
Ministry of Higher Education and Scientific Research 

 
Ferhat Abbas University – Setif 1 

UFAS1 – Algeria 

 

THESIS 

entitled 

Transcription des spécifications M-UML vers le 

système Maude 

 

Presented at 

Faculty of Sciences 

Department of 

Informatics 

by 

Mr Mourad KEZAI 

For 

Doctor of Sciences Degree 

 

The 06/02/2023. 

Committee: 

 

Pr. Abderraouf Bouziane                 University of Bourdj-bouariridj                  Jury president  

Pr. Abdallah Khababa                      University of Setif 1                                     Supervisor 

Dr. Ammar Boucherit                         University of Eloued                                    Reviewer 

Dr. Abdelaziz Lakhfif                         University of Setif 1                                     Reviewer 

Dr. Lyazid Toumi                             University of Setif 1                                     Reviewer 

Dr. Mohamed Amine Beghoura       University of Bourdj-bouariridj                   Reviewer 

 

 

 

2023 





 

i 

Acknowledgements 

I would like,first of all, to express my deep gratitude to my advisor, Professor Abdallah 

Khababa to give me the opportunity to discover the field of formal methods and model 

transformation, both for his valuable scientific advice as well as his valuable human side through 

his patience, support and encouragement and his willingness to listen and give advice while still 

giving me enough independence to follow my own ideas, for all of this and more - thank you. 

I would like to thank all the professors with whom I worked at the University of Setif over 

the past two decades and my colleagues now at the University of Batna. 

I would also address a special greeting and word of thanks to Professor Santiago Escobar 

from the University of Valencia in Spain, Professor Detlef Plump from York University in the 

UK, and Professor Alberto Lluch Llafuente from the Technical University of Denmark. They 

generously gave their time to offer me valuable comments toward improving my work. 

I would like to extend my thanks and appreciation to the Chairman and all members of the 

thesis committee to accept reviewing the thesis. 

Finally, I would like to express my gratitude to my parents for their unlimited patience, 

Support and encouragement. I would also like to thank my brother, my sister, my sister-in-law 

and all the family members for their help and support during my PhD. I would like to thank all 

my friends and all the people who helped me in preparing this thesis, whether from near or far. 

 

 



 

ii 

Abstract 

First, multi-agent systems form an interesting type of company modeling and, as such, 

have very broad fields of application. Therefore, the technology field of "mobile agents" 

represents a new and important concept in artificial intelligence and software engineering. 

Despite the interest in this technology, most approaches at present do not allow a sufficient and 

complete design of mobile agents. 

On the other hand, the Maude system is a specification, object-oriented programming 

and proof environment based on rewriting logic which is a unifying semantic framework of 

several concurrency models. In addition, the Maude system also has a set of tools allowing the 

simulation and the analysis of accessibility by the LTL (Linear Temporal Logic) Model-Checker 

enabling the verification and the prototyping of the properties of the specifications. 

Finally, the UML graphical method and its extensions make it possible to represent 

systems synthetically and intuitively, multi-agent systems. However, they are not equipped with 

tools for formal verification. In this thesis, we address an approach for the transcription of M-

UML diagrams in to the Maude system. We applied our proposed three-stage approach to the 

Statechart diagram, one of the most important diagrams in M-UML. The technique involves 

systematically deriving a formal Maude description from this type of diagram analysis, and we 

obtained very satisfactory results. The proposed transcription makes it possible to obtain an 

algebraic specification expressed with the rewriting logic. The latter will be used for the 

verification of properties of mobile agent-based systems. 



 

iii 

Table of Contents  

Acknowledgements ................................................................................................................... i 

Abstract ..................................................................................................................................... ii 

Table of Contents..................................................................................................................... iii 

List of Figures ........................................................................................................................... v 

List of Tables .......................................................................................................................... vii 

List of Abbreviations ............................................................................................................. viii 

General Introduction ................................................................................................................. 1 

Chapter 1: Distributed Systems and Mobile Agents ......................................... 8 

1.1 Introduction .................................................................................................................... 8 

1.2 Distributed systems and mobile agents .......................................................................... 8 

1.3 Mobiles agent ............................................................................................................... 13 

1.4 Mobile Agent Systems ................................................................................................. 15 

1.5 Communication between mobile agents ....................................................................... 19 

1.6 Field of application of mobile agents ........................................................................... 20 

1.7 Presentation of some mobile agent platforms .............................................................. 21 

1.8 Benefits of the Mobile Agent Paradigm ....................................................................... 22 

1.9 Limits and Disadvantages of the Mobile Agent Paradigm ........................................... 24 

1.10 Conclusion .................................................................................................................... 26 

Chapter 2: UML & Mobile UML ..................................................................... 28 

2.1 Introduction .................................................................................................................. 28 

2.2 Modeling ...................................................................................................................... 28 

2.3 Unified Modeling Language (UML) ............................................................................ 32 

2.4 Extension of UML ........................................................................................................ 40 

2.5 Mobile UML ................................................................................................................ 42 

2.6 Conclusion .................................................................................................................... 43 

Chapter 3: Comparing Modeling Approaches for Mobile Agent-Based Systems . 46 

3.1 Introduction .................................................................................................................. 46 

3.2 Related Works and Background ................................................................................... 46 

3.3 classification of software system modeling approaches based on mobile agents ........ 51 

3.4 The comparison framework .......................................................................................... 58 

3.5 Conclusion .................................................................................................................... 65 

Chapter 4: Model Transformation ................................................................... 68 

4.1 Introduction .................................................................................................................. 68 

4.2 An approach for the MDA architecture ........................................................................ 68 



 

iv 

4.3 Graph transformation ................................................................................................... 76 

4.4 Conclusion ................................................................................................................... 80 

Chapter 5: Rewriting Logic and The Maude language .................................. 82 

5.1 Introduction .................................................................................................................. 82 

5.2 Rewriting Logic ........................................................................................................... 82 

5.3 Rewrite theory .............................................................................................................. 83 

5.4 Deduction rules ............................................................................................................ 84 

5.5 Maude System .............................................................................................................. 86 

5.6 Maude language syntax ................................................................................................ 88 

5.7 Maude modules ............................................................................................................ 91 

5.8 Predefined Modules ..................................................................................................... 94 

5.9 Execution and formal analysis under Maude ............................................................... 94 

5.10 Formal analysis and verification of properties ............................................................. 95 

5.11 Execution of Maude ..................................................................................................... 98 

5.12 Conclusion ................................................................................................................. 100 

Chapter 6: An integrated Mobile-UML/Maude system approach .............. 102 

6.1 Introduction ................................................................................................................ 102 

6.2 Related works ............................................................................................................. 102 

6.3 UML Mobile .............................................................................................................. 104 

6.4 The Maude short overview......................................................................................... 107 

6.5 The proposed graph grammar .................................................................................... 108 

6.6 The proposed approach .............................................................................................. 116 

6.7 M-UML and Inconsistencies ...................................................................................... 120 

6.8 discussion of the proposed approach .......................................................................... 121 

6.9 Potential limits ........................................................................................................... 121 

6.10 Conclusion ................................................................................................................. 122 

Chapter 7: Case study ...................................................................................... 125 

7.1 Introduction ................................................................................................................ 125 

7.2 Presentation of the example ....................................................................................... 125 

7.3 Application of the transcription process of M-UML diagrams .................................. 126 

General conclusion and perspectives .................................................................... 143 

Bibliography ........................................................................................................... 145 

 



 

v 

 

List of Figures 

Figure 1.1: Client/server organization .......................................................................... 9 

Figure 1.2: Remote assessment .................................................................................. 11 

Figure 1.3: Code on demand ...................................................................................... 12 

Figure 1.4: Agent mobile ............................................................................................ 12 

Figure 1.5: Place and Region ..................................................................................... 18 

Figure 1.6: The migration of the Mobile Agent ......................................................... 19 

Figure 1.7: Communication between mobile agents .................................................. 20 

Figure 2.1: Four-level meta-modeling architecture .................................................... 33 

Figure 2.2: Classification of UML types  ................................................................... 36 

Figure 2.3: Two simple states in a state-transition  .................................................... 38 

Figure 2.4: Transition in Statechart diagram  ............................................................. 40 

Figure 2.5: Example of stereotype ............................................................................. 41 

Figure 2.6: Example of constraints ............................................................................. 41 

Figure 3.1: Classification of UML approaches mobile agent extension .................... 48 

Figure 3.2: Development life cycle of mobile agent-based software systems  .......... 49 

Figure 3.3: Categories of Security Issues in Mobile Agent Systems  ........................ 50 

Figure 3.4: Classification of existing modeling approaches according to ................. 52 

Figure 3.5: The UML diagram types supported by the UML-Extended languages mobile 

agent based ................................................................................................... 60 

Figure 3.6: The viewpoint types supported by the UML-Extended languages based 

mobile based ................................................................................................. 62 

Figure 4.1: Variants of MDE  ..................................................................................... 70 

Figure 4.2: The four levels of abstraction for MDA .................................................. 71 

Figure 4.3: Model transformation process driven by meta models ............................ 73 

Figure 4.4: Undirected graph ...................................................................................... 76 

Figure 4.5: Simple directed graph .............................................................................. 77 

Figure 4.6: Labeled directed graph ............................................................................. 77 

Figure 4.7: G' is a subgraph of G................................................................................ 78 

Figure 5.1: Execution of Maude ................................................................................. 99 

Figure 5.2: Running the reduce command ............................................................... 100 

file:///C:/Users/a.kezai/Desktop/correction/Mourad%20Kezai%20thesis.docx%23_Toc130858360
file:///C:/Users/a.kezai/Desktop/correction/Mourad%20Kezai%20thesis.docx%23_Toc130858360


 

vi 

Figure 6.1: Mobile transition state graph concept .................................................... 105 

Figure 6.2 : Mobile Statechart diagram modeling .................................................... 107 

Figure 6.3 : Execution of Maude .............................................................................. 108 

Figure 6.4: Simple state transformation ................................................................... 109 

Figure 6.5: Mobile state transformation ................................................................... 110 

Figure 6.6: Simple transition transformation between two simple states ................ 110 

Figure 6.7: Mobile transition transformation between a simple state and a Mobile state

 .................................................................................................................... 111 

Figure 6.8: Mobile transition transformation between two mobile states ................ 111 

Figure 6.9: Mobile transition transformation between a mobile state and a simple state

 .................................................................................................................... 112 

Figure 6.10 : Remote transition transformation between two mobile states ............ 112 

Figure 6.11: Simple transition transformation between two mobiles states ............ 113 

Figure 6.12 : Transformation of an “agent return” simple transition between a mobile 

state and a simple state ............................................................................... 113 

Figure 6.13: Remote transition transformation between two simple states ............. 114 

Figure 6.14: Transformation of an “agent return” mobile transition between a mobile 

state and a simple state ............................................................................... 114 

Figure 6.15: Translation Process Overview ............................................................. 117 

Figure 7.1: Mobile Statechart diagram of the Vote Collector (VC.)  ....................... 127 

Figure 7.2: Modeling vote statechart 1 in Maude .................................................... 129 

Figure 7.3: The model with mobility attributes on states in Maude ........................ 131 

Figure 7.4: Final Maude specification for M-UML statechart diagram. .................. 131 

Figure 7.5: Maude's vote  statechart code execution. ............................................... 133 

Figure 7.6: "search command" execution for Maude vote  statechart...................... 134 

Figure 7.7: " Show graph instruction " execution for Maude vote statechart .......... 135 

Figure 7.8: " Search specific path " execution for Maude vote  statechart .............. 136 

Figure 7.9: " search for all mobile states " execution for Maude vote 2 statechart .. 137 

Figure 7.10: "search for all non-mobile states " execution for Maude vote 2 statechart138 

Figure 7.11: " search for all non-mobile states with condition " execution for Maude vote 

3 statechart ................................................................................................. 139 

Figure 7.12: " Check for mobile states not reached via mobile transition " execution140 

 

file:///C:/Users/a.kezai/Desktop/correction/Mourad%20Kezai%20thesis.docx%23_Toc130858394


 

vii 

List of Tables 

Table 2.1: Classification and Use of Languages or Methods  .................................... 29 

Table 2.2: Shorts description of structure UML diagrams. ........................................ 34 

Table 2.3: Shorts description of dynamic UML diagrams ......................................... 35 

Table 2.4: The structural elements of MSD ............................................................... 43 

Table 3.1: Progress review of classification ............................................................... 52 

Table 3.2 : Coverage of UML Extensions Diagrams ................................................. 58 

Table 3.3: Percentage of Coverage of UML extensions for initial diagrams ............. 59 

Table 3.4: Viewpoint Support for the UML- languages based mobile agent ............. 61 

Table 3.5: Percentage of Viewpoint Support for the UML- languages based mobile agent

 ...................................................................................................................... 62 

Table 6.1: Maude commands example ..................................................................... 108 

Table 6.2: Representation of control structures in Maude. ...................................... 115 

Table 6.3: The three steps of the translation Process ............................................... 118 

Table 6.4: Comparative of our approach with the closest similar methods…………118 

Table 7.1: State abbreviations. ................................................................................. 127 

Table 7.2: Transition abbreviations. ......................................................................... 128 

 



 

viii 

List of Abbreviations 

AADL: Architecture Analysis and Design Language 

Atom3: A Tool for Multi-Formalism and Meta-Modeling 

CASE: Computer Aided Software Engineering 

CIM: Computational Independent Model 

CPN: Colored Petri Nets 

CSP: Communicating Sequential Processes 

CWM: Common Warehouse Metamodel 

DBMS: Database Management System 

DPF: Destination Platform 

FIPA: Foundation for Intelligent Physical Agents 

LDAP: Lightweight Directory Access Protocol 

LHS: Left Hand Side 

LOTOS: Language of Temporal Ordering Specifications 

LTL: Linear Temporal Logic 

MAS: Multi-Agent System 

MASIF: Mobile Agent System Interoperability Facility 

MDA: Model-Driven Architecture 

MDE: Model-Driven Engineering 

MOF: Meta Object Facility 

MOM: Message Oriented Middleware 

MSD: Mobile Statechart Diagram  

M-UML: Mobile Unified Modeling Language 

OCL: Object Constraint Language 

OMG: Object Management Group 

OMT: Object-Modeling Technique 

PCA: Personal Communicator Agent 

PDA: Personal Digital Assistant 

PIM: Platform Independent Model 



 

ix 

PSM: Plateform Specific Model  

RHS: Right Hand Side 

RPC: Remote Procedure Calling 

SPF: Source Platform 

SSH: Secure Shell Protocol 

SSL Secure Sockets Layer 

UML: Unified Modeling Language 

VSM: Virtual Shared Memory 

XMI: Xml Metadata Interchange 

XML: Extensible Markup Language 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

General Introduction                                                                                                                                                  1 

General Introduction  

The last decade has seen considerable evolution in computing, especially with the 

emergence of smartphones and the expansion of networks, cloud computing and finally, the 

Internet of Things. This substantial development has led to the emergence of many new 

challenges and increasingly complex situations. This has pushed researchers to try to find other 

models than those that already exist (especially the Object-Oriented paradigm) to deal with these 

new difficulties encountered, especially in distributed systems. 

The mobile agent paradigm has been considered one of the most successful models 

proposed to represent these systems, which provides excellent flexibility over previous 

techniques and will allow for significant expansion in the development of many important 

systems in various fields. This is mainly due to the various characteristics that characterize 

mobile agents, such as mobility, autonomy, adaptability, etc. 

Mobile agent-based software systems are a special type of software system that takes 

advantage of the benefits of mobile agents. In order to give a simplified view of the working 

mechanism of this type of agent, we can say that it consists of several connected agents working 

in several distributed places, and they can move between them to achieve their objectives. This 

leads to a new paradigm that can solve many complex problems in several fields, such as 

network management, e-commerce, e-learning etc. 

Modeling and analyzing these systems in the design phases can avoid many problems and 

thus significantly improve and the development of these systems. However, providing an 

approach of the formal development and verifying such systems is not an easy task. In fact, two 

main aspects must be taken into account, namely mobility and communication. 

In return for the significant advantages that mobile agents give us, we face a serious 

problem: the absence of a formal specification for this kind of software system, therefore, this 

work attempts to look for an approach for specifying software systems based on mobile agents 

using the Maude system. Our choice of the Maude system is motivated, on the one hand, by the 

power of expression of the latter due to their rich syntactic notations based on an algebraic 

formalism, making it possible to provide highly compact models. On the other hand, they have 

healthy semantics defined in terms of the rewriting logic allowing them to express remarkably 

and intuitively the dynamic behavior and the parallelism which characterizes the distributed 



 

General Introduction                                                                                                                                                  2 

systems. This system also allows for formal verification through specifications expressed in the 

Maude language, a rewriting logic language that can be executed on two compiler versions: Full 

Maude and Core Maude. 

PROBLEM STATEMENT 

Research work on software systems based on mobile agents aims to develop models, 

languages, and tools for the design of such software systems based on mobile agents. The latter 

is not only built in a modular way with a large number of components. Still, it must also consider 

the characteristics of this type of systems, such as mobility and communication. This implies 

that these components are modeled in different modeling languages or formalisms [92]. 

Verification of the properties of these systems is recognized as a difficult problem and 

faces several issues. The first obstacle appears at the level of the choice of modeling techniques 

or modeling languages to be used to model the various components of the system. If the 

modeling language is too expressive, then we cannot mathematically analyze it automatically. 

A second obstacle is the verification of the system's global behavior. The models representing 

such a system are modeled in different languages or formalisms, making any global reasoning 

about the system complex. 

The main objective in this field is to study formal models, which allow us to describe these 

systems and their constraints (design, specification), build them (programming, simulation, 

synthesis, execution), and analyze them (validation, verification). Verification is a major 

concern for many software systems based on mobile agents. Hence the importance of validating 

these systems, i.e., testing, verification, and certification. There is a real and pressing need to 

develop effective methods and tools for verifying mobile agent-based systems to keep pace with 

their ever-increasing evolution. In addition, the slightest flaw will be exploited by potential 

malicious users. 

 The verification and validation phases make it possible to check that the system satisfies 

the expected properties. As a result, any problem related to qualitative behavior (security, 

fairness, absence of blocking, etc.), as well as quantitative behavior (loss of messages, average 

transmission speed, etc.), is detected and corrected very early in the cycle of development. One 

of the promising avenues for reducing these verification costs is the use of formal methods. 

These methods are based on mathematical foundations and make it possible to carry out 

verification tasks with high added value during development [64]. To be able to be carried out, 



 

General Introduction                                                                                                                                                  3 

the verification requires a formal description of the system and a formal specification of its 

properties. 

Model-driven engineering (MDE) methods are increasingly used in the industry to handle 

this level of complexity at the design level [43]. 

Model-Driven Architecture (MDA) is a development approach proposed by the Object 

Management Group (OMG) [20]. It makes it possible to separate a system's functional 

specifications from its implementation specifications.On a given platform the MDA approach 

makes it possible to carry out the same model on several platforms thanks to standardized 

projections. 

The implementation of MDA is entirely based on models and their transformations. This 

approach consists of manipulating different application models to be produced, from a very 

abstract description to a representation corresponding to the effective implementation of the 

system [128].  

The MDA approach can be instantiated using different languages. For this, many 

languages that can describe this have come into existence and now offer a number of functions.  

In the literature, several suggestions exist to provide a complete expressive language for 

these systems. M-UML (mobile UML) [41] is one of the most powerful of these attempts; It is 

an extension of the famous UML (Unified Modeling Language) to model software systems 

based on mobile agents by covering the aspects of mobility which is the new concept inherent 

in these systems. M-UML provides a basic version of mobile statechart diagrams to describe 

agent behavior in terms of state change. 

Since M-UML is an extension of UML, and therefore inherits its properties, it also has 

semi-formal semantics as well, which makes difficult any task of automatic analysis of its 

diagrams.  

On the other hand, formal methods offer an interesting solution to the above problem. The 

formal specifications will have the effect of eliminating ambiguities in the interpretation of M-

UML models. A appropriate combination of the mobile agent concept and formal methods can 

make software development more rigorous. However, a difficulty arises due to the variety of 

formal models used to represent the non-functional characteristics of the components and the 

requirements for the complete system. Many specification formalisms dedicated to several 

computer systems have been proposed in the literature, such as communicating automata, 

transition systems, CCS process algebras, CSP, LOTOS, Estelle, Promela , etc. 



 

General Introduction                                                                                                                                                  4 

 The Maude system [127] can fulfil this role satisfactorily. It is a very powerful algebraic 

language for describing the behavior of concurrent systems with mobile communications. We 

chose it because of its successful experiences in this field by providing the appropriate 

mechanisms to describe the behavior and movement of agents in M-UML diagrams. 

Applying model-checking techniques in the design cycle of agent-based systems provides 

proof of properties, such as the absence of run-time errors or the satisfiability of properties. 

Model checking consists of building a finished model of the analyzed system and verifying 

the desired properties of this model. Verification requires a complete or partial exploration of 

the model. The main advantages of this technique are the possibility of making the exploration 

of the model automatic and facilitating the production of counter-examples when the property 

is violated. 

CONTRIBUTION 

This thesis has two major contributions due to the treatment of the aforementioned 

problems: the first one is validated and published in a journal, and the other is a comparative 

study of the existing approaches and it is still in the scientific arbitration phase. 

The first contribution of this thesis is to provide a comprehensive comparative study of 

the different proposals that exist in the literature as well as a classification of approaches to 

modeling software systems based on mobile agents; we focus on the coverage factor of the 

diagrams, which have not been addressed in previous comparative studies. Based on the results 

of this study, we have adopted M-UML and extended it because of its advantages over others. 

The second and significant contribution of this work consists in the proposal of an 

integrated approach UML-Mobile/Maude, for the modeling and the verification of the 

applications of the mobile agents more precisely through the proposal of a diagram of states-

transitions mobile MSD ( Mobile Statechart Diagram) as an extension of UML statechart 

diagrams, followed by an integrated MSD/Maude approach for the modeling and verification of 

software systems based on mobile agents. 

In our approach, the behavior of a software system based on mobile agents is modeled by 

a mobile state-transition diagram; the basic idea proposed consists of giving this diagram a 

corresponding Maude system which allows us, through our proposed graph grammar, to 

automate the transfer of a source formalism (meta-model for the mobile transition state diagram) 



 

General Introduction                                                                                                                                                  5 

to a target formalism (meta-model for Maude's formalism), a reconfiguration of this system is 

made each time an agent moves from one state to another or from one place to another. 

 This means that the new specifications obtained are a detailed image of the converted 

system in real-time. The generated Maude specifications are then used to analyze and verify 

these systems using Maude analysis tools such as Core Maude. This verification consists, for 

example, in the early detection of errors (deadlocks, livelocks, etc.), checking if certain 

properties are satisfied, and (or) checking the equivalence between different diagrams; a 

literature case study illustrates the proposed approach. 

DISSERTATION PLAN 

The manuscript is organized into seven chapters, plus an introduction and a conclusion.  

The research work's problem and contributions are discussed in the general introduction.   

The first chapter is dedicated to the mobile agent paradigm. The goal is to take a look at 

the advantages of this technology. 

The second chapter is devoted to the two languages around which we have built our 

approach, namely the UML language and the M-UML. The first is a semi-formal language 

considered the standard for object-oriented modeling systems; the second is its extended version 

to support mobility. 

The third chapter presents a comparative study of different approaches proposed in the 

literature for. The study consists of the proposal of a comparison framework, classification, and 

evaluation of several proposals. 

In the fourth chapter, we introduce the concept of model transformation, starting with 

presenting the concept of model transformation in the general framework. After that comes the 

enumeration of some types of transformations. A classification of the different approaches will 

be followed by a presentation of a specific model transformation framework based on graph 

transformation. 

The fifth chapter is devoted to the rewriting logic after the definition of the formal 

methods. We present an overview of rewriting logic and the Maude language. The chapter ends 

with the concepts of model-checking and the description of Maude’s LTL model-checker 

In the sixth chapter, we propose a Mobile-UML/Maude system integrated approach for 

transforming the M-UML statechart diagram. we have introduced new elements in MSD 

statechart to support mobility more easily. Then, we presented our approach, which consists of 



 

General Introduction                                                                                                                                                  6 

the formalization of a semi-formal diagram MSD that we exploited using Maude formal 

language.  

In the last chapter (the 7th), we illustrated our approach by a case study which consists of 

modeling and verifying an electronic voting system. 

Finally, the conclusion summarizes the essential points of this work and presents the 

research perspectives that were recommended. 

 

 

 



 

7 

 

 

Chapter 1

 Distributed Systems 

and Mobile Agents 

 

  



 

Distributed Systems and Mobile Agents                                                                                                                   8 

Chapter 1: Distributed Systems and Mobile Agents 

1.1 INTRODUCTION 

The last years witnessed impressive development in all areas of computing, including the 

field of networks, which in turn expanded to lead to the emergence of many distributed 

applications. These applications require strong interactions between different entities distributed 

in the network that share the same resources and aim to achieve the same goals. These distributed 

implementations use different distributed implementation models suggested in the literature. 

We begin this chapter by briefly presenting the characteristics of some distributed 

execution models used to implement a distributed application. We will discuss the technology of 

mobile agents and recall the fundamental concepts of software systems using a mobile agent base. 

We will continue with the properties, domain of application, communication between agents, 

platforms, 

Finally, we will detail the advantages and disadvantages of mobile agents. 

1.2 DISTRIBUTED SYSTEMS AND MOBILE AGENTS 

In the development of distributed applications, programming by mobile agents has found 

its place as a new paradigm. However, for the construction and management of distributed 

systems, other organizational structures can be classified into two categories. One is for 

organisational structures without mobility, and the other is for structures with mobility. 

1.2.1 Non-mobile organizational structures for distributed systems 

In the design of a classic distributed application, which does not require mobility, several 

organizational structures are involved, the most common of which are the following: 

1.2.1.1 Client-server  

In the client/server model, a server represents an object managed at a site and services to 

clients. The functionalities of an application are then encapsulated in services offered/executed 

within servers. Servers are thus seen as service providers. There are either: (i) data servers, in 

which clients access data located on each server (BDMS, LDAP, etc.), (ii) or calculation servers, 

in which clients use the resources of each server to perform a specific task. 



 

Distributed Systems and Mobile Agents                                                                                                                   9 

In the client/server model, only the code initially installed on the server can be executed on 

the latter, and the latter's role is to respond to the requests sent by the client processes. The 

interaction with a server is established by the client requesting a service. We can consider that 

executing a task on a server requires interaction with other servers (such as the consultation of a 

database). In this case, the client and server can do the same process. In the client/server model, 

only the client represents an application in the proper sense of the term. The function of the server 

is to respond to client requests. The answers depend on the requests formulated and not on the 

client applications which interrogate them. 

The client sends a request to the server. This request describes the operation and parameters 

to be executed (the requested service). The client is then said to invoke an operation on the server. 

The server performs the service requested by the client and returns the response. It is a 

synchronous invocation, indeed in this type of communication, the client which sends a request 

to the server blocks while waiting for its response (see Figure 1.1) 

  

 

Figure 1.1: Client/server organization 

 

1.2.1.2 asynchronous event 

This model allows communication between several processes, and this is indirect. The 

different components of the application cooperate by sending and receiving notifications. The 

processes communicate via a base representing a subscription and event distribution manager. 

This database is responsible for directing an event to its subscribers. In this model, there 

are two types of process: the senders who send or publish events in the database and the 

consumers who subscribe to specific categories of events. When the database receives an event 

notification, it distributes it to all the components that have declared their interest in receiving 

this message. Thus, this intermediary decouples the sources and the consumers of events. The 



 

Distributed Systems and Mobile Agents                                                                                                                   10 

sender of communication is not obliged to specify the destination of his messages, nor does the 

recipient necessarily know the message's origin. This type of infrastructure [1] makes it possible 

to communicate using messages and is designated by MOM (Message Oriente Middleware). 

1.2.1.3 Virtual shared memory (VSM)  

The exchanges take place via a large shared memory which serves as a communication 

space between processes on computers which do not physically share their memory. Its interest 

is to allow the use of a programming model with advantages over models based on the exchange 

of messages. 

Processes access shared memory by reading and updating what appears to be ordinary 

memory inside their address space. The system, running in the background, transparently ensures 

that processes running on different computers observe updates made by other methods. 

The great advantage of the VSM [2] is to spare the programmer the management of the 

exchange of messages when he writes an application needed in the VSM. One cannot, however, 

completely avoid exchanging messages in a distributed system; it is, of course, necessary that the 

underlying system of the VSM sends the updates to the various processors, each with a local copy 

of the shared data [3]. Moreover, these data must be updated regularly for a question of 

performance and the validity of the data used. 

1.2.2 Organizational structures with mobility for distributed systems 

Applications using networks as infrastructure, particularly the Internet, have rapidly grown. 

Non-mobile organizational structures, such as the client/server approach, face significant 

challenges. Given the centralized nature of these approaches, the emergence of new trends for 

sharing knowledge and resources available on the planetary network is slowing down 

enormously. Therefore, the concept of mobility is an excellent alternative to non-mobile 

approaches. 

In what follows, we present some definitions and basic concepts of mobility; we will continue 

with some organizational structures based on mobility for distributed systems. 

1.2.2.1 Mobility 

Mobility, in general, is physical or software movement in telecommunication networks. As 

a result, three basic concepts are widespread: physical mobility (Mobile computing), mobile code 

and mobile agents. 



 

Distributed Systems and Mobile Agents                                                                                                                   11 

• Physical mobility is defined as a paradigm in which users of the shared network connect 

via portable machines [4]. The diffusion of wireless networks, and cellular telecommunication 

networks, explain the motivation of this paradigm. These networks require large computing and 

information processing capacities. 

• The dynamic capacity of exchange between the code fragments and the locations on 

which this code will be executed defines the mobile code. The migration of the code (process, 

object, or procedure) ensures a load balancing between the processors connected to the network. 

This also improves performance in communication (gathering objects that communicate 

intensively on the same nodes). 

• Mobile agents are software entities that can move from one site in the network to another 

to achieve their objectives autonomously. 

1.2.2.2 Organizational structures 

Among the organizational structures of mobility, we present the remote evaluation, the 

code on demand and the Mobile agent-based model. 

1.2.2.2.1 Remote assessment 

In a remote assessment interaction (see Figure 1.2), a client sends a code to a remote site. 

The receiving site uses its resources to execute the program sent. 

Optionally, an additional interaction then delivers the results to the customer. In this 

scheme, only the code is transmitted to the server, and the code's execution takes place only on 

the latter. For example, the code for an SQL query sent to a database server is an example of 

remote evaluation. 

 

Figure 1.2: Remote assessment 

 



 

Distributed Systems and Mobile Agents                                                                                                                   12 

1.2.2.2.2 Code on demand 

In this diagram, the client process interacts with a remote site to retrieve know-how that 

will be executed on the client machine. Thus, the customer downloads the code necessary to 

perform a service. The role of the remote site is to provide the service code that will be executed 

on the client site (see Figure 1.3). Java Applets are based on this mobile code technology; it is a 

program loaded from a web page to be executed on the client's machine 

 

Figure 1.3: Code on demand 

  

1.2.2.2.3 Mobile agents 

Compared to the two previous diagrams, the execution of the process begins at the customer site. 

Since the client needs to interact with the server, that same process (code, execution state, and 

data) travels across the network to continue its execution and to interact locally with server 

resources (see Figure 1.4). After execution, the mobile agent eventually returns to its client to 

provide it with the results of its execution. In this scheme, the know-how belongs to the client, 

and the execution of the code is initiated on the client side and continues on the different machines 

visited. 

 

 

Figure 1.4: Agent mobile 



 

Distributed Systems and Mobile Agents                                                                                                                   13 

In order not to get lost in the details of MAS, we directly try to focus on a particular type 

of multi-agent system that interests us in this work; it is mobile agents. 

1.3 MOBILES AGENT 

The interactions associated with the mobile agent paradigm are distinct from those 

associated with other mobile code paradigms due to the fact that they involve the mobility of an 

existing computational component. In other words, whereas the focus of the remote assessment 

and code-on-demand paradigms is on the transfer of code between components, the mobile agent 

paradigm moves an entire computational component to a remote site, along with its state, the 

code it needs, and some resources needed to perform the task. This is in contrast to the remote 

assessment and code-on-demand paradigms, which focus on the transfer of code between 

components. 

