
 الجمهورية الجزائرية الديمقراطية الشعبية 

République Algérienne Démocratique et Populaire 

Ministère de L'Enseignement Supérieur et de la Recherche Scientifique 

 

UNIVERSITÉ FERHAT ABBAS - SETIF1 

FACULTÉ DE TECHNOLOGIE 

 

SEÈTH 

Présentée au Département de Génie des Procédés 

Pour l’obtention du diplôme de 

DOCTORAT  

Domaine : Sciences et Technologie 

 

Filière : Génie des procédés   Option : Génie Pharmaceutique  

Par  

HAMMOUDI Nour El Houda  

MEÈTH 

In-silico drug discovery of new potential NF-κB (nuclear factor-kappa B) inhibitors, 

using the computer aided drug design tools 

Soutenue le 24/09/2022 devant le Jury : 

BENANIBA Mohamed Tahar Professeur Univ. Ferhat Abbas Sétif 1 Président 

BENGUERBA Yacine Professeur Univ. Ferhat Abbas Sétif 1 Directeur de thèse 

BENAICHA Mohamed Professeur Univ. Ferhat Abbas Sétif 1 Co-Directeur 

BENTOUHAMI Embarek Professeur Univ. Ferhat Abbas Sétif 1 Examinateur 

KHEMILI TALBI Souad  Professeur Univ. Boumerdes Examinatrice 

EL KOLLI Hayat  M.C.A. Univ. Ferhat Abbas Sétif 1 Examinatrice 

SOBHI Widad Professeur Univ. Ferhat Abbas Sétif 1 Invitée 

 

http://catalogue-biblio.univ-setif.dz/pmb-tech/opac_css/index.php?&lvl=categ_see&id=7294&main=1&id_thes=1


 

CONTENTS 

Contents 
 
Acknowledgements  

Dedication 

List of works………………………………………………………………………………………...I 

List of Abbreviations………………………………………………………………………………III 

List of Figures……………………………………………………………………………………....V 

List of Tables………………………………………………………………………………………VI 

General Introduction ……………………………………………………………………………....1 

References………………………………………………………………………………………….5 

 

CHAPTER I: The Nuclear Factor Kb (Nf-Kb) and its Role in Cancer 

 

I.1. Introduction ............................................................................................................................. 7 

I.2. NF-kB In Human Disease ........................................................................................................ 8 

I.3. Role of NF-κB in cancer .......................................................................................................... 8 

I.3.1.Apoptosis........................................................................................................................... 8 

I.3.2. Activation of NF-kB by IKK ........................................................................................... 10 

I.3.3.NF-kB and the regulation of apoptosis ............................................................................. 10 

I.4. NF-kB and cancer therapy ..................................................................................................... 11 

I.4.1. Current strategies for inhibiting NF-κB ........................................................................... 12 

I.4.1.1. Selective IKK inhibitors ........................................................................................... 12 

I.4.1.2. NSAIDs ................................................................................................................... 13 

I.4.1.3. Proteasome inhibitors ............................................................................................... 13 

I.4.1.4. Other approaches ...................................................................................................... 14 

References ................................................................................................................................... 15 

 
CHAPTER II : Quantitative Structure Activity Relationship study  

 
II.1. Introduction .......................................................................................................................... 19 

II.2. Principle of QSAR model ..................................................................................................... 20 

II.3. Classification of QSAR Methodologies ................................................................................ 21 

II.4. QSAR Model Development Steps ......................................................................................... 21 

II.4.1. Data Preparation ............................................................................................................ 22 

II.4.2 Molecular Descriptors..................................................................................................... 23 

II.4.2.1 Topological Descriptors ........................................................................................... 23 

II.4.2.2. Constitutional Descriptors ....................................................................................... 25 



 

CONTENTS 

II.4.2.3. Quantum Chemical Derived Descriptors .................................................................. 25 

II.4.2.4. Geometrical Descriptors .......................................................................................... 28 

II.4.2.5. Physicochemical descriptors .................................................................................... 28 

II.4.3.  Descriptor Selection Methods in QSAR Study .............................................................. 30 

II.4.3.1. Classical Methods ................................................................................................... 31 

II.4.3.2. Miscellaneous Methods ........................................................................................... 33 

II.4.3.3. Artificial Intelligence-Based Methods ..................................................................... 34 

II.4.4. Modelling Algorithms.................................................................................................... 34 

II.4.4.1 Multiple linear Regression (MLR) ............................................................................ 35 

II.4.4.2 Artificial Neural Networks (ANN) ........................................................................... 37 

II.5. Validation Techniques .......................................................................................................... 39 

II.5.1. Internal Validation ......................................................................................................... 40 

II.5.1.1. Measure of Goodness of Fit ..................................................................................... 40 

II.5.1.2. Cross-Validation ..................................................................................................... 40 

II.5.1.3. Y- Randomization (Scrambling model) ................................................................... 41 

II.5.1.4. Bootstrapping .......................................................................................................... 42 

II.5.2. External Validation ........................................................................................................ 43 

II.5.2.1. Choosing Training and Test Sets: ............................................................................ 43 

II.5.2.2. Evaluating the prediction potential of QSPR models ................................................ 43 

II.6. Applicability domain ............................................................................................................ 44 

II.6.1. Definition ...................................................................................................................... 44 

II.6.2. The importance of the AD in the (Q)SAR life cycle: ...................................................... 44 

II.6.3. Methods for Applicability Domain Determination .......................................................... 45 

References ................................................................................................................................... 47 

 
CHAPTER III: Basics in Molecular Docking  

 
III.1. Introduction ........................................................................................................................ 53 

III .2. Approaches of Molecular Docking ..................................................................................... 54 

III.3. Applications of Molecular Docking ..................................................................................... 56 

III.4. Theory of docking ............................................................................................................... 56 

III.4.1. Search Algorithms ........................................................................................................ 56 

III.4.1.1. Ligand Sampling.................................................................................................... 57 

III.4.1.2. Protein flexibility ................................................................................................... 59 

III.4.2. Scoring Functions ......................................................................................................... 61 

III.4.2.1. Physics-Based Scoring Functions ........................................................................... 61 

III.4.2.2. Empirical Scoring Function.................................................................................... 62 



 

CONTENTS 

III.4.2.3. knowledge-based scoring function ......................................................................... 62 

III.4.2.4. Machine Learning-Based ....................................................................................... 63 

III.5. Molecular Dynamics Simulation.......................................................................................... 63 

III.6. Molecular Docking Methodology ........................................................................................ 64 

III.6.1. Ligands preparation ...................................................................................................... 64 

III.6.2. Protein Preparation and grid generation ........................................................................ 64 

III.6.3. Docking ....................................................................................................................... 64 

III.6.4. Docking Validation ...................................................................................................... 64 

III.7. Molecular docking databases ............................................................................................... 64 

III.8. Molecular docking software ................................................................................................ 65 

 

References ................................................................................................................................... 66 

 

CHAPTER IV: Results and Discussion  

 
Part I: In silico drug discovery of IKK-β inhibitors from 2-amino-3-cyano-4-alkyl-6-(2 

hydroxyphenyl) pyridine derivatives based on QSAR, docking, molecular dynamics and 

drug likeness evaluation studies 
IV.1. QSAR Methodology ........................................................................................................... 70 

IV.1.1 Data set ......................................................................................................................... 70 

IV.1.2. Compound preparation and calculation methods ........................................................... 71 

IV.1.3. QSAR models analysis ................................................................................................. 72 

IV.1.4. Applicability domain and compound conception........................................................... 75 

IV.2. Molecular Docking Methodology ........................................................................................ 79 

IV. 2.1.   Ligands preparation ................................................................................................... 79 

IV. 2.2. Protein Preparation and grid generation ....................................................................... 79 

IV. 2.3.  Docking Study ........................................................................................................... 80 

IV.2.4 Docking Validation ....................................................................................................... 80 

IV.2.5. All Atom Molecular dynamics (MD) ............................................................................ 80 

IV.2.6. Molecular docking study .............................................................................................. 81 

IV.2.7. Molecular Dynamics Simulations ................................................................................. 88 

IV.3. Druglikness properties ........................................................................................................ 89 

IV.4 Conclusion ........................................................................................................................... 94 

 Part II: Comparative Study Between Many Predictive QSAR models (MLR and ANN 

Regressions) 
IV.1. QSAR Methodology ........................................................................................................... 95 

IV.1.1. Data set ...................................................................................................................... 106 

IV.1.2. Compound preparation and calculation methods ......................................................... 106 

IV.1.3. Molecular Descriptors Calculation and selection......................................................... 106 



 

CONTENTS 

IV.1.4. 2-D QSAR -MLR Model Generation ...................................................................... 108 

IV.1.5. Model Evaluation ....................................................................................................... 109 

IV.1.6. ANN models Set up.................................................................................................... 113 

IV.1.7. Examination of outliers in a regression-based quantitative structure-activity 

relationship……………………………………………………………………………………...120 
 

IV.1.8. Importance of significant molecular descriptors in MLR and [8.11.11.1] ANN QSAR models

 .............................................................................................................................................. 123 

IV.1.9. Models Comparison…………………………………………………………………….124 

IV.2. Conclusion…………………………………………………………………………………..126 

References ................................................................................................................................. 126 

General Conclusion……………………………………………………………………….……….128 

 

 

 

 

 

 

 

 

 



 

ACKNOWLEDGEMENT 

 
 

In the name of "Allah", who gave me the will, patience, and health to complete 

this work. 

I would like to express my special appreciation and thanks to my supervisor Pr. 
Yacine BENGUARBA who gave me the golden opportunity to do this thought-

provoking research project. He has been a tremendous mentor, and adviser for 

me. I am really thankful to him. 

My profuse thanks go to my Co-supervisor Pr. Mohamed BENAICHA for his 

valuable advices. 

I express my sincere gratitude and appreciation to my reading committee 
members, Pr. Mohamad Tahar BENANINBA, Pr. Embarek BENTOUHAMI. 

Pr. Souad KHEMILI TALBI and, Dr. Hayat EL KOLLI for their time to read 

this thesis and for having accepted to judge this work. 

I would especially like to thank Pr. Widad SOBHI for the support she has given 

me, her advice that has been of assistance throughout this work. 

I should also thank all my lab members and my friends for their support. 

Finally, I must express my very profound gratitude to my parents and my 
husband for providing me with boundless support and continuous 

encouragement throughout my years of study. This accomplishment would not 

have been possible without them. 

 

 

 

 

 

 

 

Thank you! 

 

 

 

 
 



 

Dedicated 

To 

My father 

For supporting and encouraging me to believe in myself 

My Mother 

A strong and gentle soul who taught me to trust in Allah and believe in hard work 

My Lovely sister 

Sarah 

My brothers Abdellatif and Rafik 

My Husband  

My Father-in-law 

My Mother-in-law  

My Sister -in-law 

My best friends 

and 

To all who will be there during my presentation 

 



 

LIST OF WORKS 

List of Works 

International Publications  

1. Hammoudi. N. E. H., Benguerba. Y., Sobhi W., QSAR modeling of thirty active compounds for the 

inhibition of the Acetylcholinesterase enzyme, proceeding of Current Research in Bioinformatics 2020 

2. Lemaoui T., Hammoudi. N. E. H., Benguerba. Y., Molecular Docking of new active compounds towards 

the Acetylcholinesterase enzyme, proceeding of Current Research in Bioinformatics 2020 

3. Lemaoui.T., Hammoudi, N. E. H., Alnashef, I. M., Balsamo, M., Erto, A., Ernst, B., & Benguerba, Y. 

(2020). Quantitative structure properties relationship for deep eutectic solvents using Sσ-profile as 

molecular descriptors. Journal of Molecular Liquids, 113165. 

4. Lemaoui, T., Darwish, A. S., Hammoudi, N. E. H., Abu Hatab, F., Attoui, A., Alnashef, I. M., & 

Benguerba, Y. (2020). Prediction of Electrical Conductivity of Deep Eutectic Solvents Using COSMO-

RS Sigma Profiles as Molecular Descriptors: A Quantitative Structure–Property Relationship Study. 

Industrial & Engineering Chemistry Research, 59(29), 13343-13354. 

5. N. E. H, Hammoudi, Y. Benguerba., A. Attoui, Hognon, C., Lemaoui, T., Sobhi, W., ... & Monari, A. 

(2020). In silico drug discovery of IKK-β inhibitors from 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) 

pyridine derivatives based on QSAR, docking, molecular dynamics and drug-likeness evaluation studies. 

Journal of Biomolecular Structure and Dynamics 2020. 

6. A. Attoui., Sobhi, W, Hammoudi, N. E. H, Y. Benguerba., Hognon, C., Lemaoui, 2020, Fragment-Based 

Drug Design of Antitumoral Molecules Polo-like kinase 1 inhibitors: in-silico approach. Journal of letters 

in drug design and discovery  

7. N. E. H, Hammoudi, Sobhi, W., Attoui, A., Lemaoui, T., Erto, A., & Benguerba, Y. (2020). In silico drug 

discovery of Acetylcholinesterase and Butyrylcholinesterase enzymes inhibitors based on Quantitative 

Structure-Activity Relationship (QSAR) and drug-likeness evaluation. Journal of Molecular Structure, 

129845. 

8. Lemaoui, T., Darwish, A.S., Attoui, A., Hatab, F.A., Hammoudi, N.E.H., Benguerba, Y., Vega, L.F. and 

Alnashef, I.M., 2020. Predicting the density and viscosity of hydrophobic eutectic solvents: towards the 

development of sustainable solvents. Green Chemistry, 22(23), pp.8511-8530. 

9. Lemaoui, T., Abu Hatab, F., Darwish, A. S., Attoui, A., Hammoudi, N. E. H., Almustafa, G., ... & 

Alnashef, I. M. (2021). Molecular-Based Guide to Predict the pH of Eutectic Solvents: Promoting an 

Efficient Design Approach for New Green Solvents. ACS Sustainable Chemistry & Engineering, 9(17), 

5783-5808 

10. Ferkous, H., Rouibah, K., Hammoudi, N. E. H., Alam, M., Djilani, C., Delimi, A., ... & Benguerba, Y. 

(2022). The Removal of a Textile Dye from an Aqueous Solution Using a Biocomposite 

Adsorbent. Polymers, 14(12), 2396. 

 

 

 

 

I 



 

LIST OF WORKS 

International Conferences   

1. N.E.H. Hammoudi, Y. Benguerba, W. Sobhi, QSAR modeling of thirty active compounds for the inhibition 

of the Acetylcholinesterase enzyme, International Bioinformatics Day November 05, 2019. At the University 

Library UMBB, Boumerdes, Algeria 

2. T. Lemaoui, N.E.H. Hammoudi, Y. Benguerba, Molecular Docking of new active compounds towards the 

Acetylcholinesterase enzyme, International Bioinformatics Day November 05, 2019. At the University Library 

UMBB, Boumerdes, Algeria 

3. N. E.H. Hammoudi, M. Benaicha, Y. Benguerba, K.E ,Kanouni ,Prévision Quantitative de la toxicité des 

composés nitrobenzènes par modélisation QSTR (Quantitative structure Toxicity Relationship), First 

International Workshop On Environmental Engineering (IWEE’19) November 16,17 2019, setif 

- National Conference 

 N. E.H. Hammoudi, M. Benaicha, Y. Benguerba, Etude de relation quantitative structure–Activité des 

composés chimiques à l’aide des descripteurs moléculaires. (Modélisation QSAR), le premier séminaire de la 

chimie appliqué et la modélisation moléculaire, 26 septembre 2019 Guelma. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

II 



 

LIST OF ACRONYMS 

List of Acronyms 

AD: Applicability domain  

ADMET: Absorption, Distribution, Metabolism, Elimination, and Toxicity  

ANN: Artificial Neural Network  

B3LYP: Becke, three-parameter, Lee-Yang-Parr  

CADD: Computer Aided Drug Design   

CV: Cross-Validation 

CD: Cluster Of differentiation 

c-Flip: Cellular FLICE-like Inhibitory Protein 

c-IAP: Cellular inhibitors of apoptosis 

DNP: Double Numerical with Polarization  

DNA: Deoxyribonucleic acid 

DFT: Density functional theory 

GGA: Generalized gradient approximation 

HOMO: The highest occupied molecular orbitals 

HTS: high throughput screening 

HBD and HBA: Number of Hydrogen-Bond Donors and Acceptors  

IC50: Half maximal Inhibitory Concentration 

IκB: Inhibitory of kappa B 

IKK: Inhibitor of kappa B kinase 

IL: Interleukin 

IL1R : Interleukin 1 receptor 

JNK: c-Jun N-terminal kinases  

LBDD: Ligand-based drug design  

LOO: Leave One Out  

LUMO: Lowest Unoccupied Molecular Orbital  

MLR: Multiple Linear Regressions  

MR: Molar Refractivity 

MM: Molecular Mechanics 

MRP: Multidrug Resistance Protein  

MW: Molecular Weight 

NSAIDs: nonsteroidal anti-inflammatory drugs  

NF-kB: The nuclear factor kB 

NIK: NF‐κB–inducing kinase 

PDB: Protein Data Bank  

 

III 



 

LIST OF ACRONYMS 

PLS: Partial least squares regression  

PRESS: Predictive Residual Sum of the Squares  

PSA: Polar Surface Area  

QSAR: Quantitative structure-activity relationship  

QSPR: Quantitative property-activity relationship 

QM: Quantum mechanics 

RB: Number of Rotatable Bonds  

RMS: Root-Mean Squared  

RNA: Ribonucleic acid 

SAR: Structure–Activity Relationships  

SBDD: Structure-Based Drug Design  

SCID: Severe Combined Immune Deficiency  

SVM: Support Vector Machines 

TI: topological index  

TNF: Tumor necrosis factor 

VS: virtual screening  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

IV 



 

LIST OF FIGURES 

List of Figures  

CHAPTER I 

Figure I.1: Canonical and non-canonical pathways leading to the activation of NF-κB .................. 8 

Figure I.2: Mechanism of Cell Death (Apoptosis) ......................................................................... 9 

Figure I.3: Chemical structure of Dehydroxymethylepoxyquinomicin ......................................... 14 

CHAPTER II 

Figure II.1: The principal steps for QSAR model development ................................................... 22 

Figure II.2: Examples of biological data utilized in QSAR analysis ............................................. 23 

Figure II.3: Descriptor Selection Methods .................................................................................. 31 

Figure II.4:  QSAR Modeling Algorithms ................................................................................... 35 

Figure II.5: Artificial neuron....................................................................................................... 38 

Figure II.6: Biological Neural ..................................................................................................... 38 

Figure II.7: A typical structure of ANN ...................................................................................... 39 

Figure II.8: The applicability domain's essential role in different phases of QSAR ...................... 45 

Figure II.9: Methods for Applicability Domain Determination .................................................... 46 

CHAPTER III 

Figure III.1: Enzyme Activity Model Lock-and-Key ....................................................... 54 

Figure III.2: Molecular Docking Approaches and Their Main Properties .................................... 55 

Figure III.3: Molecular Docking Applications ............................................................................ 56 

Figure III.4: Typical process that is followed when training SF based on machine learning. ........ 63 

Figure III.5: Molecular docking flow chart. ................................................................................ 65 

CHAPTER IV (part 1) 

Figure IV.1: Parity diagram (observed values vs predicted values). ............................. 74 

Figure IV.2: Graph of residuals versus predicted p𝐼𝐶50 values using MLR model. ..................... 75 

Figure IV.3: Applicability domain plot of the MLR model .......................................................... 76 

Figure IV.4: Spatial overlap of the docking position (pink) with the experimental position .......... 81 

Figure IV. 5: Ligand–protein interaction scheme of K252-A compound. ..................................... 83 

Figure IV.6:  Ligand–protein interaction scheme of comp12........................................................ 84 

Figure IV.7: Ligand–protein interaction scheme of A1p compound. ............................................ 86 

Figure IV.8: Ligand–protein interaction scheme of A1m compound. ........................................... 87 

Figure IV.9:  Ligand interaction diagram of the molecule A11m. ................................................ 87 

Figure IV.10: Ligand interaction diagram of the molecule A9p. .................................................. 88 

Figure IV.11: Snapshots extracted at 100ns of the MD trajectory showing the stability of the 

drug/protein complex ................................................................................................................... 89 



 

LIST OF FIGURES 

Figure IV.12:  Lipenski’s rule (rule of five)................................................................................. 90 

Figure IV.13 :  In vitro permeability and clearance trends across MW and LogD ......................... 94 

CHAPTER IV (part 2) 

Figure IV.2.1: Experimental versus predicted p𝐼𝐶50in MLR model .......................................... 110 

Figure IV.2.2: Residual p𝐼𝐶50 versus predicted p𝐼𝐶50 MLR model ......................................... 111 

Figure IV.2.3: [8.11.11.1] architecture configuration of the artificial neural network.. ............... 116 

Figure IV.2.4: Experimental versus predicted p𝐼𝐶50 of training set compounds in ANN model. 117 

Figure IV.2.5: Experimental versus predicted p𝐼𝐶50 of test set compounds in ANN model ....... 117 

Figure IV.2.6: Residual p𝐼𝐶50 versus predicted p𝐼𝐶50 for the training set (ANN model) .......... 117 

Figure IV.2.7: Residual p𝐼𝐶50 versus predicted p𝐼𝐶50 for the test set (ANN model). ............... 118 

Figure IV.2.8:  William plots for the MLR model...................................................................... 122 

Figure IV.2.9: William plots for the ANN model ...................................................................... 122 

Figure IV.2.10 :Descriptors contribution in the MLR model ...................................................... 124 

Figure IV.2.11 : Descriptors contribution in the ANN model ..................................................... 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI 



 

VII 

LIST OF TABLES 

List of Tables  

CHAPTER 1 

Table I.1: Selective IκB kinase inhibitors .................................................................................... 12 

Table I.2: Chemical Structures of sulindac and salicylate ............................................................ 13 

CHAPTER II 

Table II.1: Summary of the application of several developed QSAR models ............................... 20 

Table II.2 : Adjacency Matrix ..................................................................................................... 24 

Table II.3: Example of some constitutional descriptors ............................................................... 25 

Table II. 4: Several used quantum chemical descriptors …………………………………………..26 

CHAPTER III 

Table III.1: Representative software for molecular docking……………………………………….65 

CHAPTER IV (part 1) 

Table IV.1.1. Selected 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine derivatives with 

their experimental p IC50 values. ................................................................................................. 70 

Table IV.1.2.  Statistical results of MLR model. .......................................................................... 72 

Table IV.1.3.  Predictor coefficients of the MLR algorithm ......................................................... 73 

Table IV.1.4. Experimental and predicted values of the thirty 2-amino-3-piperidin-4-alkyl-6-(2-

hydroxyphenyl) pyridine derivatives ............................................................................................ 73 

Table IV.1.5.  New designed compounds with their predicted p𝐼𝐶50 values. ............................... 77 

Table IV.1.6. Docking score of 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine 

derivatives and Interacting residues .............................................................................................. 82 

Table IV.1.7. Docking score of design compounds and interacting residues. ................................ 85 

Table IV.1.8. Veber and Lipinski properties of the thirty 2-amino-3-piperidin-4-alkyl-6-(2-

hydroxyphenyl) pyridine derivatives ............................................................................................ 92 

Table IV.1.9. Veber and Lipinski properties of the new designed compounds .............................. 93 

CHAPTER IV (part 2) 

Table IV.2.1. Chemical structures of the investigated compounds. ............................................... 95 

Table IV.2.2. Calculated Molecular Descriptors and their types ................................................. 107 

Table IV.2.3. Predictor coefficients of the MLR algorithm ........................................................ 108 

Table IV.2.4. Statistical parameters obtained by the MLR model and their threshold values ....... 110 

Table IV.2.5. Experimental and predicted values of the studied compounds based on the MLR model

 .................................................................................................................................................. 111 

Table IV.2.6. Statistical parameters in several neural network architectures based on the number of 

hidden neurons .......................................................................................................................... 113 

Table IV.2.7. Hidden neurons equations of the obtained [8.11.11.1] ANN ................................. 114 

Table IV.2.8. Statistical parameters obtained by the [8.11.11.1] ANN model ............................. 116 

Table IV.2.9. Experimental and predicted values of the studied compounds based on the [8.11.11.1] 

ANN model ............................................................................................................................... 118 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

GENERAL INTRODUCTION 

1. General Introduction  

Nuclear factor -kB transcription factor is a ubiquitous and well-characterized protein 

which has crucial roles in the regulation of cell growth processes, immune, apoptosis [1] as 

well as in inflammatory responses. It is involved in controlling cell signalling in the body 

under specific pathological and physiological conditions.  

NF-κB controls the expression of genes encoding the pro-inflammatory cytokines (e. 

g., TNF-α, IL-1, IL- 2, IL-6, etc.), inducible enzymes (COX-2 and iNOS), adhesion 

molecules (e. g., VCAM, ICAM, E-selectin), chemokines (e. g., MIP-1α,IL-8, RANTES, 

MCP1, eotaxin, etc.), some of the acute phase proteins, growth factors, and immune 

receptors, which are included in critical roles in controlling many inflammatory processes 

[2]. NF-kB Activation is engaged by the IkB kinase (IKK) complex, which comprises a 

regulatory subunit and two catalytic subunits IKK-α and IKK-β [3]. 

Blocking the activation NF-κB represents an important and very attractive 

therapeutic target for the treatment of inflammatory diseases and cancer [4]. Therefore, the 

inhibition of IKK-β enzyme would be a promising target for several inflammatory diseases 

and cancers treatment [5]. Because of poor drug selectivity and severe adverse drug events 

of the marketed molecules, Mesalazine and Sulfasalazine [6-8], much focus was put on the 

development of new IKK-β inhibitors drugs. 

The drug discovery process can take an average of 10 to 15 years [9.10]. Because of 

the varied physicochemical features of chemical compounds and the challenge of scaling up 

manufacturing, identifying a medicine and further developing it takes significant investment 

such as, human resources, and technological know-how [11.12], which also necessitates 

careful adherence to testing and production norms [13]. 

Efficacy or toxicity due to attrition were the main reasons that led to failing this 

biggest challenge and extravagant cost [14]. For a long time, in vitro pharmacological 

profiling played a crucial role in determining several undesirable off-target activity profiles, 

which would impede the discovery of new candidate drugs [14.15]. However, these methods 

did not reduce the time or cost needed to bring up a candidate drug to market, as the 

development costs now exceed 𝑈𝑆$2.8 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 [16], Also clinical failures due to 

idiosyncratic toxicity, still an obstacle despite the existence of these technologies [17].  

A variety of environmental issues are putting pressure on pharmaceutical companies, 

including significant revenue losses as a result of patent expirations, increasingly cost-

constrained healthcare systems, and more stringent regulatory requirements [18]. 
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GENERAL INTRODUCTION 

In the past decades, as a suggested solution to possibly improve productivity, modern 

drug discovery involved the use of numerous technologies at various stages in order to 

enhance the pharmacological characteristics of lead compounds at varying degrees of 

complexity. These methods are based on the combination of traditional strategies in 

medicinal chemistry with computer-aided drug design (CADD) methods [19]. 

The employment of CADD techniques has become an essential tool by researchers 

and pharmaceutical industries for the preliminary stage of drug development in order to 

reduce failures in the final stage and to accelerate the process of discovery in a more cost-

effective manner [20]. CAAD methods are classified into: structure-based drug design 

(SBDD) and ligand-based drug design (LBDD) approaches [21]. Which aim to develop 

therapeutically interesting small molecules. While through them, large compound libraries 

can be filtered and reduced into a small set of active compounds that can be synthesized and 

tested experimentally [22].  

SBDD: consists of utilizing the 3D molecular structure of a specific target, such as a 

receptor or enzyme (macromolecule), to generate and screen potential candidate drugs for 

further synthesis and experimental tests based on their predicted interactions with the 

binding site of protein [20]. Examples of these methods: The Molecular Docking and De 

novo design [23].  

In contrast, LBDD: consists of subjecting a series of compounds with a variety of 

structures and well-known effectiveness to computational modelling techniques used to 

construct theoretical predictive models. Pharmacophore Modeling and Quantitative 

Structure-Activity/Property relationships (QSAR/QSPR) are the common methods used in 

this technique [20]. 

