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INTRODUCTION

This thesis is devoted to the study of the well-posedness and stability of the linearized version
of a nonlinear model in acoustics known as the Jordon—-Moore—Gibson—Thompson equation
(JMGT). We employ various types of dissipation mechanisms and show their effects on the
stability of such equation.

Modeling and previous works

Nonlinear acoustics is a branch of physics dealing with sound waves of sufficiently large
amplitudes that require using full systems of governing equations of fluid dynamics (for
sound waves in liquids and gases) and elasticity (for sound waves in solids). These equations
are naturally nonlinear and, therefore, the theory of nonlinear partial differential equations
can provide valuable insight into the behavior of their solution for a long time.

Many researchers have investigated nonlinear acoustics due to the increasing number of
applications of high-frequency sound waves in medicine and industry such as lithotripsy,
thermotherapy, ultrasound cleaning, and welding, see for instance [1, 32, 39, 40, 46, 57, 79,
80, 92, 100].

Modeling

One of the classical model equations in nonlinear acoustics is the Kuznetsov equation [30,
61, 70]:

ur — 2 Au — §Auy = ( L B (ug)? + |Vu|2) (1)

c22A t
where the constants 6, ¢ being the diffusivity and the speed of sound, respectively, and B/A
denotes the parameter of nonlinearity. This equation can be derived from the equation of
fluid dynamics by using the Fourier law of heat conduction in the equation of the conservation
of energy. However, it is also known that by using Fourier’s law we obtain an infinite signal
speed paradox of the energy propagation. That is, any thermal disturbance at a single point
has an instantaneous effect everywhere in the medium. To overcome this drawback in the
Fourier law, one suggestion is to replace the Fourier law with the Maxwell-Cattaneo law.
This process then gives rise to an extra term in (1) which contains a third time derivative
term, with a small constant coefficient 7, referred to as a relaxation time. As a consequence,
the mathematical structure of the underlying model changes drastically from the parabolic
character of the Kuznetsov model (1) to the hyperbolic-like character of the Jordan—-Moore—
Gibson-Thompson model (JMGT) [52, 54, 56, 103, 110]:

1 B
Tuggs + ugt — 2 AU — bAug = ( u)? + |Vu|2>

224 (2)

t’
where b = § + 7¢2.

Our goal in this section is to give a brief derivation of equation (2) from the basic equations
of fluid dynamics. The conservation of mass (the continuity equation), the conservation of
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momentum (Newton’s second law), conservation of energy (first law of thermodynamics or
entropy balance) and the Maxwell-Cattaneo law are given, respectively, by:

¢ The conservation of mass

0o B
5t + V- (ov)=0. (3a)
e The conservation of momentum
g[vt + (v- V)v] + Vp = u,Av+ (% + ny)V(V - ), (3b)

where p, is the shear viscosity (the first coefficient of viscosity) and 7, is the second
coefficient of the viscosity (the bulk viscosity).

e The conservation of energy

2
:_v.q+2MV]D):]D)+(ny__ﬂv)(v'v)z (3¢)

o [St 4 (V-0)S -

where D is the deformation tensor given by
1 T
D= E(Vv + (Vo))
and the components of I : D are D;;D;; where D;; denote the components of the
matrix D.

o The Maxwell-Cattaneo law
Q(-T, t) + TQt(.’L',t) = _kve(mat)a (4)

where 7 > 0 is relaxation time and k£ > 0 is the heat conductivity.

Let us first start by defining the main physical quantities involved in the description of the
Navier-Stokes equations above (3) and the Maxwell-Cattaneo law (4):

o the velocity v, which is assumed to be irrotational, that is V x v = 0, and could be
expressed via a scalar acoustic velocity potential i.e., v = —Vu, the acoustic pressure
p, the mass density p, the temperature 6, the specific entropy S and the heat flux q.

All these physical quantities are decomposed into their mean (which is typically constant in
space and time) and fluctuating components, such that

v =19+ 7, (5a)
D =po + D, with Vpg =0 (5b)
e=00+20 (5¢)
=0p+0 (5d)
S =8y+85. (5e)



Following [52, 108], we substitute (5c) into (3a) and assume gy to be a constant, we find
ot + 0oV -v=—pV-v—v-Vp. (6)

Now, using the following vector identities

V(V-v)=Av+V xV xv (7)
’U‘V’U=%V(’U-’U)—’UXVX’U, (8)

in equation (3b) and exploiting (5b) and (5¢) with pg taken to be a constant, we obtain

1
(QO+§)[vt+§V(v-v)—vaxv]+Vﬁ

=,u,,Av+<%+ny)(Av+VXva). 9)

Since the acoustic velocity v is irrotational, that is V x v = 0, as well as, we assume zero
time-mean velocity vg, which implies the identity v = ¥, and omit the third order fluctuating
term §V (v - v), equation (9) can be rewritten in the following form

4
o0 + %V(ﬁ 5) + %+ Vi = (% + n,,) AG. (10)

The equation of state is given by
p=p(o,5). (11)

Expanding (11) in a Taylor series around the values (gg, Sp), and neglecting the third-order
terms, we arrive at

romea(®), e 82, (52
00/ 00,50 €0 2 \0¢? 00,50 Q0
Op
+(—) S—So)+ ... 12
55), (5= 5) (12)

By defining 5 52
D 2 2 D

A= (—) = c, B = (_)

%0 90/ 00,5 % 0 902/ 00,50

and using (5b), (5¢) and (5e), then, equation (12) takes the form

N 6 B/oN2 (0p ~
- A—+—(—) + (—) 3. 13
P 00 2 \oo 95/ 09,50 (13)



Now, it only remains to combine the three equations (6), (10) and (13):

(0t + 00V - 0=—pV-0—7-Vp (14a)
4

00t + %V(f) ) + Gy + V= (% + n,,) AD (14b)
N 6 B/o\2 /0p ~

A B (),

kp 0 2\ 95/ 00,5 (14

respectively, into a single equation. To achieve this combination, we will substitute any phys-
ical quantity in a second-order term with its linearized one, since the resulting errors will be
of third-order. Presicely we will express the second-order terms in (14) by its linearizations:

1

V.o~ ——0p linear continuity equation, (15)
1

Ty ~ —Q—Vﬁ linear Euler equation, (16)
0

o~ % linear state equation, (17)

respectively. Using now the approximations (15) and (17) to rewrite (14a) as
ot + ooV - D P s Ls Vp (18)
U = — v - .
dt + 00 Pt~ 2 VP

Furthermore, equation (14c) can be reformulated, by using (17), as

. P 1 B 5 1 (8])) ~
=L _ - Zp () 3 19
= 2 ooct 24P T 2\3s 00,50 (19)
Next, differentiating (19) with respect to ¢ and using (18), we obtain

Pt 1 B
2 poct24

1 1 1/0 ~
52 D — 52 — - D — — —p
(B°)t + 0oV - ¥ 200¢ (5%)¢ + CQ'U Vp 2 (83)90,505%' (20)

In what follows, the balance law expressing the rate of entropy production, reduces to (see
[31, 46]):

00005 = -V - ¢, (21)

where only the first-order terms of (3c) have been retained. Further, the heat flux equation
(4) takes the form

(14 70;)q = —kV4. (22)
Plugging equation (22) into (21), we arrive to

0000(1 + 78;)S; = kAG. (23)
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Therefore, from the approximation [105], we have

(),
op/ po,So

which gives when using it in (23):

5 k 06
(1+70)St = (

(& Ap. 24
0026 3p>p0,So (24

Now, to eliminate S; in (20), we apply the operator (1 +78) in (20), followed by the use of
equation (24), we obtain

pr 1 B o SSRNE S NIE P

(1+710r) [02 9004 54 )t + V-0 22078 (6%)t + 50 VD
Ap. 25
900290 <8S)9 (517)1)0,50 P (25)

Next, to compute the coefficient 01 ( ) S ( )S in (25), we use the equation of state
00,50 0,P0
for a perfect gas [105], to get,

1 (8p) (80) 11

00 \OS/ 00,5 \OP/ Sop0 v Cp’
where ¢, and ¢, are the specific heats at constant pressure and volume, respectively. Hence,
equation (25) recast as

P , T B oo T o Pt 1 B .o
T2 A2 1) 200 (B%)et + 5 20 2 Ll
1 k /11
— —— (@)t + 700V - 0t + 00V - U = (———)Aﬁ, 26
220 (%) v o (26)

where we neglected the second order terms.
On the other hand, by using (15)-(17), one can reformulate equation (14b) as

- - 1 R 1 /4
ooV - U + Ap = ——A( v) + 290c2Ap2 - w( ,t;v +77v)Apt, (27)

where, we also applied the divergence operator. Differentiating again (26) with respect to
time ¢ and then subtracting the resulting equation from (27), we find

. Du T . 111 /4 k1 1 .
8= 15 = it |0 (550 4m) + (o = o)+

o\ 3 00 Cp
20 1 B o
N L p
5 (v-v) S (D)t (28)



In addition, we use the relations between time and spatial derivatives according to the linear
wave equation for sound pressure and velocity

~ Utt
A’U = 6—2,
. Dut
A - 6—2,

in the higher order terms, we therefore arrive at

T Pr _ b (1 B o 2)
— o —Ap— 5Pt = | —5— v 29
c2pttt + 2 p c2pttt 9004 2Ap + C2| | ot ( )
where pgvy = —Vp, and b > 0 denotes the diffusivity of sound which is given, as presented
in [71], by
K1 1 1 /4
b= [—(— — —) + —(ﬂ +771;) +7'02].
00 \Cv OCp o\ 3
Moreover by recalling that the acoustic velocity v is irrotational i.e., V X v = 0, and by
introducing the acoustic velocity potential u by v = —Vu, therefore, the equation (29) reads

for the potential u as

ut = P (30)

1 B
Tt + g = S = by = ( (ue)® + |Vu|2)tv 2

c22A
and referred to as the Jordan-Moore-Gibson—Thompson equation given in (2).

We point out that, the linearized part of (30) can also be derived when modeling with
mechanical components, such as springs and dashpots, and known as the standard linear
solid model of viscoelasticity, for more detail see [15, 41]. In fact, these springs represent the
elastic component of the model response and obey Hooke’s law in which the stress o at any
point is simply proportional to the strain e, i.e.,

o = Fe,

where E is the Young modulus of the elastic structure. The dashpots represent the viscous
component of a viscoelastic material. Therefore, the vibrations are governed by the following
wave equation

ugs(z,t) = aAu(z, t),

where a > 0 is the constant wave velocity. Here, we consider vibrations modeled by the
standard linear solid model of viscoelasticity. In this case, a linear spring is connected in
series with a combination of another linear spring and a dashpot in parallel. The stress o
and strain e are then related by the differential equation

o +710’ = E(e + B¢),



where the constants 7, 8 are very small satisfying 0 < 7 < 3. Consequently, the vibrations
of flexible structures are governed by the linear differential equation

TUt + Ut — a2 Ay — a2,3Aut =0 (31)

which is generally called the standard linear solid model. Equation (31) was first derived by
Bose and Gorain [41] to model flexible structural systems possessing internal damping. See
also [15] and [43] for further information and a complete description of the model.

It is significant to mention that a coupled standard linear solid model with a heat equa-
tion modeling an expected dissipative effect through heat conduction has received a lot of
attention, which is reflected in the appearance of many works in the literature treating the
well-posedness, the regularity and the stability of the solution [6, 96, 97].

Previous works

We briefly cite previous work on the above-mentioned equation in bounded and unbounded
domains.

Moore—Gibson—Thompson equation (MGT)

The linearized version of (30) is known as the Moore-Gibson—Thompson equation (MGT):
TUttt + Ut — Ay — bAus =0 (32)

and plays a crucial role in the investigation of the nonlinear problem. As a result of this
interest, many papers related to the well-posedness and asymptotic behavior of the so-
called Moore-Gibson—-Thompson equation, considering different types of dissipation, have
appeared. In [54], Kaltenbacher et al. investigated the following equation:

TUtt + Ut + A Au + bAus =0, (33)

where A is a positive self-adjoint operator, and defined a critical parameter

C2T

T? (34)

T=a-—

that controls the behavior of the solution. More precisely, they showed that when b = 0,
there is a lack of existence of a semigroup associated with the linear dynamics. While, for
b > 0, they proved that the problem is well-posed and its solution energy

« is exponentially stable if v > 0 (the non-critical case), i.e.,

E{t) < Ce ™ E(0), w,t>0

 remains constant if v = 0 (the critical case),



where E(t) = E(t) + Eo(t), such that

2

o
2b’)’|ut|

b
E(t) = ElAl/Z(Ut + C2b_1u)|2 + g'“tt + C2b_1’ut|2 +

and 0
(67 C
Bo(t) = 5 lutl® + 1AV 2wy

Spectral analysis for this model was performed in [42] and [81]. In fact, for a clear picture
and under a convenient change of variable, Marchand et al. [81] showed that the equation
(33) has a particular structural decomposition. Accordingly, by using the abstract semigroup
approach with a refined spectral analysis, they succeeded in establishing the well-posedness
of (33) and identified a point of accumulation of eigenvalues which essentially theoretically
connects to the exponential decay of energy. The exponential decay rate obtained in [81] are
completed in [98], where the obtention of an explicit scalar product for which the operator
is normal allows the authors to obtain the optimal exponential decay rate of the solutions.
Conejero et al. [28] considered the one-dimensional version of equation (32) and proved a
chaotic behavior of the solution when v < 0. Their arguments were analytical, not numerical,
and offered new insights on dynamical behavior in more general situations.

On the other hand, to our knowledge, no previous research has investigated the equation
(32) in RYV before the work of Pellicer and Said-Houari in [95], where the authors showed the
well-posedness and established the decay rate of the solutions of (32) in the whole space RN
(note that one of the difficulties encountered in RY space is the lack of Poincaré inequality).
They used the energy method in the Fourier space to show, under the assumption 5 —7 > 0
(same condition given in (34)), that the L?-norm of the vector V = (uz + Tug, V(u +
Tut), Vug), and of its higher-order derivatives obey the decay rate:

IV VOl 2@y < C(L+ t)_N/4_j/2||Vb||L1(RN) +Ce™ VIVl 2y, (35)

with initial data in L1(RY) N H5(RN), s > 1 and j is a positive integer satisfying 0 <
j < s. Moreover, they established the optimality of the decay rate in (35) by exploiting the
eigenvalues expansion method. In recent papers [96, 97], the authors of [95] showed that the
condition S — 7 > 0 is also a necessary condition for stability. The authors of [26] improved
slightly the results in [95] and showed that the derived estimates in the low-dimensional
cases N = 1 and N = 2 are a little sharper than those in [95], by preparing representation of
solutions in the Fourier space and using asymptotic expansions of eigenvalues together with
WKB analysis. They also derived asymptotic profiles for the linear MGT equation in the
dissipative case in a framework of L! space, by estimating upper bounds and lower bounds
of the solution itself with up € L2(RN) N LL(RY), and showed an approximate relation
between the linear MGT equation and the linear viscoelastic damped wave equation (or the
strongly damped wave equation).

The memory-type MGT equation has drawn the attention of many researchers lately and
many studies have appeared showing various types of asymptotic stability results that have
been established depending on the values of parameters in the equation and the decay rate
of the relaxation functions. This kind of problems are motivated by a numerous papers on
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the wave equation with memory (or its abstract version):
t
ugt — Au + /0 g(s)Au(t — s)ds = 0, (36)

where the convolution term [¢ g(s)Au(t — s)ds represents the memory effects of materials.
Physically, the damping mechanism caused by viscoelasticity implies the appearance of the
memory term in a system. Indeed, the memory term plays a critical role in the wave equation
and is directly related to whether or how the energy decays. The researchers’ interest led
to understand of what would happen if two different types of damping terms appeared
simultaneously in the same system. Because of this interest, they concluded that the two
terms help the system to dissipate energy, but they do not necessarily improve the decay rate.
As an example, in [25] whereas frictional damping alone yields an exponential decay, only
the polynomial decay can be achieved when an additional memory term with a polynomially
decaying kernel is present. Let us also cite the work of Conti et al. in [29] where they
studied (36) on the whole space RN and obtained some results concerning the decay of the
energy, as time goes to infinity, when g decays either exponentially or polynomially. Some
improvements of the decay rates were also given in [102]. Dell’Oro and Pata in [38] discussed
the relationship between the MGT equation (32) and the equation of linear viscoelasticity:

o0
utt — k(0)Au + /0 K'(s)Au(t — s)ds = 0,
for the specific choice of the exponential kernel
K(s)=ae P +c  abc>0.

For an in-depth study on wave-memory system, we refer the reader to [3, 4, 23, 24, 63, 83, 84],
and references therein.

Now let us shade some light on the study of memory damping in the context of a third order
in time system. Precisely, we discuss some results obtained for the MGT equation with a
memory term of the form:

t
Tuset + ouge — bAug — P Au + /0 g(t — s)Au(s)ds = 0. (37)

In this regard, the first work studied the equation (37) is established by Lasiecka and Wang in
[65], by replacing —Awu with A and the convolution term [¢ g(s).Au(t—s)ds with f¢ g(s)Az(t—
s)ds, and considered three case: z = u (type I memory), z = u; (type Il memory) or z = u+u
(type III memory), imposing the assumption on the relaxation function g:

g'(t) < —cog(t),

where cg is a positive constant. They studied the effect of the memory on the decay of the
energy in the sub-critical case v > 0, where 7 is given in (34), and showed how the damping
mechanism induced by the memory term leads to an exponential decay of the solution. In
[5], Alves et al. proved the uniform stability of the MGT model encompassing the three
different types of memory introduced by Lasiecka and Wang [65] in a history space setting
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and they showed some stability results, using the linear semigroup theory. Further, Lasiecka
and Wang [64] looked into (37) and extended their work [65] by allowing the memory kernel
to satisfy a more general decay estimate of the form

g )+ H(g(t)) <0, forall ¢>0, (38)

with H(0) = 0 and H is linear or strictly increasing and strictly convex C? function on
(0,7], 7 < 1. They proved that the decay rate of the memory kernel is transferred to a decay
rate of the solution when « > 0. In [75], the authors considered (37) for a class of relaxation
functions satisfying

g ) < —C(t)H(g(t)), forall t>0, (39)

and established, by using some properties of the convex functions together with the general-
ized Young inequality, new optimal explicit decay results for the solution in the sub-critical
case 7 > 0, depending on g and H, that is

E(t) < koHy! (kl /t_

g=(r)

g(s)ds) , (40)

where H1(t) = [{ H'(s)/sds and Hj is strictly decreasing and convex on (0, ], with tlE)l’(l) Hi(t)

+00. One can notice, from (40), that the usual exponential and polynomial decay rates are
only special cases. For instance, if we assume H(s) = sP, 1 < p < 2 in (39), then by direct
calculations, we see that the decay of the energy is given by

o Cre=¢ Jo S()ds, if p=1,
E(t) < ~1/(p—1)
Cy (1 + g(s)ds)

, if 1<p<?2,

for some constants C1,Co and c.

The critical case v = 0 has been investigated by Dell’Oro et al. [37] in a bounded domain
and proved that system (37), replacing —Au with 4 and taking 7 = 1, is exponentially
stable if and only if A is a bounded operator. In addition, in the case of an unbounded
operator A, they only proved that the corresponding energy decays polynomially, with the
rate 1/t, at least for regular initial data.

The Jordan— Moore-Gibson—Thompson equation (JMGT) with and without memory
term, has been studied by many researchers. Indeed, Kaltenbacher et al.[55] considered
equation (2) without the term of local nonlinear effects (|Vu|?)¢, known as the Westervelt
equation [108]:

B

1
Tuggs + gt — ¢ Au — bAug = 2 (1 + ﬂ) (ur)?, (41)

and established the local and global well-posedness and the exponential decay for the energy
E(t) = [Au() + A 2up(8)? + June (1),
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under a certain parameter range v > 0. Additionally, Kaltenbacher and Nikoli¢ in [56]
established the well-posedness with and without the quadratic velocity term (|Vu/|?)s on the
right-hand side of (2) corresponding to the Kuznetsov and the Westervelt nonlinearities,
respectively. In addition, they also proved, as 7 — 0, that the limit of (2) leads to the
classical Kuznetsov (1) model.

Racke and Said-Houari [103] treated the initial value problem associated with (2) in R3.
First, they proved a local existence result in appropriate functional spaces by employing the
contraction mapping theorem as well as a global existence result for small data exploiting
the energy method with a bootstrap argument. They also proved a polynomial decay rate
of the solution which depends on the space dimension as long as the condition v > 0 is
satisfied. Quite recently, Said-Houari [106] improved the global existence result in [103] by
assuming only the lower-order Sobolev norms of the initial data to be small, whereas the
higher-order norms could be arbitrarily large.

Later, the memory-type JMGT equation has also received its share of attention. Lasiecka
[62] considered the following JMGT equation with memory and in the absence of quadratic
gradient nonlinearity:

t

Tugts + aug + A Au + bAug — /0 g(t — s)Aw(s)ds = ciz (1 + %) (ug)? (42)
and proved the local and global existence (in time) of smooth solutions. Precisely, her study
indicates that with appropriate calibration of the memory kernel, solutions exist globally for
sufficiently small and regular initial data. These solutions exhibit exponential decay rates
with an exponentially decaying memory kernel. Nikoli¢ and Said-Houari [90] proved, under
the assumption that the relaxation kernel decays exponentially, the local well-posedness in
unbounded two- and three-dimensional domains. They also showed that the solution of
the three-dimensional model exists globally in time and the energy of the system decays
polynomially. Further, in RV for all N > 3, the authors in their recent work [91] extended
the analysis of [90] by taking into account the local effects in nonlinear sound propagation
|Vug|?, which leads to a quadratic gradient nonlinearity. Global existence is shown by
exploiting a sequence of high-order energy uniform in time bounds and is derived under the
assumption of an exponentially decaying memory kernel and sufficiently small and regular
initial data. Moreover, recently, Nikoli¢ and Said-Houari in [89], studied the asymptotic
behavior of the nonlocal Jordan—-Moore-Gibson—Thompson equation:

t
T + aug — Ay + —bAug — /0 g9(s)Au(t — s)ds = (ku% + |Vu|2) (43)

t
in the critical case b = 7¢ and where ¢ is decaying exponentially. The authors are the
first to have investigated the nonlinear problem (43) in critical case. They demonstrated
the global existence and the asymptotic decay of the solutions in RN ,N > 3, for smooth
and small initial data. Knowing previously that the solutions of the linearized version of
(43) for the critical case had the regularity-loss property, which thus presented an obstacle
to the proof of nonlinear stability because the classical energy method fails. To deal with
this issue, the authors proved the decay estimates for a solution with lower Sobolev regular-
ity, by constructing appropriate time-weighted standards, where weights can have negative

11



exponents.

MGT equation with heat conduction

We end this section by recalling some related work with the so-called standard linear solid
model coupled to the different thermal conductions in the bounded or unbounded domain.
In this regard, Alves et al. in [6] studied the standard linear solid model coupled with the
classical Fourier law of heat conduction:

Tustt + Upp — a2 Au — aZ,BAut +nAf =0,
0r — A0 — TnAug — nAup = 0, (44)

where z € Q (a bounded open connected set in RN ). They proved, in the case of v > 0
(same ~y given in (34)), that the energy decays exponentially with respect to time by using
multiplier techniques. Pellicer and Said-Houari in [97] treated (44) in the whole space RN
and under the assumption vy > 0, (44) indicates the following decay estimates:

e Sub-critical case, v > 0:

_N_k _
IV Ve @) 2y < CQ+ 05V gy + Ce IV VRl paany,  (45)

where, Vg (x,t) = (Tug + ug, V(Tug + u), Vug, 0)T (z,t) and VR = Vp(z,0).

e Ciritical case, 7 = 0:
_N_k —
IV W@l p2@n) < CQ+6) 3~ 4WRll ey + O IV pany, (46)

where, Wg(x,t) = (Tug + ug, V(rug + u),0)T (z,t) and Wg = Wg(z,0).

In addition, using the eigenvalues expansion method, they confirmed the optimality of the
previous decay rates. Observing that, in the sub-critical case, the decay rate obtained by
coupling the standard linear solid model with Fourier law of heat conduction is the same as
in the Cauchy problem (MGT) without heat conduction (see [95]). While, for the critical
case they showed a slower decay rate, since heat conduction is the only cause of dissipation
and the problem will be asymptotically stable. Pellicer and Said-Houari, in their recent
work [96], studied the following standard linear model coupled with the Cattaneo law of
heat conduction:

TUttt + Ut — alAu — azﬂAut +nAf =0,
0r + yYV.q — TpAuy — nAug = 0,
T09t + 9+ kVE =0, (47)

where, z € RN, and showed that the decay rates obtained are the same as those achieved
when the model is coupled by Fourier heat conduction. The only difference lies in the
requirement for more regularity of the initial data to obtain these decay rates (see (45) and
(46)).
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The coupling of the standard linear solid model of viscoelasticity with the Gurtin and Pipkin
heat conduction reads as follows:

TULt + Ut — a2Au — az,BAut +0A0 =0,

1 foo
0; — p /0 9(s)AB(t — s) ds — T6 Aug — §Aug = 0, (48)

where a2 > 0 is the constant wave velocity, and T, 3, 9, k are positive constants. The memory
kernel g(s) is a convex summable function on [0, c0) with total mass of

/Ooog(s) ds =1.

Very recently, Wang and Liu [111] studied, in the whole space RY the system (48) and
established the estimate of the decay of the solution in the sub-critical case 0 < 7 < 8
(which corresponds to condition vy > 0), by employing the method of [96] and [97]. They
showed the following decay estimate:

_N_k _£
IV5V @)l g2y < OO+ 8 B8 Voll 1 vy + CQ+ 1)~ 8 IVF V0]l oy,

for all 0 < k41 < s and where Vy € H5(RV) n LL(RN).

Our contributions

In this thesis, taking inspiration from all the results cited above, we have dealt with the
existence and stability of the solutions of the Moore-Gibson—Thompson (MGT) equation
with and without a memory term. We summarize our contribution as follows:

» In chapter 1: We give some preliminaries, then we discuss, in RN , the well-posedness
and the decay rate of the solution of the MGT equation with memory

t
Tugs(£) + o (t) — BAug(t) — yAu(t) + /0 g(s)Au(t —s)ds =0,  (49)
where g satisfies the following differential inequality

gdt)< —bg P (t), forall t>0, p>1.

We prove that the problem (49) is well-posed in some appropriate functional spaces
using the semigroup approach. By applying the energy method in Fourier space we
build appropriate Lyapunov functionals that are used to prove the asymptotic stability
and to give the decay rate of an energy norm for the solution of the problem (49). More
precisely, for the asymptotic behavior we prove the following;:

o First, for the sub-critical case af—77 > 0 (which corresponds to (34)) and when g
decays either exponentially or polynomially, we give the decay rate of the solution
and its higher-order derivatives (see Theorem 1.1 below). For instance if g decays
exponentially, we prove that the solution decays exactly as in (35).
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 Second, in the critical case a8 — 7y = 0, we discuss the stability of (49) with a
memory term of the form:

/Ot 9(8)Az(t — s)ds

with z = u (type I memory) or z = au + Tus (type III memory). In the type I
memory, we show that the decay results obtained are slightly different from the
previous ones. In fact, if g decays polynomially, the stability problem for the type
I memory is left open. If g decays exponentially, the solution of our system is of
regularity-loss type, (see Theorem 1.2 below). A similar dissipative form of our
results was obtained in Timoshenko dissipative systems studied by many authors,
see for instance, Hosono et al. [49], Ide et al. [51], Kawashima [58] and references
therein.

For the type III memory, we proved the decay rate in both case, when g decays
exponentially and polynomially (Theorem 1.3). The main idea that we applied
here is that for the critical case af — 7y = 0, we succeeded to rewrite (49) as a
second order in “time” wave equation for the unknown 7u; + au with a “nice”
memory term that allows us to apply the energy method. Our result in this case
agrees with those in [29]. For the type II memory (i.e., z = uz) and if g decays
exponentially, then it seems that a decay result under the new assumption

af—1y—a(y—4£4)>0

is possible. However, the case where g is decaying polynomially seems more
challenging.

Note that these results were published in [16].

