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General Introduction

Dynamical systems model a large family of phenomena which manifest itself in several
domains (biology, electronics, mechanics, etc). They have unquestionably become the
main mathematical tool for describing a process that evolves over time. The study of
these systems is a mathematical domain which historically has been the subject of several
works [6],[4],[50]. Many natural phenomena can be modeled by the nonlinear differen-
tial systems. Therefore, scientists were very interested in finding explicit solutions to
this type of differential systems, as these solutions were often impossible to determine
explicitly. Some mathematicians were redirected to a numerical resolution which consists
of approaching solutions through different methods. The problem encountered in these
methods is that the calculation of the solutions is only done on an interval of finite time.
In this case, the global properties of the solutions are not entirely determined. At the
end of the 19th century, Henri Poincaré [48] in "Mémoire sur les courbes définies par une
équation différentielle" introduced the study of qualitative method for differential systems.
Using geometric and topological techniques, Poincaré was able to investigate qualitative
properties of the solutions of a differential systems without such solutions having to be
determined explicitly. Among the contributions of Poincaré, we can mention the concept
of phase portrait, the concept such as return map, which are fundamental for classifying
orbits with particular behaviors. These results would be the pillars of the "Qualitative
Theory of Differential Systems". One of the main important problems in the qualitative
theory of differential systems is the study of the integrability and the existence of periodic
orbits, more precisely the limit cycles, their number and their stability. A limit cycle is an
isolated periodic solution in the set of all periodic solutions. The concept of limit cycles
appeared for the first time in the famous articles of H. Poincaré [49]. Many mathematical
models in physics, engineering, chemistry, biology, and economics have been displayed as
autonomous planar polynomial differential systems with limit cycles. Recently, the notion
of limit cycles has become well known, and has attracted the attention of many pure and
applied mathematicians, see for instance ([1], [3], [25], [33], [35], [42]) and the book of Ye
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General Introduction

Yanqian [6], [50], [54] .
In 1900, David Hilbert [39], in International Congress of Mathematics proposed 23

problems. Among these problems, The 16th Hilbert problem, whose second part asking
about the maximum number H (n) and the relative position of the limit cycles of a planar
polynomial differential systems of degree n of the form

ẋ = dx

dt
= P (x (t) , y (t)) ,

ẏ = dy

dt
= Q (x (t) , y (t)) ,

(1)

where P and Q are real polynomials in the variables x and y. Until nowadays, the 16th

Hilbert problem remains unsolved, because it is a very difficult problem. Since any linear
system in R2 has no limit cycles, it follows that H(1) = 0. But the finiteness of H (n) with
n ≥ 2 is still an open problem. Dulac [28] in 1923 claimed that any polynomial differential
systems (1) always has finitely many limit cycles. Ilyashenko [41] in 1985 found an error in
Dulac’s paper. Later on, two long works have appeared, independently, providing proofs
of Dulac’s assertion, one due to Écalle [30] in 1992 and the other to Ilyashenko [40] in
1991. As Smale mentioned in [52] these two papers have yet to be thoroughly digested by
the mathematical community. We usually only ask for the number of such limit cycles,
but their location as orbits of the system is also an interesting problem, and an even
more difficult problem is to give an explicit expression of it. In general, it is not easy
to distinguish when a limit cycle is algebraic or not. For example, the limit cycle of the
van der Pol differential system discovered in 1927 (see [53]) was not proved until 1995
by Odani [45] that it was non-algebraic. The van der Pol system can be written as a
polynomial differential systems (1) of degree 3, but its limit cycle is not known explicitly.

In the last years, several papers were published exhibiting polynomial differential sys-
tems for which non-algebraic limit cycles are explicitly known. The first explicit non-
algebraic limit cycle, due to Gasull, Giacomini and Torregrosa [32], was for a polynomial
differential system of degree 5. Afterwards, Al-Dosary [2] gave a family of polynomial
differential systems, with an explicit non-algebraic limit cycle, which generalizes the sys-
tem studied in [32]. In 2006 Giné and Grau [37] shown the simultaneous existence of
two limit cycles one algebraic and an explicit non-algebraic in a polynomial differential
system of degree 9. In [16], Benterki and Llibre gaves an example of a cubic system with
an explicit non-algebraic limit cycle and it was posed an open problem about provide an
explicit non-algebraic limit cycle for a polynomial differential system of degree 2, which
it remains open until now. Later, Bendjeddou and all published many papers providing
an explicit non-algebraic limit cycles for several polynomial differential systems of degree
larger than or equal to 3 see [9],[11],[12],[14], [15],[17],[18].
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General Introduction

Our contribution in this thesis, is to study the integrability and the existence of limit
cycles of some classes of polynomial differential systems of the form (1), more precisely,
we present two new results about this topic, firstly, we determine the explicit expression
of non algebraic limit cycle of a family of polynomial differential systems of degree even.
As a second result, we construct a class of polynomial differential systems of degree
6k+1, (k ∈ N∗), with explicit two non-algebraic limit cycles surrounding a non-elementary
equilibrium point at origin.

This thesis is divided into four chapters:
Chapter 1, we briefly present some basic concepts, definitions and results that are

used in the other chapters, for example the definition of autonomous polynomial differ-
ential system, periodic solution and limit cycle, integrability of differential system. We
introduce also some theorems of existence and non existence of limit cycles.

In chapter 2, we study the integrability and the existence of non algebraic limit
cycle of a family of polynomial differential systems of degree even, we give the explicit
expression of first integral and limit cycle.

Chapter 3 is devoted to provide the integrability and the existence of two non-
algebraic limit cycles surrounding a non-elementary equilibrium point at origin for a class
of polynomial differential systems of degree 6k + 1, (k ∈ N∗).

And finally in chapter 4, we present a software called P4 (Polynomial Planar Phase
Portraits), we use to draw the phase portraits of all polynomial differential systems in
this thesis. We finish this our thesis by a conclusion and outlook.
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1. PRELIMINARY NOTIONS

1.1 Introduction

In this chapter we present some basic notions about qualitative study of differential sys-
tems, we start to present the general form of an autonomous polynomial differential
systems, next, we give some definitions about: vector field, solution and periodic solution
of differential system, invariant curve, integrability, limit cycles. We introduce also some
theorems of existence and non existence of limit cycles. Finally, we present the 16th

Hilbert problem. We use some of these notions in the next chapters.

1.2 Autonomous polynomial differential systems

Definition 1.1. An autonomous polynomial differential systems is a system of the form
ẋ = dx

dt
= P (x (t) , y (t)) ,

ẏ = dy

dt
= Q (x (t) , y (t)) ,

(1.1)

where P and Q are real polynomials in the variables x and y. The system (1.1) is of degree
n where n = max(deg(P ), deg(Q)).

Definition 1.2. In the plane, a homogeneous polynomial differential systems is a system
written as follows 

ẋ = P (x (t) , y (t)) =
i+j=m∑
i+j=0

αijx
iym−j,

ẏ = Q (x (t) , y (t)) =
i+j=m∑
i+j=0

βijx
iym−j.

1.2.1 Vector field

It is convenient to represent graphically the vector field, before starting the study of a
differential system, because it gives us precious information on the different forms of the
possible solutions as well as their asymptotic behavior.

Definition 1.3. A vector field X is a region of the plane in which there exists at every
point A of Ω ⊆ R2 a vector −→

V (A, t), i.e an application:

X : Ω ⊆ R2 7−→ R2

A (x, y) 7−→
−→
V (A) =

 P (x, y)
Q (x, y)

 ,

where P and Q are of class C1 on Ω ⊂ R2. The vector field associated to system (1.1)
can be represented by the following differential operator

X = P
∂

∂x
+ Q

∂

∂y
,

11



1. PRELIMINARY NOTIONS

then for the following we consider the vector field X associated with the differential poly-
nomial planar system (1.1)

d
−→
A

dt
= −→

V (A) ⇐⇒


dx

dt
= P (x (t) , y (t)) ,

dy

dt
= Q (x (t) , y (t)) .

Remark 1.1. 1. In this thesis, we assume that P and Q are C1 functions, then the
Cauchy Lipchitz conditions are satisfied at any point of system (1.1). So in each
initial condition (x0, y0) , the system (1.1) has a unique solution.

2. The plane of the x and y variables is called the phase plane.

3. On the curve P (x, y) = 0, called vertical isocline, the vector field is parallel to the
y−axis, and on the curve Q(x, y) = 0, called horizontal isocline, the vector field is
parallel to the x−axis.

Figure 1.1: Vector field.

1.2.2 Solution and periodic solution

Solution of differential system

Definition 1.4. A solution to differential system (1.1) is an application

φ : I ⊆ R → R2

t → φ (t) = (x (t) , y (t)) ,

where I is a non-empty interval such that, for all t ∈ I, the solution φ (t) = (x(t), y(t)) sat-
isfies this system i.e: φ̇ (t) = X (φ (t)). If φ1(t) = (x1(t), y1(t)) and φ2(t) = (x2(t), y2(t))
are two solutions on I1 and I2 respectively. We say that φ2(t) is an extension of φ1(t) if
I1 ⊂ I2 and ∀t ∈ I, φ1(t) = φ2(t). The solution (x(t), y(t)) is called maximal solution on
I if it does not admit any extension on I.

12



1. PRELIMINARY NOTIONS

Periodic solution

Definition 1.5. We say that the solution φ(t) = (x(t), y(t)) is a periodic solution of the
system (1.1) if there exists a real number T > 0 such that ∀t ∈ I, φ(t + T ) = φ(t). The
smallest number T is called the period of the solution φ.

Flow

Definition 1.6. [46] We recall flow associated with the vector field (P, Q) the application

Φ : R × R2 7→ R2

(t, (x, y)) 7→ Φt (x, y) ,

satisfied the following three properties:
i) d

dt
Φt (x, y) = (P (Φt(x, y)), Q(Φt(x, y))),

ii) Φ0 (x, y) = (x, y) ,

iii) Φt+s (x, y) = Φt (Φs (x, y)) , for all (x, y) ∈ R2 and s, t ∈ R.

1.3 Phase portrait

Every solution of (1.1), say φ (x (t) , y (t)), can be represented as a curve in the plane. The
solution curves are called trajectories or orbits. The equilibrium points of this system are
constants solutions and the complete figure of the orbits of this system as well as its points
of equilibrium represented in the plane (x, y) is called phase portrait, and the plane (x, y)
is called the phase plane.

Definition 1.7. The phase portrait is the set of orbits that represent the solutions of
system (1.1) in phase plan, at each set of initial conditions corresponds to a curve or a
point.

1.4 Equilibrium points

The equilibrium points (or a singular points) play a crucial role in the study of dynami-
cal systems. Henri Poincaré (1854 − 1912) [49] showed that to characterize a dynamical
systems with several variables it is not necessary to calculate the detailed solutions, it
suffices to know the equilibrium points and their stabilities. This result of great impor-
tance considerably simplifies the study of nonlinear systems in the neighborhood of these
points. So to know the local behavior of the trajectories of the system (1.1), we have to
look for its equilibrium points.

13



1. PRELIMINARY NOTIONS

Definition 1.8. A point (x0, y0) is called an equilibrium point (or a singular point) of the
system (1.1) if  P (x0, y0) = 0,

Q (x0, y0) = 0.