 

Figure 1: Computer-Aided Drug Design Methods 
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Contributions 

NF-κB inhibition offers a promising strategy in cancer therapy, therefore, most of these 

inhibitors are targeting the selective inhibition IKK subunits and the individual NF-κB. 

The objective of this work is twofold:  

First;   

- To develop new active compounds inhibitors of IKK-β with a high biological effect and 

minimum inhibitory concentration with better affinity to IKK-β, for the NF-κB inhibition 

and to study the influence of the structure on the biological activity. 

- To achieve this goal, QSAR model was elaborated using Multiple linear regression model, 

(helpful for significant descriptors interpretation) involving thirty 2-amino-3-cyano-4-

piperidin-6-(2-hydroxyphenyl) pyridine derivatives. 

-This model allows to predict the pIC50 values of new series. 

- Design new active compounds with higher biological activity  

 -Then a molecular docking study was carried out in order to determine the interaction 

between the compound and the receptor site of IKK-β protein and to predict the binding 

poses of the investigated compounds.  

-The drug-like properties of the compounds were predicted and finally, in-silico-toxicity 

studies were performed to predict the toxicity of the new designed compounds. 

-Note that we have decided to perform analysis taking into account only one single scaffold 

in order to assure a better homogeneity of the results avoiding some dispersion that may arise 

from considering different structures. Even if this approach limit somehow the generality 

and the space spanned by the hypothesized inhibitors it allows to increase the precision and 

the robustness of the interactions patterns that have been previewed. 

Second; 

To construct new robust QSAR models based on Multiple Linear Regression and Artificial 

Neuron Network for nuclear factor-κB (NF-κB) inhibitors prediction. Using 121 

compounds. Then, the models have been assessed and evaluated. These models have been 

elaborated involving another series of compounds, because the ANN models require a large 

number of data set  

Thesis Organization  

To achieve the desired goal, we have organized our thesis into four chapters: 

❖ The first chapter is devoted to general information on NF-κB (nuclear factor-kappa 

B) and its role in cancer diseases. 
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GENERAL INTRODUCTION 

❖ In the second chapter we present the QSAR methods, their principle, methodology, 

advantages and applications. 

❖ The third chapter entitled “Molecular Docking Study” presents the Docking method, 

its principle, its application. 

❖ The fourth chapter is devoted to the methodology of the work carried out in this 

thesis, to the results obtained and to their discussions. 
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CHAPTER I: THE NUCLEAR FACTOR KB (NF-KB) AND ITS ROLE IN CANCER 

I.1. Introduction 

The nuclear factor kB (NF-kB) comprises a family of transcription factors involved 

in the regulation of a wide variety of biological responses. NF-kB is well-known for its 

involvement in the regulation of immune responses and inflammation, but new data suggests 

that it also plays a role in oncogenesis. NF-kB controls the expression of genes involved in 

a variety of processes important in the genesis and progression of cancer, including 

proliferation, migration, and apoptosis. Many human cancers have been shown to have 

abnormal or constitutive NF-kB activity. Numerous research has been conducted in recent 

years to elucidate the functional effects of NF-kB activation as well as it signaling pathways. 

NF-kB has emerged as an intriguing therapeutic target for cancer therapy [1].  

NF-kB is a pleiotropic transcription factor regulating over 200 genes involved in cell 

function and inflammation [2]. The Rel or NF-kB family is comprised of hetero- or homo-

dimeric combinations of five members, NF-kB 1 (p50 and its precursor p105), NF-kB 2 (p52 

and its precursor p100), RelA (p65), RelB and c-Rel. In resting cells, NF-kB dimers are 

inactive because they are sequestered in the cytoplasm by inhibitory proteins. These 

inhibitory proteins include the inhibitory kB (α, β or γ), as well as the inactive precursors 

p100 and p105. NF-kB is rapidly activated in response to a wide variety of stimuli 

through either the traditional (canonical) pathways or the alternative (non-canonical) 

pathways (Figure I.1).  

The classical pathway is activated by cytokines (IL-1, TNF) or bacterial products 

(lipopolysaccharide, LPS), which activate the inhibitory kB kinases (IKK). Phosphorylation 

of serine residues 32 and 36 on IB by IKKβ leads to poly-ubiquitination of the protein, which 

in turn triggers its destruction by the 26S proteasome. Because of this liberation of NF-kB, 

also known as p50: p65, from its inhibitor IB, NF-kB is now able to translocate to the 

nucleus. CD40 and lymphotoxin are the molecules that initiate the alternative pathway, and 

they do so by activating IKK α via NF-kB inducing kinase (NIK). Phosphorylation of p100 

by IKKα promotes partial degradation of p100 by the proteasome to release active RelB: 

p52 dimers, which translocate to the nucleus to modulate gene expression. 

 All five NF-kB subunits contain a conserved Rel homology domain responsible for 

nuclear localization and DNA binding. However, only three of these subunits, p65, RelB and 

c-Rel contain trans-activation domains and directly promote gene transcription. Therefore 

p507 and p52 homodimers do not directly stimulate gene transcription. Because each subunit 
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has distinct biological functions, various dimeric combinations of NF-kB proteins have 

varying impacts on cell destiny and function [3].  

 

Figure I.1: Canonical and non-canonical pathways leading to the activation of NF-κB 

I.2. NF-kB In Human Disease 

NF-kB activation has been implicated in several human diseases– Cancer [5], AIDS 

(HIV-1) [6], Ageing [7], Headaches [8], Catabolic Disorders [9], Diabetes Type 1 [10], 

Diabetes Type 2 [11], Atherosclerosis [12], Heart Disease [13], Ischemia/Reperfusion [14], 

Pulmonary Disease [15], Chronic Obstructive Pulmonary Disease (COPD) [16], Renal 

Disease [17], Gut Diseases [18], Skin Diseases [19], Asthma [20], Arthritis [21], Crohn´s 

Disease [22], Ocular Allergy [23], Pancreatitis [24], Periodonitis [25], Inflamatory Bowel 

Disease [26],Sepsis [27], Sleep Apnoea [28], Autoimmunity [29], and Neuropathological 

Diseases [46.47], etc. 

I.3. Role of NF-κB in cancer  

I.3.1. Apoptosis 

Apoptosis is necessary for the typical growth and upkeep of multicellular organisms 

since it enables the death and removal of individual cells without causing any damage to the 

organism as a whole. An intracellular protease cascade is activated during the process of 

apoptosis. This cleaves a large number of intracellular proteins, which ultimately results in 
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the blebbing of the membrane, nuclear condensation, and fragmentation of the DNA [30,31]. 

Inhibitors of the proteases known as caspases have the ability to stop the apoptotic program 

from taking place. Apoptosis can be triggered by a wide variety of cellular treatments, such 

as DNA-damaging agents (alkylating agents, UV light, topoisomerase inhibitors, and so on), 

hormones, growth-factor deprivation, cellular stress (heat shock, reactive oxygen), and 

receptor-mediated ligands (TNF and Fasil, for example) [32].  

The biological function of apoptosis that is triggered by TNF is not completely 

understood. A relationship between apoptosis and biological consequence has not been 

demonstrated despite the fact that TNF has been linked to a wide variety of physiological 

processes, ranging from the prevention of viral infection to the differentiation of adipocytes 

[33.34]. Because TNF signaling has a pleiotropic nature, it is difficult to pinpoint any one 

outcome as being responsible for the activation of apoptosis. It has been discovered that 

there are a number of signaling proteins that are located downstream of TNF-Rs. It is 

possible that the characterization of these proteins will shed light on the role of TNF-induced 

apoptosis [30].  

 

Figure I.2: Mechanism of Cell Death (Apoptosis) [35] 

               It is interesting to note that substances that block protein synthesis play a significant 

role in this process. This suggests a mechanism in which newly expressed gene products 

suppress the apoptosis signal. Recent research has demonstrated that one of the factors that 

mediate this type of gene expression is NF-kB [30]. 
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I.3.2. Activation of NF-kB by IKK 

              The transcription factor NF-kB can be turned on by a wide variety of signals, the 

majority of which are believed to be associated with cellular stress. NF-kB is regulated by 

its position in the cell; when active, it is in the nucleus; when inactive, it is in the cytoplasm. 

An inhibitor protein family known as IKBs regulates NF-kB localization. IKB is the IKBα 

that regulates the immediate-early activation of NF-kB [36].  

             IκB kinase (IKK) is a multi-subunit protein kinase that consists of two highly 

homologous catalytic subunits, IKKα and IKKβ, which play a crucial role in IκB 

phosphorylation; it is also composed of a nonenzymatic regulatory subunit, IKKγ, which is 

essential for the activation of IKKα/IKKβ heterodimers in response to proinflammatory 

cytokines, such as TNF-α and IL-1. IBs are targeted for fast polyubiquitination and 

subsequent destruction by the 26S proteasome after being phosphorylated by the IKK 

complex in their N-terminal regulatory domain at two key serine residues (Ser32 and Ser36 

in IKα, Ser19 and Ser23 in IB) [37].  

                The liberated NF-kB dimers go to the nucleus, where they are subject to further 

regulation via phosphorylation, acetylation, and interactions with coactivators and 

corepressors. NF-kB is responsible for regulating the transcription of a wide variety of genes, 

including those that code for cytokines, growth factors, cell adhesion molecules, and pro-

/antiapoptotic proteins. Activated NF-kB may then be downregulated by many processes, 

one of which is the well-characterized feedback pathway, in which the newly generated IκBα 

protein attaches to nuclear NF-kB and exports it to the cytoplasm. This can be accomplished 

through a number of other methods as well [38.39.40].  

I.3.3.NF-kB and The Regulation of Apoptosis 

             The transcription factor NF-kB is critical to the process of controlling apoptosis. It 

does this by inhibiting the expression or activity of proapoptotic proteins while 

simultaneously stimulating the production of various anti-apoptotic proteins, which causes 

apoptosis to be inhibited. An examination of RelA-/- mutant mice, who are doomed to die 

between 15 and 16 days into their pregnancies as a result of excessive hepatic apoptosis, 

provided the first evidence that NF-kB had an inhibiting influence on apoptosis. In addition 

to this, the embryonic mortality that is shown in RelA-/- mice may also be seen in mice that 

are lacking in IKK or IKKγ [40.41.42].  
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              It was shown that TNF- α signaling in the developing liver was the insult that led to 

liver apoptosis. This was demonstrated by the fact that is crossing RelA-/- mice with either 

TNF- α /- or TNFR-/- animals was able to recover this liver phenotype. 

Although TNF-α is responsible for the activation of caspases, which are responsible for the 

initiation and execution of apoptosis, the pro-apoptotic activity of TNF- can be inhibited by 

the concurrent activation of NF-kB. This is because NF-kB targets genes that code for 

inhibitors of caspase activation and apoptosis, which negates the effect of TNF-α. 

             The anti-apoptotic proteins regulated by NF-kB include inhibitor of apoptosis 

proteins (IAPs) 1 and 2, X-linked IAP, cellular Fas-associated death domain-like IL-1β-

converting enzyme (FLICE) inhibitory protein (cFLIP), Bcl-XL, A1 (also known as Bfl-1), 

TNF receptor-associated factor 1 (TRAF1) and TRAF2 .IAPs (c-IAP1, c-IAP2, and XIAP) 

block effector caspases (caspases-3, -6, and 7) in a direct manner, which allows them to 

decrease apoptosis caused by both extrinsic and intrinsic routes [43.44].  

           Although c-FLIP and procaspase 8 have a high amount of similarity, c-FLIP does not 

have any catalytic activity. After being induced, c-FLIP will connect with TNFR to prevent 

caspase 8 activation by acting as a competitor to it [45]. Members of the Bcl-2 family that 

are anti-apoptotic (Bcl-XL, A1) are able to stop the release of cytochrome c and the 

consequent activation of caspase 9. TRAF proteins have the ability to both enhance the 

activation of NF-kB as well as interfere with the caspase cascade at the level of TNFR1 [46]. 

The capacity of NF-kB to limit prolonged c-Jun N-terminal kinases (JNK) activation and 

build-up of reactive oxygen species (ROS) is yet another way in which this transcription 

factor may prevent apoptosis from occurring [47]. 

I.4. NF-kB and Cancer Therapy  

            Several research have been conducted to identify potential NF-kB inhibitors as 

cancer treatment agents. Since NF-kB activation is the result of a multi-step signaling 

pathway, these compounds may target different points of the signaling process. Some anti-

inflammatory medicines, for example, may suppress NF-kB by interfering with IKK 

function. [48.49.50]. Curcumin, trans-resveratrol, and parthenolide are a few examples of 

other naturally occurring chemicals that have been shown to suppress IKK activity. Other 

natural compounds that inhibit IKK activity include: [51.52.53]. 

           Inhibition of NF-kB can also be accomplished by directing one's attention toward the 

proteasome breakdown process. Proteasome inhibitors prevent NF-kB activation by 

blocking the degradation of IkBs, NF-kB1/p105 or NF-kB2/p100 [1]. 
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I.4.1. Current strategies for inhibiting NF-κB 

I.4.1.1. Selective IKK Inhibitors 

          Targeting the activity of IKK might be the method with the greatest potential for 

achieving a selective reduction in NF-kB activation; Recent efforts in the field of 

pharmaceutical research have been made to generate some very effective and selective 

inhibitors of catalytic activity IKKβ and/or IKKα (Table I.1). Although several agents 

initially identified as IKKβ inhibitors can inhibit IKKα catalytic activity in the low μmolar 

range, no potent IKKα-specific inhibitors have been described so far.  

Although some compounds previously identified as IKKβ inhibitors can decrease IKKα 

catalytic activity at low molar concentrations, no effective IKKα specific inhibitors have 

been reported.  

The particular part that IKKα plays in the activation of the alternative pathway, which 

is essential for the B-cell-mediated responses, the organization of lymphoid organs, and the 

development of the mammary gland [54], evidence suggests that IKK might be a promising 

therapeutic strategy for treating cancer and autoimmune diseases [55.56]. 

Table I.1: Selective IκB kinase inhibitors. 

 



 

13 
 

CHAPTER I: THE NUCLEAR FACTOR KB (NF-KB) AND ITS ROLE IN CANCER 

I.4.1.2. NSAIDs 

The suppression of cyclooxygenase activity, which results in the prevention of 

prostaglandin formation, is the explanation for the anti-inflammatory actions of nonsteroidal 

anti-inflammatory drugs (NSAIDs) that is the most widely accepted. The mechanism of 

traditional anti-inflammatory medicines has been re-evaluated, and it has been proven to be, 

at least partially, suppression of NF-kB activation.  

This is due to the fact that NF-kB plays a vital role in the regulation of the 

inflammatory process. It has been shown that the actions of these drugs on the NF-kB 

pathway are not dependent on the inhibition of cyclooxygenase.   

as shown by the fact that indomethacin, which is a powerful inhibitor of prostaglandin 

production, does not block the NF-kB pathway [57.58]. Several NSAIDs are capable of 

inhibiting NF-kB activation, including salicylates [59.60], sulindac and its analogs [61.62]. 

Table I.2: Chemical Structures of sulindac and salicylate  

 

 

             

sulindac salicylate 

I.4.1.3. Proteasome inhibitors 

An emerging theme for anticancer drug development is protein degradation. The 

multicatalytic ubiquitin–proteasome pathway is the principal mechanism responsible for the 

degradation of eukaryotic cellular proteins [63]. Recently, proteasome inhibitors that have 

shown promising anticancer responses both in vitro and in vivo have been introduced into 

human cancer treatment [64]. 

 



 

14 
 

CHAPTER I: THE NUCLEAR FACTOR KB (NF-KB) AND ITS ROLE IN CANCER 

I.4.1.4. Other Approaches 

It has been demonstrated that several different substances, some of which have 

anticancer and/or antiangiogenetic potential, also exhibit NF-kB -inhibiting action. 

Thalidomide, which is known as an immunomodulatory drug, has anticancer, anti-

inflammatory, antiangiogenic and immunosuppressive effects. In order to explain the 

therapeutic effect of this compound, several distinct theories have been offered, one of which 

is the inhibition of NF-kB activation through the reduction of IKK activity [65].  

Dehydroxymethylepoxyquinomicin (DHMEQ), an epoxyquinomicin C derivative 

originally isolated as a weak antibiotic and anti-inflammatory agent, was found to inhibit 

activation of NF-kB at the level of nuclear translocation [66]. It is believed that DHMEQ is 

a potential anticancer drug in the treatment of hormone-refractory prostate cancer [58].  

 

 

 

           Figure I.3: Chemical structure of Dehydroxymethylepoxyquinomicin 
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CHAPTER II : QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP 

II.1. Introduction  

QSAR model is a mathematic equation that correlates the biological activity of 

chemical compounds (dependent variable) with their chemical structure information 

(molecular descriptors) [1]. In recent decades, Artificial Intelligence, Machine learning, in 

particular, have become widely used to explore the chemical structure-activity relationship 

and to determine new chemical compounds that have a medical relevance [2]. The main 

objectives of this model are: to predict the biological activity of new compounds. 

Determination of significant parameters that control the biological effect [1] and improving 

biological activities of existing leads [3.4]. In addition to its effectiveness in drug discovery, 

it was also applied successfully in several fields, such as toxicity prediction of the aquatic 

toxicity of chemical compounds to environmental species [5], Toxicity of pesticides and 

dyes [6.7], and prediction of corrosion inhibitors effect [8].  

These models originated way back in the 19𝑡ℎ century. In 1868, Crum-Brown and 

Fraser defined the fundamental principle that underpins formalism is that, physicochemical 

properties and biological activities of molecules strongly depend on their chemical structures 

[9]; however, they did not demonstrate the representation of chemical structure 

quantitatively. Then Richardson has suggested a function that correlates the chemical 

structures of compounds with solubility [10]. Since then, several successful predictive 

QSAR/QSPR models have been built and evaluated for the prediction of biological activities 

(anti-bacterial [11], anti-diabetes [12], anti-cancer [13] …. etc.)  of therapeutical compounds 

against several targets, also for the prediction of Physico-chemical properties (density, 

Viscosity, Melting Point [14]) and toxicity. 

Table II.1 represents the summary of the application of several developed QSAR 

models and the used statistical methods. The present paper covers the essential steps 

involved in QSAR model development and validation based on machine learning models. A 

case study on 121compounds as potent inhibitors of nuclear factor-κB (NF-κB). Has been 

carefully explained as a clarifying example. Since this study includes a comparative study 

between many predictive QSAR models, the first was based on multiple linear regression, 

and the others were based on non-linear regression (ANN). Nuclear factor-κB (NF-κB) is a 

potential therapeutic target for a variety of immunoinflammatory and cancer diseases. 
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II.2. Principle of QSAR model  

 The principle of QSAR methods is to set up a mathematical relationship 

quantitatively relating molecular structure encoded by molecular properties called 

descriptors of small compounds with their biological activities using data analysis methods. 

As a result of these relationships, new predictive models can be generated with the following 

general form [15].                                        

Activity = f (D1, D2, D3……) 

D1, D2, D3:  Molecular Descriptors 

 

Table II.1: the summary of the application of several developed QSAR models and the 

used statistical methods 

Author /Date  Application of QSAR/QSPR models Statistical 

Method 

Ref 

Zahouily et al,2005 QSAR models have been elaborated for anti-malarial activity 

prediction, using a data set of 63 active compounds. 

MLR/ANN [16] 

Song-Qing  et al, 

2009 

QSAR model has been developed for anti-corrosion behavior towards 

hydrogen sulfide and 𝐶𝑂2 prediction. 

MLR [17] 

Shukla et al, 2014 2D quantitative structural activity relationship (QSAR) model has 

been elaborated for anti-inflammatory activity prediction, using a 

total of 146 tumor necrosis factor- TNF-a inhibitors. 

MLR [18] 

Ben Ghanem et al, 

2016 

Two different QSAR models have been constructed for the ecotoxicity 

prediction of a series of ionic liquids towards the bioluminescent 

bacterium Vibrio fischeri. 

MLR and 

MLP 

[5] 

Darnag et al, 2012 Several comparative QSAR models have been elaborated for HIV 

Protease inhibitors prediction using 38 active compounds. 

SVM/ANN 

And MLR  

[19] 

Shola Elijah et 

al,2020 

Authors have elaborated a robust QSAR model for anti-tubercular 

activity prediction, using a series of 27 active compounds. 

MLR [20] 

Abdulrahman et 

al,2020 

QSAR model has been elaborated using the anti-proliferative 

activities of novel series of Parviflorons against MCF-7 breast cancer 

cells. The model has been used to develop new derivatives with greater 

efficacy against breast cancer (MCF-7). 

MLR [21] 

David et al,2020 Authors have elaborated a robust QSAR model for anti-diabetic 

activity prediction, using a data set of 97 compounds as protein 

tyrosine phosphatase 1B (PTP 1B) inhibitors. 

MLR [22] 

Mozhgan et al., 2020 A series of DAPY-like derivatives as new non-nucleoside reverse 

transcriptase inhibitors was used for the development of an accurate 

and robust QSAR model for anti-HIV activity prediction. 

MLR and 

ANN 

[23] 

Almi et al,2020 Two QSAR models have been developed for anti-cancer activity 

prediction, using a series of 38 compounds as human glutathione-S-

transferases inhibitors (GSTP1-1). Through the adopted model, 23 hits 

have been identified as a new potent inhibitor of GSTP1-1. 

MLR and 

ANN 

[24] 

Hammoudi et al 2020 QSAR model has been elaborated for anti-cancer activity prediction, 

using a series of 30 compounds as Ikk-b Inhibitors. Authors have 

MLR [25] 

https://www.ingentaconnect.com/search;jsessionid=1ba74rgsg5k7t.x-ic-live-01?option2=author&value2=HU,+Song-Qing
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MLP : Multilayer perceptron technique, MLR : Multiple Linear Regression, ANN : Artificial Neural 

Network, SVP : Support Vector Machine  

II.3. Classification of QSAR Methodologies  

Based on the structural representation of chemical compounds, the QSAR methods 

are classified into the following categories [10]. 

1D-QSAR: Several parameters, such as steric, electronic, and hydrophobic 

constraints, are used for the selection of the potential molecular descriptor that describes the 

conformer molecular properties. highest occupied molecular orbital/lowest unoccupied 

molecular orbital (HOMO-LUMO) energies, Log P, 𝑝𝐾𝑎 , are some of the used descriptors 

that correlate the biological activity [9]. 

2D-QSAR: Molecular descriptors that correlate the biological activity include 

molecular fingerprints, total polar surface area, topology, constitutional, quantum chemical, 

electrostatic, geometrical properties of compounds. 

3D-QSAR: this model focused broadly on all such non-covalent interaction fields 

that surround the molecules [9.10]. 

4D-QSAR: In this Approach, During the molecular dynamics simulation (MDS) 

time, the occupancy frequencies of the various atom types generated in the cubic grid cells 

are used as descriptors [28]. 

5D-QSAR: different induced-fit models in 4D-QSAR are explicitly represented [29] 

6D-QSAR: Incorporating multiple solvation scenarios in 5D-QSAR [29]. 

II.4. QSAR Model Development Steps 

 Several steps and restrictions are required to construct a reliable, robust, and 

significant statistical QSAR model. Figure II.1 represents the principal steps for QSAR 

model development. - Starting with a large experimental data collection with their 

experimental biological activity [15], the number of compounds should be sufficient, more 

than 20, with biological activity obtained through a common experimental protocol so that 

suggested a new series of compounds that have promising potential for 

IKK-b, based on the developed QSAR Model. 

Lemaoui et al 2021 Authors have developed two novel QSPR models for viscosity and 

density of hydrophobic deep eutectic solvents prediction using 530 

and 606 experimental data points, respectively. 

MLR [26] 

Hammoudi et al,2021 Tow QSAR models have been elaborated for anti-Alzheimer activity 

prediction, using 50 compounds as Acetylcholinesterase and 

Butyrylcholinesterase inhibitors. 

MLR [2] 

Zaki et al,2021 QSAR-Based Virtual Screening has been used in the identification of 

novel compounds with a high inhibitory potential against the main 

protease (Mpro) of SARS-CoV-2. 

 

MLR [27] 
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the potency values are comparable [12]. Many free programs and academic databases are 

interesting and useful resources for collecting databases, among them: Scopus, Wok, 

Sciencedirect and Springer [31].- Compounds should be subdivided into a training set (2/3 

N compounds) for QSAR model elaboration and a test set (1/3 N compounds) for external 

validation [30] - A large number of molecular descriptors generation for ligands [12]- 

Selection of significant molecular descriptors, which act as the independent variables in 

QSAR model using feature selection methods [32]. 

  Molecular descriptors should not be autocorrelated in order to avoid overfitting. 

The correlation coefficient 𝑟 is the statistical parameter that evaluates the degree of cross-

correlation. If r ˃ 0.97 descriptors are considered to be strongly correlated [33]-Once the 

model is built using linear regression techniques, e.g., multiple linear regression (MLR) or 

non-linear machine learning techniques, e.g., artificial neural network ANN, it must be 

evaluated by internal and external methods to estimate its predictive power and robustness. 

-Finally, the applicability domain of obtained model determination [30].  

 
Figure II.1: the principal steps for QSAR model development 

II.4.1. Data Preparation 

           A robust QSAR model relies heavily on experimental reference data. Therefore, to be 

of quality, the choice of the database should be precise, accurate, consistent, and obtained 

by following a single protocol. Indeed, the experimental conditions generally have a strong 

impact on the obtained values [15]. 

            It is necessary to check the chemical structures of compounds since errors in 

structures lead to bad descriptors generation and, as a result, poor models [30]. The 

efficiency of a QSAR model also depends on the type of molecules included in it. Since 

1
• Database collection

2
• Database subdividing ( Trianing set /test set) 

3
• Molecular Descriptors calculation

4
• Model set up - Machine learning (Linear or Non Linear Regression) 

5
• Internal Validation 

6
• External Validation 

7
• Applicability Domain Determination 
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models elaborated with compounds characterized by similar structures are highly performing 

[33], the distribution of data should be homogeneous and regular as possible because most 

statistical methods are based on this type of distribution. When compounds are highly 

efficient, the biological data is typically represented in reverse logarithms Log (1/C). Figure 

II.2 shows some examples of biological data utilized in QSAR analysis [15]. 

 
Figure II.2: examples of biological data utilized in QSAR analysis 

II.4.2 Molecular Descriptors  

The second step of the QSAR study consists of calculating the molecular descriptors 

of compounds incorporated in the training and test sets. Molecular descriptors describe 

quantitatively the information contained in the molecular structure to be directly related to 

biological activity [34]. Many descriptors can be calculated and generated using several 

software such as MATERIALS STUDIO, CADESSA, OASIS, ADAPT, DRAGON, Mol 

ConnZ, MOPAC, …etc. [15]. 

The descriptors may fall into many classes based on the defined algorithm for its 

calculation and the kind of molecular representation. Some of these include topological, 

constitutional, geometrical, thermodynamic, and electronic descriptors [35]. 

II.4.2.1 Topological Descriptors  

The introduction of a mathematical method, called "Graphic Theory," to chemistry 

was a significant development in automated computer treatment for chemical structures and 

QSAR. In Chemical Graph Theory, Molecular structures are shown as graphs without 

hydrogen atoms, usually called molecular graphs. It depicts the atoms as vertices and bonds 

as edges [36]. The connectivity of atoms in molecules can be described by various types of 
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matrices such as adjacency matrix (Table II.2), distance matrix [36], reciprocal distance 

matrix [37], Szeged matrix [38], Laplacian matrix [39], Burden matrix [40], reverse Wiener 

matrix, distance path matrix, distance complement matrix resistance distance matrix and 

detour matrix [41], that may be mathematically operated to obtain one generally termed as 

an invariant graph, topological index (TI) or graph-theoretical index. [36]. 

Topological index has proven to be in good correlation with various biological and 

physicochemical characteristics, indicating that they are rich in information that can be 

useful in QSAR and QSPR models analysis [42]. 

In the previous fifty years, there has been a big effort to produce several hundred of 

TIs that offer the ability to measure molecular branching, size, and shape [36]. Most of them 

can be calculated using several softwares such as ChemDes, CODESSA, and JOElib……. 

