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Abstract

Real time systems (RTS) are used in a wide variety of applications, ranging from very

simple electronic systems to the most complex avionics and medical systems. RTS are

time-related, which means the behavior of these systems depends on the timing require-

ments defined in the design time and refined during execution time. Component based

programming is the typical paradigm to develop RTS and this is due to it modular nature,

which helps to hide the complexity of such systems and minimizes development costs. One

example of RTS is a medical system that monitors a patient vital signs in a high acu-

ity environment, this situation is characterized by the presence of many medical devices

where each device has it own pre-defined tasks and required measurements. The presence

of more than one device in one clinical situation may affect patient safety because of the

lack of communication between these devices and therefore interoperability is needed to

avoid hazards and patients health status degradation.

The interconnection of medical devices in a wider network of computational servers is

emerging as a new requirement in modern medicine, where the final goal is to monitor

and improve patient safety. The heterogeneity of medical devices provided by different

suppliers is a key challenge in medical systems, where interoperability and data communi-

cation across devices is still under study and specification. The proposed solution in this

thesis aims to create a standard interface to cover medical devices heterogeneity, hence,

achieve interoperability in a safe way with respect to timing requirements. It’s based on

the integrated clinical environment (ICE) standard and component technology as a pro-

gramming paradigm, the architecture focuses on defining an interoperable bus between

the patient, medical devices, software applications and the clinician. This work illustrates

the component model in detail and validates it with a prototype implementation.
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Résumé

Les systèmes temps réel (STR) sont utilisés dans une grande variété d’applications, allant

des petits systèmes électroniques aux systèmes avioniques et médicaux les plus complexes.

Les STR sont liés au temps, ce qui signifie que le comportement de ces systèmes dépend des

exigences temporelles définies au moment de la conception et affinées durant l’exécution.

Les composants logiciels sont le paradigme typique pour développer les STR et cela est

dû à leurs nature modulaire, chose qui aide à abstraire la complexité de tels systèmes

et minimise les coûts de développement. Un exemple de STR est un système médical

qui surveille les signes vitaux d’un patient dans un environnement de haute acuité, cette

situation est caractérisée par la présence de plusieurs dispositifs médicaux où chaque

dispositif à ses propres tâches prédéfinies et mesures requises. La présence de plusieurs

dispositifs dans une situation clinique peut affecter la sécurité des patients en raison du

manque de communication entre ces dispositifs ,et par conséquent, l’interopérabilité est

nécessaire pour éviter la dégradation de l’état de santé des patients.

L’interconnexion des dispositifs médicaux dans un réseau plus large de serveurs informa-

tiques est la nouvelle exigence de la médecine moderne, où l’objectif final est de surveiller

et d’améliorer l’état de santé des patients. L’hétérogénéité des dispositifs médicaux

fournis par différents fournisseurs est un défi majeur dans les systèmes médicaux, où

l’interopérabilité et l’échange de données entre les appareils sont encore sous étude et

spécification. La solution proposée dans cette thèse vise à créer une interface standard

pour couvrir l’hétérogénéité des dispositifs médicaux, par conséquent, réaliser l’interopérabilité

d’une manière sûre et avec prise en charge des contraintes temporelles. La solution

est basée sur l’environnement clinique intégré (ECI) et les composants logiciels comme

paradigme de programmation, l’architecture vise à réaliser un bus interopérable entre

le patient, les dispositifs médicaux, les applications logicielles et le médecin. Ce travail

illustre le modèle de composants en détail et le valide avec une implémentation.

iv



Acknowledgements

First and foremost I am extremely grateful to my supervisors, Prof. Abdallah Khababa

for his invaluable advice, continuous support, and patience during my PhD study. His

immense knowledge and plentiful experience have encouraged me in all the time of my

academic research and daily life. I would also like to express my gratitude to my parents,

Professor Mohamed Touahria and my mother Hassiba Sabah, my brother Hichem, my

two sisters Khouloud and Nour Hasna. Without their tremendous understanding and

encouragement in the past few years, it would be impossible for me to complete my

study.

v



vi



Contents

Declaration of Authorship i

Abstract ii
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Chapter 1

Introduction

1.1 Context

In recent years, real-time systems are being more integrated in our daily life, varying

from car control and mobile phones communication systems to the most complex medical

systems. A real-time system must complete it work and deliver services on a timely

basis. In other words, real-time systems have stringent timing requirements that must

be met [11]. RTS have to meet their functional requirements, which means verifying the

timing requirements is not sufficient to qualify a system as real time, as example, a car

brake system has to minimize speed without affecting the operation of other components.

Component based software engineering (CBSE) has been considered to be a good way to

cope with the increasing complexity of RTS by dividing software systems into manageable

parts [12].

The increasing complexity of RTS leads to increasing demands with respect to require-

ments engineering, high level design, early error detection, verification, and maintenance

[13]. CBSE is the best solution to hide the complexity of RTS and this is due to the sep-

aration of code and interfaces, where the code integrates the system functions and logic

while interfaces are the mean to communicate with external components by providing

and requiring data or signal, examples of the application of CBSE on RTS are air-traffic

management [14], shipboard computing environments [15], and robotics [16].

Defining an appropriate architecture for RTS requires using component technology. Com-

1



2 Chapter 1. Introduction

ponent models provide modularity, easy services composability, and differentiates the

interface definition from the actual implementation and code. Component frameworks

are defined as the basic abstract infrastructures for component construction and manage-

ment [17]. They vary from a simple structure, to a distributed critical application, and

are classified according to their functions: modelling, analysis, simulation, and execution

support [18].

Modern medical systems are increasingly using medical devices in the processes of patient

diagnosis, monitoring and treatment [19], therefore, the study of medical devices and

technologies related to them is important for any research aiming to use medical devices

as material. The old generations of analogue electromechanical devices are now being

replaced by connected devices and information technology based systems across the diverse

array of contemporary medical devices, what used to be passive devices controlled by a

human are now complex computing systems embedding sensors and actuators not only

to monitor patient vital signs, but also to control the critical physiological processes and

functions [20].

In actual medical systems two essential issues are present. First, the communication

of data between medical devices and second the transfer of data between those devices

and IT infrastructures. Exchanging data between medical devices is still under study

and specification because each device has its own hardware and software characteristics,

and patient safety standards require more security and compatibility improvements. The

communication of measured data from a medical device to an IT infrastructure is possible

just between devices and IT infrastructures coming from the same supplier and with pre-

defined characteristics.

Domains like automotive, avionics and military systems are increasingly moving from

stand-alone, monolithic systems to integrated platforms by creating communication be-

tween micro-controllers, sensors, and actuators [21]. While in the medical domain interop-

erability is still under specification and research because numerous safety and effectiveness

benefits can accrue from achieving interoperability. The trend is to produce medical de-

vices with networking capabilities, predictions estimates by 2020, over 50 billion devices
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will be connected to the Internet [22], this means, medical devices will exchange and share

data to accomplish specific clinical tasks and therefore lower the rates of preventable med-

ical errors, now estimated to be as high as the third leading cause of death in the U.S.

[1].

Interoperability is a requirement [23] and a patient safety issue [24]. Many medical de-

vices may be connected to a single patient, therefore clinicians have to monitor devices

independently, summarize data, and act on their observations and this can be affected

by human mistakes or fatigue. For more than four decades clinical scenarios documented

shortfalls in patient care and the associated need for medical device interoperability and

this due to the lack of an open communication standard, manufacturers tend to equip

their devices with proprietary communication protocols that inhibit cross-manufacturer

data exchange between medical devices [25] therefore the development of a standard for

medical devices interoperability is a necessity and an urgent need.

For technical as well as legal reasons, interconnecting medical devices dynamically is in

most cases still not possible in practice. Usually the legislation requires that devices

used together have been tested in every possible situation and certified in that particular

combination, and at the same time, testing and certifying all possible combinations of

devices in advance, though, is not a viable approach. Also, if the clinic operator would

interconnect devices without respecting their intended use he would have to test the com-

bination himself and take responsibility for any failures induced by the interconnection.

Commonly, these tasks could not be handled by the clinic operator, especially, as to him

a device comes as a black box [26].

In healthcare, some non-PNP interoperability solutions have been implemented mostly

between devices and Electronic Health Records (EHRs). These solutions, some utilizing

dedicated connection gateways, have been implemented using open networking standards,

such as HL7, DICOM and IEEE 11073. Implementations based on these standards, may

use profiles, such as those from IHE, and reusable design guidelines and software source

code such as from the Continua Health Alliance. Unfortunately these approaches have not

led to widespread adoption of PNP interoperability at the point of care for devices from
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heterogeneous manufacturers. Current solutions include proprietary vertically integrated

solutions from single manufacturers and custom hospital developed solutions [27].

Many medical devices on the market support some form of connectivity through serial

ports, Ethernet, 802.11b or Bluetooth wireless, etc. Unfortunately, device interoperability

is lacking due to the limited implementation of interfacing standards, and connectivity is

usually only leveraged by Medical Device Data Systems (MDDSs) that uni-directionally

transfer data/events from devices to composite monitors or electronic health records

(EHRs) [28]. In medicine, clinicians currently deliver therapy by manually coordinating

collections of independently developed devices. Now that many devices marketed today

already include some form of network connectivity (serial ports, Ethernet, 802.11 or Blue-

tooth wireless) clinicians are recognizing the potential to automate device coordination

via external control applications [29], Ideally, future medical devices would support plug

& play protocols which would allow clinicians to construct networks of medical devices

that automatically interoperate to automate life-critical clinical workflows [30].

1.2 Objectives

Numerous efforts in academia and industry have studied different characteristics and

implications of plug & play medical systems. Almost all of the prior studies have concluded

that achieving plug & play medical systems requires an ”open interoperability standard”

or a ”platform specific solution” similar to what exists in electronics industry.

In this work, the proposed solution is based on the Integrated Clinical Environment

(ICE) an ”open interoperability standard”. The solution aims to achieve interoperability

by exchanging messages and data between medical devices and at the same time behave

like a real time system in order to deliver results to the different stakeholders by the

pre-defined deadlines.

The component model integrates web services to resolve data communication between

medical devices and this is by transferring data from hardware to the software level

and try to cover differences between medical devices. Web services are also proposed to

achieve a certain logic and create communication between the top and low levels of the
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architecture.

A composed component is integrated to ensure data encryption and conversion between

medical devices, web services and the other components, it’s the heart of the model where

all the primary calculation and basic operations are done and sent to upper levels.

In addition to realizing interoperability, the proposed solution aims to ensure patient safety

by delivering accurate results to the clinicians and by respecting timing requirements.

Also, hazards resulting from the connection of two incompatible device are studied.

1.3 Scientific publications

The research was conducted by some scientific publications in the form of journal papers,

conference papers, and a poster.

An ICE Compliant Component Model for Medical Systems Development

IEEE Computers, Software & Applications in an Uncertain World (COMPSAC) 2017,

Turin, Italy

Imad Eddine Touahria, Marisol Garćıa-Valls, Abdallah Khababa.

The paper presents the first version of the proposed component model to realize interop-

erability between medical devices with respect to the real time requirements of medical

systems, the model was validated through a prototype implementation of a patient mon-

itoring system.

An incomplete and biased survey on selected resource management for dis-

tributed applications as basis for interoperability of medical devices

Computing Research Repository (CoRR) 2018, arxiv

Imad Eddine Touahria

The paper analyses a number of previous work on middleware and pay especial attention

to the middleware for web-based systems and how they relate to the development of dis-

tributed medical systems.

Medical systems, the role of middleware and survey on middleware design



6 Chapter 1. Introduction

Computing Research Repository (CoRR) 2018, arxiv

Imad Eddine Touahria

This paper reviews the state of the art on middleware as facilitator for interconnection

among devices and also describes a number of initiatives and projects that further extend

the underlying distribution software towards the clinical domain as device interconnection

facilitators.

Improving patient safety by realizing medical devices interoperability

Conference on informatics and applied mathematics (IAM) 2019, Guelma, Algeria

Imad Eddine Touahria, Abdallah Khababa

The poster presented some configurations of medical devices in a clinical situations and

the need to avoid hazards to improve patient safety. The poster also presented some

improvements of the developed component comparing with it first version.

A Component Based Framework to Enable Medical Devices Communication

Ingénierie des Systémes d'Information journal, IIETA 2021

Imad Eddine Touahria, Abdallah Khababa

This work illustrates the last version of the component model in detail, defines it relation

with the integrated clinical environment and details the operation of the mediator.

1.4 Thesis outline

The thesis is divided into six chapters organized as follows:

Chapter 2 illustrates the background concepts related to the work, it defines the set of

technologies used to develop a component based model to realize interoperability between

medical devices.

Chapter 3 presents interoperability between medical devices, it link with real time sys-

tems and technologies used in the development of some initiatives related to the research

subject.
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Chapter 4 defines the Integrated Clinical Environment (ICE) as the base of the developed

component model and shows some of it characteristics, how it deals with interoperability

issues and time management in real time configurations.

Chapter 5 provides the component based model architecture to achieve interoperability

between medical devices in high acuity patient environment, it also illustrates the set of

internal components of the model and their inter-relation.

Chapter 6 validates the proposed component model through the design and implemen-

tation of a prototype in an exhaustive way.

Chapter 7 draws some conclusions and describes the future work.



Chapter 2

State of the art

In this chapter the set of concepts related to the research topic are defined including

real time systems, medical devices, software components and models, and some modeling

languages.

2.1 Real time systems

A RTS is composed of a control system and a controlled system, the controlled system is

the physical process that the RTS collects information using sensors and executes actions

using actuators. Time scale and deadlines definition vary according to the nature of the

controlled process, for example, deadlines in a system controlling a tourist boat are smaller

than deadlines for a system directing a TGV.

Figure 2.1: Real time system components

8
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It’s the speed of evolution of the controlled system that defines the dynamics of the system

and the timing requirements, time intervals in the control system are greater than the

controlled system. The essential criterion to differentiate a RTS from all other types of

systems is the presence of strict time constraints and deadlines for the majority of events

taking place in this system.