» In chapter 2: We investigate the following in a viscoelastic Moore-Gibson—Thompson
equation with a type-II memory term in RV .

utt(t) + auge(t) — BAug(t) — yAu(t) + /Ot g(t — s)Aug(s)ds =0, t>0,
together with initial data
u(0) = ug, ut(0) = uy, utt(0) = ug,
for relaxation functions g satisfying
Jt) < —n(t)gt) Vt>0

and establish a general decay rate result under the condition

250,

Y
ﬁa2

where ¢ = [§° g(s)ds. Then, we find the following decay rate of the L2-norm of the
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vector U = (ugt + aug, V(ug + au), Vug) and those of its higher-order derivatives:

w2

_ ; i
V70l 2y <1 (1+ [ n()ds) Vol
+ c1e= 2l 1B VI | 2y

This result was published in [18].

» In chapter 3: Our interest lies in the coupling of the standard linear solid model of
viscoelasticity with the Gurtin and Pipkin heat conduction in whole space, namely,

TUt + Ut — a2Au — az,BAut +0A0 =0,

1 oo
6, — - /0 9(s)AB(t — s) ds — T6 Aug — §Aug = 0, (50)

where ¢/(s) = —u(s) and u(s) satisfies
w(s) < —vpu(s) Vs > 0.

We begin by stating the well-posedness of the system and then the asymptotic behavior,
where we improve the result in [111] for the sub-critical case and obtain the optimal
decay estimate. In addition, we investigate the critical case. In fact, the decay rates
are of regularity-loss type and are given as follows, for any ¢ > 0,

o Sub-critical case: 0 < 7 < 3 :

_N_Ek
IVFV (@)l L2y SC+8)7472|[Voll pa gy
¢
+C1+1) 72| VEHVo | 2 ey,
where V(§,t) = (ug + Tugt, V(u + Tug), Vg, 6).
o Critical case: 0 <7=0":
_N_Ek
IVHVelt)l gy <O+~ 511001 vy
¢
+CA+ 871Vl ),
where Ve(§,t) = (ut + Tugt, V(u + Tug), 6).

Hence, for the sub-critical case the L2-norm of the solution decays with rate (1+t) =%, /4
which is faster than that of (1 + )~ /12 obtained in [111]. This result extends those
in [95], [96] and [97]. While for the critical case 0 < 7 = 3, the decay rates obtained
by adding the Fourier or Cattaneo law to the standard linear solid model are slower
than that obtained in our case coupled with Gurtin-Pipkin heat conduction.

This work is published in the Journal of Mathematical Analysis and Applications [17].
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» In chapter 4: Under certain setting, we consider the third order in time abstract
evolution equation set in the Hilbert space H:

(51)

utt + Bug + Agu + Ajus = 0,
u(0) = ug, u(0) = u1,us(0) = ug,

where ug,u1, and ug are initial data in appropriated Hilbert spaces. Our first goal is
to show that problem (51) is well-posed. We further find sufficient conditions, that
guarantee the exponential decay of the energy. Since this sufficient condition is quite
strong, we concentrate on the degenerate case

a—pB2>0, a. e. in

for which, as we will show, exponential, polynomial or even logarithmic decays are
available. This is performed by comparing the resolvent of our operator with the one
of the wave equation with frictional interior damping

utt — Au+ (@ — B)ug =0 in Q x (0,400),
u=0 on 0N x (0,+00),
u(+,0) = up and ug(-,0) =wu; in Q.

Indeed we show that the same behavior of the resolvent of the following standard
Moore—Gibson—Thompson system

Ut + aug + BAu + Aug = 0, in Q x (0, 00),
u=0 on 09 x (0, 00), (52)
U(O, ) = uo, Ut(o, ) = Ul,Utt(O, ) = u2, in Qa

is the square of the behavior of the resolvent of this damped wave equation under
condition:

a—f>k>0a. e in wy, (53)

where wq is non empty open subset of 2. Hence under some geometrical condition on
wp, system (52) is proved to be exponential, polynomial or even logarithmic decaying.
All these results have been published in [87].

» In chapter 5: We consider the well-posedness and the long time behavior of some
evolution equations with memory,

t
uttt + aug — Aug — yAu + /0 g9(s)Au(t — s)ds =0, in Qx (0,00),
u=0 on 09 x (0,00),
u(0,.) = up, ut(0,.) = uy, utt(0,.) = ug, in Q,
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where g is a memory kernel that is exponentially decaying, namely

g'(s) < —dg(s)

and « is a function that is supposed to be in L®°(2). The purpose of this work is to
combine ideas from [37] and [87] to prove polynomial stability results for a« € L%°(Q)
satisfying (5.2). With no further assumption, we prove a semi-uniform stability result
by using the frequency domain approach, the decay reveals to be optimal for kernels
for which the absolute value of its derivatives up to order 3 are exponentially decaying
at infinity. On the contrary if the wave equation in €2 with a frictional interior damping
in a non empty subset wq is exponentially stable or polynomially stable with a decay

1
rate in ¢t~ m with initial data in the domain of the wave operator with 0 <m < 1, we
prove a better decay rate of the energy if a — « is uniformly bounded from below in
wQ-

The results obtained in this chapter have been published in [88].

Notation and some technical inequality

We indicate in this section the notations and some technical inequality used throughout
the thesis and all the important tools and lemmas, which are necessary to obtain various
estimates.

o Throughout this thesis, we denote by c a generic positive constant.
o We used the following standard Hilbert space

H'(RY) = {u e L2RY): % e L2(RN),vi=1, N}
(3

where the inner product and norm are denoted by

(u,v)Hl(RN) :/RN uvdw—i—/RN VuVudz,

2 2 9
||U||H1(RN) Z/RN |ul dx-l—/RN |Vu|“dz.
We use the notations (u,v); = (u, U)Hl(RN) , ||u||% = ”u”?ﬁIl(RN) and (z,9) = z7.

e For 1 < p < 0o, we define:

ue LP(RY) = {u : RN - C; u is measurable and /RN lu(z)|P dz < oo}.
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For p = oo, we have:

uwe LPRY) = {u RY — C;u is measurable and 3¢ > 0, such that

lu| < ¢, for almost x € RN}.

Let T > 0 and let X be a Hilbert space. Denote by C([0,T]; X) the space of continuous
functions defined on [0, 7] with values in X. It is known that C([0,T]; X) is a Banach
space.

We are using the standard notation for the partial derivatives, gradient, and Laplace:

ou " _82u " _83u
atv tt — 8t27 ttt — at37

n 2
Vu= (ﬁ) ,and Au= Z —2.

Ut =

Let V and W be two Banach spaces, A linear operator A : V — W is said:

Self-adjoint: A = A*, where A* is called the adjoint of A.
Bounded: There exists some M > 0 such that for all v in V, || Av||w < M||v||y .

Compact: If A maps the unit ball of V' into a relatively compact subset of W (that is,
a subset of W with compact closure).

Range of A: Ran A = {Az : z € D(A)}, kernel of A : ker A = {z € D(A) : Az =0},
the resolvent set of A : p(A) = {\ € C: AI — A is bijective}, spectrum of A : 0(A) =
C/o(A).

Injective: A is said to be injective, if and only if ker A = {0}.

Isomorphism: A bijective bounded linear operator A is an isomorphism if and only if
A~ is continuous.

Dissipative: if for every z € D(A) there is a z* € F(z)(duality set), such that
Re (Az,z*) <0.

Fredholm operator: One says that A € L(V, W) is a Fredholm operator if it satisfies:

i) ker A is finite-dimensional.

ii) Ran A is closed and has finite co-dimension.

The index of A is defined by

indA = dim ker A — codim RanA.
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Either in RYV, or assuming that  is an open and bounded subset of RYV, and 89 is C1, we
have the following identities and inequalities:

1 1
1. Young’s Inequality: Let 1 < p,q < oo and — 4+ — = 1. Then
p q

D q
<P+ @b>o.
b q

2. Cauchy-Schwarz’s inequality: For all vectors v and v in Hilbert space H, then

| (u,0) | < (u,u) (v, 0).

1 1
3. Holder’s Inequality: Assume 1 < p,q < oo with ’ + p = 1. Then if u € LP(),
v € LI(Q), we have
S vl dz < llul oy llvl zagy-

The following technical lemmas will be needed in the proof of the our main results. No
proofs are included but references are provided.

Lemma 0.1. /29, Lemma 1.1]. Let k > 1,t > 0. Then the following estimate holds:
1
/() k=Lt gy <c(k)1+ t)_k/2. (54)

Lemma 0.2. [29, Lemma 1.2]. Let k > 1,m >0 and t > 0. Then

/ Logkml [ elm () TR, m g, (55)
0 (1+rt)™ ck)(1+t)"Flog(2+1), f m=k.
Lemma 0.3. [112, Lemma 4.24]. Assume that n(t) > 0, for all t > 0. Then we have:
t _£_n
1€ |EeckelP Jo m(s)ds, < c(l + /0 n(s)ds) LT vt (56)

We close the part of the lemmas with the following lemma which is an important tool to
obtain various estimates below.

Lemma 0.4. /8, page.17].(classical differential version of Gronwall lemma) We assume that
u € C([0,T);R), T € (0,00) satisfies the differential inequality:

u' < a(t)u+b(t), a.e. in (0,7,
for some a,b € 2 (0,T). Then, u satisfies the pointwise estimate:

u(t) < eA(t)u(O) + /Ot b(s)eA(t)_A(s)ds, vVt € [0,7T),
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where, A(t) = /Ot a(s)ds.

In the sequel, we state the main definitions, corollaries and theorems useful to obtain our
results thereafter.

Definition 0.5. A family of bounded linear operators (S(t))i>0 on a Banach space X is a
strongly continuous semigroup (or Co—semigroup on X ) if it satisfies the following proper-
ties:

(i) S(0) =1,
(ii) S(t+s) = S®)S(s), Vs3>0,
(i) limg_0 |S(t)z — z||x =0,  VreX.

Definition 0.6. A strongly continuous semigroup (S(t))t>0 on X is a semigroup of contrac-
tions if:
IS@)| <1, forall t>0.

Corollary 0.7. [34] A necessary and sufficient condition that a strongly continuous semi-
group T'(t) of class Cy defined on a complex Hilbert space satisfies the condition ||T(t)| <
Moe™, where a > 0, is that for each x in X the integral [§° ||T(t)z||%dt be convergent.

Theorem 0.8. [19, Corollary 5.8](Laz-Milgram) Let (H, ||.| g, (-, .) ) be a Hilbert space and
a(z,y) is a bilinear, continuous and coercive functional, i.e. there exist C,a > 0, such that:
Vr,y € H,

a(z,y)| < Clalgllyly  ond a(z,z) > allz|F,

then for any continuous linear form L of H there exists a unique u € H, such that:
a(u,z) = L(z), Vz € H.

Theorem 0.9. [94, Theorem 4.8](Lumer-Phillips) Let A be a linear operator with dense
domain D(A) in X

(a) If A is dissipative and there is a A\g > 0 such that the range, R(A\gI — A), of \oI — A
is X, then A is the infinitesimal generator of a Co—semigroup of contractions on X.

(b) If A is the infinitesimal generator of a Co—semigroup of contractions on X then R(AgI—
A) =X for all X > 0 and A is dissipative. Moreover, for every x € D(A) and every
z* € F(z), Re (Az,z*) <O0.

Theorem 0.10. [14, Theorem 2.4](Borichev-Tomilov theorem) Let (T'(t))i<o be a bounded
Co—semigroup on a Hilbert space H with generator A, such that iR C o(A). Then for a
fixed o > 0, the following conditions are equivalent:

i ||R(is, A)|| = O(|s]%), s — 00.
i: |T(t)(=A)~%| =0o@¢™), t — o0.
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ii: |Tt)(—A) "% =0¢™Y), t— o0, z€H.
w: |[TRH)A™Y| =0t ), t— .
v: |T@®)A z| =0t V), t—o00,z€H,

Theorem 0.11. [101](Huang and Priiss theorem) Let S(t) = eAt be a Co—semigroup of
contractions on Hilbert space. Then S(t) is exponentially stable iff:

0(A4) D {iw : w € R} =R, and Iim |fiwl — A)7| < o0
w|—o0

hold, where o(A) is the resolvent set of A.

Theorem 0.12. [66, Theorem 4.2](Calderén theorem) Let g be such that |g(y)| < Cly|.
Let Q be a connected open set in RY and let w € Q, with w # 0. If u € H%(Q) satisfies
Pu = g(u) in Q and u(xz) =0 in w, then u vanishes in Q.

Theorem 0.13. [{8](Plancherel theorem) If f € LY(RN) N L2(RN), then f is in L2(RY)
and the following formula of Plancherel holds:

I1£ll2 = lI£ll2, (57)

where f(£) = /RN f(ac)e_zz'“‘"£ dz, with z.£ is the scalar product of z by & in RY.

The map f — f has a unique extension to a continuous, linear map from L2(]RN ) into
L2(RN) which is an isometry, i.e., Plancheral’s formula (57) holds for this extension. We
continue to denote this map by f — f (even if f ¢ LY(RN)).

21



CHAPTER 1
DECAY RATES FOR THE MOORE-GIBSON-THOMPSON
EQUATION WITH MEMORY

1.1 Introduction

The mathematical community has got interested in the third-order PDE model for acoustic
wave propagation as a consequence of their physical justification. The interest was certainly
motivated at least initially by the difficulties and challenges encountered in the study and
analysis of the MGT equation, differently from the linearization of the Kuznetsov and West-
ervelt equations, which is the well-known, parabolic-like, strongly damped wave equation.
As a result of this interest, a large number of works have studied the asymptotic behavior
of the Moore-Gibson—-Thompson equation (MGT) equation, using different types of dissipa-
tion. See, for instance [5, 6, 26, 35, 36, 54, 55, 64, 65, 95] and references therein for more
information. In this regard, the main goal of this chapter is to investigate the existence and
stability of the solutions for the MGT equation with a memory term in the whole space RN ,
namely,

Tugty(t) + qugy () — BAu(t) — yAu(t) + /Otg(S)AZ(t —s)ds =0, (1.1)

together with the following initial data

u(z,0) = up(z), ut(z,0) = up(x), utt(x,0) = ug(x), (1.2)

where z = u (type I memory) and z = au + Tu¢ (type III memory). First, following [37]
and [95], we show that the problem is well-posed under an appropriate assumption on the
coefficients of the system. Then, we built some Lyapunov functionals by using the energy
method in Fourier space. These functionals allows us to get control estimates on the Fourier
image of the solution. These estimates of the Fourier image together with some integral
inequalities lead to the decay rate of the LZ—norm of the solution. We use two types
of memory term here: type I memory term and type III memory term. Decay rates are
obtained in both types. More precisely, decay rates of the solution are obtained depending
on the exponential or polynomial decay of the memory kernel. More importantly, we show
stability of the solution in both cases: a sub-critical range of the parameters and a critical
range. However for the type I memory we show in the critical case that the solution has the
regularity-loss property.

We briefly state the main results of this chapter. First, we state the decay results for the
sub-critical case af > 7.

Theorem 1.1. Let u be the solution of (1.1), (1.2). Assume that a8 > 7. Let U =
(o + Tugt, V(o + Tug), Vug) and assume in addition that Uy € LY(RN) N HS(RN). Then,
for all 0 < j < s, we have:

(i) Forp=o0:
IV U@ g2y < CA A+ N2 0o || vy + Ce™ VIV | pony- (13)
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(ii) Forp* <p<oo:

—min(L N4 J
(146) ™0 a4 g 954 N# 2,

VU@l 2y < CH :
&) (1+1) log(2+1), o 2+N=2,

(1.4)

where C, c are two positive constants independent of t and Uy and Ig = ||Vj Uoll L2(RN) T
||UO||L1(]RN)-

The proof of the above theorem will be given in Section 1.5 and it is based on Proposition
1.9 below. As we have said in the introduction, in the absence of the memory term, that
is for g = 0 the assumption af > 7 has been proved in [95] to be a necessary condition
for the stability result. Here, we show that in the presence of the memory damping term,
then we can push the stability result even to the critical case a8 = 7. Hence, we have the
following theorem. Our second main result reads as follows.

Theorem 1.2. Let u be the solution of (1.1), (1.2). Assume that aff = 7. Let U =
(o + Tuge, V(o + Tug), Vuz) and assume in addition that Uy € LY(RN) N H3(RN). Then
for all k+ j < s and for p = 0o, we have

VU@ g2y < CA+ )N A4 U || vy + C(L+ ) F2IVIHETg || L2 gy, (15)
where C, ¢ are two positive constants independent of Uy and t.

2

The proof of Theorem 1.2 is based on Proposition 1.14. We have % ~ c|¢ |_2
for |£|] — oo, this behavior in high frequency region causes the worse decay (1.5) of the
regularity-loss type. Indeed, the second term on the right-hand side of (1.5), which comes

from the high frequency part, shows that we can get the decay rate t=*/2 of the solution
only under kth order of regularity on the initial data.

Now, we present the main result of the energy decay in the critical case for the memory
type III (the sub-critical case is easier). We can easily see that for o = 7y, we can rewrite
the problem (1.1) with the type III memory as a second order in ”time” wave equation with
a memory term of the form

Tz — fAzZ + T/()t 9(s)Az(t — s)ds =0, (1.6)

where z = au + Tu;. Now, we state the main result of the decay rate of the L2-norm of the
energy

_ .2 2 oo £ 12
£, Va,z) = 5| UValpe +7llatlze +7 [ 9(s)IVH(s)ll72ds).
where z(z,t) is the solution of (1.6) and pi(s) = —u(s) + 2(t).

Theorem 1.3. Let z be the solution of (1.6). Assume that Z(0) = (2:(0), Vz(0)) € LLRM)n
H3(RN) for all 0 < j < s. Then, we have for Z(t) = (2(t), Vz(t))
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(i) forp=o0:

IV 2 )12 < OO+~ Zoll vy + Ce™ IV Zoll oy, (1)
(ii) forp* <p<oo:

, , —min(1/2p,N/4+3j/2) i 9, 2
IV Z ()| 22 SC'Jé {(1 t) , if 2J+N#2, (1.8)

(1+t)"Y%Plog(2+1), if 2j+N=2,
where _ '

T3 = IV Zoll p2 gy + 1 Zoll 1 vy
C and c are two positive constants independent of t and the initial data.

The proof of Theorem 1.3 is a result of the pointwise estimates in Proposition 1.18.

1.2 Preliminaries and well-posedness of the problem

In this section, we state some preliminaries and assumptions, then we prove the existence
and uniqueness of the solutions of the MGT equation (1.1). We impose now the basic
assumptions on g as follows:

(G1) g: R4y — Ry is a nonincreasing twice differentiable function, such that
o
9(0) > 0, 'y—/o 9(s)ds=4£>0

and ¢'(s) < 0 for every s > 0.
(G2) For some ¢ > 0 the function g satisfies the following differential inequality:
, pr1
gt)<—6g P (t), forall te(0,00) and p* <p< oo,

where p* = %

(G3) ¢” > 0 almost everywhere.

Remark 1.4. There are many functions satisfying (G1) and (G2). Examples of such func-
tions are, for b > 0,q > 0,v > 1, and a > 0 small enough,

a
1+t

g1(t) = g2(t) = ae~ oL,

We immediately adopt the following lemma from [78] without proof which will be used in
the sequel.
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Lemma 1.5. Assume that the assumption (G2) is satisfied. Then for anyv € (1/p, 1), there
exists a positive constant cy = co(p, v,7,£), such that

| 161 ds < co < o0,

Now, we use a change of variables from Dafermos [33] and extend the solution of (1.1)
for all times, by setting u(z,t) = 0 when ¢ < 0 and considering for ¢ > 0 the auxiliary past
history variable 7(t, s) = n'(s), defined as:

n'(s) =u(t) —u(t—s), t>0, seRT. (1.9)

Consequently, the problem (1.1) together with (1.2) read as:

{T’thtt(t) + aug(t) — BAu(t) — LAu(t) — /Ooo g(s)Ant(s)ds =0, (1.10)
77%(1") S) + nf;(w, 3) = Ut(mat)a
with the initial data

w(z,0) = up(x), us(x,0) =ui(x), wuw(z,0)=ua(z), n°(z,s)=n"s). (1.11)

Introducing now the (—g/)-weighted L2-space
M = L%_g’) (R+’ Hl (RN))a
endowed with the inner product

(o7 = |

0

(0 .9]

—d(){V' (), Vi (5)) p2 gy ds

and with the following associated norm
2 0 2
Il = [ =g/ IV @3 zyds,

for all nt, it € M. In addition, we consider the infinitesimal generator of the right-translation
Cp-semigroup on M, i.e., the linear operator T given by

Tn' = —(n") with D(T)={n" € M: (n")" € M,n*(0) =0},

where the prime stands for the distributional derivative with respect to the variable s > 0.
In order to write the problem (1.10) as a first-order “in time” evolution equation, we introduce
the change of variables:

v=1u, and w = uy,
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and hence, we rewrite (1.10) as a first order system of the form:

Ut v,
Ut )
1.12
TWE = —aw+ﬁAv+€Au+/ Ant(s)ds, (1.12)
nt =v - 773
Now, the problem (1.12) with initial data (1.11) can be reduced to
U@ = AU®),  te (0,400)
dt ’ 7 (1.13)
U(z,0) = Up.

where U(t) = (u(t), v(t), w(t),nt), Uy = (ug, v, wp,n°), and A is the linear operator given
by

u v
Av=A|" 0 "
U= U; B —;w-l— BA’U-F Au—i— / g(s)Ant(s)ds (1.14)
N v + Tn
Inspired by [37], we define the Hilbert space
H=H'RY) x HYRY) x L2RY) x M,
with the following inner product
(U, 03 = ((eu+70), (0 + 7)1 + (o —70) (v,)y
+ ((@v -+ 7w), (08 + 7)) 2y + 76, 7 (5)
+a [7 g(s) (Vi (), Vi () 2y ds
/ [ ), V) L2(RN) +(Vu, Vit (s)) 2 RN)] ds (1.15)

and the corresponding norm

y4 T
2 2 2 2 t 2
10Nz, = (eu+ 1)1 + (@B = 7E)l[v]lf + llov + Twl| 72 gy + 7lln"(5)l 24

o [ g6 IV () 2o gvyds +27 [ g(s)(Tn(s), Vo) pauyds. (116)
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For all vectors U = (u,v, w, ) and U = (&, 9, @, ;') in . We consider (1.13) in the Hilbert
space H, with the following domain of the operator A:
w e HY(RN)
g, & 1 ® t 2N
D(4) = { (u,v,w,n) € H o + ;u+ ;/O g(s)n*(s)ds € H*(R™)
n' € D(T)
Theorem 1.6. Assume that (G1)-(G3) are satisfied. Then under the assumption aff — 1y >

0, the linear operator A is the infinitesimal generator of a Cy-semigroup S(t) = et4 of
contractions on H.

Proof. Instead of considering our problem (1.13), we follow [95] and consider the perturbed
problem

d
—U(t) =AgU(t), t € (0,+00),
LU= 4pU0),  te(0,+00) .
U(z,0) = U,
where Ap is given by
u U
v v
Ap w | = (A+ B) w
n Ui
v
w
| —Zw+ éAv + £Au + l/ g(s)Ant(s)ds — bu — T—Ev — (8- T—E)v
T T T T Jo a a
v+ Tnt

Remark 1.7. Here, due to the standard semigroup theory, when we prove that Ag generates
a Cy—semigroup of contractions on H, we can say that A generates a Co—semigroup on H,
because we have Ag is a bounded perturbation of A, (see [94], Theorem 1.1 in Chap. 3).

The first thing to notice is that, as we are in a Hilbert space, the operator is densely
defined. Hence, we only need to prove that the operator Ap is dissipative and 0 belongs to
the resolvent set of Ap, denoted by 9(Ap). Then our conclusion will follow using the well
known Lumer—Phillips theorem [94]. Following the same steps as in [6], Proof of Proposition
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2.1) and using our new inner product, we can see that we have by direct calculations
(AgU,U)y :é(aﬂ —70) /R  Vw.Vudz + (v + T, n) o

+ g(aﬂ —7f) /RN w.vdz + é /RN(av + Tw).(qu + Tv)dx

_ /]R N (ﬁw 4 OVu+ /OOO QVnt(s)ds) (Vv + TVw) de
+ é /RN (aVv + 7Vw).(aVu + 7Vv)dz

a
— — (@B = VoI, — 2l
T [ g t 2
[ @I ) gy
<0.

Therefore, according to the assumption (G3) and since a8 — 77y > 0, then the operator A is
dissipative.

Next, we show that for all F = (f,g,h,p) € H, there exists a unique solution U =
(u,v,w,nt) € D(A) to the equation

U— AgU = F, (1.18)

such that in terms of its components, we have

u—v=f (1.19a)

v—w =g, (1.19b)

(T + a)w — fAv — LAu — /Ooo g(s)Ant(s)ds + fu + %ev + (B — 7—Eg)v =71h, (1.19¢)
nt—v—Tnt =p. (1.19d)

Integrating (1.19d) with the condition 5*(0) = 0, we obtain

n'(s) = (1—e %)+ /0 " e~ (=W p(y)dy. (1.20)

Plugging (1.19a), (1.19b) and (1.20) into (1.19c), we arrive at an elliptic problem of the form

— kAv+ov =g, (1.21)
such that,
(0.¢]
k=p+1 +/0 9(s)(1 — e=%)ds,
o=T7+a+p+/L
and

g=lAf+f)+(T+a)g+Th+ /OOO g(s) [/Os e~ 5=V Ap(y)dy| ds.
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The constant x > 0 and the functional ¢ belongs to H~1(RY). Thus, in view of the Lax-
Milgram Theorem, problem (1.21) has a unique solution v € HY(RN). From (1.19a) and
(1.19b) we see that u,w € HY(RN). Furthermore, from (1.20), one can also show that
nt € M, and checking that 7(0) = 0 and consequently, Tn’ = n* —p —v € M as well.
Finally, going back to (1.19¢c), we conclude that

Bu + lu + /Ooo g(s)nt(s)ds = (=A) "L (th = (T + @)w — u — Bv) € HZ(RY),

which implies that U = (u,v,w,n?) € D(A) is the unique solution of (1.18). As we said,
as A is a bounded perturbation of Ap, we therefore obtain that A is the generator of a
Co—semigroup on H. This finishes the proof. n

Corollary 1.8. Under the dissipativity condition a8 > 7y with the results obtained above
and for any Uy € D(A), the problem (1.10),(1.11) has a unique classical solution such that

(u, u, ugt, ') € CF([0,00) ;) N C ([0,00) ; D(A)).

1.3 Decay estimates—the sub-critical case

In this section, we apply the energy method in the Fourier space to get some pointwise
estimate of U(¢,t) with U = (aut + Tug, V(au + Tuy), Vug), where u(z, t) is the solution of
(1.1), (1.2). First, taking the Fourier transform of (1.12), we obtain

A

t =

@>

U = ’lf)
) ) ) o 1.22
ity = e — €% — €1~ 2 [ a(s) (s)ds (122
it =0
with .
U(£,0) = (o, o, b0, °) (€). (1.23)

Our main goal is to build an appropriate Lyapunov functional ﬁ(f ,t) which is equivalent to
the energy functional associated with (1.22):

Egt) = ll&l ot + o] + (aﬁ TO)E701 + ad + 7| + T[4 134

)2 2 &0 it 7
+alé? [ ool ()ds + 27l Re ([~ g(s) (i'(s),8)ds)|  (1:2)
in the sense that there exist two positive constants d; and dg such that
dlE(fa t) < ["(57 t) < d2E(£7 t)a

for all ¢ € R and for all £ > 0 and also satisfies (1.51). Hence, we have the following result.
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Proposition 1.9. Let U(¢,t) = (4,0,d ﬁ )(&,t) be the solution of (1.22)-(1.23). Assume
that (G1)-(G3) hold and af > 7. Then, U(€,t) satisfies the following estimates:

U (&,1)% < CU (€, 0)2e=P ), for p= o0, (1.25)
|(7(§,t)|2 < C|[7(§, 0)|2(1 + p(&)t)_ﬁ, for p*<p< oo, (1.26)
for all t > 0, where
oe) = 0 (127)
1+ [¢* '

Proposition 1.9 is main ingredient in proving the decay estimates in Theorem 1.1. Its
proof will be given through several lemmas. First, we have the following lemma.

