
1

1− t‖s‖
− 1

)
=

n∑
i=1

zi

(
tzi

1 + tzi

)
+ ‖z‖

(
t‖z‖

1− t‖z‖

)
+

n∑
i=1

si

(
tsi

1 + tsi

)
+ ‖s‖

(
t‖s‖

1− t‖s‖

)
=

n∑
i=1

tz2i
1 + tzi

+
t‖z‖2

1− t‖z‖
+

n∑
i=1

ts2i
1 + tsi

+
t‖s‖2

1− t‖s‖

= t
n∑
i=1

z2i

(
1

1 + tzi
+

1

1− t‖z‖

)
+ t

n∑
i=1

s2i

(
1

1 + tsi
+

1

1− t‖s‖

)
,

we have |zi| ≤ ‖z‖ and |si| ≤ ‖s‖ for all i, which gives −‖z‖ ≤ zi ≤ ‖z‖ and

−‖s‖ ≤ si ≤ ‖s‖,∀i. Then

1

1 + t‖z‖
≤ 1

1 + tzi
≤ 1

1− t‖z‖
and

1

1 + t‖s‖
≤ 1

1 + tsi
≤ 1

1− t‖s‖
.

This implies that

h′1(t) ≥ t
n∑
i=1

z2i

(
1

1− t2‖z‖2

)
+ t

n∑
i=1

s2i

(
1

1− t2‖s‖2

)
≥ 0,

which implies that the function h1 is increasing and as h1(0) = 0, then h1(t) ≥ 0, ∀t

in its domain of definition. By the same argument we prove that h2(t) is decreasing

and h2(0) = 0 so h2(t) ≤ 0, ∀t. This completes the proof.

By the first inequality in Lemma 4.7, we have

t(‖z‖+‖s‖)+ln(1−t‖z‖)+ln(1−t‖s‖) ≤ −
n∑
i=1

ln(1+tzi)−
n∑
i=1

ln(1+tsi)+t(
n∑
i=1

zi+
n∑
i=1

si).

Now, adding the term
[(

t2 − 2t

2

)
a− t

(
‖z‖2 + ‖s‖2

)]
for both sides to the previous

inequality, we obtain γ3(t) ≤ γ(t) for all t ∈ [0, t̃3).

The proof of the second majorant function is similar to the one used for γ3(t),

where we use the second inequality in Lemma 4.7. Then it is easy to prove that

γ(t) ≤ γ4(t) for all t ∈ [0, t̃3). We mention that these two functions have the same

domain of definition.
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In addition, we have

γ′3(t) = (t− 1)a+
(
‖z‖+ ‖s‖ − ‖z‖2 − ‖s‖2

)
− ‖z‖

1− t‖z‖
− ‖s‖

1− t‖s‖
,

γ′′3 (t) = a+
‖z‖2

(1− t‖z‖)2
+

‖s‖2

(1− t‖s‖)2
> 0,

γ′4(t) = (t− 1)a−
(
‖z‖+ ‖s‖+ ‖z‖2 + ‖s‖2

)
+

‖z‖
1− t‖z‖

+
‖s‖

1− t‖s‖
,

and

γ′′4 (t) = a+
‖z‖2

(1− t‖z‖)2
+

‖s‖2

(1− t‖s‖)2
> 0.

Further, the properties in (4.8) are satisfied by γ3 and γ4. Also it is clear that

min
t
γ3(t) ≤ min

t
γ(t) ≤ min

t
γ4(t) for t ∈ [0, t̃3).

Finally, we conclude that the computation of a displacement step t(k) at each

iteration k, is based on the optimal minimum of the functions γi(t), i = 1, . . . , 4. It is

clear that these functions are definite and strictly convex on their domains [0, t̃i), i =

1, . . . , 4 and therefore they reach their minimum when

γ′i(t) = 0, i = 1, . . . , 4. (4.11)

Hence, in the numerical implementation of our algorithm, we take only the root

which belongs to the domain of each function.

We end this section by the convergence result of the algorithm.

Lemma 4.8. Let (x(k+1)) and (x(k)) be two successive strictly feasible solutions of Pµ

obtained at the iteration k + 1 and k, respectively, then fµ(x(k+1)) < fµ(x(k)).

Proof. We have

fµ(x(k+1)) ' fµ(x(k)) + 〈∇fµ(x(k)), x(k+1) − x(k)〉 = fµ(x(k)) + t(k)(d(k))T∇fµ(x(k)).

Due to (4.5), we deduce that

〈∇fµ(x(k)), d(k)〉 = 〈−∇2fµ(x(k))d(k), d(k)〉 and x(k+1) = x(k) + t(k)d(k),
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it follows that

fµ(x(k+1))− fµ(x(k)) ' t(k)〈∇fµ(x(k)), d(k)〉 = −t(k)〈∇2fµ(x(k))d(k), d(k)〉 < 0.

Therefore fµ(x(k+1)) < fµ(x(k)). This completes the proof.

4.4 Numerical results

In this section, we present some numerical results to show the efficiency of our algo-

rithm applied on some examples taken from the literature. In addition, we compare

the obtained numerical results with the classical Wolfe and Powell line search. In the

implementation, our accuracy is set to ε = 10−5. Also in view of the influence of the

barrier parameter µ on the algorithm, different values of them are used in order to

improve its performances.

Problem 1. The matrix M and the vector q for the MLCP are given by

M =


3 −2 −1

−2 2 1

−1 1 1

 , q = (14,−11,−7)T .

The initial point taken in the algorithm is x1 = (0.1646, 4.2045, 3.1691)T . A solution

of LCP is given by

x? = (0, 4, 3)T .

The details of obtained numerical results for Problem 1 are summarized in Table 4.1.