2.1.1 Timing parameters of RTS

A real time system can have various timing parameters that define the system execu-

tion behevior according to time progress. In what follows we define the essential timing

parameters used in RTS.

• Deadline (D). It is the maximum time for an activity, operation, or task to complete

since a specified reference point that is typically the activation of the operation or task.

In an ICE-enabled environment, there are hard deadlines meaning that data arriving

after D time units is not valid and becomes irrelevant.

• Execution time of an operation (C). That is the amount of time (processor cycles)

needed by a given task or operation to complete.

• Worst case execution time (WCET). Is defined as the biggest execution time of an

operation, it is concluded after running a specific operation with varying processor

load.

• Period (T) of an operation. It is the elapsed time between two consecutive activations

of the operation. Periodic operations or tasks are those that are performed at regular

intervals, e.g. sampling oxygen levels, injection of a medicine to the patient.

Deadline values are related to the nature of the activity and the current operation mode

(m) whereM is the set of all system operation modes (then, m ∈ M). For a given activity

ai, its associated deadline value (Di) can vary depending on the current operation mode.

For example if ai (e.g. measuring sugar levels in blood or connecting/starting a given

biometric device) is triggered by the occurrence of an alarm (e.g. a patient having a heart
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attack), Di will be shorter that for the same activity in a normal operation mode (e.g.

the patient is in stable conditions). Therefore, Di = fD(ai,m) meaning that the deadline

of an activity is a function of the activity and the current system operation mode.

2.1.2 Real time systems requirements

• Fault tolerance . A RTS is a critical system, it has to integrate fault tolerance mech-

anisms where the system has to continue to provide data even some faults are present.

• Data accuracy . In a RTS the arrival of responses within the specified time frame is

as important as the accuracy of those responses. If data is correct but provided after

time limits it’s considered as wrong.

• Schedulability . In order to realize a clear organization of tasks execution order and

execution intervals a reliable scheduler must be deployed in the system. The scheduler

policy is related to the timing requirements of tasks and the closeness to deadlines.

• Stability . Systems with hard timing requirements can generate serious problems when

one component is not stable this means that it provides results that are not accurate

or cannot create reliable communication with sensors. Stability is essential where each

component of the system must provide the intended results without any surprises.

2.1.3 RTS classification

Due to the complexity of a RTS there are many criterion used to classify them, in this

section we present the essential criterion used to define a RTS.

Timing requirements

A RTS has to meet some specific timing requirements, deadlines are defined for the

majority of operations executed in the system, exceeding one or more deadlines may

disturb the operation of the system and as a result some responses may be worthless.

RTS are classified into three types of system according to the strength of the deadlines of

operations.
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1. Hard RTS. The production of a response in the specified time limits is essential,

it constitutes a design principle and an objective to achieve, the lack of a response

to a query is catastrophic and it’s more dangerous than an incorrect response or

a response with a delay. The system has to meet all the defined deadlines, if the

system misses one deadline it’s considered as failed and the results are worthless.

As example of hard RTS we cite: a car braking system, a system controlling the

flow of a medicine into a patient body.

2. Firm RTS. The response in the specified time limits is important. The system

can miss one deadline the results are considered as wrong but the system is not

termed to have been failed. As examples of firm RTS we cite: a system controlling

transactions in a stock market, a factory with production lines guided by robots.

3. Soft RTS. Many operations can be affected by a result that has exceeded it dead-

line, and as a result the reliability of the system is reduced. The system can miss

one or more deadline if they are spaced according to the time scale and the results

are not worthless, also, the system is not considered as failed. As examples of soft

RTS we cite: on-line video streaming system, an Internet telephony application.

Table 2.1: Real time systems differences
Deadline Reliability Operations results Exceeding deadline results

Hard Very strict No reliability Wrong for all Threatening of human being life

Firm Strict No reliability Wrong for the majority Financial and health problems

Soft Moderately strict Reduced Could be used Degradation of the QoS

Tasks types

A RTS process is composed of a set of tasks executed on a single or multiple processor

cores where each task has some specific timing limits. Tasks have some parameters that

can de defined to classify the general operation of the system according to these tasks

nature. In what follows the different parameters used to classify a RTS are explained.

1. Messages exchange. Tasks a and b are being executed on a single core processor

where they exchange a set of messages m1,m2,m3, ...and responses r1, r2, r3, ...
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Messages can contain data, signal, or

• Synchronous. Task b doesn’t continue executing until it receives a response for

each message sent to task a, a response has to be provided for a message m1

before proceeding to the next message.

• Asynchronous. Task b continues it execution without waiting for a response r1 of

a message m1, message m2 can be sent without wating for r1.

2. Scheduling. In a RTS a schedule is defined to specify execution order of tasks, this

schedule is related to a time interval and deadlines for each task, it defines which

task is executed in first and what is data that must be provided for other tasks to

continue execution and at the end the whole process results.

• Preemptive. Task b can stop the execution of task a on the processor even if task

b didn’t complete it whole execution and the results are temporary.

• Non preemptive. Task b cannot interrupt the execution of task a, it requests the

allocation of the processor but it waits until task b continues it execution.

• Online. The scheduler execution order is defined at design time and the behavior

is static.

• Offline. The scheduler execution order is defined at run time and the behevior is

dynamic.

3. Operation modes.

• Cyclic. The execution of operations is defined with a time cycle, this cycle is

executed each x lap time the actions are periodic, there is no unpredictable events

the scheduling is defined at design time.

• Event driven. The execution is guided by events the actions are sporadic, this type

of operation mode is mostly used on dynamic environments where the number of

sudden events is important.

• Cyclic and event driven. The execution is triggered each x lap time, sudden events

can occur so the schedule is changed to respond to the new events operations.
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2.2 Software components

2.2.1 Component definition

A component has many definitions that were used to define it characteristics, implemen-

tation and execution details. In what follows we present some of the most used definitions

and that are related to this study.

1. ”A component is a reusable, self-contained, piece of software that is independent of

any application.” [31]

2. ”A software component is a piece of self-contained, self-deployable computer code

with well-defined functionality and can be assembled with other components through

its interface.” [32]

3. ”A software component is a unit of composition with contractually specified inter-

faces and explicit context dependencies only. A software component can be deployed

independently and is subject to third-party composition.” [33]

Studies like [34] and [35] aim to refine definitions of a software components and create

discussions about it characteristics. From the above definitions, a component is a modular

unit of a software that is independent from any programming language, a component can

be executed alone or matched with other components or can be used as execution platform

for an application.

Component paradigm appeared to solve same limitations faced by programming paradigms.

The first programming paradigm was the procedure oriented programming (POP), a pro-

gram is a set of functions and procedures it has a top-down logic and a procedure can be

called in any part of the program, data and functions are stored in separated memories

and code reuse is described by procedure call in different parts of the program.

The disadvantages of procedural oriented programming and that are related to the real

time systems programming is when dealing with a big program the reuse of procedures

will be hard, another disadvantage is the complexity of a program when modelling real

objects and it is not the good solution to program critical and complex systems because
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it has a low level of security mechanisms because data is exposed to the whole program.

As examples of programming languages, C, PASCAL, FORTRAN and COBOL.

In OOP (Object oriented programming ) data and functions are stored in the same mem-

ory and code reuse is defined by inheritance between classes. The downside of OOP

related to the design of RTS is that it includes more code lines comparing to the proce-

dure oriented programming and this could generate some delays on operations responses,

another disadvantage is that OOP is not suitable for critical systems development because

it has a low level of security and code reuse may generate redundancy. As examples of

OOP, C++, JAVA, Python and Object-Pascal.

Aspect oriented programming (AOP). A program is a set of instructions separated into

functional and technical code, the functional code is exposed as aspects which is a special

treatment that define the program functional operations, it is addressed with jointpoints

which are points that define where the aspects are inserted. AOP aims to increase mod-

ularity by dividing the program into smaller parts so-called concerns this mechanism is

defined as the separation of cross-cutting concerns. One of the important downside of

AOP is that the separation between concerns increases the complexity of the program

when dealing with complex applications also the paradigm is not well deployed on debug-

gers and this may cause faults on code and execution and this in not suitable for critical

and complex applications. AOP languages were developed as external libraries to the

existing programming languages such as AspectJ with JAVA and AspectC++ with C++.

Figure 2.2: Programming paradigms evolution
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According to the previous presentation of programming paradigms the component tech-

nology is the most suitable solution to develop critical and real time systems, it modular

nature and the separation between code and service through public interfaces is an advan-

tage to design a system as a composed program where the deterioration of one component

will not affect the behavior of other components and this is essential when developing RTS.

Also, the encapsulation of data is a good solution to ensure an acceptable level of security.

Reusability is well defined with component paradigm, a component can be used on many

situations with the same code the interfaces will transfer data into the two directions.

2.2.2 Characteristics of component approach

The name ”component” was taken from the electronic field where a set of electronic

components can be gathered together in order to form a PC mother board, thus, software

components are made for composition. A component has two parts, a private code that

define the behavior of the component and it treatment and a public part that is the

interfaces of the component where services and treatment results are connected to other

components.

An interface is provided or required or can be provided and required at the same time

it depends on the component model characteristics, a provided interface exports data

from inside the component into outside while the required interface imports data into

the component. A port is the connection point of interfaces it defines how the internal

component exchange data with external components.

Figure 2.3 illustrates a component Order with two provided interfaces OrderTracking,

OrderManagement and two required interfaces Client and Product. The picture defines

different ways to design a component and it interfaces.

2.2.3 Software component analysis

The analysis of software component approach is very important to set it utility to design

and develop critical and RTS. In what follows the good points and downside of software

component are presented.
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Figure 2.3: Component description with provided and required interfaces

Good points

• Reusability. Is the essential advantage that software components bring to software

development. It is defined as the ability of a system to reuse pre-existing modules,

codes or components without modifying the internal content. The component approach

is a typical solution for reusability and this is due to the separations between internal

treatment and provided results through interfaces and also the independency from any

platform.

• Independency. A component is independent from any programming language, op-

erating system or executing platform, it is related to the specification defined on the

component model where the component characteristics are defined. A component can

be matched with other component without knowing there internal details, interfaces

are the mean to realize this matching.

• Encapsulation. Aims to hide implementation details from users where software com-

ponents communicate using interfaces, it facilitates reuse by gathering related proper-

ties, functions and operations in a single unit. In component models data encapsulation

is not always possible or clear because components can represent both computation and

data, or just data, and data encapsulation is not considered as part of composition in

general [36].

• Extensibility. When new requirements appear for an existing system only the affected
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components are changed in order to respond to new requirements, this saves time

and guarantees a good operation level with components that are not affected by the

development.

• Improvement of software quality. Reusability is a key criterion to improve soft-

ware quality with a new version of the software new improvements are made and quality

is raised. A component is improved in every reusability process, therefore, bugs are fixed

and other requirements are added to the new version of the software.

• Decreases development time and costs. Reusability of existing software compo-

nents means that fewer lines of code are written and fewer time is spent on the software

development, in the other side components development time is raised. Reusing compo-

nents in different projects decreases development costs where resources that are affected

for developers are reduced.

Downside

• Difficult component integration. Finding a component that fulfils a set of require-

ments in order to be integrated in a system can be a hard task to accomplish, because

a component is developed with a set of features that can not match the requirements

of the new system.

• Component maintenance costs. While the software maintenance costs decreases,

the component maintenance costs can increase and this due to the various versions of

the software and where each one has it specific characteristics. [37]

• Final product quality. System based on the component based development is as-

sembled from various components where each one is provided by different suppliers,

even if each component has a good quality level but the final result of the composition

is not known until the software is tested.
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2.3 Component models

Component technology is a typical solution to develop critical systems and this due to

it modular nature and communication mechanism using interfaces. Component model

defines relation between components, how they interact and how they are deployed.

The use of components in critical and real time systems is due to the low cost of such

solution for design and development time, the component technology is a solution to

hide the complexity of such systems and to minimize response time by reusing existing

components and composition operations.

The creation of a real time system pass trough the definition of the software life cycle

from the requirements phase to the execution time. So if a system has been developed

with timing constraints it has to integrate resource management component that adapts

the behavior of the different execution platforms and the final operating device.

Schedulability, predictability, and resource management are the main properties in order

to verity the behavior of a RT component model, for this real time and critical systems

need to be verified in real conditions and with a real time operating system and databases.

Why not to take an existing component model for real time and critical systems and adapt

it for the ICE-based systems ? It’s very difficult to have a generic component model for all

critical application domains: vehicular domain, medical applications, avionics, etc. and

this is due to the differences in the next points:

• Specification priority: security, performance, rapidity, timeliness, data integrity, etc.

• Requirements verifying: composition, flexibility, autonomy, interoperability, etc.

• What is the most important criteria to build in the component model to verify it

design: architectural, environment, and studied system differences.

• Differences in real time parameters (hard or soft).

• And the validation criteria (reliability respect with the primary expressed require-

ments).
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2.3.1 Component model definition

The definition of a component model is essentially related to the syntax of the components,

their composition strategy and how data and messages are exchanged. In what follows

some definitions about component models are presented.

1. A component model standard describes how to implement components that conform

to the specific component model, this last implementation is necessary for these

components to execute. [38]

2. A component model is the specification of the semantics, the syntax and the compo-

sition of components. [39]

2.3.2 Examples of component models

Studies like [40] aimed to define comparative and classification solution for component

models. In this section component models that are related to this study are defined and

illustrated in what follows.

Rubus

The Rubus (name of a red arctic berry) component model [41] is developed by Arcticus

systems and Mälardalen University for industrial resource constrained and predictable

embedded real time systems (ground vehicles) with hard, soft and non real time require-

ments. Rubus proposes the development of real time systems with three main activities:

design, analysis, and synthesis, the real time requirements and resources consumption are

defined at design time and verified at run-time.

