République Algérienne Démocratique et Populaire Ministére de
I’enseignement
supérieur et de la Recherche scientifique

UNIVERSITE FERHAT ABBAS - SETIF 1 -
Département de mathématiques

THESE

Présenter pour I'obtention du titre de
Docteur de l'université de Sétif-1-
en mathématiques

par
Tebbani Hossni

Analyse de quelques équations differentielles opérationnelles, autonomes,
non-autonomes et stochastiques

Soutenue le (17-01-2023) devant le jury composeé de

Pr. Chiter Lakhdar Président université de Sétif-1-
Pr. Aibeche Aissa Encadreur université de Sétif-1-
Pr. Yallaoui El-Bachir Examinateur université de Sétif-1-
Pr. Mezrag Lahcene Examinateur université de M’sila

Université de Setif-1-



Abstact

This thesis focuses basically on the proof of maximal regularity in the non autonomous case, i.e. that

we prove the existence and uniqueness of the solution to the problem

u'(t) + A(t)u(t) = f(t)
(P)
u(0) =0

We shall allow considerably less restrictive assumptions on f and the initial data ug. Here, f belongs
to the weighted Hilbert space L? (O, T, tdt:; %”) , with 5 € [0, 1] and the initial data wu, takes its values
in a certain interpolation space (72, D(A(0))) 15, between .7 and D(A(0)). we establish weighted
L?-maximal regularity for linear autonomous and non autonomous Cauchy problems. The weights we
consider are power weights in time (w(t) = t?,8 € (—1,1)) , and yield optimal regularity for the
solutions.

In the non-autonomous case we prove that if f € L? (O,T, tﬁdt;,%”) and uy € (%”,D(A(O)))%72 for
arbitrary § > 0 with the assumption that the operator A(-) belongs to the space

W22.(0,7, £ (V,V))NC= ([0, 7], £ (V,V")) for some € > 0, then problem has a unique solution u such
that o, A(-)u € L? (0, T, t8dt; ) . Throughout this thesis we assume that the Kato square root property
is satisfied. To prove our results we appeal to classical tools from harmonic analysis such as square
function estimate or functional calculus and from functional analysis such as interpolation theory or
operator theory. The main Concerns of the second part of this thesis is to study a kind of stochastic
evolution equation with drift part a and the diffusion part o.We proof existence and uniqueness of the
mild solution to the relevent integral equation in martingale type 2 Banach space and by extending some
result from scalar valued setting to the vector valued setting we are able to show that this solution is
Malliavin differentiable. Finally, we prove the existence of the right inverse operator where we suppose

such condition to be satisfied .



Résumé

Cette these se concentre sur la preuve de la régularité maximale dans le cas non autonome, c’est-a-dire

que nous prouvons l’existence et 'unicité de la solution au probléeme

u'(t) + A(t)u(t) = f(#)
(P)
u(0) =0

Nous permettons des hypothéses beaucoup moins restrictives sur f et les données initiales ug. Ici, f
appartient & I'espace de Hilbert pondéré L? (0,7’, tdt, H# ) , avec € [0,1] et les données initiales ug
prennent ses valeurs dans un certain espace d’interpolation (2, D(A(O)))% o entre 72 et D(A(0)).
nous établissons L? - régularité maximale pondérée pour des problémes de Cauchy linéaires autonomes
et non autonomes. Les poids que nous considérons sont des poids de puissance en temps (w(t) =7, 3 €
(—1,1)), et donnent une régularité optimale pour les solutions.

Dans le cas non autonome on montre que si f € L2 (0,7’, tﬁdt;,%”) et up € (%,17(14(())))%72 avec
[ = 0 arbitraire et avec I'hypothese que I'opérateur A(-) appartient a ’espace

WY22(0,7, £ (V,V))NCe ([0,7], L (V, V")) pour certains € > 0, alors le probléme a une solution unique
u telles que u, A(-)u € L? (0, T, t8dt; S ) . Tout au long de cette theése, nous supposons que la propriété
de racine carrée de Kato est satisfaite. Pour prouver nos résultats, nous faisons appel a des outils
classiques d’analyse harmonique tels que 'estimation de la fonction carrée ou le calcul fonctionnel et
de 'analyse fonctionnelle telle que la théorie de 'interpolation ou la théorie des opérateurs.

Le souci principal de la deuxiéme partie de cette theése est d’étudier une sorte d’équation d’évolution
stochastique avec la partie dérive « et la partie diffusion o .Nous prouvons 'existence et 'unicité de
la solution de I’équation intégrale dans 1’ ’espace martingale type 2 . De plus, nous étendons certains

résultats du cas scalaire au cas vectorielle.



Symbols and notations

M R— Maximal Regularity

Y, Sp— open sectors of angle w respectively 6

v(H, E)— space of y—radonifying operators, where .7 is a Hilbert space and E a Banach space
[E, F]g— complex interpolation space between E and F.

(E, F)gp,— real interpolation space between E and F.

L(E, F)— space of bounded linear operators

W*HP— Sobolev space

[E— expectation

F— o—algebra

E(:|-)— conditional expectation

vn— Gaussian variables

P(A)— domain of A

a < b— 3C > 0 such that a < Cb

f * g— convolution

p(A)— resolvent of the operator A

L, .— space of locally integrable functions

C([0;7],.#)— space of continuous functions form [0, 7] into ¢

C([0; 7], X)— space of test functions
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Introduction

Differential equations (DEs) of evolution type are usually viewed as an ordinary differential equations

(ODEs) in an finite-dimensional state space. In many examples such as the heat and wave equation,
this point of view may lead to existence and uniqueness results and regularity properties. To model
the equation in such a way one needs an integration theory for functions with values in an finite or
infinite-dimensional space. Since real-valued integration theory extends directly to functions with values
in Hilbert spaces, this is the class of spaces in which DEs are usually modelled. This approach has been
considered by many authors using semigroup or forms methods . There are situations where it is more
natural to model the DE in a function space which is not a Hilbert space but only a Banach space.
During the last 25 years, the theory of maximal regularity turned out to be an important tool in the
theory of nonlinear PDEs.
As an application of his operator-valued Fourier multiplier theorem, Weis [36] characterized maximal LP-
regularity for abstract Cauchy problems in UMD Banach spaces in terms of an R-boundedness condition
on the operator under consideration. A second approach to the maximal LP-regularity problem is via
the operator sum method, as initiated by Da Prato & Grisvard [16] and extended by Dore & Venni [18]
and Kalton & Weis [47]. For more details on these approaches and for more information on (the history
of) the maximal LP-regularity problem in general, we refer to [55, 51].

We consider the non autonomous Cauchy problem written as the following

u'(t) + A@)u(t) = f(#)
(P)
u(0) =0

where t € (0;00).Let (A2, (+,-), || - ||) be a separable Hilbert space over R or C. We consider another
separable Hilbert space V which is densely and continuously embedded into . We denote by V' the
(anti-) dual space of V so that
Vg V.

to every form a(t), we associate two operators A(t), A(t) on 7 and V' respectively. The operator A(t)
is the part of A(t) in ##. J.L.Lions proves that the Cauchy problem () has the maximal L?—regularity

7
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in V' ieforall f € L?0,7;V") and o € 2, there exists a unique v € H(0,7; V') N L*(0,7; V) satisfies
(P).

He ask the question, what would be the right condition on the form a(.) that give us the maximal
regularity L? in JZ.

For the problem

Problem 0.0.1. Let f € L*(0,7;%). Under which conditions on the forms a(-) the solution u €
MR(V,V') of (P) satisfies u € H' (0, 7; ).

One has to distinguish the two cases ug = 0 and ug # 0. For vy = 0 Problem (P) is explicitly asked
by Lions and seems to be open up to today. A positive answer is given by Lions if a is symmetric (i.e.
a(t,u,v) = a(t,v,u)) and a(.,u,v) € C'[0,T] for all u,v € V. By a completely different approach a posi-
tive answer is also given by E. M. Ouhabaz and C. Spina for general forms such that a(., u,v) € C*[0,T]
for all u,v € V and some a > % Again, the result in work of E. M. Ouhabaz and C. Spina concerns
the case up = 0 Concerning uy # 0 it seems natural to assume uy € V as we did in Problem (P).
However, already in the autonomous case, i.e. A(t) = A, the solution is in M R(V, ) if and only if
uy € D (A1/2> , and it may happen that ¥V ¢ D (Al/z). So one has to impose a stronger condition
on the initial value uy or the form (e.g. symmetry). Lions gave a positive answer for ug € D(A(0))
provided that a(.,u,v) € C?[0,T] for all u,v € V and f € H*(0,T; ).
Dier [6] observes that the answer to Lions problem is negative in general. He gave a counterexample
using non symmetric forms where the Kato square root condition fails . Dier [7], proves also that the
L?—maximal regularity holds for symmetric forms such that ¢ — a(.) has bounded variation .
Mahdi Achache, E1 Maati Ouhabaz see [40] gave a positive answer to this problem under minimal reg-
ularity assumptions on the forms . In particular they assume that the forms are piecewise H 3 with
respect to the variable . This regularity assumption is optimal and their results are the most general
ones on this problem.
Dier et Zacher [8], proves that if ¢ — A(t) lies in the fractional Sobolev space Hz<(0, 7; £(V, V")), for
certain € > 0 then the L?—maximal regularity holds.
For the case of Banach spaces for this result we refer to [58] .
This thesis focuses on proving the maximal regularity in the non-autonomous case, i.e. we prove
the existence and the uniqueness of solution to Problem (P). We shall allow considerably less re-
strictive assumptions on f and the initial data ug. Here, f belongs to the weighted Hilbert space
L? (0, T, t8dt; A ) , with 5 € [0, 1] and the initial data u, takes its values in a certain interpolation space
(A, D(A(O)))% , between 7 and D(A(0)). we establish weighted L?-maximal regularity for linear
autonomous and non autonomous Cauchy problems. The weights we consider are power weights in time
(w(t) =t%,3 € (—1,1)) , and yield optimal regularity for the solutions.
In the non-autonomous case we prove that if f € L? (O,T, tﬂdt;%ﬂ) and ug € (,%”,D(A(O)))y’2 for

8
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arbitrary 3 > 0 with the assumption that the operator A(-) belongs to the space W'/22 (0, 7; L (V,V'))N
Ce([0,7],L(V, V")) for some ¢ > 0, then problem has a unique solution u such that a, A(-)u €
L? (0, T, t8dt; A ) . Throughout this thesis we assume that the Kato square root property is satisfied. To
prove our results we appeal to classical tools from harmonic analysis such as square function estimate

or functional calculus and from functional analysis such as interpolation theory or operator theory.

In the following I describe shortly the contents of the individual chapters:

(1)

Chapter 01 We introduce the machinery object of this thesis namely forms in Hilbert space and
several result from operator theory and functional analysis we recall also some result on Sobolev

weighted spaces .

Chapter 02 We study the maximal regularity property for autonomous problems, i.e. existence
and uniqueness of the solution to the relevent problem P where the operators A(t) are independent
of ¢t .Based on some complex interpolation techniques adapted in the theory of operator spaces.
Next, we treat the maximal regularity for the non-autonomous problem (which is our main topic),
i.e. we prove the existence and the uniqueness of the solution to Problem (P) in the weighted
space Wﬁl’2(0,7;%> .

Chapter 03 We consider in this chapter the problem of maximal regularity for the semilinear

non-autonomous evolution equations
u'(t) + A(t)u(t) = F(t,u), t-a.e, u(0) = uo.

where the time dependent operators A(t) are associated with (time dependent) sesquilinear forms
on a Hilbert space 5#. We prove the maximal regularity result in temporally weighted L2-spaces
and other regularity properties for the solution of our problem under minimal regularity assump-
tions on the forms, the initial value uy and the inhomogeneous term F' and applied those results

to some boundary value problems.

Chapter 04 The main Concerns of this chapter is to study a kind of stochastic evolution equation
with drift part a and the diffusion part . We proof existence and uniqueness of the mild solution
to the relevent integral equation in martingale type 2 space. Moreover we extend some result from
scalar valued setting to the vector valued setting . Finally we prove the existence of the right

inverse operator where we suppose an additional condition to be satisfied.



Chapter 1

Preliminaries

We introduce the machinery object of this thesis namely forms in Hilbert spaces. They are so
popular in analysis because the Lax-Milgram lemma and Lions representation theorem yields
properties of existence and uniqueness which are best adapted for establishing weak solutions of

elliptic and parabolic partial differential equations. For more details, see the monograph [13]

1.1 Forms and their operators

Let (A, (-,-),||-||) be a separable Hilbert space over R or C. We consider another separable Hilbert
space V which is densely and continuously embedded into .7°. We denote by V'’ the (anti-) dual space
of V so that

Vg H = V.

Hence there exists a constant C' > 0 such that
lull < Cllully weV,
where || - ||y denotes the norm of V. Similarly, there exists a constant C’ > 0 such that
[blh <Yl ¢ € 2.

We denote by (,) the duality V-V and note that (¢, v) = (¢, v) if ¢, v € F. As domain we consider a
vector space V over K. A sesquilinear form on V is a mapping a : V x V — K such that

a(u+v,w) = alu,w) + a(v,w), a(Au, w) = Aa(u, w)
a(u, w +u) = alu,v) + a(u, w), a(u, \w) = Aa(u, w)

10



Chapter 1. Preliminaries 1.1 Forms and their operators

forall u,v,w € YV, A € K. If K = R, then a sesquilinear form is the same as a bilinear form. If K = C,
then a is antilinear in the second variable: it is additive in the second variable but not homogeneous.
Thus the form is linear in the first variable, whereas only half of the linearity conditions are fulfilled for
the second variable. The form is 1% -linear; or sesquilinear since the Latin 'sesqui’ means ’one and a
half’. For simplicity we will mostly use the terminology form instead of sesquilinear form. A form a is

called symmetric if

a(u,v) = a(v,u) (u,v € V)

and a is called accretive if
Rea(u,u) 20 (ueV)

A symmetric form is also called positive if it is accretive. In the following we will also use the notation
a(u) :==a(u,u) (ue)

for the associated quadratic form.
We consider a form
a:VxV—->C

be sesquilinear and V-bounded, i.e.
la(u,v) < M[ullv|vllv, (w,veV)

for some constant M > 0. The form a is called quasi-coercive if there exist constants v € R and > 0
such that
Re a(u,u) + vlull5% > dllull}, (we V).

If v = 0 we say that the form a is coercive.
Finally, we introduce the adjoint form. Let a: V x V — K be a form. Then

a*(u,v) :=a(v,u) (u,v €V)

defines a form a* : ¥V x )V — K. Thus «a is symmetric if and only if @ = a*. In the case of complex scalars,
the forms

1 1
Re a := i(a—I—a*) and Ima := i(a—a*)

are symmetric and

a=Rea+ilma

We call Re a the real part and Im a the imaginary part of a. Note that (Rea)(u) = Rea(u) and
(Ima)(u) = Ima(u) for all w € V There is another algebraic notion - only used for the case K = C -

that will play a role in this thesis. A form a :V xV — C is sectorial if there exists 6 € [0,7/2) such

11



1.1 Forms and their operators Chapter 1. Preliminaries

that a(u) € {z € C\{0}; | Argz| < 0} U {0} for all uw € V. If we want to specify the angle, we say that
a is sectorial of angle 6. It is obvious that a form a : V x V — C is sectorial if and only if there exists a

constant ¢ > 0 such that
| Ima(u)| < cRea(u) (uel) (1.1.1)

(The angle 6 and the constant c are related by ¢ = tan.)

Representation theorems

Now, we consider the case where the underlying form domain is a Hilbert space V over K. An
important result is the classical representation theorem of Riesz-Fréchet: If 5 is a continuous linear

functional on V), then there exists a unique u € V such that
nw) = (vlu)y (WeV)

The theorem of Riesz-Fréchet can be reformulated by saying that for each n € V* there exists a unique
u € V such that

nw) = (ulvy (veV)

We will also need the Riesz isomorphism ® : V — V* u+— (u | ).
Next we derive a slight generalisation of the Riesz-Fréchet theorem, the present Lax-Milgram lemma.
A forma:V xV — K is called bounded if there exists M > 0 such that

|a(u, v)] < Mllullyllvlly (w0 € V) (1.1.2)
Ifa:V xV — Kisa bounded form, then
(Au,v) = a(u,v) (u,v €V)
defines a bounded operator A : V — V* with || Al|z,v+) < M, where M is the constant from 1.1.2.
Remark 1.1.1. Let A € L(V) be coercive, i.e.
Re(Au | u) > allul} (u€V)
with some a > 0. Then, obviously, A — ol is accretive.

In this thesis the form domain is a Hilbert space. Let V, .7 be Hilbert spaces over K and let
a:V xV — K be a bounded form. Let j € L(V, ) be an operator with dense range. We consider
the condition that

u €V, j(u) =0,a(u) =0 implies u = 0 (1.1.3)

12



Chapter 1. Preliminaries 1.1 Forms and their operators

Let
A=A{(x,y) e A xH;FueV:jlu)=uxauv)=(y|jw)veV)}

Proposition 1.1.1. (a) Assume 1.1.5. Then the relation A defined above is an operator in F.
We call A the operator associated with (a, j) and write A ~ (a, j)

(b) If a is accretive, then A is accretive.

(¢) If K= C and a is sectorial, then A is sectorial of the same angle as a.

Proof. (a) It is easy to see that A is a subspace of J# x . Let (0,y) € A. We have to show that
y = 0. By definition there exists u € V' such that j(u) = 0 and a(u,v) = (y | j(v))g for all v € V. In
particular, a(u) = 0. Assumption 1.1.3 implies that u = 0. Hence (y | j(v)) = 0 for all v € V. since j
has dense range, it follows that y = 0

(b), (c) If z € dom(A), then there exists u € V such that j(u) = xz and such that

a(u,v) = (Aj(u) | j(v)) for all v € V, and then a(u,u) = (Aj(u) | j(u)) = (Az | z)

If Rea(u,u) > 0(u € V), then Re(Az | ) > 0 for all z € dom(A), and this proves (b). Also, in the

complex case, num(A) is contained in {a(v);v € V}, and this proves (c). O
Remark 1.1.2. Let V, 5, a,j be as above, and let w € R. Then
b(u,v) = afu,v) +w(j(u) [ j(v)) (u,veV)

defines a form satisfying 1.1.3 as well (with a replaced by b ). Let B be the operator associated with
(b,7). Let z,y € S. Then for all u,v € V with j(u) = x we have

a(u,v) = (y | j(v)) == b(u,v) = (y +wz [ j(v))

This shows that
(x,y) € A<= (z,y+wzx) € B

Therefore B = A+ wl. Note that coercivity implies 1.1.5.

13



1.1 Forms and their operators Chapter 1. Preliminaries

We denote by (,) the duality V' —V and note that (¢,v) = (¢,v) if ¥, v € H.

In this thesis we consider a family of sesquilinear forms
a:[0,7]xVxV—=>C

such that

(H1) D(a(t)) =V (constant form domain),

(H2) |a(t,u,v)| < M||u|ly|lv|y (uniform boundedness),

(H3) Rea(t,u,u) + v||ul|* = d||ul|} for all u € V, for some § > 0 and some v € R (uniform quasi-

coercivity).

