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General introduction

Frictional contact problems usually arise in everyday life and play a very important role

in many applications, technical and �uid systems such as brakes, machine tools, engines,

turbines or wheel systems.

Fluid mechanics is to provide a well-structured mathematical theory of di¤erent �elds,

which shows its importance in several �elds, especially in industry.

A �uid (liquid, gas or ionized gas) is considered as a continuous medium represented by

density, pressure and velocity �elds corresponding to the famous Navier-Stokes equation.

During the last decades, many works have been done on the mathematical theory of

frictional contact. Well-known and common friction laws used in the mathematical literature

are Tresca�s law and Coulomb�s law.

These mechanical problems which are the subject of our study in this thesis are very

frequent in applications in nature and it is therefore important to be able to model these

phenomena.

Dynamic and static contact problems with Tresca�s law of friction which was applied to

linearly elastic bodies and �uid rigid bodies were studied in 1972, by , Duvaut and Lions

[22].

Under the assumptions of elasticity and viscoelasticity, for example the tire, the Lassa

hemorrhagic fever model and the groundwater model due in a leaky aquifer [2, 3]. Other

applications are associated with the mechanism of the balls.

A non-Newtonian �uid is a �uid whose �ow characteristics are di¤erent from those of

any Newtonian �uid. The �rst mathematical results noticed at the border with friction

conditions were by Fujita et al [24,25] in the case of �uid
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General introduction

Results concerning the study of the phenomenon of lubrication by Newtonian �uids

with sliding were obtained in [8], when the sliding is given by Coulomb�s friction law, and

by F. Saidi [12] when the temperature e¤ect is also taken into account. The authors in

[3], studied the asymptotic analysis of any problem of the �uid in a thin domain. The

asymptotic behavior of the dynamical problem of non-isothermal elasticity with non linear

friction of Tresca type was studied in [6]. in [4] the authors studied the asymptotic analysis

of a dynamical problem of isothermal elasticity with non linear friction of Tresca type.

There are many phenomena in nature and industry that show the behavior of Herschel-

Bulkley medium. For instance, the �ow of metals, plastic solids and some polymers. There

is a lot of literature on this subject, see eg. [23,42]. Recently, the authors of [32] have

theoretically studied the dam failure �ow of viscoplastic �uids using the Herschel-Bulkley

constitutive law and the motion lubrication model.

The authors of [40] studied the asymptotic behavior of a rotationally coupled system of

an incompressible Bingham �uid and the thermal energy equation, in a three-dimensional

bounded domain with Tresca free boundary friction conditions. Asymptotic analysis of

solutions of a thin �lm lubrication problem with Coulomb �uid-solid interface law study in

[10]. In the case �" = 0 , Numerical solutions of Herschel-Bulkley �uid �ow problems are

studied, e.g. [28,30,35,36].

The object of the doctoral thesis is the study of the asymptotic behavior of some bound-

ary problems modeling the behavior of �uids and di¤erent materials in the stationary case

in three-dimensional bounded domains with the nonlinear friction conditions on the edge.

One of the goals of asymptotic analysis is to obtain and describe a two dimensional prob-

lem from a three dimensional problem, passing to the limit on the thickness of the domain

assumed to be already thin. That is, the physical domains are de�ned such that the height

is much smaller than the length.

In this work, we are interested in the study of the asymptotic analysis of a stationary

problem for the non-isothermal linear elasticity and the isothermal non-Newtonian �uid in

a domain bounded in thin �lm 
": The boundary 
" is denoted by �" and is composed

on three parts: the bottom and �xed part !; the later part �L and the upper surface �1:
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General introduction

The normal displacement and the normal velocity are equal to zero on the bottom.

However, on the lateral surface the tangential displacement or velocity is unknown and

satis�es the Coulomb boundary conditions. We consider the boundary conditions of

Dirichlet and Neumann on the upper surface.

The main parts of this work can be summarized as follows.

In the �rst chapter, we introduce some necessary notations and we are interested to

recalling some basic de�nitions and theorems of functional analysis which allow us to better

understand the content of this job. Including Sobolev�s theorem, lower semicontinuity,

convex-base de�nitions, and di¤erential functions.The basic tools presented in this chapter

are standard and can be found in many functional analysis books.

The second chapter, the Herschel-Bulkley �uid is a general model of a non-Newtonian

�uid. The name is associated with Winslow Herschel and Ronald Bulkle [26] , the �rst in

1926, where the relationship between the stress tensor and the rate of symmetric strain.

In this part we are devoted to the study of asymptotic behavior of the steady �ow of the

incompressible viscoplastic �uid of Herschel-Bulkley in a thin domain, the viscosity of which

does not depend on the temperature.

The equation of conservation of momentum given by

div �" + f " = 0 in 
".

with the constitutive law of Herschel-Bulkley8><>: �D;" = �"
D(u")

jD(u")j + 2� jD(u
")jr�2D(u"); when D(u") 6= 0; r > 2;���D;"�� � �" , when D(u") = 0;

where the parameter r; 1 < r < 2; is the exponent of the power law of the mater-

ial. When r = 2; we �nd the Bingham �uids, and when r = 2 and �" = 0; we �nd the

Navier-Stokes model (Newtonian �uid). The boundary conditions used are the homoge-

neous Dirichlet conditions on one part of the border and Coulomb�s conditions on the other

part. By looking for a priori estimates of speed and pressure and going to the limit for this

by using the inequalities of Poincaré, Young, Hölder, Korn and Minty�s lemma, we get the

weak Reynolds equation.
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General introduction

Under the form :

Z
!

0@h3
12
r��(�x) + ~F (�x; h) + �

hZ
0

yZ
0

A�(�x; �)@u
�

@�
(�x; �)d�dy + �̂

hZ
0

yZ
0

@u�=@z

j@u�=@zj(�x; �)d�dy

1Ar'(x)
�
Z
!

0@�h
2

hZ
0

A�(�x; �)@u
�

@�
(�x; �)d� +

�̂h

2

hZ
0

@u�=@z
j@u�=@zj(�x; �)d�

1Ar'(x) = 0;8' 2 W 1;r(!):

where

~F (�x; z) =

Z h

0

F (�x; y)dy � h

2
F (�x; h) and F (�x; z) =

Z h

0

Z �

0

f̂ "
i (�x; �)d�d�

We provide an exact characterization of the limit form of the Coulomb boundary condition.8<: �̂(&�)�̂
�
< k̂ jR (�̂"n (���))j ) s� = s

�̂(&�)�̂
�
= k̂ jR (�̂"n (���))j ) 9� � 0 such that s� = s� ��̂

�

where

&� = T �(�x; 0) and � � =
@u�

@z
(�x; 0):

In the last chapter, we will consider the following problem:

div �" + f " = 0 in 
".

The constitutive law is given by

�"i;j(u
") = 2�(T ")di;j(u

") + �(T ")dkk(u
")�ij:

and as the strain in the non-isothermal case, by coupling the equation conservation of

momentum with the equation conservation of energy deduced from the following Fourier

law

8><>:
�r(K"rT ") = �" : D(u") + r"(T ");

�" : D(u") =
3P

i;j=1

�"i;jdi;j(u
"):

where, u" represents the �eld of displacements, T " represents the temperature. The

boundary conditions are mixed, they are modeled by a condition of Dirichlet on part of
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General introduction

the border and the friction conditions Coulomb type nonlinear on the other side for the

equation of motion. As well as a homogeneous Neumann and Dirichlet condition for the

energy conservation equation, of shape8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

div �" + f " = 0 in 
";

�"i;j(u
") = 2�(T ")di;j(u

") + �(T ")dkk(u
")�ij: in 
";

u" = 0 on �"1;

u" = g on �"L;

u":n = 0 on !;�
j�"T j < z" j�"nj ) u"T = s;

j�"T j = z" j�"nj ) 9� � 0 such that u"T = s� ��"T ;

�
on !;

T " = 0 on �"L [ �"1;
@T "

@n
= 0 on !:

We give the related weak formulation of the problem. Then, we discuss the existence

and uniqueness theorem of the weak solution. Next, we study the asymptotic analysis

according to the change of the variables xz = x3
"
to transform the initial problem posed

in the domain 
" which depends on a small parameter " into a new problem posed on a

�xed domain 
 which is independent of " . Then, we �nd some estimates on the velocity

and pressure. We obtain further the main results concerning the existence of a weak limit

(u�; p�) of (u"; p") such that (u�; p�) satis�es the weak form of the Reynolds equation

Z
!

�
~F �

Z h

0

Z y

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@�dy

�
r d�x =

Z
!

h

2

Z h

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@�r d�x; 8 2 H1(!)

The study is based on the variational formulation, the Poincaré inequality, Cauchy-

Schwartz, Young, Hölder, Korn. This study was carried out by H. Benseridi and M. Dilmi

[4] in the isothermal case and by H. Benseridi and A. Saadallah [6].
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Notations

Notations

Be 
 is a domain of Rd (d = 2; 3) and X a Banach space, we use the following nota-

tions:

 the adhesion of 
.

� the total border of 
.

�1 the upper border of 
.

�L the side border of 
.

n the outgoing unit normal on .

vn; vT the normal and tangential components of a vector v.

j:j the Euclidean norm of Rd; with j:j =

s
dP
i=1

x2i .

Id the second order identity tensor on Rd.

�ij the symbol of Krönecker.

D0(
) the distribution space .

C1 (!) the space of real functions continuously di¤erentiable on !.

H1 (
) Sobolev space of order 1 on 
.

H1
0 (
) the adhesion of D (
) in H1 (
) .

H�1 (
) the dual space of H1
0 (
) .

L2 (
)d space
�
u = (ui) = ui 2 L2 (
) ; i = 1; d

	
.

H1 (
)d space
�
u = (ui) = ui 2 H1 (
) ; i = 1; d

	
.

k:k0;
 the norm of L2 (
)d .

k:k1;
 the norm of H1 (
)d .

k:kX the norm of X.

Xd space
�
x = (xi) = xi 2 X; i = 1; d

	
.

xn * x the weak convergence of the sequence (xn) to an element x in X.

xn ! x the strong convergence of the sequence (xn) to an element x in X.

@if the partial derivative of f with respect to the component xi.

rf the gradient of f .

div f the divergence of f .
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Chapter 1

Required and preliminary

To facilitate the reading of this thesis, this chapter will be divided into two sections to

describe the necessary mathematical and mechanical tools. The results are standard and

can be found in many references.

Recall functional spaces as well as Hilbert and Banach spaces, declare inequalities such

as Korn and Poincaré...

The second section is based on the theory of continuum mechanics and the essential

results of the constitutive law of linear elasticity, models the isothermal non-isothermal

evolution of homogeneous isotropic elastic bodies and determines the nonlinear friction of

the Coulomb type in the domain 
 of R3.
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1.1. Functional spaces

1.1 Functional spaces

A functional space is a space whose points are functions, the resolution of an analysis

problem often consists in choosing a functional space provided with an associated norm.

Sobolev spaces play an important role in the study of elliptic and hyperbolic partial

derivative equationes.

A Lipschitz domain or Lipschitz bounded domain is a domain in Euclidean space

whose boundaries are "regular enough" in the sense that it can be considered local being

the graph of a Lipschitz continuous function. Many of Sobolev embedding theorems require

that the domain of study is a Lipschitz domain.

As a result, many partial di¤erential equations and variational problems are de�ned in

the Lipschitz domain.

1.1.1 Functional analysis reminders

We introduce in this subsection a summary of the functional analysis, and some results

which help us in the study of the problems of this thesis.

Let 
 an open from Rd. We must de�ne some necessary spaces in 
.
The space of D(
)

De�nition 1.1.1 We call D(
) vector space on R or C, which contains the set of class

functions C1, with compact support in 
, that is to say:

C1c (
) = D(
) = fu 2 C1(
); 9K � 
, K compact; u = 0 in Kcg .

The distribution space

We denote by D
0
(
) the «dual» of D(
), that is to say the space of continuous linear

forms on D(
). We notice hT; �i = T (�) the duality product between a distribution T 2 D0
(
) and

a function � 2 D(
) : this duality product generalizes the usual integral
Z



T�dx. Indeed,

we check that if f is a locally integrable function in 
, then we can de�ne a distribution Tf through:

hTf ; �i =
Z



f� dx.

3



1.1. Functional spaces

We now de�ne the derivation in the sense of the distributions : if T 2 D0
(
), the

derivative
@T

@xi
2 D0

(
) is de�ned by :

h @T
@xi

; �i = �hT; @�
@xi

i; 8� 2 D(
). (1.1.1)

We can also associate D
0
(
) by a notion of convergence: we say that a sequence Tn 2 D

0
(
)

Complete space

De�nition 1.1.2 We say that a metric space (X; d) is complete if any Cauchy sequence

converges.

Banach space

De�nition 1.1.3 That is E a normalized vector space, we say that it is a Banach space if

it is complete.

Hilbert space

De�nition 1.1.4 Let H a real vector space and h:; :iH a dot product on H that is to say :

h:; :iH : H �H ! R is a symmetric and positive de�nite bilinear map.

We denote by j:jH the application of H ! R+ de�ned by:

j�jH = h�; �i
1
2
H ;

and remember that j:jH is a standard on H. We say that H is a Hilbert space if H is

complete for the standard de�ned previously.

Cauchy sequence

De�nition 1.1.5 Let (un) a real sequence, we say that (un) is a Cauchy sequence or sat-

is�es the Cauchy criterion if

8" > 0;9N 2 N;8(p; n) 2 N2; p � N and n � N ) jup � unj < ":

Lp(
) Spaces

We consider the Lebesgue space Lp(
)

4



1.1. Functional spaces

De�nition 1.1.6 [14] Let p 2 R; with 1 � p <1; the Lebesgue space Lp(
) is de�ned to

be

Lp(
) =

�
u : 
! R is measurable and

Z



ju(x)jp dx <1:

�
The space Lp(
) is equipped with the norm

kukL;p(
) =
�Z




ju(x)jp dx
�p

:

If p =1 and u : 
! R is measurable then we de�ne the L1(
)

L1(
) = fu : 
! R is measurable and there exist a constant C such that ju(x)j < C; in 
:g

its norm is

kukL;1(
) = inf fC; ju(x)j < C; in 
:g :

Theorem 1.1.1 (Separability ).[14] Lp(
) is separable space for any p 2 [1;1[:

Theorem 1.1.2 (Re�exivity).[14] Lp(
) is re�exive space for any p 2 ]1;1[ :

De�nition 1.1.7 [14] We denote by Cc the space of continuous function in 
 with compact

support in 
:

Cc(
) = ff 2 C(
); f(x) = 0;8x 2 
�K � where K � 
 is compactg .

Ck(
) is the space of function k times continuously di¤erentiable in 
:

C1(
) = \Ck(
)

Ckc (
) = Ck(
) \ Cc(
)

C1c (
) = C1(
) \ Cc(
)

convergence
Strong convergence and Weak convergence

Let X is a Banach space and X 0 the dual space of X and denote h:; :i the duality prod-
uct between X and its topological dual space X 0:

5



1.1. Functional spaces

De�nition 1.1.8 (Strong convergence) [14]. A sequence un is said to be strongly con-

verge into u if

un; u 2 X and lim
n!1

kun � ukX = 0

noted this convergence by un ! u in X:

De�nition 1.1.9 (Weak convergence) [14]. A sequence un is said to be weakly con-

verge into u if

un; u 2 X and lim
n!1

hun; viX�X0 = hu; viX�X0 ;8v 2 X 0

noted this convergence by un * u in X 0:

Proposition 1.1.1 un a sequence in X: Then

1: If un ! u strongly in X; then un * u weakly in X:

2: If un * u weakly in X; then k unkX is bounded and k ukX � lim
n!1

inf k unkX :

3: If un * u weakly in X and if vn �! v strongly in X 0; then hun; vniX�X0 = hu; viX�X0 :

Convergence on D(
)

Let {n a series of D(
) and { 2 D(
) we say that {n ! { for the topology of D(
) if

supp {n � K, and supp { � K, K is a compact of 
.