Table 4.1: Number of iterations and CPU time for Problem 1, where µ = 0.5

MIN1 MAJ1 MIN2 MAJ2 Wolfe
ITER CPU ITER CPU ITER CPU ITER CPU ITER CPU
2 0.0015 4 0.0049 5 0.0063 4 0.0046 7 0.0372
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Problem 2. Consider the following MLCP where M and q are given by

M =



2 1 0 3 −3

1 4 0 4 2

0 0 6 −2 1

−3 −4 2 0 0

3 −2 −1 0 0


, q = (1, −2, 4, 10, 2)T .

The initial point for this Problem is taken as x0 = e ∈ R5. A solution of the LCP is

given by

x? = (0, 0.5, 0, 0, 0)T .

The details of obtained numerical results for Problem 2 are summarized in Table 4.2.

Table 4.2: Number of iterations and CPU time for Problem 2, where µ = 0.5

MIN1 MAJ1 MIN2 MAJ2 Wolfe
ITER CPU ITER CPU ITER CPU ITER CPU ITER CPU
8 0.0087 8 0.0083 9 0.0118 7 0.0076 12 0.0924

Example 3. Consider the MLCP where M and q are given by:

M = (mij) =


4 if i = j,

−1 if |i− j| = 1,

0 otherwise,

q = (−1, 1, . . . , 1, −1)T ∈ Rn.

The initial point taken for this Problem is x0 = e ∈ Rn. The details of obtained

numerical results for different size of n are showed in Table 4.3.

Table 4.3: Number of iterations and CPU time for Problem 3, where µ = 0.4

MIN1 MAJ1 MIN2 MAJ2 Wolfe
n ITER CPU ITER CPU ITER CPU ITER CPU ITER CPU

100 36 0.3934 32 0.1273 98 0.6274 92 0.5104 105 0.6408
200 39 0.9060 34 0.6109 141 1.1924 124 1.1259 135 1.8736
500 45 9.6555 42 5.2072 229 34.9834 203 21.2705 242 37.1834
1000 72 26.2486 67 23.4821 253 64.3724 244 56.2613 256 59.0025
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4.5 Conclusion

In this chapter, we presented a logarithmic barrier method for solving monotone LCP

problems. We have transformed the monotone LCP into an equivalent optimization

problem. We have shown the existence and the uniqueness of the optimal solution

of the latter problem and its convergence to a optimal solution of the LCP problem.

We apply Newton’s method to determine the descent direction. The novel strategy of

minorant and majorant approximating functions is used for computing the displace-

ment step in this algorithm. The numerical results are better more those given by

Wolfe’s and Powell line search.
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Chapter 5

Complexity analysis of an interior-point

algorithm for P?(κ) nonlinear

complementarity problems

In this chapter, we establish the polynomial complexity of a feasible short-step path-

following interior-point algorithm (IPA) for solving the class of nonlinear complemen-

tarity problems with P?(κ)-mapping (abbreviated P?(κ)-NCP). The proposed algo-

rithm uses only full Newton steps with the advantage that no line search is required.

We prove that the algorithm is well defined and converges locally quadratically to a

solution of NCP. Moreover, we show that the algorithm hasO
(√

n(1 + 4κ) log(
n

ε
)
)

as

a complexity result for short-update methods. Some numerical results are provided

to show the efficiency of our algorithm.

5.1 Preliminaries

Recall again from Subsection 1.1, that the NCP consists in finding vectors x, y in Rn

such that

y = F (x), xTy = 0, x ≥ 0, y ≥ 0, (5.1)

where F (x) : Rn → Rn is a continuously differentiable function, the expression

xTF (x) denotes the usual inner product of the two vectors x and F (x) in Rn, and the

inequalities are understood to be component-wise. The complementarity condition

xTF (x) means that xTi Fi(x) = 0 for all i = 1, . . . , n. Recall that F is said to be a

P?(κ)−mapping if there exist a scalar κ ≥ 0 such that
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(1 + 4κ)
∑

i∈I+(x,y)

(xi − yi)(Fi(x)− Fi(y)) +
∑

i∈I−(x,y)

(xi − yi)(Fi(x)− Fi(y)) ≥ 0,

for any x 6= y in Rn, where

I+(x, y) = {i : (xi−yi)(Fi(x)−Fi(y)) ≥ 0} and I−(x, y) = {i : (xi−yi)(Fi(x)−Fi(y)) < 0}.

Lemma 5.1 (Proposition 4.2.10 in [64]). If F is is a continuously differentiable P?(κ)

mapping on Rn, then for each x ∈ Rn, the Jacobian ∇F (x) is a P?(κ) matrix.

Lemma 5.2 (Lemma 4.1 in [53]). If M ∈ Rn×n is a P?(κ)− matrix, then−M I

Y X

 ,

is a nonsingular matrix for any positive definite diagonal matrices X, Y ∈ Rn×n.

5.1.1 The central path of NCP

Throughout this chapter we assume that F is a continuously differentiable P?(κ)−

mapping, κ ≥ 0, problem (5.1) is called a P?(κ)−NCP, and satisfies the interior-

point condition (IPC), i.e., there exists (x0, y0) ∈ F s which implies the existence of a

solution to P?(κ)−NCP. The basic idea of path-following IPA is to relax the comple-

mentarity condition in (5.1) to the following parameterized system: for µ > 0,
y = F (x)

xy = µe, (x, y) ≥ 0.

(5.2)

By Theorem 4.4 in [53], the system (5.2) has a unique solution denoted by (x(µ), y(µ))

for each µ > 0, which is called the µ-center of NCP. The set of µ-centers is called the

central-path. If µ goes to zero then the limit of the central-path exists and converges

to a solution of NCP.