We denote by A(t), A(t) the usual associated operators with a(t) (as operators on . and V').

r

Proposition 1.1.2. If a is a V-bounded quasi-coercive form then a + vI is a sectorial form and

the numerical range N of a + vI is given by:

M
N(a+vI)={z€C" |argz| < arctan(?)}.

Proof. Let u € V, we have that

|Im(a +vI)(u,u)| < |a(u,u)| < Mlully

M
< 5 [Rea(u,u)+ v][ull%].

This proves the proposition. O]

Let a be a sesquilinear form V-bounded and quasi-coercive. The operator A € L(V, V') associated
with a is defined by
(Au,v) = a(u,v), (u,v € V).

Seen as an unbounded operator on V' with domain Z(A) = V. One can define also an unbounded
operator A on 7, it is the part of A on 7, i.e.

P(A) ={veV:Ave X}
Av = Av.

Observe also that Z(A) is the set of vectors u € V for which the map v — a(u, v) is continuous on V
with respect to the norm of .77,

14



Chapter 1. Preliminaries 1.1 Forms and their operators

Proposition 1.1.3. Denote by A the operator associated with a sesquilinear V-bounded and quasi-
coercive form a. Then A is densely defined and for every A > v, the operator A + A is invertible
(from Z(A) into 7 ) and its inverse (A + A)~" is a bounded operator on F .

Definition 1.1.1. A scalar A € C is in the resolvent set of A if A — A is invertible (from P(A) into
H) and its inverse (\— A)~! is a bounded operator on F€. For such X, the operator (A — A)~! is called
the resolvent of A at \. The set

p(A) :={\ € C,\— A is invertible and (\ — A)~* € L(7)}.
is called the resolvent set of A. The complement of p(A) in C is the spectrum of A.

Definition 1.1.2. A family S = {S(t)}+>0 of bounded linear operators acting on a Banach space E is
called a Cy -semigroup if the following three properties are satisfied:

(51) 5(0) =1
(S2) S(t)S(s) = S(t+s) forallt,s =0
(S3) limyg || S(t)z — || =0 for all x € E.

The generator of (S(t))i=o is the operator B defined by

P(B) :={z € FE, st 12&(%) exists}.

Bz :=1lim (S(t)x—:z) .
tl0 t

(S(t))i=0 s called a bounded semigroup on the sector ¥g.

Definition 1.1.3. Let X be a complex Banach space. For 0 € (0,7] we define the (open) sector
Y :={z € C\{0}; | Argz| < 0} = {re*;r > 0, |a| < 0} We will also use the notation Y := Xy U {0}.
A holomorphic semigroup (of angle 0 if we want to make precise the angle) is a function S : g — L(X),

holomorphic on ¥y, satisfying
(1) S (z1+ 22) = S (21) S (22) for all z1, 22 € Xpp. If additionally

(i) lim, o .ex,, S(z)x =z for all v € X and all 0" € (0,0), then S will be called a holomorphic Cy
-semigroup (of angle 6 ) .

15



1.1 Forms and their operators Chapter 1. Preliminaries

We turn to the theory of Cy -semigroups. We review their basic properties (see Appendix 5)and

show how semigroups are used to solve the (deterministic) inhomogeneous abstract Cauchy problem

u'(t) = Au(t) + f(t)

Here A generates a C -semigroup on . and the term f is a locally integrable ¢ -valued function.

Lemma 1.1.4. Let T be a one-parameter semigroup on X, and assume that there exists 6 > 0
such that M = supyc,.s |T(t)|| < co. Then there exists w € R such that

|1T()|| < Me*" for allt >0

Proof. If T(0) = 0, then M = 0, and the assertion is trivial. Otherwise 7°(0) is a non-zero projection,
and therefore M > ||T(0)|| > 1. Let w := +In M; then M = ¢*°. For t > 0 there exists n € Ny such that

. N RSt
nd <t < (n+1)d. The semigroup property (i) implies T'(t) =T (Tﬂ) , and therefore

n+1

t
< Mn+1 — Mew&n < Mewt

IT@l < |7 ()

Lemma 1.1.5. Let X,Y be Banach spaces, and let (By,) be a sequence in L(X,Y),B € L(X,Y), and
B =lim,_,o B,. Let (x,) in X, z, - x € X(n — o0) Then Bz, — Bx asn — o0

Proof. The uniform boundedness theorem implies that sup,,cy || B,|| < co. Therefore

|1Bx = Buwn|| < | Bx — Bpx|| + || By (x — )|

< ||Bx — Buz|| + (sup HBJH> |t —z,|| =0 (n— o0)
jEN
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Proposition 1.1.4. See [23] Let S be a Cy -semigroup on E with generator A.
(1) For all x € E the orbit t — S(t)x is continuous for t > 0.
(2) For allz € P(A) andt > 0 we have S(t)x € Z(A) and AS(t)x = S(t)Ax

(3) For all x € E we have [3 S(s)zds € 2(A) and
t
A/ S(s)xds = S(t)r —x
0

If v € 9(A), then both sides are equal to [ S(s)Axds
(4) The generator A is a closed and densely defined operator.

(5) For all x € P(A) the orbit t — S(t)z is continuously differentiable for t > 0 and

jtS(t)x =AS(t)x=S(t)Az, t=0

Proof. 1) The right continuity of ¢t — S(t)x follows from the right continuity at ¢ = 0 (S3) and the
semigroup property (S2). For the left continuity, observe that

1Sz = S(t = h)zl| < [|S(E = M)[IS(h)z — x| < s 1S(s)[[l[S(h)x — |

where the supremum is finite by Lemma 1.1.4

2) This follows from the semigroup property:

- ;(S(t + ) — S(t)2) = (1) ;(S(h)x —2) = S(t) Az

(3) The first identity follows from

léigi(S(h) —1I) /OtS(s)xds zl}iﬂ)l}ll (/OtS(S—i-h)fL’dS—/OtS(S)IdS)
= 1}5101; (/:Jrh S(s)xds — /Oh S(s)xds)
=S{t)r —x

where we used the continuity of ¢ — S(¢)z. The identity for x € Z(A) will follow from the second
part of the proof of (4).

17
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(4)

Denseness of Z(A) follows from the first part of (3), since by (1) we have limg o+ [¢ S(s)zds = =.
To prove that A is closed we must check that the graph G(A) = {(z, Az) : © € Z(A)} is closed in
Ex E. Suppose that (x,).-, is a sequence in Z(A) such that lim,,_,o, x, = = and lim,,_,o, Az, =y
in E. We must show that x € Z2(A) and Az = y. Using that limyo 7 (S(t) — I)S(s)z, = S(s)Ax,
uniformly for s € [0, h], we obtain

(S(h)r —x) = lim = (S(h)x, — x,)

n—oo h

.1 h
— nh—{{oloﬁ (A/O S(s)xnds>

= lim 1lim}(S(t) — 1) /Oh S(s)x,ds

n—oo h t10 t

1
h

S S|
= lim —lim [ —(S(t) — I)S(s)z,ds

n—oo h tl0 Jo
1 rh

= lim — [ S(s)Ax,ds
n—oo 0
1 rh

= E/o S(s)yds

Passing to the limit for A | 0 this gives z € Z(A) and Az = y. The above identities also prove
the second part of (3) .

For t > 0,h > 0 one has
RHS(t+h)x — St)z) = R H(S(h) — )S(t)x = St)h ' (S(h)x — )

As h — 0, the third of these expressions converges to S(t)Ax. Looking at the second term, one
obtains T'(t)z € dom(A), and looking at the first term one concludes that ¢ — S(t)z is right-sided

differentiable, with right-sided derivative
d
(dt) S(t)x = AS(t)x = S(t)Ax.

So we have shown that the continuous function ¢ — AS(t)x = S(t)Ax is the derivative of t — S(t)x
[

Theorem 1.1.6. (Hille)(See [23]). Let f : A — E be u-integrable and let T' be a closed linear
operator with domain P(T') in E taking values in a Banach space F. Assume that f takes its
values in D(T) p -almost everywhere and the p -almost everywhere defined function Tf : A — F
is i -Bochner integrable. Then [, fdu € 2(T') and

T/Afd,u:/Ade,u

18
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Proposition 1.1.5. Let a be sesquilinear form V-bounded and coercive. Denote by A the operator
associated with a. Let 0 = arctan %, Then Y._9 C p(—A) and there exists constants Cy,Cy > 0
depending on 0, such that

-mx+m*mmq<%.

-1

Proof.  1- Let u € Z(A), A € C. We get

13— Ayallfull > (A — Aoy
PGSO

ul?
== [l

a(u, u)
=[A = ( )IHUH2

I ||2

Therefore
1A = A)ull = dist(A, Byroqan 20) lull.

This implies that A — A is injective and has closed range for A ¢ .. e In order to prove that

arctan =<
A — A is invertible it remains to prove that it has dense range. By duahty, one has to prove that

the adjoint is injective and this true by the same argument as before. Therefore

1
distn S

A= A) Mz <

arctan & 5 )

forall \ ¢ X . wm . Now we set 0 = arctan &I, then there exists a constant Cy such that
C'e
I = A) Ml :
ST
In other words, A\ + A is invertible for A € X,_y and
_ C
1A+ A)Hewn < ‘;’

2- Now let x € 7 and A € X._y. We have
SN+ A) x|} <Re (AN + A)ta, (A + A) ')

19



1.1 Forms and their operators Chapter 1. Preliminaries

<A+ A) 7 afl[[(A + A)~ |
C
< (1+ Co) |||
RY
Therefore
Ch
RY

I+ A) ey <

O

Proposition 1.1.6. Let A as in the previous proposition. Then —A is a generator of a bounded

holomorphic contraction semigroup on € and we have

1- For allt € (0,00),n € N, there exists a constant C' > 0 such that

C

||An€_tA||L:(,%ﬂ) < =

2- For allt € (0,00),

4o

le™ M e <

Proof.  1- We use the Cauchy’s integral formula .

2- Since Yx (x _aretan ) C p(—A) and
_ C
1A+ A) 2o < |)\9|,
then —A is the generator of a bounded holomorphic semigroup on Yz auy and for z €

5 —arctan 5

I ary we have e *x € P9(A) where x € H. So for all z € S we obtain

—arctan
9 —zA .12 —zA —zA
aﬂe z||* = —2Re (Ae "z, e **z) < 0.
Therefore ||e 4|z < 1. For all z € 5 and t > 0 we get

Slle ™ z|)% < Re a(e ™z, e )
= Re (Ae "z, e 1)
< [JAe™ ] fle™" ]
< g

t

This shows the second assertion.
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1.2 Fractional Powers
The next definition is motivated by the trivial identity
1 e’}
7/ o lemtdt >0 (1.2.1)

) Jo
where T'(a) = [t te~!dt is the Euler gamma function (case ¢ = 1).
Definition 1.2.1. For 0 < o < 1 we define the fractional power (—A)~* of —A by the formula

1 00

—A)"%x = —/ LS (t)zdt E

Note that (—A)~® is well-defined and bounded on X. Sometimes it is useful to extend the definition
to the limiting values o € {0, 1} by putting (—A)° =T and (—A)~! = —A~!

Lemma 1.2.1. For all 0 < o, 8 < 1 satisfying 0 < a4+ [ < 1 we have

(—A) ™ (—A) P = (AP (—A) > = (-A) >

Proof. It suffices to prove that (—A)~%(—A)™# = (—A)~*~#; the other identity follows upon interchang-
ing o and f.
For all z € £/ we have

(A (—A) P = ——— / / 19715818 (s + t)adsdt

/ / 191 (s — 1)9-LS(s)wdsdt
= F)r ) / (/ t (s — t)P~ 1dt> S(s)xds

1 +8-1 —a-
= s S(s)xds = (—A) "> Py
Y . (s)ads = (~A)
where the identity ( * ) follows from W Jote (s —t)F71dt = M)?(;) LTl (1 = 1) ldr = ?O(C;iiﬁl)

Indeed, computing as above,

1
F(OMLB)/O e R 1d7'—/ / ath=lra=l( T)B’le’sdes
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]

In the next lemma we assume that the Cip-semigroup 5, in addition to being uniformly exponentially

stable, is analytic.

Lemma 1.2.2. For all0 < a <1 andt > 0 the operator (—A)*S(t) is bounded and we have

sup 1 [|(=A)*S(#)[| < oo
t>0

Proof. Since S is analytic, S(t) maps E into Z(A) and sup,.t||AS(t)|| < oo The boundedness of
(—A)*S(t) follows from the boundedness of AS(t) by the identity (—A)*S(t) = —(—A)*tAS(t) To

prove the estimate, note that for all x € E we have

«a o —1 o —a
(A)"S07 = 5o /0 sTOAS(t + s)xds
so, for t > 0
C’ 00
_ a < -« -1
(=AYl < gy [, 57+ 5) ellds
ot e .,

The fractional power A* with 0 < o < 1, equivalently defined by

| Ay (A1)

Let A be the operator associated with a V-bounded coercive sesquilinear form a. We consider 0 <

sin T

A% = —

™

a < 1 and the complex interpolation space [, V],.

Proposition 1.2.2.  1- V < 2(Az) if and only if D(A*2) < V.
2- If A= A* we have D(A2) = 9(A*2) =V and
Volluly < [[Azul < VMully.
5- D(A*) = (A, V]sa for all a < 3.

4- D(A) =V forall a < 3.

5- For all t € [0,7] we have D(A(t)2) = S and D([A(t)*]2) = V.
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Proof. Let u € 2(A*). If V < 2(Az) we get

—_

[ully, < sRe (A2u, A™2u)

— o,

< S| A%l A7

(=%

< Clluflv]| A*=ul.
Then by the density of Z(A*) on Z(A*2) we obtain
lully < CllA™2u]

for all u € Z(A*2). Then Z(A*2) < V.
Now, we assume that Z(A*2) < V. It follows that A*2 € L(A,V). Let © € J and we write
A*zz = A*A* 2. Then we get

1
A2 < A e 1A 22lly < MIA™2 e w2l

The boundedness implies A*2 € £(2#,V') and by duality we have Az € £(V, ). Then V C Z(Az)
and we get for all z € V

1
12117, 3, = N2l + 1 A2(l%
< (Co + 1421202l

Thus, V < Z(Az). This shows the first assertion.
We assume that A = A*. By the density of Z(A) in V, we get for all u € V

5||u||v Re a(u,u)
= || Azl
< M|lulf}.

This shows second assertion. For the third assertion, we refer to [?] (Theorem 3.1).
Let a < £ and u € Z(A). We have

]- — *Qv
Jul|2 < gHAl ull[| A*ul|
1 —Q
< *HAl ulllull e V.

C()

LA el 3 2,

23
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where C'(a) > 0 depending on a. Thus, for all u € D(A'™*) we get

Ol—2a0<a) .
Jully < == 4o,
This shows the assertion 4.
We write
A(t)7u = A(t)A(t) 7u
Therefore

(0% 1 M
allull < MA@zl < CTIIUII~

So that A(t)z € £(,V'). By duality we have A(t)*z € £(V, ). This gives the last assertion. O

For the next result we refer to [2] (Theorem 4.3.5 and Proposition 5.1.1) . In what follows E is a

Banach space and B is a generator of holomorphic semigroup.

r

Proposition 1.2.3. For 0 <0 <1, 1< p < oo, we have

(B, 2(B))op = {z € B : 9(t) = 7| Be a5 € (0, 00; )}

with norm @t
2150, = ol + [ 0@ IBS-

(E,D(B))g, is the real interpolation space between the space E and the domaine of B with param-
eters € and p. Holomorphic semigroups and interpolation spaces play an important role in the theory of

evolution equations. In particular, if the semigroup generated by B is holomorphic, then the problem

u'(t) = Bu(t)
(1.2.2)
u(0) =z

has a unique solution u € W2(0, 7; E)N L*(0, 7; D(B))) for every initial data = € (E, @(B))%vg. In fact,
it is very known that the solution of the Problem (1.2.2) is giving by u(t) = ez and u/(t) = Be'Pu.

Therefore
41320 = [ 1Be Pl < 1l o0,

32
Definition 1.2.4. We say that (A(t)) (or the corresponding forms a(t)) satisfy the uniform Kato square
root property if 2(A(t)2) =V for all t € [0,7] and there exist constants Cy, Cy > 0 such that following

condition holds, i.e

Chlully < JA®E)2ul| < Cslully for all uw € V and all ¢ € [0, 7]. (1.2.3)
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1.3 Sobolev spaces
We present the definition and some basic properties of the Sobolev space H'. This treatment is

prepared by several important tools from analysis.

Convolution

We recall the definition of locally integrable functions on an open subset 2 of R™,
L110c(Q) :=={f : Q2 = K; for all z € Q there exists > 0 such that

B(z,r) CQand fly,, € Li(B(x,7)}

Moreover, C®(€2) := C*(2) N C.(2) is the space of infinitely differentiable functions with compact
support.

r

Lemma 1.3.1. Let u € Ly (R"), p € CZ (R™). We define the convolution of p and u
pxu(z) = /R plz —y)u(y)dy = /R p(y)u(z —y)dy (z € R")
Then p*u € C®(R™), and for all o € N one has

% (p*u) = (9%p) * u

Proof. Note that the integral exists because p is bounded and has compact support. (i) Continuity of
p*u : There exists R > 0 such that spt p C B(0,R). Let R > 006 > 0. For z,2" € B(0,R'), |x — 2’| <,

one obtains

pale) = pra = [ ote =)= 0= ) uli)

<sup{|p(z) — p ()52 — 2’ < 6} /B<

lu(y)|dy
0,R+R')

The second factor in the last expression is finite because u is locally integrable, and the first factor
becomes small for small § because p is uniformly continuous.

(ii) Induction shows the assertion for all o € N§
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Proposition 1.3.1. Let (pi) be a § -sequence in C. (R™)
(a) Let f € C(R"™). Then p * f — f uniformly on compact subsets of R™ as k — oo.
(b) Let 1 <p< oo, feLl, R"). Then py * f € L, (R")
loe* fll, <Wfll,  forallk €N

If 1 < p < oo, then
o * f = fll, =0 (k= o0)

Corollary 1.3.2. Let Q C R" be open, 1 < p < oo. Then CX(Q2) is dense in L,(2)

Proof. Let (pr) be a 6 -sequence in C° (R"). Let g € C.(Q2), and extend g by zero to a function
in C; (R"). Then p * g € C*°(R") for all k& € N, by Lemma 1.3.1 If 1 < dist (spt g, R"\Q), then
spt (pr * g) C spt g+ B[0, 1/k] C  and therefore py x g € C°(Q2). From proposition 1.3.1 we know that
pr* g — g(k — o0) in L, (R™). So, we have shown that C2°(2) is dense in C.(€2) with respect to the
L, -norm. Now the denseness of C.(€2) in L,(2) yields the assertion.

O]

Lemma 1.3.3. Let Q@ C R"™ be open, f € Ly e (2)

[ fedz =0 (pe @)

Then f =0

The statement 'f = 0 ’ means that f is the zero element of L. (£2), i.e., if f is a representative,
then f =0 a.e.