{n ! { evenly on K and D�{n ! D�{ evenly on K.

converges in the sense of the distributions

towards T 2 D0
(
) if, for everything � 2 D(
),

lim
n!+1

hTn; �i = hT; �i.

Weak convergence in a Banach space.

De�nition 1.1.10 Let E a Banach space. Be (un)n2N � E and u 2 E;

we say that un weakly converges to u in E when n!1, and we note un * u, if :

T (un)! T (u); 8T 2 E 0; or E 0 is the dual of E.

6



1.1. Functional spaces

Weak convergence in a Hilbert space.

Let H a real Hilbert space and h:; :iH a dot product of H. That is (xn)n2N a squence

in H and x also an element of H.

We say that the sequence (xn)n2N weakly converges to x ( x is the weak limit of the

squence (xn) ) if :

xn * x () 8y 2 H; lim
n�!1

hxn; yi = hx; yi ; (weak convergence ) .

We will denote this convergence by the symbol * to distinguish it from strong conver-

gence (that is to say for the Hilbert norm) :

un ! u() lim
n�!1

jun � ujH = 0, (strong convergence).

un * u () 8v 2 H; lim
n�!1

hun; vi = hu; vi ; (weak convergence ) .

Theorem 1.1.3 (Weak compactness theorem of the closed unit ball of Hilbert

spaces).

If H a Hilbert space, then any bounded sequence in H admits a weakly convergent sub-

sequence.

1.1.2 Reminders on Sobolev�s spaces

We de�ne the Sobolev spaces which are the spaces of functions allowing to solve the varia-

tional formulations of partial di¤erential equations.

Be 
 an open from Rd, L2(
) the space of measurable functions of squared summable

in 
, provided with a scalar product:

(u; v)L2(
) =

Z



u(x)v (x) dx,

L2(
) is a Hilbert space. We notice :

kukL2(
) =

0@Z



ju(x)j2 dx

1A
1
2

the corresponding standard.

7



1.1. Functional spaces

De�nition 1.1.11 Let 
 an open from Rd. The Sobolev space H1(
) is de�ned by :

H1(
) =

�
u 2 L2(
)such as @u

@xi
2 L2(
); 8i 2 f1; :::; dg

�
,

where
@u

@xi
is the partial derivative of u in the meaning of distributions (1 :1 :1 ).

Proposition 1.1.2 The Sobolev H1(
) endowed with the scalar product

(u; v)H1(
) =

Z



(u(x)v(x) +ru(x):rv(x)) dx

and the standard

kukH1(
) =

�Z



(ju(x)j2 + jru(x)j2) dx
�1
2

.

H1(
) is a Hilbert space.

H1
0 (
) Space

De�nition 1.1.12 H1
0 (
) denote the vector subspace of the functions of H

1(
) zero on �.

H1
0 (
) =

�
u 2 H1(
); u = 0 on �

	
:

The norm of H1
0 (
) is de�ned by :

kukH1
0 (
)

=

�Z



jru(x)j2
� 1

2

= krukL2(
) .

W 1;p(
) Space

De�nition 1.1.13 [14] Let p 2 R; with 1 � p � 1; the sobolev space W 1;p(
) is de�ned

to be

W 1;p(
) =

�
u 2 Lp;9gi 2 Lp such that

Z



u
@'

@xi
= �

Z



gi'; 8'D(
); i = 1; 2; 3:
�

for u 2 W 1;p we have

@u

@xi
= gi and ru =

�
@u

@x1
;
@u

@x2
;
@u

@x3

�
:

8



1.1. Functional spaces

The space W 1;p(
) is equipped with the norm

kukW 1;p(
) = kukLp(
) +
3X
i=1

 @u@xi

Lp(
)

.

Proposition 1.1.3 [14] The space W 1;p(
) is Banach space for 1 � p � 1: It is re�exive

for 1 < p <1; and separable for 1 � p <1:

De�nition 1.1.14 [14] For 1 � p <1; the space W 1;p
0 (
) desing the closure of C1c (
) in W

1;p(
):

The space W 1;p
0 (
) equipped the same norm of W 1;p(
) and is separable, Banach space

and it�s re�exive for 1 � p <1:

De�nition 1.1.15 [14] The dual space of W 1;p
0 (
) is denoted by W�1;q(
):

Duality
Let V is a Hilbert space we denote V 0 its dual, which represents the set of continuous

linear forms on V .

The dual of L2(
) is identi�ed with L2(
) . We can also de�ne the dual of a Sobolev

space.

We are interested in the dual of H1
0 (
) which plays a particular role in the sequence.

De�nition 1.1.16 The dual of Sobolev�s space H1
0 (
) is called H

�1(
).

We notice : hL; �iH�1;H1
0 (
)

= L(�) the product of duality between H1
0 (
) and its dual

for any continuous linear form L 2 H�1(
) and any function � 2 H1
0 (
).

Proposition 1.1.4 (properties of spaces H�1(
) )

(1) Space H�1(
) is characterized by :

H�1(
) =

�
f = v0 +

X @vi
@xi

with v0; v1; :::; vd 2 L2(
)
�
.

(2) H�1(
) is a Banach space when provided with the norm :

kLkH�1(
) = sup
k�k

H10(
)
�1
hL; �iH�1;H1

0 (
)
.

Remark 1.1.1 H�1(
) is a Hilbert space for the previous norm.
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1.1. Functional spaces

Remark 1.1.2 For everything 
 an open from Rd, we have :

H1
0 (
) � L2(
) �

�
L2(
)

�0 � H�1(
).

Theorem 1.1.4 (Density).[14] The space D(
) is dense in Lp (
) for any 1 � p <1:

Theorem 1.1.5 (Dual of Lp (
) ). [1] Let p be a real number such that 1 < p <1: The

topological dual of Lp (
) is (Lp (
))0 = Lq (
) :

Proposition 1.1.5 [1] The dual of L1 (
) is L1 (
) :

Proposition 1.1.6 (Poincare inequality). Let 
 a bounded open of Rd, then there is a

constant C
 only depends on 
 such as for any function u 2 H1
0 (
),

kukL2(
) � C
 krukL2(
) .

Theorem 1.1.6 (Green�s formula). Let 
 a regular class bounded open C1. If u and v are

functions of H1(
), they check :Z



u(x)
@v

@xi
dx = �

Z



v(x)
@u

@xi
dx+

Z
@


u(x)v(x)�i(x)dx,

where � = (�i)1�i�d is the unit normal outside @
.

Theorem 1.1.7 (Cauchy-Schwarz inequality). Let H a prehilbertian space.

Then :

8(x; y) 2 H2; jhx; yij � kxk : kyk .

Lemma 1.1.1 (Korn inequality). [37] For everything ! 2 V , we have :

k5!kL2(
) � C kD (!)kL2(
) ; for ! 2 V .

With V is a Hilbert space.

10



1.1. Functional spaces

Theorem 1.1.8 (Hölder inequality).[14] If p 2 ]1;+1[ , the conjugate exponent of p is
the only one q 2 ]1;+1[

such as
1

p
+
1

q
= 1: For everything u 2 Lp(
) and v 2 Lq(
), we have :

uv 2 L1(
) and kuvkL1(
) � kukLp(
) : kvkLq(
) :

This is a generalization of the Cauchy-Schwarz inequality.

Theorem 1.1.9 (Young inequality).

ab � ap

p
+
bq

q
8 (a; b) 2 R2+, .

Lax-Milgram theorem

We introduce in what follows some useful results which are valid in Hilbert spaces.

This concerns the Riesz representation theorem and Lax-Milgram Theorem.

De�nition 1.1.17 (Bilinear form). Let X be a vector space. A scalar product (u; v) is

a bilinear from X �X with values in R such that

(u; v) = (v; u); 8u; v 2 X; (symetry),

(u; v) � 0; 8u 2 X; (positive),

(u; v) 6= 0; 8u 6= 0; (de�nite).

Theorem 1.1.10 (Riesz representation theorem). Let X be a Hilbert space and ' 2 X 0 there

exist unique f 2 X such that

h'; ui = hf; ui ;8u 2 X:

Moreover

k'kX0 = kfkX :

11



1.2. Reminders on the mechanics of continuous media

De�nition 1.1.18 Let X be a Hilbert space. A bilinear form a : X �X ! R

1: Continuous, if there is a constant C such that

ja(u; v)j � C juj jvj ;8u; v 2 X :

2: Coercive, if there exists a constant  > 0 such that

ja(u; v)j �  juj2 ; u 2 X:

Theorem 1.1.11 (Lax-Milgram). Assume that a(u; v) is a continuous coercive bilinear

form on X:

Then, given any ' 2 X 0; there exist a unique element u 2 X such that

a(u; v) = hu; vi ;8v 2 X:

A semi-continuous,monotone

Soit X un espace de Banach et X 0 son dual.

De�nition 1.1.19 Let A be the operator X ! X 0

A is called semi-continuous if for all sequences (�n)n converging to � :

(A(u+ �nv); w)! (A(u+ �v); w);8(u; v; w) 2 X3

A is called monotone only if:

(A(u)� A(v); u� v) � 0;8(u; v) 2 X2

1.2 Reminders on the mechanics of continuous media

This section consists in establishing the mathematical model describing the evolution of a

deformable body having a linear elastic law under the action of the external forces in the

presence of conditions of friction on a part at the edge of the �eld. This results math-

ematically by the establishment of a system of partial di¤erential equations in a domain

12



1.2. Reminders on the mechanics of continuous media

of Rd(d = 2; 3). This system includes the constitutive law of the material, the equation of

conservation of the momentum of the body as well as the boundary conditions to which it

is subjected.

Consider a continuous medium which occupies a bounded domain 
 of R3.

1.2.1 Conservation equation of momentum

Let u(x) the �eld of displacement of the elastic body at the point x = (x1; x2; x3) 2 
 of
the continuous medium in motion with respect to the reference Ox.

An elastic body: is a body that spontaneously returns to its original shape when external

forces are removed.

Stress �eld : is a representation used in the mechanics of continuous media to characterize

the state of stress, that is to say all the internal cohesion forces exerted on a part of the

solid under the e¤ect of external loads. The term was introduced by Cauchy around 1822.

As the internal forces are de�ned for each surface intersecting the medium, the tensor is

de�ned locally, at each point of the solid.

There are several formulations of the fundamental law of mechanics. According to the

chosen statement. All of these formulations are equivalent.

For our part, we state the law which expresses the equivalence between external forces

and the acceleration tensor for any system, leads to the equation of motion.

�
@2u

@t2
= div � + f , in 
 (1.2.1)

where

Div � =
dX
i=1

@�i
@xi

, (d = 2; 3).

In this equation, � denotes the mass density, and
@2u

@t2
the �eld of accelerations, f represent

the external forces applied on the body and which are data of the problem, (div �) is the

divergence of the stress �eld.

The process modeled by (1:2:1) is called dynamic process. In some situations the

equation (1:2:1) can be simpli�ed, for example in the case where
@u

@t
= 0, it is a balancing

13



1.2. Reminders on the mechanics of continuous media

process, or in the case where the speed �eld
@u

@t
varies very slowly with respect to time, that

is to say the term �
@2u

@t2
can be over looked. In these two cases the equation (1:2:1) becomes:

div � + f = 0; in 
.

The laws of conservation of the momentum are insu¢ cient to describe the motions of

continuous media, because we have several unknowns with respect to the numbers of the

equations in the mathematical point of view, so we are obliged to treat other relations which

characterize the behavior of the material called the constitutive laws of linear elasticity.

1.2.2 Linear constitutive laws of elastic materials

The constitutive laws express the relations which exist between the stress tensor � and

D the strain tensor, thier relations depend on the nature of the material. One will generally

impose that the stress is linearly related to the strain.

The linearized strain �eld is de�ned as follows:

D(u) = dij(u) =
1

2

�
@ui
@xj

+
@uj
@xi

�
; 1 � i; j � 3.

dij(u) indicate the displacement of the strain �eld d compared to the displacement

�eld u.

Generalized Hooke�s Law

Hooke�s law was generalized by Cauchy (1789-1857), who proposed to express each com-

ponent of the stress tensor as a linear function of the components of the strain tensor.

Hooke�s law is therefore often written today in the form:

�ij (u) = Cijkl dkl (u) , (1.2.2)

with C is the symmetric tensor of the fourth order called sti¤ness tensor or elasticity

tensor.

Components Cijkl are called elasticity coe¢ cients.

In the case of a homogeneous material

The coe¢ cients Cijkl are constants (independent to the point x of 
 ).

14



1.2. Reminders on the mechanics of continuous media

In the case of an isotropic material

In practice, this law is often too general and it is possible to simplify it. If we consider

an isotropic material, then the elasticity tensor C is de�ned by :

C ijkl = �(�ik�jl + �il�jk) + ��ij�kl: (1.2.3)

By using (1:2:2) and (1:2:3); we can then prove that the stress tensor � of a homogeneous

elastic and isotropic body is completely described by the two parameters:

�(u) = �TrD (u) I + 2�D (u) ;

where :

TrD (u) =

dX
k=1

dkk (u) :

�ij : denotes the Krönecker symbol:

�; � : are the independent coe¢ cients and are called the Lamé constants.

They are homogeneous at pressures.
Rheological tests make it possible to determine these constants, which are speci�c

to a given material. These tests actually directly measure two other values: Young�s

modulus E and Poisson�s ratio v. These last values are related to the Lamé coe¢ cients

by the equations :

� =
Ev

(1� 2v)(1 + v)
, � =

E

2(1 + v)
.

with
E : intuitively corresponds to the sti¤ness of the material.

v : measure its incompressibility.
According to the establishment of all these laws we are now looking for the partial di¤er-

ential equations modeling the evolution of a linear homogeneous body in a three dimensional

bounded open domain 
.

Then, it is assumed that there is a tangential force on part of the border noted by !, we

say that we have a contact with friction. One is brought to introduce a friction law which

15



1.2. Reminders on the mechanics of continuous media

connects this tangential component to the other variables of the system. In this thesis, we

will consider the nonlinear friction of the Coulomb type.

1.2.3 Coulomb type friction law

This contact force comprises a normal component �"n, perpendicular to the contact plane

between the two solids, and a tangential component �"T , belonging to the contact plane.

Coulomb shows, from experiments, that the sliding between the two solids occurs if �"n and

�"T satisfy the relation of proportionality: �
"
T = z" j�"nj, where z" is the coe¢ cient of friction

which characterizes the state of the two surfaces in contact. As long as the force �"T is less

than z" j�"nj(we say that the contact force remains inside the Coulomb cone), the slip does
not occur, and we speak of adhesion between the two solids.8<: j�"T j < z" j�"nj ) u"T = s;

j�"T j = z" j�"nj ) 9� � 0 such that u"T = s� ��"T ;

16



Chapter 2

Study of a generalized

non-Newtonian �uid in a thin �lm

with Coulomb�s law

Abstract. The objective of this chapter is the study of the isothermal �ow of an incom-

pressible Herschel-Bulkley �uid in the stationary regime in a thin domain with the nonlinear

friction conditions of Coulomb type on part of the boundary and the Dirichelet conditions

on the other part.

