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Abstract

Because of its usefulness in production planning, financial and corporate plan-

ning, health care and hospital planning, quadratic programming (QP) problems

have attracted considerable research and interest in recent years.

In this thesis, we present a theoretical analysis and numerical study for solving

a special class of constrained convex quadratic programming problems, which is

called the simplicial cone constrained convex quadratic optimization (abbreviated

by SCQO). In the first part, and via its optimality K.K.T conditions, the SCQO is

equivalent to finding the unique solution of an absolute value equations (AVE).

For solving the latter, we applied across the (AVE), a new two-steps Picard’s it-

erative fixed point iteration method. In particular, the sufficient conditions for

the convergence of our algorithm are studied. The obtained numerical results

illustrate that the algorithm is efficient and valid to solve SCQOs. In the second

part, a feasible full-Newton step primal-dual path following interior-point algo-

rithm (IPA) is proposed for solving SCQOs via its reformulation as a P-LCP (i.e.,

a linear complementarity problem with a P-matrix). Moreover, for the seek of

benefit, the well-definiteness and the convergence of the proposed algorithm are

proved. In addition, its complexity polynomial is computed. Some numerical re-

sults are presented to show the effectiveness of this algorithm. We followed it

up with a comparison study between the numerical results obtained by these two

algorithms through some SCQO examples.

Keywords: Quadratic programming, complementarity problem, absolute value

equations, Picard’s iterative methods, interior-point methods, primal-dual path

algorithm, polynomial complexity.
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Glossary of Notation

Problem Classes

QP : Quadratic Programming.

SCQO : Simplicial cone constrained convex quadratic optimization.

LCP : Linear complementarity problem.

HLCP : Horizontal linear complementarity problem .

MLCP : Monotone linear complementarity problem.

IP : Interior-Point.

IPC : Interior-Point-Condition.

IPMs : Interior-Point Methods.

K.K.T : Karush-Kuhn-Tucker.

CF : Cholesky Factorization.

AVE : Absolute value equations

Spaces
Rn : The real n-dimensional space.

Rn
+ : The nonnegative orthant of Rn.

Rn
++ : The positive orthant of Rn.

Rn×n : The set of all n× n real matrices.

Vectors

3



GLOSSARY OF NOTATION 4

x : The vevteur in Rn.

xi : The i-th component of vevteur x

xT : (x1, . . . , xn) the transpose of a vector x, with components xi
x ≥ 0 = xi ≥ 0 , ∀i.
x > 0 : xi > 0, ∀i.
e = (1, ..., 1)T ∈ Rn.

|x| = Absolute value of a vector x ∈ Rn. |x| = (|xi|), i = 1, . . . , n.

xTy =
n∑

i=1

xiyi the standard inner product in Rn.

sign(x) = denotes a vector with the components equal to -1, 0 or 1.

‖x‖ : denote the Euclidean norm (xTx)1/2.

Matrices

I : Identity matrix .

0n×n : The (n, n) null matrix .

AT : The transposed matrix of A.

A−1 : The inverse of a regular matrix A.

A invertible : Anonsingular.

|A| = (|aij|), the absolute value of aij.

λ(A) : The eigenvalue of A ∈ Rn×n.

λmax(A) : The largest eigenvalue of A.

λmin(A) : The smallest eigenvalue of A.

σmax(A) : The largest singular value of a matrix A.

σmin(A) : The smallest singular value of a matrix A.

tr (A) =
n∑

i=1

aii =
n∑

i=1

λi(A), (the trace of a matrix A ∈ Rn×n).

ρ (A) = max |λi(A)| , ( the spectral radius of A ).

‖A‖2 =
√
ρ (ATA), (the spectral norm of A ).

D(x) = diag(sign(x))



Introduction

Quadratic programming (QP) is the problem of optimizing a quadratic objective

function and it is one of the simplest form of non-linear programming. (QP) is

widely used in image and signal processing, computer vision, machine learning, to

optimize financial portfolios, to perform the least-squares method of regression,

to control scheduling in chemical plants, and in sequential quadratic program-

ming, a technique for solving more complex non-linear programming problems.

The problem was first explored in the early 1950s, most notably by Princeton

University’s Wolfe and Frank, who developed its theoretical background, and by

Markowitz [48], who applied it to portfolio optimization, a subfield of finance.

QPs are also extensively used in finance, as variance, which is used to measure

risk, is a function containing squares. More specifically, Markowitz won the 1990.

Nobel Prize in Economics for his widely-used model that employs quadratic pro-

gramming to optimizes the amount of risk taken on based on variances. There are

many approaches to solving a convex quadratic programming and The majority

of these methods can be categorized into either interior point methods (which are

discussed heavily in Chapter 3) or active-set methods (see [21, 23, 71]). Briefly,

interior-point methods (IPMs) are among the most efficient methods for solving

linear, and also wide classes of other convex optimization problems. The first

known IP method is Frisch’s (1955) logarithmic barrier method that was later

extensively studied by Fiacco and McCormick. Since the path-breaking work of

Karmarkar [32], much research was invested in IPMs. Many algorithmic variants

were developed for Linear Optimization ( LO). The new approach forced to recon-

sider all aspects of optimization problems. Not only the research on algorithms

and complexity issues, but implementation strategies, duality theory and research

on sensitivity analysis got also a new impulse. Several books were published that

summarize and explore different aspects of IPMs. The seminal work of Nesterov

and Nemirovski [51] provides the most general framework for polynomial time

5



INTRODUCTION 6

IPMs for convex optimization. Den Hertog [19] gives a thorough survey of pri-

mal and dual path-following IPMs for linear and structured convex optimization

problems. Many works discusses primal-dual target following algorithms for lin-

ear optimization and complementarity problems. The primal-dual path-following

methods introduced by Kojima and al. in 1989 [36] and Monteiro and al. [50]

are the most attractive and most of the corresponding algorithms are based on

the logarithmic barrier function. In recent years, the majority of research in the

field of IPs is for nonlinear optimisation problems, especially these methods are

powerful tools to solve a wide large of mathematical problems such as LO,(see

[1, 17, 20]), convex quadratic optimization (CQO) (see [2, 67, 74]), the linear

complementarity problem (LCP) (see [7, 14, 18, 37, 46, 76]), the linear semidef-

inite optimization (SDO) and the semidefnite linear complementarity problem

(SDLCP) (see [3, 6, 47, 66]). Recently, Achache [4] presented a short-step feasi-

ble IPMs for solving monotone standard LCP. He showed that the algorithm enjoys

the iteration bound, namely, O
(√

n log(
n

ε
)
)

. Furthermore, he reported some nu-

merical results which confirmed the efficiency of this algorithm.

In this thesis, we are interested for solving an important special class of con-

strained convex quadratic programming problems, which is the simplicial cone

constrained convex quadratic optimization SCQO of type:

min
x

{
f(x) =

1

2
xTQx+ xT b+ c subject to: x ∈ S

}
,

where Q ∈ Rn×n is a given symmetric positive definite matrix, b ∈ Rn, c ∈ Rn and

S =
{
Ax | x ∈ Rn

+

}
is the simplicial cone associated with the nonsingular matrix A ∈ Rn×n. Simplicial

cone constrained convex quadratic programming arises as a interesting problem

in its own right, it has an subclass of positively constrained convex quadratic pro-

gramming, or equivalently the problem of projecting the point onto a simplicial

cone (see [13]). The interest in the subject of projection arises in several situa-

tions, having a wide range of applications in pure and applied mathematics such

as Convex Analysis, Numerical Linear Algebra, Statistics, Computer Graphics. In

[13] they particularized the Moreau’s decomposition theorem for simplicial cones.

This leads to an equivalence between the problem of projecting a point onto a sim-

plicial cone and the one of finding the unique solution of a nonsmooth system of

equations and they was proposed a semi-smooth Newton’s method for solving the
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obtained associated system.

The purpose of the work in this thesis is to solve SCQO via two different methods.

• A two-steps fixed-point method.

• An interior-point method.

Specifically, across the Karish-Khun-Tucker (K.K.T) optimality conditions of SCQO,

we reformulate it as an equivalent LCPs (see [15]). First, from optimality condi-

tions of SCQO and under suitable conditions, the convex quadratic programming

under a simplicial cone constraints is equivalent to finding the unique solution of

the following absolute value equation:

(ATQA+ I)x+ (ATQA− I)|x| = −AT b.

This equation is a special case of the general absolute value equations AVE of the

type:

Āx− B̄|x| = b̄

where Ā, B̄ are given (n × n) real square matrices and b̄ ∈ Rn. The AVE was

first introduced by Rohn [60] and investigated in more general context in Man-

gasarian (see [44]). Other studies for the AVE can be found in [8, 9, 11, 26,

28, 30, 40, 42, 49, 52, 59, 69]. Besides some numerical methods are used to

solve it. In particular, Mangasarian in [43] proposed a semi-smooth Newton’s

method for solving the AVE, and under suitable conditions he showed the finite

and linear convergence to a solution of the AVE. However, other numerical ap-

proaches focus on reformulating the AVE as an horizontal linear complementarity

problems (HLCP) (see [10]), where they introduce an infeasible path-following

interior-point method for solving the AVE by using is equivalent reformulations as

an HLCP. For solving the AVE, we propose a new two-steps fixed point iterative

method which is introduced in [33], and under a new mild assumption we show

that this method is always well-defined and the generated sequence converges

globally and linearly to the unique solution of the AVE from any starting initial

point. Finally, numerical results are provided to illustrate the efficiency of this

algorithm to solving the SCQO. Secondly, we show that the corresponding LCP is

a P-LCP. Hence, due to R. W. Cottle, J. S. Pang and R. E. Stone [16], the P-LCP

has a unique solution and so is the SCQO. And across the P-LCP, we introduce

a simple feasible short-step interior-point algorithm for solving the SCQO. In fact
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the latter uses at each iteration, only full-Newton steps with the advantage that

no line search is required. For its well-definiteness and its local quadratic con-

vergence to an optimal solution of SCQO, we suggest new appropriate defaults to

ensure that the algorithm converges to the unique minimizer of SCQO. Moreover,

the best known iteration bound, namely, O
(√

n log
n

ε

)
is derived. Here, for its

polynomial complexity, we have reconsidered the basic analysis used in [4] and

other references and developed them to be suited for SCQOs. Finally, numeri-

cal tests were carried out to study the behavior of the algorithm with different

proposed parameters.

Short Outline of the Thesis

The thesis contains three chapters, followed by a bibliography. This thesis is or-

ganized as follows

• In the first chapter, we present a background of matrices, the basic concepts

of convex analysis, quadratic programming, differential calculus, equation

in absolute values and some results of existence and uniqueness of the so-

lution of the AVE, we present the definitions and terms that will be used

throughout the thesis.

• In the second chapter, the reformulation of the SCQO as an absolute value

equation AVE and the unique solvability of AVE is studied. Any solution of

the AVE generates a solution of our convex quadratic programming problem

SCQO. For its numerical solution, we propose an efficient two-steps fixed

point iterative method for solving the AVE. In addition, we show that under

suitable assumptions the proposed algorithm converges globally linear to

the unique solution of the AVE and which is in turn an optimal solution of

SCQO. Moreover, we also report some preliminary numerical results to show

the practical performance and the efficiency of the proposed algorithm.

• In the third chapter, we deal with the study of the polynomial complexity

and the numerical implementation for a full-Newton short-step primal-dual

central-path interior-point method for solving the P-LCP. We show that the

corresponding algorithm enjoys the best known theoretical polynomial com-

plexity, namely,O
(√

n log
n

ε

)
. A full theoretical study is done. The quadratic
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convergence of full-Newton’s iterations towards the central path is proved

thus is calculated from the complexity polynomial of the algorithm which is

of the polynomial order. Some numerical results are provided to illustrate

its efficiency for solving the SCQOs. In the last of this chapter, a compara-

tive study between the numerical results obtained by the these algorithms is

presented where the performance of each method is deduced.

Finally, we end the thesis with a conclusion and future work.



Chapter 1

Mathematical background

In this chapter, we present some mathematical background in matrices and convex

analysis, quadratic programming, differential calculus and the definition of the

absolute value equations.

1.1 Matrix Analysis [27]

We denote by Rn, the finite-dimensional Euclidean vector space (n ∈ N) and by

Rn×n the set of(n× n) real square matrices.

- For all x and y ∈ Rn we denote by:

xTy =
n∑

i=1

xiyi,

the usual scalar product of x and y. The vector xT denotes the transpose of the

vector column x of Rn.

- Two vectors x and y are orthogonal if xTy = 0.

- The Euclidean norm associated with the usual scalar product, is given by:

‖x‖2 =
√
xTx =

√√√√ n∑
i=1

x2i .

Definition 1.1. An application ‖.‖ : Rn → R is said to be a vectorial norm if it

satisfies the following conditions:

• ‖x‖ ≥ 0,∀x ∈ Rn, ‖x‖ = 0⇔ x = 0.

• ‖αx‖ = |α| ‖x‖ ,∀α ∈ R,∀x ∈ Rn.

10



CHAPTER 1. MATHEMATICAL BACKGROUND 11

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ,∀x, y ∈ Rn.

- The Cauchy-Schwarz inequality:∣∣xTy∣∣ ≤ ‖x‖ ‖y‖ ∀x, y ∈ Rn.