Definition 1.3.4. Let 2 C R" be open. We define the Sobolev space
HY(Q) = {f € L(9); 0, € Ly()(G € {1,...,n})}

with scalar product

(Floh = 19)+ 3 0:f | 039

(f19):= | f@)g()

26
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denotes the usual scalar product in Ly(Q))) and associated norm

. 1/2
1fll21 = (||f||§+z |I3jf||§>
j=1

Proposition 1.3.2. The space C*([0,7]; V) is dense in MR(V,V’) .

Theorem 1.3.5. (a) One has MR(V,V') — C([0,7]; 7).

b) If u € MR(V,V'), then the function ||u(-)||>, is in W10, 7;R) and
w

(Ilu()I%) = 2Re ('), ul-))

Proof. 1f w € C*([0,7];V), then it is immediate that <|u(t)|% = («'(t) | u(t)),, + (u(t) | (1)), =
2Re (u'(t), u(t))

(a) For u € C'([0,7];V) we deduce that

T d
2 : 2 2
Julloron < dnf (@ + [ Sl at

1 T T

<— [ lu@lBdt+2 [ @l @)l at
C

< 2l 0.0y + 210y 0r07) Il 220

with the embedding constant ¢ > 0 of V S . As CL([0,7]; V) is dense in MR(V,V’), by
Proposition 1.3.2 ;| this inequality shows that MR(V,V') — C([0,7]; ), and the inequality
carries over to all u € MR(V, V).

b) Initially we have shown 1.3.2 for u € C([0,7]; V). Let now u € MR(V,V'). By Proposition 1.3.2
there exists a sequence (u,) in C*([0,7];V) converging to u in M R(V,V’). Then

(lua()1%)" = 2Re (t, (), un(-)) — 2Re (w/(-), u(-))

in L;(0,7). Moreover, u, — u in C([0, 7]; #) by part (a), and therefore [lu,(-)||, — ||u(-)||% in
C[0, 7]. This implies that 2Re (u'(+), u(+)) is the distributional derivative of |lu(-)||%,

O

1.4 Stochastic preliminaries

All vector spaces are assumed to be real. We will always identify Hilbert spaces with their duals by

means of the Riesz representation theorem.
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1.4.1 ~-Boundedness and y-Radonifying operators
Let X and Y be Banach spaces and let {7, },>1 be Gaussian sequence (i.e., a sequence of independent

real-valued standard Gaussian random variables).

Definition 1.4.1. A family T of bounded linear operators from X to Y is called v-bounded if there

exists a constant C' > 0 such that for all finite sequences {x,}Y_, in X and {T,}\_, in T we have

N
> Yy

n=1

2

2
E < C°E

N
Z W/nTnxn
n=1

Clearly, every y-bounded family of bounded linear operators from X to Y is uniformly bounded and
suprer || 1] 2(x;v) < C, the constant appearing in the above definition. In the setting of Hilbert spaces
both notions are equivalent and the above inequality holds with C' = supper || 1] #(x;v). 7-Boundedness
is the Gaussian analogue of R-boundedness, obtained by replacing Gaussian variables by Rademacher

variables.

1.4.2 ~-Radonifying operators

Let s be a Hilbert space with inner product (:|-) and X a Banach space. Let 5 @ X denote the
linear space of all finite rank operators from 57 to X. Every element in 7 ® X can be represented in the
form > | h, ® z,,, where h,, ® z,, is the rank one operator mapping the vector h € J# to (h|hy,)z, € X.
By a Gram-Schmidt orthogonalisation argument we may always assume that the sequence {h,}Y_, is

orthonormal in J7.

Definition 1.4.2. The Banach space v(, X) is the completion of 7 & X with respect to the norm

i\f: i\f: 2\ 1/2
h, @ T, = (E Vnln ) , (1.4.1)
n=1 (X)) n=1

where {h, }_, is orthonormal in F and {v,})_, is a Gaussian sequence.

Since the distribution of a Gaussian vector in R” is invariant under orthogonal transformations,
the quantity on the right-hand side of (1.4.1) is independent of the representation of the operator as
a finite sum of the form ¥, h, ® z,, as long as {h, }"_, is orthonormal in .. Therefore, the norm

|| - HW(%»,X) is well defined.

Remark 1.4.1. By the Kahane-Khintchine inequalities , for all 0 < p < oo there exists a universal

constant k,, depending only on p, such that for all Banach spaces X and all finite sequences {x,}Y ,

1 p\ 1/p 2\ 1/2 p\ 1/p
(2 ) < ( ) <m(® )
Kp

in X we have

N N N
n=1 n=1 n=1
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As a consequence, for 1 < p < oo the norm

p\ 1/p
= (E ) ,
v (H,X)

with {h,}N_, orthonormal in S, is an equivalent norm on v(H, X). Endowed with this equivalent

N
> h,®w,
n=1

N
> Valn
n=1

norm, the space is denoted by vP(H, X).

For any Hilbert space .7 we have a natural isometric isomorphism
Y, X)=HS(H,X),

where HS (5, X) is the space of all Hilbert-Schmidt operators from s to X. Furthermore, for 1 <

p < oo and o-finite measures @ we have an isometric isomorphism of Banach spaces
VA, L (p; X)) = LP (s AP (A5 X)) (1.4.2)

which is obtained by associating with f € L?(u;v(7; X)) the mapping b’ — f(-)h' from 2 to L?(u; X)
[?, Theorem 9.4.8]. In particular, upon identifying (7, R) with ', we obtain an isomorphism of
Banach spaces

(A, LP () = LP(p; ).

Proposition 1.4.3 (Ideal property). Suppose that Hy and Hy are Hilbert spaces and Ey and E; are
Banach spaces. Let R € v(Hy, Ey), T € L (H1,Hy) and U € ZL(Ey, E1), then URT € v(Hy, Ey)
and

IURT ||y(y,20) < NU IR0, 80 1T]]

The following lemma is called the y-Fubini Lemma, and is taken from [32].

Lemma 1.4.1. Let (S,%X,u) be a o-finite measure space and let 1 < p < oo. The mapping
U:LP(S;~v(HFE)) — ZL(H,LP(S; E)), given by (UF)h)s = F(s)h for s € S and h € €, defines
an isomorphism LP(S;y(A, E)) = v(A, LP(S; E)).

1.4.3 Malliavin calculus

1.4.4 The Malliavin derivative operator

In this section we recall some of the basic elements of Malliavin calculus. We refer to [9] for details

in the scalar situation.
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Definition 1.4.2. An s#-isonormal process on a probability space (2, F,P) is a mapping W : 7 —
L2(Q) with the following properties:

(i) for all h € A the random variable W (h) is Gaussian;
(it) for all hy, hy € H we have EW (hy)W (hy) = [hy, ha].

Let {W(h),h € S} be an isonormal Gaussian process associated with 7, that is {Wh : h € '}

is a centered family of Gaussian random variable and
E(Wh1Wh2) = <h1, h2>, hl, hg € %

We will assume .7 is generated by W. Let 1 < p < oo, and let E be a Banach space. Let us define the
Gaussian Sobolev space DVP(E) of E-valued random variables in the following way. Consider the class
< ® E of smooth E-valued random variables F : 2 — E of the form

F=fW(h),..., W(h)) @z,

where f € Cp°(R™), hy,...,h, € H, x € E, and linear combinations thereof. Since . is dense in
LP(2) and LP(Q) ® E is dense in LP(Q; E), it follows that . ® E is dense in LP(Q); E). For F € S QF,
define the Malliavin derivative DF' as the random variable DF' : Q — ~(H,~v(H, E)) given by

DF = Y 0f(W(h)...,W(h,)) @ (b © ).

If E =R, we can identify (., R) with ¢ and in that case for all F' € ., DF € LP(Q; 5) coincides
with the Malliavin derivative in [9]. Recall from [9, Proposition 1.2.1] that D is closable as an operator
from LP(Q) into LP(2; ), and this easily extends to the vector-valued setting (see [25, Proposition
3.3]).

Proposition 1.4.4 (Closability). For all 1 < p < oo, the Malliavin derivative D is closable as an
operator from LP(SY; E) into LP(Q; (I, E)).

Proof. Let (F,)n>1 in ¥ ® E and G € LP(Q; (5, E)) be such that lim,, . F,, = 0 in LP(2; X) and
lim,, oo DF, = G in LP(Q;v(5, E)). We need to show that G = 0. Since G is strongly measurable, it
suffices to check that for any h € 5 and x* € E* one has (Gh, z*) = 0. By the closability of D in the

scalar case one obtains

(Gh,z") = lim (DF,h, x%) = lim D((F,,z*))(h) = 0.
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The closure of the operator D is denoted by D again. The domain of the closure is denoted by
D'?(F) and endowed with the norm

1F 1) = (1 og0.m) + IDF I o or,m)
it becomes a Banach space. Similarly, for & > 2 and p > 1 we let D¥?(E) be the closure of . @ F with

respect to the norm

1Fllowo(m) == (11700 +ZHDFHLP(MWE )/

1.5 Maximal Regularity for autonomous problem in Hilbert
space

Let .7 be an Hilbert space and A be a closed (unbounded) operator with domain D(A) dense in
. Let f :]0,00[— F be a measurable function and = € J#. We consider the problem of existence

and regularity of solution to the following equation

u'(t) + Au(t) = f(t)
(1.5.1)

u(0) = z.

We define the maximal regularity space

MR(2,¢) = W'2(0, 00; 22) N L*(0, 00; D(A))
endowed with norm

ullarr@,2) = Jullw20,00,0) + | AUl £2(0,0055) -
We define the associated trace space by

TR(2,7) :={u(0) :ue MR(2,7)},
with norm
2l r@.2) = f{{[ullsremr) : we MR(2,7),u(0) = x}.

Definition 1.5.1. Let p € (1,00) We say that A has the (parabolic) LP—mazximal regqularity property if
there exists a constant C' > 0 such that for all f € LP(0,00; ) and v € T R(p, ), there is a unique
u € MR(p, 7) satisfying (1.5.1) for almost every t € [0, 00| and

[ullsere,) < Cllllrae,z) + [1Fllzr©ccn)-

Proposition 1.5.1. See [56] If A has the mazimal reqularity property, then —A generates a

bounded holomorphic semigroup on F€.
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1.6 Maximal regularity for non-autonomous problems in )’

We consider a family of sesquilinear forms
a:[0,7] xVxV—C.
We recall the following usual assumptions.
e [H1]: Z(a(t)) =V (constant form domain),
o [H2]: |a(t,u,v)| < M|ul|y||v|ly (uniform boundedness),
e [H3]: Re a(t,u,u) + v|ul|* = d||ul} (Vu € V) for some § > 0 and some v € R (uniform quasi-
coercivity).

We suppose that t — a(t, u, u) is measurable for all u € V. We denote by A(t),.A(t) the usual associated
operators with a(t) as operators on . and V', respectively. In particular, A(t) : V — V' as a bounded
operator and

a(t,u,v) = (A(t)u,v), for all u,v € V.

The operator A(t) is the part of A(t) on 2.

Theorem 1.6.1 (Lions’ theorem). For every f € L?(0,7;V') and uy € F there exists a unique
u € MRy(V, V') = HY0,7; V") N L*(0,7; V) which solves the equation

{u’(t)+A(t) u(t) - f(t), t€(0,7] P
w(0) = up.

Lions’ proof is based on the following representation result

Proposition 1.6.1 (Lions’ representation theorem). Let 5 be a Hilbert space, V a pre-Hilbert
space such that V — . Let E : 7 x V — C be a sesquilinear such that

e Forallv eV, E(.,v) is a continuous linear functional on F .
o |E(v,v)| = aljv|} for allv € V and some o > 0.
Let L € V'. Then there exists u € J such that
Lv = E(u,v)

for allv e V.

The previous proposition was proved in [27] (p. 61).
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Lemma 1.6.2. Let 7 > 0 andu € MRy(V, V') := HY(0,7; V)N L*(0,7;V). We have u € C([0, 7]; )N
H=(0,7; ) and

2Re /OtW(S), u(s))ds = [lu()||* — [lu(0)|,

with t € [0, 7).

Proof. By [54] (Theorem 1, p. 473) we obtain M Ry(V, V') — C([0,7]; #) and for all u € M Ry(V, V")

we have
2Re /0 (' (s),u(s))ds = [Ju(t)||* = [lu(0)]|*.

By [54] (Lemma 2, p. 473) there exists a continuous extension operator
P:MRy,(V,V') — H(R; V') N L*(R; V). Now, let u € MRy (V, V') we get

1Pul,y ) = 1Pl + [ IViElFPu() s
— 1Pulagen + [ (€17 Pu(€), FPu(€))dg

< N Pullfese) + | Pull g [ Pull 2y
< 2||Pull g vz sy
< 2Cull vy w1
Since
012, < NP
Thus, MRy(V,V') < H2(0,7; ). O

Proof of Theorem 1.6.1. Let H = L*(0,7;V) endowed with norm ||g||3 = fy llg(t)||3dt and
V= {veL*0,7;V)NH0,7;V) s.t v(r) = 0}

with norm .
||v||§/=/0 lv(®)I[5dt + [[o(0)]]*.
For all v € V from the equation (u(t),v(t)) + a(t,u(t),v(t)) = (f(t),v(t)) which is equivalent to
Jo [(a(t),v(t)) + a(t,u(t),v(t))]dt = g (f(t),v(t))dt integration by parts gives

(u(t), v(t)| — /( dt+/ (t, u(t), v(t))dt = /OT(f(t),v(t))dt (1.6.1)

0

hence
(), v(m) = @(0), v(O)] = [ (u(t), o(e)dt + [ alt.u(),v)dt = [ (£(1).v(t))d
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Finally

(), 0(0) = [ (O, 5@t + [ alt (@) v(@)dt = ["(F(0),0(0)at

the last equation is equivalent to

—/OT(u(t),q‘)(t))dt+/OTa(t,u(t),v(t))dt: (u(O),v(O))+/0T(f(t),v(t))dt
E(u,v) L(v)

because v(7) = 0 according to the definition of the space V.
We set

E(u,v) = /OT a(t,u(t),v(t)) — (u(t),v(t))dt
and

L(w) = [ (70, v(0)dt + (a0, v(0)).

For all v € V, is clear that the form u — E(u,v) is continuous on J#.

For v € ¥V we have

Re E(v,0) :/OT a(t,v(t),v(t))dt—/oTCclltHv(t)Hth (1.6.2)
> minfs, 1 [ (o) Bt + o)), (163

Finally, it easy to show that v — L(v) is continuous on V. Therefore by applying Proposition 1.6.1,
there exists u € ¢ such that F(u,v) = Lv for all v € V, i.e. a solution of the Problem (P’).
By Lemma 1.6.2, we get

(o)~ afO) I+ 25 [ (o)
< 2Re /Ot(u(t),u(t)>dt+2Re /Ota(t,u(t),u(t))dt
— 2Re /OT(f(t),u(t))dt
<< [T1r@ e+ [ ut)
Therefore

T 1 T
e +6 [ lu@lipde < O + 5 [ 1@
So that, there exists a constant C' > 0, such that

lulleqorgsne + lullz2ov) < CUO)? + 111l 2200.701))-

For the uniqueness we suppose there are two solutions uq, us and we set w = u; —us. So w is the solution
of the Problem (P’) with f = uy = 0. Then by the previous estimate we have w = 0 and u; = up. O
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1.7 Weighted spaces

Properties of the weighted spaces

In this section we briefly recall the definitions and we give the basic properties of vector-valued

function spaces with temporal weights.
Let (X, - |[x) be a Banach space over R or C. For —1 < # < 1 we set L3(0,7; X) = L*(0, 7, t7dt; X),

endowed with the norm
lullty 0y = ) eIt dt

It’s very seen that L3(0,7; X) < Lj,.(0,7; X). Indeed, for all u € L3(0,7; X), we have

T T . 1
| @l de < (67 dt) ¥l

It clearly holds L*(0,7; X) < L3(0,7; X) for §# > 0 and L3(0,7; X) < L*(0,7; X) for 3 < 0.
We define the corresponding weighted Sobolev spaces WBI’Q(O,T;X) ={u e WH(0,7;X) st u, u €
L3(0,7; X)},

Wso(0,73.X) == {u € W5*(0,7;X), s.t u(0) = 0},

which are Banach spaces endowed with norms, respectively
3120y = Nl 0) + i3 0,

HUHQ 12 HUHL2 (0.:x)- We set also

2(0,7:X)

LF0,7;,X) :={ue L'(0,7;X) st s — sgu(s) € L>=(0,7;X)},

endowed with the norm [|ul| L (0,rx) = gu() | oo (0,7;x)- We define also the fractional weighted Sobolev

-
space WE’Q(O,T; X), where WE’Z(O, 7 X) = (L%(O,T; X); W/;Q(O,T; X))s.2, endowed with norm

() )
e e / st

with s € (0,1). Here (.;.)s2 is the real interpolation space. For more details see [44](2.6).

Lemma 1.7.1 (Weighted Hardy inequality ). For all f € L%(O,T,X), we have the following

inequality

LG 17O x st dt S 171000

The Lemma 1.7.1 is proved in ([26], Lemma 6).
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1-

2

3-

4-
5-

6-

Proposition 1.7.2. We have the following properties

(a) Forp>2 and 3 > % — 1, we have LP(0,7; X) < L3(0,7, X),
(b) Forp <2 and 8 < % — 1, we obtain L%(O,T,X) — LP(0,7; X).

For all u € L%(0,7, X), we have t — v(t) = 1 [ u(s) ds € L3(0,7, X).

We define the operator ® : L3(0,7; X) — L*(0,7; X), such that (®f)(t) = t2

feL30,7;X) and t € [0,7]. Then ® is an isometric isomorphism.
Note also that ® € L(L*(0,7;X), L2 4(0,7; X)) and ® € L(W55(0,7; X), Wy*(0,7; X)).

tz f(t) for all

We have Wg:g(O,T;X) — L3 ,(0,7; X).
L? 5(0,7; V) is the dual space of L%(O,T; X)) by the duality defined in L*(0,1; 7).
Ifue Wé’Q(O, 7: X), we obtain that u has a continuous extension on X and we have

W50, 7 X) = C([0,7]; X).

C2((0,7); X) is dense in L3(0,7;X) and C=([0,7]; X) is dense in W§’2(0,T;X) for all

C

s €]0,1].

Proof.

1- (a) Letp>2andﬂ>%—l,wesetp':§>1,1%%—%:1andthisimpliesthatq:pi2.

By using the Holder’s inequality and the condition above we get

,
luliFy 0y = | (et at

< ([ ey ar)” ("o ar) ”
0 0

1 LB 1 P
= &‘i‘ 1Tp_2 ||u||LP(O,T;X)‘
-2

p

(b) Similarly, by the above applied to the case p’ = % > 1, we have

el iy = [ @)t %4 at
2—p

< (/T lu(®)]|3t” dt>2 ( Oth—”? dt>2

- CHUHL2 0,7;X)"
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2

Using the previous Hardy inequality we have

0l1Z2 0.riey = Jo I15 Jo w(t) dsl3t? dt < JlullZz o r.x)-
Now, since u € L%(O, 7; X)), we get the result

Note that ||®f||L2(0,rx) = Hf||L[23(07T;X) and we have
&1 L*(0,7;¢) — L3(0,7; X) such that (&~ 'g)(t) = t=5g(t) for all g € L*(0, ; X).