Remark 1.2. The equilibrium points lie at the intersection of the horizontal isocline and
the vertical isocline.

Proposition 1.1. All periodic solution contains at least one equilibrium point.

1.4.1 Jacobian Matrix and Linearization

In general, for studying the behavior of trajectories near of the equilibrium points, we
write the linearized system associated with the system (1.1). Then to make the link
between the trajectories of the two systems.

Definition 1.9. Let J (x0, y0) denote the Jacobian matrix associated with the vector field
in the neighborhood of an equilibrium point (x0, y0) defined by:

J (x0, y0) =


dP

dx
(x0, y0)

dP

dy
(x0, y0)

dQ

dx
(x0, y0)

dQ

dy
(x0, y0)


The linearized of the system (1.1) near the equilibrium point (x0, y0) is given in matrix

form by:

 ẋ

ẏ

 =


dP

dx
(x0, y0)

dP

dy
(x0, y0)

dQ

dx
(x0, y0)

dQ

dy
(x0, y0)


 x

y

 (1.2)
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1. PRELIMINARY NOTIONS

Topological equivalence

Firstly, we start by defining what is a homeomorphism

Definition 1.10. A homeomorphism of R2 is a continuous bijective map h : R2 → R2,
whose inverse bijection is continuous.

Definition 1.11. Two autonomous polynomial differential systems

(S1)
 ẋ = P1 (x (t) , y (t)) ,

ẏ = Q1 (x (t) , y (t)) ,
(S2)

 ẋ = P2 (x (t) , y (t)) ,

ẏ = Q2 (x (t) , y (t)) ,

defined on two open sets U and V of R2 respectively are said to be topologically equivalent
if there exists a homeomorphism h : U → V , such that h transforms the orbits of (S1)
into orbits of (S2) and preserves their orientation.

The Hartman Grobman theorem

This theorem allows us to reduce the study of a dynamical system (1.1) in the neighbor-
hood of a hyperbolic singular point, to the study of a linear system (1.2) topologically
equivalent to (1.1), in the neighborhood from the origin.

Theorem 1.2. Let λ1 and λ2 be the two eigenvalues of Jacobian matrix at the singular
point (x0, y0), such that Re (λ1) ̸= 0 and Re (λ2) ̸= 0, then the solutions of the system
(1.1) are given approximately by the solutions of the linearized system (1.2) in the neigh-
borhood of the singular point. In other words, the phase portrait of the Linearized system
constitutes, in the near of this equilibrium point, a good approximation of that of system
(1.1).

Remark 1.3. In the case where Re (λ1,2) = 0, the singular point (x0, y0) is called center
for the linearized system. The nature of (x0, y0) requires further investigation: this is the
"problem of the center".

Remark 1.4. 1. We say that a singular point is non-elementary if both of the eigenvalues
of the linear part of the J (x0, y0) at that point are zero, and elementary otherwise. A non-
elementary singular point is called degenerate if its linear part is identically zero, otherwise
it is called nilpotent.

2. The point (x0, y0) is said to be a hyperbolic singular point if the real part of all
the eigenvalues of J (x0, y0) have non-zero. Otherwise, the singular point is said to be
non-hyperbolic.

3. The semi-hyperbolic are the singular points having a unique eigenvalue equal to
zero, their phase portraits are well known, see for instance ([29], Theorem 2.19).
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4. The nilpotent singular points have both eigenvalues zero but their linear part is not
identically zero. See for example ([29], Theorem 3.5) for the classification of their local
phase portraits.

1.4.2 Classification of equilibrium points

Consider the differential system (1.1) and let J (x0, y0) be the Jacobian matrix associated
with the system (1.1) at the equilibrium point (x0, y0) and let λ1 and λ2 be the eigenvalues
of this matrix. We distinguish the different cases according to the eigenvalues λ1 and λ2

of the matrix J (x0, y0).

1. If λ1 and λ2 are real nonzero and of different sign, then the equilibrium point (x0, y0)
is a saddle point, it is always unstable.

2. If λ1 and λ2 are real with the same sign, we have three cases:

a. If λ1 < λ2 < 0, the equilibrium point (x0, y0) is a stable node.

b. If 0 < λ1 < λ2, the equilibrium point (x0, y0) is an unstable node.

c. If λ1 = λ2 = λ ̸= 0, the equilibrium point (x0, y0) is a proper node, it is stable if
λ < 0 and unstable if λ > 0.

3. If λ1 and λ2 are conjugate complexes and Im(λ1,2) ̸= 0, then the equilibrium point
(x0, y0) is a focus. It is stable if Re(λ1,2) < 0 and unstable if Re(λ1,2) > 0.

4. If λ1 and λ2 are pure imaginary, then the equilibrium point (x0, y0) is a center.
Figure 1.2 summarizes the types of equilibria.

Stability of equilibrium points
A nonlinear system can have several equilibrium positions which can be stable or

unstable. In some situations, equilibrium stability is required, which is defined as follows:
Let (x0, y0) be an equilibrium point of the system (1.1). Note by

X (t) = (P (x (t) , y (t)) , Q (x (t) , y (t))) ,

and
X0 = (P (x0, y0) , Q (x0, y0)) .
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(a) Saddle Point (b) Node Point

(c) Focus Point (d) Center Point

Figure 1.2: Phase portraits of equilibrium points.

Definition 1.12. The equilibrium points (x0, y0) of system is

1. Stable if and only if

∀ε > 0, ∃η > 0, ∥(x, y) − (x0, y0)∥ < η =⇒ (∀t > 0 : ∥X (t) − X0∥ < ε) .

2. The point (x0, y0) is asymptotically stable if and only if (x0, y0) is stable and

lim
t−→∞

∥X (t) − X0∥ = 0.

Remark 1.5. Asymptotic stability imposes that the limit of the trajectories when t → ∞
be the equilibrium point, while the neutral stability (stable but not asymptotically stable)
only imposes that the trajectories remain in a neighborhood of the equilibrium point without
necessarily tending towards this point.
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Figure 1.3: Stability of equilibrium points.

Figure 1.4: Asymptotic stability of equilibrium points.

1.5 Invariant curves

Invariant algebraic curves play an important role in the integrability of differential planar
polynomial systems, see for example ( [24] [26]), and also are used in the study of the
existence and non-existence of limit cycles.

Definition 1.13. We say that a curve defined by U(x, y) = 0 is an invariant curve for
(1.1) if there exists a polynomial K(x, y) satisfying

P (x, y)∂U (x, y)
∂x

+ Q(x, y)∂U (x, y)
∂y

= K(x, y)U (x, y) . (1.3)

The polynomial K is called a cofactor of the curve U.

Algebraic and non algebraic invariant curve

Definition 1.14. An invariant curve U(x, y) = 0 is said to be algebraic curve of degree n,
if U (x, y) is a polynomial of degree n, otherwise we say that the curve is a non algebraic
curve.

Remark 1.6. In the case where the polynomial differential system (1.1) has an algebraic
invariant curve U(x, y) = 0 of degree n, then any cofactor is of degree at most n − 1.

Theorem 1.3. [38] We consider the system (1.1) and Γ (t) a periodic orbit of period

T > 0. We assume that U : Ω ⊂ R2 → R is an invariant curve, Γ(t) = {(x, y) ∈ Ω :

18
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U(x, y) = 0}, and K(x, y) ∈ C1 is the cofactor given in equation (1.3), of the invariant
curve U(x, y) = 0. Suppose that p ∈ Ω such that U(p) = 0 and ∇U(p) ̸= 0, then∫ T

0
div (Γ (t)) dt =

∫ T

0
K (Γ (t)) dt.

Remark 1.7. The assumption ∇U(p) ̸= 0 means that U does not contain singular points.

1.6 Integrability of polynomial differential systems

In the qualitative study of polynomial differential system, the notion of integrability plays
an essential role. We say that a polynomial differential system is integrable if it admits a
first integral, see the definition below. We note that the determination of a first integral
for a given differential system is not an easy task. The importance of the existence of
first integral for a differential system is that it completely determines its phase portrait
see [23],[26],[34].

1.6.1 First integral

Definition 1.15. We say that a non-locally constant C1 function H : Ω → R is a first
integral of the differential system (1.1) in Ω if H is constant on the trajectories of the
system (1.1) contained in Ω , i.e, if

dH(x, y)
dt

= P (x, y)∂H(x, y)
∂x

+ Q(x, y)∂H(x, y)
∂y

≡ 0.

Moreover, H = k is the general solution of this equation, where k is an arbitrary constant.
And a system (1.1) is integrable in Ω if it has a first integral H in Ω.

1.6.2 Darboux integrability

Definition 1.16. A Darboux function is a function of the form

f1 (x)λ1 ...fp (x)λp exp
(

g (x)
h (x)

)
,

where fi (x) for i = 1, ..., p, g (x) and h (x) are polynomials in C[x, y] and the λi for
i = 1, ..., p are complex numbers. For more details see [43][44].

Definition 1.17. System (1.1) is called Darboux integrable if it has a first integral which
is a Darboux function.

Definition 1.18. A Liouvillian function is a function which can be expressed by quadra-
tures of elementary functions. For more details see [31].
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The study of the integrability problem consists also in deducing the membership of
integrating factor or inverse integrating factor for a given class of functions.

1.6.3 Integrating factors

The notions of integrating factor and inverse integrating factor make it possible to deduce
the expression of the first integral.

Definition 1.19. The function R(x, y) is an integrating factor of differential system (1.1)
on the open subset U ⊆ R2 if R ∈ C1(U), R ̸= 0 on U and

∂ (RP )
∂x

= −∂ (RQ)
∂y

, div (RP, RQ) = 0 or P
∂R

∂x
+ Q

∂R

∂y
= −Rdiv (P, Q)

As usual the divergence of the vector field X is defined by

div (X) = div (P, Q) = ∂P

∂x
+ ∂Q

∂y
.

It is clear that the function H satisfying
∂H

∂x
= RQ,

∂H

∂y
= −RP,

is a first integral, then the first integral H associated to the integrating factor R is given
by

H (x, y) = −
∫

R (x, y) P (x, y) dy + h (x) .

Or
H (x, y) =

∫
R (x, y) Q (x, y) dx + h (y) .

Inverse integrating factor

Definition 1.20. A non-zero function V : Ω → R is said to be an inverse integrating
factor of system (1.1) if of class C1 (Ω), not locally null and satisfies the following linear
partial differential equation

P
∂V

∂x
+ Q

∂V

∂y
=
(

∂P

∂x
+ ∂Q

∂y

)
V.

It is easy to verify that the function R = 1
V

defines an integrating factor in Ω\{V = 0}
of the system (1.1).

The inverse integrating factor is among the tools that are used in the study of the
existence and non-existence of limit cycles. The following theorem, proved in [35], gives
an important relation between a limit cycle and an inverse integrating factor.
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Theorem 1.4. [35] Let V : Ω → R be an inverse integrating factor of (1.1). If Γ is a
limit cycle of (1.1), then Γ is contained in the set

Γ = {(x, y) ∈ Ω : V (x, y) = 0}

Exponential factor

There is another object, which is called exponential factor, which plays the same role as
the invariant algebraic curves to obtain a first integral of a polynomial differential system
(1.1).