Lemma 1.2. For all x ∈ Rn and y ∈ Rn, we have:

‖|x| − |y|‖ ≤ ‖x− y‖ .

Definition 1.3. Let C be the set of complex numbers and let A be a real square

matrix of Rn×n. We recall that λ ∈ C is an eigenvalue of the matrix A if there

exists a vector x ∈ Cn with x 6= 0 such that:

Ax = λx,

we call x the eigenvector of A associated to the eigenvalue λ.

Definition 1.4. We say that the matrix A is positive semi-definite if:

xTAx ≥ 0 ,∀x ∈ Rn,

and we say that A is positive definite if:

xTAx > 0, ∀x ∈ Rn(x 6= 0).

Definition 1.5. A matrix A ∈ Rn×n is said to be symmetric if A = AT . It is said to

be skew symmetric if AT = −A.

Definition 1.6. A matrix A is nonsingular (invertible) matrix if there exists a

matrix denoted by A−1 such that AA−1 = I where I denotes the identity matrix

in Rn×n.

Lemma 1.7. A is nonsingular matrix if its determinant is nonzero.

Lemma 1.8. Let A,B ∈ Rn×n. Then

(AB)T = BTAT ,

and if α and β are scalars

(αA+ βB)T = αAT + βBT ,

if A and B are non-singular matrices, we have

(AB)−1 = B−1A−1.
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Lemma 1.9. The square real matrix A is symmetric if and only if there exists an
orthogonal matrix O such that OOT = I and A = ODOT where D is a diagonal
matrix, i.e.,

D := diag(λi(A)), λi(A) ∈ Sp(A),

where Sp(A) denotes spectrum of the matrix A.

Definition 1.10. We call a singular value of a matrix A ∈ Rm×n any square root

of an eigenvalue of the semi-definite symmetric matrix ATA, that is to say:

σ(A) =
√
λ(ATA),

such that λ( ATA) ≥ 0, is the eigenvalue of ATA.

- The minimal singular value of A is given through :

σmin(A) = min
‖x‖2=1

√
xTATAx,

likewise the maximal singular value of A, is given by:

σmax(A) = max
‖x‖2=1

√
xTATAx.

We note if the matrix A is symmetric i.e., A = AT , then the minimal singular value

of A coincides with the minimal eigenvalue of A and we have:

λmin(A) = min
‖x‖2=1

‖Ax‖,

likewise the maximal singular value of A coincides with the maximal eigenvalue

of A, and we have:

λmax(A) = max
‖x‖2=1

‖Ax‖.

Lemma 1.11. Any positive definite matrix A is nonsingular.

Lemma 1.12. Any real symmetric matrix A, has real eigenvalues and there exist n
eigenvectors of A forming a basis of Rn.

Lemma 1.13. If A is a real symmetric matrix. Then

xTAx ≥ λmin(A) ‖x‖22 , ∀x ∈ Rn,

where λmin(A) denotes the smallest eigenvalue of A.
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Lemma 1.14. If the matrix A ∈ Rn×n is symmetric, then A is positive semi-definite
if and only if λmin(A) ≥ 0, and A is positive definite if and only if λmin(A) > 0.

Definition 1.15. Let A,B ∈ Rn×n , the following application:

‖.‖ : Rn×n → R,

is said to be a matrix norm if it satisfies the following properties:

• ‖A‖ ≥ 0, ∀A ∈ Rn×n, ‖A‖ = 0⇔ A = 0.

• ‖αA‖ = |α| ‖A‖ ,∀α ∈ R,∀A ∈ Rn×n.

• ‖A+B‖ ≤ ‖A‖+ ‖B‖ ,∀A,B ∈ Rn×n.

• ‖AB‖ ≤ ‖A‖ ‖B‖ ,∀A,B ∈ Rn×n.

Definition 1.16. - Recall that a subordinate matrix norm induced by the vector

norm is defined as follows:

‖A‖ = sup
x 6=0, x∈Rn

‖Ax‖
‖x‖

.

- If the vector norm, is the Euclidean norm, then:

‖A‖2 =
√
|λmax(ATA)|,

where λmax(A
TA) denotes the largest eigenvalue of the matrix ATA .

- If A is real symmetric and positive definite, then

‖A‖2 = λmax(A).

Definition 1.17. The matrix A ∈ Rn×n is said to be P-matrix if and only if its

principal minors are positive. Consequently any positive definite matrix is a P-

matrix.

Definition 1.18. The absolute value of a matrix A is defined by

|A| = (|aij|),

where A = (aij).
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Matrix factorization

In this section, we focus on the topic of a matrix factorization the theoretical

foundation of the finite elimination methods for solving linear equations. There

are many Kinds of matrix factorizations, we review only the LU and Cholesky

factorization .

Theorem 1.19. Let A ∈ Rn×n. Suppose the first n− 1 leading principal minors of A
are non zero. Then there exist a lower triangular matrix L with unit diagonal entries
an upper triangular matrix U such that

A = LU. (1.1)

The representation (1.1) is called the LU (triangular) factorization .

Proposition 1.20. Let A ∈ Rn×n be symmetric positive definite. There exists a
unique lower triangular real matrix L, such that all its elements diagonals are strictly
positive and which verifies:

A = LLT .

The Cholesky decomposition or Cholesky factorization is a decomposition of a

symmetric positive-definite matrix A into the product of a lowertriangular matrix

and its transpose. The Cholesky decomposition is roughly twice as efficient as the

LU decomposition for solving systems of linear equations.

The Cholesky decomposition of a symmetric positive-definite matrix A is a de-

composition of the form A = LLT , where L is a lower triangular matrix with real

and positive diagonal entries, and LT denotes the conjugate transpose of L. Every

symmetric positive-definite matrix has a unique Cholesky decomposition.

The Cholesky factorization is not difficult to compute, it can be computed by a

form of Gaussian elimination that takes advantage of the symmetry and definite-

ness. Equating (i, j) elements in the equation A = LLT gives:

ljj = (ajj −
j−1∑
k−1

l2kj) for i = j

lij =
1

lii
(aij −

∑
lkilkj) for i > j

The algorithm of Cholesky requires n3/3 + O(n2) flops and n square roots, where

a flop is any of the four elementary scalar arithmetic operations +, -, *, and /.
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The Cholesky decomposition is mainly used for the numerical solution of linear

equations Ax = b. If A is symmetric and positive definite, then we can solve

Ax = b by first computing the Cholesky decomposition A = LLT , then solving

Ly = b for y by forward substitution, and finally solving LTx = y for x by back

substitution.

1.2 Convex analysis

In this paragraph, we cite some basic notions of convex analysis which will be

useful afterwards.

Convex sets and convex functions

Definition 1.21. A subset D ⊂ Rn is said to be convex if ∀x, y ∈ D implies that

(1− λ)x+ λy ∈ D, ∀λ ∈ [0, 1] .

Thus a set D ⊂ Rn is said to be convex if ∀x, y ∈ D the segment [x, y] ⊂ D.

Definition 1.22. (Convex Combinations). Let {x1, x2, . . . , xn} be any set of

points in Rn. A convex combination of this set is a point of the form

x = α1x1 + α2x2 + . . .+ αrxr;
r∑

i=1

αi = 1, α1, .....αr ≥ 0

Proposition 1.23. For a set D ⊂ Rn, it holds that convD is the set of all convex
combinations of elements of D, i.e.,

convD =

{
r∑

i=1

αixi;xi ∈ D, αi ≥ 0,
r∑

i=1

αi = 1

}
.

Definition 1.24. Let D ⊂ Rn be a convex set and f : D→ R .

1- f is said to be convex on D if:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).∀x, y ∈ D, ∀t ∈ [0, 1].

2- f is said to be strictly convex if:

f((1− t)x+ ty) < (1− t)f(x) + tf(y).∀x, y ∈ D, x 6= y,∀t ∈ ]0, 1[ .
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Convex cones

Cones are fundamental geometric objects associated with sets. They play a key

role in several aspects of mathematics.

Definition 1.25. A non-empty subset K ⊂ Rn is called a cone if it satisfies:

λx ∈ K ∀x ∈ K, ∀λ ≥ 0.

We call a closed set K ⊂ Rn with nonempty interior a closed convex cone if the

following conditions hold:

λx+ µy ∈ K for any λ, µ ≥ 0 and x, y ∈ K.

Definition 1.26. Let K ⊂ Rn be a closed convex cone. The dual cone of K is the

following set

K∗ := {x ∈ Rn| 〈x, y〉 ≥ 0,∀y ∈ K}.

Examples

1) The orthant Rn
+ = {x ∈ Rn/xi ≥ 0, i = 1, ..., n} and its interior

Int(Rn
+) = {x ∈ Rn | xi > 0, i = 1, ..., n}

are two convex cones widely used in optimization theory.

2) The simplicial cone associated to a nonsingular matrix A ∈ Rn×n, is defined by

S = ARn
+ =

{
Ax : x ∈ Rn

+

}
,

is a convex cone.

Coercive functions

Definition 1.27. Let D be an unbounded set of Rn and f : D → R. f is said to be

coercive on D if:

lim
‖x‖→+∞

f(x) = +∞.

Proper functions

Definition 1.28. We say that f , is an eigenfunction (proper function) on domf if

f(x) < +∞. The set domf ⊂ Rn, denotes the effective domain of the function f.

Strongly convex functions

Let D be an unbounded set of Rn and f : D → R, f is said to be strongly convex

if and only if there exists m > 0 such that:

〈f(x)− f(y), x− y〉 ≥ m ‖x− y‖2 ,∀x, y ∈ D.
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1.3 Differential calculus

In this paragraph, we introduce the notion of differentiability of a function. We

start to give some basic topological notions.

- For all x ∈ Rn and r > 0, the open ball of Rn, denoted by B(x, r), is given

through:

B(x, r) = {y ∈ Rn : ‖x− y‖ < r} .

- If {xk} is a sequence of Rn and x? is an element of Rn. We say that {xk} converges

to x? (denoted xk → x?) if ‖xk − x?‖ → 0 when k →∞.
- Let D ⊂ Rn.

1- We define the interior of D as the set of elements x ∈ D for which there exists

an r > 0 such that B(x, r) ⊂ D.

2- D is said to be open if ∀x ∈ D exists B(x, r) ⊂ D.

3- D is said to be closed if for any sequence {xk} from D such that xk → x? we

have: x? ∈ D.

- Let a and b, the set noted [a, b] of Rn, given by:

[a, b] = {a+ t(b− a) = (t− 1)a+ tb : t ∈ [0, 1]} .

The set [a, b] is called the segment connecting a and b.

Definition 1.29. Let D be a subset of Rn and f : D → R. We say that f is

continuous at x ∈ D, if f(xk) → f(x?) for any sequence {xk} of D such that

xk → x?. So we say that f is continuous over all D ⊂ Rn, if it is continuous at any

point of D.

Definition 1.30. The function f : Rn → R is lower semi-continuous at x if

f(x) = lim
y→x

inff(y),

and lower semi-continuous on Rn if this holds for every x ∈ Rn.

Suppose now that the set Ω is an open set of Rn and f : Ω→ R is a function.

Definition 1.31. For all x ∈ Ω , and h ∈ Rn, the directional derivative of f at x in

the direction h, is given by:

∂f

∂h
(x) = lim

t→0

f(x+ th)− f(x)

t
.
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The gradient of f at x, denoted by ∇f(x), is the column vector of Rn given by:

∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)T

.

Recall the formula:

∂f

∂h
(x) = hT∇f(x), ∀x ∈ Ω, ∀h ∈ Rn.

- We say that x? is a critical or stationary point of the function f if

∇f(x?) = 0.

- We denote for all x ∈ Ω, ∇2f(x) the symmetric square matrix of order n, given

by

(∇2f(x))ij =
∂2f

∂xi∂xj
(x), ∀i, j = 1, . . . , n.

∇2f(x) is called the Hessian matrix H from f to x. We also have:

H = ∇2f(x)h =
∂

∂xi
hT∇f(x).

- We say that f is of class C2 on Ω if the partial derivatives of order 2 of f exist

and are continuous.

Definition 1.32. If f is of class C2 on D, then f is convex over D if and only if the

matrix hessian ∇2f(x) is semi-definite positive. Likewise, f is said to be strictly

convex on D if and only if the hessian matrix is positive definite.

Some important examples:

- Consider the following quadratic function:

f(x) = xTAx.

Then

∇f(x) = (A+ AT )x and∇2f(x) = A+ AT .

In particular, if A is real symmetric, then

∇f(x) = 2Ax, ∇2f(x) = 2A.

Let f(x) = bTx, then:

∇f(x) = b, ∇2f(x) = 0.
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Generalized Jacobian in the sense of Clarke

In this paragraph, one gives the definition of the generalized Jacobian matrix

within the meaning of Clarke [56]. Indeed, we define the generalized Jacobian

for non-differentiable functions. For this purpose, we begin to give the definition

of a Lipschitizian function.

Definition 1.33. Let f : D ⊂ Rn → Rn be a function, f is said to be Lipschitzian

on D if there exists L > 0, such as:

‖f(x)− f(y)‖ ≤ L ‖x− y‖ ,∀x, y ∈ D.

Definition 1.34. Let f : D → Rm be a Lipschitzian function. So the set

∂fB(x) =
{
V ∈ Rm×n : ∃ {xk} ⊂ D with xk → x,∇f(xk)→ V

}
is called the B−sub-differential of f at x.