5.1.2 The Newton search direction

Next, we want to define search directions (∆x,∆y) that move in direction of the

µ−centers (x(µ), y(µ)). Applying Newton’s method to (5.2) for a given (x, y) ∈ F s,
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we get the following linear system:
∆y = ∇F (x)∆x,

x∆y + y∆x = µe− xy.
(5.3)

By our assumption and Lemma 5.1, ∇F (x) is a P?(κ)-matrix. By Lemma 5.2, the

system (5.3) has a unique search direction vector (∆x,∆y) for each µ > 0. The

update iterate with a full-Newton step is taken as: x+ = x+ ∆x and y+ = x+ ∆y.

Now, for simplicity, let us define the vector v :=

√
xy

µ
and the scaled search

directions as follows:

dx :=
v∆x

x
, dy :=

v∆y

y
. (5.4)

Then we get the following modified Newton system:
dy = ∇F (x)dx,

dx + dy = pv,

(5.5)

where ∇F (x) = µV Y −1∇F (x)V Y −1 and pv = v−1 − v.

5.1.3 The proximity measure

For the analysis of the algorithm, we use a norm-based proximity measure δ(v) de-

fined by:

δ := δ(xy;µ) =
‖pv‖

2
. (5.6)

Clearly, δ(v) = 0 ⇔ v = e ⇔ xy = µe. Hence, the value of δ(v) can be considered

as a measure for the distance between the given pair (x, y) and the corresponding

µ−center (x(µ), y(µ)).

Furthermore, we define the τ -neighborhood of the central path as follows:

N (τ, µ) = {(x, y) : x > 0, y = F (x) > 0 : δ(xy;µ) ≤ τ},

where τ is a threshold parameter and µ > 0 is fixed.
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5.1.4 The algorithm

The generic path-following full-Newton step IPA for NCP is described in as follows.

Algorithm 5.1.1 Full-Newton step IPA for NCP
1: Initialize:
2: k = 0, µ > 0, (x(0), y(0)) > 0
3: an accuracy parameter ε > 0
4: a barrier update parameter 0 < θ < 1; default θ = 1√

2(n+1)(1+4κ)
;κ ≥ 0;

5: a threshold parameter 0 < τ < 1; default τ = 1√
2(1+4κ)

;

Ensure: (x(0), y(0)) ∈ N (τ, µ);
6: while nµ ≥ ε do
7: Compute (∆x,∆y) from (5.3);
8: Set x(k+1) = x(k) + (∆x)(k) and y(k+1) = y(k) + (∆y)(k);
9: Set µ := (1− θ)µ;

10: Set k = k + 1;
11: End

5.2 Complexity analysis

In this section, we establish under our new defaults θ = 1√
2(n+1)(1+4κ)

and τ =

1√
2(1+4κ)

) the polynomial complexity of Algorithm 5.1.1.

Before doing so, the following lemma is crucial for the analysis of the algorithm.

For a detailed proof, see ([10], Lemma 3.1).

Lemma 5.3. Let δ = δ(xy;µ) > 0 where µ > 0 and (dx, dy) be the unique solution of

system (5.5). Then one has

− 4κδ2 ≤ dTx dy ≤ δ2 (5.7)

and

‖dxdy‖∞ ≤ (1 + 4κ)δ2, ‖dxdy‖ ≤ (
√

2 + 4κ)δ2. (5.8)

Lemma 5.4. If δ <
1√

1 + 4κ
, then x+ > 0, y+ > 0, i.e., x+ and y+ are strictly feasible.

Proof. Let (x, y) ∈ F s i.e., y = F (x) with x > 0 and y > 0. Let α ∈ [0, 1], x(α) =

x + α∆x, y(α) = F (x(α)). Now,for each α > 0, we define the function ∆y(α) =

1

α
(F (x+α∆x)−F (x), this implies that y(α) = F (x+α∆x) = y+α∆y(α). Note that
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∆y(α) is not defined at α = 0. For α = 0 we define this function as follows

∆y(0) = lim
α 7→0

∆y(α) = ∇F (x)∆x = ∆y.

Then, we have y(α) = y + α∆y and consequently,

x(α)y(α) = (1− α)xy + α(µe+ α∆x∆y),

hence, x(α)y(α) > 0, if µe+ α∆x∆y > 0, or

µ

(
e+ α

∆x∆y

µ

)
= µ (e+ αdxdy) ,

µe+ α∆x∆y > 0 ⇐⇒ e+ αdxdy > 0,

we have

e+ αdxdy ≥ e− α‖dxdy‖∞e > (1− (1 + 4κ)δ2)e.

As δ < 1√
1+4κ

it follows that e + αdxdy > 0. Thus, we obtain that for each 0 ≤ α ≤ 1

the x(α)y(α) > 0 inequality holds, which means that the linear functions of α, x(α)

and y(α) do not change sign on the interval [0, 1]. Consequently, x(0) = x > 0 and

y(0) = y > 0 yields x(1) = x+ > 0 and y(1) = F (x+) = y+ > 0. This completes the

proof.

The next lemma shows the influence of full-Newton step on the proximity mea-

sure. For convenience, we may write v+ =

√
x+y+
µ

. It is easy to see that

v2+ = e+ dxdy ⇔ x+y+ = µ(e+ dxdy). (5.9)

Lemma 5.5. If δ <
1√

1 + 4κ
, then δ+ := δ(x+y+;µ) ≤ (

√
2 + 4κ)δ2

2
√

1− (1 + 4κ)δ2
.

Proof. By definition 2δ+ = ‖v+ − v−1+ ‖. Due to (5.9), we get v+ =
√
e+ dxdy and

v−1+ =
e√

e+ dxdy
, then

2δ+ = ‖ dxdy√
e+ dxdy

‖ ≤ ‖dxdy‖√
1− ‖dxdy‖∞

.

Hence from (5.8), δ+ ≤
(
√

2 + 4κ)δ2

2
√

1− (1 + 4κ)δ2
. This completes the proof.
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Corollary 5.6. If δ ≤ 1√
2(1 + 4κ)

, then δ+ ≤ (1 + 4κ)δ2 which means that the full-

Newton step ensures the local quadratic convergence of the proximity measure through

the algorithm.