Rubus uses ports for the communication between components, the data synchronization

is done at design time and the model is time and event triggered, it supports static

schdulability and defines reusability by defining execution models in the infrastructure

level. The run-time environment is expressed with the development of the Rubus-RTOS

to support and test the component model in real time conditions. A software circuit

(SWC) is a set of functions defined by it implementation and interface, the interaction
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between SWCs is provided by assemblies or composites and realized via their interfaces

and through ports.

UM-RTCOM

UM-RTCOM is a component model for hard and soft real time systems which supports

the real time analysis at design and run time, it describes predictability and supports

schedulability with the use of primitives: wait, call , and raise, the real time behavior

is described using SDL-RT (Specification & Description Language - Real time). The

WCET is described as annotations in the SDL meta-model and calculated on model and

implementation, the RT-constraints are calculated at instantiation time.

The UM-RTCOM component model is based on generic (composed of generic and primi-

tive components) and primitives components and supports reusability by the use of con-

figurations slots which are a part of generic components and are public to the user. The

communication between components is done via interfaces (described with IDL-CORBA)

and events (wait, call, raise), UM-RTCOM describes two types of components ”active”

for threads and processes, and ”passive” for shared resources or execution flow, the im-

plementation of the model is based on RT-CORBA.

SaveCCM

The SaveCCM component model [42] was developed in SAVE project by Mälardalen

university for hard real time systems for vehicular domain, it aims to ensure efficiency

and flexibility at design time, SaveCCM deals with resources limited systems and de-

scribes timeliness as a set of quality properties to be verified and which are contained

in components and assemblies. Predictability and analysability are more important than

flexibility, and the timing behavior is a primordial functionality that must be verified by

all architectural units.

An assembly is a set of components and switches which are a specific type of components,

communication between components is made through interfaces which define a set of ports

that allow the interaction between the architectural units, components composition and
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binding is done at design time so it’s static. SaveCCM defines a textual language and an

UML 2.0 profile with some modifications to describe the architectural elements and their

interconnections.

Koala

Koala [43] was developed by Phillips for resource constrained systems in consumer elec-

tronics where a component model and adequate language are proposed. The components

composition is done at design time so it’s static, it describes reusability and the timing

properties are declared as tasks on each component, schedulability is analyzed via a task

manager (declared a configuration level) that takes each component timing properties to

schedule the execution.

A configuration is composed of compound components which in turn composed of ba-

sic components [44], a module is a part of the component that assembles interfaces and

doesn’t have interfaces, the Koala components may behave like a system so they are

autonomous. All operations performed by a component with the external environment

are done via the interfaces which are a set of functions described with IDL (COM and

JAVA concepts), component description is done with the CDL (Component description

language). A repository for Koala components is proposed and which is the KoalaM-

odel workspace, reusability can be realized through “heavy parameterized” components, a

switch defines routes connections between interfaces.

2.3.3 Comparison of component models

In this section we propose three comparative tables of the above mentioned component

models and that are: Rubus, UM-RTCOM, SaveCCM, and Koala. Each table illustrates

the differences between the models from a specific point of view and with several compar-

ison parameters.

The tables 2.2 and 2.3 define a set of comparison parameters for software engineering

development, these parameters are mainly used in software development. the two tables

show the differences between the component models studied in this section.
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Robustness Reliability Distributed Portability Autonomy
Data
treatment

Rubus N/a Yes Yes Yes No No
UM-RTCOM No Yes Yes Yes No No
SaveCCM No No N/a N/a No No

Koala N/a Yes N/a N/a Limited No

Table 2.2: Comparative table with software engineering parameters (1)

Abstraction Flexibility Interoperability Domain Heterogeneity

Rubus
Yes, on configuration
level

N/a N/a Vehicles N/a

UM-RTCOM Yes, encapsulation No N/a Generic N/a

SaveCCM
Yes, uses assembly
concept

Limited N/a Vehicles N/a

Koala Yes Limited N/a Electronics Yes

Table 2.3: Comparative table with software engineering parameters (2)

Indexes . H: Hard, S: Soft, SWC: Software Circuit.

The tables 2.4 and 2.5 define a set of comparison and classification parameters of the

component models from a real-time point of view. A system must verify the majority of

these parameters in order to be qualified as real-time.

Indexes . P: Provided, R: Required, D: Data, T: Triggering, I: Input, O: Output, DT:

Data and Triggering, Syn: Synchronous, Asyn: Asynchronous, Per: Periodic, Spo: Spo-

radic.

The tables 2.6 and 2.7 define a set of comparison and classification parameters of the

component models from a software component point of view.

2.4 Use of Component technology in RTS

The use of new software paradigms is a solution to respond the emerging complexity of

computer applications. Component approach is a good solution to minimize the complex-

ity of critical systems and divide it into modules that can be also divided into smaller

modules and units, software component hide the technical details of a system and provide

it services through public interfaces which can be matched with other applications without
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Predictability WCET test Error detection Hard/Soft/Firm
Rubus N/a Yes Yes (timing errors) H+S+NON RT

UM-RTCOM Yes Yes Yes (deadline exceeded) H+S
SaveCCM N/a Yes No H

Koala N/a N/a No N/a

Table 2.4: Comparative table with real time criteria (1)

Schedulability Resource management RT analysis Data integrity
Rubus Yes, static Yes, defined on SWC Yes, design+run time No

UM-RTCOM Yes, static Yes Yes, design+run time No
SaveCCM Limited Not well described Yes No

Koala Limited Yes Yes No

Table 2.5: Comparative table with real time criteria (2)

knowing it implementation details. Component approach ensures software reuse, whereas,

this last notion is not well studied when used with RTS because of their criticality unless

when used for the same application domain and more precisely in the same project.

The use of the component as a unique programming approach is not sufficient to cover all

the characteristics of real-time systems because of their diversity, complexity, distribution

and the weakness of this approach on the points mentioned before. Thus, integrating

other programming approaches like SOA (service oriented architecture) is an important

solution to realize a reliable system. [24].

2.5 Modeling languages

2.5.1 UML

UML (Unified Modeling Language) [45] is a standard adopted by OMG [46] it’s the result

of fusion of three modelling technologies Booch [47], OMT [48], and OOSE [49]. UML

is used for all types of softwares from the most simple centralized applications to the

distributed critical systems like: avionic systems, medical applications, and automotive

control systems (in real development, UML has limitations when designing these type

of systems). Many propositions for UML improvement has appeared like [50] it present

how to use RT-UML to model web services, and [51] it present some modifications on

UML to adapt it behavior to model component model for vehicular control system. Real
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Composition Interface Ports Reusability
Rubus Yes Yes D(I/O)+T(I/O) Yes

UM-RTCOM Yes Yes(P/R) No Yes
SaveCCM Yes, static No I(D/T/DT)+O(D/T/DT) Yes

Koala Yes Yes(P/R) No Yes

Table 2.6: Comparative table with software component criteria (1)

Connection Behavior Run-time Interface desc
Rubus Syn/Asyn Per/Spo Rubus-RTOS N/a

UM-RTCOM Syn/Asyn Per/Spo RT-CORBA Corba
SaveCCM Syn Per/Spo N/a SaveCCM

Koala N/a Spo N/a IDL(JAVA+COM)

Table 2.7: Comparative table with software component criteria (2)

time UML is an UML profile that looks to model systems having timing limitations and

deals with strict criteria special to this type of systems to be modelled at design time and

verified at run time like: schedulability and timing properties/requirements.

2.5.2 SysML

SysML (Systems Modeling Language) [52] is an OMG [46] standard and the result of

collaboration of OMG, INCOSE [53] and AP233 [54]. Component diagram is not present

on SysML, the internal block diagram or model can be used to model the system as set of

parts connected via provided and required interfaces that define input/output ports, parts

describe blocks and communicate using data and messages, UML component diagram has

no analogue in SysML. This last doesn’t include special concepts and descriptions of real

time requirements of a complex system they are not prioritized.

2.5.3 MARTE

MARTE [55] is an UML 2.0 profile for Modelling and Analysis of Real Time and Em-

bedded systems, it’s an OMG standard to model driven solution that covers the system

specification, design, verification and validation. The model is the core conceptual unit of

MARTE diagrams, MARTE is divided into four packages composed of sub-profiles each

on of them is a set of requirements or properties or concepts that define the basics of
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MARTE design.

2.5.4 Comparison of modeling languages

In this section we propose a comparative table of the modelling languages mentioned in

the previous section, we aim to identify the main differences.

Systems type Basic design unit Component Model RT analysis
UML Generic Class/object Yes Hyper-diagram No
SysML Complex Block/unit No diagram Not prioritized
MARTE RTE Model Yes package prioritized

Table 2.8: Modeling languages comparative table

2.6 Medical devices

Medical devices are technology-related units which make them always under study and

development following advances in electronics and informatics and requirements expressed

by different stakeholders.

Usually the development of a device is a process that begins with a creative idea that is

translated into a prototype invention and then it is continually improved over time [19],

rarely his process include the study of interoperability of the device and the possibility of

it integration with other devices except for devices from the same manufacturer.

2.6.1 Definition

GHTF (Global Harmonization Task Force) [56], FDA (Food and Drug Administration)

[57], and WHO (World Health Organization) [58] have the same definition of a medical

device and they define it as any instrument, apparatus, implement, machine, appliance,

implant, in vitro reagent or calibrator, software, material or other similar or related

article that does not achieve its primary intended action in or on the human body solely

by pharmacological, immunological or metabolic means and that is intended for human

beings for:

• The diagnosis, prevention, monitoring, treatment or alleviation of disease;
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Figure 2.4: Operating Room

• The diagnosis, monitoring, treatment, alleviation of, or compensation for an injury;

• The investigation, replacement, modification, or support of the anatomy or of a

physiological process;

• Supporting or sustaining life;

• Controlling conception;

• Disinfecting medical devices;

• Providing information for medical or diagnostic purposes by means of in vitro exam-

ination of specimens derived from the human body.

2.6.2 Medical devices use

Medical devices can be used in different clinical situations and this depends on their

intended use. We distinguish medical devices for general use like a stethoscope or a

thermometer, disease-specific medical devices [59] can also be classified to the organ that

they meant to be used with, like dental devices, cardiovascular devices, ear, nose and

throat devices and so on.
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Patient telemonitoring is one of the most common practices in telemedicine in both indoor

and outdoor scenarios, and it is hoped that it can increase the quality of the care and

the efficiency of services provided. In fact, it should facilitate a continuous or event

monitoring of chronic, elderly, under palliative care or have undergone surgery, without

them occupying the beds that would be necessary for monitoring (leaving the beds for

the use of patients in a more critical condition).

In addition, telemonitored patients can continue to live in their own homes with the

subsequent advantages: comfort, more favourable environment, less need for trips to the

hospital, etc. Telemonitoring, used appropriately, is expected to decrease healthcare costs

[60]. Two barriers to the current expansion of telemonitoring services, both related to

interoperability, can be identified and, in our opinion, they make the transition from pilot

experiences to clinical use very difficult: 1) Heterogeneity of devices and systems, and 2)

difficulty of integration with healthcare information systems used routinely by healthcare

professionals [60].

The devices used most frequently in telemedicine applications to measure parameters

and biological signals are glucose meters, blood pressure and heart rate meters, pulse

oximeters, ECG monitors, digital scales, etc. (see Figure 1). The devices can be fixed, but

it is increasingly common for them to be wireless or wearable (with sensors incorporated

into clothing, bracelets, etc.), that makes their use more comfortable. These collections of

sensors around the patient make up what can be usually described as either a Body Area

Network (BAN) or Personal Area Network (PAN). Often, for monitoring elderly patients

or those with limited mobility, these PAN or BAN networks are completed with presence

detectors, movement sensors, or similar ‘Telecare’ devices, which combine to form a Home

Area Network (HAN) [60].

2.6.3 Concepts related to medical devices

Safety

Safety is defined as freedom from unnecessary risk, where risks are unmitigated hazards

[61], it’s a property of systems that arises from the interactions between system com-
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Figure 2.5: Medical devices use

ponents [62] to constitutes safe inter-device interactions will vary considerably between

different clinical scenarios. Safety is critical to ensure that interactions between devices

are predictable and that those interactions satisfy the safety requirements of the given

clinical scenario.

Medical devices must perform safely and effectively [63], therefore, safety is extremely

important when patients’ lives are at stake. Since it will not be known specifically which

devices will be assembled into the composite system a priori, traditional methods of

assessing safety cannot be used [64]. What makes medical devices particularly challenging

is that unlike traditional information technology (IT) systems, they are almost exclusively

safety- critical systems.

Security

Incorporating security from the very beginning of the design process starts from under-

standing the threats or potential attacks that the devices face, the implication of such
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attacks, and defining appropriate responses and mitigations for the attacks, which then

are turned into security requirements [65] wireless interfaces of medical devices expose the

device to security threats and raises security and privacy concerns for the patient [66].

Researchers have demonstrated that these devices and their wireless interface are vul-

nerable to cyber attacks that can compromise patient safety, security, and privacy [67].

Various types of attacks on medical devices wireless interface include privacy leakage by

eavesdropping, safety and integrity errors by message alteration, and availability issues by

battery draining attacks have been demonstrated by researchers [68] However, the intro-

duction of interoperability makes medical devices increasingly connected and dependent

on each other.

Therefore, security attacks on IMDs becomes easier to mount in a stealthy manner with

potentially devastating consequences [69]. Security of MDs is different and more challeng-

ing than regular IT security [70]. In the past, MDs have been success- fully hacked on

several occasions. For example, unauthorized commands have been sent wirelessly to an

insulin pump [71]. Another insecurity scenario of MDs has emerged in drug pumps that

became exposed to a series of remotely exploitable vulnerabilities [72].

Plug and Play

The effort required by a single manufacturer to enable safe end-user integration or con-

nection of two of their own proprietary products is not substantially different from the

effort that would be required by two different manufacturers to create plug-and-play in-

teroperable devices, but it does require the cooperation and some level of consistency

between medical device manufacturers, SDOs, clinician SMEs, regulatory bodies, and

HDO customers.