Definition 1.21. Let h, g ∈ R[x, y] either be coprime polynomials in the ring R[x, y], or
h ≡ 1. Then, for the polynomial differential system (1.1), the function exp(g/h) is an
exponential factor if there is a polynomial K ∈ R[x, y] of degree at most m − 1, such that:

X
(

exp
(

g

h

))
= K exp

(
g

h

)
Then, for the exponential factor exp(g/h) we stated that K was its cofactor. Since the
exponential factor cannot vanish, it does not define invariant curves of the polynomial
system (1.1).

1.7 Limit cycles

We have seen that the solutions tend towards a singular point. Another possible behavior
for a trajectory is to tend towards a periodic movement, in the case of a planar system,
this means that the trajectories tend towards what is called a limit cycle. Limit cycles
were introduced for the first time by H. Poincaré in 1881 [47] in his "Mémoire sur les
courbes définies par une équation différentielle".

Definition 1.22. A limit cycle of system (1.1) is an isolated periodic solution in the set
of all periodic solutions of system (1.1). Isolated means that neighborhood trajectories are
note closed, they will either spiral away or towards the limit cycle.

Remark 1.8. 1. If all neighborhood trajectories approach the limit cycle, then the limit
cycle is stable, otherwise the limit cycle is unstable.

2. If a limit cycle is contained in an algebraic curve of the plane, then we say that it
is algebraic, otherwise it is called non-algebraic limit cycle.

3. Limit cycles are nonlinear phenomena, they do not occur in linear system. Because
in linear system if x(t) is a periodic solution, then cx(t) will be a solution for any
constant c ̸= 0.
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1.7.1 Existence and non existence of limit cycles in the plane

In this subsection, we give some results which allow us it possible to prove the existence
or the non existence of limit cycles for a polynomial differential system (1.1).

Theorem 1.5. [36] Consider two closed curves C and C ′, one surrounding the other. If
in each point of C, the velocity vector field (P, Q) of the trajectory passing through it is
directed towards outside, and if at each point of C ′ it is directed inwards, then there exists
at least a limit cycle between C and C ′. See Figure 1.5.

Figure 1.5: Existence of limit cycle located between C and C ′

Theorem 1.6. [35] Let (P, Q) be a vector field of class C1 defined on a non-empty open set
D of R2, (x (t) , y (t)) a periodic solution of period T of the system (1.1) and K : D → R
a C1 map such that ∫ T

0
K (x (t) , y (t)) dt ̸= 0,

and U = U (x, y) a C1 solution of the linear partial differential equation

P (x, y)∂U (x, y)
∂x

+ Q(x, y)∂U (x, y)
∂y

= K(x, y)U (x, y) ,

then the closed trajectory

Γ = {(x (t) , y (t)) ∈ D : t ∈ [0, T ]} ,

is contained in
Σ = {(x, y) ∈ D : U (x, y) = 0} ,

and Γ is not contained in a period annulus of (P, Q). Moreover, if the vector field (P, Q)
and the functions K and U are analytic, then Γ is a limit cycle.

Theorem 1.7. (Bendixon criterion). Let D be a simply connected domain of R2. If
the quantity ∂P

∂x
+ ∂Q

∂y
is not identically zero and of constant sign on D, then the vector

field X does not admit a limit cycle entirely contained in D.
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Theorem 1.8. [27] If the system (1.1) has no singular point, then it has no limit cycles.

Example 1.1. [13] Consider a polynomial differential system ẋ = y,

ẏ = −
((

4x2 − 1
)

y + x5 − x3 + 2x
)

.
(1.4)

It is clear that the curve F (x, y) =
(
y + x

(
x2 − 1

))2
+ 2x2 − 2 = 0 satisfies the partial

differential equation

P (x, y)∂U

∂x
+ Q(x, y)∂U

∂y
= K(x, y)U (x, y) ,

with cofactor
K(x, y) = −2x2.

Moreover, we have
∫ T

0
K (x (t) , y (t)) dt ̸= 0, thus the curve F (x, y) = 0 is hyperbolic

limit cycle, see Figure 1.6.

Figure 1.6: Algebraic limit cycle of polynomial differential system (1.4).

1.7.2 Stability of limit cycles

We consider Γ the trajectory corresponding to the limit cycle of system (1.1), the
neighboring trajectories are not closed and should be have something like Γ. Neighboring
trajectories can either spiral towards Γ or away from Γ, then Γ is a limit cycle: stable,
unstable or semi-stable depending on whether the close curves spirals towards Γ, away
from Γ, or both respectively.
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Theorem 1.9. a. The limit cycle Γ is stable (or attractive), if the interior and exterior
trajectories spirals tend towards the closed orbit when t → +∞

b. The limit cycle Γ is unstable (or repulsive), if the interior and exterior trajectories
spirals tend towards the closed orbit when t → −∞

c. The limit cycle Γ is semi-stable, if the interior spiral trajectories tend towards the
closed orbit when t → +∞, the others (external) tend towards when t → −∞, and vice
versa.

Figure 1.7: Stable limit cycle. Figure 1.8: Unstable limit cycle.

Figure 1.9: Semi-stable limit cycle.

1.8 Return map (Poincaré Map)

One of the most basic tool for studying the stability of periodic orbits is the Poincaré map
or first return map, defined by Henri Poincaré in 1881[48]. The idea of the Poincaré map
is the following: If Γ is a periodic orbit of the system (1.1) through the point X0 = (x0, y0)
and Σ is a hyperplane perpendicular to Γ at X0, then for any X = (x, y) ∈ Σ sufficiently
near X0, the solution of (1.1) through X at t = 0, will cross Σ again at a point Π (X)
near X0, (Figure 1.10). The mapping X → Π (X) is called the Poincaré map. The next
theorem establishes the existence and continuity of the Poincaré map Π (X) and of its
first derivative DΠ (X).

Theorem 1.10. [46] Let Ω be an open subset of R2. Suppose that Φt (X0) is a periodic
solution of (1.1) of period T and that the cycle

Γ = {X ∈ R2/X = Φt (X0) , 0 ≤ t ≤ T},

is contained in Ω. Let Σ be the hyperplane orthogonal to Γ at X0; i.e., let

Σ = {X ∈ Rn / (X − X0) . (P (X0) , Q (X0)) = 0}.
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Figure 1.10: The Poincaré map.

Then there is δ > 0 and a unique function τ(X), defined and continuously differentiable
such that τ(X0) = T and Φτ(X) (X) ∈ Σ for all X ∈ Nδ (X0) .

Definition 1.23. Let Γ, Σ, δ and τ(X) be defined as in Theorem 1.10. Then for X ∈
Nδ (X0) ∩ Σ, the function

Π (X) = Φτ(X) (X)

is called the Poincaré map for Γ at X0.

Theorem 1.11. [46] Let Γ (t) be a periodic solution of (1.1) of period T . Then the
derivative of the Poincaré map Π (s) along a straight line Σ normal to

Γ =
{
X ∈ R2 / X = Γ (t) − Γ (0) 0 ≤ t ≤ T

}
at X = (0, 0) is given by

Π′ (0, 0) = exp
∫ T

0
div (P (Γ (t)) , Q (Γ (t))) dt

The following corollary characterizes the stability of a limit cycle

Corollary 1.1. Under the hypotheses of Theorem 1.11, the periodic solution Γ (t) is a
stable limit cycle if ∫ T

0
div (P (Γ (t)) , Q (Γ (t))) dt < 0,

and it is an unstable limit cycle if∫ T

0
div (P (Γ (t)) , Q (Γ (t))) dt > 0.

It may be a stable, unstable or semi-stable limit cycle or it may belong to a continuous
band of cycles if ∫ T

0
div (P (Γ (t)) , Q (Γ (t))) dt = 0.
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Remark 1.9. The limit cycle Γ (t) is said to be hyperbolic if∫ T

0
div (P (Γ (t)) , Q (Γ (t))) dt ̸= 0.

Example 1.2. Consider the polynomial differential system ẋ = −y + x
(
1 − x2 − y2

)
,

ẏ = x + y
(
1 − x2 − y2

)
,

we remark that this system admit a unique equilibrium point at origin (0, 0) and a limit
cycle Γ given by (x (t) , y (t)) = (cos t, sin t)T . The Poincaré map for Γ can be found by
solving this system written in polar coordinates ṙ = r

(
1 − r2

)
,

θ̇ = 1,

with r (0) = r0 and θ (0) = θ0. The first equation can be solved either as a separable
differential equation or as a Bernoulli equation. The solution is given by

r (t, r0) =
[
1 +

(
1
r2

0
− 1

)
e−2t

]−1
2

,

θ (t, θ0) = t + θ0.

If Σ is the ray θ = θ0 through the origin, then Σ is perpendicular to Γ and the trajectory
through the point (r0, θ0) ∈ Σ ∩ Γ at t = 0 intersects the ray θ = θ0 again at t = 2π. It
follows that the Poincaré map is given by

Π (r0) = r (2π, r0) =
[
1 +

(
1
r2

0
− 1

)
e−4π

]−1
2

.

Clearly Π(1) = 1 corresponding to the cycle Γ and we see that

Π′ (r0) = e−4π

r3
0

[
1 +

(
1
r2

0
− 1

)
e−4π

]−3
2

,

and that Π′(1) = e−4π < 1, then Γ is a stable limit cycle.

1.9 The 16th Hilbert problem

In 1900, David Hilbert [39] presented in International Congress of Mathematicians in
Paris, a list of 23 Problems, one of the unsolved problem up to now is the sixteenth
problem. The 16th Hilbert problem has two parts, the first concerns the number of real
branches (ovals) of a plane real algebraic curve and their relative positions. The second
part is to decide an upper bound for the number of limit cycles in polynomial vector fields
of a given degree and similar to the first part, investigate their relative positions, see [21],
[51].
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Chapter 2
Explicit non-algebraic limit cycle of
a family of polynomial differential
systems of degree even
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2.1 Introduction

One of the difficult problems in the qualitative theory is to detect if a planar polynomial
differential system (1.1) is integrable or not and also to know if its limit cycles when they
exist are algebraic or not, as well as the determination of their explicit expressions. Up
to now all the examples of polynomial differential systems of the form (1.1) for which non
algebraic limit cycles are known explicitly have degree odd. We can mention for instance
in chronological order, the works of J. Giné and M. Grau [37] for n = 9, A. Gasull [32]
for n = 5, Al-Dossary [2] for n = 5, Benterki and Llibre [16] for n = 3, Bendjeddou and
Cheurfa [14] for n = 5, Bendjeddou and Berbache [9] for n = 2k + 1, (k ∈ N∗).
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2. EXPLICIT NON-ALGEBRAIC LIMIT CYCLE OF A FAMILY OF POLYNOMIAL DIFFERENTIAL SYSTEMS OF
DEGREE EVEN

Our objective in this chapter, is to study a polynomial differential systems of degree
even of the form

ẋ = n
(
(αx − y) (wx + vy + l) + vx2 − y (l + wx)

) (
(a + b) x2 + (a − b) y2 + 2cxy

)n

+x (wx + vy + l)n+1 ,

ẏ = n
(
(x + αy) (wx + vy + l) − wy2 + x (l + vy)

) (
(a + b) x2 + (a − b) y2 + 2cxy

)n

+y (wx + vy + l)n+1 ,

(2.1)
where a, b, c, w, v, l and α are real constants and n is strictly positive integer (n ∈ N∗).
Moreover, under some suitable conditions we prove that this system is integrable and it
possess an explicit non-algebraic limit cycle.
Noted that this result was published in the Journal of An. Ştiinţ. Univ. Al. I. Cuza Iaşi.
Mat. (N.S.), Tomul LXV, 2019, f. 2 [19].
In order to present our main result, we use the change of variables in polar coordinates
(r, θ) defined by x = r cos θ and y = r sin θ. Then the system (2.1) can be written as
follows

ṙ = n (a + b cos 2θ + c sin 2θ)n
(
lα + ((cos θ) (v + wα) + (sin θ) (vα − w)) r2n+1

)
+ (l + r (w cos θ + v sin θ))n+1 r

θ̇ = n ((a + b cos 2θ + c sin 2θ))n (2l + r (w cos θ + v sin θ)) r2n

(2.2)

2.2 Statement of the main result

Our main result in this chapter is the following.