17



2.1. Description of the problem and basic equations

2.1 Description of the problem and basic equations

We consider a nonlinear model which describes the behavior of a Herschel-Bulkley �uid in

the isothermal case in thin domain 
"; Where " is a positive real belonging to ]0; 1[ and

which tends towards zero.

The border of 
" will be noted �" = ! [ �"1 [ �"L.

�"1 the upper border of 
" with equation x3 = "h(x1; x2).

�"L the side border of 
":

! is a bounded domain of R3; with equation x3 = 0;

and it�s the bottom of the domain and it�s supposed that has a Lipschitz boundary.

We notice x = (x1; x2; x3) 2 R3 and �x = (x1; x2) 2 R2.
The domain 
" is given by


" = f(�x; x3) 2 R3; (�x; 0) 2 !; 0 � x3 � "h(�x)g.

Where h is a function of class C1 de�ned on ! with

0 � h� � h(�x) � h�; 8(�x; 0) 2 !.

Let �" denotes the total Cauchy stress tensor

�" = ��"I + �D;"; (2.1.1)

where �" the pressure and �D;" is the deviatoric part. This type of �uids is supposed

to be viscoplastic.

We give the Herschel-Bulkley model which gives the relation between �D;" and D(u")

�D;" = �"
D(u")

jD(u")j + � jD(u")jr�2D(u"); when D(u") 6= 0;

j�D;"j � �" , when D(u") = 0;

�
in 
"; (2.1.2)

where

�" � 0 is the yield stress,
� > 0 is the constant viscosity,
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2.1. Description of the problem and basic equations

the notation jDj represents the matrix norm,

u" is the velocity �eld and D(u") =
1

2
(ru" + (ru")T ); and 1 < r <1:

The law of conservation of momentum is given

�div(�") = f " in 
"; (2.1.3)

where f " = (f "i )1�i�3; denotes the body forces.

The incompressibility equation

div(u") = 0 in 
"; (2.1.4)

we �rst introduce the vector function g = (g1; g2; g3) such that:

Z
�"
g:nds = 0:

There exists a function G" ([22]) such that:

G" 2
�
W 1;r(
")

�3
with div(G") = 0 in 
"; G" = g on �"

The boundary conditions are described as

� On �"1; the upper surface is assumed to be �xed, therefore

u" = 0: (2.1.5)

� On �"L; the velocity is known and is parallel to the !�plane

u" = g with g3 = 0: (2.1.6)

� On !; there is no-�ux condition across ! so that

u":n = 0: (2.1.7)

the tangential velocity on ! is unknown and satis�es Coulomb boundary conditions:

j�"T j < k" j�"nj =) u"T = s;

j�"T j = k" j�"nj =) 9� > 0 such that u"T = s� ��"T ;

9=; on !: (2.1.8)
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2.1. Description of the problem and basic equations

Where k" � 0 is the coe¢ cient of friction (see [22]) , j:j is the Euclidean norm, n = (n1; n2; n3) is
the unit outward normal to �":

One de�nes the normal and tangential components of velocity by

u"n = u":n

u"Ti = u"i � u"n:ni

In the same way, the normal and tangential components of the tensor of the stresses

are de�ned by

�"n = (�
":ni) :nj

�"Ti = �"ij:nj � �"n:ni:

The complete problem (P ") , consists to �nd a velocity �eld

u" = (u"i )1�i�3 : 

" ! R3; which checks the following equations and boundary condi-

tions:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

�div(�") = f " in 
";

�" = ��"I + �D;"; in 
";

div(u") = 0 in 
";

u" = 0 on �"1;

u" = g with g3 = 0: on �"L;

u":n = 0 on !;

j�"T j < k" j�"nj =) u"T = s;

j�"T j = k" j�"nj =) 9� > 0 such that u"T = s� ��"T ;

9=; on !:

(P ")

Before giving the variational formulation of the strong problem (P ") we set up the fol-

lowing lemma.

Lemma 2.1.1 The condition (2:1:8) is equivalent to the relation:

(u"T � s)�"T + k" j�"nj ju"T � sj = 0; on ! (2.1.9)

Proof. �Assume that u" meet the boundary conditions of Coulomb (2:1:8):
! If j�"T j < k" j�"nj then u"T = s:
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2.2. Weak formulation in the domain 
"

(u"T � s)�"T + k" j�"nj ju"T � sj = (s� s)�"T + (s� s)k" j�"nj = 0

! If j�"T j = k" j�"nj ; there is � � 0 such as

u"T = s� ��"T ;

from where

(u"T � s)�"T + k" j�"nj ju"T � sj = �� j�"T j
2 + � j�"T j

2 = 0

�Conversely, suppose that

(u"T � s)�"T + k" j�"nj ju"T � sj = 0

! If j�"T j = k" j�"nj so
(u"T � s)�"T = � j�"T j ju"T � sj ;

hence the existence of a � � 0 such as

u"T � s = ��"� ;

u"T = s� ��"T :

! If j�"T j < k" j�"nj so

(u"T � s)�"T + k" j�"nj ju"T � sj = 0 � � ju"T � sj j�"T j+ k" j�"nj ju"T � sj

� ju"T � sj (k" j�"nj � j�"T j):

2.2 Weak formulation in the domain 
"

In this section we de�ne the functional framework in which we are going to work, and we

obtain the weak formulation of the problem (P ") .

To get a weak formulation, we introduce
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2.2. Weak formulation in the domain 
"

Let Lr (
") be the usual Lebesgue space with the norm denoted by k:kLr(
")

�
W 1;r(
")

�3
=

�
v 2 (Lr(
"))3; @vi

@xj
2 Lr(
"); 8i; j = 1; 2; 3

�
;

W 1;r(
") is a Sobolev space with the following norm

kvkLr(
") =

0@ 3X
i=1

Z

"

jvjr d�xdx3 +
3X
i=1

Z

"

���� @v@xj
����r d�xdx3

1A 1
r

W 1;r
0 (
") is a vector subspace of the functions W 1;r(
") nulls on �"; and it�s the clo-

sured of D(
") in W 1;r(
")

we denote by W�1;q(
") its topological dual where,
1

r
+
1

q
= 1

Moreover, we need

K" =
n
' 2

�
W 1;r(
")

�3
: ' = G" on �"L; ' = 0 on �

"
1 and ':n = 0 on !

o
;

K"
div = f' 2 K"; div(') = 0 g ;

Lq0(

") =

8<:q 2 Lq(
");
Z

"

qd�xdx3 = 0

9=; ;

The variational formulation of the problem (P ") we noted by (pb1) and is written8>>><>>>:
Find u" 2 K"

div and �
" 2 Lr0(
" such that

a(u "; '� u")� (�"; div(')) + ~j(u"; ')
�~j(u"; u") � (f "; '� u "); 8' 2 K ":

(pb1)

where

a(u"; ') =
3X

i;j=1

Z

"
�" jD(u")jr�2D(u")D(')d�xdx3; (2.2.1)

(�"; div(')) =

Z

"
�" div(')d�xdx3; (2.2.2)

22



2.2. Weak formulation in the domain 
"

(f "; ') =

Z

"
f "'d�xdx3 =

3X
i=1

Z

"
f "i 'id�xdx3; (2.2.3)

~j(u"; ') =

Z
!

k" j�nj j'� sj d�x+
p
2�"

Z

"

jD(')j d�xdx3; (2.2.4)

The integral ~j(u"; v) has no meaning for u" 2 K": Indeed, �"n is de�ned by duality as an

element of W� 1
2
;r(!) and j�"nj is not well de�ned on !: So following ([22]) we replace �"n by

some regularization R (�"n) ; where R is a regularization operator from W� 1
2
;r(!) into Lr+(!) can

be obtained by convolution with a positive regular function and de�ned by

8� 2 W� 1
2
;r(!); R(�) 2 Lr+(!); R(�)(x) =

����h� ; '(x� �)i
W� 1

2 ;r(!);W
1
2 ;r

00 (!)

���� ;
' is a given positive function of class C1 with compact support in ! and W� 1

2
;r(!) is

the dual space to

W
1
2
;r

00 (!) =
�
'j! : ' 2 W 1;r(
"); ' = 0 on �"L [ �"1

	
:

After the regularization, we get the new problem:

Problem 2.2.1 (P ";�� ) :Find (u"; �") 2 K"
div � Lq0(


"); such that

a(u "; '� u")� (�"; div(')) + j(u"; ')� j(u"; u") � (f "; '� u "); 8' 2 K "(
") (pb2)

where

j(u"; ') =

Z
!

k" jR (�"n)j j'� sj d�x+
p
2�"

Z

"

jD(')j d�xdx3:

Lemma 2.2.1 if (u"; �") 2 K"
div � Lq0(


"); are solutions of the problem (P ") then they

check (pb2):

Proof. By multiplying (2:3:1); by '� u"; where ' 2 K" and using the Green�s for-

mula, we getZ

"
�"ij

@

@xi
('i � u"i )d�xdx3 �

Z
�"
�"ijnj('i � u"i )ds =

Z

"

f "
i ('i � u"i )d�xdx3:
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2.2. Weak formulation in the domain 
"

According to the boundary conditions (2:1:5)� (2:1:6) we �ndZ
�"

�"ijnj('i � u"i )ds =

Z
!

�"ijnj('i � u"i )d�x:

We know that: �"ijnj = �"Ti + �"nni then we getZ
�"
�"ijnj('i � u"i )ds =

Z
!

�"Ti('i � u"i )d�x+

Z
!

�"nni('i � u"i )d�x

as ni('i � u"i ) = 0; we haveZ

"
�"ij

@

@xi
('i � u"i )d�xdx3 �

Z
!

�"Ti('i � u"i )d�x =

Z

"
f "
i ('i � u"i )d�xdx3; (2.2.5)

In (2:2:5); we add and subtract the term
R
!
k" j�"nj (j'T � sj � ju"T � sj)d�x; we obtainZ


"
�"ij

@

@xi
('i � u"i )d�xdx3 �

Z
w

�"Ti('i � u"i )d�x+Z
!

k" j�"nj (j'T � sj � ju"T � sj)d�x�
Z
!

k" j�"nj (j'T � sj � ju"T � sj)d�x;

=

Z

"

f "
i ('i � u"i )d�xdx3:

set

T =

Z
!

�"Ti(('T � s)� (u"T � s))d�x+

Z
!

k" j�"nj (j'T � sj � ju"T � sj)d�x; ;

then

T =

Z
!

�"Ti('T � s)d�x+

Z
!

k" j�"nj j'T � sj d�x;

thus

�"Ti('T � s) � �
���"Ti�� j'T � sj � �k" j�"nj j'T � sj > 0; on !;

and

T =

Z
!

�"Ti('T � s)d�x+

Z
!

k" j�"nj j'T � sj d�x � 0;

which givesZ

"
�"ij

@

@xi
('i�u"i )d�xdx3+

Z
!

k" j�"nj j'T � sj d�x�
Z
!

k" j�"nj ju"T � sj d�x �
Z

"
f "
i ('i�u"i )d�xdx3:
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2.2. Weak formulation in the domain 
"

Replacing �"ij by the expression which given in (2:1:2)

a(u"; '� u") + �"
Z

"

dij(u")

jD(u")jdij('� u")d�xdx3 �Z

"
�" div('� u")d�xdx3 +

Z
!

k"R j�"nj j'T � sj d�x�

�
Z
!

k" j�"nj ju"T � sj d�x

�
Z

"
f "'d�xdx3; 8' 2 K"

according to the inequality of Cauchy Swartz, we deduce

dij(u
")dij(') � jD(u")j jD(')j

we get

a(u"; '� u") + �"
Z

"

D(u")

jD(u")jdij('� u")d�xdx3 �Z

"
�" div('� u")d�xdx3 +

Z
!

k" j�"nj j'T � sj d�x�

�
Z
!

k" j�"nj ju"T � sj d�x

�
Z

"
f "'d�xdx3; 8' 2 K"

then (pb1)

Remark 2.2.1 If ' 2 K"
div; the problem (pb1) becomes:8<: Find u" 2 K"

div
such that

a(u"; '� u") + j(u"; ')� j(u"; u") � (f "; '� u "); 8' 2 K "
div(


");
(pb3)

Theorem 2.2.1 If f " 2 (Lq(
"))3 and the friction coe¢ cient k" is a non-negative function
in L1(!) then there exists (u"; �") 2 k"div � Lq0(


") solution to the problem
�
P ";��

�
.

Moreover, for small k" the solution is unique.
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2.3. Asymptotic analysis of problem in �xed domain

Proof. To proof the existence and uniqueness result of (pb1); we de�ne the following

intermediate problem

a(u"; '� u") +

Z
!

Y (j'� sj � ju" � sj)d�x+ �K"
div
(')� �K"

div
(u")

� (f "; '� u "); 8' 2 W 1;r
div (


");

(2.2.7)

where, Y is the mapping de�ned from Lr(!) into Lr(!) by Y ! k"R(�"n) and

W 1;r
div(


") =
�
v 2 (W 1;r(
"))3; div(v) = 0

	
;

�K"
div

8<: 0 if ' 2 K"
div

+1 if ' 62 K"
div

� a(u"; '� u") is bounded, coercive, hemicontinuous and strictly monotone ([30]) :

� Y + �K"
div
is a proper, convex and continuous function in Lr(!) , then we apply Ti-

chovo�s �xed point theorem (as in [15]) .

�We show the existence and the uniqueness of u" 2 K"
div
satisfy (2:2:7): The proof of the

existence of �" 2 Lq0(
") such that (u"; �") satisfy (pb1) is given in Reference ([40]) :

2.3 Asymptotic analysis of problem in �xed domain

The object of this section is the asymptotic analysis of the previous problem by changing

the scale, to bring the study back to a domain 
 independent of ", on which we set new

unknowns.

We obtain the variational formulation in the �xed domain, we prove a priori estimates

on the independent solution of ", by di¤erent inequalities and we deduce the results of

convergence.

2.3.1 problem in transpose form

For the asymptotic analysis of the problem (P "), we use the approach which consists in

transposing the problem initially posed in the �eld 
" which depends on a small parameter " to

an equivalent problem whose �xed domain 
 independent of ".
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2.3. Asymptotic analysis of problem in �xed domain

To do this, we introduce a small change of variable z =
x3
"
, so (�x; x3) in 
" we have (�x; z) in 


with


 = f(�x; z) 2 R3; (�x; 0) 2 !; 0 < z < h(�x)g.

We designate by � = ! [ �L [ �1; the �xed domain boundary.
We now set in 
 new functions independent of "8>>><>>>:

û"i (�x; z) = u"i (�x; x3); i = 1; 2,

û"3(�x; z) = "�1u"3(�x; x3).

�̂"(�x; x3) = "r �̂"(�x; z):

(2.3.1)

8>>><>>>:
f̂ (�x; z) = "r f "(�x; x3),

�̂ = "r�1�",

k̂ = "r�1k".

(2.3.2)

Let Ĝ(�x; z) such as

div Ĝ = 0 and Ĝ = ĝ on �.