Plug-and-play interoperability has significant challenges that will not be achieved in the

short-term for all systems, but that does not reduce the importance of implementing

open, interoperable interfaces with well-defined requirements and clinical purposes that

are easy to configure and troubleshoot to enable the ecosystem to transition from closed,

proprietary interfaces to plug-and-play.



30 Chapter 2. State of the art

Device model

The major challenge of getting devices to interoperate is not simply getting the devices to

communicate, but getting them to communicate in a meaningful way. An analogy with

oral human communication is instructive. Assuming that two people have functioning

vocal and hearing apparatus, it is not difficult to see that one could talk and the other

could hear. However, if they speak different languages, the communication cannot be

meaningful.

Just as importantly, some degree of shared experience and culture is necessary for one

person to communicate effectively with another. In addition, the specific environment or

context of the communication, as well as a specific representation or model of the parties

participating in a conversation, is indispensable not only to meaningful communication

but also to confidence that meaningful communication has occurred. Although devices

do not have cultures or the richness or expressiveness of human natural language, there

are analogues in device communication.

Hazards

A medical device hazard is any potential source of harm [73] . These hazards may affect

the patient or the clinician and are related to device risk level and therefore device risk

class defined by the FDA [57]. Hazards may be caused by software (Software bug or bad

update), hardware (electrodes bad insertion), electric (high voltage), mechanical, environ-

mental (temperature or humidity), incompatibility of devices, wrong information (wrong

display of heart beat rate), misuse by the clinician (a leading cause of device incidents

reported in the healthcare domain [74]) and that are classified under ISO 62366 [75], ra-

diations (an overdose of insulin from infusion pumps exposed to EMF (Electromagnetic

fields) from mobile phones or RFID (radio frequency identification devices) [76]). Haz-

ards may cause device malfunction or even explosion or fire and therefore patient death

or injuries, and to avoid that a risk management policy has to be established.
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Intended use

Devices are evaluated based on their risk and stated intended use [77]. A medical device

has a pre-defined intended use and that varies depending on it hardware and software

characteristics, for example, a glucose meter cannot be used to measure heart beat rate

because it hasn’t the capability to do that. A medical device may also be used in a specific

clinical situation, for example two heart beat meters may have the same functionalities

but one is intended to be used in a situation where radiations are present.

Medical device intended use is generally mentioned on the labelling and the technical and

indications for use manuals, stated words are very important and must be clear without

ambiguity to specify the device intended use and it risk class, if you mention that your

device is a heart rate monitor it means it is class I device and if you change that to an

implantable heart rate monitor it becomes class III.

Figure 2.6: Concepts related to medical devices and links between them.
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Interoperability software

In this section we present a set of interoperability software that are used to commu-

nicate and transport data in distributed systems, for this we illustrate their definition,

characteristics, operating mode, etc.

3.1 Definition

The word interoperability is defined according to technology or the context where it’s used.

Interoperability between two systems is not the same as between two protocols interacting

at the application level. In the medical domain and especially The data exchange between

medical devices interoperability was defined by academia

3.2 Interoperability architectures

3.2.1 Point-to-point interoperability

In a point-to-point architecture, every system is connected to every other system. This

has the advantage of having no central bottleneck or single point of failure. When used in

the context of linking one system to a single other system, a point-to- point architecture

is efficient and simple to implement. The major disadvantage of this technique when

integrating several systems is the number of distinct interfaces needed to integrate even

a small number of different systems. Without significant standardization, each system

32
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Table 3.1: Interoperability definitions
Organization Definition Medical devices

IEEE[78]/HL7[79]/
ISO[80]

The ability of two or more systems or components to
exchange information and to use the information that
has been exchanged.

Included

AAMI [81]

Medical device interoperability is the ability of
medical devices, clinical systems, or their
components to communicate with each other in order
to safely fulfil an intended purpose.

Included

HIMSS[82]

Interoperability means the ability of health information
systems to work together within and across
organizational boundaries in order to advance the
effective delivery of healthcare for individuals
and communities.

Included

CEN[83]

Interoperability is the ability of one entity to accept
data from another entity and perform a specific task
in an appropriate and satisfactory manner without
the need for extra operator intervention.

No

ASTM[84]
The ability of any system or product to work with
other systems or products without special efforts.

Included

IHE[85]

IT systems are interoperable if they can properly
exchange clearly defined sets of relevant information
in the context of a specific clinical situation and
perform appropriate actions as described by the IHE
specifications.

No

IEC[86]

The capability to communicate, execute programs
or transfer data among various functional units in
a manner that requires the user to have little or no
knowledge of the unique characteristics of those units.

No

FDA[57]
The ability of two or more products, technologies or
systems to transmit and/or receive information without
special effort or configuration required by users.

Included

potentially needs an adapter to talk to every other system and each is likely to need some

knowledge of the other systems included in the integration. It is also more difficult to

implement any kind of centralized activity monitoring in this kind of environment.

3.2.2 Hub and spoke interoperability

A hub and spoke architecture reduces the number of connections needed to link several

systems by linking them all through a central hub. Each system to be integrated needs a

single adaptor to connect it to the hub and enable it to connect with every other system

connected to the hub. One major disadvantage of the hub and spoke architecture is that

the hub is a single point of failure. The hub itself handles the processing and routing of

data passed to it by connected systems. The hub becomes complicated as the number of

connected systems increases and needs to have knowledge of every system. When a new

system is to be added, the hub needs to be modified to support it. However, a major

advantage over the point-to-point architecture is that, if a system needs to be removed

or replaced, it can be done so with no effect on other systems connected to the hub.
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Examples of a hub in a hub and spoke architecture are an integration engine or a shared

data repository.

3.2.3 Hybrid models

In practice, a combination of point-to-point and hub and spoke models are often used

across local infrastructures due to information systems not being fully flexible and inter-

operable, and to ensure that communications are as efficient as possible. The requirements

for interoperability are obviously avoided if all of the relevant care professionals are able

to work within common information systems with common databases. With emerging

delivery models to support person-centred treatment and care, this is unlikely to be the

case.

3.3 Interoperability dimensions

3.3.1 Data interoperability

Data format interoperability is the ability to exchange information between applications

with semantic meaning [21]. Do two systems mutually understand what characters cause

terminations or truncations? Do they share the same formatting of dates and times? Do

they format medical record numbers as a string or as a numeric and, within a single system,

is there consistency in the length of these numbers? Do two systems or applications

apply the same default and/or permitted values for individual field elements? Patient

safety scenario: A (new) automated microbiology system performs and sends results on

30 lab tests to the laboratory information system (LIS). The (old) LIS is configured to

expect/accept only 20 results. Data on items 21–30 are stored to unallocated memory,

which cannot be retrieved and reported out to the clinician or patient’s EHR [24].

3.3.2 Communication interoperability

Definition: Consistency in transmission and reception of messages between nodes Exam-

ples: Does a hospital information system’s computerized physician order entry (CPOE)
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module share the same format for addresses with its radiology information system (RIS)

so that the CPOE knows where to send a message for an order? Do these systems have

the same rules for acknowledging that a message has been received completely? Do the

systems have the same rules for timeouts and retransmission if a receipt has not been

detected? At the message structure level, do the systems share an understanding of when

the message begins and ends? Do the systems have a mutually accepted understanding

of when a message has errors and when it should be rejected?

Patient safety scenario: A clinician sends an order message over the CPOE to the phar-

macy requesting a “STAT” dose of medication for a patient. The pharmacy information

system (Rx system) does not receive the message due to a transient network issue. The

standard calls for the CPOE system to wait for an acknowledgment (an HL7 ACK mes-

sage), and display a message to the user that the order transaction was not completed, but

this does not happen. The clinician is not aware that the order has never been received,

and there is a delay in treating the patient [24].

3.3.3 Semantic interoperability

Definition: Agreement/consistency between systems on the meaning of communicated

information. Semantic interoperability requires clear interfaces based on published stan-

dards. Systems without the ability to exchange information do not require interfaces. In

the middle are systems with non-traditional or proprietary technology that can exchange

information, but not based on any accepted standard. Several examples of accepted stan-

dards to create modular architecture include the Admission and Patient Discharge (ADT)

messages or the Continuity of Care Document (CCD) standard for EHRs as specified by

HL7 [23].

3.3.4 Workflow interoperability

Definition: Agreement/consistency on how technology supports/shapes the workflow: �

Processing or sequencing tasks between participants according to a set of procedural rules

� Formatting or displaying information � User interfaces � Penetration of decision support
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Examples: � Semi-automation of workflow involving Indium-labelled leukocyte scintigra-

phy Processes and information need to be coordinated and passed across CPOE, RIS

for scheduling and Modality Work List generation, LIS phlebotomy scheduling, isotope

inventory management, ordering, and so on. � Semi-automation of workflow around an-

timicrobial approval-All systems/ subsystems (CPOE, LIS, telecom/pager) must have a

shared model of the work process and the rules/conditions necessary before passing in-

formation/status to the next system and step in the process. Patient safety scenario: A

clinician requests that

3.4 Protocols

Recent survey [87] has shown that out of 92 health sensors, 86 implement proprietary

protocols. Communication protocols can be categorized into two groups. The first one is

standard protocol which aims to be used by different manufacturers to produce interoper-

able devices. In personal healthcare IoT, it is ISO/IEEE 11073 also known as Continua.

The second group is proprietary protocol which is developed by a manufacturer for his

own products. Confusion may occur between interoperability and standards. As a matter

of fact, standards ensure interoperability by default as they can be used by everyone. Re-

garding proprietary protocols, they can be interoperable once the manufacturer releases

necessary tools to ensure the communication with its devices.

For instance, HomeKit or Z-wave are proprietary protocols for home automation. How-

ever, lots of manufacturers implement them into their products to ensure interoperability

between different services. Implementing standard protocol is very advantageous for final

users. They have the ability of buying the sensor they want without having to worry if

it is going to work or not with the rest of the used solution. For manufacturers, it spares

them the effort of developing a new communication protocol. However, the number of

certified devices keeps decreasing since 2009 [88] whereas the number of IoT is growing.

This expresses the manufacturers will to implement their own protocols in their products.
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3.4.1 MQTT

MQTT (Message Queuing Telemetry Transport) is a simple M2M communication stan-

dard developed by International Business Machines Corporation, offers a scalable architec-

ture that can be implemented on limited hardware as well as on unreliable networks [89].

MQTT allows subscribers to indicate interest in topics, and then be notified of updates

automatically, preventing inefficient polling schemes. MQTT implementations are avail-

able under the liberal Berkeley Software Distribution license, which makes royalty-free

commercial usage possible.

Due to the adoption of MQTT by the Eclipse Foundation as the choice for a general

purpose open source M2M messaging protocol [17], the popularity of MQTT already

exceeds DDS 20 fold in Google Trends, while DDS remains of interest mainly in niche

military and similar complex industrial applications. In this paper we therefore consider

the use of MQTT for medical device communication. The MQTT protocol is well suited

for this purpose as it is scalable, unencumbered by commercial licensing restrictions or

requirements, and a good fit for the ASTM interoperability standard [1]. Indeed our

approach retraces several elements of the standard.

3.4.2 DDS

DDS (Data Distribution Service) has previously been considered for medical device inte-

gration in the Medical Device “Plug-and-Play” Interoperability Program at Massachusetts

General Hospital [90]. DDS is a mature protocol developed for military applications, and

is certainly a candidate for this type of use. However, the available DDS implementations

have commercial license restrictions, and the complexity of the protocol makes it unsuited

for deployment on most embedded devices [91].

3.4.3 ZigBee

The ZigBee Alliance is an association of companies working together to enable reliable,

cost-effective, low- power, wirelessly networked, monitoring and control products based

on an open global standard. The goal of the ZigBee Alliance is to provide the consumer
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with ultimate flexibility, mobility, and ease of use by building wireless intelligence and

capabilities into everyday devices. ZigBee technology will be embedded in a wide range

of products and applications across consumer, commercial, industrial and government

markets worldwide. For the first time, companies will have a standards-based wireless

platform optimized for the unique needs of remote monitoring and control applications,

including simplicity, reliability, low-cost and low-power.

3.4.4 DASH7

The DASH7 Alliance was formed to advance the use of DASH7 wireless data technology by

developing extensions the ISO 18000-7 standard, ensuring interoperability among devices,

and educating the market about DASH7 technology. Formed in 2009, the Alliance now

has more than 20 members. Manufacturers, systems integrators, developers, regulators,

academia, and end-users all work together to promote the use of DASH7 technology in

a wide array of industries and applications. The DASH7 Alliance provides a framework

for extensive application development, seamless interoperability, and security for DASH7-

enabled transactions. Goals: * Develop improvements and extensions to the ISO 18000-

7 standard * Work to ensure that products claiming DASH7 capabilities comply with

DASH7 specifications *Encourage the development of products using DASH7 technology

* Educate consumers and enterprises globally about DASH7 technology.

3.4.5 Bluetooth

The Bluetooth Special Interest Group (SIG) is a privately held, not-for-profit trade as-

sociation founded in September 1998. The Bluetooth SIG itself does not make, manu-

facture, or sell Bluetooth enabled products. The SIG member companies are leaders in

the telecommunications, computing, automotive, music, apparel, industrial automation,

and network industries. SIG members drive development of Bluetooth wireless technol-

ogy, and implement and market the technology in their products. The main tasks for

the Bluetooth SIG are to publish Bluetooth specifications, administer the qualification

program, protect the Bluetooth trademarks and evangelize Bluetooth wireless technology.
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3.4.6 Wifi

The Wi-Fi Alliance is a global non-profit industry association of hundreds of leading

companies devoted to the proliferation of Wi-Fi technology across devices and market

segments. With technology development, market building, and regulatory programs, the

Wi-Fi Alliance has enabled widespread adoption of Wi-Fi worldwide. The Wi-Fi CERTI-

FIED program was launched in March 2000. It provides a widely-recognized designation

of interoperability and quality, and it helps to ensure that Wi-Fi enabled products deliver

the best user experience. The Wi-Fi Alliance has completed more than 8,000 product

certifications to date, encouraging the expanded use of Wi-Fi products and services in

new and established markets.