Theorem 2.1. Consider a polynomial differential system (2.1), the following statement
hold:

• If α < 0, w ≥ 0, l > 0, a > |b| + |c| and b2 + c2 ̸= 0, then system (2.1) has an explicit
non algebraic limit cycle, given in polar coordinates (r, θ) by

r (θ, r∗) = 1
2

(
g (θ) ρ

1
n (θ, r∗) +

√(
g (θ) ρ

1
n (θ, r∗)

)2
+ 4lρ

1
n (θ, r∗)

)
,

where

ρ (θ, r∗) = enθα

(
r2n

∗
(wr∗ + l)n + f (θ)

)
,

f (θ) =
∫ θ

0

e−nαs

(a + b cos 2s + c sin 2s)n ds,

g (θ) = w cos θ + v sin θ, and
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DEGREE EVEN

r∗ = 1
2


√√√√√we2πα

(
−f (2π)

e2(πnα) − 1

) 1
n

2

+ 4le2πα

(
−f (2π)

e2(πnα) − 1

) 1
n

+ we2πα

(
−f (2π)
e2πnα − 1

) 1
n

 .

Moreover, this limit cycle is a stable hyperbolic limit cycle.

The following lemmas also gives some important results. The first lemma is concerned
by the equilibrium points of system (2.1).

Lemma 2.1. If a > |b| + |c| , then the origin is an unstable node and if exist another
equilibrium point then they are present in the straight line

vy + wx + 2l = 0.

The second lemma determine the integrability of differential system (2.1)

Lemma 2.2. System (2.1) is integrable with the first integral

H (x, y) =
(

x2 + y2

(wx + vy + l)

)n

e−αn arctan y
x −

∫ arctan y
x

0

e−αns

(a + b cos 2s + c sin 2s)n ds

2.3 Proof of the main result

First, we start by the proof of lemmas

Proof of lemma 2.1. Firstly, we have

xẏ − yẋ = n
(
x2 + y2

)
(2l + vy + wx)

(
(a + b) x2 + (a − b) y2 + 2cxy

)n

Thus, the equilibrium points of system (2.1) are present in the equation curve’s

n
(
x2 + y2

)
(2l + vy + wx)

(
(a + b) x2 + (a − b) y2 + 2cxy

)n
= 0.

Since a > |b| + |c|, then the equilibrium points of system (2.1) are present in the straight
line

vy + wx + 2l = 0, (2.3)

and the origin of coordinates which is an unstable node because its eigenvalues are ln+1 > 0
with multiplicity two, for more details see for instance [[29], Theorem 2.15].

Proof of lemma 2.2. The differential system (2.1) where θ̇ ̸= 0 can be written as the
equivalent differential equation

dr

dθ
= r (l + r (w cos θ + v sin θ))n+1

n ((a + b cos 2θ + c sin 2θ))n (2l + r (w cos θ + v sin θ)) r2n
(2.4)

+nr2n+1 (a + b cos 2θ + c sin 2θ)n (lα + ((cos θ) (v + wα) + (sin θ) (vα − w)) r)
n ((a + b cos 2θ + c sin 2θ))n (2l + r (w cos θ + v sin θ)) r2n

.
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Via the change of variables ρ = r2n

(l + r (w cos θ + v sin θ))n , then

dρ

dθ
= n ((w cos θ + v sin θ) r + 2l) r2n−1

((w cos θ + v sin θ) r + l)n+1
dr

dθ
− n (v cos θ − w sin θ) r2n+1

((w cos θ + v sin θ) r + l)n+1 ,

and the equation (2.4) is transformed into the linear equation

dρ

dθ
= nαρ + 1

(a + b cos 2θ + c sin 2θ)n . (2.5)

The general solution of linear equation (2.5) is

ρ (θ) = enθα (k + f (θ)) ,

where k ∈ R, f (θ) is the function defined in the statement of Theorem 2.1. Consequently,
the general solution of (2.4) is

F (θ, r) = r2n

(l + rg (θ))n − enθα (k + f (θ)) = 0, (2.6)

where k ∈ R, f (θ) , g (θ) are the functions defined in the previous theorem. Going back
through the changes of variables r2 = x2+y2 and θ = arctan y

x
, we obtain the first integral

H (x, y) =
(

x2 + y2

(wx + vy + l)

)n

e−αn arctan y
x −

∫ arctan y
x

0

e−αns

(a + b cos 2s + c sin 2s)n ds.

Proof of Theorem 2.1. From solution (2.6) we can obtain a two different values of r:
one of them is equal to

r1 (θ, k) = 1
2

(
g (θ) ρ

1
n (θ, k) −

√(
g (θ) ρ

1
n (θ, k)

)2
+ 4lρ

1
n (θ, k)

)

and we do not consider this case, because since − (|w| + |v|) < g (θ) < (|w| + |v|), then
r1(θ) can not be strictly positive.
The second value is

r1 (θ, k) = 1
2

(
g (θ) ρ

1
n (θ, k) +

√(
g (θ) ρ

1
n (θ, k)

)2
+ 4lρ

1
n (θ, k)

)

where
ρ (θ, k) = eαnθ (k + f (θ)) .

Notice that system (2.1) has a periodic orbit if and only if equation (2.4) has a strictly
positive 2π− periodic solution. This, moreover, is equivalent to the existence of a solution
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of (2.4) that satisfies r(0, r∗) = r(2π, r∗) and r(θ, r∗) > 0 for any θ in [0, 2π]. To go a step
further, we remark that the solution such as r(0, r0) = r0 > 0, corresponds to the value

k = r2n
0

(l + wr0)n

The solution r(θ, r0) of the differential equation (2.4) such that r(0, r0) = r0 is

r (θ, r0) = 1
2

(
g (θ) ρ

1
n (θ, r0) +

√(
g (θ) ρ

1
n (θ, r0)

)2
+ 4lρ

1
n (θ, r0)

)

where
ρ (θ, r0) = enθα

(
r2n

0
(l + wr0)n + f (θ)

)
.

A periodic solution of system (2.1) must satisfy the condition r(2π, r0) = r(0, r0). Since
g(0) = g(2π) = w, then r(2π, r0) = r(0, r0) if and only if ρ(2π, r0) = ρ(0, r0) and there
are two different values with the property r(2π, r0) = r0, so one of them is equal to

−1
2


√√√√√we2πα

(
−f (2π)
e2πnα − 1

) 1
n

2

+ 4le2πα

(
−f (2π)
e2πnα − 1

) 1
n

− we2πα

(
−f (2π)
e2πnα − 1

) 1
n



and we do not consider this case because since a > |b|+|c| then e−αns

(a + b cos 2s + c sin 2s)n >

0, for all θ ∈ R, thus
∫ θ

0

e−nαs

(a + b cos 2s + c sin 2s)n ds > 0 for all θ ∈ R.

Since α < 0, w ≥ 0, l > 0, it follows that
(

−f (2π)
e2πnα − 1

) 1
n

> 0 and

√√√√√we2πα

(
−f (2π)
e2πnα − 1

) 1
n

2

+ 4le2πα

(
−f (2π)
e2πnα − 1

) 1
n

> we2πα

(
−f (2π)
e2πnα − 1

) 1
n

,

thus

−1
2


√√√√√we2πα

(
−f (2π)
e2πnα − 1

) 1
n

2

+ 4le2πα

(
−f (2π)
e2πnα − 1

) 1
n

− we2πα

(
−f (2π)
e2πnα − 1

) 1
n

 < 0.

We only take into consideration the following value r∗ which satisfies r(2π, r∗) = r∗ > 0

r∗ = 1
2


√√√√√we2πα

(
−f (2π)
e2πnα − 1

) 1
n

2

+ 4le2πα

(
−f (2π)
e2πnα − 1

) 1
n

+ we2πα

(
−f (2π)
e2πnα − 1

) 1
n

 .

After the substitution of these value r∗ into r(θ, r0) we obtain

r (θ, r∗) = 1
2

(
g (θ) ρ

1
n (θ, r∗) +

√(
g (θ) ρ

1
n (θ, r∗)

)2
+ 4lρ

1
n (θ, r∗)

)
, (2.7)
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where ρ (θ, r∗) and g (θ) are the functions defined in the statement of Theorem 2.1. Clearly

the curve (r(θ) cos θ, r(θ) sin θ) in the (x, y) plane with

r2n

(l + rg (θ))n − enθα

(
r2n

∗
(l + wr∗)n + f (θ)

)
= 0, (2.8)

is not algebraic, due to the expression enθα r2n
∗

(l + wr∗)n . In what follows we prove that the

straight line (2.3) does not intersect the orbit (2.8). This straight line in polar coordinates
becomes rg(θ) + 2l = 0 where g(θ) is the function defined in the statement of Theorem
2.1. To show this, we have to show that the system

(
r2

(l + rg (θ))

)n

− enθα

(
r2n

∗
(l + wr∗)n + f (θ)

)
= 0,

rg(θ) + 2l = 0,

(2.9)

has no solution.
Indeed the system (2.9) can be written as(

r2

−l

)n

− enθα

(
r2n

∗
(l + wr∗)n + f (θ)

)
= 0,

which leads

r2 = −lenθα

(
r2n

∗
(l + wr∗)n + f (θ)

) 1
n

. (2.10)

Since r∗ > 0, w ≥ 0, l > 0 and f(θ) > 0 for all θ ∈ R, then

ρ (θ, r∗) = enθα

(
r2n

∗
(l + wr∗)n + f (θ)

)
> 0, (2.11)

for all θ ∈ R. By (2.11) and taking into l > 0 singular points satisfying (2.10) do not
exist. Hence, (2.9) has no solution. To show that r(θ, r∗) is a periodic solution, we have
to show that:

i) the function θ → r(θ, r∗) is 2π−periodic.
ii) r(θ, r∗) > 0, for all θ ∈ [0, 2π[. This last condition ensures that r(θ, r∗) is well

defined for all θ ∈ [0, 2π[ and the periodic solution do not pass through the equilibrium
point (0, 0) of system (2.1).
Periodicity. Since the function g(θ) is 2π -periodic, it follows that r(θ, r∗) is 2π−periodic
if and only if ρ(θ, r∗) is 2π-periodic and we have

ρ (θ + 2π, r∗) = eαn(θ+2π)
(

r2n
∗

(l + wr∗)n

)
+ eαn(θ+2π)f (θ + 2π) (2.12)

= eαn(θ+2π)
(

−e2πnα

e2πnα − 1f (2π)
)

+ eαn(θ+2π)f (θ + 2π) ,
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we have

f (θ + 2π) =
∫ θ+2π

0

e−αns

(a + b cos 2s + c sin 2s)n ds

= f (2π) +
∫ θ+2π

2π

e−αns

(a + b cos 2s + c sin 2s)n ds,

we make the change of variable u = s−2π in the integral
∫ θ+2π

2π

e−αns

(a + b cos 2s + c sin 2s)n ds

we get

f (θ + 2π) = f (2π) +
∫ θ

0

e−αn(u+2π)

(a + b cos 2 (u + 2π) + c sin 2 (u + 2π))n du

= f (2π) + e−2αnπf (θ) .