The vector Ĝ introduced previously is de�ned as follows

Ĝi(�x; z) = G"i (�x; x3); i = 1; 2,

Ĝ3(�x; z) = "�1G"3(�x; x3).
(2.3.3)

Let

K =
n
'̂ 2

�
W 1;r(
)

�3
; '̂ = Ĝ on �L [ �1 and '̂:n = 0 on !

o
;

Kdiv = f'̂ 2 K; div('̂) = 0 g ;

�(K) =
n
'̂ 2

�
W 1;r(
)

�3
; '̂i = Ĝ on �L [ �1 ; i = 1; 2

o
;
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2.3. Asymptotic analysis of problem in �xed domain

~�(K) =
n
'̂ 2 �(K); �' satis�es ( �D)

o
:

The condition ( �D) given by

Z



�
'̂1

@�

@x1
+ '̂2

@�

@x2

�
d�xdz = 0; 8'̂ 2 (Lr (
))2 and � 2 C10 (
) :

We denote by

Vz =

�
'̂ = ('̂1; '̂2) 2 (Lr (
))

2 ;
@'̂i
@z

2 Lr (
) ; i = 1; 2; '̂ = 0 on �1
�
:

It is clear that Vz is a Banach space with the norm

k'̂kVz =
 

2X
i=1

k'̂ik
r
Lr(
) +

@'̂i@z

r
Lr(
)

! 1
r

:

and de�ne its linear subspace

~Vz =
n
'̂ 2 ~�(K); '̂ satis�es the condition ( �D)

o
By injecting the new data and unknown factors in (pb1); and after multiplication by "r�1 the

variational problem
�
P ";��

�
is equivalent to the following

Problem 2.3.1 (P�) :Find (û; �̂) 2 Kdiv � Lq0(
); such that

8<: a0(û
"; '̂� û")� (�̂"; div('̂� û))

+|̂(û"; '̂)� |̂(û"; û") � (f̂ ; '̂� û"); 8'̂ 2 K "(
);
(2.3.4)

Where
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2.3. Asymptotic analysis of problem in �xed domain

a0(û
"; '̂� û") = �"2

2X
i;j=1

Z



��� ~D(û")���r�2�1
2

�
@û"i
@xj

+
@û"j
@xi

��
@

@xj
('̂i � û"i )d�xdz

+�
2X

i;j=1

Z



��� ~D(û")���r�2�1
2

�
@û"i
@z

+ "2
@û"3
@xi

��
@

@z
('̂i � û"i )

+

Z



��� ~D(û")���r�2 "2 @

@xj
('̂3 � v̂"3)d�xdz + �"2

Z



��� ~D(û")���r�2 @û"3
@z

@

@z
('̂3 � û"3)d�xdz

+�

2X
;j=1

Z



��� ~D(û")���r�2�1
2

�
"2
@û"i
@xj

+
@û"j
@z

��
@

@xj
('̂i � û"i )d�xdz

(�̂"; div('̂� û")) =

Z



�̂" div(('̂� û"))d�xdz; (2.3.5)

(f̂ ; '̂� û") =
2X
i=1

Z



f̂i ('̂i � û"i )d�xdz +

Z



"f̂3 ('̂3 � û"3)d�xdz; (2.3.6)

|̂(û"; '̂) =

Z
!

k̂ jR (�̂n)j j'̂� sj d�x+
p
2�̂

Z



��� ~D('̂)��� d�xdz; (2.3.7)

��� ~D (û")
��� = "1

4

2X
i;j=1

"2
�
@û"i
@xj

+
@û"j
@xi

�2
+
1

2

2X
i=1

�
@û"i
@z

+ "2
@û"3
@xi

�2
+ "2

�
@û"3
@z

�2# 1
2

:

We introduce some inequalities which will be used in the next. Can found in ([2]) the

detail description

Korn inequality

kru"kLr(
") � C kDu"kLr(
") (2.3.8)

Poincaré inequality

ku"kLr(
") � "h�
@u"@z


Lr(
")

(2.3.9)

Young inequality

ab � ar

r
+
b�r

�r
;8(a; b) 2 R2 (2.3.10)
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2.4. Main convergence results and uniqueness of solution

2.4 Main convergence results and uniqueness of solu-

tion

In this section, we prove the following convergence results of (û"; �̂") to (u�; ��) and give

the limit problem in the �xed domain 
:

Finally, we prove the uniqueness of the solution.

2.4.1 Convergence results

Theorem 2.4.1 Under the assuptions as in Theorem (2:2:1); then there exist u� = (u�1; u
�
2) 2 ~Vz

and �� 2 Lr0(
) such that

û"i * û�i (1 � i � 2) weakly in ~Vz (2.4.1)

"
@û"i
@xj

* 0; (1 � i � 2) weakly in Lr (
) (2.4.2)

"
@û"3
@z

* 0 weakly in Lr (
) (2.4.3)

"2
@û"3
@xi

* 0; (1 � i � 2) weakly in Lr (
) (2.4.4)

"û"3 * 0 weakly in Lr (
) (2.4.5)

�̂" * �� weakly in Lq0(
) (2.4.6)

Proof. The proof of (2:4:1)� (2:4:6) is based on the following lemma

Lemma 2.4.1 Let (û"; �̂") 2 K"
div(
)� Lq0(
) be the solution of variational problem (2:3:4); then

there are constants C;C 0 independent of " such that

2X
i;j=1

"@û"i@xj

r
Lr
+

"@û"3@z
r
Lr
+

2X
i=1

�@û"i@z
r
Lr
+

"2@û"3@xi

r
Lr

�
� C (2.4.7)

@�̂"@xi


W�1;q

� C 0 for i = 1; 2 (2.4.8)@�̂"@z (t)

W�1;q

� "C 0 (2.4.9)
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2.4. Main convergence results and uniqueness of solution

Proof. choosing ' = G" in (pb3) and using the fact that G" = s on !; we �nd

a(u"; u") � a(u"; G") + (f "; u")� (f "; G") (2.4.10)

From Korn�s inequality, we have CK > 0 independent of " ,such that

a(u"; u") � 2�CK kru"krLr(
") (2.4.11)

Using Hölder and Young inequalities, we get

a(u"; G") � �CK
2

Z

"

� jD(u")jq(r�1) d�xdx3 +
2(r�1)�

r (qCK)
r
q

Z

"

� jD(G")jr d�xdx3 (2.4.12)

By (2:3:8); the inequality (2:4:12) becomes

a(u"; ') � kru"krLr(
") +
2(r�1)�

r (qCK)
r
q

kr'"krLr(
") (2.4.13)

Applying (2:3:9)� (2:3:10); gives the analogue of (2:4:13)

j(f "; u")j � �CK
2
kru"krLr(
") +

("h�)q

q
�
1
2
�rCK

� q
r

kf "kqLq(
") ; (2.4.14)

j(f "; G")j � �CK
2
krG"krLr(
") +

("h�)q

q
�
1
2
�rCK

� q
r

kf "kqLq(
") (2.4.15)

From (2:4:10)� (2:4:15); we get

�CK kru"krLr(
") �
 
2(r�1)�

r (qCK)
r
q

+
�CK
2

!
krG"krLr(
") +

2 ("h�)q

q
�
1
2
�rCK

� q
r

kf "kqLq(
") (2.4.16)

Multiplying (2:4:16) by "r�1 hen using the fact that

as "q kf "kqLq(
) = "1�r
f̂q

Lq(
)
and

@u"i@x3

r
Lr(
")

= "1�r
@û"i@z

r
Lr(
)

; for i = 1; 2;

we deduce (2:4:1) with

C =
1

�Ck

" 
2(r�1)�

r (qCK)
r
q

+
�CK
2

!rĜ"r
Lr(
")

+
2 ("h�)q

q
�
1
2
�rCK

� q
r

f̂ "q
Lq(
")

#
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2.4. Main convergence results and uniqueness of solution

For get the estimate (2:4:8); we choose in (2:3:4); '̂ = û" +  ;  2 W 1;r
0 (
); we obtain

a(û";  )� (�̂"; div ) + �̂

Z



��� ~D(û" +  )
��� d�xdz � �̂

Z



��� ~D(û")��� d�xdz � �f̂ ";  �
then

(�̂"; div ) � a(û";  ) +
p
2�̂

Z



��� ~D(û" +  )
��� d�xdz �p2�̂Z




��� ~D(û")��� d�xdz � �f̂ ";  � ;
as ��� ~D(û" +  )

��� � p2 ��� ~D(û")���+p2 ��� ~D( )���
we get

(�̂"; div ) � a(û";  ) + 2�̂

Z



��� ~D( )��� d�xdz + �2�p2� �̂Z



��� ~D(û")��� d�xdz � Z



f̂ " d�xdz:

As  ~D( )
Lr(
)

� k kW 1;r(
)

Using Hölder formula

(�̂"; div ) � �
 ~D(û") rq

Lr(
)
k kW 1;r(
) + 2�̂ j
j

1
q k kW 1;r(
)

+
�
2�

p
2
�
�̂ j
j

1
q kû"kW 1;r(
) +

f̂
Lq(
")

k kW 1;r(
) : (2.4.17)

According to (2:4:7); there exists a constant C does not depend on " such that:

Z



@�̂"

@xi
 d�xdz � �C k kW 1;r(
)+2�̂ j
j

1
q k kW 1;r(
)+

�
2�

p
2
�
�̂ j
j

1
q C+

f̂
Lq(
")

k kW 1;r(
) :

(2.4.18)

In a similar manner, we choose in (2:3:4); '̂ = û" �  ;  2 W 1;r
0 (
); we obtain

�
Z



@�̂"

@xi
 d�xdz � �

 ~D(û") rq
Lr(
)

k kW 1;r(
) + 2�̂ j
j
1
q k kW 1;r(
)

+
�
2�

p
2
�
�̂ j
j

1
q C +

f̂
Lq(
")

k kW 1;r(
) ; (2.4.19)
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2.4. Main convergence results and uniqueness of solution

From (2:4:18)� (2:4:19); we deduce

������
Z



@�̂"

@xi
 d�xdz

������ � �
 ~D(û") rq

Lr(
)
k kW 1;r(
) (2.4.20)

+2�̂ j
j
1
q k kW 1;r(
) +

�
2�

p
2
�
�̂ j
j

1
q C +

f̂
Lq(
")

k kW 1;r(
) :

When i = 1; 2 we choose  = ( 1; 0; 0) then  = (0;  2; 0) in the inequality (2:4:20);

then������
Z



@�̂"

@xi
 d�xdz

������ �
�
�C + 2�̂ j
j

1
q +

f̂i
Lq(
)

�
k kW 1;r(
) +

�
2�

p
2
�
�̂ j
j

1
q C;

gettin (2:4:8) follows for i = 1; 2:

For (2:4:9); we take in the inequality (2:4:20);  = (0; 0; 3); we �nd

1

"

������
Z



@�̂"

@z
 d�xdz

������ �
�
�C + 2�̂ j
j

1
q +

f̂3
Lq(
")

�
k kW 1;r(
) +

�p
2� 1

�
�̂ j
j

1
q C;

This completes the proof of Lemma 2.4.1

Now, the convergence (2:4; 1)� (2:4; 6) of Theorem 2.4.1,

are a direct result of inequalities (3:4:7)� (3:4:9) .
Indeed, from (2:4:7) there exists a �xed constant C which does not depend on " such

that @û"i@z

Lr(
)

� C; i = 1; 2 (2.4.21)

It is clear that (2:4:1) deduces directly from (2:4:21) and the using of the Poincaré�s

inequality in the �xed domain 
 .

Also (2:4:2)� (2:4:4) follows from (2:4:7):

The obtaining of (2:4:5) is done as in ([12]) :

Finally, it is easy (2:4:6) follows from (2:4:8)� (2:4:9):
To be able to pass to the limit in the problem (Pk) ; we must prove the strong conver-

gence of the integral term de�ned on ! .
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2.4. Main convergence results and uniqueness of solution

Lemma 2.4.2 There exists a subsequence of R(�̂"n(û
"; �̂")) converging strongly towards

R(���) in Lr(!):

Proof. From the equilibrium equation (2:1:3); we have

�div(�") = f " in 
";

with f " 2 Lq(
) .
By the convergenceTheorem 2.4.1 we deduce that (û"; �̂") are bounded in ~Vz � Lq0(
) ,

then �̂" is bounded in

Hdiv = fv 2 Lr(
) : div(v) 2 Lq(
);8i; j = 1; :::; 3g ;

which shows that there exists a subsequence converging weakly towards ��:

Now, we show that �̂"n(û
"; �̂") converges weakly to (���) in W �1

2
;r (!)

Indeed, as �"n = �"nninj ; 1 � i; j � 3; we have

�̂n(û
"; �̂") =

2X
i=1

�
"2�

��� ~D(û")���r�2 @û"i
@xi

+ "�̂
���� ~D(û")�����1 @û"i

@xi
� �̂"

�
+

�
"2�

��� ~D(û")���r�2 @û"3
@z

+ "�̂
���� ~D(û")�����1 @û"3

@z
� �̂"

�
Since �̂" is bounded in Hdiv (
) ; then there exists a subsequence converging weakly

towards �� in Hdiv (
) :

The continuity of the trace operator from Hdiv (
) into W
�1
2
;r (!)

give �̂"n(û
"; �̂") weakly converges towards �̂"n(u

�; ��) in W
�1
2
;r (!) :

Using the convergence results of Theorem 2.4.1 in the expression of �̂"n(û
"; �̂"); we

get the desired result.

For the rest of proof, using the same techniques as in ([3]; [26]; ) we get the result.

Theorem 2.4.2 Under the same assumptions as in Theorem 2.4.1,

the solution (u�; ��) satis�es relations

û"i ! û�i (1 � i � 2) strongly in ~Vz;81 < r � 2: (2.4.22)
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2.4. Main convergence results and uniqueness of solution

�

2X
i=1

Z



2

 
1

2

2X
i=1

�
@u�i
@z

�2! r�2
2
@u�

@z

@ ('̂i � u�i )

@z
d�xdz

�
2X
i=1

Z



��(�x)
@ ('̂i � u�i )

@z
d�xdz + �̂

p
2

2

Z



�����@'̂@z
����� ����@u�@z

����� d�xdz
+

Z
!

k̂ jR (���)j (j'̂� sj � ju� � sj) d�x �
2X
i=1

Z



�
f̂i; '̂i � u�i

�
d�xdz;8'̂ 2 �(K):

(2.4.23)

Proof. For u" the solution on (pb3); we obtain for ' 2 K"
div

a(u "; u" � ')� a('; u" � ')� j(u"; ') + j(u"; u") � (f "; '� u") + a('; u" � '): (2.4.24)

Using the inequality ([37])

�
jxjr�2 x� jyjr�2 y; x� y

�
� (r � 1)(jxj+ jyj)r�2 jx� yj2 ;81 < r < 2; for x; y 2 Rn

and the Korn�s inequality, we deduce

(r � 1)�Ck
3X

i;j=1

Z

"

 ����@u"i@xj

����r�2 + ����@'i@xj

����r�2
! ���� @@xj (u"i � 'i)

����2
!
d�xdx3

�j(u"; ') + j(u"; u") � (f "; '� u") + a('; u" � '):

Multiplying the last inequality by "r�1; then by the convergence of Theorem 2.4.1 we

get in the �xed domain 


(r � 1)�Ck
2X
i=1

 @@z (û"i � '̂i)

r
Lr(
)

� |̂(û"; '̂) + |̂(û"; û")

�
2X
i=1

Z



(f̂i; û
"
i � '̂i)d�xdz + a('̂; û" � '̂):

We put, �u" = (û"1; û
"
2) ; u

� = (u�1; u
�
2) ; �' = ('̂1; '̂2) ;so �' 2 ~�(K) and

lim sup
"!0

"
(r � 1)�Ck

 @@z (�u" � '̂i)

r
Lr(
)

� |̂(�u"; �') + |̂(�u"; �u")

#

� �

Z



 
1

2

2X
i=1

�
@'̂i
@z

�2! r�2
2
@�'

@z

@

@z
(�'� u�) d�xdz +

2X
i=1

Z



(f̂i; u
�
i � '̂i)d�xdz:
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2.4. Main convergence results and uniqueness of solution

Consequently

(r � 1)�Ck
 @@z (�u" � '̂i)

r
Lr(
)

� |̂(�u"; �') + |̂(�u"; �u")

� �

Z



 
1

2

2X
i=1

�
@'̂i
@z

�2! r�2
2
@�'

@z

@

@z
(�'� u�) d�xdz+

+

2X
i=1

Z



(f̂i; u
�
i � '̂i)d�xdz + � for " < " (�)

where � > 0 is arbitrary.