Proof. From Lemma 5.5, it follows that

δ+ ≤
(
√

2 + 4κ)δ2

2
√

1− (1 + 4κ)δ2
≤

√
2(1 + 4κ)δ2

2

√
1− (1 + 4κ)

1

2(1 + 4κ)2

≤ (1 + 4κ)δ2√
2− 1

(1 + 4κ)

≤ (1+4κ)δ2.

This completes the proof.

5.2.1 Complexity analysis of Algorithm

The next lemma examines what is the effect of the full-Newton step on the duality

gap during the algorithm.

Lemma 5.7. Let δ = δ(xy;µ) and suppose that the vectors x+ and y+ are obtained

using a full-Newton step, thus x+ = x+ ∆x and y+ = y + ∆y. We have

(x+)Ty+ ≤ µ(n+ 2δ2),

and if δ ≤ 1√
2(1+4κ)

, then

(x+)Ty+ ≤ 2µn. (5.10)

Proof. Using (5.9), we obtain (x+)Ty+ = µeT (e + dTx dy) = µ(n + dTx dy). Next, due to

(5.7), it follows that (x+)Ty+ ≤ µ(n+ δ2). Now, let δ ≤ 1√
2(1+4κ)

then δ2 ≤ 1
2(1+4κ)2

< 1

from which it implies that (x+)Ty+ ≤ µ(n + 1). But since n + 1 ≤ 2n, ∀n ≥ 1, this

gives the required result.

In the next theorem, we discuss the influence on the proximity measure of the

barrier parameter update µ+ = (1− θ)µ on the Newton process along the path.

Theorem 5.8. Let δ ≤ 1√
2(1+4κ)

and µ+ = (1− θ)µ, where 0 ≤ θ < 1. Then

δ2(x+y+;µ+) ≤ 1

(1 + 4κ)2

(
1

4
+

1

8(1− θ)

)
.

Moreover, if θ = 1√
2(n+1)(1+4κ)

and n ≥ 2, then δ(x+y+;µ+) ≤ 1√
2(1+4κ)

.
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Proof. We have,

4δ2(x+y+;µ+) = ‖
√

1− θv−1+ −
1√

1− θ
v+‖2 = ‖

√
1− θ(v−1+ − v+)− θ√

1− θ
v+‖2

= (1− θ)‖v−1+ − v+‖2 +
θ2

1− θ
‖v+‖2 − 2θ(v−1+ − v+)Tv+

= (1− θ)‖v−1+ − v+‖2 +
θ2

1− θ
‖v+‖2 − 2θ(v−1+ )Tv+ + 2θ(v+)Tv+

= 4δ2+(1− θ) +
θ2

1− θ
‖v+‖2 − 2θn+ 2θ‖v+‖2.

Because (v−1+ )Tv+ = n and vT+v+ = ‖v+‖2. Next, by Lemma 5.7, implies that

‖v+‖2 =
1

µ
xT+y+ ≤ n+ 1,

which it follows that

δ2(x+y+;µ+) ≤ (1− θ)δ2+ +
θ2(n+ 1)

4(1− θ)
+
θδ2

2
.

Let δ ≤ 1√
2(1+4κ)

so δ+ ≤ 1
2(1+4κ)

, and θ = 1√
2(n+1)(1+4κ)

, then θ2 = 1
2(n+1)(1+4κ)2

, these

imply that

δ2(x+y+;µ+) ≤ 1− θ
4(1 + 4κ)2

+

1

2(n+ 1)(1 + 4κ)2
(n+ 1)

4(1− θ)
+

θ

4(1 + 4κ)2

≤ 1

(1 + 4κ)2

(
1

4
+

1

8(1− θ)

)
.

For n ≥ 2, θ ∈
[
0, 1√

6(1+4κ)

]
and consider the following function

h(θ) =
1

(1 + 4κ)2

(
1

4
+

1

8(1− θ)

)
.

This function is continuous and monotone increasing on
[
0, 1√

6(1+4κ)

]
since h′(θ) > 0.

Therefore

h(θ) ≤ h(
1√

6(1 + 4κ)
) =

g(κ)

(1 + 4κ)2
,

where

g(κ) =
1

4
+

1

8(1− 1√
6(1+4κ)

)
.

Since g(κ) is a monotonic decreasing function for κ ≥ 0, then g(κ) ≤ g(0). Hence

h(θ) ≤ g(0)

(1 + 4κ)2
≤ 1

2(1 + 4κ)2
,
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since g(0) =
√
6−9

4
√
6−24 ∈ (0, 1).

Then, after the barrier parameter is update to µ+ = (1 − θ)µ with θ = 1√
2(n+1)(1+4κ)

and if δ ≤ 1√
2(1+4κ)

, we obtain δ(x+y+;µ+) ≤ 1√
2(1+4κ)

. This completes the proof.

Theorem 5.8 indicates that Algorithm 5.1.1 is well-defined since the conditions

x+ > 0, y+ > 0 and δ(x+y+;µ+) ≤ 1√
2(1+4κ)

are maintained through the algorithm.

In the next lemma we compute a bound for the number of iterations produced by

the Algorithm 2.4.

Lemma 5.9. Assume that the pair (x0, y0) ∈ N (τ, µ0) with τ = 1√
2(1+4κ)

for each µ0 > 0.

Let xk and yk be the vectors obtained after k iterations. Then the inequality (xk)Tyk ≤ ε

is satisfied if k ≥
[

1

θ
log

2nµ0

ε

]
.

Proof. It follows from (5.10) in Lemma 5.7 that (xk)Tyk ≤ 2nµk = 2n(1 − θ)kµ0. In

this way (xk)Tyk ≤ ε stands if 2n(1− θ)kµ0 ≤ ε. We take logarithms, so we may write

k log(1 − θ) ≤ log ε − log(2nµ0). We know that − log(1 − θ) ≥ θ for 0 ≤ θ < 1, so

the inequality holds only if kθ ≥ log ε − log(2nµ0) = log

(
2nµ0

ε

)
. This proves the

lemma.