1.3.1 Agent concept 

1.3.1.1 Definitions  

An agent is an entity that perceives and acts in an environment. Its agent function specifies 

the action it performs in response to a given sequence of percepts [5]. In general, an agent is 

substituted for any entity that can be considered to perceive its environment through sensors and 

acts on that environment through effectors. Here we present some alternative definitions 

according to the approach of artificial intelligence: 

• According to [6], an agent is a physical or virtual entity that can act in an environment 

and communicate directly with other agents. This entity is driven by a set of trends (in the form 

of individual objectives, a function of satisfaction, or even survival, that it seeks to optimize). To 

achieve its goals, the agent takes into account the resources and skills at its disposal, as well as 

its perception and representations of its environment. 

• According to [7], an agent is an autonomous active entity acting by the delegation on 

behalf of a client. 

• In [8], we learn that an agent is a computer system located in an environment capable of 

acting autonomously to achieve its design objectives. 

1.3.1.2 Motivation of mobile agents 

A mobile agent can transport in the network where they move, code data, and the execution 

units associated with it. An agent migrates autonomously to the sites it deems interesting. This 



 

Distributed Systems and Mobile Agents                                                                                                                   14 

new approach has made it possible to increase the robustness of applications for distributed 

systems, in particular for: 

• Reducing network load: It is generally more advantageous in terms of performance to 

send code rather than data. 

• Moving from Code to Data: Servers containing data provide a fixed set of operations. 

An agent can extend this set for the particular needs of treatment. 

• Reliability: The life of a classic program is linked to the machine where it runs. A mobile 

agent can move to avoid a hardware or software error or simply a machine shutdown. 

• Dynamic system adaptation to problems: Agents can distribute themselves across 

machines on the network to better consider the system's state when they need to perform their 

tasks. 

• The management of robustness and fault tolerance: If a machine stops, the agent there 

can change the device to complete his current task. 

  • Protocol encapsulation: In distributed systems, protocols define how messages and data 

are exchanged. To modify a protocol, you must change the code on all the machines in the system. 

Agents encapsulate protocols. Changing protocol is equivalent to interacting with a new agent. 

• Component autonomy and synchronous/asynchronous execution: Mobile terminals 

(PDAs, laptops, telephones, etc.) are not always connected to the network. Systems that require 

permanent connections are not suitable in this case. With agents, mobile devices can log in to 

check for messages. An agent can be dispatched to the mobile terminal at login time and work 

on the mobile terminal after disconnecting the connection. The same agent can wait for the next 

connection to send information on the network, meaning, for example, that a task has been 

completed 

1.3.1.3 Properties 

Agents generally have a large number of properties and abilities, among which we list here 

a few that are of interest to us: 

• Autonomy: An autonomous agent is an entity that acts in its environment independently 

of external commands. An agent's autonomy concerns both its behavior and internal resources 

[9]. The "daemon" is an example of an autonomous agent. 

• Mobility: A mobile agent can migrate from one machine to another to achieve its 

objectives. 



 

Distributed Systems and Mobile Agents                                                                                                                   15 

• Communication: Agents can communicate with each other and with others. 

By exchanging messages or according to a mode of communication established by the 

architecture in which the agents evolve, such as the MAS (Multi-Agent System). 

• Learning: An agent can increase capabilities by learning using knowledge. 

• Reactivity and Pro-Activity: a reactive agent is characterized by its reaction to external 

events to execute new tasks. On the other hand, a ProActive agent is characterized by the ability 

to anticipate changes rather than react to these changes. 

1.3.1.4  Agent Classes 

The term agent takes on different meanings depending on the fields of application and the 

expected perspectives. The classification of the different agent architectures is based on relevant 

criteria and a naturalistic mode (taxonomy). There are domain-based or viewpoint-based 

classifications [10]. In this section, we present classification as an overview. 

• Cognitive agent: Classical artificial intelligence focused very early on the expression on 

logical bases of the deliberative behavior of a rational agent according to its beliefs and goals. 

This later gave rise to the first modern architectures of so-called cognitive agents. 

• Robotic agent: We can consider the control software architecture of a robot as an agent. 

This architecture can also be tested and trained in simulation before being implemented. 

However, the physical reality of a robot brings specific problems (imprecision of perception and 

action, real-time aspects, evolution of the world), which make the design of such agents, 

particularly difficult, but also particularly rich. 

• Software agent: this designation is justified in opposition to the term physical agent, such 

as a robot. The first Software Agents are Unix daemons (autonomous computer processes capable 

of waking up at certain times or depending on certain conditions). Computer viruses are already 

more sophisticated versions (notably endowed with the ability to reproduce) and harmful. 

• Mobile agent: Born in the mid-90s. Téléscript is the first platform for mobile agents. It 

subsequently gave rise to many other platforms. 

1.4 MOBILE AGENT SYSTEMS 

1.4.1  Basic concepts 

An agent that runs exclusively in the system where it was created is said to be a Static 

Agent. If the agent needs information unavailable in the system running, it can interact with other 



 

Distributed Systems and Mobile Agents                                                                                                                   16 

agents in another system. In this case, the agent uses a communication mechanism such as RPC 

(Remote Procedure Calling). On the other hand, a mobile agent is not linked to the system in 

which it begins its execution. This Agent can move from one host to another in the network. It 

can transport its state and code from one environment to another in the network where it continues 

its execution. 

A mobile agent is, therefore, able to move in its environment. It can be physical (real or 

simulated) or structural (execution levels, for example). Therefore, a mobile agent has devices 

ensuring mobility [10]. 

An agent system (also called an agent server) is the living space of agents. It is associated 

with an authority identifying the organization or party for which the agents act. The diversity of 

the systems developed in this way makes bridges between such systems often impossible. To 

allow interoperability between mobile agent systems, the OMG (Object Management Group) has 

shown its interest in this class of application by defining the specifications of MASIF (Mobile 

Agent System Interoperability) [11]. In addition, the FIPA (Foundation For Intelligent Physical 

Agents) [12] has launched another effort to specify the architecture of mobile agent systems. 

1.4.1.1 Agent Mobility 

The mobility of an agent refers to its ability to move from one computing environment to 

another, typically across different machines or networks, without losing its functionality or state. 

During its migration, the agent transports its code, its execution state as well as its resources 

according to the following legend: 

• The agent and communication channels will be suspended on the originating machine. 

• The agent state will be extracted and transferred over the network, as data, to the 

destination machine where it will be rendered. 

• The agent resumes execution on the destination machine after being reactivated. Its 

communication channels will then be updated.  

The details in the legend quoted above determine the mobility class of the agent. Generally, 

there are two major classes for mobility: high mobility and low mobility. 

a-High mobility: In this class, the agent moves entirely with all its components to the 

destination machine, where it will resume its execution from the last interrupted instruction. This 

movement can be proactive or reactive. In this class, there are two types of mobility: 



 

Distributed Systems and Mobile Agents                                                                                                                   17 

Cloning: In this type of mobility, an exact copy of the mobile agent is transferred over the 

network, and the other copy remains at the level of the original machine. The agent's 

communication strategies must be specified for this type of mobility. 

Migration: This type of mobility defines migration itself. The mobile agent will be 

transferred to the destination machine without leaving a copy on the originating machine. 

b- Low mobility: In this class, the mobile agent is deprived of its execution context during 

migration. It must restart its execution on the destination site from the beginning. Several 

recovery strategies can be integrated into applications using this mobility class. In the same way 

as for strong mobility, in this class, the movement of mobile agents can also be proactive or 

reactive. 

1.4.1.2 The place 

In the host environment of the migrating agent, the place can be seen as a fixed agent that 

can receive the mobile agent by offering services (Figure 1.5). For example, when a mobile agent 

moves to an agent server, it enters the space offered by the requested service. An agent server 

can be considered as a place in a multi-agent system. The departure and destination places of the 

migrating agent can be located within the same agent system or on different systems. Places are 

uniquely identified in the system under consideration. 

1.4.1.3 The region 

A region models a set of mobile agent systems that are not necessarily of the same type 

(see Figure 1.5). It represents the set of all the places and all the agents that belong to the same 

authority (organization). 

1.4.1.4  The name of an agent 

An agent's identity must be unique in its region to be able to identify it. The name assigned 

to an agent can be combined using their identity and other useful information. 

1.4.1.5 The localisation 

The location of a mobile agent is defined by the combination of its place of execution and 

the network address of the agent system where the place resides. 



 

Distributed Systems and Mobile Agents                                                                                                                   18 

1.4.1.6 Agent and Place Authority 

The authority of an agent makes it possible to identify his affiliation organization to 

authorize him access to requested resources. Similarly, a place has the authority of the region of 

its creation. 

Ressources  

                                

Region

Agents

Place 

 

Figure 1.5: Place and Region 

1.4.2 System services 

We describe in this section the valuable elements of a mobile agent system for building 

applications. 

The creation of an agent is generally done within a specified place. The creator (the system 

or others) must authenticate in the place and establish the authorizations and the references that 

the agent will possess. The creation of the agent goes through the following steps: 

• Instantiation and naming of the agent: At the beginning, the system loads and executes 

the code of the agent class. The agent object is then instantiated. Ultimately, a unique identifier 

is assigned for the agent thus created. 

• Agent initialization: The agent creator provides the necessary arguments to the agent to 

allow its initialization. After its initialization, the agent is considered completely installed in its 

place. 

• Migration of a mobile agent: A mobile agent system offers all the necessary mechanisms 

for each agent to ensure its mobility. The migration process can be initiated by the agent itself or 

by others. The agent migrates according to its objectives from its current place to the specified 

destination. (See Figure 1.6) 



 

Distributed Systems and Mobile Agents                                                                                                                   19 

 

Figure 1.6: The migration of the Mobile Agent 

 

• Security: Due to the distributed and heterogeneous nature of distributed systems, security 

plays a significant role in developing such systems. To implement a targeted security policy for 

developing systems based on mobile agents, designers generally use authentication mechanisms 

(password, certificate, etc.), and cryptography (SSH, SSL, etc.). ..) And access control (user 

rights, firewall). In the classic scheme of distributed applications, the critical elements are 

grouped on secure machines, and the focus is on external communication channels using 

authentication and cryptography mechanisms. For implementing code mobility, security policies 

are generally based on a close relationship between the site storing the program and the one 

executing it. Implicitly, the owner of the code is the same as that of the environment that will 

execute it. As for agents’ mobiles, the security problem is not entirely solved. This is also the 

basic argument explaining the low use of this paradigm. Indeed, mobile agents represent a new 

field of investigation for the field of security research, on the one hand in the protection of sites 

against malicious agents and on the other hand in the protection of agents against malicious sites 

1.5 COMMUNICATION BETWEEN MOBILE AGENTS 

Agents can communicate with resident agents in the same place or with residents in other 

places. An agent can invoke a method of another agent as it can send messages to it if authorized. 

Inter-agent communication can follow three different patterns. (See Figure 1.7) 



 

Distributed Systems and Mobile Agents                                                                                                                   20 

A. Now-type messaging: This is the most used type of messaging. It is a synchronous type. 

It blocks the execution of the sender of the message until the receiver has wholly downloaded the 

message and sent its response. (See  Figure 1.7  ) 

B. Future-type messaging: This is a non-blocking asynchronous messaging type. The 

sender retains a variable, which can be used to obtain the result. This type of messaging is 

beneficial when several agents communicate together. (See Figure 1.7 ) 

C. One-way-type messaging: This is an asynchronous type that does not block current 

execution. The sender will not retain a variable for this message and the receiver will never 

respond. This type is proper when two agents initiate a conversation where the sending agent 

does not need a response from the receiving agent. This type of messaging is called fire-and-

forget. (See Figure 1.7) 

Transmitter Transmitter Transmitter 

Receiver Receiver Receiver 

Now-type messaging Future-type messaging One-way-type messaging  

Figure 1.7: Communication between mobile agents 

1.6 FIELD OF APPLICATION OF MOBILE AGENTS 

Although mobile agents have been introduced recently, several application areas involving 

mobile agents as new technology have emerged, among which we cite: 

• Electronic Commerce: The principles of autonomy and delegation are widely used in 

electronic commerce. Agents are, therefore, naturally suited to this type of application. The agent 

acts on behalf of a person and applies different strategies to fulfil the expected services. In 



 

Distributed Systems and Mobile Agents                                                                                                                   21 

addition, the agent's mobility allows him to move from site to site to dialogue and negotiate with 

the services present to achieve the best possible transaction. 

• Telecommunication services: Mobility functionality is gaining momentum in 

telecommunications. Mobile agents can be used to cover the layers of communication protocols, 

from network maintenance to mobile applications following the user in his movements. A 

“Personal Communicator Agent” (PCA) is a mobile agent responsible for delivering a message 

to the recipient, regardless of their device (telephone, computer, laptop or cordless phone). A 

user's PCA must be able to receive messages and route them uninterrupted across heterogeneous 

networks to the user. For example, if the only way to deliver an urgent message to a user is via a 

wireless phone, the personal agent must convert the text message to a voice message. Mobility 

allows these agents to follow the user even when he changes the machine. 

• Robotics: Agents can also help improve the performance of physical robots. Using 

sensors, the robots base their behavior on agents who translate the information obtained to define 

the actions to follow (turn, move forward, etc.). Example: Asterix is an example. It enables high-

level screening using opinion-based reactionary behavior. 

•  Distributed computing: Mobile agents can be used in distributed computing systems to 

move computation to where data resides, reducing network traffic and improving performance. 

•  Intrusion detection: Mobile agents can be used in intrusion detection systems to scan 

for vulnerabilities, detect attacks, and respond to security breaches. 

•  Healthcare: Mobile agents can be used in healthcare applications to monitor patients, 

collect data, and assist in the diagnosis and treatment of medical conditions. 

•  Entertainment: Mobile agents can be used in entertainment applications such as online 

gaming to manage game play, match players, and provide feedback to users. 

•  Environmental monitoring: Mobile agents can be used in environmental monitoring 

systems to collect data on weather, air quality, and other environmental factors. 

1.7 PRESENTATION OF SOME MOBILE AGENT PLATFORMS 

This part tries to give an idea of the existing platforms [13] allowing the development and 

manipulation of mobile agents. Unfortunately, this task is quite tricky for many reasons: 

• This technology is booming, although the notion of the agent is relatively old 

• The rapid evolution of the field does not always provide up-to-date information. 



 

Distributed Systems and Mobile Agents                                                                                                                   22 

• There are several models to describe the behavior of agents. Each is the subject of research 

and documents that do not allow for a global and homogeneous view. 

• The technological mastery of agents is a critical economic and strategic issue, which 

explains the difficulty of finding an acceptable standardization.  

There are currently many different implementations that are incompatible with each other. 

Some are written in pure Java, thus benefiting from cross-platform porting. We quote: 

• Odyssey [14] (from General Magic), One of the first agent platforms. It is independent 

of the transport protocol used and can therefore be adapted to RMI (from Sun), CORBA 

(from OMG) or DCOM (from Microsoft). 

• Aglets [15] from IBM, use the notion of remote reference (AgletProxy), message passing 

(multicast, broadcast) and the ATP protocol developed by IBM. It also offers a certain 

notion of security by limiting the resources allocated to the aglets. 

• Dima [16] from the LIP6 laboratory is a platform for multi-agent systems allowing the 

development of different types of agents (reactive, cognitive and hybrid). 

This platform does not support mobility. This must be programmed 

• Jade [19] from the CSELT of the University of Parma, is a software that simplifies set 

up multi-agent systems through a personalized interface that responds to the 

specifications of the Foundation for Intelligent Physical Agents -FIPA- and thanks to a 

set of tools that support bug fixing. Jade also offers security services. 

• Grasshopper [66]: The Grasshopper platform developed by IKV++ (Innovation 

Knowhow Vision++) in 1997 is an implementation and execution environment for mobile 

agents. This product developed in Java has been tested on SUN Solaris 2.5 and 2.6 and 

on Windows (NT and 9x). For its operation, Grasshopper requires at least Java version 

1.1.4Visibroker 3.1. Grasshopper has the distinction of being the first platform compatible 

with the standard protocol MASIF (Mobile Agent System Interoperability Facility) of the 

OMG (Object Management Group) and the standards of FIPA (Foundation for Intelligent 

Physical Agents). 

1.8 BENEFITS OF THE MOBILE AGENT PARADIGM 

Despite their recent appearance, mobile agents have quickly established themselves, 

particularly in research related to distributed applications. Therefore, this paradigm was 

immediately evaluated to verify what it could bring advantages compared to traditional 



 

Distributed Systems and Mobile Agents                                                                                                                   23 

programming methods. In the rest of this section, we present some aspects of the evaluation of 

mobile agents: 

• Performance: The first improvements made by mobile agents relate to the gain in 

performance due to better use of the physical resources employed. 

• Network traffic reduction: Moving mobile agents can significantly reduce remote 

communications between network clients and servers. This reduction itself brings the 

following advantages: 

- The decrease in bandwidth consumption. Indeed, studies show that implementing 

mobile agents makes it possible to obtain a significant reduction in the network load 

in terms of the total number of data transferred by comparing with the remote sending 

of requests (procedures and methods). This decrease is observed in different 

applications requiring intense information exchanges between the client and the 

server. Examples include collecting information from distributed databases and 

crawling the Internet. 

- Reducing latency times. In the context of large-scale networks, the implementation of 

distributed applications, requiring frequent interactions between client and server, 

comes up against the latency times specific to network communications. The waiting 

time for a response to a request is often longer than the processing time required to 

perform the service. By bringing the client and server closer together in the same 

subnet, even on the same site, they are placed in an environment where the response 

time of interactions will be limited, reducing latency times. 

- By reducing remote communications as much as possible to transfers of mobile 

agents, the periods of connection between two sites are considerably reduced. This 

reduction in the window of use of network communications makes it possible to 

minimize the breakdowns of physical links, which can frequently occur in wireless 

environments 

• Computational independence: In the remote evaluation model, the client and server 

must remain connected as long as the service runs. In addition, some services requiring 

long processing phases do not always support connection breaks with customers. On the 

other hand, maintaining communications links in large-scale or wireless networks is very 

difficult. Mobile agents allow customers to delegate service interactions without 

maintaining an end-to-end connection. 



 

Distributed Systems and Mobile Agents                                                                                                                   24 

• Physical fault tolerance: Mobile agents can easily adapt to system errors by moving with 

their code and data. These errors can be purely physical, such as the disappearance of a 

node, or functional, such as the stopping of a service. If a service fails in a site, for 

example, the user agent of this service can then choose to move to another site containing 

the desired functionality. This allows for better fault tolerance. 

• The design: From the design point of view, the mobile agents represent a method that 

allows characterising certain applications better. Still, they also bring an increased 

complexity compared to the traditional client/server, which is much better mastered. To 

begin with, designers generally prefer a way to describe real behavior easily. With the 

classic method, it is very restrictive to describe (network) exploration algorithms or even 

to characterize the movements of mobile users. With mobile agents, designers have a way 

to describe this kind of behavior naturally. Thus, one can easily set up application 

deployment and/or maintenance on a network or even follow users in their movements. 

In addition, agents have a specific processing capacity to adapt to their environment. 

Generally, in the client/server model, the service is characterized beforehand by a strict interface 

and/or a well-defined usage protocol. Thus, if the customer is not aware of the description of the 

service, he will not be able to use it. On the other hand, the agents adapt to the characteristics of 

the services to express their requests. For example, if the service requests secure communication, 

the agent can retrieve a security module, update its communication stack and dialogue with the 

service. 

On the other hand, the reasoning capacity of the agents will make it possible to design 

autonomous agents, adapting their movements according to the environment and modulating 

their functionalities during execution. However, these properties come with a much more 

challenging design than the classic client/server. Indeed, in the majority of distributed 

applications, we try as much as possible to hide the distribution by relying on a set of system 

services that allow us to design an application as if all its elements were local. 

1.9 LIMITS AND DISADVANTAGES OF THE MOBILE AGENT PARADIGM 

To know the limits and disadvantages of any field is very important to get familiar with 

and get a profound idea about it, a thorough understanding of these problems is the first step to 

solving them and thus developing them and obtaining robust technology with fewer drawbacks. 

Mobile agent technology is no exception. However, while mobile agents have undeniable 

advantages, they also have shortcomings that must be addressed to make mobile agent-based 



 

Distributed Systems and Mobile Agents                                                                                                                   25 

applications work reliably. Again, we can cite that development and insufficient standardization 

are this area's major limitations. 

Development and insufficient standardization: The field of mobile agents is still relatively young; 

it comes up against solid constraints during the development phases. The first of these is that 

there are currently too many middlewares for mobile agents, each of which has its own 

shortcomings and qualities [17]. With this plethoric offer, it is difficult to speak of 

standardization. We can also mention some of the sub-reasons that may lead to the weakness of 

mobile agent technology [18]. 

• Mobile agents do not perform well: In general, mobile agents give worse performance 

than other mechanisms, such as remote evaluation. In addition, they are also costly 

• Mobile agents are challenging to test and debug: distribution and mobility add 

complexity to the process of testing and debugging software. In addition, mobile agents 

can move from one node to another in an unpredefined order, and understanding and 

testing their implementation from such complex runtime history is very hard. 

• Mobile agents are difficult to authenticate and control: they must be authenticated 

when they enter an environment. The problem is that they are associated with many 

identities, and it is unclear which ones should be authenticated and how access control 

mechanisms should take this information into account. 

• Mobile agents can be indoctrinated: they are vulnerable to attacks from malicious 

execution environments when they travel across different hosts to perform their tasks. For 

example, a malicious host can modify an agent's code or memory image to change how 

the agent behaves, and as a result, it is possible to create a malicious agent. 

• Mobile agents can't keep secrets: Mobile agents have been advocated as a means to 

implement critical applications. However, to perform sensitive transactions (for example, 

signing a contract), conducting operations that require secrecy, such as a private key is 

often necessary. Unfortunately, a secret cannot be effectively hidden if it is employed by 

an agent on a remote host and the agent cannot interact with the originating host. 

• Mobile agents are eerily similar to worms: The mechanism of mobile agents bears some 

striking resemblance to how malicious worms spread through networks. In addition, 

worms are difficult to remove.  A mobile agent infrastructure would support the execution 

of both benign and malicious agents, and, as a result, it would be prone to be leveraged 

to launch worm-like attacks. 



 

Distributed Systems and Mobile Agents                                                                                                                   26 

In summary, we can say that until now, there is no standard language shared by all the 

development platforms for mobile agent applications. This represents a serious handicap because 

agents need to express the characteristics of the services they are looking for and obtain precise 

answers on their location and how to use them. Moreover, with all the existing languages, 

developers are, once again, faced with too broad a range of possibilities. To find a solution to this 

dilemma, it will be necessary to turn to the multi-agent systems field, which seeks to set up precise 

languages based on a set of ontologies and protocols characterizing inter-agent interactions. 

1.10 CONCLUSION 

We have presented in this chapter a general introduction to the paradigm of mobile agents. 

In the beginning, we introduced the concept of agents, in general, to make a brief presentation of 

the paradigm of mobile agents. 

 We then moved on to some examples of implementation platforms for mobile agent 

applications and, finally, a look at the criticisms of the paradigm. 

To conclude, Mobile Agent Applications are proven to look good because of the following 

motivations: The first motivation is usually the minimization of remote communications (it is 

generally cheaper to migrate the processing code than the data to be processed, which can be 

much bulkier). 

Another motivation is the case of nomadic computing (the mobile agent can continue its 

processing on servers while disconnecting from the client machine). 

Nevertheless, the development of mobile agent applications comes up against problems 

inherent in security and interoperability in the various heterogeneous host platforms. Moreover, 

the insufficiencies of the efforts for the standardization of these platforms pushed the researchers 

to explore other horizons for better support and implementation of the applications based on 

mobile agents. 

The research on mobile agents is relatively recent; the research in this field is numerous 

and has recently appeared to identify important concepts. 

The following chapter will introduce the approaches and methods for modeling mobile 

agent applications, particularly the notion of mobile UML. 

 

 



 

27 
 

 

 

 

Chapter 2 

UML & Mobile UML 

 

 

 

 

 

 

 

 

 

 



 

UML & Mobile UML                                                                                                                                                                 28 

Chapter 2:  UML & Mobile UML  

2.1 INTRODUCTION  

The advent of computer network technology has prompted researchers to develop new 

communication paradigms whose processes can move over the network. Software development 

based on these paradigms requires appropriate extensions of traditional methods and concepts. 

UML [20] (Unified Modeling Language) provides extension mechanisms. These make 

it possible to adapt UML specifications to the requirements of a specific domain. Thus, the 

mobile UML extension has been proposed to satisfy mobility modeling needs. 

In this chapter, we will recall the concept of modeling and its different forms; then, we 

will see in detail the UML language, its statechart diagram and its extended version, which 

covers mobility, making it possible to model the mobile code paradigm. 

2.2 MODELING  

2.2.1 What is a model?  

Modeling is the process of producing a model [21]. According to Marvin L. Minsky [22], 

for an observer B, an object A* is a model of object A insofar as B can use A* to answer the 

questions that interest him concerning A. 

A model is an abstraction of a system built for a specific purpose. The model is then said 

to represent the system. [23] A model is an abstraction that contains a restricted set of 

information about a system. It is built for a specific purpose, and the information it has is chosen 

to be relevant to the use that will be made of the model. 

2.2.2 Why model?  

Modeling a system before it is built provides a better understanding of how it works. It is 

also an excellent way to control complexity and ensure consistency [24]. A model is a common, 

precise language that all the members know of the team, and it is, therefore, a privileged vector 

for communication. This communication is essential to arrive at a standard and precise 

understanding of a given problem for the various stakeholders (particularly between project 

management and IT project management). 



 

UML & Mobile UML                                                                                                                                                                 29 

In software engineering, the model makes it possible to distribute tasks better and 

automate some of them. It is also a factor in reducing costs and lead times. For example, 

modeling platforms now know how to use models to generate code (at least at the skeleton 

level) or even go back and forth between the code and the model without losing information. 

Finally, the model is essential to ensure a good level of quality and efficient maintenance. 

Indeed, once put into production, the application will have to be maintained, probably by 

another team and, what's more, not necessarily from the same company as the one that created 

the application. 

The choice of model, therefore, has a significant influence on the solutions obtained. 

Non-trivial systems are best modeled by a set of independent models. Depending on the models 

used, the modeling approach is not the same 

2.2.3 Different Forms of Modeling  

Modeling can be classified as formal, semi-formal or informal. Table 2.1[25] presents a 

definition of the categories of languages as well as examples of languages or methods that use 

them  

Table 2.1:Classification and Use of Languages or Methods [25] 

Language categories 

Informal language Semi-formal language Formal language 

Simple Standardized 

The language 

that does not 

have a complete 

set of rules to 

restrict a 

construct 

Language with a 

structure, a format 

and rules for the 

composition of a 

construction 

The language that has a 

defined syntax to specify the 

conditions on which 

constructs are allowed 

A language that has rigorously 

defined syntax and semantics. 

There is a theoretical model that 

can be used to validate a 

construction 

Examples of languages or methods 

Natural language Structured text in 

natural languages 

Entity Relationship 

Diagram,Object diagram 

Petri net , finite state 

machine,Maude ,VDM,Z 

 



 

UML & Mobile UML                                                                                                                                                                 30 

2.2.3.1 Informal Modeling 

The process of informal modeling according to an informal language can have its use 

justified for several reasons [25]: 

• By its ease of understanding, it allows consensus between people who specify and those 

who order software; 

• It represents a familiar way of communication between people. On the other hand, the 

use of informal language makes the modeling imprecise and sometimes ambiguous. 

Moreover, as human reasoning is the main factor for the analysis and verification of the 

specification, it can lead to errors of understanding, interpretation and verification. It is 

possible to use Standardized Informal Modeling to limit these problems; that is, 

modeling which uses a natural language, while introducing rules of use of this language 

in the construction of the modeling. Such modeling retains the advantages of informal 

modeling by making it less imprecise and less ambiguous. 

2.2.3.2 Semi-Formal Modeling 

The semi-formal modeling process is based on a textual or graphical language for which 

a precise syntax is defined as well as semantics; this semantics is relatively weak but allows a 

certain amount of control and the automation of some tasks [25]. 

 Most semi-formal proposals rely heavily on a graphical language. This can be justified 

by the expressiveness that a well-developed graphic model can have; textual language is 

normally used as support for graphical models. Furthermore, semi-formal modeling using a 

graphical language can produce models that are easy to understand and can be very punctual; 

this largely justifies its use. However, the lack of complete semantics is a substantial handicap 

for this kind of modeling; the existing problem for the informal languages, of lack of precision 

compared to the comprehension of the modeling as well as the problem of ambiguity persists 

for the semi-formal languages. The use of constraints in graphical models has been introduced 

to try to solve this problem of lack of precision and ambiguity. An example of using textual 

constraints on a graphical model relates to the work of JJ Odell [26].  

This work applies structural constraints to modeling based on object-oriented models. 

Another proposal is that of S. Cook and J. Daniels [27]. In this work, on a graphical model 

based on the OMT method [28] and State Diagrams, the formal language Z [29]is used to 

represent constraints. 



 

UML & Mobile UML                                                                                                                                                                 31 

2.2.3.3 Formal Modeling 

A formal method is a rigorous development process based on formal notations with 

precise semantics and formal verifications. The main advantage of formal specifications is their 

ability to express precise meaning, thereby allowing checks on the consistency and 

completeness of a system. We can briefly summarize [25] the analyzes of formal methods 

carried out by A. Hall [30] and by JP Bowen and MC Hinchey [ 31], which more particularly 

concern the myths inherent in formal languages. 

A. Hall [30] points out that formal methods help to find errors and reduce their incidence 

through a complete specification that can be applied to any system, software or hardware; 

however, they do not replace existing methods and must be used in conjunction with them. If 

solid mathematical knowledge is necessary to carry out proofs, it is not imperative to specify. 

Using formal methods can lower costs and does not cause project delays. 

JP Bowen and MC Hinchey [31] show that with an appropriate translation, formal 

methods can help understand a system by a user, including in the case of large systems where 

they are also applicable. 

In addition to the already existing proof tools, the studies for the creation of other tools 

which cover the whole specification show the community's interest in these methods. The use 

of formal methods, more than desirable, is beginning to be imposed by companies in certain 

cases, even if they are not used in all types of modeling 

2.2.4 Object-oriented modeling 

The fundamental concept in object-oriented modeling and design is the object, which 

combines both data structure and behavior; this object is organized around real-world concepts. 

Object-oriented models are used to understand problems, communicate with application 

domain experts, model a company's business, repair documentation, and design programs and 

databases. [136] 

2.2.4.1 what is object-oriented 

Object-Oriented (OO) means that software is organized as a collection of independent 

objects that incorporate data structure and behavior [136]. data structure and behavior are 

loosely associated in this approach, like other programming approaches. 

In general, the characteristics required by an object-oriented approach are identity, 

classification, inheritance and polymorphism. 



 

UML & Mobile UML                                                                                                                                                                 32 

2.2.4.2 Why the object approach 

The stability of the modeling compared to real-world entities, the iterative construction 

facilitated by the weak coupling between components and the possibility of reusing elements 

from one development to another [138], as well as the simplicity of the model, which calls upon 

five founding concepts (objects, messages, classes, generalization and polymorphism) are 

advantages of the object approach. The object-oriented approach is widely adopted simply 

because it has demonstrated its effectiveness when building systems in a variety of business 

domains, and it encompasses all dimensions and all degrees of complexity. 

2.3 UNIFIED MODELING LANGUAGE (UML) 

The Unified Modeling Language (UML) is a visual modeling language used to specify, 

visualize, build and document the artifacts of a software system [32]. UML concerns any 

system built using the object-oriented (OO) approach. 

It is used to understand, design, navigate, configure, maintain and control information 

about modeled systems [33]. 

UML is a digest of three important notations (Booch, OMT 5, OOSE6). It has had an 

undeniable impact on the way we view systems development [34]. 

The first version of UML, published by the OMG 7 was (UML 1.0) in 1997; several 

versions appeared until the latest version, UML 2.5, was released in 2015. 

2.3.1 UML and Meta-Modeling 

UML is based on the four-level meta-modeling architecture. Each successive level is 

marked from M3 to M0 and is usually called meta-meta-model. Meta-model, class diagram and 

object diagram, respectively [20].  