Etc. A variety of descriptors are available, among which the more widely applied are: Wiener 

Index, Information Content Indices, The Hosoya Index, The Zagreb Indices, Topochemical 

Atom Indices, The Centric Index, Triplet Indices, The Randić Index, Molecular Connectivity 

Indices, Flexibility Indices, The Variable Connectivity Index [43]. 

Table II.2 : Adjacency Matrix 

Chemical 

structures  

Adjacency Matrices 

 

Cyclohexane 

 

(

  
 

0
1 
0 
0 
0 
1 

 1 
0
1
0
0
0

 0
 1 
0 
1
0
0

 0
0
1
0
1
0

 0 
0
0
1
0
1

1
0
0
0
1
0)

  
 

 

 

Isopentane 

 

(

 
 

 

0
1
0
0
0

 1 
0
1
0
0

0 
1
0
1
1

0
0
1
0
0

  0
 0
 1
 0
 0)

 
 

 

                                    

The major applications of these indices are to distinguish molecules based on their 

degree of branching, size, overall shape, and flexibility [35]. Randic has proposed several 

features that TIs should present; (1) They must be well correlated with at least one 

property;(2) they should be independent and do not present any complexity; (4) they are easy 

to use for a local structure;(5) They should be independent of experimental properties and of 
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others descriptors. Fortunately, the topological descriptors meet most of these 

characteristics. Hence, they have been widely used in QSAR/ QSPR studies for structural 

similarity or dissimilarity of chemical compounds characterization [35]. 

II.4.2.2. Constitutional Descriptors 

Constitutional descriptors are the simplest employed descriptors that characterize the 

molecular composition of compounds, with no necessity for any topological or geometrical 

information. These descriptors do not differentiate among isomers. Therefore, they are inert 

to any conformation changes [35]. Examples of these descriptors are mentioned in Table 

II.3. 

Table II.3: Example of some constitutional descriptors 

Descripto

r 

Description 

MW 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 

Si 𝑠𝑢𝑚 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠 (𝑠𝑐𝑎𝑙𝑒𝑑 𝑜𝑛 𝐶𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚) 

Me 𝑚𝑒𝑎𝑛 𝑎𝑡𝑜𝑚𝑖𝑐 𝑆𝑎𝑛𝑑𝑒𝑟𝑠𝑜𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 (𝑠𝑐𝑎𝑙𝑒𝑑 𝑜𝑛 𝐶𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚) 

Mi 𝑚𝑒𝑎𝑛 𝑓𝑖𝑟𝑠𝑡 𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑠𝑐𝑎𝑙𝑒𝑑 𝑜𝑛 𝐶𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚) 

nSk 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝐻 𝑎𝑡𝑜𝑚𝑠 

nBO 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝐻 𝑏𝑜𝑛𝑑𝑠 

SCBO 𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟𝑠 (𝐻 − 𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑) 

RBN 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑎𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠 

nDB 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑢𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠 

nAB 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑏𝑜𝑛𝑑𝑠 

nC 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚𝑠 

np 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑜𝑢𝑠 𝑎𝑡𝑜𝑚𝑠 

H % 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐻 𝑎𝑡𝑜𝑚𝑠 

nCsp 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝 ℎ𝑦𝑏𝑟𝑖𝑑𝑖𝑧𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑎𝑡𝑜𝑚𝑠 

 

II.4.2.3. Quantum Chemical Derived Descriptors  

Quantum-chemical methods and molecular modelling techniques are thus an 

appealing source of novel molecular descriptors that may, in theory, represent all of the 

geometric and electronic features that characterize the shape, reactivity, and binding 

properties, corresponding to the minimum energy of a complete molecule as well as of 

molecular fragments [44,45]. 
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Recently, quantum chemically derived descriptors have gained a lot of traction in 

QSAR/QSPR modelling due to the versatility and reliability of their prediction. The use of 

this kind of descriptors in QSAR/QSPR studies helps to clarify the mechanism of action 

directly in terms of the chemical reactivity of the studied compounds. Accordingly, 

information about the nature of intermolecular forces that influence the biological activity 

will be included in the obtained QSAR models [46,47,48]. A summary of several used 

quantum chemical descriptors is present in Table II. 4 [44]. 

Table II. 4: several used quantum chemical descriptors 

HOMO and LUMO 

Energies 

Description 

𝑬𝑯𝑶𝑴𝑶  𝐻𝑂𝑀𝑂: 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠  

𝑬𝑳𝑼𝑴𝑶  𝐿𝑈𝑀𝑂: 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠 

𝑰 = −𝑬𝑯𝑶𝑴𝑶  𝐼𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝐼) 

𝑨 = −𝑬𝑳𝑼𝑴𝑶  𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 (𝐴) 

𝑬𝑳𝑼𝑴𝑶 − 𝑬𝑯𝑶𝑴𝑶  𝐸𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑛𝑑 𝑔𝑎𝑝 (𝛥𝐸) 

ƞ =  
𝟏

𝟐
 ( 𝑬𝑳𝑼𝑴𝑶 − 𝑬𝑯𝑶𝑴𝑶) 

𝐺𝑙𝑜𝑏𝑎𝑙 ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝜂) 

𝝁 =    
𝟏

𝟐
 (𝑬𝑯𝑶𝑴𝑶 + 𝑬𝑳𝑼𝑴𝑶) 

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝜇) 

𝛚 = 
𝝁𝟐

𝟐ƞ
   

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 (𝝎) 

Orbital Electron Densities Description 

𝒒𝑨,ó , 𝒒𝑨,π ó − 𝑎𝑛𝑑 𝜋 −  𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚 𝐴 

𝑸𝑨,𝑯 , 𝑸𝑨,𝑯 𝐻𝑂𝑀𝑂/𝐿𝑈𝑀𝑂 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚 𝐴 

𝒇𝒓
𝑬=∑(𝑪𝑯𝑶𝑴𝑶,𝒏)

𝟐 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝑎𝑡𝑜𝑚𝑖𝑐 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠, 𝑪𝑯𝑶𝑴𝑶,𝒏𝑎𝑟𝑒 

𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑋𝑛 𝑖𝑛 𝑡ℎ𝑒 𝐻𝑂𝑀𝑂. 

𝒇𝒓
𝑵=∑(𝑪𝑳𝑼𝑴𝑶,𝒏)𝟐 𝑛𝑢𝑐𝑙𝑒𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝑎𝑡𝑜𝑚𝑖𝑐 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠, 𝑪_(𝑳𝑼𝑴𝑶,𝒏) 𝑎𝑟𝑒 𝑡ℎ𝑒 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑜𝑟𝑏𝑖𝑡𝑎𝑙 𝑋𝑛 𝑖𝑛 𝑡ℎ𝑒 𝐿𝑈𝑀𝑂 

 

𝑭𝒓
𝑬 = 𝒇𝒓

𝑬/𝑬𝑯𝑶𝑴𝑶   

𝑭𝒓
𝑵 = 𝒇𝒓

𝑵/𝑬𝑳𝑼𝑴𝑶  

𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
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Charges  Description 

𝑸𝑨 𝑁𝑒𝑡 𝑎𝑡𝑜𝑚𝑖𝑐 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑛 𝑎𝑡𝑜𝑚 𝐴 

𝑸𝒎𝒊𝒏 ,𝑸𝒎𝒂𝒙 𝑁𝑒𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑚𝑜𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑡𝑜𝑚𝑠 

𝑸𝑨,𝑩 𝑁𝑒𝑡 𝑔𝑟𝑜𝑢𝑝 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑛 𝑎𝑡𝑜𝑚𝑠 𝐴,𝐵 

∑𝒒𝑨
𝟐 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑛 𝑎𝑡𝑜𝑚𝑠 𝑜𝑓 𝑡𝑦𝑝𝑒 𝐴 

Superdelocalizabilities Description 

𝑺𝑬,𝑨 

,𝑺𝑵,𝑨=𝟐 ∑ ∑ (𝑪𝑱𝒎
𝑨 )𝟐𝑵𝑨

𝒎=𝟏𝒋 /𝑬𝒋 

∑𝑺𝑬,𝑨    , ∑ 𝑺𝑵,𝑨 

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝑎𝑛𝑑 𝑛𝑢𝑐𝑙𝑒𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝑠𝑢𝑝𝑒𝑟𝑑𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

(𝑠𝑢𝑚 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 (𝐸) 𝑜𝑟 𝑢𝑛𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 (𝑁) 𝑀𝑂 (𝑗) 𝑎𝑛𝑑 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 

𝐴𝑂 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚 𝐴 (𝑚 = 1, . . . , 𝑵𝑨) 

𝑆𝑢𝑚𝑠 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝑎𝑛𝑑 𝑛𝑢𝑐𝑙𝑒𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝑠𝑢𝑝𝑒𝑟𝑑𝑒𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

Atom-Atom 

Polarizabilities 

Description 

π𝑨𝑨 ,π𝑨𝑩 =

𝟒∑ ∑ ∑ ∑
𝑪𝒑𝑰

𝑨  𝑪𝒑𝒂
𝑨 𝑪𝒓𝑰

𝑩 𝑪𝒓𝒂
𝑩

£𝒊−£𝒂
𝒓𝒑𝒂𝒊  

self-atom polarizabilities and atom-atom polarizabilities (sum over 

MOs (i, a) and over valence AOs (p, r)) 

Energies Description 

𝑬𝑻 Total Energy  

𝑬𝒃=∑ 𝑬𝑨𝒊 − 𝑬𝑻
𝑵
𝑰  Binding Energy 

𝚫𝐇𝒇
𝟎 Heat of formation 

𝚫(𝚫𝐇𝒇
𝟎) Relative heat of formation ionization potential  

IP Ionization potential 

EA Electron affinity is the difference in total energy between the neutral 

and anion radical species 

𝚫𝐄 The energy of protonation, the difference between the total energy of 

the protonated and neutral forms 



 

28 
 

CHAPTER II : QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP 

Dipole Moments and 

Polarity Indices 

Description 

𝝁 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑝𝑜𝑙𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 

𝝁𝒄𝒉𝒂𝒓 ,𝝁𝒉𝒚𝒃𝒆𝒓  Charge and hybridization components of the dipole moment 

𝝁𝑫𝒙 𝑫𝒀 𝑫𝒁
𝟐  square of the molecular dipole moment components of dipole 

moment along inertia axes 

𝚫 Submolecular polarity parameter (largest difference in electron 

charges between two atoms) 

 

II.4.2.4. Geometrical Descriptors 

The 3D coordinates of the atoms in a particular molecule are used to calculate 

geometrical descriptors. Compared to topological descriptors, these descriptors provide 

more information and discriminating power for similar chemical structures and molecular 

conformations [35]. Despite the fact that they contain a lot of information, these descriptors 

frequently have disadvantages since they are only obtained after a geometry optimization of 

structures, therefore the cost of calculating them [15]. In addition to their need for alignment 

rules for performing molecule comparability. Examples of these descriptors: MoRSE (3D-

Molecular representation of Structures based on Electron), WHIM (Weighted Holistic 

Invariant Molecular) [35]. 

II.4.2.5. Physicochemical descriptors  

There are several descriptors that can be measured experimentally and are widely 

used to study structure-activity correlations, among them: the partition coefficient (octanol-

water) (log P), permeability, and hydro solubility. These characteristics have a significant 

influence on determining the drug's concentration in the body [35]. 

Lipophilicity: Lipophilicity is the sum of intermolecular forces, including a solute 

and two immiscible solvents between which it partitions [49]. It plays a crucial role in the 

pharmacological process of drugs, that is, absorption, distribution, metabolism, and 

excretion) [25] as well as the biological membrane penetration and hydrophobic interactions 

with receptors. A drug's lipophilicity refers to its affinity for a lipophilic or an aqueous 

environment [50]. Careful attention to physicochemical characteristics can enhance the 

chance of effective delivery and therapeutic efficacy for a promising candidate drug 

molecule. Since recent findings show that, in addition to defining pre-clinical ADMET 

(absorption, distribution, metabolism, elimination, and toxicity) characteristics, drugs with 
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optimum lipophilicity within a defined optimal range [50] may have a higher probability of 

development success [51]. In many particular situations, the introduction of more complex 

quantitative structure-activity relationships (SARs) pioneered by Hansch in the 1960s 

continued to highlight the relevance of the lipophilicity term [52]. 

 Lipophilicity is measured using the partition coefficient Log P, which is defined as 

the logarithm of solute concentration in octanol over unionized solute concentration in water, 

or log D, the distribution coefficient in octanol-water at a specific pH. In general, the 

computed log P (clog P) is frequently used to determine lipophilicity rather than the observed 

log P, with measured partition coefficients obtained on key compounds through a project’s 

progression [53]. Lipinski suggested that the desirable lipophilicity values for drug 

candidates are universal to some extent, emphasizing the importance of logP values in 

particular. (logP) < 5 [52]. For the design and more sophisticated lead optimization efforts, 

it has been proposed that regions of optimal lipophilicity be addressed [52]. 

II.4.2.5.1 Experimental Measuring logP values 

-The shake-flask method 

This traditional method allows the determination of the partition coefficient of neural 

or ionic solutes by controlling the PH of the aqueous phase. The shake-flask method has 

several practical constraints, including microemulsion generation, phase-volume ratio 

accuracy, solute impurities, solute stability or volatility, and time consumption [54]. 

-The potentiometric method 

The ionization constants and logP values of ionizable solutes can be determined using 

the potentiometric method. The technique is based on the fact that when an ionizable 

molecule is titrated in an aqueous solution with an organic phase present, the titration curve 

moves to the right for acids and to the left for bases. The potentiometric technique has the 

benefit of being able to use a number of solvents and measure a wide range of logP values. 

However, it is not always easy to understand the results [55]. 

-Cyclic voltammetry at the ITIES 

In medicinal chemistry, cyclic voltammetry was recently used to assess the 

lipophilicity of ions and investigate their processes of transfer at the interface. The major 

benefit of cyclic voltammetry at the ITIES is that, unlike other approaches that do not 

regulate the Galvani potential difference, the potentials are controlled here, resulting in 

standard logP values that are independent of experimental variables except temperature and 

solvents [56]. 
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-Calculating and estimating of log P Methods 

Ghose and Viswanadhan method, Rekker method, Klopman and Iroff method and 

Hansch method are the oldest used fragmentally techniques, in which a molecule is divided 

into predefined fragments, and the corresponding contributions are summed to lead to an 

estimated value of log P [30]. 

II.4.2.5.2 hydro-solubility  

          The water-solubility of drugs plays a crucial role in drug design and development. 

This parameter has a significant impact on many processes such as pharmaceutical 

formulation, bio pharmacy as well as bioavailability. The importance of drug solubility was 

generally overlooked; it would be assessed once a possible development candidate has been 

discovered, usually as part of drug metabolism research. 

         The situation has changed in recent years since the relevance of solubility is 

recognized, and it is tested or predicted at an early stage in drug development. In recent 

years, advances in combinatorial chemistry and high-throughput screening (HTS) techniques 

have increased the ability to synthesize and test thousands upon thousands of chemicals in a 

short amount of time. It has been noted that compounds generated in HTS drug discovery 

are more drug-like molecules with a desirable aqueous solubility and lipophilicity. Many 

significant computational models have been developed by Johnson and Zheng for aqueous 

solubility of compounds prediction [57.58].  

II.4.3.  Descriptor Selection Methods in QSAR Study  

selection of meaningful descriptors and correct analysis allows the construction of 

reliable QSAR models. Although a QSAR model can be generated including all calculated 

descriptors, but there are many reasons to choose only a small series of descriptors which 

typically contain the information required to construct a robust mathematical model. When 

the number of calculated descriptors is marked with n, The variable selection technique is 

frequently characterized as picking the m< n descriptors that allow the construction of the 

optimal QSAR model. Feature selection approaches reduce the number of degrees of 

freedom in the model by removing unneeded features. 

As a result, the ratio of data points to degrees of freedom rises, resulting in more 

predictive models [13]. 

- Eliminating unnecessary and redundant descriptors will enhance the prediction 

accuracy of resulted models. 
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- A developed model containing a small set of descriptors generally is simple and can 

be interpreted easily, also will reduce the complexity and time requirement of 

machine learning methods.  

- The accuracy of the QSAR model decries when the number of molecular descriptors 

is more than the number of molecules of interest. 

In QSAR modelling: classical feature selection methods, feature selection employing 

artificial intelligence algorithms (wrapper approach), and miscellaneous methods are the 

main used classes for variable selection (Figure II.3) [35]. 

II.4.3.1. Classical Methods  

II.4.3.1.1. Forward Selection (FS) Method 

The forward selection approach consists of adding all molecular descriptors at one 

time. The descriptor with the highest fitness function is the first to be included in the 

regression. The initial descriptor chosen is used in all subsequent QSAR models. New 

descriptors are gradually added to the regression, with each descriptor chosen because it 

provides the best fitness function when combined with those already picked. As a stopping 

criterion, many rules can be used. FS has the benefit of being relevant even when the initial 

data set has more explanatory factors than sites [59] 

 

Figure II.3: Descriptor Selection Methods 
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II.4.3.1.2. Backward Elimination (BE) Method 

When compared to the forward selection technique, the first stage of this strategy is 

to include all of the variables in the QSAR model. In the next phases, the dimensionality of 

descriptors will be reduced by deleting variables one by one based on the criterion 

(descriptors with the least contribution to the reduction of predicted residual error sum of 

squares) (PRESS). When all of the relevant descriptors are significant, or all but one 

predictor variable has been eliminated, the exclusion procedure is terminated [60]. 

II.4.3.1.3. Stepwise Regression Method  

The stepwise descriptor selection technique is a well-known variable selection 

methodology that has long been used in QSAR investigations. It is based on the combination 

of the Backward elimination and forward selection methods [32]. In stepwise method, a 

variable that entered the model in the early phases of selection may be eliminated in the later 

stages. The computations used for variable inclusion and exclusion are the same as those 

used for forward and backward selection. That is, the stepwise technique is fundamentally a 

forward selection procedure, but the potential of eliminating a variable is evaluated at each 

stage, as in backward elimination. The number of significant parameters that remained in the 

obtained model is determined by the levels of significance assumed for the inclusion and 

exclusion of variables from the model [61]. 

II.4.3.1.4. Leaps-and-Bounds Regression 

This technique can provide quickly varied sizes of the optimal subsets of variables 

Without considering all feasible subsets. It is based on the fundamental inequality, 

𝑅𝑆𝑆 (𝐴) ≤ 𝑅𝑆𝑆 (𝐴𝑖) 𝑤ℎ𝑒𝑟𝑒, 𝑅𝑆𝑆: 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 

𝐴: 𝑖𝑠 𝑎𝑛𝑦 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑛𝑑 𝐴𝑖 : 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐴. 

The usage of the inequality can limit the number of subsets assessed in a search for 

the optimal subset regression [61]. For example, set 𝐴1 contains three variables with 

𝑅𝑆𝑆, 596; set 𝐴2 contains four variables with 𝑅𝑆𝑆, 605. Thus, all of the subsets of 𝐴2 will 

be ignored because these subsets have 𝑅𝑆𝑆 greater than that for A2 and also for A1. 

II.4.3.1.5. Variable Selection and Modeling based on the prediction 

Tow statistics parameters: The interrelated coefficient (𝑟𝑖𝑛𝑡) between the variables 

and the correlation coefficient in the leave–one–out (LOO) cross-validation (q) have been 

introduced into the all-subset regression (ASR) procedure for a novel computer program 

construction, which allows the variable selection and modelling based on the prediction. To 
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the aim of accelerating the classical ASR and getting a better variable subset based on the 

predictive quality [62]. 

How to choose and analyze the optimal subset from a big independent variable matrix 

involving K molecules, each with L descriptors, x (k, l)? In the VSMP software, the optimal 

selection job is completed in two major parts are well explained in the following reference 

[62]. 

II.4.3.2. Miscellaneous Methods 

II.4.3.2.1. Replacement Method 

This novel approach consists of substituting a selected variable from the set with 

another that minimizes the total standard deviation (Stot), thus its name (Replacement 

Method; herein after RM) 

To do this, d descriptors 𝑋1, 𝑋2,…..𝑋3are picked at random, then linear regression is run 

[35]. 

II.4.3.2.2. Nearest Neighbors (kNN) method 

Tropsha and his colleagues created kNN as a method for variable selection in QSAR 

experiments. This group utilized this method to create QSAR models for a variety of data 

types. In brief, a series of molecular descriptors is chosen at random as a hypothetical 

descriptor pharmacophore. The number of selected variables is set to various values in order 

to achieve the best LOO q2 feasible [35]. 

II.4.3.2.3. Successive projections algorithm (SPA) 

Successive Projections Algorithm is a new variable selection method which has been 

suggested for multivariate calibration. This technique uses basic operations in a vector space 

to decrease variable collinearity [63]. 

II.4.3.2.4. Uninformative variable elimination-partial least square (UVE-PLS) 

Centner et al. suggested the uninformative variable elimination-partial least squares 

(UVE-PLS) technique, which was adopted for quality model improvement. Based on the 

exclusion of uninformative variables with a high variance but low correlation with the end 

point [64]. 

II.4.3.2.5. Factor analysis (FA) 

Factor analysis is a technique for reducing data. Thus, the primary uses of FA: are to 

minimize the number of variables and to find the structure of the relationships between 

variables. FA can also be used as a data-pre-processing step for the identification of 
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significant predictors variables that influence the response variable and to prevent 

collinearities among them [65].  

II.4.3.3. Artificial Intelligence-Based Methods 

II.4.3.3.1. Genetic algorithm (GA) method 

GA method has been employed in QSAR investigation for the first time by Rogers 

and Hopfinger. They noted a variety of benefits over other descriptor selection techniques. 

The GA used four fundamental phases to determine the best set of descriptors: (1) 

initialization, (2) selection, (3) genetic operator, and (4) fitness of evaluation [76].  

II.4.3.3.2. Artificial Neural Network (ANN) Method 

ANNs are frequently employed as a regression approach in combination with feature 

selection optimization strategies. It was also utilized to determine descriptors that were most 

related to biological activity. In descriptor selection by ANN, an approach can be suggested 

to variable selection that uses a neural network model, the tool to identify which descriptors 

are to be eliminated [32]. 

II.4.3.3.3. Simulated Annealing (SA) Method 

Simulated annealing (SA) is a global search technique developed by Metropolis et 

al. SA derives its fundamental understanding from metallurgy. The proposed algorithm 

allows SA to avoid the local optimality and the improvement of results of several search 

iterations [67].  

II.4.3.3.4.  Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a non-linear method. This approach belongs to 

the category of evolutionary computation techniques. It involves a population of particles 

which are flown through a multi-dimensional search space defined by an original matrix of 

descriptors [68.69].  

II.4.3.3.5. Automatic Relevance Determination (ARD) 

The ARD can be coupled with a Bayesian neural network for optimal QSAR model 

development. These BRANN-ARD networks have the ability to handle a variety of 

difficulties that emerge in QSAR modelling, including the following: model selection; 

robustness of model; size of validation effort; optimization of network architecture and 

choice of validation set [70]. 

II.4.4. Modelling Algorithms  

The final stage in developing the QSAR model, given the specified descriptors, is to 

generate the mapping between the activity and the values of the descriptors. Simple but 

effective techniques represent activity as a linear regression of the selected features. Linear 
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models have served as the foundation of QSAR analysis. They are easy to comprehend and 

reasonably accurate for small datasets of identical chemicals, particularly when the 

descriptors are properly chosen for a certain activity. 

Other methods that are non-linear expand this technique to more complicated 

relationships. Such models may improve in accuracy, particularly for vast and varied 

datasets. However, they are typically more difficult to interpret. The most common linear 

and non-linear regression-based modelling algorithms are presented in Figure II.4 [71]. 

 

Figure II.4:  QSAR Modeling Algorithms 

II.4.4.1 Multiple linear Regression (MLR) 

Multiple linear regression has been one of the most extensively utilized mapping 

approaches in QSAR during the last few decades [71]. MLR is a statistical approach that 

involves a series of variables to predict the outcome of an answer variable. The object of 

(MLR) is to determine how the dependent variable (𝑌) is correlated to the independent 

variables (𝑋𝑖) by fitting a linear regression [85.86]. According to [87], the MLR approach is 

used when: (1) The number of examples is far more than the number of parameters to be 
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evaluated; (2) The data shows a consistent pattern of behaviour; (3) There are a few missing 

data points; (4) A limited number of independent variables are adequate (after 

transformations if necessary) to predict output variables linearly allowing for an interpretable 

representation [88].  

The application of the MLR approach necessitates the verification of the related 

assumptions. The primary assumptions to be examined are as follows: -Linearity: the 

relationship between each variable and the response is linear, thus, the model accurately 

represents the data's behaviour. –The error component is a variable that is independent and 

normally distributed, having a constant variance and a mean value of zero [89]. 

Multiple linear regression is expressed by the following model, which is characterized by k 

predictor variables 𝑥1 ,𝑥2…….𝑥𝑘 [85]. 

𝑦 = β0 + β1𝑥1 + β2𝑥2+ β3𝑥3+. . . . . ..+β𝑘+ ɛ                   Eq1 

ɛ : 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚 

𝛃𝟎: 𝐼𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

𝛃𝟏 − 𝛃𝒌: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠, e.g., 𝛃𝑖  When 1 ≤  𝑖 ≤ 𝑘  reflects the change 

in the mean response corresponding to a unit change in 𝑥𝑖When all other variables are 

maintained constant. 

MLR's goal is to find the set of coefficients (−)  =  {𝜷𝟎, 𝜷𝟏. . . . . 𝜷𝒌) given 

observations X and targets Y. The MLR problem is frequently solved with lease squares. 

Assume that each predictor variable 𝑥1; 𝑥2; . . . . ; 𝑥𝑘contains n observations. Then 𝑥𝑖𝑗  

represents the 𝑖𝑡ℎ observation of the 𝑗𝑡ℎ predictor variable 𝑥𝑖. For example, 𝑥41 represents 

the first value of the fourth observation. To be more specific, the preceding equation can be 

written as:  

𝑦𝑗 = β0 + β1𝑥𝑗1 + β2𝑥𝑗2+ β3𝑥𝑗3+. . . . . ..+β𝑗𝑘+ ɛ                Eq2 

1 ≤  𝑗 ≤ 𝑛  

𝒚𝒋: 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 

The n-equation system may therefore be expressed in matrix notation as follows:  

𝑦 =  Xβ+ ɛ                                                Eq3 

The matrix is known as the design matrix. It includes information about the predictor 

variables' levels at which the observations are acquired. All of the regression coefficients are 

contained in the vector. To produce the regression model, 𝛃 is calculated using the least-

squares method, as shown below. 
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�̂�= (𝑋𝑋𝑇)−1𝑋𝑦
𝑇 Eq4 

Wher: β =

[
 
 
 
 
 
 
 
 
β0 
β1

β3

.

.

.

.
β𝑖

 ]
 
 
 
 
 
 
 
 

  ,   X=   

[
 
 
 
 
 
 
1 𝑥11 𝑥12 .  .  .  .  𝑥1𝑖

1 𝑥21 𝑥22 .  .  .  .  𝑥2𝑖

.    .     .      .  .  .  .  .   .    .     .      .  .  .  .  .   
 .    .     .      .  .  .  .  .    
 .    .     .      .  .  .  .  .    
  𝑥𝑗1 𝑥𝑗2 .  .  .  .  𝑥𝑗𝑖 ]

 
 
 
 
 
 

, Y = 

[
 
 
 
 
 
 
 
𝑌1
𝑌2

.

.

.

.

.
𝑌 𝑛]

 
 
 
 
 
 
 

 

After obtaining β̂ the estimated value of y is calculated by the following equations: 

�̂� =Xβ̂+ ɛ Eq5 

ɛ =  𝑦 − �̂� Eq6 

 

II.4.4.2 Artificial Neural Networks (ANN) 

          In QSAR, artificial neural networks (ANN) are a more flexible modelling tool that 

allows for the depiction of more intricate interactions between a high-dimensional descriptor 

space and the provided retention data [90]. Neural networks are characterized by their ability 

for non-linear data modelling. This is a significant benefit because so many scientific 

interactions are non-linear. Previously, linear QSARs were used to quantitatively correlate 

molecular descriptors, such as shape or dipole moment, to biological and other types of 

activity, but there is little theoretical support for the view that linear models are the most 

effective. As a result, this has proven to be a fruitful field for networks' non-linear abilities 

[91]. 