So there exists a sequence of functions �' 2 ~�(K) which has u� is a limit in ~Vz; which
gives

(r � 1)�Ck
 @@z (�u" � u�)

r
Lr(
)

� |̂(�u"; �') + |̂(�u"; u�)

� �; 8 " < " (�) :

Using the fact that |̂ is convex and lower semi-continuous, (lim inf |̂(�u")! |̂(u�)) ; we

deduce the strong convergence of �u" to u� in ~Vz as well as |̂(�u"; �u")! |̂(�u"; u�) for

"! 0; which gives the convergence (2:4:22):

If r = 2; we follow the same techniques but (2:4:24) we will be replaced by

�
jxjr�2 x� jyjr�2 y; x� y

�
� (1

2
)r�1 jx� yjr ; for x; y 2 Rn (2.4.25)

The proof of the inequality (2:4:23) needs the following lemma.

Lemma 2.4.3 (Minty). [23] Let E be a re�exive Banach space,

A be a nonempty closed convex subset of E; and E 0 be the dual of E:

Let T : E ! E 0 be a monotone operator which is continuous on �nite dimensional

subspaces (or at least hemicontinuous).

Then, the followings are equivalent:

u 2 A; hTu; v � uiE0�E + j(v)� j(u) � hf ; v � uiE0�E ;8v 2 E
u 2 A; hTv; v � uiE0�E + j(v)� j(u) � hf ; v � uiE0�E ;8v 2 E
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2.4. Main convergence results and uniqueness of solution

By usingMinty�s Lemma and the fact that div(û") = 0 in 
; then (2:3:4) is equivalent

to

a('̂; '̂� û")�
2X
i=1

�
�̂";

@'̂i
@xi

�
�
�
�̂";

@'̂3
@z

�
+ |̂(û"; '̂)� |̂(û"; û")

�
2X
i=1

Z



f̂i('̂i � û"i )d�xdz +

Z



"f̂3('̂3 � û"3)d�xdz;8'̂ 2 K

We apply the convergence of Theorem 2.4.1, Lemma 2.4.2 and the fact |̂ is convex

and lower semi-continuous, we obtain

�
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i=1
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i=1

�
@'̂i
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�2! r�2
2
@'̂i
@z

@ ('̂i � u�i )
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�
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��(�x)

�
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@x1

+
@'̂2
@x2

�
d�xdz + �̂

p
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2

Z



�����@'̂@z
����� ����@u�@z

����� d�xdz
+

Z
!

k̂ jR (���)j (j'̂� sj � ju� � sj) d�x �
2X
i=1

Z



f̂i('̂i � u�i ):

�� independent of z; then using again Minty�s Lemma for the second time, we deduce (2:4:23);

like (lemma 5:1 in [8]):

Theorem 2.4.3 With the same assumptions as in Theorem 2.4.1,

and if

����@u�@z
���� 6= 0 then (u�; ��) satisfy

�� 2 W 1;q(!) (2.4.26)

� @

@z

241
2
�

 
1

2

2X
i=1

�
@u�i
@z

�2! r�2
2
@u�

@z
+ �̂

p
2

2

@u�=@z

j@u�=@zj

35 = f̂ �r��; in Lq(
) (2.4.27)

Proof. we can choose '̂ in (2:4:23) as in ([10]; lemma5:3) such that

'̂i = u�i +  i; i = 1; 2; with  i 2 W
1;r
0 (
) we �nd

�

2X
i=1

Z
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2

 
1

2

2X
i=1

�
@u�i
@z

�2! r�2
2
@u�i
@z

@ i
@z

d�xdz

�
2X
i=1

Z



��(�x)

�
@ i
@z

�
d�xdz =

2X
i=1

Z



f̂i;  id�xdz:
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2.4. Main convergence results and uniqueness of solution

using now the Green�s formula, and choosing  1 = 0 and  2 2 W
1;r
0 (
);

then  1 2 W
1;r
0 (
) and  2 = 0; we get (2:4:26):

Now, for the prove of (2:4:27):

For this, we use the following techniques.

Firstly, we choose '̂ in (2:4:23) by '̂ = u� + � then '̂ = u� � � ;  2 W 1;r
0 (
); we

obtain

�
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i=1
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2
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i=1

�
@u�i
@z

�2! r�2
2
@u�i
@z

@ (� i)

@z
d�xdz �

2X
i=1
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��(�x)
@ (� i)

@z
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+�̂

p
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2

Z



�����@ (u� + � )

@z

����� ����@u�@z
����� d�xdz � 2X

i=1

Z



f̂i (� i) d�xdz;8 2 W
1;r
0 (
)

(2.4.28)
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��(�x)
@ (� i)
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��̂
p
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�����@ (u� + � )

@z

����� ����@u�@z
����� d�xdz � 2X

i=1

Z



f̂i (� i) d�xdz;8 2 W
1;r
0 (
)

(2.4.29)

Secondly, dividing (2:4:28) and by the passage to the limit when � tends to zero, we

�nd
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�2! r�2
2
@u�i
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@ i
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d�xdz �
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i=1
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��(�x)
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+�̂
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Z



�����@u�@z
������1 @u�@z @ @z d�xdz �

2X
i=1

Z



f̂i id�xdz;8 2 W
1;r
0 (
)

(2.4.30)
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��(�x)
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�����@u�@z
������1 @u�@z @ @z d�xdz �
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i=1
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f̂i id�xdz;8 2 W
1;r
0 (
)

(2.4.31)

So the last two formulas, we give:
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i=1
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2

2X
i=1

�
@u�i
@z

�2! r�2
2
@u�i
@z

@ i
@z

d�xdz �
2X
i=1
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��(�x)
@ i
@z

d�xdz

+�̂

p
2

2

Z



�����@u�@z
������1 @u�@z @ @z d�xdz =

2X
i=1

Z



f̂i id�xdz;8 2 W
1;r
0 (
)

(2.4.32)
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2.4. Main convergence results and uniqueness of solution

By the Green�s formula, we get (2:4:27):

Theorem 2.4.4 Under the same assumptions of the previous Theorems, the traces � �; s� satisfy

the following inequality

2X
i=1

Z
!

k̂ jR (�̂n (���))j'i (s�i � si) d�x�
Z
!

�̂� �' (s� � s) d�x � 0;8' 2 Lr(!) (2.4.33)

and the following limit form of the Coulomb boundary conditions8<: �̂ j� �j < k̂ jR (�̂"n (���))j ) s� = s;

�̂ j� �j = k̂ jR (�̂"n (���))j ) 9� � 0 such that s� = s� �� �:
on !: (2.4.34)

With

s�(�x) =
@u�(�x; 0)

@z
; A�(�x; �) =

1

2

 
1

2

2X
i=1

�
@u�i
@z
(�x; �)

�2! r�2
2

; � � = A�(�x; 0)
@u�

@z
(�x; 0)

F (�x; y) =

Z y

0

Z �

0

f̂ "(�x; t)dtd�; ~F (�x; y) =

Z h

0

F (�x; y)dy � h

2
F (�x; h):

Another u�and �� satis�es the following weak form of the Reynolds equation

Z
!

0@h3
12
r��(�x) + ~F (�x; h) + �

hZ
0

yZ
0

A�(�x; �)
@u�

@�
(�x; �)d�dy + �̂

hZ
0

yZ
0

@u�=@z

j@u�=@zj(�x; �)d�dy

1Ar'(x)
�
Z
!

0@�h
2

hZ
0

A�(�x; �)
@u�

@�
(�x; �)d� � �̂h

2

hZ
0

@u�=@z

j@u�=@zj(�x; �)d�

1Ar'(x) = 0;8' 2 W 1;r(!);

(2.4.35)

Proof. We take in (2:4:23); '̂i = u�i + �	i; i = 1; 2; for all 	i 2 W 1;r
�1[�L(
)

with

W 1;r
�1[�L (
) =

�
	 2 W 1;r(
);	 = (	1;	2) ;	 = 0 on �1 [ �L

	
;
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2.4. Main convergence results and uniqueness of solution

then
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Z
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k̂ jR (���)j (j�	+ s� � sj � js� � sj) d�x

�
2X
i=1

�
f̂i; �	i

�
:

Dividing the last inequality by � and the passage to the limit when � tends to zero,
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 ����@u�i@z
�����1 @u�i@z @	i@z

!
d�xdz

+

Z
!

k̂ jR (���)j 	i(s
� � s)

js� � sj d�x �
2X
i=1

�
f̂i;	i

�
: (2.4.36)

Finallly, using the Green formula in (2:4:36) and from (2:4:27); we �nd

2X
i=1

Z
!

k̂ jR (�̂n (���))j'i (s�i � si) d�x�
Z
!

�̂� �' (s� � s) d�x � 0;8' 2 W 1;r
�1[�L (
)

This inequality remains valid for any 	 2 D (!)2 ;
and by the density of D (!) in Lr(!) we deduce (3:4:33):

To prove (2:4:35); we integrat (2:4:27) from 0 to z we obtain:
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zZ
0

A�(�x; �)
@u�

@�
(�x; �)d� � �̂

p
2

2

zZ
0

@u�=@z

j@u�=@zj(�x; �)d�

+�� �(�x)z + �̂

p
2

2

��(�x)

j��(�x)jz =
zZ
0

�Z
0

f̂(�x; t)dtd� � z2

2
r��;

(2.4.36)
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2.4. Main convergence results and uniqueness of solution

for z = h we have
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hZ
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f̂i(�x; t)dtd� �
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r��:

(2.4.37)

By integrating (2:4:36) from 0 to h we obtain:
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Z �
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6
r��:

(2.4.38)

From (2:4:37); we deduce
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j��(�x)j

!
h2

2
= �

h

2

hZ
0

A�(�x; �)
@u�

@�
(�x; �)d�+

�̂
h

2

p
2

2

hZ
0

@u�=@z

j@u�=@zj(�x; �)d� +
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f̂ (�x; �)d�dy � h3
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r��

(2.4.39)

By (2:4:38)� (2:4:39); we deduce (2:4:35):

2.4.2 Uniqueness of the solutions

Theorem 2.4.5 There exists a positive constant su¢ ciently small k� such that
k̂

L1(!)
� k� the

solution

(u�; ��) in ~Vz � (Lq0(!) \W 1;q(!))2 of limite problem (2:4:27); is unique.
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2.4. Main convergence results and uniqueness of solution

Proof. suppose there are two solutions (u�;1; ��;1) and (u�;2; ��;2) of the problem (2:4:27)
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(2.4.41)

We take '̂ = u�;2 in (2:4:40) and '̂ = u�;1 in (2:4:41);
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(2.4.43)
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2.4. Main convergence results and uniqueness of solution

then by summing the two inequalities, we �nd
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d�xdz

�
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!

k̂ jR(���;1)�R(���;2)j ju�;1 � u�;2j d�x � 0;

(2.4.44)

we use the following inequality�
jxjr�2 x� jyjr�2 y; x� y

�
� (r � 1)(jxj+ jyj)r�2 jx� yj2 ; x; y 2 Rn;81 < r � 2;

we get

�

 @@z �u�;1 � u�;2
�r

Lr(
)

�
k̂

L1

Z
!

��R(���;1)�R(���;2)
�� ��u�;1 � u�;2

�� d�x: (2.4.45)

So that

�
u�;1 � u�;2
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Lr(
)

� �h�
 @@z �u�;1i � u�;2i

�r
Lr(
)

Now, we apply the Hölder inequality on the second term of (2:4:45); we have

� ku�;1 � u�;2krLr(
) � �h�
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Lr(!)

� h�
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L1(!)
C0

Z
!

�
jR(���;1)�R(���;2)jq

� 1
q d�x ku�;1 � u�;2kLr(!)

whence

ku�;1 � u�;2kr�1Lr(!) �
h�
k̂

L1(!)
C0

�
kR(���;1)�R(���;2)kLq(!)

(2.4.46)

Using the fact that R is a linear continuous operator W� 1
2
;r(!) into Lr(!); there exists

a constant C1 depending on R; such thatR(���;1)�R(���;2)

Lq(!)

� C1
��;1 � ��;2


Lq(!)

: (2.4.47)

Combining (2:4:46) and (2:4:47) we deduce that if
k̂

L1(!)
� k� for su¢ ciently small k� then

we have ��;1 � ��;2

Lq(!)

= 0 and
u�;1 � u�;2


Vz
:

This ends the proof of the Theorem
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Chapter 3

Study of a Non-Isothermal Hooke

Operator in Thin Domain with

Friction on the Bottom Surface

Abstract. This chapter is devoted to the achievement of the mathematical model in a thin

domain 
" of R3, such that the height is smaller compared to the other two lengths. This

problem related with deformations of a non isothermal elastic homogeneous body " depends

on a temperature coe¢ cient", with nonlinear friction conditions of the Coulomb type.

It�s made up of �ve sections. Firstly, we give ratings, boundary conditions, and then we

formulate the variational formulation of the strong problem. Finally, we concern ourselves

with the study of the existence and uniqueness of the solution of the weak problem.
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3.1. Stating of the problem

3.1 Stating of the problem

Consider the problem of uniform elasticity in the thin domain 
"; and steady-state defor-

mation of an isotropic body (a material with the same behavior in all directions).Where " positive

real numbers belonging to ]0; 1[ and it tends towards zero.

Denote the boundary of 
" by �" = ! [ �"1 [ �"L.

�"1 is the upper bound of 
" with equation x3 = "h(x1; x2).

�"L is the side border of 
".

! is a bounded domain of R3; with equation x3 = 0,

and is the bottom of the domain.

We notice x = (x1; x2; x3) 2 R3 and �x = (x1; x2) 2 R2.
The domain 
" is given by :


" = f(�x; x3) 2 R3; (�x; 0) 2 !; 0 < x3 < "h(�x)g.

Where h is a function of class C1 de�ned on ! with :

0 � h� � h(�x) � h�; 8(�x; 0) 2 !.

f ", represents the mass density of the external forces in the �eld 
".

The momentum conservation equation in domain 
"; is determined by non-isothermal

steady �ow:

div �" + f " = 0 in 
". (3.1.1)

We represent the stress tensor by �" = (�ij)
"
1�i;j�3 , and the deformation tensor by D = (dij)1�i;j�3:

dij(u) =
1

2

�
@ui
@xj

+
@uj
@xi

�
, 1 � i; j � 3.

The law of behavior is believed to follow Hooke�s law.

�"i;j(u
") = 2�(T ")di;j(u

") + �(T ")dkk(u
")�ij: (3.1.2)

De�ne the normal and tangential components of the displacement as follows:
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3.1. Stating of the problem

u"n = u":n

u"� = u" � u"n:n

Similarly, the normal and tangential components of the stress tensor are de�ned as:

�"n = (�
":n):n

�"� = �":n� �"n:n

The law of conservation of energy is:

8><>:
�r(K"rT ") = �" : D(u") + r"(T ");

�" : D(u") =
3P

i;j=1

�"i;jdi;j(u
"):

(3.1.3)

Where K" is the thermal conductivity and r"(T ") is the heat source.