Definition 1.35. The generalized Jacobian matrix ∂f is defined as follows:

∂f(x) = conv(∂fB(x)),

where conv denotes the convex hull.

Definition 1.36. Let the function f : Rn → Rn.

f(x) = |x| ,

then the Jacobian generalized is of f given by:

D(x) = diag(sign(x)),

where D is the diagonal matrix whose elements are equal to 1, 0 or −1, with

sign (x) =


−1 if x < 0

0 if x = 0

1 if x > 0.

1.4 Unconstrained optimization problem

In this section, we only consider unconstrained optimization problem. We give

the existence and the uniqueness of a minimum thus the characterization of the

latter through its optimality conditions.

An unconstrained optimization problem is defined by

min
x∈Rn

f(x).
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Definition 1.37. If D ⊂ Rn, x? ∈ D and f : D → R.
1- We say that x? is a global minimum of f on D if:

f(x) ≥ f(x?), ∀x ∈ D.

2- We say that x is a local minimum of f on D if there exists a neighborhood V of

x? such than:

f(x) ≥ f(x?),∀x ∈ D ∩ V .

Remark 1.38. Any global minimum is a local minimum.

Results of existence and uniqueness of the optimal solution

In order to be able to easily calculate or to approximate the solution of an op-

timization problem, it is interesting to know the hypotheses guaranteeing the

existence and uniqueness of this solution.

Existence: Existence of minimizers is given by the classical Weierstrass Theorem.

Theorem 1.39. Let D ⊂ Rn. If f : D → R, is continuous and if D is a compact set
(closed and bounded), then f has a minimum on D.

Theorem 1.40. We suppose that:

1. The set D is closed

2. f is lower semi-continuous on D.

3. lim
‖x‖→+∞

f(x) = +∞ , (i.e. f is coercive).

Then f has a minimum on D.

Uniqueness. The following result shows the impact of convexity in optimization

problems.

Proposition 1.41. Let f be a convex function defined on a convex set D. Then any
local minimum of f on D is a global minimum. If f is strictly convex, it there is at
most a global minimum.
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Necessary and sufficient conditions for optimality

Necessary conditions

Theorem 1.42. (Necessary condition of first order optimality) Let f : Rn → R, a
differentiable functional. If x? achieves a minimum (global or local) of f on Rn then:

∇f(x?) = 0.

Theorem 1.43. (Necessary condition of second-order optimality) Let x? un mini-
mum of f . If f is twice differentiable at the point x?, then:〈

∇2f(x?)y, y
〉
≥ 0, ∀y ∈ Rn.

Sufficient conditions

Theorem 1.44. (First order sufficient condition ) If f is convex and if:

∇f(x?) = 0,

then x? is a global minimum of f.

Theorem 1.45. (Second order sufficient condition) If f is twice differentiable and if
∇f(x) = 0 and ∇2f(x) positive definite then x? is a global minimum of f.

Convergence of a sequence of points (Order of convergence)

Let x? be the limit of a sequence {xk}k≥0 produced by an iterative algorithm. We

say that xk → x? when k → +∞ ⇔ xk − x? → 0 when k → +∞ ⇔ ‖xk − x?‖
= 0 when k → +∞. Now we try to characterize the speed of convergence of the

quantity xk − x? → 0 when k → +∞. We say that:

- xk converges linearly to x?, if there is a ck(0 < ck < 1) such that:

‖xk+1 − x?‖ ≤ ck ‖xk − x?‖ from a certain rank k0.

- xk converges superlinear to x? if lim
k→+∞

ck = 0.

- xk quadratically converges to x?, if there is a c(0 < c < 1) such that:

‖xk+1 − x?‖ ≤ c ‖xk − x?‖2 from a certain rank k0.
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1.5 Quadratic programming

Quadratic problems form an important class of nonlinear optimization problem.They

involve the minimization of a quadratic objective function subject to linear con-

straints on optimization variables. Its importance lies in its theoretical properties,

its applications in different scientific fields and several disciplines such as: finance,

medicine, economics and telecommunications. In fact, several real and academic

problems can be modeled under form of quadratic program for example: port-

folio optimization in finance, transmission of multi-layer beams, and geometric

problems.

The most general quadratic program is given by:

(QP )


min
x

1

2
xTQx+ cTx

s.t. Ax = a,

Bx ≤ b,

x ≥ 0

(1.2)

where Q is a symmetric matrix in Rn×n (not necessarily positive semidefinite),

A ∈ Rm1×n, rank(A) = m1, (m1 ≤ n),B ∈ Rm×n, c ∈ Rn, b ∈ Rm, a ∈ Rm1 .

There are two cases:

(a) Q is symmetric and positive semi-definite ) QP is convex.

(b) Q is symmetric but not positive semi-definite ) QP is non-convex.

Any quadratic program can be reduced to one of the following forms:

Equality-constrained QP’s

If only equality constraints are imposed, the (QP) reduces to:

(EQP )

 min
x

1

2
xTQx+ cTx

s.t. Ax = a; x ∈ Rn.

where Q is a symmetric matrix in Rn×n (not necessarily positive definite), A ∈
Rm1×n, m1 ≤ n, c ∈ Rn, a ∈ Rm1 . For the time being we assume that A has full

row rank m1.

The KKT conditions for the solution x? ∈ Rn of the EQP give rise to the following

linear system {
Qx? + ATλ? = −c
Ax? = a
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or (
Q AT

A 0

)(
x?

λ?

)
=

(
−c
b

)
where λ? ∈ Rn is the associated Lagrange multiplier.

The matrix

K =

(
Q AT

A 0

)
is called the K.K.T matrix.

Optimality for equality-constrained QP’s

Assumptions:

• A has linearly independent rows, i.e. A has full row rank.

• Q is positive definite in the null space of A.

Theorem 1.46. The matrix K is nonsingular.

Theorem 1.47. The solution x? of the K.K.T system is the unique global solution of
the equality-constrained EQP.

The equality-constrained QP is a convex problem under the above assumptions.

Inequality-constrained QP’s

(IQP )

 min
x

1

2
xTQx+ cTx

s.t. Bx ≤ b, x ≥ 0,

where Q is a symmetric positive semi-definite matrix in Rn×n, B ∈ Rm×n, c ∈ Rn,

b ∈ Rm.

Optimality conditions for inequality-constrained QP’s

The KKT conditions simplify to x is an optimal solution of (IQP ) if there exist y

∈ Rm
+ , λ ∈ Rn

+ such that: 

c+Qx+BTy − λ = 0

yT (b−Bx) = 0

(b−Bx) ≤ 0

λTx = 0

y ≥ 0, λ ≥ 0
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Methods for solving a convex quadratic program

In recent years many algorithms have been developed to solve convex quadratic

problems, among these algorithms, let us mention

Interior-Point Methods

The interior point method gets its name from the fact that the solution points

move through the interior of the feasible region towards the optimum rather than

along the boundary. The interior point method attempts to overcome the po-

tential weakness of the simplex method and it has been shown that the interior

point methods can be solved in polynomial time Interior methods IPMs solve the

QP by converting it into a parameterized sequence of unconstrained problems

whose solutions draw on the power of Newton’s method to solve systems of non-

linear equations by solving a series of linearized equation systems. The resulting

algorithms run in polynomial-time [70]. In the simplest case, the path is parame-

terized by a positive scalar parameter µ, such that as µ → 0, a point x (µ) on the

path converges to the solution of the QP, and thus are believed to be effective for

large-scale problems, which are efficient for solving convex problems (linear or

not) of big size.

The interior point methods are divided into several families.

- The projective method (Optimization on ellipsoids) introduced by Karmarker

[32].

- The potential reduction method (concept of barrier, central trajectory, relax-

ation).

- The central trajectory method is the most important representative of this family.

- The path-following methods (also known as trajectory-following) offer a good al-

ternative to the earlier active-set methods. The path following method falls under

the category of the so called barrier methods, which incorporate the constraints

into the objective function as logarithmic terms to remove the inequalities from

the problem. The resulting function becomes a function of a so called barrier pa-

rameter. This parameter is decreased at each iteration. The solution points form

a so called central path through the interior of the region towards the optimum

point. Although path-following methods may be applied to the general problem

QP.
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Active Set Methods

The Active-set method (ASM) is a classic method, developed in the early seventies

for solving linear and quadratic programming problems. It applies to optimization

problems with linear constraints of the inequality or mixed type (equalities and in-

equalities). Active Set methods keeps track of those constraints which are active,

that is, constraints for which strict equality holds at a local minimum point. The

idea of the method is to add active constraints to an active set provided certain

conditions hold. If the conditions are not satisfied the corresponding constraint is

dropped form the set. Active set methods start by finding a feasible point during

an initial phase and then search for a solution along the edges and faces of the

feasible set by solving a sequence of equality-constrained QPs. Active set methods

differ from the simplex method for linear programming in that neither the iterates

nor the solution need to be vertices’s of the feasible set. When the quadratic pro-

gramming problem is nonconvex, these methods usually find a local minimizer.

Finding a global minimizer is a more difficult task.

Active-set methods for quadratic programming problems of the form (1,2) solve

a sequence of linear equations that involve the y-variables and a subset of the x-

variables. Each set of equations constitutes the optimality conditions associated

with an equality constrained quadratic subproblem. The goal is to predict the

optimal active set, i.e., the set of constraints that are satisfied with equality, at

the solution of the problem. A conventional active-set method has two phases.

In the first phase, a feasible point is found while ignoring the objective function;

in the second phase, the objective is minimized while feasibility is maintained. A

useful feature of active-set methods is that they are well-suited for “warm starts”,

where a good estimate of the optimal active set is used to start the algorithm.

This is particularly useful in applications where a sequence of quadratic programs

is solved. Other applications of active-set methods for quadratic programming

include mixed integer nonlinear programming, portfolio analysis, structural anal-

ysis and optimal control.

Wolfe’s method

Although it is not the first method that was developed for solving quadratic pro-

gramming problems, it is one of the most widely used methods and was devel-

oped by P. Wolfe in 1959 (see [70]). This method solves the problems of convex



CHAPTER 1. MATHEMATICAL BACKGROUND 26

quadratic programming at linear constraints by algorithms related to that of the

Simplex. It is based on the conditions of (K.K.T), which are then necessary and

sufficient. To find a point satisfying the Kuhn-Tucker conditions Wolfe’s algorithm

proposes a modified version of Phase One of the Two-phase simplex method, ap-

plied to the linear equations and the non-negativity constraints of (K.K.T) . Essen-

tially the method adds artificial variables to all the constraints and then attempts

to minimize the sum of the artificial variables.

Projected gradient method

This method is inspired by the usual gradient methods known for unconstrained

optimization. Suppose, in general, that we want to minimize a function f on a set

of constraints C. Then, we build a sequence iterates of the form xk+1 = xk + kdk,

where dk is a descent direction. For ensure that all iterates belong to C, we call

the projection on this last.

1.6 Linear complementarity problems

LCP is not an optimization problem, but it has robust relationship with both linear

programming (LP) and convex quadratic programming (CQP) problems. This

strong relationship is based on the fact that Karush-Kuhn-Tucker (KKT) optimality

conditions for LP and QP can be converted into LCP. Many optimization problems

from engineering, finance, transportation, etc. can be directly written as LCP.

Therefore, solving LCPs has been very important topic for many years.

The standard Linear complementarity Problem

The standard linear complementarity problem (abbreviated by SLCP) consists to

find a couple of vectors (x, y) ∈ Rn × Rn such that:

x ≥ 0, y ≥ 0, y = Mx+ q, xTy = 0, (1.3)

where M ∈ Rn×n and q ∈ Rn are given. We will denote by:

F =
{

(x, y) ∈ R2n : y = Mx+ q, x ≥ 0, y ≥ 0
}
,

the feasible set of the (SLCP) (1.3). The solution set of the (SLCP) is given by:

Sol(M, q) =
{

(x, y) ∈ F : xTy = 0
}
.
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Monotone linear complementarity problem

The (MLCP) requires the composition of a victor pair (y,z) ∈ R2n satisfying:

y = Mx+ q, (x, y) ≥ 0, xTy = 0, (1.4)

where q ∈ Rn and M is n× n matrix supposed positive semidefinite.

- If M is P-matrix then the linear complementarity problem (1.4) is called P-LCP.

The following result was proved by Cottle, Pang and Stone [16], where any P-LCP

has a unique solution for every q ∈ Rn.

Theorem 1.48. [16, Theorem 3.3.7] A matrix M ∈ Rn×n is a P-matrix if and only
if the LCP has a unique solution for q ∈ Rn. In this case the LCP is denoted by P-LCP.

The horizontal linear complementarity problem

Given two square matrices M,N ∈ Rn×n and a vector q ∈ Rn, the horizontal linear

complementarity problem (HLCP) consists in finding a pair (x, y) ∈ Rn ×Rn such

that:

Ny −Mx = q, x ≥ 0, y ≥ 0, xTy = 0. (1.5)

We will denote

F? =
{

(x, y) ∈ R2n : Ny = Mx+ q, x ≥ 0, y ≥ 0
}
.

The feasible set of points of the HLCP as defined in (1.5). The solution set of the

HLCP is given by:

Sol(M,N, q) =
{

(x, y) ∈ F? : xTy = 0
}
.

