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INTRODUCTION

This thesis is devoted to the study of the well-posedness and stability of the linearized version
of a nonlinear model in acoustics known as the Jordon–Moore–Gibson–Thompson equation
(JMGT). We employ various types of dissipation mechanisms and show their effects on the
stability of such equation.

Modeling and previous works
Nonlinear acoustics is a branch of physics dealing with sound waves of sufficiently large
amplitudes that require using full systems of governing equations of fluid dynamics (for
sound waves in liquids and gases) and elasticity (for sound waves in solids). These equations
are naturally nonlinear and, therefore, the theory of nonlinear partial differential equations
can provide valuable insight into the behavior of their solution for a long time.
Many researchers have investigated nonlinear acoustics due to the increasing number of
applications of high-frequency sound waves in medicine and industry such as lithotripsy,
thermotherapy, ultrasound cleaning, and welding, see for instance [1, 32, 39, 40, 46, 57, 79,
80, 92, 100].

Modeling
One of the classical model equations in nonlinear acoustics is the Kuznetsov equation [30,
61, 70]:

utt − c2∆u− δ∆ut =
( 1
c2

B

2A(ut)2 + |∇u|2
)
t
, (1)

where the constants δ, c being the diffusivity and the speed of sound, respectively, and B/A
denotes the parameter of nonlinearity. This equation can be derived from the equation of
fluid dynamics by using the Fourier law of heat conduction in the equation of the conservation
of energy. However, it is also known that by using Fourier’s law we obtain an infinite signal
speed paradox of the energy propagation. That is, any thermal disturbance at a single point
has an instantaneous effect everywhere in the medium. To overcome this drawback in the
Fourier law, one suggestion is to replace the Fourier law with the Maxwell-Cattaneo law.
This process then gives rise to an extra term in (1) which contains a third time derivative
term, with a small constant coefficient τ, referred to as a relaxation time. As a consequence,
the mathematical structure of the underlying model changes drastically from the parabolic
character of the Kuznetsov model (1) to the hyperbolic-like character of the Jordan–Moore–
Gibson–Thompson model (JMGT) [52, 54, 56, 103, 110]:

τuttt + utt − c2∆u− b∆ut =
( 1
c2

B

2A(ut)2 + |∇u|2
)
t
, (2)

where b = δ + τc2.
Our goal in this section is to give a brief derivation of equation (2) from the basic equations
of fluid dynamics. The conservation of mass (the continuity equation), the conservation of
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momentum (Newton’s second law), conservation of energy (first law of thermodynamics or
entropy balance) and the Maxwell-Cattaneo law are given, respectively, by:

• The conservation of mass
∂ϱ

∂t
+∇ · (ϱv) = 0. (3a)

• The conservation of momentum

ϱ
[
vt + (v · ∇)v

]
+∇p = µν∆v +

(
µν
3 + ην

)
∇(∇ · v), (3b)

where µν is the shear viscosity (the first coefficient of viscosity) and ην is the second
coefficient of the viscosity (the bulk viscosity).

• The conservation of energy

ϱθ
[
St + (∇ · v)S

]
=−∇ · q + 2µνD : D+

(
ην −

2
3µν

)
(∇ · v)2 (3c)

where D is the deformation tensor given by

D = 1
2(∇v + (∇v)T )

and the components of D : D are DijDij where Dij denote the components of the
matrix D.

• The Maxwell-Cattaneo law

q(x, t) + τqt(x, t) = −k∇θ(x, t), (4)

where τ > 0 is relaxation time and k > 0 is the heat conductivity.

Let us first start by defining the main physical quantities involved in the description of the
Navier-Stokes equations above (3) and the Maxwell-Cattaneo law (4):

• the velocity v, which is assumed to be irrotational, that is ∇ × v = 0, and could be
expressed via a scalar acoustic velocity potential i.e., v = −∇u, the acoustic pressure
p, the mass density ϱ, the temperature θ, the specific entropy S and the heat flux q.

All these physical quantities are decomposed into their mean (which is typically constant in
space and time) and fluctuating components, such that

v = v0 + ṽ, (5a)
p = p0 + p̃, with ∇p0 = 0 (5b)
ϱ = ϱ0 + ϱ̃ (5c)
θ = θ0 + θ̃ (5d)
S = S0 + S̃. (5e)

2



Following [52, 108], we substitute (5c) into (3a) and assume ϱ0 to be a constant, we find

ϱ̃t + ϱ0∇ · v = −ϱ̃∇ · v − v · ∇ϱ̃. (6)

Now, using the following vector identities

∇(∇ · v) = ∆v +∇×∇× v (7)

v · ∇v = 1
2∇(v · v)− v ×∇× v, (8)

in equation (3b) and exploiting (5b) and (5c) with p0 taken to be a constant, we obtain

(ϱ0 + ϱ̃)
[
vt +

1
2∇(v · v)− v ×∇× v

]
+∇p̃

= µν∆v +
(
µν
3 + ην

)
(∆v +∇×∇× v). (9)

Since the acoustic velocity v is irrotational, that is ∇ × v = 0, as well as, we assume zero
time-mean velocity v0, which implies the identity v = ṽ, and omit the third order fluctuating
term ϱ̃

2∇(v · v), equation (9) can be rewritten in the following form

ϱ0ṽt +
ϱ0
2 ∇(ṽ · ṽ) + ϱ̃ṽt +∇p̃ =

(4µν
3 + ην

)
∆ṽ. (10)

The equation of state is given by

p = p(ϱ, S). (11)

Expanding (11) in a Taylor series around the values (ϱ0, S0), and neglecting the third-order
terms, we arrive at

p− p0 =ϱ0
(
∂p

∂ϱ

)
ϱ0,S0

ϱ− ϱ0
ϱ0

+
ϱ20
2

(
∂2p
∂ϱ2

)
ϱ0,S0

(
ϱ− ϱ0
ϱ0

)2
+
(
∂p

∂S

)
ϱ0,S0

(S − S0) + .... (12)

By defining

A := ϱ0
(
∂p

∂ϱ

)
ϱ0,S0

= ϱ0c
2, B := ϱ20

(
∂2p
∂ϱ2

)
ϱ0,S0

and using (5b), (5c) and (5e), then, equation (12) takes the form

p̃ := A
ϱ̃

ϱ0
+ B

2

(
ϱ̃

ϱ0

)2
+
(
∂p

∂S

)
ϱ0,S0

S̃. (13)
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Now, it only remains to combine the three equations (6), (10) and (13):


ϱ̃t + ϱ0∇ · ṽ = −ϱ̃∇ · ṽ − ṽ · ∇ϱ̃

ϱ0ṽt +
ϱ0
2 ∇(ṽ · ṽ) + ϱ̃ṽt +∇p̃ =

(4µν
3 + ην

)
∆ṽ

p̃ = A
ϱ̃

ϱ0
+ B

2

(
ϱ̃

ϱ0

)2
+
(
∂p

∂S

)
ϱ0,S0

S̃,

(14a)

(14b)

(14c)

respectively, into a single equation. To achieve this combination, we will substitute any phys-
ical quantity in a second-order term with its linearized one, since the resulting errors will be
of third-order. Presicely we will express the second-order terms in (14) by its linearizations:

∇ · ṽ ≈ − 1
ϱ0

ϱ̃t linear continuity equation, (15)

ṽt ≈ − 1
ϱ0

∇p̃ linear Euler equation, (16)

ϱ̃ ≈ p̃

c2
linear state equation, (17)

respectively. Using now the approximations (15) and (17) to rewrite (14a) as

ϱ̃t + ϱ0∇ · ṽ = p̃

ϱ0c4
p̃t −

1
c2
ṽ · ∇p̃. (18)

Furthermore, equation (14c) can be reformulated, by using (17), as

ϱ̃ = p̃

c2
− 1

ϱ0c4
B

2Ap̃2 − 1
c2

(
∂p

∂S

)
ϱ0,S0

S̃. (19)

Next, differentiating (19) with respect to t and using (18), we obtain

p̃t
c2

− 1
ϱ0c4

B

2A(p̃2)t + ϱ0∇ · ṽ − 1
2ϱ0c4

(p̃2)t +
1
c2
ṽ · ∇p̃ = 1

c2

(
∂p

∂S

)
ϱ0,S0

S̃t. (20)

In what follows, the balance law expressing the rate of entropy production, reduces to (see
[31, 46]):

ϱ0θ0S̃t = −∇ · q, (21)

where only the first-order terms of (3c) have been retained. Further, the heat flux equation
(4) takes the form

(1 + τ∂t)q = −k∇θ̃. (22)

Plugging equation (22) into (21), we arrive to

ϱ0θ0(1 + τ∂t)S̃t = k∆θ̃. (23)
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Therefore, from the approximation [105], we have

θ̃ ≈
(
∂θ

∂p

)
p0,S0

p̃,

which gives when using it in (23):

(1 + τ∂t)S̃t =
k

ϱ0c2θ0

(
∂θ

∂p

)
p0,S0

∆p̃. (24)

Now, to eliminate S̃t in (20), we apply the operator (1 + τ∂t) in (20), followed by the use of
equation (24), we obtain

(1 + τ∂t)
[
p̃t
c2

− 1
ϱ0c4

B

2A(p̃2)t + ϱ0∇ · ṽ − 1
2ϱ0c4

(p̃2)t +
1
c2
ṽ · ∇p̃

]
= k

ϱ0c2θ0

(
∂p

∂S

)
ϱ0,S0

(
∂θ

∂p

)
p0,S0

∆p̃. (25)

Next, to compute the coefficient 1
θ0

(
∂p
∂S

)
ϱ0,S0

(
∂θ
∂p

)
S0,p0

in (25), we use the equation of state

for a perfect gas [105], to get,

1
θ0

(
∂p

∂S

)
ϱ0,S0

(
∂θ

∂p

)
S0,p0

= 1
cν

− 1
cp
,

where cp and cv are the specific heats at constant pressure and volume, respectively. Hence,
equation (25) recast as

τ
p̃tt
c2

+ τ

ϱ0c4
B

2A(p̃2)tt −
τ

2ϱ0c4
(p̃2)tt +

p̃t
c2

− 1
ϱ0c4

B

2A(p̃2)t

− 1
2ϱ0c4

(p̃2)t + τϱ0∇ · ṽt + ϱ0∇ · ṽ = k

ϱ0c2

( 1
cν

− 1
cp

)
∆p̃, (26)

where we neglected the second order terms.
On the other hand, by using (15)-(17), one can reformulate equation (14b) as

ϱ0∇ · ṽt +∆p̃ = −ϱ0
2 ∆(ṽ · ṽ) + 1

2ϱ0c2
∆p̃2 − 1

ϱ0c2

(4µv
3 + ηv

)
∆p̃t, (27)

where, we also applied the divergence operator. Differentiating again (26) with respect to
time t and then subtracting the resulting equation from (27), we find

∆p̃− p̃tt
c2

− τ

c2
p̃ttt +

1
c2

[ 1
ϱ0

(4µv
3 + ηv

)
+ k

ϱ0

( 1
cν

− 1
cp

)
+ τc2

]
∆p̃t

= −ϱ0
2 ∆(v · v)− 1

ϱ0c4
B

2A(p̃2)tt. (28)

5



In addition, we use the relations between time and spatial derivatives according to the linear
wave equation for sound pressure and velocity

∆ṽ = ṽtt
c2

,

∆p̃ = p̃tt
c2

,

in the higher order terms, we therefore arrive at

τ

c2
p̃ttt +

p̃tt
c2

−∆p̃− b

c2
p̃ttt =

( 1
ϱ0c4

B

2Ap̃2 + ϱ0
c2

|v|2
)
tt
, (29)

where ϱ0vt = −∇p̃, and b > 0 denotes the diffusivity of sound which is given, as presented
in [71], by

b =
[
K

ϱ0

( 1
cν

− 1
cp

)
+ 1

ϱ0

(4µv
3 + ηv

)
+ τc2

]
.

Moreover by recalling that the acoustic velocity v is irrotational i.e., ∇ × v = 0, and by
introducing the acoustic velocity potential u by v = −∇u, therefore, the equation (29) reads
for the potential u as

τuttt + utt − c2∆u− b∆ut =
( 1
c2

B

2A(ut)2 + |∇u|2
)
t
, ut :=

p̃

ϱ0
(30)

and referred to as the Jordan–Moore–Gibson–Thompson equation given in (2).
We point out that, the linearized part of (30) can also be derived when modeling with
mechanical components, such as springs and dashpots, and known as the standard linear
solid model of viscoelasticity, for more detail see [15, 41]. In fact, these springs represent the
elastic component of the model response and obey Hooke’s law in which the stress σ at any
point is simply proportional to the strain e, i.e.,

σ = Ee,

where E is the Young modulus of the elastic structure. The dashpots represent the viscous
component of a viscoelastic material. Therefore, the vibrations are governed by the following
wave equation

utt(x, t) = a2∆u(x, t),
where a > 0 is the constant wave velocity. Here, we consider vibrations modeled by the
standard linear solid model of viscoelasticity. In this case, a linear spring is connected in
series with a combination of another linear spring and a dashpot in parallel. The stress σ
and strain e are then related by the differential equation

σ + τσ′ = E(e+ βe′),

6



where the constants τ, β are very small satisfying 0 < τ < β. Consequently, the vibrations
of flexible structures are governed by the linear differential equation

τuttt + utt − a2∆u− a2β∆ut = 0 (31)

which is generally called the standard linear solid model. Equation (31) was first derived by
Bose and Gorain [41] to model flexible structural systems possessing internal damping. See
also [15] and [43] for further information and a complete description of the model.
It is significant to mention that a coupled standard linear solid model with a heat equa-
tion modeling an expected dissipative effect through heat conduction has received a lot of
attention, which is reflected in the appearance of many works in the literature treating the
well-posedness, the regularity and the stability of the solution [6, 96, 97].

Previous works
We briefly cite previous work on the above-mentioned equation in bounded and unbounded
domains.

Moore–Gibson–Thompson equation (MGT)
The linearized version of (30) is known as the Moore–Gibson–Thompson equation (MGT):

τuttt + utt − c2∆u− b∆ut = 0 (32)

and plays a crucial role in the investigation of the nonlinear problem. As a result of this
interest, many papers related to the well-posedness and asymptotic behavior of the so-
called Moore–Gibson–Thompson equation, considering different types of dissipation, have
appeared. In [54], Kaltenbacher et al. investigated the following equation:

τuttt + αutt + c2Au+ bAut = 0, (33)

where A is a positive self-adjoint operator, and defined a critical parameter

γ = α− c2τ
b

, (34)

that controls the behavior of the solution. More precisely, they showed that when b = 0,
there is a lack of existence of a semigroup associated with the linear dynamics. While, for
b > 0, they proved that the problem is well-posed and its solution energy

• is exponentially stable if γ > 0 (the non-critical case), i.e.,

Ê(t) ≤ Ce−ωtÊ(0), ω, t > 0

• remains constant if γ = 0 (the critical case),

7



where Ê(t) = E(t) + E0(t), such that

E(t) = b

2 |A
1/2(ut + c2b−1u)|2 + τ

2 |utt + c2b−1ut|2 +
c2

2bγ|ut|
2

and
E0(t) =

α

2 |ut|
2 + c2

2 |A1/2ut|2.

Spectral analysis for this model was performed in [42] and [81]. In fact, for a clear picture
and under a convenient change of variable, Marchand et al. [81] showed that the equation
(33) has a particular structural decomposition. Accordingly, by using the abstract semigroup
approach with a refined spectral analysis, they succeeded in establishing the well-posedness
of (33) and identified a point of accumulation of eigenvalues which essentially theoretically
connects to the exponential decay of energy. The exponential decay rate obtained in [81] are
completed in [98], where the obtention of an explicit scalar product for which the operator
is normal allows the authors to obtain the optimal exponential decay rate of the solutions.
Conejero et al. [28] considered the one-dimensional version of equation (32) and proved a
chaotic behavior of the solution when γ < 0. Their arguments were analytical, not numerical,
and offered new insights on dynamical behavior in more general situations.

On the other hand, to our knowledge, no previous research has investigated the equation
(32) in RN before the work of Pellicer and Said-Houari in [95], where the authors showed the
well-posedness and established the decay rate of the solutions of (32) in the whole space RN

(note that one of the difficulties encountered in RN space is the lack of Poincaré inequality).
They used the energy method in the Fourier space to show, under the assumption β− τ > 0
(same condition given in (34)), that the L2-norm of the vector V = (ut + τutt,∇(u +
τut),∇ut), and of its higher-order derivatives obey the decay rate:

∥∇jV (t)∥L2(RN ) ≤ C(1 + t)−N/4−j/2∥V0∥L1(RN ) + Ce−ct∥∇jV0∥L2(RN ), (35)

with initial data in L1(RN ) ∩ Hs(RN ), s ≥ 1 and j is a positive integer satisfying 0 ≤
j ≤ s. Moreover, they established the optimality of the decay rate in (35) by exploiting the
eigenvalues expansion method. In recent papers [96, 97], the authors of [95] showed that the
condition β − τ > 0 is also a necessary condition for stability. The authors of [26] improved
slightly the results in [95] and showed that the derived estimates in the low-dimensional
cases N = 1 and N = 2 are a little sharper than those in [95], by preparing representation of
solutions in the Fourier space and using asymptotic expansions of eigenvalues together with
WKB analysis. They also derived asymptotic profiles for the linear MGT equation in the
dissipative case in a framework of L1 space, by estimating upper bounds and lower bounds
of the solution itself with u2 ∈ L2(RN ) ∩ L1,1(RN ), and showed an approximate relation
between the linear MGT equation and the linear viscoelastic damped wave equation (or the
strongly damped wave equation).

The memory-type MGT equation has drawn the attention of many researchers lately and
many studies have appeared showing various types of asymptotic stability results that have
been established depending on the values of parameters in the equation and the decay rate
of the relaxation functions. This kind of problems are motivated by a numerous papers on
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the wave equation with memory (or its abstract version):

utt −∆u+
∫ t

0
g(s)∆u(t− s)ds = 0, (36)

where the convolution term
∫ t
0 g(s)∆u(t − s)ds represents the memory effects of materials.

Physically, the damping mechanism caused by viscoelasticity implies the appearance of the
memory term in a system. Indeed, the memory term plays a critical role in the wave equation
and is directly related to whether or how the energy decays. The researchers’ interest led
to understand of what would happen if two different types of damping terms appeared
simultaneously in the same system. Because of this interest, they concluded that the two
terms help the system to dissipate energy, but they do not necessarily improve the decay rate.
As an example, in [25] whereas frictional damping alone yields an exponential decay, only
the polynomial decay can be achieved when an additional memory term with a polynomially
decaying kernel is present. Let us also cite the work of Conti et al. in [29] where they
studied (36) on the whole space RN and obtained some results concerning the decay of the
energy, as time goes to infinity, when g decays either exponentially or polynomially. Some
improvements of the decay rates were also given in [102]. Dell’Oro and Pata in [38] discussed
the relationship between the MGT equation (32) and the equation of linear viscoelasticity:

utt − κ(0)∆u+
∫ ∞

0
κ′(s)∆u(t− s)ds = 0,

for the specific choice of the exponential kernel

κ(s) = ae−bs + c a, b, c > 0.

For an in-depth study on wave-memory system, we refer the reader to [3, 4, 23, 24, 63, 83, 84],
and references therein.
Now let us shade some light on the study of memory damping in the context of a third order
in time system. Precisely, we discuss some results obtained for the MGT equation with a
memory term of the form:

τuttt + αutt − b∆ut − c2∆u+
∫ t

0
g(t− s)∆u(s)ds = 0. (37)

In this regard, the first work studied the equation (37) is established by Lasiecka and Wang in
[65], by replacing−∆u withA and the convolution term

∫ t
0 g(s)Au(t−s)ds with

∫ t
0 g(s)Az(t−

s)ds, and considered three case: z = u (type I memory), z = ut (type II memory) or z = u+ut
(type III memory), imposing the assumption on the relaxation function g:

g′(t) ≤ −c0g(t),

where c0 is a positive constant. They studied the effect of the memory on the decay of the
energy in the sub-critical case γ > 0, where γ is given in (34), and showed how the damping
mechanism induced by the memory term leads to an exponential decay of the solution. In
[5], Alves et al. proved the uniform stability of the MGT model encompassing the three
different types of memory introduced by Lasiecka and Wang [65] in a history space setting
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and they showed some stability results, using the linear semigroup theory. Further, Lasiecka
and Wang [64] looked into (37) and extended their work [65] by allowing the memory kernel
to satisfy a more general decay estimate of the form

g′(t) +H(g(t)) ≤ 0, for all t > 0, (38)

with H(0) = 0 and H is linear or strictly increasing and strictly convex C2 function on
(0, r], r < 1. They proved that the decay rate of the memory kernel is transferred to a decay
rate of the solution when γ > 0. In [75], the authors considered (37) for a class of relaxation
functions satisfying

g′(t) ≤ −ζ(t)H(g(t)), for all t > 0, (39)

and established, by using some properties of the convex functions together with the general-
ized Young inequality, new optimal explicit decay results for the solution in the sub-critical
case γ > 0, depending on g and H, that is

E(t) ≤ k2H
−1
1

(
k1
∫ t

g−1(r)
ζ(s)ds

)
, (40)

whereH1(t) =
∫ r
t H ′(s)/s ds andH1 is strictly decreasing and convex on (0, r], with lim

t→0
H1(t) =

+∞. One can notice, from (40), that the usual exponential and polynomial decay rates are
only special cases. For instance, if we assume H(s) = sp, 1 ≤ p < 2 in (39), then by direct
calculations, we see that the decay of the energy is given by

E(t) ≤


C1e

−c′
∫ t
0 ζ(s)ds, if p = 1,

C2
(
1 +

∫ t
0 ζ(s)ds

)−1/(p−1)
, if 1 < p < 2,

for some constants C1, C2 and c′.
The critical case γ = 0 has been investigated by Dell’Oro et al. [37] in a bounded domain
and proved that system (37), replacing −∆u with A and taking τ = 1, is exponentially
stable if and only if A is a bounded operator. In addition, in the case of an unbounded
operator A, they only proved that the corresponding energy decays polynomially, with the
rate 1/t, at least for regular initial data.

The Jordan– Moore–Gibson–Thompson equation (JMGT) with and without memory
term, has been studied by many researchers. Indeed, Kaltenbacher et al.[55] considered
equation (2) without the term of local nonlinear effects (|∇u|2)t, known as the Westervelt
equation [108]:

τuttt + utt − c2∆u− b∆ut =
1
c2

(
1 + B

2A

)
(ut)2t , (41)

and established the local and global well-posedness and the exponential decay for the energy

E(t) ≡ |Au(t)|2 + |A1/2ut(t)|2 + |utt(t)|2,
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under a certain parameter range γ > 0. Additionally, Kaltenbacher and Nikolić in [56]
established the well-posedness with and without the quadratic velocity term (|∇u|2)t on the
right-hand side of (2) corresponding to the Kuznetsov and the Westervelt nonlinearities,
respectively. In addition, they also proved, as τ → 0, that the limit of (2) leads to the
classical Kuznetsov (1) model.
Racke and Said-Houari [103] treated the initial value problem associated with (2) in R3.
First, they proved a local existence result in appropriate functional spaces by employing the
contraction mapping theorem as well as a global existence result for small data exploiting
the energy method with a bootstrap argument. They also proved a polynomial decay rate
of the solution which depends on the space dimension as long as the condition γ > 0 is
satisfied. Quite recently, Said-Houari [106] improved the global existence result in [103] by
assuming only the lower-order Sobolev norms of the initial data to be small, whereas the
higher-order norms could be arbitrarily large.
Later, the memory-type JMGT equation has also received its share of attention. Lasiecka
[62] considered the following JMGT equation with memory and in the absence of quadratic
gradient nonlinearity:

τuttt + αutt + c2Au+ bAut −
∫ t

0
g(t− s)Aw(s)ds = 1

c2

(
1 + B

2A

)
(ut)2t (42)

and proved the local and global existence (in time) of smooth solutions. Precisely, her study
indicates that with appropriate calibration of the memory kernel, solutions exist globally for
sufficiently small and regular initial data. These solutions exhibit exponential decay rates
with an exponentially decaying memory kernel. Nikolić and Said-Houari [90] proved, under
the assumption that the relaxation kernel decays exponentially, the local well-posedness in
unbounded two- and three-dimensional domains. They also showed that the solution of
the three-dimensional model exists globally in time and the energy of the system decays
polynomially. Further, in RN for all N ≥ 3, the authors in their recent work [91] extended
the analysis of [90] by taking into account the local effects in nonlinear sound propagation
|∇ut|2, which leads to a quadratic gradient nonlinearity. Global existence is shown by
exploiting a sequence of high-order energy uniform in time bounds and is derived under the
assumption of an exponentially decaying memory kernel and sufficiently small and regular
initial data. Moreover, recently, Nikolić and Said-Houari in [89], studied the asymptotic
behavior of the nonlocal Jordan–Moore–Gibson–Thompson equation:

τuttt + αutt − c2∆u+−b∆ut −
∫ t

0
g(s)∆u(t− s)ds =

(
ku2t + |∇u|2

)
t
, (43)

in the critical case b = τc2 and where g is decaying exponentially. The authors are the
first to have investigated the nonlinear problem (43) in critical case. They demonstrated
the global existence and the asymptotic decay of the solutions in RN , N ≥ 3, for smooth
and small initial data. Knowing previously that the solutions of the linearized version of
(43) for the critical case had the regularity-loss property, which thus presented an obstacle
to the proof of nonlinear stability because the classical energy method fails. To deal with
this issue, the authors proved the decay estimates for a solution with lower Sobolev regular-
ity, by constructing appropriate time-weighted standards, where weights can have negative
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exponents.

MGT equation with heat conduction
We end this section by recalling some related work with the so-called standard linear solid
model coupled to the different thermal conductions in the bounded or unbounded domain.
In this regard, Alves et al. in [6] studied the standard linear solid model coupled with the
classical Fourier law of heat conduction:

τuttt + utt − a2∆u− a2β∆ut + η∆θ = 0,
θt −∆θ − τη∆utt − η∆ut = 0, (44)

where x ∈ Ω (a bounded open connected set in RN ). They proved, in the case of γ > 0
(same γ given in (34)), that the energy decays exponentially with respect to time by using
multiplier techniques. Pellicer and Said-Houari in [97] treated (44) in the whole space RN

and under the assumption γ ≥ 0, (44) indicates the following decay estimates:

• Sub-critical case, γ > 0:

∥∇kVF (t)∥L2(RN ) ≤ C(1 + t)−
N
4 −

k
2 ||V 0

F ||L1(RN ) + Ce−ct∥∇kV 0
F ∥L2(RN ), (45)

where, VF (x, t) = (τutt + ut,∇(τut + u),∇ut, θ)T (x, t) and V 0
F = VF (x, 0).

• Critical case, γ = 0:

∥∇kWF (t)∥L2(RN ) ≤ C(1 + t)−
N
8 −

k
4 ||W 0

F ||L1(RN ) + Ce−ct∥∇kW 0
F ∥L2(RN ), (46)

where, WF (x, t) = (τutt + ut,∇(τut + u), θ)T (x, t) and W 0
F = WF (x, 0).

In addition, using the eigenvalues expansion method, they confirmed the optimality of the
previous decay rates. Observing that, in the sub-critical case, the decay rate obtained by
coupling the standard linear solid model with Fourier law of heat conduction is the same as
in the Cauchy problem (MGT) without heat conduction (see [95]). While, for the critical
case they showed a slower decay rate, since heat conduction is the only cause of dissipation
and the problem will be asymptotically stable. Pellicer and Said-Houari, in their recent
work [96], studied the following standard linear model coupled with the Cattaneo law of
heat conduction:

τuttt + utt − a2∆u− a2β∆ut + η∆θ = 0,
θt + γ∇.q − τη∆utt − η∆ut = 0,
τ0qt + q + κ∇θ = 0, (47)

where, x ∈ RN , and showed that the decay rates obtained are the same as those achieved
when the model is coupled by Fourier heat conduction. The only difference lies in the
requirement for more regularity of the initial data to obtain these decay rates (see (45) and
(46)).
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The coupling of the standard linear solid model of viscoelasticity with the Gurtin and Pipkin
heat conduction reads as follows:

τuttt + utt − a2∆u− a2β∆ut + δ∆θ = 0,

θt −
1
κ

∫ ∞

0
g(s)∆θ(t− s) ds− τδ∆utt − δ∆ut = 0, (48)

where a2 > 0 is the constant wave velocity, and τ, β, δ, κ are positive constants. The memory
kernel g(s) is a convex summable function on [0,∞) with total mass of∫ ∞

0
g(s) ds = 1.

Very recently, Wang and Liu [111] studied, in the whole space RN , the system (48) and
established the estimate of the decay of the solution in the sub-critical case 0 < τ < β
(which corresponds to condition γ > 0), by employing the method of [96] and [97]. They
showed the following decay estimate:

∥∇kV (t)∥L2(RN ) ≤ C(1 + t)−
N
12−

k
6 ∥V0∥L1(RN ) + C(1 + t)−

ℓ
6∥∇k+ℓV0∥L2(RN ),

for all 0 ≤ k + l ≤ s and where V0 ∈ Hs(RN ) ∩ L1(RN ).

Our contributions
In this thesis, taking inspiration from all the results cited above, we have dealt with the
existence and stability of the solutions of the Moore–Gibson–Thompson (MGT) equation
with and without a memory term. We summarize our contribution as follows:
▶ In chapter 1: We give some preliminaries, then we discuss, in RN , the well-posedness

and the decay rate of the solution of the MGT equation with memory

τuttt(t) + αutt(t)− β∆ut(t)− γ∆u(t) +
∫ t

0
g(s)∆u(t− s)ds = 0, (49)

where g satisfies the following differential inequality

g′(t) ≤ −δg
p+1
p (t), for all t ≥ 0, p > 1.

We prove that the problem (49) is well-posed in some appropriate functional spaces
using the semigroup approach. By applying the energy method in Fourier space we
build appropriate Lyapunov functionals that are used to prove the asymptotic stability
and to give the decay rate of an energy norm for the solution of the problem (49). More
precisely, for the asymptotic behavior we prove the following:

• First, for the sub-critical case αβ−τγ > 0 (which corresponds to (34)) and when g
decays either exponentially or polynomially, we give the decay rate of the solution
and its higher-order derivatives (see Theorem 1.1 below). For instance if g decays
exponentially, we prove that the solution decays exactly as in (35).
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• Second, in the critical case αβ − τγ = 0, we discuss the stability of (49) with a
memory term of the form: ∫ t

0
g(s)∆z(t− s)ds

with z = u (type I memory) or z = αu + τut (type III memory). In the type I
memory, we show that the decay results obtained are slightly different from the
previous ones. In fact, if g decays polynomially, the stability problem for the type
I memory is left open. If g decays exponentially, the solution of our system is of
regularity-loss type, (see Theorem 1.2 below). A similar dissipative form of our
results was obtained in Timoshenko dissipative systems studied by many authors,
see for instance, Hosono et al. [49], Ide et al. [51], Kawashima [58] and references
therein.
For the type III memory, we proved the decay rate in both case, when g decays
exponentially and polynomially (Theorem 1.3). The main idea that we applied
here is that for the critical case αβ − τγ = 0, we succeeded to rewrite (49) as a
second order in “time” wave equation for the unknown τut + αu with a “nice”
memory term that allows us to apply the energy method. Our result in this case
agrees with those in [29]. For the type II memory (i.e., z = ut) and if g decays
exponentially, then it seems that a decay result under the new assumption

αβ − τγ − α(γ − ℓ) > 0

is possible. However, the case where g is decaying polynomially seems more
challenging.

Note that these results were published in [16].

▶ In chapter 2: We investigate the following in a viscoelastic Moore–Gibson–Thompson
equation with a type-II memory term in RN :

uttt(t) + αutt(t)− β∆ut(t)− γ∆u(t) +
∫ t

0
g(t− s)∆ut(s)ds = 0, t > 0,

together with initial data

u(0) = u0, ut(0) = u1, utt(0) = u2,

for relaxation functions g satisfying

g′(t) ≤ −η(t)g(t) ∀t ≥ 0

and establish a general decay rate result under the condition

β − γ

α
− ϱ

2 > 0,

where ϱ =
∫∞
0 g(s)ds. Then, we find the following decay rate of the L2-norm of the
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vector U = (utt + αut,∇(ut + αu),∇ut) and those of its higher-order derivatives:

∥∇jU(t)∥L2(RN ) ≤c1
(
1 +

∫ t

0
η(s)ds

)− j
2−

N
4 ∥U0∥L1(RN )

+ c1e
−c2

∫ t
0 η(s)ds∥∇jU0∥L2(RN ).

This result was published in [18].

▶ In chapter 3: Our interest lies in the coupling of the standard linear solid model of
viscoelasticity with the Gurtin and Pipkin heat conduction in whole space, namely,

τuttt + utt − a2∆u− a2β∆ut + δ∆θ = 0,

θt −
1
κ

∫ ∞

0
g(s)∆θ(t− s) ds− τδ∆utt − δ∆ut = 0, (50)

where g′(s) = −µ(s) and µ(s) satisfies

µ′(s) ≤ −νµ(s) ∀s > 0.

We begin by stating the well-posedness of the system and then the asymptotic behavior,
where we improve the result in [111] for the sub-critical case and obtain the optimal
decay estimate. In addition, we investigate the critical case. In fact, the decay rates
are of regularity-loss type and are given as follows, for any t ≥ 0,

• Sub-critical case: 0 < τ < β :

∥∇kV (t)∥L2(RN ) ≤C(1 + t)−
N
4 −

k
2 ∥V0∥L1(RN )

+ C(1 + t)−
ℓ
2∥∇k+ℓV0∥L2(RN ),

where V (ξ, t) = (ut + τutt,∇(u+ τut),∇ut, θ).
• Critical case: 0 < τ = β :

∥∇kVc(t)∥L2(RN ) ≤C(1 + t)−
N
4 −

k
2 ∥V 0

c ∥L1(RN )

+ C(1 + t)−
ℓ
4∥∇k+ℓV 0

c ∥L2(RN ),

where Vc(ξ, t) = (ut + τutt,∇(u+ τut), θ).

Hence, for the sub-critical case the L2–norm of the solution decays with rate (1+t)−N/4

which is faster than that of (1 + t)−N/12 obtained in [111]. This result extends those
in [95], [96] and [97]. While for the critical case 0 < τ = β, the decay rates obtained
by adding the Fourier or Cattaneo law to the standard linear solid model are slower
than that obtained in our case coupled with Gurtin-Pipkin heat conduction.
This work is published in the Journal of Mathematical Analysis and Applications [17].
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▶ In chapter 4: Under certain setting, we consider the third order in time abstract
evolution equation set in the Hilbert space H:{

uttt +Butt +A0u+A1ut = 0,
u(0) = u0, ut(0) = u1, utt(0) = u2,

(51)

where u0, u1, and u2 are initial data in appropriated Hilbert spaces. Our first goal is
to show that problem (51) is well-posed. We further find sufficient conditions, that
guarantee the exponential decay of the energy. Since this sufficient condition is quite
strong, we concentrate on the degenerate case

α− β ≥ 0, a. e. in Ω,

for which, as we will show, exponential, polynomial or even logarithmic decays are
available. This is performed by comparing the resolvent of our operator with the one
of the wave equation with frictional interior damping

utt −∆u+ (α− β)ut = 0 in Ω× (0,+∞),
u = 0 on ∂Ω× (0,+∞),
u(·, 0) = u0 and ut(·, 0) = u1 in Ω.

Indeed we show that the same behavior of the resolvent of the following standard
Moore–Gibson–Thompson system

uttt + αutt + β∆u+∆ut = 0, in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),
u(0, ·) = u0, ut(0, ·) = u1, utt(0, ·) = u2, in Ω,

(52)

is the square of the behavior of the resolvent of this damped wave equation under
condition:

α− β ≥ κ > 0 a. e. in ω0, (53)

where ω0 is non empty open subset of Ω. Hence under some geometrical condition on
ω0, system (52) is proved to be exponential, polynomial or even logarithmic decaying.
All these results have been published in [87].