Theorem 5.10. Let θ = 1√
2(n+1)(1+4κ)

and τ = 1√
2(1+4κ)

and suppose that µ0 =
1

2
with

(x0, y0) ∈ N (τ, µ0). Then the Algorithm 5.1.1 requires at most O
(√

n(1 + 4κ) log
n

ε

)
iterations for getting an ε- approximated solution of P?(κ)-NCP.

Proof. Let θ = 1√
2(n+1)(1+4κ)

and µ0 =
1

2
, by using Lemma 5.9, the proof is straight-

forward. This completes the proof.

5.3 Implementation and numerical results

In this section, to evaluate the efficiency of Algorithm 5.1.1, we present some nu-

merical results for some examples of NCPs of different sizes. In our implementation,

we use ε = 10−7 and µ0 =
(x0)Ty0

n
. The initial point (x0, y0) in the algorithm is taken

such that (x0, y0) ∈ N (τ, µ0). An exact solution of the NCP is denoted by x?.

72



CHAPTER 5. COMPLEXITY ANALYSIS OF AN IPA FOR P?(κ)−NCP

Problem 1. Let F : R4 → R4 be a monotone mapping, which is defined by

F (x) =



3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6

2x21 + x1 + x22 + 3x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 3x4 − 1

x21 + 3x22 + 2x3 + 3x4 − 3.

For this example, the initial point for the algorithm are obtained via the solution of

this problem, where

x0 = eT , y0 = (5, 7, 10, 6)T ,

with the proximity δ(x0y0, µ0) = 0.2582, i.e., (x0, y0) ∈ N (τ, µ0). Also, here κ = 0 and

n = 4, so θ = 1√
2(n+1)

.

We have the best result ITER=52 and CPU=1.8791. An exact solution of NCP is

given by

x? =

(√
6

2
, 0, 0,

1

2

)T

, F (x?) =

(
0,

√
6

2
+ 2, 5, 0

)T

.

Problem 2. Let F : R9 → R9 be a monotone mapping, which is defined by

F (x) =



x2(x1 + 1)

x3(
1
3
x2 − 1)

x23 − x5

x4 + x27 + 2x8 − 1

x5 − 1

x5x6 + x7 − 1

x3(x2 − x7) + x1x7

x6 − x7 + 3x8 + 1

−3x1 + x2 + 3x3 − 2x4 − 2x5 + 3x6 − 2x7 + 3x8 + 2x9.

Also across this problem, we get the following initial point:

x0 = (0.85, 4, 3, 2, 5, 1.5, 0.9, 1.5, 1.25)T , y0 = (7.4, 3, 4, 4.81, 4, 7.4, 10.065, 6.1, 6.15)T ,
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with δ(x0y0, µ0) = 0.4744. Now, since κ = 0 and n = 9, so θ = 1√
2(n+1)

. We have the

best result ITER=82 and CPU=4.0995. An exact solution of NCP is given by

x? = (0, 2, 1, 1, 1, 1, 0, 0, 0)T , F (x?) = (2, 0, 0, 0, 0, 0, 2, 2, 4)T .

Problem 3. Let F : Rn → Rn which is defined by

Fi(x) = −xi+1 + 2xi − xi−1 +
1

3
x3i − bi, bi = (−1)i, i = 1, . . . , n, and x0 = xn+1 = 0.

The number of iterations and CPU time for different sizes n, are summarized in Table

5.1.

Table 5.1: Number of iterations and CPU time for Problem 3.

n = 15 25 50 100

ITER CPU ITER CPU ITER CPU ITER CPU

95 11.8380 126 29.0884 186 118.2347 276 618.5556

Problem 4. An example of P?(κ)-LCP with size n, which is defined by F (x) = Mx+q,

where

M =



Q2 0 . . . . . . 0

0 Q3
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . Q2 0

0 . . . . . . 0 Q3


, where Q2 =

0 1 + 4κ1

1 0

 , Q3 =


0 1 + 4κ2 0

1 0 0

0 0 1

 ,

and q = −Me + e, thus, x0 = y0 = e are the initial points for Algorithm 2.4, where

δ(x0y0;µ0) = 0. The handicap κ(M) = κ1(M) = κ2(M) ∈ {0, 1

2
, 1, 5, 10}. The

number of iterations and CPU time results, for different sizes n are summarized in

Table 5.2.
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Table 5.2: Number of iterations and CPU time for Problem 4.

n κ ITER CPU
1

2
250 0.1089

10 1 423 0.1844
5 1806 0.7549

10 3534 1.6333
1

2
409 0.4451

25 1 688 0.5313
5 2919 2.07532

10 5708 3.7239
1

2
597 6.8034

50 1 1002 9.5784
5 4239 33.8677

10 8285 61.8657
1

2
874 11.5629

100 1 1463 20.6772
5 6175 77.4400

10 12066 141.8432

Fig. 5.1 A comparison of the different value of the handicap κ where n = 10
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Comment. Across the numerical results obtained by Algorithm 5.1.1 stated in the

above tables, we see clearly the influence of the handicap κ and the size n of the

NCPs on our update-barrier θ provided by our analysis. In fact, as n and κ become

very large so θ becomes very small and consequently, the rate of decrease (1 − θ)

in the sequence µk approaches to one. This leads to a slow convergence since the

number of iterations grows rapidly to infinity (see for example the numerical results

for Problem 4 in Table 5.2 and Fig. 5.1). Furthermore, we mention that in some

examples of NCPs, the handicap κ is not known where we can not calculate exactly

the update-barrier θ during the algorithm. This case will be examined in Subsection

5.3.2.