            An artificial neural network (ANN) (Figure II.5), more commonly referred to as a 

"neural network" (NN), is a mathematical or computational model that is inspired way 

biological neural networks (Figure II.6), such as the brain, or in other words, a modelisation 

of a biological brain system. It is composed of a network of interconnected neurones that 

analyses data using a connectionist approach to computation. Generally, an ANN is an 

adaptive system that modifies its structure in response to external or internal data that flows 

through the network during the learning phase [92]. 

           Neural networks essentially can be defined based on the following three 

characteristics: The Architecture specifies the number of layers and the total number of 

processing elements or nodes in each layer; The learning algorithm used to update the 

connection weights; and the activation functions that are employed in different layers [93]. 
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Figure II.5: Artificial neuron [92] 

 

Figure II.6: Biological Neural [92] 

A neural network is made up of a systematic arrangement of "neurons," which are 

again structured by the number of layers. A layer's neurons are all connected to the following 

layer's neurons in a weighted way. A neural network consists of three types of layers “input” 

layer, one or many “hidden” layer(s), and the “output” layer, as illustrated in Figure II.7. The 

input layer contains input neurons (nodes) that provide data to the hidden layer via synapses, 

and then the hidden layer, in turn, sends data to the output layer via additional synapses. 

Weights are stored in the synapses, which allow them to manipulate the input and output to 

multiple layers [93].  

 



 

39 
 

CHAPTER II : QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP 

 

 Figure II.7: A typical structure of ANN [94]. 

           The input from each node in the preceding layer (𝑥𝑖) is multiplied by an adjustable 

connection called weight (𝑤𝑖𝑗). At each node, the weighted input signals are summed, and a 

threshold value (Ѳ𝑗) is added to each PE. This combined input (𝐼𝑗) is then processed by a 

non-linear transfer function (f (.)) to yield the node output of the PE (𝑦𝑗). The output of one 

node serves as the input to the nodes in the following layer. Equations 1,2, and Figures 7 and 

8 summarize this procedure [94]. 

𝐼𝑗 =∑𝑤𝑖𝑗 𝑥𝑖 + Ѳ𝑗 Eq7 summation 

𝑦𝑖= 𝑓(𝐼𝐽)                                        Eq8 transfer 

          At the input layer, which contains the input data, the propagation of information in 

ANNs begins. The network changes its weights based on the presentation of a training data 

set. It then uses a learning rule to find a set of weights that will give the input/output mapping 

with the smallest possible error, which is what the network does [94].  

II.5. Validation Techniques  

         After the regression equation is found, it is also important to look at how well the model 

fits and how stable it is. Also, it is important to look at how accurate it is. To validate a 

method is to make sure that the method is both reliable and useful for a specific use. 

Validation of a QSAR model is the process of determining a QSAR's predictive ability and 

mechanistic basis for practical purposes. 

        Validation determines whether the model accurately depicts reality from the 

perspective of the model's intended application [95]. In other words, validation procedures 

are acknowledged as critical processes for evaluating the statistical acceptability and 
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applicability of built models on a new set of data in order to determine the predictive 

confidence of the models [96]. 

II.5.1. Internal Validation 

II.5.1.1. Measure of Goodness of Fit 

         The coefficient of multiple regression (𝑅2) is a statistical parameter that is used for a 

given data fit assessment. It describes the amount of variation experienced by the response 

(dependent variable) in the regression. 𝑅2 = 0.00 indicates the non-presence of any 

relationship between the independent variables, whilst a value of 1.00 indicates that the 

variables are well fitted. 𝑅2
𝑎𝑑𝑗(adjusted) is a comparable statistical method that may also be 

used to assess the quality of fit. 

          Furthermore, the standard error of estimate (se) may be used to assess the quality of 

fit. The standard error of estimate, which is determined from both the predicted and observed 

values, describes the distribution of observed values from the regression fit . The model is 

considered more reliable when the (se) value is less; furthermore, it should be more than the 

experimental error [97]. 

          chi-squared (𝑥2) and root-mean-squared error are used to determine if the model has 

the predictive quality indicated by the 𝑅2. The usage of RMSE represents the error between 

the mean of the observed and predicted values. The chi-squared value  𝑥2demonstrates the 

gap between observed and predicted biological activities [98]. 

II.5.1.2. Cross-Validation 

          Cross-validation (CV) is a widely used technique for internal QSAR model validation. 

CV is a technique for evaluating a model's prediction performance using a smaller amount 

of structural data. Typically, at each time, one compound of the set is removed, and a new 

model based on the reduced dataset is developed, which is then used the activity of removed 

compounds prediction. Once the technique has been completed, it is repeated many times 

until all compounds have been eliminated and predicted once. This is referred to as the 

"leave-one-out (LOO) approach." 

          Similarly, the leave-n-out or leave-many-out CV approach consists of eliminating 

more than 1 compound from the dataset at each time. As a result of the LOO technique, the 

cross-validated correlation coefficient  𝑟𝑐𝑣
2 (or 𝑞2) is calculated, which is a measure of both 

the robustness and the predictive capacity of the model. 

𝑟𝑐𝑣
2 = (𝑃𝑅𝐸𝑆𝑆0 − 𝑃𝑅𝐸𝑆𝑆)/𝑃𝑅𝐸𝑆𝑆0                     Eq9 

             𝑃𝑅𝐸𝑆𝑆0: 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦; 
𝑃𝑅𝐸𝑆𝑆: 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦  
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Several scholars believe that a high 𝑞2 is the final confirmation of a great predictive 

capacity of the QSAR model, although this is not the case. When test sets with known 

biological activities values were provided for prediction, it was discovered that there was no 

link between the 𝑞2 and the 𝑟2 values. The coefficient 𝑞2 should be seen more like an internal 

consistency metric than like a real prediction metric for the model that was developed. It 

should be emphasized that, while fitting the experimental data is simpler than predicting 

them from the QSAR model, the model's 𝑟2 is always greater than 𝑞2. Cross-validation is 

not without flaws. As a result, a high value of 𝑞2 is not sufficient to determine if a QSAR 

model is highly predictive [99]. 

II.5.1.3. Y- Randomization (Scrambling model) 

         The y-randomization test is used to find and quantify chance correlations between the 

dependent and descriptor variables. In this case, the phrase "chance correlation" refers to the 

fact that although the actual model may include descriptors that are statistically highly 

correlated with y, in reality, there is no causal link encoded in the corresponding correlations 

with y since they are unrelated to the mechanism of action. The purpose of this test is to 

ensure that the obtained model is not coincidental. 

          Scrambled Model development is a unique approach to validating the descriptors used 

in the model since the bioactivities are randomized, assuring the new model is produced 

from a false data set. This approach is used to validate the initial QSAR model and to confirm 

that the descriptors used are adequate. These new models (Scram-models) are constructed 

with the same descriptors as the original model but with scrambled Y. each Scram-model 

should be of inferior quality and devoid of significance, remaining with the same descriptors 

with no changing since y-randomization is not dependent on parameter optimization [100]. 

After repeating this process several time, if the random model is similar to the original one, 

that indicates the non-sufficient of data for model support. 

           How should the results of each randomization run be analyzed, and how many runs 

should be conducted? There are several methods for determining if a true model is 

characterized by random correlation. Eriksson and Wold approach is a simple method, which 

is defined as a collection of decision inequalities determined by the following values: 

𝑄𝑌𝑟𝑎𝑛𝑑
2 , 𝑅𝑦𝑟𝑎𝑛𝑑

2  and their relationship  

𝑅𝑦𝑟𝑎𝑛𝑑
2  ˃ 𝑄𝑌𝑟𝑎𝑛𝑑

2  

𝑅𝑦𝑟𝑎𝑛𝑑
2  < 0.2,  𝑄𝑌𝑟𝑎𝑛𝑑

2  < 0.2  𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑐𝑒 

 𝑎𝑛𝑦 𝑄𝑌𝑟𝑎𝑛𝑑 
2   𝑎𝑛𝑑  0.2 < 𝑅𝑦𝑟𝑎𝑛𝑑

2  < 0.3  𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 
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 𝑎𝑛𝑦 𝑄𝑌𝑟𝑎𝑛𝑑 
2   𝑎𝑛𝑑  0.3 < 𝑅𝑦𝑟𝑎𝑛𝑑

2  < 0.4  𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

 𝑎𝑛𝑦 𝑄𝑌𝑟𝑎𝑛𝑑 
2   𝑅𝑦𝑟𝑎𝑛𝑑

2  ˃ 0.4   𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛. 

          The second method identifies the shortest distance in units of 𝑄2 or 𝑅2 between the 

true model and all randomized models. This minimal distance is then represented in terms 

of the standard deviation for each randomization run. The real model is distinguished from 

randomized models by having a sufficient confidence level for the normal distribution. 

Another way that can also be used to measure chance correlation is to calculate the absolute 

value of the Pearson correlation coefficient, r, between randomized vectors y and the original 

vector y. For both randomized and real models, 2 y randomization plots are created, 𝑟 −

𝑅𝑦𝑟𝑎𝑛𝑑
2  and 𝑟 −  𝑄𝑌𝑟𝑎𝑛𝑑

2 . and the linear regression lines are obtained as follows: 

 𝑄𝑌𝑟𝑎𝑛𝑑
2 = 𝑎𝑄 +𝑏𝑄r                     

Eq10 

𝑅𝑦𝑟𝑎𝑛𝑑
2 = 𝑎𝑅 +𝑏𝑅r                   Eq11 

the 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠 𝑎𝑅 𝑎𝑛𝑑  𝑎𝑄  measures the random correlation If 𝑎𝑄 <  0.05 𝑎𝑛𝑑 𝑎𝑅 <  0.3 

indicates the non-correlation chance of the model. The intrinsic random correlation 

contained in X is observable when the statistical effects of randomizing the y vector are 

removed, i.e., when the correlation between the real and randomized y vectors r = 0 [100.-

104]. 

II.5.1.4. Bootstrapping 

          Bootstrapping is more often employed internal validation method. It creates 

confidence bounds for individual model parameters. Model validation using the bootstrap 

technique does not involve extra data gathering. This approach is generally used to determine 

the model's generalizability. In this technique, compounds (samples) are chosen randomly 

from the database. The simplest version of bootstrapping. Rather than repeatedly studying 

subsets of data, subsamples of data are studied repeatedly. 

           Each sub sample is a random sample with a replacement from the whole sample. 

Typically, bootstrap validation generates K groups of size n by repeated randomly selecting 

n items from the original data set. Some of these items can be chosen again and again in the 

same random sample, but other items may never be chosen. The model constructed using n 

randomly chosen items can be used for the properties prediction of excluded compounds. In 

bootstrap validation, a model is considered robust when 𝑄2 value is hight [105]. 
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II.5.2. External Validation  

        The primary goal of external validation of a QSAR model is to make a straightforward 

assessment of the mistakes that were encountered during the prediction of a test set [106]. 

II.5.2.1. Choosing Training and Test Sets: 

         It is important to note that the selection of suitable training and validation sets is a step 

of QSAR that is sometimes disregarded. This involves determining how to pick the sets such 

that they satisfy the essential statistical requirement of representativity. Compounds in the 

training and validation sets must be representative of the class of compounds from which 

they are derived, which means they must be selected in such a way that they appropriately 

span the chemical and structural characteristics of the compounds under consideration [107]. 

        Optimal splitting is ensured when each member of the test set is close to at least one 

point of the training set. The development of reasonable methodologies for the selection of 

training and test sets is a current topic of research interest. The straightforward random 

selection, activity sampling, Kennard stone are some of the used approaches for training and 

test set creation. These strategies aid in the achievement of desired statistical features in both 

the training and test sets to varying degrees.  

II.5.2.2. Evaluating the prediction potential of QSPR models  

          Generally, a valid QSAR model is characterized by generalization ability that makes 

it capable of predicting the activity of the test set similar to those of the training set model 

[108]. In this stage, it is required to make a comparison between the observed and the 

predicted values of suitably large external series of molecules that were not implemented in 

the model construction. The performance accuracy prediction of the QSAR on this involved 

external series determines the real predictive power of a QSAR model [109]. To measure the 

prediction capacity of a QSPR model, an external 𝑞2may be calculated as follows: 

𝑞2
𝑒𝑥𝑡 = 1 − (∑(𝑦𝑖 − Ŷ𝑖)

2
/∑(𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛)2)          Eq12 

 𝑦𝑖  : is the measured value of the test set compound,Ŷ𝑖 is the predicted value of the test set 

compounds and 𝑦𝑚𝑒𝑎𝑛: is the average activity of all molecules of the training set. The 

following statistical parameters are also suggested: (1) correlation coefficient R between the 

predicted and observed values; (2) coefficients of determination (predicted versus observed 

activities 𝑅2And observed versus predicted activities𝑅′2); (3) slopes k and k' of the 

regression lines through the origin. 
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II.6. Applicability domain 

II.6.1. Definition 

           When a QSAR model is used, the applicability domain is defined as the response and 

chemical structure space in which the model generates predictions with a particular level of 

confidence. In this definition, Chemical structure may be represented by fragmental and/or 

physicochemical information, and the dependent variable can be any predicted 

environmental, biological, or physicochemical consequence. The applicability domain 

concept demands users to identify the model's limits in terms of its structural domain and 

response space [110]. 

         In general, valid QSAR predictions are confined to compounds that are structurally 

similar to those used to develop that model. The Compounds that fall within the scope of the 

model are regarded to be inside the AD and are classed as interpolated, whilst the remainder 

is extrapolations and are thus labelled as outside the AD. The reliability of a particular model 

is stronger for predictions that fall within the AD, and it is more likely to be inaccurate for 

extrapolations that go outside the AD. The degree to which a predictive model is 

generalizable is determined by how extensive the realm of application is for the model. It is 

possible that the domain is too narrow, which means that the model is only capable of making 

solid predictions for a small number of chemical structures [111]. 

II.6.2. The importance of the AD in the (Q)SAR life cycle 

         The AD plays a crucial role in all stages of the QSAR life-cycle (development, 

validation and application), as it is depicted in Figure II.8. The concept should be used during 

model building to guarantee that a domain is described as widely as feasible in order to 

achieve the required degree of predictability. In general, when it comes to developing a 

model, there are two options: either design a model that can be used broadly and sacrifice 

some predictability or construct a model that can be applied specifically (for example, a 

certain class of chemicals) and have a higher degree of predictability. 

        The AD is significant during QSAR validation because it allows a predetermined AD 

to be checked and maybe adjusted. If external validation is conducted, Predictions must be 

made for samples that are not included in the training set. It is necessary to verify that the 

external "validation" series is adequate for model validation by ensuring that the test 

chemical structures fall inside the AD of the model. One of the primary reasons for having 

a well-defined AD is to make it easier to apply QSARs to specific compounds in the 
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regulatory process. The choice to employ a QSAR for regulatory reasons will often need to 

determine if the studied compounds fall within the AD of the model [112]. 

 

Figure II.8: The applicability domain's essential role in different phases of QSAR 

II.6.3. Methods for Applicability Domain Determination  

         There are many different approaches for QSAR Applicability Domain determination. 

The following are the methodologies that are most often used for estimating the interpolation 

zones in a multivariate space: (1) Ranges in the descriptor space and (2) Distance-based 

methods. (3) Geometrical methods, (4). Probability density distribution, and (5) Range of 

the response variable. The first four techniques in this section are based on the methodology 

used for the characterization of interpolation space in model descriptor space. The latter, on 

the other hand, is exclusively dependent on the response space of the training set molecules. 

Figure II.9 shows the available approaches for calculating AD. 

         There is no way that can be deemed generally optimal among the present methods. 

Each strategy has advantages and disadvantages. The leverage technique (William’s plot), 

DModX, and other similarity evaluation approaches have been widely used in QSAR articles 

over the past decade to detect outliers and compounds lying beyond the AD zone [113]. 

Applicability 

Domain 

Model Developpement 

Biological Data + Physicichemical and Structural Data

Statistical Analysis 

Model Application 

Prioritisation, Chemical Categories

Classification, Risk Assesment   

Model Valiation 

Principles for QSAR Validation 



 

46 
 

CHAPTER II : QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP 

 

Figure II.9: Methods for Applicability Domain Determination 
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III.1. Introduction  

        A growing number of new therapeutic targets for use in drug discovery have been 

identified since the completion of the human genome project. Simultaneously, thanks to the 

following advances: high-throughput protein purification, nuclear magnetic resonance, 

crystallography, nuclear magnetic resonance, and spectroscopy.  

 Numerous structural details of proteins and protein-ligand complexes have been 

revealed. These technological advancements make it possible for computational strategies 

to permeate every aspect of drug development today, including the virtual screening (VS) 

techniques for hit identification and the methods for lead optimization [1-6]. VS is a more 

direct and rational approach to drug discovery when compared to the conventional 

experimental high throughput screening (HTS) method. Additionally, VS has the advantage 

of being low-cost effective and screening more compounds [6.7].  

VS is categorized into structure-based and ligand-based methods. The application of 

ligand-based methods, such as pharmacophore modeling and quantitative structure-activity 

relationship (QSAR) methods, is possible in situations in which a collection of active ligand 

molecules is already known, but there is either very little or no structural information 

available for the targets. Regarding structure-based drug design, the molecular docking 

technique is by far the most common and has been in widespread use ever since the early 

1980s [8].  

The first strategy of ligand-receptor binding research was suggested for the first time by 

Fisher. Figure III displays the lock-and-key model, which corresponds to rigid docking. For 

the planning and design of new drugs, the use of molecular docking methodologies is of the 

utmost importance. The goal of these methods is to make a prediction about the experimental 

binding mode and affinity of small compounds incorporated in the binding site of an 

important receptor target [9]. 

 Molecular docking is a computer simulation procedure that consists of three principal 

objectives: virtual screening, pose prediction, and binding affinity estimation of a receptor-

ligand complex where the ligand is either a small molecule or another protein. The receptor 

can be a protein or a nucleic acid molecule (DNA or RNA). Another way to define it is as a 

simulation process in which the position of a ligand is estimated within a binding site that 

has either been predicted or pre-defined [8.9].  

Molecular docking simulations can also be utilized to reproduce experimental data 

employing docking validation algorithms. The obtained in silico confirmations of the studied 
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complex (protein-ligand or protein-protein) will be compared to the chemical structures 

found from X-ray crystallography or nuclear magnetic resonance [8].  

There are two basic steps in docking: predicting the ligand conformation and its position 

and orientation within these sites (often referred to as pose) and evaluating the binding 

affinity. These two steps are related to sampling methods and scoring schemes [9-11].  

A reliable docking methodology is capable of accurately estimating the pose of the 

incorporated ligand in the receptor-binding site. (Achieve an acceptable level of precision in 

terms of the experimental ligand geometry achieved) as well as the associated physical-

chemical molecular interactions. In addition, when researching large compound libraries, the 

method needs to be able to successfully differentiate binding compounds from nonbinding 

compounds and correctly rank these ligands among the most effective compounds in the 

database [12]. These tasks are carried out by molecular docking programs in the form of a 

cyclical process, during which the conformation of the ligand is evaluated based on a set of 

specific scoring functions. This process is repeated in a recursive manner until [13]. 

 

Figure III.1: Enzyme Activity Model Lock-and-Key [14] 

III .2. Approaches of Molecular Docking 

There are primarily two different kinds of approaches that are utilized when carrying out 

molecular docking. Computer simulations are used in one of the approaches; during these 

simulations, energy profiling for the ligand-target conformer that is docked is estimated. In 

contrast, the second approach makes use of a method that determines surface 

complementarity between ligand and target. The main properties of the two approaches are 

presented in Figure III.2 [15-18]. 
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Figure III.2: Molecular Docking Approaches and Their Main Properties 

 

 

 

Molecular Docking 

Appraoches

Simulation Approach

-It is possible to calculate the
interaction energy for each ligand-
receptor pair.

-Ligand is allowed to fit into the
groove of the receptor on the basis of
the minimum amount of energy
required, in order to achieve the best
docked conformer of ligand and
receptor.

-The total energy of the system is
calculated for each ligand move into
the receptor's pocket, which is then
compared to find the conformer with
the lowest total energy.

-This method is better suited to
accept ligand flexibility in molecular
modeling tools, allowing for a more
accurate assessment of ligand-
receptor molecular interactions.

-This method of molecular modeling
necessitates much more time due to
the large amount of energy profiling
that must be estimated.

Shape Complementarity 
Approach

-In this approach, the complementarity
between ligand and receptor surface is
estimated.

- Docked conformer determination
requires: The description of solvent
accessible topographic characteristics of
ligand and receptor in terms of matching.
Then the estimation of surface
complementarity between interacting
molecules in order to determine the
optimal groove/pocket for ligand binding
on its target.

-This technique begins with the surface
representation of the receptor and the
ligand, continues with the calculation of
features and curvature, and then
concludes with docking and scoring based
on geometric complementary criteria

-It is possible to use both flexible docking
and rigid docking with the shape
complementarity approach.
Conformational changes between bound
and unbound interacting molecules may
occur in flexible or soft docking. Rigid
docking, on the other hand, does not
permit any spatial changes to be made to
the shape of interacting molecules when
performing molecular modeling.

-This method involves quickly testing a
large number of ligands to see which ones
bind to the target in a matter of seconds,
and as a result, it generates results that
are both timely and accurate.
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III.3. Applications of Molecular Docking 

Molecule docking is a pressing issue in today's scientific endeavors. If it is carried out 

prior to the experimental part of any investigation, it can demonstrate the feasibility of any 

task. Molecular docking has revolutionized research in some areas. In particular, ligand-

protein interactions can be used to predict whether an enzyme can be activated or inhibited. 

This kind of information has the potential to serve as a source of raw material for rational 

drug design. Some of the major applications of molecular docking are presented in Figure 

III.3 [19]. 

 

Figure III.3: Molecular Docking Applications 

III.4. Theory of docking 

Docking can be accomplished through the completion of two steps that are 

intertwined with one another. The first step involves collecting conformations of the ligand 

while it is bound to the active site of the protein. The second step involves using a scoring 

function to rank the collected conformations [20].  

III.4.1. Search Algorithms 

    Search algorithms are utilized in the process of molecular docking in order to 

investigate the free energy landscape and locate the most favorable ligand poses. When the 
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entropic and enthalpic effects of the system are accurately modelled by the energy function, 

it is expected that the experimental receptor-ligand conformation will correspond to the 

global minimum of the energy landscape. Regrettably, taking into account the entropic 

effects is not a straightforward process, and the docking methods that are currently in use 

employ rough approximations. As a result, there is no assurance that the native binding mode 

will correspond to the global minimum that is associated with the energy landscape that was 

investigated by a docking methodology [21]. 

 Docking methods make use of the following three primary strategies with regard to the 

flexibility of proteins and ligands:  

1. the protein and ligand are considered to be rigid (i.e., It is assumed that the ligand is a rigid 

body that does not possess any internal degrees of freedom).  

2. the protein is rigid, and all degrees of freedom of the ligand are explored (i.e., Translational, 

rotational, and conformational) 

3. The protein is considered totally or partially flexible, and all degrees of freedom of the ligand 

are also investigated. 

III.4.1.1. Ligand Sampling 

The vast majority of algorithms treat the protein as if it were a rigid object, whereas the 

ligand is treated as though it were flexible. This means that sp3 bonds are allowed to spin, 

but bond lengths and bond angles are assumed to remain the same [21.22].  

In this chapter, we review the main strategies associated with the second and the third 

approaches. Systematic, stochastic, and deterministic searches are the three primary 

categories that serve as the basis for classifying search algorithms. This categorization is 

based on the approach that is used to investigate ligand flexibility. In addition, some 

algorithms use a hybrid technique, which combines two or all three of these strategies. 

During the search process, systematic algorithms investigate all of the ligand's degrees of 

freedom [22]. 

III.4.1.1.1 Systematic Methods  

 Methods that take this approach can be further categorized as exhaustive, incremental 

construction, or conformational ensemble. 

a) Exhaustive searches 

Exhaustive searches systematically explore the values of each degree of freedom in a 

combinatorial manner, rotating all dihedral angles of the ligand according to a predetermined 

range of values and a set of initial restraints, e.g., geometrical and chemical constraints. It 
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stands to reason that, ligands that are more flexible will have a greater number of rotatable 

bonds; as a result, the complexity of the optimization problem will be greatly increased [23]. 

b) Incremental Construction 

The method of fragmentation known as incremental construction begins with the 

separation of the ligand into smaller fragments. Next, a base fragment is chosen and docked 

into the binding site of the receptor. After that, the ligand is pieced back together one 

fragment at a time by forming covalent bonds between the various other pieces and the base 

group. This method is utilized quite frequently in de novo ligand creation, which seeks to 

find new compounds by joining the segments that dock in the receptor-binding site in the 

best possible positions [24.25.26]. 

III.4.1.1.2 Stochastic methods 

In Stochastic methods, every time a ligand's translational, rotational, and 

conformational (degrees of freedom) are randomly changed, at each step wide range of 

possible outcomes is generated. There are several different classes of stochastic algorithms, 

including Monte Carlo (MC), Tabu Search (TS), Swarm Optimisation (SO), and 

Evolutionary Algorithms (EAs) [27]. The fact that there is no assurance that these heuristic 

methods will converge on the optimal solution is the main associated disadvantage. In 

addition, multiple and independent iterations of the algorithm are essential for the probability 

of locating the global energy minimum maximization. 

 MC Methods performs modifications in all of the ligand degrees of freedom that are, 

and energy minimization is often performed for each produced conformation. After then, the 

poses are judged to be accepted or not based on the Boltzmann factor, which takes into 

account the energies of the solutions before and after the random modifications as well as 

the absolute temperature. Because raising the temperature may make it possible for some 

energy barriers to be overcome, one significant version of this process, which is known as 

Simulated Annealing, employs temperature fluctuations in order to boost the likelihood of 

locating the global minimum [28]. 

 EAs are a type of optimization approach that is based on the notion of the evolution 

of biological populations through the process of natural selection. The goal of these methods 

is to find the most effective solutions to a specific issue. These methods are categorized into 

three main classes: evolutionary programming, evolution strategies, and genetic algorithms. 

The advantage of these methods allows to quickly get out of local minima and identify many 

different low-energy solutions at the same time [29.30]. 
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The TS strategy investigates the search space by making arbitrary adjustments to the 

ligand's degrees of freedom. In addition to preserving the solution with the least amount of 

energy, this technique employs “Tabu list” which contains the lowest energy solutions 

previously found, for the similarity of a recently generated, non-lowest energy pose analysis 

[31]. 

The SO method takes its cues from the cooperative actions of organisms like birds 

and ants. According to this approach, any adjustments that are made to an existing solution 

will be made so that it more closely resembles the optimal pose of the population. The SO 

method can be implemented in a few different ways, two of which are the Particle Swarm 

Optimisation and the Ant Colony Optimisation [21]. 

III.4.1.1.3 Deterministic Methods 

In deterministic methods, the actual state of the system determines the modifications 

to be made, leading to its next state. The final result is highly dependent on the initial input 

structure because, given exactly the same initial system configuration and a particular set of 

parameters, the final state will always be the same [32]. 

III.4.1.2. Protein flexibility  

 

In the realm of molecular docking, one of the ongoing challenges is to account for 

the flexibility of proteins throughout the searching process. When ligands bind to proteins 

in solution, there can be minor to substantial conformational changes in the protein as a result 

of induced fit effects. In addition, it is now generally acknowledged that proteins do not 

reside in a single native configuration but rather in a collection of many conformations. 

Based on this theory, the binding of the ligand to one of these conformations shifts the 

population equilibrium towards a specific ligand-bound conformation [33.34.35]. 

It is, therefore, a very difficult task to build search algorithms and sampling 

procedures that adequately deal with the several degrees of freedom associated with protein 

flexibility. Taking into consideration protein flexibility has necessitated the development of 

a variety of approaches, the most important of which may be categorized into the following 

five categories: collective degrees of freedom, soft docking, molecular relaxation, ensemble 

docking, and side-chain flexibility. Small protein motions can have a big impact on 

molecular docking outcomes [36].  