Let u € W22(0,7; X) such that «(0) = 0. We write u(t) = I @(l) dl. Then
B 0
t
) 372 = || [ ) a2
0
This implies that
nwngx:/Wthﬁ*w
- ||/ (s) ds|t” dt
<[ (/ Hu(s)HXcLs) £ di

S allzz o.mx) < lullwi 2oz,
where here we used the Hardy inequality (1.7.1).

Use simple functions in L? 4(0, 7; X) which norm simple functions in L3(0, 7; X) and the Cauchy-
Schwartz inequality (the proof is similar to the non weighted case see ([28], p.98)).

Let u € Wé’2(0,7'; X) and for (¢, s) € [0, 7]*>. We obtain

t
lut) = u(s)llx = || [ a(t) il
t 1
< ([ ) il

1 _ _ 3.
(t At - S IB+1)2HuHL%(O,T;X)'

T VI-P

By letting s — ¢ we get u(s) — u(t) in X. Therefore u has a continuous extension on X. Thus we

can always identify a function in VVB1 ’2(0, 7; X) by its continuous representative.

First we note that CZ°((0,7); X) is dense L*(0,7; X). Then for all f € L3(0,7; X) and for any
given € > 0 there thus exists a function ¢ € C°((0,7); X) such that

H((I)f) - wH%Q(O,T;X) <e
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It follows that

IF = (@) 20
H(I)”E LQ(OTX) L2(0,7;X)) ”((bf) wH%Q(O’T;X)
<eE.
Therefore C2°((0,7); X) is dense in L%(O, 7; X).
As in ([21], Theorem 2.9.1) for the scalar-valued case, one sees that the space of all function f

in C*([0,7]; X) such that f(0) = 0, is dense in W,(0,7; X). Then for all g € Wgﬁ(o, 7; X) and
¢ > 0 there exists ¢ € C*([0,7]; X') with ¢(0) = 0 such that

H¢ - (I)QH%/VLQ(O,T;X) Se

Then |®7'¢ — g2 1, 120,rix) S < . This shows that the space of all function f in C*°([0,7]; X) such

that f(0) = 0, is dense in Wé:g(O,T;X). Let f € Wé’z(O,T;X) and ¢ € C*([0,7]; X) such that
¢(0) = f(0). Then f — ¢ € Wj3(0,7; X) and there is £ € C°([0,7]; X) with £(0) = 0, such that
|f—¢&— ¢||W12 nx) SE Since £+¢ € C*([0, 7]; X), then C*°([0, 7]; X) is dense in Wﬂl’2(0,T;X).
Since C"O([O,T], X) is dense in Wﬁl’2(0,7'; X) and

W52(0,75X) = (L3(0,7: X); W52(0, 75 X)) s 2,

we obtain that C*°([0, 7]; X) is also dense in WE’Q(O, 7; X) by ([21], p.39).
0

From now we assume without loss of generality that the forms are coercive, that is [H3]"% holds
with = 0. The reason is that by replacing A(t) by A(t) + v, the solution v of (P) is v(t) = e”*u(t) and
it is clear that u € Wﬁl’Q(O, 7; ) if and only if v € I/VBI’Q(O7 T ).

In this chapter we suppose that Q(A(t)%) =V, for all t € [0, 7] and there exist ¢;, ¢! > 0 such that for
allv eV

aillolly < JA@) 70l < ']l (1.7.1)

So that for all s,t € [0, 7]
c 1 1
C%HA(S)QUH < [lA@)2 0] < *HA( )2oll,

this also holds for the adjoint-operator and we have
Cly qx/ 0L et c! %y N1
TllAT(s)ell < [AT(@)20]| < allA (s)20]].
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Proposition 1.7.1. The solution of problem (P) is unique.

Proof. We suppose that there are two solutions u;, us to Problem (P). Obviously, v = u; — us satisfies

o(t) + A(t)v(t) =0
v(0) = 0.

Then for all ¢ € [0, 7] we have
t t
2Re/ (0(s),v(s))s” ds + 2Re/ (A(s)v(s),v(s))s” ds = 0.
0 0
Integration by parts gives
t t
Pl = 8 [ o(s)I12* " ds +20 [ lo(s)[s" ds < 0.
0 0
Indeed,
t t d
2Re/ ((s), v(s))s® ds = Re/ L lo(s)|2sPds
0 o dt
t t t
= o), =8 [ " e(s)lds = @) 2= 8 [ 5 lo(s)|ds
Since A is coercive we have,
t t
2Re/ (A(s)v(s),v(s))s” ds > 25/ |v(s)||* ds
0 0
from 1.7.3 and 1.7.4 we get

0=2Re /Ot(wb(s), v(s))s” ds + 2 Re /Ot(.A(s)v(s), v(s))s” ds
>25 [ ots)|Pds + oI — 5 [ ool

this gives the desired result.

(1.7.2)

(1.7.3)

(1.7.4)

It is clear that for the case 5 < 0 we obtain v(t) = 0 for all ¢ € [0, 7]. Therefore u; = uy and then

the solution of Problem (P) is unique. For the case 5 > 0 we have
t
Plo@IP + [ Iu(s)P(250% " — 5s*) ds <.
0

26C

So for the case t < 5

v =0on [0,7]

39
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We recall by Sy the open sector Sy = {z € C* : |arg(z)| < 6} with vertex 0. It is known that
—A(t) is sectorial operator and generates a bounded holomorphic semigroup on . The same is true
for —A(t) on V'. From [4] (Proposition 2.1), we have the following lemma which point out that the
constants involved in the estimates are uniform with respect to t.

Note that this assumption is always true for symmetric forms and we get ¢; = /6 and ¢' = /M.
We denote by Sy the open sector Sy = {z € C*: |arg(z)| < 6} with vertex 0.

The following lemma is proved in [4] (Proposition 2.1)

r

Lemma 1.7.3. For any t € [0,7], the operators —A(t) and —A(t) generate strongly continuous

analytic semigroups of angle v = 5 — arctan(%) on H and V' .respectively. In addition, there exist

constants C' and Cy, independent of t, such that
1- |e7#4O]| 2y < 1 and ||e= A oy < C for all z € S,,.
2- |[A@)e* D ) < € and || A(t)e=* A0 || 20 < € for all s € (0, 00).

s

3- He_SA(t)”ﬁ(.%’,V) < %,s € (0, 00).

4- 1z = A@) Hicwey) < “%_ and ||(z — A®) oy < Yo for all = ¢ Sy with fired

Vel |2

Q‘

0>75—n.

The following lemma is proved in [3](Corollary 4.3.12)

Lemma 1.7.4. Let Hy, Hy be two Hilbert spaces, with Hy C Hy, Hy dense in Hy. Then for every
6 € (0,1),
[Hy, Halg = (Hy, H)o 2,

with ||ullim, m,, = Cllull (1, 1)y, where C is a positive constant independent of Hy and Hy.

As a consequence from the previous Lemma and ([3], Theorem 4.2.6) we have that for all v €
(07 1)7t 6 [07 T]
(A, D(A))y2 = [, D(A))]y = D(A(t)").

Lemma 1.7.5. For all x € (A, Z(A(t)))1 5, we get

o
| IA@e 1Oz |? ds < Clelf e agamy

,2

[

where C' > 0 is independent of t.
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Proof. Note that [|e=*4®]||z) < 1 and ||sA(t)e *AD| 2y < My, where M is independent of ¢. Let
x € (H, D(A(t)))%g. We write © = a + b, where a € 7 and b € Z(A(t)) to obtain

1 1 1
3lA —sA(t) < inf M s 2 2
stllA@e™Pal < L Job ey Mo llall £ s2lIbll o)

< max{M,,1}s72 all + s||b
On.1) o Tl 1Bl

inf
r=a+b; a€I, beP
< max{ M, 1}5_%K(s,x;j‘f, D(A(t))).

So ||A(t)e™*AWz|| < max{ M, 1}s 1K (s, 2;., D(A(t))), where

K(s,x;, 2(At))) = lal +8HbH@(A(t>))-

inf (
x=a+b; acH’, beP(A(t))

= || K (s,2;0, 2(A(1)))|* % (See [3], Definition 1.1.1), then

52

Since ||$||%%,@(A(t)))%,2

| IA@e O] ds < max{ My, Ll gam)

;2

ST

Then we get the desired result. O]

In the next lemma we prove the quadratic estimate, this lemma was proved in [40] with the assump-

tion (1.7.1), here we prove this estimate without the assumption.

Lemma 1.7.6. Let x € 7 and t € [0,7]. We have the following estimate
[ 1Ak 4O ds < el
0

where ¢ > 0 is independent of t.

\

Proof. Note that by ([?], (A1) p. 269)
AW = = [T AW)

Then by Lemma 1.7.3 one has HA(t)’%HE(%J) < ', with ¢” > 0 independent of ¢.
Let © € 2 and t € [0, 7]. We get by the previous lemma

1 | 1 N
[ AR Oa)Pas = [ A@e A0 A@) ) ds
0 0

_1
< |JA(®) 235”%%;@(14@))%2
_1
= |lzl2 + I A(t) 32
< (O +1)]|z||.
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Every f € L?(0,t; ), defines an operator by putting

(R(0)f) = [ e 940 f(s) ds.

0

The next lemma shows that R(¢) is bounded in £(L*(0,t; 52), V).

Lemma 1.7.7. We have that for all t € [0, 7], R(t) € L(L*(0,¢; 5),V).

The Lemma 1.7.7 is proved in ([40], Lemma 4.1).
We define the space

L%(O,T; D(A()) ={ue L%(O,T;,%”) st A()u € L%(O,T;%ﬂ)}
endowed with the norm

[l 22 o,m,00a00) = l[ullzz0,0,00) + 1AC)ull 220,72

Lemma 1.7.8. We assume that A(.) € C*([0,7]; LV, V')),e > 0. Then for all X € (0,00), we have

(A+A) e C([0,7]; L(52)) and [[(A+ AQ) Hee(oreery < §-

Proof. Let A € (0,00),t,s € [0,7]. We get
A+ A®)) " = A+ A(s) 7 = (A+ A1) (A1) — Als)) (A + As))
Therefore by the Lemma (1.7.3) we have

1A+ A®) ™ = (A + As) " llewr)
<A+ AG) e on AW — Als)llewn A+ A() " ewey)
|t — 5|7

RY

<C

]

Lemma 1.7.9. We suppose that A(.) € C([0,7]; L(V, V")), then L3(0,7; Z(A(.))) is dense in
L%(()?T;jf).

Proof. Let f € L3(0,7;.5€), and set fu(t) = n(n + A(t))~"f(t) for n € N. Since t — (n + A(t))™" €
C([0,7]; L(A)), then for all n € N the function
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1.7 Weighted spaces
fa 2 10,

7] — A is measurable and satisfies f,(t) € Z(A(t)) almost everywhere as well as
LA £ ()]l < Call £(2)]. Moreover

5.0 = FOl = | (nn -+ A®) = 1) f0)].

Hence, the convergence f,, — f in L%(O, 7; ) holds by the dominated convergence theorem

~

Proposition 1.7.10. Assume that A(.) € C=([0,7]; L(V,V")), for some € > 0. Then for all f €
L%(O,T;%), with § < 1 the operator L defined by

(LN = A) [ 910 (s) ds

0

is bounded in L3(0,7; 7).

.

Proof. Let f € L3(0,7; 2(A(.))). We split the integral into two parts to get

(LA =A@ [ 940 1 (5) ds 1 A1) [l e 10 (s as

= () + L(t).

We begin by estimating the first integral

2

IO = 14 [* e 940 f(5)dsl 5

(s)ll ds

= /0 I£(3)] ds.

Therefore by Hardy inequality (See Lemma 1.7.1) we have

[ 4@ / =940 £ (5) ds |2 t° dt

< [ [ 1) dsye ar
< ||f||L2(O’TJf)

As before we estimate the second integral, so for all x € 77, we obtain
t
1
(/ | A(t) 56751‘/5 t)f szs) (/ A1) 2e§tsA(t )
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Lot ) 3
SO ([ 1A 0 £(5) 2 ds)

In (i) we have used the quadratic estimate (1.7.6).

Taking the supremum over all x € 7, we obtain the following estimate

[N e = [ A [ e p(s)as)

</ tﬂ/ A1) Fe=30=940 £(5)|12 ds dt

5/0 L||A(t>%e—%t_s>A (ng(s)>”2d8dt

Let g be the function defined by g = (®f). Using the Fubini theorem and the inequality (z + y)?
222 + 2y, we obtain

<Hgnmoff + / / u( (5) ke 3940 — ()50 ) o(4) 2 ds

A(s>%e—%<t—s>A<s> - A(t)w‘?“ A

JA(s)zem 21794 — A(r)zem 20 5
< [N IR (0= A0) o [(A®) = A ewnll 3 = AE) 2o [dAL
Therefore
]\A(S)%e—%(t—S)A(S) _ A(t)%e $(t—s)A(t) H£
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< [T ATBeT B WA (AGE) — A) e

Then
”A(S)%e—%(t—s)A(S) _ A(t)%e—%(t—s)A(t)HL(jf < H‘A(t) — A<3)1H£(V,V’).
(t—s)2
Therefore
T t
[ (G e 080 — Ayrem 40 ) g )| ds
0 Jt
T t ./4 t) — ./4 S 2 /
5 “ ( ) ( )”L(V,V) Hg(S)HQ ds dt
0 Ji t—
™ [ A() — Az
< sup EE dt| 9113 0,ri
s€f0,7] /s t—s
= 7—26”AH%E([O,T];L(V,V’))||f||%%(0,7’;jf)‘
This completes the proof of the Proposition 1.7.10. O

Proposition 1.7.11. For § > 1 we have that the operator L is not bounded in L%(O,T;%ﬂ) mn
general.

Proof. Let uw € # and g € L? 5(0,7;H). Noting that

(L*g)(t) = / " A(s) e mDACY () ds, t € (0, 7)

t

and L € L(L3(0,7;H)) if and only if L* € L(L?4(0,7;H)). If A(s)* = A(0)* for all s € [0,7], then
(L*g)(t) = ] A(0)*e= (=940 g(s) ds. Assume now that t < 1 < 7 and take g(s) = 1, ,(s)u, so

(L*g)(t) = e (1mDAQ)" o= (=0A0)",

Y

which converges to e~ 40"y — e~y as t — 0. We claim that

e~ A0y _ A0y

then

||L*9||%35(0,T;H) > ||L*9||23B(0,1;H)
_ / Hlem 0400 _ ~r-na0r, 2 9
0 th '

Now, suppose that =47y — ¢~ 740"y = 0, thus

oA, — o= (2T=1AQ)",,
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Using induction, for all n € N we obtain

oA, o~ (r=D)FDAO)", _ o

Since ||A(0)*e~((T=DFDAO) A(0) 1yl < WHA( )*7lul|, by letting n — oo it follows that
e 40"y = 0. Hence e 0"y = 0 for all ¢ > 1, and we deduce that u = 0 by an application of

the isolated point theorem and the analyticity of the semigroup. O]

Lemma 1.7.12. For all f € L%(O,T;%), t €[0,7] and B < 1, we have (L1 f)(t) € V, where

(Luf)(t) = t2 / L em=9A0 £(5) ds

Remark 1.7.1. The operator L is called the maximal reqularity operator.

Proof. We write
t t
(L1 f)(t) = g/2 e_(t_S)A(t)f(s) ds +t§/t e_(t_S)A(t)f(s) ds
2

0

A straightforward computation gives
8 (3 s 5[5, s
[¢5 7 e f(s)dslly S 45 [ e rn I (5)] ds

t 1
B 2 _g_ 2
(757 ds) 1 azio

Sl

AN

f || L%(O,T;ig’) .

Using the Lemma (1.7.6), to deduce

g [t b s 8
5 [, O s dslly S [, O (55 5(5)) sl

2

S ez,

Then we get the result. [

Lemma 1.7.13. For all ug € (; 2(A(0)))1-z , and B € [0,1), we have

T g _
/0 [£2 A(0)e ™ Oug |3, dt = |Juol| .04 (A0)) 15,

7 2
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Proof. Note that (7; Z(A(0))) 1=z , = 9(14(0)%). If 5 €[0,1), by using the quadratic estimate we
obtain

[ 15 A 40 a

T B 1+8
2

A(0) 2 40 4(0) 5" w2, dt
< [ 1A0)ze 34O A(0) 7 w2, dt
0

1

1-8
S 1A0) = uoll* = luollErszaoy,_s

2

S HUO”%ﬁﬂ;@(x}(on)ﬂ )
2,

Conversely, we know that (See [3], Definition 1.1.1)

1
lwollEr.aca0)) s , :/0 72 K (t, uo)|% dt,
Tv
where

K(t = inf » + t||b .
( ,UO> uga—i—b;aelgf,bE@(A(O))(Ha“% + || ||@(A(O))>

This allows us to write for ¢ € [0, 7]
o = (UO B e—tA(O)u()) 4 etAO),,

¢
= —/ A(0)e 1Oy dl 4 ¢4y,
0
Since ey, € 2(A(0)) and (uo — e‘tA(O)u()) € A, it follows moreover that

1K)l < [ HAQ) g dl + 1] Q) O]
Roughly speaking, by Hardy inequality (1.7.1), we have
Juolraiaionscs , S ) 1EA@ ol dt.
This completes the proof of the Lemma. O

Remark 1.7.14. As consequence of the previous lemma the orbit t — e 4 Oug belongs to the space
W5?(0,73.5) (1 L3 (0, 7: 2(A(0))) if and only if ug € ('3 D(A(0))) s ,-

We define the space
Ws(2(A(), ) = {u e WH(0,7;5), st A()u € L3(0,7;5), i € L3(0,7;)},
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endowed with the norm

lullwapiac), e = ||A(~)UHL§(0,T;%7) + ||ﬂ’|Lg(o,T;yf)-

It is easy to see that Ws(D(A(.), ) — Wg’z(O, T ).

Lemma 1.7.15. For all v < 3, we have (5, 2(A(0)))y2 = [, V]2, and for v > 1 we get
(A, 2(A0)))y2 — V.

Proof. As a consequence of the lation method (See [3], Remark 1.3.6) we have for v < 2,

(A, D(A0))y2 = (A, D(A0)2))22 = (H, V)2
Since ¢ and V are Hilbert spaces we get by the Lemma 1.7.4
(A, D(A0))r2 = (A, V)ay2 = [, V]2
Let v € 2(A(0) and v > 1. We obtain

ollvll} < Re (A(0)v,v)

[A0) [ [[[A0) 0]
1A) vl el e v,
[A0) 0| lv]lv-

<
S e
S
N

Therefore we have that for all v > 1 and v € Z(A(0))

[ollv < [lvll2aom-

Finally, by the density of Z(A(0)) in Z(A(0)”) we get the desired result. O
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Chapter 2

Maximal regularity for autonomous and

non-autonomous evolution equations in

weighted spaces

In this chapter, we will study the Maximal regularity property for autonomous problems, i.e.
existence and uniqueness of the solution to the relevent problem (P) where the operators A(t)
are independent of ¢. Based on some complex interpolation techniques adapted in the theory of

operator spaces, we are able to prove the existence and the uniqueness to the pro]alem (P).