Before describing the limiting conditions, �rst let us introduce the vectorial function

g = (g1; g2; g3) like:

Z
�"
g:n:ds = 0:

There is a function G" such that:

G" 2 H1(
")3 with G" = g on �":

Assume that the displacement on the upper surface �"1, is given by:

u" = g = 0 on �"1. (3.1.4)

On �"L, the displacement is known and parallel to the !-plane

u"i = gi with g3 = 0, i = 1; 2, (3.1.5)

Now let�s talk about the condition on !:

Bilateral contact is given by :

u":n = 0 on !, (3.1.6)
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3.2. Variational formulation

Also assume the friction on the common plane !,

this friction is unknown and is modeled by a nonlinear Coulomb�s law:8<: j�"� j < z" j�"nj ) u"� = s;

j�"� j = z" j�"nj ) 9� � 0 such that u"� = s� ��"� ;
(3.1.7)

with z" � 0 is the coe¢ cient of friction.
For temperature, we make the following assumptions

homogeneous Dirichlet8<: T " = 0 on �"L [ �"1; (homogenous Dirichlet)
@T "

@n
= 0 on ! ; (homogenous Neumann)

(3.1.8)

The complete problem (3:1:9) , is to �nd the displacement �eld

u" = (u"i )1�i�3 : 

" ! R3; check the following equations and boundary conditions:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

div �" + f " = 0 in 
";

�"i;j(u
") = 2�(T ")di;j(u

") + �(T ")dkk(u
")�ij: in 
";

u" = 0 on �"1;

u" = g on �"L;

u":n = 0 on !;�
j�"� j < z" j�"nj ) u"� = s;

j�"� j = z" j�"nj ) 9� � 0 such that u"� = s� ��"� ;

�
on !;

T " = 0 on �"L [ �"1;
@T "

@n
= 0 on ! :

(3.1.9)

3.2 Variational formulation

In this section we de�ne a functional framework in which we are going to work, and we

obtain a weak formulation of the problem (3:1:9) .

For the open 
", de�ne the spaces and sets:

De�ne spaces and sets of open 
".
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3.2. Variational formulation

H1(
")3 =

�
v 2 L2(
")3 : @vi

@xj
2 L2(
")3;8i; j = 1; :::; 3

�
,

De�ned the closed convex nonempty of H1(
")3 :

V " =
n
' 2

�
H1(
")

�3
; ' = g on �"L ; ' = 0 on �

"
1 and ':n = 0 on !

o
:

Denote by H1
�"L[�"1

the vector subspace of H1(
") :

H1
�"L[�"1

(
") =
�
' 2 H1(
") : ' = 0 on �"L [ �"1

	
:

The spaces 
"; H1(
")3; V " and H1
�"L[�"1

(
") are the domains in which we study the

asymptotic behavior of elasticity.

The Sobolev spaces, the closed convex, and vector subspaces of H1(
") are given with

their natural norms and inner products.

In order to simplify drafting, we note:

a(T "; u"; v) =
3X

i;j=1

Z

"
2�"(T ")dij(u

")dij(v)d�xdx3 +

Z

"
�"(T ") div(u") div(v)d�xdx3; (3.2.1)

(f "; v) =

Z

"
f "vd�xdx3 =

3X
i=1

Z

"
f "
i vid�xdx3; (3.2.2)

b(T ";  ) =

Z

"
K"@T

"

@xi

@ 

@xi
d�xdx3; (3.2.3)

c(u"; T ";  ) =
3X
i=1

Z

"
2�"(T ")d2ij(u

") d�xdx3+

Z

"
�"(T ") div(u") div(u") d�xdx3+

Z

"
r"(T ") d�xdx3:

(3.2.4)

j"(v) =

Z
!

z"S(�"n) jv� � sj d�x: (3.2.5)

Since the integral j"(v) has no meaning for v 2 V "; we replace �"n by S (�
"
n) ; where S is

the regularization operator from H� 1
2 (!) into L2+(!) is de�ned by
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3.2. Variational formulation

8� 2 H� 1
2 (!); S(�) 2 L2+(!); S(�)(x) =

����h� ; %(x� �)i
H� 1

2 (!);H
1
2
00(!)

���� ;
where % is a given positive function of the class C1 with compact support on ! ,

here H� 1
2 (!) is the dual space to the

H
1
2
00(!) =

�
%j! : % 2 H1(
"); % = 0 on �"L [ �"1

	
:

is the subspace of L2(!) of non-negative functions from ([20]; [21]) .

Lemma 3.2.1 if u" and T " are solutions of the problem (3:1:9) then they verify the fol-

lowing variational problem:8>>><>>>:
To �nd u" 2 V "(
") and �nd T " 2 H1

�"L[�"1
(
") such that:

a(T "; u "; '� u") + j"(')� j"(u") � (f "; '� u "); 8' 2 V ":

b(T ";  ) = c(u"; T ";  ); 8 2 H1
�"L[�"1

:

(3.2.6)

Proof. By multiplying the equation (3:1:1) by ('� u") where ' 2 V " and using the

Green formula we getZ

"
�"ij

@

@xi
('i � u"i )d�xdx3 �

Z
�"
�"ijnj('i � u"i )ds =

Z

"

f "
i ('i � u"i )d�xdx3:

According to the boundary conditions (3:1:4)� (3:1:5) we �ndZ
�"

�"ijnj('i � u"i )ds =

Z
!

�"ijnj('i � u"i )d�x:

We know that: �"ijnj = �"� i + �"nni then we getZ
�"
�"ijnj('i � u"i )ds =

Z
!

�"� i('i � u"i )d�x+

Z
!

�"nni('i � u"i )d�x

as ni('i � u"i ) = 0; we haveZ

"
�"ij

@

@xi
('i � u"i )d�xdx3 �

Z
!

�"� i('i � u"i )d�x =

Z

"
f "
i ('i � u"i )d�xdx3; ' 2 V ": (3.2.7)
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3.2. Variational formulation

In (3:2:7); we add and subtract the term
R
!
z"S(�"n)(j'� � sj � ju"� � sj)d�x; we obtainZ


"
�"ij

@

@xi
('i � u"i )d�xdx3 �

Z
!

�"� i('i � u"i )d�x+Z
!

z"S(�"n)(j'� � sj � ju"� � sj)d�x�
Z
!

z"S(�"n)(j'� � sj � ju"� � sj)d�x

=

Z

"

f "
i ('i � u"i )d�xdx3:

Putting

B =

Z
!

�"Ti(('� � s)� (u"� � s))d�x+

Z
!

z"S(�"n)(j'� � sj � ju"� � sj)d�x;

then

B =

Z
!

�"� i('� � s)d�x+

Z
!

z"S(�"n) j'� � sj d�x;

thus

�"� i('� � s) � �
���"� i�� j'� � sj � �z"S(�"n) j'� � sj > 0; on !;

and

B =

Z
!

�"� i('� � s)d�x+

Z
!

z"S(�"n) j'� � sj d�x � 0;

which givesZ

"
�"ij

@

@xi
('i�u"i )d�xdx3+

Z
!

z"S(�"n) j'� � sj d�x�
Z
!

z"S(�"n) ju"� � sj d�x �
Z

"
f "
i ('i�u"i )d�xdx3:

(3.2.8)

Then we get the (3:2:6)

By multiplying the equation (3:1:3) by  where,  2 H1
�"L[�"1

(
")

and using the Green formula we get

3X
i=1

Z

"
K"@T

"

@xi

@ 

@xi
d�xdx3 =

3X
i;j=1

Z

"
2�"(T ")d2ij(u

") d�xdx3 +Z

"
�"(T ") div(u") div(u") d�xdx3 +Z

�"
K"@T

"

@ni
 ds+

Z

"
r"(T ") d�xdx3;

now the boundary condition (3:1:8); we give
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3.3. Change of the domain and some estimates

3X
i=1

Z

"
K"@T

"

@xi

@ 

@xi
d�xdx3 =

3X
i;j=1

Z

"
2�"(T ")d2ij(u

") d�xdx3 +Z

"
�"(T ") div(u") div(u") d�xdx3 +Z


"
r"(T ") d�xdx3; (3.2.9)

that is to say b(T ";  ) = c(u"; T ";  ); 8 2 H1
�"L[�"1

:

Theorem 3.2.1 If f " 2 (L2(
"))3 and the friction coe¢ cient z" is a non-negative func-
tion in L1(!) then there exists u" 2 V " solution to the problem (3:2:6) .

Moreover, for small z" the solution is unique.

Proof. The proof is similar to that in ([3]; ) and we shall not reproduce it in full

giving only a sketch here, for the existence of a solution u": Firste, we apply Tichonov�s

�xed point theorem ([17]) ; then uses the same procedure to prove the uniqueness of u" as

in ([3]; [34]):

3.3 Change of the domain and some estimates

The goal of this section is to make an asymptotic analysis of the previous problem by

rescaling the study back to the domain 
 independent of ", on which we set unknown

news.

We obtain a variational formulation in the �xed domain and prove a priori estimates of

independent solutions of ", by various inequalities from (Korn, Poincaré, Young, etc.).

Finally, we derive the convergence results.

3.3.1 Scale change

Asymptotic analysis of the problem (3:1:9), we use an approach that transforms the problem

originally posed in the �eld 
" which depends on a small parameter " into an equivalent

problem in which the �xed domain 
 does not depend on ".
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3.3. Change of the domain and some estimates

For this reason, we introduce a small change in variable z =
x3
"
, then (�x; x3) in 
"

become (�x; z) in 
; and it�s given by


 = f(�x; z) 2 R3; (�x; 0) 2 !; 0 < z < h(�x)g.

We denote the �xed domain boundary by � = ! [ �L [ �1:
Add a new functions in 
; independent of " :8<: û"i (�x; z) = u"i (�x; x3); i = 1; 2,

û"3(�x; z) = "�1u"3(�x; x3).
(3.3.1)

8>>>>>>>><>>>>>>>>:

f̂ "(�x; z) = "2 f "(�x; x3),

ẑ = "�1z",

T̂ "(�x; z) = T "(�x; x3);

K̂ = K"; r̂ = "2r"; �̂ = �"; �̂ = �";

ĝ(�x; z) = g"(�x; x3).

(3.3.2)

Let Ĝ(�x; z) such as :

Ĝ = ĝ on �.

The vector Ĝ introduced earlier is de�ned as:

Ĝi(�x; z) = G"i (�x; x3); i = 1; 2,

Ĝ3(�x; z) = "�1G"3(�x; x3).
(3.3.3)

3.3.2 Weak formulation in 


Here we introduce the functional framework in 
.
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3.3. Change of the domain and some estimates

8>>>>>>><>>>>>>>:

V =
n
' 2 (H1(
))

3
; ' = Ĝ on �L ; ' = 0 on �"1 and ':n = 0 on !

o
;

�(V ) =
n
' 2 H1(
)2 : ' = ('1; '2) ; 'i = Ĝ on �L and 'i = 0 on �1 ; i = 1; 2

o
;

Vz =

�
v = (v1; v2) 2 L2 (
)2 ;

@vi
@z

2 L2 (
) ; i = 1; 2; v = 0 on �1
�
;

H1
�"L[�"1

(
) = f' 2 H1(
) : ' = 0 on �L [ �1 g :

It is clear that Vz is a Banach space with norm:

kvkVz =
 

2X
i=1

kvik2L2(
) +
@vi@z

2
L2(
)

! 1
2

:

The problem (Pv) became with scale change de�ned in (3:3:1)� (3:3:3):
Find a displacement �eld û" 2 V and �nd a temperature �eld T̂ " 2 H1

�"L[�"1
(
) such

that:

a(T̂ "; û"; '̂� û") + j('̂)� j(û") � (f̂ "; '̂� û "); 8'̂ 2 V; (3.3.4)

b(T̂ ";  ̂) = c(û"; T̂ ";  ̂); 8 ̂ 2 H1
�"L[�"1

(
); (3.3.5)

where

a(T̂ "; û"; '̂� û") = "2
2X

i;j=1

Z



�̂(T̂ ")

�
@û"i
@xj

+
@û"j
@xi

�
@

@xj
('̂i � û"i )d�xdz +

2X
i=1

Z



�̂(T̂ ")

�
@û"i
@z

+ "2
@û"3
@xi

��
@

@z
('̂i � û"i ) + "2

@

@xi
('̂i � û"3)

�
d�xdz +

"2
Z



2�̂(T̂ ")
@û"3
@z

@

@z
('̂3 � û"3)d�xdz + "2

Z



�̂(T̂ ") div(û") div('̂� û")d�xdz:

(f̂ "; '̂� û") =

2X
i=1

Z



f̂ "i ('̂i � û"i ) d�xdz + "

Z



f̂ "
3 ('̂3 � û"3) d�xdz:

j('̂) =

Z
!

ẑS(�"n) j'̂� � sj d�x:
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3.3. Change of the domain and some estimates

b(T̂ ";  ̂) =
2X
i=1

Z



K̂"2
@T̂ "

@xi

@ ̂

@xi
d�xdz +

Z



K̂
@T̂ "

@z

@ ̂

@z
d�xdz:

c(û"; T̂ ";  ̂) =

2X
i;j=1

1

2

Z



"2�̂(T̂ ")

�
@û"i
@xj

+
@û"j
@xi

�2
 ̂d�xdz +

2X
i=1

Z



�̂(T̂ ")

�
@û"i
@z

+ "2
@û"3
@xi

�2
 ̂d�xdz +

Z



2"2�̂(T̂ ")

�
@û"3
@z

�2
 ̂d�xdz +

Z



"2�̂(T̂ ") div(û") div(û") ̂d�xdz +

Z



r̂(T̂ ") ̂d�xdz:

In the next, we make an estimate of the displacement u" and temperature T " solution

of the variational problem in �xed domain.

3.3.3 A priori estimates of the displacement

Lemma 3.3.1 Assume that f 2 (L2 (
))3 ; the coe¢ cient of friction z" > 0 in L1(w) and
there is a strictly positive constants ��; �

�; ��; �
� such that

0 < �� � �(a) � �� and 0 < �� � �(b) � �� 8a; b 2 R. (3.3.6)

Then there is a strictly positive constant C that does not depend on " such that

2X
i;j=1

"@û"i@xj

2
L2(
)

+

"@û"3@z
2
L2(
)

+
2X
i=1

 @û"i@z
2
L2(
)

+

"2@û"i@xi

2
L2(
)

!
� C: (3.3.7)

Proof. Let be u" the solution of the problem (3:2:6) so

a(T "; u"; u" � ') + j"(')� j"(u") � (f "; u")� (f "; ');8' 2 V ": (3.3.8)

Because j"(u") is positive

a(T "; u"; u") � a(T "; u"; ') + j"(') + (f "; u")� (f "; ');8' 2 V ":

with

a(T "; u"; u") =

Z

"
2�"(T ")dij(u

")dij(u
")d�xdx3 +

Z

"
�"(T ") div(u") div(u")d�xdx3;
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3.3. Change of the domain and some estimates

and as
2X

i;j=1

jdij(u")j2 � jru"j2 and j div(u")j2 � jru"j2 ;

so, according to the inequality of Korn (from [33]); there exist CK independent of " such

that:

a(T "; u"; u") � 2��CK kru"k
2
L2(
") : (3.3.9)

Applying the inequalities of Hölder and Young we �nd the following inquiries

a(T "; u"; ') �
Z

"
2�"(T ") jdij(u")j jdij(')j d�xdx3 +

Z

"
�"(T ") j div(u")j j div(')j d�xdx3

�
Z

"
2��(T ") jdij(u")j jdij(')j d�xdx3 +

Z

"
��(T ") j div(u")j j div(')j d�xdx3

�
Z

"

 r
��CK
2

jdij(u")j
! 