It is possible for the side chain of a single amino acid residue to rearrange itself in a 

way that will change the profile of the binding site. This will result in a reduction in the 
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accuracy of the docking process during posture prediction as well as binding affinity 

estimate. 

III.4.1.2.1. The Soft Docking Method  

In order to take into account these relatively minor conformational (i.e., atomic 

variations of up to 1 angstrom), the soft docking method has been applied. In a more general 

sense, this strategy reduces the repulsive term of the Lennard-Jones potential, which makes 

it possible for there to be modest overlaps between the atoms of the ligand and the protein. 

The main advantage of this method is its speed, but it should only be employed to consider 

local receptor motions. The quickness of this procedure is its primary benefit; nonetheless, 

it shouldn't be considered for anything other than the motions of local receptors [37.38.39]. 

III.4.1.2.2. Side-Chain Flexibility Method  

It is possible to use the side-chain flexibility approach in situations in which the 

generated fit effect is significant and goes beyond the soft-docking limits (but continues to 

be a local effect). Using this strategy, the backbone of the protein is held steady while various 

conformations of the side chains are investigated by adjusting the important torsional 

degrees of freedom of those chains [40]. 

III.4.1.2.3. Molecular Relaxation 

Molecular relaxation is the third strategy for optimizing the conformations of protein-

ligand complexes. This is accomplished through the use of rigid-protein docking methods, 

which take into account the motions of the protein's backbone and side chains in addition to 

all of the ligand's degrees of freedom. The methods of energy minimization, Monte Carlo 

methods, and molecular dynamics are the ones that are typically used, and they are typically 

tailored to treat receptor flexibility during docking. Ensemble docking implicitly considers 

the receptor flexibility by docking the ligand on a set of protein conformations instead of a 

single conformation [41]. 

III.4.1.2.4. Ensemble Docking 

By docking the ligand on a group of protein conformations rather than a single 

conformation, ensemble docking takes into account the flexibility of the receptor. 

Experimental data (such as nuclear magnetic resonance (NMR) and X-ray crystallographic 

structures, for example) or computational techniques (such as comparison modeling, normal 

mode analysis, and molecular dynamics-derived frames, among others) can be used to derive 

distinct receptor states. The ensemble docking methodologies also vary in the manner in 

which the docking findings received from numerous structures are analyzed, such as the 

rescoring process and the prediction of the binding affinity [42.43.44.45].  
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III.4.1.2.5. Collective Degrees of Freedom 

The procedures that are based on collective degrees of freedom take into account the 

complete protein's flexibility. In general, the goal of these methodologies is to decrease the 

original high-dimensional representation of protein motion that was used to a lower-

dimensional version that simply accounts for the predominant motion modes. This method 

is used in several applications to take into consideration the flexibility of proteins, such as 

principal component analysis and normal mode analysis. The primary issue with these 

approaches is that the degrees of freedom that are taken into account are not the native ones; 

rather, it is the collective motions that are derived from them. This might result in mistakes 

in the prediction of the binding mode [21.46.47].  

III.4.2. Scoring Functions  

It is feasible to comprehend crucial aspects connected to the binding process if one 

predicts the binding mode and affinity of a small molecule within the binding site of an 

interesting target. This will allow one to better grasp how the binding process works. For the 

purposes of pose and affinity prediction, empirical scoring functions are utilized extensively. 

The main goals of the scoring function are [48] 

- During the process of the docking procedure, the search algorithm analyses a large number 

of different conformations for each molecule in the compound library. At this stage, the 

scoring functions will evaluate the quality of the generated docking poses in order to direct 

the search strategies toward relevant ligand conformations.  

-The classification of active and inactive compounds (VS). 

-The prediction of the absolute binding affinity and the accurate ranking of compounds in 

accordance with their effectiveness.  

III.4.2.1. Physics-Based Scoring Functions 

Physics-based SFs include the scoring functions based on solvation models, force 

field, and quantum mechanics methods. The binding energy is calculated using the classical 

force field-based SF by adding up the van der Waals and electrostatic interactions between 

the protein-ligand atom pairs according to the following equation: 

𝐸𝑏𝑖𝑛 =  𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙𝑒𝑐                 Eq.1 

It takes into account the role that enthalpy plays in the production of total energy. The 

performance of the force field-based SF is not enough because it does not take into account 

entropy and the solvent effect. Therefore, the force field-based SF is made better by the 

incorporation of the torsion entropy of ligands, as well as the solvation/desolvation impact 

and implicit solvent models Eq. 2.  
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𝐸𝑏𝑖𝑛 =  𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙𝑒𝑐 +  𝐸𝚫𝐆                 Eq.2 

            However, because this kind of scoring function is based on the force field, the 

predictive accuracy for the binding energy is significantly affected by the functional form of 

the potential energy and related parameters, which are difficult to find.  This is because 

of the fact that the force field is the basis for the scoring function. Recent research has 

developed the SF, which is based on quantum mechanics (QM), in order to address the 

difficulties of covalent contacts, polarization, and charge transfer in docking. On the other 

hand, the QM-based SF not only has a greater computing cost than the force field-based SF, 

but it also has a greater degree of precision than the force field-based SF. As a suggested 

solution for the computational cost and predictive accuracy comprising, a hybrid quantum 

mechanical and molecular mechanics (QM/MM) technique (Eq. 3) has been developed 

[49.50.51.52.53.54]. 

𝐸𝑏𝑖𝑛 =  𝐸𝑄𝑀/𝑀𝑀 + 𝐸𝚫𝐆               Eq.3 

III.4.2.2. Empirical Scoring Function  

         The second category of scoring functions is known as the empirical scoring function, 

and it has been increasingly popular in recent years. The binding energy can be stated as a 

weighted sum of explicit hydrogen bonding and hydrophobic contact components. There is 

a great deal of extra terminology, as well as other functional forms that have been selected. 

Some functions solely use distance terms to describe hydrogen bonds, but the vast majority 

of others take into account and penalize any angular deviation from the geometries of 

idealized hydrogen bonds. The weighting terms of these functions are typically derived by 

fitting to experimentally determined Ki values for protein-ligand complexes whose crystal 

structures have been determined for compilations of such data [58.59.60]. 

III.4.2.3. knowledge-based scoring function  

           A knowledge-based scoring function is one that is dependent on particular 

characteristics of known protein-protein interactions that are maintained in a database. In 

most cases, the score is determined by either chemical, physical, or biological characteristics. 

As ranking scoring functions, they have been utilized but with varying degrees of 

effectiveness. In the beginning, statistical potentials were developed in order to differentiate 

a right protein fold (also known as near-native) of a model from a multitude of generated 

solutions. It has been described and investigated how many different statistical possibilities 
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there are. In order to evaluate the potential of contacts between protein molecules, specific 

potentials for the interactions between macromolecules were derived [60]. 

III.4.2.4. Machine Learning-Based  

          Machine learning-based represents the new type of scoring function for protein-ligand 

interaction evaluation. Machine learning can be employed when the characteristics of both 

the ligand and the protein, in addition to the patterns of their interactions, are capable of 

being encoded using specific descriptors. The results of this analysis can then be used to 

derive statistical models that compute protein-ligand binding scores. Figure III.4 depicts the 

typical process that is followed when training SF based on machine learning [49.61].  

 

Figure III.4: Typical process that is followed when training SF based on machine learning. 

III.5. Molecular Dynamics Simulation  

When performing molecular docking, it is vital to take into account the flexibility of 

the target binding site; yet, this feature is commonly neglected. During the molecular 

recognition process, enzymes and receptors are capable of undergoing conformational 

modifications. In certain instances, these structural rearrangements are rather minor, and the 

ligand is able to fit into a binding site with little mobility. Otherwise, certain proteins will go 

through considerable conformational changes, which may involve aspects of their secondary 

and tertiary structures.  

Problems of this nature with regard to flexibility are amenable to solutions with 

methods such as MD [62.63.64]. In most cases, the ligand is responsible for stabilizing a 

subset of the receptor's potential conformations, which moves the equilibrium closer to the 

structures with the lowest amount of energy [65]. In situations like these, MD simulations 

have the ability to develop alternate conformational states that correlate to the structures that 
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are ligand-induced. In addition, in the case of the no existing of crystallographic structures 

for a given molecular target that are suitable, MD can be used to construct a set of docking 

structures that are convenient. In addition, MD can be utilized for the purpose of determining 

the stability of a ligand-receptor complex that was predicted via molecular docking [66.67] 

       In molecular dynamics, Newton's equations of motion, as outlined in classical 

mechanics, are utilized to determine the location and velocity of each atom in the system 

that is being investigated. As a direct consequence of this, it is possible to investigate the 

path that a ligand-receptor complex takes throughout time [68].  

III.6. Molecular Docking Methodology 

III.6.1. Ligands preparation  

 The concept of ligand preparation involves taking 2D structures and producing 

corresponding low-energy 3D structures.  

III.6.2. Protein Preparation and grid generation 

Removing water molecules, fill in messing loops and side chains, deleting the alternate 

conformations and adding hydrogen, and inserting the missing atoms in incomplete residues 

are elementary and indispensable steps that were used for the protein refinement and 

preparation. Then, receptor grid generation was performed in order to determine the position 

and size of the   receptor active site area where binding interaction between the ligand and 

the residues can occur [69] 

III.6.3. Docking 

Ligand is docked against the protein (Figure III.5), and the interactions are analyzed. The 

scoring function gives a score on the basis of the best-docked ligand complex picked out 

[19]. 

     III.6.4. Docking Validation  

The root-mean-square deviation (RMSD) value is a crucial and necessary statistical 

parameter for docking validation which indicates the accuracy and the reliability of the 

docking. This value is obtained from the determination of the deviation between two 

positions: The first is the initial pose of the co-crystallized ligand in its original site, the 

second is the same co-crystallized ligand re-docked to the binding site of the protein pose. 

When the RMSD is less than 2 Å), the docking is considered reliable. 

III.7. Molecular docking databases 

The Protein Data Bank, which is open to the public, is often considered the most 

reliable resource for protein structure information (PDB). Additionally, it is not necessary to 
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pay to access public databases such as the PubChem Compound Database and ZINC 

Besides; there are a great number of significant commercial databases, such as the 

Cambridge Structural Database (CSD) and the Compound Database (Aced) [71].  

    

Figure III.5: Molecular docking flow chart. 

III.8. Molecular docking software 

The most popular types of molecular docking software, together with their associated 

algorithms, assessment methodologies, features, and application domains, are outlined in 

Table 1.  

Table II.1: Representative software for molecular docking 

Name 

 

Search 

Algorithm 

Evaluation method Speed Feature and Application areas 

Flex X [72] Fragmentation algorithm Semi-empirical 

calculation 

on free energy 

Fast Flexible-rigid docking. 

Utilizing an incremental 

construction technique enables 

it to be utilized for the virtual 

screening of small molecule 

databases. 

Glide [73] Exhaustive systematic 

Search 

Semi-empirical 

calculation 

on free energy 

Medium Flexible docking. 

This software narrows the 

search range using domain 

knowledge via XP (extra 

precision), SP (standard 

precision), and high throughout 

virtual. 

AutoDock 

[74] 

GA (genetic algorithm) Semi-empirical 

calculation 

on free energy 

Medium Flexible-rigid docking. 

This software is always used in 

conjunction with Autodock-

tools and is free for academic 

usage. 

RDOCK [75] GA (genetic algorithm) 

MC (monte carlo) 

 

Molecular force 

Field 

Medium In addition to predicting the 

manner of binding, it is 

particularly well suited for high 

throughput virtual screening 

(HTVS) campaigns. 
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CHAPTER IV: Methodology, Results and Discussion  
 

Part 1: In silico drug discovery of IKK-β inhibitors 

from 2-amino-3- piperidin -4-alkyl-6-(2 

hydroxyphenyl) pyridine derivatives based on 

QSAR, docking, molecular dynamics and drug 

likeness evaluation studies 
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IV.1. QSAR Methodology  

IV.1.1 Data set 

A series of thirty 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine 

derivatives known for their ability to inhibit the IKK-β enzyme, with their biological 

activities 𝐼𝐶50 (i.e., concentration that is required for 50% inhibition) were taken from the 

literature [1.2]. The 30 compounds were divided into training and test sets. 75% were 

selected as a training set for the QSAR model elaboration the remaining 7 compounds were 

used as test sets [3]. The corresponding half-maximal inhibitory concentration (𝐼𝐶50values 

were transformed to p𝐼𝐶50 (-log𝐼𝐶50) values. The chemical structures and experimental 

activity data are shown in Table IV.1.1. 

Table IV.1.1. The selected 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine derivatives 

with their experimental p IC50 values. 
 

 

Compound R 𝐼𝐶50 (nM) 

Comp1 

Comp2 

Comp3 

Comp4 

Comp5 

Comp6 

Comp7 

Comp8 

Comp9 

-H 

-CH3 

-OCH3 

-OCH3 

-CH3 

-NH2 

-OH 

-OHCH3 

-OCH2CH3 

25 

1300 

20.000 

560 

2400 

7800 

15 

34 

14 
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Comp10 

Comp11 

Comp12 

Comp13 

Comp14 

Comp15 

Comp16 

Comp17 

Comp18 

-O(CH2)2CH3 

-O(CH2)4CH3 

-O(CH2)6CH3 

-OCH(CH3)2 

-OCH2CH(CH3)2 

OCH2-cyclopropyl 

-OCH2-cyclobutyl 

-OCH2-cyclohexyl 

-OCH2-phenyl 

5 

6 

14 

81 

5 

3 

4 

26 

9 

 

Compound R 𝐼𝐶50 (nM) 

Comp19 -H 300 

Comp20 

Comp21 

Comp22 

Comp23 

Comp24 

Comp25 

Comp26 

Comp27 

Comp28 

Comp29 

Comp30 

-OH 

-OCH2CH3 

-O(CH2)2CH3 

-O(CH2)3CH3 

-O(CH2)4CH3 

-O(CH2)5CH3 

-O(CH2)6CH3 

-OCH2CH(CH3)2 

OCH2-cyclopropyl 

-OCH2-cyclobutyl 

-OCH2-phenyl 

270 

120 

  24 

15 

20 

25 

50 

15 

8.5 

12 

110 

 

IV.1.2. Compound preparation and calculation methods 

Two-dimensional (2D) structures of the investigated compounds were drawn using 

ChemDraw ultra 12.0 software. The structures were saved in the sdf file format and then 

transformed to 3D structures directly when input into Materials studio 8.0 software. 

Geometric optimization of these compounds was carried out as a first step to get the 

quantum chemical parameters (Molecular descriptors). The quantum chemical calculations 

were performed using the GGA (generalized gradient approximation) within the 
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framework of the density functional theory (DFT), using software package DMol3 in 

Materials Studio. The geometric optimization of all investigated compounds was achieved 

by the Triple Numerical with Polarization (TNP) basis set and the functional exchange-

correlation (BP) [4.5]. 

IV.1.3. QSAR models analysis 

The best QSAR model resulted for the estimation of the p𝐼𝐶50 value is represented 

by the following MLR equation: 

𝑝𝐼𝐶50 = 60.838 + 1.293 ∗ 𝐻𝐵𝐴 + 0.854 ∗ 𝐶ℎ𝐶 + 5.453 ∗ 𝑀𝐹 − 27.82 ∗ 𝐵𝐼_𝐽𝑋 −

0.013 ∗ 𝑉𝐷𝐸 − 0.965 ∗ 𝐸𝑆𝐾𝑆_𝑠𝑠𝐶𝐻2                                                                                                

(1) 

Where HBA is the hydrogen bound acceptor, ChC is the chiral center, MF is the molecular 

flexibility, BI_JX is the Balaban Index, VDE is the vertex distance /equality and ESK 

S_ssCH2 is the E-state keys (sums): S_ssCH2. 

Suitable statistical methods were adopted to determine the best fitting of the 

mathematical model, which expresses the variation of the inhibitory concentration as a 

function of the descriptors mentioned above. From the obtained values, Table IV.1.2 shows 

the coefficient of determination (R2=0.938), the root-mean-square error (RMSE=0.257) 

and the Adjusted 𝑅𝐴
2 = 0.917, the MLR model provides an accurate fit of the experimental 

data set and it is characterized by a high predictivity. The cross validation (𝑄2=0.931) 

insures this information. 

                                       Table IV.1.2.  Statistical results of MLR model. 

R2 0.938 

𝑅𝐴
2 0.917 

RMSE 0.257 

𝑄2 0.931 

𝑹𝒑𝒓𝒆𝒅
𝟐  0.430 

 

The most important significant parameters were chosen to be used in QSAR model 

construction. Out of the 159 descriptors considered for each compound in the dataset, only 

6 proved to be significant: ChC, HBA, MF, BI_JX, IC, VDE, ESK S_ssCH2, showing high 

correlations with p𝐼𝐶50 values of compounds. These descriptors influence the inhibitory 

activity of the compounds toward the Ikk-B enzyme. The selection of these parameters was 

performed according to the coefficient of determination and the P-value of the regression 
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Table IV.1.3, while the obtained values of the parameters are represented in together with 

their statistical properties. The parameters are considered statistically significant if P-value 

˂0.05. 

Table IV.1.3.  Predictor coefficients of the MLR algorithm 

Terme Estimate  Standard Error  T- ratio Prob. > |t| 

Constant 60.838 4.962 12.26 <.0001* 

HBA 1.293 0.183 7.05 <.0001* 

ChC 0.854 0.121 7.04 <.0001* 

MF 5.453 0.474 11.50 <.0001* 

BI -27.820 2.293 -12.13 <.0001* 

VDE -0.013 0.001 -11.72 <.0001* 

ESK S_ssCH2 -0.965 0.098 -9.80 <.0001* 

 

Table IV.1.4 contains the predicted and observed values of the compounds (training 

set and test set). The contribution of each parameter to the investigated biological activity 

depends on the corresponding coefficient value and on the sign that precedes it.BI_JX, IC, 

VDE, ESK S_ssCH2, are preceded by a negative sign. Consequently, these parameters 

have a diminishing effect on the dependent variable (p𝐼𝐶50), while, HBA, ChC, MF, which 

are preceded by positive sign, have an increasing effect on the dependent variable value. 

Therfore it can be concluded that the most active predicted compounds are characterized 

by HBA, BI_JX, IC, VDE, ESK S_ssCH2, which should not be elevated. The more the 

chiral center, molecular flexibility and Hydrogen Bond Acceptors values increase the more 

the (𝑝𝐼𝐶50𝐴𝐶ℎ𝐸) value increases. 

Table IV.1.4. Experimental and predicted values of the thirty 2-amino-3-cyano-4-piperidin-6-(2-

hydroxyphenyl) pyridine derivatives 

 
Compounds Observed activity (p𝐼𝐶50) Predicted activity          Residual 

𝑪𝒎𝒑𝟏− 

Cmp2 

𝑪𝒎𝒑𝟑− 

𝑪𝒎𝒑𝟒− 

Cmp5 

Cmp6 

𝑪𝒎𝒑𝟕− 

Cmp8 

Cmp9 

Cmp10 

𝑪𝒎𝒑𝟏𝟏− 

7.60 

5.88 

4.69 

6.25 

5.61 

5.10 

7.82 

7.46 

7.85 

8.30 

8.22 

7.41 

5.97 

4.13 

8.25 

5.84 

5.07 

7.18 

7.61 

7.93 

8.11 

8.35 

-0.19 

0.09 

0.34 

2.00 

0.22 

-0.03 

-0.64 

0.14 

0.08 

-0.19 

0.13 
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Cmp12 

Cmp13 

Cmp14 

Cmp15 

Cmp16 

Cmp17 

Cmp18 

Cmp19 

Cmp20 

Cmp21 

Cmp22 

Cmp23 

Cmp24 

Cmp25 

Cmp26 

𝑪𝒎𝒑𝟐𝟕− 

Cmp28 

Cmp29 

𝑪𝒎𝒑𝟑𝟎− 

7.85 

7.09 

8.30 

8.52 

8.39 

7.58 

8.04 

6.52 

6.56 

6.92 

7.61 

7.82 

7.69 

7.60 

7.30 

7.82 

8.07 

7.92 

6.958 

8.19 

7.26 

7.97 

8.93 

8.16 

7.25 

7.87 

6.65 

6.43 

7.18 

7.35 

7.50 

7.60 

7.59 

7.44 

7.22 

8.18 

7.41 

7.13 

0.34 

0.17 

-0.32 

0.41 

-0.23 

-0.33 

-0.169 

0.12 

-0.13 

0.26 

-0.26 

-0.31 

                -0.09 

-0.00 

0.14 

-0.59 

0.11 

-0.50 

0.172 

- Test set  

The parity plot shows a linear regression which confirms that the MLR model matches 

well the experimental data, except for few scattered points and it can be used for the 

prediction of p𝐼𝐶50 values with reliability Figure IV1.1.  

 

 

Figure IV.1.1. Parity diagram (observed values vs predicted values) of the inhibitory concentration 
using MLR model. 

The analysis of the residual confirms this information Figure IV.2 where most of data points 

are less than an absolute value of 0.4 and are distributed around the zero line. 
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Figure IV.1.2: Graph of residuals versus predicted p𝐼𝐶50 values using MLR model. 

 

IV.1.4. Applicability domain and compound conception  

A small library of new molecules possessing (2-amino-3-cyano-4-piperidin-6-(2-

hydroxyphenyl) pyridine was generated based on analogue design strategy. Their 

inhibitory concentration was predicted by the obtained model. Then the applicability 

domain of the elaborated model allowed to exclude the A11p compounds and 2 other 

molecules which were outside the domain,  

The horizontal limits of this domain are the standard deviation of this model ±3and 

the vertical line represents the warning leverage (h* = 0.83). All compounds (training set, 

test set, and new designed compounds) present leverage values less than the warning h* 

value (0.83) and standardized residuals values less than the thresholds. except the two 

outliers compounds as shown in Figure IV.1.3. Among the new designed compounds inside 

the applicability domain, 21 compounds showed higher biological activities compared to 

the (2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine derivatives. The results are 

shown in Table IV.1.5. 
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                     Figure IV.1.3: Applicability domain plot of the MLR model 

The Table IV.1.5 shows the predicted pIC 50 values of the new designed compounds. Each 

two molecules have the same chemical structure but they are different at the substitution 

position.  

          For example: The compound A1p and A1m are two molecules with a same structure 

where their substitutions are at para, meta positions of the phenyl ring respectively. From 

the obtained values it was noticed that, the substitutions at different positions (meta and 

para) of phenyl ring influenced the biological activity. Therefore, all compounds which are 

characterized by a substitution at para position showed better and higher p𝐼𝐶50 except 

(A10 and A3) compared to the molecules characterizing by a substitution at meta position. 

It can be concluded that the para positions may increase the 𝐼𝐶50 values and consequently, 

the drug efficacy increases at low concentration. 
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Table IV.1.5.  New designed compounds with their predicted p𝐼𝐶50 values. 

A1m             p𝐼𝐶50 = 10.41 A1p p𝐼𝐶50 = 10.69 

 

 

A2m p𝐼𝐶50 = 8.621 A2p             p𝐼𝐶50 = 9.39 

 

 

 A3m           p𝐼𝐶50=   10.76    A3p p𝐼𝐶50 =    10.079 

 
 

A4m p𝐼𝐶50 = 8.59 A4p p𝐼𝐶50 = 9.31 

 

 

A5m p𝐼𝐶50 = 9.89  A5p p𝐼𝐶50 = 10.465 
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A6m p𝐼𝐶50 =    8.23 A6p p𝐼𝐶50 = 8.55    

 

 

A7m p𝐼𝐶50 = 8.96    A7p p𝐼𝐶50 = 8.27    

 

 

A8m p𝐼𝐶50 = 7.30 A8p p𝐼𝐶50 = 8.231   

 

 

A9m p𝐼𝐶50 = 7.84     A9p p𝐼𝐶50 = 10.46    
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A10m           p𝐼𝐶50 =   9.97  A10p p𝐼𝐶50=   9.89  

     

 

A11m  p𝐼𝐶50 =    10.98 

 

P : para position ; m : meta position 

IV.2. Molecular Docking Methodology 

IV. 2.1.   Ligands preparation  

Ligprep module was used to prepare the thirty 2-amino-3-cyano-4-piperidin-6-(2-

hydroxyphenyl) pyridine derivatives and the new designed compounds which is considered 

as a necessary step for an appropriate docking. The concept of ligand preparation involves 

taking 2D structures producing corresponding low energy 3D structures. This minimization 

of energy was achieved by applying the OPLS3 force field. 

IV. 2.2. Protein Preparation and grid generation 

Removing water molecules, fill in messing loops and side chains, deleting the 

alternate conformations and adding hydrogen, inserting the missing atoms in incomplete 

residues are      elementary and indispensable steps which were used for the protein 
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refinement and preparation. Then, receptor grid generation was performed in order to 

determine the position and size of the   receptor active site area where binding interaction 

between the ligand and the residues can occur [6]. 

IV. 2.3.  Docking Study  

The molecular docking study was carried out in order to determine the binding 

mode between ligands and macromolecular targets and to investigate the potential of the 

new candidate drugs. The x-ray crystal structure of IKK-β complexed with K252-A 

compound was taken from the protein data bank (PDB code: 4KIK) 

https://www.rcsb.org/structure/4KIK.  In this study the XP molecular docking method was 

performed to identify the different poses of molecules into the active site of the protein. 

The evaluation of the obtained docked poses and ranking the investigated compounds were 

based on the XP-GScore. This scoring function is based on an energy model which can be 

approximated by a sum of different types of energies [7], which are: van deer waals 

energy.  coulomb energy, lipophilic contacts energy, hydrogen bonds energy, metallic 

bonds energy, penalty for buried polar groups, penalty for immobilizing ligand's rotatable 

bonds, and polar contacts energy in the active site. The best predicted affinity corresponds 

to the negative maximum (XP-GScore) value and the more negative the (XP-GScore) is, 

the more the compound is expected to be well binded to IKK-β enzyme. The results are 

shown in Tables IV.1.6 and IV.1.7. 

IV.2.4 Docking Validation  

The root-mean-square deviation (RMSD) value is a crucial and necessary statistical 

parameter for docking validation which indicates the accuracy and the reliability of the 

docking. This value is obtained from the determination of the deviation between two 

positions: The first is the initial pose of the co-crystallized ligand in its original site, the 

second is the same co-crystallized ligand re-docked to the binding site of the protein pose 

[2.8]. When the RMSD is less than 2 Å) the docking is considered reliable [8]. 

IV.2.5. All Atom Molecular dynamics (MD) 

To characterize and analyze the stability of the docking poses we performed 

classical MD on five different systems: namely IKK-β interacting with A1M, A11M, A1P, 

A5P or A9P. The force field for the drug was parameterized following the Amber 

antechamber procedure. Restricted electrostatic potential (RESP) [2] procedure was used 

to assign point charges, and the ground state geometry of the five drugs was optimized at 

the density functional theory level using the standard 6-31G basis set and the B3LYP 

functional [9] IKK-β contains one phosphoserine residue that was modeled using the force 

https://www.rcsb.org/structure/4KIK
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field developed by Homeyer et al. [10] The rest of the protein was described with 

amberf99 amber force field  

The different systems have been solvated in a cubic water box described by a 

TIP3P force field [11,12], and K+ cations were added to ensure electroneutrality of the 

simulation box. To speed up the simulation, the H Mass Repartition (HMR) algorithm 

(Hopkins et al. 2015) has been used so we increased the time step to integrate Newton’s 

equations of motion to 4 fs by artificially scaling the mass of all non-water hydrogen atoms 

from 1.008 to 3.024 Da.  

After an equilibration and thermalization of 18 ns, 100 ns have been run in the 

constant pressure and temperature (NPT) ensemble at 1 atm and 300K. All MD simulations 

have been performed using the NAMD 2.13 code [13] and results have been analyzed and 

visualized with VMD  

IV.2.6. Molecular docking study  

The root-mean-square deviation (RMSD) value between the initial pose and 

docking of the co-crystallized ligand [14] was 0.0131 which implied that the docking 

method showed a highest precision and could reproduce the crystal binding model [15]. 