Lemma 1.10. Under the condition af > 77, the energy functional defined in (1.24) satisfies
for allt > 0 and for all € € RN the inequality:

d » . o
320 < —(ahf - ™)I¢1% o) - §||77t||3\4 <0. (1.28)

Proof. In the same spirit of [95], multiplying the first equation in (1.22) by « and the second
by 7, adding the results to get:

(ot +70); = (b + 7). (1.29)

Multiplying (1.29) by £ (m:t + 7"5) and taking the real part, we get
li 4 512 — A2 2 AR 2 Ny Nz
5 dt£|au + 70| = atl|0|* + Lo” Re(04) + 774 Re(vw) + atf Re(wi). (1.30)

Next, we multiply the second equation in (1.22) by 7(a8 — 7£)0 and taking the real part, we

get

%’T(CMB — 7—6)—|v|2 = 7(af — 70) Re(dd). (1.31)

Furthermore, multiplying the second equation in (1.22) by « and adding the result to the
third equation we obtain

(a + rd); = ~[€280 — lel2a— 1€ [~ g(s)n' (s)ds. (1.3
Multiplying (1.32) by a(ad + 7@) and taking the real part, we get
d . = =
5 gerlad + 7l = — a?Ble ol — aBl|? Re(0d) — 2|£|2 Re(@0)

_ tar|¢? Re(ad) — o2[€[2R (/ >ds)

—m|g|2Re( 9(s) (ii'(s), ) d ) (1.33)
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Using the fact that ﬁf + A = 9, then the term

—a?(¢2Re ([ 9(s) (i'(s), ) ds)

can be rewritten as:

2¢12 o N — 2012 o NI
—a?lgPRe ([~ g(s) ((5), 8) ds ) = a?Iél2Re ([ g(s) (i'(s), () ds )
2)¢12 o st(o) At
o Re ([~ g(s) (i(s), k(o)) ds).
Integrating by parts with respect to s (the boundary terms vanish see [93]), then we obtain
2142 o0 oo A __1ld 2
a2 Re ([~ g(s) (i(s), 8) ds) == 5 ae / it (s)/2ds

e [ (o)) ds.

Hence, we get

~a?le*Re ([ g(s) (i(s), B) ds) = 3 5 i Qg [ gls)lif(s)|ds

N
vy

Applying the same computation to the term

—7'oz|§|2 Re (/OOO g(s) <ﬁt(s), 15> ds)

and using the equation ﬁ%t + ﬁfs = 0, to obtain:

—ralé*Re ([ 9(s) (1'(s),8) ds) == ralél*Re [~ g(s) (i (s),(s)) ds

Then, we have

—rale*Re ([ g(s) (1(s),8) ds) = —ralel? 5 Re ([ o) (1(5),(5)) ds)
+m|£|2Re (7 ot (ib(s), () ds)
(

d
+ mm2 Re ( 7 ats) (iks), 7)) ds ).
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Moreover, we obtain

2 o0 NN _ 2 d o0 N
~ralé*Re ([~ 9(s) (i'(s), ) ds) = = ralé2 Re ([ 9(s) (i'(5),5) ds )
2 o0 N7 ~
+ralé?Re ([~ g(s) ((),5) ds)
Inserting the estimates above into (1.33), we get

1 d A A A~ A A~ PN
5 g1t = @BIEP 1B — Tapl|? Re(0) — bralé|* Re(ad) — fo? || Re(ad)

2
s 2 2 0 to\ A
— S+ el Re ([ (o) ((s), B) ds) (1.34)
where
o0

I =afad + o +a?el? [~ g(s)li (s) Pds

2 x© R
+ 27a|€]” Re (/0 9(s) <n (3),v> ds).

Now, computing |¢]?(1.30)+]¢|2(1.31)+(1.34) and dividing the result by a, we obtain

1d

1a. _ . 21712 Qa2
5 12 = — (@B = OIEPIol — Sl Iy

-|-7'|§|2 Re (/Ooo g(s) <ﬁf(s), 1:)> ds) , (1.35)
with

L T . 14 P
Iy ==+ —(aB —TO)lE10? + —|¢[%|at + 0]
(8% (6% (8%

Here, substituting ﬁg by © — AL, we get

ld, 4 20512 _ Xpato 2 (OO TN )
5512 = —(@B =0l = SIAfI3 + Il Re ([~ a(s) (8 - il(s), ) ds)

Hence, we have

1d . o A
~—Iy =—(aB — TO)|E[0* — §||Int||3\4 +7(y — 0)|¢)*[5]?

2dt
+rgPRe ([ (i(5),5) ds) .
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Again substituting 9 by ﬁg + A%, then we find

1d 00 _
512 == @B = TIEPI0l = SN+ 7I€l2Re ([ o/ (5) ((5),(s)) ds )

+rigPRe ([ 9/(6) (i(6), (o)) ds).

Integrating by parts once again with respect to s, then we obtain

5 B0 = ~(@B —TIEPIol? - SIt 13— TIe [ o (it (s) s,

with A
E(¢,t) = L+ 7|73,

Consequently, we obtain the energy (1.24) and the use of assumptions (G2) with the condition
af — 1y > 0, we obtain the desired result (1.28). O

Now, we define for all £ > 0,
V&) = |7 |at + 70 + [€[%[0]° + |ad + 7|
HAIRg + 1P [ g(s)lat(s)Pds, (1.36)
Hence, we have the following result.

Lemma 1.11. Assume that a8 > 77, then there exist two positive constants C1 and Co
such that

CLUV (&, 1)* < B¢, 1) < oV (&, 1)1, (1.37)
for all € € RN and for all t > 0.

Proof. To show (1.37), we infer from Young’s inequality that for every € > 0,

27‘|£|2 Re (/OOO g(s) <ﬁt(s),5> ds)

Hence, we obtain from (1.24)

27‘( ?)

621012 + SIEf2 [ g(o)lit(s) P

. 14
Ble.t) 2y | lePla-+ 7ol + lao + ol + 1

(rla=ra 2t~ e)> Pl

( —) €2 / |2dsds] (1.38)

Recall that the assumption a8 > 7 implies that a8 > 7¢. This yields
T(y =4

af — 14
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Thus, we fix € > 0, such that
T(y—4) _ e
1.
aB—7t°2°

Consequently, the left-hand side inequality in (1.37) holds. For the other side, we have

Bt < [ (€l + 7% + ad + ro 2 + 7l

_2+ (T(aﬂa— 70) 272(7 z))

€% 102

GRS /0°°g(s>|ﬁt<s>|2ds] .
This yields the right-hand side inequality in (1.37).
Now, following [95], we define the functional F(¢,t) as
F1(£,t) =Re {a(aﬁ +70)(ad + 7'12))} .
Then, we have the following lemma.

Lemma 1.12. For any €y, €1 > 0, we have

d - PN
ZF16 ) + (=0 — (v = Oer) |0t + 7o

< alad + rf? + Cleo)lgP1of2 + CleDl? [~ gls)li'(s) Pds.

(1.39)

(1.40)

(1.41)

Proof. Multiplying (1.32) by a(ad 4+ 70) and (1.29) by a(ad + 7i) we obtain, respectively,

alad + 7d)¢(adl + 70)

(—l¢laBd — atle?a + reg|*o — Tﬂlﬁl%
~al¢? [~ g(s)ﬁt(s)ds) (oii +75)
and
a(ad + 10)4(ad + T0) = oo + T)(ad + TD).

Summing up the above equations and taking the real part, we obtain

d A
GURS )€ |ati + 79)? — aad + T

= |€|?(7¢ — aB) Re(d(adi + 70) — af€|? Re (/Ooo g(s) <ﬁt(s), odl + T’l:)> ds) :

Applying Young’s inequality, we obtain the estimate (1.41) for any €g, €1 > 0.
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Next, we set the functional £ (€, ) as
Fy(¢,t) = —TaRe(d(ad + 7).

Lemma 1.13. For any e2,e3 > 0, we have

d . Co C :
S F2(6,0) + (o — eg)|ad + T < 62|§|2|au + m|2 + C(e3, €2)(1 + |20

SIEl? [ gl ()12

(1.42)

(1.43)

Proof. Multiplying the second equation in (1.22) by —ra(ad + ) and the equation (1.32)

by —7ad, then we have, respectively,
—ar(ad + T) = —Taab(ad + TH)
and
—rad(ad + 1) = (|§|2aﬂﬂ) + alr|é)?a + Tal¢)? / s)f) (s)ds) b
(I62aBrd + abrie)a + T2 %0 — T2l

. o . “ 9 [ N =
+a2(ad + T) — o (ad + TH) + Talé| /0 g(s)7 (s)ds) D.

Summing up the above two equations and taking the real parts, we obtain

—Fz(s, t) + alad + 7| — (2B — T0)[¢[*|5]?
= 7L|€|? Re(d(ati + 70)) + o Re(d(ad + 1))

+ arlé|? Re (/Ooo g(s) <ﬁt(s), 1:)> ds) :

Applying Young’s inequality, we obtain the estimate (1.43) for any €2, e3 > 0.

Proof of Proposition 1.9
We define the Lyapunov functional £1(£,t) as

L1(&,t) = NoE(&,t) + p(&) F1(€,t) + Nip(€) Py (€, 1),
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where Ny and Nj are positive constants that will be fixed later on. Taking the derivative of
(1.44) with respect to ¢t and making use of (1.28), (1.41) and (1.43), we obtain

GL1ED + [ No(aB = 79) = Cleo) — MiClez, )|l
+ 02062 [ g ()l s) s

+ _(f — o — (v — 1) — N1 | p(§) 6 |att + 7

n Nl(a—63)—a] ()|a?7+7'1f1|2

_ C’(el)—i-—] £)l€? / (s)|%ds < 0, (1.45)

where we used the fact that p(§) < 1. Now, we discuss the case where g is decaying
exponentially (i.e., p = c0) and then the case where g is decaying polynomially (i.e., p* <
p < 00) since the proof is slightly different.

1. Exponentially decaying kernel: Taking p = oo, then the assumption (G2) can be
rewritten as follows:

g'(t) < —dg(t). (1.46)

Therefore, making use of (1.46), we can now estimate the last term in (1.45) as:

e+ 5] [ ot Pas < [C + T [* g o)t o)Pas. (147

Plugging (1.47) into (1.45), we get

GLED) + [Noap —78) - Cleo) — NiCler, )| (@)l

- :T - S = SO [T (=gt (o)ds

+[= 0= (r=0er) — 2| ()l ot + rol?

+[Mi(a—e) - a]p(§)|aﬁ +rd2<0, V>0, (1.48)

In the above estimate, we can fix our constants in such a way that the coefficients in
(1.48) are positive. This can be achieved as follows: we pick €3 small enough such that
€3 < a and €g = €1, then we can select ¢p small enough such that

c_
1+(v=0)
After that, we take Ny large enough such that

(67

Ny > .
a — €3
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Once N7 and €p = €1 are fixed, we select €9 small enough such that

L—e(l+(y—9)
€2 < N .

Finally, keeping in mind the assumption 7y < a3, we take Ny large enough such that

C(eg) + N1C(e2,€3) 2C(e1) + N1
aff — Ty ’ ad ’

Nozmax{

Consequently, from above and (1.37), we deduce that there exists a positive constant
Ag such that for all ¢ > 0,

SL1(6,1) + Aopl©)B(E 1) <0 (1.49)

It is not difficult to see that from (1.37), (1.40), (1.42), (1.44) and for Ny large enough,
there exist two positive constants d; and do, such that for all £ € R and for all ¢ > 0,
it holds that

diE(¢,t) < L1(6,t) < daB(E t). (1.50)
Consequently, the last estimate together with (1.49), leads to
%51(5, )+ A1p(6)L1(€,8) <0,  forall ¢>0, (1.51)

and for some Ay > 0. A simple application of Gronwall’s lemma to the estimate (1.51)
yields
L1(€,t) < L1(¢, O)e_c”(g)t, forall ¢>0. (1.52)

Once again, (1.50) and (1.52) yield for some Ag > 0,
B(&,t) < AgE(¢,0)e @)t forall t>0. (1.53)
On the other hand, from (1.37), we have
E(g,t) > C3|U (1) (1.54)
and the use of 70(s) = d, yields
E(g,0) < C4lU(€,0)[2. (1.55)
This leads to the estimate (1.25).

2. Polynomially decaying kernel: Now, we assume that g is decaying polynomially
and we try to absorb the integral term ( I5° g(s)|ﬁt(s)|2d3) in (1.45) by the term

(J§° =4 (s)Ii"(s)|?ds) for p* < p < oo,
As we did above in the first case, we take the same coefficients of (1.45) which are al-
ready fixed in such a way they are positive except the coefficient of ( 152 9(s)|7t(s) |2ds).
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We therefore deduce that for all ¢ > 0, (1.45) can be rewritten as:

d ,

GEUED) < —a1p©B(E ) +azo@)le [ gt ()Pds,  (L50)

where

N
ag =Cl(e1) + 71 + oo

and for some a1 > 0. Our main goal now is to estimate the last term in (1.56). Indeed,
we have by using Hélder’s inquality,

(1 ;" st st) e [ ls
= (ef / i ('5' / oA (s)|2d8)p+l

The use of (1.9), (1.24) and (1.28) lead to

t(s)[75Tg(s) B[t (s) PP ds

'ﬁh—'

(p+1)(p 1) 00 (p+1)(p—1)
€2 [Tl F P < [T la@] # [Rla) - ot - 5)Pds
(p+1)(p—1)
< [Tl # Pl ds
(p+1)(p—1)

w2 [Tlg) # [Pl - 5)Pds

Now, using the fact that (see (1.38)),

R 1§(aﬂ or)af?

then we obtain from above

(p+1)(p—1) 4 00 P+ (P-1)
7o) P R < [Tlae) P B nds
4 t (e+)(-1)
g Ol P Bt —sds
8/8 N o0 (p+1)§P—1)
SW—_ME(&O) 0 [9(s)] ds.
Consequently, Lemma 1.5 leads to
(p+1)<p 1) P 86co - 2
N 2 0
(|£|/ i) ds) < (gay2ybe0)™



Let v = %, it is clear that the assumption p > p* implies that v € (%, 1).
Hence, due to (1.28) and (G2), we have

_1_

(168 [ aolitPas) < s (B 0)™ (-gEen)” . s

where

—
=

ds = 2c1 (%) P

Combining now (1.57) and (1.56), we get

FEED < ~up OB 0 +din(©) (B60)T (- 586 0)"

with d4 = apds. In the same spirit of [84], multiplying the last inequality by EP(¢, 1),
gives

Ep@,t)( £i(e, t)) < — a1p(©) B (e, 1)

_1_
p+1

+ dgp(&) B (&, 1) (B(€,0)) 7T (—%E@, t))

The use of Young’s inequality, yields

(e, ) (d /e, )) — (B (e, 0

eEPHL(E 1) — OO BP(E,0) L Bi(e

+ dap(€) o

~ (1 ~ edg) p(€) BPH1(6,1) — dp(€) V(6,0 )di (€.1)

Now, choosing € < and recalling that E’ (&,t) < 0 and using the fact that p(§) < 1,
to get

& [P 08ie0] < BPe i)

< —dop(©BP1(6,0) - [P (€. 0B 1),

for some dg > 0. This implies

d

i [EPE0L1(6,1) + ds EP (€, 0)E(6,1)] < —dep(§) P (6,1). (158
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Now, we define

E(&,1) = EP(6,0)L1 (¢, 1) + ds EP (¢, 0)E(&, 1),
which satisfies, by using (1.50)

dsEP(€,0)E(¢,t) < £(&,t) < drEP(€,0)E(€, 1), (1.59)

for some d7 > 0. Therefore, we obtain from (1.58) the estimate

£(&,t) )p“
Er,0))

L 8(e,1) < ~dsp(€) (

for some dg > 0. A simple application of Gronwall’s lemma leads to the estimate:

E6,t) < MBI 0) (14 p(6)t) 7, (1.60)
for A3 > 0. Using (1.59) we obtain
_1
B(,1) < MBEO) (14 0(e)t) 7, (1.61)

for A4 > 0. This leads to the desired estimate (1.26) using (1.54) and (1.55). Thus the
proof of Proposition 1.9 is finished.

1.4 Decay estimates—the critical case

In this section, we assume that af = 7y and derive the pointwise estimate (1.62) for the
Fourier transform of the solution. This estimate is the key ingredient in proving the decay
rate stated in Theorem 1.2.

Proposition 1.14. Let U(€,t) be the solution of (1.22)-(1.23). Assume that (G1)-(G8) and
af = 1y hold. Then, U(&,t) satisfies the following estimate

. . e,
U(&,8)2 < ClUE,0)2e GHED?, for  p=oo, (1.62)

for allt > 0.

2

Remark 1.15. [t is clear from the form of % obtained in the estimate (1.62) that
€

(1+[¢]%)? )

Theorem 1.2. On the other hand, for |{| — 0, we have % ~ |€|?, this means that the

dissipation is still effective for low frequencies and prevents any loss in the regularity.

~ |72 for |€| = oo. This leads to the decay rate of reqularity-loss type shown in

To prove Proposition 1.14, we need to define another functional £3 (&,t) (which is unnec-
essary in the first case) in such a way to recover the dissipation of |6|2, since for af = 77,
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we lose the dissipation of 6|2 in (1.28). In this case (1.28) becomes:

d - o
CEEN <l V20 (1.63
Now, we show that if g decays exponentially, that is

J'(t) < —og(1), (1.64)
which holds for p = oo in the assumption (G2), then the vector [V (£,1)|? defined in (1.36)
is equivalent to E(&,t), as we did in Lemma 1.11. Thus we have the following lemma.

Lemma 1.16. Let aff = 77y and assume that (1.64) holds. Then there exist two positive
constants Cy and Cg, such that

Cs|V (&, 1)|? < E(&,t) < Co|V (&, )%, (1.65)

for all ¢ € RN and for all t > 0.

Proof. The right-hand side in (1.65) is estimated just in the same way as in (1.39). For the
left-hand side, we follow [37, Lemma 3.1] to have from Young’s inequality the estimate:

ori? e [ ot6) (3109, d5)| < L 16201 + 2t — el [ o(o)f () s
Taking 2¢p = (fyl_ﬂ), yields
orteRe ([ o6) 3409, )| < 2 0 DiePiof + atca + 1P [ o),

Hence, we have, as in [37]

alé? [~ gs)ln |2ds+2f|£|2Re(/°°g<s><ﬁt(s>,5>ds)

(1= 202 )

> (€1+1)|5| 012 — aarlél? [~ g(s)lit(s)ds
T2(y =) 2 0461 )2
(qﬂ)m o2 = %He? [~ (5)1af () ds
(v = 4) 2 0461 R
e L L

Consequently, from (1.24) and the above estimate, we obtain

R 1[¢ 2(y—t
B6) 2 5 | lePlat -+ 7ol +[ad + raft + LI + (r = S|

It is clear that for €; small enough, that is for €1 < 57' , we get the left-hand side of (1.65).
This finishes the proof of Lemma 1.16. O

41



Now, we define the functional Fj (&,t) as

E t) = —7|¢> R, g ﬁt 0)d 1.66
3(£a7 ) |£| € 0 (8) (8),'0 S ( : )
Then, we have the following result.

Lemma 1.17. For any €4, €5,€6 > 0, it holds that

d
2 13(61) + (7(v = ) — eago — es(y — O) €[ |0
2 (6.9]
<€ J|f||£|2 (7 — £)|ad + 7d|? + C(eq) € /0 —g'(s)|4"(s)|?ds

(0.9)
+ Ces, 6) |61 (1 + |§|2)/0 9(s)[A*(s)[*ds. (1.67)
Proof. Multiplying the second equation in (1.22) by 7|¢|2 I5° g(s)7t(s)ds, we get
2 [~ 9(s) (rn, 7' (s)) ds = 6 [~ g(s) (i, () ds
Consequently,
d 9 [ =t
1€l [ gs) (ro,(s)) ds — €2 [ 9(s) (o, B ()) ds = [¢* [~ g(s) (rid,7(s)) ds.

Using the fact that ﬁf + ﬁg = ¥ and integrating by parts with respect to s and taking the
real part we obtain

S0 + 70y = OIERI0P =rlélPRe{ [ ~¢'(5) (5,7(s)) s}
- |§|2 Re { /Ooo g(s) <7'12) + ab, rz)t(s)> ds}
+lgPRe{ [ g(6) (a0,7(5)) ds).

Applying Young’s inequality (we write the coefficient of the second term on the right as

_1£12

—€)? = \/|—€7|2\/1 + |£|? and then we applied Young’s inequality), we obtain the estimate
1+ [¢]

(1.67) for any eg, €5, €6 > 0. O

Proof of Proposition 1.14

Now, we define the new Lyapunov functional ﬁg(ﬁ,t) associated with the critical case as
follows:

1€]2
(1+ [¢[2)2

€12

- By(e,t), (L68)

Ly(&,t) = NE(&,t) + Fy(&,t) +2 BEt+M

1
1+ €2
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for some positive constants N and M that have to be chosen later. Taking the deriva-
tive of (1.68) with respect to ¢, and using (1.41), (1.43), (1.63) and (1.67), since g decays
exponentially (i.e., satisfies (1.64)), we get

2 ety + L [(e — g — (7 — O)er) — 2 ]|§|2|aﬁ+7@|2
e (e L A v
+ 1T M= ) — a0 — oy = ) = 20(e0) — Cle e o
2
+ % [2(04 —€3) —a— Mes(y— é)] |lad + r|2
+ (V=D [* =g @i (s)Pds <o, (1.69

4 2
where for the coefficient of |6|? in F}, we used the fact that (1_‘|_§|é|2)2 < 1_|f||€|2. Here A is
a constant that depends on all the other constants. In the above estimate, we can fix our
constants in such a way that the previous coefficients are positive. We take €y = €1, then we

pick g small enough such that
14

eo<—1+(7_£).

Once €p, €1 are fixed, we select €2 small enough such that

t—e(l+(r—0)

€ < 9
Now, we pick €4 = €g, that gives to us
—/L
< 070
g0+ (y—19

Next, we pick €3 < % and we take M large enough such that

C(eo) + 2C (e, €3)
T(y—£) —ea(go+ (v = 9))

Then, we can select €5 small enough such that

M >

2(a —€3) —
€ < 20—
M(y —£)
Finally, we take
N > A.
Consequently, we deduce that there exists a constant R; > 0 such that for all £ > 0
e+ r—L e nP <o (1.70)
dt (1+1¢]%)2 B
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Thanks to (1.65), there exists a constant Rg > 0 such that for all ¢ > 0, we deduce

€12

it |£|2)2E‘(§, t) < 0. (1.71)

d
EQ(&J) + Ry

On the other hand, for N large enough, there exist two positive constants R3, R4 such that
R3E(€,) < Lo(£,t) < RaB(£,1). (1.72)

Consequently, (1.71) with (1.72) lead to

kR £a(£,1) <0 (1.73)
1 +]gR2>>7 =" '

For some R5 > 0. Integrating (1.73) with respect to ¢ yields

d 4
%‘62(57 t) + R5

A A el
La(€,t) < La(€,0)e W+, (1.74)
This last estimate leads, for Rg > 0, to
A A —c > t
E(&,t) < ReB(¢,0)e THeP?, (1.75)

Therefore, by (1.65), (1.54) and (1.55) we get the desired result (1.62).

1.5 Proof of the decay estimates of Theorems 1.1 and 1.2

In this section, we prove the decay rate both in the sub-critical case (Theorem 1.1) and in
the critical case (Theorem 1.2), for p = co and p* < p < 0.

1.5.1 Proof of Theorem 1.1.

We proceed with the proof of Theorem 1.1, starting with the first case when p = oco. To
show (1.3) we have by Plancherel’s theorem and the estimate (1.25) that (the constant C
here is a generic positive constant that may take different values in difference places)

IVVU@O gy = [ 2106 P < C [ | le&e @0, 0)Pde.  (1.76)

It is obvious that the term on the right-hand side of (1.76) depends on the behavior of the

function (1.27). Since
11¢12 :
§|£| ’ if |£| < 1’
p(§) > { (1.77)

5 it >0
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Then we write the integral on the right-hand side of (1.76) as
Jo eI D6 0)Pde = [ 161¥em P01, 0) e
/ o |60, 0)dg
=1 + I>. (1.78)

Concerning the integral I7, we have by exploiting (54) that
1S 000Gy f o 16176 e < O+ )N U0 vy (1.79)
On the other hand, in the high frequency region (|{| > 1), we have
hse 8 [P0 0P < e VU0l o, (1.80)

Collecting the above two estimates give the desired decay estimate (1.3). Now, we show the
decay rate of the vector U in the case of polynomially decaying kernel as follows: to establish
(1.4), we have by Plancherel’s theorem and the estimate (1.26) that

IO @n) = [y 210G, 01de

_1
<c [ 16106 0P (1+ plo)t) "de
-1 2517 2
<c+o7v [ P10 0P

1
+ 100wy [y 1677 (14 161%) Pae La)

el<1

According to (1.77), the integral was split into two parts. For the last term above, the use
of polar coordinates leads to

/§|<1 l{& (1 + ¢t )__df / % (1.82)

Plugging (1.82) into (1.81), then exploiting Lemma 0.2, we deduce the desired result (1.4).
This completes the proof of Theorem 1.1.

1.5.2  Proof of Theorem 1.2.
To show (1.5), we have:

(1.83)

€2 | fheR, i <1,
1+1¢2)2 = | 1lel=2, it gl >1.
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By Plancherel’s theorem, we obtain

IO 2@y = [y 710G, DIde

_le?
<C [ lefPe” THEP (e, 0) e

|£|2

_ 2j 2
=C [, lee” TP 0, 0)dg
2 141%2) 2
C fsy 1617 0 0)Pde
=J1 + Ja. (1.84)

Concerning the integral Jj, we have by using (1.83)

~ . C|e|2 _ i
I < OO0y [, 167778 tae < o1+ ) IR 0|12, ey (185)

l€]<1 )’

Using (1.83) and the estimate

sup {|§|—2ke—c|€|‘2f} <CL+0)7F
€1>1

Then, the high frequency part Jo is estimated as follow

Ty < sup ([ eI [ EPTI0E 0)Pde < O +0)HIVI U0l o e

€1>1
(1.86)
Collecting the above two estimates yields (1.5).

1.6 Decay rates for the type III memory—the critical case

As in the previous sections, we first, need to find the decay rate of the Fourier image of the
solution. Taking Fourier’s transform of (1.6) for all t > 0 and for all £ € RV we get

T84 + BlE|22 — 7€) / s)2(t — s)ds = 0. (1.87)

In this case the second assumption in (G1), is replaced by

(G4) g: Ry — Ry is a nonincreasing twice differentiable function, such that

9(0) > 0, B—T/Ooog(s)ds=€>0

and ¢/(s) < 0 for every s > 0.

As we have seen before in Section 1.2, we extend the solution of (1.87) for all times, by
setting z(z,t) = 0 when ¢ < 0 and considering for ¢ > 0 the auxiliary past history variable
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pt(s), defined as:
pt(s) = z(t) — z(t — s), t>0, seRT. (1.88)

Consequently, problem (1.87) can be recast as follows:

(1.89)

~ xX
71+ 0€|25 + T|€[2 /0 g(s)p(s)ds = 0,
pk(s) + pt(s) = 1.

Hence, we have the following result.

Proposition 1.18. Let 2(§,t) be the solution of (1.89). Assume that (G2) and (G4) hold.
Then, E(&,t) satisfies the following estimates:

E(¢,t) < O|Z(€,0) e, for p= oo, (1.90)
_1
E,1) < CIZE 0P (1+p()t) 7, for p*<p<oo, (1.91)
for all t > 0, where
£(6,0) = 5 [AEPIER + iz + 716 [ g(o)lat(s)/%ds] (192

The proof of Proposition 1.18 will be given through several lemmas. It is clear that £(¢,t)
satisfies for all £ > 0 and for all £ € RV ,

St =TIel [ o (o)t (s)Pds. (1.93)

Since g(s) is nonincreasing, then £(¢,t) is nonincreasing and dissipative.
Lemma 1.19. For all t > 0 and for all £ € RY, the functional

®1(¢,t) = TRe(32)
satisfies, for any A1 > 0,
S01(6,0)+ [T 2(8 - D) IePIa? < 712 + CONIER [ o)t (9)Pds. (199
dt 1S, 1 t 1 12
Proof. Multiplying (1.89) by 2 and taking the real part, we obtain
755 + 016121312 + 1€ Re ( /0 ~ g(s) ((s), %) ds> —0.
Hence,

L1 (6,) — 7l + 2612 + i Re ([ g(s) ((s),Z) ds) =0

Then by applying Young’s inequality, we get the estimate (1.94) for any A; > 0. O
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Lemma 1.20. For allt > 0 and for all £ € RY, the functional
A (0.9) ~ 7t
Ba(6,t) = —rRe ([ 9(5) (2, 31(9)) ds)
satisfies for any Ao, A3 > 0, the following estimate

G260+ ((6 - D)~ 2ag(0) ) P (1.95)

=D iepis 4 O [ o (6)Iat () Pas

+(CO+B-D)iP [~ g()at(s)Pds.