▶ In chapter 5: We consider the well-posedness and the long time behavior of some
evolution equations with memory,

uttt + αutt −∆ut − γ∆u+
∫ t

0
g(s)∆u(t− s)ds = 0, in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0, .) = u0, ut(0, .) = u1, utt(0, .) = u2, in Ω,
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where g is a memory kernel that is exponentially decaying, namely

g′(s) ≤ −δg(s)

and α is a function that is supposed to be in L∞(Ω). The purpose of this work is to
combine ideas from [37] and [87] to prove polynomial stability results for α ∈ L∞(Ω)
satisfying (5.2). With no further assumption, we prove a semi-uniform stability result
by using the frequency domain approach, the decay reveals to be optimal for kernels
for which the absolute value of its derivatives up to order 3 are exponentially decaying
at infinity. On the contrary if the wave equation in Ω with a frictional interior damping
in a non empty subset ω0 is exponentially stable or polynomially stable with a decay
rate in t−

1
m with initial data in the domain of the wave operator with 0 < m < 1, we

prove a better decay rate of the energy if α − γ is uniformly bounded from below in
ω0.
The results obtained in this chapter have been published in [88].

Notation and some technical inequality
We indicate in this section the notations and some technical inequality used throughout
the thesis and all the important tools and lemmas, which are necessary to obtain various
estimates.

• Throughout this thesis, we denote by c a generic positive constant.

• We used the following standard Hilbert space

H1(RN ) =
{
u ∈ L2(RN ) : ∂u

∂xi
∈ L2(RN ),∀i = 1, ..., N

}
,

where the inner product and norm are denoted by

⟨u, v⟩H1(RN ) =
∫
RN

uvdx+
∫
RN

∇u∇vdx,

∥u∥2
H1(RN ) =

∫
RN

|u|2dx+
∫
RN

|∇u|2dx.

We use the notations ⟨u, v⟩1 = ⟨u, v⟩H1(RN ) , ∥u∥
2
1 = ∥u∥2

H1(RN ) and ⟨x, ¯̂y⟩ = x¯̂y.

• For 1 ≤ p < ∞, we define:

u ∈ Lp(RN ) =
{
u : RN → C; u is measurable and

∫
RN

|u(x)|p dx < ∞
}
.
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• For p = ∞, we have:

u ∈ L∞(RN ) =
{
u : RN → C; u is measurable and∃c ≥ 0, such that

|u| ≤ c, for almostx ∈ RN
}
.

• Let T > 0 and let X be a Hilbert space. Denote by C([0, T ];X) the space of continuous
functions defined on [0, T ] with values in X. It is known that C([0, T ];X) is a Banach
space.

• We are using the standard notation for the partial derivatives, gradient, and Laplace:

ut =
∂u

∂t
, utt =

∂2u
∂t2

, uttt =
∂3u
∂t3

,

∇u =
(
∂u

∂xi

)
1≤i≤n

, and ∆u =
n∑

i=1

∂2u

∂x2i
.

Let V and W be two Banach spaces, A linear operator A : V → W is said:

• Self-adjoint: A = A⋆, where A⋆ is called the adjoint of A.

• Bounded: There exists some M > 0 such that for all v in V, ∥Av∥W ≤ M∥v∥V .

• Compact: If A maps the unit ball of V into a relatively compact subset of W (that is,
a subset of W with compact closure).

• Range of A : Ran A = {Ax : x ∈ D(A)} , kernel of A : kerA = {x ∈ D(A) : Ax = 0} ,
the resolvent set of A : ϱ(A) = {λ ∈ C : λI − A is bijective}, spectrum of A : σ(A) =
C/ϱ(A).

• Injective: A is said to be injective, if and only if kerA = {0}.

• Isomorphism: A bijective bounded linear operator A is an isomorphism if and only if
A−1 is continuous.

• Dissipative: if for every x ∈ D(A) there is a x⋆ ∈ F (x)(duality set), such that
Re ⟨Ax, x⋆⟩ ≤ 0.

• Fredholm operator: One says that A ∈ L(V,W ) is a Fredholm operator if it satisfies:

i) kerA is finite-dimensional.
ii) Ran A is closed and has finite co-dimension.

The index of A is defined by

indA = dimkerA− codim RanA.
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Either in RN , or assuming that Ω is an open and bounded subset of RN , and ∂Ω is C1, we
have the following identities and inequalities:

1. Young’s Inequality: Let 1 < p, q < ∞ and 1
p
+ 1

q
= 1. Then

ab ≤ ap

p
+ bq

q
(a, b > 0).

2. Cauchy-Schwarz’s inequality: For all vectors u and v in Hilbert space H, then

| ⟨u, v⟩ |2 ≤ ⟨u, u⟩ ⟨v, v⟩ .

3. Hölder’s Inequality: Assume 1 ≤ p, q ≤ ∞ with 1
p
+ 1

q
= 1. Then if u ∈ Lp(Ω),

v ∈ Lq(Ω), we have ∫
Ω
|uv| dx ≤ ∥u∥Lp(Ω)∥v∥Lq(Ω).

The following technical lemmas will be needed in the proof of the our main results. No
proofs are included but references are provided.

Lemma 0.1. [29, Lemma 1.1]. Let k ≥ 1, t ≥ 0. Then the following estimate holds:∫ 1

0
rk−1e−r2tdr ≤ c(k)(1 + t)−k/2. (54)

Lemma 0.2. [29, Lemma 1.2]. Let k ≥ 1,m > 0 and t ≥ 0. Then

∫ 1

0
rk−1

(1 + rt)mdr ≤

 c(m, k)(1 + t)−min(m,k), if m ̸= k,

c(k)(1 + t)−k log(2 + t), if m = k.
(55)

Lemma 0.3. [112, Lemma 4.24]. Assume that η(t) > 0, for all t ≥ 0. Then we have:

∥|ξ|ℓe−c|ξ|2
∫ t
0 η(s)ds∥Lp ≤ c

(
1 +

∫ t

0
η(s)ds

)− ℓ
2−

n
2p
, ∀t ≥ 0. (56)

We close the part of the lemmas with the following lemma which is an important tool to
obtain various estimates below.

Lemma 0.4. [8, page.17].(classical differential version of Gronwall lemma) We assume that
u ∈ C([0, T );R), T ∈ (0,∞) satisfies the differential inequality:

u′ ≤ a(t)u+ b(t), a.e. in (0, T ),

for some a, b ∈ L1(0, T ). Then, u satisfies the pointwise estimate:

u(t) ≤ eA(t)u(0) +
∫ t

0
b(s)eA(t)−A(s)ds, ∀t ∈ [0, T ),
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where, A(t) =
∫ t

0
a(s)ds.

In the sequel, we state the main definitions, corollaries and theorems useful to obtain our
results thereafter.

Definition 0.5. A family of bounded linear operators (S(t))t≥0 on a Banach space X is a
strongly continuous semigroup (or C0−semigroup on X) if it satisfies the following proper-
ties:

(i) S(0) = I,

(ii) S(t+ s) = S(t)S(s), ∀t, s ≥ 0,

(iii) limt→0 ∥S(t)x− x∥X = 0, ∀x ∈ X.

Definition 0.6. A strongly continuous semigroup (S(t))t≥0 on X is a semigroup of contrac-
tions if:

∥S(t)∥ ≤ 1, for all t ≥ 0.

Corollary 0.7. [34] A necessary and sufficient condition that a strongly continuous semi-
group T (t) of class C0 defined on a complex Hilbert space satisfies the condition ∥T (t)∥ ≤
M0e−αt, where α > 0, is that for each x in X the integral

∫∞
0 ∥T (t)x∥2dt be convergent.

Theorem 0.8. [19, Corollary 5.8](Lax-Milgram) Let (H, ∥.∥H , (., .)H) be a Hilbert space and
a(x, y) is a bilinear, continuous and coercive functional, i.e. there exist C, α > 0, such that:
∀x, y ∈ H,

|a(x, y)| ≤ C∥x∥H∥y∥H and a(x, x) ≥ α∥x∥2H ,

then for any continuous linear form L of H there exists a unique u ∈ H, such that:

a(u, x) = L(x), ∀x ∈ H.

Theorem 0.9. [94, Theorem 4.3](Lumer-Phillips) Let A be a linear operator with dense
domain D(A) in X

(a) If A is dissipative and there is a λ0 > 0 such that the range, R(λ0I − A), of λ0I − A
is X, then A is the infinitesimal generator of a C0−semigroup of contractions on X.

(b) If A is the infinitesimal generator of a C0−semigroup of contractions on X then R(λ0I−
A) = X for all λ > 0 and A is dissipative. Moreover, for every x ∈ D(A) and every
x⋆ ∈ F (x), Re ⟨Ax, x⋆⟩ ≤ 0.

Theorem 0.10. [14, Theorem 2.4](Borichev-Tomilov theorem) Let (T (t))t≤0 be a bounded
C0−semigroup on a Hilbert space H with generator A, such that iR ⊂ ϱ(A). Then for a
fixed α > 0, the following conditions are equivalent:

i: ∥R(is, A)∥ = O(|s|α), s → ∞.

ii: ∥T (t)(−A)−α∥ = O(t−1), t → ∞.
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iii: ∥T (t)(−A)−αx∥ = O(t−1), t → ∞, x ∈ H.

iv: ∥T (t)A−1∥ = O(t−1/α), t → ∞.

v: ∥T (t)A−1x∥ = O(t−1/α), t → ∞, x ∈ H.

Theorem 0.11. [101](Huang and Prüss theorem) Let S(t) = eAt be a C0−semigroup of
contractions on Hilbert space. Then S(t) is exponentially stable iff:

ϱ(A) ⊇ {iω : ω ∈ R} ≡ iR, and lim
|ω|→∞

∥iωI − A)−1∥ < ∞

hold, where ϱ(A) is the resolvent set of A.

Theorem 0.12. [66, Theorem 4.2](Calderón theorem) Let g be such that |g(y)| ≤ C|y|.
Let Ω be a connected open set in RN and let ω ⋐ Ω, with ω ̸= ∅. If u ∈ H2(Ω) satisfies
Pu = g(u) in Ω and u(x) = 0 in ω, then u vanishes in Ω.

Theorem 0.13. [48](Plancherel theorem) If f ∈ L1(RN ) ∩ L2(RN ), then f̂ is in L2(RN )
and the following formula of Plancherel holds:

∥f̂∥2 = ∥f∥2, (57)

where f̂(ξ) =
∫
RN

f(x)e−2iπx.ξ dx, with x.ξ is the scalar product of x by ξ in RN .

The map f → f̂ has a unique extension to a continuous, linear map from L2(RN ) into
L2(RN ) which is an isometry, i.e., Plancheral’s formula (57) holds for this extension. We
continue to denote this map by f → f̂ (even if f /∈ L1(RN )).
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CHAPTER 1
DECAY RATES FOR THE MOORE–GIBSON–THOMPSON

EQUATION WITH MEMORY

1.1 Introduction

The mathematical community has got interested in the third-order PDE model for acoustic
wave propagation as a consequence of their physical justification. The interest was certainly
motivated at least initially by the difficulties and challenges encountered in the study and
analysis of the MGT equation, differently from the linearization of the Kuznetsov and West-
ervelt equations, which is the well-known, parabolic-like, strongly damped wave equation.
As a result of this interest, a large number of works have studied the asymptotic behavior
of the Moore–Gibson–Thompson equation (MGT) equation, using different types of dissipa-
tion. See, for instance [5, 6, 26, 35, 36, 54, 55, 64, 65, 95] and references therein for more
information. In this regard, the main goal of this chapter is to investigate the existence and
stability of the solutions for the MGT equation with a memory term in the whole space RN ,
namely,

τuttt(t) + αutt(t)− β∆ut(t)− γ∆u(t) +
∫ t

0
g(s)∆z(t− s)ds = 0, (1.1)

together with the following initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x), (1.2)

where z = u (type I memory) and z = αu + τut (type III memory). First, following [37]
and [95], we show that the problem is well-posed under an appropriate assumption on the
coefficients of the system. Then, we built some Lyapunov functionals by using the energy
method in Fourier space. These functionals allows us to get control estimates on the Fourier
image of the solution. These estimates of the Fourier image together with some integral
inequalities lead to the decay rate of the L2−norm of the solution. We use two types
of memory term here: type I memory term and type III memory term. Decay rates are
obtained in both types. More precisely, decay rates of the solution are obtained depending
on the exponential or polynomial decay of the memory kernel. More importantly, we show
stability of the solution in both cases: a sub-critical range of the parameters and a critical
range. However for the type I memory we show in the critical case that the solution has the
regularity-loss property.
We briefly state the main results of this chapter. First, we state the decay results for the
sub-critical case αβ > τγ.

Theorem 1.1. Let u be the solution of (1.1), (1.2). Assume that αβ > τγ. Let U =
(αut+ τutt,∇(αu+ τut),∇ut) and assume in addition that U0 ∈ L1(RN )∩Hs(RN ). Then,
for all 0 ≤ j ≤ s, we have:

(i) For p = ∞ :

∥∇jU(t)∥L2(RN ) ≤ C(1 + t)−N/4−j/2∥U0∥L1(RN ) + Ce−ct∥∇jU0∥L2(RN ). (1.3)
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(ii) For p⋆ < p < ∞ :

∥∇jU(t)∥L2(RN ) ≤ CIj0

(1 + t)−min( 1
2p ,

N
4 +

j
2 ), if 2j +N ̸= 2

p ,

(1 + t)−
1
2p log(2 + t), if 2j +N = 2

p ,
(1.4)

where C, c are two positive constants independent of t and U0 and Ij0 = ∥∇jU0∥L2(RN ) +
∥U0∥L1(RN ).

The proof of the above theorem will be given in Section 1.5 and it is based on Proposition
1.9 below. As we have said in the introduction, in the absence of the memory term, that
is for g = 0 the assumption αβ > τγ has been proved in [95] to be a necessary condition
for the stability result. Here, we show that in the presence of the memory damping term,
then we can push the stability result even to the critical case αβ = τγ. Hence, we have the
following theorem. Our second main result reads as follows.

Theorem 1.2. Let u be the solution of (1.1), (1.2). Assume that αβ = τγ. Let U =
(αut + τutt,∇(αu+ τut),∇ut) and assume in addition that U0 ∈ L1(RN ) ∩Hs(RN ). Then
for all k + j ≤ s and for p = ∞, we have

∥∇jU(t)∥L2(RN ) ≤ C(1 + t)−N/4−j/4∥U0∥L1(RN ) + C(1 + t)−k/2∥∇j+kU0∥L2(RN ), (1.5)

where C, c are two positive constants independent of U0 and t.

The proof of Theorem 1.2 is based on Proposition 1.14. We have |ξ|2
(1+|ξ|2)2 ∼ c|ξ|−2

for |ξ| → ∞, this behavior in high frequency region causes the worse decay (1.5) of the
regularity-loss type. Indeed, the second term on the right-hand side of (1.5), which comes
from the high frequency part, shows that we can get the decay rate t−k/2 of the solution
only under kth order of regularity on the initial data.

Now, we present the main result of the energy decay in the critical case for the memory
type III (the sub-critical case is easier). We can easily see that for αβ = τγ, we can rewrite
the problem (1.1) with the type III memory as a second order in ”time” wave equation with
a memory term of the form

τztt − β∆z + τ
∫ t

0
g(s)∆z(t− s)ds = 0, (1.6)

where z = αu+ τut. Now, we state the main result of the decay rate of the L2-norm of the
energy

E(t,∇z, zt) =
1
2

[
ℓ̃∥∇z∥2L2 + τ∥zt∥2L2 + τ

∫ ∞

0
g(s)∥∇µt(s)∥2L2ds

]
.

where z(x, t) is the solution of (1.6) and µtt(s) = −µts(s) + zt(t).

Theorem 1.3. Let z be the solution of (1.6). Assume that Z(0) = (zt(0),∇z(0)) ∈ L1(RN )∩
Hs(RN ) for all 0 ≤ j ≤ s. Then, we have for Z(t) = (z(t),∇z(t))
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(i) for p = ∞ :

∥∇jZ(t)∥L2 ≤ C(1 + t)−N/4−j/2∥Z0∥L1(RN ) + Ce−ct∥∇jZ0∥L2(RN ), (1.7)

(ii) for p⋆ < p < ∞ :

∥∇jZ(t)∥L2 ≤CJj0

(1 + t)−min(1/2p,N/4+j/2), if 2j +N ̸= 2
p ,

(1 + t)−1/2p log(2 + t), if 2j +N = 2
p ,

(1.8)

where
Jj0 = ∥∇jZ0∥L2(RN ) + ∥Z0∥L1(RN ),

C and c are two positive constants independent of t and the initial data.

The proof of Theorem 1.3 is a result of the pointwise estimates in Proposition 1.18.

1.2 Preliminaries and well-posedness of the problem

In this section, we state some preliminaries and assumptions, then we prove the existence
and uniqueness of the solutions of the MGT equation (1.1). We impose now the basic
assumptions on g as follows:

(G1) g : R+ → R+ is a nonincreasing twice differentiable function, such that

g(0) > 0, γ −
∫ ∞

0
g(s)ds = ℓ > 0

and g′(s) ≤ 0 for every s > 0.

(G2) For some δ > 0 the function g satisfies the following differential inequality:

g′(t) ≤ −δg
p+1
p (t), for all t ∈ (0,∞) and p⋆ < p ≤ ∞,

where p⋆ = 1+
√
5

2 .

(G3) g′′ ≥ 0 almost everywhere.

Remark 1.4. There are many functions satisfying (G1) and (G2). Examples of such func-
tions are, for b > 0, q > 0, ν > 1, and a > 0 small enough,

g1(t) =
a

(1 + t)ν , g2(t) = ae−b(t+1)q .

We immediately adopt the following lemma from [78] without proof which will be used in
the sequel.
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Lemma 1.5. Assume that the assumption (G2) is satisfied. Then for any ν ∈ (1/p, 1), there
exists a positive constant c0 = c0(p, ν, γ, ℓ), such that∫ ∞

0
[g(s)]ν ds ≤ c0 < ∞.

Now, we use a change of variables from Dafermos [33] and extend the solution of (1.1)
for all times, by setting u(x, t) = 0 when t < 0 and considering for t ≥ 0 the auxiliary past
history variable η(t, s) = ηt(s), defined as:

ηt(s) = u(t)− u(t− s), t ≥ 0, s ∈ R+. (1.9)

Consequently, the problem (1.1) together with (1.2) read as:τuttt(t) + αutt(t)− β∆ut(t)− ℓ∆u(t)−
∫ ∞

0
g(s)∆ηt(s)ds = 0,

ηtt(x, s) + ηts(x, s) = ut(x, t),
(1.10)

with the initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x), η0(x, s) = η0(s). (1.11)

Introducing now the (−g′)-weighted L2-space

M = L2
(−g′)(R

+, H1(RN )),

endowed with the inner product

⟨ηt, η̃t⟩M =
∫ ∞

0
−g′(s)⟨∇ηt(s),∇η̃t(s)⟩L2(RN )ds

and with the following associated norm

∥ηt∥2M =
∫ ∞

0
−g′(s)∥∇ηt(s)∥2

L2(RN )ds,

for all ηt, η̃t ∈ M. In addition, we consider the infinitesimal generator of the right-translation
C0-semigroup on M, i.e., the linear operator T given by

Tηt = −(ηt)′ with D(T ) = {ηt ∈ M : (ηt)′ ∈ M, ηt(0) = 0},

where the prime stands for the distributional derivative with respect to the variable s > 0.
In order to write the problem (1.10) as a first-order “in time” evolution equation, we introduce
the change of variables:

v = ut, and w = utt,
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and hence, we rewrite (1.10) as a first order system of the form:

ut = v,

vt = w,

τwt = −αw + β∆v + ℓ∆u+
∫ ∞

0
g(s)∆ηt(s)ds,

ηtt = v − ηts.

(1.12)

Now, the problem (1.12) with initial data (1.11) can be reduced to
d

dt
U(t) = AU(t), t ∈ (0,+∞),

U(x, 0) = U0.
(1.13)

where U(t) = (u(t), v(t), w(t), ηt), U0 = (u0, v0, w0, η0), and A is the linear operator given
by

AU = A


u
v
w
ηt

 =


v
w

−α

τ
w + β

τ
∆v + ℓ

τ
∆u+ 1

τ

∫ ∞

0
g(s)∆ηt(s)ds

v + Tηt

 . (1.14)

Inspired by [37], we define the Hilbert space

H = H1(RN )×H1(RN )× L2(RN )×M,

with the following inner product

(U, Ũ)H = ℓ

α
⟨(αu+ τv), (αũ+ τ ṽ)⟩1 +

τ

α
(αβ − τℓ) ⟨v, ṽ⟩1

+ ⟨(αv + τw), (αṽ + τw̃)⟩L2(RN ) + τ⟨ηt(s), η̃t(s)⟩M

+ α
∫ ∞

0
g(s)⟨∇ηt(s),∇η̃t(s)⟩L2(RN )ds

+ τ
∫ ∞

0
g(s)

[
⟨∇ηt(s),∇ṽ⟩L2(RN ) + ⟨∇v,∇η̃t(s)⟩L2(RN )

]
ds (1.15)

and the corresponding norm

∥U∥2H = ℓ

α
∥(αu+ τv)∥21 +

τ

α
(αβ − τℓ)∥v∥21 + ∥αv + τw∥2

L2(RN ) + τ∥ηt(s)∥2M

+ α
∫ ∞

0
g(s)∥∇ηt(s)∥2

L2(RN )ds+ 2τ
∫ ∞

0
g(s)⟨∇ηt(s),∇v⟩L2(RN )ds. (1.16)
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For all vectors U = (u, v, w, ηt) and Ũ = (ũ, ṽ, w̃, η̃t) in H. We consider (1.13) in the Hilbert
space H, with the following domain of the operator A:

D(A) =

(u, v, w, η) ∈ H

∣∣∣∣∣∣∣∣∣
w ∈ H1(RN )

β

τ
v + ℓ

τ
u+ 1

τ

∫ ∞

0
g(s)ηt(s)ds ∈ H2(RN )

ηt ∈ D(T )

 .

Theorem 1.6. Assume that (G1)-(G3) are satisfied. Then under the assumption αβ−τγ ≥
0, the linear operator A is the infinitesimal generator of a C0-semigroup S(t) = etA of
contractions on H.

Proof. Instead of considering our problem (1.13), we follow [95] and consider the perturbed
problem 

d

dt
U(t) = ABU(t), t ∈ (0,+∞),

U(x, 0) = U0,
(1.17)

where AB is given by

AB


u
v
w
η

 = (A+B)


u
v
w
η



=


v
w

−α

τ
w + β

τ
∆v + ℓ

τ
∆u+ 1

τ

∫ ∞

0
g(s)∆ηt(s)ds− ℓu− τℓ

α
v − (β − τℓ

α
)v

v + Tηt

 .

Remark 1.7. Here, due to the standard semigroup theory, when we prove that AB generates
a C0−semigroup of contractions on H, we can say that A generates a C0−semigroup on H,
because we have AB is a bounded perturbation of A, (see [94], Theorem 1.1 in Chap. 3).

The first thing to notice is that, as we are in a Hilbert space, the operator is densely
defined. Hence, we only need to prove that the operator AB is dissipative and 0 belongs to
the resolvent set of AB , denoted by ϱ(AB). Then our conclusion will follow using the well
known Lumer–Phillips theorem [94]. Following the same steps as in [6], Proof of Proposition
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2.1) and using our new inner product, we can see that we have by direct calculations

⟨ABU,U⟩H = τ

α
(αβ − τℓ)

∫
RN

∇w.∇vdx+ ⟨v + Tηt, ηt⟩M

+ τ

α
(αβ − τℓ)

∫
RN

w.vdx+ ℓ

α

∫
RN

(αv + τw).(αu+ τv)dx

−
∫
RN

(
β∇v + ℓ∇u+

∫ ∞

0
g∇ηt(s)ds

)
. (α∇v + τ∇w) dx

+ ℓ

α

∫
RN

(α∇v + τ∇w).(α∇u+ τ∇v)dx

=− (αβ − τγ)∥∇v∥2
L2(RN ) −

α

2 ∥η
t∥2M

− τ

2

∫ ∞

0
g′′(s)∥∇ηt(s)∥2

L2(RN )ds

≤0.

Therefore, according to the assumption (G3) and since αβ − τγ ≥ 0, then the operator A is
dissipative.
Next, we show that for all F = (f, g, h, p) ∈ H, there exists a unique solution U =
(u, v, w, ηt) ∈ D(A) to the equation

U − ABU = F , (1.18)

such that in terms of its components, we have

u− v = f, (1.19a)
v − w = g, (1.19b)

(τ + α)w − β∆v − ℓ∆u−
∫ ∞

0
g(s)∆ηt(s)ds+ ℓu+ τℓ

α
v + (β − τℓ

α
)v = τh, (1.19c)

ηt − v − Tηt = p. (1.19d)

Integrating (1.19d) with the condition ηt(0) = 0, we obtain

ηt(s) = (1− e−s)v +
∫ s

0
e−(s−y)p(y)dy. (1.20)

Plugging (1.19a), (1.19b) and (1.20) into (1.19c), we arrive at an elliptic problem of the form

− κ∆v + σv = q, (1.21)

such that,
κ = β + ℓ+

∫ ∞

0
g(s)(1− e−s)ds,

σ = τ + α + β + ℓ

and
q = ℓ(∆f + f) + (τ + α)g + τh+

∫ ∞

0
g(s)

[∫ s

0
e−(s−y)∆p(y)dy

]
ds.
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The constant κ > 0 and the functional q belongs to H−1(RN ). Thus, in view of the Lax-
Milgram Theorem, problem (1.21) has a unique solution v ∈ H1(RN ). From (1.19a) and
(1.19b) we see that u,w ∈ H1(RN ). Furthermore, from (1.20), one can also show that
ηt ∈ M, and checking that η(0) = 0 and consequently, Tηt = ηt − p − v ∈ M as well.
Finally, going back to (1.19c), we conclude that

βv + ℓu+
∫ ∞

0
g(s)ηt(s)ds = (−∆)−1 (τh− (τ + α)w − ℓu− βv) ∈ H2(RN ),

which implies that U = (u, v, w, ηt) ∈ D(A) is the unique solution of (1.18). As we said,
as A is a bounded perturbation of AB , we therefore obtain that A is the generator of a
C0−semigroup on H. This finishes the proof.

Corollary 1.8. Under the dissipativity condition αβ ≥ τγ with the results obtained above
and for any U0 ∈ D(A), the problem (1.10),(1.11) has a unique classical solution such that

(u, ut, utt, ηt) ∈ C1 ([0,∞) ;H) ∩ C ([0,∞) ;D(A)) .

1.3 Decay estimates–the sub-critical case

In this section, we apply the energy method in the Fourier space to get some pointwise
estimate of Û(ξ, t) with U = (αut + τutt,∇(αu+ τut),∇ut), where u(x, t) is the solution of
(1.1), (1.2). First, taking the Fourier transform of (1.12), we obtain

ût = v̂,

v̂t = ŵ,

τ ŵt = −αŵ − β|ξ|2v̂ − ℓ|ξ|2û− |ξ|2
∫ ∞

0
g(s)η̂t(s)ds,

η̂tt = v̂ − η̂ts.

(1.22)

with
Û(ξ, 0) =

(
û0, v̂0, ŵ0, η̂

0) (ξ). (1.23)

Our main goal is to build an appropriate Lyapunov functional L̂(ξ, t) which is equivalent to
the energy functional associated with (1.22):

Ê(ξ, t) =1
2

[
ℓ

α
|ξ|2|αû+ τ v̂|2 + τ

α
(αβ − τℓ)|ξ|2|v̂|2 + |αv̂ + τŵ|2 + τ∥η̂t∥2M

+α|ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds+ 2τ |ξ|2Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)]

(1.24)

in the sense that there exist two positive constants d1 and d2 such that

d1Ê(ξ, t) ≤ L̂(ξ, t) ≤ d2Ê(ξ, t),

for all ξ ∈ RN and for all t ≥ 0 and also satisfies (1.51). Hence, we have the following result.
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Proposition 1.9. Let Û(ξ, t) = (û, v̂, ŵ, η̂t)(ξ, t) be the solution of (1.22)-(1.23). Assume
that (G1)-(G3) hold and αβ > τγ. Then, Û(ξ, t) satisfies the following estimates:

|Û(ξ, t)|2 ≤ C|Û(ξ, 0)|2e−cρ(ξ)t, for p = ∞, (1.25)

|Û(ξ, t)|2 ≤ C|Û(ξ, 0)|2
(
1 + ρ(ξ)t

)−1
p
, for p⋆ < p < ∞, (1.26)

for all t > 0, where

ρ(ξ) = |ξ|2

1 + |ξ|2
. (1.27)

Proposition 1.9 is main ingredient in proving the decay estimates in Theorem 1.1. Its
proof will be given through several lemmas. First, we have the following lemma.

Lemma 1.10. Under the condition αβ ≥ τγ, the energy functional defined in (1.24) satisfies
for all t ≥ 0 and for all ξ ∈ RN the inequality:

d

dt
Ê(ξ, t) ≤ −(αβ − τγ)|ξ|2|v̂|2 − α

2 ∥η̂
t∥2M ≤ 0. (1.28)

Proof. In the same spirit of [95], multiplying the first equation in (1.22) by α and the second
by τ, adding the results to get:

(αû+ τ v̂)t = (αv̂ + τŵ) . (1.29)

Multiplying (1.29) by ℓ
(
α¯̂u+ τ ¯̂v

)
and taking the real part, we get

1
2
d

dt
ℓ|αû+ τ v̂|2 = ατℓ|v̂|2 + ℓα2Re(v̂ ¯̂u) + τ2ℓRe(v̂ ¯̂w) + ατℓRe(ŵ ¯̂u). (1.30)

Next, we multiply the second equation in (1.22) by τ(αβ− τℓ)¯̂v and taking the real part, we
get

1
2τ(αβ − τℓ) d

dt
|v̂|2 = τ(αβ − τℓ) Re(ŵ¯̂v). (1.31)

Furthermore, multiplying the second equation in (1.22) by α and adding the result to the
third equation we obtain

(αv̂ + τŵ)t = −|ξ|2βv̂ − ℓ|ξ|2û− |ξ|2
∫ ∞

0
g(s)ηt(s)ds. (1.32)

Multiplying (1.32) by α(α¯̂v + τ ¯̂w) and taking the real part, we get

1
2
d

dt
α|αv̂ + τŵ|2 =− α2β|ξ|2|v̂|2 − ταβ|ξ|2Re(v̂ ¯̂w)− ℓα2|ξ|2Re(û¯̂v)

− ℓατ |ξ|2Re(û ¯̂w)− α2|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)

− τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂w

〉
ds
)
. (1.33)
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Using the fact that η̂tt + η̂ts = v̂, then the term

−α2|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)

can be rewritten as:

−α2|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)
=− α2|ξ|2Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂ηtt(s)

〉
ds
)

− α2|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂ηts(s)

〉
ds
)
.

Integrating by parts with respect to s (the boundary terms vanish see [93]), then we obtain

−α2|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)
=− 1

2
d

dt
α2|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds

+ α2

2 |ξ|2
∫ ∞

0
g′(s)|η̂t(s)|2ds.

Hence, we get

−α2|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)
=− 1

2
d

dt
α2|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds

− α2

2 ∥η̂t∥2M.

Applying the same computation to the term

−τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂w

〉
ds
)

and using the equation η̂ttt + η̂tts = ŵ, to obtain:

−τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂w

〉
ds
)
=− τα|ξ|2Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂ηttt(s)

〉
ds
)

− τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂ηtts(s)

〉
ds
)
.

Then, we have

−τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂w

〉
ds
)
=− τα|ξ|2 d

dt
Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂ηtt(s)

〉
ds
)

+ τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂tt(s), ¯̂ηtt(s)

〉
ds
)

− τα|ξ|2 d

dt
Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂ηts(s)

〉
ds
)

+ τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂tt(s), ¯̂ηts(s)

〉
ds
)
.
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Moreover, we obtain

−τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂w

〉
ds
)
=− τα|ξ|2 d

dt
Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)

+ τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂tt(s), ¯̂v

〉
ds
)
.

Inserting the estimates above into (1.33), we get

1
2
d

dt
I1 =− α2β|ξ|2|v̂|2 − ταβ|ξ|2Re(v̂ ¯̂w)− ℓτα|ξ|2Re(û ¯̂w)− ℓα2|ξ|2Re(û¯̂v)

− α2

2 ∥η̂t∥2M + τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂tt(s), ¯̂v

〉
ds
)
, (1.34)

where

I1 =α|αv̂ + τŵ|2 + α2|ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds

+ 2τα|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)
.

Now, computing |ξ|2(1.30)+|ξ|2(1.31)+(1.34) and dividing the result by α, we obtain

1
2
d

dt
I2 = −(αβ − τℓ)|ξ|2|v̂|2 − α

2 ∥η̂
t∥2M

+τ |ξ|2Re
(∫ ∞

0
g(s)

〈
η̂tt(s), ¯̂v

〉
ds
)
, (1.35)

with

I2 = I1
α

+ τ

α
(αβ − τℓ)|ξ|2|v̂|2 + ℓ

α
|ξ|2|αû+ τ v̂|2.

Here, substituting η̂tt by v̂ − η̂ts, we get

1
2
d

dt
I2 = −(αβ − τℓ)|ξ|2|v̂|2 − α

2 ∥η̂
t∥2M + τ |ξ|2Re

(∫ ∞

0
g(s)

〈
v̂ − η̂ts(s), ¯̂v

〉
ds
)
.

Hence, we have

1
2
d

dt
I2 =− (αβ − τℓ)|ξ|2|v̂|2 − α

2 |∥η̂
t∥2M + τ(γ − ℓ)|ξ|2|v̂|2

+ τ |ξ|2Re
(∫ ∞

0
g′(s)

〈
η̂t(s), ¯̂v

〉
ds
)
.
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Again substituting ¯̂v by ¯̂ηtt + ¯̂ηts, then we find

1
2
d

dt
I2 =− (αβ − τγ)|ξ|2|v̂|2 − α

2 ∥η̂
t∥2M + τ |ξ|2Re

(∫ ∞

0
g′(s)

〈
η̂t(s), ¯̂ηtt(s)

〉
ds
)

+ τ |ξ|2Re
(∫ ∞

0
g′(s)

〈
η̂t(s), ¯̂ηts(s)

〉
ds
)
.

Integrating by parts once again with respect to s, then we obtain

1
2
d

dt
Ê(ξ, t) = −(αβ − τγ)|ξ|2|v̂|2 − α

2 ∥η̂
t∥2M − τ

2 |ξ|
2
∫ ∞

0
g′′(s)|η̂t(s)|2ds,

with
Ê(ξ, t) = I2 + τ∥η̂t∥2M.

Consequently, we obtain the energy (1.24) and the use of assumptions (G2) with the condition
αβ − τγ ≥ 0, we obtain the desired result (1.28).

Now, we define for all t ≥ 0,

|V̂ (ξ, t)|2 = |ξ|2|αû+ τ v̂|2 + |ξ|2|v̂|2 + |αv̂ + τŵ|2

+∥η̂t∥2M + |ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds. (1.36)

Hence, we have the following result.

Lemma 1.11. Assume that αβ > τγ, then there exist two positive constants C1 and C2
such that

C1|V̂ (ξ, t)|2 ≤ Ê(ξ, t) ≤ C2|V̂ (ξ, t)|2, (1.37)
for all ξ ∈ RN and for all t ≥ 0.

Proof. To show (1.37), we infer from Young’s inequality that for every ϵ > 0,
∣∣∣∣2τ |ξ|2Re(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)∣∣∣∣ ≤ 2τ2(γ − ℓ)

αϵ
|ξ|2|v̂|2 + αϵ

2 |ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds.

Hence, we obtain from (1.24)

Ê(ξ, t) ≥1
2

[
ℓ

α
|ξ|2|αû+ τ v̂|2 + |αv̂ + τŵ|2 + τ∥η̂t∥2M

+
(
τ(αβ − τℓ)

α
− 2τ2(γ − ℓ)

αϵ

)
|ξ|2|v̂|2

+
(
α− αϵ

2

)
|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2dsds

]
. (1.38)

Recall that the assumption αβ > τγ implies that αβ > τℓ. This yields

τ(γ − ℓ)
αβ − τℓ

< 1.
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Thus, we fix ϵ > 0, such that
τ(γ − ℓ)
αβ − τℓ

<
ϵ

2 < 1.