We replace f (θ + 2π) by f (2π) + e−2αnπf (θ) in (2.12), and after some calculations we

obtain that
ρ (θ + 2π, r∗) = ρ (θ, r∗) .

Since g(θ) and ρ (θ, r∗) are a 2π−periodic functions, then r (θ, r∗) is also 2π−periodic
function.
Strict positivity of r(θ, r∗) for all θ ∈ [0, 2π[. Since l > 0, and taking into (2.11), then
4lρ

1
n (θ, r∗) > 0, thus

r (θ, r∗) = 1
2

(
g (θ) ρ

1
n (θ, r∗) +

√(
g (θ) ρ

1
n (θ, r∗)

)2
+ 4lρ

1
n (θ, r∗)

)
> 0,

for all θ ∈ [0, 2π[. In order to prove that the periodic orbit is hyperbolic limit cycle,
we consider (2.7), and introduce the Poincaré return map λ → Π(2π, λ) = r(2π, λ).

Therefore, a limit cycles of system (2.1) is hyperbolic if, and only if dr(2π, λ)
dλ

∣∣∣∣∣
λ=r∗

̸= 1,

where

r∗ = 1
2


√√√√√we2πα

(
−f (2π)
e2πnα − 1

) 1
n

2

+ 4le2πα

(
−f (2π)
e2πnα − 1

) 1
n

+ we2πα

(
−f (2π)
e2πnα − 1

) 1
n

 ,

after some calculations we obtain that
dr(2π, λ)

dλ

∣∣∣∣∣
λ=r∗

= e2πα < 1.

Consequently the limit cycle of the differential equation (2.4) is hyperbolic and stable, for
more details see [46]. This completes the proof of Theorem 2.1.

2.4 Applications

In this section, we present some examples to illustrate the applicability of our main result.
In addition, the phase portraits of all systems in the Poincaré disk drawn by P4 software.
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2.4.1 Application 1: Differential system of degree 4

Example 2.1. If we take α = v = b = −1, c = 0, w = l = 1, a = 2, n = 1, then system
(2.1) reads  ẋ = x (x − y + 1)2 −

(
2x2 − y2 + xy + x + 2y

) (
x2 + 3y2

)
,

ẏ = y (x − y + 1)2 −
(
3xy − x2 + y − 2x

) (
x2 + 3y2

)
.

(2.13)

It is easy to verify that all conditions of Theorem 2.1 are satisfied. Then system (2.13)
has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is

r (θ, r∗) = 1
2

(
g (θ) ρ (θ, r∗) +

√
(g (θ) ρ (θ, r∗))2 + 4ρ (θ, r∗)

)

where ρ (θ, r∗) = e−θ

(
r2

∗
(r∗ + 1) +

∫ θ

0

es

(2 − cos 2s)

)
, g (θ) = cos θ − sin θ, θ ∈ R and the

intersection of the limit cycle with the OX+ axis is the point

r∗ = 1.1877.

Moreover,
dr(2π, λ)

dλ

∣∣∣∣∣
λ=r∗

= e−2π < 1.

This limit cycle is a stable hyperbolic limit cycle. See Figure 2.1.

Figure 2.1: Non-algebraic limit cycle of quartic polynomial differential system (2.13).
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2.4.2 Application 2: Differential system of degree 6

Example 2.2. In the system (2.1), we take α = −2, w = b = 2, c = l = 1, v = −1, a =
4, n = 2, then we obtain ẋ = 2

(
(−2x − y) (2x − y + 1) − x2 − y (1 + 2x)

) (
6x2 + 2y2 + 2xy

)2
+ x (2x − y + 1)3 ,

ẏ = 2
(
(x − 2y) (2x − y + 1) − 2y2 + x (1 − y)

) (
6x2 + 2y2 + 2xy

)2
+ y (2x − y + 1)3 .

(2.14)
which has a non-algebraic, stable and hyperbolic limit cycle whose expression in polar
coordinates (r, θ) is

r (θ, r∗) = 1
2

(
g (θ) ρ

1
2 (θ, r∗) +

√(
g (θ) ρ

1
2 (θ, r∗)

)2
+ 4ρ

1
2 (θ, r∗)

)

where ρ (θ, r∗) = e−4θ

(
r4

∗

(2r∗ + 1)2 +
∫ θ

0

e4s

(4 + 2 cos 2s + sin 2s)2 ds

)
, g (θ) = 2 cos θ−sin θ,

θ ∈ R and r∗ = 0.448 78, see Figure 2.2.

Figure 2.2: Non-algebraic limit cycle of polynomial differential system (2.14).
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2.4.3 Application 3: Differential system of degree 8

Example 2.3. let α = −1, w = v = 1, b = −2, c = 0, l = 2, a = 3, n = 3, then the system
(2.1) becomes ẋ = 3

(
(−x − y) (x + y + 2) + x2 − y (2 + x)

) (
x2 + 5y2

)3
+ x (x + y + 2)4 ,

ẏ = 3
(
(x − y) (x + y + 2) − y2 + x (2 + y)

) (
x2 + 5y2

)3
+ (x + y + 2)4 ,

(2.15)

It is easy to verify that all conditions of Theorem 2.1 are satisfied. We conclude that
system (2.15) has a non-algebraic limit cycle whose expression in polar coordinates (r, θ)
is

r (θ, r∗) = 1
2

(
g (θ) ρ

1
3 (θ, r∗) +

√(
g (θ) ρ

1
3 (θ, r∗)

)2
+ 8ρ

1
3 (θ, r∗)

)

where ρ (θ, r∗) = e−θ

(
r6

∗

(r∗ + 2)3 +
∫ θ

0

e3s

(3 − 2 cos 2s)3 ds

)
, g (θ) = cos θ + sin θ, θ ∈ R and

the intersection of the limit cycle with the OX+ axis is the point

r∗ = 4.712 5

Moreover,
dr(2π; λ)

dλ

∣∣∣∣∣
λ=r∗

= e−4π < 1.

This limit cycle is a stable hyperbolic limit cycle, see Figure 2.3.

Figure 2.3: Non-algebraic limit cycle of polynomial differential system (2.15).
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Chapter 3
Two non-algebraic limit cycles of a
class of polynomial differential
systems with non-elementary
equilibrium point
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3.4.2 Differential systems with two algebraic limit cycles . . . . . . . 47

3.1 Introduction

One of the important problem in the qualitative theory of differential equations is to
solve the second part of the 16th problem out of 23 problems that Hilbert presented at
the International Congress of Mathematicians in Paris (1900), see [39]. In which Hilbert
asked for an upper bound for the maximum number of limit cycles of all polynomial
differential systems of degree n of the form (1.1) . We recall that a limit cycle of system
(1.1) is an isolated periodic solution in the set of all periodic solutions of system (1.1). If a
limit cycle is contained in an algebraic curve of the plane, then we say that it is algebraic,
otherwise it is called non-algebraic. The problem of existence of non algebraic limit cycles
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and their numbers are the most difficult problems in dynamical planar systems. Up to
now, all the examples of polynomial differential systems for which non-algebraic limit
cycles are known explicitly have one non algebraic limit cycle or two explicit limit cycles
one is algebraic and another non-algebraic surronding an elementary equilibrium points,
see for instance [2, 9, 10, 11, 12, 15, 14, 22, 32].

In this chapter, we are interested in studying the integrability and the existence of
limit cycles for a differential systems with degenerate non-elementary singular point of
the form



ẋ = 2x
(
x2 + y2

)k
+
(

γ −
(
x2 + y2

)k
)(

2c
(
x2 + y2

)k
− bP2k (x, y)

)
×
(

aγx − (ax − 4ky)
(
x2 + y2

)k
)

,

ẏ = 2y
(
x2 + y2

)k
+
(

γ −
(
x2 + y2

)k
)(

2c
(
x2 + y2

)k
− bP2k (x, y)

)
×
(

aγy − (ay + 4kx)
(
x2 + y2

)k
)

,

(3.1)

where a, b, c, γ ∈ R, and k are positive integer (k ∈ N∗) , and P2k(x, y) is homogeneous
polynomial of degree 2k such that

P2k(x, y) =
k−1∑
s=0

(−1)s

(
2k

2s + 1

)
x2k−2s−1y2s+1, (3.2)

where
(

2k

2s + 1

)
= 2k!

(2s + 1)! (2k − 2s − 1)! . Moreover, under some suitable conditions we

will show that our systems exhibiting two non algebraic limit cycles surrounding a non
elementary equilibrium point at origin or two algebraic limit cycles explicitly given. It
should be noted that, to our knowledge, there is no such result in the mathematical
literature.

Noted that this result was published in the journal of Tatra Mt. Math. Publ. 79
(2021), 33–46 [7].

Remark 3.1. We say that a singular point is non-elementary if both of the eigenvalues
of the linear part of the vector field at that point are zero, and elementary otherwise. A
non elementary singular point is called degenerate if its linear part is identically zero,
otherwise it is called nilpotent.
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3.2 Statement of the main result

As a main result, we shall prove the following Theorem

Theorem 3.1. Consider the polynomial differential system (3.1). Then the following three
statements hold

1. System (3.1) is Darboux integrable with the Liouvillian first integral

I (x, y) =
((

x2 + y2
)k

− γ
)2

e−a arctan y
x −

∫ arctan y
x

0

e−as

c − 1
2b sin 2ks

ds.

2. If a < 0, b ̸= 0, c >
1
2 |b| , γ > 0 and aγ2

(
c − 1

2 |b|
)

+ 1 < 0, then the system (3.1)
has two explicit non-algebraic limit cycles, given in polar coordinates (r, θ) by

r1 (θ, r∗
1) =

(
γ +

√
φ (θ, r∗

1)
) 1

2k

,

r2 (θ, r∗
2) =

(
γ −

√
φ (θ, r∗

2)
) 1

2k

,

where
φ (θ, r∗

i ) = eaθ
((

(r∗
i )2k − γ

)2
+ g (θ)

)
, i = 1, 2,

g (θ) =
∫ θ

0

e−as

c − 1
2b sin 2ks

ds,

r∗
1 =

γ +
√

e2πa

1 − e2πa
g (2π)

 1
2k

,

r∗
2 =

γ −
√

e2πa

1 − e2πa
g (2π)

 1
2k

.

3. If b = 0, ac < 0, γ > 0 and γ2 + 1
ac

> 0, then system (3.1) has two explicit algebraic
limit cycles, given in Cartesian coordinates (x, y) by((

x2 + y2
)k

− γ
)2

+ 1
ac

= 0.

Next Lemma collects some results which we need to show the statements of Theorem
3.1.