Proof. Multiplying (1.89) by [§° g(s)i!(s)ds and taking the real part, we obtain

TRe(/OOO g(s) <2tt,ﬁt(s)> ds) + 7€ Re (/Ooo g(s) <2, ﬁt(3)> ds)
+ T|§|2</OOO g(s),&(.s:)ds)2 =0.

Hence, we have

d o0 ~ =t o0 ~ Rt
T Re (/0 g(s) <zt, i} (s)> ds) —7Re (/0 g(s) <zt, ,ut(s)> ds)
~ 19 0 . =t 9 00 R 2
+UePRe ( [79(s) (2.8 o)) ds ) + 7l ( [~ 9(@)als)ds) =0,
Using the fact that ﬂ% + ,&g = %; and integrating by parts with respect to s, we obtain

G02(6,0) = — (6= DIz +7Re ([ =¢(5) (2 ()) ds)

+alePRe ([ gt6) (2,74(5)) ds) + 7iel2( [ a(o)itsis) =0

Then, to estimate the last three terms we apply Young’s inequality and Hoélder’s inquality,
we get the estimate (1.95) for any A9, A3 > 0. O

Now, we define the Lyapunov functional ﬁg (&,t) as:

L3(&,t) = N2€(£,) + p(€)P1(&,t) + N3p(£)Pa (&, 8), (1.96)
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where N9 and N3 are positive constants that will be fixed later on. Taking the derivative of
(1.96) with respect to ¢t and making use of (1.93), (1.94) and (1.95), we obtain

4 o6+ [(7-216-0) — Man LD ez
+ | Na((8- D - 2a900)) - r] R GIET
= [c0n) + Na(cOo) + (8- )] 16%0(6) [ 9(o)lat(s)/%ds

+|NaZ = NsCOg)| 16 [ =g/ (9" (5) Pds <. (1.97)

Now, we discuss the case where g is decaying exponentially (i.e., p = 00) and then the case
where g is decaying polynomially (i.e., p* < p < 00).

1.6.1 Exponentially decaying kernel
Taking p = 00, according to the assumption (G2), (1.97) can be written as

a0+ [(E- 00 -0) - N BN ezp(e)1ep
+[N (8- ) — 2a9(0)) - r] GG

+[MaF — NsO0a) - 5 (C0u) + Ns(C0) + (8- D) )]
6266 [~ ~g()lat(s)Pds <0, t>o0. (198)

In the above estimate, we can fix our constants in such a way that the coefficients in (1.98)
are positive. This can be achieved as follows:

B -4
and we fix A3 small enough such that
B—1
A3 < ——.
9(0)
Then, we can select N3 large enough
N3 > T

(B—10) = A3g(0)
Once Nj is fixed, we select A9 small enough such that
T(€—M(8-10))

N3(B —8)
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Finally, we take N2 large enough such that

Ny > %(N3C()\3) + %(C(Al) + N3(C(h2) + (B — Z)))).

Consequently, from above we deduce that there exists a positive constant A5 such that for
all ¢ > 0 and for all £ € RV,

9 L3(6,1) + Aspl©)(€,1) < 0. (1.99)

It is clear that for No large enough, there exist two positives constants dg and djq, for all
t >0 and for all £ € RN , such that

o€ (£,t) < L3(&,t) < d1o€(€,1). (1.100)

Consequently, the last estimate lead to
d 4 A
aﬁg(ﬁ, t) + Agp(€)L3(&,t) <0, forall ¢t >0, (1.101)

and for some Ag > 0. A simple application of Gronwall’s lemma to the estimate (1.101)
yields
L3(€,t) < L3(€,0)e=POt forall ¢>0. (1.102)

Once again, (1.100) and (1.102) yield for some A7 > 0,
E(€,1) < A7E(,00e=PO forall t>0. (1.103)

The use of 40(s) = 2, yields the desired estimate (1.90).

1.6.2 Polynomially decaying kernel

In this section, we assume that g is decaying polynomially for p* < p < co. As we did above,
taking the same coefficients of (1.97) which are already fixed in such a way they are positive

except the coefficient of ( 15° 9(s)] ﬂt(s)|2ds). Then for all t > 0, and ¢ € RV, the inequality
(1.97) can be rewritten as:

d

GLa(60) < —mip(©F(E ) +map©)le [T gl (s)Pds, (1104

with

my = [Cler) + MiCler)] +m1
and for some mj > 0. To establish the result (1.91), we apply the same techniques used in
Section 1.3. We estimate the integral term of (1.104) by using Holder inequality, Lemma

1.5, (1.92), (1.93) and applying the method used in Section 1.3, we obtain the desired result.
We omit the details. This finishes the proof of Proposition 1.18.
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CHAPTER 2
A GENERAL STABILITY RESULT FOR VISCOELASTIC
MOORE-GIBSON-THOMPSON EQUATION IN THE WHOLE
SPACE

2.1 Introduction

In this chapter, we are interested in a viscoelastic Moore-Gibson—Thompson equation with
a type II memory term, in the whole space RN

t
ut(t) + auge(t) — BAu(t) — yAu(t) +/0 g(t — s)Aug(s)ds =0, t>0, (2.1)
together with initial data
u(0) =up,  u(0) =w1,  u(0) =ug, (2.2)

where «, 3,7 are positive constants. It is worth mentioning that the MGT model (2.1) with
convolution memory term [} g(t — s).Az(s)ds was first provided by Lasiecka and Wang [65],
in a bounded domain 2, by considering z in the three classes z = u, z = u; and z = (u + u
(with ¢ > 0), and memory kernel g with an exponential behavior. Thus, working on the non-
critical regime, the authors proved that the corresponding energy functional is exponentially
stable, see [65, Subsect. 1.2].

Our aim in this work is to investigate (2.1) and (2.2) for relaxation functions g satisfying

g < —n(t)g(t)

and establish a general decay rate result under the condition

Y e
B T 0, (2.3)
where ¢ = [§° g(s)ds. Then, we find the decay rate of the L%-norm of the vector U =
(ugt+oug, V(ur+au), Vug) and those of its higher-order derivatives by applying Plancherel’s
theorem. To the best of our knowledge, the MGT equation with a type II memory satisfying
the general condition (2.5) has never been discussed in the whole space RY. Our main
result, which establishes the decay estimates of the L?-norm of U, as well as the L2-norm of
its derivatives, is given in the following theorem.

Theorem 2.1. Assume that (2.3) holds. We assume further that Uy € L1(RN) n HS(RN).
Then, there exist positive constants cy,ca, such that, for allt > 0 and all j < s, we obtain

w2

_ ; i
V70Ol 2y <1 (1+ [ n)ds) Vol
+cre=e2ho ”(s)ds||VjU0||L2(RN)' (24)

To prove our main result, we first establish estimates on the Fourier image of U.
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The essential of our work is organized as follows. In section 2, we give the hypotheses, then
we state the well-posedness. The proofs of the main results and some illustrative examples
are given in Section 4.

2.2 Preliminaries and well-posedness of the problem

In this section, we present some preliminaries and hypotheses necessary to prove our main
results. Then we state the well-posedness of the problem (2.1). We first state the assumptions
on the relaxation function.

(H1) g: R4 — (0,00) is a non-increasing differentiable function, such that
(e .¢]
9(0) >0, o= /0 g(s)ds < B.

(H2) There exists a non-increasing differentiable function 7 : R+ — (0, 00), such that

g(t) < —n(t)g(t) Vt>0. (2.5)

We adopt the following lemma without proof which will be used in our work.

Lemma 2.2. [86, Lemma 3.2]. Assume that (H1) holds. Then, there exists a constant
c > 0, such that

2

t
‘ /O gt — o) (u(t) —u(s))ds| <clgou)t), VE>0, VueL2RN),  (26)

where,
(900)() = [ ot~ s)lo(t) — o) Ps.

Now, by taking us(z,7) = 0, for all 7 < 0 and using the fact that

/Ooo 9(8)Aug(t — s)ds = /Ot 9(s)Aug(t — s)ds + /too 9(8)Aug(t — s)ds,

we deduce that our problem (2.1) together with (2.2) can be read as:

0 (2.7)

utte(t) + ouge(t) — BAuL(t) — yAu(t) + - 9(8)Aug(t — s)ds = 0,
u(z,0) = up(z), ut(z,0) = up (), utt(z,0) = ug(x),

for all z € RV and ¢t > 0. Therefore, thanks to [5, Theorem 3.2], we have the following
lemma.

Lemma 2.3. Assume that (H1) and (H2) are satisfied. Given Uy = (ug,u1,u2) € H =
HYRN) x HL(RN) x L2(RYN), then problem (2.7) has a unique solution such that

(u, ut, ut) € C([0,+00); H).
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Proof. For more details on the proof, we refer the reader to [5, Theorem 3.2]. m

Now, by taking the Fourier transform of the problem (2.1)-(2.2), we obtain

t
{attt(t) + ata(t) + BIgPa(t) + 1€ — g2 [ g(t = 8)ar(s)ds = 0, (2.8)

w(0) =19,  w(0)=4a1,  Gu(0) =1y,
for all £ € RY and for all ¢ > 0. Now, we define the vector U as
U = (ugt + aug, V(u + au), Vu).

In addition, the energy functional associated with problem (2.8) is given by

A 17 . . . . . .
B, 1) = 5 [lau + cte® + LigPlac + aal? + (8- T — o) IePad? + €29 0 a0)(®)]

(2.9)
Thus, one can easily verify that, for some two positive constants A1, Ao, we have
B(¢,t) > M|U(E, 1) (210)
and
E(£,0) < X|U(E,0)/%, (2.11)

for all € € RN and for all t > 0. Hence, we have the following results.

Lemma 2.4. Under the condition (2.3), the energy functional, defined in (2.9), satisfies,
forallt >0 and all £ € RN,

70

d - 1
GEED <SP 0 a)(t) — (B — - = S)lePal <0, (212)

Proof. Multiplying the equation in (2.8) by (s + ai;) and taking the real part, we get
Re ((ﬁtt + vtig) ¢ (Gig + aﬁt)) +[¢[* Re ((ﬂﬁt + @) (Tt + m:“))
t _ _
€[ Re ( /0 g(t — )a(s) (@ + aﬁt)ds) 0. (2.13)

Adding and subtracting g—|§|2ﬁt to the second summand, we obtain

1dr. o ) A
¥, [lutt +aiy2 + glflzlw + ot + (B - %) |§|2|ut|2] + (B — 7)|€12| )2

_ €[ Re ( | " ot — 8)aa(s) (gt + aét)ds) —0. (2.14)
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Now, we estimate the last term in (2.14) as follows

~lel*Re ([ L ot — 8)ae(s) (gt + aiiy)ds )
<lef*Re ([ g(t — 9)(au(t) — u(s))iuds
+alel?Re ([ gt 5)(aul) — au(s))iads)
— ol¢|®Re (at(t)(étt + aét)). (2.15)

For the first term of the right-hand side of (2.15), we have

e Re ([ gt — 5)(@u(t) — au(s))inds ) =3 dtm [ att = 9ante) — auls) s
— e [ (6= 9)la) — tu(s) s,

For the second term of the right-hand side in (2.15), we use Holder’s and Young’s inequalities
to get

ol Re ( [ g(t — 5)(a(t) — aals)inds) <3IEP [ gt )aa(t) — (o) s
+ Sl

Finally, for the last term in (2.15), we have

~olel? Re ((t) @ + i) < — 5 SIEPIl — aclePla?

Inserting the last three estimates above into (2.15), we arrive at

2dt
— SIER( o)1) + 21e (g 0 ) 1)
— e a2 (216)

~1e*Re ([ (¢ ~ 5)ia(s) e + aie)ds ) <3 1€l (g 0 ) ¢) — ol

Combining (2.16) and (2.14), with the use of (H1), we obtain

1d . . 07 . .
5 |1t + o+ TPl + aaf?+ (8- T — o) lePla? + I¢[2(g 0 )0

<-a(p-1- §>|s|2|at|2 + el o w)(t).

Consequently, the desired result is established. O]
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2.3 Decay estimate

In this section, we apply the energy method in the Fourier space to get some pointwise
estimate of U(¢,t), with U = (au + ug, V(au + ug), Vug), and present two illustrative
examples. We first state the following result.

Proposition 2.5. Let U(¢,t) be the solution of (2.8). Assume that (2.3) and (H1),(H2)
hold. Then, U(¢,t) satisfies the following estimates, for positive constants cO,c6,

0, D)2 < colU(€,0)2e= PO Jon(s)ds e e RN vt >, (2.17)

2
where p(€) = %g

Proposition 2.5 is the main ingredient in proving the decay estimates in Theorem 2.1.
Before going on, we first establish some technical lemmas which help to construct the ap-
propriate Lyapunov functionals in the Fourier space and, ultimately, lead to the proof of our
main results.

Lemma 2.6. Under the assumption (H1), the functional \ill defined by
Uy(¢,t) = Re ((ﬁtt + o) (fg + Oﬂi))
satisfies, along the solution of (2.8) and for any €gy, €1 > 0, the estimate
L0160 < — (L - o — 1) Pl + 0l + ] + el
Cleo)l€l* |l + Clen) (g 0 an) (2). (218)
Proof. Differentiating \ill with respect to t, we get
—‘1’1(5, t) = ((ﬁttt + adigy) (Gg + aﬁ)) + |t + aﬂt|2-
Using (2.8), we obtain
2 1(6,1) =Re ((—Blelac —2lePa+ 16 [ o6 — o)iu(e)ds) @ + ) + i + al?
= — BI&P Re (@ + aw)) — LIeP|a: + aal® + LI Re (@ + o)
+ law + ol + 6 Re (8 + ad) /O gt — 8)((s) — (1)) ds)
+ 0[¢|? Re(iiy (8 + adl))
<[tu +atuf? — (8- 1 = o) 16 Re (au(e + at)) — L]l + aaf

+1€P Re ((F+ ad) [ g(¢ = 5)(in(s) — u(s))ds).

Applying Young’s inequality and using (2.6), we arrive at the estimate (2.18). O
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Lemma 2.7. Assume that (H1) holds. Then the functional Uy defined by
Uy(&,t) = — Re(fig(dgs + avity))

satisfies, along the solution of (2.8) and for any e2 > 0, the estimate

d - 1. . .
SU(60) < = sl + ol + (14 5= 1 — o4 Clea) ) (1 + 6 e

N . 1 .
+ eale2las + aaf? + €29 0 1) 1) (219)

Proof. Taking the derivative of \ifz with respect to ¢ and exploiting (2.8), we get

d = ‘~ A~ A ~ A A
5 72(6,t) =—Re (Utt(Utt + 0%)) —Re (Ut(Uttt + auw))-

Adding and subtracting the term o, we obtain

d s = = XN/ A N
—Va(¢,t) = —Re <(Utt + oty — aliy) (fige + aut))

dt
_ t
~ Re (G(~Bl¢a — 1I¢la + ¢ [ gt — 9)in(s)ds))
= — |figy + atig|? + o Re (@ (figr + atiy))
_ t
~ Re (Gu(~Bl¢ae — 716Pa+ 16 [ g(t - 9)u(s)ds))-

Again, adding and subtracting the term 2 |¢ |24z to the last term above, we get

ds . . = . .
S9(6,) = e + ael? + @ Re(@u(ane + 0ie)) + (8- L = o) € Plasf?

+ 1622 Rel( + o) ~ 162 Re (@ [ gt — 5)(@u(s) - u(t))ds ).

Applying Young’s inequality and using (2.6), we obtain the estimate (2.19). O

Now, we define the Lyapunov functional L as

L(&,t) = NoE(€,t) + p(&)T1(&,t) + N1p(€) Ta(€, 1), (220)

where Ny and N7 are positive constants to be specified later. Taking the derivative of (2.20)
with respect to ¢ and making use of (2.12), (2.18) and (2.19), we arrive at

d s ! o~ ~ A~
SLE0)+ LU (—g 0 )0) + (L - o — 1) — Naea] o€l +

+ [Noa(s =T = )~ Clen) = M1+ 8- T o+ Cler) )| ol©) €

+ [% — 1] P(§)|ﬁtt + aat|2 — [C(el) + %]P(§)|§|2(g o ﬁt)(t) <0, (2.21)

96



for all ¢ > 0 where we used the fact that p(§) < 1. Now, we choose our constants in such a
way so that the coefficients in (2.21) are positive. First, we take €9 = €1 then select € small
enough such that

Fy
< —.
€0 2a0

After that, we set N7 > 2, then pick e small enough such that

1 /v
— (L —2¢).
62<N1(a 60)

Finally, as 8 — % — £ > 0, we take Ny large enough, precisely such that

N1+ —y/a— o0+ Cle2)) + Cleo)
a(B—7-9)

We therefore deduce that for all £ € RN and for all ¢ > 0, (2.21) reads as:

Ng >

SL(EH) < ~mip(©)B(E 1)+ mapl@)lel(g o )(0) (2.22)

N
where m; > 0 is a constant and mg = mj + C(€1) + 71 Notice that, for Ny large enough

we have L ~ E’, which means that there exist two positives constant Ag, A4, such that

ME(E,1) < L(g,1) < ME(E, 1) (2.23)
2.3.1 Proof of Proposition 2.5
Proof. First, multiplying (2.22) by 7(t), we get
d . .
n(t) 2, L(€,1) < —m1p(€)n(t) E(€, 1) +map(£)I€ ®n(#)(g o i) (t). (2.24)

Hence, for the last term in (2.24), using the assumption (H2) and (2.12) with the fact that
n is non-increasing, we easily conclude that, for all £ € RY and for any ¢ > 0,

200 [ 9(c — )lan(t) — au()Paslel® [ nte - $)g(t - o)an(t) — auls) s
I [ ~g/ (¢~ )lan(t) — (o) ds
d »
d—E(f t).

Plugging the estimate above in (2.24), we get for some constant ms3 > 0, for all £ € RN and
allt > 0,

(B 1),

@..lg_‘

2(6) L) < ~map(@n()B(E, 1) — map(€)
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Again, using the monotonicity of 7 and the fact that p(¢) < 1, we get

L)L 1)+ maB(e,1)] < —map€m() B )

Let
L(gt) =n@) L t) +mgBEE,t), VEeRY and Vi>0,

which is clearly equivalent to £(¢,t). In fact, as /(t) < 0 and recalling (2.23), we infer
m3B(€,1) < L(€,t) < (n(0)Ag +m3) E(E,1). (2:25)
A simple integration with respect to t yields, for a constant 06 > 0,
L(E,8) < £(,00e= 0P Jon()ds e e RN and Vi > 0. (2.26)
Thus, thanks to (2.25), we have
Be,1) < B, 00 0P fon®)ds ve e RN and Vi > 0.
Owing to (2.10) and (2.11), the estimate (2.17) is obtained. O

2.83.2  Proof of Theorem 2.1

Proof. Now, we proceed with the proof of Theorem 2.1. To show (2.4), we have by Plancherel’s
theorem and the estimate (2.17)

IVTU@N gy = [ 16710 2)2dg

<o [ 161106, 0)Pec60( Jon(e)dsge, (227)
Since
1112
p(&) = {% if [§] =1, (2.28)

then we rewrite the right-hand side of (2.27) as
o [P0 (€, t)Pemc0rE) s
<o [, 610G o) e~ R fE(00gg
oo [, EPI0G o) H s

=11 + Ir.
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For the integral I, we have, by (56),

Fy __0
I < col|U (€, 0) 17 oo oy /£|<1 €| e 2IEP Jo n(s)ds gg

o
< allVols vy (14 [ nisds) 2. (229)

On the other hand, for the high frequency region, we have
Cl t
I < coe” 27O [ 110(E,0)Pde

t
< cre= 2 Jo M| 7ITp |17, (2.30)

RN)*
Combining (2.29) with (2.30), we obtain (2.4). O

Remark 2.8. Condition (2.3) appears to be purely technical and dictated by the method used
in the proofs. It would be more natural if it can be replaced by af — v > 0.

Remark 2.9. In our work, we established a decay estimate result for (2.1),(2.2), where the

kernel satisfies
g'(t) < —C()g(®).

A question remains open, whether we can obtain a similar result for kernel satisfying (39)
with more general convex functions H as in the case of bounded domains, see [75].

We end our chapter by presenting two illustrative examples.
Example 1: Let n(s) = 1. In this case, g decays exponentially and (2.4) gives a decay
estimate similar to the one we obtained in the first chapter with p = oo, i.e.

. _l'_ﬂ _ .
VU@ < er(1+8) 274 |Upll 1oy + c1e” V! Ul p2 vy,

for c1,co > 0.
1
Example 2: Let n(s) = T1s In this case, g decays polynomially and (2.4) gives the
s
following decay estimate, V¢ > 0,

IVIUE)] < er(1+Int) 3~ 4| Upl s (RN + VUl L2 gy,

=

where c1,co > 0.
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CHAPTER 3
OPTIMAL DECAY RATE FOR THE CAUCHY PROBLEM OF
THE STANDARD LINEAR SOLID MODEL WITH
GURTIN-PIPKIN THERMAL LAW

3.1 Introduction

In this chapter, we are concerned with the following Cauchy problem of the standard linear
solid model with Gurtin—Pipkin Thermal Law in RN that is,

TUt + Ut — a?Au — aZBAut +0A6 =0,

9t - 1 > g(s)Ae(t — 8) ds — T&AUtt — (SA’U:t = 0, (31)

k Jo

with the following initial conditions:
u(z,0) =ug(x), u(z,0) =u1(z), wuw(z,0)=u2(z), 6(z,t)|t<o=0bo(z,1), (3.2)

where 0g(x,t) is a prescribed past history of (z,t) for ¢t < 0.
In this context, we recall different thermal conduction models coupled with the standard
solid model (3.1) which appeared in the literature. The Fourier law is a frequently used
model for the heat conduction, that is for the temperature difference 6(x,t) and the heat
flux g(z,t), this law reads as:

q(z,t) = —kVO(z,1). (3.3)

Equation (3.3) together with the energy equation:
Ot(z,t) + vV - q(z,t) =0, (3.4)
where, v > 0 and the thermal conductivity x > 0, leads to the parabolic heat equation:
0t(z,t) — kyAO(x,t) = 0, (3.5)

also known as the diffusion equation. In the diffusion equation, if a sudden change of
temperature is inflicted at some point on the body, it will be felt instantly everywhere.
Hence, we can say that the diffusion allows an infinite speed of propagation. To reduce this
difficulty in the Fourier law, we may consider Cattaneo law of heat conduction given by:

10q¢(z,t) + q(x,t) + kVO(z,t) = 0, (3.6)

where 79 > 0 is the relaxation time of the heat flux. Equation (3.6) is different from Fourier’s
by the existence of relaxation term 7yg¢(x,t) and model the heat propagation equation as a
damped wave equation. The Cattaneo equation (3.6) can be expressed as an integral over
the history of the temperature gradient, i.e.,

q(z,t) = _E e5=0/1079(z, ) ds. (3.7)

0 J/—00
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If we consider the relaxation function g(s) instead of the exponential function in (3.7), we
have

q(z,t) = —n/_t (t —s)Vo(z,s) ds. (3.8)

g
o0
Equation (3.8) is known as the Gurtin—Pipkin heat conduction law [45]. We may construct

different models by different choices of the heat flux kernel g(s), for example equation (3.7)
can be restored from equation (3.8) by considering

_ L1 _s/m
9(8)—T06 :

Summarizing the main part of the work as: The state of the problem is presented in section
3.2. Section 3.3 is devoted to the energy method in the Fourier space and the construction
of the Lyapunov functionals. We ultimately, in Section 3.4, prove the main estimates of the
solution in the energy space.

3.2 Preliminaries and Main Results

In this section, we are going to state some preliminaries and assumptions, then state the
main results associated with our problem (3.1). Following the approach of Dafermos [33],
we introduce the new variable n = n(z,t, s):

t
n(z,t,s) = /08 0(z,t —o)do = / 0(z,0)dc  s>0,t>0. (3.9)

t—s

Differentiating (3.9) with respect to ¢ yields that n satisfies the supplementary equation

m(s) = —mo(s) +0(t),  lmn(z,s)=0, ze€ RN, vi¢>0, (3.10)

which has to be added to system (3.1). Then, we define the operator Tn = —n'. From (3.10),
we get the following equation:
ng=Tn+6. (3.11)

Also, we define u(s) = —g'(s) and assume that p satisfies the following two assumptions:

(M1) p is a nonnegative, nonincreasing and absolutely continuous function on R™ such
that:

=i .
w(0) = lim p(s) € (0,00)
(M2) There exists v > 0, such that the differential inequality
1 (s) +vp(s) <0

holds for almost every s > 0.
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Remark 3.1. In particular, p is summable on RT with

/Ooo u(s)ds = g(0) > 0. (3.12)

With all these new variables and without loss of generality, we take a = 1, hence, we rewrite
system (3.1) as:

Tugt + U — Au — BAup + A0 = 0,

0 — % OOO w(s)An(s) ds — T0Aug — §Au = 0, (3.13)
ng =1Tn+90,

with the conditions:

(u, ut, ugt, 0)(x,0) = (uo, u1,u2, o) (),
SIE)% n(z,t,s) =0, (3.14)

n(z,0,s) =no(z,s) = [ o(z,0) do.

Applying the change of variables v = u; and w = uy, system (3.13) can be written as

ut —v =0,

v —w =0,

Twe +w — Au — fAv + A0 = 0,

0 — % OOO p(s)An(s,t)ds — T6Aw — §Av =0, (3.15)
ne +ns = 0.

Consequently, problem (3.15) with initial data (3.14) is of the form:

d
ZUM =AU(), € (0,+00), (3.16)

U(x,0) = Up(z) = (ug,u1,u2,00,m0)7,

where U = (u,v,w,0,7)T and A : D(A) C # — H being a linear operator defined by

v
u w
v Liwsa 50
A=Al w =] —;(w+ (B +u+ )) . (3.17)
(0.0
z = [ ) An(s)ds + 5Aw + Tw)
0+ Tn

Now, we introduce the space M as:

M = LR, H'(RY)),
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endowed with the following norm:

2 [ — (12
75 = [~ 1NV 2 e ds
for all 7 € M. Then, following [111], we define the Hilbert space as:
H =H{(RN) x H{(RN) x L2RN) x L2(RN) x M,
with the following inner product:
(U, 0y =({(u+70), @+ 70))y +7(8 = 7) {v,9)1 + (v + T0), (3 + 70)) 2(rN)
— 1 foo _
+(0,0) oy + 1 ) 108) (V0(9), ViT(9)) L2y ds,

and the corresponding norm:
1
2 2 2 2 2 2
013, = lfu+ 70l + 78 =)ol + 1o+ 7ol g, + 160122y + £ Ilihe

for all vectors U = (u,v,w,@,n)T and U = (@, 9, w, 0, ﬁ)T in H.
After that, we will give the domain of operator A as follows:

w,0 € HY(RN)

DA U ; N Bv +u— 60 € H2(RN)
= = o0
(4) (v, v,w,0,7) € %/0 w(s)n(s)ds + Téw + dv € H2(RN)

n € D(T)
Define

V = (ug + Tugg, V(u + ), 6, Vi),

where, (u(z,t),0(z,t)) is the solution of (3.13)-(3.14). Now, we state the well-posedness
result of system (3.16).

Theorem 3.2. Suppose that 0 < 7 < B. Let Uy € H, then system (3.16) has a unique
weak solution U € C([0,00),H). Moreover, if Uy € D(A), then U € C’([O, oo);D(A)) N

cl ([O, oo);'H).

For a complete proof, see [111, Theorem 2.1].
Now, we are going to state lemma which we will adapt later in proving the main results.