Consequently, the left-hand side inequality in (1.37) holds. For the other side, we have

Ê(ξ, t) ≤1
2

[
ℓ

α
|ξ|2|αû+ τ v̂|2 + |αv̂ + τŵ|2 + τ∥η̂t∥2M

+
(
τ(αβ − τℓ)

α
+ 2τ2(γ − ℓ)

αϵ

)
|ξ|2|v̂|2

+
(
α + αϵ

2

)
|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds

]
. (1.39)

This yields the right-hand side inequality in (1.37).

Now, following [95], we define the functional F̂1(ξ, t) as:

F̂1(ξ, t) = Re
{
α(α¯̂u+ τ ¯̂v)(αv̂ + τŵ)

}
. (1.40)

Then, we have the following lemma.

Lemma 1.12. For any ϵ0, ϵ1 > 0, we have

d

dt
F̂1(ξ, t) + (ℓ− ϵ0 − (γ − ℓ)ϵ1)|ξ|2|αû+ τ v̂|2

≤ α|αv̂ + τŵ|2 + C(ϵ0)|ξ|2|v̂|2 + C(ϵ1)|ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds. (1.41)

Proof. Multiplying (1.32) by α(α¯̂u+ τ ¯̂v) and (1.29) by α(α¯̂v + τ ¯̂w) we obtain, respectively,

α(αv̂ + τŵ)t(α¯̂u+ τ ¯̂v) =
(
−|ξ|2αβv̂ − αℓ|ξ|2û− α|ξ|2

∫ ∞

0
g(s)η̂t(s)ds

) (
α¯̂u+ τ ¯̂v

)
=
(
−|ξ|2αβv̂ − αℓ|ξ|2û+ τℓ|ξ|2v̂ − τℓ|ξ|2v̂

−α|ξ|2
∫ ∞

0
g(s)η̂t(s)ds

) (
α¯̂u+ τ ¯̂v

)
and

α(αû+ τ v̂)t(α¯̂v + τ ¯̂w) = α(αv̂ + τŵ)(α¯̂v + τ ¯̂w).

Summing up the above equations and taking the real part, we obtain

d

dt
F̂1(ξ, t) + ℓ|ξ|2|αû+ τ v̂|2 − α|αv̂ + τŵ|2

= |ξ|2(τℓ− αβ) Re(v̂(α¯̂u+ τ ¯̂v)− α|ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), α¯̂u+ τ ¯̂v

〉
ds
)
.

Applying Young’s inequality, we obtain the estimate (1.41) for any ϵ0, ϵ1 > 0.
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Next, we set the functional F̂2(ξ, t) as

F2(ξ, t) = −ταRe(¯̂v(αv̂ + τŵ)). (1.42)

Lemma 1.13. For any ϵ2, ϵ3 > 0, we have

d

dt
F̂2(ξ, t) + (α− ϵ3)|αv̂ + τŵ|2 ≤ ϵ2|ξ|2|αû+ τ v̂|2 + C(ϵ3, ϵ2)(1 + |ξ|2)|v̂|2

+ 1
2 |ξ|

2
∫ ∞

0
g(s)|η̂t(s)|2ds. (1.43)

Proof. Multiplying the second equation in (1.22) by −τα(α¯̂v + τ ¯̂w) and the equation (1.32)
by −τα¯̂v, then we have, respectively,

−ατ(α¯̂v + τ ¯̂w)v̂t = −ταŵ(α¯̂v + τ ¯̂w)

and

−τα¯̂v(αv̂ + τŵ)t =
(
|ξ|2αβτ v̂ + αℓτ |ξ|2û+ τα|ξ|2

∫ ∞

0
g(s)η̂t(s)ds

)
¯̂v

=
(
|ξ|2αβτ v̂ + αℓτ |ξ|2û+ τ2ℓ|ξ|2v̂ − τ2ℓ|ξ|2v̂

+α2(αv̂ + τŵ)− α2(αv̂ + τŵ) + τα|ξ|2
∫ ∞

0
g(s)η̂t(s)ds

)
¯̂v.

Summing up the above two equations and taking the real parts, we obtain

d

dt
F̂2(ξ, t) + α|αv̂ + τŵ|2 − τ(αβ − τℓ)|ξ|2|v̂|2

= τℓ|ξ|2Re(¯̂v(αû+ τ v̂)) + α2Re(¯̂v(αv̂ + τŵ))

+ ατ |ξ|2Re
(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)
.

Applying Young’s inequality, we obtain the estimate (1.43) for any ϵ2, ϵ3 > 0.

Proof of Proposition 1.9
We define the Lyapunov functional L̂1(ξ, t) as:

L̂1(ξ, t) = N0Ê(ξ, t) + ρ(ξ)F̂1(ξ, t) +N1ρ(ξ)F̂2(ξ, t), (1.44)
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where N0 and N1 are positive constants that will be fixed later on. Taking the derivative of
(1.44) with respect to t and making use of (1.28), (1.41) and (1.43), we obtain

d

dt
L̂1(ξ, t) +

[
N0(αβ − τγ)− C(ϵ0)−N1C(ϵ2, ϵ3)

]
|ξ|2|v̂|2

+ αN0
2 |ξ|2

∫ ∞

0
−g′(s)|η̂t(s)|2ds

+
[
(ℓ− ϵ0 − (γ − ℓ)ϵ1)− ϵ2N1

]
ρ(ξ)|ξ|2|αû+ τ v̂|2

+
[
N1(α− ϵ3)− α

]
ρ(ξ)|αv̂ + τŵ|2

−
[
C(ϵ1) +

N1
2

]
ρ(ξ)|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds ≤ 0, (1.45)

where we used the fact that ρ(ξ) ≤ 1. Now, we discuss the case where g is decaying
exponentially (i.e., p = ∞) and then the case where g is decaying polynomially (i.e., p⋆ <
p < ∞) since the proof is slightly different.

1. Exponentially decaying kernel: Taking p = ∞, then the assumption (G2) can be
rewritten as follows:

g′(t) ≤ −δg(t). (1.46)
Therefore, making use of (1.46), we can now estimate the last term in (1.45) as:[

C(ϵ1) +
N1
2

] ∫ ∞

0
g(s)|η̂t(s)|2ds ≤

[
C(ϵ1)
δ

+ N1
2δ

] ∫ ∞

0
−g′(s)|η̂t(s)|2ds. (1.47)

Plugging (1.47) into (1.45), we get

d

dt
L̂1(ξ, t) +

[
N0(αβ − τℓ)− C(ϵ0)−N1C(ϵ2, ϵ3)

]
ρ(ξ)|ξ|2|v̂|2

+
[
αN0
2 − C(ϵ1)

δ
− N1

2δ

]
ρ(ξ)|ξ|2

∫ ∞

0
(−g′)(s)|η̂t(s)|2ds

+
[
(ℓ− ϵ0 − (γ − ℓ)ϵ1)− ϵ2N1

]
ρ(ξ)|ξ|2|αû+ τ v̂|2

+
[
N1(α− ϵ3)− α

]
ρ(ξ)|αv̂ + τŵ|2 ≤ 0, ∀t ≥ 0. (1.48)

In the above estimate, we can fix our constants in such a way that the coefficients in
(1.48) are positive. This can be achieved as follows: we pick ϵ3 small enough such that
ϵ3 < α and ϵ0 = ϵ1, then we can select ϵ0 small enough such that

ϵ0 <
ℓ

1 + (γ − ℓ) .

After that, we take N1 large enough such that

N1 >
α

α− ϵ3
.
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Once N1 and ϵ0 = ϵ1 are fixed, we select ϵ2 small enough such that

ϵ2 <
ℓ− ϵ0(1 + (γ − ℓ))

N1
.

Finally, keeping in mind the assumption τγ < αβ, we take N0 large enough such that

N0 = max
{
C(ϵ0) +N1C(ϵ2, ϵ3)

αβ − τγ
,
2C(ϵ1) +N1

αδ

}
.

Consequently, from above and (1.37), we deduce that there exists a positive constant
Λ0 such that for all t ≥ 0,

d

dt
L̂1(ξ, t) + Λ0ρ(ξ)Ê(ξ, t) ≤ 0. (1.49)

It is not difficult to see that from (1.37), (1.40), (1.42), (1.44) and for N0 large enough,
there exist two positive constants d1 and d2, such that for all ξ ∈ RN and for all t ≥ 0,
it holds that

d1Ê(ξ, t) ≤ L̂1(ξ, t) ≤ d2Ê(ξ, t). (1.50)
Consequently, the last estimate together with (1.49), leads to

d

dt
L1(ξ, t) + Λ1ρ(ξ)L̂1(ξ, t) ≤ 0, for all t ≥ 0, (1.51)

and for some Λ1 > 0. A simple application of Gronwall’s lemma to the estimate (1.51)
yields

L̂1(ξ, t) ≤ L̂1(ξ, 0)e−cρ(ξ)t, for all t ≥ 0. (1.52)
Once again, (1.50) and (1.52) yield for some Λ2 > 0,

Ê(ξ, t) ≤ Λ2Ê(ξ, 0)e−cρ(ξ)t, for all t ≥ 0. (1.53)

On the other hand, from (1.37), we have

Ê(ξ, t) ≥ C3|Û(ξ, t)|2 (1.54)

and the use of η̂0(s) = û0, yields

Ê(ξ, 0) ≤ C4|Û(ξ, 0)|2. (1.55)

This leads to the estimate (1.25).

2. Polynomially decaying kernel: Now, we assume that g is decaying polynomially
and we try to absorb the integral term

(∫∞
0 g(s)|η̂t(s)|2ds

)
in (1.45) by the term(∫∞

0 −g′(s)|η̂t(s)|2ds
)
for p⋆ < p < ∞.

As we did above in the first case, we take the same coefficients of (1.45) which are al-
ready fixed in such a way they are positive except the coefficient of

(∫∞
0 g(s)|η̂t(s)|2ds

)
.
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We therefore deduce that for all t ≥ 0, (1.45) can be rewritten as:

d

dt
L̂1(ξ, t) ≤ −α1ρ(ξ)Ê(ξ, t) + α2ρ(ξ)|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds, (1.56)

where
α2 = C(ϵ1) +

N1
2 + α1α

and for some α1 > 0. Our main goal now is to estimate the last term in (1.56). Indeed,
we have by using Hölder’s inquality,(

|ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds

)
= |ξ|2

∫ ∞

0
[g(s)]

1
p |η̂t(s)|

2
p+1 g(s)1−

1
p |η̂t(s)|2(1−

1
p+1 )ds

≤
(
|ξ|2

∫ ∞

0
[g(s)]

p+1
p |η̂t(s)|2ds

) 1
p+1

|ξ|2 ∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |η̂t(s)|2ds


p

p+1

.

The use of (1.9), (1.24) and (1.28) lead to

|ξ|2
∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |η̂t(s)|2ds ≤

∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |ξ|2|û(t)− û(t− s)|2ds

≤2
∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |ξ|2|û(t)|2ds

+ 2
∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |ξ|2|û(t− s)|2ds.

Now, using the fact that (see (1.38)),

Ê(ξ, t) ≥ 1
2
ℓ

β
(αβ − ℓτ)|û|2

then we obtain from above

|ξ|2
∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |η̂t(s)|2ds ≤ 4β

ℓ(αβ − τℓ)

∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 Ê(ξ, t)ds

+ 4β
ℓ(αβ − τℓ)

∫ t

0
[g(s)]

(p+1)(p−1)
p2 Ê(ξ, t− s)ds

≤ 8β
ℓ(αβ − τℓ)Ê(ξ, 0)

∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 ds.

Consequently, Lemma 1.5 leads to
|ξ|2 ∫ ∞

0
[g(s)]

(p+1)(p−1)
p2 |η̂t(s)|2ds


p

p+1

≤
(

8βc0
ℓ(αβ − τℓ)Ê(ξ, 0)

) p
p+1

.
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Let ν = (p+1)(p−1)
p2

, it is clear that the assumption p > p⋆ implies that ν ∈ (1p , 1).
Hence, due to (1.28) and (G2), we have

(
|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds

)
≤ d3

(
Ê(ξ, 0)

) p
p+1

(
− d

dt
Ê(ξ, t)

) 1
p+1

, (1.57)

where
d3 = 2c1

( 1
δα

) 1
p+1

.

Combining now (1.57) and (1.56), we get

d

dt
L̂1(ξ, t) ≤ −α1ρ(ξ)Ê(ξ, t) + d4ρ(ξ)

(
Ê(ξ, 0)

) p
p+1

(
− d

dt
Ê(ξ, t)

) 1
p+1

,

with d4 = α2d3. In the same spirit of [84], multiplying the last inequality by Êp(ξ, t),
gives

Êp(ξ, t)
(
d

dt
L̂1(ξ, t)

)
≤− α1ρ(ξ)Êp+1(ξ, t)

+ d4ρ(ξ)Êp(ξ, t)
(
Ê(ξ, 0)

) p
p+1

(
− d

dt
Ê(ξ, t)

) 1
p+1

.

The use of Young’s inequality, yields

Êp(ξ, t)
(
d

dt
L̂1(ξ, t)

)
≤− α1ρ(ξ)Êp+1(ξ, t)

+ d4ρ(ξ)
[
ϵÊp+1(ξ, t)− C(ϵ)Êp(ξ, 0) d

dt
Ê(ξ, t)

]

=− (α1 − ϵd4) ρ(ξ)Êp+1(ξ, t)− d5ρ(ξ)Êp(ξ, 0) d
dt
Ê(ξ, t).

Now, choosing ϵ < α1
d4

and recalling that d

dt
Ê(ξ, t) ≤ 0 and using the fact that ρ(ξ) ≤ 1,

to get

d

dt

[
Êp(ξ, t)L̂1(ξ, t)

]
≤ Êp(ξ, t) d

dt
L̂1(ξ, t)

≤ −d6ρ(ξ)Êp+1(ξ, t)− d

dt

[
d5Ê

p(ξ, 0)Ê(ξ, t)
]
,

for some d6 > 0. This implies

d

dt

[
Êp(ξ, t)L̂1(ξ, t) + d5Ê

p(ξ, 0)Ê(ξ, t)
]
≤ −d6ρ(ξ)Êp+1(ξ, t). (1.58)
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Now, we define
Ê(ξ, t) = Êp(ξ, t)L̂1(ξ, t) + d5Ê

p(ξ, 0)Ê(ξ, t),
which satisfies, by using (1.50)

d5Ê
p(ξ, 0)Ê(ξ, t) ≤ Ê(ξ, t) ≤ d7Ê

p(ξ, 0)Ê(ξ, t), (1.59)

for some d7 > 0. Therefore, we obtain from (1.58) the estimate

d

dt
Ê(ξ, t) ≤ −d8ρ(ξ)

(
Ê(ξ, t)
Êp(ξ, 0)

)p+1
,

for some d8 > 0. A simple application of Gronwall’s lemma leads to the estimate:

Ê(ξ, t) ≤ Λ3Ê
p+1(ξ, 0)

(
1 + ρ(ξ)t

)−1
p
, (1.60)

for Λ3 > 0. Using (1.59) we obtain

Ê(ξ, t) ≤ Λ4Ê(ξ, 0)
(
1 + ρ(ξ)t

)−1
p
, (1.61)

for Λ4 > 0. This leads to the desired estimate (1.26) using (1.54) and (1.55). Thus the
proof of Proposition 1.9 is finished.

1.4 Decay estimates–the critical case

In this section, we assume that αβ = τγ and derive the pointwise estimate (1.62) for the
Fourier transform of the solution. This estimate is the key ingredient in proving the decay
rate stated in Theorem 1.2.

Proposition 1.14. Let Û(ξ, t) be the solution of (1.22)-(1.23). Assume that (G1)-(G3) and
αβ = τγ hold. Then, Û(ξ, t) satisfies the following estimate

|Û(ξ, t)|2 ≤ C|Û(ξ, 0)|2e
−c

|ξ|2
(1+|ξ|2)2

t
, for p = ∞, (1.62)

for all t > 0.

Remark 1.15. It is clear from the form of |ξ|2
(1+|ξ|2)2 obtained in the estimate (1.62) that

|ξ|2
(1+|ξ|2)2 ∼ |ξ|−2 for |ξ| → ∞. This leads to the decay rate of regularity-loss type shown in

Theorem 1.2. On the other hand, for |ξ| → 0, we have |ξ|2
(1+|ξ|2)2 ∼ |ξ|2, this means that the

dissipation is still effective for low frequencies and prevents any loss in the regularity.

To prove Proposition 1.14, we need to define another functional F̂3(ξ, t) (which is unnec-
essary in the first case) in such a way to recover the dissipation of |v̂|2, since for αβ = τγ,
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we lose the dissipation of |v̂|2 in (1.28). In this case (1.28) becomes:

d

dt
Ê(ξ, t) ≤ −α

2 ∥η̂(s)∥
2
M, ∀t ≥ 0. (1.63)

Now, we show that if g decays exponentially, that is

g′(t) ≤ −δg(t), (1.64)

which holds for p = ∞ in the assumption (G2), then the vector |V̂ (ξ, t)|2 defined in (1.36)
is equivalent to Ê(ξ, t), as we did in Lemma 1.11. Thus we have the following lemma.
Lemma 1.16. Let αβ = τγ and assume that (1.64) holds. Then there exist two positive
constants C5 and C6, such that

C5|V̂ (ξ, t)|2 ≤ Ê(ξ, t) ≤ C6|V̂ (ξ, t)|2, (1.65)

for all ξ ∈ RN and for all t ≥ 0.
Proof. The right-hand side in (1.65) is estimated just in the same way as in (1.39). For the
left-hand side, we follow [37, Lemma 3.1] to have from Young’s inequality the estimate:

∣∣∣∣2τ |ξ|2Re(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)∣∣∣∣ ≤ τ2

2ϵ0
|ξ|2|v̂|2 + 2ϵ0(γ − ℓ)|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds.

Taking 2ϵ0 = α(ϵ1+1)
γ−ℓ , yields

∣∣∣∣2τ |ξ|2Re(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)∣∣∣∣ ≤ τ2(γ − ℓ)

α(ϵ1 + 1) |ξ|
2|v̂|2 + α(ϵ1 + 1)|ξ|2

∫ ∞

0
g(s)|η̂t(s)|2ds.

Hence, we have, as in [37]

α|ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds+ 2τ |ξ|2Re

(∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
)

≥ −τ2(γ − ℓ)
α(ϵ1 + 1) |ξ|

2|v̂|2 − αϵ1|ξ|2
∫ ∞

0
g(s)|η̂t(s)|2ds

≥ −τ2(γ − ℓ)
α(ϵ1 + 1) |ξ|

2|v̂|2 − αϵ1
δ

|ξ|2
∫ ∞

0
−g′(s)|η̂t(s)|2ds

= −τ2(γ − ℓ)
α(ϵ1 + 1) |ξ|

2|v̂|2 − αϵ1
δ

∥η̂t∥2M.

Consequently, from (1.24) and the above estimate, we obtain

Ê(ξ, t) ≥ 1
2

[
ℓ

α
|ξ|2|αû+ τ v̂|2 + |αv̂ + τŵ|2 + ϵ1τ2(γ − ℓ)

α(ϵ1 + 1) |ξ|2|v̂|2 + (τ − αϵ1
δ

)∥η̂t∥2M

]
.

It is clear that for ϵ1 small enough, that is for ϵ1 < δτ
α , we get the left-hand side of (1.65).

This finishes the proof of Lemma 1.16.
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Now, we define the functional F̂3(ξ, t) as

F̂3(ξ, , t) = −τ |ξ|2Re
{∫ ∞

0
g(s)

〈
η̂t(s), ¯̂v

〉
ds
}
. (1.66)

Then, we have the following result.

Lemma 1.17. For any ϵ4, ϵ5, ϵ6 > 0, it holds that

d

dt
F̂3(ξ, t) + (τ(γ − ℓ)− ϵ4g0 − ϵ6(γ − ℓ))|ξ|2|v̂|2

≤ ϵ5
|ξ|2

1 + |ξ|2
(γ − ℓ)|αv̂ + τŵ|2 + C(ϵ4)|ξ|2

∫ ∞

0
−g′(s)|η̂t(s)|2ds

+ C(ϵ5, ϵ6)|ξ|2(1 + |ξ|2)
∫ ∞

0
g(s)|η̂t(s)|2ds. (1.67)

Proof. Multiplying the second equation in (1.22) by τ |ξ|2
∫∞
0 g(s)¯̂ηt(s)ds, we get

|ξ|2
∫ ∞

0
g(s)

〈
τ v̂t, ¯̂ηt(s)

〉
ds = |ξ|2

∫ ∞

0
g(s)

〈
τŵ, ¯̂ηt(s)

〉
ds.

Consequently,

d

dt
|ξ|2

∫ ∞

0
g(s)

〈
τ v̂, ¯̂ηt(s)

〉
ds− |ξ|2

∫ ∞

0
g(s)

〈
τ v̂, ¯̂ηtt(s)

〉
ds = |ξ|2

∫ ∞

0
g(s)

〈
τŵ, ¯̂ηt(s)

〉
ds.

Using the fact that η̂tt + η̂ts = v̂ and integrating by parts with respect to s and taking the
real part we obtain

d

dt
F̂3(ξ, t) + τ(γ − ℓ)|ξ|2|v̂|2 =τ |ξ|2Re

{ ∫ ∞

0
−g′(s)

〈
v̂, ¯̂ηt(s)

〉
ds
}

− |ξ|2Re
{ ∫ ∞

0
g(s)

〈
τŵ + αv̂, ¯̂ηt(s)

〉
ds
}

+ |ξ|2Re
{ ∫ ∞

0
g(s)

〈
αv̂, ¯̂ηt(s)

〉
ds
}
.

Applying Young’s inequality (we write the coefficient of the second term on the right as

−|ξ|2 = −|ξ|2√
1 + |ξ|2

√
1 + |ξ|2 and then we applied Young’s inequality), we obtain the estimate

(1.67) for any ϵ4, ϵ5, ϵ6 > 0.

Proof of Proposition 1.14
Now, we define the new Lyapunov functional L̂2(ξ, t) associated with the critical case as
follows:

L̂2(ξ, t) = NÊ(ξ, t) + |ξ|2

(1 + |ξ|2)2 F̂1(ξ, t) + 2 |ξ|2

(1 + |ξ|2)2 F̂2(ξ, t) +M
1

1 + |ξ|2
F̂3(ξ, t), (1.68)
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for some positive constants N and M that have to be chosen later. Taking the deriva-
tive of (1.68) with respect to t, and using (1.41), (1.43), (1.63) and (1.67), since g decays
exponentially (i.e., satisfies (1.64)), we get

d

dt
L̂2(ξ, t) +

|ξ|2

(1 + |ξ|2)2
[
(ℓ− ϵ0 − (γ − ℓ)ϵ1)− 2ϵ2

]
|ξ|2|αû+ τ v̂|2

+ 1
1 + |ξ|2

[
M(τ(γ − ℓ)− ϵ4g0 − ϵ6(γ − ℓ))− 2C(ϵ0)− C(ϵ2, ϵ3)

]
|ξ|2|v̂|2

+ |ξ|2

(1 + |ξ|2)2
[
2(α− ϵ3)− α−Mϵ5(γ − ℓ)

]
|αv̂ + τŵ|2

+ (N − Λ)|ξ|2
∫ ∞

0
−g′(s)|η̂t(s)|2ds ≤ 0, (1.69)

where for the coefficient of |v̂|2 in F1, we used the fact that |ξ|4
(1+|ξ|2)2 ≤ |ξ|2

1+|ξ|2 . Here Λ is
a constant that depends on all the other constants. In the above estimate, we can fix our
constants in such a way that the previous coefficients are positive. We take ϵ0 = ϵ1, then we
pick ϵ0 small enough such that

ϵ0 <
ℓ

1 + (γ − ℓ) .

Once ϵ0, ϵ1 are fixed, we select ϵ2 small enough such that

ϵ2 <
ℓ− ϵ0(1 + (γ − ℓ))

2 .

Now, we pick ϵ4 = ϵ6, that gives to us

ϵ4 <
τ(γ − ℓ)

g0 + (γ − ℓ) .

Next, we pick ϵ3 <
α

4 and we take M large enough such that

M >
C(ϵ0) + 2C(ϵ2, ϵ3)

τ(γ − ℓ)− ϵ4(g0 + (γ − ℓ)) .

Then, we can select ϵ5 small enough such that

ϵ5 <
2(α− ϵ3)− α

M(γ − ℓ) .

Finally, we take
N > Λ.

Consequently, we deduce that there exists a constant R1 > 0 such that for all t > 0

d

dt
L̂2(ξ, t) +R1

|ξ|2

(1 + |ξ|2)2 |V̂ (ξ, t)|2 ≤ 0. (1.70)

43



Thanks to (1.65), there exists a constant R2 > 0 such that for all t > 0, we deduce

d

dt
L̂2(ξ, t) +R2

|ξ|2

(1 + |ξ|2)2 Ê(ξ, t) ≤ 0. (1.71)

On the other hand, for N large enough, there exist two positive constants R3, R4 such that

R3Ê(ξ, t) ≤ L̂2(ξ, t) ≤ R4Ê(ξ, t). (1.72)

Consequently, (1.71) with (1.72) lead to

d

dt
L̂2(ξ, t) +R5

|ξ|2

(1 + |ξ|2)2 L̂2(ξ, t) ≤ 0. (1.73)

For some R5 > 0. Integrating (1.73) with respect to t yields

L̂2(ξ, t) ≤ L̂2(ξ, 0)e
−c

|ξ|2
(1+|ξ|2)2

t
, (1.74)

This last estimate leads, for R6 > 0, to

Ê(ξ, t) ≤ R6Ê(ξ, 0)e
−c

|ξ|2
(1+|ξ|2)2

t
, (1.75)

Therefore, by (1.65), (1.54) and (1.55) we get the desired result (1.62).

1.5 Proof of the decay estimates of Theorems 1.1 and 1.2

In this section, we prove the decay rate both in the sub-critical case (Theorem 1.1) and in
the critical case (Theorem 1.2), for p = ∞ and p⋆ < p < ∞.

1.5.1 Proof of Theorem 1.1.
We proceed with the proof of Theorem 1.1, starting with the first case when p = ∞. To
show (1.3) we have by Plancherel’s theorem and the estimate (1.25) that (the constant C
here is a generic positive constant that may take different values in difference places)

∥∇jU(t)∥2
L2(RN ) =

∫
RN

|ξ|2j |Û(ξ, t)|2dξ ≤ C
∫
RN

|ξ|2je−cρ(ξ)t|Û(ξ, 0)|2dξ. (1.76)

It is obvious that the term on the right-hand side of (1.76) depends on the behavior of the
function (1.27). Since

ρ(ξ) ≥


1
2 |ξ|

2, if |ξ| ≤ 1,
1
2 , if |ξ| ≥ 1.

(1.77)
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Then we write the integral on the right-hand side of (1.76) as∫
RN

|ξ|2je−cρ(ξ)t|Û(ξ, 0)|2dξ =
∫
|ξ|≤1

|ξ|2je−cρ(ξ)t|Û(ξ, 0)|2dξ

+
∫
|ξ|≥1

|ξ|2je−cρ(ξ)t|Û(ξ, 0)|2dξ

=I1 + I2. (1.78)

Concerning the integral I1, we have by exploiting (54) that

I1 ≤ ∥Û0∥2L∞(RN )

∫
|ξ|≤1

|ξ|2je−
c
2 |ξ|

2tdξ ≤ C(1 + t)−N/2−j∥U0∥2L1(RN ). (1.79)

On the other hand, in the high frequency region (|ξ| ≥ 1), we have

I2 ≤ e−
c
2 t
∫
|ξ|≥1

|ξ|2j |Û(ξ, 0)|2dξ ≤ e−
c
2 t∥∇jU0∥2L2(RN ). (1.80)

Collecting the above two estimates give the desired decay estimate (1.3). Now, we show the
decay rate of the vector U in the case of polynomially decaying kernel as follows: to establish
(1.4), we have by Plancherel’s theorem and the estimate (1.26) that

∥∇jU(t)∥2
L2(RN ) =

∫
RN

|ξ|2j |Û(ξ, t)|2dξ

≤C
∫
RN

|ξ|2j |Û(ξ, 0)|2
(
1 + ρ(ξ)t

)−1
p
dξ

≤C(1 + t)−
1
p

∫
|ξ|≥1

|ξ|2j |Û(ξ, 0)|2dξ

+ C∥Û0∥2L∞(RN )

∫
|ξ|≤1

|ξ|2j
(
1 + |ξ|2t

)−1
p
dξ. (1.81)

According to (1.77), the integral was split into two parts. For the last term above, the use
of polar coordinates leads to

∫
|ξ|≤1

|ξ|2j
(
1 + |ξ|2t

)−1
p
dξ ≤

∫ 1

0
rj+

N
2 −1

(1 + rt)1/p
dr. (1.82)

Plugging (1.82) into (1.81), then exploiting Lemma 0.2, we deduce the desired result (1.4).
This completes the proof of Theorem 1.1.

1.5.2 Proof of Theorem 1.2.
To show (1.5), we have:

|ξ|2

(1 + |ξ|2)2 ≥


1
4 |ξ|

2, if |ξ| ≤ 1,
1
4 |ξ|

−2, if |ξ| ≥ 1.
(1.83)
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By Plancherel’s theorem, we obtain

∥∇jU(t)∥2
L2(RN ) =

∫
RN

|ξ|2j |Û(ξ, t)|2dξ

≤C
∫
RN

|ξ|2je
−c

|ξ|2
(1+|ξ|2)2

t
|Û(ξ, 0)|2dξ

=C
∫
|ξ|≤1

|ξ|2je
−c

|ξ|2
(1+|ξ|2)2

t
|Û(ξ, 0)|2dξ

+ C
∫
|ξ|≥1

|ξ|2je
−c

|ξ|2
(1+|ξ|2)2

t
|Û(ξ, 0)|2dξ

=J1 + J2. (1.84)

Concerning the integral J1, we have by using (1.83)

J1 ≤ C∥Û0∥2L∞(RN )

∫
|ξ|≤1

|ξ|2je−
c
4 |ξ|

2tdξ ≤ C(1 + t)−N/2−j/2∥U0∥2L1(RN ). (1.85)

Using (1.83) and the estimate

sup
|ξ|≥1

{
|ξ|−2ke−c|ξ|−2t

}
≤ C(1 + t)−k.

Then, the high frequency part J2 is estimated as follow

J2 ≤ sup
|ξ|≥1

{
|ξ|−2ke−c|ξ|−2t

} ∫
|ξ|≥1

|ξ|2(j+k)|Û(ξ, 0)|2dξ ≤ C(1 + t)−k∥∇j+kU0∥2L2(RN ).

(1.86)
Collecting the above two estimates yields (1.5).

1.6 Decay rates for the type III memory–the critical case

As in the previous sections, we first, need to find the decay rate of the Fourier image of the
solution. Taking Fourier’s transform of (1.6) for all t ≥ 0 and for all ξ ∈ RN , we get

τ ẑtt + β|ξ|2ẑ − τ |ξ|2
∫ t

0
g(s)ẑ(t− s)ds = 0. (1.87)

In this case the second assumption in (G1), is replaced by
(G4) g : R+ → R+ is a nonincreasing twice differentiable function, such that

g(0) > 0, β − τ
∫ ∞

0
g(s)ds = ℓ̃ > 0

and g′(s) ≤ 0 for every s > 0.
As we have seen before in Section 1.2, we extend the solution of (1.87) for all times, by
setting z(x, t) = 0 when t < 0 and considering for t ≥ 0 the auxiliary past history variable
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µt(s), defined as:
µt(s) = z(t)− z(t− s), t ≥ 0, s ∈ R+. (1.88)

Consequently, problem (1.87) can be recast as follows:τ ẑtt + ℓ̃|ξ|2ẑ + τ |ξ|2
∫ ∞

0
g(s)µ̂t(s)ds = 0,

µ̂tt(s) + µ̂ts(s) = ẑt.
(1.89)

Hence, we have the following result.
Proposition 1.18. Let ẑ(ξ, t) be the solution of (1.89). Assume that (G2) and (G4) hold.
Then, Ê(ξ, t) satisfies the following estimates:

Ê(ξ, t) ≤ C|Ẑ(ξ, 0)|2e−cρ(ξ)t, for p = ∞, (1.90)

Ê(ξ, t) ≤ C|Ẑ(ξ, 0)|2
(
1 + ρ(ξ)t

)−1
p
, for p⋆ < p < ∞, (1.91)

for all t > 0, where

Ê(ξ, t) = 1
2

[
ℓ̃|ξ|2|ẑ|2 + τ |ẑt|2 + τ |ξ|2

∫ ∞

0
g(s)|µ̂t(s)|2ds

]
. (1.92)

The proof of Proposition 1.18 will be given through several lemmas. It is clear that Ê(ξ, t)
satisfies for all t ≥ 0 and for all ξ ∈ RN ,

d

dt
Ê(ξ, t) = τ

2 |ξ|
2
∫ ∞

0
g′(s)|µ̂t(s)|2ds. (1.93)

Since g(s) is nonincreasing, then Ê(ξ, t) is nonincreasing and dissipative.
Lemma 1.19. For all t ≥ 0 and for all ξ ∈ RN , the functional

Φ̂1(ξ, t) = τ Re(¯̂zẑ)

satisfies, for any λ1 > 0,

d

dt
Φ̂1(ξ, t) +

[
ℓ̃− λ1(β − ℓ̃)

]
|ξ|2|ẑ|2 ≤ τ |ẑt|2 + C(λ1)|ξ|2

∫ ∞

0
g(s)|µ̂t(s)|2ds. (1.94)

Proof. Multiplying (1.89) by ¯̂z and taking the real part, we obtain

τ ¯̂zẑtt + ℓ̃|ξ|2|ẑ|2 + τ |ξ|2Re
( ∫ ∞

0
g(s)

〈
µ̂(s), ¯̂z

〉
ds
)
= 0.

Hence,

τ
d

dt
Φ̂1(ξ, t)− τ |ẑt|2 + ℓ̃|ξ|2|ẑ|2 + τ |ξ|2Re

( ∫ ∞

0
g(s)

〈
µ̂(s), ¯̂z

〉
ds
)
= 0.

Then by applying Young’s inequality, we get the estimate (1.94) for any λ1 > 0.
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Lemma 1.20. For all t ≥ 0 and for all ξ ∈ RN , the functional

Φ̂2(ξ, t) = −τ Re
( ∫ ∞

0
g(s)

〈
ẑt, ¯̂µt(s)

〉
ds
)

satisfies for any λ2, λ3 > 0, the following estimate

d

dt
Φ̂2(ξ, t)+

(
(β − ℓ̃)− λ3g(0)

)
|ẑt|2 (1.95)

≤λ2
(β − ℓ̃)

τ
|ξ|2|ẑ|2 + C(λ3)|ξ|2

∫ ∞

0
−g′(s)|µ̂t(s)|2ds

+
(
C(λ2) + (β − ℓ̃)

)
|ξ|2

∫ ∞

0
g(s)|µ̂t(s)|2ds.

Proof. Multiplying (1.89) by
∫∞
0 g(s)¯̂µt(s)ds and taking the real part, we obtain

τ Re
( ∫ ∞

0
g(s)

〈
ẑtt, ¯̂µt(s)

〉
ds
)
+ ℓ̃|ξ|2Re

( ∫ ∞

0
g(s)

〈
ẑ, ¯̂µt(s)

〉
ds
)

+ τ |ξ|2
( ∫ ∞

0
g(s)µ̂(s)ds

)2
= 0.

Hence, we have

τ
d

dt
Re

( ∫ ∞

0
g(s)

〈
ẑt, ¯̂µt(s)

〉
ds
)
− τ Re

( ∫ ∞

0
g(s)

〈
ẑt, ¯̂µtt(s)

〉
ds
)

+ ℓ̃|ξ|2Re
( ∫ ∞

0
g(s)

〈
ẑ, ¯̂µt(s)

〉
ds
)
+ τ |ξ|2

( ∫ ∞

0
g(s)µ̂(s)ds

)2
= 0.