Lemma 3.1. Let a < 0, c >
1
2 |b| , aγ2

(
c − 1

2 |b|
)

+ 1 < 0 and γ > 0, then the following
statements hold

1. The function Φ (θ) = γ2e−aθ − g (θ) is strictly increasing, for all θ ∈ [0, 2π[, where
g (θ) is a function defined in previous theorem.

2. e2πa

1 − e2πa
g (2π) < γ2e−aθ − g (θ) .

3. 0 < φ (θ) < γ2, where φ (θ) = eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
.
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3.3 Proof of the main result

Proof of statement (a) of Lemma 3.1. We remark that the function Φ is differen-
tiable for all θ ∈ [0, 2π[, then

dΦ
dθ

= − e−aθ

c − 1
2b sin 2kθ

(
aγ2

(
c − 1

2b sin 2kθ
)

+ 1
)

.

Since a < 0, c >
1
2 |b| and γ > 0, then

0 < c − 1
2 |b| < c − 1

2b sin 2kθ <
1
2 |b| + c

and
aγ2

(1
2 |b| + c

)
+ 1 < aγ2

(
c − 1

2b sin 2kθ
)

+ 1 < aγ2
(

c − 1
2 |b|

)
+ 1.

Since aγ2
(

c − 1
2 |b|

)
+ 1 < 0, then aγ2

(
c − 1

2b sin 2kθ
)

+ 1 < 0, hence Φ′ (θ) > 0.

Consequently the function Φ is strictly increasing.

Proof of statement (b) of Lemma 3.1. Because Φ (θ) is strictly increasing then we
have Φ (0) < Φ (θ) < Φ (2π) equivalent to

γ2 < γ2e−aθ − g (θ) < γ2e−2πa − g (2π) . (3.3)

We remark that γ2 < γ2e−2πa − g (2π) which implies that

g (2π) < γ2
(
e−2πa − 1

)
= γ2 (1 − e2πa)

e2πa
,

since a < 0, then
e2πa

1 − e2πa
g (2π) < γ2, (3.4)

Taking into account (3.3) we obtain

e2πa

1 − e2πa
g (2π) < γ2e−aθ − g (θ) .

Proof of statement (c) of Lemma 3.1. First, we prove that φ (θ) < γ2, from the

statement 2 of Lemma 3.1, we have

φ (θ) = eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
,

then

φ (θ) < eaθ
(
γ2e−aθ − g (θ) + g (θ)

)
= γ2.
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Consequently

φ (θ) < γ2.

Since c >
1
2 |b| we get that g (θ) > 0 and we have a < 0, it follows that e2πa

1 − e2πa
g (2π) > 0,

hence φ (θ) > 0. Consequently 0 < φ (θ) < γ2, for all θ ∈ [0, 2π[. This complete proof of
Lemma 3.1.

Proof of Theorem 3.1. Firstly, we have

xẏ − yẋ = −4k
(

γ −
(
x2 + y2

)k
)(

2c
(
x2 + y2

)k
− bP2k (x, y)

) (
x2 + y2

)k+1
.

Thus, the equilibrium points of system (3.1) are present in the equation curve’s

4k
(

γ −
(
x2 + y2

)k
)(

2c
(
x2 + y2

)k
− bP2k (x, y)

) (
x2 + y2

)k+1
= 0. (3.5)

In polar coordinates (r, θ) where x = r cos θ and y = r sin θ the function P2k (x, y) reads
as

P2k (r cos θ, r sin θ) =
k−1∑
s=0

C2s+1
2k (−1)s (r cos θ)2k−2s−1 (r sin θ)2s+1

= r2k sin (2kθ) .

Then, the curve’s (3.5) can be written as

4kr2k
(
γ − r2k

)
(2c − b sin (2kθ)) r2k+2 = 0.

From the condition c >
1
2 |b| , we have 2c − b sin (2kθ) > 0, then the equilibrium points of

system (3.1) are present on the curve

r2k
(
γ − r2k

)
= 0,

we deduce that the origin is an equilibrium point which is a degenerate non–elementary
singular point of system (3.1), because the linear part of this system is identically zero,
and any other equilibrium point, if exists must lies on the curve

(
x2 + y2

)k
− γ = 0. (3.6)

To prove our results we write the polynomial differential system (3.1) in polar coordinates
(r, θ) defined by x = r cos θ and y = r sin θ. Then the system become ṙ = r2k+1

(
2 + a (2c − b sin 2kθ)

(
γ − r2k

)2
)

,

θ̇ = −4k (2c − b sin 2kθ)
(
γ − r2k

)
r4k.

(3.7)
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The differential system (3.7) where 4k (2c − b sin 2kθ)
(
γ − r2k

)
r4k ̸= 0 can be written as

the equivalent differential equation

dr

dθ
=

r
(

2 + a (2c − b sin 2kθ)
(
γ − r2k

)2
)

−4k (2c − b sin 2kθ) (γ − r2k) r2k
. (3.8)

Via the change of variables φ =
(
r2k − γ

)2
, the equation (3.8) is transformed into the

linear equation
dφ

dθ
= aφ + 1

c − 1
2b sin 2kθ

. (3.9)

The general solution of this equation is

φ (θ, h) = eaθ (h + g (θ)) , (3.10)

where h ∈ R and g (θ) =
∫ θ

0

e−as

c − 1
2b sin 2ks

ds. Consequently, the implicit solution of

equation (3.8) is given by (
r2k − γ

)2
= eaθ (h + g (θ)) .

By passing to cartesian coordinates, we deduce the first integral is

I (x, y) =
((

x2 + y2
)k

− γ
)2

e−a arctan y
x −

∫ arctan y
x

0

e−as

c − 1
2b sin 2ks

ds.

Since this first integral is a function that can be expressed by quadratures of elementary
functions, it is a Liouvillian function, and consequently system (3.1) is Darboux integrable.
Notice that system (3.1) has a periodic orbit if and only if the equation (3.8) has a strictly
positive 2π-periodic solution. The solution satisfying the initial condition r(0, r0) = r0 > 0
is given by h =

(
r2k

0 − γ
)2

. Then, the implicit solution of equation (3.8) with this initial
condition is (

r2k − γ
)2

= eaθ
((

r2k
0 − γ

)2
+ g (θ)

)
. (3.11)

Since φ =
(
r2k − γ

)2
, it is clear that r (2π, r0) = r (0, r0) if and only if φ (2π, r0) =

φ (0, r0) , we have

φ0 = φ (0, r0) =
(
r2k

0 − γ
)2

and φ (2π, r0) = e2πa
((

r2k
0 − γ

)2
+ g (2π)

)
.

Then, the condition φ (2π, r0) = φ (0, r0) implies that

(
r2k

0 − γ
)2

= e2πa

1 − e2πa
g (2π) . (3.12)

Thus
φ (θ) = eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
.
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The implicit form of the solution of (3.8) can be written as

(
r2k − γ

)2
= eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
, (3.13)

From the expression of the change of variables φ =
(
r2k − γ

)2
that transform (3.8) into

(3.9), we get

r1 (θ) =
(

γ +
√

φ (θ)
) 1

2k

,

r2 (θ) =
(

γ −
√

φ (θ)
) 1

2k

.

These two solutions are strictly positive because we have γ > 0 and from the statement
(3) of Lemma 3.1 we have 0 < φ (θ) < γ2.

From (3.12), there are two different values of r0 with the property

r(2π, r0) = r0 > 0,

given by

r∗
1 =

γ +
√

e2πa

1 − e2πa
g (2π)

 1
2k

,

r∗
2 =

γ −
√

e2πa

1 − e2πa
g (2π)

 1
2k

.

Since a < 0, γ > 0 and by (3.4) we have e2πa

1 − e2πa
g (2π) < γ2, then r∗

1 > 0 and r∗
2 > 0.

After the substitution of the values r∗
i , i = 1, 2 into ri (θ) , i = 1, 2 we obtain

r1 (θ, r∗
1) =

(
γ +

√
φ (θ, r∗

1)
) 1

2k

, (3.14)

r2 (θ, r∗
2) =

(
γ −

√
φ (θ, r∗

2)
) 1

2k

.

where
φ (θ, r∗

i ) = eaθ
((

(r∗
i )2k − γ

)2
+ g (θ)

)
, i = 1, 2.

To show that ri (θ) , i = 1, 2 are periodic solutions, we have to show that
a) There does not exist any singular point of (3.13).
b) The functions θ 7−→ ri (θ) , i = 1, 2 are 2π -periodic.
c) ri (θ) > 0, i = 1, 2 for all θ ∈ [0, 2π[.

a) We first prove that there is no singular point of (3.13). In particular, we shall prove
that the curve (3.6) does not intersect the orbit (3.13). This curve in polar coordinates
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becomes r2k − γ = 0. To show this, we have to show that the system
(
r2k − γ

)2
) − eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
= 0,

r2k − γ = 0.

(3.15)

has no solutions.
From the second equation of system (3.15) we get that r2k = γ, we replace this value in the

first equation we obtain eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
= 0, which is a contradiction because

eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
= φ (θ) and from Lemma 3.1 we have 0 < φ (θ) < γ2. So

(3.15) has no solutions.

b) Periodicity. From (3.14) we say that ri (θ, r∗
i ) , i = 1, 2 are 2π-periodic if and only if

φ (θ) is 2π-periodic, then we have

φ (θ + 2π) = ea(θ+2π)
(

e2πa

1 − e2πa
g (2π) + g (θ + 2π)

)
. (3.16)

However,

g (θ + 2π) =
∫ θ+2π

0

e−as

c − 1
2b sin 2ks

ds

= g (2π) +
∫ θ+2π

2π

e−as

c − 1
2b sin 2ks

ds.

In the integral
∫ θ+2π

2π

e−as

c − 1
2b sin 2ks

ds, we use the change of variable w = s − 2π, we

obtain

g (θ + 2π) = g (2π) +
∫ θ

0

e−a(w+2π)

c − 1
2b sin 2k (w + 2π) dw

= g (2π) + e−2πag (θ) .

We replace g (θ + 2π) by g (2π)+e−2πag (θ) in (3.16), and after some calculations we obtain
φ (θ + 2π) = φ (θ), hence φ (θ) is 2π-periodic. Consequently the functions ri (θ, r∗

i ) , i =
1, 2 are also 2π-periodic.

c) Strict positivity of ri (θ, r∗
i ) , i = 1, 2, for all θ ∈ [0; 2π[. Since 0 < φ (θ) < γ2 and

γ > 0, we have γ2 > φ (θ) , which implies γ >
√

φ (θ), hence

γ −
√

φ (θ) > 0 and γ +
√

φ (θ) > 0.

Therefore ri (θ, r∗
i ) , i = 1, 2 are strictly positive.

In order to prove that the periodic orbit is hyperbolic limit cycles, we introduce the
Poincaré return map

λ → Π(2π, λ) = r(2π, λ).
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Therefore, the periodic orbits of system (3.1) are hyperbolic limit cycles if and only if
dri(2π, λ)

dλ

∣∣∣∣∣
λ=r∗

i

̸= 1, i = 1, 2 where

r∗
1 =

γ +
√

e2πa

1 − e2πa
g (2π)

 1
2k

, r∗
2 =

γ −
√

e2πa

1 − e2πa
g (2π)

 1
2k

,

We have

r1 (2π, λ) =
(

γ +
√

e2aπ
(
(λ2k − γ)2 + g (2π)

)) 1
2k

,

r2 (2π, λ) =
(

γ −
√

e2aπ
(
(λ2k − γ)2 + g (2π)

)) 1
2k

.