Lemma 3.3. Under the assumption (M1), the following inequality holds

00 2 00
7 usyits, 0ds| < 9(0) [~ uts)lints, ) Pds. (3.18)
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Proof. We have by using Hoélder’s inequality

' [ o] = | [ o) eyt af
< ‘( [ u(S)d8>§ ( I u(S)(ﬁ(s,t))ZdS)E 2
_ ( I u(S)d8> [ we)inte, s
=9(0) [ u(o)li(s, 1) ds.
This completes the proof of Lemma 3.3. O

We close this section with our main results and we will give their proof in Section 4.

Theorem 3.4 (Sub-critical case). Suppose that 0 < 7 < . Let V(£,t) = (ur + Tug, V(u +
Tut), Vug, ) and Vo = V(0,2) € HS(RN)YNLL(RYN), where s is a non-negative integer, then
for all0 < k410 <s, V satisfies the following decay estimate:

_N
1

_k _¢
IRV (@)l oy < O+~ T3 |[Vhll ey + L+ 82 IVFV0] oeny, (3.19)

where, C' is a positive constant independent of Vi and t.

Theorem 3.5 (Critical case). Suppose that = 1. Let Vi(€,t) = (ug + Tug, V(u + Tuy), )
and assume in addition that VO € HS(RN) N LY (RN). Then, for all k+ £ < s, we have:

_N_k L
IVRVe@)ll 2@ny < COA+H)T T2V g1 ny + CL+8) AV oy, (3:20)

where, C' is a positive constant independent of Vo and t.

Remark 3.6. As a consequence of the results obtained in this work, we notice that the
exponent of the decay rate when the thermal law of Gurtin—Pipkin heat conduction is added
to the standard linear solid model is similar to the one obtained when the model is coupled by
Fourier or Cattaneo heat conduction. We further notice that it is the same as that obtained in
the Cauchy problem without heat conduction, which is of the form (1 +t)_N / 4 [98, Theorem
3.6]. The difference lies only in the requirement of a higher regularity of the initial data for
the decay to be achieved (see Remark 4.4 in [98])). It should also be noted that the coupling
of heat conduction under the Gurtin-Pipkin law to the standard linear solid model leads to
the regularity-loss phenomenon in both cases; (0 <7 < ) and (0 < 7= ().

Remark 3.7. One can observe that, we did not improve the decay rate of the Cauchy problem
without thermal conduction even if we added the Gurtin—pipkin law, because, following the
mathematical literature, it is obvious that for many mathematical models, the dissipation
caused by thermal conduction (Fourier’s, Cattaneo’s and Pipkin—Gurtin’s models) is weaker
than the viscoelastic or frictional dissipation, for a clear picture, see for instance [59] and
[85], where the authors found similar decay rates obtained for the Timoshenko system coupled
to thermal conduction.
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Remark 3.8. With reference to [95], [96] and [97], it has been proven by using the eigen-
values expansion and energy method in the Fourier space, that the decay rate (1 + t)_N /4
is optimal when (0 < 7 < B) and (0 < 7 = B). Since the Fourier and Cattaneo models
are only particular cases of the result of this chapter. Thus, we are able to deduce from the
aforementioned works the optimality of our decay rate.

3.3 The energy method in the Fourier space

Our intention in this section is to achieve some decay estimates of the Fourier image of the
energy for system (3.15) in both cases sub-critical, where 0 < 7 < f and critical, where
0 < 7 = . Before going on, we state the pointwise estimates.

First, for the sub-critical case, where 0 < 7 < 3, we have

M) (&,t) be the solution of (3.25a)-

Proposition 3.9. (Pointwise estimate). Let (4,0,w,0, J
0 < 7 < B. Then, V(1) satisfies the

(3.25e). Assume that (M1) and (M2) hold and
following estimate:

V&, 1)2 < cems Ty (e) (3.21)
for any t > 0, where )
_ i

PO = e v e (3:22)

Proposition 3.9 is the main key to prove the decay estimates in theorem 3.4. Its proof
will be given through several lemmas.
For the critical case 0 < 7 = 3, we have the following result.

Proposition 3.10. LetAVc(f, t) be the solution of (3.58a)-(3.58¢). Assume that (M1), (M2)
and 8 =T hold. Then, V;(&,t) satisfies the following estimate:

Ve, ) < CIVe(€, 0)2e ) (3.23)
for allt > 0, where,
2
e(€) i (3.24)

T A+ ER) T ER + [EE

This estimate is the main ingredient in proving the decay rate stated in Theorem 3.5.

3.8.1 Proof of Proposition 3.9

To attain the decay estimate, we apply the energy method in the Fourier space and then
form an appropriate Lyapunov functional, which will lead to our desired estimates.
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Applying the Fourier transform to (3.15), we have:

fig — 9 =0, (3.25a)

by — 1 =0, (3.25b)

i + 0 + (€0 + BIE[*D — 5126 = 0, (3.25¢)
2

by + 2 I /0 1(8)(s, t)ds + 76)¢%d + 6|¢|%0 = (3.25d)

it + fs = 6, (3.25¢)

where the initial data are written in terms of the solution vector U(¢,t) = (4, 9,1, 0,1
as:

{(‘f](g,o) = (ﬁg,ﬁo,@O;éO) &), (3.26)
70 |

S A
0(6) = [ fo(6,0)do
The energy functional E(€,t) associated with the system (3.25) is defined as follows:
B0E ) — 15t 2 21 21n 2 a2 P e 2
E(§,t) = [0+ 70"+ 7(8 = 7)o" + [E]7[a + 70" + |07 + = - | u(s)IA(E, ¢, 5)[7ds. (3.27)

Lemma 3.11. Assume that 0 < 7 < 3. Let (ﬂ,ﬁ,w,é, 7)) be the solution of (3.25), then the
energy E(&,t) given by (3.27) is a nonincreasing function and satisfies, for all t > 0,

IEI

th(f,t) = —(B-DIEPIo + S [ (9)IA(E 1, 5)ds. (3.28)

Proof. The proof of this Lemma is given in [111] . O
Define the functional Bj(€,t) as in [95]

Bi(&,t) = Re (0 + r)(@ + 7). (3.29)

Lemma 3.12. The functional By (&,t) satisfies

d e A2 1 12 g2 = =
—Bi(&,t) + U+ 70" — |0+ T0|" = T — U+ 70
6P naf Sl i)
+01¢1* Re (A(@ + )
Proof. Adding equations (3.25b) and (3.25¢), we have:
d . R . . A
5 (0 70) = —[€[*a — BI¢[*0 + 3l¢[*D. (3.31)
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Multiplying the above equation (3.31) by @ + 70, we have:

(@ +T5>%<@ + 1) = (—[¢1*a — BIE[*D — T|¢[0 + TI¢1*0 + 8|¢*0) (@ + rD).  (3.32)

Adding equation (3.25a) to 7(3.25b), we have:

%(a +78) = b+ 7. (3.33)

Multiplying the above equation (3.33) by b + 7, we have

(D + T@)%(ﬁ +70) = (0 + TD) (D + TD). (3.34)
Adding equations (3.32) and (3.34) and taking the real part, we obtain (3.30). This completes
the proof of Lemma 3.12. O

Define the functional Ba(&,t) as in [95]
Bs(&,t) = Re(—10(0 + 7).

Lemma 3.13. The functional Ba(&,t) satisfies

d o X o R
pricel(s £)+ (1) [o+70[* < Clea, e, ) (1+[E1*+I€|) o[> +e2lé[*|a+70+¢h ], (3.35)

where, €9, €, and € are arbitrary positive constants.
f ) £92 2 Ty p

Proof. Multiplying equation (3.25b) by —7( 4 7), we have:

—7(0+ ﬂb)%@ = —T0(D 4 TD). (3.36)

Next, multiplying equation (3.31) by —79, we get:

_d _ "
70 (0+7) = O (TlePatBrigPo+rIE Po—7 820 —07 |20+ (D+ ) — (9+71) ). (3.37)

Adding the above two equations then taking the real part, we get:

%32(5, t)+ [0+ 702 — 7(8 — 7)[€[%|6* =r|¢? Re (( + 7)) + Re (5(0 + 710))

(3.38)
— 71| Re(26).

Applying Young’s inequality, we have, for any eg, €h, €5 > 0,

I71€]2 Re(3(a + 79))| < eal€[?|a + 7|2 + C(ea)|€|2[9]2,
| Re(0(0 + m))| < €50 + T|? + C(eh)[9]%,
16712 Re(85)| < eh|0]? + C(eh)[€|* |02
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Plugging the above estimates into (3.38), then (3.35) is fulfilled. Thus, the proof of Lemma
3.13 is finished. O

Define the functional B3(&,t).

33(g,t):Re<—5|g|4(é+Té)/0 1()(s, ) ds—|£|20/ (5)7i(5, 1) ds). (3.39)

Lemma 3.14. The functional B3(&,t) satisfies
d R 4 o 2
1 Ba(ED) +901ePI? = 55 R ([* utopnts. ) as)

_Re <|§|29 / (8)7(s, ) ds) .40
—Re <6|§|4(1§ + 7'1:))/0 ,u’(s)ﬁ(s,t)ds)
— 9(0)3¢|* Re (0(@ + 79)).

Proof. Multiplying equation (3.25d) by —|€|2u(s)fi(s,t) and (3.25¢) by —|§|2u(s)§, adding
the results and making the integration with respect to s and then taking the real part, we
have:

sy Re(16P8 [ ueyite.ds) + [ IEPu) R as
4
|€| Re (/0 w(s)(s,t) ds ) + Re <|§|29/ s)Ns(s,t) ds ) (3.41)
3l Re (04 70) [ (o), 0) ds )
While, an integration by parts leads to:

Re <|§|29/ $)ifs(s, t)ds ) — _Re (|§|29/ $)i(s, t)ds )

Hence, (3.41) can be written as:
s re(1670 [} u(o)its) s ) + (0PI
=@ Re (/Oo wu(s)i(s,t) ds>2 —Re (|§|29/ (s)7i(s,t) ds) (3.42)
k 0 ’ ’
+6¢|* Re ((ﬁ + 7) /Ooo 1(s)A(s,t) ds).

Next, multiplying equation (3.33) by —|¢[2u(s)7(s, t) and equation (3.25¢) by —|€|2u(s)(a+
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7'5), adding the results and making the integration with respect to s, then taking the real
parts, we obtain:

sy Re(16P @+ ) [ ehate, )

=—Re

/N

€20 +70) [ w(s)ils, t)ds
/0 ) (3.43)

+Re [ |¢[? U+’7"U)/ w(s)s(s, t)ds)

—Re( |20/ s)(u+7’vd>
The last term of the above identity (3.43) can be written as
Re (|§|29 / (u+m)ds) = 9(0)¢1*Re (8(@ + 79)).
Similarly, as above, an integration by parts leads to:
2% = [ . 2% Ul S PR
Re <|§| (a+ 7'11)/0 ,u(s)ns(s,t)ds> = —Re (|§| (G + T’l))/o W (s)n(s,t)ds).
Hence, (3.43) can be written
d 27 | [P "
— 5 Re([eP@+79) [ u()is, )ds
dt 0
2 (0.¢] —
=—Re <|§| (04 ) /0 w(s)i(s, t)ds) (3.44)
2,% U N 7R 2 A =
—Re (I6P(@+79) [ W (s)ils, 0)ds | - g(O)I6P Re (3@ +79)).
Now, computing (3.42)+6|€|?(3.44), we have (3.40). This completes the proof of Lemma, 3.14.

Next, define the functional:

Ba(€,t) = g(0)[€]*Ba(€,t) + Bs(&,1).
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Then, we have from (3.30) and (3.40):

2 Bu(6,t)+ 9OVl + 701 — g(O) 210+ ral? + (0)€[213?
et /e 2
~0(OIEl*(r — B Re(oi +75) + E Re ( [ niepits. ds)
o (3.45)
¢ Re (e [ @its. ds)

oo

— 8l¢/ARe ((é +79) /0 ,u’(s)ﬁ(s,t)ds).

Applying Young’s inequality for €1, e'l > 0, we have:

l9(0)lel*(r = B) Re(0(@ + 76))| < “lel*la+76” + Cler) €l*/o

‘Re (1624 " wepite.as)

< P10 + C()g ©) [ 1612 (5) (s, ) Pds,

|(5|§|4 Re ((ﬁ + 79) /Ooo ©(s)A(s, t)ds)

€
<5 1%+ Tof?

+Cle)g O [ 16Pu! li(s,0)ds,

|— %Re ( I u(s)ﬁ(at)ds)z < | leltu(s) s, ods.

Substituting the above estimates into (3.45), we get:

SBA(E D) + (9(0) — c)léla-+ 0P + (9(0) — ) eI
<I¢2g(0)lo + rif? + Cler)Ie[*of?
+Cler, g/ O+ ) [ 162 (5)i(s, s

2 ro0
+ B8 [ 6P u(s)lats, ofPds

(3.46)

]

Proof of Proposition 3.9. Using the above Lemmas, we are ready to prove Proposition 3.9.
We, first, define the Lyapunov functional

Ly(&,t) = [€*Ba(&, t) + ABa(€, t), (3.47)
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where, A is a positive constant to be fixed later. Taking the derivative of L (&,t) with respect
to t and using inequalities (3.35) and (3.46), we have:

L€ +IER X0 0) - ) - o] P+ o

+4aﬂa—f@—Ammhﬁ+7m2+mﬁp@m>—4>—éhm2

-meﬂmmymaaﬁ_mm$ww (3.48)
2 oo

B e, o2 as

+2C(e, 4)g O+ ) [ 1P (s))li(s, ) ds <.
Now, using the assumption (M2), we may write:
00 1 roo
7 tePuts)lts, 0 ds < 5 [~ 162~ (s))lits, OFF s (3.49)
Therefore, we get:
%@@w+mﬁp@®—q)—4mﬂa+wﬁ
+mﬁkr—4wﬂwmﬂW+rm2
+mﬂmmm—4»«4m2 (3:50)
—u+mﬁ+mﬁk@m@4wwomﬂm%%
—COven, e, A+ 1EP) [ IER=r ()lA(s, )12 ds < 0.

0

Now, we choose the constants in (3.50) very carefully in order to make all coefficients (except
the last one) in (3.50) positive. Let us fix €1, €] and €) small enough, such that:

e1 < g(0), € <g(0), € <1.

After that, owing to (3.12), we choose A small enough, such that:

A<

Next, choose €2 and €, small, such that:
<o) —c), e <Aa(0)— &)
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Consequently, we deduce that there exists a positive constant 77 > 0, such that:
d
L6 +mQ(Et)
<1+ €7+ €M [CN €1, €2, €h, €5) ] €12 10]
o0

+COver, )1+ 12 [ 16 ()5, O ds, (3.51)

<1+ EP + €M [CN €1, €2, €h, €5) ] €210
/ 2 Ay [ e120 N A 2
+COver, )L+ e+ 161Y) [ Ie2(—1 (s)lits, I ds,

where,
Q(e.0) = IR (ela-+ 7ol + 0+ roP + 2.
Now, we define the functional

Lp(E,t) =M1+ €+ [EYEE, ) + LE t), (3.52)

where, M is a positive constant that will be chosen later. Using (3.28) and (3.51), the
functional L£(¢,t) satisfies the estimate:

d

L0+ mae.

141674 61 M3 = 7) = OO0 ev,e0,6h ) €l (3.53)
1+ 16 + 169 3~ COver, )| [ 6P (Dl O ds <o

Now, choose M large enough, such that:

C(\ rn
M > max ( ’61’62’62’62),2k0()\,61,6'1,1/) .
B—T
Finally, (3.53) can be written as:
d ~
L1t +mlePE(E ) <0, V0. (3.54)

Now, using (3.47), (3.52) and (3.54), together with the definitions of all functionals involved
in (3.47) for all £ € RN, we have:

L6, 8)] = L&, 1) — ML+ €2 + [ E(E, 1)) < nsB(E, ).
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Hence, we conclude that:
(M —ng)(1+ €1 + 11D E(E, 1) < L7(6,8) < (M +13) (1 + € + €1 € 1).
For M large enough, we deduce that there exist two positive constants C; and Ca, such that:
CrL+ |62 + [E1DE(E 1) < Lp(6,8) < Co(1+ € + [ E(E, 1),  VE>0.  (3.55)
Combining (3.54) and (3.55), we have:

d M 112

Applying Gronwall’s Lemma, using (3.54) and making use of the equivalence of E(€,t) and
|V (¢,t)|? then (3.21) holds. This completes the proof of Proposition 3.9. O

3.8.2  Proof of Proposition 3.10
Substituting 8 = 7 in (3.13), we have:

Tuwt + U — Au — 7Aup + A0 =0,
0; — % /OOO wu(s)An(s)ds — T0Aug — §Au = 0, (3.57)
m = TT} + 9)

Now, equations (3.25) are given as follows:

s —9=0, (3.58a)
by — b =0, (3.58b)
Ty + B + |€20 + 7|€]20 — 6|¢]26 = 0, (3.58c¢)
f; + % /Ooo u(s)A (s, t)ds + T6|¢|2 + 6|¢|%0 = 0, (3.58d)
Bt + s = 0. (3.58¢)

We redefine the energy functional (3.27) as follows:
E_}zAA2AA29A2£°°A 2
o(&t) = 5 [[EF[a+ 701" + [0+ 70" + 101" + = | p(s)la(E, ¢ s)[7ds|, (3.59)

for all ¢ € RV and all ¢ > 0 and it is equivalent to the vector |V.(£,t)|?, so that, there exist
two positive constants 79,3, such that, for all £ € RN and all ¢ > 0,

Y2lVe(&, )12 < Ee(€,1) < 13Ve(&, 1), (3.60)
where,
A A o0
D€ )17 = 6P a+ ol + [0+ 70> + 167 +€ [ u(s)li(s)]ds.
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Lemma 3.15. Assume that 0 <7 = 8. Let (4,9, 9, 0, 7)) be the solution of (3.58), then the
energy Ec(€,t) given by (5.59) is a nonincreasing function and satisfies, for allt > 0,

|€|2

2%k (5)|ﬁ(§,ta 3)|2d8. (361)

_Ec(§7 ) -

As we did before, we are going to prove Proposition 3.10 by modifying the Lemmas above
as needed. The functional By (&, t) satisfies

d
dt
Therefore, (3.62) takes the form:

Bi(&,t) + [€Pla + 0% — |0 + b |* = 61¢]* Re (8(@ + 79)). (3.62)

d . . . . A
HB1E D) + (1~ e0) €7 (1+ &M+ 79]* < [0 + Td|* + C(e0) 18], (3.63)
for any €y > 0. Define the functional Bs(§,t).

Bs(£,t) = Re (8(0 + 7).

Lemma 3.16. The functional Bs(&,t) satisfies

d o
—Bs(&,t) + 0€)2|6 + |2

dt
=— [¢[?Re (@ + 0)0) — [£[*(8 — 7) Re(98) + 6]¢[*|0)? (3.64)
2 _ - oo
- % Re ((@ + D) /0 1(3)A(s,8) ds).
Proof. Write equation (3.31) as follows:
d
20+ 7) + 6%+ Tlg|*0 — 7I¢[*0 + B¢[*0 — 0]¢]* = 0. (3.65)

Multiplying equation (3.65) by 0 and equation (3.58d) by 9 + 71, adding the results and
taking the real parts, we obtain (3.64), which finishes the proof of Lemma 3.16. O

Substituting § = 7 in (3.64) then applying Young’s inequality for any €y,é; > 0, we
obtain

'% Re (('5 +T0) /Ooo 1(s)A(s,t) ds)

o0
< &lo+rof + C@lel" [ als)lats, ) ds

and
€12 Re (@ +70)8)| < &1lé|*la + 702 + CE)IA.
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Now, collecting the similar terms, we have:

d 00
G856 + (=) (1 + [P0 +rof* <C@)lel* [ us)li(s I ds
+ &lé|*a + 1|2 (3.66)

+ (C(&) +8) (1 + €187,

where, €y and €] are arbitrary positive constants. Recall equation (3.42) and define the
functional

Bg(£,t) = —Re (é /0 > w(s)fi(s, 1) ds>.

Accordingly,
2
L Be(e,t) + (0|02 = Re I ulsyits, ) ds
~ (0.0)
—Re (0/0 © (s)i(s,t) ds) (3.67)
2 N a [ =

+6|¢|“Re ('v+7'w)/0 w(s)f(s,t) ds ).

Applying Young’s inequality for eq, €5 > 0, together with the assumption (M2), we get

d A . .
—Bg(€,1) + (9(0) — &5)16]” — eald + T

dt
Cle 0 o0 .
< (0l + CD L IO G L iep i) [¥ i o)iat)Pas. (368)
Next, define the functional

Bi(€,t) = SB1(6:1) + Ba(6, ).

Then, by using (3.63) and (3.66), we obtain:

%Bﬂ&tﬂ(%(l —€g) — €1)£2(1 +&)|a+ o] + (g - €o>(1 + &0+ o)
<(6+ Cleo, @))(L+ ENIO + C@)e* [~ uls)lif(s)2 (3.69)

We are now ready to show the demonstration of Proposition 3.10. We define the new
Lyapunov functional L.(§,t) associated with the critical case, 8 = T, as follows:

¢2 ¢2
TEZBG(& t) + ——55B7(§,1), (3.70)

2 _ 2 4\ £
Le(,t) = NA+E+E)E(E )+ M (1+§2)2

for some positive constants NV and M that have to be chosen later. Taking the derivative of
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(3.70) with respect to ¢ and using (3.61), (3.68) and (3.69), we get:

& é(l — eo) - €1]§2|ﬁ + 79)?
1+¢£212

+i_§—g — Mey||p + 00|
1+ez|\2” @ 4

_Lc(é-’ )

2 [ A~
b1 [0 — ) - (5 Cleo, )] 07
+ [ 5 — MAJIER+ 16+ 1elY) [ - () iate)lPds <o (3.71)

for all £ > 0 and where, A is a constant that depends on all the other constants.
Regarding (3.71), we fix our constants so that the above coeflicients are positive. Therefore,
we pick €q, €g and €5 small enough, such that:

€ <1, €0 <9/2 and e5 < g(0).
Once ¢ is fixed, we select €; small enough, such that:

o(1— 60)'

& <
1 2

Now, as €1 and €5 are fixed, then we take M large enough, such that:
d + C(ep, €1)

9(0) —es
Finally, we can select €4 small enough, such that:

d/2 —¢&
“a< =G

M >

and take N large enough, such that:
N > 2kMA.

Consequently, we conclude that there exists a constant Ag > 0, such that for all ¢ € RY and
allt >0,

€12
1+ [¢[2
At this point, observe that from the identity (3.70), and for N large enough, there are two
positive constants 4, 75, such that:

(1 + € + €M Le(6,1) < Bel€,t) < v5(1+ €2 + €M Le(€, 1) (3.73)

—LC(E, t) + Ag E.(¢,t) <0. (3.72)
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Therefore, owing to (3.73), the inequality (3.72) reads as:

d

g Le(6,1) < —M1pe(§)Lel6, 1), (3.74)

for some A1 > 0 and for all ¢ > 0, with p.(§) satisfing (3.24). A simple integration with
respect to t leads to:

Le(g,t) < Le(€,0)ePe0), (3.75)

Furthermore, for some Ag > 0, we have:
Bo(€,t) < AgBi(€,0)e™PO vt >0, (3.76)

The desired result (3.23) is claimed due to (3.60).

3.4 The Decay Estimate

In this section, we give the proof of main Theorems 3.4 and 3.5 and derive the decay rate of
the solution for system (3.15) in both cases.

Proof Theorem 3.4. Using (3.22) we have:

clé]*  for l¢| <1,
”f(f)z{cmr? for 6> 1 (377)

Applying the Plancherel theorem together with inequality (3.21), we have:
VRV @)1y = [y PV ) de
<C [, lefPkemees (e, 0)1 de
=C [, 6 @7 0) de
le|<1
2k —Cpf(f V 0 2 d
C fos 8 V(& 0)[? de
=I(t) + I2(t).
Here, we split the integral into two parts, so that I1(t) is the low—frequency part where

|€] < 1 and I5(t) is the high—frequency part where |£| > 1. Using the first inequality in
(3.77), we can estimate I7(t) as:

0w = o [, e v o) de
2k —c|§| t 2
< O f e v 0P de
—cle|?
< OV O Gooqeyy [, 704 de (3.78)
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Finally, using Lemma 0.1, we obtain
/ ey I et ge < c(1+4)"7

Hence, we have:
~ _N_
L1(8) < OV (€, 0)][7 ooy + 1) 7275,

Using the second inequality of (3.77), we can find the estimate for I2(t) as follows:

) = C [ lePre O o) ag

< O sup {lel ey [ 1P 0 de

|€1>1
< CA+)FTVE Ol 2.

Now, adding estimates (3.80) and (3.81) shows that estimate (3.19) holds.

Proof Theorem 3.5. As we did before we have from (3.24)

. clél?, i gl <1,
pele) = {c|£|‘4, it ] > 1.

By exploiting Plancherel’s theorem, we get
IVEVe®) 122y = [, 1612F1Ve(6,0)12de
16127 (e, 0) g
_ 2k —cpc &t 2d
/ e ¥ AR
2k —cpc &t 2
C fsr € *|Vee, 0) 2
=J1 + Jo.
For the law frequency part |£| < 1, we have by using (3.82)
<ClIv 2 / 2k ,—clé[*t
Jl _C”‘/C(é’ O)HLOO(RN) €|<1 |£| dg
_N_
SO +8)™ 2 F|Vel&, 0) 71 vy

Again the use of (3.82) together with the estimate

sup {|§|-2€e-c|f|‘4t} <C(1+1)7%,
£1>1
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for the high frequency part Jo yields
Ty < sup {Je[ e, [ g0 De(e, 0) P
le|>1 §1=1

_£
<C(L+8) 2V n (3.85)

)
The estimate (3.20) is fulfilled by collecting the above two estimates. O
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CHAPTER 4
WELL-POSEDNESS AND LONG TIME BEHAVIOR FOR A
GENERAL CLASS OF MOORE-GIBSON-THOMPSON
EQUATIONS

4.1 Introduction

In this chapter, in {2, we consider the well-posedness and the long time behavior of third
order in time linear (abstract) evolution equations,

ugt + Buy + Agu + Ajup = 0,

(4.1)

w(0) = ug, uz(0) = u1,us(0) = ug.

This allows to treat concrete examples where the operators B, Ag, and .A; have space variable
coefficients, in particular, we can consider the standard Moore—Gibson—Thompson system

Ut + aug + BAuU + Aug = 0, in Q x (0, 00),
u=0 on 09 x (0, 0), (4.2)
U(O, ) = ug, Ut(o, ) = U]_,Utt(o, ) = ug, in Qa

where 2 is a bounded domain of R™, 8 is a positive constant and o € L%°(f2), a case
mentioned in [74, p. 306], for which an existence result is proved in [53]. Our approach does
not allow to treat the non-autonomous situation when o may depend on the time variable,
for such a situation we refer to [53, 55, 56| for existence and exponential decay.

Before going on, let us formulate the Hilbert setting and the basic assumptions. Let H
and V be two Hilbert spaces such that V' is continuously and densely embedded into H and
let V/ be the dual of 1 (with H as pivot space). We suppose given two sesquilinear and
continuous forms ag and a1 on V and such that aj is symmetric and coercive, namely

a’l(U’v’U) = (Ll('U,’LL),V’U,,’U ev,

and
a1(u,u) 2 |[ully, Vu € V.

Then we introduce the associated (bounded) operators A and A; from V into V' defined
by
(Aju, oYy _yr = a;(u,u),Yu, v € V,i=0,1,

where here and below (-,-) means the duality pairing between V and V’. Note that A; is
self-adjoint due to the assumptions on a1. Note that Al_le is bounded from V into itself,
but we suppose that it can be extended into a bounded operator from H into itself. Finally
we suppose also given a bounded operator B from H into itself. The notation ¢ < b means
that there exists a constant C' > 0 independent of a, b, such that a < Cb, while a ~ b means
that both a < b and b < a hold. The well-posedness of our problem is proved in section 4.2
by using semigroup theory and an appropriate change of unknowns. An illustrative example
is also presented. In section 4.3, we find sufficient conditions that guarantee the exponential
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decay of the energy of our abstract system and again illlustrate such a result. The link
between system (4.2) with the wave equation with a frictional interior damping is extricated
in section 4.4, where we show that the decay rate of the wave equation lead to a similar
decay for our system (4.2).