Remark 1.49. If N = I or N−1 exists, the HLCP reduced to the standard LCP.

Transformation of a convex quadratic program into a linear

complementary problem

(QP )

 min
x

1

2
xTQx+ cTx

Subject to: Ax ≤ b, x ≥ 0
(1.6)
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whereQ is a symmetric semidefinite matrix in Rn×n, c ∈ Rn, b ∈ Rm andA ∈ Rm×n

with rank(A) = m. Recall that the set of constraints is

C = (x ∈ Rn : Ax = b, x ≥ 0},

Since the problem (QP ) is convex and the constraints are linear then the KKT

conditions are necessary and sufficient and are written as follows:

x ∈ Rn
+ is an optimal solution of (QP ) if and only if there exist y ∈ Rm and

λ ∈ Rn such that: 
c+Qx+ ATy − λ = 0

yT (Ax− b) = 0

λTx = 0

y ≥ 0, λ ≥ 0

⇔


λ = c+ ATy +Qx

v = b− Ax
λTx = 0, yTv = 0

(x, λ, v, y) ≥ 0

⇔



(
λ

v

)
=

(
Q AT

−A 0

)(
x

y

)
+

(
c

b

)

〈

(
λ

v

)
,

(
x

y

)
〉 = 0(

λ

v

)
≥ 0,

(
x

y

)
≥ 0.

By taking

w =

(
λ

v

)
, z =

(
x

y

)
, q =

(
c

b

)

M =

[
Q AT

−A 0

]

(QP ) can be written in the following form :

(LCP )


Find y, z ∈ Rn such that

w = Mz + q ≥ 0

z ≥ 0

zTy = 0
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1.7 Absolute value equations

In this section, we give the definition of absolute value equations, and some re-

sults of existence and uniqueness of the solution.

Absolute value equations (abbreviated as AVE) are defined as follows:

Ax−B |x| = b, (1.7)

where A,B ∈ Rn×n are given, b ∈ Rn, and |x| is a vector whose i-th entry is the

absolute value of the i-th entry of x. If B = I, the identity matrix, then the AVE

(1.7) can be reduced to the type:

Ax− |x| = b. (1.8)

Reformulation of SLCP and HLCP as an AVE

Let us make the following variable change:

x = |z|+ z, y = |z| − z,

it is easy to verify that:

x = |z|+ z ≥ 0, y = |z| − z ≥ 0,

and

xTy = (|z|+ z)T (|z| − z) = 0,where z ∈ Rn.

With this change of variables, the (SLCP) turns into the following absolute value

equations:

(I +M)z − (I −M) |z| = −q.

Using the previous results for the AVE, we deduce that:

Lemma 1.50. If the matrix (I −M) is nonsingular, then the SLCP becomes:

(I −M)−1(I +M)z − |z| = −(I −M)−1q, (1.9)

where
A = (I −M)−1(I +M), b = −(I −M)−1q.

Remark 1.51. The solution of (SLCP) is therefore computed via the formula:

x = |z|+ z,

with z is the solution of the Absolute value equations (1.9).
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With the same change of variable for SLCP, the HLCP is transformed into an

Absolute value equations as follows.

(N +M)z − (N −M) |z| = −q,

with A = N +M,B = N −M and b = −q.

Lemma 1.52. If the matrix (N −M) is nonsingular, then the (HLCP) becomes:

(N −M)−1(N +M)z − |z| = −(N −M)−1q. (1.10)

So we set
A = (N −M)−1(N +M), b = −(N −M)−1q.

and z is the solution of the Absolute value equations (1.10) such that

x = |z|+ z.

Some results of existence and uniqueness of the solution of the

AVE

For unique solvability of AVE, we cite the most well-known established results

until today. In [44], Mangasarian and Meyer presented a sufficient condition,

namely, 1 < σmin(A) for AVE (1.18). In [58], Rohn generalized this result to

unique solvability of AVE (1.7) where he imposed the following sufficient condi-

tion

σmax(|B|) < σmin(A), (1.11)

where σmax(|B|) denotes the maximal singular value of matrix |B| = (|bij|) and

the σmin(A) denotes the smallest singular values of matrix A.

Theorem 1.53 (Theorem 1 [58]). Under Assumption 1.11, the AVE (1.7) is uniquely
solvable for every b ∈ Rn.

In [10], Achache and Hazzam relaxed this result, where they assumed that the

AVE (1.7) satisfies the following condition.

•Assumption 1. The pair of the matrices [A,B] satisfies

σmax(B) < σmin(A),

From the theory of the HLCP and Assumption 1, we will show, based on the

following theorem, that the AVE (1.7) is uniquely solvable for every b ∈ Rn.
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Theorem 1.54 (Theorem 2 [10]). Under Assumption 1, the AVE (1.7) is uniquely
solvable for every b ∈ Rn.

On the other hand, in [9] Achache and Anane give some weaker conditions and

a simple proof for unique solvability of AVE. Furthermore, they demonstrate with

an example that these results are reliable to detect unique solvability of AVE. For

numerical applications they suggest a Picard iterative method to compute an ap-

proximated solutions of some uniquely solvable AVE problems where its globally

linear convergence is guaranteed via one of ther weaker sufficient condition. The

following result concerning the unique solvability of AVE (1.7).

Lemma 1.55 (Iemma 2 [9]). Each of three conditions below implies the non singu-
larity of the matrix (A − BD). for all diagonal matrix D whose diagonal elements
are ±1 or 0.

1. σmin(A) > σmax(B),
2.
∥∥A−1B∥∥ < 1, provided A is nonsingular,

3. the matrix ATA− ‖B‖2 I is positive definite.

Then, it is clear that the AVE (1.7) is uniquely solvable for any b if the matrix of

coefficients (A − BD) is nonsingular for all diagonal matrix D whose diagonal

elements are ±1 or 0.

Theorem 1.56 (Theorem 2 [9]). If matrices A and B satisfy
1. σmin(A) > σmax(B),
2.
∥∥A−1B∥∥ < 1, provided A is non singular,

3. the matrix ATA− ‖B‖2 I is positive definite,
then the AVE (1.7) is uniquely solvable for any b.

Furthermore, Lotfi and Veiseh [42], imposed other sufficient condition that if the

following matrix:

ATA− ‖|B|‖2I, (1.12)

is positive definite, then AVE (1.7) is uniquely solvable for any b ∈ Rn.

Their proof is based on the regularity of interval matrix. To simplify this concept,

we give a short overview on this topic. We will give first the notion of an interval

matrix.

Definition 1.57. Given matrices A and B in Rn×n, the set of matrices

I = [A− |B|, A+ |B|] := {S : |S − A| ≤ |B|} = {S : A− |B| ≤ S ≤ A+ |B|}
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, is called an interval matrix (with midpoint A and radius |B|).

Now, we have this definition introducing the an important distinction:

Definition 1.58. A square interval matrix A is called regular if each S ∈ I is

regular and singular otherwise, i.e. I contains a singular matrix.

The following result concerning the unique solvability of AVE (1.7).

Lemma 1.59 ( Lemma 2.3 in [42]). If the interval matrix I is regular, then the AVE
(1.7) for any b has a unique solution.

1.8 Fixed point method

Let F be a function from to Rn to Rn, and consider the equation F (x) = 0. It is

clear that x∗ is a solution of F (x) = 0 if and only if x∗ is a root of the equation:

F (x∗) = 0.

The idea of the fixed point iteration methods is to first reformulate the equation

F (x) = 0 as an equivalent fixed point principle:

F (x) = 0⇔ Φ (x) = x,

where Φ (x) is a given function. So finding the root of F (x) = 0, is equivalent

to finding the unique fixed point of Φ (x) = x. Then, the fixed point method for

getting the root x∗ of the equation F (x) = 0 is based on the following recurrent

iterative schema: {
x0 ∈ Rn given

xk+1 = Φ (xk) , k ≥ 0.

Theorem 1.60. (Banach’s fixed point theorem). Let (X, d) be a non-empty complete
metric space, 0 ≤ α ≤ 1 and T : X −→ X a mapping satisfying:

d (T (x) , T (y)) ≤ αd (x, y) for all x, y ∈ X.

Then there exists a unique x ∈ X such that T (x) = x. Furthermore, x can be found
as follows: start with an arbitrary element x0 ∈ X and define a sequence {xk} by:

xk+1 = T (xk),
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then
lim

k−→∞
xk = x,

and the following inequalities hold:

d(x, xk+1) ≤
α

1− α
d(xk+1, xk), d(x, xk+1) ≤ αd(x, xk).

1.9 Newton-Raphson’s Method for nonlinear

system of equations

Now we interested to the Newton-Raphson method for solving nonlinear system

of equations. This latter plays an important role in the devlopment of interoir-

point methods. We have the following definition.

Definition 1.61. A system of nonlinear equations is a set of equations which given

as following : 
F1 (x1, x2, . . . , xn) = 0

F2 (x1, x2, . . . , xn) = 0
...

Fn (x1,x2, . . . , xn) = 0

 ,

where x = (x1, x2, ..., xn)T ∈ Rn and Fi is given a nonlinear real function, i =

1, ..., n. To simplify the notation even further, define the vector valued function :

F (x) =


F1 (x)

F2 (x)
...

Fn (x)

 =


F1 (x1, x2, . . . , xn)

F2 (x1, x2, . . . , xn)
...

Fn (x1,x2, . . . , xn)

 .
The n× n jacobian matrix J (x) of F (x) is :

J (x) =



∂F1

∂x1
(x)

∂F1

∂x2
(x) . . .

∂F1

∂xn
(x)

∂F2

∂x1
(x)

∂F2

∂x2
(x) · · · ∂F2

∂xn
(x)

...
... . . . ...

∂Fn

∂x1
(x)

∂Fn

∂x2
(x) · · · ∂Fn

∂xn
(x)


,
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where
∂Fi

∂xj
(x) is called the partial derivative of Fi at xj. The Newton-Raphson

Method gives a successive approximations to the solution in the following form:

F (xk) + J (xk) (xk+1 − xk) = 0, k = 0, 1, ...

Then, the fixed point method for getting the root x∗ of the equation F (x) = 0 is

based on the following recurrent iterative schema:{
x0 ∈ Rn a given initial vector

xk+1 = xk − J−1F (xk) , k = 0, 1, ...

where J−1 denotes the inverse of J .



Chapter 2

A two-steps fixed-point method for
SCQO

In this chapter, we have introduced the reformulation of problem SCQO (2.1) as

absolute value equations AVE and the unique solvability of AVE is studied. Any

solution of the AVE generates a solution of our convex quadratic programming

problem SCQO. Numerically, we propose a new two-steps fixed point iterative

method for solving the AVE (2.4), and under a new mild assumption we show

that this method is always well-defined and the generated sequence converges

globally and linearly to the unique solution of the AVE from any starting initial

point. Finally, numerical results are provided to illustrate the efficiency of this

algorithm to solving the SCQO.

2.1 The SCQO as absolute value equations

Recall that the SCQO problem is given by:

min
x

[
f(x) =

1

2
xTQx+ xT b+ c

]
subject to: x ∈ S. (2.1)

Starting from the definition of simplicial cone S associated with the nonsingu-

lar matrix A, the problem (2.1) can be formulated as a quadratic programming

problem under positive constraints:

min
y

[
f(y) =

1

2
yTATQAy + yTAT b+ c

]
subjet to: y ∈ Rn

+. (2.2)

As the problem (2.2) is convex and the constraints are positive then the optimality

conditions of K.K.T are necessary and sufficient and we have, y ∈ Rn
+ is an optimal

35
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solution of problem (2.2) if and only if there exists z ∈ Rn
+ such that:

z − ATQAy = AT b, zTy = 0, y ≥ 0, z ≥ 0. (2.3)

The K.K.T optimality conditions in (2.3) are only a standard LCP (see [16] ).

Next, letting z = |s| − s and y = |s| + s with s ∈ Rn, then the LCP (2.3) is

reformulated as the following absolute value equations (AVE) of type

Ās+ B̄ |s| = b̄, (2.4)

where

Ā = ATQA+ I, B̄ = ATQA− I, b̄ = −AT b.

Hence, solving problem (2.1) is equivalent to solving AVE (2.4). The following

result is needed to guarantee the unique solvability of the AVE.

Theorem 2.1 ( Theorem 8 [8]). Assume that Ā is nonsingular and the matrices
Ā, B̄ satisfy the following condition

∥∥Ā−1B̄∥∥ < 1, then the AVE (2.4) has a unique
solution for any b̄ ∈ Rn.

For our case since Ā = ATQA + I and B̄ = ATQA − I where Q is symmetric

positive definite and A is invertible, the condition
∥∥Ā−1B̄∥∥ < 1 of Theorem 2.1, is

satisfied. We check this result through the following lemma.

Lemma 2.2. Let Ā = ATQA + I and B̄ = ATQA − I such that A is nonsingular
matrix and Q is symmetric positive definite. Then the matrix Ā is nonsingular and∥∥Ā−1B̄∥∥ < 1.