5.3.1 An efficient numerical amelioration for the Algorithm 5.1.1

In this subsection, based on the above comment and in order to ameliorate the per-

formances of Algorithm 5.1.1, we import some changes, where instead of using the

default of θ provided by our analysis, we select it as a constant which belongs to

the set B = {0.1, . . . , 0.9}. With this modification, we note that the iterations do not

maintain interiors through the algorithm, we then introduce a step-size αmax > 0

such that x + ραmax∆x > 0 and y + ραmax∆y > 0 with αmax = min{αx, αy} and

ρ ∈ (0, 1) where αx and αy are given by

αx =


min
i

(
− xi

∆xi

)
if ∆xi < 0

1 if ∆xi ≥ 0

, αy =


min
i

(
− yi

∆yi

)
if ∆yi < 0

1 if ∆yi ≥ 0.

Our new obtained numerical results are summarized in Tables 5.3, 5.4, 5.5 and 5.6

where the same initial points are taken in the algorithm.

Table 5.3: Numerical results for Problem 1. by Ameliorated Algorithm

0.5 0.7 0.9

ITER CPU ITER CPU ITER CPU

Problem 1 29 1.0913 17 0.6486 9 0.3509
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Table 5.4: Numerical results for Problem 2. by Ameliorated Algorithm

0.5 0.7 0.9

ITER CPU ITER CPU ITER CPU

Problem 2 30 1.6252 18 0.9115 9 0.4813

Table 5.5: Numerical results for Problem 3. by Ameliorated Algorithm

θ 0.5 0.7 0.9

n ITER CPU ITER CPU ITER CPU
8 26 1.6461 15 0.9672 8 0.5811
15 27 2.8298 16 1.8054 8 0.9720
25 28 5.9430 16 3.0810 9 2.0497
50 29 13.8829 17 11.5730 9 4.7274
100 30 65.1629 17 34.6950 9 19.4291
500 32 255.0226 18 132.9599 10 76.1361

Table 5.6: Numerical results for Problem 4. by Ameliorated Algorithm

θ 0.5 0.7 0.9

n κ ITER CPU ITER CPU ITER CPU
1

2
27 0.0103 16 0.0053 8 0.0027

10 1 27 0.0114 16 0.0066 8 0.0027
5 27 0.0110 16 0.0069 8 0.0027

10 27 0.0149 16 0.0064 8 0.0027
1

2
28 0.0289 17 0.0160 9 0.0086

25 1 28 0.0309 17 0.0156 9 0.0083
5 28 0.0318 17 0.0197 9 0.0081

10 28 0.0348 17 0.0208 9 0.0082
1

2
29 0.3994 17 0.1923 9 0.0360

50 1 29 0.4291 17 0.2394 9 0.0753
5 29 0.4489 17 0.2666 9 0.1320

10 29 0.5337 17 0.2836 9 0.1543
1

2
30 0.7073 18 0.3964 9 0.1871

100 1 30 0.6704 18 0.4228 9 0.2157
5 30 0.6865 18 0.4675 9 0.2236

10 30 0.7197 18 0.5112 9 0.2406
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5.3.2 Computational results on P?(κ)-LCP with Csizmadia-matrix

This problem is based on the P -matrix proposed by Zsolt Csizmadia and presented

in [50], where M ∈ Rn×n and q are given by

M = (mij) =


0 if i < j,

1 if i = j,

−1 if i > j,

q = −Me+ e.

In this example, we mention that the handicap κ is not given explicitly, we have only

κ(M) ≥ 22n−8 − 1

4
as De Klerk and E.-Nagy [50] proved. Therefore our theoretical

updating θ can not be computed exactly due to the absent of the value of κ. Then we

are also obliged to take θ as a constant.

Table 5.7: Numerical results for Csizmadia matrix.

0.1 0.2

n ITER CPU ITER CPU

8 173 0.1452 82 0.0738
15 179 0.2452 85 0.1069
25 184 0.2576 87 0.1489
50 191 3.4756 90 1.9728
100 197 4.9863 93 3.5600
500 212 64.1363 101 31.7542

5.4 Conclusion

In this chapter, we presented a feasible short-step path-following IPA for solving

P?(κ)-NCPs. We adopted the basic analysis used by many authors for P?(κ)-LCPs and

develop them to be suited for P?(κ)-NCPs. We proved that short-step algorithm re-

quires O
(√

n(1 + 4κ) log(
n

ε
)
)

iteration bound for getting an approximated solution

of P?(κ)-NCPs. Preliminary obtained numerical results are very encouraging.
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General conclusion and future work

In this thesis, we have presented some interior-point methods for solving some classes

of complementarity problems (linear and nonlinear).

In Chapters 2 and 3, a polynomial short-step primal-dual interior-point methods

(IPMs) are proposed for solving the monotone linear complementarity problems (

MLCPs).

Firstly, we have used only the classical search directions i.e., ψ(t) = t. At each

iteration the algorithm uses only full-Newton steps without using line search. For

its well definiteness and its local convergence, a suitable defaults update barrier θ

and threshold τ are selected for this purpose. Some numerical results are presented

which show the efficiency of this algorithm for solving MLCPs.

Secondly, instead to using the classical Newton search directions, we have used

the technique of algebraically equivalent transformation (AET) induced by the uni-

variate function ψ(t) = t
5
2 to the central path to offer new search directions. With the

same manner as in Chapter 2, we have analyzed a short-step primal-dual interior-

point methods for MLCPs. Also, under new defaults update barrier θ and threshold

τ the algorithm is well-defined and converge locally quadratically with polynomial

complexity to a solution of MLCPs. some experimental results are also given.

Regarding the numerical results obtained by the algorithm we have concluded

that the convergence is very slow towards the solution of MLCPs. To remedy this

drawback, we have ameliorated this algorithm where instead some Netlib testing

problems.