A level diagram, Mi, is an instance of a level diagram Mi +1. The M3 level diagram is 

used to define the structure of a meta-model. The Meta Object Facility (MOF) belongs to this 

level. The UML meta-model belongs to level M2 [20]. UML is formally defined using a meta-

model expressed in UML [33]. Figure 2.1 illustrates this definition. 

 



 

UML & Mobile UML                                                                                                                                                                 33 

M3 level
Meta-metamodel

M2 level
Metamodel

M1 level
User-defined model 

M0 level
Object diagram

                  Instance-of       

                Instance-of       

                   Instance-of       

 

Figure 2.1: Four-level meta-modeling architecture 

2.3.2 UML diagrams  

The UML notation is described in the form of a set of diagrams. Modeling in UML 

specifies that it is defined in 13 diagrams grouped into two main classes, which are [20]: 

1. Static diagrams 

2. Behavioral diagrams  

2.3.2.1 Static diagrams 

Also called structural diagrams, they used to illustrate the static characteristics of a 

model.Static diagrams have the same structural characteristics [34] and are summarized in 

Table 2.2. 

 

 

 

 

 

 

 



 

UML & Mobile UML                                                                                                                                                                 34 

Table 2.2: Shorts description of structure UML diagrams. 

Diagram name Description 

Class diagram It represents the static description of the system by 

integrating into each class the part dedicated to data and 

processing. It is the pivot diagram of the whole modeling of 

a system 

Object diagram the representation of instances of classes is the objective of 

the object diagram 

Component Diagram it represents the different software components of a system 

Deployments Diagram it describes the technical architecture of a system 

Package diagram shows the packages and possibly the relationships between 

them 

Diagram of composite   

structures 

shows the internal structure of a classifier and/or the use of 

Collaboration in a collaboration occurrence 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UML & Mobile UML                                                                                                                                                                 35 

2.3.2.2 Dynamic diagrams 

Also called behavioral diagrams, they describe how resources modeled in structural 

diagrams interact. These dynamic diagrams include [34] with a simple description of each in 

Table 2.3 below: 

Table 2.3: Shorts description of dynamic UML diagrams 

Diagram name Description 

Use case diagram It is intended to represent the needs of users in relation to 

the system 

Activity Diagram It gives a version of the sequences of activities specific to 

an operation or a use case 

State-transition diagram It shows the different states of objects in reaction to events. 

Sequence diagram It allows to describe the scenarios of each use case by 

emphasizing the chronology of the operations in interaction 

with the objects 

Communication diagram Graph whose nodes are objects and the arcs (numbered 

according to the chronology) the exchanges between 

objects 

Overall interaction diagram Shows aspects of an interaction. 

Time diagram (timing) Is an interaction diagram that describes both the behavior 

of individual classifiers and classifier interactions, focusing 

on the times of occurrence of events that cause state 

changes. 

 

 In our project, we are much more interested in the statechart diagram; for this the next 

section will be devoted to the statechart diagram,We will try to understand it in depth and 

familiarize ourselves with all its elements to facilitate the work in the last section 



 

UML & Mobile UML                                                                                                                                                                 36 

 

Figure 2.2: Classification of UML types [35] 

2.3.3 Statechart diagrams  

As we have already seen, the unified modeling language has become an essential standard 

in the software industry for several years. Nevertheless, several criticisms are addressed to this 

language; among the most important, UML is not a formal language. This is why several efforts 

have been founded to formalize this language. 

The statechart diagram was the diagram most targeted by formalization work due to its 

specificity and its wide use in modeling the internal behavior of objects. The approach proposed 

by ourselves is also based on this diagram in its extended version covering mobility, so we saw 

that it is necessary to explain this diagram. We mention its most essential points and introduce 

the syntax and semantics of this diagram. 

2.3.3.1 Definition 

The UML statechart diagram describes the internal behavior of an object using a finite 

state machine. It specifies the possible sequences of states and actions that an object can process 



 

UML & Mobile UML                                                                                                                                                                 37 

during its lifetime in reactions to events (signals, invocation of methods).  

The state-transition diagram is the only diagram in UML that offers a complete and 

unambiguous view of all the components of the element to which it is attached [24]. 

2.3.3.2 States  

The state of an object is a condition or situation during an object's lifetime in which it 

satisfies specific requirements, performs an activity, or awaits the occurrence of an event [37].  

An object remains in a state for a limited time; for example, a heater could be in one of the 

following four states: inactive (waiting for a command to start), starting (gas is flowing through 

the heater, but the last one is waiting for the reached a certain temperature), active (heating in 

action) and closed state (once the heating is closed). 

A state with several parts, namely: 

• Name: a textual string which distinguishes the state from other states; a state can 

be anonymous.  

• Entry/exit actions: these are the actions to be executed when entering and leaving 

the state. 

• Internal transitions: the transitions to be made without causing a change of state 

of the object. 

• Substates: the nested structure of the state. The state can be simple or composite. 

• Events postponed (deferred): a list of events which are not processed in this state 

but which are saved in a queue so that they can be processed by the object in other 

states. 

Figure 2.3 represents some simple states in a statechart diagram. A state is graphically 

represented by a rectangle with rounded corners. 



 

UML & Mobile UML                                                                                                                                                                 38 

 

Figure 2.3: Two simple states in a state-transition [37] 

As the Figure 2.3 shows, two special states are defined in a state-transition diagram; first, 

an initial state that indicates the default starting place of the diagram or a composite state. 

Second, a final state that indicates that the flowchart execution or composite state is complete. 

2.3.3.3 Events  

An event is something that occurs during the execution of a system and is worth modeling 

[24]. State-transition diagrams make it possible to specify the reactions of a part of the system 

to discrete events. An event occurs at a specific time. When an event is received, a transition 

can be triggered, and a state change takes place to switch the object from one state to a new 

state. 

There are several types of events, namely [24]: 

• signal event: A signal is a type of event intended explicitly to convey a one-way 

asynchronous communication between two objects. The sender object does not wait for 

the receiver to process the signal to continue its flow. The same object can be both 

sender and receiver. 

• Call event: A call event represents the receipt of a method invocation by an object. The 

operation parameters are those of the call event. Call events are usually declared at the 

class diagram level. 

• Change event: A change event is generated by satisfying a Boolean expression on 

attribute values. This is a declarative way of waiting for a condition to be satisfied. A 

change event is continuously evaluated until it becomes valid when the transition fires. 



 

UML & Mobile UML                                                                                                                                                                 39 

• Temporal event: Temporal events are generated by the passage of time. They are 

specified either absolutely (precise date) or relatively. By default, time begins to elapse 

upon entering the current state. Therefore, the syntax for a relative specified time event 

is: After (<duration>). An absolutely specified time event is defined using a change 

event: when (date= <date>). 

2.3.3.4 Transitions  

A transition is a relationship between two states. The transition indicates that the object 

which is in the first state will perform certain actions and enters the second state once a specific 

event occurs and a specific condition is verified [37]. A transition consists of five parts, namely; 

• Source state: This is the object's state before crossing the transition. 

• Event trigger: this is the event recognized by the source state and with which the 

transition can be crossed once the guard of the transition is verified. An event can be a 

signal, a method call, a passage of time or a change of state [37]. 

• Guard condition: a transition can have a guard condition (specified by '['<guard> ']' in 

the syntax). This is a logical expression of the attributes of the object [24]. The transition 

only fires once the guard condition evaluates to true. 

• Effect: once a transition is triggered (we also speak of firing (crossing) of a transition), 

its effect (specified by '/' <activity> in the syntax) runs. These are usually; primitive 

operations such as assignments, sending a signal to the object itself or to another object, 

calling methods, or a list of activities, etc. [24]. 

• Target state: is the object's active state (the new state) after crossing the transition.  

Figure 2.4 shows a simple state-transition diagram; the figure focuses on the 

presentation of the transitions and its parts (guard, effects, events, etc.). The transition 

in the diagram is an arrow pointing from the source state to the target state. 



 

UML & Mobile UML                                                                                                                                                                 40 

 

Figure 2.4: Transition in Statechart diagram [37] 

A transition can have several sources (in this case, it represents a junction between several 

concurrent states). It can also have several target states. 

2.4 EXTENSION OF UML  

 UML can be extended or adapted to a specific method, organization, or specific user. 

There are three extension mechanisms in UML which are [38]: 

1. Stereotypes 

2. Tagged values  

3. Constraints  

UML extension mechanisms have been very successful, leading to a proliferation of new 

model elements and extensions. Profiles provide a mechanism to manage these extensions; in 

the next chapter, we will try to make a comparative study of UML extensions which covers the 

aspect of mobility to reach the optimal choice of available extensions and complete our work 

on it. 

2.4.1 Stereotypes  

The stereotypes extension mechanism defines a new type of model element based on an 

existing model element. Thus, a stereotype is like the existing element, with additional 

semantics and properties that are not present in the existing element. Graphically, a stereotype 



 

UML & Mobile UML                                                                                                                                                                 41 

is rendered by a name surrounded by quotation marks (‹‹›› or by <<>> if quotation marks are 

not available) and placed above the name of another element. A stereotype can also be indicated 

by a specific icon [38]. Figure 2.5 shows examples of stereotypes. 

 

Figure 2.5: Example of stereotype [33] 

2.4.2 Tagged Values 

The purpose of a tagged value is to assign (add) a property to a model element, in addition 

to those properties already defined in the meta-model [34]. Tagged values are expressed as 

“name=value”, eg author ="Amine", project_phase = 5, or last_update ="1-09-22" [34].  

2.4.3 Constraints 

Constraints define the invariants, making it possible to preserve the system's integrity. A 

constraint defines a condition that must be true for the duration of the context in which it is 

defined. It is represented by a text enclosed in braces “{}” [34]. Figure 2.6 shows examples of 

constraints. 

 

Figure 2.6: Example of constraints 



 

UML & Mobile UML                                                                                                                                                                 42 

2.5 MOBILE UML 

The shortcomings of UML in modeling mobile agents have motivated the authors to 

propose extensions to adapt UML to be able to model this type of system. These works are very 

rare and limited in general. Among these works, we cite the extension of Hubert Baumeister 

[39], Cornel Klein [40], Kassem Saleh [41] and Haralambos Mouratidis [42]. 

In the following, we will see the Mobile statechart diagram taken from [41], which we 

will use in our project. 

2.5.1 Mobile statechart diagram 

We have already seen in detail in this chapter the statechart diagram, so in this section 

which presents the mobile statechart diagram, we try to show just the new concepts brought 

with this new concept of mobility. 

Kassem Saleh [41] propose a mobile statechart diagram (MSD, Mobile Statechart 

Diagram) as an extension of UML state-transition diagrams. The latter was introduced to model 

the behavior of mobile agents by exposing their different states. They can be used elegantly to 

represent the behavior of stationary and mobile agents. We present below (cf. TAB. 2.4) the 

structural elements of MSD, and we focus on the new elements introduced to deal with mobility 

in these diagrams. 

A place is a logical node on which the agents of an application can be executed (one or 

more states), designated implicitly. The initial pseudo-state represents the agent's execution 

start point. At any given time, the agent may be in a distinct state at a particular place. A normal 

state represents the state of the agent in its basic place. A mobile state is represented with a box 

(M); it is a state accessible by the agent outside of its base place. A transition is a one-way link 

that goes from one state (the source state) to another state (the target state); it can carry a label 

according to the syntax Event [Condition] / Action, which means if an event occurs, action will 

be executed if the condition evaluates to true. A transition is simple if the two states at their 

two ends are located in the same place. A mobile transition is shown with a box (M); it is a 

transition between two states accessible by the agent and located in two different places; it has 

several forms as illustrated in (cf. Table 2.4) 

The current state reached by an agent, either in its base place or outside it, is represented 

by a dotted box (M). A remote transition carries a box (R); it occurs if a mobile agent reaches 

a state while interacting with another remote agent. A transition with an << agentreturn >> 



 

UML & Mobile UML                                                                                                                                                                 43 

stereotype represents the return of the mobile agent to its original place by reaching a state on 

it. If the agent completes its execution, it will reach the pseudo-final state. 

Table 2.4: The structural elements of MSD 

 

States 

 

  

 

Normal State 

 

 

 

Mobile State 

 

 

 

 Reached State 

 

 

 

 

Transitions  

M
M

 

Mobile Transition 

M
M

 

Mobile Transition 

M
M

M

 

Mobile Transition  

M M

 

Simple Transition 

M M
                   

                   
« agentreturn »

 

 « agentreturn » Transition 

M
R

M

 

Remote Transition  

 

2.6 CONCLUSION 

In this chapter, we have tried to present UML and Mobile UML, starting by presenting 

the modeling in a general framework. Then, we introduce the UML modeling language and 

focus on his statechart diagram, and finally, a brief presentation of the extensions of UML for 

mobility. 

As a result, UML has many facets. It is a standard, an object modeling language, 

communication support, and a methodological framework. UML is all of these. However, 

verifying such models is quite a tricky task despite the convenience of modeling and 

understanding UML models due to the semi-formal semantics. Moreover, mobile agents are 

primarily characterized by their power to move between nodes in a network to complete tasks 

assigned to them. 

The specificities of mobile agents have made using traditional modeling methods and 

means, such as UML, unsatisfactory. For this reason, we have presented a mobile UML 

diagram extension that allows us to model them. 

S1 S2 S3 

M M 



 

UML & Mobile UML                                                                                                                                                                 44 

In the next chapter, we will see a comparative study of different approaches proposed to 

specify software systems based on mobile agents by focusing on those based on UML more 

precisely on the coverage factor of the diagrams.



 

                                           45 

 

 

 

 

Chapter 3 

Comparing Modeling 

Approaches for Mobile      

Agent-Based Systems 

 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 46 

Chapter 3: Comparing Modeling Approaches for Mobile 

Agent-Based Systems  

3.1 INTRODUCTION  

In the first chapter, we saw the importance and evolution of the mobile agent concept and 

its system. In the second chapter, we learned that obtaining a solid and coherent system begins 

with modeling and correct and efficient design. This is why the modeling and design of software 

systems based on mobile agents has been a topic of research in computer science and artificial 

intelligence for several decades.. 

Building a modeling language from scratch is a complicated task; researchers have 

attempted to shorten the path by importing the essentials of success from the object-oriented 

paradigm and introducing the features appropriate to support the mobile agent paradigm. 

In this chapter, we have tried to make an effective extension of the work proposed by 

[44], which has made a comprehensive presentation, offers a classification and a distinguished 

critics of the available works of modeling software systems based on mobile agents, which have 

been developed to deal with the analysis and design phases of these systems. 

We found that the diagram coverage factor is absent from the previous study [44], which 

focused on UML-based methods. That is why in this section we have tried to add a coverage 

factor of the diagrams to get a broader comparison between these languages. An in-depth 

discussion will then be conducted better to understand the pros and cons of different 

approaches. 

3.2 RELATED WORKS AND BACKGROUND  

Conducting a comprehensive survey of current methodologies for modeling software 

systems using mobile agents is a critical task. This survey will allow us to understand the 

available approaches and evaluate them, providing a comprehensive perspective that can help 

us choose the optimal approach to benefit from this research study. Additionally, it can serve 

as a valuable reference for future researchers to benefit from.  

The first interesting work in the literature that examines techniques and tools for modeling 

mobile agent-based software systems is that of [45], which provides an overview of existing 

agent-oriented methodologies. We can see in this work that the researchers did not propose new 

methodologies, but rather extended existing methodologies to include aspects appropriate to 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 47 

agents. Furthermore, it discusses the approaches taken to assist in all phases of an agent-based 

application's life cycle. 

Belloni and Marcos [46] examined several UML extensions for modeling mobile agents 

to define a single extension that gathers and integrates the characteristics of the others UML 

extension. 

Bauer and Muller [47] evaluated existing techniques and methodologies for agent-based 

systems, however modeling mobile agents was not the primary emphasis of this work; instead; 

it was mentioned secondarily. 

In their article [48], Melomey et al. evaluate the strategies and approaches that have 

already been implemented to establish the mobile agent paradigm. To overcome the 

shortcomings of the suggested approaches in terms of agent mobility modeling, they offered 

several essential notions to model mobility; nonetheless, the authors combined wrongly 

modeling languages and methodology. 

Melomey et al. [49] extend their last work in [48], to provide a comparative study of some 

agent-based systems modeling approaches. Cervenka and Trencansky [50] provided an 

overview of agent-oriented modeling techniques; however, they focused on multi-agent 

systems. Hachicha et al. [51] discussed several approaches to modeling mobile agent-based 

applications using UML. 

But the most comprehensive work that exists to date is the work of [44], who tried to 

follow a logical path, started by first defining the evaluation criteria, then selecting the most 

critical available versions and by projecting onto them the criteria used to achieve a 

comprehensive and high-quality assessment. 

Other approaches found in the literature could have been mentioned, but we noted a 

methodological problem in these contributions: the mixture of the concept of modeling 

languages and methodologies. Thus, in our study, as in [48], we made an effort to narrow our 

focus to modeling languages because, given that mobile agents are introduced in various 

domains, and the approaches cannot be general but instead adapted to particular circumstances, 

we believe that they are the key to a paradigm's success. As a result, it is outside the purview 

of this study to examine the methodology. Additionally, only mobile computation applications 

based on mobile agents with static locations are considered. Mobile computing applications that 

use dynamic locations fall outside the purview of our work. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 48 

 

Figure 3.1: classification of UML approaches mobile agent extension 

3.2.1 Modeling challenges and gaps 

Mobility is an important issue that needs to be considered when modeling and examining 

mobility since it causes a complex dynamic reconfiguration of the system under consideration 

while it is being used. 

Consequently, providing an approach with the capability to design it is not simple. Indeed, 

the approach must respond to questions raised by the use of agents [42], such as why a mobile 

agent moves from one host to another, when it moves, where it moves, and how it reaches the 

target host. 

We know that UML [20] allows us to model every step of creating an object-oriented 

system; as a result, we can consider it crucial and decisive to the success of object-oriented 

systems, from the feasibility study to the deployment stage. Therefore, researchers have 

attempted to define and develop a modeling language that can play the same role in the mobile 

agent paradigm as UML has already played in the object-oriented paradigm by exploiting 

appropriate methods from the preceding paradigm for modeling mobile agents. 

The development life cycle of mobile agent-based software systems consists of roughly 

the same stages as the simple software system development life cycle in three basic phases: 

analysis, design, and implementation. Note that the implementation phase is characterized by 

the abundance and presence of many different platforms that support and implement the mobile 

agent model, which explains the desire of developers to provide direct and rapid solutions to 

exploit by researchers and manufacturers.  

As for the design and analysis phases, the approaches proposed for software systems 

based on mobile agents are individual tests and proposals, which are not widespread. Hence, 

not exhaustive, have a limited scope and are incomplete in themselves.  



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 49 

Figure 3.2 illustrates the current state of the development life cycle of mobile agent-based 

software systems 

.

Under development

AML,AUML,M-UML,
MA-UML,MAM-UML

Aglets,Ajanta,
Grasshopper,
Voyager,JADE

Analysis 

Design 

Implementation

                Limited 

                   Enriched 

 

Figure 3.2: Development life cycle of mobile agent-based software systems [44] 

3.2.2 Security modeling problem of mobile agent systems 

Receiving a mobile agent by a host process is an action that carries maximum risk if 

security is not taken into account, as shown in Figure 3.3 Therefore, many research works 

related to mobile agent security were realized. This research has proposed several mechanisms 

that follow different ways of approaching security problems and are divided into two axes [53]. 

The first concerns the protection of the host against malicious mobile agents, while the second 

focuses on the protection of the mobile agent against the maliciousness of the host on which it 

is running. 

Mobile agent systems have several features to make them secure for network 

programming. In addition, designers may specify additional measures to improve application 

security. Various modeling techniques provide a security perspective that describes the many 

defences employed to keep applications based on mobile agents from being vulnerable.  

These processes consist of, for instance: Authorization and access control to resources, 

agents and mobile agent platform authentication. However, given that mobile agents are used 

across a wide range of disciplines with vastly varied settings, it is genuinely unclear how one 

can create standard notions for security modeling (each domain has its peculiarities). 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 50 

 

Platform 1
                                    Ressources 

Platform 2
                      Ressources Platform 3

                                    Ressources 

Platform 4
                                   Ressources 

                         <Cateroty 2>

                     <Cateroty 3>    

    <Cateroty 1>

 

Figure 3.3: Categories of Security Issues in Mobile Agent Systems [36] 

 

According to [54], there are three sorts of vulnerabilities that may be taken into account 

when considering an agent's mobility, and they are as follows: 

• Agent against Platform: As a result of having unrestricted access to the runtime 

environment, a mobile agent could compromise its confidentiality, integrity, and 

availability by intercepting or altering data, fully utilizing its resources, or endlessly 

replicating or migrating. 

• Platform against Agent: when an agent migrates to a new location, such as a new 

platform, it must reveal its code, status, and data in plain sight, making it vulnerable to 

threats to its confidentiality and integrity from the hosting platform, which uses its data 

to control its behaviors and outcomes. 

• Agent against Agent: An agent travelling throughout the network may experience a 

number of attacks from other agents they come across. In this sense, there are two 

distinct types of attacks: passive attacks, which merely observe and analyze an agent's 

behaviors and results without changing the agent's code or data, and active attacks, 

which have the potential to change an agent's code or data by altering variable values or 

introducing a virus. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 51 

3.3 CLASSIFICATION OF SOFTWARE SYSTEM MODELING APPROACHES 

BASED ON MOBILE AGENTS 

Several modeling approaches have been discussed in this section, and only a few others 

are cited. The aim is to cover several points of view on dealing with these systems. Thus, we 

have classified the existing proposals for modeling software systems based on mobile agents 

into three main categories (see Figure 3.2): 

 We found that two major works try to make a classification of software system modeling 

approaches based on mobile agents;  

 The first work is by [55], who defined three categories of approaches to model software 

applications agents; the pattern approach, the formal approach, and the semi-formal approach. 

We note that this work is concentrated only on semi-formal approaches and particularly on 

formalisms which proposed extensions to UML notations or\and AUML, which eventually 

reached the work classification of all of MAM-UML [46], Klein et al. [57], Gervais and 

Muscutariu [58], and Mouratidis et al. [42] to end up proposing his MA-UML approach [55] 

classified with this type. 

The second considerable work of [44] is an extension of the previous work in which he 

tried to reformulate the concept, and the name of the classes, then extend and detailed the 

classification of existing approaches in the other class; we can cite the essential extensions that 

he made as follows: 

• Modified the concept of the semi-formal approach, which was divided before into an 

agent-oriented methodology extension class, and the second class is the class of UML 

language extensions; it was reduced towards approaches based on UML because this 

class has the advantage of being more comprehensive. After all, it is aimed at a large 

community. 

• he replaced the class of pattern approaches with hybrid approaches in which he 

proposed to combine the hybrid integration of his two previously proposed classes 

(approaches based on UML, formal approaches), and we can summarize the differences 

between his two works in the Table 3.1 below: 

 

 

 

 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 52 

 Table 3.1:progress review of classification 

 

And we can explain the extended classification of [44] as follows: 

UML-based approaches: these methods tackled the issue of modeling mobile agent-

based systems using UML [20], the standard language of the object-oriented paradigm. 

Formal approaches: these approaches use formal methods for modeling applications 

based on mobile agents. 

Hybrid approaches: These approaches are the outcome of a hybrid combination of the 

traits of the two previous categories as well as other inspired strategies from different 

perspectives.  

 

Figure 3.4: Classification of existing modeling approaches according to [44] 

3.3.1 UML-based approaches 

By expanding the object-oriented model and extrapolating its de facto standard to meet 

mobile agents' characteristics, academics have attempted to model mobile agents in this 

category. In fact, UML [20] offers ways for it to grow. As a result, researchers chose UML and 

created the necessary objects to support the new paradigm based on its expressiveness and 

extensibility. Due to the fact that these proposals take into account various system viewpoints, 

we have classified them as complete languages. 

AUML (UML Agent): According to Bauer et al. [60], Agent UML (AUML) is the most 

well-known UML extension for agents. The ability to describe both an agent's internal and 

Loukil classification [55] Belghiat classification [44] 

Semi-formal approaches [ OOext/UML] UML-based approaches 

The formal approach The formal approach 

The pattern approach Hybrid approaches 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 53 

external behavior is provided by AUML. The agent class diagram and interaction protocol 

diagram, which respectively expand the UML class diagram and sequence diagram, are the two 

main components of AUML. It was initially designed to exclusively deal with multi-agent 

systems, but later on, its deployment and activity diagrams were expanded [42] [61] to allow 

the modeling of the agent's mobility. The AUML deployment diagram extension's new 

annotations make it easier to describe agent migration between various nodes and the locations 

that are affected by the movement. The AUML activity diagram can also be used to express the 

mobility moment question, or the time when a mobile agent must move. The language has been 

developed with a variety of concepts and notations [62], but the key elements of applications 

based on mobile agents are not taken into consideration. Mobility, for example, is described 

statically; in addition, security is entirely omitted. 

AML (Agent Modeling Language): AML is a UML extension that combines various 

multi-agent system principles and functionalities, according to Cervenka et al. [50] [63]. The 

complete agent-oriented modeling language at the moment is AML. It includes modeling 

entities' static, dynamic, and behavioral aspects inside a multi-agent system. AML also tries to 

model support for mobility by identifying and recognizing agent environment, host, and 

behavior features (migration and clone). However, when a multi-agent system is used, the 

language only considers mobility at the implementation level. Because of this, in our opinion, 

modeling actual mobile agent apps is not appropriate. 

MAM-UML (Mobile-Agent Modeling with UML): To try to define a single UML 

extension that collects and combines the properties of a significant portion of mobile-based 

techniques, Belloni and Marcos [46] [56] suggest MAM-UML. UML extension. A UML profile 

called MAM-UML represents the authors' stated set of views, including organizational, life 

cycle, interaction, and mobility views. The itinerary of a mobile agent, the various types of 

movement, and the work plan are just a few of the intriguing features of a mobile agent-based 

application that are described in detail in this extension. 

M-UML (Mobile UML): To deal with the modeling of software-based systems, Saleh 

and El-Morr [41] suggest a comprehensive modification of the UML 1.4 standard M-UML, in 

which all the diagrams have been expanded. Of mobile agents. The authors demonstrate and 

describe the modifications made in each UML diagram to depict mobility characteristics 

through an exemplary case. The authors leave out the security measures and their modeling. 

The authors only emphasize modeling of mobility. The strategy is well explained, but it needs 

to be tried to see how good it is.  



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 54 

MA-UML (Mobile Agent UML) : Seven diagrams were proposed by Hachicha and 

colleagues [51] based on the AUML sequence diagram, the UML state/transition diagram, and 

the activity diagram extension. The writers went into detail about a few issues the other 

extensions did not address. Additionally, to facilitate the use of the MA-UML profile and the 

automatic production of Java code from its diagrams, they created the CASE tool known as 

MAMT (Mobile Agent Modeling Tool) [65]. The modeling and execution of mobile agent 

applications are substantially facilitated by this. We were surprised to know that MA-UML is 

the most recent language to be established in the literature (which deals with different views of 

applications based on mobile agents). This demonstrates that despite this field's value, the 

scientific community has partially given up on it. 

In their study, Klein et al. [57] offer certain UML extensions for mobile agents. New ideas 

have been proposed to model strong mobility, weak mobility, and cloning action. Additionally, 

they have added new stereotypes to model the elements of surroundings for mobile agents 

(mobile-agent, mobile-agent systems, places, and regions). They have also proposed extensions 

to the sequence diagram in order to model agents' movement from one location to another. The 

limitation of this approach is that it is restricted to a particular mobile agent platform 

(Grasshopper platform [66]) and a specific class of mobile agent applications. In addition, they 

do not provide a mobility description for all views and aspects of systems.  

An Architecture Description Language (ADL) specific to the architecture of mobile agent 

systems has been defined by Gervais and Muscutariu [58]. This ADL has proposed some 

conceptual and operational interfaces required for interoperability among diverse mobile-agent 

systems. It has also suggested modifications to component and deployment diagrams and 

offered fresh archetypes to represent mobile agents and mobile agent systems. The stereotyped 

flow relationship "becomes," an operation "move," and operations "beforeMove" and 

"afterMove," which get the agent ready for the migration, all assist modeling agent mobility. 

To address various issues raised by the use of mobile agents, Mouratidis et al. [42] added 

additions to the UML deployment and activity diagrams. The AUML formalism now includes 

these extensions. First, developers can record the cause (what motivates) and position (where) 

of an agent's movement using the AUML deployment diagram. Developers can record the time 

when a mobile agent leaves one node to migrate to another using the AUML activity diagram. 

There are also some intriguing proposals outside of these languages. These are, however, 

only partial solutions because they don't cover all angles of a mobile agent-based software 

system. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 55 

The activity diagram of UML 2.0 is suggested by Miao Kang et al. [67] as a suitable 

model for mobile agent applications. Furthermore, it is demonstrated that using this model with 

stereotypes provides satisfactory answers to the questions on the particularities of mobile agent 

applications. Subsequently, others have extended his work [68] by proposing a UML sequence 

diagram extension, which aims to model the migration path of a mobile agent and the three 

fundamental components of mobility (the process of creating a mobile agent, current location 

of a mobile agent and finally the path that follows the mobile agent). 

Bahri et al. [69] suggest an expansion of various UML 2.0 diagrams in their work in order 

to explain mobile agent-based software systems and cope with novel notions offered by these 

systems, such as migration, cloning, and locations. 

Even though these approaches have tried to help model software systems with mobile 

agents, almost all of them have been taken from the field of multi-agent systems, where it is 

more important to show how agents relate to each other. Moreover, from the perspective of 

distributed systems, the description of mobility (and its consequences like security) is not 

sufficiently described to offer effective and reliable UML-based modeling approaches for 

agent-based mobile apps, as is the case with object-oriented applications modeled with UML.  

3.3.2 Formal approaches 

Formal methods are a specific category of mathematics-based approaches used in many 

fields, including software engineering, to specify , develop, and verify software systems  [70]. 

Due to the strength of correct mathematical analysis, it is extremely appealing to utilize formal 

approaches to specify and verify the functioning of mobile agent-based software systems in the 

early phases of the development life cycle. This should improve the design's reliability and 

resilience. 

The two effective formalisms, process algebras and Petri nets, have spawned many 

formalisms that have been utilized for mobile agents. Some of them are recalled in this section. 

With regard to the application of process algebras, 

The first work we can cite in this context is Milner's [22] proposal of the π-calculus 

language for modeling mobile agents. This language provides the opportunity for the movement 

of links within a virtual space of linked processes to describe mobility, and the majority of the 

proposed methods are based on this formalism. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 56 

Using the  π-calculus  formalism also, Jezic and Lovrek [72] presented a method for 

formally specifying and verifying the movement and communication of mobile agents in a 

network 

The distributed Join-calculus, which is as expressive as the asynchronous π-calculus, is 

used by Fournet et al. [73] to encode their computation for mobile agents. This computation 

has a precise definition of migration, failure, and failure detection. The asynchronous π-calculus 

supports explicit localities and primitives for mobility, which makes it possible to express the 

movement of mobile agents between nodes clearly. 

The π-ADL is a formal, theoretically sound language based on higher-order typed π-

calculus and can be used to define static, dynamic, and mobile architectures. It was proposed 

by Oquendo et al. [74] and designed in the European ArchWare1 project to address the 

specification of dynamic and mobile architectures. As for the description of mobile agents, 

formalities have been proposed in other works. 

A π-calculus extension was presented by Schmitt and Stefani [75] to express the mobility 

of agents in complex scenarios. 

A communication architecture between mobile agents is formalized using a π-calculus 

extension in the work of Sewell et al. [76]. 

According to the development of their localities, the features of agents in systems based 

on mobile agents are dynamically expressed by Bettini et al [70]. 

The "Mobile Ambients," a computation to characterize the motion of both processes and 

gadgets, was proposed by Cardelli and Gordon [77]. 

More formal methods for capturing mobility are introduced in [78] and [79]. 

In the context of Petri nets, several proposals have also been developed. They benefit t 

from this formalism which is a powerful formal model in terms of tools, mathematical 

description, and graphical depiction. 

Xu and Deng [80] attempted to model mobile agents using high-level Petri nets. 