Proof. Because Q is symmetric positive definite and A is nonsingular, then the

matrixATQA is symmetric positive definite, hence Ā is symmetric positive definite

too, which implies that Ā is nonsingular. Next, since ATQA is symmetric positive

definite, then ATQA has positive real eigenvalues denoted by λi(ATQA) := λi >

0, ∀i = 1, ..., n. In addition, it is known that the eigenvalues of Ā and B̄, are given

by λi + 1 > 0 and λi − 1, respectively. Because, Ā and B̄ are real symmetric

matrices, we then have,∥∥Ā−1B̄∥∥ ≤ ∥∥Ā−1∥∥∥∥B̄∥∥ = ρ(Ā−1)ρ(B̄)

= max
i

(∣∣∣∣λi − 1

λi + 1

∣∣∣∣) .
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As λi > 0, then ∣∣∣∣λi − 1

λi + 1

∣∣∣∣ < 1.

So
∥∥Ā−1B̄∥∥ < 1. This gives the required result.

Proposition 2.3. If s∗ is the solution of the AVE (2.3) then (y∗, z∗) = (|s∗|+s∗, |s∗|−
s∗) is the solution of the LCP (2.3). Consequently, Ay∗ is the optimal solution of
problem (2.1).

Proof. Let s∗ be the unique solution of the AVE, then

Ās∗ + B̄ |s∗| = b̄.

So (
ATQA+ I

)
s∗ + (ATQA− I) |s∗| = −AT b

⇔ ATQA(|s∗|+ s∗) + |s∗| − s∗ = −AT b

⇔ z∗ − ATQAy∗ = AT b.

Next, since y∗ = |s∗| + s∗ = 2(s∗)+, z∗ = |s∗| − s∗ = 2(s∗)−, then we have y∗ ≥
0, z∗ ≥ 0 and z∗Ty∗ = 0, hence, the pair (y∗, z∗) is a solution of LCP (2.3). Finally,

we deduce that Ay∗ is an optimal solution of the SCQO problem. This completes

the proof.

2.2 Two-steps Picard’s fixed point iterative method

for SCQO

In this section, we derive a new fixed-point iterative approach for solving the

equation (2.4). Let t = |s| then, the AVE (2.4) is equivalent to the following

system: {
Ās+ B̄t = b̄

− |s|+ t = 0.
(2.5)

The latter can be expressed as follows:(
Ā B̄

−D (s) I

)(
s

t

)
=

(
b̄

0

)
, (2.6)

where D(s) :=diag (sign (s)), s ∈ Rn. Note that the system (2.6) is nonlinear, it

is generally impossible to obtain an exact solution. We will therefore be satisfied
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with an approximated solution. Since the matrix Ā is nonsingular hence from

(2.5) we can obtain the following fixed point equation:{
s∗ = Ā−1

(
−B̄t∗ + b̄

)
t∗ = (1− r) t∗ + r |s∗|

(2.7)

where r > 0, is a suitable parameter that we shall specified it later. According

to the fixed-point equation, we generate a sequence (s(k), t(k)) converging to the

solution of AVE. So the new fixed-point iteration is given by:{
s(k+1) = Ā−1

(
−B̄t(k) + b̄

)
t(k+1) = (1− r) t(k) + r

∣∣s(k+1)
∣∣ , k = 0, 1, . . .

(2.8)

The details of our algorithm for solving the AVE (2.4) is described in Figure 2.1.

Algorithm

Input
An accuracy parameter ε > 0;

a parameter r such that 0 < r <
2∥∥Ā−1B̄∥∥+ 1

;

an initial starting point t0 ∈ Rn;
compute t1 = (1− r)t0 + r|s1|, s1 = Ā−1

(
−B̄t(0) + b̄

)
; k := 0;

While

∥∥tk+1 − tk
∥∥∥∥b̄∥∥ ≥ ε do

begin

compute :
{
t(k+1) = (1− r) t(k) + r

∣∣s(k+1)
∣∣ ,

s(k+1) = Ā−1
(
−B̄t(k) + b̄

)
k := k + 1;
end

end

Figure 2.1: Algorithm. 2.2.1

In this section, we give detailed proof for the convergence of Algorithm 2.2.1

Theorem 2.4. Let Q ∈ Rn×n be a symmetric positive definite matrix, b ∈ Rn and
A ∈ Rn×n is a nonsingular matrix then the sequence (s(k), t(k)) generated by the
iterative schema (2.8) for solving problem (2.5) is well-defined for any starting point
t0 ∈ Rn. In addition, if

0 < r <
2∥∥Ā−1B̄∥∥+ 1

,
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then the sequence (s(k), t(k)) converges linearly to the solution (s∗, t∗) of the nonlinear
equation (2.5). Consequently, A(|s∗|+ s∗) is the solution of the problem (2.1).

Proof. First, we check that the sequence (s(k), t(k)) is well-defined, it suffices to

show that the matrix Ā = ATQA + I is nonsingular. This claim was proven by

Lemma 2.2. Next, using formula (2.8) and Lemma 1.2, we have, on one hand

that ∥∥tk+1 − t∗
∥∥ =

∥∥(1− r) tk + r
∣∣s(k+1)

∣∣− (1− r) t∗ + r |s∗|
∥∥

=
∥∥(1− r) (tk − t∗) + r(

∣∣s(k+1)
∣∣− |s∗|)∥∥

≤ |1− r|
∥∥(tk − t∗)

∥∥+ r
∥∥sk+1 − s∗

∥∥ .
So ∥∥sk+1 − s∗

∥∥ =
∥∥Ā−1 (−B̄tk + b

)
− Ā−1

(
−B̄t∗ + b

)∥∥
=

∥∥−Ā−1B̄(tk − t∗)
∥∥ ≤ ∥∥Ā−1B̄∥∥∥∥(tk − t∗)

∥∥ .
Therefore ∥∥tk+1 − t∗

∥∥ ≤ (|1− r|+ r
∥∥Ā−1B̄∥∥)

∥∥(tk − t∗)
∥∥ .

On the other hand,∥∥sk+1 − s∗
∥∥ ≤ ∥∥−Ā−1B̄(tk − t∗)

∥∥
≤

∥∥−Ā−1B̄(tk − (1− r)tk−1 + (1− r)tk−1 − t∗)
∥∥

≤
∥∥−Ā−1B̄(r

∣∣sk∣∣+ (1− r)tk−1 − t∗)
∥∥ .

As |s∗| = t∗, we find∥∥sk+1 − s∗
∥∥ ≤ ∥∥−Ā−1B̄(r

∣∣sk∣∣− r |s∗|)− (1− r)Ā−1B̄(tk−1 − t∗)
∥∥

≤ r
∥∥Ā−1B̄∥∥∥∥sk − s∗∥∥+ |1− r|

∥∥sk − s∗∥∥
≤ (|1− r|+ r

∥∥Ā−1B̄∥∥)
∥∥sk − s∗∥∥ .

The sequence (s(k), t(k)) is convergent if the following condition

|1− r|+ r
∥∥Ā−1B̄∥∥ < 1

holds. For that we distinguish two cases.

Case 1. If 0 < r ≤ 1, then

|1− r|+ r
∥∥Ā−1B̄∥∥ < 1 ⇔ 1− r + r

∥∥Ā−1B̄∥∥ < 1

⇔ r(
∥∥Ā−1B̄∥∥− 1) < 0.
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Since
∥∥Ā−1B̄∥∥ < 1 then,

r(
∥∥Ā−1B̄∥∥− 1) < 0, ∀ 0 < r ≤ 1.

Case 2. If r ≥ 1, then

|1− r|+ r
∥∥Ā−1B̄∥∥ < 1 ⇔ −1 + r + r

∥∥Ā−1B̄∥∥ < 1

⇔ r <
2∥∥Ā−1B̄∥∥+ 1

.

Finally, regrouping the two cases, this gives the required result.

2.3 Numerical results

In this section, we present numerical results for Algorithm 2.2.1 by using ε = 10−6

and r = 0.9. The algorithm has been applied on three examples of SCQO problem.

The iterations have been carry out by MATLAB R2016a and run on a personal pc

with 1.40 GHZ AMD E1-2500 APU Radeon(TM) HD Graphic, 8 GB memory and

Windows 10 operating system. The starting point and the unique solution by t0

and s∗, respectively. The stopping criterion used in our algorithm is the relative

residue, i.e.,

RES :=

∥∥tk+1 − tk
∥∥∥∥b̄∥∥ ≤ 10−6.

In view of the influence of the initial point on the convergence of our algorithm,

different values are used. For each problem, the hypotheses of Theorem 2.4. are

checked. In the tables below, the symbols "It" and "CPU" denote the number of

iterations produced by the algorithm and the elapsed times, respectively.

Example 2.3.1. Consider the SCQO problem where Q, A and b are given by :

Q =


2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

 , A =


3 0 0 0 0

0.5 3 0 0 0

−1 0.5 3 0 0

−1 −1 0.5 3 0

−1 −1 −1 0.5 3


and b = [−3, 1, −10, −12, −2]T .



CHAPTER 2. A TWO-STEPS FIXED-POINT METHOD FOR SCQO 41

The starting point in this example is taken as:

t0 = [0, −1, −1, 2, 1]T .

After 21 iterations, the unique solution s∗ of AVE is:

s∗ = [0.2071, −7.6143, 0.5262, 0.7886, −2.2308]T ,

and
y∗ = |s∗|+ s∗ = [0.4142, 0, 1.0525, 1.5771, 0]T .

Therefore, the unique solution of Problem SCQO(2.1), is given by:

x∗ = Ay∗ = [1.2426, 0.2071, 2.7433, 4.8435, −0.6781]T .

Example 2.3.2. Let the matrices Q, A and the vector b of this example are given by:

Q = (qij) =



4, for i = j,
1

2
, for |i− j| = 1, i = 1, 2, . . . n− 2,

1, for

{
j = i− 2, i = 1, 2, . . . n,

i = j − 2, j = 1, 2, . . . n,

0, otherwise

A = (aij) =



−2, for i = j,

4, for j = i− 1, i = 2, . . . n,

−1, for i = j − 1, j = 2, . . . n,
1

2
, for j > i+ 2, i = 1, 2, . . . n,

1

5
, for i > j + 1, j = 1, 2, . . . n,

and
b = −2Ā−1(Ā+ B̄)e.

An exact solution of AVE is given by:

s∗ = [2, 2, . . . , 2]T ,

and
y∗ = [4, 4, . . . , 4]T .

An exact solution of problem (2.1) is given by: x∗ = Ay∗.

The computational results with different size of n are shown in Table 2.1. For the
initialization of Problem 2, we take different values of t0.
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n t0 = [0, . . . , 0]T t0 = [5, . . . , 5]T t0 = [−10, . . . ,−10]T

10
CPU

It
RES

0.04966s
17

9.923e− 07

0.04552s
11

8.542e− 07

0.10820s
65

9.606e− 07

50
CPU

It
RES

0.03704s
4

9.136e− 07

0.03391s
3

9.025e− 07

0.36887s
42

9.576e− 07

100
CPU

It
RES

0.07339s
3

6.032e− 07

0.05023s
3

1.508e− 07

0.26949s
22

9.365e− 07

1000
CPU

It
RES

5.34351s
2

5.992e− 07

4.42180s
1

3.371e− 07

5.36816s
2

7.501e− 07

2000
CPU

It
RES

34.17236s
1

3.370e− 07

33.23488s
1

8.427e− 07

39.15840s
2

1.873e− 07

Table 2.1: Computational results with r = 0.9 of Example 2.3.2.

Example 2.3.3. The bloc matrices Q,A and the vector b of this example are given
by:

Q =

[
Q11 In

In Q22

]
, A =

[
A11 In

B A11

]
where

Q11 = (q11)ij =


6, for i = j,

−1, for |i− j| = 1, i = 1, 2, . . . n,

0, otherwise.

Q22 = (q22)ij =



5, for i = j,

−2, for |i− j| = 1, i = 1, 2, . . . n,

1

4
, for

{
j = i+ 1, i = 1, 2, . . . n− 1,

j = i− 1, j = 1, 2, . . . n− 1,

0, otherwise.
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A11 = (a11)ij =


−2, for i = j,

−1, for j = i− 1, i = 3, . . . n,

3, for j > i, i = 3, . . . n,

0.5, otherwise.

B = (bij) =



−1, for i = j,

0, for

{
j = i+ 1, i = 1, 2, . . . n− 1,

j = i− 1, j = 1, 2, . . . n,

1

n
, for

{
j = i+ 2, i = 1, 2, . . . n− 2,

j = i− 2, j = 4, . . . n,

0, otherwise,

and
b = [−8, . . . ,−8]T .

For the initialization, we take:

t0 = [0, . . . , 0,−1, . . . ,−1]T .

The numerical results with different size of n are summarized in Table 2.2.

n 10 50 100 1000 2000
CPU

It
RES

0.14101s
122

9.81e− 07

1.0919s
137

9.98e− 07

1.11202s
92

9.95e− 07

8.37809s
6

7.436e− 07

35.76440s
3

7.35e− 07

Table 2.2: Computational results with r = 1− 1

n
of Example 2.3.3.

For example, if n = 10 then,

s∗ = [0.0984, 0.0042, 0.409, −1.782, 1.6329, 0.3763, 0.4448, 0.881, 0.7929, 2.7841]T ,

and

y∗ = |s∗|+s∗ = [0.1967, 0.0082, 0.8179, 0, 3.2658, 0.7525, 0.8896, 1.7619, 1.586, 5.568]T .

THe solution of SCQO (2.1) is given by:

x∗ = Ay∗ = [2.3928, 2.475, 2.3819, 2.206, 2.1049, 2.0303, 3.038, 3.3649, 3.2356, 2.3168]T .