In Chapter 4, by exploiting the strategy of minorant and majorant functions for

computing step-lengths we have proposed a logarithmic barrier methods for solving

also MLCPs. Some numerical results are given followed by a comparison Wolfe’s

classical line search rule.

Finally, we end the thesis by extending the idea of Chapter 2 i.e. the development
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and the analysis of short-step path-following IPMs for solving the class of P?(κ)−NCP.

Also, some new defaults depending on the handicap κ are choosing for proving the

well definiteness of the algorithm. The numerical results are not good because as the

dimension of problem n and the handicap κ became very large the θ tends to zero. In

some problems of P?(κ)−NCP handicap κ is absent. therefore, our θ = 1√
2(n+1)(1+4κ)

is not valuable and consequently we have obliged to deviate the algorithm where we

use some θ independents of the handicap κ and the dimension n. For maintain its

strict feasibility, we have introduced a step-lengths α to ensure this goal.

In general, we have treated in this thesis the following points such as : the di-

rection, the step-lengths, the initial points to improving the performance of these

algorithms to solve MLCPs and P?(κ)−NCPs.

Future work

In this section, an interesting topics of research in the future are:

1. The extension of Algorithm 3.1.1 to the class of P?(κ)-LCPs.

2. The development of an infeasible full-Newton step IPA for monotone LCP based

on our AET in Chapter 3.

3. It would be interesting to use the new approach of majorant and minorant

functions to other classes of nonlinear optimization problems.

4. The extension of these methods for more general semidefinite complemen-

tarity problems such as the semidefinte nonlinear complementarity problems

(SNLCP).
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.1 Appendix A

.1.1 Newton-Raphson’s method for solving nonlinear systems

Newton’s method for solving the nonlinear system of equations

G(x) = 0.

where G : Rn → Rn is continuously differentiable. generates a sequence {xk} ac-

cording to the following rule:

xk+1 = xk − (J(xk))−1G(xk), k = 0, 1, . . .

where x0 ∈ Rn is a suitable starting point.

We define the n× n Jacobian matrix J(x) as

J(x) =



∂g1
∂x1

(x)
∂g1
∂x2

(x) . . .
∂g1
∂xn

(x)

∂g2
∂x1

(x)
∂g2
∂x2

(x) . . .
∂g2
∂xn

(x)

...
... . . . ...

∂gn
∂x1

(x)
∂gn
∂x2

(x) . . .
∂gn
∂xn

(x)


,

where
∂gi
∂xj

(x) is called the partial derivative of gi at xj.

The Hessian matrix is a matrix of second order partial derivatives, define as follow:

H(x) =



∂2g1
∂x21

(x)
∂2g1
∂x1∂x2

(x) . . .
∂2g1

∂x1∂xn
(x)

∂2g2
∂x2∂x1

(x)
∂2g2
∂x22

(x) . . .
∂2g2

∂x2∂xn
(x)

...
... . . . ...

∂2gn
∂xn∂x1

(x)
∂2gn
∂xn∂x2

(x) . . .
∂2gn
∂x2n

(x)


.
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.1.2 Solving LCP without having an initial interior-point

Feasible IPMs start with a strictly feasible interior point and the iterates maintain

feasible during the computation process. However, to obtain such an initial point for

some MLCPs, we have been use the homogeneous and self-dual LCPs model consid-

ered by Ye [75].

.1.3 Line search Wolfe and Powell strategy

The Algorithm .1.1 helps to understand the structure of the Wolfe and Powell line

search procedure.

Algorithm .1.1 The Wolfe and Powell line search algorithm
1: Initialize λmin = 0, λmax = L (L ∈ R+ enough big), m1 ∈]0, 1[ and m2 ∈]m1, 1[
2: while Arret=Faux do
3: calculate f(xk + λdk)
4: if f(xk + λdk) ≤ f(xk) +m1λ∇f(xk) then
5: calculate ∇f(xk + λdk)
6: if ∇f(xk + λdk) ≥ m2∇f(xk) then
7: Arret=Vrai
8: End
9: End

10: if Arret=Faux then
11: λmin = λ
12: else
13: λmax = λ

14: End
15: λ =

λmin + λmax

2
16: End

.1.4 Netlib collection LO tests

To get the collection of LO test problems gathered by David Gay [37] connect to

netlib site http://www.netlib.org/lp.
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.1.5 LU decomposition

This decomposition is used in numerical analysis to solve system of linear equations

Ax = b where A ∈ Rm×n, b ∈ Rm. The square matrix A can be decomposed into two

square matrices L and U such that A = LU , where U is an upper triangular matrix

formed as a result of applying the Gauss elimination method on A, and L is a lower

triangular matrix with diagonal elements being equal to 1. We substitute A = LU .

Thus, we have LUx = b. We put Z = Ux, where Z is a vector of artificial variables

and solve for LZ = b first and then solve for Ux = Z to find x.

.1.6 Implementation and numerical results

We implemented the above algorithms on the software MATLAB 7.9 and run on a PC

with CPU 2.13 GHz and 2G RAM memory and double precision format.

.2 Appendix B

The following MATLAB codes for the Algorithms 2.2.1 and 3.2.1 respectively.
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%%%%% Problem 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=4;               %dimension of the problem  

M=[2,1,1,1;1,2,0,1;1,0,1,2;-1,-1,-2,0];%PSD matrix 

q=[1;-2;4;10;2];   %constant vector q 

%%%%% Problem 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=7; 

Q=[1,0,-0.5,0;0,0.5,0,0;-0.5,0,1,0.5;0,0,0.5,0.5]; 

A=[1,2,1,1;3,1,2,-1;0,-1,-4,0]; 

M=[Q,A';-A,zeros(3,3)] 

q=[-1;3;1;-1;5;6;1.5]; 

%%%%% Problem 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=input('give the value of size n=')  

M=4*eye(n); 

for i=1:n 

    for j=1:n-1 

        if(i==j)&&(i==1) 

            M(i,j+1)=1; 