Using the fact that µ̂tt + µ̂ts = ẑt and integrating by parts with respect to s, we obtain

d

dt
Φ̂2(ξ, t) =− (β − ℓ̃)|ẑt|2 + τ Re

( ∫ ∞

0
−g′(s)

〈
ẑt, ¯̂µt(s)

〉
ds
)

+ ℓ̃|ξ|2Re
( ∫ ∞

0
g(s)

〈
ẑ, ¯̂µt(s)

〉
ds
)
+ τ |ξ|2

( ∫ ∞

0
g(s)µ̂(s)ds

)2
= 0.

Then, to estimate the last three terms we apply Young’s inequality and Hölder’s inquality,
we get the estimate (1.95) for any λ2, λ3 > 0.

Now, we define the Lyapunov functional L̂3(ξ, t) as:

L̂3(ξ, t) = N2Ê(ξ, t) + ρ(ξ)Φ̂1(ξ, t) +N3ρ(ξ)Φ̂2(ξ, t), (1.96)
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where N2 and N3 are positive constants that will be fixed later on. Taking the derivative of
(1.96) with respect to t and making use of (1.93), (1.94) and (1.95), we obtain

d

dt
L̂3(ξ, t) +

[(
ℓ̃− λ1(β − ℓ̃)

)
−N3λ2

(β − ℓ̃)
τ

]
|ξ|2ρ(ξ)|ẑ|2

+
[
N3
(
(β − ℓ̃)− λ3g(0)

)
− τ

]
|ξ|2ρ(ξ)|ẑt|2

−
[
C(λ1) +N3

(
C(λ2) + (β − ℓ̃)

)]
|ξ|2ρ(ξ)

∫ ∞

0
g(s)|µ̂t(s)|2ds

+
[
N2

τ

2 −N3C(λ3)
]
|ξ|2

∫ ∞

0
−g′(s)|µ̂t(s)|2ds ≤ 0. (1.97)

Now, we discuss the case where g is decaying exponentially (i.e., p = ∞) and then the case
where g is decaying polynomially (i.e., p⋆ < p < ∞).

1.6.1 Exponentially decaying kernel
Taking p = ∞, according to the assumption (G2), (1.97) can be written as

d

dt
L̂3(ξ, t)+

[(
ℓ̃− λ1(β − ℓ̃)

)
−N3λ2

(β − ℓ̃)
τ

]
|ξ|2ρ(ξ)|ẑ|2

+
[
N3
(
(β − ℓ̃)− λ3g(0)

)
− τ

]
|ξ|2ρ(ξ)|ẑt|2

+
[
N2

τ

2 −N3C(λ3)−
1
δ

(
C(λ1) +N3

(
C(λ2) + (β − ℓ̃)

))]
|ξ|2ρ(ξ)

∫ ∞

0
−g′(s)|µ̂t(s)|2ds ≤ 0, t ≥ 0. (1.98)

In the above estimate, we can fix our constants in such a way that the coefficients in (1.98)
are positive. This can be achieved as follows:

λ1 <
ℓ̃

β − ℓ̃

and we fix λ3 small enough such that

λ3 <
β − ℓ̃

g(0) .

Then, we can select N3 large enough

N3 >
τ

(β − ℓ̃)− λ3g(0)
.

Once N3 is fixed, we select λ2 small enough such that

λ2 <
τ
(
ℓ̃− λ1(β − ℓ̃)

)
N3(β − ℓ̃)

.
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Finally, we take N2 large enough such that

N2 >
2
τ

(
N3C(λ3) +

1
δ

(
C(λ1) +N3

(
C(λ2) + (β − ℓ̃)

)))
.

Consequently, from above we deduce that there exists a positive constant Λ5 such that for
all t ≥ 0 and for all ξ ∈ RN ,

d

dt
L̂3(ξ, t) + Λ5ρ(ξ)Ê(ξ, t) ≤ 0. (1.99)

It is clear that for N2 large enough, there exist two positives constants d9 and d10, for all
t ≥ 0 and for all ξ ∈ RN , such that

d9Ê(ξ, t) ≤ L̂3(ξ, t) ≤ d10Ê(ξ, t). (1.100)

Consequently, the last estimate lead to

d

dt
L̂3(ξ, t) + Λ6ρ(ξ)L̂3(ξ, t) ≤ 0, for all t ≥ 0, (1.101)

and for some Λ6 > 0. A simple application of Gronwall’s lemma to the estimate (1.101)
yields

L̂3(ξ, t) ≤ L̂3(ξ, 0)e−cρ(ξ)t, for all t ≥ 0. (1.102)
Once again, (1.100) and (1.102) yield for some Λ7 > 0,

Ê(ξ, t) ≤ Λ7Ê(ξ, 0)e−cρ(ξ)t, for all t ≥ 0. (1.103)

The use of µ̂0(s) = ẑ0, yields the desired estimate (1.90).

1.6.2 Polynomially decaying kernel
In this section, we assume that g is decaying polynomially for p⋆ < p < ∞. As we did above,
taking the same coefficients of (1.97) which are already fixed in such a way they are positive
except the coefficient of

(∫∞
0 g(s)|µ̂t(s)|2ds

)
. Then for all t ≥ 0, and ξ ∈ RN , the inequality

(1.97) can be rewritten as:

d

dt
L̂3(ξ, t) ≤ −m1ρ(ξ)Ê(ξ, t) +m2ρ(ξ)|ξ|2

∫ ∞

0
g(s)|µ̂t(s)|2ds, (1.104)

with
m2 =

[
C(ϵ1) +N1C(ϵ2)

]
+ τm1

and for some m1 > 0. To establish the result (1.91), we apply the same techniques used in
Section 1.3. We estimate the integral term of (1.104) by using Hölder inequality, Lemma
1.5, (1.92), (1.93) and applying the method used in Section 1.3, we obtain the desired result.
We omit the details. This finishes the proof of Proposition 1.18.
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CHAPTER 2
A GENERAL STABILITY RESULT FOR VISCOELASTIC

MOORE–GIBSON–THOMPSON EQUATION IN THE WHOLE
SPACE

2.1 Introduction

In this chapter, we are interested in a viscoelastic Moore–Gibson–Thompson equation with
a type II memory term, in the whole space RN :

uttt(t) + αutt(t)− β∆ut(t)− γ∆u(t) +
∫ t

0
g(t− s)∆ut(s)ds = 0, t > 0, (2.1)

together with initial data

u(0) = u0, ut(0) = u1, utt(0) = u2, (2.2)

where α, β, γ are positive constants. It is worth mentioning that the MGT model (2.1) with
convolution memory term

∫ t
0 g(t− s)Az(s)ds was first provided by Lasiecka and Wang [65],

in a bounded domain Ω, by considering z in the three classes z = u, z = ut and z = ζu+ ut
(with ζ > 0), and memory kernel g with an exponential behavior. Thus, working on the non-
critical regime, the authors proved that the corresponding energy functional is exponentially
stable, see [65, Subsect. 1.2].
Our aim in this work is to investigate (2.1) and (2.2) for relaxation functions g satisfying

g′ ≤ −η(t)g(t)

and establish a general decay rate result under the condition

β − γ

α
− ϱ

2 > 0, (2.3)

where ϱ =
∫∞
0 g(s)ds. Then, we find the decay rate of the L2-norm of the vector U =

(utt+αut,∇(ut+αu),∇ut) and those of its higher-order derivatives by applying Plancherel’s
theorem. To the best of our knowledge, the MGT equation with a type II memory satisfying
the general condition (2.5) has never been discussed in the whole space RN . Our main
result, which establishes the decay estimates of the L2-norm of U, as well as the L2-norm of
its derivatives, is given in the following theorem.

Theorem 2.1. Assume that (2.3) holds. We assume further that U0 ∈ L1(RN ) ∩Hs(RN ).
Then, there exist positive constants c1, c2, such that, for all t ≥ 0 and all j ≤ s, we obtain

∥∇jU(t)∥L2(RN ) ≤c1
(
1 +

∫ t

0
η(s)ds

)− j
2−

N
4 ∥U0∥L1(RN )

+ c1e
−c2

∫ t
0 η(s)ds∥∇jU0∥L2(RN ). (2.4)

To prove our main result, we first establish estimates on the Fourier image of U.
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The essential of our work is organized as follows. In section 2, we give the hypotheses, then
we state the well-posedness. The proofs of the main results and some illustrative examples
are given in Section 4.

2.2 Preliminaries and well-posedness of the problem

In this section, we present some preliminaries and hypotheses necessary to prove our main
results. Then we state the well-posedness of the problem (2.1). We first state the assumptions
on the relaxation function.

(H1) g : R+ → (0,∞) is a non-increasing differentiable function, such that

g(0) > 0, ϱ =
∫ ∞

0
g(s)ds < β.

(H2) There exists a non-increasing differentiable function η : R+ → (0,∞), such that

g′(t) ≤ −η(t)g(t) ∀t ≥ 0. (2.5)

We adopt the following lemma without proof which will be used in our work.

Lemma 2.2. [86, Lemma 3.2]. Assume that (H1) holds. Then, there exists a constant
c > 0, such that∣∣∣∣ ∫ t

0
g(t− s)(u(t)− u(s))ds

∣∣∣∣2 ≤ c(g ◦ u)(t), ∀t ≥ 0, ∀u ∈ L2(RN ), (2.6)

where,
(g ◦ v)(t) =

∫ t

0
g(t− s)|v(t)− v(s)|2ds.

Now, by taking ut(x, τ) = 0, for all τ < 0 and using the fact that∫ ∞

0
g(s)∆ut(t− s)ds =

∫ t

0
g(s)∆ut(t− s)ds+

∫ ∞

t
g(s)∆ut(t− s)ds,

we deduce that our problem (2.1) together with (2.2) can be read as:uttt(t) + αutt(t)− β∆ut(t)− γ∆u(t) +
∫ ∞

0
g(s)∆ut(t− s)ds = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x),
(2.7)

for all x ∈ RN and t ≥ 0. Therefore, thanks to [5, Theorem 3.2], we have the following
lemma.

Lemma 2.3. Assume that (H1) and (H2) are satisfied. Given U0 = (u0, u1, u2) ∈ H =
H1(RN )×H1(RN )× L2(RN ), then problem (2.7) has a unique solution such that

(u, ut, utt) ∈ C([0,+∞);H).
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Proof. For more details on the proof, we refer the reader to [5, Theorem 3.2].

Now, by taking the Fourier transform of the problem (2.1)-(2.2), we obtainûttt(t) + αûtt(t) + β|ξ|2ût(t) + γ|ξ|2û− |ξ|2
∫ t

0
g(t− s)ût(s)ds = 0,

û(0) = û0, ût(0) = û1, ûtt(0) = û2,
(2.8)

for all ξ ∈ RN and for all t ≥ 0. Now, we define the vector U as

U = (utt + αut,∇(ut + αu),∇ut).

In addition, the energy functional associated with problem (2.8) is given by

Ê(ξ, t) = 1
2

[
|ûtt + αût|2 +

γ

α
|ξ|2|ût + αû|2 +

(
β − γ

α
− ϱ

)
|ξ|2|ût|2 + |ξ|2(g ◦ ût)(t)

]
.

(2.9)

Thus, one can easily verify that, for some two positive constants λ1, λ2, we have

Ê(ξ, t) ≥ λ1|Û(ξ, t)|2 (2.10)

and

Ê(ξ, 0) ≤ λ2|Û(ξ, 0)|2, (2.11)

for all ξ ∈ RN and for all t ≥ 0. Hence, we have the following results.

Lemma 2.4. Under the condition (2.3), the energy functional, defined in (2.9), satisfies,
for all t ≥ 0 and all ξ ∈ RN ,

d

dt
Ê(ξ, t) ≤ 1

2 |ξ|
2(g′ ◦ ût)(t)− α(β − γ

α
− ϱ

2)|ξ|
2|ût|2 ≤ 0. (2.12)

Proof. Multiplying the equation in (2.8) by (¯̂utt + α¯̂ut) and taking the real part, we get

Re
(
(ûtt + αût)t(¯̂utt + α¯̂ut)

)
+ |ξ|2Re

(
(βût + γû)(¯̂utt + α¯̂ut)

)
− |ξ|2Re

( ∫ t

0
g(t− s)ût(s)(¯̂utt + α¯̂ut)ds

)
= 0. (2.13)

Adding and subtracting γ
α |ξ|

2ût to the second summand, we obtain

1
2
d

dt

[
|ûtt + αût|2 +

γ

α
|ξ|2|ût + αû|2 +

(
β − γ

α

)
|ξ|2|ût|2

]
+ (αβ − γ)|ξ|2|ût|2

− |ξ|2Re
( ∫ t

0
g(t− s)ût(s)(¯̂utt + α¯̂ut)ds

)
= 0. (2.14)
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Now, we estimate the last term in (2.14) as follows

−|ξ|2Re
( ∫ t

0
g(t− s)ût(s)(¯̂utt + α¯̂ut)ds

)
≤|ξ|2Re

( ∫ t

0
g(t− s)(ût(t)− ût(s))¯̂uttds

)
+ α|ξ|2Re

( ∫ t

0
g(t− s)(ût(t)− ût(s))¯̂utds

)
− ϱ|ξ|2Re

(
ût(t)(¯̂utt + α¯̂ut)

)
. (2.15)

For the first term of the right-hand side of (2.15), we have

|ξ|2Re
( ∫ t

0
g(t− s)(ût(t)− ût(s))¯̂uttds

)
=1
2
d

dt
|ξ|2

∫ t

0
g(t− s)|ût(t)− ût(s)|2ds

− 1
2 |ξ|

2
∫ t

0
g′(t− s)|ût(t)− ût(s)|2ds.

For the second term of the right-hand side in (2.15), we use Hölder’s and Young’s inequalities
to get

α|ξ|2Re
( ∫ t

0
g(t− s)(ût(t)− ût(s))¯̂utds

)
≤α

2 |ξ|
2
∫ t

0
g(t− s)|ût(t)− ût(s)|2ds

+ αϱ

2 |ξ|2|ût|2.

Finally, for the last term in (2.15), we have

−ϱ|ξ|2Re
(
ût(t)(¯̂utt + α¯̂ut)

)
≤ −1

2
d

dt
|ξ|2|ût|2 − αϱ|ξ|2|ût|2.

Inserting the last three estimates above into (2.15), we arrive at

−|ξ|2Re
( ∫ t

0
g(t− s)ût(s)(¯̂utt + α¯̂ut)ds

)
≤1
2
d

dt
|ξ|2

[
(g ◦ ût)(t)− ϱ|ût|2

]
− 1

2 |ξ|
2(g′ ◦ ût)(t) +

α

2 |ξ|
2(g ◦ ût)(t)

− αϱ

2 |ξ|2|ût|2. (2.16)

Combining (2.16) and (2.14), with the use of (H1), we obtain

1
2
d

dt

[
|ûtt + αût|2 +

γ

α
|ξ|2|ût + αû|2 +

(
β − γ

α
− ϱ

)
|ξ|2|ût|2 + |ξ|2(g ◦ ût)(t)

]
≤− α(β − γ

α
− ϱ

2)|ξ|
2|ût|2 +

1
2 |ξ|

2(g′ ◦ ût)(t).

Consequently, the desired result is established.
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2.3 Decay estimate

In this section, we apply the energy method in the Fourier space to get some pointwise
estimate of Û(ξ, t), with U = (αut + utt,∇(αu + ut),∇ut), and present two illustrative
examples. We first state the following result.

Proposition 2.5. Let Û(ξ, t) be the solution of (2.8). Assume that (2.3) and (H1),(H2)
hold. Then, Û(ξ, t) satisfies the following estimates, for positive constants c0, c′0,

|Û(ξ, t)|2 ≤ c0|Û(ξ, 0)|2e−c′0ρ(ξ)
∫ t
0 η(s)ds, ∀ξ ∈ RN , ∀t ≥ 0, (2.17)

where ρ(ξ) = |ξ|2
1+|ξ|2 .

Proposition 2.5 is the main ingredient in proving the decay estimates in Theorem 2.1.
Before going on, we first establish some technical lemmas which help to construct the ap-
propriate Lyapunov functionals in the Fourier space and, ultimately, lead to the proof of our
main results.

Lemma 2.6. Under the assumption (H1), the functional Ψ̂1 defined by

Ψ̂1(ξ, t) = Re
(
(ûtt + αût)(¯̂ut + α¯̂u)

)
satisfies, along the solution of (2.8) and for any ϵ0, ϵ1 > 0, the estimate

d

dt
Ψ̂1(ξ, t) ≤−

(
γ

α
− ϵ0 − ϵ1

)
|ξ|2|ût + αû|2 + |ûtt + αût|2

+ C(ϵ0)|ξ|2|ût|2 + C(ϵ1)|ξ|2(g ◦ ût)(t). (2.18)

Proof. Differentiating Ψ̂1 with respect to t, we get

d

dt
Ψ̂1(ξ, t) = Re

(
(ûttt + αûtt)(ût + αû)

)
+ |ûtt + αût|2.

Using (2.8), we obtain

d

dt
Ψ̂1(ξ, t) =Re

(
(−β|ξ|2ût − γ|ξ|2û+ |ξ|2

∫ t

0
g(t− s)ût(s)ds)(ût + αû)

)
+ |ûtt + αût|2

=− β|ξ|2Re
(
ût(ût + αû)

)
− γ

α
|ξ|2|ût + αû|2 + γ

α
|ξ|2Re

(
ût(ût + αû)

)
+ |ûtt + αût|2 + |ξ|2Re

(
(¯̂ut + α¯̂u)

∫ t

0
g(t− s)(ût(s)− ût(t))ds

)
+ ϱ|ξ|2Re(ût(¯̂ut + α¯̂u))

≤|ûtt + αût|2 −
(
β − γ

α
− ϱ

)
|ξ|2Re

(
ût(ût + αû)

)
− γ

α
|ξ|2|ût + αû|2

+ |ξ|2Re
(
(¯̂ut + α¯̂u)

∫ t

0
g(t− s)(ût(s)− ût(s))ds

)
.

Applying Young’s inequality and using (2.6), we arrive at the estimate (2.18).
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Lemma 2.7. Assume that (H1) holds. Then the functional Ψ̂2 defined by

Ψ̂2(ξ, t) = −Re(¯̂ut(ûtt + αût))

satisfies, along the solution of (2.8) and for any ϵ2 > 0, the estimate

d

dt
Ψ̂2(ξ, t) ≤− 1

2 |ûtt + αût|2 +
(
1 + β − γ

α
− ϱ+ C(ϵ2)

)
(1 + |ξ|2)|ût|2

+ ϵ2|ξ|2|ût + αû|2 + 1
2 |ξ|

2(g ◦ ût)(t). (2.19)

Proof. Taking the derivative of Ψ̂2 with respect to t and exploiting (2.8), we get

d

dt
Ψ̂2(ξ, t) =− Re

(
¯̂utt(ûtt + αût)

)
− Re

(
¯̂ut(ûttt + αûtt)

)
.

Adding and subtracting the term α¯̂ut, we obtain

d

dt
Ψ̂2(ξ, t) =− Re

(
(¯̂utt + α¯̂ut − α¯̂ut)(ûtt + αût)

)
− Re

(
¯̂ut(−β|ξ|2ût − γ|ξ|2û+ |ξ|2

∫ t

0
g(t− s)ût(s)ds)

)
=− |ûtt + αût|2 + αRe(¯̂ut(ûtt + αût))

− Re
(
¯̂ut(−β|ξ|2ût − γ|ξ|2û+ |ξ|2

∫ t

0
g(t− s)ût(s)ds)

)
.

Again, adding and subtracting the term γ
α |ξ|

2ût to the last term above, we get

d

dt
Ψ̂2(ξ, t) =− |ûtt + αût|2 + αRe(¯̂ut(ûtt + αût)) +

(
β − γ

α
− ϱ

)
|ξ|2|ût|2

+ |ξ|2 γ
α
Re(¯̂ut(ût + αû))− |ξ|2Re

(
¯̂ut
∫ t

0
g(t− s)(ût(s)− ût(t))ds

)
.

Applying Young’s inequality and using (2.6), we obtain the estimate (2.19).

Now, we define the Lyapunov functional L̂ as

L̂(ξ, t) = N0Ê(ξ, t) + ρ(ξ)Ψ̂1(ξ, t) +N1ρ(ξ)Ψ̂2(ξ, t), (2.20)

where N0 and N1 are positive constants to be specified later. Taking the derivative of (2.20)
with respect to t and making use of (2.12), (2.18) and (2.19), we arrive at

d

dt
L̂(ξ, t) + N0

2 |ξ|2(−g′ ◦ ût)(t) +
[(γ

α
− ϵ0 − ϵ1

)
−N1ϵ2

]
ρ(ξ)|ξ|2|ût + αû|2

+
[
N0α(β − γ

γ
− ϱ

2)− C(ϵ0)−N1
(
1 + β − γ

α
− ϱ+ C(ϵ2)

)]
ρ(ξ)|ξ|2|ût|2

+
[
N1
2 − 1

]
ρ(ξ)|ûtt + αût|2 −

[
C(ϵ1) +

N1
2

]
ρ(ξ)|ξ|2(g ◦ ût)(t) ≤ 0, (2.21)
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for all t ≥ 0 where we used the fact that ρ(ξ) ≤ 1. Now, we choose our constants in such a
way so that the coefficients in (2.21) are positive. First, we take ϵ0 = ϵ1 then select ϵ0 small
enough such that

ϵ0 <
γ

2α.

After that, we set N1 > 2, then pick ϵ2 small enough such that

ϵ2 <
1
N1

(
γ

α
− 2ϵ0

)
.

Finally, as β − γ
γ − ϱ

2 > 0, we take N0 large enough, precisely such that

N0 >
N1(1 + β − γ/α− ϱ+ C(ϵ2)) + C(ϵ0)

α(β − γ
γ − ϱ

2)
.

We therefore deduce that for all ξ ∈ RN and for all t ≥ 0, (2.21) reads as:

d

dt
L̂(ξ, t) ≤ −m1ρ(ξ)Ê(ξ, t) +m2ρ(ξ)|ξ|2(g ◦ ût)(t), (2.22)

where m1 > 0 is a constant and m2 = m1 + C(ϵ1) +
N1
2 . Notice that, for N0 large enough

we have L̂ ∼ Ê, which means that there exist two positives constant λ3, λ4, such that

λ3Ê(ξ, t) ≤ L̂(ξ, t) ≤ λ4Ê(ξ, t) (2.23)

2.3.1 Proof of Proposition 2.5
Proof. First, multiplying (2.22) by η(t), we get

η(t) d
dt
L̂(ξ, t) ≤ −m1ρ(ξ)η(t)Ê(ξ, t) +m2ρ(ξ)|ξ|2η(t)(g ◦ ût)(t). (2.24)

Hence, for the last term in (2.24), using the assumption (H2) and (2.12) with the fact that
η is non-increasing, we easily conclude that, for all ξ ∈ RN and for any t ≥ 0,

|ξ|2η(t)
∫ t

0
g(t− s)|ût(t)− ût(s)|2ds|ξ|2

∫ t

0
η(t− s)g(t− s)|ût(t)− ût(s)|2ds

≤ |ξ|2
∫ t

0
−g′(t− s)|ût(t)− ût(s)|2ds

≤ −2 d

dt
Ê(ξ, t).

Plugging the estimate above in (2.24), we get for some constant m3 > 0, for all ξ ∈ RN and
all t ≥ 0,

η(t) d
dt
L̂(ξ, t) ≤ −m1ρ(ξ)η(t)Ê(ξ, t)−m3ρ(ξ)

d

dt
Ê(ξ, t).
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Again, using the monotonicity of η and the fact that ρ(ξ) ≤ 1, we get

d

dt

[
η(t)L̂(ξ, t) +m3Ê(ξ, t)

]
≤ −m1ρ(ξ)η(t)Ê(ξ, t).

Let
L̂(ξ, t) = η(t)L̂(ξ, t) +m3Ê(ξ, t), ∀ξ ∈ RN and ∀t ≥ 0,

which is clearly equivalent to Ê(ξ, t). In fact, as η′(t) < 0 and recalling (2.23), we infer

m3Ê(ξ, t) ≤ L̂(ξ, t) ≤ (η(0)λ4 +m3)Ê(ξ, t). (2.25)

A simple integration with respect to t yields, for a constant c′0 > 0,

L̂(ξ, t) ≤ L̂(ξ, 0)e−c′0ρ(ξ)
∫ t
0 η(s)ds, ∀ξ ∈ RN and ∀t ≥ 0. (2.26)

Thus, thanks to (2.25), we have

Ê(ξ, t) ≤ Ê(ξ, 0)e−c′0ρ(ξ)
∫ t
0 η(s)ds, ∀ξ ∈ RN and ∀t ≥ 0.

Owing to (2.10) and (2.11), the estimate (2.17) is obtained.

2.3.2 Proof of Theorem 2.1
Proof. Now, we proceed with the proof of Theorem 2.1. To show (2.4), we have by Plancherel’s
theorem and the estimate (2.17)

∥∇jU(t)∥2
L2(RN ) =

∫
RN

|ξ|2j |Û(ξ, t)|2dξ

≤ c0
∫
RN

|ξ|2j |Û(ξ, 0)|2e−c′0ρ(ξ)
∫ t
0 η(s)dsdξ. (2.27)

Since

ρ(ξ) ≥


1
2 |ξ|

2 if |ξ| ≤ 1,
1
2 if |ξ| ≥ 1,

(2.28)

then we rewrite the right-hand side of (2.27) as

c0
∫
RN

|ξ|2j |Û(ξ, t)|2e−c′0ρ(ξ)
∫ t
0 η(s)dsdξ

≤c0
∫
|ξ|≤1

|ξ|2j |Û(ξ, 0)|2e−
c′0
2 |ξ|2

∫ t
0 η(s)dsdξ

+ c0
∫
|ξ|≥1

|ξ|2j |Û(ξ, 0)|2e−
c′0
2
∫ t
0 η(s)dsdξ

=I1 + I2.
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For the integral I1, we have, by (56),

I1 ≤ c0∥Û(ξ, 0)∥2
L∞(RN )

∫
|ξ|≤1

|ξ|2je−
c′0
2 |ξ|2

∫ t
0 η(s)dsdξ

≤ c1∥U0∥2L1(RN )

(
1 +

∫ t

0
η(s)ds

)−j−N
2
. (2.29)

On the other hand, for the high frequency region, we have

I2 ≤ c0e
−

c′0
2
∫ t
0 η(s)ds

∫
|ξ|≥1

|ξ|2j |Û(ξ, 0)|2dξ

≤ c1e
−c2

∫ t
0 η(s)ds∥∇jU0∥2L2(RN ). (2.30)

Combining (2.29) with (2.30), we obtain (2.4).

Remark 2.8. Condition (2.3) appears to be purely technical and dictated by the method used
in the proofs. It would be more natural if it can be replaced by αβ − γ > 0.

Remark 2.9. In our work, we established a decay estimate result for (2.1),(2.2), where the
kernel satisfies

g′(t) ≤ −ζ(t)g(t).
A question remains open, whether we can obtain a similar result for kernel satisfying (39)
with more general convex functions H as in the case of bounded domains, see [75].

We end our chapter by presenting two illustrative examples.
Example 1: Let η(s) = 1. In this case, g decays exponentially and (2.4) gives a decay
estimate similar to the one we obtained in the first chapter with p = ∞, i.e.

∥∇jU(t)∥ ≤ c1(1 + t)−
j
2−

N
4 ∥U0∥L1(RN ) + c1e

−c2t∥∇jU0∥L2(RN ),

for c1, c2 > 0.
Example 2: Let η(s) = 1

1 + s
. In this case, g decays polynomially and (2.4) gives the

following decay estimate, ∀t > 0,

∥∇jU(t)∥ ≤ c1(1 + ln t)−
j
2−

N
4 ∥U0∥L1(RN ) +

c1
tc2

∥∇jU0∥L2(RN ),

where c1, c2 > 0.
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CHAPTER 3
OPTIMAL DECAY RATE FOR THE CAUCHY PROBLEM OF

THE STANDARD LINEAR SOLID MODEL WITH
GURTIN–PIPKIN THERMAL LAW

3.1 Introduction

In this chapter, we are concerned with the following Cauchy problem of the standard linear
solid model with Gurtin–Pipkin Thermal Law in RN , that is,

τuttt + utt − a2∆u− a2β∆ut + δ∆θ = 0,

θt −
1
k

∫ ∞

0
g(s)∆θ(t− s) ds− τδ∆utt − δ∆ut = 0, (3.1)

with the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x), θ(x, t) |t≤0= θ0(x, t), (3.2)

where θ0(x, t) is a prescribed past history of θ(x, t) for t ≤ 0.
In this context, we recall different thermal conduction models coupled with the standard
solid model (3.1) which appeared in the literature. The Fourier law is a frequently used
model for the heat conduction, that is for the temperature difference θ(x, t) and the heat
flux q(x, t), this law reads as:

q(x, t) = −κ∇θ(x, t). (3.3)
Equation (3.3) together with the energy equation:

θt(x, t) + γ∇ · q(x, t) = 0, (3.4)

where, γ > 0 and the thermal conductivity κ > 0, leads to the parabolic heat equation:

θt(x, t)− κγ∆θ(x, t) = 0, (3.5)

also known as the diffusion equation. In the diffusion equation, if a sudden change of
temperature is inflicted at some point on the body, it will be felt instantly everywhere.
Hence, we can say that the diffusion allows an infinite speed of propagation. To reduce this
difficulty in the Fourier law, we may consider Cattaneo law of heat conduction given by:

τ0qt(x, t) + q(x, t) + κ∇θ(x, t) = 0, (3.6)

where τ0 > 0 is the relaxation time of the heat flux. Equation (3.6) is different from Fourier’s
by the existence of relaxation term τ0qt(x, t) and model the heat propagation equation as a
damped wave equation. The Cattaneo equation (3.6) can be expressed as an integral over
the history of the temperature gradient, i.e.,

q(x, t) = − κ

τ0

∫ t

−∞
e(s−t)/τ0∇θ(x, s) ds. (3.7)
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If we consider the relaxation function g(s) instead of the exponential function in (3.7), we
have

q(x, t) = −κ
∫ t

−∞
g(t− s)∇θ(x, s) ds. (3.8)

Equation (3.8) is known as the Gurtin–Pipkin heat conduction law [45]. We may construct
different models by different choices of the heat flux kernel g(s), for example equation (3.7)
can be restored from equation (3.8) by considering

g(s) = 1
τ0
e−s/τ0 .

Summarizing the main part of the work as: The state of the problem is presented in section
3.2. Section 3.3 is devoted to the energy method in the Fourier space and the construction
of the Lyapunov functionals. We ultimately, in Section 3.4, prove the main estimates of the
solution in the energy space.

3.2 Preliminaries and Main Results

In this section, we are going to state some preliminaries and assumptions, then state the
main results associated with our problem (3.1). Following the approach of Dafermos [33],
we introduce the new variable η = η(x, t, s):

η(x, t, s) =
∫ s

0
θ(x, t− σ)dσ =

∫ t

t−s
θ(x, σ)dσ s ≥ 0, t ≥ 0. (3.9)

Differentiating (3.9) with respect to t yields that η satisfies the supplementary equation

ηt(s) = −ηs(s) + θ(t), lim
s→0

η(x, s) = 0, x ∈ RN , ∀ t ≥ 0, (3.10)

which has to be added to system (3.1). Then, we define the operator Tη = −η′. From (3.10),
we get the following equation:

ηt = Tη + θ. (3.11)
Also, we define µ(s) = −g′(s) and assume that µ satisfies the following two assumptions:

(M1) µ is a nonnegative, nonincreasing and absolutely continuous function on R+ such
that:

µ(0) = lim
s→0

µ(s) ∈ (0,∞).

(M2) There exists ν > 0, such that the differential inequality

µ′(s) + νµ(s) ≤ 0

holds for almost every s > 0.
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Remark 3.1. In particular, µ is summable on R+ with∫ ∞

0
µ(s)ds = g(0) > 0. (3.12)

With all these new variables and without loss of generality, we take a = 1, hence, we rewrite
system (3.1) as:

τuttt + utt −∆u− β∆ut + δ∆θ = 0,

θt −
1
k

∫ ∞

0
µ(s)∆η(s) ds− τδ∆utt − δ∆ut = 0, (3.13)

ηt = Tη + θ,

with the conditions: 
(u, ut, utt, θ)(x, 0) = (u0, u1, u2, θ0)(x),
lim
s→0

η(x, t, s) = 0,

η(x, 0, s) = η0(x, s) =
∫ s
0 θ0(x, σ) dσ.

(3.14)

Applying the change of variables v = ut and w = utt, system (3.13) can be written as

ut − v = 0,
vt − w = 0,
τwt + w −∆u− β∆v + δ∆θ = 0,

θt −
1
k

∫ ∞

0
µ(s)∆η(s, t)ds− τδ∆w − δ∆v = 0, (3.15)

ηt + ηs = θ.

Consequently, problem (3.15) with initial data (3.14) is of the form:
d

dt
U(t) = AU(t), t ∈ (0,+∞),

U(x, 0) = U0(x) = (u0, u1, u2, θ0, η0)T ,
(3.16)

where U = (u, v, w, θ, η)T and A : D(A) ⊂ H → H being a linear operator defined by

AU = A


u
v
w
θ
η

 =



v
w

−1
τ

(
w +∆(βv + u+ δθ)

)
1
k

∫ ∞

0
µ(s)∆η(s)ds+ δ∆(v + τw)

θ + Tη


. (3.17)

Now, we introduce the space M as:

M = L2
µ(R+, H1(RN )),
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endowed with the following norm:

∥η̄∥2M =
∫ ∞

0
µ(s)∥∇η̄(s)∥2

L2(RN )ds,

for all η̄ ∈ M. Then, following [111], we define the Hilbert space as:

H = H1(RN )×H1(RN )× L2(RN )× L2(RN )×M,

with the following inner product:

(U, Ũ)H = ⟨(u+ τv), (ū+ τ v̄)⟩1 + τ(β − τ) ⟨v, v̄⟩1 + ⟨(v + τw), (v̄ + τw̄)⟩L2(RN )

+
〈
θ, θ̄

〉
L2(RN ) +

1
k

∫ ∞

0
µ(s) ⟨∇η(s),∇η̄(s)⟩L2(RN ) ds,

and the corresponding norm:

∥U∥2H = ∥u+ τv∥21 + τ(β − τ)∥v∥21 + ∥v + τw∥2
L2(RN ) + ∥θ∥2

L2(RN ) +
1
k
∥η∥2M,

for all vectors U = (u, v, w, θ, η)T and Ũ = (ū, v̄, w̄, θ̄, η̄)T in H.
After that, we will give the domain of operator A as follows:

D(A) =


U = (u, v, w, θ, η) ∈ H

∣∣∣∣∣∣∣∣∣∣∣

w, θ ∈ H1(RN )
βv + u− δθ ∈ H2(RN )

1
k

∫ ∞

0
µ(s)η(s)ds+ τδw + δv ∈ H2(RN )

η ∈ D(T )


.

Define
V = (ut + τutt,∇(u+ τut), θ,∇η)T ,

where, (u(x, t), θ(x, t)) is the solution of (3.13)-(3.14). Now, we state the well-posedness
result of system (3.16).

Theorem 3.2. Suppose that 0 < τ < β. Let U0 ∈ H, then system (3.16) has a unique
weak solution U ∈ C([0,∞),H). Moreover, if U0 ∈ D(A), then U ∈ C

(
[0,∞);D(A)

)
∩

C1
(
[0,∞);H

)
.

For a complete proof, see [111, Theorem 2.1].
Now, we are going to state lemma which we will adapt later in proving the main results.

Lemma 3.3. Under the assumption (M1), the following inequality holds∣∣∣∣∫ ∞

0
µ(s)η̂(s, t)ds

∣∣∣∣2 ≤ g(0)
∫ ∞

0
µ(s)|η̂(s, t)|2ds. (3.18)
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Proof. We have by using Hölder’s inequality∣∣∣∣∣
∫ ∞

0
µ(s)η̂(s, t)ds

∣∣∣∣∣
2
=
∣∣∣∣∣
∫ ∞

0
(µ(s))

1
2 (µ(s))

1
2 η̂(s, t) ds

∣∣∣∣∣
2

≤
∣∣∣∣∣
( ∫ ∞

0
µ(s)ds

)1
2
(∫ ∞

0
µ(s)(η̂(s, t))2ds

)1
2
∣∣∣∣∣
2

=
(∫ ∞

0
µ(s)ds

)∫ ∞

0
µ(s)|η̂(s, t)|2ds

= g(0)
∫ ∞

0
µ(s)|η̂(s, t)|2ds.