Predicate/transition (PrT) networks are used by Xu et al. [81] to suggest a technique for 

the formal modeling of logical agent mobility. They describe a mobile agent system as a 

collection of agent spaces, and the agents can move between these spaces. 

 Xu and Schatz [82] tried to design mobile agents using high-level Petri nets G-net. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 57 

3.3.3 Hybrid approaches 

In recent years, the combination of formal approaches and visual modeling tools for 

mobile agent-based software systems has attracted a lot of attention. 

The objective is to try to provide powerful modeling languages allowing the specification 

and verification of these systems while taking into account the shortcomings of formal models 

in terms of graphic notation and the weaknesses of visual models in terms of formal semantics 

because of their semi-formal nature. This has encouraged many researchers to try to mix the 

two in order to benefit from the advantages of each.  

In his thesis, Bahri [84] suggests a hybrid approach that is based on a UML extension and 

the nested Petri nets formalism to represent software systems based on mobile agents. The 

method takes advantage of UML's benefits while overcoming its semantics deficiencies by 

utilizing nested Petri nets to enable the formal analysis of these models. 

 Knapp et al. [85] proposed a semi-formal/formal modeling approach for moving objects 

using a UML state/transition diagram extension and the MTLA formalism [32], aiming to study 

the concepts of refinement. 

Latella et al. [86] proposed a UML state/transition diagram extension accompanied by 

formal semantics for specifying the behavior of moving objects. 

Belghiat et al. [87] proposed an interesting combined approach based on an extension of 

UML and the π-calculus for the modeling and verifying mobile agent-based applications. 

Kezai et al. [88] also proposed a combined approach, based on an extension of UML and 

the formal language Maude to extract a formal specification with integrity constraints to ensure 

verification of these rules-based mobile agents. 

Jian-Min [83] presented a method for modeling and evaluating a moving system utilizing 

an event-based formalism with a comprehensive four-step framework. Their primary goal was 

to establish a theoretical framework for modeling and analyzing intelligent transportation 

systems from the viewpoint of system behavior (to establish a theoretical framework for 

modeling and analyzing intelligent transportation systems from a system behavior perspective.) 

Other approaches exist, some of which propose utilizing design patterns to construct 

mobile agent-based software systems, such as the ones described in [89], [90], and [91]. The 

research on mobile agents has uncovered a great deal of information regarding design patterns, 

including agent patterns, interaction patterns, and many more. While some are described using 

UML, others do not use this notation. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 58 

3.4 THE COMPARISON FRAMEWORK 

3.4.1 Comparison criteria 

As we have seen above, many studies have tried to compare and rank the research work 

related to adding the concept of mobility to UML to cover mobility. Still, all these studies only 

looked at features and characteristics from the conceptual level. Here for the first time, we have 

compared the proposed approaches by comparing the degree of coverage of these extensions of 

UML for its initial diagrams. As a first and quick note, we found that most proposals only 

concern some diagrams, and only M-UML, which suggests complete modeling, covers most 

UML modeling diagrams (see Table 3.2), we summarize our opinion and compare all the 

methods. 

The second part of this comparative study relates to the point of view model for a greater 

understanding of the different points of view available and, thus, the ease and effectiveness of 

choosing the modeling language in proportion to the need to use it according to the system.  

We proposed to treat a factor which has not been treated in the previous works. We cannot 

say that this coverage factor is the most important of the factors discussed in the literature. Still, 

we can say that it is a complementary factor that helps us figure out how important and 

successful each proposed mobile modeling approach is for agent-based applications. 

3.4.2 Comparison results 

Table 3.2 shows the UML extension coverage for its initial diagrams 

Table 3.2 : Coverage of UML Extensions Diagrams 

 UCD STD SQD COD ACD CLD OBD CPD DPD PD DGI  

M-UML  X X X X X X X X X   

AUML   X X  X X    X X 

MAM-UML  X  X X X      

Mouratidis     X       

M.kusek   X         

MA-UML   X   X X      

Kang     X       

Klein   X         

Muscutariu         X X  

 

 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 59 

Notes: 

AML[50] does not appear in the previous table because it does not offer extensions of 

diagrams directly based on mobile agents but based on the direct proposal of a new architecture, 

dedicated multi-agents despite that can be considered as a quasi-optimal approach by its power 

and its completeness like M-UML, the problem is that it is not designed to support mobility 

[50] [63]. 

In MA-UML [51], it was said before that this approach offers seven diagrams. However, 

we will mention in the tables just three diagrams because the Navigation Diagram is an 

extension of the statechart diagram, as well as the mobile agent lifecycle diagram is an extension 

of the statechart diagram also by adding rental concepts and the other diagrams are either new 

concept diagrams or compound diagrams which do not really exist in the UML language. 

Table 3.3: percentage of Coverage of UML extensions for initial diagrams 

Mechanism 

diagram abbreviation 

Mechanism diagram name  Pourcentage  

ACD  Activity Diagram 21,42% 

CLD  Class Diagram 14,28% 

SQD  Sequence Diagram 14 ,28% 

STD  Statechart Diagram 14 ,28% 

COD  Collaboration Diagram 7 ,14 % 

DPD  Deployment Diagram 7 ,14 % 

PD  Package Diagram 7,14 % 

UCD  Use case Diagram 3,57% 

OBD  Object Diagram 3,57% 

CPD  Component Diagram 3,57% 

GID  Global interaction Diagram 3,57% 

 

 

 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 60 

Modeling languages extend UML in two ways, i.e., via the UML profile diagram as the 

AML language, which is not shown in the table or extending the UML diagrams of interest as 

represented by the languages offered in the previous table. Indeed, extend particular UML 

diagrams to adapt them to the needs of their domain.Figure 3.5. It gives a percentage of 

mobility-supporting languages based on UML that extend different types of UML diagrams. 

Thus, of the proposed languages that we believe are the most important and influential in the 

literature, the UML activity diagram is the most selected extension mechanism used by 21% of 

languages. In addition, 14% of languages extend UML's class diagram, and 14% of languages 

extend UML's sequence and state diagrams. 

3.4.2.1 Modeling point of view 

The concept of software viewpoints was proposed to promote modular and manageable 

software systems specifications. 

The software viewpoints each address the specific concerns of a software system to be 

modeled and support its separate specification without addressing other issues. Kruchten & al. 

[95] proposed four key software perspectives: logic, process, physics, and development. Later, 

the IEEE [96] community standardized the concept of software perspectives. Rozanski & al. 

[97] recently proposed an exhaustive set of software perspectives: logical, behavioral, 

concurrent, physical, deployment, development, and operational. Thus, in this most recent 

study, many viewpoint proposals by Rozanski & al. were considered, and UML-based 

languages for each viewpoint were analyzed. 

They proposed a logical viewpoint concerning the decomposition of software systems 

into logical components and their relationships; the behavioral viewpoint concerns the 

evolution of the state of system units according to certain events. (e.g., method call), The 

concurrency view is concerned with simultaneous interactions of system units; the physical and 

Figure 3.5: The UML diagram types supported by the UML-Extended languages mobile 

agent based 
21%

14%

14%14%

7%

7%

7%

4%

4% 4% 4%
UML Activity Diagram

UML Class Diagram

UML Sequence Diagram

UML State Diagram

UML collaboration Diagram

UML Deployment Diagram

UML package Diagram

UML Use Case Diagram

UML Object Diagram



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 61 

deployment views are concerned with the physical structure of systems and their mapping to 

logical structures, respectively; and finally, the operational point of view concerns questions of 

organization, administration, and support. 

Table 3.4 gives the extended modeling languages and their support for different software 

viewpoints. So apparently, M-UML is the extended language of mobile agent-based UML that 

supports the largest number of different viewpoints (i.e. five viewpoints), which further 

strengthens our choice in this study; then comes AML [50], and Muscutariu [58] also support 

three different viewpoints. And finally, the rest of the proposed languages with one or two 

maximum viewpoints. In Figure 3.6, the logical and behavioral viewpoints are the most 

popular, used by 29-43% of languages. On the other hand, the rest of the viewpoints are rarely 

used by languages. 

Table 3.4: Viewpoint Support for the UML- languages based mobile agent 

 
UML-based Languages Multiple-Viewpoints Support 

M-UML [41] Logical and behavior, deployment, physical, concurrency 

AUML [60] Logical and behavior 

AML [50] Logical and behavior, operational 

MAM-UML [46] Logical and behavior, 

Mouratidis [42] behavior 

Mario Kusek[68] behavior 

MA-UML [51] Logical and behavior, 

Kang [67] behavior 

Klein[57]  behavior 

Muscutariu [58] Logical, deployment, physical 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 62 

 

Figure 3.6: The viewpoint types supported by the UML-Extended languages based mobile 

based 

 

Table 3.5: Percentage of Viewpoint Support for the UML- languages based mobile agent 

 

 

 

 

 

 

 

 

 

3.4.3 Comparison discussion 

The table above ( Table 3.2 ) summarizes the coverage of UML extensions for the initial 

UML diagrams on both sides, structural and behavioral 

From (Table 3.2) and the results obtained in [44] we can enumerate the results of the 

comparison obtained as follows: 

• Regarding the coverage of diagrams in the extensible versions of UML for mobility,  

we note that the coverage of M-UML was the best and most complete of all existing 

UML extensions [41], where the coverage included the two classes with five diagrams 

for the behavioral aspect and four diagrams for the structural aspect, Then, AUML is in 

second place because it proposed a good number of diagrams, with a focus on both 

structure and behavior, with three diagrams for behavior and two for structure. On the 

29%

43%

5%

9%

9%
5%

Logical

Behavior

Concurrency

Physical

Deployment

Operational

Viewpoints Support Pourcentage 

Logical 28,57% 

Behavior 42,85% 

Concurrency 4,76% 

Physical 9,52% 

Deployment 9,52% 

Operational 4,76% 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 63 

other hand, MAM-UML is strong because it covers many diagrams, even though it came 

in third place on our list.  

• Although it is a simplified representation for state and activity diagrams on the 

behavioral side and class diagrams on the structural side, MA-UML is considered one 

of the powerful extensions in certain criteria in the following lines. We also note that 

most of the UML extensions presented have chosen the CLD class diagram to represent 

it in the structural part, this explains why class diagrams are also among the most used 

and most important types of UML diagrams [98] and are vital importance in software 

development. Furthermore, class diagrams are the best way to illustrate the structure of 

a system in detail, showing its attributes, operations as well as interrelationships, which 

also prompted us to choose the extension of this M-UML diagram class diagram as the 

second diagram in order to continue our research, to specify it and to verify it. 

From all the above, we can summarize the following points: 

• M-UML is arguably the most comprehensive language in terms of diagram coverage 

and the simplest and most suitable for mobile agent-based software systems that broadly 

support the modeling of the mobility paradigm, we believe that an extension of M-UML 

which takes into account the previous issues, could present a complete and sufficient 

modeling tool, this reinforces our good choice in this search for the language mentioned 

M-UML 

• The MA-UML language comes in the second position, which is also interesting for these 

systems, but the major obstacle that will hinder its use is the lack of a mechanism for 

modeling the architecture of the execution environment. Also, note that there is some 

redundancy in the representation of information. More precisely, MA-UML provides 

two diagrams “Navigation diagram” and “Itinerary Diagram” to describe the agent's 

travel plan with almost the same description that we find redundant.  

• We can say that the MAM-UML is very well organized from its different points of view. 

But its 'disadvantage' is that it has not been tested enough and does not provide 

illustrative examples because it was suggested as a preliminary research idea, which 

makes it very difficult for users to use. 

• AUML Although it was one of the first and most popular UML extensions for mobile 

agents because of its effectiveness in generating test cases that exercise agent 

interactions and scenarios, it has suffered a terrible decline and underutilization because 

Agents are represented as objects in AUML, which limits the ability to express and test 

proactive behavior [99] [100]. 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 64 

• AML was initially developed to model multi-agent systems, but it proved unsuitable for 

modeling software systems because it is not well suited for modeling software systems 

based on mobile agents. We can also add that AUML lacks modeling tools dedicated to 

it and lacks a clearly defined metamodel and precisely specified semantics to explain 

the different modeling elements, which can result in the poor interpretation of AUML 

models [50]. 

3.4.4 Approaches comparison summary 

From our analysis and evaluation of the mobile agent paradigm and its modeling 

approaches, we can draw the following conclusions: 

• We found that all the existing proposals for modeling mobile agent-based systems have 

been proposed individually by researchers, either by suggesting a direct extension to 

UML or by developing an earlier version and that there is still no version developed by 

well-known international organizations as has been done in UML provided by OMT as 

a powerful and comprehensive modeling language. 

• The more research deals with and develops tools for modeling systems based on mobile 

agents, the wider our angles of vision as researchers in this field and the greater our 

ability to deal with and manage the difficult unsolved problems of this paradigm. Such 

as security, which is a significant concern for these systems. 

• The mobile agent (MA) paradigm has garnered considerable interest. However, 

although MAS have generated considerable excitement in the research community, they 

have not led to a substantial number of practical applications. One of the primary 

reasons for this is the lack of quantitative research comparing the effectiveness of 

mobile agents to that of conventional approaches. This can support recommendations 

for initiating projects to evaluate the implementation of practical and industrial 

applications utilizing mobile agents in the real world. 

• There is not yet a standardized and effective way to verify the integrity of the proposed 

methods because their authors, while demonstrating the applicability of the approach, 

relied on simple illustrative examples that do not allow us to discover the weaknesses 

of the approaches unless we apply them to the most complex examples. It is, therefore, 

necessary to work more to try to extract strong points from each language and 

standardize them by first creating a standard language, then by extending them to more 

complex examples until their final application in the real world, and then verifying its 

completeness or making the necessary corrections.  



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 65 

• The combination and integration of visual modeling tools and formal methods provide 

powerful languages to specify and verify these systems, taking into account the absence 

of semantics in visual models on the one hand (such as OCL for UML) and graphical 

notations for formal models on the other side to avoid any form of interference and 

repetition. 

• To advance and organize this field, researchers must define a generic meta-model with 

its associated notations to build a single reference extension that integrates all the 

features of the proposed approaches. 

• Most designers do not have a sufficiently deep and complete view of mobility modeling 

to support the full life cycle of the mobile agent model and to avoid its issues, such as 

security, control and agent management and dynamic resource discovery, and most of 

the mobility modeling suggestions were primitive and simple solutions lacking in 

maturity and completeness. Therefore, a design that integrates security into the basic 

agent infrastructure would be preferable) 

• Distributed applications are based on many different paradigms. Mobile agents are the 

most recent paradigm, but based on what we know about their most important features, 

we can say that mobile agents are not the best paradigm for all of these types of 

applications. Instead, they are a new option with many benefits in some fields but less 

useful in others.  

In this study, we have attempted to address modeling approaches of the most important 

mobile agent-based software systems and their impact because it is impossible to list them all. 

Finally, it is necessary to challenge languages based on mobile agents to industrial and 

real applications to verify their completeness. This is a very difficult task, as finding suitable 

industrial applications in the real world is difficult. Nevertheless, the research community 

encourages companies to participate in its efforts to develop a robust and useful agent-based 

modeling language.  

3.5 CONCLUSION 

In this chapter, we have presented a comparative framework for mobile agent-based 

software system modeling approaches that enhances the understanding of previous work on 

this topic. First, we presented and identified the challenges and shortcomings that need to be 

overcome to model mobile agent-based applications. Afterwards, we proposed classifying the 

approaches into three broad categories according to certain factors: UML-based, formal, and 

hybrid approaches. As a result, we can say that the combination of visual approaches, called 



 

Comparing Modeling Approaches for Mobile Agent-Based Systems                                                                                 66 

informal (which attract the engineer's attention) and formal approaches (which are analyzable) 

represents a promising axis in the near future.  

More importantly, we can also conclude that M-UML is one of the most powerful 

languages for its simplicity and completeness and its coverage of almost all diagrams in both 

structural and functional aspects and among the most suitable also for mobile agent-based 

software systems which broadly supports the modeling of new features mainly the mobility 

property of the paradigm this puts us on the right track to complete the work of specification 

and verification of M-UML diagrams 

The analysis results of different mobile agent-based software system modeling languages 

are expected to be very useful for the community of software researchers and engineers who 

can now realize the importance of mobile agent-based languages for practitioners and their 

benefits. And the disadvantages from a practical point of view. Thus, further research may be 

conducted in the future with the aim of further improving mobile agent-based UML languages 

and tools based on them. Additionally, language developers can also use the results in their 

language design to better target gaps in the domain. Finally, although we cannot say with 

certainty that the comparative framework is definitely perfect, but the results of the analysis can 

be used by practitioners to choose the mobile agent-based language(s) that best meets their 

needs in terms of targeted requirements. 

To benefit from the advantages of UML in the modeling of systems without omitting the 

task of verifying the models resulting from such modeling, several works have focused on the 

principle of model transformation to obtain models whose verification is affordable. 

The next chapter will introduce the notion of model transformation and, more precisely, 

the transformation of graphs.

 

 

 

 

 

 

 

 

 

 

 



 

  67 

 

Chapter 4 

 
Model Transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Model Transformation                                                                                                                                                            68 

Chapter 4: Model Transformation 

4.1 INTRODUCTION  

In the broad sense, modeling effectively uses a simplified representation of an aspect of 

reality for a given purpose. Far from being reduced to the expression of a solution at a higher 

level of abstraction than the code [101], computer modeling can be seen as separating the 

different functional needs and extra-functional concerns (such as safety, reliability, efficiency, 

performance, flexibility, etc.). 

The Model Driven Engineering (MDE) approach offers the mechanization of the process 

experienced engineers follow by hand [101]. Interest in MDE was strongly felt at the end of the 

20th century when the standardization organization OMG (Object Modeling Group) made its 

MDA (Model Driven Architecture) public. This can be seen as a restriction of the MDE to 

manage the particular aspect of software dependence on an execution platform. 

In the context of MDE, the notion of model transformation plays a fundamental role. The 

design process is reduced to a set of partially ordered model transformations. Each 

transformation takes models as input and produces others as output, until executable artifacts 

are obtained. 

In this thesis, we are particularly interested in the concepts of model transformation. For 

the UML diagrams (source model), we try to verify them by a formal language Maude (target 

model). The transformation of the source model (M-UML) to the target model (Maude), will 

be carried out by a graph transformation using graph grammar which we will also propose. 

We start with a presentation of the basic concepts for model transformation (in the general 

framework). After that, we will expose some types of these transformations and their 

classification. Finally, we will focus by refinement on graph transformation as a specific type 

of model transformation, considering that the statechart diagram the subject of our study here 

is fundamentally a graph [33,149], and that we can treat it and apply to it the same processes 

applied to graphs. 

4.2 AN APPROACH FOR THE MDA ARCHITECTURE   

The spirit of the MDA architecture stems from a model-driven approach to 

application and system development. MDA aims to model applications and systems 



 

Model Transformation                                                                                                                                                            69 

independently of the target implementation (hardware or software level), allowing the 

developed models to be reused.  

The models thus created (PIM: Platform Independent Model) will be transformed 

to obtain application models specific to the target platform (PSM: Platform Specific 

Model). Automatic code generation tools then allow programs to be generated directly 

from the models. 

This approach makes it easy to develop applications and their architectures based 

on models. Therefore, the MDA invests in a large workshop whose challenge is 

technically the manipulation of models. In this specific context, model transformation 

based on metamodeling techniques and model engineering opens up a promising field of 

investigation for research. 

4.2.1 Principles of implementation 

The MDA is seen as a specific MDE-type process that is based on the following 

principles: 

• Mastery of complexity: the MDA is generally illustrated according to two main distinct 

concerns, one for developing business models independent of the PIM implementation 

platforms and the other for developing specific models of the PSM implementation 

platform [101]. This separation reduces the complexity of developing applications. 

• Abstraction and capitalization of models: models must be independent of the 

technologies of implementation to adapt the business logic to different contexts and 

allow the evolution of applications towards new technologies, thus allowing better reuse 

of these models. 

• Modeling: It is approached according to a productive vision (to generate the final code 

of the software developed for a given implementation technology) as opposed to the 

traditional contemplative idea (goal of documentation, specification and 

communication). 

• Metamodeling: this process makes it possible to define the entities necessary for 

modeling specific systems [101]. A metamodel makes it possible to determine the 

structure of the models by specifying their syntax and semantics. 

• Model transformation: metamodeling techniques make it possible to perform model 

transformations, considering these transformations as models. 

• The OMG standards: the contribution of abstraction due to the introduction of 

metamodeling makes it possible to detect certain inconsistencies at the level of the 



 

Model Transformation                                                                                                                                                            70 

dialects presented by the metamodels. In this context, the OMG adopts MOF (Meta 

Object Facility), which allows the definition of the essential elements, the syntax and 

the structure of the metamodels. 

In addition, the various MDA tools use XMI (XML Metadata Interchange) as the standard 

Metadata exchange format. This OMG standard makes it possible to describe, for example, an 

instance of the MOF in textual form using XML (Extensible Markup Language). 

On the other hand, UML (Unified Modeling Language), with its ability to model systems 

independently of any platform, has established itself as a tool for modeling PIMs and some 

PSMs in MDA. 

To name a few, other OMG standards find their roles in MDA, such as OCL (Object 

Constraint Language), which brings more precision to source models and language definitions, 

as well as CWM (Common Warehouse Metamodel), the modeling language dedicated to 

modeling data warehouse applications ( Figure 4.1). 

 

MDA

OMG approach
i.e.MDA 

Microsoft approach
(Software factoriez) IBM approuach 

QVT

MOF

UML

Ecore

OMG recommendation and standards

DSL XML

  
 Based on          Based onMainly based on

documentary 
contemplative use

 

Figure 4.1: Variants of MDE [102] 

4.2.2 Four-tier MDA architecture model 

The OMG has defined architecture with four levels of abstraction as a general framework 

for integrating metamodels based on the MOF, as shown in Figure 4.2. In this architecture, the 

models of two adjacent levels are linked by an instantiation relation: 



 

Model Transformation                                                                                                                                                            71 

  M1

                     Meta-metamodel MOF

                            Metamodel

                              model

UML metamodel and 
other metamodels

UML model and 
other models

other uses of 
thse modelsData « real world » 

  

       M0

             M2

       M3

       
Instance 

of

 

Figure 4.2: The four levels of abstraction for MDA 

 

• Level M0: Level of model instances. It defines information for modeling real-world 

objects. 

• The M1 level: This level represents all the instances of a metamodel. M1-level models 

must be expressed in a language defined at the M2-level. 

UML is an example of M1 level model 

• The M2 level: This level represents all the instances of a meta-metamodel. It is 

composed of information model specification languages. The UML metamodel, which 

is described in the UML standard and defines the internal structure of UML models, 

belongs to level M2 

• Level M3: This level defines a unique language for the specification of metamodels. 

The MOF reflexive element of the M3-level defines the structure of all the metamodels 

of the M2 level 

4.2.3 Models in the MDA architecture 

The continuous evolution of technologies and the high cost of adapting software 

applications to these technologies prompted the OMG to propose the MDA [20] towards the 

end of the year 2000. The main goal of this approach is to separate the business parts of their 

technical implementation and guarantee the interoperability of functional models for different 

implementation choices. 



 

Model Transformation                                                                                                                                                            72 

Conceptually, the MDA proposes three points of view associated with their respective 

models: The CIM, the PIM and the PSM. 

• The CIM model: the CIM (Computational Independent Model) corresponds to the 

needs model at the business level. It makes it possible to identify the different needs of 

the customers independently of any implementation 

• The PIM model: the PIM (Platform Independent Model) corresponds to the 

specification model of the business part of an application. This specification must 

conform to an IT analysis seeking to meet business needs regardless of the 

implementation technology. 

• The PSM: the PSM (Platform Specific Model) corresponds to the design and 

implementation model of an application about a specific platform 

4.2.4 Model transformation in the MDA approach 

4.2.4.1 Principle of transformation  

The transformation of models is essentially based on the relationships between the 

models. Changing a source model into a target model requires the perfect knowledge of the 

relationships between the two models. This transformation must implement operations allowing 

the creation of a target model from the information provided by the source model. 

In MDA, model transformation is driven by metamodels and includes two successive 

steps [101], which consist of: 

• The specification of transformation rules expresses the correspondence between the 

concepts of the metamodel describing the source model and the concepts of the target 

model. 

• Application of the defined transformation rules to the source model to generate the 

target model. 



 

Model Transformation                                                                                                                                                            73 

Meta-meta-
model

Mapping 
Source Meta-

model
Trget Model-
Meta-model 

Gerenator 
Source 
Model

Target Model

          Instance             Instance

      Used in    Used in

            Instance 
                     Input           Instance

                   Transformation  

Figure 4.3: Model transformation process driven by meta models 

4.2.4.2 Types of transformation  

The MDA paradigm is based on model transformation. According to the literature [101], 

two types of basic transformation are distinguished: 

• Horizontal transformation: in this type of transformation, the level of abstraction in 

modeling is preserved (PIM to PIM, or PSM to PSM). This transformation makes it 

possible to make updates at the level of the transformed models. The example of the 

passage from analysis to design illustrates the transformation PIM to PIM. 

• Vertical transformation: in this type of transformation, the level of abstraction of the 

two models, source and target is different (PIM to PSM, or PSM to PIM). 

The PIM to PSM refinement makes it possible, for example, to integrate elements specific 

to a technical platform, such as J2EE, Corba, .NET, etc. On the other hand, the PSM abstraction 

in the PIM is handy for reconstructing migrating systems. 

The development of systems in MDA most often requires a series of model 

transformations. This can lead to a mixture of horizontal and vertical transformations, possibly 

integrating another hybrid transformation, using the two types defined above. 

4.2.4.3 Classification of model transformation approaches 

The classification of model transformation approaches is based, according to NPrakash 

[103], on several points of view, each of which allows a particular classification. According to 

CZarnecki [104] The classification of model transformation approaches is based on the 



 

Model Transformation                                                                                                                                                            74 

transformation techniques used in its approaches and the facets that characterize them, such as: 

the technique of patterns and that of programming languages. On the other hand, NPrakash 

[103] proposes a classification according to a multidimensional point of view; it is particularly 

interested in the field of application of the models and their generosity (ability to transform any 

input model to any output model) 

In this section, we will present a classification of model transformation approaches, 

drawing inspiration from the work of CZarnneki [104] where we find a decomposition of model 

transformation into two categories: model-to-code type transformations and model-like 

transformations to model. 

a- Transformation from model type to code 

This transformation offers two transformational approaches. The first approach is based 

on the principle of the visitor (Visitor-based approach), and the second is based on the principle 

of patterns (Template-based approach). 

• Visitor-based approaches transform the model as input to code written in a 

programming language as output. The visitors added to the input model reduce the 

semantic difference between the model and the target language. The target code is 

obtained by traversing the visitor-enriched model to create an output text stream. 

• Pattern-based approaches rely on target code meta-code fragments to access 

source model information. These approaches are currently widely used in MDA 

tools, such as: AndroMDA (a code generator that uses open Velocity technology 

for writing patterns). 

b- Transformation from model-to-model type 

• Modeling of the transformation: Model-to-model transformation continues to 

develop in the significant MDA shipyard. The differences in semantics and syntax 

between the two models, source and target, such as PMIs and PSMs, impose a 

rigorous approach for such a transformation. Model transformation modeling then 

appears as a solution to this problem. Modeling a transformation falls under 

metamodeling, which is currently emerging as a promising technique in model 

transformation.  

• Transform structure : A model transformation is a model in itself. It is defined 

by a set of elements: transformation rules, their organization and scheduling, 

traceability and orientation. The combination of its elements makes it possible to 



 

Model Transformation                                                                                                                                                            75 

describe the transformation. However, these transformation rules must first be 

specified in order to be able to express the correspondences between the concepts 

of the source and target Metamodels. 

• Transformation rules: a transformation rule describes how one or more 

constructs in the source model language can be transformed into one or more 

constructs in the target model language [101]. In addition, any transformation rule 

has declarative or imperative form logic to express constraints or calculations on 

the source and target models of the transformation. Technically, a transformation 

rule consists of two parts: a left part called LHS (Left Hand Side), which accesses 

the source model, and a right part called RHS (Right Hand Side), which accesses 

the target model. Executing a left-to-right oriented transformation rule replaces 

source model constructs conforming to the LHS of the rule with RHS of the same 

rule for the target model construct. This technique requires the organization and 

scheduling of the rules as well as their orientation. The traceability mechanism 

also makes it possible to strengthen the technique by archiving the correlations 

that exist between the elements of the transformation models.  

the transformation rules express the correspondence between the concepts of the 

source metamodel and the target metamodel. The specification's role is to describe 

such relations regardless of any execution. MDA plans to automate this phase 

entirely. Currently, there is no standard for expressing transformation rules. 

However, the current work of the OMG on the MOF/QVT (Query Views 

Transformation) standard seems promising. 

• Approaches to the definition of the transformation: the Model-to-Model 

transformation is based on a varied structure. Therefore, several approaches 

attempt to define this type of transformation. In the literature, one generally 

distinguishes five approaches: 

- Direct manipulation approaches, 

- Relational approaches. 

- Approaches based on graph transformation, 

- Structure-based approaches, 

- Hybrid approaches. 



 

Model Transformation                                                                                                                                                            76 

In our work, we are particularly interested in approaches based on the transformation of 

graphs because our objective is to transform UML diagrams which are graphs, towards its 

formal specification in Maude languages which are also in the form of graphs. 

4.3 GRAPH TRANSFORMATION  

The modeling of systems comes up against the difficulty of describing their complex 

structures. Models and metamodels (for example, UML) most often have a representation in 

the form of a graph. Furthermore, the graphs offer pleasant and effective support that allows 

the modeling of systems. Therefore, graph transformation and rewriting techniques can be 

applied to model transformation 

Before discussing graph transformation techniques and the tools making such techniques 

applicable, it is necessary to recall some basic concepts relating to graph theory. 

4.3.1 Graph concept 

A graph is generally defined as a set of vertices connected by edges. Mainly, there are 

two categories of graphs: directed and undirected (see Figure 4.4 And Figure 4.5) 

In the rest of this section, we will present some definitions relating to the properties and 

characteristics of graphs: 

• The Graph: we call graph G the pair (S, A) made up of a non-empty set S of vertices 

and a non-empty set A of edges. Each element of A connects two elements of S. 

• Directed graph: a graph is said to be directed if its edges have an orientation (starting 

vertex is the arrival vertex). Otherwise, the graph is said to be undirected 

 

Figure 4.4: Undirected graph 

                                                                                   

 

 



 

Model Transformation                                                                                                                                                            77 

 

Figure 4.5:Simple directed graph 

                                                                                   

                                                                                          

• Labeled graph: a graph used for the representation of a model must be able to support 

the different relationships between the elements of the model represented. Directed 

graphs are not enough to express the relationships between model elements. Labelling 

arcs in graphs makes it possible to specialize the relations between different vertices in 

a graph. 

A labeled graph is, therefore, a directed graph whose arcs have labels 

C

A

B

F

F

S

 

Figure 4.6: Labeled directed graph 

 

• The Degree of a graph: the degree of a vertex in a graph is the number of edges in this 

vertex. If the graph is oriented, the degree of a vertex is defined in degree entering and 

degree exiting, relative respectively to the number of arcs entering and exiting in this 

vertex.The degree of a vertex in Figure 4.4 is 3, and the degrees in and out of vertex A 

in Figure 4.5 are 1 and 2, respectively. 

• The order of a graph: the order of graph G is defined by the number of vertices present 

in this graph. The order of the graph in Figure 4.4 is 3 



 

Model Transformation                                                                                                                                                            78 

• The Path in a graph: the path in a graph is defined by the succession of arcs traversed 

in a direction defined in the graph, it has the following properties and characteristics: 

- The length of the path is equal to the number of arcs covered; 

- The chain is said to be a chain if the direction of the arcs is not taken into account; 

- The path is said to be a circuit if it returns to its starting point. 

- The distance between two vertices in a graph is defined as the length of the shortest 

path between these two vertices; if this length is 1 the vertices are said to be adjacent. 

- The diameter of a graph is the greatest distance separating two vertices in this graph 

• The subgraph: a subgraph G'(S', A') of a graph G(S, A) is a graph composed of a subset 

of vertices S'∈ S and a subset d 'edges A'∈A' such that A' represents the edges 

connecting the vertices S' in the graph G (cf. Figure 4.7). 