            M(i,j+1)=-2*M(i,j+1); 

        end 

        if(i==j)&&(i>1) 

            M(i,j+1)=1; 

            M(i,j+1)=-2; 

            M(i,j-1)=1; 

            M(i,j-1)=-2; 

        end 

        if(i==j+1)&&(i==n) 

            M(i,j)=1; 

            M(i,j)=-2; 

        end 

    end 

end 

q=ones(n,1);q(1)=-1;q(n)=-1; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

e=ones(n,1);       %vector of all ones  

N=eye(n);          %identity matrix of order n 

x=ones(n,1)        %feasible initial starting vectors x and y 

y=[M*x+q]; 

mu=0.5;             

theta=1/sqrt(2*n+2) %barier parameter 

v=sqrt((x.*y)/mu) 

del=norm(v.^(-1)-v)  % the proximity measure 

epsilon=10^-6;     %accuracy parameter 

Iter=0;            %number of iteration 

tic                 

while epsilon<=n*mu 

    mu=(1-theta)*mu; 

    X=diag(x); 

    Y=diag(y); 

    Z=[-M,N;Y,X]; 

    b=[zeros(n,1);(mu*e)-(x.*y)]; 

    [L,U]=lu(Z); 

    d=inv(U)*(inv(L)*b); 

    dx=d(1:n) 

    dy=d(n+1:2*n) 

    x=x+dx 

    y=y+dy 

    Iter=Iter+1     

end 

toc 
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%%%%% Problem 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=5;                %dimension of the problem 

M=[6,6,4,3,2;8,21,14,10,12;4,14,13,5,9;4,10,5,6,5;3,12,8,4,10];%P

SD matrix 

q=[-20.5;-64.5;-44.5;-29.5;-36.5];   %constant vector q 

x=ones(n,1);        %feasible initial starting vectors x and y 

y=[M*x+q]; 

%%%%% Problem 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=8 

M=[8,9,13,13,5,11,9,10;8,10,15,15,7,12,10,12;13,15,26,26,10,20,13

,21; 

13,15,26,26,10,20,12,20;5,7,10,10,5,9,5,8; 

11,12,20,20,9,19,13,15;9,10,13,12,5,13,16,13; 

10,12,21,20,8,15,13,22]; 

q=[-8.265;-9.3033;-14.835;-14.4633;-5.995;-12.4133;-10.015;-

12.3033] 

x=[0.2233;0.1893;0.1207;0.1202;0.2758;0.1431;0.1961;0.1403] 

y=[M*x+q]; 

%%%%% Problem 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=input('give the value of size n=')  

M=ones(n,n); 

for k=1:n 

    M(k,:)=4*k-3+1; 

    M(k,k)=4*k-3; 

end 

for k=1:n 

    for s=1:n 

        M(s,k)=M(k,s); 

    end 

end 

e=ones(n,1);       %vector of all ones 

q=-M*e+e 
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x=e 

y=e 

N=eye(n);          %identity matrix of order n 

mu=0.5;             

theta=1/(35*sqrt(2*n)) %barier parameter 

v=sqrt((x.*y)/mu) 

del=norm(v.^(-4)-v)  % the proximity measure 

epsilon=10^-4;     %accuracy parameter 

Iter=0;            %number of iteration 

tic 

while epsilon<=n*mu 

    mu=(1-theta)*mu; 

    X=diag(x); 

    Y=diag(y); 

    Z=[-M,N;Y,X]; 

    b=[zeros(n,1);(2*mu/5)*(((x.*y)/mu).^((-3)/2)-(x.*y)/mu)]; 

    [L,U]=lu(Z); 

    d=inv(U)*(inv(L)*b); 

    dx=d(1:n) 

    dy=d(n+1:2*n) 

    x=x+dx; 

    y=y+dy; 

    Iter=Iter+1 ; 

end 

toc 
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 ملخص

حل مسائل من أجل المساس المشكضي  الذاخلٍة ورات النقطة  اسصمٍاتة خىذع افً هزه الأطشوحة قذمن

نا على حساب اتجاهات نٍىتن القذٌمة والحذٌثة واقتشاح لهزا الغشض سكض ،لخطً و غٍش الخطً(التتام )ا

و  المعشفة لخىاسصمٍاتإلى حساب الكلفة الحذودٌة ل أدت ةهزه الذساس .استشاتٍجٍة جذٌذة لحساب الخطىة

 .فعالةنتائج عذدٌة 

 النقطة الذاخلٍة، المساس المشكضي، ةقٌطش )الخطً و غٍش الخطً(، مسائل التتام : الكلمات المفتاحية

 الكلفة الحذودٌة.  اتجاهات نٍىتن،
 

 

 

Résumé  

Dans cette thèse,  nous proposons quelque algorithmes de point-intérieur de type 

trajectoire centrale pour résoudre les problèmes de complémentarité (linéaire et 

non linéaire), dans ce but, nous avons concentré sur le calcul des directions de 

Newton classiques et nouvelles. En outre, nous avons proposé de nouveaux pas 

de déplacement sur ces directions. Cette étude, conduit à calculer la complexité 

polynomiale de ces algorithmes, ainsi que des résultats numériques efficaces.  

Mots clés : Problèmes de complémentarités (linéaire et non linéaire), méthode 

de point-intérieur, trajectoire centrale, direction de Newton, complexité 

polynomiale. 

 

 

 

Abstract 

In this thesis, we have proposed some path-following interior-point algorithms 

for solving complementarity problems (linear and nonlinear), for this purpose, 

we have concentrated on the computing of classical and new Newton’s search 

directions. Further, we have proposed some new step-sizes on these directions. 

This study, leads to compute the polynomial complexity for these algorithms, as 

well as efficient numerical results. 

 

Key words: Complementarity problems (linear and nonlinear), interior-point 

method, path-following, Newton’s direction, polynomial complexity 
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