The representation of the superposed poses is shown in Figure IV.1.4. 

 

Figure IV.1.4: Spatial overlap of the docking position (pink) with the experimental position 

(green) of K252-A into the active site. 

Once the docking protocol is validated, it can be used for the prediction of the 

binding modes between new IKK-β inhibitors compounds and IKK-β enzyme. The 

screened 21 designed compounds showing a higher biological effect, and the thirty 2-

amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine derivatives were docked into the 

active pocket of the IKK-βusing the same approach. The obtained results showed that all 
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the investigated compounds have poses in the cavity and they interacted with residues via 

H bond interactions. The best pose of each molecule was chosen based on the Glide score 

(XP-GScore). 

Docking of the co-crystallized compound K252-A reproduced the same interaction 

types (Hydrogen bond interaction) observed experimentally. The visual analysis of the best 

pose showed that the best complex was obtained when the K252-A interacts with the 

following residues GLU 97, CYS 99, GLU 149 via three H-bond interactions. These 

interactions ensured the best orientation of the molecule towards the cavity with high 

affinity which allows it to trigger the inhibition of the IKK-β enzyme. The XP GScore of 

this pose is -14.287 (Figure IV.1. 5). 

Also, the docking results indicated that most compounds shared the same binding 

mode with CYS 99 residue as the co-crystallized compound K252-A, which is 

characterized by high affinity to the active site and they contain several hydroxyl groups.  

The docking score values of the thirty 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) 

pyridine derivatives are ranging from -5.710 to -8.441 Table 6. The comp12 showed the 

highest binding affinity in this series, where the (XP-GScore) of this pose was estimated by 

-8.439. The interactions of K252-A and comp12 compounds with the protein are shown in 

Figures IV.1.5 and IV.1.6. 

Table IV.1.6. Docking score of 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine 

derivatives and Interacting residues 
 

Compound XPG Score Docking score Interacting residues 

    K252-A -14.287 -14.287 GLU 97, CYS 99, GLU 149 

Comp12 -8.441 -8.439 TYR98, CYS99, GLN100 

Comp18 -7.784 -7.783 ASN150, ASP166 

Como4 -7.701 -7.700 CYS99, ASP103, LYS44 

Comp1 -7.585 -7.584 LEU21, CYS 99, ASP103 

Comp16 -7.531 -7.529 LEU21 

Comp23 -7.516 -7.516 CYS99, ASP 103 

Comp26 -7.463 -7.463 GLU19, CYS99, ASP 103 

Comp17 -7.463 -7.462 LEU21, CYS99, ASP103, ASP166 

Comp3 -7.326 -7.325 CYS99, ASP103, GLU149 

Comp2 -7.209 -7.208 CYS99, ASP103, GLU149 

Comp19 -7.128 -7.128 CYS99, ASP103 

Comp15 -7.105 -7.104 CYS99, ASP103 

Comp14 -7.098 -7.097 CYS99, ASP103 

Comp20 -7.018 -7.018 CYS99, ASP103, ASP166 
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Comp27 -6.98 -6.988 ASP103, ASP166 

Comp13 -6.903 -6.901 CYS99, ASP103 

Comp24 -6.864 -6.864 CYS99, ASP103 

Comp7 -6.850 -6.847 CYS99, ASP103, ASP166 

Comp10 -6.762 -6.760 THR23, LYS44 

Comp6 -6.744 -6.744 CYS99, ASP103 

Com25 -6.681 -6.681 ASP103, ASP166 

Comp5 -6.681 -6.680 LEU21 

Comp28 -6.677 -6.677 ASP103 

Comp21 -6.551 -6.551 ASP166 

Comp9 -6.488 -6.486 LYS44, ASN150, ASP166 

Comp8 -6.202 -6.201 CYS99 

Comp11 -6.344 -6.342 ASN150, ASP166 

Comp30 -6.308 -6.308 ASN150, ASP166 

Comp22 -5.711 -5.711 ASN150, ASP166 

Comp29 -5.705 -5.705 ASP66 

 

 

 

Figure IV.1. 5: Ligand–protein interaction scheme of K252-A compound. Interacting residues are 

colored in green 



CHAPTER IV: METHODOLOGY, RESULTS AND DISCUSSION (PART: I) 
 

84 
 

 

Figure IV.1.6:  Ligand–protein interaction scheme of comp12. Interacting residues are colored in 

green 

The suitable position of the comp 12 which allows to form the most stable complex, 

has been ensured by three H- bond interactions. The first occurred between the hydroxyl 

group of the compound phenyl ring and CYS99 residue while the other two were between 

the amino hydrogen group of the pyridine and GLN150, TYR98 residues. The XP-GScore 

this pose was estimated by -8.444.  

As for the new designed compounds their docking score is ranging from -6.365 to -

12.375. (Table IV.1.7). Out of 21 compounds four compounds showed a better binding 

affinity to the active site compared with the comp12. They share the same binding mode 

with CYS99 and GLU149 amino acid residues as the co-crystallized compound K252-A. 

These amino acid residues made the molecules more stable in the pocket. So, they might 

be important for IKK-β inhibition. 

The XP-GScore value of the best new designed compound which is characterized 

by the highest affinity to the active site (A1m compound) was estimated by -12.375 

(Figure IV.1.7). The proposed substitution added at para position of the phenyl ring allows 

the structure to adopt an appropriate orientation in the active site so that this molecule can 

interact with the following residues LEU21, GLU97, CYS99, ASP103, ASN155, ASP166 

via six H-bond interactions. The docking results showed that this molecule shares the same 

binding mode with GLU97 and CYS 99 residues as the co-crystallized compound K252-A.  
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As for the A1p compound, changing the substitution at para position led to the 

modification of the molecule orientation into the active site and the interacted residues. 

When it docked into the active site, it was able to form hydrogen bonds with the following 

residues GLU149, THR23, ASP103. It also led to the minimization of the affinity of the 

molecule to the pocket, where its XP-GScore value became -10. 763 (Figure IV.1.8). 

The compound A11m was found to dock into the active site of IKK-β with good 

affinity, XPGscore (-10.633), interacting with five residues (TYR98, CYS99, ASP103, 

GLU19, GLU149) forming six hydrogen bond interactions via two hydroxylic groups of 

the added substitution and the hydroxylic group of the phenyl ring in addition to its amino 

hydrogen groups. The interactions are well visualized in ligand interaction diagram (Figure 

IV.9). Hence, the proposed substitution improved the orientation of this compound in the 

active site, and consequently improved its affinity. The fourth best compound is  A9p. Its 

conformation was stabilized via three H-bonds. When the amino hydrogen of the pyridine 

ring interacts with amino acid residue CYS99, this latter also interacts with the hydroxylic 

group of the phenyl ring. The piperidine ring of this molecule also contributed for this 

suitable conformation via its hydrogen amino group, which interacted with the ASP 103. 

The docking poses of these compounds are shown in (Figures IV.1.9, IV.1.10). 

Table IV.1.7. Docking score of design compounds and interacting residues. 

Compound   XPG Score   Docking Sore  Interacting residues 

A1p -12.375 -12.375 LEU21 GLU97, CYS99, ASP103, ASN155, ASP166 

A1m -10.713 -10.711 THR23, ASP103, GLU149 

A11m -10.633 -10.631 TYR98, CYS99, ASP103, GLU19, GLU149 

A9p -9.381 -9.381 CYS99, ASP103, GLU149 

A5p -8.698 -8.614 CYS99, GLN100 

A6p -8.526 -8.512 CYS99, ASP103 

A7m -8.479 -8.478 CYS99, TYR98 

A6m -8.430 -8.430 GLU97, CYS99, ASP103 

A4m -8.279 -8.279 CYS99 

A2p -8.199 -8.159 CYS99, ASP103, LEU21 

A5m -7.936 -7.552 CYS99, ASP103, GLU149 

A4p -7.623 -7.622 LEU21, CYS99, GLU 97, ASP103 
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A10m -7.546 -7.545 CYS99, GLN150 

A8m -7.447 -7.443 CYS99, ASP103 

A7p -7.410 -7.409 CYS99 

A10p -7.393 -7.393 CYS99, ASP103, GLU149 

A8P -6.989 -6.970 LYS44 

A3m -6.923 -6.922 LYS106, ASN150, ASP166 

A3p -6.864 -6.863 LYS106, ASN150, ASP166 

A9m -6.512 -6.510 ASP103, TYR98, CYS99, GLU19 

A2m -6.365 -6.412 ASP103, CYS99, GLU97 

 

 

Figure IV.1.7: Ligand–protein interaction scheme of A1p compound. Interacting residues are 

colored in green 
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Figure IV.1.8: Ligand–protein interaction scheme of A1m compound. Interacting residues are 
colored in green 

 

Figure IV.1.9:  Ligand interaction diagram of the molecule A11m. 
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Figure IV.1.10: Ligand interaction diagram of the molecule A9p. 

IV.2.7. Molecular Dynamics Simulations  

In order to assess for the stability and validate the pose issued from the molecular 

docking approach we have performed all atom MD simulations for five leading compounds 

(Due to the impossibility of achieving the molecular dynamics for all compounds only five 

of them have been selected randomly for this study) . The results are pictorially reported in 

Figure IV.1.11. It appears that all the drugs remain persistently into the binding pocket, as 

shown by the snapshot extracted at 100 ns, i.e. at the end of the simulation. As evidenced 

by the low value root mean square deviation (RMSD) not exceeding 4 Å reported in 

Supplementary Information the aggregate is globally stable and the structure of the protein 

is conserved, even if a slight enlargement of the binding pocket may be observed. 

However, a moderate sliding of the drug inside the pocket is also evident that in the case of 

A11M leads to the rearrangement of the interaction patterns with the protein amino acid, 

namely the weakening of the interaction with Asp103 and Leu21.  

A similar, albeit less pronounced effect is also evidenced for A5P that experiences 

the partial breaking of the interaction with Cys99 while the concomitant interaction with 

Glu19 is strongly reinforced. Globally, the results definitively point to the persistence of 

the drug protein aggregate and hence confirm and validate the docking poses.  
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Figure IV.1.11: Snapshots extracted at 100ns of the MD trajectory showing the stability of the 

drug/protein complex. The specific interaction taking place are also highlighted. Larger figures are 

also available in Supplementary Information together with the initial snapshot (0 ns) corresponding 

to the docking pose. 

IV.3. Druglikness properties  

Pharmacokinetics parameters such as (Absorption, distribution, Metabolism-

Excretion) play a crucial role in drug discovery [16]. High and low variable bioavailability 

is one of the pharmacokinetics properties which is indeed the main reason that impedes the 

development of drugs [17]. Understanding the molecular properties that limit oral 

bioavailability facilitates the design of new effective candidates’ drug [18]. 

Lipinski /Veber rules and the analysis of the golden triangle allow the prediction of 

drug-likeness character by analyzing the Absorption, Distribution, Metabolism, Excretion 

(ADME) properties which are affected by the physicochemical properties of the drug 

compounds [16] Lipinski ‘Rule-of-Five’ describes the importance of lipophilicity (octanol-

water partition), molecular weight (MW), number of hydrogen bond donors and number of 

hydrogen bond acceptors in the analysis of the structures of orally administered drugs, and 

candidate drugs [17.18]. 

The empirical conditions which suit Lipinski's rule and demonstrate good oral 

bioavailability imply an equilibrium between the capacity of a compound to diffuse 

passively across the various biological barriers and its aqueous solubility [19]. According 

to Lipinski’s rule of five, (Figure IV.1.12) compounds which do not validate at least two of 

the following criteria will probably have absorption or permeability problems.  

A1M A11M A1P

A5P A9P
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Figure IV.1.12:  Lipenski’s rule (rule of five). 

-Lipophilicity is considered as an important element in the process of solubility, 

absorption, distribution, metabolism and excretion, as well as pharmacological activity. 

According to Hansch and Leo, very lipophilic molecules are distributed and stored inside 

lipid layers of cell membranes. Drugs have a low solubility aqueous when there is a high 

log P. When the log P is very low, the drugs find it difficult to penetrate into the lipid 

bilayers of cell membranes. Unlike the hydration energy, lipophilicity increases 

proportionally with the hydrophobic nature of the substituent groups [19]. 

- Increasing the number of hydrogen bonds have also a crucial role (Hydrogen bond donors, 

Hydrogen bond acceptors) in the increasing of the aqueous solubility of compounds (Almi, 

meanwhile it leads to poor permeability through the membrane bi-layer [20]. 

- Molecular weight (MW) is one of the factors that determine drug permeability. It is related 

to the size of molecule. The solubilization of the drugs necessitates the formation of a 

larger cavity in water. When the size of the molecule increases, it can prevent passive 

diffusion through the tightly packed aliphatic side chains of the bilayer membrane [16] 

Johnson et al, 2009). 

- Topological polar surface area TPSA and the number of rotatable bonds NRB are two 

other parameters introduced by Veber which are often used in addition to the rule of “5. 

For ideal drug absorption the TPSA must be less than 140 Å² and the NRB ≤ 10 [19] 

Warring rule and golden triangle suggest that, the molecular weight and LogD (the 

distribution coefficient at pH 7.4) are two essential parameters which may affect the 

permeability, bioavailability and the clearance of candidate drugs [20]. According to 

Warring rule, compounds with MW < 414 and logD7.4 >1.3 are more likely to be 

characterized with a high permeability.  

Good drug 
absorption and 

permeation 

Molecular 
Weight ≤ 500

H-Bond 
Acceotors

≤10

H-Bond 
Donors ≤5

logP ≤5
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Golden Triangle is a visualization tool with a baseline of log D7.4 = _2.0 to log D7.4 = 5.0 

at MW= 200 and a peak at log D7.4 = 1, 0–2,0 and MW= 450.These limits were 

established from measurements of in vitro clearance, in vitro permeability, and 

computational designed data. Golden Triangle helps chemists to discover metabolically 

stable, permeable and potent drug candidates, by restricting their molecular weight and 

coefficient of distribution to locate them within the golden triangle (reside inside the 

golden triangle) [20]. 

In this study Lipinski, Veber rules, and golden triangle were used to identify the 

druglikness properties of the thirty 2-amino-3-cyano-4-piperidin-6-(2-hydroxyphenyl) 

pyridine derivatives series and the new designed the results are shown in Tables IV.8 and 

IV.9. 

Through Table IV.8, the lipophilicity of all compounds is less than 5. All the values 

are ranging from 1.560 to 4.48. It means that these compounds can be easily solubilized in 

aqueous and organic solutions [19]. The number of hydrogen bond donors of all 

compounds is ranging from 4 to 6. All values are less than 5 except comp 6 which has 6 

HBD. The number of hydrogen bond acceptors of all compounds is less than 10, and the 

values range from 4 to 5. The Molecular weight of all compounds is less than 500 Da, 

however, the minimum value is 294.35 and the maximum value is 408.54. All compounds, 

except the comp 6, have a null violation for Lipinski's rule. This indicates that these 

compounds are orally bioavailable and would not have problems with the permeability, 

because they possess different groups which act as substrates for transporters [7]. 

According to Veber rule parameters, the thirty 2-amino-3-piperidin-4-piperidin-6-(2-

hydroxyphenyl) pyridine derivatives except comp 12 and comp 26, are flexible molecules 

because all their number of rotatable bonds is less than 10.  As for the TPSA values of all 

compounds are less than 140 Å2which indicates that these compounds are characterized by 

a good cell membrane permeability [2.14]. 

All the new designed compounds within the range set by Veber’s rule and 

Lipinski’s rule except the following compounds A1m, A1p, A11m which their HBD are 

more than five and their TPSA is more than 140 Å². 
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Table IV.1.8. Veber and Lipinski properties of the thirty 2-amino-3-cyano-4-piperidin-6-(2-

hydroxyphenyl) pyridine derivatives 
 

Compound 

                 Lipinski’s rule                                Veber’ rule 

       log P           MW              HBD            HBA               TPSA                 RB 

Cmp 1 

Cmp 2 

Cmp 3 

Cmp 4 

Cmp 5 

Cmp 6 

Cmp 7 

Cmp 8 

Cmp 9 

Cmp 10 

Cmp 11 

Cmp 12 

Cmp 13 

Cmp 14 

Cmp 15 

Cmp 16 

Cmp 17 

Cmp 18 

Cmp 19 

Cmp 20 

Cmp 21 

Cmp 22 

Cmp 23 

Cmp 24 

Cmp 25 

Cmp 26 

Cmp 27 

Cmp 28 

Cmp 29 

Cmp 30 

2.3436 

2.8108 

2.0909 

2.0909 

2.5581 

1.5604 

2.0592 

2.0909 

2.4334 

2.9020 

3.6946 

4.4872 

2.8465 

3.3048 

2.8008 

3.1971 

3.5934 

3.8675 

2.2713 

1.9869 

2.3611 

2.8297 

3.226 

3.6223 

4.0186 

4.4149 

3.2325 

2.7285 

3.1248 

3.7952 

294.35 

308.38 

324.38 

324.38 

308.38 

309.37 

310.35 

324.38 

338.4 

352.43 

380.48 

408.54 

352.43 

366.46 

364 

378.47 

406.52 

400.47 

294.35 

310.35 

338.4 

352.43 

366.46 

380.48 

394.51 

408.54 

366.46 

364.44 

378.47 

400.47 

4 

4 

4 

4 

4 

6 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

5 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

94.96 

94.96 

104.19 

104.19 

94.96 

120.98 

115.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

94.96 

115.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

104.19 

4 

4 

5 

5 

5 

4 

5 

5 

6 

7 

9 

11 

6 

7 

7 

7 

7 

7 

4 

5 

6 

7 

8 

9 

10 

11 

7 

7 

7 

7 
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Table IV.1. 9. Veber and Lipinski properties of the new designed compounds. 

Compound 
            Lipinski’s rule                                        Veber’ rule 

    log P                MW              HBD            HBA             TPSA               RB 

A1m 

A1p 

A2m 

A2p 

A3m 

A3p 

A4m 

A4p 

A5m 

A5p 

A6m 

A6p 

A7m 

A7p 

A8m 

A8p 

A9m 

A9p 

A10m 

A10p 

A11m 

1.158 

1.158 

1.95 

1.95 

2.17 

2.17 

1.08 

1.08 

3.5 

3.5 

1.92 

1.92 

2.14 

2.14 

3.27 

3.27 

3.01 

3.01 

2.36 

2.36 

0.89 

458.46 

458.46 

379.46 

379.46 

380.44 

380.44 

415.15 

415.15 

433.47 

433.47 

407.51 

407.51 

408.49 

408.49 

376.41 

376.41 

410.48 

410.48 

340.38 

340.38 

472.49 

9 

9 

4 

4 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

4 

4 

4 

4 

4 

4 

9 

4 

4 

10 

10 

6 

6 

7 

7 

7 

7 

6 

6 

6 

6 

7 

7 

6 

6 

6 

6 

10 

205.34 

205.34 

124.06 

124.06 

121.26 

121.26 

149.51 

149.51 

106.99 

106.99 

116.22 

116.22 

113.42 

113.42 

133.88 

133.88 

104.19 

104.19 

113.42 

113.42 

205.34 

10 

10 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

5 

5 

9 

9 

6 

6 

11 

The analysis of golden triangle showed that five compounds among the thirty 2-amino-3-

cyano-4-piperidin-6-(2-hydroxyphenyl) pyridine derivatives reside outside the golden 

triangle: comp6, comp12, comp20, comp21 and comp26. Therfore, these derivatives are 

characterized by poor clearance and mild membrane permeability. The rest of derivatives 

which are located inside the golden triangle can cross the cell membrane easily and with no 

clearance and toxicity problems. As depicted in Figure IV.1.13, the new designed 

compounds are located outside the golden triangle except compounds A9m and A9p, 

which means that, these compounds risk to be subject to clearance and cell membrane 

problems. 
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Figure IV.1.13.  In vitro permeability and clearance trends across MW and LogD. 

IV.4 Conclusion  

In this study QSAR model of thirty2-amino-3-cyano-4-piperidin-6-(2-

hydroxyphenyl) pyridine derivatives against IKK-β enzyme were performed based on 

theoretical molecular descriptors which were selected by stepwise regression. This model 

was used to predict the biological activity of new designed compounds. The applicability 

domain of the elaborated QSAR model succeeded to screen 21 compounds with higher 

biological activity, and most of compounds which were characterized by a substitution at 

para position showed a higher p𝐼𝐶50values than those were characterized by a substitution 

at meta position of the phenyl ring. Docking simulation was carried out to position the 

investigated compounds into the IKK-β enzyme active site. The results revealed that all 

compounds had poses in the pocket. Among the new designed compounds, four 

compounds exhibited better binding interaction toIKK-β which are A1m, A1p, A9m, A11, 

with better binding affinity to the active site. Their XP GScore are respectively -12.375, -

10.713, -10.633, -9. 381. Docking study also showed that CYS 99 the GLU149 amino acid 

residues might be crucial for IKK-β inhibition and the hydroxylic groups of compounds 

may enhance the affinity of compounds. The compounds to be considered as drug like 

molecule were evaluated on the basis of Veber rule and Lipinski rule. most of the designed 

compounds showed no violations as per Veber and Lipinski rule. 
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IV.1. QSAR Methodology  

      IV.1.1. Data set 

One hundred twenty-one compounds were identified in the literature as having the 

ability to inhibit nuclear factor-κB (NF). The 𝐼𝐶50 values for these compounds (the 

concentration required to achieve 50% inhibition) were obtained from the literature and used 

in this study for QSAR model determination. The chemical structures of the studied 

compounds are presented in Table IV.2.1. 

The 121 compounds were randomly divided into two groups: training compounds 

and test compounds. Sixty-six percent of the compounds were chosen as training sets for the 

QSAR model's development, with the remaining 39 compounds serving as test sets. It was 

necessary to transform the corresponding half-maximal inhibitory concentration (𝐼𝐶50) 

values into p𝐼𝐶50 (-log𝐼𝐶50) values in order to perform this analysis. 

Table IV.2.1: Chemical structures of the investigated compounds. 

a) General structural formula and numbering of pyrimidine (Compounds from 1-46 and 48-100) 

 
b) Compound 47 

 
c) General structural formula and numbering of quinazoline derivatives (compounds from 101 

-103 and 105 to 121) 

 
d) Compound 104 
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Continued 

Compounds 

 

R1 R2 R3 R4 R5 

Comp 1 CF3 

 

CO2Et H - 

Comp 2 Me 

 

CO2Et H  

Comp 3 Et 

 

CO2Et H  

Comp 4 t-Bu 

 

CO2Et H  

Comp 5 SMe 

 

CO2Et H  

Comp 6 4-Pyridyl 

 

CO2Et H  

Comp 7 

  

CO2Et H  

Comp 8 

 

 

CO2Et H  
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Comp 9 

 

 

CO2Et H  

Comp 10 

 

 

CO2Et H  

Comp 11 

 

 

CO2Et H  

Comp 12 

 

 

CO2Et H  

Comp 13 

 

 

CO2Et H  

Comp 14 

 

 

CO2Et H  

Comp 15 

 

 

CO2Et H  

Comp 16 3-Thienyl 

 

CO2Et H  

Comp 17 

 

 

CO2Et H  

Comp 18 

 

 

CO2Et H  

Comp 19 

 

 

CO2Et H  

Comp 20 

 

 

CO2Et H  
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Comp 21 

 

 

CO2Et H  

Comp 22 

  

CO2Et H  

Comp 23 

  

CO2Et H  

Comp 24 Benzyl 

 

CO2Et H  

Comp 25 Phenoxy 

 

CO2Et H  

Comp 26 

 
 

CO2Et H  

Comp 27 

 
 

CO2Et H  

Comp 28 Phenyl 

 

CO2Et H  

Comp 29 Phenyl 

 

CO2Et H  

Comp 30 2-Thienyl 

 

CO2Et H  

Comp 31 

 

 

CO2Et H  
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Comp 32 Et 

 

CO2Et H  

Comp 33 CF3 

 

CO2Et H  

Comp 34 CF3 

 

CO2Et H  

Comp 35 CF3 

 

CO2Et H  

Comp 36 2-Thienyl 

 

 

H  

Comp 37 2-Thienyl 

 

CN H  

Comp 38 2-Thienyl 

 

 

H  

Comp 39 2-Thienyl 

 

 

H  

Comp 40 2-Thienyl 

 

 

H  

 Comp 41 2-Thienyl 

 

 

H  

Comp 42 Cl H 

 

CF3  
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Comp 43 Cl H 

 

H  

Comp 44 Cl H 

 

Phenyl  

Comp 45 

 

CF3 CO2Et H  

Comp 46 

 

CF3 CO2Et H  

Comp 47 NH2 CF3 CO2Et H  

Comp 48 

 

CF3 CO2Et H  

Comp 49 

 

CF3 CO2Et H  

Comp 50 

 

CF3 CO2Et H  

Comp 51 

 

CF3 CO2Et H  

Comp 52 

 

CF3 CO2Et H  

Comp 53 

 

CF3 CO2Et H  
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Comp 54 

 

CF3 CO2Et H  

Comp 55 

 

CF3 CO2Et H  

Comp 56 

 

H CO2Et H  

Comp 57 

 

Me CO2Et H  

Comp 58 

 

Et CO2Et H  

Comp 59 

 

CF2CF3 CO2Et H  

Comp 60 

 

Phenyl CO2Et H  

Comp 61 

 

Benzyl CO2Et H  

Comp 62 

 

CH2OMe CO2Et H  

Comp 63 

 

 

CO2Et H  

Comp 64 

 

2-Thienyl CO2Et H  

Comp 65 

 

3-Thienyl CO2Et H  

Comp 66 

 

 

CO2Et H  
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Comp 67 

 

 

CO2Et H  

Comp 68 

 

 

CO2Et H  

Comp 69 

 

 

CO2Et H  

Comp 70 

 

 
CO2Et H  

Comp 71 

 

CF3 COCMe3 H  

Comp 72 

 

CF3 COOH H  

Comp 73 

 

CF3 CONH2 H  

Comp 74 

 

CF3 CONMe2 H  

Comp 75 

 

CF3 Acetyl H  

Comp 76 

 

CF3 Phenoxy H  

Comp 77 

 

CF3 

 

H  

Comp 78 

 

Et Phenoxy H  

Comp 79 

 

Et 

 

H  
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Comp 80 

 

Et 

 

H  

Comp 81 

 

Et CH2OH H  

Comp 82 

 

Et CN H  

Comp 83 

 

Me Acetyl H  

Comp 84 

 

Et 

 

H  

Comp 85 

 

Et 

 

H  

Comp 86 

 

Et 

 

H  

Comp 87 

 

Et 

 

H  

Comp 88 

 

Et 

 

H  

Comp 89 

 

2-Thienyl 

 

H  

 Comp 90 

 

2-Thienyl CO-t-Bu H  

Comp 91 

 

CF2CF3 CO2Et H  

Comp 92 

 

Et CO2Et H  
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Comp 93 

 

 

CO2Et H  

Comp 94 

 

 

CO2Et H  

Comp 95 

 

Et CO2Et H  

Comp 96 

 

CF2CF3 CO2Et H  

Comp 97  

 

2-Thienyl CO2Et H  

 Comp 98 

 

3-Thienyl CO2Et H  

Comp 99 

 

 

CO2Et H  

 Comp 100 

 

Et 
 

H  

Comp 101 2-Thienyl 

 

   

Comp 102 Phenyl 

 

   

Comp 103 CF3 

 

   

Comp 104 2-Thienyl 

 

  7-OMe 
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Comp 105 2-Thienyl 

 

  8-OMe 

Comp 106 2-Thienyl 

 

  9-OMe 

Comp 107 2-Thienyl 

 

  10-OMe 

Comp 108 2-Thienyl 

 

  8,9-Di-
OMe 

Comp 109 2-Thienyl 

 

  8,9,10-
Tri-OMe 

Comp 110 2-Thienyl 

 

  7-F 

Comp 111 2-Thienyl 

 

  8-Cl 

Comp 112 2-Thienyl 

 

  7-Me 

Comp 113 2-Thienyl 

 

  9-(NMe2) 

Comp 114 CF3 

 

  7-OMe 

Comp 115 CF3 

 

  8-OMe 



 

106 
 

CHAPTER IV:METHODOLOGY, RESULTS AND DISUSSION (PART: 2) 

Comp 116 CF3 

 

  7-OMe 

 Comp 117 CF3 

 

  7-Me 

Comp 118 CF3 

 

  8-SMe 

Comp 119 CF3 

 

  8-OH 

Comp 120 CF3 

 

  9-5(1-
Piperridyl
) 

Comp 121 CF3 

 

  9-(NMe2) 

IV.1.2. Compound preparation and calculation methods 

The two-dimensional (2D) structures of the compounds under investigation were 

drowned using the ChemDraw ultra 12.0 software. The structures were saved in the SDF file 

format and then directly converted to 3D structures when they were imported into the 

Materials studio 8.0 software program. To obtain the quantum chemical parameters, the 

geometric optimization of these compounds was carried out as a first step (Molecular 

descriptors). The quantum chemical calculations were carried out using the GGA 

(generalized gradient approximation) within the framework of the density functional theory 

(DFT), with the help of the software package DMol3 in the Materials Studio software. In 

order to achieve geometric optimization of all investigated compounds, the Double 

Numerical with Polarization (DNP) basis set and the functional exchange-correlation were 

used in conjunction (BP) [21]. 