We discuss the regularity of the problem

u(t) + A0)u(t) = f(t) (2.0.1)
u(0) = uo.

2.0.1 Maximal regularity for autonomous problems in weighted spaces

The following is our main result in this section.

Theorem 2.0.2. Let f € L3(0,7,7) and ug € (S5 P((A(0))) s, for B = 0 and ug = 0 if
B < 0. There exists a unique u € Wy(Z((A(0)), ) N LF(0,7;V) be the solution to Problem
(2.0.1). Moreover, we have the following embeddings

Ws(2((A(0)), ) = C((0,7]; (A D((A(D))) ,)
Ws(2((A0)), ) = W3*(0,7;),8 € [0,11.

Proof. Since A(0) is a generator of an analytic semigroup in ., it is well known that by the variation
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spaces
of constants formula the solution of Problem (2.0.1) is
u(t) = e Oy + /Ot e_(t_s)A(O)f(s) ds.
Thus,
AQO)u(t) = AO)e g + AQ) | Ce =040 £ () ds
= (Fuo)(t) + (Lf)(1).
Lemmas 1.7.12, 1.7.13 and Proposition 1.7.10 gives
||A(0)U||L§(o,r;%) < ||FU’O||L%(O,T;f) + ||Lf||L%(07T;<%”)
< C(!\Uol!(%@((A(o»)lg% + IIfHL;m,T;,;f)).
Since & = f — A(0)u € L3(0,7;.5¢), we obtain finally
[ullwy (@ a).0e) < C’(I!Uo||w;9<<z4<0)>>1;ﬁ,2 + ”f”L%(O,T;%))‘ (2.0.2)
Using Proposition 2.0.4 and (2.0.2), for all ¢ € [0, 7] we obtain
[u()lorziaom s , S tllwa@ao)onig o)
7 (2.0.3)
S HUOH(%’;@((A(O)))#’2 + HfHLg(o,T;jf)-
For 0 < s <I<t< T, weset v(l) = e =DAO)y(]). This yields
w(t) — u(s) = v(s) — u(s) + [ o(l)di
s (2.0.4)

t
= (e~ 4O _ Dyu(s) + [ e DO £(1) dl.

S

Observe that e~ (=)0 is strongly continuous on (#; Z((A(0)))1-s ,. In particular, this ensures that

2

(e 940 — Du(s)lloriaaon,y, =0 ast—s.

The estimate (2.0.3) for the case ug = 0 gives that

t
[ / e A £ dll| a0, S I 2 ene)-
s 2

It follows that wu(t) is right continuous on (7 Z((A(0)))1-s ,. Now, set v(l) = e~ (=940 (1), for

0<s<il<t Then
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= (40— Dyur) - [ L =DAO (£(1) — 24(0)u(l)) di.

S

The same argument shows that u is left continuous in (J; Z((A(0)))1-s ,.

Thus, u € C([0,7; (3 2((A0)) 125 ). .

Now, we prove that Ws(Z((A(0)), ) — W3>(0,7;V).
Indeed, let 8 € [0, 1] and u € C>([0, 7]; Z((A(0))). We recall that

t _ 2
e Tt u) —u(s)ly g
2, T HUHL%(O,T;V) +/O /0 ‘t — 8’2 s” ds dt.

[l
(0,7;V)

w

Em\.—

By (2.0.4) it holds that foral 0 < s <t < 7
t
u(t) = u(s) = (€ HOu(s) — u(s)) + [ DO f(1)al
= Ly (t,s) + Lo(t, s),

where f(I) = A(0)u(l) + u(l). So

2 | L1 (2, s Hv B
12 12 g +2 | [ s dsde
Lt )
dsdt.
2 / it — 52

We write
t—s
Ly(t,s) = e 940y (s) —u(s) = —/ e~ 4O A(0)u(s) dl.
0

Lemma 1.7.1 and the quadratic estimate gives

L1 (8 $)I s e AOAO)u(s)|vdlN2 | 4
[ ddt//< ) s’ ds

|t —s|? |t — s
C/ / e~ A(0)u(s)|3 dts® ds
c’/ 1AO)u(s)2s” ds

Similarly, we obtain

[ //(fwt”piﬁmmwfﬁﬁ

< (t—s)A(0) 2
<0 [[ [ 1210 @) (s ds

o1
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spaces
=C [ [ 11O @ (s de ds
< CHq)fH%Q(O,T,%”) = CHfH%%(O,T,}f)
Therefore,
HUHWﬁ%a(O,T;W S [AQ)ullrz 0,0 + 1 230,m500) S Nullwa@ac. )
We note that C*°([0, 7]; Z2((A(0))) is dense in Ws(Z((A(0)),.#). This shows that
12
Wis(2((A(0)), ) = W3 (0,7; V).
which completes the proof O
Remark 2.0.2. The following embeddings hold
(1) Ws(2((A0)), ) = C([0,7]; [, V]1-5), for 0 < < 1.
(2) Ws(2((A0)), ) = C([0,7]; V), for § < 0.
Theorem 2.0.3. For all f € Wgﬁ(o,ﬂ ), there exists a unique
u € CH([0,7]; (#; 2((A(0))) =2 5) N C([0, 71; 2((A(0))),
which satisfies the equation
t)+ A0)u(t) = f(t
i(0) + AO)u(t) = /() 205)
u(0) =0

In addition,

||u||01([o,r];(ff;@«A(o»)#’chqo,r];@(mw))) < Cllf w2

Assume now that T = 400 and f is a periodic function with period p. Then u satisfies
u(t +p) = e Ou(p) +u(t), t € [0, 00),

and it is periodic with the same period p if and only if u(p) = 0.

.

Proof. According to Theorem 2.0.2, there exists a unique solution u to Problem (2.0.5) and for all
feL3(0,7;5)
t
u(t) = / e~ (t=940) r(s) ds, t e [0,7]. (2.0.6)
0

Moreover u € Ws(Z2((A(0)), ) and
lullwa@ o,y < Cllifllzom00)- (2.0.7)
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Integrating by parts, we obtain for ¢ € [0, 7] and f € Wﬂljg(O, T, )

Amﬁmo:aAm)AZz@$A@f@ﬁk
= f(t) — /t e_(t_S)A(O)f(s) ds

0

:mw+A@mw—A%wﬂM@ﬂg@
Hence, .
i) = [ IO f(s)ds = (L)),

Theorem 2.0.2 shows that u € C'([0,7]; (A5 2((A(0)))1-5 ,). Since A(0)u = f — @ we deduce that
2
A(0)u € C(]0,7]; 7). As a consequence, we obtain the final estimate

HUHw([o,r};(%;@«mm»# ncoA2a0) S Cllfllwizore:

Consider now the case where 7 = 400 and f is a periodic function with some period p > 0, i.e.
f(t+p)= f(t) for all t € [0,4+00). It is clear that if u is periodic with period p, then u(p) = u(0) = 0.
Formula (2.0.6) yields

t+p
u(t+p) = /0 e~ tFP=9)A0) £(5) ds.

Hence,

ult+p) = [[e OO fs)ds [T e A0 f(s) s

0 p

:e,mm)/ﬁ ~(P=9)A0) f(g) ds+/ ~EDAO (14 p)di
0
= e 4 Ou(p) + u(t).

In the previous equality, we made a change of variables, and in the last equality we used the periodicity
of f. Then u is periodic with period p if and only if e=*4*©u(p) = 0 for all ¢ € [0, 00). Therefore, the

analyticity of the semigroup shows that u(p) = 0 is a necessary condition for u to be periodic. [
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2.0.2 Maximal regularity for non-autonomous problems in weighted spaces

In this section we focus on the maximal regularity for the non-autonomous problem (which is our
main aim), i.e. we prove the existence and the uniqueness of the solution to Problem P in the
weighted space Wé ’2(0, 7; /). We start by stating and proving some estimates which we will need
in the proof of the main result.

Proposition 2.0.4. (1) Assume that

t < o0

[ 1A~ AN
0 t

Then for all s € [0, 7],

TR, : We(2(A(")), )N Lg(0,7;V) — (A D(A(s))) 128

2

u — u(s)

is a bounded operator.

(2) For vy € (I .@(A(O)))%Q, we have

— (Fug)(t) = t5/2A( t)e —tA® gy, € L*(0,T;57).

.

Proof. (1) First we consider the case s = 0. We have

’\U(O)’\%jfg A(O)));B
—/ [#°72 A(0)e~ @ u(0)|1* dt + ||u(0)|*
<2 [ I A0)e O (u(0) — u(e)) | dt + [u(O)]
v2 [ L2 A(0)e Ay ()2 dt
5/175( /||u |ds> dl+/ 1L A()u(t)|? dt
+/ [#772(A(0)e™ O — A(t)e™ O )u(t)||* dt + [|u(0)|?

S ||UHL§(0,T;%) + ||A(')u||%§(0,7;92”)

AW — AO) )
M

dt{|ull g 0.r) + lu(0)]|*

S HUH%Vﬂ(@(A(-)),yf) + HUH%;;(O,T;V) + [[u(0)]%,
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where we have used the quadratic estimate, Hardy inequality and the estimate

< JA® = AO) e

HA(O)eftA(O) _ A(t)eftA(t)HL(V,jZ’) < YD

Now, we prove the result for all s €]0, 7]. Indeed, let ¢ €]0, 7] and set

o(t) = u(t + s), tel0,7—sl.
. u(Z(r—t)), te[r—s,7]

Similarly,
B(t) = At + s), te 0,7 — sl

Since v(t) € Ws(Z2(B(-), ), therefore

v(0) = u(s) € (A5 2(B(0))) 18 , = (H; D(A(5))) 12 5-

2

For the case s = 7, we take v(t) = u(t — t) and B(t) = A(T — t).
(2) Note that

Fug)(t) = tF12A(t)e AWy,
(Fuo)(t) 0
= tP2(A(t)e Oy — A(0)e 4O yy) + 182 A(0)e Ay,

For 8 > 0 we have by interpolation

- 1
1A = A0) Ml erszaoms s v S 5
7 A"z
Therefore
A0) = A@) ey _
I(Fuo)(t)] < 2 uolloraaon g + 1172 A0)eH g
2
Hence,
™ [|A0) — A NZ v
|(Fuo)lZ2rm S [ T dtuoll riotao s
+ /0 1£7/2 A(0)eHAO |12 dt
S ||U0||%%;@(A(0)))#,2'
This shows the second assertion. O
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In the sequel we consider only the case 5 € [0, 1].

Proposition 2.0.5. Suppose A € C([0,7]; L(V,V")). Then for each f € L3(0,7;7), ug €
(7 2(A(0))) 125 , and for T small enough, there exists a unigue solution u in LF(0,7;V) for (P).

Proof. Let f € L3(0,7; 7). We set v(s) = e” =940 y(s). Since u(t) = e 4 Dug + [§ 0(s) ds, therefore

u(t) = e AWy, + ; e~ A (A1) — A(s))u(s) ds

+ [ =940 £(5) ds (2.0.8)

For > 0 and ug € (2, .@(A(O)))¥72 we have by interpolation
le™ P uolly <t~ luoll e 2ea0,s ,- (2.0.9)
In view of Lemma 1.7.12 and (2.0.9), t*/2(Mug)(t), t%/%(L, f)(t) are bounded in V for all ¢ € [0, 7].

Now, we show that Myu € L (0,7;V) for all u € LF(0,7;V). We write

t/2

(Miu)(t) = [ e IO (A) — A(s)uls) ds

0

- tjz eI (A() — A(s))u(s) ds
= (Myu)(t) + (Migu)(t).
By taking 2 € V' we obtain
|(Mi2u)(t), ) vrxv|
= | [ e O — Auts), Al e T A
< ([ 1 A0 A - ANl ds)

t s . 1/2
([ Ay a0 ag-taas)
t/2

Now, we estimate the norm of (M u)(t) in V as follows

72| (M) (8) |y

42 (s B
SO [ FAO ) A = A(S)Lcnys ™ dslls = 5 ()] 1o 4
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spaces

ds sup

<tmz/U2S}W2 IA() = A(s)ll vy
T Jo (E=8)T oy (t—s)

s = 52u(s) 1o 0.4

Note that ) )
82 /t/2 5B/ ol /1/2 -8/ L
o (t—s)t== 1—1)t—=

Therefore,

t2 ) (M) (1) v

tJA®) — A(s) 12y
ce(ocovvylls = Sﬁ/QU(S)HLw(o,g;v) + (/t/z — WV 5)1/2

S EIIAC)]

S Al

HUHLEO(é,t;V)

ce (o lull L o.6v)-

Choosing 7 small enough, M; € L(LF(0,7;V)), with norm || My 50,7y < 1. Therefore (I — M) is
invertible in L3 (0,7;V). Hence,

u= (I — M) (Muy+ Lif) € LF(0,7; V).
This completes the proof. O

Our main result reads as follows.

Theorem 2.0.6. Suppose that A € Wz2(0,7; L(V,V')) N C=([0,7], L(V, V")) with & > 0, then for
all f € L3(0,7;5€) and ug € (5 D(A(0)))1=s, there exists a unique u € Ws(2(A(-)), #) be the

solution of (P).

Proof. Let 7 be small enough and f € L3(0,7; ), ug € (#; Z(A(0)))1-5 ,. By Proposition 2.0.5, u
2 b

belongs to L3°(0,7;V), where u is the unique solution to the Cauchy problem (P). Using (2.0.8), for

0 <t <7, we have

Alt)u(t) = A()e Oy + A1) [ e CINOLAH) — A(s)]u(s) d

+ A(t) /Ot e~ =94 £(5) ds
= (Fluo)(t) + (Su)(t) + (Lf)(1).

Thanks to Propositions 1.7.10, 2.0.4, Fuy and Lf are bounded in L%(O,T;%ﬂ). Then to prove that
A(-)u € L3(0,7; ) it is sufficient to show that Su belongs to L3(0,7;.5¢).
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spaces

Taking g € L?(0,7; ) we find that

|("B/25U79)L2(0,T;,yf)\
= ‘/OT t8/2 /;((.A(t) — A(s))u(s), A(t) e*(t*s)A(t)*g(t»wads dt‘
< /OT o2 /Ot/2<(-f4(t) — A(s))u(s), A(t)*e” DO g (1)) iy ds dt|

+| /OT o /;«A(t) — A(s))u(s), A(t) eI g (1)) ds dt|

= [1+IQ.
For I, we find,
(t—s) *
12</ tﬂﬂ/@”““ Az lle™ = A corw)
*7 _ s) *7 _ (t—s) * _B
X A e T A o A e T g (1) |57% ds dt | 72 | e oran)
t A t—s *
<[ 5”'"“’" AW Ee T )] d ] 2 o
< Tt N D N0) 2 1/2
< HAHW;,Q(O,T;,:W,V,))( [ [ 1awie a0 g dsdt) lullzs 009
<Al 220 1l 2070
20,7:L(V,V) B
Similarly,
Tﬁ
ns [ / T g(t)]| ds dt
t— 2 ¢

| 22

||«4||oa([o,T];c(v,V/)) || Lo (0,71

S (14

c= (0,200 vl £2(0,m,) HUHLEO(O,T;V)'

Now, we obtain the final estimate

HA()uHL%(O,T,Jf) S HFUOHL%(O,T;Jf) + HSUHLé(O,T;%&) + HLfHL%(O,T;%”)

S luwollorzwmon s | + 1ullegomy) + 1122 0.m00)

P

S lluwollrzaon s , + 1 ll2z0m0)-

Therefore A(-)u € L3(0,7;¢) and since & = f — Au, one has @ € L3(0,7;5). So u belongs to
Ws(2(A(-), #). Moreover, by Proposition 2.0.4 we have u(t) € (J; Z(A(t)))1-s , for all t € [0, 7].
72

For arbitrary 7 we split the interval [0, 7] into union of small intervals and argue exactly as before

to each subinterval. Finally we stick the solutions and we obtain the desired result.

o8
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spaces 2.1 Applications

Proposition 2.0.7. For all g € L*(0,7;5¢) and 0 < B < 1 there exists a unique v €
Wo(D(A(-), 5) be the solution of the singular equation

i) + AW + 2 — 1)

v(0) =

(2.0.10)

=N VI Rey

\

Proof. Weset f(t) = (®g)(t) = t*/?g(t) with t € [0, 7], so that f € L3(0,7;.5). Let u € Ws(2(A(:), )
be the solution to the problem
a(t) + A(t)u(t) = f(t)
u(0) = 0.
Now, set v = (®1u). Then v € Wy(Z2(A(-), #) and v is the unique solution to Problem (2.0.10). O

(2.0.11)

2.1 Applications

This section is devoted to some applications of the results given in the previous sections. We give

examples illustrating the theory without seeking for generality.

2.1.1 Elliptic operators in the divergence form

Let Q be a bounded Lipschitz domain of R". We set 5 := L*(Q) and V := H'(Q) and we define

the sesquilinear forms
a(t,u,v) := / C(t,z)VuVuvdzx
Q

where here u,v € V and C : [0,7] x Q — C" ™ is a bounded and measurable function for which there
exists a, M > 0 such that

alg]’ < Re(C(t,2)€.8) and |C(t,2)&v| < Ml¢]v|

for all t € [0,7] and a.e x € Q, and all £, € C". We define the gradient operator V : V — J# and

V*: # — V'. The non-autonomous form a(t) induces the operators
A(t) == =V*C(t,x)V € LV, V).
The form a(t) is H'(Q)-bounded and coercive. The part of A(t) in J# is the operator
A(t) := —div C(t,x)V
under Neumann boundary conditions.
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We note that
A vy = O, ) o= @ienxny = M.

Next, we suppose that C' € Wé’Q(O,T; L (Q; C™*™)) N C=([0, 7]; L= (2; C™™)), with & > 0, which is

equivalent to

T T O t - C 2n><'n
/ / sup 1O 2) = C(s,2) [gnxn 5oy o,
0 Jo zeq |t — s|?
||C(t7 l’) - C(Sa I)HC”X" < C|t - Sls

a.e. for x € Q and ¢, s € [0, 7]. Note that

JA() = A(s)ll ey S ICE, ) = C(s, )l oo @iensn.-
Hence A € W22(0,7; £L(V, V) N C<([0,7]; LV, V')).
Remark 2.1.1. Z(A(t)V/?) =V = HY(Q) for all t € [0, 7] and

crllullme) < lullpagrzy < ¢llullme

where ¢y, ¢! are two positive constants independents of ¢ [48, Theorem 1].

In the next proposition we assume that 8 € [0, 1[.

Proposition 2.1.1. For all f € L3(0,7;L*(Q)),ug € H'"P(Q) there is a unique u €
Ws(2(A(-), L*(Q2)), be the solution of the problem

u(t) — div C(t, ) Vu(t) = f(t)
ou(t, o)
on

=0 (0 € Q) (2.1.1)

u(0) = up.

The above proposition follows by Theorem 2.0.6.