 

C

A

B

A

B

Graph-G
Graph-G’

 

Figure 4.7:G' is a subgraph of G 

4.3.2 The basic of graph transformation  

Graph transformation is a system for transforming models [101]; it is carried out thanks 

to the transformation rules [105]. The rules apply to a source graph, based on the principle of 

pattern matching, to produce a target graph. The basic principle is to apply transformation rules 

that replace subgraphs in the source graph with subgraphs in the target graph, using the 

production defined in the transformation rules. These fragments of subgraphs can be expressed 

in respective concrete or abstract syntaxes of the source and target models. 

ATOM3[148], UMLX and VIATRA are examples of tools that support model 

transformation based on graph transformation. 



 

Model Transformation                                                                                                                                                            79 

By analogy to Chomsky's grammar which applies to texts, the transformation of graphs 

is carried out thanks to the rules of transformation organized in the grammar of graphs. The 

basic idea is to be able to derive target models from source models. 

4.3.2.1 Graph grammar  

From a certain point of view, graph grammars are a generalization of Chomsky's grammar 

applied to graphs. The graph transformation is specified as a model of graph grammar. These 

grammars are composed of rules, each of which consists of two parts: a left part called LHS 

(Left Hand Side), which corresponds to a graph, and a right part called RHS (Right Hand Side), 

which also corresponds to a graph. 

4.3.2.2 Principle of transformation 

The graph transformation process distinguishes two types of graphs: non-terminal graphs, 

which are the intermediate results on which the rules of the grammar are applied, and terminal 

graphs, which are in the language generated by the grammar and on which one does not can no 

longer apply rules. 

• Composition of a graph transformation rule: A graph transformation rule consists of 

a set of attributes allowing him to substitute the graphs of the source model with the 

graphs of the model target [155]: 

L: graph on the left side on which the rule will apply. 

R: graph on the right side that the rule will produce. 

K: a subgraph of L. 

F: a set of functions allowing the rule to perform the substitution. 

• Application of a graph transformation rule: The transformation of a source graph 'G' 

towards a target graph 'G' 'consists of the application of one or more times of the rules 

of the transformation grammar to graph G. The application of a rule of transformation 

is generally carried out according to the following principle: 

- Choose an occurrence 'l' of the graph on the left side L, according to the rule to be 

applied. 

- Check the conditions of application of the rule. 

- Realize the substitution of the subgraph’s 'l' of L by subgraphs 'l' ' in G' 

Applying a transformation rule to a graph G to produce a graph G', is called a direct 

derivation from G to G' through the transformation rule. The order in which the rules of 

grammar are triggered remains arbitrary. However, it is possible to express an order of 

execution of the rules by assigning them priorities, for example. 



 

Model Transformation                                                                                                                                                            80 

4.4 CONCLUSION 

In this chapter, we introduced model transformation, one of the promising techniques in 

the MDA approach. This approach automates modeling processes, including code generation, 

from development to testing. 

In this context, we have presented some modeling approaches from the literature, starting 

with an introduction to the MDA approach. We then gave an enumeration of models' 

transformation types, followed by a classification of some transformation approaches. In the 

second phase, we focused on a specific model transformation framework based on graph 

transformation. Finally, we briefly presented certain envisaged transformation tools used in our 

contribution, which consists of the proposal of a graph grammar, allowing the transformation 

of UML-Mobile models towards a Maude specification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 81 

 

 

 

Chapter 5 

 

Rewriting Logic and 

The Maude language 

 



 

   Rewriting Logic and The Maude language                                                                                                                         82 

Chapter 5: Rewriting Logic and The Maude language  

5.1 INTRODUCTION  

The rewriting logic is a replacement logic where each rewrite rule is a general form of an 

atomic action that can occur in competition with other actions in a concurrent system. This logic 

is a consequence of the work of José Meseguer [106]. On general logic to describe concurrent 

systems. The rewriting logic is a unifying logical and semantic framework in which other logic, 

concurrency models and languages can be represented (CCS, LOTOS, π-calculus, networks of 

Petri, etc.). In rewriting logic, a rewrite of a term consists of replacing it with an equivalent 

term, per the laws of term algebra[107]. 

Rewriting for this logic allows computing a rewrite ability relation between algebraic 

terms. The essential idea of rewriting logic is that the semantics of rewriting can be rigorously 

changed in a very fruitful way [106]. Furthermore, it has been widely demonstrated that it 

makes it possible to reason perfectly about the behavior of concurrent systems. So, rewriting 

logic is a computational model and a semantic framework that expresses communication, 

interaction, parallelism, concurrency, and parallelism. 

In this context, Maude represents a formal language widely used to verify concurrent 

systems; Maude is a formal language for algebraic specification and declarative programming, 

simple, expressive and efficient. This chapter will introduce rewriting logic and its semantics 

and present its basic concepts. Then, Maude rewriting logic language and its different levels of 

specification. 

5.2 REWRITING LOGIC 

Rewriting logic is concurrent change logic that can process the state and computation of 

concurrent systems. This logic has been widely used to specify and analyze systems and 

languages in different application domains. 

Consequently, rewriting logic offers a formal foundation for describing and researching 

the behavior of concurrent systems. In fact, it enables it to consider potentially complicated 

alterations that would correspond to atomic acts axiomatized by the rewriting rules. This logic's 

main argument is that computation in a concurrent system corresponds to logical deduction, 

which is intrinsically concurrent. [106]. 



 

   Rewriting Logic and The Maude language                                                                                                                         83 

5.3 REWRITE THEORY  

A concurrent system is defined by a rewrite theory R = (Σ, E, L, R) in rewriting logic, 

where (Σ, E) is the signature (an equational theory) describing the specific algebraic structure 

of the system's states (multi-set, binary tree), which are distributed according to this structure. 

The dynamic structure of the system labeled R is described by the rewrite rules (L is a set of 

labels of these rules). The elementary and local transitions that are possible in the concurrent 

system's current state are also specified by the rewriting rules. 

Each rule (denoted [t] → [t']) corresponds to an action that can occur in competition with 

other actions. So, rewriting logic is logic that captures the concurrent change in a system. 

5.3.1 Labeled rewrite theory 

A rewriting theory R is a 4-tuple (Σ, E, L, R) such that: 

1. Σ is a set of function symbols and sorts. 

2. E a set of Σ-equations (the set of equations between the Σ-terms). 

3. Read a set of labels. 

4. R is a set of rewrite rules, defined as R   ⊆   L x (T ∑,E (X))2  

Each rule consists of two components: a label and a pair of equivalence classes of terms 

T Σ, E (X) on the signature (Σ, E), modulo the equations E, with X = {x1,…,xn,…} an 

infinite and countable set of variables [108]. 

5.3.2 Conditional rewrite systems 

For a rewrite rule of the form r ([t], [t'], A1, …, Ak), the following notation is used, r : [t] 

→ [t'] if A1 ∧ … ∧ Ak, where a rule r expresses that the equivalence class containing the term 

t can be rewritten as the equivalence class containing the term t' if the condition of rule A1 ∧ 

… ∧ Ak is verified. The latter is called the condition of the rule and can be abbreviated by the 

letter C, and the rewrite rule is called conditional. 

The conditional part of a rule can be empty; in this case, the rules are called unconditional 

rewrite rules and are denoted by r: [t] → [t'] 

A rewrite rule can be parameterized by a set of variables {x1, … , xn } which appear either in 

t, t' or A , and we write: r : [t(x1, …, xn )] → [t' ( x1, …, xn )] if A(x1, …, xn ) [106]. 



 

   Rewriting Logic and The Maude language                                                                                                                         84 

5.4 DEDUCTION RULES 

In a concurrent system, the sequence of transitions executed from a given initial state 

constitutes the computation corresponding to a proof or a deduction in the rewriting logic. 

Hence, the rules formalizing the operation of rewriting terms are called deduction rules. That 

is, for Given a rewrite theory 𝑅, = (𝛴, 𝐸, 𝐿, 𝑅), we say that the sequence [𝑡] → [𝑡'] is provable 

in 𝑅 and we write 𝑅├ [𝑡] → [ 𝑡'] if and only if [𝑡] → [𝑡'] is obtained by a finite application of 

the rules following deductions [139]. 

• Reflexivity 

For each term [𝑡] ∈ 𝑇,, (𝑋), [   𝑡 ]  →    [ 𝑡   ] where 𝑇, (𝑋) is the set of 𝛴 terms  with variables 

constructed on the signature 𝛴 and the equations 𝐸 

 

 

• Congruence 

      For each function 𝑓  ∑ 𝑛 , 𝑛  ℕ 

[t1]  →  [t1′]  … … [tn]  →  [tn′ ] 

 [f (t1 … …  tn)]  →  [f (t1′ … …  tn′ )]
 

 



 

   Rewriting Logic and The Maude language                                                                                                                         85 

                    

• Replacing 

   For each rule r :                 [𝑡(𝑥1 . . . 𝑋𝑛)] → [𝑡′(𝑥1 . . . 𝑋𝑛)] in  R 

 

[w1]  →  [w1′] … … [wn]  →  [wn′ ]

[t(w̅ ⁄ X̅)]  →  [t′(w ̅̅̅′ ⁄ X̅)]
 

 

Knowing that 𝑡(𝑤  ⁄𝑋  ) denotes the simultaneous substitution of 𝑥𝑖 by 𝑤𝑖 in 𝑡 with 𝑥  

representing 𝑥1 … … …. 𝑥𝑛. 

 

• Transitivity       

[t1]  →  [t2] [t2]  →  [t3]

[𝑡1]  →  [𝑡3]
 

 

 

Intuitively, we should consider the inference rules above as different ways to construct all the 

concurrent computations of the concurrent system specified by R. 

 The rule of reflexivity says that for any state t there is an inactive transition in which nothing 

changes. 

The congruence rule is a general form of "lateral parallelism", so each operator f can be seen 

as a constructor of parallel states, allowing its unfixed arguments to evolve in parallel. 

The replacement rule supports a different form of parallelism, which might be called 

"parallelism underfoot" because, in addition to rewriting a left-side instance of a rule over the 



 

   Rewriting Logic and The Maude language                                                                                                                         86 

corresponding right-side instance, the fragments of The state in the rule variable substitution 

can also be rewritten, provided that the variables involved are not frozen. 

The transitivity rule allows us to build longer simultaneous computations by componentizing 

them sequentially [108]. 

5.5 MAUDE SYSTEM   

Based on a mathematical theory of rewriting logic, the Maude language emerged as 

declarative programming and a formal specification. Jose Meseguar and his group in the 

computer lab at SRI International took an interest in rewriting logic and developed the Maude 

language. 

Maude is a powerful and expressive simple language regarded as one of the finest for 

modeling concurrent systems and algebraic specification. [109]. 

Maude specifies theories of rewriting logic, data types are defined algebraically by 

equations, and the dynamic behavior of the system is defined by rewrite rules. 

Maude also supports object-oriented programming with the inclusion of multiple 

inheritance and asynchronous communication through message passing. 

Maude's group also focused their efforts on performance; the current version of the 

interpreter can reach millions of rewrites per second. Of this fact, Maude competes with high-

level languages in terms of efficiency. 

Maude also supports using sockets for network programming, which allows not only 

modeling, simulating and analysing competing systems but also programming them. 

To specify a concurrent system, Maude offers three modules: consequently, we 

differentiate between three types of modules: functional modules to implement equational 

theories. System modules implement rewrite theories and define the dynamic behavior of a 

system. Finally, object-oriented modules implement object-oriented rewriting theories (they 

can be reduced to system modules) [110]. These modules must be declared respectively, 

respecting the following syntaxes: 



 

   Rewriting Logic and The Maude language                                                                                                                         87 

 

 

Dots represent declarations and expressions that may appear in the module. It is also 

important to note that there are two levels in the current version of Maude (Maude 2.6): Core 

Maude and Full Maude: 

• Core Maude is the base level of Maude, programmed directly in C++. It implements all 

the basic features of the language, the functional modules and the system modules. 

• Full Maude is the top level. Programmed in Core Maude, Full Maude is used with the 

object-oriented programming paradigm and modules object-oriented Maude. All 

commands and modules in Full Maude must be declared in parentheses. 

5.5.1 Characteristics of Maude 

We can enumerate the most important characteristics of Maude language as follows: 

• Simple: It is simple to program with Maude because it is a declarative language with 

few syntactic constructions that are very simple and easy to understand. Maude is seen 

as a meta-language that allows the definition of its own ratings. 

• Expressive: With Maude, it is possible to express deterministic calculations using 

equations in functional modules easily. Thus, concurrent and non-deterministic 

calculations with rules for rewriting system modules. 

• Powerful semantics: a Maude program has very clear semantics; it is based on sound 

logic, called rewriting logic. A Maude program should be seen as a statement of a 

rewriting theory. Thus, the execution of this program must be interpreted as a logical 

deduction from the axioms defined in the program. 

• Wide spectrum: It supports the formal specification, prototyping, and concurrent 

programming. 

• Multi-paradigms: it combines functional programming paradigms, concurrent and 

object-oriented. 

• Executable: a Maude specification is directly executable. 



 

   Rewriting Logic and The Maude language                                                                                                                         88 

• Equipped with formal verification tools: Maude offers its users a set of tools to 

facilitate the task of verification significantly; among these tools, we can cite: 

- The Reachability Analysis tool: is a key feature that enables users to explore 

and analyze term rewriting systems by determining whether a given state can 

be reached from an initial state which can help users identify critical properties 

and detect potential errors in modeled systems and this is the tool we will use 

in our verification phase. 

- Model Checker: for property verification linear temporal models specified in 

Maude. 

- Inductive Theorem Prover: this tool is used to verify the properties of 

equational specifications. 

5.6 MAUDE LANGUAGE SYNTAX  

In this section, we present the most interesting syntactic notions of the Maude language 

(sorts, subsorts, operations, etc.). 

5.6.1 Sorts  

Sorts (data types) are the first things to define in a specification. To declare a new type in 

Maude, use the keyword "sort" followed by the name of the sort as follows:  

sort (Sort name). 

In the case where we have several sorts to declare, we can use the keyword “sorts” in the 

following way: 

Sorts (first Sort name) (second Sort  name) (last Sort  name) . 

The example below shows the announcement of two sorts Nat (the natural integers) and 

NzNat (the non-zero natural integers): 

Sort Nat . 

Sort NzNat . 

Or 

Sorts Nat NzNat . 



 

   Rewriting Logic and The Maude language                                                                                                                         89 

5.6.2 The sub-sorts  

The subsort relation is equivalent to the subset relation. i.e. Let S1 be a sub-sort of S2: all 

the elements of S1 belong to S2, while the converse is not necessarily true. Subsorts are declared 

using the "subsort" keyword as follows: 

subsort (subsort name) < (Sort name). 

 

        The statement below means that 'NzNat' is a sub-sort of 'Nat': 

subsort NzNat < Nat . 

5.6.3 The operations 

To declare an operation, you must use the “op” keyword as follows: 

op (operation  name) : (Sort1) (Sort2) (SortK) -> (Sort) 

 (Sort1) (Sort2) (SortK)  is the list of sorts forming the arguments (the domain) of the 

operation . While (Sort) represents the sort of the result (the co-domain). Maude offers the 

possibility of declaring several operations thanks to the keyword "ops", provided that all these 

operations have the same domain and co-domain. In the following example, we present some 

declarations of operations in Maude. 

op successor_ : Nat -> Nat . 

ops _+_ _*_ : Nat Nat -> Nat 

5.6.4 The overload of operations  

In Maude, operators can be overloaded. i.e. we can have multiple declarations for the 

same operator with different domains and co-domains. For example, the _+_ operation can be 

overloaded by giving two declarations to this same operator for two different sorts (natural 

numbers and character strings): 

op _+_ : Nat Nat -> Nat . 

ops _+_ : String String -> String . 

 



 

   Rewriting Logic and The Maude language                                                                                                                         90 

5.6.5 The variables  

A variable represents an undefined value of some kind. It is declared in Maude with the 

keyword “var” (or “vars” for several variables of the same kind). An example of variable 

declarations (S, X, Y and Z) is as follows: 

var S : String . 

var X : Nat . 

vars Y Z : Nat . 

5.6.6 Equations  

We recall that a term is a constant, a variable or the result of the application of an 

operation on a set of terms. Maude supports two types of equations: 

Unconditional equations: an unconditional equation is declared using the keyword “eq” as 

follows: 

eq (Terme) = (Terme). 

Conditional equations: to declare a conditional equation, you must use the keyword “ceq”. 

The form of a conditional equation is: 

ceq (Term1) = (Term2) if (Condition1) / \ (Condition2) / \ / \ (Conditionn). 

 

The “/ \” operator (condition-concatenation operator) links the different conditions of a 

conditional equation. 

5.6.7 The rewrite rules  

Like equations, Maude offers two types of rewrite rules: 

Unconditional rewrite rules: an unconditional rewrite rule has the following syntax: 

rl [label]: (Term1) => (Term2) . 

Conditional rewrite rules: the form of a conditional rewrite rule is as follows: 

crl [label]: (Term1) => (Term2) if (Condition1) / \ / \ (Conditionn). 

5.6.8 Module importation 

As in most programming languages, Maude offers the possibility to import other modules. 

This allows developers to benefit from all declarations and definitions of imported modules. 



 

   Rewriting Logic and The Maude language                                                                                                                         91 

This mechanism minimizes the redundancy in specifications. In addition, it allows for offering 

better modularity. 

Maude supports three import modes: 

• “Protecting”: in this mode, the developer cannot modify the declarations of the 

imported module. i.e. all defined operations and sorts are used strictly as they are in 

the imported module. 

• “Including”: in this mode, the developer can freely change the meaning of the 

elements declared in the imported module. 

• “Extending”: in this mode, the developer can add new terms to a sort but he cannot 

modify the meaning of the operations. 

The syntax for using these three modes is as follows: 

- protecting (module name). 

- including (module name). 

- extending (module name). 

5.7 MAUDE MODULES  

In Maude, a module will provide a collection of sorts and a collection of operations about 

these sorts, as well as the information needed to reduce and rewrite expressions entered by the 

user in the Maude environment. There are three types of modules defined in Maude. 

• Functional modules are used to define data types. 

• System modules are used to define the dynamic behavior of a system. 

• object-oriented modules are used to define the object-oriented paradigm. 

5.7.1 Functional modules  

These modules define the data types and operations used by the equations. For example, 

in Maude, an equational specification is a functional module which is represented by the 

following syntax: 

              fmod MODULE-NAME is ***(the name of the module)  

               BODY ***(announcements of sorts, operations, variables, 

               equations, membership axioms and comments) 

               Endfm. 

MODULE-NAME is the introduced module name, and BODY is the set of 

announcements of sorts, operations, variables, equations, membership axioms and comments. 



 

   Rewriting Logic and The Maude language                                                                                                                         92 

Comments start with '***' or '---' and end with the end of the current line, or they begin with 

*** (or --- (and end with the occurrence of)." 

The module's body specifies a theory (Σ, EUA, Φ) in the membership equational logic. 

The signature Σ includes sorts (indicated by the keyword sort), subsorts (specified by the 

keyword subsort) and operators (introduced with the keyword op).  The operator syntax is 

defined by users by indicating the position of the arguments by the symbol (_). Some of these 

arguments can be specified as frozen using the frozen (Position Argument) keyword. 

The set E denotes the equations and membership tests (which can be conditional). A is a 

set of equational axioms introduced as attributes of Certain operators in the signature Σsuch as 

the axioms of associativity (specified by the word assoc keyword), commutativity (specified by 

the comm keyword) or identity (specified by the id keyword). The latter is defined in such a 

way that the equational deductions are made modulo the axioms of A. 

Equations are specified by the keyword eq or the keyword ceq (for conditional equations), 

and membership or membership tests are introduced with the keywords mb or cmb (for 

conditional membership tests). A condition linked to an equation or membership test can be 

formed by conjunction with equations and unconditional membership tests. Variables can be 

declared in modules with the var or vars keywords, or introduced directly into equations and 

adhesion tests as a var:sort expression [111].  

An example of a functional natural number module is: 

fmod NAT is ***(the module name is: NAT)  

sort Nat ****(natural sort announcement)  

sort PositiveNat . 

subsort PositiveNat < Nat . 

op 0: -> Nat [ ctor] . *** (announcement the existence of an operation<mathematically: function> 

which returns 0) 

op s_ : Nat -> Nat [ ctor ] .***( announcement the existence of an operation)  

op _+_: Nat Nat -> Nat .  

vars NM: Nat . ** *(announcement the existence of natural variables N and M)  

var P: PositiveNat. 

cmb P: PositiveNat if P =/= 0 .**( membership axiom indicating that P is of type PositiveNat) 

*** if P is different from 0 

eq N + 0 = N . *** N + 0 and N denote the same term (same equivalence class) which is [N] 

eq (S N) + (S M) = S S (N + M) . 

endfm 



 

   Rewriting Logic and The Maude language                                                                                                                         93 

5.7.2 System modules  

System modules define the dynamic behavior of concurrent systems by enriching the 

functional modules with a set of rewriting rules. The introduction of rewriting rules allows for 

the expression of concurrency in systems. 

A system module describes a rewrite theory that includes sorts, operations, variables, 

equations, membership axioms (conditional and unconditional) and conditional and 

unconditional rewrite rules. 

A rewrite rule executes when its left part matches a portion in the overall status of the 

system and with the satisfaction of the condition in the case of a conditional rule [109]. 

In Maude, the following syntax represents the system module: 

     mod MODULE-NAME is 

      BODY      

              endm.  

 

R rewrite rules are introduced with rl keywords or crl . They are specified in Maude with the 

syntax: 

crl [l]: t => t' if cond . If the rule is unconditional, the 

crl keyword is replaced by rl, and the “if cond” clause is omitted [111]. 

An example that demonstrates the use of these modules is as follows: 

mod CHOICE-INT is ***(CHOICE-INT is the module name)  

including INT ***(import the INT module (the module for integers)  

to use its operators)  

op _?_ : Int Int -> Int ***( an operator are announced)  

vars YZ: Int . ***(Two integers Y and Z are announced)  

rl [ choose_first ]: Y ? Z =>Y . 

rl [ choose_second ]: Y? Z =>Z . 

endm[110] 

5.7.3 Object-oriented Modules 

Object-oriented modules are supported by the Full-Maude system [109].  

Note that Full Maude is an extension of Maude ( Core Maude), whose code is written in Maude, 

which enriches the Maude language with a very powerful and extensible algebraic module. 

These object-oriented modules are introduced by the keywords: 



 

   Rewriting Logic and The Maude language                                                                                                                         94 

( omod MODULNAME is  

…..  

Endom ) 

The module body is a rewrite theory ℜ = (Σ, EUA, Φ, R). They support the specification 

and manipulation of objects, messages, classes and inheritance. A concurrent object-oriented 

system, in this case, is modeled by a multiset of juxtaposed objects and messages, where 

concurrent interactions between objects are governed by rewrite rules. 

An object is represented by the term < O : C | a1: v1, …, an: vn >, where O is the name 

of the instance object of class C, ai, ∈ 1..n, the names of the attributes of the object, and vi, their 

respective values. 

The declaration of classes follows the syntax: class C | a1: s1, …, an: sn. where C is the 

class name and si is the sort of the ai attribute. It is also possible to declare subclasses and thus 

benefit from the notion of inheritance. Messages are declared using the msg keyword. The 

general form of a rewrite rule in Maude's object-oriented syntax is : 

crl [r]: M1 … Mn < O1: F1 | a1> … < Om: Fm | am > =>< Oi1 : F'i1 | a'i1 > …  < 

Oik : F'ik | a'ik > M1' … Mp ' if Cond. 

Where r is the rule label, Ms, s ∈ 1..n, and M'u, u ∈1..p are messages, Oi , i ∈1..m, and 

Oil , l ∈1..k , are objects, and Cond is the rule condition. If the rule is unconditional, we 

replace the crl keyword with r.l. and remove the if Cond clause. 

We will not expand on the explanation here further because an object-oriented unit is not of 

interest to us in our study as it can be defined using system units. 

5.8 PREDEFINED MODULES  

Maude's predefined modules are stored in a specific library and can be imported by other 

user-defined modules. They are introduced in the source files of Maude prelude.maude and 

model-checker.maude, such as BOOL, STRING and NAT. These modules declare sorts and 

operations to handle, respectively, Boolean values, character strings and natural numbers. The 

model-checker.maude file contains the predefined modules interpreting the tools necessary for 

the use of Maude's LTL Model Checker [112]  

5.9 EXECUTION AND FORMAL ANALYSIS UNDER MAUDE  

In a module written in Maude, the rewriting rules constitute the elementary units of 

execution. They interpret the local actions of the modeled system and can be executed in a 



 

   Rewriting Logic and The Maude language                                                                                                                         95 

constant time and concurrently (at any time). Maude offers the possibility of simulating the 

execution of such rewrites (via rewrite rules) or equational rewrites (via equations) in an M 

module by implementing the two commands: reduce and rewrite. 

The reduce command (abbreviated as red) allows an initial term to be reduced by applying 

the membership equations and axioms in a given module. 

It has the following syntax: Reduce {in module:} term. 

The rewrite command rewrite (abbreviated as rew ) and the fair rewrite command 

frewrite ( abbreviated as frew ) perform a single rewrite sequence (among several possible 

sequences) from an initially given term following the syntax:  

rewrite {in module : } term . 

frewrite {in module:} term. 

These commands make it possible to rewrite an initial term using the rules, equations and 

membership axioms in the specified module [113].  

5.10 FORMAL ANALYSIS AND VERIFICATION OF PROPERTIES 

The formal verification of models on the systems specified in Maude is carried out using 

tools available around the Maude system. Among these tools, we distinguish an accessibility 

analysis tool (the search command) and a verification module by model-checking properties 

expressed in linear temporal logic (LTL) [114]. To analyze all the sequences of possible 

rewrites from an initial state (term) t 0, the search command is used. This searches whether 

states corresponding to given patterns and satisfying certain conditions can be accessed from t 

0. In addition, this command performs a deep traversal of the computation tree (reachability 

tree) generated during this search to detect invariant violations in infinite-state systems[115]. 

The formal analysis of systems by Model Checking is a set of techniques to automatically 

verify temporal properties relating to the behavior of systems [116]. Model Checking makes it 

possible to verify the satisfiability of a given property in a state or a set of states by conducting 

an exhaustive exploration of the set of states accessible from an initial state. It receives as input 

an abstraction of the behavior of the system (a system of transitions), represented by a Kripke 

structure K, and a property ϕ of this system, formulated in some temporal logic, and answers 

whether or not the abstraction satisfies the formula ϕthat is, whether K |= ϕ. The advantage of 

Model Checking is that it returns a trace of the execution of the system violating the property 

when the latter is invalid.  



 

   Rewriting Logic and The Maude language                                                                                                                         96 

5.10.1 Linear Temporal Logic (LTL)  

Linear Temporal Logic (LTL) is an extension of classical logic with temporal operators, 

such as G and F (representing "globally", "finally or fatally", respectively), which allow for 

expression properties relating to the execution of a sequence of states. It is called temporal 

because it describes the sequence of events observed in a system. This logic makes it possible 

to specify interesting properties for concurrent systems, particularly the properties of safety, 

accessibility, liveness and fairness: 

• Safety: Nothing bad ever happens. 

• Accessibility: a certain situation can be reached. 

• Liveliness: something good is always possible. 

• Fairness: something will repeat itself infinitely often. 

LTL formulas are built from propositional variables called atomic propositions, Boolean 

operators (¬, ∧,∨,⇒,⇔), and temporal operators, F (Future), G (Global), U (Until),X (neXt). 

Atomic properties make it possible to describe the states of the system: a state t is said to 

be labeled by an atomic proposition ϕif ϕis true in t. Moreover, temporal operators make it 

possible to link system states within an execution sequence. 

• The formula Xf indicates that the LTL formula f should be checked the immediate next 

time along the execution (neXt). 

• The formula f U g indicates that f is always true until a state where g is true (Until). 

• The formula Gf means f is always verified (Generally) throughout the execution. 

Ff formula indicates that f should be checked later, at least in some execution state (Fatally) 

[112].  

5.10.2 The Maude LTL Model Checker  

Maude's model-checking tool uses LTL logic. It requires the system to be verified, 

described by a rewrite theory ℜ= (Σ, E, Φ, R), or finite state, i.e., from an initial state [ t0], the 

set of accessible states defined by {[u] ∈T Σ, E | ℜ├ [t 0] → [u]} is finite. So, Maude's LTL 

model checker takes as input a rewrite theory ℜ from which it generates the Kripke structure K 

(ℜ, State) as well as an LTL temporal formula ϕand checks if this structure K (ℜ, State) satisfies 

the formula ϕ. If this formula is not valid, the LTL model checker returns a counter example 

showing a sequence of states leading to the violation of this formula. This tool is implemented 

as a module, specified in terms of rewriting logic, in the Maude language. The latter imports 

other predefined modules (also specified in the Maude language): 



 

   Rewriting Logic and The Maude language                                                                                                                         97 

• The LTL-SIMPLIFIER module implements formal procedures to simplify the LTL 

formula expressing a property. 

• The SATISFACTION module specifies the syntax and semantics of the satisfaction 

operator ( |= ), indicating whether a given formula is true or false in a certain state. 

• The SAT-SOLVER module makes it possible to check the satisfiability and the 

topology of a formula specified in LTL logic [114]. 

In the following, we find some of the LTL operators in Maude's syntax: 

fmod LTL is  

…  

*** LTL op defined operators  

_->_: Formula Formula -> Formula . *** implication 

op _<->_: Formula Formula -> Formula . *** equivalence 

op <>_: Formula -> Formula . *** possibly 

op[]_: Formula -> Formula . *** always 

op _W_: Formula Formula -> Formula . *** unless 

op _|->_ : Formula Formula -> Formula . *** leads- to -  

op _=>_: Formula Formula -> Formula . *** strong implication  

op _<=>_: Formula Formula -> Formula . *** strong equivalence  

…  

endfm 

LTL operators are represented in Maude using a syntactic form similar to their original 

form. 

The State state is generic. After specifying the behavior of his system in a Maude system 

module, the user can specify several predicates expressing certain properties related to the 

system. These predicates are described in a new module that imports two modules: the one that 

describes the dynamic aspect of the system and the SATISFACTION module. 

Let, for example, M-PREDS be the name of the module describing the predicates on the 

states of the system: 

 

 

 



 

   Rewriting Logic and The Maude language                                                                                                                         98 

mod M-PREDS is  

protecting M .  

including SATISFACTION.  

subset Configuration < State.  

…  

endm 

M is the name of the module describing the behavior of the system. The user must specify 

that the state is chosen (configuration chosen in this example) for his own system under a type 

of type State. In the end, we find the MODEL-CHECKER module, which offers the model-

Check function [113]. 

The user can call this function by specifying a given initial state and a formula. Then, 

Maude's Model Checker verifies whether this formula is valid (according to the nature of the 

formula and the Model Checker procedure adopted by the Maude system) in this state or all of 

the states accessible from the initial state. If the formula is not valid, a counterexample is 

displayed. The counterexample concerns the state in which the formula is not valid: 

fmod MODEL-CHECKER is  

including SATISFACTION.  

…  

op counterexample: TransitionListTransitionList -> ModelCheckResult [ ctor ] .  

op modelCheck : State Formula ~> ModelCheckResult .  

…  

endfm 

5.11 EXECUTION OF MAUDE  

We can start a session with Maude under Windows by clicking on the core Maude 2.6 

file. Maude's main window opens, as shown in Figure 5.1 . 



 

   Rewriting Logic and The Maude language                                                                                                                         99 

 

Figure 5.1:Execution of Maude 

 

The Maude system is now ready to accept commands or modules. The user interacts with 

the system during a session by entering his request at the 'Maude prompt'. For example, if we 

want to leave Maude 

Maude > quit 

' q ' can be an abbreviation for the command ' quit '. You can also enter modules and use 

other commands. It's not really convenient to enter a module in the 'prompt', rather, the user can 

write one or more modules in a text file and have the file enter the system by calling the ' in ' 

command or the ' load ' command [113]. Assuming my-nat.maude file containing the NAT 

module described as follows: 

fmod SIMPLE-NAT is  

sort Nat .  

opzero : -> Nat .  

op s_: Nat -> Nat .  

op _+_ : Nat Nat -> Nat .  

vars NM: Nat .  

eq zero + N = N .  

eq s N + M = s (N + M ) .  

endfm 

 



 

   Rewriting Logic and The Maude language                                                                                                                         100 

We can introduce it to the system by doing the following command: 

Maude> in my-nat.maude 

After entering the NAT module, we can for example, reduce the term s szero + s sszero 

(which corresponds to 2 + 3 in the Peano notation ) in such a module. Running and committing 

the ' reduce ' command returns a result like this: 

          Maude > reduce in NAT: s s zero + s sszero. 