Chapter 3

An interior-point algorithm for
SCQO

In this chapter, we present a feasible full-Newton step primal-dual interior-point

algorithm for solving SCQOs via the P-LCP, we study first the central-path of P-

LCP and the search directions, then we state the generic full-Newton step feasible

interior-point algorithm for P-LCP in Section 3.2 the complexity analysis and the

currently best known iteration bound for short-step methods are established in

Section 3.3. Finally, some numerical results are provided to show the efficiency of

the proposed algorithm.

44
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3.1 Reformulation of SCQO as a P-LCP

Next task is to reformulate the SCQO (2.1) as a standard LCP. Starting from the

definition of the simplicial cone S associated with the nonsingular matrix A, let-

ting x = Ay, then the problem (2.1) can be reformulated as the following convex

quadratic optimization problem under positive constraints:

min
y

[
f(y) =

1

2
yTMy + yT q + c

]
s.t. y ∈ Rn

+, (3.1)

where

M = ATQA, q = AT b.

The optimality conditions of K.K.T are necessary and sufficient. Then, y ∈ Rn
+ is

an optimal solution of problem (3.1) if and only if there exists z ∈ Rn
+ such that:

z = My + q, zTy = 0, y ≥ 0, z ≥ 0. (3.2)

The system (3.2) is only a standard LCP with M = ATQA and q = AT b.

Theorem 3.1. Let Q ∈ Rn×n be symmetric positive definite and A is nonsingular
then M = ATQA is a P-matrix. Hence, the LCP (3.2) is a P-LCP.

Proof. Since Q ∈ Rn×n is assumed to be symmetric positive definite and A is

nonsingular then for all nonzero v ∈ Rn, vTMv = vTATQAv = ‖Qs‖2 > 0 where

s = Av 6= 0, M is positive definite, therefore M is a P-matrix and so the LCP (3.2)

is a P-LCP. By Theorem 1.48, the P-LCP has a unique solution and so is the SCQO

(2.1).

Corollary 3.2. The vector x? = Ay? is the unique minimizer of SCQO if and only if
the pair of vectors (y?, z?) is the unique solution of P-LCP (3.2).

3.2 A feasible full-Newton step interior-point

algorithm for SCQO

In this section, we solve the SCQO (2.1) by the application of a feasible full-

Newton step interior-point algorithm to the equivalent P-LCP (3.2). To do so, we

discuss first the notion of central-path of P-LCP and the Newton search direction.
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Then the generic feasible interior-poin algorithm for SCQO (2.1) is presented.

In the sequel, we assume that P-LCP (2.3) satisfies the interior-point condition

(IPC), i.e., there exists y0 > 0 and z0 > 0 such that z0 = My0 + q.

The central-path for P-LCP

The basic idea of the path-following interior-point algorithm is to replace the sec-

ond equation in (2.3), the so-called complementarity condition by the perturbed

equation zy = µe where µ > 0. Hence, we obtain the following system of equa-

tions:

z = ATQAy + AT b, zy = µe, y ≥ 0, z ≥ 0. (3.3)

By IPC assumption it is shown that for any µ > 0 the parameterized system (3.3)

has an unique solution denoted by (y (µ) , z (µ)) , which is called the µ−center of

P-LCP. The set of µ -centers constructs the so-called central-path. Moreover, if µ

tends to zero then the limit of central-path exists and converges to a solution of

P-LCP ( [72]).

The search direction for P-LCP

Applying Newton’s method to system (3.3) for a given strictly feasible point (y, z)

and the Newton search direction (∆y,∆z) at this point is the unique solution of

the system: (
−ATQA I

Z Y

)(
∆y

∆z

)
=

(
0

µe− yz

)
, (3.4)

where Y :=diag(y), Z:=diag(z). By simple calculations, the system (3.4) can be

written as follows: {
(ATQA+ Y −1Z)∆y = Y −1(µe− yz)

∆z = ATQA∆y.
(3.5)

The unique solution (∆y,∆z) of the system (3.5) is guaranteed by our assump-

tions since the matrix

(ATQA+ Y −1Z), (3.6)

is nonsingular.

Lemma 3.3. Let M = (ATQA+ Y −1Z) such that A is nonsingular matrix and Q is
symmetric positive definite, and if (y, z) are strictly feasible. Then the matrix M is
nonsingular.
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Proof. For any nonzero v ∈ Rn, we have vT (ATQA + Y −1Z)v = vTATQAv +

vTY −1Zv > 0 because vT (ATQA)v > 0 and vTY −1Zv > 0 for any nonzero v ∈
Rn and for all y > 0 and z > 0 (Y :=diag(x),Z:=diag(z) are positive definite

matrices), then the matrix (ATQA + Y −1Z) is positive definite too and so it is

nonsingular.

Since (ATQA + Y −1Z) is a symmetric positive definite matrix, the method of

Cholesky and the conjugate gradient method are the most convenient for solving

the system (3.5).

The new iterates are then given as follows:

y+ := y + ∆y, z+ := z + ∆z, (3.7)

which indicates that a full-Newton step is taken along the Newton search direc-

tion.

Now, to simplify matters, we introduce the following notations:

v =

√
yz

µ
, d =

√
y

z
. (3.8)

So the scaled directions are given by

dy =
v∆y

y
, dz =

v∆z

z
, (3.9)

where y > 0, z > 0 and µ > 0. Then we have

µdydz = ∆y∆z and y∆z + z∆y = µv (dy + dz) . (3.10)

Hence the system defining Newton search directions can be written as:{
−Mdy + dz = 0

dy + dz = pv,
(3.11)

where M = DMD−1 = DATQAD−1,D:=diag(d), and

pv = v−1 − v. (3.12)

For the analysis of the algorithm and according to (3.12), we use a norm-based

proximity measure δ (v) defined by:

δ := δ(v) = δ (yz;µ) =
1

2
‖pv‖. (3.13)

Clearly, the value of δ (v) can be considered as a measure for the distance between

any given pair (y, z) to (y (µ) , z (µ)). Note that for any strictly feasible pair (y, z),

we have

δ (v) = 0⇔ v = e⇔ yz = µe.
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The interior-point algorithm for SCQO

Let ε > 0 be a given tolerance and θ ∈ ]0, 1[ the update parameter (default θ =
1√
3n

), the algorithm starts with a strictly feasible initial point (y0, z0) such that

δ(y0z0;µ0) ≤ τ where 0 < τ < 1. Determining the search directions (∆y,∆z), the

algorithm produces a new iterate (y+, z+) = (y + ∆y, z + ∆z). Then, it updates

the barrier parameter µ to (1− θ)µ and solves the Newton system. This procedure

is repeated until the stopping criterion yT+z+ ≤ ε is satisfied. The generic feasible

full-Newton step interior-point algorithm for SCQO is stated in Figure 3.1.

Input:
An accuracy parameter ε > 0;

A threshold parameter 0 < τ < 1 (default τ =

√
3

7
);

A barrier update parameter 0 < θ < 1 (default θ =
1√
3n

);

A strictly feasible initial point (y0, z0) and µ0 =
1

2
s.t. δ(y0z0, µ0) ≤ τ ;

begin
y := y0, z := z0, µ := µ0;
While nµ ≥ ε do
Solve system (3.5) to obtain (∆y,∆z);
Update y := y + ∆y; z := z + ∆z;
µ := (1− θ)µ;

end while
end.

Figure 3.1: Algorithm 3.2.3

3.3 Complexity analysis

In this section, we will show under our new defaults τ =

√
3

7
and θ =

1√
3n

that Algorithm 3.2.3 solves the SCQOs in polynomial and ensures the locally

quadratic convergence of the Newton process through the algorithm. Our analysis

is straightforward to monotone LCPs ([4]).

We first quote the following technical lemma which will be used later.



CHAPTER 3. AN INTERIOR-POINT ALGORITHM FOR SCQO
49

Lemma 3.4. [7, Lemma 2.2.1] Let δ > 0 and (dy, dz) be a solution of system (3.11).
Then, we have

0 ≤ dTy dz ≤ 2δ2, (3.14)

and
‖dydz‖∞ ≤ δ2, ‖dydz‖ ≤

√
2 δ2. (3.15)

Lemma 3.5. Let (y, z) be a strictly feasible primal-dual, then y+ = y + ∆y and
z+ = z + ∆z are positive if and only if e+ dydz > 0.

Proof. we have,

y+z+ = (y + ∆y) (z + ∆z) = yz + y∆z + z∆y + ∆y∆z.

Due to (3.9) and (3.10), we have µdydz = ∆y∆z , and y∆z + z∆y = µv (dy + dz),

then we get

y+z+ = µ (e+ dydz) .

If y+ > 0 and z+ > 0 then y+z+ > 0 and so e + dydz > 0. conversely, for each

0 ≤ α ≤ 1 denote y (α) := y + α∆y, z (α) := z + α∆z. Therfore,

y (α) z (α) = yz + α (µe− yz) + α2∆y∆z.

If e+ dydz > 0 then µe+ ∆y∆z > 0 and ∆y∆z > −µe. Hence

y (α) z(α) ≥ (1− α)yz + (α− α2)µe ≥ 0.

So y (α) z (α) ≥ 0 for each 0 ≤ α ≤ 1. Since y (α) and z (α) are linear functions of

α and y (0) = y > 0 and z (0) =z > 0, then y(1) = y+ > 0 and z (1) = z+ > 0.

this completes the proof.

In the following lemma, we show that the feasibility of the full-Newton step

when the proximity δ (yz, µ) < 1.

Lemma 3.6. Let δ = δ (yz, µ) < 1. Then y+ > 0 and z+ > 0, which means that the
full-Newton step is strictly feasible.

Proof. Due to Lemma 3.5, y+ > 0, z+ > 0 if and only if e+ dydz > 0, since

1 + (dydz)i ≥ 1− | (dydz)i |≥ 1− ‖ dydz‖∞,∀i.
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Then by (3.15), it follows that

1 + (dydz)i ≥ 1− δ2.

Thus e+ dydz > 0 if δ < 1 and then y+ and z+ are strictly feasible. This completes

the proof.

For convenience, we may write

v+ =

√
y+z+
µ

.

It is easy to deduce that

v2+ = e+ dydz ⇔ y+z+ = µ(e+ dydz). (3.16)

The next lemma shows the influence of the full-Newton step on the proximity

measure.

Lemma 3.7. If δ < 1. Then

δ+ := δ (v+;µ) ≤ δ2√
2 (1− δ2)

.

In addition, if δ ≤
√

3

7
, thus δ+ ≤ δ2 which means the full-Newton step converges

locally quadratically through the algorithm.

Proof. By definition

2δ+ = ‖v+ − v−1+ ‖.

Due to (3.16), we have

v+ =
√
e+ dydz and v−1+ =

e√
e+ dydz

,

Then

2δ+ = ‖ dydz√
e+ dydz

‖ ≤ ‖dydz‖√
1− ‖dydz‖∞

.

Hence from (3.15),

δ+ ≤
δ2√

2 (1− δ2)
.

This completes the proof .
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In the following lemma, we obtain the upper bound of a duality gap after a

full-Newton step.

Lemma 3.8. Let δ ≤
√

3

7
and suppose that the vectors y+ and z+ are obtained by

using a full-Newton step, thus y+ = y + ∆y and z+ = z + ∆z we have

yT+z+ ≤ 2µn. (3.17)

Proof. Using (3.8) and (3.9) we have

y+z+ = (y + ∆y)(z + ∆z)

= yz + y∆y + z∆z + ∆y∆z

= µ (e+ dydz) ,

then

yT+z+ = µeT
(
e+ dTy dz

)
= µ

(
n+ dTy dz

)
.

Next, let δ ≤
√

3

7
then δ2 ≤ 3

7
, using (3.13) we deduce that

yT+z+ ≤ µ

(
n+

6

7

)
.

But as n+
6

7
≤ 2n,∀n ≥ 1, this gives the required result.

In the following theorem, we investigate the influence on the proximity mea-

sure of Newton process followed by a step along the central-path.

Theorem 3.9. Let δ ≤
√

3

7
and µ+ = (1− θ)µ, where 0 < θ < 1. Then

δ2 (y+z+;µ+) ≤ 9

56
+
θ2
(
n+ 6

7

)
4 (1− θ)

+
15

56
θ.

In addition, if θ =
1√
3n

and n ≥ 3, then δ (y+z+, µ+) ≤
√

3

7
.
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Proof. we have

4δ2 (y+z+;µ+) = ‖
√

1− θv−1+ −
1√

1− θ
v+‖2

= ‖
√

1− θ
(
v−1+ − v+

)
− θ√

1− θ
v+‖2

= (1− θ) ‖v−1+ − v+ ‖2 +
θ2

1− θ
‖v+ ‖2 −2θ

(
v−1+ − v+

)T
v+

= (1− θ) ‖ v−1+ − v+ ‖2 +
θ2

1− θ
‖v+‖2 − 2θ

(
v−1+

)T
v+ + 2θvT+v+

= 4δ2+ (1− θ) +
θ2

1− θ
‖v+‖2 − 2θn+ 2θ‖v+‖2.

Because
(
v−1+

)T
v+ = n and vT+v+ =‖ v+ ‖2, and according Lemma 3.8 we get

‖ v+‖2 =
1

µ
yT+z+ ≤

(
n+

6

7

)
,

which implies that

δ2 (y+z+;µ+) ≤ (1− θ) δ2+ +
θ2
(
n+ 6

7

)
4 (1− θ)

+
3θ

7
.