2.1.2 Robin boundary conditions

Let © be a bounded domain of R? with Lipschitz boundary 0. We denote by Tr the classical trace
operator. Let 3 : [0, 7] x 92 — [0, 00) be a bounded function and 5 := L*(Q2). We define the form

a(u,v) = /QVU.VU dx + /mﬁ(-)Tr(u)Tr(v) do,
for all u,v € V := H'(Q).
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The form a is H'(Q)-bounded, symmetric and quasi-coercive. The first statement follows readily
from the continuity of the trace operator and the boundedness of 5. The second one is a consequence

of the inequality
| luldo < éllulfp ) + Csllult o

which is valid for all 6 > 0 (Cs is a constant depending on §). Note that this is a consequence of
compactness of the trace as an operator from H'(Q) into L?(99, do). Formally, the associated operator

A is (minus) the Laplacian with the time dependent Robin boundary condition
% + B(-)u =0 on 9.

Here, % denotes the normal derivative in the weak sense. For more general boundary conditions with
an indefinite weight we refer the reader to the recent paper [43].

Theorems 2.0.2 combined with Theorem 2.0.3 yields the following result.

Proposition 2.1.2. Let § €] — 1,1[ and f € L3(0,7;L*(Q)). There exists a unique u €
Ws(2(4), L*(2)) N C([0, 7], (L*(R2); Z(A))1-5 ,) be the solution to the problem
2,

u(t) — Au(t) = f(¢)
g—z+6(-)u:0 on 0f) (2.1.2)
u(0) = 0.

If we assume moreover that f € Wﬁly’g(O,T;LQ(Q)), then the solution u belongs to the space
CH([0, 7]; (L2(); 2(A)) 122 5) N C([0, 7]; 2(A)).

Remark 2.1.2. Note that for all 5 € [0, 1] we have

(L*(Q); 2(A)) s 5 = [LX(Q); 2(A)] 12z = [L2(Q); H ()15 = H ().

»
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Chapter 3

Maximal regularity for semilinear
non-autonomous evolution equations in

weighted Hilbert spaces

3.1 Introduction

The present chapter deals with maximal L2-regularity for non-autonomous evolution equations in
the setting of Hilbert spaces. Before explaining our results we recall some notations and assumptions.
Let (H, (-, -),||-]|) be a Hilbert space over R or C. We consider another Hilbert space V which is densely
and continuously embedded into H. We denote by V' the (anti-) dual space of V so that

V=g H >y V.

We denote by (,) the duality V-V’ and note that (¢,v) = (¢,v) if ¥,v € H. Given 7 € (0,00) and

consider a family of sesquilinear forms
a:[0,7]xVxV—=C
such that
o [H1]: Z(a(t)) =V (constant form domain),
o [H2]: |a(t,u,v)| < M|ul|y||v]]y (uniform boundedness),

e [H3]: Re a(t,u,u) + v|ul|* = d||u|} (Yu € V) for some § > 0 and some v € R (uniform quasi-

coercivity).

Here and throughout this paper, || - ||y denotes the norm of V.
To each form a(t) we can associate two operators A(t) and A(t) on H and V', respectively. Recall that
u € H is in the domain Z(A(t)) if there exists h € H such that for allv € V: a(t,u,v) = (h,v). We then
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set A(t)u := h. The operator A(t) is a bounded operator from V into V' such that A(¢)u = a(t, u,-). The
operator A(t) is the part of A(t) on H. It is a classical fact that —A(¢) and —.A(t) are both generators of
holomorphic semigroups (e "4®),~ and (e7™A®),y on H and V', respectively. The semigroup e~ "4
is the restriction of e ™® to H. In addition, e~"4® induces a holomorphic semigroup on V (see, e.g.,

Ouhabaz [13, Chapter 1]). We consider the non-homogeneous Cauchy problem

{u’(t)+A(t)u(t) = f(t), t € (0,7] (P)

uw(0) = g,

Definition 3.1.1. The Cauchy problem (P) has mazimal L*-reqularity in H if for every f €
L*(0,7,H), there exists a unique u € H'(0,7,H) with u(t) € D(A(t)) for a.e. t € [0,7] and u is a
solution of (P) in the L*-sense.

By a very well known result of J.L. Lions, maximal L?-regularity always holds in the space V'. That
is for every f € L?(0,7;V’) and ug € H there exists a unique u € H'(0,7;V") N L?(0,7; V) which solves
the equation (P).

It has been shown in [57] that the maximal regularity may fail for forms Cz in time. We note also
that for A(.) € W*P(0,7; L(V, V")), with s < % the maximal regularity may fail and this follows from
the inclusion C'z(0,7; £(V, V")) € W=2(0,7; L(V, V")).

For p > 2 and A(.) € Wz?(0,7; £(V,V")), the maximal regularity may fail also and this follows
from the counterexample in [?]. The open problem is does we have the maximal regularity with
A() € W22(0,7;£(V,V")). Tt is proved in [40] that maximal Lregularity holds if ¢ — A(t) €
H2([0,7]; £(V, V")) (with some integrability conditions). This regularity assumption is optimal and
this results are the most general ones on this problem. For the case of weighted spaces we refer the
reader to the recent paper [42]. The choice of the weighted spaces has a big advantages. One of them
is to reduce the necessary regularity for initial conditions of evolution equations. Time-weights can be
used also to expploit parabolic regularization which is typical for quasilinear parabolic problems. The

main focus of this chapter is to consider the semilinear equation
u'(t) + A(t)u(t) = F(t,u), t-a.e, u(0) = uy.

Here the inhomogeneous term F' satisfies some continuity condition. Our main result shows that for
forms satisfying the uniform Kato square root property (see the next section) then we have the maximal
regularity result in temporally weighted L?—spaces if ug € [H; @(A(O))]% and A € W22(0,7; L(V, V)N
C<([0,7], L(V,V)). The Kato square root property plays an important role in the questions of (non-

autonomous) maximal regularity and optimal control. To prove our results we appeal to classical tools
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from harmonic analysis such as square function estimate or functional calculus and from functional

analysis such as interpolation theory or operator theory.

3.2 Preliminaries

In this section we briefly recall the definitions and we give the basic properties of vector-valued
function spaces with temporal weights. For more details we refer to [42].
Let (X, || - |lx) be a Banach space over R or C. For —1 < 8 < 1, we recall that L3(0,7;X) =
L*(0,7,t°dt; X), endowed with the norm

el 0rx = [ Iu@I# de.

and that L%(O, 7;X) < L}, (0,7; X). We recall also the corresponding weighted Sobolev spaces

loc
WBM(O,T;X) i={ueW"(0,7;X) st u,u € L3(0,7;X)},
Wg:g(O,T;X) ={u e WE’Q(O,T;X), s.t u(0) = 0},
which are Banach spaces for the norms, respectively

[ulliy 120 ) = NtlZ2 0,730 + 112 0.3,

HUH%/V;:(%(O,T;X) = Hu/H%%(O,T;X)'

Remark 3.2.1. The restriction on B comes from several facts. The first one is the embedding
L%(O,T;H) — LY0,7;H). The second one is due to Hardy’ inequality and the third reason comes from
the fact that functions in Wg’Q(O,T; H) have a well-defined trace in case that —1 < < 1.

Lemma 3.2.2. Let u € Wﬁljg(O,T;X). We have

lullfs o) S [ s | I @57 drds. (3.2.1)

Proof. Let u € Wg:g(O, 7;X),s € (0,7). Due to Holder’s inequality we get
lu()llx =1l [ ooy drilx < [ i) Lx dr
< ([ P ani( [ ) et )’

0 0
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< 1-8 s / 2 B 1
ST I ONE 7 k.

Therefore, (3.2.1) follows immediately.

Let us define the space
Ws(2(A(.), 1) = {ue W (0,7 H), st A(Ju € L3(0,75H), &€ L3(0,75H)},

with norm
[ullwa@zaom = 1AQullz 00 + [1@ll2z0,720-
It is easy to see that Ws(Z(A(.), H) — WE’Q(O, 7;H). For s € (0, 7) we define the associated trace space
to Ws(2(A(.)), H) by
TR(s, B) = {uls) : u € Wg(Z(A()), H)},
endowed with norm

|w(s)l|7res,8) = I { [v]|ws(2a0)m) : v(s) = u(s)}.

Note that <TR(3, B), | - HTR(S,B)) is a Banach space.
From now we assume without loss of generality that the forms are coercive, that is [H3] holds with
v = 0. The reason is that by replacing A(t) by A(t) + v, the solution v of (P) is v(t) = e " u(t) and it
is clear that u € W5*(0, 73 H) N L3(0, 7; V) if and only if v € W5*(0, 73 H) N L3(0, 73 V).
In the statements below we shall need the following square root property (called Kato’s square root
property)

Z(AWN)?) =V and e | Aol < [lv]lv < el A1) | (3.2.2)

for all v € V and t € [0, 7], where the positive constants ¢; and ¢y are independent of ¢. Note that this
assumption is always true for symmetric forms when v = 0 in [H3]. It is also valid for uniformly elliptic

operator on R", see [48].

3.3 Main results

In this section we state explicitly our main results. Assume in addition that t — F(t,z),x € H
satisfies Fy(.) = F(.,0) € L3(0,7; %) and the following continuity property: for any € > 0 there exists
a constant N, > 0 such that

[1F (- u) = F(., U)”%%(O,T;H) <efu— U”%@(@(A(.),H) + Nellu — UH%%(O,T;'H)? (3.3.1)
for any u,v € Ws(Z2(A(.), H).
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Example 3.3.1.

1- If we assume that |F(t,z) — F(t,y)|| < Kl|lz — y|ly, K > 0,2,y € V,t € (0,7) then the conditions
(3.3.1) is satisfied. Indeed, let u,v € Wg(D(A(.),H) one has

(. u) — F(., )||L2 O,7H) K2||U_U||L2 (0,75V)

=2 ) o0l ar
< Ig 0 (Re (A( Yu(t) — (1)), u(®) —v(t)))tﬁ dt
< / | A(t) — o) lllu(t) — o(t)|[t” dt

< 6HA V(= 0)Iz20m90) + Nellw = vllz2 0720,

where N, =

The following theorem is proved in the previous chapter see Theorem 2.0.6

Theorem 3.3.2. Suppose that A € W22(0,7; L(V, V') N C=([0,7], LV, V")), with e > 0, then for
all f € L3(0,75H) and uy € [H; 2(A(0))]1=s, there exists a unique u € Wz(2(A(.),H) be the

solution to (P). Moreover, there exists a positive constant ¢ > 0 such that

||u||WB(@ (A(),H) ||U0||[H :2(A(0))] 1— ﬂ + ||f||L2 (0,75H) | -

The following proposition gives a characterization of the trace space T'R(s, [3).

Proposition 3.3.1. For all 8 € (0,1),s € (0,7) we have

TR(s,B) =[H; Z(A(s))]1=s  with equivalent norms.

Proof. The first injection TR(s, ) — [H; Z(A(s))]1-s is obtained by Proposition 2.0.4. The second
2
injection "<=" follows by Theorem 3.3.2. O

The following is our main result
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Theorem 3.3.3. Suppose that A € W%’Q(O,T; LWV,V))NC([0, 7], LV, V'), with € > 0, then for
all up € [H; .@(A(O))]%, there exists a unique uw € Wgz(Z(A(.), H) be the solution to

u'(t) + A(t)u(t) = F(t,u), t-a.e, u(0) = uo. (3.3.2)
Moreover there exists a positive constants ¢ > 0 such that

[ullwa@aonm < clluollpszaom s + [1Follz om0 |-

Proof. First, let us define the space Wpo(D(A(.),H) = Ws(D(A(.),H) N ng’S(O,T;X). For v €
W3(D(A(.), H) consider the linear equation

w' + A()w = F(.,v),w(0) = 0. (3.3.3)

Thanks to Theorem 3.3.2, (3.3.3) has a unique solution w € Wz o(D(A(.), H).

We define

S Wso(2(A(L),H) — Wso(Z(A(),H)

VvV = w

Let vy, v2 € Wso(Z2(A(.), H). Obviously, x = Svy — Svy satisfies 2’ + A()x = F(.,v1) — F(.,v2),2(0) =0
and we have by Theorem 3.3.2 and Lemma 3.2.2

[Sv1 — SU?H%/VB(@(A(.),H) SNIF( v) — F("U2)Hi%(0,7';7{)
< Nellvr = oy (a0 70 + NNeflor = UZH%%(O,T;H)
ellor = ol oacy 0 + C'NNe [s [0 = v () 2r dr ds

€||U1 U2||WB D(A() C/NN/ SHUl UQHLZ(OS’H)dS

Set Ky := Ne and K; := C'NN,. Then repeating the above inequality and using the identity

1
/31/ S9.. / Sp ds,,...ds; = F(2n—|—1)t2n’

we obtain

" " (n e 1
| S" vy — 5™ UZHWB(j 20:( )K ¥ Kﬁ) m”vl _UQHIQ/VH(@(A(.),H)
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e (0 TEL)
< s s (g ) I = oo o

k

Ky 'K
For the second inequality we use g (Z) = 2". Note that max;—o ., <<£(2k+1;>> is bounded for all

n € N*.
Now, we take € < W? which gives Ky < % and n sufficiently large to get
k
(Ko 72Ky )
(F(2k’+1)>} o1 — U2HW5(9(A(.),H)

<1 — U2HWB(@(A(.),H)-

k=0 N

n n !
1501 = ™2l a0y m) < zn[ =0

Then S™ is a contraction on Ws(Z(A(.), H) and this yields the existence and uniqueness of a solution
w € Ws(Z2(A(.),H) to the equation (3.3.3). Therefore it only remains to prove the a priori estimate.

From the linear equation and (3.3.1) we have for all € > 0

HwHWB DA H NHF(ww)H%%(o,T;H)
< NIIF(w) = B 3000 + 2NIE 72 0.0
< 2N€||w\|%/v,3(@( A()H +2NN Hw||%2 (0,s;H) +2NHF0<')H%%(O,S;H)

< 2N€||w||i2zvﬁ(j( A0 20NN, / S||w/||L2 0,5:20) 45 + 2N||F0<'>||i%(0,s;7-t)'
Now, taking € = g and applying Gronwall’s lemma gives that there exists C' > 0 such that
||wHW5 (A( C||F0HL2(05H)

Now, we consider the non homogeneous equation . Let ug € [H; Z(A(0))]1-5. Since by Theorem 2.0.6,
2
Tr(0,8) = [H; Z2(A(0))]1-s, then there exists v € W3(Z(A(.),H) (with minimal norm) such that
2
v(0) = up and

lvllws(2a0)m = ||u0||[H;@(A(O))]#- (3.3.4)
For w € Ws(Z(A(.), H) we define the function
G(t,w,0') = F(t,w +v,w + o')— (v'(t) + A(t)v(t)), t € (0,7).

It easy to see that G satisfies the condition (3.3.1),% — G(t,w,w’) € L3(0,7;H),
G(t,0,0) = F(t,v,v")— <v’(t) + A(t)v(t)). Moreover,

HG< 0 0)HL2 0,75H) X HF( ) F('7O7O)HL%(0,T;H) + ”F('vouo)HL%(O,T;H)
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+ [l + -'4(-)UHL2 (0,75H)

< Gillollws (oo 2 + [Follzz 0,020

<C ||F0||Lg(o,T;H) + HUOH(H;D(A(O)))M]- (3.3.5)
2

Now, we follow the same procedure as before we get the existence and the uniqueness of the solution
for the equation
w4+ A()w = G(.,w),w(0) = 0.

Set u = v 4+ w. Hence, u is the unique solution to (3.3.2). O

3.4 Applications

This section is devoted to application of our results on existence and maximal regularity to concrete

evolution equations. We show how they can be applied to both linear and semilinear evolution equations.

3.4.1 Elliptic operators.

Define on H = L?(R?) the sesquilinear forms
a(t,u,v) Z/ak]txakuavdx—l—Z/ t:c@uvdx—i—/ (t, v)uv dx,u,v € H*(R?).

We assume that agj, b;,c: [0, 7] x R — C such that:
axj, bj,c € L2([0,7] x R for1 < k,j < d,

and
d

Re Y akj(t, )68 = 6|¢) for allé € C?and ace. (¢, z) € [0, 7] x R™.

kj=1
Here § > 0 is a constant independent of .
It easy to check that a(t,.,.) is H'(R?%)-bounded and quasi-coercive. The associated operator with

a(t, .,.) is elliptic operator given by the formal expression
d
Z O;(anj(t, ) Opu) + > bi(t, )ou + c(t, .)u.

In addition to the above assumptions we assume that C' = (ag;)r; € W%’Z(O,T;LOO(Q; C™™)) N
Ce([0, 7]; L*°(€2; C™*™)), with € > 0. which is equivalent to

2
/ / ||O t ZE (S x)HC"X" det < 0,
0 :EEQ |

zf—s|2
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IC(t, ) — C(s,2)Jenen < Clt - sIf

a.e. for z € Q and t,s € [0, 7].
Note that

[A(t) — A(s)ll ey S ICE, ) — C(s, )| Lo @cnxny.
Hence

AeWz20,7;L(V,V)) N C(0,7]: LV, V).

Let F(t,x): (0,7) x H — H and Fy(t) = F(t,0). Assume that F € L3(0,7;H) and F satisfies the
following continuity property:

HF(t,.ﬁIf) — F(t,y)HLQ(Rd) § KHQE — yHHl(Rd)7 K > O,w,y < Hl(Rd),t € (0,7_). (341)

Therefore, applying Theorem 3.3.2 we conclude that for every ug € [H; D(A(0))]i1-s the problem
2

d d
u'(t) — Z_: 0;(ar;(t,.)Oku(t)) + Z:bj(t, )oju(t) + c(t, Ju(t) = F(t,u(t)),t —a.e., u(0) = ug

has a unique solution u € L3(0,7; H'(R?)) such that A(.)u € L3(0,7;H), v’ € L3(0,7;H).

Remark 3.4.1. Note that for all 5 € [0, 1] we have

[L2(R); 2(A()]1=e = [L*(RY); H'(R)]1-5 = H'TP(RY).

2

The maximal regularity we proved here holds also in the case of elliptic operators on Lipschitz
domains with Dirichlet or Neumann boundary conditions. The arguments are the same. One define
the previous forms a(t) with domain V = H}(Q) (for Dirichlet boundary conditions) or V = H'(2) (for
Neumann boundary conditions).

Assume now that
F(t,y) = f(t,x) + g(t, 2)ly(x)|* + h(L, Z!
such that a,y € [0,1] and f € L3(0,7;H),h € L=(0,7; L5 (RY)),y € Hl(Rd) with
e g€ L®(0,7; L*(R?)) for d = 1.
e gc LOO(O,T;L%(Rd)) forg> 1 and d=2.

e gc L>(0,T; L%(Rd)) for

Q=

<q< by and d > 2.

Then the finction F' satisfies the condition (3.3.1).
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Stochastic evolution equation

Our plan for this chapter is as follow:

First, we discuss existence of the mild solution in the setting of martingale type 2 in the space
S5(E) under Lipschitz and growth linear conditions using fixed point argument. Moreover, (see
section 4.2) we extend some lemma to the vector valued setting which allow us to ensure the
existence of the malliavin derivative and the adaptness of such a process .Under some additional
condition we proof the uniqueness of the solution to an SDE 4.3.1.

Finally, we proof by using assumption 4.4 the exitence of the right inverse oprator, which is

essentially important to prove the existence of the malliavin matrix.