                         reduce in NAT: s s zero + s sszero .  

                         rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second) 

                         result Nat: s ssss zero  

It is not necessary to give the name of the module explicitly in which we reduce the term. 

All the commands that module needs refer to the current module by default, otherwise you must 

explicitly give the name of the module. The current module is usually the last introduced or 

used, or we can use the reduce command 

 

Figure 5.2:Running the reduce command 

5.12 CONCLUSION 

In this chapter, we have presented the basic concepts of rewriting logic and the Maude 

system. Furthermore, we emphasized verification with the Maude system and temporal logic 

used in our work. In the following chapter, we tried to present our integrated mobile-

UML/Maude system approach with propose a graph grammar to automatically transform a 

mobile UML digraph into a formal specification in Maude language for verification reasons.



 

 101 

 

 

 

 

 

 

Chapter 6  

An integrated Mobile-

UML/Maude system 

approach 

(Contribution) 



 

   An integrated Mobile-UML/Maude system approach                                                                   102 

Chapter 6: An integrated Mobile-UML/Maude system 

approach  

6.1 INTRODUCTION  

In the third chapter of this thesis, we exposed a comparative study on the available 

extensions of UML diagrams that support Mobility. On the other hand, the transformation of 

all the extended diagrams proposed in this study requires a very large investment in time and 

effort to ensure its completeness.  

In this chapter, we propose a Mobile-UML/Maude system integrated approach [88]for 

the transformation of the M-UML statechart diagram[41],[117].In order to be able to 

implement, in this thesis, the process of transformation of models, we are interested in the 

diagram of mobile statechart because it makes it possible to describe the behavior of an object 

of the modeled system. Therefore, this diagram will capture the mobility of an agent. Despite 

the convenience of modeling and understanding UML models, verifying such models is quite 

a difficult task because of the semi-formal semantics of UML. In this context, several research 

works have focused on the verification and validation of UML models [118], [105], [119], etc. 

Our contribution, based on graph transformation principles presented in chapter four, 

proposes a graph grammar to transform the diagrams of mobile statechart towards a formal 

specification in Maude. We started by using this graph grammar, transforming the source 

models to the target models, and obtaining an initial Maude code. Then by exploiting a simple 

method by using Boolean predicates to redefine our system and make known the states and 

mobile transition among the states and the simple or non-mobile transition, We add mobility 

attributes to the states and transitions with a Boolean predicate which finally allows us to check 

if a state is a state mobile or not and if a transition also a mobile transition or not, thus, Global 

knowledge of the image of our system 

6.2 RELATED WORKS  

In the literature, much research work has been done concerning the integration of different 

UML diagrams and formal methods, such as Petri nets [120], [121], [122], Colored Petri nets 

(CPN) [123], Object-Z [124], the B method [125], communicating sequential processes (CSPs) 

[126], and Maude [127]. 



 

   An integrated Mobile-UML/Maude system approach                                                                   103 

Many works in the literature attempt to formalize the semantics of UML state diagrams, 

which is very difficult to review. That is why we consider only those most related to our work. 

The authors in [93] categorised and compared 26 approaches to state machine semantics 

formalization. In [129], a temporal logic-based formalisation gives formal semantics of 

statechart diagrams. In [130] and [131], CSP is used to define a formal semantics of statechart 

diagrams. Other formalizations of statechart diagrams use PROMELA [132], Esterel [133], and 

Petri nets [134]. Finally, a bottom-up approach based on the π-calculus formalism has been 

proposed in [135]. 

Regarding the formalization of M-UML statechart diagrams with a formal method, we 

found three major works that seem related to our contribution. First, the authors in [85] 

proposed a formalization of mobile state machines using the TLA logic to define the notion of 

refinements. In [137], an approach for transforming mobile UML statechart diagrams into 

nested nets using meta-modeling and graph grammar is described for modeling and analysis 

purposes. Finally, in [87], the authors proposed an approach for formalising M-UML statechart 

diagrams using π-calculus for modeling and analysis. 

Although there is already a formal semantics of M-UML statechart diagrams in [137], the 

target semantic domain chosen is very limited in semantics and tools. In [135], the authors 

propose a formalization of UML statechart diagrams without taking mobility into account, apart 

from the fictitious strategy used in the formalization, which often considers that fictitious (non-

identified) processes that perform certain tasks at the source. By examining this approach, we 

quickly detect that it is impossible to analyze and verify a π-calculus specification generated by 

this formalization; the informal definition of the semantic mapping in general of all the previous 

methods, especially in [135, 137], makes them insufficient to define the translation fully. The 

work presented in [85] proposes a formalization of M-UML state machines using MTLA, which 

extends Lamport's temporal logic of actions (TLA) with spatial modalities. The approach can 

be classified as those that use statechart diagrams for refinement purposes in addition to 

lessening the poverty of the target model (MTLA formalism) in theory and with tools, from 

another point of view, about the use of the same tool that we used of the rewriting logic to 

generate formal specifications based on software concepts as MAS, we can mention the work 

of [151] that propose an algorithm allowing the automatic generation of Maude specifications 

from Petri nets models to help designers to effectively obtain the rewriting logic based 

specification of their multi-agent systems and then facilitate their analysis. 



 

   An integrated Mobile-UML/Maude system approach                                                                   104 

We note that all the previous contributions did not consider the fact that the user has not 

mastered these formal languages and does not specialize in them in most cases; most of them 

do not even provide automation, which hampers their use substantially. Thus, on the contrary, 

we propose a simple method for directly mapping mobile statechart diagrams into a Maude 

specification. The Maude tool is chosen because it offers us the capabilities needed to achieve 

our purposes. 

6.3 UML MOBILE 

6.3.1 Description of the mobile statechart diagram  

The UML statechart diagram consists of states and the relationships that connect their 

states. This diagram describes how objects work in terms of changing states, knowing that an 

object must be in a state at a given time. 

The mobile state is a state in which an actor or an object is in a platform different from 

that of its origin. Graphically, the mobile state is represented by adding a square with the 

symbol ' M ' in the top left end of the standard UML state. 

A transition is a unidirectional line connecting two states (the source state and the target 

state). A mobile transition is a transition that connects two agents or two objects that are on 

different platforms. A non-mobile transition can connect two mobile states, and a mobile 

transition connects two mobile states or a mobile state to a non-mobile state and vice versa. 

 Graphically, a mobile transition is represented as a standard transition by adding a small 

square with the symbol ' M ' in the upper left end of this transition. Additionally, if an agent 

arrives in a state, a small dotted square with the symbol ' M ' is added to the upper left end of it 

to indicate the current state. In the same way, if an agent arrives in a state and performs a remote 

interaction with another agent, we add a small square bearing the symbol ' R ' in the upper left 

end of this transition. Finally, a mobile transition stereotyped "agentreturn», corresponds to 

the return of an agent to its base platform, with a change of state (cf. Figure 6.2). 



 

   An integrated Mobile-UML/Maude system approach                                                                   105 

                                                                                                                  

                                                                                                                  
                                                                                                                    nm:no-mobile 

                                                                                                            m:mobile

                                                                                                            r:remote

                                                                                                                                    agentreturn:the return
                                                                                                                                    of the agent to its base

 

nm.state        m.state 

M

M R

Transition m.transition r.transition « agentreturn »

 

Figure 6.1:Mobile transition state graph concept 

6.3.2 Meta-model of the mobile statechart diagram 

Our meta-model is composed of 3 classes (one meta-class of state and two sub-class 

simple state and mobile state and we note that the meta-class state are omitted in transformation  

) and 9 transitions . 

• The State Class: This class generally represents a state in the mobile transition state 

diagram. It has a “name” attribute of String type to designate the report's name. This 

class is considered the parent class of the two following classes: the Simple State class 

and the Mobile State class 

• The Mobile State Class: this class represents the mobile state. It inherits the attributes 

of the State class, and it is graphically represented by a white rectangle which bears at 

its upper left end a small square marked by ' M '. If this state is the current state, it will 

be represented by a white rectangle which carries a small dotted square marked by ' M 

'at its upper left end, as shown in Figure 6.1. This class is connected to the Simple State 

class by the association. TransitionMobileMS in the case where a mobile transition 

exists between this state and a simple state; it is connected by the association 

TransitionAGR if there is a mobile transition which models the return of the mobile 

agent of the platform ( “agentreturn” transition ). These associations have,like all the 

associations of the metamodel, the attributes SPF, DPF , Events and Activities.  They 

connect a single instance of the Mobile State class to a single instance of the Simple 

State class. They are graphically represented by a black arrow carrying all the attributes 

by adding a small square marked with " M" to indicate that these transitions are mobiles. 



 

   An integrated Mobile-UML/Maude system approach                                                                   106 

Additionally, we add an “agentreturn” stereotype for the TransitionAGR relation to 

model the return of the mobile agent to its bass platform.  

- The relation Mobile State class is linked to itself by three relations: - The 

TransitionMM relation models the simple transition between two mobile states, 

and it is graphically represented by a black arrow carrying all the attributes. This 

relation links a single instance of the Mobile State class to a single instance of 

itself.  

- The second relation TransitionMobile MM models the mobile transition 

between two mobile states. It is represented graphically by a black arrow 

carrying all the attributes, adding a small square marked by " M" to indicate that 

the transition is mobile. This association links a single instance of the Mobile 

State class to a single instance of itself. 

- The last relation TransitionADistanceMM models the distance transition 

between two mobils states. It is graphically represented by a black arrow that 

carries all the attributes, adding a small square marked with "R" to indicate the 

distance transition. This relation links a single instance of the Mobile State class 

to a single instance of itself.  

• Simple State class: This class represents the simple state (the state where the mobile 

agent  is in its base platform) of the mobile agent. It inherits attributes and relationships 

from the State class. It is represented graphically by a white rectangle (cf. Figure 6.1), 

moreover, a small dotted square marked by ' M ' is added to the top left end of the 

rectangle to designate the current state (the platform which owns the mobile agent at the 

current time). This class is connected to the Mobile State class by the association 

TransitionMobileSM which also has SPF, DPF for represents Events and Activities 

attributes. This association connects a single instance of the Simple State class to a 

single instance of the Mobile State class; it is represented graphically like all the mobile 

transitions in the metamodel. Simple State class is connected with itself by two relations: 

- The TransitionSS association models the simple transition between two simple 

states, it is represented graphically by a black arrow carrying all the attributes. 

This association links a single instance of the Simple State class to a single 

instance of itself. 

- The second TransitionADistanceSS association, models the distance transition 

between two simple states; it is graphically represented by a black arrow 

carrying all the attributes by adding a small square marked with "R" to show 



 

   An integrated Mobile-UML/Maude system approach                                                                   107 

that it is a transition from a distance. This association links a single instance of 

the Simple State class to a single instance of itself.  

ReadyToMove(RTM) VotingManagerReached(VMR)

WaitingForList (WFL)

ReadyToCollectVotes(RCV)WaitingForVote(WFV)

M

M

MM

M

M

M

R

                          
          /VM  GetVotersList

 « AgentReturn »

VM * VotersList     /                                                  Logger  * LogList   

                                         / VO  * GetVote   

 

 VM  
StartVotingProcrss        

 

Figure 6.2 : Mobile Statechart diagram modeling 

6.4 THE MAUDE SHORT OVERVIEW 

We give an overview of running a Maude session on Windows to put the reader in context 

after we talked about it at length and its most important commands in the previous chapter.  

The Maude FW interpreter (Maude for Windows 2.6) is free. It can be downloaded from 

the MOMENT PROJECT team website (www.moment.dsic.upv.es). Maude has a standard 

library of predefined modules, which, by default, are loaded by the system automatically at the 

start of each session. Furthermore, each of its predefined modules can be imported by another 

user-defined module.  

These predefined modules are specified in a file named prelude.maude, this file is in the 

same directory as the executable file of Maude. Among these modules, we can find BOOL, 

STRING, NAT. These modules declare sorts and operations to handle Boolean values, 

character strings and natural numbers. 



 

   An integrated Mobile-UML/Maude system approach                                                                   108 

 

Figure 6.3 :Execution of Maude 

 

Figure 6.4 represents an open session of Maude 2.6; during this Maude session, the user 

interacts with the environment by entering modules, and Maude commands directly in a prompt. 

But it is very convenient to use a graphical environment with an advanced text editor to create 

and run Maude programs. The following list (Table 6.1) presents some Maude commands. 

Indeed, Maude has several other commands, which are described in detail in [115]. 

Table 6.1:Maude commands example 
The command  Description  

red {in mod: } T . The command asks to reduce (reduce) the term "T" using the equations in 

the "mod" module. 

rew {in mod: } T . This command rewrites the "T" term using the "mod" module rewrite 

equations and rules until no rule can be applied. 

rew [n] {in mod: } T . Rewrite the term "T" for a number n of rewrites. (The number of equational 

reductions does not influence n). 

select {mod} . select the "mod" module so that it is the current module. 

show module {mod} . view the specified module 

show spells {mod} . Visualize sorts and sub-sorts. 

show ops {mod} . view the list of operations. 

show eqs {mod} . displays the list of equations 

6.5 THE PROPOSED GRAPH GRAMMAR  

Our grammar (MobileStatechartVersMaudespcgrammar) comprises eleven rules divided 

into two categories. one for the states and the second for the transitions.   



 

   An integrated Mobile-UML/Maude system approach                                                                   109 

Compared to a classic UML diagram, we find that the mobile UML must include a 

duplication of state and transition types to be able to support the new mobility paradigm that 

covers it; this is why we find the mobile state next to the simple non-mobile state and the mobile 

transition next to the simple transition, in addition to the remote transition to cover a feature to 

the mobile agent, it is the remote intervention. 

6.5.1 Rules for transforming all states into Maude rewriting rule  

This category includes two rules that aim to transform the states existing in the source 

model. 

Rule 1: Transformation of a simple state (non-mobile)  

Name: EtatSToMaude  

Role: This first rule allows us to convert a simple state of the statchart diagram to its 

corresponding Maude specification (cf. Figure 6.4). It is a simple abbreviation of a non-mobile 

state which, when used in the Maude system, represents a unit of grammar for this formal 

language. 

M-UML Statechart Diagram 

Control Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State

 

 

 

 

nm.state 

Figure 6.4: Simple state transformation 

 

Rule 2:Transformation of a mobile state 

Name: EtatMToMaude   

Role: This second rule makes it possible to convert a mobile state from the statechart diagram 

to its corresponding Maude specification (cf. Figure 6.5). It is a simple abbreviation of a mobile 

state, the essential feature in the mobile statechart diagram. When used in the Maude system, it 

also represents a unit of grammar for this formal language. 



 

   An integrated Mobile-UML/Maude system approach                                                                   110 

M-UML Statechart Diagram 

Control Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State

M

 

 

 

 

m.state 

Figure 6.5: Mobile state transformation 

 

6.5.2 Rules for transforming all transitions into Maude rewriting rule 

This category includes nine rules that aim to convert transitions from the source model to 

transitions in the destination model. 

Rule 3: Transformation of a simple transition between two simple states 

Name: EtatSToEtatSRMD  

Role: This rule converts a simple transition between two simple states from the source diagram 

(Mobile statechart diagram) to a line code corresponding to its corresponding Maude 

specification (cf. Figure 6.6).  

 

 

This transition borrows the name of the source diagram transition, and there is no mobility in 

this case because the agent does not move from one platform to another (the two states are on 

the same platform). Until now, the agent could only be in one state at a time.   

 

Figure 6.6: Simple transition transformation between two simple states 

M-UML Statechart Diagram Control 

Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 

 

 

 

 

rl [nm.transition] : 

nm.state1=>nm.state2 



 

   An integrated Mobile-UML/Maude system approach                                                                   111 

Rule 4: Transformation of a mobile transition between a simple state and a mobile state  

 Name: EtatSToEtatMRMD  

• Role: This rule makes it possible to convert a mobile transition between a simple state and a 

mobile state of the source diagram (Mobile statechart diagram) to its online correspondent 

Maude specification. (cf. Figure 6.7). 

M-UML Statechart Diagram Control 

Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 
M

M

 

 

 

 

rl [m.transition] : 

nm.state1=>m.state2 

Figure 6.7: Mobile transition transformation between a simple state and a Mobile state 

 

Rule 5: Transformation of a mobile transition between two mobile states 

Name: EtatMToEtatM  

Role: This rule makes it possible to convert a mobile transition between two mobile states of 

the source diagram (mobile statechart diagram) towards its corresponding in Maude 

specification. This transition takes as its name from the transition of the source diagram, the 

concatenation between the following attributes: SPF, DPF (cf. Figure 6.8). 

 M-UML Statechart Diagram Control 

Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 
M

MM

 

 

 

 

rl [m.transition] : 

m.state1=>m.state2 

Figure 6.8: Mobile transition transformation between two mobile states 

 

 

 



 

   An integrated Mobile-UML/Maude system approach                                                                   112 

Rule6: Transformation of a mobile transition between a mobile state and a simple state 

 Name: EtatMToEtatSRMD  

Role: This rule makes it possible to convert a mobile transition between a mobile state and a 

simple state of the source diagram (Mobile statechart diagram) towards the rule corresponding 

to it in line Maude specification. This rule takes as its name, from the transition of the source 

diagram, the concatenation between the following attributes: SPF, DPF. (cf. Figure 6.9). 

M-UML Statechart Diagram Control 

Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 
M

M

 

 

 

 

rl [m.transition] : 

m.state1=>nm.state2 

Figure 6.9 Mobile transition transformation between a mobile state and a simple state 

 

Rule 7: Transformation of a remote transition between two mobile states 

Name: EtatMToEtatMRRMD 

Role: This rule makes it possible to convert a remote transition between two mobile states of 

the source diagram (Mobile statechart diagram) towards its corresponding in Maude 

specification. This transition takes its name from the transition of the source diagram, the 

concatenation between the attributes: SPF, DPF. (cf. Figure 6.10). 

M-UML Statechart Diagram Control Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 
R

MM

 

 

 

 

 

rl [R.transition] : 

m.state1=>nm.state2 

Figure 6.10: Remote transition transformation between two mobile states 

 

 



 

   An integrated Mobile-UML/Maude system approach                                                                   113 

Rule 8: Transformation of a simple transition between two mobile states 

Name: EtatMToEtatMRMD  

Role: This rule makes it possible to convert a simple transition between two mobile states from 

the source diagram (Mobile statechart diagram) to its corresponding Maude specification (cf. 

Figure 6.11). This transition takes as appeared in its name, from the source diagram transition, 

in this case, the agent does not move from one platform to another (both states are in the same 

platform). As a result, the agent can only be in one state simultaneously. 

M-UML Statechart Diagram Control 

Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 

MM

 

 

 

 

rl [nm.transition] : 

m.state1=>nm.state2 

Figure 6.11: Simple transition transformation between two mobiles states 

 

Rule 9: Transformation of an “agent return” simple transition between a mobile state and 

a simple state  

Name: EtatMToEtatSAG  

Role: This rule makes it possible to convert a stereotyped simple transition “agentReturn” 

between a mobile state and a simple from the source diagram (mobile statechart diagram) 

towards its corresponding Maude specification. This transition takes as its name from the 

transition of the source diagram, the concatenation between the following attributes: SPF, DPF. 

(cf. Figure 6.12). 

M-UML Statechart Diagram Control Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

  « agentreturn »
State2State1 

M

 

 

 

 

 

rl [agentreturn] : 

m.state1=>nm.state2 

Figure 6.12: Transformation of an “agent return” simple transition between a mobile state and a simple 

state 



 

   An integrated Mobile-UML/Maude system approach                                                                   114 

 

Rule10:Transformation of a remote transition between two simple states 

Name: EtatSToEtatSRR  

 Role: This rule makes it possible to convert a remote transition between two simple states from 

the source diagram (Mobile statechart diagram) to its equivalent in Maude specification. This 

transition takes as its name from the transition of the source diagram, the concatenation between 

the following attributes: SPF, DPF. (cf. Figure 6.13). 

 

Rule 11: Transformation of an “agent return” mobile transition between a mobile state 

and a simple state 

Name: EtatMToEtatSAG  

Role: This rule makes it possible to convert a stereotyped mobile transition “agentReturn” 

between a mobile state and a from the source diagram (Mobile statechart diagram) to its 

corresponding Maude specification. This transition takes its name from the transition of the 

source diagram, the concatenation between the following attributes: SPF, DPF. (cf. Figure 

6.14). 

M-UML Statechart Diagram Control Structure 

 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

 « agentreturn »
State2State1 

M
M

 

 

 

 

rl [m.agentreturn] : 

m.state1=>nm.state2 

Figure 6.14: Transformation of an “agent return” mobile transition between a mobile state and 

a simple state 

M-UML Statechart Diagram Control Structure 

 

Equivalent 

 

Corresponding Maude 

Rewriting Rules 

State2State1 
R

 

 

rl [R.agentreturn] : 

m.state1=>nm.state2 

Figure 6.13: Remote transition transformation between two simple states 



 

   An integrated Mobile-UML/Maude system approach                                                                   115 

Table 6.2: Representation of control structures in Maude. 
Rule 

number 

M-UML Statechart 

Diagram Control 

Structures 

 
 

Corresponding 

Maude Rewriting 

Rules 

 

Explanation 

01 

State 
 

 

nm.state 

A transaction of simple state on 

Maude rewriting rules 

02 

State

M

 

 

m.state 

A transaction of mobile state on 

Maude rewriting rules 

03  

State2State1 
 

rl[nm.transition]: 

nm.state1 => nm.state2 

a non-mobile transition linking a 

non-mobile state to a non-mobile 

state 

04 

State2State1 
M

M

 

rl [m.transition]: 

nm.state1 => m.state2 

a mobile transition linking a non-

mobile state to a mobile state 

05 

State2State1 
M

MM

 

rl [m.transition]: 

m.state1 => m.state2 

a mobile transition linking a mobile 

state to a non-mobile state 

06 

State2State1 
M

M

 

rl [m.transition]: 

m.state1 => nmstate2 

a mobile transition linking a mobile 

state to a non-mobile state 

07 

State2State1 
R

MM

 

rl [R.transition]: 

m.state1 => m.state2 

a remote transition linking two 

mobile states 

08 

State2State1 

M M

 

rl [nm.transition]: 

m.state1 => m.state2 

a non-mobile transition linking two 

mobile states 

09 

State2State1 

M
« agentreturn »

 

rl [agentreturn]: 

m.state1 => nm.state2 

In this case state2 = the base 

platform for this agent 

10 

State2State1 
R

 

rl [R.transition]: 

nm.state1 => 

nm.state2 

a remote transition linking two non-

mobile states 

11 

State2State1 
M

M

« agentreturn »
 

rl [m.agentreturn]: 

m.state1 => nm.state2 

Agent return come back to the 

initial state with a mobile transition 



 

   An integrated Mobile-UML/Maude system approach                                                                   116 

Finally, we can summarize the graph grammar proposed in our M-UML Statechart to 

Maude specification transformation approach in the Table 6.2 above. 

We now have all the components needed to construct our Maude specification 

corresponding to the Mobile Statechart Diagram. As a result, we must collect as a process the 

entire system composed of a restricted composition of several interactive processes that evolve 

dynamically by-passing messages between them. 

6.6 THE PROPOSED APPROACH  

6.6.1 Formalization of MSD 

The behavior of a software system based on mobile agents is given by a set of 

communicating mobile state-transition diagrams MSD 1 ... MSD k. The basic idea in our 

formalization is to reduce the work to a single MSD and generate its corresponding code. The 

latter consists of a well-defined program portion ready to check and execute it. This Maude 

code must inevitably include the aspect of mobility of states and transitions, so it must provide 

a reconfiguration of the Maude system each time an agent passes from one state to another. 

This allows for capturing in a clear way the mobility function, which is the objective of this 

work. 

6.6.2 Translation of M-UML diagrams to a formal specification Maude  

In the previous chapter, the concepts relevant to formal specifications were introduced 

obviously, the advantages of such a technique are numerous and offer interesting possibilities 

when they are used to develop a system. Also, in the same chapter, the Maude environment was 

introduced. With a solid mathematical basis, this language is a perfect candidate to specify a 

system formally. Besides the fact that it was designed with this objective, Maude offers the 

possibility of simulating the developed system, as will be discussed later in this section. 

6.6.3 The approach proposed translation of M-UML diagrams to Maude 

This section presents our approach to translating one of the most important M-UML 

diagrams into a formal Maude notation. The diagram used is the statechart diagram. The 

technique consists of systematically deriving a formal Maude description from this type of 

diagram analysis. 

Our approach presented here, which was mainly inspired by the works presented in [85, 

140] and [137], wich concerns only standard UML diagrams without regard to the mobility 

property; As a result, we present the Maude specification of M-UML statechart diagrams. 

Furthermore, we decompose the M-UML statechart into its essential elements to better define 



 

   An integrated Mobile-UML/Maude system approach                                                                   117 

the mapping to the corresponding Maude specification. More precisely, the proposed approach 

entails converting an M-UML statechart diagram into a Maude specification. The translation 

process is divided into three significant steps, summarized in the Table 6.3 below. Additionally, 

Figure 6.15 visually summarizes these same steps.  

The first step of the translation process begins with automatically translating the M-UML 

diagram to the first Maude specification. Then, we use the control structures (graph grammar) 

mentioned in de Maude, and we get the initial Maude code; we can say that, in reality, this step 

is the usual analysis step of the development process of a software system. It consists of the 

description of a system using the devices of UML Mobile. Then, of course, we try to cover the 

different artifacts of M-UML [41], such as mobile states, mobile transitions, and remote 

transitions. The proposed approach first considers the statechart diagram and suggests 

extending it to other diagrams. 

Automatic translation Adding mobility attributes to the 
transition  

The control structures in 
MAUDE

Execution & verification of 
the specification 

      Maude     
specification  

without mobility 

     

 Maude   specification  
intermidate 

(with mobility of the state )

Final executable 
specification in 

Maude language 

      M-UML 
     Diagram 

Step 1            Step 2   Step 3

Adding mobility attributes to 
the state  

       Use

 Translate to

 

Figure 6.75: Translation Process Overview 

 

The second step of the translation process comes after obtaining the initial code of the 

specification in Maude; we continue to enrich it to cover the aspect of mobility by adding 

mobility attributes to states with a Boolean predicate which enables us to perform some tests 

such as checking whether the condition is mobile or not. This step aims to distinguish between 



 

   An integrated Mobile-UML/Maude system approach                                                                   118 

the types of states used. An inter-diagram check is performed on all the structure of the diagram 

used to ensure the correctness of all the constituent elements of the statechart diagram. 

The third step of the translation process is the last step which consists in adding mobility 

attributes also to the transitions (the second component, which represents mobility). Finally, we 

obtain a complete Maude specification defining our M-UML state diagram. 

Table 6.3 The three steps of the translation Process 

 Brief description 

Step 1 It can be considered an automatic translation from the M-UML state diagram to 

the Maude specification since we directly use the control structures shown in 

Table 6.2 

Step 2 This stage consists in adding mobility feature to states 

Step 3 This stage consists in adding mobility feature to transitions, and we finally 

obtained a complete Maude specification representing our M-UML statechart 

diagram. 

 

 

We focused on the main elements that affect the mobile behavior of the object/agent in 

these diagrams in this study. In the future, we intend to broaden our approach to include all 

notational aspects of M-UML statechart diagrams, we will also try to work towards finding 

formal specifications for the structural diagrams, such as the M-UML class diagram, and then 

search for consistency between the structural and behavioral perspectives to achieve maximum 

systems guarantee, and it is the point that we will address in details in the following item. 

We can also highlight the importance of our proposed approach by comparing it in the 

Table 6.4 below with two of the most close and similar approaches, trying to clear the strengths 

and weaknesses of each approach. 

 

 

 

 



 

   An integrated Mobile-UML/Maude system approach                                                                   119 

 

Autours  Specification tool use  Pros  Cons 

Kezai et all 

[57] 

Integred M-UML /Maude • Affordable 

Complexity and better 

than the two others 

tools . 

• Equipped with tools 

for verification. 

• Support for 

simulation and 

reduction 

• Meduim Complex 

formal language that 

requires significant 

learning time. 

• Requires high 

technical skills. 

• The complexity make 

verification process 

more difficult and 

more expensive 

 

Bahri et all 

[57] 

Integred M-UML /Petri net  • Graphical 

modelisation 

• Describe in formal 

and precise manner  

• Equipped with tools 

for verification 

 

• Limits in 

expressiveness 

• Requires high 

technical skills 

Belghiat et all 

[57] 

Integred M-UML /π-calculus • Describe in formal 

and precise manner . 

• High expressiveness 

• Mobile Process 

Modeling Support 

• Complex formal 

language that requires 

significant learning 

time . 

• Requires high 

technical skills 

• The complexity make 

verification process 

more difficult and 

more expensive. 

• Not equipped with 

tools for verification 

Table 6.4 Comparative of our approach with the closest similar methods 

 



 

   An integrated Mobile-UML/Maude system approach                                                                   120 

In summary, the 3 approaches allow to describe distributed systems in a formal and 

precise way with a high expressiveness, which allows to model in a detailed way these systems, 

including their behavior, their interaction and their structure. Maude system and π-calculus 

share that they are formal algebraic languages on the other hand petri net is a language with 

graphical modeling, while Maude is less complex and contains verification tools, π-calculus 

and more complex and does not contain any verification tools but it does it with external tools 

6.7 M-UML AND INCONSISTENCIES  

Using these different diagrams, M-UML, like UML, offers the possibility of describing 

several "views" of the same system. However, these different views may conflict as they may 

present inconsistencies [ 141], and here, for the mobility paradigm, it is even worse. Moreover, 

experience shows that many modeling faults are perceptible through detecting inconsistencies 

[142, 143, 144, 145]. Inconsistency is the violation of a property associated with the UML 

language, which must be respected by any UML model [146]. Indeed, the coherence can 

concern a single diagram (we speak of intra-diagram coherence) or several diagrams (we talk 

of inter-diagram coherence). Among the intra-diagram inconsistencies that must be taken care 

of and dealt with, we can mention the existence of a transition whose source state is a final state 

in a statechart diagram and for other types of diagrams, the presence of cycles in an inheritance 

graph for a class diagram, and the violation of the message sending order of a synchronization 

point in a communication diagram (for example, the message number blocked is less than the 

number of the blocking message). Using the various diagrams, the representation of complex 

systems can generate inter-diagram inconsistencies. For example, one can quote, among others, 

a call event of a statechart diagram which do not appear as a method in the corresponding class. 

Also, a message sent (procedure call) in a communication diagram is not listed as a method 

with proper visibility in the class of the recipient object. Furthermore, the final state of a finite 

system does not consist of the different final states of the other objects involved in the 

communication diagram. 

Reviewing and discovering these contradictions will be crucial to obtaining safe systems 

free from faults and errors. For this, finding a formal specification of diagrams must be 

inevitably followed by an essential step, which consists of checking the consistency of these 

diagrams. Then, through their formal representation to return to make the necessary corrections 

in the semi-formal prototype, such as UML or M-UML. 



 

   An integrated Mobile-UML/Maude system approach                                                                   121 

6.8 DISCUSSION OF THE PROPOSED APPROACH  

We tried in this approach to provide an understandable, readable, and simple 

formalization by immediately linking the elements of mobile state-transition diagrams to their 

corresponding Maude expressions. 

We have focused here on the essential elements of mobile statechart diagrams to focus 

on mobility (and concurrency) which is our main concern, and for simplification purposes. We, 

therefore, did not consider other elements that we judged that do not affect the mobile behavior 

of these diagrams, such as, for example, the historical and deep historical pseudo-states, the 

junctions and the decisions. Still, our formalization can be extended to all elements of mobile 

state-transition diagrams by a structural induction/recursion paradigm thanks to the formal 

definition of the transformation. 

The mobility provided by the Maude specification allows the trivial modeling of the 

agent's movements and the type of each state between simple or mobile state in real-time. In 

our approach, the scope extrusion mechanism in Maude is used to model the mobility depicted 

in the diagrams. 