After some calculations we obtain

dr1(2π, λ)
dλ

∣∣∣∣∣
λ=r∗

1

= dr2(2π, λ)
dλ

∣∣∣∣∣
λ=r∗

2

= e2πa ̸= 1.

Consequently the limit cycles of the differential equation (3.8) are hyperbolic (see for
instance [46].

Now we prove that these two limit cycles are not algebraic for b ̸= 0. The curve defined
by these two limit cycles is

(
r2k − γ

)2
− eaθ

(
e2πa

1 − e2πa
g (2π) + g (θ)

)
= 0. (3.17)

More precisely, in Cartesian coordinates r2 = x2 + y2, θ = arctan y

x
, this curve can be

written as

G (x, y) =
((

x2 + y2
)k

− γ
)2

− ea arctan y
x

(
e2πag (2π)
1 − e2πa

+
∫ arctan y

x

0

e−as

c − 1
2b sin 2ks

ds

)
= 0.

(3.18)
We remark that G (x, y) = 0 does not a polynomial because there is no integer n for
which both ∂nG

∂xn
and ∂nG

∂yn
vanish identically, for example when calculating ∂G

∂x
note that

the expression ea arctan y
x

(
e2πa

1 − e2πa
g (2π) +

∫ arctan y
x

0

e−as

c − 1
2b sin 2ks

ds

)
appear again, so for

any order of derivation this expression will appear. Therefore the curve G (x, y) = 0 is
non-algebraic and the limit cycles of the system (3.1) will also be non-algebraic.

Proof of statement (3) of Theorem 3.1. If we take b = 0, we get g (θ) =
1
ac

(
1 − e−aθ

)
and g (2π) = 1

ac

(
1 − e−2πa

)
. Then

φ (θ) = −1
ac

,
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Going back through the changes of variables
(
r2k − γ

)2
= φ and by passing to Cartesian

coordinates (x, y), we obtain ((
x2 + y2

)k
− γ

)2
+ 1

ac
= 0.

The system (3.1) has two algebraic limit cycles if and only if ac < 0, γ >

√
− 1

ac
. This

complete the proof of Theorem 3.1.

3.4 Applications

The following examples illustrate our result
For k = 1, we have P2 (x, y) = 2xy.

For k = 2, we have

P4(x, y) =
(

4
1

)
x3y + (−1)

(
4
3

)
xy3

= 4x3y − 4xy3.

3.4.1 Differential systems with two non-algebraic limit cycles

Example 3.1. If we take γ = c = 2, b = 1, a = −1, then system (3.1) reads

ẋ = 2x
(
x2 + y2

)k
+
(

2 −
(
x2 + y2

)k
)(

4
(
x2 + y2

)k
− P2k (x, y)

)
×
(

−2x + (x + 4ky)
(
x2 + y2

)k
)

,

ẏ = 2y
(
x2 + y2

)k
+
(

2 −
(
x2 + y2

)k
)(

4
(
x2 + y2

)k
− P2k (x, y)

)
×
(

−2y − (4kx − y)
(
x2 + y2

)k
)

.

(3.19)

This system has two non algebraic limit cycles whose expressions in polar coordinates
(r, θ) are

r1 (θ, r∗
1) = 2 +

√
e−θ

((
(r∗

1)2 − 2
)2k

+ g (θ)
)

,

r2 (θ, r∗
2) = 2 −

√
e−θ

((
(r∗

2)2k − 2
)2

+ g (θ)
)

where

g (θ) =
∫ θ

0

es

2 − 1
2 sin 2ks

ds

r∗
1 =

2 +
√

e−2π

1 − e−2π
g (2π)

 1
2k

,

r∗
2 =

2 −
√

e−2π

1 − e−2π
g (2π)

 1
2k

.
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Case k=1 Case k=2

Figure 3.1: Two non-algebraic limit cycles for system (3.19) in Poincaré disc.

3.4.2 Differential systems with two algebraic limit cycles

Example 3.2. Let γ = c = 2, b = 0 and a = −1, then the system (3.1) becomes
ẋ = 2x

(
x2 + y2

)k
− 4

(
x2 + y2

)k
(

2 −
(
x2 + y2

)k
)(

2x − (x + 4ky)
(
x2 + y2

)k
)

,

ẏ = 2y
(
x2 + y2

)k
− 4

(
x2 + y2

)k
(

2 −
(
x2 + y2

)k
)(

2y + (−y + 4kx)
(
x2 + y2

)k
)

.

(3.20)
We remark that this system satisfy the conditions of statement (3) of Theorem 3.1, hence
system (3.20) possess two algebraic limit cycles, these two limit cycles given in Cartesian
coordinates by the expression ((

x2 + y2
)k

− 2
)2

− 1
2 = 0.

Case k=1 Case k=2

Figure 3.2: Two algebraic limit cycles for system (3.20) in Poincaré disc.
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Chapter 4
Limit cycles: A numerical approach
using the P4 software

Contents
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4.4 P4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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4.1 Introduction

The existence of limit cycle is one of the important and difficult studies of planar polyno-
mial differential systems. In the last years several research papers have appeared on this
topic. But there are a few works which study the explicit expression of these limit cycles.
This thesis is part of this perspective. Although theorems can be applied to prove the
existence of a limit cycle, giving the explicit expression of these limit cycles is a difficult
task. In this situation, requiring to use the numerical method is useful, to have an idea
on the configuration of the planar polynomial differential systems which admits this limit
cycle. Recently a software has been designed to plot the phase portrait of any polynomial
differential systems. Moreover, and if we do not know a theorem of existence of a limit
cycle, for a given differential systems, this software can determine if it exists or not.

In this chapter, we will present a software based on the theory of differential polyno-
mial planar systems. This software is used to draw the phase portrait of any polynomial
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differential system on the plane. This software is called P4 it is abbreviation of Poly-
nomial Planar Phase Portraits.

Our main reference in this part is based on chapter 9 of the book "Qualitative Theory
of Planar Differential Systems" by Dumortier, Llibre and Artés [29].

4.2 History of P4

P4 [5] is a software designed by A.C Artés, C. Herssens, P. De Maesschalck, F. Dumortier
and J. Llibre. The first version of P4, It only works on UNIX or LINUX, It was written
partly in C and partly in REDUCE. It ran only under a UNIX or LINUX system and
its developer was mainly C. Herssens. The new version of P4 has changed the symbolic
language from REDUCE to MAPLE, and can now be implemented more easily in any
system, either WINDOWS, UNIX or MACINTOSH OS-X, as long as MAPLE is available.
The new version has been developed by De Maesschalck. It is possible to work in numerical
mode or in mixed mode, i.e, if possible, the calculations are done in algebraic mode.

4.3 Functionality of P4

In this section, we present the essential structure and possibilities of P4 for study a
polynomial differential systems.

1. P4 draws the phase portraits on either the Poincaré disc, or on a Poincaré-Lyapunov
disc for all polynomial differential system of any degree.

2. P4 determines all finite and infinite singularieties of the vector field. It distin-
guishes between the different type of singularities (saddle, node, focus, center, semi
hyperbolic saddle-nodes, degenerate). To distinguish between focus behavior and
weak focus behavior in the singularities of purely imaginary eigenvalues, P4 uses
the Lyapunov coefficients method.

3. P4 has the possibility to find the limit cycles (i.e. isolated periodic orbits for all
periodic solution) of any degree of polynomial differential system, and it able to
draw the separatrix of vector field.
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4.4 P4 Algorithm

We consider a polynomial differential system of the form
ẋ = dx

dt
= P (x, y) ,

ẏ = dy

dt
= Q (x, y) ,

(4.1)

where P and Q are real polynomials in the variables x and y of degree
n = max(deg (P ) , deg (Q)). The vector field of this system is P (x, y) ∂

∂x
+ Q (x, y) ∂

∂y
.

For studying the phase portrait of a polynomial differential system (4.1), P4 uses the
following steps :

Step1: Eliminated the Greatest Common Factor (GCF) of a differential system, using
Maple. In the following steps we will assume that the GCF has been eliminated.

Step 2: Studying the system at the finite region, i.e. determining the real finite
singularities. This is done evaluate algebraically or numerically. Suppose (x0, y0) is a
singular of system (4.1) then P (x0, y0) = Q (x0, y0) = 0. Define the Jacobian matrix

J (x0, y0) =


∂P

∂x
(x0, y0)

∂P

∂y
(x0, y0)

∂Q

∂x
(x0, y0)

∂Q

∂y
(x0, y0)


The linearization of the system (4.1) is given in matrix form by:

 ẋ

ẏ

 =


∂P

∂x
(x0, y0)

∂P

∂y
(x0, y0)

∂Q

∂x
(x0, y0)

∂Q

∂y
(x0, y0)


 x

y


We distinguish the different cases according to the eigenvalues λ1 and λ2 of the matrix
J (x0, y0):

a . The eigenvalues λ1, λ2 are the opposite sign, then (x0, y0) is a saddle.

b . The eigenvalues λ 1, λ2 are the same sign and nonzero, then (x0, y0) is a node.

c . The eigenvalues are complex conjugates with λj = α ± iβ and α ̸= 0, β ̸= 0, then
(x0, y0) is a focus.

d . The eigenvalues are pure imaginary i.e. Im (λj) ̸= 0 and Re (λj) = 0, ∀j = 1, 2,
then (x0, y0) is a center.

e . The eigenvalues λ1, 0 with λ1 ̸= 0, λ2 = 0, then (x0, y0) is a semi-elementary.

f . The eigenvalues λ1 = λ2 = 0 and J (x0, y0) ̸= 0, then (x0, y0) is a nilpotent or
degenerate.
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Step 3: Calculating the invariant separatrices.
Step 4: Studying the system at infinity, we make use of the Poincaré disc. Let

χ (x, y) = (P (x, y) , Q (x, y)) be a polynomial vector field of degree n. Consider the
Poincaré sphère S2 =

{
(y1; y2; y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1
}

. The Poincaré compactifica-
tion of χ denoted by p (χ) . The singular points of p (χ) are called the infinite singular
points of χ or p (χ) . To study the vector field p (χ) we use six local charts on S2 given by

Uk =
{
y ∈ S2 : yk > 0

}
; Vk =

{
y ∈ S2 : yk < 0

}
for k = 1, 2, 3.

The corresponding local maps Φk : Uk → R2 and Ψk : Vk → R2. The expression for p (χ)
in local chart (U1, Φ1) is given by


u̇ = vn

[
−uP

(1
v

,
u

v

)
+ Q

(1
v

,
u

v

)]
,

v̇ = −vn+1P
(1

v
,
u

v

)
.

The expression for p (χ) in local chart (U2, Φ2) is given by


u̇ = vn
[
P
(

u

v
,
1
v

)
− uQ

(
u

v
,
1
v

)]
,

v̇ = −vn+1Q
(

u

v
,
1
v

)
.

The expression for (U3, Φ3) is  u̇ = P (u, v) ,

v̇ = Q (u, v) .
(4.2)

Remark 4.1. The expression for p(χ) in the charts (Vk, Ψk) is the same as for (Uk, Φk)
multiplied by (−1)n−1 for k = 1, 2, 3. Geometrically the coordinates (u, v) can be expressed
as in Figure 4.1. For more details on the Poincaré compactification see Chapter 5 of [29].