This completes the proof of Lemma 3.3.

We close this section with our main results and we will give their proof in Section 4.

Theorem 3.4 (Sub-critical case). Suppose that 0 < τ < β. Let V (ξ, t) = (ut + τutt,∇(u+
τut),∇ut, θ) and V0 = V (0, x) ∈ Hs(RN )∩L1(RN ), where s is a non–negative integer, then
for all 0 ≤ k + ℓ ≤ s, V satisfies the following decay estimate:

||∇kV (t)||L2(RN ) ≤ C(1 + t)−
N
4 −

k
2 ||V0||L1(RN ) + C(1 + t)−

ℓ
2 ||∇k+ℓV0||L2(RN ), (3.19)

where, C is a positive constant independent of V0 and t.

Theorem 3.5 (Critical case). Suppose that β = τ. Let Vc(ξ, t) = (ut + τutt,∇(u + τut), θ)
and assume in addition that V 0

c ∈ Hs(RN ) ∩ L1(RN ). Then, for all k + ℓ ≤ s, we have:

∥∇kVc(t)∥L2(RN ) ≤ C(1 + t)−
N
4 −

k
2 ∥V 0

c ∥L1(RN ) + C(1 + t)−
ℓ
4∥∇k+ℓV 0

c ∥L2(RN ), (3.20)

where, C is a positive constant independent of V0 and t.

Remark 3.6. As a consequence of the results obtained in this work, we notice that the
exponent of the decay rate when the thermal law of Gurtin–Pipkin heat conduction is added
to the standard linear solid model is similar to the one obtained when the model is coupled by
Fourier or Cattaneo heat conduction. We further notice that it is the same as that obtained in
the Cauchy problem without heat conduction, which is of the form (1+ t)−N/4, [98, Theorem
3.6]. The difference lies only in the requirement of a higher regularity of the initial data for
the decay to be achieved (see Remark 4.4 in [98])). It should also be noted that the coupling
of heat conduction under the Gurtin-Pipkin law to the standard linear solid model leads to
the regularity-loss phenomenon in both cases; (0 < τ < β) and (0 < τ = β).

Remark 3.7. One can observe that, we did not improve the decay rate of the Cauchy problem
without thermal conduction even if we added the Gurtin–pipkin law, because, following the
mathematical literature, it is obvious that for many mathematical models, the dissipation
caused by thermal conduction (Fourier’s, Cattaneo’s and Pipkin–Gurtin’s models) is weaker
than the viscoelastic or frictional dissipation, for a clear picture, see for instance [59] and
[85], where the authors found similar decay rates obtained for the Timoshenko system coupled
to thermal conduction.
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Remark 3.8. With reference to [95], [96] and [97], it has been proven by using the eigen-
values expansion and energy method in the Fourier space, that the decay rate (1 + t)−N/4

is optimal when (0 < τ < β) and (0 < τ = β). Since the Fourier and Cattaneo models
are only particular cases of the result of this chapter. Thus, we are able to deduce from the
aforementioned works the optimality of our decay rate.

3.3 The energy method in the Fourier space

Our intention in this section is to achieve some decay estimates of the Fourier image of the
energy for system (3.15) in both cases sub-critical, where 0 < τ < β and critical, where
0 < τ = β. Before going on, we state the pointwise estimates.

First, for the sub-critical case, where 0 < τ < β, we have

Proposition 3.9. (Pointwise estimate). Let (û, v̂, ŵ, θ̂, η̂)(ξ, t) be the solution of (3.25a)-
(3.25e). Assume that (M1) and (M2) hold and 0 < τ < β. Then, V̂ (ξ, t) satisfies the
following estimate:

|V̂ (ξ, t)|2 ≤ Ce−cρf (ξ)t|V̂0(ξ)|2, (3.21)
for any t ≥ 0, where

ρf (ξ) =
|ξ|2

1 + |ξ|2 + |ξ|4
. (3.22)

Proposition 3.9 is the main key to prove the decay estimates in theorem 3.4. Its proof
will be given through several lemmas.
For the critical case 0 < τ = β, we have the following result.

Proposition 3.10. Let V̂c(ξ, t) be the solution of (3.58a)-(3.58e). Assume that (M1), (M2)
and β = τ hold. Then, V̂c(ξ, t) satisfies the following estimate:

|V̂c(ξ, t)|2 ≤ C|V̂c(ξ, 0)|2e−cρ̃c(ξ)t, (3.23)

for all t > 0, where,

ρ̃c(ξ) =
|ξ|2

(1 + |ξ|2)(1 + |ξ|2 + |ξ|4) . (3.24)

This estimate is the main ingredient in proving the decay rate stated in Theorem 3.5.

3.3.1 Proof of Proposition 3.9
To attain the decay estimate, we apply the energy method in the Fourier space and then
form an appropriate Lyapunov functional, which will lead to our desired estimates.
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Applying the Fourier transform to (3.15), we have:

ût − v̂ = 0, (3.25a)
v̂t − ŵ = 0, (3.25b)
τŵt + ŵ + |ξ|2û+ β|ξ|2v̂ − δ|ξ|2θ̂ = 0, (3.25c)

θ̂t +
|ξ|2

k

∫ ∞

0
µ(s)η̂(s, t)ds+ τδ|ξ|2ŵ + δ|ξ|2v̂ = 0, (3.25d)

η̂t + η̂s = θ̂, (3.25e)

where the initial data are written in terms of the solution vector Û(ξ, t) = (û, v̂, ŵ, θ̂, η̂)T ,
as: 

Û(ξ, 0) =
(
û0, v̂0, ŵ0, θ̂0

)
(ξ),

η̂0(ξ, s) =
∫ s

0
θ̂0(ξ, σ)dσ.

(3.26)

The energy functional Ê(ξ, t) associated with the system (3.25) is defined as follows:

Ê(ξ, t) = |v̂+ τŵ|2+ τ(β − τ)|v̂|2+ |ξ|2|û+ τ v̂|2+ |θ̂|2+ |ξ|2

k

∫ ∞

0
µ(s)|η̂(ξ, t, s)|2ds. (3.27)

Lemma 3.11. Assume that 0 < τ ≤ β. Let (û, v̂, ŵ, θ̂, η̂) be the solution of (3.25), then the
energy Ê(ξ, t) given by (3.27) is a nonincreasing function and satisfies, for all t ≥ 0,

d

dt
Ê(ξ, t) = −(β − τ)|ξ|2|v̂|2 + |ξ|2

2k

∫ ∞

0
µ′(s)|η̂(ξ, t, s)|2ds. (3.28)

Proof. The proof of this Lemma is given in [111] .

Define the functional B1(ξ, t) as in [95]

B1(ξ, t) = Re
(
(v̂ + τŵ)(¯̂u+ τ ¯̂v)

)
. (3.29)

Lemma 3.12. The functional B1(ξ, t) satisfies

d

dt
B1(ξ, t) + |ξ|2|û+ τ v̂|2 − |v̂ + τŵ|2 =|ξ|2(τ − β) Re(v̂(¯̂u+ τ ¯̂v))

+ δ|ξ|2Re
(
θ̂(¯̂u+ τ ¯̂v)

)
.

(3.30)

Proof. Adding equations (3.25b) and (3.25c), we have:

d

dt
(v̂ + τŵ) = −|ξ|2û− β|ξ|2v̂ + δ|ξ|2θ̂. (3.31)

66



Multiplying the above equation (3.31) by ¯̂u+ τ ¯̂v, we have:

(¯̂u+ τ ¯̂v) d
dt
(v̂ + τŵ) = (−|ξ|2û− β|ξ|2v̂ − τ |ξ|2v̂ + τ |ξ|2v̂ + δ|ξ|2θ̂)(¯̂u+ τ ¯̂v). (3.32)

Adding equation (3.25a) to τ(3.25b), we have:

d

dt
(û+ τ v̂) = v̂ + τŵ. (3.33)

Multiplying the above equation (3.33) by ¯̂v + τ ¯̂w, we have

(¯̂v + τ ¯̂w) d
dt
(û+ τ v̂) = (¯̂v + τ ¯̂w)(v̂ + τŵ). (3.34)

Adding equations (3.32) and (3.34) and taking the real part, we obtain (3.30). This completes
the proof of Lemma 3.12.

Define the functional B2(ξ, t) as in [95]

B2(ξ, t) = Re(−τ ¯̂v(v̂ + τŵ)).

Lemma 3.13. The functional B2(ξ, t) satisfies

d

dt
B2(ξ, t)+(1−ϵ′′2)|v̂+τŵ|2 ≤ C(ϵ2, ϵ′2, ϵ′′2)(1+|ξ|2+|ξ|4)|v̂|2+ϵ2|ξ|2|û+τ v̂|2+ϵ′2|θ̂|

2, (3.35)

where, ϵ2, ϵ′2 and ϵ′′2 are arbitrary positive constants.

Proof. Multiplying equation (3.25b) by −τ(¯̂v + τ ¯̂w), we have:

− τ(¯̂v + τ ¯̂w) d
dt
v̂ = −τŵ(¯̂v + τ ¯̂w). (3.36)

Next, multiplying equation (3.31) by −τ ¯̂v, we get:

−τ ¯̂v d

dt
(v̂+τŵ) = ¯̂v

(
τ |ξ|2û+βτ |ξ|2v̂+τ2|ξ|2v̂−τ2|ξ|2v̂−δτ |ξ|2θ̂+(v̂+τŵ)−(v̂+τŵ)

)
. (3.37)

Adding the above two equations then taking the real part, we get:

d

dt
B2(ξ, t) + |v̂ + τŵ|2 − τ(β − τ)|ξ|2|v̂|2 =τ |ξ|2Re

(¯̂v(û+ τ v̂)
)
+Re

(¯̂v(v̂ + τŵ)
)

− δτ |ξ|2Re(¯̂vθ).
(3.38)

Applying Young’s inequality, we have, for any ϵ2, ϵ′2, ϵ
′′
2 > 0,

|τ |ξ|2Re(¯̂v(û+ τ v̂))| ≤ ϵ2|ξ|2|û+ τ v̂|2 + C(ϵ2)|ξ|2|v̂|2,
|Re(¯̂v(v̂ + τŵ))| ≤ ϵ′′2 |v̂ + τŵ|2 + C(ϵ′′2)|v̂|2,
|δτ |ξ|2Re(θ̂¯̂v)| ≤ ϵ′2|θ̂|

2 + C(ϵ′2)|ξ|4|v̂|2.
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Plugging the above estimates into (3.38), then (3.35) is fulfilled. Thus, the proof of Lemma
3.13 is finished.

Define the functional B3(ξ, t).

B3(ξ, t) = Re
(
− δ|ξ|4(¯̂u+ τ ¯̂v)

∫ ∞

0
µ(s)η̂(s, t)ds− |ξ|2θ̂

∫ ∞

0
µ(s)¯̂η(s, t) ds

)
. (3.39)

Lemma 3.14. The functional B3(ξ, t) satisfies

d

dt
B3(ξ, t) + g(0)|ξ|2|θ̂|2 = |ξ|4

k
Re

(∫ ∞

0
µ(s)η̂(s, t) ds

)2

− Re
(
|ξ|2 ¯̂θ

∫ ∞

0
µ′(s)η̂(s, t) ds

)

− Re
(
δ|ξ|4(¯̂u+ τ ¯̂v)

∫ ∞

0
µ′(s)η̂(s, t)ds

)
− g(0)δ|ξ|4Re

(
θ̂(¯̂u+ τ ¯̂v)

)
.

(3.40)

Proof. Multiplying equation (3.25d) by −|ξ|2µ(s)¯̂η(s, t) and (3.25e) by −|ξ|2µ(s)¯̂θ, adding
the results and making the integration with respect to s and then taking the real part, we
have:

− d

dt
Re
(
|ξ|2θ̂

∫ ∞

0
µ(s)¯̂η(s, t) ds

)
+
∫ ∞

0
|ξ|2µ(s)|θ̂|2 ds

= |ξ|4

k
Re

(∫ ∞

0
µ(s)η̂(s, t) ds

)2
+Re

(
|ξ|2 ¯̂θ

∫ ∞

0
µ(s)η̂s(s, t) ds

)

+ δ|ξ|4Re
(
(v̂ + τŵ)

∫ ∞

0
µ(s)¯̂η(s, t) ds

)
.

(3.41)

While, an integration by parts leads to:

Re
(
|ξ|2 ¯̂θ

∫ ∞

0
µ(s)η̂s(s, t)ds

)
= −Re

(
|ξ|2 ¯̂θ

∫ ∞

0
µ′(s)η̂(s, t)ds

)
.

Hence, (3.41) can be written as:

− d

dt
Re
(
|ξ|2θ̂

∫ ∞

0
µ(s)¯̂η(s, t) ds

)
+ g(0)|ξ|2|θ̂|2

= |ξ|4

k
Re

(∫ ∞

0
µ(s)η̂(s, t) ds

)2
− Re

(
|ξ|2 ¯̂θ

∫ ∞

0
µ′(s)η̂(s, t) ds

)

+ δ|ξ|4Re
(
(v̂ + τŵ)

∫ ∞

0
µ(s)¯̂η(s, t) ds

)
.

(3.42)

Next, multiplying equation (3.33) by −|ξ|2µ(s)¯̂η(s, t) and equation (3.25e) by −|ξ|2µ(s)(¯̂u+
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τ ¯̂v), adding the results and making the integration with respect to s, then taking the real
parts, we obtain:

− d

dt
Re
(
|ξ|2(¯̂u+ τ ¯̂v)

∫ ∞

0
µ(s)η̂(s, t)ds

)

=− Re
(
|ξ|2(v̂ + τŵ)

∫ ∞

0
µ(s)¯̂η(s, t)ds

)

+Re
(
|ξ|2(¯̂u+ τ ¯̂v)

∫ ∞

0
µ(s)η̂s(s, t)ds

)

− Re
(
|ξ|2θ̂

∫ ∞

0
µ(s)(¯̂u+ τ ¯̂v)ds

)
.

(3.43)

The last term of the above identity (3.43) can be written as

Re
(
|ξ|2θ̂

∫ ∞

0
µ(s)(¯̂u+ τ ¯̂v)ds

)
= g(0)|ξ|2Re

(
θ̂(¯̂u+ τ ¯̂v)

)
.

Similarly, as above, an integration by parts leads to:

Re
(
|ξ|2(¯̂u+ τ ¯̂v)

∫ ∞

0
µ(s)η̂s(s, t)ds

)
= −Re

(
|ξ|2(¯̂u+ τ ¯̂v)

∫ ∞

0
µ′(s)η̂(s, t)ds

)
.

Hence, (3.43) can be written

− d

dt
Re
(
|ξ|2(¯̂u+ τ ¯̂v)

∫ ∞

0
µ(s)η̂(s, t)ds

)

=− Re
(
|ξ|2(v̂ + τŵ)

∫ ∞

0
µ(s)¯̂η(s, t)ds

)

− Re
(
|ξ|2(¯̂u+ τ ¯̂v)

∫ ∞

0
µ′(s)η̂(s, t)ds

)
− g(0)|ξ|2Re

(
θ̂(¯̂u+ τ ¯̂v)

)
.

(3.44)

Now, computing (3.42)+δ|ξ|2(3.44), we have (3.40). This completes the proof of Lemma 3.14.

Next, define the functional:

B4(ξ, t) = g(0)|ξ|2B1(ξ, t) + B3(ξ, t).
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Then, we have from (3.30) and (3.40):

d

dt
B4(ξ, t) + g(0)|ξ|4|û+ τ v̂|2 − g(0)|ξ|2|v̂ + τŵ|2 + g(0)|ξ|2|θ̂|2

=g(0)|ξ|4(τ − β) Re(v̂(¯̂u+ τ ¯̂v)) + |ξ|4

k
Re

(∫ ∞

0
µ(s)η̂(s, t) ds

)2

− |ξ|2Re
(
¯̂
θ
∫ ∞

0
µ′(s)η̂(s, t) ds

)

− δ|ξ|4Re
(
(¯̂u+ τ ¯̂v)

∫ ∞

0
µ′(s)η̂(s, t)ds

)
.

(3.45)

Applying Young’s inequality for ϵ1, ϵ′1 > 0, we have:∣∣∣g(0)|ξ|4(τ − β) Re(v̂(¯̂u+ τ ¯̂v))
∣∣∣ ≤ ϵ1

2 |ξ|4|û+ τ v̂|2 + C(ϵ1)|ξ|4|v̂|2

∣∣∣∣∣Re
(
|ξ|2 ¯̂θ

∫ ∞

0
µ′(s)¯̂η(s, t)ds

)∣∣∣∣∣ ≤ ϵ′1|ξ|
2|θ̂|2 + C(ϵ′1)g′(0)

∫ ∞

0
|ξ|2µ′(s)|η̂(s, t)|2ds,

∣∣∣∣∣δ|ξ|4Re
(
(¯̂u+ τ ¯̂v)

∫ ∞

0
µ′(s)η̂(s, t)ds

)∣∣∣∣∣ ≤ϵ1
2 |ξ|4|û+ τ v̂|2

+ C(ϵ1)g′(0)|ξ|2
∫ ∞

0
|ξ|2µ′(s)|η̂(s, t)|2ds,

∣∣∣∣∣− |ξ|4

k
Re

(∫ ∞

0
µ(s)η̂(s, t)ds

)2∣∣∣∣∣ ≤ 1
k

∫ ∞

0
|ξ|4µ(s)|η̂(s, t)|2ds.

Substituting the above estimates into (3.45), we get:

d

dt
B4(ξ, t) + (g(0)− ϵ1)|ξ|4|û+ τ v̂|2 + (g(0)− ϵ′1)|ξ|2|θ̂|2

≤|ξ|2g(0)|v̂ + τŵ|2 + C(ϵ1)|ξ|4|v̂|2

+ C(ϵ1, ϵ′1)g′(0)(1 + |ξ|2)
∫ ∞

0
|ξ|2µ′(s)|η̂(s, t)|2ds

+ |ξ|2

k

∫ ∞

0
|ξ|2µ(s)|η̂(s, t)|2ds.

(3.46)

Proof of Proposition 3.9. Using the above Lemmas, we are ready to prove Proposition 3.9.
We, first, define the Lyapunov functional

Lf (ξ, t) = |ξ|2B2(ξ, t) + λB4(ξ, t), (3.47)
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where, λ is a positive constant to be fixed later. Taking the derivative of Lf (ξ, t) with respect
to t and using inequalities (3.35) and (3.46), we have:

d

dt
Lf (ξ, t) + |ξ|2

[
λ(g(0)− ϵ1)− ϵ2

]
|ξ|2|û+ τ v̂|2

+ |ξ|2
[
(1− ϵ′′2)− λg(0)

]
|v̂ + τŵ|2 + |ξ|2

[
λ(g(0)− ϵ′1)− ϵ′2

]
|θ̂|2

+ (1 + |ξ|2 + |ξ|4)
[
− C(ϵ2, ϵ′2, ϵ′′2)− λC(ϵ1)

]
|ξ|2|v̂|2

− λ
|ξ|2

k

∫ ∞

0
|ξ|2µ(s)|η̂(s, t)|2 ds

+ λC(ϵ1, ϵ′1)g′(0)(1 + |ξ|2)
∫ ∞

0
|ξ|2(−µ′(s))|η̂(s, t)|2 ds ≤ 0.

(3.48)

Now, using the assumption (M2), we may write:∫ ∞

0
|ξ|2µ(s)|η̂(s, t)|2 ds ≤ 1

ν

∫ ∞

0
|ξ|2(−µ′(s))|η̂(s, t)|2 ds. (3.49)

Therefore, we get:

d

dt
Lf (ξ, t) + |ξ|2

[
λ
(
g(0)− ϵ1

)
− ϵ2

]
|ξ|2|û+ τ v̂|2

+ |ξ|2
[
(1− ϵ′′2)− λg(0)

]
|v̂ + τŵ|2

+ |ξ|2
[
λ(g(0)− ϵ′1)− ϵ′2

]
|θ̂|2

− (1 + |ξ|2 + |ξ|4)
[
C(ϵ2, ϵ′2, ϵ′′2) + λC(ϵ1)

]
|ξ|2|v̂|2

− C(λ, ϵ1, ϵ′1, ν)(1 + |ξ|2)
∫ ∞

0
|ξ|2(−µ′(s))|η̂(s, t)|2 ds ≤ 0.

(3.50)

Now, we choose the constants in (3.50) very carefully in order to make all coefficients (except
the last one) in (3.50) positive. Let us fix ϵ1, ϵ′1 and ϵ′′2 small enough, such that:

ϵ1 < g(0), ϵ′1 < g(0), ϵ′′2 < 1.

After that, owing to (3.12), we choose λ small enough, such that:

λ <
1− ϵ′′2
g(0) .

Next, choose ϵ2 and ϵ′2 small, such that:

ϵ2 < λ(g(0)− ϵ1), ϵ′2 < λ(g(0)− ϵ′1).
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Consequently, we deduce that there exists a positive constant η1 > 0, such that:

d

dt
Lf (ξ, t) + η1Q(ξ, t)

≤(1 + |ξ|2 + |ξ|4)
[
C(λ, ϵ1, ϵ2, ϵ′2, ϵ′′2)

]
|ξ|2|v̂|2

+ C(λ, ϵ1, ϵ′1, ν)(1 + |ξ|2)
∫ ∞

0
|ξ|2(−µ′(s))|η̂(s, t)|2 ds,

≤(1 + |ξ|2 + |ξ|4)
[
C(λ, ϵ1, ϵ2, ϵ′2, ϵ′′2)

]
|ξ|2|v̂|2

+ C(λ, ϵ1, ϵ′1, ν)(1 + |ξ|2 + |ξ|4)
∫ ∞

0
|ξ|2(−µ′(s))|η̂(s, t)|2 ds,

(3.51)

where,

Q(ξ, t) = |ξ|2
(
|ξ|2|û+ τ v̂|2 + |v̂ + τŵ|2 + |θ̂|2

)
.

Now, we define the functional

Lf (ξ, t) = M(1 + |ξ|2 + |ξ|4)Ê(ξ, t) + L(ξ, t), (3.52)

where, M is a positive constant that will be chosen later. Using (3.28) and (3.51), the
functional L(ξ, t) satisfies the estimate:

d

dt
Lf (ξ, t) + η1Q(ξ, t)

+ (1 + |ξ|2 + |ξ|4)
[
M(β − τ)− C(λ, ϵ1, ϵ2, ϵ′2, ϵ′′2)

]
|ξ|2|v̂|2

+ (1 + |ξ|2 + |ξ|4)
[
M

2k − C(λ, ϵ1, ϵ′1, ν)
] ∫ ∞

0
|ξ|2(−µ′(s))|η̂(s, t)|2 ds ≤ 0.

(3.53)

Now, choose M large enough, such that:

M > max
{
C(λ, ϵ1, ϵ2, ϵ′2, ϵ′′2)

β − τ
, 2kC(λ, ϵ1, ϵ′1, ν)

}
.

Finally, (3.53) can be written as:

d

dt
Lf (ξ, t) + η2|ξ|2Ê(ξ, t) ≤ 0, ∀t ≥ 0. (3.54)

Now, using (3.47), (3.52) and (3.54), together with the definitions of all functionals involved
in (3.47) for all ξ ∈ RN , we have:

|Lf (ξ, t)| = |Lf (ξ, t)−M(1 + |ξ|2 + |ξ|4)Ê(ξ, t)| ≤ η3Ê(ξ, t).
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Hence, we conclude that:

(M − η3)(1 + |ξ|2 + |ξ|4)Ê(ξ, t) ≤ Lf (ξ, t) ≤ (M + η3)(1 + |ξ|2 + |ξ|2)Ê(ξ, t).

For M large enough, we deduce that there exist two positive constants C1 and C2, such that:

C1(1 + |ξ|2 + |ξ|4)Ê(ξ, t) ≤ Lf (ξ, t) ≤ C2(1 + |ξ|2 + |ξ|4)Ê(ξ, t), ∀t ≥ 0. (3.55)

Combining (3.54) and (3.55), we have:

d

dt
Lf (ξ, t) ≤ − η2

C2

|ξ|2

1 + |ξ|2 + |ξ|4
L(ξ, t), ∀t ≥ 0. (3.56)

Applying Gronwall’s Lemma, using (3.54) and making use of the equivalence of Ê(ξ, t) and
|V̂ (ξ, t)|2 then (3.21) holds. This completes the proof of Proposition 3.9.

3.3.2 Proof of Proposition 3.10
Substituting β = τ in (3.13), we have:

τuttt + utt −∆u− τ∆ut + δ∆θ = 0,
θt − 1

k

∫ ∞

0
µ(s)∆η(s)ds− τδ∆utt − δ∆ut = 0,

ηt = Tη + θ,

(3.57)

Now, equations (3.25) are given as follows:

ût − v̂ = 0, (3.58a)
v̂t − ŵ = 0, (3.58b)
τŵt + ŵ + |ξ|2û+ τ |ξ|2v̂ − δ|ξ|2θ̂ = 0, (3.58c)

θ̂t +
|ξ|2

k

∫ ∞

0
µ(s)η̂(s, t)ds+ τδ|ξ|2ŵ + δ|ξ|2v̂ = 0, (3.58d)

η̂t + η̂s = θ̂. (3.58e)

We redefine the energy functional (3.27) as follows:

Êc(ξ, t) =
1
2

[
|ξ|2|û+ τ v̂|2 + |v̂ + τŵ|2 + |θ̂|2 + ξ2

k

∫ ∞

0
µ(s)|η̂(ξ, t, s)|2ds

]
, (3.59)

for all ξ ∈ RN and all t ≥ 0 and it is equivalent to the vector |V̂c(ξ, t)|2, so that, there exist
two positive constants γ2, γ3, such that, for all ξ ∈ RN and all t ≥ 0,

γ2|V̂c(ξ, t)|2 ≤ Êc(ξ, t) ≤ γ3|V̂c(ξ, t)|2, (3.60)

where,
|V̂c(ξ, t)|2 = |ξ|2|û+ τ v̂|2 + |v̂ + τŵ|2 + |θ̂|2 + ξ2

∫ ∞

0
µ(s)|η̂(s)|2ds.
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Lemma 3.15. Assume that 0 < τ = β. Let (û, v̂, ŵ, θ̂, η̂) be the solution of (3.58), then the
energy Êc(ξ, t) given by (3.59) is a nonincreasing function and satisfies, for all t ≥ 0,

d

dt
Êc(ξ, t) =

|ξ|2

2k

∫ ∞

0
µ′(s)|η̂(ξ, t, s)|2ds. (3.61)

As we did before, we are going to prove Proposition 3.10 by modifying the Lemmas above
as needed. The functional B1(ξ, t) satisfies

d

dt
B1(ξ, t) + |ξ|2|û+ τ v̂|2 − |v̂ + τŵ|2 = δ|ξ|2Re

(
θ̂(¯̂u+ τ ¯̂v)

)
. (3.62)

Therefore, (3.62) takes the form:

d

dt
B1(ξ, t) + (1− ϵ0)|ξ|2(1 + ξ2)|û+ τ v̂|2 ≤ |v̂ + τŵ|2 + C(ϵ0)|θ̂|2, (3.63)

for any ϵ0 > 0. Define the functional B5(ξ, t).

B5(ξ, t) = Re
( ¯̂
θ(v̂ + τŵ)

)
.

Lemma 3.16. The functional B5(ξ, t) satisfies

d

dt
B5(ξ, t) + δ|ξ|2|v̂ + τŵ|2

=− |ξ|2Re
(
(û+ τ v̂)¯̂θ

)
− |ξ|2(β − τ) Re(v̂ ¯̂θ) + δ|ξ|2|θ̂|2

− |ξ|2

k
Re

(
(¯̂v + τ ¯̂w)

∫ ∞

0
µ(s)η̂(s, t) ds

)
.

(3.64)

Proof. Write equation (3.31) as follows:

d

dt
(v̂ + τŵ) + |ξ|2û+ τ |ξ|2v̂ − τ |ξ|2v̂ + β|ξ|2v̂ − δ|ξ|2θ̂ = 0. (3.65)

Multiplying equation (3.65) by ¯̂
θ and equation (3.58d) by ¯̂v + τ ¯̂w, adding the results and

taking the real parts, we obtain (3.64), which finishes the proof of Lemma 3.16.

Substituting β = τ in (3.64) then applying Young’s inequality for any ϵ̃0, ϵ̃1 > 0, we
obtain ∣∣∣∣∣ |ξ|2k Re

(
(¯̂v + τ ¯̂w)

∫ ∞

0
µ(s)η̂(s, t) ds

)∣∣∣∣∣
≤ ϵ̃0|v̂ + τŵ|2 + C(ϵ̃0)|ξ|4

∫ ∞

0
µ(s)|η̂(s, t)|2 ds

and

||ξ|2Re
(
(û+ τ v̂)¯̂θ

)
| ≤ ϵ̃1|ξ|4|û+ τ v̂|2 + C(ϵ̃1)|θ̂|2.
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Now, collecting the similar terms, we have:

d

dt
B5(ξ, t) + (δ − ϵ̃0)(1 + |ξ|2)|v̂ + τŵ|2 ≤C(ϵ̃0)|ξ|4

∫ ∞

0
µ(s)|η̂(s, t)|2 ds

+ ϵ̃1|ξ|4|û+ τ v̂|2

+
(
C(ϵ̃1) + δ

)
(1 + |ξ|2)|θ̂|2,

(3.66)

where, ϵ̃0 and ϵ̃1 are arbitrary positive constants. Recall equation (3.42) and define the
functional

B6(ξ, t) = −Re
(
θ̂
∫ ∞

0
µ(s)¯̂η(s, t) ds

)
.

Accordingly,

d

dt
B6(ξ, t) + g(0)|θ̂|2 = |ξ|2

k
Re

(∫ ∞

0
µ(s)η̂(s, t) ds

)2

− Re
(
¯̂
θ
∫ ∞

0
µ′(s)η̂(s, t) ds

)

+ δ|ξ|2Re
(
(v̂ + τŵ)

∫ ∞

0
µ(s)¯̂η(s, t) ds

)
.

(3.67)

Applying Young’s inequality for ϵ4, ϵ5 > 0, together with the assumption (M2), we get

d

dt
B6(ξ, t) + (g(0)− ϵ5)|θ̂|2 − ϵ4|v̂ + τŵ|2

≤
(
C(ϵ5) +

C(ϵ4)
ν

+ g(0)
νk

)
(1 + |ξ|2 + |ξ|4)

∫ ∞

0
−µ′(s)|η̂(s)|2ds. (3.68)

Next, define the functional

B7(ξ, t) =
δ

2B1(ξ, t) + B5(ξ, t).

Then, by using (3.63) and (3.66), we obtain:

d

dt
B7(ξ, t)+

(
δ

2(1− ϵ0)− ϵ̃1

)
ξ2(1 + ξ2)|û+ τ v̂|2 +

(
δ

2 − ϵ̃0

)
(1 + ξ2)|v̂ + τŵ|2

≤(δ + C(ϵ0, ϵ̃1))(1 + ξ2)|θ̂|2 + C(ϵ̃0)ξ4
∫ ∞

0
µ(s)|η̂t(s)|2. (3.69)

We are now ready to show the demonstration of Proposition 3.10. We define the new
Lyapunov functional L̂c(ξ, t) associated with the critical case, β = τ, as follows:

L̂c(ξ, t) = N(1 + ξ2 + ξ4)Êc(ξ, t) +M
ξ2

1 + ξ2
B6(ξ, t) +

ξ2

(1 + ξ2)2B7(ξ, t), (3.70)

for some positive constants N and M that have to be chosen later. Taking the derivative of
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(3.70) with respect to t and using (3.61), (3.68) and (3.69), we get:

d

dt
L̂c(ξ, t) +

ξ2

1 + ξ2

[
δ

2
(
1− ϵ0

)
− ϵ̃1

]
ξ2|û+ τ v̂|2

+ ξ2

1 + ξ2

[(
δ

2 − ϵ̃0

)
−Mϵ4

]
|v̂ + τŵ|2

+ ξ2

1 + ξ2

[
M(g(0)− ϵ5)−

(
δ + C(ϵ0, ϵ̃1)

)]
|θ̂|2

+
[
N

2k −MΛ
]
|ξ|2(1 + |ξ|2 + |ξ|4)

∫ ∞

0
−µ′(s)|η̂(s)|2ds ≤ 0, (3.71)

for all t ≥ 0 and where, Λ is a constant that depends on all the other constants.
Regarding (3.71), we fix our constants so that the above coefficients are positive. Therefore,
we pick ϵ0, ϵ̃0 and ϵ5 small enough, such that:

ϵ0 < 1, ϵ̃0 ≤ δ/2 and ϵ5 ≤ g(0).

Once ϵ0 is fixed, we select ϵ̃1 small enough, such that:

ϵ̃1 <
δ(1− ϵ0)

2 .

Now, as ϵ̃1 and ϵ5 are fixed, then we take M large enough, such that:

M >
δ + C(ϵ0, ϵ̃1)
g(0)− ϵ5

.

Finally, we can select ϵ4 small enough, such that:

ϵ4 <
δ/2− ϵ̃0

M

and take N large enough, such that:

N > 2kMΛ.

Consequently, we conclude that there exists a constant Λ0 > 0, such that for all ξ ∈ RN and
all t ≥ 0,

d

dt
L̂c(ξ, t) + Λ0

|ξ|2

1 + |ξ|2
Êc(ξ, t) ≤ 0. (3.72)

At this point, observe that from the identity (3.70), and for N large enough, there are two
positive constants γ4, γ5, such that:

γ4(1 + ξ2 + ξ4)L̂c(ξ, t) ≤ Êc(ξ, t) ≤ γ5(1 + ξ2 + ξ4)L̂c(ξ, t) (3.73)
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Therefore, owing to (3.73), the inequality (3.72) reads as:

d

dt
L̂c(ξ, t) ≤ −Λ1ρ̃c(ξ)L̂c(ξ, t), (3.74)

for some Λ1 > 0 and for all t ≥ 0, with ρ̃c(ξ) satisfing (3.24). A simple integration with
respect to t leads to:

L̂c(ξ, t) ≤ L̂c(ξ, 0)e−cρ̃c(ξ)t. (3.75)
Furthermore, for some Λ2 > 0, we have:

Êc(ξ, t) ≤ Λ2Êc(ξ, 0)e−cρ̃c(ξ)t, ∀t ≥ 0. (3.76)

The desired result (3.23) is claimed due to (3.60).

3.4 The Decay Estimate

In this section, we give the proof of main Theorems 3.4 and 3.5 and derive the decay rate of
the solution for system (3.15) in both cases.

Proof Theorem 3.4. Using (3.22) we have:

ρf (ξ) ≥
{

c|ξ|2 for |ξ| ≤ 1,
c|ξ|−2 for |ξ| ≥ 1. (3.77)

Applying the Plancherel theorem together with inequality (3.21), we have:

||∇kV (t)||2
L2(RN ) =

∫
RN

|ξ|2k|V̂ (ξ, t)|2 dξ

≤C
∫
RN

|ξ|2ke−cρf (ξ)t|V̂ (ξ, 0)|2 dξ

=C
∫
|ξ|≤1

|ξ|2ke−cρf (ξ)t|V̂ (ξ, 0)|2 dξ

+ C
∫
|ξ|≥1

|ξ|2ke−cρf (ξ)t|V̂ (ξ, 0)|2 dξ

=I1(t) + I2(t).