It is not useful to discuss how to prove that the semantics are preserved after the 

transformation of the mobile statechart diagrams into Maude since the former is a notation and 

the latter is a formal language. Mathematically speaking, there is no way to prove the 

correctness of our semantics. However, we can verify the soundness and completeness of the 

transformation by model checking using a verification tool of the same language full Maude 

[45]. It can be shown that the conversion is sound, i.e. If the system Maude model checking 

tool says that an error (the deadlocks, for example) exists in the input, then it should be the case 

that the error (the deadlocks, for example) exists in the specification MSD. We can also show 

that the translation is complete, i.e., if the specification has an error (deadlock, for example), 

then the model checking tool will be sure to find it. In fact, we experimented with our 

transformation with several real-world examples in both directions (solidity and completeness) 

and got good results. 

6.9 POTENTIAL LIMITS  

The method proposed in this thesis has some limitations. First, the process of adding 

mobility attributes to states and transitions (Step 2 and Step 3) is done manually at the moment. 

However, these two steps can certainly one day be automated. 



 

   An integrated Mobile-UML/Maude system approach                                                                   122 

In addition, the generation of the Maude source code when applying the M-UML diagram 

translation to a formal Maude notation is intended to be automatic. The contribution of this 

dissertation is that it is considered the first experience of using rewriting logic to develop an 

adequate notation to represent a mobile agent-based system formally. The M-UML diagram 

that we will start with in this project is the state-transition diagram. However, we see many 

other diagrams that are very interesting to continue working with, either in the behavioral 

aspect, like the activity and sequence diagram or in the structural aspect, like the class diagram. 

From a state-transition diagram chosen to sometimes very rich structures expressing a large 

number of characteristics of a system, it is also very rich in its notations of states and transitions, 

the input and output instructions, etc. 

Finally, the proposed approach considers only one M-UML statechart diagram at a time. 

A large system will obviously include several of these diagrams. It will then suffice to apply 

the same process several times, one statechart diagram at a time, to validate an entire system. 

The static structure of the system will already be described at this time, and this piece of Maude 

source code will not have to be repeated each time insofar as no correction is to be made; here 

it is possible to move to a higher level of verification by ensuring consistency between diagrams 

of the system, but this idea goes beyond the scope of this thesis.  

6.10 CONCLUSION  

In this chapter, we have proposed an integrated semi-formal/formal approach to 

specifying and verifying mobile agent-based software systems using MSD and the Maude 

language. The approach consists in defining a set of formal rules which define the formal 

semantics of the behavior of the elements of the mobile state diagrams (MSD) using the Maude 

language. 

We start by proposing a graph grammar for the automatic transformation of mobile state 

diagrams into a Maude specification in three simple and clear steps in order to be able to 

perform automatic verifications. We used the compiler associated with this language, Core 

Maude, for our verification tests. 

We have focused on the main elements that model the mobile behavior of agents in these 

diagrams. 

As an extension of the approach, we plan to extend it to take into account all elements of 

mobile statechart diagrams. Therefore, more complex systems will be covered by the approach. 



 

   An integrated Mobile-UML/Maude system approach                                                                   123 

We also plan to continue our future work by completing our project. In addition, we will 

transform all other mobile UML diagrams, such as mobile sequence and mobile activity 

diagrams, because they represent different aspects of a system and provide multi-view 

modeling. 

Another second perspective that we consider very important is to check the consistency 

between different diagrams which express several points of view of a mobile UML after 

obtaining the formal specification for each one. 

The next chapter will illustrate and test the approach with a complete case study.



 

 124 

  

 

 

 

Chapter 7 

 

 Case study 

 

 



 

Case study                                                                                                                                                                         125 

Chapter 7: Case study  

7.1 INTRODUCTION  

The previous chapter presented a formal framework for translating and verifying M-UML 

state-transition diagrams using the Maude environment. This process, at first glance, may seem 

abstract and difficult to understand. To better illustrate this, a case study is presented in this 

chapter: 

A structure will be followed to illustrate the translation process as follows: 

1. Presentation of the example and the M-UML diagram associated with it; 

2. Application of the process of translating M-UML diagrams into a formal 

Maude description and validation of the system description using simulations: 

3. Application of the process of formal verification of UML diagrams with the help of 

properties of the system, of desirable and undesirable nature, stated using linear temporal logic 

(LTL ). 

We will start by giving a complete case study modeled by an MSD diagram. Next, we 

will show how to generate our Maude specification step by step. We will then proceed to the 

analysis and verification of the Maude specification generated using the Code Maude system 

compiler. 

7.2 PRESENTATION OF THE EXAMPLE  

We will illustrate our approach defined in the previous chapter by applying it to a 

specification of a software system based on mobile agents borrowed from [41]. It models a 

mobile voting system VS, which consists of three interacting agents, a stationary agent VA 

(voting authority), a mobile agent VC (vote collector), and a stationary agent VM (vote 

manager). The VC is mandated by a VM; its role is to collect the votes from the polling stations. 

During an election period, the VA begins the voting process by sending the VC to its VM 

manager. The VC obtains the list of voters from the VM, then by interacting remotely with the 

VA agent it obtains the log of the list. 

After that, he visits the polling stations in their place to collect the polling results and 

sends them to the VM that mandated that VC. 



 

Case study                                                                                                                                                                         126 

7.2.1 Modeling in MSD  

The behavior of the system is defined through a diagram of communicating mobile 

statechart, one for each agent, as illustrated in Figure 7.1 . That shows the behavior of the VC 

Mobile Agent. First, the VC is in the ReadyToMove (RTM) state at its base place (P1) when it 

receives the  StartVotingProcess event, and then it moves through a mobile transition to the 

VotingManagerReached (VMR) state in another seat (P2). At VMR, the VC mobile agent goes 

through a normal transition to the WaitForList (WFL) state. The transition involves sending a 

GetVotersList signal to the VM through asynchronous communication to get the voters list. In 

WFL, when the mobile agent receives a VotersList event, the VC interacts remotely with VA 

by executing the remote action LogList, which consists of a synchronous call to get the list log, 

and then it moves to the state ReadyToCollectVotes (RCV). In RCV, the mobile agent VC 

moves through a mobile transition to the WaitingForVote (WFV) state in place of the first 

voting station (P3). The transition has a GetVote action to get the votes. Finally, the mobile 

agent VC performs an « agentreturn " transition to return to its base place (P1). The transition 

has an action which consists in sending a Votes message to VM by asynchronous 

communication to give it the results of the vote of the station. 

7.3 APPLICATION OF THE TRANSCRIPTION PROCESS OF M-UML 

DIAGRAMS  

Many works try to propose a specification for mapping a UML diagram to a formal 

method and, more precisely, to a Maude specification [127, 52, 59]. However, the difference 

between UML and M-UML lies in mobility, so the modeling of mobile agent applications takes 

into account the following concepts: route, location, migration, remote cloning, and security.  

For a successful Maude specification for an M-UML, we must inevitably take into 

consideration at least one of the mobility properties (the route, location, migration, remote 

cloning, or security). 

In the literature, there is a lack of M-UML examples. The best way to successfully provide 

reliable case studies is to use case studies by Kassem Saleh [41] related to a mobile voting 

system and try to find the Maude specification for our mobile statechart diagram. 

 



 

Case study                                                                                                                                                                         127 

ReadyToMove(RTM) VotingManagerReached(VMR)

WaitingForList (WFL)

ReadyToCollectVotes(RCV)WaitingForVote(WFV)

M

M

MM

M

M

R

                          
          / VM.GetVotersList

 « AgentReturn »

VotersList /                                                  

VA. LogList   

                                        

 /  GetVote   

 

   StartVotingProcrss    [VM ok]/    M

 /  VM.Votes   

 

Figure 7.1:Mobile Statechart diagram of the Vote Collector (VC.) [41] 

 

We start by finding the Maude specification of the statechart diagram for the case study: 

a mobile voting system, represented in Figure 7.1.  

 We use, in what follows, several examples to illustrate the defined process to support the 

translation of our statechart diagram into a Maude specification. To understand the initial code, 

see the explanation of state abbreviations in Table 7.1 and the explanation of transition 

abbreviations in Table 7.2.  

Table 7.1: State abbreviations. 

Abbreviation Explanation 

RTM Ready To Move 

VMR Voting Manager Reached 

WFL Waiting For List 

RCV Ready to Collect Votes 

WFV Waiting For Votes 



 

Case study                                                                                                                                                                         128 

 

Table 7.2:Transition abbreviations. 

 

Abbreviation Explanation 

SVP Start Voting Process 

GVL Get Voter List 

VLL Voter List Logger 

GV Get Vote 

Agentreturn  The return of the agent to the initial platform  

 

A rewrite theory, specified in Maude as a system module, provides an executable 

mathematical model of a system. We can use the Maude specification to simulate the system 

so specified. But we can do more. Under appropriate conditions, we can check that our 

mathematical model satisfies some important properties or obtain a useful counterexample 

showing that the property in question is violated.  

To apply our approach to the proposed example, we will try to sequentially follow the 

steps mentioned in the previous section to obtain the desired result, which is a code similar to 

our initial M-UML statchart diagram. 

This section demonstrates the possibility of a simpler, but beneficial model checking, 

namely, checking the model for constants, which can only be accomplished with the search 

command. 

First step: Validation of the generated description of vote code (the initial code generated) 

We will follow the path of building our Maude specification to reach our final 

specification in parallel with testing some properties to verify the integrity or malfunction of 

our specification of the system. 

we start first with an automatic translation from the M-UML diagram to Maude 

specification. We use the control structures in Maude and we obtain the following Maude code 

shown in Figure 7.2. 

• Property 1:  The reachability problem is one of the most important issues in the 

verification of systems [150]; for this, we have taken it as the first property to be dealt 

with and checked: This command enables us to search for all reachable states beginning 

with RTM.: search in vote: RTM =>* s:State. 



 

Case study                                                                                                                                                                         129 

 

 

Figure 7.2:Modeling vote statechart 1 in Maude 

 

Knowledge of the reachable states allows us to build an accurate perception of the 

system's state and enable us to make changes to suit our needs or correct it if there are errors. 

• Property 2:  This command enables us to show the search graph (which should be like 

the diagram): show search graph. 

Displays the search graph generated by the last search [115]. 

• Property 3:  This command enables us to search for states that reach RCV or WFV 

beginning from RTM: 

search in vote: RTM =>* s:State such that (s:State == RCV or s:State == WFV) [115],. 

The module vote is the main Maude code subject, and where the search takes place can 

be omitted; 

RTM is the starting term; 

s:State is the pattern that has to be reached; 

– =>* means a proof consisting of none, one, or more steps,  

(s:State == RCV or s:State == WFV) or the Condition states an optional property that 

has to be satisfied by the reached state; the syntactic form of the condition is the same as 

the one of conditions for conditional equations and memberships. 

 



 

Case study                                                                                                                                                                         130 

Second step: Validation of the generated description of vote2 code (the intermediate code 

generated) 

After we applied some commands to the initial Maude code and verified its correctness, 

we go to the second step in our transcription process by adding mobility attributes to states with 

a Boolean predicate that checks if a state is a mobile state and we obtained the Maude code 

shown in Figure 7.3.  . 

Adding mobility attributes to states as all states with an M box in  Figure 7.1 are mobile 

states and it is encoded by: eq M(X) = true where X is a state, and the rest of the states are not 

mobile states which in turn encodes by: eq M(s) = false [owise] 

In this second step, which we consider an intermediate step, we will work on adding the 

mobility feature for states that are characterized by this characteristic so that at the end of this 

process, we will be able to distinguish between mobile states and non-mobile states. 

• Property 4:  This command enables us to search for all mobile states beginning from 

RTM: search in vote2: RTM =>* s:State such that M(s:State).  

• Property 5:  This command enables us to search for all non-mobile states beginning 

from RTM :  Search in vote2: RTM =>* s:State such that not M(s:State). 

We note from the Maude code, that we used a specific property to give the mobility 

feature by using a boolean predicate that allows us to check if a state is a mobile state. 

This mobile property to be checked is described by using a specific property specification 

logic, namely, linear temporal logic (LTL) (see [152, 153] and [115]), which allows the 

specification of specific properties, in our case, the mobility feature, In other, more general 

cases, we can touch upon the safety properties (ensuring that something bad never happens) 

and liveness properties (ensuring that something good eventually happens). Then, the 

reachability analysis tool can be used to check whether a given initial state, represented by a 

Maude term, fulfils a given property. 



 

Case study                                                                                                                                                                         131 

 

Figure 7.3:The model with mobility attributes on states in Maude 

Third step: Validation of the generated description of vote3 code (the final code generated) 

After we made sure in the previous step that the generated code enables us to distinguish 

between mobile and non-motile states, we now move on to the third and final step in our 

transcription process by adding mobility attributes to transitions. We find that we obtain a 

complete Maude specification that represents our M-UML statechart diagram presented in the 

Figure 7.4 . 

 

Figure 7.4: Final Maude specification for M-UML statechart diagram. 

 



 

Case study                                                                                                                                                                         132 

We have added mobility attributes to transitions by: 

First, we declared that a new type of specification needs to be described as transition by 

the identifier sort as: 

Sort TransitionType. 

Secondly, we make the operator's declarations for this transition to three types:  Normal, 

Mobile, and Remote transitions, and It can be expressed thus 

ops N M R : -> TransitionType [ctor] 

Thirdly, we declared a configuration, knowing that a configuration is a state plus the 

information on how you reached it, and it can be expressed thus 

op< _ , _ > : TransitionType State -> Configuration . 

Finally, it defines and adjusts transitions by making them between configs, not just states 

it, and it can be expressed thus 

rl [Transition-name ] : < specification-type , state-source> =>< transition-type, state-

destination > . 

For example, this rule says that from a configuration that was reached through some 

transition type t (doesn't matter which) you can move to state VMR through a transition of type 

M (Mobile) see Figure 7.1. 

To check the last feature we added to our Maude code, which is a feature of transition 

mobility or not (Normal, Mobile, and Remote), we will suggest two queries in the following 

that allow us in the first query to search for all accessible configurations starting from a specific 

state with the customization of the nature of its transition in our example we suggested to start 

with the state RTM and the nature of the normal transition encoded by N to reach all possible 

configurations in our system. 

• Property 6: This command enables us to search for all reachable configurations 

beginning from < N , RTM >: search in vote3: < N, RTM > =>* < t: Transition Type, 

s: State >.   

In our second query to ascertain the nature of the transition, we will continue to check the 

transition feature by checking if there are specific states that were not reached by a particular 

transition: 

 



 

Case study                                                                                                                                                                         133 

• Property 7: This command enables us to check if there are mobile states that are not 

reached through a mobile transition: search in vote3: < N, RTM > =>* <t: 

TransitionType,s: State> such that t:TransitionType =/= M and M(s:State). 

1.1 IMPLEMENTATION OF OUR GENERATED CODE UNDER THE MAUDE SYSTEM 

In this section, we will try to perform all the queries proposed in the previous section 

7.3under the Maude system to get graphical results and then try to check that the Maude code 

obtained matches the base mobile state diagram in Figure 7.1 by partially checking each query 

whether is it correct or false. 

We will try to shorten the method of launching a Core Maude 2.6, which is found in all 

its details in[115], Knowing that we used a Maude version on the Windows operating system 

directly, unlike the original on Unix . 

When we try to execute this Maude module with Core Maude 2.6, we obtain the following 

interface result.  

 

Figure 7.5: Maude's vote  statechart code execution. 

 

We note that we do not need to write our units in the prompt, so we can enter one or 

several units by saving them in a file and then entering the file with the in or load commands 

(the only difference between both commands is that the latter does not produce detailed output 

as modules are entered). To enter the file vote-state.maude above, we can write the following 

command to enter it: 

Maude> load vote-state.maude 



 

Case study                                                                                                                                                                         134 

Check the property 1 : 

We start by executing the first command that will allow us to search for all reachable 

states beginning from RTM: 

Search in vote: RTM =>* s: State. 

 

Figure 7.6: "search command" execution for Maude vote  statechart 

 

If we look at  Figure 7.1, which shows our mobile statechart diagram, we can confirm 

the path of our example (RTM => VMR => WFL => RCV => WFV); as it indicates our 

executable code shown in Figure 7.6, we confirmed that this property is true. 

Check the property 2: 

It is also possible to print out the current search graph generated by a search command 

using the following command show search graph. After the above search, we get (which must 

be exactly identical to the diagram): 

Show search graph. 

 



 

Case study                                                                                                                                                                         135 

 

Figure 7.7: " Show graph instruction " execution for Maude vote statechart 

 

If we look at  Figure 7.1, which shows our mobile statechart diagram, we can confirm 

the path of our example (RTM => VMR => WFL => RCV => WFV => RTM);In addition, this 

show search graph command also allows us to show all the transitions between statesex: arc 

0→state 1 (r1 RTM->VMR [label SVP].) Etc, thus creating a comprehensive picture of our 

system, as it indicates our executable code shown in Figure 7.7 (this code matches our 

diagram), we confirmed that this property is true.  

Check the property 3 : 

We are now executing the command that will allow us to search for states that reach RCV 

or WFV beginning from RTM: 

Search in vote: RTM =>* s:State such that (s:State == RCV or s:State == WFV). 

 

 



 

Case study                                                                                                                                                                         136 

 

Figure 7.8: " Search specific path " execution for Maude vote  statechart 

 

Figure 7.8 shows that there is a path that allows us to get to the two states (RCV or WFV) 

from a source state (RTM). If we look at  Figure 7.1, which shows our mobile statechart 

diagram, we can confirm this condition, so we confirmed that this property is true.  

We note that the previous execution window in Figure 7.8 gave two solutions; the first 

solution RCV related to the first case and gave us state No. 4, which is the same order of the 

state from Figure 7.1, the same thing for the second found solution WFV that pertains to the 

second case and gave us state No. 5 which is the same order of the case from  Figure 7.1. 

From here, we started working on the second intermediate code vote2, and inquired about 

the nature of the states starting from the system's first state (RTM). 

Fortunately, we have only two types of states (mobile, non-mobile) here in vote2. 

Therefore, after adding the lines that give some states the mobility feature and distinguishing 

the rest by not mobility, it will not be difficult to use queries for this. Two queries will be 

enough to identify and verify the mobility feature for each state that constitutes the diagram; 

let's get started with the mobile states. 

 

 



 

Case study                                                                                                                                                                         137 

Check the property 4 : 

We are now executing the command that will allow us to search for all mobile states 

beginning from RTM: 

search in vote2: RTM =>* s:State such that M(s:State) 

 

 

If we look at Figure 7.1, which shows our mobile statechart diagram, we can confirm that 

there are four mobile states (VMR, WFL, RCV, and WFV); as it indicates our executable code 

shown in Figure 7.9, we confirmed that this generate Maude specification is true and very 

expressive and accurate. 

Check the property 5 : 

We continue here with the second part of the nature of states, which is the non-mobile 

states.  We are now executing the command that will allow us to search for all non-mobile states 

beginning from RTM: 

Search in vote2: RTM =>* s:State such that not M(s:State). 

If we look at Figure 7.1, which shows our mobile statechart diagram, we can confirm that 

there is only one non-mobile state (RTM); as it indicates our executable code shown in Figure 

7.10, we confirmed that this generated Maude specification is true and very expressive and 

accurate. 

Figure 7.9: " search for all mobile states " execution for Maude vote 2 statechart 



 

Case study                                                                                                                                                                         138 

We will start inquiries on the final code obtained ,as in the previous inquiries, we will try 

to clarify the importance of each query used and to show the method for verifying the proposed 

properties for our final code obtained and trying to find out whether it matches our initial mobile 

statechart diagram or contains errors. 

 

Figure 7.10: "search for all non-mobile states " execution for Maude vote 2 statechart 

All reachable configurations starting from < N , RTM > are all possible configurations 

that make up our system, thus, obtaining a comprehensive and accurate visualization of the 

diagram representing our system and even reshaping and drawing the diagram from the result 

of executing this command without going back to the original diagram.   

Check the property 6 : 

We are now executing the command that will allow us to search for all reachable 

configurations beginning from < N , RTM >: 

search in vote3: < N , RTM >  =>* < t:TransitionType , s:State > . 

If we compare Figure 7.1, which shows our mobile statechart diagram, and our 

executable previous code shown in Figure 7.11, we can confirm that this generated Maude 

specification is true and very expressive and accurate because the code shows us all states with 



 

Case study                                                                                                                                                                         139 

their transitions (< t=N ,s= RTM ><t= M ,s= VMR ><t=N , WFL >< t=R , s=RCV >< t=M , 

s=WFV >), knowing that N = Normal, M = Mobile, and R = Remote transitions. 

 

Figure 7.11: " search for all non-mobile states with condition " execution for Maude vote 3 

statechart 

 

Check the property 7 : 

Knowing all the possible configurations that make up our system with the addition of 

special conditions for the allow or disallow test is the last command we will make about our 

generated Maude specification, this type of test allows us to get quick results even with very 

complex systems, It also allows us to inspect the initially proposed specifications for any system 

and thus verify the validity of these specifications or discover errors early in the design stage 

of the system, in our example, we wanted to know if we could access to a mobile state that is 

not reached through a mobile transition: 

We are now executing the command that will allow us to check if there are mobile states 

that are not reached through a mobile transition: 

search in vote3: < N, RTM > =>* < t:TransitionType , s:State > such that 

t:TransitionType =/= M and M(s:State). 

 



 

Case study                                                                                                                                                                         140 

 

Figure 7.12: " Check for mobile states not reached via mobile transition " execution 

This rewriting rule is true, because from the Figure 7.12 it shows us that there exist two 

mobile states (WFL and RCV) that are not reached through a mobile transition. When we check 

these properties through a comparison with our mobile statechart diagram of the voting system, 

we find that WFL is a mobile state and it was not reached through a mobile transition; however, 

it was reached through a normal transition (VM.GetVoterList). The second mobile state RCV 

was also not reached through a mobile transition, because it was reached through a remote 

transition (VM.VoterList/Logger.LogLIst). 

A few implementations of verifications instructions were sufficient because we wanted 

to demonstrate the efficacy of our approach only through the chosen example. Still, we can 

extend it to more implementation of all the instructions provided by the Maude system tool or 

on other examples as well. 

7.5 CONCLUSION  

In this chapter, we have shown the application of our approach. We used a complete case 

study which consists of a specification of an electronic voting system. We have illustrated step-

by-step how to apply the approach and how to explore its various advantages in modeling and 

analysis. We have also defined the main verification tasks that can be done with the derived 



 

Case study                                                                                                                                                                         141 

Maude code. Finally, we have tried to give an overview of what can be checked and obtained 

encouraging results. 

In future work, we plan to extend our approach to account for all notational elements of 

UML mobile statechart diagrams. Consequently, more mobile agent-based software systems 

will be covered. We also plan to develop a fully integrated environment for the automatic 

generation and analysis of Maude specifications and formalize more M-UML diagrams using 

Maude specifications. We could focus on structural aspects, like mobile class diagrams, or 

behavior aspects, like mobile sequence diagrams and mobile activity diagrams, since they 

represent different aspects of a mobile system. 

 

 

 

 

 

 

 

 

 



 

 142 

 

 

  

General 

conclusion and 

perspectives 

 

 

 



 

General conclusion and perspectives                                                                                                                                     143 

General conclusion and perspectives 

In this thesis, we are interested in the paradigm of mobile agents. We introduced in the 

first chapter the notion of agent in general, followed by the paradigm of mobile agents. The 

observation at this level has shown that the development of mobile agent applications comes up 

against problems inherent in security and interoperability in the various heterogeneous hosting 

platforms. The insufficiencies of the efforts for the standardization of these platforms pushed 

the researchers to explore other horizons for better support and implementation of the 

applications based on mobile agents. 

On the other hand, very few research works focus on methods and tools for the analysis 

and design of mobile agent systems. 

With this in mind, we have introduced in the third chapter, The first contribution of this 

thesis consists in completing previous comparative studies of the different proposals that exist 

in the literature of approaches to modeling software systems based on mobile agents, especially 

on the factor of coverage via the diagrams by a statistical study. Based on the results of this 

study, we have adopted M-UML and extended it because of the advantages it offers over others.  

The interest of such a contribution is to reinforce the robustness of applications in distributed 

systems by modeling them with standard tools such as UML. However, the flip side is that UML 

is a semi-formal modeling language; this aspect considerably reduces the possibility of 

verification and validation of the modeled systems. 

The second part of our thesis introduces, in the fifth chapter, the Maude system as an 

alternative which makes it possible to compensate for the insufficiencies of the semi-formal 

approach of UML for the verification and the validation of complex systems and this, by drawing 

from the genesis of formal tools, or else, the richness and completeness of system tools Maude. 

Our second and significant contribution, presented in the sixth chapter, proposes an 

automated approach based on model transformation technique, presented in the fourth chapter 

using the graph grammar. It is a question of transforming the diagram of transition states of M-

UML as a graph towards a formal specification. The generated Maude specification will be 

considered as a formal semantics, which will be used after that for the analysis, such as early 

detection of errors ( deadlocks , livelocks , etc ...), checking if certain properties are satisfied, 

and (or) checking equivalence between different diagrams, using Maude system analysis tools, 



 

General conclusion and perspectives                                                                                                                                     144 

based on our contribution, was the subject of a publication in a specialized journal (JACIII JAN 

2022). 

Although we have achieved the objectives set for this thesis, in future work, we intend 

to transform the other extended UML diagrams remaining towards its Maude specifications 

corresponding especially to the structural aspect diagrams like the class diagram, for finalized 

to study the coherence between the two modes of structural and behavioral aspect. 

In future work, we will plan to include other UML diagrams and add them to our 

integrated environment (such as mobile sequence and activity diagrams). 

In this way, we will guarantee that all views of a mobile agent-based system will be 

covered. Another problem we are currently working on is hiding the verification process from 

the average user, who does not usually master formal techniques, by making an interface of 

abstraction of the verification process. 

An interesting perspective of this work consists of the attempt to use the tools of artificial 

intelligence to detect design errors and work to optimize them via the exploitation of formal 

methods. 

Where recent studies [154] indicate the main achievements and future potential of 

artificial intelligence to contribute effectively to the development of software through the 

automation of lengthy routine jobs in software development and testing using algorithms, e.g. 

for debugging and documentation, AI thus contributes to speeding up development processes 

and realising development cost reductions and efficiency gains. AI, to date depends on man-

made structures and is mainly reproductive. Still, the automation of software engineering 

routines entails a major advantage: Human developers multiply their creative potential when 

using AI tools effectively. 

 

 

 

 

 



 

Bibliography                                                                                                                          145 

Bibliography 

[1] M. Leclercq, V. Quema, J.-B. Stefani, Dream, Proceedings of the 3rd Workshop on 

Adaptive and Reflective Middleware  -. (2004). doi:10.1145/1028613.1028625. 

[2] J.K. Bennett, J.B. Carter, W. Zwaenepoel, Munin: Distributed shared memory based on 

type-specific memory coherence, Proceedings of the Second ACM SIGPLAN 

Symposium on Principles & Practice of Parallel Programming - PPOPP '90. (1990). 

doi:10.1145/99163.99182.  

[3] H. Guyennet, J.-C. Lapayre, M. Trehel, A new consistency protocol implemented in the 

calif system, Proceedings Fourth International Conference on High-Performance 

Computing. (n.d.). doi:10.1109/hipc.1997.634474. 

[4] G. Gardarin, Le client-serveur, Eyrolles, Paris, 1997. 

[5] S. Russsell, P. Norvig, Intelligence artificielle, Pearson Education, France, 2006. 

[6] J. Ferber, Les systèmes multi-agents Vers une intelligence collective, Masson, 1995. 

[7] S.Perret, Agents mobiles pour l’accès nomade à l’information répartie dans les réseaux de 

grande envergure, thèse de doctorat, Université Joseph Fourier - Grenoble I, 1997. 

[8] P. Ciancarini, M. Wooldridge, Agent-oriented software engineering (workshop session),     

Proceedings of the 22nd International Conference on Software Engineering - ICSE '00. 

(2000). doi:10.1145/337180.337833. 

[9] B.Drieu, L'intelligence artificielle distribuée appliquée aux jeux d'équipe situés dans un 

milieu dynamique, l'exemple de RoboCup 

[10] J.-P. Briot, Y. Demazeau, Principes et architecture des systèmes multi-agents, Hermes 

Science Publications, Paris, 2001.  

[11] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, Masif: The 

OMG Mobile Agent System Interoperability Facility, Personal Technologies. 2 (1998) 

117–129. doi:10.1007/bf01324942. 

[12] J. Dale, Welcome to the Foundation for Intelligent Physical Agents. http://fipa.org/. 

[13] D. B. Lange, M. Oshima, Programming And Deploying Java Mobile Agents with Aglets, 

1998. 

[14] ODYSSEY(GeneralMagic).URL:http://www.genmagic.com/technology/ 

mobile_agent.html 

[15] AGLETS (IBM Corporation). URL:http://www.trl.ibm.co.jp/aglets/. 

http://fipa.org/
http://www.trl.ibm.co.jp/aglets/


 

Bibliography                                                                                                                          146 

[16] DIMA, OASIS, Laboratoire d‟Informatique de Paris 6 (LIP6) <URL 

:http://wwwwpoleia.lip6.fr/~guessoum/DIMA.html>. 

[17] C.C.D. Cros, Padiou Gérard, Agents mobiles coopérants pour les environnements 

dynamiques, thesis, National Polytechnic Institute of  Toulouse 2005.  

 [18] G. Vigna, Mobile agents: Ten reasons for Failure, IEEE International Conference on 

Mobile Data Management, 2004. Proceedings. 2004. (n.d.). 

doi:10.1109/mdm.2004.1263077. 

[19] JADE: Java Agent Development Framework. <URL: http://www.jade.cselt.it/>. 

[20] OMG, Object Management Group, (2011). Unified Modeling Language, Superstructure, 

version 2.4,http://www.omg.org/spec/UML/2.4. 

[21] A. Maria, Introduction to modeling and Simulation, Proceedings of the 29th Conference 

on Winter Simulation - WSC '97. (1997). doi:10.1145/268437.268440. 

[22] M. Minsky, Matter, Mind, and Models. In: Minsky, M., Ed., Semantic Information     

Processing, MIT Press, Cambridge, M.  425-432 , M. (1968). 

[23] P.Alain Muller, From object modeling of software to meta-modeling of computer 

languages, HDR thesis presented to the University of Rennes . 

[24] L. Audibert, UML 2.0 , University Institute of Technology of Villetaneuse, IT  

http://www-lipn.univ-paris13.fr/audibert/pages/enseignement/cours.htm, November 

2007. 

[25] J. Celso Freire Junior, J. Jean-Pierre Giraudin – Agnès Front Atelier MODSI: A Meta -

Modeling and Multi-Modeling Tool. Network Systems Software Laboratory – IMAG BP 

72 - 38402 – Saint Martin d' Heres Cedex – France. 

[26] J.J. Odell  – Specifying structural constraints. Journal of Object Oriented Programming , 

1993, pp. 12–16. 

[27] S.Cook ,J. Daniels , Object-Oriented Modeling with Syntropy . Designing Object Systems 

- , Prentice Hall, 1994. 

[28] J. Rumbaugh ,M. Blaha ,W. Premerlani , F. Eddy ,W. Lorensen Oriented Modeling and 

Design, Object – Prentice Hall, 1991. 

[29] J.M. Spivey ,  The Z Notation, A reference Manual. – Prentice Hall, 1989. 

[30] A. Hall, Seven myths of formal methods, IEEE Software. 7 (1990) 11–19. 

doi:10.1109/52.57887.  

[31] J.P. Bowen, M.G. Hinchey, Seven more myths of formal methods, IEEE Software. 12 

(1995) 34–41. doi:10.1109/52.391826.  

[32] R. Miles, K. Hamilton, Learning UML 2. 0, O'Reilly, Cambridge, 2006.  

http://www.jade.cselt.it/
http://www.omg.org/spec/UML/2.4
http://www-lipn.univ-paris13.fr/audibert/pages/enseignement/cours.htm


 

Bibliography                                                                                                                          147 

[33] J. Rumbaugh , I. Jacobson, and G. Booch , The Unified Modeling Language Reference  

Manual . Addison Wesley Longman, Inc. , 1998 

[34] T. Penders, UML Bible, Wiley Pub., Indianapolis, IN, 2003.  