      IV.1.3. Molecular Descriptors Calculation and selection  

Materials studio software and the Swiss ADME online tool were used to generate a 

total of more than 100 molecular descriptors example of them is mentioned in Table IV.2.2. 

The QSAR model was developed on the basis of 82 compounds. Multiple Linear Regression 
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(MLR) was used to quantify this model, which correlates the dependent variables p𝐼𝐶50 and 

the significant parameters (independent variables). Stepwise regression was used to derive 

the QSAR model coefficients.  

the parameter cost function (stopping rule) selected as minimum AICc, can be described as 

follow: 

𝐴𝐼𝐶 = 2𝐾 − 2𝐿𝑛 𝐿   

                     

 

Eq 1 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 
2𝑘2+2𝑘

𝑝−𝑘−1
                  Eq 2 

 

𝐾: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 
𝐿: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 
𝑃: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠. 

𝑊ℎ𝑒𝑛: 𝑝 →  ∞, AICc becomes AIC because the extra corrected penalty term in AICc 

converges to zero. Using the stepwise AICc algorithm, only important descriptors that 

improved the model's information criteria were added to the model, while descriptors that 

had a negligible influence were removed from the model using the stepwise approach [22]. 

Following that, an analysis of variance was used to identify molecular descriptors 

with a high statistical significance for predicting the NF-κB inhibitory concentration. The 

objectives of this part are to develop a simplified MLR model with fewer terms that 

accurately predicts the NF-κB inhibitory concentration and to estimate the coefficients of 

the model's significant terms. Table IV.2.3 summarizes the findings of this analysis. 

Table IV.2.2: Calculated Molecular Descriptors and their types 

Molecular Descriptors Type 

Wiener Index, Information Content Indices, Topological Polar Surface 

Area (TPSA) 

Topological Descriptors 

 

Number of Rotatable Bonds (RTB), Molecular Weights Geometrical Descriptors 

Energy of the highest occupied molecular orbitals (HOMO) 

Energy of the lowest unoccupied molecular orbitals (LUMO) 

Ionization potential (I), Electron affinity (A), Energy band gap (ΔE) 

Global hardness (η), Chemical potential (μ), Electrophilicity index (ω) 

Electronic descriptors 

Molar Reactivity (MR), Number of hydrogen bond Doner (HBD), 

Number of Hydrogen Bond Acceptors, Lipophelicity LogP, Hydro 

solubility (Log S). 

Physicochemical descriptors 
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Table IV.2.3: Predictor coefficients of the MLR algorithm 

Terme Estimation Standard 

Erreur 

|𝒕𝒓𝒂𝒕𝒊𝒐| 𝒑𝒗𝒂𝒍𝒖𝒆  

𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 0.2872344 1.375232 0.21 0.8352 

𝑳𝑼𝑴𝑶 0.4568486 0.178515 2.56 0.0127* 

𝝎 0.1975915 0.045106 4.38 <.0001* 

𝑨𝒍𝒐𝒈𝑷𝟗𝟖 0.5338582 0.057273 9.32 <.0001* 

𝑾𝒆𝒊𝒏𝒆𝒓 𝒊𝒏𝒅𝒆𝒙 -0.002733 0.000542 5.05 <.0001* 

𝑲𝒂𝒑𝒑𝒂 − 𝟐 -2.374863 0.420752 5.64 <.0001* 

𝑲𝒂𝒑𝒑𝒂 − 𝟑 𝒊𝒏𝒅𝒊𝒄𝒆𝒔 𝒂𝒍𝒑𝒉𝒂 𝒎𝒐𝒅𝒊𝒇𝒊𝒆𝒅 2.7424539 0.482879 5.68 <.0001* 

𝑺𝒖𝒃𝒈𝒓𝒂𝒑𝒉 𝒄𝒐𝒖𝒏𝒕𝒔 (𝟎 − 𝟑) 0.3890278 0.081594 4.77 <.0001* 

𝑬 − 𝒔𝒕𝒂𝒕𝒆𝒔 𝒌𝒆𝒚𝒔 𝒔𝒖𝒎𝒔: 𝑺 − 𝒔𝒔𝑪𝑯𝟐 -0.217393 0.044117 4.93 <.0001* 

𝑬 − 𝒔𝒕𝒂𝒕𝒆𝒔 𝒌𝒆𝒚𝒔 𝒔𝒖𝒎𝒔: 𝑺 − 𝒔𝑺𝑯 -0.148803 0.06979 2.13 0.0365* 

𝑬 − 𝒔𝒕𝒂𝒕𝒆𝒔 𝒌𝒆𝒚𝒔 𝒔𝒖𝒎𝒔: 𝑺 − 𝒔𝑷𝑯𝟐 0.4030164 0.083699 4.82 <.0001* 

𝑬 − 𝒔𝒕𝒂𝒕𝒆𝒔 𝒌𝒆𝒚𝒔 𝒔𝒖𝒎𝒔: 𝑺 − 𝒔𝑩𝒓 0.040816 0.017443 2.34 0.0221* 

             By analysing Table IV.2.3, it can be seen that the most important significant 

parameters were chosen to be used in QSAR model construction. Out of the 130 descriptors 

considered for each compound in the dataset, only 11 proved to be significant: LUMO, ω, 

AlogP98, Weiner index, Kappa-2 indices alpha modified, Kappa -3 indices alpha modified, 

subgraph counts (0-3), E-states keys sums: S-ssCH2, E-states keys sums: S-sSH, E-states 

keys sums: S-sPH2, and E-states keys sums: S-sBr showed a high correlation with p𝐼𝐶50 

values of compounds. While the remaining 119 were eliminated from the model by setting 

their coefficient values to 0. The significant descriptors influence the inhibitory activity of 

compounds toward the NF-κB. The selection of these parameters was carried out according 

to the coefficient of determination and the P-value of the regression. If the parameters have 

a p-value less than 0.05, they are considered statistically significant. The obtained values of 

the parameters are represented in together with their statistical properties in Table IV.3. 

According to |t_ratio| values, it can be seen that AlogP98 descriptor is the most statistically 

significant descriptor in the model, with the highest |𝑡𝑅𝑎𝑡𝑖𝑜.| 

IV.1.4. 2-D QSAR -MLR Model Generation 

The best obtained QSAR-MLR model is given as follows: 
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𝒑𝑰𝑪𝟓𝟎 =  𝟎. 𝟐𝟖𝟕 + 𝟎. 𝟒𝟓 ∗ 𝐿𝑈𝑀𝑂 + 𝟎. 𝟏𝟗𝟕 ∗ 𝜔 + 𝟎. 𝟓𝟑 ∗  𝐴𝑙𝑜𝑔𝑃98 − 𝟎. 𝟎𝟎𝟐
∗  𝑊𝑒𝑖𝑛𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 − 𝟐. 𝟑𝟕 ∗  𝐾𝑎𝑝𝑝𝑎 − 2 + 𝟐. 𝟕𝟒 ∗ 𝐾𝑎𝑝𝑝𝑎
− 3 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑎𝑙𝑝ℎ𝑎 𝑚𝑜𝑑𝑖𝑓𝑖𝑒 + 𝟎. 𝟑𝟖 ∗  𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ 𝑐𝑜𝑢𝑛𝑡𝑠 (0 − 3)
− 𝟎. 𝟐𝟏 ∗  𝐸 − 𝑠𝑡𝑎𝑡𝑒𝑠 𝑘𝑒𝑦𝑠 𝑠𝑢𝑚𝑠: 𝑆 − 𝑠𝑠𝐶𝐻2 − 𝟎. 𝟏𝟒 ∗ 𝐸
− 𝑠𝑡𝑎𝑡𝑒𝑠 𝑘𝑒𝑦𝑠 𝑠𝑢𝑚𝑠: 𝑆 − 𝑠𝑆𝐻 + 𝟎. 𝟒𝟎 ∗  𝐸 − 𝑠𝑡𝑎𝑡𝑒𝑠 𝑘𝑒𝑦𝑠 𝑠𝑢𝑚𝑠: 𝑆
− 𝑠𝑃𝐻2 − 𝟎. 𝟎𝟒 ∗  𝐸 − 𝑠𝑡𝑎𝑡𝑒𝑠 𝑘𝑒𝑦𝑠 𝑠𝑢𝑚𝑠: 𝑆 − 𝑠𝐵𝑟                    

IV.1.5. Model Evaluation  

          For the purpose of determining the mathematical model that describes the variation in 

inhibitory concentration as a function of the descriptors listed above, appropriate statistical 

methods were used to determine the best fitting of the model. According to the statistical 

significances indicated Table IV.4, the above equation shows strong correlation between 

activity and the eleven explanatory variables, with a correlation coefficient of 93% (therefore 

close to 100%). The relatively high values of R2=0.879 and 𝑅𝐴
2= 0.860 and a low value of 

the root-mean-square deviation (RMSE=0.296) indicate that the proposed model is reliable 

and well adjusted. The regression equation has statistical significance, which is confirmed 

by the high value of F = 46.50 (the coefficients of the selected variables in the equation are 

not equal to zero). Regarding its robustness, the 𝑸𝟐 Coefficient shows that the model is 

robust and stable (due to the stability of its parameters with respect to the molecules of the 

training set) with good predictability. A low 𝑹𝒑𝒓𝒆𝒅
𝟐   = 0.30 indicates an acceptable external 

predictive potential of this obtained QSAR model.  

             The contribution of each parameter to the investigated biological activity is 

determined by the value of the corresponding coefficient as well as the sign that precedes 

the coefficient value. The following significant descriptors: E-states keys sums: S-ssCH2, 

E-states keys sums: S-sSH and kappa-2, are preceded by a negative sign. As a result, these 

parameters will decrease the value of the dependent variable (p𝐼𝐶50). while the remaining 

significant parameters: LUMO, ω, AlogP98, Weiner index, Kappa -3 indices alpha modified, 

subgraph counts (0-3), E-states keys sums: S-sPH2, and E-states keys sums: S-sBr are 

preceded by a positive sign; consequently, their influence will increase the pI𝐼𝐶50 value. 

Therefore, it can be concluded that the most active predicted compounds are characterized 

by E-states keys sums: S-ssCH2, E-states keys sums: S-sSH and kappa-2, which should not 

be elevated. The more the LUMO, ω, AlogP98, Weiner index, Kappa -3 indices alpha 

modified, subgraph counts (0-3), E-states keys sums: S-sPH2, and E-states keys sums: S-

sBr values increase, the more the (p𝐼𝐶50) value increases.  
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Table IV.2.4: Statistical parameters obtained by the MLR model and their threshold 

values. 

Parameter  Obtained Values Threshold 

R2 0.879 ˃ 0.6 

R 0.932 ˃ 0.6 

𝑹𝑨
𝟐  0.860 ˃ 0.6 

RMSE 0.296 Low value 

F 46.507 High value  

𝑸𝟐 0.880 ˃ 0.5 

𝑹𝒑𝒓𝒆𝒅
𝟐  0.30 ˃ 0.5 

             Figure IV.2.1 illustrates a linear relationship between predicted and experimental 

biological activities, demonstrating that the created model is internally predictable. Also, the 

MLR model has well-matched the experimental data, with the exception of a few scattered 

points. Therefore, it may be used to predict the p𝐼𝐶50 values with confidence. Furthermore, 

when the estimated residuals are plotted versus the experimental activity levels in Figure 

IV.2.2, the residuals are distributed around the zero line, and most of them are less than an 

absolute value of 0.5, indicating that the model is free of systematic errors. 

 

Figure IV.2.1: Experimental versus predicted p𝐼𝐶50in MLR model 
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Figure IV.2.2: Residual p𝐼𝐶50 versus predicted p𝐼𝐶50 MLR model 

             For both the training and testing sets, the model was used to predict the p𝐼𝐶50 values. 

Table IV.2.5 represents the predicted and observed values of the investigated compounds as 

well as the residual. Since it can be seen that most of the predicted values are too much close 

to those obtained experimentally. The experimental p𝐼𝐶50 values of the investigated 

compounds range from 4.52 to 8.52. And the predicted p𝐼𝐶50 values range from 4.84 to 7.96. 

Table IV.2.5: Experimental and predicted values of the studied compounds based on the MLR model 

Compounds  Exp(p𝑰𝑪𝟓𝟎) Prd(p𝑰𝑪𝟓𝟎) Residual Compounds Exp(p𝑰𝑪𝟓𝟎) Prd(p𝑰𝑪𝟓𝟎) Residual 

Compound 1 

Compound 2 

Compound 3 

Compound 4 

Compound 5 

Compound 6 

Compound 7 

Compound 8 

Compound 9 

Compound 10 

Compound 11 

Compound 12 

Compound 13 

Compound 14 

Compound 15 

Compound 16 

Compound 17 

Compound 18 

Compound 19 

Compound 20 

Compound 21 

Compound 22 

6.00 

4.80 

5.00 

6.00 

6.70 

5.22 

5.70 

5.22 

5.10 

5.00 

6.05 

6.52 

6.40 

6.16 

5.16 

7.00 

6.69 

6.52 

5.40 

6.70 

6.00 

5.7 

5.98 

5.29 

5.65 

6.46 

6.48 

5.04 

5.90 

5.21 

5.82 

5.68 

5.49 

6.10 

5.51 

6.69 

6.79 

6.07 

6.77 

6.82 

6.57 

5.71 

5.59 

6.10 

0.00 

0.24 

0.42 

0.21 

0.05 

0.03 

0.04 

0.00 

0.52 

0.46 

0.31 

0.18 

0.80 

0.28 

2.66 

0.86 

0.01 

0.09 

1.38 

0.99 

0.17 

0.16 

Compound 62 

Compound 63 

Compound 64 

Compound 65 

Compound 66 

Compound 67 

Compound 68 

Compound 69 

Compound 70 

Compound 71 

Compound 72 

Compound 73 

Compound 74 

Compound 75 

Compound76 

Compound 77 

Compound 78 

Compound 79 

Compound 80 

Compound 81 

Compound 82 

Compound 83 

5.22 

6.00 

6.85 

6.70 

7.35 

6.28 

6.10 

5.66 

5.82 

6.68 

4.52 

4.52 

4.52 

5.36 

7.01 

5.19 

6.19 

6.35 

6.92 

5.31 

5.96 

5.11 

5.29 

5.78 

6.35 

6.07 

6.65 

6.96 

6.19 

5.74 

5.64 

6.90 

5.68 

5.26 

5.62 

5.86 

6.44 

6.12 

6.33 

5.97 

6.21 

5.43 

5.15 

5.07 

0.00 

0.05 

0.25 

0.40 

0.49 

0.46 

0.01 

0.01 

0.03 

0.05 

1.35 

0.55 

1.22 

0.25 

0.32 

0.87 

0.02 

0.14 

0.51 

0.02 

0.66 

0.00 
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Compound 23 

Compound 24 

Compound 25 

Compound 26 

Compound 27 

Compound 28 

Compound 29 

Compound 30 

Compound 31 

Compound 32 

Compound 33 

Compound 34 

Compound 35 

Compound 36 

Compound 37 

Compound 38 

Compound 39 

Compound 40 

Compound 41 

Compound 42 

Compound 43 

Compound 44 

Compound 45 

Compound 46 

Compound 47 

Compound 48 

Compound 49 

Compound 50 

Compound 51 

Compound 52 

Compound 53 

Compound 54 

Compound 55 

Compound 56 

Compound 57 

Compound 58 

Compound 59 

Compound 60 

Compound 61 

6.52 

5.16 

4.82 

6.00 

5.00 

5.70 

5.40 

6.00 

5.23 

5.00 

5.00 

4.70 

5.00 

6.52 

5.30 

6.70 

6.70 

6.52 

6.70 

7.30 

6.52 

6.40 

5.70 

5.80 

4.52 

5.43 

5.41 

6.52 

6.35 

6.39 

6.08 

6.23 

6.42 

4.89 

5.72 

6.40 

6.70 

5.92 

5.42 

6.51 

5.41 

5.68 

6.00 

5.34 

6.12 

5.52 

6.64 

5.99 

6.08 

6.29 

5.67 

5.74 

6.53 

6.04 

5.92 

6.42 

6.28 

6.28 

7.12 

6.35 

6.41 

6.08 

5.85 

5.01 

5.59 

6.34 

6.39 

6.26 

5.79 

5.59 

5.60 

6.19 

4.84 

5.25 

5.68 

6.48 

5.84 

5.54 

0.00 

0.06 

0.74 

0.00 

0.11 

0.18 

0.01 

0.41 

0.58 

1.17 

1.67 

0.94 

0.54 

0.00 

0.55 

0.61 

0.08 

0.06 

0.18 

0.03 

0.03 

0.00 

0.15 

0.00 

0.24 

0.03 

0.86 

0.02 

0.01 

0.36 

0.24 

0.40 

0.05 

0.00 

0.22 

0.52 

0.05 

0.01 

0.01 

Compound 84 

Compound 85 

Compound 86 

Compound 87 

Compound 88 

Compound 89 

Compound 90 

Compound 91 

Compound 92 

Compound 93 

Compound 94 

Compound 95 

Compound 96 

Compound 97 

Compound 98 

Compound 99 

Compound100 

Compound 101 

Compound 102 

Compound 103 

Compound 104 

Compound 105 

Compound 106 

Compound 107 

Compound 108 

Compound 109 

Compound 110 

Compound 111 

Compound 112 

Compound 113 

Compound 114 

Compound 115 

Compound 116 

Compound 117 

Compound 118 

Compound 119 

Compound 120 

Compound 121 

5.00 

5.00 

6.08 

5.00 

5.55 

6.12 

7.30 

6.35 

7.46 

6.89 

5.77 

6.39 

6.46 

7.03 

6.92 

6.46 

6.20 

7.22 

7.00 

8.10 

8.52 

7.70 

7.30 

7.30 

7.40 

7.30 

7.70 

7.70 

7.40 

8.00 

7.52 

6.40 

7.10 

6.00 

5.05 

7.00 

6.70 

7.70 

5.77 

5.25 

5.86 

5.19 

5.73 

6.33 

7.17 

6.74 

6.42 

6.82 

6.03 

6.04 

6.74 

6.62 

6.42 

6.90 

6.06 

7.50 

6.99 

6.81 

7.53 

7.61 

7.33 

7.50 

7.30 

7.35 

7.53 

7.75 

7.75 

7.71 

7.16 

7.05 

7.26 

7.96 

5.05 

6.91 

6.85 

7.78 

0.59 

0.06 

0.05 

0.04 

0.03 

0.04 

0.02 

0.15 

1.09 

0.01 

0.07 

0.12 

0.08 

0.17 

0.25 

0.20 

0.02 

0.08 

0.00 

1.66 

0.99 

0.01 

0.00 

0.04 

0.01 

0.00 

0.03 

0.00 

0.12 

0.09 

0.13 

0.42 

0.03 

3.83 

0.00 

0.01 

0.02 

0.01 
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IV.1.6. ANN models Set up 

After ensuring the robustness of the developed MLR-QSAR model with good 

statistical qualities, the selected eleven molecular descriptors have been employed in the 

development of four ANN models as the input layer to build artificial neural networks with 

four layers (ANN). These models are characterized by the same input and output layers, 

having two hidden layers, and they are different in the number of nodes which is a critical 

parameter that has a significant impact on the correctness and complexity of the produced 

model [22.23]. The network consists of several neuron nodes. Direct communication 

activation functions that include the information necessary to create the output connect the 

neurons together. The hyperbolic tangent sigmoid activation function of each hidden neuron 

(𝐻𝑘)can be obtained as follows: 

𝐻𝑘 = 𝑡𝑛𝑔ℎ(
1

2
𝑌𝑘)                  Eq3 

 

This function allows the transformation of 𝑌𝑘  values to be comprised between -1 and 1[24]. 

𝑌𝑘: represents the linear combination of the inputs associated with hidden neuron which can 

be obtained as follows: 

𝑌𝑘 = ∑ (𝑊𝑘,𝑖𝑝𝑢𝑡 
𝑀
𝑘=1 ) (𝐷𝑖)+𝑏𝑘            Eq4 

𝑊𝑘,𝑖𝑝𝑢𝑡  

𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑎𝑐ℎ 𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑑 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘 

𝑏𝑘 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑏𝑖𝑎𝑠 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘 

 

The ANN models have been generated using the same molecular descriptors as those 

used in the MLR model. The statistical parameters are shown in Table IV.2.6. By analysing 

the obtained results, it was found that the models present small values of 

𝑅𝑇𝑟
2  𝑎𝑛𝑑 𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

2 Indicating the non-existence of a non-linear regression between the 11 

selected descriptors and the biological activities of the used compounds. Therefore, the ANN 

models are not reliable, and they cannot be predictive.  

Table IV.2.6: statistical parameters in several neural network architectures based on the number of 

hidden neurons 

Layer 1 Layer 2 𝑹𝑻𝒓
𝟐  𝑹𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏

𝟐  𝑹𝑴𝑺𝑬𝑻𝒓 𝑹𝑴𝑺𝑬𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏  

Model 1 5 nodes 5 nodes 0.301 0.653 0.841 0.462 

Model 2 5 nodes 7 nodes 0.520 0.691 0.701 0.434 

Model 3 5 nodes 9 nodes 0.462 0.712 0.732 0.43 

Model 4 5 nodes 11 nodes 0.586 0.691 0.588 0.433 
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The desired ANN should have high generalizability and a low probability of 

overfitting. For that reason, A novel ANN model has been generated, constituted of four 

layers. Eight new selected significant descriptors constitute the first layer. (The selection of 

the significant descriptors has been performed based on the stepwise approach, including 70 

descriptors). Tow hidden layers and output layer represent the biological activity p𝐼𝐶50. 

Before the training process, the database was divided into two subsets: training set 66 %, 

and test set 34 % of studied compounds. 

Various ANN models were constructed, trained, and evaluated to determine the 

optimum ANN architecture with the highest prediction ability. The selected ANN model is 

the one with the smallest root mean square error (RMSE) value and a high value of the 

coefficient of determination 𝑅2.  

The best ANN network architecture found after wide training was [8-11-11-1] (Figure 

IV.2.3) with two hidden layers having 11 and 11 neurons. The obtained ANN model can be 

expressed as follows: 

𝑝𝐼𝐶50 =  5.88 +  0.90 ∗  𝐻11 −  0.67 ∗  𝐻110 − 0.90 ∗  𝐻111 +  0.08 ∗  𝐻12 + 

 0.35 ∗  𝐻13 + 0.94 ∗  𝐻14 −  0.19 ∗  𝐻15 +  0.73 ∗  𝐻16 

+2.01 ∗  𝐻17  +  2.1 ∗  𝐻18  − 1.48 ∗  𝐻19      

Where the hidden neurons: 𝐻11 , 𝐻12 , 𝐻13 , 𝐻14 , 𝐻15 , 𝐻16 , 𝐻17, 

𝐻18 , 𝐻19, 𝐻110, 𝐻111 are given in Table  IV.2.7 

Table IV.2.7: Hidden neurons equations of the obtained [8.11.11.1] ANN 

Hidden neurons equations of layer 1 

H1_1= TanH ( -0.51- 0.21* H2_1 -0.25* H2_10 +0.20 * H2_11 + -0.97 * H2_2 + 0.69 *H2_3 + -0.24 * 

H2_4 + 0.12 * H2_5 -1.06*H2_6 + 0.238323151885082 * H2_7 + -1.37* H2_8 + -0.82 * H2_9) 

H1_2= TanH (0.23 - 0.53 * H2_1 + 0.33 * H2_10 +0.46 * H2_11 + 0.71 * H2_2 -0.15 * H2_3 + 0.23 * 

H2_4 - 0.12* H2_5 -0.19 * H2_6 - 0.93 * H2_7 + 0.09* H2_8 + 0.33 * H2_9) 

H1_3 = TanH (0.28 -1.34* H2_1 + 0.26 * H2_10 +0.06 * H2_11 - 0.08 * H2_2 - 0.79 * H2_3 + 0.21* 

H2_4 + 0.06 * H2_5 + 0.18 * H2_6 + 0.43 * H2_7 - 0.87 * H2_8 -0.20 * H2_9) 

H1_4= TanH (0.08 - 0.64* H2_1 - 0.01 * H2_10 +0.46 * H2_11 + 0.30 * H2_2 - 0.79 * H2_3 + 0.07* 

H2_4 - 0.13 * H2_5 + 0.92* H2_6 + 0.32 * H2_7 + 0.11* H2_8 + 0.33 * H2_9) 

H1_5 = TanH (-0.80 + 0.43 * H2_1 + 0.47 * H2_10 +0.39 * H2_11 -0.16 * H2_2 + 0.70 *H2_3 + 0.07* 

H2_4 - 0.30 * H2_5 + 1.36 * H2_6 + 0.13 * H2_7 - 0.08 * H2_8 +0.14 * H2_9) 

H1_6 = TanH ( -0.37 + 0.94 * H2_1 - 0.61 * H2_10 +0.007 * H2_11 + 0.42 * H2_2 + 0.43*H2_3 + -

0.35 * H2_4 -0.21 * H2_5 -0.00007 * H2_6 + 0.37 * H2_7 -0.63 * H2_8 -0.04 * H2_9) 

H1_7 = TanH ( -0.39+ 0.16* H2_1 - 0.29 * H2_10 -0.90 * H2_11 + 0.25 * H2_2 + 1.11 *H2_3 + -0.24 

* H2_4 - 0.50 * H2_5 - 0.19 * H2_6 + 0.65 * H2_7 - 0.78 * H2_8 + 1.0* H2_9) 
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H1_8= TanH (0.96 - 0.41 * H2_1 + -0.28 * H2_10 +0.53 * H2_11 + 0.05 * H2_2 + 0.23 * H2_3 - 0.38* 

H2_4 + 0.98 * H2_5 + -0.04 * H2_6 - 0.32 * H2_7 + 1.10 * H2_8 + 0.009* H2_9) 

H1_9 = TanH (0.47 -0.31 * H2_1 + 0.67 * H2_10 +0.49 * H2_11 + 0.14 * H2_2 + 0.52 * H2_3 + 0.06 * 

H2_4 - 0.27 * H2_5 + 0.21*H2_6 + 0.14 * H2_7 -0.25 * H2_8 -0.01 * H2_9) 

H1_10 = TanH (-0.73 -0.005 * H2_1 + 0.17 * H2_10 -0.06 * H2_11 -0.28 * H2_2 -0.04 * H2_3 -0.46 * 

H2_4 -1.24 * H2_5 +0.62 * H2_6 + 0.37 * H2_7 - 0.25 * H2_8 - 0.13 * H2_9) 

H1_11= TanH ( -0.50-0.12 * H2_1 + 0.81 * H2_10 +0.589 * H2_11 + 0.24 * H2_2 - 0.42 * H2_3 + -

0.65 * H2_4 -0.16 * H2_5 - 0.90 *H2_6 + 0.96 * H2_7 + 0.53 * H2_8 + 0.20* H2_9) 

Hidden neurons equations of layer 2 

H2_1 = TanH (5.46 -0.61 * HBA - 0.21 * HBD -1.41 * HOMO + 0.86 * LUMO -0.20 * RB +0.75* η + 

0.35 * μ -0.41 * ω) 

H2_2 = TanH (7 -0.18* HBA -0.44 * HBD +0.19 * HOMO + -0.05* LUMO + 0.167 * RB -3.06 * η + 

0.55 * μ + -0.001 * ω) 

H2_3= TanH ( -17.53 -1.005 * HBA + 0.51 * HBD -1.86 * HOMO + 1.19 * LUMO + -0.50 * RB -0.14 

* η + -3.79 * μ + 0.28 * ω) 

H2_4 = TanH (11.36 -0.009 * HBA + 0.29* HBD -0.05 * HOMO + 1.35 * LUMO + 0.12 * RB +0.33 * 

η + 0.73 * μ -0.37 * ω) 

H2_5= TanH (13.93 + 0.32 * HBA -1.83 * HBD +1.89 * HOMO + 1.90 * LUMO + 0.68 * RB+0.63* η 

+ 0.04 * μ -0.040 * ω) 

H2_6 = TanH (37.85 -0.35 * HBA + 0.63* HBD +0.38 * HOMO + 3.97 * LUMO + 0.17 * RB +1.57 * 

η + 3.24* μ -0.59 * ω) 

H2_7= TanH (-15.03 - 0.50 * HBA -0.22* HBD+0.33* HOMO + 0.28 * LUMO + -0.06* RB + 0.47 * η 

-2.94 * μ + 0.68 * ω) 

H2_8 = TanH (33.92+ 0.13 * HBA -0.40* HBD+1.70 * HOMO + 1.79 * LUMO -0.10 * RB +2.12 * η + 

3.03 * μ -0.48 * ω) 

H2_9= TanH (-20.29 -0.10 * HBA + 1.64* HBD -1.81 * HOMO + 0.14 * LUMO - 0.039 * RB +1.57 * 

η + -1.45 * μ + 0.056 * ω) 

H2_10= TanH (-10.87+ 0.38* HBA - 0.07 * HBD -1.86 * HOMO + 2.51* LUMO + 0.31 * RB -0.92 * η  

-1.31 * μ -0.02 * ω) 

H2_11= TanH (15.87 + 0.08 * HBA + -0.67 * HBD +2.38* HOMO + 0.78 * LUMO + 0.22 * RB -4.44 

* η -0.80 * μ + 0.11 * ω) 

This network is characterized by an RMSE value = 0.37 and an 𝑅2value = 0.92, 

indicating that the (p𝐼𝐶50) is significantly correlated with the eight variables adopted in this 

work. The ANN model's external predictability was then evaluated using a series of 39 

testing set. As can be seen from the table, the model had strong predictive capability, with 

an R2 external of 0.60 (Table IV.8). The high values of R2 and low value of the root-mean-

square deviation (RMSE𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛=0.61) indicates that the proposed model is robust and 

reliable. From the results presented in Table IV.2.8, the [8-11-11-1] ANN architecture was 

reasonably adequate for all datasets with good predictive ability. Thus, the ANN model can 
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be used quite satisfactorily for the prediction and screening of a new series of nuclear factor-

κB (NF-κB) inhibitors. 