4.2 An existence result

In this section we first prove the well-posedness of system (4.1), then we give an illustrative
example.

4.2.1 General setting

In order to show that system (4.1) is well-posed, we introduce the following operator .4 on
the Hilbert space H =V x V x H, endowed with the inner product

((w,v,w) T, (o, v, w'))gy = a1(u,v') + a1(v,v') + (w,w'),Y(u,v,w) ", (&, ", )T € H.
On this space we define the unbounded operator A by
D(A) = {(u,v,w)" € V3| Agu+ Ajv € H}, (4.3)
and
A, v,w)" = (v,w, —(Agu + A1v + Bw)), V(u,v,w)' € D(A). (4.4)

With that definition we see that formally u is solution of (4.1) if and only if U = (u, ug, ugt)
is solution of the first order evolution equation

Ui = AU,
{ U(0) = Uy, 43)
where Uy = (ug,u1,uz). This formal equivalence is correct as soon as strong solutions are
concerned. Namely a strong solution of (4.5) yields a solution to (4.1), more precisely we
have the next equivalence. Since its proof is immediate we let it to the reader.

Lemma 4.1. U = (u,v,w)! € C1([0,00),H) N CY([0,00), D(A)) is a solution of (4.5) if
and only if u € C2([0,00),V) N C3([0,00), H) is solution of (4.1), with v(t) = us(t) and
w(t) = ug(t) Agu(t) + Ar1ue(t) € H, for allt € [0, 00).

Now we are left to the existence of a solution to (4.5), which is obtained using semigroup
theory after a change of unknowns. For that purpose, according to the standard decomposi-
tion of the solution into z = u; +.A1_1.Aou and u, see [55, §3.2], [54, §2] and [55, §2.1], where
z satisfies a wave equation (see Remark 4.3 below) and u an abstract ODE with exponential
decay, we introduce the bounded operator M from H into itself defined by

I 0 0
M(u,v,w)T = ( .Al_lAO I 0 ) ,V(u,v,w)T,V(u,v,w)T € H.
0 AT A 1
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This operator is even an isomorphism since its inverse is the bounded operator given by

I 0 0
M_l(u,v,w)T: —Al_le I 0 (u,v,w)T,‘v’(u,v,w)TE’H.
(A71A40)2 —ATTA I

Now we prove the following Lemma (compare with section 3 from [54]).

Lemma 4.2. U = gu,v,w)T e C1([0,00),H) N CY([0,00), D(A)) is a strong solution of
(4.5) if and only if U = (u,z,y)T = MU € C1([0,00),H) N C°([0,0), D(A)) is a strong
solution of

{gt((s jUﬁ’o, 48)
where Uy = MUy = (ug, u1 + A7 L Agug, ug + AT Agur) T,
D(A) =V x D(A;) x V, (4.7)
and
Au,2,9) T = (z — AT M Aou, v, —A12 — R(u,2,9) T), V(u,2,9)" € D(A), (4.8)
when

R(u,z,y)" = (B — A7 Ao) (v — Ay Moz + (A7 ' Ag)%u)

Proof. Let us first show that if U = (u,v,w)' is solution of (4.5), then U = (u, z,y) " is
solution of (4.6). Indeed (4.5) directly implies that v = u, w = v¢ = uy and u satisfies (4.1).
Hence by their definition, z = us + Al_l.Aou,

2 = ug + A7 MAous =
and

w = w+ AT Aoy
= upt+ .Al_l.A()w
—Bu — Agu — Ajus + .Al_lew
(—Bug + A7 Ag)w — Agu — Ayw
= —A1z— R(u,z, y)T.
This directly yield (4.6).
Let us notice that the regularity U = (u, z,y) T € C1([0, 00), ) N C%([0, 00), D(A)) follows

from the fact that the operator Al_lAO is bounded from H into itself as well as from V into
itself. The converse implication is proved in a fully similar manner. O
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Remark 4.3. From (4.6), we see that z satisfies
2t + A1z — (B — AT Ag) 2 + (B — ATLAQ) (AT Aoz — (A7 1 Ap)?u) =0, (4.9)

which under the assumption that B — Al_lAO is a nonnegative operator from H into itself,
is an weakly damped wave type equation with lower order term (B — Al_le)(.Al_l.Aoz —
(Al_le)zu). Similarly u is solution of

ug + .Al_l.Aou = 2.

which is a sort of ODE since .Al_lAO is bounded from H into itself.

Theorem 4.4. Under the above assumptions, the operator A generates a Cy-semigroup on

H.

Proof. We first prove that A generates a Cp-semigroup on H. For that purpose, we notice
that A can be split up into o
A=A;+ B,

where the operator B defined by
B(u, z,y)T =(z— .Al_l.Aou, 0, —R(u, z,y)T), V(u, z, y)T eH,
is a bounded operator (in %) and the unbounded operator A, is defined by
Ag(u,z,9)T = (0,y,—A12), V(u,z,9)" € D(A;) = D(A). (4.10)

Therefore by a standard bounded perturbation Theorem (see for instance [94, Theorem
3.1.1]), we are reduced to proving that ./Id generates a Cp-semigroup on H. This last property
holds since Ad is a maximal dissipative operator, hence, by Lumer-Phillips’ theorem it
generates a Cpy-semigroup of contractions on # (it even generates a group). The dissipativity
is mainly direct because for U = (u,z,y)" € D(A), we have

Re(AqU, U)gy = Re(a1(y, z) — (A12,9)) = 0.

The maximality is also quite direct. Indeed for A > 0 and F' = (f,9,h) € H fixed, we look
for U = (u, z,y) " € D(A) solution of (\I — A4)U = F, or equivalently

Au=finV,
M—y=ginV, (4.11)
Ay +Ai1z=hin H.

This means that u = f/A € V, y = Az — g and
Mz+ Ajz=h+ A\gin H.

Since A2I + A; is an isomorphism from D(A;) into H, we find a unique solution z € D(A;)

of this problem and hence y = Az — g indeed belongs to V. Denote by (T'(t))¢>0 the Cp-
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semigroup generated by A, then we define
T(t) = M~IT )M,V > 0,

and as M is an isomorphism from H into itself, we directly deduce that (T'(t));>0 is a Cop-
semigroup on H. According to Lemma 4.2, its generator is nothing else than A, the proof is
then complete. n

Corollary 4.5. (Ezistence and uniqueness of the solution) If Uy € H, then problem (4.5)
admits a unique weak solution U = (u,v,w)’ € C([0,00),H). On the contrary if Uy €
D(A), then problem (4.5) admits a unique strong solution U = (u,v,w)" € C1([0,00),H) N
C0([0, 00), D(A)).

4.2.2  An illustrative example

Let Q C Rd, d > 1 be a bounded open set with a Lipschitz boundary I'. We take H = L? (Q)
and V = H& (). Now we define the operators A;, i = 0 and 1 and B as follows. For
i = 0,1, we suppose given scalar functions b; € L*°(2), and matrix valued functions M; €

L®(Q; R%*4). Suppose also given a scalar function a: € L®(Q), and a vector field function
c € L®(Q;R%). Then we define

ai(u,v) = /Q (M1Vu - Vo + biuv) dz,
ag(u,v) = /Q (MoVu - Vi + (¢ - Va)d + byut) da,
for all u,v € H& (Q) and
Bu = ou,Yu € L2(). (4.12)

This yields two sesquilinear and continuous forms on H& () and a bounded and self-adjoint
operator B from L2(Q) into itself. We further assume that aj is symmetric and coercive
on H& (Q). The symmetry of aj is clearly guaranteed if and only if M; is symmetric. The
coerciveness of aj holds if we further assume that M is uniformly positive definite, namely
for almost all x € €2, ~

Mi(2)¢-E>mlgl3,  VEecd,

for some m > 0 (independent of =) and if the negative part b; = max{—b1,0} of by is small
enough (see below). First define
By = sup by (),
x€e
and let ¢y > 0 be the Poincaré constant

collullFq) < IVullf2 gy Vu € H(Q).
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Since by the above assumption and definition, we have
a1(u,u) > (mey — Bl)||u||%2(9),‘v’u e H}(®), (4.13)
then, if we assume that
By < mcy, (4.14)

then a1 will be coercive on H& (€2). The assumption (4.14) means that the negative part by
of b1 is small enough with respect to M7 and is easily checked in practice since cq is explicitly
known for some domains 2 or different upper bounds are available in the literature, see [60]
and the references cited there.

It remains to check the assumption that .Al_l.Ao can be extended into a bounded operator
from L2(Q) into itself. The trivial case is to take ag = a1, here is a non trivial one.

Lemma 4.6. Assume that the boundary T' is of class CY1 and that My € Wl’OO(Q; RdXd),
as well as ¢ € Wl’OO(Q; ]Rd) then Al_le can be extended into a bounded operator from
L2(Q) into itself.

Proof. Define the unbounded operator A that is the extension of A; from L%() into itself
defined by

D(A;) :={ue H&(Q) : 3gu € L?(Q) such that a(u,v) = /quﬁ dz,Vv € H&(Q)},
and

Aju = gy,Vu € D(Al).

From our assumptions, it is well known that this operator is positive and self-adjoint. It is
then an isomorphism from D(A7) to D(A‘{_l), for all real number s.
Now the assumption on the boundary guarantees that

D(A1) = H2(Q) N HY(9),

see for instance [44, Theorem 2.2.2.3].

We now show that the mapping A can be extended into a continuous mapping from L2 (Q)
into D(Al_l) = (H2(Q)n H&(Q))', the dual of H2(Q) N H&(Q) This holds if we can show
that

ao(u,v) < l[ull g2 lvll z2(0), (4.15)

for any u € H&(Q) and v € H2(Q)N H&(Q) Indeed, let u € H&(Q) and v € H2(Q) HH&(Q)
then by Green’s formula (allowed by our assumptions on My and c), we get

ap(u,v) = /Q (—u div(My V) — udiv(ct) + bouf)) dz.

By Cauchy-Schwarz’s inequality we obtain (4.15). In conclusion as the restriction of Ay to

1
D(A}) = H&(Q) coincides with Aj, the operator Al_lA() can then be extended from L2(Q)
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into itself. O]

Altogether, this means that the system

uttt + aug + div(MoVu) + (¢ - Vu) + bou + div(M1Vug) + biug =0, in Q x (0, 00),
u=0 on 99 x (0, 00),
w(0, 1) = uo, ut(0,-) = u,ust(0,-) = ug, in

(4.16)

is well-posed in H& Q)2 x L2().

Remark 4.7. Note that other choices for B are possible for instance an integral operator is
possible, namely if a scalar kernel k € L>(Q x Q) is given we may choose

Bu(z) = /Q k(z, y)u(y) dy, Yu € L2(Q),

that is a bounded operator B from L?(Q) into itself.

4.3 Uniform stability results

In this section, inspired by [53, §4], [55, §4], [54, §3], and [81, §4], we prove that the semigroup
(T(t))t>0 generated by A decays exponentially under some additional assumptions. In the
whole section we assume that Ay and B are self-adjoint, that

AT A = AgATE, (4.17a)
AT A9B = BAT Ay, (4.17b)
and that
(Bv,v) > 0,Yv € H, (4.17¢)
(A7TAG(B — AT Ag)v, v) > 26|v]1?, Yo € H, (4.17d)
((B — A7 Ag)v, v) > 28||v||?, Yo € H, (4.17¢)
ao(u, u) > agllul|?,Yu €V, (4.17f)
for some positive constants § and ag. According to Remark 4.3, the assumption (4.17¢)

is certainly needed to obtain exponential decay of T'(t). Let us first define the following
energies

1 — - -
E(t) = 5 a1 (us + A7 Aou, ug + AT Aow) + Jug + A7 Ague

+ (AN Ao (B — AT Ao )ur, i) |,

Eo(t) = 5((But, u) + ao(u,w),
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Etot(t) = E(t) + 5E0(t),vt > 0.

Note that our assumptions guarantee that Al_l.Ao is self-adjoint as well as Al_leB . Notice
further that E(t) and Ey(t) are nonnegative, both are not equivalent to ||(u, Ut,utt)”%{ in

general, but under the previous assumptions, the sum is, as shown in the next Lemma
(compare with [53, Remark 4.2],[54, Remark 3.2] and [55, Remark 3.2])

Lemma 4.8. Let U = (u,ut, ust) be a strong solution of (4.5) with an initial datum Uy =
(ug,u1,u2) € D(A). Then it holds

Etot(t) ~ ”(’LL, ut, utt)”’?—[th > 0. (418)

Proof. Since the estimate
Biot(t) < [I(u, ut, ust) |3,

is immediate, let us concentrate on the converse estimation. As
I (u, ut, uge) 13, = a1 (u, u) + ar (ug, ug) + [Juge)?,
by the continuity of a; and (4.17f), we get
(s we, w13y S Bol) + a1 (ug, ue) + lu]|®.
For the two last terms of this right-hand side, we insert some zero term to get

I (u, ug, uee) |13, SEo(t) + 2a1 (ue + A P Aou, ur + AT Agu) + 2[lugs + A T Agug||®
+ 2a1 (A7 T Agu, AT T Agu) + 2|l AT L Ague |2

By the boundedness properties of Al_le mentioned before, we obtain
Iy ut, uge) |2, S Eo(t) + an (ug + AT Agu, up + AT Agw) + 2||uge + AT Agug||? + [Jug]|-
Using the assumption (4.17d), we arrive at

1(u, ut, ue) 13, S () + Eo(t),

as requested. n

In a first step, we give an explicit expression of the derivative of the energy F, (compare
with [53, Lemma 4.3],[54, Lemma 4.1] and [55, Lemma 3.1]).

Lemma 4.9. Let U = (u, ut, ust) be a strong solution of (4.5) with an initial datum Uy =
(ug,u1,u2) € D(A). Then

E'(t) = —((B — AT  Ao)uss, us)- (4.19)

In particular the energy E is nonincreasing.
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Proof. Introduce the continuous form

((u, v, w)T, (u', 0/, w'))fH0 =a1(v+ .Al_l.Aou, o+ .Al_l.Aou')
+ (w+ .Al_lev, w + .Al_l.Aofv’)
+ (AT A (B — AT Ag)v, ). (4.20)

for all (u,v,w) ", (v/,v',w’)T € H. As underlined before as .Al_le and .Al_l.Ao(B —Al_l.Ao)
are self-adjoint, the above form is symmetric. Now we notice that

2E(t) = (U(®), U() 3y,

hence
E'(t) = Re(U'(t), U(t)), = Re(AU(t), U(t))3,-

To get the conclusion it then remains to show that

Re(AU, U)yy, = —((B — AT Ag)w, w), YU = (u,v,w) € D(A). (4.21)
But in view of the definition of A, for U = (u,v,w) € D(A), we have

(AU, U)3yy =a1(w + A7 L Agu, v + AT Agu)

+ (—Agu — A1 — Bw + A7 M Agw, w + AT L Ago)
+ (A7 A (B — AT Ag)w, v).

Using the definition of A1, we get
Re(AU,U)3, =Re {(.Alw + Agv, v + A1_1A0u> — (Agu, w + Al_lev)
— (A1v,w + AT L Agv) + (=Bw + AT Agw, w + AT Ago)
+ (A7 Ao(B — AT Ag)w, v) }.

Using our assumptions, some terms of this right-hand side cancelled out to reduce to the
right-hand side of (4.21). O

In a second step, we need the following identity (compare with [53, Lemma 4.4],[54, (30)]
and [55, Lemma 3.2]).

Lemma 4.10. Let U = (u, u¢, ugt) be a strong solution of (4.5) with an initial datum Uy =
(ug,u1,u2) € D(A), then it holds

d d

ay(ug, ug) = ||utt||2 — —Ey(t) — — (Re(ugt, up)) . (4.22)
dt dt

Proof. Taking the inner product of the first identity of (4.1) with u; we directly get

(ugtt, ut) + (Bugt, ug) + ag(u, ug) + ag(ug, ug) = 0.
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Taking the real part of this identity, we obtain

d
aj (ut,ut) = — Re(uttt,ut) — aE()(t).

As p
E(Utt, ut) = (ugtt, ut) + (uee, uet),
the two previous identities directly yield (4.22). O

We are ready to state the exponential decay result (compare with [53, Lemma 4.5 and
§4.3], [54, steps 3 and 4 pp. 982-983], and [55, steps 3 and 4 pp. 20-21]).

Theorem 4.11. Under the additional assumptions of this section, the semigroup generated
by A is exponentially stable in H, namely there exist two positive constants M and w such
that

le*4 T ]| < Me™H|Up|l, YUy € H.

Proof. Let us first fix Uy € D(A) and let U(t) = (u(t),v(t), w(t)) = etAUy be the strong
solution of (4.5) (that satisfies v = u; and w = uy). For such a solution using the identities
(4.19) and (4.22), we have

d _ d
g Prot(t) = —((B = A LAo)ust, ust) + 8|ugel|* — dan (ug, ur) — 0 (Re(us, ut)) -

Hence by our assumption (4.17¢), we get

d d
EEtot(t) < —O|jugt||® — da (ug, ur) — 5@ (Re(utt, ut)) -

Integrating this estimate in ¢ € (0,T) for an arbitray T' > 0, one gets

T
Brot(T) = Buot(0) +3 [ (llueel® + as(u, wr)) dt
< —0Re(ugt(T),ut(T)) + 6 Re(ug (0), ug (0)). (4.23)

For the second term of this right hand side using Cauchy-Schwarz’s inequality and Lemma
4.8, we get
Re(utt(0),u¢(0)) S Etot (0). (4.24)

On the contrary for the first term, we write
(uet(T), us(T)) = (use(T) + A7 Agus(T), ug(T) — (A7 ' Aous(T), ug(T)).

Using Cauchy-Schwarz’s inequality and Young’s inequality and the boundedness of Al_lAO
from H into itself, we find

(utt(T), ut(T)) < lluge(T) + Ay Ague(T)|I? + [[ur(T)|1%,

note that here and below the constant involved in < is independent of 7. By the assumption
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(4.17d) and the definition of E(t), we get

(ust(T), w(T)) S E(T),
and since FE is non increasing, we arrive at

(utt(T), wt(T)) < E(0).

This estimate and (4.24) in (4.23) directly yields
T 2
BiotT)+8 [ (luael + ax(ue, ) dt S By 0)
Using Lemma 4.8, we arrive at
2 T 2
1), (D), e TN + [ (el + a1 (e, we))

< [1(u(0), u(0), u (0))113;- (4.25)

We are now reduced to estimate f(;f ||u||%, dt. For that purpose, we take the inner product in
H of the first identity of (4.1) with u to get

(uttt + Bugt + Agu + Ajug, u) = 0.

Taking the real part of this identity, we find

1d
CL()(’LL, u) + __a'l(u’ u) = - Re(uttt + BUtt, u)

2dt

As 1d d

_ ¢ 2 “w

Re(uttt,u) = th”ut” + Re dt(utt,u),
and p
(Bugt, u) = E(But,u) — (Bug,ut),
we find
ao(u,uw) + 1ia (u,u) = (Bug,ut) + d (1||u 12 — Re(ust, u) — Re(Bu u))
o\u, 2 dt 1\4, = t, Ut dt \2 t tty ts .

Integrating this estimate between 0 and 7' > 0, we find

T 1 1
) a0l ) dt + Za1 (u(T), u(T)) - 5a1(u(0),u(0))
< [} (Bugyue)di + 3D + (), u(D)| + (BT, u(T))

+ 5l (O)1% + [(s(0), w(0))| + |(Bue(0), u(0))].
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Using Cauchy-Schwarz’s inequality, the boundedness of B, the continuous embedding of V'
into H and the coerciveness of a1, we obtain

T T
/0 ao(u, u) dt < /0 a1 (ug, ug) dt
+ 11 (u(T), e (T), uge(T)) [, + 1| (w(0), ue(0), uze (0))[13,- (4.26)

With the help of (4.25), we get

T
| ao(u, ) dt < 11(u(0), ue(0), urr ()1

This estimate and again (4.25) leads to

/OT (Hlugel® + a1 (ug, ug) + ao(u,w)) dt < [|(w(0), us(0), use(0))3,

and by Lemma 4.8, we finally obtain

T
/0 1 Cwt), e (8), uee (813, dt S Nl (u(0), e (0), uee (0)) 13-

Since this estimate is valid for all T > 0 and recalling that (u(t), us(t), us(t)) = e!4Up, we
get

o tATT 12 2
| 0ol dt < 0o

As D(A) is dense in H, this estimate remains valid for all Uy € H and, by [34] (see also [94,
Theorem 4.1.4]), we conclude that e*4 is exponentially stable. O

Let us end up with some examples.

Example 4.12. In the setting of subsection 4.2.2, assuming that My = M7, bg = by +,
c = 0 for some real number r and a positive real number B, the operator Ag is selfadjoint.
Then due to (4.13), (4.17f) will be valid if

r > B(B1 — mcy).
Now denoting by 1 the identity operator, as
Ag = A + 7l

we deduce that
AT A = AgATY = BT+ r AT,
and hence (4.17a) holds.
If r # 0, we take B = al with a constant o which guarantees that (4.17b) holds. On the

contrary if r = 0, we can take B = al with o € L*°(Q2) and (4.17b) remains valid.
In both cases, (4.17c) holds if & > 0. Hence if remains to examine (4.17d) and (4.17¢).
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Ifr=0, as .Al_l.Ao = BI with 8 > 0, (4.17d) and (4.17e) are equivalent and as
B— AT A = (a - B,
they holds if and only if
a—LB>26, a. e. in Q. (4.27)
On the contrary if r # 0, then
B— AT Mg = (a - B)I - r AT,

while

AT Ag(B — A7 Ag) = Bla — B)1 + (a — 28)rATY — r2 A2,

As there exists a positive constant C1 such that
AT 0]l 12(q) < Cullvll p2(qy, Yo € L),

by Cauchy-Schwarz’s inequality we deduce that

(B — A7 Ao)v,v) 2(q) =(a — 5)”””%2(9) — (A7 10, v) 2 (4.28)

>(a = 8~ [rlC0) vl 22 (4.20)
This means that (4.17e) holds if
a—pB—|r|Cy; > 0.
Similarly, we have
(A7 o (B — AT Ao),v) 120y = (Bla = B) — o = 28]|r[C1 — r2CY)l[o] 72 -

Consequently (4.17d) holds if

Bla — B) — |a — 28||r|C1 — r2C2 > 0.

4.4 A degenerate case

In this section, we present examples where the assumptions (4.17d) and (4.17e) fail and for
which exponential, polynomial or logarithmic rate is reached. In the setting of subsection
4.2.2, we assume that €2 is connected and we choose M7 equal to the identity matrix = I ;,4,
My = Bljxq, where B is a positive constant and B in the form (4.12) with oo € L(2) such
that

a>fa. e in Q. (4.30)
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In other words, we study Moore-Gibson—Thompson system (4.2). We further suppose that
there exist an non empty open subset wq of €2 and a positive constant x such that

a—pf >k a. e in wp. (4.31)
In this case all assumptions of section 4.3 hold except (4.17d) and (4.17e) since
AT Ao(B — AT Ag) = B(B — AT Ao) = B(a — B,

that could be zero on 2 \ wg. Hence the sole case of interest here is the case when wy is
different from €2 and o = [ on a non empty open set of €2.

According to Remark 4.3 and commonly found works about weaker (polynomial or loga-
rithmic) decay rate of the wave equation (see below), we can expect weaker decay rate for
system (4.2). In this case our stability result is based on a spectral analysis and a resolvent
estimate obtained by a comparison with the resolvent of the wave equation with an interior
damping in wy.

We then first analyze the resolvent set p(A) of A. Note that the domain of A is not com-
pactly embedded into H, hence, if it exists, the resolvent of A is not compact. This renders
the analysis more complex and forces us to use a compact perturbation argument (described
below).

Lemma 4.13. Under the previous assumptions,
Cr={AeC:ReX >0} Cp(A). (4.32)

Proof. Let A € C4 and F = (f,g,h) " € H. We look for U = (u,v,w)' € D(A) such that

AU — AU =F, (4.33)
or equivalently
Au—v=f (4.34a)
AV —w =g, (4.34Db)
A+ a)w — A(Bu + v) = h. (4.34c)

Assuming that a solution U exists. Then the two first identities yield

v = du-—f, (4.35)
= Ww—g=XNu-\—g, (4.36)

and plugging (4.35) and (4.36) into (4.34c), we find
A+ a) 2u— (B+NAu=h+ (A+a)Af +g) — Af in D'(Q), (4.37)

where D'(Q) is the space of Schwartz distributions, the dual of the space D(2) made of
smooth and compactly supported functions in €, see [2, p. 19] or [107]. This equivalently
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means that
ay(u,v) = Fy(v),Yv € D(), (4.38)

where for all u,v € H& (Q)
ay(u,v) = /Q (()\ +a)\ud + (B + A\)Vu - Vﬁ) dz,
F\(v) = /Q (h+A+a)Af+g) T+ Vf- Vo) do.

Since ay, is continuous on H} () x HF () and F) is continuous on H} () and D(Q) is dense
in H(% (Q), the identity (4.38) remains valid for test-functions in H& (), namely

ay(u,v) = F\(v),Yv € H}(Q). (4.39)

Let us now show that this problem has a unique solution u € H(% (©). For that purpose, we
distinguish two cases:

o If A =0, we see that

ag(u,v) = ﬁ/g Vu - Vude,
Fo(v) = /Q (h+ag) 7 + V- Vi) da.
Since a is a continuous sesquilinear and coercive form on H&(Q), problem (4.39) (with
A = 0) has a unique solution u € H&(Q) Defining v = —f and w = —g (see (4.35) and

(4.36)), we easily see that U = (u,v,w)' belongs to D(A) and is solution of (4.33)
(with A = 0). Hence 0 belongs to p(A).

e If A # 0, our argument is more complex and is based on a compact perturbation
argument. Namely introduce the sesquilinear and continuous form by on H, 6 (Q) defined
by

by(u,v) = (B + \) /QVu V5 dz, Yu,v € HY(Q).

Introduce further the operators Ay and B) by

Ay HY(Q) —» H Q) : u— Ay,
By : H}(Q) - HYQ) : u = By,

with
(Apyu,v) = ay(u,v), (Byu,v) =by(u,v),Yu,v € H&(Q)

Since Re(8 + A) > B, the form by is coercive, in the sense that

Reb(u,u) 2 8 | [Vul?dz 2 [lul g, vu € HY(®),
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due to Poincaré inequality. Hence by Lax-Milgram lemma, the operator B) is an
isomorphism from H}(Q) into H~1(Q). Since Ay — By = (A + @)\’ is a compact
operator from H& (Q) into H~1(Q), A) is then a Fredholm operator of index zero from
H& (Q) into H~(Q2). Hence it is an isomorphism if and only if it is injective. So let
u € ker Ay, then it is a solution of (4.39) with F\ = 0, namely

ay(u,v) = 0,Yv € H}(Q). (4.40)
But then defining (compare with (4.35) and (4.36))
v = Au,w = Av,
we easily see that the triple U = (u,v,w)' belongs to D(A) and is solution of
AU — AU = 0.

Now we take advantage of the identity (4.21) that here implies

ReA(U,U)y, = — /Q(Ot — B)|w|? dz.
But according to its definition (4.20) and the assumption (4.30), we have
(U,U)y, =0, and /Q(oz — B)|w|?dz >0,
and therefore the previous identity implies that
/Q(a — B)|w|?dz = 0.

By (4.30) and (4.31), we conclude that

w=0 on wy
As X # 0, we deduce that

u=0 on wp. (4.41)
But u € H(:)l (Q) being solution of (4.40) it satisfies

A+ a)X\2u — (B+ N)Au =0 in D'(Q).

Since the operator A is elliptic and u is zero on wy by Calderon uniqueness theorem
(see for instance [66, Theorem 4.2]), v = 0 on the whole Q. This obviously implies
that v = w = 0 and hence U = (0,0,0) T and the injectivity of Ay is proved.