4.5 Examples for using the P4

In this section we will present some examples about the use of P4, see [5]. For these
examples we will use the program running on a WINDOWS system, and using MAPLE
as symbolic language.

Example 4.1. Consider a quadratic polynomial differential system
 ẋ = y(x + 2y + 3) + ax + x2,

ẏ = −x(x + 2y + 3) + ay + y2.
(4.3)
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Figure 4.1: The local charts (Uk, Φk) for k=1,2,3 of the Poincaré sphere.

Using the integrability method, we are not able to find the explicit expression of limit cycle,
but we can determine the position of limit cycle and all phase portrait of this system using
P4. For the study of this system in P4 we use the following steps.

Firstly, you open the main window of P4. At the button of the window you see two
fields where you can introduce the equation of the vector field. In the x′ you write y ∗ (x +
2 ∗ y + 3) + a ∗ x + xˆ2 and in the y′ field −x ∗ (x + 2 ∗ y + 3) + a ∗ y + yˆ2. Since there
is no line of singularities, you can leave the Gcf field equal to 1. Next you must click on
the Number of parameters option and set how many parameters you are using. Fix it to
just one parameter. In the new line opened below write the name of parameter in the left
column and fixed number in the second column. In this case you put a = 0.25. To save
this system, press the Save button, then enter a name for it, for example, Example 1.
Clicking Evaluate button, P4 using Maple for studying numerically this system, you see
in the Output window a message as in Figure 4.2. With a View menu button, you see that
the system has two finite singular points one of them is the origin (0, 0) which is a strong
unstable focus, and the second point is (1.2961974577354, −1.4632709341136) which is a
saddle point. and there also a node in infinite. By clicking the Plot button in the main
window you see a green box and a red box which represent a finite saddle and unstable
weak focus respectively. On the circle you see one blue box which represents the stable
node at infinity, and a red box, which represents the unstable node at infinity. For more
information about the symbols that you have in the drawing space you press the Legend
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Figure 4.2: The end of the calculations.

button will open the Legend window, see Figure 4.3. Click to the Plot All Separatrices

Figure 4.3: The legend P4 window
.

button there will appear some lines in blue and red. These lines are the stable and unstable
separatrices. To obtain a global vision of the phase portrait more orbits have to be drawn,
see Figure 4.4. This is conclusive proof of the existence of at least one limit cycle. You
may easily remember that if a red separatrix spirals around a red point (or blue around
blue) you have a limit cycle.
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Figure 4.4: Stable and unstable separatrices of system (4.3)
.

You can confirm this existence of limit cycle by another way. Click the Limit Cycles
button in the Phase Portrait window. In this window the user has to give two points
forming a segment which he suspects is cut by at least one limit cycle. Fill this window
as follows

Figure 4.5: Limit Cycle window.

where x0, y0: Defines the first point of the line segment.
x1, y1: Defines the last point of the line segment. The user can select these two points
by clicking the left button of the mouse on the first point, and while holding the button
down, moving the mouse to the second point and releasing the button.
Grid: Determines the precision up to which the limit cycles will be determined.
Points: This parameter equals the number of steps the Runge–Kutta 7/8 method has to
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do each time we want to integrate an orbit with initial condition a point of the segment.
Press starting button in the previous window and after a time you will see the limit cycle
portrayed in purple, see Figure 4.6.

Figure 4.6: The limit cycle of system (4.3) with a=0.25.

Example 4.2. The van der Pol oscillator, which was discovered by Van der Pol (1926).
The Van der Pol equation has a long history of being used in both the physical and biological
sciences. The second-order differential equation that governs the Van Der Pol oscillator
is:

ẍ +
(
x2 − 1

)
ẋ + x = 0,

which is written in phase plan as: ẋ = y,

ẏ = −
(
x2 − 1

)
y − x.

By the same steps of study in Example 4.1. Firstly, enter this system into P4, and
evaluate it in Numeric mode, click View button you see that the system has one finite
singular points which is a strong unstable focus at origin (0, 0). In infinity there are two
pairs of singularities, one a semi-hyperbolic saddle at origin in local chart U1 and the
other a non-elementary point in local chat U2. By pressing the Plot button of the main
window you see one red box which represents the unstable strong focus. On the circle you
see two green triangles and two more crosses, which represent a pair of semi-hyperbolic
saddles and the non-elementary singular points at infinity, respectively. Now if you press
the Plot All Separatrices button, there will appear some lines in red. Two more clicks on
the same button give you a better idea of what those separatrices do. All this proof the
existence of at least one limit cycle see Figure 4.7.
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Figure 4.7: Limit cycle of Van Der Pol equation in Poincaré disc.

Example 4.3. Consider two populations whose sizes at a reference time are denoted by
x(t), y(t) , respectively. The functions x and y might denote population numbers or con-
centrations (number per area) or some other scaled measure of the populations sizes, but
are taken to be continuous functions. Changes in population size with time are described by
the time derivatives ẋ ≡ dx

dt
and ẏ ≡ dy

dt
, respectively, and a general model of interacting

populations is written in terms of two autonomous differential equations ẋ = xf (x, y) ,

ẏ = yg (x, y) .

This general model is often called Kolmogorov’s predator-prey model. We consider cubic
Kolmogorov vector field

 ẋ = (x + p)
(
y(x + 2y + 3) + ax + x2

)
,

ẏ = (y + q)
(
−x(x + 2y + 3) + ay + y2

)
.

(4.4)

Introduce this system in P4. Firstly using the following values of parameters a =
0.25, p = q = 4 and evaluate it in Numeric mode. By pressing the View button you
see that the system has five finite singular points which are two saddles at the points
(−4., −4), (1.2961974577354, −1.4632709341136) and two unstable nodes at the points
(−4., −8.7092802052231), (−4, 0.45928020522306) and one an unstable strong focus at ori-
gin. At infinity, you see that the system in local chart U1 has two stable nodes at the points
(0, 0) , (−2, 0) and one saddle at the point (−1, 0). In local chart U2 the origin is a saddle.
Clicking the Plot button of the main window you see one red box which represents a finite
strong unstable focus and two green boxes for the saddles and two blue squares represents
a stables nodes. On the circle you see green and blue boxes for the saddles and nodes
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respectively. Now if you press the Plot All Separatrices button, there will appear some
lines in red and blue. These lines are the unstable and stable separatrices of the finite
saddles. you see that the red line of separatrice around the red box which represents the
unstable strong focus all this confirm the existence of at least limit cycle surrounding the
origin, see Figure 4.8.

Figure 4.8: The phase portrait in the Poincaré disc of cubic Kolmogorov differential
system (4.4), with limit cycle included.
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Conclusion and Outlook

In the qualitative theory of differential systems in the plane, a limit cycle is an isolated
periodic solution in the set of all periodic solutions of the system. This concept was
defined by Poincaré in several papers. Limit cycles have been shown to model many
real-world phenomena. The nonexistence, the existence, the maximum number and other
properties of limit cycles have been widely studied by mathematicians and physicists and
more recently by biologists, economists and engineers. It is interesting to know the num-
ber of these limit cycles of a given differential system, but their location in the orbits of
the system is also an interesting problem. On the other hand, determining the explicit
expression for the limit cycle is a more difficult task. In this thesis, we have studied the
integrability and the existence of limit cycles of some classes of planar polynomial differ-
ential systems. Our contribution has been materialized by two new results. Firstly, we
have determined a sufficient conditions for which a class of planar polynomial differential
systems of degree even, have a explicit non-algebraic limit cycle . On the other hand, we
have constructed a class of differential systems of degree 6k + 1,(k ∈ N∗) , we have stud-
ied their integrability, then we have shown that it has a two non-algebraic limit cycles
surrounding a non-elementary equilibrium point at origin, these limit cycles are explicitly
constructed. To our knowledge, there are no such type of examples in the mathematical
literature.

In the outlook:

• It is convenient to construct a class of differential systems of degree n = 5 or n = 3,
with two non algebraic limit cycles surrounding a non elementary equilibriuim point.

• On the other hand, we have considered applying our results to models from other
disciplines.

• We search a numerical method for determine a limit cycles of non integrable differ-
ential systems.
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cm! ملخص
اولا الخطية. غير المستوي في الحدود كثيرة التفاضلية النظم أصناف لبعض النوعية الدراسة هو الأطروحة هذه من الهدف
حد دورة وجود معينة شروط تحت أثبتنا ثم ، الزوجية الدرجة من التفاضلية النظم من لفئة التكامل قابلية بدراسة قمنا
التكامل، قابلية درسنا ،(k ∈N∗), 6k + 1 الدرجة من التفاضلية النظم من اخرى فئة قدمنا ثانيا الفئة. لهذه ية جبر غير
التكاملات لكل الصريحة المعادلات تحديد من تمكنا ذلك إلى بالإضافة جبريتين، غير حديتين دورتين تقبل انها اثبتنا ثم
التي النتائج لتوضيح الأمثلة بعض قدمنا كما المدروسة. الأصناف لجميع عليها العثور تم التي ية الجـبر غير الحد ودورات الأولية
التفاضلية للنظم الحلول تصرفات رسم على تساعد التي P 4 برمجية عن لمحة قدمنا الأخير وفي صنف. لكل عليها الحصول تم

المستوي. في الحدود كثيرة
في الحدود كثيرة التفاضلية النظم ية، دور حلول ية، جبر غير نهائية حد دورات ، نهائية حد دورات : المفتاحية الكلمات

الأولي. التكامل المستوي،

Résumé
L'objectif de cette thèse est l'étude qualitative de quelques classes de systèmes différentiels pla-
naires polynomiaux non linéaire. Dans un premier temps, nous avons étudié l'intégrabilité et
l'existence d'un cycle limite non algébrique d'une classe de systèmes différentiels de degré pair,
de plus, on a déterminé leurs expressions explicites. D’autre part, nous avons introduit une autre
classe de systèmes différentiels de degré 6k + 1, (k ∈ N∗), nous avons étudié leur intégrabili-
té, puis nous avons montré qu'elle possède deux cycles limites non algébriques explicitement
données. On a donné quelques exemples pour illustrer nos résultats obtenus. Finalement, on a
donné une description du fonctionnement du logiciel P4, qui sert à tracer le portrait de phases
des solutions des systèmes différentiels planaires polynomiaux.

Mots clés : Cycle limite, cycle limite non algébrique, solution périodique, systèmes différen-
tiels planaires, intégrale première.

Abstract
The objective of this thesis is the qualitative study of some classes of nonlinear planar poly-
nomial differential systems. Firstly, we have studied the integrability and the existence of a
non-algebraic limit cycle of a class of differential systems of degree even, moreover, we have
determined their explicit expression. On the other hand, we have introduced another class of
differential systems of degree 6k +1, (k ∈N∗), we have studied their integrability, then we have
shown that it has a two non-algebraic limit cycles explicitly given.We have given some examples
to illustrate the results obtained for each class. Finally, we gave a description of the operation of
the P4 software, which is used to draw the phase portrait of the solutions of planar polynomial
differential systems.

Keywords : Limit cycle, non algebraic limit cycle, periodic solution, planar polynomial dif-
ferential systems, integrability, first integral.
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