Here, we split the integral into two parts, so that I1(t) is the low–frequency part where
|ξ| ≤ 1 and I2(t) is the high–frequency part where |ξ| ≥ 1. Using the first inequality in
(3.77), we can estimate I1(t) as:

I1(t) = C
∫
|ξ|≤1

|ξ|2ke−cρf (t)t|V̂ (ξ, 0)|2 dξ

≤ C
∫
|ξ|≤1

|ξ|2ke−c|ξ|2t|V̂ (ξ, 0)|2 dξ

≤ C||V̂ (ξ, 0)||2
L∞(RN )

∫
|ξ|≤1

|ξ|2ke−c|ξ|2t dξ. (3.78)

77



Finally, using Lemma 0.1, we obtain∫
|ξ|≤1

|ξ|2ke−c|ξ|2t dξ ≤ C(1 + t)−
N
2 −k. (3.79)

Hence, we have:
I1(t) ≤ C||V̂ (ξ, 0)||2

L∞(RN )(1 + t)−
N
2 −k. (3.80)

Using the second inequality of (3.77), we can find the estimate for I2(t) as follows:

I2(t) = C
∫
|ξ|≥1

|ξ|2ke−cρf (ξ)t|V̂ (ξ, 0)|2 dξ

≤ C sup
|ξ|≥1

{|ξ|−2ℓe−c|ξ|−2t}
∫
|ξ|≥1

|ξ|2(k+ℓ)|V̂ (ξ, 0)|2 dξ

≤ C(1 + t)−ℓ||∂k+ℓ
x V̂ (ξ, 0)||2

L2(RN ). (3.81)

Now, adding estimates (3.80) and (3.81) shows that estimate (3.19) holds.

Proof Theorem 3.5. As we did before we have from (3.24)

ρ̃c(ξ) ≥
c|ξ|2, if |ξ| ≤ 1,
c|ξ|−4, if |ξ| ≥ 1.

(3.82)

By exploiting Plancherel’s theorem, we get

∥∇kVc(t)∥2L2(RN ) =
∫
RN

|ξ|2k|V̂c(ξ, t)|2dξ

≤C
∫
RN

|ξ|2ke−cρ̃c(ξ)t|V̂c(ξ, 0)|2dξ

=C
∫
|ξ|≤1

|ξ|2ke−cρ̃c(ξ)t|V̂c(ξ, 0)|2dξ

+ C
∫
|ξ|≥1

|ξ|2ke−cρ̃c(ξ)t|V̂c(ξ, 0)|2dξ

=J1 + J2. (3.83)

For the law frequency part |ξ| ≤ 1, we have by using (3.82)

J1 ≤C∥V̂c(ξ, 0)∥2L∞(RN )

∫
|ξ|≤1

|ξ|2ke−c|ξ|2tdξ

≤C(1 + t)−
N
2 −k∥Vc(ξ, 0)∥2L1(RN ). (3.84)

Again the use of (3.82) together with the estimate

sup
|ξ|≥1

{
|ξ|−2ℓe−c|ξ|−4t

}
≤ C(1 + t)−

ℓ
2 ,
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for the high frequency part J2 yields

J2 ≤ sup
|ξ|≥1

{
|ξ|−2ℓe−c|ξ|−4t

} ∫
|ξ|≥1

|ξ|2(k+ℓ)|V̂c(ξ, 0)|2dξ

≤C(1 + t)−
ℓ
2∥∇k+ℓV 0

c ∥2L2(RN ). (3.85)

The estimate (3.20) is fulfilled by collecting the above two estimates.
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CHAPTER 4
WELL-POSEDNESS AND LONG TIME BEHAVIOR FOR A

GENERAL CLASS OF MOORE–GIBSON–THOMPSON
EQUATIONS

4.1 Introduction

In this chapter, in Ω, we consider the well-posedness and the long time behavior of third
order in time linear (abstract) evolution equations,{

uttt +Butt +A0u+A1ut = 0,
u(0) = u0, ut(0) = u1, utt(0) = u2.

(4.1)

This allows to treat concrete examples where the operators B,A0, andA1 have space variable
coefficients, in particular, we can consider the standard Moore–Gibson–Thompson system

uttt + αutt + β∆u+∆ut = 0, in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),
u(0, ·) = u0, ut(0, ·) = u1, utt(0, ·) = u2, in Ω,

(4.2)

where Ω is a bounded domain of Rn, β is a positive constant and α ∈ L∞(Ω), a case
mentioned in [74, p. 306], for which an existence result is proved in [53]. Our approach does
not allow to treat the non-autonomous situation when α may depend on the time variable,
for such a situation we refer to [53, 55, 56] for existence and exponential decay.

Before going on, let us formulate the Hilbert setting and the basic assumptions. Let H
and V be two Hilbert spaces such that V is continuously and densely embedded into H and
let V ′ be the dual of l (with H as pivot space). We suppose given two sesquilinear and
continuous forms a0 and a1 on V and such that a1 is symmetric and coercive, namely

a1(u, v) = a1(v, u),∀u, v ∈ V,

and
a1(u, u) ≳ ∥u∥2V ,∀u ∈ V.

Then we introduce the associated (bounded) operators A0 and A1 from V into V ′ defined
by

⟨Aiu, u
′⟩V−V ′ = ai(u, u′), ∀u, u′ ∈ V, i = 0, 1,

where here and below ⟨·, ·⟩ means the duality pairing between V and V ′. Note that A1 is
self-adjoint due to the assumptions on a1. Note that A−1

1 A0 is bounded from V into itself,
but we suppose that it can be extended into a bounded operator from H into itself. Finally
we suppose also given a bounded operator B from H into itself. The notation a ≲ b means
that there exists a constant C > 0 independent of a, b, such that a ≤ Cb, while a ∼ b means
that both a ≲ b and b ≲ a hold. The well-posedness of our problem is proved in section 4.2
by using semigroup theory and an appropriate change of unknowns. An illustrative example
is also presented. In section 4.3, we find sufficient conditions that guarantee the exponential
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decay of the energy of our abstract system and again illlustrate such a result. The link
between system (4.2) with the wave equation with a frictional interior damping is extricated
in section 4.4, where we show that the decay rate of the wave equation lead to a similar
decay for our system (4.2).

4.2 An existence result

In this section we first prove the well-posedness of system (4.1), then we give an illustrative
example.

4.2.1 General setting
In order to show that system (4.1) is well-posed, we introduce the following operator A on
the Hilbert space H = V × V ×H, endowed with the inner product

((u, v, w)⊤, (u′, v′, w′))H = a1(u, u′) + a1(v, v′) + (w,w′), ∀(u, v, w)⊤, (u′, v′, w′)⊤ ∈ H.

On this space we define the unbounded operator A by

D(A) = {(u, v, w)⊤ ∈ V 3 | A0u+A1v ∈ H}, (4.3)

and

A(u, v, w)⊤ = (v, w,−(A0u+A1v +Bw)), ∀(u, v, w)⊤ ∈ D(A). (4.4)

With that definition we see that formally u is solution of (4.1) if and only if U = (u, ut, utt)
is solution of the first order evolution equation{

Ut = AU,
U(0) = U0,

(4.5)

where U0 = (u0, u1, u2). This formal equivalence is correct as soon as strong solutions are
concerned. Namely a strong solution of (4.5) yields a solution to (4.1), more precisely we
have the next equivalence. Since its proof is immediate we let it to the reader.
Lemma 4.1. U = (u, v, w)⊤ ∈ C1([0,∞),H) ∩ C0([0,∞), D(A)) is a solution of (4.5) if
and only if u ∈ C2([0,∞), V ) ∩ C3([0,∞), H) is solution of (4.1), with v(t) = ut(t) and
w(t) = utt(t) A0u(t) +A1ut(t) ∈ H, for all t ∈ [0,∞).

Now we are left to the existence of a solution to (4.5), which is obtained using semigroup
theory after a change of unknowns. For that purpose, according to the standard decomposi-
tion of the solution into z = ut+A−1

1 A0u and u, see [55, §3.2], [54, §2] and [55, §2.1], where
z satisfies a wave equation (see Remark 4.3 below) and u an abstract ODE with exponential
decay, we introduce the bounded operator M from H into itself defined by

M(u, v, w)⊤ =

 I 0 0
A−1
1 A0 I 0

0 A−1
1 A0 I

 ,∀(u, v, w)⊤,∀(u, v, w)⊤ ∈ H.
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This operator is even an isomorphism since its inverse is the bounded operator given by

M−1(u, v, w)⊤ =

 I 0 0
−A−1

1 A0 I 0
(A−1

1 A0)2 −A−1
1 A0 I

 (u, v, w)⊤,∀(u, v, w)⊤ ∈ H.

Now we prove the following Lemma (compare with section 3 from [54]).

Lemma 4.2. U = (u, v, w)⊤ ∈ C1([0,∞),H) ∩ C0([0,∞), D(A)) is a strong solution of
(4.5) if and only if Ũ = (u, z, y)T = MU ∈ C1([0,∞),H) ∩ C0([0,∞), D(Ã)) is a strong
solution of Ũt = ÃŨ ,

Ũ(0) = Ũ0,
(4.6)

where Ũ0 = MU0 = (u0, u1 +A−1
1 A0u0, u2 +A−1

1 A0u1)⊤,

D(Ã) = V ×D(A1)× V, (4.7)

and

Ã(u, z, y)⊤ = (z −A−1
1 A0u, y,−A1z −R(u, z, y)⊤), ∀(u, z, y)⊤ ∈ D(Ã), (4.8)

when
R(u, z, y)⊤ = (B −A−1

1 A0)
(
y −A−1

1 A0z + (A−1
1 A0)2u

)
.

Proof. Let us first show that if U = (u, v, w)⊤ is solution of (4.5), then Ũ = (u, z, y)⊤ is
solution of (4.6). Indeed (4.5) directly implies that v = ut, w = vt = utt and u satisfies (4.1).
Hence by their definition, z = ut +A−1

1 A0u,

zt = utt +A−1
1 A0ut = y,

and

yt = wt +A−1
1 A0vt

= uttt +A−1
1 A0w

= −Butt −A0u−A1ut +A−1
1 A0w

= (−Butt +A−1
1 A0)w −A0u−A1v

= −A1z −R(u, z, y)⊤.

This directly yield (4.6).
Let us notice that the regularity Ũ = (u, z, y)⊤ ∈ C1([0,∞),H) ∩ C0([0,∞), D(Ã)) follows
from the fact that the operator A−1

1 A0 is bounded from H into itself as well as from V into
itself. The converse implication is proved in a fully similar manner.
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Remark 4.3. From (4.6), we see that z satisfies

ztt +A1z − (B −A−1
1 A0)zt + (B −A−1

1 A0)(A−1
1 A0z − (A−1

1 A0)2u) = 0, (4.9)

which under the assumption that B −A−1
1 A0 is a nonnegative operator from H into itself,

is an weakly damped wave type equation with lower order term (B − A−1
1 A0)(A−1

1 A0z −
(A−1

1 A0)2u). Similarly u is solution of

ut +A−1
1 A0u = z.

which is a sort of ODE since A−1
1 A0 is bounded from H into itself.

Theorem 4.4. Under the above assumptions, the operator A generates a C0-semigroup on
H.
Proof. We first prove that Ã generates a C0-semigroup on H. For that purpose, we notice
that Ã can be split up into

Ã = Ãd + B,

where the operator B defined by

B(u, z, y)⊤ = (z −A−1
1 A0u, 0,−R(u, z, y)⊤), ∀(u, z, y)⊤ ∈ H,

is a bounded operator (in H) and the unbounded operator Ãd is defined by

Ãd(u, z, y)⊤ = (0, y,−A1z), ∀(u, z, y)⊤ ∈ D(Ãd) = D(Ã). (4.10)

Therefore by a standard bounded perturbation Theorem (see for instance [94, Theorem
3.1.1]), we are reduced to proving that Ãd generates a C0-semigroup onH. This last property
holds since Ãd is a maximal dissipative operator, hence, by Lumer-Phillips’ theorem it
generates a C0-semigroup of contractions on H (it even generates a group). The dissipativity
is mainly direct because for U = (u, z, y)⊤ ∈ D(Ã), we have

Re(ÃdU,U)H = Re(a1(y, z)− (A1z, y)) = 0.

The maximality is also quite direct. Indeed for λ > 0 and F = (f, g, h) ∈ H fixed, we look
for U = (u, z, y)⊤ ∈ D(Ã) solution of (λI − Ãd)U = F , or equivalently

λu = f in V,

λz − y = g in V,

λy +A1z = h in H.

(4.11)

This means that u = f/λ ∈ V , y = λz − g and

λ2z +A1z = h+ λg in H.

Since λ2I +A1 is an isomorphism from D(A1) into H, we find a unique solution z ∈ D(A1)
of this problem and hence y = λz − g indeed belongs to V . Denote by (T̃ (t))t≥0 the C0-
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semigroup generated by Ã, then we define

T (t) = M−1T̃ (t)M,∀t ≥ 0,

and as M is an isomorphism from H into itself, we directly deduce that (T (t))t≥0 is a C0-
semigroup on H. According to Lemma 4.2, its generator is nothing else than A, the proof is
then complete.

Corollary 4.5. (Existence and uniqueness of the solution) If U0 ∈ H, then problem (4.5)
admits a unique weak solution U = (u, v, w)⊤ ∈ C0([0,∞),H). On the contrary if U0 ∈
D(A), then problem (4.5) admits a unique strong solution U = (u, v, w)⊤ ∈ C1([0,∞),H)∩
C0([0,∞), D(A)).

4.2.2 An illustrative example
Let Ω ⊂ Rd, d ≥ 1 be a bounded open set with a Lipschitz boundary Γ. We take H = L2(Ω)
and V = H1

0 (Ω). Now we define the operators Ai, i = 0 and 1 and B as follows. For
i = 0, 1, we suppose given scalar functions bi ∈ L∞(Ω), and matrix valued functions Mi ∈
L∞(Ω;Rd×d). Suppose also given a scalar function α ∈ L∞(Ω), and a vector field function
c ∈ L∞(Ω;Rd). Then we define

a1(u, v) =
∫
Ω
(M1∇u · ∇v̄ + b1uv̄) dx,

a0(u, v) =
∫
Ω
(M0∇u · ∇v̄ + (c · ∇u)v̄ + b0uv̄) dx,

for all u, v ∈ H1
0 (Ω) and

Bu = αu, ∀u ∈ L2(Ω). (4.12)

This yields two sesquilinear and continuous forms on H1
0 (Ω) and a bounded and self-adjoint

operator B from L2(Ω) into itself. We further assume that a1 is symmetric and coercive
on H1

0 (Ω). The symmetry of a1 is clearly guaranteed if and only if M1 is symmetric. The
coerciveness of a1 holds if we further assume that M1 is uniformly positive definite, namely
for almost all x ∈ Ω,

M1(x)ξ · ξ̄ ≥ m∥ξ∥22, ∀ξ ∈ Cd,

for some m > 0 (independent of x) and if the negative part b−1 = max{−b1, 0} of b1 is small
enough (see below). First define

B1 = sup
x∈Ω

b−1 (x),

and let c0 > 0 be the Poincaré constant

c0∥u∥2L2(Ω) ≤ ∥∇u∥2
L2(Ω)d ,∀u ∈ H1

0 (Ω).
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Since by the above assumption and definition, we have

a1(u, u) ≥ (mc0 −B1)∥u∥2L2(Ω),∀u ∈ H1
0 (Ω), (4.13)

then, if we assume that

B1 < mc0, (4.14)

then a1 will be coercive on H1
0 (Ω). The assumption (4.14) means that the negative part b−1

of b1 is small enough with respect to M1 and is easily checked in practice since c0 is explicitly
known for some domains Ω or different upper bounds are available in the literature, see [60]
and the references cited there.
It remains to check the assumption that A−1

1 A0 can be extended into a bounded operator
from L2(Ω) into itself. The trivial case is to take a0 = a1, here is a non trivial one.
Lemma 4.6. Assume that the boundary Γ is of class C1,1 and that M0 ∈ W 1,∞(Ω;Rd×d),
as well as c ∈ W 1,∞(Ω;Rd) then A−1

1 A0 can be extended into a bounded operator from
L2(Ω) into itself.
Proof. Define the unbounded operator A1 that is the extension of A1 from L2(Ω) into itself
defined by

D(A1) := {u ∈ H1
0 (Ω) : ∃gu ∈ L2(Ω) such that a1(u, v) =

∫
Ω
guv̄ dx,∀v ∈ H1

0 (Ω)},

and
A1u = gu,∀u ∈ D(A1).

From our assumptions, it is well known that this operator is positive and self-adjoint. It is
then an isomorphism from D(As

1) to D(As−1
1 ), for all real number s.

Now the assumption on the boundary guarantees that

D(A1) = H2(Ω) ∩H1
0 (Ω),

see for instance [44, Theorem 2.2.2.3].
We now show that the mapping A0 can be extended into a continuous mapping from L2(Ω)
into D(A−1

1 ) = (H2(Ω) ∩H1
0 (Ω))′, the dual of H2(Ω) ∩H1

0 (Ω). This holds if we can show
that

a0(u, v) ≲ ∥u∥L2(Ω)∥v∥H2(Ω), (4.15)

for any u ∈ H1
0 (Ω) and v ∈ H2(Ω)∩H1

0 (Ω). Indeed, let u ∈ H1
0 (Ω) and v ∈ H2(Ω)∩H1

0 (Ω)
then by Green’s formula (allowed by our assumptions on M0 and c), we get

a0(u, v) =
∫
Ω

(
−u div(M⊤

0 ∇v̄)− u div(cv̄) + b0uv̄
)
dx.

By Cauchy-Schwarz’s inequality we obtain (4.15). In conclusion as the restriction of A1 to
D(A

1
2
1 ) = H1

0 (Ω) coincides with A1, the operator A−1
1 A0 can then be extended from L2(Ω)
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into itself.

Altogether, this means that the system
uttt + αutt + div(M0∇u) + (c · ∇u) + b0u+ div(M1∇ut) + b1ut = 0, in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),
u(0, ·) = u0, ut(0, ·) = u1, utt(0, ·) = u2, in Ω

(4.16)

is well-posed in H1
0 (Ω)2 × L2(Ω).

Remark 4.7. Note that other choices for B are possible for instance an integral operator is
possible, namely if a scalar kernel k ∈ L∞(Ω× Ω) is given we may choose

Bu(x) =
∫
Ω
k(x, y)u(y) dy,∀u ∈ L2(Ω),

that is a bounded operator B from L2(Ω) into itself.

4.3 Uniform stability results

In this section, inspired by [53, §4], [55, §4], [54, §3], and [81, §4], we prove that the semigroup
(T (t))t≥0 generated by A decays exponentially under some additional assumptions. In the
whole section we assume that A0 and B are self-adjoint, that

A−1
1 A0 = A0A−1

1 , (4.17a)

A−1
1 A0B = BA−1

1 A0, (4.17b)
and that

(Bv, v) ≥ 0,∀v ∈ H, (4.17c)
(A−1

1 A0(B −A−1
1 A0)v, v) ≥ 2δ∥v∥2,∀v ∈ H, (4.17d)

((B −A−1
1 A0)v, v) ≥ 2δ∥v∥2, ∀v ∈ H, (4.17e)

a0(u, u) ≥ α0∥u∥2V ,∀u ∈ V, (4.17f)
for some positive constants δ and α0. According to Remark 4.3, the assumption (4.17e)
is certainly needed to obtain exponential decay of T (t). Let us first define the following
energies

E(t) = 1
2

[
a1(ut +A−1

1 A0u, ut +A−1
1 A0u) + ∥utt +A−1

1 A0ut∥2

+ (A−1
1 A0(B −A−1

1 A0)ut, ut)
]
,

E0(t) =
1
2((But, ut) + a0(u, u)),
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Etot(t) = E(t) + δE0(t),∀t ≥ 0.
Note that our assumptions guarantee that A−1

1 A0 is self-adjoint as well as A−1
1 A0B. Notice

further that E(t) and E0(t) are nonnegative, both are not equivalent to ∥(u, ut, utt)∥2H in
general, but under the previous assumptions, the sum is, as shown in the next Lemma
(compare with [53, Remark 4.2],[54, Remark 3.2] and [55, Remark 3.2])

Lemma 4.8. Let U = (u, ut, utt) be a strong solution of (4.5) with an initial datum U0 =
(u0, u1, u2) ∈ D(A). Then it holds

Etot(t) ∼ ∥(u, ut, utt)∥2H, ∀t ≥ 0. (4.18)

Proof. Since the estimate
Etot(t) ≲ ∥(u, ut, utt)∥2H,

is immediate, let us concentrate on the converse estimation. As

∥(u, ut, utt)∥2H = a1(u, u) + a1(ut, ut) + ∥utt∥2,

by the continuity of a1 and (4.17f), we get

∥(u, ut, utt)∥2H ≲ E0(t) + a1(ut, ut) + ∥utt∥2.

For the two last terms of this right-hand side, we insert some zero term to get

∥(u, ut, utt)∥2H ≲E0(t) + 2a1(ut +A−1
1 A0u, ut +A−1

1 A0u) + 2∥utt +A−1
1 A0ut∥2

+ 2a1(A−1
1 A0u,A−1

1 A0u) + 2∥A−1
1 A0ut∥2.

By the boundedness properties of A−1
1 A0 mentioned before, we obtain

∥(u, ut, utt)∥2H ≲ E0(t) + a1(ut +A−1
1 A0u, ut +A−1

1 A0u) + 2∥utt +A−1
1 A0ut∥2 + ∥ut∥2.

Using the assumption (4.17d), we arrive at

∥(u, ut, utt)∥2H ≲ E(t) + E0(t),

as requested.

In a first step, we give an explicit expression of the derivative of the energy E, (compare
with [53, Lemma 4.3],[54, Lemma 4.1] and [55, Lemma 3.1]).

Lemma 4.9. Let U = (u, ut, utt) be a strong solution of (4.5) with an initial datum U0 =
(u0, u1, u2) ∈ D(A). Then

E′(t) = −((B −A−1
1 A0)utt, utt). (4.19)

In particular the energy E is nonincreasing.

87



Proof. Introduce the continuous form

((u, v, w)⊤, (u′, v′, w′))H0 =a1(v +A−1
1 A0u, v

′ +A−1
1 A0u

′)
+ (w +A−1

1 A0v, w
′ +A−1

1 A0v
′)

+ (A−1
1 A0(B −A−1

1 A0)v, v′). (4.20)

for all (u, v, w)⊤, (u′, v′, w′)⊤ ∈ H. As underlined before as A−1
1 A0 and A−1

1 A0(B−A−1
1 A0)

are self-adjoint, the above form is symmetric. Now we notice that

2E(t) = (U(t), U(t))H0 ,

hence
E′(t) = Re(U ′(t), U(t))H0 = Re(AU(t), U(t))H0 .

To get the conclusion it then remains to show that

Re(AU,U)H0 = −((B −A−1
1 A0)w,w),∀U = (u, v, w) ∈ D(A). (4.21)

But in view of the definition of A, for U = (u, v, w) ∈ D(A), we have

(AU,U)H0 =a1(w +A−1
1 A0v, v +A−1

1 A0u)
+ (−A0u−A1v −Bw +A−1

1 A0w,w +A−1
1 A0v)

+ (A−1
1 A0(B −A−1

1 A0)w, v).

Using the definition of A1, we get

Re(AU,U)H0 =Re
{
⟨A1w +A0v, v +A−1

1 A0u⟩ − ⟨A0u,w +A−1
1 A0v⟩

− ⟨A1v, w +A−1
1 A0v⟩+ (−Bw +A−1

1 A0w,w +A−1
1 A0v)

+ (A−1
1 A0(B −A−1

1 A0)w, v)
}
.

Using our assumptions, some terms of this right-hand side cancelled out to reduce to the
right-hand side of (4.21).

In a second step, we need the following identity (compare with [53, Lemma 4.4],[54, (30)]
and [55, Lemma 3.2]).

Lemma 4.10. Let U = (u, ut, utt) be a strong solution of (4.5) with an initial datum U0 =
(u0, u1, u2) ∈ D(A), then it holds

a1(ut, ut) = ∥utt∥2 −
d

dt
E0(t)−

d

dt
(Re(utt, ut)) . (4.22)

Proof. Taking the inner product of the first identity of (4.1) with ut we directly get

(uttt, ut) + (Butt, ut) + a0(u, ut) + a1(ut, ut) = 0.
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Taking the real part of this identity, we obtain

a1(ut, ut) = −Re(uttt, ut)−
d

dt
E0(t).

As
d

dt
(utt, ut) = (uttt, ut) + (utt, utt),

the two previous identities directly yield (4.22).

We are ready to state the exponential decay result (compare with [53, Lemma 4.5 and
§4.3], [54, steps 3 and 4 pp. 982-983], and [55, steps 3 and 4 pp. 20-21]).

Theorem 4.11. Under the additional assumptions of this section, the semigroup generated
by A is exponentially stable in H, namely there exist two positive constants M and ω such
that

∥etAU0∥ ≤ Me−ωt∥U0∥,∀U0 ∈ H.

Proof. Let us first fix U0 ∈ D(A) and let U(t) = (u(t), v(t), w(t)) = etAU0 be the strong
solution of (4.5) (that satisfies v = ut and w = utt). For such a solution using the identities
(4.19) and (4.22), we have

d

dt
Etot(t) = −((B −A−1

1 A0)utt, utt) + δ∥utt∥2 − δa1(ut, ut)− δ
d

dt
(Re(utt, ut)) .

Hence by our assumption (4.17e), we get

d

dt
Etot(t) ≤ −δ∥utt∥2 − δa1(ut, ut)− δ

d

dt
(Re(utt, ut)) .

Integrating this estimate in t ∈ (0, T ) for an arbitray T > 0, one gets

Etot(T )− Etot(0) + δ
∫ T

0

(
∥utt∥2 + a1(ut, ut)

)
dt

≤ −δRe(utt(T ), ut(T )) + δRe(utt(0), ut(0)). (4.23)

For the second term of this right hand side using Cauchy-Schwarz’s inequality and Lemma
4.8, we get

Re(utt(0), ut(0)) ≲ Etot(0). (4.24)
On the contrary for the first term, we write

(utt(T ), ut(T )) = (utt(T ) +A−1
1 A0ut(T ), ut(T ))− (A−1

1 A0ut(T ), ut(T )).

Using Cauchy-Schwarz’s inequality and Young’s inequality and the boundedness of A−1
1 A0

from H into itself, we find

(utt(T ), ut(T )) ≲ ∥utt(T ) +A−1
1 A0ut(T )∥2 + ∥ut(T )∥2,

note that here and below the constant involved in ≲ is independent of T . By the assumption
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(4.17d) and the definition of E(t), we get

(utt(T ), ut(T )) ≲ E(T ),

and since E is non increasing, we arrive at

(utt(T ), ut(T )) ≲ E(0).

This estimate and (4.24) in (4.23) directly yields

Etot(T ) + δ
∫ T

0

(
∥utt∥2 + a1(ut, ut)

)
dt ≲ Etot(0).

Using Lemma 4.8, we arrive at

∥(u(T ), ut(T ), utt(T ))∥2H +
∫ T

0

(
∥utt∥2 + a1(ut, ut)

)
dt

≲ ∥(u(0), ut(0), utt(0))∥2H. (4.25)

We are now reduced to estimate
∫ T
0 ∥u∥2V dt. For that purpose, we take the inner product in

H of the first identity of (4.1) with u to get

(uttt +Butt +A0u+A1ut, u) = 0.

Taking the real part of this identity, we find

a0(u, u) +
1
2
d

dt
a1(u, u) = −Re(uttt +Butt, u).

As
Re(uttt, u) = −1

2
d

dt
∥ut∥2 +Re d

dt
(utt, u),

and
(Butt, u) =

d

dt
(But, u)− (But, ut),

we find

a0(u, u) +
1
2
d

dt
a1(u, u) = (But, ut) +

d

dt

(1
2∥ut∥

2 − Re(utt, u)− Re(But, u)
)
.

Integrating this estimate between 0 and T > 0, we find∫ T

0
a0(u, u) dt+

1
2a1(u(T ), u(T ))−

1
2a1(u(0), u(0))

≤
∫ T

0
(But, ut) dt+

1
2∥ut(T )∥

2 + |(utt(T ), u(T ))|+ |(But(T ), u(T ))|

+ 1
2∥ut(0)∥

2 + |(utt(0), u(0))|+ |(But(0), u(0))|.

90



Using Cauchy-Schwarz’s inequality, the boundedness of B, the continuous embedding of V
into H and the coerciveness of a1, we obtain∫ T

0
a0(u, u) dt ≲

∫ T

0
a1(ut, ut) dt

+ ∥(u(T ), ut(T ), utt(T ))∥2H + ∥(u(0), ut(0), utt(0))∥2H. (4.26)

With the help of (4.25), we get
∫ T

0
a0(u, u) dt ≲ ∥(u(0), ut(0), utt(0))∥2H.

This estimate and again (4.25) leads to
∫ T

0

(
∥utt∥2 + a1(ut, ut) + a0(u, u)

)
dt ≲ ∥(u(0), ut(0), utt(0))∥2H,

and by Lemma 4.8, we finally obtain∫ T

0
∥(u(t), ut(t), utt(t))∥2H dt ≲ ∥(u(0), ut(0), utt(0))∥2H.

Since this estimate is valid for all T > 0 and recalling that (u(t), ut(t), utt(t)) = etAU0, we
get ∫ ∞

0
∥etAU0∥2H dt ≲ ∥U0∥2H.

As D(A) is dense in H, this estimate remains valid for all U0 ∈ H and, by [34] (see also [94,
Theorem 4.1.4]), we conclude that etA is exponentially stable.

Let us end up with some examples.

Example 4.12. In the setting of subsection 4.2.2, assuming that M0 = βM1, b0 = βb1 + r,
c = 0 for some real number r and a positive real number β, the operator A0 is selfadjoint.
Then due to (4.13), (4.17f) will be valid if

r > β(B1 −mc0).

Now denoting by I the identity operator, as

A0 = βA1 + rI,

we deduce that
A−1
1 A0 = A0A−1

1 = βI+ rA−1
1 ,

and hence (4.17a) holds.
If r ̸= 0, we take B = αI with a constant α which guarantees that (4.17b) holds. On the

contrary if r = 0, we can take B = αI with α ∈ L∞(Ω) and (4.17b) remains valid.
In both cases, (4.17c) holds if α ≥ 0. Hence if remains to examine (4.17d) and (4.17e).
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If r = 0, as A−1
1 A0 = βI with β > 0, (4.17d) and (4.17e) are equivalent and as

B −A−1
1 A0 = (α− β)I,

they holds if and only if

α− β ≥ 2δ, a. e. in Ω. (4.27)

On the contrary if r ̸= 0, then

B −A−1
1 A0 = (α− β)I− rA−1

1 ,

while
A−1
1 A0(B −A−1

1 A0) = β(α− β)I+ (α− 2β)rA−1
1 − r2A−2

1 .

As there exists a positive constant C1 such that

∥A−1
1 v∥L2(Ω) ≤ C1∥v∥L2(Ω), ∀v ∈ L2(Ω),

by Cauchy-Schwarz’s inequality we deduce that

((B −A−1
1 A0)v, v)L2(Ω) =(α− β)∥v∥2L2(Ω) − r(A−1

1 v, v)L2(Ω) (4.28)

≥(α− β − |r|C1)∥v∥2L2(Ω). (4.29)

This means that (4.17e) holds if

α− β − |r|C1 > 0.

Similarly, we have

(A−1
1 A0(B −A−1

1 A0)v, v)L2(Ω) ≥ (β(α− β)− |α− 2β||r|C1 − r2C2
1)∥v∥2L2(Ω).

Consequently (4.17d) holds if

β(α− β)− |α− 2β||r|C1 − r2C2
1 > 0.

4.4 A degenerate case

In this section, we present examples where the assumptions (4.17d) and (4.17e) fail and for
which exponential, polynomial or logarithmic rate is reached. In the setting of subsection
4.2.2, we assume that Ω is connected and we choose M1 equal to the identity matrix = Id×d,
M0 = βId×d, where β is a positive constant and B in the form (4.12) with α ∈ L∞(Ω) such
that

α ≥ β a. e. in Ω. (4.30)
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In other words, we study Moore–Gibson–Thompson system (4.2). We further suppose that
there exist an non empty open subset ω0 of Ω and a positive constant κ such that

α− β ≥ κ a. e. in ω0. (4.31)

In this case all assumptions of section 4.3 hold except (4.17d) and (4.17e) since

A−1
1 A0(B −A−1

1 A0) = β(B −A−1
1 A0) = β(α− β)I,

that could be zero on Ω \ ω0. Hence the sole case of interest here is the case when ω0 is
different from Ω and α = β on a non empty open set of Ω.
According to Remark 4.3 and commonly found works about weaker (polynomial or loga-
rithmic) decay rate of the wave equation (see below), we can expect weaker decay rate for
system (4.2). In this case our stability result is based on a spectral analysis and a resolvent
estimate obtained by a comparison with the resolvent of the wave equation with an interior
damping in ω0.
We then first analyze the resolvent set ρ(A) of A. Note that the domain of A is not com-
pactly embedded into H, hence, if it exists, the resolvent of A is not compact. This renders
the analysis more complex and forces us to use a compact perturbation argument (described
below).

Lemma 4.13. Under the previous assumptions,

C+ = {λ ∈ C : Reλ ≥ 0} ⊂ ρ(A). (4.32)

Proof. Let λ ∈ C+ and F = (f, g, h)⊤ ∈ H. We look for U = (u, v, w)⊤ ∈ D(A) such that

λU −AU = F, (4.33)

or equivalently

λu− v = f, (4.34a)
λv − w = g, (4.34b)

(λ+ α)w −∆(βu+ v) = h. (4.34c)

Assuming that a solution U exists. Then the two first identities yield

v = λu− f, (4.35)
w = λv − g = λ2u− λf − g, (4.36)

and plugging (4.35) and (4.36) into (4.34c), we find

(λ+ α)λ2u− (β + λ)∆u = h+ (λ+ α)(λf + g)−∆f in D′(Ω), (4.37)

where D′(Ω) is the space of Schwartz distributions, the dual of the space D(Ω) made of
smooth and compactly supported functions in Ω, see [2, p. 19] or [107]. This equivalently

93



means that

aλ(u, v) = Fλ(v),∀v ∈ D(Ω), (4.38)

where for all u, v ∈ H1
0 (Ω)

aλ(u, v) =
∫
Ω

(
(λ+ α)λ2uv̄ + (β + λ)∇u · ∇v̄

)
dx,

Fλ(v) =
∫
Ω
((h+ (λ+ α)(λf + g)) v̄ +∇f · ∇v̄) dx.

Since aλ is continuous on H1
0 (Ω)×H1

0 (Ω) and Fλ is continuous on H1
0 (Ω) and D(Ω) is dense

in H1
0 (Ω), the identity (4.38) remains valid for test-functions in H1

0 (Ω), namely

aλ(u, v) = Fλ(v), ∀v ∈ H1
0 (Ω). (4.39)

Let us now show that this problem has a unique solution u ∈ H1
0 (Ω). For that purpose, we

distinguish two cases:

• If λ = 0, we see that

a0(u, v) = β
∫
Ω
∇u · ∇v̄ dx,

F0(v) =
∫
Ω
((h+ αg) v̄ +∇f · ∇v̄) dx.

Since a0 is a continuous sesquilinear and coercive form on H1
0 (Ω), problem (4.39) (with

λ = 0) has a unique solution u ∈ H1
0 (Ω). Defining v = −f and w = −g (see (4.35) and

(4.36)), we easily see that U = (u, v, w)⊤ belongs to D(A) and is solution of (4.33)
(with λ = 0). Hence 0 belongs to ρ(A).

• If λ ̸= 0, our argument is more complex and is based on a compact perturbation
argument. Namely introduce the sesquilinear and continuous form bλ onH1

0 (Ω) defined
by

bλ(u, v) = (β + λ)
∫
Ω
∇u · ∇v̄ dx,∀u, v ∈ H1

0 (Ω).

Introduce further the operators Aλ and Bλ by

Aλ : H1
0 (Ω) → H−1(Ω) : u → Aλu,

Bλ : H1
0 (Ω) → H−1(Ω) : u → Bλu,

with
⟨Aλu, v⟩ = aλ(u, v), ⟨Bλu, v⟩ = bλ(u, v),∀u, v ∈ H1

0 (Ω).
Since Re(β + λ) ≥ β, the form bλ is coercive, in the sense that

Re bλ(u, u) ≥ β
∫
Ω
|∇u|2 dx ≳ ∥u∥21,Ω,∀u ∈ H1

0 (Ω),
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due to Poincaré inequality. Hence by Lax-Milgram lemma, the operator Bλ is an
isomorphism from H1

0 (Ω) into H−1(Ω). Since Aλ − Bλ = (λ + α)λ2I is a compact
operator from H1

0 (Ω) into H−1(Ω), Aλ is then a Fredholm operator of index zero from
H1
0 (Ω) into H−1(Ω). Hence it is an isomorphism if and only if it is injective. So let

u ∈ kerAλ, then it is a solution of (4.39) with Fλ = 0, namely

aλ(u, v) = 0,∀v ∈ H1
0 (Ω). (4.40)

But then defining (compare with (4.35) and (4.36))

v = λu,w = λv,

we easily see that the triple U = (u, v, w)⊤ belongs to D(A) and is solution of

λU −AU = 0.