3.4.7 RMI

RMI (Remote Method Invocation) is a JAVA API (Application Programming Interface),

and as it name indicate it’s used to call remote methods, [92] defines RMI as a technology

to create communication between Java-based applications, where Java objects can be

invoked on the same machine or on different machines deployed on different networks,

it supports object polymorphism, it’s easy to write, secure and mobile, and supports

distributed garbage collection. RMI is based on TCP/IP technology and was proposed

like a version for the method called RPC (Remote Procedure Call). The two machines

that are exchanging data with RMI technology have to run a JVM (Java Virtual Machine),

RMI is object oriented and implement the client/server technology.

RMI was proposed with the JAVA release 1.1 in March 1997 and it runs on the port 1099,

It uses two transport protocols to transfer data on the network and which are: RMI-

JRMP (Java Remote Method Protocol) it’s the original version of the transfer protocol,

it’s language independent and simple to use comparing with the RMI-IIOP (Internet In-

terORB(Object Request Broker)Protocol) which is the new version of the transfer protocol

started to be used from JAVA 2 release 1.3 and it’s compatible with CORBA [93].
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3.5 Interoperability standards

3.5.1 ICE (The Integrated Clinical Environment) [1]

ICE was charactered by ASTM [84] and promoted by other organizations like MDPNP

[94]. ICE is a real-time safety-critical system [95], it follows the concept of a clinical work-

place service-oriented medical device architecture and uses DDS [96] as a communication

technology and has an open source framework called OpenICE [97]. ICE aim is to realize

a PnP network of medical devices for each clinical situation in a safe way taking into ac-

count issues like device functional alarms [98], security, workflow and data management.

ICE manages data and devices in a centralized way through medical applications [99]

which facilitates the task for clinician, in order to build an ICE-based system, a set of

requirements have to be respected and that are addressed in ICE requirements documents

[100] [101] [102]. Interoperability in ICE is being promoted by many manufacturers and

is considered as the most successful standard in medical device interoperability and this

is due to the use of syntactic and semantic data exchange mechanisms [69].

3.5.2 HL7 (Health Level 7)

Is defined as a messaging protocol for exchanging healthcare information such as patient

demographics, prescribed drugs, or lab tests, it uses JSON, http-based RESTful protocol

with predictable URLs. HL7 version 2 [103] is designed to support data messaging in a

centralized or distributed environment and propose interfaces communication to stake-

holders and suffers from interoperability problems, HL7 version 3 [104] uses XML, web

services and promotes semantic interoperability. This last is lacking between version 2

and 3 [23].

3.5.3 DICOM (Digital Imaging and Communications in Medicine)

[2]

Was originally created to store and transmit radiographic images (ACR-NEMA [83]),

after that DICOM-WS 30 was introduced to support the storage of raw medical waveforms
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including blood pressure, ECG (supports 12-lead ECG recordings) [105], temperature and

audio [106]. DICOM [2] is a file format and an images exchange standard to produce,

display, print, store, or transfer medical images among scanners, servers, workstations,

printers or any device supporting DICOM file format, it uses binary format to specify data

and OO principals to design it, images may be related to radiology, cardiology, pathology

and dentistry, DICOM (ISO 12052:2006) is considered as the most successful standard in

the medical world today [23].

3.5.4 CDA (Clinical Document Architecture) [3]

Is a part of HL7 version 3 series of standards for presenting patient’s healthcare informa-

tion as clinical documents [23]. It uses XML to define the clinical document structure,

parameters and semantics and designed to transfer documents and not data points or

lists. CDA is independent from any underlying protocol, so, it promotes interoperability

(CDA version 3) among systems and can be used instead of messages to transfer data.

3.5.5 IEEE 11073 [4]

A complement of the IEEE 1073 standard series [107] to establish functional interoper-

ability of point-of-care medical devices, the adoption of IEEE 11073 is limited because

of the complexity of lower layers of this protocol [108]. IEEE 11073 is divided into three

layers: device data/semantics, communication services and transports and defines stan-

dards for each layer like communication model (IEEE 11073-20101), transport profiles

(IEEE 11073-30xxx) series, domain information & service model (IEEE 11073-10207)

and optimized exchange protocol (IEEE 11073-20601a).

3.5.6 MDPWS (Medical Devices Profile for Web Service) [5]

Uses SOA paradigm for embedded systems, it brings SOA principals for medical devices

communications including data encoding (XML), messaging (Simple Object Access Pro-

tocol (SOAP)) and devices discovery (Universal Description, Discovery, and Integration

(UDDI)) and description ( Web Services Description Language (WSDL)), events subscrib-
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ing end triggering. DPWS [109] does not support safe communication between medical

devices , thus, MDPWS was introduced to satisfy safety requirements in the mentioned

context [110].

3.5.7 FHIR (Fast Healthcare Interoperability Resources) [6].

A standard developed by HL7 for exchanging healthcare information electronically, FHIR

combines HL7 versions 2 and 3 and CDA in order to override incompatibility between

HL7 version 2 and 3. It uses XML and JSON to describe structures and http/RESTful

to define URLs, the benefit of FHIR comparing with CDA is that it transfers health

information faster because it sends specific items of information rather than the whole

document like CDA does.

3.5.8 OR.NET [7]

A standard based on SOA and web services [26], it’s classified under IEEE 11073 series

of standards as IEEE 11073-20701, and considered as one the most important standards

[110], it has as implementation openSDC (open Smart Device Connect) which is developed

by Dräger and several other manufacturers.

3.5.9 SNOMED (Systematized Nomenclature of Medicine) [8].

Is a collection of medical terms that provide codes and synonyms, it uses clinical documen-

tation and reporting. The aim of SNOMED [8] is to provide a comprehensive, multi-axial

and controlled terminology [111] for indexing an entire medical record.
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3.6 Interoperability standards development organi-

sations

Health information interoperability standards are developed by a wide variety of health-

care organizations including regulators, vendors, consultants and healthcare providers.

Most often, the development of interoperability standards involves technical committees

that define methods and groups representing communities of interest.

3.6.1 HL7

HL7 [79] provides a framework and related standards for the exchange, integration, shar-

ing, and retrieval of electronic health information that supports clinical practice and the

management, delivery, and evaluation of health services. HL7 and its members provide

a framework (and related standards) for the exchange, integration, sharing, and retrieval

of electronic health information.

3.6.2 IHE

IHE (Integrating the Health Enterprise (IHE) [85]. Profiles, which are not standards but

provide a common language for purchasers and vendors to use when acquiring or upgrad-

ing systems to specify a level of compliance to standards sufficient to achieve efficient

interoperability [24].

3.6.3 ISO

ISO [80] is an international standards development and accreditation organisation with

a network of national standards institutes in 157 countries. The ISO technical commit-

tee, ISO/TC215, was established for the area of health informatics with the scope of:

1. standardisation in the field of information for health, and health information and

communications technology to achieve compatibility and interoperability between inde-

pendent systems 2. ensuring compatibility of data for comparative statistical purposes,

(i.e. classifications) to reduce duplication of effort and redundancies. ISO/TC215 collab-
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orates with a number of other SDOs including Comité Européen de Normalisation (CEN)

and HL7 and has a membership of over 20 participating countries involved in develop-

ing health information and interoperability standards. Standards developed by working

groups within ISO/TC215 receive ISO accreditation, thereby ensuring a strong likelihood

of international adoption.

3.6.4 CEN

The European Committee for Standardization CEN, is involved in developing multidisci-

plinary standards including standards for healthcare systems and interoperability. It is a

private non-profit organization whose mission is to foster the European economy in global

trading, the welfare of European citizens and the environment by providing an efficient

infrastructure to interested parties for the development, maintenance and distribution

of coherent sets of standards and specifications. TC 251 is the health informatics tech-

nical committee in CEN with responsibility for publishing standards addressing aspects

of health information representation including messaging, electronic health records and

eHealth initiatives. The Committee is also responsible for addressing the European Com-

mission’s health interoperability mandate known as Mandate 403. (21) CEN membership

consists of most European countries, including Ireland.

3.6.5 OpenEHR

The OpenEHR Foundation (www.openehr.org) is a not-for-profit organisation established

in 1999, by Ocean Informatics, Australia and the Centre for Health Information and

Multi-professional Education (CHIME) department in University College London, UK.

OpenEHR is a virtual community working on interoperability and computability in eHealth.

Its mission is to enable semantic interoperability of health information, within and be-

tween EHR systems. The openEHR Foundation has published a set of specifications

defining a health information reference model, a language for building clinical models, or

archetypes, which are separate from the software, and a query language. The architecture

is designed to make use of external health terminologies, such as SNOMED CT, LOINC
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and ICD. Its main focus is EHRs and clinical information systems.

3.6.6 LOINC

Initiated in 1994, at the Regenstrief Institute, the Logical Observation Identifiers Names

and Codes (LOINC) committee was organised to develop a common terminology for

laboratory and clinical observations, to support the growing trend of sending clinical

data electronically. Most laboratories and clinical services use HL7 to send their results

electronically from their reporting systems to their care systems. However, the tests in

these messages are identified by means of their internal, idiosyncratic code values. As a

result, receiving care systems cannot fully “understand” and properly file the results they

receive unless they either adopt the producer’s test codes (which is impossible if they

receive results from multiple sources), or invest in the work to map each result producer’s

code system to their internal code system.

3.6.7 PCHA

The Personal Connected Health Alliance (PCHA), formerly Continua Health Alliance,

advocates for global technology standards to enable interoperable solutions for personal

connected health. It publishes the Continua Design Guidelines, which provide a flexi-

ble implementation framework for ’plug-and-play’ or seamless interoperability of personal

connected health devices and systems. It is developed by members from technology, med-

ical device, health care industry, consumer electronics, healthcare service and life science

companies as well as government agencies. The Continua EHR, PHR, design Guidelines

are based on open standards developed by recognized industry groups and standards de-

velopment organizations. They define interface and standards at those interfaces along

with constraints within those standards that enable the secure flow of medical data among

sensors, gateways and end services.
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3.6.8 Continua Health Alliance

The Continua Health Alliance is a non-profit industry coalition started in 2006. It has

more than 180 member companies today. Continua’s vision is to build a ”system of in-

teroperable personal health solutions.“ This is done by certifying and branding Continua-

enabled products. If a product has the Continua logo on it, then it is certified to work

or be interoperable with any other Continua-branded product. Certification comes with

rigorous independent testing to the selected Continua standards. The main thrust of

Continua currently is the personal telehealth arena, which includes disease management,

health and wellness, and aging independently. From a design standpoint, the members’

products tend to be small and portable, which drives the engineering toward smaller mes-

saging to keep battery life as long as possible. Additionally, the personal area network

(PAN) emphasis for the devices is on wireless protocols that also need to be energy or

battery efficient.

3.6.9 MDPNP

� AAMI: systems-level standards, use cases, patient safety, V&V methodology, and tech-

nical education. AAMI could provide guidance to other SDOs on important clinical

scenarios and promote the testing and improvement of clinical performance in composite

devices. � ASTM: high-acuity clinical use case development; requirements and architec-

tural development for systems to serve safety interlock, closed-loop control, and related

needs. ASTM F2761 architecture provides for the application of systems engineering best

practices, compartmentalizes functions that enable key regulatory pathways, and pro-

vides a framework and technical environment for third-party clinical “app” development.

� HL7: enterprise integration, messaging and clinical documents. � IEEE: device com-

munication, nomenclature, and device models. � IHE: profiling, enterprise connectivity,

demonstration, and testing frameworks and tools. � ISO TC 215: support of selection,

continued development, and international propagation of ISO/IEEE 11073 standards. �

UL: testing and certification. � DICOM/ISO 12052 and NEMA/MITA: image and clinical

information interchange for image and radiotherapy. Interoperability for medical imaging
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and radiotherapy. � West Wireless: Validation of new technologies using clinical and

economic methods demonstrating safety, effectiveness and cost savings, advocacy, and

promotion of innovation—particularly for wireless applications

3.6.10 IEC

International Electrotechnical Commission (IEC) 80001. Application of risk management

for IT networks incorporating medical devices, which defines the roles, responsibilities, and

activities necessary for risk management for IT networks incorporating medical devices

to address safety, effectiveness, and data and system security [24].

3.6.11 AAMI

AAMI standards would be based on specific clinical functional requirements (use cases)

and on non-functional requirements such as QoS, quality of measurement (precision and

accuracy), and, most importantly, safety. Moreover, they would be based on a complete

systems-level approach, follow systems engineering best practice, and incorporate stan-

dards for user interaction, patient interface, and device-to-device interoperability. The

primary emphasis would be on ensuring that the resulting composite device can operate

safely and effectively for a specific intended use. For example, if AAMI were to develop

a standard to address the PCA clinical scenario (see Section 1.8), such a standard would

describe the essential performance requirements for such a composite system: perfor-

mance, QoS, and interoperability for each part of a composite solution. Standards like

these might be recognized by regulatory bodies (e.g., the U.S. FDA), creating a uniform

approach for ensuring the safety of composite systems.

3.6.12 HITSP

HITSP was chartered by the U.S. Department of Health and Human Services to provide

standards harmonization in the health information technology arena to meet the federal

mandate for a universal electronic medical record. HITSP bases each of it interoperability

specifications (IS) on use cases as promulgated by the National e-Health Collaborative
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(NeHC), formerly known as American Health Information Community (AHIC). The in-

teroperability specifications are meant to be compulsory on any players in the healthcare

realm who are contributing to an electronic medical record for a US citizen. Of particular

interest to the clinical engineering community is HITSP Remote Monitoring Interoper-

ability Specification (RMON).