2 ��
p
2p

��CK
jdij(')j

!
d�xdx3 +Z


"

 p
��CK

2
j div(u")j

! 
2 ��p
��CK

j div(')j
!
d�xdx3

� ��CK
4

kdij(u")k2L2(
") +
4 (��)2

��CK
kdij(')k2L2(
") +

��CK
8

Z

"
j div(u")j2 d�xdx3 +

2(��)2

��CK

Z

"
j div(')j2 d�xdx3

so

a(T "; u"; ') � 3 ��CK
8

kru"k2L2(
") +
 
4 (��)2

��CK
+
2(��)2

��CK

!
kr'k2L2(
") : (3.3.10)

Since

(f "; u") � ("h�)2

2 ��CK
krf "k2L2(
") +

��CK
2

kru"k2L2(
") : (3.3.11)

(f "; ') � ("h�)2

2 ��CK
krf "k2L2(
") +

��CK
2

kr'k2L2(
") : (3.3.12)

We used (3:3:9)� (3:3:12); and we choose ' = G" we get the variational equation equiv-

alent to (2:3:8)

2��CK kru"k
2
L2(
") � a(T "; u"; u") � 7

8
��CK kru"k

2
L2(
") +

("h�)2

��CK
krf "k2L2(
") + 

4 (��)2

��CK
+
2(��)2

��CK
+
��CK
2

!
krG"k2L2(
") :
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3.3. Change of the domain and some estimates

9

8
��CK kru"k

2
L2(
") �

("h�)2

��CK
krf "k2L2(
") +

 
4 (��)2

��CK
+
2(��)2

��CK
+
��CK
2

!
krG"k2L2(
")

As

"2 krf "k2L2(
") = "�1
rf̂ "

2
L2(
")

and " krG"k2L2(
") =
rĜ2

L2(
")
;

then

9

8
��"CK kru"k

2
L2(
") � (h�)2

��CK

rf̂ "
2
L2(
")

+ " kru"k2L2(
") + 
4 (��)2

��CK
+
2(��)2

��CK
+
��CK
2

!rĜ2
L2(
")

� C;

thuse

" kru"k2L2(
") = "2
2X

i;j=1

 @û"i@xJ

2
L2(
)

+"2
@û"3@z

2
L2(
)

+
2X
i=1

 @û"i@z
2
L2(
)

+ "4
@û"i@xi

2
L2(
)

!
� C;

with

C =
8

9��CK
c0 and c0 =

(h�)2

��CK

rf̂ "
2
L2(
")

+

 
4 (��)2

��CK
+
2(��)2

��CK
+
��CK
2

!rĜ2
L2(
")

:

3.3.4 A priori estimate of the temperature

In this subsection, we look for a priori estimate of the temperature T̂ ": For that, we need

to state the following lemma, which is a direct result of Poincaré�s inequality.

Lemma 3.3.2 The temperature T̂ " is increased by

T̂ "
L2(
)

� h�

@T̂ "@z


L2(
)

(3.3.13)

Lemma 3.3.3 Assuming further veri�cation of the hypothesis of the Lemma (3:3:1); suppose

we have
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3.3. Change of the domain and some estimates

two strictly positive constants K� and K� such that:

0 � K� � K (�x; z) � K�;8 (�x; z) 2 
 (3.3.14)

a positive constant r̂�; such that:

r̂(a) � r̂� (3.3.15)

then there is a positive constant C2 independent of " such that:

"2
2X
i=1

@T̂ "@xi


L2(
)

+

@T̂ "@z


L2(
)

� C2 (3.3.16)

Proof. Choosing T̂ " =  ; in the variational equation (3:2:9); gives

3X
i=1

Ii =
2X
i=1

Z



"2K̂
@T̂ "

@xi

@T̂ "

@xi
d�xdz +

Z



K̂
@T̂ "

@z

@T̂ "

@z
d�xdz;

with

I1 =
2X

i;j=1

1

2

Z



"2�̂(T̂ ")

�
@û"i
@xj

+
@û"j
@xi

�2
T̂ "d�xdz +

2X
i=1

Z



�
@û"i
@z

+ "2
@û"3
@xi

�2
T̂ "d�xdz +

Z



2"2�̂(T̂ ")

�
@û"3
@z

�2
T̂ "d�xdz;

I2 =

Z



r̂(T̂ ")T̂ "d�xdz;

I3 =

Z



"2�̂(T̂ ") div(û") div(û")T̂ "d�xdz:

By the Cauchy-Schwartz inequality, we obtain

jI1j �
"2��

2

2X
i;j=1

@û"i@xj

2
L2(
)

T̂ "2
L2(
)

+ ��
2X
i=1

@û"i@z
2
L2(
)

T̂ "2
L2(
)

+2"2��
@û"3@z

2
L2(
)

T̂ "2
L2(
)

+ ��
2X
i=1

@û"3@xi

2
L2(
)

T̂ "2
L2(
)

:

57



3.3. Change of the domain and some estimates

From Young�s inequality

jI1j � 2"2��
2X

i;j=1

@û"i@xj

2
L2(
)

T̂ "2
L2(
)

+ 2��
2X
i=1

@û"i@z
2
L2(
)

T̂ "2
L2(
)

+2"4��
@û"3@xi

2
L2(
)

T̂ "2
L2(
)

+ 2"2��
@û"3@z

2
L2(
)

T̂ "2
L2(
)

:

By the inequality (3:3:7) and the Lemma (3:3:2); we �nd

jI1j � 2��C
T̂ "2

L2(
)
� 2��Ch�

@T̂ "@z


L2(
)

: (3.3.17)

The analog of I1 gives

jI2j � r̂�
T̂ "2

L2(
)
� r̂�h�

@T̂ "@z


L2(
)

: (3.3.18)

jI3j � � kdiv(û")k2
T̂ "2

L2(
)
;

since "2 krû"k2L2(
) � C; then

jI3j � ��C
T̂ "2

L2(
)
: (3.3.19)

On the other hand, using (3:3:14)� (3:3:15); gives

b(T̂ "; T̂ ") =

2X
i=1

Z



"2K̂

�����@T̂ "@xi

�����
2

d�xdz +

Z



K̂

�����@T̂ "@z

�����
2

d�xdz:

Which implies

K�"
2

@T̂ "@xi


2

+K�

@T̂ "@z


2

� b(T̂ "; T̂ ")

� 2��h�C
@T̂ "@z


2

L2(
)

+ r̂�h�

@T̂ "@z


2

L2(
)

+ ��Ch�

@T̂ "@z


2

L2(
)

then

K�"
2

@T̂ "@xi


2

L2(
)

+K�

@T̂ "@z


2

L2(
)

� C1

@T̂ "@z


2

L2(
)

; (3.3.20)
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3.4. Convergence results

where C1 is a constant that does not depend on " and is given by

C1 = 2�
�h�C + r̂�h� + �̂

�
Ch�

thus @T̂ "@z


2

L2(
)

� K�1
� C1: (3.3.21)

Using this last estimate of (3:3:20) we derive

"2

@T̂ "@xi


2

L2(
)

+

@T̂ "@z


2

L2(
)

� C2

with

C2 = K�1
� (C)2

3.4 Convergence results

In this part, we set up the convergence theorem.

Theorem 3.4.1 Under the same assumptions as in Lemma (3:3:1) and (3:3:3) there ex-

ists

u� = (u�1; u
�
2) in Vz and T

� in Vz such as for subsuites of û"(respT̂ ")

noted again û"(respT̂ ") we get the following convergence results:

û"i * u�i weakly in Vz; 1 � i � 2 (3.4.1)

"
@û"i
@xj

* 0 weakly in L2; 1 � i; j � 2: (3.4.2)

"
@û"3
@z

* 0 weakly in L2 (3.4.3)

"2
@û"3
@xi

* 0 weakly in L2; 1 � i � 2 (3.4.4)

"û"3 * 0 weakly in L2 (3.4.5)
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3.4. Convergence results

T̂ " * T � weakly in Vz (3.4.6)

"
@T̂ "

@xi
* 0 weakly in L2; 1 � i � 2 (3.4.7)

Proof. According toTheorem (3:3:1); there exists a constant C independent of "; which

"

@û"i@z
2
L2(
)

� C; i = 1; 2

Using this estimate with the Poincaré inequality, we get:

kû"ik0;
 � h�
@û"i@z

 , 1 � i � 2,

which means û"i is bounded in Vz for i = 1; 2, this implies the existence of

u�i in VZ such as û
"
i
converges weakly to u�i in Vz.

Using the Theorem (3:3:1) :

"

@û"i@xj
;


0;


� C.

So "
@û"i
@xj

converges to
@u�i
@xj

on the other hand, we have:

kû"ik0;
 � C,

then
@û"i
@xj

converges to
@u�i
@xj

which makes the weak convergence of

@û"i
@xj

to (0; 0) in L2(
1)� L2(
2).

Ditto for the inequality

"2
@û"3@xi


0;


� C,

we have the convergences

"2
@û"3
@xi

*
@u�3
@xi

; and "
@û"3
@xi

*
@u�3
@xi

.

Which shows that "2
@û"3
@xi

converges weakly to (0; 0) in L2(
).

The proof of the convergence temperature is based on this estimate

"2
2X
i=1

@T̂ "

@xi

+
@T̂ "

@z

 � C2;

60



3.5. Study of the limit problem

where C2 is a constant independent of " .

Using the lemma (2:3:1) we deduce

T̂ "
 � h�

@T̂ "

@z

 � h�C2:

So, T̂ " is bound in Vz(
) which shows the existence of T � in Vz(
); such that T̂ " converges

weakly to T � in Vz(
);

again, using the same estimate to show "

@T̂ "

@xi

 � C2;

so,

 
"
@T̂ "

@xi

!
converge to

@T �

@xi
and like T̂ " converge to T � in Vz(
) then "

@T̂ "

@xi
weakly

converges to 0 in Vz(
):

3.5 Study of the limit problem

The rest of this section requires previous convergence results to achieve the desired goal.

Lemma 3.5.1 There is a subsequence of S(�"n(u
")) that strongly converges towards

S(��n(u
�)) in L2(!):

Proof. To prove this lemma, the use of identical techniques in ([3];Lemma5:1) and

in ([10];Lemma5:2):

Theorem 3.5.1 û"i ! u�i strongly in Vz; i = 1; 2 and with the same assumptions of the

Theorem (3:3:1); the solutions u� and T � satisfy

2X
i=1

Z



�̂(T �)
@u�i
@z

@

@z
('̂i�u�i )d�xdz+ j('̂)� j(u�) �

2X
i=1

�
f̂ "
i ; '̂i � u�i

�
; 8'̂ 2 �(V ) (3.5.1)

� @

@z

�
�̂(T �)

@u�i
@z

�
= f̂ "

i ; for i = 1; 2 in L2 (
) (3.5.2)

� @

@z

�
K̂
@T �

@z

�
=

2X
i=1

�̂(T �)

�
@u�i
@z

�2
+ r̂(T �) in L2 (
) (3.5.3)
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3.5. Study of the limit problem

Proof. For u"i ! u�i strongly Vz; we use the same methods in ([10]; proof of Theorem 4:2):

The variational equality (3:3:4) can be written as

4X
i=1

Ii(") + "2
Z



�̂(T̂ ") div(û") div('̂� û")d�xdz +

Z
!

ẑS(�"n) j'̂� sj d�x�
Z
!

ẑS(�"n) jû" � sj d�x

�
2X
i=1

�
f̂ "
i ; '̂i � û"i

�
+ "

�
f̂ "
3 ; '̂3 � û"3

�
;

where

I1 =

2X
i;j=1

Z



"2�̂(T̂ ")

�
@û"i
@xj

+
@û"j
@xi

�
@

@xj
('̂i � û"i )d�xdz;

I2 =

2X
i=1

Z



�̂(T̂ ")

�
@û"i
@z

+ "2
@û"3
@xi

�
@

@z
('̂i � û"i )d�xdz;

I3 =
2X
i=1

Z



"2�̂(T̂ ")

�
@û"i
@z

+ "2
@û"3
@xi

�
@

@xi
('̂3 � û"3)d�xdz;

I4 =

Z



2"2�̂(T̂ ")

�
@û"3
@z

�
@

@z
('̂3 � û"3) d�xdz:

By the convergence Theorem (3:3:1); we �nd

lim
"!0

4X
i=1

Ii(") =
2X
i=1

Z



�̂(T �)

�
@u�i
@z

�
@

@z
('̂i � u�i )d�xdz;

lim
"!0

"2
Z



�̂(T̂ ") div(û") div('̂� û")d�xdz = 0;

lim
"!0

"

Z



f̂ "
3 ('̂3 � û"3)d�xdz = 0;

and as j is convex and lower semi-continuous, we obtain

lim
"!0

�
inf

Z
!

ẑS(�"n) jû" � sj d�x
�
�
Z
!

ẑS(�"n) jû" � sj d�x

so we have
2X
i=1

Z



�̂(T �)
@u�i
@z

@

@z
('̂i � u�i )d�xdz + j('̂)� j(u�) �

2X
i=1

�
f̂ "
i ; '̂i � u�i

�
: (3.5.4)

From ([11];Lemma5:3) ,we choose in (3:5:4)

'̂i = u�i �  i;  i 2 H1
0 (
) for i = 1; 2 and '̂3 = u�3
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3.5. Study of the limit problem

then we get
2X
i=1

Z



�̂(T �)
@u�i
@z

@ i
@z

d�xdz =

2X
i=1

�
f̂ "
i ;  i

�
:

UsingGreen�s formula and choosing  1 = 0 and  2 2 H1
0 (
) then  2 = 0 and  1 2 H1

0 (
) we

obtain:

�
Z



�̂(T �)
@

@z

�
@u�i
@z

�
 id�xdz =

Z



f̂ "
i  id�xdz;

thus:

��̂(T �) @
@z

�
@u�i
@z

�
= f̂ "

i ; for i = 1; 2 in H
�1(
); (3.5.5)

and as f̂ "
i 2 L2(
); then (3:5:5) is true in L2(
):

On the other hand, going to the limit in (3:3:5) and using the convergence results of the

theorem, we �nd

�
Z



K̂
@T �

@z

@ 

@z
d�xdz =

2X
i=1

Z



�̂(T �)

�
@u�i
@z

�2
 d�xdz +

Z



r̂(T �) d�xdz;8 2 H1
�L[�1 (
) :

Now the formula of Green, we give

�
Z



@

@z

�
K̂
@T �

@z

�
 d�xdz =

2X
i=1

Z



�̂(T �)

�
@u�i
@z

�2
 d�xdz+

Z



r̂(T �) d�xdz;8 2 H1
�L[�1 (
) :

Consequently

� @

@z

�
K̂
@T �

@z

�
=

2X
i=1

�̂(T �)

�
@u�i
@z

�2
+ r̂(T �); in 2 H1

�L[�1 (
) : (3.5.6)

The formula (3:5:6) is valid in L2(
); since �̂ and r̂ are two bounded functions in R

and
�
@u�i
@z

�2
is an element of L2(
):

Theorem 3.5.2 Under the same assumptions as in the previous Theorem, we haveZ
!

ẑ jS(��n(s�)j (j + s� � sj � js� � sj) d�x�
Z
!