Now we take advantage of the identity (4.21) that here implies

Reλ(U,U)H0 = −
∫
Ω
(α− β)|w|2 dx.

But according to its definition (4.20) and the assumption (4.30), we have

(U,U)H0 ≥ 0, and
∫
Ω
(α− β)|w|2 dx ≥ 0,

and therefore the previous identity implies that∫
Ω
(α− β)|w|2 dx = 0.

By (4.30) and (4.31), we conclude that

w = 0 on ω0.

As λ ̸= 0, we deduce that

u = 0 on ω0. (4.41)

But u ∈ H1
0 (Ω) being solution of (4.40) it satisfies

(λ+ α)λ2u− (β + λ)∆u = 0 in D′(Ω).

Since the operator ∆ is elliptic and u is zero on ω0 by Calderon uniqueness theorem
(see for instance [66, Theorem 4.2]), u = 0 on the whole Ω. This obviously implies
that v = w = 0 and hence U = (0, 0, 0)⊤ and the injectivity of Aλ is proved.

In conclusion, Aλ is an isomorphism, which guarantees that problem (4.39) has a unique
solution u ∈ H1

0 (Ω). As before defining v by (4.35) and w by (4.36), we easily see that
the triple U = (u, v, w)⊤ belongs to D(A) and is solution of (4.33). The proof is then
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complete.

The main ingredient to obtain the resolvent estimate is to use the decay rate (exponen-
tial, polynomial or less) of the semigroup generated by wave equation in Ω with Dirichlet
boundary condition and with a frictional interior damping in ω0:

utt −∆u+ (α− β)ut = 0 in Ω× (0,+∞),
u = 0 on Γ× (0,+∞),
u(·, 0) = u0 and ut(·, 0) = u1 in Ω.

(4.42)

where α and β are the functions introduced before. More precisely, introduce the Hilbert
space Hw = H1

0 (Ω)× L2(Ω) with norm

∥(u, v)⊤∥2Hw
= |u|21,Ω + ∥v∥2Ω,∀(u, v)

⊤ ∈ Hw,

and the operator Aw defined by

D(Aw) = {(u, v)⊤ ∈ H1
0 (Ω)×H1

0 (Ω) |∆u ∈ L2(Ω)}, (4.43)

and

Aw(u, v)⊤ = (v,∆u− (α− β)v)), ∀(u, v)⊤ ∈ D(Aw). (4.44)

It is well-known that Aw generates a C0-semigroup of contractions (Tw(t))t≥0, see [9, p.
232]. Hence it is well-known that its resolvent set ρ(Aw) contains the open right half-plane
{λ ∈ C : Reλ > 0} and that

∥(λI−Aw)−1∥L(Hw) ≤
1

Reλ,∀λ ∈ C : Reλ > 0. (4.45)

Since ω0 is open and non empty, by Holmgren’s uniqueness theorem (see above), one can
show that the imaginary axis is included into ρ(Aw) and therefore C+ ⊂ ρ(Aw). The decay
rate of the solution to system (4.1) is based on the following bound on the resolvent of Aω
on the imaginary axis

∥(iξI−Aw)−1∥L(Hw) ≲ M(|ξ|),∀ξ ∈ R, (4.46)

whereM is a continuous, positive, and non decreasing function from [0,∞) into itself. Before
going on, recall that for any λ ∈ C+ and an arbitrary F1 = (f1, g1) ∈ Hw, (u1, v1)⊤ =
(λI−Aw)−1F1 ∈ D(Aw) satisfies

v1 = λu1 − f1, (4.47)
(λ+ α− β)λu1 −∆u1 = g1 + (λ+ α− β)f1, (4.48)

and the estimate

|u1|1,Ω + ∥v1∥Ω ≤ ∥(λI−Aw)−1∥L(Hw)(|f1|1,Ω + ∥g1∥Ω). (4.49)
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Due to (4.47), this implies

|u1|1,Ω + |λ|∥u1∥Ω ≤ max{1, ∥(λI−Aw)−1∥L(Hw)}(|f1|1,Ω + ∥g1∥Ω). (4.50)

Now we are ready to prove the following result.

Theorem 4.14. There exists a positive constant C such that

∥(λI−A)−1∥L(H)

≤ Cmax
{
1, ∥(λI−Aw)−1∥L(Hw),

∥(λI−Aw)−1∥2L(Hw)
1 + |λ|2

}
,∀λ ∈ C+. (4.51)

Proof. 1. For λ ∈ K = {µ ∈ C+ | |µ| ≤ 1}, the estimate (4.51) is direct using Lemma 4.13
and since the resolvent operator

λ → (λI−A)−1

is holomorphic on ρ(A) (see [9, CorollaryB.3]), hence continuous on K. Therefore

∥(λI−A)−1∥L(H) ≲ 1,∀λ ∈ K,

where from now on the positive constant hidden in ≲ is independent of λ.

2. Let λ ∈ C+ satisfy |λ| ≥ 1 and F = (f, g, h)⊤ ∈ H and let U = (u, v, w)⊤ ∈ D(A) be
the unique solution of (4.33). We have seen before that v is given by (4.35), hence the
condition from D(A), A0u+A1v ∈ L2(Ω) takes the form

∆ ((β + λ)u− f) ∈ L2(Ω).

This suggests to introduce the new unknow

u1 = (λ+ β)u− f (4.52)

that belongs to H1
0 (Ω) with ∆u1 ∈ L2(Ω). Recalling that u satisfies (4.4), we see that

u1 satisfies
(λ+ α)λ2u−∆u1 = h+ (λ+ α)(λf + g) in L2(Ω).

As λ+ β ̸= 0, replacing u by 1
λ+β (u1 + f), we find

λ+ α

λ+ β
λ2u1 −∆u1 = h+ (λ+ α)g + λβ(λ+ α)

λ+ β
f in L2(Ω). (4.53)
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By setting

g1 = h+ βg + λβ2

λ+ β
f + λβ(α− β)

λ+ β
u1,

f1 = g + λβ

λ+ β
f,

we see that u1 is solution of (4.48). Hence setting v1 = λu1 − f1, we find a pair
(u1, v1)⊤ ∈ D(Aw) satisfying (4.47)-(4.48). Consequently, the estimate (4.50) holds
for u1, namely

|u1|1,Ω + |λ|∥u1∥Ω ≤ Cλ(|f1|1,Ω + ∥g1∥Ω),
where for shortness we have set

Cλ = max{1, ∥(λI−Aw)−1∥L(Hw)}.

Using (4.35) and (4.52), we see that

λ

λ+ β
u1 = v + β

λ+ β
f,

hence
g1 = β(α− β)v + h+ βg + β2(λ+ α− β)

λ+ β
f.

Using this expression of g1 and the definition f1, we get

|u1|1,Ω + |λ|∥u1∥Ω ≤ Cλ

(
|g|1,Ω + |λ|β

|λ+ β|
|f |1,Ω + ∥h∥Ω + β∥g∥Ω

+ β2

|λ+ β|
∥(λ+ α− β)f∥Ω + β∥(β − α)v∥Ω

)
.

As

|λ|
|λ+ β|

≤ 1,∀λ ∈ C+, (4.54)

we find that

|u1|1,Ω + |λ|∥u1∥Ω ≤Cλ(|g|1,Ω + β|f |1,Ω + ∥h∥Ω + β∥g∥Ω + β(β +K)∥f∥Ω (4.55)
+ β∥(β − α)v∥Ω),

where K = maxΩ(α− β). Now we exploit the dissipativeness relation (4.21) that here
implies

−Re((λU −AU,U)H0 =
∫
Ω
(α− β)|w|2 dx.
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Using Cauchy-Schwarz’s inequality and the fact that (U,U)H0 ≲ (U,U)H, we find∫
Ω
(α− β)|w|2 dx ≲ ∥F∥H∥U∥H.

By Young’s inequality this estimate implies that

∥(α− β)w∥Ω ≲ ∥
√
α− βw∥Ω ≲ ε−1∥F∥H + ε∥U∥H, (4.56)

for all ε > 0. As (4.36) yields λv = w + g, we find

|λ|∥(α− β)v∥Ω ≤ ∥(α− β)w∥Ω + ∥(α− β)g∥Ω,

and therefore by (4.56)

|λ|∥(α− β)v∥Ω ≲ (1 + ε−1)∥F∥H + ε∥U∥H,

for all ε > 0. As we here assumed that |λ| ≥ 1, this estimate in (4.55) leads to

|u1|1,Ω + |λ|∥u1∥Ω ≲ Cλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
, (4.57)

for all ε > 0. Now we come back to u, v and w. First using (4.52), we have (recalling
that β is constant)

|λ+ β||u|1,Ω ≤ |u1|1,Ω + |f |1,Ω,

which, by (4.57), yields

|λ+ β||u|1,Ω ≲ Cλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
,

for all ε > 0. Recalling (4.54), we deduce that

|λ||u|1,Ω ≲ Cλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
, (4.58)

for all ε > 0. By (4.35), we directly obtain

|v|1,Ω ≲ Cλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
, (4.59)

for all ε > 0. It remains to estimate the L2-norm of w. For that purpose, we notice
that u1 = βu+ v, hence

∥v∥Ω ≤ β∥u∥Ω + ∥u1∥Ω.

Therefore using (4.57) and (4.58) (with Poincaré inequality), we get

|λ|∥v∥Ω ≤ β|λ|∥u∥Ω + |λ|∥u1∥Ω
≲ Cλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
,
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for all ε > 0. By (4.36), we get that

∥w∥Ω ≲ Cλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
, (4.60)

for all ε > 0. In conclusion using this estimate and (4.58)-(4.60), there exists a positive
constant C (independent of λ and ε) such that

∥U∥H = ∥(u, v, w)∥H ≤ CCλ

(
(1 + ε−1|λ|−1)∥F∥H + ε|λ|−1∥U∥H

)
,

for all ε > 0. Hence chosing ε = |λ|
2CCλ

, we conclude that

1
2∥U∥H ≤ CCλ(1 + 2CCλ|λ|2)∥F∥H, (4.61)

which proves (4.51) for |λ| ≥ 1.

Corollary 4.15. Under the previous setting, if we suppose additionaly that (4.46) holds for
a continuous, positive, and non decreasing function M from [0,∞) into itself. Then the
semigroup T (t) = etA generated by A is bounded and the bound of the resolvent of A

∥(iξI−A)−1∥L(H) ≲ max{M(|ξ|), M(|ξ|)2
1 + |ξ|2

}, ∀ξ ∈ R (4.62)

holds.

Proof. To prove the first statement, recall (see for instance [9]) that the spectral bound of
the operator A is defined by

s(A) = sup {Reλ : λ ∈ Sp(A)},

while

s0(A) := inf {x > s(A) : ∃Cx > 0 : ||(λI−A)−1|| ≤ Cx whenever Reλ > x}.

By Theorem 5.2.1 in [9], we know that

ω(T ) = inf
{
ω ∈ R : ∃Mω > 0 such that ||T (t)||L(H) ≤ Mωe

ωt, ∀t ≥ 0
}

= s0(A). (4.63)

First owing to Lemma 4.13, s(A) ≤ 0. Secondly combining the estimates (4.45) and (4.51),
we directly get

∥(λI−A)−1∥L(H) ≲ max{1, 1
(Reλ)2}, ∀λ ∈ C : Reλ > 0.

This proves that
s0(A) ≤ 0,
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and by (4.63), we deduce that T (t) is bounded. Finally the bound (4.62) is a direct conse-
quence of (4.51) and (4.46), since M(x) ≥ M(0) > 0.

This result combined with the frequency domain approach yields the following decay
rates of the semigroup generated by A. We start with the exponential decay.
Corollary 4.16. Assume that Aw generates a C0-semigroup of contractions (Tw(t))t≥0 that
is exponentially stable, namely

∥Tw(t)U∥Hw
≤ Me−ωt∥U∥Hw

,∀U ∈ Hw,

for some positive constants M and ω. Then the semigroup (etA)t≥0 is exponentially stable
in H.
Proof. By a well-known result due to Huang and Prüss [50, 101], (etAw)t≥0 is exponentially
stable in Hw if and only if iR ∩ σ(Aw) = ∅ and (4.46) with M(x) = 1 holds. Hence by
Corollary 4.15, (4.62) holds with M(x) = 1, and again applying Huang/Prüss theorem to
A, we conclude.

For polynomial decays, we replace Huang/Prüss theorem by Borichev-Tomilov theorem
[14, Theorem 2.4] to obtain the next result.
Corollary 4.17. Assume that the semigroup (etAw)t≥0 is polynomially stable in Hw, namely
there exists a positive real number ℓ such that

||etAwU0||Hw
≲ t−

1
ℓ ||U0||D(Aw), ∀U0 ∈ D(Aw), ∀t > 1. (4.64)

Then the semigroup (etA)t≥0 is polynomially stable in H, i.e.,

||etAU ||H ≲ t−
1

2ℓ−2 ||U ||D(A), ∀U ∈ D(A), ∀t > 1,

if ℓ > 2, while if ℓ ≤ 2, one has

||etAU ||H ≲ t−
1
ℓ ||U ||D(A), ∀U ∈ D(A), ∀t > 1,

Proof. As the semigroup generated by Aw is bounded and iR∩σ(Aw) = ∅, by [14, Theorem
2.4], (4.64) holds if and only if (4.46) holds with M(x) = 1 + xℓ holds. As before the
conclusion follows with the help of Corollary 4.15, and again applying [14, Theorem 2.4] to
A by noticing that

max{1 + |ξ|ℓ, 1 + |ξ|2ℓ−2} =
{

1 + |ξ|2ℓ−2, if ℓ > 2,
1 + |ξ|ℓ, ℓ ≤ 2.

For lower decay, the equivalence between the semigroup decay rate and the asymptotic
behavior of the resolvent on the imaginary axis is not guaranteed, but by taking advantage
of a result due to Batty and Duyckaerts [13, Theorem 1.5] and our Corollary 4.15, we get as
before the next corollary.
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Corollary 4.18. Assume that (4.46) holds with a continuous, positive, and non decreasing
function M from [0,∞) into itself. Then the semigroup (etA)t≥0 has the following asymptotic
decay in H:

||etAU ||H ≲
1

M̃−1
log

(
t
C

) ||U ||D(A), ∀U ∈ D(A), ∀t > 1,

for some positive constant C, and M̃log is defined by

M̃log(x) = M̃(x)
(
log(1 + M̃(x)) + log(1 + x)

)
,∀x ≥ 0,

with M̃(x) = max{M(x), M(x)2
1+x2

}.

Let us finish this section with some illustrative examples.

Example 4.19. Let us now mention some examples for which the frictional damping in ω0
guarantees the polynomial stability of the wave equation (5.55).
1) If Ω is the unit square and ω0 contains a vertical strip of Ω, then it is proved in [76, 109],
a polynomial decay rate. Namely in [76], assuming that

(a, b)× (0, 1) ⊂ ω0,

for some 0 ≤ a < b < 1, it is shown that (4.64) holds with ℓ = 2. On the contrary if

(0, c)× (0, 1) ⊂ ω0,

for 0 < c < 1, it is swhown in [109] that (4.64) holds with ℓ = 3/2.
2) If Ω is a partially rectangular domain and ω0 contains the non-rectangular part of Ω, then
it is proved in [20] (combined with [14, Theorem 2.4]) that (4.64) holds with ℓ = 2.
3) Examples of domains Ω and ω0 leading to (4.64) holds for ℓ > 0 can be found in [99].

Example 4.20. It was shown in [68] that if α − β is smooth and not identically equal to
zero and if the boundary of Ω is smooth or convex, then (4.46) holds with M(x) = eCx, for
some positive constant C.This yields

||etAU ||H ≲
1

log t ||U ||D(A), ∀U ∈ D(A), ∀t > 1,

since M̃−1
log (t) ∼ log t, for t large (see [13, Example 1.6]).
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CHAPTER 5
WELL-POSEDNESS AND LONG TIME BEHAVIOR FOR A

GENERAL CLASS OF MOORE–GIBSON–THOMPSON
EQUATIONS WITH A MEMORY

5.1 Introduction

In this chapter, we consider the well-posedness and the long time behavior of some evolution
equations with memory (see (5.4) below), the following Moore–Gibson–Thompson equation
with memory

uttt + αutt −∆ut − γ∆u+
∫ t

0
g(s)∆u(t− s)ds = 0, in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0, .) = u0, ut(0, .) = u1, utt(0, .) = u2, in Ω,

(5.1)

being a particular instance. Here and below, Ω is a bounded domain of RN , N ≥ 1, γ is
a positive constant, g is a memory kernel that is exponentially decaying (more precisely it
satisfies the assumptions (A1) to (A3) below) and α is here a function that is supposed to
be in L∞(Ω).
The chapter is organized as follows: The well-posedness of our problem is proved in section
5.2 by using semigroup theory and a bounded perturbation argument; further under the
assumption

α ≥ γ, (5.2)

we show the boundedness of the generated semigroup using a Lyapunov technique. In section
5.3, we prove that the semigroup is semi-uniformly stable using Batty criterion. The lack
of exponential decay is shown in section 5.4 by building a sequence of eigenvalues (of the
operator associated with our system) that approach the imaginary axis, this construction
requires that the absolute value of the derivatives up to order 3 of the memory kernel are
exponentially decaying at infinity. In section 5.5, we prove a polynomial decay of the solution
in t−

1
2 for initial data in the domain of the associated operator, and the optimality is derived.

Finally a stronger polynomial decay using a resolvent estimate of the wave equation with
a frictional interior damping is obtained in section 5.6 and some illlustrative examples are
given.
Let us finish this introduction with some notation used in the chapter. The usual norm
and semi-norm of Hs(Ω) (s ≥ 0) are denoted by ∥ · ∥s,Ω and | · |s,Ω, respectively. In the
same spirit, we denote by (·, ·)Ω and (·, ·)1,Ω the inner product in L2(Ω) and in H1

0 (Ω) (the
subspace of functions in H1(Ω) with a zero trace on the boundary ∂Ω of Ω), namely

(u, u′)Ω =
∫
Ω
uū′dx,∀u, u′ ∈ L2(Ω),

(u, u′)1,Ω =
∫
Ω
∇u · ∇ū′dx,∀u, u′ ∈ H1

0 (Ω).
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For s = 0 we drop the index s. By a ≲ b, we mean that there exists a constant C > 0
independent of a, b, such that a ≤ Cb, while a ∼ b means that both a ≲ b and b ≲ a hold.

5.2 Well-posedness of the problem

In this section, we first state some assumptions, then we prove the well-posedness of system
(5.1). The nonzero function g, called the memory kernel, is supposed to be in W 1,1(R+)
with g′ absolutely continuous on R+ = (0,∞) and to satisfy

(A1) g : R+ → (0,∞) is a nonincreasing function such that

g(0) > 0, γ −
∫ ∞

0
g(s)ds = ℓ > 0.

(A2) For some δ > 0, the functional g satisfies

g′(t) ≤ −δg(t), for all t ∈ (0,∞).

(A3) g′′ ≥ 0 almost everywhere.

Further, note that g′ being an absolutely continuous function, it has a continuous extension
at 0, and its derivative g′′ is integrable over interval (0, R) with R > 0, see for instance [69,
Corollary 3.9 and Theorem 3.30]. As a consequence of (A1) and (A3), we deduce that g′ is
nonpositive and nondecreasing and therefore

lim
R→∞

g′(R) < ∞.

This implies that
lim

R→∞

∫ R

0
g′′(t) dt = lim

R→∞
g′(R)− g′0) < ∞,

and by Fatou’s lemma, g′′ is integrable on R+. In other words, under the previous assump-
tions, g ∈ W 2,1(R+). To prove the well-posedness of the equation (5.1), we adopt the same
procedure used in chapter 1 and instead of taking the whole space we redefine the framework
of the spaces and their norms in Ω. Indeed, we first set the problem in the so-called history
space setting to get

η(x, t, s) = ηt(x, s) = u(x, t)− u(x, t− s). (5.3)

Therefore, the problem (5.1) is written as follows

uttt + αutt −∆ut − ℓ∆u+
∫ ∞

0
g(s)∆ηt(s)ds = 0,

ηtt(x, s) + ηts(x, s) = ut(x, t)
u = 0
u(0, .) = u0, ut(0, .) = u1, utt(0, .) = u2, η0(., s) = η0(s),

(5.4)
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For more details, see Chapter 1 (Section 1.2. The Hilbert space associated with (5.4) is given
as

H = H1
0 (Ω)×H1

0 (Ω)× L2(Ω)×M.

Similar inner product as well as the norm corresponding to H to those defined in Section
1.2, ((1.15) and (1.16), respectively, with Ω ∈ RN ), are given in this chapter. By the change
of variables ut = v and utt = w, we rewrite (5.4) as

ut = v,

vt = w,

wt = −αw +∆v + ℓ∆u+
∫ ∞

0
g(s)∆ηt(s)ds,

ηtt = v − ηts.

(5.5)

Consequently, the system (5.5) is an evolution equation in H, that is,
d

dt
U(t) = AU(t), t ∈ (0,+∞),

U(x, 0) = U0,
(5.6)

where U(t) = (u(t), v(t), w(t), ηt), U0 = (u0, v0, w0, η0) is arbitrary in H, and A is the linear
operator given by

AU = A


u
v
w
ηt

 =


v
w

−αw +∆
(
v + ℓu+

∫∞
0 g(s)ηt(s)ds

)
v + Tηt

 , (5.7)

for all U = (u, v, w, η)⊤ ∈ D(A), where its domain D(A) is given by

D(A) =

(u, v, w, η)⊤ ∈ H

∣∣∣∣∣∣∣
w ∈ H1

0 (Ω)
v + ℓu+

∫∞
0 g(s)ηt(s)ds ∈ H2(Ω)
ηt ∈ D(T )

 . (5.8)

Theorem 5.1. Assume that (A1)-(A3) are satisfied. Then under the assumption α ∈ L∞(Ω)
the linear operator A is the infinitesimal generator of a C0−semigroup (S(t) = etA)t≥0 in
H.

Proof. Denote by A0 the operator A corresponding to the case α = γ, namely

A0


u
v
w
ηt

 =


v
w

−γw +∆
(
v + ℓu+

∫∞
0 g(s)ηt(s)ds

)
v + Tηt

 ,

for all U = (u, v, w, η)⊤ ∈ D(A0) = D(A). According to Theorem 3.2 of [37], A0 generates
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a contractions semigroup in H. As A− A0 is given by

(A− A0)


u
v
w
ηt

 =


0
0

(γ − α)w
0

 . (5.9)

We directly see that A−A0 is a bounded operator from H into itself and by Theorem 3.1.1
of [94], we conclude that A generates a C0−semigroup in H.

Corollary 5.2. Under the assumptions of Theorem 5.1, for any U0 ∈ D(A), the problem
(5.4) has a unique classical solution in the class

(u, ut, utt, ηt) ∈ C1 ([0,∞) ;H) ∩ C ([0,∞) ;D(A)) .

Corollary 5.3. In addition to the assumptions of Theorem 5.1, we suppose that:

(A4) α ∈ L∞(Ω) is real valued and satisfies α− γ ≥ 0, a. e. in Ω.

Then the semigroup (S(t))t≥0 is bounded in H, namely there exists a positive real number
M ≥ 1 such that

∥S(t)∥ ≤ M.

Proof. For U0 ∈ D(A), denote by U(t) = S(t)U0, and introduce the modified energy

Ẽ(t) = 1
2
(
∥U(t)∥2H + γ∥

√
α− γut∥|2Ω

)
.

Then by the previous corollary, U is a strong solution of (5.6), and Ẽ is differentiable with

Ẽ′(t) = Re(U ′(t), U(t)H + γ Re((α− γ)ut, utt)Ω
= Re(AU(t), U(t))H + γ Re((α− γ)ut, utt)Ω, ∀t > 0.

But recalling (5.9), we have

Ẽ′(t) = Re(A0U(t), U(t))H +Re((γ − α)(utt + γut), utt)Ω + γ Re((α− γ)ut, utt)Ω
= Re(A0U(t), U(t))H +Re((γ − α)utt, utt)Ω, ∀t > 0.

Hence using the dissipativity of A0 and assumption (A4), we deduce that

Ẽ′(t) ≤ 0,∀t > 0.

This means that, this energy is nonincreasing, namely

Ẽ(t) ≤ Ẽ(0),∀t ≥ 0.

This, in particular, implies that

∥U(t)∥2H ≤ ∥U0∥2H + γ∥
√
α− γu1∥2Ω,
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if U0 = (u0, u1, u2, ηt(t = 0))⊤. But, we clearly have

γ∥
√
α− γu1∥Ω ≤ C|u1|1,Ω,

for some positive constant C independent of u1. According to the definition of the norm
∥ · ∥H, we deduce that

∥U(t)∥2H ≤ M2∥U0∥2H,

where M2 = 1+ Cγ2

γ−ℓ . Since D(A) is dense in H, this property remains valid for all U0 ∈ H,
hence the result is fulfilled.

5.3 Strong stability

One simple way to prove the strong stability of (5.6) is to use a theorem due to Arendt &
Batty and Lyubich & Vũ (see [10, 77]). But here we prove a stronger result based on the
following abstract result of Batty [12] (see also [13, Theorem 1.1] or [27, Theorem 3.4]).

Theorem 5.4. Let X be a Banach space and (T (t))t≥0 be a bounded C0−semigroup gener-
ated by A on X. Then σ(A) ∩ iR = ∅, if and only if

lim
t→∞

∥T (t)A−1∥ = 0.

A bounded semigroup (T (t))t≥0 satisfying one of these two conditions of this Theorem
is called semi-uniformly stable (see [13, Definition 1.2]) and in that case the decay rate may
be characterized via the quantity

M(s) = sup{∥(iξI− A)−1∥ : |ξ| ≤ s}.

In our case, this decay rate is precisely quantified in Sections 5.5 and 5.6. Note further that
a semi-uniformly stable semigroup is strongly stable due to its boundedness and the density
of the domain of its generator.
We now want to take advantage of this Theorem. As Corollary 5.3 guarantees the bounded-
ness of the semigroup generated by A, but as the resolvent of our operator is not compact,
we need to analyze the full spectrum of A on the imaginary axis. This is the goal of the next
Lemma.

Lemma 5.5. Assume that (A1)-(A4) hold, then we have the following

C+ = {λ ∈ C : Reλ ≥ 0} ⊂ ρ(A), (5.10)

where ρ(A) is the resolvent set of the operator A.

Proof. Let λ ∈ C+ and F = (f, g, h, p) ∈ H, we look for a solution U = (u, v, w, ηt) ∈ D(A)
to the equation

λU − AU = F, (5.11)
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which component-wise becomes

λu− v = f, (5.12a)
λv − w = g, (5.12b)

(λ+ α)w −∆v − ℓ∆u−
∫ ∞

0
g(s)∆ηt(s)ds = h, (5.12c)

ληt − v − Tηt = p. (5.12d)

From (5.12a), (5.12b) and (5.12d) we obtain

v = λu− f, (5.13a)
w = λv − g = λ2u− λf − g, (5.13b)

ηt = (1− e−λs)u−
(
1−e−λs

λ

)
f +

∫ s

0
e−λ(s−τ)p(τ)dτ, (5.13c)

with the convention that 1−e−λs

λ = s if λ = 0.
Assuming for the moment that such a U exists, then plugging the three identities above

(5.13a), (5.13b) and (5.13c) into (5.12c), we get

−
(
λ+ ℓ+

∫ ∞

0
g(s)(1− e−λs)ds

)
∆u+ (α + λ)λ2u

= h+ (α + λ)(λf + g)−
(
1 +

∫ ∞

0
g(s)

(1− e−λs

λ

)
ds
)
∆f

+
∫ ∞

0
g(s)

[∫ s

0
e−λ(s−τ)∆p(τ)dτ

]
ds, in D′(Ω). (5.14)

Note that this identity only hold in the distributional sense, since we have sent the contri-
bution of ∆f and ∆p in the right-hand side. Accordingly (see [2] or [107]), it is equivalent
to

aλ(u, v) = Fλ(v), ∀v ∈ D(Ω), (5.15)

where

aλ(u, v) =
∫
Ω

[
(α + λ)λ2uv̄ +

(
λ+ ℓ+

∫ ∞

0
g(s)(1− e−λs)ds

)
∇u∇v̄

]
dx

and

Fλ(v) =
∫
Ω

[(
1 +

∫ ∞

0
g(s)

(1− e−λs

λ

)
ds
)
∇f∇v̄ + (h+ (α + λ)(λf + g))v̄

−
∫ ∞

0
g(s)

( ∫ s

0
e−λ(s−τ)∇p∇v̄ dτ

)
ds
]
dx,

for all u, v ∈ H1
0 (Ω). Since D(Ω) is dense into H1

0 (Ω), the identity (5.15) remains valid in
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the whole H1
0 (Ω), namely

aλ(u, v) = Fλ(v), ∀v ∈ H1
0 (Ω). (5.16)

Now, we prove that problem (5.16) admits a unique solution u ∈ H1
0 (Ω). For that purpose,

we deal with the following two cases.

• For λ = 0. we have
a0(u, v) = ℓ

∫
Ω
∇u∇v̄dx,

and

F0(v) =
∫
Ω

[(
1 +

∫ ∞

0
sg(s)ds

)
∇f∇v̄ + (h+ αg)v̄

−
∫ ∞

0
g(s)

( ∫ s

0
∇p∇v̄ dτ

)
ds
]
dx.

We first observe that a0 is a sesquilinear, continuous and thanks to Poincaré inequality
it satisfies

a0(u, u) = ℓ
∫
Ω
|∇u|2 ≥ ∥u∥2Ω, ∀u ∈ H1

0 (Ω),

hence, the coerciveness of a0. Since F0 is clearly an antilinear and continuous form
on H1

0 (Ω), by Lax-Milgram’s lemma, we deduce that for λ = 0, (5.16) has a unique
solution u ∈ H1

0 (Ω). Moreover, by setting v = −f, w = −g and

ηt(s) = sf +
∫ s

0
p(τ)dτ,

we find that U = (u, v, w, ηt) belongs to D(A) and is the unique solution of (5.11) for
λ = 0. Consequently 0 ∈ ρ(A).

• For λ ̸= 0. The proof is a slightly different from the previous one. First, we introduce
the sequilinear form bλ by

bλ(u, v) =
∫
Ω

(
λ+ ℓ+

∫ ∞

0
g(s)(1− e−λs)ds

)
∇u∇v̄dx ∀u, v ∈ H1

0 (Ω).

Moreover, we define the operators Aλ and Bλ as follow

Aλ : H1
0 (Ω) → H−1(Ω)) = (H1

0 (Ω))′ : u → Aλu,

Bλ : H1
0 (Ω) → H−1(Ω)) : u → Bλu,

where, for all u, v ∈ H1
0 (Ω), we set

⟨Aλu, v⟩ = aλ(u, v),
⟨Bλu, v⟩ = bλ(u, v).

It is easy to check that bλ is a sesquilinear and continuous form on H1
0 (Ω) and since
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Re
(
λ + ℓ +

∫∞
0 g(s)(1 − e−λs)ds

)
≥ ℓ, it is coercive. So, according to Lax-Milgram

lemma, the operator Bλ is an isomorphism.
Next, as Aλ − Bλ = λ2(α + λ)I, it is a compact operator from H1

0 (Ω) into H−1(Ω),
we then deduce Aλ is a Fredholm operator of index zero. It is therefore sufficient to
show that the operator is injective to deduce that it is an isomorphism.
For this reason, let u ∈ kerAλ, then, it becomes a solution of (5.16) with Fλ = 0,
which means that

aλ(u, v) = 0 ∀v ∈ H1
0 (Ω). (5.17)

This implies that 
v = λu,

w = λ2u,

ηt(s) = (1− e−λs)u,
(5.18)

and that U = (u, v, w, ηt)⊤ belongs to D(A) and satisfies λU − AU = 0. In addition,
owing to Lemma 3.4 of [37], we have

Re(A0U,U)H = −γ∥ηt∥2M −
∫ ∞

0
g′′(s)|ηt(s)|21,Ω ds, (5.19)

and by (5.9) and (5.18), we get

Re(AU,U)H = −γ∥ηt∥2M −
∫ ∞

0
g′′(s)|ηt(s)|21,Ω ds

−Re
(
λ2(λ̄2 + γλ̄)

)
((α− γ)u, u)Ω.

Using the identity AU = λU , we find that

(Reλ)∥U∥2H = −γ∥ηt∥2M −
∫ ∞

0
g′′(s)|ηt(s)|21,Ω ds (5.20)

−Re
(
λ2(λ̄2 + γλ̄)

)
((α− γ)u, u)Ω.

As
λ2(λ̄2 + γλ̄) = |λ|4 + γ|λ|2λ,

we directly see that

Re
(
λ2(λ̄2 + γλ̄)

)
= |λ|4 + γ|λ|2Reλ,

and is therefore positive (recalling that λ ̸= 0 and Reλ ≥ 0). As the left-hand side
of (5.20) is non-negative and its right-hand side is non-positive, we deduce that both
terms are zero, which in particular implies that

ηt = 0.
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Finally as (1− e−λs) ̸= 0, for all s > 0 and λ ̸= 0, we find

u = 0, in Ω.

By (5.18) this yields v = w = 0, thus, the injectivity of Aλ is proved.
In summary, for λ ̸= 0, Aλ is an isomorphism which guarantees that problem (5.16)
admits a unique solution u ∈ H1

0 (Ω). Defining v, w and ηt by (5.13a), (5.13b) and
(5.13c), respectively, we again find U = (u, v, w, ηt)T ∈ D(A) that is the unique
solution of (5.11).

We therefore conclude that (5.10) holds.
Remark 5.6. In the framework of the previous Lemma, we may note that by Corollary
5.3 and a well-known criterion on the generators of bounded C0-semigroup in Hilbert spaces
(see for instance [14, Lemma 2.1]), the set {λ ∈ C : Reλ > 0} is automatically included into
ρ(A). Therefore one could reduce the previous proof to the case λ ∈ iR. We have done it for
all λ ∈ C+ for the sake of completeness.

As a direct consequence of Corollary 5.3 and Lemma 5.5, Lemma 5.4 yields
Corollary 5.7. Under the assumptions of Lemma 5.5, (S(t))t≥0 is semi-uniformly stable,
in particular it is stable, i.e.,

S(t)U0 → 0 in H, as t → ∞, ∀U0 ∈ H.

5.4 Lack of exponential decay

It was proved in [37, §4], in the case α = γ, and g(s) = ρe−δs with ρ, δ > 0 that the energy
of the solution of (5.1) does not decay exponentially, which implies that the semigroup
(S(t))t≥0 is not exponentially stable. We here prove a similar property of this semigroup
in the case α = γ, but for any memory kernel satisfying (A1) to (A3) and the additional
assumptions that g ∈ W 3,1(R+) with

|g(k)(s)| ≤ Ke−δ0s, for almost all s ∈ R+, (5.21)

for some positive constants K, δ0 with δ0 ≤ δ and for k = 0, 1, 2, 3. This condition allows to
give a meaning to the Laplace transform Lg(λ) of g (as well as of its derivative up to the
order 3) for all λ ∈ C such that Reλ > −δ0, where we recall that

Lg(λ) =
∫ ∞

0
e−λsg(s) ds.

It also allows to prove the next technical result.
Lemma 5.8. If the memory kernel g ∈ W 3,1(R+) satisfy assumption (A1) to (A3) and
(5.21), then

Lg(λ) = g(0)
λ

+ g′(0)
λ2

+ o

(
1

|λ|2

)
, (5.22)
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for all λ ∈ C such that Reλ > −δ0
2 .