As δ ≤
√

3

7
, Lemma 3.7 implies that δ2+ ≤

δ2√
2 (1− δ2)

=
9

56
. Therefore, after

some simplifications, we obtain

δ2 (y+z+;µ+) ≤ 9

56
+
θ2
(
n+ 6

7

)
4 (1− θ)

+
15

56
θ.

Let θ =
1√
3n

then θ2 =
1

3n
, this imply that

δ2 (y+z+;µ+) ≤ 9

56
+

n+ 6
7

3n

4 (1− θ)
+

15

56
θ.

And since
n+ 6

7

3n
≤ 3

7
for n ≥ 3 then

δ2 (y+z+;µ+) ≤ 9

56
+

3

28 (1− θ)
+

15

56
θ.

For n ≥ 3, θ ∈
[
0,

1

3

]
, we consider the following function:

f (θ) =
9

56
+

15

56
θ +

3

28 (1− θ)
.
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As

f
′
(θ) =

1

28 (1− θ)2
+

15

56
> 0,

so f is continuous and monotone increasing on
[
0,

1

3

]
. Consequently

f (θ) ≤ f

(
1

3

)
' 0.4107 ≤ 3

7
, for all θ ∈

[
0,

1

3

]
.

Then, after the barrier parameter is update to µ+ = (1− θ)µ with θ =
1√
3n

and if δ ≤
√

3

7
, we get δ (y+z+;µ+) ≤

√
3

7
. This completes the proof .

Theorem 3.9 indicates that the algorithm is well-defined since the conditions

y+ > 0, z+ > 0 and δ (y+z+;µ+) ≤
√

3

7
hold through the algorithm.

Iteration bound

In the following lemma, we derive the upper bound for the total number of itera-

tions produced by the algorithm.

Lemma 3.10. Suppose that y0 and z0 are strictly feasible starting point such that

δ
(
y0z0;µ+

)
≤
√

3

7
for each µ0 > 0. Moreover, let yk and zk be the vectors obtained

after k iterations. Then the inequality
(
yk
)T
zk ≤ ε is satisfied if

k ≥ 1

θ
log

(
2nµ0

ε

)
.

Proof. From (3.13), it follows that:(
yk
)T
zk ≤ 2nµk = 2n (1− θ)k µ0.

Then the inequality
(
yk
)T
zk ≤ ε holds if 2n (1− θ)k µ0 ≤ ε. We take logarithms,

so we may write

k log (1− θ) ≤ log ε− log (2nµ0) .

We know that − log (1− θ) ≥ θ for 0 ≤ θ ≤ 1. So the inequality holds only if

kθ ≥ log ε− log (2nµ0) = log

(
2nµ0

ε

)
.

This completes the proof.
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We end this subsection with a theorem that gives the iteration bound of the

algorithm .

Theorem 3.11. Using the defaults θ =
1√
3n

and µ0 =
1

2
, we obtain that the algo-

rithm given in Fig 3.1 at most requires at O
(√

n log
n

ε

)
iterations for getting an ε−

approximated solution of P-LCP.

Proof. Let θ =
1√
3n

and µ0 =
1

2
, by using Lemma 3.8, the result follows.

3.4 Numerical results

In this section, we present some numerical problems of different sizes for testing

the effectiveness of Algorithm 3.2.3, each example is followed by a table con-

taining the computational results obtained by the algorithm. All programs were

implemented in MATLAB R2016a on a personal PC with 1.40 GHZ AMD E1-2500

APU Radeon(TM) HD Graphic, 8 GB memory and Windows 10 operating system.

In the implementation, we set ε = 10−6 and different values of the barrier param-

eter µ0, θ are used in order to improve the performances of our algorithm. Here,

the starting point and the unique solution of P-LCP are denoted by (y0, z0) and

(y?, z?), respectively. The unique solution of SCQO is then computed via x? = Ay?.

The number of iterations required and the elapsed time by the algorithm are de-

noted by "Iter" and "CPU", respectively.
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Example 3.4.1. Let us consider the problem of SCQO where

Q =



6 0.5 6 1 3 2 −2 0 0 4

0.5 8.25 −3.5 1 −3.5 2 1.5 −2.5 −6 −4.5

6 −3.5 38 −1.5 7 −6 −1 2.5 16 3

1 1 −1.5 8.25 −2 2 −1.5 0. 0 −6

3 −3.5 7 −2 11 −4 −1 −0.5 0 −5

2 2 −6 2 −4 8 −4 0 −2.5 8

−2 1.5 −1 −1.5 −1 −4 7 −4 1 −4

0 −2.5 2.5 0 −0.5 0 −4 7.25 −0.5 4

0 −6 16 0 0 −2.5 1 −0.5 16.25 9.5

4 −4.5 3 −6 −5 8 −4 4 9.5 41



A =



0 3 3 3 0 0 0 0 0 0

−2 0 3 3 3 3 3 3 3 3

−1 −2 0 3 3 3 3 3 3 3

−1 −1 −2 0 3 3 3 3 3 3

−1 −1 −1 −2 0 3 3 3 3 3

−1 −1 −1 −1 −2 0 3 3 3 3

−1 −1 −1 −1 −1 2 0 3 3 3

−1 −1 −1 −1 −1 −1 −2 0 3 3

−1 −1 −1 −1 −1 −1 −1 −2 0 3

−1 −1 −1 −1 −1 −1 −1 −1 −2 0



,

b = (−1,−4, 4,−2, 1, 10, 4, 0, 5,−11)T .
The unique solution of the P-LCP is given by

y? = (0, 0.09, 0, 0, 0.0549, 0, 0, 0, 0, 0, )T ,

z? = (4.3634, 0, 1.5624, 5.5552, 0, 19.9944, 9.3423, 69.6119, 86.007, 48.1573)T .

Then the unique minimizer of this problem is:

x? = Ay? = (0.27, 0.1646,−0.0154, 0.0746,−0.09,−0.1998,−0.1449, ...,−0.1449)T .

The obtained number of iterations and the elapsed time via specified different values
of µ0 and θ are summarized in the Table 3.1:
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µ0 −→ 0.5 0.05 0.005 0.0005
θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU
0.7 13 0.05229 11 0.04637 9 0.04747 8 0.04486
0.5 23 0.05135 19 0.04978 16 0.04944 13 0.04537

1√
3n

77 0.06364 66 0.05992 54 0.05507 43 0.05120

Table 3.1: The numerical results with θ = 0.7, θ = 0.5 and θ =
1√
3n

, after the

algorithm reaches nµ ≤ 10−6.

Example 3.4.2. Consider the following SCQO problem where Q and A are given by:

Q =


3 1 . . . 0

1 3
. . . 0

... . . . . . . ...
0 . . . 0 3

 , A =


1 2 . . . n

0 1
. . . n− 1

... . . . . . . 2

0 . . . 0 1

 ,

and
b = (AT )−1(e− ATQAe).

The strictly feasible initial point taken in the algorithm is :

y0 =
1

2
(1, 1, . . . , 1)T > 0, z0 = My0 + q > 0.

A solution of P-LCP is given by:

y? = (0, 1.2154, 1.0615, 1, . . . , 1)T , z? = (0.1846, 0, 0, . . . , 0)T .

For example if n = 10, then the unique minimizer of this problem is

x? = Ay? = (54.6154, 45.3385, 36.0615, 28, 21, 15, 10, 6, 3, 1)T .

The details of obtained numerical results with different values of µ0 are in the table
3.2.
The details of obtained numerical results with different sizes of n, relaxed values of

µ0 and θ =
1√
3n

are in the Table 3.3.
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µ0 −→ 0.5 0.05 0.005 0.0005
θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU

1

2
√
n

90 0.0345 77 0.0271 63 0.0229 50 0.0177

1√
3n

77 0.0227 66 0.0213 54 0.0169 43 0.0128

Table 3.2: The numerical results, after the algorithm reaches nµ ≤ 10−6.

µ0 −→ 0.5 0.05 0.005 0.0005
size n ↓ Iter CPU Iter CPU Iter CPU Iter CPU
20 117 0.0559 100 0.0483 84 0.0446 67 0.0255
50 200 0.2569 173 0.1967 146 0.1554 119 0.1336
100 299 2.0932 260 1.8765 221 1.4960 182 1.3049
200 442 13.1413 387 11.4398 332 10.0121 277 8.3507
1000 624 99.1524 552 95.9942 481 93.3013 409 90.7823

Table 3.3: The numerical results with θ =
1√
3n

, after the algorithm reaches

nµ ≤ 10−6

Example 3.4.3. Let the matrixes of problem SCQO:

Q =


2 1 0 0

1 2 . . . 0

0 . . . . . . 1
0 . . . 1 2

 ;A =


3 0 . . . 0

0.5 3 . . . 0
... . . . . . . 0
-1 . . . 0.5 3


b = −2(A−1)T2Me,where M = ATQA

The strictly feasible starting point taken in the algorithm is :

y0 = (3, 3, . . . 3)T .

A solution of P-LCP is given by:

y∗ = (4, 4, . . . . . . . . . , 4)T ; z∗ = (0, 0, . . . . . . . . . 0)T .

The solution of SCQO is x∗ = Ay∗ = (12, 14, 10, 6, 2,−6,−10, . . . ,−78)

Numerical results for the problem SCQO with some sizes of n, and with θ =
1√
3n

are

in the Table 3.4.
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µ0 −→ 0.5 0.05 0.005 0.0005
n↓ Iter CPU Iter CPU Iter CPU Iter CPU
5 39 0.071465 33 0.005415 25 0.003894 21 0.002997
10 61 0.02272 52 0.01419 43 0.009145 34 0.011438
20 94 0.03094 52 0.01419 43 0.009145 34 0.011438
100 120 0.05828 103 0.04782 87 0.0416249 84 0.036102

Table 3.4: The numerical results, after the algorithm reaches nµ ≤ 10−6.

Example 3.4.4. Let the matrices:

Q =



4 -1 0 · · · 0

-1 4 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 4 -1
0 · · · 0 -1 4

1 0 0 · · · 0

0 1 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1 0
0 · · · 0 0 1

1 0 0 · · · 0

0 1 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1 0
0 · · · 0 0 1

5 -2 0.25 · · · 0.5

-2 5 . . . . . . ...

0.25 . . . . . . . . . 0.25
... . . . . . . 5 -2

0.25 · · · 0.25 -2 5



,

and

A =



-2 -1 0.5 · · · 0.5

4 -2 . . . . . . ...

3 . . . . . . . . . 0.5
... . . . . . . -2 -1
3 · · · 3 4 -2

1 0 0 · · · 0

0 1 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1 0
0 · · · 0 0 1

-1 0 0.1 · · · 0

0 -1 . . . . . . ...

0.1 . . . . . . . . . 0.1
... . . . . . . -1 0
0 · · · 3 0.1 -1

-2 -1 0.5 · · · 0.5

4 -2 . . . . . . ...

3 . . . . . . . . . 0.5
... . . . . . . -2 -1
3 · · · 3 4 -2



,

and
b = −2QAe.
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The strictly feasible initial point taken in the algorithm is:

y0 = (5, 5, . . . , 5)T , z0 = My0 + q.

The solution of P-LCP is

y? = (2, 2, . . . , 2)T , z? = (0, 0, . . . , 0)T .

Then the unique minimizer of this problem is computed via x? = Ay?.
The numerical results with different size of n are summarized in next Table.

µ0 −→ 0.5 0.05 0.005 0.0005
n↓ Iter CPU Iter CPU Iter CPU Iter CPU

10 13 0.0347 11 0.0342 9 0.0335 8 0.0315
50 15 0.0517 13 0.0492 11 0.0465 9 0.0449

100 15 0.1255 13 0.10829 11 0.1011 9 0.0944
200 16 0.5258 14 0.3967 12 0.3443 10 0.2927

1000 17 35.2648 15 27.3913 13 26.9554 11 23.1565
1600 18 176.1260 16 158.1731 14 98.6910 12 80.8734

Table 3.5: The numerical results, after the algorithm reaches nµ ≤ 10−6.

3.5 Comparative study

In this section we give a comparative study between the numerical results ob-

tained by the algorithms (a two-steps fixed-point algorithm and The interior-point

algorithm). This comparison takes place through examples. It should be men-

tioned here that depending solely on the CPU time in measuring the performance

of an algorithm might be misleading. especially, if the operating system is mul-

tiprogrammed the CPU time becomes longer and less reliable. Consequently, the

number of iterations should be used together with the CPU time to get a better

insight into the performances of the different algorithms.