3.6.13 NIST (National Institute of Standards and Technology)

project

Medical devices have to coordinate their actions in order to realize “closed loop” sce-

narios and automate clinical workflows [112]. The U.S. National Institute of Standards

and Technology projects for advancing medical device communications include: � collab-

oration with IHE on test tooling for conformance of HL7 messages to IHE PCD domain

profiles; and � collaboration with IEEE 11073 committees, the IHE PCD Device Point-

of-Care Integration Work Group, and the Continua Health Alliance on software tools for

constructing models of device capabilities and on conformance test tooling.

3.7 Interoperability benefits

Adopting a medical devices standard will have many benefits, including :

• Adher to security standards to avoid patient data hacking or misuse.

• Improves the quality of healthcare by using data generated from many devices for

analysis and diagnosis.

• Facilitating data exchange among medical devices and systems.

• Coordinating medical devices actions to work in complex clinical situations.

• Avoid hazards and related.

• Provide databases and rules on medical devices that when used in the same clinical

situation can hurt the patient.



50 Chapter 3. Interoperability software

• Avoid data repetition or multiple measurements of the same vital sign from different

devices.

• Support and analyse fauls alarms and record any bad incident in the system.

Benefits of interoperability is will bind together a wide network of real-time, life-critical

data that not only transform but become health care [113]. a study made by the U.S.

Department of Commerce Technology Administration in 2004 estimates a cost of U$15.8

billion related to the inadequate interoperability between systems in the U.S. Capital Fa-

cilities Industry [114] the ultimate goal of interoperability is a seamless flow of information

between many disparate devices over a network to and from the intended recipients [115].



Chapter 4

Case study: Medical devices and the

Integrated Clinical Environment

(ICE)

A real time system has a strict timing requirement, data is exchanged with pre-specified

time constraints, if data is provided after deadlines it is considered as non valid and can

destabilize the behaviour of the system. The integrated clinical environment is introduced

as a real time system where it has a hard deadlines and can threaten human lives if any

unexpected behaviour is present.

The interconnection of heterogeneous medical devices is emerging as a new requirement in

modern medicine. The final goal is to advance beyond the ad hoc connection of medical

devices and realize a reliable network where data is exchanged form end to end without

compatibility issues, this is defined under the Integrated Clinical Environment (ICE)

[116]. In this chapter, ICE is introduced in details, with the presentation of the different

concepts related to it.

51
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4.1 Medical devices differences and incompatibility

issues

4.1.1 Medical devices

A medical device is a standalone entity that can operate in any clinical situation with-

out human intervention. A medical device is equipped with electrodes or sensors that

collect data from patient body and in some cases it can be equipped with actuators. A

medical device vary from a simple mobile entity measuring one vital sign and transferring

data with Bluetooth to the most sophisticated equipment measuring many vital signs

and transferring data with a Wi-Fi or wired connection to servers in order to analyse

data. A medical device is very sensitive entity where even some wireless device can af-

fect it behaviour.Each medical device is provided with a specific hardware and software

configuration which constitutes the heterogeneity in ICE-based systems, connecting these

various devices into the same clinical situation where they coordinate their actions cannot

be realized without implementing a software solution that plays the role of mediator of

medical devices.

Data provided by medical device is connected to computational servers through net-

working ports like RS 232 port (DB-9, DB-15, and DB-25), RJ 45 port, wireless LAN,

Bluetooth, USB, or some special data connection systems developed by suppliers for using

data by their own IT systems as Dräger Medibus protocol [117] and Philips Instrument

Telemetry System (IIT) [118]. The following are the most common hardware connections

used by suppliers to input data into the device: PS/2 where the connection of a key-

board or a mouse is possible, USB, RS 232, digital data entering. Data output formats of

medical devices are various we cite: text and binary files, alarms, waveforms, and device

settings.

Data provided by medical devices is classified in two types: medical and technical data,

medical data is about the medical signs coming from the patient body and the technical

data is about the technical characteristics of the medical device like operating system,

device model, type of produced data, etc. By it turn vital signs data can be divided into
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two types measured and calculated, for example we have the next measured values coming

from an Ivy 450c monitor; systolic pressure = 140 mm Hg, diastolic pressure = 100 mm

Hg, the calculated value from this two measured values is the average pressure which is

equal to ((2*DiastolicPressure) + SystolicPressure) / 2 = 113,33 mm Hg.

The medical devices characteristics mentioned above are made after a study of 16 medical

devices measuring various vital signs and provided by 9 different suppliers.

4.1.2 Interoperability issues

The growth of use of medical devices in healthcare as an essential tool of diagnosis is

important. In a single high acuity situation a patient is connected to one or more medical

devices, these devices operate as standalone entities where they store data collected from

patient body in their local memory or connect it to some smartphones or to servers that

analyse data. Studies like [119], [120] and [121] aim to improve safety by coordinating

medical devices actions and avoid patient health status deterioration caused by the lack

of a standard model that administrate devices and data exchange protocol that enable a

secure medical care delivery.

In a clinical situation two medical devices are connected to a patient: a x-ray machine

and a anaesthesia machine ventilator, when operating together these two devices may

generate complication on the patient health [121], so, medical staff restarts the ventilator

promptly. In order to avoid this kind of issues a software solution must be developed

and standardized, this software solution will be deployed as an intermediate between

medical devices and computational servers. Each medical devices supplier has it own

manufacturing policy where standards are used, ICE stands the most reliable solution to

override the previous mentioned problems.

Standards were defined to specify bases that researchers from both academia and industry

can use to improve the quality of health care and to realize a certain level of interoperabil-

ity. CDA [3], HL7 [79] are examples of data and documents formats standards specification

and Digital Imaging and Communications in Medicine (DICOM) is used for images and

related communication [122]. ASTM F2761-09 [123] is a standard defined to integrate
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medical devices and equipment into a safe and single medical system. From a commu-

nication perspective; MedRTI and DDS are two middleware technologies fluently used

to create a flexible communication bridge between the components of a medical system

in order to exceed the differences in protocols, implementations and messages encodings.

EHR (Electronic Health Record) and EMR (Electronic Medical Record) stands as two

concepts that are defined for medical data storage.

The ultimate goal of interoperability is a to realize a seamless flow of information between

many disparate devices over a network to and from the intended recipients [115]. Since it

connection on the patient body a medical device sends data to computational servers and

storage devices without human intervention, when a printer is connected to a PC users

do not expect to perform any specific operations in order to run the printer and this is

how medical devices must be integrated with other devices.

4.2 Medical devices connectivity with ICE-based sys-

tems

The integrated clinical environment aims to improve patient safety by coordinating the

actions of medical devices and providing data that is valid and in the specified timing

limits, ICE is designed for a single high acuity patient environment and this is due to

the risk of patient safety deterioration and the presence of many factors that can affect it

health status, as factors we mention: the lack of connection between medical devices or

incompatibility of two medical devices as shown in [124], [120] and [121]. A survey realized

by the west health organisation 1 illustrates that 74% of nurses strongly recommended

that data must be shared between medical devices, 50% of nurses said that they witnessed

a medical error caused by the lack of coordination between medical devices.

1West health organization. Missed connections: a nurses survey on interoperability and improved
patient care http://www.westhealth.org/

http://www.westhealth.org/
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4.2.1 ICE standard

ICE aims to create an interoperate network of medical devices and EMR in order to

improve patient safety and realize an efficient healthcare delivery. Medical devices will be

able to cooperate together, share data with servers and store it in other devices without

any specific hardware/software installation. Since it connection the medical device is able

to detect other devices and decide the importance of sharing data with those equipment.

Medical devices must be conform to ICE standard to interoperate with other devices that

are ICE-compliant regardless of manufacturer [125] , Wifi, USB, Bluetooth are examples

of standards that were used for many years to realize a PnP data connection interfaces.

figure 4.1 Illustrates how ICE intermediate the clinician and the patient.

Figure 4.1: High level view on ICE [10]

ICE was proposed by the CIMIT [116] medical device plug-and-play interoperability

project; and ICE functional model was presented by ASTM-F2761 [84], after a draft

prepared by [123] in 2008. Julian Goldman [123] defines ICE as ”a medical system that

aims to support the care of a single high acuity patient by realizing interoperability between

medical devices and other equipment in order to improve patient safety”. OpenICE [97]

is the open source implementation of ICE standards that aims to provide a set of tools

for developers to create applications related to medical devices connectivity and interop-

erability, it provides real records of many vital taken from patient it also provides devices

simulation and alarms generation.

The medical device Plug-and Play Integrated Clinical Environment (ICE) coordinates
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actions of devices provided by different suppliers via a middleware and through a shared

network, medical devices suppliers do not have to change their manufacturing policy

and produce devices that are compatible with each other the objective is to provide

devices thar are ICE-compliant in order to realize a PnP standard that is supported by

all suppliers.

ICE aims to:

• Improve patient safety by coordinating medical devices actions and avoid incorrect

medical decisions generated by a faulty device operation.

• Ensure support for clinicians in their monitoring and treatment operation, where clinical

aid information is generated by a set of workflows implemented in the ICE framework

logic.

• Create a flexible communication bus between medical devices, servers running medical

applications, and the clinicians.

• Implement an interoperable network of medical devices and computational servers

where data and messages are exchanged in real time.

• Define standards for the hardware and software characteristics or dimensions of medical

devices that will be used by manufacturers to produce medical devices that comply with

ICE.

4.2.2 Design requirements

ICE stands as an intermediary between the clinician and the patient (medical devices).

Many stakeholders are concerned with the interaction of an ICE-based system, these

stakeholders vary from human actors like medical staff and the patient, computational

actors like servers, data storage devices and data communication equipment, software

actors like communication protocols and middleware, software running medical devices

and OS, and sensors equipment that are medical devices measuring patient vital signs. All

these stakeholders generate various requirements that are related to ICE-based systems
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design, studies like [95], [126] and [100] aim to gather the requirements from several point

of view. In what follows requirements for an ICE-based system design are presented.

1. Heterogeneity. It is related to various stakeholders: type of the produced data,

software platform (operating system, middleware, and other specific libraries), med-

ical equipment hardware characteristics and communication protocols. Heterogene-

ity is a design requirement and interoperability is the result of override heterogeneous

medical devices differences and realize an interoperable ICE-based systems .

2. Safety is a first class requirement for medical systems. Safety is the ability of the

system to monitor and diagnose the patient in order to avoid the deterioration of

his/her health status. In this context, we relate safety to the problems caused by

the lack of interoperability between medical devices and the ability of the system

to exceed these problems in an intelligent way.

3. Timeliness. A medical device must send data in real time to storage devices or

computation servers, also, the clinician has to be informed about his patient status

without no delays all the deadlines associated to operations are respected. ICE

is the place where the time of operations execution intervals are greater than the

time taken by data to be sent to computational servers or to communicate data to

the clinician. We studied the timing requirement of an ICE-based system that is

presented in [10].

4. Security and privacy. Given the highly connected nature of most computer-based

systems, it is needed to draw architectures that preserve the patient medical data

from unauthorized access. Currently, a number of health related systems allow shar-

ing information of Electronic Health Records (EHR) via Internet, even using cloud

computing paradigms. Security and privacy of patient data will be preserved by

data encryption mechanisms for the case of data transmission between stakeholders

and data access rights when explicit content is requested.

5. Data accuracy. The effectiveness of decisions taken by clinicians that use medical

systems to diagnose patient health status and safety depends on the accuracy of
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data provided by medical devices and the integrated applications. Due to the high

acuity nature of medical applications data must be accurate and that is achieved

by avoiding errors caused by formatting, converting, transmission, and execution of

processing operations.

6. Decision support. An ICE-based system provides logic for supporting decisions

of clinicians. This logic can be realized by different mechanisms such as machine

learning to help analyse data and predict diagnosis/treatment processes easier and

more effectively. Reports, notifications, drug injection schedule, real time vital signs

data communication, and emergency cases prevention are some of the operations

that decision support functionality can facilitate.

7. Autonomy is the ability of the system to work and to provide the intended results

without human intervention. Implementing self-decision processes is required to

enhance safety and to implement autonomy, so that clinicians may concentrate on

supervision of the overall care process over the patient. The ontology is a fluent

solution that is used in the medical systems to facilitate autonomy.

4.2.3 Standard architecture

ICE functional architecture shown in 4.2 was defined in 2009 in ASTM standard [84].

Many components of the architecture can be deployed in one hardware component, ICE

standard do not impose or specify one data communication standard but provides exam-

ples of various standards that will be required to create an ICE [127].

Medical devices. These devices are developed as standalone units, where they are

connected to the patient. Medical devices are provided with different network connection

modes and data output ports. An infusion pump is an example of a medical device.

Medical equipment. These are more complex and sophisticated instruments than medi-

cal devices; these equipment may be needed for some clinical situations, e.g., a tomography

scanner that integrates sensors and a presentation system.

Network controller. It is a middleware that transports data between component of the
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architecture, it ensures QoS and verifies if the system meet it primary requirements, it is

also a mean to discover and connect new inserted devices in the network. The network

controller provides an external interface for stakeholders such as EMR (Electronic Medical

Record) and information systems, it establishes a common time base for medical devices

data.

ICE interface. A data communication port that transports data between medical de-

vices, medical equipment via a Ethernet port, a universal serial bus (USB) port, an RS-232

port or other standard ports. It’s a way to realize interoperability between ICE network

controller and ICE-compatible equipment.

External interface. This interface is used as the public access port to medical data

flowing in ICE, it can be used to connect the system to Internet or to provide data to

a professional healthcare facility, the access to medical data should respect ICE security

and privacy policies where medical records of patients should be available under some

limitations.

Data logger. This entity is used to detect, predict, and record errors that are flowing

in the systems. Data saved by the data logger is about technical issues that describes

abnormal activities of medical devices, equipment, and applications. The data logger com-

ponent is intended to facilitate system integration, system deployment, and retrospective

analysis of performance, incidents and near incidents [123].

ICE supervisor. It is a core component in the architecture it guarantees a reliable flow

of data between components and provides a real time scheduling of tasks. The supervisor

defines a console where the user can launch applications. provides medical support for

clinicians, allowing them to remotely access and control the medical devices. Also, it

processes and presents the data provided by medical devices by means of a set of reports

and data analysis diagrams.