Proof. Owing to the property (5.21) for k = 0 and 1, the following identity

λLg(λ) = g(0) + Lg′(λ), (5.23)

holds for all λ ∈ C such that Reλ > −δ0. Using this property to g′ and g′′, we also have

λLg′(λ) = g′(0) + Lg′′(λ), (5.24)
λLg′′(λ) = g′′(0) + Lg′′′(λ), (5.25)

for all λ ∈ C such that Reλ > −δ0, and consequently

Lg(λ) = g(0)
λ

+ g′(0)
λ2

+ Lg′′(λ)
λ2

, (5.26)

for all λ ∈ C such that Reλ > −δ0. Since (5.21) implies that

|Lg′′′(λ)| ≤ K

Reλ+ δ0
,

for all λ ∈ C such that Reλ > −δ0, we will get

|Lg′′′(λ)| ≤ 2K
δ0

,

for all λ ∈ C such that Reλ > −δ0
2 . This estimate and the identity (5.25) allows to deduce

that
|λLg′′(λ)| ≤ |g′′(0)|+ 2K

δ0
,

for all λ ∈ C such that Reλ > −δ0
2 . Using this property in (5.26) leads to (5.22).

Example 5.9. Examples of memory kernels g ∈ W 3,1(R+) that satisfy assumption (A1) to
(A3) and (5.21) are numerous. The simplest example is g(s) = ρe−δs with ρ, δ > 0. The
second example is kernel of the form

g(t) =
J∑

j=1
Pj(t)e−xjt,

where xj are positive real number, Pj are a real-valued polynomials of degree dj with coeffi-
cients chosen so that g is positive, Pj ≥ 0 P ′

j + δPj ≤ 0 for some δ < xj and P ′′
j ≥ 0. As

third example, we can mention

g(t) = (a+ bt)−1e−δt,

with δ, b positive real numbers and a a non negative real number.
Finally we denote by (λ2k)

∞
k=1 the set of eigenvalues (repeated according to its multiplicity)

of the positive Laplace operator with Dirichlet boundary conditions in Ω and let ϕk, the
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associated orthonomalized eigenvector, namely satisfying

−∆ϕk = λ2kϕk.

Without loss of generality we may assume that λk is positive.

Lemma 5.10. Assume that the memory kernel g ∈ W 3,1(R+) satisfies assumptions (A1) to
(A3) and (5.21) and that α = γ, then there exists k0 large enough such that the operator A
has the eigenvalues λk,±, for all k ≥ k0 that satisfy

λk,± = ±iλk ± i
g(0)
2λk

+ g′(0)− γg(0)
2λ2k

+ o

 1
λ2k

 ,∀k ≥ k0. (5.27)

Its associated eigenvector Uk is in the form

Uk,± = ck,±


ϕk
λk,±ϕk
λ2k,±ϕk
(1− e−λk,±s)ϕk

 , (5.28)

where ck,± ̸= 0 is a normalization factor chosen such that

∥U±
k ∥H = 1.

Proof. Let U = (u, v, w, ηt)⊤ ∈ D(A) be an eigenvector of the operator A of eigenvalue λ ∈ C
such that −δ0

2 < Reλ < 0. Then it satisfies AU = λU, i.e. it satisfies (5.12a)-(5.12d) with
f = g = h = p = 0. Arguing as in the proof of Lemma 5.5, we obtain (see (5.13a)-(5.13c)
and (5.14))

v = λu, (5.29)
w = λ2u, (5.30)

ηt(s) = (1− e−λs)u, (5.31)

and
−
(
λ+ ℓ+

∫ ∞

0
g(s)(1− e−λs)ds

)
∆u+ (α + λ)λ2u = 0.

By the definition of ℓ, and since α = γ, this identity is equivalent to

− (λ+ γ − Lg(λ))∆u+ (λ+ γ)λ2u = 0. (5.32)

Due to Lemma 5.8, λ+ γ −Lg(λ) is invertible for |λ| large enough, and for such a λ, (5.32)
is equivalent to

∆u = (λ+ γ)λ2
λ+ γ − Lg(λ)u = λ2(1 + r(λ))u, (5.33)
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where
r(λ) = Lg(λ)

λ+ γ − Lg(λ) . (5.34)

Hence a non trivial solution u of (5.33) exists if and only if

λ2(1 + r(λ)) = −λ2k,

and in this case u is a multiple of ϕk. Setting Fk(λ) = λ2(1 + r(λ)) + λ2k, the previous
identity is equivalent to

Fk(λ) = 0. (5.35)
Now we set F0,k(λ) = λ2 + λ2k, whose roots are

λ = ±iλk.

Now we take advantage of Rouché’s theorem to find an asymptotic behavior of the roots
of Fk. More precisely we want to apply Rouché’s theorem in the ball B(±iλk, ρk) with
0 < ρk < δ0

2 appropriately chosen so that

|Fk(z)− F0,k(z)| < |F0(z)|,∀z = ±iλk + ρke
iθ, θ ∈ [0, 2π] .

First due to Lemma 5.8 one has
|r(λ)| ≲ |λ|−2.

Consequently as Fk(z)− F0,k(z) = z2r(z), we deduce that

|Fk(z)− F0,k(z)| ≤ C, ∀z = ±iλk + ρke
iθ, θ ∈ [0, 2π] ,

for k large enough and a positive constant C (independent of k). Now for z = ±iλk +
ρke

iθ, θ ∈ [0, 2π], we have

F0,k(z) = ±2iλkρkeiθ + ρ2ke
2iθ

= 2λkρkeiθ(±i+ ρke
iθ

2λk
),

and consequently

|F0,k(z)| = 2λkρk| ± i+ ρke
iθ

2λk
|.

As for k large enough, | ± i+ ρke
iθ

2λk | ≥ 1
2 , we deduce for such a k that

|F0,k(z)| ≥ λkρk,

hence the choice ρk = C
2λk , with k large enough, allows to apply Rouché’s theorem and
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conclude that F0,k has a root λk,± in B(±iλk,
C
2λk ). In a second step, we write

λk,± = ±iλk + rk,±, (5.36)

where the remainder rk,± satisfies

|rk,±| = O( 1
λk

), (5.37)

which implies that
1

λk,±
= ∓i

1
λk

+O( 1
λ3k

). (5.38)

Plugging this splitting (5.36) in (5.35), we find

±2iλkrk,± + r2k,± + λ2k,±r(λk,±) = 0.

But using (5.34), (5.22), and (5.38), one direclty sees that

λ2k,±r(λk,±) = g(0) +O( 1
λk

).

Inserting this property in the previous identity we get

±2iλkrk,± + r2k,± + g(0) +O( 1
λk

) = 0,

and using (5.37), we obtain

±2iλkrk,± + g(0) +O( 1
λk

) = 0.

As a consequence, we find
rk,± = ±ig(0)

2λk
+O( 1

λ2k
),

that, owing to (5.36), leads to

λk,± = ±iλk +±ig(0)
2λk

+ sk, (5.39)

with a remainder sk satisfying sk = O( 1
λ2k

). Finally plugging this second splitting (5.39) in
(5.35), the same argument than before leads to (5.27).

The lack of exponential stability directly follows from this Lemma.

Corollary 5.11. Under the assumptions of Lemma 5.10, system (5.6) (or equivalently (5.1))
is not exponentially stable.

Proof. Assume that system (5.6) is exponentially stable, in other words, assume that there
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exist two positive constants M and ω such that

∥S(t)U0∥H ≤ Me−ωt∥U0∥H,∀t ≥ 0, (5.40)

for all U0 ∈ H. Now for k ≥ k0, we take

Uk(t) = S(t)Uk,+ = eλk,+tUk,+.

By our assumption (5.40), we would deduce that

|eλk,+t| ≤ Me−ωt,∀t ≥ 0,

which leads to a contradiction because (5.27) yields

|eλk,+t| = e

(
g′(0)−γg(0)

2λ2
k

+o( 1
λ2
k

)
)
t

.

5.5 A first polynomial stability result

Our polynomial stability results are based on a frequency domain approach. Recall that the
polynomial decay of the energy can be obtained by using the next result stated in Theorem
2.4 of [14] (see also [13, 76] for weaker variants and [50, 101] for exponential decay):
Lemma 5.12. Let (T (t))t≥0 be a bounded C0−semigroup on a Hilbert space H (with norm
∥ · ∥H) with generator L such that

ρ(L) ⊃ iR. (5.41)
Then for a fixed positive real number l, the following conditions are equivalent:
(i) There exists C > 0 such that

||T (t)U0||H ≤ C t−
1
l ||U0||D(L), ∀U0 ∈ D(L), ∀t > 1.

(ii) There exists C1 > 0 such that

||T (t)U0||H ≤ C1t
−1||U0||D(Ll), ∀U0 ∈ D(Ll), ∀t > 1.

(iii) It holds
lim sup
|ξ|→∞

1
ξl

∥(iξ − L)−1∥ < ∞. (5.42)

In view of this result and Corollary 5.3, and Lemma 5.5 it remains to check (5.42) for
some l > 0, in other words, we look for resolvent estimates on the imaginary axis Reλ = 0 of
the Moore–Gibson–Thompson equation (5.4). Since in the case α = γ, a polynomial decay
rate is proved in [37, Corollary 7.3], we first prove a similar decay with the sole condition
(A4).
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Lemma 5.13. Assume that (A1) to (A4) hold, then

||(λI− A)−1|| ≲ 1 + |λ|2,∀λ ∈ iR. (5.43)

Proof. In order to show our result, we distinguish two cases.
• For λ ∈ K = {µ ∈ iR : |µ| ≤ 1} . Using Lemma 5.5 and the fact that (λI − A)−1 is

holomorphic on the resolvent set ρ(A) ([9]), it is continuous on any compact set of C+,
in particular on K. Hence (5.43) is valid for all λ ∈ K.

• For λ ∈ iR with |λ| ≥ 1. Let F = (f, g, h, p)⊤ ∈ H, and U = (u, v, w, ηt)⊤ ∈ D(A) be
the unique solution of (5.11) (or equivalently to (5.12a)-(5.12d)). Then as Reλ = 0,
we have

−Re(AU,U)H = Re(F,U)H.

Using the splitting (5.9), we find

−Re(A0U,U)H − Re((γ − α)w,w + γv) = Re(F,U)H.

Now using (5.19), (5.12a) and (5.12b), we find

γ∥ηt∥2M +
∫ ∞

0
g′′(s)|ηt(s)|21,Ω ds+ |λ|4((α− γ)u, u)

+ Re((λ− γ)f + g, (α− γ)(λf + g)
− Re((λ− γ)λu, (α− γ)(λf + g)− Re((λ− γ)f + g, (α− γ)λ2u)
= Re(F,U)H.

Using the assumption (H3) and Cauchy-Schwarz’s inequality we find

γ∥ηt∥2M + |λ|4∥
√
α− γu∥2Ω ≲∥F∥H∥U∥H + |λ|2∥f∥2Ω + ∥g∥2Ω

+ |λ|2∥
√
α− γu∥Ω(|λ|∥f∥Ω + ∥g∥Ω).

Young’s inequality yields

γ∥ηt∥2M + |λ|4∥
√
α− γu∥2Ω ≲ ∥F∥H∥U∥H + |λ|2∥f∥2Ω + ∥g∥2Ω.

In particular, it yields

∥ηt∥2M ≲ ∥F∥H∥U∥H + |λ|2∥f∥2Ω + ∥g∥2Ω. (5.44)

We now need to estimate the norm of u, v and w. First using (5.13c), we may write

(1− e−λs)u = ηt +
(1− e−λs

λ

)
f −

∫ s

0
e−λ(s−τ)p(τ)dτ.

Hence recalling that λ ∈ iR and |λ| ≥ 1, we find

∥(1− e−λs)u∥M ≤ ∥ηt∥M + 2∥f∥M + ∥
∫ .

0
e−λ(.−τ)p(τ)dτ∥M. (5.45)
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Since we have

∥(1− e−λs)u∥M =
(∫ ∞

0
(−g′(s))|1− e−λs|2 ds

)1
2 |u|1,Ω,

∥f∥M =g(0)|f |1,Ω,

and since we easily check that

∥
∫ .

0
e−λ(.−τ)p(τ)dτ∥M ≲ ∥p∥M,

the previous estimate (5.45) becomes

(∫ ∞

0
(−g′(s))|1− e−λs|2 ds

)1
2 |u|1,Ω ≲ ∥ηt∥M + |f |1,Ω + ∥p∥M.

As the next Lemma 5.15 shows that the factor in front of |u|1,Ω is uniformly bounded
from below, we then find

|u|1,Ω ≲ ∥ηt∥M + |f |1,Ω + ∥p∥M.

By the estimate (5.44), we conclude that

|u|21,Ω ≲ ∥F∥H∥U∥H + |λ|2∥F∥2H. (5.46)

At this stage we use the identity (5.12a) to find

|v|21,Ω ≲ |λ|2∥F∥H∥U∥H + |λ|4∥F∥2H. (5.47)

It now remains to estimate the L2 norm of w. Since the use of (5.12b) gives rise to
a sub-optimal estimate, we take advantage of (5.14). First we notice that using the
definition of D(A),∆

(
ℓu + v +

∫∞
0 g(s)ηt(s)ds

)
∈ L2(Ω), and taking into account

(5.12b), we find
∆
(
(λ+ ℓ)u− f +

∫ ∞

0
g(s)ηt(s)ds

)
∈ L2(Ω).

This suggests to define uw as

uw = (λ+ ℓ)u− f +
∫ ∞

0
g(s)ηt(s)ds, (5.48)

that satisfies uw ∈ H1
0 (Ω) and ∆uw ∈ L2(Ω). Plugging this expression in (5.14), we

obtain

(λ+ α)λ2u−∆uw = h+ (α + λ)(λf + g). (5.49)

Taking the inner L2 inner product with u and using Green’s formula we find

λ2((λ+ α)u, u))Ω.+ (uw, u)1,Ω = (h+ (α + λ)(λf + g), u)Ω.
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Setting λ = iξ with ξ ∈ R and taking the imaginary part of this identity, we find

−ξ3∥u∥2Ω = −ℑ(uw, u)1,Ω + ℑ(h+ (α + λ)(λf + g), u)Ω.

Taking the absolute value of this left-hand side, we get

|λ|3∥u∥2Ω ≤ |(uw, u)1,Ω|+ |(h+ (α + λ)(λf + g), u)Ω|.

and using Cauchy-Schwarz’s inequaltiy, we obtain

|λ|3∥u∥2Ω ≲ |uw|1,Ω|u|1,Ω + (|λ|2∥f∥Ω + |λ|∥g∥Ω + ∥h∥Ω)∥u∥Ω.

Using Young’s inequaltiy, we get

|λ|3∥u∥2Ω ≲ |uw|1,Ω|u|1,Ω + |λ|∥f∥2Ω + ∥g∥2Ω + ∥h∥2Ω. (5.50)

For the first term of this right hand side, we first use (5.48) to obtain

|uw|1,Ω ≲ |λ||u|1,Ω + |f |1,Ω + ∥ηt∥M.

Inserting this estimate in (5.50), we find

|λ|3∥u∥2Ω ≲ |λ||u|21,Ω + (|f |1,Ω + ∥ηt∥M)|u|1,Ω + |λ|∥f∥2Ω + ∥g∥2Ω + ∥h∥2Ω.

By Young’s inequality and the definition of the norm in H, this leads to

|λ|3∥u∥2Ω ≲ |λ||u|21,Ω + ∥ηt∥2M + |λ|∥F∥2H.

At this stage the estimates (5.44) and (5.46) allow to obtain

|λ|3∥u∥2Ω ≲ |λ|∥F∥H∥U∥H + |λ|3∥F∥2H.

and then
|λ|4∥u∥2Ω ≲ |λ|2∥F∥H∥U∥H + |λ|4∥F∥2H.

As w = λ2u− λf − g (see (5.13b)), we conclude that

∥w∥2Ω ≲ |λ|2∥F∥H∥U∥H + |λ|4∥F∥2H. (5.51)

Using the estimates (5.44), (5.46), (5.47), and (5.51), we find

∥U∥2H ≲ |λ|2∥F∥H∥U∥H + |λ|4∥F∥2H,

and by Young’s inequality we arrive at

∥U∥2H ≲ |λ|4∥F∥2H,

which proves (5.43) for all λ ∈ iR large. The proof is complete.
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Combining this Lemma and Corollary 5.3, Lemma 5.12 allows to obtain the next poly-
nomial decay rate.

Corollary 5.14. Assume that (A1)-(A4) hold, then system (5.1) is polynomially stable with
a decay rate in t−

1
4 for initial data in D(A), namely we have

∥S(t)U0∥H ≲ t−
1
2 ||U0||D(A), ∀U0 ∈ D(A), ∀t > 1. (5.52)

Lemma 5.15. If (A1)-(A3) are valid, then∫ ∞

0
(−g′(s))|1− e−λs|2 ds ≳ 1,∀λ ∈ iR : |λ| ≥ 1. (5.53)

Proof. We consider the case λ = iξ, with ξ ∈ R, and ξ ≥ 1. The case ξ ≤ −1 is treated in
the same manner. Direct calculations yield

|1− e−λs|2 = 2(1− cos(ξs)).

As g′(s) is non positive, then we may write
∫ ∞

0
(−g′(s))|1− e−λs|2 ds ≥ 2

∞∑
k=0

∫
ξs∈(π4+2kπ,π3+2kπ)

(−g′(s))(1− cos(ξs)) ds

≥ (2−
√
2)

∞∑
k=0

∫
ξs∈(π4+2kπ,π3+2kπ)

(−g′(s)) ds.

Let us now introduce the unique integer kξ such that 2kξπ ≤ ξ < 2(kξ+1)π, then we trivially
have ∫ ∞

0
(−g′(s))|1− e−λs|2 ds ≥ (2−

√
2)

kξ∑
k=0

∫
ξs∈(π4+2kπ,π3+2kπ)

(−g′(s)) ds.

Since −g′ is non increasing, we then find
∫ ∞

0
(−g′(s))|1− e−λs|2 ds ≥ (2−

√
2)(kξ + 1)ξ−1 π

12(−g′( π3ξ +
2(kξ + 1)π

ξ
)).

As 2(kξ+1)π
ξ ≥ 1, we obtain

∫ ∞

0
(−g′(s))|1− e−λs|2 ds ≥ 2−

√
2

24 (−g′(1)),

which proves (5.53) as −g′(1) > 0 due to (A1) and (A2).

Let us finish this section by proving that the polynomial decay rate from Corollary 5.14 is
optimal if α = γ and if the memory kernel satisfies the additional assumptions from section
5.4.
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Lemma 5.16. Assume that the memory kernel g ∈ W 3,1(R+) satisfies assumptions (A1) to
(H3) and (5.21) and that α = γ. Then the decay rate (5.52) is optimal in the sense that for
any l < 2, we can not expect the decay rate t−

1
l for all initial data U0 ∈ D(A).

Proof. We take advantage of Lemmas 5.12 and 5.10 (see [82, Theorem 2.10] for a similar
argument). In the setting of Lemma 5.10, for k ≥ k0, we take

ξk = ℑλk,+,

that owing to (5.36) and (5.37) satisfies

ξk ∼ λk. (5.54)

Now we consider (iξk − A)Uk,+, that owing to (5.27), is given by

(iξk − A)Uk,+ =
g′(0)− γg(0)

2λ2k
+ o( 1

λ2k
)
Uk,+.

This means that

∥(iξk − A)Uk,+∥H =
∣∣∣∣∣∣g

′(0)− γg(0)
2λ2k

+ o( 1
λ2k

)
∣∣∣∣∣∣ ∼ λ−2

k .

This property combined with (5.54) shows that

ξlk∥(iξk − A)Uk,+∥H ∼ λl−2
k ,

and implies that

lim
k→∞

ξlk∥(iξk − A)Uk,+∥H
∥Uk,+∥H

= lim
k→∞

ξl∥(iξk − A)Uk,+∥H = 0,

for any l < 2. In other words, property (5.42) cannot holds for l < 2 and we conclude by
Lemma 5.12.

5.6 A stronger polynomial decay using a resolvent estimate of
the wave equation with a frictional interior damping

In this subsection, we want to take advantage of the decay rate of the semigroup generated
by wave equation in Ω with Dirichlet boundary condition and a frictional interior damping,
namely 

utt −∆u+ (α− γ)ut = 0 in Ω× (0,∞),
u = 0 on Γ× (0,∞),
u(., 0) = u0, ut(., 0) = u1 in Ω,

(5.55)
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where α and γ are given before. It is well known that the Hilbert setting of this kind of
equation consists in taking

Hw = H1
0 (Ω)× L2(Ω)

with the standard norm

∥(u, v)T ∥2Hw
= |u|21,Ω + ∥v∥2Ω, ∀u, v ∈ Hw.

Moreover, the associated operator is given as

Aw(u, v)T =
(

v
∆u− (α− ℓ)v

)
, ∀(u, v)T ∈ D(Aw),

with domain
D(Aw) =

{
(u, v)T ∈ Hω/v ∈ H1

0 (Ω),∆u ∈ L2(Ω)
}
.

It is well-known that Aw is the generator of a C0−semigroup of contractions on Hw (even
if α = γ). Consequently, we have

{λ ∈ C,Reλ > 0} ⊂ ρ(Aw)

and
∥(λI− Aw)−1∥L(Aw) ≤

1
Reλ ∀λ ∈ C, Reλ > 0. (5.56)

Recalling that, for any λ ∈ ρ(Aw) and for Fw = (fw, gw) ∈ Hw, the identity

(λI− Aw)Uw = Fw

is equivalent to vw = λuω − fω

(λ+ α− γ)λuω −∆uω = gw + (λ+ α− γ)fω.
(5.57)

Therefore, by the estimate

|uw|1,Ω + ∥vw∥Ω ≤ ∥(λI− Aw)−1∥L(Hw)

(
|fw|1,Ω + ∥gw∥Ω

)
, (5.58)

and the first equation in (5.57), we get

|uw|1,Ω + |λ|∥uw∥Ω ≤ Cλ

(
|fw|1,Ω + ∥gw∥Ω

)
, (5.59)

where Cλ = max
{
1, ∥(λI− Aw)−1∥L(Hw)

}
.

If, in addition to (A4), we suppose that the function α satisfies

(A5) there exist an non empty open subset ω0 of Ω and a positive constant κ such that
α− γ ≥ κ a. e. in ω0,

then, by Calderon uniqueness Theorem, we deduce that the imaginary axis is in the resolvent
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set ρ(Aw), hence, C+ ⊂ ρ(Aw).
The idea is now to derive a better decay rate of the solution of system (5.4) from the

following bound on the resolvent of Aw on the imaginary axis

∥(iξI− Aw)−1∥L(Hw) ≲ 1 + |ξ|m, ∀ξ ∈ R, (5.60)

where m is a positive constant such that 0 ≤ m < 1. As before, the remaining task is to
estimate the resolvent of A on the imaginary axis.

Lemma 5.17. Assume that (A1) to (A5) hold with ω0 so that (5.60) holds with 0 ≤ m < 1,
then

||(λI− A)−1|| ≲ 1 + |λ|m+1,∀λ ∈ iR. (5.61)

Proof. As in Lemma 5.13, the estimate (5.61) is valid for all λ ∈ KR = {µ ∈ iR : |µ| ≤ R} ,
with R ≥ 1 fixed below. Hence we are reduced to the case λ ∈ iR with |λ| ≥ R. For
all F = (f, g, h, p) ∈ H, let U = (u, v, w, ηt) ∈ D(A) be the unique solution of (5.11) (or
equivalently to (5.12a)-(5.12d)). As before, we shall use the new variable uw defined in
(5.48). Note that, by using (5.13c), we see that

uw = (λ+ γ − Lg(λ))u− (1 + λ−1(γ − ℓ− Lg(λ))f + P, (5.62)

where
P =

∫ ∞

0
g(s)

(∫ s

0
e−λ(s−τ)p(τ) dτ

)
ds,

and we recall that Lg is the Laplace transform of g (that has a meaning because g is integrable
and Reλ = 0). Further direct calculations show that

|P |1,Ω ≲ ∥p∥M. (5.63)

As g and g′ are integrable, the following identity

λLg(λ) = g(0) + Lg′(λ),

holds. This implies that

|λLg(λ)| ≤ |g(0)| −
∫ ∞

0
g′(s) ds =: C. (5.64)

For further uses we need that the factor in front of u in the right-hand side of (5.62) is
different from zero, hence we need to fix |λ| large enough. More precisely if we require

γ + C < |λ|,

then, we directly obtain that
|λ|−1|γ − Lg(λ)| < 1,
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which guarantee the invertibility of λ+ γ − Lg(λ). This means that we fix R as follows

R ≥ max{1, 2(γ + C)}.

From (5.48), we can write u as

u = 1
λ+ γ − Lg(λ)

[
uw + (1 + λ−1(γ − ℓ− Lg(λ))f − P

]
. (5.65)

Inserting this expression in (5.49), we get

(λ+ α)λ2
λ+ γ − Lg(λ)uw −∆uw

= h+ (α + λ)g − λ2(λ+ α)
λ+ γ − Lg(λ)f + (λ+ α)λ2

λ+ γ − Lg(λ)P. (5.66)

Now, we notice that
(λ+ α)λ2

λ+ γ − Lg(λ) = λ(λ+ α(λ)),

where

|α(λ)− (α− γ)| ≲ |λ|−1, (5.67)

due to (5.64). This allows to rewrite (5.66) as

λ(λ+ α(λ))uw −∆uw = h+ (α + λ)g − λ2(λ+ α)
λ+ γ − Lg(λ)f + (λ+ α)λ2

λ+ γ − Lg(λ)P,

or equivalently, by setting r(λ) = α(λ)− (α− γ), and

gw = h+ (α + λ)g − λ2(λ+ α)
λ+ γ − Lg(λ)f + (λ+ α)λ2

λ+ γ − Lg(λ)P + λr(λ)uω,

λ(λ+ α− γ)uw −∆uw = gw. (5.68)

By taking fw = 0 and setting
vw = λuw,

we see that the pair (uw, vw) belongs to D(Aw) and is solution of (5.57). Consequently, by
(5.59) and (5.60), we find

|uw|1,Ω + |λ|∥uw∥Ω ≲ |λ|m∥gw∥Ω.

By the definition of gw, we find

|uw|1,Ω + |λ|∥uw∥Ω ≲ |λ|m
(
|g|1,Ω + |λ||f |1,Ω + |λ||P |1,Ω + ∥h∥Ω + |λr(λ)|∥uw∥Ω

)
.
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As the estimate (5.67) implies that |λr(λ)| ≲ 1, we find that

|uw|1,Ω + |λ|∥uw∥Ω ≲ |λ|m
(
|g|1,Ω + |λ||f |1,Ω + |λ||P |1,Ω + ∥h∥Ω

)
,

if |λ| ≥ R1 for a positive real number R1 large enough independent of |λ| but depending on
m and on the constants from (5.59) and from (5.67) (hence we fix R larger than this R1 as
well). By the definition of the norm in H and the estimate (5.63), we have found

|uw|1,Ω + |λ|∥uw∥Ω ≲ |λ|m+1∥F∥H. (5.69)

We now come back to the original variables u, v and w. Indeed from (5.65), (5.64) and
(5.69), we find

|u|1,Ω + |λ|∥u∥Ω ≲ |λ|m∥F∥H. (5.70)

Now the identity (5.13a) and the previous estimate directly yield

|v|1,Ω + |λ|∥v∥Ω ≲ |λ|m+1∥F∥H. (5.71)

Similarly using (5.13b) and this estimate, we find

∥w∥Ω ≲ |λ|m+1∥F∥H. (5.72)

Finally using (5.13c) and (5.70), we obtain

∥ηt∥M ≲ |λ|m∥F∥H. (5.73)

The estimates (5.70) to (5.73) show that (5.61) is valid for λ ∈ iR such that |λ| ≥ R, which
completes the proof.

Combining this Lemma and Corollary 5.3, Lemma 5.12 allows to obtain the next poly-
nomial decay rate.

Corollary 5.18. Under the assumptions of Lemma 5.17, system (5.1) is polynomially stable
with a decay rate in t−

1
m+1 for initial data in D(A), namely we have

∥S(t)U0∥H ≲ t−
1

m+1 ||U0||D(A), ∀U0 ∈ D(A), ∀t > 1. (5.74)

Note that the decay rate (5.74) is always better than (5.52) since m ∈ [0, 1).
Let us finish this section with some examples for which the decay rate (5.74) is available.

Example 5.19. There are many cases for which the frictional damping in ω0 is sufficient
to guarantee the exponential stability of the wave equation (5.55) (hence by Huang-Prüss
theorem [50, 101], (5.60) holds with m = 0), hence by Corollary 5.18, system (5.1) is poly-
nomially stable with a decay rate in t−1 for initial data in D(A). Let us mention a few of
them.
1) By [104, Theorem 2] (see also [11, 68]), (5.55) is exponentially stable if the boundary
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of Ω is of class C∞ and ω0 satisfies the Geometric Control Condition (GCC). Recall that
the GCC can be formulated as follows: For a subset ω of Ω, we shall say that ω satisfies
the Geometric Control Condition if there exists T > 0 such that every geodesic traveling at
speed one issued from Ω at time t = 0 intersects ω before time T.
2) From [72, Lemma VII.2.4] (see also [113, Theorem 1.1 and Remark 1.2] or [47, Example
3]) (5.55) is exponentially stable if the boundary of Ω is of class C2 and ω0 is a neighborhood
of Γ̄(x0), for some x0 ∈ Rd, where

Γ(x0) = {x ∈ ∂Ω | (x− x0) · ν(x) > 0},

ν(x) being the unit outward normal vector at x ∈ ∂Ω.
3) From [47, Example 1], (5.55) is exponentially stable if d = 1, Ω = (0, ℓ) for some positive
real number ℓ, and ω0 is a non empty open subset of Ω.
4) In [73, Remark 4.3], further examples of pairs (Ω, ω0) such that (5.55) is exponentially
stable are given.

Example 5.20. To the best of our knowledge, only three papers are considering the estimate
(5.60) in the case 0 < m < 1, namely [21, 22, 67] on a smooth connected compact Riemannian
manifold, but the arguments from [7, Remark 2.8] allow to deduce that the same result holds
for the damped wave equation in a hyper-cube (−L,L)n of Rn, with n ≥ 2 and Dirichlet
boundary conditions. More precisely, for δ > 0 and Ω = (−L,L)n with L > 0, if we take
(α − γ)(x1, · · · , xn) = x2δ1 near x1 = 0, positive elsewhere and depending only on x1, then
using [67, Theorem 1.8] or [21, Theorem 1.2] (and [7, Remark 2.8]), the estimate (5.60) holds
with m = δ

δ+1 , that indeed belongs to (0, 1). Consequently by Corollary 5.18, system (5.1)

is polynomially stable with a decay rate in t−
δ+1
2δ+1 for initial data in D(A).
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CONCLUSION AND PERSPECTIVE

CONCLUSION

In this thesis, we studied a linear Cauchy problem for the Moore–Gibson–Thompson (MGT)
equation with type I and III memory terms (in whole space RN ), in the presence of vis-
coelastic dissipation, where the relaxation function decays exponentially and polynomially.
We have established existence and stability results which depend on the coefficients of the
equation and show that the rate of decay is of the ”Loss of regularity” type. We also studied
the case of the type II memory term with a large class of relaxation functions and showed a
general stability result.

Then, we are interested in a linear Cauchy problem with MGT equation coupled to a
Gurtin and Pipkin type heat equation, where the relaxation function decays exponentially.
We have shown polynomial stability result with an optimal rate of type ”Regularity loss”.

We were also interested in third order in time linear evolution equations, general and
abstract version of the Moore–Gibson–Thompson system with and without memory term,
where existence and uniqueness of a solution has been shown using semigroup theory and
several stability rates have been obtained.

Our results generalize and improve many previous results in the literature.

PERSPECTIVE

A research perspective focused on the study of the existence and stability of the solution of
the nonlinear JMGT equation in bounded or unbounded domains, with the use of different
types of dissipation.
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347(15-16):867–872, 2009.

[4] F. Alabau-Boussouira, P. Cannarsa, and D. Sforza. Decay estimates for second order
evolution equations with memory. Journal of Functional Analysis, 254(5):1342–1372,
2008.

[5] M. Alves, A. Caixeta, M. J. Silva, and J. Rodrigues. Moore–Gibson–Thompson equa-
tion with memory in a history framework: a semigroup approach. Z. Angew. Math.
Phys., 69(106):1–20, 2018.

[6] M. S. Alves, C. Buriol, M. V. Ferreira, J. E. M. Rivera, M. Sepúlveda, and O. Vera.
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Abstract: The main goal of this dissertation is to discuss the asymptotic behavior of some 

hyperbolic PDE systems, precisely, we handled the well-posedness and stability of the solutions for 

the Moore-Gibson-Thompson equation (MGT) employing various types of dissipation. In fact, 

under an appropriate assumption on the coefficients of the systems together with the energy 

method in Fourier space we have proved the well-posedness of the systems and built some 

Lyapunov functionals which allowed us to get control estimates on the Fourier image of the 

solution and led to the decay rate of the L2-norm of the solution. 

On the other hand, by comparing the behavior of the resolvent of the Moore-Gibson-Thompson 

system with the one of the resolvent of the wave equation with a frictional interior damping, we 

furnish weaker conditions that guarantee exponential, polynomial or even logarithmic decay of the 
solution of the Moore-Gibson-Thompson system in a bounded domain. 

Keywords: Moore-Gibson-Thompson equation, memory kernel, energy method, wave 

equation, relaxation function, general decay, Fourier space, Gurtin-Pipkin thermal law, 

stabilization, exponential decay, polynomial decay, regularity loss. 

 

 

، على دلات التفاضلية الجزئية الزائديةالهدف الرئيسي من هذه الأطروحة هو مناقشة السلوك المقارب لبعض أنظمة المعا :الملخص

تلفة من التبديد. في وجه التحديد معادلة مور جيبسون طومسون ، تعاملنا مع الوضع الجيد واستقرار الحلول لمعادلة باستخدام أنواع مخ

في ظل افتراض مناسب لمعاملات الأنظمة مع طريقة الطاقة في فضاء فورييه، قمنا بإثبات الوضع الجيد  المشكلتين و لاالواقع ، ك

للأنظمة وقمنا ببناء بعض وظائف ليابونوف التي سمحت لنا بالحصول على تقديرات التحكم على صورة فورييه للحل كما تؤدي إلى 

 استنتاج معدل اضمحلال للحل.

مقارنة سلوك مذيب نظام مور جيبسون طومسون بأحد مذيب معادلة الموجة مع التخميد الداخلي  من ناحية أخرى، من خلال
 .الاحتكاكي، وفرنا ظروفا أضعف تضمن تحللا أسيًا أو متعدد الحدود أو حتى لوغاريتميًا للحل في مجال محدد

طومسون، نواة الذاكرة ، طريقة الطاقة ، معادلة الموجة ، وظيفة الاسترخاء ،  معادلة مور جيبسون الكلمات المفتاحية:

فقدان  الأسي، الاضمحلال متعدد الحدود، بيبكين الحراري ، استقرار، الاضمحلال-الاضمحلال العام ، فضاء فورييه ، قانون جورتين

 .الانتظام

 

 

Résumé: L'objectif principal de cette thèse est de discuter le comportement asymptotique de 

certains systèmes d'EDP hyperboliques, précisément, nous avons traité la bonne position et la 

stabilité des solutions de l'équation de Moore-Gibson-Thompson (MGT) employant divers types de 

dissipation. En fait, sous une hypothèse appropriée sur les coefficients des systèmes avec la 

méthode de l'énergie dans l'espace de Fourier nous avons prouvé la bonne position des systèmes et 

construit des fonctionnelles de Lyapunov qui nous ont permis d'obtenir des estimations de contrôle 

sur l'image de Fourier de la solution et conduisent au taux de décroissance de la norme L2 de la 

solution. 

D'autre part, en exploitant la résolvante de l'équation des ondes avec amortissement par frottement  

interne, on fournit des conditions plus faibles qui garantissent une décroissance exponentielle, 

polynomiale ou même logarithmique de la solution du système de Moore-Gibson-Thompson dans un 

domaine borné. 

Mots-clés: Equation de Moore-Gibson-Thompson, noyau mémoire, méthode énergétique, 

équation des ondes, fonction de relaxation, décroissance générale, espace de Fourier, loi thermique 

de Gurtin-Pipkin, stabilisation, perte de régularité. 
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