In conclusion, Ay is an isomorphism, which guarantees that problem (4.39) has a unique
solution u € H&(Q) As before defining v by (4.35) and w by (4.36), we easily see that

the triple U = (u,v,w)" belongs to D(A) and is solution of (4.33). The proof is then
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complete. [

The main ingredient to obtain the resolvent estimate is to use the decay rate (exponen-
tial, polynomial or less) of the semigroup generated by wave equation in Q with Dirichlet
boundary condition and with a frictional interior damping in wy:

ut — Au+ (@ — B)ug =0 in Q x (0,400),
u=0 on I' x (0,+00), (4.42)
u(-,0) =ug and w(-,0)=wu; in Q.

where o and [ are the functions introduced before. More precisely, introduce the Hilbert
space Hqy = H () x L2(R) with norm
1(w,0) "3, = lulf g + 0l Y(u,v) | € Ha,
and the operator A, defined by
D(Aw) = {(u,v) T € HJ(Q) x Hj(Q) | Au € L2(Q)}, (4.43)
and
Aw(u,v)T = (v, Au— (a — B)v)), Y(u,v)" € D(Ay). (4.44)

It is well-known that .4,, generates a Cp-semigroup of contractions (Ty(t)):>0, see [9, p.
232]. Hence it is well-known that its resolvent set p(Ay) contains the open right half-plane
{A € C:ReA > 0} and that

1
Al — Ay) 7t < ———,YA€C:Re)>0. 4.45
IO = Aw)lgt,) < o VA €C i Re (4.45)
Since wq is open and non empty, by Holmgren’s uniqueness theorem (see above), one can
show that the imaginary axis is included into p(.Ay) and therefore C C p(Ay). The decay
rate of the solution to system (4.1) is based on the following bound on the resolvent of A,
on the imaginary axis

1GET = Aw) Ml g3,y S M€]), VE € R, (4.46)

where M is a continuous, positive, and non decreasing function from [0, 00) into itself. Before
going on, recall that for any A € C4 and an arbitrary F1 = (f1,91) € Huw, (ul,vl)T =
(Al — Ay) "L Fy € D(Ay,) satisfies

v = M — fi, (4.47)
A+a—=PB)uy —Auy = g1 +A+a-B)f, (4.48)

and the estimate
[utly,o + lorlle < IO = Aw) "Ml g (filne + llgill)- (4.49)
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Due to (4.47), this implies

lutl10 + PNllutllg < max{L, (A = Aw) "l 234, Y filne + lgille). (4.50)

Now we are ready to prove the following result.
Theorem 4.14. There exists a positive constant C such that
-1
IAAL—A) "l 23

IO = Aw) 2 )
1+ |2

< C'max {1, IOT = Aw) "l 2024, },VA €Cy.  (451)

Proof. 1. For A € K ={u € C4||p| < 1}, the estimate (4.51) is direct using Lemma 4.13
and since the resolvent operator

A= (A= A)7!
is holomorphic on p(.A) (see [9, CorollaryB.3]), hence continuous on K. Therefore
IAL= A gy SLYAEK,
where from now on the positive constant hidden in < is independent of \.
2. Let A € C4 satisfy |A\| > 1and F = (f,g,h)" € H and let U = (u,v,w)" € D(A) be

the unique solution of (4.33). We have seen before that v is given by (4.35), hence the
condition from D(A), Agu + Ajv € L?(Q) takes the form

A((B+ Nu— f) € L2(Q).
This suggests to introduce the new unknow
uy=A+pu—f (4.52)

that belongs to H& (Q) with Auq € L2(Q). Recalling that u satisfies (4.4), we see that
u1 satisfies
A+ a)X%u — Aug = h+ (A + a)(Af + g) in L2(Q).

As A+ B # 0, replacing u by ﬁ(ul + f), we find

Ao
A+

f in L?(Q). (4.53)

AB(A
A2u1—Au1=h+(A+a)g+M

+
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By setting

2 _
g1 = h+ﬂg+ )\)‘fﬁf—i_ Aﬂf\o_[{_ IBIB)ul’
IR
i = g+mf,

we see that wuj is solution of (4.48). Hence setting v; = Auj — f1, we find a pair
(u1,v1) T € D(Ay) satisfying (4.47)-(4.48). Consequently, the estimate (4.50) holds
for u1, namely

luil1,0 + M luillo < Ca(If1l1,0 + ll91lla)

where for shortness we have set
Cy = max{L, (AL - Auw) "l £(3¢,,)}-

Using (4.35) and (4.52), we see that

_ p
T
hence 2( )
BN +a—B
= Bla—B)v+h+Bg+ .
g1 =B(a—Bv By ig 7
Using this expression of g1 and the definition fi, we get
A8
lutlr,o + AM[lutlle < Callgli0 + B [fli,0 + lIkllo + Bllglle
132
+ Ada— + —a)v )
g+ o= Bl + 81168 — vl
As
|>\| <1,VAe(Cy, (4.54)
X+ 8]
we find that

lutlr,0 + [Mllurllo <Cx(Igh,0 + BIfl,e + lIklle + Bllglle + 88 + K)| fllo  (4.55)
+B[(8 — )vlla),

where K = maxq(a — ). Now we exploit the dissipativeness relation (4.21) that here
implies

—Re((\U — AU, U)ygy, = /Q(a — B)lw]? de.
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Using Cauchy-Schwarz’s inequality and the fact that (U,U)y, < (U,U)y, we find

2
(@ =B)lwl? dz < Il .
By Young’s inequality this estimate implies that

la=Bwla < e - Bulla < e IFlly +elUly, (4.56)
for all € > 0. As (4.36) yields A\v = w + g, we find
[Alll(a = B)vlla < (e — Blwllg + lI(a — B)glla,
and therefore by (4.56)
All(e = B)vllg S 1+ DIIFllg + el Ul
for all € > 0. As we here assumed that |A\| > 1, this estimate in (4.55) leads to
[url,0 + Mlluille S Cx (1 + AITDIF N3 + AT ) (4.57)

for all € > 0. Now we come back to u,v and w. First using (4.52), we have (recalling
that 8 is constant)

A+ Bllulio < luilio + | flie,
which, by (4.57), yields

A+ Bllulig S Cx (L +e AN F g + MU %)
for all € > 0. Recalling (4.54), we deduce that
Mlulrg S Cx (@ + e ATl + N THIT ) (4.58)
for all € > 0. By (4.35), we directly obtain
[lia S Cx (L4 IATDIF Il +eNTHIT ) (4.59)

for all € > 0. It remains to estimate the L2-norm of w. For that purpose, we notice
that u; = fu + v, hence

lvlle < Bllulle + l[uallo-
Therefore using (4.57) and (4.58) (with Poincaré inequality), we get

Allelle < BiMllulla + Mllutllo
SO (@ + e AN F Nl + AT )
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for all ¢ > 0. By (4.36), we get that
lwllo < Cx ((1+e T AITDIF Il + el Ul) 5 (4.60)

for all € > 0. In conclusion using this estimate and (4.58)-(4.60), there exists a positive
constant C' (independent of A and ¢) such that

U112 = [I(z, 0, w) 3¢ < CCA (A + & NI Fllgg + el MUl »

for all € > 0. Hence chosing € = 2g‘cl,/\, we conclude that

1
SIUll < €O+ 20CHIN2)|IF I3, (4.61)

which proves (4.51) for |A| > 1.
[

Corollary 4.15. Under the previous setting, if we suppose additionaly that (4.46) holds for
a continuous, positive, and non decreasing function M from [0,00) into itself. Then the
semigroup T'(t) = et generated by A is bounded and the bound of the resolvent of A

M(|¢])?
1+ [¢]2

1GET = A) ™| g3g) S max{M(I¢]), },VEER (4.62)

holds.

Proof. To prove the first statement, recall (see for instance [9]) that the spectral bound of
the operator A is defined by

s(A) =sup {ReX : X e Sp(A)},
while
so(A) :=inf {z > s(A) : 3C; >0 : |[|Al— A)~Y| < Cp whenever Re\ > z}.
By Theorem 5.2.1 in [9], we know that
w(T) =inf {w € R : M, > 0 such that ||T(t)|| gz < Muwe“?, ¥t > 0}
= 50(A). (4.63)

First owing to Lemma 4.13, s(.A) < 0. Secondly combining the estimates (4.45) and (4.51),
we directly get

1
This proves that
so(A) <0,
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and by (4.63), we deduce that T'(t) is bounded. Finally the bound (4.62) is a direct conse-
quence of (4.51) and (4.46), since M(z) > M(0) > 0. O

This result combined with the frequency domain approach yields the following decay

rates of the semigroup generated by A. We start with the exponential decay.

Corollary 4.16. Assume that Ay, generates a Co-semigroup of contractions (Toy(t))i>0 that
is exponentially stable, namely

I (8)Ull3g,, < Me™(|Ull3,,, YU € Hao,

for some positive constants M and w. Then the semigroup (etA)tZO is exponentially stable

in H.

Proof. By a well-known result due to Huang and Priiss [50, 101], (etAw)tZO is exponentially
stable in Hy, if and only if iR N o(Ay) = 0 and (4.46) with M(z) = 1 holds. Hence by
Corollary 4.15, (4.62) holds with M(z) = 1, and again applying Huang/Priiss theorem to
A, we conclude. O

For polynomial decays, we replace Huang/Priiss theorem by Borichev-Tomilov theorem
[14, Theorem 2.4] to obtain the next result.

Corollary 4.17. Assume that the semigroup (etAw)tZO is polynomially stable in Hyy, namely
there exists a positive real number £ such that

_1
e Tplly, < t¢lUollpa,), YUo € D(Aw), VE>1. (4.64)
Then the semigroup (etA)tZO is polynomially stable in H, i.e.,

1
14013 St 72||Ullpay, YU € D(A), VE>1,

if £ > 2, while if £ < 2, one has
14U 13 S €T I[Ullp gy, YU € D(A), Vi>1,

Proof. As the semigroup generated by Ay, is bounded and iRNo(Ay) = 0, by [14, Theorem

2.4], (4.64) holds if and only if (4.46) holds with M(z) = 1 + zf holds. As before the
conclusion follows with the help of Corollary 4.15, and again applying [14, Theorem 2.4] to
A by noticing that

1+ €262, if £ > 2,

max{1+ el 1+ 1672 = { [T,

]

For lower decay, the equivalence between the semigroup decay rate and the asymptotic
behavior of the resolvent on the imaginary axis is not guaranteed, but by taking advantage
of a result due to Batty and Duyckaerts [13, Theorem 1.5] and our Corollary 4.15, we get as
before the next corollary.
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Corollary 4.18. Assume that (4.46) holds with a continuous, positive, and non decreasing
function M from [0, 00) into itself. Then the semigroup (etA)tZO has the following asymptotic
decay in H:

1

t

lle AU”H S MT(t)
log \C

for some positive constant C, and Mlog is defined by

||U||’D(.A)’ YU € D(A), Vt>1,

Miog(z) = M () (log(1 + M(x)) +log(1 + z)) , ¥z > 0,

with M (z) = max{M(z), %}

Let us finish this section with some illustrative examples.

Example 4.19. Let us now mention some examples for which the frictional damping in wy
guarantees the polynomial stability of the wave equation (5.55).

1) If Q is the unit square and wq contains a vertical strip of €, then it is proved in 76, 109],
a polynomial decay rate. Namely in [76], assuming that

(a’a b) X (07 1) C wo,
for some 0 < a < b < 1, it is shown that (4.64) holds with £ = 2. On the contrary if
(070) X (07 1) C wo,

for 0 < ¢ < 1, it is swhown in [109] that (4.64) holds with £ = 3/2.

2) If Q is a partially rectangular domain and wq contains the non-rectangular part of 2, then
it is proved in [20] (combined with [14, Theorem 2.4]) that (4.64) holds with ¢ = 2.

3) Examples of domains Q and wy leading to (4.64) holds for £ > 0 can be found in [99].

Example 4.20. It was shown in [68] that if & — § is smooth and not identically equal to
zero and if the boundary of Q is smooth or convex, then (4.46) holds with M(z) = e, for
some positive constant C.This yields

tA 1
e U”’Hg@HUHD(A)a VU € D(A), Vt>1,

since Mlgé (t) ~ logt, for t large (see [13, Example 1.6]).
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CHAPTER 5
WELL-POSEDNESS AND LONG TIME BEHAVIOR FOR A
GENERAL CLASS OF MOORE-GIBSON-THOMPSON
EQUATIONS WITH A MEMORY

5.1 Introduction

In this chapter, we consider the well-posedness and the long time behavior of some evolution
equations with memory (see (5.4) below), the following Moore-Gibson-Thompson equation
with memory

t
uttt + aug — Aug — yAu +/0 g9(s)Au(t — s)ds = 0, in Qx(0,00),
u =0 on 09 x (0,00), (5.1)
u(0,.) = ug, ut(0,.) = uy, ut(0,.) = ug, in Q,

being a particular instance. Here and below, () is a bounded domain of RN , N>1 ~vis
a positive constant, g is a memory kernel that is exponentially decaying (more precisely it
satisfies the assumptions (Al) to (A3) below) and « is here a function that is supposed to
be in L°(Q).

The chapter is organized as follows: The well-posedness of our problem is proved in section
5.2 by using semigroup theory and a bounded perturbation argument; further under the
assumption

>, (5.2)

we show the boundedness of the generated semigroup using a Lyapunov technique. In section
5.3, we prove that the semigroup is semi-uniformly stable using Batty criterion. The lack
of exponential decay is shown in section 5.4 by building a sequence of eigenvalues (of the
operator associated with our system) that approach the imaginary axis, this construction
requires that the absolute value of the derivatives up to order 3 of the memory kernel are
exponentially decaying at infinity. In section 5.5, we prove a polynomial decay of the solution

in t_% for initial data in the domain of the associated operator, and the optimality is derived.
Finally a stronger polynomial decay using a resolvent estimate of the wave equation with
a frictional interior damping is obtained in section 5.6 and some illlustrative examples are
given.

Let us finish this introduction with some notation used in the chapter. The usual norm
and semi-norm of H*() (s > 0) are denoted by || - ||s o and | - |; o, respectively. In the

same spirit, we denote by (-,-)q and (-, )1 q the inner product in L?(Q) and in H}(Q) (the
subspace of functions in H 1(Q) with a zero trace on the boundary 0% of 2), namely

(u,u)q = /Quﬁ'dx,Vu,u’eLz(Q),
(u,u’)l,g = /QVu-Vﬂ’dx,Vu,u’EH&(Q).
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For s = 0 we drop the index s. By a < b, we mean that there exists a constant C' > 0

~Y

independent of a, b, such that a < Cb, while a ~ b means that both a < b and b < a hold.

5.2 Well-posedness of the problem

In this section, we first state some assumptions, then we prove the well-posedness of system
(5.1). The nonzero function g, called the memory kernel, is supposed to be in WL 1(RT)
with g’ absolutely continuous on R™ = (0, 00) and to satisfy

(A1) g: R4+ — (0,00) is a nonincreasing function such that
o
g(0) >0, v — /0 g(s)ds =£>0.

(A2) For some § > 0, the functional g satisfies

g () < =bg(t), for all t € (0,00).

(A3) ¢” > 0 almost everywhere.

Further, note that ¢’ being an absolutely continuous function, it has a continuous extension
at 0, and its derivative g” is integrable over interval (0, R) with R > 0, see for instance [69,
Corollary 3.9 and Theorem 3.30]. As a consequence of (A1) and (A3), we deduce that ¢’ is
nonpositive and nondecreasing and therefore

lim ¢'(R) < oo.
R—o0

This implies that
R
li "#)dt = lim ¢'(R) — ¢'0) <
Rgnooog() Rgnoog() g'0) < oo,

and by Fatou’s lemma, g” is integrable on Ry . In other words, under the previous assump-
tions, g € W21(R1). To prove the well-posedness of the equation (5.1), we adopt the same
procedure used in chapter 1 and instead of taking the whole space we redefine the framework
of the spaces and their norms in 2. Indeed, we first set the problem in the so-called history
space setting to get

n(z,t,s) =1'(z,5) = u(z,t) —u(z,t - ). (5.3)
Therefore, the problem (5.1) is written as follows

o0 t
upt + aupr — Aup — LAu —I—/O 9(s)An*(s)ds =0,

(2, ) +n4(w, 5) = ue(z, t) (5.4)
u=0

w(0,.) =ug, u(0,.) =wu1, u(0,.)=ug, n°(,s)=n(s),
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For more details, see Chapter 1 (Section 1.2. The Hilbert space associated with (5.4) is given
as

H = H}(Q) x H}(Q) x L2(Q) x M.
Similar inner product as well as the norm corresponding to H to those defined in Section

1.2, ((1.15) and (1.16), respectively, with © € RN), are given in this chapter. By the change
of variables us = v and uy = w, we rewrite (5.4) as

Ut = v,
v = w,
5.5
wy = —aw—i—Av—i—EAu—i—/ s)Ant(s)ds, (5:5)
nt =v - 775
Consequently, the system (5.5) is an evolution equation in H, that is,
Luw = AU(H),  te (0,400)
dt Y Y Y (5.6)
U(z,0) = Uy,

where U(t) = (u(t),v(t), w(t),nt), Uy = (ug, vy, wo,n°) is arbitrary in H, and A is the linear
operator given by

U v
v w
AU=A| | = —aw + A(v + lu+ [5° g(s)nt(s)ds) ’ (5.7)
t
n v+ Tnt
for all U = (u,v,w,n)" € D(A), where its domain D(A) is given by
w E Hl(Q)
D(A) = { (u,v,w,n)T € H| v+ Lu+ 5 g(s)m t(s)ds € HX(Q) ¢. (5.8)
" € D(T)

Theorem 5.1. Assume that (A1)-(A3) are satisfied. Then under the assumption oo € L*°(Q)
the linear operator A is the infinitesimal generator of a Co—semigroup (S(t) = tA)t>0 in

H.
Proof. Denote by Ag the operator A corresponding to the case a = 7, namely

U v
w
AO y _ 00 t )
w yw+ Al v+ Lu+ [5° g(s)n*(s)ds
t
N v+ Tt

for all U = (u,v,w,n)" € D(Ag) = D(A). According to Theorem 3.2 of [37], Ay generates
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a contractions semigroup in H. As A — Ag is given by

U 0
(A-40)| ° | = o _Oa)w . (5.9)
nt 0

We directly see that A — Ay is a bounded operator from # into itself and by Theorem 3.1.1
of [94], we conclude that A generates a Cy—semigroup in H. ]

Corollary 5.2. Under the assumptions of Theorem 5.1, for any Uy € D(A), the problem
(5.4) has a unique classical solution in the class

(u, ut, uze, ') € CL([0,00) ;1) N C ([0, 00) ; D(A)).
Corollary 5.3. In addition to the assumptions of Theorem 5.1, we suppose that:
(A4) a € L*°(Q) is real valued and satisfies o« —y > 0, a. e. in 2.

Then the semigroup (S(t))e>0 is bounded in H, namely there exists a positive real number
M > 1 such that

IS@I < M.
Proof. For Uy € D(A), denote by U(t) = S(t)Up, and introduce the modified energy

B(t) = 5 (10, +7Iva=7ullR)

Then by the previous corollary, U is a strong solution of (5.6), and E is differentiable with

E'(t) = Re(U'(t),U(t)y +vRe((a — 7)us, ut)g
= Re(AU(t),U(t))y +vRe((a — y)ug, ugt)q, Vt>O0.

But recalling (5.9), we have

E'(t) = Re(AoU(t),U(t))3 + Re((v — a)(uge + yuz), uge) o + v Re((e — 7)ug, use)qy
= Re(AoU(t),U(t))n + Re((v — @)ugt, uet)q, VYt > 0.

Hence using the dissipativity of Ag and assumption (A4), we deduce that
E'(t) <0,Vt > 0.
This means that, this energy is nonincreasing, namely
E(t) < E(0),Vt > 0.
This, in particular, implies that

T3, < U653, +~llva =uilld,
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if Uy = (ug, u1,u2,n*(t = 0)) . But, we clearly have

YlvVe —yuillg < Cluil 0,

for some positive constant C' independent of uj. According to the definition of the norm
| - |3, we deduce that
2 2 2
U@, < M2 [Tl

2
where M2 =1+ %’—4 Since D(A) is dense in H, this property remains valid for all Uy € H,
hence the result is fulfilled. m

5.3 Strong stability

One simple way to prove the strong stability of (5.6) is to use a theorem due to Arendt &
Batty and Lyubich & Vi (see [10, 77]). But here we prove a stronger result based on the
following abstract result of Batty [12] (see also [13, Theorem 1.1] or [27, Theorem 3.4]).

Theorem 5.4. Let X be a Banach space and (T'(t))t>0 be a bounded Cy—semigroup gener-
ated by A on X. Then o(A) NiR = 0, if and only if

. —1y _
Jim [[T(@6)A™ = 0.

A bounded semigroup (T'(t))¢>0 satisfying one of these two conditions of this Theorem
is called semi-uniformly stable (see [13, Definition 1.2]) and in that case the decay rate may
be characterized via the quantity

M(s) = sup{||(i€1 — A) 71| : |¢] < s}.

In our case, this decay rate is precisely quantified in Sections 5.5 and 5.6. Note further that
a semi-uniformly stable semigroup is strongly stable due to its boundedness and the density
of the domain of its generator.

We now want to take advantage of this Theorem. As Corollary 5.3 guarantees the bounded-
ness of the semigroup generated by A, but as the resolvent of our operator is not compact,
we need to analyze the full spectrum of A on the imaginary axis. This is the goal of the next
Lemma.

Lemma 5.5. Assume that (A1)-(A4) hold, then we have the following
C+={Ae€C:ReA >0} Cp(4), (5.10)
where p(A) is the resolvent set of the operator A.

Proof. Let A € C4 and F = (f,g,h,p) € H, we look for a solution U = (u,v,w,n’) € D(A)
to the equation

AU — AU = F, (5.11)
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which component-wise becomes

A —v=f, (5.12a)
Av—w =g, (5.12b)
(0.9]
A+ @)w — Av — Ay — /0 g(s)Art(s)ds = h, (5.12¢)
Mt —v—Tnt =p. (5.12d)

From (5.12a), (5.12b) and (5.12d) we obtain

v=Au—f, (5.13a)
w=M—g=MNu—\f—g, (5.13b)

U (1 _ o—AS),, _ 1—e s 5 —A(s—7)
n"=(1—-e""u (—)\ f+ ) € p(7)dr, (5.13c)

with the convention that 1_‘3\_>\s =sif A=0.
Assuming for the moment that such a U exists, then plugging the three identities above
(5.13a), (5.13b) and (5.13c) into (5.12c), we get

_ )\+£+/Oo 1— e M)ds)A A)A2
A g(s)(1 — e ¥)ds |Au + (o + AN)A\“u
1—e 28

(o .¢]
—h+ @+ N +g) — <1 +/0 g(s)(T>ds>Af
o0 S A ’
+/0 g(s) [/0 e (S_T)Ap(r)dT] ds, in D'(Q). (5.14)
Note that this identity only hold in the distributional sense, since we have sent the contri-

bution of Af and Ap in the right-hand side. Accordingly (see [2] or [107]), it is equivalent
to

ay(u,v) = Fy(v), Yv € D(Q), (5.15)
where
ay(u,v) = /Q [(a + M\ 2ub + ()\ +4+ /OOO g(s)(1 — e_’\s)ds) VUV’I_)] dx
and
R = [, [(1+ [ o0 (F0)as) 195+ (4 (ot NS + )0

— /OOO g(s) ( /Os e A= vpvs dT) ds] dr,

for all u,v € H&(Q) Since D(Q) is dense into H& (), the identity (5.15) remains valid in
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the whole HJ (), namely
ay(u,v) = Fy(v), Yo € H&(Q) (5.16)

Now, we prove that problem (5.16) admits a unique solution u € H&(Q) For that purpose,
we deal with the following two cases.

e For A = 0. we have
ag(u,v) = Z/QVUVde,

and

Fy(v) =/

14+ [0 s9(s)ds |V Vv + (h+ ag)v
Q 0

- /0 > g(s)( /0 * Vi dr)ds] dz.

We first observe that ag is a sesquilinear, continuous and thanks to Poincaré inequality
it satisfies

ao(u,w) = ¢ [ [Vul? > ullf,  vue HY(®),

hence, the coerciveness of ag. Since Fy is clearly an antilinear and continuous form
on H&(Q), by Lax-Milgram’s lemma, we deduce that for A = 0, (5.16) has a unique
solution u € H& (Q). Moreover, by setting v = —f, w = —g and

n'(s) = sf + [ p(r)ar,

we find that U = (u,v, w,n’) belongs to D(A) and is the unique solution of (5.11) for
A = 0. Consequently 0 € p(A).

o For A # 0. The proof is a slightly different from the previous one. First, we introduce
the sequilinear form by by

by(u,v) = /Q (A +4+ /OOO 9(s)(1 — e_As)ds) VuVodr — Vu,v € H(:)l ().

Moreover, we define the operators Ay and B) as follow

Ay HY(Q) = H Q) = (H5(Q) 1 u— Ay,
By : HY(Q) = H1(Q)) : u = Byu,

where, for all u,v € H&(Q), we set

{(Axu, v) = ax(u,v),
(Byu,v) = by(u,v).

It is easy to check that b) is a sesquilinear and continuous form on H& (Q) and since
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Re <>\ + 24 [Cag(s)(1 - e_)‘s)ds) > /¢, it is coercive. So, according to Lax-Milgram

lemma, the operator B) is an isomorphism.

Next, as Ay — By = A2(a + M), it is a compact operator from H& (Q) into H1(Q),
we then deduce A) is a Fredholm operator of index zero. It is therefore sufficient to
show that the operator is injective to deduce that it is an isomorphism.

For this reason, let u € ker Ay, then, it becomes a solution of (5.16) with F = 0,
which means that

a)(u,v) =0 WYov € H&(Q) (5.17)
This implies that
v = Au,
w = Au, (5.18)

n'(s) = (1— e M),

and that U = (u,v,w,n')T belongs to D(A) and satisfies \U — AU = 0. In addition,
owing to Lemma 3.4 of [37], we have

(0. 9]
Re(AoU, Uy = —1lin' I3 = [ 9" ()l (5)} o ds, (5.19)

and by (5.9) and (5.18), we get

Re(AU, Uy, = =7lin' I3 = [ 9" () (s) 3 ds
—Re ()\2(5\2 + 75\)) (¢ —7y)u,u)q.

Using the identity AU = AU, we find that

R NI, = 2l — [ "' () s (5.20
—Re ()\2(/_\2 + 75\)) (@ —y)u,u)q-

As ~ ~
N2 4+ 42) = A+ y]A2A,

we directly see that
Re (A2(A2 +94)) = I\I* +71A* Re ),

and is therefore positive (recalling that A # 0 and Re A > 0). As the left-hand side
of (5.20) is non-negative and its right-hand side is non-positive, we deduce that both
terms are zero, which in particular implies that

nt =0.



Finally as (1 —e~?%) #£ 0, for all s > 0 and X # 0, we find
u =0, in Q.

By (5.18) this yields v = w = 0, thus, the injectivity of Ay is proved.

In summary, for A # 0, A) is an isomorphism which guarantees that problem (5.16)
admits a unique solution u € H&(Q) Defining v,w and n' by (5.13a), (5.13b) and
(5.13¢c), respectively, we again find U = (u,v,w,nt)T € D(A) that is the unique
solution of (5.11).

We therefore conclude that (5.10) holds. O

Remark 5.6. In the framework of the previous Lemma, we may note that by Corollary
5.8 and a well-known criterion on the generators of bounded Cy-semigroup in Hilbert spaces
(see for instance [14, Lemma 2.1]), the set {\ € C : Re A > 0} is automatically included into
p(A). Therefore one could reduce the previous proof to the case A € iR. We have done it for
all A € C for the sake of completeness.

As a direct consequence of Corollary 5.3 and Lemma 5.5, Lemma 5.4 yields

Corollary 5.7. Under the assumptions of Lemma 5.5, (S(t))i>0 is semi-uniformly stable,
in particular it is stable, i.e.,

St)Ug— 0 inH, ast — oo, YUy € H.

5.4 Lack of exponential decay

It was proved in [37, §4], in the case a = 7, and g(s) = pe %% with p, 6 > 0 that the energy
of the solution of (5.1) does not decay exponentially, which implies that the semigroup
(S(t))e>0 is not exponentially stable. We here prove a similar property of this semigroup
in the case @ = +, but for any memory kernel satisfying (A1) to (A3) and the additional
assumptions that g € W31(R,) with

|g(k) (s)| < Ke_‘sos, for almost all s € R, (5.21)

for some positive constants K, g with g < § and for £ = 0,1, 2,3. This condition allows to
give a meaning to the Laplace transform L£g()\) of g (as well as of its derivative up to the
order 3) for all A € C such that Re A > —dg, where we recall that

Lg(A) = /Ooo e g(s) ds.