Table IV.2.8: Statistical parameters obtained by the [8.11.11.1] ANN model 

Training Validation 

𝑅2 0.92 0.60 

RMSE 0.37 0.61 

 

 

Figure IV.2.3: [8.11.11.1] architecture configuration of the artificial neural network for predicting 
the p𝐼𝐶50. 

 
Hydrogen Bond Donors (HBD), Hydrogen Bond Acceptors (HBA), Rotatable Bonds (RB), the 
energy of the highest occupied molecular orbitals (HOMO), energy of the lowest unoccupied 

molecular orbitals (LUMO), Global hardness (η), Chemical potential (μ), Electrophilicity index (ω)   

 

            Figures IV.2.4 and IV.2.5 illustrate a linear relationship between predicted and 

experimental biological activities for the training set and the test set, respectively, 

demonstrating that the created model is internally and externally predictable. Also, the ANN 

model has been well matched to the experimental data, with the exception of a few scattered 

points. Therefore, it may be used to predict the p𝐼𝐶50 values with confidence. Furthermore, 

when the estimated residuals for both the training and test sets are plotted versus the 

experimental activity levels in Figures IV.2.6 and IV.2.7, the residuals are distributed around 
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the zero line, and most of them are less than an absolute value of 0.5, indicating that the 

model is free of systematic errors. 

 

 

 

 

 

 

 

 

 

 

Figure IV.2.4: Experimental versus predicted p𝐼𝐶50 of training set compounds in ANN model 

 

Figure IV.2.5: Experimental versus predicted p𝐼𝐶50 of test set compounds in ANN model 

 
 

Figure IV.2.6: Residual p𝐼𝐶50 versus predicted p𝐼𝐶50 for the training set (ANN model) 
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Figure IV.2.7: Residual p𝐼𝐶50 versus predicted p𝐼𝐶50 for the test set (ANN model). 

For both the training and testing sets, the model ANN was used to predict the p𝐼𝐶50 values. 

Table IV.2.9 represents the predicted and observed values of the investigated compounds as 

well as the residual. 

Table IV.2.9: Experimental and predicted values of the studied compounds based on the 

[8.11.11.1] ANN model 

Compounds  Exp(p𝑰𝑪𝟓𝟎) Prd(p𝑰𝑪𝟓𝟎) Residual Compounds Exp(p𝑰𝑪𝟓𝟎) Prd(p𝑰𝑪𝟓𝟎) Residual 

Compound 1 

Compound 2 

Compound 3 

Compound 4 

Compound 5 

Compound 6 

Compound 7 

Compound 8 

Compound 9 

Compound 10 

Compound 11 

Compound 12 

Compound 13 

Compound 14 

Compound 15 

Compound 16 

Compound 17 

Compound 18 

Compound 19 

Compound 20 

Compound 21 

Compound 22 

Compound 23 

Compound 24 

6.00 

4.80 

5.00 

6.00 

6.70 

5.22 

5.70 

5.22 

5.10 

5.00 

6.05 

6.52 

6.40 

6.16 

5.16 

7.00 

6.69 

6.52 

5.40 

6.70 

6.00 

5.7 

6.52 

5.16 

6.01 

5.26 

5.44 

6.00 

6.35 

5.55 

5.72 

6.23 

5.73 

5.29 

5.80 

5.06 

5.61 

6.15 

5.52 

6.91 

6.45 

6.66 

6.69 

6.43 

6.01 

5.93 

6.28 

5.37 

-0.01 

-0.46 

-0.44 

0.00 

0.35 

-0.33 

-0.02 

-1.01 

-0.63 

-0.29 

0.25 

1.46 

0.79 

0.01 

-0.36 

0.09 

0.24 

-0.14 

-1.29 

0.27 

-0.01 

-0.23 

0.24 

-0.21 

Compound 62 

Compound 63 

Compound 64 

Compound 65 

Compound 66 

Compound 67 

Compound 68 

Compound 69 

Compound 70 

Compound 71 

Compound 72 

Compound 73 

Compound 74 

Compound 75 

Compound76 

Compound 77 

Compound 78 

Compound 79 

Compound 80 

Compound 81 

Compound 82 

Compound 83 

Compound 84 

Compound 85 

5.22 

6.00 

6.85 

6.70 

7.35 

6.28 

6.10 

5.66 

5.82 

6.68 

4.52 

4.52 

4.52 

5.36 

7.01 

5.19 

6.19 

6.35 

6.92 

5.31 

5.96 

5.11 

5.00 

5.00 

5.36 

6.34 

6.56 

6.29 

6.65 

6.24 

6.23 

5.75 

5.85 

6.47 

4.24 

4.54 

4.60 

6.64 

6.89 

5.27 

6.23 

6.14 

6.83 

5.41 

5.78 

4.88 

5.50 

4.92 

-0.14 

-0.34 

0.29 

0.41 

0.70 

0.04 

-0.13 

-0.09 

-0.03 

0.21 

0.28 

-0.02 

-0.08 

-1.28 

0.12 

-0.08 

-0.04 

0.21 

0.09 

-0.10 

0.18 

0.23 

-0.50 

0.08 
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Compound 25 

Compound 26 

Compound 27 

Compound 28 

Compound 29 

Compound 30 

Compound 31 

Compound 32 

Compound 33 

Compound 34 

Compound 35 

Compound 36 

Compound 37 

Compound 38 

Compound 39 

Compound 40 

Compound 41 

Compound 42 

Compound 43 

Compound 44 

Compound 45 

Compound 46 

Compound 47 

Compound 48 

Compound 49 

Compound 50 

Compound 51 

Compound 52 

Compound 53 

Compound 54 

Compound 55 

Compound 56 

Compound 57 

Compound 58 

Compound 59 

Compound 60 

Compound 61 

4.82 

6.00 

5.00 

5.70 

5.40 

6.00 

5.23 

5.00 

5.00 

4.70 

5.00 

6.52 

5.30 

6.70 

6.70 

6.52 

6.70 

7.30 

6.52 

6.40 

5.70 

5.80 

4.52 

5.43 

5.41 

6.52 

6.35 

6.39 

6.08 

6.23 

6.42 

4.89 

5.72 

6.40 

6.70 

5.92 

5.42 

5.24 

5.95 

4.87 

5.74 

4.75 

6.15 

6.06 

5.16 

5.08 

5.14 

4.89 

6.66 

5.47 

6.28 

6.80 

6.38 

6.38 

7.18 

6.47 

6.53 

5.35 

5.36 

4.49 

5.04 

5.48 

6.62 

6.34 

6.49 

6.13 

6.11 

5.89 

4.91 

5.51 

6.17 

6.70 

5.63 

5.45 

-0.42 

0.05 

0.13 

-0.04 

0.65 

-0.15 

-0.83 

-0.16 

-0.08 

-0.44 

0.11 

-0.14 

-0.17 

0.42 

-0.10 

0.14 

0.32 

0.12 

0.05 

-0.13 

0.35 

0.44 

0.03 

0.39 

-0.07 

-0.10 

0.01 

-0.10 

-0.05 

0.12 

0.53 

-0.02 

0.21 

0.23 

0.00 

0.29 

-0.03 

Compound 86 

Compound 87 

Compound 88 

Compound 89 

Compound 90 

Compound 91 

Compound 92 

Compound 93 

Compound 94 

Compound 95 

Compound 96 

Compound 97 

Compound 98 

Compound 99 

Compound100 

Compound 101 

Compound 102 

Compound 103 

Compound 104 

Compound 105 

Compound 106 

Compound 107 

Compound 108 

Compound 109 

Compound 110 

Compound 111 

Compound 112 

Compound 113 

Compound 114 

Compound 115 

Compound 116 

Compound 117 

Compound 118 

Compound 119 

Compound 120 

Compound 121 

6.08 

5.00 

5.55 

6.12 

7.30 

6.35 

7.46 

6.89 

5.77 

6.39 

6.46 

7.03 

6.92 

6.46 

6.20 

7.22 

7.00 

8.10 

8.52 

7.70 

7.30 

7.30 

7.40 

7.30 

7.70 

7.70 

7.40 

8.00 

7.52 

6.40 

7.10 

6.00 

5.05 

7.00 

6.70 

7.70 

5.98 

4.53 

6.92 

6.78 

7.55 

6.43 

6.76 

6.91 

6.01 

5.51 

6.43 

6.51 

6.25 

6.68 

6.22 

6.93 

6.84 

7.93 

7.27 

7.33 

7.69 

7.44 

7.59 

7.55 

7.57 

7.42 

7.35 

8.00 

6.51 

6.85 

7.08 

6.15 

5.23 

7.04 

6.67 

6.92 

0.10 

0.47 

-1.37 

-0.66 

-0.25 

-0.08 

0.70 

-0.02 

-0.24 

0.88 

0.03 

0.52 

0.67 

-0.22 

-0.02 

0.29 

0.16 

0.17 

1.25 

0.37 

-0.39 

-0.14 

-0.19 

-0.25 

0.13 

0.28 

0.05 

0.00 

1.01 

-0.45 

0.02 

-0.15 

-0.18 

-0.04 

0.03 

0.78 
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IV.1.7. Examination of outliers in a regression-based quantitative structure-activity 

relationship 

In this work, the leverage method has been applied for the applicability domain of 

the obtained MLR and ANN model determination. The leverage method is a quantitative 

indicator used to determine structural outliers in the data. By calculating 𝑡ℎ𝑒  ℎ𝑖   value for 

each compound and making a comparison between it and a reference point which is the 

critical value (h*). h*represents the edge of the applicability domain. Where the occurrence 

of any value greater than or equal to this critical value (i.e., structural outliers) shows that 

the prediction is unreliable. Since compounds characterizing by  ℎ𝑖 value higher than h* is 

structurally different to those used for the model construction. And it is possible that the 

prediction of these compounds may be judged relatively untrustworthy due to a large amount 

of extrapolation involved. In contrast, when  ℎ𝑖 Value is lower than h*, which indicates the 

chemical similarity between the predicted compounds and the training set [23.24.25.25.26]. 

Leverage value can be obtained by the following equation: 

ℎ𝑖 = 𝑣𝑖(𝑉𝑡𝑉)−1  ×  𝑣𝑖
−1            Eq5 

𝑣𝑖: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 1 
×  𝑑∗ 

𝑑∗ ∶ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 . 

 𝑉:  𝑖𝑠 𝑎 𝑝 
×  𝑑∗ 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠. 

ℎ𝑖  𝑡ℎ𝑒 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎. 

ℎ∗  =  3 (𝑘 + 1)/𝑛              (20) Eq6 

k is the number of model’s descriptors, and n is the number of compounds included in the 

training set. 

The leverage method also depends on standardized residual (SDR) values. This is given by 

the following equation: 

𝑆𝐷𝑅 =  
Ŷ𝑖−𝑌𝑖

√∑𝑖−1
𝑛 ( Ŷ𝑖−𝑌)

2

𝑛

                 Eq7 

−3 ˂ 𝑆𝐷𝑅 ˂ 3 

Where : 𝑦𝑖   𝑎𝑛𝑑 Ŷ𝑖Are the measured and the predicted p𝐼𝐶50 values, respectively. 

William plot is used to visualize a model's scope of application by plotting the 

standardized residuals (SDR) vs the leverage values. The extent to which the AD structural 
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range is covered can be determined by comparing the number of compounds inside the AD 

to the outliers in a William plot. Via the following parameter:  

𝐴𝐷𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑃𝑖𝑛𝑠𝑖𝑑𝑒 

𝑃𝑡𝑜𝑡𝑎𝑙
∗ 100               Eq8 

 
𝑃𝑖𝑛𝑠𝑖𝑑𝑒 : 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛, 
𝑃𝑡𝑜𝑡𝑎𝑙: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠. 

After calculating the leverage of all studied compounds, the critical leverage ℎ∗  

Which is found to be 0.44 and 0.32 for the MLR and ANN models, respectively and the 

standardized residual. William plot has been traced as it is shown in Figures IV.2.8 and 

IV.2.9. By analysing the AD of the obtained MLR and the [8.11.11.1] ANN models. It can 

be seen that both the training and test sets are comprised between the AD boundaries: the 

vertical line, blue dashed line (ℎ∗ = 0.44  𝑀𝐿𝑅 𝑚𝑜𝑑𝑒𝑙) (ℎ∗ = 0.32 𝐴𝑁𝑁 𝑚𝑜𝑑𝑒𝑙) and the 

two horizontal green lines (-3 <SDR<3). They presented leverage values less than the critical 

leverage h* value and standardized residuals values less than the thresholds. except for two 

compounds of the training set which are considered outliers because of their low prediction 

reliability. Since the majority of training set compounds and all compounds of test sets are 

located inside the AD. Both of the 𝑀𝐿𝑅 𝐴𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒 value and the ANN𝐴𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒 value = 98 

%. Therefore, in these ADs, the models are considered valid, and they can be used for p𝐼𝐶50 

values prediction for a new compound with a high degree of confidence. Except for two 

compounds which were located outside the AD.  
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Figure IV.2.8:  William plots for the MLR model 

 

Figure IV.2.9: William plots for the ANN model 
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IV.1.8. Importance of significant molecular descriptors in MLR and [8.11.11.1] ANN 

QSAR models 

          One of the QSAR analysis objectives is to understand the molecular descriptor that 

governs the activity of a particular class of compounds and to aid in the design of new 

compounds that may be drugs. Therefore, the evaluation of the descriptors proved to be very 

interesting and useful to better understand the NF-κB inhibition. To achieve this analysis, a 

randomization strategy was employed to determine the relative value of each descriptor used 

to create the MLR and ANN models. 

           This also enables the identification of the optimal molecular descriptors. Immediately 

after the models were constructed, the first column corresponding to the first descriptor 

utilized in the model was eliminated, leaving the remaining descriptor matrix and Y-column 

in their original positions. the mean absolute deviations (Δ𝑚𝑖) between the observed and 

predicted activities of compounds has been determined for the eleven descriptors for the 

MLR model and the eight descriptors for the ANN model. The descriptor’s contribution is 

given as follows: 

𝐶𝑖%= 
Δ𝑚𝑖

∑ Δ𝑚𝑗
11
𝑗=1

              Eq9 

 

By employing scrambled descriptor values, the increment in 𝐶𝑖%, can calculate the relevance 

of the significant molecular descriptors used for model construction measurement. where the 

larger the increments, the greater the significance [27]. This procedure was applied to all 

eleven significant descriptors used for the MLR model and all eight significant descriptors 

used for the ANN model. 

Results are presented in Figures IV.2.10 and IV.2.11. As it is depicted in the figures the 

lipophilicity Alogp98 and the electrophilicity index ω are of particular relevance in the MLR 

model. In contrast, the Global hardness (η), and electrophilicity index ω are of particular 

importance in the ANN model. 



 

124 
 

CHAPTER IV:METHODOLOGY, RESULTS AND DISUSSION (PART: 2) 

 

Figure IV.2.10 : descriptors contribution in the MLR model 

 

Figure IV.2.11 : descriptors' contribution in the ANN model 

IV.1.9. Models Comparison  

Based on the statistical results mentioned in Tables 7,9,10, a simple comparison 

between the obtained models’ performances has been performed. when comparing the MLR 

model with the [11.5.5.1], [11.5.7.1], [11.5.9.1], [11.5.11.1] ANN models constructed with 

the same molecular. It can be concluded that the MLR can predict the p𝐼𝐶50 of compounds 

excellently. In contrast, the ANN models cannot be useful for prediction because of the non-

existence of a non-linear correlation between the p𝐼𝐶50 and the molecular descriptors. 

Comparing the MLR model with the [8.11.11.1] ANN, it can be concluded that the ANN 

model is more performant and more reliable than the MLR model. Thus, the ability of the 

network to predict the NF-κB inhibition activity was estimated by internal and external 
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validation, which includes the 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ,
2  𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

2 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔and  𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 , 

which meet the model validation criteria. While the MLR model, although it has presented 

a high value of 𝑅2  and 𝑄2 , however its  𝑅2
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 Value which indicates its external 

robustness was very low. This study allowed us to conclude that the [8-11-11-1] ANN 

architecture can establish a satisfactory non-linear relationship between the structural 

characteristics of the studied compounds and their nuclear factor-κB (NF-κB inhibition 

activity, and it can make a reliable prediction for new compounds. 

IV.2 Conclusion  

The quantitative structure-activity relationship models are very interesting tools for 

drug development and compound characteristics optimization. In this work, the most 

important steps for successful QSAR model elaboration have been well explained. Also, a 

series of nuclear factor-κB (NF-κB) inhibitors has been performed for MLR and several 

ANN model constructions. The models have been assessed and subjected to internal and 

external validation. The leverage method has been applied for the applicability domain of 

the obtained MLR and ANN models to the aim of the outliers examination. Based on the 

statistical analyses, it was found that the obtained [8.11.11.1] ANN model using the 

following descriptors: Hydrogen Bond Donors (HBD), Hydrogen Bond Acceptors (HBA), 

Rotatable Bonds (RB), energy of the highest occupied molecular orbitals (HOMO), energy 

of the lowest unoccupied molecular orbitals (LUMO), Global hardness (η), Chemical 

potential (μ), Electrophilicity index (ω), is reliable, robust and showed the better predictive 

ability compared to the MLR model. Thus, the [8.11.11.1] ANN model can be used quite 

satisfactorily for the prediction and screening of a new series of nuclear factor-κB (NF-κB) 

inhibitors. 
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General Conclusion  

A wide variety of malignancies common in human exhibit aberrant NF-κB 

constitutive expression which results in tumorigenic processes and cancer survival in a 

variety of solid tumour, including pancreatic cancer, lung, cervical, prostate, breast and 

gastric carcinoma. Numerous evidences indicate that NF-κB signalling mechanism is mainly 

involved in the progression of several cancers which may intensify an enhanced knowledge 

on its role in disease particularly lung tumorigenesis. This has led to tremendous research in 

designing a variety of NF-κB antagonists with enhanced clinical applications through 

different approaches the most common being suppression of IκB kinase (IKK) beta activity . 

The work of this thesis id devoted into tow parts; The first consists of targeting the IKK-β 

enzyme for the NF-κB inhibition. The second part consist of the direct inhibition of NF-κB  

The main objective of the first part is to design new active compounds for the IKK-

β. To achieve this goal a QSAR model of thirty2-amino-3-cyano-4-piperidin-6-(2-

hydroxyphenyl) pyridine derivatives against IKK-β enzyme was performed based on 

theoretical molecular descriptors which were selected by stepwise regression. This model 

was used to predict the biological activity of new designed compounds. The applicability 

domain of the elaborated QSAR model succeeded to screen 21 new designed compounds 

with higher biological activity, and most of compounds which were characterized by a 

substitution at para position showed a higher pIC50values than those were characterized by 

a substitution at meta position of the phenyl ring. Docking simulation was carried out to 

position the investigated compounds into the IKK-β enzyme active site.  

The results revealed that all compounds had poses in the pocket. This result has been 

validated via the molecular dynamics study. Among the new designed compounds, four 

compounds exhibited better binding interaction toIKK-β which are A1m, A1p, A9m, A11, 

with better binding affinity to the active site. Their XP GScore are respectively -12.375, -

10.713, -10.633, -9. 381. Docking study also showed that CYS 99 the GLU149 amino acid 

residues might be crucial for IKK-β inhibition and the hydroxylic groups of compounds may 

enhance the affinity of compounds. The compounds to be considered as drug like molecule 

were evaluated on the basis of Veber rule and Lipinski rule. most of the designed compounds 

showed no violations as per Veber and Lipinski rule. 

As for the main objective of second part is the development of new predictive QSAR 

models for the  𝑝𝐼𝐶50 of of nuclear factor-κB (NF-κB) inhibitors prediction. To achieve this 

goal a series of nuclear factor-κB (NF-κB) inhibitors has been performed for MLR and 
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several ANN model constructions. The models have been assessed and subjected to internal 

and external validation. 

 The leverage method has been applied for the applicability domain of the obtained 

MLR and ANN models to the aim of the outliers examination. Based on the statistical 

analyses, it was found that the obtained [ 8.11.11.1] ANN model using the following 

descriptors: Hydrogen Bond Donors (HBD), Hydrogen Bond Acceptors (HBA), Rotatable 

Bonds (RB), energy of the highest occupied molecular orbitals (HOMO), energy of the 

lowest unoccupied molecular orbitals (LUMO), Global hardness (η), Chemical potential (μ), 

Electrophilicity index (ω), is reliable, robust and showed the better predictive ability 

compared to the MLR model. Thus, the [ 8.11.11.1] ANN model can be used quite 

satisfactorily for the prediction and screening of a new series of nuclear factor-κB (NF-

κB) inhibitors. 



Abstract  

The Inhibition of IKK-β (nuclear factor kappa B kinase subunit beta), a specific modulator of 

NF-κB (nuclear factor-κB), is considered a valid target to discover new active compounds for various 

cancers and rheumatoid arthritis treatment. The aim of this work is twofold: Firstly, to develop new 

designed compounds IKK-β inhibitors using different computer aided drug design tools (QSAR, 

Molecular Docking, Molecular Dynamics and drug likeness evaluation). The analysis of the results of 

QSAR model and molecular docking succeeded to screen 21 interesting compounds with better 

inhibitory concentration having a good affinity to IKK-β. Secondly, is to develop new predictive QSAR 

models for the  𝑝𝐼𝐶50 of of nuclear factor-κB (NF-κB) inhibitors prediction, based on machine learning 

methods. Based on the statistical analyses, it was found that the obtained [ 8.11.11.1] ANN model is 

reliable, robust and showed the better predictive ability compared to the MLR model. Thus, the [ 

8.11.11.1] ANN model can be used quite satisfactorily for the prediction and screening of a new 

series of nuclear factor-κB (NF-κB) inhibitors. 

 

Keywords: NF-κB, IKK-β, QSAR, ANN, MLR  

 

Résumé 

L'inhibition de IKK-β (nuclear factor kappa B kinase subunit beta), un modulateur spécifique de NF-κB 

(nuclear factor-κB), est considéré comme une cible valable pour découvrir de nouveaux composés actifs 

pour divers cancers et le traitement de la polyarthrite rhumatoïde. L'objectif de ce travail est double : 

Premièrement, développer de nouveaux composés inhibiteurs de l'IKK-β à l'aide de différents outils de 

conception de médicaments assistés par ordinateur (QSAR, l'amarrage moléculaire, la dynamique 

moléculaire et L’évaluation de la similarité des médicaments). L'analyse des résultats du modèle QSAR 

et de l'amarrage moléculaire a permis de cribler 21 composés intéressants avec une meilleure 

concentration inhibitrice ayant une bonne affinité pour IKK-β. Deuxièmement, il s'agit de développer 

de nouveaux modèles prédictifs QSAR pour la prédiction du 𝑝𝐼𝐶50des inhibiteurs (NF-κB), basés sur 

des méthodes du machine Learning. Sur la base des analyses statistiques, il a été constaté que le modèle 

ANN [8.11.11.1] obtenu est fiable, robuste et a montré une meilleure capacité prédictive par rapport au 

modèle MLR. Ainsi, le modèle ANN [8.11.11.1] peut être utilisé de manière tout à fait satisfaisante pour 

la prédiction et le criblage d'une nouvelle série d'inhibiteurs du facteur nucléaire-κB (NF-κB). 

Mots clés : NF-κB, IKK-β, QSAR, ANN, MLR 

    

 الملخص 

ِّل محدد لـ ، IKK- β إنزيم يعتبر تثبيط    مركبات نشطة جديدة لمختلف أنواع   هدفاً صالحًا لاكتشاف (العامل النووي) NF- κBوهو مُعد 

مثبطات جديدة وفعالة باستخدام أدوات   م أولاً، تصميالسرطان وعلاج التهاب المفاصل الروماتويدي. الهدف من هذا العمل ذو شقين:  

الديناميكيات الجزيئية وتقييم تشابه الأدوية(. نجح تحليل نتائج    الجزيئي،الإرساء    ،QSARالكمبيوتر )  تصميم دوائية مختلفة بمساعدة 

الجزيئي في فحص    نموذج له صلة جيدة    21والالتحام  مثبط أفضل  مثيرًا للاهتمام بتركيز  نماذج  ثانياً،   IKK-b ب ـمركباً      تطوير 
QSAR  بتنبؤ التركيز المثبط لتنبؤية جديدة بناءً على التحليلات   NF- κB   تسمح  وجد أن    الإحصائية،بناءً على طرق التعلم الآلي. 

تم الحصول عليه  نموذج مقارنة  ANN  [8.11.11.1الذي  تنبؤية أفضل  قدرة  يمكن    وبالتالي،MLR  بنموذج[ موثوق وقوي وأظهر 

   NF- κB سلسلة جديدة من مثبطات بشكل مرضٍ تمامًا للتنبؤ وفحص  استخدام نموذج

 شبكة اعصاب صناعية  ,الانحدار الخطي المتعدد IKK- β, إنزيم  NF- κB, العامل النووي : لمفتاحيةا الكلمات 

                                                                                                                                                                           

  