4.1 Existence of mild solution

Let (€2, F,P) be a probability space, W; be an #-cylindrical Brownian motion, and F; be the
filtration generated by W;. We consider stochastic evolution equation 4.1.2 in a M—type 2 Banach
space E jand denote by Lo([0,T], #) the space where 5 C E is a Hilbert space dense in E and the
canonical embedding # — FE is continuous . We recall the definition of M — type p property for a
Banach space X.

Definition 4.1.1. Let p € [1,2]. A Banach space X has martingale type p if there exists a constant

p = 0 such that for all finite X -valued martingale difference sequences (d,)_, we have

N N
S af <w S Bld (4.1.1)
n=1 n=1

The least admissible constant in this definition is denoted by p, x. We consider the stochastic
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evolution equation in E:
dX; = (AX; + a(Xy))dt + o(X,)dW,,
(4.1.2)
Xo =,

where A is the generator of Cy—semigroupon £, a: E — E and 0 : E — (5, F), further let
{e;}2, denote an orthonormal basis in 7 .
We prove the existence of mild solution to 4.1.2 on the interval [0,7], T" > 0 ie. an F—adapted

stochastic process X; satisfying
t t
X, = +/ =90(X,)ds —l—/ e =G (X)) dW,. (4.1.3)
0 0

where © € E , (e!),5¢ is the semigroup generated by A. « and o satisfy the following Lipschitz and

linear growth conditions:
(HD) le(z) —a@)lle + llo(@) —o@)lyrp <alz—ylle  foralzyeck
(H2) [la(@)]e + llo(@)[l,r.p) < (1 +[z]lp) , for all z € E.

(H3) The functions o : E — F, 0; : F — E, i =1,..,n have a bounded Fréchet derivatives.

On the Banach space E of F- adapted stochastic process we define the norm:
lall3,z) = sup Ella®)E = llalieoryz@r: (4.1.4)
te[0,7

and let I be defined by F = {F; : t € [0,T]}.

Theorem 4.1.1. Let E be a martingale type 2 Banach space. Assume that (Hy) and (Hs) hold.
Then equation (4.1.2) has a unique solution in the space S(E). Furthermore, this solution has a
continuous path modification i.e. C ([0,T]; L*(Q2, E)).

Proof. We consider the map T': C'([0,T]; L*(Q, E)) — C ([0, T}; L*(Q, E)),

t t
(X, = ee + / =)0 (X,) ds + / =G (X)) dW,. (4.1.5)
0 0
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By the results of [61] , [I 945 (X,) dW, is E-valued, and
¢
E‘ / e =G (X,) dW,

t
< GE / 1e® D20 (X )| g1, (4.1.6)
0 0 ’

2
E

Thanks to (H2) and (4.1.6), the map I' is well-defined. Then, (H;) and usual stochastic integral
estimates imply that there exists a constant K > 0 so that for each pair X and X’ from Sy(E)

. . KT + 1)"T™
sup BIT"(x,) — (x5 < DT o myx, — e, (4.1.7)
te[0,7] n: te[0,7]

Indeed, for ¢t € [0, 7] one obtains
EIr(x) - 1)}
<E| [ eI (a(X,) - a(X2)) dslfy + Bl [ eI (o (X,) - o(X) W,
<o [ ds [ Ela(x,) - a(X)lE ds + ([ 0(X.) = o(XDI2 1) ds)
< K(t [ BIX, - X2 ds + [ BIX, - X ds)
< K(T+1) /Ot]EHXS — X!||ds.

Here, K = ¢(Cy + 1) sup,epo.z 1€ (g Tterating (n — 1) times and using the identity:

t S1 Sn—1 ]_
/ / / ds,...ds; = —t",
0 Jo 0 n!

we obtain (4.1.7). Choose the integer n so that W < 1. Then I' : C([0,T); L*(, E)) —

C ([0,T]; L*(Q, E)) is a contraction map. Using Banach fixed point theorem, the map I" has a unique
fixed point in the space C ([0, T]; L*(Q, F))). This fixed point is a unique solution to (4.1.2). O

4.2 The malliavin derivative of the solution

Definition 4.2.1. Let G a Borel set in [0,T]. We define F¢ to be the completed o—algebra generated

by all random wvariables of the form
T
F— /O xa(t)dW,
for all Borel sets A C G.

Definition 4.2.2. A real function f:[0,T] — R is called symmetric if

f(tﬂlv"' 7t0'n) :f<t17"' atn)

for all permutation (oq,--- ,04) of (1,2,3,...,n).
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Let Ly([0,7") to be the standard space of square integrable real functions on [0, 7" such that

1oy = / Sty ) dy - di, < 00

(0,7

Let Ly([0,T]") be the subspace of Ly([0,T]") of symmetric square integrable Borel real functions on
[0,7]™. If f is a real function on [0, T]" then its symmetrization f is defined by

ngfzf(tcrn"‘ 7t0'n)

where the sum is taken over all permutations o of (1,2,3,...,n). Note that f = f iff f is symmetric.

Definition 4.2.3.

(1) If f € Ly([0, T)") we define
L(f) = [OT}nf(tl,--- ) AW (L) -+ - dW (t,) = nlJu(f)

where Jo(f) = [T fir oo 8 2 fty, - ty)dWy, -+ dW, .

(2) Let F' be Fr—measurable with chaos expansion

F= i ]n<fn)

where f € Ly([0,T]"), then F € D'? if

[Fllorz = > nnlll full o) < +00 (4.2.1)
n=1
(3) If FF € D'? we define the Malliavin derivative D;F of F' at time t as the expansion
DF =% nlia(fu( 1), t€0,7]. (4.2.2)

n=0

Lemma 4.2.1. let E be vector valued space,let G C [0,T] be a Borel set and v : [0,T] — E, be a
stochastic process such that

(1) for allt , v(t) is measurable with respect to Fy N Fo = Flogna-
(2) B[ Jy v*(t)dt] < oo.

Then
/G o()dW (1)

is Fg— measurable.
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Proof. By a standard approximation procedure it is sufficient to consider v to be an elementary process

of the form o
U(t) = Zvix(ti,tiﬂ](t)
i=1

where 0 =ty <t < --- <t, =T and v; are F;, N Fg— measurable random variables such that (2) is
satisfied .For such v we have | for all * € E* |

T

I xooOdW (0, 591 Fe] = L[ xolt){w(e). o) (1) 7o)
= B[ XG5 0 (0. 50V ()}

) iE[/ xa(t) (v, ) dW (D) F]

_ i [ Xt w2ty )

123

B oT xa(t){(t), z")dW(t)

= [t 2w 1

which imply that [, v(t)dW (t) is weak Fg-measurable functions and hence Fg-measurable by Pettis

measurability theorem. O]

Remark 4.2.1. Note that if A and B are Borel sets in [0,T] then Fa N Fp = Fanp-

Lemma 4.2.2. Let u : [0,7] — E be an F—adapted E-valued stochastic process in Lo(P X \).
Then

E| /0 ' u(t)dW ()| Fo) = /G E [u(t)|Fo|dW (¢)

Proof. Lemma (4.2.1) guarantees that [ E[U(t)’fg} dW (t) is Fg— measurable .Then it suffices to verify
that

E[F /0 ' u(t)dW (t)| = E|F /G Eu(t)| Fa|dW (t)] (4.2.3)
for all F' of the form F' = [, dW (t), where A C G is a Borel set.
Then by It6 isometry . .
E[F [ o)W (®] =E[[ xa()g(t)dt

hence

(E[F /0 ! u(t)dW (1)), 2*) = E| /0 ' Xa() (ult), 2] = / E[(u(t),«")] dt (4.2.4)

A
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for all z* € E*.

and
T
E[F [ E[u(t)Fa]aw ®)].a") =E[ [ xaxa)E[u(t)Fe].a")dt (4.2.5)
T *
- / YABE[E[(u(t), =) Fe]] at
0
= [ E[{u(t),z")|dt.
J E[ut), )
for all z* € E~*
from 4.2.4 and 4.2.5 we get 4.2.3 .To conclude we prove that 4.2.3 is equivalent to
T
E[xa /0 u(t)dW (t)] = E[ya /G E [u(t)| Fo|dW (1)] (4.2.6)
hence by It6 isometry applied to both sides of 4.2.3 we get
T T
E[va /O (u(t), a)dt] = E[x /0 XGE({u(t), +*)|Fo)d] (4.2.7)
— E[x4 /G E((u(t), 7°)|Fe)dt
for all * € E*. By definition of the conditional expectation we get
T
E| /0 (u(t), 2} dt| Fg| = /G E((u(t), 2*)| Fe)dt
x* € E* density argument completes the proof . O
Proposition 4.2.4. [15] Let f, € Ly([0,T]"), n = 1,2, ...., Then

where (faxe™)(t, s tn) = fults, - ta)xa(t1) - - - xa(tn)-

Proof. We proceed by induction on n .For n = 1 we have

E[L(AIFe] =E[ [ ()W (0)| o]

T
B /o filt)xe(t)dWy, =1 [flx?ﬁl]

By lemma (4.2.2) assume that (4.2.8) holds for n = k then again by lemma 4.2.2 we have

E[ Lk (fern)|Fe] =
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T tei1 to
(kﬂ)!E[/O/O [ el i )AW () - - dW ()W, | Fe]

:(k+1)!/

T tret1 to
A E[/O LI 0 fk+l<t17 ..... ,tk+1)dW(t1) R dW(tk)|fG:| : XG(tk+1)dW<tk+1)

=..=(k+1)! /OT /otk+1 h '/Ot2 Sty o tir)xe(t) - e (b)) AW (B1) - - - dW (Egs).-

= lpq1 [fk+1Xg(k+1)} :

and the proof is complete. n

Proposition 4.2.5. Let E be separable Banach space ,and let F € DY(E), then E[F|fg] €
DY?(E) and
DE|F|Fs| = E|D,F|Fa|xa(t)

Proof. First assume that F = I,,(f,) for some f, € Ly([0,T]"). We have , for all z* € E*
DE[(F,2*)|Fa| = DiE[(L(f.), 2*)| Fe]
U2 = Dol ((fu 2" )XE")
= nLp 1 [(far ) (- OXG™ ™ (xa(t)]
= nL, 1 [(fal 8), 20"V ()| xa(®)
= E|{(D,F, 2")| Fo|xa(t) (4.2.9)
Next, let F =3, L,(f,) belong to D'?(E).Let F, = >F_, I.(f,).Then
(F,z*) = (F,2*) in Ly(Q) and (DiFy, ") — (DyF,2") in  Ly(P X A)
as k — 00.By (4.2.9) we have
DtE[(Fk,x*HfG] = E[<DtFk7$*>)’fG}XG(t)
for all k&, and taking the limit with convergence in Lo(P x \) of this , as k — oo we obtain the result. [

Corollary 4.2.2. Let E be a Banach space and u(s) , s € [0,T] be an F-adapted E-valued stochastic
process , assume that u(s) € DY2(E) for all s. Then

(1) Dyu(s), s € [0,T], is F-adapted for all t;

(2) Dyu(s) =0, fort > s.
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Proof. By proposition (4.2.5) we have that

(Deu(s), z*) = DyE[(u(s), z")| F,

}4.2.5

= {Dt<u(s), ") |~Fs} X[0,5] (%)

=E {(Dtu(s), ") ’}—8} Xit.1(8)

from which (1) and (2) follow immediately. O

Proposition 4.2.6. If u € Ly(T x Q) is an E—valued adapted process then u € D(J) .Moreover

d(u) coincides with the Ité integral with respect to the Brownian motion , that is

5(u) = /0 " u(s)dw,

here ¢ denote the Skorohod integral. By & we denote the class of random variables X such that
there exists an n € N, vectors hy, - -+, h, and a function f € C5°(R") such that

X = f(W(hy),--, X(hy))

where f € C>*(R") is the space of infinitely differentiable functions on R? which, together with all their
partial derivatives, have polynomial growth. The elements of S are called smooth random variables.

We consider the space S(V'), consisting of V-valued random vectors X of the form
X =3 Yju
j=1
where Y; € S and
Y} = fJ(W(hl)v e ’X<hnj)>
for certain
n; €N, f; € C°(R™)

and
hl,'--,hjeHandvjEV.

Theorem 4.2.3. Letuw € S and h € 7. Then

(DS(w), h) — 6(Dh - u) = (u, h) (4.2.10)
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Lemma 4.2.3. [}5] Let E be a reflexive Banach space and let p € (1,00). Let (F,)n>1 be a
sequence in D'P(E) and F € L,(Q; E). Assume F, — F in L,(%; E) and that there is a constant
C such that for alln > 1,

IDE| 2y (60,m)) < C- (4.2.11)

Then F € DY?(E) and ||DF | 1,5 < C. Moreover, there exists a subsequence (ng)r=1 such
that DF,, — DF.

Since martingale type 2 Banach space are reflexive we have the following lemma based on the lemma
4.2.3

r

Lemma 4.2.4. [10] Let E be Banach space , & € DY*(E) and let F : E — E have a bounded
continuous Fréchet derivative. Then, F(§) € DM(E), and

DF(§) = F'(§) DE. (4.2.12)

Theorem 4.2.4. [29] Suppose that the Banach space X has martingale type 2
and let ¢ : R, X Q — 5 ® X be an adapted elementary process. Then

E”/o PdW | < #%,XE/O ||¢t||f2y(%”7X) dt.

where f19 x is the least constant in 4.1.1 in case p=2.

Lemma 4.2.5. We have D,(Wie;) = eixpo,q(7),

Proof. Indeed , Let I be a smooth random variable ,ie F' : Q — R of the form F' = f(W (hy),--- , W (h,))
with f € Cp°(R)(vector space of real valued C'*—functions with bounded derivatives of all orders), and
h;, € H,i =1,..,n, by definition of the Malliavin derivative

DE(W(hy), -, W(hy)) =3 B

=1

(W(hl)v T W(hn))hi

it follows that if we take hy € Ly(Ry, ), with e; € 7 and n =1, hy = Xj0,q ® €; then D, F(W (x[04 ®
e;)) = F'(W(xj0,q ® €:)) (X0, ® €:)(r), we get the result by taking and F(r) = x.
[
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Theorem 4.2.5. Let E be martingale type 2 space and suppose (Hs) 4.1 is fulfilled. and X, as
defined in 4.1.5 , then X; € DY3(E) for allt € [0,T]. Moreover, DX; € Ly(2 x [0,T),y(5#, F)),
and for r < t, D, X; satisfies the following equation in v(€, F)

t
DX, = et 45(X,) + / =44/ (X,) D, X, ds

il
+/ 6(t—s)AO_/()(S) -D'I‘XS dVVS7 For r > t, DrXt =0. (4213)

Proof. First we note that (4, E) is a M-type 2 Banach space, since

therefore by 4.2.3 and 4.2.2 | 4.2.5 is well-defined. We construct iterations by setting Xt(o) = ey,
and X"t = F(Xt”)), where T' is defined by 4.1.5. Notice that each successive iteration X\™ has a
continuous version, since by the results of [22], the stochastic convolution process has a continuous
version. We are going to prove by induction on n that all successive iterations Xt(") are in the domain
D2(E). Clearly, X\” € D'2(E), and DX\”) = 0. As the induction hypothesis, we assume the following
1) X € DY3(E),

DX € Ly(Q x [0,T),v(H#, E)),

3)for each fixed r > 0 the path of D, X™ is uniformly continuous on [r,T] in the mean-square sense, ie
Esup, <7 HDTXZLH?y(%,E) < 0.

4) D,X™ =0 for r > t,

5)E||DTXt")||f/(%;7E) is bounded, ie sup;cpo 7 ]E||D,,X§”)H§(%7E) < o0, for fixed r > 0.

Remark 4.2.6. Note that, by the induction hypothesis, we can evaluate DXt(”) at any point r € [0,T],

and write DrXt(n) for this evaluation.

Let us prove these statements for n 4+ 1. Assuming these hold for n. We start by showing that
X' € D(D), where D is the domain of D. By lemma 4.2.4 and (Hz) we have

D, (o(XM)) = D, X™o'(X")x ey and Dp(a(X™M)) = D, XM/ (XM)x e

s

Thus the processes {D,(c(X ™)), s > r} and {D,(a(X™)),s > r} are adapted and there exists ¢;, cy >
0 such that
IDA(o(XINN < allD X DX < el D XY

and Using theorem 4.2.3, we deduce that the Itd integral [ e®=945(X7?)dW, € DY?(E) , the hypoth-
esis Dy(e"45 (X)) € D(J) follow from It6 isometry and the induction hypothesis 3) . Moreover,
Jyet=94a(X™) ds € DY2(E) by (Hj) and the closability of D . We have
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D, X — (A (X ) +/ (t=9)45/(X™) D, XM ds (4.2.14)

+ / =945 (X M) D, X W,

Indeed, we need to prove the following
t
Dr/ =945 (X W) qW, = A (X M) +/ =546/ (X ™) D, X qWw, (4.2.15)
0

and
t ¢
Dr/ e(t_S)Aoz(Xg”))ds:/ et =940/ (XMWY D, X™ ds. (4.2.16)
0

r

By 4.2.2, note that the stochastic integral on the right-hand side of 4.2.15 is well-defined and adapted.
Indeed, since D,X™ takes values in (¢, F), then, by (Hs) 4.1, the integrand of the stochastic
integral takes values in (22, v(7, E)). This implies ( [31],[61]) that the stochastic integral in 4.2.15
is in Lo(Q2,v(52, E)), and, moreover, that there exists a constant C' > 0 so that 4.2.4 implies

2

" t
/r =46 (XM D, XM <C / E[|e" 40" (X)) DL X2 1 o)) -

Y(H,E)

To prove 4.2.15 and 4.2.16, suppose first that r > ¢. Fix a partition P = {0 =ty <t; < --- <ty =t}

and consider a simple integrand of the form
N
o(X™ s) =3 et t=DA5(X ™ Yy a(s). (4.2.17)
i=1

Note that o(X™ | s) converges to o(X{™) in the mean-square sense which is implied by the uniform
continuity of paths of X in the Ly(8, E)-norm.

The latter uniform continuity is implied by the relation X ™ = I'(X (1) and by the fact that IEHth) 1%
is bounded uniformly in n and ¢t € [0, 7] which follows from the same relation and the usual stochastic
integral estimates.

Then, from Lemma 4.2.4 and the identity in 4.2.5 ,by taking the limit as the mesh of P goes to 0, we
obtain that D, 5 e*=*4¢(X™)dW, = 0.

Also, D, [ et=94q(X™)ds = 0 if D,X™ = 0. This proves that for r > t, D, X" = 0.