It also allows to prove the next technical result.

Lemma 5.8. If the memory kernel g € W3L(R4.) satisfy assumption (A1) to (A3) and
(5.21), then

cooy =99 gA(S) +o <|A1|2> , (5.22)
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for all A € C such that Re A > —%Q.
Proof. Owing to the property (5.21) for k = 0 and 1, the following identity

ALg(N) = g(0) + Lg'(N), (5.23)
holds for all A € C such that Re A > —dy. Using this property to ¢’ and ¢”, we also have

ALG'(N) = ¢'(0) + Lg" (N, (5.24)
ALG"(N) = ¢"(0) + Lg"' (), (5.25)
for all A € C such that Re A > —4g, and consequently

for all A € C such that Re A > —dg. Since (5.21) implies that

K

n
< =

for all A € C such that Re A > —dg, we will get

1Lg"(N)| < —

for all A € C such that Re A > —%1. This estimate and the identity (5.25) allows to deduce

that
2K

R

for all A € C such that Re A > —‘—Sél. Using this property in (5.26) leads to (5.22). O

IALg" (W) < 19" (0)] +

Example 5.9. Ezamples of memory kernels g € W31 (R4.) that satisfy assumption (A1) to
(A8) and (5.21) are numerous. The simplest example is g(s) = pe9% with p,6 > 0. The
second example is kernel of the form

J
g(t) = 3 Pj(t)e",
j=1

where ; are positive real number, Pj are a real-valued polynomials of degree d; with coeffi-
cients chosen so that g is positive, Pj > 0 P]'- + 0P; < 0 for some 6 < x; and PJ{' > 0. As
third example, we can mention

g(t) = (a+bt)"le™ 0,

with §,b positive real numbers and a a non negative real number.

Finally we denote by ()\%)zozl the set of eigenvalues (repeated according to its multiplicity)
of the positive Laplace operator with Dirichlet boundary conditions in 2 and let ¢, the
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associated orthonomalized eigenvector, namely satisfying
2
—Apg = Appg-
Without loss of generality we may assume that \; is positive.

Lemma 5.10. Assume that the memory kernel g € W3’1(R+) satisfies assumptions (A1) to
(A8) and (5.21) and that a = vy, then there exists ko large enough such that the operator A
has the eigenvalues Ay, , for all k > kg that satisfy

bt = ik £ 292(;)]3 + gl(o)z_kgg @, (/\—%) k> ko. (5.27)
Its associated eigenvector Uy, is in the form
Pk
Upt = Cht igig: , (5.28)

(1— e M)y,
where cg, 4+ # 0 is a normalization factor chosen such that
+
1UG N2 = 1.

Proof. Let U = (u,v,w,n')T € D(A) be an eigenvector of the operator A of eigenvalue A € C
such that —%Q < Re)X < 0. Then it satisfies AU = AU, i.e. it satisfies (5.12a)-(5.12d) with
f =9=h=p=0. Arguing as in the proof of Lemma 5.5, we obtain (see (5.13a)-(5.13c)
and (5.14))

v = A\u, (5.29)
w = Nu, (5.30)
n(s) = (1— e ), (5.31)

and .
- ()\ +4+ /0 g(s)(1 — e_)‘s)ds> Au+ (o + A)A\%u = 0.

By the definition of ¢, and since o = =y, this identity is equivalent to
— A +7—LgA\)Au+ (A +7) u=0. (5.32)

Due to Lemma 5.8, A+ — Lg(}) is invertible for |A| large enough, and for such a A, (5.32)
is equivalent to

2
Ay — A+7)A

2
= )‘+7_£g(>\)u— A(14+7r(N\))y, (5.33)
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where

r()) = Lg(N)
Aty —Lg(N)

Hence a non trivial solution u of (5.33) exists if and only if

(5.34)

A2(1+r(\) = —X2,

and in this case u is a multiple of ¢;. Setting Fi(A) = A%(1 + r(\)) + A2, the previous
identity is equivalent to
Fi(\) = 0. (5.35)

Now we set F ,(\) = A2 4+ X2, whose roots are
A = Fi)g.

Now we take advantage of Rouché’s theorem to find an asymptotic behavior of the roots
of Fj. More precisely we want to apply Rouché’s theorem in the ball B(+i), pg) with

0<pp < %Q appropriately chosen so that
|Fi(2) = Fo(2)| < [Fo(2)|, ¥z = idg + pge”, 0 € [0, 2n].
First due to Lemma 5.8 one has
[rI <IN
Consequently as Fi(z) — Fp ;(2) = 22r(z), we deduce that
|Fr(2) — FO,k(z)l < C,\Vz = $id + pkei07 0 € [0, 2n],
for k large enough and a positive constant C' (independent of k). Now for z = £i); +
pre? 0 e [0, 27], we have

Forp(z) = *2idpope®® + ple?

o ew)
20 ’

= 2)\kpk.€i0(:|:i +

and consequently .
Pk 0 |

|Fo k(2)| = 2Appx| £ i +
2

i0
As for k large enough, | £+ %| > 1 we deduce for such a k that

|Fo k(2)| = Aok,

hence the choice p;, = %, with k£ large enough, allows to apply Rouché’s theorem and
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conclude that Fp ;, has a root Ay 4 in B(£i), %) In a second step, we write

Mg+ = FiAp + 7 4,

where the remainder 7, 4 satisfies

1
Irkxl = O(A_k)’
which implies that
L sl ol
et Ak A3

Plugging this splitting (5.36) in (5.35), we find
+2iNgrp s+ Ths + ATV z) = 0.

But using (5.34), (5.22), and (5.38), one direclty sees that

9 1
Af T (Akx) = 9(0) + O(A_k)'
Inserting this property in the previous identity we get

1

£2i\rg 4 + 1o + g(0) + O X
’ k

) =0,
and using (5.37), we obtain
1
:tzi)\k’l”k’:t +g(0) + O()\—) =0.
k

As a consequence, we find

ig(0) 1
=+ O(—
that, owing to (5.36), leads to
A+ = i + i@ + s,
’ 20k

(5.36)

(5.37)

(5.38)

(5.39)

with a remainder s, satisfying s, = O(le) Finally plugging this second splitting (5.39) in

k
(5.35), the same argument than before leads to (5.27).

The lack of exponential stability directly follows from this Lemma.

]

Corollary 5.11. Under the assumptions of Lemma 5.10, system (5.6) (or equivalently (5.1))

is not exponentially stable.

Proof. Assume that system (5.6) is exponentially stable, in other words, assume that there
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exist two positive constants M and w such that
1S(#)Uolly < Me™*|[Ull3, ¥t > 0, (5.40)
for all Uy € H. Now for k > kg, we take
Uk(t) = S(t)Ug+ = e+ Uy 4.
By our assumption (5.40), we would deduce that
e e+t < Me™t Vit > 0,

which leads to a contradiction because (5.27) yields

!(0)—~g(0
o <g( )2/\39( )_1_0(%2)),5
|e k,+|=e k k

5.5 A first polynomial stability result

Our polynomial stability results are based on a frequency domain approach. Recall that the
polynomial decay of the energy can be obtained by using the next result stated in Theorem
2.4 of [14] (see also [13, 76] for weaker variants and [50, 101] for exponential decay):

Lemma 5.12. Let (T'(t))t>0 be a bounded Co—semigroup on a Hilbert space H (with norm
| - |g) with generator L such that

p(L) D iR. (5.41)

Then for a fized positive real number [, the following conditions are equivalent:
(i) There ezists C > 0 such that

_1
IT@)Uollzr < Ct1||Volip(cys YUo € DL), V> 1.

(it) There exists C1 > 0 such that
IT()Vollr < Cat M [Unlipery, Y00 € DL, V> 1.

(#i1) It holds

limsup = (i€ — £) 7 < oo. (5.42)
RS

In view of this result and Corollary 5.3, and Lemma 5.5 it remains to check (5.42) for
some [ > 0, in other words, we look for resolvent estimates on the imaginary axis Re A\ = 0 of
the Moore—-Gibson—-Thompson equation (5.4). Since in the case a = 7, a polynomial decay
rate is proved in [37, Corollary 7.3], we first prove a similar decay with the sole condition

(A4).
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Lemma 5.13. Assume that (A1) to (A4) hold, then
AL — A)7Y| < 14 A%, VA € 4R, (5.43)

Proof. In order to show our result, we distinguish two cases.

o For A\ € K= {p€iR:|u| <1}. Using Lemma 5.5 and the fact that (Al — A)~1 is
holomorphic on the resolvent set p(A) ([9]), it is continuous on any compact set of C,
in particular on K. Hence (5.43) is valid for all A € K.

« For A € iR with |\| > 1. Let F = (f,g,h,p)" € H, and U = (u,v,w,n*)T € D(A) be
the unique solution of (5.11) (or equivalently to (5.12a)-(5.12d)). Then as Re A = 0,
we have

—Re(AU,U)y = Re(F,U)y.
Using the splitting (5.9), we find
—Re(AoU,U)y — Re((y — a)w, w + yv) = Re(F,U)y.

Now using (5.19), (5.12a) and (5.12b), we find

i3a+ [ @) o ds + A= u)
+Re(A=7)f + 9, (@a=7)(Af +9)

— Re((A — )X, (@ — 7)(Af + g) — Re(A = 7)f + g, (@ — 1)\ w)
= Re(F, U)'H

Using the assumption (H3) and Cauchy-Schwarz’s inequality we find

Nt + NAHVe =uld SIFIxU N + N2 + gl
+ I RlIva=ulla(MI fllo + llgllo)-

Young’s inequality yields
Yt g + N IVa=ullgy S IFIx Ul + IPIFIG + lgliG-
In particular, it yields
I I3 S WEIIT g + IAPIANE + Nlgl. (5.44)
We now need to estimate the norm of u, v and w. First using (5.13c), we may write

1—eu=n+ (1_—5_)\8)f - /08 e A=) p(r)dr.

Hence recalling that A € iR and |A| > 1, we find

12 = e Yullae < Infllag + 21 f g+ 1L [ e p(r)drl g (5.45)
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Since we have

1

10 = eyl = ([~ 6Dt = e ds) " ul 0,
17 =901l 0,

and since we easily check that

| [ e p(r)drlia < el

the previous estimate (5.45) becomes

0 / —As12 % < t
/0 (—g' (N —e *[%ds ) |uly,o S I7°llm + [ flre + llpllam-

As the next Lemma 5.15 shows that the factor in front of |u|; g is uniformly bounded
from below, we then find

[ulne < In'llm + IflLe + 1Pl adge
By the estimate (5.44), we conclude that
2 2 2
luli o S IFI# U2 + A F (13- (5.46)
At this stage we use the identity (5.12a) to find
2 2 4 2
o1, S AEIEI U2+ IAF(E13- (5.47)

It now remains to estimate the L2 norm of w. Since the use of (5.12b) gives rise to
a sub-optimal estimate, we take advantage of (5.14). First we notice that using the

definition of D(A),A(Eu + v+ [5° g(s)nt(s)ds) e L2(Q), and taking into account
(5.12b), we find
o
A((A—M)u —f+ /0 g(s)nt(s)ds) € L2(Q).

This suggests to define u,, as
o0
uy=A+0u—f -I-/O g(s)nt(s)ds, (5.48)

that satisfies uy, € Hol(Q) and Auy, € L?(Q). Plugging this expression in (5.14), we
obtain

A+ a)X2u — Auy = b+ (@ + N (Af +g). (5.49)
Taking the inner L2 inner product with v and using Green’s formula we find

N (A + a)u,u)g. + (uw, )10 = (h+ (@ + N (Af + g), u)o-
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Setting A = i€ with £ € R and taking the imaginary part of this identity, we find
~Eull = ~S(uw, W)1,0 + S+ (@ + XA +9), w)q.

Taking the absolute value of this left-hand side, we get

WPllullf < [(ww, w0l + I(h+ (@ + D) +9), wal
and using Cauchy-Schwarz’s inequaltiy, we obtain

AP lulld < luwlalule + (M1 Flle + Mgl + 1Allo) lule.
Using Young’s inequaltiy, we get
AP lluld S luwlalule + IMIFIG + lglE + 121G (5.50)
For the first term of this right hand side, we first use (5.48) to obtain
luwlo S Mlule + £, + 17
Inserting this estimate in (5.50), we find
APlluld < Ml g + (flue + In a0 lule + IMIFIG + lglé + 121G
By Young’s inequality and the definition of the norm in H, this leads to
APl < NHul? @ + 1911 + I F I
At this stage the estimates (5.44) and (5.46) allow to obtain
APlullg S IMIE Ul + IPIENE,-

and then
INHllE < INPIFI T 13 + INHIE3,-

As w = X2u — \f — g (see (5.13b)), we conclude that
lwlig S INPIE Il Ul + M- (5.51)
Using the estimates (5.44), (5.46), (5.47), and (5.51), we find
113, < INPIF s Ul + I,
and by Young’s inequality we arrive at
101, < MAIEI

which proves (5.43) for all A € iR large. The proof is complete.
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Combining this Lemma and Corollary 5.3, Lemma 5.12 allows to obtain the next poly-
nomial decay rate.

Corollary 5.14. Assume that (A1)-(A4) hold, then system (5.1) is polynomially stable with
a decay rate in t—4 for initial data in D(A), namely we have
1
1S@®)Volly <t 2[|Uollp(a)y, YUo € D(4), Vi>1. (5.52)
Lemma 5.15. If (A1)-(A3) are valid, then
oy _,mAS2 g > g
A (—g' ()|l —e M|?ds =2 1,VA € iR : |A\| > 1. (5.53)

Proof. We consider the case A = £, with £ € R, and £ > 1. The case £ < —1 is treated in
the same manner. Direct calculations yield

11— %2 = 2(1 — cos(£s)).

As ¢/(s) is non positive, then we may write

L g @ - as > (~4/(5))(1 — cos(€s)) ds

2 Z /fse(z+2k7r,%+2k7r)
> (2-v2) z / (~g/(s)) ds.

Ese(G+2km,5+2km)

Let us now introduce the unique integer k¢ such that 2kem < £ < 2(k‘§+ 1)m, then we trivially
have

|6 - e Pds > 2~ v2) z/ (~/() ds.

Es€(G+2km, 5 +2km)
Since —g’ is non increasing, we then find

© a2 B am, g 2k + D
Jy o =P ds > 2= VE)(ke + DET (-0 (g +
As 2(k’5;1)7r > 1, we obtain

[T - e pas > 2V g ),

which proves (5.53) as —g’(1) > 0 due to (A1) and (A2). O

Let us finish this section by proving that the polynomial decay rate from Corollary 5.14 is
optimal if & = 7 and if the memory kernel satisfies the additional assumptions from section
5.4.
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Lemma 5.16. Assume that the memory kernel g € W3L(R.y) satisfies assumptions (A1) to
(H3) and (5.21) and that o = . Then the decay rate (5.52) is optimal in the sense that for

1
any | < 2, we can not expect the decay rate t— T for all initial data Uy € D(A).

Proof. We take advantage of Lemmas 5.12 and 5.10 (see [82, Theorem 2.10] for a similar
argument). In the setting of Lemma 5.10, for k£ > kg, we take

£k = Sk 45
that owing to (5.36) and (5.37) satisfies
& ~ A (5.54)

Now we consider (i§}, — A)Uj, 4, that owing to (5.27), is given by

wrawm:(ﬂ%ﬁﬂg+wiﬂwﬁ
k

This means that

(8 — AUk 4 lln =

This property combined with (5.54) shows that

EL1I(i&k — AUk 4 llgg ~ X2,

and implies that

&1k — AUk 4 13 l
kgr;o ||Uk,+||’H kglgof Il (&, ) k,+||7-t )

for any [ < 2. In other words, property (5.42) cannot holds for [ < 2 and we conclude by
Lemma 5.12. N

5.6 A stronger polynomial decay using a resolvent estimate of
the wave equation with a frictional interior damping

In this subsection, we want to take advantage of the decay rate of the semigroup generated
by wave equation in {2 with Dirichlet boundary condition and a frictional interior damping,
namely

ugg — Au+ (@ —y)ug =0 in Q x (0,00),
u=0 on I'x(0,00), (5.55)
u(.,0) =ug, u(.,0)=wu; in €,
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where a and v are given before. It is well known that the Hilbert setting of this kind of
equation consists in taking
Hy = H(Q) x L3(Q)

with the standard norm
T2 2 2
[(w,0)" I3, =lulig+lvlg, — Vu,v€Hew.

Moreover, the associated operator is given as

Aw(u,v)T = ( A (”a o ) . Y(u,v)T € D(Ay),

with domain
D(Aw) = {(u,v)T € Ho/v € HE(S), Au € L2()}.

It is well-known that A, is the generator of a Cy—semigroup of contractions on H,, (even
if a = 7). Consequently, we have

{A e C,ReX >0} C p(Aw)

and
1
-1
— < — . .
AL = Aw) ™ ll£a,) < Ren  "A€EC, Red>0 (5.56)

Recalling that, for any A € p(Ay) and for Fy, = (fw, gw) € Huw, the identity

is equivalent to

v = M — fu (5.57)
A+ a—7) Ay — Auy = gw + A+ a —7) fu.
Therefore, by the estimate
wul +lvollo < 10T - 40) Mg (Hfulio+loulo),  (659)
and the first equation in (5.57), we get
[wuhg + Wlwolo < € (1fulia + lgulla), (559

where C = max {1, |(\l — Aw) 2l £(31,,) } -
If, in addition to (A4), we suppose that the function « satisfies

(A5) there exist an non empty open subset wg of ) and a positive constant « such that
a—7v 2 Ka. e inw,

then, by Calderon uniqueness Theorem, we deduce that the imaginary axis is in the resolvent
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set p(Aw), hence, C1 C p(Ay).
The idea is now to derive a better decay rate of the solution of system (5.4) from the
following bound on the resolvent of Ay, on the imaginary axis

1GET — Aw) M, ST+ ™, VEER, (5.60)

where m is a positive constant such that 0 < m < 1. As before, the remaining task is to
estimate the resolvent of A on the imaginary axis.

Lemma 5.17. Assume that (A1) to (A5) hold with wg so that (5.60) holds with 0 < m < 1,
then

IIAL— A) 7Y < 14 |A™FL, VA e iR. (5.61)

Proof. As in Lemma 5.13, the estimate (5.61) is valid for all A € K = {u € iR : |u| < R},
with R > 1 fixed below. Hence we are reduced to the case A € iR with |A\| > R. For
all F = (f,g,h,p) € H, let U = (u,v,w,nt) € D(A) be the unique solution of (5.11) (or
equivalently to (5.12a)-(5.12d)). As before, we shall use the new variable u,, defined in
(5.48). Note that, by using (5.13c), we see that

Uy = A+7—LgA))u— 1+ X"y —2—Lg\)f + P, (5.62)

where ~ s
P= /0 g(s) (/0 e A=T)p(7) dT) ds,

and we recall that Lg is the Laplace transform of ¢ (that has a meaning because g is integrable
and Re A = 0). Further direct calculations show that

[Plia < lpllme (5.63)
As g and ¢’ are integrable, the following identity
ALg(A) = g(0) + Lg'(N),
holds. This implies that
(o ¢]
ACg] < L@ = [ (s)ds =: C. (5.64)

For further uses we need that the factor in front of w in the right-hand side of (5.62) is
different from zero, hence we need to fix |A| large enough. More precisely if we require

v+ C < |A,

then, we directly obtain that
Ay = Lg(V)] < 1,
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which guarantee the invertibility of A 4+ — Lg(\). This means that we fix R as follows

R > max{1,2(y+ C)}.
From (5.48), we can write u as

1
D gy

ww + (L + X"y =€ —Lg(\)f — P|.

Inserting this expression in (5.49), we get

(A + )2
- A
Atvy— Loy T
A2\ +a) (A + a)\2
=h Ag — .
e T NPy 70
Now, we notice that )
A+ a)A
= A\ A
o = A+ ah),
where
@A) = (=7 S AT,
due to (5.64). This allows to rewrite (5.66) as
A2\ +a) A+ a)\2
A(A A — Auy =h Ng —
A+ a))uw = Auy = ht (o + g A+7—EﬂMf+A+7—£ﬂM
or equivalently, by setting r(A) = a(\) — (@ — ), and
A2\ +a) (A + )2
=h A)g — P+ Ar(\
Jw + (a+A)g )\+7_£g()\)f+>\+7_£g()\) + (N uy,

AA+ a—7)uyw — Auy = -

By taking f,, = 0 and setting
Vw = )\uw,

(5.65)

(5.66)

(5.67)

(5.68)

we see that the pair (uy,vy) belongs to D(Ay) and is solution of (5.57). Consequently, by

(5.59) and (5.60), we find

luwl1,0 + Mlluwlle < 1A gwllo-

By the definition of g,,, we find

[wula + Wlwolla S ™ (gl + NIf Lo + APl + lIbllo + (] luwlla ).
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As the estimate (5.67) implies that |Ar(A\)| < 1, we find that

wwho+Wlluslle S N™(Igh.a + NIfa + NPl + 7],

if |[A\| > Ry for a positive real number R; large enough independent of |A| but depending on
m and on the constants from (5.59) and from (5.67) (hence we fix R larger than this R; as
well). By the definition of the norm in # and the estimate (5.63), we have found

[uwlo + Nlluwlln S ™ Fll. (5.69)

We now come back to the original variables u, v and w. Indeed from (5.65), (5.64) and
(5.69), we find

[ulr,0 + Mllullo < A F[l5 (5.70)
Now the identity (5.13a) and the previous estimate directly yield
[l + Il S ™ F - (5.71)
Similarly using (5.13b) and this estimate, we find
lwllg S ™Il (5.72)
Finally using (5.13c) and (5.70), we obtain
I*lae S I (- (5.73)

The estimates (5.70) to (5.73) show that (5.61) is valid for A € iR such that |A\| > R, which
completes the proof. m

Combining this Lemma and Corollary 5.3, Lemma 5.12 allows to obtain the next poly-
nomial decay rate.

Corollary 5.18. Under the assumptions of Lemma 5.17, system (5.1) is polynomially stable

1
with a decay rate in t~ m+1 for initial data in D(A), namely we have
_ 1
1S@Uollx <t ™+1|[Uollp(a)y, VUo € D(A), Vi>1. (5.74)

Note that the decay rate (5.74) is always better than (5.52) since m € [0,1).
Let us finish this section with some examples for which the decay rate (5.74) is available.

Example 5.19. There are many cases for which the frictional damping in wq is sufficient
to guarantee the exponential stability of the wave equation (5.55) (hence by Huang-Priiss
theorem [50, 101], (5.60) holds with m = 0), hence by Corollary 5.18, system (5.1) is poly-
nomially stable with a decay rate in ¢! for initial data in D(A). Let us mention a few of
them.

1) By [104, Theorem 2] (see also [11, 68]), (5.55) is exponentially stable if the boundary
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of Q2 is of class C*° and wq satisfies the Geometric Control Condition (GCC). Recall that
the GCC can be formulated as follows: For a subset w of €2, we shall say that w satisfies
the Geometric Control Condition if there exists T' > 0 such that every geodesic traveling at
speed one issued from €2 at time ¢ = 0 intersects w before time 7'

2) From [72, Lemma VII.2.4] (see also [113, Theorem 1.1 and Remark 1.2] or [47, Example
3]) (5.55) is exponentially stable if the boundary of € is of class C2 and wy is a neighborhood
of T'(z9), for some 20 € R%, where

Iz ={zecd| (z—2° v(z) >0},

v(z) being the unit outward normal vector at = € 0.

3) From [47, Example 1], (5.55) is exponentially stable if d = 1, Q = (0, £) for some positive
real number ¢, and wp is a non empty open subset of (2.

4) In [73, Remark 4.3], further examples of pairs (2,wp) such that (5.55) is exponentially
stable are given.

Example 5.20. To the best of our knowledge, only three papers are considering the estimate
(5.60) in the case 0 < m < 1, namely [21, 22, 67] on a smooth connected compact Riemannian
manifold, but the arguments from [7, Remark 2.8] allow to deduce that the same result holds
for the damped wave equation in a hyper-cube (—L,L)"™ of R™, with n > 2 and Dirichlet
boundary conditions. More precisely, for 6 > 0 and Q = (=L, L)" with L > 0, if we take
(a —y)(x1, - ,2n) = x%‘s near x1 = 0, positive elsewhere and depending only on 1, then
using [67, Theorem 1.8] or [21, Theorem 1.2] (and [7, Remark 2.8]), the estimate (5.60) holds

with m = 3%, that indeed belongs to (0,1). Consequently by Corollary 5.18, system (5.1)

_ 541
is polynomially stable with a decay rate in ¢ 26+1 for initial data in D(A).

126



CONCLUSION AND PERSPECTIVE

CONCLUSION

In this thesis, we studied a linear Cauchy problem for the Moore-Gibson—Thompson (MGT)
equation with type I and III memory terms (in whole space RN ), in the presence of vis-
coelastic dissipation, where the relaxation function decays exponentially and polynomially.
We have established existence and stability results which depend on the coefficients of the
equation and show that the rate of decay is of the "Loss of regularity” type. We also studied
the case of the type II memory term with a large class of relaxation functions and showed a
general stability result.

Then, we are interested in a linear Cauchy problem with MGT equation coupled to a
Gurtin and Pipkin type heat equation, where the relaxation function decays exponentially.
We have shown polynomial stability result with an optimal rate of type "Regularity loss”.

We were also interested in third order in time linear evolution equations, general and
abstract version of the Moore-Gibson—Thompson system with and without memory term,
where existence and uniqueness of a solution has been shown using semigroup theory and

several stability rates have been obtained.

Our results generalize and improve many previous results in the literature.

PERSPECTIVE

A research perspective focused on the study of the existence and stability of the solution of
the nonlinear JMGT equation in bounded or unbounded domains, with the use of different
types of dissipation.
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Abstract: The main goal of this dissertation is to discuss the asymptotic behavior of some
hyperbolic PDE systems, precisely, we handled the well-posedness and stability of the solutions for
the Moore-Gibson-Thompson equation (MGT) employing various types of dissipation. In fact,
under an appropriate assumption on the coefficients of the systems together with the energy
method in Fourier space we have proved the well-posedness of the systems and built some
Lyapunov functionals which allowed us to get control estimates on the Fourier image of the
solution and led to the decay rate of the L2-norm of the solution.

On the other hand, by comparing the behavior of the resolvent of the Moore-Gibson-Thompson
system with the one of the resolvent of the wave equation with a frictional interior damping, we
furnish weaker conditions that guarantee exponential, polynomial or even logarithmic decay of the
solution of the Moore-Gibson-Thompson system in a bounded domain.

Keywords: Moore-Gibson-Thompson equation, memory kernel, energy method, wave
equation, relaxation function, general decay, Fourier space, Gurtin-Pipkin thermal law,
stabilization, exponential decay, polynomial decay, regularity loss.
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Résumeé: L'objectif principal de cette thése est de discuter le comportement asymptotique de
certains systémes d'EDP hyperboliques, précisément, nous avons traité la bonne position et la
stabilité des solutions de I'équation de Moore-Gibson-Thompson (MGT) employant divers types de
dissipation. En fait, sous une hypothése appropriée sur les coefficients des systémes avec la
méthode de I'énergie dans I'espace de Fourier nous avons prouvé la bonne position des systemes et
construit des fonctionnelles de Lyapunov qui nous ont permis d'obtenir des estimations de contréle
sur I'image de Fourier de la solution et conduisent au taux de décroissance de la norme L2 de la
solution.

D'autre part, en exploitant la résolvante de I'équation des ondes avec amortissement par frottement
interne, on fournit des conditions plus faibles qui garantissent une décroissance exponentielle,
polynomiale ou méme logarithmique de la solution du systéme de Moore-Gibson-Thompson dans un
domaine borné.

Mots-clés: Equation de Moore-Gibson-Thompson, noyau mémoire, méthode énergétique,

équation des ondes, fonction de relaxation, décroissance générale, espace de Fourier, loi thermique
de Gurtin-Pipkin, stabilisation, perte de régularité.
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