�̂(&�)�̂
�
 d�x � 0;8 2 L2(!) (3.5.7)

and 8<: �̂(&�)�̂
�
< ẑ(S(��n(s�))) s� = s

�̂(&�)�̂
�
= ẑ(S(��n(s�))) 9� � 0 such that s� = s� ��̂

� (3.5.8)
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3.5. Study of the limit problem

Another u� and T � satis�es the following weak form of the Reynolds equation:Z
!

�
~F �

Z h

0

Z y

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@�dy

�
r d�x =

Z
!

h

2

Z h

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@�r d�x; 8 2 H1(!)

(3.5.9)

where

~F (�x; z) =

Z h

0

F (�x; y)dy � h

2
F (�x; h) and F (�x; z) =

Z h

0

Z �

0

f̂ "
i (�x; �)d�d�

Proof. The variational inequality (3:3:4) becomes

"2
2X

i;j=1

Z



�̂(T̂ ")

�
@û"i
@xj

+
@û"j
@xi

�
@

@xj
('̂i � û"i )d�xdz +

2X
i=1

Z



�̂(T̂ ")

�
@û"i
@z

+ "2
@û"3
@xi

��
@

@z
('̂i � û"i ) + "2

@

@xi
('̂i � û"3)

�
d�xdz +

"2
Z



2�̂(T̂ ")
@û"3
@z

@

@z
('̂3 � û"3)d�xdz + "2

Z



�̂(T̂ ") div(û") div('̂� û")d�xdz +Z
!

ẑS(�"n) j'̂T � sj d�x�
Z
!

ẑS(�"n) jû"T � sj d�x

�
2X
i=1

Z



f̂ "i ('̂i � û"i ) d�xdz + "

Z



f̂ "
3 ('̂3 � û"3) d�xdz;

choosing the next change

'̂i = u�i +  i; i = 1; 2; with  i 2 H1
�1[�L (
) ,

then

�
X
1�i�2

Z



@u�i
@z

@ i
@z

d�xdz ++j( 1 + s�)� j(s�) �
X
1�i�2

Z



f̂i i d�xdz

Using Green �s formula on the domain 
 we �nd

X
1�i�2

Z



�
��1

@2u�i
@z2

�
 i d�xdz +

Z
�

�1
@u�1i
@z

n ids

+

Z
!

ẑS(�"n) (j 1 + s� � sj � js� � sj) d�x

�
X
1�i�2

Z



f̂i i d�xdz:

64



3.5. Study of the limit problem

We know that Z
�

�
@u�

@z
n ds = �

Z
!

�
@u�

@z
 d�x:

So X
1�i�2

Z



�
��@

2u�i
@z2

�
 i d�xdz �

Z
!

��� id�x

+

Z
!

ẑS(�"n) (j 1 + s� � sj � js� � sj) d�x

�
X
1�i�2

Z



f̂i i d�xdz:

On the other hand

@

@z

�
�
@u�i
@z

�
= f̂i , i = 1; 2.

According to (3:4:4) and for  2 H1
�1[�L (
)

2 ; getting

Z
!

ẑS(�"n) (j 1 + s� � sj � js� � sj) d�x�
Z
!

��� d�x � 0. (3.4.10)

Inequality (3:5:10) is also valid for all  2 D(!), and by the density of D(!) in L2(!),
we deduce Z

!

ẑS(�"n) (j 1 + s� � sj � js� � sj) d�x�
Z
!

��� d�x � 0; 8 2 L2(!).

Which implies (3:2:7).

To demonstrate (3:5:9) by integrating twice the equation (3:5:2) from 0 to z ,we �nd

�
Z z

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@� + �̂(&�)� � =

Z z

0

f̂ "
i (�x; �)d�; (3.5.10)

with

&� = T �(�x; 0) and � � =
@u�

@z
(�x; 0):

By integrating (3:5:10) from 0 to h; we obtain

�
Z h

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@� + �̂(&�)� �h =

Z h

0

Z �

0

f̂ "
i (�x; �)d�d�; (3.5.11)
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3.5. Study of the limit problem

integrating (3:5:11) between 0 and h; we have

�
Z h

0

Z y

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@�@y + �̂(&�)� �

h2

2
=

Z h

0

Z y

0

Z �

0

f̂ "
i (�x; �)d�d�dy: (3.5.12)

From (3:5:11) we derive

�̂(&�)� �h =

Z h

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@� +

Z h

0

Z �

0

f̂ "
i (�x; y)dyd�: (3.5.13)

By (3:5:12) and (3:5:13); we obtain

~F �
Z h

0

Z y

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@�dy � h

2

Z h

0

�̂(T �(�x; �)
@u�(�x; �)

@�
@� = 0:

Before giving the existence and uniqueness of the solution, we need the following sets

Wz =

�
v 2 Vz;

@2v

@2z
2 L2(
)

�
,

Bc =

�
v 2 Wz �Wz;

@v@z

Vz

� c

�
:

Theorem 3.5.3 Under the assumptions of Theorem (3:3:1) and if there is a small enough

positive constant z� such that
ẑ

L1(!)
< z�; then the solution (u�; T �)

of the problem limit (3:5:1)� (3:5:3) is unique in Bc �Wz:

Proof. For solution uniqueness, follow the sam procedure, in ([3] and [12]) .

Assuming that for each  2 H1
�L[�1 (
) there are (u

1; T 1) and (u2; T 2) solutions to the

problem limit (3:5:1) and (3:5:3) we haveZ



�K̂ @T 1

@z

@ 

@z
d�xdz =

2X
i=1

Z



�̂(T 1)

�
@u1i
@z

�2
 d�xdz +

Z



r̂(T 1) d�xdz: (3.5.14)

Z



�K̂ @T 2

@z

@ 

@z
d�xdz =

2X
i=1

Z



�̂(T 2)

�
@u2i
@z

�2
 d�xdz +

Z



r̂(T 2) d�xdz: (3.5.15)

By subtracting of (3:5:14)� (3:5:15) we getZ



�K̂ @

@z

�
T 1 � T 2

� @ 
@z
d�xdz

2X
i=1

Z



"
�̂(T 1)

�
@u1i
@z

�2
� �̂(T 2)

�
@u2i
@z

�2#
 d�xdz

+

Z



�
r̂(T 1)� r̂(T 2)

�
 d�xdz: (3.5.16)
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3.5. Study of the limit problem

In (3:5:16); we add and subtract the term �̂(T 1)

�
@u2i
@z

�2
; we �nd

Z



K̂
@

@z

�
T 1 � T 2

� @ 
@z
d�xdz =

2X
i=1

Z



�
�̂(T 1)

@

@z

�
u1i + u2i

� @
@z

�
u1i � u2i

��
 d�xdz +

2X
i=1

Z



�
�̂(T 1)� �̂(T 2)

��@u2i
@z

�2
 d�xdz +

Z



�
r̂(T 1)� r̂(T 2)

�
 d�xdz:

By choosing  = T 1 � T 2 2 H1
�L[�1 (
) we getZ




K̂
@

@z

��T 1 � T 2
��2 d�xdz = 3X

i=1

Rk; (3.5.17)

where

R1 =
2X
i=1

Ri1 =
2X
i=1

Z



�
�̂(T 1)

@

@z

�
u1i + u2i

� @
@z

�
u1i � u2i

�� �
T 1 � T 2

�
d�xdz;

R2 =
2X
i=1

Ri2 =
2X
i=1

Z



�
�̂(T 1)� �̂(T 2)

��@u2i
@z

�2 �
T 1 � T 2

�
d�xdz;

R3 =

Z



�
r̂(T 1)� r̂(T 2)

� �
T 1 � T 2

�
d�xdz;

as Z



K̂

���� @@z �T 1 � T 2
�����2 d�xdz � K�

�
1 + (h�)2

��1 T 1 � T 2

Vz
: (3.5.18)

On the other hand

jR1j � ��

 Z



���� @@z �u1i + u2i
�����4 d�xdz

! 1
4
 Z




���� @@z �u1i � u2i
�����2 d�xdz

! 1
2 �Z




��T 1 � T 2
��4 d�xdz� 1

4

� ��
 @@z �u1i + u2i

�
L4(
)

 @@z �u1i � u2i
�

L2(
)

T 1 � T 2

L4(
)

;

using the Hölder inequality, and as the compact injection of Vz(
) in L4(
) is contin-

uous, then there is a constant � > 0; such that

jR1j � ���2
 @@z �u1i + u2i

�
Vz

 @@z �u1i � u2i
�

L2(
)

T 1 � T 2

Vz
;

� ���2
 @@z �u1i + u2i

�
Vz

�u1i � u2i
�

Vz

T 1 � T 2

Vz
:
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3.5. Study of the limit problem

And since u1i and u
2
i
are two elements of Bc then

jR1j � 2���2c
�u1i � u2i

�
Vz

T 1 � T 2

Vz
;

using inequality �1 + �2 �
p
2 (�1 + �2)

1
2 for �1; �2 � 0;

we have

jR1j � 2���2c
T 1 � T 2


Vz

2X
i=1

�u1i � u2i
�

Vz
;

� 2
p
2���2c

T 1 � T 2

Vz

 
2X
i=1

�u1i � u2i
�2

Vz

! 1
2

;

� 2
p
2���2c

T 1 � T 2

Vz

�u1i � u2i
�

Vz�Vz
;

then

jR1j � 2
p
2���2c

T 1 � T 2

Vz

�u1 � u2
�

Vz�Vz
: (3.5.19)

And

jR2j � C�̂

Z



��T 1 � T 2
��2 ����@u2i@z

���� d�xdz
� C�̂

�Z



��T 1 � T 2
��4� 1

2

 Z



����@u2i@z
����4
! 1

2

d�xdz

� C�̂
T 1 � T 2

2
L4(
)

@u2i@z
2
L4(
)

� C�̂�
4
T 1 � T 2

2
Vz

@u2i@z
2
Vz

� C�̂�
4
T 1 � T 2

2
Vz

u2i2Wz

� C�̂�
4c2
T 1 � T 2

2
Vz
;

then

jR2j � 2C�̂�4c2
T 1 � T 2

2
Vz
; (3.5.20)

as the function r̂ is Lipschitzian on R report Cr̂ then

jR3j � Cr̂
T 1 � T 2

2
L2(
)

:
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jR3j � Cr̂
T 1 � T 2

2
Vz
: (3.5.21)

By injecting (3:5:16)� (3:5:21) in (3:5:15) we have

K�
�
1 + (h�)2

��1 T 1 � T 2
2
Vz

�
�
2C�̂�

4c2 + Cr̂
� T 1 � T 2

2
Vz

+2
p
2���2c

T 1 � T 2

Vz

�u1 � u2
�

Vz�Vz
;

then�
K�
�
1 + (h�)2

��1 � �2C�̂�4c2 + Cr̂
�� T 1 � T 2

2
Vz
� 2

p
2���2c

T 1 � T 2

Vz

�u1 � u2
�

Vz�Vz
;

we suppose that

c < c0 =
�
2C�̂�

4
��1

2

�
K�
�
1 + (h�)2

��1 � Cr̂

� 1
2
;

provided that

K� >
�
1 + (h�)2

�
Cr̂;

then T 1 � T 2
2
Vz
�
p
2����2C�1�̂ c(c20 � c2)�1

�u1 � u2
�

Vz�Vz
: (3.5.22)

We also have the following two inequalities

P2
i=1

R


�̂(T 1)

@u1i
@z

@

@z

�
'̂1i � u1i

�
d�xdz +

R
!
ẑS(��n(u1i ))

��'̂1i � s
�� d�x�R

!
ẑS(��n(u1i )) ju1i � sj d�x �

P2
i=1

�
f̂ "
i ; '̂

1
i � u1i

�
:

(3.5.23)

P2
i=1

R


�̂(T 2)

@u2i
@z

@

@z

�
'̂2i � u2i

�
d�xdz +

R
!
ẑS(��n(u2i ))

��'̂2i � s
�� d�x�R

!
ẑS(��n(u2i )) ju2i � sj d�x �

P2
i=1

�
f̂ "
i ; '̂

2
i � u2i

�
:

(3.5.24)

We choose that '̂1i = u2i in (3:5:23) and '̂
2
i = u1i in (3:5:24) and summing up the two

inequalities, it comes to W = u2i � u1i

2X
i=1

Z



�
�̂(T 1)

@u1i
@z

@W

@z
� �̂(T 2)

@u2i
@z

@W

@z

�
d�xdz +

Z
!

ẑS(��n(u1i )
���u2i � s

��� ��u1i � s
��� d�x�

Z
!

ẑS(��n(u2i )
���u2i � s

��� ��u1i � s
��� d�x � 0;
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so for the next term we haveZ
!

ẑS(��n(u1i )
���u2i � s

��� ��u1i � s
��� d�x� Z

!

ẑS(��n(u2i )
���u2i � s

��� ��u1i � s
��� d�x

�
Z
!

��ẑ �S(��n(u1i )� S(��n(u
2
i )
��� ��u2i � u1i

�� d�x:
Using the Cauchy-Schwarz inequality, we haveZ

!

��ẑ �S(��n(u1i )� S(��n(u
2
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��� ��u2i � u1i

�� d�x � ẑ
L1(!)

C
u2i � u1i

2
Vz
� z�C

u2i � u1i
2
Vz
:

By the previous Theorem, this term is z�C ku2i � u1i k
2
Vz

tends to 0 then we have

2X
i=1

Z



�
�̂(T 1)

@u1i
@z

@W

@z
� �̂(T 2)

@u2i
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@W

@z

�
d�xdz; (3.5.25)

add and subtract term �̂(T 1)
@u2i
@z

@W

@z
from the equation (2:5:25); we get
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So
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d�xdz � 0; (3.5.26)
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As
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Due to Hölder�s inequality, and the result of ([10]) we �ned�����
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From Young�s inequality�����
2X
i=1

Z



(�̂(T 1)� �̂(T 2))
@u2i
@z

@W

@z
d�xdz

����� � p2c�2C�̂ T 1 � T 2

Vz
kWkVz : (3.5.28)

Inserting (3:5:27) into (3:5:26) gives

��
2
kWk2Vz �

p
2c�2C�̂

T 1 � T 2

Vz
kWkVz

��
2
kWkVz �

p
2c�2C�̂

T 1 � T 2

Vz
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Returning to (3:5:22) we �nedT 1 � T 2

Vz

� 2
p
2��c��2(c20 � c2)�1

u2 � u1

Vz�Vz

� 8��1� ��C�1�̂ c2(c20 � c2)�1
T 1 � T 2


Vz
;

then �
8��1� ��C�1�̂ c2(c20 � c2)�1

� T 1 � T 2

Vz
� 0;

on condition that

0 < c < c1 = (1 + 8�
�1
� ��)�

1
2 c0;

Consequently

kT 1 � T 2kVz = 0;

then we obtain T 1 = T 2 almost everywhere in Vz(!):

From (3:5:29); we conclude u1 = u2 almost everywhere in Vz(!):
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Conclusion
In the �rste work, we are examined the strong convergence of the velocity of a non-

Newtonian incompressible áuid whose viscosity follows the Power law with Coulomb fric-

tion.We are assumed that the áuid coe¢ cients of the thin layer vary with respect to the thin

layer parameter " . We are interested for the main convergence results.Finally we give the

detail of the proofs of this results.

In the second work, we are focused on the study of the asymptotic behavior of a cou-

pled problem that consists of an elastic body and the change of the heat.We proved some

estimates then we gave convergence results. At the end the uniqueness of the weak solution

is given and proved.
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