Now take an r < ¢ and fix a partition P = {0 =ty < t; < --- < ty =t} containing r. We have

t
D, / s) dW, = e Ag(X M) + / D,o(X™, 5)dW,, (4.2.18)

where D,o(X ™, s) is computed using 4.2.17.
We consider the approximations of 4.2.15 by simple integrands of form 4.2.17. The right-hand side of
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the above relation, converges to the right-hand side of 4.2.15 in Ly(Q, v(4#, E)) pointwise in r € [0, t].
Indeed, there exists a constant C' > 0 so that

2

t t
IE‘ / =4 (XM D, XM aW, — / Dyo(X™ s) dW, (4.2.19)

S
r

(I, E)

t t n 2
ZE’ / Mo (X V) D X AW, — / D, Yo (XY )X (5) AW
r r i=1 v(#E)
t t n
:E‘ / =4/ (XD, XM aw, — / DY e o (X VX (5) AWt

=1

nort (n) = [t (n)

Z/ et_ti_lDngn)U,(Xtﬁl)dWs . Z/ 6t—ti_1 DTXgn)g’(thl)dWS
ti—1 i=17ti-1

=1

2

v(,E)

1
2

<O C[(Z/t E||et)4g" (X ™) — e(tti1)AO—/<Xt(Zl_)1)Hfly(%,E)d8>
i=1""i-1

t 1 noot .
A EIDXO e pyds) + 3 [ BIDXD = DXL R

where the triangle inequality and the Holder inequality are used In (i).

The right-hand side of the above inequality converges to zero by the uniform continuity of paths of
XM Lebesgue’s theorem, and the induction hypothesis 5) 4.2.
The equality 4.2.15 holds by Itd’s isometry, by the continuity of paths, and by the closedness of the
Malliavin derivative operator. Equality 4.2.16 follows from Hille theorem. Therefore, Xt(nﬂ) € DM2(FR),
DXV e Ly x [0,T],v(s2, E)), and relation 4.2.14 holds.
This relation implies that the paths of DrXt("H) are continuous in the mean-square sense on [r, 7).
The same relation and the maximal inequality for stochastic convolutions, proved in [22], imply that
]E||DTXt(n+1) |* is bounded in time. This completes the induction argument.
We note that, by the ideal property of (7, E), (see [31]), any bounded operator £ — E induce a
bounded operator (5, E) — (5, E). Therefore, the stochastic integral on the right-hand side of
4.2.14 is y(A, E)-valued.
The same applies to the Lebesgue integral on the right-hand side of 4.2.16 (since by the induction
hypothesis, D, X{" is v(#, E)-valued).
also we note that DrXt(l) = (=45 (2) takes values in v(#, E), we obtain that for each fixed r > 0,
D, X™ is a v(s#, E)-valued process.

Now, prove 4.2.11 for &, = X\™. Relation 4.2.14 implies

t
EIID, X" 2y = Bl Mo (X0 + [ el94a(X() D, X ds

s
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t
+ [ A XN DX AW
t
B[ Mo (X 2y +El [ €0 (XD XD ds |2
t
SE| [ 4 (X0 DX AW e

t t
<erton [ BID X mds + o [ BIDXI0r myds

t
<O+ [CEIDXZ I p.yds)

we get

t
n+1 n
E[D. X" ) < c(1 +/T E| DX\ 00 m)) (4.2.20)

where C' > 0 is a constant which does not depend on r. By Gronwall’s lemma for all n
E||D, X" |2 p.my < CeCT. (4.2.21)

Integrating 4.2.21 from 0 to 7" and using the fact of the canonical embedding of Ly ([0, T, v(77, E))
into y(Lo([0,T], 7)), E) for type 2 Banach spaces (see [31]), we obtain that D, X takes values in
’7([’2([07 T]u %)7 E)7 and

T
EIDX W wom e < IC [ BIDXIE 5y dt < T CT T (4.2.22)

where J > 0 is the embedding constant. By the results of theorem 4.1.1 , Xt(") — X; in Ly(Q, E).
Hence, by Lemma 4.2.3 , X; € DY?(E), and, moreover, there is a weakly convergent subsequence
DXt(n’“) — DX;. By 4.2.22 | this subsequence contains a further subsequence which converges
in Ly(Q2 x [0, T],v(H, E))), again by the canonical embedding of Ls([0,T],v(5, E)) into
v(Lo([0,T], ), E) . The latter implies that we can evaluate DX, at r € [0,T], and, moreover, D, X,
takes values in v(s7, E).

O

4.3 Differentiability with respect to the initial data

Let X(x) = X (z,t,w) denote the solution to

XO = X.
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If o and « are Lipschitz, then X (z,¢) will be continuous in z. We have X, is differentiable with

respect to x and its derivative is given by
“‘+/ (t=940/(X,))Y, ds+/ E=945"(X,) Y, dW,. (4.3.1)

To prove the existence of a solution to 4.3.1 in the space of bounded operators we assume the

following;:
(H4) o/(x)isbounded in L(E) and v(.#, E), and ¢’(x) are bounded in (5, (., E)) and v(, L(E)).
(H5) The restriction of the semigroup e to J# is a semigroup on 7.

For simplicity, we will use the same notations, i.e. o/(z), o’(z), e, for the restrictions to 2.

Theorem 4.3.1. Suppose (H3), (H4), and (H5) are fulfilled. Then the solution X (x,t) to 4.1.3,
is Fréchet differentiable along 7 with respect to the initial data x The derivative operator Y; takes
the form Y, = et +V;, so V, is given by V, =Y, — et and takes values in v(H, E). Moreover, Y;

is the unique solution to J.3.1, and possesses a continuous path modification.

Proof. for the proof of Fréchet differentiability see[17] First we prove uniqueness for 4.3.1 Jlet t5 > 0

and we consider t < ty , we then write

t t
Eamun—ym2=EamH/e“@%ﬂxgnds—/e“ﬂ%ﬂxgﬂdw—
s<t s<t 0 0

t t
/ e(t_s)AO/(XS)YS dWS . / e(t—s)Aal(Xs)YS/ dWsH2
0 0

t
— Esup|| | twwamwsdﬂw+/éHWﬂ&mn—wwmw
s<t 0
<2Eswl | "M (X)), = Y] ds||* + 2E sup I ! (X)) [Y: = Y] dW,|?
s<t s<t

) 3 T
<O 2CEL [ [l (X))Y, = V)| ds +2CE [ |0’ (X)IYs = V]I ds
0 0

t
<200+ 0E [V = Y12 p i ds
0 b

where in (i) we use the maximal inequality see[[22]],using Gronwall’s lemma we have uniqueness since

to is arbitrary. O
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4.4 The right inverse operator

In this section, under some additional assumptions, we prove the existence of the right inverse

operator to Y;. Consider the equation
t t
ZelA = | +/ Z.(S(X,) — o'(X,)) e ds — / Z.0' (X,)e A dW, (4.4.1)
0 0

with B(z) = 2, 0/(x)e;0’(x)e;, which is obtained by a formal derivation of an SDE for ¥, and
multiplying the both parts by e from the right. Introducing the operator R, = Z,e', we obtain the
SDE for R;:

t t
Ro—1+ / R4 (S(X,) — o/ (X,)) e ds — / Roe=*40"(X,)e™ dW,. (4.4.2)
0 0
we will assume the following:
(H6) [PR;, e TA(S(x) — o/ (x))el4] =0

where [, ] denote the commutator.

Theorem 4.4.1. Let Assumptions H5-HG6 be fulfilled. Then, equation /4./.2 has a unique solution
of the form Ry, = I + U, where Uy, is L(E, 5 )-valued. Moreover, the operator Z; = Rie~t, defined

on e E, is the right inverse to Y;.

Proof. We consider the equation:
t t
P=T+ / 40/ (X,) e P, ds + / e~ A0’ (X,)e*A P, dW,. (4.4.3)
0 0

where P, = e *1Y,. Let us show that P,R, = I on J#. To compute P,R;, we apply Itd’s formula for the
product to (Ryy, Pfy*), where y € H, y* € E* after we take the derivative with respect to ¢:

(PRiy,y") = (v, 9") + /0 (e 0/ (X ) PRy, y)ds
4 [0 (X PRy )ai, — [[(PRe 0/ (X,)e ),
+ /Ot<PSRSeSA (Z(XS) - a'(Xs)>eSAy, y*)ds
- /Ot i<6_8Aa,;(XS)GSAPSRse_SAGZ(XS)GSAy, y*)ds.

we take the derivative we get :
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(dPRyy,y") = e/ (Xy)e" PRy, y* )dt + (e0’ (X,)e' PRy, y*)dW,
—(PRie™ "o’ (Xy)e My, y*)dW;

e}

+(P,Re™ (Z(Xt) — a'(Xt))etAy, y*)dt — Z<6_tAa§€(Xt)etAPthe_tAa,;(Xt)etAy, y*)dt.
k=1
under the hypothesis (H6)
(dP Ry, y™) =0 (4.4.4)
for all y* € E* hence dP, R,y = 0 this imply that PR, = PpRy = I ,so PR, = I. ]
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Chapter 5

Appendix

5.1 Cy— Semigroups

Cj -semigroups serve to describe the time evolution of autonomous linear systems. The objective
of the present section is to introduce the notion of Cj -semigroups and their generators, and to

derive some basic properties.

5.2 Definition and some basic properties

Let X be a (real or complex) Banach space. A one-parameter semigroup on X is a function 7' :
[0,00) — L(X) (where £(X) denotes the space of bounded linear operators in X, with domain all of
X ), satisfying
(i) T(t+s) =T(t)T(s), for all t,s > 0. If additionally
(ii) limyo4 T'(t)z = x for all € X then T is called a Cj -semigroup (on X ) (also a strongly continuous
semigroup). If 7' is defined on R instead of [0,00), and (i) holds for all ¢, s € R, then T is called a
one-parameter group, and if additionally (ii) holds, then T is called a Cj -group.

Remark 5.2.1. (a) Property (i) implies that for t,s > 0 the operators T(t),T(s) commute; also,
if ti,ta,. . tn >0, then T (S0, t;) = 17—y T (1))

(b) Property (i) implies that T(0) = T(0)? is a projection.

(c) If T is a Cy -semigroup, then T(0)x = limy_,o, T(t)T(0)x = limy, T(t)x = x for all v € X,
i.e., T(0) = 1.
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Proposition 5.2.1. Let T be a Cy -semigroup on X.
(a) Then there exist M > 0 and w € R such that

|T(t)]| < Me** for allt >0

(b) For all x € X the function [0,00) 3t — T'(t)x € X is continuous. In other words, the function

T is strongly continuous.
(c) If T is a Cy -group on X, then there exist M > 0 and w € R such that

IT@)|| < Me*! for allt € R

For all x € X the function R >t — T(t)x € X is continuous.

Proof. (a) In view of Lemma 1.1.4 it is sufficient to show that there exists 6 > 0 such that

SUPg<s<s |T(t)|| < oo. Assuming that this is not the case we can find a null sequence (t,) in (0, d) such
that |7 (t,)|| — oo as n — oco. However, for all z € X the sequence (T (t,) x) is convergent (to = ),
by property (ii) of Cy -semigroups. Therefore the uniform boundedness theorem (for which we refer to
[[33]; II, 1 Corollary 1 | or [[20]; Théoréme II. 1 |) implies that sup,cy |7 (¢,)|| < 0o; a contradiction.
(b) Let x € X,t > 0. Then T'(t + h)x — T(t)x = T(t)(T'(h)xr — z) — 0 as h — 0+, which proves the
right-sided continuity of T°(-)x. In order to prove the left-sided continuity we let —t < h < 0 and write
T(t+h)x—T(t)xr =T(t+ h)(x —T(—h)z). Then we obtain

70+ 1)z = (0] < ( sup 17601 ) o = T=)al =0
as h — 0—

(c) First we show that, given z € X, the orbit 7'(+)z is continuous. As the restriction of T to [0, 00) is a Cy
-semigroup it follows from (b) that 7'(-)z is continuous on [0,00). Let ¢ < 0. Then T'(t + h)x —T'(t)x =
Tt —1)(T(1 + h)x — T(1)z) — 0(h — 0), and this implies that 7'(-)z is continuous on R. As a
consequence, the function [0,00) 3 t — T'(—t) € L(X) is a Cy -semigroup, and therefore satisfies an
estimate as in (a). Putting the estimates for the Cy -semigroups ¢ — T'(t) and t — T'(—t) together one

obtains the asserted estimate.

]
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5.3 Operators

Let X,Y be two vector spaces over the same field K € {R,C}. For a linear relation in X x Y/ i.e.,
a subspace A C X x Y, we define the domain of A

P(A) ={z € X; there exists y € Y such that (z,y) € A}

the range of A ran(A4) := {y € Y; there exists x € X such that (z,y) € A} and the kernel (or null
space) of A,
ker(A) :={z € X;(z,0) € A}

The linear relation

AT = A{(y, x); (z,y) € A}

in Y x X is the inverse relation of A. If B is another linear relation in X x Y, satisfying A C B, then
B is called an extension of A, and A a restriction of B

In this setting, a linear operator from X to Y is a linear relation in X x Y satisfying additionally
AN ({0} xY) ={(0,0)}

Then, for all z € dom(A), there exists a unique y € Y, such that (z,y) € A, and we will write Az = y.
In this sense, A is also a mapping A : Z(A) — Y. As we will consider only linear operators we will
mostly drop ’linear’ and simply speak of ’operators’. If the spaces X and Y coincide, then we call A an
operator in X. Next, let X and Y be Banach spaces. We define a norm on X x Y by

Iz llxxy = llzlx +ylly  ((z,y) € X xY)

which makes X x Y a Banach space. In this context an operator A from X to Y is called closed if A
is a closed subset of X x Y, and A is closable if the closure A of A in X x Y is an operator.

For a subspace D C Z(A), the restriction of A to D is the operator A|, := AN (D x Y). The set D
is called a core for A if A is a restriction of the closure of A|, ie., A C Tb Finally, if A and B are

operators from X to Y, then the sum of A and B is the is the operator defined by
DA+ B):=2(ANPB), (A+B)x:=Ax+ Bz (ze€ 2(A)+ 2(B))
or, expressed differently,
A+ B={(z,Ax + Bx);2 € 2(A)NZ(B)} CX xY

We mention that in most cases of the use of a sum of two operators the domain of one of the operators

is a subset of the domain of the other, or more specially, one of the operators is defined everywhere.
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5.4 Resolvent set, spectrum and resolvent
Let X be a Banach space over K, and let A be an operator in X. We define the resolvent set of A,
p(A) = {N KA — A: P(A) = X bijective, (A — A)~! € L(X)}
The operator R(\, A) := (M — A)~! is called the resolvent of A at A, and the mapping
R(-, A) - p(A) = L(X)

is called the resolvent of A. The set
o(A) == K\p(A)

is called the spectrum of A. The following theorem contains the basic results concerning the resolvent.

Theorem 5.4.1. Let A be a closed operator in X. (a) If A € p(A),x € D(A), then AR\, A)x =
R(\, A)Ax (b) For all A\, € p(A) one has the resolvent equation

R<>‘7 A) - R(/% A) = (:U“ - A)R(:uv A)R()‘v A)

Proof. (a) AR\, A)x — AR\, A)x = —x = R(\, A)Ax — R(\, A)\x
(b) Multiplying the equation

(nl —A) = (M —A)= (p— A)Hdom(A)
from the right by R(\, A) and from the left by R(u, A), one obtains the resolvent equation. O

Remark 5.4.2. The analyticity of R(-, A) implies that R(-, A) is infinitely differentiable, and from the

Neumann power series one can read off the derivatives

<ddA> R(\, A) = (—1)"nlR(\, A1 (X € p(A),n € Ny)

Proposition 5.4.1. Let X,Y be Banach spaces, a,b € Ria < b. Let F : [a,b] — L(X,Y) be
strongly continuous, and assume that h : [a,b] — [0, 00) is an integrable function such that |[F(t)| <
h(t)(a <t <b). Then the mapping

b
XB:E»—>/ Fiz dt €Y

belongs to L(X,Y) and has norm less or equal [° h(t)dt.
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5.5 Characterisation of generators of | -semigroups

In this section let X be a Banach space.

Theorem 5.5.1. Let T be a Cy -semigroup on X, and let A be its generator. Let M > 1, w € R
be such that
IT@®)] < Me (£ >0)

Then {\ € K;Re A > w} C p(A), and for all A € K with Re A > w one has

RN\ A) = [5° e*AtT( )dt  (strong imp
IR, A)™|| < (n € N)

(Re)\ (Re A—w)™

In the proof we will use the concept of rescaling. If T is a Cj -semigroup on X with generator A,
and A € K, then it is easy to see that T}, defined by

Th(t) == e MT(t) (t>=0)
is also a Cy -semigroup, called a rescaled semigroup, and that the generator of T} is given by A — \I; .
Proof. Let A € K, Re A > w. Observe that the rescaled semigroup T obeys the estimate
ITA@)[] < Ml RNt (¢ > 0)

and that the resolvent of A at A\ corresponds to the resolvent of A — Al at 0. This means that it is
sufficient to prove the existence and the formula of the resolvent for the case A = 0 and w < 0 The

estimate ||T(¢)|| < Me (¢t > 0) implies that the strong improper integral

R::/OOTtdt
0

defines an operator R € L(X). Let z € 2(A). Then

RAx = /Oo T(t)Az dt = lim ) iT(t)x dt = lim (T'(c)x — x) = —x
0

c—oo Jo dt c—00

Further, ||7(t)z| < Me*||z|| and ||AT(t)z|| < Me*t||Az||(t = 0), and therefore The(Hille’s theorem),
which also holds in the present context, implies that Rz € Z(A) and

ARx = /OO AT (t)zx dt = /OOT(t)Ax dt = RAx = —
0 0

If z € X, and (z,) is a sequence in Z(A) with x = lim,,_,, z,,, then Rz,, - Rx and ARz, = —z,, —
—z(n — 00), and because A is closed we conclude that Rz € Z(A) and ARx = —z. The two equations
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RA = — I|ypy 4y, AR = —1I imply that 0 € p(A) and R = (—A)~" For the powers of R(), A) we now
obtain (recall Remark 5.4.2)

RO\, A)" = (—1)1 " i A ((&)nl /0 T e M (1)dt

1 00
S CE / " e N (¢)dt
— . J0

(The last equality is obtained by differentiation under the integral By Proposition 5.4.1 this yields the

estimate
1

(n—1)!
1 d n—1 o

_ s (w—ReA)t

B (n—l)!M<dw> /0 ¢ d

B S A S S
 (n—1)! dw Red—w (Rel—w)"

||R(>\,A)n|| < ]\4/00O tn—le(w—Re)\)t dt

Lemma 5.5.1. (Gronwall’s Lemma) If 1) > 0 and ¢ two continuous functions satisfying the

following condition :

Vi>ty o) < K+ tw(s)¢(s) ds

where K is a constant, then we have :

Vit o) < Koo ([ v(s)ds)

Lemma 5.5.2. Let V, 77 be Hillert spaces with V — . Let a : V x V — K be an coercive

continuous form. Let b:V xV — K be a continuous form such that

b(u)| < Mllullyllulle  (ueV).

Thena-+b:YV xV — K s coercive

Proof. By the coercivity of a there exist w € R and a > 0 such that

Rea(u) + wllul%, = aful|?
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for all w € V. By the "Peter-Paul inequality” (i.e., Young’s inequality, ab < %(7@2 + %bz) for all
a,b>0,7>0) one has

5 = allully, = Mllully[ull -

1 1
> allull} — 5 (allll} + ~M2ull% ).

Rea(u) + Reb(u) + wl|ul

This implies
M? 2 a2
Re(a(w) + b(w) + (w+ 5 ) Iull%e > Slull} (weV).

This gives the coercivity of a + b. ]
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