ICE defines the concept of device model as ”representation of the capabilities of ICE-

compatible equipment that includes the information needed to qualitatively and quantita-

tively describe, control and monitor its operation”. It is a model-based approach that

defines in a declarative meta-data description the hardware/software capabilities of the
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Figure 4.2: Functional model of the integrated clinical environment [9]

medical device and decides if the new connected equipment is suitable for the intended

use. To accomplish this the device model describes the device in details: inputs/outputs of

the medical device, measured vital signs, units of representation (e.g., mmHg, beats/min),

and the bit encoding of the parameter (e.g., 16-bit fixed point, 32-bit floating point), time

of measurement, device technical configuration. It also includes data about the QoS in

order to guarantee effective results and safe operation,

4.3 Timeliness in ICE

Medical systems that have direct impact on patient safety have hard timing requirements

and this is due to the critical situation that can be generated if results arrive after their

specified deadlines. Timing requirements are related to many actions: 1 Vital signs mea-

surement and communication time, 2 Time taken by ICE to process data and produce

results, 3 data communication time to clinicians. Medical devices perform time-critical

tasks. Some of them require high temporal precision such as measuring pulse transit

times or controlling intra-aortic balloon pumps; others only require low precision such as
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sending a stop signal to the PCA pump in case of an overdose [128].

Until the time of this study there is no clear study about timing requirement of ICE-

based systems, we defined the timing requirements related to the proposed component

model in a previous study [10]. An ICE-based system delays in an ICE-based system

can generate issues on the patient health status, also the diagnosis/treatment process is

based on the accurate values of vital signs and the the time when those parameters where

taken. A medical device generates two types of data technical and medical for both the

exact timing values are essential, when the clinician executes the application that displays

alarms history it is needed to gather the exact timing values of the production of alarms

and decides the source of these alarms in order to avoid any impact on the patient health

status.

The advantage of integrating medical devices into a patient-centric situation is to have

real time comprehensive data for the healthcare information system/electronic medical

record/electronic health record (HIS/EMR/EHR) [123], this real-time data and can im-

prove patient safety and medical workflows such as: a reliable diagnosis/treatment process,

ensures a continuous flow of medical and technical data, and monitoring the performance

and activity of medical devices and ICE applications.



Chapter 5

A component model for

ICE-compliant medical systems

In this chapter the component model that provides the general framework for designing

ICE-enabled applications is presented. From this proposed model (or architecture) specific

systems can be provided; a system is an implementation of an architecture or model. The

proposed component model supports data real-time acquisition, transfer, treatment, and

communication. It is based on components as a design unit and (web) services to achieve

interoperability.

5.1 Design requirements

The component model presented in this section is based on a set of requirements that

leaded to that design, the proposed component model fulfils:

• Support of activities with time constraints.

• Execution predictability; schedulability facilities for ensuring fulfilment of deadlines.

• Availability of data for all stakeholders in the system at any time and regardless of the

used device.

• Autonomy, as the system provides results without human intervention.

62
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• Support of data flows in different paths (reflecting the size, type and accuracy of data).

• Heterogeneity of medical equipments that will be able to interoperate.

• Deployment/hardware efficiency, as the architecture has been designed to minimize

physical equipments on the patient site in order to facilitate integration.

Critical events may come from clinician devices as well as from patient side devices.

The detection of a critical event triggers the execution of some activities that must be

completed before their deadlines expire in order to respond the event generated by the

device. These activities are mainly related to timely data transmission or processing.

As examples, a clinician device may request a higher resolution data or a specific zoom for

an area of intervention; and a patient side device may detect some abnormal vital signs

conditions.

Then, device modelling is supported by the proposed model. Precisely the modelled char-

acteristics are: display information (screen size, etc.), power data (battery, etc.), processor

capacity (i.e., CPU), and communication capacity (i.e., network media characteristics).

5.2 High level view of the architecture

The component model is divided into three layers due to the diversity of stakeholders

(medical devices, data, data adapters, human actors, and software sensors) and the treat-

ment process that data must undergo in order to be used by different components. So

the reason of the division of this architecture into layers view is to separate between

requirements and to have a clear design view.

The first layer starting from below is dedicated to connect medical devices to the upper

components, the second layer is the core of decisions made on the architecture, and finally

the third layer directs the behavior of the components by serving like software sensors.

Each layer has input and output data exposed via components interfaces, the assembly

of components in one layer is realized according to the nature of the main operations

realized by those components, the three layers are presented as following:
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• Data control and transmission layer (DCTL).

• Diagnostic and decision layer (DDL).

• Control layer (CL).

The figure 5.1 presents a general overview of the component model. It has three layers

defined with proper interrelation.

Figure 5.1: General view on the architecture [10]

Each component is defined by operations executed by or on this component, the actors

devices component execute operations of getting the characteristics of user’s devices and

send them to the mediator to adapt data.
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5.3 Design internals

The architecture presented in figure 5.1 is detailed in figure 5.2 based on a per-layer

basis. The architecture has been designed to minimize IT equipments on the patient place

(ambulance, home, clinic) in order to facilitate integration. A single modem or router plus

a mediator (hardware and software component) connecting the patient environment to

servers is sufficient.

The architecture ensures the respect of time requirements and will also improve response

times with the use of some concepts that will be explained later. It is also estimated that

the response time in the control system (component model) is greater than the response

time of the controlled system (medical devices). For example, the time to sample the

blood pressure and to send it is less than the time of its treatment.

Figure 5.2: A component model for the Integrated Clinical Environment [9]
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5.3.1 Data control and transmission layer (DCTL)

The data control and transmission layer is in direct contact with patient side environment,

where it serves as device integrator, data carrier and adapter. Medicals devices begin to

provide vital signs data after its connection on a patient body, a vital signs monitor is

required in each clinical environment so that the clinician present on site could follow the

patient’s condition or if he wants for example to modify some parameters like waveforms

ladder or alarms intervals.

Medical devices are provided by different suppliers, the majority of medical devices are

provided with a data connection source like RS 232 port (DB-9, DB-15, and DB-25), RJ 45

port, wireless LAN, Bluetooth, USB, or some special data connection systems developed

by suppliers for using data by their own IT systems.

The following are the most common hardware connections used by suppliers to input data

into the device: PS/2 where the connection of a keyboard or a mouse is possible, USB,

RS 232, digital data entering. Data output formats of medical devices are various we cite:

text and binary files, alarms, waveforms, and device settings.

We can divide the data coming from medical devices into two types: medical and technical

data, the medical data is about the medical signs coming from the patient body and the

technical data is about the technical characteristics of the medical device like operating

system, device model, type of produced data, etc. By it turn vital signs data can be

divided into two types measured and calculated, for example we have the next measured

values coming from an Ivy 450c monitor; systolic pressure = 140 mm Hg, diastolic pressure

= 100 mm Hg, the calculated value from this two measured values is the average pressure

which is equal to ((2*DiastolicPressure) + SystolicPressure) / 2 = 113,33 mm Hg.

The medical devices characteristics mentioned above are made after a study on 16 medical

devices measuring various vital signs and provided by 9 different suppliers.

DCTL is sown if figure 5.3 and is composed of the following components:

The mediator

The mediator is a software and a hardware component that is in direct contact with

medical devices plugged on the patient’s body. The architecture of this component will
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Figure 5.3: Attachment of a Web service to a medical device [9]

be detailed in the next section.

Medical devices

Send the vital signs data to the mediator in real time. In this context, the delay of data

transmission varies around milliseconds units (depending on the specific medical device

manufacturer) and it must have to be accounted for.

Technical services

Called low level because they are elementary WS, their roles is to receives the data from

the mediator, gives access to the medical devices and sends the sampled data to the second

layer. For each medical device corresponds a web service that will encapsulate it func-

tionalities, technical and medical data where an intervention on the material corresponds

to an intervention on it’s web service.

The communication between medical devices with the current technologies and solutions

is very hard to achieve, for example to view the data collected from the Hospira infusion

pump on the Philips Intellivue MP70 monitor, a physical connection is needed and it

may not work because of the differences between the two devices (connection between

medical devices is possible just using devices coming from the same supplier or between

devices that have optimal characteristics. This connection is realized throw pre-specified
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hardware and software characteristics and after reading long installation manuals); we

propose to cover this connections problems by the use of this technical services where the

communications between medical devices will be ensured via their web services.

Any change on data that will affect its accuracy will be preceded by a storage on the

database with dedicated web services in order to keep its integrity. Data is transported

to the real-time database on the data saver component to store it with its original format

coming from medical devices. If a check has to be done on these data, it is the mediator

component that intervenes. Video is displayed on clinician device using streaming because

of their large sizes.

5.3.2 Diagnostic and decision layer (DDL)

DDL 5.4 is positioned in the middle of this architecture where any major decision is

taken and where all data is stored. it also requires greater physical performance than the

other layers. It is on this layer also where response times are longer, it’s composed of the

following:

Figure 5.4: Sequence diagram of data flow in DDL [9]

Core service

Is a composed service that provides medical decisions such as disease analysis and drug

schedule that constitute a support for clinicians. The core service has as input data

provided by the technical services and produces as output data that is used by different
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components.

The core service is a composed web service that has input data coming from elementary

web services of the first layer. and provides as outputs a set of results via web services.

Real time database

Given the large amount of information, a real-time database is essential for the required

data search and store. It provides timely data access and guarantees safe simultaneous

access by multiple actors. Its difference with an ordinary database is that it allows to

attach restrictions to the operations performed on the data. It’s Divided into two parts:

Event recorder. Any event that takes place in this architecture is recorded in this com-

ponent with a date and a reference to the data associated with this event, it also allows

the recovery of the system in case of failure or reboot, which is an important criterion of

real-time system.

Data saver. Contains data circulating in the system of all types: text, binary and XML

files, image, sound, video, characteristics of user devices, backup of states after validation

of a disease and a corresponding treatment. For each transaction is associated a deadline

and a priority and for every given data a time interval for which its value is valid, for

example the glucose level was measured at time t and it is valid from t to t+5 .

Knowledge base

Constitutes the brain of the architecture and aims to guarantee the autonomy of the

system and a decision support for clinicians. on the health analyzing computations tasks

and the treatment decision services. The reasoning is guided by a set of SWRL (Semantic

Web Rule Language) rules from a set of parameters and values that will be the basis of

decisions taken in the second layer. It is also a mean of achieving the predictability of the

system; that based on vital signs and patient history may identify the patient problems,

possible treatment, schedule for treatments and visits, bypassing other processes.

5.3.3 Control (CL)

The CL contains a set of software sensor running between the system and the clinician.

It directs and checks the behavior of the model and ensures the respect of time limits.
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Following are presented the components of CL:

User device controller

A software component whose role is to check characteristics of the device used by the user

to connect: screen size, battery durability, RAM size, power of the CPU, and then sends

the data to the mediator.

Both Network Controller and User Device Controller components are very important,

acts as software sensors for better management of the user and his device, and to adapt

the data that will be communicated to him. They are also an essential means to achieve

the time requirements. For example there is no need to send a video clip of one hour

time with HD quality to a user who has a smartphone with a weak battery, poor picture

quality and a very low internet speed, it will generate exceeded deadlines during data

transmission and remote diagnosis process.

Resource manager

Monitors the fulfilment of the operation deadlines for those cases where real-time oper-

ation is required. Some applications and service functions have execution priorities and

associated finalization deadlines. The resource manager component monitors the schedu-

lability of the different functions of the system.

Time Requirements Manager

This component has the role of observing the compliance with the specified time require-

ments. This component has the role of observing the compliance with the specified time

requirements. model; it fine tunes and adapts the components parameters to fulfill the

overall time requirements that are specified in the ICE-based system.

The components of the time requirements manager are the following:

Deadline Controller. Execution delays or timeouts are detected by this component. The

operation (or process) of connecting a new medical device has an associated deadline. If

the operation overruns the specified deadline, the deadline controller components detects

it and reports it by sending an alarm message to the alarm and event notification com-

ponent. This informs the user/clinician so that action is taken, e.g., manual connection.

Time Synchronizer. In a distributed context integrated by heterogeneous actors such as
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medical devices and different stakeholders, this component takes the role of synchronizing

the clocks of these actors with a central clock. Having a central clock ensures logical

synchronization. For applications requiring physical time, UTC (universal coordinated

time) receivers can be connected to the system and precisely to the central clock. so as

to facilitate access and for better measurement of compliance with time deadlines.

For the components of this last layer, the respect of time requirements is a functional

objective, for some of them it is abstract and for others it is discreet. To guarantee a

certain level of security a firewall separates the architecture from the user’s device, he can

access the system via accesses provided by the system administrator. Figure 5.5 shows

the component model using UML presentation of the different component and interfaces

exchanging data between them.

Figure 5.5: UML component diagram of the architecture [9]

5.4 Differences between the proposed component model

and studied models

The points mentioned in the following list are differences between the proposed component

model and all the models presented in section 2:
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• The design of the component model was based on covering the design and the run-

time phases of the software, the behavior of the presented models is not clear when

dealing with hardware resources, databases, and human.

• The use of specific components, because a component that have special tasks to

perform is more efficient than a generic component for a given application domain.

Reusability is ensured for such type of components for systems requiring components

to execute special tasks.

• The models do not integrate a data integrity check/treatment mechanism, the com-

ponent model ensures this mechanism by the mediator.

• Autonomy, for the component model there is no need for human intervention, unlike

the other models where a description for such parameter is limited (Koala) or not

defined (Rubus, UM-RTCOM, SaveCCM).

• Heterogeneity of data and medical devices (sensors). The models do not provide any

description in how they deal with different formats of data.

• Connection with sensor/actuator, the component models do not illustrate how they

manage communications with sensor/actuator, in order to build a real time system

such a concept is primary.

• Unlike the presented component model, interoperability and communication between

heterogeneous components and medical devices is not defined by the models.