Example 3.5.1. Consider the SCQO problem , where Q,A ∈ R10×10 and b are given
by:
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Q =



100 10 0 0 0 0 0 0 0 0

10 100 10 0 0 0 0 0 0 0

0 10 100 10 0 0 0 0 0 0

0 0 10 100 10 0 0 0 0 0

0 0 0 10 100 10 0 0 0 0

0 0 0 0 10 100 10 0 0 0

0 0 0 0 0 10 100 10 0 0

0 0 0 0 0 0 10 100 10 0

0 0 0 0 0 0 0 10 100 10

0 0 0 0 0 0 0 0 10 100



A =



0.2 −1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

−1 0.2 −1 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.05 −1 0.2 −1 0.05 0.05 0.05 0.05 0.05 0.05

0.05 0.05 −1 0.2 −1 0.05 0.05 0.05 0.05 0.05

0.05 0.05 0.05 −1 0.2 −1 0.05 0.05 0.05 0.05

0.05 0.05 0.05 0.05 −1 0.2 −1 0.05 0.05 0.05

0.05 0.05 0.05 0.05 0.05 −1 0.2 −1 0.05 0.05

0.05 0.05 0.05 0.05 0.05 0.05 −1 0.2 −1 0.05

0.05 0.05 0.05 0.05 0.05 0.05 0.05 −1 0.2 −1

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 −1 0.2


b = [1,−2,−3, 0, 2, 0,−1, 0, 1, 10]T .

The starting point is taken as:

x0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T .

The unique solution of this problem is given by:

x? = [0.0032, 0.0032, 0.0032, 0.005,−0.0029, 0.0014,−0.0033,−0.0509, 0.0062,−0.0502]T .

The obtained numerical results are stated in Table 3.6.
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Algorithms→ Algorithm. 2.2.1 IP Algorithm
Iter 505 11
CPU(s) 1.163234 0.114184

Table 3.6: The numerical results for Example 3.5.1

Example 3.5.2. Consider the SCQO problem , where Q,A ∈ Rn×n and b are given
by:

Q =



3 −2 0 · · · 0 0

−2 3 0 · · · 0 0

0 0 3 · · · 0
...

...
... . . . . . . 0 0

0 0 0 · · · 3 0

0 0 · · · 0 0 3


, A =



1 2 0 · · · 0 1/n

0 1 2 · · · 0 1/(n− 1)

0 0 1 · · · 0
...

...
... . . . . . . 2 0

0 0 0 · · · 1 2

0 0 · · · 0 0 1


b = (AT )−1(e− ATQAe).

The starting point is taken as: x0 = (1/2)e.

The numerical results with different size of n are summarized in Table 3.7

Algorithms→ Algorithm. 2.2.1 IP Algorithm
Size n Iter CPU(s) Iter CPU(s)

10 93 0.029143 19 0.031565

20 111 0.35727 20 0.049872

50 112 0.055592 22 0.054265

100 112 0.515329 23 0.233119

500 112 14.174202 25 8.284128

1000 112 102.07466 26 49.446352

Table 3.7: The numerical results for Example 3.5.2.

Example 3.5.3. The matrices Q,A ∈ Rn×n and the vector b ∈ Rn of the SCQO
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problem are given by:

Q =



2n 1/n 0.125 · · · 0.125 0.125

1/n 2n 1/n · · · 0.125 0.125

0.125 1/n 2n · · · 0.125
...

...
... . . . . . . 1/n 0.125

0.125 0.125 0.125 · · · 2n 1/n

0.125 0.125 · · · 0.125 1/n 2n


.

A =



4 −1 0.3 · · · 0.3 0.3

−1 4 −1 · · · 0.3 0.3

0 −1 4 · · · 0.3
...

...
... . . . . . . −1 0.3

0 0 0 · · · 4 −1

0 0 · · · 0 −1 4


b = [5, 0, . . . , 5, 0]T

The starting point is taken as: x0 = (1/2)e.

The numerical results with different size of n are summarized in Table 3.8.

Algorithms→ Algorithm. 2.2.1 IP Algorithm
Size n Iter CPU(s) Iter CPU(s)

10 570 0.091436 11 0.032565

20 1248 0.235727 12 0.035872

50 991 0.671777 13 0.047478

100 5520 0.185329 13 0.180890

500 11411 36.174202 15 6.884128

1000 −−− −−− 16 31.287818

1500 −−− −−− 16 112.885273

Table 3.8: The numerical results for Example 3.5.3
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Example 3.5.4. Consider the following SCQO problem where Q and A are given by:

Q =



4 −1 0 · · · 0

−1 4
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . 4 −1

0 · · · 0 −1 4

0.2 0 0 · · · 0

0 0.2
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . 0.2 0

0 · · · 0 0 0.2

0.2 0 0 · · · 0

0 0.2
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . 0.2 0

0 · · · 0 0 0.2

5 −2 1/4 · · · 0

−2 5
. . . . . . ...

1/4
. . . . . . . . . 1/4

... . . . . . . 5 −2

0 · · · 1/4 −2 5



A =



−2 −1 1/5 · · · 1/5

0.4 −2
. . . . . . ...

3
. . . . . . . . . 1/5

... . . . . . . −2 −1

3 · · · 3 0.4 −2

−6 0 2.5 · · · 0

0 −6
. . . . . . ...

0.1
. . . . . . . . . 2.5

... . . . . . . −6 0

0 · · · 0.1 0 −6

1 0 0 · · · 0

0 1
. . . . . . ...

0
. . . . . . . . . 0

... . . . . . . 1 0

0 · · · 0 0 1

−4 −2 0.4 · · · 0.4

0.8 −4
. . . . . . ...

6
. . . . . . . . . 0.4

... . . . . . . −4 −2

6 · · · 6 0.8 −4


b = (AT )−1(e− ATQAe).

The strictly feasible initial point taken in the algorithm is:

x0 = (5, 5, . . . , 5)T .

The numerical results with different size of n are summarized in Table 3.9.

3.6 Contributions and some remarks

Through the numerical tests that we carried out on examples of different dimen-

sions, we notice that:
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Algorithms→ Algorithm. 2.2.1 IP Algorithm
Size n Iter CPU(s) Iter CPU(s)

10 8 0.037128 7 0.032268

20 9 0.045672 7 0.033391

50 11 0.157435 8 0.039197

200 19 0.552646 8 0.236422

500 7 3.453799 9 4.335142

1000 4 9.991263 9 20.115544

2000 3 54.420731 9 138.211867

Table 3.9: The numerical results for Example 3.5.4

1. In terms of robustness, there appears to be no significant difference between

the two algorithms tested, These algorithms are simple and easy to imple-

ment and give the solution of the considered problems. although IP Algo-

rithm is slightly more reliable.

2. Among advantages of interior point methods are Theoretical efficiency: These

methods have polynomial convergence and good numerical behavior. Un-

like the Algorithm. 2.2.1 converges globally and linearly.

3. In terms of function evaluations (or iterations), we observe some significant

differences between the two algorithms. Algorithm. 2.2.1 requires more

iterations overall than the interior-point method. As expected, the last one

typically perform between 5 and 20 iterations to reach convergence. Since

the geometry of bound constraints is simple, only nonlinearity in the ob-

jective function cause interior-point methods to perform a large number of

iterations. Algorithm. 2.2.1 sometimes converges in a very small number of

iterations (e.g. 3.5.4), but on other problems it requires significantly more

iterations than the interior-point algorithms.

4. Interior point methods required number of iterations grows very slowly with

the size of the problem, which makes it so attractive for large-scale optimiza-

tion problems. these methods make it possible to solve problems of very

large size that no other known algorithm could process in an acceptable

time.

5. It is mentioned that interior point methods suffer to obtain a strictly feasible

starting point and close to central-path to initiate their associate algorithm.
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This because the used neighborhood of the central-path is narrow since the

threshold ( 0 < τ < 1 ).

6. The update barrier parameter θ depends on the size n of the problem. If n

is large enough this leads to a slow convergence of the IP algorithm.

7. CPU Time, the computation times of these methods are competitive. It is

clear from the Tables that Algorithm. 2.2.1 requires the largest amount of

computing time among all the solvers. This test set contains a significant

number of problems with ill-conditioned Hessians and the step computation

of Algorithm. 2.2.1 is dominated by the large number of steps performed.
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General conclusion and future work

In this thesis, a convex quadratic programming problem under simplicial cone

constraints were studied, and via its K.K.T optimality conditions is transformed

into a P-LCP. For its numerical solution, we have proposed two different meth-

ods. In the first part, the P-LCP is reduced to finding the unique solution of an

absolute value equation AVE. For solving this AVE we applied a new two-steps

Picard’s iterative fixed point iteration. In particular, the sufficient conditions for

the convergence of our algorithm are studied. The obtained numerical results de-

duced from the testing examples illustrate that the suggested algorithm is efficient

and valid to solve the SCQO problems. In the second part, for solving P-LCP we

have implemented a feasible full-step primal-dual path following interior-point

algorithm. The advantage of this algorithm is to use only full-Newton steps to

obtain a solution, i.e., the step-size α = 1. The algorithm produces a sequence

of strictly feasible iterations and near to the central path. Here, we suggested

new defaults such as δ ≤
√

3

7
and θ =

1√
3n

for its well-definiteness and its con-

vergence to the unique minimizer of SCQOs. Further, its best iteration bound is

derived. The obtained numerical results illustrate that the algorithm is efficient

and valid to solve the SCQO problems. We had end this Second part of the thesis,

with a comparison of our obtained numerical results.

future works

We conclude by pointing out a few research topics that one may consider for

extending the work in this thesis.

• The generalization of our convergence guarantees for two-steps Picard’s

method in chapter 2 with A is singular matrix or Q is symmetric positive

semi-definite .

• There are many more methods that have not been discussed in this thesis

and therefore it could be extended to incorporate other algorithms available

for AVE.

• One topic of interest would be extending these techniques for solving gen-

eral convex QPs.
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• Another interesting topic of research in the future is to solve the SCQOs by

introducing the active set methods and to compare our full-step primal-dual

path-following interior point algorithm with active set methods.

• The development of infeasible interior-point algorithm based on the analysis

(feasible) given in the second part seems to be an interesting.

• Introduces a new primal-dual modified barrier method for solving SCQOs in

starting from any given feasible point.
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 : ملخص

. في  (SCQO) طمسألة تربيعية محدبة مقيدة بمخروط بسيلحل    نقدم في ھذه الأطروحة دراسة نظرية و عددية

القيمة ذات   ت لمعادلا وحيد إيجاد الحل اليكافئ   SCQOن حل فا KKT   مثليةالأ الجزء الأول ، ومن خلال شروط

مكونة من خطوتين. على  Picard لـلنقطة الثابتة التكرارية  طريقة جديدة لطبقنا    الاخيرة   ه . لحل ھذ (AVE)المطلقة  

توضح النتائج العددية التي تم الحصول عليها حيث  خوارزمية  ال وجه الخصوص ، يتم دراسة الشروط الكافية لتقارب  

ة النقطة الداخلية لحل  طريق  ستغلال. في الجزء الثاني ، تم ا SCQOأن الخوارزمية فعالة وصالحة لحل مشاكل  

SCQOs حل  عبرP-LCP لإظهار  العدديةويتم إعطاء النتائج لها  التكلفة الحدودية. علاوة على ذلك ، يتم حساب

   .لخوارزميتان من خلال بعض الأمثلةلدراسة مقارنة بين النتائج العددية    ثم نقدم . رة الأخي  ه فعالية ھذ

التكرارية ، طرق    الخطي  التكامل  سائلالتربيعية ، مالبرمجة    : الكلمات المفتاح القيمة المطلقة ، طرق بيكارد  ، معادلات 

 .الحدودية  التكلفةالنقطة الداخلية ، 

Résumé : 

Dans cette thèse, nous présentons une analyse théorique et une étude numérique pour la 

résolution d'un problème d'optimisation quadratique convexe sous le cône simplicial (SCQO). 

Dans la première partie, et à travers ses conditions d’optimalité de K.K.T, La résolution de 

SCQO est équivalente à trouver l'unique solution d'une équation en valeur absolue AVE. Pour 

la résoudre nous avons appliqué une nouvelle itération itérative en point fixe de Picard en deux 

étapes. En particulier, les conditions suffisantes pour la convergence de notre algorithme sont 

étudiées. Les résultats numériques obtenus montrent que l'algorithme est efficace et valide pour 

résoudre les problèmes SCQO. Dans la deuxième partie, un algorithme de trajectoire centrale 

de type primal-dual à petit pas est proposé pour résoudre les SCQOs via un P-LCP. De plus, 

son  complexité polynomiale est calculé et des résultats numériques sont donnés pour montrer 

l'efficacité de ce dernier. Suivi par une étude comparative entre les résultats numériques obtenus 

par ces deux algorithmes à travers quelques exemples. 

Mots clés : Programmation quadratique, problème de complémentarité, equations aux 

valeurs absolues, méthodes itératives de Picard, méthodes des points intérieurs, complexité 

polynomiale. 

Abstract : 

In this thesis we present a theoretical analysis and numerical study for solving a simplicial cone 

constrained convex quadratic optimization problems (SCQO). In the first part, and across its 

optimality K.K.T conditions, solving SCQO is equivalent to finding the unique solution of an 

absolute value equation AVE. For solving it we applied a new two-steps Picard's iterative fixed 

point iteration. In particular, the sufficient conditionsfor the convergence of our algorithm are 

studied. The obtained numerical results illustrate that the algorithm is efficient and valid to 

solve the SCQO problems. In the second part, a feasible a short-step primal-dual interior-point 

algorithm is proposed for solving SCQOs via a P-LCP. Moreover, its complexity polynomial 

is computed and somenumerical results are given to show the effectiveness of this latter. 

Followed by with a comparison study between the numerical results obtained by these two 

algorithms through some examples. 

Keywords: Quadratic programming, complementarity problem, absolute value equations, 

Picard's iterative methods, interior-point methods, polynomial complexity. 
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