[35] M .Fowler UML distilled: A brief guide to the standard object modeling language, 

Addison Wesley, 2004.  

[36] H. Idrissi, A. Revel, E. Souidi ,  Security of Mobile Agent Platforms using RBAC based 

on Dynamic Role Assignment. , International Journal of Security and its Applications · April 

2016  

DOI: 10.14257/ijsia.2016.10.4.13 

 

[37] G. Booch , J. Rumbaugh , I. Jacobson, the Unified Modeling Language User Guide 

second edition , Addison-Wesley Professional, USA, 2005 

[38] H.-E. Eriksson, M. Penker , B. Lyons, and D. Fado , UML2 Toolkit . John Wiley & Sons, 

2004 

[39] H. Baumeister, N. Koch, P. Kosiuczenko, M. Wirsing, Extending activity diagrams to 

model mobile systems, Objects, Components, Architectures, Services, and Applications 

for a Networked World. (2003) 278–293. doi:10.1007/3-540-36557-5_21.  

[40] C. Klein, A. Rausch, M. Sihling, Z. Wen, Extension of the unified modeling language for 

mobile agents, Unified Modeling Language. (2001) 117–129. doi:10.4018/978-1-

930708-05-1.ch008.  

[41] K. Saleh, C. El-Morr, M-UML: An extension to UML for the modeling of mobile agent-

based Software Systems, Information and Software Technology. 46 (2004) 219–227. 

doi:10.1016/j.infsof.2003.07.004. 

[42] H.Mouratidis .J. OdellJ. G Manson , Extending the Unified Modeling Language to Model 

Mobile Agents. Workshop on Agent-oriented methodologies. OOPSLA 2002, Seattle, 

USA, November 2002. 

[43] M.Y. Chkouri , Modélisation des systèmes temps-réel embarqués en utilisant AADL pour 

la génération automatique d’applications formellement vérifiées, PhD thesis, Joseph 

Fourier University, France, April 7, 2010. 

[44] A. Belghiat, Mobile agent-based Software Systems Modeling Approaches: A 

Comparative Study, Journal of Computing and Information Technology. 24 (2016) 149–

163. doi:10.20532/cit.2016.1002695.  

 [45] C.A. Iglesias, M. Garijo, J.C. González, A survey of agent-oriented methodologies, 

Intelligent Agents V: Agents Theories, Architectures, and Languages. (1999) 317–330. 

doi:10.1007/3-540-49057-4_21. 

[46] E. Belloni, C. Marcos, Modeling of mobile-agent applications with UML. In Proceedings 

of the Fourth Argentine Symposium on Software Engineering (ASSE 2003) (Vol. 32, pp. 

1666-1141). 



 

Bibliography                                                                                                                          148 

[47] B. Bauer, J. P Müller, Methodologies and modeling languages. Agent-based Software 

Development, (2004) (pp 77-131). 

[48] D. Melomey, H., Mouratidis, C.Imafidon, An Evaluation of Current Approaches for 

Modelling Mobility of Agents. Advances in Computing and Technology, The School of 

Computing and Technology 2nd Annual Conference, (2007) ICGES Press. 

[49] D. Melomey,  C.Imafidon, G. Williams, A Comparative Study of Modeling Languages 

for Agent Systems. Systems and Information Science Notes (SISN) (2007) (Vol. 2, pp 

207-212). 

[50] R. Cervenka, I. Trencansky, The agent modeling Language - AML a comprehensive 

approach to modeling multi-agent systems, Birkhäuser Basel, Basel, 2007.  

[51] H. Hachicha, A. Loukil, K. Ghedira, Ma-UML: A conceptual approach for mobile agents' 

modelling, International Journal of Agent-Oriented Software Engineering. 3 (2009) 277. 

doi:10.1504/ijaose.2009.023640.  

[52] F. Mokhati, M. Badri, Generating Maude specifications from UML use case diagrams., 

The Journal of Object Technology. 8 (2009) 119. doi:10.5381/jot.2009.8.2.a2. 

[53] P. Bellavista, A. Corradi, C. Federici, R. Montanari & D. Tibaldi. Security for mobile 

agents : Issues and challenges. In M. Ilyas & I. Mahgoub, éditeurs. Mobile Computing 

Handbook, chapitre 39, pages 941–960. CRC Press, 2005. 

[54] P. Ahuja and V. Sharma, “A Review on Mobile Agent Security”. International Journal of 

Recent Technology and Engineering (IJRTE). 2, 1, 2277–3878. (2012). 

[55] A, Loukil , H. Hachicha, K. Ghedira, A proposed Approach to Model and to Implement 

Mobile Agents, SOIE, Institut Supérieur de Gestion de Tunis, Université de Tunis.2003. 

[56] E. Belloni, C. Marcos, Mam-UML, An UML profile for the modeling of Mobile-Agent 

Applications, XXIV International Conference of the Chilean Computer Science Society. 

(n.d.). doi:10.1109/qest.2004.14. 

[57]C. Klein, A. Rausch, M. Sihling, Z. Wen, Extension of the unified modeling language for 

mobile agents, Unified Modeling Language. (2001) 117–129. doi:10.4018/978-1-

930708-05-1.ch008.  

[58] F. Muscutariu, M.-P. Gervais, On the modeling of mobile agent-based systems, Lecture 

Notes in Computer Science. (2001) 219–233.doi:10.1007/3-540-44651-6_21. 

[59] E. Kerkouche, K. Khalfaoui, A. Chaoui, A. Aldahoud, UML activity diagrams and Maude 

Integrated Modeling and analysis approach using graph transformation, The 7th 

International Conference on Information Technology. (2015). 

doi:10.15849/icit.2015.0093. 

[60] B. Bauer, *J.P. Müller, +J. Odell, Agent UML: A formalism for specifying Multiagent 

Software Systems, Agent-Oriented Software Engineering. (2001) 91–103. 

doi:10.1007/3-540-44564-1_6.  



 

Bibliography                                                                                                                          149 

[61] A. Poggi, G. Rimassa, P. Turci, J. Odell, H. Mouratidis, G. Manson, Modeling 

deployment and mobility issues in multiagent systems using AUML, Agent-Oriented 

Software Engineering IV. (2004) 69–84. doi:10.1007/978-3-540-24620-6_5. 

[62] B. Bauer, J. Odell, UML 2.0 and agents: How to build agent-based systems with the new 

UML standard, Engineering Applications of Artificial Intelligence. 18 (2005) 141–157. 

doi:10.1016/j.engappai.2004.11.016. 

[63] R. Červenka, I. Trenčanský, M. Calisti, D. Greenwood, AML: Agent modeling language 

toward industry-grade agent-based modeling, Agent-Oriented Software Engineering V. 

(2005) 31–46. doi:10.1007/978-3-540-30578-1_3. 

[64] A.F. Pires, V. Wiels, T. Polacsek, Amélioration des Processus de vérification de 

programmes par combinaison des méthodes formelles avec l'ingénierie Dirigée par les 

modèles, thesis, Thèse de doctorat Sureté de logiciel et calcul de haute performance, 

Université de Toulouse, 26 juin 2014. 

[65] H. Hachicha, A. Loukil, K. Ghedira, MAMT: an environment for modeling and 

implementing mobile agents. In Sixth International Workshop from Agent Theory to 

Agent Implementation (AT2AI-6) (2008, May) (pp. 75-82). 

[66] Grasshopper mobile agent system (2003). IKV++ GmbH, documentation and software. 

Available at: http://www.grasshopper.de/. 

[67] Miao Kang, Modelling mobile agent applications in UML2.0 activity diagrams, "Third 

International Workshop on Software Engineering for Large-Scale Multi-Agent Systems 

(SELMAS'04)" W16L Workshop - 26th International Conference on Software 

Engineering. (2004). doi:10.1049/ic:20040366. 

[68] M. Kusek, G.  Jezic, Extending UML sequence diagrams to model agent mobility. In 

International Workshop on Agent-Oriented Software Engineering (2006, May) (pp. 51-

63). Springer Berlin Heidelberg. 

[69] M. R., Bahri, R. Mokhtari, A.  Chaoui, Towards an extension of UML2. 0 to model 

mobile agent based systems. International Journal of Computer Science and Network 

Security (2009),, 9(10), 124-13. 

[70] L. Bettini, R. De Nicola, M. Loreti, Formalizing properties of Mobile Agent Systems, 

Lecture Notes in Computer Science. (2002) 72–87. doi:10.1007/3-540-46000-4_9.  

[71] A. Jeffrey, communicating and mobile systems: The π-calculus by Robin Milner, 

Cambridge University Press, 1999, Journal of Functional Programming. 11 (2001) 433–

436. doi:10.1017/s0956796801224113.  

[72] G. Jezic , I. Lovrek Using Pi-Calculus for specification of mobile agent communication. 

In IASTED Conf. on Software Engineering and Applications, (2004) (pp. 356-361). 

[73] C. Fournet, G. Gonthier, J.-J. Levy, L. Maranget, D. Rémy, A calculus of Mobile Agents, 

CONCUR '96: Concurrency Theory. (1996) 406–421. doi:10.1007/3-540-61604-7_67.  

http://www.grasshopper.de/


 

Bibliography                                                                                                                          150 

[74] F. Oquendo, π-Adl: an Architecture Description Language based on the higher-order 

typed π- calculus for specifying dynamic and mobile software architectures, ACM 

SIGSOFT Software Engineering Notes. 29 (2004) 1–14. doi:10.1145/986710.986728.  

 [75] A. Schmitt, J.-B. Stefani, The kell calculus: A family of higher-order distributed process 

calculi, Global Computing. (2005) 146–178. doi:10.1007/978-3-540-31794-4_9.  

 [76] P. Sewell, P.T. Wojciechowski, B.C. Pierce, Location-independent communication for 

mobile agents: A two-level architecture, Internet Programming Languages. (1999) 1–31. 

doi:10.1007/3-540-47959-7_1.  

 [77] L. Cardelli, A.D. Gordon, Mobile ambients, Theoretical Computer Science. 240 (2000) 

177–213. doi:10.1016/s0304-3975(99)00231-5.  

[78] R. De Nicola, G.L. Ferrari, R. Pugliese, Klaim: A kernel language for agents interaction 

and Mobility, IEEE Transactions on Software Engineering. 24 (1998) 315–330. 

doi:10.1109/32.685256.  

[79] T.A. Kuhn, D. von Oheimb, Interacting state machines for Mobility, FME 2003: Formal 

Methods. (2003) 698–718. doi:10.1007/978-3-540-45236-2_38.  

[80] Dianxiang Xu, Yi Deng, Modeling Mobile Agent Systems with high level petri nets, 

SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, 

Man and Cybernetics. 'Cybernetics Evolving to Systems, Humans, Organizations, and 

Their Complex Interactions' (Cat. No.00CH37166). doi:10.1109/icsmc.2000.886486.  

[81] Dianxiang Xu, Jianwen Yin, Yi Deng, Junhua Ding, A formal architectural model for 

Logical Agent Mobility, IEEE Transactions on Software Engineering. 29 (2003) 31–45. 

doi:10.1109/tse.2003.1166587.  

[82] H. Xu, S. M.  Shatz, A Design Model for Intelligent Mobile Agent Software Systems. 

Computer Science Department, The University of Illinois at Chicago (2002). 

[83] J.-M. Jiang, H. Zhu, Q. Li, Y. Zhao, L. Zhao, S. Zhang, & al., Event-based Mobility 

Modeling and analysis, ACM Transactions on Cyber-Physical Systems. 1 (2017) 1–32. 

doi:10.1145/2823353. 

[84] M.R. Bahri, Une approche intégrée Mobile-UML/Réseaux de Pétri pour l'analyse des 

systèmes distribués à base d'agents mobiles (Doctoral dissertation, (2010) ,  Doctoral 

thesis, University of Constantine, Algeria. 

[85] A. Knapp, S. Merz, M. Wirsing, Refining Mobile UML State Machines, Algebraic 

Methodology and Software Technology. (2004) 274–288. doi:10.1007/978-3-540-

27815-3_23. 

[86] D. Latella, M. Massink, H. Baumeister, M. Wirsing, Mobile UML Statecharts with 

localities, Global Computing. (2005) 34–58. doi:10.1007/978-3-540-31794-4_3.  

 



 

Bibliography                                                                                                                          151 

[87] A. Belghiat, A. Chaoui, M. Maouche, M. Beldjehem, Formalization of mobile UML 

Statechart diagrams using the π-calculus: An approach for modeling and analysis, 

Communications in Computer and Information Science. (2014) 236–247. 

doi:10.1007/978-3-319-11958-8_19.  

[88] M. Kezai, A. Khababa, Generating Maude specifications from M-UML Statechart 

diagrams, Journal of Advanced Computational Intelligence and Intelligent Informatics. 

26 (2022) 8–16. doi:10.20965/jaciii.2022.p0008.  

[89] Y. Aridor, D.B. Lange, Agent design patterns, Proceedings of the Second International 

Conference on Autonomous Agents - AGENTS '98. (1998). 

doi:10.1145/280765.280784.  

[90] R. Tolksdorf, Coordination Patterns of Mobile Information Agents, Cooperative 

Information Agents II Learning, Mobility and Electronic Commerce for Information 

Discovery on the Internet. (1998) 246–261. doi:10.1007/bfb0053689.  

[91] E.F. Lima, P.D. Machado, F.R. Sampaio, J.C. Figueiredo, An approach to modelling and 

applying Mobile Agent Design Patterns, ACM SIGSOFT Software Engineering Notes. 

29 (2004) 1–8. doi:10.1145/986710.986726. 

[92] E. Kerkouche, Modélisation Multi-Paradigme: Une Approche Basée sur la 

Transformation de Graphes, doctoral thesis , University of Mentouri Constantine, 2011. 

[93] M. L. Crane, J. Dingel, On the semantics of UML state machines: Categorization 

andcomparison. In In Technical Report 2005-501, School of Computing, Queen’s 

(2005). 

[94] E.V . Berard, A comparison of object-oriented methodologies. Technical report. Object 

Agency Inc (1995).. 

[95] P.B. Kruchten, The 4+1 view model of Architecture, IEEE Software. 12 (1995) 42–50. 

doi:10.1109/52.469759.  

[96] M.W. Maier, D. Emery, R. Hilliard, Software architecture: Introducing IEEE Standard 

1471, Computer. 34 (2001) 107–109. doi:10.1109/2.917550.  

[97] N. Rozanski, E.Woods ,Software systems architecture: Working with stakeholders using 

viewpoints and perspectives, Upper Saddle River, NJ: Addison-Wesley Professional; 

2005. doi:10.5860/choice.49-5717. 

[98] M.Girschick,T. Darmstadt, Difference detection and visualization in UML class 

diagrams. Technical university of darmstadt technical report,2006, TUD-CS-2006-5, 1-

15. 

[99] E.J. Gonçalves, M.I. Cortés, G.A. Campos, Y.S. Lopes, E.S.S. Freire, V.T. da Silva, et al., 

MAS-ML 2.0: Supporting the modelling of multi-agent systems with different Agent 

Architectures, Journal of Systems and Software. 108 (2015) 77–109. 

doi:10.1016/j.jss.2015.06.008.  



 

Bibliography                                                                                                                          152 

[100] A.G. Clark, N. Walkinshaw, R.M. Hierons, Test case generation for agent-based models: 

A Systematic Literature Review, Information and Software Technology. 135 (2021) 

106567. doi:10.1016/j.infsof.2021.106567.  

[101] H. Kadima, MDA,une conception orientée objet guide par les modèles. DUNOD 

2005. 

[102] J. Favre, J. Estublier, M.Blay-Fornarino, L’ingénierie dirigée par les modèles au-delà du    

MDA Hermes Science publications, Lavoisier. 

[103] N. Prakash, S. Srivastava, S. Sabharwal, The classification framework for Model 

Transformation, Journal of Computer Science. 2 (2006) 166–170. 

doi:10.3844/jcssp.2006.166.170. 

[104] K. Czarnecki, S. Helsen, Classification of Model Transformation Approaches, 

University    of Waterloo, Canada.2003, shelsen@computer.org. 

[105] E. Guerra, J. de Lara, A Framework for the Verification of UML Models. Examples 

using Petri Nets. Ecole Politechnique Superieur, Ingenieríe de l’ Informátique, 

Université Autónoma de Madrid.Spain 2003. 

[106] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical 

Computer Science. 96 (1992) 73–155. doi:10.1016/0304-3975(92)90182-f.  

[107] J. Meseguer, Software Specification and Verification in Rewriting logic, Germany,    

August 2002. 

[108] J. Meseguer, G. Roşu, Rewriting logic semantics: From language specifications to 

formal analysis tools, Automated Reasoning. (2004) 1–44. doi:10.1007/978-3-540-

25984-8_1. 

[109] M.Theodore, Maude 2.0 Premier Version 1.0, August 2003. 

[110] M. Clavel, F. Durán, S. Eker, P. Lincoln, Martı́-Oliet N., J. Meseguer,J.F. Quesada, 

Maude: Specification and Programming in Rewriting Logic, SRI International 

Lab,http://maude.csl.sri.com, 1999. 

[111] M. Clavel, F. Durán, S. Eker, P. Lincoln, Martı́-Oliet N., J. Meseguer, et al., Maude: 

Specification and programming in rewriting logic, Theoretical Computer Science. 285 

(2002) 187–243. doi:10.1016/s0304-3975(01)00359-0. 

[112] M. Benammar, An Architecture-Based Approach for the Formal Specification of 

Embedded Systems, Doctoral Thesis in Sciences, Mentouri University of Constantine, 

2011. 

[113] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln,N. MartiOliet , M. José, C. Talcott,     

Maude Manual (Version 2.7.1), July 2016. 

mailto:shelsen@computer.org


 

Bibliography                                                                                                                          153 

[114] S. Eker, J. Meseguer, A. Sridharanarayanan, The Maude LTL model Checker and its           

implementation, Model Checking Software. (2003) 230–234. doi:10.1007/3-540-44829-

2_16.  

[115] M. Clavel, All about Maude: A high-performance logical framework: How to specify, 

program and verify systems in rewriting logic, Springer, New York, 2007.  

[116] M. Clarke Edmund,O. Grumberg,D. Peled, Model Checking. MIT Press ,Cambridge 

,Massachusetts United States, ISBN: 978-0-262-03270-4, 2001 

[117] K. Saleh, C. El Morr, A. Mourtada, Y. Morad, A mobile‐agent platform and a game 

application specifications using M‐UML, The Electronic Library. 22 (2004) 32–42. 

doi:10.1108/02640470410520096.  

[118] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, D. Varro, Viatra - visual 

automated transformations for formal verification and validation of UML models, 

Proceedings 17th IEEE International Conference on Automated Software Engineering.  

doi:10.1109/ase.2002.1115027.  

[119] J. de Lara, H. Vangheluwe, Computer aided multi-paradigm modelling to process petri-

nets and Statecharts, Graph Transformation. (2002) 239–253. doi:10.1007/3-540-45832-

8_19.  

[120] J. A. Saldhana, M. Shatz, and Z. Hu, Formalization of object behavior and interactions 

from UML models, International Journal of Software Engineering and Knowledge 

Engineering. 11 (2001) 643–673. doi:10.1142/s021819400100075x.  

[121] X. Hei, L. Chang, W. Ma, J. Gao, G. Xie, Automatic transformation from UML 

Statechart to petri nets for safety analysis and verification, 2011 International 

Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering. (2011). 

doi:10.1109/icqr2mse.2011.5976760.  

[122] M. Wang, L. Lu, A transformation method from UML Statechart to Petri Nets, 2012 

IEEE International Conference on Computer Science and Automation Engineering 

(CSAE). (2012). doi:10.1109/csae.2012.6272734.  

[123] E. Kerkouche, A.A. Chaoui, E.B. Bourennane, O. Labbani, A UML and Colored Petri 

nets integrated modeling and analysis approach using graph transformation., The Journal 

of Object Technology. 9 (2010) 25. doi:10.5381/jot.2010.9.4.a2.  

[124] J. Araujo and A. Moreira, pecifying the Behavior of UML Collaborations Using Object-  

Z,Departamento de Infomatica, Faculdade de Ciências e Tecnologia, Universidade Nova 

de Lisboa, Portugal, 2000. 

[125] H. Ledang and J. Souquières, Formalizing UML Behavioral Diagrams with B, Tenth 

OOPSLA Workshop on Behavioral Semantics: Back to Basics, Tampa Bay, Florida, 

USA, 2001. 



 

Bibliography                                                                                                                          154 

[126] C. A. R. Hoare, Communicating sequential processes. Prentice-Hall International, 

London, 1985, VIII+256 pages., Science of Computer Programming. 9 (1987) 101–105. 

doi:10.1016/0167-6423(87)90028-1.  

[127] P. Gagnon, F. Mokhati, M. Badri, Applying model checking to concurrent UML 

models., The Journal of Object Technology. 7 (2008) 59. doi:10.5381/jot.2008.7.1.a1.  

[128] D. Poole John, Model-driven architecture: Vision, standards and emerging technologies,  

In ECOOP 2001, Workshop on Metamodeling and Adaptive Object Models, 2001.  

[129] C. Rossi, M. Enciso, I.P. de Guzmán, Formalization of UML state machines using 

temporal logic, Software & Systems Modeling. 3 (2004) 31–54. doi:10.1007/s10270-

003-0029-7.  

[130] Muan Yong Ng, M. Butler, Towards formalizing UML state diagrams in CSP, First 

International Conference OnSoftware Engineering and Formal Methods, 

2003.Proceedings. (2003). doi:10.1109/sefm.2003.1236215.  

[131] W.L. Yeung, K.R.P.H. Leung, Ji Wang, Wei Dong, Improvements towards formalizing 

UML state diagrams in CSP, 12th Asia-Pacific Software Engineering Conference 

(APSEC'05). (2005). doi:10.1109/apsec.2005.70. 

[132] J. Lilius, I.P. Paltor, Formalising ,The Semantics of UML State Machines, TUCS    

Technical Report No. 273, (1999) 430–444. doi:10.1007/3-540-46852-8_31. 

[133] S.A. Seshia, R.K. Shyamasundar, A.K. Bhattacharjee, S.D. Dhodapkar, A translation of 

statecharts to esterel, FM’99 — Formal Methods. (1999) 983–1007. doi:10.1007/3-540-

48118-4_3.  

[134] W.L. Yeung, K.R.P.H. Leung, Ji Wang, Wei Dong, Improvements towards formalizing 

UML state diagrams in CSP, 12th Asia-Pacific Software Engineering Conference 

(APSEC'05). (2005). doi:10.1109/apsec.2005.70.  

[135] V.S.W. Lam, J. Padget, Formalization of UML Statechart diagrams in the π-calculus, 

Proceedings 2001 Australian Software Engineering Conference. (n.d.). 

doi:10.1109/aswec.2001.948515.  

[136] M. Balaha, J. Rumbaugh : Modélisation et conception orientées objet avec UML 2, 

deuxième édition, Pearson Education, France,2005 

 

[137] M.R. Bahri, A. Hettab, A. Chaoui, E. Kerkouche, Transforming mobile UML Statecharts 

models to nested nets models using graph grammars: An approach for modeling and 

analysis of Mobile Agent-based Software Systems, 2009 Fourth South-East European 

Workshop on Formal Methods. (2009). doi:10.1109/seefm.2009.21. 

 

[138] P. Muller, N. Gaertner : Modélisation objet avec UML, Deuxième édition, Eyrolles, 

2000 

 

[139] J. Meseguer. A logical theory of concurrent objects. ACM SIG-PLAN Notices, 25(10), 

pp101- 115, 1990. Proc. OOP-SLA ECOOP’ 90 



 

Bibliography                                                                                                                          155 

[140] S. Eker, J. Meseguer, A. Sridharanarayanan, The Maude LTL model Checker, Electronic 

Notes in Theoretical Computer Science. 71 (2004) 162–187. doi:10.1016/s1571-

0661(05)82534-4.  

[141] J. Derrick, D. Akehurst, A framework for UML consistency January 2002 

[142] C. Lange, An empirical assessment of completeness in UML designs, "8th Internation 

Conference on Empirical Assessment in Software Engineering (EASE 2004)" Workshop 

- 26th International Conference on Software Engineering. (2004). 

doi:10.1049/ic:20040404. 

[143] G. Reggio. R.J. Wieringa Thirty one Problems in the Semantics of UML 1.3 Dynamics. 

[144] A. Moreira . Defining Precise Semantics for UML Object-Oriented. Technology. 

ECOOP 2000 Workshop Reader. ECOOP 2000 Workshops. 

[145] E. Astesiano , G. Reggio, UML as a Heterogeneous Multiview Notation Strategies for a 

Formal Foundation (1998). 

[146] H. Malgouyres,S. Jean-Pierre, G.  Motet, Identification de Règles de Cohérence d'UML 

2.0. Journée SEE "Systèmes Informatiques de Confiance" sur le thème "Vérification de 

la cohérence de modèles UML", Paris, France, Mars 2005. 

[147] F. Durán and J. Meseguer. The Maude specification of Full Maude. Manuscript, May 

1999. http://maude.cs.uiuc.edu/papers/. 

[148] AToM3 home page, (online) available at: http://atom3.cs.mcgill.ca/. 

[149] D. Harel, A. Naamad, The statemate semantics of statecharts, ACM Transactions on 

Software Engineering and Methodology. 5 (1996) 293–333. 

doi:10.1145/235321.235322.  

[150] T. Gan, M. Chen, Y. Li, B. Xia, N. Zhan, Reachability analysis for solvable dynamical 

systems, IEEE Transactions on Automatic Control. 63 (2018) 2003–2018. 

doi:10.1109/tac.2017.2763785.  

[151] A. Boucherit, A. Khababa, L.M. Castro, Automatic Generating Algorithm of Rewriting 

Logic Specification for multi-agent system models based on Petri Nets, Multiagent and 

Grid Systems. 14 (2019) 403–418. doi:10.3233/mgs-180298.  

[152] Z. Manna, A. Pnueli, The temporal logic of reactive and concurrent systems, (1992). 

doi:10.1007/978-1-4612-0931-7.  

[153] E.M., Clarke, O. Grumberg, D.A. Peled, Model Checking. MIT Press, Cambridge (1999) 

[154] M. Barenkamp, J. Rebstadt, O. Thomas, Applications of AI in Classical Software 

Engineering, AI Perspectives. 2 (2020). doi:10.1186/s42467-020-00005-4.  

[155] G. Rozenberg, Handbook of Graph Grammars and computing by graph transformation, 

World Scientific, Singapore, 1997. 

http://maude.cs.uiuc.edu/papers/
http://atom3.cs.mcgill.ca/


 

                                                                                                                          156 

.  

Contributions 

 

 

 

International Publications 

 

 

 

International 

Publications 

Title:  

Generating Maude Specifications 

from M-UML Statechart Diagrams 

 

Autors: 

 

Last Name : Kezai First Name :Mourad 

Last Name :Khababa First Name :Abdallah 

Year : 2022 

Journal  Journal of Advanced Computational 

Intelligence and Intelligent Informatics (Vol.26 

No.1, 2022) 

URL  https://doi.org/10.20965/jaciii.2022.p0008 

 

 

 

 



 

                                                                                                                          157 

 ملخص 
لها مجالات تطبيق واسعة جداً. لذلك فإن   النحو،وعلى هذا  الشركات،تشكل الأنظمة متعددة الوكلاء نوعًا مثيرًا للاهتمام من نماذج  

مجال تكنولوجيا "الوكلاء المتنقلون" يمثل مفهوماً جديداً ومهماً في الذكاء الاصطناعي وهندسة البرمجيات. على الرغم من الاهتمام  

 .فإن معظم الأساليب في الوقت الحالي لا تسمح بتصميم كاف وكامل للوكلاء المتنقلين لوجيا،التكنوبهذه 

عبارة عن مواصفات وبرمجة موجهة للكائنات وبيئة إثبات تعتمد على إعادة كتابة المنطق الذي   Maude فإن نظام  أخرى،من ناحية 

أيضًا على مجموعة من الأدوات التي تسمح  Maude يحتوي نظام ذلك،افة إلى يعد إطارًا دلالياً موحداً للعديد من نماذج التزامن. بالإض

)المنطق الزمني الخطي( الذي يتيح التحقق من خصائص المواصفات   LTL بمحاكاة وتحليل إمكانية الوصول بواسطة مدقق النماذج

 .ووضع نماذج أولية لها

أنظمة متعددة العوامل. ومع   وتركيبي،ن الممكن تمثيل الأنظمة بشكل بديهي  وامتداداتها تجعل م UML فإن الطريقة الرسومية لـ  أخيرًا،

قمنا  .Maude في نظام M-UML نتناول نهجًا لنسخ مخططات  الأطروحة،فهي غير مجهزة بأدوات للتحقق الرسمي. في هذه    ذلك،

وتتكون التقنية من   الحالة،، وهو مخطط  M-UML بتطبيق نهجنا المقترح المكون من ثلاث مراحل على أحد أهم الرسوم البيانية في

اشتقاق وصف رسمي منهجي من هذا النوع من تحليل الرسم البياني وحصلنا على نتائج مرضية للغاية. يجعل النسخ المقترح من الممكن 

للتحقق من خصائ  الكتابة. سيتم استخدام هذا الأخير  القائمة على الحصول على مواصفة جبرية معبراً عنها بمنطق إعادة  ص الأنظمة 

 .الوكيل المحمول

 

Résume : 
Les systèmes multi-agents forment un type intéressant de modélisation de sociétés, car ils ont des 

domaines d'application très larges. Par conséquent, le domaine de la technologie des "agents mobiles" 

représente un concept nouveau et important en intelligence artificielle et de l'ingénieries de logiciels. 

Malgré l'intérêt porté à cette technologie, la plupart des approches à l'heure ne permettent pas une 

conception suffisante et complète des agents mobiles. 

D'autre part, Maude est un environnement de spécification, de programmation orientée objet et de preuve 

basé sur une logique de réécriture qui est un cadre sémantique unificateur de plusieurs modèles de 

concurrence. En plus, le système Maude dispose également d'une batterie d'outils   permettent la 

simulation, l’analyse d'accessibilité par le LTL (Linear Time Logic) Model-checker permettant la 

vérification et le prototypage des propriétés de spécification. 

Enfin, la méthode graphique UML généralement et ses extensions permettent de représenter de manière 

synthétique et intuitive les systèmes multi-gent. Cependant, elles ne sont pas dotées permettant de faire 

la vérification. Dans cette thèse, nous adoptons une approche de la spécification formelle des diagrammes 

M-UML dans le système Maude. Nous avons appliqué notre approche en trois étapes proposées au 

diagramme d'états-transitions, l'un des diagrammes les plus importants de M-UML. La technique 

consiste à dériver systématiquement une description formelle de Maude à partir de ce type d'analyse de 

diagramme, et nous avons obtenu des résultats très satisfaisants. Cette transcription proposée permet 

d'obtenir une spécification algébrique exprimée en logique de réécriture. Ce dernier sera utilisé pour 

vérifier les spécifications des systèmes à base d'agents mobiles. 

 

Abstract 
First, multi-agent systems form an interesting type of company modeling and, as such, have very broad 

fields of application. Therefore, the technology field of "mobile agents" represents a new and important 

concept in artificial intelligence and software engineering. Despite the interest in this technology, most 

approaches at present do not allow a sufficient and complete design of mobile agents. 

On the other hand, the Maude system is a specification, object-oriented programming and proof 

environment based on rewriting logic which is a unifying semantic framework of several concurrency 

models. In addition, the Maude system also has a battery of tools allowing the simulation and the analysis 

of accessibility by the LTL (Linear Temporal Logic) Model-Checker enabling the verification and the 

prototyping of the properties of the specifications. 

Finally, the UML graphical method and its extensions make it possible to represent systems synthetically 

and intuitively, multi-agent systems. However, they are not equipped with tools for verification. In this 

thesis, we address an approach for the transcription of M-UML diagrams in the Maude system. We 

applied our proposed three-stage approach to the statechart diagram, one of the most important diagrams 

in M-UML. The technique involves systematically deriving a formal Maude description from this type 

of diagram analysis, and we obtained very satisfactory results. The proposed transcription makes it 

possible to obtain an algebraic specification expressed with the rewriting logic. The latter will be used 

for the verification of properties of mobile agent-based systems. 

 