• A global time synchronizer integration (time synchronizer component) on the compo-

nent model whereas the presented models do not support such a component (except

SaveCCM).

• A deadline controller component is integrated on the component model in order to

analyse, anticipate deadlines exceeding and prevent other components on the systems

to free more hardware resources in order to meet the deadlines.
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• A hardware resources component manager is used on the component model in order

to communicate with the run-time environment to free more resources for specific or

urgent tasks or when the deadlines are near.
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Experiments and results

6.1 Medical devices connector

The mediator is introduced in order to connect heterogeneous medical devices into the

same network mediator is a hardware and a software component that has as input data

coming from medical devices and as output data provided to the technical services. The

mediator is composed of three components each one of them performs operations that are

explained in what follows:

• The XML files processing incurred by the parsing and additional message headers

leads to high delays [18], so it has to be compressed in order to speed up all the

operations that it will undergo, which is the work of the data compressor component

(shown in figure 6.1) that reduces the files size without changing their type or quality.

• Data has to be converted from its primary format to another for printing, visual-

ization and processing, and here comes the data converter component (shown in figure

6.1), it converts data types based on a set of parameters such as network load, user

device type or battery charge. For example, a text file will be transmitted faster than

an Excel file

• Due to the criticality of ICE it must provide accurate results and in time, therefore,

the data must undergo an accuracy check performed by the component data correctness

(shown in figure 6.1), It is classified as the last component of the mediator so it works
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as a data checker and validator.

Figure 6.1: Mediator internal structure [9]

6.2 API

The mediator is a composed component that plays an essential role on the presented

component model in this paper, it creates communication between medical devices and

adapts data according to the clinician device hardware/software characteristics. Figure

6.1 shows the internal structure of the mediator.

The mediator communicates with other components via predefined ports and interfaces

while components communicate via interfaces. The mediator has as inputs: files (contain

technical and medical data) and alarms, it produces as outputs data (adapted according

to the user device and Internet speed) and alarms.

Table 6.1 shows input and output parameters of each component of the mediator. Dat-

aCompressor has input files with different formats and sizes generated by the medical

devices, it compresses the size of the files to smaller files and treats excel and binary files,

DataConverter has as inputs files provided by the DataCompressor, it converts the files



76 Chapter 6. Experiments and results

Table 6.1: Mediator internal components inputs and outputs [9]
Component Input Output

DataCompressor
Text, excel and binary files

Boolean

Text, excel and binary files

Boolean

DataConverter Output of DataCompressor Text, excel and binary files

DataCorrectness Output of DataConverter
Pulse: integer, respiration: integer,

temperature: float,..

to a unique file format that is supported by other components. DataCorrectness has as

input a unique file format, it generates variables for each measured value.

Table 6.2: Mediator interfaces and data values [9]
Interface Input parameters Output parameters

GetAlarm
IsAlarmRaised: boolean, GetAlarmTime: Date,

GetAlarmText: String

AlarmRaised1: boolean, AlarmTime1: Date,

AlarmText1: String

ReadFile
GetFileLocation: String, GetFileSize: float,

GetFileFormat: String

FileLocation: String, FileSize: float,

FileFormat: String

Alarm
AlarmRaised1: boolean, AlarmTime1: Date,

AlarmText1: String

AlarmRaised2: boolean, AlarmTime2: Date,

AlarmText2: String

CompressedData
GetNewFileLocation: String,

GetNewFileFormat: String
FileLocation2: String, FileFormat2: String

ConvertedData GetNewFileLocation2: String FileLocation3: String

AdaptedData
GetVitalSignName: String, GetVitalSignValue:

String or Integer or Float, GetVitalSignTime: Date

VitalSignName: String, Value: String or

Integer or Float, MeasurTime: Date

Table 6.2 shows the interfaces implemented on the component model and data values for

each provided and required interface. GetAlarm interface transfers data from medical

devices to DataCompressor component while Alarm interface transfers data from Dat-

aCompressor component to user device and this is due to the criticality of the alarm.

ReadFile interface is responsible of transferring data included in files provided by medical

devices into DataComporessor component, CompressedData interface transfers data from

DataCompressor component to DataConverter while ConvertedData interface transfers

data from DataConverter component to DataCorrectness component. The AdaptedData

interface is the link between the mediator internal treatment and DDL.
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6.3 Mediator operation process and program design

The mediator is a first class citizen of the component model and therefore it behaviour

has to be studied. The operation process of the mediator is shown in figure 6.2, it’s

starts when the medical device is connected to the network, if the file size is big then it’s

converted to a smaller one by deleting repetitive lines of the file then sent to the data

converter component. This last, receives internet load and convert file type if needed to

text for example for faster transmission.

The data correctness component receives a message from the core service if some bad

medical data is detected, for example, if some vital signs data are wide out of predefined

range. In this case, a restart device message is sent to the clinician or just to verify if

electrodes are installed correctly.

Figure 6.2: Mediator operation process [9]

The communication of data provided by medical devices for processing servers is still hard

to achieve, because of the diversity of medical devices (hardware and software), diversity

of suppliers policy, multiple data output formats, patient environment limitations, and

networking capabilities.

Many initiatives appeared in order to facilitate the communication between medical de-
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vices and IT infrastructures. In a clinical situation the presence of medical devices pro-

vided by different suppliers and the communication and even the connection of those

medical devices to each other is hard or even impossible (connection of MD from differ-

ent suppliers) where it is needed to read long technical manuals and the intervention of

technicians.

6.4 Implementation Configuration

The development of the component model is based on Python 2.7.18, the runtime envi-

ronment is an Intel core i5- 7300 at 2.20 Ghz with 8 GB of RAM. Tests were performed

using the next components and that are illustrated in figure 6.3.

• Processing equipment : 1 Laptop

• Display equipment : 2 LCD

• Medical devices : Microlife blood pressure monitor BP A200 AFIB and Onyx Nonin

3231 USB model

• Adaptation units : 2 Raspberry Pi 3 Model B, Quad Core CPU 1.2 GHz, 1 GB

RAM

Figure 6.4 shows a simulated situation on an elderly who is at home and connected to a

Microlife blood pressure monitor BP A200 AFIB and an Onyx Nonin 3231 USB model,

the two devices are plugged on a raspberry pi 3 model. The component model is deployed

on each raspberry, a Wifi connection is used to send data to the cloud. The clinician is is

hospital and use his smart phone or his desktop PC to connect to the platform and check

patient vital signs.
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Figure 6.3: Laboratory experiments configuration components [10]

Figure 6.4: Simulated situation
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Table 6.3: Number of used elements for the application [9]
Medical devices Data output types Mediator Web services

2 2 1 2

6.5 Some figures

Table 6.3 shows that two medical devices are used and which are the Microlife blood

pressure monitor BP A200 AFIB and Onyx Nonin 3231 USB model, the two data output

files are an Excel and a text files and there is one mediator (mediator1) to connect medical

devices and extract data from them, also, two web services are used (MicroLifeWS and

NoninWS) in this case study for each medical device is affected a web service that defines

it behaviour and the generated data.

Table 6.4: Medical devices connectivity and data exchange parameters [9]
Execution time Exchanged messages Alarms Generated files

1 minute 19 1 2

10 minutes 155 1 2

60 minutes 917 2 2

Table 6.4 shows some results about data exchange between medical devices and the medi-

ator for a given laps of time, the number of generated files is fix during all the execution

process and this because each device generates a file when the execution is started this

file is used as a data buffer, in this case there are two files formats a text and an Excel

files. After 60 minutes of execution 917 messages were exchanged this illustrates that

the component models supports the heterogeneity of medical devices and that data is

transferred without problems.

Alarms are an important mean to guarantee patient safety in this case two alarms were

generated during 60 minutes of the execution cycle, these alarms were caused by a degra-

dation in the patient vital signs: heart rate registered between 59 and 50 beats per minute

for 1 minute and respiration rate between 9 and 11 breaths per minute.

This example shows the efficiency of the component model to guarantee heterogeneity of

medical devices by coordinating medical devices actions through the mediator and patient

safety monitoring by generating alarms when one or more vital signs are out of the regular

range.
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Conclusions and future work

Real time systems aim to provide results before deadlines are achieved, these deadlines

are varying according to the system intended use and it relation with threats on human

lives. It’s up to the system designers to define the timing requirements of a real time

system, these timing requirements are defined on design time and verified at execution

time. Fault tolerance, data accuracy, schedulability, and stability are the most common

requirements of a RTS.

Component-based paradigm is the best solution to program RTS and this due to it mod-

ular nature and the septation between code and interfaces. Components hides the com-

plexity of RTS no matter their complexity and their timing requirements. Component

approach ensures software reuse, whereas, this last notion is not well studied when used

with RTS because of their criticality unless when used for the same application domain

and more precisely in the same project.

Modern medical systems integrating medical devices to monitor patient safety in a one

high acuity environment are real time, therefore, the study of such type of systems must

cover the real time aspect. Medical devices have to provide accurate data to the clinician

before the deadlines and at the same time make sure that the data is secured from attacks.

Many medical devices may be present in one clinical situation which may create incom-

patibility between data provided by different devices or in same cases a device may affect

the operation of another device which is called hazards in the medical domain. Many

stakeholders tried to propose some solution to create communication bridge between dif-
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ferent devices, but no standard has been adopted by manufacturers and this is due to

development costs and technology adaptation process.

The integrated clinical environment is a new framework aiming to provide an open so-

lution to exchange data between heterogeneous medical devices.It’s a reference model to

ensure safety in the development of medical services, it aims to create communication

and coordination of medical devices installed on the same high acuity patient environ-

ment. ICE-based systems define safety as the ability of the system to avoid the patient

health status deterioration because medical devices couldn’t operate in the same net-

work, it also covers the heterogeneity of medical devices where each device has a specific

hardware/software configuration.

The thesis presented a component model for ICE-based systems where it emphasis on

safety and heterogeneity as two essential concepts for the design of medical systems. The

paper studied the component model in details and ICE-based systems in particular. The

mediator was integrated as a solution for heterogeneity, notification, clinician support and

data accuracy as solutions for safety.

The component model was detailed with UML diagrams presenting it internal design

with inter-relation and it was validated with a prototype implementation with two medical

devices in test where data exchange was illustrated in one clinical situation. Also, the real

time behavior of the model was tested where data exchange was measured in predefined

laps of time and deadlines were respected.

As future works, the behavior of the component model will be tested with more devices

from different manufacturers. Also, data exchange between the model and the clinician

will be tested in one real condition, where the clinician will be notified about any event

of the system. In addition , other timing requirements will b studied such as worst case

execution time and execution time of an operation.
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Abstract 

 
Real time systems (RTS) are used in a wide variety of applications, ranging from very simple 

electronic systems to the most complex avionics and medical systems. RTS are time-related, 

which means the behavior of these systems depends on the timing requirements. Component 

based programming is the typical paradigm to develop RTS and this is due to it modular nature, 

which helps to hide the complexity of such systems and minimizes development costs. Medical 

monitoring systems in a high acuity patient environment are a good example of RTS, where the 

presence of more than one device in one clinical situation may affect patient safety because of 

the lack of communication between these devices and therefore interoperability is needed to 

avoid hazards and patients’ health status degradation. The interconnection of medical devices 

in a wider network of computational servers is emerging as a new requirement in modern 

medicine, where the final goal is to achieve interoperability across medical devices and improve 

patient safety.  

 

 

Résumé 

 

Les systèmes temps réel (STR) sont utilisés dans une grande variété d'applications, allant des 

petits systèmes électroniques aux systèmes avioniques et médicaux les plus complexes. Les 

STR sont liés au temps, ce qui signifie que le comportement de ces systèmes dépend des 

contraintes temporelles. La programmation basée sur les composants est le paradigme typique 

pour développer les STR et cela est dû à la nature modulaire de ces systèmes, chose qui aide à 

masquer la complexité et minimiser les coûts de développement. Les systèmes de surveillance 

médicales dans un environnement de haute acuité sont un bon exemple des STR, où la présence 

de plus d'un dispositif médical dans une situation clinique peut affecter la sécurité du patient en 

raison du manque de communication entre ces dispositifs, pour cela, l'interopérabilité est 

nécessaire pour éviter la dégradation de l'état de santé des patients. L'interconnexion des 

dispositifs médicaux dans un réseau plus large de serveurs informatiques est la nouvelle 

exigence de la médecine moderne, où l'objectif final est de réaliser l'interopérabilité entre les 

dispositifs médicaux et d'améliorer la sécurité des patients. 

 

 ملخص

 
( في مجموعة متنوعة من التطبيقات، بدءًا من الأنظمة الإلكترونية البسيطة الى الأنظمة  تسُتخدم أنظمة الوقت الفعلي )أ.و.ف

بالوقت، مما يعني أن سلوك هذه الأنظمة يعتمد على   الفعلي مرتبطة  الوقت  أنظمة  الطيران الأكثر تعقيداً.  أنظمة  الطبية و 

القائمة على المركباتية أفضل نموذ ج لتطويرأنظمة الوقت الفعلي وهذا يرجع إلى طبيعتها  متطلبات التوقيت. تعتبرالبرمجة 

الطبية لمريض في حالة  المراقبة  أنظمة  التطوير. تعد  المعيارية، مما يساعد على إخفاء تعقيد هذه الأنظمة وتقليل تكاليف 

الحال أكثر من جهاز طبي واحد في هذه  قد يؤثر وجود  الفعلي، حيث  الوقت  أنظمة  ة على سلامة  سريرية مثالًً جيداً على 

المريض بسبب نقص الًتصال بين هذه الأجهزة، وبالتالي فإن التشغيل التوافقي ضروري لتجنب المخاطر و تدهور الحالة  

الصحية للمرضى. يظهر الترابط بين الأجهزة الطبية في شبكة أوسع من الخوادم الحاسوبية كمتطلب جديد في الطب الحديث، 

 قيق إمكانية التشغيل التوافقي للأجهزة الطبية وتحسين سلامة المرضى. حيث يتمثل الهدف النهائي في تح 
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